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Abstract — It is expected that automated driving will enhance road safety, increase high-
way capacity, reduce carbon emissions, and make transportation more accessible to disabled
and older people. However, fully automated systems are not expected to be widely available
until the 2040 decade. Due to this reason, human drivers will still be behind the wheel for the
imminent future. On the other hand, Advanced Driver Assistance Systems (ADAS) are be-
coming increasingly more advance and are a feature of most modern cars. This drive towards
increased automated driving and the effects of human-automation interaction pose interesting
challenges from a control theory perspectives. In this context, this thesis proposes the use of
LPV/H∞ approaches that allow the synthesis of controllers capable to adapting to variations
on the vehicle speed and to mitigate the effect of saturation on the steering actuator. In
the human-automation interaction context, the thesis proposes an integrated lateral control
ADAS strategy tasked with helping the human driver during critical scenarios. The criticality
of the situation is estimated based on fault detection techniques that monitor the driver’s
performance. This estimation is then used to activate the LPV/H∞ lateral ADAS controller
if required, or to deactivate it otherwise. Both the autonomous driving and ADAS control
strategies proposed in this thesis have been experimentally validated on a reduced scale vehicle
platform present at GIPSA-Lab.
Keywords: Linear Parameter Varying, Autonomous Vehicles, ADAS, Fault Tolerant Con-
trol, Integrated Control.

Résumé — La conduite automatisée devrait améliorer la sécurité routière, augmenter la
capacité des autoroutes, réduire les émissions de carbone et rendre les transports plus accessi-
bles aux personnes handicapées et âgées. Toutefois, les systèmes entièrement automatisés ne
devraient pas être largement disponibles avant la décennie 2040. C’est pourquoi les conduc-
teurs humains resteront au volant dans un avenir proche. D’autre part, les systèmes avancés
d’aide à la conduite (ADAS) sont de plus en plus perfectionnés et font partie de la plupart des
voitures modernes. Cette évolution vers une automatisation accrue de la conduite et les effets
de l’interaction entre l’homme et l’automatisation posent des défis intéressants du point de
vue de la théorie du contrôle. Dans ce contexte, cette thèse propose l’utilisation d’approches
LPV/H∞ qui permettent la synthèse de contrôleurs capables de s’adapter aux variations de
la vitesse du véhicule et d’atténuer l’effet de la saturation sur l’actionneur de direction. Dans
le contexte de l’interaction homme-automatisation, la thèse propose une stratégie ADAS de
contrôle latéral intégrée chargée d’aider le conducteur humain dans les scénarios critiques.
La criticité de la situation est estimée sur la base de techniques de détection des pannes qui
surveillent les performances du conducteur. Cette estimation est ensuite utilisée pour activer
le contrôleur ADAS latéral LPV/H∞ si nécessaire, ou pour le désactiver dans le cas contraire.
Les stratégies de conduite autonome et de contrôle ADAS proposées dans cette thèse ont
été validées expérimentalement sur une plateforme de véhicule à échelle réduite présente au
GIPSA-Lab.
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Mots clés : Systèmes Linéaires à Paramètres Variables, Véhicules Autonomes, ADAS,
Contrôle Tolérant aux Pannes, Contrôle Intégré.

Resumen — Se espera que la conducción automatizada mejore la seguridad vial, aumente
la capacidad de las autopistas, reduzca las emisiones de carbono y haga el transporte más
accesible para discapacitados y personas mayores. Sin embargo, no se espera que los sistemas
totalmente automatizados estén ampliamente disponibles hasta la década de 2040. Por este
motivo, los conductores humanos seguirán al volante en un futuro inminente. Por otro lado,
los Sistemas Avanzados de Asistencia al Conductor (ADAS) son cada vez más avanzados y
forman parte de la mayoría de los coches modernos. Este impulso hacia una conducción cada
vez más automatizada y los efectos de la interacción hombre-automatización plantean retos
interesantes desde el punto de vista de la teoría de control. En este contexto, esta tesis pro-
pone el uso de técnicas LPV/H∞ que permiten sintetizar controladores capaces de adaptarse
a variaciones en la velocidad del vehículo y de mitigar el efecto de saturación en el actuador
de dirección. En el contexto de la interacción hombre-automatización, la tesis propone una es-
trategia ADAS de control lateral integrado encargada de ayudar al conductor humano durante
escenarios críticos. La criticidad de la situación se estima a partir de técnicas de detección de
fallos que monitorizan la actuación del conductor. Esta estimación se utiliza entonces para
activar el controlador ADAS lateral LPV/H∞ si es necesario, o para desactivarlo en caso
contrario. Tanto la conducción autónoma como las estrategias de control ADAS propuestas
en esta tesis han sido validadas experimentalmente en una plataforma de vehículo a escala
reducida presente en GIPSA-Lab.
Palabras claves: Sistemas Lineares con Parámetros Variables, Vehículos Autónomos, ADAS,
Control Tolerante a Fallos, Control Integrado.

Resum — S’espera que la conducció automatitzada millori la seguretat viària, augmenti la
capacitat de les autopistes, redueixi les emissions de carboni i faci el transport més accessible
per a discapacitats i persones majors. No obstant això, no s’espera que els sistemes totalment
automatitzats estiguin àmpliament disponibles fins a la dècada de 2040. Per aquest motiu,
els conductors humans seguiran al volant en un futur imminent. D’altra banda, els Sistemes
Avançats d’Assistència al Conductor (ADAS) són cada vegada més avançats i formen part
de la majoria dels cotxes moderns. Aquest impuls cap a una conducció cada vegada més
automatitzada i els efectes de la interacció home-automatització plantegen reptes interessants
des del punt de vista de la teoria de control. En aquest context, aquesta tesi proposa l’ús de
tècniques LPV/H∞ que permeten sintetitzar controladors capaços d’adaptar-se a variacions
en la velocitat del vehicle i de mitigar l’efecte de saturació en l’actuador de direcció. En
el context de la interacció home-automatització, la tesi proposa una estratègia ADAS de
control lateral integrat encarregada d’ajudar al conductor humà durant escenaris crítics. La
criticitat de la situació s’estima a partir de tècniques de detecció de fallades que monitoren
l’actuació del conductor. Aquesta estimació s’utilitza llavors per a activar el controlador ADAS
lateral LPV/H∞ si és necessari, o per a desactivar-ho en cas contrari. Tant la conducció
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autònoma com les estratègies de control ADAS proposades en aquesta tesi han estat validades
experimentalment en una plataforma de vehicle a escala reduïda present en GIPSA-Lab.
Paraules Clau: Sistemes Linears amb Paràmetres Variables, Vehicles Autònoms, ADAS,
Control Tolerant a Fallades, Control Integrat.

GIPSA-Lab, 11 rue des Mathématiques Grenoble Campus
Grenoble, France

Institut de Robòtica i Informàtica Industrial, C/ Llorens i Artigas 4-6
Barcelona, Spain
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Résumé Étendu en Français — La conduite automatisée devrait améliorer la sécu-
rité routière, augmenter la capacité des autoroutes, réduire les émissions de carbone et rendre
les transports plus accessibles aux personnes handicapées et âgées. Toutefois, les systèmes
entièrement automatisés ne devraient pas être largement disponibles avant la décennie 2040.
Les niveaux de conduite automatisée peuvent être classés du niveau 0, où le système ne fournit
au conducteur que des signaux d’avertissement, au niveau 5, où le système peut conduire la
voiture dans toutes les conditions.

Au moment de la rédaction de ce manuscrit de thèse, certains modèles de la marque
Mercedes Benz sont les seuls cas, pour l’ensemble de l’industrie des transports, de véhicules
autorisés à conduire légalement au niveau 3 d’autonomie. Cependant, ce système automatisé
n’est autorisé que sur les autoroutes d’Allemagne et dans certaines régions des États-Unis.
Dans les deux cas, à une vitesse maximale de 60km/h. De plus, l’investissement dans les
entreprises technologiques de conduite entièrement autonome a ralenti de 60%. Les trois
années qui se sont écoulées depuis le début de la thèse ont été marquées, dans le domaine des
véhicules autonomes, par un déclin de l’intérêt pour la technologie sans conducteur et par une
réorientation de l’industrie vers le développement de systèmes avancés d’aide à la conduite
(ADAS) automatisés de niveau 2 et de niveau 3.

Il ne fait aucun doute que cette évolution est marqué par des défis technologiques majeurs
pour la conduite automatisée aux niveaux 4 et 5. Du point de vue de la théorie du contrôle,
ces défis soulèvent des questions importantes :

• Comment le contrôleur peut-il être adapté pour tenir compte des différentes situations
de conduite et traiter les dysfonctionnements potentiels du véhicule? La dynamique
d’un véhicule diffère considérablement entre la conduite à basse vitesse et la conduite
à vitesse de croisière sur autoroute. L’interaction entre les pneus et la route change
considérablement en fonction du revêtement et de l’état de la route. Certains action-
neurs du véhicule peuvent connaître des défaillances partielles ou atteindre des points
de saturation, ce qui peut avoir un impact négatif sur les performances du contrôleur
conçu dans des conditions nominales.

• Comment pouvons-nous gérer efficacement la coordination entre les différents action-
neurs qui travaillent ensemble pour atteindre un objectif commun? Actuellement, les
véhicules sont déjà équipés de plusieurs actionneurs tels que le système de direction
motorisé, le système de freinage antiblocage (ABS) et d’autres. Toutefois, leur utili-
sation combinée est limitée par la capacité restreinte des conducteurs humains à gérer
simultanément plusieurs commandes. La mise en œuvre de systèmes automatisés offre
la possibilité de tirer parti de la redondance présente dans les commandes des véhicules.

En outre, comme la conduite entièrement autonome de niveau 5 est plus éloignée que prévu
il y a quelques années, les conducteurs humains seront toujours derrière le volant. D’autre part,
les systèmes ADAS sont de plus en plus perfectionnés et font partie de la plupart des voitures
modernes. En fait, à partir de juillet 2024, une série de fonctions ADAS seront obligatoires
dans tous les nouveaux véhicules vendus au sein de l’Union européenne. La question suivante
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se pose alors :

• Comment prendre en compte l’interaction entre le conducteur et les systèmes ADAS
automatisés? Des nombreux accidents sont dus au fait que les conducteurs prennent des
mesures incompatibles avec la situation rencontrée, ce qui peut entraîner des réactions
indésirables du véhicule, voire une instabilité, et le système ADAS pourrait apporter une
aide dans ces cas-là. Cependant, un système ADAS qui semble invasif peut conduire de
nombreux conducteurs à désactiver ces aides, ce qui va à l’encontre de l’objectif premier
du système.

La principale motivation de cette thèse est d’étudier si la théorie LPV, et en particulier si
les contrôleurs adaptatifs LPV, peuvent apporter une réponse efficace aux questions soulevées
précédemment.

Objectifs de la thèse

Les objectifs de recherche de cette thèse sont de développer des approches de contrôle tolérantes
aux fautes, pour les applications de véhicules automatisés. Les objectifs fixés pour atteindre
ce but sont les suivants :

• Proposer des approches de synthèse pour les observateurs et les contrôleurs robustes
dans le cadre LPV.

• Étudier l’intégration de la détection des pannes basée sur un modèle et des contrôleurs
adaptatifs utilisant les approches LPV.

• Concevoir des contrôleurs LPV reconfigurables pour les véhicules autonomes, robustes
aux dysfonctionnements des actionneurs, tels que la saturation des actionneurs.

• Étudier les approches permettant d’intégrer le comportement du conducteur dans la
conception d’une commande basée sur un modèle. Ces modèles de comportement du
conducteur devraient être utilisés pour détecter les erreurs du conducteur humain et
pour développer un contrôleur ADAS latéral afin d’améliorer la sécurité du véhicule.

• Mettre en œuvre et valider les algorithmes développés dans des expériences en temps
réel.

Contributions de la thèse

Les contributions faites dans la thèse peuvent être classées dans les catégories suivantes : con-
tributions aux contrôles de la conduite automatisée utilisant les techniques LPV, contributions
à la théorie du contrôle et contributions aux contrôles LPV d’un point de vue de la mise en
œuvre. Les sous-sections suivantes détaillent ces contributions.
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Contributions à la théorie du contrôle

• Proposition d’un cadre LPV basé sur une grille à temps discret . Les approches
LPV pour les systèmes à temps discret (DT) ont été principalement explorées dans les
cadres LPV polytopiques ou de transformation fractionnaire linéaire (LFT). L’approche
LPV basée sur la grille offre des avantages notables par rapport à l’approche polytopique,
qui est l’approche LPV la plus répandue dans la littérature. Ces avantages incluent la
possibilité de prendre en compte les taux de variation des paramètres et d’éviter les
problèmes d’overbounding dans l’espace des paramètres. Cependant, l’approche LPV
basée sur la grille n’a été développée que pour les systèmes à temps continu.

Cette thèse introduit un nouveau cadre spécialement conçu pour les approches en grille
à temps discret, appelé ici : grid and local variation bound framework. Ce cadre permet
la reformulation des conditions LMI, telles que les conditions de stabilité et les con-
ditions pour le calcul de la norme L2 induite des systèmes DT-LPV, en utilisant des
fonctions de Lyapunov dépendantes des paramètres comme un problème d’optimisation
LMI fini. La thèse présente de nouveaux théorèmes et propositions illustrant la synthèse
de contrôleurs et d’observateurs DT-LPV dans ce nouveau grid and local variation bound
framework.

Le cadre de la grille et de la limite de variation locale est présenté au Chapitre 4. Ensuite,
le Chapitre 4 et Chapitre 5 introduisent les conditions de synthèse par retour d’état qui
sont utilisées pour la plupart des problèmes de synthèse de contrôleur dans la thèse. Le
cadre DT basé sur la grille est également utilisé dans le Chapitre 7 pour la conception
de l’observateur LPV.

• Des conditions LMI pour le contrôle des systèmes M3D. Les systèmes multi-
modes multi-dimensionnels (M3D) ont été introduits pour la première fois par E. Verriest
dans [Ver06]. Les systèmesM3D sont des systèmes de commutation pour lesquels chacun
des modes du système peut avoir un nombre différent d’états. Le fait que le nombre
d’états soit différent pour plusieurs modes signifie que les résultats bien connus pour
l’étude des systèmes à commutation [GC06a]; [GC06b] ne peuvent pas être directement
appliqués à ces systèmes.

L’intérêt d’étudier de tels systèmes dans le cadre de cette thèse apparaît lors de l’étude
des propriétés de stabilité des transitions de handover et takeover. Ces transitions se
produisent lors du passage du mode de contrôle des véhicules automatisés de la com-
mande autonome à la commande manuelle assistée et vice-versa. Comme nous le verrons
dans cette thèse, le nombre d’états considérés dans la conception du contrôle pour ces
modes peut être différent.

Notez que les résultats de ce travail ne sont pas présentés en tant que chapitres prin-
cipaux dans ce manuscrit de thèse car l’étude des transitions LPV M3D Autonomous-
ADAS est encore en cours. Il a été décidé de mettre l’accent dans ce manuscrit sur les
approches LPV avec des résultats bien vérifiés dans l’application de la conduite automa-
tisée. Le contenu de l’article déjà publié sur le contrôle des systèmes M3D est présenté
en annexe B.
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Contributions aux aspects de la mise en œuvre des approches de contrôle
de la LPV

• Parameter-Dependent State-Feedback (PDSF) et Static Output-Feedback Con-
trollers. Ce nouveau type de contrôleurs est basé sur une approche de synthèse en
deux étapes utilisant le lemme de projection et les approches LPV basées sur la grille.
L’approche de synthèse en deux étapes permet d’appliquer directement aux conditions
LMI une structure de contrôleur fixe avec des gains de contrôleur constants. Les gains du
contrôleur sont affines sur une fonction de base, avec une dépendance sur les paramètres
variables, ce qui permet au contrôleur global de s’auto-planifier sans nécessité d’étape
d’interpolation. Du point de vue de la mise en œuvre, cela conduit à une mise en œuvre
directe de la loi de commande en temps réel.

Cette approche de synthèse de contrôle est appliquée dans le Chapitre 4 pour le problème
de contrôle de la direction autonome et dans le Chapitre 7 pour le contrôle ADAS latéral.
En outre, l’approche duale est utilisée dans le chapitre 7 pour la synthèse du gain de
l’observateur.

• MPC basé sur l’ordonnancement des paramètres variables liés à la concep-
tion . Il a été proposé un schéma de réglage optimal en ligne pour les paramètres
d’ordonnancement liés à la conception des systèmes de contrôle adaptatifs LPV. Plus
précisément, la méthode est conçue dans le cadre du Model Predictive Control (MPC).
Le principal avantage de la solution proposée est qu’elle détermine automatiquement en
ligne l’ordonnancement LPV des paramètres variables liés à la conception. Cela évite
au concepteur d’avoir à développer une fonction d’ordonnancement (ce qui est souvent
une tâche répétitive et obscure).

Il est à noter que les résultats de ce travail ne sont pas présentés dans ce manuscrit de
thèse car il a été choisi de se concentrer sur les travaux basés sur les approches LPV/H∞,
qui sont au cœur du travail de thèse.

Contributions aux approches LPV pour la conduite automatisée

• Contrôleur PDSF (Parameter-Dependent State-Feedback) pour la conduite
autonome . L’approche de contrôle PDSF a été mise en œuvre pour la direction au-
tonome dans une application de suivi de trajectoire sur le plateforme expérimentale
Scaled Automated Vehicles, présentée dans le Chapitre 4. Il est remarquable que, bien
que la conception DT basée sur la grille comprenne plus de 150 points de grille, le con-
trôleur résultant ne nécessite que quatre matrices à gain constant. Cela met en évidence
la réduction significative de l’effort de mise en œuvre obtenue grâce à l’utilisation de
contrôleurs PDSF.

• Contrôleur LPV Gain-Scheduled basé sur une grille avec un comportement
anti-windup. Dans la conception de la commande de direction autonome, des paramètres
variables liés à la conception ont été introduits et combinés à l’approche DT basée sur
la grille. Cela a permis de développer un contrôleur LPV qui émule le comportement
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d’un mécanisme anti-Windup. En utilisant le paramètre variable lié à la conception, le
contrôleur module l’amplitude maximale de la direction. La programmation en ligne de
ce paramètre permet d’éviter les effets d’enroulement lorsque l’actionneur de direction
atteint son point de saturation. L’efficacité de cette conception a été validée par des
expériences en temps réel menées sur une plate-forme expérimentale. Le contenu du
Chapitre 5 décrit cette contribution.

• Détection des erreurs du conducteur à l’aide d’approches de détection des
défauts. La thèse propose plusieurs méthodes de détection des fautes pour évaluer
l’ampleur des erreurs du conducteur par rapport au comportement de conduite attendu,
en utilisant des modèles nominaux du conducteur et des informations sur la planification
de la trajectoire du système de conduite automatisée. Initialement, dans le Chapitre 6,
une approche de l’espace de parité est suggérée pour les cas impliquant un modèle
de conducteur linéaire invariant dans le temps (LTI). Cependant, des approches plus
avancées pour la détection des erreurs du conducteur sont présentées, employant un
observateur PI dans le Chapitre 8 et un observateur PI LPV dans le Chapitre 7. Ces
méthodes avancées peuvent identifier les erreurs du conducteur dans des intervalles de
fréquences spécifiques et de prendre en compte les modèles de conducteur LPV qui
s’adaptent aux différentes vitesses du véhicule. La validation en temps réel confirme
l’efficacité de cette proposition pour détecter rapidement les situations dangereuses.

• Contrôle ADAS latéral . En utilisant des approches LPV/H∞ et des paramètres
variables liés à la conception, la conception proposée pour le contrôleur ADAS latéral
permet une transition sûre du mode d’assistance inactif au mode d’assistance actif.
Lorsqu’il est actif, il aide le conducteur à maintenir la stabilité du véhicule dans les
situations critiques. Plusieurs variantes de conception ont été proposées, y compris
des configurations à un ou plusieurs actionneurs. La principale caractéristique de cette
conception est de fournir une assistance au conducteur tout en minimisant les niveaux
d’intrusion. Le contenu de la partie III de la thèse décrit cette contribution.

• Validation expérimentale sur la plateforme SAV (Scaled Automated Vehicle).
Un temps important a été consacré au développement de la plateforme SAV au GIPSA-
Lab. En particulier pour la transition de la version originale de la plateforme, utilisant
une carte PX4 programmée en C embarqué, à sa version actuelle programmée dans
l’environnement ROS2 et le langage Python, qui est beaucoup plus conviviale et permet
une vitesse d’itération de développement rapide. Les détails sur la plate-forme ainsi que
l’effort d’identification du système pour modéliser la dynamique de la voiture SAV sont
présentés dans le Chapitre 2.

Les contributions faites dans cette thèse ont été largement testées et validées sur la plate-
forme SAV. Les résultats expérimentaux pour les contrôleurs de direction autonomes
dans la Partie II ont été testés sur la plateforme SAV. En outre, la plateforme a égale-
ment été utilisée pour valider la stratégie ADAS proposée dans la thèse, les résultats
expérimentaux obtenus étant donnés dans le Chapitre 8 et dans l’Annexe A.



xiii

Perspectives futures

Cette thèse a fourni quelques contributions qui pourraient ouvrir des pistes de travail intéres-
santes pour des études futures :

• Conditions LMI de la synthèse en temps discret : Il sera utile d’étendre les con-
ditions LMI présentées dans cette thèse pour les structures dépendantes des paramètres
et les contrôleurs LPV à gain programmé basés sur la grille au-delà de la synthèse par
retour d’état (SF). Certains travaux préliminaires ont été réalisés en ce qui concerne la
synthèse de contrôleurs à rétroaction de sortie statique (SOF), cependant, la synthèse
de contrôle à rétroaction de sortie dynamique (DOF) sur le cadre de temps discret basé
sur la grille reste un défi ouvert.

• Planification optimale des paramètres variables liés à la conception : L’utilisation
de méthodes basées sur les MPC pour planifier en ligne les paramètres variables liés à
la conception est une approche prometteuse. Les résultats préliminaires développés au
cours de la thèse pourraient être étendus en intégrant l’étape de planification avec ce
problème d’ordonnancement optimal comme un problème optimal conjoint. Cela ou-
vre la possibilité d’augmenter l’interconnexion entre les étapes de planification et de
contrôle, ce qui peut conduire à de meilleures performances.

• Commande robuste de transition Handover/Takeover avec la théorie M3D

: L’étude des propriétés de stabilité et de robustesse des transitions entre le handover
et le takeover dans les systèmes automatisés est bien adaptée à l’approche de contrôle
M3D. Si les contrôleurs latéraux autonomes et ADAS proposés dans cette thèse sont pris
comme modèles de base, cela impliquera la nécessité d’étendre les résultats du contrôle
M3D à la théorie LPV.

• Validation expérimentale supplémentaire de l’ADAS : La validation expérimen-
tale effectuée sur la plateforme SAV de la stratégie ADAS intégrée a montré un grand
potentiel. Toutefois, il convient de reconnaître les limites de la plateforme SAV pour
l’application ADAS. La validation expérimentale future de la stratégie proposée pour-
rait être effectuée en améliorant la plateforme, par exemple en installant une caméra
frontale pour donner au conducteur une vue à la première personne et en utilisant un
volant comme dispositif d’entrée pour le conducteur. En outre, la stratégie pourrait être
testée dans des simulateurs ADAS spécialisés ou même dans des véhicules à taille réelle.
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Context of the Thesis

This thesis was developed as a part of the project SARAH (SAfe and Robust Autonomous
veHicles) from October 2020 to September 2023, carried out as an international joint the-
sis (cotutelle) collaboration by Universtitat Politécnica de Catalunya (UPC) and Université
Grenoble Alpes (UGA). The research work has been done at the Gipsa-Lab laboratory at
UGA and the Institut de Robòtica i Informàtica Industrial (IRI) at UPC.

The research was jointly supervised by Prof. Olivier Sename and Prof. Vicenç Puig, and
was supported by the French National Research Agency (CNRS, “Investissements d’Avenir”,
ANR-15-IDEX-02) and has been partially supported by ROBOTEX 2.0 (Grants ROBOTEX
ANR-10-EQPX-44-01 and TIRREX ANR-21-ESRE-0015) funded by the French program In-
vestissements d’avenir. It has also been partially funded by the Spanish State Research Agency
(AEI) and the European Regional Development Fund (ERFD) through the project SaCoAV
(ref. MINECO PID2020-114244RB-I00) and by FPI UPC grant 2020FPI-UPC-008. The
supports are gratefully acknowledged.

Motivations of the Thesis

It is expected that automated driving will enhance road safety, increase highway capacity,
reduce carbon emission, and make transportation more accessible to disabled and older people.
However, fully automated systems are not expected to be widely available until the 2040
decade. The levels of automated driving can be categorized from Level 0, where the system
provide the driver only with warning signals, to Level 5, where the system can drive the car
under all conditions. See Fig. 1 for an overview of the different autonomy levels according to
SAE International.

At the moment of writing this thesis manuscript, some models of the Mercedes Benz brand
are the only cases for the whole transportation industry of vehicles allowed to drive legally at
a Level 3 of autonomy. Still, this automated system is only allowed in highways of Germany
and in certain regions of the United States. In both cases, at a maximum speed of 60km/h.
Moreover, investment in full self-driving tech companies has slow down by 60%1. These three
years since the thesis started have been marked in the autonomous vehicle field by a decline
of interests in driverless technology and an industry shift towards the development of Level 2
and Level 3 automated Advanced Driving Assistance Systems (ADAS).

Without a doubt this shift is marked by major technological challenges for automated

1https://www.theverge.com/2023/5/5/23711586/autonomous-vehicle-investment-toyota-nvidia
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2 Introduction

Figure 1: Different levels of automated driving. Source: www.SAE.org

driving at Level 4 and Level 5. These challenges from the control theory point of view present
important questions:

• How can the controller be adapted to accommodate varying driving situations and address
potential vehicle malfunctions? The dynamics of a vehicle differ significantly between
low-speed driving and cruising at highway speeds. The tire road interaction changes
dramatically depending on road surface and condition. Certain vehicle actuators may
experience partial failures or reach saturation points, which can negatively impact the
performance of the controller designed under nominal conditions.

• How can we effectively manage the coordination among various actuators that work to-
gether towards a shared objective? Currently, vehicles already have multiple actuators
such as the motorized steering system, Anti-Locking Brake System (ABS), and others.
However, their combined utilization is restricted by the limited capacity of human drivers
to handle multiple inputs simultaneously. The implementation of automated systems
opens up opportunities to leverage the redundancy present in vehicle controls.

Moreover, as Level 5 full autonomous driving is further away than expected some years
ago, human drivers will still be behind the wheel. On the other hand, ADAS systems are
becoming increasingly more advanced and are a feature of most modern cars. In fact, starting
from July 2024 a series of ADAS features will be mandatory in all new sold vehicles within



Introduction 3

the European Union2. Then, the following question arises:

• How to take into account the interaction between the driver and the automated ADAS
systems? Many accidents are caused by drivers generating actions inconsistent with the
situation encountered, which may lead to undesired vehicle responses or even instability,
and the ADAS system could provide support in these cases. However, an ADAS system
that feels invasive may lead many drivers to disable such aids, which defeats the purpose
of the system in first place.

Figure 2: Desired control system, with LPV adaptation as a tool to accommodate faults and
driver errors in the vehicle control loop. SARAH (SAfe and Robust Autonomous veHicles)
project UGA-UPC.

The main motivation of this thesis is to study whether the LPV theory and in particular
whether LPV adaptive controllers can provide an efficient answer to the questions raised before
according to the above scheme.

Objectives of the Thesis

The research objectives of this thesis are to develop fault tolerant control approaches (as shown
in Fig 2), for automated vehicles applications. The objectives set to achieve this goal are the
following:

• to propose synthesis approaches for robust observer and controllers in the LPV frame-
work.

2https://ec.europa.eu/commission/presscorner/detail/en/ip_22_4312
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• to study the integration of model-based fault detection and adaptive controllers employ-
ing LPV approaches.

• to design reconfigurable LPV controllers for autonomous vehicles robust to actuator
malfunctions, such as actuator saturation.

• to study approaches to integrate the driver’s behaviour to be used in a model based
control design. These models of driver’s behaviour should be used for detecting human
driver errors and to develop lateral ADAS controller to enhance the safety of the vehicle.

• to implement and validate the developed algorithms in real-time experiments.

Contributions of the Thesis

The contributions made in the thesis can be categorized into the following categories: contri-
butions to automated driving controls using LPV techniques, contributions to control theory
and contributions to LPV controls from an implementation point of view. The following
subsections detail those contributions.

Contributions to Control Theory

• Proposition of a Discrete-Time Grid-Based LPV framework . LPV approaches
for Discrete-Time (DT) systems have primarily been explored within the Polytopic or
Linear Fractional Transformation (LFT) LPV frameworks. The Grid-Based LPV ap-
proach offers notable advantages over the Polytopic approach, which is the most preva-
lent LPV approach in the literature. These advantages include the ability to account
for parameter variation rates and avoid overbounding issues in the parameter space.
However, the Grid-Based LPV approach has only been developed for Continuous-Time
systems.

This thesis introduces a new framework specifically designed for Discrete-Time Grid-
Based approaches referred here as: grid and local variation bound framework. This
framework enables the reformulation of LMI conditions, such as stability conditions
and conditions for the computation of the induced L2-norm of DT-LPV systems, using
parameter-dependent Lyapunov functions as a finite LMI optimization problem. The
thesis presents new theorems and propositions illustrating the synthesis of DT-LPV
controllers and observers within this novel grid and local variation bound framework.

The grid and local variation bound framework is presented in Chapter 4. Then, Chap-
ter 4 and Chapter 5 introduce State-Feedback synthesis conditions which used for most
of the controller synthesis problems in the thesis. The DT Grid-Based framework is also
used in Chapter 7 for LPV observer design.

• LMI conditions for control of Multi-Mode Multi-Dimensional Systems. Multi-
Mode Multi-Dimensional Systems (M3D) were first introduced by E. Verriest in [Ver06].
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M3D systems are switching systems for which each of the modes of the system can have
a different number of states. The fact that the number of states is different for multiple
modes means that well known results for the study of switched systems [GC06a]; [GC06b]
cannot be directly applied for these systems.

The interest of studying such systems within the scope of this thesis arises when studying
the stability properties of handover and takeover transitions. These transitions occur
when switching the control mode of automated vehicles from autonomous control to
manual assisted control and vice-versa. As will be seen in this thesis, the number of
states considered in the control design for these modes can be different.

Note that the results from this work are not presented as main chapters in this thesis
manuscript as the study of LPV M3D Autonomous-ADAS transitions are still a work in
progress. It was decided to rather put the focus of this manuscript in LPV approaches
with well verified results in the application of automated driving. The contents of the
already published paper on the control of M3D systems is presented in Appendix B.

Contributions to Implementation Aspects of LPV Control Approaches

• Parameter-Dependent State-Feedback (PDSF) and Static Output-Feedback
Controllers. This novel type of controllers are based on a two-steps synthesis approach
making use of the Projection Lemma and Grid-Based LPV approaches. The two-steps
synthesis approach allows to enforce directly onto LMI conditions a fixed controller
structure with constant controller gains. The controller gains are affine on some basis
function, with dependency on the varying parameters, which allows the overall controller
to self-schedule without requiring any interpolation step. From an implementation point
of view, this leads to an straightforward real-time control law implementation.

This control synthesis approach is applied in Chapter 4 for the autonomous steering
control problem and in Chapter 7 for lateral ADAS control. Moreover, the dual approach
is used in Chapter 7 for observer gain synthesis.

• MPC based scheduling of design-related varying-parameters. It was proposed
an optimal online tuning scheme for design-related scheduling parameters of adaptive
Linear Parameter Varying (LPV) control systems. Specifically, the method is conceived
within the Model Predictive Control (MPC) framework. The major advantage of the pro-
posed solution is that it automatically determines the LPV scheduling of design-related
varying-parameters online. Avoiding that the designer has to develop any scheduling
function (which is often a repetitive and obscure task).

Note that the results from this work are not presented in this thesis manuscript as it
was chosen to focus on the works based on LPV/H∞ approaches, which are the core of
the thesis work.
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Contributions to LPV Approaches for Automated Driving

• Parameter-Dependent State-Feedback (PDSF) controller for autonomous steer-
ing . The PDSF control approach was implemented for autonomous steering in a path
tracking application on an experimental platform, presented in Chapter 4. Remark-
ably, despite the DT Grid-Based design consisting of over 150 grid-points, the resulting
controller only required four constant gain matrices. This highlights the significant re-
duction in implementation effort achieved through the use of PDSF controllers.

• Gain-Scheduled Grid-Based LPV controller with Anti-Windup behaviour . In
the design of autonomous steering control, design-related varying parameters were in-
troduced and combined with the DT Grid-Based approach. This resulted in the devel-
opment of an LPV controller that emulates the behavior of an Anti-Windup mechanism.
By utilizing the design-related varying parameter, the controller modulates the maxi-
mum steering magnitude. Online scheduling of this parameter enables the prevention of
windup effects when the steering actuator reaches its saturation point. The effectiveness
of this design was validated through real-time experiments conducted on an experimental
platform. The contents of Chapter 5 describe this contribution.

• Detection of driver errors using fault detection approaches. The thesis proposes
several fault-detection methods to assess the extent of driver errors compared to expected
driving behavior, utilizing nominal driver models and path planning information from
the automated driving system. Initially, in Chapter 6 a Parity Space approach is sug-
gested for cases involving a Linear Time-Invariant (LTI) driver model. However, more
advanced approaches for driver error detection are presented, employing PI Observer in
Chapter 8 and an LPV PI Observers in Chapter 7. These advanced methods can identify
driver errors within specific frequency ranges and accommodate LPV driver models that
adjust to varying vehicle speeds. Real-time validation confirms the effectiveness of this
proposition in promptly detecting hazardous situations.

• Lateral ADAS Control . Employing LPV/H∞ approaches and design-related varying
parameters the proposed design for lateral ADAS controller enables the safe transition
from inactive to active assistance mode. When active, it assists the driver in maintaining
vehicle stability during critical situations. Various design variants have been proposed,
including both single-actuator and multi-actuator configurations. The main feature of
this design is on providing driver assistance while minimizing intrusiveness levels. The
contents of Part III of the thesis describe this contribution.

• Integrated ADAS Strategy . The driver detection algorithm and the lateral ADAS
controller are integrated into a cohesive strategy. This integration allows the level of
assistance to be determined based on the magnitude of estimated driver errors. The
effectiveness of this strategy has been experimentally validated and tested with multiple
drivers, demonstrating its efficacy. The contents of Part III of the thesis describe this
contribution.

• Experimental Validation on the Scaled Automated Vehicle (SAV) Platform .
An important amount of time has been dedicated to the development of the SAV plat-
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form at GIPSA-Lab. In particular for the transition from the original version of the
platform, using a PX4 board programmed in embedded C, to its current version powered
by the ROS2 environment and the Python language, which is much more user friendly
and enables fast development iteration speed. Details on the platform as well as the
system identification effort to model the SAV car dynamics are presented in Chapter 2.

The contributions made in this thesis have been extensively tested and validated on
the SAV platform. The experimental results for the autonomous steering controllers in
Part II were tested on the SAV platform. In addition, the platform was also used to
validate the ADAS strategy proposed in the thesis, the experimental results obtained
given in Chapter 8 and in Appendix A.

Thesis Outline

The thesis manuscript is split into three parts plus a chapter providing concluding remarks:

• Part I: This part is dedicated for the required background in control theory and the
derivation of dynamical models for the vehicle dynamics and driver steering models.

– Chapter 1: Presents some notions on control theory useful to develop control syn-
thesis techniques for Linear Parameter Varying (LPV) systems.

– Chapter 2: Covers the longitudinal and lateral vehicle dynamics and the derivation
of the so-called bicycle model.

– Chapter 3: Provides a literature review of driver models for the human steering
behaviour and introduces the driver models that will be used for the design of the
integrated ADAS strategy.

• Part II: Here new LPV approaches are developed to the control of fully autonomous
vehicle steering.

– Chapter 4: Introduces synthesis conditions for the Parameter-Dependent State-
Feedback control approach. Then, this control approach is used to develop an
autonomous steering controller. Finally, the controller is implemented on a real
scaled vehicle platform.

– Chapter 5: Introduces synthesis conditions for Gain-Scheduled Grid-Based DT
SF LPV controllers. Using this approach the steering controller introduced in
Chapter 4 is augmented with the addition of a design-related varying parameter
that modifies the allowed control authority to emulate an Anti-Windup mechanism.
Experimental results are presented to validate the approach.

• Part III: This part is focused on presenting different variants that have been proposed
in this thesis of an integrated ADAS strategy for lateral vehicle control.

– Chapter 6: Serves as an introduction to the integrated ADAS strategy. The fault
detection approach for detecting driver errors based on fault detection techniques



8 Introduction

is introduced. Then, it is presented the combined driver-vehicle model that will be
used for ADAS controller design and the lateral controller synthesis carried out in
the LPV/H∞ framework.

– Chapter 7: Expands the integrated ADAS strategy by incorporating the vehicle’s
longitudinal velocity as a varying parameter. The chapter also present improve-
ments to the fault-detection algorithm by using an LPV PI observer for detecting
driver errors. The ADAS controller design is extended including braking actions
in addition to steering commands as controller outputs, with each actuator control
authority managed by a dedicated design-related varying parameter.

– Chapter 8: In this chapter the lateral ADAS controller and the PI Observer strat-
egy are adapted for implementation on an scaled automated vehicle. In this plat-
form, the integrated strategy has been validated experimentally with multiple Test
Drivers.

• Conclusions: Provide some concluding remarks on the results achieved in this thesis and
comments on possible future works.

Thesis Notation

General Notation

The vector and matrix notation is standard. R represents the set of all real numbers while R+

represents the set of positive real numbers. xT represents the transpose of x, X−1 represents
the inverse of X and X−T represents the transpose inverse of X. X = ker(X) represents that
X is a base of the null space of X. ∥x∥2 represents the L2-norm of the vector x.

Sampling instance k dependency for Discrete-Time systems will be dropped, e.g. x := x(k),
unless it is required for clarification or to emphasize real-time implementations. Superscript
+ indicates that a sampling instance dependent vector x(k) is being evaluated at sampling
instance k + 1, e.g. x+ := x(k + 1).

Z is employed as a discretization operator. ZT specifies that the discretization is carried out
with the Tustin discretization approach. ZZOH specifies that the discretization is carried out
with the complete zero order hold discretization approach.

Unless otherwise specified, all units in this thesis are given in S.I..

LMI Related Notation

Matrix X(≥) > 0 represents that X is symmetric positive (semi-)definite. Matrix X(≤) < 0

represents that X is symmetric negative (semi-)definite. To simplify notation the following
abreviation is made He(X)= X + XT . The symbol ⋆ in an LMI represents a symmetric
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element transposed. In LMI conditions, bold letters X are used to identify the matrix X as
an optimization variables in the LMI optimization problem.

LPV Related Notation

Considering a vector of varying parameters ρ, subscript i indicates that it is being referred to an
individual element ρi of the vector ρ. Subscript p will represent that a parameter dependent
vector x(ρ) is evaluated at a frozen point value gp, e.g. xp := x(gp). When considering a
polytope centered around a frozen point value gp, the superscript v indicates that a parameter
vector x(ρ) is evaluated at a vertex gvp of such polytope, e.g. xvp := x(gvp).
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Part I: Introduction

Part I serves as an introduction for key and required recurring concepts used in this thesis:

• Chapter 1: Provides definitions for dynamical systems and LMI conditions that will be
widely used for the developments of the controller synthesis results presented in later
chapters.

• Chapter 2: Describes the vehicle dynamics and the derivation of the control oriented
Bicycle Model of the vehicle lateral dynamics. Here it is also presented the characteristics
and parameters of the two vehicles considered for the development of results in later
chapters: the high-fidelity simulation model of a Renault Megane car and the Scaled
Automated Vehicle (SAV) platform developed in GIPSA-Lab.

• Chapter 3: Presents literature works which developed dynamical models to describe the
steering behaviour of human drivers. Taking inspiration from these works, Chapter 3
presents two driver models which will be used for the developments of the results in the
proposed ADAS strategy in this thesis. Furthermore, a system identification validation
of these driver models is given, showing that indeed such models can capture the human
driving characteristics.
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Chapter 1

Background on LPV Systems and LMI
Analysis

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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1.2.1 Nonlinear Discrete-Time Systems . . . . . . . . . . . . . . . . . . . . . . . 18
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1.3.4 Dual Theorems for Stability and Induced L2-norm of LPV Systems . . . . 26
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1.1 Introduction

This chapter presents some notions on control theory useful to develop control synthesis tech-
niques for Linear Parameter Varying (LPV) systems. The theory background content pre-
sented in the following is not a deep survey of the vast literature on LPV control, rather,
only topics which are essential to the concepts developed in remaining chapters of this thesis
are here introduced. In this spirit, as the control tools used for controller synthesis on this
thesis relate to Discrete-Time (DT) approaches rather than continuous ones, the definitions
and concepts introduced in this chapter will focus only on DT systems. Moreover, in this
chapter it is only presented already well-known results from the literature and general theo-
rems related to stability and H∞ norm computation of LPV systems. Contributions regarding
control synthesis in these topics are presented in this thesis, however, they will be introduced
in later chapters in the context for which those contributions were required.
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18 Chapter 1. Background on LPV Systems and LMI Analysis

To fully grasp the topics on this chapter, readers are expected to have some prior knowledge
on Dynamical Systems Control as well as use of Optimization Techniques and specially Linear
Matrix Inequalities (LMI) in control. The references listed below provide an introductory
entry point to these topics.

• System norms: [Boy+94]; [PV08]; [WS94]

• Discrete-Time systems: [Oga95]; [Rob07]

• Robust control based on H∞ theory: [ZD98]; [SP07]

• Use of LMI and convex optimization in control: [Boy+94]; [PV08]; [WS94]

• LPV systems: [AG95]; [Wu+96]; [AGB95]; [AA98]; [PV08]; [Tót10]; [Fer14]; [Bri14]

1.1.1 Chapter Structure

The structure of the chapter is as follows. First, in Sec. 1.2 definitions for DT dynamical
systems are introduced. Then Sec. 1.3 presents some useful lemmas to manipulate Linear
Matrix Inequalities (LMI) followed by LMI conditions that can be used to asses the stability
and induced L2-norm performance of an LPV system

1.2 Discrete-Time Dynamical Systems

1.2.1 Nonlinear Discrete-Time Systems

The dynamical behaviour of systems can be captured in the form of a system of nonlinear (NL)
equations. Generally obtained from physics and first principles or from some identification
method based on available sequential data of the system. Nonlinear dynamical systems can
be defined as follows.

Definition 1.1 (Discrete-Time Nonlinear Representation)
Given the nonlinear set of first order difference equations f(x,w) ∈ Rnx and the nonlinear
set of zero order difference equations h(x,w) ∈ Rnz the nonlinear dynamics of a system Ξ are
given as follows:

Ξ =

{
x+ = f(x,w)

z = h(x,w)
(1.1)

where x ∈ Rnx is the state-vector, w ∈ Rnw is the vector of exogenous inputs and z ∈ Rnz is
the vector of performance outputs. The time difference elapsed in the transition from state x
to x+ is given by a constant sampling time Ts.
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In Definition 1.1, the vector of exogenous inputs w refers to all possible inputs that can
affect the system, such as disturbances, sensor noises or even the reference signals used for
tracking. On the other hand, the vector of performance outputs z refers to signals which are of
interest to understand the behaviour of the system of study. Some examples of output signals
of interest could be the measurements of some of the state variables, tracking errors or the
controller action.

1.2.2 Discrete-Time Linear Systems

By means of Taylor expansion of the nonlinear systems dynamics given in Definition 1.1 around
some equilibrium point (x0, w0), e.g. f(x0, w0) = 0, it is always possible to obtain a linear
representation of the system dynamics. Such that the system matrices that define the linear
dynamics around the equilibrium point are given as:

A = ∂f(x,w)
∂x

∣∣∣
x=x0,w=w0

B = ∂f(x,w)
∂w

∣∣∣
x=x0,w=w0

C = ∂g(x,w)
∂x

∣∣∣
x=x0,w=w0

D = ∂g(x,w)
∂w

∣∣∣
x=x0,w=w0

(1.2)

More general, Linear Time Invariant (LTI) systems State-Space (SS) models for Discrete-
Time (DT) systems are defined as follows.

Definition 1.2 (Discrete-Time State-Space Representation of Linear Time Invariant Systems)
Given matrices A ∈ Rnx×nx , B ∈ Rnx×nw , C ∈ Rnz×nx and D ∈ Rnz×nw , the DT dynamics of
an LTI system Ξ are given as follows:

Ξ =

{
x+ = Ax+ Bw
z = Cx+Dw

(1.3)

where x ∈ Rnx is the state-vector, w ∈ Rnw is the vector of exogenous inputs and z ∈ Rnz is
the vector of performance outputs. The time difference elapsed in the transition from state x
to x+ is given by a constant sampling time Ts.

The success of the LTI SS representation comes from the fact that models of a dynamical
system Ξ given by Eq. (1.3) allow to study in a systematic and straightforward formulation
complex systems such as Multiple-Inputs Multiple-Outputs (MIMO) systems or systems made
of the interconnection of many subsystems. Moreover, the fact that systems expressed as in
Eq. (1.3) can be studied with the use of Linear Algebra techniques, represents a great benefit
and makes the tools developed for SS systems easily transferable across many engineering
domains in which control engineering may be involved. One example of such a powerful tool
that emanates from the ability to use linear algebra to treat SS models is the use of Linear
Matrix Inequalities (LMI) [Boy+94], which provide a flexible control and analysis solution for
dynamical systems in the form of optimization problems which can be efficiently solved with
Semi-Definite Programming (SDP) solvers.



20 Chapter 1. Background on LPV Systems and LMI Analysis

1.2.3 Discrete-Time LPV Systems

Instead of linearizing the NL system in Eq. 1.1 around an equilibrium point, doing this around
a trajectory, then it is obtained a Linear Parameter-Varying (LPV) system. Alternatively,
one could also use the so-called linear embedding approach [Sha12] to obtain a pseudo-linear
representation of the NL dynamics in Eq. 1.1 as an LPV representation.

The LPV systems are characterized by having a SS representation as in Definition 1.2.
However, in contrast to LTI SS models, the system matrices of LPV model present parameters
that evolve over time. Combining the set of varying parameters in a vector ρ ∈ Rm, in this
thesis the following assumptions are made.

Assumption 1.1
Each varying parameter value ρi(k) is known and is bounded by extremal values ρ

i
and ρi such

that ρ
i
≤ ρi(k) ≤ ρi, ∀k. The joint set of bounds on ρi, i = 1, . . . ,m, then form the varying

parameter admissible space Ω ∈ Rm, such that ρ(k) ∈ Ω, ∀k.

Assumption 1.2
The rate of variation νi(k) for each varying parameter ρi between two consecutive sampling
times k and k + 1 is bounded by νi and νi such that νi ≤ νi(k) ≤ νi, ∀k.

The SS representations of LPV systems can then be defined as follows:

Definition 1.3 (Discrete-Time State-Space Representation of Linear Parameter Varying Sys-
tems)
Given a vector of time-varying parameters ρ ∈ Rm and matrices A(ρ) ∈ Rnx×nx , B(ρ) ∈
Rnx×nw , C(ρ) ∈ Rnz×nx and D(ρ) ∈ Rnz×nw , the DT dynamics of an LPV system Ξ(ρ) are
given as follows:

Ξ(ρ) =

{
x+ = A(ρ)x+ B(ρ)w
z = C(ρ)x+D(ρ)w

(1.4)

where x ∈ Rnx is the state-vector, w ∈ Rnw is the vector of exogenous inputs and z ∈ Rnz is
the vector of performance outputs. The time difference elapsed in the transition from state x
to x+ is given by a constant sampling time Ts.

In this thesis it is considered LPV systems whose system matrices are defined as affine on
some basis function with dependency on the varying parameter vector as follows:

Definition 1.4 (Affine LPV Description)
Given an LPV system as in Definition 1.3, it is said to be affine in a basis function θ(ρ) if
the system matrices of the LPV system are defined as follows:

A(ρ) = A0 +
∑N

n=1 θn(ρ)An , B(ρ) = B0 +
∑N

n=1 θn(ρ)Bn
C(ρ) = C0 +

∑N
n=1 θn(ρ)Cn , D(ρ) = D0 +

∑N
n=1 θn(ρ)Dn

(1.5)

where A0, . . . ,An, B0, . . . ,Bn, C0, . . . , Cn and D0, . . . ,Dn are constant matrices. The vector
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θ(ρ) = (1, θ1(ρ), . . . , θN (ρ)) forms the parameter dependent basis function, with θn(ρ) ∈ R a
scalar function.

Note that the affine description in Eq. (1.5) of the system matrices of the LPV system in
Eq. (1.4) does not represent a loss of generality. This is so as both the choice of the scheduling
scalar functions θn(ρ) and the amount N of them are arbitrary and allow for general parameter
dependency. To exemplify this point, let us consider the following system:

[
v̇y
ψ̈

]
=

[
−Cαf+Cαr

mvx
−vx − Cαf lf−Cαrlr

mvx

−Cαf lf−Cαrlr
Izvx

−Cαf l
2
f+Cαrl2r
Izvx

] [
vy
ψ̇

]
+

[
Cαf

m
Cαf lf
Iz

]
δ (1.6)

As will be seen in Chapter 2, this is the so-called Bicycle Model of the vehicle lateral dynamics.
The parameter vx in Eq. (1.6) represents the vehicle longitudinal velocity which is time varying.
This makes the system in Eq. (1.6) an LPV system. It is then possible to obtain an LPV
representation of Eq. (1.6) according to Definition 1.3 and Definition 1.4 with basis function
θ(vx) = (1, vx,

1
vx
) and where

A(vx) =

[
0 0

0 0

]
+ vx ·

[
0 −1

0 0

]
+

1

vx
·
[

−Cαf+Cαr

m −Cαf lf−Cαrlr
m

−Cαf lf−Cαrlr
Iz

−Cαf l
2
f+Cαrl2r
Iz

]
(1.7)

and

B =

[
Cαf

m
Cαf lf
Iz

]
(1.8)

Interest in LPV systems come from the flexibility of the LPV modeling approach to capture
time varying and non-linear behaviours in a linear-like model. Once an LPV model of the
system of study have been obtained, one can extend the techniques that have been developed
for LTI systems to these more complex cases. The most important extension being, without
a doubt, the ability to extend LMI techniques for study and synthesis of closed-loop control
systems, beyond the scope of LTI systems.

1.3 LMI Analysis of LPV Systems

1.3.1 Useful Literature Results

Before defining LMI conditions to study important properties of LPV systems, in this subsec-
tion we collect some existing results and lemmas from the literature which are used for the
development of the results presented on this thesis. These conditions are well-known, however
they play a key role in the development of LMI conditions in this and later chapter of this
thesis, for a more exhaustive list of useful LMI conditions see [CF19].
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1.3.1.1 Schur Complement

The well known Schur Complement lemma allows to transform a nonlinear matrix inequality
into an equivalent LMI.

Lemma 1.1 (Schur Complement Lemma)
Given symmetric matrices Q and R, with R ≥ 0, and a matrix S, the two following statements
are equivalent:

•
[
Q S

ST R

]
> 0

•
[
R ST

S Q

]
> 0

• Q− SR−1ST > 0

1.3.1.2 Projection Lemma

The following lemma, known as the Projection Lemma or Elimination Lemma in the literature,
allows to eliminate some variable from the matrix inequality condition. Then, this could be
used to transform a Bilinear Matrix Inequality into a set of equivalent LMI, which can be
efficiently solved.

Lemma 1.2 (Projection Lemma)
Given a symmetric matrix Ψ ∈ Rn and two matrices N , M of column dimension n, consider
the problem of finding some matrix Θ of compatible dimensions such that

Ψ+NTΘTM +MTΘN > 0. (1.9)

Denote NM , NN any matrices whose columns form bases of the null spaces of M and N

respectively. Then (1.9) is solvable for Θ if and only if
{
N T
MΨNM > 0

N T
NΨNN > 0

(1.10)

1.3.1.3 Simplified Young’s Relation

This lemma was first used for the study of the stability of DT LTI systems in [DOBG99]. The
interest of this lemma is that it allows to introduce a slack variable G in the LMI problem,
such that the Lyapunov matrix gets decoupled from extra constraints that are required for
the linearization of the matrix inequalities in the synthesis problem. This approach for DT
then became known as G-shaping paradigm [OGB02].
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Lemma 1.3 (Simplified Young’s Relation [OGB02]; [CF19])
For all matrices G ∈ Rn×n and P > 0 ∈ Rn×n,

GTPG ≥ G+GT − P−1 (1.11)

holds.

1.3.2 Stability of LPV Systems

Stability is one of the main important properties concerning dynamical systems. The following
concerns with the Robust Stability of LPV systems in a Lyapunov sense, for more details on
LPV and systems stability the reader is referenced to [Bri14]. Now, consider the LPV system
from Definition 1.3 restricted to its autonomous dynamics:

x+ = A(ρ)x, (1.12)

Let us consider a Parameter-Dependent Lyapunov Function (PDLF)

V (x, ρ) = xTX(ρ)x , (1.13)

where X(ρ) ∈ Rnx×nx is a symmetric Positive Definite matrix referred to as Parameter-
Dependent Lyapunov Matrix (PDLM). According to Lyapunov theory, if the derivation of the
PDLF in Eq. (1.13) fulfills the following condition

V (x+, ρ+)− V (x, ρ) < 0 , (1.14)

then, the autonomous system Eq. (1.12) is stable. Substituting Eq. (1.12) and Eq. (1.13) in
Eq. (1.14) the following condition is obtained:

xT [A(ρ)TX(ρ+)A(ρ)−X(ρ)]x < 0 (1.15)

From this condition then it is obtained the following LMI which allows to prove the stability
of LPV the autonomous system Eq. (1.12).

A(ρ)TX(ρ+)A(ρ)−X(ρ) < 0 (1.16)

Although this condition is adequate to test the stability of LPV systems, it can not be
employed for the task of controller design. For this reason it is most often modified using
Schur’s Complement Lemma 1.1. A key modification to the stability condition in Eq. (1.12)
was introduced in [dBG99], such that it is augmented with a new slack variable. See [dBG99];
[OGB02] for more details on the benefits of this slack variable for LTI systems and [DB01b]
for the case of systems with varying parameters.

The following theorem provides a extended sufficient stability condition for LPV systems
making use of this extended variable.
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Theorem 1.1 ([DB01b])
Consider an autonomous DT-LPV Ξ(ρ) system as in Eq. (1.12). If, ∀ρ ∈ Ω, there exist a
symmetric matrix X(ρ) ≥ 0 ∈ Rnx×nx and a matrix G(ρ) ∈ Rnx×nx such that the following
condition holds [

G(ρ)T +G(ρ)−X(ρ+) G(ρ)TA(ρ)

⋆ X(ρ)

]
> 0 , (1.17)

then, the DT-LPV system Ξ(ρ) is robustly stable.

Proof. According to Lemma 1.3, condition Eq. (1.17) is equivalent to:
[
G(ρ)TX(ρ+)−1G(ρ) G(ρ)TA(ρ)

⋆ X(ρ)

]
> 0 (1.18)

Multiplying Eq. (1.18) on the left by diag(
[
G(ρ)−T I

]
) and on the right by its transpose,

then the following condition is obtained:
[
X(ρ+)−1 A(ρ)

⋆ X(ρ)

]
> 0 (1.19)

Finally, applying Schur’s Lemma 1.1 around X(ρ+)−1 on this last condition recovers the
sufficient stability condition Eq. (1.16). This concludes the proof.

1.3.3 Induced L2-norm of LPV Systems

Dynamical systems are not only subject to their internal dynamics but also to external ex-
ogenous inputs, as seen in the DT-LPV system Ξ(ρ) from Definition 1.3. For this reason it is
important to quantify the robustness and sensitivity of a system to external actions. The ef-
fects that exogenous inputs w have on the performance outputs z of a system can be quantified
with its induced L2-norm.

Definition 1.5 (Induced L2-norm [Boy+94])
The induced L2-norm of the system Ξ(ρ) as in Definition 1.3 is the quantity

sup
∥w∥2 ̸=0

∥z∥2
∥w∥2

, (1.20)

where the L2-norm of u is ∥u∥22=
∫∞
0 uTudt.

Remark 1.1
Note that for an LTI system its L2 gain equals its H∞ norm [Boy+94].

Introducing the scalar value γ∞ as an upper bound of the induced L2-norm of a system
Ξ(ρ), such that

∥z∥2
∥w∥2

≤ γ∞ , (1.21)

the following theorem allows to compute this value through the use of the Bounded Real
Lemma LMI making use of the additional slack variable introduced in [dBG99].
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Theorem 1.2 ([SBN06]; [DC+10])
Consider a DT-LPV Ξ(ρ) system as in Eq. (1.4) and a given scalar γ∞. If, ∀ρ ∈ Ω, there exist
a symmetric matrix X(ρ) ≥ 0 ∈ Rnx×nx and a matrix G(ρ) ∈ Rnx×nx such that the following
condition holds




GT (ρ) +G(ρ)−X(ρ+) GT (ρ)A(ρ) GT (ρ)B(ρ) 0

⋆ X(ρ) 0 C(ρ)T
⋆ ⋆ γ∞I D(ρ)T

⋆ ⋆ ⋆ γ∞I


 > 0 (1.22)

then, the DT-LPV system Ξ(ρ) is robustly stable with ∥z∥2
∥w∥2 < γ∞.

Proof. Eq. (1.21) is equivalent to the following inequality condition

1

γ∞
zT z ≤ γ∞w

Tw (1.23)

As such, if the following condition holds

V (x+, ρ+)− V (x, ρ) +
1

γ∞
zT z − γ∞w

Tw < 0 , (1.24)

then, the LPV system Ξ(ρ) is stable with γ∞ as an upper bound on its induced L2 gain.
Employing a PDLF

V (x, ρ) = xTX(ρ)x (1.25)

and substituting Eq. (1.4) into Eq. (1.24) the following condition is obtained:

[
x

w

]T [ ATX+A−X + 1
γ∞

CTC ATX+B + 1
γ∞

CTD
⋆ BTX+B + 1

γ∞
DTD − γ∞I

] [
x

w

]
< 0, (1.26)

Note that in Eq. (1.26) the dependency on ρ of the state matrices of the DT-LPV system
Ξ(ρ) and the PDLM X(ρ) have been omitted for the sake of brevity. Applying consecutive
Schur Complements Lemma 1.1 in Eq. (1.26) around X+ and 1

γ∞
I followed by a congruence

transformation by diag(
[
G(ρ)T I I I

]
), the following equivalent condition is obtained:




GT (ρ)X(ρ+)−1G(ρ) GT (ρ)A(ρ) GT (ρ)B(ρ) 0

⋆ X(ρ) 0 C(ρ)T
⋆ ⋆ γ∞I D(ρ)T

⋆ ⋆ ⋆ γ∞I


 > 0 (1.27)

Finally, applying the Simplified Young’s Relation 1.3 recovers Eq. (1.22) from Theorem 1.2 as
a sufficient condition of Eq. (1.24). This concludes the proof.

Due to the addition of the slack variable G, condition Eq.(1.22) is known in the literature
as Extended Bounded Real Lemma. This condition and variations of it have been well studied
in the literature, see [DB01a]; [SBN06]; [DC+10]; [Hil+14]; [PO19] and references therein.
The main objective with the introduction of the slack variable G is to reduce the conservatism
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of the LMI. This is obviously achieved as the new variable introduces new degrees of freedom
that the SDP solver can exploit. But more importantly, as will be seen in later chapters,
this slack variable allows to decouple the Lyapunov Matrix X from the controller synthesis
task, instead the variable G is employed for this. It can be seen in [OGB02] a comparison of
synthesis problems for DT LTI systems with and without this slack variable, with the case in
which G was employed obtaining much less conservative in terms of upper bounds for γ∞.

As seen in Remark 1.1, for an LTI system its L2 gain equals its H∞ norm. For this reason
it is often extrapolated to LPV systems the term H∞ control. However, strictly speaking
induced L2-norm is the most correct terminology when working with LPV systems. In any
case, the fact that bounds on the induced L2-norm of LPV systems can be computed efficiently
through LMI techniques shows the main advantages of LPV systems. This is, the extension
to LPV systems powerful LMI approaches from the LTI literature. As will be seen in the
remaining of this thesis, one could use derivations of Theorem 1.2 to extend the H∞ control
theory [ZD98] to LPV systems.

1.3.4 Dual Theorems for Stability and Induced L2-norm of LPV Systems

Depending on the intended purpose, it may be more interesting to consider the dual version of
the conditions presented in Theorem 1.1 and Theorem 1.2. This can be simply done by using
the controllability-observability duality of SS models, e.g. the relation between a SS system
and its dual is

A → AT B → CT
C → BT D → DT (1.28)

Using the duality relation seen in Eq. (1.28), the following theorem provides a sufficient
condition to test the stability of a DT-LPV system.

Theorem 1.3
Consider an autonomous DT-LPV Ξ(ρ) system as in Eq. (1.12). If, ∀ρ ∈ Ω, there exist a
symmetric matrix X(ρ) ≥ 0 ∈ Rnx×nx and a matrix G(ρ) ∈ Rnx×nx such that the following
condition holds [

G(ρ)T +G(ρ)−X(ρ+) G(ρ)TA(ρ)T

⋆ X(ρ)

]
> 0 , (1.29)

then, the DT-LPV system Ξ(ρ) is robustly stable.

Analogously, the following theorem provides a sufficient condition to compute and upper
bound γ∞ on the induced L2-norm of a system DT-LPV system.

Theorem 1.4
Consider a DT-LPV Ξ(ρ) system as in Eq. (1.4) and a given scalar γ∞. If, ∀ρ ∈ Ω, there exist
a symmetric matrix X(ρ) ≥ 0 ∈ Rnx×nx and a matrix G(ρ) ∈ Rnx×nx such that the following
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condition holds



GT (ρ) +G(ρ)−X(ρ+) GT (ρ)A(ρ)T GT (ρ)C(ρ)T 0

⋆ X(ρ) 0 B(ρ)
⋆ ⋆ γ∞I D(ρ)

⋆ ⋆ ⋆ γ∞I


 > 0 (1.30)

then, the DT-LPV system Ξ(ρ) is robustly stable with ∥z∥2
∥w∥2 < γ∞.

The proofs of both of these theorems are straightforward. Given the proven sufficient
conditions Eq. (1.17) and Eq. (1.22) replace the system matrices A, B, C and D by their dual
according to Eq. (1.28) to obtain the conditions in Eq. (1.29) and Eq. (1.30) respectively.

1.4 Conclusions

In this chapter it has been introduced the concept of DT-LPV systems based on an SS repre-
sentation, which enables arbitrary parameter dependency through an affine description of the
LPV system using basis functions. Despite its ability to capture nonlinear behavior, the SS
representation of LPV systems facilitates the use of LMI-based techniques to prove important
system characteristics. In this chapter, LMI conditions have been provided to demonstrate
the LPV system robust stability and determine its induced L2-norm. The LMI conditions and
lemmas presented in this chapter will be extensively utilized throughout the remainder of this
thesis to calculate robust and reconfigurable LPV controllers.
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2.1 Introduction

In this chapter we cover the basics of longitudinal and lateral vehicle dynamics and the deriva-
tion of the so called bicycle model, commonly used for the design task of vehicle lateral controls
[Raj11]; [Gá+17]; [Cor+21]; [Ato+22b]. In this thesis two different vehicles have been con-
sidered. Firstly, a high fidelity model of a Renault Megane car, developed and presented
in a former thesis [Fer14], was available as a Simulink model. This model will be used for
preliminary validation and development of the results presented in this thesis. The second
vehicle was a Scaled Automated Vehicle (SAV) developed recently in GIPSA-Lab, which will
be employed for experimental validation of some of the thesis works.

29
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The dynamical models developed in this chapter are based on first principles physical
laws. As such, they are developed as a set of Continuous-Time (CT) differential equations,
which can be eventually simplified into pure CT-LPV models. On the other hand, most of the
synthesis techniques employed in this thesis use Discrete-Time approaches. However, direct
discretization approaches for LPV systems are not straightforward [Tót10]. Therefore, this
chapter will deal only with CT models derived from first principles. In futures chapters, the
discretization method of the models here presented will be detailed when required for control
design.

2.1.1 Chapter Structure

The organization of the chapter is as follows. Sect. 2.2 covers the nonlinear vehicle dynamics
considering both longitudinal and lateral couplings, then with some assumptions it is presented
the so-called bicycle model employed for control design of the lateral dynamics. Following this,
Sec. 2.3 introduces some aspects of the Renault Megane simulation model and its parameters.
Then, Sec. 2.4 presents an overview of the test platform for the Scaled Automated Vehicle,
the identification process carried to determine the model parameters and finally the control-
oriented bicycle model representation of its lateral dynamics is introduced.

2.2 Vehicle Dynamics

2.2.1 Nonlinear Dynamics

Modern road vehicles are very complex systems, which makes the control of vehicle dynamics a
hard but interesting problem. They present deep couplings between the multiple subsystems
that govern its lateral, longitudinal and vertical dynamics. Moreover, at high speeds the
vehicle is affected by larger aerodynamic effects which can change dramatically the vehicles
behaviour. In addition, the forces at the tires (responsible for all vehicle motions) are highly
non-linear and depend on the surface in which the vehicle is moving.

In this work, for the derivation of control oriented models, it is assumed that the lateral
and longitudinal components of the vehicle’s acceleration are such that no vehicle lateral drift
or wheel slipping occur. Under this assumption most of the vehicle dynamics complexities can
be ignored or simplified. Specifically, the small accelerations assumption allows to decouple
the lateral dynamics from the rest and guarantees that the tire forces remain within its linear
operating region. The interested reader in more detailed descriptions of the full dynamics
involved is referenced to [MMM95]; [KN00]; [Jaz08]; [Raj11].

As seen from Fig. 2.1, assuming an orthogonal coordinate frame fixed at the vehicle’s
Center of Mass (CoM), the coupled lateral and longitudinal dynamics of a vehicle is governed
by three state variables. These variables are the longitudinal velocity vx, the lateral velocity
vy and the vehicle’s angular speed in its z axis or yaw rate ψ̇, all defined at the vehicle
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CoM. The derivation of the governing equations for the vehicle state variables are made in
the following assuming a vehicle architecture such that the longitudinal active forces of the
vehicle are applied in both rear wheels. Note that this is possible in modern cars thanks to
traction control systems or in-wheel electric motors.

Figure 2.1: Vehicle force diagram at local coordinate frame.

Neglecting longitudinal traction forces, the forces acting on the vehicle are compressed into
a single track (hence the name bicycle model). The lateral forces provided by the rear and
front tires are Fyr and Fyf , respectively. Note that the lateral force of the front wheel is given
with respect a front-wheel-fixed frame of reference. The front-wheel-fixed frame is rotated on
the z axis with respect the vehicle’s reference frame by an angle δ, which correspond with the
angle of the front steering wheels. The friction forces are denoted by Rx, and are assumed to
be opposite to the vehicle’s longitudinal velocity.

For the vehicle architecture depicted in Fig. 2.1, Fxl and Fxr represent the longitudinal
force applied at the rear left and rear right wheels, respectively. These forces can be either
used to accelerate the vehicle or as braking forces. Note that in the case were Fxl ̸= Fxr, this
would result in an induced moment of force on the z axis of the vehicle, for this reason it is
important to account for the traction forces Fxi in their actual point of application.

Based on Fig. 2.1 and according to Newton’s law and a balance of moments of force at
the CoM on the z axis, the equations of motions that dominate the vehicle dynamics are the
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following:

m(v̇x − ψ̇vy) = Fxl + Fxr − Fyf sin δ −Rx (2.1a)

m(v̇y + ψ̇vx) = Fyf cos δ + Fyr (2.1b)

Izψ̈ = lfFyf cos δ − lrFyr + trFxr − trFxl (2.1c)

The description of the forces appearing in Eq. (2.1) depend on the tire model employed.
The following description of the tire forces are based on simplified small slip models [Raj11].
The longitudinal tire forces can be modeled as:

Fxl = Cσσl

Fxr = Cσσr
(2.2)

The coefficient Cσ is called the longitudinal tire stiffness parameter, here it is assumed equal
for both left and right rear wheels. The longitudinal slip ratio for the left rear wheel σl is
defined as

σl =
rωl − vxl

vxl
, during braking

σl =
rωl − vxl
rωl

, during acceleration
(2.3)

with r the effective wheel radius, ωl the angular speed of the left rear wheel and vxl the
longitudinal speed at the left rear wheel center. The longitudinal slip ratio for the right rear
wheel σr is similarly defined as

σr =
rωr − vxr

vxr
, during braking

σr =
rωr − vxr
rωr

, during acceleration
(2.4)

with ωr the angular speed of the right rear wheel and vxr the longitudinal speed at the right
rear wheel center.

The lateral forces applied to the front and rear wheels are modeled as

Fyf = Cαfαf

Fyr = Cαrαr
(2.5)

where Cαf and Cαr are the front and rear cornering stiffness coefficients respectively. The
front wheels side slip angle is defined as

αf = δ − arctan

(
vy + lf ψ̇

vx

)
(2.6)

On the other hand, the rear wheels side slip angle is defined as

αr = − arctan

(
vy − lrψ̇

vx

)
(2.7)
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Note that the model for the tire forces in Eq. (2.2) and Eq. (2.5) are linear on the stiffness
parameters Cσ and Cαi. This is only true as long as the wheels side slip angles and slip
ratios are small. In the case where the tires present high slip ratios or the vehicle presents
high lateral accelerations, then these simple models would misrepresent the real tire forces.
In order to obtain tire force models valid for a large range of scenarios one would then need
to resort to empirical nonlinear tire models such as the so-called Magic Formula model by
Pacejka [Pac12].

Finally, the friction forces are modeled according to the following model taken from [Jaz08]

Rx = mg(µ0 + µ1v
4
x) (2.8)

where µ0 and µ1 are friction coefficients. From the different models presented in [Jaz08], this
model was chosen as it is the one that gave the best results during the identification of the
SAV dynamics, which is the topic of Sec. 2.4.2.

2.2.2 Bicycle Model for the Lateral Dynamics

From the balance of forces and moments in Eq. (2.1), focusing on the states that drive the
vehicle lateral dynamics, e.g. the lateral velocity vy and the yaw rate ψ̇, the following assump-
tions allow one to simplify the coupled nonlinear vehicle model into a control-oriented model
of the vehicle lateral dynamics.

Assumption 2.1
The vehicle is submitted to small or moderate lateral accelerations, such that the coupling effect
between the lateral dynamics and longitudinal dynamics can be discarded.

Assumption 2.2
The steering angle δ remains sufficiently small such that the small angle approximations sin δ ≈
δ and cos δ ≈ 1 holds.

Assumption 2.3
The tire slip ratio and wheel side slip angles are sufficiently small such that the tire forces
remain within its linear behaviour zone. Then, the tire forces are given by Eq. (2.2) and
Eq. (2.5). Moreover, in Eq. (2.6) and Eq. (2.7) the small angle approximation arctanx ≈ x

holds.

Then, the following control oriented model can be employed for the task of controller
synthesis.

Definition 2.1 (Bicycle Model [Raj11])
The lateral vehicle dynamics is given by the following state-space model

[
v̇y
ψ̈

]
=

[
−Cαf+Cαr

mvx
−vx − Cαf lf−Cαrlr

mvx

−Cαf lf−Cαrlr
Izvx

−Cαf l
2
f+Cαrl2r
Izvx

] [
vy
ψ̇

]
+

[
Cαf

m
Cαf lf
Iz

]
δ (2.9)
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Note that the Bicycle Model in Eq. (2.9) depends on the longitudinal velocity vx of the
vehicle. As the velocity is a varying variable of the vehicle, this makes the Bicycle Model a
pure LPV system with vx as its varying parameter.

2.2.3 Relation between the Vehicle and a Desired Trajectory

So far, the vehicle has been defined based on its dynamic variables. However, for vehicle con-
trol, it is important to establish the relationship between the vehicle and a desired trajectory.
Figure 2.2 provides an illustration of the error signals used for this purpose.

Figure 2.2: Vehicle heading and lateral error at look-ahead point.

First of all, note that the error signals are not defined at the vehicle CoM but at a distance
L. This distance is called the look-ahead distance and it is defined in this thesis as

L = tpvx , (2.10)

where tp is a constant preview time in seconds. At the look-ahead distance, ye then defines the
lateral error of the vehicle to the orthogonal point on the desired trajectory. This orthogonal
point is the desired tracking point (Xdes, Ydes), marked in red in Fig. 2.2. The angle formed
by the vehicle longitudinal velocity and the tangent line at the trajectory point (Xdes, Ydes)

defines the heading error angle ψe.

Note that the trajectory at the point (Xdes, Ydes) is defined by an equivalent radius Rpath.
Using this equivalent radius, the road curvature is then defined as

kpath =
1

Rpath
(2.11)
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2.3 Renault Megane Model and Parameters

For the purpose of validation and first design iterations of the results provided in this thesis it
was first used a high-fidelity simulator of a real Renault Megane Coupé car for Simulink. Note
that most of the model equations were first presented in [PV08] and later refined in [Fer14].

An interesting point about this simulator is that the model structure and parameters were
identified and validated with real-data coming from real vehicle test experiments. Additionally,
the model does not only cover the lateral and longitudinal dynamics of the vehicle but it also
captures the behaviour of the suspension system. Thus capturing the vertical dynamics of the
car as well as the load transfers due to changes in acceleration.

Moreover, the tire forces are not modeled using the small slip tire models as seen in
Eq. (2.2) and Eq. (2.5). Instead the tire forces are modeled from an identified Magic For-
mula representation [Pac12]. The full set of model equations and model parameters for the
Renault Megane Simulator model can be found in the thesis [Fer14]. From the accuracy of
the identification results with regards the empirical data presented there, it can be said that
the Simulink Renault Megane simulator exhibits a high level of fidelity.

2.3.1 Bicycle Model Parameters for the Renault Megane Car

For the task of lateral control design for the Renault Megane car it is used the Bicycle Model
seen in Definition 2.1 with the following values for the model parameters:

Table 2.1: Renault Megane Bicycle Model Parameters

Parameter Value
lf 1.177
lr 1.358
m 1400
Iz 1960
Cαf 84085
Cαr 87342

2.3.2 Augmented Bicycle Model for Differential Braking

Assuming that it is possible to use different amounts of braking forces on the right and left
rear wheels. So, different values for Fxl and Fxr according to the vehicle architecture depicted
in Fig. 2.1. Then, this differential braking can be used to induce a moment of force Mz on the
z-axis of the vehicle. In order to make use of this effect as an additional control input for the
Renault Megane model, the following extended version of the Bicycle Model [Dou+13] can be
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used for the task of controller synthesis.

Definition 2.2 (Extended Bicycle Model)
The lateral vehicle dynamics with additional induced moment of force on the z-axis is given
by the following state-space model:

[
v̇y
ψ̈

]
=

[
−Cαf+Cαr

mvx
−vx − Cαf lf−Cαrlr

mvx

−Cαf lf−Cαrlr
Izvx

−Cαf l
2
f+Cαrl2r
Izvx

] [
vy
ψ̇

]
+

[
Cαf

m 0
Cαf lf
Iz

1
Iz

] [
δ

Mz

]
(2.12)

For the Renault Megane model, the parameters of the Extended Bicycle Model are given
in Table 2.1. Note that in the real-time implementation, for a given induced yaw moment of
force Mz, computed by the controller, the braking torques that need to be applied on the left
Tbrl and right Tbrr rear wheels can be assigned according to the following relations:

Tbrl =

{
R·Mz

tf
, if Mz ≥ 0

0, otherwise
, Tbrr =

{
−R·Mz

tf
, if Mz < 0

0, otherwise
(2.13)

where R = 0.3m is the radius of the wheel and tf = 0.7m is the distance from the wheel to
the center-line of the car in the considered Renault Megane car.

Remark 2.1
It is considered to only apply the differential braking forces on the rear wheels in order to avoid
coupling effects between braking and steering if the differential braking forces were to be applied
on the front wheels.

2.4 Scaled Automated Vehicle

In this section an overview of the components of the Scaled Automated Vehicle platform as
well as its communication architecture are presented. Then, we present the approach for
parameter identification carried out for the SAV dynamics and finally control-oriented models
that will be used in later chapter of this thesis for controller synthesis are introduced.

2.4.1 Platform Overview

The Scaled Automated Vehicle (SAV) Test Platform at GIPSA-Lab is a 1:12 scaled vehi-
cle running in a Motion Capture room, see Fig. 2.3, designed to test control and planning
algorithms for autonomous vehicles. The main components of the platform are the Motion
Capture System, a remote desktop PC and the SAV RC Car. The Motion Capture system is
an infrared Vicon Tracker system, capturing at a 100Hz frequency the position and orientation
of the SAV on the track. The SAV is a modified RC Car, equipped with two Brushless DC
(BLDC) motors for longitudinal traction on the rear wheels and a Servo Motor as the front
wheels steering actuator. Finally, the remote desktop PC runs the ROS2 software [Mac+22]
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Figure 2.3: Scaled Automated Vehicle Test Platform.

to capture and process all the information from the Vicon Tracker system and car sensors. It
also executes the control algorithms that are sent to the car via WiFi.

More details on the platform architecture and communications can be seen in Fig. 2.4.
The SAV is controlled by an Arduino RP2040 microcontroller board. The RP2040 board
runs microROS, which is used to both receive and send information with the remote PC. The
information sent to the remote PC are the IMU measurements, angular speed readings from a
dedicated hall-effect encoder for each BLDC motors and the voltage and current measurements
from the battery. On the other hand, it receives the set-points commands for the BLDC motors
angular speed and Servo Motor steering angle. It should be noted that the RP2040 board acts
only as communication transmitter between the onboard sensors/actuators and the remote
PC. Specifically, the lateral control law is processed remotely and only the communication
with the Servo Motor is handled onboard the SAV.

The task of the remote PC is to handle and process all the data and information coming
from the multiple sensors on the platform. The communication layer with the other platform
components is handled by the ROS2 software tool by means of subscriptions to the multiple
nodes and topics on the software. Importantly, there exist ROS2 libraries that allow to directly
access the information from the Vicon mocap system. Whereas the WiFi communication



38 Chapter 2. Vehicle Dynamics: Modeling and Identification

protocol with the SAV is handled automatically by ROS2, the engineering task in this case
reduces to subscribing and publishing the information on the ROS2 topics environment. The
planning and control algorithm for the SAV are also programmed on the ROS2 environment
at the remote PC using Python as the programming language. This is important as it means
that the complexity of the algorithms will not be affected by the limited onboard memory and
computing power on the SAV.

Motion Capture System

Remote PC

SAV
Microcontroller: 
- Arduino RP2040 
- Runs microROS 
- Local BLDC Control 

Sensors: 
- 6 DOF IMU 
- Right/Left Rear Wheel Encoder 
- Battery Voltage and Current 

Actuators: 
- Servo Motor for Steering 
- Right/Left Rear Wheel BLDC 

Motor with ESC

- ROS2 using Python 
- Handles communication 
- Implementation of Planning and 

Control algorithms

Figure 2.4: SAV Platform Architecture and Communications.

The Vicon Tracker connects to an interface PC, shown in Fig. 2.3 as Vicon Interface, which
is itself connected with the remote ROS2 PC. The Vicon mocap system works by emitting
infrared light, which is reflected by small balls made of infrared reflecting material and which
are attached to the SAV. By using multiple infrared cameras, the Vicon system can then detect
the position and orientation within the track of the SAV. The position detection by the Vicon
system is done with a sub-millimeter accuracy at a frequency of 100Hz. The precision and
low noise from the position and orientation measurement obtained from the mocap system
enables smooth and accurate derivation of these signals. As a result, the main signals used
for vehicle control, e.g. yaw rate ψ̇ and longitudinal vx and lateral vy velocities, are obtained
from the derivative of the orientation and position signals from the Vicon system. Note that
all of the signal processing is done remotely on the ROS2 PC.

2.4.2 SAV Parameter Identification

In the following the identification process to find suitable values for the model parameters that
characterize the behaviour of the SAV dynamics is described. To identify these non measurable
parameters a non-linear identification was performed, with the identification method consisting
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on a Prediction-Error Identification one solving the following non-linear optimization problem
[THH12]

min
Ω

ny∑

i=1

Qi · rms(yi − ŷi(x̂, u)) , Qi ∈ R+ (2.14)

where Ω ∈ R16 is the set of parameters to be identified and represents the optimization
variables and Qi is a positive scalar used to weight differently the estimation errors in the
optimization. The list of all parameters in the set Ω can be found in Table 2.2. The vector yi
contains measured values for each of the SAV dynamics outputs such that y ∈ Rny×N , with
ny = 3 the number of measured signals and N the total amount of sampled measurements.
For the SAV, the measured outputs are all three system state variables:

y =
[
vx vy ψ̇

]T (2.15)

Meanwhile, ŷ(x̂, u)) ∈ Rny×N contains the open-loop output estimation given by the model
dynamics, where x̂ are the model states and u are the inputs that drive the SAV dynamics.

As seen in Section 2.2, according to Fig. 2.1 the equations that describe the motion of
the SAV car are given by Eq. (2.1), with Eq. (2.1) representing the non linear model whose
parameters we are interested to identify in order to describe accurately the SAV dynamics.

With regards the model inputs according to Eq. (2.1) and the tire forces Eq. (2.2) and
Eq. (2.5), not all physical variables are available on the SAV platform. The rear wheel angular
velocities ωl and ωr, which drive the longitudinal forces, are available thanks to the dedicated
hall-effect encoders on the wheel BLDC motors. However, the actual steering angle δ of the
front wheels is not measured. For this reason, the nonlinear model of the SAV dynamics for
identification is augmented with the following second order model representing the steering
servomotor actuator.





[
δ̇

δ̈

]
=

[
0 1

−ω2
n −2ζωn

] [
δ

δ̇

]
+

[
0

ω2
n

]
δ∗(t− τ)

δ =
[
1 0

] [ δ
δ̇

] (2.16)

which is a SS representation of the following second order transfer function with pure time
delay, presented in Eq. (2.16) as an input delay.

S(s) =
δ(s)

δ∗(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

e−τs (2.17)

The choice of steering actuator model have been influenced by the one used in [Kap+22]. Note
that according with Eq. (2.16), the servo motor input is the steering angle command δ∗ [rad]

that is sent from the Remote ROS PC to the servomotor on the SAV car, the servomotor
model output δ is the actual front wheels angle, which will be feed into the model in Eq. (2.1).
In addition, notice that the defining second order transfer function parameters ωn, ζ and τ

are also parameters to be found during the identification process. Now, using the nonlinear
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model Eq. (2.1) and the servomotor transfer function Eq. (2.16) the inputs of the extended
dynamics are

u =
[
δ∗ ωl ωn

]T (2.18)

and the states of the extended model are

x̂ =
[
v̂x v̂y

ˆ̇
ψ δ̂

ˆ̇
δ

]T
(2.19)

where δ̂ and ˆ̇
δ are the states of the servomotor model according to Eq. (2.16).

The tire forces have been modeled here considering some modifications of the previous
models seen in Eq. (2.2) and Eq. (2.5). For the longitudinal forces we used the following
representation:

Fxl = Cσ(vx)σl

Fxr = Cσ(vx)σr
(2.20)

Meanwhile, the following model for the lateral wheel forces has been considered

Fyf = Cαf (vx)αf

Fyr = Cαr(vx)αr
(2.21)

Remark 2.2
The differences in Eq. (2.20) and Eq. (2.21) with respect Eq. (2.2) and Eq. (2.5) consists in
the fact that the tire stiffness coefficients have been here modified to depend on the vehicle
longitudinal speed vx. For this dependency the following quadratic polynomials on vx for each
of the tire stiffness coefficients are considered.

Cσ(vx) = Cσ2v
2
x + Cσ1vx + Cσ0 (2.22)

Cαf (vx) = Cαf2v
2
x + Cαf1vx + Cαf0 (2.23)

Cαr(vx) = Cαr2v
2
x + Cαr1vx + Cαr0 (2.24)

Given the dynamics model Eq. (2.1) extended with the servomotor model according to
Eq. (2.16), tire forces according to Eq. (2.20) and Eq. (2.21), a set of parameters Ω, a series
of length N of model inputs u and some initial conditions for x̂; one could then compute the
open-loop model output ŷ(x̂, u). Moreover, iterating over different values on the parameter set
Ω and with a given series of measurements y one could try to solve the optimization problem
given in Eq. (2.14). In practice, this was done using the fmincon solver with values for the
weight Q = [1, 10, 1]. See that according to the measured variables y as in Eq. (2.15), the
weight Qi = 10 is used to weight more the rms of vy − v̂y for the estimation error of the
lateral velocity. Table 2.2 presents the values for each of the identified parameters of the
model as well as the minimum and maximum values used as constraints for each parameter
in the optimization. Meanwhile, in Table 2.3 the SAV car parameters that can be measured
are collected.

From the identified values seen in Table 2.2, it is important to highlight the estimated value
for the pure input delay present in the servomotor of 0.1761 seconds. Recall that according to
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Table 2.2: SAV Identified Model Parameters

Parameter Value min max
Cσ2 3.2119 -50 50
Cσ1 -2.3465 -50 50
Cσ0 2.6469 -50 50
Cαf2 0.4967 -50 50
Cαf1 4.3104 -50 50
Cαf0 -1.0640 -50 50
Cαr2 5.9987 -50 50
Cαr1 2.5630 -50 50
Cαr0 -0.0770 -50 50
ζ 1.4513 0.3 10
ωn 38.5022 1 50
τ 0.1761 0 1
Iz 0.0059 1× 10−4 0.5
r 0.0322 0.03 0.0325
µ0 4.8314× 10−4 0 1
µ1 0.0022 0 1

Table 2.3: SAV Measured Model Parameters

Parameter Value
lf 0.0691
lr 0.1049
tr 0.0435
m 1.1937

the SAV platform architecture in Fig. 2.4, the steering command is processed on the Remote
ROS PC, then it is sent via WiFi to the SAV car where it is received by the onboard Arduino
microcontroller and finally it is transmitted to the steering servomotor, which has its own
internal electronics and internal servo positioning closed-loop system. As such, a large time
delay on the SAV platform is not surprising and indeed can be felt when driving the car
manually with a joystick. It is expected that the SAV control system design will need to deal
with this delay in some way.

Another interesting point about the identified values of the SAV car model parameters are
the optimal found values for the tire stiffness coefficients. For the simplicity of the analysis
Fig. 2.5 shows the plot of the stiffness coefficients polynomial functions. Only the longitudinal
stiffness coefficient Cσ present a quadratic form, while both cornering coefficients Cαl and Cαr
present a linear relation on vx. In all cases, it is interesting to see that the optimal values for
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the stiffness coefficients present an increase in value with vx.
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Figure 2.5: Scaled Automated Vehicle force diagram at local coordinate frame.

Finally, in order to visualize the accuracy of the identified model, Fig. (2.6) shows the
measured data y and the identified model output ŷ(x̂, u). Note that this data-set of measured
outputs y and inputs u is the one used for the optimization problem in Eq. (2.14) to obtain
an estimation of model parameters Ω. It can be clearly seen that for all model outputs ŷ(x̂, u)
it is closely matched the real state measurements y.

Fig. (2.7) and Fig. (2.8) show ground truth measured outputs y and simulated model
outputs ŷ(x̂, u) with two data-sets the model was not trained with. The model simulated
output ŷ(x̂, u) shows an almost perfect match with the real measurements in both cases, thus
showing that indeed the identified model can generalize the behaviour of the SAV dynamics.
Concerning all data-sets, Table 2.4 collects the RMS error of each three measured outputs.
As it was seen from the previous mentioned figures, the estimation error is very small for the
identification data and still remains quite small for the validation data-sets.

Table 2.4: Identified SAV Model Estimation Error rms

Data-set rms(vx − v̂x) rms(vy − v̂y) rms(ψ̇ − ˆ̇
ψ)

Identification Data Fig. 2.6 0.0022 0.0562 0.0144
Validation Data 1 Fig. 2.7 0.0690 0.0175 0.3371
Validation Data 2 Fig. 2.8 0.1681 0.0183 0.2600
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Figure 2.6: Identified model output VS identification data.
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Figure 2.7: Identified model output VS the first validation data.
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Figure 2.8: Identified model output VS the second validation data.

2.4.3 Standard Bicycle Model

From the model given in Eq. (2.1) and with Assumption 2.1, Assumption 2.2 and Assump-
tion 2.3 one could derive the following control-oriented model for the lateral SAV control
design.

Definition 2.3 (SAV Bicycle Model)
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The lateral dynamics of the SAV is given by the following state-space model

[
v̇y
ψ̈

]
=

[
−Cαf (vx)+Cαr(vx)

mvx
−vx − Cαf (vx)lf−Cαr(vx)lr

mvx

−Cαf (vx)lf−Cαr(vx)lr
Izvx

−Cαf (vx)l
2
f+Cαr(vx)l2r
Izvx

] [
vy
ψ̇

]
+

[
Cαf (vx)

m
Cαf (vx)lf

Iz

]
δ (2.25)

with parameters given in Table 2.2 and Table 2.3 and where the tire cornering stiffness coeffi-
cients are given by the following polynomials

Cαf (vx) = Cαf2v
2
x + Cαf1vx + Cαf0 (2.26)

Cαr(vx) = Cαr2v
2
x + Cαr1vx + Cαr0 (2.27)

Note that although the SAV Bicycle Model still remains a pure LPV model, the dependency
on the longitudinal speed vx of the SAV model is more complex with respect the control-
oriented from Definition 2.1. This is due to the polynomial relation of the tire cornering
stiffness coefficients with respect to vx. This increased model complexity allows to obtain a
more accurate control-oriented model of the actual vehicle dynamics.

2.4.4 Augmented Bicycle Model with Steering Actuator

Given the large input delay estimated in the servomotor model, as seen from the estimated
time delay τ in Table 2.2, it is interesting to consider a control-oriented model which takes into
account the slow dynamics of the steering actuator on the SAV. The following control-oriented
model can be derived from Eq. (2.1) and the servomotor model in Eq. (2.16).

Definition 2.4 (Augmented SAV Bicycle Model)
The augmented lateral dynamics of the SAV are given by the following state-space model




v̇y
ψ̈

δ̇

δ̈


 =




−Cαf (vx)+Cαr(vx)
mvx

−vx − Cαf (vx)lf−Cαr(vx)lr
mvx

Cαf (vx)
m 0

−Cαf (vx)lf−Cαr(vx)lr
Izvx

−Cαf (vx)l
2
f+Cαr(vx)l2r
Izvx

Cαf (vx)lf
Iz

0

0 0 0 1

0 0 −ω2
n −2ζωn







vy
ψ̇

δ

δ̇




+




0

0

0

ω2
n


 δ

∗(t− τ)

(2.28)
with parameters given in Table 2.2 and Table 2.3 and where the tire cornering stiffness coeffi-
cients are given by the following polynomials

Cαf (vx) = Cαf2v
2
x + Cαf1vx + Cαf0 (2.29)

Cαr(vx) = Cαr2v
2
x + Cαr1vx + Cαr0 (2.30)
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2.5 Conclusions

In this chapter it was explored the development of vehicle longitudinal and lateral dynamics
models from first principles under the assumptions of moderate accelerations. This assumption
is important since it allows to consider decoupled dynamics and linear tire forces. Allowing
to develop pure LPV control-oriented models.

From an existing model of a Renault Megane car it was given two variations of control-
oriented Bicycle Models that can be used for the lateral control design of this vehicle. For the
recently developed SAV platform it was explored the platform architecture and the identifica-
tion process of the SAV dynamics. The identification process can be considered as successful,
given how well the model outputs matched the ground truth measurements acquired on plat-
form tests, which was true for both the data used in the identification phase as well as data
used purely for model validation. This estimation performance by the identified model can be
attributed to the identification process, based on a nonlinear optimization using a Prediction-
Error Identification approach. This method has proved to be very flexible, as it could deal
with model nonlinearities but also with the estimation of internal delays, all while producing
estimated parameter values that are in line with what could be expected from physics.

The control-oriented models presented for both the Renault Megane and the SAV, will
be used in following chapters for the development of control laws for the the vehicles lateral
dynamics.
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3.1 Introduction

In order to design model based control systems, it is important to have a good understanding
of the dynamics of the system to be controlled. This is specially important for control systems
that need to interact directly with the actions of a human. The design of Advanced Driver
Assistance Systems (ADAS) being one of the most popular cases nowadays for such systems
and offered in most modern road cars. For such systems, including some understanding of
the human behaviour in the control design can help to achieve trade-offs between reduced
interference and driver assistance aid.

One of the main focuses of this thesis is the vehicle lateral control task in view of incor-
porating driver assistance steering. To this aim, it is of importance to have some model for
the driving behaviour of the human. Although obtaining a model of the human behaviour
may seem complex, it has in fact been studied since back in 1960 and multiple models have
been validated in recent years achieving great accuracy in capturing the steering behaviour of
humans. The objectives in this thesis, in regards to modeling the driver steering, is to employ
models that capture the human behaviour accurately while being simple enough to be used
for control design.

49
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3.1.1 Chapter Structure

The organization of the chapter is as follows. In Sec. 3.2 we cover different approaches present
in the literature that have been proposed for the task of modeling the drivers steering be-
haviour. Then, in Sec. 3.3 two driver models which have been adapted from existing literature
results are presented and in Sec. 3.4 for each these models it is given an identification based
validation in which the parameters of the respective model are modified to try to capture real
human steering behaviour.

3.2 Literature Background on Steering Driver Models

In order to model the driver behaviour, a first approach considered in the literature was to
assume the driver acting as a compensator that minimizes some error signal. These signals
are usually considered to be the lateral position deviation or the heading error of the vehicle
with respect the desired trajectory, always computed at some look-ahead point on the forward
direction of the car. One the simplest representation to appear of the driver as a compensator
is the so-called Systems Technology Inc. (STI) pursuit model. According to [Rei83], a review
on driver models published in 1983, this STI pursuit model was first introduced in 1967 by
Systems Technology Inc. It considers the human driver acts as a lead term with time-delay

H(s) = (TLs+ 1)e−τs , (3.1)

where TL is the lead time constant and τ incorporates the lag time due to the human reaction
time and the neuromuscular activity. In Fig. 3.1 it can be seen an example of an application
of such a model, extracted from [McR+77]. Note than in this model it is combined both the
lateral error ye and heading error ψe as the driver model inputs, but also the road curvature.

Figure 3.1: Driver/Vehicle model with STI pursuit model. [McR+77]

According to the previous mentioned review [Rei83], the STI pursuit model can model
accurately the driving characteristics during lane tracking and disturbance rejection tasks,
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such as wind disturbances. However, for lane changes or more aggressive maneuvers more
complex models are required.

Building from the STI pursuit model, a more comprehensive model is the so-called precision
model. A detailed description of this model can be found in [MK74], which writes

H(s) = KP
TLs+ 1

TIs+ 1

1

(TNs+ 1)(( s
ωN

)2 + 2ζN
ωN

s+ 1)
e−τs (3.2)

where KP is the model gain, τ is the human reaction time delay, TL and TI are the lag-lead
time constant of the lag-lead compensator and TN , ωN and ζN are parameters of the driver
neuromuscular system. This model can be simplified as

H(s) = KP
TLs+ 1

TIs+ 1

1

TNs+ 1
e−τs (3.3)

or even as
H(s) = KP

TLs+ 1

TNs+ 1
e−τs (3.4)

The main hypothesis behind the precision model is the assumption that the driver-vehicle
system behaves like a servo system [WM70] such that

• The driver-vehicle system can be stabilized.

• Given a transfer functionHc(s) that describes the vehicle dynamics, then |H(jω)Hc(jω)|
has a slope of -20dB/decade around the crossover frequency.

• |H(jω)Hc(jω)| >> 1 at low frequencies.

This is equivalent to say that the driver-vehicle system behaves according to the cross-over
model

HL(s) =
ωc
s
e−τs (3.5)

where ωc is the crossover frequency and the delay time τ is the inherited delay from the driver.
Thus, according to [WM70] the values for the lag-lead compensator in the precision model
Eq. (3.2) are chosen such that the previous points hold true.

As mentioned in the review work [PE07], this model has been very influential in the driver
modeling literature and forms a key element for many other models that have been proposed
afterwards, specially in the simplified manner seen in Eq. (3.4). Despite its simplicity, in an
aerospace sector case study [JHB15], it was proven that the precision model description is able
to fit accurately data from real human behaviour. Moreover, that study has shown that with
different parameters fitted for each model, the behaviors of the complete precision model in
Eq. (3.2) and of the simplified representation in Eq. (3.4) are similar.

These early type of models, as the STI pursuit model in Fig. 3.1 from [McR+77] or the
simplified precision model used in [RSB81] to model the obstacle avoidance behaviour, only
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assume drivers as pure feedback element actors correcting its instantaneous lateral position
and/or orientation. However, in [McR+77] it is acknowledged the existence of a feed-forward
behaviour in drivers associated with the guidance task in addition to the pure stabilization
control one. Specially it is mentioned that very experienced drivers rely mostly in this type of
visual information. A major contribution in the idea of independent tasks behaviour modeling
was introduced in [Don78] where a two level driver model is introduced. Interestingly, the
feedback compensatory model employed in [Don78] is a discretization of the simplified precision
model Eq. (3.4).

Figure 3.2: Two-level driver model with anticipatory and compensatory behaviours. [Don78]

As can be seen in Fig. 3.2, the two level models present a feedback path and in addition
a pure feed-forward component based on the incoming road curvature. The feedback path
models the neuromuscular human system and explains the physical actions carried by the
driver in order to reduce the small errors between the vehicle’s Center of Mass and the road
center-line. The feed-forward steering represents the driver’s visual system anticipatory action
to the incoming road path curvature. The rationale behind this idea is that humans do not
act purely as a correcting mechanism, instead as has been proved in the recent work [MC11],
the human driving action is mostly based on this visual anticipatory behaviour.

Many driver models presented in recent works present a structure similar to the two-level
structure introduced in [Don78] or a variant of this model known as the two-point model
[SG04]. The two-point model also assumes an anticipatory behaviour from the human, but
instead of acting as a feed-forward action, it is expressed as a feedback action with respect
the road heading error. However, this heading error is computed at a far away look-ahead
point different from the point where the feedback errors related to the neuromuscular reaction
would be computed.

A popular version of the two-point model is the cybernetic driver model introduced in
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[Sen+09] and which can be seen in Fig. 3.3. In contrast with the two-level model from
[Don78] and [SG04], the cybernetic driver model does not model the steering angle as its
output, instead, the model output is the steering torque applied on the steering column by
the driver. The objective of this model was to study the relation of the human with haptic
feedback and shared control strategies in ADAS functionalities. As so, the effect of the steering
column torque is given as a feedback signal into the model. In connection with previous
explored models, when analyzing the transfer function of the cybernetic driver model from
the compensatory error signal to the driver torque, θnear and Td respectively in Fig. 3.3, the
obtained transfer function coincides with the Precision Model simplified as in Eq. (3.3).

Figure 3.3: Cybernetic Driver Model. [Sen+09]

A forward evolution in the explored driver model literature consists in integrating into
the driver model the path planning stage [MC11]; [Sch+16]. This is required as according to
[Sch+16], given the same road it can be seen that drivers follow different trajectories based
on their preferences. These extended models, as the driver model in Fig. 3.4 from [Sch+16],
couple the path generation stage with a two level driver model similar to those mentioned
before, allowing to generate simulated driver behaviour which matches closely the human
response. Moreover, as the path planing stage parameters are unique to each driver, these
models can capture the subtle differences between styles and skill levels between drivers.

In fact, an important contribution from the model introduced in [MC11] is to add a direct
and simple way in which the driver skill can be incorporated into the driver model by sim-
ply weighting the levels of feedback compensatory steering δFB and feedforward anticipatory
steering δFF as:

δ = KFF δFF +KFBδFB (3.6)

with
KFF +KFB = 1 (3.7)

This is very interesting as even though it was known that skill plays an important factor in
determining the steering behaviour, previous models failed to model it [Mac01]. Although
the weighting strategy in Eq. (3.6) may seem over simplistic, it is indeed quite logical. In
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first place, as it has been said before, humans rely mostly in their visual anticipatory system
for driving, and in second place as proven in [MC11], expert drivers rely more on the visual
anticipatory system than novice ones. Both facts can be tuned with the correct choice of the
KFF weight. According to [MC11] a typical value for KFF for an expert driver can be 0.85
while for a novice driver is around 0.75.

Figure 3.4: Two-level driver model with personalized path planner. [Sch+16]

As it can be seen from the different examples of models for the lateral driving behaviour
explored so far, the literature in the field is quite extensive and works spans many decades.
The presented studies are mainly based on the idea of modeling the behaviour of the human
driver from its interaction with the road and its visual and neuromuscular systems. However,
there are other approaches. The extensive review work on driver models [PE07] compile many
different modeling perspectives and is recommended for the interested reader on the topic.
Examples of works that model the driver from other perspectives could be the following. In
[Lef+15] it is introduced a learning based approach to model the driver steering behaviour
using Hidden Markov Models. In [HM90] it is developed a driver model based on control
theory concepts and which need only the crossover frequency as a tuning parameter, with the
lateral error acting as the model input. Another approach from the control theory community
is introduced in [Jia+11], in which the driver behaviour is modeled as an optimal controller. In
fact, the driver model in [MC11] includes a PID controller to model part of the compensatory
decision making. The work [OT16] uses a hybrid approach of the cybernetic driver model
[Sen+09] by incorporating Model Predictive Control based anticipatory actions to predict the
amount of feedforward action required from the human, which changes according to the road
situations, but other models fail to capture this phenomena.

3.3 Driver Models Used for ADAS Functions

In this section it is given an overview on the driver models which will be employed in later
chapters of this thesis for the development of ADAS functions, such as driver fault detection
and assisted lateral control. Both models are very similar in structure, the main differences
being the input signals used to model the feedback compensatory behaviour. The following
subsection detail each of the models characteristics.
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3.3.1 Lateral Error Driver Model

The Lateral Error Driver Model (LEDM), seen in Fig. 3.5, borrows different characteristics
from driver models seen in the literature as explored in Sect. 3.2. Like the model in [Don78],
this model presents a two-level architecture. The feedback compensatory path uses the lat-
eral error ye with respect a reference trajectory as feedback signal used to model the driver
corrective actions. On this feedback path of the driver model, the neuromuscular reaction of
the driver is modeled using the simplified precision model [MK74] from Eq. (3.4).

Figure 3.5: Driver Model Based on Lateral Error.

The anticipatory driver action, as in the case in [Don78], is modeled by using the incoming
road curvature kpath as feedforward signal. The feedforward steering is modeled with a simple
constant gain Kv, and as mentioned in [All+02]; [MC11] this anticipatory action is computed
according to the feedforward Ackerman steering expression:

δff = kpath ·Kv = kpath ·Kf (a+ b) (3.8)

where Kf is an adjustable constant gain and (a + b) is the vehicle wheel base. Finally, the
resulting steering according to the driver model is a weighted combination as given in Eq. (3.6),
taken from [MC11], which allows to model drivers with different skill levels.

It should be noted that the objective is here to obtain a simplistic control-oriented driver
model, since the LEDM has only one state. This simple model can then be incorporated effi-
ciently in the synthesis of ADAS functions, as the case of lateral ADAS controllers but also in
algorithms for the detection of driver errors and driver performance. However, despite its sim-
plicity the LEDM can capture many of the phenomena observed in real drivers. Importantly,
the driver model given in Fig. 3.5 can capture the following driver characteristics:

• Driver physical condition thanks to appropriate choice of TN and τ , which define the
driver reaction time.

• Amount of driver reliance on anticipatory behaviour thanks to to appropriate choice of
Kf from the feedforwad gain definition Eq. (3.8).

• Skill level by appropriately selecting the feedforward weight Kff .



56 Chapter 3. Steering Driver Models

3.3.2 Heading Error Driver Model

The Heading Error Driver Model (HEDM), seen in Fig. 3.6, shares the same structure and
parameters as the LEDM from Fig. 3.5. Given these similarities it will not be repeated here the
description of the different elements that form the HEDM structure. However, it is interesting
to point out that the structure of the feedback compensatory path, with simplified precision
driver model as in Eq. (3.4) but with heading error ψe as its input, is identical to the obstacle
avoidance driver model introduced in [RSB81].

The only difference of the driver model in Fig. 3.6 with respect the previously seen LEDM
in Fig. 3.11 is that the input signal for the feedback path consists on the heading error ψe.
Notice in Fig. 3.6 that this error signal is computed as the integral of the yaw rate error ψ̇e
with

ψ̇e = ψ̇ref − ψ̇ (3.9)

where ψ̇ref is the required yaw rate in order to follow a desired trajectory and ψ̇ the actual
yaw rate of the vehicle.

The objective of this model is mainly to be used for ADAS control design, and not for
the estimation of driver performance. As such, describing the heading error ψe as the relation
of yaw rate reference ψ̇ref and vehicle yaw rate ψ̇ is advantageous in order to connect the
heading error driver model with the synthesis of controllers for the vehicle lateral dynamics.
This is coherent as it will be seen in future chapters, the yaw rate error ψ̇e is the signal that
will be minimized in the controller design along this thesis to achieve tracking performances.
Moreover, the introduction of an integrator in the driver model increases the low frequency gain
of the driver vehicle system. As it was seen in Sect. 3.2, this is one of the good qualities a driver
model needs to achieve according to the crossover driver vehicle model [WM70] assumptions.

Figure 3.6: Driver Model Based on Heading Error.

Remark 3.1
With regard the connection of the driver models in Fig. 3.5 and Fig. 3.6 with the controller
synthesis task. The incoming road curvature kpath can be substituted by the following relation
[Raj11]:

kpath =
ψ̇ref
vx

(3.10)

This change of variable is advantageous for control synthesis purposes as it transforms one of
the driver model inputs into a signal that is directly used to set control objectives.
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3.4 Driver Model Validation

As it was pointed out, the driver models represented in Fig. 3.5 and Fig. 3.6 share many fea-
tures from existing driver models in the literature, however, as they are adaptations of existing
results, the validity of these driver models needs to be proved. For this reason, in this section
it is validated both driver models introduced in Sect. 3.3 by means of parameter identification
of a real driver from existing manual driving data on the SAV platform. The objective is to
confirm whether the proposed driver models can explain the driving characteristics of a real
human. The procedure to carry out the identification of the driver models is the following.

procedure Driver Model Parameter Identification
Drive the SAV car around a specified track, see Sec. 3.4.1.
Capture driver input data, vehicle state variables and error signals, see Sec. 3.4.1.
Use the recorded data to identify the DM parameters, see Sec. 3.4.2.
Validate the DM identification results, see Sec. 3.4.3.

end procedure

3.4.1 Data Acquisition for Identification

In order to carry out the DM validation, the joystick seen in Fig. 3.7 was incorporated on
the SAV platform architecture given in Fig. 2.4 from Chapter 2 as input for the Remote ROS
PC. The Remote ROS PC can read the value of the joystick sticks. This value then can be
processed and transformed into a suitable steering angle, which is sent and applied on the
SAV car steering servomotor.

Figure 3.7: Joystick used for driving the SAV manually.

However, there exists important limitations with this SAV setup for manual driving. First
of all, driving the car with a joystick rather than with a steering wheel limits the level of
precision that the driver has. More importantly, the fact that the SAV is driven remotely,
means that there exists no direct feedback with the vehicle. Moreover, it is driven from a third
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person perspective, which is unnatural. Evidently, these limitations on the existing hardware
setup hinder the effectiveness of the validation carried here. For this reason, the objective here
is not to judge the identification performance on its accuracy but on its capacity to describe
the underlying dynamics of the driver behaviour.

Using this SAV+Joystick setup, a driver is given the objective of driving on the following
trajectory. During this manual driving exercise it is captured the state variables (vx, vy, ψ̇) of
the SAV car as well as lateral error ye and heading error ψe.
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Figure 3.8: Followed Trajectory.

As it was mentioned in Sect. 2.4.1, from the motion capture cameras it can be measured
in real time the SAV position and orientation. Deriving these then it is obtained the car
states (vx, vy, ψ̇). Moreover, from the position and orientation information in relation with
the desired trajectory, it is possible to compute both the lateral deviation ye and the heading
error ψe with respect the circuit path. Note that in the SAV platform the computation of
these error signals is done according with Sect. 2.2.3. Recall that the vehicle-road relation
information is measured at a look-ahead distance L according to

L = tpvx (3.11)

where tp is in this case the driver preview time, assumed to be constant at tp = 1s. Notice
that this is an intrinsic limitation of the identification of driver models in general, as it is very
difficult to accurately known what is the preview distance that the real driver is taking into
consideration, which for sure it is not constant in reality.

In addition, from the information about the SAV position it is possible to obtain the road
curvature kpath at the look-ahead point on the reference trajectory. As can be seen, the SAV
platform allows to measure all the inputs and outputs that appear on the LEDM in Fig. 3.11
and HEDM in Fig. 3.12.
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3.4.2 Identification Method

The identification method is a Prediction Error one, similar to the identification method for
the parameters of the SAV model seen in Sect. 2.4.2. The parameter identification for both
driver models is done using a shared data set, which was obtained by driving manually the
SAV car as according to Sec. 3.4.1.

The set of parameters to identify from the LEDM in Fig. 3.5 and the HEDM in Fig. 3.6
are the following

Ω = {K,TL, TN , τ,Kf ,Kff} ∈ R6 (3.12)

Remember that according to Eq. (3.8), Kv = Kf (a + b), and (a + b) is the wheelbase of the
vehicle (see Table 2.3). The nonlinear optimization problem solved to identify these parameter
is

min
Ω

[
Q1 · RMS(δ∗ − δ̂∗) +Q2 · RMS(ψ̇ − ˆ̇

ψ)
]

(3.13)

where δ∗ and ψ̇ are respectively the real steering command and vehicle yaw rate captured
from the real driving test. δ̂∗ is the output of the correspondent driver model to be identified.
In addition, ˆ̇

ψ is the simulated output of the SAV dynamics given δ̂∗ as steering input.

A possible approach to solve the identification problem would be to focus on the driver
models from an input-output perspective, according to Fig. 3.5 and Fig. 3.6 respectively. This
is possible as all inputs and outputs signals of both driver models are available. However,
due to the hardware setup limitation, it was found out that best results can be achieved by
carrying the identification using a holistic approach.

In this holistic approach, for simulating the driver command δ∗, the driver model is coupled
with the nonlinear SAV model. This closed-loop driver-vehicle model can be generalized for
both driver models according to Fig. 3.9.

Figure 3.9: Data Scheme for the Identification Method.

The vehicle dynamics used in the identification process is the nonlinear model of the SAV
dynamics seen in Sect. 2.4.2, including the equations of motions but also the servomotor
dynamics with time delay. Note that as seen in the nonlinear optimization problem definition
in Eq. (3.13), the SAV parameters are not optimization variables in this case. The SAV model



60 Chapter 3. Steering Driver Models

is just used to provide a simulation of the vehicle yaw rate response ˆ̇
ψ given the simulated

driver model command δ̂∗. Then, as seen in Eq. (3.13), minimization of the estimation error
ψ̇− ˆ̇

ψ RMS is another objective on the cost function. The objective of including this term on
the objective function is to steer the optimization towards a set Ω of driver model parameters
that explains well the driver model steering but also takes into account the observed vehicle
response.

Finally, the nonlinear optimization problem in Eq. (3.13), with scalar weightsQ1 = 100 and
Q2 = 1, is solved using the fmincon solver in Matlab. This is done using the road information
data with respect the circuit kpath, ye and ψe, data from the real steering commands δ∗

executed by a human driver and simulated driver steering commands δ̂∗ generated by either
of the correspondent driver model in Fig. 3.5 or Fig. 3.6 and simulated vehicle response from
the identified SAV dynamics in Sect. 2.4.2.

3.4.3 Validation results

For each of the two driver models, their identified parameters as well as the considered min-
imum and maximum boundaries are given in Table 3.1. The identified values between both
driver models are consistent with each other. They are consistent in the sense that the iden-
tified parameters in both cases characterize a driver with high preference in its anticipatory
behaviour. Note that for both driver models, the values for the skill weight Kff and specially
the gain Kf of the Ackerman feedforward steering present high values, close to the consider
upper bounds. This is indeed a coherent result given the poor steering characteristics of the
SAV [AM97]. As seen in Sect. 2.4.2, the steering servomotor presents slow dynamics and a
large delay time, which hinders the driving experience. This makes the SAV behave like a poor
performing vehicle when driving it manually. As a result, the driver needs to take an active
role and focus more on preview feed-forward information and behaviours to follow successfully
the desired trajectory.

Table 3.1: Driver Models Identified Parameters

Parameter Driver Model Fig. 3.5 Driver Model Fig. 3.6 Value min Value max
TL 0.7124 0.3413 0.2 3
TN 0.5504 0.3648 0.15 1
τ 0.2112 0.2336 0.15 0.3
K 0.9013 0.2616 0.1 50
Kf 6.1786 8.9023 1 10
Kff 0.8034 0.8498 0.75 0.85

Table 3.2 presents the RMS estimation errors for the two signals considered in the objective
function of the nonlinear optimization problem Eq. (3.13) for the Prediction Error identifi-
cation approach. It can be seen that the performance of the two identified driver model is
almost identical. This can be confirmed when comparing Fig. 3.11 and Fig. 3.12.
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Table 3.2: Identified Driver Models Estimation Error RMS

Model RMS(δ∗ − δ̂∗) RMS(ψ̇ − ˆ̇
ψ)

LEDM Fig. 3.5 0.2389 0.4924
HEDM Fig. 3.6 0.2396 0.4817

Fig. 3.11 and Fig. 3.12 presents the ground truth data for the real human steering command
and the simulated steering according to the driver models output on top; on the bottom it
is given the measured vehicle yaw rate and the simulated yaw rate of the SAV model as
consequence of the driver model input. As previously mentioned, note that the ground truth
data set is the same for the identification effort of the two driver models. Additionally, Fig. 3.10
presents the range of speeds at which the driver data acquisition experiment was carried out.

From Fig. 3.11 and Fig. 3.12, and as it was seen in Table 3.2, the steering behaviour
according to both driver models is similar. From the ground truth steering angle commands
it can be clearly seen the mentioned limitations due to using a joystick as input device.
The joystick sticks have a short travel distance and dead-zone behaviour around the neutral
position. This produces an steering signal which is hard to control with precision for the driver.
As a result the driver commands on the SAV+Joystick setup present a very digital (almost
Boolean) behaviour. Despite this unnatural steering, both driver models capture the overall
behaviour that can be seen from the human steering. On the other hand, when focusing on
the vehicle behaviour, it can be seen that simulated steering from the driver model causes a
simulated yaw rate on the vehicle model that closely matches the general yaw rate dynamics
observed on the actual SAV car.
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Figure 3.10: Two-level driver model with personalized path planner. [Sch+16]
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Figure 3.11: Estimated Lateral Error DM steering and model vehicle responses vs ground
truth data.
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Figure 3.12: Heading Error DM steering and model vehicle responses vs ground truth data.

3.5 Conclusions

In this chapter it has been explored some of the works available in the literature concerning
driver models. Special attention has been put on works which model the behaviour of the
human driver from its interaction with the road and its visual and neuromuscular systems.
These works have been the basis for the development of the the driver models selected in order
to develop ADAS functions in this thesis.
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Borrowing from different works, two driver models have been presented. Both use a similar
two-level structure with feedforward anticipatory and feedback compensatory actions to model
the driver behaviour. The first model uses the lateral error for feedback, while the second
model here presented uses the heading error instead. The chosen structure for both models
can capture a high amount of driver characteristics, as physical condition but also level of
skill. This is achieved while maintaining a simple structure and low number of states as a
key objective in order to obtain simple models, which can then be used efficiently for control
synthesis problems.

Finally, the driver models have been validated by means of parameter identification to test
whether the models are able to capture real human driving behaviours. Due to limitations
on the hardware setup this validation cannot be judged with a high level of confidence when
compared to a real vehicle driving experience scenario. Despite the hardware constraints, the
identified models showed coherent results and their simulated driver steering resembled overall
the real steering executed by a human driver.
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Part II: Introduction

Part II is focused on the development of steering control for autonomous vehicles using LPV
approaches. The LPV approach used for most of this Thesis is based in a novel framework
for Discrete-Time (DT) Grid-Based LPV control which is presented in Chapter 4, referred to
as grid and local variation bound. This framework allows to propose finite LMI optimization
problems based on the LMI conditions presented in Chapter 1. The novelty of the frameworks
lies on the fact that it allows to make use of Parameter-Dependent Lyapunov Matrices in the
synthesis conditions for Grid-Based DT-LPV systems, which has not been presented previously
in the literature.

Within this framework, Chapter 4 introduces the Parameter-Dependent State-Feedback
(PDSF) control approach. The PDSF controller is synthesized in a two-step LMI, its key fea-
ture is that the synthesized controller has a designer chosen parameter-dependent structure
independent of the number of grid-points considered on the LPV design. The PDSF approach
is then used and experimentally validated for the design of an autonomous steering controller
for the Scaled Automated Vehicle (SAV). The LPV design for the lateral SAV control con-
sidered 151 grid-points, despite that, the synthesized PDSF controller has only four constant
gain matrices.

Chapter 5 uses the grid and local variation bound framework to introduce Gain-Scheduled
Grid-Based SF DT-LPV control synthesis LMI conditions. This approach is then used to
extend the autonomous steering design from Chapter 4 by adding a design-related varying
parameter on the LPV design. The objective of this parameter is to provide a mean to
modulate the maximum allowable magnitude of the steering controller output. A scheduling
function will then be proposed to utilize this parameter in order to emulate an Anti-Windup
mechanism. Experimental tests are then carried to validate the approach.

The following of this introduction to Part II is dedicated with providing literature back-
ground on lateral LPV vehicle control and in works which exploit the use of design-related
varying parameter in the LPV framework, a concept that is key for the development of the
results in Chapter 5.

Literature Background on Lateral LPV Vehicle Control

The lateral vehicle control is responsible of the control of the steering system of the vehicle in
order to follow some desired trajectory. Some common applications of vehicle lateral control
on modern cars could be the lane keeping [MSN11]; [Chu+18] or obstacle avoidance [Gao+10]
systems.

The lateral dynamics of the vehicle can be modeled with the so called Bicycle Model,
covered in Chapter 2. This model is a pure LPV system as the vehicle longitudinal velocity
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appears as a parameter in the model, which is obviously a time-varying parameter. The effect
of the speed on the steering behaviour of cars is quite clear, at low speeds it is required large
rotations of the steering wheels to turn the car while at highway speeds small corrections on the
steering wheel result in large rotations. Thus, exploiting the knowledge about vehicle dynamics
dependency on speed is key for autonomous steering to achieve acceptable performances. For
this reason the LPV method has gain the interest of researchers working on vehicle lateral
control applications.

In [Ato+22b] the authors compare for a real autonomous Renault ZOE electric vehicle the
Polytopic, Grid Based and Linear Fractional Transformation (LFT) LPV control approaches
applied to the autonomous steering problem. The findings of the authors point to the Grid
Based and LFT approaches to provide good performances for this application. Meanwhile,
their experimental results suggest that the Polytopic approach does not perform well at the
whole range of speeds, resulting in noisy control signal deemed unsafe at higher speeds. Note
that according to the Bicycle Model, see Definition 2.1, the longitudinal speed appears in the
model as vx and 1

vx
, as the Polytopic approach requires the LPV model to be convex on its

scheduling parameters [AGB95], the scheduling parameter vector is then [ρ1, ρ2] with ρ1 = vx
and ρ2 = 1

vx
. Obviously a convex polytope of the parameters ρ1 and ρ2 have vertexes which

are not feasible in reality.

To solve this issue, [Kap+22] proposed a Polytopic approach based on polytope vertex
reduction algorithm in order to reduce the number of vertices of the initial over-bounded
polytope. This strategy was implemented on the same autonomous Renault ZOE platform,
leading now to good tracking results and good controller behaviour in terms of low noise on
the control signal. However, it should be mentioned that the real-time implementation of the
proposed vertex reduction algorithm requires solving in real-time a quadratic optimization
problem to find the correct controller scheduling.

In addition to schedule the LPV controller based only on vehicle speed, some authors have
proposed LPV approaches to account for other effects that affect the vehicle behaviour. In
[Cor+21] it is proposed an LPV control strategy that accounts for non linearities on the car
steering column. This was achieved by adding an additional varying parameter used to modify
the online tuning of the controller. The objective being to adapt the controller frequency
behaviour based on the curvature, such that when in a straight line driving situation with
low accuracy requirements the controller provides soft control signals to improve passenger
comfort, but can be more aggressive when turning to maintain good tracking performance.
Meanwhile, in [FNG22] it is proposed an LPV approach that can cope with changes in the
road condition. Employing machine learning algorithms it is proposed an approach to estimate
the friction coefficient, then, by incorporating this coefficient into the vehicle model as an
additional varying parameter, the LPV controller can adapt to different road conditions as
wet and icy roads.

Another interest of using LPV approaches for lateral control in autonomous vehicle is
the coordination of multiple control inputs. In [Dou+13] it is considered the development
of an integrated control strategy involving front steering command and Direct Yaw Control
using differential rear braking. Using LPV/H∞ approaches the controller manages the level
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of yaw braking control in addition to the steering control. A similar approach is evaluated in
[Cao+23] in a Hardware-In-the-Loop platform, proving improved vehicle performances when
in critical conditions. In both of these works the steering control is used as the main actuator
of the MIMO controller, meanwhile some car stability performance is computed in real-time
to activate the level of Direct Yaw Control thanks to LPV scheduling.

In [GCS21] a similar problem is evaluated, this time considering the control possibilities
that new all electric vehicle drive-train enables. Employing a multi-layer scheme, a first
torque vectoring controller layer is designed exploiting the four wheels drive (4WD) electric
architecture. Then, a second layer, which incorporates the knowledge of the torque vectoring
controller model, is designed to control the steering of the vehicle. Additionally, in this work
the authors consider tires non-linearites embedded on the LPV model of the vehicle dynamics.
As a result, the synthesized steering controller can adapt in real-time to the wheels side-slip
angles, thus, to the available lateral grip.

A popular control approach for autonomous vehicle control is the Model Predictive Control
(MPC) technique [Bor+05]; [Zan+14]; [Liu+17]; [NCA19]. Some recent works are extending
the use of LPV models into the MPC framework [MNRS20], the objective being to solve
nonlinear MPC problems making use of the LPV formulation using Quadratic Programming
(QP) solvers. This then enables faster performance in real-time implementation, without loss
of model accuracy with respect a nonlinear MPC approach thanks to the use of LPV models.
The LPV MPC technique was employed in [Alc+20] considering coupled longitudinal and
lateral dynamics in order to increase the autonomous vehicle performance for racing. As a
result, the MPC does not only compute the steering control signal but also the required ac-
celeration command for speed control. In [APQ20], the same authors extended the approach
to additionally consider the planning task within the LPV MPC formulation considering ob-
stacle avoidance. They show that the computational time for solving this planning/controller
MPC problem using nonlinear MPC techniques is not efficient for real-time implementation.
However, the LPV MPC solution allows to solve the MPC at each iteration in less than 0.06
seconds in average.

As can be seen, the LPV approach has been widely employed in the literature to deal with
the lateral control of autonomous vehicles. It does not only provide a natural methodology
to provide adaptation of the lateral control system to changes in velocity, but as it has been
seen, smart use of LPV models and LPV scheduling allow to provide robustness mechanism
to a number of important vehicle control issues, as loss of stability, actuator nonlinearities
and changes in road condition. Moreover, exploiting the LPV formulation it is possible to use
MPC methods in a way that results in quick computational times.

About Design-Related Varying Parameters

The use of design-related varying parameters in LPV designs have been pioneered by the con-
trol schools of Grenoble and Budapest [GSB05]; [Zin+08]; [PV08]; [SGB13]; [Fer14]; [Gás+16].
The design-related varying parameters are parameters artificially added to the LPV model by
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the control designer to achieve some specific objectives. These parameters are included in the
augmented plant or weighting functions used on the LMI optimization that characterizes the
control problem. They allow for changes in the behavior of the control system, such as tuning
controller bandwidth or limiting the maximum control signal output.

Unlike standard physics-related varying parameters, design-related parameters are not
defined by physics or directly estimated from system behavior. Instead, their values are
determined by mathematical functions chosen by the control designer to adapt the control
system to various situations. This flexibility provide LPV designs with the capability to
achieve higher levels goals, beyond stability and tracking performances.

There are three key aspects when considering design-related varying parameters in the
control design.

• Satisfactory incorporation of the design-related varying parameter in the control design.
This is accomplished when scheduling of the design-related varying parameter allows to
achieve the desired adaptation goal, without sacrificing the control design performance.

• Defining an appropriate mathematical expression or functions that will describe the
parameter evolution during real-time implementation.

• Tuning the hyperparameters of the scheduling function to achieve the the desired be-
havior of the design-related varying parameter.

Remark
When incorporating design-related varying parameter in the LPV design, the control synthesis
is carried offline independently of how the design varying parameter scheduling function is
defined. For control design and synthesis, only fixed points of the parameter are used. Once the
controller has been synthesized, then, the definition and tuning of the mathematical expression
for scheduling become important issues for the online implementation of the LPV controller
with design-related varying parameters.

In the just presented Literature Background on Lateral LPV Vehicle Control it was already
explored examples of works which propose LPV control systems that exploit design varying
parameters. In [Cor+21] a design-related varying parameter is added in one of the weighting
transfer function of the augmented plant for H∞/LPV design. The objective is to adapt the
controller frequency behaviour based on the curvature, such that when in a straight line sit-
uation with low accuracy requirement, the controller provides soft control signals to improve
passenger comfort, but can be more aggressive when turning to maintain good tracking perfor-
mance. In [Dou+13] it is used a design-related varying parameter to modulate the amount of
differential braking used in order to enforce vehicle stability. In this work an stability index is
used to determine when the lateral dynamics of the vehicle are within the stable region. Then,
a linear interpolation rule is used to set the varying parameter value, the scheduling objective
being to use only steering action and disable the differential braking in stable conditions. On
the other side, when vehicle stability degrades, differential braking is enabled in addition to
the steering action. This shows how design varying parameters allows the use LPV scheduling
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as a simple mechanism to handle the interaction between multiple actuators of the control
system.

The work [WGP00] provides a methodology that exploits the LPV design technique to
achieve integrated controller and Anti-Windup design. This is done by incorporating new
design-related varying parameters in the LPV plant model such that the parameters provide
an evaluation of the degree of saturation for each individual actuator. Importantly, this
work shows that for these kind of designs, it is required the design weighting functions to be
parameter dependent in order to achieve a successful control design.

A similar problem have been studied in [PV+08]. In this work it is studied the control
of a vehicle suspension system with semi-active dampers. These actuators can only dissipate
energy, which means that the region of forces in which they can act is restricted. For this
reason classical designs for these systems suffer saturation problems as they may produce force
requirements outside the allowable force regions. The addition of a design varying parameter
acting as the control performance weight is then considered to penalize the control action any
time it is outside the allowable force regions of the semi-active damper. An advantage pointed
out in this work with regards the use of design strategies based on design-related varying
parameter, is that as the design-related varying parameter are an abstraction to achieve some
goal, they are simple to transfer to other systems.

In [Oud+22] an LPV design is proposed to mitigate conflicts between the driver and a
Lane Keeping System for lateral ADAS applications. To achieve this it is proposed an LPV
design in which the control problem is posed with the aid of a parameter dependent cost
function in an LMI optimization. A varying parameter, considered in the range [0, 1] and
which represents the level of shared control between driver and ADAS System, multiplies one
of the cost function terms. This has the effect of either giving full authority to the ADAS
system or disabling it. Then, once the controller has been synthesized, a fuzzy logic approach is
proposed to determine the level of assistance based on driver activity and a cooperation index.
This application shows how smart use of design varying parameters can be used to accomplish
complex design requirements, while keeping the LMI optimization problem straightforward to
solve.

The work [Ato+22a] proposes an interesting alternative to those existing so far in the
literature for the selection of scheduling functions. Instead of manually selecting and tuning
the structure and values of a mathematical expression for scheduling design-related varying
parameters, it is proposed Deep Reinforcement Learning (DRL) methods to achieve this. In
this work a scheduling variable in a multi-LPV controller based on Youla–Kucera parameter-
ization [Ato+21] acts as the design varying parameter. Two LPV controllers with different
performance objectives are designed, one tuned for smooth driving and a second for fast lateral
transitions. The design scheduling variable then interpolates between both controller based
on the driving situation. The interest of using DRL techniques to select the value for the
scheduling variable, and thus control the amount of interpolation, lies in the flexibility that
this technique offers to capture multiple objectives within the DRL reward function. Thus
obtaining an optimal scheduling function with respect the problem requirements, something
that with manual tuning is hard to accomplish, specially when there are multiple objectives
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involved.

In conclusion, the incorporation of design varying parameters in LPV control designs has
been demonstrated to enhance the capabilities of the LPV approach. The LPV techniques
enable the development of robust and adaptable control strategies that can handle varying
operating conditions. By introducing design varying parameters, it becomes possible to adapt
the control system in real-time to address several situations or requirements that cannot
be represented in a dynamical model or resolved through other means. The incorporation
of design varying parameters in LPV control designs provides an innovative and promising
direction for the development of next-generation control systems capable of handling the
challenges of modern-day control applications.
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4.1 Introduction

In this chapter the autonomous lateral control of the SAV car is tackled with a newly devel-
oped approach, here called Parameter-Dependent State-Feedback control. The computation
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of this type of state-feedback controller makes use of Linear Parameter Varying (LPV) ap-
proaches. The novelty lies on the fact that the controller has a fixed structure with constants
matrix gains. However, the controller gains are affine with respect to a parameter dependent
basis function, which provides a self-scheduled controller according to real-time changes of
the varying parameters. The implementation of this Parameter-Dependent State-Feedback
(PDSF) controller does not require any online interpolation or matrix inverse operations, in-
dependently of the number of varying parameters. The synthesis approach as well as the
performance of the PDSF for the lateral control task on the SAV car applied to a Path Track-
ing application will be demonstrated in this chapter.

In the following subsections a general overview of LPV approaches applied to lateral vehicle
control will be presented, as well as the motivations for the development and the definition of
the PDSF.

The contents of this chapters are based on the following publications:

• Ariel M. Borrell, Olivier Sename, Vicenç Puig. “State-Feedback and Static-Output-
Feedback Parametric Controllers Based on a Discrete-Time LPV Grid Based Approach”.
In: IFAC-PapersOnLine, Volume 55, Issue 35, 2022, Pages 109-114, ISSN 2405-8963,
https://doi.org/10.1016/j.ifacol.2022.11.298.

• Ariel M. Borrell, Olivier Sename, Vicenç Puig. “Fixed-Structure Parameter-Dependent
State Feedback Controller: an Scaled Autonomous Vehicle Path-Tracking Application”.
In: Control Engineering Practice [Under Review, 2023 ]

4.1.1 About Fixed-Structure Parameter-Dependent State Feedback Con-
trollers

4.1.1.1 Motivation

Although successfully validated, and clearly better than pure robust LTI approaches [KAG99],
the LPV approaches can suffer from practical difficulties during implementation, specially
as the complexity of the controlled system increases. The Polytopic method requires 2n

controllers to be computed and implemented, n being the number of vertices for the convex
polytope. Similarly, in the Grid-Based approach the number of point-wise controllers increases
exponentially with the number of frozen values of the varying parameters (remember that it
is recommended a quite dense grid in order to obtain robustness guarantees). It can be easily
seen how for the Polytopic and Grid based approaches the amount of point-wise controllers to
be implemented and stored in memory quickly increases in number as the complexity of the
system increases.

For these reasons, the main motivation behind the Fixed-Structure Parameter-Dependent
State-Feedback Controllers is to propose a new LPV approach that can be easily imple-
mentable. The control problem formulation for this new type of controllers is given in the
following subsection.
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4.1.1.2 Control Problem Definition

The control problem introduced in this chapter is to find a Parameter-Dependent State-
Feedback (PDSF) controller with a fixed structure, which is defined as follows:

Definition 4.1 (Parameter-Dependent State-Feedback Controller)
Considering an affine dependency on some scheduling basis function θ(ρ) = (1, θ1(ρ), . . . , θN (ρ)),
with θn ∈ R, n = 1, . . . , N and ρ ∈ Rm the vector of varying parameters, the structure of the
PDSF Controller is of the following form

K(ρ) = K0 +

N∑

n=1

θn(ρ)Kn , (4.1)

where the controller gains K0, . . . ,KN are constant matrices.

The PDSF control problem is defined in the LPV/H∞ framework such that the PDSF
synthesis objective is posed as the minimization of the induced L2-norm of a closed-loop LPV
system. Such control problem is given in the following definition.

Definition 4.2 (PDSF Induced L2-norm Control Problem)
Given an LPV system Ξ(ρ) and considering an State-Feedback control law u = K(ρ)x, the
resulting LPV closed-loop system is:

ΞCL(ρ) :=

{
x+ = (A(ρ) +Bu(ρ)K(ρ))x+Bw(ρ)w

z = (Cz(ρ) +Du(ρ)K(ρ))x+Dw(ρ)w
(4.2)

Considering the induced L2-norm of a system, given in Definition 1.5, the control problem
is then to find a PDSF controller K(ρ) according to Definition 4.1 that renders the LPV
closed-loop system ΞCL robustly stable and minimizes its L2-norm as:

min
K(ρ),γ∞

γ∞ s.t.
∥z∥2
∥w∥2

≤ γ∞ (4.3)

4.1.2 Chapter Structure

The structure of the rest of the paper is the following. In Sec. 4.2 some preliminaries on
the analysis of DT-LPV systems through LMI is given. In Sec. 4.3 it is introduced a new
LMI conditions that are used to prove the existence of the controller for a given system and
numerical proposition for the computation of the PDSF controller gains. In Sec. 4.4 and
section Sec. 4.5 it is explained the synthesis approach for the path tracking application on the
SAV and it is given experimental results respectively. Finally, in Sec. 4.6 some conclusions are
given.
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4.2 Reduction of Grid Based DT-LPV Systems Analysis to Fi-
nite LMI Problems

In Chapter 1 it was introduced LMI techniques for the analysis of DT-LPV systems using
Parameter Dependent Lyapunov Matrices (PDLM). However, the given conditions cannot be
numerically solved. In this section it is given an approach in which such conditions can be
recasted into LMI problems which can be solved efficiently with standard SDP solver, this will
be done using the referred to as grid and local variation bound framework.

For illustration purposes let us consider a DT-LPV system constrained to its autonomous
dynamics, as in Sect. 1.3.2, given by

x+ = A(ρ)x, (4.4)

The stability of the system given in Eq. (4.4) can be tested making use of Theorem 1.1.
From a numerical point of view there exist however two important issues with the LMI con-
dition given in Theorem 1.1. Firstly, it is an infinitely constrained LMI due to the infinite
possible values ρ can take within its bounds. Moreover, it involves both ρ(k) and ρ(k+1) and
only ρ(k) is known, while ρ(k + 1) generally unknown.

A common solution to the first issue is to consider a dense grid G ∈ Ω at fixed ρ values
within the varying parameter known bounds according to Assumption 1.1 and evaluate the
stability condition at each grid-point gp ∈ G [Wu+96]. Despite considering a frozen grid of
values for the varying parameter vector ρ, it still remains an issue the fact that ρ+ appearing
within the stability condition in Eq. (1.17) is unknown.

However, with known information on the bounded variation rates νi according to Assump-
tion 1.2, it is possible to build a polytope Vi ∈ Ω that bounds ρ+i for each element ρi of
the varying parameter vector ρ. The extremes of the polytope Vi bounding each individual
parameter future value ρ+i are given by the following relation:

ρ+i ∈ [ρi − νi, ρi + νi] (4.5)

Thus, for each varying parameter ρi the min/max values Vp,i that define the polytope Vp at
each grid point gp ∈ G are given by:

Vp,i := [gp,i − νi, gp,i + νi] , ∀i = 1, . . . ,m. (4.6)

All the 2m min/max combinations of Vp,i, ∀i = 1, . . . ,m, form then the vertices of the bounding
polytope Vp ∈ Ω, each vertex defined as gvp ∈ Vp, with v = 1, . . . , 2m.

To better visualize this approach Fig. 4.1 is introduced. In this figure it is represented
a gridded varying parameter space G ∈ R2. For simplicity we focus on a single grid point
gp ∈ G. Knowing the parameter variation limits on ρ, ν and ν respectively, then it is possible
to build a local bounding polytope Vp such that g+p ∈ Vp. Notice that the order of the vertices
gvp , v = 1, . . . , 4, of Vp is not representative of any strict ordering requirement.
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Figure 4.1: Vertices of the polytope Vp bounding g+p .

Applying this parameter grid and local variation bounds framework, one would first grid
the parameter space with a grid G ∈ Ω and at each grid point gp compute a polytope Vp that
bounds g+p , e.g. ρ(k + 1) when ρ(k) = gp. Then for all combinations of grid point gp and
polytope vertex gvp one can define the condition in Eq. (1.17) from Theorem 1.1. The following
proposition exemplifies this approach, using this proposition one can test the stability of the
autonomous DT-LPV in Eq. (4.4).

Proposition 4.1
Consider an autonomous DT-LPV system Eq. (4.4), with parameter space Ω ∈ Rm gridded by
a grid space G ∈ Ω and assuming bounded parameter rate of variation ν ∈ Rm such that for
all gp ∈ G there exists a bounding polytope Vp for g+p with 2m vertices gvp ∈ Vp. If there exist
constant matrices X0, . . . ,XN ∈ Rnx×nx , which form a symmetric positive-definite PDLM
X(ρ) with basis function θ(ρ) = (1, θ1, . . . , θN ), with θn ∈ R, n = 1, . . . , N , and a set of
matrices Gp ∈ Rnx×nx such that for all (gp, gvp) pairs the following condition holds

[
Gp

T +Gp −X(θvp) Gp
TA(θp)

⋆ X(θp)

]
> 0 , (4.7)

with

X(θp) = X0 +

N∑

n=1

θn,pXn, (4.8)

X(θvp) = X0 +

N∑

n=1

θvn,pXn, (4.9)

then, the autonomous DT-LPV system Eq. (4.4) is robustly stable.

Remark 4.1
As X(ρ+) enters linearly on LMI (1.17), there is only need to check X(ρ+) on the vertices of
Vp ∈ Ω to bound it around a fixed grid point gp [AA98]. Thus, it suffice to replace X(ρ+) by
Xv
p for all (gp, gvp) pairs as done in Eq. (4.7) .
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Notice that in Proposition 4.1 it is replaced A(ρ) from Eq. (4.4) by A(θp). This is done to
emphasize that according to Definition 1.4 the parameter dependency on ρ is assumed affine
on a basis function θ(ρ). Moreover, A(θp) is the frozen matrix value of evaluating A(θ(ρ)) at a
fixed grid point gp. Additionally, note that the structure of the PDLM X(ρ) copies the affine
dependency on the basis function θ(ρ) as the system matrices according to Definition 1.3.
Although this is not strictly required, this simple strategy has been proved effective [Wu+96];
[AA98].

4.3 Synthesis Conditions for Parameter-Dependent State-Feedback
Controllers with Fixed Structure

In this section the steps and conditions for the synthesis of PDSF controllers are given. In
order to achieve the synthesis for this type of controllers, it is required a two-steps sequential
LMI optimization problem procedure. The inspiration for this approach comes from the work
[AG95], in which a similar two-steps process was proposed for the computation of LFT LPV
H∞ controllers.

In a first step, we make use of the Projection Lemma over the Extended DT Bounded Real
Lemma (BRL), see Theorem 1.4 in Chapter 1, in order to obtain an LMI independent of the
controller K(ρ). At this first step, a feasible PDLM X(ρ) and slack variable G(ρ) are found
as the decision variables on the LMI optimization Problem. In Sect. 4.3.1 and Sect. 4.3.2
general conditions and numerical propositions are given respectively to solve this first step
LMI problem.

Using the numerical values for the PDLM X(ρ) and G(ρ), then the Extended DT BRL
gives an LMI optimization problem where the only decision variable are the constant gains of
the PDSF controller K(ρ), which has a fixed parameter dependent structure. In Sect. 4.3.3
we give numerical conditions to solve this problem and compute the gains for K(ρ).

4.3.1 H∞ State-Feedback Controller Existence Conditions for DT-LPV Sys-
tems

Let us consider a DT-LPV system of the form:

Ξ(ρ) :=

{
x+ = A(ρ)x+Bu(ρ)u+Bw(ρ)w

z = Cz(ρ)x+Du(ρ)u+Dw(ρ)w
(4.10)

where x ∈ Rnx is the state vector, u ∈ Rnu are the control inputs, w ∈ Rnw are the exogenous
inputs with bounded energy such that w ∈ L2 and z ∈ Rnz are the exogenous outputs. The
varying parameter vector ρ ∈ Rm is constrained according to Assumption 1.1 and Assump-
tion 1.2 and the system matrices have affine dependency on a basis function θ(ρ) according to
Definition 1.4.
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The existence of a PDSF controller according to Definition 4.1 for the control of the LPV
system Ξ(ρ) according to the control problem in Definition 4.2 can be proved if the following
theorem holds true.

Theorem 4.1
Consider a DT-LPV system Ξ(ρ) and scalar γ∞ > 0. If there exist constant matrices X0, . . . ,XN,
which form a symmetric positive-definite PDLM X(ρ) ∈ Rnx×nx with basis function θ(ρ) =

(1, θ1, . . . , θN ), with θn ∈ R, n = 1, . . . , N , and a slack matrix G(ρ) ∈ Rnx×nx such that the
following condition holds:

N T
M (ρ)




GT (ρ) +G(ρ)−X(ρ+) ⋆ ⋆ ⋆

A(ρ)G(ρ) X(ρ) ⋆ ⋆

Cz(ρ)G(ρ) 0 γ∞I ⋆

0 BT
w(ρ) DT

w(ρ) γ∞I


NM (ρ) > 0 (4.11)

with

X(ρ) = X0 +

N∑

n=1

θn(ρ)Xn, (4.12)

X(ρ+) = X0 +

N∑

n=1

θn(ρ
+)Xn, (4.13)

NM (ρ) = ker(
[
0 BT

u (ρ) DT
u (ρ) 0

]
), (4.14)

then, there exists a SF control gain K(ρ) such that the closed-loop form of Ξ(ρ) is robustly
stable and γ∞ is an upper bound on its induced L2-norm, with control law given by u = K(ρ)x.

Proof. Considering a SF control law u = K(ρ)x, the closed-loop dynamics of Ξ(ρ) are as
follows:

ΞCL(ρ) =

{
x+ = (A(ρ) +Bu(ρ)K(ρ))x+Bw(ρ)w

z = (Cz(ρ) +Du(ρ)K(ρ))x+Dw(ρ)w

=

{
x+ = A(ρ)x+ B(ρ)w
z = C(ρ)x+D(ρ)w

(4.15)

Substituting Eq. (4.15) into the sufficient condition in Eq. (1.30) for the L2-norm compu-
tation of LPV systems in Theorem 1.4 from Chapter 1, we obtain the following LMI condition

Ψ(ρ, ρ+) + He







0

Bu(ρ)

Du(ρ)

0


K(ρ)

[
G(ρ) 0 0 0

]

 > 0 (4.16)

where

Ψ(ρ, ρ+) =




GT (ρ) +G(ρ)−X(ρ+) ⋆ ⋆ ⋆

A(ρ)G(ρ) X(ρ) ⋆ ⋆

Cz(ρ)G(ρ) 0 γ∞I ⋆

0 BT
w(ρ) DT

w(ρ) γ∞I


 (4.17)
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Applying the Projection Lemma over condition (4.16) to eliminate the matrix block K(ρ),
then Eq. (4.11) is recovered as an equivalent condition to Eq. (4.16). As such, Eq. (4.11) is a
sufficient condition to demonstrate the existence of a State-Feedback control gain K(ρ) such
that ΞCL(ρ) is robustly stable with induced L2-norm less than γ∞.

Notice that when applying the projection lemma on (4.16), it imposes condition (4.11)
and additionally

N T
N (ρ)Ψ(ρ)NN (ρ) > 0, (4.18)

with
NN (ρ) = ker(

[
G(ρ) 0 0 0

]
). (4.19)

Now equation (4.19) can be rewritten as [GA94]

NN (ρ) =




G(ρ)−1 ⋆ ⋆ ⋆

0 I ⋆ ⋆

0 0 I ⋆

0 0 0 I


 ker(

[
I 0 0 0

]
)

:=Ĝ(ρ)−1N̂N (ρ)

(4.20)

Replacing (4.20) in condition (4.18) leads to:

N̂ T
N (ρ)








G(ρ)−T ⋆ ⋆ ⋆

0 I ⋆ ⋆

0 0 I ⋆

0 0 0 I


Ψ(ρ)




G(ρ)−1 ⋆ ⋆ ⋆

0 I ⋆ ⋆

0 0 I ⋆

0 0 0 I








N̂N (ρ) > 0 (4.21)

Using Eq. (4.17), this condition leads to the already known constraint X(ρ) > 0. As a
result, condition (4.18) can then be discarded to prove the equivalency between conditions in
Eq. (4.11) and Eq. (4.16) due to the Projection Lemma, for the case of the SF control problem.
This fact is similar to the one seen in Corollary 1 of [LW04], when applying the Projection
Lemma over the BRL for the SF case, only the condition involving the null space of [BT

u , D
T
u ]

is considered.

4.3.2 Reduction of Theorem 4.1 to a Finite-Dimensional LMI Problem

Theorem 4.1 provides general conditions to prove the existence of some controller K(ρ) for
the control of the DT LPV system Ξ(ρ). However, it is numerically very hard to implement,
since it is infinitely constrained as it must hold true ∀ρ ∈ Ω. Moreover, Eq. (4.11) requires
the knowledge of ρ+, which again, can take on infinite possible values and imposes an infinite
number of constraints. Nonetheless, Theorem 4.1 can be recasted into a finite number of
LMIs using the parameter grid and local variation bounds approach presented in Sect. 4.2.
The following proposition gives a numerically tractable implementation of Theorem 4.1 that
can be efficiently solved with available SDP solvers.
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Proposition 4.2
Consider a DT-LPV system Ξ(ρ), with parameter space Ω ∈ Rm gridded by a grid space G ∈ Ω

and assuming bounded parameter rate of variation ν ∈ Rm such that ∀gp ∈ G there exists a
bounding polytope Vp for g+p with 2m vertices gvp ∈ Vp, and scalar γ∞ > 0. If there exist
constant matrices X0, . . . ,XN ∈ Rnx×nx , which form a symmetric positive-definite PDLM
X(ρ) with basis function θ(ρ) = (1, θ1, . . . , θN ), with θn ∈ R, n = 1, . . . , N , and a set of
matrices Gp ∈ Rnx×nx such that for all (gp, gvp) pairs the following condition holds

N T
M (θp)




Gp
T +Gp −X(θvp) ⋆ ⋆ ⋆

A(θp)Gp X(θp) ⋆ ⋆

Cz(θp)Gp 0 γ∞I ⋆

0 BT
w(θp) DT

w(θp) γ∞I


NM (θp) > 0 (4.22)

with

X(θp) = X0 +

N∑

n=1

θn,pXn, (4.23)

X(θvp) = X0 +

N∑

n=1

θvn,pXn, (4.24)

NM (θp) = ker(
[
0 BT

u (θp) DT
u (θp) 0

]
), (4.25)

then, there exists a SF control gain K(ρ) such that the closed-loop form of Ξ(ρ) is robustly
stable and where γ∞ is an upper bound on its induced L2-norm.

Proof. Proposition 4.2 is a direct application of Theorem 4.1 using the parameter grid and
local variation bounds approach detailed in Sect. 4.2. The varying parameter vector ρ is
gridded at fixed points gp alongside the varying parameter space Ω. At each fix grid point gp
the LPV system Ξ(ρ), with affine dependency on some scheduling signal θ(ρ), is then frozen
as an LTI representation Ξ(θp). Meanwhile, using the maximum rates of parameter variation
ν, ρ+ is bounded at each fixed grid point gp by a polytope Vp, each vertex of this polytope
around gp defined as gvp . This concludes the proof.

The following remarks give some hints on the implementation of Proposition 4.2.

Remark 4.2
According to Definition 4.2, the control problem objective is the minimization of the induced
L2-norm upper bound γ∞ of the closed-loop form of Ξ(ρ). However, Theorem 4.1 and Proposi-
tion 4.2 are given with an arbitrary upper bound γ∞ for the purpose of generalization. Nonethe-
less, once Proposition 4.2 has been implemented, the LMI optimization problem can be solved
as the minimization of the induced L2-norm upper bound γ∗∞ as follows:

γ∗∞ = min
X0,...,XN,Gp,γ∞

γ∞ s.t. (4.22) ∀(gp, gvp) (4.26)

Due to numerical issues, once an optimal upper bound γ∗∞ is found according to Eq. (4.26), it
is convenient to recompute the values of X0, . . . , XN , Gp employing Proposition 4.2 with fixed
γ∞ = γ∗∞(1 + h), where h is a percentage [PV08].
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Remark 4.3
It is hard to determine exactly how dense needs to be the grid space G ∈ Ω. An ad-hoc
solution is to solve the design LMI problem from Proposition 4.2, then check if stability and
performances holds in a much denser grid [Bec96].

Remark 4.4
Note that in Theorem 4.1 the slack matrix G(ρ) is assumed to be parameter dependent but
its structure is not given. One option is to assume an affine dependency on the scheduling
function

G(ρ) = G0 +
N∑

n=1

θn(ρ)Gn, (4.27)

However, given that G(ρ) does not play an important role on the proof of system stability
as X(ρ) does, forcing an affine parametric dependency could lead to a conservative solution.
To avoid this conservatism, the slack matrix G(ρ) in Proposition 4.2 is expressed as a set of
matrices. This solution assumes a parameter dependency such that

G(ρ) =
P∑

p=1

ζp(ρ)Gp (4.28)

with

ζp(ρ) =

{
1, if ρ = gp

0, otherwise
(4.29)

where P is the total number of grid-points in G. This parameter dependency means that for
each grid point gp there exists a unique constant slack matrix Gp.

4.3.3 Computation of the PDSF Controller K(ρ)

If a valid solution to the LMI problem from Proposition 4.2 exists, then we obtain numerical
candidate values for the PDLM X(ρ) and the slack variable G(ρ). Note that with an existing
candidate solution for X(ρ) and G(ρ), applying the Extended DT BRL from Theorem 1.4
in Chapter 1 over ΞCL(ρ) in (4.15), the BRL now results in an LMI with K(ρ) as the only
decision variable.

Let us assume a PDSF controller K(ρ), according to Definition 4.1, with affine dependency
on the scheduling basis functions θn such that

K(ρ) = K0 +

N∑

n=1

θn(ρ)Kn (4.30)

The following proposition provides an LMI optimization problem that allows to compute
the constant gains K0, . . . ,KN for the PDSF controller K(ρ).
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Proposition 4.3
Consider a DT-LPV system Ξ(ρ), with parameter space Ω ∈ Rm gridded by a grid space G ∈ Ω

and assuming bounded parameter rate of variation ν ∈ Rm such that ∀gp ∈ G there exists a
bounding polytope Vp for g+p with 2m vertices gvp ∈ Vp, and scalar γ∞. Moreover, consider a
given symmetric positive-definite PDLM X(ρ) ∈ Rnx×nx and a set of matrices Gp ∈ Rnx×nx ,
both computed as the solutions to Proposition 4.2. If there exist constant matrices K0, . . . ,KN,
which form a PDSF controller K(ρ) ∈ Rnu×nx with basis function θ(ρ) = (1, θ1, . . . , θN ), with
θn ∈ R, n = 1, . . . , N , such that for all (gp, gvp) pairs the following condition holds

Ψ(θp, θ
v
p) + He







0

Bu(θp)

Du(θp)

0


K(θp)

[
Gp 0 0 0

]

 > 0 (4.31)

where

K(θp) = K0 +
N∑

n=1

θn,pKn, (4.32)

Ψ(θp, θ
v
p) =




GTp +Gp −X(θvp) ⋆ ⋆ ⋆

A(θp)Gp X(θp) ⋆ ⋆

Cz(θp)Gp 0 γ∞I ⋆

0 BT
w(θp) DT

w(θp) γ∞I


 (4.33)

then the closed-loop form of Ξ(ρ) is exponentially stable and γ∞ is an upper bound on its
induced L2-norm, with control law given by u = K(ρ)x.

Proof. Proposition 4.3 is a direct application of Theorem 1.4, with gridding relaxations as
seen in Sect. 4.2 and with the SF control gains of K(ρ) as the only unknown variables on the
LMI problem.

Consider the closed-loop dynamics ΞCL(ρ) as in (4.15). Applying the Extended DT BRL
over ΞCL(ρ) condition (4.16) is recovered. With a given symmetric positive-definite matrix
X(ρ) and given slack variable G(ρ), assume that there exists a SF control gain K(ρ) such that
(4.16) holds true according to Theorem 1.4. Applying the parameter grid and local variation
bounds approach for relaxations on ρ and ρ+ in (4.16), results for all (gp, gvp) pairs in condition
(4.31). This concludes the proof.

Remark 4.5
It should be noted that there is no strict requirement for X(ρ) and K(ρ) to share the same
parameter dependent structure, although this represents the most straightforward solution. One
possible structure for the SF controller could simply be K = K0. This represents computing
a constant robust SF controller gain K0 for the whole parameter space Ω which is obviously
very conservative. Nonetheless, this highlights that the PDSF controller (4.30) is in fact a
parameter dependent robust controller as the controller gains K0, . . . ,KN are fixed ∀ρ ∈ Ω.
For this reason the choice of the parametric dependent basis function θ(ρ) in Eq. (4.30) is a very
important degree of freedom in the synthesis process to achieve non conservatives solutions.
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4.4 Lateral Control of the Scaled Automated Vehicle (SAV)
Using a PDSF Controller

So far the previous sections of this chapter have focused on LMI conditions for the general
synthesis problem of PDSF controllers. In what follows it is explained the control problem
in the context of the lateral control of the SAV platform for autonomous steering in Path
Tracking applications.

4.4.1 Reference Generation for Path Tracking

The objective of the control task is to achieve robust path tracking of a given trajectory. The
trajectory that has been considered for this task is the circuit shown in Fig. 4.2. The X and Y
coordinates that make the circuit have been sampled at 0.01m intervals and all the coordinates
data points stored as vectors on the Remote PC of the SAV Platform, see Chapter 2.
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Figure 4.2: Reference Trajectory.

In order to generate the yaw rate reference signal ψ̇ref that will drive the low-level PDSF
controller to track the given trajectory, the Pure Pursuit Algorithm is used. This reference
generation algorithm has been selected for its simplicity of implementation, good performance
and simple tuning with only one parameter to modify [Cou92]; [Pad+16]. A brief description
of the algorithm is given in the following.

Consider a given configuration (x, y, ψ)T of the vehicle, where x and y are the coordinates
of the vehicle on the track and ψ is the heading angle in the inertial frame. Note that all of
these variables are available on the SAV platform provided by the Vicon Tracker system, see
Chapter 2.

Given a look-ahead distance
L = tpvx, (4.34)
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where tp is the look-ahead time and vx the vehicle longitudinal velocity, find a point (xref , yref )
on the reference trajectory such that ∥(xref , yref )− (x, y)∥ = L. Compute the angle α accord-
ing to

α = arctan

(
yref − y

xref − x

)
− ψ (4.35)

Then the reference yaw rate signal to achieve path tracking is given by

ψ̇ref =
2vx sinα

L
(4.36)

Note that the only tuning parameter on the algorithm is the look-ahead time tp as seen in
(4.34). For this work it has been considered a look-ahead time value of tp = 1s.

4.4.2 PDSF Control Problem Formulation for Path Tracking on the SAV

In the PDSF controller design process the first step is to grid the varying parameter space, in
this case for the longitudinal velocity vx. For control design purpose it is assumed the following
bounds vx ∈ [0.5, 2]m/s for the parameter range and |ν| ≤ 0.02 = amaxTs for the maximum
rate of parameter variation between consecutive sampling instances, where amax = 1m/s2 is
the assumed maximum vehicle acceleration and Ts = 0.02s is the sampling time at which the
controller will be implemented. For the gridding space G, the varying parameter vx has been
uniformly gridded at a constant interval of 0.01m/s, this represents 151 grid-points on the
parameter range from 0.5m/s to 2m/s.

From the chosen grid space G, at each frozen speed gridpoint vx,p we define the reference
tracking control problem on the H∞ framework by building a generalized plant P (vx,p) that
includes the weighted performances for tracking and actuator behaviour [ZD98]. The chosen
scheme for the generalized plant at each grid-point vx,p is given in Fig. 4.3.

Figure 4.3: Generalized Plant Scheme at grid-point vx,p.

The exogenous inputs of the generalized plant P (vx) are w = (ψ̇ref , d, n)
T . ψ̇ref is the

yaw rate reference signal to be followed, d represents an input disturbance and n represents
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sensor noises in the measurements from the signal ψ̇. Note that the input disturbance d at
each grid-point is multiplied by the squared value of vx, e.g. v2x,p. This term is introduced to
account for observed disturbance effects on the SAV due to interactions between the lateral
dynamics with the longitudinal behaviour, to which the vehicle is more sensitive at higher
speeds.

The vector of control performances is z = (ze, zu)
T , with ze being the tracking error

performance and zu the actuator performance signal respectively. The used weight We to set
the tracking specification is the following:

We = ZT
(
s/Ms + fb
s+ fbϵ

)
(4.37)

Considering Ms = 2, fb = 2π0.3 rad/s and ϵ = 0.01. Meanwhile, the weight Wu used to
specify the constraints on the control signal δ is:

Wu = ZT
(
s+ fbc/Mu

ϵus+ fbc

)
(4.38)

Considering Mu = 0.4, fbc = 2π10 rad/s and ϵu = 0.001. For both weights We (4.37) and Wu

(4.38) the discretization operator Z has been executed using the Tustin transform.

The expression BM(vx,p) defines the SAV bicycle model at a frozen grid point vx,p, taking
in this chapter the bicycle model from Definition 2.3. Then BMd(vx,p), as seen in Fig. 4.3, is
computed at each of the grid-point vx,p as BMd(vx,p) = ZZOH(BM(vx,p)), where in this case
the Z operator is executed using a zero-order hold discretization.

Putting all these elements together the generalized plant can be computed for a for a fixed
speed grid point vx,p according to the scheme in Fig. 4.3 with the frozen LTI representation
of P (vx,p) given by

P (vx,p) :=

{
x+ = A(vx,p)x+Bu(vx,p)u+Bw(vx,p)w

z = Cz(vx,p)x+Du(vx,p)u+Dw(vx,p)w
(4.39)

4.4.3 PDSF Controller Synthesis

Having the generalized plant defined at each the grid-point vx,p by Eq. (4.39), then, the
control problem is to find a PDSF controller K(vx) such that the control law δ = K(vx)x

minimizes the induced L2-norm γ∞ over the generalized plant P (vx) and controller K(vx)

interconnection, as shown in Fig. 4.4, according to Definition 4.2. Notice that in Fig. 4.4
x = (vy, ψ̇, xe, xu)

T are the states of the generalized plant P (vx), with vy and ψ̇ the states of
the Bicycle Model according to Definition 2.3 and xe and xu are the states of the weights We

and Wu respectively.

The existence of such a PDSF controller K(vx) can then be tested by solving the LMI
problem presented in Proposition 4.2 as a minimization over the scalar γ∞, according to
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Figure 4.4: Generalized Plant and controller interconnection.

Remark 4.2. The parameter dependent structure that has been assigned for the PDLM X(ρ)

for this LMI problem is as follows:

X(vx) = X0 +
1

vx
X1 + vxX2 + v2xX3 (4.40)

This structure is chosen as it mimics all the ways in which the varying parameter vx appear
in both the generalized plant P (vx) and correspondingly the Bicycle Model BM(vx). On the
other hand, the parameter dependent slack variable G(vx) has been chosen such that for each
grid-point vx,p there exists a unique slack variable Gp value, as explained in Remark 4.4.

Using the parser Yalmip [Löf04] and the SDPT3 solver [TTT04], Proposition 4.2 can be
efficiently solved. It is proved to be feasible with an optimal induced L2-norm found to be
γ∞ = 10.0184.

From the solution to Proposition 4.2 we now have numerical values for the PDLM X(vx)

and the slack matrix G(vx). Using these values, we can solve Proposition 4.3 in order to
compute the gains of a PDSF controller as seen in Definition 4.1. For this, we select a PDSF
controller with the following fixed structure

K(vx) = K0 +
1

vx
K1 + vxK2 + v2xK3. (4.41)

Employing this choice of structure for the PDSF controller K(vx), Proposition 4.3 can be
solved with K0, . . . ,K3 as the only decision variables to be found.

Note that despite having a grid space G consisting of 151 grid-points, the controller gains
in Eq. (4.41) reduces to the four vectors K0, . . . ,K3, with each Kn ∈ R4. In comparison,
the usual grid-based LPV approach would require an individual controller gain for each grid-
point. Thus the PDSF controller solution allows to greatly save the memory space that will
be required for real-time controller implementation. Moreover, the fact that the number of
controller gains is chosen by the control designer through the basis function that forms K(ρ)

and not by the number of grid-points, allows one to grid the varying parameter space with a
density that simply would not be feasible otherwise for controller synthesis. At the same time,
the real-time implementation of the controller K(vx) is performed by directly implementing
Eq. 4.41 in the software, without requiring any interpolation of point-wise controllers.
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4.4.4 Frequency Analysis of the PDSF Control Design

A first validation of the controller design is carried out on the frequency domain. We consider
the closed-loop interconnection between the generalized plant P (vx) and the PDSF controller
K(vx), as illustrated in Fig. 4.4, evaluated at some frozen values of the varying parame-
ter vx,p = (0.5, 0.75, 1, 1.25, 1.5, 1.75, 2)m/s. Note that this is just small sample of the 151
grid-points used for the synthesis of the PDSF controller, however it is enough to illustrate
the frequency domain response of the closed-loop alongside the whole range of the varying
parameter.

In order to validate the yaw rate tracking error ψ̇e = ψ̇ref − ψ̇ response to changes in the
yaw rate reference ψ̇ref , we compare the sensitivity transfer function S = ψ̇e

ψ̇ref
with respect the

employed tracking error template 1/We, with weight We given in Eq. (4.37). Meanwhile, the
validation of the constrains of control signal δ response to changes in the yaw rate reference
signal ψ̇ref is done by comparing the controller sensitivity transfer function KS = δ

ψ̇ref
with

respect the control action template 1/Wu, with weight Wu given by Eq. (4.38). From the
frequency response results shown in Fig. 4.5 it can be seen that both design requirements for
the controller K(vx) are satisfactorily fulfilled for the whole range of values that was consider
of the varying parameter vx in the PDSF design.
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Figure 4.5: Sensitivity Transfer Function S = ψ̇e

ψ̇ref
versus tracking performance template W−1

e

(left) and Controller Sensitivity Transfer Function KS = δ
ψ̇ref

versus actuator performance

template W−1
u (right) at frozen values of the varying parameter vx.
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4.5 Experimental Results

The real-time implementation of the PDSF controller is realized in the remote ROS PC from
the SAV test platform. As seen in Chapter 2, the system states, e.g. vy and ψ̇, as well as
the value of the varying parameter vx are available online from the data measured by the
Vicon Tracker. Then, with the gains of the PDSF controller K(vx) designed and computed
as described in Sect. 4.4.2 and in Sect. 4.4.3, the control law δ = K(vx)x for the SAV steering
can be easily implemented on the ROS2 environment of the SAV platform, with K(vx) given
by (4.41).

The test scenario to demonstrate the path tracking performance of the SAV with PDSF
steering controller consists in driving the SAV autonomously on the circuit from Fig. 4.2 at
varying speeds. The speed profile used during the test can be seen in Fig. 4.6. Recall that
the vx speed profile, shown in Fig. 4.6, also acts as the varying parameter for the controller
K(vx). Figure 4.7 and Fig. 4.8 present the tracking performance for the reference yaw rate
and the control signal respectively.

Figure 4.7 shows in black the yaw rate reference ψ̇ref generated by the Pure Pursuit
algorithm, see Sect. 4.4.1, as the SAV moves through the track, in blue it is given the measured
yaw rate by the Vicon Tracker system for the SAV during the test. In Fig. 4.8 the commanded
steering angle δ computed by the PDSF controller K(vx) is presented.

In order to better visualize the path tracking performance of SAV when using the PDSF
controller, Fig. 4.9 presents information regarding the followed trajectory by the SAV during
the test on the X and Y coordinates of the track. On the left of the figure it is represented
the reference circuit in black and the trajectory followed by the SAV during the complete
test. Note that in order to better identify the multiple laps the SAV has done around the
circuit, the followed trajectory is color mapped with the instantaneous longitudinal velocity,
corresponding with the information given in Fig. 4.6. On the right side of the figure it is
given in black the reference trajectory and with blue triangles the orientation and position
of the SAV, with the orientation and position taken from a time window of the test from
t ∈ [40, 50]sec. Note from Fig. 4.6 that this time window coincides with a lap made by the
SAV at high speeds.

From the results of the test we can conclude that with the PDSF controller K(vx) (4.41)
the SAV manages to achieve very satisfactory path tracking performances. From Fig. 4.7 it
can be seen that the controller manages to track the given reference signal while providing a
control signal that is smooth for all the range of speeds seen during the test, as demonstrated
by the steering command in Fig. 4.8. In can be noticed in Fig. 4.7 the effect of the pure input
delay that was ignored during synthesis of the controller. It is well known that unaccounted
system delays may lead the closed-loop to produce unstable behaviours, despite that, the
PDSF controller K(vx) is able to maintain the vehicle stable and with acceptable reference
tracking performance, proving the controller stability in face of critical unmodeled dynamics.

It should be noted however that at higher speeds, for t ∈ [40, 55]sec, it can be seen in
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Figure 4.6: Longitudinal Velocity of the SAV during the test.
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Figure 4.7: Yaw rate reference (black) and SAV yaw rate (blue) during the test.

Fig. 4.7 that some oscillations appear in the yaw rate signal ψ̇ after fast changes on the refer-
ence. This is a known issue on the platform, caused by the interaction with the longitudinal
dynamics of the vehicle due to the behaviour of the dual BLDC motors, which can cause a
disturbance torque on the lateral dynamics if their speeds diverge from each other. To atten-
uate this disturbance effect, higher at larger speeds, it was introduced during the controller
design the term v2x,p on the input disturbance, see Fig. 4.3.

The tracking performance can specially be verified in Fig. 4.9 (left). It can be seen how
the trajectory of the SAV during multiple laps overlap with each other almost perfectly,
even though there exist an important variation in speed during the complete test. This
demonstrates that while being very simple to implement, the PDSF controller allows for
a consistent performance throughout the considered parameter space for vx. Moreover on
Fig. 4.9 (right), during the evolution of the SAV position and orientation there is no noticeable
evidence of sliding during trajectory even at high speed, meaning that the PDSF controller
can cope with demanding situations while keeping the stability of the system.
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Figure 4.8: Steering command computed by the PDSF controller.
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Figure 4.9: Reference trajectory and actual vehicle trajectory color coded with the instanta-
neous longitudinal velocity (left). Reference Trajectory and position and orientation of the
SAV during a lap done at high speed at t ∈ [40, 50]sec(right).

4.6 Conclusions

In this chapter it has been introduced an approach to reduce the infinitely constrained LMI
conditions from Chapter 1 into finite LMI problems using a Grid Based DT-LPV approach.
In particular it was proposed conditions for the computation of PDSF controllers. The ad-
vantages of the PDSF control approach are the following. First of all, the resulting controller
is straightforward to implement as it is self-scheduled based on the imposed parametric basis
function (no online interpolation is required) and lightweight on the required memory space.
On the other hand, the Parametric LPV synthesis approach allows to use very dense grids
on the parameter space without increasing the number of controller gains to be implemented,
something which is desirable when using grid-based LPV approaches in order to obtain better
stability and performances guarantees.

The performance of this control strategy has been tested on the SAV platform for the task
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of trajectory tracking proving good path following performances. This has been achieved with
a PDSF controller that only required four controller gains to be implemented, despite using
151 grid points for the synthesis step. The found controller provided a satisfactory tracking of
the desired reference signal for the whole range of the parameter space of varying parameter,
this was achieved in spite of unaccounted model uncertainties as the presence of actuator input
delays, thus proving the robustness of the proposed approach.



Chapter 5

Lateral Control of Autonomous
Vehicles Using Anti-Windup Effects

by Means of LPV Scheduling

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.1 Anti-Windup Strategy with LPV Methods . . . . . . . . . . . . . . . . . . 94
5.1.2 Chapter Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Synthesis Conditions for Grid Based DT-LPV SF Controllers . . . . 95
5.2.1 Control Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.2 LPV/H∞ State-Feedback Controller Conditions for DT-LPV Systems . . 96
5.2.3 Reduction of Theorem 5.1 to a Finite-Dimensional LMI Problem . . . . . 97

5.3 LPV/H∞ Lateral Control for the SAV with Anti Windup Effects . . 99
5.3.1 Control Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.2 DT-LPV Grid Based Controller Synthesis . . . . . . . . . . . . . . . . . . 101
5.3.3 Frequency Analysis of the PDSF Control Design . . . . . . . . . . . . . . 102
5.3.4 Real-Time Implementation of the Anti-Windup Grid-Based DT-LPV SF

Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.1 High-Speed Test Without LPV Scheduling Anti-Windup Mechanism . . . 106
5.4.2 High-Speed Test With LPV Scheduling Anti-Windup Mechanism . . . . . 109

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Introduction

In the previous chapter it was seen the design of a PDSF controller to achieve autonomous
steering of the SAV car for Path Tracking applications. Although its performance was found
to be satisfactory in experimentally validation, the experiment was performed in nominal con-
ditions and in a trajectory with gentle curvature. In this chapter we are interested in studying
the control system performance deterioration when driving autonomous vehicles at the limits
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of its capabilities. In particular, we are interested in tackling the saturation nonlinearity issues
that occurs when the controller demands cannot be met by the real actuator. This leads to
the well known problem in control of controller Windup.

The objective of this chapter is to enhance the existing lateral control system introduced
in Chapter 4 by incorporating a design-related varying parameter. This modification aims to
address the issue of controller windup that can occur in the presence of actuator saturation.
The goal is to introduce a means of adjusting the controller gain in the LPV/H∞ design by
utilizing this varying parameter. In real-time, this parameter can be dynamically adjusted
through LPV scheduling to emulate the effect of an Anti-Windup mechanism, mitigating the
impact of actuator saturation on the controller performance.

The contents of this chapter have been recently developed and have not yet been published
at the time of writing this thesis manuscript.

5.1.1 Anti-Windup Strategy with LPV Methods

Here it is given a quick overview of how design-related varying parameters are used in this
chapter to achieve a LPV controller design with Anti-Windup behaviour in the presence of ac-
tuator saturation. The strategy here presented is inspired by those in [WGP00] and [PV+08].
As can be seen in the scheme in Fig. 5.1, design-related varying parameters are incorporated
into the performance weights of the H∞ Generalized Plant problem. Consequently, changes
in these parameter dependent weighting functions may lead to drastic changes in the resulting
H∞ controller.

Considering the problem of emulating an Anti-Windup mechanism, as in [PV+08], the
parameter dependency will be used to penalize the control performance weightWu(ρ) whenever
the control action is outside of its allowable range. However, as indicated in [WGP00], this
requires to use a parameter dependent tracking performance weightWe(ρ) to relax the tracking
criterion when the control action is being penalized.

Figure 5.1: Design-Related Varying Parameter ρ added in the Generalized Plant.

Once the LPV controller has been synthesized offline, considering frozen values of the
design-related varying parameter ρ, then, a scheduling function is implemented for real-time
operation. This function is responsible for dynamically adjusting the design-related parameter



5.2. Synthesis Conditions for Grid Based DT-LPV SF Controllers 95

to limit the maximum controller output when actuator saturation is present. Thus preventing
the build up of controller Windup. The key concept here is that the controller output limitation
is straightforwardly accomplished through the dynamic scheduling of the LPV controller using
the design-related varying parameter ρ.

5.1.2 Chapter Structure

The structure of the rest of the chapter is the following. In Sec. 5.2 it is introduced new LMI
conditions for the computation of Grid-Based DT-LPV controllers. Using this new condition,
Sec. 5.3 describes the LPV/H∞ synthesis design for an autonomous path tracking controller
with Anti-Windup effects applied to the SAV platform. Then, in Sec. 5.4 it is compared the
path tracking performance of the LPV controller with Anti-Windup effects with a similarly
designed controller without Anti-Windup correction.

5.2 Synthesis Conditions for Grid Based DT-LPV SF Controllers

This section is dedicated to propose a gain-scheduled LPV controller synthesis for Grid Based
DT-LPV systems. In contrast with the Parameter Dependent State-Feedback (PDSF) con-
troller approach introduced in Chapter 4, the grid-based gain-scheduled LPV approach results
in dedicated point-wise controllers at each grid-point. To the best of the author knowledge,
Grid Based DT-LPV synthesis has not been explored in the literature, most works dealing with
DT-LPV systems focus on Polytopic approaches [DC+10] and some in LFT LPV methods
[Chr+07].

The following subsections provide general conditions for synthesis of gain-scheduled Grid
Based DT-LPV SF controllers as well as a proposition for the practical implementation of the
LMI optimization problem.

5.2.1 Control Problem Definition

Let us consider a DT-LPV system of the form:

Ξ(ρ) :=

{
x+ = A(ρ)x+Bu(ρ)u+Bw(ρ)w

z = Cz(ρ)x+Du(ρ)u+Dw(ρ)w
(5.1)

where x ∈ Rnx is the state vector, u ∈ Rnu are the control inputs, w ∈ Rnw are the exogenous
inputs with bounded energy such that w ∈ L2 and z ∈ Rnz are the exogenous outputs. The
varying parameter vector ρ ∈ Rm is constrained according to Assumption 1.1 and Assump-
tion 1.2 and the system matrices have affine dependency on a basis function θ(ρ) according to
Definition 1.4.

Considering such systems, the control problem introduced in this chapter is to find a
Gain-Scheduled SF Grid-Based DT-LPV controller, which is defined as follows:
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Definition 5.1 (Gain-Scheduled State-Feedback Grid-Based DT-LPV Controller)
Consider a DT-LPV system Ξ(ρ) with parameter space Ω ∈ Rm gridded by a grid space G ∈ Ω.
A Grid-Based DT-LPV SF controller for the gridded DT-LPV system Ξ(ρ) is of the following
form:

K(ρ) =

P∑

p=1

ζp(ρ)Kp (5.2)

with
P∑

p=1

ζp(ρ) = 1 (5.3)

where Kp is a constant matrix, P is the total number of grid-points considered in the grid
space G, ζ(ρ) can be any interpolation rule over G and ζp(ρ) gives a magnitude of the distance
between ρ(k) ∈ Ω and the grid-point gp ∈ G according to the interpolation rule ζ(ρ).

Considering such a controller, the control problem is then defined in the LPV/H∞ frame-
work such that the synthesis objective is posed as the minimization of the induced L2-norm
of a closed-loop LPV system. Such control problem is given in the following definition.

Definition 5.2 (Grid-Based DT-LPV SF Induced L2-norm Control Problem)
Given an LPV system Ξ(ρ) and considering an State-Feedback control law u = K(ρ)x, the
resulting LPV closed-loop system is:

ΞCL(ρ) :=

{
x+ = (A(ρ) +Bu(ρ)K(ρ))x+Bw(ρ)w

z = (Cz(ρ) +Du(ρ)K(ρ))x+Dw(ρ)w
(5.4)

Considering the induced L2-norm of a system, given in Definition 1.5, the control problem is
then to find a Grid-Based DT-LPV SF controller K(ρ) according to Definition 5.1 that renders
the LPV closed-loop system ΞCL robustly stable and minimizes its L2-norm as:

min
K(ρ),γ∞

γ∞ s.t.
∥z∥2
∥w∥2

≤ γ∞ (5.5)

5.2.2 LPV/H∞ State-Feedback Controller Conditions for DT-LPV Systems

The following theorem provides a general condition to solve the Grid-Based SF control problem
given in Definition 5.2 for DT-LPV systems.

Theorem 5.1
Consider a DT-LPV system Ξ(ρ) and scalar γ∞ > 0. If there exist constant matrices X0, . . . ,XN,
which form a symmetric positive-definite PDLM X(ρ) ∈ Rnx×nx with basis function θ(ρ) =

(1, θ1, . . . , θN ), with θn ∈ R, n = 1, . . . , N , and slack matrices G(ρ) ∈ Rnx×nx and Y(ρ) ∈
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Rnu×nxsuch that the following condition holds:



GT (ρ) +G(ρ)−X(ρ+) ⋆ ⋆ ⋆

A(ρ)G(ρ) +Bu(ρ)Y(ρ) X(ρ) ⋆ ⋆

Cz(ρ)G(ρ) +Du(ρ)Y(ρ) 0 γ∞I ⋆

0 BT
w(ρ) DT

w(ρ) γ∞I


 > 0 (5.6)

with

X(ρ) = X0 +
N∑

n=1

θn(ρ)Xn, (5.7)

X(ρ+) = X0 +
N∑

n=1

θn(ρ
+)Xn, (5.8)

then, the control law u = K(ρ)x makes the closed-loop form of Ξ(ρ) robustly stable with γ∞ an
upper bound on its induced L2-norm. The controller gain computed as K(ρ) = Y (ρ)G−1(ρ).

Proof. Consider a given positive scalar γ∞ and given SF control law u = K(ρ)x, the closed-
loop dynamics of Ξ(ρ) are as follows:

ΞCL(ρ) =

{
x+ = (A(ρ) +Bu(ρ)K(ρ))x+Bw(ρ)w

z = (Cz(ρ) +Du(ρ)K(ρ))x+Dw(ρ)w

=

{
x+ = A(ρ)x+ B(ρ)w
z = C(ρ)x+D(ρ)w

(5.9)

ΞCL(ρ) is exponentially stable with induced L2-norm less than γ∞, if, according to Theo-
rem 1.4 in Chapter 1 the following sufficient condition is true:




GT (ρ) +G(ρ)−X(ρ+) ⋆ ⋆ ⋆

A(ρ)G(ρ) +Bu(ρ)K(ρ)G(ρ) X(ρ) ⋆ ⋆

Cz(ρ)G(ρ) +Du(ρ)K(ρ)G(ρ) 0 γ∞I ⋆

0 BT
w(ρ) DT

w(ρ) γ∞I


 > 0 (5.10)

Note that this condition is the same condition as Eq. (1.30), from Theorem 1.4, when A,
B, C and D are given as in Eq. (5.9). Applying the change of variable Y (ρ) = K(ρ)G(ρ) in
Eq. (5.10) recovers the LMI condition in Eq. (5.6). This proves that Eq. (5.6) is a sufficient
condition for the computation of SF control gain K(ρ) such that ΞCL(ρ) is robustly stable
with induced L2-norm less than γ∞.

5.2.3 Reduction of Theorem 5.1 to a Finite-Dimensional LMI Problem

Theorem 5.1 provides general conditions to compute an LPV SF controller for the DT-LPV
system Ξ(ρ) (5.1). However, it is numerically very hard to implement, since it is infinitely
constrained as it must hold true ∀ρ ∈ Ω. Moreover, Eq. (5.6) requires the knowledge of ρ+,
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which again, can take on infinite possible values and imposes an infinite number of constraints.
Nonetheless, Theorem 5.1 can be recasted to a finite number of LMI using the parameter
grid and local variation bounds approach explored in Sect. 4.2 of Chapter 4. The following
proposition gives a numerically tractable implementation of Theorem 5.1 to compute the
controller gains of a Grid Based DT-LPV SF controller.

Proposition 5.1
Consider a DT-LPV system Ξ(ρ), with parameter space Ω ∈ Rm gridded by a grid space G ∈ Ω

and assuming bounded parameter rate of variation ν ∈ Rm such that ∀gp ∈ G there exists a
bounding polytope Vp for g+p with 2m vertices gvp ∈ Vp, and scalar γ∞ > 0. If there exist constant
matrices X0, . . . ,XN, which form a symmetric positive-definite PDLM X(ρ) ∈ Rnx×nx with
basis function θ(ρ) = (1, θ1, . . . , θN ), with θn ∈ R, n = 1, . . . , N , and a set of matrices
Gp ∈ Rnx×nx and Yp ∈ Rnu×nx such that for all (gp, gvp) pairs the following condition holds




Gp
T +Gp −X(θvp) ⋆ ⋆ ⋆

A(θp)Gp +Bu(θp)Yp X(θp) ⋆ ⋆

Cz(θp)Gp +Du(θp)Yp 0 γ∞I ⋆

0 BT
w(θp) DT

w(θp) γ∞I


 > 0 (5.11)

with

X(θp) = X0 +
N∑

n=1

θn,pXn, (5.12)

X(θvp) = X0 +

N∑

n=1

θvn,pXn, (5.13)

then, the control law u = K(ρ)x makes the closed-loop form of Ξ(ρ) robustly stable with γ∞
an upper bound on its induced L2-norm. The controller gain at each grid-point computed as
Kp = YpG

−1
p .

Proof. Proposition 5.1 is a direct application of Theorem 5.1 using the parameter grid and
local variation bounds approach detailed in Sect. 4.2 from Chapter 4. The varying parameter
vector ρ is gridded at fixed points gp alongside the varying parameter space Ω. At each fix grid
point gp the LPV system Ξ(ρ), with affine dependency on some scheduling signal θ(ρ), is then
frozen as an LTI representation Ξ(θp). Meanwhile, using the maximum rates of parameter
variation ν, ρ+ is bounded at each fixed grid point gp by a polytope Vp, each vertex of this
polytope around gp defined as gvp . This concludes the proof.

Note that Remark 4.2, made in Chapter 4, with respect to the minimization of the upper
bound γ∞ on the induced L2 norm of the closed-loop form of Ξ(ρ) also applies for Proposi-
tion 5.1. Equally, Remark 4.4 made with respect to the slack variable G(ρ) also applies to the
slack variable Y (ρ) in Proposition 5.1. As done for G(ρ), at each grid-point gp it is proposed
to consider a unique matrix Yp. With this, the individual gain Kp of the LPV SF controller
K(ρ) is computed with the least amount of conservatism.
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5.3 LPV/H∞ Lateral Control for the SAV with Anti Windup
Effects

In this section, the design of the Grid Based DT-LPV controller with Anti-Windup scheduling
for the autonomous path tracking control of the SAV platform is presented. The design is
defined within the LPV/H∞ design framework, with the longitudinal speed vx and an Anti-
Windup activation variable ρ used as varying parameters to schedule the controller gains. The
controller gains are computed offline employing Proposition 5.1 from Sec. 5.2.

5.3.1 Control Problem Formulation

The control problem formulation consists in a yaw rate tracking problem for the LPV lateral
dynamics of the SAV for a range of longitudinal speeds vx. This is similar as in Chapter 4.
The novelty in this chapter consists in adding a new varying parameter ρ. The scheduling
of this design-related parameter is not defined in any way by the dynamics of the system.
Instead, its online value is a free decision of the control designer. See Sec. II for an overview
of works that propose a similar approach.

With this new varying parameter, the LPV control design for lateral control with Anti
Windup effects have two varying parameters: the longitudinal effect vx and the Anti-Windup
activation parameter ρ. The longitudinal speed vx is assumed bounded by vx ∈ [0.5, 2]m/s
for the parameter range and |νvx | ≤ 0.02 = amaxTs for the maximum rate of parameter
variation between consecutive sampling instances, where amax = 1m/s2 is the assumed maxi-
mum vehicle acceleration and Ts = 0.02s is the sampling time at which the controller will be
implemented.

Meanwhile, the Anti-Windup activation parameter ρ is assumed bounded by ρ ∈ [1, 100]
for the parameter range and |νρ| ≤ 2 = ρ̇maxTs for the maximum rate of parameter variation
between consecutive sampling instances, where ρ̇max = 100 1/s is the assumed maximum
parameter rate of change.

Concerning the gridding space G, the varying parameter vx has been uniformly gridded
at a constant interval of 0.5m/s such that vx,p = [0.5, 1, 1.5, 2]m/s and for the Anti-Windup
activation parameter ρ it is only considered the extremes values such that ρp = [1, 100]. This
represents 2D grid space G with 8 grid-points.

From the chosen grid space G, at each frozen speed grid-point we define the reference
tracking control problem on the H∞ framework by building a generalized plant P (vx,p, ρp)
that includes the weighted performances for tracking and actuator behaviour [ZD98]. The
chosen scheme for the generalized plant at each grid-point is given in Fig. 5.2.

The exogenous inputs of the generalized plant P (vx,p, ρp) are w = (ψ̇ref , d, n)
T . ψ̇ref is the

yaw rate reference signal to be followed, d represents an input disturbance and n represents
sensor noises in the measurements from the signal ψ̇. Note that the input disturbance d at
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Figure 5.2: Generalized Plant Scheme at grid-point (vx,p, ρp).

each grid-point is multiplied by the squared value of vx, e.g. v2x,p. This term is introduced to
account for observed disturbance effects on the SAV due to interactions between the lateral
dynamics with the longitudinal behaviour, to which the vehicle is more sensitive at higher
speeds. The vector of control performances is z = (ze, zu)

T , with ze being the tracking error
performance and zu the actuator performance signal, respectively.

The expression BM(vx,p) defines the SAV bicycle model at a frozen grid point vx,p, taking
in this chapter the bicycle model from Definition 2.3. Note that within the design it is not
taking into account the presence of actuator delay in the steering servo-motor, see Chapter 2.
Then, BMd(vx,p), is computed at each of the grid-point vx,p asBMd(vx,p) = ZZOH(BM(vx,p)),
where the Z operator is executed using a zero-order hold discretization.

Note from Fig. 5.2 that the control performance weights depend on the Anti Windup
activation parameter ρ. The weight Wu(ρ) used to specify the constraints on the control
signal δ is:

Wu(ρ) = ZT
(
ρ · s+ fbc/Mu

ϵus+ fbc

)
(5.14)

Considering Mu = 0.4, fbc = 2π10 rad/s and ϵu = 0.001. The Anti-Windup activation
parameter ρ modifies the gain of the control weight. The grid-points gp = (vx,p, ρp) were
ρp = 1, correspond with the nominal design with the control performance weight unaffected.
However, when at grid-points such that ρp = 100, then, the H∞ design heavily penalizes the
actuator performance objective zu and as a result it is greatly reduced the allowable gain for
the control signal.

Following the guidelines in [WGP00], to maximize the performance of the LPV control
design, scheduling the control performance weight Wu(ρ) requires scheduling the tracking
performance weight We(ρ) as well. For the case of the LPV scheduling Anti-Windup design
this requirement is logical. A control design having constant tracking performance requirement
independent of the control actuator allowed magnitude gain is inconsistent. One can imagine
that requiring a tight tracking error when the control action is being heavily penalized, e.g.
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as in the case Wu(ρp = 100), would lead to a bad synthesis solution. As a result, the tracking
error weight is adapted based on the Anti-Windup activation parameter according to the
following expression

We(ρ) =




= ZT

(
s/Ms+fb
s+fbϵ

)
, if ρ = 1

= ZT
(
s/Ms+fb
s+fbϵ

)
, if ρ = 100

(5.15)

Considering Ms = 2, fb = 2π0.3 rad/s, ϵ = 0.01 and ϵ = 2. Note that in the nominal design
point, e.g. ρ = 1, demanding ϵ = 0.01 is equivalent to demanding less than 1% of tracking
error at low frequencies. However, when in the design point with heavily penalized actuator
gain, e.g. ρ = 100, ϵ = 2 is used to relax the tracking specification by that of stability. In fact,
as the SAV Bicycle Model is stable at all frozen grid-points for vx, the stability condition is
an undemanding condition, which simplifies the effort of finding a controller solution for the
LPV design.

Concerning both weights We(ρp) (5.15) and Wu(ρp) (5.14), frozen at some grid-point for
ρ, the discretization operator Z has been executed using the Tustin transform. Putting all
these elements together, the generalized plant can be computed for a for a fixed grid-point
according to the scheme in Fig. 5.2 with the frozen LTI representation of P (vx,p, ρp) given by

P (vx,p, ρp) :=

{
x+ = A(vx,p, ρp)x+Bu(vx,p, ρp)u+Bw(vx,p, ρp)w

z = Cz(vx,p, ρp)x+Du(vx,p, ρp)u+Dw(vx,p, ρp)w
(5.16)

5.3.2 DT-LPV Grid Based Controller Synthesis

Having the generalized plant defined at each grid-point gp = (vx,p, ρp) by Eq. (5.16), then,
the control problem is to find a Grid-Based DT-LPV controller K(vx, ρ) such that the control
law δ = K(vx, ρ)x minimizes the induced L2-norm γ∞ over the generalized plant P (vx, ρ) and
controller K(vx, ρ) interconnection, as shown in Fig. 5.3, according to Definition 5.2. Notice
that in Fig. 5.3, x = (vy, ψ̇, xe, xu)

T are the states of the generalized plant P (vx, ρ), with vy
and ψ̇ the states of the Bicycle Model according to Definition 2.3 and xe and xu are the states
of the weights We(ρ) and Wu(ρ), respectively.

Figure 5.3: Generalized Plant and controller interconnection.

The synthesis of such the LPV controller K(vx, ρ) can then be done by solving the LMI
problem presented in Proposition 5.1 as a minimization over the scalar γ∞. The parameter



102
Chapter 5. Lateral Control of Autonomous Vehicles Using Anti-Windup Effects

by Means of LPV Scheduling

dependent structure that has been assigned for the PDLM X(vx, ρ) for this LMI problem is
as follows:

X(vx, ρ) = X0 + ρX1 +
1

vx
X2 + vxX3 + v2xX4 (5.17)

This structure is chosen as it mimics all the ways in which the varying parameter vx appear
in the Bicycle Model BM(vx) and generalized plant P (vx, ρ) and it mimics the way the Anti-
Windup activation parameter ρ is applied in the control performance weight Wu(ρ) (5.15).

Using the parser Yalmip [Löf04] and the SDPT3 solver [TTT04], Proposition 5.1 can be
efficiently solved. It is proved to be feasible with an optimal induced L2-norm upper bound
found to be γ∞ = 1.5589.

Note in the generalized plant P (vx, ρ) in Fig. 5.2 that the disturbance term is multiplied
by a factor of 0.1. As the parameter ρ already provides by design an active way to reduce the
amount of steering in the presence of uncertainties, it was consider in the design to diminish
the effect of the input disturbance. This reduces the conservatism of the design and explains
why the bound on γ∞ has a reduction of an order of magnitude with respect the design carried
in Chapter 4.

5.3.3 Frequency Analysis of the PDSF Control Design

A first validation of the controller design is carried out on the frequency domain. For this,
we consider the closed-loop interconnection between the generalized plant P (vx, ρ) and the
Grid-Based DT-LPV controller K(vx, ρ), as illustrated in Fig. 5.3, evaluated at all eight frozen
grid-points.

In order to validate the yaw rate tracking error ψ̇e = ψ̇ref − ψ̇ response to changes in
the yaw rate reference ψ̇ref , we compare the sensitivity transfer function S = ψ̇e

ψ̇ref
with

respect to the tracking error template 1/We, with the weight We(ρ) given in Eq. (5.15).
Meanwhile, the validation of the constraints on the control signal δ response to changes in the
yaw rate reference signal ψ̇ref is done by comparing the controller sensitivity transfer function
KS = δ

ψ̇ref
with respect to the control performance template 1/Wu, with the weight Wu(ρ)

given by Eq. (5.14).

From the frequency response results shown in Fig. 5.4 and Fig. 5.5 it can be seen that both
design requirements for the controller K(vx) are satisfactorily fulfilled for most of the frozen
grid-point values. Fig. 5.4 shows that when the controller is given full control authority, e.g.
ρ = 1, the tracking performance is in accordance to the nominal design requirement according
to the chosen template W−1

e (ρp = 1).

Figure 5.5 presents in a clear way the effect of the design varying paramter ρ on the control
performance weightWu(ρ). When there is no penalization in the control magnitude, e.g. ρ = 1,
the controller constraints are fulfilled for most grid-points. The grid-point response above the
template W−1

u (ρp = 1) is for the grid-point gp = (vx,p = 0.5, ρp = 1), at this speed it is to
be expected that the control magnitude required to achieve the same tracking performance
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needs to be larger. On the other hand, when the control action is penalized, e.g. ρ = 100, the
magnitude response of the control action is decreased by many orders of magnitudes, basically
deactivating the controller output.
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Figure 5.4: Sensitivity Transfer Function S = ψ̇e

ψ̇ref
versus tracking performance template W−1
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at frozen grid points.
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Figure 5.5: Controller Sensitivity Transfer Function KS = δ
ψ̇ref

versus actuator performance

template W−1
u at frozen grid points.

This flexibility in the LPV design is facilitated by the fact that at the grid-points with
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ρ = 100 only stability is demanded, according to the template W−1
e (ρp = 100) in Fig. 5.4.

Another key to obtain a flexible solution for the LPV scheduling Anti-Windup design, is
the use of Proposition 5.1, which uses dedicated slack variables Yp and Gp to compute the
controller gains for each grid-point, independently of the PDLM X(vx, ρ).

5.3.4 Real-Time Implementation of the Anti-Windup Grid-Based DT-LPV
SF Controller

The control law u = K(vx, ρ)x requires feedback of the full state vector x = (vy, ψ̇, xe, xu)
T .

Whereas vy and ψ̇ are directly measured on the SAV platform, the computation of states xe
and xu from We(ρ) and Wu(ρ) deserve some attention due to their dependency on the varying
parameter ρ.

Concerning the computation of the state xu, from the control action performance weight
Wu(ρ), the parameter dependency on ρ, according to Eq. (5.14) does not affect the system
matrices Au and Bu from Wu(ρ). So the online computation of xu remains easy:

x+u = Auxu +Buδ (5.18)

On the other hand, for the state xe from the tracking performance weight We(ρ), the
system matrices Ae and Be from We(ρ) do change in value with the Anti-Windup activation
parameter ρ. Notice in Eq. (5.15) that changes in ρ lead to changes in the poles of the
performance weight transfer function. A practical solution to this issue is to compute offline
the system matrices of We(ρ) at the frozen values We(ρp = 1) and We(ρp = 100). Then, the
online values for Ae and Be are computed by interpolation based on the online value of ρ(k):

x+e = Ae(ρ)xe +Be(ρ)(ψ̇ref − ψ̇) (5.19)

where

Ae(ρ) = Ae(ρp = 1) ·
(
1− ρ(k)− 1

100− 1

)
+Ae(ρp = 100) · ρ(k)− 1

100− 1
(5.20)

Be(ρ) = Be(ρp = 1) ·
(
1− ρ(k)− 1

100− 1

)
+Be(ρp = 100) · ρ(k)− 1

100− 1
(5.21)

The online value of the Gain-Scheduled SF controllerK(vx, ρ) is computed by interpolating
between the computed controller gains Kp at frozen grid-points. The interpolation, according
to Definition 5.1, can be made according to any multivariable interpolation rule ζ(vx, ρ).

Finally, as the Anti-Windup activation parameter ρ is not defined by the physics of the
system, its scheduling rule is an open choice in the control design. To achieve the task of
simulating an Anti-Windup effect, the following scheduling rule is chosen

ρ(k) = SAT
[1, 100]

(
eδ(k)−δ̄

)
(5.22)
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with

δ(k) = MAX
(
δ∗(k), δ̄

)
(5.23)

where δ∗ is the steering angle computed from the LPV controller and δ̄ = 38◦ is the maximum
desired steering angle. Note that the physical limit for steering angle in the SAV is at 40◦, the
choice of δ̄ = 38◦ is done to activate the Anti-Windup effect just before saturation can occur.

The designed response for the Anti-Windup scheduling rule is that when no saturation
occurs, the mathematical expression in Eq. (5.22) computes to ρ(k) = 1. This corresponds
to the control action given maximum authority according to the nominal design. On the
other hand, when the controller output is greater than δ̄ then ρ(k) will increase, leading to an
scheduled LPV controller with penalized controller output. Thus preventing the build up of
the Windup effect.

5.4 Experimental Results

This section presents experimental results obtained from the Grid-Based DT-LPV Controller
with Anti-Windup effects applied on the SAV platform. The tests were carried out considering
the Reference Trajectory given in Fig. 5.6. This trajectory was specifically designed to have
more aggressive curvatures compared to the one used in the previous chapter, see Fig. 4.2,
creating a challenging scenario for the controller, particularly at high speeds where actuator
saturation is now more likely to occur.

In this challenging track, the objective is to drive autonomously the SAV car for two laps
as fast as possible in two different scenarios.

1. Grid-Based DT-LPV controller used for autonomous steering, with the longitudinal
speed vx as the only scheduling parameter. No Anti-Windup mechanism is present.

2. Grid-Based DT-LPV controller used for autonomous steering according to Sec. 5.3, with
scheduling based on longitudinal speed vx plus Anti-Windup activation parameter ρ.

Note that the design of the controller for the first scenario is identical to that of Sect. 5.3,
the difference being that the Anti-Windup activation parameter is not considered for synthesis.
As a result, the synthesis for this Grid-Based DT-LPV controller considered only the grid-
points vx,p = [0.5, 1, 1.5, 2]m/s. For this simpler design, the performance weights We and Wu

are considered at ρ = 1 in Eq. (5.15) and Eq. (5.14), respectively.
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Figure 5.6: Reference Trajectory.

5.4.1 High-Speed Test Without LPV Scheduling Anti-Windup Mechanism

Considering the test when the LPV controller without Anti-Windup scheduling is employed,
Fig. 5.7 shows the evolution of the SAV longitudinal speed vx during the test. Figure 5.8 shows
in black the yaw rate reference ψ̇ref generated by the Pure Pursuit algorithm, see Sect. 4.4.1
from Chapter 4, in blue it is given the measured yaw rate by the Vicon Tracker system for the
SAV during the test. In Fig. 5.9 is presented the commanded steering angle δ computed by
the LPV controller in red while in blue it is presented the actual steering applied in the SAV,
with saturation at 40◦.

Figure 5.10 presents information regarding the followed trajectory by the SAV during the
test on the X and Y coordinates of the track. On the left of the figure it is represented
the reference circuit in black and the trajectory followed by the SAV during the complete
test. Note that in order to better identify the multiple laps the SAV has done around the
circuit, the followed trajectory is color mapped with the instantaneous longitudinal velocity,
corresponding with the information given in Fig. 5.7. On the right side of the figure it is
given in black the reference trajectory and with blue triangles the orientation and position
of the SAV, with the orientation and position taken from a time window of the test from
t ∈ [17, 35]sec.
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Figure 5.7: Longitudinal Velocity of the SAV during the test w/o Anti-Windup.
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Figure 5.8: Yaw rate reference (black) and SAV yaw rate (blue) during the test w/o Anti-
Windup.

From the velocity evolution in Fig. 5.7, it can be seen that the maximum speed the SAV
can achieve in this test is slightly superior to 1.4m/s. According to the tracking error data
given in Fig. 5.8, the tracking performance is good for most of the test, although the presence
of the servo motor actuator delay is evident, see Chapter 2. However, it can be seen after
the maneuvers at t = 12sec and t = 27sec, with a high sustained level of yaw rate reference
demand, that the required yaw rate reference can not be achieved and the maneuvers are
followed by large overshoots in the next actions, at t = 15sec and t = 32sec respectively.
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Figure 5.9: Steering command computed by the controller w/o Anti-Windup.

Figure 5.9 shows that the origin for these tracking errors is the presence of actuator sat-
uration, which limits the yaw rate rotation speed the vehicle can achieve at a given speed.
Importantly, this induces controller Windup, which slows the controller response after satu-
ration occurs and generate oscillations that degrade the tracking performance.
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Figure 5.10: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference Trajectory and position and orientation of the
SAV during the second lap at t ∈ [17, 35]sec(right). Data from the test without Anti-Windup.

The tracking errors induced by the actuator saturation and Windup effects can be seen in
Fig. 5.10. After the circuit section with the highest curvature, it can be clearly observed that
the trajectory tracking performance is degraded. From the color mapped plot, Fig. 5.10 (left),
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it is seen that the SAV car enters this high curvature section at high speeds, around 1.4m/s.
However, the degradation in tracking performance and the appearance of large oscillations in
the SAV trajectory requires the car to slow down its speed significantly. Fig. 5.10 (left) shows
how during the high curvature section, the velocity color mapped trajectory line goes from
red to light orange. See also from Fig. 5.7 how, at t = 15sec and t = 32sec respectively, the
longitudinal velocity is throttled down from 1.4m/s to 1.1m/s. Only this reduction in speed
is what allows the SAV to continue the test without lose of stability due to the Windup effect.

5.4.2 High-Speed Test With LPV Scheduling Anti-Windup Mechanism

For the second test, employing the LPV controller with Anti-Windup scheduling designed in
Sect. 5.3, Fig. 5.11, Fig. 5.12, Fig. 5.13 and Fig. 5.15 present analogous information to the
figures seen previously in Sect. 5.4.1. Additionally, it is given here Fig. 5.14 which presents
information on the online value of the Anti-Windup activation parameter ρ(k), computed
according to Eq. (5.22).
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Figure 5.11: Longitudinal Velocity of the SAV during the test.
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Figure 5.12: Yaw rate reference (black) and SAV yaw rate (blue) during the test.

In this second test, the maximum speed that the SAV vehicle can achieve reaches 1.6m/s

as can be seen in Fig 5.11, which is 14.3% higher than was possible during the test without
Anti-Windup LPV scheduling. Note also a reduction on the test time from 35sec to 32sec

in this second test. Moreover, when comparing the tracking error performance, the LPV
controller solution with Anti-Windup has improved tracking performance throughout all the
test, as seen in Fig. 5.12 compared with the previous yaw rate tracking error results seen in
Fig. 5.8. When computing the RMS error of the reference signal with the actual achieved yaw
rate, e.g. RMS(ψ̇ref − ψ̇), the results show a clear improvement in tracking accuracy when
utilizing the Anti-Windup emulation strategy:

With Anti-Windup NoAnti-Windup
RMS(ψ̇ref − ψ̇) 0.8438 0.9719

Still, the presence of the actuator delay is indeed noticeable in the yaw rate tracking
response seen in Fig. 5.12. Additionally, during the maneuvers demanding sustained high yaw
rate rotation speeds, starting at t = 11sec and t = 26sec respectively, the SAV car is still
unable to reach the maximum yaw rate set by the Pure Pursuit planner.
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Figure 5.13: Steering command computed by the PDSF controller.
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Figure 5.14: Steering command computed by the PDSF controller.

This is caused, as it can be seen in Fig. 5.13, due to these high yaw rate maneuvers leading
to actuator saturation. However, this time it can be seen that despite observing a clear
saturation effect, the controller Windup effect is avoided thanks to the LPV Anti-Windup
scheduling design. As can be seen in Fig. 5.14, during those maneuvers the Anti-Windup
activation parameter ρ is quickly scheduled in the presence of actuator saturation. In fact,
the effect of scheduling the Anti-Windup activation parameter ρ is noticeable in Fig. 5.13 by
the presence of control signal artifacts during the high demand maneuvers, when ρ is being
activated to prevent controller Windup.
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Figure 5.15: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference Trajectory and position and orientation of the
SAV during a lap done at high speed at t ∈ [16, 32]sec(right).

Finally, the improvement generated by the use of the LPV scheduling Anti-Windup so-
lution on the trajectory tracking problem can be seen in Fig. 5.15. Due to the presence of
steering saturation there is still some noticeable loss of tracking performance in the zones of
the track with higher curvature. However, the presence of dangerous trajectory oscillation are
completely avoided this time, which allows to carry the test at higher speeds in a safe and
stable manner.

5.5 Conclusions

In this chapter, conditions to compute Grid-Based DT-LPV controllers based on LMI condi-
tions from Chapter 1 have been derived. The LMI synthesis conditions here introduced provide
a low level of conservatism, which then allows to solve efficiently LMI problems for demanding
LPV control designs where some the scheduling of some parameters cause important changes
in the system behaviour. This has been demonstrated with the design of an LPV controller
with a design-related varying parameter used to disable the controller output, the real-time
scheduling of this parameter then enables the emulation of an Anti-Windup mechanism. This
combination of Grid-Based DT-LPV synthesis conditions and use of design varying parameters
will be heavily used in following chapters.

The effectiveness of the Grid-Based DT-LPV controller with Anti-Windup scheduling strat-
egy was evaluated on the SAV platform for trajectory tracking in a demanding circuit. The
Anti-Windup scheduling mechanism demonstrated efficacy in preventing controller Windup
during saturation, thereby rendering the LPV Anti-Windup scheduling strategy dependable in
enhancing system tracking performance and, more notably, system stability at high velocities.
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Part III: Introduction

Part III presents the integrated ADAS strategy for vehicle lateral control proposed in this
Thesis. This strategy follows a consistent philosophy throughout all chapters in Part III,
namely:

• Estimation of driver performances based on fault detection techniques.

• Reconfigurable lateral ADAS controller using LPV/H∞ approaches.

• ADAS LPV controller scheduling rule based on the online estimation of driver perfor-
mances.

The estimation of driver performances is presented in Chapter 6 using Parity Space ap-
proaches an considering a nominal driver model as the baseline for driver steering behaviour.
In later chapters, this tasks is made by employing an LPV PI observer, the objective with this
approach is to add robustness with respect to measurement noises and to accommodate for
LPV nominal driver models if available.

The design of the LPV/H∞ ADAS lateral controller considers as the controlled plant the
joint driver-vehicle system, for which the human steering behaviour is taken into account by
utilizing driver models. In order to reduce the sensation of intrusiveness the driver can feel
from the ADAS system, the proposed control strategy present two features. Firstly, on the
H∞ design it will be considered bandpass filters such that the control action is restricted in
a frequency range transparent to the human. Secondly, the LPV design is made with the
inclusion of design-related varying parameters that can modulate the allowable control output
magnitude in an adaptive manner. Similar to the approach introduced in Chapter 5.

Finally, the scheduling strategy merges the driver performances estimation algorithm with
the LPV/H∞ ADAS lateral controller. This is accomplished by using the driver performance
estimation as an indicator to schedule the design-related varying parameters from the LPV
ADAS controller. In Chapter 6 and 8 this joint strategy is used to modulate the amount of
required additive steering. On the other hand, in Chapter 7 it is shown how this strategy can
be used to incorporate and mix multiple actuators on the control design by considering both
additive steering and direct yaw moment control as control actions.

The following of this introduction to Part III is dedicated with providing literature back-
ground on lateral ADAS control approaches.

Literature Overview on Lateral ADAS Control

There have been many propositions in the field of Advanced Driver Assisted Systems (ADAS)
to design automated systems with the objective of increasing vehicle’s safety. In this literature
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background the focus is on works employing model based techniques and which take into
account the driver in the loop for lateral vehicle control design. As such, this excludes ADAS
systems that just provide warnings to the driver and studies which consider full automated
driving. In fact, considering the driver in the loop results in a more intricate design than that
of full autonomy from a control theory perspective. This is due to the satisfactory interaction
between human and automation becoming a key objective, in addition to those of tracking
performance and vehicle stability. The works explored in this literature overview are part of
two trends observed in the lateral ADAS control literature. One is the LPV/H∞ approach,
focused in developing robust controllers that work side by side with the human driver. The
second approach is the shared control proposition. Within this approach the human driver
shares control of the vehicle with a full autonomous controller, however, the level of control
is varying such that either the human or the automation can have full authority at given
instances.

Previous thesis and publications developed at GIPSA-Lab in Grenoble have considered
the LPV/H∞ approach for ADAS control. In [Dou+13] it is developed a yaw rate stabi-
lizing controller for the vehicle lateral dynamics employing steering actions and Direct Yaw
Control (DYC) through differential rear braking. The steering action is considered the pri-
mary actuator, while the DYC action is activated only during critical situations, facilitated
by design-related varying parameters. The desired yaw rate of the controller is based on the
steering angle set by the human driver, and driver comfort is taken into account during the
H∞ control design. The design uses the bandpass filter from [GGK08] as a constraint on the
steering action, which then allows to restrict the steering control output to a frequency range
were the driver cannot act. In [PV+11] a similar approach is considered, although in this
work the braking action is considered as the principal actuator. In this case a design-related
parameter is used for the activation of the steering actuator if a critical situation is detected.
Having a reduced effect on the steering wheel may make this design more transparent for
human drivers. A second design-related parameter is also employed to distribute the braking
action between the left and right rear wheels of the vehicles. This constitutes an innovative
approach to incorporate DYC in vehicle control design. The work done in [Fer14] expands
on [Dou+13] by simultaneously considering the suspension system in addition to steering and
braking actions. Design-related varying parameters are used to coordinate the controllers of
both systems, resulting in improved vehicle comfort and enhanced performance through more
efficient load transfer distribution.

In [GNB12] the authors consider a lateral ADAS controller based on LPV/H∞ control
design techniques. The ADAS controller can provide both additive steering and direct torque
control on the yaw vehicle axis by means of differential braking. The H∞ approach is used
to enforce design objectives as well as to account for multiple uncertainties and disturbances.
The LPV approach then enables to adapt the controller to a wide range of vehicle velocities as
well as handling the mix of steering and braking actuator use. This is done by incorporating
a design-related parameter. The driver actions are directly considered in the design by incor-
porating the control theoretic driver model from [HM90]. The results from [GNB12] shows
that LPV/H∞ ADAS designs are robust to uncertainties while reducing the driver effort.
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The work in [CZW19] also deals with lateral ADAS controller based on LPV/H∞ tech-
niques. The driver is considered in the loop by incorporating the driver model from [Sch+16]
during the design. Interestingly, to cover a whole range of possible driver performances the au-
thors include driver model uncertainties on the LPV/H∞ design LMIs. This allows to prove
in a driving simulator that the designed ADAS controller provides efficient aid and reduce
driver load on multiple subjects with varied driving performances. However, a limiting factor
in the works using LPV/H∞ approaches is that the ADAS controller is always active. This is
known to not be desirable to the driver unless there exists a dangerous situation [MDH14].

One prominent field in the vehicle lateral control problem with human drivers in the loop
is the shared control proposition. The works [Sal+13]; [EFG15]; [Ji+18]; [Pan+20] employ
optimal control theory as their main control approach in order to solve some Model Predictive
Control or LQ/H2 problems. The objective of these works being to reduce conflicts between
the driver and the lateral ADAS steering actions when merging two driving modes: fully
manual and fully autonomous driving. In [Ino+16], the authors propose a shared control
scheme that uses both steering actions and direct yaw torque control. By using direct yaw
torque as a control input for the ADAS system it is shown that the ADAS steering actions is
reduced and as a result steering conflicts are decreased.

In [Pan+20], the ADAS controller synthesis is proposed as the minimization of an H2

norm criterion that accounts for different levels of shared control. However, in the synthesis
the level of shared control is fixed at a set value. Instead, the approaches proposed in [Sen+19];
[Oud+22] make use of the LPV techniques to account for time-varying levels of shared control.
In these works the level of shared control is included on a cost function used to derive the LMI
synthesis problem, for which the shared control amount acts then as design-related varying
parameter. Moreover, the authors propose active driver monitoring techniques to select the
appropriate level of shared control. As a result, the shared control amount is modified online
based on driver awareness and risk of lane departure while minimizing some driver/ADAS
conflict criterion. The advantage of this approach is that employing LPV techniques provides
with stability guarantees for the transition period from manual to autonomous driving and
vice-versa.

In conclusion, this literature review has examined various approaches to lateral ADAS
control with the primary goal of enhancing vehicle safety. The involvement of the driver in
the control loop for lateral vehicle control presents a more complex design challenge compared
to fully autonomous systems. Nevertheless, the use of LPV/H∞ control has demonstrated
promising outcomes in achieving robustness against uncertainties while minimizing driver
effort. The integration of driver models into the design process has facilitated efficient as-
sistance and reduced driver workload across different driving abilities. The shared control
approach has also shown potential in resolving conflicts between the driver and automated
systems. However, this approach assumes that the automation mode can assume most of the
control authority, which may feel intrusive to the driver and lead to disengagement of such
systems. Nonetheless, recent studies exploring the application of LPV techniques to modulate
the level of ADAS influence based on driver monitoring have displayed significant potential.
This approach holds promise in addressing the concerns associated with driver acceptance and
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engagement by tailoring the ADAS system’s behavior to the driver’s needs and preferences.
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6.1 Introduction

This chapter serves as a preliminary study for the proposed integrated lateral ADAS strategy
in this thesis. The strategy consists in using model based fault diagnosis techniques [Din08]
to detect the presence of errors in the driver steering. This error estimation is then mapped
to a design-related varying parameter which is used to activate the ADAS lateral control by
means of LPV scheduling. The assumption is that large driver errors are either caused by or
are the origin of a dangerous situation.
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Here the detection of driver errors is proposed to be formulated as a Fault Detection
problem using the Parity Space approach, and the computed residual signal then schedules
the LPV/H∞ controller. The overall goal is to compute an ADAS controller that helps in
stabilizing the vehicle when driver errors are detected while otherwise minimizing the level
of intrusiveness. With this goal in mind, the proposed method will be tested in simulation
using a full dynamical model of a Renault Megane car, see Chapter 2, and driver models for
simulation of the human steering action during a critical scenario, see Chapter 3.

Different from most of this thesis, the controller synthesis is performed here in Continuous-
Time using the Grid-Based LPV toolbox LPVTools [HSP15]. The reason for this is that the
results in this chapter predate the development of the Grid-Based DT-LPV framework used
for the rest of the thesis.

The contents of this chapters are based on the following publication:

• Ariel M. Borrell, Olivier Sename and Vicenç Puig. “Control Reconfiguration of Lat-
eral ADAS Steering Control in the Presence of Driver Errors Using Combined Parity
Space / LPV Approaches”. In: 2021 5th International Conference on Control and Fault-
Tolerant Systems (SysTol), Saint-Raphael, France, 2021, pp. 7-12, doi: 10.1109/Sys-
Tol52990.2021.9595648.

6.1.1 ADAS Strategy based on Driver Errors Detection

The integrated ADAS lateral strategy is presented in Fig. 6.1. Higher levels of the ADAS
system provide appropriate reference signals as well as information of the vehicle with respect
the road, as the lateral error ye seen in Sec. 2.2.3 from Chapter 2. Then, the driver steering
behaviour is evaluated based on the road and environment information employing the Parity
Space approach. The generated residual according to the detected driver errors is then used to
provide an scheduling signal for the LPV/H∞ ADAS lateral controller, which acts in parallel
to driver.

By evaluating the driver’s performance in real-time allows the ADAS system to act on the
steering input only when needed. Moreover, using LPV/H∞ controllers allows us to carry out
offline the computation of the controller synthesis. The LPV controller then allows to react
quickly to changes online, thanks to real-time LPV scheduling while maintaining a high degree
of robustness thanks to a controller synthesis based on H∞ methods. The objectives of the
proposed integrated ADAS strategy can then be summarized as follow:

• Provide aid to the driver in the case when a dangerous situation is detected. Large
estimated driver errors are here assumed as correlated with dangerous scenarios.

• Do not interfere on the driving experience if the driving scenario does not pose any
danger of loss of vehicle stability.
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Note that the localization and planning block in Fig. 6.1 is provided as reference but these
algorithms are outside of the scope of this work.

Remark 6.1
In the proposed strategy, the steering applied to the vehicle is a direct combination of the
driver’s steering input and the ADAS controller’s steering input. Unlike the shared control
proposition, this strategy does not assume that the ADAS system can take complete control of
the driving situation in an autonomous way. On the contrary, the intention here is to allow
the driver to maintain full authority, with the ADAS control system providing only minor
corrections as needed.

Figure 6.1: Proposed ADAS Structure for Lateral Steering Control with Controller Reconfig-
uration Based on Driver Error Detection.

6.1.2 Chapter Structure

The structure of the rest of the chapter is the following. Section 6.2 introduces the combined
driver-vehicle model that will be used for ADAS controller design. In Sec. 6.3 it is introduced
the fault detection approach for detecting driver errors based on the Parity Approach tech-
nique. Then Sec. 6.4 explains the design and synthesis of the lateral ADAS controller as well
as the scheduling strategy used for the activation/deactivation of the LPV controller. Finally,
Sec. 6.5 presents simulation results validating the proposed integrated ADAS design.
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6.2 Integrated Driver-Vehicle System Modelling

Concerning the design of ADAS system, it is not enough to consider the vehicle as an in-
dependent entity, as the human interaction with the vehicle has an important impact in the
overall system performance and stability. Therefore, the control-oriented model should be
a combined Driver-Vehicle one. The Driver Model is included considering the Lateral Error
Driver Model (LEDM) from Sect. 3.3.1 in Chapter 3. Recall that this model has nx = 1

states, nu = 2 inputs (vehicle lateral error ye and incoming road curvature kpath) and ny = 1

output corresponding with the driver steering applied on the vehicle. On the other hand,
regarding the control-oriented vehicle model, in this chapter it is considered the Bicycle Mode
from Definition 2.1 with the Renault Megane parameters presented in Table 2.1.

Let us consider a nominal DM with parameters P0 ∈ R6 given in Table 6.2. The choice of
nominal parameters P0 is so that the DM in the open-loop nominal driver / Renault vehicle
system is able to steer the vehicle in a way such that lateral accelerations and overshoots are
minimized during obstacle avoidance maneuvers. Parameters P0 chosen to perform best these
critical maneuvers at a longitudinal speed of vx = 35m/s.

Parameters Nominal
K0 1/20
TL0 0.3
TN0 0.1
τ0 0.1
Kv0 1
Kff0 0.85

On the other hand, to obtain a combined Driver-Vehicle model for control purposes two
modifications are carried out in the DM from Sect. 3.3.1 in Chapter 3. Firstly, according
to Remark 3.1 from Chapter 3, the road curvature kpath input should be expressed in terms
of desired yaw rate reference ψ̇ref . So that the DM inputs can be easily related to vehicle
dynamic variables that will be used for control design. Using the expression for ψ̇ref in [Raj11],
kpath is then substituted by:

kpath =
ψ̇ref
vx

(6.1)

where vx represents the vehicle longitudinal velocity.

The second modification is to approximate the pure delay present in the LEDM by means
of a Padé approximation, considered in this work as of order npade = 4. Then, the modified
DM can be expressed in continuous-time state-space form as:

{
ẋc = ac · xc + [bc 0] · uc
δ0 = (1−Kff0)cc · xc + [(1−Kff0)cc Kff0Kv0/vx] · uc

(6.2)
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where xc ∈ Rnx+npade is the DM continuous-time state vector, ac ∈ Rnx+npade×nx+npade , bc ∈
Rnx+npade , cc ∈ Rny×nx+npade , dc ∈ Rnu×ny are the state-space matrices of the modified SDPM
and their values depend on [TL0, TN0, τ0,K0] ∈ P0 as well as [Kff0,Kv0] ∈ P0 and the input
vector uc(t) ∈ Rnu is

uc(t) =

[
ye(t)

ψ̇ref (t)

]
(6.3)

The combined Driver-Vehicle model for control purposes considered in this work, is then
the series connection of the state-space representation for the nominal driver in Eq. (6.2) and
Renault Megane Bicycle Mode. Note that both the nominal driver and the vehicle lateral
dynamics models do depend on the longitudinal vehicle speed vx, which for control design is
assumed to be constant in this chapter. The extension to varying speed LPV models is a topic
of future chapters.

6.3 Parity Space Approach for Driver Error Detection

In the previous section, the joint driver-vehicle control oriented model was obtained assuming
a nominal driver model. However, it is to be expected that most of human drivers would
perform differently than the nominal one. Specifically, it can be assumed that, in a critical
driving situation, a human driver would perform worst than the nominal one (so making
errors), since the parameters of the nominal driver model P0 ∈ P are chosen to get an ideal
performance. In order to detect driver errors, it is proposed to formulate a Fault Detection
problem, for which the fault-free system is the nominal driver model, while the difference in
steering between the real human driver δf and the nominal driver δ0 will be considered as the
fault signal.

δf (k) = δ0(k) + f(k) (6.4)

The chosen fault detection method on this chapter is the parity space approach, which
requires a discrete state-space model of the nominal LEDM. Using a sampling period Ts =

10ms and an exact Zero-Order Hold discretization method, assuming the pure time delay
present in the LEDM as an input delay, then, the discrete-time state-space representation of
the nominal DM is defined by the following system matrices:

A0 = a0 ∈ R (6.5)

B0 = [b0 0] ∈ Rnx×nu , (6.6)

C0 = (1−Kff0)c0 ∈ R, (6.7)

D0 = [(1−Kff0)d0 Kff0Kv0] ∈ Rnu×ny , (6.8)

and can be expressed as:
{
xd(k + 1) = A0 · xd(k) +B0 · ud(k)
δ0(k) = C0 · xd(k) +D0 · ud(k)

(6.9)
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with xd(k) ∈ R is the DM discrete-time state vector, a0, b0, c0, d0 ∈ R are the elements of
the state-space representation for the discretized nominal simplified precision model used on
the LEDM, whose values depend on the chosen sampling time Ts and the DM parameters
[K0, TL0, TN0] ∈ P0 as well as [Kff0,Kv0] ∈ P0 and the input vector ud(k) ∈ Rnu is

ud(k) =

[
ye(k − τ0/Ts)

kpath(k)

]
(6.10)

with τ0 ∈ P0.

Let us assume now that the real human driver is doing an erroneous action, considered as
an additive fault f(k) with respect the nominal driver as previously defined in Eq. (6.4). The
faulty driver model is then given as:

{
xd(k + 1) = A0xd(k) +B0ud(k)

δf (k) = C0xd(k) +D0ud(k) + f(k)
(6.11)

Then, regarding the detection of the driver error f(k), the Parity Space representation of
the system is defined as:

Y (k)−HU(k) =Wx(k − L) +MF (k) (6.12)

with Y (k) ∈ Rny ·(L+1) a buffer of δf (k) and U(k) ∈ Rnu·(L+1) a buffer of ud(k), both buffers
of length L + 1. F (k) ∈ Rny ·(L+1) is the fault vector. And matrices H ∈ RL+1×nu·(L+1),
W ∈ Rny ·(L+1)×nx and M ∈ Rny ·(L+1)×ny ·(L+1) defined in the standard manner of the parity
space approach according to [CP12].

Note that in the parity representation of the system in Eq. (6.12), all the elements for
the left-side of the equality are known in real time. On the other hand, in the right side of
the equality appears the system state, which may be not completely measured, and the fault
vector F (k) which is unknown. In order to make the fault detection independent of the system
state, Eq. (6.12) can be left-multiplied by the so called parity vector V , which is defined in
such a way that the following condition is fulfilled:

V ·W = 0 (6.13)

If such a parity vector V exists for a number L of past considered data samples, then the
residual signal is given by:

r(k) = V (Y (k)−HU(k)) (6.14)

The interpretation of r(k) is the following: since the parity vector V fulfills the condition
in Eq. (6.13), left-multiplying (6.12) by V leads to:

r(k) = VMF (k) = V F (k) (6.15)

where using the definition for the matrix M in [CP12] and the fault model definition (6.11) it
can be observed that M = I, thus r(k) depends only on the fault vector value. Therefore, in
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the considered driver error detection problem, the residual signal r(k) equals zero (or almost)
when the driver’s action match or are close to those expected from the nominal driver. On the
other hand, when the human steering differs significantly with respect the considered nominal
driver it is considered as an erroneous action and the value of r(k) becomes important.

6.4 H∞ Lateral ADAS Controller

This section presents the main result of the chapter, namely an LPV fault-scheduling controller
allowing to reconfigure the control action in the presence of driver errors. In what follows,
we present first the general structure of the control scheme, then we define the scheduling
parameter function of the residual, then the LPV/H∞ control problem is formulated, and
finally the control synthesis method is explained.

Note that contrary to the rest of the thesis, the synthesis process is carried here in
Continuous-Time, using the LPVTools toolbox [HSP15] for Matlab.

6.4.1 Structure of the control system scheduled by the detected driver
error

The proposed structure for the integrated fault detection/control system is presented in Fig.
6.2. In this architecture, high levels elements of the ADAS system are assumed to provide
with reference signals for the desired path, mainly ye, kpath and ψ̇ref . The first two signals in
conjunction with measurements from the human steering δf are used to evaluate the driver
performance as explained in Sec. 6.3, using the Parity Space approach in order to generate a
residual signal r(k). This indicator for the driver’s performance is then transformed into an
adequate design varying parameter ρ(k) used for the real-time reconfiguration of the LPV/H∞
controller K(ρ) acting on the combined Driver-Vehicle System.
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Figure 6.2: Global Lateral Driver-in-the-Loop ADAS Control Scheme

The considered control problem for the design of K(ρ) is given in Fig. 6.3, which illustrates
how the controller acts on the combined Driver-Vehicle System presented in Sec. 6.2 by acting
on parallel to the driver and being scheduled by the signal ρ. As proposed, the objective with
such a scheduled controller, is that when the levels of performance of the driver are within
the accepted levels, the ADAS system will have low control authority. Meanwhile, when an
important driver error is detected, the automated lateral steering assistance system will be
given more freedom to act on the vehicle to help overcome critical situations.

Figure 6.3: Driver plus ADAS Closed-Loop System
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6.4.2 LPV/H∞ Control Problem

The control problem is here formulated as an LPV/H∞ problem where the objective is to
minimize the induced L2 norm of the LPV closed-loop system from exogenous inputs w to
exogenous outputs z.

∥z∥2 ≤ γ∞∥w∥2 (6.16)

where the exogenous inputs w represent external references and disturbances inputs and
the exogenous outputs z represent the control performance channels. The closed-loop in-
terconnection for H∞ design is shown in Fig. 6.4, and is given by the Lower Fractional
Transformation [AG95] between the generalized plant P (ρ) and the controller K(ρ), e.g.
ΣCL(ρ) = LFT (P (ρ),K(ρ)). For control design, We and Wu are used to set performances on
the closed-loop system by means of frequency shaping [ZD98]; [SP07].

Figure 6.4: Control Loop Interconnection for LPV/H∞ Design

The weight We shapes the tracking performances (through the sensitivity function S) from
the reference ψ̇ref to the tracking error eψ̇, and is given by:

We(s) =
s/M + 2πf1
s+ 2πf1εe

(6.17)

with M = 2 to ensure robustness at all frequencies, f1 = 3Hz to set the closed-loop system
bandwidth and εe = 0.1 to ensure a closed-loop steady-state error less than 10%.

The weight Wu(ρ) is dedicated to the control input performance (through the control
sensitivity function KS from ψ̇ref to the control output u). The weight is chosen as an LPV
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system of the form:

Wu(ρ) = ρ · G0
δ

(s/2πf2 + 1)(s/2πf3 + 1)

(αs/2πf2 + 1)(s/α2πf3s+ 1)

G0
δ =

(α∆f/2πf2 + 1)(∆f/α2πf3 + 1)

(∆f/2πf2 + 1)(∆f/2πf3 + 1)

∆f = 2π(f2 + f3)/2

(6.18)

which is a band-pass filter extended from [GGK08]; [PV+11]. The objective of such a filter is to
constraint the controller commands in the frequency range between f2 = 1Hz and f3 = 10Hz,
where it can affect the vehicle dynamics while not being felt intrusive to the driver, who is
mainly sensitive to low steady-state frequencies (≤ 1Hz) and very high frequencies vibrations
(≥ 10Hz) acting on the steering wheel. The constant α is used to shape the filter.

The originality is here to use a parameter dependent weight Wu(ρ), where the design
varying parameter ρ is obtained from the residual signal as explained previously in Eq. (6.22).
Note that when ρ = 100, the control action is heavily penalized so the controller does not
have much control authority, meanwhile with the minimum value ρ = 0.1 it is given extra
authority in order to help the driver to overcome a critical driving situation.

6.4.3 LPV/H∞ Controller Synthesis

The synthesis of the H∞ dynamic output feedback controller, as represented in Fig.6.4 consists
in applying the Bounded Real Lemma to the closed loop system ΣCL(ρ) = LFT (P (ρ),K(ρ)).
Such a problem being defined for an infinite set of parameter values, several methods do exist
to reduce it to a finite dimensional problem.

We here consider the referred-to-as grid based approach considering a PDLM X(ρ), and
using a gridding of the parameter space to solve the optimisation problem [Wu95]. The grid-
based LPV model, consists of a series of LTI models "frozen" along the trajectories of the
varying parameters. For both modelling and synthesis of the grid-based LPV/H∞ controller
the toolbox LPVTools [HSP15] has been used. Note that since the combined driver-vehicle
model is LTI, as vx is assumed constant in this chapter, the only varying parameter is then ρ,
appearing in the performance weight Wu of the generalized plant P that defines the formulated
H∞ control problem. The grid for the parameter is here defined by: ρp = [0.1, 1, 100] with
the parameter variation bounded by ρ̇ ∈ [−400, 400]. Finally, the basis for the parameter
dependent Lyapunov function has been chosen as:

X(ρ) = X0 + ρX1 (6.19)

where X0 and X1 are constant matrices to be computed during the LMI optimization. The
structure for the PDLM X(ρ) according to how the design varying parameters appears in the
generalized plant P (ρ) used for the LPV/H∞ control problem formulation. Using LPVTools
the controller synthesis was proven successful with a found upper bound for the induced L2-
norm of γ∞ = 9.68.
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6.4.4 Frequency Analysis of the Controller

In Fig. 6.5 the controller sensitivity function KS = δk
ψ̇ref

is shown together with the template
1

Wu(ρ)
for the considered grid points ρp = [0.1, 1, 100]. We can see that the LPV synthesis

allows to provide a varying gain for the controller sensitivity function, so to schedule the
control action, from low to high, function of the design varying parameter ρ.

Figure 6.5: Controller Sensitivity Function KS(ρ) compared with the demanded performance
template 1

Wu(ρ)
for the grid points ρp = [0.1, 1, 100].

6.4.5 Residual Dependant Design Varying Parameter ρ

In order to define the scheduling function, let us first define the relative residual signal as:

r̂(k) =
r(k)

r0
(6.20)

where r(k) is the residual signal as computed according to Sect. 6.3 and r0 is the threshold
residual value, which is defined as the maximum value achieved by the residual when the
Driver-Vehicle system, described in Sect. 6.2, is evaluated during the nominal scenario. Its
determination follows a three-step procedure:

1. Simulation of an obstacle avoidance steering maneuver of the Driver-Vehicle system with
a given nominal driver defined by a set of nominal parameters P0.

2. Computation of the residual vector r0 (of length N) using a constant sampling period
Ts.
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3. Definition of the threshold residual r0 as:

r0 = sup |r0(k)|, ∀k ∈ [0, N ] (6.21)

Then, let us define the scheduling signal that defines the evolution of the design varying
parameter ρ, as the following hyperbolic function:

ρ(ν) =
ρ

2
· e

a(ν−ν0) − e−b(ν−ν0)

ea(ν−ν0) + e−b(ν−ν0)
+ (

ρ

2
+ ε) (6.22)

with ν := |r̂(k)|, ρ is the maximum value desired for the scheduling function ρ(|r̂(k)|), ε is
the minimum value desired for ρ(|r̂(k)|), ν0 can be used to shift the x axis of the function if
desired, a and b determine the slope of the hyperbolic function.

6.5 Simulation Results

To assess the performances of the proposed control strategy, simulations have been carried
out using a full vehicle model based on the real Renault Megane car Simulink model, see
Chapter 2, thus performing a truthful vehicle dynamics simulation. Moreover, to increase the
accuracy of the driver action for simulation, the simplified precision model used to represent
the neuromuscalar behaviour in the LEDM is replaced by a more complex precision model
[MK74]:

δfb(s)

ye(s)
= K

TLs+ 1

(TNs+ 1) · ( s2ωn
+ 2ς

ωn
s+ 1)

e−τs (6.23)

Other elements of the LEDM remain as presented in Sect. 3.3.1 from Chapter 3. However,
for simulation, the parameters that define a real human through a (faulty) LEDM are the
following:

Parameters Faulty
K 1/25
TL 0.3
TN 0.15
τ 0.18
Kv 1.7
Kff 0.81
ωn 19
ς 0.17

Moreover, to show the controller robustness faced to parameter uncertainties, the LPV
controller from Sect. 6.4 is synthesized assuming a longitudinal speed of vx = 35m/s whereas
the simulation is performed at a speed of vx = 40m/s.

The test scenarios presented to show the performance of the proposed ADAS system are
the following:



6.5. Simulation Results 131

1. Firstly, the Driver-Vehicle system is required to perform a double lane-change (DLC)
maneuver at high speeds without ADAS assistance (case referred to as Only Driver in
Fig. 6.7).

2. In a second simulation case, the Driver-Vehicle system performs the DLC maneuver at
high speeds with the aid of the integrated ADAS strategy (case referred to as With
ADAS in Fig. 6.7).

The collected data from the simulations are:

• in Fig. 6.6 information related to the controller reconfiguration is given: the relative
residual signal (up), the scheduling function (center) and finally the controller command
(down)

• in Fig. 6.7 it is shown useful information to compare the gains in performance and safety
thanks to the proposed scheme, the global car trajectory (up-left), the longitudinal
velocity along the simulation (up-right), the steering actions by the faulty driver δf
together with the total combined steering applied to the car δ = δf+δk and the expected
steering according to the nominal driver δ0 (down-left), and the lateral acceleration
(down-right)

From Fig. 6.6, it can be seen that the high speed DLC maneuver is demanding for the
faulty driver. This can be quantified thanks to the value of the relative residual r̂(k) reaching a
value on the order of 100, an important difference with respect to the nominal driver expected
steering behaviour. Such a large driver error leads the scheduling function ρ(k) to become
small, which then schedules the LPV controller to be able to act. Bringing the system to the
nominal scenario (r̂(k) ≃ 0) with a soft and safe trajectory.



132
Chapter 6. Reconfiguration of Lateral ADAS Steering Control in the Presence

of Driver Errors Using Combined Parity Space / LPV Approaches

0 50 100 150 200 250 300 350 400

-50

0

50

100

0 50 100 150 200 250 300 350 400
0

50

100

0 50 100 150 200 250 300 350 400
-2

0

2

Figure 6.6: Controller Scheduling and Command (DLC).

Significant differences in vehicle performance and safety between the open-loop case (with-
out ADAS) and the case with ADAS can be observed in Fig. 6.7. In the open-loop case where
only the driver is controlling the vehicle, there is a notable oscillation in the vehicle trajectory
that persists for a considerable duration after the DLC maneuver is completed. Such oscilla-
tions would be deemed unsafe in a real-world scenario. However, when the ADAS is active, the
steering applied by the controller results in a smoother trajectory. This improved trajectory
also leads to a 50% reduction in the lateral acceleration experienced by the vehicle during
the maneuver. This reduction enhances passenger comfort and, more importantly, increases
vehicle safety. High lateral accelerations at high speeds have the potential to cause rollovers
or over-steering, and the reduced lateral acceleration mitigates these risks.
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Figure 6.7: System Evaluation with/without Proposed ADAS (DLC).

From the steering angle information, Fig. 6.7 bottom-left, it can be seen that the actual
applied steering on the vehicle δ = δf + δk closely aligns with the simulated steering δ0
of the nominal LEDM employed in the controller design. This indicates that the nominal
LEDM significantly influences the controller performance by guiding the real driver steering
towards the expected steering behavior of the nominal driver. Consequently, the choice of the
driver model utilized in controller synthesis plays a critical role in achieving favorable ADAS
performance. Therefore, it is recommended to employ idealized nominal Driver Models that
exhibit desired behaviors during the synthesis stage. This selection ensures that the controller
is designed to align with the anticipated responses and characteristics of the nominal driver,
thereby enhancing the overall effectiveness of the ADAS system.

6.6 Conclusion

In this chapter, a novel approach to ADAS systems design for lateral vehicle steering has
been introduced. The method combines the Parity Space approach to quantify the driver
performance as a residual signal and a reconfigurable controller is designed using LPV/H∞
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control techniques. Using design varying parameters, the lateral ADAS controller was able to
adapt to the driver-vehicle criticality state. When the driver performance is good the control
action is penalized. However, when important driver errors are detected the controller helps
in improving the vehicle yaw stability by greatly decreasing trajectory oscillations, overshoots
and lowering lateral accelerations. The strategy was proven in simulation using a full vehicle
dynamical model of a Renault Megane Car. Thus showing that the proposed architecture
allows indeed to obtain a robust and safe ADAS controller while not being invasive to the
human driver in non-critical situations.

Serving as a preliminary study on the feasibility of the proposed ADAS strategy, the results
from this chapter show that it presents great potential. Following chapters will expand in these
results by including the longitudinal speed as a varying parameter on the LPV design and by
considering additional actuators in conjunction with the steering actuator. Furthermore, the
results of following chapters will benefit from the Grid Based DT-LPV framework introduced
in previous chapters, which can allow to improve synthesis performance in challenging control
designs.
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7.1 Introduction

This chapter introduces advancements to the integrated ADAS strategy discussed in Chapter 6.
Firstly, the presented ADAS strategy in this chapter incorporates the longitudinal vehicle
speed vx as a variable parameter in the LPV design. This modification impacts not only
the design of the lateral ADAS controller but also the approach to detecting driver errors. To
address the wide range of vehicle speeds, fault detection techniques capable of accommodating
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this variability are required. In this chapter, the driver error detection algorithm employs an
LPV PI observer.

Furthermore, the ADAS strategy presented in this chapter take advantage of the presence
of actuators beyond the steering wheel to modify the vehicle’s dynamic response. Specifically,
in this chapter it is considered the use of braking actuators to induce a moment on the yaw axis
of the car through differential braking [Dou+13]. Actuator coordination is accomplished by
introducing two design-related varying parameters that modulate the level of control authority
for each ADAS actuator command. The online LPV scheduling policy then assumes the
responsibility of selecting the appropriate actuator and determining the magnitude of its
contribution.

The contents of this chapter are based on the following publication:

• Ariel M. Borrell, Olivier Sename, and Vicenç Puig. “LPV lateral control for ADAS
based on driver performance monitoring”. In: IFAC-PapersOnLine 55.6 (2022). 11th
IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes
SAFEPROCESS 2022, pp. 685–690

7.1.1 Integrated LPV ADAS Strategy

The proposed ADAS strategy is depicted in Fig. 7.1. The human driver steers the vehicle,
but their actual driving dynamics and ability are unknown. To estimate the driver’s steering
performance, a PI Observer is employed, which compares the driver’s actions with those of
a virtual nominal driver, resulting in the estimated value f̂(k). This estimation serves as an
input for the design-related varying parameters ρ1 and ρ2, which are used to schedule the
ADAS controller and modulate the level of assistance. Specifically, ρ1 influences the steering
command δk, while ρ2 affects the magnitude of the differential yaw moment command Mz.
The LPV ADAS controller K(vx, ρ1, ρ2) operates in parallel with the human driver. The
purpose of the scheduling signals ρ1 and ρ2 is to limit the influence of the ADAS controller in
normal situations, while allowing for greater control authority when the driver’s performance
is poor.

Compared to the ADAS architecture presented in Chapter 6, the strategy depicted in
Fig. 7.1 incorporates two different actuators: additive steering and direct yaw moment control.
The fault detection approach for driver errors is also significantly different, utilizing an LPV
PI Observer. Additionally, the scheduling strategy involves generating two distinct design-
related parameters based on the estimation of driver errors. The relationship between these
parameters can be used to prioritize the use of one actuator over the other.

It is important to note that the external signals ye, kpath, and ψ̇ref in the scheme are
generated by a higher-level planner during the guidance stage, which falls outside the scope
of this work.
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Figure 7.1: Combined Driver Error Detection / ADAS Controller Scheme

7.1.2 Chapter Structure

The structure of the rest of the chapter is the following. Section 7.2 introduces the driver
model used in this chapter, whose parameters change with the vehicle speed. Section 7.3
introduces the fault detection approach for detecting driver errors based on a LPV PI observer
algorithm. Sec. 7.4 presents the joint driver-vehicle model used for lateral ADAS control
design. Then Sec. 7.5 explains the design and synthesis of the lateral ADAS controller as well
as the scheduling strategy used for the activation/deactivation of the LPV controller. Finally,
Sec. 7.6 presents simulation results validating the proposed integrated ADAS design.

7.2 An LPV Driver Model

The Driver Models (DM) explored in Chapter 3 are mostly LTI DM. However, one could
expect that the driver steering behaviour needs to adapt with changes in vehicle speed. To
evaluate this idea, the following simulation scenarios have been carried out to see whether the
vehicle speed has any influence on the DM performance:

1. First, the Lateral Error Driver Model (LEDM), see Sect. 3.3.1 from Chapter 3, is used
to provide the steering angle in order to perform a Double Lane Change (DLC) at a
longitudinal speed of vx = 40m/s. The vehicle model used for simulation being the full
model Renault Megane Simulink model, see Chapter 2. The parameters of the LEDM
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are selected to perform such a maneuver with a smooth trajectory and no overshoot,
and are given in Table 7.1.

Table 7.1: DM Parameters

Parameter Value
K 1/26
TL 0.3
TN 0.1
τ 0.1
Kv 1.4
Kff 0.85

2. Then, the same LEDM is used to steer the Renault Megane car during the DLC maneuver
considering now a vehicle speed of vx = 25m/s.

The results of the simulated vehicle trajectories are given in Fig 7.2. In blue it is given
the result from the first scenario, while in red it is presented the observed trajectory during
the second simulation scenario. As expected, a LTI DM cannot reproduce the same vehicle
behaviour over a large range of speeds. It can be seen that by employing a unique LTI DM we
obtain large variations of the car trajectory from 25m/s compared with the test at 40m/s.

0 50 100 150 200 250 300 350
-1

0

1

2

3

Figure 7.2: Steering test of one LTI DM at different speeds

Recall from the ADAS strategy presented in Chapter 6, that the use of a nominal DM is
key both for driver error detection and for lateral ADAS controller synthesis. For this reason,
it is desired to obtain a nominal DM that presents a unified performance across the whole
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range of speeds in terms of trajectory overshoot and reduced lateral accelerations. This can
be done by modifying the LEDM incorporating some dependency on the speed velocity. The
modified LPV LEDM used for the following of this chapter is given in Fig. 7.3.

Figure 7.3: LPV Lateral Error Driver Model

Note that the gain K in the LPV-LEDM has been modified to be parameter dependent,
and denoted K(vx). This modification alone allows to produce an homogeneous driver/vehicle
performance in terms of vehicle trajectory for a wide range of speeds. The values for K(vx) are
selected such that the driver-vehicle system could achieve a similar DLC maneuver without
trajectory overshoots and gentle lateral accelerations (ay ≤ 5m/s2) over the range of speeds
of interest. This was done by carrying similar simulations to those described earlier in order
to obtain the results presented in Fig. 7.2. The chosen values for K(vx) at different speeds
are the following:

Table 7.2: Values of K(vx) for Different Speeds

vx [m/s] 25 30 35 40
K 1/11 1/17.5 1/21 1/26

Remark 7.1
The information from Table 7.2 can be used to obtain a suitable value for K(vx) for any vx
within the range of 25m/s to 40m/s by interpolation or by fitting the data to some polynomial
function.

Notice that the values of the parameter dependent gain K(vx) decrease with vx. This
makes physical sense, as it is to be expected that at higher speeds the amount of steering gain
required will be smaller than at lower speeds.

From the LPV LEDM presented in Fig. 7.3, it can be seen that the model is characterized
with the set of parameters

P = {K(vx), TL, TN , τ,Kv,Kff} ∈ R6 (7.1)

Let us first consider a nominal LPV LEDM with parameters P0 ∈ P. The parameter values are
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chosen to be those from Table 7.1, except for the gain K(vx) which is chosen to be velocity
dependent and with varying value based on the information from Table 7.2 and computed
according to Remark 7.1.

Then, this nominal DM is represented into a discrete LPV state-space model (considering
a sample time Ts = 0.01s) as follows:

{
xd(k + 1) = A0 · xd(k) +B0 · ud(k)
δd(k) = C0(vx) · xd(k) +D0(vx) · ud(k)

(7.2)

with

ud(k) =

[
ye(k − τ0/Ts)

kpath(k)

]
(7.3)

where xd ∈ R is the state of the DM, ud ∈ R2 are the inputs of the driver model and δd ∈ R is
the steering output of the DM. Notice that the pure delay in Fig. 7.3, is treated in Eq. (7.3)
as an input delay where τ0 ∈ P0. Notice also that the output matrices of the DM depend on
the longitudinal velocity, as these terms are function of K(vx).

Different from the nominal DM, the steering of a real driver δf is modelled as the following
additive fault representation:

δf (k) = δd(k) + f(k) (7.4)

7.3 Driver Error Detection

7.3.1 PI Observer for Driver Error Estimation

The objective is now to synthesize a PI observer in order to estimate the additive fault f ,
which according to Eq. (7.4) can be interpreted as the human error with respect the nominal
LPV LEDM. In that framework, the fault f is assumed to be such that ḟ = 0, which could
be conservative since it means that the theoretical approach is valid only for a slow varying
fault (even if the results will show the efficiency of the approach when f varies).

By incorporating f(k) as a state variable, the extended faulty driver model is then given
by: 




[
x+d
f+

]
=

[
A0 0

0 1

]
·
[
xd
f

]
+

[
B0

0

]
· ud

δf =
[
C0(vx) 1

]
·
[
xd
f

]
+D0(vx) · ud + d̄

(7.5)

where the disturbance input d̄ ∈ R represents high-frequency uncertainties to account for
possible unmodeled dynamics neglected in the simplified nominal LPV LEDM as well as
sensor noise.
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The above driver error f can then be estimated with the aid of an LPV PI observer of the
form: 




[
x̂+d
f̂+

]
=

[
A0 0

0 1

]
·
[
x̂d
f̂

]
+

[
B0

0

]
· ud − L(vx) · (δf − δ̂f )

δ̂f =
[
C0(vx) 1

]
·
[
x̂d
f̂

]
+D0(vx) · ud

(7.6)

According to Eq. (7.6) and with the interconnection as shown in Fig. 7.4 the extended observer
error dynamics are given by Eq. (7.7).

{
x+O = (A(vx) + L̃(vx)C(vx)) · xO + (Bw(vx) + L̃(vx)Dw(vx)) · d
ze = Cz(vx) · xO

(7.7)

with xO ∈ R2+nD+nF the states of the extended error dynamics (with nD the order of the
high-pass filter WD and nF the order of the low-pass filter WF ) and ze ∈ R the estimation
error for the additive fault f and where

L̃(vx) =



L(vx)

01×nD

01×nF


 (7.8)

In Fig. 7.4, WD is a high-pass filter approximating the high-frequency uncertainties due to
possible unmodeled dynamics and sensor noise. WF is a low-pass filter used to ensure the
observer estimation convergence performance at low-frequencies.

Figure 7.4: PI Observer Error Dynamics Interconnection with Filters WD and WF

The shaping filters have been considered as digital Butterworth filters. The low-pass filter
WF has been chosen with cut-off frequency at 2.5Hz and of order nF = 6. Meanwhile, the
high-pass filter WD is chosen with cut-off frequency at 4Hz and order nD = 2. In Fig. 7.5 the
magnitude frequency response is presented for the used shaping filters WF and WD.

7.3.2 Observer Synthesis

Considering the LPV Extended Observer Error Dynamics Eq. (7.7), the objective for observer
gain L(vx) synthesis is to minimize the induced L2 norm of the LPV PI observer Eq. (7.6)
estimation error from disturbance d to observer estimation error ze.

∥ze∥2 ≤ γ∞∥d∥2 (7.9)
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Figure 7.5: Bode magnitude plot for the DT filters WD and WF used to shape the H∞ PI
Observer.

The synthesis for the observer gain L(vx) will be carried out using the dual approach to
the Parameter-Dependent State-Feedback (PDSF) synthesis seen in Chapter 4. For the two-
step synthesis procedure of the LPV/H∞ observer gain, the first step consists in applying
the Bounded Real Lemma (BRL), as seen in Theorem 1.2, over the extended observer error
dynamics in Eq. (7.7). The existence of such observer gain L(θ) can be tested according to
the following proposition.

Proposition 7.1
Consider the DT-LPV observer error dynamics Ξ(ρ), with parameter space Ω ∈ Rm gridded
by a grid space G ∈ Ω and assuming bounded parameter rate of variation ν ∈ Rm such that
∀gp ∈ G there exists a bounding polytope Vp for g+p with 2m vertices gvp ∈ Vp, and scalar γ∞ > 0.
If there exist constant matrices X0, . . . ,XN, which form a symmetric positive-definite PDLM
X(ρ) ∈ Rnx×nx with basis function θ(ρ) = (1, θ1, . . . , θN ), with θn ∈ R, n = 1, . . . , N , and a
set of matrices Gp ∈ Rnx×nx such that for all (gp, gvp) pairs the following condition holds

N T
M (θp)




Gp
T +Gp −X(θvp) Gp

TA(θp) Gp
TBw(θp) 0

⋆ X(θp) 0 CTz (θp)

⋆ ⋆ γ∞I 0

⋆ ⋆ ⋆ γ∞I


NM (θp) > 0 (7.10)

with

X(θp) = X0 +
N∑

n=1

θn,pXn, (7.11)

X(θvp) = X0 +

N∑

n=1

θvn,pXn, (7.12)
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NM (θp) = ker(
[
0 C(θp) Dw(θp) 0

]
), (7.13)

then, there exists an observer gain L(ρ) such that the observer error dynamics Ξ(ρ) are robustly
stable and γ∞ is an upper bound on its induced L2-norm.

Proof. This Proposition is the dual version of the more standard control problem solution,
presented in Proposition 4.2.

Concerning the synthesis of the observer gain L(vx) for the driver fault estimation observer
Eq. (7.6), the following frozen grid points for the time-varying parameter vx are chosen

vxi = [25, 27.5, 30, 32.5, 35, 37.5, 40] (7.14)

The maximum parameter variation rate for the longitudinal speed between sampling instances
is assumed as ν = 3 · Ts, with sampling time Ts = 0.01s.

Then, considering the following structure for the PDLM X(vx) for the observer gain syn-
thesis problem:

X(vx) = X0 +
1

vx
X1 +

1

v2x
X2, (7.15)

the existence of an observer gain that can render stable the Extended Observer Error Dynamics
in Eq. (7.7) and minimize its induced L2-norm can be tested solving Proposition 7.1 as a
minimization problem over γ∞. This was implemented with the parser Yalmip [Löf04] and
solved employing the SDPT3 solver [TTT04] finding an upper bound on the induced L2-norm
of γ∞=0.13. Note that the structure of the PDLM X(vx) in Eq. (7.15) is chosen with the
objective of imitating the decreasing value of the LPV LEDM gain K(vx) as seen in Table 7.2.

Employing the numerical solutions from Proposition 7.1 for the values of the PDLM X(vx)

and the set of slack matrices G(vx), the following proposition allows to compute a Parameter-
Dependent observer gains for L(vx).

Proposition 7.2
Consider the DT-LPV observer error dynamics Ξ(ρ), with parameter space Ω ∈ Rm gridded by
a grid space G ∈ Ω and assuming bounded parameter rate of variation ν ∈ Rm such that ∀gp ∈ G
there exists a bounding polytope Vp for g+p with 2m vertices gvp ∈ Vp, and scalar γ∞. Moreover,
consider a given symmetric positive-definite PDLM X(ρ) ∈ Rnx×nx and a set of matrices
Gp ∈ Rnx×nx , both computed as the solutions to Proposition 7.1. If there exist constant
matrices L0, . . . ,LN, which form a Parameter-Dependent observer gain L(ρ) ∈ Rnx×ny with
basis function θ(ρ) = (1, θ1, . . . , θN ), with θn ∈ R, n = 1, . . . , N such that for all (gp, gvp) pairs
the following condition holds

Ψ(θp, θ
v
p) + He







GTp
0

0

0


L(θp)

[
0 C(θp) Dw(θp) 0

]

 > 0 (7.16)
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where

L(θp) = L0 +

N∑

n=1

θn,pLn, (7.17)

Ψ(θp, θ
v
p) =




GTp +Gp −X(θvp) GTpA(θp) GTpBw(θp) 0

⋆ X(θp) 0 CTz (θp)

⋆ ⋆ γ∞I 0

⋆ ⋆ ⋆ γ∞I


 (7.18)

then, the observer error dynamics Ξ(ρ) are exponentially stable and γ∞ is an upper bound on
its induced L2-norm.

Proof. This proposition is the dual version of the more standard control problem solution,
presented in Proposition 4.3.

Proposition 7.2 was also implemented with the parser Yalmip [Löf04] and solved employing
the SDPT3 solver [TTT04]. This was done enforcing the following parameter dependent
structure on the observer gain L(vx):

L(vx) = L0 +
1

vx
L1 +

1

v2x
L2 (7.19)

Recall that the observer gain vector L̃(vx) in the extended observer error dynamics Eq. (7.7)
is augmented with a vector of zeros. As a result, in Proposition 7.2 the observer gain vector
is implemented according to Eq. (7.8) with the parameter-dependent structure L(vx) as in
Eq. (7.19).

7.4 Integrated Driver-Vehicle Control Oriented Model

To tackle the design of the ADAS controller, the control-oriented model considers the joint
driver-vehicle system. To incorporate the driver in the control loop, the nominal LPV LEDM
from Fig. 7.3 is considered, modified according to the relationship:

kpath =
ψ̇ref
vx

(7.20)

This results in the inputs to the control-oriented LPV LEDM being:

ud =
[
ye ψ̇ref

]T , (7.21)

and with feedforward gain given as Kv/vx. As explained in Remark 3.1 from Chapter 3, this
change of variable is done in order to describe the inputs of the control-oriented LPV LEDM
in terms of the reference signals used for control design. Note that due to this change of
variables, the longitudinal speed vx acts as a time varying parameter for the feedback DM
path due to the gain K(vx) and for the feed-forward path due to the change of variables in
Eq. (7.20).
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On the other hand, for modeling the lateral dynamics of the vehicle it is used the extended
Bicycle Model according to Definition 2.2 with the given parameters of the Renault Megane
car in Table 2.1. Recall that this extended model considers the presence of a moment of force
Mz on the yaw axis as a second control input.

The generated yaw moment Mz on the Renault Megane car is assumed to be produced
by means of differential braking, with braking torques Tbrl and Tbrr for the left and right rear
wheels respectively, computed according to the following relations:

Tbrl =

{
R·Mz
tf

, if Mz ≥ 0

0, otherwise
, Tbrr =

{
−R·Mz
tf

, if Mz < 0

0, otherwise
(7.22)

where R is the radius of the wheel and tf is the distance from the wheel to the center-line
of the car, see Chapter 2. Finally, the interconnection of the driver-vehicle open-loop system
Gsys(vx) can be seen in Fig. 7.6.

Figure 7.6: Integrated Driver-Vehicle Control Model

7.5 Robust Lateral LPV ADAS Control

7.5.1 LPV/H∞ ADAS Control Design

The control problem is here formulated according to the induced L2-norm Parameter-Dependent
State-Feedback (PDSF) control problem given in Definition 4.2. The generalized plant P
for the induced L2-norm problem including the State-Feedback ADAS controller is given in
Fig. 7.7.

Note that performance weights are included to tackle the different objectives. The weight
We shapes the tracking performances (through the sensitivity function S) from the reference
ψ̇ref to the tracking error eψ̇ = ψ̇ref − ψ̇, and is given by:

We = ZT
(
s/M + 2πf1
s+ 2πf1εe

)
(7.23)
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Figure 7.7: LPV / H∞ Generalized Plant P for the State-Feedback Problem

with M = 2 to ensure robustness at all frequencies, f1 = 3Hz to set the closed-loop system
bandwidth and εe = 0.1 to ensure a closed-loop steady-state error less than 10%.

The weight Wδ(ρ1) is dedicated to the steering control performance (through the control
sensitivity function KS from ψ̇ref to the controller output δk). It is chosen as an LPV system
of the form:

Wδ(ρ1) = ZT
(
ρ1 · G0 (s/2πf2 + 1)(s/2πf3 + 1)

(αδs/2πf2 + 1)(s/αδ2πf3s+ 1)

)

G0 =
(αδ∆f/2πf2 + 1)(∆f/αδ2πf3 + 1)

(∆f/2πf2 + 1)(∆f/2πf3 + 1)

∆f = 2π(f2 + f3)/2

(7.24)

which is a band-pass filter extended from [GGK08]; [PV+11]. The objective of such a filter is to
constraint the controller commands in the frequency range between f2 = 1Hz and f3 = 10Hz,
where it can affect the vehicle dynamics while not being felt intrusive to the driver, who is
mainly sensitive to low steady-state frequencies (≤ 1Hz) and very high frequencies vibrations
(≥ 10Hz) acting on the steering wheel. The constant αδ is used to set a maximum actuator
gain of less than 2◦ in absolute magnitude for a change in yaw rate reference |∆ψ̇ref |= 1rad/s.

The weight WMz(ρ2) is dedicated to the direct yaw moment control performance (through
the control sensitivity function KS from ψ̇ref to the controller output Mz). It is chosen as an
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LPV system of the form:

WMz(ρ2) = ZT
(
ρ2 · G0 (s/2πf2 + 1)(s/2πf3 + 1)

(αMzs/2πf2 + 1)(s/αMz2πf3s+ 1)

)

G0 =
(αMz∆f/2πf2 + 1)(∆f/α2πf3 + 1)

(∆f/2πf2 + 1)(∆f/2πf3 + 1)

∆f = 2π(f2 + f3)/2

(7.25)

Note that the band-pass filter WMz(ρ2) cutoff frequencies f2 and f3 are the same as for the
filter Wδ(ρ1). That is f2 = 1Hz and f3 = 10Hz. The constant αMz is used to set a maximum
yaw moment gain such that the braking torque Tb according to Eq. (7.22) results in less than
1200Nm in absolute magnitude for a change in yaw rate reference |∆ψ̇ref |= 1rad/s..

Notice that control performance weights Wδ(ρ1) and WMz(ρ2) can be modified indepen-
dently by the scheduling signals ρ1 and ρ2. When the scheduling functions present high
values, they penalize the corresponding control action. On the other hand, when they are at
values ρi ≈ 1, the corresponding control command is given control authority to aid the driver.
These design varying parameters can then be exploited to activate/deactivate by means of
LPV scheduling the ADAS control action based on some desired objective. In the case of
the presented ADAS strategy, the scheduling rules are based on the estimation of the driver
performance. Details will be given in Sect. 7.5.4

7.5.2 LPV/H∞ State-Feedback Synthesis

The synthesis of the LPV/H∞ controller is here carried employing the Parameter-Dependant
State-Feedback (PDSF) approach introduced in Chapter 4. In order to pose the control
problem as a finite dimension LMI optimization problem the parameter grid and local bounds
approach is used, see Sect. 4.2 from Chapter 4. The considered frozen grid values for each
varying parameter are:

vx,p = [25, 27.5, 30, 32.5, 35, 37.5, 40] (7.26)

ρ1,p = [1, 10, 100] (7.27)

ρ2,p = [1, 10, 100] (7.28)

The vector of maximum variation rates of the varying parameters is assumed as ν = [3, 600, 600]·
Ts, where the sampling time is Ts = 0.01s.

At each grid-point it is then possible to build the generalized plant for LPV/H∞ design
illustrated in Fig. 7.7. For each grid-point, the driver/vehicle system Gsys(vx,p) is discretized
using the exact zero-order-hold discretization method. The performance weights We, Wδ(ρ1,p)

and WMz(ρ2,p) are discretized at each grid-point using the Tustin discretization method.
Putting all these elements together according to Fig. 7.7, define the open-loop generalized
plant at a frozen grid-point P (vx,p, ρ1,p, ρ2,p) as:

{
x+P = A(vx,p, ρ1,p, ρ2,p) · xP +Bu(vx,p, ρ1,p, ρ2,p) · u+Bw(vx,p, ρ1,p, ρ2,p) · w
z = Cz(vx,p, ρ1,p, ρ2,p) · xP +Du(vx,p, ρ1,p, ρ2,p) · u+Dw(vx,p, ρ1,p, ρ2,p) · w

(7.29)
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where xP ∈ R8 are the states of the generalized plant, u ∈ R2 are the control inputs, w ∈ R2

are the exogenous inputs and z ∈ R3 are the exogenous outputs.

Then, considering the following structure for the PDLM X(vx, ρ1, ρ2) for the ADAS con-
troller problem:

X(vx, ρ1, ρ2) = X0 + vxX1 +
1

vx
X2 + ρ1X3 + ρ2X4 (7.30)

The existence of the LPV ADAS controller K(vx, ρ1, ρ2) can be tested using Proposition 4.2.
Implemented with the parser Yalmip [Löf04] and solved employing the SDPT3 solver [TTT04].
The found bound on the induced L2-norm had a large value, however, the frequency domain
and time domain results prove that the synthesis was satisfactory.

From the solution to Proposition 4.2 we now have numerical values for the PDLMX(vx, ρ1, ρ2)

and the set of slack matrices G(vx, ρ1, ρ2). Using these numerical values, we can solve the LMI
optimization problem from Proposition 4.3 in order to compute the gains of a PDSF controller
as seen in Definition 4.1. For this, we select a PDSF controller with the following fixed struc-
ture

K(vx, ρ1, ρ2) = K0 + vxK1 +
1

vx
K2 + ρ1K3 + ρ2K4 (7.31)

Employing this choice of structure for the PDSF controller K(vx, ρ1, ρ2), Proposition 4.3 can
be solved with K0, . . . ,K4 as the only decision variables to be found.

7.5.3 Frequency Analysis of the Control Design

A first validation of the controller design is carried out on the frequency domain. In Fig. 7.8
it is presented the Controller Sensitivity transfer function from yaw rate reference ψ̇ref to the
steering control output δk computed at frozen grid-point values of the resulting LPV closed-
loop system according to the generalized plant scheme shown in Fig. 7.7. Fig. 7.8 presents the
Controller Sensitivity transfer function from yaw rate reference ψ̇ref to the direct yaw moment
control output Mz.

From the frequency domain results it can be observed that for both control actions the
effect of increasing the value of the related design-related parameter ρi, i = 1, 2, translates in
a significant reduction in control authority for the respective actuator. On the other hand,
for both Controller Sensitivity transfer functions it is seen that the resulting LPV closed-loop
system does not respect the actuator constraints set at low frequencies for low values of ρi.
This is not considered a concerning issue as the overall maximum actuator gains are respected.
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Figure 7.8: Controller Sensitivity Transfer Function KS = δ
ψ̇ref

versus actuator performance
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7.5.4 Fault Dependent Scheduling Functions

In the following, the scheduling strategy for the design varying parameters ρ1 and ρ2 is de-
scribed. As can be seen from the integrated ADAS strategy scheme in Fig. 7.1, the ADAS
controller scheduling depends on the driver fault estimation, presented in Sect. 7.3. The driver
fault estimation f̂ is not directly used, but the relative fault instead:

f̄(k) =
f̂(k)

f0
, (7.32)

where f0 is a threshold value defining the maximum additive fault estimation not considered
as an actual fault.

The scheduling functions for the design varying parameters ρ1 and ρ2 are chosen as hyper-
bolic functions of the absolute value of the relative fault, e.g |f̄ |. The plot of the scheduling
functions ρi(|f̄ |), i = 1, 2 given in Fig. 7.10.

According to Fig. 7.10, the ADAS controller scheduling strategy is as follows. When the
estimated driver error is low, both scheduling function compute to ρi ≈ 100, i = 1, 2. This
value for the design varying parameters ρ1 and ρ2 represent grid-points where the control
actions are heavily penalized. As a result the ADAS controller output will be null and the
driver does not receive any aid in this scenario.

As the driver error grows, the varying parameter ρ2 is scheduled to descend progressively
towards ρ2 = 1, activating the use of the direct yaw control action Mz. As the driver error
reaches |f̄ |≥ 10 the yaw moment control action Mz is from there given full control authority,
with performance constraints WMz(ρ2) in Eq. (7.25).

On the other hand, the additive steering action δk only gets fully activated at |f̄ |≥ 45.
This represents that the additive steering actuator only receives control authority when driving
errors are above the critical value set at |f̄ |≥ 30, corresponding to dangerous situations. Note
that|f̄ | according to Eq. (7.32) gives a direct quantification of how much the real driver steering
is deviating from the assumed nominal behaviour.

This scheduling choice for ρ1 and ρ2 has the objective of prioritizing the use of the yaw
moment control action Mz in the ADAS controller over additive steering δk. The overall
goal with this decision being to attempt not to interfere with the driver steering unless it is
ultimately required.
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Figure 7.10: Driver Error Based Scheduling Functions

7.6 Simulation Results

The performance of the proposed integrated lateral ADAS strategy is here validated in simula-
tion. To simulate the vehicle dynamics it is considered the full car model of a Renault Megane
developed in the previous thesis work [FSD16], see Chapter 2. To simulate the human driver
steering (faulty driver) it is used the LPV LEDM presented in Fig 7.3. The vehicle speed is
varying throughout the simulations, with the profile of the longitudinal vehicle speed vx given
in Fig. 7.11.
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Figure 7.11: Longitudinal Speed Profile of the Vehicle During Simulations

Two simulation scenarios are tested:

1. In the first scenario the driver must perform a Double Lane Change emergency maneuver
without ADAS assistance.
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2. In the second scenario the same DM must perform the same maneuver, this time with
ADAS assistance enabled.

The simulations were performed considering ten randomly generated drivers profiles. The
range in which the randomized faulty LPV LEDM parameters can lie are given in Table 7.3.
Additionally, as a reference comparison with the faulty driver parameter range used for simu-
lation, Table 3.1 presents the values of the nominal LPV LEDM used for control and observer
synthesis.

Table 7.3: DM Parameters

Parameter Nominal Faulty Range
TL 0.3 [0.2, 0.3]
TN 0.1 [0.14, 0.25]
τ 0.1 [0.15, 0.22]
Kv 1.4 [1.1, 1.5]
Kff 0.85 [0.75, 0.85]

Information on the the simulation results for both scenarios are shown in Fig. 7.12. This
figure presents at the top, data from the scenario without assistance. The vehicle trajectory
on the X and Y global coordinate frame given at the top-left and vehicle lateral acceleration
at the top-right. At the bottom of Fig. 7.12, data for the case when ADAS assistance is active
is shown, the vehicle trajectory at the bottom-left and the vehicle lateral acceleration at the
top-right.

From the results in Fig. 7.12 it can be seen that in the case without ADAS, the performance
between generated drivers are very different. Some have very poor performances, which in a
real scenario would lead to an accident if such maneuver is carried. Meanwhile, some of the
simulated drivers can accomplish the DLC in a safer manner, although some oscillations are
still present in their trajectory.

In the scenario where the ADAS controller is used, it can be seen that the performances
are quite homogeneous in between all ten drivers, both in terms of the vehicle trajectory
and lateral acceleration. More importantly, vehicle stability was achieved for all drivers when
employing the ADAS controller. The trajectories during the DLC can be seen to be smoother,
and once finished the DLC, oscillations in the trajectories are greatly reduced. Moreover, in
the scenario with ADAS, the lateral acceleration the vehicle experiences are less than half of
those in the case without ADAS. This is significant as high values of lateral acceleration at
high-speeds can cause the vehicle to over-steer.
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Figure 7.12: Driving Comparison with and without ADAS During DLC Maneuver

Information regarding the controller scheduling and controller commands for scenario em-
ploying the integrated ADAS strategy can be found in Fig. 7.13 and Fig. 7.14. For the sake of
clarity of presentation, each figure represents data from a single driver, Fig. 7.13 and Fig. 7.14
correspond to the worst and best performers respectively out from the ten generated drivers.

Both figures present on top the scheduling signals used to modulate the magnitude of the
controller actions. It is shown on the top-left ρ1 (affects the additive steering command δk)
and at the top-right ρ2 (affects the differential torque Mz command). On the bottom, it is
shown the control signals computed by the LPV ADAS controller. On the bottom-left it is
given the additive steering command δk and on the bottom-right the braking torque command
for the left (Tbrl) and right (Tbrr) rear wheels, computed according to Eq. (7.22) from the Mz

output of the controller.



154
Chapter 7. LPV Lateral Control for ADAS Based on Driver Performance

Monitoring and Using Joint Steering and Braking Actuators

0 100 200 300
0

50

100

0 100 200 300
0

50

100

0 100 200 300

-1

0

1

0 100 200 300
0

500

1000

1500

Figure 7.13: Scheduling Signals and Actuator’s Commands for the Case of Worst Driver
Performance

For the worst case driver, Fig 7.13, it can be seen that an important driver error is being
estimated, as both scheduling functions reach low values. According to the scheduling design
in Fig. 7.10, this represents and estimated driver error residual |f̄ |≥ 45. Therefore, the LPV
scheduling reconfiguration needs to activate the additive steering control input to assist the
driver successfully. From the scheduling signals, it can be seen that they only get activated
during the critical DLC maneuver. Once this critical phase has passed, they return quickly to
the deactivated status, not interfering the driver afterwards.

For the best driver case, in Fig. 7.14, the magnitude of driver error estimated is smaller. As
a result, the steering command is not activated. Moreover, the commanded braking torques
are half in magnitude than those of the previous case. In conclusion, the best case driver
receives aid during the critical DLC but as his driving performance allow to complete the
DLC in safer manner, the amount of aid is minimized when compared with a bad driver.
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Figure 7.14: Scheduling Signals and Actuator’s Commands for the Case of Best Driver Per-
formance

7.7 Conclusion

In this chapter, a lateral control strategy for ADAS has been presented, which takes into
account a wide range of vehicle speeds and the coordination of multiple actuators. Through
simulation results, it was demonstrated that the proposed LPV driver error estimation and
ADAS controller strategy successfully achieves the objectives of the ADAS system. These
objectives include minimizing the interference of ADAS in the driver’s experience without
compromising safety when necessary, all while remaining robust to various driver behaviors
and changes in vehicle velocity.

The effectiveness of the proposed strategy was evaluated using simulated driver models
representing a diverse range of driver profiles. The results indicated that for drivers with poor
performance, the ADAS strategy was able to maintain vehicle stability in critical scenarios.
However, for highly skilled drivers in the same scenario, the level of assistance provided by the
ADAS system was significantly reduced. This demonstrates the adaptability of the integrated
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LPV ADAS strategy, which is achieved through the use of design-related varying parame-
ters and a scheduling strategy based on driver performance estimation. Proven effective and
adaptable, the next chapter will focus on the experimental validation of the ADAS strategy
on the Scaled Automated Vehicle (SAV) platform with multiple Test Drivers.
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8.1 Introduction

This chapter presents an ADAS strategy to be tested experimentally on the SAV car. This
strategy draws from the lessons learned in the LPV ADAS design discussed in Chapter 6 and
7 and from the autonomous lateral controller presented in Chapter 5. The strategy revolves
around the utilization of a PI observer to detect driver errors, similar to what was introduced
in Chapter 7. The detected driver error is then used to determine the amount of steering
assistance provided by the ADAS system.
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With regards the lateral ADAS controller, one of the novel elements introduced in this
chapter is the inclusion of a Heading Error Driver Model (HEDM) in the joint driver-vehicle
model utilized as the controlled system plant. Additionally, the controller design presented
here incorporates recommendations from [WGP00] regarding the use of design-related varying
parameters, similar to what was discussed in Chapter 5. As a result, the design-related
parameter modifies both the actuator and tracking error performances on the LPV/H∞ design,
which differentiates it from the design approaches in Chapter 6 and Chapter 7.

However, the overall philosophy and objectives of the integrated ADAS strategy remains
unchanged. An important objective of this chapter, with regards the experimental valida-
tion, is to prove whether the driver error detection based on model based fault detection
techniques presents an appropriate correlation with real dangerous or anomalous driving situ-
ations. Moreover, it is of interest to validate whether the lateral LPV ADAS controller design
actually provides an efficient aid without feeling invasive when tested by multiple drivers.

The contents of this chapter have been recently developed and have not yet been published
at the time of writing this thesis manuscript.

8.1.1 Integrated LPV ADAS Strategy

The proposed strategy for the ADAS system is presented in Fig. 8.1. It is very similar to the
strategy introduced in Chapter 6 and Chapter 7. The strategy presented in this chapter uses
only the steering actuator. To control the magnitude of the steering aid it is introduced the
design-related varying parameter ρ which modifies the controller by means of LPV scheduling.
As in Chapter 7, the scheduling is based on the estimation of driver errors made by a PI
observer which compares the vehicle-road information with the actual steering of driver.

The most important distinction is that this strategy will be validated experimentally,
with the SAV platform used for this purpose. This is illustrated in Fig. 8.1 with a joystick
representing the way in which the human driver inputs its steering commands. This joystick
allows a person to manually drive the SAV car along a desired trajectory, providing a means
to test the effectiveness of the various components of the ADAS strategy. Specifically, the
experiment will assess the performance of the model-based driver error detection and the
LPV/H∞ ADAS controller, ensuring that they function as intended in a real-world driving
scenario.

8.1.2 Chapter Structure

The structure of the rest of the chapter is the following. Sec. 8.2 introduces the fault detection
approach for detecting driver errors based on a PI observer algorithm. Section 8.3 presents
the joint driver-vehicle model used for lateral ADAS control design. Then Sec. 8.4 explains
the design and synthesis of the lateral ADAS controller as well as the scheduling strategy used
for the activation/deactivation of the LPV controller. Finally, Sec. 8.5 presents experimental
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Figure 8.1: Combined Driver Error Detection / ADAS Controller Scheme on the SAV platform.

results obtained with multiple Test Drivers after driving on the SAV platform with the aid of
the proposed integrated ADAS design.

8.2 Driver Error Detection

8.2.1 PI Observer for Driver Error Estimation

The strategy for the detection of driver errors is similar to that followed in Sec. 7.3 from
Chapter 7. The objective is here to synthesize a PI observer in order to estimate faults in
the driver steering action. As a nominal driver model behaviour it is used the Lateral Error
Driver Model (LEDM), see Sec. 3.3.1 from Chapter 3, with the following set of parameters:

Table 8.1: Nominal LEDM Parameters Used for Driver Error Detection

Parameter Value
K0 1
TL0 0.3
TN0 0.1
τ0 0.1
Kv0 0.26
Kff0 0.80
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Then, this nominal LEDM is represented into a discrete LTI state-space model (considering
a sample time Ts = 0.02s) as follows:

{
x+d = A0 · xd +B0 · ud
δ0 = C0 · xd +D0 · ud

(8.1)

with

ud(k) =

[
ye(k − τ0/Ts)

kpath(k)

]
(8.2)

Different from the nominal LEDM, the steering of a real driver δf is modelled as the
following additive fault representation:

δf = δ0 + f̄ (8.3)

A visual representation of the faulty driver model is provided in Fig. 8.2. The signal f̄ is
the filtered additive fault such that the additive fault f signal is passed through the band-pass
filter WF :

WF = ZT
(
G0 (s/2πf1 + 1)(s/2πf2 + 1)

(αfs/2πf1 + 1)(s/αf2πf2s+ 1)

)

G0 =
(αf∆f/2πf1 + 1)(∆f/αf2πf2 + 1)

(∆f/2πf1 + 1)(∆f/2πf2 + 1)

∆f = 2π(f1 + f2)/2

(8.4)

The objective behind this filter is to limit the frequency range in which the additive
fault f affects the nominal LEDM. For this, the cutoff frequencies in WF are chosen with
f1 = f2 = 0.85Hz in Eq. (8.4). A narrow frequency band for WF around f = 0.85Hz limits
the effect of constant and low frequencies discrepancies between the real driver and nominal
LEDM. The objective of this decision can be better explained with the following example:

Picture an scenario were a driver is driving with a constant lateral error offset ye with
respect the center line of the road lane. This lateral error would produce a steering action δ0
from the nominal LEDM. However, as this offset is maintained constant it cannot be concluded
that this error is dangerous, it is in all likelihood a driving style preference. Consequently,
this scenario should not be categorized as a faulty situation that requires the intervention of
the ADAS system.

Thus, limiting the frequency range of the additive fault f by the the shaping filter WF is
another attempt to limit the impact that the proposed integrated ADAS strategy can cause
on the driving experience. Recall that the objective behind our proposed ADAS strategies
is to not feel invasive on the driver style preferences and only act when dangerous errors are
detected.
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Figure 8.2: Faulty Driver Model with Filtered Fault

In the PI Observer framework, the fault f is assumed to be such that ḟ = 0, which could
be conservative since it means that the theoretical approach is valid only for a slow varying
fault (even if the results will show the efficiency of the approach when f varies).

By incorporating f as a state variable, the extended faulty driver model is then given by:
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xd
xf
f


+D0 · ud + d̄

(8.5)

where the disturbance input d̄ ∈ R represents high-frequency uncertainties to account for
possible unmodeled dynamics neglected in the nominal LEDM as well as sensor noise and Af ,
Bf , Cf , and Df are the system matrices of the DT-SS representation of the filter WF , which
is discretized using the Tustin method.

The above driver error f can then be estimated with the aid of an LPV PI observer of the
form: 
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·



x̂d
x̂f
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+D0 · ud

(8.6)

with L ∈ R4 the observer gain.

According to Eq. (8.6) and with the interconnection as shown in Fig. 8.3 the extended
observer error dynamics are given by Eq. (8.7). Note that in Fig. 8.3, WD is a high-pass filter
approximating the high-frequency uncertainties due to possible unmodeled dynamics. The
observer error dynamics are given by

{
x+O = (A+ L̃C) · xO + (Bw + L̃D) · d
ze = Cz · xO

(8.7)
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with xO ∈ R4+nD the estates of the extended error dynamics (with nD the order of the
high-pass filter WD) and ze ∈ R the estimation error for the additive fault f and where

L̃(vx) =

[
L(vx)

01×nD

]
(8.8)

Figure 8.3: PI Observer Error Dynamics Interconnection with Shaping Filter WD.

Concerning the driver error detection PI Observer, the shaping filter WD has been consid-
ered as digital Butterworth filter with cut-off frequency at 2Hz and order nD = 2. In Fig. 8.4
it is represented the magnitude frequency response for the used shaping filters WF and WD.
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Figure 8.4: Bode magnitude plot for the DT filters WD and WF used to shape the H∞ PI
Observer.

8.2.2 Observer Synthesis

With the Extended Observer Error Dynamics Eq. (8.7), the objective of observer gain L

synthesis is to minimize the induced L2-norm of the PI observer Eq. (8.6) estimation error
from disturbance d to observer estimation error ze.

∥ze∥2 ≤ γ∞∥d∥2 (8.9)
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The synthesis of the observer gain L will be carried out using the dual approach to the
Parameter-Dependent State-Feedback (PDSF) synthesis seen in Chapter 4, as was done in
Sect. 7.3 from Chapter 7. For the two-step synthesis procedure of the H∞ observer gain, the
first step consists in applying the Bounded Real Lemma (BRL), as seen in Theorem 1.2, over
the extended observer error dynamics in Eq. (8.7).

The existence of such observer gain L can be tested according to Proposition 7.1. The LMI
optimization problem in Proposition 7.1 was implemented for the system Eq. (8.7) employing
the parser Yalmip [Löf04] and solved with the SDPT3 solver [TTT04] as minimization over
the scalar γ∞, taking a constant Lyapunov Matrix such that:

X = X0 (8.10)

Remark 8.1
Proposition 7.1 was posed for LPV systems. However, note that the condition in Eq. 7.10
can be easily adapted for LTI systems. For this reason, to avoid unnecessary duplication, it
was not considered to provide here specific theorems or propositions for the synthesis of LTI
observers.

From the numerical solutions from Proposition 7.1 of the values of the Lyapunov Matrix
X0 and the set of slack matrix G0, the computation of the observer gain L can be carried
solving the LMI problem in Proposition 7.2. Recall that the observer gain vector L̃(vx) in the
extended observer error dynamics Eq. (8.7) is augmented with a vector of zeros. As a result,
in Proposition 7.2 the observer gain vector is implemented according to Eq. (8.8).

Note that even for LTI systems, the two-step synthesis used for LPV controller synthesis
seen in Sec. 4.3 and for LPV observer synthesis in Sec. 7.3 can provide benefits. Using the
more standard approach based on change of variables, it would not be straightforward to find
a solution enforcing the structure of L̃ as in Eq. (8.8). However, with the two-steps approach,
L̃ appears directly on the second LMI problem, as a result it is simple to apply constraints on
the gain structure. On the other hand, this comes at a cost of added conservatism.

8.3 Integrated Driver-Vehicle Control Oriented Model

To tackle the design of the ADAS controller, the control-oriented plant model consists of
the joint driver-vehicle system. To incorporate the driver in the control loop, a nominal
Heading Error Driver Model (HEDM) is considered, see Sec. 3.3 from Chapter 3. According
to Remark 3.1, the feedforward curvature input kpath of the HEDM is modified by considering
the relationship [Raj11]:

kpath =
ψ̇ref
vx

(8.11)

Moreover, the heading error ψe is not assumed as an exogenous input. Instead, for ADAS
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controller design, the heading error ψe for the HEDM is modeled as:

ψe =

∫
(ψ̇ref − ψ̇)dt (8.12)

Note that in previous chapters, when employing the LEDM for ADAS design, the lateral error
ye was indeed considered as an independent exogenous input, e.g. see the H∞ generalized
plant in Fig. 7.7.

These modifications on the original HEDM render the driver model with ψ̇ref as the only
input. This being the exogenous input used for tracking. Furthermore, the presence of an
integrator on the HEDM provides it with high gain on the lower frequencies. Both of theses
facts are beneficial on the ADAS design and controller synthesis. Firstly, minimizing the
number of exogenous inputs reduces the number of signals for which the induced L2-norm of
the closed-loop system needs to be minimized. Secondly, as the HEDM provides high gain at
lower frequencies, this complements the constraints set on the ADAS controller. Especially, as
the H∞ design used for the ADAS synthesis penalizes the controller actions at low frequencies,
as was seen in Chapter 6 and Chapter 7. The nominal HEDM considered for ADAS design
was chosen with the set of parameters given in Table 8.2.

Table 8.2: Nominal HEDM Parameters Used for ADAS Controller Design

Parameter Value
K0 3
TL0 0.3
TN0 0.1
τ0 0.1
Kv0 0.1740
Kff0 0.85

For the control-oriented plant, the vehicle dynamics are modeled considering the aug-
mented SAV Bicycle Model (BM) with additional steering actuator model, see Definition 2.4
from Chapter 2. An schematic of the joint driver-vehicle model is provided in Fig. 8.5. It
can be noticed that the modifications made on the HEDM make implicit the presence of the
feedback loop within the driver-vehicle system.
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Figure 8.5: Integrated Driver-Vehicle Control Model

8.4 Robust Lateral LPV ADAS Control

8.4.1 LPV/H∞ ADAS Control Design

The control problem is here formulated according to the induced L2-norm Gain-Scheduled
SF DT-LPV control problem given in Definition 5.2. The generalized plant P (vx, ρ) for the
induced L2-norm problem including the State-Feedback ADAS controller is given in Fig. 8.6.
The exogenous input is w = ψ̇ref and the vector of controlled outputs is z = (z1, z2)

T ,
which represents the tracking error and the controller output performances respectively. The
controller action is the steering command δk [rad] given to the SAV servomotor, the controller
is a State-Feedback controller with xP the full state vector of the generalized plant P (vx, ρ).

Figure 8.6: LPV/H∞ Generalized Plant P for the State-Feedback Problem

Note that performance weights are included to tackle the different objectives. The weight
Wu(ρ) is dedicated to the steering control performance (through the control sensitivity function
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KS from ψ̇ref to the controller output δk). It is chosen as an LPV system of the form:

Wu(ρ) = ZT
(
ρ · G0 (s/2πf3 + 1)(s/2πf4 + 1)

(αδs/2πf3 + 1)(s/αδ2πf4s+ 1)

)

G0 =
(αδ∆f/2πf3 + 1)(∆f/αδ2πf4 + 1)

(∆f/2πf3 + 1)(∆f/2πf4 + 1)

∆f = 2π(f3 + f4)/2

(8.13)

which is a band-pass filter extended from [GGK08]; [PV+11]. The objective of such a filter is to
constraint the controller commands in the frequency range between f3 = 1Hz and f4 = 10Hz,
where it can affect the vehicle dynamics while not being felt intrusive to the driver, who is
mainly sensitive to low steady-state frequencies (≤ 1Hz) and very high frequencies vibrations
(≥ 10Hz) acting on the steering wheel. The constant αδ is used to set a maximum actuator
gain of less than 1rad (≈ 57.3◦) in absolute magnitude for a change in yaw rate reference
|∆ψ̇ref |= 1rad/s.

Remark 8.2
In comparison to the ADAS design for the Renault Megane model discussed in Chapter 6 and
Chapter 7, the SAV ADAS design presented here allows for a considerably larger range of
actuator movement. In the Renault Megane designs, the steering angle δk was limited to a
maximum of ≤ 5◦ for a change in the desired yaw rate |∆ψ̇ref |= 1rad/s. However, for the
SAV design, the steering angle δk is permitted to reach a maximum of ≤ 57.3◦ for the same
change in the desired yaw rate. This adjustment is primarily motivated by the contrasting
speeds and vehicle dynamics between the Renault Megane and the SAV car. A steering angle
of ≤ 5◦ does not result in a significant rotation for the SAV as it would for the Renault
Megane. Additionally, the specific application scenarios also differ. The ADAS for the Renault
Megane was mainly designed for high-speed highway driving, whereas the SAV ADAS design
is specifically tailored for racing circuits with sharp turns.

As can be seen from Eq. (8.13), the design-related varying parameter ρ modifies the gain
of the actuator performance weight Wu(ρ). When ρ = 1, considered as the faulty condition,
the actuator is then given the most control authority according to Wu(ρ = 1). On the other
hand, on nominal conditions with ρ ≈ 100 the control action is heavily penalized. More details
on the scheduling strategy will be seen in Sec. 8.4.4. However, it is important to keep the
scheduling behaviour in mind for the task of controller design. When heavily penalizing the
control action, e.g. ρ ≈ 100, it is not consistent to demand tight tracking performances from
the closed-loop system [WGP00].

As a result, the tracking error weight We(ρ), which shapes the tracking performances
(through the sensitivity function S) from the reference ψ̇ref to the tracking error eψ̇ = ψ̇ref−ψ̇,
has to adapt based on the design-related varying parameter value. This was done according
to the following expression

We(ρ) =




ZT
(
s/Ms+fb
s+fbϵ

)
, if ρ = 1

ZT
(
s/Ms+fb
s+fbϵ

)
, if ρ = 100

(8.14)
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Considering Ms = 2, fb = 2π0.5 rad/s, ϵ = 0.01 and ϵ = 2. In a faulty situation, e.g. ρ ≈ 1,
ϵ = 0.01 is used to set a tracking objective of less than 1% of yaw rate error. On the other
hand, ϵ = 2 is used to relax the tracking requirement by that of stability in nominal situations
when the controller is heavily penalized.

8.4.2 LPV/H∞ State-Feedback Synthesis

The synthesis of the LPV/H∞ controller is here carried out following the Gain-Scheduled Grid-
Based DT-LPV approach introduced in Chapter 5. In order to pose the control synthesis as
a finite dimension LMI optimization problem, the parameter grid and local bounds approach
is used, see Sect. 4.2 from Chapter 4. The considered frozen grid values for each varying
parameter are:

vx,p = [0.6, 0.9, 1.2, 1.5] (8.15)

ρp = [1, 100] (8.16)

All possible combinations of frozen values for the varying parameters then form the grid-
space G, with each grid-point defined as gp = (vx,p, ρp). Taking a sampling time Ts = 0.02,
the maximum rate of parameter variation between consecutive samples is assumed as νvx =

0.02m/s (amax = 1m/s2) for the longitudinal velocity and νρ = 60 for the design-related
varying parameter ρ.

As the synthesis approach is based on DT methods, it is of special importance to discuss
the discretization procedure of the driver-vehicle plant given by Gsys(vx) in Fig. 8.5. Notice
that both the nominal HEDM as the Servo Motor model from Definition 2.4 present pure input
delays, see Table 8.2 and Table 2.2 for the delay time values respectively. The discretization
approach then consisted in discretizing the pure delays and CT model independently.

The discretization of the pure time delay is given by

Z(e−τs) =
1

zd
(8.17)

where d is the number of sample delays with d = τ/Ts. For the heading error delay on the
nominal HEDM it is considered d = 5, meanwhile, for the steering command delay on the
Servo Motor model it is considered d = 9.

The CT models, e.g. the integrator from Eq. (8.12), the HEDM and the Augmented
SAV BM, are discretized using the exact Zero-Order Hold discretization method at all frozen
grid-points of vx. Finally, the DT driver-vehicle plant is obtained from the interconnection in
Fig. 8.5 of discretized elements and with Eq. (8.17) in series with the respective delayed input.
On the other hand, the performance weights We(ρ) and Wu(ρ) are discretized at all frozen
values of the design-related varying parameter ρ employing a Tustin discretization approach.

With individual elements discretized, for all grid-points gp = (vx,p, ρp) the interconnection
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given in Fig. 8.6 then defines the generalized plant P (vx,p, ρp) used for LPV/H∞ design as:

{
x+P = A(vx,p, ρp) · xP +Bu(vx,p, ρp) · u+Bw(vx,p, ρp) · w
z = Cz(vx,p, ρp) · xP +Du(vx,p, ρp) · u+Dw(vx,p, ρp) · w

(8.18)

Note that the dimensions of the state vector of the generalized plant P (vx, ρ) is xP ∈ R23. The
system states are the following: the SAV BM adds two states (vy, ψ̇), the servo motor model
adds states (δ, δ̇), the HEDM adds the state xd from the simplified precision model used on
the feedback path plus ψe as the integrator state from Eq. (8.12), the performances weights
We(ρ) and Wu(ρ) add three states combined, finally, accounting for the DT time delays as in
Eq. (8.17) directly on the control model adds five states for the input delay present on the
HEDM and nine states for the input delay present on the servomotor model.

Considering the following structure for the PDLM X(vx, ρ) in the ADAS controller syn-
thesis problem:

X(vx, ρ) = X0 + vxX1 +
1

vx
X2 + ρX3 (8.19)

the individual gains Kp of the Grid-Based DT-LPV controller K(vx, ρ) at each grid-point gp
can be computed by solving the LMI optimization problem posed in Proposition 5.1. The
LMI problem was implemented making used of the parser Yalmip [Löf04] and solved using
the Mosek solver [ApS19]. The synthesis resulted successful with a computed bound in the
induced L2-norm of γ∞ = 92.84.

8.4.3 Frequency Analysis of the Control Design

A first validation of the controller design is carried out on the frequency domain. Fig. 8.7
presents the Controller Sensitivity transfer function from yaw rate reference ψ̇ref to the steering
control output δk computed at frozen grid-point values of the resulting LPV closed-loop system
according to the generalized plant scheme shown in Fig. 8.6. The Controller Sensitivity transfer
function computed at grid-points with the maximum control authority, e.g. ρ = 1, is given
in blue color. On the other hand, the grid-points were the additive steering is deactivated are
represented in red color. From the frequency domain result it can be observed that the effect
of increasing the value of the design-related parameter ρ translates in a significant reduction
in control authority of the additive steering action in fulfillment of the desired objectives.
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Figure 8.7: Controller Sensitivity Transfer Function KS = δ
ψ̇ref

versus actuator performance

template W−1
u at frozen grid-points.

8.4.4 Fault Dependent Scheduling Function

In the following it is described the scheduling strategy for the design-related varying parameter
ρ. As can be seen from the integrated ADAS strategy scheme in Fig. 8.1, the ADAS controller
scheduling depends on the driver fault estimation, presented in Sect. 8.2. The driver fault
estimation f̂ is not directly used, instead it is used the filtered estimation fault f̄ with band-
pass filter WF as in Eq. (8.4). See Fig. 8.2 from Sec. 8.2. Moreover, the filtered fault f̄ is used
as:

f̃(k) =
f̄(k)

f0
, (8.20)

where f0 is a threshold value defining the maximum additive fault estimation not considered
as an actual fault.

The scheduling function that modifies the online value for the design-related varying pa-
rameter ρ(k) is chosen as:

ρ(k) = MAX
(
100 · (1− |f̃(k)|), 1

)
(8.21)

Observing this scheduling rule function, according to the filtered driver fault estimation
f̄(k) when the driver is not committing any important fault, e.g. |f̄(k)|≈ 0, then ρ(k) ≈ 100.
As seen in Sec. 8.4.1, this means that the ADAS steering command δk is heavily penalized
and the driver does not receives any aid. On the other hand, as the estimated fault f̄(k)
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grows larger, ρ(k) will trend towards ρ(k) ≈ 1. In this situation, the ADAS controller will be
given full control authority to aid the driver. However, notice that the full control authority is
still constrained by Wu(ρ = 1). Full control authority is given in the frequency range 1Hz to
10Hz, as a result, even in the critical scenario the control command should not feel invasive
to the human.

Remark 8.3
The band-pass filter WF plays a crucial role in the fault estimation algorithm but also the
integrated ADAS strategy as a whole. It helps in dividing faults into different frequency ranges.
Low frequency faults result from driver preferences that remain constant over time, and cannot
be categorized as dangerous. On the other hand, very high frequency faults will be detected due
to driver dynamics that are either unknown or not accounted for in the simple HEDM model
as well as due to steering angle sensor noises. The use of the filter WF allows then to focus
on a specific range of frequencies. This, in turn, enables us to establish a strong connection
between the detected fault magnitude f̄ and the criticality of the driving situation.

8.5 Experimental Results

8.5.1 Experimental Setup

In order to carry out the experimental validation of the ADAS design on the SAV platform
it was used the same setup used for Data Acquisition explained in Sec. 3.4.1 from Chapter 3.
For manual driving on the SAV platform, a joystick is used as the driver input device. This
joystick is connected to the Remote PC, see Fig. 2.4 from Chapter 2, which then processes
the driver inputs and transmits it to the SAV Car.

On the other hand, the ADAS strategy is fully programmed on the Remote PC. Both
the PI Observer from Sec. 8.2 and the LPV ADAS controller from Sec. 8.4 are coded in
Python on the ROS2 environment of the Remote PC. Thanks to the ROS2 topics and nodes
environment, the observer and controller have access to all states and inputs required. Mainly,
the car position and velocities as well as information on the driver inputs. When the lateral
ADAS system is active, the steering command sent to the SAV car is the following:

δ(k) = SAT
[−0.7,0.7]

(δf (k) + δk(k)) (8.22)

The steering command applied on the SAV δ is the combination of the human faulty steering
δf and the ADAS controller output δk, saturated according to the maximum steering angle of
the steering servomotor at ±0.7rad (≈ ±40◦).

To test the performance and robustness of the lateral ADAS strategy the experimental
validation was done with multiple individuals. Each Test Driver had to do the following tests:

1. The Test Driver carries out two laps around a closed circuit, without ADAS steering
assistance.
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2. The Test Driver carries out two laps around a closed circuit, with the integrated ADAS
system providing steering assistance.

For the sake of brevity, in the following the completed set of captured information is given
only for one of the Test Drivers. Firstly, Sec. 8.5.2 gives information from the test without
ADAS assistance while Sec. 8.5.3 gives information of the second test where the ADAS strategy
is enabled. Finally, Sec. 8.5.4 gives only the trajectory information of both tests from a second
driver. This will show that indeed the ADAS strategy is able to adapt to multiple drivers.
Results for other test participants are presented in Appendix A.

8.5.2 Test Results Without ADAS

Figure 8.8 provides the information from the longitudinal velocity of the SAV car during the
first test. As it can be seen, the speed was kept constant around a comfortable to drive velocity
of 0.9m/s. A constant speed provides a consistent car steering behavior during the test. This
eliminates possible distractions for the driver, who can then focus only on the steering action.
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Figure 8.8: Longitudinal Velocity During the Test Without ADAS

In Fig. 8.9 it is then presented information on the SAV trajectory during the first test on
X and Y global coordinate frame. On the left of the figure it is represented the reference
circuit in black and the trajectory followed by the SAV during the complete test. Note that
in order to better identify the multiple laps the SAV has done around the circuit, the followed
trajectory is color mapped with the instantaneous longitudinal velocity, corresponding with
the information given in Fig. 8.8. On the right side of the figure it is given in black the
reference trajectory and with blue triangles the orientation and position of the SAV.
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Figure 8.9: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test without ADAS assistance.

In general, the Test Driver is able to follow the desired circuit path. However, there are
certain sections of the circuit where the driver encounters difficulties in closely adhering to
the reference path. As mentioned in Chapter 2, specifically as given in Table 2.2, the SAV
car exhibits a significant delay in its steering response. This delay makes manual control of
the SAV car challenging. Additionally, as discussed in Section 3.4.1, the driving setup for the
SAV is not optimal and feels unnatural. Consequently, it is expected that driver errors will
occur in areas of the circuit with high curvature. In fact, the design of the circuit trajectory
intentionally induces such errors.

8.5.3 Test Results With ADAS

For the sake of clarity this subsection is subdivided into three subsubsections. Sec. 8.5.3.1
provides information regarding the trajectory and speed of the SAV during the test with lateral
ADAS assistance enabled. Then Sec. 8.5.3.2 presents data regarding results from the driver
fault detection strategy, presented in Sec. 8.2. Finally, Sec. 8.5.3.3 presents data regarding the
controller action and the LPV design-related scheduling signal, both presented in Sec. 8.4.

8.5.3.1 Trajectory Data

Figure 8.10 provides the information from the longitudinal velocity of the SAV car during the
first test. In order to make a fair comparison, it can be seen that the SAV speed during the
test with ADAS enabled is almost identical to that observed during the first test in Fig. 8.8.
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Figure 8.10: Longitudinal velocity during the test with ADAS enabled.

Figure 8.11 provide analogous information to Fig. 8.9. It is evident that in this second test
with ADAS enabled, the driver errors have been practically eliminated. The lateral ADAS
assistance allows the Test Driver to follow the desired path almost perfectly. As a result,
during the two laps of the tests the vehicle trajectories match closely.
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Figure 8.11: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test with ADAS assistance enabled.
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8.5.3.2 Driver Fault Detection Data

Here it is presented information with regards the performance of the driver error fault estima-
tion based on the PI observer introduced in Sec. 8.2. Figure 8.12 presents on top the driver
steering input δf coming from the joystick signal and the estimated driver steering according
δ̂f according to the PI Observer. Recall from the PI Observer equation in Eq. (8.6), the
estimated steering action δ̂f is result of the nominal LEDM steering plus some additive fault.

This additive fault signal f̄ was modeled as the output of a narrow bandpass filter WF ,
see Fig. 8.2. This estimated fault is presented in the bottom figure of Fig. 8.12. Moreover,
Fig. 8.13 also presents the estimated fault signal color mapped onto the trajectory followed
by the car. Note that the information in Fig. 8.13 is given considering the absolute value of
fault signal. Dark blue colors represent the points in the trajectory where the driver error is
zero, meanwhile, in warmer colors indicates the zones where the driver error is large.
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Figure 8.12: On top, Test Driver steering input δf (red) and estimated driver steering δ̂f
(blue). In the bottom figure, estimated driver fault f̄ .

The use of a joystick as the input device for steering has a noticeable impact on the
behavior of the Test Driver steering signal δf , as shown in Figure 8.12. The steering signal
exhibits a somewhat digital or abrupt nature. Despite this unnatural behavior, the estimation
δ̂f from the PI Observer closely matches the measured driver steering.

The effect of this unnatural steering response is also evident in the estimated fault f̄
depicted in Figure 8.12. The digital nature of the driver steering input results in a square-
like appearance of the estimated fault signal. This is expected because the sharp steering
actions performed by the driver deviate significantly from what is expected based on the
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nominal LEDM. Consequently, the PI Observer interprets this dynamic deviation as a fault.
Therefore, solely relying on Figure 8.12 does not provide a conclusive assessment of the PI
Observer performance in detecting driver errors.

However, when mapping the fault signal onto the SAV trajectory, as shown in Figure 8.13,
the effectiveness of the driver fault estimation becomes apparent. In sections of the circuit with
straight lines, where the trajectory is relatively easy to follow, the estimated driver error is
small, represented by dark blue colors. Conversely, before and after sections with pronounced
curvature, the magnitude of the estimated driver error is large, indicated by warm colors.
Moreover, the zones where significant errors are detected (in warm colors) align with the areas
where the Test Driver struggles to closely follow the trajectory during the test without ADAS
assistance, as observed previously in Figure 8.9.
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Figure 8.13: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous absolute value of the estimated driver fault |f̄ |. Data from the test with ADAS
assistance enabled.

8.5.3.3 Controller Scheduling and Steering Action Data

In the following it is presented information on the behaviour of the controller scheduling
with regards the design-related varying parameter ρ and information on the controller output.
Figure 8.14 shows the scheduling signal ρ(k) and the lateral ADAS controller command δk(k).
Recall that when ρ ≈ 100 the ADAS steering command is heavily penalized, meanwhile,
the closest the scheduling parameter is to ρ ≈ 0 the higher the ADAS control authority is.
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Fig. 8.15 it shows the same information as in Fig. 8.14, projected onto the SAV trajectory.
The scheduling parameter ρ(k) is given on the left side and the absolute value of the controller
output |δk(k)| is shown on the right side of Fig. 8.15 respectively. Presenting the information
projected onto the trajectory allows to understand the controller behaviour related to the
different sections of the reference circuit.

Finally, Fig. 8.16 provides a better understanding on the effect of the additive ADAS
command on the overall steering of the SAV car. This figure presents in red the steering
command δf given by the Test Driver through the joystick input. In blue it is then given
the actual steering command δ(k) sent to the SAV servomotor from the Remote PC. Recall
that this command is computed according to Eq. 8.22 as δ(k) = δf (k) + δk(k). As a result,
Fig. 8.16 allows to visualize effect of the ADAS controller command on the driver steering.
Figure 8.16 presents on top information for the whole test and, for the ease of presentation,
on the middle and on the bottom it is given the same information on a reduced time frame
from [5, 10]sec and [30, 40]sec, respectively.
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Figure 8.14: Scheduling parameter signal ρ and ADAS controller output δk during the test
with ADAS assistance enabled.

The scheduling signal evolves constantly during the test as seen in Fig. 8.14, with an
average value of ρ = 57.57. Recall that according to Eq. (8.21), the value of ρ is directly
related to the driver fault estimation from the PI Observer. As it was seen in Sec 8.5.3.2,
the unnatural digital steering resulting from the joystick driver input is a major origin of this
estimated driver fault. Nonetheless, as in Fig. 8.13, when projecting the signal ρ(k) on the
SAV trajectory as in Fig. 8.15 (left), then it becomes apparent where the scheduling is used
to provide more control authority to the ADAS controller.
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Notice in Fig. 8.15 (left) that the warmer colors (higher values of ρ) are in sections where it
is relatively easier to drive, mostly on straight lines. However, the sections with high curvature
present dark blue colors (lower values of ρ). As a result, in Fig. 8.15 (left) clearly shows that
the ADAS steering is primarily used in these critical sections of the circuit. For the most part,
the color map of the steering command is in colder dark colors (lower values of δk). This is in
line with the desired objectives for the integrated ADAS strategy: acting in critical situations
and not affecting the driving experience for the most part.
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Figure 8.15: Reference trajectory and actual vehicle trajectory color coded with the scheduling
parameter signal ρ (left). Reference trajectory and actual vehicle trajectory color coded with
the absolute value of the ADAS controller output |δ̄k| (right). Data from the test with ADAS
assistance enabled.
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Figure 8.16: Longitudinal Velocity During the Test Without ADAS

From the information shown in Fig. 8.16, it can be seen that indeed the influence of the
of the ADAS controller on the driver preference is reduced. The total steering signal δ(k)
that is actually being executed matches for the most part the driver steering command δf .
Defining driver-ADAS conflict as steering commands, δf for the driver and δk for the ADAS
system respectively, in opposites directions [Oud+22]; it cannot be observed during the test
high conflict between the Test Driver and the ADAS control. Instead, the ADAS steering
provides anticipatory steering actions or fast corrections. From the comparison of Fig. 8.9
with Fig. 8.11, these small corrections add up to a safer and smoother trajectory.

8.5.4 Results for a Different Test Driver

In order to demonstrate that the proposed integrated ADAS strategy adapts to multiple
drivers, here it is provided information on obtained results for a different Test Driver. The
information provided here is complemented with the results of other four different Test Drivers
in Appendix A.

For the sake of brevity, not all details from the analysis of the obtained results are repeated
here. For the tests without the use of the ADAS systems the information given is the following:

• Figure 8.17 provides analogous information to Fig. 8.9, that is, the SAV trajectory color
coded with the instantaneous SAV longitudinal speed (left side) and the SAV position
and orientation at discrete time instances during the whole test (right side).
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For the second test, when the Test Driver is being aided by the ADAS the information
given here is the following:

• Fig. 8.18 is analogous to that of Fig. 8.17, the SAV trajectory color coded with the
instantaneous SAV longitudinal speed (left side) and the SAV position and orientation
during the whole test (right side).

• Fig. 8.19 provides information on the design-related varying parameter ρ (left side) and
the absolute ADAS control signal (right side), color coded for both signals into the actual
SAV trajectory during the test with ADAS assistance enabled.

This last figure is of particular interest as it shows the sections of the circuit where im-
portant driver errors are being detected, thanks to the relation given in Eq. (8.21) between
estimated driver faults and scheduling parameter value. Moreover, it shows the areas of the
circuit where the additive ADAS steering is more active and areas where it is barely used.

The findings for this second Test Drivers yield consistent conclusions. The Test Driver
is generally able to follow the intended trajectory reasonably well by its own during the test
without assistance. However, in certain sections, his tracking of the reference path is not
optimal. On the other hand, the trajectory the Test Driver follows when counting with the
lateral ADAS is instead close to the reference path throughout the whole test. Notably, for
the test conducted with ADAS assistance enabled, the trajectory followed during both laps
of the test closely correspond to each other. Figure 8.19 illustrates that even with a different
Test Driver, the ADAS strategy effectively manages to identify critical sections and provides
focused assistance in those areas.

Remark 8.4
It is important to emphasize that the only difference between the results from different Test
Drivers is the individual person driving the SAV car. Neither the PI Observer, the LPV ADAS
controller nor the scheduling rule for ρ is tuned specifically for any individual person.
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8.5.4.1 Results Without ADAS Assistance
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Figure 8.17: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test without ADAS assistance for a second Test Driver.

8.5.4.2 Results With ADAS Assistance
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Figure 8.18: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test with ADAS assistance enabled for a second Test
Driver.
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Figure 8.19: Reference trajectory and actual vehicle trajectory color coded with scheduling
parameter signal ρ (left). Reference trajectory and actual vehicle trajectory color coded with
the absolute value of the ADAS controller output |δ̄k| (right). Data from the test with ADAS
assistance enabled for a second Test Driver.

8.6 Conclusion

In this chapter, the proposed integrated ADAS strategy was experimentally validated with
multiple drivers, and the results obtained were highly satisfactory. It was observed that the
ADAS assistance significantly helped the drivers in maintaining a smoother and safer tra-
jectory without deviating from the intended path. Importantly, the ADAS control command
provided only minor corrections, and there was no evidence of conflict with the drivers’ steering
actions. The implementation of the PI observer driver error estimation scheme demonstrated
its capability in identifying the sections where the Test Drivers faced the most challenges.
Consequently, the ADAS actions were primarily focused on these specific sections.

However, it is important to acknowledge the limitations of the experimental setup and the
significant differences between the driving experience in the current SAV platform setup and
that of a full-scale vehicle. Despite these limitations, the highly satisfactory results obtained
provide confidence and support for future experimental scenarios involving the proposed ADAS
strategy presented in this chapter.





Conclusions and Perspectives

Conclusions

This thesis is concerned with the study of LPV approaches for the control of automated
driving, with special focus on LPV techniques that allow to adapt the performance of the
control system when the system changes. This could be due to the presence of driver errors
or actuator malfunctions, which may deteriorate the stability of the system if not considered.
During this study it has also been developed a new framework for Grid-Based Discrete-Time
LPV control. The main conclusions of the thesis are the following:

• We have presented an approach referred to as grid and local variation bound framework
to reduce the infinitely constrained LMI conditions for the stability and computation
of the induced L2-norm of DT-LPV systems into finite LMI problems using a Grid
Based DT-LPV approach. This framework has proved to be effective and led to two
novel controller synthesis approaches: the Parameter-Dependent State Feedback (PDSF)
control and Gain-Scheduled Grid-Based DT-LPV SF control.

• The PDSF and the Gain-Scheduled Grid-Based DT-LPV SF controller synthesis ap-
proaches have been experimentally validated in path tracking applications on the SAV
platform. The PDSF approach showed how it greatly simplifies the implementation as-
pect of LPV controllers. Despite considering more than 150 grid-points on the LPV de-
sign, the PDSF controller implementation only required four constant matrix gains in the
Python code and no interpolation. On the other hand, the Gain-Scheduled Grid-Based
control approach proved successful even if the control design included a design-related
varying parameter, used to emulate an Anti-Windup mechanism.

• The implementation of the autonomous steering using the Gain-Scheduled Grid-Based
controller with LPV Anti-Windup emulation successfully improved the path tracking
performance of the SAV car. This highlights the effectiveness of incorporating design-
related parameters in LPV control designs to achieve complex objectives beyond stability
and performance requirements. The specific case of the LPV Anti-Windup emulation
demonstrated in Chapter 5 effectively prevented integrator Windup in the presence of
actuator saturation.

• The design philosophy of utilizing design-related parameters to activate/deactivate a
controller output was applied to the design of LPV/H∞ lateral ADAS controllers. The
primary objective of the proposed ADAS controller strategy is to assist the driver during
critical situations while minimizing intrusiveness when not needed. This is achieved
through two design features. Firstly, control action constraints are enforced using band-
pass filters, focusing the control actions within a frequency range that feels transparent to
the human driver. Secondly, the scheduling of the design-related parameters ensures that
the ADAS control output remains inactive unless a significant driver error is detected.
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• The detection of driver-errors was made possible by posing it as a fault detection prob-
lem. This is achieved by comparing the actions of a virtual nominal driver model with
those from the human driver. Doing this with the aid of H∞ PI Observers allowed to
detect the driver errors within a specif frequency range. Focusing on a narrow specific
frequency range, slightly lower than 1Hz, allows to discard measurements noises, un-
modeled dynamics on the simple nominal driver model and human driver preferences as
sources of driver error estimation. The goal of the driver error detection algorithm is
to estimate driving errors correlated with critical situations where the ADAS controller
should assist the driver.

• The proposed integrated ADAS strategy was experimentally validated with multiple
drivers, yielding highly satisfactory results. It was observed that the ADAS assistance
significantly helped the drivers in maintaining a smoother and safer trajectory without
deviating from the intended path.

When the ADAS strategy was activated, driver errors were successfully detected in chal-
lenging zones where the Test Drivers faced difficulties. This correlation between the
estimation algorithm and critical situations validates its effectiveness. Moreover, by
having the ADAS controller scheduled by the driver error estimation, in the sections of
the circuit where the Test Drivers felt confident they did not had interference. These
outcomes affirm that the ADAS design objectives of minimizing intrusiveness while en-
hancing safety have been achieved.

Future Perspectives

This thesis has provided some contributions which could open interesting lines of works for
future studies:

• Discrete-Time synthesis LMI conditions: It will be useful to extend the LMI condi-
tions presented in this thesis for Parameter-Dependent structures and Grid-Based gain-
scheduled LPV controllers beyond State-Feedback synthesis. Some preliminary work has
been done with regard Static Output Feedback controller synthesis, however, the Dy-
namic Output Feedback control synthesis on the Grid-Based Discrete-Time framework
remains an open challenge.

• Optimal scheduling of design-related varying parameters: The use of MPC based
methods for scheduling online design-related varying parameters is a promising approach.
The preliminaries results developed during the thesis could be extended by integrating
the planning stage with this optimal scheduling problem as a joint optimal problem.
This opens up the possibility of increasing the interconnection between planning and
control stages, which may lead to better performances.

• Handover/Takeover robust control with M3D theory: Study of stability and
robustness properties of the handover/takeover transitions in automated system is well
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suited for the M3D control approach. If taken as base designs the lateral autonomous
and ADAS lateral controllers proposed in this thesis, this will imply the need of extending
the results from M3D control to LPV theory.

• Further ADAS experimental validation: The experimental validation carried out
in the SAV platform of the integrated ADAS strategy showed great potential. However,
it should be acknowledge the limitation of the SAV platform for the ADAS application.
Future ADAS experimental validation of the proposed strategy could be done by improv-
ing the platform, e.g. by installing a front camera to give the Test Driver a first-person
view and using a steering wheel as the driver input device. Furthermore, the strategy
could be tested in dedicated ADAS simulators or even in full-scale vehicles.





Appendix A

ADAS SAV Experimental Results

This appendix complements the experimental results from Chapter 8 for the experimental
validation of the integrated lateral ADAS strategy with additional experiments carried out
with four Test Drivers. The objective is here to demonstrate the capabilities of the integrated
ADAS strategy to adapt to multiple drivers. Note that the strategy was validated with the
help of six different Test Drivers in total.

Not all details from the analysis of the results are repeated here. For each Test Driver it
is given results with and without the ADAS assistance. For the tests without the use of the
ADAS systems the information given is the following:

• Fig. A.1, Fig. A.4, Fig. A.7 and Fig. A.10 provide the SAV trajectory color coded with the
instantaneous SAV longitudinal speed (left side) and the SAV position and orientation
at instantaneous time frames during the whole test (right side).

For the test when the Test Driver is being aided by the ADAS the information given here
is the following:

• Fig. A.2, Fig. A.5, Fig. A.8 and Fig. A.11 provide analogous information the SAV tra-
jectory color with the car speed (left side) and SAV car position and orientation during
the test (right side).

• Fig. A.3, Fig. A.6, Fig. A.9 and Fig. A.12 present the design-related varying parameter
ρ (left side) and the absolute ADAS control signal (right side), color coded for both
signals into the actual SAV trajectory during the test with ADAS assistance enabled.

This last figure is of particular interest as it shows the sections of the circuit where
important driver errors are being detected, thanks to the relation given in Eq. (8.21)
between estimated driver faults and scheduling parameter value. Recall that large driver
errors are mapped to small values of the varying parameter such that ρ ≈ 1. On the
other hand, negligible driver errors are mapped as ρ ≈ 100. Moreover, this last figure
shows the areas of the circuit where the additive ADAS steering is more active and areas
where it is barely used.

The conclusions of the results here presented are in line with those already given in Chap-
ter 8. Without the ADAS enabled, the Test Drivers do a good job of following the reference
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circuit. However, there are some clear zones where the drivers seem to struggle and their
trajectory deviates away from the reference. Moreover, most drivers present a high degree of
trajectory variation between laps.

On the other hand, when the ADAS strategy proposed in Chapter 8 is enabled, the presence
of driver errors observable in the SAV trajectories vanishes. Most remarkable, the variation
between laps almost disappears for all the Test Drivers. This can be specially confirmed with
the results of the Additional Test Driver 4 in Fig. A.11, the driver actually does more than
two laps, yet, through all the ADAS enabled test the laps seem to overlap with each other.
Moreover, the results from Fig. A.3, Fig. A.6, Fig. A.9 and Fig. A.12 , left side, show that the
driver error detection scheme recognizes effectively the zones where the Test Drivers commit
mistakes, zones in dark tones of blues. As a result, the zones and degree of ADAS steering
command in Fig. A.3, Fig. A.6, Fig. A.9 and Fig. A.12 , right side, focuses for the most part
in sections of the circuit where the Test Driver struggles.

A.1 Additional Test Driver 1

A.1.1 Results Without ADAS Assistance
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Figure A.1: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test without ADAS assistance for the Additional Test
Driver 1.
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A.1.2 Results With ADAS Assistance
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Figure A.2: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test with ADAS assistance enabled for the Additional
Test Driver 1.
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Figure A.3: Reference trajectory and actual vehicle trajectory color coded with scheduling
parameter signal ρ (left). Reference trajectory and actual vehicle trajectory color coded with
the absolute value of the ADAS controller output |δ̄k| (right). Data from the test with ADAS
assistance enabled for the Additional Test Driver 1.
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A.2 Additional Test Driver 2

A.2.1 Results Without ADAS Assistance

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure A.4: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test without ADAS assistance for the Additional Test
Driver 2.
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A.2.2 Results With ADAS Assistance
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Figure A.5: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test with ADAS assistance enabled for the Additional
Test Driver 2.
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Figure A.6: Reference trajectory and actual vehicle trajectory color coded with scheduling
parameter signal ρ (left). Reference trajectory and actual vehicle trajectory color coded with
the absolute value of the ADAS controller output |δ̄k| (right). Data from the test with ADAS
assistance enabled for the Additional Test Driver 2.
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A.3 Additional Test Driver 3

A.3.1 Results Without ADAS Assistance
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Figure A.7: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test without ADAS assistance for the Additional Test
Driver 3.
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A.3.2 Results With ADAS Assistance
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Figure A.8: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test with ADAS assistance enabled for the Additional
Test Driver 3.
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Figure A.9: Reference trajectory and actual vehicle trajectory color coded with scheduling
parameter signal ρ (left). Reference trajectory and actual vehicle trajectory color coded with
the absolute value of the ADAS controller output |δ̄k| (right). Data from the test with ADAS
assistance enabled for the Additional Test Driver 3.
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A.4 Additional Test Driver 4

A.4.1 Results Without ADAS Assistance
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Figure A.10: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test without ADAS assistance for the Additional Test
Driver 4.
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A.4.2 Results With ADAS Assistance
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Figure A.11: Reference trajectory and actual vehicle trajectory color coded with the instan-
taneous longitudinal velocity (left). Reference trajectory and position and orientation of the
SAV during the test. Data from the test with ADAS assistance enabled for the Additional
Test Driver 4.
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Figure A.12: Reference trajectory and actual vehicle trajectory color coded with scheduling
parameter signal ρ (left). Reference trajectory and actual vehicle trajectory color coded with
the absolute value of the ADAS controller output |δ̄k| (right). Data from the test with ADAS
assistance enabled for the Additional Test Driver 4.
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LMI Conditions for Stability and H∞ Control of Discrete-Time
Multi-Mode Multi-Dimensional Systems*

Ariel Medero1,2, Vicenç Puig1 and Olivier Sename2

Abstract— This paper deals with the Stability and Feedback
Control of discrete-time Multi-Mode Multi-Dimensional (M3D)
LTI systems. The M3D switch dynamics are modeled with the
introduction of a state mapping, which describes the embedding
or truncation of states during mode transitions. This model
description of the M3D systems and Lyapunov poly-quadratic
energy storage functions are used to obtain Linear Matrix
Inequalities conditions for stability check and for synthesis of
state-feedback controllers under H∞ performance. A numerical
example is given to illustrate the benefits of the proposed
method. The example consists in the feedback control of a
discrete-time M3D LTI system which can arbitrarily switch
in between an open-loop stable and two open-loop unstable
modes, with modes having different state dimensions.

I. INTRODUCTION

Most works dealing with switching systems consider
multi-mode systems for which all modes share the same
number of states and model structure. The study in [1] by
Erik I. Verriest was an innovative work that presents for the
first time tools allowing the description of Multi-Mode Multi-
Dimensional switching system, categorized there as M3D
systems. Since then, the generalization of switching systems
to the multi-dimensional mode case have gained in popularity
thanks to the problems this framework allows to tackle. In
[2], the authors provide a framework for the optimal control
of M3D switching systems. As a motivating example, they
derived a model of an ice-skater with four distinct modes
for which the optimal control algorithm provides the optimal
switching instant and the forces to be applied. An interesting
application of M3D systems was presented in [3], where it
is modeled a spacecraft group formation as a state-varying
switched system in which new spacecrafts can join or leave
the formation. Moreover, the authors provided results to
analyze the stability and fault tolerance of the formation.
In [4], conditions are given for checking the stability of
Multi-Dimensional switching systems with additional state
jump, based on parametric Lyapunov functions, given an
application to the problem of consensus in open multi-
agent systems. Meanwhile, in [5], the LQ control approach
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(CNRS, “Investissements d’Avenir”, ANR-15-IDEX-02). It has also been
partially funded by the Spanish State Research Agency (AEI) and the
European Regional Development Fund (ERFD) through the project SCAV
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is studied for multi-agent dynamic systems with increasing
state dimensions, and is applied to a tracking problem in
leader-following dynamics.

As emphasized, the application space of M3D systems
covers many different fields and opens up the possibility
of tackling new problems with a straightforward framework.
However, to the best of the Authors knowledge no work has
presented yet tools for the general stabilization and feedback
control of M3D systems. This work concerns the domain of
linear systems, for which many problems in control theory
can be formulated using Linear Matrix Inequalities (LMI)
[6]. The main contributions of this work are therefore the
introduction of LMI conditions, in the context of discrete-
time M3D LTI systems, for:

• Asymptotic Stability proof,
• Computation of the H∞ norm,
• Synthesis of state-feedback controllers

The paper is organized as follows: Section II presents the
dynamical equations of discrete-time M3D LTI systems. In
Section III, the stability of discrete-time M3D systems is
studied. Meanwhile, in Section IV, conditions for computing
the H∞ norm of discrete-time M3D systems are given,
which in Section V are extended to the synthesis of state-
feedback control for discrete-time M3D systems. A numer-
ical example is used in Section VI to explore the benefits
of the proposed method. Finally, some conclusions about
the present study and possible applications are discussed in
Section VII.

The paper notation is the following. ∥·∥2 represents the
Euclidean norm and ∥·∥∞ represents the H∞ norm. xT

represents the transpose of x, x−1 represents the inverse
of x and x+ is the left pseudo-inverse of x. Matrix X >
0 represents that X is positive-defined and ∗ in an LMI
represents a symmetric element transposed. x(i) represents
that x belongs to the mode i of the M3D system, xij
represents that x is an element involved in the transition
from mode i to mode j.

II. M3D SYSTEM DYNAMICS

This work is concerned with the study of discrete-time
LTI systems under Multi-Mode Multi-Dimensional (M3D)
switching conditions. In the absence of M3D switching, the
dynamics of the active mode i (given m modes) are given
as:

M (i) =

{
x
(i)
k+1 = A(i)x

(i)
k + B(i)wk

zk = C(i)x
(i)
k +D(i)wk

(1)



where x(i)k ∈ Rni is the state vector, wk ∈ Rnw is the vector
of exogenous inputs and zk ∈ Rnz is the vector of control
performances. All along this paper, it is assumed that the
switching signal is available in real-time, therefore, the active
mode i is always know.

To account for the M3D switching, we consider the
framework introduced in [1], based on the notion of energy
limited transitions. Such representations are of high interest
when the structure and size of the system model can change
accordingly to operating conditions. Let assume two modes
with states x(i) ∈ Rni and x(j) ∈ Rnj respectively. By
introducing the state mapping Tij at the transition from mode
i to j we set:

x
(i)
k+1 = Tijx

(j)
k , Tij ∈ Rni×nj (2)

Assumption 1: Tij is left pseudo-invertible.
By constraining the study to M3D systems where states
are only embedded or truncated during mode transitions,
Assumption 1 is not restrictive. Now, it is worth noticing
that under said constraint, given a state mapping Tij for the
transition from mode i to j, the mapping for the inverse
transition fulfils:

Tji = T+
ij = TT

ij , Tji ∈ Rnj×ni (3)

From (1)-(2) it follows that the state dynamics of the
system during switching from mode i to j are given as:

M (ij) =

{
x
(j)
k = TT

ijA(i)x
(i)
k + TT

ijB(i)wk

zk = C(i)x
(i)
k +D(i)wk

(4)

III. STABILITY OF M3D SYSTEMS

As stated in [1] for energy limited transitions, a energy
function V (i)(x

(i)
k ) is associated with each mode i. By setting

(2), the energy function at the switching instance must fulfill
for energy dissipation:

V (j)(x
(j)
k ) = V (j)(TT

ijx
(i)
k+1) ≤ V (i)(x

(i)
k ) (5)

By considering in this work a poly-quadratic energy function
of the type

V (i)(x
(i)
k ) = x

(i)T

k X(i)x
(i)
k , (6)

where X(i) is a mode-dependent positive-defined symmetric
matrix, as in [7], then the stability of a M3D system can be
proved if the following theorem holds true.

Theorem 1: A M3D discrete-time system M , is stable
if, for each mode i = 1, ...,m of M there exist matrices
Q(i) = Q(i)T > 0, with Q(i) ∈ Rni×ni , and G(i) ∈ Rni×ni

such that the following conditions are satisfied:
[
G(i)T +G(i) −Q(i) G(i)TA(i)T

∗ Q(i)

]
> 0 (7)

∀i mode
[
G(i)T +G(i) −Q(i) G(i)TA(i)T Tij

∗ Q(j)

]
> 0 (8)

∀(i, j) connected pair of modes, i ̸= j

Proof: Let us consider the active mode (1) restricted to the
autonomous dynamics:

M (i) =
{
x
(i)
k+1 = A(i)x

(i)
k . (9)

By considering (2), the dynamics of the autonomous mode
during the M3D transition then are:

M (ij) =
{
x
(j)
k = TT

ijA(i)x
(i)
k . (10)

From (5), considering a energy function (6), the energy
limited condition during the switching instance can be writ-
ten as:

x
(j)T

k X(j)x
(j)T

k − x
(i)T

k X(i)x
(i)T

k < 0, (11)

which according to (10) is equivalent to:

(TT
ijA(i)x

(i)
k )TX(j)(TT

ijA(i)x
(i)
k )− x

(i)T

k X(i)x
(i)T

k < 0
(12)

This can then be rearranged as:

x
(i)T

k

[
A(i)T TijX

(j)TT
ijA(i) −X(i)

]
x
(i)
k < 0 (13)

Using Schur complement [8], (13) is then equivalent to:
[
X(j)−1

TT
ijA(i)

∗ X(i)

]
> 0 (14)

Applying basic matrix row/column manipulation and a con-
gruence transformation with diag([G(i), I]), where G(i) ∈
Rni×ni is a general matrix, leads to:

[
G(i)TX(i)G(i) G(i)TA(i)T Tij

∗ X(j)−1

]
> 0, (15)

which thanks to Young’s relation [9], [8]:

GTX−1G ≥ GT +G−X

it is equivalent to:
[
G(i)T +G(i) −X(i)−1

G(i)TA(i)T Tij
∗ X(j)−1

]
> 0, (16)

Finally, by setting X−1 ≡ Q, (8) is recovered. Notice that
for the non-switching case, the same steps with X(i) = X(j)

and Tij = I ∈ Rni×ni recover (7), which is a well known
result for checking the asympotic stability of systems through
the use of LMI [9]. This concludes the proof. ■

Remark 1: Theorem 1 can be seen as an extension to
discrete-time M3D systems of well-know results for the
stability of linear continuous-time switched systems, e.g.
[10]. To note, as this work deals with discrete-time systems,
the concept of dwell time is here only related to the sampling
time of the system.

In the next section, the stability condition for M3D
systems is extended with conditions for H∞ performance.



[
A(i)T TijX

(j)TT
ijA(i) −X(i) + 1

γ∞
C(i)T C(i) A(i)T TijX

(j)TT
ijB(i) + 1

γ∞
C(i)TD(i)

∗ B(i)T TijX
(j)TT

ijB(i) + 1
γ∞

D(i)TD(i) − γ∞I

]
(23)

IV. H∞ NORM FOR DISCRETE M3D SYSTEMS

Closed-loop systems need not only to be stable with
respect uncertainties and disturbances but also being able
to fulfill some performance requirements. To achieve this,
one of the most well known and powerful techniques in
the control literature for LTI systems is the H∞ robust
control theory. The key concept being the H∞ norm of
systems, which is associated with the maximum effect γ∞
the exogenous inputs wk have over the system exogenous
outputs zk:

∥z∥2
∥w∥2

≤ γ∞ (17)

Nowadays, the most common way of determining γ∞ is
making use use of the very well known Bounded Real
Lemma [6]. The next theorem extends the Bounded Real
Lemma to the case of discrete M3D systems to determine
an upper bound of its H∞ norm.

Theorem 2: Given a discrete M3D system M and posi-
tive scalar γ∞, if for each mode i = 1, ...,m of M there
exist matrices Q(i) = Q(i)T > 0, with Q(i) ∈ Rni×ni ,
and G(i) ∈ Rni×ni such that the following LMI problem
is feasible:

Q(i) > 0 (18)



G(i)T + G(i) − Q(i) G(i)T A(i)T G(i)T C(i)T 0

∗ Q(i) 0 B
∗ ∗ γ∞I D
∗ ∗ ∗ γ∞I


 > 0

(19)
∀i mode




G(i)T + G(i) − Q(i) G(i)T A(i)T Tij G(i)T C(i)T 0

∗ Q(j) 0 TT
ijB

∗ ∗ γ∞I D
∗ ∗ ∗ γ∞I


 > 0

(20)
∀(i, j) connected pair of modes, i ̸= j

The given positive scalar γ∞ is an upper bound of the H∞
norm of M , such that ∥M∥∞ ≤ γ∞. If the optimal γ∞ is
required, the LMI minimization problem for γ∞ is still an
LMI problem with variables γ∞, Q and G.

Proof: Let us consider a poly-quadratic energy function
V (i)(x

(i)
k ) (6) such that during the M3D mode transition

the following condition holds true

V (x
(j)
k )− V (x

(i)
k ) +

1

γ∞
zTk zk − γ∞w

T
k wk < 0. (21)

Expanding the quadratic energy condition according to the
M3D switching dynamics (4), it can then be rearranged in
matrix form as

[
x
(i)
k

wk

]T
(23)

[
x
(i)
k

wk

]
< 0 (22)

Applying a Schur Complement around 1
γ∞
I followed by a

Schur Complement around X(j), then (22) is equivalent to



X(j)−1

TT
ijA(i) TT

ijB(i) 0

∗ X(i) 0 C(i)T

∗ ∗ γ∞I D(i)T

∗ ∗ ∗ γ∞I


 > 0 (24)

Now, from basic row/column manipulations followed by
a congruence transformation by diag([G(i), I, I, I]) and
making use of Young’s relation:

GTX−1G ≥ GT +G−X ,

the LMI (20) is recovered, with X−1 ≡ Q . As in the
stability case, by setting X(i) = X(j) and Tij = I ∈
Rni×ni , the same chain of steps recover (19), which is a well
known result for the computation of the H∞ performance
of discrete-time systems through the use of LMI [11]. This
concludes the proof. ■

V. H∞ STATE-FEEDBACK CONTROL FOR DISCRETE
M3D SYSTEMS

The objective of this section is to introduce the H∞ control
of discrete M3D systems. Let us consider the discrete M3D
system N , where the dynamics of the active mode i are:

N (i) =

{
x
(i)
k+1 = A(i)x

(i)
k +B(i)

u uk +B(i)
w wk

zk = C(i)
z x

(i)
k +D(i)

u uk +D(i)
w wk

(25)

where x
(i)
k ∈ Rni is the state vector, wk ∈ Rnw is the

vector of exogenous inputs, zk ∈ Rnz is the vector of control
performances and uk ∈ Rnu is the vector of control inputs.

By introducing the discrete-time state-feedback control
law

uk = K(i)x
(i)
k , (26)

the H∞ control problem is therefore to find suitable matrices
K(i) ∈ Rnu×ni that render N closed-loop stable, and
minimizes the influences of the exogenous inputs wk on the
control performances zk, according to an H∞ norm criterion.
This is achieved if the following theorem holds true.

Theorem 3: Given a discrete M3D system N and positive
scalar γ∞, if for each mode i = 1, ...,m of N there exist
matrices Q(i) = Q(i)T > 0, with Q(i) ∈ Rni×ni , G(i) ∈
Rni×ni and Y (i) ∈ Rnu×ni such that the following LMI
conditions are satisfied:

Q(i) > 0 (27)



G(i)T +G(i) −Q(i) Ψ
(i)
1,2 Ψ

(i)
1,3 0

∗ Q(i) 0 B
(i)
w

∗ ∗ γ∞I D
(i)
w

∗ ∗ ∗ γ∞I


 > 0 (28)

with
Ψ

(i)
1,2 = G(i)TA(i)T + Y (i)TB(i)T

u ,



Ψ
(i)
1,3 = G(i)TC(i)T

z + Y (i)TD(i)T

u

∀i mode



G(i)T +G(i) −Q(i) Ψ
(ij)
1,2 Ψ

(ij)
1,3 0

∗ Q(j) 0 TT
ijB

(i)
w

∗ ∗ γ∞I D
(i)
w

∗ ∗ ∗ γ∞I


 > 0

(29)
with

Ψ
(ij)
1,2 = G(i)TA(i)T Tij + Y (i)TB(i)T

u Tij ,

Ψ
(ij)
1,3 = G(i)TC(i)T

z + Y (i)TD(i)T

u

∀(i, j) connected pair of modes, i ̸= j

then there exists a state-feedback control law uk = K(i)x
(i)
k

such that ∥z∥2

∥w∥2
≤ γ∞. The state-feedback control matrices of

each mode i = 1, ...,m are recovered according to K(i) =
Y (i)G(i)−1

. Now, if the optimal γ∞ is required, the LMI
minimization problem for γ∞ is still an LMI problem with
variables γ∞, Q, G and Y .

Proof: Note that N (i) can be rewritten as M (i) in (1)
considering:

A(i) = A(i) +B(i)
u K(i)

B(i) = B(i)
w

C(i) = C(i)
z +D(i)

u K(i)

D(i) = D(i)
w

(30)

Substitute the closed-loop system matrices M (i) from (19)
and (20) with the system matrices of N (i), according to
(30). Then, with the introduction of the linearizing change
of variables Y (i) = K(i)G(i), the LMI conditions (28) and
(29) are both recovered. This concludes the proof. ■

Remark 2: Note that, in some cases Theorem 3 may be
too restrictive. Indeed, as formulated, the closed-loop H∞
performance should be maintained even during a M3D mode
transition. If too conservative or unnecessary, a compromise
may be to drop the strong requirement of H∞ switching
performance in favor of only requiring switching stability.
This can be achieved by substituting the LMI condition (29)
by [

G(i)T +G(i) −Q(i) Ψ
(ij)
1,2

∗ Q(j)

]
> 0, (31)

which comes from applying the linearizing change of vari-
ables Y (i) = K(i)G(i) in (8).

Remark 3: Reduction of conservatism in Theorem 3 could
also be achieved with the introduction of a new slack variable
Y (ij) = K(ij)G(i) in either LMI condition (29) or (31),
such that the state-feedback controller K(ij) = Y (ij)G(i)−1

is only active during the transition from mode i to mode j.
Similar as have been proposed for control of continuous-time
switching systems in [12].

VI. NUMERICAL EXAMPLE

In this section a numerical example is given to illustrate
the potential of the synthesis conditions provided in this work
for M3D systems. First, the M3D system is presented. Then,
the use and interest of the provided theorems are illustrated.
Finally some simulation results are carried out together with
some analysis fo the obtained resultts.

A. System Description

It is considered a discrete-time M3D system N such that
the active mode i dynamics are given by:

N (i) =

{
x
(i)
k+1 = A(i)x

(i)
k +B(i)

u uk +B(i)
w wk

zk = C(i)
z x

(i)
k

(32)

The system N has three modes with state dimensions x(1)k ∈
R4, x(2)k ∈ R10 and x

(3)
k ∈ R6. The system matrices are

given by:

A(1) =

[
0.25 0.16 0.44 −0.08
0.2 −0.07 −0.28 0.06
0.48 −0.29 0.18 −0.02
0.00 0.06 0.00 0.60

]
, (33)

A(3) =




1.5 −0.15 0.06 0.18 −0.10 0.09
0.14 −0.02 −0.29 0.42 0.35 −0.13

−0.08 −0.27 0.21 0.06 −0.27 −0.06
0.24 0.34 0.09 0.15 −0.16 −0.16
0.10 0.32 −0.28 −0.11 −0.12 −0.07
0.07 −0.07 −0.09 −0.15 −0.03 0.46


 (34)

and

A(2) =

[
A(1) A

(2)
1,2

A
(2)
2,1 A(3)

]
(35)

with

A
(2)
1,2 =

[
0.26 −0.28 0.16 −0.27 0.15 −0.13

−0.08 0.07 −0.21 −0.34 0.30 −0.11
−0.08 0.34 0.07 −0.20 0.00 0.42
0.14 0.26 0.46 0.04 0.07 0.04

]

A
(2)
2,1 =




0.27 −0.17 −0.16 −0.02
−0.12 0.03 0.33 0.19
0.09 −0.18 0.08 0.51

−0.23 −0.37 −0.23 −0.02
0.26 0.27 −0.01 0.00

−0.14 −0.09 0.43 0.08




(36)

Notice from (35) that modes 1 and 3 are subsystems
of mode 2. Also, note from the first diagonal element in
(34), that mode 3 (thus, mode 2 too) has unstable open-loop
dynamics.

On the other hand the system N has two control inputs,
with the input matrix of each mode given by:

B(1)
u =

[ −1.53 0 −1.96 0.73
−1.01 −0.52 1.96 0

]T
, (37)

B(3)
u =

[
0.83 −0.10 0.43 0.30 0 −0.68
0 0 0 0.89 0 0.06

]T
(38)

and
B(2)

u =
[
B

(1)T

u B
(3)T

u

]T
(39)

All modes are affected by disturbance inputs, such that the
disturbance input matrix of each mode is given by

B(i)
w = 0.1 ·B(i)

u . (40)

The performance output matrix for each of the three modes
of N are chosen as:

C(1)
z =

[
0 0 0 1

]
, (41)



C(2)
z =

[
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

]
(42)

and
C(3)

z =
[
0 0 0 0 0 1

]
(43)

It is worth noticing that the dimension of the control
performance output vector z(k) is different for all modes.
This has been chosen to illustrate that the proposed method
can handle cases where the dimensions of u(k), w(k) and
z(k) do change during mode transitions. This can be accom-
plished without any modification on the results provided in
previous sections. It is also important to note that the control
performance output matrices C(i)

z indicate the signals to be
minimized following the H∞ criterion. Of course, for state
feedback control, it is moreover assumed that all states are
available.

Note also that, later on, the control performance output
of the mode 1 is referred to as z1(k), while it is referred
to as z2(k) for the mode 3, and, therefore, for the mode 2
the considered performance output vector is denoted z(k) =
[z1(k), z2(k)]T .

The M3D system N is considered to switch with arbitrary
conditions and no restrictions, such that the active mode
in the next sampling instance could potentially (but not
necessarily) switch to any of the other two modes. As a
result, it is considered all mode pairs (i, j), i ̸= j, are
connected. The state mappings Tij that describe the state
embedding/truncation during the Multi-Dimensional switch
from each mode are:

T12 =
[
I4×4 04×6

]
, (44)

T13 =
[

04×6
]

, (45)

T32 =
[

06×4 I6×6
]

, (46)

and
T21 = TT

12, T31 = TT
13, T32 = TT

23. (47)

B. Control Design

Two different control approaches are considered in this
section. In the first baseline approach, independent state-
feedback controllers are designed for each mode i of N . In
order to check the stability of the global system N in closed-
loop, Theorem 1 is then employed. The second approach
follows our proposed method, so the design of the state-
feedback control law is carried out applying Theorem 3 to
the global system N .

As mentioned, the synthesis of controllers for the first
approach is done as an independent discrete-time LTI control
synthesis problem for each mode of N . The computation of
all controllers K(i) is performed considering the LMI con-
dition (28) from Theorem 3 only, without accounting for the
transition’s effect (so actually using the method in [11]). As
each controller is computed independently of the others, this
results in three different LMI optimization problems where
the optimal H∞ norms found in each case are γ(1)∞ = 0.0732,
γ
(2)
∞ = 0.1442 and γ

(3)
∞ = 0.0686. However, it is well

known that stable systems can be rendered unstable under

arbitrary switching conditions [13]. With the independently
computed state-feedback controllers K(i) and relation (30),
the stability of the switched M3D closed-loop system can
be tested employing Theorem 1. It was found that Theorem
1 conditions were not satisfied, meaning that, the discrete-
time M3D system N in closed-loop could not be proved to
be stable in the case where controllers K(i) are computed
independently.

Concerning the second scenario (our approach), the con-
trollers K(i) are computed considering the global M3D
system N by employing Theorem 3. To tackle the design
problem it is required to solve a total of nine LMI conditions,
with three LMI according to (28) for the H∞ control of each
mode plus six LMI conditions according to (29) to account
for all the possible Multi-Dimensional mode transitions. The
obtained optimal upper bound on the H∞ norm of the closed-
loop system is γ∞ = 0.19.

C. Simulation Analysis

Following the discussed control design approaches, two
simulation scenarios are proposed. The first scenario con-
siders the case with independent controllers for each mode,
when the second scenario is the global design approach of
the controllers according to Theorem 3. In both scenarios,
the system N evolves under arbitrary switching conditions,
where the switching sequence in the same for both cases, as
shown in Fig. 1.
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Fig. 1. Active mode i during arbitrary switching conditions

The control output performance z(k) for each scenario
is shown in Fig. 2. On the top figure, it is shown the
control performances obtained during the first scenario with
independent controllers for each mode. On the bottom, it is
given the control performances output in the second scenario
with state-feedback controllers computed for the system N
globally according to Theorem 3.

From the simulation results given in Fig 2, it can be
seen that during the first scenario, the control performances
do not converge and, in fact, they increase in magnitude
with time as the system N in this case is unstable. For the
second scenario however, the closed-loop system is stable
despite the presence of the arbitrary switch conditions and
state dimension and system structure changes during mode
transitions.
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Fig. 2. Control performance output z(k)

The stability of the closed-loop system can also be as-
sessed considering a quadratic storage function

V (i)(x
(i)
k ) = x

(i)T

k X(i)x
(i)
k ,

where X ≡ Q−1, with Q being the symmetric positive
defined matrix found from applying Theorem 3. Fig. 3 shows
the evolution of the storage function during both simulation
scenarios.
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Fig. 3. Energy Storage Function V (x
(i)
k ) of system N under arbitrary

switching

In the first scenario (in blue), the energy in the system
initially converges towards zero, however, affected by the
arbitrary Multi-Dimensional transitions, the energy in the last
sampling instances starts to increase dramatically indicating
closed-loop instability. In the second scenario, thanks to the
global approach in the M3D controller synthesis, the energy
of the system converges to zero, showing that the system has
been stabilized despite the switching conditions.

VII. CONCLUSIONS

In this work new conditions using LMI formulation have
been provided in order to test the stability of discrete-
time M3D LTI systems, to compute the H∞ norm of
such systems, as well as to design state-feedback controllers
robust to Multi-Dimensional switching. Importantly, some
remarks have been given that could allow to alleviate possible
conservatism of the results here presented. The synthesis
conditions were tested in a numerical example, allowing to
stabilize a M3D system composed of three modes, two of

which are open-loop unstable, all of different dimensions
and under arbitrary switching conditions. To the best of the
Authors knowledge, no other work proposed in the literature
allows for a global approach to the synthesis of controllers
for M3D system.

Therefore, the results here presented allow to study con-
trol problems associated with complex Multi-Dimensional
systems while retaining strong stability guarantees. Some
application examples could be: the control of nonlinear sys-
tems modeled as piecewise reduced linearizations of different
dimensions (as commented in [14]), the control of speed and
inter-vehicle distance of autonomous vehicles in a platoon
highway application (where vehicles could dynamically enter
or leave the platoon), or the control of MIMO systems with
subsystems that could be discarded or not. Furthermore, the
results presented in this study may be extended to the Linear
Parameter Varying framework, allowing to study problems
beyond the scope of LTI systems.
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