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Résumé

Les systèmes stellaires, tels que les galaxies et les amas globulaires, sont des systèmes complexes où
les étoiles sont liées par le champ gravitationnel qu’elles contribuent à créer collectivement. L’étude
de ces systèmes est particulièrement intéressante car la gravité est une force attractive à longue
portée qui tend à former des structures inhomogènes sujettes à de forts comportements collectifs
(bras spiraux, barres). Au cours des cinq dernières décennies, les simulations numériques ont fourni
des informations inestimables sur la formation et l’évolution des galaxies sur des temps cosmiques.
En parallèle, les développements de la théorie cinétique offrent un cadre théorique remarquable
pour comprendre les résultats statistiques de ces processus d’évolution non linéaires.

L’état de l’art actuel de la théorie cinétique des systèmes stellaires isolés est l’équation inho-
mogène de Balescu–Lenard. Elle décrit l’évolution à long terme d’un système auto-gravitant sous
l’effet des interactions résonantes entre fluctuations internes (bruit de Poisson), tout en tenant
compte de leur dynamique collective. Ce formalisme est particulièrement important car il capture
de manière perturbative le réarrangement non linéaire des orbites. Cette thèse aborde plusieurs
questions clés sur l’évolution des systèmes stellaires isolés : Comment les interactions résonantes
et les effets collectifs influencent-ils leur évolution à long terme ? Dans quelles conditions ces effets
augmentent-ils ou diminuent-ils la diffusion orbitale ? Quelles sont les limites des théories cinétiques
actuelles pour prédire l’évolution des systèmes auto-gravitants ?

Pour aborder ces questions, je considère deux systèmes : un modèle unidimensionnel imitant le
mouvement vertical des étoiles dans un disque galactique et un disque (infiniment) mince décrivant
leur mouvement dans le plan. Je reprends la notion de susceptibilité gravitationnelle qui joue
un rôle fondamental dans la compréhension de leur évolution. En fonction de leur configuration,
qu’ils soient dynamiquement froids (disque mince) ou chauds (unidimensionnel), je montre que
les systèmes stellaires réagissent différemment aux perturbations. J’analyse cette susceptibilité
en utilisant le formalisme de la matrice de polarisation. Cette méthode générique me permet de
sonder la présence de modes instables ou faiblement amortis dans différents disques. Je discute de
la difficulté intrinsèque d’analyser les fréquences propres des systèmes stellaires stables ainsi que
les comportements spécifiques qu’ils présentent, tels que l’amortissement algébrique de Landau.

En confrontant les prédictions théoriques de l’équation de Balescu–Lenard aux simulations
numériques, je montre que la théorie cinétique capture quantitativement l’évolution moyenne à
long terme des systèmes stellaires. Les effets collectifs jouent cependant un rôle très différent dans
les deux systèmes envisagés. Dans le modèle unidimensionnel, ils rigidifient le système contre les
perturbations, entraînant une diffusion plus faible. Cette géométrie souffre également d’un quasi-
blocage cinétique : le réarrangement orbital est fortement retardé car les résonances dominantes ne
transfèrent pas efficacement l’énergie entre les différentes régions. En étudiant des configurations
encore plus contraintes pour lesquelles les rencontres à deux corps ne prédisent aucune évolution,
je fournis une borne supérieure pour le temps typique de relaxation. Grâce aux effets collectifs, les
interactions à trois corps entraînent nécessairement une évolution. A contrario, les modes faiblement
amortis amplifient les fluctuations dans les disques froids. Cela pousse le système à évoluer vers un
état instable rapidement. À la transition de phase, l’évolution dépend de plus en plus des conditions
initiales, une caractéristique qui dépasse la portée actuelle de la théorie cinétique.

iv



Abstract

Stellar systems, such as galaxies and globular clusters, are fascinating yet complex many-body
systems in which stars are bound together by their collective gravitational field. The analytical
study of these systems is particularly challenging because gravity is a long-range attractive force
which tends to form inhomogeneous structures prone to impressive collective behaviours such as
spiral arms and bars. In the last five decades, numerical simulations have provided invaluable
insights in the formation and evolution of galaxies over cosmic times. As a complementary approach,
developments in kinetic theory offer a theoretical framework to understand the statistical outcome
of these non-linear evolution processes.

The current state-of-the-art kinetic theory of isolated stellar systems is the inhomogeneous
Balescu–Lenard equation. It describes the long-term evolution of a self-gravitating system under
the effect of resonant interactions between noise-driven fluctuations while accounting for their
collective dynamics. Such a formalism is particularly valuable because it captures perturbatively
the non-linear reshuffling of orbits. This thesis addresses several key questions on the fate of
isolated stellar systems: How do resonant interactions and collective effects influence their long-
term evolution? Under what conditions do these effects enhance or dampen orbital diffusion? What
are the limitations of current kinetic theories in predicting the evolution of self-gravitating systems?

To tackle these questions, I consider side-by-side two different self-gravitating systems: a one-
dimensional model mimicking the vertical motion of stars in a galactic disc and a razor-thin disc
describing their in-plane motion. At the heart of this investigation is the role of the susceptibil-
ity of self-gravitating systems. Depending on their configuration, whether they are centrifugally
(razor-thin) or pressure (one-dimensional) supported, I show that stellar systems exhibit different
responses to perturbations. I analyse this susceptibility using the polarisation matrix formalism.
This generic method allows me to probe the presence of growing modes in unstable discs as well
as weakly damped modes in stable ones. I discuss the intrinsic difficulty of analysing the natural
frequencies of stable stellar systems as well as the specific behaviours they exhibit such as algebraic
Landau damping.

Confronting theoretical predictions from the Balescu–Lenard equation to numerical simulations,
I show that kinetic theory quantitatively captures the average long-term evolution of stellar sys-
tems. Collective effects play a very different role in the two studied systems. On the one hand,
they stiffen the one-dimensional system against perturbations, leading to a slower diffusion rate.
This geometry also suffers from a quasi-kinetic blocking: orbital reshuffling is delayed because dom-
inant resonances do not efficiently transfer energy between different regions. Studying even more
contrived configurations for which two-body encounters predict exactly no evolution, I provide an
upper limit for the typical relaxation time. Thanks to collective effects, three-body interactions
can always drive a relaxation. On the other hand, weakly damped modes (swing) amplify the
fluctuations in cold discs. It ultimately urges the system to evolve towards an unstable state. At
phase transition, the pathway increasingly depends on the initial conditions, a feature that lies
beyond the reach of current kinetic theory.
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Chapter 1

Introduction

This thesis delves into the intricate long-term evolution of mass ensembles, bound together by
the force of gravity: this is the celebrated N–body problem. Studying the evolution of such a
system with many bodies, N ≫ 1, is the realm of stellar dynamics (Binney & Tremaine, 2008).
It encompasses a wide range of astrophysical systems of various sizes and masses, from clusters
of stars orbiting Sagittarius A*, the super-massive black hole at the centre of our Galaxy, to the
Milky Way itself, its dark matter halo and networks of galaxies’ clusters.

Their study is both challenging and particularly interesting because gravity is an attractive
long-range force. Thus, stellar systems typically form inhomogeneous structures and their evolu-
tion fundamentally is a collective story. Stars in a globular cluster or a galaxy do not move in
straight lines. They orbit around the system’s centre of mass. But contrary to planetary systems,
this motion is not dictated by a single massive central object. It is the result of the collective grav-
itational potential generated by all the stars in the system. As such, stars cannot be considered
as test particles tracing an externally imposed potential. These collective interactions can play a
major role in the response of the system to external perturbations and in its long-term evolution.

N–body dynamics typically focuses on the physics of gravity while losing track of other physical
phenomena such as hydrodynamics, stellar formation and evolution, etc. This is motivated by the
fact that it is most often the dominant force. Before diving into the details of stellar dynamics, let
me first introduce this thesis in its broader astrophysical context.

1.1 Astrophysical context

Large-scale structures and cosmology

Galaxies are not isolated objects. Instead, they form vast and intricate patterns known as large-
scale structures. These structures include clusters, filaments, walls and voids, composing a cosmic
web that spans the Universe. This organisation influences how galaxies rotate, interact, and evolve
together. Observations from missions like the Sloan Digital Sky Survey (SDSS) have provided
detailed maps that reveal the filamentary patterns connecting galaxy clusters, as illustrated in
figure 1.1.

The current understanding of the formation and evolution of these structures is based on the Λ–
Cold Dark Matter (Λ–CDM) model (Peebles, 1980; Blumenthal et al., 1984; Springel et al., 2006).
The early universe contained small quantum density fluctuations, which were stretched during the
inflationary epoch (Guth, 1981) and imprinted in the cosmic microwave background (CMB) (Planck
Collaboration, 2020). These fluctuations served as the seeds for all future structure formation. As
the universe expanded, the density fluctuations grew under the influence of gravity, predominantly
driven by dark matter due to its significant mass fraction (∼85% of the total matter content). Over
billions of years, these regions of higher density attracted more matter, both dark and baryonic,
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2 Chapter 1. Introduction

Figure 1.1: Left: Map of the galaxies in the nearby Universe from the Sloan Digital Sky Survey (SDSS). Galaxies
are not uniformly distributed but form a cosmic web of clusters, filaments, walls, and voids. Right: Figure from
Dubois et al. (2021). Four successive zooms (clockwise) in a Λ–CDM cosmological hydrodynamical simulation from
the NewHorizon project. Such a simulation probes the intricate processes involved in the formation of galaxies in
their anisotropic cosmic environment.

leading to the formation of the cosmic web of structures observed today (Frenk & White, 2012).

Galaxy formation and evolution

While dark matter solely interacts through gravity, baryonic matter shocks and cools, forming stars
and galaxies as it flows in the potential wells created by dark matter overdensities. In this paradigm,
galaxies form through the hierarchical assembly of smaller structures. In regions of higher dark
matter density, massive galaxies form and evolve rapidly, often leading to the early creation of
elliptical galaxies through major merger events. These violent processes trigger an intense activity
of the super-massive black holes, the so-called active galactic nuclei (AGN) feedback. It ultimately
quenches the galaxy from its reservoir of cold gas, preventing later star formation and leading to
the formation of red and dead elliptical galaxies (Silk & Rees, 1998) as illustrated in figure 1.2.

Figure 1.2: Illustration of the two main types of galaxies in the Hubble sequence. Left: Elliptical galaxy, characterised
by its spheroidal shape, old stars and absence of cold gas (NGC4621, Messier 59). Right: Spiral galaxy, characterised
by its rotating spiral arms and flat disc (NGC5457, Messier 101). Credit: NASA/ESA Hubble Space Telescope.

Conversely, in less dense regions, the slower coherent accretion of cold gas allows for the extended
formation of disk galaxies. In these thin structures, stars form from corotating gas on nearly circular



1.2 Stellar dynamics 3

orbits. Their velocity dispersion is low compared to their typical rotational velocity. Such a system
is said to be dynamically cold. As a result, flat galaxies are quite susceptible to quasi spontaneous
morphological restructuring: they generically display grand design spiral arms and sometimes a
central bar. These beautiful patterns, illustrated in figure 1.2, are the result of the collective
dynamics of the stars. This is to be contrasted to mostly pressure-supported elliptical galaxies
which cannot rely on rotational free energy to evolve.

The realm of galaxy formation and evolution involves various physical phenomena happening on
a wide range of scales and interacting non-linearly with one another. Consequently, the field mostly
relies on numerical simulations to understand the complex interplay of these processes. Despite
their (many) successes, these simulations face significant challenges (Vogelsberger et al., 2020).
They are limited by computational power, which constrains their resolution and the complexity
of the physical models they can accurately simulate. The processes on sub-grid scales, such as
star formation and black hole accretion, must be treated with phenomenological prescriptions that
approximate the unresolved physics. These limitations, coupled with their intrinsically non-linear
nature, introduce uncertainties that can affect the predictive power and accuracy of the simulations
(Scannapieco et al., 2012). As a complementary approach, it is therefore of interest to develop
a generic theoretical framework that can explain the long-term gravity-driven evolution of these
systems, relying on a deterministic perturbative approach. Such a framework could provide insights
into the underlying physics of these systems and help interpret and test the results and limitations
of numerical simulations.

1.2 Stellar dynamics

With this perspective in mind, let me focus on stellar dynamics, an area of astrophysics that provides
essential theoretical tools for understanding the evolution of gravitationally bound systems. Stellar
dynamics applies principles of statistical mechanics to describe how galaxies, globular clusters, and
other self-gravitating systems evolve under their own gravitational influence. By modelling a galaxy
or any similar system as a collection of N identical point particles of mass m, it lays the groundwork
for a quantitative analysis that bridges theory with the computational models discussed earlier. I
postpone to chapter 8 the discussion on the limitations of such assumptions. Let me now introduce
the basic tools and equations used in the kinetic theory of inhomogeneous stellar systems, which
are crucial for capturing the essence of these complex dynamical phenomena.

1.2.1 Hamiltonian dynamics

The only considered force is Newtonian gravity. This force is conservative, and I therefore make
extensive use of Hamiltonian dynamics. I refer to Goldstein (1950); Arnold (1978) for a detailed
introduction to this topic.

The configuration of a conservative system with df degrees of freedom is fully characterised by
its 2df canonical phase-space coordinates, w = (q,p). The system’s motion then follows Hamilton’s
equations

dq
dt = ∂H

∂p ,
dp
dt = −∂H

∂q , (1.1)

where H=H(q,p, t) is the system’s Hamiltonian.
This generic set of 2df equations is valid for both a single particle moving in an external

potential field and a system of particles interacting through a pairwise potential. In the for-
mer case, the phase-space coordinates, w, simply is a 2d vector where d is the dimension of the
physical space. In the later case, the phase-space coordinates of the system are a 2dN vector,
w=(q1, . . . ,qN ,q1, . . . ,qN ), with N the number of particles.
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Hamilton’s equations (1.1) can be written under the short form

dw
dt = [w, H(w, t)], (1.2)

where [·,·] stands for the Poisson bracket

[f(w), g(w)] ≡ ∂f

∂q ·
∂g

∂p −
∂f

∂p ·
∂g

∂q . (1.3)

A cornerstone of Hamiltonian mechanics is the concept of canonical transformations, which
are changes of the phase-space coordinates that preserve the form of Hamilton’s equations. A
transformation from the original canonical coordinates (q,p) to new coordinates W=(Q,P) is
canonical if it conserves the form of the Poisson bracket, i.e.,

[Wi,Wj ] = [wi,wj ] = Jij , with J =
(

0 I
−I 0

)
. (1.4)

This property ensures that the equations of motion retain their canonical form (equations 1.1 and
1.2) under transformation. The symplectic properties of these transformations notably imply that
the volume in phase space is conserved, i.e., dQdP=dqdp. Canonical transformations thus serve
as a bridge connecting various representations of a physical system, facilitating the exploration of
its dynamics from multiple perspectives while maintaining the core physical laws dictated by the
Hamiltonian structure.

The canonical momenta are usually proportional to the mass of the particles. However, the
gravitational acceleration is independent of the mass of the particle (equivalence principle). In
what follows, I mainly work with specific momenta, i.e., momentum per unit mass. The typical
phase-space coordinates therefore are w=(x,v) with x the position and v the velocity of the
particle. The canonical form of Hamilton’s equations (1.1) still holds using the specific (i.e., per
unit mass) Hamiltonian, abusively denoted H.

1.2.2 N–body evolution

At any given time, a system of N identical particles can be exactly described by its Klimontovich
distribution function (DF)

Fd(w, t) =
N∑
i=1

mδD[w−wi(t)]. (1.5)

where δD stands for the Dirac δ-function, wi(t) for the phase space location of the i-th particle at
time t and m=Mtot/N its individual mass with Mtot the system’s total mass.

The instantaneous potential induced by this DF of masses is

ψd(w, t) =
N∑
i=1

mU [w,wi(t)] =
∫

dw′Fd(w′, t)U(w,w′), (1.6)

with U(w,w′) the considered (specific) pairwise interaction potential. For usual self-gravitating
systems, one has

U(w,w′) = −G
∥x− x′∥

. (1.7)

Taking the partial derivative w.r.t. time of equation (1.5), one can show that the dynamics of
the discrete DF in phase space is exactly given by the Klimontovich equation (Klimontovich, 1967)

∂Fd
∂t

+ [Fd, Hd] = 0, (1.8)
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where Hd stands for the discrete (specific) Hamiltonian of the system

Hd(w, t) = 1
2v2 + ψd(w, t). (1.9)

Importantly, the Klimontovich equation (1.8) is equivalent to the 2dN Hamilton’s equations (1.2)
or the dN Newton’s equations. It exactly describes the evolution of the N–body system and
summarises it as a continuity equation in phase space. In practice, this equation is not directly
solvable. First, because it is quadratic in the DF, as the Hamiltonian, Hd, linearly depends on
Fd through equation (1.6). Second, difficulties arise from the fact that the DF, Fd, and the
Hamiltonian, Hd, are highly discontinuous.

1.2.3 Mean-field distribution

The discrete quantities introduced in the previous section are actively fluctuating and difficult to
handle. However, when considering a large number of particles, N≫1, one can introduce a mean-
field approximation. Seeing these discrete functions as a realisation of a stochastic process, the
(smooth) mean DF and mean Hamiltonian read

F (w, t) = ⟨Fd(w, t)⟩, H(w, t) = ⟨Hd(w, t)⟩, (1.10)

where ⟨·⟩ stands for the expectation of the stochastic process, i.e., the average over realisations
(while only varying the initial conditions). These realisations correspond, in this thesis, to different
initial conditions independently sampled from the same (mean-field) distribution. The greater
the number of particles N , the closer to these mean functions. This is illustrated in figure 1.3
for a 1D system, where I represent the discrete and the mean-field density together with the
cumulative density to understand the proximity between the two functions. Using the linearity of

x

ρ(x)

x

∫ x

−∞
dx′ ρ(x′)

Smooth mean
Sharp discrete

Figure 1.3: Illustration of the discrete vs the smooth density and cumulative density functions in a 1D system. For a
large number of particles, N≫1, the instantaneous discrete density is well approximated by the smooth mean-field
density.

the expectation in equations (1.6) and (1.9), one similarly has H(w, t)=v2/2+ψ(w, t). Here, the
mean-field potential, ψ=⟨ψd⟩, follows from equation (1.6) and reads

ψ(w, t) =
∫

dw′ F (w′, t)U(w,w′). (1.11)

This smooth potential is a particularly good approximation of the discrete potential because
gravity is a long-range force. Phrased differently, the orbits of stars in a galaxy are predominantly
influenced by the collective gravitational potential of the entire galaxy rather than by the immediate
interactions with nearby stars. This is in sharp contrast with the motion of molecules in a gas which
is primarily driven by violent and short-lived interactions with their nearest neighbours.
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1.2.4 Perturbative expansion

The initial N–body (discrete) system can then be seen as fluctuations (Poisson shot noise, scaling as
1/
√
N) on top of the mean-field functions introduced in equation (1.10), yielding the perturbative

expansions
Fd = F + δf, ψd = ψ + δψ, Hd = H + δψ. (1.12)

Substituting these expansions in the Klimontovich equation (1.8), the mean-field DF and the fluc-
tuations evolve through time following the coupled equations

∂F

∂t
+ [F,H] = −⟨[δf, δψ]⟩, (1.13a)

∂δf

∂t
+ [δf,H] + [F, δψ] + [δf, δψ]− ⟨[δf, δψ]⟩ = 0, (1.13b)

where I assumed ⟨δf⟩=⟨δψ⟩=0. These equations represent a perturbative expansion approach to
understanding the dynamics of a gravitational N–body system. Each equation and term within
these equations play a specific role in capturing the evolution of the system as I shall now detail.

1.2.5 Violent relaxation

The first equation (1.13a) describes the evolution of the mean-field DF, F . At the lowest order,
it is driven by the Poisson bracket of the mean-field DF and the mean-field Hamiltonian, H, on
the l.h.s. of the equation. When this term is non-zero, the mean-field evolution is approximately
described by the Vlasov–Poisson equations (Vlasov, 1968)

∂F

∂t
+ [F,H] = 0, (1.14a)

H(w, t) = 1
2v2 +

∫
dw′F (w′, t)U(w,w′). (1.14b)

It captures the violent collisionless relaxation of an out-of-equilibrium system (Lynden-Bell, 1967).
This is the typical equation at play to describe the merger of two galaxies, as illustrated in fig-
ure 1.4. The fast dynamics is driven by significant changes in the gravitational potential due to

Figure 1.4: Illustration of the merger of two galaxies. The fast dynamics are driven by significant changes in the
gravitational potential due to the rearrangement of mass, as the system seeks a new equilibrium configuration. This
phase of violent relaxation is captured by the coupled Vlasov–Poisson equations (1.14). Credit: NASA/ESA Hubble
Space Telescope.

the rearrangement of mass, as the system seeks a new equilibrium configuration. As visible in the
coupled Vlasov–Poisson equations (1.14), violent relaxation involves highly non-linear changes in
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the system’s properties and therefore is specifically challenging to understand. Very few analytical
results have been obtained (see, e.g., Chavanis, 2006b, for a review) and the full understanding of
the outcome of this phase remains an open question and an active field of research (Ewart et al.,
2022; Chavanis, 2022; Teles et al., 2023; Worrakitpoonpon, 2024). At the end of this short and
violent phase, the system reaches a so-called quasi-stationary state (QSS) such that

[F,H] = 0. (1.15)

Importantly, this mean-field equilibrium is usually not the thermodynamical equilibrium of the
system. In fact, there is no such a thing as a thermal equilibrium for 2D and 3D self-gravitating
systems, i.e., there is no state of maximum entropy (Campa et al., 2014). A QSS is an equilibrium
state of the collisionless dynamics. It physically reflects the fact that the system locks itself: it
cannot exchange angular momentum internally. If the system was perfectly isolated and did not
experience any noise, it would remain in this state indefinitely. The existence of such a state is a
direct consequence of the long-range nature of the gravitational force (Gabrielli et al., 2010). In
practice, the system will still evolve under the effect of internal or external fluctuations as captured
by the r.h.s. of equation (1.13a). However, this evolution happens on timescales much longer than
the ones of violent relaxation. This is the regime of secular or long-term evolution in which I am
interested in this thesis.

The mean-field equilibrium reached at the end of violent relaxation is typically much more
symmetric than the initial conditions. Equation (1.15) states that the equilibrium DF, F , is
constant along the flow generated by the Hamiltonian, H. As a consequence, this DF and its
associated Hamiltonian, H=H[F ], are only functions of the integrals of motion (Jeans’ theorem).

1.2.6 Angle-action variables

For integrable systems, the number of independent integrals of motion (invariants) is, at least,
equal to the dimension of the system’s physical space, d. In such a case, useful sets of canonical
coordinates are angles-actions variables (θ,J). They are defined such that the actions, J, are
isolating integrals of motion and the angles, θ, are 2π-periodic. Following equation (3.195) of
Binney & Tremaine (2008), the actions of an orbit are given by the circulation of the momenta p
along the orbital torus (Poincaré invariants)

Ji ≡
1

2π

∮
dqi pi, (1.16)

where the integration contour runs along the orbit. Within its angle-action system of coordinates,
an equilibrium Hamiltonian is independent of the angles, i.e., H=H(J). Therefore, Hamilton’s
equations (1.1) take the simple form

dθ

dt = ∂H

∂J = Ω(J), dJ
dt = −∂H

∂θ
= 0, (1.17)

with Ω(J) the orbital frequencies. Trajectories become particularly simple, since

θ(t) = θ0 + Ω(J) t, J(t) = J0, (1.18)

and the orbits, while intricate in the initial configuration space, are formally straight lines in angle-
action space.

To illustrate the angle-action coordinates, I represent in figure 1.5 the change of coordinates
from position-velocity to angle-action in the simple case of a harmonic oscillator. In such a case,
orbits are concentric circles in the position-velocity coordinates and straight lines in the angle-
action ones. Furthermore, the action can be computed as a simple function of the circle’s “radius”.
Using the action definition (1.16), one can easily show that J∝r2 where r is the “radius” of the
orbit in the (x, v)-plane.
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x
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θ

θ

J

0 2π

r2

Figure 1.5: Schematic illustration of the change from position-velocity to angle-action coordinates for a harmonic
oscillator. Importantly, within these new canonical coordinates, the trajectories become straight lines.

1.2.7 Secular evolution

Let me now assume the system has undergone violent relaxation and reached a QSS where the mean-
field DF, as well as its associated (integrable) Hamiltonian, are only functions of the actions. Using
the canonical angle-actions variables and the equilibrium property (equation 1.15), the evolution
equations equation (1.13), together with the Poisson equation (1.6), form a closed set of equations.
Using a quasi-linear approximation, i.e., assuming small fluctuations and neglecting the second-
order contributions in their evolution, the set of equations reads

∂F (J)
∂t

= −⟨[δf, δψ]⟩,

∂δf

∂t
+ Ω(J) · ∂δf

∂θ
− ∂F

∂J ·
∂δψ

∂θ
= 0,

δψ(w, t) =
∫

dw′ δf(w′, t)U(w,w′).

(1.19a)

(1.19b)

(1.19c)

The first equation (1.19a) describes the slow evolution of the mean-field DF under the small
correlated effects of fluctuations. This is the regime of the secular evolution where stars diffuse away
from their initial orbits while evolving in a quasi-stationary smooth potential imposed by long-range
interactions. The bracket ⟨·⟩ stands for the expectation of the stochastic process, i.e., the average
over realisations. Together with the perturbative expansion equation (1.12), ensemble averaging
is a necessary step to capture analytically some on the non-linear effects of the fluctuations on
the mean-field evolution. Providing an expression for the r.h.s. of equation (1.19a), i.e., a collision
operator, is the main goal of kinetic theory.

For example, such an equation captures how stars in the Milky Way undergo a so-called secular
heating (Binney & Lacey, 1988; Johnston et al., 2017): the youngest stars in the solar neighbour-
hood have smaller velocity dispersions (∼10 km.s−1) than the older population I stars (∼40 km.s−1).
This heating is well understood as the result of stochastic scatterings. These stochastic perturba-
tions could naturally arise from local encounters with massive complexes such as giant molecular
clouds (Spitzer & Schwarzschild, 1951). However, another source of significant fluctuations could
be transient spiral arms. My thesis focuses on the effects of such global perturbations on the
long-term evolution of stellar systems. Of course, these internal perturbations are not the only
source of gravitational stochasticity in real galaxies who recurrently undergo minor mergers and
are impacted by the turbulence of gas flows, supernovae and AGN feedback. The efficiency of these
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various heating mechanisms can be strongly enhanced when exciting natural dynamical frequencies
of the disc.

1.2.8 Collective effects

The ability to enhance fluctuations at specific frequencies is captured by the second and third equa-
tions (1.19b) and (1.19c). The second describes the fast (linearised) evolution of the fluctuations.
The first term, Ω(J)·∂δf/∂θ, solely captures the effect of differential rotation or phase mixing.
Fluctuations are advected along the mean-field orbits at different rates/frequencies. They quickly
get sheared, yielding in finer and finer structures. This process is illustrated in figure 1.6. The Gaia20 CHAPTER 1. INTRODUCTION
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Figure 1.3.4: Inspired from figure 2 of Lynden-Bell (1967). Illustration of phase mixing, similarly to figure 1.3.3,
in angle-action space, for various times. Here, within the angle-action coordinates, as a result of the conservation
of actions, trajectories are simple straight lines. Provided that the intrinsic frequencies Ω=∂H/∂J change with the
actions, particles of di�erent actions dephase. This phase mixing in the angles θ is one of the main justifications for
the consideration of orbit-averaged di�usion, i.e. the assumption that the system’s mean DF depends only on the
actions. This is at the heart of both di�usion equations presented in chapter 2.

Figure 1.3.5: Extracted from figure 4.28 of Binney & Tremaine (2008). Illustration of the mechanism of violent re-
laxation, during which an initially out-of-equilibrium self-gravitating system undergoes a phase of strong potential
fluctuations allowing the system to rapidly reach a collisionless quasi-stationary state.

nally, in chapter 7, we present the conclusions of the thesis and outline possible follow-up works. Let us
briefly sum up below the content of each chapter.
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nally, in chapter 7, we present the conclusions of the thesis and outline possible follow-up works. Let us
briefly sum up below the content of each chapter.

Figure 1.6: Figure from Fouvry (2017). Illustration of the phase mixing process in angle-action space. Fluctuations
(grey blob) are advected along the (unperturbed) mean-field orbits at different rates/frequencies. The differential
rotation quickly shears the fluctuations until they wash out.

snail (Antoja et al., 2018; Hunt et al., 2022; Tremaine et al., 2023) and stellar streams (Johnston
et al., 1995; Bonaca & Price-Whelan, 2024) are typical examples of ongoing phase mixing in the
Milky Way.

The second term in the evolution equation (1.19b), ∂F/∂J·∂δψ/∂θ, together with the third
equation (1.19c), captures how the density fluctuations are impacted by the potential fluctuations
they generate. These are the so-called collective effects induced by self-gravity.

The impact of collective effects on the secular evolution of stellar systems is the main focus
of my thesis. In dynamically cold systems such as galactic discs, these effects can be particularly
strong. Swing amplification (Toomre, 1981) is a typical example: a small perturbation can be
amplified by a few orders of magnitude even in a stable system. The colder the system, the
stronger the amplification. These cold systems are centrifugally supported and have a low velocity
dispersion compared to their typical rotational velocity. The corresponding kinetic energy offers
a large reservoir of free energy that can be used to redistribute the angular momentum in the
system through collective behaviours such as spiral structures (Lynden-Bell & Kalnajs, 1972).
Conversely, dynamically hot systems such as globular clusters or elliptical galaxies are pressure
supported and have a high velocity dispersion compared to their typical rotational velocity. In
such systems, collective effects are usually expected to be weak: perturbations induce wakes which
do not (strongly) self-amplify.

1.2.9 Kinetic theory

Kinetic theory aims to describe perturbatively the weakly non-linear evolution of many-body sys-
tems over secular timescales. This endeavour is timely given the wealth of data available across
cosmic time (Gaia, SDSS, JWST, Euclid...). The main goal of kinetic theory is to provide a collision
operator, i.e., an expression for the r.h.s. of equation (1.19a) so as to write

∂F (J, t)
∂t

= C[F ](J). (1.20)

In parallel of similar developments in plasma physics (Landau, 1936), the first kinetic theories
of stellar systems were developed by Jeans (1929) and Chandrasekhar (1942, 1943). These theories
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are based on the assumption that the system is (locally) homogeneous and that relaxation is driven
by two-body deflections. As such, they do not take collective effects into account. This is further
discussed in chapter 5 and I refer to Chavanis (2013a,c, 2024) for a thorough historical account of
kinetic theories of plasmas and stellar systems. Here, I just outline four major axes of differences
that distinguish the different flavours of theories, highlighting key conceptual and methodological
distinctions.

Local deflections vs resonant encounters The first conceptual difference is whether relax-
ation is driven by local deflections (Chandrasekhar, 1942) or resonant encounters (Landau, 1936).
Chandrasekhar’s theory focuses on local scatterings where the cumulative effect of many small-angle
gravitational deflections between stars leads to a gradual relaxation of the system. In contrast, the-
ories inspired by Landau’s approach emphasise resonant encounters, where the interactions between
stars at resonant velocity (homogeneous) or frequencies (inhomogeneous) drive the relaxation pro-
cess. For homogeneous systems, these two approaches are equivalent (Chavanis, 2013a). Yet, in
resonant formulations, emphasis is placed on global, low-order resonances, while high-order reso-
nances corresponding to local deflections are most often truncated. If relaxation is mostly driven
by local deflections, the Chandrasekhar theory provides a much more efficient way to compute the
collision operator.

Homogeneity The second axis concerns whether the system and encounters are treated as ho-
mogeneous or if spatial inhomogeneity is taken into account. In classical kinetic theories, such as
those developed by Chandrasekhar and those directly transposed from plasmas, the system is often
approximated as homogeneous, assuming a uniform distribution of stars. However, more advanced
theories incorporate spatial inhomogeneity, i.e., a non-constant mean-field density, by using angle-
actions variables. Intermediate approaches consider homogeneous (local) encounters but averaged
over the particle’s orbital phase which take into account the spatial inhomogeneity of the system
(see, e.g., Tep et al., 2022, and references therein).

External vs internal fluctuations The fluctuations which drives the relaxation can be consid-
ered as external or internal. In Fokker–Planck approaches (Chandrasekhar, 1942; Binney & Lacey,
1988; Weinberg, 2001), fluctuations are treated as external perturbations, simplifying somewhat
the analysis. Conversely, the Landau and Balescu–Lenard theories consider the effect of internal
shot-noise-driven fluctuations. This internal perspective provides a self-consistent understanding of
the collective dynamics and self-driven long-term evolution of the system (Landau, 1936; Balescu,
1960; Lenard, 1960).

Collective effects Finally, the impact of self-gravity on the stochastic scattering of orbits is par-
ticularly difficult to take into account and took some time to be properly addressed. For plasmas,
it led to the development of the Balescu–Lenard equation (Balescu, 1960; Lenard, 1960). In this
case, collective effects tend to screen the interactions beyond the Debye length. It regularises the
long-range divergence in the Landau equation. For self-gravitating systems, the impact of collective
effects is much more diverse. Among these contributions let me point out the seminal work of Wein-
berg (1993) who showed the importance of self-gravity in the secular evolution of (homogeneous)
stellar systems (see also Magorrian, 2021), and Pichon & Aubert (2006) in inhomogeneous systems.

It is only recently that a fully self-consistent internally-driven kinetic theory taking both spatial
inhomogeneity and self-gravity into account has been achieved (Heyvaerts, 2010; Chavanis, 2012;
Fouvry & Bar-Or, 2018; Hamilton, 2021). It led to the derivation of the inhomogeneous Balescu–
Lenard equation. This equation describes the long-term evolution of stable stellar systems under
the collisional resonant contributions of internal fluctuations dressed by collective effects. Since its
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derivation, this equation has been successfully applied to various systems such as razor-thin discs
(Fouvry et al., 2015), the Hamiltonian mean-field (HMF) model (Benetti & Marcos, 2017), galactic
nuclei (Fouvry & Bar-Or, 2018) and the one-dimensional model (Roule et al., 2022). It is at the
hearth of this thesis and is further discussed in chapters 5 and 6.

1.3 Overview
In this thesis, I aim to quantify the impact of collective effects on secular orbital diffusion in self-
gravitating systems. I address the following questions: What is the relationship between damped
modes and orbital diffusion in galactic discs? When do collective effects enhance or dampen the
long-term orbital reshuffling in self-gravitating systems? What kind of systems are least subject to
orbital diffusions? What are the limitations of the current state-of-the-art kinetic theory?

In chapter 2, I introduce the self-gravitating systems I am interested in, namely the one-
dimensional model and the razor-thin disc. For each model, I present the corresponding angle-action
variables along with the mean-field equilibria I consider in chapters 4 and 6.

Chapter 3 develops the necessary tools to study the linear response of a stellar system, i.e., how
to solve equations (1.19b) and (1.19c) together. I notably pinpoint the specificities of inhomoge-
neous systems and the difficulties they raise. I also present a new method to take gravitational
softening into account in the linear theory.

In chapter 4, I apply the method presented in chapter 3 to the models of chapter 2. I illustrate
its versatility and its ability to capture instabilities as well as weakly damped modes. I discuss the
convergence of this generic method and its limitations. Using numerical simulations, I also study
the impact of gravitational softening on instabilities in razor-thin discs.

Chapter 5 presents the most advanced kinetic theories developed to study the secular evolution
of self-gravitating systems, i.e., to solve equation (1.19a). I give some insights on the derivation
of the corresponding inhomogeneous Balescu–Lenard equation to highlight the underlying assump-
tions and discuss their limitations. This theory is also compared to the historic Chandrasekhar
theory of two-body relaxation.

In chapter 6, I apply the kinetic theories from chapter 5 to the models presented in chapter 2 and
compare my predictions to numerical simulations. I show that collective effects can have very diverse
consequences on the secular evolution of self-gravitating systems. Neglecting them can lead to
significant overestimation as well as underestimation of the relaxation rate. Conversely, taking them
into account, the Balescu–Lenard equation is able to capture qualitatively and quantitatively the
(average) secular evolution. I also discuss the limitations of this state-of-the-art theory, specifically
for marginally stable systems.

In chapter 7, I study systems for which two-body encounters drive no relaxation. These systems
are said to undergo a kinetic blocking. In this case, a kinetic equation has recently been derived
to take into account the effect of three-body encounters while neglecting collective effects (Fouvry
et al., 2019a, 2020; Fouvry, 2022). This equation can also be blocked for specific systems. Yet, I
show that collective effects prevent three-body encounters from being unable to drive any relaxation.

Finally, chapter 8 summarises the main results of this thesis and discusses the perspectives they
open.





Chapter 2

Mean-field models

Let me present the self-gravitating systems I studied during my PhD, namely the one-dimensional
model and the razor-thin disc. For each model, I detail the explicit expressions for the mappings
between different constants of motion, in particular the actions and frequencies. Finally, I present
the analytical quasi-stationary state (QSS) I considered for each model.

2.1 The models

2.1.1 One-dimensional or “sheet” model

One-dimensional gravity is a toy model equivalent to aligned uniformly dense parallel planes in 3D
attracting one another. It was first introduced by Spitzer (1942) and Camm (1950) to explain the
vertical evolution of a self-gravitating disc of stars. Its simplicity allowed for an extensive numerical
investigation of both its violent relaxation (see, e.g., Hohl & Campbell, 1968; Reidl & Miller, 1988;
Teles et al., 2011) and its slow (collisional) evolution towards thermodynamical equilibrium (see,
e.g., Wright et al., 1982; Yawn & Miller, 1997; Joyce & Worrakitpoonpon, 2010; Roule et al., 2022;
Souza & Rocha Filho, 2023).

Similarly to infinite charged planes in electrostatics, the gravitational force created by one plane
over another one does not depend on their respective separation, but only on their relative position
(right or left). This model is illustrated in figure 2.1. It can be interpreted as particles embedded

U(x, x′) ∝ |x− x′|

Figure 2.1: Illustration of the sheet model: particles are free to move on a line, interacting through a gravitational
force proportional to the distance between them. As such, they can interpenetrate without merging and are in fact
infinitely small (Dirac δ-functions).

on a line. On top of their usual (specific) kinetic energy, 1
2v

2, particles are acting on one another
through the interaction potential

U(x, x′) = G |x− x′|, (2.1)

with G the gravitational constant. In that limit, I also emphasise that there are no collisions
between the particles: they can interpenetrate one another without colliding.

This interaction potential corresponds to the generalisation of Newton’s gravity law to the
one-dimensional case as equation (2.1) is naturally associated with the Poisson equation

∆ψ = 2Gρ, (2.2)

13



14 Chapter 2. Mean-field models

where the prefactor 2 comes from the surface of the 1-sphere, {−1, 1} (the analogue of 4π for the
3-sphere in the usual 3D-Poisson equation). In figure 2.2, I illustrate the density, the force and
the potential fields induced by one particle in the sheet model. The 1D gravitational potential

x
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x

F −
∫
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x

ψ

Figure 2.2: Illustration of the density (Dirac δ-function), the force field (Heaviside function) and the potential field
(absolute value) induced by one particle in the sheet model.

differs from its 3D counterpart in two main respects: (i) it is unbounded at large separation, hence
all particles are trapped (i.e., no escapers are possible); (ii) it is finite at zero separation allowing
particles to cross one another.

Numerous simplifications arise from the one-dimensional assumption, both for N–body simula-
tions and for analytical and computational developments of the corresponding kinetic theory. This
system will be investigated in detail in sections 4.1 and 6.1.

2.1.2 Razor-thin disc

Turning my interest to the in-plane motion of stars in a flat galaxy, I now consider a razor-thin
disc of stars. In this configuration, the motion of the stars is confined to the same (infinitely thin)
plane, but stars do interact through the usual 3D Newtonian gravity. The pairwise interaction
potential then is

U(r, r′) = −G
∥r− r′∥

, (2.3)

with G the strength of the interaction and ∥r−r′∥2 =r2+r′2−2rr′ cos(ϕ−ϕ′), using the polar co-
ordinates r=(r, ϕ).

Within an axisymmetric configuration, the typical motion of (bounded) stars are rosette-like
orbits, illustrated in figure 2.3. Stars oscillate between two extreme radii, the pericentre rp and

Figure 2.3: Inspired by Hamilton & Fouvry (2024). Illustration of the rosette-like orbits of stars in the galactic plane
and in globular clusters. Typical orbits in galactic discs are nearly circular (right). Orbits in globular clusters are
more eccentric (left).

the apocentre ra. When the potential is dominated by the central mass, the motion reduces to the
well-known Keplerian orbits. In a realistic galactic disc, most stars lie on nearly circular orbits,
with small eccentricities (Binney & Tremaine, 2008).
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2.2 Orbital constants
In this section, I detail the explicit expressions for the mappings between different constants of mo-
tion in the one-dimensional model and the razor-thin disc, in particular the actions and frequencies.
As the mean-field motion of self-gravitating systems is naturally described in angle-action coordi-
nates (equation 1.18), accurately computing these quantities is the first necessary step towards
describing their (long-term) dynamics.

2.2.1 One-dimensional model

I consider a mean-field equilibrium associated with a symmetric potential ψ(−x)=ψ(x). Given
that this potential is unbounded (following equation 2.1), all particles are trapped, and therefore
librate around the position x=0. As such, an orbit of energy E may be solely characterised by
its apocentre, ra, i.e., the maximum radius reached during the particle’s libration. It is defined
through

ψ(ra) = E. (2.4)

Following equation (1.16), the action of a particle is defined by the integral of the momentum,
v=±

√
2[E−ψ(x)], during one full radial oscillation. Paying careful attention to the prefactors, it

reads

J = 1
π

∫ ra

−ra
dx
√

2[E − ψ(x)]

= 2
√

2
π

∫ ra

0
dx
√
ψ(ra)− ψ(x). (2.5)

The associated frequency, Ω, naturally follows from Ω=∂H/∂J (equation 1.17), so that

1
Ω = 1

π

∫ ra

−ra

dx√
2[E − ψ(x)]

=
√

2
π

∫ ra

0

dx√
ψ(ra)− ψ(x)

. (2.6)

However, the integration in this equation should not be performed as such, because its integrand
diverges like 1/

√
x at the edge of the domain x=ra. It is therefore more appropriate to perform a

change of variables, x=raf(w), towards an effective anomaly, −1≤w≤1, that allows for explicit
mappings, and cures the edge divergences. To do so, the mapping function, f , should satisfy
f(±1)=±1 and f ′(±1)=0. In practice, I use Hénon’s mapping function (Hénon, 1971)

f(w) = 1
2
(
3w − w3

)
, (2.7)

and the frequency integral equation (2.6) becomes

1
Ω =

√
2
π

∫ 1

0
dwΘra(w), (2.8)

where I introduced the angle gradient (w.r.t. the Hénon anomaly)

Θra(w) = raf
′(w)√

ψ(ra)− ψ[raf(w)]
. (2.9)

To address the arising 0/0 limit in this quantity, I use a second-order Taylor expansion in w→±1.
Computing the frequency from equation (2.8) then requires a numerical integration of the (regu-
larised) integrand Θra . I perform this integral using the Simpson’s 1/3 rule with Kmf integration
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nodes. The angle gradients, Θra(w), are smooth functions of the anomaly w, so that the integration
scheme quickly converges. I typically use Kmf =100.

Finally, the canonical angle, θ, associated with the action, J , from equation (2.5) follows from
equation (37) of Tremaine & Weinberg (1984). It reads

θ =
∫

C
dx′ Ω√

2[E − ψ(x′)]
, (2.10)

where C is the contour going from x′ =−ra up to the current position x′ =x(θ) along the radial
oscillation. Therefore, the angle mapping is such that

x(θ=0) = −ra, x(π2 ) = 0, x(π) = ra, x(3π
2 ) = 0. (2.11)

2.2.2 Razor-thin discs

Let me now consider razor-thin discs. Assuming central symmetry, i.e., ψ=ψ(r), natural isolating
integrals of motion are energy E and angular momentum L defined as

E = 1
2 ṙ

2 + ψeff(r, L), L = r2ϕ̇, (2.12)

with the polar coordinates, (r, ϕ). In equation (2.12), I introduced the effective potential

ψeff(r, L) = ψ(r) + L2

2r2 . (2.13)

Given an angular momentum, L, this effective potential sets the radial motion of the particle. It is
illustrated in figure 2.4. Stars oscillate radially between the pericentre, rp, and the apocentre, ra,

ψeff(r, L)

r

E

Ec(L)

rgrp ra

Figure 2.4: Illustration of the effective potential, ψeff , from equation (2.13). Bounded orbits (E<0) oscillate between
the pericentre rp and the apocentre ra. Circular orbits correspond to the minimum of the effective potential. They
are equivalently defined by their angular momentum, L, circular energy, Ec, or guiding radius, rg.

defined as the root of the equation E=ψeff(r). These constants of motion are defined independently
of the mean-field potential, ψ, and are therefore good representative variables for the (bounded)
orbits. From them, one can straightforwardly obtain the energy and angular momentum as

E =
r2

aψ(ra)− r2
pψ(rp)

r2
a − r2

p
, L =

√
2 [ψ(ra)− ψ(rp)]

r−2
p − r−2

a
. (2.14)

Following equation (1.16), the natural actions variables J=(Jr, Jϕ) are given by (Lynden-Bell &
Kalnajs, 1972)

Jr = 1
π

∫ ra

rp
dr vr = 1

π

∫ ra

rp
dr
√

2[E − ψeff(r, L)], (2.15a)

Jϕ = L. (2.15b)
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The radial action, Jr, encodes the eccentricity of the orbit and is such that Jr=0 corresponds to cir-
cular orbits. The associated frequencies, (Ωr,Ωϕ)=∂H/∂J, are obtained through the dimensionless
frequency ratios (Tremaine & Weinberg, 1984)

1
α

= Ω0
Ωr

= Ω0
π

∫ ra

rp

dr√
2[E − ψeff(r, L)]

, (2.16a)

β = Ωϕ

Ωr
= L

π

∫ ra

rp

dr
r2
√

2[E − ψeff(r, L)]
, (2.16b)

where Ω0 is a natural frequency scale, typically the maximal radial frequency at the system’s
centre (when it exists). In figure 2.5, I illustrate the typical mappings between the pericentre and
apocentre, the energy and angular momentum, and these dimensionless frequency ratios.

Figure 2.5: Illustration of the typical mappings between orbital constants in razor-thin discs with cored potential.
The pericentre and apocentre (left), are mapped to energy and angular momentum (middle) from equation (2.14),
and to the dimensionless frequency ratios (right) from equation (2.16). The red lines represent the radial orbits, while
the blue lines represent the circular orbits and the green lines the infinitely far (yet bounded) orbits.

Similarly to equation (2.6), the integrals in equation (2.16) should be performed with care, as
they diverge at the edges of the domain r→rp/a. Using the same approach, I use the change of
variables r(w)=a[1+ef(w)] with f(w) the Hénon mapping function (equation 2.7) and where I
introduced the effective semi-major axis and eccentricity

a = ra + rp
2 , e = ra − rp

ra + rp
. (2.17)

Once again, using this anomaly, the frequency integrand

Θ(w) = aef ′(w)√
2[E − ψeff(r[w], L)]

, (2.18)

is no longer divergent and equations (2.16) simply read

1
α

= Ω0
π

∫ 1

−1
dwΘ(w), (2.19a)

β = L

π

∫ 1

−1
dw Θ(w)

r2(w) . (2.19b)

Some examples of these frequency integrands, w 7→Θ(w), are illustrated in figure 2.6. Importantly,
they are smooth and bounded functions of the anomaly w. Close to w→±1, the integrands are
interpolated to cure the arising 0/0 limit. Furthermore, for too small values of the effective semi-
major axis, a, and/or eccentricities, e, close to 0 (circular orbits) or 1 (radial), their computation
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Figure 2.6: Figure from the cosigned article Petersen et al. (2024). Example of Θ(w) (equation 2.18) for dif-
ferent effective semi-major axes and eccentricities (a, e) (equation 2.17) in the isochrone potential (Hénon, 1959),
ψ(r)=−GM/(bc+

√
r2 + b2

c). The angle gradient is normalised to Θ(w=1)=1, and semi-major axes with bc, the
potential scale radius. The range of w runs from -1 (pericentre) to 1 (apocentre). The curves are smooth and
straightforward to integrate via low-order schemes. The line for a/bc =0.001 and e=0.01 is not shown because it
corresponds to an orbit for which interpolation is used to compute the frequency ratios (equation 2.16).

may fail. In these cases, I determine the frequency ratios from equation (2.16) through interpolation.
For circular orbits, the frequency ratios follow from the epicyclic frequencies. They read

αc(r) = 1
Ω0

√
ψ′′(r) + 3ψ

′(r)
r

, βc(r) =
√
ψ′(r)/r

Ω0 αc(r)
. (2.20)

From the frequency ratios, the radial and azimuthal frequencies are readily obtained through the
mappings

α = Ωr/Ω0, β = Ωϕ/Ωr; (2.21a)
Ωr = αΩ0, Ωϕ = αβΩ0. (2.21b)

Finally, the canonical angles, θ, associated with the action, J, from equation (2.15) follows from
equation (37) of Tremaine & Weinberg (1984). It reads

θr[w] = Ωr

∫ w

−1
dw′ Θ(w′), (2.22a)

(θϕ−ϕ)[w] =
∫ w

−1
dw′

[
Ωϕ −

L

r(w′)2

]
Θ(w′). (2.22b)

2.3 Quasi-stationary states

2.3.1 One-dimensional model

This section is adapted from Roule et al. (2022).
For the one-dimensional model (section 2.1.1), I consider two explicit quasi-stationary distri-

butions: (i) the global thermodynamical equilibrium; and (ii) a more peaked QSS, analogue of the
2D Plummer sphere (Plummer, 1911), as I now detail.

Thermodynamical equilibrium

Unlike their 3D analogues (unless confined in a box with repulsive walls – Padmanabhan, 1990;
Miller & Youngkins, 1998; Chavanis, 2006a), 1D self-gravitating systems have a well-defined max-
imum entropy equilibrium state. Under the constraints of fixed total mass and energy, its density
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follows (Spitzer, 1942; Camm, 1950; Rybicki, 1971; Joyce & Worrakitpoonpon, 2010)

ρ(x) = Mtot
2Λ sech2(x/Λ) , (2.23)

with Λ the system’s characteristic length. The associated potential is given by

ψ(x) = E0 log [2 cosh (x/Λ)] , (2.24)

with E0 =GMtotΛ the characteristic (specific) energy, while its distribution function (DF) reads

F (E) = 2Mtot√
πσΛ exp(−2E/E0) , (2.25)

with σ=
√
GMtotΛ the characteristic velocity. I emphasise that the DF from equation (2.25) cannot

further relax by design. Naturally, this does not prevent individual particles from undergoing
themselves a diffusion as detailed in chapter 6.

Plummer quasi-stationary equilibrium

I also investigate an equilibrium stemming from polytropes (Eddington, 1916; Hénon, 1973; Horedt,
2004). More precisely, by analogy with the 3D Plummer sphere (Plummer, 1911), I consider the
1D density

ρ(x) = Mtot
2α

[
1 + (x/α)2

]−3/2
, (2.26)

where α=2Λ/π ensures that this distribution has the same energy as equation (2.23). The associ-
ated DF follows the power law distribution

F (E) = 15G3M4
tot α

2

32
√

2
E−7/2. (2.27)

This DF was obtained through Eddington’s inversion formulae (appendix 2.A). In figure 2.7, I
illustrate the density and frequency profiles of these two states. While the thermodynamical equi-

Figure 2.7: Figure from Roule et al. (2022). Left: Density profiles of the thermal and Plummer equilibria. The
Plummer equilibrium has a sharper core. Right: Corresponding frequency profiles. The range of available frequencies
is wider for the Plummer equilibrium. The vertical dashed lines represent the minimal (central) energy in each
equilibrium.

librium has a strong core and few particles in the tails (only∼10−9Mtot outside [−10Λ, 10Λ]), the
Plummer distribution has a sharper core and much wider tails (∼10−3Mtot outside [−10Λ, 10Λ]).
The Plummer denser core widens its frequency profile, allowing in turn for more resonances. At
high energies, both frequency profiles decrease like 1/

√
E. This is the expected “Keplerian” be-

haviour for a one-dimensional system. For a particle at very large energy, it is as if all the mass was
concentrated at the origin, leading to a potential ψ(x)∝|x|. Injecting this form in equation (2.6),
one can retrieve the expected behaviour.
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Polytropes quasi-stationary equilibria

The “Plummer” equilibrium presented in the previous paragraph corresponds to a particular case
of a broader class of equilibria called polytropes (see Horedt, 2004, for a review on their use
in astrophysics). Polytropes are hydrostatic equilibria between pressure and gravitational forces
which satisfy a so-called polytropic relation of the form

P = K ρ1+1/n, (2.28)

between the pressure, P , and the density, ρ. As detailed in appendix 2.B, polytropes have exact
analytical solutions in 3 different cases: n = 0 (ρ = cst), n = 1 and n = d+2

d−2 (Horedt, 2004).
The Plummer equilibrium corresponds to this last analytical case. One could also be interested

in the second one, n=1. This solution has density

ρ(x) = Mtotπ

4α cos
(
π

2
x

α

)
1|x|<α, (2.29)

It has the same total energy as the thermodynamical equilibrium if α=2Λ. It is difficult to predict
and measure the long-term evolution of this model due to the rough cut-off in density and the
diverging gradient of the associated DF,

F (E) = π
√

2Mtot
8α
√
GMtotα

√
1− E

GMtotα
11− 2

π
≤E/GMtotα≤1. (2.30)

Furthermore, as this model has a more prominent core than the thermal equilibrium, its frequency
profile is flattened. This can lead to a particularly slow relaxation towards the thermodynamical
equilibrium. This is discussed further in section 6.1.2. All in all, it makes both theoretical predic-
tions and measurements in N–body experiments too challenging. I did not investigate further the
model from equation (2.29).

2.3.2 Razor-thin discs

I will mainly focus on one model of discs, namely tapered Mestel discs. These discs’ dynamics
have been extensively studied (e.g., Zang, 1976; Toomre, 1981; Evans & Read, 1998b; Sellwood &
Evans, 2001; Sellwood, 2012; Fouvry et al., 2015). They are not perfectly representative of observed
galactic profiles whose radial surface-brightness are better fitted by one (Freeman, 1970; Elmegreen
et al., 2005) or two (Pohlen & Trujillo, 2006) exponential profiles, mainly depending on their Hubble
type.1 However, they offer a well-documented test case for the study of these dynamically cold
systems, with a flat rotation curve.

Mestel disc

A razor-thin Mestel disc has constant circular velocity, vc =
√
r∂ψ/∂r=V0, mimicking the (rela-

tively) flat rotation curve of the Milky Way (Eilers et al., 2019). The associated potential is

ψ(r) = V 2
0 ln(r/R0), (2.31)

with R0 an arbitrary length scale. It requires a surface density

Σ(r) = V 2
0

2πGr = Σ0
R0
r
, (2.32)

1While going from surface-brightness to surface-density is no easy task, the Milky Way is well captured by a single
exponential density profile (Bovy & Rix, 2013).



2.3 Quasi-stationary states 21

with Σ0 =V 2
0 /2πGR0. In such a disc, any (centred) annulus of radial size dr contains the same

mass dM=V 2
0 dr/G. Mestel discs therefore have infinite mass.

The orbital frequencies of this profile diverge at the centre. To cure this divergence, I truncate
the Mestel potential, so that equation (2.31) becomes

ψ(r) = V 2
0 ln

√( r

R0

)2
+ ε2

 , (2.33)

with ε≪1. This truncation introduces a scale length in this scale-invariant disc and breaks the
self-consistency between the distribution function and the potential. In practice, I performed such
a softening for numerical reasons, and ensured that the cut-off was small enough not to affect the
disc’s dynamical properties. However, it could also be physically motivated as the rotation curve
of real galaxies is not perfectly flat and decreases in the central regions (Rubin et al., 1980). In this
case, one would probably want to set an observationally-motivated value for the cut-off.

A compatible DF for a (non-truncated) Mestel disc is given by

F (E,L) = C Lq e−E/σ2
, (2.34)

where σ is the radial velocity dispersion and

q =
(
V0
σ

)2
− 1, C = V 2

0
2q/2+1π3/2G Γ[(q + 1)/2] σq+2Rq+1

0
, (2.35)

respectively the power index, which measures the degree to which the disk is centrifugally supported,
and the normalisation constant (equation 4.163 in Binney & Tremaine, 2008).

Taper and active fraction

In order to deal with the singularity at the centre and the infinite mass of this disc, I follow Evans
& Read (1998b) and introduce an inner and an outer tapering in the distribution equation (2.34).
These tapers do not affect the mean-field potential. Once again, it breaks the self-consistency
between the DF and the potential, but in fact allows for a more realistic description. The total
potential can be interpreted as generated by (i) an inert bulge in the centre,2 (ii) an inert halo
(which dominates in the outer region) and (iii) the self-gravitating disc. In addition, I can also
vary the overall amplitude of the DF with a constant prefactor, ξ, called the active fraction. This
free parameter allows me to control the relative importance of the self-gravitating disc to the total
potential. It is a proxy for the relative masses of the disc and the dark matter halo (which I assume
to be gravitationally inert).

Importantly, the tapered Mestel disc (or Zang disc) is therefore to be thought as a multi-
component (bulge, disc, halo) system in which the disc is much more responsive to any perturbation
than the other components. This will be justified in chapter 5 by the geometry and dynamical
temperatures of the different components. Probing the (coupled) evolution of a true, self-consistent,
multi-component system would be particularly interesting but is beyond the scope of this thesis.
All in all, the DF is given by

F (E,L) = ξ C Lq e−E/σ2
Tin(L)Tout(L). (2.36)

In this equation the inner and outer tapers act on the angular momentum only. All central, distant
and radial orbits are suppressed by the tapers. They read

Tin(L) = Lν

(RinV0)ν + Lν
, Tout(L) = (RoutV0)µ

(RoutV0)µ + Lµ
. (2.37)

2Note that discs with too sharp inner taper (indices ν>2 in equation 2.37) do not admit spherical bulges whose
volume densities are everywhere non-negative (see appendix B in Zang, 1976).
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The sharpness of the inner (resp. outer) taper is controlled by the power index ν (resp. µ) while its
location is set by the radius Rin (resp. Rout). The exact set of parameters are given in appendix 2.C.



Appendices

2.A Eddington’s inversion

I now detail the construction of a self-consistent
distribution function given a density profile for a
1D integrable system. This follows the Edding-
ton’s inversion, as given in section 4.3.1 of Bin-
ney & Tremaine (2008).

Let me consider a system whose mean-field
density is given by ρ=ρ(r), with r= |x|, and the
associated potential ψ=ψ(r). I assume that the
potential is a monotonically increasing function
of radius, and similarly the density is monotoni-
cally decreasing. I suppose that the system is in
mean-field equilibrium, so that F =F (E), with
E= 1

2v
2 + ψ(r). By definition, the density satis-

fies the self-consistency relation

ρ(r) =
∫ +∞

−∞
dv F (x, v)

=
∫ +∞

−∞
dv F

[1
2v

2 + ψ(r)
]

= 2
∫ +∞

0
dv F

[1
2v

2 + ψ(r)
]
. (2.38)

Performing the change of variable dE=vdv, I
can write

ρ(r) = 2
∫ +∞

ψ
dE F (E)√

2(E − ψ)
, (2.39)

where I introduced the shortened notation
ψ=ψ(r). Since ψ=ψ(r) is a monotonic function
of r, one can regard the density ρ as a function of
ψ rather than r. I then rewrite equation (2.39)
as the self-consistent relation

1√
2
ρ(ψ) =

∫ +∞

ψ
dE F (E)√

E − ψ
. (2.40)

This takes the form of an Abel integral equa-
tion which can be explicitly inverted. Following

equation (B.72) of Binney & Tremaine (2008), it
reads

F (E) = − 1
π
√

2
d

dE

∫ +∞

E
dψ ρ(ψ)√

ψ − E

= − 1
π
√

2

∫ +∞

E
dψ dρ/dψ√

ψ − E

=
√

2
π

∫ +∞

E
dψ
√
ψ − E d2ρ

dψ2 . (2.41)

Using Poisson equation (1.19c), the poten-
tial associated to the Plummer quasi-stationary
state from equation (2.26) reads

ψ(x) = GMtotα
[
1 + (x/α)2

]1/2
. (2.42)

The density then is a simple function of the po-
tential and reads

ρ(ψ) = Mtot
2α

(
ψ

GMtotα

)−3
. (2.43)

From this expression and Edington’s inversion
equation (2.41), one can retrieve the distribution
function of the Plummer model given in equa-
tion (2.27).

2.B Polytropes

Considering spherically-symmetric systems, the
equilibrium between pressure and gravitational
forces can be written as

∆P = 1
rd−1

d
dr

[
rd−1 dP

dr

]
= Sd(1)Gρ(r), (2.44)

where Sd(1) is the surface of the d-dimensional
unit-sphere (2 in 1D, 2π in 2D, 4π in 3D).
Assuming a polytropic relation between pres-
sure and density (equation 2.28), one can

23
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Distribution
function name

Active
fraction ξ

Power
index q

Inner taper Outer taper3

Rin ν Rout µ

Zang ν= ... 1 6 1 ... 11.5 5
Toomre4 0.5 11.4 1 4 11.5 5

Table 2.1: Values of the parameters for the razor-thin discs explored in this thesis (equations 2.36–2.37).

find a set of particular solutions of the hy-
drostatic equilibrium. Using this relation
in the change of variables ρ=ρ0 θ

n (equa-
tion 2.28 implies P =P0 θ

n+1) and r=αξ with
α=

√
|n+1|P0/(Sd(1)Gρ2

0), one can retrieve the
Lane–Emden equation (see, e.g., equation 2.1.14
in Horedt, 2004)

1
ξd−1

d
dξ

(
ξd−1 dθ

dξ

)
= θ′′+(d−1)θ

′

ξ
= ±θn.

This equation has exact analytical solutions in 3
different cases: n=0 (ρ=cst), n=1 and n= d+2

d−2
(Horedt, 2004).

2.C Discs parameters

In table 2.1, I summarise the (default) parame-
ters of the discs considered in this thesis.3

These values are mainly chosen to match
the literature and ease comparison (Zang, 1976;
Evans & Read, 1998b; Sellwood & Evans, 2001;
Sellwood, 2012; Fouvry et al., 2015). For all
Zang and Toomre4 discs, I use G=R0 =V0 =1
and ε=10−5 for the potential truncation (equa-
tion 2.33).

3 There is no outer taper in the original works of Zang (1976) and Toomre (1981). It was later introduced by Evans
& Read (1998b) and shown to weakly alter the dynamical properties of the disc (i.e., the unstable mode frequencies
and growth rates), provided the cut-out is sufficiently sharp and far enough from the populated regions. This taper
is necessary for N–body simulations, as the non-tapered disc has infinite (active) mass. The values used in this thesis
are those from Sellwood (2012) and Fouvry et al. (2015).

4 The power index q (equation 2.35) in Fouvry et al. (2015) slightly differs from Sellwood (2012). In all computa-
tions in this thesis, I used the value from Fouvry et al. (2015). In practice, it only changes the velocity dispersion and
the stability Toomre number Q (Toomre, 1964) by 0.1%. I checked that it does not alter the predictions. However,
one should rather use Sellwood (2012)’s value (q=11.44) which relies on a simple motivation: having nominal Toomre
Q=1.5.



Chapter 3

Linear response of stellar
self-gravitating systems

Let me now explore the stability of a given quasi-stationary state (QSS) w.r.t. small perturbations.
This is the subject of linear response theory, which I develop in this chapter. I first introduce the
general formalism here, before applying it to specific systems in the following chapter 4.

The first two sections of this chapter are inspired by Hamilton & Fouvry (2024).

3.1 Gravitational susceptibility

Given a mean-field distribution, F , the evolution of perturbations follows equation (1.13b). Con-
sidering sufficiently small perturbations, one can linearise this equation, yielding equation (1.19b)
that I recall here for convenience:

∂δf

∂t
+ Ω(J)· ∂δf

∂θ
− ∂F

∂J ·
∂δψ

∂θ
= 0. (recall 1.19b)

This is known as the linearised collisionless Boltzmann equation. Together with the Poisson equa-
tion (1.19c), this equation describes the (linear) self-consistent evolution of a perturbation δf in
the potential perturbation it generates, δψ. While these perturbations implicitly depend on angles,
actions and time, the mean-field distribution, F (J), is assumed to be time and angles independent.
The underlying assumptions are that (i) the perturbations are sufficiently small, (ii) the mean-field
distribution function (DF) is phase mixed, and (iii) the mean-field DF evolves on a timescale much
longer than the perturbations’ timescale. In the following subsection, I study this evolution equa-
tion using Fourier decomposition w.r.t. angles and Laplace transform w.r.t. time. This study leads
me to introduce the gravitational susceptibility of the system. Rather than focusing on the evolu-
tion of a given perturbation, this susceptibility generically captures the propensity of the system
to amplify or damp perturbations at any given frequency. The linear response theory developed
in this chapter assumes that there are only internal perturbations and no externally-imposed per-
turbations. Phrased differently, I am mainly interested in the nature/stability of collective effects,
i.e., in the homogeneous1 solutions of the (linear) differential equations.

3.1.1 Angle Fourier decomposition

The angles, θ, being 2π-periodic, the perturbations can naturally be expanded in a Fourier series

g(θ,J, t) =
∑

k
gk(J, t) eik·θ, (3.1)

1Here homogeneous relates to the differential equation (no source term) not to the spatial homogeneity of the
system.
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with k∈Zd and the Fourier coefficients

gk(J, t) = 1
(2π)d

∫
dθ e−ik·θ g(θ,J, t). (3.2)

Similarly, one can decompose the (action-dependent) interaction potential in a Fourier series

U(θ,J,θ′,J′) =
∑
k,k′

Ukk′(J,J′) ei(k·θ−k′·θ′). (3.3)

In this equation, the Fourier coefficients

Ukk′(J,J′) = 1
(2π)2d

∫
dθdθ′ e−i(k·θ−k′·θ′) U(θ,J,θ′,J′), (3.4)

represent the bare coupling harmonic coefficients between orbits J and J′ at resonance numbers k
and k′ (Pichon, 1994). The dependence of these coefficients on the orbital actions is at odds with
their plasma equivalent. It highlights that, for inhomogeneous systems, the interaction between
particles, i.e., the Poisson equation (1.19c), and their (mean-field) motion are not “diagonal” in
the same coordinate systems. In homogeneous plasmas, these coupling coefficients, as well as the
interaction potential, U , are independent of the particles’ velocities. This difference makes linear
response computations more intricate in the inhomogeneous self-gravitating case.

For each angular Fourier mode, the system of coupled equations to solve finally reads
∂δfk
∂t

+ ik·Ω δfk − ik· ∂F
∂J δψk = 0, (3.5a)

δψk(J, t) = (2π)d
∑
k′

∫
dJ′ δfk′(J′, t)Ukk′(J,J′). (3.5b)

In equation (3.5a), the fluctuations implicitly depend on the actions and time. Similarly, the
dependence of frequencies on actions is implicit, i.e., Ω=Ω(J).

3.1.2 Time Laplace transform

Equations (3.5), together with initial conditions given by the Fourier coefficients of the initial per-
turbation, δfk(J, 0), constitute an initial value problem. It can be solved using Laplace transform,

g̃(J, ω) =
∫ +∞

0
dt eiωt g(J, t). (3.6)

With this convention, the Laplace transform is defined for Im(ω)>0 sufficiently large, i.e., such that
the integral converges at t→∞. If the function g is (purely) exponentially growing at a rate γ > 0,
its Laplace transform would have a singularity at ω=iγ. Conversely, if the function g is bounded,
its Laplace transform is well-defined for Im(ω)>0. After rearranging, the Laplace transform of the
linearised evolution equations (3.5a) reads

δf̃k(J, ω) =

initial conditions︷ ︸︸ ︷
δfk(J, 0)

i(k·Ω− ω)︸ ︷︷ ︸
phase mixing

+ k·∂F/∂J
k·Ω− ω

δψ̃k(J, ω)︸ ︷︷ ︸
collective effects

. (3.7)

The first term in the r.h.s. of this equation corresponds to the phase mixing of initial fluctuations,
i.e., their shearing along unperturbed orbits dictated by the mean-field potential (figure 1.6). Taking
only this effect into account, the time-evolution of the perturbations simply reads

δfk(J, t) = δfk(J, 0) e−ik·Ωt. (3.8)

The second term in the r.h.s. of equation (3.7) accounts for collective effects. It relates the evolu-
tion of the DF perturbations to the potential perturbations they induce (coupled through Poisson
equation 1.19c). Accounting for this effect is the main focus of this chapter.
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3.1.3 Gravitational dressing

Neglecting collective effects in equation (3.7) leads to the simple phase mixing of the fluctuations.
Using Poisson equation (3.5b) (whose Laplace transform is obtained through the substitution t→ω,
since the equation is linear), the corresponding bare potential fluctuations then read

δψ̃b
k(J, ω) = (2π)d

∑
k′

∫
dJ′ δfk′(J′, 0)

i(k′ ·Ω′ − ω)Ukk′(J,J′), (3.9)

where Ω′≡Ω(J′). Once again, it corresponds to the potential fluctuations generated by the initial
density perturbations simply orbiting in the mean-field potential, i.e., phase mixing.

Similarly, from equation (3.7) and Poisson equation (3.5b), the dressed potential fluctuations
satisfy the self-consistency relation

δψ̃k(J, ω) = δψ̃b
k(J, ω) + (2π)d

∑
k′

∫
dJ′ k′ ·∂F/∂J′

k′ ·Ω′ − ω
Ukk′(J,J′) δψ̃k′(J′, ω) (3.10)

Linearly accounting for the self-interaction of the fluctuations, i.e., collective effects, one can search
for solution of equation (3.10) under a form similar to equation (3.9)

δψ̃k(J, ω) = (2π)d
∑
k′

∫
dJ′ Ud

kk′(J,J′, ω)︸ ︷︷ ︸
dressed coupling

δfk′(J′, 0)
i(k′ ·Ω′ − ω) . (3.11)

This is the Rostoker’s superposition principle (Rostoker, 1964). It is as if particles were indepen-
dently evolving along their mean-field orbits, but their effective mass was modified by the wake
they create in the system (see, e.g., Hamilton, 2021). The bare Newtonian interaction potential
is replaced by a dressed, frequency-dependent, interaction potential. Injecting equation (3.11) in
equation (3.10) shows that such dressed coupling coefficients satisfy the self-consistency relation

Ud
kk′(J,J′, ω) = Ukk′(J,J′) + (2π)d

∑
k′′

∫
dJ′′ k′′ ·∂F/∂J′′

k′′ ·Ω′′ − ω
Ukk′′(J,J′′)Ud

k′′k′(J′′,J′, ω). (3.12)

The interaction between two orbits J and J′ is dressed by the interaction with the (background)
orbits J′′. The dressing is particularly effective for orbits J′′ at resonance with the (complex)
frequency ω, as captured by the resonant denominator in the integral.

This dependence on the frequency ω is a key difference between the bare and dressed coupling
coefficients. It implies that gravitational dressing is a non-local and time-dependent effect. Contrary
to their bare counterparts, the effective/dressed coupling between two orbits is not a simple function
of their respective position. It takes time to build up, depends on their relative motion and also
involves the overall distribution of stars.

In practice, the integral in equation (3.12) would diverge for purely real frequencies, i.e., for
Im(ω)=0. Given the definition of the Laplace transform equation (3.6), equation (3.12) is in
fact only valid for Im(ω)>0 large enough. It needs to be regularised for neutral and damped
frequencies, i.e., for Im(ω)=0 and Im(ω)<0. Indeed, Laplace-transformed quantities are defined
for Im(ω) sufficiently large, i.e., above any pole. Here the resonant denominator induces a pole on
the real axis on which the integral is performed. The continuation of equation (3.12) to the whole
complex plane is further discussed in section 3.3.

Dyson equation The dressed coupling coefficients from equation (3.12) account for collective
effects in the dynamics of perturbations. Forgetting about the details in this equation, it simply
reads formally

Ud(ω) = Ub + M(ω)Ud(ω), (3.13)
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where the superscript b (resp. d) stands for the bare (resp. dressed) coupling coefficients and M(ω)
is a polarisation operator.2 More precisely, it is interesting to note that equation (3.12) is a Dyson
equation. Roughly denoting the coordinates 1={k1,J1}, 2={k2,J2} and so on, and assuming
summation over repeated indices, it reads

Ud
12(ω) = U12(ω) + U13(ω)Σ34(ω)Ud

42(ω), (3.14)

where U is a constant function of the frequency ω. In equation (3.14), I have introduced the
self-energy

Σ34(ω) = (2π)dδD(J3 − J4)δk3
k4

k3 ·∂F/∂J3
k3 ·Ω(J3)− ω . (3.15)

It heuristically captures the effective “mass” of the two interacting orbits dressed by their effect
on the mean-field [hidden in the mapping J 7→Ω(J) and the DF, F ]. This quantity captures the
shielding of interactions above the Debye length in plasma physics (Nicholson, 1992). As in quantum
many-body systems, this effective mass is the result of the interaction between the particles and
their mean-field environment (Nelson & Tremaine, 1999). Such a rewriting could prove valuable to
study the non-linear perturbative effects from equation (1.13b) and derive the associated dressing
(see, e.g., section 6.5.2 in Krommes, 2002).

As the pairwise interaction potential in equation (3.13), the potential fluctuations from equa-
tion (3.10) can be schematically expressed as

δψ̃(ω) = δψ̃b(ω) + M(ω) δψ̃(ω), (3.16)

where the bare fluctuations follow from equation (3.9). All in all, the self-consistent fluctuations
read

δψ̃(ω) = N(ω) δψ̃b(ω), (3.17)

where I introduced the gravitational susceptibility

N(ω) = [I−M(ω)]−1 , (3.18)

with I the identity operator. This susceptibility quantifies the propensity of the system to amplify
or weaken perturbations. It captures the stiffness of collective effects at a given frequency ω.

3.1.4 Response to external perturbations

To clarify the respective roles of polarisation and susceptibility (as defined in the previous section),
let me shortly discuss the response of the system to an external perturbation, δψ̃ext(ω). If the
system was composed of independent (massless) test particles following the mean-field potential,
the response to this perturbation would be a simple polarisation of test particles around it. It corre-
sponds to the bare response of the system. The induced perturbations would then (schematically)
read

δψ̃b(ω) = M(ω) δψ̃ext(ω). (3.19)

Hence, M(ω) is called the polarisation operator. Conversely, when considering a system of live
(massive) particles collectively creating the mean-field in which they evolve, the induced perturba-
tion has to be self-consistent. One then has the self-consistency relation

δψ̃(ω) = M(ω)
[
δψ̃(ω) + δψ̃ext(ω)

]
. (3.20)

2Sometimes called linear response function (e.g., Hamilton & Fouvry, 2024).
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Seen differently, in such a case, the bare induced perturbation creates its own polarisation, which
itself creates its own and so on. Dropping the dependencies w.r.t. the frequency ω, one then have

δψ̃ = Mδψ̃ext + M
(
Mδψ̃ext

)
+ M

[
M
(
Mδψ̃ext

)]
+...

= (I + M + M2 + ...)Mδψ̃ext

= (I−M)−1Mδψ̃ext

= N δψ̃b, (3.21)

where N is the susceptibility operator introduced in equation (3.18). In the bare limit, the per-
turbation still induces a polarisation of the bath particles. However, there is no back-reaction of
this polarisation on itself. Neglecting collective effects then amounts to setting N(ω)→ I [but not
M(ω)=0].

3.1.5 Gravitational modes

For some particular (complex) frequencies, the gravitational “permittivity”, I−M(ω), might not be
invertible. At such a frequency ωm =Ωm+iγm, the gravitational susceptibility from equation (3.18)
is not properly defined. There is a specific perturbation (eigenvector) which is spontaneously
supported by the (mean-field) system. This perturbation can either grow (γm > 0) or decay (γm < 0)
exponentially, or steadily oscillate (γm =0). In that sense, it is a mode of the system. Probing these
modes proves particularly difficult in the context of inhomogeneous self-gravitating systems (see,
e.g., Hamilton & Fouvry, 2024, and references therein). Indeed, the dispersion relation,

det [I−M(ω)] = 0, (3.22)

involves linear operators instead of scalar quantities as in, e.g., homogeneous systems (see, e.g.,
Weinberg, 1993; Magorrian, 2021).

Of course, perturbations cannot grow (if they do) indefinitely in the (true) physical system.
At some point, the underlying assumptions behind the linearisation of the collisionless Boltzmann
equation (1.13b) do not hold, and the mode saturates because of non-linear effects (see, e.g.,
Laughlin et al., 1997; Hamilton, 2024).

Damped “modes”

The nature of damped solutions of equation (3.22) is a complicated question. Indeed, the gravi-
tational dressing definition (equation 3.12) only stands in the upper-half complex plane, i.e., for
Im(ω)>0. The dispersion relation (equation 3.22) is defined for neutral and damped frequency
through analytical continuation (section 3.3.2). The associated solutions are not genuine modes
and should rather be called Landau-damped disturbance (section 5.3.3 in Binney & Tremaine,
2008). I refer to, e.g., section 5.2.4 in Binney & Tremaine (2008) and Polyachenko et al. (2021) for
a detailed discussion on the subject. These questions are deeply connected to the nature of Landau
damping whose precise understanding is still at stake and far beyond the scope of this thesis (see,
e.g., Mouhot & Villani, 2011). However, we shall see that these disturbances play a crucial role in
the response of stellar systems and their long-term evolution (section 6.2.3). For simplicity, I will
abusively refer to them as modes in the following. Note that inhomogeneous self-gravitating sys-
tems can also support algebraically decaying fluctuations (Barré et al., 2011; Barré & Yamaguchi,
2013). This is further discussed in section 3.3.3.
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3.2 Kalnajs’ matrix method

3.2.1 Bi-orthogonal bases

An effective way to compute the gravitational susceptibility is to use the matrix method developed
by Kalnajs (1971–1977). This method is based on the expansion of fluctuations in a basis of
potential-density pairs, (ψ(p), ρ(p)), that are solutions of the Poisson equation

ψ(p)(w) =
∫

dw′ ρ(p)(w′)U(w,w′). (3.23)

When properly normalised, these pairs of potential-density basis functions can be made to be
bi-orthonormal, i.e., to satisfy ∫

dwψ(p)(w) ρ(q)∗(w) = −δpq. (3.24)

In this orthogonality condition, the negative sign follows from the attractive nature of the grav-
itational potential. Let me stress that, given the absence of (physical) dimension in the r.h.s. of
equation (3.24), the potential and density basis functions are not physical potentials and densities.
Such a basis is effectively used to transform the bare interaction potential into a pseudo-separable
form (Hernquist & Ostriker, 1992)

U(w,w′) = −
∑
p

ψ(p)(w)ψ(p)∗(w′). (3.25)

The basis elements are eigenfunctions of the Poisson equation, i.e., they diagonalise the interaction
potential. Equation (3.25) is the corresponding expansion of the pairwise interaction potential
(i.e., the Green’s function of the Poisson equation) in these eigenfunctions. If properly ordered (in
decreasing order of eigenvalues), the expansion converges rapidly and the high-order functions rep-
resent smaller and smaller scales (Weinberg, 1999). Truncating the basis then effectively amounts
to softening the interaction potential at small scales. However, the exact shape of this softening
is not straightforward and does not (generically) correspond to the softening used in numerical
simulations (see, e.g., section 2.5 in Dootson, 2023). When using a non-biorthogonal basis, one
should be particularly careful with the effect of truncation on the representation of the interaction
potential.

Finally, equation (3.25) proves particularly useful when designing new basis functions (e.g.,
in section 4.1.1). From this equation, it is also clear that the bare coupling coefficients from
equation (3.4) can be expressed in terms of the basis functions as

Ukk′(J,J′) = −
∑
p

ψ
(p)
k (J)ψ(p)∗

k′ (J′), (3.26)

with
ψ

(p)
k (J) ≡ 1

(2π)d
∫

dθ e−ik·θψ(p)(w), (3.27)

the angle-Fourier transform of the bi-orthogonal basis elements.

3.2.2 Polarisation matrix

Having expanded the perturbations in a basis of potential-density pairs, the linear response is
captured by the polarisation matrix, M(ω) (see, e.g., equation 5.94 in Binney & Tremaine, 2008)
whose elements generically read

Mpq(ω) = −(2π)d
∑

k∈Zd

∫
dJ k·∂F/∂J

k·Ω(J)−ω ψ
(p)∗
k (J)ψ(q)

k (J), (3.28)
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with the angle-Fourier transform of the bi-orthogonal basis elements introduced in equation (3.27).
The polarisation matrix defined in equation (3.28) is the (infinite) matrix representation of the
linear operator M(ω) from equation (3.16) within the basis of potential-density pairs. As for the
coupling coefficients definition (equation 3.12), the polarisation matrix definition (equation 3.28)
is only valid for Im(ω)>0. Its continuation to the whole complex plane is further discussed in
section 3.3.

If the DF abruptly vanishes at the boundary, its gradient is a Dirac-δ function. It might
notably happen when the actions’ support is (semi-)finite. In this case, one might need to add the
contribution from boundary integrals in equation (3.28) (Jalali & Hunter, 2005). There are no such
a contribution in the models studied in this thesis. However, one should be careful when applying
equation (3.28) to systems presenting such a discontinuity.

3.2.3 Dressed coupling coefficients

I now have at my disposal a practical way to compute the linear response of integrable self-
gravitating systems. The associated susceptibility matrix, N, is obtained through equation (3.18),
to be understood as a manipulation of matrices instead of linear operators, i.e., N=[I−M(ω)]−1.
Given this susceptibility matrix, the dressed (i.e., accounting for collective effects) coupling coeffi-
cients from equation (3.12) effectively read (see, e.g., equation 35 in Heyvaerts, 2010)

Ud
kk′(J,J′, ω) = −

∑
p,q

ψ
(p)
k (J)Npq(ω)ψ(q)∗

k′ (J′). (3.29)

Obtaining these dressed coupling coefficients is an important step towards understanding the long
term evolution of self-gravitating systems. Indeed, they capture how two stars resonantly interact
with each other while they collectively participate in shaping the galaxy’s gravitational potential.

3.2.4 Softened gravity bases

In N–body simulations, the pairwise interaction potential, U(w,w′), is usually softened to avoid
singularities at small scales. This softening is commonly done using a Plummer kernel (Aarseth,
1963; Dehnen, 2001)

Uε(r, r′) = − G√
ε2 + ∥r− r′∥2

, (3.30)

with ε the softening length. Such a regularisation has known consequences on the dynamics of
the system (e.g., Miller, 1971; Salo & Laurikainen, 2000; Polyachenko, 2013). In particular, it can
affect the pattern speed and growth rate of modes in simulations of unstable systems (Sellwood
& Evans, 2001; De Rijcke et al., 2019b). Taking this softening into account in the linear response
calculations would ease the comparison between numerical simulations and theoretical predictions.
Yet, usual basis elements are constructed for the non-softened potential, i.e., the genuine Newtonian
interaction. In this section, I present a new method to efficiently construct a bi-orthogonal basis
for a softened gravity from a bi-orthogonal basis for the usual Poisson kernel.

Let me search for these basis elements under the form

ψ(p)
ε (w) =

∑
q

Apq ψ
(q)(w), ρ(p)

ε (w) =
∑
q

Bpq ρ
(q)(w), (3.31)

where the (fixed) two matrices A and B are to be determined. Denoting Uε(w,w′), the softened
(pairwise) interaction potential, the relevant quantity to consider is the bi-product matrix

Cpq = −
∫

dwdw′ρ(p)(w)Uε(w,w′) ρ(q)∗(w′), (3.32)
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which reduces to the identity matrix for the non-softened interaction potential Uε=0. This matrix
is Hermitian, i.e., Cpq =C∗

qp, because the interaction kernel, Uε(w,w′) is real and symmetric. As
such, one has C=C†, with C† the conjugate transpose.

I then want to impose the softened Poisson equation (3.23), substituting U→Uε, as well as the
bi-orthonormality of the softened basis elements (equation 3.24). Together, these constraints read
(see appendix 3.A for the details)

B C = A, (3.33a)
B C B† = I. (3.33b)

Assuming that C is definite positive,3 one can construct its Cholesky decomposition as

C = L L†, (3.34)

where L is a lower triangular matrix. With this decomposition, the matrices

A = L†, B = L−1, (3.35)

do satisfy the constraints equation (3.33). In practice, since the polarisation matrix equation (3.28)
only involves the potential basis element, one only needs to compute the matrix A.

Finally, the softened matrix, Mε(ω), can be obtained from the non-softened one, M0(ω), using
(appendix 3.A)

Mε = A∗ M0 AT

= LT M0 L∗, (3.36)

where LT stands for the matrix transpose. To conclude, in order to compute the softened response
matrix, it suffices to: (i) compute once the matrix C (equation 3.32) for the considered softening
length ε (and softening kernel); (ii) compute its Cholesky decomposition, i.e., the matrix L (equa-
tion 3.34); (iii) compute the non-softened matrix, M0, as usual ; (iv) compute the softened matrix,
Mε, via a simple matrix contraction (equation 3.36) a posteriori. The actual implementation of
this method is left for future work. In appendix 6.B.2, I provide some analytical expressions which
might prove useful for the razor-thin disc.

3.3 Hilbert transform

3.3.1 Resonant coordinates

A difficult part in the computation of equation (3.28) is the resonant denominator, 1/(k·Ω−ω).
To handle it properly, one can first align the resonant denominator by a change of variables,
J→(u, ...), with u∝k·Ω (Vauterin & Dejonghe, 1996; Fouvry & Prunet, 2022). One may already
see that peculiar things should happen when this mapping is not bijective, i.e., when J 7→k·Ω(J)
reaches an extremum. On such an orbit, a star does not leave the resonance (at first order) even
pulled/pushed away of its orbit by resonant torquing. Indeed, the Jacobian ∂(k·Ω)/∂J involves the
so-called donkey parameter (Lynden-Bell, 1979; Pichon, 1994), a measure of the inverse moment
of inertia which may vanish for some specific orbits.

Within this resonant coordinate system, equation (3.28) takes the generic form of a Hilbert
transform (more precisely a sum of Hilbert transforms)

ĝ(ω) =
∫

du g(u)
u− ω

. (3.37)

3This is guaranteed for ε small enough. Indeed, one has C→ I when ε→0, and positive-definite matrices form an
open set.
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Once again, this definition holds in the upper-half of the complex plane, i.e., for Im(ω)>0 (see also
section 3.3.2). In equation (3.37), the integration boundaries are purposely left unspecified. The
resonant coordinate, u, most often has a finite support because orbital frequencies are typically
bounded in galactic discs (in contrast to velocities in plasmas). It can also be interpreted as
considering functions g with cut-offs at the domain boundaries. Such a discontinuity requires
additional care when continuing the definition to damped frequencies, Im(ω)<0 (section 3.3.3). In
practice, the polarisation matrix takes the form

M(ω) =
∑

k∈Zd

∫
du Gk(u)

u−ϖk(ω) =
∑

k
Ĝk[ϖk(ω)], (3.38)

where the matrices of functions, Gk, the resonant frequencies, ϖk(ω), and the resonant coordinates,
(u, ...), are tailored to each system. This is detailed in Petersen et al. (2024) which I cosigned. I
refer to section 4.1.2 and section 4.2.2 for the definition of these quantities in the one-dimensional
model and razor-thin discs, respectively. As we shall see in the next section, the polarisation
matrix should be computed differently for damped frequencies than it is for growing frequencies.
One therefore needs to be particularly careful with the resonant frequencies ϖk(ω). I make sure
that they share the same imaginary part as ω to avoid any practical issue in this continuation.

3.3.2 Landau’s prescription

Given the definition of the Laplace transform equation (3.6), the transformed quantities are defined
for Im(ω) sufficiently large, i.e., above any pole. The resonant integral equations (3.12), (3.28) and
(3.37) are therefore only valid for Im(ω)>0. Similarly, the inversion formula

g(J, t) = 1
2π

∫
B
dω e−iωt g̃(J, ω), (3.39)

holds when the Bromwich contour, B, is taken sufficiently high in the complex plane, i.e., above any
singularity of g̃(J, ω). However, this inversion would be easier to perform by bringing the contour
down in the complex plane so that the exponential prefactor e−iωt is as damped as possible. Doing
so, only the contributions from the singularities of g̃(J, ω) would remain (see, e.g., equation 5.9),
streamlining the integral computation in equation (3.39). For this integral to be unchanged, the
Laplace transform g̃(J, ω), need to be analytically continued below its dominant singularity, so that
g̃ can be evaluated for any complex value of ω.

Specifically considering the case of the resonant integral equation (3.37), this analytic contin-
uation is done through Landau’s prescription (e.g., §5.2.4 in Binney & Tremaine, 2008) which
generically reads

∫
L
du G(u)

u− ω
=



∫ +∞

−∞
du G(u)

u− ω
if Im(ω) > 0,

P
∫ +∞

−∞
du G(u)

u− ω
+ iπG(ω) if Im(ω) = 0,∫ +∞

−∞
du G(u)

u− ω
+ 2iπG(ω) if Im(ω) < 0,

(3.40)

where P stands for Cauchy’s principal value. This prescription is illustrated in figure 3.1. The
integration contour along the (real) u coordinates needs to snatch the ballistic pole u=ω coming
from above, i.e., from Im(ω)>0. This is done by adding a contribution from the residue at the
pole, or half the residue for real ω.

For equation (3.40) to be unambiguously defined, the function G needs to be analytic on the
whole real axis (and its power series should have an infinite radius of convergence). In the context
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Re(u)

Im(u)
ω

Im(ω) > 0
Regular integration

Re(u)

Im(u)

ω

Im(ω) = 0
Principal value and half a residue

Re(u)

Im(u)

ω

Im(ω) < 0
Full residue

Figure 3.1: Illustration of Landau’s prescription (equation 3.40) for the analytical continuation of the polarisation
function (equation 3.28) from growing (left) to neutral (middle) and damped (right) frequencies. The integration
contour along the real axis needs to snatch the ballistic pole u=ω coming from above, i.e., from Im(ω)>0. This is
done by adding a contribution from the residue at the pole, or half the residue for real ω.

of homogeneous systems such as plasmas where u is a proxy for the (unbounded) velocity, this is
usually the case. With self-gravitating systems, we are not so lucky for two main reasons. First,
the numerator G in the integral equation (3.38) is, in general, not known analytically and involves
expensive numerical computations. Hence, evaluating the residue G(ω) for non-real values of ω can
prove particularly challenging. Second, the integral is not carried over unbounded velocities but
over frequencies that can be of finite extent. It can also be interpreted as using (non-analytic) G
functions with cut-offs at the domain boundaries.

3.3.3 Frequency support and branch cuts

Landau’s prescription (equation 3.40) is well-posed when the integrand function G is analytic on
the whole real axis. When considering inhomogeneous self-gravitating systems, the integral in equa-
tion (3.38) is performed over the resonant coordinate, u∝k·Ω, which (usually) has a finite support.
In this case, one can generally recast the integration domain as u∈ [−1, 1] in equation (3.37). Fol-
lowing Landau’s prescription (equation 3.40), I need to continue the integral∫ 1

−1
du G(u)

u− ω
(3.41)

from the upper-half complex plane to the whole complex plane. One can already spot an issue: at
ω=±1, if G(±1) ̸=0 the integral is divergent and cannot be regularised using a principal value. At
these points, such that ϖk(ω)=±1, the continuation of the polarisation matrix equation (3.38) has
logarithmic singularities.

Building upon Robinson (1990), Fouvry & Prunet (2022) (hereafter FP22) proposed a way to
generically handle the continuation of the polarisation matrix (equation 3.38) to the whole complex
plane for such a system with (i) a finite frequency support and (ii) analytically unknown integrand
functions, G.

Finite support

The first step is to choose a continuation for the Hilbert transform equation (3.37) with a finite
integration domain u∈ [−1, 1]. It reads

∫ 1

−1
L

du G(u)
u− ω

=



∫ 1

−1
du G(u)

u− ω
if Im(ω) > 0,

P
∫ 1

−1
du G(u)

u− ω
+ iπH(ω)G(ω) if Im(ω) = 0,∫ 1

−1
du G(u)

u− ω
+ 2iπH[Re(ω)]G(ω) if Im(ω) < 0.

(3.42)
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In this expression, I introduced the Heaviside (rectangular) function

H(x) =


0 if |x| > 1,
1
2 if x = ±1,
1 if − 1 < x < 1.

(3.43)

This may appear to be a complete redundancy of Landau’s prescription (equation 3.40), yet it is
not. Indeed, here, the continuation is not uniquely defined (Barré et al., 2010). Similarly to the
complex logarithm, it has multiple branches. With the choice from equation (3.42), one introduces
vertical branch cuts at ω=±1, as illustrated in figure 3.2.

Re(u)

Im(u)

ω

|Re(ω)| < 1
Full residue

Re(u)

Im(u)

ω

|Re(ω)| > 1
No residue

Re(u)

Im(u)

|Re(ω)| = 1
Branch cuts

Figure 3.2: Illustration of the branch cuts in the continuation of finite Hilbert transform equation (3.42) for the
analytical continuation of the polarisation function (equation 3.28). For frequencies below the integration interval,
the integration contour snatches the ballistic pole as if it was coming straight from above. The residue at the pole is
then added to the integral. Outside the integration interval, the ballistic pole does not cross the contour. No residue
contribution is added. In this case the continuation is not unique. The chosen branch of the function has vertical
branch cuts at ω=±1.

This does not mean that the continuation is spurious. The branch cuts have physical origins.
Indeed, Barré et al. (2011) showed that these branch cuts result in the algebraic (asymptotic) decay
of perturbations in the Hamiltonian mean-field (HMF) model. Only considering damped poles, one
would have incorrectly predicted an exponential decay of the perturbations (Landau damping),
δϕ(t)→eγmt with γm<0 the smallest damping rate. However, in Barré et al. (2011)’s experiments,
the perturbations first undergo a transient exponential decay before switching to an asymptotic
algebraic decay, δϕ(t)→ tβ with β<0. This is illustrated in figure 3.3 (adapted from Barré et al.,
2015). Interestingly, this phenomenon is also observed in the relaxation of other physical systems
such as two-dimensional Bose superfluids (see, e.g., Duval & Cherroret, 2024). Barré & Yamaguchi
(2013) extended the analysis from the inhomogeneous HMF model to razor-thin discs and spherical
globular clusters and pointed out three types of singularities. These different types lead to various
algebraic decay rates.

These singularities are present in the polarisation matrix, M, from equation (3.38). Contrary
to the Landau damped modes, they do not necessarily involve collective effects through the grav-
itational susceptibility, N, from equation (3.18). One might indeed expect an algebraic decay to
happen, even in the bare response to external perturbations (equation 3.19). Without involving
external perturbations, such singularities could also be imprinted in the bare response to initial
conditions in equation (3.9).

Unknown integrand functions

I now have at my disposal a prescription to continue the resonant integral equation (3.38) to the
whole complex plane. Given this prescription (equation 3.42), I still need to define G(ω) for complex
ω and intricate functions G. Following FP22, I do so by approximating the integrand functions, G,
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Figure 3.3: Figure adapted from Barré et al. (2015), with additional annotations. Illustration of the asymptotic
algebraic damping of perturbations in the inhomogeneous HMF model. The perturbations first undergo a transient
exponential decay at rate γm<0 given by the least damped Landau mode. It then switches to an asymptotic algebraic
decay with rate β≈3 as predicted from Barré et al. (2011). Both the mean-field distribution and the perturbations
are smooth quantities. This phenomenon is due to the finite range of available frequencies in the inhomogeneous
system.

using Legendre polynomials

G(u) ≈
Kd

u∑
j=0

ajPj(u). (3.44)

Given the range u∈ [−1, 1], these polynomials are a natural choice of analytical basis functions.
In equation (3.44), the expansion coefficients can be efficiently computed using Gauss–Legendre
quadrature. It reads

aj = 1
cj

Kq
u∑

i=0
wiG(ui)Pj(ui), (3.45)

with wi the weights and ui the abscissas of the Gauss–Legendre quadrature (see, e.g., Press et al.,
2007), and cj the normalisation constants of the Legendre polynomials. In practice, the number
of points for the quadrature, Kq

u , and the number of Legendre polynomials for the decomposition,
Kd
u , could be equal. Yet, for convergence purpose, I found that the number of quadrature points

should be taken as large as possible while the number of Legendre polynomials should be chosen
wisely (section 4.1.4).

By linearity of equation (3.42) (w.r.t. the integrand function G), the polarisation matrix can
be approximated as

Ĝ(ω) ≈
Kd

u∑
j=0

ajDj(ω), (3.46)

where Dj is the finite Hilbert transform of the Legendre polynomials, Pj . They read (FP22)

Dj(ω) =


Qj(ω) if Im(ω) > 0,
Qj(ω) + iπPj(ω)H(ω) if Im(ω) = 0,
Qj(ω) + 2iπPj(ω)H(Re[ω]) if Im(ω) < 0,

(3.47)

where H is the Heaviside function from equation (3.43) and Qi are (almost) Legendre polynomials
of the second kind. Importantly, they can be evaluated using stable recurrence relations (see
appendix D FP22).
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The corresponding first function, D0(ω), is illustrated in figure 3.4. This function is smooth in2452 J.-B. Fouvry and S. Prunet

Figure D1. Illustration of the complex function D0(ω) as defined in equa-
tion (D4). The top panel corresponds to Re[D0(ω)], and the bottom one to
Im[D0(ω)]. As expected, this function does not suffer from any discontinuities
in the upper half of the complex plane, i.e. in the region of unstable modes.

In equation (D5), we also introduced the function Qk(ω) defined as1

Qk(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ 1

−1
du

Pk(u)
u − ω

if Im[ω] > 0,

P
∫ 1

−1
du

Pk(u)
u − ω

if Im[ω] = 0,
∫ 1

−1
du

Pk(u)
u − ω

if Im[ω] < 0.

(D7)

The Legendre polynomials, Pk(ω), generically satisfy Bonnet’s
recursion formula. For k ≥ 1, it reads

(k + 1) Pk+1(ω) = (2k + 1) ω Pk(ω) − k Pk−1(ω). (D8)

Given the definition from equation (D7), the exact same recurrence
relation also applies for Qk(ω). It now only remains to specify the
initial conditions of these functions. For the Legendre polynomials,
one naturally has

P0(ω) = 1; P1(ω) = ω. (D9)

For the function Q0(ω), we straightforwardly obtain the expression

Q0(ω) =

⎧
⎨

⎩

ln(1−ω) − ln(−1−ω) if Im[ω] > 0,

ln(|1−ω|) − ln(| − 1−ω|) if Im[ω] = 0,

ln(1−ω) − ln(−1−ω) if Im[ω] < 0,

(D10)

1With the present convention, for x ∈R and −1 < x < 1, one has
Qk(x)=−2Q

Leg
k (x), with Q

Leg
k (x) the usual Legendre function of the second

kind.

where the complex logarithm, ln (ω), is defined with its usual branch
cut in Im[ω] = 0 and Re[ω] < 0. Finally, noting that

P1(u)
u − ω

= u

u − ω
= 1 + ω

u − ω
= 1 + ω

P0(u)
u − ω

, (D11)

we can complement equation (D10) with the additional relation

Q1(ω) = 2 + ω Q0(ω). (D12)

In Fig. D1, we illustrate the behaviour of the function D0(ω). We
note that this function does not present any discontinuities in the
upper half of the complex plane, but suffers from two discontinuities
in the lower half, namely: (i) Re[D0(ω)] diverges in ω = ±1; (ii)
Im[D0(ω)] has step discontinuities along all the lines Im[ω] < 0, in
the locations Re[ω] = ±1. Such discontinuities originate from the
fact that the integral from equation (D4) only covers a finite range of
frequencies, i.e. −1 ≤ u ≤ 1.

For a given value of Ku and a given complex frequency ω, a
natural way to compute {Pk(ω)}0≤k<Ku and {Qk(ω)}0≤k<Ku is to use
equation (D8) as a forward recurrence relation. Namely, one starts
from the initial conditions given by equations (D9), (D10), and (D12),
and, for k ≥ 2, uses the recurrence relation

Pk(ω) = 2k − 1
k

ω Pk−1(ω) − k − 1
k

Pk−2(ω), (D13)

similarly for Qk(ω).
Yet, for some values of ω such a recurrence relation is not

numerically stable to compute Qk(ω). In that case, we may resort
to a backward recurrence. To do so, we give ourselves a ‘warm-up’
starting point, Kc > Ku, and initialize the recurrence with

QKc+2(ω) = 0; QKc+1(ω) = 1. (D14)

Such an initial condition is appropriate because when the forward
recurrence is unstable it is because one is interested in the decaying
mode of recurrence, which, fortunately, becomes the growing one
of the backward recurrence (see e.g. Zhang & Jin 1996). In that
case, the recurrence is propagated backwards using, for k ≥ 0, the
relation

Qk(ω) = 2k + 3
k + 1

ω Qk+1(ω) − k + 2
k + 1

Qk+2(ω). (D15)

Once Q0(ω) has been reached, owing to the linearity of equa-
tion (D15), we rescale all the computed values {Qk(ω)}0≤k<Ku to
the correct value of Q0(ω) given by equation (D10).

For a given value of ω and Ku, it only remains to setup a criteria to
specify whether the forward or backward recurrence relation should
be used. In practice, we follow the exact same criteria as in Heiter
(2010) (see in particular the function qtm1 therein). The Legendre
functions, Pk(ω), are always computed with the forward recurrence
relation from equation (D13). For the functions Qk(ω), we use the
forward recurrence if ω lies within a given ellipse around the real
segment −1 ≤ Re[ω] ≤ 1 and Im[ω] = 0. More precisely, we define

b = Min
[

1,
4.5

(Ku + 1)1.17

]
; a =

√
1 + b2. (D16)

Then, if ever the criterion
(

Re[ω]
a

)2

+
(

Im[ω]
b

)2

≤ 1 (D17)

is satisfied, we use the forward recurrence from equation (D13).
When equation (D17) is not satisfied, we resort to the backward
recurrence from equation (D15). In that case, the warm-up, Kc – see
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Figure D1. Illustration of the complex function D0(ω) as defined in equa-
tion (D4). The top panel corresponds to Re[D0(ω)], and the bottom one to
Im[D0(ω)]. As expected, this function does not suffer from any discontinuities
in the upper half of the complex plane, i.e. in the region of unstable modes.

In equation (D5), we also introduced the function Qk(ω) defined as1

Qk(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ 1

−1
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if Im[ω] > 0,

P
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du

Pk(u)
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if Im[ω] = 0,
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(D7)

The Legendre polynomials, Pk(ω), generically satisfy Bonnet’s
recursion formula. For k ≥ 1, it reads

(k + 1) Pk+1(ω) = (2k + 1) ω Pk(ω) − k Pk−1(ω). (D8)

Given the definition from equation (D7), the exact same recurrence
relation also applies for Qk(ω). It now only remains to specify the
initial conditions of these functions. For the Legendre polynomials,
one naturally has

P0(ω) = 1; P1(ω) = ω. (D9)

For the function Q0(ω), we straightforwardly obtain the expression

Q0(ω) =

⎧
⎨

⎩

ln(1−ω) − ln(−1−ω) if Im[ω] > 0,

ln(|1−ω|) − ln(| − 1−ω|) if Im[ω] = 0,

ln(1−ω) − ln(−1−ω) if Im[ω] < 0,

(D10)

1With the present convention, for x ∈R and −1 < x < 1, one has
Qk(x)=−2Q

Leg
k (x), with Q

Leg
k (x) the usual Legendre function of the second

kind.

where the complex logarithm, ln (ω), is defined with its usual branch
cut in Im[ω] = 0 and Re[ω] < 0. Finally, noting that

P1(u)
u − ω

= u

u − ω
= 1 + ω

u − ω
= 1 + ω

P0(u)
u − ω

, (D11)

we can complement equation (D10) with the additional relation

Q1(ω) = 2 + ω Q0(ω). (D12)

In Fig. D1, we illustrate the behaviour of the function D0(ω). We
note that this function does not present any discontinuities in the
upper half of the complex plane, but suffers from two discontinuities
in the lower half, namely: (i) Re[D0(ω)] diverges in ω = ±1; (ii)
Im[D0(ω)] has step discontinuities along all the lines Im[ω] < 0, in
the locations Re[ω] = ±1. Such discontinuities originate from the
fact that the integral from equation (D4) only covers a finite range of
frequencies, i.e. −1 ≤ u ≤ 1.

For a given value of Ku and a given complex frequency ω, a
natural way to compute {Pk(ω)}0≤k<Ku and {Qk(ω)}0≤k<Ku is to use
equation (D8) as a forward recurrence relation. Namely, one starts
from the initial conditions given by equations (D9), (D10), and (D12),
and, for k ≥ 2, uses the recurrence relation

Pk(ω) = 2k − 1
k

ω Pk−1(ω) − k − 1
k

Pk−2(ω), (D13)

similarly for Qk(ω).
Yet, for some values of ω such a recurrence relation is not

numerically stable to compute Qk(ω). In that case, we may resort
to a backward recurrence. To do so, we give ourselves a ‘warm-up’
starting point, Kc > Ku, and initialize the recurrence with

QKc+2(ω) = 0; QKc+1(ω) = 1. (D14)

Such an initial condition is appropriate because when the forward
recurrence is unstable it is because one is interested in the decaying
mode of recurrence, which, fortunately, becomes the growing one
of the backward recurrence (see e.g. Zhang & Jin 1996). In that
case, the recurrence is propagated backwards using, for k ≥ 0, the
relation

Qk(ω) = 2k + 3
k + 1

ω Qk+1(ω) − k + 2
k + 1

Qk+2(ω). (D15)

Once Q0(ω) has been reached, owing to the linearity of equa-
tion (D15), we rescale all the computed values {Qk(ω)}0≤k<Ku to
the correct value of Q0(ω) given by equation (D10).

For a given value of ω and Ku, it only remains to setup a criteria to
specify whether the forward or backward recurrence relation should
be used. In practice, we follow the exact same criteria as in Heiter
(2010) (see in particular the function qtm1 therein). The Legendre
functions, Pk(ω), are always computed with the forward recurrence
relation from equation (D13). For the functions Qk(ω), we use the
forward recurrence if ω lies within a given ellipse around the real
segment −1 ≤ Re[ω] ≤ 1 and Im[ω] = 0. More precisely, we define
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When equation (D17) is not satisfied, we resort to the backward
recurrence from equation (D15). In that case, the warm-up, Kc – see
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Figure 3.4: Figure from Fouvry & Prunet (2022). Illustration of the complex function D0(ω) in equation (3.46). This
function is smooth is the upper-half complex plane, Im(ω)>0, and has branch point singularities at ω=±1 in its real
part (left). The associated branch cuts are straight vertical lines starting at the singularities and extending down in
the lower-half complex plane in its imaginary part (right).

the upper-half plane, Im(ω)>0, and has logarithmic singularities at ω=±1. The associated branch
cuts are straight vertical lines starting at the singularities and extending down in the lower-half
complex plane. The real part of the Di functions is symmetric w.r.t. the real axis. The difference
between growing and damped frequencies is captured in the imaginary part of these functions.
This imaginary part is significantly larger in the lower-half plane. Therefore, in this region, the
computation of the polarisation matrix from equation (3.46) involves drastic cancellations, leading
to numerical saturation (section 4.1.4).

3.4 Other methods
In this chapter, I focused on the method I used to compute the linear response of stellar systems.
Importantly, this method straightforwardly allows me to incorporate the gravitational suscepti-
bility in the coupling between interacting orbits, as described in equation (3.12). These coupling
coefficients are crucial to study the long-term evolution of stellar systems (chapter 5). Other similar
methods have been implemented to compute the linear response of self-gravitating systems. Let
me briefly review some of them.

Without resonant coordinates The polarisation matrix from equation (3.28) can be computed
directly for growing frequencies, Im(ω)>0, without the use of resonant coordinates or any analytical
continuation. This has notably been performed by Weinberg (1989); Palmer (1994); Saha (1991);
Rozier et al. (2019) for spherical systems and by Pichon & Cannon (1997); Jalali & Hunter (2005);
Fouvry et al. (2015) for razor-thin discs. The integral might then be performed in various spaces
of orbital constants (pericentre and apocentre radii, energy and angular momentum, actions, etc.)
using a simple change of variables.

“Eigenmodes” methods These methods do not solve the linearised collisionless Boltzmann
equation (1.19b) as an initial value problem but rather look for normal modes as solutions of the
form δψ(w) eiωt (see, e.g., Vauterin & Dejonghe, 1996; Polyachenko, 2005; Jalali, 2007; De Rijcke &
Voulis, 2016). These two approaches are in practice very similar. Vauterin & Dejonghe (1996) was
in fact the first put the matrix equation (3.28) under the form of a Hilbert transform (equation 3.37)
using a change of variable similar to the one presented in section 3.3. Their work was followed by
De Rijcke & Voulis (2016) and implemented in the code pystab. The only fundamental difference



38 Chapter 3. Linear response - Theory

between the two approaches is the status of damped frequencies, Im(ω)<0. Such frequencies
are discarded in the eigenmodes methods. In this approach, stable systems are expected to have
a continuous spectrum of oscillatory modes known as Van Kampen modes (Van Kampen, 1955;
Case, 1959; Polyachenko et al., 2021; Lau & Binney, 2021). In the method I presented, one gives
a meaning to the response at damped frequencies through analytical continuation and Landau’s
prescription (section 3.3.2). Among the eigenmodes methods, some of them allow one to compute
all the unstable modes at once (Polyachenko, 2005; Jalali, 2007, 2010) but require large matrix
inversions. A comparison between these methods is presented in Omurkanov & Polyachenko (2014).

Time evolution The linear response can also be computed by evolving the perturbations in time
(see, e.g., Murali, 1999; Pichon & Aubert, 2006; Rozier et al., 2022; Magorrian, 2021; Dootson, 2023).
Using a basis of potential-density pairs (equation 3.23), the internal and external perturbations are
expanded as

δψ(w, t) =
∑
p

ap(t)ψp(w), δψext(w, t) =
∑
p

bp(t)ψp(w). (3.48)

The time evolution of the fluctuations’ coefficients is then given by a Volterra-type integral equation
(see, e.g., Rozier et al., 2022)

a(t) =
∫ t

0
dt′ M(t− t′)

[
a(t′) + b(t′)

]
, (3.49)

where the time polarisation matrix,

Mpq(t) = −i(2π)d
∑

k

∫
dJ k· ∂F

∂J ψ
(p)∗
k (J)ψ(q)

k (J), (3.50)

can be obtained by taking the inverse Laplace transform of equation (3.28). This is a dual approach
to the method I detailed in this chapter. It is particularly suited for the study of the transient
response to external perturbations, such as the Large Magellanic Cloud perturbing the Milky Way
halo. This method is also interesting when aiming to couple the external perturbations to the
internal response of the system, for instance, to study how a satellite sinks under the effect of
dynamical friction. This is achieved by updating b(t) to the drag induced by a(t).

Analytical continuation using rational function The first generic method to probe damped
frequencies was proposed by Weinberg (1994) while studying spherical systems. He used the value
of the dispersion relation (equation 3.22) on a grid of unstable frequencies to fit a rational function
(Padé approximant)

det[I−M(ω)] = N(ω)
D(ω) , (3.51)

with N and D two polynomials. This rational function was then evaluated at damped frequencies
and Weinberg (1994) showed the existence of weakly damped modes in stable King’s spheres. His
results were later confirmed by Heggie et al. (2020) using numerical simulations. However, the main
drawbacks of this method is that (i) the choice of the interpolation grid is arbitrary and should be
made carefully (Weinberg, 1994; Fouvry & Prunet, 2022) and (ii) it does not explicitly take into
account the presence of branch cuts (section 3.3.3). Yet, one could adapt the method and enforce
the presence of physically motivated branch cuts in the fitted function.

Semi-analytic results for specific models Beyond these other generic methods some very
important results have been obtained with tailored methods for specific models.
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Zang (1976) designed a method for the Mestel discs (section 2.1.2). This method was generalised
to other power-law discs by Evans & Read (1998a). Both methods take advantage of the self-
similarity of orbits within these specific potentials. Using logarithmic spirals as (continuous) basis
elements, they reduced the stability analysis to a single Fredholm integral equation of the form

A(β) =
∫ +∞

−∞
dαS(α, β;ω)A(α), (3.52)

where A stands for the decomposition of the perturbations in the basis of logarithmic spirals and S
is a coupling kernel that depends on the frequency. This is detailed in Evans & Read (1998a). For
the fully self-similar disc, this kernel weakly depends on the frequency and needs to be computed
only once. Such a disc is either stable or has a continuum of modes. For tapered discs,4 the
equation is more involved and needs to be solved for each frequency. Interestingly, Zang (1976) was
able to predict the location of some damped modes in his model as well as the presence of branch
cuts and their relation to the algebraic decay of perturbations.

Finally, Olivetti (2011) extensively investigated damped modes and branch cuts in the (thermal)
equilibria of the HMF model for which he derived appropriate analytical expressions.

4The taper functions from equation (2.37) were actually introduced to get analytical expressions for some inter-
mediate integrals (namely equation 3.44 in Zang, 1976).



Appendices

3.A Softened bases
In this appendix, I detail the computations of
section 3.2.4 for the polarisation matrix of soft-
ened gravitational potential.

For a given index p of the softened ba-
sis (equation 3.31), the Poisson equation (3.23)
reads∑

p′

∫
dw′ Uε(w,w′)Bpp′ρ(p′)(w′)

=
∑
p′

App′ψ(p′)(w). (3.53)

Multiplying both sides of this equation with∫
dw ρ(q)∗(w), I obtain

∑
p′

Bpp′

∫
dwdw′ Uε(w,w′)ρ(p′)(w′) ρ(q)∗(w)

=
∑
p′

App′

∫
dwψ(p′)(w) ρ(q)∗(w), (3.54)

which gives ∑
p′

Bpp′Cp′q = Apq, (3.55)

using the definition of the cross-product matrix
C (equation 3.32) and the bi-orthonormality of
the non-softened basis (equation 3.24). Overall,
this gives the first constraint in equation (3.33a).

Then, the bi-orthonormality equation (3.24)
imposes

δpq = −
∫

dwψ(p)
ε (w) ρ(q)∗

ε (w)

= −
∫

dwdw′ Uε(w,w′) ρ(p)
ε (w′) ρ(q)∗

ε (w)

= −
∫

dwdw′ Uε(w,w′) ρ(p)
ε (w) ρ(q)∗

ε (w′)

= −
∑
p′,q′

∫
dwdw′ Uε(w,w′)Bpp′ρ(p′)(w)

×B∗
qq′ρ(q′)∗(w′)

=
∑
p′,q′

Bpp′Cp′q′B∗
qq′ , (3.56)

where I used, once again the definition of the
cross-product matrix C (equation 3.32). Over-
all, this gives the second constraint in equa-
tion (3.33b).

Finally, the element (p, q) of the response ma-
trix for the softened interaction is of the form

M ε
pq ∝ ψ(p)∗

ε ψ(q)
ε

=
∑
p′,q′

A∗
pp′ ψ(p′)∗Aqq′ ψ(q)

=
∑
p′,q′

A∗
pp′ Mp′q′ Aqq′ . (3.57)

As a result, the softened matrix, Mε(ω), is read-
ily computed from the non-softened one, M(ω),
following equation (3.36).
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Chapter 4

Linear response – Applications

In this chapter, I explore the applications of the linear response theory presented in chapter 3 to
the various systems detailed in chapter 2. For each particular system, I first start by detailing
the necessary ingredients to compute the polarisation matrix from equation (3.28), namely the
basis elements and the resonant coordinates. I then illustrate the susceptibility of the system to
particular (complex) frequencies and discuss the physical implications. The results presented in
this chapter are mainly based on the published article Roule et al. (2022) and my work in Petersen
et al. (2024), hereafter PR+24.

4.1 One-dimensional model

4.1.1 Bi-orthogonal basis

To construct basis elements for the one-dimensional model, I substituted the interaction poten-
tial, U(x, x′)=G |x−x′|, with its periodisation into a triangle wave of period 2L as represented in
figure 4.1.

y= |x−x′|
L

True potential
Periodized potential

Figure 4.1: Illustration of the periodisation of the interaction potential (equation 4.1) used to construct the bi-
orthogonal basis for the one-dimensional model.

Owing to the separability trigonometric identity cos(a−b)=cos(a) cos(b)+sin(a) sin(b), the pe-
riodised potential from equation (2.1) reads

Uper(x, x′) = −4GL
π2

∑
p odd
p>0

1
p2

[
cos
(
pπ
x

L

)
cos
(
pπ
x′

L

)
+ sin

(
pπ
x

L

)
sin
(
pπ
x′

L

)]
, (4.1)

where I dropped the constant (p=0) term. Following equation (3.25), some natural basis elements
then are

ψ(p)
even(x) = 2

√
GL

(2p+ 1)π cos
[
(2p+ 1)π x

L

]
, (4.2)
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with p≥0, and their odd counterpart ψ(p)
odd via cos→sin. Following the Poisson equation (2.2), the

associated “densities” are

ρ(p)
even(x) = −π

2 (2p+ 1)2

2GL2 ψ(p)
even(x), (4.3)

and equivalently for the odd ones. One can check that this basis complies with the integral Poisson
equation (3.23) for the periodised interaction potential (offset for the mean potential to be zero) as
well as the orthonormalisation constraint (equation 3.24), in which the integral is performed over
one 2L-period.

The main benefit of periodisation is its numerical simplicity. Its main drawback is that it
introduces a superfluous characteristic length, L. This could lead to unexpected behaviours at
low frequencies (high energies) introducing a new circulation regime whereas the true interaction
potential can only allow for librations. As such, on these large scales, one may expect some artefacts
bearing similarities with the Hamiltonian mean-field (HMF) model with its two regimes, libration
and circulation and its separatrix (Dauxois et al., 2002). To prevent this periodisation length from
affecting my predictions, a simple solution is to take L sufficiently large so that, effectively, no
particles exist at such a high circulation energy.

From the fact that the Fourier expansion converges the slowest at the triangle wave extrema,
one can already predict that our basis will be less representative (as it is truncated) at small
separations. This is not a fundamental issue as collective effects do not involve arbitrarily small
scales (Weinberg, 1993). In addition, the effect of small-scale undressed interactions can be resolved
back from the (bare) multiple approach (appendix 6.B).

In Roule et al. (2022), I used a periodisation length L=10Λ (resp. L=100Λ) and 256 (resp. 1024)
basis elements for thermal (resp. Plummer) computations. Indeed, since the Plummer equilibrium
density has wider tails (see figure 2.7), a larger L is required which, in turn, requires more basis
elements to reach a sufficient resolution. In section 4.1.4, I discuss the relevance of such a large
number of basis elements. Fortunately, it did not alter the results because the convergence issues
only affect the high-order basis elements which are irrelevant to collective effects.

Remark In practice, the basis construction from equation (4.2) involves two separate parts: the
cosine and sine elements. There is no interaction between the two groups of elements. Indeed, their
Fourier transform cancel at opposite parity in the resonance number k and the polarisation matrix
definition equation (3.28) involves only products of Fourier-transformed basis elements with the
same resonance number. I therefore naturally distinguish these two components and refer to them
as the cosine and the sine polarisation matrices. The full polarisation matrix can be thought as
diagonal by block, one block being the cosine and the other one the sine polarisation matrix.

4.1.2 Resonant coordinates

For this one-dimensional model, designing resonant coordinates as defined in section 3.3.1 proves
particularly simple. Indeed, the extremal resonant frequencies weakly depend on the considered
resonance and no other variables need to be defined (in 1D, the resonance “line” is a single point).

In practice, I only want to perform the integral in equation (3.38) over trapped orbits, i.e.,
orbits with Ω<ΩL, where ΩL is the smallest frequency captured by the periodised potential. The
(truncated) resonant frequency domain [kΩ0, kΩL] – with Ω0 =Ω(J0), ΩL=Ω(JL), J0 = J(ra = 0)
and JL=J(ra =L) – is remapped to [−1, 1] via

u = Sign(k)Ω(J)−ΣΩ
∆Ω

, (4.4)

where ΣΩ = 1
2(Ω0+ΩL) and ∆Ω = 1

2(Ω0−ΩL). The associated numerators and resonant frequencies
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in equation (3.38) are then given by

Gpqk (u) = 2π Sign(k)
∣∣∣∣dJdΩ

∣∣∣∣ ∂F∂J ψ(p)∗
k (J)ψ(q)

k (J), (4.5a)

ϖk(ω) = ω

|k|∆Ω
− Sign(k) ΣΩ

∆Ω
, (4.5b)

where the action J implicitly depends on the resonant coordinate u through equation (4.4). In
practice, the Jacobian involved in equation (4.5a) is computed as

dJ
dΩ = dJ

dE
dE
dra

dra
dJ = ψ′(ra)

Ω

( dΩ
dra

)−1
, (4.6)

where the last term is computed via finite differences.
In figure 4.2, I illustrate some functions u 7→G(u) from equation (4.5a) for the thermal equi-

librium. The higher the element index, the more oscillatory the function. The function Gpqk (u)
heuristically oscillates p+q times on the interval [−1, 1]. The number of oscillations weakly varies
with the resonance number k. In the right panel of this figure, I analyse the maximal value of these
functions as a function of the basis element p and the resonance number k. At fixed resonance
number, k, the strongest function is such that p=k, but the larger the resonance number the weaker
the functions. One may then expect that the polarisation matrix will be dominated by its low order
elements and that the sum over the resonances in equation (3.38) can be safely truncated to a few
terms.

Figure 4.2: Typical polarisation matrix integrands, Gpq
k , from equation (4.5a) for the thermal equilibria. Left: Few

normalised elements p=q∈{1, 2, 4, ..., 64} as a function of the resonance coordinate u for k=2 (top) and k=16
(bottom) respectively. The higher the basis element, the more oscillatory the function. Increasing the resonance
number k does not significantly change the number of oscillations but shifts the functions. Right: Maximal value
of Gpp

k as a function of the basis element p and the resonance number k. The parity of k sets the considered basis
elements (cosine or sine, see equation 4.7). The higher the resonance number or the basis element, the smaller the
amplitude of the function. Consequently, the matrices elements should be dominated by the low order elements and
the sum over the resonances can be truncated to a few terms.

Basis Fourier transform

Given the convention from equation (2.11), the Fourier transform of the basis elements involved in
equation (4.5a) reads

ψ
(p)
k (J) = 1

π

∫ π

0
dθ ψ(p)(x[θ, J ]

)
cos(kθ). (4.7)

It vanishes for the cosine basis elements from equation (4.2) for odd resonance number, k, and
conversely for the sine basis elements. This stems from the fact that (i) x(π−θ)=−x(θ) (equa-
tion 2.11), and (ii) cos [k(π−θ)]=(−1)k cos(kθ). The integrals on [0, π2 ] and [π2 , π] compensate each
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other for k and basis elements (cos / sin not p) of opposite parity. Consequently, there is no ambi-
guity in the definition of Gpqk . The parity of k sets the basis elements I am considering in the r.h.s.
of equation (4.5a). For the same reasons, the bare coupling coefficients, Ukk′ , and the dressed ones,
Ud
kk′ , (equations 3.26 and 3.29 respectively) vanish for k, k′ of different parity.

The integration from equation (4.7) cannot be performed w.r.t. the angle θ because it would
require to invert the mapping x 7→θ(x) from equation (2.10). To compute this integral, I naturally
perform the same change of variables as for the frequency computation (equation 2.7). Similarly,
the integration is performed w.r.t. the Hénon anomaly (and not the position x) to cure numerical
divergences. One is left with two integrals that must be performed simultaneously

ψ
(p)
k (J) = 1

π

∫ 1

−1
dw dθ

dw ψ(p)(x[w]) cos(k θ[w]), (4.8a)

θ[w] =
∫ w

−1
dw′ dθ

dw′ , (4.8b)

where dθ/dw=Ω(ra)Θ(w)/
√

2 with Θ(w) defined in equation (2.9). Although the integrals from
equations (4.8) seem nested, they can be evaluated via the single integral of a 2-vector (see, e.g.,
appendix B in Rozier et al., 2019). In practice, I use a fourth-order Runge-Kutta (RK4) scheme
with 103 steps for w∈ [−1, 1].

4.1.3 Susceptibility

The polarisation matrix from equation (3.28) involves a sum over the resonances k. Benefiting from
the rapid decay of the coupling coefficients, the sum over k can be safely truncated to |k|≤kmax.
In practice, kmax =10 proves quite sufficient.

In figure 4.3, I illustrate the determinant of the susceptibility matrix N, from equation (3.18),
for the thermal and Plummer equilibria (section 2.3.1), along real frequencies. The frequency
Ω0 =

√
GMtot/Λ is the (maximum) orbital frequency in the system’s centre (Ω0 =

√
GMtot/α for the

Plummer equilibrium). Because the system possesses this finite maximum frequency, Ω0, its linear

Figure 4.3: Figure from Roule et al. (2022). Determinant of the susceptibility matrix, N(ω), as a function of the
real frequency Ω/Ω0 for the even (cosine) and odd (sine) basis elements (section 4.1.1) for both the thermal (left)
and Plummer (right) equilibria. Here, Ω0 is the maximum frequency in the system’s centre, while ΩL ≃0.35 Ω0 (resp.
ΩL ≃0.11 Ω0) is the smallest frequency captured by the periodised potential with L=10 Λ (resp. 100 Λ). Collective
effects become negligible at small separation (high frequencies). Conversely, they induce a striking damping for
frequencies Ω∼Ω0.

response shows clear signatures at every (resonant) multiple of this frequency. Nonetheless, the
collective amplification remains limited, i.e., det(N) is never much larger than unity.1 Conversely,

1This is not completely true. In figure 4.3, the determinant of the sine susceptibility matrix blows up at low
frequencies for both Plummer and thermal equilibria, but it concerns unpopulated regions, x>L. This might be
related to the periodisation of the basis elements and the associated truncation in the considered frequency domain.
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collective effects significantly damp the contribution of the odd resonances kΩ∼Ω0, i.e., the lowest
order resonances in the most populated regions.

Both thermal and Plummer equilibria are stable. Accordingly, I did not find any singularity
of the susceptibility in the upper-half plane of complex frequencies.2 I also looked for damped
modes (in the lower half-plane) but did not find any either. In this region, the linear response
computation requires a careful analytical continuation (section 3.3.2). As illustrated in figure 4.4,
such a continuation quickly suffers from numerical saturation. It is to be expected as this opera-

Figure 4.4: Determinant of the (total) susceptibility matrix, N(ω), from equation (3.18) for the one-dimensional
thermal equilibrium for damped frequencies Im(ω)<0 (both the cosine and sine part of the basis are included).
Landau’s prescription (section 3.3.2) is applied to the polarisation matrix to analytically continue the computation
in the lower half-plane. As discussed in section 3.3.3, branch cuts (vertical dashed lines) appear every kΩL and kΩ0
due to the finite frequency support, [ΩL,Ω0]≃ [0.35, 1]. The ability to probe damped frequencies remains limited.
The analytical continuation quickly saturates and no damped mode is found within the converged regions.

tion is an ill-conditioned numerical problem (Trefethen, 2023). Probing more damped frequencies
would require a finer treatment of this continuation. In practice, the response functions u 7→G(u)
from equation (4.5a) are expanded over Legendre polynomials via Gauss–Legendre quadrature (sec-
tion 3.3.3). The higher the number of polynomials, the more accurate the function representation
but the more difficult the analytical continuation. As I shall now discuss, the contribution from
high-order polynomials is enhanced by numerical noise and should be regularised to achieve a better
continuation.

4.1.4 Heuristic on convergence and numerical saturation

The numerical computation of the polarisation matrix (equation 3.28) involves a significant number
of parameters. I divide the parameters into two categories: (i) the ones that could be taken as
large as the computational resources allow and (ii) the ones that should be chosen with care. The
dummy parameters are the number of integration points used to perform the various integrals,
namely

• Kmf , for the integration of the mean-field quantities (action and frequency equations 2.5
and 2.6): typically 32 points proves sufficient.

• Kft, for the Fourier transform of basis elements (equation 3.27): should be taken at least
twice as large as the number of basis elements (+ the maximal resonance number) to avoid
aliasing.

• Kq
u , for the Gauss–Legendre quadrature used to decompose the G functions from equa-

tion (4.5a) on Legendre polynomials (equation 3.45): should be taken at least eight times
2A better diagnostic than visual inspection of a limited range of (growing) frequency would be to use Nyquist’s

diagrams (see, e.g., section 2.3 in Pichon & Cannon, 1997).
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as large as the number of basis elements to avoid aliasing. Indeed, as illustrated in figure 4.2,
the u 7→Gpqk (u) function typically oscillates p+q times over the interval [−1, 1]. However,
these oscillations are highly clustered on one side of the interval.

• kmax, the number of resonances over which the sum in equation (3.28) is performed: typically
10 resonances prove sufficient. However, using too few resonances may quickly lead to non-
converged results (offsets in the mode’s location in figure 4.11), independently of the method
used to compute the polarisation matrix and both for growing and damped frequencies. This
was already pointed out by Zang (1976); Pichon & Cannon (1997); Evans & Read (1998b).
As mentioned in appendix C2 of PR+24, the false weakly damped ℓ=1 mode reported by
FP22 in the isochrone model is a good example of this issue.

The critical parameters are (i) the number of basis elements, (ii) the number of Legendre polynomi-
als used to approximate the G functions. To discuss their appropriate choice, let me first describe
the origin of the saturation in figure 4.4.

The integrands G (equation 4.5a) are not analytical known. However, to compute the polarisa-
tion matrix for damped frequencies, Im(ω) < 0, one needs to evaluate the functions G at complex
values of u=ω, as required by Landau’s prescription in equation (3.40). To do so, using FP22’s
method, I approximated the integrands G by their projection over Legendre polynomials,

G(u) ≃
Kq

u∑
j=0

ajPj(u). (recall 3.44)

In the left panel of figure 4.5, I illustrate the typical j 7→aj series for different resonances k and basis
elements p, q. Note that these coefficients have been evaluated through Gauss–Legendre quadrature
(equation 3.45) with Kq

u =1024 points, i.e., more than the number of represented coefficients. The
coefficients aj decay for small j but eventually saturate. For small basis index p, q (yellow), the
coefficients aj decay faster. It was to be expected as the G functions are less oscillatory for small p, q
(figure 4.2). Let me stress that, forgetting about the saturation, these coefficients should decrease
more than exponentially. However, the larger the basis index p, q, the later the decay and the
flatter the initial slope.

In the right panel (adapted from PR+24), I illustrate the behaviour of the polarisation matrix
computations from equation (3.46). For damped frequencies, the sum in this equation runs over
exponentially increasing quantities Dj(ω). This exponential growth is due to the evaluation of the
Legendre polynomials at complex frequencies. From here, there is two distinct cause of numerical
instabilities.

Low order basis elements

For low order basis elements, the exponential growth of the j 7→|Dj(ω)| series is compensated
by the decay of the coefficients aj . However, as these coefficients saturate (figure 4.5), the sum in
equation (3.46) becomes ultimately divergent when performed over too many Legendre polynomials.
The right panel of figure 4.5 perfectly illustrates this behaviour. To prevent this divergence, one
should (adaptively) regularise the j 7→aj series. This could be done by truncating the series at the
saturation point.

High order basis elements

For high order basis elements, p, q≫1, at low j, the coefficients aj decay as

|aj | ∝ exp (−βpj) , (4.9)

where βp>0 is a decreasing function of p, q. On the other hand, the Dj(ω) functions grow as

|Dj(ω)| ∝ exp (βωj) , (4.10)
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Figure 4.5: Left: Typical decomposition series j 7→ aj (bottom) of the integrand functions Gpq
k (top) over Legendre

polynomials using Gauss–Legendre quadrature (equation 3.45) for the one-dimensional model. Right: Figure adapted
from PR+24. Convergence of the finite Hilbert Transform method presented in section 3.3.3 and extensively used
in this thesis. Panel (a) shows the considered coefficients aj . They correspond to computations for a spherical
globular cluster but present the same behaviour as the one-dimensional model (left panel). They decay for small j,
but they eventually saturate. Panel (b) shows that, for damped frequencies, the quantity Dj(ω) in equation (3.46)
increases exponentially as a function of j (plain curves). Conversely, for unstable frequencies (dashed curves show
the corresponding calculation for −γ), it decays exponentially. This difference stems from the fact that, for damped
frequencies, one has to evaluate the Legendre polynomials Pj(ω), for complex frequencies. This is the result of
residue contribution in Landau’s prescription (equation 3.40). Panel (c) shows the individual components of ajDj as
a function of j. For j large enough, this product does not decay anymore. Finally, panel (d) shows the cumulative
sum in equation (3.46) as function of j. For γ sufficiently close to the real frequency line, the sum is convergent.
However, as Im[ω] becomes more negative, the sum begins to diverge for smaller and smaller j. In contrast to the
solid lines which show the damped frequencies (i.e., γ<0), the dashed lines – which show the unstable frequencies
(i.e., γ>0) – are always convergent.

where βω>0 is a growing function of |γ|= |Im(ω)|. For |γ| too large, the sum
∑
ajDj(ω) involves

exponentially growing terms. Let me stress that this growth is only true in norm and for low j. In
practice, the aj coefficients (i) are oscillating between negative and positive values and (ii) should
ultimately decay more than exponentially.

While mathematically well-posed, such a behaviour is difficult to handle numerically. This is the
reason why, to probe damped frequencies, one should try to keep the number of basis elements as
low as possible, though this might be in tension with the requirement to resolve the corresponding
shape of the mode. As illustrated in figure 4.6, the larger the number of basis elements, the higher
the saturation line. Yet, if one is only interested in growing modes, the number of basis elements
can be taken as large as possible (as long as they can be safely evaluated). Indeed, in this case, the
Hilbert transform Dj(ω) from equation (3.46) does not involve the Legendre polynomials (of the
first kind), Pj , but only the Legendre functions of the second kind, Qj . As illustrated by dashed
lines in the right panel of figure 4.5, these functions decay exponentially for large j.
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Figure 4.6: Same as figure 4.4 but varying the number of basis elements from 32 to 64. The larger the number of
basis elements, the higher the saturation line. Higher order basis elements are more oscillatory and their continuation
to complex frequencies is more difficult. If one wants to probe damped frequencies, the number of basis elements
should be kept as small as possible.

Conclusion

Some parameters used in Roule et al. (2022) are not the best ones. Indeed, in this article, I use
128 basis elements for the thermal equilibrium and even 1024 for the Plummer one but only 100
Legendre polynomials (and the 100 points for the decomposition). I was later able to reproduce the
results from figure 4.3 using only 32 basis elements. Yet, it does not affect nor the linear response
results neither the secular one because (i) I was only interested in neutral frequencies, (ii) their
overall amplitude is still correct, and (iii) these basis elements are not important for collective
effects.

To conclude, probing damped frequencies is an intricate numerical problem. With the current
implementation of the method, the number of Legendre polynomials used to expand the G functions
should typically not be taken larger than ∼200 to perform the analytical continuation. Conversely,
for growing frequencies, the number of basis elements and the number of Legendre polynomials can
be taken as large as the computational resources allow.

4.2 Stability of discs – predictions

Let me now explore the stability of dynamically cold systems such as razor-thin discs, i.e., discs
composed mainly of quasi-circular orbits. This section is inspired from Fouvry & Prunet (2022),
hereafter FP22, and my work in PR+24.

4.2.1 Bi-orthogonal basis

Owing to the axial invariance of the Newtownian interaction potential from equation (2.3), the
linear response of discs (and spheres) can be split in independent harmonics ℓ (historically denoted
m for discs). I therefore consider potential basis elements of the form ψ(p)(r, ϕ)=U ℓp(r)eiℓϕ with
U ℓp(r)∈R and associated density basis elements of the same form Σ(p)(r, ϕ)=Dℓ

p(r)eiℓϕ.
In all the computations in this thesis, I use radial basis elements from Clutton-Brock (1972). I re-

produce their recurrence relation and provide appropriate normalisation prefactors in appendix 4.A.
Similar results could have been obtained using the basis from Kalnajs (1976) (Fouvry et al., 2015;
Dootson, 2023) or other bases (e.g., De Rijcke et al., 2019a; Dootson, 2023, using local non-
orthogonal Gaussian basis). Advantageously, the Clutton-Brock (1972) basis is (i) global (one only
has to set one scale radius), (ii) bi-orthogonal, (iii) has infinite extent and (iv) can be computed
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via a numerically-stable recurrence relation. I illustrate the first few basis elements in figure 4.7.

Figure 4.7: Illustration of the first five potential (left) and density (right) basis elements, U ℓ
p(r) and Dℓ

p(r), from
Clutton-Brock (1972). The radial basis elements are computed for the azimuthal harmonic ℓ=2 and are normalised
according to equation (3.24) (see appendix 4.A). As expected, the higher the radial number, the more oscillating the
basis element. Increasing the number of basis elements resolves finer scales in the system.

4.2.2 Resonant coordinates

Let me now define and discuss the computation of resonance-specific (i.e., dependent on k) co-
ordinates (u, v) for razor-thin discs with central potential, ψ=ψ(r). Their construction from the
(dimensionless) frequency ratios, (α, β) from equation (2.16), is concisely presented in appendix B
of FP22 which I shortly reproduce and adapt here.

The (dimensionless) resonance frequency,

ωk = k·Ω/Ω0 = krα+ kϕαβ, (4.11)

is constant along the resonance line. The first resonant coordinate u is then chosen such that (i)
u∝ωk + cst., and (ii) u∈ [−1, 1]. It reads

u = ωk(α, β)−Σk
∆k

, (4.12)

with Σk = 1
2(ωmin

k +ωmax
k ), ∆k = 1

2(ωmax
k −ωmin

k ), and ωmin
k (resp. ωmax

k ) the minimal (resp. maximal)
value reached by ωk. These extrema can be determined following appendix B of FP22.

The second resonant coordinate v can be arbitrarily chosen as long as it efficiently scans over
the resonance line, i.e., as long as it is not proportional to u. One then just needs to provide its
boundary values. FP22 typically used v=α for most resonances and v=β when u is independent
of β, i.e., for kϕ=0. In practice, one would a priori want to scan the resonance lines as uniformly
as possible. In that respect, choosing v=α proved quite inadequate [especially at inner Lindblad
resonance (ILR), k=(−1, 2)] and I used instead v∝αn (typically with n=2). The second resonant
coordinate ultimately reads (appendix A4 in PR+24)

v =
[

s− smin
k (u)

smax
k (u)− smin

k (u)

]n
, (4.13)

with

s =
{
β if k2 =0,
α otherwise,

(4.14)

and n a free parameter. In equation (4.13), the extremal values of s∈ [smin
k (u), smax

k (u)] along the
resonance line (set by k and u) are determined following appendix B of FP22.
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Figure 4.8: Illustration of the resonant mappings (u, v)→(α, β) for the ILR (top) and the corotation (bottom) via
the intermediate s coordinate (equation 4.14). Each colour correspond to a resonance line of constant k·Ω. For the
ILR, the resonance lines go from circular to circular orbits while, for corotation, they go from circular to radial orbits.
It illustrates the diversity of resonant mappings to handle.

In figure 4.8, I illustrate the resonant mappings, (u, v)→(α, β), for a few resonance numbers, k,
namely the ILR [k=(−1, 2)] and the corotation resonance [k=(0, 2)]. These change of coordinates
are a requirement for the linear response of self-gravitating systems. Indeed, by construction, it
involves scanning the full orbital space and dealing appropriately with resonant denominators, as
visible in equation (3.38). As mentioned, the ILR resonance lines are not nearly linear in α and the
resonance coordinate v needs to be chosen appropriately to ease the integration over the resonance
line.

Once this new coordinate system defined, equation (3.28) reduces to equation (3.38) when
taking

G(u) =
∫ 1

0
dv 2

Ω0(ωmax
k − ωmin

k )

∣∣∣∣ ∂J
∂(u, v)

∣∣∣∣G(J[u, v]), (4.15a)

ϖk(ω) = ω − Σk
∆k

, (4.15b)

where Σk and ∆k follow from equation (4.12). In equation (4.15a), I also introduce G(J) which,
in the case of razor-thin discs, reads

Gℓkpq(J) = −(2π)2 δℓkϕ

(
k· ∂F
∂J

)
W ℓk
p (J)W ℓk

q (J). (4.16)

As expected, they involve the Fourier transform of potential basis elements (equation 3.27). In this
case, they read (Tremaine & Weinberg, 1984; Fouvry et al., 2015)

W ℓk
p (J) = 1

π

∫ 1

−1
dw dθr

dw U ℓp(r) cos
(
krθr+kϕ[θϕ−ϕ]

)
, (4.17)

where the radius, r, and the angles, θr and θϕ−ϕ (equation 2.22), are implicit functions of the orbit,
J, and the Hénon anomaly, w, (equation 2.7). As in the one-dimensional case (section 4.1.2), the
integration is performed w.r.t. the Hénon anomaly to cure numerical divergences. Equation (4.17)
and the angles are computed simultaneously (see, e.g., appendix B in Rozier et al., 2019), pushing
the angles with

d
dw (θr, θϕ−ϕ) =

(
Ωr,Ωϕ−L/r2

)
Θ(w), (4.18)

where Θ follows from equation (2.18).
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4.2.3 Software libraries

Computing the linear response of stellar self-gravitating systems is an intricate task. During my
PhD, I have developed several libraries with M. Petersen to facilitate it for razor-thin discs and
spherical systems. It aims at being a generic framework that could be extended to other systems
in the future. These libraries are publicly available at https://github.com/JuliaStellarDynamics.
In this section, vastly inspired by PR+24, I briefly present these libraries.

OrbitalElements.jl

The library OrbitalElements.jl provides computation of the mean-field quantities (e.g, action
and frequency from equations 2.15 and 2.16) for (bounded) orbits in a static central potential,
ψ=ψ(r). At the heart of the library is the ability, given a central potential and its two first
derivatives, to convert nearly seamlessly between different orbital elements, i.e., different constants
of motion, namely

• the pericentre and apocentre radii (rp, ra);
• the effective semi-major axis and eccentricity (equation 2.17);
• the energy and angular momentum (equation 2.14);
• the actions (Jr, L) (equation 2.15),
• the orbital frequencies (Ωr,Ωϕ) associated respectively with the radial and azimuthal oscilla-

tions (equation 2.21);
• the frequency ratios (α, β) from which the frequencies are computed (equation 2.16);
• the resonance-specific (i.e., dependent on k) coordinates (u, v) (section 4.2.2).

In practice, OrbitalElements.jl is centred around the effective semi-major axis and eccentricity
(a, e), but straightforward conversions between different orbital labels exist as simple function calls.
These change of coordinates are a requirement for the linear response of self-gravitating systems.
Indeed, by construction, it involves scanning the full orbital space and dealing appropriately with
resonant denominators, as visible in equation (3.28). In FP22, these conversions were performed
analytically for the isochrone model. With this library, we provide a generic computation of orbital
elements for any central potential.3

In figure 4.9, I illustrate the typical conversions required to compute the functions from equa-
tion (4.15a): starting from the resonant frequencies, (u, v) (equations 4.12–4.13), up to the energy
and angular momentum, (E,L) (equation 2.14), via the frequency ratios, (α, β) (equation 2.16),
and the effective anomaly and eccentricity, (a, e) (equation 2.17).

AstroBasis.jl

Fundamental to the matrix method are the chosen basis functions. The AstroBasis.jl library is
an implementation of several bases of radial functions, r 7→U ℓp(r), with a straightforward interface.
At present, AstroBasis.jl supports the disc bases from Clutton-Brock (1972) and Kalnajs (1976),
and the spherical bases from Clutton-Brock (1973), Fridman & Poliachenko (1984)/Weinberg (1989)
(Bessel), and Hernquist & Ostriker (1992). A few basis elements from the basis used in this thesis
(Clutton-Brock, 1972) are illustrated in figure 4.7.

FiniteHilbertTransform.jl

The library FiniteHilbertTransform.jl implements the method from FP22 (section 3.3.3) to
compute resonant integrals while complying with Landau’s prescription (equation 3.40) in systems

3In practice, the library is currently limited to cored potentials, as it assumes u∈ [−1, 1].

https://github.com/JuliaStellarDynamics
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Figure 4.9: Illustration of the typical mappings required to perform linear response computations for razor-thin discs
at the ILR. Starting from the resonant coordinates, (u, v) (equations 4.12–4.13), in which the polarisation matrix
takes the form of a Hilbert transform (equation 3.38), one needs to convert to the energy and angular momentum
(E,L), in which most distribution functions (DFs) are defined, and to the frequencies to ultimately compute the
integrand functions G from equation (4.15a).

with finite frequency support. It computes (i) the decomposition coefficients over Legendre poly-
nomials for a given function G, and (ii) the ω 7→Dk(ω) functions from equation (3.46) at all points
in the complex plane.

The present method has mainly been introduced to probe linear response for damped frequen-
cies, i.e., in the lower-half of the complex plane. In this regime, Landau’s prescription (equa-
tion 3.40) requires to give a meaning to G(ω) with ω∈C. Phrased differently, one has to perform
an analytical continuation of these G functions, which involve intricate, non-analytically known
functions in the present self-gravitating case (equation 4.15a). Given that analytical continuation
is intrinsically a (severely) ill-conditioned numerical problem (Trefethen, 2023), for damped fre-
quencies, i.e., Im(ω)<0, the effective numerical precision plays an important role in setting the
floor for accuracy (section 4.1.4).

LinearResponse.jl

The computation of the polarisation matrix (equation 3.28) and associated by-products (equa-
tions 4.15a–4.17) is performed by LinearResponse.jl. It mainly requires the user to provide
(i) the considered gravitational potential (and two derivatives), (ii) the DF (through its direc-
tional derivatives k·∂F/∂J), and (iii) a bi-orthogonal basis. Some of these are available via
OrbitalElements.jl and AstroBasis.jl, but the user can also supply its owns.

For a given harmonic ℓ and for each resonance k and each matrix element (p, q), the calcula-
tions proceed in three phases. The first two aim at computing the u 7→G(u) functions from equa-
tion (4.15a), namely by (i) computing the Fourier transform of basis elements (equation 4.17),4 and
(ii) performing an integral along the resonance line, i.e., over the resonance variable v. The third
phase is to decompose these functions over Legendre polynomials, through the computation of the
ak coefficients from equation (3.44) using FiniteHilbertTransform.jl. Once these coefficients
are known, the polarisation matrix can be efficiently computed at any given complex frequency ω.

4The 1/π prefactor is missing in equation (A15) of PR+24.
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4.2.4 Zang’s bi-symmetric5 instabilities

This result has been presented in PR+24 and is reproduced here for completeness.
In order to validate the numerical implementation, I recover well-documented unstable modes in

razor-thin discs. In practice, following the work of Zang (1976), I consider the tapered Mestel disc
(section 2.3.2), whose scale-invariance allows for some analytical simplifications. Nonetheless, in
what follows, I do not use these simplifications and rather use the generic scheme from section 3.2,
namely, Kalnajs’ matrix method. The DF of the stars is tapered in the central region (section 2.3.2).
The presence of this inner cut-off mimics an unresponsive central bulge, hence introducing a reflexive
boundary: the sharper this inner cut-out, the stronger the instability (Zang, 1976). The disc’s
outskirts are also tapered, though this does not impact the disc’s stability, provided that this
external cut-out is sharp enough and far enough (Evans & Read, 1998b).

Note that the method based on finite Hilbert transform implemented in LinearResponse.jl is
not perfectly suited here. Indeed, because of its central divergence, the frequency range in the true
Mestel disc (section 2.3.2) is not finite. The truncation introduced in equation (2.33) prevents such
a divergence. As a result, the truncated Mestel model still supports a wide (but finite) range of
frequencies. Yet, the range of interesting frequencies is drastically reduced by the inner taper in the
DF (section 2.3.2). Using the full range of possible frequencies would be particularly ill-advised. I
deal with this particular issue by limiting the orbital domain probed by the code. This truncation is
set by the parameter rmin and illustrated in figure 4.10. The effective domain in (α, β) is restricted

Figure 4.10: Illustration of the truncation of the domain of frequency, (α, β), probed by resonance variables. The
top row corresponds to the isochrone mappings from figure 4.8 with truncation parameter rmin =1. This is purely
illustrative since there is no particular reason to truncate the domain in this case. The bottom row corresponds to
the truncated Mestel potential from equation (2.33). For this potential, the available frequency domain extends far
beyond the truncated one. Considering the tapered DFs from equation (2.36), the interesting part of the domain
is very limited. Setting rmin =0.2 ̸=0, I focus on the frequencies of interest. Both cases are illustrated for the ILR,
k=(−1, 2). The effective (α, β) domain is restricted to α≤αmax =αc(rmin) with αc(r) the circular frequency ratio
from equation (2.20).

to the region below αmax =αc(rmin) with αc(r) the (outward decreasing) circular frequency ratio
from equation (2.20). Importantly, this is a linear constraint which is therefore straightforward to
take into account. It mainly amounts to tweaking the values of the extrema of the (dimensionless)
resonance frequency ωk from equation (4.11). Details on taking this new constraint into account

5Let me highlight that tapered Mestel discs do suffer from an ℓ=1 instability whatever the disc’s temperature
(Zang, 1976; Toomre, 1981), i.e., whatever q in equation (2.36). As in Sellwood & Evans (2001) and Sellwood (2012),
perturbations are therefore always restricted to their bi-symmetric component in all simulations performed in this
thesis.



54 Chapter 4. Linear response – Applications

are given in appendix A1 of PR+24. In practice, I set rmin =Rin/5, with Rin the radius of the
DF inner taper (table 2.1). For fully self-gravitating (core) systems, one would keep the default
rmin =0: this does not introduce any domain restriction.

All these subtleties reflect that the method of FP22 is not perfectly suited to the discs studied in
this thesis (section 2.3.2). Its use might prove less cumbersome with more realistic galactic models
whose rotation curve do fall in the centre (see, e.g., figure 4 in Reid et al., 2014). In the case of
Mestel discs, one might rather want to adapt the method to a resonant coordinate u∈ [0,+∞) by
using (orthogonal) functions different from Legendre polynomials. Laguerre’s polynomials might
be a good candidate for this purpose (Robinson, 1990).

Once this model is set up, I perform stability analysis for two-armed modes, i.e., ℓ=2 modes,
as one varies the properties of the inner taper.6 As reported in table 2 of PR+24, I find a satisfying
agreement between the (semi-analytical) predictions of Zang (1976) and Evans & Read (1998b),
and the present linear predictions for the growth rate and oscillation frequency of the most unstable
mode. These predictions have already been confirmed using numerical simulations by Sellwood &
Evans (2001). I nonetheless performed my own simulations which I present later in section 4.3.
Similarly to Sellwood & Evans (2001), the numerical simulation of Zang discs proved particularly
challenging.

In figure 4.11, I present a typical map of the complex frequency plane one can obtain us-
ing LinearResponse.jl. More precisely, figure 4.11 illustrates the determinant of the (gravita-
tional) susceptibility matrix, N(ω) from equation (3.18), through its level contours in the complex-
frequency plane. This determinant vanishes at the frequency ωm/Ω0 =0.878+0.126i, i.e., the system
supports a growing mode. The shape of this unstable mode is reported in figure 4.12, where I com-
pare it with the result from Zang (1976). I find a quantitative match between both approaches.
In figure 4.11, the saturation and ringing for damped frequencies are to be expected. As discussed
in section 4.1.4, they are a direct consequence of analytical continuation being an ill-conditioned
numerical problem.

Figure 4.11: Figure adapted from PR+24. Isocontours of the determinant of the ℓ=2 susceptibility matrix (100 basis
elements) from equation (3.18) for Zang’s ν=4 disc (section 2.3.2). The dominant mode obtained by Zang (1976) is
highlighted with a yellow cross and is recovered within 1% precision.

Let me note that here I used the generic basis from Clutton-Brock (1972), which is not tailored
to asymptotically match the disc’s underlying potential. Interestingly, this did not impact my
ability to recover precisely the underlying modes using linear response theory. Yet, I was not
able to consistently measure this mode in N–body simulations using this basis to solve Poisson

6The azimuthal harmonic number for discs is historically denoted m. Adapting here from the spherical case, I
nonetheless denote it ℓ.
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Figure 4.12: Figure from PR+24. Shape of the ℓ=2 dominant mode of the N=4 Zang disc as predicted by
LinearResponse.jl (coloured dashed lines) overlaid with the shape obtained by Zang (1976) (in black, figure 9
therein). For both shapes, the contours denote the 10, 20, 40, 60 and 80% of the peak density, with only the
overdensity being represented. The dotted circles show the corotation (CR) and ILR radii of the mode. Both linear
predictions are in very good agreement. This is one of the key results of this thesis.

equation (1.19c) (basis function expansion or self-consistent field method). This is further discussed
in section 4.3.1. Expanding LinearResponse.jl to accommodate for more generic basis elements
should be the topic of future work.

4.2.5 Varying the active fraction

A simple way to stabilise the disc is to decrease the overall active fraction ξ (equation 2.36), i.e.,
the fraction of the disc that is responsive to the self-gravity (section 2.3.2), while keeping the same
underlying potential. It crudely mimics the fact that part of the potential is not generated by the
dynamically cold disc of stars but rather by a dynamically hot dark matter halo. The dispersion
relation equation (3.22) then becomes

det[I− ξM(ω)] = 0, (4.19)

where M stands for the polarisation matrix of the fully self-gravitating disc (ξ=1).
In figure 4.13, I present the rotation frequency, Ωm, and the growth rate, γm of the most unstable

mode in the Zang ν=4 as a function of the active fraction ξ. As expected, the smaller the active

Figure 4.13: Growth rate, γm, (left) and rotation frequency, Ωm, (right) of the most unstable mode in the Zang ν=4
disc and Toomre’s disc (table 2.1) as a function of the active fraction ξ. Zang’s disc is stabilised at ξ≈0.69. Toomre’s
disc is colder and therefore requires a smaller active fraction to stabilise.
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fraction, the more stable the disc. The pattern speed (or equivalently the rotation frequency) also
increases with the active fraction. This should be compared to the results of Dootson (2023) using
two different approaches both relying on the linear response in time and not in Laplace frequency
ω (section 5.2.4 therein). While perfectly suited for strongly unstable systems, such approaches
fail to cross stability and probe the weakly damped modes found in partially self-gravitating (or
tepid) discs. Satisfyingly, here, the mode smoothly crosses marginal stability. It proves that the
analytical continuation of the susceptibility matrix is performed correctly.

4.2.6 Damped modes in Toomre’s disc

While the Zang ν=4 disc with active fraction ξ≲0.7 is stable w.r.t. bisymmetric perturbations,
I did not investigate it further. I rather studied Toomre’s disc (table 2.1), whose parameters are
slightly different but corresponds to the same potential and DF family. Its evolution has been more
thoroughly investigated in the literature (Sellwood, 2012; Fouvry et al., 2015; Sellwood & Carlberg,
2019) since the seminal paper of Toomre (1981) who introduced it to illustrate the process of swing
amplification. The disc’s parameters (table 2.1) are chosen such that the half-mass disc (ξ=0.5)
is stable with Toomre number Q=1.5. This disc is colder than Zang’s ν=4 disc studied in the
previous sections (σr=0.284 vs 0.378). As illustrated in figure 4.13, it therefore requires a smaller
active fraction to stabilise the disc.

Yet, as expected from figure 4.13, Toomre’s disc seems to support a weakly damped mode.
In figure 4.14, I present the determinant of the susceptibility matrix for the ℓ=2 modes. For this

Figure 4.14: Isocontours of the determinant of the ℓ=2 susceptibility matrix from equation (3.18) for Toomre’s disc
(section 2.3.2). As expected, the disc is stable, and no growing mode is found. Yet, the shape of the isocontours
seemingly reveals the presence of one or more weakly damped modes below the real axis, notably around the rotation
frequency Ωm ∼0.75.

figure, I used the same parameters (number of basis elements...) as for the Zang ν=4 disc presented
in figure 4.11. Unfortunately, for such a set of parameters, the analytical continuation saturates
very early and no clear singularity is visible in the lower-half of the complex plane. However, the
flatness of the isocontours above the real axis cannot be explained by a single dominant damped
mode. It suggests the presence of multiple weakly damped modes around the rotation frequency
Ωm∼ [0.6, 0.75].

To probe deeper into the damped frequencies, I performed the same analysis as in figure 4.14
but with fewer basis elements and resonances. As discussed in section 4.1.4, reducing the number
of basis elements facilitates the continuation as lower basis elements are smoother functions. I also
reduced the number of resonances because I empirically found (both in the unstable Zang disc and
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this stable one) that using too few basis elements tends to increase the growth rate of the mode and
that decreasing the number of resonances has the opposite effect. The computations with 10 basis
elements and all resonances |kr|≤10 therefore predict an unstable mode, and I do not show it here.
In figure 4.15, I present the result of this analysis with 10 basis elements and only 3 resonances
[ILR, corotation and outer Lindblad resonance (OLR)]. Let me stress that this result is purposely

Figure 4.15: Same as figure 4.14 but using fewer basis elements (10 instead of 50) and resonances [ILR, corotation
and OLR only] to probe larger damping rates. Interestingly, multiple damped modes with roughly the same damping
rate are found. In figure 4.14 the damped modes are either closer to one another or have a larger damping rate,
|γm|, i.e., are lower down in the complex plane. Indeed, the flatness of the isocontours above the real axis cannot be
explained by a single dominant damped mode. This is one of the key results of this thesis.

not converged to illustrate the presence of weakly damped modes in tepid Mestel discs and that
the exact location of the mode should not be taken as a quantitative result. It would be interesting
to investigate this disc using the same method as Zang (1976). Indeed, using the self-similarity of
the potential, the functions which need to be evaluated at complex values are known analytically.
And (Zang, 1976) already reported on the presence of damped modes in similar discs (namely the
full-mass ν=2 disc). This tailored method should give a more precise location of the damped
modes.

Even not converged, this prediction is interesting as it confirms the presence of multiple weakly
damped modes. Furthermore, it can be used to perform predictions on the long-term evolution of
the disc and study the impact of these modes on the secular orbital heating. This is the topic of
chapter 6.

4.3 Stability of discs – simulations

In this section, I set out to recover the predicted instabilities (section 4.2.4) in razor-thin Zang
discs using numerical simulations. Such an investigation has already been performed by Sellwood
& Evans (2001) (hereafter SE01). To that regard, the results presented in this section are not new
but rather confirm the analysis of SE01. In particular, I aim to highlight two pitfalls in which I ran
while attempting to appropriately simulate and measure the evolution of instabilities of tapered
Mestel discs.

4.3.1 Simulation method

As the first necessary step to perform these simulations, I present the method I used to sample the
initial conditions of the disc in appendix 4.B.
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Basis function expansion

I first attempted to perform the N–body simulations using EXP (Petersen et al., 2022), an N–
body simulation code using basis function expansion. This self-consistent field method uses the
bi-orthogonal basis elements from section 3.2.1 to solve Poisson equation (1.19c) throughout the
simulation (see, e.g., Hernquist & Ostriker, 1992). This method is particularly efficient to ap-
proximate the collisionless evolution of self-gravitating systems because evaluating the forces only
requires O(N) evaluations and can be straightforwardly parallelised. It is considered to be one
of the optimal numerical methods to study the stability of self-gravitating systems in simulations
(Earn & Sellwood, 1995). However, the efficiency of this method heavily depends on the appropriate
choice of the basis elements. It might behave poorly if the equilibrium state is not well represented
by the first few basis elements. To solve this issue, Weinberg (1999) proposed a numerical scheme to
tune the basis elements to the equilibrium state by solving the associated Sturm–Liouville equation.

Yet, in the present case, the mean-field potential was externally imposed (and fixed) in the
simulations I wished to perform. Only the ℓ=2 fluctuations did participate in the dynamical evolu-
tion. Therefore, I was hoping that the basis only had to be representative of the ℓ=2 perturbations,
i.e., of the growing mode from figure 4.2.4. I used 30 elements of the Clutton-Brock (1972) basis.
Here, I might have repeated the mistake of SE01 and used too few basis elements. Unfortunately,
performing 16 realisations with N=2×107 particles each, the measured instability was (i) varying
quite significantly among realisations and (ii) on average, twice stronger than expected. SE01 did
try Kalnajs (1976) basis elements, as well as Bessel functions and logarithmic spirals (Kalnajs,
1971). They reported that, in all cases, the measured growth rates were larger than expected up to
a factor 10. SE01 associated the failure of the basis function expansion method to aliasing caused
by the truncation of the basis. Increasing the number of basis elements might have helped to reduce
the aliasing and match the linear predictions, but I did not investigate this method further.

Weinberg (private communication) recently investigated the stability of Zang discs using tailored
basis functions from the Sturm–Liouville solver (Weinberg, 1999). He could recover the expected
growth rates. This further highlights the importance of a careful choice of the basis elements when
performing such self-consistent field simulations.

Particle-mesh code

As SE01, I then turned to a particle-mesh method. I adapted the particle-mesh code used in
Fouvry et al. (2015) (courtesy of John Magorrian), a simpler 2D version of the GROMMET code
(Magorrian, 2007). In particular, this allowed me to test other softening kernels than the Plummer
one (section 4.3.2) and to extract relevant summary statistics along the simulation. It is described
in section 4.4.1 of Fouvry (2017) and I only give here a brief overview. This code is publicly
available at https://github.com/MathieuRoule/mestel2d.git.

As any particle-mesh N–body code, this code uses the fact that the convolution in Poisson
equation (1.19c) can be transformed in a simple product using Fourier transform. It reduces the
required number of computations compared to a direct N–body code [O(N×M lnM) vs O(N2),
with M , the number of mesh nodes]. This allows for simulations with a larger number of particles
(at the cost of a worse representation of the instantaneous potential). The key steps of the algorithm
are then as follows.

First, the (discrete) Fourier transform of the considered (softened) interaction potential, Uε
(equations 4.22 and 4.23), is computed once and for all. It is computed on twice the box size
to avoid aliasing (“doubling up”). Then, at each integration time step, the force acting on each
particle is computed by (i) projecting the density (particles) on the Cartesian grid, (ii) filtering
only the ℓ=2 fluctuations, (iii) taking the (fast) Fourier transform of these density fluctuations,
(iv) multiplying the Fourier transforms of the pairwise interaction potential and the density to
get the Fourier transform of the instantaneous potential, (v) inverting it to get the instantaneous

https://github.com/MathieuRoule/mestel2d.git
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potential fluctuations on the grid, (vi) deriving the associated force field by finite differences, (vii)
interpolating the force field at the particle exact location using cloud-in-cell scheme and, (viii)
adding the radial contribution of the mean-field Mestel potential.

The projection/filtering step is the trickiest one when working with a Cartesian grid. As ex-
plained in section 4.4.1 of Fouvry (2017), the particles are first projected on a much finer polar grid
of nr×nϕ cells. This fine grid is used to approximate the bisymmetric density fluctuations

δρ2(r) =
∑
i

miδ(r−ri)e2iϕi . (4.20)

This density is then projected on the Cartesian grid using a cloud-in-cell scheme.
Working within the units G=Rin =V0 =1, the results I present here were obtained with a box

which extends up to ±Rmax =20, a Cartesian grid of n2
x=1 0242 cells, and a unique time step

δt=10−2. The filtering of the ℓ ̸=2 fluctuations is performed using a polar grid with nr=8 192
radial rings and nϕ=2 048 angular cells. Once the forces are computed, the leapfrog scheme is used
to integrate the equations of motion. Using a higher order integrator would not necessarily improve
the integration accuracy (see, e.g., figure 3.23 in Binney & Tremaine, 2008).

4.3.2 Impact of gravitational softening

This section is inspired by the work of De Rijcke et al. (2019b) (hereafter DR+19b). It motivated
the numerical investigation I performed.

When performing N–body simulations, using the Newtonian interaction potential, U(r)=−G/r
with r=∥r− r′∥, leads to diverging forces at small separations. This can cause numerical instabil-
ities. To prevent this, the interaction is usually softened. It generically reads (Dehnen, 2001)

Uε(r) = −G
ε
f

(
r

ε

)
, (4.21)

with f the dimensionless softening kernel and ε the softening length.
Such a procedure has known consequences on the stability of self-gravitating systems (see, e.g.,

Miller, 1971; Salo & Laurikainen, 2000; Sellwood & Evans, 2001; Polyachenko, 2013). Indeed,
softening introduces a bias in the gravitational force which can, in turn, impact the simulated
evolution of the system. Too much softening introduces a strong gravity bias, too small softening
leads to numerical instabilities (Merritt, 1996). This is a classical bias-variance trade-off.

DR+19b investigated the impact of the softening kernel on the instabilities of self-gravitating
discs using linear response theory. They considered various softening kernels among which the
usual Plummer kernel

fp(u) = 1√
1 + u2

, (4.22)

and the (modified) Kuzmin kernel

fk(u) =
3 + 5

2u
2 + u4

(1 + u2)5/2 . (4.23)

Interestingly, they showed that the Kuzmin kernel should be preferred over the Plummer one as it
does not impact the dynamical properties of the disc at first order in ε, the softening length, but
only at second order.7 They compared their theoretical predictions to existing results of N–body
simulations, namely the ones from Earn & Sellwood (1995) and SE01. These simulations were
performed using the Plummer softening kernel only. They found a good agreement between their
theoretical predictions and the numerical results of Earn & Sellwood (1995) on the isochrone disc

7Let me note however that using the Plummer kernel can be physically motivated. Indeed, this kernel mimics the
effect of finite thickness of the disc (Sellwood, 2014). In this case, the softening length is set accordingly.
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and qualitative agreement with those of SE01 on the Mestel disc. Yet, SE01 noted that the N–body
measurements were significantly more difficult to perform on Mestel discs than on isochrone discs.

I performed a similar investigation on the Zang ν=4 disc using both the Plummer and Kuzmin
softening kernels. For each softening kernel and each softening length, I performed 10 different
realisations with N=2×108 particles each. The results are presented in figure 4.16. I found that

Figure 4.16: Inspired by figure 3 of De Rijcke et al. (2019b). Pattern speed (left) and growth rate (right) of the
dominant mode in Zang ν=4 disc, as a function of the softening length for both the Plummer (blue – equation 4.22)
and the Kuzmin (blue – equation 4.23) softening kernel. The theoretical predictions (plain lines) are reproduced
from DR+19b. I present the results of my numerical investigation (plain dots) and the one from SE01 (faint dots –
Plummer softening only). In both cases, the estimated errors are somewhat underestimated. Finally, the dashed line
corresponds to the Newtonian (non-softened) prediction from Evans & Read (1998b). Importantly, the numerical
simulations recover that the Plummer softening kernel has a strong gravity bias, ∆ωPlummer

m ∝ε, while the Kuzmin
kernel conserves the dynamical properties of the disc at first order in ε, i.e., ∆ωKuzmin

m ∝ε2. This is one of the key
results of this thesis.

the mode measurements were indeed less affected by the Kuzmin kernel than the Plummer one.
My numerical results are in good agreement with the theoretical predictions of DR+19b and the
earlier numerical results of SE01. The estimated errors are however underestimated in both my
and SE01’s results. SE01 indeed mentioned that they did not take into account the scatter among
different realisations. And I did not take into account the uncertainties in the mode measurements
(section 4.3.3).

In figure 4.16, the softening length, ε, is rescaled. Indeed, comparing the results for different
softening kernels at the same value of ε is not meaningful because the softened potential equa-
tion (4.21) is invariant under the transformation (section 2.3 of DR+19b)

ε→ aε and f → af. (4.24)

The two kernels are therefore compared at the same value of maximal interparticle force, i.e., using

εF = ε

−f ′
max

, (4.25)

with f ′
max the maximal value of the derivative of the softening (dimensionless) kernel. Arbitrarily

setting εF /ε=1 for the Plummer softening, one has εF /ε≈2.568 for the Kuzmin softening (table 1
in DR+19b).

4.3.3 Mode measurements

Let me now describe the method I used to measure the frequency and growth rate of the dominant
mode in the N–body simulations. This method is similar to the one used in Fouvry et al. (2015)
(appendix C therein).

Considering that the system’s density fluctuations are well described by a single dominant mode,
they read

δρ(r, t) = ρm(r) exp(iωmt), (4.26)
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with ρm the shape of the mode and ωm its (complex) frequency. Then the density fluctuations can
be projected on any spatial function, f(r)=f(r)eiℓϕ. As long as the scalar product of f(r) with
the mode shape is not zero, the projection should oscillate and grow at the same frequency as the
mode. The projection

Aℓ(t) =
∫

drf(r)δρ(r, t) = m
∑
i

f [ri(t)]eiℓϕi(t), (4.27)

offers a single complex time series which can be analysed to extract the frequency and growth rate
of the mode. Indeed, one should have

|Aℓ(t)| ∝ eγmt; arg[Aℓ(t)] ∝ Ωmt. (4.28)

In practice, the time series of the phase are “unwrapped” to avoid jumps of 2π. This is done by
adding 2π to the phase each time the phase jumps by more than −π. One could use (multiple)
basis elements from the linear response theory to project the density fluctuations, as was made in
Fouvry et al. (2015). This would also allow one to measure the mode’s shape and compare it to
the linear predictions. In practice, I used a single log-normal function

f(r) = exp
[
− ln(r/r0)2

2σ2

]
, (4.29)

with r0 =1.33 and σ=0.45. I chose this particular function to mimic the radial shape of the mode,
as predicted by linear response theory. In practice, I could also have performed the measurement
using a simpler identity function f(r)=1(rmin<r<rmax). I used this simpler probe (with rmin =1.5
and rmin =4.5) for long term simulations in chapter 6. The main point of these functions is to

Figure 4.17: Time series of the norm (right) and the (unwrapped) phase (left) of the bisymmetric fluctuations probed
by A2(t) from equation (4.27) using the Plummer (top) and Kuzmin (bottom) softening kernels. For each softening
length, the same 10 initial conditions are used and shown in the same colour. The frequency Ωm (resp. growth rate
γm) of the mode are estimated by a linear fit of the phase (resp. log of the norm) of such time series, only using
t≥Tmin =10 tdyn. The growth of the phase is generically more regular than the growth of the norm. The Plummer
softening kernel introduces a strong gravity bias which is not present with the Kuzmin kernel.

neglect the contributions from the central and the outer parts of the disc, where very few particles
are present. The corresponding time series are shown in figure 4.17 for various initialisations and
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softening kernels. While the phase growth is regular, the norm growth is more erratic. However,
both measurements are roughly consistent with the linear predictions as shown in figure 4.16. The
time series weakly vary with the softening length, ε, for the Kuzmin softening kernel (equation 4.23).
Conversely, the Plummer softening kernel (equation 4.22) introduces a strong gravity bias which is
clearly visible in figure 4.17.

4.4 Conclusion

In this chapter, I applied the linear response theory from chapter 3 to study the stability of one-
dimensional models and self-gravitating discs.

First, I successfully adapted the method proposed by Fouvry & Prunet (2022) to Zang discs.
This allowed me to investigate the specific stability of this disc, providing valuable insights into
its behaviour. Furthermore, I developed and published public libraries to compute efficiently the
polarisation matrices for arbitrary discs and spherical systems. These libraries serve as valuable
resources for researchers interested in studying stability in such systems, facilitating further sys-
tematic investigations.

By applying the linear response method to different systems, I was able to demonstrate its
effectiveness in recovering known instabilities while also probing their weakly damped modes. This
validation of the method’s versatility further strengthens its utility and reliability as a generic tool
for stability analysis. For instance, colleagues were able to recover the published modes of Kuzmin
discs (Miyamoto, 1974) in a matter of less than one hour of uploading the code. However, the
counterpoint of this versatility is the difficulty in obtaining converged results for damped frequen-
cies. This difficulty arises from the fact that highly oscillatory basis elements are needed to resolve
the shape of eigenmodes, which undermines the analytic continuation.

In addition to these theoretical investigations, I also conducted numerical simulations to explore
the impact of two different softening kernels on linear instabilities in Zang’s disc. My analysis
revealed interesting differences between the Plummer and Kuzmin softening kernels, highlighting
the importance of choosing the appropriate softening kernel in stability studies. These differences
were predicted by De Rijcke et al. (2019a) and confirmed here by my numerical simulations.

4.5 Perspectives

The work presented in this chapter could be improved and extended in several directions. The
main difficulty encountered in this research was the convergence of the linear response method for
damped modes and the associated numerical saturation. This was to be expected, as it relies on
an analytical continuation which is an ill-conditioned numerical problem (Trefethen, 2020).

I pointed out that optimising the choice of the basis elements is crucial to limit the number of
basis elements required for convergence. It would therefore be particularly interesting to implement
the method proposed by Weinberg (1999) to tune the basis elements to the equilibrium state
by solving a Sturm–Liouville differential equation. One could also investigate the use of non-
biorthogonal basis elements (De Rijcke & Voulis, 2016; De Rijcke et al., 2019a; Dootson, 2023).
These elements are less oscillatory than the high order elements of global bi-orthogonal basis. The
continuation of the matrix to damped frequencies should therefore be easier. However, convergence
might be more difficult to assess with such basis elements as they are not ordered by scale-lengths.
One should be particularly careful with the representation of the pairwise interaction potential
(equation 3.25).

I dealt with the cusp nature of Mestel potential by introducing a cut-off in the resonant fre-
quencies (section 4.2.2) so as to only probe the frequencies of interest in Zang’s and Toomre’s discs.
This tweak was necessary because the method of FP22 is tailored for (core) systems with a finite
frequency support. It would be interesting to extend FP22’s method to cuspy potentials supporting
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infinitely large frequencies. Improving upon equation (3.42), one would then need to compute the
integral

∫ ∞

0
L

du G(u)
u− ω

=



∫ ∞

0
du G(u)

u− ω
if Im(ω) > 0,

P
∫ ∞

0
du G(u)

u− ω
+ iπS(ω)G(ω) if Im(ω) = 0,∫ ∞

0
du G(u)

u− ω
+ 2iπS[Re(ω)]G(ω) if Im(ω) < 0,

(4.30)

with the Heaviside step function

S(x) =


1 if x > 0,
1
2 if x = 0,
0 if x < 0.

(4.31)

Following Robinson (1990), the continuation of the G functions could be achieved by using Laguerre
polynomials instead of Legendre polynomials. It might also prove useful to implement Zang (1976)’s
continuous method (section 3.4) to recover the damped modes in Mestel discs (see also Evans
& Read, 1998a). This method would be limited to specific systems but would provide a good
benchmark to assess the convergence.



Appendices

4.A Clutton-Brock basis

Following Clutton-Brock (1972), a well-behaved
bi-orthogonal basis for thin discs with radial
length scale rb is given by

U ℓp(r) = −ap

√
G

rb
(r/rb)ℓ ξ(p)(r/rb), (4.32a)

Dℓ
p(r) = ap

2π
√
Gr3

b

(r/rb)ℓµ(p)(r/rb), (4.32b)

where p=(p, ℓ)∈N2 and

ap = 2ℓ
√

2
√

p!
(p+ 2ℓ)! , (4.33)

are the normalisation prefactors. In equa-
tions (4.32), the dimensionless potential func-
tions, ξ(p), are given by the recurrence relations

ξℓ0(x) =
∏ℓ
i=1(2i− 1)

(1 + x2)ℓ+1/2 , (4.34a)

ξℓp(x) =
(

2 + 2ℓ− 1
p

)
x2 − 1
x2 + 1ξ

ℓ
p−1(x)

−
(

1 + 2ℓ− 1
p

)
ξℓp−2(x), (4.34b)

and their density counterparts, µ(p), can be de-
duced using the relation

µℓp(x) = ξℓ+1
p (x)− ξℓ+1

p−2(x), (4.35)

for p≥2 and µℓp(x)=ξℓ+1
p (x) otherwise.

4.B Discs sampling
This section details the sampling procedures of
the considered DFs. This is the first necessary
step to perform any N–body simulations.

My sampling procedure is based on the one
described in appendix E of Fouvry et al. (2015).
However, I sampled the integrals of motion in
(rp, ra)–space rather than in (E,L)–space. In-
deed, pericentre and apocentre are easier to sam-
ple than energy and angular momentum as the
truncation constraint is simpler in this space. In
particular, it allows me to avoid the additional
rejection method needed to sample the angular
momentum in Fouvry et al. (2015). Once the
constants of motion are sampled, the additional
samplings required for the position and velocity
vectors naturally follow.

The distribution (equation 2.36) to sample is

Fsp(E,L) = CspL
qe−E/σ2

rTin(L)Tout(L), (4.36)

together with the truncation8 constraint

ra(E,L)≤Rmax (4.37)

and where the normalisation constant Csp is such
that this function is normalised to 1 (w.r.t. inte-
gration in dxdv=dθdJ). Typical values for the
distributions explored is this thesis are given in
table 4.1.

In the (rp, ra)–space, the constraint of no star
ever going beyond Rmax takes the simple form,
ra≤Rmax. Hence, the populated (bounded) do-
main is a simple triangle. It is therefore much
easier to perform the rejection in this domain
since sampling a uniform distribution on a tri-
angle is trivial. I only need the density of state

8This truncation is introduced quite ambiguously in section 2 of Sellwood (2012). As in Fouvry et al. (2015), I
interpret it as “no particles with orbits that extend beyond Rmax”, i.e., F (E,L)=0 when E>ψeff(Rmax) [and not
ψ(Rmax)].

64



4.B Discs sampling 65

Distribution
Function

Normalisation
constant Csp/C

Total mass Mtot
Rejection

constant M

Toomre ≃ 9.25×10−2 10.8 (×ξ) 15.7
Zang ν=4 ≃ 9.33×10−2 10.7 (×ξ) 11.8

Table 4.1: Constants used for the sampling of the DFs explored in this thesis. The normalisation constant Csp is
such that the DF is normalised to unity in any canonical coordinates space while C is the one from equation (2.35).
The total mass Mtot is not set to one and corresponds to the mass enclosed within the truncation radius Rmax
(equation 4.37) of the sampled distributions. It sets the individual mass of the particles m=Mtot/N . The (minimal)
rejection constants correspond to the maximal value of the density of state in pericentre and apocentre from equa-
tion (4.38).

in (rp, ra)–space. It reads

p(rp, ra) = 4π2
∣∣∣∣∣ ∂(Jr, L)
∂(rp, ra)

∣∣∣∣∣Fsp(E,L),

= 4π2
∣∣∣∣∂(Jr, L)
∂(E,L)

∣∣∣∣
∣∣∣∣∣ ∂(E,L)
∂(rp, ra)

∣∣∣∣∣Fsp(E,L),

= 4π2

Ωr

∣∣∣∣∣ ∂(E,L)
∂(rp, ra)

∣∣∣∣∣Fsp(E,L), (4.38)

where the 4π2–factor comes from integration
over the angles and the Jacobian of the
(rp, ra) 7→(E,L) mapping can be deduced from
equation (2.14).

The uniform distribution on the (rp, ra)–
triangle is

g(rp, ra) = 2
R2

max
1{0≤rp} 1{rp≤ra} 1{ra≤Rmax}.

The rejection constant M then has to be chosen
such that

∀(rp, ra), prpra(rp, ra) ≤ 2M
R2

max
,

depending on the DF parameters.
Once (rp, ra) correctly sampled, I have at

my disposal any integrals of motion by simple
change of variables. Given these integrals, one
now has to sample the position and velocity vec-
tors assuming a uniform distribution over canon-
ical angles. In the (r, ϕ)–space, this uniform dis-
tribution translates into a uniform distribution

over ϕ (axisymmetric) and a probability distri-
bution function (PDF) over r proportional to
1/vr. When correctly normalised, it reads (Fou-
vry et al., 2015)

pr(r) = Ωr/π√
2[E − ψ(r)]− L2/r2 ,

for r∈ [rp, ra]. To cure the divergences of this
PDF close to rp and ra, I use the same Hénon
effective anomaly w as for computing frequen-
cies in equation (2.8). I then want to sample
w∈ [−1, 1] according to

pw(w) = Ωr

π

aef ′(w)√
2(E − ψ[r(w)])− L2/[r(w)]2

= Ωr

π
Θ(w),

where a, e are the effective semi-major axis
and eccentricity (equation 2.17) and Θ is the
derivative of the radial angle w.r.t. the anomaly
(equation 2.18). I perform this sampling using
once again the rejection method with a uniform
control PDF, gu(u)=1[−1,1](u)/2. The rejec-
tion constant, Mu, has to be chosen such that
pu≤Mu/2, the maximal value of pu being eas-
ily determined on the fly as it is reached at the
boundary u=1. (This is an empirical observa-
tion which might be mapping-dependent.)





Chapter 5

Secular theory and Balescu–Lenard
equation

Having studied the linear response of self-gravitating systems to perturbations in the previous
chapters, let me now turn to the secular evolution of these systems. The slow evolution of the mean-
field quantities under the correlated effects of internal fluctuations is captured by equation (1.19a)
that I recall here for convenience:

∂F (J, t)
∂t

= −⟨[δf, δψ]⟩. (recall 1.19a)

In this chapter, I will first introduce the inhomogeneous Balescu–Lenard equation, sketching its
derivation while highlighting the main underlying hypotheses. This equation captures the long-
term relaxation of stellar systems driven by finite-N effects and (linearly) accounts for the dressing
of fluctuations by collective effects. I will then discuss the limit in which collective effects can be
neglected, leading to the Landau equation, and the regime where local encounters dominate the
relaxation, leading to the Chandrasekhar equation. Finally, I will discuss the limitations of the
current state-of-the-art kinetic theory of stellar systems and the regimes in which it is expected to
break down.

5.1 Inhomogeneous Balescu–Lenard equation

5.1.1 The master equation

The long-term relaxation of self-gravitating stellar systems driven by finite-N fluctuations is gener-
ically governed by the inhomogeneous Balescu–Lenard equation (Heyvaerts, 2010; Chavanis, 2012).
It reads

∂F (J, t)
∂t

=−π(2π)dm ∂

∂J
·
[∑

k,k′

k
∫

dJ′ ∣∣Ud
kk′(J,J′,k·Ω)

∣∣2︸ ︷︷ ︸
dressed coupling

× δD(k·Ω−k′ ·Ω′)︸ ︷︷ ︸
resonance condition

(
k′ · ∂

∂J′︸ ︷︷ ︸
friction

−k· ∂
∂J

)
︸ ︷︷ ︸
diffusion

F (J, t)F (J′, t)︸ ︷︷ ︸
orbital population

]
. (5.1)

This is the master equation of self-induced orbital relaxation. It describes how the mean orbital
population distribution F (J) evolves through the correlated effect of Poisson noise, i.e., finite-N
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effects (m∝1/N). Importantly, equation (5.1) conserves mass, energy, and satisfies an H-theorem
for Boltzmann entropy. It captures the small but cumulative effects of resonant encounters between
stars whose efficiency is dressed by collective effects. The sum and the integral in this equation
scan over the discrete resonances and over the orbital space looking for all the possible populated
resonances. These resonances are selected through the resonance condition, k·Ω−k′ ·Ω′ =0. They
are non-local (recurrent) encounters as they involve orbits which are not necessarily close, neither
in position nor in action space. The system’s propensity to amplify or weaken these resonances
is captured in the dressed coupling coefficients, Ud

kk′ , as already introduced in equation (3.29).
The inhomogeneous Balescu–Lenard equation (5.1) can be re-written as a more compact continuity
equation in action space

∂F (J)
∂t

= − ∂

∂J
·F(J), (5.2a)

= − ∂

∂J ·
[
A(J)F (J)− 1

2 D(J)· ∂F
∂J

]
, (5.2b)

where the flux, F , the (polarisation) friction vector A, and the diffusion tensor D all depend on the
mean-field distribution F . This is a Fokker–Planck equation in action space. From equation (5.1),
the friction vector and the diffusion tensor are given by

A(J) = π(2π)dm
∑
k,k′

k
∫

dJ′ ∣∣Ud
kk′(J,J′,k·Ω)

∣∣2 δD(k·Ω−k′ ·Ω′) k· ∂F
∂J′ , (5.3a)

D(J) = (2π)d+1m
∑
k,k′

k⊗k
∫

dJ′ ∣∣Ud
kk′(J,J′,k·Ω)

∣∣2 δD(k·Ω−k′ ·Ω′)F (J′), (5.3b)

with k⊗k the outer product of the resonance vector k with itself.

Remark: The form of the Fokker–Planck equation (5.2b) determines the interpretation one must
make of the friction term. Under this particular form, the friction A stands for the friction force
by polarisation (Chavanis, 2012).

In this self-consistent evolution equation (5.1), both friction and diffusion are proportional to
the mass of the particles, m. In practice, when considering the evolution of a test particle of
mass mt in a bath of particles of mass mb, the Balescu–Lenard equation reads (Heyvaerts, 2010;
Heyvaerts et al., 2017)

∂P (J, t)
∂t

=−π(2π)d ∂

∂J ·
[∑

k,k′

k
∫

dJ′∣∣Ud
kk′(J,J′,k·Ω)

∣∣2
×δD(k·Ω−k′ ·Ω′)

(
mtk′ · ∂

∂J′−mbk· ∂
∂J

)
P (J, t)F (J′, t)

]
. (5.4)

where P is the DF of the test particles and F is the DF of the bath particles. Importantly, the
(polarisation) friction is proportional to the test particle’s mass while the diffusion is proportional
to the bath particles’ mass. In equation (5.4), the dressed coupling coefficients only involve the
susceptibility of the bath particles. Indeed, the test particles are probes of the potential fluctuations,
and do not interact with one another. Friction captures how a heavy particle (statistically) sinks by
polarizing the bath particles behind it, while diffusion accounts for the random walk generated by
the “kicks” from the bath particles. Let me now illustrate these two processes using my simulations
of one-dimensional self-gravitating systems (section 2.1.1).

Friction

To illustrate dynamical friction, I used a massive test particle (100 times more massive than the
bath particles) in a bath much more massive overall so that the gravitational effects from the test
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particle are not dominant. As such, I have therefore imposed m≪mt≪Nm. This massive particle,
if launched at sufficiently high energy, undergoes a sinking phase: its presence tends to polarise the
bath particles on its path. These particles tend to form a small overdensity behind the massive
particle and therefore tend to slow the massive particle down. This leads to its irreversible energy
decrease as I illustrate in the left panel of figure 5.1. Of course, this sinking is only statistically
true: the massive particle’s energy is not always decreasing but does decay on average. The sinking
continues until the massive particles reaches an equipartition of energy with the bath. The massive
particle’s energy follows therefore a biased random walk. This is illustrated in figure 5.1.

Figure 5.1: Illustration of dynamical friction in the one-dimensional model. A massive test particle (100 times more
massive than a bath particle) is placed in a bath of N=104 equal mass particles at thermal equilibrium. Overall the
test particle’s mass is therefore negligible w.r.t. the total mass of the bath. I repeated this experiment over different
realisations, always placing the test particle at the same initial location. On the left panel, I represent the trajectory
of one test particle (i.e., a single realisation). The particle sinks from its initial orbit towards lower orbits. On the
right panel, I represent the time evolution of the energy of the test particles for 10 different initialisations showing
how massive particles sink due to dynamical friction. The dynamical time tdyn =Λ/σ is the characteristic timescale
of the orbits in the system.

Diffusion

To illustrate diffusion, I used a massless test particle in a bath of particles at thermal equilibrium.
Importantly, the test particle’s orbit is not a closed perfect “circle” in phase-space, i.e., what the
smooth mean-field potential imposes. Finite-N effects slightly alter the test particle’s orbit and
its phase-space trajectory appears like a thick circle. Indeed, its (mean-field) constants of motion
(e.g., its energy E) are slowly varying over time. This irreversible diffusion cannot be predicted for
one particular realisation (i.e., one particular sampling of the bath) as it would imply being able
to predict the exact motion of each particle in an N–body system. However, looking at ensemble
averages (over bath realisations), one can see a clear diffusion pattern. Placing one test particle
at the same phase-space location for 10 different (random) bath initialisations and tracking the
evolution of their energy along the simulation, I illustrate in the right panel of figure 5.2 such a
diffusion. Each individual particle’s energy follows a correlated random walk (Binney & Lacey,
1988).

This stochastic dynamics can be characterised by the time evolution of the energy dispersion
between test particles launched at the same energy in different random baths. The dispersion

〈
∆E2〉

evolves linearly in time on long timescales. As discussed in section 7.4.2 of Binney & Tremaine
(2008), the diffusion tensor can therefore be interpreted as

Dij(J) = lim
T→+∞

⟨∆Ji∆Jj⟩
T

, (5.5)
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Figure 5.2: Illustration of diffusion in the one-dimensional model. A massless test particle is placed in a bath ofN=104

equal mass particles at thermal equilibrium. I repeated the experiment over different (random) initialisations for the
bath (the test particle is always placed at the same phase-space location). On the left panel, I represent the overlap
of 3 trajectories of test particles in the (x, v)-plane showing the “widening” of the orbits which are not closed anymore
contrary to what would have happened within the smooth mean-field potential. On the right panel, I represent the
evolution of the energy of the test particles as a function of time for 10 different initialisations showing the diffusion
of energy. The energy of the test particles randomly fluctuates around the initial energy.

with ∆J=J(t=T )−J(t=0) the change in action of a given particle with initial actions J(t=0)=J,
and ⟨·⟩ the ensemble average over realisations.

5.1.2 Heuristic derivation from Klimontovich equation

Let me highlight the key steps of the derivation of the inhomogeneous Balescu–Lenard equation (5.1)
from the Klimontovich equation (1.8). Here, I mainly aim to explain the assumptions and the
approximations made in the derivation of the Balescu–Lenard equation. Complete derivations can
be found in Heyvaerts (2010) from the BBGKY hierarchy, Chavanis (2012) from the Klimontovich
equation, Fouvry & Bar-Or (2018) using Novikov’s theorem and Hamilton (2021) using Rostoker’s
principle. This section is inspired by Chavanis (2012) and Hamilton & Fouvry (2024).

In chapter 3, I obtained the linearised evolution of density and potential fluctuations in equa-
tions (3.7) and (3.11). I now need to inject these results into the evolution equation of the mean-field
distribution, namely equation (1.19a). However, the fluctuations’ evolution are given in Fourier–
Laplace space, (k, ω), while the mean-field evolution equation is still in angle, θ, and time, t. To
bridge this gap, let me expand the r.h.s. of equation (1.19a). This gives

∂F (J, t)
∂t

= −
∑
k,k′

〈
ik· ∂δψk′

∂J δfk − ik′ · ∂δfk
∂J δψk′

〉
ei(k+k′)·θ, (5.6)

where I used the Poisson bracket definition equation (1.3) and where the Fourier coefficients of the
fluctuations follow from equations (3.2). Their dependence w.r.t. actions and time is kept implicit.
The equilibrium mean-field DF does not depend on the angles (Jeans theorem). It is therefore
natural to average the r.h.s. of equation (5.6) over the angles, θ. This imposes k′ =−k. The
potential fluctuations are real quantities, so their Fourier coefficients satisfy δψ∗

k =δψ−k. Using
these two properties, the angle-averaged mean-field evolution equation reads

∂F (J, t)
∂t

= − ∂

∂J ·
∑

k
ik ⟨δfk(J, t)δψ∗

k(J, t)⟩ . (5.7)

This is the first key step of this derivation. The fluctuations are averaged along the (unperturbed)
orbit. To inject the expressions of the (linearised) fluctuations’ evolution from equations (3.7) and
(3.11), I first need to bring them back in the time domain via an inverse Laplace transform.
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Taking its inverse Laplace transform (equation 3.39), equation (3.11) reads

δψk(J, t) = (2π)d
∑
k′

∫
dJ′ δfk′(J′, 0) 1

2π

∫
B
dωU

d
kk′(J,J′, ω)

i(k′ ·Ω′ − ω) e−iωt, (5.8)

where the dressed coupling coefficients Ud
kk′(J,J′, ω) are given by equation (3.29) and the Bromwich

integration contour, B, is taken above any singularities. In particular, the ballistic pole 1/(k′ ·Ω′−ω)
imposes that the integration contour is taken above the real axis.

From now on, I assume that the system is linearly stable so that the dressed coupling coefficients
do not have any poles in the upper half-plane. This is a crucial assumption underlying the Balescu–
Lenard equation. To perform the integral over ω in equation (5.8), I can bring the Bromwich contour
down in the complex plane, as long as I do not cross any singularity. This deformation is illustrated
in figure 5.3. By doing so, the contribution along the regular parts of the contour vanishes as e−ηt

where η=−Im(ω) and only the singularities remain. It reads

δψk(J, t) = (2π)d
∑
k′

∫
dJ′ δfk′(J′, 0)

[
Ud

kk′(J,J′,k′ ·Ω′)e−ik′·Ω′t

+
∑

p
e−iωpt × (...) +

∑
b
tβb eiΩbt × (...)

]
, (5.9)

where the terms inside the brackets correspond to the contribution from (i) the ballistic pole,
and (ii) the damped poles,

∑
p, and the branch cuts,

∑
b, from the dressed coupling coefficients

ω 7→Ud
kk′(J,J′, ω), as illustrated in figure 5.3. Of course, it assumes that the dressed coupling

coefficients have been properly (analytically) continued to damped frequencies.

Im(ω)

Re(ω)
k′ ·Ω′

ωp

Ωb

B

B′

Figure 5.3: Inspired by figure F1 of Fouvry & Bar-Or (2018). Illustration of the computation of the inverse Laplace
transform of the potential fluctuations from equation (5.9). By distorting the Bromwich integration contour, B, into
the contour, B′, the only remaining contributions are the ones from (i) the ballistic pole, ω 7→1/(k′ ·Ω′ − ω), and (ii)
the damped poles and the branch cuts from the dressed coupling coefficients, ω 7→Ud

kk′ (J,J′, ω).

The next assumption is to consider that the transient contributions from the damped poles and
the branch cuts are small and quickly vanish. Phrased differently, I suppose that the system is
sufficiently stable and that I can take t very large. The underlying assumption is that the relaxation
of the mean-field quantities is much slower than the relaxation of the fluctuations. In other words,
there is a timescale separation between the evolution of the mean-field and the evolution of the
fluctuations. This timescale separation allows one to consider t such that 1/|γm|≪ t≪Trelax, with
γm the damping rate of the least damped mode and Trelax the relaxation timescale of the mean-field
DF.

Ultimately, this line of work leads one to express the fluctuations correlations, ⟨δfk(J, t)δψ∗
k(J, t)⟩,

in equation (5.7) as a function of the initial DF correlations, ⟨δfk(J, 0)δfk′(J′, 0)⟩. An important
assumption is that the initial fluctuations are uncorrelated Poisson noise, i.e., that (see, e.g., ap-
pendix C in Chavanis, 2012)〈

δfk(J, 0)δfk′(J′, 0)
〉

= 1
(2π)d δ

k′
−k δ(J−J′)mF (J). (5.10)
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This significantly reduces the number of sums over resonances and integrals over actions involved
in the fluctuations correlations at time t.

With all these ingredients in hand, one can finally derive the inhomogeneous Balescu–Lenard
equation (5.1). I do not attempt to reproduce this intricate derivation here as it would not bring
more physical insights beyond the assumptions and approximations I have already highlighted. Let
me now summarise and discuss these assumptions.

5.1.3 Assumptions and limitations

Finite-N fluctuations The Balescu–Lenard equation assumes that the relaxation is driven by
uncorrelated Poisson shot noise due to finite-N effects and that the particles are identical and have
the same mass (equation 5.10). The last constraint can be relaxed. The generalisation to different
populations (multi-mass) follows from equation (5.4) and can be found in the original derivation of
Heyvaerts (2010).

Non-degenerate system For degenerate systems such as harmonic oscillators or Keplerian sys-
tems, the resonance condition is satisfied by sets of non-zero measure and cannot be integrated
upon. This is typically the case for isotropic vector resonant relaxation describing the precession of
the orbital planes of stars around a central massive black hole in galactic nuclei (Kocsis & Tremaine,
2015; Fouvry et al., 2019b).

Small perturbations The perturbations are small enough for their dynamics to be solved order
by order. This notably prevents particles from being trapped in non-linear resonances (Luciani
& Pellat, 1987; Hamilton, 2024). This is necessary to ensure that (i) the linearised fluctuations’
evolution is a good approximation of their dynamics and (ii) the mean-field relaxes on a timescale
much longer than the fluctuations’ relaxation.

Stability The system is sufficiently stable so that the transient contributions from the damped
modes in the dressed coupling coefficients quickly vanish (equation 5.8). When the system is only
weakly stable, transients might live for a particularly long time (see, e.g., D’Onghia et al., 2013). In
fact, the Balescu–Lenard prediction unrealistically diverges at phase transition (Weinberg, 1993).
Indeed, if the system supports a very weakly damped mode, ωm =Ωm+iγm with γmtdyn≪1, one has

∂F

∂t
∝ |Ud(k·Ω)|2 ∼ 1

γ2
m
−→
γm→0

∞, (5.11)

at resonance with the mode, i.e., for k·Ω≃Ωm. This divergence should be regularised by considering
the contribution of wave-particle interactions, in the spirit of the so-called quasilinear theory in
plasma physics (see, e.g., Rogister & Oberman, 1968). Such a regularisation is an active topic of
research (Hamilton & Heinemann, 2020, 2023).

5.2 Two-body vs resonant relaxation

5.2.1 Neglecting collective effects

For dynamically hot systems with high velocity dispersion, such as globular clusters, collective
effects can be neglected. The Balescu–Lenard equation then reduces to the Landau equation (see
Chavanis, 2013c, and references therein). This change amounts to replacing the dressed suscep-
tibility coefficients, Ud

kk′ , in equation (5.1) with their bare counterpart, Ukk′ , as defined in equa-
tion (3.4). The inhomogeneous Landau equation then reads (Polyachenko & Shukhman, 1982;
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Chavanis, 2013c)

∂F (J, t)
∂t

=−π(2π)dm ∂

∂J ·
[∑

k,k′

k
∫

dJ′ ∣∣Ukk′(J,J′)
∣∣2︸ ︷︷ ︸

bare coupling

×δD(k·Ω−k′ ·Ω′)
(
k′ · ∂

∂J′−k· ∂
∂J

)
F (J, t)F (J′, t)

]
. (5.12)

Equations (5.1) and (5.12) are remarkably similar. They both take into account the effects of
resonant encounters between stars in driving the relaxation of the mean-field equilibrium. However,
the inhomogeneous Landau equation (5.12) neglects the dressing of these resonant encounters by
collective effects.

5.2.2 Local encounters

The first historical kinetic theory of stellar systems was developed by Chandrasekhar in the
1940s (see, e.g., Chavanis, 2013a, for a review). Chandrasekhar assumed that the relaxation of
a stellar system is driven by local deflections between stars, illustrated in figure 5.4. In this local
approximation, the system is considered as infinite and homogeneous and the mean-field motion of
stars is a simple straight line. Therefore, this theory does not account for (i) long-range resonant
interactions and (ii) collective effects, i.e., the gravitational dressing of stars by their polarisation
cloud. Furthermore, it suffers from logarithmic divergences at both small and large scales.

Figure 5.4: Illustration of local pairwise encounters and resonant encounters. Both contribute to the relaxation of the
system. The local encounters are captured by the Chandrasekhar theory (Chandrasekhar, 1942). The inhomogeneous
Balescu–Lenard equation (5.1) captures both processes but puts the emphasis on the dressed resonant ones.

Homogeneous Landau equation Let me generically consider a homogeneous system with a
power-law pairwise interaction potential

U(r) ∝ 1
|r|γ , (5.13)

The usual Coulombian/Newtonian potential corresponds to γ=1 in dimension d=3. Natural vari-
ables are position and velocity in the homogeneous case. Therefore, the bare coupling coefficients
(equation 3.4) read

Ukk′(v,v′) = Ukk′ ∝ δk′
k

|k|d−γ , (5.14)

and are independent of the velocity. In this case, Landau equation (5.12) becomes (see, e.g.,
Chavanis, 2013a)

∂F (v, t)
∂t

= −π(2π)dm ∂

∂v ·
[∫

dkdv′ k
∣∣Uk

∣∣2 δD[k·(v−v′)] k·
(
∂

∂v′−
∂

∂v

)
F (v, t)F (v′, t)

]
. (5.15)
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Focusing on the contribution of the different spatial scales, k= |k|, the relaxation is roughly given
by the integral

∂F

∂t
∝
∫ ∞

0

dk
kd−2γ , (5.16)

where I used equation (5.14) and the δD-Dirac property δD(k·v′)=δD(v′)/|k|. This integral diverges
at small scales, i.e., for k→∞, when d≤2γ+1 and at large scales, i.e., for k→0, when d≥2γ+1
(see also Chavanis, 2013b; Gabrielli et al., 2010; Marcos et al., 2017). For the usual 3D Newtonian
gravity, one has γ=1 and d=3, so that the integral diverges logarithmically at both small and
large scales. This is the well-known Coulomb logarithm divergence (Landau, 1936).

Small-scale divergence Chandrasekhar (1942) did propose a regularisation of the divergence
at small scales without introducing a cut-off in the impact parameter, but taking into account non-
linear corrections for hard encounters (see, e.g., Baldwin, 1962; Frieman & Book, 1963; Guernsey,
1964; Weinstock, 1964). Such treatment would need to be revisited in the context of the inhomoge-
neous resonant interactions involved in the inhomogeneous Landau equation (5.12). Softening the
gravitational interaction potential also cures this logarithmic divergence (Weinberg, 1986; Marcos
et al., 2017; Fouvry et al., 2021). While somewhat artificial, these softened potentials are ubiqui-
tous in numerical simulations and may therefore have a strong impact on the long-term evolution
of these systems (Miller, 1971; Salo & Laurikainen, 2000). In particular, softening can favour the
relaxation driven by long-range resonant interactions over local encounters. This might be particu-
larly relevant in dynamically cold systems, such as razor-thin discs, in which long-range interactions
are significantly enhanced by collective effects. In the one-dimensional model, there is no divergence
at small scales (equation 2.1). This model is therefore more appropriate to study the relaxation
driven by long-range resonant interactions.

Large-scale divergence The large-scale divergence is due to the infinite extent of the system
and the assumption of a homogeneous distribution of stars. This divergence cannot be regu-
larised in Chandrasekhar’s theory without introducing an upper cut-off in the impact parameter.
It introduces a free parameter, effectively making the theory less predictive (notably on the overall
amplitude of the relaxation rate). This cut-off is usually set to the system’s size (e.g., Vasiliev, 2017;
Rodriguez et al., 2022). For plasmas, this large-scale divergence is regularised by screening effects:
the so-called Debye shielding (Nicholson, 1992). Roughly, the effects of opposite charges cancel out
over the Debye length so that the potential is not long-range beyond that scale. This screening
mechanism is appropriately captured by collective dressing in the homogeneous Balescu–Lenard
equation (Balescu, 1960; Lenard, 1960). In the self-gravitating case, gravity is always attractive
and no such screening mechanism can operate. However, it also implies that self-gravitating sys-
tems tend to collapse onto finite inhomogeneous structures through Jeans’ instability (see, e.g.,
Magorrian, 2021). For inhomogeneous systems, the integral in equation (5.16) is transformed into
a sum over resonances numbers,

∂F

∂t
∝
∑
k>0

1
kd−2γ , (5.17)

regularising de facto the large-scale divergence.
Quantifying the relative contributions of local encounters vs long-range dressed interactions

in various systems is a difficult task because (i) properly accounting for small-scale contributions
might require non-linear corrections and (ii) the large-scale contributions have to be regularised
by taking into account the inhomogeneity of the system and (iii) collective effects can enhance or
suppress the contribution of long-range resonant interactions. In the case of spherical globular clus-
ters, Fouvry et al. (2021) and Tep et al. (2022) showed that, once averaged along the (unperturbed)
orbit, Chandrasekhar’s theory is able to capture overall the secular evolution of the system, i.e.,
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the relaxation is mainly driven by two-body deflections. They also showed that, for large reso-
nance numbers, |k|≫1, the Landau equation (5.12) indeed recovers the effect of (linearised) local
deflections from Chandrasekhar theory (see also Weinberg, 1986).





Chapter 6

Secular response applications

6.1 Long term relaxation of one-dimensional self-gravitating sys-
tems

This section reproduces some of the results published in Roule et al. (2022) on the secular evolution
of one-dimensional self-gravitating systems.

6.1.1 Collective stiffening

Diffusion predictions

With equations (5.1) and (5.12), I have at my disposal two different predictions taking into account
(Balescu–Lenard) or neglecting (Landau) collective effects. For the one dimensional model, the
diffusion equation (5.3b) reads

D(J) =
∑
k,k′

∫
dJ ′GDiff

kk′ (J, J ′) δD[kΩ(J)−k′Ω(J ′)], (6.1)

where, for the Balescu–Lenard case,

GDiff
kk′ (J, J ′) = (2π)2mk2 ∣∣Ud

kk′(J, J ′, kΩ)
∣∣2F (J ′), (6.2)

and similarly for the Landau case, with Ud→U . The Balescu–Lenard coupling coefficients can
be computed from equation (3.29) using the gravitational susceptibility from section 4.1.3. When
neglecting collective effects, the Landau coupling coefficients can be computed more efficiently and
independently of any bi-orthogonal basis (appendix 6.B.1).

The integral over action in equation (6.1) can be readily computed using the formula

δD[f(J ′)] =
∑
Jres

δD(J ′−Jres)
|∂f/∂J |Jres

, (6.3)

where Jres are the solutions of f(J ′)=k′ Ω(J ′)−kΩ(J)=0. This formula allows me to subsequently
get rid of the integral appearing in equation (6.1). Given that the frequency profiles are mono-
tonic (figure 2.7), computing this integral amounts to, for each resonance pair, (k, k′), (i) find the
(possible) resonance point using bisection, (ii) compute the integrand value at this point along
with the frequency gradient, ∂Ω/∂J . Finally, the sum over resonances in equation (6.1) can be
safely truncated to a few resonances, as the coupling efficiency rapidly drops with the order of the
resonance. Typically, I used only the resonances |k|, |k′|≤10.

77
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Comparison to simulations

In the left panel of figure 6.1, I first present the diffusion coefficients at thermal equilibrium com-
puted with the Balescu–Lenard (section 5.1) and the Landau (section 5.2.1) formalisms, together
with the corresponding estimates from numerical simulations. I refer to appendix 6.A for the details

Figure 6.1: Figure from Roule et al. (2022). Left: Diffusion coefficients at thermal equilibrium as a function of
energy in both Landau (i.e., without collective effects) and Balescu–Lenard (i.e., with collective effects) cases. Right:
Same as the left panel but for the Plummer equilibrium. The kinetic theory shows a very satisfactory match to the
numerical measurements. Note that both measurements have their own vertical scales as collective effects slow down
diffusion by a factor ∼10. This is one of the key results of this thesis.

of the N–body simulations and later in the present section for the associated measurements.
In both the Landau and Balescu–Lenard cases, I recover a very good match (<5%) between the

kinetic theory and the numerical measurements. This confirms that, indeed, long-range resonant
couplings are responsible for the long-term relaxation of these systems. Given all the assumptions
made in the derivation of the kinetic theory (section 5.1.3), this level of agreement was not guaran-
teed. It validates a posteriori the underlying approximations and proves that collective effects and
resonant interactions have to be taken into account to accurately describe the long-term evolution
of long-range many-body systems.

In the right panel of figure 6.1, I present the same measurements for the Plummer distribution
(section 2.3.1). Satisfactorily, this other equilibrium shows the same level of fine agreement. Let
me stress that, for both equilibria, the Balescu–Lenard diffusion coefficients are ∼10 times smaller
than the Landau ones, an effect already noted in the HMF model for highly magnetised thermal
equilibria (see figure 9 in Benetti & Marcos, 2017). This is at variance with the low magnetisation
HMF result, or the case of self-gravitating stellar disks (Fouvry et al., 2015) where collective effects
considerably accelerate the relaxation (section 6.2).

However, this behaviour is not specific to one-dimensional contrived geometries. Indeed, Wein-
berg (1989) did observe the same phenomenon while studying the torque experienced by a satellite
sinking in a spherical halo. The friction force by polarisation exerted by the halo on the satellite
is weakened by collective effects. In figure 6.2, I reproduce his figures 6 and 7 to illustrate this
stiffening by collective effects in spherical haloes.

Let me now discuss the origin of this collective stiffening in the one-dimensional model.

Resonances contribution

The influence of the gravitational dressing strongly depends on the resonance frequency, ω=kΩ.
It is at these (real) frequencies that the coupling coefficients, Ud(ω), are evaluated in the Balescu–
Lenard equation (5.1). It is therefore of interest to pinpoint the individual contributions of reso-
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self-gravitating contribution by a factor of « 5. For all other harmonics, self-gravity strengthens 
the torque by as much as 35 per cent. This, of course, is consistent with the appearance of the 
wake considered in Section 3.2. 

The number of harmonics needed to reproduce the torque accurately depends on rc. For 
a*c->0, the contribution from each harmonic is proportional to 1// and the sum diverges 
logarithmically. For a finite rc, the contributions drop off quickly above a critical /. This critical 
/«: r~l as discussed in Paper EL As one might expect, self-gravity becomes less important for 
larger /(see Table 1). Thus, for computational economy, I replace all terms /> 4 with the non- 
self-gravitating results which may be computed cheaply using the technique from Paper H. I 
verify that all sums have converged by /= 8 to better than 2 per cent for rjR = 0.1 by estimat- 
ing the convergence from extrapolation to large /. 

The effects of self-gravity on the decay are nicely summarized by examining xz{r) which is 
shown in Fig. 6. The upper (lower) set of values shows xz for the self-gravitating (non-self- 
gravitating) case. The open circles show the points at which the xz is evaluated. The decay 
curve r(t) is computed by integrating xz{r) = dJ/dt for a circular orbit. The resulting orbital 
decay curves are given in Fig. 7. For this figure, I have used the units G= 1, M= 2, Æ = 1 for 
consistency with ZW. The decay time for the non-self-gravitating case is shorter by a factor of 
2-3 than the self-gravitating case. 

The self-gravitating result can be compared with the iV-body simulations for the identical 
model by BvA (their Model A and fig. 3) and ZW (their fig. 1). Both groups find that the 
satellite decays from r = 1 to r=0.2 in approximately 20 (ZW) time units whereas the analytic 
theory predicts the decay should occur in 30 time units. This difference is due to non-linear 
effects. For a satelhte of mass ras = 0.03M rather than ras = 0.1M, we find that simulation and 
analytic results are in good agreement for both the self-gravitating and non-self-gravitating 
cases (Hernquist & Weinberg 1989). Unfortunately, I cannot compare my non-self-gravitating 
case with BvAs Model C. Although the particles move in a rigid potential field, this field is tied 
to the centre of the particle distribution which moves about the combined primary-satellite 
centre of gravity. This case is neither purely self-gravitating or non-self-gravitating. Nonethe- 

0 1 2 3 
rs 

Figure 6. The self-gravitating and non-self-gravitating torque shown as a function of radius for the circular 
orbits. The calculated points (open circles) are fit by a cubic spline (solid line). 
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Figure 7. Radius versus time for the orbital decay with units G=\, M=2, R=l. Both the self-gravitating and 
non-self-gravitating cases are shown. The time required to sink from r = 1.0 to r= 0.2 differs by ~ 2.4. 

less, the fact that Model A and C give nearly the same decay profile illustrates that the 
admission of barycentric motion is the most important difference between the self-gravitating 
and non-self-gravitating dynamical friction for an « = 3 polytrope. I again emphasize that this 
result will not be true in general. 

4 Summary 

In this paper, I report on theoretical progress made on the sinking satellite problem. Using the 
method of Section 2,1 have computed the self-gravitating dynamical friction on a Plummer law 
satellite orbiting in an n = 3 polytrope. The ratio of satellite to core radius size of the system is 

= 0.1. The basic results are: 

(i) The self-gravitating response of the galaxy significantly effects the orbital decay. The 
decay time is ~ 2.5 times longer With self-gravity. 

(ii) Result (i) can be understood in terms of the barycentric motion. For a satellite orbiting 
outside the primary, the dipole (/ = 1) perturbation by the satellite gives rise to a uniform force 
field. The self-gravitating dipole response of the galaxy corresponds to a uniform translation 
directed opposite to the position vector of the satelhte and the magnitude of the translation is 
the radius of its barycentric orbit. The associated wake is symmetric and in phase with the 
perturbation, hence it exerts no torque on the satellite. In contrast, the non-self-gravitating 
torque is dominated the dipole contribution. For a satelhte inside the primary, the dipole 
response is more complicated, but is quahtatively similar for the fraction of the galaxy well 
inside the satehite’s orbit. This quahtative difference in self-gravitating and non-self-gravitating 
dipole responses is responsible for the difference in decay times. For higher-order multipoles 
(/> 1), the self-gravitating response is larger but qualitatively similar to the non-self-gravitating 
response. 

(hi) For the soft satelhte (rJR = 0.1) considered here, by BvA, and by ZW, the response of 
the primary is global in both the self-gravitating and non-self-gravitating cases. The success of 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 

Figure 6.2: Figures from Weinberg (1989) (figures 6 and 7 therein). Sinking satellite in a self-gravitating vs non-
self-gravitating spherical halo. Left: Torque exerted by the halo on a circular orbit as a function of the distance
to the halo’s centre. Right: Distance to the halo’s centre of the sinking satellite as a function of time. Turning
on self-gravity reduces the torque experienced by the satellite and ultimately slows down its inevitable fall. In this
instance, the geometry and symmetry of the self-amplified wake is such that the net torque is effectively smaller. The
overall amplitude of the wake is nonetheless stronger locally.

nances to the diffusion coefficient
D(J) =

∑
k,k′

Dkk′(J). (6.4)

First, not all resonances participate in the total diffusion. If k and k′ do not share the same parity,
the dressed and bare coupling coefficients vanish, since Ud

kk′ =Ukk′ =0 (section 4.1.2). Furthermore,
the overall frequency range of both profiles is finite (figure 2.7). For a given orbit J , this imposes
k/k′ ≤ Ω(J=0)/Ω(J) for the resonance condition from equation (5.1) to be met.

Given that the coupling efficiency rapidly drops with the order of the resonance, figure 6.3
focuses on the contributions of low-order resonances. The left panel of this figure illustrates the

Figure 6.3: Figure from Roule et al. (2022). Left: Individual contributions of the various resonances (k, k′) to
the Landau diffusion coefficients for the Plummer equilibrium and E=ψ(2α). Right: Relative contributions when
collective effects are or are not taken into account, for the same setup. The main contributor to the Landau diffusion,
the resonance (1, 1), is severely damped by collective effects, while the amplification of other resonances remains
limited.
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predominant role of the resonance (k, k′)=(1, 1) in the Landau orbital diffusion (in yellow), while
the right panel shows the extinguishing role of collective effects for any k=1 resonances. This is
ultimately responsible for the relative inefficiency of the Balescu–Lenard diffusion w.r.t. the Landau
one. The determinant of the susceptibility matrix plotted in figure 4.3 allows me to reach the same
conclusions. Indeed, the gravitational susceptibility suffers from a drought for any odd resonant
couplings with ω∼Ω0. And, the slight amplification of the resonance (2, 2) observed in figure 6.3 is
equivalently found in figure 4.3 since 2Ω(2α)∼1.4Ω0. This amplification still remains too limited
to compensate for the strong collective damping of the dominating (1, 1) resonance.

Correlation of the perturbations

As emphasised in Binney & Lacey (1988), orbital diffusion is generically sourced by the time
correlation of the potential fluctuations, which here stems from Poisson shot noise. Following
Fouvry & Bar-Or (2018), I present in figure 6.4 the correlation of the potential fluctuations in
simulations with and without collective effects. To estimate this correlation, I use a strategy
similar to the one I used for the measurement of unstable modes in section 4.3.3. The instantaneous
density, ρd(x, t)=

∑
imδD[x−xi(t)], is projected onto the basis elements from section 4.1.1 to write

ρd(x, t)=
∑
pAp(t)ρ(p)(x) with

Ap(t) = −
∑
i

mψ(p)[xi(t)]. (6.5)

I use these coefficients to probe the time evolution of the system’s finite-N fluctuations. Their
spatial dependence have been absorbed in the basis elements. More precisely, I consider

δAp(t)=Ap(t)−⟨Ap⟩t, (6.6)

with ⟨Ap⟩t the time-average over the simulated duration. Under an assumption of ergodicity,
removing the time average amounts to removing the mean-field density, hence having

δψ(x, t) =
∑
p

δAp(t)ψ(p)(x). (6.7)

In figure 6.4, I illustrate the measured correlation

C(t) =
∫ T−t

0

dτ
T − t

⟨δAp(τ) δAp(τ + t)⟩, (6.8)

where ⟨·⟩ stands for the average over realisations, and using the odd basis element ψ(3)
odd from

equation (4.2).
The gravitational dressing has two main effects: (i) it weakens the overall amplitude of the

potential fluctuations; (ii) it reduces the coherence time of these perturbations. Indeed, while the
Landau correlations decrease like 1/t2, the Balescu–Lenard correlations are found to decay like
1/t5, as illustrated in figure 6.5. These decay rates are estimated through linear regressions of the
local extrema in log−log scale. It would be interesting to understand analytically the origin of
these two algebraic decay rates. The typical coherence time of the fluctuations, a.k.a., Tbal, the
ballistic time, is shorter for the Balescu–Lenard experiments, as (i) the typical amplitude of the
Balescu–Lenard correlation is lower than the Landau ones and (ii) correlations decay faster in the
presence of collective effects. Naturally, this drives a slower orbital diffusion in the Balescu–Lenard
situation compared to the Landau one, as presented in section 6.1.1.

This is fully consistent with figure 6.6 where I equivalently illustrate the diffusion of individual
test particles in the presence/absence of collective effects. In that figure, I also recover that the
energy diffusion is naturally modulated at the frequency ∼ 2π/tdyn, i.e., the typical frequency of
the background thermal equilibrium.
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Figure 6.4: Figure from Roule et al. (2022). Time correlation, C(t) (equation 6.8), of the potential fluctuations in
N–body simulations for the thermal equilibrium with and without collective effects. In the presence of collective
effects, both the amplitude and coherence time of the correlation function are reduced.

Figure 6.5: Figure from Roule et al. (2022). Fit of the decay rate of the correlation C(t) from figure 6.4 for
the Landau (left) and Balescu–Lenard cases (right) using 12 800 realisations. Without collective effects (Landau),
the correlations decrease like C(t)∝1/t2. In fully self-gravitating experiments (Balescu–Lenard), they decay like
C(t)∝1/t5. Together with the overall amplitude difference, this results in a slower orbital diffusion in the Balescu–
Lenard situation compared to the Landau one.

Figure 6.6: Figure from Roule et al. (2022). Typical diffusion of test particles embedded within N–body realisations
of the thermal equilibrium with collective effects (Balescu–Lenard) or without (Landau). The massless test particles
are all placed at the same initial phase space location in their respective realisations. Collective effects slow down
the orbital diffusion.
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In practice, I ran 12 800 realisations of the thermal equilibrium with N=105 particles, with
δt=10−3 tdyn up to T =103 tdyn. The typical relative error in Etot is of order 10−6, and I dumped
values of Ap every 0.05 tdyn. For the Balescu–Lenard experiment, I also let the system “warm up”
during 200 dynamical times before any measurement, so as to let the initial Poisson shot noise
thermalise and get dressed by collective effects (see, e.g., appendix F in Fouvry & Bar-Or, 2018).

Diffusion measurements

For the sake of convenience, I measure diffusion in energy, E=v2/2+ψ(x), with ψ(x), the system’s
initial unperturbed potential. To estimate diffusion coefficients in N–body simulations, I follow
equation (5.5) and write

DEE = lim
t→+∞

〈
∆E2(t)

〉
t

. (6.9)

In practice, this limit has to be understood as considering the changes of orbit on a timescale much
longer than the ballistic time, Tbal, but much shorter than the diffusion time.

Bias at small times If one does not wait long enough, the dispersion will first evolve quadrati-
cally with time before reaching a linear regime. Indeed, one has〈

∆E2(t)
〉

=
∫ t

0
dt′
∫ t

0
dt′′

〈
δE(t′)δE(t′′)

〉
. (6.10)

The correlation of the energy fluctuations corresponds to the function

C(t′′−t′) =
〈
δE(t′)δE(t′′)

〉
(6.11)

introduced in equation (6.8) and illustrated in figure 6.4. Importantly, these fluctuations are not
δ-correlated in time. Very roughly accounting for this correlation during the ballistic time, one has〈

∆E2(t)
〉
∼
{
C0t

2 if t ≲ Tbal,

C0Tbalt if t≫ Tbal,
(6.12)

with C0 =C(t=0). To prevent this initial quadratic growth from biasing the measurement, I must
(i) wait long enough so that the system has reached the linear regime and (ii) throw away the initial
growth in the time series, t→

〈
∆E2(t)

〉
, and fit the linear regime only.

Bias at large times Conversely, if one waits too long, the measurement will suffer from another
bias. Indeed, if one waits infinitely long, the test particle will explore the whole orbital phase. The
diffusion rate effectively measured would then correspond to an average of the diffusion rates (over
phase space) and not to its value for the initial actions. Therefore, I truncate the time series at a
time Tmax so that the test particles have not diffused too much, i.e., such that

〈
∆E2(Tmax)

〉
≤ δE2

bin,
with δEbin the width of the energy bin.

Anomalous long-term diffusion A final caveat stems from the fact that at large time, the
Balescu–Lenard time series become sublinear, a phenomenon already noted in the HMF model (see
figure 8 in Benetti & Marcos, 2017). This is not due to particles exploring too different energies as
the dispersion is still far below the bin width. I do not have a clear physical explanation for this
long-term behaviour. In practice, I accounted for this effect by appropriately reducing the series’
maximal time, Tmax, so as not to enter this regime.

These subtleties are particularly important to allow for an accurate measurement of the diffusion
coefficients and ultimately reach the agreement between the kinetic theory and the numerical
simulations presented in figure 6.1. Once the domain Tbal≤ t≤Tmax is determined, the diffusion
coefficient is estimated with a linear fit (least squares method) on that timespan. This is illustrated
in figure 6.7 for both Landau and Balescu–Lenard measurements.
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Figure 6.7: Figure from Roule et al. (2022). Typical time series of energy dispersion averaged over a given energy
bin and 1 280 realisations for Landau (left) and Balescu–Lenard (right) measurements, together with the associated
linear fits. Here, ⟨∆E2⟩ first evolves quadratically in time (ballistic regime) and then linearly (diffusive regime).
For the Balescu–Lenard experiments, the time series ultimately becomes sublinear, as already noted in the HMF
model (Benetti & Marcos, 2017).

Numerical details For a given realisation, particles are initially binned in 25 bins of width
δEbin =0.1E0, starting at the minimal energy, ψ(0). For every bin and every time dump, I compute
⟨∆E2(t)⟩=⟨[E(t)−E(t=0)]2⟩, averaged over all the particles initially in the bin and all the available
realisations.

For the Balescu–Lenard measurements in figure 6.1, I ran 10 independent groups of 1 280 re-
alisations with N=105 particles, δt=10−3 tdyn and up to T =500 tdyn. The typical relative error
in Etot is of order 10−6, and I dumped ∆E2 values every tdyn. As illustrated in the right panel of
figure 6.7, I performed the linear fit within the domain [Tbal, Tmax]=[50 tdyn, 300 tdyn]. In figure 6.1,
I reported the mean value and standard deviation of the 10 independent batches of realisations.

For the Landau experiments, I used the exact same parameters, except that the N=105 massive
background particles follow the smooth mean potential, and I injected 2×104 massless test particles
sampled initially according to F (E). As highlighted by equation (5.4), these massless test particles
only experience diffusion and no friction. Their diffusion is driven by the massive bath particles
and therefore is proportional to 1/N with N the number of bath particles (not test particles).
Because Landau simulations exhibit longer correlation times (see figure 6.4), I used Tbal =100 tdyn.
Furthermore, the diffusion is stronger in these experiments. Consequently, I adjusted Tmax for every
bin so that ⟨∆E2(Tmax)⟩≤δE2

bin, as illustrated in figure 6.7. This prevents averaging the diffusion
over multiple bins.

6.1.2 Quasi-kinetic blocking

Let me now investigate the initial flux, F(J, t=0), as given by equation (5.2a). Of course, this
flux vanishes at thermodynamical equilibrium. Indeed, at thermal equilibrium, diffusion and fric-
tion obey the so-called detailed balance (see, e.g., appendix B in Binney & Lacey, 1988). Their
contribution cancel out, and the equilibrium is preserved. This is however not the case for the
Plummer quasi-stationary state (QSS) (section 2.3.1) which is not the state of maximum entropy.
In figure 6.8, I illustrate its initial flux. Once again, the kinetic theory and numerical simulations
are found to be in a good agreement, and both recover the (slow) relaxation of the Plummer distri-
bution towards the thermal one. The predictions naturally follow from section 6.1.1. The details
of the flux measurements can be found in appendix B of Roule et al. (2022). They are computa-
tionally more expensive than the diffusion measurements. Indeed, using appropriate dimensionless
units, the flux is typically ∼105 times smaller than the diffusion coefficients, i.e., the efficiency of
the relaxation is drastically hampered by a “quasi kinetic blocking” (chapter 7). It highlights the
system’s difficulty to populate resonances driving an efficient relaxation.

Contrary to the diffusion figure 6.1, there is no measured Landau flux in figure 6.8. Indeed,
Landau diffusion measurements are made using massless test particles. Such particles do not
experience any friction (equation 5.4) and cannot be used as probes for the whole flux, but solely for
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Figure 6.8: Initial flux in the Plummer equilibrium as a function of energy predicted by kinetic theory (line) in
both Landau (i.e., without collective effects) and Balescu–Lenard (i.e., with collective effects) cases, together with
the measurement in N–body simulations (points). The redistribution of orbits is only measured in self-consistent
simulations where collective effects are, by design, present. The Balescu–Lenard prediction satisfyingly recovers the
measurements. Let me stress that the amplitude of NF(E) has been rescaled by 105. Phrased differently, the overall
relaxation is far less efficient than diffusion. Both predictions have their own vertical scales. Collective effects slow
down the orbital reshuffling by a factor ∼20. This is one of the key results of this thesis.

diffusion. However, I computed the expected flux when neglecting collective effects through Landau
equation (5.12). It amounts to replacing the dressed coupling coefficients, Ud

kk′ (equation 3.12), by
their bare counterpart Ukk′ (equation 3.4). As for diffusion, the Landau flux is about 20 times
larger than the Balescu–Lenard one. Once again, collective effects restrain the evolution of the
system.

To understand the origin of the quasi kinetic blocking, I now look at the individual contribution
of the different resonances.

Resonances contribution

As put forward in equation (5.1), the system’s long-term diffusion is sourced by resonant interac-
tions. For a given resonant pair (k, k′), one has to ensure that the resonance condition, kΩ−k′Ω′ =0,
is met, while the overall efficiency of this coupling is governed by the susceptibility coefficients,
Ud
kk′(J, J ′, ω), for that pair. In practice, a couple of important “conspiracies” are responsible for

the small flux observed in figure 6.8:
(i) The Plummer frequency profile is monotonic (see figure 2.7). Any resonance k=k′ systemat-

ically imposes J=J ′, leading to an exactly vanishing flux in equation (5.1).
(ii) Symmetry imposes Ud

kk′ =0, for all k, k′ of different parity (see the discussion after equa-
tion 4.7). As a consequence, one must have |k−k′|≥2 for a resonance to contribute to the
flux. Similarly, k and k′ must also have the same sign.

(iii) Despite its denser core, the overall frequency range of the Plummer profile is still finite
(see figure 2.7). As for the diffusion, this imposes k/k′ ≤ Ω(J=0)/Ω(J) for the resonance
condition to be met.

(iv) For k large enough, the bare susceptibility coefficients asymptotically scale as Ukk(J, J)∝1/k2.
The higher the order of the resonance, the less efficient the coupling, and hence the (drasti-
cally) smaller the contribution to the flux.

I highlight these different effects in figure 6.9, by isolating the contributions, Fkk′ , of the different



6.2 Long term relaxation of discs 85

resonances (k, k′) to the Landau flux F=
∑
k,k′>0Fkk′ . I emphasise in particular the rapid decay

of the flux contributions as k, k′ increase and as one moves away from the diagonal k=k′ (which
only contributes to the diffusion coefficient and not the flux). These different effects are jointly
responsible for the small flux reported in figure 6.8.

Figure 6.9: Figure from Roule et al. (2022). Individual contributions of the various resonances (k, k′) to the initial
Landau flux, F(E, t=0), for the Plummer equilibrium at E=ψ(2α). By symmetry, only k, k′ ≥0 resonances are
considered. Note the logarithmic colour coding. The flux is dominated by low order resonances and suffers from
many annihilating conspiracies (see main text).

Figure 6.9 is essentially left unchanged when taking into account collective effects. The only
significant difference in the Balescu–Lenard case is the reduced contribution from the resonances
with k=1 for which gravitational dressing weakens the amplitude of the orbital coupling as detailed
in section 6.1.1. Taking collective effects into account therefore further reduces the flux as they
notably damp contribution from the resonance (k, k′)=(1, 3), the main contributor to the Landau
flux (see figure 6.9).

Despite this relative inefficiency, I stress that the Plummer equilibrium still relaxes through 1/N
two-body resonant effects. This is in stark contrast with homogeneous one-dimensional systems
which are generically kinetically blocked at order 1/N (see, e.g., Chavanis, 2012) and require the
derivation of appropriate kinetic equations at order 1/N2 sourced by three-body effects (Fouvry
et al., 2020). This is also the case for inhomogeneous one-dimensional systems with monotonic
frequency profile and only subject to 1:1 resonances. In this case, the resonance condition in
equation (5.1) is only met for J=J ′ and the flux vanishes. These full kinetic blockings are discussed
in more details in chapter 7.

6.2 Long term relaxation of discs

In this section, I discuss the secular evolution of stable Mestel discs (section 2.3.2). I first present
the context of this study, i.e., the results of Sellwood (2012) and Fouvry et al. (2015). I then present
the expected flux computed from equation (5.1) together with N–body measurements and discuss
the impact of damped modes presented in section 4.2.6. Using numerical simulations, I then study
the effect of gravitational softening and the intrinsic stochasticity among different realisations.
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6.2.1 Context

This study is motivated by the work of Sellwood (2012) (hereafter S12) and Fouvry et al. (2015)
(hereafter F+15) who investigated the long term evolution of the stable Toomre disc (half-mass
Mestel disc) from section 2.3.2. S12 investigated the long-term evolution of the disc using N–body
simulations. F+15 then analysed this evolution implementing, for the first time, the inhomogeneous
Balescu–Lenard equation (5.1). I first present and discuss their results to give the context of this
study.

Sellwood (2012)’s N–body results

The first long-term simulation of a stable isolated Mestel disc was conducted by Sellwood (2012).
He focused on the effect of ℓ=2 fluctuations only (filtering out the other harmonics as I did to
measure the instability in Zang’s disc in section 4.3.1). S12 found that, albeit initially stable, the
disc becomes linearly unstable after a slow growth of the potential/density fluctuations. The time
at which the instability sets in depends on the number of particles, N , as illustrated in figure 6.10
adapted from S12. To prove that the system was indeed linearly unstable after a certain time,
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Figure 4. Power spectra of m = 2 disturbances in run 50M. Successive contour levels, which start from the same value in each plot, differ by factors of two. Each
panel is taken from data over the period indicated, which overlap so that only half the plots are from independent data. The solid curves show 2Ω(R) and the dashed
curves 2Ω(R) ± κ(R). Data outside the radial ranges marked by vertical dotted lines, where the surface density is low, are excluded because they are too noisy.

Figure 5. Time evolution of the peak overdensity in five simulations with
N = 50M. The cyan curve is for run 50M, reproduced from Figure 2, while
the green, red, and magenta curves show the behavior of runs 50Ma, 50Mb, and
50Mc created by randomizing the azimuths of the particles at t = 1000, 1200,
and 1400, respectively. For the blue curve, run 50Md, the particles preserved
the same E and Lz, but the radial phase was also reset. Both runs restarted from
t = 1400 manifest a single dominant instability.
(A color version of this figure is available in the online journal.)

the particle distribution that occurred in the original run prior to
azimuthal randomization.

The most dramatically different behavior is that of run 50Mc
(magenta), which manifests a single vigorous instability of
eigenfrequency ω = 0.6 + 0.16i—close to that of the dominant

Figure 6. Best-fit mode extracted from the period of exponential growth in run
50Mc using the procedure described by Sellwood & Athanassoula (1986). The
circles mark the radii of the principal resonances.

disturbance around t = 1400 identified in the earlier analysis
of run 50M (Section 4.2). The form of the unstable mode
is illustrated in Figure 6. Clearly, the particle distribution at
t = 1400 has a feature that provokes this instability, and which
must have been created by the earlier evolution.
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Figure 2. Upper panel: the time evolution of the peak overdensity in a series
of simulations of the half-mass Mestel disk with different numbers of particles.
The model is predicted by A. Toomre (1989, private communication) to be
globally stable. The ordinate reports the maximum value of δΣ/Σ on grid rings
over the range 1.2 < R < 12 where the surface density is little affected by
the tapers. Linear theory predicts the amplitude should remain proportional
to N−1/2. Lower panel shows the radius of the measurement reported in the
upper panel for run 500M only. The apparent lower bound is because values for
R < 1.2 were excluded to eliminate shot noise in the tapered part of the disk.
(A color version of this figure is available in the online journal.)

N experiment, the initially amplified noise is already close
to the saturation level, but as N rises, the amplitude takes
increasingly long to reach its maximum. However, the final
amplitude is independent of N for all particle numbers up to
N = 5×108. In the larger N experiments, the amplitude increase
is characterized by roughly exponential growth at two distinct
rates: an initial period of slow growth, followed by a steeper
rise once δmax ! 0.02. These two separate rates of growth
are approximately independent of N over the amplitude ranges
where they are observed.

It might seem that exponential growth indicates an unstable
normal mode, or perhaps a few such instabilities, but such an in-
terpretation is unattractive for a number of reasons. Simulations
of linearly unstable models (e.g., Sellwood & Athanassoula
1986; Earn & Sellwood 1996) usually reveal the mostly vigor-
ous instability emerging from the noise at an early stage and
dominating the subsequent growth until it saturates. Modulated
growth could occur in a system that supports a small number

of overstabilities having similar growth rates but different pat-
tern speeds, since the changing relative phases of the modes
over time causes beat-like behavior. In all such cases, however,
the overstabilities should maintain phase coherence until they
saturate, but power spectra of these simulations (shown below)
reveal multiple features none of which retains phase coherence
throughout the period of growth. Furthermore, were the later,
more rapid rise due to the emergence of more rapidly growing
normal modes of the original disk, it is unusual that they should
take so long to rise above the amplitude of the more slowly
growing “modes” that would also need to be invoked to account
for the initial slow rise, and it is most unlikely that the change of
slope would occur at almost the same amplitude, as suggested
for the three larger N experiments (Figure 2). Finally, Toomre’s
(1981) linear stability analysis that predicted the model to be
globally stable also argues against this interpretation of the re-
sults.

4.1. Slow Growth

The lower panel of Figure 2 shows that the maximum
disturbance density in run 500M is generally in the inner disk
for t < 2500, i.e., until the saturation amplitude is reached. The
behavior over the entire early period 0 < t < 2000 seems to
follow a quasi-repetitive pattern: a density maximum appears in
the range 3 " R " 6 that then propagates inward. This pattern
results from swing-amplified noise creating a trailing spiral
disturbance that travels inward at the group velocity, as shown in
the “dust to ashes” figure of Toomre (1981). Salo & Laurikainen
(2000, their Figure 7) report very similar behavior in their
three-dimensional simulations of a low-mass exponential disk
embedded in a rigid halo.

The gradual rise of spiral activity in the global simulations
reported here can also be viewed as the buildup of mass clouds
surrounding each particle. Figure 3 shows that each particle
can be regarded as being “dressed” by a spiral wake, as in the
local context. To construct this figure at each instant, I stacked
copies of the grid-estimated density distribution from run 50M
by scaling the entire grid radially and rotating it such that the
density maximum on each “source” ring in turn lay at R = 7
and zero azimuth. At the initial moment, the non-axisymmetric
part of the combined density shows no features other than the
azimuthal extension of the source caused by forcing cos 2θ
angular dependence. As time progresses, each source particle
becomes dressed by a wake of gradually increasing mass and
spatial scale; the maximum overdensity shows a general rise,
with fluctuations that closely follow the time variations of δmax
in the same simulation, shown by the cyan line in Figure 2.

However, two related aspects of the behavior are especially
noteworthy. First, growth in the large N simulations continues
for a much longer period than expected. Julian & Toomre 1966
found, from a local linear analysis, that the wake takes ∼5 epicy-
cle periods to become fully developed. Swing-amplification of
particle shot noise causes the immediate rise in the first few time
units, as already noted, which is a large part of the development
of spiral wakes. The epicyclic period at radius R in the Mestel
disk is 21/2πR/V0, or ∼44 time units at R = 10, about halfway
out in the disk. Thus the period of continued gradual growth
greatly exceeds five epicycle periods at a typical radius, which
is the timescale expected from linear theory. Second, the sim-
ulations do not reveal a limiting amplitude; instead more rapid
growth takes over in every case, even when 5×108 particles are
employed. Section 4.6 presents further analysis of the slow-rise
phase that accounts for these differences.
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R < 1.2 were excluded to eliminate shot noise in the tapered part of the disk.
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amplitude is independent of N for all particle numbers up to
N = 5×108. In the larger N experiments, the amplitude increase
is characterized by roughly exponential growth at two distinct
rates: an initial period of slow growth, followed by a steeper
rise once δmax ! 0.02. These two separate rates of growth
are approximately independent of N over the amplitude ranges
where they are observed.

It might seem that exponential growth indicates an unstable
normal mode, or perhaps a few such instabilities, but such an in-
terpretation is unattractive for a number of reasons. Simulations
of linearly unstable models (e.g., Sellwood & Athanassoula
1986; Earn & Sellwood 1996) usually reveal the mostly vigor-
ous instability emerging from the noise at an early stage and
dominating the subsequent growth until it saturates. Modulated
growth could occur in a system that supports a small number

of overstabilities having similar growth rates but different pat-
tern speeds, since the changing relative phases of the modes
over time causes beat-like behavior. In all such cases, however,
the overstabilities should maintain phase coherence until they
saturate, but power spectra of these simulations (shown below)
reveal multiple features none of which retains phase coherence
throughout the period of growth. Furthermore, were the later,
more rapid rise due to the emergence of more rapidly growing
normal modes of the original disk, it is unusual that they should
take so long to rise above the amplitude of the more slowly
growing “modes” that would also need to be invoked to account
for the initial slow rise, and it is most unlikely that the change of
slope would occur at almost the same amplitude, as suggested
for the three larger N experiments (Figure 2). Finally, Toomre’s
(1981) linear stability analysis that predicted the model to be
globally stable also argues against this interpretation of the re-
sults.

4.1. Slow Growth

The lower panel of Figure 2 shows that the maximum
disturbance density in run 500M is generally in the inner disk
for t < 2500, i.e., until the saturation amplitude is reached. The
behavior over the entire early period 0 < t < 2000 seems to
follow a quasi-repetitive pattern: a density maximum appears in
the range 3 " R " 6 that then propagates inward. This pattern
results from swing-amplified noise creating a trailing spiral
disturbance that travels inward at the group velocity, as shown in
the “dust to ashes” figure of Toomre (1981). Salo & Laurikainen
(2000, their Figure 7) report very similar behavior in their
three-dimensional simulations of a low-mass exponential disk
embedded in a rigid halo.

The gradual rise of spiral activity in the global simulations
reported here can also be viewed as the buildup of mass clouds
surrounding each particle. Figure 3 shows that each particle
can be regarded as being “dressed” by a spiral wake, as in the
local context. To construct this figure at each instant, I stacked
copies of the grid-estimated density distribution from run 50M
by scaling the entire grid radially and rotating it such that the
density maximum on each “source” ring in turn lay at R = 7
and zero azimuth. At the initial moment, the non-axisymmetric
part of the combined density shows no features other than the
azimuthal extension of the source caused by forcing cos 2θ
angular dependence. As time progresses, each source particle
becomes dressed by a wake of gradually increasing mass and
spatial scale; the maximum overdensity shows a general rise,
with fluctuations that closely follow the time variations of δmax
in the same simulation, shown by the cyan line in Figure 2.

However, two related aspects of the behavior are especially
noteworthy. First, growth in the large N simulations continues
for a much longer period than expected. Julian & Toomre 1966
found, from a local linear analysis, that the wake takes ∼5 epicy-
cle periods to become fully developed. Swing-amplification of
particle shot noise causes the immediate rise in the first few time
units, as already noted, which is a large part of the development
of spiral wakes. The epicyclic period at radius R in the Mestel
disk is 21/2πR/V0, or ∼44 time units at R = 10, about halfway
out in the disk. Thus the period of continued gradual growth
greatly exceeds five epicycle periods at a typical radius, which
is the timescale expected from linear theory. Second, the sim-
ulations do not reveal a limiting amplitude; instead more rapid
growth takes over in every case, even when 5×108 particles are
employed. Section 4.6 presents further analysis of the slow-rise
phase that accounts for these differences.
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Figure 6.10: Figures adapted from Sellwood (2012), with additional annotations. Evolution of the ℓ=2 fluctuations
in N–body simulations of the Toomre disc for different number of particles, N . Starting from uncorrelated Poisson
shot noise, the fluctuations quickly get dressed by collective effects on a ballistic time, Tbal (equation 6.12). The
amplitude of the fluctuations then slowly grows until a clear instability sets in. The larger the number of particles,
the lower the initial Poisson noise and the slower the secular growth, hence the later the dynamical phase transition.
The instability ultimately possibly saturates under non-linear resonance-trapping effects (see, e.g., Hamilton, 2024).

S12 stopped the simulation at different times and restarted it after randomising the phases of
the particles. Doing so, he killed de facto any prior bisymmetric coherent features, ruling out a
possible non-linear effect. As reproduced in the right panel of figure 6.10, S12 found that the later
the simulation was stopped, the stronger was the instability.

Such a change, from a stable to an unstable state, cannot be explained by the linear theory. It
necessarily involves changes in the mean-field DF. Similar dynamical phase transitions, driven by
collisional secular evolution, occur in the HMF model (Campa et al., 2008). S12 therefore looked at
the distribution of orbits in action space. He reported on (i) a localised depletion of circular orbits
(or groove) before the instability kicks in (t/tdyn =1000) and (ii) the presence of a strong, sharp
ridge at resonance with the instability before it saturates (t/tdyn =1400). Both measurements are
reproduced in figure 6.11. This groove generated in the inner part of the disc is responsible for
the nascent instability. Sellwood & Kahn (1991) already noted that such a localised feature can
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Figure 7. Action-space density of particles in run 50M at t = 1200 (upper) and
t = 1400 (lower).

The behavior of the other two cases (green and red curves of
Figure 5) differs not quite so markedly from the original, but
again indicates that the particle distribution at both t = 1000
and t = 1200 contains features that lead to an accelerated rise of
non-axisymmetric features. I return to these cases in Section 4.6.

Note that randomizing the azimuthal phases at t = 1400 only
made the identifiable instability of the original model stand
out more clearly. Thus, the destabilizing agent cannot be a
previously created non-axisymmetric feature, e.g., a weak bar,
in the particle distribution, and must therefore be a feature in
the distribution either of the radial phases, or of the integrals
(E and Lz or JR and Jφ).

In order to test whether changes to the distribution of radial
phases are important, I determined E and Lz for each particle and
then selected at random a new pair of radial and azimuthal phases
from an orbit having these integrals in the analytic potential of
the Mestel disk. These new phases determine new positions and
velocities for each particle, although it has the same integrals
as before. The evolution in this case, run 50Md shown by the
blue line in Figure 5, makes it clear that the same instability is
present as that in run 50Mc (magenta line). Thus, the important
change by t = 1400 of the original run is to the distribution of
the integrals.

4.4. Changes to the Distribution Function

Figure 7 shows the distribution of particles in action space of
run 50M at the times t = 1200 (upper) and t = 1400 (lower).
Although the contours are noisier, caused by a degradation of
the original smooth arrangement, their overall shape in the

Figure 8. Upper panel contours the differences between the action-space density
of particles in run 50M at t = 1400 and t = 0, with positive (negative)
differences being indicated by blue (red) contours. The dashed lines show the loci
of Lindblad resonances (cyan) and of corotation (green) for Ωp = 0.25, while
the solid lines indicate the scattering trajectory from JR = 0 for the Lindblad
resonances. The lower panel shows the mean displacements of particles in the
same space and over the same period. The arrow size is proportional to the mean
value of the displacement in each element.
(A color version of this figure is available in the online journal.)

upper panel is little changed from that at t = 0 (Figure 1).
However, more substantial changes are visible in the lower
panel. The changes are shown more clearly in the upper panel of
Figure 8, which contours differences between the distributions
at t = 1400 and at t = 0, with increases shown by the blue
contours and decreases by the red contours.

The various lines in Figure 8 show resonance loci and
scattering trajectories for a disturbance of angular frequency
mΩp = 0.5, which is the frequency of the dominant feature of
the power spectrum shown in the third panel of Figure 4. The
resonance lines (dashed) are computed for Ωp = Ωφ + lΩR/m,
where l = 0 for corotation and l = ∓1 for the inner and outer
Lindblad resonances (OLRs), and the frequencies Ωφ and ΩR

are computed for orbits of arbitrary eccentricity. The scattering
trajectories (solid lines) are computed assuming ∆E = Ωp∆Lz,
as required by the conservation of the Jacobi constant in a
rotating non-axisymmetric potential (Binney & Tremaine 2008),
with ∆E converted to ∆JR and assuming JR = 0 initially for
a particle in resonance. Note that any scattering at corotation
would occur with ∆JR = 0.

It is clear that the principal changes to the distribution of
particles in action space were caused by scattering at the ILR

7

The Astrophysical Journal, 751:44 (11pp), 2012 May 20 Sellwood

Figure 10. Upper panel contours the differences between the action-space
density of particles in run 50M at t = 1000 and t = 0, with positive (negative)
differences being indicated by blue (red) contours. The kernel width is five times
larger than that used in Figure 8 and the contour levels are one-fifth. The lower
panel shows the radial velocity dispersion of particles in run 50M at the three
indicated moments. The changes from t = 0 are non-zero only near the center;
they are tiny by t = 1000 and moderately larger at t = 1200.
(A color version of this figure is available in the online journal.)

maintains coherence through to the saturation amplitude. The
randomized particle distributions at these intermediate times
must also differ in important ways from the smooth particle
distribution of run 50M at t = 0.

Figure 10 shows that the changes to the DF by t = 1000 are
tiny, but nevertheless significant. I had to reduce the contour
levels in order to reveal the tiny changes to the density of
particles in action space (top panel), which necessitated a
proportionate increase in the kernel size so that the shot noise
from the number of particles contributing to the lowest contour
is unchanged. It is clear that there has been some significant
scattering of particles away from the JR = 0 axis, especially
at small radii. These, and the significantly larger changes that
occur by t = 1200 (not shown) caused some heating of the
innermost part of the disk, as illustrated in the lower panel. This
very mild heating of the inner disk is caused by the absorption at
the ILRs of incoming disturbances created by swing-amplified
shot noise at larger radii. Although the wave amplitudes were
tiny, they caused a lasting and significant change to the DF.

The randomized restarts at t = 1000 (run 50Ma) and
t = 1200 (run 50Mb) confirm that these tiny changes, and
not nonlinear coupling, say, were responsible for the enhanced
growth of non-axisymmetric structure. It seems likely that the
small changes that have taken place are sufficient to cause some

partial reflection of waves incident on the inner disk that boosts
the density fluctuations, but is apparently insufficient to provoke
an indefinitely growing, more vigorous mode at these times.

Thus, the slow rise in the density fluctuations described in
Section 4.1 occurred because the physical system gradually
develops a marginally modified inner disk. Mild scattering of
particles in the inner disk as the wave action of the noise-driven
structures created at larger radii is absorbed at the appropriate
ILR. These changes to the dynamical properties of the inner
disk seem to be responsible for gradually increasing partial
reflection of later incoming waves, and this partial feedback
in turn enhances the amplitudes of subsequent disturbances.
Growth is slow until the inner disk reflects waves strongly
enough to create a coherent linear instability.

Note that the slow, fluctuating rise in δmax in both runs 50M
and 500M (upper panel of Figure 2) is roughly exponential, with
similar exponents in both cases. This appears to suggest that the
behavior just described is, in fact, destabilizing in the sense that
it implies that the rate of growth is independent of the amplitude.
It would seem, therefore, that no system of particles, however
large, could behave as a smooth disk.

5. SUMMARY AND DISCUSSION

The main result presented here is the demonstration that
scattering at the ILR of a spiral disturbance of even very low
amplitude causes a lasting change to the properties of the disk
that leads to increased amplitude of subsequent activity. Linear
perturbation theory could never capture this behavior, because it
neglects second-order changes to the equilibrium model caused
by a small amplitude disturbance.

The random density fluctuations of a system of self-
gravitating particles in a cool, shearing disk are amplified as
they swing from leading to trailing (Toomre 1990; Toomre &
Kalnajs 1991). The wave action created by these collective re-
sponses is carried inward at the group velocity to the ILR where
it is absorbed by particles. The resulting scattering of particles to
more eccentric orbits de-populates the near-circular orbits over
a narrow range of initial angular momentum. Here I have shown
that, no matter how small the amplitude, the lasting changes
to the particle distribution promote a higher level of density
fluctuations, which leads to indefinite growth.

The growth of non-axisymmetric waves in the idealized simu-
lations presented here is characterized by two phases. When very
large numbers of particles are employed, the behavior appears to
be that of a system of dressed particles (Toomre & Kalnajs 1991;
Weinberg 1998), but one in which the amplitudes of the particle
wakes rise slowly. As the peak relative overdensity passes ∼2%,
the changes to the background state are destabilizing and simple
instabilities appear that exhibit runaway growth.

The instability that appears is caused by earlier changes to the
DF and is a true mode that could have grown exponentially from
low amplitude. Direct tests reported in Section 4.3 demonstrate
that it does not rely upon nonlinear coupling to previous
structures. I speculate on a possible mechanism for the unstable
mode in Section 4.5.

Linear perturbation theory (Toomre 1981) predicts no insta-
bility for a smooth DF, yet the evidence from Section 4.6 is
that no finite number of particles would ever avoid indefinite
growth. Whether or not this conclusion is correct, the avoidance
of runaway growth for some non-infinite number of particles
is of theoretical interest only, as galaxies are probably never as
smooth as a disk of 5 × 108 randomly distributed particles that
are each only ∼10 times as massive as a typical star.
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Figure 6.11: Figures adapted from Sellwood (2012), with additional annotations. Distribution of orbits in action
space in N–body simulations of the Toomre disc for N=50×106 particles. Left: At t/tdyn = 1000, one observes a
localised small depletion of circular orbits before the instability sets in. Right: At t/tdyn = 1400, one observes a
strong, sharp ridge at resonance (ILR) with the nascent instability (Ωmtdyn = 0.5). Note that, in these figures, red
contours correspond to a depletion of the number of particles while blue contours correspond to an excess.

generate an instability in N–body simulations. This result was later confirmed by De Rijcke et al.
(2019a) and Dootson (2023) using linear response theory.

Let me note that the author later confirmed that his results were consistent with changing the
simulation method from a polar to a Cartesian grid (Sellwood, 2020). He also tried a different
sampling of the initial conditions and recovered similar growth curves of the fluctuations. On this
last point, I stress that, in both cases, the initial conditions were not pure Poisson noise. Indeed, the
disc was sampled using a so-called “quiet start” procedure (Debattista & Sellwood, 2000; Sellwood,
2024), i.e., with a reduced randomness on the initial conditions.1 Finally, the author did not show
the equivalent of figure 6.11 for this new realisation. It would be interesting to see if, despite similar
growth curves of the fluctuations, the changes in the DF could be different.

Fouvry et al. (2015)’s results

The slow growth of the fluctuations and the subsequent changes in the mean-field DF were still to
be explained. Predicting such a change in the mean-field DF arising from fluctuations is exactly
the purpose of the kinetic theories presented in chapter 5.

F+15 investigated the same disc as S12 using their own numerical simulations and implement-
ing predictions from different kinetic theories. With their simulations, they showed (i) that the
changes in the mean-field DF happened on timescales proportional to the number of particles, i.e.,
∂F/∂t∝1/N , and (ii) that slightly increasing the active fraction, ξ, of the disc enhanced the relax-
ation. More precisely, they measured the overall flux difference when varying the active fraction
and reported that |F(ξ=0.6)|/|F(ξ=0.5)|∼30, with F the measured flux (equation 5.2a). Im-
plementing, for the first time, the inhomogeneous Balescu–Lenard equation (5.1), they found that
the predicted changes in the mean-field DF were qualitatively consistent with the N–body results.
Importantly, they proved that accounting for collective effects considerably modified and enhanced
the relaxation, as illustrated in figure 6.12.

Taken together, S12 and F+15’s results offer a convincing picture for the long-term evolution of
the isolated Toomre disc. Initially stable, the disc first evolves under the collisional effects of swing
amplified finite-N fluctuations. This secular relaxation is characterised by a strong heating and

1The “quiet start” initial conditions are not pure Poisson noise. This sampling procedure is designed to mimic
the smooth mean-field DF. While this is particularly useful for collisionless simulations, here one might be worried
that it could bias the collisional relaxation.
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Fig. 4. Left panel: map of Ndiv(F tot), where the total flux has been computed with m1, m2 ∈ {mILR, mCOR, mOLR}. Red contours, for which
Ndiv(F tot) < 0 are associated with regions from which the orbits will be depleted, whereas blue contours, for which Ndiv(F tot) > 0 correspond
to regions where the value of the DF will be increased during the secular diffusion. The contours are spaced linearly between the minimum and
the maximum of Ndiv(F tot). The maximum value for the positive blue contours corresponds to Ndiv(F tot) ≃ 350, while the mininum value for
the negative red contours is associated with Ndiv(F tot) ≃ −250. Right panel: from Sellwood (2012) – Fig. 7, contours of the change in the DF
between the time tS12 = 1400 and tS12 = 0, for a run with 50M particles. Similarly to the left panel, red contours correspond to negative differences,
i.e. regions emptied from their orbits, while blue contours correspond to positive differences, i.e. regions where the DF has increased during the
diffusion. Both of these contours are aligned with the ILR direction of mILR = (2,−1) in the (Jφ, Jr)-plane, corresponding to the cyan line.

S12’s measurements are at t = 1400, so that we do not expect
a perfect match. Other sources of discrepancies might be the
use of a softening length in numerical simulations, which modi-
fies the two-body interaction potential, or the difference between
an ensemble average (as predicted by the secular formalism)
and one specific realisation – our own simulations suggest that
there is some variation in the position of the ridge between one
run and another. Because we explicitly determined the value of
Ndiv(F tot), we may now study the typical timescale of colli-
sional relaxation predicted by this Balescu-Lenard estimation as
detailed in Sect. 4.3. One may also investigate the respective
roles of the self-gravitating amplification and the limitation to
the tightly wound basis elements as presented in Appendices D.1
and D.2.

4.3. Timescale of diffusion

The most significant disagreement found in Paper I, while ap-
plying the WKB approximation of the Balescu-Lenard equation
to S12’s simulation was a discrepancy between the time required
to observe the resonant ridge in S12’s simulation and the colli-
sional timescale for which the finite-N effects come into play.
As already noted in Paper I, since the Balescu-Lenard Eq. (2)
only depends on N through the mass of the individual particles
µ = Mtot/N, we may rewrite it in the form

∂F
∂t
=

1
N

CBL[F], (50)

where CBL[F] = Ndiv(F tot) is the N-independent Balescu-
Lenard collisional operator, i.e. the r.h.s. of Eq. (2) multiplied by
N = Mtot/µ. As expected, the larger the number of particles, the
slower the secular evolution. This also illustrates the fact that the
Balescu-Lenard equation comes from a kinetic Taylor expansion
in the small parameter ε = 1/N≪1. We introduce the rescaled
time τ = t/N, so that Eq. (50) reads

∂F
∂τ
= CBL[F], (51)

letting us express the Balescu-Lenard equation without any ex-
plicit appearance of N. In Paper I, we estimated the time ∆τS12
required to observe the ridge as ∆τS12≃3×10−5. When perform-
ing the same measurement thanks to the contours of the diffu-
sion flux div(F tot) computed within the WKB approximation,
we obtained ∆τWKB≃3×10−2, so that Paper I obtained the ratio
∆τS12/∆τWKB≃10−3. This discrepancy was due to the limitation
to tightly wound spirals. Because the estimation of the secular
diffusion fluxF tot presented in Fig. 4 was made using the matrix
method (Kalnajs 1976) with a full basis, it captures the addi-
tional swing amplification. Indeed, given the map of NdivF tot
obtained in Fig. 4, one may estimate the typical time ∆τBL re-
quired for such a flux to lead to the diffusion features observed in
S12. The contours presented in Fig. 7 of S12 are separated by an
increment equal to 0.1 × Fmax

0 , where Fmax
0 ≃ 0.12 is the maxi-

mum of the normalised DF (via Eq. (49)). In order to observe the
resonant ridge, the value of the DF should typically change by
an amount of the order ∆F0 ≃ 0.1 × Fmax

0 . From Fig. 4, one can
note that the maximum of the divergence of the diffusion flux is
given by |Ndiv(F tot)|max ≃ 350. Thanks to Eq. (11), one can im-
mediately write the relation ∆F0 ≃ ∆τBL|Ndiv(F tot)|max, where
∆τBL is the time during which the Balescu-Lenard equation has
to be evolved in order to develop a ridge. With the previous nu-
merical values, one obtains ∆τBL ≃ 3×10−5. Comparing the nu-
merically measured time ∆τS12 and the time∆τBL predicted from
the Balescu-Lenard equation, one obtains

∆τS12

∆τBL
∼ 1. (52)

As expected, the projection of the response over an unbiased
basis leads to over a hundredfold increase of the susceptibil-
ity of the disc and therefore to a very significant acceleration
of secular diffusion. Thanks to this mechanism, we now find a
very good agreement between the diffusion timescales observed
in numerical simulations and the predictions from the Balescu-
Lenard formalism. This quantitative match is rewarding, both
from the point of view of the accuracy of the integrator (sym-
plecticity, timestep size, softening...), and from the relevance of
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Fig. D.1. Map of Ndiv(F bare
tot ), corresponding to the bare secular dif-

fusion flux, using the same conventions as in Fig. 4. The con-
tours are spaced linearly between the minimum and the maximum of
Ndiv(F bare

tot ). The maximum value for the positive blue contours corre-
sponds to Ndiv(F bare

tot ) ≃ 0.30, while the minimum value for the nega-
tive red contours is associated with Ndiv(F bare

tot ) ≃ −0.50. This figure is
qualitatively similar to the one obtained in Fig. 9 of Paper I.

effects, i.e. when assuming that M̂ ≡ 0, one recovers the inho-
mogeneous Landau equation (Chavanis 2013) which reads

∂F
∂t
= π(2π)d µ

∂

∂J1
·
[∑

m1,m2

m1

∫
dJ2 |Am1,m2 (J1, J1)|2

× δD(m1·Ω1−m2·Ω2)
(
m1·

∂

∂J1
−m2·

∂

∂J2

)
F(J1, t)F(J2, t)

]
. (D.1)

Equation (D.1) involves the bare susceptibility coefficients
|Am1,m2 (J1, J2)|2, which can be equivalently defined (see
Appendix B of Paper I) by

Am1,m2 (J1, J2) = −
∑

p

ψ(p)
m1 (J1)ψ(q)∗

m2 (J2)

=
1

(2π)4

∫
dθ1dθ2 u(|x(θ1, J1)−x(θ2, J2)|) ei(m1·θ1−m2·θ2), (D.2)

where u(x) is the binary potential of interaction given by
u(x) = −G/|x| for gravity. This estimation therefore does not re-
quire to estimate the response matrix from Eq. (24), but one
still has to perform integrations along the resonant lines as in
Eq. (42). Let us provide a first numerical implementation of this
equation in the context of galactic dynamics. The contours of
Ndiv(F bare

tot ) are illustrated in Fig. D.1. Comparing the maps of
the dressed diffusion flux Ndiv(F tot) from Fig. 4 and the bare
diffusion flux Ndiv(F bare

tot ), allows us to assess the strength of the
self-gravitating amplification. As expected, when turning off the
self-gravity of the system, one reduces significantly the suscep-
tibility of the system and therefore slows down its secular evolu-
tion by a factor of about 1000. One may also remark that while
the secular appearance of a resonant ridge in the dressed diffu-
sion from Fig. 4 was obvious, the shape of the contours obtained
in the bare Fig. D.1 do not emphasise as clearly the appearance
of such a narrow resonant ridge. One can still remark that the
structure of the bare contours obtained in Fig. D.1 is similar to
what was obtained in Fig. 9 of Paper I, through the WKB limit
of the Balescu-Lenard equation. One can finally note that the
amplitudes of the bare divergence contours obtained previously

Fig. D.2. Illustration of the radial basis elements of the ℓ = 2 Kalnajs
basis elements for kKa = 7, defined in Appendix A, which were used in
the estimation of the Balescu-Lenard diffusion flux in Sect. 4.2. As the
radial index n increases, the basis elements get more and more wound.

are similar to the WKB values obtained in Paper I. As a conse-
quence, the comparison of Figs. 4 and D.1 emphasises that the
strong self-gravitating amplification of loosely wound perturba-
tions is indeed responsible for the appearance of a narrow ridge,
while also ensuring that this appearance is sufficiently rapid, as
observed in the diffusion timescales comparison from Eq. (52).

D.2. Turning off loosely-wound contributions

As emphasised in the Introduction, the WKB limit of the
Balescu-Lenard equation presented in Fouvry et al. (2015a) was
not able to capture the mechanism of swing amplification, which
involves unwinding perturbations. By considering a complete
and global basis as in Eq. (16), we have shown in Fig. 4 how
the missing amplification from Fouvry et al. (2015a) could be
recovered. Using the numerical method of estimation of the
secular diffusion flux as presented in Sect. 3, one can try to re-
cover the results obtained within the WKB formalism by care-
fully choosing the considered basis elements generically intro-
duced in Eq. (16) and chosen to be Kalnajs basis elements as
detailed in Appendix A. We recall that each basis element de-
pends on two indices: an azimuthal index ℓ and a radial one n.
Because in S12’s simulation perturbations were restricted to the
harmonic sector mφ = 2, one only has to consider basis elements
associated with ℓ = 2. Moreover, as illustrated in Fig. D.2, the
larger n the radial index, the faster the radial variation of the
basis elements and therefore the more tightly wound the basis
elements. So as to get rid of the loosely-wound basis elements
which are the ones which can get swing amplified, we perform a
truncation of the radial indices considered. Therefore, we define
the secular diffusion flux Ndiv(FWKB

tot ) computed in the same
way than Ndiv(F tot) as presented in Sect. 4.2, except that the
basis elements are such that ncut≤n ≤ nmax, with ncut = 2 and
nmax = 8. By keeping only the tightly wound basis elements, one
can therefore consider the same contribution as the one consid-
ered in the WKB limit presented in Paper I. The contours of
Ndiv(FWKB

tot ) are illustrated in Fig. D.3. One can note that the
values of the contours obtained in the map of Ndiv(FWKB

tot ) illus-
trated in Fig. D.3 are in the same order of magnitude as the ones
which were presented in Fig. 9 of Paper I in the WKB limit.
The presence of positive blue contours of Ndiv(FWKB

tot ) is also
in agreement with a secular heating of the disc (i.e. an increase
of Jr). However, these contours do not display a narrow resonant
ridge as was observed in S12’s simulation or in Fig. 4.
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Figure 6.12: Figures adapted from Fouvry et al. (2015), with additional annotations. Predicted changes in the
mean-field DF from the inhomogeneous Balescu–Lenard equation (5.1) (left) and Landau equation (5.12) for the
long-term evolution of the Toomre disc. The Balescu–Lenard flux displays a sharp ridge, depopulating the circular
orbits and diffusing along the direction associated with the ILR in action space, k·J=Jr −2L. The overall amplitude
(not shown) of this ridge is consistent with S12’s N–body results. Importantly, taking collective effects into account
(Balescu–Lenard) drastically enhances the relaxation compared to the “naive” bare relaxation rate. The relaxation
time predicted by the Balescu–Lenard theory, TBL, is three orders of magnitude shorter than the one predicted by the
Landau theory, TLandau. Any kinetic theory who does not take them into account, either Chandrasekhar’s two-body
encounters (section 5.2.2) or Landau bare resonant interactions (section 5.2.1), would fail to predict even roughly the
correct relaxation timescale.

churning (Sellwood & Binney, 2002) of circular orbits sharply localised in action space. The new DF
is then linearly unstable allowing for an exponential growth of the potential/density fluctuations.

Yet, a few potential caveats in the early phase of this story can be raised and deserve further
investigation.

(i) The ridge presented in S12’s simulation is measured when the instability is already present.
This ridge might not correspond to the initial change in the DF but rather be induced by
the new instability. Earlier measurements (left panel of figure 6.11) mainly show a localised
depletion of circular orbits. Note however that this measurement is more challenging as the
changes are smaller.

(ii) The Balescu–Lenard equation (5.1) predicts the average evolution of the DF among different
realisations with initial Poisson shot noise. It does not predict the evolution of a single (quiet
start) N–body realisation.

(iii) The agreement between the prediction and the N–body measurement is more qualitative than
quantitative. The predicted ridge and the measured one are not at the same location. The
overall amplitude is claimed to be consistent, but the exact values are not given.

In the following, I address these points by investigating my own suite of N–body simulations and
providing a new, more quantitative comparison with improved kinetic predictions.

6.2.2 Predictions vs average measurements

Computing the flux

The flux from equations (5.1) and (5.12) generically reads

F(J) =
∑
k,k′

∫
dJ′Gkk′(J,J′) δD[k·Ω(J)−k′ ·Ω(J′)], (6.13)
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and similarly for the friction vector and diffusion tensor. For the Balescu–Lenard flux, the integrand
function, Gkk′ , reads

GFlux
kk′ (J,J′) = π(2π)dmk

∣∣Ud
kk′(J,J′,k·Ω)

∣∣2[k′ · ∂F
∂J′ F (J)−k· ∂F

∂J F (J′)
]
, (6.14)

and similarly for the Landau flux, with Ud→U . When neglecting collective effects, the Landau
coupling coefficients can be computed independently of any bi-orthogonal basis (appendix 6.B.2).
The friction vector and diffusion tensor take the same form with

GFric
kk′ (J,J′) = π(2π)dmk

∣∣Ud
kk′(J,J′,k·Ω)

∣∣2 k′ · ∂F
∂J′ (6.15a)

GDiff
kk′ (J,J′) = (2π)d+1mk⊗k

∣∣Ud
kk′(J,J′,k·Ω)

∣∣2 F (J′) (6.15b)

Each resonance contribution then corresponds to an integral of the form

Fkk′(J) =
∫

dJ′G(J′) δD[f(J′)], (6.16)

where f(J′)=k·Ω(J)−k′ ·Ω(J′). One has to perform integral along the resonance line f(J′)=0.
In section 4.2.2, I have defined some resonance coordinates, (u, v), such that u∝k·Ω is constant
along these resonance lines. Using these resonance coordinates, the resonance condition then reads

f(u′, v′) = Ω0 ∆k′
(
ures − u′) , (6.17)

with Ω0 the frequency scale and ∆k′ the half-range of the (dimensionless) resonant frequency
(equation 4.11). In equation (6.17), I also introduced the resonant line

ures = ϖk′(k·Ω/Ω0) (6.18)

where ϖk′(ω) follows from equation (4.15b). Performing the change of variables J′→(u′, v′) in
equation (6.16) and using the property δD(αx)=δD(x)/|α|, the flux ultimately reads

Fkk′(J) = H(ures)
∫ 1

−1

dv′

Ω0∆k′

∣∣∣∣ ∂J′

∂(u′, v′)

∣∣∣∣GFlux
kk′ [J,J′(ures, v

′)]. (6.19)

In this equation, the rectangular Heaviside function, H, from equation (3.43), ensures that the
resonance condition is satisfied. The friction and diffusion naturally follow using the G functions
from equations (6.15).

I then need to sum over the pairs of resonance numbers, k,k′. For discs, the coupling coefficients
impose kϕ=k′

ϕ=ℓ, with ℓ the considered harmonic number. Following Fouvry et al. (2015), I
only consider the pairs of ILR, OLR and corotation resonances. In practice, I added both the
contribution from the harmonics ℓ=2 and ℓ=−2. The rate of change of the DF, ∂F/∂t, is the
divergence w.r.t. actions of the flux (equation 5.2a). I compute this divergence using naive finite
differences with the step distance, δJr=δL=10−3.

Small scale contribution Given the discussion in section 5.2.2, one might be worried by the
contribution of the small-scale resonances. Indeed, from equation (5.17), the contributions should
scale as

∂F

∂t
∝
∑
k>0

1
kd−2γ , (recall 5.17)

with γ=1 and d=2. This is algebraically divergent. It was already pointed out in Rybicki (1971)
that the relaxation in razor-thin discs is of the order of the dynamical time, independently of the
number of particles. Yet, in the experiments I considered, the disc is not fully self-gravitating:
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part of the mean-field potential is given by a static halo. Furthermore, only the contributions from
ℓ=2 fluctuations are participating in the evolution of the system. Therefore, only the resonances
with kϕ=k′

ϕ=ℓ contribute to the flux, which ultimately scales as ∂F/∂t∝
∑
k 1/k. This is still

logarithmically divergent, as in the usual 3D Newtonian case (section 5.2.2). This divergence
should be regularised properly and is not physical: it is a consequence of the linearisation of the
fluctuations’ evolution (equation 1.19b). In what follows, I focus on the low-order resonances only.
This will be heuristically justified by the fact that, contrary to the 3D case, collective effects strongly
enhance these long-range (resonant) interactions.

Results In figure 6.13, I present the results of my computations of the expected flux2 from the
inhomogeneous Balescu–Lenard equation (5.1) and Landau equation (5.12). As already pointed

Figure 6.13: Predictions of the mean-field changes, ∂F/∂t, from the inhomogeneous Balescu–Lenard equation (5.1)
(left) and Landau equation (5.12) (right) for the long-term evolution of the Toomre disc (section 2.3.2) in action
space. In this figure (and hereafter), the colour scheme is inverted compared to figures 6.11 and 6.12: red contours
represent an increase in the number of particles, while blue contours indicate a depletion. Both predictions have
their own scale as collective effects strongly enhance the orbital reshuffling. Indeed, the relaxation time predicted by
the Balescu–Lenard theory, TBL, is three orders of magnitude shorter than the one predicted by the Landau theory,
TLandau, i.e., TLandau/TBL ∼1000. Undoubtedly, collective effects can drastically alter the secular evolution of discs.
Properly evaluating this collective dressing remains a particularly challenging task, as discussed in section 4.2.6.

out by F+15, the Balescu–Lenard flux is larger than the Landau one by three orders of magnitude.
This collective amplification is at variance with the one-dimensional case (figure 6.1) and the highly
magnetised HMF model (Benetti & Marcos, 2017) where collective effects considerably decelerate
the relaxation. From equation (5.1), the secular flux involves the square of the dressed coupling
coefficients and thus of the gravitational susceptibility, ∂F/∂t∼|Ud|2∼|N(k·Ω)|2 (equations 3.29
and 5.1). For this specific disc (half-mass Mestel Q=1.5), Toomre (1981) showed that collective
effects are able to swing amplify the perturbations by a factor |N| ∼30 (figure 7 therein). This is
reassuringly consistent with the ratio of the dressed vs bare fluxes, |FBL|/|FLandau|∼103∼|N|2, in
figure 6.13. It has been long known that cold discs are particularly prone to collective amplification
(Goldreich & Lynden-Bell, 1965; Julian & Toomre, 1966). This amplification is even more striking
here in the context of the collisional relaxation as it involves the square of the susceptibility.

Measuring the flux in simulations

I now set out to measure this flux in simulations. To do so, I used the same N–body code and sam-
pling procedures as for the linear response of Zang discs (section 4.3). I performed 100 realisations
of the Toomre disc, each with N=25×106 particles. Each simulation was run for t/tdyn =500 with

2From now on, I abusively refer to the rate of change of the mean-field DF as the “flux”, ∂F/∂t=−∇J ·F .
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a Plummer softening of ε=0.04 (equation 4.22). A full snapshot is recorded every t/tdyn =100.
Each snapshot is post-processed using OrbitalElements.jl (section 4.2.3) to compute the parti-
cles’ actions (Jr, L) and I simply count their number, n(Ji, Lj), in bins of width δJr=δL=0.01.
From these bin counts, the DF and its changes are obtained through

n(Ji, Lj) = 4π2 N

Mtot

∫ Ji+δJr

Ji

∫ Lj+δL

Lj

dJr dLF (Jr, L)

≃ 4π2 N

Mtot
δJrδLF (Ji, Lj), (6.20)

where the 4π2 prefactor comes from the integration over the angles (θr, θϕ).
In figure 6.14, I present the flux averaged over the 100 N–body simulations I performed along

with the Balescu–Lenard prediction from figure 6.13. The amplitude and the overall shape of

Figure 6.14: Left: Prediction of the mean-field changes, ∂F/∂t, accounting for collective amplification (figure 6.13).
Right: Flux measured in N–body simulations of the Toomre disc, averaged over 100 realisations with N=25×106

particles each. The changes in the DF are computed at t/tdyn =200, before the phase transition to an unstable
state. The prediction and measurement are found to be in good agreement, both in shape and most importantly in
amplitude. Collective effects play a major role in the secular evolution of these simulations and accounting for them,
albeit being a difficult task, is necessary to correctly describe their dynamical long-term evolution. This is one of the
key results of this thesis.

the flux in the Balescu–Lenard case are consistent with the N–body measurements. The changes
in the mean-field DF are computed as the difference between the initial bin counts and those at
t/tdyn =200. As illustrated in figure 6.15, this time is chosen so that the disc has not yet reached
the phase transition to an unstable state.

Let me stress that such an agreement between the Balescu–Lenard theory and the N–body
simulation was definitely not a given. The system is only marginally stable and supports weakly
damped modes (section 4.2.6). This is typically a regime where one could expect some discrepancy
between the Balescu–Lenard prediction and the measured relaxation rate (section 5.1.3).

With the results presented in this section, one could be tempted to conclude that the Balescu–
Lenard theory works perfectly for the initial evolution of this disc and call it a closed case. Yet, a
few questions remain.

(i) One may wonder why the flux is so much larger in the Balescu–Lenard case compared to the
Landau one. Beyond the statement that collective effects enhance the fluctuations through
swing amplification (Toomre, 1981), I wish to offer a new perspective on this question in
section 6.2.3.

(ii) Comparing figures 6.10 and 6.15, one may notice that the instability develops earlier in my
N–body simulations of N=25×106 particles than in S12’s with N=5×106 particles. This
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Figure 6.15: Left: Time evolution of the bisymmetric fluctuations (equation 4.27) in 12 different N–body realisations
of the Toomre disc with same parameters (N=25×106 particles, Plummer softening ε=0.04). Right: Same with a
running average over 30 dynamical times. Similarly to figure 6.10, the system is initially stable and undergoes a slow
relaxation towards an unstable state. The dashed line at t/tdyn =200 indicates the time at which the changes in the
DF are recorded in figures 6.14 and 6.19.

seems inconsistent with the claim that the relaxation time is proportional to the number of
particles, N . I will discuss this discrepancy in section 6.2.4.

(iii) The overall shape of the flux in my (averaged) N–body simulations and my Balescu–Lenard
prediction do not look at all the same as the measurements of Sellwood (2012) in a single
realisation and the prediction of Fouvry et al. (2015). This is the topic of section 6.2.5 below.

6.2.3 Damped modes and ridges

The collective amplification of the flux in Balescu–Lenard equation (5.1) is the direct consequence
of the gravitational susceptibility, N, from equation (3.18) through its contribution to the dressed
coupling coefficients, Ud (equation 3.12). Phrased differently, the Balescu–Lenard kinetic theory
accounts for the linear swing amplification of the fluctuations. To better understand the Balescu–
Lenard flux from figure 6.13, it is therefore enlightening to analyse it together with the results from
section 4.2.6 on damped modes in Toomre’s disc.

In figure 6.16 I illustrate the expected flux from the Balescu–Lenard equation (5.1) on top of
the associated linear susceptibility from section 4.2.6. To highlight the close link between damped
modes and ridges, I present both the converged and partially converged susceptibilities and the
associated fluxes. Degrading the convergence of the linear predictions, I showed in figure 4.15
that Toomre’s disc has (at least) three weakly damped modes. Using this partially converged
susceptibility, one can clearly see that each of these modes is at the origin of a sharp resonant ridge
in the long-term evolution of the mean-field DF.

In this figure, the susceptibility contour plots are represented as a function of the angular
momentum, L. The conversion between the pattern frequency, Re(ω), and the angular momen-
tum, L, is performed using the circular angular momentum corresponding to ILR frequency, i.e.,
2Ωϕ(L)−Ωr(L)=Re(ω). At resonance with these modes’ frequencies, stars are heated and move
from circular orbits to more eccentric orbits and to different guiding centre. At ILR, this heat-
ing/churning does not change (much) the resonant frequency of the orbit which flows along the
resonance line. Such a configuration is therefore particularly efficient at heating the disc. The
flux presented in figure 6.13 did not show such clear ridges. As illustrated in the right panel of
figure 6.16, this is consistent with the associated linear response from figure 4.14.

Interestingly, Sellwood (2012) observed the power-spectra of fluctuations as a function of the
radius during his long-term simulation. In the resulting figure 4, reproduced here in figure 6.17, he
highlighted the presence of three peaks in the power-spectra, in the early stage of the simulation,
i.e., before the appearance of any instability. These peaks are localised at their respective ILR
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Figure 6.16: Left: Illustration of the link between linear damped modes (bottom) and secular ridges (top) in the long-
term evolution of discs. The damped modes obtained in figure 4.15 are represented at the circular angular momentum
corresponding to their ILR, 2Ωϕ(L)−Ωr(L)=ΩM. Right: Same as the left panel but with the susceptibility from
figure 4.14 using more basis elements and resonances to ensure numerical convergence. The accuracy of the Balescu–
Lenard prediction is directly linked to the (slow) convergence of the linear susceptibility. The damped modes are
fully responsible for the ridges observed in the predicted flux. Near marginal stability, the secular heating of the disc
is strongly enhanced at resonance with the underlying weakly damped modes. This is particularly strong at the ILR
because (i) the pattern speed corresponds to populated locations in the disc and (ii) the flux direction is aligned with
the resonance line (black line), i.e., stars stay at resonance with the mode albeit being pushed away on more eccentric
orbits. This figure is one of the key results of this thesis.

The Astrophysical Journal, 751:44 (11pp), 2012 May 20 Sellwood

Figure 4. Power spectra of m = 2 disturbances in run 50M. Successive contour levels, which start from the same value in each plot, differ by factors of two. Each
panel is taken from data over the period indicated, which overlap so that only half the plots are from independent data. The solid curves show 2Ω(R) and the dashed
curves 2Ω(R) ± κ(R). Data outside the radial ranges marked by vertical dotted lines, where the surface density is low, are excluded because they are too noisy.

Figure 5. Time evolution of the peak overdensity in five simulations with
N = 50M. The cyan curve is for run 50M, reproduced from Figure 2, while
the green, red, and magenta curves show the behavior of runs 50Ma, 50Mb, and
50Mc created by randomizing the azimuths of the particles at t = 1000, 1200,
and 1400, respectively. For the blue curve, run 50Md, the particles preserved
the same E and Lz, but the radial phase was also reset. Both runs restarted from
t = 1400 manifest a single dominant instability.
(A color version of this figure is available in the online journal.)

the particle distribution that occurred in the original run prior to
azimuthal randomization.

The most dramatically different behavior is that of run 50Mc
(magenta), which manifests a single vigorous instability of
eigenfrequency ω = 0.6 + 0.16i—close to that of the dominant

Figure 6. Best-fit mode extracted from the period of exponential growth in run
50Mc using the procedure described by Sellwood & Athanassoula (1986). The
circles mark the radii of the principal resonances.

disturbance around t = 1400 identified in the earlier analysis
of run 50M (Section 4.2). The form of the unstable mode
is illustrated in Figure 6. Clearly, the particle distribution at
t = 1400 has a feature that provokes this instability, and which
must have been created by the earlier evolution.

6

Figure 6.17: Figure from Sellwood (2012). Illustration of the presence of weakly damped modes in N–body simu-
lations of Toomre’s disc. Power-spectra of the ℓ=2 fluctuations as a function of radius. The presence of 3 peaks in
the early power-spectra, localised at their respective ILR radius, might be the signature of the presence of weakly
damped modes. Later, the DF has been destabilised by the groove/ridge created at resonance with one of these
modes and the power-spectra is dominated by the instability.

radius. They might be the signature of weakly damped modes. While their number is tentatively
comparable to my results from figure 4.15, I do not claim that they should be quantitatively
compared. Indeed, my predictions in the left panel of figure 6.16 have been purposely degraded
to illustrate the presence of these modes. Improving the generic linear computations (section 4.5)
would be necessary to perform a more quantitative comparison. One could also investigate the
method used by Heggie et al. (2020) to probe the damped mode predicted by Weinberg (1994) in
spherical King’s models.
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6.2.4 Impact of softening

I have shown in section 4.3.2, that softening the gravitational interaction affects the location of
(unstable) modes. In the previous section 6.2.3, I discussed the close link between (weakly) damped
modes and the secular evolution of the DF. It is therefore natural to investigate the impact of
softening on this long-term evolution. In particular, as Plummer softening tends to shift modes
towards lower pattern speed and growth rate (figure 4.16), I would expect the ridge(s) to (i) appear
later and (ii) move towards higher angular momentum in simulations with a larger softening length.
I set out to investigate these hypotheses in numerical simulations. I ran long-term simulations of
Toomre’s disc with Plummer softening (equation 4.22) for different softening lengths. The results
presented in the previous sections were all obtained using the smallest softening length, ε=0.04.

In figure 6.18, I illustrate the long-term evolution of bisymmetric fluctuations using the pro-
jection coefficient, |A2(t)|, from equation (4.27). It is clear that softening weakens the secular

Figure 6.18: Illustration of the impact of Plummer softening on the simulated long-term evolution of discs. Power in
the bisymmetric fluctuations (section 4.3.3) as a function of time. For each softening value (colour) the bottom (resp.
top) line corresponds to the lowest 20% (resp. largest 80%) instantaneous values of the bisymmetric coefficient, |A2(t)|
from equation (4.28). The statistics are performed among 100 different realisations of N=25×106 particles (same
initialisations for different softening values). As expected from Sellwood (2012)’s results, the disc first undergoes a
slow relaxation before entering a linearly unstable regime. The larger the softening length, the slower the relaxation,
and the more delayed the phase transition. This is one of the key results of this thesis.

relaxation and delays phase transition. Note that it would also happen if the relaxation was driven
by two-body local encounters (Theis, 1998). However, local encounters are ruled out in these ex-
periments as I only considered global, ℓ=2, fluctuations. I claim that, here, the phase transition
is delayed because the softening affect the collisionless properties of the disc and consequently its
(collisional) dressed resonant relaxation. Phrased differently, the softening makes the disc more (lin-
early) stable than it should be. Consequently, softening reduces swing amplification and ultimately
delays the relaxation of the disc towards an unstable configuration.

In particular, this explains the discrepancy in the time of phase transition between S12’s sim-
ulations (figure 6.10) and mine (figure 6.15). Indeed, S12 used a larger softening length, ε=0.125,
than mine, ε=0.04. In his simulation of N=5×107 particles, the instability sets in at t/tdyn∼1200.
This is consistent with my results (figure 6.18) where the instability sets in at t/tdyn∼400 (resp.
800) for ε=0.8 (resp. 0.16) using N=25×106 particles.

To further substantiate my claim, it would be enlightening to simulate this long-term evolution
using Kuzmin softening kernel (equation 4.23). In section 4.3.2, I showed that this softening was
able to preserve the collisionless properties of the unstable Zang disc. I therefore expect it not to
affect the long-term simulations of razor-thin disc for a wide range of softening lengths. Let me
finally note that, as already mentioned in footnote 7, the Plummer softening kernel has a physical
interpretation in razor-thin disc simulations (Sellwood, 2014). The associated softening length can
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be set to mimic the finite thickness of the realistic disc. Yet, to compare quantitatively N–body
simulations and theoretical predictions, either from linear response or kinetic theory, one should be
aware of the bias that softening introduces.

6.2.5 Stochastic ridges

The last point I raised in section 6.2.2 is the discrepancy between on one side the average flux
measured in my kinetic predictions and simulation results and on the other side the predictions of
F+15 and the simulations of S12.

Predictions First, let me start with the kinetic predictions. Following section 6.2.3, the source
of the discrepancy between my Balescu–Lenard prediction and that from F+15 obviously lies in
the computation of the polarisation matrix. The computation of the associated Balescu–Lenard
flux was performed very similarly in the two cases, summing over the same pairs of resonances
(pairs of ILR, corotation and OLR only). Beyond the care one should take on the overall prefactor,
these computations are intensive but are not specifically challenging. The only fundamentally
difficult part is the computation of the dressed coupling coefficients, Ud, and more precisely the
computation of the polarisation matrix, M (equation 3.28). As visible in figure 6.16, the shape and
amplitude of the Balescu–Lenard flux is closely linked to the shape and amplitude of the linear
susceptibility. F+15 used a different bi-orthogonal basis (Kalnajs, 1976) to compute the polarisation
matrix. This basis is defined through relatively unstable recurrence relations so that they only used
9 basis functions. Furthermore, they computed the resonant integral from equation (3.28) directly
in apocentre and pericentre coordinates. They were therefore unable to evaluate the polarisation
matrix at real frequencies and used values slightly above the real axis. All these elements together
lead me to believe that their polarisation matrix was not converged.3

Simulations On the other hand, the discrepancy between my N–body simulations and S12’s is
more interesting to address. There are two important differences between our simulations. The
first one is the softening length, ε=0.04 for me and ε=0.125 for S12 (same Plummer softening
kernel from equation 4.22). The second one is that my N–body figure 6.14 is an average over 100
realisations randomly sampled while S12’s N–body result (figure 6.11) is a single realisation with
quiet start initial conditions.

The Balescu–Lenard equation (5.1) provides a prediction for the average evolution among dif-
ferent realisations, i.e., different initial conditions drawn from the same mean-field DF. This is
the reason why I performed multiple realisations as was done for the one-dimensional system (sec-
tion 6.1). From figure 6.15, one can already spot that the evolution of the fluctuations significantly
varies from one realisation to another.4 It is therefore of interest to investigate the impact of the
intrinsic stochasticity among different realisations on the secular evolution of discs. To do so, I
represent in figure 6.19 the flux measured in 12 different realisations of the Toomre disc. These
realisations are those whose fluctuations are represented in figure 6.15. The time at which the
changes in the DF are recorded is the same as in figure 6.14, i.e., t/tdyn =200.

The first thing to notice is that individual realisations are very different from the averaged
one. In the averaged flux (figure 6.14), all the circular orbits with 0.75≲L≲1.5 are depopulated
in profit of more eccentric orbits. In each individual realisation, the changes in the DF are much
more localised. The changes are concentrated along one or multiple sharp ridges. These ridges

3I did compute the polarisation matrix using the same parameters as F+15 but using the Legendre method
presented in section 3.3.3. I found that Toomre’s disc was predicted to be unstable. This is also a problem I
encountered when using too few Clutton-Brock (1972)’s basis functions without reducing the number of resonances.

4These variations are larger than the ones reported by Sellwood (2020). However, he did perform only two different
realisations and used a quiet start sampling procedure.
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Figure 6.19: Illustration of the stochasticity of the long-term evolution of marginally stable discs. Flux measured in
12 individual realisations of the Toomre disc, with N=25×106 particles each. As for the averaged flux in figure 6.14,
the changes in the DF are measured at t/tdyn =200, i.e., before the phase transition to an unstable state. The number
and location of the ridges strongly varies from one initialisation to another, and they do not appear simultaneously.
This is one of the key results of this thesis.

come in different number, locations and at different time/amplitude in each realisation. Note that
their individual intensity is up to 2-3 times larger than the averaged one.

The inhomogeneous Balescu–Lenard equation (5.1) is, by design, unable to predict such a
diversity as it is an average prediction. Predicting the scatter among different realisations is the
purpose of the large deviation theory (Bouchet, 2020; Feliachi & Bouchet, 2021). Recent advances
have been made in this direction for inhomogeneous systems while neglecting collective effects
(Feliachi & Fouvry, 2023). Self-gravity has been taken into account in the large deviation theory
of homogeneous systems (Feliachi & Bouchet, 2022). However, the inclusion of collective effects in
the large deviation theory of inhomogeneous systems is still an open question.

On a more speculative note, it is interesting to notice that the scatter in results from different
initial conditions is particularly large in this system near marginal stability. From the right panel
of figure 6.15, it seems to increase as the disc approaches the phase transition. This highlights the
importance of averaging over many realisations to study reliably the secular evolution of marginally
stable discs. The origin of this stochasticity is still to be understood.

6.3 Conclusion

In this chapter, I presented applications of the Balescu–Lenard kinetic theory from chapter 5 to the
secular evolution of the one-dimensional and razor-thin self-gravitating systems. I showed that the
inhomogeneous Balescu–Lenard equation (5.1) is able to quantitatively predict the mean long-term
evolution of these systems. The kinetic predictions were compared with N–body simulations once
averaged over many realisations in action space. Doing so, I highlighted the importance of resonant
encounters and collective effects in driving the relaxation of stellar systems.
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The consequences of self-gravity proved to be particularly diverse and would have been difficult
to predict a priori without the valuable insights provided by the Balescu–Lenard kinetic theory.
In the one-dimensional system, I showed in figure 6.1 that collective effects can drastically slow
down the diffusion. Self-gravity stiffens the system making it less responsive to perturbations.
Furthermore, even out of (thermal) equilibrium, the system suffers from a quasi kinetic blocking,
further delaying its relaxation (figure 6.8). This at variance with the situation for cold razor-thin
discs (figure 6.13) where collective effects strongly enhance the orbital reshuffling.

In such marginally stable systems, fluctuations get strongly swing amplified at resonance with
the underlying weakly damped modes (figure 6.16). The secular evolution therefore is particularly
sensitive to the collisionless linear response of the disc. By stabilizing the disc, I showed that
softening delays the phase transition to an unstable state (figure 6.18). Finally, I noted that, in
this regime, the average flux is not representative of the individual realisations (figure 6.19): the
variance among different initial conditions get increasingly large as the disc approaches the phase
transition.

6.4 Perspectives
Among the most pressing improvements to the work presented in this chapter, I would like to
highlight (i) the need for a regularised treatment of marginal stability and small scales in the
Balescu–Lenard kinetic theory and (ii) the importance of accounting for the intrinsic stochasticity
of the secular evolution of weakly stable systems.

On the first point, the kinetic predictions diverge at small scales (section 5.2.2) and at phase
transition (section 5.1.3). Chandrasekhar did regularise the deflections at small scales taking hard
encounters into account. This regularisation should be adapted to the resonant (inhomogeneous)
Landau and Balescu–Lenard kinetic theory. Ultimately, this regularisation would enable the appro-
priate comparison of the impact of small vs large scales on the secular relaxation of self-gravitating
systems. Of course, the respective contributions would vary depending on the geometry and the
kinematics. In the one-dimensional (section 6.1) and HMF (Benetti & Marcos, 2017) models, the
pairwise interaction potential favours the latter. The usual 3D Newtonian potential (equation 2.3)
favours the former in dynamically hot systems such as globular clusters (Fouvry et al., 2021). In
colder configurations such as thin galactic discs, the dressing of the long-range interactions by
collective effects could dominate, but this remains to be accurately quantified.

Similarly, the divergence of the Balescu–Lenard at marginal stability is particularly worrying
as (isolated) discs are driven towards phase transition by collisional relaxation (section 6.2.1). This
divergence should be regularised by considering the contribution of wave-particle interactions, in
the spirit of the so-called quasilinear theory in plasma physics (see, e.g., Rogister & Oberman, 1968;
Hamilton & Heinemann, 2020).

On the second point, individual realisations do evolve very differently (figure 6.19). This large
variance among different initial conditions is particularly striking near marginal stability. Capturing
this intrinsic stochasticity is beyond the scope of the Balescu–Lenard kinetic theory. The large
deviation theory is a promising avenue to estimate this variance (Bouchet, 2020; Feliachi & Bouchet,
2021). However, the inclusion of collective effects in the large deviation theory of inhomogeneous
systems and its effective computation are still open questions.

Beyond these deep theoretical challenges, a few more practical improvements and investigations
could be performed. In particular, it would be rewarding to transpose Zang’s method to the
computation of dressed coupling coefficients for a more accurate secular prediction in discs. This
would notably allow one to accurately quantify the convergence of the present generic method. It
could also be interesting to investigate the impact of the softening kernel on the secular evolution
of weakly stable discs (section 6.2.4).



Appendices

6.A One-dimensional simula-
tions

This appendix is reproduced from Roule et al.
(2022). It details the numerical methods I used
to perform the N–body simulations of the one-
dimensional systems studied in this thesis.

The system’s total Hamiltonian is

Htot =
N∑
i=1

1
2miv

2
i +

∑
i<j

mimj U(xi, xj), (6.21)

so that the equations of motion for particle i read

ẋi = vi, v̇i = G
(
M r
i −M l

i

)
, (6.22)

with M r
i (resp. M l

i) the total mass on the right
(resp. on the left) of particle i. Importantly, by
sorting the set {xi}, one can compute these cu-
mulative masses in a single pass. Determining
the (exact) instantaneous forces on all particles
requires therefore O(N lnN) operations.

The present one-dimensional system can
be integrated exactly using a collision-driven
scheme (Noullez et al., 2003). However, this ap-
proach requires O(N2 lnN) operations per dy-
namical time, making long-time integrations of
large-N systems too challenging. As such, I
rather settle on using an approximate time in-
tegrator (with exact forces). Because equa-
tion (6.21) is separable, one can use standard
splitting methods (see, e.g., Hairer et al., 2006)
to devise integration schemes. The main source
of error comes from the abrupt force changes ev-
ery time particles cross, making it wiser to limit
oneself to low-order schemes. I use the standard
leapfrog scheme (see, e.g., Sec. 3.4.1 in Binney &
Tremaine, 2008) which requires a single (costly)
force evaluation per timestep, δt, and an over-
all O(N lnN tdyn/δt) operations per dynamical
time.

In figure 6.20, I check the sanity of the inte-
gration algorithm, by illustrating the conserva-
tion of the total energy, Etot, as one varies the
timestep δt, the number of particles, N , and the
overall number of integration time steps, t/δt.

Figure 6.20: Relative error in the system’s total en-
ergy, Etot, as a function of (i) the timestep δt (with
N=104, T/tdyn =100), (ii) the number of particles N
(with δt/tdyn =10−3, T/tdyn =100), (iii) the total number
of integration steps t/δt (with N=104, δt/tdyn =10−3).

Because the pairwise interaction, U(x, x′)
from equation (2.1), does not have a continuous
derivative, the leapfrog scheme is only first-order
accurate, i.e., its error scales like O(δt) after a
fixed finite time (top panel). As one increases N ,
these discontinuities weaken, so that the error
at finite time scales like O(1/N) (central panel).
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Finally, for the present explicit scheme, I empir-
ically find that the error in Etot grows like

√
t as

a function of time (bottom panel).
To prevent the N–body realisations from

drifting away, I systematically perform the op-
eration vi←vi−

∑N
i=1mivi/Mtot at the simula-

tion’s onset, hence setting the system’s total mo-
mentum to zero. Such a recentring slightly blurs
the effective DF in velocity space (and therefore
in energy) by an amount proportional to 1/

√
N .

To mitigate this effect, I always chose values of
N large enough, typically N=105.

In the Landau simulations (chapter 6), I in-
troduce two types of particles: (i) massive back-
ground particles that follow the smooth mean
potential, and (ii) massless test particles driven
by the instantaneous (noisy) potential generated
by the background particles. While the back-
ground particles follow the unperturbed mean-
field orbits, the orbits of the test particles are
slightly altered by the bare potential fluctua-
tions in which they are embedded. The orbital
diffusion undergone by these test particles cor-
responds to the (undressed) Landau diffusion.
Such simulations only keep track of the Landau
diffusion. They do not mimic the Landau flux as
massless test particles do not undergo any fric-
tion (Nelson & Tremaine, 1999).

6.B Bare coupling coefficients

Only considering the initial Poisson noise (finite-
N) effects, not dressed by collective effects, there
is a much easier way to compute the diffusion
coefficients. The bare susceptibility coefficients
from equation (3.4) can notably be computed in-
dependently of any basis element.

6.B.1 One-dimensional model

In the 1D case, using the effective anomaly w
introduced for angle-action computation (equa-
tion 2.7), they take the simple form

Ukk′(J, J ′) ∝
∫ 1

−1
dwdw′g(x)g(x′)U(x, x′), (6.23)

with g(x) = dθ
dw cos(kθ). Note that symmetry im-

poses Ukk′(J, J ′)=0 for any k, k′ of different par-
ity, as illustrated in figure 6.3. Sampling uni-
formly the anomalies w,w′ using K nodes (per

anomaly) and following the mid-point rule, equa-
tion (6.23) becomes

Ukk′(J, J ′) ∝ 1
K2

K∑
i,j=1

gig
′
jU(xi, x′

j), (6.24)

where the gi=g(xi) and g′
j =g(x′

j) are pre-
computed using direct integration of dθ/dw.
This computation only has to be made once, and
can be made in O(K) steps.

A naive reading of equation (6.24) could lead
us to believe that the computation of Ukk′(J, J ′)
requires O(K2) steps. Fortunately, this can be
made in O(K) steps, owing to the (almost sepa-
rable) form of the pairwise interaction potential

U(x, x′) ∝ |x− x′|

=
{

(x− x′) if x > x′,

(x′ − x) if x < x′.
(6.25)

This allows me to expand equation (6.24) and
rewrite the sums over i and j into a unique sum
of cumulative terms to be computed on the fly.
It reads

Ukk′(J, J ′) = 4G
π2K2

K∑
j=1

g′
j

(
Pj +Qj

)
, (6.26)

with the cumulative sums

Pj =
wj∑
i=1

gi
(
x′
j−xi

)
, Qj =

K∑
i=wj+1

gi
(
xi−x′

j

)
, (6.27)

and wj =Card
{
i ∈ J1,KK

∣∣xi ≤ x′
j

}
. Impor-

tantly, Pj and Qj can both be computed in a
single pass, requiring overall O(K) operations to
estimate Ukk′(J, J ′). Such algorithmic technical-
ities are key to provide efficient and trustworthy
predictions of the bare coupling coefficients.

Therefore, I now have an easy and precise
way to compute the bare susceptibility coeffi-
cients without resorting to any biorthogonal ba-
sis. This has also been useful as an element
of comparison for the bare susceptibility coeffi-
cients computation using the bi-orthogonal basis
through equation (3.26) allowing me to validate
a posteriori my methods.

6.B.2 Razor-thin discs

Similarly, for the razor-thin discs, the bare sus-
ceptibility coefficients can be computed directly



100 Chapter 6. Secular applications

from equation (3.4) without any need for a basis.
For a given harmonic number ℓ, they read

U ℓkk′(J,J′) =
δℓkϕ

δℓk′
ϕ

π2

∫ π

0
dθr
∫ π

0
dθ′

r U
ℓ(r, r′)

× cos[krθr+kϕ(θϕ−ϕ)]

× cos
[
k′
rθ

′
r+k′

ϕ(θ′
ϕ−ϕ′)

]
, (6.28)

where U ℓ(r, r′) stands for the Fourier trans-
form w.r.t. the configuration angle difference
∆ϕ=ϕ−ϕ′ of the interaction potential. Using
the parity of the interaction potential

U(r, r′,∆ϕ) = −G√
r2 + r′2 − 2rr′ cos ∆ϕ

. (6.29)

w.r.t. this angle difference, it reads,

U ℓ(r, r′) = 1
π

∫ π

0
dγ U(r, r′, γ) cos(ℓγ), (6.30a)

= −G
r

3F̃2
[
(1

2 ,
1
2 , 1), (1−ℓ, 1+ℓ), 2a/(1+a)

]
√

1 + a
,

(6.30b)

where r=
√
r2 + r′2, a=2rr′/r2 and 3F̃2 is the

regularised (generalised) hypergeometric func-
tion. This integral diverges for r=r′. In prac-
tice, this divergence is to be integrated over
through equation (6.28). However, to avoid nu-
merical instabilities, I regularise the potential by
using the Plummer softened potential, Uε from
equation (3.30), with ε=10−5. For this softening

kernel, the expression of U ℓε(r, r′) is still given by
equation (6.30b), with r=

√
r2 + r′2 + ε2.

The double integral in equation (6.28) can
be computed using a simple middle point rule
and the computation of the bare susceptibility
coefficients can be made in O(K2) steps, where
K is the number of nodes per angle. Unfortu-
nately in this case, the separability of the inter-
action potential is lost. As a sidenote, this is
because 1/r is not a “harmonic” interaction in
2D, i.e., it is not a solution of Laplace equation.
The computation of the bare susceptibility coef-
ficients is therefore more costly than in the 1D
case. However, it still provides a good bench-
mark for the computation of the bare suscep-
tibility coefficients using the biorthogonal basis
(equation 3.26).

The analytic expression in equation (6.30b)
could also prove useful for the computation of
softened basis elements for razor-thin discs. To
design softened basis elements, following sec-
tion 3.2.4, one mainly has to compute the cross-
product matrix from equation (3.32). For razor-
thin bases, different azimuthal harmonics are de-
coupled. For a given harmonic number, ℓ, the
cross-product matrix reads

Cℓpq = −(2π)2
∫

drdr′ rr′ U ℓε(r, r′)

×Dpℓ(r)Dqℓ(r′), (6.31)

with U ℓε the Fourier transform of the softened
potential from equation (6.30a).



Chapter 7

Kinetic blockings

In this chapter, I revisit the results we published in Fouvry & Roule (2023), hereafter FR23. For this
article, I contributed to the interpretation of the results, i.e., the understanding of the relaxation
scalings, the plan and the writing of the paper. The numerical simulations were performed by the
first author. Their detailed description is not reproduced here but can be found in appendix E of
FR23.

In some particularly contrived set-ups, the inhomogeneous Balescu–Lenard equation (5.1) can
exactly vanish, i.e., predict no evolution for the mean-field distribution F . This is a kinetic block-
ing (Eldridge & Feix, 1963; Chavanis, 2001; Dubin, 2003; Bouchet & Dauxois, 2005; Chavanis &
Lemou, 2007; Gupta & Mukamel, 2011; Barré & Gupta, 2014; Lourenço & Rocha Filho, 2015).
For these systems, a higher-order kinetic equation needs to be derived to capture the evolution
of the mean-field distribution. Such an equation has recently been derived and tested by Fouvry
(2022), in the dynamically hot limit where collective effects can be neglected. While the Landau
and Balescu–Lenard equations presented in chapter 5 capture (linearised) two-body interactions
and scale as 1/N , this second-order equation involves three-body interactions and scales as 1/N2.
I will therefore refer to it as the (inhomogeneous) 1/N2 Landau equation. Taking collective effects
into account in this regime, i.e., deriving the 1/N2 Balescu–Lenard equation, is yet to be achieved
(even in the homogeneous regime).

Interestingly, Fouvry (2022) pointed out the existence of a class of interaction potentials for
which the inhomogeneous 1/N2 Landau equation also exactly vanishes – whatever the considered
mean DF. It is a second-order bare kinetic blocking, where bare emphasises here that this blocking
only holds in the limit where collective effects are neglected.

In this chapter, I will first present a specific set up in which these various blockings can occur. I
will then sketch the kinetic equations at play and discuss the implications of these blockings on the
system’s evolution. Finally, I will present numerical investigations of these regimes, highlighting
the impossibility of a second-order full kinetic blocking. Hence, I will claim that the evolution of
self-gravitating systems is at most driven by three-body interactions, and that the 1/N2 Balescu–
Lenard equation is the highest-order kinetic equation which still needs be derived.

7.1 Blocked systems

For the two-body collision operator, i.e., the r.h.s., to vanish in equation (5.1) whatever the con-
sidered DF, the system must:

• live in a one-dimensional position space (two-dimensional phase space),
• have a monotonic frequency profile,
• only support 1:1 resonances, i.e., impose k=k′ in the Fourier expansion of the interaction

101
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potential,
U(θ, J, θ′, J ′) =

∑
k,k′

δk
′
k Uk(J, J ′) ei(kθ−k′θ′). (7.1)

Taken together, these conditions ensure that the only orbit satisfying the resonance condition in
equation (5.1) is the considered orbit itself. Such a local resonant coupling cannot contribute to
any change in the DF, as already highlighted in section 6.1.2.

For this chapter, I will directly use angle-actions as the base 1D canonical (specific) phase space
coordinates, w=(θ, J), without reference to the usual position-velocity configuration space. The
angle θ is to be considered as a 2π-periodic position and the associated action J as a momentum.
They are not “instantaneous” angle-action coordinates self-consistently constructed from the cur-
rent DF. Indeed, these coordinates are rather defined initially, once and for all, from the mean
external potential.

Let me consider that the system’s evolution is driven by the total specific Hamiltonian

H =
N∑
i=1

Uext(wi) +
N∑
i<j

µU(wi,wj), (7.2)

with Uext(w) some given external potential and U(w,w′) some pairwise interaction potential, whose
typical amplitude is denoted G. In practice, the symmetry U(w,w′)=U(|θ−θ′|, {J, J ′}) is assumed.
This choice also ensures the usual conservation laws (see appendix E1 in FR23), namely of the total
energy and total momentum. Furthermore, the pairwise interaction potential is taken to have no
mean-field contribution whatever the angle-independent DF, i.e., it vanishes once averaged over
the angles. Phrased differently, U00(J, J ′)=0 in equation (3.4). Therefore, the mean-field potential
is fully imposed by the external potential, Uext(w). Setting a mean-field equilibrium then amounts
to choosing an external potential, or equivalently a frequency profile, J 7→Ω(J).

This system is said to be inhomogeneous because the pairwise interaction does depend on the
particles’ actions.1 In addition, the Fourier expansion of the pairwise interaction is assumed to
be U(w,w′)=

∑
k,k′δk

′
k Uk(J, J ′)eik(θ−θ′). Here, the Kronecker symbol, δk′

k , imposes k=k′. The
system only sustains 1:1 resonances; this is a necessary condition for the first-order full kinetic
blocking to occur. The shortened notation for the Fourier coefficients is to be understood as
Uk(J, J ′)=Ukk(J, J ′) from the usual notations introduced in equation (3.4).

In FR23, we focused on one particular interaction potential, namely equation (D6) in Fouvry
(2022). This interaction potential reads2

U(w,w′) = G (J−J ′)2 B2[θ−θ′], (7.3)

with B2(θ)=B2[ 1
2πw2π(θ)], B2(x)=x2−x+ 1

6 , the second Bernoulli polynomial, and the angle “wrap-
ping function”

0≤w2π(θ) < 2π; w2π(θ) ≡ θ [2π]. (7.4)

The function B2(θ) is illustrated in figure 7.1. As discussed, the interaction potential averages to
zero over angles, i.e.,

∫
dθB2[θ]=0, so that F (J) never generates any mean potential. Mean field

quantities such as the frequency profile are therefore fully determined by the external potential
Uext(w).

We focused on this specific interaction potential because it allows all kinetic regimes to be
reviewed by varying the mean-field potential. Other known systems with more standard interaction
potential exhibiting a first-order full kinetic blocking include one-dimensional plasmas (Chavanis,

1It is as if in a homogeneous plasma, the electrostatic force between two electrons would not only depend on their
distance but also on their velocities.

2The interaction potential from Eq. (7.3) was devised in Fouvry (2022) from theoretical considerations. Unfortu-
nately, as far as we know, this potential does not directly correspond to any physical system.
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Figure 7.1: Figure from Fouvry & Roule (2023). Angular dependence, B2(θ), from the interaction potential of
equation (7.3).

2013a), axisymmetric vector resonant relaxation (Fouvry et al., 2019b) and vortices (Chavanis &
Lemou, 2007). However, none of these classical systems exhibit a second-order bare kinetic blocking.

Let me investigate the long-term evolution of systems driven by equation (7.3) in the dynam-
ically hot limit. In that context, it corresponds to the limit G≪Gcrit (abusively denoted G→0)
where Gcrit stands for the critical value of G above which the system becomes linearly unstable.

In order to highlight various regimes of relaxation, let me consider three different external
potentials, i.e., three different frequency profiles. More precisely, fixing the prefactors to unity,
these profiles are given by

Profile 1: Ω(J) = |J |; (7.5a)
Profile 2: Ω(J) = J |J |; (7.5b)
Profile 3: Ω(J) = J. (7.5c)

And for each case, the same initial DF, F (J)∝exp(−J4), is used. This DF does not correspond to
the thermal equilibrium of these profiles.

7.2 Kinetic equations

Given some interaction and external potentials, kinetic theory aims at predicting ∂F (J, t)/∂t, i.e.,
the rate of orbital redistribution, in the statistical limit N≫1. Let me now sketch the equations de-
scribing the evolution of the previous systems at successive orders in 1/N , highlighting in particular
how kinetic blockings may occur.

7.2.1 First-order kinetic equation

Accounting only for two-body correlations, assuming linear stability, and neglecting collective ef-
fects, the system’s relaxation is described by the inhomogeneous Landau equation (section 5.2.1).
Limiting ourselves to 1:1 resonances, it reads

∂F (J)
∂t

∝ µ ∂

∂J

[∑
k1

k1

∫
dJ1

∣∣Uk1(J)
∣∣2 δD

(
k·Ω

)
k· ∂
∂JF2(J)

]
, (7.6)

where the time dependence was omitted for clarity. Recalling that µ=Mtot/N , this relaxation is
driven by 1/N effects. In equation (7.6), the notations are shortened using the 2-vectors J=(J, J1),
Ω=(Ω[J ],Ω[J1]) and k=(k1,−k1), and F2(J)=F (J)F (J1). These 2-vectors should not be confused
with multidimensional actions, frequency and resonance numbers. They do correspond to multiple
interacting orbits and are used to highlight the similarities with the following second-order equation.
This equation also involves the bare coupling coefficients, Uk1(J), namely the Fourier transform
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in angles of the pairwise interaction potential. When taking collective effects into account, equa-
tion (7.6) becomes the inhomogeneous Balescu–Lenard equation (Heyvaerts, 2010; Chavanis, 2012).
It follows from equation (7.6) with the substitution |Uk1(J)|2→|Ud

k1
[F ](J)|2, with the dressed cou-

pling coefficients Ud
k1

[F ](J)=Ud
k1k1

(J, J1) given by equation (3.29).
On long timescales, two particles can efficiently couple to one another and drive relaxation

only if they share commensurate orbital frequencies. This is visible in equation (7.6) through the
presence of the Dirac delta, δD(k·Ω). For a system with a monotonic frequency profile, J 7→Ω(J),
the resonance condition δD(k·Ω) imposes J1 =J (a so-called local resonance), so that the cross
term, k·∂F2/∂J, in equation (7.6) exactly vanishes. Ultimately, this leads to ∂F (J)/∂t=0, i.e.,
the kinetic equation predicts no relaxation. Importantly, for a monotonic frequency profile, this
cancellation holds (i) whatever the considered interaction potential, U(w,w′); (ii) whatever the
considered (stable) DF, F (J); (iii) and for both the Landau and Balescu–Lenard equations, i.e.,
independently of whether collective effects are or are not accounted for. This is a first-order full
kinetic blocking: such systems cannot relax via two-body correlations (1/N effects). In that case,
the relaxation is greatly delayed and can only occur through three-body correlations (1/N2 effects).

7.2.2 Second-order kinetic equation

Placing themselves within this regime and neglecting collective effects, Fouvry (2022) derived a
closed kinetic equation describing relaxation driven by 1/N2 effects. This inhomogeneous 1/N2

Landau equation is of the form
∂F (J)
∂t

∝ µ2 ∂

∂J

[ ∑
k1,k2

(k1+k2)
∫

dJ1dJ2 |Λk1k2(J)|2δD
(
k·Ω

)
k· ∂
∂JF3(J)

]
, (7.7)

and I refer to appendix C in FR23 for the full expression of the equation and the coupling coeffi-
cients, Λk1k2(J). In equation (7.7), notations are shortened using here the 3-vectors J=(J, J1, J2),
Ω=(Ω[J ],Ω[J1],Ω[J2]) and k=(k1+k2,−k1,−k2), and F3(J)=F (J)F (J1)F (J2). Since collective
effects have been neglected, it is crucial to note that the coupling coefficients, Λk1k2(J), only depend
on the pairwise interaction potential: they do not involve the system’s DF, F (J). In equation (7.7),
the resonance condition on orbital frequencies, δD(k·Ω), becomes more intricate than the one in
equation (7.6). Indeed, it now involves three particles with commensurate orbital frequencies. This
allows for non-local resonances, i.e., triplet of actions, J, which are not all identical.

The generalisation of equation (7.7) to account for collective effects, i.e., the inhomogeneous
1/N2 Balescu–Lenard equation, is currently unknown. In particular, at order 1/N2, one may
expect for collective effects to be more involved than a simple dressing of the pairwise interaction
potential (see, e.g., footnote 5 in Hamilton, 2021). Nonetheless, in equation (7.7), the cross term,
k·∂F3/∂J, does not explicitly involve the interaction potential and its precise form is key to ensure
all the conservation laws and H-theorem of the kinetic equation (Fouvry, 2022). As a consequence,
one could expect that the inhomogeneous 1/N2 Balescu–Lenard equation can be obtained from
Eq. (7.7) through some intricate substitution |Λk1k2(J)|2→|Λd

k1k2
[F ](J)|2, which is still unknown.

In equation (7.7), the three-body cross term, k·∂F3/∂J, never vanishes at resonance except for
the thermodynamical equilibrium (see section IV.C in Fouvry, 2022). In that sense, three-body
collisions always involve non-trivial resonances and cannot generically vanish whatever the DF: this
is in sharp contrast with the first-order kinetic blocking of equation (7.6).

The goal of further delaying the relaxation described by equation (7.7),was investigated in §IV.D
of Fouvry (2022). Therein, they showed that the pairwise potential from equation (7.3) in conjunc-
tion with the profile (3) from Eq. (7.5c) ensures that Λk1k2(J)=0 at resonance. Phrased differently,
the vanishing condition obtained in Fouvry (2022) amounted to devising Ω(J) and U(w,w′) so
that δD(k·Ω) Λk1k2(J)=0. In that case, one gets ∂F (J)/∂t=0 in equation (7.7), i.e., this kinetic
equation predicts no relaxation whatever the considered (stable) F (J). This is a second-order bare
kinetic blocking.
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Let me emphasise that the first-order blocking of equation (7.6) relies on the vanishing, at
resonance, of the crossed term k·∂F2/J=0, while the second-order blocking of equation (7.7) relies
on the vanishing, at resonance, of the coupling coefficients Λk1k2(J)=0. This is a fundamental
difference. Indeed, the vanishing of the bare coefficients, Λk1k2(J), does not imply the vanishing
of the dressed coefficients, Λd

k1k2
[F ](J), because dressing depends on the considered DF. Since

Λd
k1k2

[F ](J) will generically be non-zero at resonance, the inhomogeneous 1/N2 Balescu–Lenard
equation is not expected to vanish. I claim that this prevents any system from ever undergoing a
second-order full kinetic blocking.

7.2.3 Scalings of the relaxation

Let me now detail the expected scaling of the relaxation time w.r.t. the total number of particles
N and the amplitude of the pairwise interaction, G, in these various regimes.

In equations (7.6) and (7.7), the scaling w.r.t. N is straightforwardly read from the dependence
w.r.t. the individual mass µ=Mtot/N . One has ∂F/∂t∝1/N [resp. ∝1/N2] in equation (7.6)
[resp. equation (7.7)]. In the present dynamically hot limit, the scaling w.r.t. G stems from the
scaling of the coupling coefficients. In equation (7.6), one has Uk∝G, so that ∂F/∂t∝G2. As
for equation (7.7), the bare coupling coefficients, Λ(J), are quadratic in the interaction potential,
i.e., Λ(J)∝G2 (see appendix C in FR23). As a consequence, equation (7.7), leads to ∂F/∂t∝G4.
To summarise, in the dynamically hot limit, the 1/N Landau equation (7.6) predicts a relaxation
timescale of order Trelax/tdyn∝N/G2. And, in the same hot limit, the 1/N2 Landau equation (7.7)
predicts a relaxation on the (slower) timescale Trelax/tdyn∝N2/G4. In both cases, the larger the
number of particles, the slower the evolution; the stronger the interaction, the faster the evolution.

Now, let me consider the case of systems subject to a second-order bare kinetic blocking. In
the dynamically hot limit, i.e., for G→0, one expects for the 1/N2 dressed coefficients, Λd[F ](J),
to converge to the bare ones, Λ(J). Since Λ(J)∝G2, this leads to an expansion of the form

Λd[F ](J) =
G→0

Λ(J) +G3Λd
(3)[F ](J) +O(G4). (7.8)

For systems undergoing a second-order bare kinetic blocking, one has Λ(J)=0 at resonance. As
a consequence, in the hot limit, one finds the asymptotic scaling Λd[F ](J)∝G3. Given that
∂F/∂t∝|Λd[F ](J)|2, systems subject to a second-order bare kinetic blocking are therefore expected
to relax on a timescale of order Trelax/tdyn∝N2/G6. In that limit, relaxation is driven by “leaks”
from dressed three-body interactions. Phrased differently, 1/N2 effects, albeit made less efficient
by a second-order bare kinetic blocking, are always driving some non-zero relaxation in the present
long-range interacting inhomogeneous one-dimensional systems. I claim that one cannot design
a system in which three-body correlations would systematically drive no dynamics, whatever the
considered DF.

One could be worried that four-body correlations, i.e., 1/N3 effects, could drive relaxation
more efficiently than the previous leaks from three-body collective effects. In appendix D of FR23,
placing ourselves in the hot limit, we justified that 1/N3 effects drive relaxation on a timescale of
order Trelax/tdyn∝N3/G6, i.e., a subdominant process. As a conclusion, even if it was derived, an
inhomogeneous 1/N3 Landau equation can never be the main driver of relaxation in the asymptotic
limit N≫1. This is one of the main results of the present investigation.

7.3 Numerical measurements

7.3.1 Scalings

Let me now recap for each of the frequency profiles considered in equation (7.5), the scaling of the
relaxation time expected as one varies the total number of particles, N , and the amplitude of the
pairwise coupling, G, within the limit of a dynamically hot system, i.e., G→0.
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• Profile (1). This profile is non-monotonic. This allows for non-local resonances, J1 ̸=J , in
the 1/N Landau equation (7.6). The system is not subject to any kinetic blocking. It is then
expected that Trelax/tdyn∝N/G2.

• Profile (2). This profile is monotonic, so that the 1/N Landau and Balescu–Lenard operators
both vanish. The 1/N dynamics is fully blocked. The system can only relax through 1/N2

effects, as governed by equation (7.7) in the hot regime. The profile (2) is not submitted to
any second-order bare kinetic blocking, i.e., equation (7.7) gives a non-vanishing contribution.
The expected scaling is then Trelax/tdyn∝N2/G4.

• Profile (3). This profile is monotonic, hence the 1/N dynamics is fully blocked. In addition,
following Fouvry (2022), this profile is also submitted to a second-order bare kinetic blocking,
i.e., the 1/N2 equation (7.7) vanishes. Yet, even though the 1/N2 Landau equation is zero
whatever the considered DF, I argued in section 7.2.3 that leaks from the (yet unknown) 1/N2

Balescu–Lenard equation will lead to a relaxation time scaling like Trelax/tdyn∝N2/G6 and
not like Trelax/tdyn∝N3/G6 as one could have (wrongly) guessed from four-body correlations
contribution (see appendix D of FR23).

To summarise, the profiles from equation (7.5) are predicted to be associated with relaxation
times scaling like

Profile 1: Trelax/tdyn ∝ N/G2; (7.9a)
Profile 2: Trelax/tdyn ∝ N2/G4; (7.9b)
Profile 3: Trelax/tdyn ∝ N2/G6. (7.9c)

In FR23, we set out to recover numerically the scalings predicted in equation (7.9). In practice, we
searched for a power-law dependence of the form

Trelax/tdyn ∝ NγN /GγG , (7.10)

and constraints on the power indices (γN , γG). A handful of reasons made these measurements
challenging. These important numerical details are discussed in section IV of FR23.

In figure 7.2, I report our main result, namely the measurement of the power indices (γN , γG)
from equation (7.10) as one varies the considered frequency profiles. In this figure, all profiles

γN

0 2 4 6 8
0

1

2
Profile (1)
Profile (2)
Profile (3)
Prediction

68%
95%
99%

γG

Figure 7.2: Figure from Fouvry & Roule (2023). Dependence of the relaxation time, via the power-law indices (γN , γG)
from equation (7.10), as a function of the total number of particles, N , and the strength of the pairwise interaction,
G, for the various frequency profiles from equation (7.5) (represented with different colours). Points correspond to
the kinetic prediction from equation (7.9), while contours are obtained from N–body measurements (see appendix E
in FR23). A contour labelled x% contains x% of the measured power indices: the thinner the contour, the larger the
fraction of measurements it encompasses. As explained in section 7.3.2, a systematic bias towards higher γG is to be
expected.

exhibit their expected scaling w.r.t. N , i.e., the value of γN . In particular, even though the profile
(3) is submitted to a second-order bare kinetic blocking, i.e., equation (7.7) exactly vanishes, its
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relaxation is still driven by 1/N2 effects, i.e., three-body correlations. Once again, I emphasise that
this particularly slow relaxation is sourced by leaks from dressed three-body correlations and not
by four-body correlations.

In figure 7.2, all profiles also show scalings w.r.t. G, i.e., the value of γG, in agreement with the
predictions. Though, one could be suspicious about the systematic bias in the value of γG, which
is always measured to be larger than the predicted one. I argue in the next section that this was
to be expected since the measurements were made for a finite value of G, while the predictions
correspond to the limit G→0. In particular, given the difficulty of integrating the motion driven by
the potential from equation (7.3), we had to limit ourselves to considering not so dynamically hot
systems (see appendix E 5 in FR23). In section 7.3.2, I show that the bias observed in figure 7.2 is
well within the limits that could be expected from the effective use of finite values of G.

Ultimately, figure 7.2 clearly confirms numerically the scaling of the relaxation times predicted
in equation (7.9), along with all the signatures associated with these various kinetic blockings.

7.3.2 Bias in γG

In figure 7.2, the kinetic prediction for γG corresponds to the limit G→0, while the measurements
are performed for finite values of G. This leads to a biased overestimation of γG, once again
associated with leaks from collective effects. In this section, I briefly estimate the maximum extent
of that pollution.

For a fixed value of N the scaling of the 1/N Balescu–Lenard equation w.r.t. G is, roughly,

∂F

∂t
∝
(

G

1−G/Gcrit

)2
. (7.11)

Here, following equation (3.13) and abruptly neglecting the frequency dependence of the polarisa-
tion matrix, M(ω), from equation (3.28), the dressed coupling coefficient could be roughly written
as Ud∝U/|I−M|∝G/(1−G/Gcrit).

Similarly, within the same limits and following equation (7.7), the 1/N2 Balescu–Lenard equa-
tion is expected to scale w.r.t. G roughly like

∂F

∂t
∝
(

G

1−G/Gcrit

)4
. (7.12)

In order to estimate the maximum bias in γG associated with this particular choice, one
can compute ∂F/∂t as given by equations (7.11) and (7.12), and then perform the linear fit
ln(∂F/∂t)≃ γ̃G lnG+cst. In that case, γ̃G is an estimate of the maximum value of γG that could
stem from our use of finite values of G. In practice, for the 1/N [resp. 1/N2] dynamics from
equation (7.11) [resp. equation (7.12)], and with the considered values of G, we found γ̃G≃2.64
[resp. γ̃G≃5.28]. For the third profile, the same qualitative analysis could be made to estimate the
bias in γG. Roughly assuming a power-law dependence of the form ∂F/∂t∝G6/(1−G/Gcrit)4, one
would estimate the maximum value of γG that could stem from the use of finite values of G to be
γ̃G≃7.28. Fortunately, these values of γ̃G are larger than the mean values obtained in figure 7.2.
This strengthens my confidence in the sanity of the numerical measurements.

7.4 Conclusion

In this chapter, I investigated the long-term evolution of long-range interacting inhomogeneous one-
dimensional systems. In particular, I highlighted the existence of two types of kinetic blockings:
(i) a first-order full kinetic blocking in systems with a monotonic frequency profile and subject
to 1:1 resonances only, associated with the vanishing of the inhomogeneous 1/N Balescu–Lenard



108 Chapter 7. Kinetic blockings

equation (5.1); (ii) a second-order bare kinetic blocking associated with the vanishing of the inho-
mogeneous 1/N2 Landau equation.

Considering a particular interaction potential (equation 7.3), I presented a large numerical
exploration to confirm the existence of these various blockings. I showed that dynamically hot
systems submitted to a second-order bare kinetic blocking still relax via 1/N2 effects, as a result
of “leaks” from collective effects. I argued that the (still unknown) 1/N2 Balescu–Lenard collision
operator would never vanish since the cancellation of the 1/N2 Landau operator arises from very
specific condition on the coupling terms. These conditions should not be met when taking collective
effects into account since the resulting coupling coefficients will depend on the considered DF.
Hence, four-body correlations, i.e., 1/N3 effects, can never be the main driver of the relaxation
of long-range interacting inhomogeneous systems, even in the present contrived one-dimensional
geometry. As such, no system will ever suffer from a second-order full kinetic blocking, and I claim
that the 1/N3 Landau equation does not need further investigation.

7.5 Perspectives
A few assumptions have been made in this analysis and could deserve further investigation.

• The action coordinate has been assumed to have an infinite support, as well as the kinetically-
blocked frequency profiles (2) and (3) in equation (7.5). This is not generically true for
inhomogeneous systems, where the action domain may be semi-infinite or even finite. For
such setups, it has been shown that the presence of a minimum/maximum action/frequency
drastically slows down the decay of perturbations, which only vanish algebraically with
time (Smereka, 1998; Barré et al., 2011; Barré & Yamaguchi, 2013; Faou et al., 2021). This
algebraic decay and its link with the presence of branch cuts in the susceptibility was shortly
discussed in section 3.3.3.

• The system has been assumed to remain linearly stable throughout its whole evolution. How-
ever, there exist cases for which the system’s global thermodynamical equilibrium is “mag-
netised”, i.e., its DF, F =Feq(θ, J), has a non-trivial angular dependence (see, e.g., Campa
et al., 2008; Gupta & Mukamel, 2011; Barré & Gupta, 2014; Das & Gupta, 2019). In that
case, although the kinetically-blocked DF, F =F (J, t), initially evolves slowly on a timescale
of order N2tdyn, it unavoidably becomes linearly unstable at some point. This triggers a
dynamical phase transition, and the DF (rapidly) “magnetises” to become F =F (θ, J, t). The
relaxation towards the thermodynamical equilibrium, Feq(θ, J), then keeps proceeding. Yet,
this dynamics does not suffer from a first-order kinetic blocking because non-local resonances
are now permitted. As a result, in this second stage of evolution, the relaxation occurs on a
timescale of order Ntdyn. Therefore, the overall dependence w.r.t. N of the total relaxation
time towards the thermodynamical equilibrium must exhibit an intermediate scaling between
N and N2. Interestingly, this agrees with the scaling N3/2 reported in figure 6 of Das &
Gupta (2019) which considered long-range coupled classical spins undergoing this dynamical
phase transition.

The present numerical work is only one more step towards a finer understanding of (very) long-
term dynamics and high-order correlations. Naturally, it would be worthwhile and rewarding to
derive the 1/N2 Balescu–Lenard equation, hence generalising equation (7.7). This is no easy task.
A realistic roadmap to perform such a delicate calculation would be to follow the development of
the 1/N2 Landau equation: first tackling the (single-harmonic) homogeneous HMF model (Rocha
Filho et al., 2014; Fouvry et al., 2019a), then homogeneous systems with an arbitrary potential
of interaction (Fouvry et al., 2020), and finally the present inhomogeneous regime (Fouvry, 2022).
Ultimately, this line of work would convincingly show that second-order kinetic blockings can never
lead to the full vanishing of 1/N2 effects.



Chapter 8

Conclusion

Let me conclude this PhD by an overview of the main results and highlight some perspectives it pro-
vides. To summarise the ingredients involved in the evolution of isolated self-gravitating systems,
I have illustrated the major causes of this evolution in figure 8.1. At first, an out-of-equilibrium
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Figure 8.1: Courtesy of J.-B. Fouvry. Schematics of the typical fate of an isolated stellar self-gravitating system.
During the first few dynamical times, the system undergoes violent relaxation (Lynden-Bell, 1967) and phase mixing.
It quickly settles into a quasi-stationary state (QSS), i.e., an equilibrium state of the collisionless dynamics. When
stable, the system then evolves on much longer timescales through the correlated effects of internal fluctuations.
Collective effects might heighten or weaken these fluctuations and therefore accelerate or delay the system’s secular
relaxation towards a new equilibrium.

state undergoes a violent relaxation (Lynden-Bell, 1967) during which its mean distribution evolves
quickly towards an angle-independent QSS through phase mixing and highly non-linear processes.
From this QSS, the system’s evolution is driven by fluctuations. Even when isolated, the system
undergoes such internal fluctuations through finite-N effects which get amplified by collective ef-
fects, and can resonantly couple to one another. If this state is unstable, the system supports a
mode which will first grow exponentially and eventually saturate. For stable isolated systems, over
long timescales small but cumulative effects build up and these internal couplings ultimately drive
the system towards its thermal equilibrium (when it exists). This secular relaxation could also
drive adiabatically the system towards a new unstable quasi-stationary state.

8.1 Overview

In this thesis, I studied this long-term reshuffling of orbits. I focused on the role of resonant
interactions and collective effects in shaping this secular relaxation. The cross-analysis of the one-
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dimensional model and razor-thin discs allowed me to highlight the diverse consequences these
effects might have on the evolution of self-gravitating systems. This diversity raised multiple
questions: When do collective effects enhance or dampen the long-term orbital reshuffling in self-
gravitating systems? What kind of systems are least subject to orbital diffusions? What is the
relationship between damped modes and orbital diffusion in galactic discs? What are the limitations
of the current state-of-the-art kinetic theory?

Linear response theory To tackle these questions, it was first necessary to properly capture
the response of stellar systems to perturbations and its amplification by the so-called collective
effects. In chapter 3, I sketched the necessary tools and the method I used to do so. While probing
instabilities can be numerically challenging, the generic response of stable systems to perturbations
is intrinsically much more difficult. It is an ill-conditioned problem (Trefethen, 2020) and therefore
requires a careful treatment. Beyond specific analytical models (Zang, 1976; Olivetti, 2011), there
is very few general methods to tackle this problem (Weinberg, 1994; Fouvry & Prunet, 2022) and
their predictive power is quite limited.

In chapter 4, I applied the generic method presented in chapter 3 to the one-dimensional model
and razor-thin stellar disc. I illustrated the versatility of this method and its ability to capture
documented instabilities as well as to unveil the presence of multiple weakly damped modes in
marginally stable discs (figure 4.15). By releasing adaptable public libraries (PR+24), I hope to
foster the systematic study of the linear response of stellar systems to perturbations. As later
discussed in chapter 6, this is not only relevant to study the (linear) stability of self-gravitating
systems, but also to properly understand their long-term evolution. While studying instabilities in
razor-thin discs, I highlighted the impact of gravitational softening on their collisionless properties.
More precisely, I confirmed the theoretical predictions of De Rijcke et al. (2019b) on two different
softening kernels (figure 4.16). The gravitational bias (Dehnen, 2001) strongly depends on the
choice of this softening kernel. I also presented a new method to take softening into account in
theoretical predictions (section 3.2.4).

Kinetic theory and long-term evolution Once the linear response of self-gravitating systems
to perturbations is properly captured, it is possible to study their long-term evolution using the
Balescu–Lenard kinetic theory. The associated equation (5.1) is the result of decades of efforts,
incrementally extending the original Landau and Chandrasekhar theories to take into account the
spatial inhomogeneity of stellar systems together with collective effects. Since its derivation, it
has been successfully applied to a variety of systems, from razor-thin discs (Fouvry et al., 2015)
to galactic nuclei (Bar-Or & Fouvry, 2018), the Hamiltonian mean-field (HMF) model (Benetti &
Marcos, 2017) and the periodic cube (Weinberg, 1993; Magorrian, 2021). I described its underlying
assumptions and limitations in chapter 5.

In chapter 6, I applied kinetic theories to the one-dimensional model and razor-thin disc and
compared the predictions to numerical simulations. By comparing side by side the predictions of the
Balescu–Lenard equation to Landau’s, I was able to pinpoint the contribution of collective effects.
This is precisely the missing contribution in most kinetic estimates of the relaxation rate such as the
Chandrasekhar theory of local two-body deflections. I showed that, indeed, a self-gravitating system
could evolve very differently from particles embedded in an external potential and scattered around
by fluctuations. Furthermore, the consequences of self-gravity vary depending on the system’s
configuration and kinematics. This variety would have been impossible to predict without the
valuable insights provided by the Balescu–Lenard kinetic theory. In the one-dimensional case, self-
gravity leads to a collective stiffening: particles diffuse slower from their initial orbits than Landau
theory would predict (figure 6.1). As a proxy model for the vertical motion of stars in the galactic
plane, this result suggests that the disc would thicken slower than expected. I also showed that
this one-dimensional system often suffers from a quasi-kinetic blocking. The relaxation rate is far
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smaller than the typical diffusion rate: even not at thermal equilibrium, it almost obeys detailed
balance (figure 6.8). Yet, it still relaxes towards its thermal equilibrium under the effect of two-body
correlations.

This slow relaxation and this collective stiffening is at variance with the behaviour of dynam-
ically cold razor-thin discs. In chapter 6, I revisited the numerical simulations of Sellwood (2012)
and its interpretation by Fouvry et al. (2015). I confirmed that for this marginally stable disc,
swing amplification (Toomre, 1981) drastically enhances the relaxation rate of the disc. With
the results obtained in chapter 4, I showed that the resonant coupling between the (collisionless)
damped modes and the stars is the main driver of this localised swing amplified reshuffling (fig-
ure 6.16). By stabilizing the disc, softening therefore significantly reduces the relaxation rate of
the disc (figure 6.18). A direct consequence is that the quality of the quasi-linear Balescu–Lenard
prediction is entirely set by the quality of the linear response computations. Let me stress that
beyond the question of computational resources, the computation of the Landau (equation 5.1)
and Balescu–Lenard (equation 5.12) collision operators is, by far, less technically challenging than
the computation of the linear polarisation matrix alone (equation 3.28) at neutral and damped
frequencies (section 3.3.2). If progress should be made in the secular computation, it is primarily
in the linear response theory. To this end, I hope that the generic public libraries I contributed to
develop in this thesis (section 4.2.3) will offer a valuable playground to test, improve and extend
the current numerical methods for linear response. All in all, the Balescu–Lenard equation (5.1)
provides a quantitative estimate for the relaxation rate of stellar systems. We have reached the
time of precise kinetic predictions.

Beyond Balescu–Lenard While the Balescu–Lenard theory proved accurate when compared to
averaged N–body simulations in the regime I explored, I also highlighted some of its limitations. In
particular, individual simulations can evolve very differently from one another. This stochasticity
is widely enhanced in the vicinity of marginal stability such as in the razor-thin disc I studied
(figure 6.19). Predicting the scatter among different realisations is a challenging task which lies
beyond the scope of the Balescu–Lenard theory. Beyond the marginally stable regime, it is an
important question on its own as it would allow one to quantify the likelihood of a single realisation.
Promising theories have been recently developed in this direction using large deviations (Bouchet,
2020; Feliachi & Bouchet, 2022; Feliachi & Fouvry, 2023).

Another limitation of the Balescu–Lenard theory involves one-dimensional homogeneous sys-
tems and inhomogeneous systems limited to 1:1 resonances. In chapter 7, I investigated these
systems which suffer from a full first-order kinetic blocking. Any estimate based on two-body
encounters, either Chandrasekhar, Landau or Balescu–Lenard, would predict no relaxation. The
relaxation is further delayed and is driven by three-body encounters. In this case, a kinetic equation
has recently been derived to take into account the effect of three-body encounters while neglecting
collective effects (Fouvry et al., 2019a, 2020; Fouvry, 2022). Yet, some specific systems can also be
blocked for this dynamics. I showed that collective effects again play a crucial role in the relaxation
of these systems. Using numerical simulations, I proved that they notably enable three-body en-
counters to drive an evolution, thereby disrupting the second-order (bare) kinetic blocking. Hence,
four-body correlations will never be the leading contributors to the relaxation of any self-interacting
system.

The main purpose of my PhD was to validate quantitatively the (inhomogeneous) Balescu–Lenard
theory against ensemble average sets of simulation. In complement with Fouvry et al. (2021) my
work establishes that this theory correctly captures the secular evolution of self gravitating systems
in geometries of one to three dimensions. The task has proven technically challenging and has led
to a few unexpected results while highlighting new complexities, such as quasi kinetic blocking
and increased variance near marginal stability. Yet, a decade after its publication, my results
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establishes the Balescu–Lenard theory as the pillar of self-consistent heating in collisionless stellar
systems. This, in turn, allows us to start and capture their long term evolution while accounting
for fluctuations beyond the mean field.

8.2 Perspectives

Let me conclude with a few prospects which I believe would be worth exploring to further our
theoretical understanding of self-gravitating systems.

Time evolution A direct follow-up of this work would involve integrating the Balescu–Lenard
equation (5.1) forward in time to estimate the system’s diffusion flux at a later stage. The pre-
dictions presented in this manuscript (chapter 6) only hold for the initial stellar distribution. Yet,
integrating the relevant evolution equation forward in time is challenging, as highlighted by Wein-
berg (2001). The primary difficulty lies in computing the diffusion coefficients, which already is a
challenging task as we have seen in this thesis. Additionally, the evolution of the distribution func-
tion (DF) implies changes in the self-consistent potential (Poisson equation 1.11), hence requiring
new angle-action coordinates. Numerically, this presents a challenge due to the substantial compu-
tational resources required to determine the diffusion rate. One potential approach is to integrate
the corresponding stochastic Langevin equation using a Monte Carlo method (Hénon, 1971; Cohn,
1979; Giersz, 1998), which could ultimately serve to validate N–body codes on secular timescales.

Crossing marginal stability As discussed in section 5.1.3, the Balescu–Lenard theory unreal-
istically diverges at marginal stability (Weinberg, 1993). In chapter 6, I showed that the Balescu–
Lenard theory is still accurate in a relatively close vicinity of phase transition in the razor-thin disc.
Yet, if one was to evolve the Balescu–Lenard equation in time, it would break down at some point.
This divergence should be regularised by considering the contribution of wave-particle interactions,
in the spirit of the so-called quasilinear theory in plasma physics (see, e.g., Rogister & Oberman,
1968; Hamilton & Heinemann, 2020, 2023).

Non-linear regime After phase transition, the evolution is dominated by the emerging unstable
mode. As this mode grows, non-linear contributions in equation (1.13b) become increasingly im-
portant. There is growing interest in this non perturbative regime of saturation via the non-linear
trapping of stars at resonances (see, e.g., Hamilton, 2024). Such a regime cannot be captured by
quasi-linear theories by design, even when taking into account wave-particle interactions. This
should offer key insights in the saturation amplitude of bars in galaxies.

Beyond average predictions Beyond this divergence in the mean evolution, I also pointed
out the increased variance among different initial conditions near phase transition (figure 6.19).
Predicting this scatter becomes a crucial question to properly assess the likelihood of a given
realisation and hence to compare theoretical predictions to observations or cosmological simulations.
To this end, the recent developments in large deviation theory (Bouchet, 2020; Feliachi & Bouchet,
2022; Feliachi & Fouvry, 2023) offer promising perspectives and should be further explored to
take collective effects (both wake-particle and dressed particle-particle interactions) into account
in inhomogeneous systems.

Three-body dressed kinetic theory In chapter 7, I heuristically showed that three-body in-
teractions necessarily drive a relaxation in long-range self-interacting systems, whatever the inter-
action potential. Naturally, it would be worthwhile and rewarding to derive the three-body (1/N2)
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Balescu–Lenard equation, hence generalising equation (7.7). Ultimately, this derivation would con-
vincingly show that second-order kinetic blockings can never lead to the full vanishing of 1/N2

effects.

Thick discs Of course, the models studied in this thesis are not perfect representation of the
motion of stars in galactic discs. While the case of spherically symmetric systems is also well
captured (Rozier et al., 2019; Fouvry et al., 2021; Tep et al., 2022), the extension to thick discs
or flattened spheres is yet to be achieved, beyond the WKB approximation (Fouvry et al., 2016).
One of the potential issue in these systems is the existence of angle-actions coordinates: the system
may lack integrability (Weinberg, 2015) or the actions may not be analytically defined.

Coupled halo-disc evolution Through the ansatz of equation (4.19), I have assumed and sim-
ulated the evolution of the disc in a static, rigid dark matter halo. Yet, the dark matter halo, albeit
dynamically hotter, is also subject to fluctuations. Accounting for the coupling between the disc
and the halo would be a natural extension of this work and would provide a more realistic picture
of the secular evolution of galaxies (see, e.g., Johnson et al., 2023).

Open dissipative systems Finally, let me address the elephant in the room: galaxies are not
isolated objects. The Milky Way is continuously perturbed by external sources triggering vari-
ous response features (see, e.g., Grion Filho et al., 2021, for a review). Firstly, it is important
to differentiate between systems that are adiabatically relaxing and those undergoing resonant,
non-resonant, or violent relaxation. The former do not resonate with any relevant frequencies,
whereas the latter do not even maintain their mean field. In practice, these processes often operate
concurrently in open systems. Moreover, dissipative processes within a (potentially subordinate)
baryonic component can drive unlikely evolutionary pathways and may lead to self-regulation.

Taken together, these prospects would significantly deepen our understanding of the long-term
evolution of self-gravitating systems and enable us to move beyond the current closed-box per-
spective in stellar dynamics. At a time when ab initio cosmological simulations of large volume of
our Universe reach sufficient resolution to characterise the intricate resonant dynamics of stellar
clusters, the linear and secular response theory presented in this thesis should prove enlightening
to fully grasp the complex interplay between nature and nurture in the evolution of galaxies over
a Hubble time.





Synthèse

Cette thèse explore l’évolution à long terme des ensembles de masses, liés par la force de gravité.
C’est le célèbre problème à N corps. L’étude de l’évolution de tels systèmes est communément
appelé la dynamique stellaire (Binney & Tremaine, 2008). Elle englobe un large ensemble de
systèmes astrophysiques de tailles et de masses variées, allant des amas d’étoiles en orbite autour
de Sagittarius A*, le trou noir supermassif au centre de notre galaxie, jusqu’à la Voie Lactée
elle-même, son halo de matière noire et les réseaux d’amas de galaxies.

Leur étude est à la fois difficile et particulièrement intéressante car la gravité est une force
attractive à longue portée. Ainsi, les systèmes stellaires forment généralement des structures inho-
mogènes et leur évolution est fondamentalement une histoire collective. Les étoiles dans un amas
globulaire ou une galaxie ne se déplacent pas en ligne droite. Elles orbitent autour du centre de
masse du système. Mais contrairement aux systèmes planétaires, ce mouvement n’est pas dicté par
un seul objet central massif. Il résulte du potentiel gravitationnel collectif généré par toutes les
étoiles du système. En tant que tel, les étoiles ne peuvent pas être considérées comme des particules
tests traçant un potentiel imposé de l’extérieur. Ces interactions collectives peuvent jouer un rôle
majeur dans la réponse du système aux perturbations externes et dans son évolution à long terme
via la formation de structures telles que des bras spiraux ou des barres.

Le domaine de la formation et de l’évolution des galaxies implique divers phénomènes physiques
multi-échelles interagissant de manière non linéaire. Par conséquent, ce domaine s’appuie princi-
palement sur des simulations numériques pour comprendre l’interaction complexe de ces processus.
Malgré leurs nombreux succès, ces simulations rencontrent des défis importants. Elles sont lim-
itées par la puissance de calcul, ce qui contraint leur résolution et la complexité des modèles
physiques qu’elles peuvent simuler avec précision. Les processus à l’échelle dite sous-grille, tels que
la formation des étoiles et l’accrétion des trous noirs, doivent être traités avec des prescriptions
phénoménologiques qui approximent les physiques non résolues. Ces limitations, combinées à leur
nature intrinsèquement non linéaire, introduisent des incertitudes qui peuvent affecter le pouvoir
prédictif et la précision des simulations (Scannapieco et al., 2012). En tant qu’approche complé-
mentaire, il est donc intéressant de développer un cadre théorique générique capable d’expliquer
l’évolution à long terme de ces systèmes sous l’effet de la gravité, en s’appuyant sur une approche
perturbative déterministe. Un tel cadre pourrait fournir des éclairages sur la physique sous-jacente
de ces systèmes et aider à interpréter et tester les résultats et limitations des simulations numériques.
La dynamique à N corps se concentre sur la seule physique de la gravité tout en perdant de vue
d’autres phénomènes physiques. Cette approximation grossière est motivé par le fait que la gravité
est, le plus souvent, la force dominante.

Dans la limite d’un grand nombre de particules, N≫1, la longue portée de la gravité permet
d’introduire une approximation de champ moyen. A l’ordre zéro, tout se passe comme si la distri-
bution de particules et le potentiel qu’elles génèrent étaient des quantités lisses. Un système à N
particules peut alors être vu comme une réalisation particulière d’un champ moyen que l’on aurait
échantillonné. Formulé différemment, les orbites des étoiles dans une galaxie sont principalement
influencées par le potentiel gravitationnel collectif de l’ensemble de la galaxie, plutôt que par les
interactions immédiates avec les étoiles voisines. Cela contraste fortement avec le mouvement des
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molécules dans un gaz, qui est principalement dicté par leurs interactions violentes et de courte
durée avec leurs plus proches voisines.

L’évolution dynamique d’un système auto-gravitant peut alors être divisée en deux régimes
distincts. Tout d’abord, un état hors équilibre subit une relaxation violente (Lynden-Bell, 1967)
au cours de laquelle sa distribution moyenne évolue rapidement vers un état dit quasi-stationnaire.
C’est le régime typique dans lequel se trouvent deux galaxies en train de fusionner. Les orbites
des étoiles changent sur des temps courts, proche de leur durée typique, à travers un mélange
de phase et des processus hautement non linéaires. Très peu de résultats analytiques ont été
obtenus (voir, par exemple, Chavanis, 2006b, pour une revue) et la compréhension complète de
l’aboutissement de cette phase reste une question ouverte et un domaine de recherche actif (Ewart
et al., 2022; Chavanis, 2022; Teles et al., 2023; Worrakitpoonpon, 2024). Il est important de noter
que cet équilibre de champ moyen n’est généralement pas l’équilibre thermodynamique du système.
Sauf dans des cas très spécifiques, il n’existe pas d’état d’équilibre thermique pour les systèmes
auto-gravitants, c’est-à-dire qu’il n’existe pas d’état de maximum d’entropie (Campa et al., 2014).
Un état quasi-stationnaire est un état d’équilibre de la dynamique non-collisionnelle, i.e., de la
dynamique dictée par le champ moyen lisse.

Le second régime est celui de la relaxation dite séculaire. Cette évolution peut-être sourcée
par des changements lents comme l’accrétion cohérente de gaz froid ou de petits satellites pour
des systèmes ouverts. Dans le cas des systèmes isolés que je considère ici, cette évolution à long
terme est sourcée par des processus dit collisionels ou effets de N fini. Le système considéré (N
corps) n’est pas parfaitement décrit par le champ moyen. En conséquence, les orbites des étoiles
ne sont pas parfaitement régulières, elle diffusent lentement ce qui peut amener à une réorgani-
sation globale du système. Ces fluctuations gravitationelles peuvent être fortement amplifiés par
les effets collectifs : les perturbations de potentiel sont sourcées par les perturbations de densités
sur lesquelles elles agissent. C’est une boucle de rétroaction qui peut conduire à des instabilités
collectives. L’état quasi-stationnaire peut être instable, le système supporte alors un mode qui va
croître exponentiellement avant de finalement saturer sous l’effet de processus non linéaires. Les
barres présentes dans de nombreuses galaxies spirales sont un exemple de telles instabilités. Pour
les systèmes stables, sur de longues échelles de temps, des effets petits mais cumulatifs finissent
par conduire le système vers son équilibre thermique (quand il existe) ou d’autres états quasi-
stationnaires. Les développements récents de la théorie cinétique des systèmes auto-gravitants
offrent un cadre théorique pour comprendre les résultats statistiques de ces processus d’évolution
non linéaires.

Dans cette thèse, j’ai étudié ce réarrangement à long terme des orbites. Je me suis concentré sur
le rôle des interactions résonnantes et des effets collectifs sur cette relaxation séculaire. L’analyse
croisée d’un modèle unidimensionnel et de disques infiniment fins m’a permis de mettre en évidence
les conséquences diverses que ces effets peuvent avoir sur l’évolution des systèmes auto-gravitants.
Cette diversité soulèvent plusieurs questions : Quand les effets collectifs amplifient-ils ou atténuent-
ils le réarrangement orbital à long terme dans les systèmes auto-gravitants ? Quels types de
systèmes sont les moins sujets à la diffusion orbitale ? Quelle est la relation entre les modes
amortis et la diffusion orbitale dans les disques galactiques ? Quelles sont les limitations de l’état
de l’art en théorie cinétique ?

Théorie de la réponse linéaire Pour aborder ces questions, il était d’abord nécessaire de bien
capturer la réponse des systèmes stellaires aux différentes perturbations, i.e., les effets collectifs.
Dans le chapitre 3, j’ai esquissé les outils nécessaires et la méthode que j’ai utilisée pour ce faire. Bien
que sonder les instabilités puisse être numériquement difficile, la réponse générique des systèmes
stables aux perturbations est intrinsèquement beaucoup plus complexe. C’est un problème mal
conditionné (Trefethen, 2020) qui nécessite donc un traitement minutieux. Au-delà des modèles
analytiques spécifiques (Zang, 1976; Olivetti, 2011), il existe très peu de méthodes générales pour
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aborder ce problème (Weinberg, 1994; Fouvry & Prunet, 2022) et leur pouvoir prédictif est assez
limité.

Dans le chapitre 4, j’ai appliqué la méthode générique présentée dans le chapitre 3 au mod-
èle unidimensionnel et au disque. J’ai illustré la polyvalence de cette méthode et sa capacité à
retrouver des instabilités documentées ainsi qu’à révéler la présence de multiples modes faiblement
amortis dans des disques marginalement stables (figure 4.15). En publiant des librairies versatiles
(PR+24), j’espère encourager l’étude systématique de la réponse linéaire des systèmes stellaires.
Comme discuté plus tard dans le chapitre 6, cela n’est pas seulement pertinent pour étudier la
stabilité (linéaire) des systèmes auto-gravitants, mais aussi pour bien comprendre leur évolution à
long terme. En étudiant les instabilités dans les disques, j’ai également mis en évidence l’impact
du “softening” gravitationnel sur leurs propriétés non collisionnelles. Ce softening est une approx-
imation numérique courante qui consiste à lisser le potentiel d’interaction gravitationnel dans les
simulations numériques pour éviter des forces trop singulières et les instabilités numériques asso-
ciées. Plus précisément, j’ai confirmé les prédictions théoriques de De Rijcke et al. (2019b) sur
deux noyaux de softening différents (figure 4.16). Ce biais gravitationnel (Dehnen, 2001) dépend
fortement du choix de ce noyau de softening. J’ai également présenté une nouvelle méthode pour
prendre en compte ces effets dans les prédictions théoriques (section 3.2.4).

Théorie cinétique et évolution à long terme Une fois la réponse linéaire des systèmes auto-
gravitants correctement capturée, il est possible d’étudier leur évolution à long terme en utilisant la
théorie cinétique de Balescu–Lenard. L’équation associée (5.1) est le résultat de décennies d’efforts,
prolongeant progressivement les théories originales de Landau et Chandrasekhar pour prendre en
compte l’inhomogénéité spatiale des systèmes stellaires ainsi que les effets collectifs. Lorsque les
effets collectifs sont négligés, l’équation associée est l’équation dite de Landau. Depuis sa dérivation,
elle a été appliquée avec succès à une variété de systèmes, allant des disques infiniment fins (Fouvry
et al., 2015) aux noyaux galactiques (Bar-Or & Fouvry, 2018), en passant par le modèle HMF
(Benetti & Marcos, 2017) et le cube périodique (Magorrian, 2021). J’ai décrit ses hypothèses
sous-jacentes et ses limitations dans le chapitre 5.

Dans le chapitre 6, j’ai appliqué les théories cinétiques de Landau et Balescu–Lenard au modèle
unidimensionnel et au disque, et j’ai comparé les prédictions à des simulations numériques. En
comparant les prédictions de l’équation de Balescu–Lenard à celles de l’équation de Landau, j’ai pu
identifier la contribution des effets collectifs. C’est précisément cette contribution qui manque dans
la plupart des estimations cinétiques du taux de relaxation telles que la théorie de Chandrasekhar
des déviations locales à deux corps. J’ai montré qu’effectivement, un système auto-gravitant pou-
vait évoluer très différemment d’un système de particules plongées dans un potentiel externe et non
couplées. Les conséquences de l’auto-gravité varient en fonction de la configuration et de la cinéma-
tique du système. Cette diversité aurait été impossible à prédire sans les précieux renseignements
fournis par la théorie cinétique de Balescu–Lenard. Dans le cas unidimensionnel, l’auto-gravité
conduit à un raidissement collectif : les particules diffusent plus lentement à partir de leurs orbites
initiales que ne le prédirait la théorie de Landau (figure 6.1). Ce modèle approximant le mou-
vement vertical des étoiles dans le plan galactique, ce résultat suggère que le disque s’épaissirait
plus lentement que prévu grâce aux effets collectifs. J’ai également montré que ce système unidi-
mensionnel souffre souvent d’un quasi-blocage cinétique. Le taux de relaxation est bien inférieur
au taux typique de diffusion : même sans être à l’équilibre thermique, les effets de diffusion et de
friction dynamique se compensent presque (figure 6.8). Cependant, il y a tout de même bien une
relaxation vers l’équilibre thermique sous l’effet des corrélations à deux corps.

Cette relaxation très lente et ce raidissement collectif différent avec le comportement des dis-
ques dynamiquement froids. Dans le chapitre 6, j’ai revisité les simulations numériques de Sell-
wood (2012) et leur interprétation par Fouvry et al. (2015). J’ai confirmé que pour ce disque
marginalement stable, l’amplification “swing” (Toomre, 1981) augmente drastiquement la relax-
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ation du disque. Avec les résultats obtenus dans le chapitre 4, j’ai montré que le couplage résonant
entre les modes amortis (non collisionels) et les étoiles est le principal moteur de ce réarrangement
amplifié et localisé (figure 6.16). En stabilisant le disque, le “softening” gravitationel ralenti donc
de manière significative la relaxation du disque (figure 6.18). Une conséquence directe est que la
qualité de la prédiction quasi-linéaire de Balescu–Lenard est entièrement déterminée par la qualité
des calculs de réponse linéaire. Il faut souligner que, au-delà de la question du coût de calcul, le
calcul des opérateurs de collision de Landau (equation 5.12) et de Balescu–Lenard (equation 5.1)
est, de loin, techniquement moins difficile que le calcul de la matrice de polarisation linéaire (equa-
tion 3.28) à des fréquences neutres et amorties (section 3.3.2). Si des progrès doivent être réalisés
dans les prédictions séculaires, c’est principalement dans le calcul de la réponse linéaire. À cette
fin, j’espère que les librairies publiques génériques que j’ai contribué à développer dans cette thèse
(section 4.2.3) permettront de tester, améliorer et étendre les méthodes numériques actuelles. En
conclusion, l’équation de Balescu–Lenard (5.1) fournit une estimation quantitative de la relaxation
des systèmes stellaires.

Au-delà de Balescu–Lenard Dans les régimes que j’ai exploré, la théorie de Balescu–Lenard
fonctionne très précisement lorsqu’elle est comparée à un ensemble de simulations à N corps. Cepen-
dant, j’ai également mis en évidence certaines de ses limitations. En particulier, des simulations
individuelles peuvent évoluer de manière très différente les unes des autres. Cette stochasticité est
largement amplifiée à la proximité de la stabilité marginale, comme dans le disque que j’ai étudié
(figure 6.19). Prévoir la dispersion entre différentes réalisations est une tâche difficile qui dépasse le
cadre de la théorie cinétique de Balescu–Lenard. Au-delà du régime marginalement stable, il s’agit
d’une question importante en soi car cela permettrait de quantifier la probabilité d’une seule réali-
sation/observation. Des théories prometteuses ont été récemment développées dans cette direction
en utilisant les théories de grandes déviations (Bouchet, 2020; Feliachi & Bouchet, 2022; Feliachi
& Fouvry, 2023).

Une autre limitation de la théorie de Balescu–Lenard est le cas des systèmes homogènes unidi-
mensionnels et des systèmes inhomogènes limités aux résonances 1:1. Dans le chapitre 7, j’ai étudié
ces systèmes qui souffrent d’un blocage cinétique complet de premier ordre. Toute estimation
basée sur des rencontres à deux corps, que ce soit Chandrasekhar, Landau ou Balescu–Lenard, ne
prévoirait aucune relaxation. La relaxation est encore retardée et est entraînée par des rencontres
à trois corps. Dans ce cas, une équation cinétique a récemment été dérivée pour prendre en compte
l’effet des rencontres à trois corps tout en négligeant les effets collectifs (Fouvry et al., 2019a, 2020;
Fouvry, 2022). Pourtant, certains systèmes spécifiques peuvent également être bloqués pour cette
dynamique. J’ai montré que les effets collectifs jouent à nouveau un rôle crucial dans la relaxation
de ces systèmes. En utilisant des simulations numériques, j’ai prouvé qu’ils permettent notamment
aux rencontres à trois corps d’entraîner une évolution, empêchant ainsi le blocage cinétique complet
au second ordre. Ainsi, il ne sera jamais nécessaire de prendre en compte les rencontres à quatre
corps pour décrire la relaxation de ces systèmes car elles joueront toujours un rôle négligeable.

L’objectif principal de ma thèse était de valider quantitativement la théorie (inhomogène) de
Balescu–Lenard par rapport à des ensembles de simulations moyennées. En complément de Fouvry
et al. (2021), mon travail établit que cette théorie capture correctement l’évolution séculaire des
systèmes auto-gravitants dans des géométries allant d’une à trois dimensions. Cette tâche s’est
avérée techniquement difficile et a conduit à quelques résultats inattendus tout en mettant en lu-
mière de nouvelles complexités, telles qu’un quasi-blocage cinétique dans le système unidimensionel
et une variance accrue près de la stabilité marginale. Pourtant, une décennie après sa publication,
mes résultats établissent la théorie de Balescu–Lenard comme le pilier du chauffage auto-cohérent
dans les systèmes stellaires collisionnels. Cela nous permet ainsi de commencer à capturer leur
évolution à long terme en tenant compte des fluctuations au-delà du champ moyen.
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