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A B S T R A C T

In Data-Centric Artificial Intelligence (DCAI), enhancing data quality takes precedence
over solely focusing on AI model improvements. This shift leads to massive unlabeled data,
creating a need for effective methods to identify which data should be tested first. The
thesis addresses the challenge of enhancing deep learning system robustness by focusing
on testing misclassified or error-revealing data. This work presents new solutions for
improving test prioritization within DCAI.

Deep learning systems, crucial in many sectors, can sometimes behave unpredictably,
leading to problematic outcomes. To mitigate this problem, we introduce DeepAbstraction,
a test prioritization framework designed to identify and prioritize potential error-prone
instances within large, unlabeled datasets. DeepAbstraction strategically utilizes runtime
monitors to create box abstractions- clusters of similar instances. This approach enhances
the identification of misclassified instances, a task where traditional methods often struggle.
Our research shows that DeepAbstraction performs effectively in identifying a wider range
of potential error-revealing instances compared to existing methods.

Evaluating the effectiveness of test prioritization methods remains a key challenge.
Existing metrics such as APFD, RAUC, and ATRC, commonly used for evaluating test
prioritization techniques, have certain limitations. These metrics do not fully account for
essential factors like the costs involved in labeling data. Furthermore, there is an excessive
focus on the rate at which faults are detected, overshadowing the equally important
aspect of the ratio of detected faults. This oversight suggests a gap in how these metrics
reflect the true performance of test prioritization algorithms. Our research addresses these
limitations by introducing two novel metrics: the Weighted Fault Detection Ratio (WFDR)
and the Severity Fault Detection Rate (SFDR). WFDR improves assessment by balancing
the fault detection ratio and rate. Furthermore, SFDR focuses on prioritizing instances
with high-severity misclassifications. Collectively, these metrics provide a more thorough
evaluation of test prioritization techniques.

The final part of this thesis revisits the limitations of the initial DeepAbstraction frame-
work. A key challenge in the DeepAbstraction framework lies in selecting the right τ

value—a parameter that affects the size of boxes used to categorize data. The selection of τ
is crucial as it directly influences the framework’s stability and effectiveness. To address this
issue, we develop a method that combines all multiple monitors into one comprehensive
monitor to assess network predictions. This ensures that no single assessment entirely
controls the decision-making process, unlike the previous version of DeepAbstraction.
We also introduce several techniques to integrate the verdicts of monitors into a final,
balanced verdict. Our approach significantly improves the performance and stability of
the DeepAbstraction framework. In comparison with leading algorithms, our enhanced
version, DeepAbstraction++, consistently marks an improvement in performance by 2.38%
to 7.71%.

In conclusion, this thesis makes a significant contribution to the field of test prioritization
in Data-Centric AI. It introduces a robust framework and two metrics while also addressing
existing limitations.
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R É S U M É

Dans l’intelligence artificielle centrée sur les données (Data-Centric AI, DCAI), l’amélio-
ration de la qualité des données prend le pas sur l’amélioration des modèles d’IA. Ce
changement conduit à des données non étiquetées massives, créant un besoin de mé-
thodes efficaces pour identifier les données qui devraient être testées en premier. La thèse
aborde le défi de l’amélioration de la robustesse des systèmes d’apprentissage profond
en se concentrant sur le test des données mal classées ou révélatrices d’erreurs. Ce travail
présente de nouvelles solutions pour améliorer la priorisation des tests au sein de DCAI.

Les systèmes d’apprentissage profond, essentiels dans de nombreux secteurs, peuvent
parfois se comporter de manière imprévisible, ce qui entraîne des résultats problématiques.
Pour atténuer ce problème, nous présentons DeepAbstraction, un cadre de hiérarchisation
des tests conçu pour identifier et hiérarchiser les instances potentiellement sujettes à des
erreurs dans de grands ensembles de données non étiquetées. DeepAbstraction utilise
stratégiquement des moniteurs d’exécution pour créer des abstractions de boîtes - des
grappes d’instances similaires. Cette approche améliore l’identification des instances mal
classées, une tâche pour laquelle les méthodes traditionnelles ont souvent des difficul-
tés. Nos recherches montrent que DeepAbstraction permet d’identifier efficacement un
plus grand nombre d’instances potentiellement révélatrices d’erreurs que les méthodes
existantes.

L’évaluation de l’efficacité des méthodes de hiérarchisation des tests reste un défi
majeur. Les métriques existantes telles que APFD, RAUC et ATRC, couramment utilisées
pour évaluer les techniques de hiérarchisation des tests, présentent certaines limites. Ces
métriques ne tiennent pas pleinement compte de facteurs essentiels tels que les coûts liés à
l’étiquetage des données. En outre, l’accent est mis de manière excessive sur le taux de
détection des fautes, occultant l’aspect tout aussi important du ratio des fautes détectées.
Cette omission suggère une lacune dans la manière dont ces métriques reflètent la véritable
performance des algorithmes de hiérarchisation des tests. Notre recherche aborde ces
limitations en introduisant deux nouvelles métriques : le ratio pondéré de détection des
fautes (Weighted Fault Detection Ratio, WFDR) et le taux de détection des fautes de gravité
(Severity Fault Detection Rate, SFDR). Le WFDR améliore l’évaluation en équilibrant le
ratio et le taux de détection des fautes. En outre, le SFDR se concentre sur la priorisation
des instances présentant des erreurs de classification de grande gravité. Collectivement, ces
métriques fournissent une évaluation plus approfondie des techniques de hiérarchisation
des tests.

La dernière partie de cette thèse revient sur les limites du cadre initial de DeepAbstrac-
tion. L’un des principaux défis du cadre de DeepAbstraction réside dans la sélection de la
bonne valeur de τ - un paramètre qui affecte la taille des boxes utilisées pour catégoriser
les données. Le choix de τ est crucial car il influence directement la stabilité et l’efficacité
du cadre. Pour résoudre ce problème, nous développons une méthode qui combine tous
les moniteurs multiples en un seul moniteur complet pour évaluer les prédictions du
réseau. Cela garantit qu’aucune évaluation ne contrôle entièrement le processus de prise
de décision, contrairement à la version précédente de DeepAbstraction. Nous introduisons
également plusieurs techniques pour intégrer les verdicts des moniteurs dans un verdict
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final équilibré. Notre approche améliore considérablement les performances et la stabilité
du cadre de DeepAbstraction. En comparaison avec les principaux algorithmes, notre ver-
sion améliorée, DeepAbstraction++, marque une amélioration constante des performances
de 2,38 % à 7,71 %.

En conclusion, cette thèse apporte une contribution significative au domaine de la
hiérarchisation des tests dans l’IA centrée sur les données. Elle introduit un cadre robuste
et deux métriques tout en abordant les limitations existantes.
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D E F I N I T I O N S A N D T E R M I N O L O G Y

To ensure clarity and coherence, this section briefly defines key terms and concepts used
throughout the thesis:

• Data-Centric AI: An approach that emphasizes the importance of high-quality data
over model architecture for improving AI system performance.

• Big Data: Extremely massive datasets that may be analyzed to reveal patterns, trends,
and associations, which challenge traditional data processing approaches.

• High-Stakes Domains: Areas such as healthcare and autonomous driving where
errors or vulnerabilities in AI systems can result in severe consequences, including
loss of life.

• Data Annotation: The process of attaching labels or metadata to unstructured data,
such as images or text, to make it usable for machine learning models.

• Test Prioritization: A technique aimed at ranking test instances based on their
likelihood to reveal system vulnerabilities, thus optimizing resource allocation during
the data labeling and validation process.

• Model Reliability: Is the ability of a machine learning model to maintain consistent
performance levels and reliably produce correct outputs. This characteristic signifies
the model’s dependability across different applications and its stable performance
over time.

• Model Robustness: The ability of a machine learning model to perform well under
various conditions, including the presence of noise or previously unseen data.

• Performance Stability (Hyperparameters): A machine learning model’s ability to
maintain consistent accuracy or other metrics across different hyperparameter con-
figurations. High-performance stability indicates less sensitivity to hyperparameter
variations.

• ML Model Deployment: The process of integrating a trained machine learning
model into a production environment where it can process real-world data and
provide actionable insights or decisions.

• Data Cascades: Compounding issues in data-driven projects that arise from initial
errors in how data is collected, stored, or used, often leading to suboptimal results in
AI systems.

• Data Management Systems: The frameworks and technologies used for storing,
retrieving, and managing data, which are crucial for the efficient operation of AI and
machine learning systems.

xvi
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I N T R O D U C T I O N A N D B A C K G R O U N D



1
I N T R O D U C T I O N

1.1 motivation

The emerging idea of Data-Centric AI (DCAI) has greatly elevated the importance of data in
AI systems. This approach stands in contrast to Model-Centric AI (MCAI), which primarily
concentrates on developing and fine-tuning Deep Neural Networks (DNNs). DCAI shifts
the focus from merely fine-tuning models to systematically engineering the data that feeds
the models, especially in high-stakes domains like healthcare and autonomous driving.
This shift comes from recognizing that even the most advanced algorithms can yield
suboptimal results and trigger data-cascades [67] if the training data is flawed, biased, or
incomplete. To address this, DCAI aims to ensure that data is accurate, well-labeled, and
reflective of real-world scenarios. For instance, in healthcare, better data can lead to more
accurate diagnoses[9], while in autonomous driving, high-quality data can significantly
improve safety measures. By focusing on data quality, DCAI offers a practical, scalable,
and cost-effective path to improve reliability, fairness, and overall performance across a
wide array of applications.

With the advent of big data, the landscape for innovative research and applications
has expanded dramatically. For instance, sectors ranging from healthcare to finance are
generating petabytes of data at an unprecedented rate. This massive volume of the collected
data can significantly enhance intelligent systems, facilitating more precise predictions and
improved decision-making. However, the manual annotation of large datasets proves to be
a labor-intensive, costly, and time-consuming task. These challenges become even more
pronounced when specialized domain knowledge is necessary for accurate data labeling,
e.g., healthcare [52] and aviation [18]. Additionally, the complexity increases when a single
test instance includes multiple objects for labeling, a common scenario in object detection
and segmentation problems. Advanced AI systems seem capable of managing large data
volumes effortlessly. However, the actual limitation often exists in the foundational data
management systems responsible for storage and retrieval, as well as in the availability
and capacity of processing units crucial for efficiently running these systems. Inadequacies
in these systems can lead to operational bottlenecks and errors. Such issues undermine the
efficiency of AI systems that depend on these data management systems. Therefore, the
development of robust labeling strategies becomes essential, consequently enhancing the
potential of big data and improving the performance of DCAI systems.

In situations with enormous data volumes and restricted labeling budgets, the random
selection of test instances for labeling is problematic. This approach often leads to the
neglect of specific instances crucial for revealing vulnerabilities in Deep Learning (DL)
systems. If these critical but neglected test instances are not included during the testing
phase, the system might lack robustness and fail in challenging or novel real-world
scenarios. For instance, the fatal incident where a Tesla vehicle failed to identify a trailer
due to a rare combination of lighting and height conditions [78]. Similarly, a Google
self-driving car was involved in a collision with a bus, triggered by an unpredictable
sequence of events [79]. Therefore, this oversight carries significant implications, including
catastrophic failures and, in extreme situations, loss of life. As a result, this situation

2
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underscores the critical role of strategic test prioritization. As a result, this can significantly
reduce the risks associated with deploying intelligent systems in real-world scenarios.

Test prioritization is a systematic technique designed to rank unlabeled test instances
in order of their likelihood to reveal errors, vulnerabilities, or other points of interest in a
given system. Moreover, test prioritization aims to optimize the process of data labeling and
validation by identifying the most critical and relevant data points for review. This approach
not only saves time but also allocates resources more efficiently like computational power
and human expertise. In high-stakes domains, where the margin for error is minimal, test
prioritization becomes indispensable. It ensures that the most critical data, which exposes
system vulnerabilities, receives immediate attention, thereby substantially elevating the
system’s reliability and robustness.

For example, in healthcare, test prioritization could help identify the most ambiguous or
complex medical images that are likely to challenge an AI diagnostic system. By giving
priority to these challenging cases for expert human review, the system can better learn
to handle such complexity. This strategy thereby improves its diagnostic accuracy and
robustness over time. Similarly, in autonomous driving, test prioritization can focus on
complex or high-risk driving scenarios that an AI system struggles to handle. Recognizing
these challenging cases early allows developers to direct additional resources toward
labeling these particular instances. This focused effort improves the AI system’s competency
in handling difficult conditions, which in turn elevates road safety. The adoption of test
prioritization strategies enables organizations to fine-tune their system’s performance
while optimizing the use of available resources.

1.2 scope

The scope of this thesis centers on improving test prioritization’s effectiveness and stability
in DCAI systems. Test prioritization is crucial in scenarios where data quality and timely
labeling are paramount. The research introduces a practical framework, DeepAbstraction++,
and two novel evaluation metrics, to enhance the data labeling and validation process.
Moreover, it highlights the significance of test prioritization algorithms in debugging AI
systems before deployment, with a particular focus on multi-class classification problems
and image-based applications.

1.3 test generation techniques

Test generation techniques for DNNs are critical methodologies that ensure the perfor-
mance, reliability, and robustness of these advanced systems. These techniques, each
addressing unique aspects of DNN testing, become even more effective when combined
with test prioritization strategies. This combination enhances the overall testing process.
Key techniques in this realm include Metamorphic Testing, Mutation Testing, and Fuzz
Testing, each offering distinct advantages and approaches to DNN testing. These test
generation techniques, augmented with test prioritization, provide a robust framework
for DNN assessment, ensuring early issue detection, optimal resource allocation, and
the development of reliable DNN models. Each technique addresses different testing
challenges, contributing uniquely to the comprehensive validation of DNNs.
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1.3.1 Metamorphic Testing

Metamorphic Testing (MT) [62, 93, 94] in the context of DL-driven software, particularly
those processing images, is an innovative approach adapted from traditional software
engineering. The essence of this method lies in defining Metamorphic Relations (MRs) and
using these MRs to generate test images. MRs serve as guidelines that dictate how changes
in input (such as images) should affect the system’s output. In the following, we explore
key examples of Metamorphic Testing:

• DeepTest: [77] This method is used in DNN-driven autonomous driving systems.
It generates test input images through transformations like changing brightness,
and contrast, or adding effects such as raindrops. However, the realism of these
transformed images is limited.

• DeepRoad: [89] DeepRoad uses a Generative Adversarial Network (GAN)-based
image transformation method to create more realistic images of diverse driving
scenes, e.g., rainy or snowy roads. These images are then used to test the consistency
of the autonomous driving system’s performance.

• DeepBackground: [14] Focusing on the influence of image backgrounds, DeepBack-
ground introduces the Background-Relevance (BRC) metric. It generates test images
by altering the background while keeping the main object unchanged, assessing the
robustness of image recognition systems against background variations.

These techniques illustrate how metamorphic testing can be applied to test various
aspects of DL systems, emphasizing general performance under different conditions and
robustness against background changes. Given that metamorphic testing can generate an
extensive dataset, the implementation of test prioritization becomes crucial. This involves
strategically organizing test cases in order of importance, focusing on the criticality
and complexity of the metamorphic relations. Such prioritization ensures that the most
significant scenarios are examined first, thereby optimizing the efficiency and effectiveness
of the testing process.

1.3.2 Mutation Testing

Mutation testing [47] in the context of Machine Learning (ML) and DL involves the
systematic introduction of small modifications or mutations to the components of these
systems. This method aims to evaluate the efficacy of test suites in identifying these induced
errors. In conventional software engineering, mutation testing typically entails making
incremental alterations to the program’s source code. However, within the realm of DL
systems, this process extends beyond mere code modification. It encompasses variations in
the testing dataset and also alterations to the neural network architectures. There are many
leading research works in this area, e.g., DeepMutation [42], and DeepMutation++ [29],
DeepCrime [30]

For example, mutation testing includes manipulating the characteristics of the input
data, injecting noise, or modifying the layers and neurons in the neural network. These
deliberate perturbations serve as proxies for potential real-world errors or anomalies. The
principal objective of this approach is to assess the resilience and accuracy of deep learning
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systems. A test suite that effectively identifies and addresses these simulated mutations
is deemed capable of reliably detecting and handling actual, unforeseen faults. Thus,
mutation testing in deep learning is a strategic approach to ensure the robustness and
dependability of these advanced computational models.

Test prioritization with mutation testing creates a synergistic approach to enhancing the
efficiency and effectiveness of AI testing. This integration involves organizing test cases in
a manner that prioritizes the detection of critical faults. This prioritization is crucial when
dealing with a large number of mutations introduced during mutation testing. It aids in
identifying those test cases that are particularly effective at detecting significant mutations,
ensuring early detection of vital issues.

1.3.3 Fuzz Testing

Fuzz testing involves systematically a wide variety of modified inputs into neural network
models to test their robustness and error-handling capabilities. In practice, fuzz testing
creates inputs that are diverse and often slightly altered. For example, in a neural network
tasked with image recognition, fuzz testing would involve inputting images with various
modifications, e.g., adding random noise, applying filters that distort or obscure parts of
the image, or altering color schemes in ways that are not typically encountered during the
network’s training phase.

The value of fuzz testing in deep learning is highlighted by its ability to reveal how these
models react to unexpected or noisy data, a common occurrence in real-world scenarios.
By determining the points of failure or performance degradation in these models under
such conditions, developers and researchers can gain insights into potential weaknesses or
blind spots. This leads to more robust and error-resilient neural network models. These
networks are particularly important in applications where reliability and accuracy are
critical, such as in medical diagnostics, and autonomous vehicles. The leading works in
this area are DeepHunter [86], FuzzGAN [26], DLRegion [76], and GradFuzz [51]. Test
prioritization in fuzz testing involves identifying and testing scenarios most likely to reveal
significant vulnerabilities first. This strategy ensures that the most critical security flaws
are detected early, enabling timely remediation and reinforcing the overall security posture
of the DNN systems.

1.4 summary of contributions

The thesis has three main contributions to the field of test prioritization. After thorough
studying for the state-of-the-art work, there has been very little research work published
in this area until 2020. Our first contribution was to enrich this research area with an
effective framework namely, DeepAbstraction. DeepAbstraction focuses on improving test
prioritization area for deep learning systems. This contribution includes the following:

1. Effectiveness of monitors in test prioritization: The paper is the first to investigate
the role of runtime monitors in the area of test prioritization for deep learning
systems.

2. Comprehensive study on misclassified instances: The paper provides an in-depth
study of where misclassified instances can reside in the feature space. It discusses
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the limitations of existing techniques that focus mainly on near-boundary instances
and introduces a way to also prioritize near-centroid instances effectively.

3. State-of-the-art performance: DeepAbstraction is empirically shown to outperform
existing state-of-the-art test prioritization techniques. It does not require any prior
labeling for test instances to operate, making it a practical solution for reducing
labeling costs.

After publishing the first paper, we identified some limitations in the existing metrics
like APFD, RAUC, and ATRC, which are commonly used to evaluate test prioritization
algorithms. Thus, we focused on developing new metrics to evaluate effectively the test
prioritization techniques in deep learning systems. More specifically, we proposed two new
metrics: Weighted Fault Detection Ratio (WFDR) and Severity Fault Detection Rate (SFDR).
The main contributions of the second paper are as follows:

1. Intensive study on existing metrics:
The paper conducts the first intensive study to investigate the effectiveness of existing
metrics for test prioritization in deep learning systems. It highlights the limitations
of these metrics, such as neglecting the labeling budget and prioritization difficulty.

2. Introduction of WFDR metric:
The paper introduces a new metric called WFDR that addresses the limitations of
existing metrics. WFDR evaluates algorithms based on both fault detection ratio
and rate. It also incorporates the prioritization difficulty adaptively during the
prioritization process.

3. Introduction of SFDR metric:
The paper also introduces another metric called SFDR, which evaluates algorithms
in the context of severity prioritization. This metric is particularly useful in critical
situations where prioritizing misclassified instances according to their severity level
is crucial.

In the third paper, we revisited the first paper to address the limitations of the DeepAb-
straction framework. We introduced combined parameterized boxes to improve the selection
issue of the τ parameter, enhancing the framework’s performance and stability. The main
contributions of the paper are as follows:

1. Identification of weaknesses in the earlier version of DeepAbstraction: The paper
starts by analyzing the earlier version of DeepAbstraction, pointing out the weak-
nesses that compromise its performance and reliability. Specifically, it highlights the
challenge of selecting the appropriate τ parameter, which affects the size of the boxes
used for abstraction.

2. Introduction of combined parameterized boxes: We also introduce a new methodol-
ogy called combined parameterized boxes. This approach uses multiple monitors with
various τ values to evaluate network predictions. It aims to overcome the limita-
tions of relying on a single monitor’s verdict, thereby enhancing the accuracy of the
system’s decisions.

3. Unique weighting system and combination strategy: The paper establishes a unique
weighting system that balances the decision-making process when conflicts arise
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among different verdicts of monitors. This system assigns unique weights to rejec-
tion, acceptance, and uncertainty verdicts. We also propose multiple strategies for
integrating these weighted verdicts into a conclusive verdict, such as mean, max,
product, and mode.

1.5 thesis outline

This document is organized into four parts.

1.5.1 Part I: Introduction and Background

– Chapter 1: Introduces the thesis topic and provides context and motivation. Also
includes a summary of contributions.

– Chapter 2: Offers background information on key topics like deep neural networks,
test prioritization, and runtime monitoring.

1.5.2 Part II: Contributions

– Chapter 3: Introduces DeepAbstraction, a 2-level prioritization algorithm for unlabeled
test inputs. Discusses its effectiveness, efficiency, and stability.

– Chapter 4: Focuses on metrics for test prioritization in deep learning, specifically
targeting the faults severity and prioritization difficulty.

– Chapter 5: Enhances the initial framework through DeepAbstraction++, which com-
bines parameterized boxes for better performance.

1.5.3 Part III: Related Work

– Chapter 6: Reviews the current state of the art and related work in test prioritization
algorithms and introduces concepts in runtime monitoring.

1.5.4 Part IV: Conclusion and Future Work

– Chapter 7 outlines the final conclusion and discusses potential avenues for future
research.
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In this chapter, the focus is on laying the foundational concepts that guide the entire
research. It begins with an exploration of features and feature space, delving into the
intricacies of DNNs and Convolutional Neural Networks (CNNs). The chapter also covers
essential topics such as multi-class classification, test prioritization, and runtime monitoring.
We discuss various statistical scoring functions, including Gini Impurity and Entropy
providing an in-depth insight into the topic. Furthermore, the chapter extends the scope
to include evaluation metrics like APFD, RAUC, and ATRC. It concludes with areas
closely related to test prioritization, such as active learning and test selection. This chapter
functions not only as a foundational context but as a roadmap, connecting diverse concepts
and laying the groundwork for the in-depth exploration that follows.

8
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2.1 features

In deep learning, features [90] are often represented as feature vectors, which are n-
dimensional vectors of numerical features that represent an object. These feature vectors
capture the relevant information about the object and serve as input to the classifier. The
feature space is the vector space associated with these feature vectors.

For instance, consider a gray-scale image, sized 28x28 pixels. In deep learning, this image
is represented as a 784-dimensional feature vector, where each dimension corresponds
to the intensity of a pixel in the image. The pixel intensities, ranging from 0 to 255, form
the numerical values of the feature vector. This vector serves as the input to a classifier,
encapsulating all necessary information about the image within the 784-dimensional
feature space.

2.2 feature space

The feature space [80] in deep learning refers to the space or representation where the input
data is transformed and processed by the deep learning model. It is a high-dimensional
space that captures the important features or patterns in the data. Each dimension in the
feature space corresponds to a specific feature or attribute of the input data.

Deep learning models learn to extract meaningful features from the raw input data
through a series of layers, such as convolutional layers, recurrent layers, or fully connected
layers. These layers transform the input data into a more abstract and compact representa-
tion in the feature space. The goal is to create a representation that is more suitable for the
task at hand, such as image classification or natural language processing.

For example, in a facial recognition deep learning model, the input is colored face images.
These images first appear as pixel-level features. As they pass through convolutional layers
of the model, these simple features transform into complex ones like edges, textures, and
facial components (eyes, nose). In this context, the feature space is a high-dimensional space
where each dimension represents a specific, learned facial feature. This transformation
allows the model to effectively differentiate and recognize individual faces based on
characteristics like eye shape or smile, identified in distinct dimensions of the feature
space.

The feature space plays a crucial role in deep learning as it determines the quality
and effectiveness of the learned representations. A well-designed feature space can lead
to better performance and generalization of the deep learning model. Researchers often
explore different techniques and architectures to improve the data representation in the
feature space and enhance the performance of deep learning models.

In deep learning, the feature space effectively captures and transforms input data.
Building on this concept, exploring the feature space is critical not just for enhancing data
representation in models but also for identifying potential inadequacies. This exploration
directly relates to how features are represented and transformed within the model. By
examining each dimension of this complex space, where each dimension represents a
unique aspect of the input data, researchers gain insights. They understand how specific
input features influence the model’s decision-making process. Such thorough analysis
of the feature space is essential for uncovering weaknesses or limitations in the model’s
decision-making process, crucial for developing more robust and reliable deep learning
models [96].
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2.3 deep neural network

A Deep Neural Network (DNN) is a type of artificial neural network with multiple layers
between the input and output layers as shown in Fig. 2.1. These intermediate layers,
known as hidden layers, allow the network to learn complex patterns and representa-
tions of the input data. Let Xt and Xs denote the training and test datasets, respectively,
where Xt = {(x1, y1), (x2, y2), ..., (xm, ym)}, where m is the number of the training in-
stances, x is a network input, and y is the ground truth or the actual class. Similarly, let
Xs = {x1, x2, ..., xr}, where x is an unlabeled test input and r is the number of test instances.
Let N be a neural network, and N (x) be the network prediction. N consists of a set
of layers such that L = {Lk | 1 ≤ k ≤ q}, where q is the total number of layers in the
neural network. The number of neurons in a layer Lk is denoted by |Lk|. In a multi-class
classification problem, the last layer Lq is a softmax layer, and Lq−1 layer, namely the
penultimate layer.

Figure 2.1: An example of FeedForward Neural Network.

example 1: Consider a deep neural network designed for image classification. The network
denoted as N , consists of multiple layers, including input, hidden, and output layers. N has a total
of q layers, with the last layer Lq being a softmax layer for classification.

The training dataset, Xt, includes pairs of images and their corresponding labels, (xi, yi), where
xi represents an image, and yi is its label. For instance, if the task is to classify animals, xi could be
an image of a cat, and yi would be the label "cat". There are m such pairs in Xt.

The test dataset, Xs, comprises unlabeled images {x1, x2, ..., xr} used to evaluate the model. Each
layer Lk in N transforms the input data, with the number of neurons in each layer denoted as |Lk|.
Ultimately,N categorizes the input image into classes like "cat", "dog", etc., in the softmax layer
on the learned patterns.

2.4 convolutional neural networks

CNNs [37] are specialized neural networks designed for processing data with a grid-
like topology, such as an image. They excel in various computer vision tasks including
image classification [61], object detection [63], image segmentation [66], medical image
analysis [16], and autonomous driving [3].
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2.4.1 Convolutional Neural Network

A Convolutional Neural Network (CNN) is composed of several interconnected layers,
each tailored for specific tasks within the realms of image processing and analysis. The
foundational element of a CNN is its convolutional layers. These layers are responsible
for performing the convolution operation, a pivotal process for extracting features from
images. The convolution operation can be mathematically expressed as:

G(i, j) =
m−1

∑
u=0

n−1

∑
v=0

I(i− u, j− v) · K(u, v)

In this formula, I denotes the input image, represented as a matrix or an array. Each
element, I(x, y), within this matrix corresponds to the pixel value at the specific position
(x, y) in the image. This granular approach to the image allows the convolution process
to methodically analyze it by assessing the intensity or color information at each pixel.
The kernel, symbolized by K, is a smaller matrix used to extract features from the image.
It interacts with the input image by overlaying itself at various positions and computing
the sum of the element-wise products between the kernel’s values and the corresponding
pixel values of the image.

The dimensions of the kernel are represented by m and n, where m denotes the number
of rows and n the number of columns in the kernel. This means that for every position (i, j)
on the output feature map G, the convolution operation involves a summation process
over a m× n window of the input image. Each element I(i− u, j− v) indicates the pixel
value at position (i− u, j− v) of the input image, which interacts with the corresponding
element K(u, v) in the kernel. The result of this convolution is the feature map G, which
emphasizes specific features or patterns present in the input image as detected by the
kernel. Figure 2.2 provides a visual representation of this process, showing the systematic
application of the kernel across the entire input image to generate the feature map.

Figure 2.2: An example of convolution operation with a kernel size of m×n=3×3.
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2.4.2 Activation Functions

Following the convolutional layers, activation functions such as the Rectified Linear
Unit (ReLU) introduce non-linear properties to the system. The ReLU function is defined
as f (x) = max(0, x), which means it retains positive values as they are while converting
any negative value to zero as illustrated in Fig 2.3.

Figure 2.3: ReLU activation function.

In CNNs, when determining the activation for each element of the feature map G at a
position (i, j), the ReLU activation function plays a crucial role. This process, based on the
outcome of the convolution operation G(i, j), is mathematically expressed as:

A(i, j) = max(0, G(i, j))

This ReLU function is applied to each element of the feature map. In practical terms, this
means that any negative values in the feature map G are set to zero. This action effectively
eliminates any negative outcomes from the convolution process, ensuring they do not
adversely affect the network’s learning. On the other hand, the positive values in G —
those that represent the detected features in the input image — are retained as they are.

Thus, the application of the ReLU function serves two pivotal purposes. First, it pre-
serves the essential elements of the feature map that are crucial for the representation of
detected features in the image. Second, it introduces a necessary non-linearity to the neural
network’s learning process. This non-linear characteristic is vital for neural networks
to learn complex data patterns effectively. Without such non-linear transformations, the
network, regardless of its depth, would be limited to functioning as a linear model, which
is insufficient for complex problem-solving. The impact of the ReLU function, as well
as other activation functions, on the performance of neural networks is significant. For
a deeper understanding of these effects, the reader could refer to a detailed review and
comparison of various activation functions as presented in [20].
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2.4.3 Pooling Layer

Next, pooling layers [4] in CNNs are used to reduce the spatial dimensions (width and
height) of the input volume for the next convolutional layer. They work by summarizing
the presence of features in patches of the feature map. A common pooling operation is max
pooling, which takes the maximum value of the pixels in the window being considered.

P(A) = max
i,j∈window

A(i, j)

In this equation, the term window refers to the subset of the image or feature map over
which the maximum value is computed. As depicted in Fig. 2.4, max pooling is applied
to each distinct 2×2 area of the input feature map, systematically reducing its size. This
process highlights the most significant elements of each region, allowing the network to
focus on the most prominent features while maintaining computational efficiency and
robustness to variations in the input data.

Figure 2.4: An example of max pool operation with a kernel size of 2×2.

2.4.4 Fully Connected Layer & Output Layer

Fully Connected Layer (FCL) connects every neuron in one layer to every neuron in the
next layer, forming a dense network of connections. This structure allows the network to
integrate the learned features from previous layers and make complex inferences about
the input data.

Finally, the output layer produces the final prediction or classification. This layer is
responsible for generating the final prediction or classification that represents the network’s
interpretation of the input data. Often, the softmax function is employed in this layer to
facilitate the task of classification, particularly in tasks involving multiple classes.

The softmax function is formally defined as:

softmax(yi) =
eyi

∑K
j=1 eyj

for i = 1, 2, ..., K and an output vector y of length K.
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In this equation:

• yi is the i-th element of the output vector to the softmax function.

• K is the total number of classes.

• eyi is the exponential function applied to yi.

• The denominator ∑K
j=1 eyj is the sum of the exponential values of all elements in the

output vector.

The role of softmax in the output layer is crucial for classification tasks. It converts the
raw output scores, often referred to as logits, into probabilities by normalizing them in a
way that their sum equals one. Each element of the output vector of softmax represents
the probability that the input belongs to one of the K classes. The class with the highest
probability is typically taken as the model’s prediction.

2.4.5 CNN layers

These components work in unison to transform the input through a series of mathematical
operations, leading to the final prediction or classification. The depth of the network,
or the number of hidden layers, allows for more complex modeling of the input data.
However, greater depth can make the network more challenging to train and more prone
to overfitting if not properly regularized.

2.5 multi-class classification

Multi-class classification is a type of classification task where the goal is to categorize the
given input into one of three or more classes. Unlike binary classification, where there are
only two possible outcomes.

Given a set of features X = {x1, x2, . . . , xn} and a set of classes C = {c1, c2, . . . , ck},
where k > 2, the goal of multi-class classification is to find a function f : X → C that maps
each feature vector xi to a class cj in C.

The function f can be represented by a model trained on a set of labeled examples
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where each yi is a class label in C.

In mathematical terms, the objective is often to minimize a loss function L over the
training data:

min
n

∑
i=1

L( f (xi), yi)

Here, L is a loss function that quantifies the difference between the model’s predictions
and the true class labels. A common example of a loss function used in multi-class
classification is the cross-entropy loss. This loss function is defined as:

L(y, ŷ) = −
k

∑
j=1

yj log(ŷj)
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In this formula, y represents the true label in a one-hot encoded vector, and ŷ represents
the predicted probabilities for each class. The cross-entropy loss effectively measures the
disparity between the predicted probability distribution and the true distribution. It also
penalizes predictions that diverge significantly from the actual label.

example 2: consider a multi-class classification problem with three classes (k=3). Suppose for a
particular instance, the true class label y is the second class. In a one-hot encoded format, this label
is represented as y = [0, 1, 0]. Assume the model predicts the probabilities for each class for this
instance as ŷ = [0.2, 0.7, 0.1]. The cross-entropy loss for this prediction can be calculated as:

L(y, ŷ) = −
3

∑
j=1

yj log(ŷj) = −[0 · log(0.2)+ 1 · log(0.7)+ 0 · log(0.1)] = − log(0.7) ≈ 0.357

In this example, the loss is approximately 0.357, reflecting the degree of disparity between the
model’s prediction and the actual label. The model’s objective during training is to minimize this
loss, which, in this case, would involve adjusting its parameters to increase the predicted probability
of the second class and decrease the probabilities of the other classes for similar instances.

2.6 test prioritization

In the realm of deep learning, ensuring the accuracy and reliability of neural network mod-
els is paramount. A key concept in achieving this is the idea of Error-Revealing Capability.
This refers to the potential of a test instance to highlight or expose flaws and inaccuracies
in a model. Rather than being a static measure, this capability is dynamic and quantifiable,
typically assessed through mathematical scoring functions. These functions evaluate test
instances based on criteria such as deviation from expected patterns, complexity, or other
model-specific factors. Understanding and quantifying the error-revealing capability of
each test instance is crucial, as it directly informs the process of Test Prioritization.

Test Prioritization in deep learning is the strategic process of identifying and ordering
test instances based on their likelihood to reveal errors in the model. It involves leveraging
the assessed error-revealing capabilities of these instances to make informed decisions
about which ones to label and evaluate first. This approach is particularly beneficial when
resources for labeling are limited. By prioritizing test instances that are most likely to
uncover potential weaknesses in the neural network, this method ensures that the available
resources are utilized most effectively. Moreover, this enhances the overall robustness and
reliability of the neural network system, as it allows for the early detection and rectification
of critical issues that could compromise model performance.

Test prioritization in deep learning involves several key components. The first component
is the deep neural network, represented by N , which takes an input x and produces an
output y. This network is then challenged with a test dataset, comprising a set of unlabeled
test instances Xs = {x1, x2, . . . , xn}, where n is the total number of test instances. A critical
constraint in this context is the labeling cost, which allows for only m test instances to be
labeled, where m < n. The second component is a scoring function, denoted by Fs, used to
quantify the error-revealing capability of each test instance. Common scoring functions
such as Gini Impurity or Entropy are often used for this purpose. The ultimate goal is to
identify error-revealing instances, which are the test instances most likely to be misclassified
by the neural network. By connecting these components, the process of test prioritization
seeks to uncover the most significant weaknesses in the model with limited resources.
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The formal representation of this process involves partitioning the test instances into
two ordered sets based on their likelihood of revealing errors or being correctly classified
by N . This partitioning is defined by the equations:

Xe = {(xi, Fs(xi)) | N (xi) ̸= yi, i ∈ [1, k], xi ∈ Xs} (2.1)

Xc = {(xi, Fs(xi)) | N (xi) = yi, i ∈ [k + 1, n], xi ∈ Xs} (2.2)

In these equations, Xe contains all test instances that are likely to reveal errors in the
model, indexed between 1 and k, and are prioritized for labeling. For any two instances
xi and xj in Xe where i, j ∈ [1, k] and i < j, it holds that Fs(xi) ≥ Fs(xj). This implies
that Fs(x1), with the highest score, indicates the greatest likelihood of revealing an error,
whereas Fs(xk) has the lowest score in Xe. Consequently, Xe is prioritized for labeling by
human annotators to evaluate and improve the neural network.

On the other hand, Xc as defined in Eq. (2.2), includes all instances that are likely to
be correctly classified, extending from the (k + 1)th to the nth instance in Xs. Due to the
constraint m = k, there are no resources left to label instances in Xc, thus focusing the
labeling effort on the potentially error-revealing instances in Xe. Through this structured
prioritization, the process effectively utilizes limited labeling resources to identify and
address the most informative and critical instances, enhancing the neural network’s
accuracy and robustness.

2.7 runtime monitoring

Runtime monitoring in deep learning refers to the process of continuously observing
and analyzing the internal operations of a neural network during its active use. This
practice involves tracking the behavior of hidden layers and neurons to identify any
unusual or unexpected activities. These are activities that deviate from what was observed
during the model’s training phase. Recently, various runtime monitors [28, 83] have
been proposed. For instance, in our work, we follow the framework in [83], three-verdict
monitors supervise how the neural network predicts the inputs and judge the network
prediction with acceptance, uncertainty, or rejection verdicts. In the following, we recall
how to construct and execute a monitor. For more details, we refer the reader to [28, 83].

2.7.1 Monitor Construction

After training, for each training instance, we collect the high-level features from the
penultimate layer and the corresponding predicted class. Let watch(x, Lk) be a function
that reads the output of Lk. The output of watch(x, Lk) is a |Lk| dimension vector, denoted
as v⃗. We consider a training dataset as a set of subsets such that Xt = {X1, X2, ..., Xg}
where g is the total number of classes in a dataset. All instances in each subset have
the same ground truth class. We also have a corresponding Vi for each subset Xi, where
Vi = {watch(x, Lq−1) = v⃗ | x ∈ Xi}.

After high-level features collection, we partition Vi into two subsets Vc
i , and Vinc

i accord-
ing to whether a neural network correctly or incorrectly classifies the input, where Vc

i , and
Vinc

i are formally defined as follows:

Vc
i = {watch(x, Lq−1) = v⃗ | x ∈ Xi, N (x) = yi}
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Vinc
i = {watch(x, Lq−1) = v⃗ | x ∈ Xi, N (x) ̸= yi}

To construct box abstraction, assume |⃗v| = n, |Vc
i | = p, and |Vinc

i | = s. Accordingly,
there are two types of boxes Bc

i and, Binc
i defined as follows:

Bc
i = {[aj, bj] | 1 ≤ j ≤ n, aj =

p
min
k=1

Vc
i [j, k], bj =

p
max
k=1

Vc
i [j, k]}

Binc
i = {[aj, bj] | 1 ≤ j ≤ n, aj =

s
min
k=1

Vinc
i [j, k], bj =

s
max
k=1

Vinc
i [j, k]}

Box abstraction or minimum bounding box is a union of a list of intervals such that
Bi = {[a1, b1], [a2, b2], ..., [an, bn]} [83]. The underlying assumption is that instances of the
same class show a similar pattern because they are more contiguous in the feature space
than instances of other classes. Thus, monitors have two types of boxes for each class: one
box contains correctly classified instances, and the other box contains incorrectly classified
instances.

When a novel input is slightly similar to other instances inside the box, monitors falsely
accept the network prediction. For example, in Fig. 2.5 (a), there are two classes of squares
and circles, and the novel inputs are parallelogram and hexagon, respectively. The neural
network incorrectly classifies the novel inputs as square and circle, respectively. We can
obtain more accurate verdicts from monitors by clustering all instances into small boxes.
In Fig. 2.5 (b), monitors correctly reject the predictions of the neural network for the novel
inputs because the novel instances are outside the boxes. Thus, the process of clustering
should occur before the construction of boxes. The clustering process has a hyperparameter
τ, which controls the size of each box abstraction, i.e., the smaller the τ value is, the more
compact the box abstraction is and vice versa.

(a) Without clustering (b) With clustering

Figure 2.5: Novel test instances before and after clustering.

2.7.2 Monitors Execution

During the evaluation of the neural network, if a test instance is inside one of the correctly
classified boxes, the monitor accepts the prediction. If a test instance is inside an incorrectly
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classified box, the monitors reject the prediction. The verdict of monitors is uncertain
if the test instance is in an overlapping region between the correctly and incorrectly
classified boxes. Lastly, if the test instance is outside all boxes, the monitors reject the
network prediction. In the last case, monitors consider this instance a novel input [49] or
Out-Of-Distribution (OOD) [13].

2.8 statistical scoring functions

The scoring function aims to estimate the error-revealing capability of each test instance
and score it accordingly. We present two scoring functions, namely impurity measures: Gini
Impurity and entropy. They are heavily used in statistics [17, 55] and machine learning
fields [8]. We first provide an overview of a decision tree. Then, we define and explain the
properties of each measure and discuss how they are mainly used as a splitting criterion
in the context of decision tree [60]. Finally, we illustrate how impurity measures are reused
as a scoring function in the test prioritization area.

2.8.1 Decision tree

Decision tree [5] is a supervised machine learning algorithm used mainly as a classifier.
Intuitively, it consists of a hierarchical mapping of nodes. Each node comes in the form
of an if-else statement. A tree starts with a root node, which contains all instances in the
dataset. The root node is split into children nodes based on a specific impurity criterion.
The splitting process continues recursively until the tree reaches the leaves where the
impurity score is zero, i.e., all instances in the node belong to a certain class.

2.8.2 Gini Impurity or Gini Index

Gini Impurity or Gini Index (GI) [59] is a measure of the impurity in the distribution of
classes over the node. GI is widely used in decision trees [70] by which the tree can decide
the best feature that splits the current node into more pure nodes. Hence, a feature with a
lower GI score is selected. Moreover, GI is used in various applications as an uncertainty
measure, e.g., it has been utilized recently to measure the degree of certainty to predict the
pixel depth to construct a 3D point cloud [38]. We calculate the GI of the node as follows:

GI = 1−
C

∑
i=1

p2
i (2.3)

where pi is the probability of an instance being classified to class i in a node and
∑C

i=1 pi = 1.

property 1 Gini Impurity value is within the interval, [0, 1[ i.e., zero indicates the
purity of a node and in that case, all instances of the node belong to the same class. On
the other side, when the value approaches 1, it indicates maximum heterogeneity among
classes in a node, i.e., the node has at least one instance from each class.

property 2 If all classes have the same probability in a node, Gini Impurity reaches
the maximum value:
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GImax = 1− C ∗ (1/C)2

= 1− (1/C) (2.4)

Assume we have a C classification problem where C is a very large number e.g., greater
than 1000 classes, and all classes have the same number of instances. Hence, Gini Impurity
approaches 1. This case is rare in real-life classification problems because of the difficulty
of finding many classes having the same probability in the network output, i.e., an image
equally shares some features from each class.

example 3: As illustrated in Fig. 2.6, given a binary classification problem, and C = 2. Gini
Impurity is 0.5 which is the peak of the curve when there is an equal number of instances for each
class, i.e., the probability of each class is 0.5.

2.8.3 Entropy or Shanon entropy

Entropy [69] is a metric used widely in information theory to measure the amount
of randomness or variability in the data being processed. Entropy is heavily used in
machine learning problems, e.g., decision tree frequently utilizes entropy as a branching
criterion [70]. The value of entropy is computed by the following equation:

entropy = −
C

∑
i=1

pi log2(pi) (2.5)

where pi is the probability of an instance being classified to class i in a node and
∑C

i=1 pi = 1.

property 3 Entropy ranges between 0 to n where n ∈N and computed by Eq. 2.6. An
entropy value of 0 indicates a completely pure tree node, meaning it perfectly classifies the
instances. Conversely, an entropy value of n suggests complete impurity, indicating that
all classes in the node have an equal probability of classification.

property 4 Maximum entropy, denoted as entropymax, is achieved when the probability
distribution across classes is uniform, i.e., p1 = p2 = . . . = pC = 1/C. In such a case, the
entropy reaches its peak value n. This maximum entropy is mathematically represented as
log2(C), as shown in the equation:

entropymax = −C ∗ (1/C) ∗ log2(1/C)

= log2(C) (2.6)

example 4: Figure 2.6 illustrates how the entropy changes over the changes of classification
probability in a binary classification problem. The maximum value of entropy is 1 when the
probability of each class is the same.

The first work [6] published in test prioritization selected the entropy value as a scoring
function to prioritize buggy-revealing test instances. Likewise, DeepGini [22] employed
Gini Impurity as a measure for the likelihood of misclassification for test instances. Follow-
ing the same approaches, we use Gini Impurity and entropy as statistical scoring functions
in conjunction with the monitors’ verdicts to prioritize the incorrectly predicted instances
among the unlabeled test dataset.
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Figure 2.6: Impurity metrics in binary classification problem.

example 5: Assume we have a binary classification with two classes {•, }. We also have 6
unlabeled test instances with the network output. As demonstrated in table 2.1, the Gini Impurity
and entropy have similar behaviors in measuring the uncertainty of the neural network towards
the test instances. We can observe that instance D has the highest impurity score (Gini Index =
0.5, entropy = 1.0) which is more likely to be misclassified by the network. The prioritization list
contains other instances C, F, E, A, and B which are descendingly prioritized by both impurity
scores as shown in the last column. Table 2.1 intuitively shows that both metrics have the same
impact on test prioritization.

Table 2.1: Prioritizing Test Data Using the Gini Index (GI)

Instance
Ground

truth
DNN output

Predicted
class

Gini
index

Entropy Order

A • 0.90 , 0.10 • 0.18 0.47 5

B 0.00 , 1.00 0.00 0.00 6

C • 0.40 , 0.60 0.48 0.97 2

D 0.50 , 0.50 • 0.50 1.00 1

E 0.25 , 0.75 0.38 0.81 4

F • 0.35 , 0.65 0.46 0.93 3

2.9 evaluation metric

This section introduces an essential background to understand the existing metrics used to
evaluate the test prioritization algorithms. Besides, we define each metric with its equation.
We also explain the drawbacks of each metric through some scenarios.
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2.9.1 APFD

The Average Percentage of Faults Detection (APFD) is a metric that primarily evaluates
the performance of test prioritization algorithms in the software testing domain [21]. We
compute the APFD value by the following equation:

APFD = 1− ∑m
i=1 TFi

mn
+

1
2n

(2.7)

where n is the total number of test cases, and m is the number of faults exposed in the
test dataset. TFi is the order of a test case that exposes the fault(i).

The APFD value ranges between 0 and 1. When APFD value is zero, the test prioritization
algorithm works ineffectively, i.e., the order of the test cases which expose faults (TPi) at
the end of the test dataset and vice versa. For instance, if the number of faults is 10 in the
10000-test dataset. The order of the test cases that expose the faults is the last ten between
9990 and 10000. The APFD is almost zero, which indicates the slow faults detection rate.

Since there is no labeling for test cases in software testing, the APFD metric completely
ignores the labeling budget over its calculation. In the following example, we discuss how
ineffectively APFD evaluates the prioritized test dataset when we add the labeling budget.

example 6: Assume we have an unlabeled test dataset that contains 1000 test cases. The dataset
has 100 error-revealing test cases that are prioritized between 101 and 200. The APFD value is
calculated as follows:

APFD1 = 1− ∑100
i=1 TFi

mn
+

1
2n

= 1− 101 + 102 + ... + 199 + 200
100 ∗ 1000

+
1

2 ∗ 1000
= 0.85

Within the labeling budget (100), the correct value of APFD should be zero because
all the first 100 test cases are not exposing faults. Therefore, the APFD over-evaluates
erroneously the performance of the test prioritization algorithm from 0.0 to 0.85.

2.9.2 RAUC

The Ratio Area Under Curve (RAUC) is an evaluation metric defined as the ratio between
the area under the curve of the actual performance to the area under the ideal curve. We
compute the RAUC value by the following formula:

RAUC =
∑m

i=1 Practicali
∑m

i=1 Ideali
∗ 100% (2.8)

where m is the labeling budget. The RAUC ratio is between 0% and 100%, where 0%
indicates that the test prioritization algorithm does not prioritize any error-revealing test
cases within the labeling budget and vice versa.

The main issue with the RAUC metric is that it evaluates the prioritization algorithm
on how quickly an algorithm prioritizes the faults, namely, fault detection rate. The Fault
Detection RatE (FDRE) should not be the only factor to evaluate the performance of the
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Figure 2.7: RAUC metric evaluates 2 test prioritization algorithms: Practical (1) & Practical (2)

prioritization algorithms. But the metric should also involve how many erroneous test
cases the algorithm prioritizes, namely, Fault Detection RatiO (FDRO). In the following
example, we demonstrate the importance of the second factor.

example 7: Assume we have a 100-unlabeled test dataset that has 10 error-revealing test cases.
The labeling budget is 15 test cases. Figure 2.7 shows the order of the test cases prioritized by the
algorithm on the x-axis. We have two different prioritization algorithms: Practical 1 and Practical
2. The former algorithm has a high fault detection rate, and the latter one detects more faults. We
calculate the RAUC for both algorithms as follows:

RAUC1 =
∑15

i=1 Practical(1)i

∑15
i=1 Ideali

∗ 100%

=
1 + 2 + 3 + 4 + 5 + 6 ∗ 7 + 7 ∗ 3

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 ∗ 6
=

78
105

= 74.29%

RAUC2 =
∑15

i=1 Practical(2)i

∑15
i=1 Ideali

∗ 100%

=
1 ∗ 6 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 ∗ 6

=
60
105

= 57.14%

RAUC1 shows that the first algorithm prioritizes the first six test cases that expose
faults quickly. On the other hand, RAUC2 shows that the second algorithm starts poorly
prioritizing test cases. But after the 6th test case, all the test cases, ranked between 7 and
15, are error-revealing test cases in the test dataset. Hence, the latter algorithm has a higher
fault detection ratio than the former one. However, the RAUC metric incorrectly evaluates
the first prioritization algorithm as more effective with a significant margin reaching up
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17.15%. Therefore, the evaluation of RAUC is misleading, as illustrated in the previous
example, and should be corrected.

2.9.3 ATRC

The Average Test Relative Coverage (ATRC) is formulated by TestRank[39]. The ATRC
metric involves the labeling budget in the calculation. We compute the ATRC value by the
following formula:

TRC =
#Detected Faults

min(#Labeling Budget, #Total Faults)

ATRC =
1
m

m

∑
i=1

TRCi ∗ 100% (2.9)

where Test Relative Coverage (TRC) is the ratio between the number of detected faults
to the minimum of the labeling budget and the total number of faults in the test dataset.
The ATRC is the average of TRC when the labeling budget (m) is less than or equal to the
total number of faults in the dataset. The ATRC metric is more effective than the APFD
metric since the ATRC evaluates the performance of an algorithm under a limited budget
rather than the entire dataset. In other words, the ATRC metric is a stress test within a
limited budget. The following example demonstrates how the ATRC metric behaves over
two prioritized datasets: (i) Dataset A has a high fault detection rate, and (ii) Dataset B has
a high fault detection ratio.

example 8: Assume we have a 100-unlabeled test dataset. There are ten faults in the test dataset,
and the labeling budget is 30. Moreover, two algorithms prioritize the test dataset, which results in
two prioritized datasets, namely A and B. Dataset A is [1, 1, 1, 1, 1, 1, 0, 0, 0, 0], and dataset B is
[1, 0, 0, 1, 1, 1, 1, 1, 1, 1] where one represents faults, and zero represents non-faults. We compute
the ATRC for both datasets as follows:

ATRC1 =
1
10

10

∑
i=1

TRCi ∗ 100% =
1
10
∗
[

1
1
+

2
2
+

3
3
+

4
4
+

5
5
+

6
6
+

6
7
+

6
8
+

6
9
+

6
10

]
= 88.74%

ATRC2 =
1
10

10

∑
i=1

TRCi ∗ 100% =
1
10
∗
[

1
1
+

1
2
+

1
3
+

2
4
+

3
5
+

4
6
+

5
7
+

6
8
+

7
9
+

8
10

]
= 66.42%

We should calculate the ATRC value when the labeling budget is less than or equal to
the number of faults (10). We can see that the ATRC metric suffers from the same problem
as the RAUC metric. More specifically, the ATRC metric evaluates an algorithm only on
the fault detection rate, not the ratio. Thus, the ATRC metric evaluates the first and second
prioritization algorithms with 88.74%, and 66.42%, respectively. We can also observe clearly
how the ATRC metric falsely over-evaluates the first algorithm over the second algorithm,
with a significant difference (up to 22.32%). We can conclude that the current metrics are
ineffective and have drawbacks. Thus, the evaluation metrics should give more weight to
the fault detection ratio over the fault detection rate. If two algorithms have the same fault
detection ratio, the algorithm with the high fault detection rate should be superior.
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2.10 active learning

This section introduces the concept of active learning and its role in training deep learning
models. It also details its mathematical representation as an iterative optimization problem.
This section concludes with a comparative analysis.

2.10.1 Overview

Active learning [84] is a semi-supervised learning technique where the learning algorithm
actively queries an oracle (such as a human expert) to obtain labels for specific examples
from a pool of unlabeled data. The goal is to select the most informative examples that,
once labeled, will contribute the most to improving the model’s performance.

In the context of deep learning with unlabeled training data, active learning can be
particularly beneficial. Since labeling data can be time-consuming and expensive, especially
in complex domains, active learning aims to minimize the number of labels needed by
intelligently selecting the most informative samples.

example 9: In an active learning framework applied to image classification, consider a neural
network model, denoted as f , developed to classify various classes. The model initially operates on a
dataset D that comprises a limited number of labeled images. A much larger dataset U consists of
unlabeled images.

As part of the active learning strategy, the model evaluates each image in the unlabeled dataset U
using an informativeness measure I(x; f ). This measure assesses the potential contribution of each
image x in U towards improving the model’s learning process. Key approaches [19] to this measure
include Query-by-Committee, where samples are selected based on label disagreements among
multiple classifiers. Also, Max-Margin sampling focuses on samples with maximum uncertainty.
Lastly, Max-Entropy sampling uses entropy to estimate the uncertainty for each image x in U.
These methods efficiently guide the labeling process to enhance the model’s performance during the
training process.

The most informative images, forming a subset S from U, are then labeled – either by domain
experts or through automated methods – and added to the labeled dataset D. The model f is
subsequently retrained on this enriched dataset. By iteratively repeating this process, the model
incrementally improves its ability for classification. This process exemplifies the core principle of
active learning: selectively augmenting the training dataset with the most impactful examples to
optimize the learning process.

2.10.2 Active Learning vs. Test Prioritization

Table 2.2 illustrates that active learning and test prioritization are two distinct method-
ologies in deep learning. Active learning concentrates on training models efficiently by
selecting the most informative examples actively. On the other hand, test prioritization
focuses on improving the testing process by prioritizing the most critical or likely-to-fail
tests. The table compares these two aspects based on several criteria such as purpose, main
focus, and key benefits. It also considers the involvement of human experts and the iterative
process, highlighting their distinct roles in enhancing the efficiency and effectiveness of
deep learning model training and testing.
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Table 2.2: Comparison between Active Learning and Test Prioritization in Deep Learning.

Aspect Active Learning Test Prioritization

Purpose To efficiently train models by
actively selecting the most

informative examples.

To efficiently test models by
prioritizing the execution of

the most critical or
likely-to-fail tests.

Main Focus Training phase of the model. Testing phase of the model.

Key Benefit Reduces the need for large
labeled datasets.

Reduces the time and
computational cost of

labeling and inspection.

Iterative Process Typically involves iterative
selection, labeling, and

retraining.

Typically involves iterative
prioritization, labeling, and

testing and debugging.

2.11 test selection

This section begins with an overview that defines the test selection area. Then, we provide
a comparative analysis, elucidating the unique roles and objectives of test selection and
test prioritization in enhancing deep learning model testing.

2.11.1 Overview

Test selection [43] is the process of choosing a subset of test cases from a larger test suite to
validate a model’s performance. In deep learning, test selection aims to identify the most
informative and representative test cases that are likely to evaluate specific functionalities of
the model. Unlike test prioritization, which focuses on ordering the test cases, test selection
is about choosing a subset that maximizes the effectiveness of testing within resource
constraints (e.g., time, and computational resources).

2.11.2 Test Selection vs. Test Prioritization

Table 2.3 illustrates that test selection and test prioritization are two distinct areas in
deep learning testing. While test selection focuses on choosing a subset of test cases that
maximize testing effectiveness within resource constraints, Test prioritization aims to order
the test cases to increase the likelihood of early fault detection. The table compares these
two aspects based on their purpose, main focus, objective, and mathematical formulation,
shedding light on their unique roles in enhancing the efficiency and effectiveness of deep
learning model testing.
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Table 2.3: Comparison between Test Selection and Test Prioritization in Deep Learning.

Aspect Test Selection Test Prioritization

Purpose To choose a subset of test
cases that maximizes testing

effectiveness.

To order test cases to increase
the likelihood of early fault

detection.

Main Focus Selecting relevant test cases. Ordering the execution of
error-revealing test cases.

Objective Maximize effectiveness
within resource constraints.

Maximize fault detection rate
and ratio within resource

constraints.

Order Unordered test instances Ordered test instances

2.12 conclusion

In conclusion, this chapter has combined the essential principles and techniques that
form the backbone of the research. It has offered a thorough overview that connects
various domains, from the mechanisms of DNNs to the subtle strategies involved in test
prioritization. By shedding light on statistical scoring functions, evaluation metrics, and
closely related areas such as active learning, and test selection. The chapter serves as both
a guide and a gateway, setting the stage for the deeper investigation that lies ahead.



Part II

C O N T R I B U T I O N S



3
D E E PA B S T R A C T I O N : 2 - L E V E L P R I O R I T I Z AT I O N F O R U N L A B E L E D
T E S T I N P U T S I N D E E P N E U R A L N E T W O R K S

Main contributions of this chapter

▶ We conduct the first study investigating the effectiveness of monitors in the
test prioritization area for deep learning systems.

▶ We introduce a comprehensive study of the regions of the misclassified
instances and the regions where the neural network can misclassify the
instances with high confidence.

▶ We achieve state-of-the-art performance, demonstrated by empirically com-
paring our framework with other test prioritization techniques.
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In this chapter, we begin by formalizing the test prioritization problem and then intro-
duce our proposed solution. Our algorithm is divided into two main phases. First, testing
part emphasizes the data processing and monitoring operations. Second, prioritization
algorithm outlines the strategy for optimally ranking test instances considering the labeling
budget. We then explain the effect of removing zero-scored instances in prioritization
through an example. Then, we provide a practical example that showcases how our method-
ology efficiently detects misclassified instances. After that, we detail our experimental
setup and the research questions. Lastly, we address the research questions from different
perspectives: the effectiveness, efficiency, and stability of framework performance.

28
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3.1 problem formulation

Given a trained neural network N with a labeled training dataset Xt and an unlabeled
test dataset Xs. We consider |Xs| = n and the labeling cost is enough for only m test
instances where m ≪ n. We can utilize the test prioritization techniques to prioritize more
error-exposing instances. Assuming there are k error-revealing instances in the test dataset
and the cost of labeling is m which is only enough to label k test instances. Then, the ideal
prioritization algorithm groups the test instances into two ordered sets as follows:

Xe = {Fs(xi) | N (xi) ̸= yi, i ∈ [1, k], x ∈ Xs} (3.1)

Xc = {Fs(xi) | N (xi) = yi, i ∈ [k + 1, n], x ∈ Xs} (3.2)

where Fs is a scoring function either Gini Impurity or entropy. The scoring function Fs

helps in ranking the instances in Xs such that the instance with the highest likelihood of
being misclassified gets the maximum score, and the one with the least likelihood gets
the minimum score. The objective function we aim to optimize is Maximize ∑k

i=1 Fs(xi),
where Fs(xi) is the score assigned by the scoring function to the ith test instance in Xe. This
objective function aims to maximize the identification of error-revealing instances within
the budget m.

Ideally, eq. (3.1) shows that Xe contains all error-revealing test instances indexed between
1 and k. More specifically, for any i, j ∈ [1, k] and i < j, then Fs(xi) ≥ Fs(xj). In addition,
Fs(x1) has the maximum score and Fs(xk) has the smallest score in Xe. Eventually, Xe is
further labeled by human annotators to evaluate a neural network. While eq.(3.2) shows
that Xc includes all correctly classified test instances. There is no cost left to label Xc

since the labeling budget has been run out on the k test instances. For clarity, Table 3.1
summarizes the notations used in this section.

Table 3.1: Summary of Notations

Symbol Description

N The trained neural network

Xt Labeled training dataset

Xs Unlabeled test dataset

n Size of Xs

m Labeling budget

k Number of error-revealing test instances

Fs Scoring function, e.g., Gini Index, Entropy

We assume that the neural network N is fully trained and will not undergo further
training after the test instances are labeled. This is a critical assumption as the error-
revealing capability of test instances remains static. In a scenario where N undergoes
further training or updates, the composition of Xe and Xc might change. This change
thereby affects the effectiveness of the test prioritization algorithm and the subsequent
evaluation of N .
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3.2 algorithm

The algorithm operates in two main phases: the training phase and the testing phase as
shown in Fig. 3.1. During the training phase, the algorithm extracts high-level features and
categorizes vectors according to their predicted class. These vectors then play a pivotal
role in constructing the boxes of the monitors. This phase sets the stage for the testing
phase, where the algorithm employs a hierarchical ranking system.

During testing, one can view DeepAbstraction as a hierarchical ranking system with
two distinct levels. Initially, it segments the test instances into three categories depending
on the monitor verdict. It then ranks instances within each category according to scores
from a scoring function. Annotators subsequently label these ranked instances, staying
within the predefined labeling budget. We will further detail the primary stages of our
framework in algorithm 1. It is worth noting that the algorithm is designed to be flexible.
One can easily swap out the scoring function or introduce additional categories based on
the monitor verdict, allowing for easy adaptability to different testing scenarios.

Figure 3.1: DeepAbstraction architecture and workflow.

3.2.1 Testing part

The algorithm 1 uses an index-based approach for efficient data processing. This is
particularly useful for large test datasets, as it speeds up the lookup and retrieval operations
(line 3). Then, we extract the high-level features vector for each test input and read the
corresponding predicted class y′ (lines 4-5). On line 6, the softmax function determines
the classification probability of each class output. We then choose one of the two statistical
scoring methods, either Gini Impurity or entropy, to evaluate the score of each test instance
based on eq. (3.4) and (3.3), as outlined in line 7.

Next, we analyze the location of the current vector, v⃗, within the feature space, and
get the verdict accordingly. To conclude the process, we record the index of the instance
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and its corresponding Gini or entropy score in the verdict dictionary, D, as shown in
lines 9-14. This dictionary serves as a data structure for quick reference, enabling efficient
prioritization and subsequent labeling. Finally, the design of the algorithm allows for easy
integration with other machine learning pipelines, making it a versatile tool for various
test prioritization tasks.

3.2.2 Prioritization algorithm

We organize the unlabeled test instances into three distinct categories based on the
monitor’s verdict: rejected, uncertain (or suspicious), and accepted. In this sequence, we
expect that the majority of misclassified instances will belong to the rejected category.
The uncertain category contains a smaller number of misclassified instances, while the
accepted category has the fewest. Table 3.2 summarizes the presence of both correctly and
incorrectly classified instances in each of these groups. The instances in each group are in
random order. Furthermore, the primary objective of test prioritization is to prioritize the
misclassified instances or the error-revealing instances. This means highlighting the true
positives in the rejected group, the uncertain positives in the uncertain group, and the false
negatives in the accepted group.

As the network classifies most instances accurately with ease, several instances receive a
Gini Index and entropy score of zero. These zero-scored instances typically represent false
positives, uncertain negatives, and true negatives in each group. For budgetary reasons,
each group should ideally exclude such instances. This means that to optimize the budget,
it is beneficial to eliminate false positives from the rejected category and focus on labeling
more uncertain positives in the uncertain category. Likewise, omitting zero-scored instances
from the uncertain category can enhance the labeling of false negatives in the accepted group
(line 19). In essence, by eliminating zero-scored instances, which are typically easy for the
model to classify, the algorithm ensures that the labeling budget is spent on instances that
are genuinely challenging for the model. We will analyze empirically the efficacy of this
step over different benchmarks in 3.3.1.

The final step involves ranking the instances based on their scores and selecting a subset
that aligns with the available labeling budget (as detailed in lines 20-23). This step is crucial
as it determines which instances will actually be reviewed by human annotators. The
effectiveness of the algorithm in this step directly impacts the quality of the labeled dataset
and, by extension, the performance of the neural network in real-world applications.

3.2.3 Example

In the upcoming example, we highlight the significance of the zero-removal step within
the DeepAbstraction workflow. Our main goal is to label misclassified instances, focusing
on true positives (TP), uncertain positives (UP), and false negatives (FN) across all groups.
Consider a scenario where we have a fixed budget that allows for labeling only 50 test
instances. Within each of our three groups - rejected, uncertain, and accepted - there are
50 instances. In the rejected group, 30 instances are true positives (TP) and 20 are false
positives (FP). Notably, 18 out of these 20 FPs have a score of zero. By eliminating these 18

zero-scored FPs from the rejected group, we decrease the number of instances we need to
label in that group to 32. The strategic removal enhances our labeling process by making
it more efficient. Additionally, it gives priority to other misclassified instances, such as
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Algorithm 1: Test prioritization algorithm
Input: Xtest = {x1, x2, ..., xn}, Bc, Binc

N : DNN, bdgt : labeling budget
scoring_method : either Gini Impurity or entropy
Output: Xprioritized : {x1, ..., xbdgt}
/* Monitors execution */

1 D← {}
2 foreach x ∈ Xtest do
3 idx ← index(x)
4 v⃗← extract(x)
5 y′ ← classify(N , x)
6 output← softmax(⃗v)
7 score← score_calculation(output, scoring_method)
8 if (⃗v ∈ Bc[y′]) ∧ (⃗v ∈ Binc[y′]) then
9 D[uncertain].append([idx, score])

10 else if v⃗ ∈ Bc[y′] then
11 D[accepted].append([idx, score])

12 else
13 D[rejected].append([idx, score])

/* Prioritization algorithm */

14 sorted_indx ← [ ]
15 prioritized_indx ← [ ]
16 verdicts← [rejected, uncertain, accepted]
17 foreach i ∈ verdicts do
18 D[i]← remove_zero(D[i])
19 indices_lst← sort(D[i])
20 sorted_indx.extend(indxs_lst)

21 prioritized_indx ← prioritize(sorted_indx, bdgt)
22 Xprioritized ← Xtest[prioritized_indx]
23 return Xprioritized

Table 3.2: Verdict types and definitions over all groups.

Verdict Type Definition

True Positive (TP) monitors truly reject the incorrect prediction

False Positive (FP) monitors falsely reject the correct prediction

Uncertain Positive (UP) monitors are uncertain towards incorrect prediction

Uncertain Negative (UN) monitors are uncertain towards correct prediction

False Negative (FP) monitors falsely accept the incorrect prediction

True Negative (TN) monitors truly accept the correct prediction

UPs and FNs, in the following groups. Consequently, we label the top 18 instances in the
uncertain group, which are more likely to be uncertain positives. In essence, by refraining
from expending our budget on zero-scored FPs in the rejected group, we can reallocate
resources to label UPs in the uncertain group. Likewise, by removing zero-scored instances
in the uncertain group, we can redirect our efforts toward labeling false negatives in the
accepted group.
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The example demonstrates the power of strategic budget reallocation. By removing
zero-scored instances from the rejected group, we not only save resources but also free up
the budget to focus on more challenging instances in the uncertain and accepted groups.
This reallocation is crucial for maximizing the utility of a limited labeling budget.

3.3 experimental setup

In the first two sections, we discuss the datasets and models that form the basis of our
experiments. We then detail the evaluation metric in the 3.3.4 section, followed by a
comparison of our framework against state-of-the-art baselines in the 3.3.3 section. Finally,
in the 3.3.5 section, we highlight the primary questions guiding our research.

3.3.1 Datasets

• MNIST: the MNIST (Modified National Institute of Standards and Technology
database) is a seminal dataset in the machine learning community, often referred to
as the "hello world" of image classification. It Comprises 70,000 grayscale images of
handwritten digits from 0 to 9 as shown in Fig.3.2. Each image is standardized to a
size of 28x28 pixels. These images are further divided into two subsets: a training set
with 60,000 images and a test set consisting of 10,000 images [15].

Figure 3.2: Samples from MNIST dataset.

• Fashion-MNIST: the Fashion-MNIST dataset, developed as a more challenging
alternative to the classic MNIST dataset. It serves as a modern benchmark for
machine learning algorithms in the domain of computer vision. This dataset consists
of 70,000 grayscale images, each of 28x28 pixel resolution, representing ten categories
of clothing and accessories as shown in Fig.3.3. The images are systematically divided
into two subsets: a training set comprised of 60,000 images and a testing set of 10,000

images [85].

Figure 3.3: Samples from FMNIST dataset.
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• CIFAR-10: the CIFAR-10 dataset, introduced by the Canadian Institute for Advanced
Research, stands as a pivotal benchmark in computer vision research. This dataset
comprises 60,000 color images, uniformly distributed across ten distinct classes:
airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks as
illustrated in Fig.3.4. Each image is rendered in a 32x32 pixel resolution and is
encapsulated in a three-channel RGB format. For a structured evaluation of machine
learning models, the dataset is divided into a training subset with 50,000 images and
a test subset that consists of 10,000 images [34].

Figure 3.4: Samples from CIFAR-10 dataset.

• SVHN: the Street View House Numbers (SVHN) dataset, sourced from Google’s
Street View imagery, serves as a complex benchmark in the domain of computer
vision research. This dataset encompasses over 600,000 color images, capturing house
numbers embedded in a multitude of real-world settings, delineated by diverse fonts,
colors, and potential occlusions as illustrated in Fig.3.5. Each image is articulated in
the RGB color. Uniquely, SVHN emphasizes the recognition of multi-digit numbers,
diverging from the more foundational single-digit tasks characteristic of datasets
such as MNIST. The dataset is systematically divided into three subsets: a training
set with 73,257 digits, a testing set with 26,032 digits, and an extra set containing
531,131 digits that can be optionally used for training [46].

Figure 3.5: Samples from SVHN dataset.

3.3.2 DNN Models

• LeNet-5: represents a foundational CNN architecture tailored for character recog-
nition. The model consists of seven layers, alternating between convolutional and
average pooling layers, followed by two fully connected layers and a softmax clas-
sifier. This structure was pioneering, allowing the extraction of hierarchical spatial
features from input images. Its success on the MNIST dataset for digit recognition



3.3 experimental setup 35

underscored the potential of CNNs in computer vision tasks, laying the groundwork
for subsequent architectural advancements.

• VGG16: is a deep CNN architecture known for its homogeneity, primarily using 3x3

convolutional layers stacked in increasing depth. Its design is both straightforward
and deep, resulting in compelling accuracy on the ImageNet dataset. Its depth and
simplicity made it a benchmark for image classification tasks and a base for various
transfer learning applications[36].

• ResNet18: is a variant of the Residual Network (ResNet) architecture, characterized
by its unique skip connections or residual blocks. These connections allow gradients
to flow through the network directly, mitigating the vanishing gradient problem in
deep networks. ResNet18, with its 18 layers, achieved remarkable performance on
ImageNet. It demonstrates the efficacy of deeper networks without the traditional
associated training difficulties[27].

• GoogLeNet: introduces the inception module, a novel multi-scale architecture al-
lowing the network to adapt to various spatial dimensions of features. Notably,
GoogLeNet achieved top performance in the ImageNet Large Scale Visual Recog-
nition Challenge. It utilizes fewer parameters than many contemporary models,
emphasizing efficiency along with accuracy[74].

• AlexNet: is renowned for significantly advancing the field of deep learning in com-
puter vision. This deep CNN, with its five convolutional and three fully connected
layers, demonstrated a notable reduction in error rates on the ImageNet competi-
tion[35].

3.3.3 Baselines

• Entropy[6]: is utilized as a metric to summarize the output distribution of a neural
network, especially the softmax output. Entropy quantifies the uncertainty or ran-
domness in a distribution. The paper defines the entropy of a distribution with the
following formula:

H(p) = −
C

∑
c=1

pc log pc (3.3)

where C represents the number of output classes and pc denotes the predicted
probability for class c. In the context of the softmax output, a higher entropy value
indicates a more spread-out or uncertain classification, where the predicted prob-
abilities are more uniformly distributed across classes. On the other hand, a lower
entropy value suggests a more certain classification, where one predicted probability
notably surpasses the others. This entropy-based measure assists in assigning priority
scores to inputs based on their uncertainty, providing insights into the network’s
confidence levels.

• Distance-based Surprise Adequacy (DSA)[6]: is a method to assess the surprise or
novelty of an input to a neural network relative to known inputs. This is achieved by
comparing the activation traces of the new input with those from known inputs. An
activation trace is defined as the vector of activation values observed when classifying
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an input, representing how each neuron in the neural network is activated. For the
DSA computation, the closest neighbor of a new input x with the same predicted
class is identified as xa. Subsequently, another input xb is found, which is closest to
xa but has a different predicted class. The distances dista and distb are then computed
based on the differences in their activation traces. The underlying rationale of DSA is
that a more surprising input might more likely reveal an erroneous behavior in the
trained model, as it indicates the model may not be well-prepared for such an input.

• DeepGini[22]: is a metric introduced to prioritize testing data for DNNs to enhance
their quality. The foundation of DeepGini is rooted in a statistical perspective of
DNNs, specifically focusing on the likelihood of misclassification of a given input.
The DeepGini metric for a test t with a DNN output vector [pt1, pt2, . . . , ptN ], where
the probabilities sum up to 1 (i.e., ∑N

i=1 pti = 1), is defined as:

ξ(t) = 1−
N

∑
i=1

pt2
i (3.4)

In this equation:

• ξ(t) is the DeepGini score for test t.

• N represents the number of output classes.

• pti denotes the predicted probability of the test t belonging to the ith class.

A higher value of ξ(t) indicates that the probabilities across classes are more evenly
distributed, suggesting a higher likelihood of misclassification. Conversely, a lower
score implies that one class has a significantly higher predicted probability, indicating
more certainty in the classification. In the context of test prioritization, a higher
DeepGini score means that the test is more "surprising" or "novel" to the DNN, and
thus, it should be prioritized higher. This is because such tests can potentially reveal
areas where the DNN might be uncertain or prone to errors.

• TestRank[39]: TestRank evaluates each unlabeled test data point using two key
attributes: intrinsic and contextual. The intrinsic attributes are the direct output
responses the model provides for a given input, such as the predictive output
distribution. In contrast, the contextual attributes offer insights into the model’s
behavior by analyzing the classification accuracy of similar, already labeled samples.
By constructing a similarity graph that encompasses both labeled and unlabeled
instances, TestRank leverages graph-based semi-supervised learning to extract these
contextual insights. Combining both sets of attributes, TestRank calculates a metric
that predicts the potential of a test instance to reveal a model failure. Consequently,
test instances are ranked and prioritized, ensuring that the most uncertain or risky
ones are addressed first.

3.3.4 Evaluation metrics

In this section, we introduce two metrics to evaluate our framework. The first is the
ATRC [39], which evaluates the effectiveness of test prioritization approaches. The second
is a new metric, called distance ratio, by which we estimate the regions where DeepGini
and DeepAbstraction are more effective in the feature space.
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3.3.4.1 Average Test Relative Coverage (ATRC)

We adopt the evaluation metric ATRC, as outlined in TestRank [39]. This metric is partic-
ularly suitable because ATRC takes into account the labeling budget. Conversely, many
methods, as seen in [6, 22], utilize the APFD[56] as the primary evaluation criterion. While
APFD is predominantly used in software test prioritization, it does not consider the label-
ing cost. Given that there is no labeling expense in software test prioritization, using APFD
in scenarios that require considering labeling costs becomes inapplicable. We compute the
ATRC value by the following formula:

TRC =
#Detected Faults

min(#Labeling Budget, #Total Faults)

ATRC =
1
m

m

∑
i=1

TRCi ∗ 100% (3.5)

where TRC is the ratio between the number of detected faults to the minimum of the
labeling budget and the total number of faults in the test dataset. The ATRC is the average
of TRC when the labeling budget (m) is less than or equal to the total number of faults in
the dataset.

3.3.4.2 Distance-based Metric

We introduce the distance-based metric to better understand the positioning of misclassified
instances. This metric aims to determine whether a misclassified instance is located closer
to the centroid of its class or to the classification boundary. Firstly, let’s define our set of
centroids. Assume C = c⃗1, c⃗2, ..., c⃗g, where g represents the total number of classes present
in the dataset. Next, let u denote the number of instances associated with a particular class.
Correspondingly, c stands for the centroid vector of that specific class. Lastly, consider v⃗i,
which signifies the high-level features we have extracted from the penultimate layer of our
model. We can now compute the centroid of a certain class with the following formula:

c⃗ =
∑u

i=1 v⃗i

u
(3.6)

We define a distance ratio as a ratio of the Euclidean distance between an instance and
the centroid of the predicted class y′ to the Euclidean distance between an instance and
the centroid of the ground truth y, defined formally as follows:

d(x) =
∥⃗cy′ − v⃗∥2

∥⃗cy − v⃗∥2
(3.7)

Based on the distance ratio, we group misclassified instances into three main regions:

1. If d(x) ∈ ]0.0, 0.7], a misclassified instance becomes a near-centroid instance.

2. If d(x) ∈ [0.7, 1.3], a misclassified instance is a near-boundary instance.

3. If d(x) ∈ ]1.3, ∞], a misclassified instance becomes also a near-centroid instance.
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The difference between the first and third regions is that, in region 1, an instance is close
to the centroid of the incorrectly predicted class. In contrast, in region 3, an instance is
marginally close to the centroid of the ground-truth class where the neural network still
misclassifies this instance.

Since defining an accurate decision-boundary region in feature space is often com-
plicated, we need to estimate the near-boundary region. We found through extensive
experimental studies that this region is approximately defined by a distance ratio of 1.0 ±
0.3. Note that when the distance ratio is 1, instances are more likely to be very close to the
decision boundary.

3.3.5 Research Questions

We empirically evaluate DeepAbstraction from three perspectives: effectiveness, efficiency,
and performance stability. We answer the following questions:

• RQ1 (Effectiveness): How does the effectiveness of DeepAbstraction in prioritizing
error-revealing instances compare to other deep learning test prioritization methods?

• RQ2 (Efficiency): How efficient is DeepAbstraction in terms of time complexity and
reducing labeling costs?

• RQ3 (Stability): How does the clustering parameter τ influence the performance
stability of DeepAbstraction?

3.4 experimental evaluation

In this section, we address these questions and provide an in-depth discussion of the
results.

3.4.1 RQ1: Effectiveness

To answer RQ1, we make the following comparisons: first, we compare DeepAbstraction
with DSA, Entropy, and DeepGini. Then, due to the particular data split of TestRank, we
compare DeepAbstraction separately to TestRank (we follow the same dataset splits).

Table 3.3 overviews the effectiveness comparison between DeepAbstraction and the
other baselines. Overall, DeepAbstraction outperforms other approaches significantly in all
datasets. DeepAbstraction is much more effective than DSA, e.g., experiment (D, FMNIST)
in Table 3.3 shows an ATRC improvement of 39.15%. Moreover, our framework achieves
better results than Entropy and DeepGini, with a considerable margin ranging between
11.54% ∼ 30.11% in terms of ATRC.

As shown in Table 3.4, our framework remarkably outperforms TestRank in 4 out of
6 experiments. Additionally, another advantage of our framework over TestRank is that
our framework avoids the pre-labeling efforts in TestRank. For instance, TestRank in
experiments (A, CIFAR10) and (C, SVHN) pre-labeled 8,000 and 10,000 test instances to
operate, respectively, which is very time-consuming. The comparison in Table 3.4 is unfair
since TestRank requires more budget, i.e., pre-labeling cost. If we count this pre-labeling
cost into the budget of TestRank, we find out that DeepAbstraction is considerably superior
to TestRank in all datasets.
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Table 3.3: Comparing the effectiveness of DeepAbstraction with other baselines based on ATRC(%).
Exp.
ID

Dataset DSA Entropy DeepGini DeepAbstr. ∆

A MNIST 33.15 34.67 50.36 61.90 ↑+11.54

B MNIST 27.84 29.44 33.98 57.58 ↑+23.60

C F-MNIST 41.77 42.59 56.23 86.34 ↑+30.11

D F-MNIST 43.66 41.21 55.27 82.81 ↑+27.54

E CIFAR-10 43.13 42.72 57.17 79.12 ↑+21.95

F CIFAR-10 47.98 52.73 60.20 83.10 ↑+22.90

G SVHN 47.44 50.73 59.92 83.60 ↑+23.68

H SVHN 47.22 44.54 55.06 83.82 ↑+28.76

Table 3.4: Comparing the effectiveness of TestRank and DeepAbstration in terms of ATRC(%).
Exp.
ID

Model Dataset
Validation

Acc. (%)
TestRank

(%)
DeepAbstr.

(%)
∆

A ResNet-18 CIFAR 10 70.10 87.87 84.15 ↓- 03.72

B ResNet-18 CIFAR 10 66.40 85.53 89.31 ↑+03.78

C ResNet-18 CIFAR 10 68.30 76.56 85.02 ↑+08.46

D Wide-ResNet SVHN 94.20 76.36 85.91 ↑+09.55

E Wide-ResNet SVHN 92.50 66.06 83.19 ↑+17.13

F Wide-ResNet SVHN 81.60 95.32 86.89 ↓- 08.43

Total ↑+26.77

Next, we investigate why our framework is more effective than other techniques in two
aspects: i) the regions where other methods fail to prioritize error-revealing instances;
ii) the removal of zero-scored instances inside each group, as mentioned in line 19 of
algorithm 1.

Regarding the regions, Table 3.5 shows that there is a significant number of error-
revealing instances residing close to the centroids in column total. DeepGini and Entropy
can poorly estimate the error-revealing capability of test instances residing in regions
1 and 3 (near-centroid regions), as defined in 3.3.4. On the contrary, DeepAbstraction
works effectively in all regions, as demonstrated in almost all experiments in Table 3.5. For
instance, the results of experiment E show that DeepGini and DeepAbstraction prioritize
approximately the same number of near-boundaries instances (371 versus 373), respectively.
However, DeepAbstraction prioritizes 202 near-centroid instances highly greater than the
65 instances prioritized by DeepGini.

As for the removal of zero-scored instances, Fig. 3.6 shows that this step reduces
considerably the number of false positives (defined in Table 3.2), particularly in FMNIST
and MNIST datasets. Although, there is a slight drop in the number of true positives. This



3.4 experimental evaluation 40

Table 3.5: The number of instances DeepAbstraction and DeepGini detect in each region.

Near-Boundary instances Near-Centroid instancesExp.
ID

Dataset
total DeepAbst. DeepGini total DeepAbst. DeepGini

A MNIST 92 56 49 54 40 13

B MNIST 31 28 14 26 16 6

C F-MNIST 450 303 229 415 306 191

D F-MNIST 478 312 301 275 212 72

E CIFAR-10 630 373 371 267 202 65

F CIFAR-10 1017 639 631 440 309 113

G SVHN 1319 842 736 444 269 171

H SVHN 760 464 501 405 344 50

drop is due to the GI function weakness that scores some true positives with zero scores,
e.g., these instances in regions 1 and 3. In a nutshell, the removal process for zero-scored
instances improves the effectiveness of DeepAbstraction by prioritizing more uncertain
positives from the second group.

Figure 3.6: The effect of removing zero-scored instances.

RQ1 Answer :

DeepAbstraction emerges as a more effective test prioritization technique compared to
other state-of-the-art methods, including TestRank. Unlike existing methods, DeepAb-
straction can accurately estimate the error-revealing capability of test instances across
all regions, including near-centroid instances that are often challenging to classify
correctly.
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3.4.2 RQ2: Efficiency

DeepAbstraction consists of two main components: monitors and prioritization algorithm.
According to [83], the complexity of monitors construction is the complexity of the cluster-
ing O(m2) where m is a number of training samples. The complexity of the membership
query and scoring function for test instances is O(n) where n is the number of test in-
stances. While the complexity of sorting algorithm is O(n× log n). Therefore, the overall
complexity of DeepAbstraction is O(m2). In practical terms, the time spent on clustering
is minimal compared to the time required for labeling the entire dataset. This makes
DeepAbstraction not only theoretically efficient but also practically advantageous.

DeepAbstraction outperforms TestRank in efficiency for three key reasons:

1. Pre-Labeling Requirement: TestRank needs to pre-label some test instances, adding
to its time complexity.

2. Complexity of kNN Graph: TestRank uses a kNN graph for similarity measures,
which has a complexity of O((m + n)2).

3. Neural Network Overheads: TestRank employs two neural networks (Graph Neural
Network and MLP), which significantly increase its time complexity.

RQ2 Answer :

DeepAbstraction is an efficient framework and the time complexity is O(m2). The time
complexity of DeepAbstraction is negligible compared to the time of manual labeling.
In practice, DeepAbsraction is much more efficient than TestRank.

3.4.3 RQ3: Stability

In this section, we delve into the stability of DeepAbstraction’s performance. We focus
on two key aspects: the impact of the hyperparameter τ on performance across different
benchmarks, and a comparative analysis of DeepAbstraction’s stability against TestRank.
The hyperparameter τ plays a crucial role in determining the compactness of the box
abstraction. A smaller τ results in a more compact box, while a larger τ leads to a more
coarse box.

We observed that when models have very high validation accuracy (greater than 98%),
the box abstraction tends to be too compact. This compactness results in a high number of
false positives during the testing phase. To mitigate this, we can adjust τ to a larger value,
which allows the box to include more true negatives and fewer false positives. For example,
a τ value of 0.4 provided stable ATRC results in experiments E and F as demonstrated in
Fig. 3.7.

On the flip side, when dealing with models that have high accuracy but are not perfect,
we encounter the issue of coarse boxes. These boxes lead to more false negatives during
testing. To address this issue, we can reduce the τ value to make the box more compact,
capturing more true positives and fewer false negatives. In our experiments, a τ value of
0.05 yielded more stable ATRC results in experiments A, B, C, and H.

In comparison to TestRank, the results in column 6 of Table 3.4 confirm the performance
stability of DeepAbstraction among different datasets. Whereas column 5 shows that
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TestRank has high unstable performance, e.g., although experiments E and F are conducted
on the same dataset and model, the ATRC results differ significantly, 95.32% vs. 66.06%.

Figure 3.7: Impact of Clustering Parameter τ on Performance Stability in DeepAbstraction.

RQ3 Answer :

The default value of τ is 0.05 to provide stable performance in DeepAbstraction.
With very highly accurate models, τ should be 0.4 to provide a stable performance.
Furthermore, DeepAbstraction is more stable than the recent work (TestRank) on
various benchmarks.

3.5 conclusion

In this chapter, we introduced a practical 2-tier prioritization framework named DeepAb-
straction, to estimate the error-revealing capability of unlabeled test instances. At its core,
DeepAbstraction integrates two pivotal ranking mechanisms: monitors and a scoring func-
tion. Notably, monitors in DeepAbstraction help significantly to detect more error-exposing
instances in both regions: near the centroids and the decision boundaries. Empirical ev-
idence clearly demonstrates that DeepAbstraction surpasses other deep learning test
prioritization algorithms, even outperforming the State-Of-The-Art (SOTA) algorithm
(TestRank).
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Main contributions of this chapter

▶ We conduct the first intensive study to investigate the effectiveness of the
existing evaluation metrics.

▶ We develop a novel metric (WFDR) that solves the limitations of the prede-
cessors.

▶ We develop a new metric (SFDR) that evaluates algorithms in the context
of severity prioritization.
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In this chapter, we begin by discussing the Misclassification Ratio (MR), a key concept
that sheds light on our first metric. We give a practical example to help grasp the importance
of MR. This example shows how some metrics might overlook MR and how that can affect
the evaluations. We unfold our proposed metrics: the WFDR and the SFDR. Following
that, we detail our experimental setup, including the datasets, models, baselines, and the
research questions. Lastly, we address the research questions from different perspectives:
the effectiveness of metrics, the effectiveness of algorithms, and the distribution of the
severity levels.

43
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4.1 misclassification ratio

The MR is the ratio between the number of misclassified instances and the size of the
test dataset, ranging from 0 to 1. A low ratio indicates that there are relatively few
misclassified instances compared to the overall size of the dataset. This scarcity makes
it difficult for the algorithm to prioritize these few instances, and vice versa. As a result,
the difficulty of prioritization is inversely proportional to the misclassification ratio. As
such, it is unfair to evaluate the algorithm’s prioritization capability without considering
the misclassification ratio. For instance, a 100-test dataset has 20 misclassified instances.
The initial misclassification ratio is 20/100. If the algorithm has already prioritized the
first 19 misclassified tests correctly, only one misclassified test remains. However, this last
misclassified test is now hidden among 81 correctly classified tests. Finding and prioritizing
this single misclassified test becomes much more challenging.

4.2 motivational example

example 10: Let’s consider a hypothetical scenario to illustrate a limitation in current evaluation
metrics. Imagine we have two datasets: Dataset A with 14 test instances and Dataset B with 1000
test instances. Both datasets have eight misclassified instances.

An algorithm prioritizes the instances in both datasets as follows: [1,1,1,1,0,0,0,0], where 1
represents a misclassified instance and 0 represents a correctly classified one. The algorithm yields
an RAUC of 77.22% and an ATRC of 81.73% for both datasets.

However, datasets A and B have different misclassification ratios, each metric evaluates the
performance equally in both datasets. Intuitively, the algorithm performance in dataset B should be
higher than in dataset A since the prioritization process is more difficult in B than in A. As a result,
we need to develop an evaluation metric that considers the misclassification ratio.

4.3 weighted faults detection ratio

The process of prioritization typically becomes more challenging as it progresses. Thus, it
is necessary to assign weights at each step of the process. These weights should gradually
increase with each successful step and decrease with each unsuccessful one. Accordingly,
the last misclassified instance should have the largest weight. Therefore, we develop a
new metric that involves the prioritization difficulty, called Weighted Fault Detection Ratio
(WFDR).

We compute the WFDR percentage by the following equation:

f (x) =

{
1 if x is misclassified

0 otherwise

Actual =
m

∑
i=1

f (xi) ∗
[
1− m−di−1

n−(i−1)

]
︸ ︷︷ ︸

Weights

(4.1)

Ideal =
m

∑
i=1

n−m
n−i+1 (4.2)

WFDR = Actual
Ideal ∗ 100% (4.3)
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where m is the labeling budget, which equals the total number of faults, and n is the size
of the test dataset. Also, di is the total number of the detected faults within the labeling
budget (i). Under the ideal case, all faults are detected within the budget (i), hence, all
f (xi) = 1. Initially, no faults are detected, i.e., d0 = 0.

example 11: A 100-unlabeled test dataset has ten error-revealing test cases, and the labeling
budget is 30. Moreover, two algorithms prioritize the test dataset, which results in two prioritized
datasets, namely A and B. Dataset A is [1, 1, 1, 1, 1, 1, 0, 0, 0, 0], and dataset B is [1, 0, 0, 1, 1, 1,
1, 1, 1, 1] where one represents faults, and zero represents non-faults. The WFDR evaluates both
approaches as follows:

ActualA =
[
1− 10

100

]
+
[
1− 9

99

]
+
[
1− 8

98

]
+ ... + 0 ∗

[
1− 4

93

]
+ 0 ∗

[
1− 4

92

]
+ 0 ∗

[
1− 4

91

]
= 5.54

IdealA = 9.433, WFDRA = 58.73%

ActualB = 7.456, IdealB = 9.433, WFDRB = 79.05%

Algorithm performance in dataset A reduces from 88.74% by ATRC and 81.82% by
RAUC to 58.73% by WFDR. Likewise, the performance in dataset B increases from 69.09%
by RAUC and 66.42% by ATRC to 79.05% by WFDR.

property 1: WFDR approaches its upper bound limit (FDRO) when the misclassification ratio
is very small.

Example 11 demonstrates that FDROA is 60% and FDROB is 80%. We see that the
WFDR values are close to the FDRO values in datasets A and B, i.e., 58.78% and 79.05%,
respectively. On the other hand, other metrics inaccurately over-evaluate the algorithm
performance larger than the fault detection ratio. For example, the ATRC value in dataset
A is 88.74% larger than 80%, and the RAUC value in dataset B is 69.09% larger than 60%.

In addition, we revisit example 11 to study how the misclassification ratio strongly affects
the WFDR percentage. Figure 4.1 shows that the WFDR percentage approaches the FDRO
percentage exponentially as the test dataset size increases from 14 (the minimum size of
dataset A) to 200 and from 12 (the minimum size of dataset B) to 200. We conclude that
as the dataset gets larger, the weights increase, and the prioritization difficulty becomes
higher accordingly. In other words, each weight approaches one in eq. 4.1, and the sum
of the weights is roughly the number of detected faults. In the ideal case, all f (xi) = 1 in
eq. 4.2, thus, the sum of all weights is roughly the total number of faults in the test dataset.
From eq. 4.3, we obtain a WFDR value close to the FDRO, as shown in Fig. 4.1.

property 2: If two prioritized datasets have the same FDRO, the one with a higher FDRE has a
greater WFDR.

The property 2 holds when the misclassification ratio is a large value. When the misclas-
sification ratio is small, the difference between the WFDR values of the two datasets dimin-
ishes drastically. For instance, if there are two prioritized datasets: A=[1,1,1,1,1,1,1,0,0,0]
and B=[1,0,0,0,1,1,1,1,1,1] and the total number of faults in both datasets is constant (10).
Figure 4.2 shows that dataset A significantly outperforms dataset B under small sizes of
the test dataset, i.e., large misclassification ratios. The difference between the WFDRs of A
& B reduces exponentially as the size of the test dataset increases. We justify property 2

by the weights change in the WFDR equation. The test dataset contains 13 instances: 10

misclassified and 3 incorrectly classified. We compute the WFDR for dataset B:
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Figure 4.1: The effect of the dataset size on the WFDR under different FDROs.

Figure 4.2: The effect of the dataset size on the WFDR under similar FDROs.

ActualB =
[
1− 10

13

]
+ 0 ∗

[
1− 9

12

]
+ 0 ∗

[
1− 9

11

]
+ ... +

[
1− 9

9

]
+
[
1− 8

8

]
+ ...

+
[
1− 4

4

]
= 0.231

IdealB = 4.04, WFDRB = 5.72%

ActualA = 2.19, IdealA = 4.04, WFDRA = 54.21%



4.4 severe faults detection rate 47

Since the algorithm in dataset B prioritizes all correctly classified instances, the remain-
ing in the 13-test dataset has to be misclassified instances. Thus, there is no need for
prioritization as the difficulty is zero, i.e., the weights (shown in blue) are zero. In dataset
A, as the algorithm prioritizes the misclassified instances successfully, weights get larger.
From Fig. 4.2, we can conclude that when the size of the test dataset size is:

• small (e.g., between 13 and 40): the MC is large, and the weights are small. Hence,
the WFDR metric evaluates the algorithms depending on FDRE since both FDROs
are the same.

• medium (e.g., 40 and 100): the MC tends to be low, and the weights and the difficulty
get larger. Hence, there is much importance for FDRO.

• large (more than 100): both datasets have very small MC, and the difficulty is very
high. Since both datasets have almost the same weights and difficulty, the WFDR
evaluates the algorithms based on the FDRO rather than the FDRE.

4.4 severe faults detection rate

The existing algorithms prioritize all misclassified instances equally. In situations where
the budget is limited or when safety and security are critical, it is insufficient to prioritize
all misclassified instances similarly. Thus, the algorithm should consider the severity when
prioritizing highly severe instances over other misclassified ones.

We estimate the severity level by the potential harm that can occur when the neural
network misclassifies a particular instance. As a result, we quantify the severity by the
prediction probability. For example, instances with a low-probability prediction of less
than 50% are low-severity instances. Accordingly, we should plan safety precautions before
model deployment to prevent damaging consequences. Contrarily, instances with a high
prediction probability of more than 80% are considered highly severe. No proactive actions
are taken since intelligent systems heavily rely on high-probability predictions.

Figure 4.3 illustrates some highly-severe examples from the CIFAR dataset. These
instances reveal the main weaknesses of the trained neural network. As corrective actions,
we should retrain the neural network with the following: a) boats with mainsail reflection,
b) dogs at different zoom levels, and c) planes in various positions, not only flying.

In severity prioritization, algorithms should prioritize high-severity instances at the
top of the list. In this context, the order among misclassified instances is more important.
For example, prioritizing low-severity examples at the beginning negatively impacts the
performance of the algorithm. The penalty is greater when the algorithm prioritizes
correctly classified ones, which are completely safe. Therefore, the rate of prioritization is
more important than the ratio.

An ideal list A has all misclassified instances in descending order according to the
prediction probability. An algorithm prioritizes instances in a specific order in list B. To
evaluate list B against A, we develop a new metric, namely Severe Fault Detection Rate
(SFDR). We compute the SFDR percentage by the following equation:

f (x) =

{
1 if x is correctly classified

0 otherwise

SFDR =
1
m

m

∑
i=1

γ f (xi) ∗
|A[0:i] ∩ B[0:i]|

i
∗ 100% (4.4)
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(a) label: ship
predicted: airplane
probability: 99.99%

(b) label: dog
predicted: horse

probability: 99.99%

(c) label: airplane
predicted: vehicle

probability: 99.70%

(d) label: airplane
predicted: vehicle

probability: 99.70%

Figure 4.3: High severe images in the CIFAR dataset.

where γ ranges ]0, 1[, and γ controls the degree of the penalty. Moreover, the γ value and
the penalty degree are inversely proportional. Thus, we select γ = 0.5 in our evaluations.
Furthermore, the SFDR percentage ranges between 0% and 100% from worst to optimal
performance, respectively. Lastly, the intersection operator allows for duplicated severe
cases because some misclassified instances have the same severity degree. More importantly,
the SFDR is a top-weighted metric, i.e., the metric imposes more weight on the top of the
prioritized list. Thus, the cost of incorrect prioritization decays gradually along with the
prioritized list.

We partition equally the degree of severity, i.e., the prediction probability, into 10 levels
between 0% and 100%. For example, misclassified instances with a prediction probability
of 90s% should be at the head of the prioritization list. On the other side, all correctly
classified instances and misclassified instances with prediction probability between 1%
and 10% should be at the tail of the list. It is worth noting that the prioritization among
all misclassified instances of the same severity level does not matter, as illustrated by the
following examples.

example 12: An ideal list A = [99, 91, 85, 83, 64, 24], A contains all misclassified instances in a
small test dataset, and the prioritized list B = [99, 0, 91, 83, 64, 0]. The labeling budget m = 10
and γ = 0.5. Since the severity of correctly classified instances is zero, we replace the prediction
probability with zero. Let xi be |A[0:i] ∩ B[0:i]|.

The first step to evaluate the prioritization list by SFDR metric is to encode the prediction
probabilities into severity levels between 1 and 10, where 10 is the highest degree of severity
(prediction probability between 90% and 100%) and 1 is the lowest degree of severity. More
particularly, we replace all prediction probabilities with the corresponding level of severity.
Thus, A becomes [10, 10, 9, 9, 7, 3] and B becomes [10,0,10,9,7,0].

Table 4.1 shows the step-by-step computation for the SFDR percentage. If the prioritized
instance is correctly classified, the f (xi) value is one, and γ is 0.5. Thus, the SFDR value
drastically declines when i is 2, and the value of yi = γ f (xi) ∗ (xi/i) largely decreases from
1 to 0.25. When i is 3, the intersection between the two lists allows duplication in the
severity degree (10).

Table 4.2 demonstrates how the SFDR metric evaluates effectively different prioritization
lists against A = [99, 90, 88, 81, 75, 70, 69, 62]. For example, in list B, the second incorrect
prioritization heavily penalizes the performance with a significant drop from 100% to
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Table 4.1: The SFDR metric evaluates the list B.

i A[0:i] B[0:i] xi f (xi) yi

1 [10] [10] 1 0 1.00

2 [10, 10] [10, 0] 1 1 0.25

3 [10, 10, 9] [10, 0, 10] 2 0 0.67

4 [10, 10, 9, 9] [10, 0, 10, 9] 3 0 0.75

5 [10, 10, 9, 9, 7] [10, 0, 10, 9, 7] 4 0 0.80

6 [10, 10, 9, 9, 7, 3] [10, 0, 10, 9, 7, 0] 4 1 0.33

SFDR = 1
m ∑m

i=1 yi ∗ 100% 63.33%

80.09%. Moreover, the performance in C is worse than in B since the algorithm prioritizes
falsely the last four instances that are non-fault instances. In scenarios D and E, the first
four instances are incorrectly prioritized. The main difference between the two scenarios
is the type of instances: misclassified instances with lower severity in scenario D and
correctly classified instances in scenario E. As a result, there is an 18.28% drop in the SFDR
percentage between the two scenarios. Note that calculations are not included for the sake
of brevity, and only SFDR values are presented.

Table 4.2: SFDR evaluates different prioritization lists.

Name List SFDR (%)

B [90, 88, 81, 75, 70, 69, 62, 99] 80.09

C [99, 90, 88, 81, 0, 0, 0, 0] 65.86

D [75, 70, 69, 62, 99, 90, 88, 81] 36.55

E [0, 0, 0, 0, 99, 90, 88, 81] 18.27

4.5 experimental setup

The experiments were conducted using a machine with an Nvidia K80 GPU and 12 GB of
RAM, implemented using the PyTorch v1.9.0 framework. Table 4.3 provides a summary of
the details of the main experiments. We detail our main setup as follows:

• Datasets: MNIST [15], Fashion-MNIST [85], CIFAR10 [34], SVHN [46].

• Pretrained Model: ResNet18 [27], GoogLeNet [74], ResNet34 [27], ResNet50 [27],
ResNet101 [27], ResNet152 [27], and EfficientNet-B0 [75].

• Prioritization Algorithms: DeepGini, Neurons pattern, and DeepAbstraction.

• Research Questions:

❶ (Metrics Effectiveness): How effective are the existing and proposed metrics in
evaluating the prioritization algorithms?
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❷ (Algorithms Effectiveness): How effective are the existing algorithms evaluated
by the WFDR and SFDR metrics?

❸ (Severity Distribution): What is the distribution of highly severe instances
among the widely used benchmarks?

Table 4.3: Details of the datasets and pretrained models.

Exp
ID

Dataset
Training
Dataset

Test
Dataset

Pretained
Model

Training
Acc. (%)

Test
Acc. (%)

Exp 1 CIFAR-10 50,000 10,000 Efficient-B0 94.95 92.86

Exp 2 CIFAR-10 50,000 10,000 ResNet101 88.83 86.97

Exp 3 F-MNIST 60000 10000 Efficient-B0 94.94 94.17

Exp 4 F-MNIST 60,000 10,000 ResNet50 93.11 91.12

Exp 5 MNIST 60,000 10,000 ResNet18 99.36 99.16

Exp 6 MNIST 60,000 10,000 ResNet34 99.29 98.84

Exp 7 SVHN 73,257 26,032 GoogLeNet 95.51 95.07

Exp 8 SVHN 73,257 26,032 ResNet152 94.63 94.10

4.6 experimental evaluation

This section addresses the research questions outlined in section 4.5.

4.6.1 RQ1: Metrics Effectiveness

Figure 4.4 shows that the APFD metric overestimates the performance of all algorithms.
For example, the APFD values for all experiments involving the DeepGini algorithm
are between 94.14% and 99.64%. The APFD values are significantly larger than the other
metrics (RAUC, ATRC) with differences up to 74%. Additionally, a comparison of APFD
and ATRCwas conducted to understand the impact of the labeling budget. It was found
that APFD values are greater than ATRCvalues with significant differences, reaching up to
47.19%, 82.91%, and 27.26% for each algorithm (a,b, and c). Since APFD does not consider
the misclassification ratio, it incorrectly exceeds the evaluation of WFDR by a considerable
margin of more than 70%.

RAUC and ATRCare not weighted metrics. Thus, they overestimate the performance,
which exceeds the FDRO. For example, when comparing the evaluations of RAUC and
WFDR for the DeepAbstraction algorithm among all experiments, the difference reaches
13.89%. Similarly, the difference between the evaluations of ATRC and WFDR reaches
20.04%, as shown in Fig. 4.4. Furthermore, RAUC and ATRCvalues among all experiments
exceed the FDRO shown in Table 4.4. Contrarily, all values of the WFDR metric are either
below or close to FDRO. For instance, in Exp 8, the FDRO of the DeepGini algorithm is
47.33%, while the RAUC, ARTC, and WFDR are 53.05%, 57.08%, and 46.55%, respectively.
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Figure 4.4: Evaluations of the different test prioritization metrics on various experiments.

Table 4.4: Fault detection ratio for several algorithms.

Fault Detection Ratio (%)Exp
ID

No. Bugs
DeepGini Neurons Pattern DeepAbstraction

Exp 1 714 46.22 26.61 60.22

Exp 2 1303 50.50 31.70 58.17

Exp 3 583 45.63 23.84 59.86

Exp 4 888 47.75 21.85 56.42

Exp 5 84 51.19 17.86 65.48

Exp 6 116 45.69 14.66 60.34

Exp 7 1284 45.64 35.44 65.81

Exp 8 1538 47.33 37.06 64.50

Lastly, Fig. 4.4 shows that SFDR evaluates the DeepGini algorithm as better than the
neurons pattern algorithm. Table 4.5 shows the FDRO of two levels of severity: high level
in which the prediction probability is greater than or equal to 80%, and moderate level
in which the probability is between 50% and 80%. For instance, in Exp 5, 84 misclassified
instances have different levels of severity: 36-high, 38-moderate, and 10-low. DeepGini
prioritizes 0-high, and 33-moderate severity instances, while the neurons pattern algorithm
prioritizes 2-high and 6-moderate severity instances. Hence, the SFDR values for DeepGini
and neurons pattern algorithms are 8.3%, and 2.7%, respectively.

We can also observe that DeepAbstraction outperforms DeepGini, as the former algo-
rithm prioritizes 25 highly severe instances, while the latter fails to prioritize any such
instances. Nonetheless, DeepGini and DeepAbstraction prioritize 86.84%, and 18.42%
of the moderately severe examples, respectively. As a result, the SFDR metric evaluates
DeepAbstraction with (21.28%) as better than DeepGini with (8.05%). To sum up, the SFDR
metric evaluation is consistent with the results in Table 4.5.
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Table 4.5: Fault Detection Ratio (%) for different algorithms according to the severity levels.

FDRO of Severe Bugs FDRO of Moderate BugsExp
ID No.

Bugs
Deep
Gini

Pattern
Algor.

Deep
Abst.

No.
Bugs

Deep
Gini

Pattern
Algor.

Deep
Abst.

1 315 0.00 13.65 47.62 312 77.88 31.73 55.45

2 325 0.00 10.15 40.00 656 51.22 29.42 45.58

3 233 0.00 13.30 54.51 285 70.53 23.86 50.53

4 262 0.00 11.07 72.52 504 59.92 19.44 44.44

5 36 0.00 5.56 69.44 38 86.84 15.79 18.42

6 49 0.00 10.20 63.27 50 72.00 12.00 44.00

7 409 0.00 3.91 74.82 534 45.88 33.90 41.01

8 331 0.00 3.02 78.55 662 29.76 27.04 36.71

RQ 1 Answer :

The existing metrics are ineffective and also over-evaluate the performance more than
the FDRO. On the other hand, the experiments show the validity of WFDR and SFDR
evaluations.

4.6.2 RQ2: Algorithms Effectiveness

The answer to RQ1 confirms that the proposed metrics effectively evaluate the performance
of algorithms.

The evaluation of the WFDR metric shows that DeepAbstraction performs significantly
better than other algorithms in all experiments, as demonstrated in Fig. 4.5. For example,
DeepAbstraction outperforms DeepGini by a significant margin (up to 20.23%) as shown
in Fig. 4.5. Since the WFDR metric relies heavily on the FDRO, the WFDR metric indicates
that DeepGini performs better than the neurons pattern algorithm, which is consistent
with the FDRO values in Table 4.4.

Figure 4.5 illustrates that all algorithms perform poorly in prioritizing highly severe
instances, with SFDR values at most 30%. However, DeepAbstraction performs significantly
better than other algorithms (DeepGini, Neurons Pattern), with margins of 23.8% and
27.7%, respectively.

The Gini score is inversely proportional to the certainty of the model, which is estimated
by the prediction probability. DeepGini prioritizes high Gini instances with low certainty.
i.e., low probability prediction. In other orders, low Gini instances with high prediction
probability (high severity) are at the bottom of the priority list, resulting in poor perfor-
mance in the severity prioritization. Table 4.5 confirms this by showing that DeepGini does
not prioritize any highly severe instances with a prediction probability greater than 80%.
But DeepGini prioritizes many moderate-severity instances.

The neurons pattern algorithm heavily relies on the Familiarity score (FD+) to measure
the conformance degree between the established pattern during the training and the test
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Figure 4.5: WFDR & SFDR evaluate different algorithms.

instance. High-severity instances have a deceptive similarity to the established pattern and
thus have a high FD+ score, resulting in being at the bottom of the prioritization list.

Lastly, DeepAbstraction uses monitors to prioritize all rejected test instances at the
beginning of the list. However, using the Gini score to prioritize these instances degrades
the performance of DeepAbstraction as shown in Fig. 4.5. Table 4.5 confirms the good
performance of DeepAbstraction by detecting many high and moderate-severity instances.
Since the rate matters more than the ratio in the severity prioritization, the performance of
DeepAbstraction cannot exceed 30%.

RQ 2 Answer :

The performance of all studied algorithms needs to be improved, with poor WFDR of
less than 70% and SFDR values of no more than 30.5%. However, the DeepAbstraction
algorithm shows significant improvement compared to the others in both measures.

4.6.3 RQ3: Severity Distribution

We investigate the significance of severity prioritization. In this regard, we evaluate the
ratio of high-severity instances to the overall count of misclassified instances. Figure 4.6
provides a visual representation of this distribution, showing that high-severity instances
are the most prevalent among the five experiments.

Moreover, the data shows that a considerable percentage, over 20%, of instances in every
benchmark are of high severity. These figures underscore the prevalence of high-severity
instances in our datasets, thus highlighting the depth of the problem. As a result, there is
a pressing need to develop new algorithms that prioritize only highly severe instances at
the top of the priority list.
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Figure 4.6: The distribution of different levels of severity.

RQ3 Answer :

Many instances in all benchmarks are highly severe, highlighting the need for new
prioritization algorithms that specifically address the severity issue.

4.7 conclusion

This chapter highlights the inefficacy of prevalent metrics like APFD, RAUC, and ATRC
in evaluating prioritization algorithms. Specifically, APFD overlooks labeling costs, inad-
vertently inflating performance evaluations, while RAUC and ATRC depend heavily on
FDRE rather than FDRO. Notably, current metrics disregard the misclassification ratio,
an indicator of prioritization difficulty. To address this, we introduced the WFDR metric,
which assigns weights based on prioritization difficulty. Our findings emphasize that a sig-
nificant portion of datasets consists of highly severe test instances, underscoring the need
for severity prioritization. This led to develop the SFDR metric, which is a top-weighted
metric that evaluates the algorithm more heavily on the top of the list. Ultimately, our
empirical tests validate the effectiveness of the WFDR and SFDR metrics and the poor
performance of the studied algorithms.
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Main contributions of this chapter

▶ We comprehensively analyze the earlier version of DeepAbstraction, high-
lighting the weaknesses compromising its performance and reliability.

▶ We introduce the concept of combined parameterized boxes to leverage the
collective verdicts of multiple monitors, enhancing the accuracy of our
system’s decisions.

▶ We establish a unique weighting system with a combination strategy that
balances the decision-making process when conflicts arise among different
verdicts of monitors, optimizing the fairness of the system’s decisions.
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In this chapter, we start by taking a critical look at the earlier version of DeepAbstraction
to highlight the limitations of the framework. We then introduce our approach in which we
establish a unique weighting system and combination strategy. Finally, we aim to answer
research questions about the effectiveness of verdict weights, how DeepAbstraction++
compares with other algorithms, and the stability of performance under varying parameter
settings.
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5.1 problem analysis

In this section, we explain the crucial role that clustering plays within the framework.
We then discuss the challenge of tau selection and its consequential effects on the overall
performance of the framework.

5.1.1 Clustering

Box-abstraction monitors are built based on the presumption that instances of the same
class show similar patterns due to their greater contiguity within the feature space than
instances of other classes. However, monitors may incorrectly validate the network’s
prediction for a new test input that closely mimics instances within a box, even though
this instance originates from another class. Therefore, to alleviate this problem of false
negatives, the k-means clustering algorithm is applied before box construction. After
clustering, each cluster forms a small box rather than a large box for all clusters. Figure 5.1
illustrates how monitors in Fig. (a) falsely accept the predictions as a square and a circle
for parallelogram and hexagon instances, respectively, i.e., novel classes not in the training
dataset. After clustering in Fig. (b), the monitors correctly reject the predictions as they are
outside all boxes.

(a) Without clustering (b) With clustering

Figure 5.1: Novel test instances before and after clustering [58].

5.1.2 Tau Selection Issue

DeepAbstraction controls the size of each box by a pre-specified parameter, namely the
clustering parameter (τ), which has one of the following values: 0.4, 0.3, 0.2, 0.1, 0.05,
and 0.01. The dynamic relationship between the value of τ and the box size is such that
a decrease in τ value shrinks the box, whereas an increase expands it. The challenge
is to select the best τ that optimally reduces the frequency of false negatives while
enhancing the number of true positives. The choice of the ideal τ is deeply influenced by
the inherent distribution of the dataset, which may vary across different classes. Therefore,
DeepAbstraction lacks a definitive guideline for selecting the best tau across several
benchmarks. For instance, DeepAbstraction suggests setting τ to 0.05 as a default value
for models with a training accuracy of less than 98%, while a τ of 0.4 is for exceptionally
accurate models. These values of τ are experimentally validated. However, these default
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values of τ are empirical consensus rather than optimal values over all benchmarks, as
shown in Fig. 5.2. For instance, when τ is 0.01 in the following experiments achieves better
results than τ of 0.05: Exp.3 and Exp.6. Similarly, the performance of DeepAbstraction with
τ of 0.4 in Exp.5 is less effective than with τ of 0.3.

Figure 5.2: The effect of clustering parameter τ on performance[58].

5.2 approach

In this section, we present the proposed solution, accompanied by its formal definitions.
Then, we provide an illustrative example for the updated framework.

5.2.1 Combined Parameterized Boxes

Figure 5.2 illustrates that a predefined value of τ cannot effectively improve the perfor-
mance. There is an observable discrepancy in the performance, i.e., small values of τ work
in some cases better than large values, and vice versa. Therefore, we propose an inclusive
approach that depends on all monitors’ verdicts of different τ to accept or reject the
neural network predictions. This integration represents so-called combined parameterized
boxes, which collectively involve the predictive potential of every fixed-size box. With this
approach, we effectively address the problem of τ selection.

The primary responsibility of monitors is to carefully reject any erroneous predictions.
This task gains importance when disagreements arise among monitors of different τ.
Amidst such conflict, if even a single verdict signals rejection, the final decision leans
towards rejection. Our experimental evaluation further supports the effectiveness of this
approach. In response to these findings, we develop a strategic approach to assign weights
to the monitors’ verdicts. This approach places a higher weight on rejection verdicts
than other verdicts, while uncertainty verdicts carry more weight than acceptance ones.
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It’s crucial, however, to maintain a careful balance - the weight differences should not
be so significant that the heavily weighted verdicts negate the lesser ones. For instance,
overemphasis on rejection verdicts can cancel the contributions of other verdicts, thereby
negatively impacting the prioritization performance in subsequent stages. To formalize
this approach, we mathematically express the monitor’s verdicts in the following order:
acceptance [a], uncertainty [u], and rejection [r]:

a = γ, (5.1)

u = a + β, (5.2)

r = u + 2 ∗ β (5.3)

where γ and β are arbitrary positive real numbers.
We start to randomly select the values of γ and β. Then we compute the weights of

the verdicts according to the above equations. We can also observe that the acceptance
weight can be any positive real number except zero since zero denotes no contribution.
Furthermore, the uncertainty weight is greater than the acceptance weight with β. Moreover,
the rejection weight is larger than the uncertainty weight by 2 ∗ β. Lastly, if we substitute
eq.(5.2) in eq. (5.3), we infer that the rejection weight is larger than the acceptance weight
by 3 ∗ β. In the experimental evaluation section, we will see how different values of β

should not affect the performance stability of the combined monitors. In other words, the
performance stability is independent of the β selection value.

5.2.2 Combination Strategy

Numerous strategies exist to merge the weighted verdicts of different monitors and yield
a final, cumulative verdict. We highlight a few of these approaches below, with a more
comprehensive evaluation of each to follow in the experimental evaluation section:

• Mean: This strategy involves adding all weighted verdicts and dividing the total by
the number of verdicts, in this case, six—corresponding to the τ values of 0.4, 0.3,
0.2, 0.1, 0.05, and 0.01.

• Max: This strategy selects the largest weighted verdict among the six. If a rejection
is present, it automatically becomes the final verdict, followed by uncertainty or
acceptance verdicts, as applicable.

• Product: As the name suggests, this strategy takes the product of all weighted verdicts
as the final verdict.

• Mode: This fundamentally operates as a voting strategy, where the final verdict is the
weighted verdict appearing most frequently among the others.

By evaluating these strategies, we aim to provide insight into their efficacy and relevance
in the context of our monitoring system.

5.2.3 Illustrative Example

Imagine we task a neural network with a binary classification scenario where it should
differentiate between plane and bird. As depicted in Fig. 5.3, the predictions highlighted in
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red represent misclassifications and should be prioritized. Conversely, the ones highlighted
in blue indicate the correct classification. We can observe that the upper part of Fig. 5.3
shows DeepAbstraction version 1, which consists of 6 verdicts according to the τ value. In
this version, the user should select only one verdict depending on the τ value determined
by the model’s training accuracy. However, there are some cases where training accuracy
does not sufficiently capture the model’s learning capability, e.g., overfitting. Ultimately,
it’s crucial to consider verdicts of false negatives and false positives, which are marked in
red, to assess the predictive performance of the monitors.

Figure 5.3: Transition from DeepAbstraction to DeepAbstraction++.

Our process begins by assigning weights to the acceptance, uncertainty, and rejection
verdicts, according to eq. (5.1)-(5.3), yielding respective values of 1, 4, and 10. Then, we
incorporate the verdicts of different monitors using the mean combination strategy to
ascertain the final verdict. Following this, we prioritize the test instances based on the final
verdict. However, in cases where two test instances possess an equal combined verdict
score, we turn to the GI score for prioritization. For example, the fourth and fifth test
instances have a combined verdict of 4.5, prompting the algorithm to prioritize the fourth
over the fifth based on their GI scores. Finally, after the prioritization completion, we label
the first n test instances. Here, n represents the predetermined labeling budget, setting the
threshold for the number of instances to be labeled.
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5.3 experimental setup

We conduct the experiments on a system equipped with an Nvidia K80 GPU and 12 GB
of RAM, with PyTorch v1.9.0 as the underlying framework. Table 5.1 summarizes the
principal experiments. The configurations used for the primary setup are as follows:

• Datasets: MNIST [15], Fashion-MNIST [85], CIFAR10 [34], SVHN [46].

• Pretrained Model: ResNet18 [27], GoogLeNet [74], ResNet34 [27], ResNet50 [27],
ResNet101 [27], ResNet152 [27], and EfficientNet-B0 [75].

• Prioritization Algorithms: DeepGini[22], DeepAbstraction[58], and DeepAbstrac-
tion++.

• Evaluation Metrics: We use the WFDR metric to evaluate prioritization algorithms,
according to [57]. This metric outperforms other metrics in effectively assessing the
quality of prioritization algorithms. Unlike other metrics, the WFDR metric involves
the prioritization difficulty which highly depends on the dataset size and the labeling
budget.

• Research Questions:

❶ (Weights Effectiveness): How effective are the verdict weights proposed in eq.
(5.1)-(5.3)?

❷ (Algorithms Effectiveness): How effective is DeepAbstraction++ compared to
the state-of-the-art (SOTA) algorithms?

❸ (Performance Stability): How does tuning the γ and β parameters influence
the performance of DeepAbstraction++?

❹ (Combination Strategy Selection): Which combination strategy provides better
performance in terms of algorithm effectiveness?

Table 5.1: Details of the datasets and pretrained models.

Exp
ID

Dataset
Training
Dataset

Test
Dataset

Pretained
Model

Training
Acc. (%)

Test
Acc. (%)

Exp 0 CIFAR-10 50,000 10,000 Efficient-B0 94.95 92.86

Exp 1 CIFAR-10 50,000 10,000 ResNet101 88.83 86.97

Exp 2 F-MNIST 60000 10000 Efficient-B0 94.94 94.17

Exp 3 F-MNIST 60,000 10,000 ResNet50 93.11 91.12

Exp 4 MNIST 60,000 10,000 ResNet18 99.36 99.16

Exp 5 MNIST 60,000 10,000 ResNet34 99.29 98.84

Exp 6 SVHN 73,257 26,032 GoogLeNet 95.51 95.07

Exp 7 SVHN 73,257 26,032 ResNet152 94.63 94.10
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5.4 experimental evaluation

This section addresses the research questions outlined in the previous section. First, we
assess the effectiveness of the verdict weights proposed in eq. (5.1)-(5.3). Then, we evaluate
the efficacy of DeepAbstraction++ algorithm by contrasting its performance with the
SOTA algorithms. Third, we explore the performance stability of DeepAbstraction++ by
examining the impacts of tuning the parameters γ and β. Finally, we will determine the
best combination strategy.

5.4.1 Weights Effectiveness

We perform eight experiments as detailed in Table 5.1 where the combination strategy is the
mean, and γ and β are 1 and 3, respectively. In our initial experiment, we aim to confirm
the necessity of assigning greater importance to the weight of a rejection verdict compared
to other verdicts. Specifically, we study how a single rejection verdict can influence the
final combined verdict compared to the other five verdicts.

Our findings suggest that when only one monitor issues a rejection verdict, this results
in a final combined verdict of rejection in 30% of misclassified instances, as indicated
in Exp.0 of Fig. 5.4. The last ratio is significantly greater in Exp.1, 3, and 7, standing at
47%, 48%, and 48%, respectively. However, we found that in scenarios where the neural
network exhibits high levels of accuracy, a single rejection verdict is insufficient to refuse
the network prediction, as evidenced by the results of Exp.4 and 5 in Fig. 5.4. When the
number of rejection verdicts increases to three or six, we can further confirm this finding.
For example, in Exp.0, we noticed that of the instances resulting in a final combined verdict
of true rejection, 39% had three rejection verdicts, and 73% had six rejection verdicts. We
consistently observe this trend across all the conducted experiments. It strongly underlines
the pivotal role that rejection verdicts play in determining the final decision over other
verdicts.

Figure 5.4: The impact of the number of rejection verdicts on the final combined verdict.
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In the second experiment, we contrast the impact of the rejection verdict compared to
the other two types: uncertainty and acceptance. The aim is to investigate the influence
each verdict type has on the true rejection of the final decision. More specifically, our
comparison involves only those instances where the verdicts are consistent across all six
monitors. Then, we compute the number of instances in which the six rejection verdicts led
to the true rejection of the final verdict. After that, we compare this with the total number
of six rejection-verdict instances to find the ratio. This procedure is repeated with instances
of six uncertainty verdicts and six acceptance verdicts.

Our findings, as depicted in Fig. 5.5, highlight the considerable influence of the rejection
verdicts on the final combined verdict. In six out of eight experiments, this verdict type
significantly outperformed the others, with the highest contribution ratio reaching 91%
and a median ratio of 78%. On the contrary, instances of uncertainty verdicts exhibit a
moderate influence, with a maximum contribution ratio of 42% towards the true rejection
of the final verdict. Instances of acceptance verdicts, however, demonstrate minimal impact
on rejecting the final verdict.

Figure 5.5: The impact of various verdict types on the final combined verdict.

RQ 1 Answer :

Our study reveals that the observed impact of the verdicts on the final verdict aligns
with the proposed weights of the verdicts in the eq.(5.1)-(5.3).
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5.4.2 Algorithms Effectiveness

Table 5.2 presents a comparative study on the effectiveness of the DeepGini, DeepAb-
straction, and DeepAbstraction++ algorithms, evaluated using the WFDR metric across
eight experiments. In each experiment, the combination strategy is the mean, and γ and
β are 1 and 3. Table 5.2 reveals that DeepAbstraction++ consistently outperforms both
DeepGini and DeepAbstraction in all experiments, as shown by the positive deltas. The
improvements offered by DeepAbstraction++ over DeepAbstraction range from a mini-
mum of +2.38% (in Exp.4) to a maximum of +7.71% (in Exp.6). This demonstrates that the
additional optimizations in the DeepAbstraction algorithm are effective.

Table 5.2: Effectiveness of DeepAbstraction++ and other algorithms (WFDR).

Experiment
DeepGini

(%)
DeepAbstraction

(%)
DeepAbstraction++

(%)
∆

Exp.0 45.26 58.75 64.26 ↑+5.51

Exp.1 48.62 56.39 59.90 ↑+3.51

Exp.2 44.86 59.13 63.79 ↑+4.66

Exp.3 46.53 53.19 59.21 ↑+6.02

Exp.4 51.08 65.38 67.76 ↑+2.38

Exp.5 45.54 60.20 62.79 ↑+2.59

Exp.6 45.00 67.59 75.30 ↑+7.71

Exp.7 46.55 63.79 69.70 ↑+5.91

RQ 2 Answer :

DeepAbstraction++ demonstrates considerably higher effectiveness than other algo-
rithms. Therefore, the new additions to the framework greatly enhance the perfor-
mance.

5.4.3 Performance Stability

As demonstrated in Fig. 5.6, the DeepAbstraction++ model exhibits remarkable stability
in performance. Regardless of the β value, which ranges from 1 to 5000, the performance
remains constant for each experiment. This consistent performance across a broad spectrum
of β values indicates a high level of stability in DeepAbstraction++ performance. Similarly,
when the parameter β is held constant at a value such as 1, and γ varies within a range
from 1 to 5000, we consistently observe the stable performance of the DeepAbstraction++
model across all γ values for every experiment. For the sake of brevity, the corresponding
graph is omitted as it is highly similar to Fig. 5.6.
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Figure 5.6: The Impact of β on the performance stability when γ = 1.

RQ 3 Answer :

DeepAbstraction++ consistently maintains stability, unaffected by the values of γ and
β, indicating that γ and β do not impact the performance.

5.4.4 Combination Strategy Selection

Table 5.3 compares the effectiveness of different strategies where γ and β are 1 and 3. The
evaluation is based on the WFDR percentage, incorporating four strategies: mean, product,
mode, and max. The mean strategy generally outperforms the other strategies in all the
experiments, with the highest mean value seen in Exp.6 at 75.30%. However, there are
exceptions to this pattern. For instance, Exp.4 presents a noteworthy difference between
the mean (67.76%) and the max (57.04%). Moreover, in Exp.5, the mean and product values
are identical at 62.79%. Other combination strategies tend to perform badly because they
need to include all monitors in their final combined verdict. For instance, the max strategy
only chooses the maximum verdict over the six verdicts. Also, the mode strategy is biased
towards the majority verdicts rather than incorporating all. Additionally, the product
strategy prioritizes the rejection verdict above other verdicts when determining the final
combined verdict. However, product strategy works better when all verdicts are rejections
according to Fig. 5.4. On the other hand, the mean strategy manages to incorporate all
monitors when determining the final verdict.

RQ 4 Answer :

The results suggest a prevailing superiority of the mean strategy in merging the
verdicts from multiple monitors over other strategies.
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Table 5.3: Comparative analysis of strategies based on WFDR (%).

Experiment
mean
(%)

Product
(%)

mode
(%)

max
(%)

Exp.0 64.26 58.76 59.17 60.30

Exp.1 59.90 59.43 55.45 59.95

Exp.2 63.79 63.45 58.09 60.68

Exp.3 59.21 58.42 52.51 56.70

Exp.4 67.76 65.38 64.19 57.04

Exp.5 62.79 62.79 61.07 52.44

Exp.6 75.30 73.41 67.19 65.15

Exp.7 69.70 68.98 62.02 66.41

5.5 conclusion

This chapter explores the issue of tau selection in the DeepAbstraction framework, a
factor that affects the box size as well as the framework’s stability and performance. We
present a new method called combined parameterized boxes. This method takes into account
judgments from monitors using various tau values to evaluate network predictions. We
give these judgments specific weights to avoid undue influence from any single type of
verdict, aiming for a more balanced decision-making process. We also suggest several
strategies like mean, max, product, and mode to integrate these weighted judgments into
a final decision. The method offers a considerable improvement in the performance of the
DeepAbstraction framework.
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In this chapter, we focus on two key concepts: test prioritization algorithms and runtime
monitoring.

We start this chapter with test prioritization, highlighting the recent work published in
this area. We explore various techniques, e.g., entropy, DeepGini, PRIMA, and TestRank,
among others. These methods collectively aim to enhance the efficiency of DNN testing by
prioritizing inputs that are most likely to reveal defects or anomalies in the model. In this
chapter, we also present runtime monitoring, a concept that our work heavily relies on
to develop our test prioritization framework. More importantly, the correlation between
test prioritization algorithms and runtime monitoring in this chapter lies in their shared
objective of enhancing the robustness and reliability of DNNs.
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6.1 test prioritization algorithms

In this section, we list several state-of-the-art algorithms in the area of test prioritization.

6.1.1 Input prioritization

The paper [6] emphasizes the significance of testing neural networks, especially in safety-
critical systems. The authors propose a novel method to prioritize input data to reduce the
labeling cost. The authors also introduce the use of sentiment measures, derived from the
computations performed by the model. These measures help identify inputs that might
reveal the model’s weaknesses. The primary methods discussed for test prioritization
include:

6.1.1.1 Entropy

This measure [69] uses the output of the softmax function that represents the categorical
probability distribution of the classes. To determine how uncertain the model is about
its prediction for a given input, the concept of entropy is used. Entropy measures the
randomness or uncertainty in these probabilities. A high entropy value means the model is
uncertain about its prediction, while a low value indicates confidence. In the context of test
prioritization, inputs that the model is uncertain about, i.e., high entropy, are given higher
priority for testing since they might reveal potential model weaknesses. The entropy-based
score is formulated in eq.(2.5).

6.1.1.2 Monte-Carlo Dropout

In machine learning, the model uncertainty can arise due to limited training data or
inherent noise in the data –known as aleatoric uncertainty [31]. Bayesian Neural Networks
(BNNs) [65] provide a way to estimate this uncertainty.

Monte-Carlo Dropout [72], originally a regularization technique for neural networks,
can also function as a Bayesian approximation [24]. Unlike its standard use where Dropout
is disabled during testing, Monte-Carlo Dropout keeps it active. This change allows each
test run to sample from a network with a randomly selected subset of active neurons,
effectively creating a probability distribution over the network’s predictions. This process
imitates Bayesian methods, where uncertainty is represented probabilistically. By averaging
the results of multiple forward passes with active Dropout, the network’s predictive
uncertainty is estimated. Thus, Monte-Carlo Dropout not only prevents overfitting but also
provides a Bayesian perspective on the network’s predictions, highlighting the confidence
level in its outputs.

When a model is uncertain about its prediction for a particular input, that input becomes
a potential candidate for further testing. The Monte-Carlo Dropout approach offers an
approximation way to estimate this uncertainty, making it a valuable tool for prioritizing
test inputs.

6.1.1.3 Distance-based Surprise Adequacy

The DSA method [32] is rooted in the concept of measuring the surprising or novelty of a
test input. The idea is to assess how different or surprising a new input is compared to
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known inputs based on the activation traces of the neural network. An activation trace is
essentially the output of neurons in the network when processing an input. To compute
the surprise of a new input, DSA utilizes a distance function. It first identifies the closest
known input with the same predicted class to the new input. Then, it finds another known
input that is closest to the first one but has a different predicted class. The distances
between the activation traces of these inputs are then used to compute the DSA value for
the new input. A higher DSA value indicates that the new input is more surprising to
the model, suggesting that the model might not be well-prepared for such an input. As a
result, inputs with high DSA values are prioritized for testing.

In essence, the DSA method prioritizes test inputs based on how different their activation
patterns are compared to known inputs, with the belief that more surprising inputs are
likely to reveal potential weaknesses in the model.

To conclude, Byun et al.[6] were among the first to introduce sentiment measures such
as confidence, surprise, and uncertainty to address test prioritization. Their methodology
is critically limited by its reliance on the model’s output—measures that can be misleading
due to overconfidence in predictions. This reliance leads to an incorrect estimation of
uncertainty and potential misclassification.[23].

6.1.2 DeepGini

DeepGini [22] is a testing methodology for DNNs designed to enhance robustness. Unlike
conventional techniques that focus on maximizing the coverage of neurons or pathways [54],
DeepGini uses the Gini Index (GI) [59], a metric for assessing inequality in distributions.
For more details about GI, we refer the reader to Section 2.8.2. DeepGini applies the GI
to the outputs of neurons in the penultimate layer. The approach ranks test instances
according to the GI which reflects the impurity or uncertainty in the DNN’s outputs.
Specifically, when a DNN showcases similar probabilities across all classes, it indicates a
higher likelihood of misclassification due to uncertainty, and vice versa. By prioritizing
such tests, DeepGini addresses the most vulnerable areas of the DNN, thereby enhancing
the overall robustness.

However, DeepGini proposes using the Gini Index to identify error-prone tests, it
falls short by depending solely on model outputs to assess test case uncertainty. This
reliance does not take into account the full complexity of DNN behavior and often misses
high-confidence misclassifications, particularly with near-centroid instances[23].

6.1.3 PRIMA

The paper [82] introduces PRioritizing test inputs via Intelligent Mutation Analysis
(PRIMA), a novel test input prioritization approach. The primary goal of PRIMA is to
efficiently label test inputs that reveal bugs, thereby enhancing the efficiency of the DNNs
testing. PRIMA utilizes a two-fold strategy for test prioritization:

1. Mutation Analysis: PRIMA’s approach to test prioritization is deeply rooted in
mutation analysis [81], which is based on two foundational insights:

• Model Mutation: By introducing slight modifications to the DNN model, PRIMA
produces various mutated versions. When a test input yields different prediction
results between the original model and one of its mutated counterparts, the test
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input is said to "kill" the mutated model. This behavior indicates that the test
input effectively tests the part of the model that was altered. The underlying
rationale is that if a test input can highlight differences between the original
and a slightly changed model, it’s more likely to reveal potential bugs in the
DNN. PRIMA uses various mutation rules, such as:

a. Neuron Activation Inverse (NAI): Inverts the activation state of a neuron.

b. Neuron Effect Block (NEB): Blocks the effect of a neuron on subsequent layers.

c. Gauss Fuzzing (GF): Adds noise to neuron weights.

d. Weights Shuffling (WS): Shuffles the weights of a neuron.

• Input Mutation: PRIMA also slightly alters test inputs, creating mutated versions
of test instances. If a significant number of these mutated versions produce
different prediction results compared to the original test input on the unaltered
model, this suggests a notable finding. It indicates that the original test input is
sensitive and adept at capturing DNN anomalies. This is because the original
test input’s information is being effectively utilized by the model, and even
slight changes to the input can lead to different outcomes.

2. Learning-to-Rank: is a specialized form of supervised machine learning, that plays a
pivotal role in test prioritization. The process begins with the extraction of features
from mutation results, capturing the prediction differences between the original
and mutated models or inputs. Leveraging these features, PRIMA uses the XGBoost
ranking algorithm [12] to construct a model that can rank test inputs depending on
their potential to reveal defects in DNNs. Once this model is established, it assigns
scores to each test input. Those with higher scores are perceived as more likely to
uncover bugs, and as a result, they are prioritized for testing. Through this intelligent
ranking system, PRIMA ensures that the most critical tests, which are most likely to
highlight vulnerabilities in the DNN, are addressed first.

However, PRIMA introduces a mutation-based strategy that, while innovative, struggles
with scalability due to the high storage requirements for multiple models and test inputs.
It is also further compromised by the unpredictability associated with random mutations.

6.1.4 TestRank

The paper [39] presents TestRank, a novel test input prioritization framework. TestRank
seamlessly integrates both intrinsic and contextual attributes of the test data:

1. Intrinsic Attributes Extraction: TestRank extracts the intrinsic attributes directly
from the target deep learning model. For each input in the pool of unlabeled inputs,
TestRank collects the output logits, the vectors present before the softmax layer. This
process captures the inherent characteristics of the test data, providing a foundational
layer of information for prioritization.

2. Contextual Attributes Extraction: Initially, TestRank first maps the original data space
into a more compact feature space, preserving a strong local continuity property [2].
A feature extractor carries out this transformation. Then, TestRank constructs a
similarity graph, specifically a k-Nearest Neighbor Graph [33]. This graph draws
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from the feature vectors and their associated classification correctness, including both
the unlabeled test pool data and labeled data like training sets or previously labeled
test samples. Using a graph-based representation learning technique, TestRank
extracts contextual attributes for each unlabeled instance. The goal here is to use
the classification correctness of similar labeled samples as a guide for prioritizing
unlabeled ones.

3. Combining Intrinsic and Contextual Attributes: TestRank combines the intrinsic and
contextual attributes using a Multi-Layer Perceptron (MLP). This MLP predicts the
potential of unlabeled test instances to reveal failures. After making these predictions,
TestRank ranks the instances, prioritizing those with the highest potential to reveal
failures.

In summary, TestRank solves the deficiencies of its predecessors by integrating a broader
range of network attributes. However, its effectiveness is hampered by the necessity of
pre-labeled test instances as a prerequisite which in turn reduces the applicability in
constrained datasets or budgets. In addition, TestRank shows unstable performance across
different models of the same dataset.

6.1.5 Neurons Pattern

The paper [87] presents an innovative test prioritization approach. It introduces the concept
of a familiarity score, denoted as FR+. This score quantifies the familiarity of a given input
based on neuron activation patterns observed during training. The primary idea is that
inputs with lower familiarity scores are more unfamiliar or novel to the DNN. Thus, they
are given higher priority for testing as they are more likely to expose potential issues
in the model. This approach aims to enhance the efficiency of identifying problematic
classifications in DNNs.

To establish this prioritization, the paper first constructs patterns based on the training
set. These patterns reflect the active and inactive neurons for each class in the DNN. Once
these patterns are established, the test cases are then prioritized based on their familiarity
degrees to these patterns. A higher familiarity degree indicates that the test case is more
similar to the training data, and thus, it is given a lower priority. Conversely, test cases that
deviate more from the established patterns, indicating potential unfamiliarity or novelty,
are given higher priority. This method operates on the premise that such unfamiliar test
cases are more likely to reveal errors in the DNN.

6.1.6 ActGraph

ActGraph [10] introduces a distinctive approach to test case prioritization by emphasizing
the spatial relationships of neurons in DNNs. This relationship is captured using an
activation graph which is originally a directed weighted graph [71]. The graph integrates
the structure of the DNN and the multi-layer activation values, providing a holistic
representation of the test case’s features.

The initial step involves feeding test cases into a trained DNN, with each layer producing
activation values. These activations shed light on how different neurons in the network
respond to the input, providing insights into the DNN’s behavior for that specific test case.
Following this, ActGraph constructs activation graphs based on these activations. This
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graph is a directed weighted structure where neurons are nodes, and the model’s weights
act as connections between them. From this graph, an adjacency matrix and node features
are extracted, representing the relationships and characteristics of neurons, respectively.

The process refines these features by extracting a central node feature from the activation
graph. This extraction offers a summarized representation of the test case’s behavior in the
DNN. Using this feature, ActGraph employs a Learning-to-Rank (L2R) model [12] to rank
test cases based on their potential to uncover vulnerabilities in the DNN. This ensures that
test cases with a higher likelihood of exposing model flaws are prioritized, enhancing the
efficiency of DNN testing.

6.1.7 CertPri

CertPri [92] is a novel method for test input prioritization in DNNs, focusing on the
movement cost in DNNs feature space. This approach quantifies the distance a test input
needs to move to be correctly classified, known as movement cost. CertPri evaluates this
cost to prioritize test inputs, particularly those that are misclassified or reveal bugs,
aiding in improving the model performance. Furthermore, CertPri provides a formal
robustness guarantee for this prioritization process, employing the Lipschitz continuity
assumption [53]. This guarantee enhances the reliability and effectiveness of the method
across various types of tasks and data models.

CertPri’s methodology is fundamentally based on two key concepts: feature purity [22]
and the use of inverse perturbation [91]. Feature purity relates to the stability of test
inputs in the feature space, where high purity indicates stability and necessitates a higher
movement cost for further change. This stability is crucial during forward propagation [11]
as inputs move towards their class centers. Inverse perturbation, conversely, is used
to analyze the movement cost for both correctly and incorrectly predicted test inputs.
It improves the feature purity of incorrectly predicted inputs, enabling them to move
directionally in forward propagation with lower movement costs. In contrast, correctly
predicted inputs with higher feature purity require more effort to reach their class centers.
This differential treatment based on feature purity and inverse perturbation underlines
CertPri’s effectiveness in handling diverse inputs and enhancing DNN testing and quality
assurance.

6.1.8 DeepHyperion-CS

DeepHyperion-CS [96] introduces a methodology that explores the feature space of deep
learning systems to enhance testing. This tool enhances its predecessor, DeepHyperion [95],
by emphasizing inputs that significantly contribute to the exploration of the feature
space during previous search iterations. The goal of this exploration is to understand
the specific features or characteristics of test inputs that influence the behavior of the DL
system. Moreover, DeepHyperion-CS is designed to explore a DL system’s feature space
extensively, seeking inputs with diverse characteristics that cause the system to deviate
from expected behavior. Using Illumination Search algorithm [45], DeepHyperion-CS fills
the feature map with inputs that either expose or are close to exposing misbehaviors in
the DL system.

DeepHyperion-CS prioritizes test inputs based on their contribution to feature space
exploration. Inputs that have significantly contributed to previous explorations of the
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feature space receive a higher priority. This prioritization is achieved by assigning a CS
score to each input. Inputs with a history of contributing more to the exploration of
the feature space receive a higher CS score, making them more likely to be selected in
subsequent iterations. If an individual input repeatedly shows a lack of contribution to the
exploration, the system progressively reduces the CS score of that input, thereby lowering
the priority during selection. This dynamic adjustment ensures efficiency in the exploration
process by focusing on inputs more likely to expose new areas of the feature space and
potential misbehaviors of the DL system.

6.1.9 Activation Frequency

The paper [88] introduces a method for prioritizing test cases in DNNs. Researchers
analyze the activation pattern of neurons within the DNN. Specific inputs activate neurons,
and the pattern of these activations reveals insights into the network processing. The
method calculates the activation frequency of neurons from training sets. This frequency
shows how often a neuron activates with different inputs. By understanding frequent
neuron activations, the method identifies inputs likely to trigger unusual or unexpected
activations.

The method assigns high priorities to test cases more likely to be misclassified. This
prioritization relies on the analysis of neuron activation patterns. Test cases that trigger un-
usual neuron activations receive higher priority. These test cases uncover misclassifications
within the tested DNN and trigger misclassifications.

6.2 run-time monitoring

In this section, we explain the three runtime monitoring works, we relied on in our work.

6.2.1 Outside the Box

The paper [28] introduces a novel framework for monitoring neural networks, addressing
the challenge of novelty detection [48]. The framework’s main goal is to identify previously
unseen inputs, known as novel behaviors, by observing hidden layers within the neural
network. Unlike traditional methods that rely on output confidence, this approach employs
a common abstraction called boxes to recognize patterns in the monitored layers. The
ability to detect novel inputs is crucial for understanding neural network decisions and is
particularly vital in safety-critical applications like autonomous vehicles.

The mechanism of monitoring involves a three-phase process. First, the system collects
outputs at a specific layer for inputs of a particular class. Then, it clusters these vectors
based on their region. lastly, it constructs a box abstraction for each combination of class
and cluster, resulting in a list of abstractions for each class. These boxes, or intervals,
overapproximate the set of known neuron valuations. This overapproximation provides
a simple and efficient way to represent and manipulate the data. The box abstraction is
central to the framework’s novelty detection performance, allowing for runtime monitoring
without significant overhead.

At runtime, the monitoring procedure works in parallel with the neural network. It ob-
serves the output vector at a specific layer and compares it with the previously constructed
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abstractions. If the observed vector fits within one of the abstractions, the monitor accepts
the prediction, recognizing it as a typical behavior. If not, it rejects the input, signaling
an atypical or novel behavior. This approach offers a more nuanced and efficient way
to detect novel inputs, enhancing the reliability and interpretability of neural network
classifiers. This approach represents a significant step forward in the field. It provides
a flexible solution that can be tailored to achieve a balance between false warnings and
undetected novelties.

6.2.2 Customizable Runtime Monitoring

The paper [83] presents a novel approach to runtime verification of classification systems
through data abstraction. The focus is on detecting inputs that do not belong to the
classes for which ML engineers have prepared the neural networks. The main goal of this
monitoring is to enhance the trustworthiness and safety of AI-based systems, particularly
in safety-critical applications. The paper introduces the concept of box abstraction with a
resolution. This concept allows for a more precise representation of the neural network’s
behavior. It also provides insights into the relationship between clustering parameters and
monitor performance.

The mechanism of monitoring is built upon geometrical shape abstraction, specifically
using box abstraction. The paper extends previous work [28] by utilizing both correct
and incorrect behaviors of a classification system to build box abstractions. These boxes
represent sets of contiguous n-dimensional vectors constrained by real intervals. The
approach introduces uncertainty verdicts, allowing the identification of suspicious regions
when abstractions of good and bad references overlap. By controlling the space of a box, the
notion of clustering coverage is introduced, serving as a quantitative metric that indicates
the quality of the abstraction. This enables the study of the effect of different clustering
parameters on the constructed boxes and the estimation of an interval of suboptimal
parameters.

The paper also emphasizes the importance of clustering in constructing the monitor.
Clustering algorithms, such as k-means [1], are applied to determine a partition of the
set based on similarity measures. This leads to a more precise abstraction of the sets as
the union of the boxes computed for each cluster. The concept of boxes with a resolution
is introduced to quantify the precision of the abstraction provided by boxes. The ratio
between the number of cells covered by the set of boxes to the total number of cells is
used to measure the relative coarseness of the box abstractions. This innovative approach
to monitoring neural networks offers a customizable and efficient way to assess monitor
effectiveness and precision.

6.2.3 Active Monitoring

The paper [40] introduces an innovative algorithmic framework for the active monitoring of
neural networks. The primary goal of this monitoring is to maintain accuracy in dynamic
environments where inputs frequently deviate from the initially known set of classes.
This challenge is addressed by detecting inputs from novel classes and retraining the
classifier on an augmented dataset. The framework operates in parallel with the neural
network. It interacts with a human user through a series of interpretable labeling queries
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for incremental adaptation. Additionally, an adaptive quantitative monitor is proposed to
improve precision, confirming the benefits of active monitoring in dynamic scenarios.

The mechanism of monitoring in this framework aims to achieve high precision in
detecting novel classes. This goal leaves the run-time performance of the trained model
unaffected. It operates in stages, switching between monitoring and adaptation. During
monitoring, the monitor reports inputs to the network and submits them to an authority
for correct label assignment. Depending on the assessment, the neural network or the
monitor is incrementally adjusted, or they are retrained to learn an unknown class. The
paper also introduces a quantitative monitor that observes a feature layer and compares its
valuation to a model of typical behavior for the class. This is achieved through clustering
algorithms like k-means, setting reference points for computing a distance function at the
cluster centers.

6.3 conclusion

This chapter explores two essential concepts: test prioritization algorithms and runtime
monitoring techniques. The section on test prioritization delves into various techniques
like entropy, DeepGini, and others, aiming to uncover potential weaknesses in DNNs
and enhance testing efficiency. The runtime monitoring section presents frameworks such
as Outside the Box and Active Monitoring, focusing on the detection of novel or unseen
inputs and maintaining accuracy in dynamic environments. These concepts together form
a comprehensive approach for improving and understanding neural network testing. This
approach emphasizes the shared goal of enhancing the robustness and reliability of DNNs.

In addition, DeepAbstraction++, our recent contribution, overcomes the limitations
of the previous work. For instance, it uses runtime monitors and a scoring function to
prioritize tests without depending on the DNN’s output as DeepGini. This approach
is robust, scalable, and precise. Furthermore, it effectively highlights error-prone test
instances without relying completely on near-boundary uncertainty but it also includes
near-centroid test instances. It recognizes that DNNs can wrongly classify instances with
high confidence, independent of their location relative to the decision boundary. This
addresses the main limitations of earlier work and establishes a new standard for robust
test prioritization in deep learning systems. Eventually, DeepAbstraction++ introduces a
much more stable and efficient performance than other state-of-the-art algorithms such as
TestRank that requires pre-labeling for some test instances to operate.
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7.1 conclusion

In conclusion, this thesis addresses important challenges in the test prioritization area. One
of the main contributions is a 2-tier prioritization framework, namely, DeepAbstraction.
This framework aims to improve test prioritization in deep learning systems by estimating
the error-revealing capability of unlabeled test instances. DeepAbstraction is unique in
its integration of two pivotal ranking mechanisms: monitors and a scoring function. The
monitors play a significant role in detecting error-exposing instances, particularly near
the centroids and decision boundaries. Empirical evidence supports the effectiveness
of DeepAbstraction, showing that it outperforms other deep learning test prioritization
algorithms, including the state-of-the-art TestRank algorithm.

Another novel contribution is the critical examination of existing metrics such as APFD,
RAUC, and ATRC, highlighting their limitations in evaluating test prioritization algorithms.
Specifically, the research points out that APFD tends to inflate performance evaluations by
overlooking labeling costs, while RAUC and ATRC are overly dependent on FDRE rather
than FDRO. To address these issues, the research introduces the WFDR, a new metric that
assigns weights based on the difficulty of prioritization. Additionally, the study identifies
a need for severity-based prioritization, leading to the development of another metric, the
SFDR. Empirical tests conducted in the study validate the effectiveness of both WFDR and
SFDR, while also revealing the limitations of previously used metrics.

This thesis concludes by addressing a limitation of the DeepAbstraction framework,
specifically the challenge of selecting the appropriate τ parameter. A new methodology,
known as combined parameterized boxes, is introduced to tackle this issue, adding an element
of stability to the framework’s performance. This methodology uses collective verdicts from
monitors with various τ values, assigning weights to ensure balanced decision-making. It
also proposes multiple strategies for integrating these weighted verdicts. The enhanced
version, DeepAbstraction++, not only outperforms leading algorithms but also improves
performance and adds stability to the framework.
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7.2 lessons learned

The journey of this research has been both challenging and enlightening. It has yielded
several key lessons that could guide future endeavors in the realm of Data-Centric AI and
test prioritization. Below are these invaluable insights:

• Data-Centric Approach: The shift from Model-Centric to Data-Centric AI highlighted
the critical role of data quality. Future researchers should not underestimate the
importance of data engineering, especially in high-stakes domains like healthcare
and autonomous driving.

• Resource Allocation: Test prioritization not only helps in early fault detection but
also optimizes resource allocation. Future researchers should consider both aspects
to develop more efficient and effective test prioritization algorithms.

• Hyperparameter Sensitivity: The challenge of selecting the appropriate τ parameter
in DeepAbstraction revealed the sensitivity of machine learning models to hyperpa-
rameter tuning. This experience underscores the need for robust methodologies to
handle such sensitivities.

• Comprehensive Metric Study: The intensive study on existing metrics filled a
research gap and provided a foundation for the development of WFDR and SFDR.
This approach could serve as a model for future research aiming to introduce new
metrics.

• Metric Limitations: The limitations of existing metrics like APFD, RAUC, and ATRC
led to the development of WFDR and SFDR. This experience taught us the importance
of questioning established norms and developing better evaluation methods.

• Balanced Evaluation with WFDR: The introduction of WFDR offers a more holistic
evaluation by considering both fault detection ratio and rate. This balanced approach
could guide the development of future metrics.

• Severity-Based Prioritization: The introduction of SFDR revealed the importance
of considering the severity of faults in test prioritization. This lesson could be
particularly valuable for future research in high-stakes domains.

• Iterative Improvement: The transition from DeepAbstraction to DeepAbstraction++
taught us the value of iterative research. Future work should embrace this iterative
nature, continually seeking to refine and improve upon existing frameworks.

• Multi-Monitor Decision Making: The use of multiple monitors with varying tau
values in DeepAbstraction++ enhanced the framework’s decision-making accuracy.
This multi-monitor approach could be a key strategy for future test prioritization
frameworks.

• Unique Weighting System: The introduction of a unique weighting system to
resolve conflicts among different monitor verdicts adds a layer of robustness to the
framework. This system could be adapted for other decision-making scenarios in AI.
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7.3 future work

In the upcoming sections, we extend the conversation on test prioritization. First, we
investigate adversarial attacks and their impact on test prioritization for deep learning
models. Next, we delve into how Explainable AI (XAI) can improve both the reliability
and understandability of models, specifically through test prioritization. Lastly, we outline
the need for developing new test prioritization techniques for specialized and advanced
deep-learning tasks. Each subsection aims to shed light on a unique aspect of future
research in test prioritization.

7.3.1 Adversarial Attacks

An adversarial test instance x′ is a perturbed version of a legitimate input x designed to
mislead a deep learning model f . The perturbation δ is usually small and often imper-
ceptible to humans, but sufficient to cause the model to make an incorrect prediction or
classification. Mathematically, this can be represented as:

x′ = x + δ

The objective of generating an adversarial instance is to maximize the loss function
J( f (x′), y) while keeping δ small. This can be formally defined as an optimization problem:

argmaxδ J( f (x + δ), y) subject to ||δ||p ≤ ϵ

Here, J is the loss function, y is the true label, ||δ||p is the p-norm of δ, and ϵ is a small
constant that constrains the magnitude of the perturbation.

The notation ||δ||p represents the p-norm of the perturbation δ. In simpler terms, it
measures the magnitude or size of the perturbation vector δ using a specific type of norm,
denoted by p.

Different values of p yield different types of norms:

• p = 1: Manhattan norm (sum of absolute values)

• p = 2: Euclidean norm (square root of the sum of squares)

• p = ∞: Infinity norm (maximum absolute value)

||δ||p =

(
n

∑
i=1
|δi|p

)1/p

(7.1)

Here, δi are the individual components of the perturbation vector δ, and n is the
dimension of the vector.

Figure 7.1 demonstrates a compelling experiment on the vulnerability of GoogLeNet, a
deep learning model, when applied to the ImageNet dataset. Initially, GoogLeNet classifies
an image as a pandas with a confidence level of 57.7%. The experiment then introduces
a subtle but targeted perturbation to the original image. Upon adding this almost im-
perceptible noise, GoogLeNet dramatically shifts its classification, now identifying the
image as a gibbon with a strikingly high confidence of 99.3%. Intriguingly, the magnitude
of the perturbation, denoted as ϵ, is just 0.007. The experiment vividly illustrates how a
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Figure 7.1: Impact of Gradient-Based Perturbations on GoogLeNet with ϵ = 0.007 [25].

minuscule, calculated change can drastically mislead a sophisticated deep learning model
into making an incorrect classification.

There are several algorithms to generate these adversarial test instances such as, Fast
Gradient Sign Method (FGSM) [25], Carlini & Wagner (C&W) attack [7], Jacobian-based
Saliency Map Attack (JSMA) [50], and Projected Gradient Descent (PGD) [44].

7.3.1.1 Test Prioritization

The benefits of orienting test prioritization towards adversarial attacks are significant.
Firstly, it leads to enhanced model robustness. By identifying and addressing model
vulnerabilities early in the development process, we ensure a stronger model foundation.
Secondly, this approach can enhance model generalization. Models trained with a focus on
adversarial instances are less likely to overfit. They are also more adaptable to diverse input
distributions. Moreover, this approach is cost-efficient for model testing. It also strengthens
stakeholder confidence. Models that prove their resilience against adversarial attacks are
more likely to be trusted and accepted quickly.

After our initial exploration of adversarial attacks, we recognize the importance of
evolving our research in test prioritization. In the past, we developed algorithms like
DeepAbstraction++ that target misclassified or error-prone instances. However, our vision
for the future is broader. We aim to design algorithms that prioritize testing specifically
for adversarial instances. Adversarial test generation is crucial in this journey. Adversarial
test generation can produce a vast dataset of potential adversarial examples. The sheer
size of this dataset, however, is challenging. It is not feasible to test models against every
generated instance. Time and computational constraints prevent this. Thus, there is a clear
need for adversarial test prioritization algorithms. These algorithms will select the most
challenging adversarial examples. This ensures both efficiency in testing and depth of
model evaluation.

By integrating adversarial test generation with test prioritization, we are elevating
the standards of model evaluation. This approach does not merely assess superficial
performance metrics. Instead, it delves deeper, challenging the model’s foundational
understanding using carefully curated adversarial inputs. Our overarching objective is
to cultivate a system that is not only robust and reliable but also adept at navigating the
unpredictabilities of real-world data and adeptly handling adversarial challenges.
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7.3.2 Explainable AI

The following sections delve into XAI, a field that focuses on making the complex mecha-
nisms of deep learning models transparent and understandable. From its importance in
test prioritization to various methodologies, we examine how XAI can contribute to making
deep learning models both reliable and understandable from the lens of test prioritization.

7.3.2.1 Overview

Explainable AI (XAI) is a burgeoning field that aims to make the complex decision-making
processes of AI and machine learning models transparent and understandable to human
users. The primary objective is to demystify the black-box nature of these models, making
them more accessible and trustworthy. Thus, XAI empowers users to understand why a
model makes a specific decision, thereby increasing confidence in AI systems.

The significance of XAI extends beyond mere curiosity; it has practical implications
in various sectors. For instance, in healthcare, understanding why a model recommends
a particular treatment can be crucial for patient care. Similarly, in finance, knowing the
rationale behind investment decisions can help in risk management. Thus, XAI serves as a
bridge between complex AI algorithms and human interpretability.

7.3.2.2 Contribution of XAI in Test Prioritization

Test prioritization techniques, such as the DeepAbstraction++ framework, excel at iden-
tifying test instances that are likely to reveal errors in AI models. These techniques are
invaluable for improving the reliability of AI systems. However, they often lack the capa-
bility to explain why certain instances are more error-prone than others, which is where
XAI comes into play.

Incorporating XAI into test prioritization can significantly enhance the framework’s
utility by providing these much-needed explanations. This is particularly important in high-
stakes applications like healthcare, finance, and autonomous driving, where understanding
the reasoning behind each decision can have serious implications. By offering a why along
with the what, XAI makes these systems not just reliable but also trustworthy.

7.3.2.3 Global vs. Local Interpretability

Global interpretability aims to provide a comprehensive understanding of the model’s
behavior across a wide range of test instances. This is particularly useful for identifying
general patterns or rules that the model follows, thereby helping to understand why certain
types of instances are more prone to errors than others. However, global interpretability
alone may not suffice when delving into the specifics of individual test cases.

Local interpretability, on the other hand, focuses on individual predictions and can offer
deep insights into why a particular test instance was flagged as high-risk or error-prone.
This level of granularity is crucial for debugging and refining the model. Therefore, a
balanced approach that leverages both global and local interpretability could offer the
most comprehensive insights into test prioritization.
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7.3.2.4 State-of-the-Art Tools in XAI

SOTA tools in Explainable Artificial Intelligence (XAI) offer an array of methods to dissect
and understand the complex decision-making processes of DNNs. Among the leading
tools is Local Interpretable Model-Agnostic Explanations (LIME) [64], which specializes in
providing local explanations for individual predictions, allowing users to comprehend how
a model arrives at specific conclusions. SHapley Additive exPlanations (SHAP) [41] extends
its capabilities to deliver global explanations, which help in understanding the overall
behavior of a DNN by shedding light on the relative importance of various input features.
Additional methods, e.g., Gradient-weighted Class Activation Mapping (Grad-CAM) [68],
produce heatmaps to indicate which parts of an input image, for example, most significantly
influence the model’s prediction. For instance, Grad-CAM is highly class-discriminative
which means it develops a heatmap on the predicted class of the cat and dog for each
prediction as shown in Fig 7.2. Integrated Gradients [73] takes this a step further by
attributing the contribution of each feature to a particular prediction, thereby offering a
fine-grained analysis.

Figure 7.2: GRAD-CAM heatmaps of cat and dog classes from VGG-16 [68].

With this rapid development, researchers are continuously exploring new avenues.
Their goal is to increase the effectiveness and efficiency of explanation methods. For the
specific purpose of our research, which focuses on test prioritization in DNNs, a strategic
combination of these state-of-the-art tools is in planning. This blend aims to capture the
best of both local and global interpretability methods. It enables a comprehensive and
nuanced understanding of how DNNs make decisions in test prioritization.

7.3.2.5 Proposed Methodology

The first step in the proposed methodology involves integrating both local and global
interpretability tools into existing test prioritization frameworks like DeepAbstraction++.
This will enable a dual capability: identifying high-risk or error-prone test instances and
explaining why they are flagged, both on a general and individual level.

The second step involves applying XAI techniques to analyze these prioritized test
instances. For global insights, we will focus on understanding the general patterns that
lead to errors across multiple instances. For local insights, we will delve into the specifics
of individual high-risk test cases. Detailed explanations will be generated for both levels of
interpretability. These explanations will then be validated with domain experts to ensure
their accuracy and reliability.
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7.4 test prioritization in advanced dl tasks

Deep learning has revolutionized numerous industries, introducing complex models that
tackle intricate tasks. As we delve deeper, we explore the significance and nuances of
advanced tasks like object detection, segmentation, and human pose estimation in the
realm of test prioritization.

7.4.1 Significance of Advanced DL Tasks

The domains of object detection, segmentation, and human pose estimation remain rela-
tively uncharted in terms of comprehensive test prioritization research. Historically, the
bulk of attention has gravitated toward classification-centric endeavors. This asymmetry
is particularly striking since real-world applications are now more dependent on these
complex deep-learning tasks.

These tasks inherently possess nuanced complexities that render test prioritization
challenging. For instance, in object detection, the labeling process is not solely categorizing
an image. It mandates annotators to meticulously identify and label every single object
in the image. The challenge amplifies when faced with scenes replete with overlapping
objects or those spanning varied scales. Moreover, segmentation requires annotators to
precisely demarcate boundaries around entities or regions, a task that becomes intricate
with overlapping segments or complex textures. Lastly, human pose estimation necessitates
pinpointing body parts and their orientations, especially intricate in scenarios with multiple
humans or unconventional postures. The painstaking nature of these endeavors escalates
labeling costs and time overheads.

7.4.2 Strategies for Test Prioritization

For these advanced tasks, test prioritization strategies should emphasize:

• Object Detection: Focus on instances with high variability. This includes scenes with
multiple object classes, occlusions, or differing lighting conditions. Such a strategy
ensures models are resilient against real-world complexities.

• Segmentation: Prioritize instances with overlapping segments or intricate textures.
This is crucial in domains like medical imaging where discerning subtle differences
is paramount.

• Human Pose Estimation: Aim for instances involving multiple humans or uncon-
ventional postures, ensuring accuracy even in densely populated or uncommon
scenarios.

In summary, the emphasis on tasks like object detection, segmentation, and human
pose estimation underscores the evolving landscape of deep learning. These tasks present
unique challenges. By tailoring test prioritization strategies, we ensure that our models
excel in intricate real-world scenarios.
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In this chapter, we discuss the technical documentation of our framework. We publicly
published the framework’s source code in the provided repository.

8.1 framework overview

DeepAbstraction is a test prioritization framework designed to minimize labeling costs in
Deep Neural Networks (DNNs) while efficiently identifying corner cases. The framework
leverages abstraction-based monitors to assign verdicts to test instances. DeepAbstraction
excels in identifying corner cases in both near-boundary and near-centroid regions of the
feature space. This framework shows better performance than the current state-of-the-art
techniques.

8.2 framework architecture

This section details the framework’s main components and operational workflow.
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8.2.1 Components

The DeepAbstraction framework is composed of several interlinked components, each
serving a specific role in test prioritization.

1. Deep Neural Network (DNN): Serves as the backbone for predictions. The DNN
processes both training and test datasets.

2. Runtime Monitors: Supervise the decision-making of the DNN. They provide three
types of verdicts for each test instance: acceptance, uncertainty, or rejection. These
monitors are built using high-level features from the DNN and are key in creating
box abstractions.

3. Box Abstractions: Generated post-training, these multi-dimensional boxes encap-
sulate instances sharing similar high-level features. They are constructed using two
types of subsets—correctly classified and incorrectly classified—based on the DNN’s
predictions.

4. Statistical Scoring Functions: Utilized for quantifying the error-revealing capability
of each test instance. The framework employs Gini Impurity and Entropy as the
scoring functions.

8.2.2 Workflow

The framework’s operation is divided into several phases, each contributing to effective
test prioritization.

1. Training Phase: The DNN is trained using the training dataset, and high-level
features are collected from the penultimate layer for each training instance.

2. Monitor Construction: Post-training, runtime monitors are built using the collected
high-level features and their corresponding predicted classes. Box abstractions are
then constructed.

3. Test Phase: The DNN processes the test dataset, and runtime monitors provide
verdicts based on which box abstractions the test instances fall into.

4. Evaluation and Scoring: Finally, test instances are scored using statistical scoring
functions, prioritizing them based on their likelihood to reveal errors.

8.3 system requirements

To successfully run the DeepAbstraction framework, certain hardware and software speci-
fications are required. The following sections outline these prerequisites.

8.3.1 Hardware Requirements

A robust hardware setup ensures the smooth operation of DeepAbstraction. The minimum
requirements include:
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• CPU: Intel Core i5 or equivalent.

• RAM: 8 GB minimum.

• Disk Space: 20 GB free space.

• GPU: NVIDIA GeForce GTX 1050 or equivalent (optional but recommended for
accelerated computation).

8.3.2 Software Requirements

Compatibility and performance also depend on the software environment. The framework
has been tested under the following conditions:

• Operating System: Ubuntu 18.04 or higher, Windows 10, or macOS Catalina or higher.

• Python: Version 3.7 or higher.

• Libraries: NumPy, PyTorch, and other dependencies as listed in the requirements.txt
file.

8.3.3 Additional Tools

Additional software tools enhance the framework’s functionality and user experience.
Currently, the framework requires:

• Jupyter Notebook or Jupyter Lab: For running the provided notebook files.

8.4 repository architecture

The DeepAbstraction framework’s repository is organized to ensure easy navigation and
usage. This section outlines the structure and purpose of each file and directory.

8.4.1 Directory Structure

The repository contains several directories, each housing specific types of files for the
framework.

1. Notebooks: This directory holds all Jupyter Notebook files, which include training_-

and_test.ipynb, processing.ipynb, and analysis_and_evaluation.ipynb. We will
explain each notebook later.

2. Data: stored within npz_data folder, each NPZ-formatted file represents a dataset.
These files contain high-level features, labels, and predicted classes for the training
dataset. Additionally, they include high-level features, labels, predicted classes, and
the Gini index for each test instance. The monitors_data folder contains an Excel file
for each dataset, storing scoring functions such as Gini and entropy, and also houses
the verdicts from each monitor.
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3. Analysis: This directory tau_effect contains analytical outcomes for each dataset.
Individual files within this directory illustrate the impact of the clustering parameter
(τ) on various groups formed by the monitors’ verdicts. These groups include True
Positives, False Positives, Uncertain Positives, Uncertain Negatives, True Negatives,
and False Negatives.

8.4.2 Key Files

The framework relies on several pivotal files that facilitate its operation.

1. Toolkit: This directory contains essential scripts for building abstraction-based moni-
tors, including those that handle the clustering step. It also has scripts that execute
the monitors, render verdicts for each test instance, and store these verdicts into an
Excel file.

2. requirements.txt: list the Python libraries necessary for the successful execution of
the framework.

3. readme.md: Furnishes a comprehensive overview and setup guidelines for users to
navigate and operate the DeepAbstraction framework effectively.

4. overall performance.xlsx: An Excel spreadsheet that stores analytical evaluations of
DeepAbstraction’s performance across different values of the clustering parameter(τ).

8.5 contribution 1 : deepabstraction framework

8.5.1 Training and Testing Notebook

The training_and_test.ipynb notebook focuses on training and testing deep learning
models using PyTorch. It covers various aspects such as importing libraries, setting hyper-
parameters, selecting models and datasets, and running the training and test phases.

8.5.1.1 Import Libraries and Setup

This section imports essential libraries for data manipulation, visualization, and deep
learning. The section also sets up the notebook environment for inline plotting and
suppresses warning messages for cleaner output.

import os

import warnings

import numpy as np

...

8.5.1.2 Hyperparameters

Hyperparameters for the training process are set in this section. These hyperparameters
are crucial for the training process and can be tuned for better performance. The user can
change n_classes according to the number of classes in the selected dataset.
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n_epochs = 3

batch_size = 64

n_classes = 10

8.5.1.3 Model Selection

The ModelManager class offers a seamless approach for selecting and configuring pre-
trained models. Specifically, the class adjusts the output layer to align with the number of
classes in the dataset, enhancing its adaptability for diverse tasks. For a broader range of
pre-trained model options, users can consult this PyTorch Models page.

class ModelManager(nn.Module):

def __init__(self):

super(ModelManager, self).__init__()

...

8.5.1.4 Dataset Selection

The CustomDataset class provides a flexible framework for dataset selection and configura-
tion. Users can easily adapt this class to suit various dataset types. For additional dataset
options, users can refer to this PyTorch Datasets page. It is important to note that changing
the dataset may necessitate adjustments to the architecture of the chosen model, especially
for the last layer, which must align with the number of classes in the dataset.

class CustomDataset(Dataset):

def __init__(self, dataset_dir, dataset_name, train=True, transform=None):

...

def __len__(self):

...

def __getitem__(self, index):

...

def display(self, index):

...

The CustomDataset class serves as a customizable interface for loading and manipulating
datasets. Below are the functions defined within this class:

• __init__: Initializes the dataset and sets up any required transformations.

• __len__: Returns the total number of samples in the dataset.

• __getitem__: Retrieves a sample from the dataset at a specified index and applies
any set transformations.

• display: Displays an image from the dataset at a specified index along with its label.

8.5.1.5 Training and Test Phases

The Manager class serves as a comprehensive utility for managing the training and testing
phases of machine learning models. It handles data loading, model optimization, and

https://pytorch.org/vision/0.8/models.html
https://pytorch.org/vision/stable/datasets.html
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performance evaluation, among other tasks. Below are the functions defined within this
class:

class Manager:

def __init__(self, model, train_loader, test_loader, optimizer, criterion,

device):

...

def train(self, epoch):

...

def test(self):

...

def run(self, n_epochs):

...

• __init__: Initializes the manager with the model, data loaders, optimizer, loss
criterion, and device information.

• train: Executes the training phase for one epoch, updating the model parameters.

• test: Evaluates the model on the test dataset and calculates performance metrics.

• run: Orchestrates the training and testing phases over multiple epochs.

8.5.1.6 Run Training and Testing

This section initializes the model, dataset, and other components, and then runs the
training and testing phases. This is where the actual computation happens.

manager = Manager()

manager.run(n_epochs)

manager.evaluate()

8.5.1.7 Storing the Data

Upon completing the training and testing phases, the notebook saves various types of re-
sults into a compressed NumPy file to be the input of the next notebook processing.ipynb.
This file encapsulates a wide range of data, including:

np.savez(...)

• train_logits and test_logits: The logits for the training and test datasets.

• mis_test_indices: Indices of the test samples that were misclassified.

• train_pred_labels and test_pred_labels: The predicted labels for the training and
test datasets.

• train_gt_labels and test_gt_labels: The ground-truth labels for the training and
test datasets.

• gini_score: The Gini scores for test instances.
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8.5.1.8 Visualize Some Samples

The notebook displays some sample images from the dataset. This provides a visual
understanding of the kind of data the model has been trained on.

test_dataset.display(10)

train_dataset.display(6666)

8.5.2 Processing Notebook

This notebook focuses on processing and analyzing the data generated from the training
and testing phases. It covers the following main sections:

8.5.2.1 Import Libraries & Create Folders

Importing necessary libraries and setting up directories for storing various types of data.

import os, csv, glob, time, warnings, ...

warnings.filterwarnings(’ignore’)

8.5.2.2 Dataset Selection

The DatasetLoader class serves as a utility for dataset selection and management. It lists
all available datasets in a specified directory and allows the user to choose one for the
experiment. The class is designed to be highly flexible and adaptable, making it easy to
work with various types of datasets.

class DatasetLoader:

def __init__(self, dataset_dir):

...

def _list_datasets(self):

...

def _create_dataframe(self):

...

def select_dataset(self):

...

• __init__: Initializes the class and lists available datasets by invoking the _list_-

datasets method.

• _list_datasets: A private method that lists all datasets available in the given direc-
tory.

• _create_dataframe: Creates a DataFrame to display the available datasets, aiding
the user in making a selection.

• select_dataset: Prompts the user to select a dataset and returns the selected dataset.
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8.5.2.3 Data Export to CSV

This section focuses on exporting the high-level features of the data into CSV files for both
the training and testing phases. The data is categorized based on whether the prediction
was correct or not, and then saved into separate CSV files for each class.

# Define header and data lists

header = [’index’, ’Ground Truth’, ’Predicted class’, ...]

...

# Function to write CSV

def write_csv(name, rows, header):

...

# Loop through data types (training/testing)

for folder, data_list in data_types.items():

...

for i in range(num_classes):

...

write_csv(f’{path}/class_{i}_good_high_level_features.csv’, final_good,

header)

write_csv(f’{path}/class_{i}_bad_high_level_features.csv’, final_bad,

header)

8.5.2.4 Data Preparation and Monitor Construction

This section covers both the preparation of data for monitor construction and the actual
construction of the monitors. The data is formatted to be suitable for monitor construction,
and then the construct_monitors function is used to build the monitors.

# Prepare Data for Monitor Construction

num_classes = 10

data = np.load(...)

# Monitor Construction

construct_monitors(experiment_name, tau_list, range(num_classes))

8.5.2.5 Stable Softmax Functions

This function computes the softmax in a numerically stable manner. It is often used as
a preliminary step before calculating other uncertainty measures like Gini Impurity and
Entropy.

# Function to compute stable softmax

def stable_softmax(x):

...
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8.5.2.6 Uncertainty measures and Distance Ratio Computation

This section is dedicated to computing the uncertainty measures and distance ratios for
test samples. Uncertainty measures such as Deep Gini and entropy are calculated for each
test sample. Additionally, the distance ratio is computed based on the Euclidean distance
to the center of each class, derived from the training data.

# Initialize variables and header

final_features = []

header = [’index’, ’Ground Truth’, ’Predicted class’, ’deepgini’, ’entropy’]

...

# Collect features for each test sample

for j in range(num_test_samples):

...

final_features.append(row_data)

# Initialize DataFrame and distance ratio

df = pd.DataFrame(final_features, columns=header)

df["distance_ratio"] = -1

...

# Compute accumulated sum and center for each class

acc_sum = np.zeros((num_neurons, num_classes))

center_per_class = np.zeros((num_neurons, num_classes))

...

# Compute distance ratios for test samples

for i in range(test.shape[1]):

...

df.loc[i, "distance_ratio"] = dist_to_pred / dist_to_gt

df.head()

8.5.2.7 DataFrame Aggregation and Excel Export

This section is responsible for aggregating multiple DataFrames and exporting the final
DataFrame to an Excel file. The DataFrames are read from a directory and concatenated.
The final DataFrame is then merged with an existing DataFrame, sorted, and exported to
an Excel file with specific formatting.

The following key operations are performed in this code block:

• file_dfs and fields_to_read: Initialize the list for storing individual DataFrames
and specify the fields to read from each CSV file.

• Read and append individual DataFrames: Loop through the directory to read each
CSV file and append it to the list.

• Concatenate and merge DataFrames: Concatenate the list of DataFrames and merge
it with an existing DataFrame.
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• Write the final DataFrame to Excel: Export the final, merged DataFrame to an
Excel file, applying specific formatting like freezing panes and setting column widths.

# Initialize list for DataFrames and fields to read

file_dfs = []

fields_to_read = [...]

...

# Read and append individual DataFrames

for csv_file in os.listdir(verdict_dir):

...

file_dfs.append(temp_df)

# Concatenate and merge DataFrames

concatenated_df = pd.concat(file_dfs).sort_values(by=["index"])

merged_df = pd.merge(df, concatenated_df, ...)

merged_df.set_index(’index’, inplace=True)

# Write the final DataFrame to Excel

with pd.ExcelWriter(excel_path, engine=’xlsxwriter’) as writer:

...

merged_df.to_excel(writer, ...)

...

8.5.2.8 Verdict Monitors Count

This section focuses on calculating different types of verdict counts for various τ values.
The verdict counts include True Positives (TP), False Positives (FP), Uncertain Positives
(UP), Uncertain Negatives (UN), False Negatives (FN), and True Negatives (TN). These
counts are stored in a DataFrame indexed by τ values.

# Initialize DataFrame for monitor verdicts

tau_metrics_df = pd.DataFrame(index=tau_list, columns=[’TP’, ’FP’, ’UP’, ’UN’, ’FN

’, ’TN’])

...

# Loop through tau values to count verdict types

for tau in tau_list:

verdict_col = f’verdict_{tau}’

...

tau_metrics_df.loc[tau, metric] = count_verdict_types(verdict_col, condition)

The code performs the following key operations:

• tau_metrics_df: Initializes a DataFrame to store the counts of different verdict types
for each τ value.

• count_verdict_types: A helper function that counts the number of instances that
meet a specific condition for a given verdict column.
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• Loop through τ values: Iterates through the list of τ values, calculating the counts
for each verdict type and storing them in the DataFrame.

8.5.3 Analysis and Evaluation Notebook

This notebook serves as the final step in the pipeline, focusing on the analysis and
evaluation of the test prioritization techniques. It not only assesses the effectiveness of
various test prioritization strategies but also offers a visual interpretation through graphs
and charts.

8.5.3.1 Import Libraries and Initialize Variables

This section is responsible for importing all the necessary Python libraries and initializing
variables that will be used throughout the notebook. These libraries are pivotal for data
analysis, visualization, and the computation of various performance metrics. Additionally,
variables that will be used throughout the notebook for storing paths, filenames, and other
configuration settings are initialized here.

import pandas as pd

import numpy as np

...

# Initialize variables

data_path = "path/to/data"

output_dir = "path/to/output"

...

8.5.3.2 Effectiveness Evaluation

This section aims to evaluate the effectiveness of various scoring functions. It includes the
computation of metrics like True Positives, False Positives, and so on.

def compute_metrics(df):

...

Furthermore, this section is dedicated to evaluating the effectiveness of various test
prioritization techniques: DeepGini, Entropy, and DeepAbstraction. It calculates the TPF
for each technique and uses these TPF values to compute the Average Test Percentage of
Fault (ATPF) to evaluate the effectiveness of each prioritization algorithm.
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# Function to calculate TPF

def calculate_TPF(df, no_buggy_instances):

...

# Loop through each dataset

for dataset in datasets:

...

# DeepGini

df.sort_values(by=[’deepgini’], ascending=False, inplace=True)

gini = calculate_TPF(df, no_buggy_instances)

...

# Entropy

df.sort_values(by=[’entropy’], ascending=False, inplace=True)

entropy = calculate_TPF(df, no_buggy_instances)

...

# DeepAbstraction

for tau in tau_list:

...

df_monitor = pd.concat(dfs_sorted)

...

tpf_monitor = calculate_TPF(df_monitor, no_buggy_instances)

...

# Update arr_ATFP

arr_ATFP[row, 4 + methods.index(method)] = round(100 * sum(tpf_monitor) /

no_buggy_instances, 2)

...

8.5.3.3 Zero-Scored Instances Removal Effect

This section performs a multi-step analysis that starts by initializing arrays for storing
dataset-specific information and defining a helper function for updating zero-scored
instances. It then preprocesses the data by sorting the DataFrame based on DeepGini
scores and creating new DataFrames based on verdicts. Following this, a DataFrame is
created to summarize the zero-scored instances. Finally, the section concludes with a data
visualization step, where a bar chart is generated using Plotly to visualize the distribution
of True Positive and False Positive instances before and after the removal of zero-scored
instances.

The code performs the following key operations:

• Initialization and Helper Function: Arrays are initialized for storing dataset-
specific information, and a helper function is defined for updating zero-scored
instances.

• Data Preprocessing: The DataFrame is sorted, and new DataFrames are created
based on verdicts, which are then used to update the initialized arrays.

• Summary and Visualization: A DataFrame summarizing zero-scored instances is
created, followed by a bar chart that visualizes the distribution of instances.
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# Initialize arrays

arr_miss = np.zeros((len(datasets), 7), dtype=object)

arr_zero_remov = np.zeros((len(datasets) * 2, 4), dtype=object)

# Function to update array for zero-scored instances

def update_zero_remov_array(arr, idx, dataset, state, df, verdict, j):

...

# Create DataFrame from arr_zero_remov and display the first 20 rows

zero_removal_df = pd.DataFrame(

arr_zero_remov, columns=[’dataset’, ’when’, ’TP’, ’FP’]

)

...

# Melt the DataFrame to a long format suitable for plotting

condition = zero_removal_df[’dataset’].str.contains(’ResNet18’)

...

# Create a bar chart using Plotly

fig = px.bar( new_df, x=’when’, y=’value’, facet_col=’dataset’,

...

8.5.3.4 Stability Evaluation

This section is dedicated to evaluating the stability of the DeepAbstraction technique using
different scoring functions: Gini Index and Entropy. Two line charts are generated using
Plotly, each representing the Average Test Percentage of Fault (ATPF) against different
values of the clustering parameter (τ). Both figures are saved as image files for future
reference and are displayed in the notebook using the Matplotlib library.

# line chart (Gini Index)

fig = px.line(

final_df, x=’tau’, y=’DeepAbstr_gini’, color=’dataset’,

...

)

pio.write_image(fig, f’{img_dir}DA_gini.png’, scale=6)

# line chart (Entropy)

fig = px.line(

final_df, x=’tau’, y=’DeepAbstr_entropy’, color=’dataset’,

...

)

pio.write_image(fig, f’{img_dir}DA_entropy.png’, scale=6)

8.6 contribution 2 : evaluation metrics

In this paper, we do not repeat the work presented in the first two notebooks of the first
paper. Instead, we aim to evaluate test prioritization techniques such as DeepGini, Neurons
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Pattern, and DeepAbstraction using recently developed metrics introduced in the second
paper. Therefore, we proceed directly to evaluation and subsequent results visualization.

8.6.1 Analysis and Evaluation Notebook

This notebook serves as a comprehensive tool for evaluating test prioritization techniques
across multiple datasets. It dives into the effectiveness evaluation of various techniques,
applying several metrics like APFD, RAUC, ATRC, WFDR, and SFDR for assessment.
Finally, the notebook performs statistical analysis and saves the results for the visualization
notebook.

8.6.1.1 Import Libraries

This section imports all the essential Python libraries that will be used throughout the
notebook.

import os

import numpy as np

import pandas as pd

...

8.6.1.2 Configuration Parameters

This section sets up configuration parameters and variable initialization that are crucial for
the notebook. These include the list of τ values and the directory where the data resides.

tau_list = [0.1, 0.05, 0.1, 0.01, 0.4, 0.4, 0.1, 0.05]

data_dir = "./monitors data/"

...

8.6.1.3 Evaluation Metrics

This section is dedicated to defining various evaluation metrics that will be used for
assessing the effectiveness of test prioritization techniques. The metrics include APFD,
RAUC, ATRC, WFDR, and SFDR. These metrics collectively provide a comprehensive
evaluation of the test prioritization techniques.

def APFD(lst, n):

...

def RAUC(lst, n):

...

def ATRC(lst, n):

...

def WFDR(lst, n):

...

def SFDR(lst, n):

...
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8.6.1.4 Effectiveness Evaluation

This section evaluates the effectiveness of various techniques on multiple datasets. It reads
each dataset, applies the techniques, and stores the results in a DataFrame.

eval_df = pd.DataFrame()

for i in range(len(datasets)):

df = pd.read_excel(f’{data_dir}{datasets[i]}.xlsx’, sheet_name=0)

...

# DeepGini

df.sort_values(by=["deepgini"], ascending=False, inplace=True)

gini = list(df[’Ground Truth’] != df[’Predicted class’])[:no_bugs]

...

# Neurons Pattern

df.sort_values(by=["neuron_pattern"], inplace=True)

pattern = list(df[’Ground Truth’] != df[’Predicted class’])[:no_bugs]

...

# DeepAbstraction

j = tau_list[i]

df_monitor1 = df[df[f’verdict_{j}’] == 1 ] # rejection group

df_monitor2 = df[df[f’verdict_{j}’] == 2 ] # uncertain group

df_monitor3 = df[df[f’verdict_{j}’] == 0 ] # acceptance group

...

8.6.1.5 Save Evaluation Data

This section saves the evaluation data to a parquet file for the visualization notebook. The
parquet format is efficient for storing large DataFrames.

eval_df.to_parquet(’eval_df.parquet’, engine=’fastparquet’)

8.6.1.6 Statistical Analysis

This section conducts a thorough statistical analysis on the evaluation data, storing the
results in three distinct dataframes. The first dataframe, stat_df1, quantifies the fault de-
tection ratio across multiple test prioritization algorithms. The second and third dataframes,
stat_df2 and stat_df3, break down the fault detection ratio for each algorithm according
to severity levels.
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stat_df1 = pd.DataFrame()

stat_df2 = pd.DataFrame()

stat_df3 = pd.DataFrame()

thrshld1 = 50

thrshld2 = 80

for i in range(len(datasets)):

df = pd.read_excel(f’{data_dir}{datasets[i]}.xlsx’, sheet_name=0)

no_bugs = sum(df[’Ground Truth’] != df[’Predicted class’])

...

# DeepGini

df.sort_values(by=[’deepgini’], ascending=False, inplace=True)

gini_sum = sum(df.iloc[:no_bugs,0] != df.iloc[:no_bugs,1])

...

# Neurons Pattern

df.sort_values(by=["neuron_pattern"], inplace=True)

pattern_sum = sum(df.iloc[:no_bugs,0] != df.iloc[:no_bugs,1])

...

#DeepAbstraction

j = tau_list[i]

df_monitor1 = df[df[f’verdict_{j}’] == 1 ] # rejection group

df_monitor2 = df[df[f’verdict_{j}’] == 2 ] # uncertain group

df_monitor3 = df[df[f’verdict_{j}’] == 0 ] # acceptance group

...

8.6.2 Data Visualization Notebook

This notebook serves as a visualization tool for the evaluation results of various test priori-
tization techniques. It employs Plotly to generate polar plots, bar charts, and histograms,
representing metrics like WFDR and SFDR. The visualizations are saved as image files for
future reference.

8.6.2.1 Import Libraries and Initialize Variables

This section imports all the essential Python libraries and initializes variables that will be
used throughout the notebook.

import os

import pandas as pd

import plotly.express as px

...
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8.6.2.2 Highlight Metrics

This section defines functions to highlight specific metrics like WFDR and SFDR in the
imported DataFrame from the previous notebook. It then applies these functions to color-
code the metrics among other metrics.

def highlight_metric1(s):

color = ’blue’

...

def highlight_metric2(s):

color = ’red’

...

8.6.2.3 Metrics Evaluation

This section generates polar plots to evaluate different prioritization metrics like APFD,
RAUC, ATRC, WFDR, and SFDR on various experiments. The layout is customized, and
the figure is saved as an image.

colors = ["#7570B3", "#D95F02", "#30A784","#44bcd8","#E7298A"]

...

for i, approach in enumerate(approaches,1):

for j, name in enumerate(metrics):

data[j] = df.loc[df.metric == name, approach].tolist()

data[j].append(data[j][0])

fig.add_trace(go.Scatterpolar(r=data[j], theta=datasets,

...

fig.show()

pio.write_image(fig, ’Metrics_Evaluation.png’,scale=6, width=1200, height=500)

8.6.2.4 Algorithms Evaluation

This section generates a bar chart to evaluate the performance of different test prioritization
techniques such as DeepGini, DeepAbstraction, and Neurons Pattern using WFDR and
SFDR metrics. The layout is customized, and the figure is saved as an image.

approach_colors = {

’DeepGini’: ’#A31414’,

’DeepAbstraction’: ’#692063’,

’Neurons Pattern’: ’#00446F’

}

...

bar_chart.show()

pio.write_image(bar_chart, ’Algorithms_Evaluation.png’, scale=6)
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8.6.2.5 Analysis of Severity Levels Across Datasets

This section investigates the significance of severity prioritization by evaluating the ratio
of high-severity instances in relation to the overall count of misclassified instances. It reads
and preprocesses each dataset, categorizes probabilities into labels, and then creates a
histogram plot to visualize the distribution of different levels of severity across datasets.

# Define color mapping for probability ranges

probability_color_map = {

’0-20’: ’#FF6B6B’,

’20-40’: ’#5F6573’,

’40-60’: ’#00A885’,

’60-80’: ’#04607C’,

’80-100’: ’#840651’

}

...

# Create a histogram plot

histogram_fig = px.histogram(

renamed_data,

x=’dataset’,

y=’probability’,

color=’Label’,

...

)

histogram_fig.show()

8.7 contribution 3 : deepabstraction++ framework

This paper improves the performance of the first paper (DeepAbstraction). More particu-
larly, this paper solves the problem of instability of the performance in DeepAbstraction.
The user can replicate the same training and testing phases, and monitor construction
from the first paper.

8.7.1 DeepAbstraction++ Notebook

This notebook performs a detailed evaluation of test prioritization techniques, specifically
focusing on the DeepAbstraction++ algorithm. Therefore, this notebook aims to combine
the verdicts of the monitors strategically and prioritize test instances. It employs a variety
of metrics for a thorough assessment such as WFDR and SFDR and saves the evaluation
data for subsequent visualization.

8.7.1.1 Import Libraries

This section imports essential Python libraries required.

import pandas as pd

import numpy as np

...
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8.7.1.2 Evaluation Metrics

This section is dedicated to defining various evaluation metrics that will be used for
assessing the effectiveness of test prioritization techniques. The metrics include WFDR
(Weighted Fault Detection Ratio) and SFDR (Severity Fault Detection Rate). These metrics
collectively provide a comprehensive evaluation of the test prioritization techniques.

def WFDR(lst, size, n=1):

"""Calculate the Weighted Fault Detection Ratio."""

...

def SFDR(ideal, actual):

"""Calculate the Severity Fault Detection Rate."""

...

8.7.1.3 Initialization and Settings

This section initializes important directories and lists the datasets that will be used in the
notebook. It also sets up an array for storing metrics values for different methods.

DATA_DIR = "./monitors_data/"

IMG_DIR = "./images/"

os.makedirs(IMG_DIR, exist_ok=True)

...

8.7.1.4 DeepAbstraction++ Evaluation

This section presents the final evaluation of DeepAbstraction++ using two key metrics:
Weighted Fault Detection Ratio (WFDR) and Severity Fault Detection Rate (SFDR). The
evaluation process iterates through each dataset, applies the DeepAbstraction++ technique,
and stores the results in an array named arr.
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row = 0

arr = np.zeros((num_datasets, 3), dtype=object)

for dataset in datasets:

dataset_path = f"{DATA_DIR}{dataset}.xlsx"

...

# First metric: WFDR

df["score"] = df[columns_to_update].mean(axis=1)

...

# Second metric: SFDR

severe_ideal = df.query(’(‘Ground Truth‘ != ‘Predicted class‘)’)["probability"

] \

.sort_values(ascending=False).tolist()

...

arr[row, 0] = dataset

arr[row, 1] = WFDR(monitor, len(df))

arr[row, 2] = SFDR(severe_ideal, severe_monitor)

row += 1

print(f"DeepAbstraction++ has been evaluated successfully on {dataset}")

df = pd.DataFrame(arr, columns=["experiment", "WFDR", "SFDR"])

8.7.1.5 Verdict Type Impact Analysis

This part of the notebook investigates how different verdict types —acceptance, uncertainty,
and rejection — affect the final decision. The code calculates the proportion of misclassified
instances for each verdict type when all six monitors agree on the verdict.

row = 0

results_df = pd.DataFrame(

columns=["dataset", "model", "verdict_type", "misclassified", "total"]

)

...

# Loop through datasets and verdict types

for dataset in datasets:

...

for name, verdict in dict_verdict.items():

...

results_df.loc[row] = [

dataset.split(’-’)[0], dataset.split(’-’)[1], name,

num_verdict, total_num_verdict

]

row += 1

print(f"All TP techniques have been evaluated successfully on {dataset}")

results_df["proportion"] = results_df["misclassified"] / results_df["total"]

results_df["proportion"] = results_df["proportion"].round(2)

...
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8.7.1.6 Plotting the Impact

The code also includes a plot to visualize the impact of each verdict type on the final
decision.

fig = go.Figure()

...

# Create a box plot for the distribution of proportions

for idx, verdict in enumerate(results_df["verdict_type"].unique()):

...

fig.add_trace(

go.Box(

y=df_verdict["proportion"], name=verdict, boxpoints=’all’,

marker_color=colors[idx]

)

)

...

fig.show()

The analysis reveals that the rejection verdicts have a significant impact on the final
decision, outperforming the other verdict types in most experiments.

8.7.1.7 Impact of Number of Rejection Verdicts

This section of the notebook examines how the number of rejection verdicts influences the
final decision. The code calculates the proportion of misclassified instances for different
numbers of rejection verdicts (1, 3, 6) across multiple experiments.

row = 0

results_df = pd.DataFrame(

columns=["No.Exp", "num_reject", "misclassified", "total"]

)

...

# Loop through datasets and number of rejection verdicts

for idx, dataset in enumerate(datasets):

...

for num in [1, 3, 6]:

...

results_df.loc[row] = [

"Exp." + str(idx), num, num_verdict, total_num_verdict

]

row += 1

print(f"All TP techniques have been evaluated successfully on {dataset}")

results_df["proportion"] = results_df["misclassified"] / results_df["total"]

results_df["proportion"] = results_df["proportion"].round(2)

...
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8.7.1.8 Visualizing the Impact of Rejection Numbers

The code also includes a bar chart to visualize the impact of different numbers of rejection
verdicts on the final decision.

colors = {’1’: ’#5F6573’, ’3’: ’#04607C’, ’6’: ’#840651’}

...

# Create a bar chart for the distribution of proportions

for reject_val in results_df[’num_reject’].unique():

...

trace = go.Bar(

name=str(reject_val), x=df[’No.Exp’], y=df[’proportion’],

marker_color=color

)

data.append(trace)

...

fig.show()

The analysis shows that the number of rejection verdicts plays a crucial role in the final
decision. The proportion of misclassified instances increases as the number of rejection
verdicts rises, emphasizing the importance of rejection verdicts in the decision-making
process.

8.7.1.9 Comparative Study on Algorithm Effectiveness

This section of the notebook evaluates the effectiveness of three algorithms: DeepGini,
DeepAbstraction, and DeepAbstraction++. The code uses the WFDR metric to compare
these algorithms across eight experiments. Different values of τ are also considered for
each experiment.

tau_list = [0.05, 0.05, 0.05, 0.05, 0.4, 0.4, 0.05, 0.05]

arr = np.zeros((num_datasets, 4), dtype=object)

row = 0

...

# Loop through datasets and tau values

for idx, (dataset, t) in enumerate(zip(datasets, tau_list)):

...

arr[row, 0] = "Exp." + str(idx)

arr[row, 1] = WFDR(gini_lst, len(df))

arr[row, 2] = WFDR(wfdr_lst, len(df))

arr[row, 3] = WFDR(monitor_lst, len(df))

row += 1

print(f"All TP techniques have been evaluated successfully on {dataset}")

8.7.1.10 Tabulating the Results

The code then tabulates these results into a DataFrame for easier interpretation and
comparison.
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col_names = ["Experiment","DeepGini","DeepAbstraction", "DeepAbstraction++"]

df = pd.DataFrame(arr, columns = col_names)

8.7.1.11 Performance Stability of DeepAbstraction++

This section evaluates the stability of the DeepAbstraction++ model by varying the β

parameter. The code calculates the WFDR metric for each β value, ranging from 1 to 5000,
across multiple datasets.

row = 0

arr = np.zeros((num_datasets, 3), dtype=object)

...

# Loop through datasets

for idx, dataset in enumerate(datasets):

...

wfdr_lst = []

for beta in range(1, 5100, 200):

...

wfdr_lst.append(WFDR(monitor_lst, len(df)))

...

arr[row, 0] = "Exp." + str(idx)

arr[row, 1] = list(range(1, 5100, 200))

arr[row, 2] = wfdr_lst

row += 1

print(f"All TP techniques have been evaluated successfully on {dataset}")

8.7.1.12 Stability Visualization

To visualize the stability in performance across different β values, we use the Plotly library.
The code snippet below shows how to create a line plot for each experiment.

fig = go.Figure()

colors = [

’#d55c93’, ’#236ccc’, ’#19d3f3’, ’#b78b7b’,

’#28d2a3’, ’#630fff’, ’#ef573d’, ’#ab63fa’

]

# Loop through each experiment and add a line trace

for i, exp in enumerate(data_expanded[’Experiment’].unique()):

exp_data = data_expanded[data_expanded[’Experiment’] == exp]

fig.add_trace(

go.Scatter(

x=exp_data[’Beta’],

y=exp_data[’Performance’],

...

)

)

...

fig.show()
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8.7.1.13 Effectiveness of Different Combination Strategies

We evaluate the effectiveness of different combination strategies, namely mean, max,
product, and mode, using the WFDR metric. This section explains how the code evaluates
the effectiveness of different combination strategies. It also discusses the insights gained
from the evaluation, highlighting the strengths and weaknesses of each strategy.

row = 0

strategies = [’mean’, ’max’, ’Product’, ’mode’]

arr = np.zeros((num_datasets * len(strategies), 3), dtype=object)

...

df = pd.DataFrame(arr, columns=["Experiment", "Strategy", "Performance"])

The dataFrame is then reshaped for easier analysis.

reshaped_df = df.pivot(index=’Experiment’, columns=’Strategy’, values=’Performance

’)

reshaped_df = reshaped_df[[’mean’, ’Product’, ’mode’, ’max’]]

reshaped_df.reset_index(inplace=True)
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[53] Remigijus Paulavičius and Julius Žilinskas. “Analysis of different norms and cor-
responding Lipschitz constants for global optimization.” In: Ūkio technologinis ir
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