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To our amazing planet Earth.

To that little girl who would have never believed to get this far.
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Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.

- Marie Skłodowska-Curie

Au milieu de l’hiver, j’apprenais enfin qu’il y avait en moi un été invincible.

- Albert Camus

Prendete la vita con leggerezza. Che leggerezza non è superficialità, ma
planare sulle cose dall’alto, non avere macigni sul cuore.

- Italo Calvino





A B S T R A C T

Studying extreme weather events, such as heatwaves, is a fascinating growing
field and poses several methodological and computational challenges.

Understanding the physical mechanisms which drive heatwaves and being
able to forecast them is of pivotal importance in the context of mitigation and
adaptation to the current climate crisis. A new theoretical framework which
addresses both tasks is developed in this thesis and applied to mid-latitudes
heatwaves. This framework, called the Gaussian Approximation, relies on sim-
ple but meaningful assumptions on the statistics of weather fields relevant for
heatwaves. It proves to capture well the salient features of atmospheric condi-
tions predominant during those events and to have competitive or even better
predictive skills than other more complex weather prediction models.

Another major challenge when dealing with extreme heatwaves, and extreme
events in general, is that they suffer from an intrinsic sampling problem, due
to their rareness. Historical records are too short and direct simulations are
simply too expensive for having a good estimation of these events. Sampling
algorithms, such as the rare events algorithms, tackle this task resulting in both
improving the quality and the efficiency of extreme events simulation. In this
thesis, this class of algorithm has been applied for the study of double jet stream
state, an interesting rare phenomenon which is linked to heatwave occurrence
at mid-latitudes. The study consists in coupling a climate model (CESM) with
a properly chosen score function, which describes the salient features of the
phenomenon, in order to sample extreme and unprecedented events.
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R É S U M É

L’étude des phénomènes météorologiques extrêmes, tels que les vagues de
chaleur, est un domaine fascinant en pleine expansion et pose plusieurs défis
méthodologiques et en termes de calcul.

Comprendre les mécanismes physiques à l’origine des vagues de chaleur et
être capable de les prévoir est d’une importance capitale dans le contexte de
l’atténuation et de l’adaptation à la crise climatique actuelle. Un nouveau cadre
théorique qui aborde ces deux tâches est développé dans cette thèse et appliqué
aux vagues de chaleur des latitudes moyennes. Ce cadre, appelé Approxima-
tion Gaussienne, repose sur des hypothèses simples mais significatives concer-
nant les statistiques des champs météorologiques pertinents pour les vagues
de chaleur. Il s’avère qu’il capture bien les caractéristiques principales des con-
ditions atmosphériques prédominantes pendant ces événements et qu’il a des
capacités prédictives compétitives, voire meilleures, que d’autres modèles de
prévision météorologique plus complexes.

Un autre défi majeur dans le traitement des vagues de chaleur extrême, et
des événements extrêmes en général, est qu’ils souffrent d’un problème in-
trinsèque d’échantillonnage, en raison de leur rareté. Les données historiques
sont trop courtes et les simulations directes sont tout simplement trop coû-
teuses pour bien caractériser ces événements. Les algorithmes d’événements
rares s’attaquent à cette tâche, ce qui permet d’améliorer à la fois la qualité et
l’efficacité de la simulation des événements extrêmes. Dans cette thèse, cette
classe d’algorithmes a été appliquée à l’étude de l’état du double jet stream, un
phénomène rare et intéressant lié à l’apparition de vagues de chaleur aux lati-
tudes moyennes. L’étude consiste à coupler un modèle climatique (CESM) avec
une fonction de score bien choisie, qui décrit les caractéristiques saillantes du
phénomène, afin d’échantillonner des événements extrêmes et sans précédent.
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Etenim, iudices, cum omnibus virtutibus me adfectum esse cupio, tum nihil est quod
malim quam me et esse gratum et videri.

Haec enim est una virtus non solum maxima sed etiam mater virtutum omnium
reliquarum.

In truth, O judges, while I wish to be adorned with every virtue, yet there is nothing
which I can esteem more highly than being and appearing grateful.

For this one virtue is not only the greatest, but is also the parent of all the other virtues.

— Marcus Tullius Cicero

A C K N O W L E D G M E N T S

personal statement

Gratitude is a tricky emotion for the person I am.
Personally, I think of gratitude as an attitude towards life. To me, it ultimately

deals with the ability to recognize and accept that beauty, whatever its defini-
tion, can arrive and stay in your life. If someone asked me to summarize this
PhD journey in one word, "gratitude" would be the chosen one.

These past three years have been much more than an incredibly enriching
journey of my scientific background. They have been the years that shaped a
new version of myself, changing me profoundly, to the point that I could barely
recognize the person who started this journey (nothing dramatic here).

Studying climate extremes and being increasingly exposed to the current
climate crisis have given me an alternative lens through which to view the
reality of our world. Reading about the current and projected effects of climate
change has made me particularly sensitive to and touched by a huge variety
of subjects, ranging from social justice, geopolitics, economy, agriculture, and
has led me to rethink daily personal choices, from my diet regime and ways of
travelling to my career plans.

Ultimately, this journey has given me the opportunity to consciously choose
a place in this society, rebuilding my personal guiding values with which I now
proudly feel aligned. In recognizing all of this, I could not avoid acknowledging
the privileged person I am, having had the immense chance of accessing a high
level of education and the possibility of freely expressing my political, cultural,
and personal visions as a human being - among the many privileges I have
recognized in myself. "Grateful" is the only word that fully summarizes how I
feel.

Writing this feeling down comes as an urgent need, where the urgency is
comparable to the burning need to share happiness to feel it real. It also serves
as a free space to stimulate self-reflection for the reader who kindly read up to
here.
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1
I N T R O D U C T I O N

A rare event is, by definition, an event that occurs with a low probability. An
extreme event is a particular case of a rare event, characterized by its severe
intensity and potential high impacts. Rare but impactful events might arise in a
plethora of fields, ranging from economics, with extreme fluctuations in global
markets, to epidemics, with the spreading of diseases impacting millions of
people, to planetary sciences, with the fascinating merging of jets in Jupiter’s
atmosphere.

In this thesis, I focus on rare and extreme events in the climate system, with
a particular emphasis on extreme heatwaves. In the context of the current cli-
mate crisis, this class of events has gathered much interest given its obvious
societal, environmental, and financial impacts (fig. 1.1). Exposure to prolonged
heat causes psychological and physical stress currently classified as heat illness,
covering a spectrum of disorders due to increased body temperature (Gauer
and Meyers, 2019). More than 70000 people died as a result of the 2003 heat-
wave (Robine et al., 2008) and socioeconomic factors such as poverty and isola-
tion combined with age and illness augmented the death toll in specific sectors
of French society during the same event (Poumadère et al., 2005). During the
heatwaves of 2003, 2010, 2015, and 2018 some southern European areas have
lost around 1% of their gross domestic product (GDP) and this is expected to in-
crease almost a factor of five by 2060 compared to the historical damages experi-
enced over the period 1981–2010 (García-León et al., 2021). Unfortunately, these
are only a few examples among the massive amount of tremendous recorded
impacts associated with heatwaves. Record-shattering heatwave events are ob-
served with an abnormal high frequency in several parts of the globe with
deleterious effects for the concerned ecosystems. In this class of events, we can
certainly include the Western European heatwave of 2003 (García-Herrera et al.,

Figure 1.1: Interest in time of the keyword ’heat wave’ worldwide. The interest is mea-
sured as a proportion of all searches on all topics on Google at that time
and location for that keyword. Data taken from Google Trends.
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Figure 1.2: Change in global surface temperature over the past 170 years (black line)
relative to 1850–1900 and annually averaged, compared to Coupled Model
Intercomparison Project (CMIP)6 climate model simulations of the tempera-
ture response to both human and natural drivers (brown) and to only natu-
ral drivers (solar and volcanic activity, green). Solid colored lines show the
multi-model average and colored shades show the very likely range of simu-
lations. Figure adapted from (Masson-Delmotte et al., 2023).

2010), the Russian one of 2010 (Barriopedro et al., 2011) and the Western Amer-
ica one of early June in 2021 (White et al., 2023), with a maximal temperature
of 49.6 °C reached in Lytton, the highest ever recorded in the area.

Despite being a chaotic system, where random and possibly huge fluctua-
tions arise simply due to the nature of the system itself, the Earth is experienc-
ing an increasing number of climate extremes which could not be explained
without considering the influence of human carbon emissions (Seneviratne et
al., 2021), fig. 1.2. Given the human-driven warming due to increase concentra-
tions of CO2 and the current policies, heatwaves (and many other extremes) are
projected to increase even further in the future (Seneviratne et al., 2021).

Studying heatwaves turns out to be a major and urgent challenge. A non-
exhaustive list of scientific questions associated with their study includes:

• estimate their probability to occur;

• understand the dynamics associated with them;

• forecast them at different time scales;

• understand their thermodynamical and dynamical changes associated
with climate change;

• attribute them to climate change.
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Despite being interesting and active research fields, in this manuscript I do not
concentrate on the latest two points presented above, but I rather focus on the
first three, with a particular stress for the first one.

A bottleneck one faces in addressing the above questions is represented by
the scarcity of recorded data. In order to characterize and forecast an extreme
event, a sufficient amount of realizations of it should be observed to under-
stand its temporal and spatial evolution and correlation. However, due to their
rareness, they suffer from a sampling problem. Despite the Earth being the most
monitored system, the historical records are generally not sufficiently long to
have significant samples of rare events in climate simply because the most re-
liable data only start from the satellite era. As a consequence, climate studies
heavily rely on climate model simulations. These huge machines, with differ-
ent levels of complexity and subsequent realistic representation of the Earth’s
components, such as atmosphere, land, ocean and ice, simulate the climate by
solving fundamental laws of physics constrained with conservation laws and
use parametrizations for processes acting at sub-grid scales. One of the draw-
backs of those simulations, called direct simulations, when applied to the field
of extremes study is the enormous time and computation resources needed to
gather a statistically significant sample of rare events, such as extreme heat-
waves. As an example, in part ii we compared the effect of multi-decadal in-
ternal variability of the sea surface temperature of the North Atlantic and of
the soil moisture on summer European heatwaves. Using simulation data, we
show with the aid of return time maps, maps conditioned on the time needed to
observe an event with of a certain amplitude, that significant areas are largely
limited because of lack of data. However, both factors are known to play a role
in favoring and/or maintaining heatwave conditions over Europe, exacerbated
by the fact that their effect has the same magnitude as the current warming
trend due to climate change.

The question is now: how to sample or generate more extreme events using
a lower or limited computational cost than a direct simulation? Posed in these
terms, it might seem to be quite an absurd question. Luckily, de facto, it is not.
In this thesis, we present two methodologies to tackle this task.

The first one is presented in part iii and it is called the Gaussian approx-
imation, because of the hypothesized statistics between the dynamical fields
that characterize a heatwave at mid-latitudes and the definition of the heat-
wave itself. With this methodology, we do not generate more extreme events,
but we rather use the information coming from the full dataset and not only
from the heatwave subset, which is rather small. This methodology results in
being surprisingly skillful in the representation of the average dynamical con-
ditions that led to a heatwave, called composite maps. Moreover, when used as
a forecasting tool, this approximation is competitive with off-the-shelf neural
networks, with a net improvement in the computational time and a better per-
formance on a short reanalysis dataset (a dataset created via a data assimilation
procedure between historical records and observational data). Interestingly, the
results suggest quasi-stationary Rossby waves and low soil moisture as precur-
sors to extreme heatwaves over France.

The second methodology is a rare event algorithm meant to generate more
extreme events based on the theory of large deviations. This theory has a long
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history behind in the field of statistical mechanics and, in a nutshell, it deals
with the asymptotic estimation of the probability of unlikely events by sums
of random variables. In the context of this thesis, I briefly present the funda-
mental concepts of the theory meant to create a link with the rare event algo-
rithm used in the following, called Giardina-Kurchan-Lecomte-Tailleur (GKLT).
Indeed, this algorithm was initially tailored to sample the large deviation func-
tion (Giardinà, Kurchan, and Peliti, 2006; Lecomte and Tailleur, 2007), to have
ultimately access to the (low) probability of large fluctuations. The algorithm is
part of the cloning algorithm class (Del Moral and Garnier, 2005; Hidalgo, 2018)
and is referred equivalently in the literature as diffusion Monte Carlo (Ander-
son, 1975). The methodology is based on the modification of the evolution of the
system’s dynamics to favor large fluctuations to arise more frequently. This is
achieved via a selection procedure, which replicates or kills multiple copies or
clones of the system according to a score function that estimates the tendency
of that copy to achieve a large fluctuation. The application of this specific al-
gorithm for climate studies has been recently proposed by (Ragone, Wouters,
and Bouchet, 2018) for the sampling of extremely warm summers in Europe.
It revealed successful and, since then, it has been applied to a broad range of
climate extremes. Applications include precipitation (Wouters, Schiemann, and
Shaffrey, 2023), extreme fluctuations of the energy power system (Cozian, 2023),
collapsing of the Atlantic Meridional Overturning Circulation (Cini et al., 2024),
turbulent flows (Lestang, Bouchet, and Lévêque, 2020), the melting of the Arc-
tic sea ice (Sauer et al., 2024) and finally, Indian extreme warm summers (Le
Priol, Monteiro, and Bouchet, 2024). In the context of this thesis, the algorithm
is applied to the sampling of extreme double jet summers over the Eurasian
continent. This configuration has gathered much attention because of its link to
high-impact heatwaves in Europe (Rousi et al., 2022). With the aid of the GKLT

algorithm, we arrive to sample events that have a return time of 104 − 105 years,
with only 103 simulation years. The return time can be thought of in terms of a
probability of observing this event in 1 out of 105 years on average. This order
of magnitude is absolutely out of range for direct simulations.

The manuscript is organized as follows. Part i is an introductory chapter
where I first present briefly the state-of-the-art of our understanding of the
dynamics and thermodynamics of heatwaves, with a focus on Eurasia, the ge-
ographical zone of interest. I then present some mathematical objects used ex-
tensively in the rest of the manuscript to analyze or predict heatwaves and
subsequently, I introduce the theory of Large deviations to create a link with
the rare events algorithm presented in the latest section of the same chapter.

In part ii I present a study that compares the effects of two slow drivers of
heatwaves in Europe, namely the AMV and the soil moisture. In part iii the
Gaussian approximation is presented. With this novel theoretical framework,
we focus on the analysis and prediction of heatwaves over France. In the same
chapter, a comparison between the prediction results with other established
methodologies in the field, such as Convolutional Neural Networks, is pre-
sented. Finally, in part iv I use the rare events algorithm presented before to
study double jet events over Eurasia, an atmospheric configuration that has
been linked to heatwaves in some Northern Hemisphere areas.
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Part v is a stand-alone chapter where I present a scientific outreach project
I coordinate which stands at the intersection between climate and art. In this
project, the aim is to show the effects of climate change on art paintings by
means of creative repainting following scientific knowledge taken from the
Intergovernmental Panel on Climate Change (IPCC) reports.

In chapter 27 I summarize our findings and I give perspective for future
works.





Part I

H E AT WAV E S A N D R A R E E V E N T S

This chapter is an introductory chapter which has two main pur-
poses: firstly, to present the weather phenomenon of interest, namely
heatwaves at mid-latitudes and secondly, to introduce the mathe-
matical and physical tools which are used in the following chapters.

In chapter 2 I present a brief overview of the state-of-the-art of the
mechanisms connected to heatwaves at mid-latitudes, focusing on
the drivers and the projected changes in response to climate change.

In chapter 3 interesting mathematical objects, such as return time,
composite maps and committor function, are presented. They are
used in the following to analyze and predict heatwaves. Subsequently,
the theory of Large deviations is presented in a nutshell.

Finally, in chapter 4 rare events algorithms are introduced. They aim
at improving the sampling of rare events both from the efficiency
and the quality points of view. Among them, a cloning algorithm,
the Giardina-Kurchan-Lecomte-Tailleur GKLT is presented in detail,
as it is used in the following chapters. This algorithm is historically
connected with Large deviations theory, which is why it was pre-
sented before.





2
H E AT WAV E S AT M I D - L AT I T U D E S

This chapter aims at giving a general overview of what are the main known
drivers of heatwaves at mid-latitudes. A choice that has been made in order to
keep the discussion as simple as possible is not to give a definition of a heat-
wave in this chapter. Defining this phenomenon could be tricky and several
propositions have been made (Perkins, 2015; Barriopedro et al., 2023). In this
thesis, I use two of them, which will be introduced in the following. For the
moment, I propose to take as definition the one proposed by the IPCC latest re-
port: ’[a heatwave is] a period of abnormally hot weather, often defined with reference
to a relative temperature threshold, lasting from two days to months’ (Seneviratne et
al., 2021).

Before focusing on heatwaves, in the first part of this chapter I introduce the
key dynamical components that shape the climate over Europe (section 2.1), as
they affect a wide range of climate events and extremes (not only heatwaves).
Once the main actors are presented, I give a brief overview of the physical basis
which drives heatwaves at the mid-latitudes, and in particular in Europe and
Eurasia (section 2.2), given that I am interested mainly in those geographical
areas in the following.

2.1 the unique climate of europe

Besides the tropics, European weather and climate are one of the hardest to
predict at time scales that are larger than a few days (Woollings, 2010). This
difficulty is generally related to the large-scale circulation of the atmosphere
and to the Atlantic Ocean, which impacts the climate over several timescales.
For instance, the south-west north-est tilt of the jet stream and blocking dynam-
ics are widely known for being underrepresented in current climate models
(Woollings, 2010; Woollings et al., 2018), making the prediction of European
climate particularly challenging and, at the same time, an appealing research
field. In this section, we present some of the key processes, from a dynamical
point of view, that shape the European climate. The organisation and the key
ideas of this section are deliberately taken from (Woollings, 2010).

2.1.1 The Jet streams

The jet streams are fast winds which encircle the globe flowing from west to
east. In both Hemispheres, we have two types of jets: the subtropical and the
eddy-driven one. Both jets ultimately owe their existence to the meridional
contrast in solar heating of the Earth.

The subtropical jet results from the transport of momentum/vorticity associ-
ated with the upper branch of the Hadley cell. Warm air rises at the equator
and moves poleward ascending throughout the whole troposphere. At a cer-
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tain latitude, around 30
◦ the cold and denser air sinks, creating a descending

branch, and, consequently, warming and moving equatorward again. When air
moves poleward, it starts moving eastward, because of the Coriolis effect, cre-
ating a wind current at an altitude of around 10 km, in the upper troposphere:
the subtropical jet is born.

As its name suggests, the eddy-driven jet originates from the transients eddies
in the atmosphere which change the vorticity and heat transport, resulting into
a net acceleration of westerly winds. This kind of jet extends down though the
whole depth of the troposphere. During winter the jets are stronger, given the
higher contrast of temperature between the polar region and the mid-latitudes.
During summers, both jets are weaker and displaced towards the pole. Gener-
ally, both jets are merged into a unique jet. However, there exist some situations
where two distinct jets are seen, for instance during winter with the subtropical
jet crossing North Africa and the the eddy-driven displaced further north. This
last configuration will be investigated in part iv of this manuscript.

2.1.2 The storm tracks

European climate is strongly affected by the North Atlantic storm track. A
storm track is a term used for indicating the preferred regions for mid-latitudes
anticyclones and cyclones anomalies to occur. These synoptic scale systems in
those preferred regions owe their existence to the baroclinic instability due to
difference in heating of the Earth system. These eddies act to reinforce the slow
varying large scale flow, or alternatively: the jet stream and the storm track can
be considered self-maintaining. Near the surface the storm tracks are mainly
concentrated over the Atlantic basin. However, at high altitude the eddy activ-
ity coming from the Pacific Ocean continues over North America, joining the
Atlantic basin and dissipating its power towards Europe. The effects on the ex-
treme events linked to the storm track are obviously visible during winter and
less during summer (the season we are interested in, in this manuscript).

2.1.3 Atmospheric Blocking

Beside the quasi-stationary circulation, the climate at the mid-latitudes is domi-
nated by transient eddies interacting with more or less common circulation pat-
terns. They exhibit preferred spatial and temporal distributions and a change
in their frequency, location or amplitude could lead to important impacts on
the climate. At middle and high latitudes, an important class of weather pat-
terns is that of atmospheric blocking, or simply blocking. The term blocking was
coined to refer to a situation where the natural and normal west-to-east flow of
cyclone systems is blocked or interrupted. Currently, a comprehensive theory
of the dynamical features which constitute the onset, maintenance and decay
of blocking is still lacking (Woollings et al., 2018). As a consequence, in the me-
teorological community there is not a unique definition of what a blocking is.
Common features, such as persistence, quasi-stationary and obstruction of the
westerlies are shared characteristics.
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Several and different weather patterns have been associated to this phenomenon,
accompanied by as many definitions to classify it (Barriopedro, García-Herrera,
and Trigo, 2010). All of them determine a blocking condition based on a so-
called blocking index. There have been two traditional paths to define the field
in the blocking index: using the absolute meteorological fields or its departure
from regional or zonal climatological mean. In both cases, common variables
are the geopotential height at 500 hPa and potential temperature at the dynami-
cal tropopause. A novel index mixing both the absolute and the anomaly fields
has recently being proposed. A complete review can be found at (Barriopedro,
García-Herrera, and Trigo, 2010). Moreover, added features to the definition
include a minimum of spatial extension, quasi-stationary and persistence (typ-
ically 4-5 days).

Traditionally a block index might be either a one dimensional or a two di-
mensional index. In the former case, block highs are defined by requesting
several constraints in the meridional gradient around a constant latitude repre-
senting the climatological position of the jet stream (Tibaldi and Molteni, 1990;
Pelly and Hoskins, 2003). To avoid fixing a reference latitude, others designed
a two dimensional index by focusing on a latitudinal band. This turns out to
be an interesting methodology for characterizing blocks as a high-low dipole
(fig. 2.1 (e)) (Masato, Hoskins, and Woollings, 2013). Other methodologies de-
fined blocking as typical circulation patterns, following statistical approaches
(Vautard, 1990).

Some examples of blocking patterns are shown in fig. 2.1. A classic, but still
contentious for blocking definition, is the one depicted on panel (a), the Sum-
mer ridge. In this configuration, air is rapidly advected from the subtropics
northward and it is anomalously anticyclonic with respects to its surroundings.
If the Rossby wave has a phase speed of zero, then a stationary condition is
reached. The onset of a ridge has been attributed to the interaction of the back-
ground flow with the Rossby waves or of Rossby waves of different wavelengths
(Woollings et al., 2018). This situation resembles to the fig. 2.1 (b), the Omega
block. However, there, there is a clear anticyclonic system shifted poleward,
which sits between two cyclones advecting poleward air which is warmer than
normal.

Panels (c) to (e) of fig. 2.1 are representative of wave breaking events. In
such events the meridional potential vorticity (or geopotential height) gradient
is reversed and a dipole structure is generated with an anticyclonic anomaly
on the poleward side and a cyclone on the equatorward side (Woollings et al.,
2018). This is a key feature of the so-called Rex block, after (Rex, 1950).

Traditionally, climate models have always underestimated the frequency and
persistence of blockings. In (Woollings et al., 2018) the authors showed that
over the Euro-Atlantic sector CMIP5 models underestimate winter blocking fre-
quency by 30-50% and by around 10-30% during the summer season. The rea-
son has to be traced back to the difficulty of models to fully and faithfully
represent the general circulation and in particular of the jet stream variability.
As a consequence, forecasting their onset and decay remains a challenge to
tackle. The latest class of climate models used in the IPCC reports, CMIP6 mod-
els, has been shown to improve the representation of blockings, with regional
and seasonal variations (Lupo, 2021; Kautz et al., 2022).
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Figure 2.1: Examples North Atlantic blocks. Snapshots of (color shading) potential tem-
perature θ on the dynamical tropopause (PV = 2 PVU) and (contour lines)
geopotential height at 500 hPa (contour spacing 60 m) for the dates indi-
cated. Figure taken from (Woollings et al., 2018).

Regardless of the definition, Europe is one of the regions with highest fre-
quency of blocking (Woollings, 2010). In this region, blocking has been linked
to heatwaves during summer and cold snaps during the winter season. The
impact of this phenomenon on heatwaves is addressed in section 2.2.2.

2.1.4 Rossby waves

Rossby waves in the atmosphere are planetary waves associated with the me-
andering of the extratropical jet stream (Rossby et al., 1939). They result from
the conservation of potential vorticity, which is a function of both relative and
planetary vorticity, and static stability. Planetary vorticity is due to the rotation
and sphericity of the Earth, which increases towards the pole, while relative
vorticity comes from the motion of the air relative to the Earth’s surface. Be-
cause of the meridional gradient of potential vorticity, a parcel of air displac-
ing poleward, in the Northern Hemisphere, to conserve its potential vorticity,
has to reduce its relative vorticity by rotating in an anticyclonic way due to
the augmentation of its planetary vorticity. This air spinning clockwise drags
neighbouring parcels of equatorward. This induces the same mechanism of
conservation of potential vorticity but to form cyclones, ultimately leading to a
Rossby wave, consecutive regions of anomalous cyclonic and anticyclonic vor-
ticity (White et al., 2022). Large-scale Rossby waves at the mid-latitudes can be
decomposed in a. synoptic-scale waves, sometimes referred as free waves, with
wavenumber 6 or higher, propagating mainly in the longitudinal direction, b.
quasi-stationary waves, with low wavenumber, less than 6, and close to zero
phase speed. (White et al., 2022). The large-scale seasonal mean circulation is
shaped by stationary Rossby waves, stationarity referring to their persistence
over entire seasons. However, typical Rossby waves of interest for extreme phe-
nomena, such as heatwaves, persist for several days to several weeks and have
a wavelengths of 3000-6000 km, smaller than stationary waves. At the mid-
latitudes it is known that anticyclonic anomalies of Rossby waves are often as-
sociated with heatwaves (White et al., 2022), as it is addressed in section 2.2.2.
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2.1.5 The Atlantic Ocean and the low-frequency variability

The Atlantic Ocean with its mode of variability plays a key role in the European
climate at different time scales. The Atlantic meridional overturning circulation
(AMOC) is an ocean current responsible for transferring warm masses of wa-
ter from the Tropics to the North Atlantic. It is involved in keeping relatively
warm sea surface temperatures even at high latitudes 1, thus letting the Euro-
pean climate be significantly warmer than other regions at the same latitudes.
This warm current travels the globe from south to north, in the Atlantic Ocean,
reaching Greenland where it sinks, due to variations of density, and flows back
to the south. Variations or slowing of this circulation could potentially lead to
a cooling of Europe by some degrees.

From daily to decadal scales, of particular importance is the North Atlantic
Oscillation (NAO). The NAO index is the difference in sea level pressure be-
tween locations near Iceland and the Azores. The temporal correlation between
this index and the sea level pressure at all locations yields the spatial pattern
associated with the NAO. Defined in this manner, the NAO was characterized
by a dipole sea level pressure field, with anomalies of one sign being centered
over Iceland and Greenland, and a band of anomalies of the opposite sign over
the subtropical North Atlantic (Feldstein and Franzke, 2017). Negative phases
of the NAO are generally associated with cold spells and often with blocking
events. The NAO is the dominant teleconnection pattern in the Northern Hemi-
sphere. Teleconnection patterns can be broadly defined as spatial patterns in
the atmosphere which last for 1 or 2 weeks (and sometimes even longer) and
alter the weather and the climate at global scale. Teleconnection patterns such
as the NAO are known for exhibiting a variability on decadal timescales. Of
remarkable importance is the shift from strong negative conditions in the 1960s
to strong positive conditions in the 1990s which is probably due to changes in
the North Atlantic ocean circulation (Woollings, 2010). Unfortunately, there is
vast concern about the capability of climate models to reproduce the observed
variability (Woollings, 2010).

At interdecadal timescales, the sea surface temperature of the Atlantic Ocean
has revealed internally-driven variations. The origin of these variations are not
fully understood, representing an active research field (Cassou et al., 2018).
Based on the pioneering analyses of the observed data over the North Atlantic
region, Bjerknes (1964) hypothesized that the low-frequency AMOC variability
plays an active role in the observed basin-scale multidecadal variations in North
Atlantic sea surface temperature and associated sea level pressure through re-
lated changes in Atlantic meridional heat transport and air-sea coupling. An
index has been created to quantify this variability, the Atlantic Multidecadal
Variability, AMV (Yeager and Robson, 2017; Zhang et al., 2019). Several studies
identified the AMOC as a prominent driver of the AMV (Knight et al., 2005;
Yeager and Robson, 2017; Cassou et al., 2018; Zhang et al., 2019). On the atmo-
spheric side, recent studies have underlined how persistent NAO can influence
the thermohaline circulation and thus the AMV (Delworth et al., 2016), also at

1 Although it is the South-West-North-East tilt of the jet stream which is mainly responsible for
the temperature difference
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these longer timescales. In part ii we will investigate the effects of this low
frequency variability on summer European heatwaves.

2.2 physical drivers of heatwaves

Several factors can lead to favourable conditions for the settling and the de-
velopment of a heatwave. The thermodynamic ingredients which feature its
formation are clear (Horton et al., 2016). A high-pressure system in the up-
per troposphere is often considered as an essential factor for the occurrence
of heatwaves. In response to this high-pressure, air subsides resulting in local
adiabatic compression heating. This inhibits convection and cloud formation,
resulting in clear sky conditions. Thus, solar radiation reaching the ground sur-
face increases, which in turn leads to upward sensible heating flux from the
ground surface. Moreover, warm air advection might favour the increase of
temperature (Miralles et al., 2014).

Tracing the causes of heatwave events from a dynamical point of view is all
another story. Heatwaves are weather events which is the result of complex
interactions among large and small scale processes which affects large areas
at several timescales. Given this intricate grid, it is impossible to neatly sepa-
rate one process to another thus impeding the creation of a clear cause and
causality chain. There exist some reviews (Perkins, 2015; Horton et al., 2016;
Barriopedro et al., 2023) which draw the contours of the current state of the art
on our comprehension of this weather phenomenon. This section is inspired to
all of them, but it is by no mean complete. I invite the reader to refer to them
for deeper analysis. Following (Barriopedro et al., 2023), I decided to group
the main drivers by their scale-dependence, proceeding from planetary-to-large
scale factors section 2.2.1, to large-scale-to-regional section 2.2.2 to regional-to-
local section 2.2.3. The idea behind this grouping lies in the fact that there exists
a relation between spatial and temporal scales of heatwave drivers, as can be
seen from fig. 2.2. In this manuscript I define a driver or a factor a thermody-
namic or dynamic component of the weather and the climate which influence
the formation, the maintaining and the worsening of a heatwave.

In this thesis, I investigate heatwaves at mid-latitudes, with a focus over Eu-
rope and Eurasia.

A schematic representation of the main drivers of heatwaves is shown in
fig. 2.3. This figure synthesizes the main processes involved in heatwaves for-
mation. Part of them will be discussed in the following, or have been already
briefly explained above.

2.2.1 Planetary-To-Large-Scale Factors

At decadal and multidecadal time scales there are two main drivers of heatwave
events: firstly, the anthropogenic-driven warming caused by increasing concen-
trations of greenhouse gases in the atmosphere; secondly, long-memory of in-
ternal components of the climate system, such as the ocean and the cryosphere
with their modes of variability.
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Figure 2.2: Spatial and temporal scales of characteristic heatwave drivers. Diagram
identifying the characteristic heatwaves drivers and their relevant scales,
from planetary to local spatial scale, and from multiannual to multiday
temporal scale. Figure taken from (Barriopedro et al., 2023)

Figure 2.3: Schematics summarizing some of the large-scale-to-regional drivers of heat
waves. Figure taken from (Barriopedro et al., 2023)
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Nowadays, it is well established that global mean temperature has been rising
as a result of enhanced greenhouse gas emissions (Seneviratne et al., 2021). Re-
gional response to this warming is all but homogeneous. Indeed, other factors,
such as cloud coverage, water vapour, snow cover, vegetation alter the regional
response to global warming leading to different regional responses. Beside the
thermodynamic effect due to global warming, a crucial and still open question
regards the impacts of that warming on the dynamical response of the circula-
tion. This point is a current research topic and the community does not heave
a clear answer.

On the other hand, slowly varying components, such as the ocean and the
cryosphere, affect heatwaves over a series of timescales. They act for instance
on teleconnections patterns (spatial patterns in the atmosphere which last for
1 or 2 weeks (and sometimes even longer) that link the weather and the cli-
mate over large scales (Feldstein and Franzke, 2017)). Decadal to multidecadal
internal modes of variability, such as the AMV is well known for playing a role
at mid-latitudes on heatwave events (Qasmi et al., 2021; Ruprich-Robert et al.,
2017; Ruprich-Robert et al., 2018). This mode is related to the inter-annual vari-
ability of the sea surface temperature of the North Atlantic Ocean. In part ii we
investigate the effects of this low frequency variability on summer European
heatwaves.

At inter-annual scales, there are other factors which are known to modulate
the heatwave occurrence in several areas of the globe. Among the more impor-
tant ones, large-scale tropical warm sea surface temperature patterns, such as
El Niño-Southern Oscillation or the tropical Indian Ocean Dipole are known
to favour heatwave conditions in several parts of the globe (Barriopedro et al.,
2023).

2.2.2 Large-Scale-To-Regional Factors

In mid-latitude regions, at synoptic scale, large-scale weather systems are in-
volved in the formation and maintenance of heatwaves. Recent record-shattering
events, such as the Russian heatwave of 2010 (Matsueda, 2011) or the Western
European one were associated to some weather systems. Particularly relevant
for heatwaves formation are blockings, i.e. quasi-stationary high pressure sys-
tems. Those slowly moving anticyclones are often referred as ’blocks’ as they
alter the westerly jet stream flow. Europe is particularly exposed to this kind of
phenomenon, as highlighted in section 2.1. Those upper-level tropospheric high
pressure systems act to favour the maintenance of high temperatures, ultimately
leading to heatwaves. In fact, summer European heatwaves are co-located with
anomalous anticyclonic systems extending through the whole depth of the tro-
posphere reaching the ground surface. This kind of pattern strongly correlates
with some typical blocking patterns, as explained in section 2.1.3. At the level
of the thermodynamics, as we already pointed out, heatwaves are mainly gen-
erated by the heat accumulation due to atmospheric advection and diabatic
heating through latent and sensible heat fluxes (Kautz et al., 2022; Miralles et
al., 2014) and by adiabatic warming by subsidence (Barriopedro et al., 2023).
Blocking can be conductive of these processes, thus it can ultimately exacerbate
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the severity of the heatwave given the persistence associated to this weather
system (Kautz et al., 2022). Both processes, advection and diabatic heating, will
be investigated with more details in the next section, as they are part of a land-
atmospheric feedback as well. Another consequence of blocking is the reduced
level of air quality, as it was measured in Moscow during the heatwave of 2010

(Lupo et al., 2012), as a consequence of the air stagnation.
At the mid-latitudes it is known that anticyclonic anomalies of Rossby waves

are often associated with heatwaves (White et al., 2022). The identification of
the mechanisms associated with this is an active field of research. Currently,
a full theory for the growth and the propagation of Rossby waves at the spa-
tial and temporal scales relevant for weather extremes is lacking (especially
in non-linear regimes). Those extremes can rise from Rossby waves being ex-
ceptionally stationary/persistent (Röthlisberger et al., 2019; White et al., 2022)
and/or exceptionally high in amplitude (Petoukhov et al., 2013; Röthlisberger,
Pfahl, and Martius, 2016). One theory which tries to bridge the gap and to es-
tablish a causality chain is the Rossby waveguide (White et al., 2022). Within
this theory, strong and narrow jets are associated with strong waveguidability
which favour less dispersion of Rossby waves energy in the meridional direc-
tion, and associated potentially increase of probability of weather extremes. A
linear theory on the propagation of Rossby waves has been established from
the 80s (Hoskins and Ambrizzi, 1993; Hoskins and Karoly, 1981; Held, 1983).
However, it has been criticized because for large-scale waves the eddies are of
the same order of magnitude of the background flow, thus violating the limits
of applicability of the theory (White et al., 2022; Wirth and Polster, 2021). Other
problems are known, such as the definition of the background flow (White et
al., 2022; Wirth and Polster, 2021). Quasi-resonance is a mechanism, proposed
by (Petoukhov et al., 2013), which creates a causal link between waveguidabil-
ity and amplified circumglobal Rossby waves through the resonance of Rossby
waves of different wavenumbers (free waves and quasi-stationary). There are
particular conditions under which this could happen, for instance a double
jet: this configuration is analysed in part iv. Despite some studies investigat-
ing the relevance of this mechanism in recent heatwave episodes (Coumou et
al., 2014; Kornhuber et al., 2019; Petoukhov et al., 2016), this methodology has
been criticised as it seems that the causality link is not so strong and dependent
on the definition of background flow (Wirth and Polster, 2021). Persistence of
non-circumglobal Rossby waves has been associated to Rossby wave packets.
They are Rossby waves for which the amplitude has a local maximum and de-
cays to smaller values at large distances (Wirth et al., 2018). They propagate in
the zonal direction especially along waveguides. Several connections between
those Rossby waves and weather extrema have been documented, especially
when the Rossby waves have shown a Rossby wave breaking, which sometimes
occur at the decay stage of Rossby wave packets (Wirth et al., 2018). Despite the
dynamics at the leading edge of a Rossby wave packet is quite understood, as
pointed out in a recent review on the topic (Wirth et al., 2018), more systematic
studies need to be done to generalize the identification of the phenomenon, in-
cluding a unique definition of an Rossby wave packet object, and its causal link
to the extremes.
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2.2.3 Regional-To-Local Factors

At local and regional scales, there are several factors that could modulate the
formation and duration of heatwaves. In this section we will present the main
ones.

Coupling and feedbacks between land and atmosphere are known to exacer-
bate heatwave conditions (Seneviratne et al., 2006; Alexander, 2011). In particu-
lar, it is the available soil moisture that controls the relative importance of the
latent and sensible energy fluxes, which is responsible for the strength of the
land-atmosphere coupling and feedback. Indeed, soil moisture is the key factor
which affects how the energy absorbed by the surface of the Earth is returned
to the atmosphere. Some is returned under the form of infrared radiation and
the remaining one, the net radiation is transformed in two energy fluxes: latent
heat flux, the loss of heat through evaporation of liquid water, and sensible heat
flux which directly heats the surface and the air. Partition of the energy between
those two fluxes strongly affects the land and the atmosphere, as explained in
the following.

Figure 2.4 summarizes the mechanisms of the land-atmosphere feedback.
When the soil is wet, the net radiation arriving on the ground surface is mainly
converted into latent heat, through evapotranspiration. Evapotranspiration is
the process through which water is transferred to the atmosphere from open
water and ice surfaces, bare soil and vegetation. High evapotranspiration cools
the ground and enhance the formation of clouds because of the higher concen-
tration of atmospheric water vapour. On the other hand, when the soil is al-
ready desiccated, sensible heat is the predominant flux. This creates a warmer
and drier air above the ground which inhibits cloud formation, which in turn
allows direct heating of the desiccated soil, thus constraining the soil moisture
content even further.

This land-atmospheric feedback intensified and lengthened drought condi-
tions and has been proven to be a determinant factor for severe heatwaves
in regions where evapotranspiration is limited by the availability of soil mois-
ture, such as some regions in Europe (Fischer et al., 2007b; Fischer et al., 2007a;
Vautard et al., 2007). Using either station data or model simulations, the tem-
peratures reached during the heatwave of 2003 could not have been explained
without considering the anomalous dry soil in the spring preceding the heat-
wave event. Moreover, the feedback between land and atmosphere when re-
inforced with advection of warm air can lead to what in the literature are
known as ’mega-heatwaves’, with reference to the Western European heat wave
of 2003 and the Russian one of 2010 (Miralles et al., 2014; Fischer, 2014). The
authors found that the extremely high temperatures reached in those events
are explained by the combined multi-day memory of land surface and the at-
mospheric boundary layer (shown in fig. 2.4). During both events, heat accumu-
lated in the boundary layer causing the underlying soil, which was already in
dry conditions, to dry even further. As a result, evapotranspiration decreases fa-
voring high sensible heat flux, thus warming and deepening the boundary layer,
creating a feedback loop. Moreover, warm air was anomalously kept warm even
during night time, thus exacerbating the effect of the subsequent day warmth.
Another interesting point for mid-latitude mega-heatwaves suggested by (Mi-
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Figure 2.4: Schematic of the net radiation budget at the land surface. Figure taken from
(Alexander, 2011).

ralles et al., 2014) is the need of having simultaneously dry soil, heat inflow
from warmer region and accumulation of heat during several days to cause
temperature exceedance of 40◦C. In part ii we investigate the relative contribu-
tion of the soil moisture deficit and of the AMV on the amplitude of summer
European heatwaves.

Despite the great advances in characterizing the soil moisture impact of heat-
waves, our understanding of soil moisture feedback on heatwaves is incomplete.
One reason lies in the lack of realistic representations in models of complex veg-
etation landscapes and dynamics (Barriopedro et al., 2023). In addition to that,
more has to be understood on the role of soil condition in the development of
large of synoptic and mesoscale systems favorable to heatwave events (Miralles
et al., 2019).

Other factors such as land-cover, land-use and anthropogenic aerosols are
known to play a role in either the settling or the exacerbation of heatwaves at
these scales (Barriopedro et al., 2023).

In this section, I presented some drivers of heatwaves at mid-latitudes acting
at different temporal and spatial scales. In the next section, the focus is shifted
to the changes in heatwaves frequency and amplitude in response to climate
change.

2.3 observed and projected changes in heatwaves

The latest IPCC report confirmed that it is certain that the intensity and fre-
quency of warm days, warm nights and heatwaves have been increasing since
1950 in Europe (particularly over the Mediterranean area) as a consequence of
increasing greenhouse gas concentrations (Seneviratne et al., 2021). The pro-
jected changes in the magnitude of the extreme temperatures over land are
larger than the global mean temperatures and will affect several regions even
at a 1.5 ◦C of global warming. The change in the extreme temperature affects
not only the extreme hot ones, but also the extreme colder ones, which are
projected to become hotter, leading to more sporadic extreme cold events. Fig-
ure 2.5 shows the changes in both the annual maximum and minimal temper-
atures under different global warming levels. The minimal one has a stronger
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Figure 2.5: Projected changes in (a–c) annual maximum temperature (TXx) and (d–f)
annual minimum temperature (TNn) at 1.5°C, 2°C, and 4°C of global warm-
ing compared to the 1850–1900 baseline. Results are based on simulations
from the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-
model ensemble under the Shared Socio-economic Pathways (SSPs) SSP1-
1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers in
the top right indicate the number of simulations included. Figure taken
from the AR6 IPCC report, Chapter 11.

equator-to-pole dependency and has a projected higher warming, while for the
annual maximum temperature, the warming is spatially more uniform over
land areas. An interesting property of projected extreme temperatures is that
their intensity does not scale linearly with global warming. For instance, in
fig. 2.6, we see that for extreme annual daily maximum temperatures with a re-
turn time of 10 and 50 years, the projected intensity is higher than the projected
global warming level.

As already mentioned above, the ongoing warming of our planet is all but
uniform, with discrepancies among land and ocean territories, as well as among
land regions. Understanding the role of soil moisture-temperature feedbacks
at regional scale is thus essential for adaptation strategies, especially at the
mid-latitudes. Regional changes in the extreme projected temperatures can be
decomposed in a mean response to global warming and an additional warm-
ing strongly affected by soil moisture-temperature feedback (Vogel et al., 2017;
Douville et al., 2016). This response is consistent with the projected soil mois-
ture drying at multidecadal time scale, which has a major impact than the
interannual to subseasonal effect of soil moisture variability. In addition, this
result points out how much predictions of changes in temperature at regional
scale might be ameliorated in climate models with additional inclusion of soil
moisture-related processes.

While the thermodynamic effects of climate change on heatwaves are widely
known (on a hotter planet the frequency of the extreme temperatures will
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Figure 2.6: Projected changes in the intensity of extreme temperature events under 1°C,
1.5°C, 2°C, 3°C, and 4°C global warming levels relative to the 1850–1900

baseline. Extreme temperature events are defined as the daily maximum
temperatures (TXx) that were exceeded on average once during a 10-year
period (10-year event, blue) and once during a 50-year period (50-year event,
orange) during the 1850–1900 base period. Results are shown for the global
land. The figure shows the non linear trend which exists between the pro-
jected increase in the intensity of the event (y-axis) and the projected global
warming level (x-axis). Figure taken from the AR6 IPCC report, Chapter 11.

change causing more events and more extreme ones to happen), the dynam-
ics associated to this change lacks of a full understanding. For instance, there
is no consensus on the future change in blocking (Woollings et al., 2018). One
reason for this is the lack of a theory for the explanation of this phenomenon,
as introduced in section 2.1.3. Another reason is the continued underestima-
tion of blocking activity by climate models, particularly for the Atlantic/Eu-
ropean sector in winter (Woollings et al., 2018; White et al., 2022). Specifically
for heatwaves, (Vautard et al., 2023) has shown that CMIP6 simulations do not
capture the rapid observed warming of extreme heat over Western Europe. At
the mid-latitudes, one relevant phenomenon for potential dynamical changes
in response to climate change is the so-called Arctic amplification. This refers
to a more rapid increase of temperatures at high latitudes than elsewhere on
Earth, causing a less pronounced meridional temperature gradient between the
pole and the equator and the jet stream to move equatorward (Coumou et al.,
2018). Some people argue that this displacement might cause a change in the
weather patterns. In their article (Barnes and Screen, 2015), the authors discuss
the impact of the Arctic warming on the jet stream. They state that, despite the
fact that model simulations demonstrate that Arctic warming can impact the
jet, those simulation responses are of the same magnitude as (or smaller than)
the internal variability. Moreover, observations solely, as it is often the case in
climate science, cannot provide substantial help because of the short duration
of reliable records. An open question is how these responses will effectively
change the weather at mid-latitudes.
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Different mechanisms have been proposed as possible pathways of the atmo-
spheric response to the Arctic amplification (Barnes and Screen, 2015), summa-
rized by fig. 2.7. The reduced temperature gradient, might cause on one side a
reduced baroclinicity and thus a reduced storm activity and on the other side a
reduced warming effect, thus temperature extremes, under the effect of climate
change (Schneider, Bischoff, and Płotka, 2015). Another effect of this gradient
reduction is the hypothesis of a less sinusoidal jet stream, which is expected to
slow down because of a reduced thermal wind balance. In their work, (Francis
and Vavrus, 2012) hypothesized that this slowing down could cause an ampli-
fication of the Rossby waves and more frequent blocking conditions, ultimately
leading to more heatwave conditions. Another mechanism leading to the same
conclusions has been proposed by (Coumou et al., 2014) in which the reduced
meridional temperature gradient might lead to more double jet conditions. This
refers to a split of the jet stream in two filaments which would act as barriers
to trap the waves in the lower atmosphere. This phenomenon is known in lit-
erature as ’quasi-resonance’, briefly presented in section 2.2.2. The double jet
configuration is the core content of part iv, where we use a rare event algorithm
to simulate double jet stream states and analyse the atmospheric response.

In warmer mid-latitudes, the ocean will be warmer as well. This translates
into an enhanced frequency and growth of storm activity. Summarising, there
is not a clear pathway of the possible effects of climate change on the dynamics
of the atmosphere.
This section was a general overview of some of the most important mecha-

nisms at the mid-latitudes, with a focus on Europe, for heatwave formation and
maintaining. The overall goal of this part was to present the reader a concise de-
scription of both the thermodynamics and dynamics aspects of this fascinating,
yet dramatic, weather phenomenon. In the next section I will present a brief
history of climate modelling and the models run in the research group I am
part of.

2.4 climate models

In this section I briefly present the history of climate modelling and the current
challenges, some of them already mentioned in the previous sections. Numeri-
cal models of different complexity are employed to study the climate system at
different spatial and temporal scales. These models help in understanding the
past, the present and the possible future of our Earth. The highest complex ones
are the Earth System Models (ESMs). Climate models embed the mathematical
formulations of laws which govern the components of the climate, such as the
atmosphere, the ocean, the cryosphere, the land, the biosphere and the car-
bon cycle. They are built on the fundamentals laws of physics (Navier-Stokes,
Clausius-Clapeyron), empirical laws based on observations and finally, when
possible, constrained on conservation laws (mass and energy). It is clear that to
numerically evaluate the evolution of such a complex system, huge computa-
tional power needs to be deployed. Hence, the evolution of the complexity of
available models goes hand in hand with the evolution of computing power.
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Figure 2.7: Schematic representation of proposed dynamical mechanisms in summer.
a) Weakening of storm tracks, b) latitudinal-shift in jet positions, and c)
amplification of quasi-stationary waves. Figure taken by (Coumou et al.,
2018).
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Figure 2.8: Timeline of the history of climate modelling. Figure taken from https://

www.carbonbrief.org/timeline-history-climate-modelling/.

In the next section I briefly present the historical path of climate models
arriving to today’s models and open challenges. I then move to present the
climate models run in the research group I am part of and I briefly compare
them with the reanalysis dataset ERA5.

2.4.1 History of climate modelling

Energy Balance Models are the earliest and simplest attempt of numerical cli-
mate models. They actually did not simulate the climate, but rather the energy-
balance of the atmosphere. As simple as they are, they only output temper-
ature and consider the Earth as a point. A step along from Energy Balance
Models are Radiative Convective Models, which simulate the transfer of en-
ergy through the height of the atmosphere. They are generally one dimensional
models which calculate the temperature and humidity of different layers of the
atmosphere. We have to wait until the creation of General Circulation Models
(GCMs), also called Global Climate Models, to have a simulation of the physics
of climate, including the flow of air and water masses in the atmosphere and
the ocean and the heat transfer. Early GCMs were run in atmosphere-only or
ocean-only setup. At a later stage, different models were linked together to
provide a comprehensive representation of the climate system. Those are the
so-called coupled models. 2

Going forward in time, more and more aspects of the Earth system were
added to GCMs. An infographic of its temporal evolution is presented in fig. 2.8.

2 An interesting overview is given at https://www.carbonbrief.org/

timeline-history-climate-modelling/

https://www.carbonbrief.org/timeline-history-climate-modelling/
https://www.carbonbrief.org/timeline-history-climate-modelling/
https://www.carbonbrief.org/timeline-history-climate-modelling/
https://www.carbonbrief.org/timeline-history-climate-modelling/
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We need to wait the beginning of the 21st century to have models with surface
and deep ocean circulation components, resolved volcanism, aerosols and hy-
drologic cycle, key for modelling precipitations. Since then, other components
such as atmospheric chemistry and interactive vegetation have been included.

Nowadays, more than 50 operational GCMs are maintained by atmospheric
modeling centers around the world, with many of them taking part into the re-
ports of the IPCC. Those reports made use of multi-model ensembles generated
through various phases of the World Climate Research Programme CMIP, the
latest one being the 6th (CMIP6). In the latest IPCC report Climate Change, 2023,
several climate models at global and regional scales, with different complex-
ity, took part into the scientific development which built this report. However,
there is still margin for amelioration. In Chapter 1 of the above-mentioned re-
port, the authors highlighted the improvements made from the previous report
and the remaining challenges to be addressed, notably for model resolution,
parametrizations (for instance for convection, turbulence, clouds physics), land
and ocean biosphere and biochemical cycle modelling. Here, we will report the
main ones and leave the keen reader to refer to that Chapter for deeper insights.

CMIP6 models have higher horizontal and vertical resolution than its prede-
cessors,to represent finer aspects of the atmospheric circulation and ocean. In
the vertical direction, the number of vertical levels in the atmosphere has in-
creased to ameliorate the representation of stratospheric processes. Despite the
documented progress of higher resolution, improvements between CMIP5 and
CMIP6 are modest at the global scale, highlighting how much the model perfor-
mance relies on other factors than resolution, such as parametrizations. For the
representation of physical and chemical processes, notable effort has been made
for radiative transfer, cloud microphysics and aerosols (and effect of aerosols on
cloud formation modification). However, it still represents a source of spread
among models.

2.4.2 Models used in this thesis

The goal of this section is to present the two models run in the research group
I am part of and to compare them with the reanalysis dataset ERA5. Between
the two climate models I present, namely PlaSim and CESM, I decided to give a
more detailed presentation of the latter, as it is the model I have run myself for
the study presented in part iv. A longer description of the former is presented
in part iii.

plasim PlaSim is an intermediate complexity climate model that has a dy-
namical core that solves the moist primitive equations (Vallis, 2017) and has a
resolution of 2.8 degrees both in latitude and longitude with 10 vertical layers.
It has fairly simple parametrizations for sub-scale processes, for instance for
hydrology over land, with a single-layer bucket model (Manabe, 1969). Sea ice
cover and ocean surface temperature are cyclically prescribed for each day of
the year. The model reproduces a climate close to that of the 1990s. The simpli-
fied parameterizations allow it to run 100 times faster than the models used for
CMIP studies, which makes it very suitable to obtain extremely long datasets.
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(a) (b)

Figure 2.9: (a) Scheme of the models used in the CESM Panel (b) Solved processes in the
model in its fully coupled version. Figure courtesy of COMET program.

Indeed, we dispose of a very long climate simulation of 8000 years with this
model. This simulation has been performed by Bastien Cozian, former PhD
student in our group, to whom I am really grateful.

community earth system model The CESM is composed of seven phys-
ical components: atmosphere, sea-ice, land, river-runoff, ocean, land-ice and
ocean-wave. The coupler is another component which allows the information
to flow among the model’s components and allows the time evolution of the
global model. An overview of the model components can be found in fig. 2.9.
The same figure shows the processes resolved in this model in its fully cou-
pled configuration. This model can suit for different combinations, for instance
it could be active and solve prognostic equations or the components can be
replaced with prescribed data.

In the setup we use, only atmosphere and land are used as active compo-
nents. More specifically, the atmospheric model is the Community Atmospheric
Model version 4 (CAM4), while the Community Land Model version 4 (CLM4)
is used for the land. CAM4 (Neale et al., 2013) includes a default dynamical
core which solves a finite discretization of primitive equations. It presents a
resolution of 0.9 degrees over the latitudes and 1.25 over the longitudes, with
26 vertical layers in a hybrid pressure-sigma coordinate. With these resolutions
over latitude and longitude, the model spans roughly over 100km at the mid-
latitudes.

The model CLM4 (Lawrence et al., 2011) represents several aspects of the
land surface, including surface heterogeneity and several subcomponents to
incorporate bio-geophysical and biochemical aspects, hydrology cycle, energy
fluxes and vegetation. The hydrology component includes evaporation, surface
infiltration, surface and sub-surface runoff, snow and glacier formation and
melting, in interaction with the vegetation model. The land model has 15 ver-
tical layers. The version used has a prescribed aerosol concentration, including
greenhouse gases, fixed to a level which matches the observed one to repro-
duce the 2000s climate. Finally, the CO2 concentration is set at 367 ppmv. In the
version used, the other model’s components are not active but with prescribed



2.4 climate models 21

data. We use historical data to prescribe the ocean and the sea-ice models, for
instance. In particular, we use monthly averaged data to obtain daily data via
a linear interpolation and then cyclically yearly repeat. In the context of this
thesis, I use a long climate simulation of 1000 years of data performed with
this model by Francesco Ragone 34, to whom I am very grateful. I run the same
climate model coupled with a rare events algorithm in the study presented in
part iv.

era5 ERA5 is a reanalysis dataset (Hersbach et al., 2020). Reanalysis com-
bine past observation records with today’s weather models to give a consistent
and complete picture of past weather through data assimilation. Observations
are unevenly distributed and come with errors. They cannot provide a com-
plete and accurate picture of the state of the Earth system across the globe at
a given point in time. Indeed, one could think of the Earth as a puzzle, with
observations being the pieces which form that puzzle. Some of them are miss-
ing, thus thanks to the laws of physics, one can reconstruct the missing one
to create a consistent image. Reanalysis covers not only the Earth surface, but
also the atmosphere until the stratosphere. ERA5 dataset is a publicly available
of the European Centre for Medium-Range Weather Forecasts service covering
the period from January 1940 to present. ERA5 has a resolution of 0.25 degrees
in latitude and longitude, with 45 vertical layers.

Beside these different parameters, an important difference is that the first two
models are climate models, while ERA5 is a hybrid weather model. Nowadays,
the line which separates the two is getting blurred, but traditionally they are
created for different purposes. Climate models focus on simulating the energy
balance of the Earth’s atmosphere over long periods, from decades to centuries.
They are designed to predict changes in the climate system by considering the
interactions between the atmosphere, oceans, land surface, and ice. The key
components include energy balance, dynamical components and parametriza-
tions (to represent processes that occur at scales smaller than the model’s res-
olution). Weather models are designed to forecast atmospheric conditions over
short timescales, from hours to weeks. They also include a dynamical core, but
with a detailed representation of atmospheric physics to predict the state of the
atmosphere with high temporal and spatial resolution. They use parametriza-
tions as well, but to accurately capturing phenomena that affect short-term
weather prediction (turbulence, clouds formation, etc..).

In fig. 2.10 I show the zonal wind, i.e. the west-east component of the wind
vector at 300 hPa and 2 m air temperature climatology for the months of June,
July and August for: ERA5, CESM, PlaSim (from left to right). These maps serve to
give the reader an idea of how much idealized are the models used compared
with a reanalysis dataset. Looking at the zonal wind, we observe that over
the North America and the Atlantic Ocean arriving to Eastern Russia CESM re-
produces correctly the latitudinal spread and the amplitude of the zonal wind,
while PlaSim tends to overestimate its amplitude and to have a more zonal repre-
sentation, clearly visible over the Eurasian sector. Over the Pacific Ocean, CESM

3 Georges Lemaître Centre for Earth and Climate Research (TECLIM), Earth and Life Institute, Université
Catholique de Louvain, Louvainla-Neuve, Belgium

4 Royal Meteorological Institute of Belgium, Brussels, Belgium
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Figure 2.10: Zonal wind, i.e. the west-east component of the wind vector, at 300 hPa
and 2 m air temperature for: (from left to right) ERA5, CESM, PlaSim. The
average is taken over the months of June, July and August. We recall that
the simulation length for CESM is of 1000 years and that it is used in land
and atmosphere setup only. PlaSim data has a length of 8000 years and
presents prescribed sea ice cover and sea surface temperature.

underestimates the amplitude of the zonal wind, but simulates with a good
degree its latitudinal spread, while PlaSim struggles both with the amplitude
and the position of the zonal wind. For the 2 m air temperature, there is a large
similarity between CESM and ERA5, which is also the case for PlaSim, despite
a lower agreement over the central North America, where PlaSim simulates a
stronger amplitude of the 2 m air temperature.

Summarizing, this initial chapter has been devoted to present some drivers of
heatwaves at mid-latitudes and observed and projected changes in their occur-
rence and amplitude. Finally, I introduced and compared some of the models
which are used in the following chapters.

Let’s now turn the page to present some tools which will be used at differ-
ent stages of this thesis. Finally, we introduce large deviation theory, a well
established theory for estimating the probability of rare events.
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M A R K O V P R O C E S S E S , R A R E E V E N T S A N D L A R G E
D E V I AT I O N S

When studying climate extremes, we may be interested in two problems. Esti-
mate a posteriori statistics, meaning understanding the average state that has
led to them for an analysis purpose of the event or estimating the average time
to wait to observe an event with a given amplitude. The first quantity is called
composite map, while the second one is called return time and are two interest-
ing quantities in the context of adaptation and risk limiting policies, and they
are recurrent in this thesis. The second question regards the forecasting of ex-
treme events, which deals with the estimation of the probability that the event
happens before it actually happens. Namely, I aim at estimating the committor
function. In this chapter I introduce all the previous mentioned quantities, but
before doing so I first present briefly what is a Markov process (Liggett, 2010)
and then define return time (Lestang et al., 2018) and composite maps. Finally, I
introduce the committor function (Lucente, Herbert, and Bouchet, 2022). In sec-
tion 3.2 I introduce the Large deviations theory, a theory which allows to estimate
the probability of a large fluctuation of a given observable. The aim of this sec-
tion is not to give a complete overview of this theory, as it is not the scope
of this thesis. Nevertheless, the rare event algorithm presented in part iv was
originally conceived to estimate the large deviation rate function (or actually
its Legendre-Fenchel transform), a key quantity to have access to the probabil-
ity of a rare fluctuation of a given observable. Thus, the ultimate goal of this
section is to present the minimal amount of concepts to create a link with the
algorithm used in part iv.

3.1 markov process , committor function and rare events

Let’s define a stochastic process {X(t)}t∈T , with T ordered set, as a collection
of random variables defined over a common probability space (Ω,F , P), where
Ω is the sample space, F is a σ-algebra, P is a probability measure. The process
takes value in the phase space Γ. The index t is representative of time in our
case. The process {X(t)} is a Markov process if it satisfies the following property:

P(X(t + h) ∈ C|{X(s)}s≤t) = P(X(t + h)) ∈ C|X(t)) (3.1)

for h ≥ 0, C ⊂ Γ and {X(s)}s≤t is a collection of the values of the stochastic
process up to time t. This means that a Markov process is a process where its
future outcome depends only on its nearest past value, i.e. the process does not
have memory of all its past history, and — most importantly— such predictions
are just as good as the ones that could be made knowing the process’s full his-
tory. In the following, our study is restricted to stationary and ergodic Markov
process, thus we proceed to briefly define them.

23
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stationarity A Markov process is said to be stationary if the joint proba-
bilities of observing a stochastic process are invariant under any time transla-
tion τ.

ergodicity A Markov process is said to be ergodic if it is stationary and
if there is an equivalence between the long-time mean of the process and its
ensemble average.

3.1.1 Return time and composite maps: a posteriori statistics

The goal of this section is to present two tools which are widely used in this
thesis: the return time and the composite maps. Both are common tools for
making a posteriori statistics, i.e. they analyze some statistical properties of
a rare event once the event has already happened. Given a stochastic process
defined as above, a scalar observable which depends on the path {O[X(t)]}
and a threshold value a which separates between rare and not rare events, it
is possible to define the random variable τ(a, t) = min{τ ≥ t|O[X(τ)] ≥ a}.
Then the return time is defined as the average time to wait to see an event of
magnitude higher than a:

r(a) = E [τ(a, t)] (3.2)

where E is the expected value, practically estimated via an empirical average
over the data, and a is generally named return level. The return time is strictly
connected to the probability of observing an event of amplitude a. A well es-
tablished theory for computing return times is the Extreme Value Theory (EVT)
(Coles, 2001). In general, this theory seeks to assess the probability of an unseen
event by extrapolating the information from the observed ones. There are two
methodologies which are practically used for extreme value analysis: the Block
Maxima and the Peaks Over Thresholds. The former one relies on the partition
of the observed time series of O in non overlapping blocks, which are then
assumed to be statistically identical and independent and long, and on the sub-
sequent evaluation of the maxima within each block. Using the block maxima
data one can fit a Generalized Extreme Value distribution which extrapolates
beyond the observed data (Ferreira and Haan, 2015; Coles, 2001). The latter ap-
proach, instead of blocking, we select all observations that are above a certain
threshold a. If a is high enough, then the selected observations can be thought
as independent realizations and will be fitted using a Generalized Pareto distri-
bution. However, a limit of this theory is the uncertainty associated with each
estimation of the return time or of its probability, which is non-negligible when
a is really high (Le Priol, Monteiro, and Bouchet, 2024; Coles, 2001). This limit
is common to all theories as there is a lack of data problems. In this thesis, we
tackle this by generating data that will effectively and efficiently populate the
tails of the observable O in order to sample a statistically significant amount
of rare realizations of it. This is done with the aid of a rare events algorithm,
which we present in the following. A return time plot is a plot in which for each
return level a (which measures the rareness of the event) we associate a return
time (which measures the probability of observing an event with value a). This
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quantity allows to see the evolution of the probability as a function of a and in
this thesis is computed in parts ii and iv.

Beside the estimation of the time to wait for an event of amplitude a to oc-
cur, i.e. the return time, an interesting question, particularly relevant in the
climate community, concerns the dynamics which has let the event to occur
(Grotjahn and Faure, 2008; Noyelle, Yiou, and Faranda, 2024; Miloshevich et al.,
2023; Teng et al., 2013). Composite maps are a statistical tool which estimates
the average state of the climate system which has led to an extreme event,
such as a heatwave. Formally, if one denotes X as a stochastic process, with
X(t) ∈ Γ = Rd, a scalar observable which depends on the path {O[X(t)]} and
a threshold value a which separates between rare and not rare events, then
composite maps are defined as the average state of X lagged of an amount of
time τ before the event has happened:

C(τ) := E[X(t − τ)|O[X(t)] ≥ a] (3.3)

where E is the expected value, practically estimated via an empirical average
over the data. The quality of the estimated composite map depends on the num-
ber of events we are averaging over. Thus, in principle it suffers from sampling
error for the very rare events. However, in part iii, we show that for a properly
defined class of extreme events, including heatwaves, the pattern of composite
map of very extreme events closely resembles to the one of less extreme ones.
They are just rescaled by a factor proportional to the threshold a which defines
the events.

The two statistics presented in this section are extremely helpful to charac-
terise events when they already occur. Another interesting question regards the
prediction of the event, which is addressed in the next section with the commit-
tor function.

3.1.2 Committor function: a priori statistics

Medium-range forecast is an intriguing subset of forecast which poses several
methodological challenges. Indeed, the interesting timescales lie between the
deterministic predictability time and the mixing time of the system. In this
range, relevant for high-impact events, such as heatwaves, the forecast needs
to be probabilistic and the right theoretical tool is the committor function, intro-
duced in the field of climate by (Lucente et al., 2019). It is an a priori statistics,
meaning that we aim at estimating the probability of an event to happen before
it actually happens. In this section, I introduce it in the context of stochastic
processes and for the particular case of prediction of heatwaves. Let’s consider
a stationary process {X(t)} and let D be a subset in the phase space D ⊂ Γ. We
define the first hitting time τD(x):

τD(x) = inf{t : X(t) ∈ D|X(0) = x}. (3.4)

Let then A and B be two disjoint subsets of the phase space Γ. The committor
function q(x) is the probability that the process started in X(0) = x will visit
the set A before visiting the set B. Mathematically:

q(x) = P(τB(x) > τA(x)). (3.5)
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The two disjoint subsets A and B might be two attractors, or one attractor
and one set of extreme events. In this thesis, I deal with one set being typical
states of the system and the other one being a set of extreme events, which is
visited when rare fluctuations arise. For instance, given a set of predictors, the
set of important climate variables for the extreme event under study, we want
to know the probability of observing a heatwave in τ days. In that case, the
committor is identified as the above-mentioned conditional probability, which
reads as:

q(x, τ) = P(O[X(t)] ≥ a | X(t − τ) = x). (3.6)

When we are dealing with low dimensional systems, having access to this prob-
ability eq. (3.6) can be tricky but not impossible. In the context of climate sci-
ence, given the high dimensionality of the system of interest, computing this
quantity is challenging. A preliminary step is then to map the committor func-
tion into a lower dimensional space with a suitable map that retains the salient
features which lead to the extreme events of interest. In this thesis, this map-
ping is estimated both using Deep Convolutional Neural Networks and with a
novel methodology that naturally performs the dimensionality reduction and
the optimal projection mapping. This framework is called the Gaussian approx-
imation and it is the core content of part iii.

3.1.2.1 Estimation of the committor function

This section focuses on the estimation of the committor function via numerical
methods. A thorough analysis can be found at (Lucente, 2021). When we con-
sider a diffusion process, the committor function can be analytically obtained by
solving the associated Fokker-Planck equation (Lucente, Herbert, and Bouchet,
2022). I will not discuss this approach here, but I rather focus on two that are
connected with this manuscript.

direct simulation The straightforward method one could use to estimate
the committor function is via a direct simulation approach. This consists of
simulating N realizations of a process {X(t)}, starting with the same initial
condition X(0) = x and counting how many have hit the extreme set. In the
context presented above, let’s assume that we want to estimate the committor
at point x for two sets A and B using the equation eq. (3.5). If one denotes as
NB(x) the number of realizations that ended up in B a crude estimation of the
committor is simply given by:

q(x) =
NB(x)

N
(3.7)

which converges to the exact value in the limit N → ∞. Despite being techni-
cally trivial, this methodology has two main drawbacks. The first one regards
the initial conditions that one must generate extremely precisely. Secondly, the
computational cost associated with this method could be considerable. Indeed,
NB(x) is not a huge number, simply by definition of rare fluctuations. While
both issues could be manageable for rather simple systems, this approach be-
comes sooner unfeasible for more complex ones, such as climate systems. Rare
events algorithms, presented in chapter 4, could overcome this limitation.
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Figure 3.1: Schematic of the analogs method. On the left-hand side of the figure a point
Xn is surrounded by its analogs {X̂(k)

n } with K = 4. On the right-hand side,
the observed images of the analogs are shown at one time step forward. The
transitions observed in the data are represented by black lines which link
the analogue with its corresponding image. Red lines are associated with
possible transitions from the state Xn of the analogue Markov chain. Figure
taken from (Lucente et al., 2022)

data-driven approach In the context of committor estimation, purely
data-driven approaches have been designed. The analogue method was orig-
inally proposed by Lorentz (Lorenz, 1969) as a methodology for determinis-
tic prediction. Successive versions of it adapted this method to the context of
stochastic prediction, either because the dynamics is itself stochastic or sim-
ply because the methodology itself relies on an approximation of a chaotic
dynamics (Yiou, 2014; Lucente et al., 2022). A thorough investigation and study
of this methodology applied to climate has been done by Dario Lucente, for-
mer PhD student of our group (Lucente, 2021) and to which I refer to for a
deeper investigation of the concepts presented briefly in this section. Let’s con-
sider a dynamical process (it could be either Markovian or not, stochastic or
not) {X(t)}, which takes values in the multidimensional phase space Γ. Let’s
assume that we observed a realization of this process {Xn}1≤n≤Nt at regular
interval time for a total time T = Ntδt. We aim at building a Markov chain
that is a data-based approximation of the initial process, based on a generaliza-
tion of the Lorenz analogue method. We search among the available data the
K closest neighbours of Xn, i.e. the K analogues of the dynamics, denoted as
{X(k)

n }1≤k≤K. We then assume that it exists a transition between the state Xn

and the images {X̂(k)
n }1≤k≤K, with a certain probability. This probability could

either be uniform and equal to 1
K for each analog or for instance be dependent

on the distance between Xn and its analogs. Figure 3.1 shows this procedure
for K = 4 neighbours. On the left side 4 analogs of Xn are identified and on the
right side, connected via a black curve, their transition observed in the data.

Choosing K is crucial, and it is ultimately a trade-off in choosing a high value
of it (to be sure to properly approximate all the possible transitions from a given
state) but not too high (to select analogs that are too distant). Another funda-
mental choice is the proper distance, which has to be selected on a case basis.
This is the basis from which one can then generate an analog Markov Chain.
Using the analog Markov chain one can then estimate the committor function
via a Monte Carlo direct estimation (presented above), this time having access



28 markov processes , rare events and large deviations

to more sampled committor and at a lower computational cost. An alterna-
tive and more efficient methodology has been proposed in (Lucente, Herbert,
and Bouchet, 2022). A known algorithm that is based on the analog Markov
chain is the Stochastic Weather Generator (Yiou, 2014). The method relies on
the construction of a catalog of analogs, which are states with similar circu-
lation patterns and other thermodynamic characteristics to generate synthetic
time series which are, ultimately, dynamically similar. A recent study compares
this methodology with machine learning tools, such as Convolutional Neural
Networks, for the prediction of heatwaves over France and Scandinavia using
the intermediate complexity model PlaSim (Miloshevich et al., 2024). The result
seems to be in favour of the latter, with a better prediction skill, especially
when long datasets are employed. In the context of this thesis, Convolutional
Neural Networks are employed in part iii for the prediction of heatwaves over
France ultimately to compare their performance with a statistical methodology.
In recent years, Convolutional Neural Networks, and Deep Learning tools in
general, have gathered much attention in many applications of climate science.
The classic and historical application of these tools for image recognition can
be in principle easily applied to the field of climate studies, where we generally
deal with maps of some fields to different purposes. A recent article has sum-
marized the current state-of-the-art of machine learning in weather prediction
and climate analyses, with results coming from 500 research articles (Bochenek
and Ustrnul, 2022). In the context of this thesis, Convolutional Neural Net-
works are used as a prediction tool with the task of estimating the committor
function, for the application of prediction of extreme heatwaves over France.
This is presented in part iii. This tool has already been used for prediction of
extreme events, and heatwaves in particular (Miloshevich et al., 2022; Miloshe-
vich et al., 2024; Jacques-Dumas et al., 2022). A review of applications in the
field of probabilistic forecast can be found in (Miloshevich et al., 2022). Broadly,
this methodology tries to extrapolate meaningful information from an already
existing dataset, without relying on the generation of new data. However, it is
widely known that it is a data-demanding method, which generally performs
in a regime of lack of data, as shown in (Miloshevich et al., 2022). Given that
it is carefully explained in the following, I redirect you to part iii for a deeper
discussion.

To fix the ideas, in the next section we will illustrate these concepts on a
rather simple but interesting Markov process, the Ornstein-Uhlenbeck OU.

3.1.3 Rare events and committor function for an OU process

To give an example of the concepts introduced in the previous sections, I
present a simple case of study with a well-known process, the OU. This process
is a stationary one-dimensional Markov process, which obeys the following
stochastic differential equation:

dX(t) = θ(µ − X(t))dt + σdW(t) (3.8)

where X(t) is the process, θ is the friction, µ is the mean, σ is the noise, W(t) is
a Wiener process. Originally used to model the velocity of a Brownian particle
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Figure 3.2: Example of realizations of a OU process, see eq. (3.8). The red line is the
threshold used for defining a rare fluctuation of the stochastic process (in
this case set to 3σ). We chose θ = 1, µ = 0 and σ = 1.

experiencing friction, this process describes a random walk with a tendency to
move back towards the average value and it is widely used in financial mathe-
matics to model interest rates, for instance in the Vasicek model (Vasicek, 1977).
In this particular case, we will consider fluctuations arising from the evolution
of the process itself. A realization of it is depicted in fig. 3.2. From that figure,
we see that the observable fluctuates around its mean µ, which is chosen to
be zero in this particular case. However, over timescales that are longer than
the correlation time of the process itself, extreme fluctuations arise and they
are the ones which overshoot the red dashed line in the figure (they are only 7).
Equivalently, one could think of those events as the ones belonging to the queue
of the probability density function of the realization of X(t). Given that those
events are statistically independent asymptotically because they occur at longer
timescales than the correlation time of the process, they can be modeled by a
Poisson point process. The good news is that we have access to the probability
of those events and to their return time, i.e. the average time to wait to observe
a rare fluctuation of this kind. The bad news is the quality of the estimation
of either the probability or the return time. In fact, as it can be seen already
in fig. 3.2, despite the long integration time, only a few events are sampled. In
se this is not surprising, as the term rare fluctuations already underlines the
sampling difficulty. However, this highlights the limitation of direct sampling
of extreme events: we need a long integration time of the dynamics to achieve
a reasonable amount of statistically independent events. This is absolutely out
of reach for application in climate science. Therefore, alternative methods are
needed to tackle this task. In this thesis we will explore a statistical algorithm,
coupled with the simulation of the dynamics, which enables us to solve the cru-
cial trade-off between a huge numerical cost and a significant sample of rare
events: at a reasonable numerical cost, which we will detail, we sample more
statistically independent extreme events. The algorithm and its application to
transitions from single jet to double jet configuration in the atmosphere, the
rare event of interest we studied in this thesis, is discussed in part iv.

In the context of a one-dimensional stochastic process, such as the OU, there
always exists an explicit formula (Lucente, Herbert, and Bouchet, 2022) for the
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committor function. For the OU with µ = 0 for the sets A = (−∞, a] and
B = [b,+∞), with a < b, reads as:

q(x) =

∫ x
a e

θ
σ2 y2dy∫ b

a e
θ

σ2 y2dy
. (3.9)

3.2 theory of large deviations

The theory of large deviations is a theory that focuses on the asymptotic study
of rare fluctuations of a given observable described by sums of random vari-
ables. After the pioneering works of Cramer (Cramér and Cramér, 1994; Cramér
and Touchette, 2022), Donsker and Varadhan (Donsker and Varadhan, 1976),
Freidlin and Wentzell (Ventsel’ and Freidlin, 1970) and finally of Ellis (Ellis,
1984; Ellis, 1995), nowadays this theory is one of the cornerstones of statistical
mechanics and an active field of research for non-equilibrium statistical physics
systems. In the following, we present only the concepts which allow linking this
theory with the rare events algorithm presented in part iv. We refer to (Dembo
and Zeitouni, 2010; Touchette, 2009) for a deeper discussion.

Let {X(t)}t∈T be an ergodic continuous Markov process, with T = [0, T]
and X(t) ∈ Γ = Rd. Let AT : Γ → R and f : Γ → R be a real-valued random
variable and a function, respectively, which depend on the path {X(t)} via the
following relation:

AT :=
1
T

∫ T

0
f (X(t))dt. (3.10)

For this class of variables, we know that, in the large time limit, the typical
value coincides with its ergodic average µ := E(A) = limT→+∞ AT. Moreover,
by the Central Limit theorem, we know that, in the large time limit, the fluc-
tuations around its typical value are Gaussian and scale as 1√

T
. However, in

many applications we might be interested in fluctuations that are beyond the
Gaussian ones, for which the scaling factor is of order T, instead of

√
T. To have

access to these fluctuations, one could make use of the Large deviation theory. In
particular, we will focus on the Donsker-Varadhan theory of Large deviations,
commonly defined in the literature as large-time large deviations.

Recall that we want to study fluctuations of the long-time averaged observ-
able AT. We say that AT follows a large deviation principle if the limit:

lim
T→+∞

− 1
T

ln P(AT ∈ [a, a + da)) = I(a) (3.11)

exists1. Then, I(a) is called the large deviation rate function and T is the large
deviation rate. An alternative, yet totally equivalent, formulation of the large
deviation principle reads as:

P(AT ∈ [a, a + da)) ≍
T→+∞

e−TI(a)da (3.12)

1 Rigorously, the existence of this function should be proved for both the lim inf and lim sup over
open and closed sets. However, this level of detail goes beyond the scope of this thesis and can
be found at (Touchette, 2009).



3.2 theory of large deviations 31

where the equivalence fT ≍
T→+∞

gT stands for a logarithmic equivalence as T

goes to infinity: ln( fT) ∼
T→+∞

ln(gT). We are thus implicitly assuming that the

prefactor in eq. (3.12) is subdominant in the limit T → +∞ with respect to
the exponential decay of the rate function. Having access to the rate function I
translates into having access to the probability of fluctuations of A. Establish-
ing whether for a given variable a large deviation principle holds is the first
needed step. For ergodic Markov processes it is already been shown (Chetrite
and Touchette, 2015) and we will omit in this section its derivation. When
eq. (3.12) holds, the second natural step is the evaluation of the rate function I,
which is all but trivial. The Gärtner-Ellis theorem, presented in the next section,
provides a recipe for the evaluation of the large deviation rate function I, under
some conditions.

3.2.1 The Gärtner-Ellis theorem

Instead of working with a probability density function, it is more convenient
to use an equivalent function. Let’s define the Scaled Cumulant Generating
Function (SCGF) as :

λ(k) := lim
T→+∞

1
T

ln E[eTkAT ] (3.13)

for k ∈ R, where

E[eTkAT ] =
∫

R
eTkAT P(AT ∈ [a, a + da)). (3.14)

The Gärtner-Ellis theorem states that if λ(k) exists and is differentiable for all
k ∈ R, then a large deviation principle holds for AT with rate function I(a)
given by the Legendre-Fenchel transform:

I(a) = sup
k∈R

(ka − λ(k)). (3.15)

The Legendre-Fenchel transform (eq. (3.15)) is a generalization of the Legendre
transform (Touchette, 2005) which holds for functions which are everywhere
differentiable and strictly convex. Given the before-mentioned assumptions, not
all rate functions can be evaluated using this theorem (Touchette, 2009).

Equation (3.15) can be easily retrieved by noticing that, assuming that a large
deviation principle holds for AT, we could use a saddle-point approximation or
Laplace’s approximation for the integral in eq. (3.14)

E[eTkAT ] ≍
T→+∞

∫
R

eT(ka−I(a))da ≍
T→+∞

eT supk∈R(ka−I(a)) (3.16)

which implies

λ(k) = sup
a∈R

(ka − I(a)) ⇐⇒
Legendre-Fenchel transform

I(a) = sup
k∈R

(ka − λ(k)) (3.17)

Equation (3.16) holds if one assumes that the maximum of ka − I(a) exists and
is unique. For ergodic Markov processes, this assumption holds. Moreover, the
large deviation rate function I has a single minimum and zero, corresponding
to the ergodic average of A, µ.
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3.2.2 Cramer’s theorem

Cramer’s theorem is an application of the large deviation theory to the case
of a sum of independent and identically distributed random variables. In the
context of this thesis, it serves as a heuristic justification for the Donsker and
Varadhan large deviations, the cornerstone of the rare events algorithm used in
part iv.

Let X be a random variable described by a Probability Density Function P,
with mean µ = E[X] and variance σ2 = E[X2]− µ2. Then, let SN be the sample
mean of N realizations of X: SN = 1

N ∑N
i=1 Xi. Cramer’s theorem states that SN

satisfies a large deviation principle:

P(SN = s) ≍
N→+∞

e−NI(s) (3.18)

Equation (3.18) actually includes both the Central limit theorem and the Law
of large numbers. However, it goes beyond them, given that the fluctuations
described by the large deviations principle are beyond Gaussian ones. This can
be seen easily by performing a second-order expansion of the right side of
eq. (3.18).

To connect with the previous section, coming back to the problem of estima-
tion of the probability of large fluctuations of AT (eq. (3.12)), assuming that the
process {X(t)} has a correlation time of τc, we might split the integral in the
equation for AT into a sum over N integrals of duration ∆T ≫ τc:

AT =
1
T

∫ T

0
f (X(t))dt =

1
T

T/∆T

∑
i=1

∫ i∆T

(i−1)∆T
f (X(t))dt (3.19)

In this way, we are computing the sum over N identically and independently
distributed random variables. Thus, for Cramer’s theorem (eq. (3.18)), a large
deviation principle holds for AT:

P

(
1
T

∫ T

0
f (X(t))dt = a

)
≍

T→+∞
e−TI(a). (3.20)

This result is known in the literature as large-time large deviations or equiva-
lently as Donsker and Varadhan large deviations. In the context of this thesis,
it plays a central role in the rare events algorithm, the GKLT which is used in
part iv.

3.2.3 Convergence of large deviations estimators

This section serves as motivation for the use of rare events algorithms to sam-
ple rare and extreme events. As we have pointed out in section 3.2, the theory
of Large deviations is a cornerstone when one aims at studying the statistics
of rare events. A natural question which could arise is: why do not use this
theory to compute empirical estimations of large deviations functions of an ob-
servable related to climate, such it could be the averaged temperature over a
certain region? As for most of the cases, the evil is in the details. The large
deviation scaling applies if the timescale of persistence of the rare events of
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interest is large enough such that it belongs to the asymptotic regime. A mini-
mal requirement is that the total time integration of the rare event, T, is much
larger than the autocorrelation time τc of the time series of the rare event of
interest. However, the answer strongly depends on the structure of the auto-
correlation function of the time series and on the probability of the process of
interest. For these reasons, the convergence of eq. (3.12) and eq. (3.13) needs
to be carefully verified case by case. Following closely (Rohwer, Angeletti, and
Touchette, 2015), (Ragone and Bouchet, 2020) proved that the large deviations
estimators for studying rare fluctuations of the temperature of European sum-
mers do not converge. The convergence is limited by two factors. The first one
is the so-called linearization effect: any estimation of exponential sums, such
as eq. (3.14), of unbounded functions, is rapidly dominated, as k → +∞ by
the largest value in the sample. Thus, the tails of the estimated SCGF become
linear in k. Another limitation comes from the statistical error associated with
the estimated SCGF. (Rohwer, Angeletti, and Touchette, 2015) showed that the
convergence is non-uniform and there is a critical value of k after which the
estimated SCGF does not converge. Moreover, in the converged region, we can
have access to the statistical error only in half of it, since it is only in that part
that the eq. (3.14) converges to a Gaussian distribution. Using a long climate
run (Ragone and Bouchet, 2020) showed that, for the specific case of fluctua-
tions of temperature of European summers, the minimal duration of the event
to be considered to ensure the convergence of the large deviation estimators is
around 3 years. However, due to the seasonal cycle of such observable, it is of
interest up to a period of a season, roughly 90 days. In (Ragone and Bouchet,
2020), the authors hypothesized that this slow convergence might be due to the
slow decay of the correlation of the soil moisture, which is known to play a role
in maintaining extreme temperature events.

In this chapter, I presented the mathematical objects that are used later at
different stages of this manuscript. Then, I presented a brief overview of the
Large deviations theory, which is presented here because of its connection with
the rare events algorithm introduced in the next chapter and used in part iv of
this manuscript.





4
S A M P L I N G R A R E E V E N T S W I T H A R A R E E V E N T S
A L G O R I T H M

To introduce the difficulty of efficiently and effectively sampling rare events and
the subsequent need for alternative approaches to direct sampling, let’s consider
a simple framework. Let X be a random variable defined over a probability
space (Ω,F , P), where Ω is the sample space, F is a σ-algebra, P is a probabil-
ity measure. We denote with f the associated probability density. Our target is
to estimate the probability γA of being in a region A of low probability in the
probability distribution, i.e. γA = P(X ∈ A), under the condition γA ≪ 1:

γA = E f [1A] =
∫

f (X)1A(X)dX (4.1)

with 1A being the indicatrix function for the set A. We aim at estimating this
probability. The straightforward approach is to draw many independent real-
izations of X, {Xn}1≤n≤N sampled from f , and count how many have hit the
set A. We will obtain a direct estimation of eq. (4.1):

γ̂A =
1
N

N

∑
n=1

1A(Xn) (4.2)

which has an associated relative error:

rerr(γ̂A) =
σ(γ̂A)

γ̂A
≈ 1√

Nγ̂A
(4.3)

where σ(γ̂A) is the standard deviation of p̂A and the inequality holds because
γ̂A is small. A formal proof can be found in (Bucklew, 2010; Rubino and Tuffin,
2009). If γ̂A is of the order of 10−2, for an expected relative error of 1%, N
needs to be the order of 106. This highlights the tremendous computational
cost associated with an accurate sampling of rare events and calls for alternative
approaches to direct sampling.

Importance splitting and importance sampling are two families of approaches
for reducing the variance associated with the computation of statistical estima-
tors (Cérou, Guyader, and Rousset, 2019). Despite sharing the same goal, to
generate more rare events, they achieve it differently. The basic idea behind the
Importance splitting is to draw samples from the original probability density
f in a sequential way, such that the samples that move away from the target
region A are discarded and those who get closer to A are split or branched.
A very popular algorithm that is based on this principle is the Adaptive Mul-
tilevel Splitting Algorithm (Cérou and Guyader, 2007; Cérou, Guyader, and
Rousset, 2019; Rolland, Bouchet, and Simonnet, 2016; Bouchet, Rolland, and
Simonnet, 2019; Simonnet, Rolland, and Bouchet, 2021). However, in this the-
sis we focus on an algorithm which is rather based on importance sampling:

35
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Figure 4.1: Schematic representation of a cloning algorithm with N = 4 particles. Fig-
ure taken from (Wouters and Bouchet, 2016).

instead of drawing samples from the original probability distribution, we sam-
ple them from an appropriately chosen different one (which is related to the
original one), where the rare event set is a typical one. In the next section, we
formalize this mathematically. Ultimately, both families belong to the class of
cloning algorithms, or equivalently known in the literature as diffusion Monte
Carlo (Anderson, 1975) or populations dynamics algorithms (Bouchet, Rolland,
and Simonnet, 2019; Giardinà, Kurchan, and Peliti, 2006; Lecomte and Tailleur,
2007). Within this class, we are interested in the subclass of interacting particles
systems (Del Moral and Garnier, 2005; Garnier and Moral, 2006). Their method-
ology relies on the modification of the evolution of the system dynamics in
a way that the rare events responsible for large fluctuations become not rare
any more. This involves the evolution of multiples copies or clones of the sys-
tem in parallel, which are either replicated or killed according to a probabilistic
weight which measures how likely each clone could exhibit a large fluctuation
at the end of the simulation time. A schematic representation of this class of
algorithms with N = 4 particles is given in fig. 4.1.

Within this class of algorithms, we focus on a particular one, called GKLT.
This method was originally presented by (Giardinà, Kurchan, and Peliti, 2006)
in the context of large deviations for computing rate function of an observ-
able in discrete-time Markov chains and then rearranged in continuous-time
(Lecomte and Tailleur, 2007). Despite bearing huge similarities, there is a tech-
nical detail which distinguishes the classical interacting particles algorithms
of (Garnier and Moral, 2006; Del Moral and Garnier, 2005) and the GKLT: the
function chosen to perform the importance sampling is for the former an in-
stantaneous value, while an integrated value for the latter. It will become clear
in the next section.

In order to make the reader familiar with the algorithm, I start with impor-
tance sampling. I then present the Giardina-Kurchan-Lecomte-Tailleur GKLT al-
gorithm in section 4.2 and I explain how to retrieve statistical estimators (sec-
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tion 4.2.2) and its connection to large deviation theory (section 4.2.3). An imple-
mentation of it on an OU process is given in section 4.3.

4.1 importance sampling

In the introduction, I posed the problem of estimating the probability γA of
being in a region A of low probability in the probability distribution f of
a random variable X. An accurate direct estimation of it is costly, as shown
from eq. (4.3) and alternative methodologies are needed. Following this line of
thought, one could imagine drawing realisations of X from a different prob-
ability distribution f̃ , doing what it is generally called a change of measure. In
particular, assuming that f̃ > 0 whenever 1A(X) f (X) > 0, we could write:

γA =
∫

1A(X) f (X)dX =
∫

1A(X)
f (X)

f̃ (X)
f̃ (X)dX = E f̃ [1A(X)L(X)] (4.4)

where L(X) = f (X)

f̃ (X)
on the set {X : 1A(X) f (X) > 0} and zero otherwise. L

is called the likelihood ratio. Finally, what we aim is to find f̃ such that f̃ ≫ f
over the set A in order to have more realizations of X falling into A. One can
show that, the empirical average calculated over N independent realizations
of X taken with respect to the density f̃ , i.e. γ̃A = 1

N ∑N
n=1 L(X̃n)1A(X̃n), is

an unbiased estimator for γ̂A. We could then compare the variances for both
estimators:

σ2(γ̃A) =
1
N

σ2
f̃ (1AL(X)) =

1
N

[
E f̃ [1AL2(X)]− γ2

A

]
≪ 1

N

[
E f̃ [1AL(X)]− γ2

A

]
=

1
N
[

f (X)1A(X)dX − γ2
A
]
= σ2(γ̂A) (4.5)

where in the second line we used that f̃ ≫ f , otherwise the change of measure
would not have sense. An important point is: the first equality in eq. (4.5) shows
that if we choose f̃ (X) = f (X)1A(X)

γA
, then the likelihood ratio is L(X) = γA

f (X)
,

when f (X) > 0, and thus:

σ2(γ̃A) =
1
N

σ2
f̃ (1AL(X)) =

1
N

σ2(γA) = 0 (4.6)

This means that there is an optimal change of measure leading to a zero-
variance estimator. This is true because in the new density function f̃ all the
mass is concentrated on the rare event set, which thus becomes common. An
illustration of importance sampling is shown in fig. 4.2. The bad and sad news
is that to make this change of measure, we need our target variable γA. How-
ever, what we have to retain is that it exists a possible (sub)optimal change of
measure. Possibly many of them, waiting out there.

The class of exponential change of measure is the one which turns out to be
actually useful for the rest of the discussion. Indeed, it is on that basis of mea-
sure that the rare events algorithm I am going to present works, as discussed
in the next sections.
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Figure 4.2: Illustration of importance sampling. Under the distribution f , sampling
events in A is hard due to its rareness. However, a better estimation of
it can be achieved when A is drawn from f̃ , given that A becomes common
under f̃ .

4.1.1 Importance sampling for dynamical systems

We are interested in applying the importance sampling technique to the sam-
pling of rare events in climate. Since climate models are non-equilibrium dy-
namical systems, the change of measure introduced in the section above must
be done in the space of the trajectories. In general, a trajectory {X(t)}0≤t≤T is a
realization of the dynamics of the system over a finite integration time, that we
will denote as [0, T]. The trajectories generated by the model are distributed un-
der an unknown Probability Density Function (PDF) P0 ({X(t)}0≤t≤T = {x(t)}0≤t≤T).
This is the formal way to indicate that the probability of the model variable
{X(t)}0≤t≤T is close to {x(t)}0≤t≤T. Let’s consider a generic observable which
depends on the path {o[X(t)]}0≤t≤T and its integrated-time value over the du-
ration T:

OT[{X(t)}0≤t≤T] =
∫ T

0
o[X(t)]dt (4.7)

We know that sampling OT is hard, due to the rareness of this event. Thus,
in analogy with the previous section, we could introduce an appropriate like-
lihood ratio that gives higher weights to higher values of OT. This is the core
of the GKLT algorithm. For this algorithm, the likelihood ratio consists of an
exponential change of measure (Ragone and Bouchet, 2020). In practice:

Pk ({X(t)}0≤t≤T = {x(t)}0≤t≤T) = Lk[{X(t)}0≤t≤T]P0 ({X(t)}0≤t≤T = {x(t)}0≤t≤T) =

exp(k
∫ T

0 o[X(t)]dt)

E0

[
exp(k

∫ T
0 o[X(t)]dt)

]P0 ({X(t)}0≤t≤T = {x(t)}0≤t≤T) (4.8)

where E0[.] denotes an ensemble average with respect to the stationary path
measure P0. The likelihood ratio Lk depends on the parameter k which controls
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the weights given to the high values of OT. More details on how to arrive to
this ratio are given in the following sections.

4.2 the giardina-kurchan-lecomte-tailleur algorithm

In the introduction to this chapter, I presented the GKLT algorithm as a rare
events algorithm that aims at better sampling, both from the computational
cost and from the quality of the sampling, rare events (Giardinà, Kurchan, and
Peliti, 2006; Lecomte and Tailleur, 2007; Giardina et al., 2011). This approach has
subsequently been applied to a wide variety of contexts (Nemoto et al., 2016;
Hidalgo, 2018; Lecomte and Tailleur, 2007). The application of this cloning al-
gorithm to the field of climate science is quite recent and fascinating. The first
application in this sense has been made by (Ragone, Wouters, and Bouchet,
2018) to study seasonal heatwaves over Europe using a climate model in per-
petual summer conditions. With this methodology, the authors could sample
extreme European warm summers with a return time of 106 − 107 years with
an equivalent computational cost of 103 years, which is absolutely unfeasible
to sample with a direct simulation approach. Moreover, thanks to the enriched
sampling of the rare events, statistically significant areas are wider. Successive
works using more realistic climate models, just as the one used for the study
presented later in this manuscript, confirmed those results for heatwaves over
France and Scandinavia (Ragone and Bouchet, 2021). Following their works,
other extreme events have been analyzed using this algorithm, from precipi-
tation (Wouters, Schiemann, and Shaffrey, 2023) to extreme fluctuations of the
energy power system (Cozian, 2023), to collapsing of the Atlantic Meridional
Overturning Circulation (Cini et al., 2024), to turbulent flows (Lestang, Bouchet,
and Lévêque, 2020), to the melting of the Arctic sea ice (Sauer et al., 2024) and
finally, to Indian extreme warm summers (Le Priol, Monteiro, and Bouchet,
2024).

In the next section (section 4.2.1) I present the details of the algorithm, how to
retrieve the statistics of some quantities of interest, and finally how it is related
to the large deviation theory. I refer to (Ragone and Bouchet, 2020) for a deeper
description of the algorithm applied to climate science and to (Pérez-Espigares
and Hurtado, 2019) for a review on cloning algorithms.

4.2.1 Description of the algorithm

The GKLT algorithm is a cloning algorithm which aims at sampling large fluctu-
ations of a time-averaged observable. To achieve this, it relies on the evolution
of a set of multiple trajectories run in parallel which are either cloned or killed
according to a probabilistic weight which ultimately measures the likelihood
of each trajectory to exhibit a rare fluctuation of the observable of interest at
the end of the simulation. To create a link with the importance sampling, the
cloning and killing procedure acts as an effective likelihood ratio L(X) which
allows to sample of the targeted observable from a biased measure Pk where
its large fluctuations are common. In the next, I formalize this mathematically.
In this thesis, I run 10 GKLT experiments in order to collect more realizations of
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the target observable. However, to keep the discussion easier and more general,
I describe in the following the methodology for only one experiment with a
target variable O with N trajectories which evolve for a total simulation time of
T.

Let’s assume that we want to study the fluctuations of a generic time-integrated
observable, which depends on the path {o[X(t)]}0≤t≤T:

OT[{X(t)}0≤t≤T] =
∫ T

0
o[X(t)]dt. (4.9)

where T is the simulation time. The algorithm simulates the evolution of an
ensemble of N interacting trajectories of the dynamical system {xn(t)}n=1..N in
parallel, from time t = 0 up to time t = T.

The algorithm can be divided into 3 steps: initialization, integration and, re-
sampling of the trajectories.

initialization. The ensemble of N independent trajectories are initialized
at time t0 = 0. The trajectories start from N independent initial conditions to
sample the model’s invariant measure. Each of them carries a weight equal to 1

at this stage. Without a rare event algorithm, this weight is constant and equal
for all the trajectories during the simulation.

The next two steps are repeated cyclically until the simulation has reached
the chosen integration time T.

integration. Simulate the model’s dynamics forward in time, until ti =

iτ, i = 1, 2 . . . , T/τ where τ is the resampling time. Then, for each trajectory
n = 1, . . . , N compute the score variable OT[Xn(ti)]. Compute the weights with
the new integrated value just obtained wn

i = exp
(

k
∫ iτ
(i−1)τ o[xn(t)]dt

)
, where k

is the biasing parameter and its role will be elucidated in the following. Finally
normalize the weights such that they sum to N:

Wn
i =

wn
i

Zi
where Zi =

1
N

N

∑
n=1

wn
i . (4.10)

where Zi is a normalizing factor. Note that it is equivalent to the partition
function in statistical mechanics.

resampling . Once the weights are computed, we can move to the cloning
and killing procedure. In particular, we select a candidate number of clones for
each trajectory Mn

i = ⌊Wn
i + Un

i ⌋, where Un
i is drawn independently from a

uniform distribution U (0, 1) and ⌊•⌋ is the floor of •. To avoid computational
issues, we add another step and resize the ensemble members such that they
stay constant to N: compute ∆Ni = ∑N

n=1 Mn
i − N. If ∆Ni > 0, kill randomly

and without repetition ∆Ni clones, while if ∆Ni < 0 clone randomly and with
repetition |∆Ni| clones. For our application, because a climate model is a de-
terministic dynamical system, after the first resampling step, we add a small
perturbation to the cloned trajectories to let them separate enough in the subse-
quent integration step. Because of the resampling procedure, where a trajectory
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can be resampled originating many copies, several trajectories share the same
ancestors at the end of the simulation. This aspect will be discussed in the fol-
lowing.

Once the trajectories have reached t = T, we are able to back-reconstruct each
of the surviving trajectories by attaching their parent at each resampling time
ti. This results in an ensemble of real solutions of the climate model, without
any change in the dynamics, but only in the probability of observing them.

A pseudocode of the algorithm is given below. In the next section, we show
how to retrieve the statistics of any observable of interest from the GKLT exper-
iment and its relation with large deviation theory.

Algorithm 1 GKLT algorithm
Initialize N trajectories {Xn(0)}, with 1 ≤ n ≤ N from N independent initial
conditions.

for i from 1 to T/τ do
for n from 1 to N do

Add a small random perturbation to each trajectory n
Compute the dynamics for the n-th trajectory from ti−1 = (i − 1)τ to

ti = iτ.
Assign to trajectory n the unnormalized weight wn

i =

exp
(

k
∫ iτ
(i−1)τ o[xn(t)]dt

)
.

end for
Compute the normalization constant and normalize the weights:

Wn
i =

wn
i

Zi
where Zi =

1
N

N

∑
n=1

exp
(

k
∫ iτ

(i−1)τ
o[xn(t)]dt

)
(4.11)

for n from 1 to N do
Compute the number of copies produced by each trajectory n as

Mn
i = ⌊Wn

i + Un⌋ (4.12)

where ⌊•⌋ is the integer part of • and Un is a random number drawn
uniformly in [0; 1[.

end for
Compute ∆Ni = ∑N

n=1 Mn
i − N. If ∆Ni > 0, kill randomly ∆Ni trajecto-

ries (without repetition). If ∆Ni < 0, clone randomly |∆Ni| trajectories (with
repetition).
end for

4.2.2 Statistics of the Giardina-Kurchan-Lecomte-Tailleur algorithm

We now show that the path measure Pk in the rare events algorithm is tilted
with respect to P0 to favour large values of OT[{X(t)}0≤t≤T] =

∫ T
0 o[X(t)]dt.

Let’s assume to stop the simulations after two resampling steps and to con-



42 sampling rare events with a rare events algorithm

sider a trajectory that has not been killed. We could compute the probability of
observing it by back-propagating:

Pk({x(t)}0≤t≤2τ) = Wn
1 Wn

2 P0({x(t)}0≤t≤2τ) =

=
exp

(
k
∫ τ

0 o[x(t)]dt
)

Z1

exp
(

k
∫ 2τ

τ o[x(t)]dt
)

Z2
P0({x(t)}0≤t≤2τ) (4.13)

where

Zi =
1
N

N

∑
n=1

exp
(

k
∫ iτ

(i−1)τ
o[xn(t)]dt

)
with i = 1, 2. (4.14)

Proceeding similarly until the last integration time, one obtains the equation
already presented in eq. (4.8):

Pk ({X(t)}0≤t≤T = {x(t)}0≤t≤T)

∼
N→+∞

exp(k
∫ T

0 o[X(t)]dt)

E0

[
exp(k

∫ T
0 o[X(t)]dt)

]P0 ({X(t)}0≤t≤T = {x(t)}0≤t≤T) (4.15)

which shows that the tilting of the probability favours large values of the in-
tegrated observable we targeted. In the previous formula we have used the
mean-field approximation of the partition function Z, which is valid for a large
number of initial trajectories:

Z(k, T) = Z1Z2 . . . ZN ∼
N→+∞

E0

[
exp

(
k
∫ T

0
o[X(t)]dt

)]
. (4.16)

By inverting equation eq. (4.15) we can obtain an unbiased estimator for a
generic observable A[{X(t)}0≤t≤T]:

E0[A[{X(t)}0≤t≤T]] ∼
N→+∞

1
N

N

∑
n=1

pn A[{xn(t)}0≤t≤T] (4.17)

where

pn =
1
N

exp
(
−k

∫ T

0
o[xn(t)]dt

) T/τ

∏
i=1

Zi (4.18)

with xn being the n-th reconstructed trajectory. Choosing 1( 1
T

∫ T
0 o[X(t)]dt > a),

we could have an estimation of P0

(
1
T

∫ T
0 o[X(t)]dt > a

)
= E0

[
1
(

1
T

∫ T
0 o[X(t)]dt > a

)]
using eq. (4.17). Computing this probability (and other conditioned statistics)
is the final scope of using this algorithm.

Given that the trajectories are not independent after the first resampling step,
the central limit does not apply. However, it has been shown (Del Moral, 2004)
that for a class of algorithms, including the GKLT, the errors for estimating
variables linked to the score function used to run the algorithm are of order
1/

√
N.
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4.2.3 Computation of large deviation rate functions

Originally, this algorithm was designed for computing the large deviation func-
tion I(a), introduced in section 3.2, or equivalently its Legendre-Transform the
Scaled Cumulant Generating Function SCGF λ(k). Looking back to the equation
for Pk eq. (4.15), we can obtain an estimation of λ(k), in the limit of both large
number of trajectories N and integration time T:

Z(k, T) = Z1Z2 . . . ZN ∼
N→+∞

E0

[
exp

(
k
∫ T

0
o[X(t)]dt

)]
∼

T→+∞
exp (Tλ(k))

(4.19)

where we have assumed that a large deviation principle holds section 3.2. In-
verting the previous formula, we can compute the SCGF:

λ(k) = lim
T→+∞

1
T

lnZ(k, T). (4.20)

Assuming that the Gartner-Ellis theorem’s assumptions are met (see section 3.2),
we can Legendre-Fenchel transform λ(k) to obtain the large deviation rate func-
tion I(a) and finally have access to the probability of observing these rare fluc-
tuations of the time and spatial average OT/T.

As a final remark, from eq. (4.15) it is possible to show that for a chosen value
of k the typical value of the large time average of the observable is

Ek

[
lim

T→+∞

1
T

∫ T

0
o[X(t)]dt

]
∼

N→+∞

lim
T→+∞

E0

( 1
T

∫ T

0
o[X(t)]dt

)
exp(k

∫ T
0 o[X(t)]dt)

E0

[
exp(k

∫ T
0 o[X(t)]dt)

]
 = λ

′
(k). (4.21)

Because in the large deviations regime the typical value and the most proba-
ble value coincide, the time average of the time-integrated observable fluctu-
ates in the cloned ensemble around a value that depends on the derivative of
the SCGF in a neighbourhood of k, which are shown to be the right range of
fluctuations for computing large deviation functions (Rohwer, Angeletti, and
Touchette, 2015).

In applications that are less computationally expensive than running a cli-
mate system, tuning the values of k would result in a point-wise reconstruction
of the SCGF, to obtain the large deviation rate function I(a). However, this is un-
feasible for a climate model due to the tremendous resources and time needed.
Consequently, some prior analysis needs to be performed in order to choose
the correct order of magnitude of the parameters for running the algorithm
and this analysis is obviously case-dependent. The choice of the parameters
used in the algorithm is presented in section 4.4, and it is necessarily guided
by the application of this algorithm to the sampling of double jet events, pre-
sented in part iv. In the next section I present an illustration of this algorithm
to a one-dimensional stochastic process, the Ornstein–Uhlenbeck OU.
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4.3 illustration on the ornstein–uhlenbeck process

We illustrate the performance of the algorithm on a simple process, the Orn-
stein–Uhlenbeck OU, which was already introduced in section 3.1. Let us re-
call the equation for the OU process, in which a particle evolves following the
stochastic equation:

dX(t) = θ(µ − X(t))dt + σdW(t) (4.22)

where dW(t) is a Weiner process. In the following, we set µ = 0, θ = σ = 1.
We are interested in large time large fluctuations of the stochastic process itself,
namely of :

XT =
1
T

∫ t+T

t
X(t)dt (4.23)

where T is the total computation time. Solving the associated Fokker-Planck
equation, it can be shown that XT behaves as a Gaussian variable, with mean
µ = 0 and standard deviation σT. We perform a rare event algorithm run with
N = 5× 102 trajectories, resampling time τ = 1, biasing parameter k = 0.5, and
total integration time of T = 40τ. The score function is the stochastic process
itself, i.e. o[X(t)] = X(t). In fig. 4.3 we show the results. In fig. 4.3a we observe
that the algorithm has performed the importance sampling of XT as expected,
and events which are rare in the control (or direct) simulation, such as 2σT, are
common in the rare events algorithm one. Moreover, the algorithm enables to
have access to events which were unseen in the control distribution. Another
way of observing that is by computing the return time curve (fig. 4.3b), which
gives an estimate of the time to wait to see an event of amplitude XT = a. With
a computational time which is 100 times lower, we have access to the events
with the same return time. In the same figure, with the same computational
cost (obtained by simulating N = 5 × 104 trajectories) we achieve a return time
which is orders of magnitude higher than with the control or direct simulation.
The illustration of the GKLT on this process has been carefully investigated by
(Wouters and Bouchet, 2016).

For this stochastic process, we have access to an analytical formula for the
Scaled Cumulant Generating Function SCGF. In fact, in the limit of large time,
σ2 ∼

T→∞
2
T and

P(XT = a) ≍
T→∞

exp
(
−Ta2

4

)
. (4.24)

It is straightforward to recognize in the exponential the rate function introduced
in eq. (3.15):

I(a) =
a2

4
(4.25)

form which, following the Gartner-Ellis theorem section 3.2, one can retrieve
the SCGF:

λ(k) = supa[ka − I(a)] = k2. (4.26)
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Figure 4.3: (a) Histogram and (b) return time curve of the control simulation (blue) and
of a rare event algorithm run (orange) with a lower computational cost than
the control, while in gray there is a rare event algorithm simulation with
the same computational cost.

Given the not-so-huge computational cost associated with the simulation of this
process, one can then reconstruct the SCGF by performing several runs of the
GKLT with different values of k. This analysis has been deeply investigated by
(Lestang, 2018), who showed that for a similar computational cost to direct sim-
ulation, the GKLT algorithm provides a far better estimate of the rate function.

4.4 parameters estimation

The GKLT algorithm presented above relies on a set of parameters which need
to be carefully chosen for its correct implementation. For the peculiar case of
study presented in this thesis, some of them are chosen accordingly to achieve
a trade-off among available resources, computation time and correctness of the
event’s representation. Moreover, for some of them, the choice has been guided
from the setup of CESM, briefly presented in section 2.4.

4.4.1 Choice of the observable, resampling time τ and integration time T

A fundamental choice for running a GKLT algorithm is the one of the observ-
able. In (Chraibi et al., 2018) the authors showed that the optimal potential
score function, the one which minimizes the asymptotic variance of the estima-
tor of this cloning algorithm, is strictly connected to the committor function (see
section 3.1). In this particular application of this algorithm, we do not aim at do-
ing prediction, but rather at coupling the rare events algorithm with a climate
model, CESM, to enhance the sampling of the upper tail of a time-averaged ob-
servable. Previous studies have shown that a score function that poorly samples
new trajectories leads to the failure of the algorithm (Lestang, 2018).

The resampling time τ should be of the order of the Lyapunov time (Wouters
and Bouchet, 2016). If we indicate as τc the correlation time of the system, then
if τ ≪ τc, cloned trajectories likely will not be separate enough to be a poten-
tial candidate for a large fluctuation of the observable of interest. Furthermore,
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this procedure would lead to a loss of diversity of the trajectories at successive
resampling times. On the other hand, τ should not be too large, i.e. τ ≫ τc,
because this would lead to the loss of the memory of the trajectories before
the selection procedure, thus leading to a poor sample of the large long-time
average fluctuations. Tests on simpler models (Lestang et al., 2018) have shown
that the exact value of τ is not relevant as far as it is of the order of the autocor-
relation time.

Finally, for the integration time T: in order to let the potential candidate
trajectories yield to the extreme event we need to have T ≫ τc, but not too
large in order not to eventually kill in late resampling steps the trajectories
which showed a large fluctuation before and went back to typical values.

4.4.2 The number of trajectories N

The results presented in section 4.2.1 are valid asymptotically when the number
of trajectories, i.e. the copies of the climate system, tends to infinity. This has
an important implication in the expected errors of when computing averages
of dynamical observables, as they scale as 1/

√
N.

Ultimately, the choice of the number of trajectories has been mainly guided by
the available resources. The current setup of the climate model CESM needs 128

cores to run for a single trajectory. Thus, it would be simply not manageable to
use 128 ×N cores when N is too large. Moreover, the cluster where the climate
model is run has a limit for the job duration of 24 hours, which restricts further
our choice of N. Finally, we decided to simulate N = 100 trajectories. In order
to counterbalance this limitation, we run several independent experiments to
improve the statistics and estimate the variance of the quantity of interest from
one experiment to another.

For a given selection strength, controlled by the parameter k, the degenera-
tion of the trajectories might be important. This means that a trade-off between
the level of extremity and the simulated clones needs to be found.

4.4.3 The biasing parameter k

In the large deviation regime, the relation eq. (4.21) might be used to find the
best value for the biasing parameter k. However, this equation holds in the limit
of T → ∞ and we do not have an analytical formula for SCGF, which is in prin-
ciple the reason why we are performing rare events simulations. The better es-
timate we could achieve is to assume that the SCGF is Gaussian distributed and
derive a rough approximation of k from it. Let us consider the time-averaged
observable we wish to sample in the rare events algorithm: OT[{X(t)}0≤t≤T] =
1
T

∫ T
0 o[X(t)]dt to be distributed as a Gaussian distribution OT ∼ N (µ, Σ2),

where µ is the ergodic mean and Σ2 = 2τcσ2 is the variance, where σ2 and
τc are respectively the variance and the autocorrelation time of the observ-
able o[{X(t)}. Recall that the equation for the SCGF is given by eq. (3.13),
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λ(k, T) = 1
T log E[exp (kTOT)]. Then we can evaluate the derivative of SCGF:

∂kλ(k, T) =
E[OT exp(kTOT)]

E[exp(kTOT)]
= Ek[OT] (4.27)

which strongly resembles the exponential tilting used in the rare events algo-
rithm, might be approximated by:

∂kλ(k, T) = µ + kTΣ2 (4.28)

To obtain a value for k one has to combine both previous formulae, with a
desired value of the time-integrated observable Ek[OT] = a. Finally:

k =
a − µ

Σ2 (4.29)

The higher the value of k the more stringent the selection is, the more degen-
eration of the trajectories will be observed, causing in the worst case the phe-
nomenon of ensemble collapse or extinction, i.e. all the trajectories share the
same ancestor. This further shows how the finite size of the ensemble limits the
rareness of the events one can sample.

4.4.4 Perturbation of trajectories

Given that our climate model is deterministic, in order to have an effective
separation of the trajectories after each resampling, we need to introduce a
small random perturbation after each cloning step iτ. As discussed in (Ragone,
Wouters, and Bouchet, 2018), each spherical harmonics of the potential temper-
ature is multiplied by a factor (1 + ϵ r), where r is a randomly uniform number
between [−1, 1] and ϵpert = 10−4. Thus, each spherical harmonic receives a per-
turbation proportional to its amplitude. Moreover, the procedure is applied at
each vertical level, using the same value of r at each level for a given spheri-
cal harmonic. This perturbation is expected to alter the dynamics of about the
same order of magnitude, thus resulting in a perturbation that is much lower
than the sampling error.

4.4.5 Initial conditions

The initial conditions from which we start the algorithm must be independent,
in order to avoid unintended biases. This means that, if the simulation starts
on June 1st, and we chose N = 100 trajectories, we need 100 independent
June 1st, the starting date of the algorithm, one for each trajectory. Given that
the model we use CESM has only atmosphere and land as active components,
we collected these initial conditions from a long simulation that was already
available, selecting consecutive June 1st. This procedure could have not been
used if the ocean was active in the model, as the relaxation timescales of this
component, similar to the ice one, are much longer than one year.
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4.4.6 Computational cost

An interesting point of using the rare events algorithm is its lower compu-
tational cost with respect to an equally long climate simulation. In order to
compare the two, a single rare event algorithm run depends on the number
of trajectories N and the integration time T. Indeed, we can approximate its
cost to N × T. Furthermore, we must distinguish if the initial conditions are
already available or not. Assuming they are available and that we simulated
three months, say the summer months of June-July and August, for N = 100
trajectories, then the cost of a single rare event algorithm run is of 25 years (for
each trajectory we only simulated 3 months and not the full year). If we then
performed 10 runs, the overall cost for having an equivalent of 1000 summers
is of 250 years, which is 4 times lower compared with the 1000 years of direct
climate simulation.

In this initial chapter, I presented: the drivers of heatwaves at mid-latitudes,
how they are expected to change in response to climate change and some of
the models used in the following; some mathematical objects intensively used
in this manuscript, and the theory of large deviations; finally, the problem of
sampling rare events and the rare event algorithm used in part iv.

The next chapter consists of a study that compares the relative contribution
of two slow drivers of heatwaves in Europe. Despite showing both drivers a
significant contribution to the heatwave amplitude and duration for typical
heatwaves, the results for heatwaves with a return time of a decade are limited
because of a lack of data. These conclusions are made more precise in the next
chapter.



Part II

C O M PA R I N G T H E I N F L U E N C E O F AT L A N T I C
M U LT I D E C A D A L VA R I A B I L I T Y A N D S P R I N G S O I L
M O I S T U R E O N E U R O P E A N S U M M E R H E AT WAV E S

In this chapter we study and compare the influence of two slow
drivers, namely the Atlantic Multidecadal Variability AMV and the
spring soil moisture on the duration and intensity of European heat-
waves. As we discussed in section 2.2.3, land-atmosphere feedbacks
act on the onset and persistence of heatwaves especially in some
mid-latitude areas, such as in the Mediterranean basin. Moreover,
at interdecadal timescales the sea surface temperature variability of
the Atlantic Ocean, strictly connected to the AMV, has been shown
to play a role on some climate extremes in different regions on the
world, including heatwaves in Europe. I presented this driver in sec-
tion 2.1. However, which one between the two is a driver of greater
importance for European heatwaves ? Using results from global cli-
mate model experiments, we show that for heatwaves with return
times of a few years spring soil moisture in the Southern Europe
has more impact than the AMV on summer European heatwaves.
For heatwaves with return times of a decade, this still holds true.
However, significant areas are largely limited by the available data.
This highlights the lack of data problem faced when dealing with
rare and extreme events.

For what concerns the tools used in this chapter, we employ return
time and composite maps for the estimation of the average time to wait
to observe an event with a certain amplitude and for the analysis
of the dynamical fields after the heatwave event happened, respec-
tively. Both tools were introduced in section 3.1.1.

The material presented in this chapter is an article which has been
submitted to the journal Oxford Open Climate Change. I coauthor
this study with Clément Le Priol1 and Fabio D’Andrea1. A preprint
is available at https://arxiv.org/abs/2405.10821. Because of that
some concepts might be repeated.

1 CNRS, LMD/IPSL, ENS, Université PSL, École Polytechnique, Institut Polytechnique de Paris, Sorbonne
Université, Paris France

https://arxiv.org/abs/2405.10821




Abstract. In this work, we study and compare the influence of the Atlantic
Multidecadal Variability (AMV) and spring soil moisture in Southern Europe
on the duration and intensity of European summer heatwaves. We study heat-
waves with return times of a few years and also propose a new methodological
approach, return time maps, that allows us to study rare heatwaves with return
times of 10 years.

We use the outputs from three climate models, namely IPSL-CM6A-LR, EC-
Earth3, and CNRM-CM6-1, in which North Atlantic sea surface temperatures
are restored towards the observed AMV anomalies. The three models give con-
sistent results, with the exception of EC-Earth simulating a much greater influ-
ence of soil moisture.

Spring soil moisture in Southern Europe is a slow driver of greater impor-
tance than the AMV for European summer heatwaves, both in terms of the
extension of the region of influence and in terms of amplitude. While the in-
fluence of the AMV concentrates over the very south of Europe, around the
Mediterranean Basin, spring soil moisture influence extends over large parts
of Europe. As might be expected, a positive AMV phase or low soil moisture
generally induces hotter and longer heatwaves. However, the models suggest
that the AMV also induces fewer heatwave days and cooler heatwaves around
Poland.

For more extreme events, the influences of the AMV and soil moisture in-
crease, according to regional patterns that seem to be the same as for typical
heatwaves. However, confirming this statement would require datasets with
more extreme events.

lay summary Beyond the daily fluctuations of the weather, the duration
and intensity of heatwaves can be modulated by slow drivers. In this work,
we study and compare the influence of two slow drivers on the duration and
intensity of summer heatwaves in Europe. The first driver is a slow mode of
variation of the North Atlantic Ocean sea surface temperature called the At-
lantic Multidecadal Variability (AMV). The second one is the quantity of water
available in the soil in spring in Southern Europe.

We study typical heatwaves that occur almost every year, but we also intro-
duce a new method to study rare heatwaves that occur only every 10 or 50

years, on average.
Using results from global climate model experiments, we find that a positive

AMV phase or low soil moisture generally induces hotter and longer heatwaves,
as could be expected. Our main result is that soil moisture is a slow driver of
greater importance than the AMV. Indeed, its influence extends over a larger
part of Europe and has more amplitude.
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I N T R O D U C T I O N

In a changing climate, extreme hot events are becoming more frequent and
intense (Hansen, Sato, and Ruedy, 2012; Dunn et al., 2020; Seneviratne et al.,
2021). The impacts of these events are detrimental on many levels, causing
damage to our society, the environment, and other living beings (Pörtner et
al., 2023). Europe, and especially the Mediterranean basin, is identified as a
hot spot for extreme hot events, with magnitudes changing according to future
climate scenarios (see (Masson-Delmotte et al., 2023) and references therein). In
particular, heat extremes in Western Europe have warmed at a faster pace than
elsewhere in the mid-latitudes (Rousi et al., 2022; Vautard et al., 2023).

Besides global warming, different physical drivers influence the formation
of heatwaves, acting on different timescales (Perkins, 2015; Horton et al., 2016).
The fastest driver is the atmospheric circulation, which can cause heatwaves
through persistent high-pressure synoptic systems. The associated time scale
corresponds to a few days, which is the typical duration of a heatwave. Slower
drivers modulate the occurrence and frequency of heatwaves, acting on sea-
sonal, yearly, and multidecadal time scales (Perkins, 2015).

Regarding summer European heatwaves, an important seasonal driver is soil
moisture. A soil moisture deficit in the Mediterranean basin at the beginning of
summer has been shown to act as a precondition for some extreme events such
as droughts (Vautard et al., 2007; Zampieri et al., 2009) and heatwaves (Fischer
et al., 2007a; Fischer et al., 2007b; Alexander, 2011; Materia et al., 2022) over
continental Europe. The mechanism is as follows: dry and warm air masses
form over the dry soils of the Mediterranean and induce diminished cloudi-
ness. These air masses are advected northward by southerly wind episodes,
increasing temperature and evaporative demand over Europe, which in turn
leads to drier soils. These drier soils amplify the warming through higher sen-
sible heat emissions and favored upper-air anticyclonic circulation (Zampieri
et al., 2009).

Sea surface temperature (SST) anomalies are another slow driver of heat-
waves, acting on different timescales. At the seasonal timescale, SST anomalies
in the North Atlantic can favor heatwaves through their influence on large-
scale atmospheric modes like the NAO (Feudale and Shukla, 2011; Duchez et
al., 2016; Wulff et al., 2017; Beobide-Arsuaga et al., 2023). At the multidecadal
timescale, SST anomalies are modulated by an internally-driven low-frequency
mode of variability known as the Atlantic Multidecadal Variability (AMV). The
AMV has been shown to influence the duration of heatwaves in Europe (Sutton
and Dong, 2012; Qasmi, Cassou, and Boé, 2017; Qasmi et al., 2021) and to play a
role in the occurrence of other extremes, such as droughts and precipitations, in
other parts of the globe (Sutton and Hodson, 2005; Ruprich-Robert et al., 2017;
Ruprich-Robert et al., 2018).

The Atlantic Meridional Overturning Circulation (AMOC) has been identi-
fied as a prominent driver of the AMV (Knight et al., 2005; Yeager and Robson,
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2017; Cassou et al., 2018). On the atmospheric side, recent studies have un-
derlined how persistent North Atlantic Oscillation (NAO) can influence the
thermohaline circulation and thus the AMV (Delworth et al., 2016), also at these
longer timescales.

While previous work has examined the influence of each driver separately,
estimating the relative influence of each driver remains an open question. In
this paper, we chose to compare the influence of two of these main drivers,
namely spring soil moisture and the AMV, on the duration and intensity of
European summer heatwaves.

A second question concerns the rarity of the events studied. Heatwaves stud-
ied in previous work on the AMV (Ruprich-Robert et al., 2018; Qasmi et al., 2021)
actually occur every one or two years. Therefore, they are not such rare events.
However, the most harmful events are the largest and rarest ones (Robine et al.,
2008). This calls for focusing on rarer, more extreme events. In this paper, we
propose a new tool, return time maps, to study the influence of the AMV and
spring soil moisture on rare European summer heatwaves with return times of
a few decades.

We use two definitions of heatwaves, which are complementary. The first one
measures the number of heatwave days per year, based on the exceedance of
two temperature thresholds (Lau and Nath, 2012; Qasmi et al., 2021). In the
second definition, we fix the duration of the events studied and measure their
intensity, characterized by the mean temperature anomaly during the event.

The paper is organized as follows. In chapter 6, we present the data used
for this study and the two definitions of heatwaves that we use. In chapter 7,
we compare the effects of the AMV and spring soil moisture on heatwaves with
return times of a few years. In chapter 8, we introduce a methodology to study
rarer events with return times of a few decades and assess which driver, be-
tween the AMV and spring soil moisture, has the strongest influence on these
rare heatwaves. We summarize our findings in chapter 9 and discuss them in a
broader perspective in chapter 10.
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D ATA A N D M E T H O D S

In this section, we present the data used for this study and the methodology
to compare the influence of the AMV and spring soil moisture on heatwaves
independently. We then introduce the two different heatwave definitions that
we consider in this study.

6.1 data

6.1.1 DCPP-AMV experiments

Given the relevance of the effects of the AMV on the climate and the potential
predictability associated with it, there is ongoing work to deepen the under-
standing of its dynamical drivers and to improve its representation in models.
One source of uncertainty regarding the impact of the AMV is the lack of a full
understanding of the phenomenon itself. Additionally, model biases in repre-
senting crucial quantities for the AMV, such as the AMOC and teleconnection
patterns, contribute to increasing this uncertainty. In this line of thought, it was
shown in (Qasmi, Cassou, and Boé, 2017) that CMIP5 models underestimate
the ocean-atmosphere coupling at low frequency. The importance of dedicated
modeling protocols to study decadal variability, such as the AMV, both at a
global and regional scale using a coordinated multi-model approach has also
been emphasized (Cassou et al., 2018). To this end, the Decadal Climate Pre-
diction Project (DCPP), part of the CMIP6 project, was established (Boer et al.,
2016). Within the DCPP, ensembles of simulations have been conducted to un-
derstand the predictability, variability, and impacts of decadal modes of climate
variability such as the AMV. We use the outputs of the DCPP-C.1 experiments
designed to enhance the understanding of the impact of the AMV on the global
climate. In these experiments, the sea surface temperature (SST) of the North
Atlantic is restored towards an anomalous SST pattern representative of the ob-
served AMV, shown in fig. 6.1. The detailed procedure of the experiments can
be found in the technical note of (Boer et al., 2016).

The outputs of four coupled models that took part in the experiments were
available on the Earth System Grid Federation. For one of them, HadGEM3-
GC31-MM, the soil moisture outputs were not available, and therefore, we
could not use it in our study. We used the remaining three models: IPSL-CM6A-
LR (Boucher et al., 2020), EC-Earth3 (Döscher et al., 2021), and CNRM-CM6-
1 (Voldoire et al., 2019) (hereafter simply referred to as IPSL, EC-Earth, and
CNRM). Further details about the models can be found in section 11.1 and in
the corresponding references. For each model, AMV+ and AMV- ensembles con-
sisting of many 10-year members have been computed. In the AMV+ ensemble,
the SST is restored towards a positive anomaly pattern, while in the AMV- en-
semble, it is restored towards its opposite. For IPSL and CNRM, we also have
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Figure 6.1: SST anomaly pattern used for restoring the SST in the DCPP-AMV experi-
ments. Pattern courtesy C. Cassou.

Dataset

Model
IPSL EC-Earth CNRM

AMV+/- 500 320 390/400

CTRL 250 0 400

Dry/Wet 500 250 450

Table 6.1: Number of years in all ensembles for each model. The AMV+/- and CTRL en-
sembles consist of simulation members of 10 years. The Dry and Wet en-
sembles are built by sorting the years in all simulation members according to
their average May Soil Moisture value over Southern Europe (see sections 6.2
and 11.1 for details). For CNRM, some surface air temperature and soil mois-
ture outputs are missing.

a control run (CTRL) where the SST is nudged towards the climatology. The
radiative forcing is set to its 1850 value. Table 6.1 summarizes the number of
years available in each ensemble for each model.

6.1.2 Observation-derived datasets for soil moisture

We use two observational datasets of land variables, ERA5-Land and GLEAM
v3.8a, as benchmarks against which to compare the persistence of soil moisture
anomalies in the three models.

ERA5-Land is a reanalysis dataset of land variables that describes the evolu-
tion of the water and energy cycles over land in a consistent manner (Muñoz-
Sabater et al., 2021). It goes back to 1950 and is produced through global high-
resolution numerical integrations of the ECMWF land surface model driven by
the downscaled meteorological forcing from the ERA5 climate reanalysis. We
use monthly averages of the volumetric soil water in the top 3 (resp. 4) soil
layers of the model, corresponding to depth 0-100 (resp. 0-289) cm.



6.2 influence of the amv on spring soil moisture and dry and wet ensembles 57

Figure 6.2: Empirical cumulative density function of May soil moisture averaged over
the Mediterranean region (35°N-46°N, 10°W-30°E) in each model (IPSL,
CNRM, EC-Earth) and each experiment (AMV+, AMV-, CTRL).

The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algo-
rithms dedicated to the estimation of terrestrial evaporation and root-zone soil
moisture from satellite data (Miralles et al., 2011; Martens et al., 2017). The sur-
face soil moisture is assimilated from satellite microwave remote sensing data.
The model features a multi-layer soil model driven by satellite observations
of precipitation with fast and slow draining of water from the surface layer
towards the deepest layers. The soil moisture estimates are validated against
2325 soil moisture sensors across a broad range of ecosystems. We use GLEAM
v3.8a monthly average datasets of the surface (0-10 cm depth) and root zone
(10-100 cm) soil moisture. We perform a weighted average of the two datasets
to obtain the soil moisture between 0 and 100 cm. GLEAM datasets run from
1980 to the present.

6.2 influence of the amv on spring soil moisture and creation

of the dry and wet ensembles

To assess the influence of spring soil moisture on summer heatwaves, we use
the outputs of the three experiments (AMV+/- and CTRL) for each model to
build two new ensembles, called Dry and Wet, corresponding to low and high
spring soil moisture, respectively. We use the monthly total soil moisture con-
tent (mrso), which is the only relevant variable available for all three models.
First, we compute the average May soil moisture SMav for each year and each
experiment over a domain covering Southern Europe. Following (Vautard et al.,
2007), we choose the extent of the domain to be the rectangular box 35°N-46°N,
10°W-30°E. Then, we verify the influence of the AMV on SMav in the models by
plotting the cumulative density function (CDF) of SMav for each experiment in
fig. 6.2. The influence of a positive versus negative phase of the AMV on SMav is
negligible in IPSL and CNRM (−0.8 and +0.6 kg.m−2 respectively, to be com-
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pared to standard deviations of 19.8 and 11.8 kg.m−2) and relatively small in
EC-Earth (−10.5 kg.m−2 for a standard deviation of 34.4 kg.m−2).

In order to rigorously compare the influence of spring soil moisture with
the one of the AMV, we must avoid an imbalance of years from the AMV+ and
AMV- experiments in the Dry and Wet ensembles. Indeed, if the Dry ensemble
were to contain 200 years from the AMV+ experiment versus 100 from the AMV-
experiment, and vice versa for the Wet ensemble, we would observe a partial
influence of the AMV when comparing the Dry and Wet ensembles. To ensure
that there is no indirect influence of the AMV, we impose the constraint that
an equal number of years come from the AMV+ and AMV- experiments in the
Dry and Wet ensembles1. We then place years with low (resp. high) SMav in
the Dry (resp. Wet) ensemble. We refer the reader to section 11.1 for more
details about the procedure and fig. 11.1 for an illustration. The mean value
of the soil moisture inside the Dry (resp. Wet) ensemble is nearly one standard
deviation below (resp. above) the mean value of the soil moisture averaged over
the AMV+/- and CTRL experiments all-together. This makes the comparison
with the AMV experiments meaningful because the targeted SST pattern for the
relaxation corresponds to one standard deviation of the AMV variability: we
compare the influence of a one sigma anomaly for both the AMV and spring
soil moisture.

6.3 heatwave definitions

6.3.1 Threshold-based definition

We call the first definition that we use threshold-based definition as it relies on two
temperature thresholds. It was first introduced in (Lau and Nath, 2012) and has
been used in (Qasmi et al., 2021) and (Ruprich-Robert et al., 2018) to study the
influence of the AMV on heatwaves in Europe and North America respectively.
Using this definition enables us to compare our results with (Qasmi et al., 2021),
which used an earlier version of the CNRM and EC-Earth models. According to
this definition, a heatwave event is a group of days that satisfies the following
three conditions:

(i) Tmax must exceed T1 for at least 3 consecutive days,

(ii) Tmax averaged over the entire event must exceed T1 and

(iii) Tmax on each day of the event must exceed T2.

where Tmax is the daily maximum 2-meter air temperature and T1 and T2 are
two temperature thresholds corresponding respectively to the 90th and 75th
percentile of the local June-July-August (JJA) Tmax distribution built from the
Tmax values of all members of the AMV+ and AMV- simulations (for each model).
This definition is location-dependent, since the Tmax distribution varies with
latitude and longitude. For each grid point, we count the number of heatwave

1 This constraint also helps address the imbalanced size of the AMV+/- ensembles of the CNRM
model. Indeed, 120 years of soil moisture outputs are missing for the AMV- experiment with this
model.
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days in each year. In this study, we are interested in the response, in terms
of heatwave days per year, to an AMV-forcing. In chapter 7, we consider the
mean difference between AMV+ and AMV- for each model, and in chapter 8, we
condition on the most extreme years, i.e., the ones with the highest number of
heatwave days.

6.3.2 14-day heatwaves

To quantify the heatwave intensities for several independent durations, heat-
wave indices based on the combined temporal and spatial averages of the sur-
face or 2-meter air temperature have been adopted in many studies. Notably,
seminal studies of the 2003 Western European and 2010 Russian heatwaves
considered the averaged temperature over variable long time periods (7 days,
15 days, 1 month, and 3 months) (Schär et al., 2004; Barriopedro et al., 2011;
Coumou and Rahmstorf, 2012). Similar definitions have been adopted in a set
of recent studies (Ragone, Wouters, and Bouchet, 2018; Ragone and Bouchet,
2020; Ragone and Bouchet, 2021; Gálfi, Lucarini, and Wouters, 2019; Galfi and
Lucarini, 2021; Gálfi et al., 2021). This viewpoint is expected to be complemen-
tary with more classical heatwave definitions (Perkins, 2015) and extremely
relevant to events with the most severe impacts. For our second definition, we
consider averages of the daily maximal 2-meter air temperature over a period
of 14 days. This duration corresponds to long-lasting events that are more im-
pactful than events lasting only a few days, while still being much shorter than
the seasonal time scale. Mathematically, the definition reads as follows:

Ã(r) = max
t,t+D∈JJA

1
D

∫ t+D

t

(
Tmax(r, t′)− T̄max(r)

)
dt′ , (6.1)

where r and t′ represent the spatial and time coordinates respectively, and
D = 14 days is the heatwave duration. We do not perform any spatial aver-
aging because we aim to maintain a local perspective, as with the threshold-
based definition. To facilitate the comparison across different locations, we sub-
tract T̄max(r), the local June-July-August (JJA) average of Tmax(r, t). This allows
us to measure a temperature anomaly relative to the local seasonal mean. We
compute one value of Ã for each year and at each grid point.
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I N F L U E N C E O F T H E AT L A N T I C M U LT I D E C A D A L
VA R I A B I L I T Y A M V A N D S P R I N G S O I L M O I S T U R E O N
H E AT WAV E S W I T H R E T U R N T I M E S O F A F E W Y E A R S

In this section, we compare the effect of the AMV and spring soil moisture
on typical heatwaves with return times of one or two years. Following previ-
ous studies (Ruprich-Robert et al., 2018; Qasmi et al., 2021), we first use the
threshold-based definition introduced in section 6.3.1 to measure the drivers’
influence on the mean number of heatwave days per year. We then use the
second definition, presented in section 6.3.2, to measure their influence on the
14-day heatwave intensity.

7.1 influence on the frequency of heatwave days

We first study the effect of the AMV and spring soil moisture on heatwaves using
the threshold-based definition introduced in section 6.3.1. Figure 7.1 shows the
difference in the mean number of heatwave days per year between the Dry and
Wet ensembles and the AMV+ and AMV- ensembles for each of the three models.
We use a bootstrap to test the significance of the differences at the 95% level
(see section 11.1 for details). Both the AMV and spring soil moisture influence
significantly the mean number of heatwave days over some areas of Europe but
according to different regional patterns.

For the AMV, all models agree on a significant positive influence on southern
Europe (Iberian Peninsula, Italy, and Greece) around the Mediterranean basin
with positive differences ranging from 1 to 3 heatwave days per year. These
numbers must be compared with the mean number of heatwave days per year
in the AMV- ensemble, which ranges between 7 and 10 heatwave days per year
in most locations (not shown). In EC-Earth, the region of positive influence
extends northwards up to approximately 48° North. Differences over the rest of
the continent range between -1 and +1 heatwave day per year and do not pass
the significance test. We note that all models show a region of small negative
influence around Poland (between 0 and -1 heatwave days per year). Although
this difference does not pass the test, the consistency between the tree models
suggests the presence of a real signal.

Regarding the influence of soil moisture, the models present less consistent
results. On one hand, CNRM and IPSL show a positive response over Southern
Europe, mostly ranging between 1 and 3 heatwave days per year, with some
locations reaching up to 4 heatwave days per year. In these two models, the
influence of soil moisture extends further north than the one of the AMV and is
slightly larger but of comparable amplitude. On the other hand, EC-Earth sim-
ulates a much more extended and much larger positive influence of spring soil
moisture deficit. The region of positive difference covers almost all of Europe
as well as Northern Africa, with differences ranging from 3 to 6 heatwave days
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Figure 7.1: Mean response maps for the frequency of heatwave days. Differences in the mean
number of heatwave days per year between the Dry and the Wet ensembles
(top line) and the AMV+ and AMV- ensembles (bottom line) for each of the
three models. Stippling denotes area below the 95% significance level ac-
cording to a bootstrap test.

per year over Spain, Italy, and Southern Central Europe. In this model, spring
soil moisture has thus a much stronger influence than the AMV. Once again,
regions where the differences are between -1 and +1 heatwave day per year do
not pass the significance test.

discrepancy between ec-earth and the two other models . EC-
Earth presents a response to spring soil moisture deficit that is both more ex-
tended and stronger than in the other two models. This stronger response is
associated with a strong positive 500 hPa geopotential anomaly and reduced
precipitation over Central Europe (not shown). In order to further investigate
the cause of this discrepancy, we show in fig. 7.2 the auto-correlation function
of the monthly averaged soil moisture averaged over Southern Europe (35°N-
46°N, 10°W-30°E).

In IPSL and CNRM, the auto-correlation decays almost linearly from 1 for
the May-May correlation to about 0.5 for May-August. On the other hand, in
EC-Earth, the correlation levels out for the three summer months and is nearly
constant at about 0.91. This larger correlation implies a stronger persistence of
soil moisture anomalies in EC-Earth: dry soils in May remain abnormally dry
throughout the summer, causing the surface air to heat up more strongly due to
a larger sensible heat flux. For comparison, we also plot the auto-correlation of
the soil moisture in the observation-derived datasets ERA5-Land and GLEAM

1 The different auto-correlations between models may be due to different land-atmosphere cou-
plings or to intrinsic differences between land models. Among the latter, a notable difference is
the difference in soil depth relevant for the total soil moisture content. One may wonder if this
depth difference dominates the auto-correlation difference between models. It appears not to be
the case, as IPSL and CNRM share similar auto-correlation decays despite having soil depths of
2 and 12 meters respectively.
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Figure 7.2: Pearson correlation coefficients between the month of May and the months
of June, July, and August of the monthly averaged soil moisture averaged
over Southern Europe (35°N-46°N, 10°W-30°E).

v3.8a. ERA5-Land shares the same land model, HTESSEL, with EC-Earth and
also presents a strongly persistent auto-correlation of soil moisture. This indi-
cates that the large correlation of EC-Earth is not due to an abnormal atmo-
spheric response but rather to the land model itself. In an attempt to estimate if
HTESSEL produces too large auto-correlation of soil moisture, we compare the
auto-correlation of the 1st meter of soil with GLEAM v3.8a, a product more di-
rectly derived from satellite observations than ERA5-Land. The auto-correlation
for the months of July and August remains larger in ERA5-Land compared to
GLEAM. Thus, it could be that HTESSEL produces too large persistence of soil
moisture anomalies. However, it would be hasty to draw any definitive conclu-
sions. While we consider the results of EC-Earth with some caution, we cannot
rule it out.

7.2 influence on the intensity of 14-day heatwaves

We turn to the second definition to assess the influence of the AMV and spring
soil moisture on the intensity of 14-day heatwaves. Figure 7.3 shows the mean
difference in the 14-day averaged temperature Ã (see section 6.3.2) between the
Dry and Wet (top line) and AMV+ and AMV- (bottom line) ensembles. Note that
these maps should not be interpreted as the temperature averaged over any
given period of the summer. Indeed, the 14 days that contribute to the average
are a priori different for each grid point and for each year of the simulations.
The patterns of influence are very similar to those observed in fig. 7.1 for heat-
wave duration.

All three models agree on a positive influence of the AMV that concentrates
around the Mediterranean Basin, where differences range from 0.2 to 0.4°C in
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most places. EC-Earth simulates higher differences, ranging from 0.5 to 0.8°C, in
Northern Spain and Southern France. All models simulate a positive influence
over Turkey, and this extends around the Black Sea for IPSL. CNRM and IPSL
also simulate positive differences over parts of Scandinavia, but they do not
agree on the localization. As for the first definition, all models simulate a region
of small negative influence over Poland and neighboring countries that do not
pass the significance test but may be a hint of a signal.

The influence of spring soil moisture extends over larger areas of Europe.
For CNRM, the region of positive influence extends from the Atlantic Ocean
to the Black Sea below 50°N. For IPSL and EC-Earth, it extends over almost all
continental Europe. Regions of exception are Scandinavia, the Baltic countries,
Poland, and Russia in IPSL, and Northern Scandinavia and Russia in EC-Earth.
The influence of soil moisture is also larger than that of the AMV, with differ-
ences reaching up to 0.5 or 0.6°C in many locations for IPSL and CNRM. As
for heatwave duration, EC-Earth simulates a much larger influence of low soil
moisture with positive differences above 0.8°C over all Western and Central
Europe and peak differences up to 1.3°C over the Balkans. As for the first def-
inition, we expect the stronger Dry-Wet response of EC-Earth to be due to the
larger auto-correlation of soil moisture.

Combining the results of sections 7.1 and 7.2, we conclude that spring soil
moisture in Southern Europe is a slow driver of greater importance than the
AMV for European summer heatwaves: its region of influence covers larger areas
of Europe with a larger amplitude. We note that EC-Earth presents a different
result than the other two models, with a much stronger influence of spring soil
moisture. Regarding this point, we do not have enough evidence to conclude
that one model is more or less biased than the others. We also tried to investi-
gate the mechanisms by which the AMV influence the frequency and intensity
of heatwaves over Europe. To this aim, we plotted the mean response maps
to the AMV phase for cloud cover, latent heat flux, sensible heat flux, 500hPa
geopotential height, precipitation, and soil moisture averaged over the June,
July and August period in fig. 11.3 (see section 11.2). There is no significance
in the responses for individual models. This lack of significance does not al-
low us to address the important question of the mechanism by which the AMV

influences heatwaves with these datasets. This calls for either longer datasets
or the application of stronger SST forcing in the numerical experiments as in
(Qasmi et al., 2021), where the authors simulate the influence of one-sigma, two-
sigma, and three-sigma AMV anomalies. The experiments with stronger forcing
yield significant signals, allowing the authors to conclude that a positive AMV

phase is associated with "drier soils and a reduction of cloud cover" around the
Mediterranean basin and "an enhancement of the downward radiative fluxes
over lands" (Qasmi et al., 2021).
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Figure 7.3: Mean response maps for 14-day heatwaves. Difference in the mean value of
the 14-day averaged temperature Ã (defined in eq. (6.1)) between (top line)
the Dry and the Wet ensembles and (bottom line) the AMV+ and AMV- en-
sembles for each of the three models. Stippling denotes area below the 95%
significance level according to a bootstrap test.
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I N F L U E N C E O F T H E AT L A N T I C M U LT I D E C A D A L
VA R I A B I L I T Y A N D S P R I N G S O I L M O I S T U R E O N
H E AT WAV E S W I T H R E T U R N T I M E S F R O M 1 0 T O 5 0 Y E A R S

The heatwaves that we considered in the previous section are not really rare
events. Indeed, the second definition gives one value of Ã for each year, while
for the first definition the fraction of years during which at least one heatwave
occurs is consistently comprised between 50% and 80% for all models and land
grid points (fig. 11.4). This means that such heatwaves occur every one or two
years and are thus not so rare events. In this section, we focus on rarer events
with return times of a few decades. In section 8.1, we use return time plots to
see how the influence of the slow drivers evolves with the return time for a
single grid point. However, this provides information only at a local level. To
study extreme events at the European level, we introduce return time maps in
section 8.2. Based on these maps, we study extreme events with return times
ranging from 10 to 50 years.

8.1 study of rare events using local return time plots

In climate statistics, the probability of an event is often expressed in terms
of return time: if an event has a probability 1/Y to occur each year, then it
has a return time of Y years, which also corresponds to the average duration
between two such events. A classical way to visualize the intensity of events
of decreasing probability is to build return time curves: events are ranked by
decreasing intensity a1 > a2 > ... > aN and the empirical return time associated
to the level am reads:

r̂(am) =
N
m

. (8.1)

This is simply the inverse of the empirical probability to have an event of inten-
sity at least as large as am which is m/N. By construction, the minimal event’s
intensity has a return time of one year, the median a return time of two years
and the largest event is associated with a return time of N years. In the present
study, a will be either the number of heatwave days in a year (following the def-
inition of section 6.3.1) or the 14-day heatwave intensity defined in section 6.3.2.
Remember that both quantities are defined at each grid point. We present re-
sults for the second definition in this section. The results for the first definition
are similar and the corresponding figures are shown in section 11.2.

Figure 8.1 shows the return time curves for the intensity of 14-day heatwaves
for a grid point in the Northeast of Spain. We chose this region for illustration
purposes, as it is one where we observe a strong response of Ã to both the
AMV and the soil moisture in all models, except for the AMV in CNRM (fig. 7.3).
The six upper panels show the empirical return time curves for each ensemble
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Figure 8.1: Return time curves of the intensity of 14-day heatwaves. The two first lines show
the temperature anomaly as a function of the return time for the dry and
wet ensembles (top row) and the AMV+ and AMV- ensembles (second row)
for the three models. Errorbars correspond to one standard deviation of the
estimated return time to observe an event of a given amplitude. The third
row shows the Dry - Wet (green) and AMV+ - AMV- (orange) differences as
a function of the return time. The dotted lines indicate the mean difference
values. For each model the chosen grid point covers the coordinate indi-
cated in the figure title which corresponds to a location in the Northeast of
Spain, close to the Mediterranean Sea.
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(AMV+, AMV-, Dry, Wet) and each model1. Several considerations arise from
these plots. The temperature anomaly starts at about 0°C for a return time
close to 1 year2, goes up quickly to around 4 or 5°C for a return time of 2 years
and then rises at a slower pace, up to anomalies of 7°C to 9°C, depending on
the model, for return times of a few centuries. More importantly, these curves
allow to visualize how the influence of the drivers on the frequency of events
changes as the return level increases. For temperature anomalies from 4°C to
6°C a low soil moisture (resp. a positive AMV phase) double the frequency of
occurrence with respect to a high soil moisture (resp. a negative AMV phase)
in IPSL and EC-Earth. In CNRM the AMV response is smaller and there is no
visible influence of soil moisture.

It is less straightforward to visualize the changes in the influence of the
drivers on the intensity of the events. At a first glance, it seems that the in-
fluence on the intensity increases with the return time. However, this interpre-
tation is misleading, as it is influenced by the near-vertical alignment of the
curves for the lowest return times. Indeed, if two curves are concave and a con-
stant vertical distance away, then the horizontal distance between them grows
along the x-abscissa3. To properly visualize the evolution of the influence of the
drivers as the return time increases, we show the Dry - Wet and AMV+ - AMV-
differences as a function of the return time on the third line of fig. 8.1. We see
that the influence of both the AMV and soil moisture is roughly constant from
a return time of less than two years up to a few decades. There are large fluctu-
ations at very short and large return times which correspond to the two tails of
the distribution. The influences of the AMV and spring soil moisture are of the
same order within each model. However, they are lower in CNRM than in the
two other models. Figure 11.5 shows similar return time plots for the threshold
based definition.

While return time plots give a view of the evolution of extreme events inten-
sity when shifting from small to large return times, the information they pro-
vide is location dependent. For instance, while EC-Earth produces noticeably
lower extreme heatwaves than the other two models at the location examined
in fig. 8.1, it turns out to be the opposite in Central Europe (not shown). We
present in the next section a method to overcome this limitation and obtain a
global picture of the influence of the drivers on extreme events.

8.2 regional picture of amv and spring soil moisture influence

on heatwaves with return times of 10 and 50 years

In order to synthesize at the continental scale the local results described above,
we build on the concept of return time curve to introduce return time maps. To
put it in a nutshell, these maps allow to visualize the difference in intensity of
events with the same return time but belonging to different ensembles. As far

1 The curve for the dry/wet ensembles on one side and for the AMV+/- ensembles on the other
side are very similar for each model because they are built from the same dataset.

2 Very few events have an anomaly between -2°C and 0°C. They correspond to extreme cold years.
They have been cropped for the sake of plot’s readability.

3 As a simple example, one can consider the two curves y1(x) =
√

x and y2(x) = y1(x) + ∆y. The
horizontal distance between them is ∆x = 2∆y

√
x − ∆y2 which grows as

√
x.
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as we know, we are the first to plot this kind of maps. A similar but different
concept is Risk Ratio maps where the changes in probability of events of the
same intensity are displayed (Kharin et al., 2018). We first explain how these
maps are built before discussing the results.

method For each grid point, we consider the difference between the AMV+
and AMV- or Dry and Wet return time curves averaged over all the events with
a return time larger than a threshold RT. We considered threshold values of
RT=10 and 50 years, which provide a compromise between studying extreme
events and keeping enough events to calculate statistics.

To be more specific, for each dataset S ∈ {AMV+, AMV-, Dry, Wet} and for
the return times RT=10 or 50 years, we compute at each grid point:

aSRT(r) =
1
K

K

∑
i=1

ai(r) where K =
NS
RT

(8.2)

where r is the spatial coordinate, NS is the number of years available in the
dataset S and K is the number of years such that r̂(ai) ≥ RT. We recall that the
ai’s are the number of heatwave days in a year or 14-day heatwave intensity,
depending on the definition considered. We have assumed that a1 > a2 > a3 >

... > aNS in each dataset. The interpretation is that aS10yrs is the empirical mean
of 10-year events in the dataset S . We then display for each grid point the dif-
ferences aAMV+

RT (r)− aAMV-
RT (r) and aDry

RT (r)− aWet
RT (r). Note that these differences

can be seen as computing the differences between the two curves in panels (a)
to (f) of fig. 8.1 (these differences are shown in panels (g) to (i)) and then taking
the average of these differences over the points with return time greater than 10

or 50 years only, i.e. on the rightmost part of these curves. We call these maps
return time maps.

Figure 8.2 shows the 10-year return time maps for the intensity of 14-day heat-
waves. Each individual map shows only reduced area of statistical significance
compared to the mean response maps. This is because we consider only the
most extremes years, which reduces the number of years included in the maps.
Regarding the AMV influence, there is almost no region of significance. Larger
regions of significance subsist for spring soil moisture: for IPSL, a region of
positive influence extends over Western Europe, up to 52°N, while this positive
influence covers almost all Europe until about 25°E in EC-Earth. In many areas,
the 10-year response is higher than the mean response with an amplitude up to
1°C. Once again, EC-Earth shows a higher response to soil moisture with a peak
amplitude of 1.8°C. We note that the peak of this response has shifted north-
ward with respect to the mean response. We note that the regional response
patterns are similar to those of the mean response (see fig. 7.3; note that the
color scale is different). Therefore, it seems that response patterns for the rarest
events are similar to the patterns for less rare events. However, confirming this
statement would require datasets with more extreme events.

We show the 50-year return time maps of 14-day heatwaves intensity in
fig. 11.6 in section 11.2. These maps are much noisier than the 10-year return
time maps. This is because these maps correspond to events that are in the
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Figure 8.2: 10 years return time maps for 14-day heatwaves. The maps show the differ-
ence of Ã between (top line) the Dry and Wet ensembles and (bottom line)
the AMV+ and AMV- ensembles, conditioned over events with return time
greater than 10 years. Stippling denotes area below the 95% significance
level according to a bootstrap test.

very tail of the empirical distribution, where the fluctuations of the response
are large, as can be seen on panels (g,h,i) of fig. 8.1.

We performed the same analysis for the number of heatwave days per year
as measured by the threshold-based definition. The 10 and 50-year return time
maps for this definition are shown in figs. 11.7 and 11.8 in section 11.2. The
global response patterns are similar to those for the intensity of 14-day heat-
waves, leading to the same conclusions.





9
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In this study, we use numerical experiment outputs from the Decadal Climate
Prediction Project to assess which slow driver, between the AMV and spring
soil moisture in Southern Europe, has the most influence on European summer
heatwaves. We study the influence of a one-sigma deviation from the climatol-
ogy for both drivers. We use two complementary definitions of heatwaves and
study both typical heatwaves with a return time of one or two years and rarer
events with a return time of 10 or 50 years.

In order to decouple the effects of the two drivers, we first investigated the
influence of the AMV on the distribution of spring soil moisture averaged over
Southern Europe. We found it to be negligible in two models (IPSL and CNRM),
while there is a small but significant influence in EC-Earth, where the average
soil moisture is 10.5 kg.m−2 lower in the AMV+ phase compared to the AMV-
phase (fig. 6.2). This can be compared to the standard deviation computed over
the two ensembles together, which is σSM

EC-Earth = 34.4 kg.m−2. We conclude that
the two drivers can be studied independently in IPSL and CNRM. In EC-Earth,
there is an indirect influence of the AMV on heatwaves through decreased soil
moisture in the positive AMV phase, and we paid attention to removing this
influence when building our Dry and Wet ensembles.

Our main conclusion is that spring soil moisture in Southern Europe is a
slow driver of greater importance than the AMV for European summer heat-
waves, both in terms of extension of the region of influence and in terms of
amplitude. While the influence of the AMV concentrates around the Mediter-
ranean Basin, the one of spring soil moisture extends over most of continental
Europe, up to 50°N or the Baltic Sea, depending on the model. The amplitude
of the response goes up to 4 more heatwave days per year and +0.5°C for the
mean intensity of 14-day heatwaves, except for EC-Earth which presents a much
larger influence of spring soil moisture than the other two models This can be
linked to the higher persistence of this variable along the summer season, as
shown in fig. 7.2, and might be due to its land model. However, we could not
discriminate with confidence if one model was more biased than the others.
Further investigations need to be done in this and other models to gain a more
confident understanding of the response of heatwaves to spring soil moisture
anomalies.

Consistently with a previous study (Qasmi et al., 2021), a positive AMV phase
or low soil moisture generally induce more heatwave days and hotter heat-
waves. Regarding the AMV, all models also show a region of negative influence
around Poland with responses down to -0.2°C for the mean temperature of 14-
day heatwaves (fig. 7.3) and 1 fewer heatwave day per year (fig. 7.1). Although
this anomaly does not pass the statistical test, its presence in all three mod-
els suggests the existence of a true signal. We speculate that the direct heating
effect in phase with the main surface temperature forcing creates a positive
geopotential height response at mid troposphere (visible in fig. 11.3). This also
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creates a wave-like response in geopotential, which would explain the cold area
around Poland. However, we acknowledge that our findings might be biased
due to the small number of climate models used and the fact that they show
inconsistent responses of physical mechanisms to the AMV (fig. 11.3).

By introducing return time maps, we were able to study extreme heatwaves
with return times of 10 years. One main issue in the study of such rare events
is the scarcity of data, which causes large areas to be below the statistical signif-
icance level in fig. 8.2 and fig. 11.6. This calls not only for new methodologies
but also for longer datasets. For events with return times of 10 years, the influ-
ences of the AMV and soil moisture increase, according to rather similar regional
patterns as for typical events, and remain of similar amplitude. However, the
regions where a positive AMV phase or low spring soil moisture induce fewer
heatwave days and cooler heatwaves extend. This conclusion is valid for both
definitions of heatwaves. Positive AMV phases or spring soil moisture deficit
induce a 1°C increase of the temperature. They also increase the number of
heatwave days by up to 9 days/year. The return time maps for 50-year events
are much noisier due to the fact that corresponding events are in the very tail
of the empirical distribution. Once again, the influence of spring soil moisture
on these extreme events is greater in EC-Earth than in the other two models.
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D I S C U S S I O N

Our results show that the AMV can modulate the amplitude of 14-day heatwaves
over Southern Europe by 0.5°C to 1°C. This can be put into perspective with
the current warming rate of hot extremes in Europe. Vautard et al. (Vautard
et al., 2023) showed that the warming rate of hot extremes (TXx) over Europe
is comprised between 2°C and 6°C per global warming degree with the fastest
warming being over Western Europe. The current global warming rate being
about 0.2°C per decade, this corresponds to a warming of 0.4°C to 1.2°C per
decades for hot extremes, which is of the same order of magnitude as the mod-
ulation by the AMV. This means that the phase of the AMV can either mask or
exacerbate the warming trend of hot extremes.

A similar conclusion was already discussed in (Liné et al., 2023) for the sea-
sonally averaged temperature: the internal variability, including the AMV, will
modulate the global warming trend at the European scale, either mitigating or
exacerbating its effects. Moreover, these authors argued that, in the near term,
the internal variability of the climate system will have a stronger influence on
the European averaged temperature than the SSP emission scenario that we
will actually follow. It is a natural question to ask whether this might be true
also for the case of extreme heatwaves, as studied in this paper. However, this
is beyond the scope of our article, as it would require a specific study of the im-
pact of the different scenarios on extreme event statistics. We leave this question
as an interesting perspective for future works. It has to be mentioned that no
distinction is made in this study between seasonal and multidecadal timescale
SSTs anomalies which present different patterns. This could also be addressed
in future works.

In a warming climate, the Mediterranean basin is projected to become drier
(Masson-Delmotte et al., 2023). This suggests that, when considering the effect
of climate change, the variability of soil moisture over the zone considered for
this study might be reduced, leading to a reduced importance in the modula-
tion of heatwaves. However, the transition zone between dry and wet climates,
in which the variability of soil moisture is large, is expected to shift northward
with respect to the Mediterranean basin. Thus, it could be relevant to look for
the region of largest soil moisture variability in the future and to consider the
soil moisture in this region as the relevant slow driver for European heatwaves.
Such a prospective study would be a natural follow-up to this work.

As already mentioned above, a limitation of this study arises from the scarcity
of data that we face when we want to study really rare events. We are already
encountering this data scarcity issue for events with return times of a decade,
and the problem would be even more challenging if one wishes to study events
with higher return times, for instance, a century. Recently, rare event algorithms
have been designed to enhance the sampling of extreme events in numerical
simulations at low computation cost. This class of algorithms has been success-
fully applied to sample heatwaves with return times of a century or even tens
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of millennia in some regions of Europe (Ragone, Wouters, and Bouchet, 2018;
Ragone and Bouchet, 2021) and South Asia (Le Priol, Monteiro, and Bouchet,
2024). Using such rare event simulations could be a promising path to study
the influence of slow drivers on heatwaves with return times of a century or
more.

The approach presented in this paper is not limited to the study of slow
drivers for extreme heatwaves in Europe. It could be useful for studying other
rare phenomena with high impacts, and in other world regions.
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S U P P L E M E N TA RY M AT E R I A L

11.1 methods

brief descriptions of the models characteristics

• IPSL is composed of the LMDZ atmospheric model version 6A-LR, based
on a rectangular grid with 144 longitude x 143 latitude equally spaced
points, resulting in a resolution of 2.5° × 1.3°. It has 79 vertical levels and
extends up to 80 km. The ocean component is the NEMO oceanic model
version 3.6, with 71 vertical layers and an horizontal resolution of 1°. The
land surface model is the ORCHIDEE version 2.0, with 11 layers for a
total of 2 m of soil depth. Further information and details can be found at
(Boucher et al., 2020).

• EC-Earth is composed of the Integrated Forecast System (IFS) CY36R4

of the European Centre for Medium Range Weather Forecasts (ECMWF)
atmospheric model, based on a linearly reduced Gaussian grid equivalent
to 512 longitude x 256 latitude points with 91 vertical levels. It includes the
land-surface scheme HTESSEL. The ocean and sea-ice model is NEMO-
LIM3 version 3.6, with 75 vertical layers. Further information and details
can be found at (Döscher et al., 2021).

• CNRM is composed of the ARPEGE-Climat atmospheric model, version
6.3 with 91 vertical levels. The ocean component is based on the NEMO
version 3.6, while the sea ice component is based on GELATO, version 6.
Further information and details can be found at (Voldoire et al., 2019).

creation of the dry and wet ensembles The Dry and Wet ensembles
are made of years coming from the AMV+/- and CTRL ensembles according
to SMav. When building the Dry and Wet ensembles we want to make sure
that there is no indirect influence of the AMV on the soil moisture through
influence of the AMV on SMav. Figure 6.2 shows the distribution of SMav for
each ensemble in the three models. We see that in IPSL and CNRM the phase of
the AM does not influence the soil moisture, while in EC-Earth, there is a non
negligible influence with the average SMav in the AMV- phase being 5.2 kg.m−2

than in the AMV+ phase. To make sure that there is no indirect influence of the
AMV we choose to enforce to have the exact same numbers of AMV+ and AMV-
years in the Dry and Wet ensembles.This choice also allows us to deal with the
imbalance of the CNRM ensemble because of missing runs for Soil Moisture
data. We have only 380 years of AMV+ and 280 years of AMV-. We will briefly
comment on the procedure to create the ensemble. It is sketched in fig. 11.1.
Each original ensemble (AMV+, AMV-, CTRL) is sorted according to SMav. The
k driest years of the AMV+ and AMV- ensembles are put in the Dry ensemble
which is completed with the n driest years from the CTRL run when available.
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IPSL EC-Earth CNRM

Dry 443.1 / 442.5 715.2 / 714.3 383.1 / 383.2

Wet 480.2 / 481.0 782.5 / 783.1 404.6 / 405.7

Table 11.1: Mean value of SMav (in kg.m−2) in the Dry and Wet ensembles for each model. In
each case the values are ordered as realized / target where realized is the com-
puted mean in the Dry or Wet ensemble and target corresponds to exactly
one standard deviation away from the overall mean value.

Figure 11.1: Sketch of the procedure to create the Dry and Wet ensembles. Data in each
experiments are already sorted according to its SMav value.

For this study, the number of years coming from the AMV experiments, namely
k, is different from the one coming from the CTRL, namely n. The reason is the
different amount of years available for each experiment, which we detail in
table 6.1. More details about the values of SMav for each model can be found
in table 11.1. We choose the ensemble size such that the mean value of SMav

in the Dry (resp. Wet) ensemble is nearly one standard deviation below (resp.
above) the mean value SMav averaged over the AMV+/- and CTRL ensembles
all-together. This makes the comparison with the AMV forcing sensible because
the imposed SST pattern corresponds to one standard deviation of the AMV
variability.

computation of the errorbars on the local rt plots Let A be the
random variable of event’s amplitudes. Let us fix a return level a. The random
variable X = 1(A ≥ a) follows a Bernoulli law of parameter p := P(A ≥ a) Let
N be the number of years in our dataset and m the number of years where we
observe A ≥ a. Then p̂ = m/N is an unbiased estimator of p and we estimate
the return time of events larger than a as

r̂(a) =
1
p̂
=

N
m

. (11.1)

We want to compute an estimate of the error on r̂(a). First, note that the em-
pirical variance of p̂ reads σ̂2

X = 1
N−1 ∑N

i=1(Xi − p̂)2 = N
N−1 p̂(1 − p̂). According

to the Central Limit Theorem, the variance of p̂ reads σ2
p̂ = p(1−p)

N which can be
estimated by the empirical formula

σ̂2
p̂ =

p̂(1 − p̂)
N

.
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Let us define δ = p̂ − p. Note that E[δ] = 0 and σ2
δ = σ2

p̂ Let us assume that in
all our observations δ < p (which is likely to be valid if σ(r) ≪ r). Then we can
write:

r̂ =
1
p̂
=

1
p
× 1

1 + δ/p
=

1
p

(
1 − δ

p
+

δ2

p2 + O
(

δ3

p3

))
, (11.2)

r̂2 =
1

n2
+

=
1
p2

(
1 − 2δ

p
+

3δ2

p2 + O
(

δ3

p3

))
. (11.3)

Taking the difference of the expectations we get:

σ2
r̂ = E[r̂2]− E[r̂]2 =

E[δ2]

p4 + O
(

E[δ3]

p3

)
. (11.4)

The errorbars plotted on the local return time plots figs. 8.1 and 11.5 corre-
sponds to the standard deviation of r̂:

σr̂ ≃
σ( p̂)

p2 =
1
p2

√
p(1 − p)

N
≃ r̂

√
r̂ − 1

N
, (11.5)

where we have used that 1/p = r.
Note that the domain of validity of the this approximation is σ(r) ≪ r and

so these formula is not correct to estimate the error on the most extreme return
levels (the ones for which the number of exceedance m is small).

implementation of the bootstrap test We implemented a bootstrap
to test the significance of the AMV+ - AMV- and Dry-Wet differences in all
maps. The procedure is the same for each model, but was slightly adapted for
CNRM to take into account the fact that the AMV+ and AMV- do not have the
same size and that the soil moisture of some members is missing.

Concretely, we pooled the results from all experiments (AMV+/- and CTRL)
together to obtain a single large dataset for each model. From this large dataset,
we draw N=1000 samples of M years, where M is equal to the number of year
in each dataset displayed in table 6.1. For each sample we compute the aver-
age over the sample, as well as the 10-year and 50-year return time maps. For
each of those maps (average, 10-year and 50-year return time maps), we build
the empirical distribution of all differences between two distinct samples and
compute the quantiles from the distribution. We consider the difference at each
grid point to be significant at the 95% significance level whenever it is lower
than the quantile 0.025 or higher than the quantile 0.975.

11.2 additional figures
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Figure 11.2: Mean anomaly maps for the threshold based definition, with thresholds T1 and
T2 corresponding to the 95th and 80th percentile of the local JJA Tmax
distribution. The maps show the difference of the mean number of heat-
waves days per year between (top line) the dry and the wet ensembles and
(bottom line) the AMV+ and AMV- ensembles for each of the three mod-
els. Hatching denotes area below the 95% significance level according to a
bootstrap test.
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Figure 11.3: Mean response maps to the AMV phase for different fields. Each map repre-
sents the mean difference between AMV+ and AMV- of (from top to bot-
tom row) percentage of cloud coverage, Latent heat, sensible heat, 500hPa
geopotential height, precipitation, soil moisture. The average is taken with
respect to the months of June, July and August. Each column represents a
model. Stippling denotes area below the 95% significance level according
to a bootstrap test.
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Figure 11.4: Percentage of years during which at least one threshold-based heat wave occurs.
These maps show the percentage of years during which at least one heat
wave (according to the threshold-base definition, see section 6.3.1) occurs.
This percentage is above 50% over all land area, in all model and in the
two AMV phases. Since these heat waves occur more frequently than every
two years, they have a return time of less than two years. The percentage
is even larger than 60% over most of Europe and 70% in many locations.
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Figure 11.5: Return time curves for the threshold based definition (section 6.3.1). The plots
show the yearly number of heatwave days as a function of the return time
(in years) for Dry and Wet ensembles (top row) and for AMV+ and AMV-
ensembles (bottom row) for the three models. Error bars correspond to
one standard deviation of the estimated return time needed to observe an
event of a certain amplitude. The third row shows the Dry - Wet (green)
and AMV+ - AMV- (orange) differences as a function of the return time.
The dotted lines indicate the mean difference values. For each model the
chosen grid point covers the coordinate indicated in the figure title which
corresponds to a location in the Northeast of Spain, close to the Mediter-
ranean Sea.
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Figure 11.6: 50 years return time maps for 14-day heat waves. The maps show the differ-
ence of Ã between (top line) the Dry and Wet ensembles and (bottom line)
the AMV+ and AMV- ensembles, conditioned over events with return time
greater than 50 years. Stippling denotes area below the 95% significance
level according to a bootstrap test.

Figure 11.7: 10 years return time maps for the threshold based definition. The maps show
the yearly heatwaves days difference between (top line) the dry and wet
ensembles and (bottom line) the AMV+ and AMV- ensembles, conditioned
over the return time of 10 years. Stippling denotes area below the 95%
significance level according to a bootstrap test.
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Figure 11.8: 50 years return time maps for the threshold based definition. The maps show
the yearly heatwaves days difference between (top line) the dry and wet
ensembles and (bottom line) the AMV+ and AMV- ensembles, conditioned
over the return time of 50 years. Stippling denotes area below the 95%
significance level according to a bootstrap test.





Part III

G A U S S I A N F R A M E W O R K A N D O P T I M A L
P R O J E C T I O N O F W E AT H E R F I E L D S F O R P R E D I C T I O N

O F E X T R E M E E V E N T S

In the previous chapter (part ii) we analysed and compared two
slow drivers of heatwaves acting at sub-seasonal and interdecadal
timescales, concluding that soil moisture is a slow driver of greater
importance than the Atlantic Multidecadal Variability AMV. For heat-
waves with return times of decades, this conclusion is limited by the
scarcity of data and calls for alternative methodologies or alterna-
tively for longer datasets. In this chapter we rather focus on the first
solution by proposing a new methodology which we call the Gaus-
sian approximation. With this methodology we aim at understand-
ing and at forecasting heatwaves over France. Differently from the
previous chapter, we focus on drivers acting solely at sub-seasonal
timescales, using both a long climate simulation of 8000 years with
the PlaSim climate model and the reanalysis dataset ERA5. They were
briefly introduced in section 2.4.

A general conclusion is that this approximation results surprisingly
competitive for both tasks, the analysis and the prediction.

For what concerns the tools used in this chapter, we employ compos-
ite maps for the analysis of the dynamical fields after the heatwave
event happened and committor function to predict an heatwave with
a certain delay time. Both tools were introduced in section 3.1.1 and
in section 3.1.2, respectively.

The material presented in this chapter is an article which has been
submitted to JAMES (Journal of Advances in Modelling the Earth
System). I coauthor this work with Alessandro Lovo1 and Corentin
Herbert1. A preprint is available at https://arxiv.org/abs/2405.

20903. Because of that some concepts and materials might be re-
peated.

Key points:

• This work presents a new simple framework, called the Gaus-
sian approximation, for a-posteriori and a-priori statistics of
extreme events.

• Our method provides an interpretable probabilistic forecast of
extreme heatwaves which is competitive with off-the-shelf neu-
ral networks.

• The analysis highlights quasi-stationary Rossby waves and low
soil moisture as precursors to extreme heatwaves over France.

1 ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France

https://arxiv.org/abs/2405.20903
https://arxiv.org/abs/2405.20903




Abstract. Extreme events are the major weather related hazard for humanity.
It is then of crucial importance to have a good understanding of their statistics
and to be able to forecast them. However, lack of sufficient data makes their
study particularly challenging.

In this work we provide a simple framework to study extreme events that
tackles the lack of data issue by using the whole dataset available, rather than
focusing on the extremes in the dataset. To do so, we make the assumption that
the set of predictors and the observable used to define the extreme event follow
a jointly Gaussian distribution. This naturally gives the notion of an optimal
projection of the predictors for forecasting the event.

We take as a case study extreme heatwaves over France, and we test our
method on an 8000-year-long intermediate complexity climate model time se-
ries and on the ERA5 reanalysis dataset.

For a-posteriori statistics, we observe and motivate the fact that composite
maps of very extreme events look similar to less extreme ones.

For prediction, we show that our method is competitive with off-the-shelf
neural networks on the long dataset and outperforms them on reanalysis.

The optimal projection pattern, which makes our forecast intrinsically inter-
pretable, highlights the importance of soil moisture deficit and quasi-stationary
Rossby waves as precursors to extreme heatwaves.

plain language summary

Extreme weather events such as heatwaves are responsible for large financial
and human costs and their impact can only be expected to grow in the future.
Understanding such events and being able to predict them is therefore of major
interest, but suffers from a fundamental problem of lack of data. In this work
we present a new framework which addresses this issue by making simple
assumptions on the statistics of weather fields relevant for heatwaves. We vali-
date our method using a very long climate simulation. We find that it provides
good approximations of atmospheric conditions prevailing during heatwaves,
and good prediction capabilities. It even outperforms existing approaches for
short datasets, such as those obtained by combining observations and state-
of-the-art weather prediction models, which contain much less extreme events
than climate simulations but represent more accurately the dynamics of the
atmosphere. This approach explains the observed property that more extreme
events are simply stronger versions of less extreme ones, and allows to identify
the features of atmospheric patterns which are relevant for making predictions.
The method is very general and could be applied for many types of extreme
events.
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I N T R O D U C T I O N

Extreme weather and climate events, often exacerbated by climate change, have
led to major disasters in our recent history (Seneviratne et al., 2012). Heatwaves,
in particular, are among the deadliest events. Prolonged exposure to abnor-
mal heat for a certain duration has proven to worsen existing illnesses and to
have caused excess deaths during the recent events of the Western European
heatwave of 2003 and the Russian heatwave of 2010 (Fouillet et al., 2006; García-
Herrera et al., 2010; Barriopedro et al., 2011). Moreover, losses in the agricultural
sector with the sequent endangerment of the food production system, together
with the endangerment of entire ecosystems, allow to classify heatwaves as
events which have critical impacts on the whole society, according to the Inter-
governmental Panel on Climate Change (Intergovernmental Panel On Climate
Change, 2023).

The intensification and the proliferation of these extreme events in the cur-
rent climate call for urgent progress in our understanding of the mechanisms
that drive them, and for developing prediction tools to anticipate risks. How-
ever, the most extreme events are the rarest. For this reason, those two classi-
cal tasks of analysis and prediction for extreme event study suffer from large
methodological difficulties associated to a lack of both historical and model
data (Miloshevich et al., 2022). In this paper we propose a new framework to
infer analysis and prediction tools, which is effective with rather short datasets,
and efficient for the rare unobserved events up to some approximation we fully
characterize. Here, we test thoroughly this framework for extreme heatwaves,
but we surmise that it can be applied to a large set of other extreme events.

For the task of understanding which weather conditions led to extreme events,
once they have occurred, composite patterns, i.e. maps of averaged dynamical
variables conditioned on the outcome of the extreme event, are the most com-
monly used statistical diagnostic (see for instance (Grotjahn and Faure, 2008;
Sillmann and Croci-Maspoli, 2009; Teng et al., 2013; Ratnam et al., 2016; Milo-
shevich et al., 2023; Noyelle, Yiou, and Faranda, 2024)). As visible in fig. 12.1
for reanalysis data and two other climate models, the composite patterns asso-
ciated with very extreme events strikingly resemble those for less extreme ones.
This fascinating property has not been much commented in the literature before
a recent study (Miloshevich et al., 2023) and has never been explained. When-
ever this property is relevant, it means that composite maps for rare events
can be computed from typical statistics, even if those rare events have not been
observed. This is of huge practical interest, and requires understanding. The
Gaussian framework we develop in this paper gives a straightforward and en-
lightening explanation.

For the second task, prediction of future extreme events based on current
weather conditions, composite maps are not useful. We clearly demonstrate and
explain this in the present paper. The appropriate statistical concept to make
predictions is the probability that an extreme event will occur conditioned on
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the present state of the climate system, the so-called committor function. How-
ever, in order to compute this committor function, one actually has to build
a forecasting tool able to estimate this probability. Moreover, the committor
function is a function of all the variables which characterize the state of the
system, called predictors. For these reasons, it is extremely hard to compute
practically and to represent it. Several computations of committor functions
have been performed with applications in either geophysical fluid dynamics or
in climate sciences (Finkel et al., 2021; Miron et al., 2021; Finkel, Abbot, and
Weare, 2020; Lucente et al., 2019; Lucente, Herbert, and Bouchet, 2022; Lucente
et al., 2022), using either direct or involved approaches. For climate sciences,
methods have been devised using either analogue Markov chains (Lucente,
Herbert, and Bouchet, 2022), Galerkin approximations of the Koopman oper-
ator (Thiede et al., 2019; Strahan et al., 2021), or neural networks (Lucente et
al., 2019; Miloshevich et al., 2022). Neural network seems to be the most ef-
ficient and versatile tool. As a matter of fact, there is currently a flourishing
literature using neural networks for spatial and temporal predictions of sev-
eral families of extreme events, such as hurricanes (Racah et al., 2017), tropical
cyclones (Giffard-Roisin et al., 2020), droughts (Agana and Homaifar, 2017; Dik-
shit, Pradhan, and Alamri, 2021), and heatwaves (Chattopadhyay, Nabizadeh,
and Hassanzadeh, 2020; Jacques-Dumas et al., 2023; Miloshevich et al., 2022).
However, in (Miloshevich et al., 2022) the authors clearly demonstrate that ma-
chine learning for rare extreme events is most of the time performed in a regime
of lack of data and gives -optimal predictions for typical climate datasets. More-
over, deep learning approaches are, in general, very hard to interpret (Bach et
al., 2015; Krishna et al., 2022; Rudin, 2019), and it is extremely difficult to gain
some understanding using the forecasting tool.

The main aim of this work is to propose a much simpler alternative method
to devise a forecast tool for prediction and to explain the structure of com-
posite maps. This new framework is based on the assumption that the joint
probability distribution of the predictors and the extreme event amplitude is
Gaussian. Even if this hypothesis is verified only approximately, we show in
this paper that the quality of its prediction and its potential for interpretability
is extremely high, for extreme heatwaves. We prove that this hypothesis gives a
very simple and straightforward explanation of the stability of composite pat-
terns when changing the extreme event amplitude. For the prediction problem,
this Gaussian hypothesis leads to a linear regression problem of the heatwave
amplitude on the predictor fields. This is in sharp contrast with regression of
fields on scalars value, commonly used in climate sciences. In this case, the pre-
dictor is a field in very high dimension, and the predicted value is a scalar. The
key outcome of this procedure is a regression map, which we call the optimal
prediction map for the extreme event. This optimal prediction map is a new
concept of this study. It is directly interpretable as it gives, at each geographi-
cal location, the importance of the predictor field and its sign to determine the
heatwave amplitude. Because of the high dimension of the predictors and be-
cause of the not so long dataset length, this regression requires regularization.
We analyse thoroughly such optimal prediction maps for extreme heatwaves.

A large part of the work is devoted to the estimate of the accuracy of the
results obtained using the Gaussian approximation, compared to the truth. It
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turns out that this Gaussian approximation is able to give fully interpretable
results which compare very well with the truth. For instance, it computes com-
posite maps up to errors of the order of 20 to 30%, depending on the cases.
Moreover, this Gaussian approximation requires much less data, and it can pre-
dict composite maps for unobserved events. For prediction, it should often be
preferred to neural networks for short datasets. For instance, we prove to have
a prediction skill close to convolutional neural networks on very long datasets
and to outperform them on short datasets, like the 80-year long ERA5 reanaly-
sis.

This work is organized as follows. In chapter 13 we give the definition of
heatwaves used for this study, we present the two datasets used and the set of
predictors. In chapter 14 we show with two theoretical examples that composite
maps and committor functions are two different probabilistic objects. We then
introduce the Gaussian approximation framework, and we derive the formu-
lae for computing composite maps and committor functions. Chapter 15 and
chapter 16 are dedicated to a methodological study of the Gaussian framework
using the climate model PlaSim. Finally, in chapter 18 we apply our methodol-
ogy to the reanalysis dataset ERA5. In chapter 19 we summarize our findings
and give perspectives for future works.
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Figure 12.1: First line: maps of 500 hPa geopotential height anomaly for heatwaves
over France, defined as situations with the 3% most extreme values of
two weeks averaged 2 m temperature anomaly over France (3% compos-
ite maps). Second line: the same for a 5% threshold (5% composite maps).
The maps are normalized pixel-wise by the climatology standard deviation.
Composite maps are estimated respectively on ERA5 (daily data from 1940

to 2022), PlaSim (8000 years of simulation), CESM (1000 years of simula-
tion), datasets. The models reproduce very well ERA5 patterns. Moreover,
while the amplitude depends on the threshold defining heatwaves, strik-
ingly the patterns do not. Indeed, we observe in all models and for both
thresholds a strong anticyclonic anomaly over Western Europe (which is
correctly correlated with the fact that we aim at predicting heatwaves over
France). This anticyclonic anomaly is part of a train of a cyclone and an
anticyclone which starts over the western part of the United States and
continues with a cyclonic anomaly over North Atlantic Ocean for ERA5,
while it is northward shifted over Greenland for both PlaSim and CESM.



13
H E AT WAV E D E F I N I T I O N , D ATA S E T S , A N D P R E D I C T O R S

In this section we provide the definition of heatwaves that will be used in the
following (section 13.1), we present the datasets (section 13.2), and we identify
the weather variables of interest (section 13.3).

13.1 heatwave definition

In the literature heatwaves have been defined in a plethora of different ways for
different analysis purposes (Perkins, 2015). Short and long-lasting heatwaves
affect differently our society and environment, but long-lasting ones are the
most detrimental (Barriopedro et al., 2011). Despite this, most of the literature
on heatwaves focuses on daily events (Seneviratne et al., 2012), as was pointed
out in the last assessment report of the Intergovernmental Panel on Climate
Change (Intergovernmental Panel On Climate Change, 2023).

Having a definition which measures independently the persistence and the
amplitude of heatwaves is thus of primary interest. The simplest way to achieve
this is by monitoring the running average of the air temperature field, and this
has been applied to the study of heatwaves of different duration (7 days, two
weeks, one month) (Barriopedro et al., 2011; Coumou and Rahmstorf, 2012;
Schär et al., 2004). In this work, following the recent studies of (Gálfi, Lucarini,
and Wouters, 2019; Galfi and Lucarini, 2021; Ragone, Wouters, and Bouchet,
2018; Ragone and Bouchet, 2021; Jacques-Dumas et al., 2023; Miloshevich et al.,
2022), we use a definition which is based on a time and a spatial average of
the 2 m temperature anomaly. We believe that this viewpoint is complementary
with the more common definitions (Perkins, 2015) and relevant for our analy-
sis. Such an average-based definition has the advantage of carrying a natural
measure of the heatwave amplitude, which can be easily adapted to heatwaves
of different duration and intensity or over different regions of the globe. On
the contrary, many classical heatwave definitions involve hard thresholds to be
reached within specified time frames and are thus less flexible (Perkins, 2015).

Let T̃2m denote the daily-averaged 2 m air temperature field, which depends
on the location r⃗ and time t. Given that the statistics of T̃2m are affected by
the seasonal cycle, we use temperature anomaly T2m := T̃2m − Ey(T̃2m) where
Ey(T̃2m) is the average of T̃2m over many years for each calendar day, i.e. the
climatology. We thus define the heatwave amplitude A as the space and time
average of the temperature anomaly:

A(t) :=
1
T

∫ t+T

t

(
1
A

∫
A

T2m(⃗r, u)d⃗r
)

du, (13.1)

where T is the duration in days of the heatwave and A is the spatial region of
interest. Both parameters, T and A can be changed according to the event one
wishes to study. In this work, T ranges from one day (short event) to one month
(long event), but nothing prevents it from going even to longer, seasonal events.
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The region A typically extends over distances comparable to the synoptic scale,
which, in the mid-latitudes, is about 1000 km. This is the order of magnitude
of the spatial correlations in tropospheric dynamics, corresponding to the size
of cyclones and anticyclones, and of the jet stream meanders. In this study we
choose A to be the equivalent region of France, which is shown for instance
in the last column of fig. 15.1. Moreover, as summer heatwaves have higher
impacts, we consider only the months of June, July and August.

Following the studies (Jacques-Dumas et al., 2023; Miloshevich et al., 2022),
we define an extreme heatwave as an event for which the amplitude A exceeds a
threshold a corresponding to rare fluctuations. This threshold can be changed
depending on the heatwaves of interest. In this work we will mainly focus
on a defined as the 95th quantile of the distribution of A, i.e. we consider as
heatwaves the 5% most extreme events in our dataset. For a two-week heatwave,
in the PlaSim model (see section 13.2.1), the threshold amounts to a = 2.76 K. We
will also comment briefly on heatwaves that are more or less rare than the 5%
most extreme ones.

13.2 datasets

In this work we use two datasets. The first is the output of the intermediate
complexity climate model called PlaSim, the second is the ERA5 reanalysis data.
We use PlaSim to generate an extremely long dataset, over which to train, op-
timize and test our Gaussian approximation framework (introduced in chap-
ter 14) with little statistical errors. On the other hand, the simplicity of this
climate model means that our results may suffer from potentially large biases
with respect to the real climate. Hence, after this validation step we also apply
our new methods to ERA5 data, which can be expected to suffer from smaller
biases and be a more faithful representation of the actual climate.

13.2.1 PlaSim

The Planet Simulator PlaSim (Fraedrich et al., 2005b; Fraedrich et al., 2005a) is an
intermediate complexity climate model that has a dynamical core that solves
the moist primitive equations (Vallis, 2017) in the atmosphere. The model has
a T42 horizontal resolution in Fourier space, that in direct space corresponds
to a 64 × 128 grid of 2.8 degrees both in latitude and longitude, with 10 verti-
cal layers and covering the whole globe. The model uses a relatively simplified
parametrization of the -grid processes such as radiation, clouds, convection
and hydrology over land. For the latter, in particular, PlaSim uses a single-layer
bucket model (Manabe, 1969), with soil moisture increased by snow melt and
precipitation and depleted by evaporation. Sea ice cover and ocean surface tem-
perature are cyclically prescribed for each day of the year, acting as boundary
conditions. By prescribing as well the greenhouse gases concentration and in-
coming solar radiation, the model is able to run in a steady state that reproduces
a climate close to the one of the 1990s.

The fact that PlaSim lacks a dynamic ocean means that, in our study of heat-
waves, we cannot investigate the effects of ocean related phenomena such as
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El Niño (Hafez, 2017; Zhou and Wu, 2016), or the North Atlantic Oscillation
(Hafez, 2017; Li et al., 2020). On the other hand, the representation of the at-
mosphere of PlaSim is sufficient to properly resolve the large scale dynamics of
cyclones, anticyclones and the jet stream, including important teleconnection
patterns relevant for heatwaves (Miloshevich et al., 2023). Moreover, the simpli-
fied parameterizations used in PlaSim allow it to run 100 times faster than the
models used for CMIP studies, which makes it very suitable to obtain extremely
long datasets. Here, we use a dataset consisting of 8000 years. It is the same
data that was used for previous work on probabilistic forecast of heatwaves
using machine learning (Miloshevich et al., 2022). Mode details on the model
setup can be found in (Miloshevich et al., 2022).

As we will show, our proposed method for studying heatwaves does not need
such a long dataset to achieve good performances. However, we also want to
perform comparisons with alternative deep learning methods, and those do
require as much data as possible (Miloshevich et al., 2022).

PlaSim resolves the daily cycle and has an output frequency of 3 hours, but we
are interested only in daily averages. In particular, we will focus on the anoma-
lies (with respect to the daily, grid point-wise climatology) of 2 m temperature
(T2m), 500 hPa geopotential height (Z500) and soil moisture (S).

13.2.2 ERA5

In this manuscript we also present an application of our methodology to the
ERA5 dataset (Hersbach et al., 2020). We use daily data from the public avail-
able dataset of the ECMWF service for summer seasons from 1940 to 2022.
ERA5 has a resolution of 0.25 degrees in latitude and longitude. We use this
fine resolution to compute the average 2 m temperature anomaly over France
and hence the heatwave amplitude A eq. (22.2).

On the other hand, since the dataset is quite small, we reduce the number
of predictors (see next section) by using only the 500 hPa geopotential height
anomaly field and re-gridding it onto the coarser PlaSim grid.

An important remark is that in our study of heatwaves we assume a station-
ary climate. We thus need to remove the global warming signal from ERA5

data. This is achieved by means of a parabolic detrending of the averaged tem-
perature over France and of zonal averages of the geopotential height. More
technical details on the detrending procedure are given in section 20.1.

13.3 predictors

To study heatwaves, we focus on a set of climate variables that we call predictors
and denote it with X. In particular, for a heatwave that starts at time t, we will
be interested in the predictors τ ≥ 0 days before the event, i.e. X(t − τ).

For PlaSim, X will be the stack of the anomalies of 2 m temperature (T2m),
500 hPa geopotential height (Z500) and soil moisture (S). The choice of T2m is
straightforward given its implication in heatwaves, and the potential of sim-
ple persistence and advection of temperature to be useful for prediction. The
geopotential height anomaly at the middle of the troposphere (Z500) is a good
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representation of the dynamical state of the atmosphere because of its relation
with cyclones and anticyclones in the lower troposphere. At that height, the
geostrophic approximation applies and thus Z500 gives also a good insight into
the wind flow. Finally, it has been shown that low soil moisture acts as an impor-
tant preconditioning factor for the occurrence of extreme summer temperatures
in the mid-latitudes, by limiting the evaporative cooling of the surface (Perkins,
2015; Miloshevich et al., 2022; Benson and Dirmeyer, 2021; D’Andrea et al.,
2006; Fischer et al., 2007b; Hirschi et al., 2011; Lorenz, Jaeger, and Seneviratne,
2010; Rowntree and Bolton, 1983; Schubert et al., 2014; Shukla and Mintz, 1982;
Stefanon, D’Andrea, and Drobinski, 2012; Vargas Zeppetello and Battisti, 2020;
Zeppetello, Battisti, and Baker, 2022; Zhou et al., 2019; Vautard et al., 2007).

For the 2 m air temperature and 500 hPa geopotential height fields we will
focus on the whole Northern Hemisphere (latitude above 30 degrees North),
while soil moisture, instead, is a local variable, and we care only about the
values on our region of interest (France). Considering the resolution of the
PlaSim model, this will amount to a total of d = 5644 scalar predictors.

On the other hand, for ERA5 we use only the 500 hPa geopotential height
anomaly field, which yields a total of d = 2816 pixels.

For both datasets, as it is commonly done in the machine learning commu-
nity, we normalize each field value at each grid point independently dividing
by its standard deviation. This way, X will be a collection of d (correlated) di-
mensionless variables with zero mean and unitary standard deviation, which
also allows us to easily compare fields with different physical units.
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O P T I M A L P R O J E C T I O N , C O M M I T T O R F U N C T I O N S ,
C O M P O S I T E M A P S , A N D T H E C A S E O F G A U S S I A N
S TAT I S T I C S

As climate scientists, concerned in understanding extreme events, we might
ask two classes of questions. The first class is related to prediction or a pri-
ori statistics: given the current state of the system (the predictors X), what is
the probability to observe an extreme event starting within τ days? The second
class of question is related to a posteriori understanding: given that the extreme
event actually occurred, what were the probabilities of the system states lead-
ing to this event? For instance, composite maps defined as the averaged state
given that the event occurred, widely used by climate scientists, are examples
of a posteriori statistics. Both a priori and a posteriori statistics are useful and
important for the sake of understanding, but only a priori statistics is useful for
prediction.

Indeed, the first goal of this section is to stress the difference between a pri-
ori and a posteriori statistics. For instance, it is key to understand that in gen-
eral composite maps do not provide useful information for prediction. At the
same time, we define some useful statistical quantities for prediction, namely
the committor function (see a definition below). The second goal is to explain
the difficulty to compute committor functions, motivating why they are not
commonly used. The third and final goal is to devise predictive and simply in-
terpretable statistical models, for instance the regression of the predictors (the
state X) on the extreme event observable.

14.1 a posteriori statistics are usually not useful for predic-
tion

In this section we will stress the differences and the links between a posteriori
and a priori statistics.

Let’s consider two events, F and G, where G happens after F. We will denote
with P(F|G) the a posteriori probability of F conditioned on the happening of
the future event G. Vice versa, P(G|F) will be the a priori probability of G
conditioned on the past event F. In our case the past event will be the predictors
being in a particular state X = x, while the future event will be the realization
of a heatwave Y = 1, where Y is the binary random variable

Y(t) :=

1 if A(t) ≥ a

0 otherwise
(14.1)

and a is the threshold which defines an heatwave and will be the quantile of
the distribution of A.
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14.1.1 Bayes Formula

When comparing different conditional probabilities, we can make use of Bayes
formula:

P(X = x|Y = 1)P(Y = 1) = P(X = x, Y = 1) = P(Y = 1|X = x)P(X = x),

(14.2)

where

• P(X = x, Y = 1) is the joint probability of being in state x and experienc-
ing a heatwave (Y = 1)

• P(X = x) =: PS(x) is the stationary measure of the predictors, namely the
probability of being in state x

• P(Y = 1|X = x) =: q(x) is the a priori committor function: the probability
of observing a heatwave, conditioned on being in state x

• P(Y = 1) =
∫

q(x)PS(x)dx =: p is the unconditional (or climatological)
probability of having a heatwave, inversely proportional to its return time,
that tells us how extreme the event is.

• P(X = x|Y = 1) is the a posteriori probability that the state of the predic-
tors were x given that the heatwave occurred.

Summarising, Bayes formula clearly shows the difference and the relation
between a priori and a posteriori statistics. In the next sections we will illustrate
a proper tool for the prediction task, namely the committor function, and we
will illustrate for what composite maps can be used for, namely a posteriori
statistics.

14.1.2 Definition of Committor Functions

If one is interested in a prediction task, the proper tool is the committor function
q(x), originally introduced in the field of stochastic processes (see section 20.5)
for studying transitions between attractors (Bolhuis et al., 2000; Lucente, Her-
bert, and Bouchet, 2022). In our case we do not have two attractors, but rather
a typical state of the climate with no heatwaves (Y = 0) and an atypical one
(Y = 1). In this context the concept of transition gets a bit blurred, and the
committor is simply the a priori conditional probability mentioned before. If
we expand the notation and introduce back the lead time τ, we can write it as

q(x) = P(A(t) ≥ a | X(t − τ) = x). (14.3)

where a is the threshold used to define a heatwave. As we will discuss later,
committors are extremely hard to compute properly and hence are quite rarely
used in the field of climate sciences. However, they are the right tool for predic-
tion, and even a very rough estimate of them is better than alternative methods.



14.1 a posteriori statistics are usually not useful for prediction 103

14.1.3 Definition of Composite Maps

On the other hand, a commonly used tool in the climate community to study a
wide range of events, including the extreme ones, is the composite map (Grotjahn
and Faure, 2008; Sillmann and Croci-Maspoli, 2009; Teng et al., 2013; Ratnam et
al., 2016; Miloshevich et al., 2023; Noyelle, Yiou, and Faranda, 2024). It is defined
as the average state of the climate τ days before the heatwave happened:

C := E(X(t − τ)|A(t) ≥ a), (14.4)

where E denotes an expectation over event realizations and a is the threshold
used to define a heatwave. In practice one would estimate such expectation
with an empirical average over all the heatwave events in the dataset, which
makes the composite one of the easiest objects to compute and hence motivates
its popularity.

It is important to point out that the empirical average will be a good estimate
of the true composite provided that the number of heatwave events is enough.
This means that, depending on the size of our dataset, a direct estimation of
the composite map is useful only for not too rare (extreme) events, because of
sampling errors.

Going back to the simpler notation used earlier, we can interpret the compos-
ite as the mean of the a posteriori probability distribution

C = E(X|Y = 1) :=
∫

xP(X = x|Y = 1)dx, (14.5)

and thus, through Bayes theorem, we can relate it to the stationary measure PS
and the committor function q.

C =
∫

x
P(X = x)P(Y = 1|X = x)

P(Y = 1)
dx =

∫
xPS(x)q(x)dx∫
PS(x)q(x)dx

, (14.6)

Equation (14.6) clearly shows that the composite is the mean of a distribution
proportional to PS(x)q(x) and thus not equivalent to q(x). In particular, for
rare events, we expect q(x) to be peaked for very atypical values of x, namely
in the tail of the stationary measure PS(x). Thus the composite map may differ
significantly from the typical states x associated with a high committor.

14.1.4 Two Simple Examples which Illustrate that Composites Might be Useless for
Prediction

Now that we have defined the important quantities of interest, we will use some
examples to highlight the difference between composites and committor, and
in particular how the first may not give us any useful insights on the second.

As a first example, let us assume that our predictor is one dimensional
(X ∈ R), with stationary measure given by a simple normal distribution PS(x) ∝
exp

(
− x2

2

)
. Similarly, let the committor function be another Gaussian distribu-

tion centered in x∗ > 0 and with standard deviation σ: q(x) = P(Y = 1|X =

x) ∝ exp
(
− (x−x∗)2

2σ2

)
. This means that the probability of a heatwave is maxi-

mum when we are in state X = x∗. We will now compute the composite, and
show that it is different from x∗.
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From eq. (14.6) we know that the composite is the mean of a distribution
proportional to PS(x)q(x), and with some trivial algebraic manipulations, we
find that

PS(x)q(x) ∝ exp
(
− x2

2
− (x − x∗)2

2σ2

)
∝ exp

(
−1

2

(
1 +

1
σ2

)(
x − x∗

σ2 + 1

)2
)

.

Hence, the composite is

C =
x∗

σ2 + 1
,

which is strictly smaller than the condition where the heatwave probability is
highest. An important consequence is that the probability of having a heatwave
when we are in the composite state may be vanishingly small depending on the
values of x∗ and σ, showing the low predictive power of the composite map:

q(C)
q(x∗)

= exp

(
−1

2

(
x∗

σ + σ−1

)2
)

.

As a second example, let us consider X = (X1, X2) ∈ R2 with PS(x) being
a distribution that correlates the two components X1 and X2, for instance a

bi-variate Gaussian with mean (0, 0) and covariance matrix

(
σ2

1 ϕ

ϕ σ2
2

)
. We will

then consider a committor q(x) = q(x1) that depends only on the first compo-
nent. Without going into the details (available in section 20.3), it will be clear
that the composite map will have a non-zero x2 component, thanks to the cor-
relation ϕ between x1 and x2. However, we know that the committor depends
only on x1, and so the composite will be misleading if we are interested in
prediction, as it will draw our attention to variables that do not contain any
information about the probability of having a heatwave.

In conclusion, the composite map is an average that takes into account both
the probability of having a heatwave starting from state x and the probability
of being in state x (eq. (14.6)). This is good to study the statistics of our extreme
event, but if we want to know if there is going to be a heatwave tomorrow, we
do not care how rare it was to have had today’s weather.

14.2 committor functions and optimal projection

Now that we have a clear mathematical understanding of committor functions
as the proper tool for prediction, we can move to the problem of computing
them in practice. In this section we will point out why this is such a complex
task as well as provide a way to evaluate how good any approximation of the
true committor is. Finally, we will propose the framework of optimal projection
of the committor, which will mitigate the problem of high dimensionality as
well as make the committor much more interpretable.
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14.2.1 Complexity of Committor Functions

The committor is a function that maps every point of the phase space x to a
number q(x) between 0 and 1 that quantifies the likelihood of having a heat-
wave. A naive way of estimating the committor would be to initialize many
trajectories at the point x and count how many actually lead to a heatwave.
This method is called direct numerical simulation, and, if rather inefficient, it is
still doable for simple stochastic processes in low dimensional spaces.

In our case, however, x ∈ Rd, with d = 5644 for PlaSim and d = 2816 for ERA5

and the dynamics is described by a rather complex climate model. One could
argue that we do not need to explore the whole Rd space, but only the much
lower dimensional manifold of physical states, which, under ergodic conditions,
would be properly sampled by an extremely long trajectory. This argument
is absolutely correct, but the task of a thorough and precise sampling of the
committor still remains out of reach, even with the help of supercomputers.

Given the importance of committor functions, there is incentive in finding
efficient ways to get a reasonable approximation of the committor, potentially
also limiting the search to only the physical states that are most likely to yield
a heatwave. This makes the task feasible, but far from simple, and attempts
have been made using machine learning (Miloshevich et al., 2022), rare event
algorithms (Ragone, Wouters, and Bouchet, 2018) or both (Lucente et al., 2022).

In this work, we strive to find an approach which is far simpler than all
of the aforementioned, yet still leads to a good enough approximation of the
committor.

14.2.2 Evaluation of Approximations of the Committor Function

To quantify how good an approximation q̂ of the true committor q is, we need a
sort of distance between the two. Since committors are probabilities, the natural
object to use is the Kullback-Leibler divergence

KL(q, q̂) =
∫

PS(x)
(

q(x) log
(

q(x)
q̂(x)

)
+ (1 − q(x)) log

(
1 − q(x)
1 − q̂(x)

))
dx, (14.7)

which quantifies the amount of information lost when using q̂ instead of q.
Expanding the logarithm and removing the terms that depend only on the true
committor, we are left with the cross entropy loss.

CE(q, q̂) = −
∫

PS(x) (q(x) log q̂(x) + (1 − q(x)) log(1 − q̂(x))) dx. (14.8)

Now, since we do not have access to neither the true committor q nor the sta-
tionary measure PS(x), we can replace the first with the heatwave labels Y and
the integral over the second with the average over our dataset D. We obtain
then the empirical cross entropy loss

L = − ⟨Y(t) log q̂(X(t)) + (1 − Y(t)) log (1 − q̂(X(t)))⟩(X(t),Y(t))∈D , (14.9)

which is proven to be the only proper score for a probabilistic forecast (Benedetti,
2010).
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L = 0 is the perfect prediction, but L can be arbitrarily large. To have a refer-
ence we can consider the climatological committor, that comes from assuming
the only information we have is that we are studying the p-eth most extreme
heatwave, for example setting the threshold a to be the 95th quantile of the dis-
tribution of A means p = 0.05. With only this information, the climatological
committor is the constant p, and the associated empirical cross entropy is

Lclim = − ⟨Y(t) log p + (1 − Y(t)) log(1 − p)⟩(X(t),Y(t))∈D =

= −p log p − (1 − p) log(1 − p).
(14.10)

Finally, we can define the normalized log score S as in (Miloshevich et al., 2022),
that will quantify the skill of our prediction:

S := 1 − L
Lclim

. (14.11)

A value S = 1 will mean a perfect prediction, namely q̂(t) = Y(t) ∀t, and S < 0
will mean that our forecast is worse than the climatology.

14.2.3 Optimal Committor Projection

Now that we have the tools for evaluating committor approximations, we can
tackle the problem of the high dimensionality of q : Rd → [0, 1]. The key idea
is to write a surrogate committor qϕ = q̃ ◦ ϕ, which first applies a projection
ϕ : Rd → Rm to a space with dimension m ≪ d, and then represents the
committor in this reduced space with function q̃ : Rm → [0, 1]. We want to
perform this decomposition in an optimal way, which means minimizing the
cross entropy defined above, i.e., losing as little information as possible about
the original committor.

It is relatively easy to see that, for a given projection function ϕ, the best
committor representation is the average of the original committor on the iso-
levels of ϕ

q̃∗( f ) = Ex∈ϕ−1( f )q(x). (14.12)

Moreover, the information loss comes from mapping very different values of the
original committor onto the same iso-level. Ideally, then, the optimal projection
would be the one that has the same iso-levels of q, namely q itself (up to any
monotonic rescaling). Of course this is not desirable, as we simply shifted the
problem from computing q to computing ϕ. To have something useful, we need
to constrain the search space of ϕ, for example to linear maps.

Even with these simplifications, the general problem remains hard to treat in
practice. In the next section, we will show the case of Gaussian statistics, which
gives an analytic way to compute the optimal linear projection, as well as the
reduced committor.

14.3 the case of a joint gaussian distribution

In this section we present the theory for what we call the Gaussian approxima-
tion. We describe the theoretical idea and derive analytically the expressions
for the composite map and the committor function.
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The Gaussian approximation consists in assuming that the predictor X at
time t − τ and the heatwave amplitude A at time t follow a jointly Gaussian
distribution

(X(t − τ), A(t)) ∼ N (0, Σ(T, τ)) , (14.13)

where X is thought of as a d-dimensional vector, and represents all grid-point
values of either a single field or stacked fields. The joint distribution has mean
zero because both X and A are anomalies, and it is then solely characterized by
the d + 1 dimensional covariance matrix Σ(T, τ), that depends on the heatwave
duration and the lead time.

To simplify the notation, we assume that we work at fixed T and τ, and thus
drop the dependencies on them. We can then write Σ as a block matrix of the

form

[
ΣXX ΣXA

ΣAX ΣAA

]
, where ΣXX = E(XX⊤) is the d × d covariance matrix of

X, ΣXA = Σ⊤
AX = E(XA) is the d × 1 correlation map between X and A and

ΣAA = E(A2) is the scalar variance of A.

14.3.1 Composite Maps Within the Gaussian Approximation

Under the Gaussian assumption, the composite map can be computed analyti-
cally as

CG = E[X|A ≥ a] =
∫

x

∫ +∞
a P(x, A)dA∫ +∞

a P(A)dA
dx = η

(
a√

2ΣAA

)
ΣXA√
ΣAA

, (14.14)

with

η(z) =

√
2
π

e−z2

erfc(z)
, (14.15)

where erfc(•) is the complementary error function and the script G reminds
that the composite is evaluated under the Gaussian assumption. The detailed
computation is shown in section 20.4.

From eq. (14.14), we can clearly see that the composite is directly propor-
tional to the correlation map, with the proportionality constant depending only
on the threshold a. This has the important implication that the average state
of the climate τ days before a heatwave looks like the τ-lagged correlation be-
tween the fields and the heatwave amplitude, regardless of how extreme the
heatwave is. In other words, the composite of a more extreme event has exactly
the same pattern as a less extreme one, but amplified according to the function
η. The fact that we do observe this effect in the actual data (fig. 12.1) suggests
a good validity of our Gaussian approximation. We test it more thoroughly in
chapter 15. Moreover, it gives us access to composites of very extreme events,
where the direct estimation as the average over the (very small) heatwave set
would suffer from huge sampling errors. On the other hand, the correlation
map ΣXA is estimated on the whole dataset and thus does not have this issue.
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The function η is plotted in fig. 20.3, and has the interesting property that
η(z) ∼

√
2z as z → ∞, which means that for very extreme heatwaves the

composite map tends to the simple linear regression of X against A.

CG −−−−−→
a≫

√
ΣAA

a
ΣXA

ΣAA
= aξ, ξ = arg min

ξ
E
(
(X − Aξ)2) . (14.16)

14.3.2 Committor Functions Within the Gaussian Approximation

By definition, the committor is the integral of the a priori distribution of A
conditioned on knowing X:

q(x) = P(A ≥ a|X = x) =
∫ +∞

a
P(A = a|X = x)dA. (14.17)

Under the assumption of a joint Gaussian distribution for (X, A), the condi-
tional distribution of A given X is also Gaussian. In particular it has mean µ(x)
that scales linearly with x and constant variance σ2:

µ(x) = Σ−1
XXΣXA · x, σ2 = ΣAA − ΣAXΣ−1

XXΣXA. (14.18)

For the details of this computation see section 20.4. In fact, µ(x) = M̃⊤x is
precisely the linear regression of A against X:

M̃ := Σ−1
XXΣXA = arg min

M

(
M⊤ΣXX M − 2M⊤ΣXA

)
=

= arg min
M

E
(
(A − M⊤X)2

)
.

(14.19)

Then, to obtain the full committor, we just have to compute the Gaussian
integral in eq. (14.17), which gives

qG(x) =
1
2

erfc
(

a − M̃⊤x√
2σ

)
. (14.20)

This result can be viewed in light of the framework of optimal committor
projection presented in section 14.2.3. In this case, the optimal projection of the
high dimensional committor is onto the normalized projection pattern

M =
Σ−1

XXΣXA

|Σ−1
XXΣXA|

, (14.21)

which condenses all the important information of the high dimensional vector
x into the scalar variable f = M⊤x. Then the committor in the projected space
is simply

q̃( f ) =
1
2

erfc (α + β f ) , (14.22)

with

α =
a√
2σ

, β = − |M̃|√
2σ

. (14.23)
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The two operations of linear projection and reduced committor can also be
viewed as the architecture of a simple one layer perceptron with the custom
activation function q̃. In comparison to other neural network architectures (such
as convolutional ones) that may be trained on the same task (Miloshevich et al.,
2022), this approach is far simpler, and depends on a much smaller number of
parameters.

In addition, we would like to stress that the method is interpretable by de-
sign: with complex neural networks one may need sophisticated explainable
AI techniques to understand why they are outputting a particular probability
(McGovern et al., 2019; Toms, Barnes, and Ebert-Uphoff, 2020; Delaunay and
Christensen, 2022), while in our case the answer is straightforward, namely, it
is computing the optimal index f . Furthermore, since the projection pattern
M has the same dimension as the predictor X, we can plot it as a map, repre-
senting the relative importance of each pixel in our predictor, and providing
potential insight in the physical dynamics leading to extreme heatwaves.

Another interesting point to pay attention to is the difference of the two linear
regressions for the composite (eq. (14.16)) and for the committor (eq. (14.19)).
In the first case, we are doing d independent linear regressions of each pixel in
X against the heatwave amplitude A, while for the committor we have a single
optimization, regressing A against X. This shows once again the fundamental
difference between a posteriori and a priori statistics.

In the following sections, we apply the Gaussian approximation to actual
data, see to what extent the assumption of Gaussianity holds and what useful
information we are able to extract.
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VA L I D AT I O N O F T H E G A U S S I A N A P P R O X I M AT I O N F O R
T H E C O M P U TAT I O N O F C O M P O S I T E M A P S F O R E X T R E M E
H E AT WAV E S

Composite maps are very interesting to understand weather situations that ac-
tually led to extreme events (a-posteriori statistics). They are actually defined
as the average of weather variables conditioned on the future occurrence of the
extreme event.

In section 15.1 we show and compare qualitatively composite maps evaluated
empirically and using the Gaussian approximation. In section 15.2 we quantify
the error made under the Gaussian approximation, and we distinguish system-
atic and sampling errors. In section 15.3, using the Gaussian approximation, we
give an explanation of the puzzling independence of the empirical composite
maps patterns from the threshold a used to define an extreme heatwave. Fi-
nally, in section 15.4 we discuss in more detail the effect on the quality of the
Gaussian approximation of both the dataset length and the threshold defining
extreme events, and conclude that the Gaussian approximation is the best way
to estimate composite maps in a regime of lack of data.

In chapter 17, we will use these results to make a physical analysis of extreme
events, by varying the heatwave duration T and the lead time τ.

In this section we use the PlaSim dataset with 8000 years of data and pre-
dictors X = (T2m, Z500, S) (see section 13.2.1). We show an application of our
methodology to the ERA5 dataset in chapter 18.

15.1 comparing empirical composite maps with composite maps

computed within the gaussian approximation

We now compare the composite maps computed either directly from the data or
using the Gaussian approximation, showing that the two are qualitatively very
similar, with a relative error of the order of 20%. We consider 14-day heatwaves
(T = 14), looking at the composites for the first day of the heatwave (lead time
τ = 0) and we first focus on the 5% most extreme heatwaves (a = 2.76 K).

Composite maps C are averages of the predictors X conditioned on the occur-
rence of a heatwave: C = E[X(t)|A(t) ≥ a] (see chapter 15). We first estimate
this conditional expectation as an empirical average CD = 1

N ∑N
µ=1 xµ, where

{xµ}N
µ=1 = {X(t − τ)|A(t) ≥ a}. Figure 15.1 shows the empirical composite

maps for the three predictors X (top row). We observe a positive anomaly of
both 2 m temperature and 500 hPageopotential height over France and Western
Europe, which is expected since we are conditioning over events that are hap-
pening over the French region. In the PlaSim grid, France is identified as the 12

pixels shown for the soil moisture field. Soil moisture anomaly displays nega-
tive values, as the soil tends to be drier than usual when heatwaves happen. In
the rest of the Northern Hemisphere, we see teleconnection patterns in the tem-
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perature and geopotential height field, in particular a cyclone over Greenland
and an anticyclone over the mid and eastern United States.

All these important features are also visible in the composite map CG com-
puted with the Gaussian approximation (using eq. (14.14)), represented in fig. 15.1
(middle row), to the point that the only visible discrepancy with the empirical
map is slightly darker shades of soil moisture. Indeed, if we take the differ-
ence between the two estimates of the composite (fig. 15.1, bottom row), most
of the weight is concentrated on the soil moisture field. However, non-trivial
patterns are also visible in the temperature and geopotential fields. The latter,
in particular, shows a wave zero pattern, with positive values around the polar
region and negative ones in the mid-latitudes. The amplitude of the difference,
read on the color bar, is on the order of 20% of the amplitude of the composite.
To have a more quantitative measure, we compute the ratio R between the L2

norms of the difference between the two composites and the empirical one:

R =
|CD − CG |

|CD |
. (15.1)

In evaluating the norms, we took into account that we consider grid-cells of
different areas. For the parameters considered in this section, the norm ratio
is R = 0.21, in agreement with our visual estimate (in chapter 17 we will
investigate how this metric varies with the heatwave duration T and the lead
time τ).

In the next section, we analyse in more detail the sources of the difference
between the two estimates. We will then give an explanation of the striking
independence of the pattern from the extreme event threshold a in section 15.3.

15.2 quantification of the quality of the gaussian approxima-
tion for composite maps of extreme heatwaves

In the previous section, we showed that the empirical composite map CD and
the Gaussian composite map CG differ at most by 20% (fig. 15.1, bottom row). A
natural interpretation of this difference is that it is an error due to the fact that
the Gaussian assumption is not exactly satisfied, and therefore the Gaussian
composite map is only an approximation of the true composite map. Indeed,
we can investigate the validity of this assumption by visualizing the joint and
marginal distributions of the heatwave amplitude A and the predictors at the
grid-point level, for regions of low or high error (see section 20.9). For instance,
we show in fig. 20.3 that the assumption is poorly satisfied for soil moisture
at a grid point over France, where the error is large, while it is a much better
assumption for geopotential over Greenland, where the error is small.

However, another source of discrepancy between the two composites is the
sampling error affecting CD due to the limited number of heatwaves in the
dataset over which we perform the empirical average. Indeed, if we focus on
a single pixel i, and call {xµ}N

µ=1 = {Xi(t − τ)|A(t) ≥ a} the set of heatwave
events, the central limit theorem tells us that

√
Neff

Ci − Ci
D

σ(Ci
D)

−−−→
N→∞

N (0, 1), (15.2)
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Figure 15.1: Composite maps of normalized 2 mtemperature, 500 hPa geopotential
height, and soil moisture anomalies, conditioned on events with the 5%
most extremes 14-day temperature over France. Composite maps are com-
puted either directly from PlaSim data (first line), or under the Gaussian
approximation (second line). The third line shows the difference between
the two. The salient features of both temperature and geopotential are well
captured by the Gaussian approximation, with errors of the order of 20%
at most.
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where Ci is the true composite, Ci
D = 1

N ∑N
µ=1 xµ is the empirical one, σ(Ci

D) =√
1
N ∑N

µ=1(xµ − Ci
D)

2 is the standard deviation of the heatwave set and Neff is
the number of effectively independent heatwaves. If all the xµ were actually
independent, we would have Neff = N, but from our definition of heatwave
(eq. (22.2)), it is very likely that a series of consecutive days will be all heatwave
events, and thus far from independent. In this paper we decide to fix Neff to
the number of years with at least one heatwave (equals to 2627 years for 5%
most extreme heatwaves of duration T = 14 days and lead time τ = 0). The
motivation beside this choice can be found in section 20.8.

Equation (15.2) tells us, then, that the distance between the empirical com-

posite and the true one will be of the order of σ(Ci
D)√

Neff
, and thus if the Gaussian

composite Ci
G falls much farther than σ(Ci

D)√
Neff

from the empirical one, we can
safely say that is also far from the true composite. In other words, we can de-
fine the statistical significance of the error we make as

si =

√
Neff|Ci

G − Ci
D |

σ(Ci
D)

. (15.3)

To obtain a global metric for the whole composite map, we can consider the
fraction of area F that have a significance above 2. This allows us to say that,
with 95% confidence, a fraction F of the region of interest has a systematic
error, not explainable by the finite size effect of the empirical composite. For
the parameters studied here, we obtain the value F = 0.37 (in chapter 17 we
will investigate how this metric varies with the heatwave duration T and the
lead time τ).

This allows us to conclude that the Gaussian composite suffers from a statis-
tically significant error over roughly half the domain. In spite of this, it gives
a reasonable approximation of the empirical composite, within an error of or-
der 20%. However, having 8000 years of data to work with is not common in
the climate community, especially when working with observational data or
complex model simulations, and we can expect that when data is scarce, the
error due to the Gaussian approximation becomes smaller than the sampling
error in the empirical composite. In section 15.4 we will address this point on
the dataset length and identify a regime where the Gaussian composite gives a
better estimation of the true one than the empirical composite.

15.3 composite maps do not depend much on the extreme event

threshold

This section aims firstly at giving an explanation for the striking independence
of composite maps pattern from the threshold a. Secondly, we show how the
norm of the empirical composite maps scales with the threshold a and that this
scaling is very close to the one predicted from the Gaussian composite.

In section 14.3.1 we explained that the composite map pattern does not de-
pend on the extreme event threshold a. The independence of the pattern of the
empirical composite maps from the threshold a is explained by the Gaussian
composite, eq. (14.14). In this equation we see that the threshold intervenes
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only in the scaling of the pattern and not on the structure of the pattern itself,
which is precisely what we observe in the estimated composite maps. Indeed,
in fig. 20.4 we show the difference between the empirical composite and the
Gaussian one (evaluated using eq. (14.14)) for the three fields, namely (from
the left) 2 m air temperature anomaly, 500 hPa geopotential height anomaly and
soil moisture anomaly evaluated for a corresponding to the 1% most extreme
temperature 14-day anomaly of A for PlaSim dataset. As predicted by the theory,
the observed 500 hPa geopotential height pattern is the same as the one from
fig. 15.1. To give a quantitative measure of the error, in fig. 20.5, we evaluate
the error using the norm ratio defined in eq. (15.1) for different thresholds a,
showing that the error is around the 20%, thus of the same amplitude of the
one obtained for a threshold at 5%.

A natural follow up question regards the scaling presented in eq. (14.14). In
fig. 15.2 we plot the norm of the empirical composite maps as a function of
the threshold a. The gray line corresponds to the total one, the coloured lines
are the field-wise norms. The dashed line represents the theoretical scaling η

of eq. (14.14). The behavior is very well captured by the 2 m air temperature
anomaly, and less well captured by the soil moisture anomaly field. The depar-
ture of the empirical scaling from the theoretical one for large values of a might
be also due to sampling error.

Due to independence of the composite maps on the parameter a we will
omit the sensitivity analysis of this parameter in favor of the other two, which
are proven to provide different responses for heatwaves, namely the heatwave
duration T and the lead time τ (see chapter 17).

15.4 effect of dataset length on estimation of composite maps

This section aims at motivating the usage of the Gaussian composite when the
estimation of the true composite is highly affected by sampling issues, i.e. when
we are in a regime of scarcity of data. For datasets’ length of 200 years, the
same order of magnitude of ERA5 reanalysis dataset, the Gaussian composite
performs much better than the empirical one, for events more extremes than
5%.

Firstly, we use the empirical composite CD computed on the whole 8000 years
dataset as an estimate of the true composite. Then we take a set P of our data
and compute over it the empirical composite CP and the Gaussian one CP

G .

In fig. 15.3 we see the values of the empirical norm ratio RP = |CP−CD |
|CD | (solid

lines) and the Gaussian one RG =
|CP

G −CD |
|CD | (dashed lines), for datasets P of

different lengths. To get confidence intervals, we repeat the experiment 8 times
for each dataset length, with 8 independent batches of data.

The Gaussian composites over 1000 years and over 200 years of data show a
monotonic increase (in log scale) as function of the heatwave threshold a. The
latter shows a plateau for values of p ranging from 50% to 1%, meaning that
the error made for typical events is comparable to fairly extreme ones. This is
not valid for the composite over 1000 years as there is a constant and more
rapid worsening of the Gaussian norm ratio. It is interesting to notice that in
the very tail of the distribution of A, thus for small values of p, we achieve
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Figure 15.2: Normalized norm of the empirical composite map as function of a, the
threshold to define a heatwave. The normalization is the norm of the em-
pirical composite evaluated at a = 0. The dashed line represents the the-
oretical scaling of the composite maps using the Gaussian approximation,
see eq. (14.14). The scaling of the empirical composite is not far from the
Gaussian one (gray curve) and it is precise for the 2 m air temperature
(blue curve). The bottom of x-axis a is the threshold value used to define
an heatwave event from the distribution of the temperature anomaly over
France, A, for heatwaves of 14 days of duration. On the top of the x-axis,
p is the respective percentile value corresponding to a given a.

very similar values of the norm ratio in both datasets. The spread of the norm
ratio among the batches is more pronounced for less extreme events than for
the most extreme ones. In the case of the Gaussian composite, the main source
of error is systematic, as we use the full dataset P to evaluate the Gaussian
composite and not a small set which depends on the threshold (eq. (14.14)).

The empirical composite norm ratio for 200 years of data stays almost con-
stant until p = 5%, after which it starts increasing both in the mean and in the
spread of data. For the empirical composite norm ratio over 1000 years we see
a less evident constant behavior and a more pronounced minimum of the norm
ratio around p = 5%, both in the mean and in the standard deviation. Similar
to the 200 years line, there is a worsening of the norm ratio as a increases. It
is remarkable that both composites for very small values of p never attain the
same value as it happens for the Gaussian ones. Indeed, there is always a con-
stant gap between the two solid lines. As we select fewer and fewer data on the
right side of the plot, we see an increase of the spread of the data, mostly due
to sampling issues.

Focusing on both composites for 200 years datasets, until p = 5% both the
empirical and the Gaussian have the same values of the norm ratio. For more
extreme events, the norm ratio of the empirical one increases drastically, mostly
due to the more and more limited data available in the tail, reaching 100% of
error at the 0.3% most extreme heatwaves. This is not the case for the Gaussian
approximation, whose values of the norm ratios still increase but much more
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slowly. Here we can see the power of the Gaussian approximation on smaller
datasets.

Indeed, when we are in a regime of scarcity of data, which naturally arises
when one wants to study very extreme heatwaves, calculating composite maps
using empirical data poses sampling issue. Our methodology overcomes this
issue by relying on an estimate of the composite which uses the whole dataset.
To confirm this, we see that on longer datasets, such the 1000 years one, where
we already have a sufficient amount of data to have a good estimate of the
empirical composite, the Gaussian approximation is not a better estimate than
computing the composite directly. At least for events up to a = 4.5 K, after
which, due to the sampling issue, the Gaussian estimation performs better than
the empirical composite.
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Figure 15.3: Norm of the relative error of the conditional average (composite map) us-
ing the Gaussian approximation (dashed lines with shading) and of the
composite maps using only a part of the full PlaSim dataset (solid lines
with error bars). The error is relative to the empirical conditional aver-
age (composite map) evaluated over the full PlaSim dataset of 8000 years.
The orange colour indicates a 200 years long dataset. The blue colour a
1000 years one. Shading or error bars indicates the one standard deviation
spread obtained from 8 independent batches of either 200 or 1000 years.
On the bottom of x-axis a is the threshold value used to define a heatwave
event from the distribution of the 2 m temperature anomaly over France, A.
On the top of the x-axis, p is the respective percentile value corresponding
to a given a. The higher its value, the lower the value of the threshold a, the
less extreme are the heatwaves considered. The relative error for dataset
of 1000 years is always lower than the one obtained for 200 years simply
because of higher amount of available data. The difference is more remark-
able, and stays quite stable as a increases, in the relative error obtained
with the empirical composite than with the Gaussian approximation. This
is not surprisingly because the Gaussian composite uses the information
of the full dataset, not just of the set of the heatwave events (see eq. (14.14)).
All the curves show an increase in the relative error as a increases due to
the lack of data. When we are in this regime, the relative error obtained
with the Gaussian composite is lower than the one obtained with the em-
pirical composite. This happens for a p value of around 0.2% for datasets
of 1000 years length, and of 5% for datasets of 200 years length. For less
extreme events, the Gaussian composite performs worst or similarly than
the empirical one.
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VA L I D AT I O N O F T H E G A U S S I A N A P P R O X I M AT I O N F O R
C O M P U T I N G C O M M I T T O R F U N C T I O N S O N C L I M AT E
D ATA S E T S

In chapter 14 we defined committor functions and optimal projection patterns,
both generally and within the Gaussian approximation. In this section, we ap-
ply the Gaussian approximation of the committor on climate data, the PlaSim

dataset described in 13.2.1, and compare its skill with the prediction from a neu-
ral network. We then proceed to study the optimal projection pattern, which is
given by eq. (14.21). However, we will see in this section that the mathemat-
ical expression eq. (14.21), is not directly applicable to high dimensional cli-
mate data, where the datasets are usually too short. Indeed, in section 16.2 we
show that regularization is necessary to have physically meaningful projection
patterns. In sections 16.3 and 16.4 we will show the effect of lack of data on
the performance. In the first case lack of data will come from reduced dataset
lengths, and in the second from more extreme events.

We illustrate this for the task of predicting heatwaves, but we assume it will
generalize well to other prediction problems in climate.

16.1 skill of the gaussian approximation compared to predic-
tion with neural networks

We first apply the Gaussian approximation of the committor, defined in eq. (14.20),
to the forecast of the 5% most extreme two week heatwaves (T = 14), predicted
at lead time τ = 0, using the full PlaSim dataset. To have a robust estimate of the
performance of our method, we repeat the experiment 10 times in a k-fold cross
validation process (see section 20.2). Doing so we get an average validation nor-
malized log score of 0.455 ± 0.010. We can say that the score is much better
than the climatology (S = 0), but it is very tricky to quantify the maximum
achievable score, as S = 1 is absolutely unrealistic due to the chaotic nature of
the climate system.

However, we can compare to other methods, for instance the prediction using
a deep convolutional neural network (Miloshevich et al., 2022). This network
takes as input the stack of predictors and produces an estimate of the committor.
It is trained on a probabilistic binary classification of the labels Y, i.e. it directly
minimizes the loss L defined in eq. (14.9). More details about the network’s
architecture can be found in (Miloshevich et al., 2022). Such a network yields a
validation score of SCNN = 0.465 ± 0.007.

This is a remarkable result, as the Gaussian approximation is much simpler
than a deep neural network, but is able to achieve a result that is only 2% (or
less than a standard deviation) worse.
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16.2 regularization of the projection pattern

The simplicity of the Gaussian committor comes with the added benefit of being
an interpretable forecast, as we can look at the projection pattern M to obtain
some insight into the dynamics leading to a heatwave.

Unfortunately, a direct plot of M looks like the first row of fig. 16.1, from
which we cannot extract any meaningful information as no well-defined pat-
terns emerge. This is due to the fact that the covariance matrix ΣXX is very
high dimensional (d2 ∼ 107) and is estimated with a relatively low number of
datapoints (8000 × 0.9 × (90 − T + 1) ∼ 106). Hence, it will be nearly singular,
causing problems when we compute the inverse in eq. (14.21).

A simple solution is the standard Tikhonov regularization, that corresponds
to adding an L2 penalty to the minimization problem:

Mϵ ∝ (ΣXX + ϵI)−1ΣXA = arg min
M

(
(A − M⊤X)2 + ϵ|M|2

)
, (16.1)

where I is the identity matrix.
However, in our case we can better enforce interpretability of the pattern M

by requiring it to be spatially smooth. Namely, we will penalize the squared
norm of the spatial gradient, H2, that we can compute as the weighted sum of
the square differences between values of adjacent pixels in the map M. We can
then write H2(M) = M⊤WM (see section 20.6 for the exact formula of matrix
W), and hence the regularized pattern will be

Mϵ ∝ (ΣXX + ϵW)−1ΣXA = arg min
M

(
(A − M⊤X)2 + ϵH2(M)

)
. (16.2)

Note that if we tweak the projection pattern M, we should also update the
formulas for the coefficients α and β in eq. (14.23). This is relatively straightfor-
ward and is discussed in section 20.7.

Varying ϵ yields the different maps shown in fig. 16.1, where indeed we see
that the regularization makes the patterns progressively smoother. Unsurpris-
ingly, we note that a higher regularization comes at the price of a lower skill
score S (see also table 16.1). It is then up to the user to decide what is a good
compromise between performance and interpretability of the pattern. In our
case, we argue that the best pattern is the one in the center row of fig. 16.1
(ϵ = 1), as it is smooth enough that we can see some clear structures in the
500 hPa geopotential height field, while a higher regularization does not im-
prove its physical understanding. At this value of the regularization coefficient,
the average validation score is 0.418 ± 0.006: three standard deviations or 8%
worse than the non regularized case, and five standard deviations or 10% worse
than the neural network.

It is important to point out that after proper regularization the skill of the pre-
diction is still much better than climatology, while providing physical insight
on the dynamics leading to heatwaves. This latter point is further discussed in
chapter 17.
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Figure 16.1: Choice of regularization for optimal physical content of the projection map
M, using PlaSim data. Each line features the projection map M at different
values of the regularization coefficient ϵ. Each map M is represented as its
three field components: 2 m air temperature, geopotential height at 500 hPa
and soil moisture anomalies (trained on 7200 years of data, for one of the
10 folds). On top of the figures we report the values of ϵ, of the norm of
the gradient

√
H2 and of the normalized log score S . The intermediate

value, ϵ = 1, is the best compromise with a very high predictive skill and
an excellent readability of the physical fields.

16.3 performance on smaller datasets

So far we have applied the Gaussian approximation to an extremely long 8000

year dataset. Such datasets are uncommon in the climate community, especially
when dealing with observations or high resolution simulations. To study the
effect of the amount of data on the performance of our method, we apply it to
gradually smaller and smaller sets of our climate model output.

In the left panel of table 16.1, we can see the behavior of the normalized log
score S of the Gaussian committor, as a function of the regularization coefficient
and the size of the training set. The first important thing to notice is that the
score is not very sensitive to the amount of training data, showing that our
method is well suited also for small datasets. By looking at the dependence with
respect to ϵ, we see that when we have a lot of data, a stronger regularization
means a poorer prediction skill. On the other hand for small datasets the best
performance is achieved at a finite value of ϵ. This can be explained by the fact
that as we have less and less data to estimate a constant size covariance matrix,
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it will become more and more singular, thus requiring a stronger regularization.
Also, a smoother pattern is more likely to generalize well when training and
validation data are very small.

In any case, we remind that choosing the proper regularization coefficient is
not just a matter of score, but also of physical interpretability of the projection
pattern, as explained in the previous section. From a qualitative look at projec-
tion maps at different values of T, τ and ϵ, ϵ = 1 seemed to be a universally
good compromise for the PlaSim dataset. Hence, if not specified differently, in
the remainder of this work we will always consider ϵ = 1.

On the right panel of table 16.1 we see the comparison with the skill of the
neural network in the form 1 − S/SCNN , which shows that as the dataset gets
smaller, the CNN loses its advantage, being outperformed when crossing the
1000 years threshold. An important caveat here is that the many hyperparam-
eters of the CNN where optimized for the biggest dataset (Miloshevich et al.,
2022), and then kept constant for the experiments when training on less data.
This potentially makes the comparison between the neural network and our
method not completely fair. In fact, some experiments (not shown in this work),
suggest that by optimizing hyperparameters such as the learning rate and batch
size used for training the neural network allow it to prevail even when training
only on 450 years of data. The Gaussian approximation, however, is still better
when working with 200 years or less, even considering the optimization. So, the
qualitative behavior displayed in table 16.1 still holds, and can be ultimately at-
tributed to the higher complexity of the CNN (roughly a million parameters)
with respect to the Gaussian approximation (roughly a few thousands of pa-
rameters).

Summarizing, our method is well suited to work in a regime of lack of data
due to short datasets, where complex neural networks struggle.

16.4 more extreme heatwaves

A question complementary to the one of smaller datasets is the one of more
extreme heatwaves, as they both result in very few samples of the event of
interest.

First of all, the Gaussian approximation provides a committor that depends
on the heatwave threshold a only through the parameter α. This means that,
in a similar fashion to the composite maps, the projection pattern M will be
the same for all heatwaves independently on how extreme they are. It is thus
extremely easy and cheap to get a new committor estimate for a different value
of a.

On the other hand, since the neural network we consider is trained on a
classification task, as we change a, the labels Y(t) change as well, and hence the
whole network needs to be retrained every time. Although transfer learning
can reduce the computational cost and avoid retraining from scratch, it still a
more complex task than computing a new Gaussian committor. Furthermore,
as we focus on more and more extreme heatwaves, the imbalance between
the Y = 0 and Y = 1 classes becomes more and more relevant, eventually
hindering the performance of the network (see the gray error-band in fig. 16.2).



16.4 more extreme heatwaves 123

Normalized log score

ϵ

10−2 10−1 100 101 102
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7200 0.43 0.43 0.42 0.40 0.37

3600 0.43 0.42 0.41 0.39 0.37

1800 0.42 0.42 0.41 0.39 0.36

900 0.44 0.43 0.43 0.41 0.38

450 0.43 0.42 0.42 0.40 0.37

180 0.36 0.38 0.39 0.39 0.37

1 − S/SCNN

ϵ

10−2 10−1 100 101 102

0.07 0.08 0.10 0.14 0.20

0.03 0.05 0.07 0.11 0.17

0.01 0.02 0.04 0.09 0.15

-0.03 -0.03 -0.01 0.03 0.10

-0.09 -0.08 -0.07 -0.02 0.05

0.01 -0.05 -0.07 -0.07 -0.02

Table 16.1: Left table: normalized log score of the Gaussian approximation (the higher
the better), versus training dataset length and the regularization coefficient
ϵ. With small datasets, intermediate ϵ values are optimal, while vanishing
ones are for large datasets. The apparent peak in performance for 900 years
of training is not significant. The Gaussian approximation skill is already
nearly optimal for small datasets. Right table: comparison with the skill
of the neural network (ϵ affects only the Gaussian approximation). Brown
colors mean the CNN performs better, while blue hues mean the Gaussian
approximation is better. When the neural network has much data to learn,
it can leverage its expressivity potential to outperform the Gaussian approx-
imation. With small datasets, the added complexity of neural networks is
detrimental to its score. Both panels are based on PlaSim data.

On the contrary the smaller size of the heatwave class affects the performance
of the Gaussian approximation only in its variance, while the mean normalized
log score S has a very weak dependence on the amplitude of the heatwave
(blue line in fig. 16.2). This, in turn, suggests that our Gaussian approximation
is sufficient to capture well the relationship between the predictors and the
heatwave amplitude A even in the most extreme tails of the distribution.

In this section we showed that the Gaussian approximation can be a simple,
but powerful, tool for the prediction of extreme heatwaves. Compared to other
methods, such as deep neural networks, it does not need as much data to be
properly trained. This makes it particularly suited for short datasets, which is
typically the case in the climate community. This direction is further expanded
in chapter 18, where we apply our method to the ERA5 reanalysis data. Further-
more, and crucially, it is usually very hard to interpret the prediction performed
by a deep neural network, while the Gaussian approximation, through the op-
timal projection pattern, is interpretable by design. The study of the projection
pattern opens the possibility for insight on the physical processes behind the
event under study, and we expand on this in chapter 17.
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Figure 16.2: Normalized log score of the Gaussian approximation (blue) and CNN
(gray) when varying the heatwave threshold a (bottom horizontal axis) or,
equivalently, its climatological probability p (top horizontal axis). The solid
line is the mean over the 10-fold cross validation process, while the shaded
area represents one standard deviation. The experiment is performed with
7,200 years of training with PlaSim data. The regularization coefficient for
the Gaussian approximation is kept at the optimal ϵ = 1 value. The CNN
is always best but because of the lack of data for rare events, its relative
skill decreases with a. The skill of the Gaussian approximation is not much
sensitive to the rareness of the event.



17
C O M M I T T O R F U N C T I O N A N D O P T I M A L P R O J E C T I O N
F O R E X T R E M E H E AT WAV E S

In chapters 15 and 16 we computed composite maps and committor func-
tions for extreme heatwaves. However, in these sections the focus was mainly
methodological, with attention to performance and the technical details that
influence it. In this section we complement the previous analysis by focusing
instead on the physical insight that our method provides on extreme heatwaves.
To do so we will compare composite maps and optimal projection patterns at
different values of the heatwave duration T and the lead time τ.

17.1 comparison between composite maps and projection pat-
terns

In chapter 14 we showed that a-priori and a-posteriori statistics are fundamen-
tally different. Here we proceed to further include some physical reasoning
that arises when comparing the two types of statistics. In fig. 17.1 we have the
side by side comparison, at different values of the lead time τ, of the Gaussian
composite map CG with the projection pattern M needed for the computation
of the committor. As explained in section 14.1.4, the composite map captures
the correlations between the heatwave amplitude A and the predictors X, while
the committor, and thus the projection pattern M, focuses on what is really
important for the prediction.

A clear example of this is the difference between the 2 m temperature anomaly
field in the composite map and in the projection pattern. From fig. 17.1, we
can see that the composite shows many teleconnection features, for example
over North America, while in the projection map virtually all the weight is
over France. This suggests that the relationship between heatwaves and these
temperature teleconnections is only of correlation, not causation. Similarly, the
500 hPa geopotential height field anomaly shows a very strong anticyclone over
Greenland in the composite maps, which is not present in the projection pat-
terns.

Another remarkable difference between CG and M is the relative magnitude
of the fields. By looking at the colorbars at the bottom of the figure, we see
that, in the composite, all the fields have roughly the same order of magnitude,
and this makes sense as we work with normalized data and the composite
is representative of the typical heatwave event. On the other hand, from the
projection patterns we observe that the values of soil moisture are 4 to 10 times
higher than the ones of temperature and geopotential, showing that the soil
moisture anomaly field is far more important for prediction than one might
assume by just looking at the composite.

If we now focus on what happens when we change the lead time τ, we see
that in the composites there is essentially just a fading of the structure of the
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2 m temperature and 500 hPa geopotential height anomalies apparent at τ = 0,
with some minor qualitative changes, such as the connection of the two high
pressure systems over the Atlantic at τ = 5. On the other hand, the soil moisture
anomaly component remains almost unchanged. This increased prominence
of soil moisture as the lead time increases is even more pronounced for the
projection pattern M, showing that soil moisture is the key factor for long term
heatwave forecast.

Finally, from the evolution of the projection map for the 500 hPa geopotential
height field, we see a clear shift of focus from the North-eastern Atlantic at
τ = 0 to the United States at τ = 5. At τ = 10 the most prominent feature in
the 500 hPa geopotential height projection pattern is a small cyclone over the
continental US, something which can barely be seen at all in the composite.
These changes in the projection pattern give us insight into the dynamics of
atmospheric circulation that leads to heatwaves over France, in particular the
dynamics of the jet stream.

17.2 effects of changing T and τ

In this section we analyze more quantitatively how the performance of the
Gaussian approximation is affected by the heatwave duration T and the lead
time τ, and what physical conclusions we can derive from it. We will first
perform this sensitivity analysis on the composite maps (a-posteriori statistics)
in section 17.2.1 and then for committor functions (a-priori statistics) in sec-
tion 17.2.2.

17.2.1 Composites

In table 17.1, we see the fraction F of area for the Gaussian composite that has
a significance above 2, as defined in eq. (15.3). The table shows a monotonic
trend, with fast and imminent heatwaves having more non-Gaussian features
with respect to long and delayed ones. Indeed, for higher values of the heat-
wave duration T, we expect the statistics of A to be more Gaussian, as we
average over a larger number of days. Instead, when we increase the lead time
we can think that the chaotic nature of the weather makes the states that led
to a heatwave more different from one another. So, both the empirical and the
Gaussian composite will tend to 0 as τ increases. Moreover, the higher differ-
ences between the states over which we take the empirical average increase the
standard deviation. Thus, the significance of each pixel as in eq. (15.3) naturally
decreases with τ.

On the other hand if we look at the values for the norm ratio (eq. (15.1))
displayed in table 17.2, we see a rather non-monotonic behavior. In fact, we
can gain more understanding if we plot the norm ratio for the three climate
variables independently ( tables 20.1 to 20.3), which shows that the main con-
tribution to the norm ratio comes from the 500 hPa geopotential height field.

This overall non-monotonic trend can be explained as a competition between
the non-linear chaotic dynamics of the weather, that makes the real composite
stray more from its Gaussian approximation as τ increases, with the loss of
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Composite Projection pattern
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Figure 17.1: Left columns: Gaussian composite maps, temperature, geopotential height
at 500hPa and soil moisture, for three different values of the lag time τ.
Right column: the optimal projection pattern for prediction, within the
Gaussian approximation (ϵ = 1). As expected the two sets of maps are
different, characterizing either a-posteriori statistics or best prediction pat-
terns. The composite features hemispheric scale patterns dominated by
zonal wave-number zero and zonal wave number three modes. For long
lead times, the zonal wave-number zero pattern clearly dominates. The
soil moisture composite pattern does not change much with the lag time.
The information needed for making an optimal projection, as seen through
the projection pattern, is at a finer scale, less global, with a strong merid-
ional structure. Temperature contributes weakly and only through its local
values to the projection pattern.
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Fraction of area with error above 2σ

τ [days]

0 3 6 9 12 15 18 21 24 27 30

T
[d

ay
s]

1 0.52 0.50 0.46 0.34 0.27 0.19 0.15 0.08 0.04 0.02 0.02

3 0.52 0.44 0.41 0.28 0.22 0.14 0.11 0.05 0.02 0.01 0.02

7 0.45 0.41 0.34 0.26 0.18 0.15 0.10 0.05 0.03 0.02 0.01

14 0.37 0.30 0.23 0.17 0.11 0.08 0.06 0.05 0.03 0.01 0.01

30 0.15 0.10 0.08 0.07 0.05 0.04 0.03 0.01 0.01 0.01 0.02

Table 17.1: Fraction of significant area in the conditional average (composite map) com-
puted using the Gaussian approximation. The significance in assessed using
the fraction of area which is above two standard deviations from the com-
posite map evaluated over the 8000 years PlaSim data (see eq. (15.3)). The
threshold used for defining a heatwave is a = 2.76K, corresponding to the
5% most extreme values of the distribution of the 2 m temperature anomaly
over France, A. The table shows the dependency of the norm of the relative
error on T, the heatwave duration, and τ, the lead time. Low value (dark
red) means less areas beyond two standard deviations from the empirical
composite, thus the Gaussian composite better reproduces the empirical
one and the statistical error is a systematic error not due to the size of the
dataset. Significant areas are monotonic increasing as T and τ increase.

Norm ratio

τ [days]

0 3 6 9 12 15 18 21 24 27 30

T
[d

ay
s]

1 0.25 0.28 0.29 0.26 0.27 0.27 0.28 0.26 0.22 0.21 0.21

3 0.24 0.25 0.26 0.24 0.25 0.25 0.26 0.23 0.21 0.19 0.19

7 0.22 0.23 0.24 0.25 0.27 0.29 0.28 0.24 0.23 0.22 0.19

14 0.20 0.23 0.26 0.28 0.28 0.27 0.27 0.26 0.24 0.22 0.22

30 0.21 0.24 0.26 0.28 0.28 0.27 0.27 0.26 0.25 0.25 0.25

Table 17.2: Norm of the relative error of the conditional average (composite map) eval-
uated using the Gaussian approximation. Relative to the composite value
obtained through empirical conditional average over the 8000 years PlaSim

dataset. The threshold used for defining a heatwave is a = 2.76K, corre-
sponding to the 5% most extreme values of the distribution of the 2 m tem-
perature anomaly over France, A. The higher the value (bright yellow) the
worst the Gaussian composite approximates the empirical one. Lower val-
ues (dark red) denotes a lower value of the error. The table shows the depen-
dency of the norm of the relative error on T, the heatwave duration, and τ
the lead time. There is a non monotonic trend which is due to the different
atmospheric fields using in the conditional average. Events which are long
lasting and far in time behave more closely to Gaussian distributed events.
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Normalized log score

τ [days]

0 5 10 15 20 30

T
[d

ay
s]

1 0.89 0.27 0.14 0.11 0.09 0.08

7 0.53 0.25 0.18 0.14 0.13 0.12

14 0.42 0.26 0.20 0.18 0.17 0.16

30 0.34 0.26 0.23 0.21 0.21 0.20

1 − S/SCNN

τ [days]

0 5 10 15 20 30

-0.00 0.26 0.22 0.19 0.18 0.15

0.11 0.21 0.17 0.14 0.10 0.08

0.10 0.17 0.13 0.09 0.06 0.04

0.07 0.09 0.05 0.03 0.00 -0.00

Table 17.3: Left table: normalized log score of the Gaussian approximation (the higher
the better), versus heatwave duration T and lag time τ. In all cases, we focus
on the 5% most extreme heatwaves. As the prediction task gets harder, the
skill decreases monotonically with the lag time, faster for shorter heatwaves.
Right table: comparison with the skill of the neural network. The CNN is
always better, but more so for shorter heatwaves and around τ = 5. This
is the regime where the dynamics is more non-linear, and thus the neural
network complexity has a better opportunity to make a difference.

memory that averages out the non-linear effects, bringing the empirical com-
posite closer to the Gaussian one. This also would explain why geopotential
dominates the norm ratio, as, of the three fields, it is the one with the most
non-linear dynamics.

17.2.2 Committor

Similarly to what has been done for the composite maps, we can look at how
the skill of the prediction is affected by the heatwave duration T and the lead
time τ. In the left panel of table 17.3, we can see that the prediction skill de-
creases monotonically with τ at any level of T. For shorter lead times the skill
is best when dealing with shorter heatwaves, while for longer delays, the skill
is higher for longer-lasting events. In the limit of T = 1 and τ = 0, we are
forecasting a one day heatwave that starts today, so we might just look outside
the window and see if it is hot. And indeed there is perfect correlation between
the temperature anomaly over France and the heatwave amplitude A. However,
one day heatwaves are very erratic events, which become very hard to predict
for longer lead times. On the other hand, longer lasting events are non trivial
to predict for very short delays, but are more influenced by processes with long
timescales such as the dynamics of soil moisture, and hence maintain some
predictability at higher values of τ (Miloshevich et al., 2022).

On the right panel of table 17.3, we see the skill comparison with the neural
network, which is able to capture non-linear and non-Gaussian structures in
the data. We can see that our Gaussian committor struggles the most for shorter
heatwaves and, more importantly, around τ = 5. We can interpret this region of
struggle as the one where the prediction is most dynamical, rather than statistical.
Namely where mere linear correlations are not enough and the complex and
non-linear dynamics of the atmosphere plays a significant role.





18
A P P L I C AT I O N T O T H E E R A 5 R E A N A LY S I S D ATA S E T

In this article we presented a methodology for estimating composite maps and
committor functions using a theoretical framework that we called the Gaussian
approximation (see chapter 14) and we tested it over a very long simulation
dataset obtained from the climate model PlaSim. The results are really promis-
ing.

A key point that we showed in the previous sections is that our Gaussian
framework is particularly suited for short datasets. In the case of the composite
map (see section 15.4), the empirical average is performed over too few sam-
ples to be very accurate. For the committor (see section 16.3), the alternative
approach of deep neural networks struggles with the lack of data. It is then
natural to try to apply our method the ERA5 reanalysis data (Hersbach et al.,
2020), and in this section we show that indeed for this dataset the Gaussian
approximation is the best option.

18.1 composites

In this section we compute composite maps on the ERA5 dataset, using both
the empirical average and the Gaussian approximation. Because the dataset is
much shorter than the PlaSim dataset, we do not know the ground truth as
precisely as in Chapter 15. We can nevertheless compare the two estimates and
see if they qualitatively agree.

Figure 18.1 shows the empirical composite and the composite evaluated within
the Gaussian framework for the geopotential height anomaly at 500 hPa. They
are both evaluated for T = 14, τ = 0 and for heatwaves corresponding to the
5% most extreme value in the distribution of A. The two composites look qual-
itatively very similar. In both cases we see a clear wave train which starts from
the western part of the United States and Canada with an anticyclonic anomaly,
continues over the North Atlantic Ocean and finally terminates over Western
Europe with another anticyclonic anomaly, stronger than the rest of the wave
pattern. This is consistent with the fact that we condition on the temperature
anomaly over France. The overall wave structure is well represented by the
Gaussian composite, even if it puts a higher weight over the Western Europe
anticyclone (fig. 18.1, right panel). The difference between the two composites
is larger over Asia and over the Pacific Ocean. Unlike the case of PlaSim data,
the difference does not have an annular mode structure but contains a visible
wavenumber 6 component. The largest differences between the two composites
are on the order of 20%.

As for PlaSim data, we analyzed how the two indices R (norm ratio, defined
in eq. (15.1)) and F (fraction of area where differences between Gaussian and
empirical composites are significant, defined in eq. (15.3)) vary with the param-
eters T and τ for ERA5 data. Table 18.1 shows the norm ratio as a function of
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Figure 18.1: Composite maps of normalized 500 hPa geopotential height for 5% most
extremes 14-day temperature anomaly over France (T = 14). Composite
maps are computed either directly from ERA5 data (left map), or under
the Gaussian approximation (central map). The right map shows the dif-
ference between the first two. The salient features of geopotential are well
captured by the Gaussian approximation, with errors of the order of 25%
at most.

T and τ for the 5% most extreme heatwaves. We see that, similarly to PlaSim,
there is a non-monotonic trend with lowest values for T between 1 and 14 and
τ between 0 and 6. Outside this range, the norm ratio has rather high values
which are the sign of a great mismatch between the two composites. However,
F (table not shown) assumes values which are almost never above 1% and
very often below 0.1%, meaning that we cannot rule out that any discrepancy
between the Gaussian and empirical composite is simply a sampling error.

Norm ratio

τ [days]

0 3 6 9 12 15 18 21 24 27 30

T
[d

ay
s]

1 0.29 0.38 0.47 0.59 0.81 0.89 0.88 0.88 0.78 0.74 0.73

3 0.33 0.40 0.48 0.69 0.90 0.87 0.86 0.81 0.82 0.72 0.81

7 0.35 0.39 0.53 0.73 0.79 0.80 0.83 0.84 0.84 0.76 0.81

14 0.35 0.46 0.61 0.73 0.82 0.86 0.85 0.87 0.83 0.79 0.81

30 0.62 0.81 0.89 0.90 0.84 0.81 0.82 0.82 0.82 0.81 0.83

Table 18.1: Norm of the relative error of the conditional average (composite map) eval-
uated using the Gaussian approximation. Relative to the composite value
obtained through empirical conditional average over the ERA5 dataset. The
threshold a used for defining an heatwave corresponds to the 5% most ex-
treme values of the distribution of the temperature anomaly over France,
A. The higher the value (bright yellow) the worst the Gaussian composite
approximates the empirical one. Lower values (dark red) denotes a lower
value of the error. The table shows the dependency of the norm of the rela-
tive error on T, the heatwave duration, and τ the lead time.

18.2 committor

In this section we deal with the computation of committor functions on the
reanalysis dataset. After the necessary technical adaptations to work on this
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dataset, we compare the prediction skill of the Gaussian approximation with
the one of neural networks, which shows the first is clearly better.

Before discussing any result, we need to define a protocol for the choice of
the proper regularization coefficient ϵ, the only hyperparameter of our method.
When working with 8000 years of PlaSim data, we had to choose empirically
ϵ = 1 to have interpretability in the projection patterns, and this interpretability
came at the cost of a lower skill score. On the other hand, on the reanalysis
dataset, and more generally when working with small datasets (table 16.1), the
value ϵbest of the regularization coefficient that yields the highest skill score also
provides an interpretable projection map.

The reanalysis dataset consists of 83 years of data. To have a meaningful cross
validation we take the 80 years from 1943 to 2022 and split them in 5 balanced
folds (see section 20.2). This way we train on 64 years and validate on 16.

With this choice, for the 5% most extreme two-week heatwaves (T = 14) at
τ = 0, we obtain a skill score of S = 0.16 ± 0.07. This number is considerably
lower than the skill we have measured for PlaSim (section 16.1). To understand
why, we can investigate the impact on the skill score for the PlaSim dataset of
the reduced number of predictors (using only the 500 hPa geopotential height
field as for reanalysis data) and of the amount of data (training on a set of
the same size as the reanalysis data). As can be seen from table 18.2, both the

Predictor fields

years of data T2m, Z, S Z

8000 0.418 ± 0.006 0.23 ± 0.01

80 0.33 ± 0.07 0.18 ± 0.04

Table 18.2: Skill score on PlaSim, when using different amount of data and different
predictor fields.

reduced number of predictor fields and the smaller dataset severely impact the
skill score. However, even combining the two effects, the performance remains
slightly better than for the reanalysis data. This suggests that the more realistic
data of ERA5 have more complexity and variability with respect to PlaSim, and
thus it is harder to make a skillful prediction.

Nevertheless, we argue that the result achieved for reanalysis data, albeit
humble, is the best we can do. To support this claim, in fig. 18.2 we compare it
to the skill of other methods at different values of the lead time τ. In green is the
performance of a convolutional neural network with a similar architecture to
the one used for PlaSim. It always perform worse than the Gaussian approxima-
tion (in blue), and already at τ = 3 days it is consistently below the climatology.
On the other hand, the Gaussian approximation manages to extend the pre-
dictability margin a few more days. For τ ≥ 6 days the latter becomes useless
too, and, interestingly, ϵbest → ∞, yielding a uniform projection pattern.

In the regime where the prediction is still skillful, the projection patterns
look remarkably similar to the composite maps (fig. 18.4), so it is natural to try
to project onto the composite itself. This is the orange line in fig. 18.2, which,
despite having a smaller error bar than the optimal projection pattern M, on
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Figure 18.2: Skill score of different prediction techniques for reanalysis data (using
geopotential height at 500 hPa anomaly as the only predictor, T = 14)
changing the lead time. In green the convolutional neural network, in blue
the Gaussian approximation, both at their best values for hyperparameters.
In orange the Gaussian approximation when using the composite map as
projection pattern. Error bars or shaded area indicates the variation among
the 5 folds. The red shaded zone below 0 indicates where the prediction
is worse than the climatology. The Gaussian approximation is always the
best, and gives results better than the climatology only for τ ≤ 5.

average yields a worse performance. This once again highlights the fact that
composite maps are not the proper tool for prediction.

Now that we showed that the Gaussian approximation is the best option for
very small datasets, we can investigate what happens when we vary the heat-
wave duration. From fig. 18.3 we see that, at any fixed value of τ, the prediction
skill decreases with increasing heatwave duration T (solid lines), with shorter
heatwaves having a longer predictability horizon. The comparison with 80 years
of PlaSim data with only the 500 hPa geopotential height as predictor (dashed
lines), shows that predicting heatwaves is harder on the more realistic data. This
can be an effect of the lower spatial resolution of the PlaSim model, which yields
a more sluggish and less chaotic atmospheric dynamics, and, hence, better pre-
dictability. This hypothesis is further reinforced by the fact that, on average,
training on PlaSim requires a lower regularization coefficient than the one on
reanalysis data (fig. 18.4).

Finally, the dotted lines in fig. 18.3 represent the skill when still training on 80

years of PlaSim data, but with all three predictors. For short lead times and heat-
wave duration, the increase in skill comes mainly from the direct information
of the 2 m temperature field, but the more interesting effect is for longer delays.
Here, almost all the predictive power resides in the soil moisture field, and is
able to extend the predictability horizon significantly. This effect is enhanced
for longer lasting heatwaves. As was already pointed out in (Miloshevich et al.,
2022), soil moisture acts as a slow modulator of the chance of a heatwave, that
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Figure 18.3: Skill score of the Gaussian committor as a function of τ for different values
of the heatwave duration T, and three different datasets: ERA5 with only
geopotential height at 500 hPa (solid line), 80 years of PlaSim data with 2 m
temperature, geopotential height at 500 hPa and soil moisture (dotted lines)
and only with geopotential height at 500 hPa (dashed line). PlaSim has a
consistently higher predictability than ERA5, and the addition of the slow
evolving soil moisture greatly extends the predictability horizon. In the
absence of this slow variable, predictability decreases with the heatwave
duration.

is still able to give some useful information when the fast predictors, such as
the 500 hPa geopotential height, are beyond their de-correlation timescale.

Summarizing, the higher complexity of the ERA5 dataset, its reduced length,
and the absence of soil moisture as a slow predictor, all these aspects make
so that the forecast skill is much lower than the one for PlaSim. However, the
prediction performed by the Gaussian approximation proved to be the best
available option, with results that are still remarkable.

18.3 physical discussion

Now that we discussed composite maps and committor functions from the
point of view of performance, we proceed to focus more on the physics-oriented
analysis of composite maps and optimal projection patterns.

In fig. 18.4, we show the comparison between composite maps and projection
patterns computed on reanalysis data and on 80 years of PlaSim data using only
the 500 hPa geopotential height as predictor. Interestingly, we observed that
both composite maps and projection patterns do not change much with respect
to the heatwave duration T (not shown). This is only partially explained by
consecutive days with high temperature contributing both to short and long
heatwaves. In the future it may be worth investigating this further, but in this
work we simply exploit it to discuss the patterns only for a single value of
T and still provide a relatively comprehensive picture. In particular, we show
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the results for 1-day heatwaves, as they display a clearer evolution of both
composites and projection patterns with the lead time τ.

As already mentioned before, one of the main differences between PlaSim and
ERA5 is a generally higher signal to noise ratio in PlaSim, that manifests itself in
higher norms of the composite maps (left columns) and less smooth projection
patterns (right column). At τ = 0, most of the weight of both composite maps
and projection patterns is concentrated around France. More precisely, with an
anticyclone over France and central Europe to ensure clear skies and a cyclone
north of Portugal to advect warm African air northward. This cyclone is more
localized in the ERA5 projection map than in composite maps. As the lead time
increases, this dipole structure stretches westward into the Atlantic ocean. In
the reanalysis dataset there is a clear emergence of a wave-train pattern, and
C and M look rather similar. On the other hand, PlaSim’s projection patterns
stray considerably from the composite maps, and the physics that they hint at
is harder to explain. For both datasets, and in both composite maps and pro-
jection patterns, a rather strong anticyclonic anomaly is always present over
France, getting fainter as τ increases, but remaining always a prominent fea-
ture. This suggests that even for very short T = 1 heatwaves the most common
(composites) and the most likely (committor) causes of the extreme events are
connected with quasi-stationary weather states.

Concerning the reanalysis dataset, the similarity between composite maps
and projection patterns may tempt us to use the composite as a prediction tool.
However, although both composites and projection maps display the dynamics
of a stationary Rossby wave, a careful examination shows a different weight
distribution in the projection patterns, for example at τ = 6 the focus is more
over North America than in the composite map. The lower prediction skill
achieved with the composite map compared to the optimal projection pattern,
already discussed above (fig. 18.2), suggests that such differences matter for
prediction even if they appear small at first sight. Furthermore, the similarity
between the two maps can most likely be attributed to the need for a relatively
high regularization coefficient, required to have a prediction that generalizes
well when trained on such a short dataset. More technical details are available
in section 20.12.

This section has three main conclusions. Firstly, given the size of the ERA5

dataset (and of any other real-data dataset), it is hard to go beyond the Gaussian
approximation for both analysis of the averaged weather conditions that led to
heatwave events (composite maps) and for a probabilistic forecast of heatwaves,
as shown from fig. 18.1 and fig. 18.2. Secondly, the difference between the em-
pirical and the Gaussian composite maps, shown in fig. 18.1 (right panel) has
a different wave number with respect to the one observed for PlaSim, for heat-
wave of the same duration and intensity, (see fig. 15.1 bottom row, central map,
which exhibits a wave zero pattern). However, we cannot exclude that this mis-
match is due to sampling error. Thirdly, the reduced size of the dataset forces
us to strongly regularize the optimal projection patterns, which makes them vi-
sually similar to the composite map. However, even if they do not provide any
additional qualitative information, they do provide more precise quantitative in-
formation, leveraged for prediction skill. Finally, the comparison with the data
from PlaSim suggests the importance of predictor fields other than the 500 hPa
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Figure 18.4: Comparison between composite maps and projection patterns of ERA5

and PlaSim (80 years, geopotential height at 500 hPa only), at T = 1 and dif-
ferent values of τ. All maps are shown as normalized to unitary L2 norm.
The L2 norm of the actual composite maps is reported on top of them,
while for the projection pattern we display the regularization coefficient
and the skill score. For ERA5 composites and projection patterns look qual-
itatively similar. However, this is a result of the small size of the dataset,
which forces us to use high values of the regularization coefficient.
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geopotential height, which can significantly improve the prediction skill. For
the reanalysis dataset, this opens the possibility to use also ocean variables,
like sea surface temperature.
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C O N C L U S I O N S A N D P E R S P E C T I V E S

In this work, we stressed the important difference between the statistics of
climate and weather conditions which led to an extreme event (a-posteriori
statistics, for instance composite maps) and the prediction in the future of an
extreme event given some knowledge (predictors) of the state of the climate sys-
tem (a-priori statistics, for instance committor functions). We have highlighted
the second as the proper set of tools for any prediction task. At the same time,
we provided a simple framework to give easy access to these tools, which is
effective even with short datasets of length of the order of several decades to
several centuries. In the context of extreme heatwaves over France, we evalu-
ated our method on a very long time series of climate model output data and
successfully applied it to a reanalysis dataset.

Concerning a-posteriori statistics, with our Gaussian framework, we were
able to provide an explanation of why the composite maps of very extreme
heatwaves look qualitatively similar to the ones of less extreme ones. We made
this statement quantitative, showing that composite maps are the same up to a
rescaling by a non-linear function of the threshold that defines heatwaves. This
opens the possibility to estimate composite maps of extremely rare events, even
ones that have never been observed in the dataset. For PlaSim data, the computa-
tion of composite maps using the Gaussian approximation gives results which
are valid up to an error (in L2 norm) of the order of 20 to 30%. We also stress
that the deviations from the Gaussian prediction are statistically significant,
showing that the statistics is actually not Gaussian and that information be-
yond the Gaussian approximation can be computed with dataset length of the
order of a thousand years or more. On the other hand, on the much shorter
reanalysis dataset, errors are larger, but entirely compatible with the imper-
fect sampling of the empirical composite, and one cannot compute statistically
significant deviations from the composite map obtained within the Gaussian
approximation.

However, if one is interested in predicting heatwaves instead of studying their
statistics a-posteriori, composite maps are not the proper tool. The right one
is the committor function, and our framework gives probably the easiest non-
trivial access to this very complex object. Our method gives very good predic-
tion skill, and is particularly competitive with more complex alternatives, such
as neural networks, when working with small datasets, which are very com-
mon in the climate community. In fact, for the 80-year long ERA5 dataset, the
Gaussian approximation proved to be the method with the highest predictive
skill.

As demonstrated in (Miloshevich et al., 2022), too short datasets prevent op-
timal use of neural networks in many applications in climate sciences. This
issue is particularly salient for rare events, for instance extreme events. In this
respect, we see the Gaussian framework developed in this paper as a key so-
lution to make the first relevant prediction. It should play an important role
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in future studies. For rare events, going beyond the results of the Gaussian
approximation may require to have datasets with more rare events. One way
is to sample exceptionally rare extreme events using the recently developed
rare event simulation techniques, that are able to multiply by several orders
of magnitude the number of observed heatwaves with PlaSim model (Ragone,
Wouters, and Bouchet, 2018) and with CESM (the NCAR model used for CMIP

experiments) (Ragone and Bouchet, 2021). A perspective is to couple these rare
event simulations with the Gaussian framework presented in this paper or other
machine learning forecast. We have already coupled machine learning simula-
tions to rare event algorithms, for simple academic models (Lucente et al., 2022).
Coupling the rare event simulations with machine learning is a very interesting
perspective to solve the key fundamental issue of lack of data in the science of
climate extremes.

Moreover, beside pure skill, our method provides an optimal index for pre-
diction, which, once properly regularized, makes it easy to interpret our results,
giving insight in the dynamics behind our ject of study. This optimal prediction
map is one of the key results of this paper. It makes the Gaussian approxima-
tion appealing even for applications on long enough datasets so that its skill
can be outperformed by neural networks, which are often hard to understand.

From the point of view of understanding the underlying physics, in the case
of extreme heatwaves over France, we found that both composite maps and op-
timal projection maps display a quasi-stationary pattern, that does not depend
much on the lead time. In particular, the development of a Rossby wave-train
over the Atlantic Ocean plays an important role for the short term prediction.
This appears very clearly in the reanalysis data, while PlaSim has a strong com-
peting contribution from a wave number 0 pattern. For longer lead times, in-
stead, the analysis on PlaSim data and the comparison with ERA5 confirmed the
key importance of slow drivers, such as soil moisture. The natural next step is
then to include these slow drivers in the study on the reanalysis dataset, maybe
even using ocean-based variables like sea surface temperature.

As further perspectives, we argue that a deeper analysis at the physical level
of optimal projection patterns is needed, turning the qualitative insights pre-
sented in this work to more quantitative statements. Moreover, we took as an
example extreme heatwaves over France: it would be interesting to apply our
method to heatwaves on different geographical locations or to different types
of extreme events altogether. Another very interesting direction is, in the cases
where the Gaussian approximation is outperformed by neural networks, to in-
terpret where this extra skill comes from. Finally, we suggest that our method
can be used as a better baseline than the mere climatology when testing more
sophisticated tools for probabilistic prediction.
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S U P P O RT I N G I N F O R M AT I O N

20.1 detrending of era5

In this manuscript we present an application of our methodology to the ERA5

dataset (Hersbach et al., 2020). In this section we go over the technical details
of handling this dataset.

We start from taking daily averages of the hourly data from the public avail-
able dataset of the ECMWF service (https://www.ecmwf.int/en/forecasts/
dataset/ecmwf-reanalysis-v5) for summer seasons from 1940 to 2022. We de-
cide to use 2 m air temperature for defining the heat wave amplitude and, dif-
ferently from what has been used for PlaSim, only the 500 hPa geopotential
height field as set of predictors X. The reason is that when we will use ERA5

for forecast of heatwaves, it will be impossible to work with the same amount
of fields as for PlaSim but with only 83 years of data. In this line of thought, we
also performed a regridding of the data over the PlaSim grid to considerably
reduce the numbers of features. We then remove the seasonal cycle, so that we
can work with anomalies.

In this work we aim at studying the response of climate models in stationary
conditions, thus we detrend the ERA5 dataset to remove the climate change
signal. For the temperature field, given that we used it just to define our heat
wave amplitude A, we performed a spatial averageover the France region, and
detrended its seasonal mean with a quadratic fit. The time series of the seasonal
mean is shown in fig. 20.1, where the orange line is the trend that we removed
for each summer. We tried other sophisticated detrending methodologies, but
this one was simultaneously the most simple and effective one.

A similar protocol was also applied for the detrending of the geopotential
height field. However, given that we noticed a latitudinal dependence of the
trend, we decided to independently detrend via a quadratic fit the seasonal and
zonal means of geopotential height. Figure 20.2 shows the contour plot of the
trend that we removed as a function of the latitude and year. Indeed, this trend
is non-monotonic trend at mid and high latitudes, while it is monotonously
increasing at lower latitudes. Given that this non monotonicity is present at the
beginning of the dataset, our guess is that it might depend on the quality of the
data available before the satellite era.

20.2 balanced K -fold cross validation

The standard K-fold cross validation process consists in splitting the dataset D
into K disjoint subsets of equal length {Fk}K

k=1, that can be called folds. Then,
for each k = 1, . . . , K we define training and validation sets as

Tk =
⋃
i ̸=k

Fi, Vk = Fk. (20.1)
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Figure 20.1: Seasonal T2m anomaly averaged over France for the ERA5 dataset. The
orange curve is the trend fitted via a second order polynomial.
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Figure 20.2: Contour plot of the 500 hPa geopotential height trend for ERA5 dataset
as function of years and latitude. At latitudes the trend is non-monotonic,
while it is monotonically increasing in time at lower latitudes.
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To make a balanced K-fold cross validation, we ask that the Sk all contain
the same amount of heatwaves. This is essentially equivalent to the classical
technique of stratified K-fold cross validation (Hastie, n.d.), but in our case, to
avoid contamination between the different folds, we force data belonging to the
same summer to end up in only one of the folds.

20.3 detailed calculations of the composite map in a 2-dimensional

gaussian system with committor depending only on one

variable

In the second example of section 14.1.4, we use intuition to say that if we have
two correlated variables but the committor depends only on one, the compos-
ite will still be non zero for the variable upon which the committor does not
depend. Here we give a formal proof.

According to the assumption of zero mean and Gaussianity for the two vari-
ables, we can write the stationary measure as

PS(x1, x2) ∝ exp

−1
2
(x1, x2)

(
σ2

1 ϕ

ϕ σ2
2

)−1(
x1

x2

) = exp
(
−1

2
(ax2

1 + bx2
2 − 2cx1x2)

)
,

(20.2)

where

(a, b, c) =
1

σ2
1 σ2

2 − ϕ2
(σ2

2 , σ2
1 , ϕ). (20.3)

Then, according to eq. (14.6), the composite value for X2 is

C2 ∝
∫

x2PS(x1, x2)q(x1)dx1dx2, (20.4)

∝
∫

dx1q(x1)
∫

dx2x2e−
1
2 (ax2

1+bx2
2−2cx1x2), (20.5)

=
∫

dx1q(x1)e
− 1

2

(
a− c2

b

)
x2

1

∫
dx2x2e−

1
2 b(x2− c

b x1)
2

, (20.6)

∝
∫

dx1q(x1)e
− 1

2

(
a− c2

b

)
x2

1 c
b

x1. (20.7)

Now, first we notice that C2 ∝ c ∝ ϕ, so if there is no correlation between x1

and x2 we get the expected result that the composite is zero. Otherwise, for a
generic committor q, C2 ̸= 0. A particular case for which C2 = 0 is when q is an
even function. However, this means that the committor must give equal proba-
bility to x1 and −x1, and thus cannot focus on a single tail of the distribution
of x1.
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20.4 detailed calculation of the composite maps and of the

committor function in the gaussian approximation frame-
work

As already presented in the main text, the Gaussian approximation relies on
the hypothesis that, at each pixel, the field and the heatwave amplitude follow
a jointly Gaussian distribution, namely

(X, A) ∼ N (0, Σ), (20.8)

with Σ being the covariance matrix, Σ =

[
ΣXX ΣXA

ΣAX ΣAA

]
. The joint multivariate

Gaussian distribution, for given values of X and A, is generally written in the
form:

P(x, a) =
1
Z

exp

(
−
(
xTΛXXx + 2xTΛXAa + ΛAAa2)

2

)
, (20.9)

where Z =
√
(2π)d det(Σ) is the normalization constant d is the dimension of

the stack of X and A, Λ = Σ−1, ΛXA = ΛAX. We took advantage of the fact
that a is a scalar quantity. Equation (14.14), can be obtained via the following
calculation:

C = E[X|A ≥ a] =
1

P(A ≥ a)

∫ +∞

a

(∫
xP(x, a′)dx

)
da′ , (20.10)

=
1

P(A ≥ a)

∫ +∞

a
P(a′)E[X|A = a′]da′ , (20.11)

=

∫ +∞
a P(a′)a′da′

P(A ≥ a)
E[XA]

ΣAA
, (20.12)

= η

(
a√

2ΣAA

)
E[XA]

ΣAA
, (20.13)

with

η(z) =

√
2
π

e−z2

erfc(z)
, (20.14)

where erfc(•) is the complementary error function. Previously, we have used
that:

E[X|A = a] =
∫

xP(x|a)dx =

∫
xP(x, a)dx

P(a)
=

a
ΣAA

E[XA], (20.15)

and this completes the proof.
For the committor, the important point is finding the expression for the con-

ditional probability P(A = a|X = x). This is done by taking a slice at X = x
from of P(X, A) and expressing it as a function of a:

P(A = a|X = x) ∝ exp
(
−1

2

(
2(Λ⊤

XAx)a + ΛAAa2
))

, (20.16)

∝ exp
(
−1

2
ΛAA

(
a + Λ−1

AAΛ⊤
XAx

)2
)

, (20.17)
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which is the expression for a one dimensional Gaussian distribution with vari-
ance σ2 = Λ−1

AA and mean µ(x) = −Λ−1
AAΛ⊤

XAx. Now from the expressions for
inverting a block matrix like Σ, we know that

ΛAA =
(

ΣAA − ΣAXΣ−1
XXΣXA

)−1
, (20.18)

and

ΛXA = −Σ−1
XXΣXAΛAA. (20.19)

Remembering again that ΛAA is a scalar, we immediately get eq. (14.18),

µ(x) = Σ−1
XXΣXA · x, σ2 = ΣAA − ΣAXΣ−1

XXΣXA. (20.20)

After this, getting the full committor is a simple one dimensional Gaussian
integral, which is already well explained in the main text.

20.5 committor function for a stochastic process

Let’s consider a stochastic process X(t) on a phase-space Ω. The first hitting
time τ

′
V of the set V ⊂ Ω, given that the trajectory started at x, is defined as:

τ
′
V (x) := inf{t : X(t) ∈ V | X(0) = x}. (20.21)

The committor function q is defined as the probability that the first hitting
time of the set C is smaller than the first hitting time of set B, given the initial
conditions x, where B, C ⊂ Ω, B ∩ C = ∅ :

q(x) := P(τ
′
B(x) > τ

′
C(x)). (20.22)

Sets B and C can be two attractors of the system or for instance one could cor-
respond to a typical state of the system around which it fluctuates and another
one to an atypical state which is visited when rare fluctuations arise. In the
context of this paper, we are interested in the second case, where we define
the fluctuations of interest based on an observable, namely the heatwave am-
plitude, defined in eq. (22.2), reaching a given threshold a. It is then natural to
rewrite the definition of the committor function as in eq. (14.3).

20.6 spatial gradient regularization

To compute the spatial gradient of the projection pattern M, we need to con-
sider that we are working in a spherical geometry, which has two effects. If
Λ and Φ are respectively latitude and longitude, the gradient in the local flat
geometry x-y (with x pointing eastward and y northward) is ∂

∂x = ∂Φ
∂x

∂
∂Φ = 1

cos Λ × ∂
∂Φ

∂
∂y = ∂Λ

∂y
∂

∂Λ = 1 × ∂
∂Λ

. (20.23)

The other effect is that the area of a grid cell is

dA = dxdy = cos ΛdΛdΦ. (20.24)
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If for simplicity we assume we are dealing with only one climate variable, the
total squared spatial gradient of M is

H2(M) =
∫ ((

∂M
∂x

)2

+

(
∂M
∂y

)2
)

dxdy, (20.25)

=
∫

cos Λ

((
1

cos Λ
∂

∂Φ

)2

+

(
∂

∂Λ

)2
)

dΛdΦ, (20.26)

=
∫ ( 1

cos Λ

(
∂

∂Φ

)2

+ cos Λ
(

∂

∂Λ

)2
)

dΛdΦ. (20.27)

In our case, however, M spans three climate variables, and is sampled on a
uniform grid in latitude and longitude. This means we can write the projection
pattern as a tensor Mλϕ f , with indices λ = 1, . . . , nλ = 22 for latitude, ϕ =

1, . . . , nϕ = 128 for longitude and f = 1, . . . , n f = 3 for distinguishing the fields.
The discrete version of the gradient is thus

H2(M) =
n f

∑
f=1

[
nλ−1

∑
λ=1

(cos Λλ)
nϕ

∑
ϕ=1

(M(λ+1)ϕ f − Mλϕ f )2

+
nλ

∑
λ=1

(cos Λλ)
nϕ

∑
ϕ=1

(
Mλ((ϕ mod nϕ)+1) f − Mλϕ f

cos Λλ

)2
 ,

(20.28)

where the first row is the meridional gradient and the second row the zonal
one, considering also the periodic term. To be precise, we should add the mul-
tiplicative term ∆Λ∆Φ, but since it is a constant that we can include in the
regularization coefficient ϵ, we can ignore it

If we now collapse all the indices of M into a single one i = i(λ, ϕ, f ), it is
quite obvious that we can write

H2(M) = M⊤WM = ∑
ij

Wij Mi Mj. (20.29)

To get the expression for W, we can first notice that it is symmetric: Wij =

Uij + Uji, and, by matching terms, we get

Uij =

(
cos Λλ + cos Λλ−1

2
+

1
cos Λλ

)
δi(λ,ϕ, f )j(λ,ϕ, f )+

− (cos Λλ)δi(λ+1,ϕ f )j(λ,ϕ, f ) −
1

cos Λλ
δi(λ,(ϕ mod nϕ)+1, f )j(λ,ϕ, f ).

(20.30)

For simplicity of notation, we assumed a null contribution when one of the
indices goes out of range or (in the case of soil moisture) points to a grid cell
with no data.

20.7 regularized gaussian committor

To have the proper coefficients α and β when we deal with a regularized pat-
tern, we can notice that the assumption that X and A follow a jointly Gaussian
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distribution implies that, for any M, F = M⊤X and A also follow a jointly Gaus-
sian distribution. We can then use the same formulas of eqs. (14.18) and (14.23),
but applied to the 2 by 2 covariance matrix between F and A

Σ̂ =

(
σ2

F E[FA]

E[FA] σ2
A

)
=: Λ̂−1, (20.31)

and simply

qG(x) =
1
2

erfc
(

α̂ + β̂M⊤x
)

, (20.32)

with

σ̂2 = σ2
A −

(
E[FA]

σF

)2

, α̂ =
a√
2σ̂

, β̂ =
E[FA]√

2σ̂σ2
F

. (20.33)

20.8 effective number of independent heatwaves

As we said in ??, estimating the effective number of independent heatwaves
can be challenging. The standard way of computing an effective data size for
a time-series is the one presented in (Santer et al., 2000), where one uses the
lag-1 autocorrelation coefficient r to rescale the total number of data points:
Neff = N(1− r)/(1+ r). However, when we consider heatwave events, they are
not evenly spaced in time, so the whole approach does not make sense.

We can, tough, easily provide some bounds by observing that surely Ny ≤
Neff ≤ Nall, where Nall = N is the total number of heatwaves and Ny is the
number of years that have at least a heatwave. Assuming that heatwaves at least
a year apart are independent is definitely reasonable, if rather conservative. In
fact, if we indeed compute the lag-1 autocorrelation coefficient for the time-
series of A(t), which gives r = 0.9896, and then estimate the decorrelation time
of A as τdecorr = (1+ r)/(1− r), we get τdecorr = 191 days. Namely, it takes half
a year to lose memory of the heatwave amplitude, and thus Ny is not only a
lower bound for Neff, but likely also very close to it.

If we apply this to our study of 14-day heatwaves we have Ny = 2627 ≲
Neff ≤ Nall = 30800. Considering that we work with 8000 years of data, Ny tells
us that there is a heatwave at least once every three years, and a year with a
heatwave, on average, has Nall/Ny ≈ 12 days for which A(t) ≥ a.

20.9 visualization of the error between empirical and gaussian

composites on two grid-points

From fig. 15.1, we see that the biggest error we make when using the Gaussian
composite is for the soil moisture variable. To investigate why this is the case,
we show in fig. 20.3 (left) the joint and marginal distributions of the heatwave
amplitude A (on the y axis) and of one pixel of soil moisture Si (on the x
axis). For comparison, we show the same for a pixel of the 500 hPa geopotential
height Zj in fig. 20.3 (right). While the marginal distributions of A and Zj are
approximately Gaussian (as it is shown from the black curve on the marginal
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Figure 20.3: Comparison of the quality of the Gaussian and empirical composite map,
for two grid-points and at different values of the heatwave threshold a. We
show the results for a pixel over France of soil moisture Si (left) and one
over Greenland of 500 hPa geopotential height Zj (right). For each panel,
the main plot is the joint probability density function (PDF) of Si or Zj and
the heatwave amplitude A, whith marginal distributions displayed on top
and to the side. In these plots the black line is a Gaussian fit. In the main
plots, the orange line is the empirical composite as a function of a, while
the white line is the one estimated through the Gaussian approximation.
The red line is the threshold value of a = 2.76K corresponding to the 5%
most extreme heatwaves. The dotted vertical white and orange lines indi-
cate the values of the empirical and Gaussian composites at this particular
value of a. For Zj the error is much smaller.

plots of the figure), the one of Si is clearly not: it is strongly skewed towards
negative values of soil moisture anomaly, and exhibits fat tails. This is also
reflected in the plot of the joint distribution of A and Si on the one hand and
Zj on the other hand (heat maps in fig. 20.3), as only the latter has the shape of
an ellipsoid.

In both panels of fig. 20.3, the orange curve shows the behavior of the empir-
ical composite CD as we change the threshold a, while the white curve is the
behavior of the Gaussian composite CG . By construction, they both tend to 0 as
a → −∞, since soil moisture Si and 500 hPa geopotential height Zj both have
zero mean as they are anomalies.

When a is very small, then, the Gaussian composite provides a good, yet
useless, approximation of the empirical composite as both are very close to
zero. As the threshold increases beyond this trivial region, for soil moisture
the two curves start to diverge already at a ≈ 0, and thus show a significant
distance when they reach the 95th quantile of A, a = 2.76 K (red line). On
the other hand, the approximation holds quite well in the case of geopotential
height, and the two curves separate significantly only when the sampling error
kicks in (around a = 5 K) and throws off the empirical estimate.
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Figure 20.4: Maps of the difference between empirical composite maps and the ones
estimated from the Gaussian approximation, for the 5% and 1% most ex-
treme 14-day heatwaves over France. The patterns of this difference do not
depend on the threshold a, varying only in intensity. The salient features of
both temperature and geopotential height are well captured by the Gaus-
sian approximation, with errors of the order of 30% at most.

20.10 error between empirical and gaussian composites at dif-
ferent heatwave thresholds

In fig. 20.4 we show the difference between the empirical composite and the
Gaussian one (evaluated using eq. (14.14)) for the three fields of 2 meter air
temperature, 500 hPa geopotential height and soil moisture evaluated for a cor-
responding to the 5% and 1% most extreme 14-day heatwaves. The striking
result is that the pattern observed changes only in magnitude between extreme
and very extreme events.

To give a quantitative measure of the error, in fig. 20.5, we evaluate the error
using the norm ratio defined in eq. (15.1), for different threshold level a, show-
ing that the error is around the 20% for the 5% most extreme events. Figure 20.5
gives more details on the behavior of the norm of the error shown in fig. 20.4
for different values of a. On the y-axis we represent the norm ratio introduced
in section 15.1 (eq. (15.1)), which measures how distant (in norm) the Gaussian
composite is from the empirical composite (normalized by the norm of the em-
pirical composite). We calculated this norm for the three fields independently,
and for the whole stack of them (gray line). The norm ratios of the 500 hPa
geopotential height and the one of the 2 m air temperature stay pretty close to
the norm of the stack, showing values below 0.3 even for events which repre-
sents the 1% most extreme ones in the dataset (the x-axis on the top shows the
respective percentile of rareness of the a, which is on the bottom x-axis). Soil
moisture has a different behavior, showing higher values of the norm ratio for
much less extreme events. This is possibly due to a violation of the Gaussian
approximation assumption, as we showed for a single pixel in fig. 20.3.
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Figure 20.5: Norm ratio (see eq. (15.1) of the main text) of the difference between the
empirical composite map and the Gaussian approximated one as a func-
tion of the threshold value used to define a heatwave event a. The total
norm ratio is in gray, while the colors represent the norm ratio for each
of the three fields (namely 2 m temperature anomaly, 500 hPa geopotential
height anomaly and soil moisture anomaly). For events which are the 1%
most extreme ones of the PlaSim dataset, the relative error is always below
the 30%. The bottom x-axis a is the threshold value used to define an heat-
wave event from the distribution of the 14-day heatwave amplitude A. On
the top x-axis, p is the respective percentile value corresponding to a given
a.
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Temperature

τ [days]

0 3 6 9 12 15 18 21 24 27 30

T
[d

ay
s]

1 0.26 0.30 0.31 0.22 0.21 0.22 0.22 0.21 0.19 0.19 0.19

3 0.25 0.29 0.26 0.19 0.19 0.20 0.20 0.19 0.18 0.17 0.18

7 0.22 0.24 0.21 0.19 0.19 0.20 0.20 0.19 0.18 0.18 0.16

14 0.19 0.20 0.20 0.19 0.20 0.20 0.21 0.21 0.19 0.18 0.18

30 0.18 0.19 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.20 0.20

Table 20.1: Values of the norm ratio between Gaussian and empirical composites com-
puted for 2 m temperature anomaly.

Geopotential

τ [days]

0 3 6 9 12 15 18 21 24 27 30

T
[d

ay
s]

1 0.25 0.26 0.28 0.30 0.31 0.33 0.36 0.34 0.29 0.26 0.27

3 0.24 0.23 0.26 0.28 0.29 0.31 0.34 0.31 0.27 0.25 0.25

7 0.21 0.23 0.27 0.30 0.33 0.38 0.37 0.32 0.30 0.30 0.25

14 0.21 0.24 0.30 0.34 0.34 0.33 0.33 0.34 0.32 0.28 0.28

30 0.22 0.25 0.29 0.32 0.33 0.33 0.34 0.32 0.30 0.31 0.31

Table 20.2: Values of the norm ratio between Gaussian and empirical composites com-
puted for 500 hPa geopotential height anomaly

20.11 field-wise norm ratio of composite maps at different val-
ues of T and τ

In tables 20.1 to 20.3, we show the norm ratio as defined in eq. (15.1), but
computed independently for the three climate variables of the PlaSim dataset.
Values related to temperature peak at T = 1 and for small delay time. Soil
moisture exhibits a clear monotonic trend with respect to T, while not being
very sensitive to the the lead time τ. Finally, the geopotential height field shows
the more complex structure, with the highest errors happening at intermediate
values of both T and τ.

Soil moisture has only 12 pixels, compared to the 2816 of the other two fields,
so its contribution to the total norm ratio (table 17.2) is negligible. Outside the
small region of low values of T and τ, the norm ratio of the temperature field
is almost constant, so the structure visible in table 17.2 is mostly due to the
geopotential height field.
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Soil moisture

τ [days]

0 3 6 9 12 15 18 21 24 27 30

T
[d

ay
s]

1 0.10 0.11 0.12 0.12 0.13 0.13 0.13 0.13 0.14 0.14 0.14

3 0.14 0.12 0.12 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12

7 0.22 0.20 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14

14 0.30 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.21 0.20 0.19

30 0.40 0.38 0.36 0.35 0.33 0.31 0.30 0.28 0.27 0.25 0.24

Table 20.3: Values of the norm ratio between Gaussian and empirical composites com-
puted for soil moisture anomaly.
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Figure 20.6: Four EOFs en. The higher the n the smaller the spatial scales of the charac-
teristic features represented. On top of each plot we report the value of λn.

20.12 asymptotic behavior of the regularized projection pat-
tern

In this section we discuss the effect of the regularization coefficient ϵ on the
optimal projection pattern Mϵ, and in particular why a highly regularized pro-
jection pattern may look similar to the composite map.

To do so we move to the basis of Empirical Orthogonal Functions (EOFs)
(Hannachi, Jolliffe, and Stephenson, 2007), which diagonalizes the covariance
matrix ΣXX. We call its eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · ≥ λd, and the
corresponding eigenvectors en. Here we will use as an example the prediction
of T = 14 day heatwaves at delay time τ = 0, performed on the ERA5 reanalysis
dataset. In this context there are d = 2816 degrees of freedom, corresponding
to the pixels of the 500 hPa geopotential height anomaly field.

The first important point is that as n increases, the variance λn explained by
en decreases, and so does decrease the typical spatial size of the features that
appear in en (fig. 20.6). In particular, features with a typical size of the order
of the synoptic scale are represented around n = 100. Moreover, almost two
thirds of the EOFs (n > 1000) explain less than 0.05 % of the variance and are
extremely noisy.

Second, the Gaussian composite map is proportional to the correlation map
ΣXA (eq. (14.14)), and when we write it in the EOF basis,

CG ∝ ΣXA =
d

∑
n=1

cnen, (20.34)
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it is dominated by EOFs at low values of n (see black lines in fig. 20.7), and thus
it appears spatially smooth.

Third, in the EOF representation the non-regularized (ϵ = 0) projection map
is written as

M0 =
d

∑
n=1

M0
nen ∝ Σ−1

XXΣXA ∝
d

∑
n=1

cn

λn
en, (20.35)

and λn goes to zero much faster than cn (dashed dark blue lines in fig. 20.7),
resulting in M0 being dominated by large n, high spatial frequency modes. This
is what makes the non regularized pattern utterly non-interpretable.

If we perform L2 regularization, the aim of the regularization coefficient is
to prevent the contribution of these high frequency modes to explode, making
them proportional to their values in the composite map:

Mϵ ∝ (ΣXX + ϵI)−1ΣXA ∝
d

∑
n=1

cn

λn + ϵ
en ≈

nϵ−1

∑
n=1

M0
nen +

1
ϵ

d

∑
n=nϵ

cnen, (20.36)

where λnϵ ≈ ϵ. It is then clear that as ϵ increases nϵ → 1, and the projection
map smoothly converges to the composite map (left panel of fig. 20.7).

On the other hand, when we perform H2 regularization, as we do in this
work, we regularize with matrix W, which doesn’t share the same eigenvectors
of ΣXX. We can in any case write W in the EOF basis as

W = ∑
mn

Wnmene⊤m . (20.37)

If we compute the terms Wmn, we notice that Wnn ≫ maxm ̸=n |Wnm|. We can
then say that the W is almost diagonal and thus

Mϵ ∝ (ΣXX + ϵW)−1ΣXA ≈
d

∑
n=1

cn

λn + ϵWnn
en. (20.38)

This lets us apply a similar reasoning to the one explained above for L2 reg-
ularization, where Wnn is the norm of the spatial gradient of EOF en, which,
considering the spatial structure of the EOFs (fig. 20.6), clearly increases with
n. For this reason, when we increase ϵ, we remove the high spatial frequencies
faster than we would with L2 regularization (right panel of fig. 20.7). On the
other hand, for very high regularization, the approximation of W being diago-
nal falls apart and the high frequencies are brought back to achieve a spatially
uniform pattern, similarly to the Fourier representation of a square wave. So
there is no asymptotic convergence to the composite map (brown curve). How-
ever, for intermediate values of ϵ (yellow, orange and red curves), the projection
pattern is smoothed in a similar way as with L2 regularization and thus it may
look similar to the composite map.
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Figure 20.7: EOF spectra |Mϵ
n| of the projection pattern at different values of the reg-

ularization coefficient ϵ (solid lines) when penalizing the L2 norm of the
pattern (left) or its spatial gradient (right). All spectra are normalized so
that the term at n = 1 has unitary values. To ease the visualization, the
spectra have been smoothed with a running average. On the left panel the
dashed lines represent the spectra of the regularized covariance matrix:
λn + ϵ. On the right panel they represent the diagonal part of the gradient
regularized covariance matrix in the original EOF basis, i.e. λn + ϵe⊤n Wen.
The black line is the spectrum cn of the Gaussian composite map. For high
n (i.e. EOFs with small spatial scales), the values of λn decay faster than
those of cn, which makes the non-regularized pattern extremely noisy. For
L2 regularization, increasing values of ϵ progressively reduce the contribu-
tion of EOFs at high n, and the projection pattern converges to the com-
posite. On the other hand, H2 regularization directly penalizes the spatial
gradient of the projection pattern, so the small scales are first suppressed
and then brought back to achieve the spatially uniform pattern. These
spectra are presented for T = 14 and τ = 0 on the ERA5 dataset, where
ϵbest = 10 (light green lines).



Part IV

R A R E E V E N T A L G O R I T H M S T U D Y O F E X T R E M E
D O U B L E J E T S U M M E R S A N D T H E I R C O N N E C T I O N

T O H E AT WAV E S O V E R E U R A S I A

In the previous chapter (part iii) we presented a novel methodology,
the Gaussian approximation, which, despite its simplicity, allows
to analyse and predict heatwaves with different duration and delay
time. In this chapter we solve the scarcity of data and computational
cost associated with the sampling of rare events by generating effi-
ciently more observations of the rare event of interest, namely a
summer double jet structure over Eurasia, using a rare event algo-
rithm.

This project has been developed during the secondment periods, for
a total of four months, planned as part of my PhD program, in col-
laboration with Nili Harnik (Professor at Department of Geosciences,
Tel Aviv University, Tel Aviv, Israel) and Francesco Ragone (Professor
at Royal Meteorological Institute of Belgium, Brussels, Bel- gium and at
Georges Lemaître Centre for Earth and Climate Research (TECLIM), Earth
and Life Institute, Université Catholique de Louvain, Louvainla-Neuve,
Belgium). The project is still an ongoing work and I present here a
summary of what I think are the main conclusions of the work gath-
ered up to know. In the months to come, this work will be finalised
and will hopefully constitute a third publication achieved during
my PhD.

For what concerns the tools used in this chapter, we employ the
rare event algorithm, the Giardina-Kurchan-Lecomte-Tailleur GKLT,
presented in section 4.2 to perform an importance sampling of rare
double jet summers. For the analysis, we use the return time curves to
estimate the average time to wait for observing events with different
amplitude and the composite maps for the conditioned analysis of
the dynamical fields when there is a double jet. Both tools were
introduced in section 3.1.1. For the seek of clarity, some of these
concepts will be reintroduced in the following, leading to minor
repetitions.
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I N T R O D U C T I O N

Nowadays, heatwaves are observed with an atypical frequency and amplitude
in response to the effect of global climate warming (Seneviratne et al., 2021).
At the mid-latitudes, several mechanisms have been proven to be involved
in the formation, maintaining and worsening of these events (Horton et al.,
2016; Barriopedro et al., 2023), including land-atmosphere feedbacks (Miralles
et al., 2019; Miralles et al., 2014; Seneviratne et al., 2006), large-scale circula-
tion patterns (Cassou, Terray, and Phillips, 2005; Della-Marta et al., 2007) and
sea surface temperature anomalies (Della-Marta et al., 2007; Cassou, Terray,
and Phillips, 2005). High-amplitude quasi-stationary Rossby waves are persis-
tent weather regimes known to favour extreme events (Hoskins and Woollings,
2015), including heatwaves during summer (Kornhuber et al., 2019; Teng et
al., 2013; Mann et al., 2017). However, a comprehensive fundamental theory
for the growth and propagation of Rossby waves at the spatial and temporal
scales pertinent to extreme events remains incomplete (White et al., 2022). A
proposed mechanism in this sense is quasi-resonance amplification (Petoukhov
et al., 2013). Under some conditions, for instance in the presence of a double
jet stream, amplified quasi-stationary Rossby waves might result from interac-
tions of Rossby waves of similar wave number (especially between 5 and 7)
that are amplified and trapped within a latitudinal band, leading to persistent
weather patter. Several studies investigated the relevance of this mechanism for
recent heatwaves (Mann et al., 2017; Coumou et al., 2014; Petoukhov et al., 2016;
Kornhuber et al., 2019) and the link between double jet and heatwaves in the
Eurasian region (Rousi et al., 2022). In this study, we aim at investigating the
anomalous summer circulation associated to a persistent double jet occurring
over Eurasia and to link its occurrence to heatwaves. However, this persistent
configuration of the jet is uncommon.

A difficulty in the prediction and in the understanding of the mechanisms
which led to rare events is related to their low frequency of occurrence, or equiv-
alently to their low probability. When dealing with extreme and rare events in
the climate field, historical records are too short for observing a significant col-
lection of them and running climate simulations is highly resources demand-
ing. Therefore, alternative methodologies are necessary to overcome the limited
amount of available data. In this study, we tackle the issue of computational cost
limitations using a rare events algorithm. The primary goal of a rare events al-
gorithm is to efficiently make the rare event of interest less rare, allowing us
to observe more occurrences and gather sufficient statistical data at a lower
computational cost than direct simulations. The algorithm used here is known
in the literature as GKLT and has been historically developed to compute esti-
mators in the context of Large Deviation theory (Giardinà, Kurchan, and Peliti,
2006). Recently, it has been applied in climate science to study warm summers
over France and Scandinavia (Ragone, Wouters, and Bouchet, 2018; Ragone and
Bouchet, 2020; Ragone and Bouchet, 2021), and India (Le Priol, Monteiro, and
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Bouchet, 2024), mid-latitudes precipitations (Wouters, Schiemann, and Shaffrey,
2023), weakening and collapse of the Atlantic Meridional Overturning Circula-
tion (Cini et al., 2024), melting of the Arctic sea ice (Sauer et al., 2024) and for
energy demand in the power system (Cozian, 2023). Differently from previous
applications of this algorithm, in this study we sample directly persistent atmo-
spheric states which are prone to support extreme events. We stress that this
was not the case in previous works, where for example the same rare events
algorithm was applied for sampling of extreme warm summers and the atmo-
spheric states were retrieved after (Ragone, Wouters, and Bouchet, 2018; Ragone
and Bouchet, 2021).

In this study, we show that the GKLT efficiently samples double jet summers
over the Eurasian continent, using CESM1.2.2 climate model. We compute re-
turn times of orders of magnitude larger than what feasible with direct sam-
pling, and statistically significant composite maps of dynamical quantities. Our
results show that rare double jet summers are associated with a wave number 3

teleconnection patterns in the Northern Hemisphere and positive temperature
anomalies in North Canada, Scandinavia/West Russia and East Russia.

The study is organised as follows. In chapter 22 we present the data used for
this study and the two indexes, namely the double jet index which defines the
double jet structure and the heatwave index. We then introduce the rare event
algorithm and discuss briefly the parameters for this peculiar study. In chap-
ter 23 we first show the performance of the double jet index on a long run of
CESM1.2.2 and on the reanalysis dataset ERA5. As a motivation for the study, we
show that there is a significant percentage of overlapping days between double
jet and heatwaves, and that this percentage augments the more persistent the
events considered are. Then, we show that the rare events algorithm effectively
and efficiently samples rare and unseen double jet summers, and we analyse
associated dynamical quantities. In chapter 24 we summarise our findings and
give perspectives.
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D ATA A N D M E T H O D S

22.1 data

22.1.1 CESM

In this study, we use the CESM version 1.2.2 (Hurrell et al., 2013). In the setup
we use, only atmosphere and land are used as active components. More specif-
ically, the atmospheric model is the Community Atmospheric Model version
4 (CAM4), while the Community Land Model version 4 (CLM4) is used for
the land. The version used has a prescribed aerosol concentration, including
greenhouse gases, fixed to a level which matches the observed one to repro-
duce the 2000s climate, with the CO2 concentration set at 367 ppmv. Finally, we
use historical data to prescribe the ocean and the sea-ice models. The model
has a resolution of 0.9 degrees in latitude and 1.25 in longitude, with 26 vertical
layers in a hybrid pressure-sigma coordinate.

With this setup we use a long simulation of 1000 years, which has been
already used to study heatwaves and energy production in Europe (Ragone
and Bouchet, 2021; Cozian, Herbert, and Bouchet, 2024). Without changing the
setup, we run novel simulations by coupling this climate model with a rare
event algorithm to sample rare double jet events. The procedure is presented
in section 22.2.3 and the results in section 23.3 and section 23.4. The model has
an output frequency of 3 hours, but we are interested only in daily averages. In
particular, we focus on the anomalies (with respect to the daily, grid point-wise
climatology) of the zonal wind U, 2 m temperature (T2m) and 500 hPa geopoten-
tial height (Z500). For the zonal wind, we are interested in upper level winds,
thus we selected 4 vertical levels between 192 and 313 (in an hybrid pressure-
sigma coordinate).

22.1.2 ERA5

We use the public available reanalysis dataset ERA5 (Hersbach et al., 2020).
Specifically, we use daily data for the summer months of June, July and August,
starting from 1940 until 2022 for the 2 m air temperature (T2m), 500 hPa geopo-
tential height (Z500), zonal wind U (averaged between 200 hPa and 350 hPa).
The dataset has a resolution of 0.25 degree both for latitude and for longitude.
As we want to study the response of stationary climate, we need to remove the
warming trend present in ERA5. We performed a latitudinal-wise detrending of
both 2 m air temperature, 500 hPa geopotential height longitudinally averaged
over the Northern Hemisphere (we took into account lands only for the 2 m air
temperature). The procedure is detailed in section 25.1.
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Figure 22.1: Example of the two zones, for B between the latitudinal band 65-78.5◦N
and A between 46.5-60

◦N for defining the double jet.

22.2 methods

22.2.1 Double jet index

Following the work of (Yang and Chang, 2006), we devised the following pro-
cedure. We selected and averaged the zonal wind over 4 vertical levels in the
upper troposphere (for the levels, the details for CESM and ERA5 are in sec-
tions 22.1.1 and 22.1.2, respectively). We calculate the zonal wind daily anoma-
lies (with respect to the daily, grid point-wise climatology) of the months of
June, July and August. We define then two zones, according to their latitude:
A is a zone comprised between 40

◦N and 65
◦N, while B between 60

◦N and
85

◦N. We then take a zonal average over the longitudinal sector corresponding
to Eurasia, from 10

◦W to 180
◦E. Note that given the zonal average, both zones

are at this stage only time and latitude dependent. Then, in both zones, we
average the daily zonal wind zonal anomaly over a window of w = 13.5◦ in
latitude. We take the difference between pairs of zone B and zone A of d = 5◦

distance. We define then our double jet index Dji as the daily maximum of this
difference:

Dji(t) := max
λ̃∈(40,52)

[∫ λ̃+2w+d

λ̃+w+d
U(t, λ)dλ −

∫ λ̃+w

λ̃
U(t, λ)dλ

]
(22.1)

where U(t, λ) is the zonal wind daily anomaly already averaged over the verti-
cal levels and the Eurasian longitudinal sector (from 10

◦W to 180
◦E), t denotes

the time and λ the latitude. The first integral corresponds to zone B, while the
second to zone A. An example of the two zones (before the zonal averaging), for
B between the latitudinal band 65-78.5◦N and A between 46.5-60

◦N is shown
in fig. 22.1.

The index is robust to changes in many of the features. For instance, we tried
to vary the vertical levels over which we evaluated it, the variable used (we
computed the same index with the wind speed, instead of the zonal wind com-
ponent only), we reduced the integrated longitudinal sector up to 70

◦E and
we computed the index with the raw field (without taking the seasonal cycle
out). The version presented here is the one that retains most of the double jet
structure, and that is at the same time less computationally expensive to be
embedded in a rare events algorithm. In fact, given our interest in performing
simulations coupled with that algorithm (section 22.2.3), we need a one dimen-
sional index which could successfully represent the double jet splitting. Thus,
despite other definitions have been proposed to detect this splitting (Molnos
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et al., 2017; Rousi et al., 2022; Gallego et al., 2005; Pena-Ortiz et al., 2013), our
choice is a trade-off between a correct representation of the phenomenon and
methodological constraints. With this definition, the jet is expected to be split
poleward the higher the value of the index, creating a new band of strong west-
erlies over the desired zone. An application of this index to a long climate sim-
ulation performed with the CESM climate model (introduced in section 22.1.1)
and to the reanalysis dataset ERA5 (section 22.1.2) is presented in section 23.1.

22.2.2 Heatwave definition

In the climate community, heatwaves have been defined in several ways (Perkins,
2015; Barriopedro et al., 2023). In this work, we are interested in events which
are persistent in time and space. The natural variable to investigate is the run-
ning mean of the 2 m air temperature, which has already been employed for
studying events of different duration (from weekly to monthly time windows)
(Barriopedro et al., 2011; Coumou and Rahmstorf, 2012; Schär et al., 2004). Fol-
lowing the works of (Gálfi, Lucarini, and Wouters, 2019; Galfi and Lucarini,
2021; Ragone, Wouters, and Bouchet, 2018; Ragone and Bouchet, 2021; Jacques-
Dumas et al., 2022; Miloshevich et al., 2023), we base the definition of heatwave
on spatial and temporal averages of the 2 m temperature anomaly, as will be
described later in the section. This definition is suitable for the type of events
we wish to study, as it gives a direct measure of the intensity and the duration
of the heatwave. Moreover, another interesting point of such definition is that
both the temporal duration and spatial extent can be adapted to the type of the
event one wishes to study.

Let T̃2m denote the daily-averaged 2 m air temperature field, which depends
on the location r⃗ and time t. We use the temperature anomaly T2m in order
to remove the effect of the seasonal cycle, i.e. T2m := T̃2m − Ey(T̃2m) where
Ey(T̃2m) is the climatology. The heatwave amplitude A is then defined as the
space and time average of the temperature anomaly:

A(t) :=
1
T

∫ t+T

t

(
1
A

∫
A

T2m(⃗r, u)d⃗r
)

du, (22.2)

where T is the duration in days of the heatwave and A is the spatial region
of interest. Both parameters T and A can be changed according to the event
one wishes to study. In this work, T varies from sub-weekly to monthly time
scales, enabling to study short and long events. The extension of the spatial
region A should be comparable to the synoptic scales, which is of the order
of 1000 km at the mid-latitudes, as these scales correlate to the size of cyclones
and anticyclones and jet stream meanders. We decided to focus over 3 regions
in the Northern Hemisphere, shown in section 25.6. The choice of these regions
is motivated by a teleconnection pattern discussed in section 23.4. For these
regions, we know that the most impactful events connected with a double jet
occur in summer (Rousi et al., 2022). Thus, in this study we only consider events
happening in the months of June, July and August.
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22.2.3 Rare event algorithms: sampling rare events with low computational cost

The algorithm used in this manuscript has been already employed for resam-
pling different types of events, such as heatwaves in France and Scandinavia
(Ragone, Wouters, and Bouchet, 2018; Ragone and Bouchet, 2021), in India (Le
Priol, Monteiro, and Bouchet, 2024), for energy demand in the electric power
system (Cozian, 2023), for collapse of the Atlantic Meridional Overturning Cir-
culation (Cini et al., 2024) and for the Arctic sea ice melting (Sauer et al., 2024).
This algorithm is part of the genealogical selection algorithm (Del Moral and
Garnier, 2005; Giardinà, Kurchan, and Peliti, 2006; Giardina et al., 2011; Pérez-
Espigares and Hurtado, 2019).

The overall goal is to sample more efficiently the upper tail of the distribution
of a target observable O[X(t)]. To achieve this goal, an ensemble of trajectories
is run in parallel and at constant intervals of a priori chosen resampling time τ

a weight is assigned to each of them, based on the value of the target observable
O[X(t)] reached during the simulation time of duration τ. Based on this weight,
trajectories achieving a low value are killed, as this is interpreted as a poor skill
of those trajectories in sampling extreme fluctuations of O[X(t)] at the end of
the simulation, while trajectories having a high score are cloned, repopulating
the ensemble of trajectories. Then, a small perturbation is added to restart the
simulation for a time τ and the algorithm is cyclically repeated. The idea behind
is that this selection process, when done at the appropriate time scales, will
favour the survival of trajectories leading to extreme events characterized by
time persistence of large values of O[X(t)], such as the double jet events we are
interested in.

In section 4.2 we describe the rare event algorithm in detail, while here we
summarize only the main points. We invite the reader to refer to that section
for a deeper discussion. Let’s consider a realisation of a climate simulation, de-
noted from now on as a trajectory, as {X(t)}ta≤t≤ta+T, where ta is the initial start-
ing point of the simulation and T the total duration. We denote as P0 ({X(t)})
the probability of observing a certain trajectory as a realisation of the dynamics
of the climate model and as Pk ({X(t)}) the probability of observing the same
trajectory as a result of the ensemble simulations driven by the rare event al-
gorithm. Following the works of (Ragone, Wouters, and Bouchet, 2018; Ragone
and Bouchet, 2021), there exists a link between the two probabilities:

Pk ({X(t)}) =
exp

(
k
∫ ta+T

ta
O[X(t)]dt

)
Z

P0 ({X(t)}) (22.3)

where Z is a normalization constant (the equivalent of the partition function
in statistical mechanics), O[X(t)] is the target observable and k the biasing pa-
rameter, a parameter which controls the selection strength, i.e. the higher its
value, the larger values of the integrated time average of O[X(t)] will be sam-
pled. Equation (22.3) allows having access to the probabilities of the real model
statistics (and to related quantities, such as averages) using the rare event algo-
rithm simulated by inverting it. The detailed description with the formulae are
in section 4.2.

The target variable for this study is the integrated double jet index averaged
over Eurasia, presented in section 22.2.1. Thus, to be consistent with the nota-
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tion presented above, O[X(t)] ≡ Dji(t). We perform M = 10 ensemble simu-
lations with the rare event algorithm, each of them with N = 100 trajectories,
a selection strength of k = 0.01(m/s)−1(day)−1 for a duration T = 90 days,
starting from June 1st and ending on August 29th and with a resampling time
of τ = 5 days. The value of k has been chosen such that events with a return
time of 100 years are common. The resampling time τ should be of the order
of the autocorrelation time. An analysis of the autocorrelation function of the
integrated double jet index (fig. 25.4) shows that it can be approximated by
two exponential functions, suggesting that a good candidate is 5 days. For the
integration time T, we wanted to target extreme double jet during the summer
months of June, July and August, because of correlation with heatwaves at mid-
latitudes. Moreover, in order to let the potential candidate trajectories to yield
to the extreme event we need to have T ≫ τc, where τc is the autocorrelation
time. However, it should not be too large in order not to eventually kill in late
resampling steps the trajectories which shown a large fluctuation before and
went back to typical values. Finally, we choose T = 90 days. In this way, we
perform 18 resampling steps (T/τ = 18). The 10 experiments start from 10

independent sets of 100 independent initial conditions, i.e. we took 1000 inde-
pendent June 1st, at 1-year interval. This could be done because in the climate
model setup there is no active ocean or ice component, thus limiting the long
term variabilities to seasonal scales. The computational cost of the experiments
with the algorithm is equivalent to simulating 1000 summers in the ensemble
control run, but they allow gathering a much richer statistics for the extreme
events of interest.

More details on the choice of the parameters of the GKLT are presented in
section 4.4.
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23.1 sampling double jet with the double jet index

In this section, we use the double jet index defined in section 22.2.1 to sam-
ple double jet events using the long climate model CESM run of 1000 years
(presented in section 22.1.1) and the reanalysis dataset ERA5 (presented in sec-
tion 22.1.2). The climatology of the daily zonal wind U for the months of June,
July and August, for CESM is presented in fig. 23.2 (a) and (b). Specifically, in
(a) the vertical profile of the zonal wind U longitudinally averaged over the
Eurasian sector (10

◦W to 180
◦E) is shown, while in (b) the climatology map of

the zonal wind averaged over the months of June, July and August is presented.
The probability density distribution of the daily double jet index is displayed
in fig. 23.1, for both CESM (blue) and ERA5 (orange). The index has been desea-
sonalised and standardized in order to compare both models. The overlapping
of both distributions suggests that CESM in this setup is correctly simulating the
dynamics of the atmosphere.

As we already mentioned, the splitting of the jet should be evident the higher
the value of the index. We define a double jet as an event for which the ampli-
tude Dji exceeds a threshold corresponding to the 95th quantile of the distri-
bution of Dji, i.e. we consider as double jet the 5% most extreme events in our
dataset. This threshold is displayed as a vertical black line in fig. 23.1. Condi-
tioning on events with amplitude greater than this value, we observe in the
zonal wind in fig. 23.2 (c) and (d) the appearance of a band of strong westerlies
which is displaced poleward. These maps are for CESM. Similarly to what has
been done before, in fig. 23.3 we repeated this analysis with ERA5. We show
the summer climatology of vertical profile of the zonal averaged zonal wind
over Eurasia in (a) and conditioned the 5% most extreme double jet values in
(c). In the same figure, we show in (b) the climatology map of the zonal wind
daily averaged over the months of June, July and August and in (d) the compos-
ite map of the zonal wind conditioned over the 5% most extreme value of the
daily double jet index. The results between CESM and ERA5 bear great similar-
ity, and we are confident that the proposed index is correctly detecting double
jet events over the targeted area. Moreover, this behaviour strongly resembles
the one found in (Rousi et al., 2022) using machine learning-based techniques
for ERA5.

23.2 double jet and heatwave events

In this section, we investigate the link between double jet events and heatwaves.
A preliminary analysis of the composite maps of T2m and Z500 conditioned on
the 5% most extreme values of the daily double jet index has shown that posi-
tive temperature anomalies and associated anticyclonic anomalies occur prefer-
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Figure 23.1: Histograms and kernel density estimation of the standardized daily dou-
ble jet index for CESM (blue) and ERA5 (orange). Both indexes have been
deseasonalised and divided by the climatological standard deviation. The
vertical black line indicates the threshold corresponding to the 5% most
extreme events chosen to define a double jet in figs. 23.2 and 23.3.

(a) (b)

(c) (d)

Figure 23.2: (a) Vertical profile of the daily summer zonal wind U for the climate model
CESM (1000 years), longitudinally averaged over the Eurasian sector (10

◦W
to 180

◦E). We considered the months of June, July and August - (b) Zonal
wind U climatology for the CESM climate model (1000 years) for the months
of June, July and August, (c) - (d) same variable as for (a) - (b) but when
selecting days corresponding to the 5% most extreme values of the double
jet index. There is a clear sign of a second separate jet appearing at high
latitudes.
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(a) (b)

(c) (d)

Figure 23.3: (a) Vertical profile of the daily summer zonal wind U for the reanalysis
dataset ERA5, longitudinally averaged over the Eurasian sector (10

◦W to
180

◦E). We considered the months of June, July and August - (b) Zonal
wind U climatology for the reanalysis dataset ERA5 for the months of
June, July and August, (c) - (d) same variable as for (a) - (b) but when
selecting days corresponding to the 5% most extreme values of the daily
double jet index. There is a clear sign of a second separate jet appearing at
high latitudes.

ably in three regions: North Canada, Scandinavia and East Russia. The maps
are shown in fig. 25.3 for both CESM and ERA5. Thus, we decided to focus on
those regions (the exact regions are shown in section 25.6) to assess the link
between double jet and heatwaves. According to the definitions presented in
sections 22.2.1 and 22.2.2, we computed the double jet and heatwave indexes
for different duration, from 1 day to a season (90 days) and we defined a double
jet or a heatwave event based on either the 90th or 95th quantile of the distribu-
tion of both indexes i.e. we consider as double jet or heatwaves the 10 % or
5% most extreme events in our dataset. We decided to use two thresholds for
defining the events for flexibility. The results are shown in fig. 23.4. The top row
is for CESM (1000-year control run), the bottom for ERA5. Each column shows
the percentage of days in common in (from left to right) respectively North
Canada, Scandinavia and East Russia. These plots show a significant number
of overlapping days in all the regions, with an increase % of overlapping days
for long-lasting events. However, persistent double jet conditions are extremely
rare. We propose to overcome this limitation with the aid of a rare events al-
gorithm, which correctly simulate the dynamics of the climate model, but it is
tuned in a way to favour dynamical trajectories which most likely lead to rare
events. The one used here is a genealogical algorithm, sometimes referred in the
literature as Monte Carlo diffusion algorithm (Del Moral, 2004; Del Moral and
Garnier, 2005; Giardinà, Kurchan, and Peliti, 2006), presented in section 22.2.3.
This particular algorithm works for event which are persistent in space and
time, as discussed by (Ragone and Bouchet, 2020), thus it has the potential of



168 results

(a) (b) (c)

(d) (e) (f)

Figure 23.4: Percentage of days in common between double jet (defined in sec-
tion 22.2.1) and heatwave events (defined in section 22.2.2) as a function of
the duration in days, for different regions: (a) North Canada, (b) Scandi-
navia and (c) East Russia. The spatial areas are shown in section 25.6. Both
double jet and heatwaves are defined as events based on either the 90th

(q = 0.90) or 95th (q = 0.95) quantile of the distribution of both indexes,
i.e. we consider as double jet or heatwaves the 10 % or 5% most extreme
events in our dataset. (d) to (f) same as for (a) to (c) but using the reanalysis
dataset ERA5.

capturing the phenomenon we wish to study. For our study we apply it to sam-
ple double jet summers (months of June, July and August) over the Eurasia
continent. In the next section, we present the results.

23.3 importance sampling of extreme double jet summers

The main goal of the rare event algorithm is to perform an importance sampling
of the double jet distribution over the target region, Eurasia. We use the climate
model CESM, introduced in section 22.1.1. Figure 23.5a shows the histograms
and the kernel density estimation of the seasonal double jet for the control run
(orange), the 1000-year long available simulation, and the rare events algorithm
(blue). The algorithm effectively performs an importance sampling of the dis-
tribution, by sampling more efficiently the upper tail and even events which
were not present in the control distribution. The typical value for the double jet
index in the resampled distribution is 11.3 m/s, which is extremely rare in the
control distribution.

In fig. 23.5b, we plot the return time curve for both the control and the rare
events algorithm summers. A detailed description of how these curves are ob-
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(a) (b)

Figure 23.5: (a) Histograms and kernel density estimation of the seasonal JJA double
jet index in the 1000 years control run of CESM (orange) and with the
rare events algorithm (blue) with k = 0.01(m/s)−1(day)−1. This histogram
shows the power of the rare event algorithm. Indeed, an event in the tail
of the orange distribution becomes a typical event in the distribution ob-
tained with the rare event algorithm. We arrive to sample statistically sig-
nificant events which are not event present in the control run. (b) Return
time curves for the control run of CESM (1000 years) in black and the one ob-
tained with 10 runs of the rare event algorithm in blue. The dark blue line
represents the ensemble mean, while the shadow blue region corresponds
to one standard deviation.

tained can be found in section 25.4. The black curve is evaluated using 1000

years of data and indeed the rarest event has a return time of 103 years. The
rare events algorithm was tuned such that the typical value in the resampled
distribution should correspond to an event with a return time of 100 years in
the control run. From the return time curve, it is visible that 11.3 m/s, the typi-
cal value of the double jet in the resampled distribution corresponds to a return
time of 100 years in the control run. In the same figure, for each of the 10 runs
of the rare events algorithm, we compute a return time curve using a similar
procedure than for the control simulation. The dark blue shows the mean of the
return time curves over 10 runs, while the shading area denotes one standard
deviation. Thanks to the rare events algorithm, we sample events which occur
one in 104 − 105 years, with only 103 years of data. In a direct simulation, this
is simply impossible.

In the next section, we will investigate some dynamical quantities of interest
in both the control simulation of 1000 years of CESM and in the rare events
algorithm simulations.

23.4 teleconnection patterns for double jet summers

In this section, we analyse the dynamical fields of double jet summers with a
return time larger than 100 years (denotes as 100-year double jet summer or
events from now on). In fig. 23.6 we show the composite maps for the zonal
wind U, the 2 m temperature anomaly (T2m) and 500 hPa geopotential height
anomaly (Z500) for values of the double jet index (averaged over the months
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of June, July and August) larger than its 100-year double jet summer value,
for the control run of 1000 years (left column) and the rare events algorithm
(right column). Starting from the top row, we see the appearance of a poleward
second filament over Eurasia, which is our target region. Associated with this
configuration, we observe the emergence of three zones with positives T2m and
a wave number 3 in Z500. There are several interesting conclusions that we want
to convey.

Firstly, an important point regards the significance of the presented maps.
The first column of fig. 23.6 is obtained via an empirical average of 10 maps
solely (given that we have only 1000 years of data available). A Student t-test
has been applied and the corresponding t-value maps are shown in fig. 23.7.
Details of this statistical test are given in section 25.5. The zonal wind U has
the largest amount of significant zones, which is not surprising given that is
it strictly connected to the double jet definition. For the other two fields, we
can already observe some significant zones in North Canada, East and North
Europe and over East Russia, and over the Polar Circle for Z500. Given the
higher amount of sampled events in the rare event algorithm simulations, the
significant zones were enlarged. This is visible in fig. 23.7 right column, where
we plot the t-value maps obtained for the rare events algorithm. The algorithm
results are globally significant, despite in some areas, such as in the United
States of America. The conclusion in that the algorithm enables to evaluate the
existence of significant teleconnections associated with a double jet summer,
particularly in North Canada, Europe and East Russia.

The 100-year double jet summer composite maps reveal the presence of a
wave 3 pattern for Z500 and a correspondent teleconnection pattern in T2m

(fig. 23.6). While this pattern was already present for the T2m in the control, with
limited significant zones, for the Z500 the wave number was not clear in the con-
trol simulation, especially over the Atlantic Ocean. This feature becomes clearly
visible in the composite maps obtained with the rare events algorithm (right col-
umn). This teleconnection pattern is similar to the one shown in (Ragone and
Bouchet, 2020), where the authors used the same climate model and rare event
algorithm presented here for the sampling of warm summers in both France
and Scandinavia. The patterns are significantly similar for Scandinavian heat-
waves and a careful comparison with the processes discussed in (Ragone and
Bouchet, 2020) might be an interesting future pathway. We also mention that
another study from the same authors (Ragone, Wouters, and Bouchet, 2018)
which used the same rare events algorithm but a different climate model and
area, produced similar results in terms of teleconnection patterns. These results
strongly support the idea that teleconnection at subseasonal time scales and the
associated large scale dynamics corresponding to a wave number 3 are robust
features.

The rare events algorithm allows to sample events which are unseen in the
control run. In figure fig. 23.8 we plot the dynamical fields of double jet sum-
mers with a return time larger than 1000 years (denotes as 1000-year double
jet summer or events from now on). It is interesting to notice that the patterns
of the composite maps of 1000-year double jet summer are similar to the ones
of the 100-year double jet summer, for all the fields, with an obvious increas-
ing in the amplitude. This is consistent with previous results of the application
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Figure 23.6: Composite maps for U, T2m and Z500 for 100 years return time of double
jet index averaged over the summer months of June, July and August (dji
season in the titles) for (left) CESM control run (average over 10 maps) and
(right) the rare events algorithm.

Figure 23.7: Significance maps for fig. 23.6

of this class of algorithms to other climate phenomena (Ragone, Wouters, and
Bouchet, 2018; Ragone and Bouchet, 2021; Cozian, 2023; Wouters, Schiemann,
and Shaffrey, 2023; Cini et al., 2024; Sauer et al., 2024; Lestang, Bouchet, and
Lévêque, 2020; Le Priol, Monteiro, and Bouchet, 2024).

A final analysis which is currently missing is to make the link with the ex-
treme events, heatwaves in particular, more robust thanks to the enriched statis-
tics gathered with the rare events simulations.
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Figure 23.8: Composite maps for U, T2m and Z500 for 1000 years return time of double
jet index averaged over the summer months of June, July and August (dji
season in the titles) for the rare events algorithm.
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C O N C L U S I O N S

In this study we apply a rare events algorithm, the GKLT, to simulate double jet
stream summers over Eurasia during the months of June, July and August. We
decided to focus on the Northern Hemispheric summer season because of the
link between double jet events and heatwaves (Rousi et al., 2022).

The GKLT is an algorithm which has been originally designed in the context
of Large deviations theory for computing the rate function, which ultimately
gives an estimate of the asymptotic probability of observing a rare fluctuation
of a given observable. In the context of this study, we couple this algorithm
with a climate model to simulate the dynamics of the climate in a condition
to favour large fluctuations of a given one dimensional index representative of
the double jet. In this study the chosen index is a double jet index for which
high values of it translates into a marked splitting of the jet stream over the
Eurasian sector. Despite other indexes and methodologies have been used to
define a double jet (Rousi et al., 2022; Molnos et al., 2017; Gallego et al., 2005;
Pena-Ortiz et al., 2013), in this study we needed a one dimensional object which
could retain as much as possible of the double jet structure. This is the reason
why we chose to adapt an existing index (Yang and Chang, 2006) in the context
of the North Hemisphere and in particular over Eurasia.

With the rare events algorithm GKLT we effectively simulate more extreme
double jet seasons, making the extreme observed ones in the control run much
more likely. Moreover, we observe events which are unseen in the control sim-
ulation. This can be easily seen from the estimated distributions of the double
jet index in the control and with the rare events algorithm simulations.

The use of rare events algorithm such as the one employed in this study al-
lows to obtain realizations of the dynamics which led to the extreme event. For
this reason, we can empirically compute composite maps of several dynamical
quantities related to the double jet summers obtaining wider significant areas
than with direct sampling (for which the significant areas are likely limited to
the target region). An analysis of composite maps of 2 m temperature anomaly
field and of the 500 hPa geopotential height anomaly, conditioned over the oc-
currence of a 1-in-100 years double jet summer, reveals a significant wave num-
ber 3 pattern, with positive temperature and anticyclonic anomalies over North
Canada, North Europe/Western Russia and Eastern Russia. Similar teleconnec-
tion patterns and with the same wave number were found by (Ragone and
Bouchet, 2021) using the same climate model and rare events algorithm as used
in this study for simulating warm summer over the Scandinavia peninsula. An
interesting future perspective is to compare both studies to assess more quanti-
tatively the role of double jet in Northern European heatwaves. In the literature,
double jet have been analysed in correspondence with waves with higher wave
numbers (typically between 5 and 7) (Kornhuber et al., 2019; Coumou et al.,
2014; Petoukhov et al., 2016). A natural follow-up is then to investigate the
appearance of this wave number in the context of double jet.
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The rare events algorithm simulations give access to event which are unseen,
for instance those occurring with a return time higher than 1000 years. The in-
teresting conclusion is that the patterns of those composite strongly resemble
the ones with a return time higher than 100 years. A methodology has been re-
cently developed to motivate this striking feature. In (Mascolo et al., 2024) the
authors devised a framework which correctly captures the scaling of the com-
posite maps with the threshold level used to define the extreme events. With
simple but meaningful assumptions between the weather fields which charac-
terize the event and the metrics used to define the event, the authors found
an analytical expression for this scaling. In that work, the framework was ap-
plied to the analysis and forecasting of heatwaves over France. An interesting
future perspective is to apply it to the double jet index presented here. The final
missing link in the work is to analyse the data obtained with the rare events
algorithm for the occurrence of heatwaves. Preliminary analysis of three North-
ern hemispheric regions shows that there is indeed an overlapping number of
days between double jet days and heatwaves, and that this number increases
the more the double jet and the heatwaves are persistent. The natural analysis
to conclude this study would be interesting to investigate changes in heatwaves
with the enriched statistic gathered with the rare events simulations.
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S U P P L E M E N TA RY M AT E R I A L

25.1 detrending of era5 dataset

In this manuscript, we present an application of the double jet index to the
ERA5 reanalysis dataset (Hersbach et al., 2020). The daily data are publicly
available at ECMWF website (https://www.ecmwf.int/en/forecasts/dataset/
ecmwf-reanalysis-v5). Given that we are interested solely in the summer pe-
riod, we only downloaded the daily values of 2 m air temperature (T2m), 500 hPa
geopotential height (Z500), zonal wind U (averaged between 200 hPa and 350 hPa)
for the months of June, July and August for the Northern Hemisphere. The first
step for using the ERA5 dataset consisted to a detrending process, as we want
to study the response of climate in a stationary condition. We only detrend 2 m
air temperature (T2m) and 500 hPa geopotential height (Z500). Because we no-
ticed a latitudinal dependency of the trend for both variables, we performed a
latitudinal quadratic detrend of the seasonal zonal averages of 2 m air temper-
ature over land only (T2m) and 500 hPa geopotential height (Z500). The contour
plots of both trends are shown in fig. 25.1 and fig. 25.2. The latitudinal depen-
dency is stronger for the 500 hPa geopotential height (Z500) and is present at the
beginning of the dataset, suggesting a potential bias in the quality of the data
before the satellite era.
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Figure 25.1: Contour plot of the 2 m air temperature trend for ERA5 dataset as function
of years and latitude. The oceans are masked.

25.2 teleconnection patterns associated with daily double jet

The composite maps of T2m and Z500 conditioned on values of the daily double
jet index corresponding to the 5% most extreme values in the distribution (see
fig. 23.1) are shown in fig. 25.3. Connected with the double jet we observe
the emergence of temperature anomalies and associated anticyclonic anomalies
in three preferred zones: North Canada, Scandinavia and East Russia. Those
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Figure 25.2: Contour plot of the 500 hPa geopotential height trend for ERA5 dataset
as function of years and latitude. At high latitudes, the trend is non-
monotonic, while it is monotonically increasing in time at lower latitudes.

Figure 25.3: Composite maps for T2m and Z500 for 5% most extreme double jet days for
(left) CESM control run (1000 years) and (right) ERA5.

regions, highlighted in section 25.6 are chosen to assess the link between double
jet and heatwaves.

25.3 autocorrelation function

The autocorrelation function of the double jet index is shown in fig. 25.4.

25.4 return time curves

In this section we detail the computation of the return times presented in
fig. 23.5b. We first explain how we compute the return times for the 1000 years
long control simulation and then how we obtain them with the rare event al-
gorithm. This section is inspired by the works of (Lestang et al., 2018; Ragone,
Wouters, and Bouchet, 2018).

Given a stochastic process {X(t)}, an observable which depends of the path
{O[X(t)]} (indicated for simplicity as {O(t)} from now on) and a threshold
value a which separates between rare and not rare events, we can define the
random variable τ(a, t) = min{τ ≥ t|O(τ) > a}. Then the return time is de-
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Figure 25.4: Autocorrelation function of the double jet index. The orange and red lines
show exponential decays on time scales of 5 and 12 days respectively.

fined as the average time to wait to see an event of magnitude higher than a:

r(a) = E [τ(a, t)] (25.1)

We can estimate the return time r(a) thanks to the realization of the stochastic
process, of simulation length Td. This means that we have access to a finite
time realization of the process and of the path-dependent observable, which
we denote as {O(t)}0≤t≤Td . When we want to study high fluctuations of the
stochastic process (or of any quantity which depends on it O[X(t)]), namely
when a is high, we are interested in time scales which are higher than the
typical correlation time τc of the process of interest, i.e. r(a) ≫ τc. Thus, the
return time coincides with the time to wait, on average, between two statistically
independent events both exceeding the value a. In (Lestang et al., 2018) the
authors devised a methodology to correctly sample rare events based on the
context presented before. Let’s divide the time series of {O(t)}0≤t≤Td in M
blocks of duration ∆Td ≫ τc, such that Td = M∆Td. For each block, let’s define
the block maximum:

am = max{O(t)|(m − 1)∆Td ≤ t ≤ m∆Td} (25.2)

and

sm =

1 if am ≥ a

0 otherwise
(25.3)

for 1 ≤ m ≤ M. The variable sm counts how many rare independent events are
observed, i.e. N(t) = ∑m s(a)⌊t/∆Td⌋, which are well approximate by a Poisson
distribution when r(a) ≫ τc. Then, the probability of that am is larger than a
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can be estimated as an empirical average of the sm over the blocks, which gives
access to the return time:

r̂(a) = − ∆Td

ln
(

1 − 1
M ∑M

m=1 sm(a)
) (25.4)

In practice, we sort the sequence {am}1≤m≤M in decreasing order {âm}1≤m≤M,
such that â1 ≥ â2 ≥ · · · ≥ âM. Using eq. (25.4) we then associate at each
threshold {âm} its respective return time r({âm}) = ∆Td

ln(1− m
M )

. Finally, we can

plot the couple (r({âm}), âm) for 1 ≤ m ≤ M as in fig. 23.5b (black curve).
For computing the return time curves for a rare events algorithm, we proceed

in a very similar way. The rare event algorithm presented in this manuscript,
allow the sampling of rare events from an ensemble of M trajectories, denoted
as {Xm(t)}0≤t≤T, with 1 ≤ m ≤ M. For each of these trajectories, we will
compute am = max0≤t≤TO[Xm(t)]. Thus, in the particular application of return
time estimation for rare events algorithm simulations, each trajectory of the
algorithm plays the role of a block in the previous case. However, differently
from the previous case, each maxima (trajectory) carries a weight as well. Hence,
instead of the sequences {am}, we now have {am, pm} for 1 ≤ m ≤ M. The
generalization of eq. (25.4) in the case of non-equiprobable blocks is:

r̂(a) = − T

ln
(

1 − 1
M ∑M

m=1 pmsm(a)
) . (25.5)

In practice, to plot the return time curve, we sort in decreasing order the se-
quence {âm} to obtain {âm, p̂m} for 1 ≤ m ≤ M. We then associate for each
couple {âm, p̂m} its respective return time r({âm}) = T

ln(1−∑m
l=1 p̂l)

, with ∑m
l=1 p̂l

being the sum of the weights for events which have an amplitude greater than
{âm}. This is the methodology used for retrieving the blue curve in fig. 23.5b.
Note that, to have this curve, we also perform a second average between the
10 run of the rare events algorithm. The shadow corresponds to a standard
deviation among the runs.

25.5 significance test

This section describes the statistical test used for assessing the significance of
the composite maps of the zonal wind U, 2 m air temperature (T2m) and 500 hPa
geopotential height (Z500). We performed a Student t-test (Student, 1908), to test
if the composite map equals the unconditioned mean. We compute the t value:

t =
√

N
E[XT|Dji,T > h]− µ

S
(25.6)

where N are the independent samples, E[XT|Dji,T > h] is the empirical average
estimator of the composite maps , XT is the average over a season of each of the
fields, Dji,T is the seasonal double jet, h is the threshold, µ is the unconditional
mean, S2 is the sample variance. We compare the t value with the Student t
distribution value tN

q with N − 1 degrees of freedom at level q. Thus, for a
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(a) (b)

(c)

Figure 25.5: Regions in the Northern Hemisphere over which we computed the heat-
waves: (a) North Canada, (b) Scandinavia and (c) East Russia.

given value q, then we know that if |t| ≥ tN
q then we reject the null hypothesis

with probability q, i.e. the grid-point of the composite map is significant at a
level q. In our case N = 10. For our study, we want to assess significant areas in
the composite maps, thus this test is applied grid point-wise. For the composite
maps obtained with the rare events algorithm, seasonal events might still not be
independent due to possible common ancestor trajectories. We considered one
independent sample for each of the rare event algorithm runs, i.e. 10 samples.

25.6 regions for heatwave definition

The regions are shown in section 25.6.





Part V

E D I P I A RT H A Z A R D S - E A RT H - P R O J E C T

The idea behind the EArtH project was born during a cold and wet
Belgian Saturday night while I was watching a documentary of my
favourite art current, the Impressionism. The art critic was in the
North of France, in Étretat, known for its breathtaking cliffs, in the
footsteps of the father of the Impressionists, Claude Monet. The art
critic was describing one of its known painted views of the cliffs and
the path Monet did to arrive to a remote place to get that viewpoint.
Spoiler: not such an easy one.

Suddenly a question just rose in my mind: in a warming world
where the oceans are rising, could Monet have ever paint it ? Prob-
ably not. Realizing this has made me exceptionally sad, because
we are preventing next generations of the purely sense of happi-
ness I felt by watching at this and at many other paintings, and
many more emotions. And here comes my idea: can we show cli-
mate change effect on art paintings ? Can we take Monet’s paint-
ing and submerge with water ? Or can we take any other painting
and show that other extremes, such has heat, flood, food crops, etc.
will prevent all of this beauty to be shown to the world ? From
this vague idea, together with the EDIPI team I am part of 1, we
built this project I am profoundly proud of. I am and I will ever be
sincerely grateful to the EDIPI members who made this true. The
project is publicly available at https://edipi-itn.eu/resources/

outreach-material/projectearth/.

Here I present the first thematic repainting we posted some months
ago. Hopefully the first of a long series. I decided to include this
project in this manuscript because it is part of the outreach material
published under the EDIPI consortium. Here is the logo of EArtH:

E Ar H
Figure 25.6: EArtH logo designed by me.

1 https://edipi-itn.eu/

https://edipi-itn.eu/resources/outreach-material/projectearth/
https://edipi-itn.eu/resources/outreach-material/projectearth/
https://edipi-itn.eu/
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S N O W

Welcome to the first post of the EArtH team - the EDIPI Art Hazard project,
where we bring together art and climate to show the effects of climate change
on paintings according to scientific evidence taken from the IPCC reports.

Our idea is to modify some paintings using our creativity and scientific facts
and imagine them to be painted in 2100 under some emissions scenarios 1.

For every post we will choose some paintings according to the weather event
we wish to shade a light on. As the winter season is coming to its end, we
thought that it would be logical to start with a fairly wintery and magical one:
snow!

Figure 26.1: La route de Vetheuil, effet de
neige, 1879, Claude Monet.

Winter of 1879 went down in
history as one of the coldest in
Europe, with Siberian temperatures
recorded in Western Europe. It was
during these frigid times that Claude
Monet, vastly considered as the fa-
ther of the Impressionism art move-
ment, painted ‘The road to Vétheuil,
snow effect’ . We are in Vétheuil,
70 km northwest from Paris, in the
countryside, after a heavy snowfall.
The sky is still gray and gives a
sense of full winter. To convey that,
Monet used a symphony of colors

from white to purple, to light brown. The result is an almost full white landscape,
which reflects an immense sense of calm and freezing atmosphere.

Figure 26.2: Winter landscape in Switzer-
land near Engadin, 1920, Peder
Mørk Mønsted.

Another different sensation is given
from the painting ‘Winter landscape
in Switzerland near Engadin, 1920’
by Peder Mørk Mønsted, one of the
most renowned Danish painters. A
warm sunlight ray enters the painting
from the right side, illuminating a vast
part of the Alps landscape, giving us the
hope that spring is possibly coming back.

1 Emission scenarios serve as the basis for working out the possible climate conditions of the
future. The scenarios represent possible pathways that society might take regarding the emission
and concentration of greenhouse gases, aerosols and chemically active gases as well as emissions
from land use/land cover.
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The realism which characterizes
the vast majority of Mønsted mature
works is reflected here in the repro-

duction of the landscape as if it was a photograph. Indeed, we can still see
the influence of Monet works on him, for instance in the choice of the subjects.
Thus, without Monet works, Mønsted could not have been fully the great painter he
was and still is.

Imagine if we, along with Monet and Mønsted, could time travel to 2100

: could Monet have painted ‘The road to Vétheuil, snow effect’ under the
effect of climate change exactly the same way he did in 1879? Would Peder
Mørk Mønsted be able to recreate the same kind of photograph-like painting
of a winter mountain landscape if Monet could not have influenced him?

Unfortunately, the answer is not obvious: it depends on which scenario we,
humans, choose to pursue when it comes to our greenhouse gas emissions 2

Current climate is already different from the one Monet and Mønsted ex-
perienced when creating their masterworks. In their times, rapid industrialisa-
tion responsible for emitting greenhouse gasses had just begun, and we have
greatly changed our climate since then. The IPCC reports represent a compre-
hensive summary of what the overwhelming majority of the scientific commu-
nity agrees on topics associated with climate change. In the IPCC’s most recent
works 3, scientists confirmed that ‘global warming has already led to mass loss
from ice sheets and glaciers and reductions in snow cover’. In regions such as
the European Alps, the snow depth is projected to decrease by around 25% be-
tween recent decades and the near future. This corresponds to a continuation
of the ongoing decrease in annual snow cover duration (on average 5 days per
decade). For small glaciers such as in the European Alps, Pyrenees and Scan-
dinavia, reductions in ice mass of more than 80% by the end of the century
are expected under a “worst case scenario” (RCP8.5)4 compared with 30% un-
der the most optimistic scenario (RCP2.6)5. These numbers are best estimates

2 A greenhouse gas (GHG) is a gas that causes the atmosphere to warm by absorbing and emitting
radiant energy. Greenhouse gases absorb radiation that is radiated by Earth, preventing this heat
from escaping to space. Carbon dioxide (CO2) is the most well-known greenhouse gas, but there
are others including methane, nitrous oxide, as well as water vapor among others. Human-made
emissions of greenhouse gases from burning fossil fuels as well as industry, and agriculture are
the leading cause of global climate change. Before the Industrial Revolution started in the mid-
1700s the atmosphere contained approx. 280 particles of carbon dioxide per 1 million particles
(280 ppm CO2). Human activities led to an increase up to 417 ppm CO2 in 2022.

3 https://www.ipcc.ch/srocc/

4 The Representative Concentration Pathways (RCP) define trajectories representing greenhouse
gas, aerosol and chemical active gas concentrations as well as emissions from land use/land
cover for particular climate projections (namely, radiative forcing values in the year 2100). One
emission scenario thus works on the basis of the global community agreeing to drastically reduce
emissions of greenhouse gases. RCP8.5 represents a radiative forcing of 8.5 Watts per square
metre by the end of the century. In between these two are other scenarios that entail greater
or lesser degrees of technical advancement that would lead to slight reductions in greenhouse
gases. The higher the radiative forcing value, the greater the change in climate conditions.

5 The Representative Concentration Pathways (RCP) define trajectories representing greenhouse
gas, aerosol and chemical active gas concentrations as well as emissions from land use/land
cover for particular climate projections (namely, radiative forcing values in the year 2100). One
emission scenario thus works on the basis of the global community agreeing to drastically reduce
emissions of greenhouse gases: RCP2.6 scenario assumes an additional radiative of 2.6 Watts per

https://www.ipcc.ch/srocc/


snow 185

contained in the findings of the IPCC, and are inherently associated with vary-
ing degrees of uncertainty 6. For more information on the uncertainty with the
numbers in this article we refer you to the IPCC summary for policy makers 7.

Imagine that the end of the century has just arrived : we are in 2100 and we
have done nothing to curb our emissions. Our imagination combined with our
scientific knowledge suggested the following re-paintings.

For Monet’s painting we decided to use recycled pieces of clothing to remove
some of the snow in order to stress on how human actions have an effect on our
surroundings. Using discarded clothes also reminds us of the role of garbage
and discarded objects in our lives as consumers:

Figure 26.3: Original and Repainted version of ’La route de Vetheuil, effet de neige’,
1879, Claude Monet.

For Mønsted’s painting, given the information from the IPCC, we decided to
challenge AI and then to post process the image using some graphical tools.
We applied that in a corner of Mønsted’s painting to give you a feeling of what
could be the Alps in the worst case scenario in 2100. Can you imagine the rest
of the painting? We challenge you!

square metre by the end of the 21st century. Another scenario represents a situation in which
humans continue in the same way as we have to date, emitting ever more greenhouse gases.

6 Projections about possible future changes are always subject to uncertainties. Uncertainties have
many types of sources, from data uncertainty to model uncertainty, ambiguously defined con-
cepts or terminology, incomplete understanding of critical processes, or uncertain projections of
human behaviour. Scientific literature tries to reduce these uncertainties as best as possible. One
example is the usage of simulations by several models to include the impact of model differences.

7 https://www.ipcc.ch/report/ar6/syr/summary-for-policymakers/

https://www.ipcc.ch/report/ar6/syr/summary-for-policymakers/
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Figure 26.4: Original and Repainted version of ’Winter landscape in Switzerland near
Engadin’, 1920, Peder Mørk Mønsted. Partially done with DallE.

It is important to note that cold and snowy winters like the ones originally
painted would still be possible in 2100: they would just be much less common.
So, if our time-machine was able to bring Monet and Mønsted back to present
times for just one winter, the chances of them seeing the landscapes covered in
snow would be much lower than when they have painted them!

However, as we said, the future will depend on the scenario we choose.
We would like to dream of a world where another Monet in 2100 could paint
another version of ‘The road to Vétheuil, snow effect’ and that 40 years later,
inspired by him/her and other artists, another great future Peder Mørk Møn-
sted, will impress us with his/her view of ‘Winter landscape in Switzerland
near Engadin’.

We believe that this world can still be a real possible future one. Join the
climate action, do your part!

Dostojevski already said: ‘ Beauty will save the world’. Be part of this beauty.

And do not forget to share and/or comment on this post!

Paint to you soon,
The EArtH team



Part VI
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C O N C L U S I O N S A N D P E R S P E C T I V E S

27.1 conclusions

The aim of this thesis was to study heatwaves with novel theoretical method-
ologies. Studying this class of extremes is at the same time a fascinating and
a challenging field. In the realm of interesting questions associated with the
study of heatwaves, this thesis addressed the three following points:

• estimate the probability of heatwaves to occur;

• understand the dynamics associated with them;

• forecast them at intraseasonal time scales.

A bottleneck for answering the above questions is the lack of data, which nat-
urally arises in rare events studies. This was one of the conclusions drawn
from part ii. For instance, in that study, we compared the influence of two slow
drivers which are known to affect European summer heatwaves: spring soil
moisture and the Atlantic Multidecadal Variability AMV. Different studies have
proven that both drivers have separately an influence on European heatwaves
(Qasmi et al., 2021; Qasmi, Cassou, and Boé, 2017; Fischer et al., 2007b; Fischer
et al., 2007a; Alexander, 2011; Materia et al., 2022), but none of them has ever
estimated the relative influence of each driver. Using outputs from three dif-
ferent CMIP6 models, we showed that, for two complementary definitions of
heatwaves (one measuring the amplitude in terms of degrees and another one
the mean number of heatwave days per year) both factors have an influence
of the same order of magnitude, but soil moisture is a slow driver of greater
importance than the AMV for European summer heatwaves, both in terms of
extension of the region of influence and in terms of amplitude. This result is
valid both for heatwaves of return time of a few years up to heatwaves with a 50-
year return time. Studying the effects of both drivers on such rare events was
a novelty introduced by our study. Indeed, previous works looked at typical
heatwaves, those with a return time of a few years (Qasmi et al., 2021; Qasmi,
Cassou, and Boé, 2017). However, we know that the most harmful events are
the largest and rarest one (Robine et al., 2008). In our work, we studied the
effects of both drivers on much rarer heatwaves with the aid of return time maps,
maps conditioned on the time needed to observe a heatwave with a certain am-
plitude. Significance over these maps is already limited when return times of
the order of a decade are chosen. However, we proved that slow drivers such
as the AMV affects heatwaves in Europe by the same amplitude as the current
warming rate of hot extremes in Europe, thus it could either mask or exacerbate
this warming trend, with important impacts on society and environment.

In the following two chapters of this manuscript, I presented two different
methodologies for tackling the sampling problem connected to extreme and
rare events.
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In part iii we presented a novel theoretical framework for the analysis and
prediction of extreme events. We called this framework the Gaussian approx-
imation, because it relies on the assumption of joint Gaussianity between the
dynamical fields which characterize the extreme event under study and the
metric used to define the event. With this methodology, we characterized the
extreme event of interest using the information coming from the full dataset
and not only from the subset of data which define the extreme. We presented
an application of this study to heatwaves over France. However, the methodol-
ogy is fairly general and could be applied to many other extreme events. For the
analysis task, we explained theoretically why the composite maps, i.e. maps of
averaged dynamical variables conditioned on the outcome of the rare event, as-
sociated to very extreme events strikingly resemble those for less extreme ones
(fig. 12.1). Indeed, the only visible change regards the amplitude of the maps
and not in the structure of the patterns. With the Gaussian approximation, the
analytical composite maps are the same up to a rescaling by a non-linear func-
tion of the threshold that defines heatwaves and this rescaling predicted by our
approximation is the correct one we observe in climate data (fig. 15.2). For the
prediction task, with this framework we achieved a prediction skill comparable
to that of a Convolutional Neural Network, significantly diminishing the com-
putation time. The methodology naturally computes the committor function,
the conditional probability of observing a heatwave (or an extreme event in
general) within τ days given the set of dynamical fields (predictors) observed
today. This object, despite being the right tool for making prediction, is hard to
estimate as it is a function of high dimensional fields. Our framework naturally
performs a dimensionality reduction which, once properly regularized, shows
interesting and realistic weather patterns. The results suggest quasi-stationary
Rossby waves and low soil moisture as precursors to extreme heatwaves over
France. Moreover, the Gaussian approximation proved to be the method with
the highest predictive skill when applied to the short ERA5 reanalysis dataset,
for which the prediction with other methods, such as Convolutional Neural
Networks is strongly limited by the available data.

Differently from what has been done in the previous chapter, in part iv we
studied the phenomenology of double jet events over Eurasia by means of a
rare events algorithm, the Giardina-Kurchan-Lecomte-Tailleur GKLT algorithm
(Del Moral and Garnier, 2005; Giardina et al., 2011; Lecomte and Tailleur, 2007):
here we overcame the sampling problem by generating more realizations of the
event of interest. The double jet refers to a splitting of the jet stream into two fil-
aments, one which follows the natural path of the subtropical jet and the other
one which is anomalously displaced poleward. With the aid of a long climate
simulation of 1000 years with the CESM climate model, we adapted an already
existing definition of the double jet to the target area of study. This was a fun-
damental step for the study because the chosen rare events algorithm samples
large fluctuations of a time-averaged observable, named score function, which
in our study was the double jet index defined above. Thus, a proper score func-
tion, which shows persistence and good representation of the phenomenon
at the right temporal scales, is crucial for a successful implementation of the
GKLT algorithm. Moreover, an additional motivation for using this algorithm
for this case of study is that the percentage of common days between double
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jet events and heatwaves in three different areas of the Northern Hemisphere
augment when considering persistent events. Indeed, this algorithm works for
event which are persistent in space and time, as discussed by (Ragone and
Bouchet, 2020). The obtained results with the algorithm are rather encouraging.
Firstly, differently from previous applications of this algorithm, in this study we
sampled directly persistent atmospheric states prone to support extreme events.
In previous works, for example, the same rare events algorithm was applied for
sampling of extreme warm summers and the atmospheric states were retrieved
after (Ragone, Wouters, and Bouchet, 2018; Ragone and Bouchet, 2021). With
the algorithm, we sampled rare and even unseen double jet events, with a re-
turn time of 104 − 105 using only 103 years of simulation. Moreover, an analysis
of dynamical fields, conditioned on the occurrence of the double jet, such as the
geopotential height at 500 hPa and the 2 m air temperature anomalies showed a
significant wave 3 pattern. This teleconnection pattern was found in application
of the same rare events algorithm for sampling warm summers in different re-
gions (Ragone, Wouters, and Bouchet, 2018; Ragone and Bouchet, 2020; Ragone
and Bouchet, 2021). These results support the idea that teleconnection at sub-
seasonal time scales and the associated large scale dynamics corresponding to
a wave number 3 are robust features. The pattern in the 2 m air temperature
anomalies, conditioned on the occurrence of the double jet, shows three differ-
ent zones affected by significant anomalies: North Canada, Scandinavia/West
Russia and East Russia. The natural follow-up to finish this study is to inves-
tigate the link between double jet and heatwaves further with the rare events
simulations obtained.

27.2 perspectives

The study on the relative importance of two slow drivers on European heat-
waves, the AMV and the spring soil moisture deficit, presented in part ii, might
be followed up considering the effects of climate change. Indeed, the data used
for that study came from climate models run in stationary conditions. One
of the effects of climate change in Europe is the northward shift of climatic
zones within the European continent. As a consequence, Central and Eastern
Europe becomes a new transitional zone between dry and wet climates (similar
to the Mediterranean region in the present climate), becoming susceptible to
the effects of land–atmosphere coupling (Seneviratne et al., 2006). In this con-
text, the variability of soil moisture over the zone considered for our study (the
Mediterranean basin) might be reduced, leading to a reduced importance in the
modulation of heatwaves. This suggests the changing of the considered zone
for the analysis in the context of climate change.

A limitation of this study arises from the scarcity of data faced when we
aimed at studying really rare events. Specifically, we are already in a lack of data
regime for events with return times of a decade, and the analysis would be even
more challenging for events with higher return times, for instance a century.
The rare events algorithm, the Giardina-Kurchan-Lecomte-Tailleur GKLT, might
be used to circumvent this limitation. For instance, coupled climate simulations
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imposing different phases of the AMV might be run using as score function the
averaged temperature over some parts of Europe.

In part iii we presented a novel framework for the analysis and the predic-
tion of extreme events, focusing on heatwaves over France. A natural follow-up
would be to perform the same analysis on the 1000-long run of CESM used in
this manuscript. For composite maps, it would be interesting to see how the
error pattern (the difference between the estimated composite and the one cal-
culated with the Gaussian approximation) in the 500 hPa geopotential anomaly
changes with a model which has a finer atmospheric model than PlaSim. For
committor functions, it would be interesting to see how the prediction hori-
zon changes, if it changes, when the delay time and the heatwave duration
are changed. The study with the Gaussian approximation is for the moment
a methodological study. Thus, for example, an interesting direction would be
in the physical understanding of the projection patterns: why do we observe a
quasi-stationary pattern, that does not depend much on the lead time?

In part iv we simulated double jet summer seasons over Eurasia with the aid
of a rare events algorithm, the GKLT. A follow-up perspective could be to apply
the double jet index presented in part iv to the winter season in the Northern
Hemisphere. It is widely known that in summer the jet tends to be more zonal
than in other periods of the year (Coumou et al., 2018). Applying it to the winter
season, when the jet activity is higher, might be an interesting test bench.

A robust feature of the study is the emergence of a wave 3 pattern in response
to a double jet. In the literature, this structure of the jet has been associated to
higher wave numbers (Rousi et al., 2022; Petoukhov et al., 2016; Coumou et al.,
2014; Kornhuber et al., 2019). Further analysis is necessary to understand this
discrepancy and how this wave 3 pattern arises.

An interesting future perspective is to link the study of the double jet, pre-
sented in part iv, with the methodology presented in the part iii, the Gaussian
approximation. The natural starting point is to use the long simulation data
of 1000 years with CESM used in this manuscript. Using the Gaussian frame-
work for extreme double jet could also explain why composite maps of extreme
events are dynamically indistinguishable from the less extreme ones. This fas-
cinating property has been discussed for heatwave over France in section 15.3.
However, the methodology does not rely on the peculiar extreme event and
could be applied for double jet events. Another fascinating pathway, within the
application of the Gaussian approximation, is the forecast of double jet events.
This particular configuration of the jet has been linked to several heatwaves
in the Eurasian continent in the latest decades, including the severe ones of
2003 and 2018 (Rousi et al., 2022). In this sense, forecasting this sort of events
might be of extreme relevance in the context of risk limiting policies. The Gaus-
sian framework embeds an alternative methodology to more complex weather
forecasting models and could be used as a starting point for forecasting.

Another interesting perspective is to study what changes in the double jet
state when we consider a non-stationary climate. For instance, it could be in-
teresting to use some simulations in which the global surface temperature is
similar to the current values, to simulate the effect of climate change. These
simulations have been done by Francesco Ragone using the CESM model in the
setup used in this manuscript. I started the post-processing of these simula-
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tions, but I could not proceed into the analysis due to time lack. It would be
thus interesting to continue on this pathway and to use the double jet index
presented in this manuscript to understand the dynamic effects caused by the
thermodynamic changes, if any.

An application of GKLT algorithm could be for drought events. Indeed, as for
heatwaves and many other extremes, the societal and environmental impacts of
these events are higher the longer and the extended they are. Thus, analysing
the drought conditions in several parts of the world for entire seasons with the
GKLT could be an interesting perspective.

Focusing on the optimization of the rare events algorithm for short events, we
could improve the score function used for running it. A preliminary work done
at the beginning of my PhD together with Clément Le Priol 1 was to investigate
this question in the literature in the context of two classes of algorithms, the
Adaptive Multilevel Splitting and the Interacting particles, which embeds the
GKLT. Thanks to the work of (Chraibi et al., 2018), we know that there exists an
optimal score function for these algorithms. The optimal score function requires
the knowledge of the committor function (i.e. the ability to perfectly predict the
event) which we do not have and which is in principle the reason why we run
these algorithms. In this sense, the Gaussian approximated committor might be
an ideal candidate eq. (14.3). This perspective is currently under investigation
by Clément Le Priol, using PlaSim climate model, for studying short heatwaves
(from 1 to 2 weeks).

Another alternative would be to design a novel algorithm, different from the
GKLT, to improve the forecast of extreme events. In our research group, we
began a collaborative project to address this task. A novel algorithm has been
designed by Tony Lelievre2 and Julien Reygner2 and is currently being tested by
Alessandro Lovo3 and Amaury Lancelin 45 on toy models. Freddy Bouchet and
Corentin Herbert3 are also involved in direction of the project. My contribution
should come at a later stage, in the coupling of this algorithm with a climate
model. The goal of the algorithm is to generate new data which are tailored for
improving the estimation of the committor. The first part of the work has been
centred around the proper theoretical formalism. Practically, we start with an
empirical estimate of the committor function given by machine learning (using
the same methodology as the one presented for convolutional neural networks
in part iii) or by the Gaussian approximation and then we improve its estimate
following the theoretical framework developed. Since this model is still under
testing, it remains a fully open question to be addressed in the months and
probably years to come.

A final long term goal, which is strictly connected to the ones presented
above, is to link machine learning and rare event algorithm for prediction pur-

1 CNRS, LMD/IPSL, ENS, Université PSL, École Polytechnique, Institut Polytechnique de Paris, Sorbonne
Université, Paris France

2 Centre d’Enseignement et de Recherche en Mathématiques et Calcul Scientifique, École des Ponts Paris-
Tech, 6 et 8, Avenue Blaise Pascal, Cité Descartes—Champs sur Marne, 77455 Marne la Vallée Cedex 2,
France

3 ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
4 CNRS, LMD/IPSL, ENS, Université PSL, École Polytechnique, Institut Polytechnique de Paris, Sorbonne

Université, Paris France
5 RTE France
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Figure 27.1: Sketch of the coupling process between machine learning and rare event
algorithms. Figure taken from (Lucente et al., 2022).

poses. The sketch of the coupling process is shown in fig. 27.1. Starting from the
already available data, we could have a primordial estimation of the committor
function either via machine learning techniques (such as convolutional neural
networks) or via the Gaussian approximation or the new sampling algorithm.
Then, with this estimate, we could use rare event algorithms to generate new
data with which estimating a new (hopefully better) committor function. This
coupling has already been done with a toy model, using Analog Markov Chains
to estimate the committor function (Lucente et al., 2022) and seems promising.
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