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0.1 Résumée de la thèse

Cette thèse explore di↵érentes approches statistiques visant à estimer un signal, i.e. un vecteur, à
partir d’une observation. Ces observations peuvent résulter soit d’une transformation linéaire ou
non linéaire du signal, corrompue par un bruit aléatoire additif. Les estimateurs étudiés intègrent
l’observation disponibles et des connaissances préalables sur le signal afin de générer des estimations.
Ainsi, la qualité de l’estimation dépend fortement des informations préalables susmentionnées, telles
que la fonction transformant le signal en l’observation ou des propriétés spécifiques du signal lui-
même. comme le nombre de ses coe�cients non nuls ou des contraintes particulières qu’il satisfait.
Etant donnés que ces informations ne sont souvent pas entièrement disponibles, nous proposons des
estimations robustes à la mauvaise spécification du modèle. Dans ce contexte, ”robuste” signifie
que nos estimateurs ne nécessitent pas la connaissance de certaines informations sur le problème et
tout en fournissant des performances d’estimation proches de celles obtenues avec des estimateurs
utilisant une description complète du modèle. La première partie de cette thèse se concentre sur
les observations linéaires, où l’observation est

! = Ax+ ⇠,

où A est une matrice, ⇠ le bruit additif, et x 2 X le signal d’intérêt. Nous examinons deux
cas de modèles mal spécifiés. Le premier est la situation où la description de l’ensemble des
signaux X dépend d’un paramètre réel inconnu �. Le second traite de situations où la matrice
d’observation A est incertaine. Dans les deux cas, nous proposons des estimateurs, linéaires ou non
de l’observation, qui sont robustes face à ces mauvaises spécifications du modèle. Dans la deuxième
partie de cette thèse, le signal x⇤ à estimer est défini comme le minimiseur de l’espérance d’une
fonction aléatoire. Nous proposons une méthode stochastique de premier ordre qui étant donné des
observations permettant de calculer une approximation stochastique du gradient de la fonction cible,
et la connaissance préalables de certaines propriétés du problèmes, produit une estimation du signal
x⇤. Une version robuste, dans le sens où elle ne nécessite pas la connaissance des hyperparamètres
optimaux de l’algorithme précédemment mentionné, de cette méthode est ensuite développée. Cette
dernière fournit des performances presque identiques à la version non-robuste.
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0.2 Abstract of the thesis

This thesis explores various statistical approaches aimed at estimating a signal, i.e., a vector, from
an observation. These observations may result from either a linear or nonlinear transformation
of the signal, corrupted by additive random noise. The estimators studied integrate the available
observation and prior knowledge of the signal to generate estimates. Thus, the quality of the estima-
tion strongly depends on the aforementioned prior information, such as the function transforming
the signal into the observation or specific properties of the signal itself, such as the number of its
non-zero coe�cients or particular constraints it satisfies. Given that this information is often not
entirely available, we propose robust estimates to the poor specification of the model. In this con-
text, ’robust’ means that our estimators do not require knowledge of certain information about the
problem while still providing estimation performance close to those obtained with estimators using
a complete description of the model. The first part of this thesis focuses on linear observations,
where the observation is

! = Ax+ ⇠,

where A is a matrix, ⇠ the additive noise, and x 2 X the signal of interest. We examine two
cases of poorly specified models. The first is the situation where the description of the set of
signals X depends on an unknown real parameter �. The second deals with situations where the
observation matrix A is uncertain. In both cases, we propose estimators, linear or non-linear
from the observation, that are robust against these poor model specifications. In the second part
of this thesis, the signal x⇤ to be estimated is defined as the minimizer of the expectation of a
random function. We propose a first-order stochastic method that, given observations allowing for
a stochastic approximation of the gradient of the target function, and prior knowledge of certain
properties of the problem, produces an estimation of the signal x⇤. A robust version, in the sense
that it does not require knowledge of the optimal hyperparameters of the previously mentioned
algorithm, of this method is then developed. This version provides performances almost identical
to the non-robust version.
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0.3 Notations

Real, non-negative, and positive vector spaces of dimension n are respectively denoted by
R

n, Rn
+, R

n
+⇤. Spaces of matrices with dimension m⇥ n with real, non-negative or positive

coe�cients are respectively denoted R
m⇥n,Rm⇥n

+ , and R
m⇥n

+⇤ .

The cones of semi-definite and positive definite matrices of Rn⇥n are denoted by S
n
+ and

S
n
++. For A,B 2 R

n, notations A ⌫ B and A � B mean respectively that A� B 2 S
n

+ and
A�B 2 S

n

++.

For x 2 R
n, we refer to p-absolute norm through notation

kxk
p
:=

8
><

>:

(
P

n

i=1 |xi|p)
1
p , 1  p

max
i=1,··· ,n

|xi|, p = 1

9
>=

>;
.

We also use notation kxk0 := Card {i 2 {1, · · · , n} : xi 6= 0}.

For a given norm k·k on R
n, we denote by k·k⇤ its dual norm:

8x 2 R
n, kxk⇤ = max

z2Rn

�
xT z : kzk  1

 

For ⌃ 2 S
n

+, and z 2 R
n, we use notation

kzk⌃ =
p
zT⌃z.

We define, for q = 0 or q � 1, notations

Bq(r) :=
n
z 2 R

n : kzk
q
 r
o

and Sq(r) :=
n
z 2 R

n : kzk
q
= r
o
.

For M 2 R
m⇥n, we denote by Sv(M) the set of its singular-values, and define the Frobennius

norm

kMkFro :=
q
Tr (MTM),

the spectral norm
kMkSp := max

�2Sv(M)
|�|,

and the nuclear norm

kMknuc := max
Q:kQkSp=1

Tr (MQ) =
X

�2Sv(M)

|�|.

We use notation Diag(a) for a diagonal matrix in R
n⇥n with entries (ai)ni=1. I is the identity

matrix.

Indicator function of event A is denoted

1 {A} :=

⇢
1, if A
0, if Ac

�
.
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Positive part of a real x is x+ := max {x, 0}.

Given z 2 R
n, we use notation zs to designate the vector obtained from z by zeroing all of

its coe�cients except the s-largest in absolute value. For I ⇢ {1, ..., n}, we denote by zI the
vector obtained from z by zeroing coe�cient with index outside of I.

We use notations f = O(g) and f . g when their exist an absolute constant C such that
f  Cg.

a
W
b and a

V
b respectively denote max{a, b} and min{a, b}.
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Chapter 1

Introduction

1.1 Statistical Estimation Problems

1.1.1 Problem statements

In this thesis, we will consider statistical model

! = !(x) + ⇠, (1.1)

with unknown signal x 2 X ✓ R
n and possibly random noise ⇠ 2 R

m. The mapping ! : Rn ! R
m

can either be linear, i.e.

! = Ax+ ⇠, (1.2)

where A 2 R
m⇥n is an observation matrix, or non-linear. In that case, we have N real observations

(⌘i)Ni=1 2 R, associated with regressors (�i)Ni=1 2 R
n, so that each ⌘i is linked to x by equation

⌘i = r(�Ti x⇤) + �⇠i, � > 0. (1.3)

The link function r(·) is known and non-linear, and both regressor �i and noise ⇠i are random.
For each problem, the aim is to build statistical procedures producing estimates of respectively
w = Bx 2 R

⌫ or x⇤. We focus on the now classical context of modern statistics, where dimension
n, i.e. the number of possible variables of influence considered when modeling a phenomenon of
interest, is very high compared to number of available observations, respectively m or N .
This constitutes an additional di�culty. For instance, even in a deterministic setting (i.e. where
⇠ = 0 almost surely), recovering x from ! as in (1.2) amounts to solving a system of m equations
with n unknown variables, which is impossible if n > m. Since adding randomness obviously blurs
information available from !, the statistical task at hand is hopeless without additional clues as to
what x can be. Thus, methods developed in this thesis, in the line of modern statistical procedures,
will assume that prior knowledge on the signal to be recovered is available. This will allow to build
more precise estimates of the latter when combined with available observation.
We mathematically formalize this prior knowledge by x 2 X . When concerned about model (1.2),
X will be a bounded and closed subset of Rn. When in context of (1.3), we will assume that most
of x⇤’s coe�cient are zeroes, except at most s of them, with s  N . In both cases, the focus will
be on methods computable in reasonable time using modern software and computers, that enjoy
statistical precision almost as good as the best one could hope for.
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Linear regression and Least Square Estimator: a first statistical problem

When X = R
n and r is the identity, both (1.2) and (1.3) are instantiations of the same statistical

problem, the linear regression. When assuming that noise vector ⇠ is a random Gaussian vector with
covariance matrix �2I, this problem becomes Gaussian linear regression, stated in the following
way: let n,m 2 N be integers, given design matrix A 2 R

m⇥n, assume that we observe

! = Ax+ �⇠, with x 2 R
n, and ⇠ ⇠ N (0, I). (1.4)

Note that this also falls in (1.3). For i 2 {1, · · · ,m}, let ai = Rowi(A) 2 R
n be the i-th row of

observation matrix A. Then for all i 2 [1 : m], assuming model (1.2) is the same as observing
dataset (!i, ai)mi=1 with

!i = aTi x+ �⇠i, with ⇠i ⇠ N (0, 1). (1.5)

Using these observations, statistics aims at achieving many di↵erent tasks. In this thesis, we will
focus on recovering the quantity Bx 2 R

⌫ , with B 2 R
⌫⇥n. Depending on B, this covers di↵erent

classical tasks of statistics. When B = I, we are estimating x, whereas when B = A, we are solving
a regression problem. One can also aim to accurately predict linear form aT

m+1x, where am+1 2 R
n

is a new regressor. For all these tasks, one has to find how to leverage knowledge of regression
matrix A and observation ! to solve them.

1.1.2 Estimators and their error

In the context of both models (1.2) and (1.3), an estimator bw will designate a Borel function from
R

n to R
⌫ that takes as input observation ! and outputs estimate bw(!) of the object of interest:

bw :

⇢
R

m ! R
⌫

! ! bw(!)

�
.

Throughout this manuscript, we will either refer to an estimator or to the estimates it produces,
depending on the context. As a first example, in the context of Gaussian linear regression, the
most famous statistical procedure is the least square estimate:

bxHLS(!) := A+! 2 Argmin
z2Rn

k! �Azk22 , A+ = lim
�!0+

(ATA+ �I)�1AT . (1.6)

Here, the estimator is the linear mapping associated with A+ 2 R
n⇥m, the Moore-Penrose inverse

of A, while the estimate of x is the matrix-vector product bxHLS(!) 2 R
n.

To assess how well a given estimator bw behaves with regard to the estimation of w(x), one has to
consider the loss

Lk·k( bw(!), w(x)) = k bw(!)� w(x)k, (1.7)

where k · k is a norm on R
⌫ . In some applications where bw(!) estimates Ax, e.g. linear regression,

the usual criterion is the average squared prediction error

Lk·k22,m( bw(!), Ax) := k bw(!)�Axk22,m, k·k2,n :=
1p
m

k·k2 . (1.8)

In all cases, this measure of error is random by definition of observation !. Thus, precision of a
statistical procedure must be evaluated through a deterministic quantity describing that random-
ness. Ideally, L fluctuating randomly but having almost always small values would be a sign of a
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good estimation of w. The first natural quantity to look at is error in expectation with respect to
(w.r.t.) ⇠:

Errk·k( bw,w(x)) := E⇠

h
Lk·k( bw(!), w(x))

i
. (1.9)

Other quantities describing L’s randomness are quantiles of it, defined for all ✏ 2 (0, 1) by

Errk·k✏ ( bw(!), w(x)) = inf
⇢

n
⇢ : Prob⇠

h
Lk·k( bw(!), w(x))  ⇢

i
� 1� ✏

o
. (1.10)

Returning to the example of least square estimate and Gaussian linear regression, let r = Rank(A).
Simple calculations (see [1] for expectation and results in chapter 2 of [2] for quantiles) yields

Errk·k
2
2,m( bwLS, Ax) =

1

m
�2Tr

�
AA+

�
=

r�2

m
, (1.11)

Err
k·k22,m
✏ ( bwLS, Ax) 

�2

m

⇣
r + 2

p
r ln(1/✏) + 2 ln(1/✏)

⌘
. (1.12)

These can be extended to random vectors that almost behave like Gaussian ones, namely Sub-
Gaussian random vectors.

Definition 1 A random vector ⇠ 2 R
m is said to be Sub-Gaussian with parameter (µ,⌃) (⇠ ⇠

SG(µ,⌃)), µ 2 R
m,⌃ 2 S

m
+ , if for all vectors t 2 R

m,

E⇠

⇥
exp

�
tT (⇠ � µ)

�⇤
 exp

✓
tT⌃t

2

◆
. (1.13)

For instance, if ⇠ ⇠ SG(0,�2I), the least square estimate enjoys the same upper bound on quantiles
of its k·k22,m loss:

Err
k·k22,m
✏ ( bwLS, Ax) 

�2

m

⇣
r + 2

p
r ln(1/✏) + 2 ln(1/✏)

⌘
. (1.14)

1.1.3 Comparing estimators

Work of this thesis will focus on e�cient estimators w.r.t. di↵erent notions of performance, such
as minimax optimality, adaptivity and low computational complexity.

Maximal risk and minimax optimality

For a given x 2 R
n, least square estimate’s error in expectation is independent of the latter.

Without assuming additional properties of x, this is the best one can do. Yet, with additional
information about x, some biased estimator might perform better. Consider the celebrated Ridge
estimate [3], defined for � � 0 as

bx�Ridge(!) :=
�
ATA+m�I

��1
AT! = argmin

z2Rn

1

m
k! �Azk22 + �kzk22. (1.15)
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This estimate is biased, as E⇠

h
bw�Ridge(!)

i
=
�
ATA+m�I

��1
ATAx. Thus, its error depends on

x, and a good parameter choice for � would depend on the latter. Indeed, for a given �, an upper
bound on the error is

Errk·k
2
2,m

⇣
Abx�Ridge, Ax

⌘
 � kxk22

2
+
�2 kAk2Fro
2m2�

, (1.16)

implying that choice �⇤ =
�kAkFro
mkxk2 minimizes the RHS of (1.16) and leads to the bound

Errk·k
2
2,m

⇣
Abx�⇤Ridge, Ax

⌘
 �kxk2 kAkFro

m
. (1.17)

Observe that the latter is smaller than (1.11) when kxk2  �n/ kAkFro. Thus, for X ⇢ R
n, the

least square might have greater error than other estimates.
A fair criterion to compare estimates is the supremum over all possible x 2 X of either Errk·k or

Err
k·k
✏ . This is exactly the maximal risk, that we define in expectation

Riskk·k( bw,X ) := sup
x2X

Errk·k( bw,Bx), (1.18)

and in quantile, for all ✏ 2 (0, 1) by

Riskk·k✏ ( bw,X ) := sup
x2X

Errk·k( bw,Bx), (1.19)

When looking at expectations, we will refer to it as risk, whereas when interested at quantiles, we
will use the term ✏-risk. From this notion of performance, we recall the minimal over all estimates
maximal risk over signals in X . We refer to the latter as minimax risk, and respectively define it
for expected risk and ✏-risk by

RiskOptk·k(X ) := inf
bw

Riskk·k( bw,X ),

RiskOptk·k✏ (X ) := inf
bw

Riskk·k✏ ( bw,X ).
(1.20)

Note that these quantities are theoretical ones, and eventual estimators achieving optimal risk are
usually unknown. Nevertheless, it is still a relevant point of comparison for estimators, as one
usually can provide lower bounds on the minimax risk using various techniques [4]. Note that the
latter is a function of considered problem’s parameters, e.g., dimensions n,m, ⌫, matrices A,B,
signal set X and law P⇠ for (1.2). We refer to these as the model m, defined as

m := [X , A,B, k · k,P⇠] (1.21)

when in context of (1.2) and

m := [r,X , k · k,P�,P⇠] (1.22)

for (1.3)1. For a given model m, estimators such that

Riskk·k( bw,X )  CR(m), C � 1, RiskOptk·k(X ) � R(m)

are called minimax optimal when C is an absolute constant. We also use the terminology nearly-
minimax optimal when, e.g., C = C1 ln(C2n↵m�⌫�)�, with ↵,�, �, C1 � 0 and C2 � 1.

1As a consequence, we also use notation Riskk·k( bw,m) in some parts of the thesis.
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Adaptivity to parameters

In some chapters of this thesis, the studied statistical problems will be described by model m 2
M(�), � 2 [�, �] ⇢ R+, with M(�) a parameter dependent class of problems increasing in the latter,
i.e. such that

�  �0 =) M(�) ⇢ M(�0).

Chapters 2, 3, 6 are concerned with estimates adaptive to �, in the sense that they can be computed
without knowledge of the latter. The problem of building estimates that adapt to unknown model
parameter is extensively studied in the literature, starting with [5]. The author addresses the task
of estimating a function f 2 ⌃(�, L) corrupted by Gaussian error. Here, for �, L > 0, ⌃(�, L) is
the class of functions that are d�e-fold continuously di↵erentiable and such that

|f (d�e)(t1)� f (d�e)(t2)|  L|t1 � t2|��d�e.

The proposed procedure builds an estimate that adapts to unknown regularity �. Other adaptive
estimation problems can be found in [6–8] for example. In our contributions, we propose adaptive
estimates bw(a)(!) that are data-dependent selection procedures of one bwi(!) in the finite collection
WI := { bwj(!), j 2 [1 : I]}, i.e.

bw(a)(!) = bwbi(!),
bi = bi(!) 2 [1 : I]. (1.23)

Each estimate bwi 2 WI is ”tuned” for models in class M(�i), with (�i)Ii=1 an increasing grid of
[�1, �]. By tuned, we mean that estimate bwi(!) reaches the minimum of a risk upper bound we
provide over the class of estimates it belongs to 2, or an upper bound of it.
Maximal risk of an adaptive estimate when assuming m 2 M(�),

Riskk·k( bw(a),M(�)) := max
m2M(�)

Riskk·k( bw(a),X )

is then compared to either min
i2[1:I]

{Ri : Ri � R(�)} or R(�), where

Riskk·k( bwi,M(�i))  Ri, Riskk·k( bw�,m)  R(�),

and bw� is the best estimate we are able to produce when knowing �. Note that notation Riskk·k( bw,M(�))
denotes the maximal other models mmd 2 M(�) maximal risk of bw.
In other words, a good adaptive selection procedure selects the ”right” estimate bwi in context
of given m without knowing �. Among classical approach for data-driven estimate selection, are
cross-validation (see 7.10 of [9] for example), Lepskii’s adaptive procedure [5, 10, 11], and model
penalization approach of [12].

2For instance, when considering Ridge estimates, choice of parameter �⇤ =
�kAkFro
mkxk2

reaches the minimum (1.17)

of upper bound (1.16). Thus estimate bw�⇤
Ridge(!) is not optimal w.r.t. maximal risk among the class of Ridge estimate

n
bw�
Ridge(!), � � 0

o
,

but it is the best one can build using upper bound (1.16) when knowing kxk2  �.
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Computational tractability

The last point of comparison of estimators that we consider here is the computational time required
to produce them. More specifically, we are interested in the computational complexity, i.e. the worst
case amount of numerical operations required to compute a given estimate. The latter is usually an
increasing function of statistical problem’s dimensions n,m, ⌫. As we deal with high-dimensional
settings, we focus on estimators that have at the very least polynomial computational complexity
in n,m, ⌫. For this reason, estimates considered in this thesis are computed by solving convex
optimization problem.
To do so, we will often define quantities as minimizers of either Linear or Conic Programs (see
chapter 1 and 2 of [13]). The considered programs are solvable either using First Order Methods
(FOM), e.g., Mirror Descent [14], or by state-of-the-art optimization software that relies upon
Interior Point Methods (IPM) [15], e.g., MOSEK or GUROBI, available when using the modeling
system CVX [16]. Second Order Methods such as IPM are known to provide high accuracy solutions,
where accuracy ✏ of a given solution x when minimizing function f is defined by

f(x)  min
x

f(x) + ✏.

The computational complexity of IPM is dominated by the cost of a Newton step, scaling as O(N3)
for problems of size N . On the other hand, FOM iterations usually have linear or log-linear in n
computational complexity, but need a lot of iterations to reach a high accuracy solution.
Since estimates we target usually minimize an upper bound on the maximal risk, a candidate
minimizer x such that

f(x)  2min
x

f(x)

is accurate enough, provided that min
x

f(x) is nearly-minimax or minimax. As this is not a high-

accuracy solution, a FOM can produce it in a usually small number of iteration. Thus, when
possible, we prefer using FOM to IPM to compute estimates.

1.2 Linear and Polyhedral estimates for linear inverse problems

1.2.1 Linear estimates

When treating problem (1.2), the historically most studied type of estimates are linear ones, both
for their simplicity and e�ciency.

Definition 2 Let H 2 R
m⇥⌫ . We define a linear estimate of w = Bx associated with parameter

H as

bwH

Lin(!) := HT!. (1.24)

Indeed, with no prior assumption on x and assuming we are in the case of (1.4), the minimax risk
is (See [1] and references therein)

RiskOptk·k
2
2,m(Rn) = �2Rank(A)/m, (1.25)

which equals the maximal risk of linear estimate bwAA
+

Lin (!), i.e. the least square. In that situation,
this is the best one can achieve without any assumption about x. Yet, in situations where n > m,
the latter behaves poorly when estimating x. Indeed, one has

sup
x2Rn

Errk·k
2
2( bwA

+

Lin(!), x) = 1. (1.26)
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In fact, the minimax rate of estimation is also infinite in that case (see Proposition 1 of [1]). This
is no surprise as for x 2 Ker(A), observation ! = Ax+ ⇠ = ⇠. If Prob⇠[⇠ 2 Im(A)] > 0, accurately
retrieving x becomes impossible.
This changes under additional information on signal x, of the form x 2 X , where X is either a
bounded subset of Rn or unbounded subset of a subspace of Rn.
Under such assumptions, other linear estimates can outperform the least square when looking at
regression. For instance, this is so when kxk2  �Rank(A) kAk�1

Fro and one considers a properly
tuned Ridge estimate (cf (1.17)). Thus, as long as X is bounded, there are still reasons to consider
linear estimates for minimax optimality. In fact, a huge body of the statistical literature focuses
on them, starting from [17] (see [18] for a modern point of view), and developed in [19–22] and
references therein.

Filtering estimators: first results on optimality

First results of near-optimality were derived for ”simple” situations where A = B = I. They
demonstrate that the lowest possible maximal risk of a linear estimate is minimax over X, when
the latter is a specific type of closed and bounded subset of Rn. The first result of this type dates
back to the seminal work of Pinsker [23].

Proposition 1.2.1 ([23], Theorem 2) Let signal set X be a Sobolev Ellipsoids described as

X =
n
z 2 R

n :
nX

i=1

i2↵z2i  L
o
, (1.27)

and observations of the form ! = x+ �⇠ with ⇠ a normal centered Gaussian vector. Then one has

8n,↵, L, lim
�!0

Riskk·k
2
2( bw⇤

Lin,X )

RiskOptk·k
2
2(X )

= 1, (1.28)

i.e. the best linear estimate is asymptotically the minimax one.

This result extends to the case of diagonal matrices A and B in [24]. A particular sub-class of
linear estimates called filters has been widely used in linear inverse problems, e.g., in cases where
A is a diagonal matrix. Note that one can always transform observation ! = Ax + �⇠, to obtain
new diagonal observation

e!i = ⌫izi + �e⇠i, z := V Tx, e! = UT!, e⇠ = UT ⇠ ⇠ N (0, I),

with U and V defined by Singular Value Decomposition (SVD) UDiag(⌫)V T = A, and non-negative
⌫is sorted in decreasing order. This framework is treated in [25–27]. A filtering estimator bx�

f
(in

finite dimension) is then defined by

bx�
f
(!) = V bz�

f
(!),

⇣
bzf
�

⌘

i

(!) = �ie!i. (1.29)

In the context of direct observation ! = x + ⇠, the filtering estimator associated with Pinsker
weights

�i =

✓
1�

✓
i

�

◆
↵
◆

+

, ↵,� > 0 (1.30)
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is proven to be minimax optimal [23].
For more general sets (see [28]), linear estimates are also minimax optimal, in the sense that an
absolute constant upper bounds the ratio of the best linear estimate’s maximal risk to the minimax
risk.

Definition 3 Let X ⇢ R
n. X is

orthosymmetric if for all x 2 X , any vector obtained from it by changing the sign of some of
its coe�cient also belongs to X .

quadratically convex if subset

�
(z2i )

n

i=1 2 R
n, z 2 X

 
is convex.

A weighted `p-ball if for some vector a 2 R
n
+,

X =

(
z 2 R

n :
nX

i=1

ai|zi|p  1

)
.

An hyperrectangle if for some vector a 2 R
n
+,

X =

⇢
z 2 R

n : max
i

ai|zi|  1

�
.

An ellipsoid if for some positive semidefinite matrix R 2 Sn

+,

X =
�
z 2 R

n : zTRz  1
 
.

Ellipsoids, weighted `p-balls with p � 2 and hyperrectangles are both orthosymmetric and quadrati-
cally convex.

Proposition 1.2.2 ([28], Lemma 6 and Theorem 7) Let x 2 X where X is orthosymmetric,
convex, compact, and quadratically convex, and ! = x+⇠, ⇠ ⇠ N (0,�2I). Then, the linear estimate
with lowest maximal risk bw⇤

Lin satisfies

Riskk·k
2
2( bw⇤

Lin,X )  1.25 RiskOptk·k
2
2(X ). (1.31)

The projective or truncated SVD filtering estimator [29], defined by projective weights

�i(j) := 1{i  j}��1
i

is proven to be minimax over weighted `p-ball and ellipsoids, for properly selected truncation index
i⇤.
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Juditsky and Nemirovski: ellitopes and optimality of linear estimates

Recent work by A. Juditsky and A. Nemirovski [30, 31] proves results of near minimax optimality for
linear estimates, without making specific assumptions about the matrices A 2 R

m⇥n, B 2 R
⌫⇥n,

and over a rich class of convex sets called Ellitopes.3

Definition 4 A subset X of Rn is a basic ellitope if it admits the following description

X =
n
z 2 R

n : 9t 2 T ⇢ R
K

+ : zTRkz  tk, 1  k  K
o
, (1.32)

where:

Rk ⌫ 0 are n⇥ n matrices with
P

K

k=1Rk � 0.

T is a monotone, nonempty computationally tractable convex compact subset of RK
+ inter-

secting the latter’s interior.

First notice that all signal classes studied in [23, 28] are simple examples of ellitopes. Indeed, with
K = n, Rk = ekeTk , where ek is the k-th element of the canonic base of Rn, and respectively

T =
nY

k=1

[0, a�2
k

], or T =
�
t 2 R

n

+, kDiag(a)tkp/2  1
 
, p � 2,

X is an hyperectangle or a weighted `p body.
Authors of [30, 31] prove that the maximum of a quadratic form over ellitopes can be tightly
upper-bounded by an e�ciently minimizable function, using Semidefinite relaxation.

Proposition 1.2.3 ([32], Proposition 4.6) Let � 2 S
n
+ and ellitope X as in (1.32), and consider

the following two optimization problems

Opt⇤(�) := max
x2X

xT�x,

Opt(�) := min
��0

{�T (�) :
P

k
�kRk ⌫ �} , with �T (�) := max

t2T
tT�.

The second problem is e�ciently computable, and is a tight upper bound on Opt⇤(�), in the sense
that

Opt⇤(�)  Opt(�)  3 ln(
p
3K)Opt⇤(�). (1.33)

Building on this property, Theorem 2.1 in [30] states that the best linear estimate bwH⇤(!) one can
build using the outlined minimization procedure is nearly-minimax optimal:

Proposition 1.2.4 ([32], Proposition 4.4 and 4.5) Let X be an ellitope as in (1.32). Assum-
ing ⇠ ⇠ P⇠ = N (0,�2I), let H⇤ be defined as a solution to the convex optimization problem

Opt = min
H,�

⇢
�T (�) + �2Tr(⇥) :

 P
k
�kRk BT �ATH

B �HTA I

�
⌫ 0, ⇥ ⌫ HTH, � � 0

�
. (1.34)

3These results are actually extended in[31] for signal sets described as spectratopes, a class of convex sets including
ellitopes.



20

In terms of maximal risk

Riskk·k2( bwH⇤
Lin,X ) := sup

x2X

(
E⇠

��� bwH⇤
Lin(!)�Bx

���
2

2

�1/2)
,

linear estimate bwH⇤
Lin is nearly-minimax in the sense that

Riskk·k2( bwH⇤
Lin,X ) 

p
Opt  192

p
5 ln(2) ln(32K) RiskOptk·k2(X ), (1.35)

where RiskOptk·k2(X ) is the minimax risk associated with Riskk·k2(·,X ).

These two results are extended to the case of more general recovery norm k · k, which is said to be
co-ellitopic.

Definition 5 A norm k · k on R
⌫ is said to be co-ellitopic if its associated dual norm k · k⇤ is such

that the associated ball of radius 1, Bk·k⇤(1), is a basic ellitope:

Bk·k⇤ := {z 2 R
⌫ : kzk⇤  1} =

n
z 2 R

⌫ : 9t 2 W ⇢ R
L

+ : zTWlz  tl, 1  l  L
o
. (1.36)

Typical co-ellitopic norms are p-absolute norm for 1  p  2, k·k⌃ for ⌃ 2 S
n

+ and the discrete
Wasserstein `1 distance (see exercise 4.66 of [32]). With k · k satisfying this requirement, the
following proposition extends the near-optimality of linear estimates:

Proposition 1.2.5 ([32], Proposition 4.16 )
4 Let X be an ellitope described as in (1.32) and

k ·k a co-ellitopic norm as in (1.36). Assuming ⇠ ⇠ P⇠ = N (0,�2I), let H⇤ be defined as a solution
to the convex optimization problem

Opt = min
H,⇥,�,µ

8
<

:
�T (�) + �W(µ) + �2Tr(⇥) :

 P
k
�kRk BT �ATH

B �HTA
P

l
µlWl

�
⌫ 0,

⇥ ⌫ HTH, � � 0, µ � 0

9
=

; . (1.37)

Linear estimate bwH⇤
Lin is nearly-minimax in the sense that

Riskk·k( bwH⇤ ,X )  Opt  192
p

ln(32K) ln(32L)RiskOptk·k(X ). (1.38)

Notice that for X which is an `q-body with q � 2 and k · k = k·k
p
with 1  p  2, ellitopic

dimensions K and L are respectively equal to n and ⌫. This shows that sub-optimality of linear
estimates depends only weakly on dimensions n, ⌫.

1.2.2 Nonlinear estimation and polyhedral estimates

Non-optimality of linear estimates

Linear estimates are a simple yet powerful tool. However, for some sets, they can be heavily
sub-optimal. Consider the task of estimating x from direct observation

! = x+ �⇠, ⇠ ⇠ N (0, I), x 2 B1(1).

4Note that this result is originally stated for Spectratopic set X and Bk·k⇤ , but we provide the restricted ellitope
version to keep light notations
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It can be easily shown that the best linear estimate is bwh(!) := h!, with h = (1+n�2)�1, and has
associated risk

Riskk·k
2
2( bwh,B1(1)) =

n�2

1 + n�2
. (1.39)

This is exactly the same risk as for x 2 B2(1), yet, in this situation, it is no longer minimax. Indeed,
a simple non linear estimator can have a much smaller risk. Let us denote

bw1(!) := argmin
z2B1(1)

kz � !k1 . (1.40)

As demonstrated in [33] that when �  2n/
p
e, the risk of bw1 is

Riskk·k
2
2( bw1,X )  8

p
2 ln(2n/�)�. (1.41)

For instance, when � = 1
2
p
n
, the risk of the best linear estimate equals 1/5, while bw1’s is less than

16
p

3 ln(en)/n, implying suboptimality of the linear estimate in that situation.

Early results of nearly-minimax estimation with nonlinear estimators

In the case of direct observation ! = x+ �⇠ , one can consider thresholding estimators of the form

8i 2 [1 : n], bxti(!) = !iti(!i),

with ti : R ! [0, 1] a nonlinear threshold rule. Two common choices for t are hard-thresholds and
soft-thresholds [6, 8, 34], respectively defined for � > 0 by

t�
h
(y) := y1 {|y| > �}

and

t�s (y) := (|y|� �)+
y

|y| .

In [8], authors show that these two type of estimators are nearly-minimax optimal over Besov spaces
for Gaussian ⇠ 5. They also prove that linear estimates are not nearly-minimax over certain types
of Besov spaces.

Polyhedral Estimate, a nearly minimax estimate

Authors in [33] extend operational and almost ”assumption-free” theory of linear estimation de-
veloped in [30, 31] to nonlinear estimation. They do so by building on ”simple” estimate (1.40)
to propose a novel analysis and computation procedure of the Polyhedral estimate, stemming from
the early ideas of [35, 36]. What motivates these estimates is the fact that, for a given h 2 R

m,
linear form hT! accurately estimate hTAx. More precisely, given h 2 R

m, when ⇠ ⇠ SG(0,�2I),
one has

Prob⇠
h
|hT! � hTAx|  � khk2

p
2 ln(2/✏)

i
� 1� ✏. (1.42)

5See [8] for a proper definition of Besov spaces
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Thus, selecting N columns hi such that khik2 =
⇣
�
p
2 ln(2N/✏)

⌘�1
, one can build the closed,

convex subset of Rn

Z :=
�
z 2 R

n : 8i  N, |hTi [! �Az]|  1
 
.

Note that by construction, x 2 Z with probability greater than 1� ✏. The key idea is then to select
appropriate columns hi so that any point bx 2 Z \ X results in a good estimate of Bx when using
bw := Bbx. This is the argument that motivates polyhedral estimate

bwH

Poly(!) := BbxHPoly(!), bxHPoly(!) 2 Argmin
z2X

��HT [! �Az]
��
1 . (1.43)

Authors in [33] provide two operational approaches for computing ”presumably good” contrast
parameter H⇤ and tight upper bound on its associated ✏-risk, both via convex optimization. In
some special cases, it is also shown to be nearly-minimax. Specifically, first technique of construction
selects N = ⌫ columns by solving the ⌫ optimization problems

Opti = min
g

⇢
max
z2X

⇣⇥
Rowi(B)�AT g

⇤T
x
⌘
+ �

p
2 ln(2⌫/✏) kgk2

�
(1.44)

and setting Coli(H) = (�
p
2 ln(2⌫/✏) kgik2)�1gi, with gi being a solution to Opti. This construction

is shown to produce nearly-optimal polyhedral estimates for X as a weighted `q-ball, A and B
diagonal and k·k = k·k

r
with r � q.

On the other hand, for any matrices A,B, ellitope X and co-ellitopic k·k, authors propose the
following construction, which is also nearly-minimax.

Proposition 1.2.6 ([32], Proposition 5.8 and 5.10) Let X be an ellitope as in (1.32) and let
k·k be a co-ellitopic norm (1.36). Consider the convex optimization problem

Opt = min
µ,�,⇥

8
<

:
�T (�) + �W(µ) + 2�2 ln(2m

✏
)Tr(⇥) :

 P
l
µlWl B/2

BT /2
P

k
�kRk +AT⇥A

�
⌫ 0,

⇥ ⌫ 0,� � 0, µ � 0.

9
=

; .(1.45)

Let (⇥⇤,�⇤, µ⇤) be an optimal solution to the aforementioned problem. Selecting

H⇤ =
1

�
p

2 ln(2m/✏)
� 2 R

m⇥m,

with �TS� being the SVD of ⇥⇤, yields a polyhedral estimate such that

Riskk·k( bwH⇤
Poly,X )  Opt. (1.46)

Moreover, for ✏ 2 (0, 18 ], this estimate is nearly minimax, in the sense that

Risk
k·k
✏ ( bwH

Poly,X )  48
p
2 ln(2m/✏) ln(32K) ln(32L)RiskOpt

k·k
✏ (X ). (1.47)

1.2.3 Contributions to robust linear and nonlinear estimation for linear inverse

problems

In Chapter 2 and 3, we discuss adaptive linear and polyhedral estimates when observing noisy linear
transformations of a signal known to belong to an ellitope, under various forms of uncertainty in
the model m. These results are thus in direct continuation of [30–33], and based on working paper
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Adaptive counterpart of linear inverse problems.
The first contribution of chapter 2 is a routine to produce ”presumably good” linear estimates w.r.t.
✏-risk. We do so by selecting associated matrix parameter H as a solution of a convex minimization
problem.
We then proceed to build adaptive linear estimates under the ”general” model of uncertainty where

m(�) = {Z(�), A,B, k · k,P⇠} , � 2 [0, �], � 2 R+⇤ (1.48)

i.e., set Z such that signal x 2 Z is uncertain. We thus assume that Z belongs to a parametric
family of sets (Z(�))

��0 increasing 6 with parameter �.
Given an integer I, we build a finite family of sets

Z(�0) ⇢ Z(�1) ⇢ · · · ⇢ Z(�I)

and associated provably best linear and polyhedral estimates for each of them. We then show
how Lepski’s adaptive procedure [5, 10, 11] allows one to select a linear estimate, resulting in
nearly-optimal performances. We also propose an adaptive polyhedral estimate built using contrast
parameters associated to specific �i, also leading to nearly-optimal ✏-risk. Finally, specific results
are provided for the special case where Z(�) = X + U(�), with, for � � 0, X and U(�) being
ellitopes, and recovery norm being either co-ellitopic or k·k2. In the second case, we provide an
additional aggregation routine involving estimation of quadratic forms.
In chapter 3, two specific settings falling into the aforementioned framework are then presented as
applications.

The first, rather general, is adaptivity to unknown parameter � when Z(�) = X + �U , where
X and U are ellitopes.

The second setting deals with robustness to s-sparse data-corruption. Here, we assume to be
given the observation

! = Ax+ u+ ⇠, x 2 X , kuk0  s, (1.49)

where X 2 R
n is an ellitope, and s is unknown. Deterministic vector u is an unknown

”nuisance” that has to be considered adversarial, i.e. that maximizes our error of estimation
when targeting w = Bx. As a consequence, we consider the following maximal risk

Riskk·k( bw,X ⇥ B0(s)) := max
x2X

max
u2B0(s)

E⇠ [k bw(Ax+ u+ ⇠)�Bxk] . (1.50)

Under the first item’s setting , we propose comprehensive versions of the linear and polyhedral
estimates, i.e. estimates with guaranteed upper bound r on the ✏-risk when � = 0, and such that

Risk✏[ bw|Z(�)]  r + �t.

We focus on e�cient routines allowing for computation of the minimal t such that the latter holds
when in context of m(�).

6w.r.t. the inclusion relationship for sets, i.e.

�1  �2 =) Z(�1) ⇢ Z(�2).
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Finally, we provide numerical experiments that illustrate results about adaptive linear and polyhe-
dral estimates when concerned with the uncertainty X + �U .

Chapter 4, based on the paper First order algorithms for computing linear and polyhedral esti-
mates [37] submitted to Open Journal of Mathematical Optimization (OJMO), deals with e�cient
computation of linear and polyhedral estimates.
When considering ellitopic X and co-ellitopic recovery norm k·k, design of these estimates relies
upon building a good contrast parameter H. This in turn involves solving a semidefinite optimiza-
tion problems with dense matrix variables, e.g., as in (1.45). Using Interior Point Semidefinite
Programming to do so severely limits how big dimensions n,m, ⌫ can be. Indeed, formulation of

said problems involves matrix variables of the size O
⇣
((n+ ⌫)

W
m)2

⌘
, entailing computational

complexity of the order O
⇣
((n+ ⌫)

W
m)6

⌘
.

As a remedy, we propose the following three contributions.

We first provide a reformulation of the optimization problem (1.45). The latter replaces
previously mentioned matrix variable by vector ones of size O(K +L), and allows for the use
of first order methods.

We show how to augment feasible solution (�, µ,⇥) of (1.45), with associated value p[⇥], to
variables (2�, µ,⇥, H) feasible for (1.37) with associated value p[⇥]. A minimal solution to
(1.45) can then be converted to an almost minimal solution of (1.37), in the sense that value
of the converted solution is within a factor

max
n
2;
p

1 + ln(2m)
o

of problem (1.37)’s minimum.

We finally develop and analyse a novel bundle-like algorithm, Composite Truncated Level
(CTL), that can treat the aforementioned reformulation of (1.45). The computational cost of
one step of CTL is dominated by the one involved in inversion of square matrices of dimension
⌫ and n and/or computation of SVDs of square matrices of size m. We support our analysis
with numerical experiments.

Chapter 5 is based on papers Robust signal recovery under uncertain-but-bounded perturbations
in observation matrix [38], Estimation from indirect observations under stochastic uncertainty in
observation matrix [39] submitted to ”Journal of Optimization Theory and Application”. Here we
consider the task of building linear and polyhedral estimates which are robust w.r.t. observation
matrix uncertainty. More precisely, we assume that we are in the situation where

m(⌘) = {X , A[⌘], B, k · k,P⇠} , A[⌘] := A+
qX

↵=1

⌘↵A↵, (1.51)

with given matrices A and (A↵)
q

↵=1. We then build almost best linear and polyhedral estimates
when considering the maximal ✏-risk over all x 2 X and all possible observation matrices. We do
so by defining their associated contrast matrices H⇤ as minimizers of tight upper bounds of the
✏-risk of respectively linear or polyhedral estimate with contrast H. We consider separately matrix
uncertainty of two types.



25

First, we assume that, ⌘ is a centered random vector, and we build linear and polyhedral es-
timates which are robust to such random uncertainty. Performance is then measured through

Risk
k·k
✏ ( bw,X ) := sup

x2X
inf
⇢>0

{⇢ : Prob⇠,⌘ [k bw �Bxk > ⇢]  ✏} .

This is done for sub-Gaussian ⌘, and for ⌘ with bounded second moment when repeated
observations are available.

Next, we consider the case of ⌘ which is deterministic but unknown, and belongs to a bounded
convex compact subset Q ⇢ R

q. The considered risk is

Risk
k·k
✏ ( bw,X ) := sup

x2X ,⌘2Q
inf
⇢>0

{⇢ : Prob⇠ [k bw �Bxk > ⇢]  ✏} .

1.3 Sparse recovery

1.3.1 Minimax results on sparse recovery

We now consider the situation of (1.2) with m < n and x such that it is s-sparse, i.e. kxk0 = s.
If m > s, we retrieve in a sense the classical setting of estimation from linear observation. With
access to oracle

I := {i 2 [1 : n] : xi 6= 0} , |I|  s, (1.52)

one can reformulate problem (1.2) as

!I = AIxI + ⇠I , (1.53)

with AI 2 R
m⇥s is obtained from A by concatenating columns with indexes in I, and xI 2 R

s

is the vector obtained from x when removing zero coe�cients. The corresponding least square
estimate enjoys average Euclidean error of regression

�2
Rank(AI)

m
 �2s

m
. (1.54)

Yet, this is an idealistic situation, as there would be no sense in assuming that x 2 R
n if one

actually knows I. Therefore, the challenge lies in accurately guessing the support of x in order to
estimate it.
The first approach is to constrain least square to s-sparse vectors, resulting in estimate

bxsc,0(!) 2 Argmin
z2B0(s)

k! �Azk22 , (1.55)

or its penalized counterpart

bx�p,0(!) 2 Argmin
z2Rn

k! �Azk22 + � kzk0 . (1.56)

When prediction error is concerned, these estimates enjoy the following upper bound (see chapter
2.4 in [40]) on their maximal risk under the assumption of s-sparsity:

Riskk·k
2
2,m(Abxs

c,0,B0(s))  32 s�
2

m
ln(en/s),

Riskk·k
2
2,m(Abx�0

p,0,B0(s))  16�
2

m
(s ln(e2n) + 1), �0 =

8�2

m
ln(2n).

(1.57)
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The extra factor ln(en/s) compared to (1.54) seems to be optimal in the minimax sense in some
situations, as pointed out by results in [41] stating that

RiskOptk·k
2
2 (B0(s)) &

n�2s

kAk2Fro

⇣
ln(n/s)

_
1
⌘
. (1.58)

As a consequence, (1.55) and (1.56) are minimax optimal in the direct observation model (i.e.
(1.2) with A = I and n = m). The main drawback of the estimates (1.55) and (1.56) is that the
underlying minimization problems quickly become intractable as n grows. This limitation arises
because the k · k0 norm is not convex, and has motivated similar approaches that replace it with
k·k1.

1.3.2 Lasso, Dantzig estimates and design conditions

This choice is justified as the latter is the convex envelope of the former on B1(1). This motivates
the celebrated Lasso ([42])

bx�L 2 Argmin
z

⇢
1

2m
k! �Azk22 + � kzk1

�
, (1.59)

and the Dantzig selector introduced in [43],

bxµD 2 Argmin
z

⇢
kzk1 :

1

m

��AT [! �Az]
��
1  µ

�
. (1.60)

For both estimates, the appropriate choice of parameter � or µ is crucial to ensure good perfor-
mance. In practical applications, this is usually done using cross-validation. In situations where
⇠ ⇠ SN (0,�2I) and A satisfies some conditions, theoretical analysis advocates that they be of
order �

p
2 ln(n)/m.

The null space property

Historically, the problem of sparse recovery was first addressed with noiseless observations [44]. In
this case, it is not trivial that

8x 2 B0(s), x = argmin
z

{kzk1 : Az = Ax} (1.61)

holds without the design matrix A satisfying some property involving the level of sparsity s. The
necessary and su�cient condition on A for (1.61) to hold is the celebrated Null-Space Property
(NSP) [45].

Definition 6 Let 0 <  < 1
2 . A matrix A is said to possess the Null-Space property NSP(s,) if

the following holds true:

8z, Az = 0 =) kzsk1   kzk1 . (1.62)

Using the following equivalent property, it is possible to derive a risk upper bound for the Lasso
and Dantzig selector.
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Proposition 1.3.1 ([32], Section 1.2.2.1) Let 0 <  < 1
2 . The NSP(s,) for a given matrix A

is equivalent to existence of Ck·k such that the following holds:

8z, kzsk1 <  kzk1 + Ck·k(s,) kAzk . (1.63)

For k · k = k · k1,

Ck·k1(s,)  n+ s

⇢(A)
, ⇢(A) := min {⇢ : ⇢ 2 Sp(A), ⇢ > 0}

Assuming that ATA satisfies the NSP(s,) with Ck·k1(s,), that ⇠ ⇠ SG(0,�2I) and that

max
i

kColi(A)k2 
p
m, choice µ = �

q
2
m
ln
�
2n
✏

�
yields the following upper bound (see Chap-

ter 1 of [32])

Risk
k·k1
✏ (bxµD,B0(s)) 

4mµCk·k1(s,)

1� 2


4(n+ s)�
q

2
m
ln
�
2n
✏

�

(1� 2)⇢(ATA/m)
. (1.64)

Provided that
mCk·k1(s,)

1� 2
. O

 
sp

⇢(ATA)

!
,

first inequality of (1.64) implies the rate

Risk
k·k1
✏ (bxµD,B0(s)) . O

0

@�s

s
ln
�
2n
✏

�

m⇢(ATA)

1

A . (1.65)

Notice that (1.57), and bxs
c,0 � x 2 B0(2s) implies that

Riskk·k1(bxsc,0,B0(s)) . �s

s
ln(n)

m⇢(ATA)
.

Thus, ATA satisfying the NSP with good constants provides a rate for `1 sparse recovery that is
essentially as good as `0 minimization routines.
Nevertheless, checking whether a given matrix ATA satisfies the NSP for s-sparse signals and
computing s,, Ck·k1 is an algorithmic task that su↵ers from computational complexity of O(ns).
Second, it is not known how to compute matrix A that verifies the NSP(s,).

The Restricted Isometry Property

The celebrated work of Candes and Tao [46] introduces the following condition on the design
matrix A:

Definition 7 A satisfies the Restricted Isometry Property RIP(s, �), if, for a given sparsity level
s, it exists � 2 (0, 1) such that

8x 2 R
n, kxk0  s, =) (1� �) kxk22  kAxk22  (1 + �) kxk22 . (1.66)

The first important fact about RIP is that it implies NSP with constants that ensure good recovery
properties of `1 methods.
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Proposition 1.3.2 ([47], Lemma 2.2 and Theorem 1.2) Let matrix A satisfy the RIP(s, �2s)
condition with �2s <

p
2� 1. Then A satisfies the NSP(s,) with

 =

p
2�2s

1 + (
p
2� 1)�2s

. (1.67)

Moreover, under sub-Gaussian noise, when defining the Dantzig selector as

bxD 2 Argmin
z

n
kzk1 : kAz � !k2  �⇤(

p
m+

p
2 ln(1/✏))

o
,

the following holds with probability greater than 1� ✏ for every s-sparse vector x:

kbxD � xk2 
2
p
1 + �2s

1 + (
p
2� 1)�2s

�⇤(
p
m+

p
2 ln(1/✏)). (1.68)

Furthermore, provided m is su�ciently large, an observation matrix with coe�cients drawn at
random is very likely to satisfy RIP. The good news being that how large m has to be is actually
almost proportional to level of sparsity s, as stated by next proposition.7.

Proposition 1.3.3 Let A 2 R
m⇥n be a random matrix with entries ai,j ⇠ N (0, 1/m) or Prob[

p
mai,j =

1] = Prob[
p
mai,j = �1] = 1/2. Then A satisfies RIP(s, �s) with probability at least 1 � ✏ as long

as

m � 48

�2
[s ln(9en/s) + ln(2/✏)] . (1.69)

Thus, design matrix A satisfies NSP(s,),  < 1/2, when it verifies RIP(2s, 0.4). Taking m �
600sdln(13en/s)e+ 1799 is su�cient for both this to be true and

kbxD � xk2  50�
⇣p

s ln(36n/s) + 1
⌘

to hold simultaneously, with probability greater than 0.99. Notice that before n = 9429, their is
no such m even for s = 18.
Second, as with the NSP, one cannot check whether a given matrix satisfies RIP in less than O(ns)
operations.

The Restricted Eigenvalue Condition

Under a second condition with essentially the same advantages and weaknesses as RIP, [48]
provides upper bounds on the ✏-risk of the Lasso and Dantzig selector.

Definition 8 A satisfies the Restricted Eigenvalue condition RE(s,, �), if, for a given sparsity
level s, it exists � > 0 and  > 0 such that

8I ⇢ [1 : n], |I|  s, kxIck1  � kxIk1 =) kAxk22 �  kxIk22 . (1.70)

7Similar results are also available when A is created by selecting randomly m rows of an orthonormal matrix, with
m su�ciently large w.r.t. s,.

8It is important to mention that despite this, in practice, `1 minimization methods seem to work e�ciently even
in small dimensions with random design and very few measurements.
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This condition is also shown to hold with overwhelming probability for the same type of random
matrices as for RIP, as long as m & s ln(en/s) (see [49]). Similar to RIP, checking whether a matrix
satisfies the RE condition is also of computational complexity O(ns).
Under this condition, [50]9 proposes the following upper bound on the Lasso’s ✏-risk with a param-
eter choice independent of ✏.

Proposition 1.3.4 ([50], Proposition 3.2) Let A satisfy RE(s,, �) and such that all diagonal

elements of 1
m
ATA are smaller than 1, and � = 2��

��1

q
2 ln(n)

m
, � 2 (0, 1). Then,

8✏ 2 (0, 1), Risk
k·k22
✏ (Abx�L,Bk·k0(s)) 

�2

m

✓p
s

✓
�

p
2 ln(n)

(��1) + 1

◆
+ 2.8 +

p
2 ln(1/✏)

◆2

. (1.71)

Regarding the Dantzig selector, [48] proposes the following.

Proposition 1.3.5 ([48], Theorem 7.1) Let A satisfy RE(s,, 1) and such that all diagonal el-
ements of 1

m
ATA are smaller than 1, and µ = �

p
2 ln(n/✏)/m, ✏ 2 (0, 1). Then,

Risk
k·k22
✏ (AbxµD,Bk·k0(s))  32�2

s

m2
ln
�
n

✏

�
,

Risk
k·k1
✏ (bxµD,Bk·k0(s))  8�s

2

q
2 ln(n/✏)

m
.

(1.72)

Note that [48] also proposes similar results for the Lasso with � = O
⇣
�
p

ln(n/✏)/m
⌘
10.

Computational complexity of computing Lasso and Dantzig selector

For both the Dantzig selector and the Lasso, generating the associated estimate has computational
complexity that scales poorly with increasing parameter n. Solving (1.60) relies upon IPM, which
scales to at least O(n3) by using at least one Newton step. Among the popular methods to solve
(1.59) are Iterative Shrinkage-Thresholding Algorithms (ISTA) [51] and Fast ISTA [52]. Both aim
to minimizing the function

F�(z) := kAz � !k22 + � kzk1 , z 2 R
n,

and use first order algorithms involving the computation of a subgradient of F�(z). Thus each step
of either ISTA or FISTA scales as O(nm). Authors in [52] proposes the two following result on
ISTA and FISTA.

Proposition 1.3.6 ([52], Theorem 3.1) Let (xk)k�0 be the sequence of iterate produced by ISTA
with starting point x0, and x⇤ a minimizer of F�. Then

8k � 1, F�(xk)� F�(x⇤) 
��ATA

��
Fro

kx⇤ � x0k22
k

. (1.73)

Proposition 1.3.7 ([52], Theorem 4.4) Let (xk)k�0 be the sequence of iterate produced by FISTA
with starting point x0, and x⇤ a minimizer of F�. Then

8k � 1, F�(xk)� F�(x⇤) 
��ATA

��
Fro

4 kx⇤ � x0k22
(k + 1)2

. (1.74)

9Authors provide a restricted eigenvalue condition stated with kxk2 instead of kxIk2 in the denominator of (1.70),
leading to constant smaller by at most a factor

p
1 + ��1.

10The two di↵erences are higher numerical constants and the fact that design matrix A must satisfy the condition
RE(s,,3).
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In practice, the first order algorithm used to solve the Lasso is Coordinate Gradient Descent (CGD)
[53] with associated computational cost O(mn) for one iteration, and the following convergence
result.

Proposition 1.3.8 ([54], Corollary 3.8) Let (xk)k�0 be the sequence of iterates produced by
CGD with starting point x0, and x⇤ a minimizer of F�. Then

8k � 1, F�(xk)� F�(x⇤) . max
i

n kRowi(A)k22
m

kx⇤ � x0k22
k + 1/n

. (1.75)

1.3.3 Stochastic approximation, multistage procedures and sparse recovery in

very high dimensions

We now turn to problem (1.3). We are given random samples (�i, ⌘i)mi=1 2 R
n ⇥R, linked by the

following equation
⌘i = r(�Tx⇤) + �⇠i,

where (�i, ⇠i)mi=1 are independent copies of r.v. (�, ⇠) 2 R
n⇥R. Under this random design, consider

the following Stochastic Optimization problem:

min
x2X

{g(x) := E [G(x, (�, ⌘))]} , G(x, (�, ⌘)) := s(�Tx)� �Tx⌘, (1.76)

with s
0(t) = r(t). When E[�⇠] = 0, x⇤ is a critical point of g, since

rg(x) = E
⇥
�[r(�Tx)� r(�Tx⇤)]

⇤
. (1.77)

Thus, when g has a unique minimizer, retrieving x⇤ and minimizing g are equivalent problems.
To do the latter, one can minimize the sample average approximation (SAA) of g

bgN (x) :=
1

N

NX

i=1

G(x, (�i, ⌘i)), (1.78)

as it is an unbiased estimate of g(x), i.e.,

E[bgN (x)] = g(x) 8x 2 X . (1.79)

One can also compute unbiased Stochastic Approximation (SA) [55]

rG(x, (�i, ⌘i)) := �i
⇥
r(�Ti x)� ⌘i

⇤
(1.80)

of rg(x), and use Stochastic First Order Methods (SFOM) to minimize g.
In the context of linear regression, i.e. r(t) = t, observe that

g(x) = E


1

2
(�T [x⇤ � x] + �⇠)2

�
�E

⇥
1
2⌘

2
⇤
,

thus minimizing g using SAA is the same as solving the least square problem

min
x2X

(
LN (x) :=

1

2N

NX

i=1

(⌘i � �Ti x)
2

)
.
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When assuming kx⇤k0 = s with s << n, one can thus treat this task by solving the Lasso or
Dantzig selector. Considering the Lasso problem and assuming ⇠ ⇠ N (0, 1), one can use CGD to
compute an estimate bx�

N
such that

LN (bx�N ) + �
���bx�N

���
1
 min

x2X
{LN (x) + � kxk1}+ 1

2�
2 (1.81)

in

O
✓
n2

✓���x� � x0
���
2

2
max

i

k�ik22 �
�2
_

1

◆◆
(1.82)

operations, with x� a minimizer of the Lasso problem.
On the other hand, SFOM using SA rG(x, (�i, ⌘i)) := �i(�Ti x�⌘i) of g’s gradient at x usually have
sub-iterations scaling linearly with dimension n. Thus, one can compute an estimate in O(nN)
operations with this approach, which is computationally cheaper.

Stochastic Mirror Descent

A popular first order algorithm to solve (1.76) is the celebrated Stochastic Mirror Descent (SMD)
[56]. The latter is the repeatition of the following iteration

xi+1 = ProxDX (xi, �i+1G(xi, wi+1)) , ProxDX (v, y) := argmin
z2X

�
yT z +D(v, z)

 
, (1.83)

with metric D the proximal function and ProxDX its associated proximal operator.
When measuring error of estimation using a norm k·k, one usually requires proximal function D to
be such that

8z, v 2 X , D(z, v) � ↵

2
kz � vk2 .

A popular choice of metric fitting this requirement is the Bregman Divergence [57] generated by a
function ↵-strongly convex w.r.t. norm k·k.

Definition 9 A convex continuously di↵erentiable function d : X ! R is said to be ↵-strongly
convex w.r.t. norm k · k if

8z, v 2 X , Vd(v, z) := d(v)� d(z)�rd(z)T [v � z] � ↵

2
kv � zk2. (1.84)

Definition 10 Let distance-generating function (d.-g.f.) d : X ! R be a continuously di↵er-
entiable convex function that is strongly convex w.r.t a norm k · k. The Bregman divergence
Vd : X ⇥ X ! R+ associated with d is defined by

8(v, z) 2 X , Vd(v, z) = d(z)� d(v)�rd(v)T [z � v]. (1.85)

Among the most widely used Bregman divergences for SMD, are the following ones:

the squared euclidian distance:

8(v, z) 2 R
n, Vd(v, z) = kv � zk22 , d(·) = k·k22 .
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the Kullback-Liebler divergence, defined over the simplex �1 :=
�
z 2 R

n
+ :
P

n

i=1 zi = 1
 
and

generated by the negative entropy h(v) =
P

n

i
vi ln(vi):

8(v, z) 2 �1, Vh(v, z) :=
nX

i=1

vi ln(vi/zi).

the divergences defined when using d(·) := k·k2
p
or d(·) = k·kp

p
, with p close to one, e.g.,

p = 1 + 1
ln(n) .

Upper bounds on the expected inaccuracy of an estimate produced by a properly tuned SMD are
available for general functions g

8x 2 X , g(x) := Ew [G(x,w)] (1.86)

being Lipschitz or Smooth, with G(·, w) being convex for every realization w.

Definition 11 A continuously di↵erentiable function d : X ! R is L-Lipschitz w.r.t. norm k · k if

8z 2 X , krd(x)k⇤  L. (1.87)

Definition 12 A continuously di↵erentiable function d : X ! R is �-smooth if its gradient rd is
�-Lipschitz w.r.t. norm k · k:

8z, v 2 X , krd(z)�rd(v)k⇤  �kz � vk. (1.88)

The two result we are about to present assume that available stochastic subgradient rG(x,w) is
such that its expectation is in the sub-di↵erential of g at x, i.e.

8x 2 X , rg(x) := Ew [rG(x,w)] 2 @g(x), (1.89)

and that it has bounded second moment:

8x 2 X , E

h
krG(x,w)�rg(x)k2⇤

i
 {, { > 0. (1.90)

They both use in (1.83) the Bregman divergence associated with d.-g.f. d that is 1-strongly convex
w.r.t. k·k and associated with constant

⇥ := max
x,y2X

Vd(x, y). (1.91)

Proposition 1.3.9 ([58], Theorem 4.1) Assume that (1.90) holds and g is L-Lipschitz. Let
sequence of points (x1, ..., xN ) generated by iteration (1.83) with proximal function D = Vd, and
define

bxt =
tX

⌧=1

x⌧
t
. (1.92)

For t � 1 and constant step-size strategy �i =
q

⇥
k(L2+{) , one has that

E [g(bxN )� g(x⇤)]  2

r
⇥(L2 + {)

N
. (1.93)
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Proposition 1.3.10 ([58], Theorem 4.2) Assume that (1.90) holds and g is �-smooth. Let se-
quence of points (x1, ..., xN+1) generated by iteration (1.83) with proximal function D = Vd, and
define

bxavt+1 =
t+1X

⌧=2

x⌧
t
. (1.94)

For t � 1 and constant step-size strategy �i = min

⇢
1
2� ,
q

⇥
k{

�
, one has that

E
⇥
g(bxavN+1)� g(x⇤)

⇤
 2�⇥

N
+ 2

r
⇥{
N

. (1.95)

Stochastic Dual Averaging

Another FOM is the Dual Averaging (DA) algorithm [59, 60]. In [60], authors propose the
following setting. Let d be µ(d)-strongly convex w.r.t. k·k, and such that

8x 2 X , d(x)  C(d) kxk2 and d(x) � d(0) = 0. (1.96)

For a given proximal center x 2 X such that kx⇤ � xk  R, define the proximal operator

Proxz,R,�(v) := arg max
y

�
vT [y � z]� �dz,R(y) : y 2 X , ky � zk  R

 
, � > 0, (1.97)

with d.-g.f. dz,R(y) defined by

8y 2 X , dz,R(y) := d

✓
y � z

R

◆
. (1.98)

For seqences of positive reals �1, ...,�i and �1  ...  �i+1, and filtration (w1, ..., wi), the i + 1-th
iteration of DA produces estimate bxi+1 through

bxi+1 = Proxx,R,�i+1

 
�

iX

t=1

�trG(bxt, wt)

!
. (1.99)

Authors in [60] propose a result on both the convergence of the expected inaccuracy and the
expected error of estimation, for g being uniformly convex and Lipschitz.

Definition 13 For p � 2, a convex continuously di↵erentiable function d : X ! R is said to be
(µ, p)-uniformly convex w.r.t. norm k · k if

8z, v 2 X , Vd(v, z) �
µ

p
kv � zkp. (1.100)

Proposition 1.3.11 ([60], Corollary 5) Assume that g is (µ(g), p)-strongly convex and L-Lipschitz
w.r.t. k·k, and that stochastic subgradient satisfy (1.90). Let �k = 1 and �k = �

p
N + 1, with

� =

s
L2 + {

2C(d)µ(d)
. (1.101)
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Then the approximate solution bxN (x,R) produced by the DA algorithm after N iterations is such
that

E [g(bxN (x,R))]� g(x⇤)  R

s
2C(d)(L2 + {)
µ(d)(N + 1)

(1.102)

E [kbxN (x,R)� w⇤kp] 
R

µ(g)

s
2C(d)(L2 + {)
µ(d)(N + 1)

. (1.103)

Multistage procedures

Rates (1.93), (1.95),(1.102) and (1.103) can be improved using multistage procedures [60, 61]
when assuming objective to be strongly or uniformly convex w.r.t. k·k. The latter are algorithms
restarting instances of FOM algorithms, e.g., SMD or DA, called stage. At a given stage, say, the
i-th, we are given a starting point xi 2 X such that

kxi � x⇤k  Ri. (1.104)

The stage then runs a FOM for mi iterations using d.-g.f. dxi,Ri defined as in (1.98), with initial
point

x(i)0 2 X \ {z 2 R
n, kz � xik  Ri} .

At the end of the stage, the procedure sets xi+1 := bx(i)mi , with guarantee

kxi+1 � x⇤k  Ri+1

holding either in expectation or with high probability when subgradients are stochastic.

Mulstistage routines applied to Sparse recovery

Observe that for functions such as (1.76), one has 11

{ � �2E
h
k�k2⇤ ⇠

2
i
. (1.105)

If k·k = k·k2, i.e., the setting is Euclidean, one can consider d(·) = k·k22. In this case, the cor-
responding SMD algorithm is the Projected Stochastic Gradient Descent. The latter may su↵er
from poor convergence of the expected inaccuracy for very high dimensions. For example, in linear
regression, where � ⇠ N (0, I) and ⇠ ⇠ N (0, 1) are independent, { � �2n. Thus, unless a specific
assumption is made on regressor �, such as sparsity (see [62]), one cannot avoid a term larger than
the dimension n in (1.95). Thus, for very large n, SFOM must be considered in a non-Euclidean
setting.
For example, considering k·k = k·k1, (1.105) gives { & �2 ln(n) for � ⇠ N (0, I) and ⇠ ⇠ N (0, I).
For such setting, one can use multistage procedures running instances of the SMD algorithm in
each stage. Assuming that the objective is µ(g)-strongly convex and �(g)-smooth w.r.t. k·k1, (1.95)
yields

E[kbxN � x⇤k21] .
�(g)⇥

µ(g)N
+

s
⇥{

µ(g)2N
.

11Simply observe the decomposition

E

����(�T
x� ⌘)�E

h
��

T [x� x⇤]
i���

2

⇤

�
= E

�����T [x� x⇤]�E
h
��

T [x� x⇤]
i
� ��⇠

���
2

⇤

�

taken at x = x⇤.
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In cases such as linear regression, this approach su↵ers from the fact that the ratio �

µ
is lower

bounded by dimension n (see [60], p.2 for proof of this claim). Assuming that ⇥  C(d) kx0 � x⇤k21,
N should be larger than nC(d) to reduce initial error. Thus a multistage procedure cannot converge
in the setting of sparse recovery, i.e., N  n, when assuming strong convexity w.r.t. k·k1. This
motivates the need for more restrictive assumptions.
For example, the authors in [63] study a multistage procedure called Regularization Annealed epoch
Dual AveRaging (RADAR) under the Local Strong Convexity (LSC) condition.

Definition 14 Function g : X ! R is �(R)-locally strongly convex (LSC) w.r.t. k·k22 if for all z, v
such that kzk1  R and kvk1  R,

Vg(v, z) �
�

2
kz � vk22 . (1.106)

At the i-th stage of RADAR, an instance of DA with d = 1
2(p�1) k·k

2
p
and p = 2 ln(n)

2 ln(n)�1 is ran for mi

iteration to solve intermediary problem

min
z2X

n
g(z) + �i kzk1 : kz � xikp  Ri

o
. (1.107)

The main di↵erence with (1.99) is the use of stochastic subgradient rG(x,w) + �i⌫(x) instead of
rG(x,w), with ⌫(x) 2 @ kxk1.

Proposition 1.3.12 ([63], Theorem 1) Assume that g is �(R)-LSC and that it satisfies the fol-
lowing assumptions:

g is G(R)-Lipschitz for all z, v such that kz � x⇤k1  R and kv � x⇤k1  R:

|g(z)� g(v)|  G(R) kz � vk1 . (1.108)

For all z such that kzk1  R, gradients are centered and sub-Gaussian, i.e. for some �2(R),

Ew

h
exp

⇣
krG(z, w)�rg(z)k21 /�2(R)

⌘i
 exp(1). (1.109)

RADAR produces after N oracle calls an estimate bxN such that with probability greater than 1 �
6 exp(�t/12),

kbxN � x⇤k22 . (�2(R) +G2(R))
s(ln(n) + t)

�2N
. (1.110)

Authors illustrate result (1.110) in the case of sparse least square regression. For the latter, assum-
ing that regressors are uniformly bounded, i.e.

k�k1  B,

and that noise ⇠ ⇠ N (0,�2), they show that

�2(R) . B4R2 +B2�2, (1.111)

G2(R)  k⌃kFroR2, and � = ⇢min (⌃), for ⌃ = E
⇥
��T

⇤
. Thus, in that setting, (1.110) reads

kbxN � x⇤k22 .
�
(B4 + k⌃kFro)R

2 +B2�2
� s(ln(n) + t)

⇢min (⌃)
2N

. (1.112)
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This result is in contrast with others in the sparse recovery literature has it makes assumption on
⌃ instead of the empirical covariance matrix

⌃N :=
1

N

NX

i=1

�i�
T

i . (1.113)

Yet, compared to results such as (1.72) or (1.71), the obtained rate contains an additional term
proportional to R2 and decreasing sub-linearly with the sample size N . Additionally, the length
of stages in the RADAR is such that mi ⇣ s2, which limits the range of sparsity one can consider
with N  n.
Recently, [64] proposed another multistage procedure for minimizing the L-smooth objective g
(w.r.t. k·k1). The underlying FOM is the SMD algorithm with d.-g.f.

dx(x) =
e

2
ln(n)nq(p) kv � x0k2p , p = 1 + ln(n)�1, q(p) =

(p� 1)(2� p)

p
,

where x is the current proximal center of that stage. Their analysis relies upon a noise decomposition
more suited to smooth functions such as (1.76). Namely, they assume that for all x 2 X , stochastic
gradient rG(x,w) is such that Ew [rG(x,w)] = rg(x) and that for some {,{0, ⌫ such that 1 
{,{0 < 1 and L  ⌫,

Ew

h
krG(x,w)�rg(x)k21

i
 {⌫Vg(x, x⇤) + {0�2⇤, (1.114)

where
�2⇤ := Ew

h
krG(x⇤, w)�rg(x⇤)k21

i
.

They also require their objective to satisfy these additional assumptions.

for all z 2 X , g the satisfies quadratic growth condition w.r.t. Euclidian norm, i.e.

g(z)� g⇤ � 1
2 kz � x⇤k22 . (1.115)

Given a vector z 2 X , one can e�ciently solve the following problem

sparses(z) := Argmin
v2X

{kz � vk2 : kvk0 = s} . (1.116)

Proposition 1.3.13 ([64], Proposition 2.1) Let (x1, ..., xm) the sequence of iterates generated
by the aforementioned SMD algorithm with constant step-size 2{⌫ and initiall starting point x0,
with kx⇤ � x0k1  R. The average of iterates bxm(x0) :=

1
m

P
m

i=1 xi is such that

E [g(bxm)]� g⇤ 
4e2⌫{R2 ln(n)

m
+

{0�2⇤
{⌫ . (1.117)

A direct consequence of (1.117) and (1.115) is that defining ym = sparses(bxm), one has that

E [kbym � x⇤k1] 
4s



✓
4e2⌫{s ln(n)R2

m
+

{0s�2⇤
{⌫

◆
(1.118)

The multistage procedure based on (1.118), called SMD-SR, is a two-phase algorithm. The notion
of phases is related to the number m of iterations per stage. In the first phase, m = m0 is chosen
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so that the first term of the RHS in (1.118) is less than R
2

2 . These stages with constant number
of iterations are repeated until the first term is of the order of the second. When this occurs,
the algorithm enters the second ”asymptotic” phase, where the number of iterations per stage is
multiplied by two after the completion of a stage (i.e. mk ⇣ m0⇥2k at the k-th asymptotic stage.).
This procedure produces an estimate with the following guarantiees:

Theorem 1.3.1 ([64], Theorem 2.1) Let bxN be the output of the last stage one can possibly do
using a total number of iteration N of the previously outlined procedure, and byN its sparsification.
The latter enjoy the following guarantees

E[g(bxN )]� g⇤ 
R2

s
exp

⇢
� cN

ln(n){s⌫

�
+ C

{0�2⇤s ln(n)

N
, (1.119)

E [kbyN � x⇤k1]  C1R exp

⇢
� cN

ln(n){s⌫

�
+ C2

�⇤s
p
{0 ln(n)


p
N

. (1.120)

Authors illustrate their result in the case of (1.76) where ⌧ is the identity, � is such that

k�k1  B, ⌃ ⌫ ⌃I, k⌃k1  �,

with B,⌃ > 0 and � known, and ⇠ such that

E[⇠] = 0 and E[⇠2]  1.

In this special case, their assumptions are satisfied for {0�2⇤ ⇣ B2�2,  = ⌃ and {⌫ ⇣ (B +
p
�)2,

yielding error of estimation (1.119)

E [kbyN � x⇤k1] . R exp

⇢
� cN⌃
s ln(n)(B +

p
�)

�
+

B�s

⌃

r
ln(n)

N
. (1.121)

In contrast to (1.112), (1.121) has a dependency on prior R decreasing exponentially fast, with
additional term proportional to �s

p
ln(n)/N , in the same faschion as (1.72). Same as in [63],

assumptions are made on the distributions of regressors and ⌃ instead of the empirical covariance
matrix.

1.3.4 Contribution on SA applied to sparse recovery

Chapter 6 is based on paper Stochastic Mirror Descent for Large-Scale Sparse Recovery presented
at AIStat 2023. We propose a novel two-phase multistage algorithm to minimize a smooth objective
g with sub-Gaussian stochastic gradients. This multistage procedure is based on the Composite
Stochastic Mirror Descent (CSMD), which uses a composite proximal operator instead of (1.83),
defined as

Proxd
h,x0

(⇣, x) := argmin
z2XR(x0)

�
⇣Tx+ h(z) + Vx0(x, z)

 
, XR(x0) := {z 2 X : kz � x0k  R} .(1.122)

The penalty h(·) is chosen as k k·k1 in the k-th stage, in order to minimize the following sub-
problem

min
x2XRk

(xk)
{Fk(x) := g(x) + k kxk1} , (1.123)
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where xk is the current proximal center and Rk is an upper bound on kxk � x⇤k1 that holds with
large probability.
Our analysis of the ✏-error of the output produced by the CSMD-Sparse Recovery (CSMD-SR) is
based on two main component. First, we propose a novel analysis of the CSMD algorithm using a
noise decomposition such as (1.114), along with large deviations inequalities for super-martingales.
Second, we link a high-probability upper bound on the inaccuracy to the error of estimation when
g satisfies the Reduced Strong Convexity (RSC) assumption:

8x 2 X, kx� x⇤k1  �


⇢s+

(F(x)� F(x⇤))+


�
. (1.124)

In the context of sparse generalized linear regression, the latter holds when the objective g has
quadratic growth as in (1.115), and the covariance matrix ⌃ satisfies the Q�, condition:

8z 2 R
n, 8I ⇢ {1, ..., n}, |I|  s, kzIk1 

r
s

�
kzk⌃ +

1

2
(1�  ) kzk1 . (1.125)

We consider two variants of the CSMD-SR algorithm. Both have the same preliminary phase with
constant stage-length m. The first version uses a stage-length proportional to O(4km) for the k-th
asymptotic stage. The second, called the ”mini-batch” version, has constant stage-length m in the
asymptotic phase. It computes at each step i of the k-th asymptotic stage the mini-batch

Hk(bx
(k)
i

) =
1

Lk

LkX

l=1

G(bx(k)
i

, wk,l), Lk = O(ln(n)4k), (1.126)

where bx(k)
i

is the current output at step i. bx(k)
i+1 is then computed using Hk(bx

(k)
i

) instead of

rG(bx(k)
i

, wk,i) in (1.83).
For both algorithms, we provide a high probability upper bound on the error of estimation in k·k1
of the output produced by the last possible stage when using N samples. Similar to result in [64],
these upper bounds exhibit an exponentially fast convergence to the noise regime, which is of the
order of

O
 
�2⇢�⇤s

r
ln(n)

N

!

for the first version of CSMD-SR, and

O
✓
�2⇢�⇤s

ln(n)p
N

◆

for the mini-batch version. Finally, we support our analysis with experiments.

Chapter 6 provides two extensions to these results. The first one proposes an estimate that
adapts to parameter ⇢s in (1.124), as it does not require knowledge of ⇢s to be computed. It uses
Lepski’s procedure [5] to select one estimate in a finite collection. Each estimate in this collection
is the output of an instance of the CSMD-SR algorithm’s mini-batch version with di↵erent stage-
lengths mi tuned for parameter ⇢isi. We show that this procedure selects with high probability
an estimate such that its error is within a constant multiplicative factor of the best estimate in
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said collection. If the stage-lengths of each of these algorithm is properly chosen, this remains true
when comparing our selected estimate’s error to

kbx(⇢s)� x⇤k1 ,

where bx(⇢s) is the output of a CSMD-SR algorithm that knows the smallest parameter ⇢s such
that the objective g satisfies the RSC(⇢s). In the second part of the chapter, we describe choices
of hyperparameters of the CSMD-SR algorithm adapted to assumption that the objective satisfies
the reduced uniform convexity (RUC) instead of the RSC. The former is a ”uniform convexity”
counterpart of the latter. For some critical radius RRUC and q 2 [1, 2), we assume that it holds
that

8x 2 X , kx� x⇤k1  RRUC =) kx� x⇤k1 
�



⇣
⇢s

q
2q + (F(x)� F(x⇤))+

⌘
. (1.127)

Under this assumption, we obtain an upper bound on the estimation error of the CSMD-SR algo-
rithm for its mini-batch variant with asymptotic term scaling as

O
 
⇢

✓
(�
p
s)p�⇤ ln(n)p

N

◆ 1
(p�1)

!
.
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Chapter 2

Robust Counterparts of Linear

Inverse Problems

Abstract

We consider an uncertain linear inverse problem as follows. Given observation ! = Az + ⇠ where
A 2 R

m⇥n and ⇠ 2 R
m is observation noise, we want to recover a linear transformation of unknown

signal z, known to belong to a convex set Z ⇢ R
n. As opposed to “usual” settings of such

problem, we allow feasible set Z to be uncertain. For instance, the latter can be the direct sum
X + �U , where X and U are known and � is unknown. In a series of problem settings, under
various assumptions on the nature of problem uncertainty, we discuss the properties of two types
of estimates—linear estimates and polyhedral estimates (A particular class of non-linear estimates
introduced in [32, 33]). We show that in the situation where the signal set is an uncertain ellitope
(essentially, a symmetric convex set delimited by quadratic surfaces), nearly minimax optimal (up
to a moderate suboptimality factor) estimates can be constructed by means of e�cient convex
optimization routine.

41
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2.1 Building robust estimates

Given an observation

! = Az + ⇠ 2 R
m (2.1)

where A 2 R
m⇥n and random noise ⇠ ⇠ Pz, our objective is to build an estimate bw(·) of the linear

image w = Bz 2 R
⌫ of unknown signal z 2 Z ⇢ R

n. In what follows, we assume that the collection

m = [A,B,Z, (Pz, z 2 Z)] (2.2)

of the problem data is uncertain and belongs to a known family M = {m(�), � 2 R+}, where � is
an unknown parameter; we refer to m(�) as uncertain observation model.

More precisely, A,B, and Pz = P are given (certain), while z = [x;u] 1 , with x 2 X ⇢ R
nx and

u 2 U(�) ⇢ R
nu , so that z 2 Z(�) = X ⇥U(�) ⇢ R

n. Signal set X is a known symmetric w.r.t. the
origin, convex and compact set, while the “uncertainty set” U(�) belongs to a known family of sets
with same properties as X , parameterised with unknown � � 0. As a consequence, the uncertainty
models we consider are of the form

m(�) = [A,B,X ⇥ U(�), P ]. (2.3)

Building on the foundations laid in [30, 31, 33], we do not make any assumptions on matrices A
and B. As a consequence, our setting accommodates with a wide range of linear transformations
commonly used in nonparametric statistics, e.g., FFT transforms, k-th order derivation, and wavelet
basis expansions. Moreover, the formulations of observation (2.1) and target w = Bz are flexible
enough to adapt to various uncertain statistical situation, such as

A. robust estimation. More precisely, consider the situation where we are given observation

! = Ax+ u+ ⇠

and aim to estimate w = Bx. In our setting, this situation is captured by the special case
where A = [A : I], B = [B, 0]. The component u of our signal is then considered as a
deterministic but unknown nuisance. Taking � = kuk2, with � also unknown, our total signal
z = [x;u] lies in X ⇥ B2(�), with B2(�) being the ball of radius � of the Euclidean norm.

B. signal set uncertainty. We consider the situation where we are given a data-set made of N

signals
�
zi
�
N

i=1
2 R

n assumed to belong to an unknown subset X . We can build, using K

semidefinite matrices (Rk)Kk=1 an approximate set XN from the zi’s as follows:

XN =
\

kK

�
z 2 R

n, zTRkz  %k
 
, %k := max

iN

zTi Rkzi.

When given observation (2.1) associated with unknown signal z, we can use the decomposition

z = zX|{z}
x(z)

+ z � zX| {z }
u(z)

, zX := argmin
v2X

kv � zk22 .

Thus, in our formulation, the matrices of interest are A, B and z 2 X+B2(�), with � = ku(z)k2
unknown.

1Here and in what follows we adopt “MATLAB notation” for “horizontal” concatenation [a, b] and “vertical”
concatenation [c; d] of matrices of appropriate sizes.



43

Given ✏ 2 (0, 1) and a norm k ·k on R
⌫ , we quantify the quality of recovery of an estimation routine

bw(·) by its ✏-risk2

Risk✏[ bw|m(�)] := sup
z2Z(�), Z(�)2m(�)

inf {⇢ : Prob⇠{kBz � bw(!)k > ⇢}  ✏} . (2.4)

We consider the problem described above for M(�) = {m(�), � 2 �}, with � an interval, and
assume that when given observation (2.1), signal z 2 m(�) with � unknown to us. We are thus
interested in estimates that are adaptive to �, i.e., that do not require knowledge of its value to be
computed, and are nearly optimal w.r.t. minimax risk, defined as

RiskOpt✏[m(�)] := inf
bw

Risk✏[ bw|m(�)]. (2.5)

Adaptive estimates have been widely studied in the literature, for instance in [5, 7, 10, 11, 65–68].
In our case, we consider the following approach. We approximate M(�) by

M(I) = {m(�i), i 2 {0, 1 · · · , I}} ,
with �i 2 � for all i 2 [0, I]. Given the collection of estimates

W(I) =
n
bw(i), i 2 {0, 1 · · · , I}

o
,

we propose data-driven procedures that selects an estimate in W(I) with ✏-risk close to the smallest
possible one in that collection. We then proceed to describe computational procedures to design bx(i)
such that Risk✏[bx(i)|m(�i)] is close to the lowest possible ✏-risk for the considered type of estimate.

More precisely, we will consider two type of estimates, the

linear estimates, that we define as

bwH

lin(!) := HT!, H 2 R
m⇥⌫ . (2.6)

In part, due to their simplicity, they constitute a popular tool for solving estimation problems
as described above. They have received much attention in the statistical literature (cf. [4,
23, 24, 28, 69–71] among many others). When designing a linear estimate, the emphasis is on
how to specify the matrix H in order to obtain the lowest possible maximal over m estimation
risk, which is then compared to the minimax risk. “Near optimality” results for the case of
indirect observations (where A and B are arbitrary) are the subject of recent papers [30, 31],
where it was shown that in the ellitopic case, where the (known) set of signals Z and the
unit ball B⇤ of the norm conjugate to k · k are ellitopes3, a properly designed, via solving an
explicit convex optimization problem, linear estimate is nearly optimal.

Polyhedral estimates. The idea of a polyhedral estimate goes back to [72] where it was shown
(see also [36, Chapter 2]) that such estimate is near-optimal when recovering smooth multi-
variate regression function known to belong to a given Sobolev ball from noisy observations
taken along a regular grid. It has been recently reintroduced in [73] and [74] and extended to
the setting to follow in [33]. In this setting, a polyhedral estimate ! 7! bwH

poly(!) is specified

by a contrast matrix H 2 R
m⇥M according to

! 7! bxH(!) 2 Argmin
x2X

kHT (! �Ax)k1 7! bwH

poly(!) := Bbx(!).

In the ellitopic case, authors show how to compute e�ciently a contrast such that the resulting
estimate is nearly-minimax w.r.t. the ✏-risk.

2Because the norm k · k is usually clear from the context, we omit the corresponding index of the risk.
3See [30] and [32, Section 4.2.1] below; as of now, an instructive example of ellitope is an intersection of finite

family of ellipsoids/elliptic cylinders with common center.
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2.2 Estimate aggregation routines

Throughout this section, � = [0, �], with � known to us, and " 2 (0, 1). Given a parameter �,
model m(�) 2 M(�) is of the form

m(�) = [A,B,Z(�), (Pz, z 2 Z(�))],

with Z(�) computationally tractable4, and such that the family (Z(�))0� is monotone, i.e., for
�0  �00, one has Z(�0) ⇢ Z(�00). We are also given a grid, i.e. a collection of reals (�i)Ii=0, such that

0 = �0 < �1 < ... < �I = �̄ (2.7)

and we assume that given observation ! as in (2.1) stemming from the model m(�i), we can build a
“presumably good” estimate of w = Bz. Our first objective is to describe two generic data-driven
adaptive estimation procedures which allow to “aggregate” such estimates when the “true” value
of � 2 � is unknown, resulting in an estimate suited for m(�).

2.2.1 Aggregating linear estimates

We first propose an adaptive routine for aggregating linear estimates bwH

lin of the form

bwH

lin(!) = HT!,

where H 2 R
m⇥⌫ is the contrast matrix. We are given collection of contrast matrices

HI = {Hi, i = {0, 1, · · · , I}}

and associated collection of estimates

WI =
n
bwi = bwHi

lin (!), i = {0, 1, ..., I}
o
,

the latter being “tuned” to recover w = Bz when m = m(�i). Our objective, under the assumption
that m 2 M(�), is to use observation ! to select the best estimate — the one with the smallest
maximal over m risk — among all bwi’s . To this end, we assume that given ✏ 2 (0, 1), i 2 {0, ..., I},
and j 2 {i+ 1, ..., I}, we can compute the quantiles upper bound d(i)

ij
(✏) such that if z 2 Z(�i)

Prob⇠{k(Hi �Hj)
T (Az + ⇠)k � d(i)

ij
(✏)}  ✏.

Let us consider the following construction.

1. For 0  i < j  I and ✏ = "/(I + 1) compute the d(i)
ij
(✏)’s.

2. We say that i 2 {0, ..., I � 1} is admissible if

8j 2 {i+ 1, ..., I}, k bwi � bwjk  d(i)
ij
(✏).

We define the aggregated estimate bw(a)
lin (!) = bwbi(!) where

bi is the smallest admissible i’s, or

we put bw(a)
lin (!) = bwI(!) when the set of such i is empty.

4By computationally tractable, we mean that a constraint of the type x 2 Z(�) follows the criteria of Disciplined
Convex Programming [16].
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Let us denote ⇢i(✏) bounds for the ✏-risk of estimates bwi over m(�i), i.e.,

Risk✏[ bwi|m(�i)]  ⇢i(✏), i = 0, ..., I. (2.8)

Proposition 2.2.1 Suppose that “true model” m 2 M(�) and let � 2 � such that Z = Z(�), and

ī be the smallest i 2 {0, ..., I} such that �  �ī. Estimate bw(a)
lin satisfies

Risk"[ bw(a)
lin |M(�)]  ⇢ī(✏) + max

i<ī

d(i)
i,̄i
(✏).

For proof, see 2.5.1.

Remark. One easily recognizes that estimate bw(a)
lin is nothing but the celebrated Lepski’s adaptive

estimate [5] adjusted for the situation. In the “classical” Lepski adaptation procedure we assume
that the risk bounds ⇢i(✏), i = 0, ..., I, are available and the di↵erence of estimates wi � wj is
compared to the sum ⇢i(✏) + ⇢j(✏). One easily verifies that the quantity k(Hi � Hj)T!k may be
bounded with ⇢i(✏)+ ⇢j(✏) for j > i. On the other hand, in some situations (and this is the case in
the problem setting we discuss in Section 2.3.2), better bounds for the di↵erence of estimates are
readily available.

2.2.2 Aggregating polyhedral estimates

Polyhedral estimate, preliminaries Given an observation model m = [A,B,Z, (Pz, z 2 Z)],
✏ 2 (0, 1), and observation ! = Az + ⇠, a polyhedral estimate bwH

poly(!) [32, 33] of w = Bz is

bwH

poly(!) = Bbz(!), bz(!) 2 Argmin
z2Z

kHT [! �Az]k1. (2.9)

We restrict its study to ✏-admissible contrast matrix H = [h1, ..., hm] 2 R
m⇥m that is, matrices

such that for all z 2 Z,

Prob⇠{kHT ⇠k1 � 1}  ✏. (2.10)

For such matrices, the polyhedral estimate’s error allows for a straightforward upper bound.

Proposition 2.2.2 [33, Proposition 5.1] Given ✏ > 0 and a ✏-admissible contrast matrix H 2
R

m⇥m, let

p✏[H] = max
z

�
kBzk : z 2 Z, kHTAzk1  1

 
. (2.11)

Then for every z 2 Z the Pz-probability of the event

k bw(Az + ⇠)�Bzk > 2p✏[H]

does not exceed ✏. Equivalently, the ✏-risk of the polyhedral estimate bwH

poly(·) does not exceed 2p✏[H].

We now return to the setting of the aggregation problem. The structure of the polyhedral estimate
allows for a particularly simple implementation of the aggregated estimate in this case. Given
" 2 (0, 1), let Hi, i = 0, ..., I be ✏-admissible contrast matrices for ✏ = "/(I + 1), and let

H = [H0, ..., HI ]; (2.12)
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note that H is "-admissible. Consider the estimate bw(a)
poly as follows:

bw(a)
poly(!) = Bbz, [b�, bz] 2 Argmin

{,v

n
{ : kHT

(! �Av)k1  1, v 2 Z({)
o
. (2.13)

We have the following straightforward result on its risk.

Proposition 2.2.3 Let z be the “true”’ signal vector, z 2 Z(�). Let also

p{[H] = max
z

�
kBzk : z 2 Z({), kHTAzk1  1

 
. (2.14)

Then the "-risk of the estimate bw(a)
poly satisfies

Risk"[ bw(a)
poly|M(�)]  2min

i

p�(Hi)  2p�ī(Hī) (2.15)

where ī is the smallest i 2 {0, ..., I} such that �  �i.

For proof, see 2.5.1.

Remark 2.2.1 Note that we do not aggregate estimates but contrasts here. The minimization
procedure select the minimal set constraint z 2 Z({). In that case, we are sure that their is at least
one feasible z 2 Z(�) such that

8i,
��HT

i Az
��
1  1.

Provided that among the Hi’s, one is tuned for the constraint z 2 Z(�bi), with
bi the smallest i such

that b�  �i, the resulting estimate enjoys the essentially the same risk upper bound as the Polyhedral
Estimate associated with Hbi. Finally, observe that in (2.15), in contrast with (2.8), we can replace
p�i

(H
i
) by

min
i

p�(Hi).

This hints at potentially better performances of the adaptive polyhedral estimate in practice compared
to the polyhedral one that knows �. In section 3.5 of chapter 3, we present numerical experiments
demonstrating that this seems to be the case when signal sets X and U(�) are ellitopes.

2.3 Adaptive estimation on ellitopes

2.3.1 Robust estimation: signal set uncertainty

Before implementing in the present setting constructions of robust estimates bw(a) described in
Section 2.2, we provide the followingh refresher on Ellitopes.

Preliminaries: ellitopes

We provide here a refresher on a specific class of computationally tractable convex sets, called
ellitopes, around wich computations of this section revolve.
Recall that, by definition [30, 32], a basic ellitope in R

n is a set of the form

X = {x 2 R
n : 9t 2 T : zTTkz  tk, k  K}, (2.16)
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where Tk 2 S
n
+, Tk ⌫ 0,

P
k
Tk � 0, and T ⇢ R

K
+ is a convex compact set with a nonempty interior

which is monotone: whenever 0  t0  t 2 T one has t0 2 T . We refer to K as ellitopic dimension
of X .

Clearly, every basic ellitope is a convex compact set with nonempty interior which is symmetric
w.r.t. the origin. For instance,
A. Bounded intersection X of K centered at the origin ellipsoids/elliptic cylinders {x 2 R

n :
xTTkx  1} [Tk ⌫ 0] is a basic ellitope:

X = {x 2 R
n : 9t 2 T := [0, 1]K : xTTkx  tk, k  K}

In particular, the unit box {x 2 R
n : kxk1  1} is a basic ellitope.

B. A k · kp-ball in R
n with p 2 [2,1] is a basic ellitope:

{x 2 R
n : kxkp  1} =

�
x : 9t 2 T = {t 2 R

n

+, ktkp/2  1} : x2
k|{z}

xTTkx

 tk, k  K
 
.

In the present context, our interest for ellitopes is motivated by their special relationship with the
optimization problem

Opt⇤(C) = max
x2X

xTCx, C 2 S
n (2.17)

of maximizing a homogeneous quadratic form over X . As it is shown in [32], when X is an ellitope,
(2.17) admits “reasonably tight” e�ciently computable upper bound. Specifically,

Theorem 2.3.1 [32, Proposition 4.6] Given ellitope (2.16) and matrix C, consider the quadratic
maximization problem (2.17) along with its relaxation5

Opt(C) = min
�

n
�T (�) : � � 0,

X
k
�kTk � C ⌫ 0

o
(2.18)

The problem is computationally tractable and solvable, and Opt(C) is an e�ciently computable
upper bound on Opt⇤(C). This upper bound is tight:

Opt⇤(C)  Opt(C)  3 ln(
p
3K)Opt⇤(C).

To the best of our knowledge, the first result of this type was established in [75] for X being an
intersection of concentric elliptic cylinders/ellipsoids; in this case, (2.17) becomes a special case
of quadratically constrained quadratic optimization problem, and (2.18) is the standard Shor’s
semidefinite relaxation (see, e.g., [13, Section 4.3]) of this problem. In [75] it is shown that the
ratio Opt(C)/Opt⇤(C) indeed can be as large as O(ln(K)), even when all Tk = akaTk are of rank 1
and X is the polytope {x : |aT

k
x|  1, k  nx}.

Problem setting

Recall that we consider the problem of recovery of signal z = [x;u] from the noisy observation (cf.
(2.1))

! = A [x;u]| {z }
=z

+⇠ 2 R
m, A = [Ax, Au] 2 R

m⇥n.

5Here and below, we use notation �S(·) for the support function of a convex set S ⇢ Rn: for y 2 Rn,

�S(y) = sup
u2S

y
T
s.
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From now on we assume that the noise ⇠ is sub-Gaussian, ⇠ ⇠ SG(0,�2I), i.e., for all t 2 R
m,

E
�
exp

�
tT ⇠
� 

 exp
⇣
�
2

2 ktk22
⌘
.

Given �̄ > 0 and unknown parameter � 2 � = [0, �], our aim is to estimate the linear image
w = Bz, B = [Bx, Bu] 2 R

⌫⇥n, of unknown signal z = [x;u] 2 Z(�) = X ⇥ U(�) where X ⇢ R
nx is

a known ellitope

X =
�
x 2 R

nx : t 2 T : xTTkx  tk, k  nx

 
, (2.19)

while U(�) ⇢ R
nu belongs to a known family U(·) of ellitopes

U(�) =
�
u 2 R

nu : t 2 V(�) : uTVku  tk, k  nu

 
. (2.20)

Here, (V(�)), � 2 [0, �̄], is a family of convex compact sets satisfying the standard requirements in
the ellitope’s definition and such that V(�) ⇢ V(�0) for 0  � < �0  �̄.

We assume that the norm k · k is co-ellitopic; the latter means that the unit ball B of k · k is the
polar of the given ellitope B⇤ (the unit ball of the norm k · k⇤ conjugate to k · k),

B⇤ = PY, Y =
�
y 2 R

N , t 2 M : yTMky  sk, k  nb

 
(2.21)

where P is surjective (i.e., is of rank ⌫).
Additionally, we will use the following notations associated with ellitopic descriptions (2.19),(2.20)
and (2.21):

8� 2 R
nx
+ , T (�) :=

nxX

k=1

�kTk, (2.22)

8µ 2 R
nu
+ , V (µ) :=

nuX

k=1

µkVk, (2.23)

8 2 R
nb
+ , M() :=

nbX

k=1

kMk. (2.24)

For the present setting, we implement constructions of robust estimates bw(a) described in Section
2.2.

2.3.2 Adaptive linear estimation

Linear estimates tuned for the ✏-risk for m(�)

Let H 2 R
m⇥⌫ and � 2 � be fixed. For all z 2 Z(�) the error of a linear estimate bwH(!) = HT!

satisfies the equality

k bwH(!)� wk = kHT (Az + ⇠)�Bzk = k[HTA�B]z +HT ⇠k.

Recall that Z(�) = X ⇥ U(�) is a basic ellitope (as a direct product of basic ellitopes), its ellitopic
description is given by

Z(�) =
n z = [x;u] 2 R

n : 9r = [t; v] 2 T ⇥ V(�) : xTTjx  tk, 1  k  nx,
uTVku  vl, 1  l  nu

o
(2.25)
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with

�T ⇥V(�)([�;µ]) = �T (�) + �V(�)(µ), � � 0, µ � 0.

Applying the result of Proposition 2.6.1 of Appendix 2.6 to matrices V = HTA� B and W = H,
we obtain an upper bound for the ✏-risk of the linear estimate bwH

lin. Let

r�,✏(H) := min
�,µ,�,,↵,⇥

⇢
�T (�) + �V(�)(µ) + �M(�) + �M() +  ✏(↵,⇥) : � � 0,� � 0, � 0,

(2.26)
2

664

T (�)

V (µ)
1
2 [H

TA�B]TP

1
2P

T [HTA�B] M(�)

3

775 ⌫ 0,

"
⇥ 1

2HP
1
2P

THT M()

#
⌫ 0, ↵ � 2�max(⇥)

9
>>=

>>;

where

 ✏(↵,⇥) := �↵

2 lnDet(I � 2↵�1⇥) + ↵ ln[✏�1]. (2.27)

Proposition 2.3.1 Assuming that � > 0 is known, let bwH

lin(!) = HT! with some H 2 R
m⇥⌫ .

Then

Risk✏[ bwH

lin|Z(�)]  r�,✏[H]. (2.28)

Furthermore, the upper bound r�,✏[H] is a convex, continuous and coercive function of the contrast
matrix, and can be e�ciently minimized w.r.t. H. Let now H⇤[= H⇤(�, ✏)] be the corresponding
minimizer. Then, the near-optimal linear estimate bwH⇤

lin is such that

Risk✏[ bwH⇤
lin |Z(�)]  r�,✏

⇥
H⇤(�, ✏)

⇤
=: %⇤(�, ✏).

Moreover, this estimate is nearly-minimax in the sense that

%⇤(�, ✏)  36
p
2 ln(32(nx + nu)) ln(32nb) ln(1/✏) RiskOpt✏[Z(�)]. (2.29)

For proof, see 2.5.2.

Quantile upper bound on the di↵erence of two linear estimates

Next, let bw1 = HT

1 ! and bw2 = HT

2 ! where H1 and H2 are m⇥ ⌫-matrices. Because

k bw1 � bw2k = kHT

1 (Az + ⇠)�HT

2 (Az + ⇠)k = k(H1 �H2)
TAz + (H1 �H2)

T ⇠k,

when applying Proposition 2.6.1 to V = (H1 �H2)TA and W = H1 �H2 we get

Prob⇠ {k bw1 � bw2k � @�,✏(H1 �H2)}  ✏
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where

@�,✏(G) := min
�,µ,�,,↵,⇥

⇢
�T (�) + �V(�)(µ) + �M(�) + �M() +  ✏(↵,⇥)) : � � 0,� � 0, � 0,

(2.30)
2

664

T (�)

V (µ)
1
2GP

1
2P

TGT M(�)

3

775 ⌫ 0,

"
⇥ 1

2GP
1
2P

TGT M()

#
⌫ 0, ↵ � 2�max(⇥)

9
>>=

>>;

We are now equipped to implement the aggregated linear estimate following the program described
in Section 2.2.1. Let us consider the following construction.

1. [Initialization] Given �̄ > 0, " 2 (0, 1), and # > 0, we compute upper risk bounds %⇤(0, ✏) =: ⇢
and %⇤(�̄, ✏) =: ⇢, I, and ✏ such that

✏ =
"

I + 1
, I =

&
ln
⇥
⇢/⇢
⇤

ln[1 + #]

'

(here dae stands for the smallest integer � a); we compute values %⇤(�i, ✏) =: ⇢i, i = 1, ..., I�1
such that ⇢0 = ⇢, ..., ⇢I = ⇢ and

⇢i/⇢i�1  1 + #, i = 1, ..., I. (2.31)

We also compute corresponding contrast matrices Hi = H⇤(�i, ✏), estimates wi = HT

i
! of

w = Bz and values
d(i)
ij
(✏) = @�i,✏(Hi �Hj), 0  i < j  I.

By the above, all corresponding quantities can be e�ciently computed.

2. We run the aggregation routine from Section 2.2.1 and select the estimate bw(a)
lin .

Proposition 2.3.2 Suppose that z 2 Z(�), and let ī be the smallest i such that �  �i. The

estimate bw(a)
lin satisfies

Risk"[ bw(a)
lin |Z(�)]  (3 + 2#) %⇤(�, ✏) (2.32)

With a grid of size I + 1 such as previously constructed, the following holds

Risk"[ bw(a)
lin |Z(�)]  (3 + 2#)

p
ln(e(1 + I))%⇤(�, "). (2.33)

For proof, see 2.5.2.

2.3.3 Design of the adaptive polyhedral estimate

Let H 2 R
m⇥m, H = [h1, ..., hm]; our current objective is to construct an e�ciently computable

bound for the quantity 2p✏[H] as defined in (2.11) which bounds the risk of the polyhedral estimate
bwH

poly by Proposition 2.2.2. Note that

kBzk = max
v2B⇤

vTBz = max
y2Y

yTP TBz,
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and to bound the maximal risk of bwH

poly it su�ces to approximate the maximum of the quadratic
form

f([z; y]) = [z; y]T
 1

2B
TP

1
2P

TB

�
[z; y]

over the set F(�) ⇥ Y where F(�) = {z 2 Z(�) : kHTAzk1  1}. The crucial observation here is
that F(�) is a basic ellitope; to see this, it su�ces to note that it is an intersection of the ellitope
Z(�) and the elliptic cylinder

{z : 9p 2 P : (hT
k
Az)2  pk, k = 1, ...,m}, P := [0, 1]m.

When taking into account the ellitopic description (2.25) of Z(�), F(�) becomes

F(�) =
n
z = [x;u] 2 R

n : 9r = [t, v, p] 2 T ⇥ V(�)⇥ P : xTTjx  tj , j = 1, ..., nx,

uTVku  vk, k = 1, ..., nu, (h
T

i Az)
2  pi, i = 1, ...,m

o
.

When applying the result of Proposition 2.3.1 to the bounding of f([z; y]) on the basic ellitope
F(�)⇥ Y we arrive at

p✏[H]  min
�,µ,�,

(
�T (�) + �V(�)(µ) +

X

i

�i + �M() : � � 0, µ � 0,� � 0, � 0,

2

664

"
T (�)

V (µ)

#
+
P

i
�iAThjhTj A

1
2B

TM

1
2P

TB M()

3

775 ⌫ 0

9
>>=

>>;
.

Now, to build the “presumably good” contrast matrix H we need to minimize the just built upper
bound over ✏-admissible H. In the case of sub-Gaussian ⇠ ⇠ SG(0, I), the admissibility rela-
tionship (2.10) clearly holds for H = [h1, ..., hm] satisfying khjk2  {�1, j = 1, ...,m, where
{ =

p
2 ln[2m/✏]. On the other hand, let ⇥ 2 S

m
+ and let ⇥ = �Diag(�j)�T be the eigenvalue

decomposition of ⇥. When setting H = �/{ we ensure the ✏-admissibility of H, with

AT⇥A = ATHDiag(�j)H
TA =

X

j

{2�j| {z }
�j

Ahjh
T

j A.

We conclude that if for ⇥ ⌫ 0,

p�,✏[⇥] := min
�,µ,

�
�T (�) + �V(�)(µ) + �M() + {2Tr(⇥) : � � 0, µ � 0, � 0,

2

664

"
T (�)

V (µ)

#
+AT⇥A 1

2B
TM

1
2P

TB K()

3

775 ⌫ 0

9
>>=

>>;
. (2.34)

and H = {�1� where ⇥ = �Diag(�j)�T is the eigenvalue decomposition of ⇥, one has

p✏[H]  p�,✏[⇥].

Note that as a result of partial minimization of a jointly convex problem (2.34) p�,✏[·] is a well
structured convex function of ⇥ ⌫ 0 and can be e�ciently minimized in ⇥.
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Proposition 2.3.3 In the situation of this section, consider the optimization problem

p⇤(�, ✏) = min
⇥

{p�,✏[⇥] : ⇥ ⌫ 0}. (2.35)

The problem is solvable; let ⇥⇤ be an optimal solution, and let H⇤(�, ✏) = {� where ⇥⇤ = �Diag(�j)�T

is the eigenvalue decomposition of ⇥⇤. Then

p✏[H⇤(�, ✏)]  p⇤(�, ✏).

Proof. Problem (2.35) is a convex optimization problem with positive homogeneous of degree 1
objective, and as such is solvable. The bound p✏[H⇤]  p⇤(�, ✏) is a straightforward consequence of
the derivation of this section. ⇤

We can now implement the aggregated polyhedral estimate.

1. [Initialization] Given �̄ > 0, " 2 (0, 1), and # > 0, we compute upper risk bounds p⇤(0, ✏) =: ⇢
and p⇤(�̄, ✏) =: ⇢, I, and ✏ such that

✏ =
"

I + 1
, I =

&
ln
⇥
⇢/⇢
⇤

ln[1 + #]

'
;

we compute values p⇤(�i, ✏) =: ⇢i, i = 1, ..., I � 1 such that ⇢0 = ⇢, ..., ⇢I+1 = ⇢ and

⇢i/⇢i�1  1 + #, i = 1, ..., I. (2.36)

We also compute corresponding contrast matrices Hi = H⇤(�i, ✏) and assemble the matrix
H = [H0, ..., HI ].

2. We compute the aggregated estimate bw(a)
poly(!) in (2.13).

Proposition 2.3.4 Suppose that z 2 Z(�), and let ī be the smallest i such that �  �ī. The

estimate bw(a)
poly(!) satisfies

Risk"[ bw(a)
poly|Z(�)]  2p�,"[H]  2

p
1 + # p⇤(�✏)  2

p
(1 + #) ln(e(I + 1)) p⇤(�, "). (2.37)

For "  1
8 , this estimate is nearly-minimax, in the sense that

Risk"[ bw(a)
poly|Z(�)]

RiskOpt"(Z(�))
 48

p
2(1 + #) ln(e(I + 1)) ln(2m/") ln(32(nx + nu)) ln(32nb). (2.38)

For proof, see 2.5.2.

2.4 Adaptive estimate: case of Euclidean norm

Suppose that, similarly to what we have seen in Section 2.2, we are given �̄ > 0, " 2 (0, 1),
a collection of either linear estimates WI = {wi, i = {0, 1, ..., I}} or polyhedral matrix contrast
HI = {Hi, i = {0, 1, ..., I}}, tuned for subsets (Z(�i))

I

i=0, with

0 = �0 < �1 < ... < �I = �̄.

Our objective is to select in WI the estimate bw(a)
lin with the smallest Euclidean risk

Risk
k·k2
✏ [ bw|Z(�)] := sup

z2Z(�)
inf {⇢ : Prob⇠{kBz � bw(!)k2 > ⇢}  ✏} . (2.39)
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2.4.1 Aggregating linear estimates

The proposed aggregation procedure relies upon the following simple observation. Let wi, wj be
points in R

⌫ . Then, wi is the closest to w among wi and wj , if and only if the projection of w on
the line passing through wi, wj is closer to wi than the middle point wij of the segment [wi, wj ].
In other words, if and only if

rij = vTij(w � 1
2 [wi + wj ]| {z }

=:wij

)  0, vij = wj � wi.

In the present situation where wi, wj are linear estimates, wi = HT

i
! and wj = HT

j
!, evaluating

⇡ij = vT
ij
w amounts to estimating the quadratic (in variables z, ⇠) functional

⇡ij = [(Hj �Hi)
T!]TBz = zTAT (Hj �Hi)Bz + ⇠T (Hj �Hi)Bz. (2.40)

This is why we assume for now that given ✏ 2 (0, 1), i, j 2 {0, ..., I}, j 6= i, we can compute the

quantities b⇡(`)
ij

and d
(`)
ij
(✏) such that for ! stemming from m(�`),

Prob⇠{|b⇡(`)ij
� ⇡ij | � d

(`)
ij
(✏)}  ✏. (2.41)

Let us consider the following procedure.

1. For 0  i 6= j  I, `  I, and ✏ = "

I
, I = 1 + 1

2I
2(I � 1), compute the quantities b⇡(`)

ij
and

d
(`)
ij
(✏).

2. For all pairs (i, `), 0  i, `  I, and all j 6= i, we compute

br(`)
ij

= b⇡(`)
ij

� vTijw̄ij � d
(`)
ij
(✏),

and we say that index i is `-admissible if br(k)
ij

 0 for all j 6= i and k � `. We define the score
of i as the smallest ` such that i is `-admissible.

3. We define the aggregated estimate ew(a)
lin (!) = wei(!) where

ei has the lowest score, or we put,

say, bw(a)
lin (!) = w1(!) when the set of admissible i is empty.

Proposition 2.4.1 Assuming that observation ! stems from z, let `⇤ be the smallest ` 2 {1, ..., I}
such that Z(�) 2 Z(�`). Denote d`⇤ = max0i,jI,

i 6=j

d
(`⇤)
ij

. One has

kwei(!)� wk22  min
i

kwi � wk22 + 4d`⇤ .

with probability at least 1� ". In particular, one has

Risk
k·k2
" [ ew(a)

lin |Z(�)]  Risk
k·k2
✏ [w`⇤ |Z(�`⇤)] + 4d`⇤ . (2.42)

For proof, see 2.5.3.
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Remark. The construction of this section may be modified for the case where the family of
models M(�) is not monotone in � (cf., e.g., [76] and [77, Section 3.3]). On the other hand, in
general, we cannot guarantee that the additive term d`⇤ in the risk bound of Proposition 2.4.1 is
small if compared to the maximal estimation risk and bound (2.42) improves over the corresponding
bound of Proposition 2.2.1 for the aggregation procedure of Section 2.2.1. The good news is that
in the situation where the family of models is monotone and we can apply both approaches, we can
have “the best of both worlds” by choosing the aggregated estimate from the intersection of sets
of estimates which are admissible for both routines.

2.4.2 Construction of the Linear Estimate

In the setting of Section 2.3.2, construction of the robust estimate may be refined in the case of
estimation error measured with Euclidean norm. Let H 2 R

⌫⇥m, and let � 2 [0, �̄] be fixed. We
now apply the bound of Proposition 2.6.2 of the appendix to bound the squared error

k bwH(!)�Bzk22 = k[HTA�B]z +HT ⇠k22

of the linear estimate bwH

lin(!) = HT!. When applied with V = HTA � B and W = H, with the
basic ellitope Z replaced with Z(�) as in (2.25), Proposition 2.6.2 results in the following upper
bound for the ✏-risk of the linear estimate bwH

lin.

r
(2)
�,✏

[H] = min
�,µ,↵,⇥

n
�T (�) + �V(�)(µ)� ↵

2 lnDet(I � 2↵�1⇥) + ↵ ln[✏�1] : � � 0, µ � 0, (2.43)

↵ � 2�max(⇥),


⇥ H
HT I

�
⌫ 0,

2

4
T (�)

V (µ)
ATH �BT

HTA�B I � 2↵�1⇥

3

5 ⌫ 0

9
=

; .

and

r
(2)
�,✏

[H] = min
�,µ,↵,⇥,⇤,⌥

n
�T (�) + �V(�)(µ) + Tr[⇥+ ⇤] + ↵ ln[✏�1] : � � 0, µ � 0,↵ � 2�max(⇥)


⇥ H
HT I

�
⌫ 0,


⇤ ⇥
⇥ ↵I � 2⇥

�
⌫ 0,

2

4
T (�)

V (µ)
ATH �BT

HTA�B I � 2↵�1⇥

3

5 ⌫ 0

9
=

; .

Proposition 2.4.2 Assuming that � > 0 is known, let bwH

lin(!) = HT! with some H 2 R
m⇥⌫ .

Then

Risk
k·k2
✏ [ bwH

lin|Z(�)]  r
(2)
�,✏

[H]  r
(2)
�,✏

[H]. (2.44)

Furthermore, r(2)
�,✏

[H] and r
(2)
�,✏

[H] are convex, continuous and coercive functions of H, and can be

e�ciently minimized. Let now H⇤[= H⇤(�, ✏)] and H⇤[= H⇤(�, ✏)] be corresponding minimizers.
Then

Risk
k·k2
✏

⇥
bwH⇤
lin |Z(�)

⇤
 r

(2)
�,✏

⇥
H⇤(�, ✏)

⇤
[=: %(2)⇤ (�, ✏)].

and

Risk
k·k2
✏

⇥
bwH⇤
lin |Z(�)

⇤
 r

(2)
�,✏

⇥
H⇤(�, ✏)

⇤
[=: %̄(2)⇤ (�, ✏)].
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2.4.3 Estimating quadratic functionals over ellitopes

To streamline the presentation, we assume in this section that observation noise ⇠ is standard
Gaussian, i.e., ⇠ ⇠ N (0, I).6

The construction in Section 2.4.1 allows to reduce building an aggregated estimate in the Eu-
clidean case to estimating quadratic functionals (cf. (2.40))

⇡ij = [(Hj �Hi)
T!]TBx = zTAT (Hj �Hi)Bz + ⇠T (Hj �Hi)Bz, 0  i < j  I,

uniformly over z 2 Z(�). Let the pair i, j be fixed; for the estimate

b⇡ij = !TF! � Tr[F ] + {, F 2 S
m, { 2 R,

we have

b⇡ij � ⇡ij = zT
⇥
ATFA� 1

2(A
T (Hj �Hi)B +BT (Hj �Hi)

TA)
⇤

| {z }
=:C(F )

z

+ ⇠T [2FA� (Hj �Hi)B]
| {z }

=:D(F )

z + ⇠TF ⇠ � Tr[F ] + {.

Recall that Z(�) = X ⇥ U(�) is a direct product of basic ellitopes and its ellitopic description is
(cf. (2.25))

Z(�) =
n
z = [x;u] 2 R

n : 9r = [t, t0] 2 T ⇥ V(�) : xTTjx  tj , j  nx, u
TVku  t0

k
, k  nu

o
.

By Lemma 1 of the appendix,

Prob
�
|b⇡ij � ⇡ij | � ⇢�(F, ✏)

 
 ✏ 8z 2 Z(�)

where
⇢�(F, ✏) = 1

2 [�
�

+(F ; ✏) + ���(F ; ✏)], { = 1
2 [�

�

�(F ; ✏)� ��+(F ; ✏)]

and

��+(F ; ✏) = min
↵,�,µ

�
�↵

2 lnDet(I � 2F/↵) + 1
2 [�T (�) + �V(�)(µ)] + ↵ ln(2/✏)� Tr[F ],

↵I ⌫ 2F, � � 0, µ � 0,

2

64


T (�)

V (µ)

�
� 2C(F ) D(F )T

D(F ) ↵I � 2F

3

75 ⌫ 0

9
>=

>;
,

���(F ; ✏)  min
↵,�,µ

�
�↵

2 lnDet(I + 2F/↵) + 1
2 [�T (�) + �V(�)(µ)] + ↵ ln(2/✏)� Tr[F ],

↵I ⌫ �2F, � � 0, µ � 0,

2

64


T (�)

V (µ)

�
+ 2C(F ) D(F )T

D(F ) ↵I + 2F

3

75 ⌫ 0

9
>=

>;
.

6The argument to follow relies upon tight bounds on the concentration of indefinite quadratic forms of the
observation noise ⇠. In the sub-Gaussian setting, corresponding inequalities may be obtained if we assume that
covariance matrix ⌃ � 0 of ⇠ is known; the required concentration bound may be obtained in this case using the
decoupling argument (cf., e.g., [78] in the situation in which ⇠i’s are independent, or [79] in the general case). Utilizing
such inequalities results in the bounds for the accuracy of aggregation of the form which is similar to what is obtained
below in the case of Gaussian ⇠, albeit with significantly degraded constants.
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Let us now consider the optimization problem

⇢�⇤(✏) := min
F

⇥
⇢�(F, ✏) = 1

2(�
�

+(F ; ✏) + ���(F ; ✏))
⇤
. (2.45)

Because C(·) and D(·) are a�ne, ⇢(F, ✏) is convex and continuous in F . Furthermore, observe that
functions

⌫+(F,↵; ✏) = �↵

2 lnDet(I � 2F/↵) + ↵ ln(2/✏)� Tr[F ]

⌫�(F,↵; ✏) = �↵

2 lnDet(I + 2F/↵) + ↵ ln(2/✏) + Tr[F ]

are positive homogeneous in F and ↵. We conclude that ⇢�(F, ✏) is coercive in F , implying that
(2.45) is solvable. We arrive at the following conclusion.

Proposition 2.4.3 Assuming that observation ! stems from z, let `⇤ be the smallest ` 2 {1, ..., I}
such that m 2 M(�`). Denote d`⇤ = max0i,jI,

i 6=j

d
(`⇤)
ij

, with d
(`⇤)
ij

:= min
F

⇥
⇢�`⇤ (Hi �Hj , ✏)

⇤
. One has

kwei(!)� wk22  min
i

kwi � wk22 + 4d`⇤ .

with probability at least 1� ". In particular, one has

Risk2"[ ew
(a)
lin |M(�)]  %(2)⇤ (�`⇤ , ✏) + 4d`⇤ . (2.46)

Proof First part of the proof stems directly from construction of estimate e!(a)
lin

, while second part
of it is completely analogous to proofs for corollaries 2.32 and 2.37. ⇤

Remark. As constructed above, b⇡ij is a specific estimate of essentially generic quadratic form
⇡ij = zTCz+ zTD⇠ in the setting of this section, i.e., Gaussian observation (2.1), general matrices
C and D, and z 2 Z where Z ia a basic ellitope.7 We do not know any “truly general” optimality
result supporting upper accuracy bounds of Proposition 2.4.3 when estimating quadratic functionals
from Gaussian observation (2.1). To the best of our knowledge, the most general (and close in spirit
to our approach) are results of [28, 80] on estimating quadratic functions in white noise model in
the setting where the matrix of the functional is diagonal and the set of signals is orthosymmetric
and quadratically convex. In terms of assumptions of this section, those results correspond to the
case of sensing matrix A = I and the ellitope Z of the form

Z = {z 2 R
n : 9q 2 Q : z2

k
 qk, k  n}.

It can be shown that in this situation the risk bound yielded by Proposition 2.4.3 is within a
logarithmic in 1/✏ and n factor (stemming from passing from expected risk to ✏-risk) of the minimax
risk (cf. Theorem 6 of [28]). On the other hand, it is well known that “quadratic estimates” like
those built in this section are suboptimal in the case of general geometry of the signal set even
when estimating signal energy (case of C = I and D = 0) from direct observations (see, e.g., [81,
82]).

7The latter restriction is clearly not restrictive due to the total freedom of the choice of matrices C and D.
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2.5 Proofs

2.5.1 Proofs of Section 2.2

Proof of 2.2.1. Let event ⌅ be such that for all realizations ⇠ 2 ⌅,

kwī(!)�Bzk  ⇢ī(✏) and kwī(!)� wj(!)k = k(Hī �Hj)
T!k  dī,j(✏), 8j 2 {̄i+ 1, ..., I}.

By construction, we have Prob⇠{⌅} � 1 � (I + 1)✏ = 1 � ". Let now ⇠ 2 ⌅ be fixed. Because

z 2 Z(�) ⇢ Z(�ī), ī is admissible, implying that bi  ī. On the other hand,

kwbi �Bzk  kwī �Bzk+ kwbi � wīk  ⇢ī(✏) + dbi,̄i(✏)  ⇢ī(✏) + max
i<ī

di,̄i(✏). ⇤

Proof of 2.2.3. Because H is "-admissible, there is a set ⌅ such that Prob⇠{⌅} � 1 � " and

kHT
⇠k1  1 for all ⇠ 2 ⌅. Let now ⇠ 2 ⌅, so that kHT

(! � Az⇤)k1 = kHT
⇠k1  1, implying

that z is feasible for (2.13). We conclude that b�  � and bz 2 Z(b�) ⇢ Z(�). Thus, bz � z 2 2Z(�),
and, by construction,

kHT
A(bz � z)k1  kHT

(Abz � !)k1 + kH⇠k1  2,

which in turn implies that risk of estimate bwa

poly is bounded by

2p�(H) = 2max
z

n
kBzk : z 2 Z(�),

���HT
Az
���
1

 1
o

= 2max
z

�
kBzk : z 2 Z(�), 8i 2 {0, 1, · · · , I},

��HT

i
Az
��
1  1

 

 2min
i

max
z

�
kBzk : z 2 Z(�),

��HT

i
Az
��
1  1

 

= 2p�(Hi)  2p�(Hi
). ⇤

2.5.2 Proofs of section 2.3

Proof of 2.3.1. The proposed construction of the linear estimates directly implies (2.28). What
is left to prove is near-optimality result (2.29). The latter is a direct consequence of [32, Proposition
4.5]. In their proof, authors show that for observations

! = Ax+ ⇠, x 2 X , ⇠ ⇠ N (0, Q), Q 2 S
m

+ ,

and both X and Bk·k⇤ being ellitopes of respective dimensions K and L,

RiskOpt
k·k
1
8

[X ] � Opt

24
p
ln(32K) ln(32L)

,

where

Opt = min
H,⇥,,�,�

8
>><

>>:

�T (�) + �M() + �M(�) +Tr(⇥Q) :


R(�) 1

2 [B
T �ATH]M

1
2P

T [B �HTA] M()

�
⌫ 0,


⇥ 1

2HP
1
2(HP )T M(�)

�
⌫ 0, �, �,  � 0

9
>>=

>>;
.

As the deviations upper bound  "(⇥), e "(⇥),  "(⇥) proposed in 2.6.1 are all smaller than (1 +p
2 ln(1/✏))Tr(⇥) , we have when considering Q = �2I and X = Z(�) that

Opt � %⇤(�, ✏)

1 +
p

2 ln(1/✏)
� 2%⇤(�, ✏)

3
p
2 ln(1/✏)

,
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with last inequality stemming from
p
2 ln(1/✏) � 2 when ✏  1

8 . Since we assume ✏ � 1
8 ,

RiskOpt
k·k
✏ [Z(�)] � RiskOpt

k·k
1
8

[Z(�)],

which in turn implies the desired result. ⇤

Proof of 2.3.2. Recall that both terms ↵(·) and �(·) of the bound (2.61) of Proposition 2.6.1 are
subadditive; we first treat the case of �1  �, such that for notation of the proposition, for i < ī
(recall that Z(�i) ⇢ Z(�) ⇢ Z(�ī) in this case)

dīi(✏) = ↵
�
(Hi �Hī)

TA,Z(�i)
�
+ �

�
Hi �Hī, ✏

�

 ↵
�
(HT

i A�B),Z(�i)
�
+ ↵

�
(HT

ī
A�B),Z(�i)

�
+ �

�
Hi, ✏

�
+ �

�
Hī, ✏

�

= ⇢i + ⇢ī  (2 + #)%⇤(�, ✏)

due to ⇢ī = %⇤(�ī, ✏)  (1 + #)%⇤(�, ✏) and ⇢i  %⇤(�, ✏) ;this implies (2.32). When grid-size I + 1 is
as prescribed in 2.3.2, 2.70 implies that

%⇤(�, ✏)

%⇤(�, ")

p
ln(e"/✏) =

p
ln(e(1 + I)).

⇤

Proof of 2.3.4. We first prove the last inequality in (2.37), the latter being a consequence of
2.70 for the function p. Upper bound (2.38) is a direct consequence of 2.70. ⇤

2.5.3 Proofs of section 2.4

Proof of 2.4.1. Let the set ⌅ be such that for all ⇠ 2 ⌅ one has

�
|b⇡(`⇤)

ij
� ⇡ij | � d

(`)
ij
(✏) 8i 6= j  I, ` � `⇤

 
.

By construction, we have Prob⇠{⌅} � 1� 1
2I

2(I � 1)✏ = 1� " (recall that one has b⇡(`⇤)
ij

= �b⇡(`⇤)
ji

,

so that there are only 1
2I(I � 1) distinct estimates in the above set for each `  I). Now, let ⇠ 2 ⌅

be fixed, and let i⇤ = i⇤(!) be the index of one of the k · k2-closest to w points among w0, ..., wI .
First, observe that i⇤ is `⇤-admissible. Indeed, due to z 2 Z(�`⇤) ⇢ Z(�`) for ` � `⇤, one has

|b⇡(`)
i⇤j

� ⇡i⇤j |  d
(`)
i⇤j

8j 6= i⇤, ` � `⇤,

and because ⇡i⇤j  vT
i⇤jwi⇤j , we conclude that

br(`)
i⇤j

= [b⇡(`)
i⇤j

� ⇡i⇤j ] + [⇡i⇤j � vTi⇤jwi⇤j ]� d
(`)
i⇤j

 0 j 6= i⇤, ` � `⇤.

On the other hand, assuming that i0 is `⇤-admissible, we have br(`⇤)
i0i⇤

 0, so that

⇡i0i⇤  b⇡(`⇤)
i0i⇤

+ d
(`⇤)
i0i⇤

 vT
i0i⇤wi0i⇤ + 2d(`⇤)

i0i⇤
.

Let now �i⇤i0 be the orthogonal projection of w onto the line passing through wi0 and wi⇤ , and let
⌧⇤ = ⌧(wi⇤), ⌧� = ⌧(�i⇤i0), and ⌧ 0 = ⌧(wi0) be coordinates of wi⇤ , ⇡i⇤i0 , and wi0 on this line, the
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origin on the line being the midpoint wi⇤i0 of the segment [wi⇤ , wi0 ], its orientation given by vi0i⇤ .
One has

⌧⇤ =
1
2kwi0 � wi⇤k2, ⌧ 0 = �1

2kwi0 � wi⇤k2, ⌧� =
⇡i0i⇤ � vT

i0i⇤
wi0i⇤

kvi0i⇤k2


2d(`⇤)
i0i⇤

kwi⇤ � wi0k2
,

and so

kw⇤ � wi0k22 � kw⇤ � wi⇤k22 = k�i⇤i0 � wi0k22 � k�i⇤i0 � wi⇤k22

= (⌧� � ⌧ 0)2 � (⌧� � ⌧⇤)
2 = 2(⌧⇤ � ⌧ 0)⌧�  2kwi⇤ � wi0k2

2d(`⇤)
i0i⇤

kwi⇤ � wi0k2
 4d(`⇤)

i0i⇤

what implies the first statement of the proposition. Let now ⌅ = ⌅ [ ⌅`⇤ where

⌅` = {kw`(!)�Bzk  ⇢`(✏)}.

One clearly has Prob⇠{⌅} � 1� ", and for all ⇠ 2 ⌅,

kwi⇤ � wk2  kw`⇤ � wk2  ⇢`⇤(✏),

what implies (2.42). ⇤

2.6 Deviations of norms of sub-Gaussian random vectors

2.6.1 Preliminaries

For the reader’s convenience, we discuss in this section some essentially known bounds for deviations
of quadratic forms of Gaussian and sub-Gaussian random vectors.

1
o
. Let ⇠ be a d-dimensional normal vector, ⇠ ⇠ N (µ,⌃). For all h 2 R

d and G 2 S
d such that

G � ⌃�1 we have the well known relationship:

ln
⇣
E⇠

n
eh

T
⇠+ 1

2 ⇠
T
G⇠

o⌘
= �1

2 lnDet(I � ⌃1/2G⌃1/2)

+ hTµ+ 1
2µ

TGµ+ 1
2 [Gµ+ h]T⌃1/2(I � ⌃1/2G⌃1/2)�1⌃1/2[Gµ� h].

(2.47)

Now, suppose that ⌘ ⇠ SG(0,⌃) where ⌃ 2 S
d
+, let also g 2 R

d and S 2 R
d⇥d such that S⌃ST � I.

Then for ⇠ ⇠ N (g, I) one has

E⌘

n
e[Sg]

T
⌘+ 1

2⌘
T
S
T
S⌘

o
= E⌘

n
E⇠

n
e[S⌘]

T
⇠

oo
= E⇠

n
E⌘

n
e[S⌘]

T
⇠

oo
 E⇠

n
e

1
2 ⇠

T
S
T⌃S⇠

o
,

so that

ln
⇣
E⌘

n
e[Sg]

T
⌘+ 1

2⌘
T
S
T
S⌘

o⌘
 ln

⇣
E⇠

n
e

1
2 ⇠

T
S
T⌃S⇠

o⌘

= �1
2 lnDet(I � S⌃ST ) + 1

2g
TS⌃1/2(I � S⌃ST )�1⌃1/2ST g.

Next, let ⇣ ⇠ SG(µ,⌃), and let h 2 R
d, G 2 S

d
+, G � ⌃�1. When setting ⌘ ⇠ SG(0,⌃), STS = G

and ST g = h+Gµ we get

ln
⇣
E⇣

n
eh

T
⇣+ 1

2 ⇣
T
G⇣

o⌘
= hTµ+ 1

2µ
TGµ+ ln

⇣
E⌘

n
eh

T
⇣+ 1

2 ⇣
T
G⇣

o⌘

= hTµ+ 1
2µ

TGµ� 1
2 lnDet(I � S⌃ST ) + 1

2g
TS⌃1/2(I � S⌃ST )�1⌃1/2ST g

= hTµ+ 1
2µ

TGµ� 1
2 lnDet(I � ⌃1/2G⌃1/2) + 1

2 [Gµ+ h]T⌃1/2(I � ⌃1/2G⌃1/2)�1⌃1/2[Gµ+ h].
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2
o
. In particular, when ⇣ ⇠ SG(0, I), one has

ln
⇣
E⇣

n
eh

T
⇣+ 1

2 ⇣
T
G⇣

o⌘
 �1

2 lnDet(I �G) + 1
2h

T (I �G)�1h =: �(h,G).

Observe that �(h,G) is convex and continuous in h 2 R
d and 0 � G � I on its domain. Using the

inequality (cf. [65, Lemma 1])

8v 2 [0, 1[ � ln(1� v)  v +
v2

2(1� v)
, (2.48)

we arrive at

�(h,G)  1
2Tr[G] + 1

4Tr[G(I �G)�1G] + 1
2h

T (I �G)�1h =: e�(h,G).

Finally, using

Tr[G(I �G)�1G]  (1� �max(G))�1Tr[G2], hT (I �G)�1h  (1� �max(G))�1hTh,

we arrive at

e�(h,G)  1
2Tr[G] + 1

4(1� �max(G))�1(Tr[G2] + 2khk22) =: �(h,G).

3
o
. In the above setting, let Q 2 S

d
+, ↵ > 2�max(Q), G = 2Q/↵, and let h = 0. By the Cramer

argument we conclude that

Prob
�
⇣TQ⇣ � ↵[�(2Q/↵) + ln ✏�1]

 
 ✏ (2.49)

where �(·) = �(0, ·). In particular,

Prob
�
⇣TQ⇣ � ↵[�(2Q/↵) + ln ✏�1]

 
 ✏,

so, when choosing ↵ = 2�max(Q) +
q

Tr(Q2)
ln ✏�1 we arrive at the “standard bound”

Prob
n
⇣TQ⇣ � Tr(Q) + 2kQkFro

p
ln ✏�1 + 2�max(Q) ln ✏�1

o
 ✏.

4
o
. Let now H 2 R

m⇥n and z 2 R
n with h = 2Hz and G = 2HHT . Then for ⇣ ⇠ SG(0, I) and

↵ > 2�max(HTH) one has

↵ ln
⇣
E⇣

n
e

1
↵kz+H

T
⇣k22
o⌘

= zT z + ↵ ln
⇣
E⇣

n
e↵

�1[hT
⇣+ 1

2 ⇣
T
G⇣]
o⌘

 zT z + ↵�

✓
h

↵
,
G

↵

◆

= zT (I � 2↵�1HHT )�1z � ↵

2
lnDet(I � 2↵�1HHT ) =:  (↵; z,H).

(2.50)

Being the perspective transformation of �,  , by construction, is convex and continuous in ↵, z
and G = HHT on its domain. As a consequence, for all ✏ 2 (0, 1) and all ↵ > 2�max(HHT ),

Prob
�
kz +HT ⌘k22 �  (↵; z,H) + ↵ ln[✏�1]

 
 ✏.
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When utilizing (2.48) we arrive at

 (↵; z,H)   (↵; z,H)

:= zT (I � 2↵�1HHT )�1z +Tr[HHT ] + ↵�1Tr[HHT (I � 2↵�1HHT )�1HHT ].(2.51)

Similarly to  (·),  is convex, continuous and positive homogeneous in G = HHT , z and ↵ on its
domain. Same as above, we may bound  (↵; z,H) with

e (↵; z,H) = Tr(HHT ) +
↵kzk22 + kHHT k2Fro
↵� 2�max(HHT )

,

so that
Prob

n
kz +HT ⌘k22 � e (↵; z,H) + ↵ ln ✏�1

o
 ✏.

The choice of

↵ = 2�max(HHT ) +

⇣
kHHT k2Fro + 2kzk22�max(HHT

⌘1/2

ln1/2[✏�1]

in the latter bound leads results in

Prob
n
kz +HT ⌘k22 � e ✏(z,H)

o
 ✏.

where

e ✏(z,H) :=zT z +Tr(HHT )

+ 2
⇣
[kHHT k2Fro + 2kzk22�max(HHT )] ln[✏�1]

⌘1/2
+ 2�max(HHT ) ln[✏�1]. (2.52)

2.6.2 Bounding the maximal probability of norm deviations

In this section, we assume to be given matrices V 2 R
⌫⇥n, W 2 R

m⇥⌫ , a basic ellitope Z, 8

Z = {z 2 R
n : 9q 2 Q : zTQkz  qk, k  nz}, (2.53)

and a co-ellitopic norm k · k with the unit ball B⇤ (2.21) of the conjugate norm k · k⇤. Our objective
is to derive for all z 2 Z a “reasonably tight” high-probability upper bound for the quantity

kV z +W T ⇠k, ⇠ ⇠ SG(0, I).

1
o
. Our first observation is that

kV z +W T ⇠k  kV zk+ kW T ⇠k = max
v2B⇤

vTV z
| {z }

↵(V,z)

+max
w2B⇤

wTW T ⇠
| {z }

�(W,⇠)

. (2.54)

One has

8z 2 Z ↵(V, z)  max
y2Y

sup
z2Z

yTP TV z  1
2 max
[z;y]2Z⇥Y

[z; y]T


V TM
P TV

�
[z; y] (2.55)

8We assume that the data Qk and Q of Z satisfy the standard requirements of the definitions in Section 2.3.1.
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Observe that the set G := Z⇥Y is the direct product of basic ellitopes and is itself a basic ellitope,

G =
n
[z; y] 2 R

n ⇥R
N : 9r = [q, s] 2 Q⇥M : zTQjz  qj , j  nz, y

TM`y  s`, `  ny

o

In other words, the r.-h.s. of (2.55) is the maximum of a quadratic form over the basic ellitope G;
when applying Theorem 2.3.1 we arrive at the following bound for ↵(V, z):

8z 2 Z ↵(V, z)  ↵(V,Z) := min
�,�

⇢
�Q(�) + �M(�) : � � 0,� � 0,

 P
j
�jQj

1
2V

TM
1
2P

TV M(�)

�
⌫ 0

�
. (2.56)

Observe first that problem (2.56) is jointly convex in �,� and V , and its objective is continuous
and positive homogeneous of degree 1.9 We conclude that (2.56) is solvable and its objective is
convex in V .

2
o
. To bound �(W, ⇠) we act as follows (cf. [30, Section 3.2]). Let ⇥ 2 S

⌫
+ satisfy the constraint


⇥ 1

2WM
1
2P

TW T M()

�
⌫ 0. (2.57)

By (2.57),

�(W, ⇠)  max
y2Y

�
⇠T⇥⇠ + yTM()y

 
 ⇠T⇥⇠ + �M().

When using the classical concentration inequality (2.49) for the homogeneous quadratic bound form
⇠T⇥⇠ of the sub-Gaussian vector ⇠ we obtain, for any ✏ 2 (0, 1),

Prob⇠
�
⇠T⇥⇠   ✏(⇥)

 
� 1� ✏ (2.58)

where

 ✏(⇥) = min
↵

n
 ✏(↵,⇥) := �↵

2
logDet(I � 2↵�1⇥) + ↵ ln[✏�1] : 2�max(⇥)  ↵

o
. (2.59)

Thus,

�(W, ⇠)  �(W, ✏) := min
⇥,,↵

n
 ✏(↵,⇥) + �M() :  � 0, 2�max(⇥)  ↵,


⇥ 1

2WM
1
2P

TW T M()

�
⌫ 0

�
(2.60)

with probability 1� ✏. The optimization problem in the r.-h.s. of (2.60) is jointly convex in ⇥,,↵
and W , its objective is continuous and positive homogeneous of degree 1, so (2.60) is solvable.

9One can easily see that when multiplying V , � and � by � > 0 the objective of (2.59) is also multiplied by � due
to the positive homogeneity of �Q.
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Remark. The term  ✏(⇥) in the bound (2.58) and  ✏(↵,⇥)) in (2.60) may be replaced by their
standard upper approximations; for instance, one may use

 ✏(⇥)  e ✏(⇥) := min
↵

�
Tr(⇥) + Tr

�
⇥(↵I � 2⇥)�1⇥

�
+ ↵ ln(✏�1) : 2�max(⇥)  ↵

| {z }
=: e ✏(↵,⇥))

 

  ✏(⇥) := Tr(⇥) + 2k⇥kFro
p
ln ✏�1 + 2�max(⇥) ln ✏

�1.

Although less precise, such approximations lead to simpler optimization problems to be solved to
compute the resulting bound.

When substituting the bounds for ↵(V, z) and �(W, ⇠) into (2.54) we arrive at the following

Proposition 2.6.1 In the setting of this section, let ↵(V,Z) and �(W, ✏) be as in (2.56) and (2.60).
Then

kV z +W T ⇠k  ↵(V,Z) + �(W, ✏) (2.61)

with probability at least 1� ✏. The r.-h.s. of (2.61) is a convex function of variables V and W .
Furthermore, the terms of the bound (2.61) satisfy the triangular inequality: for all V1, V2 2

R
⌫⇥n and W1,W2 2 R

⌫⇥m

↵(V1 + V2,Z)  ↵(V1,Z) + ↵(V2,Z),

�(W1 +W2, ✏)  �(W1, ✏) + �(W2, ✏).

Indeed, by construction function ↵(·,Z) is positive homogeneous and convex in its argument. Thus,

1
2↵(V1 + V2,Z) = ↵

�
1
2 [V1 + V2],Z

�
 1

2↵(V1,Z) + 1
2↵(V2,Z).

Similar derivation implies that 1
2�(W1 +W2, ✏)  1

2�(W1, ✏) + �(W2, ✏). ⇤
We also have the following variant of Proposition 2.6.1 in the case of Euclidean norm k·k = k·k2.

Denote

↵2(V,W ;Z, ✏) = min
�,↵,⇥

n
�Q(�)� ↵

2 lnDet(I � 2↵�1⇥) + ↵ ln[✏�1] : � � 0, µ � 0,↵ � 2�max(⇥),


⇥ W
W T I

�
⌫ 0,

 P
k
�kQk V T

V I � 2↵�1⇥

�
⌫ 0

�
. (2.62)

and

�2(V,W ;Z, ✏) = min
�,↵,⇥,⇤,⌥

n
�Q(�) + Tr[⇥+ ⇤] + ↵ ln[✏�1] : � � 0, µ � 0,↵ � 2�max(⇥),


⇥ W
W T I

�
⌫ 0,


⇤ ⇥
⇥ ↵I � 2⇥

�
⌫ 0,

 P
k
�kQk V T

V I � 2↵�1⇥

�
⌫ 0

�
. (2.63)

Proposition 2.6.2 Given ✏ 2 (0, 1), let V 2 R
⌫⇥N , W 2 m ⇥ ⌫, let Z be defined in (2.53), and

let ↵2(V,W ;Z, ✏) and �2(V,W ;Z, ✏) be as in (2.62) and (2.63). Then for all z 2 Z

kV z +W T ⇠k22  ↵2(V,W ;Z, ✏)  �2(V,W ;Z, ✏) (2.64)

with probability at least 1� ✏.



64

Proof. Let

 2,✏(V,W, z) := min
↵>2�max(WWT )

zTV T (I � 2↵�1WW T )�1V z � ↵

2
lnDet(I � 2↵�1WW T ) + ↵ ln[✏�1]

= min
↵,⇥,⌥

�
zT⌥z � ↵

2
lnDet(I � 2↵�1⇥) + ↵ ln[✏�1] : ↵ > 2�max(WW T )

⇥ ⌫ WW T , ⌥ ⌫ V T (I � 2↵�1⇥)�1V
o
; (2.65)

by (2.50) one has
Prob⇠{kV z +W T ⇠k22   2,✏(V,W, z)} � 1� ✏.

Using the result of Theorem 2.3.1 we may bound the first term in the r.-h.s. of (2.65) uniformly
over z 2 Z:

max
z2Z

zT⌥z  �Q(�)

where � � 0 is such that
P

k
�kQk ⌫ ⌥. When summing up, we arrive at the bound

8z 2 Z) Prob⇠{kV T z +W T ⇠k22  ↵2(V,W ;Z, ✏)} � 1� ✏ (2.66)

where ↵2(V,W ;Z, ✏) is defined in (2.43).
Furthermore, we may upper bound the quantity ↵2(V,W ;Z, ✏) using the inequality (2.51).

Indeed, one has

 2,✏(V,W, z)  min
↵

n
zTV T (I � 2↵�1WW T )�1V z +Tr[WW T ]

+ ↵�1Tr[WW T (I � 2↵�1WW T )�1WW T ] + ↵ ln[✏�1] : ↵ � 2�max(⇥)
o

= min
↵,⇥,⇤,⌥

n
zT⌥z +Tr[⇥+ ⇤] + ↵ ln[✏�1] : ↵ � 2�max(⇥)

⇥ ⌫ WW T , ⌥ ⌫ V T (I � 2↵�1⇥)�1V, ⇤ ⌫ ⇥(↵I � 2⇥)�1⇥
o
,

and we conclude that ↵2(V,W ;Z, ✏)  �2(V,W ;Z, ✏) with �2(V,W ;Z, ✏) as in (2.63). ⇤

2.6.3 Bounding maximal over ellitope deviation of a quadratic form of Gaussian

vector

Lemma 1 Let D 2 R
d⇥k, C 2 S

k, F 2 S
d, ⇣ 2 R

d be standard Gaussian, i.e., ⇣ ⇠ N (0, I), and
let X ⇢ R

k be a basic ellitope,

X = {x 2 R
k : t 2 T : zTT`z  t`, `  nx}

with Tk, k = 1, ..., nx and T satisfying the standard requirements. Let also

 +(C,D, F ; ✏) = min
↵,�

�
�↵

2 lnDet(I � 2F/↵) + 1
2�T (�) + ↵ ln(2/✏)� Tr[F ],

↵I ⌫ 2F, � � 0,

 P
k
�kTk � 2C DT

D ↵I � 2F

�
⌫ 0

�
,

 �(C,D, F ; ✏)  min
↵,�

�
�↵

2 lnDet(I + 2F/↵) + 1
2�T (�) + ↵ ln(2/✏) + Tr[F ],

↵I ⌫ �2F, � � 0,

 P
k
�kTk + 2C DT

D ↵I + 2F

�
⌫ 0

�
.
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Then for all x 2 X ,

Prob⇣
���xTCx+ ⇣TDx+ ⇣TF ⇣ � Tr(F ) + {

��  ⇢
 
 ✏

where [C,D, F, ⇢,{] is a feasible solution to the system of convex constraints

 +(C,D, F ; ✏)  ⇢� {,  �(C,D, F ; ✏)  ⇢+ {. (2.67)

Furthermore, one has

 +(C,D, F ; ✏)   +(C,D, F ; ✏),  �(C,D, F ; ✏)   �(C,D, F ; ✏)

where

 +(C,D, F ; ✏) := min
↵,�

�
↵�1Tr(F 2) + 1

2�T (�) + ↵ ln(2/✏),

↵I ⌫ 2.930F, � � 0,

 P
k
�kTk � 2C DT

D ↵I � 2F

�
⌫ 0

�
,

 �(C,D, F ; ✏) := min
↵,�

�
↵�1Tr(F 2) + 1

2�T (�) + ↵ ln(2/✏),

↵I ⌫ �2.930F, � � 0,

 P
k
�kTk + 2C DT

D ↵I + 2F

�
⌫ 0

�
.

Consequently, when ⇢ and { are such that

 +(C,D, F ; ✏)  ⇢� {,  �(C,D, F ; ✏)  ⇢+ {,

one has
Prob⇣

���xTCx+ ⇣TDx+ ⇣TF ⇣ � Tr(F ) + {
��  ⇢

 
 ✏ 8x 2 X .

Proof. Using (2.47) one has for h 2 R
d, F 2 S

d, and ↵ such that 2F � ↵I,

↵ lnE⇣
n
e↵

�1(hT
⇣+⇣TF ⇣)

o
 �↵

2 lnDet(I � 2F/↵) + 1
2h

T (↵I � 2F )�1h,

so that Prob⇣
�
hT ⇣ + ⇣TF ⇣ � Tr[F ] �  +(h, F ; ✏)

 
 ✏/2 where

 +(h, F ; ✏) := inf
↵:↵I�F

↵ lnE⇣
n
e↵

�1(hT
⇣+⇣TF ⇣�Tr[F ])

o
+ ↵ ln(2/✏) (2.68)

= inf
↵

�
�↵

2 lnDet(I � 2F/↵) + 1
2h

T (↵I � 2F )�1h+ ↵ ln(2/✏)� Tr[F ], ↵I � 2F
 
.

A completely analogous derivation results in Prob⇣
�
hT ⇣ + ⇣TF ⇣ � Tr[F ] � � �(h, F ; ✏)

 
 ✏/2

where

 �(h, F ; ✏) = inf
↵

�
�↵

2 lnDet(I + 2F/↵) + 1
2h

T (↵I + 2F )�1h+ ↵ ln(2/✏) + Tr[F ], �↵I � 2F
 
.(2.69)

When setting h = Dx we arrive at

sup
x2X

[xTCx+  +(Dx,F ; ✏)]

 inf
↵

sup
z2Z

�
�↵

2 lnDet(I � 2F/↵) + 1
2z

T
⇥
2C +DT (↵I � 2F )�1D

⇤
z + ↵ ln(2/✏)� Tr[F ], ↵I � 2F

 

 min
↵,�

�
�↵

2 lnDet(I � 2F/↵) + 1
2�T (�) + ↵ ln(2/✏)� Tr[F ],

↵I � 2F, � � 0,
X

k

�kTk ⌫ 2C +DT (↵I � 2F )�1D ⌫ 0

)

=  +(C,D, F ; ✏).
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Similarly,

sup
z2Z

[�zTCz +  �(Dz, F ; ✏)]

 inf
↵

sup
z2Z

�
�↵

2 lnDet(I + 2F/↵) + 1
2z

T
⇥
� 2C +DT (↵I + 2F )�1D

⇤
z + ↵ ln(2/✏)� Tr[F ], ↵I � 2F

 

  �(C,D, F ; ✏)..

We conclude that if ⇢ and { satisfy the system (2.67) then

Prob⇣
���xTCx+ ⇣TDx+ ⇣TF ⇣ � Tr(F ) + {

��  ⇢
 
 ✏ 8x 2 X .

Furthermore, using the inequality | � ln(1 � v) � v|  v2 for v  0.683 we may upper bound the
quantities  + and  � in (2.68) and (2.69) as follows:

 +(h, F ; ✏)   +(h, F ; ✏) := inf
↵

�
↵�1Tr(F 2) + 1

2h
T (↵I � 2F )�1h+ ↵ ln[2/✏], ↵I ⌫ 2.930F

 
,

 �(h, F ; ✏)   �(h, F ; ✏) := inf
↵

�
↵�1Tr(F 2) + 1

2h
T (↵I + 2F )�1h+ ↵ ln[2/✏], �↵I � 2.930F

 
.

As a result,

 +(C,D, F ; ✏)   +(C,D, F ; ✏) and  �(C,D, F ; ✏)   �(C,D, F ; ✏)

what implies the last statement of the lemma. ⇤

2.6.4 Variations of risk upper bounds in � and "

Proposition 2.6.3 Let � > 0, # > 0, 0 < ✏ < " < 1, and r�,"(·), r(2)�," (·), p�,"(·) defined respectively
as in 2.26,2.43 and 2.34.
For any H 2 R

m⇥⌫ and any ⇥ 2 Sm,

r�,✏(H)

r�,"(H)

p
ln(e"/✏),

r
(2)
�,✏

(H)

r
(2)
�,"

(H)
 ln(e"/✏),

p�,✏(⇥)

p�,"(⇥)

p
ln(e"/✏). (2.70)

Additionnaly, when U(�) := f(�)U , with

f : R+ ! R+

increasing in � and U an ellitope, we define b(#) := max
�>0

n
f((1+#)�)

f(�)

o
and

C2(#, "/✏) := max
n
b(#);

p
ln(e"/✏)

o
.

One has

r(1+#)�,✏(H)

r�,"(H)
 C2(#, "/✏),

r
(2)
(1+#)�,✏(H)

r
(2)
�,"

(H)
 C2(#, "/✏)2,

p(1+#)�,✏(⇥)

p�,"(⇥)
 C2(#, "/✏). (2.71)

Proof. We first give a detailed proof of results 2.70 and 2.71 with respect to function r�,"(·).
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1
o
. Given a matrixH 2 R

m⇥⌫ , define variables [�⇤, µ⇤,�⇤,⇤,↵⇤,⇥⇤] that are optimal for problem
2.26 when computing r�,"(H). We first proove that the latter is of the form

r�,"(H) = 2
⇣q

�M(�⇤)(�T (�⇤) + �V(�)(µ⇤)) +
p
�M(⇤) "(↵⇤,⇥⇤)

⌘
. (2.72)

Indeed, for variables [�, µ,�,,↵,⇥] feasible for computation of r�,✏(H) (note that for any other
�0, ✏0, these are also feasible for computation of r�0,✏0(H)) and positive �, �0, variables [��, �µ,�/�,/�0, �0↵, �0⇥]
are also feasible. 1-homogeneity of functions �T ,�V(�),�M then leads to

min�,�0
n
r�,�0(�, µ,�,,↵,⇥) := �(�T (�) + �V(�)(µ)) + �M(�)/� + �M()/�0 + �0 ✏(↵,⇥)

o

= 2
p
�M(�)(�T (�) + �V(µ) + 2

p
�M() ✏(↵,⇥).

We conclude using the fact that r�,"(H) = min�,�0 r�,�0(�⇤, µ⇤,�⇤,⇤,↵⇤,⇥⇤).

2
o
. Consider variables [�⇤, µ⇤,�⇤,⇤,↵⇤,⇥⇤] for computation of r�,✏(H). Their sub-optimality for

this problem entails

r�,✏(H)
r�,"(H) 

(�M(�⇤)(�T (�⇤)+�V(�)(µ⇤)))
1/2

+(�M(⇤) ✏(↵⇤,⇥⇤))
1/2

(�M(�⇤)(�T (�⇤)+�V(�)(µ⇤)))
1/2

+(�M(⇤) "(↵⇤,⇥⇤))
1/2


q

 ✏(↵⇤,⇥⇤)
 "(↵⇤,⇥⇤)

.

Observing that  ✏(↵⇤,⇥⇤) =  "(↵⇤,⇥⇤) + ↵⇤ log("/✏)  log(e"/✏) "(↵⇤,⇥⇤) yields 2.70.

3
o
. In situations where U(�) = f(�)U , one has that �V(�)(·) = �f(�)2V(·) = f(�)2�V(·), with V

defined in the ellitopic description of U =
�
u 2 R

nu : t 2 V : uTVku  tk, k  nu

 
. Thus, using

the same arguments as for proof of 2.70, we arrive at

r(1+#)�,✏(H)
r�,"(H)  (�M(�⇤)(�T (�⇤)+f((1+#)�)2�V (µ⇤)))

1/2
+(�M(⇤) ✏(↵⇤,⇥⇤))

1/2

(�M(�⇤)(�T (�⇤)+f(�)2�V (µ⇤)))
1/2+(�M(⇤) "(↵⇤,⇥⇤))

1/2  max
n
b(#);

p
log(e"/✏)

o
.

4
o
. Recalling that

r
(2)
�,"

(H) = �T (�1) + �T (�)(µ1) +  "(↵1,⇥1),

one can apply arguments from 2
o and 3

o to arrive at results 2.70 and 2.71. For function p, recall
that it is of the form

p�,"(⇥) = �M(2) + �T (�2) + �T (�)(µ2) + 2 log(2m"�1)Tr(⇥)

for some optimal variables [2,�2, µ2]. Notice that with the same argument as in 1
o, we arrive at

the fact that optimal value of 2.34 is of the form

p�,"(⇥) =
q
�M(2)

⇥
�T (�2) + �T (�)(µ2) + 2 log(2m"�1)Tr(⇥)

⇤
.

One can then apply the reasonning of 2o and 3
o to conclude. ⇤
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3.1 Simplified computations in the case of U(�) = �U
We treat in this subsection a special case where problem structure allows for a simple computation
of the grid on parameter � that ensures items (2.31) and (2.36) in the construction of adaptive
linear and polyhedral estimates for # = 1. In this section, we set U(�) = �U , i.e. U(�) is the
homothety of ellitope

U =
�
u 2 R

nu : t 2 V : uTVku  tk, k  nu

 
. (3.1)

For such ellitope, support function �V(�)(·) = �2�V(·). Indeed, for a given u 2 U and µ 2 R
nu
+ ,

their exist t 2 V such that

(�u)TV (µ)(�u) = �2
nuX

k

µku
TVku  �2uT t  �2max

v2V
vTµ = �2�V(µ).

Thanks to the latter, it is easy to see that if the �i/�i�1  2 for i > 1, then (2.31) and (2.36) are
also true for # = 1. For instance, recall that for linear estimates, our risk upper bound is actually
of the form:

%⇤(�, ") :=
p
�M(�⇤) (�T (�⇤) + �2�V(µ⇤)) +

p
�M(⇤) "(↵⇤,⇥⇤),

with (�⇤,�⇤, µ⇤,⇥⇤,⇤,↵⇤) optimal for computation of %⇤(�, "). For grids with first element strictly
greater than 0, the work is done. If this is not the case, one has to carefully select �1 to ensure that
for 0  � < �1 and some constant C,

%⇤(�1, ")  C%⇤(�, ")

holds when considering linear estimates. Note that since our upper bounds are increasing in �, it
is su�cient that the latter holds for 0 instead of �. Thankfully, it is possible to compute quantities
r0(") and l0(") such that for all � � 0, and " 2 (0, 1),

%⇤(�, ")  %⇤(0, ") + �2r0(") (3.2)

and

p⇤(�, ")  p⇤(0, ") + �2l0("), (3.3)

and simply setting �21 = %⇤(0, ")/r0(") or p⇤(0, ")/l0(") yields the desired relationship. Indeed,
for (3.2), consider variables (H0,⇥0,↵0,�0,�0) optimal for computation of %⇤(0, ") as proposed in
(2.26). Then, for any µ 2 R

nu
+ such that

2

4
T (�0)

V (µ)
1
2 [H

T

0 A�B]TP

1
2P

T [HT

0 A�B] M(�0)

3

5 ⌫ 0,


⇥0

1
2H0P

1
2P

THT

0 M(0)

�
⌫ 0, (3.4)

variables (�0, µ,⇥0,0) are admissible for the minimization program involved for the computation
of %⇤(�, "). Using their sub-optimality, one directly obtains

%⇤(�, ")  �T (�0) + �M(�) + �M(0) +  "(↵0,⇥0) + �2�V(µ)
= %⇤(0, ") + �2�V(µ).
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Notice that first semidefinite constraint in (3.4) can be reformulated into

T (�0)

V (µ)

�
⌫ 1

4
[HT

0 A�B]TPM(�0)
�1P T [HT

0 A�B] =: Vlin(H0,0).

Minimizing �V(µ) over µ satisfying this constraint allows to compute r0(") as

r0(") := min
µ2Rnu

+

⇢
�V(µ) :


T (�0)

V (µ)

�
⌫ Vlin(H0,�0)

�
. (3.5)

Observe that the ”new” semidefinite constraint is just the Schurr complement of the first constraint
in (3.4). As the variable eµ0 optimal for (3.5) satisfies the first semidefinite constraint in (3.4), (3.2)
holds.
When considering the polyhedral estimate, the reasinoning presented above can also be applied.
Let (⇥0, µ0,�0,0) be optimal variables in (2.35) for computation of p⇤(0, "). Considering a vector
µ that satisfies the semidefinite constraint,

2

4


T (�0)

V (µ)

�
+AT⇥A 1

2B
TP

1
2P

TB M(0)

3

5 ⌫ 0, (3.6)

one has, using that (⇥0,�0, µ,0) are feasible and sub-optimal for computation of p⇤(�, ") yields

p⇤(�, ")  �T (�0) + �M(0) + �2 ln(2m/")Tr(⇥) + �2�V(µ)
= p⇤(0, ") + �2�V(µ).

Thus, computing l0(") in (3.3) boils down to solving the minimization problem

l0(") := min
µ2Rnu

+

⇢
�V(µ) :


T (�0)

V (µ)

�
⌫ Vpoly(⇥0,0)

�
,

Vpoly := 1
4B

TPM(0)�1P TB �AT⇥0A,

(3.7)

where we have again used Schurr’s lemma to reformulate constraint (3.6).

Remark 3.1.1 In the special case where k·k = k·k2, the reasonning and definitions of r(2)0 and

l
(2)
0 are almost the same. Indeed, one only needs to replace M(�0) in(3.5) and M(0) in (3.7) by
respectively I � 2(↵0)�1⇥0 and I, where ↵0 is optimal in the minimization problem associated with

the definition of %(2)⇤ (0, ").

We can now consider the following grid construction.

1. For the adaptive linear estimate, set

I =

&
log2

 
�

s
r0(")

%⇤(0, ")

!'
, (3.8)

and for the adaptive polyhedral estimate, set

I =

&
log2

 
�

s
l0(")

p⇤(0, ")

!'
. (3.9)
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2. Set ✏ = "

I+1 .

3. Set �1 = 2�I�, and for all i = 2, ..., I, �i = 2�i�1.

Proposition 3.1.1 With the following construction, one has

Risk"[ bw(a)
lin |Z(�)]  5

q
ln(e log2(2�

p
r0(")/%⇤(0, ")))%⇤(�, "), (3.10)

Risk"[ bw(a)
lin |Z(�)]  4

r
ln(e log2(2

q
�l0(")/p⇤(0, ")))p⇤(�, "). (3.11)

In the case of the recovery norm being the Euclidean norm, replacing r0(") and %⇤(0, ") in (3.8) by

r(2)0 (") and %(2)⇤ (0, ") leads to the following performances of the adaptive linear estimate presented
in section 2.4:

Risk
k·k2
" [ ew(a)

lin |M(�)]2  2 ln
⇣
e log2

⇣
2�r(2)0 /%(2)⇤ (0, ")

⌘⌘
%(2)⇤ (�, ") + 4dl⇤ , (3.12)

where

r(2)0 := min
µ�0

8
<

:�V(µ),

2

4


T (�0)

V (µ)

�
ATH0 �BT

(H0)TA�B I � 2(↵0)�1⇥0

3

5 ⌫ 0

9
=

; . (3.13)

and variables [�0, H0,⇥0,↵0] are optimal for computation of %(2)⇤ (0, ").

For proof, see 3.4.1

3.2 Adaptive estimates robust to sparse perturbation

We assume in this section that observations are of the form

! = Ax+ u+ ⇠ (3.14)

with A 2 R
m⇥n, x 2 X with X defined by (2.16), ⇠ ⇠ N (0,�2I) and, for an unknown integer

s � 0, deterministic but unknown s-sparse perturbation u, i.e., kuk0 = s. As a consequence, our
goal is to produce estimates of Bx that are adaptive to the sparsity level s, i.e. with the smallest
possible ✏-maximal risk over all x and u, measured in a co-ellitopic recovery norm k · k:

Risk✏[ bw|m(s)] := sup
x2X , u: kuk0=s

inf {⇢ : Prob⇠{kBz � bw(Ax+ u+ ⇠)k > ⇢}  ✏} . (3.15)

Before building such estimates, we present the sparse recovery framework we will use to do so.

3.2.1 Verifyable design conditions, penalized and regular `1 recovery.

In this subsection, we recall two recovery routine of sparse vector u given observation

! = Au+ v + ⇠,

where u 2 R
n is s-sparse, v 2 R

m is a deterministic perturbation and ⇠ is a random vector. We also
assume that v 2 V , where V is a closed convex and bounded subset of Rm. For a given contrast
matrix H, we define the following two `1 recovery routines jointly introduced in [83].
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Definition 15 ([32], Chapter 1) Given a contrast parameter H 2 R
m⇥n and µ > 0, the `1-

regular recovery estimate is defined as

bxH,µ

reg (!) 2 Argmin
z

�
kzk1 :

��HT [! �Az]
��
1  µ

 
. (3.16)

In the special cases of ⇠ ⇠ N (0,�2I) or ⇠ ⇠ SG(0,�2I), it is defined, for ✏ 2 (0, 1), by bxHreg(!) :=
bxH,⇤(H)
reg (!), where

⇤(H) := max
i

⇢
�
p
2 ln(2n/✏) kColi(H)k2 +max

v2V
vTColi(H)

�
. (3.17)

Remark 3.2.1 Note that ⇤(H) is simply an upper bound on the ✏ quantile of random quantity��HT [v + ⇠]
��
1 (see [83]).

Definition 16 ([32], Chapter 1) Given a contrast parameter H 2 R
m⇥m and a sparsity param-

eter s � 1, the `1-penalized recovery is defined by

bxH,s

pen(!) 2 Argmin
z

�
kzk1 + 2s

��HT [! �Az]
��
1
 
. (3.18)

Results on the ✏-risk over s-sparse vector of these two estimates are available in [83], provided that
contrast matrix H satisfies the following condition, also introduced in [83].

Definition 17 ([32], Chapter 1) Given a design matrix A 2 R
m⇥n, a matrix H 2 R

m⇥n is said
to satisfy the Q1(s,) condition if their exist  2 (0, 1/2) such that the following holds:

8z, kzk1 
��HTAz

��
1 +



s
kzk1 . (3.19)

Proposition 3.2.1 ([83], Proposition 2 and 4) Let H 2 R
m⇥n satisfy the Q1(s,) condition,

noise ⇠ be either N (0,�2I) or SG(0,�2I), and ✏ 2 (0, 1). Then the following bound holds with
probability greater than 1� ✏, as soon as x is s-sparse,

��bxHreg � x
��
1

 4s
1�2⇤(H)

��bxHreg � x
��
1  4

1�2⇤(H).
(3.20)

Similarly, on an event of probability greater than 1 � ✏, the penalised `1-recovery enjoys the same
rate under the Q1(s,):

��bxHpen � x
��
1

 4s
1�2⇤(H)

��bxHpen � x
��
1  4

1�2⇤(H).
(3.21)

Our interest in these estimates and the aformentionned condition resides in the fact that, in contrast
with classical design conditions such as RIP or RE, condition Q1(s,) is stated given design matrix
A, and as the next proposition will show, one can e�ciently compute a contrast H satisfying it if
one exists.



74

Proposition 3.2.2 ([32], Proposition 1.10 ) Consider the following LP programs

8i 2 [1 : n], Opti := min
�,h

�
� :

��ATh� ei
��
1  �

 
. (3.22)

Given  2 (0, 12), if �⇤ := max
i

Opti < , let s :=
j


�⇤

k
. Consider the following clearly solvable

convex minimization program

Opt := min
H2Rm⇥n

�
⇤(H) : 8i 2 [1;n],

��ATColi(H)� ei
��
1  �⇤

 
, (3.23)

along with optimal variable H⇤. The latter satisfies Q1(, s) for all s  s⇤.

Therefor, using this verifyable condition, it is possible, given a design matrix A, to compute the
best parameter H leading to ”minimal” bounds (3.21),(3.20), and the maximal sparsity level for
which these hold.

3.2.2 A polyhedral estimate adaptive to sparsity

Assuming that u has at least one non-vanishing component, we propose the following strategy.
First, define

�⇤ := max
i

Opti, 8i 2 [1 : m], Opti = min
�,h

{� : kh� eik1  �} . (3.24)

It is obvious that �⇤ = 0, which implies using Proposition 3.2.2 that in this specific setting, the set
of contrast satisfying Q1(1/4, s) is nonempty for all s  m. As a consequence, we consider the
following grid for the unknown sparsity level s:

8i 2 [1 : I], si = 2i�1, sI = m, I = blog2(m)c . (3.25)

We then consider the following m minimization programs defined for all i 2 [1 : m] by

Opti = min
g2Rm

n
�
p
2 log(4m/")kgk2 + �X

⇣
gTA

⌘
, kg � eik1  (4m)�1

o
,

and define contrast G = [g1, ..., gm] 2 R
m⇥m, where gi is optimal for Opti. Observe that by

definition, ⇤(G) := maxiOpti is minimal over all matrices satisfying the Q1(1/4,m) condition.
We are now ready to define an adaptive polyhedral estimate robust to sparse perturbation. For

matrix contrast (H1, ..., HI), let bw(a)
Poly

:= Bbx where

(bx, bu) 2 Argmin
z,v

8
><

>:
kvk1 :

8i 2 [1 : I],
��HT

i
[! �Az � v]

��
1  1,

���GT
[! � v]

���
1

 ⇤(G), w 2 X

9
>=

>;
. (3.26)

The next proposition specifies a way to build the contrasts H1, ..., HI and the risk upper bound
associated with that construction.
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Proposition 3.2.3 Assume that 1  s  m and let i be the minimal i 2 {1, ..., I} such that s  si.
For this specific situation, we set {(") = �

p
2 ln(4m/"), ⇤ := ⇤(G) and define

ps,"[⇥] := min
�,µ,µ,

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

�T (�) + 64⇤2(2sµ+ kµk1) + �M() + {(")2Tr(⇥) :

2

664

"
T (�)

Diag(µ) + µI

#
+AT⇥A 1

2B
TP

1
2P

TB M()

3

775 ⌫ 0,

� � 0, µ � 0, µ � 0, � 0.

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

and p⇤(s, ") := min
⇥⌫0

ps,"[⇥].

Compute for all i = {1, ..., I}, ⇥i 2 Argmin
⇥⌫0

psi,"/(2I)[⇥] and Hi = {�1�i, where ⇥i = �iDiag(�)�T
i

is ⇥i’s SVD. The outlined adaptive polyhedral estimate has a risk such that

Risk"[ bw(a)
poly|Z(s)]  2p⇤(sī, "(2I)

�1) (3.27)

 2max
np

2;
p
ln (2e log2(2m))

o
p⇤(s, "). (3.28)

For proof, see 3.4.2

3.2.3 Lepski’s procedure applied to linear estimate and robust estimation to

unknown sparse perturbations

We propose, under essentially the same setting, a linear estimate version of the previous devel-
opments. Given the same grid of levels of sparsity as in previous subsection, consider, for all
j = {1, ...,m} the following minimization programs defined by

Optj(s, ") = min
g2Rm

n
�
p

2 log(2m/")kgk2 + �X
⇣
gTA

⌘
, kg � ejk1  (4s)�1

o
,

and define contrast G
(i)

= [g(i)1 , ..., g(i)m ] 2 R
m⇥m, with g(i)

j
optimal for Optj(si, "/(2I)). Also, with

notations �(") = �(1 +
p
2 ln(2/")) and ⇤(s, ") := maxj Optj(s, "), we define for contrast matrix

H 2 R
m⇥⌫ , function

%s,"(H) := min
�,µ,µ,,⇥

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

�M (�) + �T (�) + 64⇤(s, ")2(2sµ+ kµk1) + �M() + �(")2Tr(⇥) :

2

664

T (�)

Diag(µ) + µI
1
2 [B �HTA]TP

1
2P

T [B �HTA] M(�)

3

775 ⌫ 0,

"
⇥ HP/2

P THT /2 M()

#
⌫ 0,

� � 0, µ � 0, µ � 0, � 0.

9
>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>;

(3.29)
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along with its minimum over all matrices H, %⇤(s, ").
We propose the following adaptive procedure. Given observation !, define for all i = {1, ..., I}

matrix contrastsHi 2 Argmin
H

%si,"/(2I)(H) along with associated %⇤(si, "/(2I)) = %si,"/(2I)(Hi).

new observation !i = ! � bui, where

bui := bxGi,si
pen (!) (3.30)

candidate estimate wi = HT

i
[!i].

admissible set

A :=
n
i 2 [1 : I], 8j 2 [i+ 1 : I], kwi � wjk  %si,"/(2I)(Hi) + %sj ,"/(2I)(Hj)

o
,

and adaptive linear estimate bw(a)
lin := wbi, with

bi = min A is the latter is not empty, or wI

otherwise.

We have the following equivalent of Proposition 3.2.3.

Proposition 3.2.4 Assume that 1  s  s, and let i be the minimal i 2 {1, ..., I} such that s  si.

The estimate bw(a)
lin is such that

Risk"[ bw(a)
lin |Z(s)]  2%⇤(si, "/(2I)) + %⇤(si�1, "/(2I)) (3.31)

 (2
p
2 + 1)

p
ln (e log2(2m))%⇤(s, "). (3.32)

For proof, see 3.4.2

3.3 Comprehensive robust counterpart

In this section, we assume the same setting as in section 3.1. Given ✏ 2 (0, 1), let r be an upper
bound of the risk of the near-optimal linear estimate in the case of � = 0, i.e., r � %⇤(0, ✏) as
defined in Proposition 2.3.1. Our objective is to design the contrast H = H(r, ⌧) satisfying two
requirements:

(i) The "-risk of recovery by estimate bwH(!) = HT! of the signal w = Bz for z 2 Z(0) does
not exceed r;

(ii) Whenever u 2 �U for some � > 0, the risk of the estimate bwH does not exceed r + ⌧�;

and we look for H(r, ⌧) such that ⌧ is the smallest possible. Following [84] we refer to the corre-
sponding setting as comprehensive robust counterpart of the original estimation problem, and we
call ⌧ global sensitivity of the estimate bwH .
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3.3.1 Case of euclidean recovery norm

Let us consider first the case of Euclidean norm k · k = k · k2. Given r � %(2)⇤ (0, ✏) where %(2)⇤ (0, ✏)
is the bound of Proposition 2.4.2 for the squared Euclidean risk of nearly optimal linear estimate,
denote

⌧2(✏) = min
�,µ,↵,⇥,H

n
�V(µ) : �T (�) +  ✏(↵,⇥)  r, � � 0, µ � 0, (3.33)

↵ � 2�max(⇥),


⇥ H
HT I

�
⌫ 0,

2

4
T (�)

V (µ)
ATH �BT

HTA�B I � 2↵�1⇥

3

5 ⌫ 0

9
=

;

where
 ✏(↵,⇥) := �↵

2 logDet(I � 2↵�1⇥) + ↵ ln[✏�1].

Let now � � 0, and let (�⇤, µ⇤,↵⇤,⇥⇤, H⇤) be an optimal solution to (3.33). Because (�⇤, µ⇤,↵⇤,⇥⇤)

also form a feasible solution to (2.43) with H = H⇤, we conclude that the optimal value r
(2)
�,✏

[H⇤] of
(2.43) satisfies

r
(2)
�,✏

[H⇤]  �T (�⇤) + �2�V(�)(µ⇤)� ↵⇤
2 lnDet(I � 2↵�1

⇤ ⇥⇤) + ↵⇤ ln[✏
�1]  r + �2⌧2(✏).

Applying the result of Proposition 2.4.2, we conclude that the risk of the estimate bwH⇤(!) = HT
⇤ !

satisfies
8� � 0 Risk2✏ [ bwH⇤ |Z(�)]  r + �2⌧2(✏).

3.3.2 Case of general co-ellitopic recovery norm

Similar result in the case of the general co-ellitopic norm requires a bit more work—we need to
replace the bound r�,✏

⇥
H] for the risk of the linear estimate bwH(!) = HT!, H 2 R

m⇥⌫ , we
somewhat less precise bound which is more convenient for our purposes. Let us denote A = [Ax, Au]
and B = [Bx, Bu] with Ax 2 R

m⇥nx , Au 2 R
m⇥nu , Bx 2 R

⌫⇥nx , Bu 2 R
⌫⇥nu . For all z 2 Z(�),

� � 0 the error of estimate bwH(!) satisfies

kHT! �Bzk = k[HTA�B][x;u] +HT ⇠k  k[HTAx �Bx]x+ [HTAu �Bu]u+HT ⇠k
 k[HTAx �Bx]xk+ k[HTAu �Bu]uk+ kHT ⇠k.

To bound the terms in the r.-h.s. we act as follows. When denoting Vx = [HTAx �Bx] (cf. (2.55))
we have

8x 2 X a(Vx;x) := kVXxk  max
y2Y

sup
z2Z

yTMTVxx  1
2 max
[x;y]2Z⇥Y

[x; y]T


[V T
x M

MTVx

�
[x; y].

Because the set G = X ⇥ Y is a basic ellitope (as direct product of basic ellitopes), we may use
Theorem 2.3.1 to bound the maximum of the quadratic form on G, i.e.,

8x 2 X a(Vx, x)  ax(Vx,X ) := min
�,�

⇢
�T (�) + �M(�) : � � 0,� � 0,


T (�) 1

2V
T
x M

1
2M

TVx M(�)

�
⌫ 0

�
.
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Similarly, we have for Vu = [HTAu �Bu]

8u 2 �U a(Vu;u) = kVuuk  au(Vx, �U) = min
�,�

⇢
�2�V(µ) + �M(�) : � � 0, � � 0,


V (�) 1

2V
T
u M

1
2M

TVu M(�)

�
⌫ 0

�
.

Together with the bound �(H, ✏) by Proposition 2.6.1 for the term kHT ⇠k, the above bounds result
in

Risk✏[ bwH |Z(�)]  er�,✏[H]

where

er�,✏[H] := min
�,µ,�,�,↵,⇥

⇢
�T (�) + �M(�) + �2�V(µ) + �M(�) + �M() +  ✏(↵,⇥) : (3.34)

� � 0,� � 0, µ � 0, � � 0, � 0, ↵ � 2�max(⇥),"
T (�) 1

2 [H
TA�B]TM

1
2M

T [HTA�B] M(�)

#
⌫ 0,

"
V (µ) 1

2 [H
TA�B]TM

1
2M

T [HTA�B] M(�)

#
⌫ 0,

"
⇥ 1

2HM
1
2M

THT M()

#
⌫ 0

9
>>>>>>>=

>>>>>>>;

.

Now we are almost done. Indeed, let

⌧(✏) := min
�,µ,�,,↵,⇥,H

⇢
1
2(�V(µ) + �M(�)) : �T (�) + �M(�) + �M() +  ✏(↵,⇥)  r, (3.35)

� � 0,� � 0, µ � 0, � � 0, � 0, ↵ � 2�max(⇥),"
T (�) 1

2 [H
TA�B]TM

1
2M

T [HTA�B] M(�)

#
⌫ 0,

"
V (µ) 1

2 [H
TA�B]TM

1
2M

T [HTA�B] M(�)

#
⌫ 0,

"
⇥ 1

2HM
1
2M

THT M()

#
⌫ 0

9
>>>>>>>=

>>>>>>>;

.

Similarly to (3.33), the problem in (3.35) is a well structured convex optimization problem which
is solvable; let us denote (�⇤, µ⇤,�⇤, �⇤,⇤,↵⇤,⇥⇤, H⇤) its optimal solution. We note that for any
� � 0, (�⇤, µ⇤,�⇤, �⇤,⇤,↵⇤,⇥⇤) is also a feasible solution to (3.34) with H = H⇤. Next, observe
that if a pair (µ⇤, �⇤) is feasible for (3.35) then so is (�µ⇤, ��1�⇤) for any � > 0, other components
(�⇤,�⇤,⇤,↵⇤,⇥⇤) of the solution being unchanged. When minimizing w..r.t. �, using homogeneity
of �V and �M, we obtain for �̄ = ��1:

�2�V(�̄µ⇤) + �M(�̄�1�⇤) = �2�̄�V(µ⇤) + �̄�1�M(�⇤) = �(�V(µ⇤) + �M(�⇤)) = �⌧(✏).

As a consequence,

er�,✏[H⇤]  �T (�⇤) + �M(�⇤) + �(�V(µ⇤) + �M(�⇤)) + �M(⇤) +  ✏(↵⇤,⇥⇤)  r + �⌧(✏),

and we conclude that the ✏-risk of the estimate bwH⇤(!) = HT
⇤ ! satisfies

Risk✏[ bwH⇤ |Z(�)]  er�,✏[H⇤]  r + �⌧(✏).
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3.3.3 Comprehensive polyhedral estimate in the Euclidean recovery norm case

Using a similar strategy, one can build a comprehensive polyhedral estimate in the case of Euclidian

recovery norm. For � � 0, we define p
(2)
⇤ (�, ✏) as the minimum over semidefinite ⇥ of

p
(2)
�,✏

(⇥) = min
�,µ

n
�T (�) + �2�V(µ) + 2�2 ln(2m/✏)Tr(⇥), � � 0, µ � 0, (3.36)


T (�)

V (µ)

�
⌫ BTB �AT⇥A

�
.

Let r be an upper bound on p
(2)
⇤ (0, ✏), and consider

q2(✏) = min
�,µ,⇥

n
�V(µ) : �T (�) + 2�2 ln(2m/✏)Tr(⇥)  r, � � 0, µ � 0, (3.37)


T (�)

V (µ)

�
⌫ BTB �AT⇥A

�
,

along with [�⇤, µ⇤,⇥⇤] optimal for the latter. Since they are also feasible for computation of

p
(2)
⇤ (0, ✏), one has that

p
(2)
�,✏

(⇥⇤)  �T (�⇤) + 2�2 ln(2m/✏)Tr(⇥⇤) + �2�V(µ⇤)  r + q2(✏).
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3.4 Proofs

3.4.1 Proofs of section 3.1

Proof of 3.1.1: We can use the same strategy as for 2.3.2’s proof. In cases where � � �1, 2.71
(with f(�) = � implying b(#) = 1 + #) yields the upper bound

⇢ī/%⇤(�, ")  max
n
2,
p

ln(e(I + 1))
o
 2
p
ln(e(I + 1))

and 2.70 gives
⇢ī�1/%⇤(�, ") 

p
ln(e(I + 1)).

When � < �1, we first control the ratio %⇤(�1, ")/%⇤(0, "): Consider the sub-optimal variables
(H0,⇥0,↵0,�0,�0) for computation of %⇤(�1, "), along with µ feasible for 3.5. Clearly, one has

%⇤(�1, ")  %⇤(0, ") + �1
p
�M(�0)�V(µ).

Minimization of the RHS for feasible µ and 2.70 yields

⇢1/%⇤(�, ") 
p

ln(e(I + 1))

✓
1 +

�1r0
%⇤(0, ")

◆
.

Finally, inequality Risk"[ bw(a)
lin |Z(�)]  2⇢ī + ⇢ī�1 allows to conclude that in all cases, one has

Risk"[ bw(a)
lin |Z(�)]  5

p
ln(e(I + 1))%⇤(�, ").

When looking at the adaptive polyhedral estimate, using (2.71) for p naturally yields, for any
semidefinite ⇥, that

p�i,✏
(⇥)  max

np
ln(e(I + 1)); 2

o
p�,"(⇥),

implying

p⇤(�i, ✏)  max
np

ln(e(I + 1)); 2
o
p⇤(�, ").

For the case of � < �1, proof is completely analogous to the developments above when replacing r0
by l0. This entails the upper bound

p⇤(�i, ✏)/p⇤(�, ")  max
np

ln(e(I + 1)); 2;
p
ln(e(I + 1))(1 + �1l0

p⇤(0,")
)
o


p

ln(e(I + 1))
⇣
1 + max

n
1; 2�I �l0

p⇤(0,")

o⌘

= 2
p
ln(e(I + 1))

 2

r
ln
⇣
e log2

⇣
2�
p

l0(")/p⇤(0, ")
⌘⌘

⇤

3.4.2 Proofs of section 3.2

Proof of 3.2.3:

Consider the event E := Ea \ Eb, where

Ea =
n
⇠ : kGT

[Ax+ ⇠]k1  ⇤(G)
o
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and
Eb =

�
⇠ : 8i 2 [I], kHT

i ⇠k1  1
 
.

By construction, probability of E is greater than 1� ". Indeed, one has that

Prob [Ea] � 1� "/2

and

Prob [Eb] � 1�
IX

i=1

Prob
⇥��HT

i ⇠
��
1
⇤
� 1�

IX

i=1

"

2I
= 1� "/2.

On event E , notice that (x, u) is admissible for problem 3.26. Since u is s�sparse, we can use 3.20
and the fact that G satisfies the Q1(1/4,m) condition to state that

kû� uk1  16s⇤(G) and kû� uk1  8⇤(G),

which in turn implies that
kû� uk2  8

p
2s⇤(G).

From this, on event E , û� u belongs to simple ellitope 8⇤(G)U(s)

U(s) :=
�
z 2 R

m : 9(t, t) 2 ([0 : 1]m ⇥ [0 : 2s]), kzk22  t and 8i 2 [1 : m], z2i  ti
 
.

Observe that if s  si, one also has û� u 2 2⇤iU(si). As a consequence, the convex upper bound

(û� u)T (Diag(µ) + µI)(û� u)  64⇤2(kµk1 + 2siµ)

holds for µ 2 R
m
+ and non-negative µ, and the contrast constructions of this proposition along with

the risk upper bound (3.27) are direct byproducts of subsection 2.3.3. The rest of the proof follows
proof of 3.11, where one uses in that specific case the fact that s ⌘ �2, and that for all i 2 [1 : I�1],
si  2si+1.

Proof of 3.2.4:

Consider the event E := Ea \ Eb, where

Ea =
n
⇠ : 8i 2 [1 : I], kGT

i [Ax+ ⇠]k1  ⇤i

o

and
Eb =

�
⇠ : 8i 2 [I], kHT

i ⇠k1  1
 
,

where ⇤i := ⇤(si, "/(2I)). By construction, probability of E is greater than 1� ". Indeed, one has
that

Prob [Ea] � 1�
IX

i=1

Prob
h���GT

i [Ax+ ⇠] � ⇤i

���
1

i
� 1�

IX

i=1

"

2I
= 1� "/2,

and

Prob [Eb] � 1�
IX

i=1

Prob
⇥��HT

i ⇠
��
1
⇤
� 1�

IX

i=1

"

2I
= 1� "/2.

On event E , notice that if u is si-sparse, the fact that Gi satisfies the Q1(1/4, si) condition allows
to state that

kûi � uk1  16si⇤i and kûi � uk1  8⇤i,
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which in turn implies that
kû� uk2  8

p
2si⇤i.

From this, on event E , if u is si-sparse, ûi � u belongs to simple ellitope 8⇤iU(si)

U(s) :=
�
z 2 R

m : 9(t, t) 2 ([0 : 1]m ⇥ [0 : 2s]), kzk22  t and 8i 2 [1 : m], z2i  ti
 
.

As a consequence, the convex upper bound

(û� u)T (Diag(µ) + µI)(û� u)  64⇤2
i (kµk1 + 2siµ)

holds for µ 2 R
m
+ and non-negative µ, and the contrast constructions of this proposition along with

the risk upper bound (3.31) are direct byproducts of subsection 2.3.2. The rest of the proof follows
proof of 3.10, where one uses in that specific case the fact that s ⌘ �2, and that for all i 2 [1 : I�1],
si  2si+1. ⇤
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3.5 Numerical Experiments

In this subsection, we provide numerical experiments illustrating results of Proposition 3.1.1, under
the uncertainty observation model described as follows.

3.5.1 Uncertainty observation model and data points generation

For i 2 [0 : 6], we consider the grid

i 2 [0 : 6], �0 = 0, �i = 2i�1.

As far as uncertainty observation models are concerned, we work with the models

m(�i) = [A,B,X + �iU ,N (0,�2I)],

where X is the intersection of 3 ellipsoids (a simple ellitope)

X =
�
z 2 R

50, 9t 2 [0 : 1]3, zTRiz  ti
 
.

and U is the following simple ellitope

U =
�
z 2 R

50, 9t 2 B
6
2, zTVjz  tj

 
, B

6
2 =

�
l 2 R

6; ktk2  1
 
.

Matrices A 2 R
40⇥50 and B 2 R

35⇥50 are generated by drawing random matrices eA, eB with
coe�cients following a N (0, 1), computing the SVDs eA = UaDaV T

a and eB = UbDbV T

b
and setting:

A = UaDiag(�(A))V T
a , �k(A) = 0.1 + (1� 0.1) ⇤ (1�

�
k/39

�
), k 2 [0 : 39]

B = UbDiag(�(B))V T

b
, �k(B) = 0.1 + (1� 0.1) ⇤ (1�

�
k/35

�
), k 2 [0 : 34].

The same strategy is applied for generating matrices involved in ellitopic descriptions of X and U .
We draw a random square matrix Si with N (0, 1) coe�cients, compute the SVD SiST

i
= �iDi�Ti ,

and set

Ri = �iDiag(�(i))�Ti , �(i)
k

= 0.1 + (1� 0.1) ⇤ (1�
�
k/49

�1/i
), k 2 [0 : 49].

When concerned with model m(�i), we generate signal x+ �iu along with observation

! = A(x+ �iu) + �⇠ 2 R
40 (3.38)

in the following way. We draw ex ⇠ N (0, I50), eu ⇠ N (0, I50) and set

x = ex
✓
max
i3

exTRiex
◆�1

2
, u = eu

0

@
X

j6

(euTVjeu)2
1

A
�1
2

.

Noise ⇠ is drawn from a N (0, I40). Finally, performance of estimates is calculated through quantity
kB(x + u) � bwAda(!)k, where k · k can either be k · k2 or k · k1, and bwAda(!) is the considered
adaptive estimate.
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3.5.2 plan of experiment

We repeat the proposed experiments for values of � being 1, 0.1, 0.01 and for the recovery norm
k · k1 and k · k2.
For all i 2 [0; 6], we compute

the best contrast for linear and polyhedral estimates w.r.t. 0.01 and 0.01/7-maximal risk over
m(�i). We respectively denote them Hi, Gi, H i and Gi.

their associated upper bounds %⇤(�i, 0.01),p⇤(�i, 0.01), %⇤(�i, 0.01/7) and p⇤(�i, 0.01/7).

We then generate, for all i 2 [0; 6] and all k 2 [1; 100], observations !(i)
k

of the form (3.38) under
model m(�i), and compute

the adaptive linear and polyhedral estimates bwAda

Lin
(!(i)

k
) and bwAda

Poly
(!(i)

k
) using contrasts

(H i)Ii=0 and G = [H0; ...;HI ].

estimates bwHi
Lin

(!(i)
k
), bwGi

Poly
(!(i)

k
).

quantities k bwAda

Lin
(!(i)

k
)�w(i)

k
k, k bwAda

Poly
(!(i)

k
)�w(i)

k
k, k bwHi

Lin
(!(i)

k
)�w(i)

k
k and k bwGi

Poly
(!(i)

k
)�w(i)

k
k,

where w(i)
k

= B(x(i)
k

+ �iu
(i)
k
) is the targeted signal.

We summarize the results of these experiments in the plots of the subsections to follow. Each
box-plot represents the distribution of error kB(x + u) � b!Adak, in the situation where noise is of
magnitude �, and signals are from X + �iU . The whiskers of each box-plots represents the 0.05 and
0.95 quantiles, while the red bars represent the theoretical upper bounds previously computed for
the 0.99 quantile of each estimate. We also include plots for the distribution of the ratio

kB(x+ u)� bwAdak
kB(x+ u)� bw(i)k

,

where bw(i) is the linear or polyhedral estimate that knows �i’s value.
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3.5.3 k · k1-recovery error

Figure 3.1: Evolution of the k · k1 error of the adaptive linear estimate as a function of parameter � and
noise �

Figure 3.2: Evolution of the k · k1 error of the adaptive polyhedral estimate as a function of parameter �
and noise �
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Figure 3.3: Evolution of kB(x+ u)� b!Ada

Lin
k1/kB(x+ u)� b!H�

Lin
k1 as a function of parameter � and noise �

Figure 3.4: Evolution of kB(x+u)� b!Ada

Poly
k1/kB(x+u)� b!H�

Poly
k1 as a function of parameter � and noise �
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3.5.4 k · k2-recovery error

When performance is measured using Euclidean norm, two selection routines are proposed to
produce adaptive linear estimates. We thus compute all contrasts that are necessary in order to
apply (2.4)’s method and Lepski’s method.

Figure 3.5: Evolution of the k · k2 error of the adaptive linear estimate as a function of parameter � and
noise �

Figure 3.6: Evolution of kB(x+u)� b!Ada

Lep
k2/kB(x+u)� b!H�

Qform
k2 as a function of parameter � and noise

�
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Figure 3.7: Evolution of kB(x+ u)� b!Ada

Lin
k2/kB(x+ u)� b!H�

Lin
k2 as a function of parameter � and noise �

The first take-away of 3.6 is that both estimates are roughtly equivalent in terms of their
statistical performance. Indeed, for heavy noise, both routines select the same estimate. Where
these two methods diverge is in the fact that one needs to computeO(I3) upper bounds for quadratic
form aggregation, whereas ”only” O(I2) are required for Lepski’s procedure. Moreover, risk-upper
bounds of contrasts tuned for the first are bigger than those for the latter, as they are respectively
for 2"

I(I+1) -risk and "

I+1 -risk.

Figure 3.8: Evolution of the k · k2 error of the adaptive polyhedral estimate as a function of parameter �
and noise �
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Figure 3.9: Evolution of kB(x+u)� b!Ada

Poly
k2/kB(x+u)� b!H�

Poly
k2 as a function of parameter � and noise �
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Chapter 4

First order algorithms for computing

linear and polyhedral estimates

91
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Abstract

It was recently shown [30, 33] that “properly built” linear and polyhedral estimates nearly attain
minimax accuracy bounds in the problem of recovery of unknown signal from noisy observations
of linear images of the signal when the signal set is an ellitope. However, design of nearly opti-
mal estimates relies upon solving semidefinite optimization problems with matrix variables, what
puts the synthesis of such estimates beyond the rich of the standard Interior Point algorithms of
semidefinite optimization even for moderate size recovery problems. Our goal is to develop First
Order Optimization algorithms for the computationally e�cient design of linear and polyhedral
estimates. In this paper we (a) explain how to eliminate matrix variables, thus reducing dramati-
cally the design dimension when passing from Interior Point to First Order optimization algorithms
and (b) develop and analyse a dedicated algorithm of the latter type—Composite Truncated Level
method.

4.1 Introduction

In this paper we discuss numerical algorithms for construction of “presumably good” estimates in
linear inverse problems. Specifically, consider the estimation problem as follows. We are given an
observation ! 2 R

m,
! = Ax+ ⇠ (4.1)

where ⇠ 2 R
m is zero mean random noise, A 2 R

m⇥n is observation matrix, and x is unknown
signal known to belong to a given convex set X ⇢ R

n. Our objective is to recover the linear image
w = Bx, B 2 R

⌫⇥n, of x.
Our focus is on linear and polyhedral estimates for solving the problem in question.

When applied to the estimation problem above, linear estimate bwH

lin(!) of w is of the form bwH

lin(!) =
HT! where contrast matrix H 2 R

m⇥⌫ is the estimate’s parameter. A polyhedral estimate bwH

poly(!)

is specified by a contrast matrix H 2 R
m⇥M according to

! 7! bxH(!) 2 Argmin
x2X

�
kHT (! �Ax)k1

 
, bwH

poly(!) := BbxH(!).

Our interest in these two types of estimates stems from the fact that, as it was shown in [30, 32,
33], in the Gaussian case (⇠ ⇠ N (0,�2Im)), linear and polyhedral estimates with properly designed
e�ciently computable contrast matrices are near-minimax optimal in terms of their risks over a
rather general class of loss functions and signal sets which we call ellitopes. 1 In this paper, our goal
is to investigate numerical algorithms for design of near-optimal linear and polyhedral estimates.
Specifically, we aim at developing numerical routines for e�cient computation of contrast matrices
H, the principal parameters of the estimates of both types.
As it was shown in [30, 32, 33], given the problem data—matrices A, B, the signal ellitope X , and
the co-ellitopic norm k ·k in which estimation error is measured, computing the contrast matrices of
linear and polyhedral estimates amounts to solving a well-structured convex optimization problem
with linear objective and linear matrix inequality constraints. State-of-the-art optimization soft-
ware, e.g., CVX [16] which relies upon Interior Point Semidefinite Programming (SDP) algorithms
may be used to compute high-accuracy solutions to these problems. However, the structure of the

1Exact definitions of these sets are reproduced in the main body of the paper. For the time being, it su�ces to
point out an instructive example: a bounded intersections of finitely many sets of the form {x : kPxkp  1}, p � 2,
is an ellitope.
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optimization problems in question (presence of “dense” matrix arguments) results in prohibitively
long processing times by IPM algorithms already for rather moderate problem dimensions (signal
dimension n in the range of few dozens). In this paper we discuss an alternative approach to solv-
ing the problem of designing linear and polyhedral estimates which rely upon first order algorithm,
namely, the Composite Truncated Level method (CTL) of the bundle family. In particular, we
show how matrix arguments can be eliminated from the contrast optimization problem and how
the problem can be cast in the form amenable for first order algorithms.

The paper is organized as follows. In Section 4.2 we present the precise setting of the estimation
problem and define optimization problems underlying the contrast design for linear and polyhedral
estimates. To set up the first order optimization algorithm, we demonstrate how the problem
of contrast computation for linear estimate can be reduced to that for the polyhedral one, and
then explain in Section 4.3 how the latter problem can be rewritten in the form not involving
matrix arguments and convenient for solving using first order algorithms. A small simulation study
presented in Section 4.3.2 illustrates numerical performance of the proposed algorithms. We present
the details of the Composite Truncated Level algorithm in Section 4.4 of the appendix. Proofs of
technical statements are put to Section 4.5.

4.2 Linear and polyhedral estimates

4.2.1 Estimation problem

Consider the problem of recovering linear image w = Bx of unknown signal x 2 R
n from noisy

observation
! = Ax+ �⇠ (4.2)

where B 2 R
⌫⇥n and A 2 R

m⇥n are given matrices, � > 0 is known, and x is known to belong to
a given signal set X . Throughout the paper ⇠ is (0, Im)-sub-Gaussian, denoted ⇠ ⇠ SG(0, Im), i.e.,
for all t 2 R

m,

E

n
et

T
⇠

o
 exp

�
1
2ktk

2
2

�
. (4.3)

Given a norm k · k on R
⌫ and reliability tolerance ✏ 2 (0, 1), we quantify the performance of a

candidate estimate bw(·) by its ✏-risk

Risk✏[ bw|X ] = supx2X inf⇢ {⇢ : Prob⇠ {k bw(Ax+ ⇠)�Bxk > ⇢}  ✏} . (4.4)

We assume from now on that the signal set X and the polar B⇤ of the unit ball of k · k are basic
ellitopes (see, e.g., [30] and [32, Section 4.2]). Specifically, we set

X = {x 2 R
n : 9t 2 T : xTTkx  tk, k  K},

B⇤ = {y 2 R
⌫ : 9s 2 S : yTS`y  s`, `  L}. (4.5)

Here Tk ⌫ 0 with
P

k
Tk � 0 (respectively, S` ⌫ 0 with

P
`
S` � 0, and T ⇢ R

K
+ (respectively,

S ⇢ R
L
+) is a convex compact set which is monotone (i.e., 0  t  t0 2 T ) t0 2 T )2 and possesses

a nonempty interior. We refer to K (respectively, to L) as ellitopic dimension of X (respectively,
of B⇤).

Every basic ellitope is a convex compact set with nonempty interior which is symmetric w.r.t.
the origin. “Standard” examples of basic ellitopes are:

2Here and in the sequel, relationships t  s (or t < s) between t, s 2 RK are understood entrywise, i.e., as ti  si

(respectively, as ti < si), i = 1, ...,K.



94

A bounded intersection X of K centered at the origin ellipsoids/elliptic cylinders {x 2 R
n :

xTTkx  1} [Tk ⌫ 0]:

X = {x 2 R
n : 9t 2 T := [0, 1]K : xTTkx  tk, k  K}

In particular, the unit box {x 2 R
n : kxk1  1} is a basic ellitope.

A k · kp-ball in R
n with p 2 [2,1]:

{x 2 R
n : kxkp  1} =

�
x : 9t 2 T = {t 2 R

n

+, ktkp/2  1} : x2
k|{z}

xTTkx

 tk, k  n
 
.

4.2.2 The estimates

The interest in ellitopes in the present context is motivated by the results of [30, 32, 33] which
state that, in the situation in question, “near-optimal”—with risks within logarithmic in K and L
factors from the minimax risk—estimates can be found among linear and polyhedral ones.

Linear estimate

Linear estimate is specified by an m⇥ ⌫ contrast matrix H according to

bwH(!) = HT!.

Let

r{[H] := min
�,µ,⇥

⇢
�T (µ) + �S(�) + �2{2Tr(⇥) : � � 0, µ � 0 (4.6)

2

4

P
`
�`S`

1
2(B �HTA) 1

2H
T

1
2(B �HTA)T

P
k
µkTk

1
2H ⇥

3

5 ⌫ 0

9
=

;

where for G ⇢ R
p

�G(z) = sup
g2G

zT g : Rp ! R [ {+1}

is the support function of G.

Proposition 4.2.1 (cf. [32, Proposition 4.14]) Let bwH

lin(!) = HT! with some H 2 R
m⇥⌫ .

(i) Then
sup
x2X

E
�
k bw(Ax+ ⇠) bwH

lin(!)�Bxk
 
 r1[H]

(ii) Furthermore, let
{ = 1 +

p
2 ln[✏�1].

Then

Risk✏[ bwH

lin|X ]  r{[H]. (4.7)

Furthermore, function r{[H] is a convex, continuous and coercive function of the contrast matrix,
and can be e�ciently minimized w.r.t. H.
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Remarks.

As a consequence of the statement (i) of the proposition, the optimal value r
⇤ of the (clearly

solvable) convex optimization problem

r
⇤ := min

H

r1[H] = min
H,�,µ,⇥

⇢
�T (µ) + �S(�) + �2Tr(⇥) : � � 0, µ � 0 (4.8)

2

4

P
`
�`S`

1
2(B �HTA) 1

2H
T

1
2(B �HTA)T

P
k
µkTk

1
2H ⇥

3

5 ⌫ 0

9
=

;

is an upper bound on the expected risk

Risk[ bw⇤
lin|X ] = sup

x2X
E {k bw⇤

lin(Ax+ ⇠)�Bxk}

of the estimate bw⇤
lin(!) = HT

⇤ ! yielded by the H-component H⇤ of an optimal solution to
the problem. Note that we do not need to assume that the noise ⇠ is sub-Gaussian for the
above bound to hold: it would su�ce to suppose that E{⇠⇠T } � �2I. Moreover (cf. [32,
Proposition 4.16]), the value r

⇤ is within moderate factor of the minimax-optimal k · k-risk

RiskOpt[X ] = inf
bw(·)

Risk[ bw|X ]

(here inf is taken over all estimates, linear and non-linear alike):

r
⇤  O(1)

p
ln(K + 1) ln(L+ 1)RiskOpt[X ] (4.9)

(from now on, O(1)’s stands for an absolute constant).

Observe that the ✏-risk of the estimate bw⇤
lin may be evaluated using the statement (ii) of

Proposition 4.2.1.

Corollary 4.2.1 Let ✏ 2 (0, 1). The ✏-risk of the estimate bw⇤
lin(!) satisfies

Risk✏[ bw⇤
lin|X ] 

⇣
1 +

p
2 ln[✏�1]

⌘
r
⇤.

The bound  ✏(⇥) = {2Tr(⇥) for the 1 � ✏ quantile of the quadratic form ⇠T⇥⇠ in the
expression (4.6) can be replaced by the following tighter but harder to process bounds (cf,
e.g., [38, Proposition A.1])

 ✏(⇥) := min
↵

�
� ↵

2 logDet(I � 2↵�1⇥) + ↵ ln[✏�1], ↵ � 2�max(⇥)
 

  0
✏(⇥) := min

↵

�
Tr(⇥) + Tr

�
⇥(↵I � 2⇥)�1⇥

�
+ ↵ ln(✏�1) : ↵ � 2�max(⇥)

 

 e ✏(⇥) := Tr(⇥) + 2k⇥kFro
p
ln[✏�1] + 2�max(⇥) ln[✏

�1]   ✏(⇥). (4.10)
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Polyhedral estimate

Polyhedral estimate is specified by m⇥m contrast matrix H satisfying

��kColj [H]k2  1, 1  j  m, (4.11)

with
� = [�(✏/m) =]

p
2 ln[2✏/m];

in other words, H is normalized by the requirement that

Prob⇠⇠SG(0,I){�kHT ⇠k1 > 1}  ✏. (4.12)

The associated with H polyhedral estimate bwH

poly(!) is

bwH

poly(!) = Bx(!), x(!) = argmin
x

�
kHT (! �Ax)k1 : x 2 X .

 
(4.13)

It is shown in [32, Setion 5.1.5] that the ✏-risk of bwH

poly is upper-bounded by the quantity

min
�,µ,�

n
2
h
�S(�) + �T (µ) +

X

j

�j
i
: � � 0, µ � 0, � � 0 (P [H])

 P
`
�`S`

1
2B

1
2B

T ATHDiag{�}HTA+
P

k
µkTk

�
⌫ 0

�

A presumably good synthesis of the contrast H is yielded by feasible solutions to the convex
optimization problem

p
⇤
� = min

⇥

n
p�[⇥] := min

�,µ

n
2
⇥
�S(�) + �T (µ) + �2�2(✏/m)Tr(⇥)

⇤
: � � 0, µ � 0, ⇥ ⌫ 0 (4.14)

 P
`
�`S`

1
2B

1
2B

T AT⇥A+
P

k
µkTk

�
⌫ 0

�

Given a feasible solution (�, µ,⇥) to (4.14), we set H = [��(✏/m)]�1U where ⇥ = UDiag{⌫}UT

is the eigenvalue decomposition of ⇥ and � = [��(✏/m)]2⌫. Note that such H satisfies (4.11)
and, moreover, (�, µ, �, H) is a feasible solution to (P [H]) with values of respective objectives of
both problems at these feasible solutions being equal to each other. As a result, the ✏-risk of the
polyhedral estimate bwpoly stemming, in the just explained fashion, from an optimal solution to the
(clearly solvable) problem (4.14) is upper-bounded by p

⇤
�. As shown in [32, Proposition 5.10], the

resulting polyhedral estimate is nearly minimax-optimal:

Risk✏[ bwpoly|X ]  p
⇤
�  O(1)

p
ln(K + 1) ln(L+ 1) ln(2m/✏)RiskOpt✏[X ]

where RiskOpt✏[X ] is the minimax ✏-risk.

4.2.3 From polyhedral to linear estimate and back

Observe that problems (4.8) and (4.14) responsible for the design of nearly minimax-optimal under
the circumstances linear and polyhedral estimates are well structured convex problems. State-of-
the-art Interior Point Semidefinite Programming (SDP) algorithms may be use to compute high-
accuracy solutions to these problems in a wide range of geometries of T and S. However, the
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presence of matrix variables H and ⇥ results in large design dimensions of the SDP’s to be solved
and make prohibitively time consuming processing problem instances of sizes m,n in the range of
hundreds. The first goal of this paper is to show that matrix variables may be eliminated from
(4.8) and (4.14) allowing for processing by dedicated First Order algorithms, resulting in significant
extension of the ranges of problem sizes amenable for numerical processing.

Our first observation is that problems (4.8) and (4.14) are “nearly reducible” to each other.

Indeed, let (�, µ,H,⇥) be feasible to (4.8). We clearly have ⇥ ⌫ 0. Let G =


I

I AT

�
. By

multiplying the semidefinite constraint of (4.8) by G on the left and GT on the right we conclude
that (�, µ,⇥) is a feasible solution to (4.14) with the corresponding objective value

2[�S(�) + �T (µ) + �2�2Tr(⇥)] = 2r�[H].

The converse is also true.

Lemma 2 Let (�, µ,⇥) be a feasible solution to (4.14). Then it can be augmented to the feasible
solution (2�, µ,H,⇥) of (4.8) with the corresponding objective value

2�S(�) + �T (µ) + �2{2Tr(⇥)  p{[⇥].

4.3 Designing polyhedral estimates by a First Order method

According to the results from the previous section, when speaking about numerical design of linear
and polyhedral estimates, we can focus solely on solving problem (4.14).3 Next, projecting, if
necessary, the observation ! onto the image space of A, we can assume w.l.o.g. that m  n and
the image space of A is the entire R

m. In fact, we make here a stronger assumption:4

AssO: Matrix A 2 R
n⇥n in (4.2) is nonsingular.

Under this assumption, we can carry out partial minimization in ⇥ in (4.14). Specifically, it is
immediately seen that (4.14) is equivalent to the optimization problem

min
�,µ,⇥

�
�S(�) + �T (µ) + �2�2Tr(⇥) : � > 0, µ � 0, ⇥ ⌫ 0 (4.15)

⇥ ⌫ A�T

"
1
4B

T

hX
`
�`S`

i�1
B �

X

k

µkTk

#
A�1

| {z }
T(�,µ)

�

In the latter problem partial minimization in ⇥ is as follows: given � > 0 and µ � 0 we compute
the eigenvalue decomposition

T(�, µ) = UDiag{�}UT

of T(�, µ). The best in terms of the objective of (4.15) choice of ⇥ given �, µ is

⇥ = UDiag{�+}UT [↵+ = max[↵, 0]].

3Strictly speaking, this is so if we assume that when looking for a linear estimate, we are ready to tolerate a
moderate constant factor (namely, 2) in the risk bound of the resulting estimate.

4We briefly describe the “conversion” of (4.14) into the form amenable for First Order algorithms in the case of
singular A in Section 4.6.



98

Therefore, (4.15) reduces to

min
�>0,µ�0

n
⌥(�, µ) := �S(�) + �T (µ) + �2�2

X

i

�+
i
(T(�, µ))

o
(4.16)

T(�, µ) = A�T

"
1
4B

T

hX

`

�`S`
i�1

B �
X

k

µkTk

#
A�1

where �1(Q) � �2(Q) � ... � �p(Q) are the eigenvalues of symmetric p ⇥ p matrix Q. and
�+
i
(Q) = max[�i(Q), 0].

4.3.1 Setting up Composite Truncated Level algorithm

We intend to solve the problem of interest (4.14) by applying to (4.16) a First Order algorithm—
Composite Truncated Level algorithm (CTL). Detailed description of the method is presented in
Section 4.4. CTL is aimed at solving convex optimization problems of the form

Opt = min
x2X

{�(x) :=  (x) + f(x)} (4.17)

where X ⇢ R
N is a nonempty bounded and closed convex set, and  (·) and f(·) are Lipschitz

continuous convex functions on X with “simple” X and  (for details, see Section 4.4). Note that
in order to reduce the problem of interest (4.16) to the form (4.17), it su�ces to set

X =

⇢
x = [�;µ] 2 R

L+K

+ , �` � � 8`,
X

`

�` +
X

k

µk  R

�
,

 ([�;µ]) = �S(�) + �T (µ), (4.18)

f([�;µ]) = �2�2
X

i

�+
i
(T(�, µ)).

When solving (4.17), CTL “learns” the di�cult part f(x) of the objective via oracle which, given
on input a query point x 2 X, returns a “simple” Lipschitz continuous convex function (model)
fx(·) such that

fx(x) = f(x) & fx(y)  f(y) 8y 2 X.

Oracle O%. In the situation we are interested in with the data for (4.17) given by (4.18), the oracle
may be built as follows:

1. Given query point x = [�;µ] 2 X, we compute the matrices ⇤ =
P

`
�`S` and T = T(�, µ)

along with the eigenvalue decomposition T = UDiag{�}UT
, �1 � �2 � ... � �n of T.

2. We put

T (�, µ) = A�T

h
1
4B

T⇤
�1
h
2⇤�

X
`
�`S`

i
⇤
�1

B �
X

k
µkTk

i
A�1

This function is obtained from T(�, µ) by linearization in � at � = � and clearly⌫-underestimates
T(�, µ) on X, while T (�, µ) ⌘ T(�, µ). Consequently,

f([�;µ]) = �2�2
X

i

�+
i
(T(�, µ)) � f

�
(�, µ) := �2�2

X

i

�+
i
(T (�, µ)),

the inequality being equality when � = �.
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Recall that for every symmetric convex function g on R
n and every n⇥ n symmetric matrix

D one has [13, Proposition 4.2.1]

g([D11; ...;Dnn])  g(�(D)).

When specifying g(s) =
P

n

i=1 s
+
i
and denoting by Di(�, µ) the diagonal entries in the matrix

U
T
T (�, µ)U , 1  i  n, we get

[f([�;µ]) �] f
�
(�, µ) �

nX

i=1

D+
i
(�, µ) 8(� > 0, µ � 0)

with both inequalities becoming equalities for � = � and µ = µ. Taking into account that
functions Di(�, µ) are a�ne, we conclude that piecewise linear function

P
i
D+

i
(�, µ) under-

estimates f([�;µ]) in the domain � > 0 and is equal to f([�;µ]) when (�, µ) = (�, µ).

3. The above considerations justify the oracle O% defined as follows:

f
x=[�;µ](x) =

%X

◆=1

max[↵◆(x), 0],

where %, 1  %  n, is “complexity parameter” of the oracle, and ↵◆(x) are a�ne functions
of x = [�;µ] specified according to

for ◆ < %, ↵◆(x) = D◆(x);

↵%(x) =
P

◆�%D◆(x), D◆(x) =

⇢
D◆(x), D◆(x) � 0,
0, otherwise.

By construction, fx(x) is the sum of % positive parts of linear forms, underestimates f(x)
everywhere, and coincides with f(x) when x = x.

4.3.2 Numerical illustration

Consider the situation in which k · k is k · k2. In this case problem (4.14) reads

p
⇤
� = min

�,µ,⇥

8
<

:2[�+ �T (µ) + �2�2Tr(⇥)] :
� � 0, µ � 0,⇥ ⌫ 0
�I⌫

1
2B

1
2B

T AT⇥A+
P

k
µkTk

�
⌫ 0

9
=

; (4.19)

Observe that scaling a feasible solution (�, µ,⇥) to the problem according to (�, µ,⇥) 7! (s�, s�1µ, s�1⇥)
with s > 0 preserves feasibility; the best in terms of the objective scaling of (�, µ,⇥) corresponds to
s =

p
[�T (µ) + �2�2Tr(⇥)]/� and results in the value of the objective 4

p
�[�T (µ) + �2�2Tr(⇥)],

As a result, we can eliminate the variable �, thus arriving at the problem

p
⇤
�
= min

µ,⇥

8
<

:F (µ,⇥) := �T (µ) + �2�2Tr(⇥) :
µ � 0,⇥ ⌫ 0

I⌫
1
2B

1
2B

T AT⇥A+
P

k
µ
k
Tk

�
⌫ 0

9
=

; (4.20)

A feasible (an optimal) solution µ,⇥ to (4.20) gives rise to feasible (resp., optimal) solution � =q
F (µ,⇥), µ = µ/�, ⇥ = ⇥/� to (4.19) with the value of the objective equal to 4

q
F (µ,⇥); in

particular,

p
⇤
� = 4

q
p
⇤
�.
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In our experiments, we used B = In, A 2 R
n⇥n with i.i.d. entries drawn from N (0, 1), we put

� = 0.1, ✏ = 0.05, and used ellitopic signal set

X = {x 2 R
n :
X

i2Ik

i x2i  1, 1  i  K}

where I1, ..., IK are consecutive segments of the range 1  i  n of cardinality n/K each .
Under the circumstances, problem (4.20) reads

p
⇤
� = min

µ,⇥

8
<

:

KX

k=1

µk + �2�2(✏/n)| {z }
�

Tr(⇥) :
µ � 0,⇥ ⌫ 0

I⌫
1
2In

1
2In AT⇥A+D[µ]

�
⌫ 0

9
=

; (4.21)

where D[µ] is diagonal n⇥ n matrix with the i-th diagonal entry equal to µk when i 2 Ik.
After eliminating ⇥ by partial minimization (4.21) becomes

min
µ

(
X

k

µk + �
X

◆

�+◆ (A
�T [In �D[µ]]A�1) : 0  µ,

X

k

µk  R

)
(4.22)

(we have imposed a large enough upper bound on
P

k
µk to make the optimization domain bounded).

The resulting problem was processed by the CTL algorithm utilizing oracle O%. % was the first of the
two control parameters used the experiments; the second parameter was the maximum cardinality
⌧ of bundle allowed for CTL.5 We used “`1/`2 proximal setup,” [85, Section 2.1], in which

k · k = k · k1, !(µ) = nkµk2pn , pn = 1 + 1/ lnn,

where n is an easy to compute constant ensuring strong convexity, modulus 1, of !(·) w.r.t. k·k1(see
[85, Theorem 2.1]). The CTL parameters �`, ✓, ✓ were set to 1/2, and the auxiliary problems (steps
4.2-4.3) were processed by Interior Point solver Mosek invoked via CVX, see [16]. When solving (4.22),
computations were terminated when the best found so far value of the objective were within the
factor 1.1 of the generated by the method lower bound on the optimal value.

We report on results of our experiments in Tables 4.1 and 4.2.6 To put these results in proper
perspective, note that solving (4.21) by state-of-the-art Mosek Interior Point solver takes 35 sec
when n = 64, K = 8 and 1785 sec when n = 128, K = 16; as applied to the same problem with
n = 256, K = 64, Mosek runs out of memory.

4.4 CTL—Composite Truncated Level algorithm

4.4.1 Situation and goal.

CTL is a First Order method for solving optimization problems

Opt = min
x2X

�(x) :=  (x) + f(x), (4.17)

where

5For description of CTL and related entities, see Section 4.4.
6MATLAB code for this experiment is available at GitHub repository https://github.com/ai1-fr/

Algorithms-for-linear-and-polyhedral-estimates/tree/main.

https://github.com/ai1-fr/Algorithms-for-linear-and-polyhedral-estimates/tree/main
https://github.com/ai1-fr/Algorithms-for-linear-and-polyhedral-estimates/tree/main
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n 64 128 256 512 1024 1024
K 8 16 32 64 128 1024
calls 23 8 10 28 24 26
phases 11 4 5 14 11 11

CPU, sec 7 2 4 20 96 781
0.05-risk 3.215 4.283 4.519 4.169 4.216 7.868
k · k2-risk 1.709 2.237 2.389 2.209 2.231 4.271

Table 4.1: Solving (4.22) by CTL with % = 10, ⌧ = 10.

%=1 %=10
⌧=1 50/11/275 31/12/136
⌧=10 26/11/109 24/11/96

Table 4.2: Performance of CTL vs. % and ⌧ , problem (4.22) with n = 1024,K = 128.
Data in cells: # of calls/# of phases/CPU time, sec.

X ⇢ R
n is nonempty, convex, closed, and bounded

 : X ! R and f : X ! R are Lipschitz continuous convex functions.

Our assumptions are as follows:
Ass1: X is equipped with a proximal setup composed of a norm k · k on R

n and a distance-
generating function ! : X ! R which is continuously di↵erentiable and strongly convex on X with
convexity modulus 1 w.r.t. k · k:

hr!(x)�r!(y), x� yi � kx� yk2 8x, y 2 X.

Proximal setup induces Bregman distance Vx(y) on X and Bregman diameter ⌦ of X:

Vx(y) = !(y)� [!(x)� hr!(x), y � xi] � 1
2kx� yk2, x, y 2 X

⌦ =


2 max
x,y2X

Vx(y)

�1/2
� max

x,y2X
kx� yk.

Ass2: We have at our disposal oracle O which, given on input a query point x 2 X, returns a
piece—a Lipschitz continuous on X convex function

�x(·) =  (·) + fx(·) : X ! R

where fx(·) belongs to some family F of “simple” Lipschitz continuous convex functions on X. We
suppose that

8(x, y 2 X) : fx(y)  f(y) & fx(x) = f(x)

(in particular, �(x) = �x(x)) and that functions �x(·) : X ! R are uniformly in x 2 X Lipschitz
continuous on X:

|�x(u)� �x(v)|  L�ku� vk 8(u, v 2 X) (4.23)

for some L� < 1.
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The simplest example of such oracle is that of family F comprised of a�ne functions of Rn,
and fx(y) = f(x) + hf 0(x), y � xi where f 0(x) is a subgradient of f at x (“first order oracle”).
In a less trivial example, f(x) is the largest eigenvalue of a symmetric matrix S(x) which a�nely
depends on x, while fx(y) = maxik eTi S(y)ei, where k  n is fixed and e1, ..., ek are the k leading
eigenvectors of S(x).
Ass3: We assume that for some positive integer ⌧ we are able to solve e�ciently problems of the
form

min
y

⇢
 (y) + max

◆⌧
fx◆(y) : y 2 X,↵(y)  0

�

and

min
y

⇢
Vx(y) : y 2 X, (y) + max

◆⌧
fx◆(y)  `,↵(y)  0

�

where ↵(·) is an a�ne function.
We remark that the algorithm to follow is the composite version of Non-Euclidean Restricted

Memory Level method [86] operating with  ⌘ 0 and the family of a�ne functions in the role of
F ; the Euclidean version of the latter algorithm is the minimization version of the Proximal level
bundle method from [87].

The algorithm

The description of CTL is as follows.
0. Control parameters of the algorithms are �` 2 (0, 1), ✓ 2 (0.1), ✓ 2 (0, 1).
1. At the beginning of an iteration of CTL, we have at our disposal
1.1) upper bound � on Opt—the best (the smallest) of the values of � observed at the query

points processed so far. These upper bounds do not increase as the iteration count grows. The
query point by with � = �(by) is considered as the approximate solution generated so far.

1.2) lower bound � on Opt; these lower bounds do not decrease as the iteration number grows

1.3) prox-center x 2 X and level ` 2 (�,�)
1.4) query point x 2 X
1.5) bundle – a nonempty collection B of ⌧B  ⌧ pieces �◆(·) =  (·) + f ◆(·)}, 1  ◆  ⌧B, with

f ◆ 2 F ; positive integer ⌧ is a parameter of the algorithm.
• The very first iteration is preceded by initialization where we call the oracle at a (whatever) point
xini 2 X and set

� = �(xini), � = min
x2X

[ (x) + fxini(x)], B = { (x) + fxini(x)}

Note that since the pieces reported by the oracle underestimate �(·), we do ensure �  Opt.
2. Iterations are split into consecutive phases, with prox-center and level common to all itera-

tions of a phase. For a particular phase,
2.1) the prox-center x is selected at the beginning of the first iteration of the phase and can be

a whatever point of X;
2.2) the query point of the first iteration of the phase is x = x,
2.3) the level ` is selected at the beginning of the very first iteration of the phase as

` = �`�+ (1� �`)�.

• At the beginning of the first iteration of a phase, we set

� = �� `, � = `� �, � = �+� = �� �.
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Note that the gap � of a phase upper-bounds the inaccuracy in terms of the objective of the
approximate solution available at the beginning of the phase.

3. At iterations of a phase, we maintain the relation

�(y) � ` for all y 2 X such that hr!(x)�r!(x), y � xi < 0 (4.24)

where x, ` are the prox-center and the level of the phase, and x is the query point of the iteration.
Note that this relation takes place at the very first iteration of a phase, since for such an iteration
x = x.

4. An iteration of a phase is organized as follows:
4.1) We call the oracle at the query point x of the iteration, thus getting the value of the

objective �(x) and a piece �x(·). After �(x) is known, we

— update the upper bound � and the approximate solution bx:

�
�, bx

�
=

⇢
(�(x), x), if �(x) < �
(�, bx), otherwise.

— update the bundle B by adding to it the piece �x(·) and removing, if necessary, one of “old”
pieces to keep the number of pieces �1, ...,�⌧B in the resulting bundle to be at most ⌧ .

4.2) If �(x)� `  ✓� (“essential progress in upper bound on Opt”), we terminate the phase and
pass to the next one. Otherwise we solve the auxiliary problem

e� = min
y

⇢
b�(y) := max

1◆⌧B
�◆(y) : y 2 X, hr!(x)�r!(x), y � xi � 0

�
(4.25)

(as usual, e� = +1 when the right hand side problem is infeasible), and update the lower bound �
on Opt according to

� 7! max
h
�,min[e�, `]

i

Note: by (4.24), �(y) � ` at every point y 2 X which is not feasible for the optimization problem in
(4.25). Besides this, the pieces �i(·) in the bundle, and, consequently, the model b�(·), underestimate
�(·) on X. As a result, the quantity min[e�, `], and consequently the new value of �, indeed is a
lower bound on Opt.

If updated � satisfies
`� �  ✓�

(“essential progress in lower bound on Opt”), we terminate the phase and pass to the next one.
4.3) If the iteration in question does not result in phase change, we solve the auxiliary problem

min
y

n
Vx(y) : y 2 X, b�(y)  `, hr!(x)�r!(x), y � xi � 0

o
(4.26)

take its optimal solution, x+, as the new query point, and pass to the next iteration of the phase.
Note: when we need to solve (4.26), we have, by construction, e�  `, so that the problem in (4.26)
is feasible, a feasible solution being a minimizer in (4.25). Thus, the new query point x+ is well
defined. Besides this, from the definition of x+ it follows that

hr!(x+)�r!(x), y � x+i � 0
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for every feasible solution y to (4.26). As a result, when y 2 X satisfies the relation

hr!(x+)�r!(x), y � x+i < 0,

y is infeasible for (4.26), meaning that either b�(y) > `, and in such case �(y) � b�(y) � `, or y
satisfies the premise in (4.24), implying that �(y) � ` by (4.24). We see that (4.24) holds true
when x is replaced with x+, that is, (4.24) is maintained during the iterations.

Convergence analysis

Observe that

(!) If a phase is finite, then the gap �+ of the subsequent phase does not exceed a fixed
fraction ✓� of the gap � of the phase in question, where

✓ = max
⇥
1� �`✓, ✓ + �`(1� ✓)

⇤
2 (0, 1);

Indeed, (!) is an immediate consequence of the phase termination rules in 4.2 combined with the
facts that � does not decrease, and � does not increase as the iteration count grows.
The following observation is crucial:

(!!) The number of iterations at a phase with gap � does not exceed

&✓
L�⌦

✓�`�

◆2
'

(4.27)

(here dae stands for the upper integer part of a—the smallest integer greater or equal
to a).

Indeed, let ` be the level of the phase. Assume that the phase contains more that T � 1 iterations,
so that the upper bound �, the lower bound � on Opt, same as the model �t(·) generated at
iteration t of the phase are well defined for t = 1, ..., T , and the query points xt are well defined for
t = 1, ..., T + 1. By construction, for 1  t  T we have

�t(xt) > `+ ✓�, (4.28a)

�t(xt+1)  `, (4.28b)

hrVx(xt), xt+1 � xti � 0 (4.28c)

where x = x1 is the prox-center of the phase. Indeed, when t  T ,
— (4.28a) holds true since otherwise the phase would be terminated at its t-th iteration due to
essential progress in upper bound on Opt, which is not the case when t  T ;
— (4.28b) and (4.28c) hold because, by construction of xt+1 at a non-concluding iteration t of a
phase, xt+1 minimizes continuously di↵erentiable on X convex function Vx(·) over the set

X \ {y 2 X : �t(y)  `} \ {y 2 Y : hrVx(xt), y � xti � 0}.

Now note that by construction of �t(·) and due to Assumption Ass2, �t is Lipschitz continuous
with constant L� w.r.t. k · k, which combines with (4.28a) and (4.28b) to imply that

kxt � xt+1k > L�1
�
✓ ·� = L�1

�
✓�`�.
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The latter relation, in turn, combines with (4.28c) and with inherited from !(·) strong convexity
of Vx(·) on X w.r.t. k · k to imply that

Vx(xt+1) > Vx(xt) +
[✓�`]2�2

2L2
�

, 1  t  T.

Taking into account that Vx(x1) = 0 and Vx(x)  1
2⌦

2 for all x 2 X, we arrive at (4.27).
As an immediate consequence of (!) and (!!), we get the following e�ciency estimate:

Proposition 4.4.1 For every ✏ 2 (0, L�⌦), the overall number of CTL iterations until an ✏-
optimal, as certified by current gap, solution to the minimization problem is built does not exceed

N(✏) = C(L�⌦/✏)
2

with C depending solely on the control parameters �`, ✓, and ✓.

4.5 Proofs for Section 4.2

4.5.1 Proof of Proposition 4.2.1

To save notation, in this section we use shortcut notation bwH for the linear estimate bwH

lin(Ax+ ⇠).
Note that for all x 2 X , the loss k bwH �Bxk of the estimate bwH satisfies

k bwH �Bxk = k(HTA�B)x+ �HT ⇠k = max
u2B⇤

�
uT [(HTA�B)x+ �HT ⇠]

 

= max
u2B⇤

8
<

:[u;x;�⇠]T

2

4
1
2(B �HTA) 1

2H
T

1
2(B �HTA)T

1
2H

3

5 [u;x;�⇠]

9
=

;

 max
u2B⇤,x2X

(
uT
"
X

`

�`S`

#
u+ xT

"
X

k

µkTk

#
x+ �2⇠T⇥⇠

)

where µ,� � 0 and ⇥ 2 S
m are such that

2

4

P
`
µ`S`

1
2(B �HTA) 1

2H
1
2(B �HTA)T

P
k
�kTk

1
2H

T ⇥

3

5 ⌫ 0.

We conclude that for all x 2 X ,

k bwH �Bxk  max
s2S,t2T

(
X

`

�`s` +
X

k

µktk + �2⇠T⇥⇠

)
= �S(�) + �T (µ) + �2⇠T⇥⇠.

Due to (4.3) we have E{⇠⇠T } � �2I. We conclude that E{⇠T⇥⇠}  Tr(⇥) what implies the first
claim of the proposition. To complete the proof it remains to recall the bound

Prob⇠
�
⇠T⇥⇠ � {2Tr(⇥))

 
 ✏

for deviations of the quadratic form of sub-Gaussian random vectors (cf., e.g., [78, 88, 89]). ⇤
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4.5.2 Proof of Corollary 4.2.1

Indeed, let { = 1 +
p
2 ln[✏�1], and let �⇤, µ⇤ and ⇥⇤ be components of an optimal solution to

(4.8). Notice that �⇤, µ⇤ and ⇥⇤ are feasible for (4.6). Moreover, �, µ and ⇥ where

� = {�⇤, µ = {�1µ⇤, ⇥ = {�1⇥⇤

are also feasible, so, by item (ii) of Proposition 4.2.1, the value

�T (µ) + �S(�) + �2{2Tr(⇥)  {
�
�T (µ

⇤) + �S(�
⇤) + �2Tr(⇥)

�
 {r⇤

upper-bounds the ✏-risk of bw⇤
lin. ⇤

4.5.3 Proof of Lemma 2

Let (�, µ,⇥) be a feasible solution to (4.14) such that

⇤ :=
X

`

�`S` � 0, ⌅ :=
X

k

µkTk � 0. (4.29)

Note that every feasible solution to (4.14) remains feasible and satisfies (4.29) after replacing zero
entries of �` and µk, if any, with arbitrarily small positive entries.

Now, due to


⇤ 1

2B
1
2B

T AT⇥A+ ⌅

�
⌫ 0 we have


I⌫

1
2⇤

�1/2B⌅�1/2

1
2⌅

�1/2BT⇤�1/2 ⌅�1/2AT⇥A⌅�1/2 + In

�
⌫ 0.

When setting ⇥1/2A⌅�1/2 = US with UUT = In and S ⌫ 0, we get

1
4 [⇤

�1/2B⌅�1/2]T [⇤�1/2B⌅�1/2] � S2 + In � (S + In)
2

(recall that S ⌫ 0). We conclude that there is Q 2 R
⌫⇥n of spectral norm kQk2,2  1 such that

1
2 [⇤

�1/2B⌅�1/2] = Q(S + In)

and
B � 2⇤1/2QS⌅1/2 = 2⇤1/2Q⌅1/2.

When recalling what S is and setting H = 2⇥1/2UQT⇤1/2 we have

B �HTA = 2⇤1/2Q⌅1/2.

Due to kQk2,2  1, by Schur complement lemma, now it follows that


⇤ 1

2(B �HTA)
1
2(B �HTA)T ⌅

�
⌫ 0. (4.30)

Besides this, by construction,

1
4H⇤

�1HT = ⇥1/2 UQTQUT

| {z }
�In

⇥1/2 � ⇥,
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that is, 
⇤ 1

2H
T

1
2H ⇥

�
⌫ 0. (4.31)

Finally, (4.30) together with (4.31) imply that matrix

2

4
2⇤ 1

2(B �HTA) 1
2H

T

1
2(B �HTA)T ⌅

1
2H ⇥

3

5

is positive semidefinite, meaning that 2�, µ,H and ⇥ form a feasible solution to (4.8). The corre-
sponding objective value is

�S(2�) + �T (µ) + �2{2Tr(⇥) = 2�S(�) + �T (µ) + �2{2Tr(⇥)  p{[⇥]. ⇤

4.6 Contrast synthesis for the polyhedral estimate

Projecting, if necessary, the observations onto the image space of A, we reduce the situation to that
in which this image space is the entire R

m; that is, m  n with positive singular values �1, ...,�m
of A. Let us assume that n = m+ d for some d � 0, and let

A = UDV T , D =
⇥
Diag(�1, ...,�m)| {z }

=:Dm

, 0m⇥d

⇤
, U 2 R

m⇥m, V 2 R
m⇥n,

be the (full) singular-value decomposition of A. The starting point of the following computation is
the bound (4.14) for the ✏-risk of the polyhedral estimate: we have

p
⇤
� = 2 min

�,µ,⇥

�
�S(�) + �T (µ) + �2�2Tr(⇥) : � � 0, µ � 0,⇥ ⌫ 0,

 P
`
�`S`

1
2B

1
2B

T
P

k
µkTk +AT⇥A

�
⌫ 0

�

= 2 min
�,,⇥

�
2�S(�) + �T (µ) + �2�2Tr(⇥) : � > 0, µ � 0,⇥ ⌫ 0,

AT⇥A ⌫ 1
4B

T

hX

`

�`S`
i�1

B �
X

k

µkTk

)

= 2 min
�,µ,⇥

n
F (�, µ,⇥) := �S(�) + �T (µ) + �2�2Tr(⇥) : � > 0, µ � 0, ⇥ = UT⇥U ⌫ 0,


Dm⇥Dm

�
= DT⇥D ⌫ V T

"
1
4B

T
⇥X

`

�`S`
⇤�1

B �
X

k

µkTk

#
V

)

= 2 min
�,µ,⇥

n
F (�, µ,⇥) : � > 0, µ � 0, ⇥ ⌫ 0, (4.32)


⇥

�
⌫

Dm

I

��1

V T

"
1
4B

T
⇥X

`
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
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��1

| {z }
=:C(�,µ)

.

)

Observe that the matrix-valued function C(�, µ) is ⌫-convex for � > 0, and is negative definite for
every fixed � for all µ such that mini µi � µ large enough. On the other hand, when Z(�, µ) � 0
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in the representation

C(�, µ) =


X(�, µ) Y (�, µ)
Y T (�, µ) Z(�, µ)

�

the semidefinite constraint of (4.32) is satisfied if and only if

⇥ ⌫ W (�, µ) := X(�, µ) + Y T (�, µ)Z(�, µ)�1Y (�, µ).

As a result, when denoting [M ]+ the matrix obtained from a symmetric matrix M by replacing its
eigenvalues with their positive parts in the eigenvalue decomposition of M , we conclude that

p
⇤
� = 2min

�,µ

�
�S(�) + �T (µ) + �2�2Tr[W (�, µ)]+ : � > 0, µ � 0, Z(�, µ) � 0

o
.

The bottom line is that in the situation of this section, building ⇥ (and thus—the near-optimal
polyhedral estimate) reduces to solving convex problem of design dimension L+M with (relatively)
easy-to-compute objective and constraints.



Chapter 5

On Robust Recovery of Signals from

Indirect Observations

Abstract

Our focus is on robust recovery algorithms in statistical linear inverse problem. We consider two
recovery routines—the much-studied linear estimate originating from Kuks and Olman [17] and
polyhedral estimate introduced in [33]. It was shown in [32] that risk of these estimates can be
tightly upper-bounded for a wide range of a priori information about the model through solving
a convex optimization problem, leading to a computationally e�cient implementation of nearly
optimal estimates of these types. The subject of the present paper is design and analysis of linear
and polyhedral estimates which are robust with respect to the uncertainty in the observation
matrix. We evaluate performance of robust estimates under stochastic and deterministic matrix
uncertainty and show how the estimation risk can be bounded by the optimal value of e�ciently
solvable convex optimization problem; “presumably good” estimates of both types are then obtained
through optimization of the risk bounds with respect to estimate parameters.

5.1 Introduction

In this chapter we focus on the problem of recovering unknown signal x given noisy observation
! 2 R

m,
! = Ax+ ⇠, (5.1)

of the linear image Ax of x; here ⇠ 2 R
m is observation noise. Our objective is to estimate the

linear image w = Bx 2 R
⌫ of x known to belong to given convex and compact subset X of Rn.

The estimation problem above is a classical linear inverse problem. When statistically analysed,
popular approaches to solving (5.1) (cf., e.g., [25–27, 74, 90–93]) usually assume a special structure
of the problem, when matrix A and set X “fit each other,” e.g., there exists a sparse approximation
of the set X in a given basis/pair of bases, in which matrix A is “almost diagonal” (see, e.g. [34,
94] for detail). Under these assumptions, traditional results focus on estimation algorithms which
are both numerically straightforward and statistically (asymptotically) optimal with closed form
analytical description of estimates and corresponding risks. In this paper, A and B are “general”
matrices of appropriate dimensions, and X is a rather general convex and compact set. Instead of
deriving closed form expressions for estimates and risks (which under the circumstances seems to
be impossible), we adopt an “operational” approach initiated in [34] and further developed in [30,

109
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32, 33, 95], within which both the estimate and its risk are yielded by e�cient computation, rather
than by an explicit analytical description.

In particular, two classes of estimates were analyzed in [30, 32, 33] in the operational framework.

Linear estimates. Since their introduction in [17], linear estimates are a standard part of the
theoretical statistical toolkit. There is an extensive literature dealing with the design and
performance analysis of linear estimates (see, e.g., [4, 23, 24, 28, 69–71]). When applied in
the estimation problem we consider here, linear estimate bwH

lin(!) is of the form bwH(!) = HT!
and is specified by a contrast matrix H 2 R

m⇥⌫ .

Polyhedral estimates, of which the idea goes back to [72]. Authors show (see also [36, Chapter
2]) that it is near-optimal when recovering smooth multivariate regression function known
to belong to a given Sobolev ball from noisy observations taken along a regular grid. It was
recently reintroduced in [73] and [74]. In [33], these estimates are extended to the setting we
are concerned with in the following way. In their paper, a Polyhedral estimate ! 7! bwH

poly(!)

is specified by a contrast matrix H 2 R
m⇥M according to

! 7! bxH(!) 2 Argmin
x2X

kHT (! �Ax)k1 7! bwH

poly(!) := Bbx(!),

and and shown to be nearly minimax in the same situations as Linear estimates, i.e., X and
B⇤ being ellitopes, for a properly selected contrast matrix.

Our interest in these estimates stems from the results of [31–33] where it is shown that in the
Gaussian case (⇠ ⇠ N (0,�2Im)), linear and polyhedral estimates with properly designed e�ciently
computable contrast matrices are near-minimax optimal in terms of their risks over a rather general
class of loss functions and signal sets—ellitopes and spectratopes. 1

In this paper we consider an estimation problem which is a generalization of that mentioned
above in which observation matrix A 2 R

m⇥n is uncertain. Specifically, we assume that

! = A[⌘]x+ ⇠ (5.2)

where ⇠ 2 R
m is zero mean random noise and

A[⌘] = A+
Xq

↵=1
⌘↵A↵ 2 R

m⇥n (5.3)

where A,A1, ..., Aq are given matrices and ⌘ 2 R
q is uncertain perturbation (“uncertainty” for

short). We consider separately two situations: the first one in which the perturbation ⌘ is random
(“random perturbation”), and the second one with ⌘ selected, perhaps in an adversarial fashion,
from a given uncertainty set U (”uncertain-but-bounded perturbation”). Observation model (5.2)
with random uncertainty is related to the linear regression problem with random errors in regressors
[96–102] which is usually addressed through total least squares. It can also be seen as alternative
modeling of the statistical inverse problem in which sensing matrix is recovered with stochastic
error (see, e.g., [93, 103–107]). Estimation from observations (5.2) under uncertain-but-bounded
perturbation of observation matrix can be seen as an extension of the problem of solving systems
of equations a↵ected by uncertainty which has received significant attention in the literature (cf.,

1Exact definitions of these sets are reproduced in the main body of the paper. For the time being, it su�ces to
point out two instructive examples: the bounded intersections of finitely many sets of the form {x : kPxkp  1},
p � 2, is an ellitope (and a spectratope as well), and the unit ball of the spectral norm in the space of m⇥n matrices
is a spectratope.
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e.g., [108–114] and references therein). It is also tightly related to the system identification problem
under uncertain-but-bounded perturbation of the observation of the state of the system [115–123].

In what follows, our goal is to extend the estimation constructions from [32] to the case of
uncertain sensing matrix. Our strategy consists in constructing a tight e�ciently computable
convex in H upper bound on the risk of a candidate estimate, and then building a “presumably
good” estimate by minimizing this bound in the estimate parameter H. Throughout the paper, we
assume that the signal set X is an ellitope, and the norm k · k quantifying the recovery error is the
maximum of a finite collection of Euclidean norms.

Our contributions can be summarized as follows.

A. In Section 5.2.1 we analyse the ✏-risk (the maximum, over signals from X , of the radii of
(1� ✏)-confidence k · k-balls) and the design of presumably good, in terms of this risk, linear
estimates in the case of random uncertainty.

B. In Section 5.3.1, we build presumably good linear estimates in the case of structured norm-
bounded uncertainty (cf. [124, Chapter 7] and references therein), thus extending the corre-
sponding results of [118].

Developments in A and B lead to novel computationally e�cient techniques for designing presum-
ably good linear estimates for both random and uncertain-but-bounded perturbations.

Analysis and design of polyhedral estimates under uncertainty in sensing matrix form the subject
of Sections 5.2.2 (random perturbations) and 5.3.2 (uncertain-but-bounded perturbations). The
situation here is as follows:

C. The random perturbation case of the Analysis problem

Given contrast matrix H, find a provably tight e�ciently computable upper bound
on ✏-risk of the associated estimate

is the subject of Section 5.2.2, where it is solved “in the full range” of our assumptions
(ellitopic X , sub-Gaussian zero mean ⌘ and ⇠). In contrast, the random perturbation case of
the Synthesis problem in which we want to minimize the above bound w.r.t. H turns out to
be more involving—the bound to be optimized happens to be nonconvex in H. When there
is no uncertainty in sensing matrix, this di�culty can be somehow circumvented [32, Section
5.1]; however, when uncertainty in sensing matrix is present, the strategy developed in [32,
Section 5.1] happens to work only when X is an ellipsoid rather than a general-type ellitope.
The corresponding developments are the subject of Sections 5.2.2, 5.2.2, and 5.2.2.

D. In our context, analysis and design of polyhedral estimates under uncertain-but-bounded
perturbations in the sensing matrix appears to be the most di�cult; our very limited results
on this subject form the subject of Section 5.3.2,

Notation and assumptions. We denote with k·k the norm onR
⌫ used to measure the estimation

error. In what follows, k · k is a maximum of Euclidean norms

kuk = max
`L

p
uTR`u (5.4)

where R` 2 S
⌫
+, ` = 1, ..., L, are given matrices with

P
`
R` � 0.
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Throughout the paper, unless otherwise is explicitly stated, we assume that observation noise
⇠ is zero-mean sub-Gaussian, ⇠ ⇠ SG(0,�2I), i.e., for all t 2 R

m,

E

n
et

T
⇠

o
 exp

⇣
�
2

2 ktk22
⌘
. (5.5)

5.2 Random perturbations

In this section we assume that uncertainty ⌘ is sub-Gaussian, with parameters 0, I, i.e.,

E

n
et

T
⌘

o
 exp

�
1
2ktk

2
2

�
8t 2 R

q. (5.6)

In this situation, given ✏ 2 (0, 1), we quantify the quality of recovery bw(·) of w = Bx by its maximal
over x 2 X ✏-risk

Risk✏[ bw|X ] := sup
x2X

inf {⇢ : Prob⇠,⌘{kBx� bw(A[⌘]x+ ⇠)k > ⇢}  ✏} (5.7)

(the radius of the smallest k · k-ball centered at bw(!) which covers x, uniformly over x 2 X ).

5.2.1 Design of presumably good linear estimate

Preliminaries: ellitopes

Throughout this section, we assume that the signal set X is a basic ellitope. Recall that, by
definition [30, 32], a basic ellitope in R

n is a set of the form

X = {x 2 R
n : 9t 2 T : zTTkz  tk, k  K}, (5.8)

where Tk 2 S
n
+, Tk ⌫ 0,

P
k
Tk � 0, and T ⇢ R

K
+ is a convex compact set with a nonempty interior

which is monotone: whenever 0  t0  t 2 T one has t0 2 T . We refer to K as ellitopic dimension
of X .

Clearly, every basic ellitope is a convex compact set with nonempty interior which is symmetric
w.r.t. the origin. For instance,
A. Bounded intersection X of K centered at the origin ellipsoids/elliptic cylinders {x 2 R

n :
xTTkx  1} [Tk ⌫ 0] is a basic ellitope:

X = {x 2 R
n : 9t 2 T := [0, 1]K : xTTkx  tk, k  K}

In particular, the unit box {x 2 R
n : kxk1  1} is a basic ellitope.

B. A k · kp-ball in R
n with p 2 [2,1] is a basic ellitope:

{x 2 R
n : kxkp  1} =

�
x : 9t 2 T = {t 2 R

n

+, ktkp/2  1} : x2
k|{z}

xTTkx

 tk, k  K
 
.

In the present context, our interest for ellitopes is motivated by their special relationship with the
optimization problem

Opt⇤(C) = max
x2X

xTCx, C 2 S
n (5.9)

of maximizing a homogeneous quadratic form over X . As it is shown in [32], when X is an ellitope,
(5.9) admits “reasonably tight” e�ciently computable upper bound. Specifically,
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Theorem 5.2.1 [32, Proposition 4.6] Given ellitope (5.8) and matrix C, consider the quadratic
maximization problem (5.9) along with its relaxation2

Opt(C) = min
�

n
�T (�) : � � 0,

X
k
�kTk � C ⌫ 0

o
(5.10)

The problem is computationally tractable and solvable, and Opt(C) is an e�ciently computable
upper bound on Opt⇤(C). This upper bound is tight:

Opt⇤(C)  Opt(C)  3 ln(
p
3K)Opt⇤(C).

Tight upper bounding of the risk of linear estimates

Consider the linear estimate
bwH(!) = HT!. [H 2 R

m⇥⌫ ]

Proposition 5.2.1 In the setting of this section, synthesis of a presumably good linear estimate
reduces to solving the convex optimization problem

min
H2Rm⇥⌫

R[H] (5.11)

where

R[H] = min�`,µ
`,`,

{`,⇢,%

⇢h
1 +

p
2 ln(2L/✏)

i 
�max
`L

kHR1/2
`

kFro + ⇢

�
+ % :

µ` � 0,{` � 0, �` + �T (µ`)  ⇢,` + �T ({`)  %, `  L2

4
�`I⌫q

1
2

h
R

1/2
` H

T
A1; ...;R

1/2
` H

T
Aq

i

1
2

h
A

T
1 HR

1/2
` , ..., A

T
q HR

1/2
`

i P
kµ

`
kTk

3

5 ⌫ 0, `  L
"


`
I⌫

1
2R

1/2
` [B �H

T
A]

1
2 [B �H

T
A]TR

1/2
`

P
k{`

kTk

#
⌫ 0, `  L

9
>>>>=

>>>>;

(5.12)

For a candidate contrast matrix H, the ✏-risk of the linear estimate bwH

lin(!) = HT! is upper-bounded
by R[H].

A modification

Let us assume that a K-repeated version of observation (5.2) is available, i.e., we observe

!K = {!k = A[⌘k]x+ ⇠k, k = 1, ...,K} (5.13)

with independent across k pairs (⇠k, ⌘k). In this situation, we can relax the assumption of sub-
Gaussianity of ⇠ and ⌘ to the second moment boundedness condition

E{⇠⇠T } � �2Im, E
�
⌘⌘T

 
� Iq. (5.14)

2Here and below, we use notation �S(·) for the support function of a convex set S ⇢ Rn: for y 2 Rn,

�S(y) = sup
u2S

y
T
s.
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Let us consider the following construction. For each `  L, given H 2 R
m⇥⌫ we denote

eR`[H] = min�,µ,,{

⇢
�kHR1/2

`
kFro + �+ �T (µ) + + �T ({) :

µ � 0,{ � 0,

"
I⌫

1
2R

1/2
`

[B �HTA]
1
2 [B �HTA]TR1/2

`

P
k
{kTk

#
⌫ 0

2

4
�I⌫q

1
2

h
R1/2
`

HTA1; ...;R
1/2
`

HTAq

i

1
2

h
AT

1 HR1/2
`

, ..., AT
q HR1/2

`

i P
k
µkTk

3

5 ⌫ 0

9
>>>>>=

>>>>>;

(5.15)

and consider the convex optimization problem

eH` 2 Argmin
H

eR`[H]. (5.16)

We define the “reliable estimate” bw(r)(!K) of w = Bx as follows.

1. Given H` 2 R
m⇥⌫ and observations !k we compute linear estimates w`(!k) = H`!k, ` =

1, ..., L, k = 1, ...,K;

2. We define vectors z` 2 R
⌫ as geometric medians of w`(!k):

z`(!
K) 2 Argmin

z

KX

k=1

kR1/2
`

(w`(!k)� z)k2, ` = 1, ..., L.

3. Finally, we select as bw(r)(!K) any point of the set

W(!K) =
L\

`=1

n
w 2 R

⌫ : kR1/2
`

(z`(!
K)� w)k2  4eR`[H`]

o
.

or set bw(r)(!K) a once for ever fixed point, e.g., bw(r)(!K) = 0 if W(!K) = ;.

We have the following analog of Proposition 5.2.1.

Proposition 5.2.2 In the situation of this section, it holds

sup
x2X

E⌘k,⇠k

n
kR1/2

`
(w`(!k)�Bx)k22

o
 eR2

`
[H`], `  L, (5.17)

and

Prob
n
kR1/2

`
(z`(!

K)�Bx)k2 � 4eR`[H`]
o
 e�0.1070K , `  L. (5.18)

As a consequence, whenever K � ln[L/✏]/0.1070, the ✏-risk of the aggregated estimate bw(r)(!K)
satisfies

Risk✏[ bw(r)(!K)|X ]  R, R = 8max
`L

eR`[H`].
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Remark. Proposition 5.2.2 is motivated by the desire to capture situations in which sub-Gaussian
assumption on ⌘ and ⇠ does not hold or is too restrictive. Consider, e.g., the case where the
uncertainty in the sensing matrix reduces to zeroing out some randomly selected columns in the
nominal matrix A (think of taking picture through the window with frost patterns). Denoting
by � the probability to zero out a particular column and assuming that columns are zeroed out
independently, model (5.2) in this situation reads

! = A[⌘]x+ ⇠, A[⌘] = (1� �)A+
Xn

↵=1
⌘↵A↵

where ⌘1, ..., ⌘n are i.i.d. zero mean random variables taking values (��1)⇢ and �⇢ with probabilities
� and 1� �, and A↵, 1  ↵  n, is an m⇥ n matrix with all but the ↵-th column being zero and
Col↵[A↵] = ⇢�1Col↵[A]. Scaling factor ⇢ is selected to yield the unit sub-Gaussianity parameter of
⌘ or E{⌘2↵} = 1 depending on whether Proposition 5.2.1 or Proposition 5.2.2 is used. For small �,
the scaling factor ⇢ is essentially smaller in the first case, resulting in larger “disturbance matrices”
A↵ and therefore—in stricter constraints in the optimization problem (5.11), (5.12) responsible for
the design of the linear estimate.

Numerical illustration
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Figure 5.1: Distributions of `2-recovery errors and upper bounds of the robust and “nominal”
estimates for di↵erent values of � parameter.

In Figure 5.1 we present results of a toy experiment in which

n = 32,m = 32, and ⌫ = 16, Ax 2 R
m is the discrete time convolution of x 2 R

n with
a simple kernel { of length 9 restricted onto the “time horizon” {1, ..., n}, and Bx cuts
o↵ x the first ⌫ entries. We consider Gaussian perturbation ⌘ ⇠ N (0, �2Iq), q = 9, and
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A[⌘]x = [A +
P

q

↵=1 ⌘↵A↵]x which is the convolution of x with the kernel {⌘ restricted onto
the time horizon {1, ..., n}, � being the control parameter.

L = 1 and k · k = k · k2,

X is the ellipsoid {x :
P

i
i2[Dx]2

i
 1}, where D is the matrix of inverse Discrete Cosine

Transform of size n⇥ n.

⇠ ⇠ N (0,�2Im), � = 10�4.

In each cell of the plot we represent error distributions and upper risk bounds (horizontal bar) of four
estimates (from left to right) for di↵erent uncertainty levels �: (1) robust estimate by Proposition
5.2.1 and upper bound R on its 0.05-risk, (2) single-observation estimate w1(!1) = H1!1 yielded
by the minimizer H1 of eR1[H] over H, see (5.15), and upper bound eR1[H1] on its expected error
risk,3 (3) “nominal” estimate—estimate by Proposition 5.2.1 as applied to the “no uncertainty”
case where all A↵ in (5.3) are set to 0 and upper bound R from (5.12) on its 0.05-risk computed
using actual uncertainty level, (4) “nominal” estimate ew1(!1) = eH1!1 yielded by the minimizer
eH1 of eR1[H] over H in the “no uncertainty” case and upper bound eR1[ eH1] on its “actual”—with
uncertainty present—expected error risk.

5.2.2 Design of presumably good polyhedral estimate

Preliminaries on polyhedral estimates

Consider a slightly more general than (5.2), (5.3) observation scheme

! = Ax+ ⇣ (5.19)

where A 2 R
m⇥n is given, unknown signal x is known to belong to a given signal set X given

by (5.8), and ⇣ is observation noise with probability distribution Px which can depend on x. For
example, when observation ! is given by (5.2), (5.3), we have

⇣ =
Xq

↵=1
⌘↵A↵x+ ⇠ (5.20)

with zero mean sub-Gaussian ⌘ and ⇠.
When building polyhedral estimate in the situation in question, one, given tolerance ✏ 2 (0, 1)

and a positive integer M , specifies a computationally tractable convex set H, the larger the better,
of vectors h 2 R

m such that

Prob⇣⇠Px{|hT ⇣| > 1}  ✏/M 8x 2 X . (5.21)

A polyhedral estimate bwH(·) is specified by contrast matrix H 2 R
M⇥n restricted to have all

columns in H according to

! 7! bxH(!) 2 Argmin
u2X

�
kHT [Au� !]k1

 
, bwH

poly(!) = BbxH(!). (5.22)

It is easily seen (cf. [32, Proposition 5.1.1]) that the ✏-risk (5.7) of the above estimate is upper-
bounded by the quantity

p[H] = sup
y

�
kByk : y 2 2X , kHTAyk1  2

 
. (5.23)

3We define expected error risk of a K-observation estimate bx(!K) of Bx as supx2X E!K⇠PK
x
{kbx(!K) � Bxk},

where P
K
x is the distribution of !K stemming from x.
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Indeed, let h1, ..., hM be the columns of H. For x 2 X fixed, the inclusions hj 2 H
imply that the Px-probability of the event Zx = {⇣ : |⇣Thj |  1 8j  M} is at least
1� ✏. When this event takes place, we have kHT [!�Ax]k1  1, which combines with
x 2 X to imply that kHT [! � AbxH(!)]k1  1, so that kHTA[x � bxH(!)]k1  2, and
besides this, x � bxH(!) 2 2X , whence kBx � bwH

poly(!)k  p[H] by definition of p[H].
The bottom line is that whenever x 2 X and ⇣ = ! � Ax 2 Zx, which happens with
Px-probability at least 1� ✏, we have kBx� bwH

poly(!)k  p[H], whence the ✏-risk of the

estimate bwH

poly indeed is upper-bounded by p[H].

To get a presumably good polyhedral estimate, one minimizes p[H] over M ⇥ ⌫ matrices H with
columns from H. Precise minimization is problematic, because p[·], while being convex, is usually
di�cult to compute. Thus, the design routine proposed in [33] goes via minimizing an e�ciently
computable upper bound on p[H]. It is shown in [32, Section 5.1.5] that when X is ellitope (5.8)
and kuk = kRuk2, a reasonably tight upper bound on p[H] is given by the e�ciently xcomputable
function

p+[H] = 2 min
�,µ,�

(
�+ �T (µ) +

X
i
�i :

µ � 0, � � 0
�I⌫

1
2RB

1
2B

T
R

T
A

T
HDiag{�}HT

A+
P

kµkTk

�
⌫ 0

)
.

Synthesis of a presumably good polyhedral estimate reduces to minimizing the latter function in
H under the restriction Colj [H] 2 H. Note that the latter problem still is nontrivial because p+ is
nonconvex in H.

Our objective here is to implement the outlined strategy in the case of observation ! given by
(5.2), (5.3).

Specifying H

Our first goal is to specify, given tolerance � 2 (0, 1), a set H� ⇢ R
m, the larger the better, such

that
h 2 H�, x 2 X ) Prob⇣⇠Px{|hT ⇣| > 1}  �. (5.24)

Note that a “tight” su�cient condition for the validity of (5.24) is

Prob⇠{|hT ⇠| > 1/2}  �/2, (5.25a)

Prob⌘
n���
Xq

↵=1
[hTA↵x]⌘↵

��� > 1/2
o
 �/2, 8x 2 X . (5.25b)

Under the sub-Gaussian assumption (5.5), hT ⇠ is itself sub-Gaussian, hT ⇠ ⇠ SG(0,�2khk22); thus,
a tight su�cient condition for (5.25a) is

khk2  [��(�)]�1, �(�) = 2
p
2 ln(2/�). (5.26)

Furthermore, by (5.6), r.v.
P

q

↵=1[h
TA↵x]⌘↵ = hT [A1x, ..., Aqx]⌘ is sub-Gaussian with parameters

0 and k[hTA1x; ...;hTAqx]k22, implying the validity of (5.25b) for a given x whenever

k[hTA1x; ...;h
TAqx]k2  ��1(�).

We want this relation to hold true for every x 2 X , that is, we want the operator norm k · kX ,2 of
the mapping

x 7! A[h]x, A[h] = [hTA1;h
TA2; ...;h

TAq] (5.27)
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induced by the norm k · kX on the argument and the norm k · k2 on the image space to be upper-
bounded by �(�):

kA[h]k�,2  ��1(�). (5.28)

Invoking [118, Theorem 3.1] (cf. also the derivation in the proof of Proposition 5.2.1 in Section
5.4.2), a tight su�cient condition for the latter relation is

Opt[h] := min
�,µ

⇢
�+ �T (µ) : µ � 0,


�Iq

1
2A[h]

1
2A

T [h]
P

k
µkTk

�
� 0

�
 ��1(�), (5.29)

tightness meaning that Opt[h] is within factor O(1)
p
ln(K + 1) of kA[h]kX ,2.

The bottom line is that with H� specified by constraints (5.26) and (5.28) (or by the latter
replaced with its tight relaxation (5.29)) we do ensure (5.24).

Bounding the risk of the polyhedral estimate bwH

Proposition 5.2.3 In the situation of this section, let ✏ 2 (0, 1), and let H = [H1, ..., HL] be
m⇥ML matrix with L blocks H` 2 R

m⇥M such that Colj [H] 2 H� for all j  ML and � = ✏/ML.
Consider optimization problem

p+[H] = 2 min
�`,µ

`,�`,⇢

⇢
⇢ : µ` � 0, �` � 0, �` + �T (µ

`) +
XM

j=1
�`j  ⇢, `  L

"
�`I⌫

1
2R

1/2
`

B
1
2B

TR1/2
`

ATH`Diag{�`}HT

`
A+

P
k
µ`
k
Tk

#
⌫ 0, `  L

)
. (5.30)

Then

Risk✏[ bwH |X ]  p+[H].

Optimizing p+[H]—the strategy

Proposition 5.2.3 resolves the analysis problem—it allows to e�ciently upper-bound the ✏-risk of a
given polyhedral estimate bwH

poly. At the same time, “as is,” it does not allow to build the estimate
itself (solve the “estimate synthesis” problem—compute a presumably good contrast matrix) be-
cause straightforward minimization of p+[H] (that is, adding H to decision variables of the right
hand side of (5.30) results in a nonconvex problem. A remedy, as proposed in [32, Section 5.1],
stems from the concept of a cone compatible with a convex compact set H ⇢ R

m which is defined
as follows:

Given positive integer J and real { � 1 we say that a closed convex cone K ⇢ S
m
+ ⇥ R+ is

(J,{)-compatible with H if

(i) whenever h1, ..., hJ 2 H and � 2 R
J
+, the pair

⇣P
J

j=1�jhjh
T

j
,
P

j
�j
⌘
belongs to K,

and “nearly vice versa”:

(ii) given (⇥, %) 2 K and { � 1, we can e�ciently build collections of vectors hj 2 H, and reals

�j � 0, j  J , such that ⇥ =
P

J

j=1�jhjh
T

j
and

P
j
�j  {%.
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Example. Let H be a centered at the origin Euclidean ball of radius R > 0 in R
J . When setting

K = {(⇥, %) : ⇥ ⌫ 0,Tr(⇥)  R2%Tr(⇥)},

we obtain a cone (M, 1)-compatible with H. Indeed, for hj 2 H and �j � 0 we have

Tr
⇣X

j
�jhjh

T

j

⌘
 R2

X
j
�j ,

that is
⇣
⇥ :=

P
j
�jhjhTj , % :=

P
j
�j
⌘

2 K. Vice versa, given (⇥, %) 2 K, i.e., ⇥ ⌫ 0 and % �
Tr(⇥)/R2 and specifying f1, ..., fm as the orthonormal system of eigenvectors of ⇥, and �j as the
corresponding eigenvalues and setting hj = Rfj , �j = R�2�j), we get hj 2 H, ⇥ =

P
j
�jhjhTj andP

j
�j = Tr(⇥)/R2  %.
Coming back to the problem of minimizing p+[H] in H, assume that we have at our disposal

a cone K which is (M,{)-compatible with H�. In this situation, we can replace the nonconvex
problem

min
H=[H1,...,HL]

{p+[H] : Colj [H
`]j 2 H�} (5.31)

with the problem

min
�̄`,µ̄

`,
⇥`,%`,⇢̄

n
⇢̄ : (⇥`, %`) 2 K, µ̄` � 0, �̄` + �T (µ̄

`) + %`  ⇢̄, `  L,

"
�̄`I⌫

1
2R

1/2
`

B
1
2B

TR1/2
`

AT⇥`A+
P

k
µ̄`
k
Tk

#
⌫ 0, `  L

)
. (5.32)

Unlike (5.31), the latter problem is convex and e�ciently solvable provided that K is computation-
ally tractable, and can be considered as “tractable

p
{-tight” relaxation of the problem of interest

(5.31). Namely,

Given a feasible solution H`,�`, µ`, �`, ⇢ to the problem of interest (5.31), we can set

⇥` =
XM

j=1
�`jColj [H`]Col

T

j [H`], %` =
X

j
�`j ,

thus getting (⇥`, %`) 2 K. By (i) in the definition of compatibility, ⇥`, %`, �̄` = �`, µ̄` =
µ`, ⇢̄ = ⇢ is a feasible solution to (5.32), and this transformation preserves the value of the
objective

Vice versa, given a feasible solution ⇥`, %`, �̄`, µ̄`, ⇢̄ to (5.32) and invoking (ii) of the definition
of compatibility, we can convert, in a computationally e�cient way, the pairs (⇥`, ⇢`) 2 K

into the pairs H` 2 R
m⇥M , �̄` 2 R

m
+ in such a way that the columns of H` belong to H�,

⇥` = H`Diag{�̄`}HT

`
,
P

j
�̄`
j
 {%`. Assuming w.l.o.g. that all matrices R1/2

`
B are nonzero,

we obtain �T (µ̄`) + %` > 0 and �̄` > 0 for all `. We claim that setting

�` =
q
[�T (µ̄`) + {%`]/�̄`, �` = �`�̄`, µ` = ��1

`
µ̄`, �

` = ��1
`
�̄`, ⇢ =

p
{⇢̄

we get a feasible solution to (5.31). Indeed, all we need is to verify that this solution satisfies,
for every `  L, constraints of (5.30). To check the semidefinite constraint, note that
"

�`I⌫
1
2R

1/2
` B

1
2B

T
R

1/2
` A

T
H`Diag{�`}HT

` A+
P

kµ
`
kTk

#
=

"
�`�̄`I⌫

1
2R

1/2
` B

1
2B

T
R

1/2
` �

�1
`

⇥
A

T
H`Diag{�̄`}HT

` A+
P

kµ̄
`
kTk

⇤
#



120

and the matrix in the right-hand side is ⌫ 0 by the semidefinite constraint of (5.32) combined
with ⇥` =

P
j
�̄`
j
Colj [H`]Col

T

j [H`]. Furthermore, note that by construction
P

j
�̄`
j
 {%`,

whence

�` + �T (µ
`) +

X
j
�`j = �`�̄` + ��1

`
[�T (µ̄

`) + {%`] = 2
q
�̄`[�T (µ̄`) + {%`]

 2
p
{
q
�̄`[�T (µ̄`) + %`] 

p
{
h
�̄` + �T (µ̄

`) + %`
i


p
{⇢̄ = ⇢

(we have taken into account that { � 1).

We conclude that the (e�ciently computable) optimal solution to the relaxed problem (5.32) can
be e�ciently converted to a feasible solution to problem (5.31) which is within the factor at mostp
{ from optimality in terms of the objective. Thus,

(!) Given a {-compatible with H� cone K, we can find, in a computationally e�-
cient fashion, a feasible solution to the problem of interest (5.31) with the value of the
objective by at most the factor

p
{ greater than the optimal value of the problem.

What we propose is to build a presumably good polyhedral estimate by applying the just
outlined strategy to the instance of (5.31) associated with H = H� given by (5.26) and (5.29). The
still missing—and crucial—element in this strategy is a computationally tractable cone K which
is (M,{)-compatible, for some “moderate” {, with our H�. For the time being, we have at our
disposal such a cone only for the “no uncertainty in sensing matrix” case (that is, in the case where
all A↵ are zero matrices), and it is shown in [32, Chapter 5] that in this case the polyhedral estimate
stemming from the just outlined strategy is near minimax-optimal, provided that ⇠ ⇠ N (0,�2Im).

When “tight compatibility”—with { logarithmic in the dimension of H—is sought, the task
of building a cone (M,{)-compatible with a given convex compact set H reveals to be highly
nontrivial. To the best of our knowledge, for the time being, the widest family of sets H for which
tight compatibility has been achieved is the family of ellitopes [125]. Unfortunately, this family
seems to be too narrow to capture the sets H� we are interested in now. At present, the only known
to us “tractable case” here is the ball case K = 1, and even handling this case requires extending
compatibility results of [125] from ellitopes to spectratopes.

Estimate synthesis utilizing cones compatible with spectratopes

Let for Sij 2 S
di , 1  i  I, 1  j  N , and let for g 2 R

N , Si[g] =
P

N

j=1gjS
ij . A basic spectratope

in R
N is a set H ⇢ R

N represented as

H = {g 2 R
N : 9r 2 R : S2

i [g] � riIdi , i  I}; (5.33)

here R is a compact convex monotone subset of RI
+ with nonempty interior, and

P
i
S2
i
[g] � 0 for

all g 6= 0. We refer to d =
P

i
di as spectratopic dimension of H. A spectratope, by definition, is a

linear image of a basic spectratope.
As shown in [32], where the notion of a spectratope was introduced, spectratopes are convex

compact sets symmetric w.r.t. the origin, and basic spectratopes have nonempty interiors. The
family of spectratopes is rather rich—finite intersections, direct products, linear images, and arith-
metic sums of spectratopes, same as inverse images of spectratopes under linear embeddings, are
spectratopes, with spectratopic representations of the results readily given by spectratopic repre-
sentations of the operands.



121

Every ellitope is a spectratope. An example of spectratope which is important to us is the
set H� given by (5.26) and (5.28) in the “ball case” where X is an ellipsoid (case of K = 1). In
this case, by one-to-one linear parameterization of signals x, accompanied for the corresponding
updates in A,A↵, and B, we can assume that T1 = In in (5.8), so that X is the unit Euclidean ball,

X = {x 2 R
n : xTx  1}.

In this situation, denoting by k · k2,2 the spectral norm of a matrix, constraints (5.26) and (5.28)
specify the set

H� =
n
h 2 R

m : khk2  (��(�))�1, kA[h]k2,2  ��1(�)
o

=
n
h 2 R

m : 9r 2 R : S2
j
[h] � rjIdj , j  2

o (5.34)

where R = {[r1; r2] : 0  r1, r2  1},

S1[h] = ��(�)


h

hT

�
2 S

m+1, S2[h] = �(�)


A[h]

A[h]T

�
2 S

m+q

with d1 = m+ 1, d2 = m+ q. We see that in the ball case H� is a basic spectratope.
We associate with a spectratope H, as defined in (5.33), linear mappings

Si[G] =
X

p,q
GpqS

ipSiq : SN ! S
di .

Note that
Si

hX
j
gjg

T

j

i
=
X

j
S2
i [gj ], gj 2 R

N ,

and

G � G0 ) Si[G] � Si[G
0], (5.35a)

{G ⌫ 0 & Si[G] = 08`} ) G = 0. (5.35b)

A cone “tightly compatible” with a basic spectratope is given by the following

Proposition 5.2.4 Let H ⇢ R
N be a basic spectratope

H = {g 2 R
N : 9r 2 R : S2

i [g] � riIdi , i  I}
with “spectratopic data” R and Si[·], i  I, satisfying the requirements in the above definition.

Let us specify the closed convex cone K ⇢ S
N
+ ⇥R+ as

K =
�
(⌃, ⇢) 2 S

N

+ ⇥R+ : 9r 2 R : Si[⌃] � ⇢riIdi , i  I
 
.

Then

(i) whenever ⌃ =
P

j
�jgjgTj with �j � 0 and gj 2 H 8j, we have

⇣
⌃,
X

j
�j
⌘
2 K,

(ii) and “nearly” vice versa: when (⌃, ⇢) 2 K, there exist (and can be found e�ciently by a ran-
domized algorithm) �j � 0 and gj, j  N , such that

⌃ =
X

j
�jgjg

T

j with
X

j
�j  {⇢ and gj 2 H, j  N.

where
{ = 4 ln(4DN), D =

X
i
di.

For the proof and for the sketch of the randomized algorithm mentioned in (ii), see Section 5.5.2
of the appendix.
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Implementing the strategy

We may now summarize our approach to the design of a presumably good polyhedral estimate. By
reasons outlined at the end of Section 5.2.2, the only case where the components we have developed
so far admit “smooth assembling” is the one where X is ellipsoid which in our context w.l.o.g. can
be assumed to be the unit Euclidean ball. Thus, in the rest of this Section it is assumed that X
is the unit Euclidean ball in R

n. Under this assumption the recipe, suggested by the preceding
analysis, for designing presumably good polyhedral estimate is as follows. Given ✏ 2 (0, 1), we
• set � = ✏/Lm and solve the convex optimization problem

Opt = min
⇥`2Sm,

%`,�̄`,µ̄`

n
⇢̄ : µ̄` � 0, ⇥` ⌫ 0, �2�2(�)Tr(⇥`)  %`, �̄` + µ̄` + %`  ⇢̄, `  L,

2

4
⇥
Tr(AT

↵⇥`A�)
⇤q
↵,�=1 P

↵,�

AT
↵⇥`A�

3

5 � ��2(�)%`Iq+n, `  L,

"
�̄`I⌫

1
2R

1/2
`

B
1
2B

TR1/2
`

AT⇥`A+ µ̄`In

#
⌫ 0, `  L

9
>>>>>=

>>>>>;

(5.36)

—this is what under the circumstances becomes problem (5.32) with the cone K given by Propo-
sition 5.2.4 as applied to the spectratope H� given by (5.34). Note that by Proposition 5.2.4, K is
{-compatible with H�, with

{ = 4 ln(4m(m+ n+ q + 1)). (5.37)

For instance, in the case of rank 1 matrices A↵ = f↵gT↵ and k · k = k · k2 (5.36) becomes

Opt = min
⇥2Sm,
%,�̄,µ̄

n
⇢̄ : µ̄ � 0, ⇥ ⌫ 0, �2�2(�)Tr(⇥)  %, �̄+ µ̄+ %  ⇢̄

" ⇥
(fT
↵⇥f�)g

T
↵ g�

⇤q
↵,�=1 hP

q

↵,�=1[f
T
↵⇥f�

i
g↵gT�

#
� ��2(�)%Iq+n


�̄`I⌫

1
2B

1
2B

T AT⇥A+ µ̄In

�
⌫ 0

9
>>>=

>>>;
; (5.38)

• use the randomized algorithm described in the proof of Proposition 5.2.4 to convert the ⇥`-
components of the optimal solution to (5.36) into a contrast matrix. Specifically,

1. for ` = 1, 2, ..., L we generate matrices Gk
& = ⇥1/2

`
Diag{&k}O, k = 1, ...,K, where O is the

orthonormal matrix of m ⇥ m Discrete Cosine Transform, and &k are i.i.d. realizations of
m-dimensional Rademacher random vector;

2. for every k  K, we compute the maximum ✓(Gk

`
) of values of the Minkowski function of

H� as evaluated at the columns of Gk

`
, with H� given by (5.26), (5.28), and select among Gk

`

matrix G` with the smallest value of ✓(Gk

`
).

Then the `-th block of the contrast matrix we are generating is H` = G`✓�1(G`).

With reliability 1� 2�KL the resulting contrast matrix H (which definitely has all columns in H�)
is, by (!), near-optimal, within factor

p
{ in terms of the objective, solution to (5.31), and the ✏-risk

of the associated polyhedral estimate is upper-bounded by 2
p
{Opt with Opt given by (5.36).

In Figure 5.2 we present error distributions and upper risk bounds (horizontal bar) of linear and
polyhedral estimates in the numerical experiment with the model described in Section 5.2.1. In the
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Figure 5.2: Distributions of `2-recovery errors and upper bounds of the robust linear and robust
polyhedral estimates for di↵erent values of � parameter.

plot cells, from left to right: (1) robust linear estimate by Proposition 5.2.1 and upper bound R on
its 0.05-risk, (2) robust linear estimate w1(!1) yielded by Proposition 5.2.2 and upper bound eR1

on its expected error risk, (3) robust polyhedral estimate by Proposition 5.2.4 and upper bound on
its 0.05-risk.

A modification

So far, our considerations related to polyhedral estimates were restricted to the case of sub-Gaussian
⌘ and ⇠. Similarly to what was done in Section 5.2.1, we are about to show that passing from
observation (5.2) to its K-repeated, with “moderate” K, version (cf. (5.13))

!K = {!k = A[⌘k]x+ ⇠k, k = 1, ...,K}

with pairs (⌘k, ⇠k) independent across k, we can relax the sub-Gaussianity assumption replacing it
with moment condition (5.14). Specifically, let us set

H =
�
h 2 R

m : �khk2  1
8 , kA[h]kX ,2  1

8

 
, A[h] = [hTA1; ...h

TAq]

(cf. (5.26) and (5.28)).
Given tolerance ✏ an m⇥M contrast matrix H with columns hj 2 H, and observation (5.13),

we build the polyhedral estimate as follows.4

4Readers acquainted with the literature on robust estimation will immediately recognize that the proposed con-
struction is nothing but a reformulation of the celebrated “median-of-means” estimate of [56] (see also [126–129]) for
our purposes.
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1. For j = 1, ...,M we compute empirical medians yj of the data hT
j
!k, k = 1, ...,K,

yj = median{hTj !k, 1  k  K}.

2. We specify bxH(!K) as a point from Argminu2X ky � HTAuk1 and use, as the estimate of
Bx, the vector bwH

poly(!
K) = BbxH(!K).

Lemma 3 In the situation of this section, let ⇠k and ⌘k satisfy moment constraint of (5.14), and
let K �  = 2.5 ln[M/✏]. Then estimate bwH

poly(!
K) satisfies

Risk✏[ bwH

poly(!
K)|X ]  p[H]

(cf. (5.23)).

As an immediate consequence of the result of Lemma 3, the constructions and results of Sections
5.2.2–5.2.2 apply, with �(�) = 8 and H in the role of H�, to our present situation in which the
sub-Gaussianity of ⇠, ⌘ is relaxed to the second moment condition (5.14) and instead of single
observation !, we have access to a “short”—with K logarithmic in M/✏—sample of K independent
realizations of !.

5.3 Uncertain-but-bounded perturbations

In this section we assume that perturbation vector ⌘ in (5.2) is deterministic and runs through a
given uncertainty set U , so that (5.2) becomes

! = A[⌘]x+ ⇠, A[⌘] = A+D[⌘], (5.39)

where D[⌘] is (homogeneous) linear matrix-valued function of perturbation ⌘ running through U .
As about observation noise ⇠, we still assume that its distribution Px (which may depend on x)
satisfies (5.5), i.e., is sub-Gaussian with zero mean and sub-Gaussian matrix parameter �2Im for
every x 2 X .

In our present situation it is natural to redefine the notion of the ✏-risk of an estimate ! 7! bx(!):
here we consider uniform over x 2 X and ⌘ 2 U ✏-risk

Risk✏[ bw|X ] = sup
x2X ,⌘2U

inf
n
⇢ : Prob⇠⇠Px{k bw(A[⌘]x+ ⇠)�Bxk > ⇢}  ✏

o
.

Besides this, we, as before, assume that

kyk = max
`L

p
yTR`y [R` ⌫ 0,

P
`
R` � 0]

5.3.1 Design of presumably good linear estimate

Observe that the error of the linear estimate bwH(!) = HT! satisfies

k bw(A[⌘]x+ ⇠)�Bxk  kHT ⇠k+ max
x2X ,⌘2U

��HTD[⌘]x
��+max

x2X
k[B �HTA]xk (5.40)

Similarly to what was done in Section 5.2.1, design of a presumably good linear estimate bxH(!)
consists in minimizing over H the sum of tight e�ciently computable upper bounds on the terms
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in the right-hand side of (5.40). Recall that bounds on the first and the last term were already
established in Section 5.2.1 (cf. (5.58) and (5.59) in the proof of Proposition 5.2.1). What is missing
is a tight upper bound on

s(H) = max
x2X ,⌘2U

��HTD[⌘]x
�� .

In the rest of this section we focus on building e�ciently computable upper bound on s(H) which
is convex in H; the synthesis of the contrast H is then conducted by minimizing with respect to H
the resulting upper bound on estimation risk.

We assume from now on that U is a convex compact set in certain R
q. In this case s(H) is

what in [118] was called the robust norm

kZ[H]kX = max
Z2Z[H]

kZkX , kZkX = max
x2X

kZxk

of the uncertain ⌫ ⇥ n matrix

Z[H] = {Z = HTD[⌘] : ⌘ 2 U},

i.e., the maximum, over instances Z 2 Z[H], of operator norms of the linear mappings x 7! Zx
induced by the norm with the unit ball X on the argument space and the norm k · k on the image
space.

It is well known that aside of a very restricted family of special cases, robust norms do not allow
for e�cient computation. We are about to list known to us generic cases when these norms admit
e�ciently computable upper bounds which are tight within logarithmic factors.

Scenario uncertainty

This is the case where the nuisance set U = Conv{⌘1, ..., ⌘S} is given as a convex hull of moderate
number of scenarios ⌘s. In this case, s(H) the maximum of operator norms:

s(H) = max
sS

max
x2X

kHTD[⌘s]xk = max
sS,`L

kMs`[H]kX ,2, Ms`[H] = R1/2
`

HTD[⌘s],

where, for Q 2 R
⌫⇥n, kQkX ,2 = max

x2X
kQxk2 is the operator norm of the linear mapping x 7! Qx :

R
n ! R

⌫ induced by the norm k·kX with the unit ball X on the argument space, and the Euclidean
norm k · k2 on the image space. Note that this norm is e�ciently computable in the ellipsoid case
where X = {x 2 R

n : xTTx  1} with T � 0 (that is, for K = 1, T1 = T , T = [0, 1] in (5.8))—one
has kQkX ,2 = kQT�1/2k2,2. When X is a general ellitope, norm k · kX ,2 is di�cult to compute.
However, it admits a tight e�ciently computable convex in Q upper bound:5 it is shown in [118,
Theorem 3.1] that function

Opt[Q] = min
�,µ

⇢
�+ �T (µ) : µ � 0,


�I⌫

1
2Q

1
2Q

T P
kµkTk

�
⌫ 0

�

satisfies kQkX ,2  Opt[Q]  2.4
p
ln(4K)kQkX ,2. As a result, under the circumstances,

s(H) = max
sS,`L

Opts`[H],

Opts`[H] = min
�`,µ

`

⇢
�` + �T (µ

`) : µ` � 0,

"
�`I⌫

1
2R

1/2
` H

T
D[⌘s]

1
2D

T [⌘s]HR
1/2
`

P
kµ

`
kTk

#
⌫ 0

�
,

is a tight within the factor 2.4
p
ln(4K) e�ciently computable convex in H upper bound on s(H).

5We have already used it in the proof of Proposition 5.2.1 when upper-bounding the corresponding terms s`(H)
in the case of random uncertainty.
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Box and structured norm-bounded uncertainty

In the case of structured norm-bounded uncertainty function D[⌘] in the model (5.39) is of the form

D[⌘] =
Xq

↵=1
P T

↵ ⌘↵Q↵ [P↵ 2 R
p↵⇥m, Q↵ 2 R

q↵⇥n],

U = {⌘ = (⌘1, ..., ⌘q)} = U1 ⇥ ...⇥ Uq, (5.41)

U↵ =

⇢
{⌘↵ = �Ip↵ : |�|  1} ⇢ R

p↵⇥p↵ , q↵ = p↵ ,↵  qs, [”scalar perturbation blocks”]

{⌘↵ 2 R
p↵⇥q↵ : k⌘↵k2,2  1} , qs < ↵  q. [”general perturbation blocks”]

The special case of (5.41) where qs = q, that is,

U = {⌘ 2 R
q : k⌘k1  1}& A[⌘] = A+D[⌘] = A+

Xq

↵=1
⌘↵A↵

is referred to as box uncertainty. In this section we operate with structured norm-bounded un-
certainty (5.41), assuming w.l.o.g. that all P↵ are nonzero. The main result here (for underlying
rationale and proof, see Section 5.6.2) is as follows:

Proposition 5.3.1 Let X ⇢ R
n be an ellitope: X = PY, where

Y = {y 2 R
n : 9t 2 T : yTTky  tk, k  K}

is a basic ellitope. Given the data of structured norm-bounded uncertainty (5.41), consider the
e�ciently computable convex function

s(H) = max
`L

Opt`(H),

Opt`(H) = min
µ,�,�,Us,Vs,U

t,V t

n
1
2 [µ+ �T (�)] : µ � 0, � � 0,� � 0


Us �As`[H]P

�P TAT

s`
[H] Vs

�
⌫ 0, s  qs,


U t �LT

t`
[H]

�Lt`[H] �tIpqs+t

�
⌫ 0, t  q � qs

V t � �tP TRT
t RtP ⌫ 0, t  q � qs

µI⌫ �
P

s
Us �

P
t
U t ⌫ 0,

P
k
�kTk �

P
s
Vs �

P
t
V t ⌫ 0

9
>>=

>>;

where

As`[H] = R1/2
`

HTP T

s Qs, 1  s  qs

Lt`[H] = Pqs+tHR1/2
`

, Rt = Qqs+t, 1  t  q � qs.

Then
s(H)  s(H)  {(K)max[#(2),⇡/2]s(H),

where  = max
↵qs

min[p↵, q↵] ( = 0 when qs = 0),

{(K) =

⇢
1, K = 1,
5
2

p
ln(2K), K > 1,

and #(k) is a universal function of integer k � 0 specified in (5.75) such that

#(0) = 0, #(1) = 1, #(2) = ⇡/2, #(3) = 1.7348..., #(4) = 2, #(k)  1
2⇡

p
k, k � 1.

Note that the “box uncertainty” version of Proposition 5.3.1 was derived in [118].
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Robust estimation of linear forms

Until now, we imposed no restrictions on the matrix B. We are about to demonstrate that when
aiming to recover the value of a given linear form bTx of signal x 2 X , i.e., when B is a row vector:

Bx = bTx [b 2 R
n], (5.42)

we can handle much wider family of uncertainty sets U than those considered so far. Specifically,
assume on the top of (5.42) that U is a spectratope:

U = {⌘ = Qv, v 2 V}, V = {v 2 R
M : 9s 2 S : S2

`
[v] � s`Id` , `  L},

S`[v] =
P

M

i=1viS
i`, Si` 2 S

d`
(5.43)

(as is the case, e.g., with structured norm-bounded uncertainty) and let X be a spectratope as well:

X = {x = Py, y 2 Y}, Y = {y 2 R
N : 9t 2 T : T 2

k
[y] � tkIfk , k  K},

Tk[y] =
P

N

j=1yjT
jk, T jk 2 S

fk .
(5.44)

The contrast matrix H underlying a candidate linear estimate becomes a vector h 2 R
m, the

associated linear estimate being bwh(!) = hT!. In our present situation ⌫ = 1 we lose nothing when
setting k · k = | · |. Representing D[⌘] as

P
q

↵=1⌘↵A↵, we get

rb(h) = max
x2X ,⌘2U

���hT
X

↵
⌘↵A↵x

��� = max
⌘2U ,x2X

⌘TA[h]x, A[h] = [hTA1; ...;h
TAq].

In other words, rb(h) is the operator norm kA[h]kX ,U⇤ of the linear mapping x 7! A[h]x induced
by the norm k · kX with the unit ball X on the argument space and the norm with the unit ball
U⇤—the polar of the spectratope U—on the image space. Denote

�[⇤] = [Tr(⇤1); ...; Tr(⇤K)], ⇤k 2 S
fk ,

�[⌥] = [Tr(⌥1); ...; Tr(⌥L)], ⌥` 2 S
d` ,

and for Y 2 S
d` and X 2 S

fk

R+,⇤
`

[Y ] =
h
Tr(Y Ri`Rj`)

i

i,jM

, T+,⇤
k

[X] =
h
Tr(XT ikT jk)

i

i,jN

.

Invoking [118, Theorem 7], we arrive at

Proposition 5.3.2 In the case of (5.43) and (5.44), e�ciently computable convex function

rb(h) = min
⇤,⌥

8
><

>:
1
2 [�T (�[⇤]) + �S(�[⌥]) :

⇤ = {⇤k 2 S
fk
+ , k  K},⌥ = {⌥` 2 S

d`
+ , `  L} P

`
R+,⇤
`

[⌥`] QTA[h]P

P TAT [h]Q
P

k
T+,⇤
k

[⇤k]

�
⌫ 0

9
>=

>;
(5.45)

is a reasonably tight upper bound on rb(h):

rb(h)  rb(h)  &

✓XK

k=1
fk

◆
&

✓XL

`=1
d`

◆
rb(h)

where &(J) =
p
2 ln(5J).
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5.3.2 Design of the robust polyhedral estimate

On a close inspection, the strategy for designing a presumably good polyhedral estimate developed
in Section 5.2.2 for the case of random uncertainty works in the case of uncertain-but-bounded

perturbations A[⌘] = A +
X

↵
⌘↵A↵

| {z }
D[⌘]

, ⌘ 2 U , provided that the constraints (5.25) on the allowed

columns h of the contrast matrices are replaced with the constraint

Prob⇠{|hT ⇠| > 1/2}  �/2, (5.46a)
���
Xq

↵=1
[hTA↵x]⌘↵

���  1/2 8(x 2 X , ⌘ 2 U). (5.46b)

Assuming that U and X are the spectratopes (5.43), (5.44) and invoking Proposition 5.3.2, an
e�ciently verifiable su�cient condition for h to satisfy the constraints (5.46) is

khk2  2�
p
2 ln(2/�) and rb(h)  1/2 (5.47)

(see (5.26), (5.45)). It follows that in order to build an e�ciently computable upper bound for the
✏-risk of a polyhedral estimate associated with a given m ⇥ML contrast matrix H = [H1, .., HL],
H` 2 R

m⇥M , it su�ces to check whether the columns ofH satisfy constraints (5.47) with � = ✏/ML.
If the answer is positive, one can upper-bound the risk utilizing the following spectratopic version
of Proposition 5.2.3:

Proposition 5.3.3 In the situation of this section, let ✏ 2 (0, 1), and let H = [H1, ..., HL] be
m⇥ML matrix with L blocks H` 2 R

m⇥M such that all columns of H satisfy (5.47) with � = ✏/ML.
Consider optimization problem

p+[H] = 2 min
�`,⌥`,�`,⇢

n
⇢ : �` � 0, ⌥` = {⌥`

k
2 S

fk
+ , k  K}, `  L (5.48)

�` + �T (�[⌥`]) +
P

M

j=1�
`

j
 ⇢, `  L"

�`I⌫
1
2R

1/2
`

BP
1
2P

TBTR1/2
`

P TATH`Diag{�`}HT

`
AP +

P
k
T+,⇤
k

[⌥`
k
]

#
⌫ 0, `  L

9
>=

>;

where

�[⌥`] = [Tr(⌥`1); ...; Tr(⌥
`

K)], and T+,⇤
k

(V ) =
h
Tr(V T ikT jk)

i

1i,jN

for V 2 S
fk .

Then
Risk✏[ bwH |X ]  p+[H].

Remarks. As it was already explained, when taken together, Propositions 5.3.2 and 5.3.3 allow
to compute e�ciently an upper bound on the ✏-risk of the polyhedral estimate associated with a
given m ⇥ ML contrast matrix H: when the columns of H satisfy (5.47) with � = ✏/ML, this
bound is p+[H], otherwise it is, say, +1. The outlined methodology can be applied to any pair
of spectratopes X , Y. However, to design a presumably good polyhedral estimate, we need to
optimize the risk bound obtained in H, and this seems to be di�cult because the bound, same as
its “random perturbation” counterpart, is nonconvex in H. At present, we know only one generic
situation where the synthesis problem admits “presumably good” solution—the case where both
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X and U are ellipsoids. Applying appropriate one-to-one linear transformations to perturbation ⌘
and signal x, the latter situation can be reduced to that with

X = {x 2 R
n : kxk2  1}, U = {⌘ 2 R

q : k⌘k2  1}, (5.49)

which we assume till the end of this section. In this case (5.47) reduces to

khk2  [2�
p

2 ln(2/�)]�1 and kA[h]k2,2  1/2 (5.50)

where the matrix A[h] is given by (5.27). Note that (5.50) is nothing but the constraint (5.29)
where the ellitope X is set to be the unit Euclidean ball (that is, when K = 1, T1 = In, and
T = [0; 1] in (5.8)) and the right hand side ��1(�) in the constraint is replaced with 1/2. As a
result, (5.46) can be processed in the same fashion as constraints (5.26) and (the single-ellipsoid
case of) (5.29) were processed in Sections 5.2.2 and 5.2.2 to yield a computationally e�cient scheme
for building a presumably good, in the case of (5.49), polyhedral estimate. This scheme is the same
as that described at the end of Section 5.2.2 with just one di↵erence: the quantity �(�) in the first
semidefinite constraint of (5.36) and (5.38) should now be replaced with constant 2. Denoting by
Opt the optimal value of the modified in the way just explained problem (5.36), the ✏-risk of the
polyhedral estimate yielded by an optimal solution to the problem is upper-bounded by 2

p
{Opt,

with { given by (5.37).

5.4 Proofs for Section 5.2.1

5.4.1 Preliminaries: concentration of quadratic forms of sub-Gaussian vectors

For the reader’s convenience, we recall in this section some essentially known bounds for deviations
of quadratic forms of sub-Gaussian random vectors (cf., e.g., [78, 88, 89]).

1
o
. Let ⇠ be a d-dimensional normal vector, ⇠ ⇠ N (µ,⌃). For all h 2 R

d and G 2 S
d such that

G � ⌃�1 we have the well known relationship:

ln
⇣
E⇠

n
eh

T
⇠+ 1

2 ⇠
T
G⇠

o⌘
= �1

2 lnDet(I � ⌃1/2G⌃1/2)

+ hTµ+ 1
2µ

TGµ+ 1
2 [Gµ+ h]T⌃1/2(I � ⌃1/2G⌃1/2)�1⌃1/2[Gµ� h].

(5.51)

Now, suppose that ⌘ ⇠ SG(0,⌃) where ⌃ 2 S
d
+, let also h 2 R

d and S 2 R
d⇥d such that S⌃ST � I.

Then for ⇠ ⇠ N (h, STS) one has

E⌘

n
eh

T
⌘+ 1

2⌘
T
S
T
S⌘

o
= E⌘

n
E⇠

n
e⌘

T
⇠

oo
= E⇠

n
E⌘

n
e⌘

T
⇠

oo
 E⇠

n
e

1
2 ⇠

T⌃⇠
o
,

so that

ln
⇣
E⌘

n
eh

T
⌘+ 1

2⌘
T
S
T
S⌘

o⌘
 ln

⇣
E⇠

n
e

1
2 ⇠

T⌃⇠
o⌘

= �1
2 lnDet(I � S⌃ST ) + 1

2h
T⌃h+ 1

2h
T⌃ST (I � S⌃ST )�1S⌃h

= �1
2 lnDet(I � S⌃ST ) + 1

2h
T⌃1/2(I � S⌃ST )�1⌃1/2h.

In particular, when ⇣ ⇠ SG(0, I), one has

ln
⇣
E⇣

n
eh

T
⇣+ 1

2 ⇣
T
G⇣

o⌘
 �1

2 lnDet(I �G) + 1
2h

T (I �G)�1h =: �(h,G).
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Observe that �(h,G) is convex and continuous in h 2 R
d and 0 � G � I on its domain. Using the

inequality (cf. [65, Lemma 1])

8v 2 [0, 1[ � ln(1� v)  v +
v2

2(1� v)
, (5.52)

we get
�(h,G)  1

2Tr[G] + 1
4Tr[G(I �G)�1G] + 1

2h
T (I �G)�1h =: e�(h,G).

Finally, using

Tr[G(I �G)�1G]  (1� �max(G))�1Tr[G2], hT (I �G)�1h  (1� �max(G))�1hTh,

we arrive at

e�(h,G)  1
2Tr[G] + 1

4(1� �max(G))�1(Tr[G2] + 2khk22) =: �(h,G).

2
o
. In the above setting, let Q 2 S

d
+, ↵ > 2�max(Q), G = 2Q/↵, and let h = 0. By the Cramer

argument we conclude that

Prob
�
⇣TQ⇣ � ↵[�(2Q/↵) + ln ✏�1]

 
 ✏ (5.53)

where �(·) = �(0, ·). In particular,

Prob

⇢
⇣TQ⇣ � min

↵>2�max(Q)
↵[�(2Q/↵) + ln ✏�1]

�
 ✏ (5.54)

Clearly, similar bounds hold with � replaced with e� and �. For instance,

Prob
�
⇣TQ⇣ � ↵[�(2Q/↵) + ln ✏�1]

 
 ✏,

so, when choosing ↵ = 2�max(Q) +
q

Tr(Q2)
ln ✏�1 we arrive at the “standard bound”

Prob
n
⇣TQ⇣ � Tr(Q) + 2kQkFro

p
ln ✏�1 + 2�max(Q) ln ✏�1

o
 ✏. (5.55)

Corollary 5.4.1 Let ✏ 2 (0, 1), W1, ...,WL be matrices from S
d
+, and let � ⇠ SG(0, V ) be a d-

dimensional sub-Gaussian random vector. Then

Prob

⇢
max
`L

�TW`� �
h
1 +

p
2 ln(L/✏)

i2
max
`L

Tr(W`V )

�
 ✏.

Proof. Let R2 = max
`L

Tr(W`V ). W.l.o.g. we may assume that � = V 1/2⇣ where ⇣ ⇠ SG(0, I). Let

us fix `  L. Applying (5.55) with Q = V 1/2W`V 1/2 and ✏ replaced with ✏/L, when taking into
account that �TW`� = ⇣TQ⇣ with

�max(Q)  kQkFro  Tr(Q)  R2,

we get

Prob

⇢
�TW`� �

h
1 +

p
2 ln(L/✏)

i2
R2

�
 ✏

L
,

and the claim of the corollary follows. ⇤
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5.4.2 Proof of Proposition 5.2.1

Let H be a candidate contrast matrix.

1
o
. Observe that

k bwH(!)�Bxk  kHT ⇠k+
���HT

Xq

↵=1
⌘↵A↵x

���+ k[B �HTA]xk. (5.56)

Clearly,

k[B �HTA]xk  max
`L

⇢
max
x2X

xT [B �HTA]TR`[B �HTA]x

�1/2

,

so that by Theorem 5.2.1,

8x 2 X k[B �HTA]xk  max
`L

r`(H) (5.57)

where

r
2
`
(H) = min

�

(
�T (�) : � � 0,

"
I⌫ R1/2

`
[B �HTA]

[B �HTA]TR1/2
`

P
k
�kTk

#
⌫ 0

)
.

Taking into account that
p
u = min��0{ u

4� + �} for u > 0, we get

r`(H) = min
�,�

(
�+

�T (�)

4�
: � � 0,� � 0,

"
I⌫ R1/2

`
[B �HTA]

[B �HTA]TR1/2
`

P
k
�kTk

#
⌫ 0

)
.

Setting µ = �/(4�), by the homogeneity of �T (·) we obtain

r`(H) = min
µ,�

(
�+ �T (µ) : µ � 0,

"
�I⌫

1
2R

1/2
`

[B �HTA]
1
2 [B �HTA]TR1/2

`

P
k
µkTk

#
⌫ 0

)
. (5.58)

2
o
. Next, by Corollary 5.4.1 of the appendix,

Prob

⇢
kHT ⇠k � [1 +

p
2 ln(2L/✏)]�max

`L

q
Tr(HR`HT )

�
 ✏/2. (5.59)

Similarly, because
���HT

Xq

↵=1
⌘↵A↵x

��� = max
`L

���R1/2
`

HT [A1x, ..., Aqx]⌘
���
2
,

we conclude that for any x 2 X

Prob

⇢���HT
Xq

↵=1
⌘↵A↵x

��� � [1 +
p
2 ln(2L/✏)]max

`L

s`(H)

�
 ✏/2

where s`(H) =
�
maxx2X xT

⇥P
↵
AT
↵HR`HTA↵

⇤
x
 1/2

. Again, by Theorem 5.2.1, s`(H) may be
tightly upper-bounded by the quantity s`(H) such that

s
2
`
(H) = min

�

(
�T (�) : � � 0,

"
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`

HTAq]

[AT

1 HR1/2
`
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q HR1/2

`
]

P
k
�kTk

#
⌫ 0

)
.

Now, repeating the steps which led to (5.58) above, we conclude that

s`(H) = min
µ0,�0

n
�0 + �T (µ

0) : µ0 � 0,
"

�0I⌫q
1
2 [R

1/2
`

HTA1; ...;R
1/2
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HTAq]
1
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1 HR1/2
`

, ..., AT
q HR1/2

`
]

P
k
µ0
k
Tk

#
⌫ 0

)
. (5.60)
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3
o
. When substituting the above bounds into (5.56), we conclude that for every feasible solution

�`, µ`,`,{`, ⇢, % to problem (5.12) associated with H, the ✏-risk of the linear estimate bwH

lin(·) may
be upper-bounded by the quantity

[1 +
p
2 ln(2L/✏)]


�max
`L

kHR1/2
`

kFro + ⇢

�
+ %. ⇤

5.5 Proofs for Section 5.2.2

5.5.1 Proof of Proposition 5.2.3

All we need to prove is that if �`, µ`, �`, ⇢ is a feasible solution to the optimization problem (5.30),
then the inequality

Risk✏[ bwH

poly|X ]  2⇢ (5.61)

holds. Indeed, let us fix x 2 X . Since the columns of H belong to H�, the Px-probability of the
event

Zc = {⇣ : kHT ⇣k1 > 1} [⇣ =
P

↵
⌘↵A↵x+ ⇠]

is at most ML� = ✏. Let us fix observation ! = Ax+ ⇣ with ⇣ belonging to the complement Z of
Zc. Then

kHT [! �Ax]k1 = kHT ⇣k1  1,

implying that the optimal value in the optimization problem minu2X kHT [Au� !k1 is at most 1.
Consequently, setting bx = bxH(!), we have bx 2 X and kHT [Abx�!]k1  1, see (5.22). We conclude
that setting z = 1

2 [x� x], we have

kHT

`
Azk1  1, `  L

with z 2 X , implying that zTTkz  tk, k  K, for some t 2 T . Now let u 2 R
⌫ with kuk2  1.

Semidefinite constraints in (5.30) imply that

uTR1/2
`

Bz  uT�`I⌫u+ zT
h
ATH`Diag{�`}HT

`
A+

X
k
µ`
k
Tk

i
z

 �`u
Tu+

X
j
�`j [H

TAz]2j +
X

k
µ`
k
tk

 �` +
X

j
�`j + �T (µ

`)  ⇢

(recall that kuk2  1, �` � 0, µ` � 0, �` � 0, t 2 T , and kHT

`
Azk1  1). We conclude that

uTR1/2
`

Bz  ⇢, `  L, whenever kuk2  1, i.e., kR1/2
`

[Bz]k2  ⇢2. The latter relation holds true
for all `  L, implying that kBzk  ⇢, that is, kBx� bx(!)k = 2kBzk  2⇢ whenever ⇣ 2 Z. ⇤

5.5.2 Proof of Proposition 5.2.4

0
o
. We need the following technical result.

Theorem 5.5.1 [130, Theorem 4.6.1] Let Qi 2 S
n, 1  i  I, and let ⇠i, i = 1, ..., I, be independent

Rademacher (±1 with probabilities 1/2) or N (0, 1) random variables. Then for all t � 0 one has

Prob

⇢����
XI

i=1
⇠iQi

���� � t

�
 2n exp

⇢
� t2

2vQ

�

where k · k is the spectral norm, and vQ =
���
P

I

i=1Q
2
i

��� .
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1
o
. Proof of (i). Let �j � 0, gj 2 H, j  M , and ⌃ =

P
j
�jgjgTj . Then for every j there exists

rj 2 R such that S2
i
[gj ] � [rj ]iIdi , i  I. Assuming

P
j
�j > 0 and setting j = [

P
j
�j ]�1�j and

r =
P

j
jrj 2 R, we have

Si

hX
j
�jgjg

T

j

i
=
X

j
�jS

2
i [gj ] �

X
j
�j [r

j ]iIdi =
hX

j
�j
i
riIdi ,

implying that (⌃,
P

j
�j) 2 K. The latter inclusion is true as well when � = 0.

2
o
. Proof of (ii). Let (⌃, ⇢) 2 M, and let us prove that ⌃ =

P
N

j=1�jgjg
T

j
with gj 2 H, �j � 0,

and
P

j
�j  {⇢. There is nothing to prove when ⇢ = 0, since in this case ⌃ = 0 due to (⌃, 0) 2 K

combined with (5.35b). Now let ⇢ > 0, so that for some r 2 R we have

Si[⌃] � ⇢riIdi , i  I, (5.62)

let Z = ⌃1/2, and let O be the orthonormal N ⇥N matrix of N -point Discrete Cosine Transform,
so that all entries in O are in magnitude 

p
2/N . For a Rademacher random vector & = [&1; ...; &M ]

(i.e., with entries &i which are independent Rademacher random variables), let

Z& = ZDiag{&}O.

In this case, one has Z& [Z& ]T ⌘ ⌃, that is,
XN

p=1
Colp[Z

& ]ColTp [Z
& ] ⌘ ⌃.

Recall that
Colj [Z

& ] =
X

p
&pOpjColp[Z],

and thus
Si[Colj [Z

& ]] =
X

p
&pOpjSi[Colp[Z]].

Now observe that
X

p

�
OpjSi[Colp[Z]]

�2
=
X

p
O2

pjS
2
i [Colp[Z]] =

X
p
O2

pjSi[Colp[Z]ColTp [Z]]

[see (5.35a)] � 2

N

X
p
Si[Colp[Z]ColTp [Z]]

=
2

N
Si[
X

p
Colp[Z]ColTp [Z]] =

2

N
Si[⌃] �

2

N
⇢siIdi

due to (5.62). By the Noncommutative Khintchine Inequality we have

8� > 0 : Prob

⇢
S2
i [Colj [Z

& ]] � �
2

N
⇢siIdi

�
� 1� 2di exp{��/2} (5.63)

Setting

� = 2 ln(4DN), D =
X

i
di, g&

j
=

s
N

2�⇢
Colj [Z

& ], �j =
2�⇢

N
, 1  j  N,

we conclude that event

⌅ =
�
& : S2

i [g
&

j
] � siIdi , i  I, j  N

 
⇢
�
g&
j
2 H, j  N
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satisfies Prob(⌅) � 1
2 , while

X
j
�jg

&

j
[g&

j
]T =

X
j
Colj [Z

& ]ColTj [Z
& ] ⌘ ⌃ and

X
j
�j = �⇢ = 2�⇢ = {⇢.

Thus, with probability � 1/2 (whenever & 2 ⌅), vectors gj = g&
j
and �j meet the requirements in

(ii). ⇤
Note that the proof of the proposition suggests an e�cient randomized algorithm for generating

the required gj and �j : we generate realizations of & of a Rademacher random vector, compute the
corresponding vectors g&

j
, and terminate when all of them happen to belong toH. The corresponding

probability not to terminate in course of the first k rounds of randomization is then  2�k.

5.5.3 Proof of Lemma 3

The proof of the lemma is given by the standard argument underlying median-of-means construction
(cf. [56, Section 6.5.3.4]). For the sake of completeness, we reproduce it here.

1
o
. Observe that when (5.14) holds, h 2 H, x 2 X and ⇣ = ⇠ +

P
↵
⌘↵A↵x, the probability of the

event

{|hT ⇣| > 1}

is at most 1/8. Indeed, when |hT ⇣| > 1 implies that either |hT ⇠| > 1/2 or |⌘TA[h]x| > 1/2. By
the Chebyshev inequality, the probability of the first of these events is at most 4E{(hT ⇠)2} 
4�2khk22  1

16 (we have used the first relation in (5.14) and took into account that h 2 H). By
similar argument, the probability of the second event is at most 4E{(⌘TA[h]x)2}  4kA[h]xk22  1

16 .

2
o
. Let ⇣k = !k �Ax. By construction, zj = yj �hT

j
Ax is the median of the i.i.d. sequence hT

j
⇣k,

k = 1, ...,K. When |zj | > 1, at least K/2 of the events {|hT
j
⇣k| > 1}, k  K, take place. Because

the probability of each of K independent events is  1/8, it is easily seen6 that the probability that
at least K/2 of them happen is bounded with

⇡(K) :=
X

k�K/2

✓
K

k

◆
(1/8)k(7/8)K�k 

X

k�K/2

✓
K

k

◆
2�K [(1/4)k(7/4)K�k]  (

p
7/4)K  e�0.4K .

In other words, the probability of each event Ej = {!K : |yj�hT
j
Ax| > 1}, j = 1, ...,M , is bounded

with ⇡(K). Thus, none of the events E1, ..., EM takes place with probability at least 1�M⇡(K),
and in such case we have ky�HTAxk1  1, and so ky�HTAbxH(!K)k1  1 as well. We conclude
that for every x 2 X , the probability of the event

�
x� bxH(!K) 2 2X , kHTA[x� bxH(!K)]k1  2

 

is at least 1 � M⇡(K) � 1 � ✏ when K � 2.5 ln[M/✏], and when it happens, one has kBx �
bwH

poly(!
K)k  p[H]. ⇤

6We refer to, e.g., [131, Section 2.3.2] for the precise justification of this obvious claim.
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5.5.4 Proof of Proposition 5.2.2

1
o
. Let `  L and k  K be fixed, let H = H` 2 R

m⇥⌫ be a candidate contrast matrix, and let
�, µ,,{ be a feasible solution to (5.15). One has

E⇠k

n
kR1/2

`
HT ⇠kk22

o
= Tr

⇣
E⇠k

n
R1/2
`

HT ⇠k⇠
T

k
HR1/2

`

o⌘
 �2Tr(HR`H

T ) = �2kHR1/2
`

k2Fro.
(5.64)

Next, for any x 2 X fixed we have

E⌘k

⇢���R1/2
`

HT [
X

↵
[⌘k]↵A↵]x

���
2

2

�
= E⌘k

⇢���R1/2
`

HT [A1x, ..., Aqx]⌘k
���
2

2

�
= xT

hX
↵
AT

↵HR`H
TA↵

i
x

= k[R1/2
`

HTA1; ...;R
1/2
`

HTAq]xk22  (�+ �T (µ))
2 (5.65)

where the concluding inequality follows from the constraints in (5.15) (cf. item 2o of the proof of
Proposition 5.2.1). Next, similarly to item 1o of the proof of Proposition 5.2.1 we have

kR1/2
`

(B �HTA)xk22  (+ �T ({))2.

Put together, the latter bound along with (5.64) and (5.65) imply (5.17).

2
o
. By the Chebyshev inequality,

8`, k Prob
n
kR1/2

`
(w`(!k)�Bx)k2 � 2eR`[H`]

o
 1

4 ;

applying [128, Theorem 3.1] we conclude that

8` Prob
n
kR1/2

`
(z`(!

K)�Bx)k2 � 2C↵ eR`[H`]
o
 e�K (↵, 14 )

where

 (↵,�) = (1� ↵) ln
1� ↵

1� �
+ ↵ ln

↵

�
(5.66)

and C↵ = 1�↵p
1�2↵

. When choosing ↵ =
p
3

2+
p
3
which corresponds to C↵ = 2 we obtain  (↵, 14) =

0.1070... so that for `  L

Prob
n
kR1/2

`
(z`(!

K)�Bx)k2 � 4eR`[H`]
o
 e�0.1070K

what is (5.18).

3
o
. Now, let K � ln(L/✏)/0.1070. In this case, for all `  L

Prob
n
kR1/2

`
(z`(!

K)�Bx)k2 � 4eR`[H`]
o
 ✏/L,

so that with probability � 1�✏ the set W(!K) is not empty (it contains Bx), and for all v 2 W(!K)
one has

kR1/2
`

(v �Bx)k2  kR1/2
`

(z`(!
K)� v)k2 + kR1/2

`
(z`(!

K)�Bx)k2 � 8eR`[H`]. ⇤
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5.6 Proofs for Section 5.3

5.6.1 Proof of Proposition 5.3.3

The proof follows that of Proposition 5.2.3. All we need to prove is that if H satisfies the premise
of the proposition and �`,⌥`, �`, ⇢ is a feasible solution to (5.48), then the inequality

Risk✏[ bwH

poly|X ]  2⇢ (5.67)

holds. Indeed, let us fix x 2 X and ⌘ 2 U . Since the columns of H satisfy (5.47), the Px-probability
of the event

Zx,⌘ = {⇠ : kHT [D[⌘]x+ ⇠k1  1}

is at least 1�ML� = 1� ✏. Let us fix observation ! = Ax+D[⌘]x+ ⇠ with ⇠ 2 Zx,⌘. Then

kHT [! �Ax]k1 = kHT [D[⌘]x+ ⇠]k1  1, (5.68)

implying that the optimal value in the optimization problem minu2X kHT [Au � !k1 is at most
1. Consequently, setting bx = bxH(!), we have bx 2 X and kHT [Abx � !]k1  1, see (5.22). These
observations combine with (5.68) and the inclusion x 2 X to imply that for z = 1

2 [x � bx] we have
z 2 X and kHT zk1  1. Recalling what X is we conclude that z = Py with T 2

k
[y] � tkIfk , k  K

for some t 2 T and
kHT

`
APyk1 = kHT

`
Azk1  1, `  L. (5.69)

Now let u 2 R
⌫ with kuk2  1. Semidefinite constraints in (5.48) imply that

uTR1/2
`

Bz = uTR1/2
`

BPy  uT�`I⌫u+ yT
h
PATH`Diag{�`}HT

`
AP +

X
k
T+,⇤
k

[⌥`
k
]
i
y

= �`u
Tu+

X
j
�`j [HT

`
APy]2j| {z }

1 by (5.69)

+
X

k
yTT+,⇤

k
[⌥`

k
]y

 �` +
X

j
�`j +

X

k

X

i,jN

yiyjTr(⌥
`

k
T ikT jk)

= �` +
X

j
�`j +

X

k

Tr(⌥`
k
T 2
k
[y])

 �` +
X

j
�`j +

X

k

tkTr(⌥
`

k
) [due to ⌥` ⌫ 0 and T 2

k
[y] � tkIfk ]

 �` +
X

j
�`j + �T (�[⌥

`])  ⇢ (5.70)

where the concluding inequality follows from the constraints of (5.48). (5.70) holds true for all u
with kuk2  1, and we conclude that for x 2 X and ⌘ 2 U and ⇠ 2 Zx,⌘ (recall that the latter
inclusion takes place with Px-probability � 1� ✏) we have

kR1/2
`

B[bxH(Ax+D[⌘]x+ ⇠)� x]k2  2⇢, `  L.

Recalling what k · k is, we get

8(x 2 X , ⌘ 2 U) : Prob⇠⇠Px{kB[x� bxH(Ax+D[⌘]x+ ⇠)]k > 2⇢k  ✏,

that is, Risk✏[ bwH

poly|X ]  2⇢. The latter relation holds true whenever ⇢ can be extended to a feasible
solution to (5.48), and (5.67) follows. ⇤
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5.6.2 Robust norm of uncertain matrix with structured norm-bounded uncer-

tainty

Situation and goal

Let matrices As 2 R
m⇥n, s  S, and Lt 2 R

pt⇥m, Rt 2 R
qt⇥n, t  T , be given. These data specify

uncertain m⇥ n matrix

A = {A =
X

s
�sAs +

X
t
LT

t �tRt : |�s|  1 8s  S, k�tk2,2  1 8t  T}. (5.71)

Given ellitopes

X = {Py : y 2 Y} ⇢ R
n, Y = {y 2 R

N & 9t 2 T : yTTky  tk, k  K},
B⇤ = {Qz : z 2 Z} ⇢ R

m, Z = {z 2 R
M : 9s 2 S : zTS`z  s`, `  L}, (5.72)

we want to upper-bound the robust norm

kAkX ,B = max
A2A

kAkX ,B,

of uncertain matrix A induced by the norm k · kX with the unit ball X in the argument space and
the norm k · kB with the unit ball B which is the polar of B⇤ in the image space.

Main result

Proposition 5.6.1 Given uncertain matrix (5.71) and ellitopes (5.72), consider convex optimiza-
tion problem

Opt = min
µ,�,�,

Us,Vs,Ut,V t

1
2 [�S(µ) + �T (�)]

subject to

µ � 0, � � 0, � � 0


Us �QTAsP
�P TAT

s Q Vs

�
⌫ 0 (5.73a)


U t �QTLT

t

�LtQ �tIpt

�
⌫ 0, V t � �tP

TRT

t RtP ⌫ 0 (5.73b)

X
`
µ`S` �

X
s
Us �

X
t
U t ⌫ 0 (5.73c)

X
k
�kTk �

X
s
Vs �

X
t
V t ⌫ 0 (5.73d)

The problem is strictly feasible and solvable, and

kAkX ,B  Opt  {(K){(L)max [#(2),⇡/2] kAkX ,B (5.74)

where

the function #(k) of nonnegative integer k is given by #(0) = 0 and

#(k) =


min
↵

⇢
(2⇡)�k/2

Z
|↵1u

2
1 + ...+ ↵ku

2
k
|e�u

T
u/2du, ↵ 2 R

k, k↵k1 = 1

���1

, k � 1; (5.75)

 = max
sS

Rank(As) when S � 1, otherwise  = 0;

{(·) is given by

{(J) =
⇢

1, J = 1,
5
2

p
ln(2J), J > 1.

(5.76)
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Remarks. The rationale behind (5.73) is as follows. Checking that the X ,B-norm of uncertain
m⇥ n matrix (5.71) is  a 2 R is the same as to verify that for all �s 2 [�1, 1], �t : k�tk2,2  1

X
s
�su

TAsv +
X

t
uTLT

t �tRtv  akukB⇤kvkX 8(u 2 R
m, v 2 R

n),

or, which is the same due to what B⇤ and X are, that for all �s 2 [�1, 1],�t : k�tk2,2  1
X

s
�sz

TQTAsPy +
X

t
zTQTLT

t �tRtPy  akzkZkykY 8(z 2 R
M , y 2 R

N ). (5.77)

A simple certificate for (5.77) is a collection of positive semidefinite matrices Us, Vs, U t, V t, U, V
such that for all z 2 R

M , y 2 R
N and all s  S, t  T it holds

2zT [QTAsP ]y  zTUsz + yTVsy, (5.78a)

2zTQTLT

t �tRtPy  zTU tz + yTV ty 8(�t : k�tk2,2  1), (5.78b)
X

s
Us +

X
t
U t � U, (5.78c)

X
s
Vs +

X
t
V t � V, (5.78d)

max
z2Z

zTUz +max
y2Y

yTV y  2a. (5.78e)

Now, (5.78a) clearly is the same as (5.73a). It is known (this fact originates from [132]) that
(5.78b) is the same as existence of �t � 0 such that (5.73b) holds. Finally, existence of µ � 0 such
that

P
`
µ`S` ⌫ U and � � 0 such that

P
k
�kTk ⌫ V (see (5.73c) and (5.73d)) implies due to the

structure of Z and Y that maxz2Z zTUz  �S(µ) and maxy2Y yTV y  �T (�). The bottom line is
that a feasible solution to (5.73) implies the existence of a certificate

n
Us, U

t, Vs, V
t, s  S, t  T, U =

X
`
µ`S`, V =

X
k
�kTk

o

for relation (5.77) with a = 1
2 [�S(µ) + �T (�)].

Proof of Proposition 5.6.1. 1
o. Strict feasibility and solvability of the problem are immediate

consequences of
P

`
S` � 0 and

P
k
Tk � 0.

Let us prove the first inequality in (5.74). All we need to show is that if

[a] µ, �,�, Us, Vs, U t, V t is feasible for (5.73),

[b] x = Py with yTTky  ⌧k, k  K, for some ⌧ 2 T and u = Qz for some z such that
zTS`z  &`, `  L, for some & 2 S, and

[c] �s, �t satisfy |�s|  1, k�tk2,2  1,

then � := uT [
P

s
�sAs +

P
t
LT
t �tRt]x  1

2 [�S(µ) + �T (�)]. Assuming [a–c], we have

� =
X

s
�sz

TQTAsPy +
X

t
zTQTLT

t �tRtPy| {z }
⇣t

 1
2z

T

hX
s
Us

i
z + 1

2y
T

hX
s
Vs

i
y +

X
t
kLtQzk2k⇣tk2 [by (5.73a) and due to |�s|  1]

 1
2z

T

"
X

s

Us

#
z + 1

2y
T

"
X

s

Vs

#
y +

X

t

q
(�tzTU tz)(yTP TRT

t
RtPy)

[due to (5.73b) and k�tk2,2  1]

= 1
2z

T

hX
s
Us

i
z + 1

2y
T

hX
s
Vs

i
y +

X
t

q
(zTU tz)(�tyTP TRT

t
RtPy).
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Thus, by the second inequality of (5.73b),

�  1
2z

T

hX
s
Us

i
z + 1

2y
T

hX
s
Vs

i
y +

X
t

q
(zTU tz)(yTV ty)

 1
2z

T

hX
s
Us

i
z + 1

2y
T

hX
s
Vs

i
y + 1

2

X
t
[zTU tz + yTV ty]

= 1
2

h
zT
hX

s
Us +

X
t
U t

i
z + yT

hX
s
Vs +

X
t
V t

i
y
i

 1
2

hX
`
µ`z

TS`z +
X

k
yT�kTky

i
[by (5.73c) and (5.73d)]

 1
2

hX
`
µ`&` +

X
k
�k⌧k

i
[due to zTS`z  &`, yTTky  ⌧k]

 1
2 [�S(µ) + �T (�)] [since & 2 S, ⌧ 2 T ] (5.79)

as claimed.

2
o
. Now, let us prove the second inequality in (5.74). Observe that

S = {0} [ {[s;�] : � > 0, s/� 2 S}, T = {0} [ {[t; ⌧ ] : ⌧ > 0, t/⌧ 2 T },

are regular cones with the duals

S⇤ = {[g;�] : � � �S(�g)}, T⇤ = {[h; ⌧ ] : ⌧ � �T (�h)},

and (5.73) can be rewritten as the conic problem

2Opt = min
↵,�,µ,�,

�,Us,Vs,Ut,V t

↵+ � (P)

subject to

[�µ;↵][g,↵] 2 S⇤, [��;�][h,�] 2 T⇤, µ
µ � 0, �� � 0, �� � 0


Us �QTAsP

�P TAT
s Q Vs

�
"

Us As

A
T
s V s

#

⌫ 0, s  S


U t �QTLT

t

�LtQ �tIpt

�
"

U
t

L
T
t

Lt ⇤t

#

⌫ 0, [V t � �tP
TRT

t RtP ]
V

t

⌫ 0, t  T

[
X

`
µ`S` �

X
s
Us �

X
t
U t]

S

⌫ 0, [
X

k
�kTk �

X
s
Vs �

X
t
V t]

T

⌫ 0 (5.80)

(superscripts are the Lagrange multipliers for the corresponding constraints). (P ) clearly is solvable
and strictly feasible, so that 2Opt is the optimal value of the (solvable!) conic dual of (P ):
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2Opt = max
↵,�,g,h,µ,�,�,S,T ,

Us,V s,As,U
t,Lt,⇤t,V

t

2
X

s
Tr(QTAsPA

T

s ) + 2
X

t
Tr(QTLT

t Lt) (D)

subject to

[g;↵] 2 T, [h;�] 2 S, µ � 0, � � 0, � � 0, V
t ⌫ 0, S ⌫ 0, T ⌫ 0

"
U s As

A
T

s V s

#
⌫ 0,

"
U

t
L
T

t

Lt ⇤t

#
⌫ 0

↵ = 1, [g;↵] 2 S, � = 1, [h;�] 2 T, �g` +Tr(SS`) + µ` = 0, �hk +Tr(TTk) + �k = 0

Tr(⇤t)� Tr(V tP
TRTRtP ) + �t = 0

U s = S, U t = S, V s = T , V
t
= T

(here and in what follows the constraints should be satisfied for all values of “free indexes” s  S,

t  T , `  L, k  K). Taking into account that relation


X Y
Y T Z

�
⌫ 0 is equivalent to

X ⌫ 0, Z ⌫ 0, and Y = X1/2�Z1/2 with k�k2,2  1, and that [g; 1] 2 S, [h; 1] 2 T is the same as
g 2 S, h 2 T , (D) boils down to

Opt = max
g,h,S,T ,
�s,�t,⇤t

⇢X
s
Tr(QTAsPA

T

s ) +
X

t
Tr(QTLT

t Lt) :

g 2 T , h 2 S, S ⌫ 0, T ⌫ 0, Tr(SS`)  g`, Tr(TTk)  hk

As = S
1/2
�sT

1/2
, k�sk2,2  1, L

T

t = S
1/2
�t⇤

1/2
t , k�tk2,2  1

Tr(⇤t)  Tr(S
1/2

P TRTRtPS
1/2

)

9
>=

>;

or, which is the same,

Opt = max
g,h,S,T

�s,�t,⇤t,Lt

⇢X
s
Tr(S

1/2
QTAsPT

1/2
�

T

s ) + 2
X

t
Tr(S

1/2
QTLT

t ⇤
1/2
t �

T

t ) : (D0)

g 2 T , h 2 S, S ⌫ 0, T ⌫ 0, Tr(SS`)  g`, Tr(TTk)  hk
k�sk2,2  1, k�tk2,2  1

Tr(⇤t)  Tr(T
1/2

P TRT
t RtPT

1/2
), ⇤t ⌫ 0

9
>=

>;

Note that for � and � such that k�k2,2  1 and k�k2,2  1 one has

Tr(A�)  kAknuc = k�(L[A])k1, L[A] =

 1
2A

1
2A

T

�

and
Tr(ABT �) = hA, �TBiFro  kAkFrok�TBkFro  kAkFrokBkFro

(here kAknuc stands for the nuclear norm and �(A) for the vector of eigenvalues of a symmetric
matrix A). Consequently, for a feasible solution to (D0) it holds

Tr(S
1/2

QTAsPT
1/2
�

T

s )  k�(L[S1/2
QTAsPT

1/2
])k1,
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and

Tr(S
1/2

QTLT

t ⇤
1/2
t �

T

t )  kS1/2
QTLT

t kFrok⇤
1/2
t kFro.

The latter bound combines with the last constraint in (D0) to imply that

Tr(S
1/2

QTLT

t ⇤
1/2
t �

T

t )  kS1/2
QTLT

t kFrokT
1/2

P TRT

t kFro,

and we conclude that

Opt  max
S,g,T ,h

⇢X
s

����(L[S1/2
QTAsPT

1/2
])
���
1
+
X

t

���S1/2
QTLT

t kFrokT
1/2

P TRT

t

���
Fro

: (5.81)

S ⌫ 0, g 2 S, Tr(SS`)  g`, `  L
T ⌫ 0, h 2 T , Tr(TTk)  hk, k  K

�

4
o
. We need the following result:

Lemma 4 [133, Lemma 2.3] (cf. also [13, Lemma 3.4.3]) If the ranks of all matrices As (and

thus—matrices S
1/2

QTAsPT
1/2

) do not exceed a given  � 1, then for ! ⇠ N (0, IM+N ) one has

E

n
|!TL[S1/2

QTAsPT
1/2

]!|
o
� k�(L[S1/2

QTAsPT
1/2

])k1/#(2),

with #(·) as described in Proposition 5.6.1.

Our next result is as follows (cf. [124, Proposition B.4.12])

Lemma 5 Let 2 R
p⇥q, B 2 R

r⇥q and ⇠ ⇠ N (Q, Iq). Then

E⇠ {kA⇠k2kB⇠k2} � 2

⇡
kAkFrok||BkFro.

Proof. Setting ATA = UDiag{�}UT with orthogonal U and ⇣ = UT ⇠, we have

E {kA⇠k2kB⇠k2} = E

⇢rXq

i=1
�i[UT ⇠]2

i
kB⇠k2

�
.

The right hand side is concave in �, so that the infimum of this function in � varying in the simplexP
i
�i = Tr(ATA) is attained at an extreme point. In other words, there exists vector a 2 R

q with
aTa = kAk2Fro such that

E {kA⇠k2kB⇠k2} � E⇠

�
|aT ⇠| kB⇠k2

 
.

Applying the same argument to kB⇠k2-factor, we can now find a vector b 2 R
q, bT b = kBk2Fro, such

that

E⇠

�
|aT ⇠| kB⇠k2

 
� E⇠

�
|aT ⇠| |bT ⇠|

 
.

It su�ces to prove that the concluding quantity is � 2kak2kbk2/⇡. By homogeneity, this is the
same as to prove that if [s; t] ⇠ N (0, I2), then E{|t| | cos(�)t + sin(�)s|} � 2

⇡
for all � 2 [0, 2⇡),

which is straightforward (for the justification, see the proof of Proposition 2.3 of [134]). ⇤
The last building block is the following
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Lemma 6 [118, Lemma 6] Let

V = {v 2 R
d : 9r 2 R : vTRjv  rj , 1  j  J} ⇢ R

d

be a basic ellitope, W ⌫ 0 be symmetric d⇥ d matrix such that

9r 2 R : Tr(WRj)  rj , j  J,

and ! ⇠ N (0,W ). Denoting by ⇢(·) the norm on R
d with the unit ball V, we have

E{⇢(!)}  {(J).

with {(·) given by (5.76).

4
o Now we can complete the proof of the second inequality in (5.74). Let  � 1, and let g, S, h, T

be feasible for the optimization problem in (5.81). Denoting by k · kQ the norm with the unit ball
Q, for all A 2 R

m⇥n, u 2 R
m, and v 2 R

n we have

uTAv  kukB⇤kAvkB  kukB⇤kAkX ,BkvkX ,

so that for all u 2 R
m and v 2 R

n

kukB⇤kvkX kAkX ,B � max
✏s,|✏s|1,

�t,k�tk2,21

hX
s
✏su

TAsv +
X

t
uTLT

t �tRtv
i

=
X

s
|uTAsv|+

X
t
kLtuk2kRtvk2.

Thus, for all g, S, h, T which are feasible for (5.81) and ⇠ 2 R
M , ⌘ 2 R

N ,

kS1/2
⇠kZkT

1/2
⌘kYkAkX ,B � kQS

1/2
⇠kB⇤kPT

1/2
⌘kX kAkX ,B [due to B⇤ = QZ,X = PY]

�
X

s
|⇠TS1/2

QTAsPT
1/2
⌘|+

X
t
kLtQS

1/2
⇠k2kRtPT

1/2
⌘k2

=
X

s
|[⇠; ⌘]TL[S1/2

QTAsPT
1/2

][⇠; ⌘]|

+
X

t
k[LtQS

1/2
, 0pt⇥N ][⇠; ⌘]k2k[0qt⇥M , RtPT

1/2
][⇠; ⌘]k2. (5.82)

As a result, for [⇠; ⌘] ⇠ N (0, IM+N ), applying the bounds of Lemmas 4 and 5,

E

n���S1/2
⇠
���
Z

o
E

⇢���T 1/2
⌘
���
Y

�
kAkX ,B = E

n���S1/2
⇠
���
Z
kT 1/2

⌘kYkAkX ,B

o

�
X

s
E

n���[⇠; ⌘]TL[S1/2
QTAsPT

1/2
][⇠; ⌘]

���
o

+
X

t
E

n���[LtQS
1/2

, 0pt⇥N ][⇠; ⌘]
���
2

���[0qt⇥M , RtPT
1/2

][⇠; ⌘]
���
2

o

� #(2)�1
X

s

����
⇣
L[S1/2

QTAsPT
1/2

]
⌘���

1
+ 2

⇡

X

t

kLtQS
1/2kFrokRtPT

1/2kFro.

Besides this, by Lemma 6 we have

E

n
kS1/2

⇠kZ
o
 {(L), E

n
kT 1/2

⌘kY
o
 {(K)
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due to the fact that g, S, h and T are feasible for (5.81). This combines with (5.82) to imply that
the value {(L){(K)kAkX ,B is lower bounded with the quantity

max [#(2),⇡/2]�1
hX

s

����
⇣
L[S1/2

QTSsPT
1/2

]
⌘���

1
+
X

t
kS1/2

QTLT

t kFrokT
1/2

P TRT

t kFro
i
.

Invoking the inequality in (5.81), we arrive at the second inequality in (5.74). The above reasoning
assumed that  � 1, with evident simplifications, it is applicable to the case of  = 0 as well. ⇤

5.6.3 Proof of Proposition 5.3.1

We put S = qs and T = q�qs. In the situation of Proposition 5.3.1 we want to tightly upper-bound
quantity

s(H) = max
x2X ,⌘2U

��HTD[⌘]x
��

= max
`L

max
x2X ,⌘2U

np
[HTD[⌘]x]TR`[HTD[⌘]x]

o

= max
`L

kA`[H]kX ,2,

where k · kX ,2 is the operator norm induced by k · kX on the argument and k · k2 on the image space
and the uncertain matrix A`[H] is given by

A` =

⇢P
S

s=1�sR
1/2
`

HTP T

s Qs| {z }
=:As`[H]

+
P

T

t=1R
1/2
`

HTP T

S+t| {z }
L
T
t`[H]

�sQS+t| {z }
=:Rt

:

|�s|  1 , 1  s  S
k�sk2,2  1 , 1  t  T

�

It follows that

s(H) = max
`L

kA`[H]kX ,2,

and Proposition 5.6.1 provides us with the e�ciently computable convex in H upper bound s(H)
on s(H):

s(H) = max
`L

Opt`(H),

Opt`(H) = min
µ,�,�,Us,Vs,U

t,V t

n
1
2 [µ+ �T (�)] : µ � 0, � � 0, � � 0


Us �As`[H]P

�P TAT

s`
[H] Vs

�
⌫ 0


U t �LT

t`
[H]

�Lt`[H] �tIpqs+t

�
⌫ 0

V t � �tP TRT
t RtP ⌫ 0

µI⌫ �
P

s
Us �

P
t
U t ⌫ 0P

k
�kTk �

P
s
Vs �

P
t
V t ⌫ 0

9
>>>>>>>>=

>>>>>>>>;

and tightness factor of this bound does not exceed max[#(2),⇡/2] where  = max
↵qs

min[p↵, q↵]. ⇤
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5.6.4 Spectratopic version of Proposition 5.6.1

Proposition 5.6.1 admits a “spectratopic version,” in which ellitopes X and B⇤ given by (5.72) are
replaced by the pair of spectratopes

X = {Py : y 2 Y} ⇢ R
n,Y = {y 2 R

N & 9t 2 T : Tk[y]2 � tkIfk , k  K},
Tk[y] =

P
N

j=1 yjT
jk, T jk 2 S

fk ,
P

k
T 2
k
[y] � 0 8y 6= 0

(5.83a)

B⇤ = {Qz : z 2 Z} ⇢ R
m, Z = {z 2 R

M : 9s 2 S : S2
`
[z] � s`Id` , `  L},

S`[z] =
P

M

j=1 zjS
jk`, Sjk` 2 S

d` ,
P

`
S2
`
[z] � 0 8z 6= 0

(5.83b)

The spectratopic version of the statement reads as follows:

Proposition 5.6.2 Given uncertain matrix (5.71) and spectratopes (5.83a) and (5.83b), consider
convex optimization problem

Opt = min
µ,�,�,Us,Vs,U

t,V t

⇢
1
2 [�S(�[µ]) + �T (�[�])] :

subject to

µ = {M` 2 S
d`
+ , `  L}, � = {⌥k 2 S

fk
+ , k  K}, � � 0


Us �QTAsP

�P TAT
s Q Vs

�
⌫ 0 (5.84a)


U t �QTLT

t

�LtQ �tIpt

�
⌫ 0, V t � �tP

TRT

t RtP ⌫ 0 (5.84b)

X

`

S+,⇤
`

[M`]�
X

s

Us �
X

t

U t ⌫ 0 (5.84c)

X

k

T+,⇤
k

[⌥k]�
X

s

Vs �
X

t

V t ⌫ 0 (5.84d)

where
�[⇣] = [Tr(Z1); ...; Tr(ZI)] for ⇣ = {Zi 2 S

ki , i  I}

and

S+,⇤
`

[V ] =
h
Tr(V Si`Sj`)

i

i,jM

for V 2 S
d` , T+,⇤

k
[U ] =

h
Tr(UT ikT jk)

i

i,jN

for U 2 S
fk .

Problem (5.84) is strictly feasible and solvable, and

kAkX ,B  Opt  &
⇣X

k
fk
⌘
&
⇣X

`
d`
⌘
max [#(2),⇡/2] kAkX ,B

where # and  are the same as in Proposition 5.6.1 and

&(J) = 2
p
2 ln(2J).

Proof. For Y 2 S
M and X 2 S

N let us set

S+
`
[Y ] =

MX

i,j=1

YijS
i`Sj`, T+

k
[X] =

NX

i,j=1

XijT
ikT jk,
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so that
S+
`
[zzT ] = S2

`
[z], T+

k
[yyT ] = T 2

k
[y] (5.85)

and
Tr(V S+

`
[Y ]) = Tr(S+,⇤

`
[V ]Y ) for V 2 S

d` , Y 2 R
M ,

Tr(UT+
k
[X]) = Tr(T+,⇤

k
[U ]X) for U 2 S

fk , X 2 R
N .

(5.86)

The proof of Proposition 5.6.2 is obtained from that (below referred to as “the proof”) of Proposition
5.6.1 by the following modifications:

1. All references to (5.73) should be replaced with references to (5.84). Item [b] in 1o of the
proof now reads

[b0] x = Py with T 2
k
[y] � ⌧kIfk , k  K, for some ⌧ 2 T and u = Qz for some z

such that S2
`
[z] � &`Id` , `  L, for some & 2 S.

The last three lines in the chain (5.79) are replaced with

�  1

2

"
X

`

Tr([zzT ]S+,⇤
`

[M`]) +
X

k

Tr([yyT ]T+,⇤
k

[⌥k])

#
[by (5.84c) and(5.84d)]

=
1

2

"
X

`

Tr(S2
`
[z]M`) +

X

k

Tr(T 2
k
[y]⌥k)

#
[by (5.85) and (5.86)]

 1

2

"
X

`

&`Tr(M`) +
X

k

⌧kTr(⌥k)

#
[due to (b0) and M` ⌫ 0,⌥k ⌫ 0]

 1
2 [�S(�[µ]) + �T (�[�])] [since & 2 S, ⌧ 2 T ].

2. Constraints (5.80) in (P) now read

"
X

`

S+,⇤
`

[M`]�
X

s

Us �
X

t

U t

#
S

⌫ 0,

"
X

k

T+,⇤
k

[⌥k]�
X

s

Vs �
X

t

V t

#
T

⌫ 0.

As a result, (5.81) becomes

Opt  max
S,g,T ,h

⇢X

s

����(L[S1/2
QTAsPT

1/2
])
���
1
+
X

t

kS1/2
QTLT

t kFrokT
1/2

P TRT

t kFro :

S ⌫ 0, g 2 S, S+
`
[S] � g`Id` , `  L

T ⌫ 0, h 2 T , T+
k
[T ] � hkIfk , k  K

�
(5.87)

3. The role of Lemma 6 in the proof is now played by the following fact.

Lemma 7 [118, Lemma 8] Let

V = {v 2 R
d : 9r 2 R : R2

j [v] � rjI⌫j , 1  j  J} ⇢ R
d

be a basic spectratope, W ⌫ 0 be symmetric d⇥ d matrix such that

9r 2 R : R+
j
[W ] � rjI⌫j , j  J,

and ! ⇠ N (0,W ). Denoting by ⇢(·) the norm on R
d with the unit ball V, we have

E{⇢(!)}  &
⇣X

j
⌫j
⌘
, &(F ) = 2

p
2 ln(2F ).
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Chapter 6

Stochastic Mirror Descent for

Large-Scale Sparse Recovery

Abstract

In this chapter we discuss an application of Stochastic Approximation to statistical estimation
of high-dimensional sparse parameters. The proposed solution reduces to resolving a penalized
stochastic optimization problem on each stage of a multistage algorithm; each problem being solved
to a prescribed accuracy by the non-Euclidean Composite Stochastic Mirror Descent (CSMD) algo-
rithm. Assuming that the problem objective is smooth and quadratically minorated and stochastic
perturbations are sub-Gaussian, our analysis prescribes the method parameters which ensure fast
convergence of the estimation error (the radius of a confidence ball of a given norm around the ap-
proximate solution). This convergence is linear during the first “preliminary” phase of the routine
and is sublinear during the second “asymptotic” phase. We consider an application of the proposed
approach to sparse Generalized Linear Regression problem. In this setting, we show that the pro-
posed algorithm attains the optimal convergence of the estimation error under weak assumptions
on the regressor distribution. We also present a numerical study illustrating the performance of
the algorithm on high-dimensional simulation data.

6.1 Introduction

Our original motivation is the well known problem of (generalized) linear high-dimensional regres-
sion with random design. Formally, consider a dataset of N points (�i, ⌘i), i 2 {1, . . . , N}, where
�i 2 R

n are (random) features and ⌘i 2 R are observations, linked by the following equation

⌘i = r(�Ti x⇤) + �⇠i, i 2 [N ] := {1, . . . , N} (6.1)

where ⇠i 2 R are i.i.d. observation noises. The standard objective is to recover the unknown
parameter x⇤ 2 R

n of the Generalized Linear Regression (6.1) – which is assumed to belong to a
given convex closed set X and to be s-sparse, i.e., to have at most s ⌧ n non-vanishing entries
from the data-set.

As mentioned before, we consider random design, where �i are i.i.d. random variables, so that
the estimation problem of x⇤ can be recast as the following generic Stochastic Optimization problem:

g⇤ = min
x2X

g(x), where g(x) = E
�
G
�
x, (�, ⌘)

� 
, G(x, (�, ⌘)) = s(�Tx)� �Tx⌘, (6.2)
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with s(·) any primitive of r(·), i.e., r(t) = s
0(t). The equivalence between the original and the

stochastic optimization problems comes from the fact that x⇤ is a critical point of g(·), i.e., rg(x⇤) =
0 since, under mild assumptions, rg(x) = E{�[r(�Tx)�r(�Tx⇤)]}. Hence, as soon as g has a unique
minimizer (say, g is strongly convex over X), solutions of both problems are identical.

As a consequence, we shall focus on the generic problem (6.2), that has already been widely
tackled. For instance, when given an observation sample (�i, ⌘i), i 2 [N ], one may build a Sample
Average Approximation (SAA) of the objective g(x)

bgN (x) =
1

N

NX

i=1

G(x, (�i, ⌘i)) =
1

N

NX

i=1

[s(�Ti x)� �Ti x⌘i] (6.3)

and then solve the resulting problem of minimizing bgN (x) over sparse x’s. The celebrated `1-norm
minimization approach allows to reduce this problem to convex optimization. We will provide a
new algorithm adapted to this high-dimensional case, and instantiating it to the original problem
6.1.

Existing approaches and related works. Sparse recovery by Lasso and Dantzig Selector has
been extensively studied [43, 47, 48, 135–137]. It computes a solution bxN to the `1-penalized
problem minx bgN (x) + �kxk1 where � � 0 is the algorithm parameter [138]. This delivers “good

solutions”, with high probability for sparsity level s as large as O
⇣
N⌃
lnn

⌘
, as soon as the random

regressors (the �i) are drawn independently from a normal distribution with a covariance matrix
⌃ such that ⌃I � ⌃ � ⇢⌃I1, for some ⌃ > 0, ⇢ � 1. However, computing this solution
may be challenging in a very high-dimensional setting: even popular iterative algorithms, like
coordinate descent, loops over a large number of variables. To mitigate this, randomized algorithms
[139, 140], screening rules and working sets [141–143] may be used to diminish the size of the
optimization problem at hand, while iterative thresholding [144–148] is a “direct” approach to
enhance sparsity of the solution. Another approach relies on Stochastic Approximation (SA). As
rG(x, (�i, ⌘i)) = �i(r(�Ti x) � ⌘i) is an unbiased estimate of rg(x), iterative Stochastic Gradient
Descent (SGD) algorithm may be used to build approximate solutions. Unfortunately, unless
regressors � are sparse or possess a special structure, standard SA leads to accuracy bounds for
sparse recovery proportional to the dimension n which are essentially useless in the high-dimensional
setting. This motivates non-Euclidean SA procedures, such as Stochastic Mirror Descent (SMD)
[56], its application to sparse recovery enjoys almost dimension free convergence and it has been
well studied in the literature. For instance, under bounded regressors and with sub-Gaussian noise,

SMD reaches “slow rate” of sparse recovery of the type g(bxN ) � g⇤ = O
⇣
�
p
s ln(n)/N

⌘
where

bxN is the approximate solution after N iterations [149, 150]. Multistage routines may be used
to improve the error estimates of SA under strong or uniform convexity assumptions [151–153].
However, they do not always hold, as in sparse Generalized Linear Regression, where they are
replaced by Restricted Strong Convexity conditions. In that setting, the multistage procedure by

[63] attains the rate O
⇣
�

⌃

q
s lnn

N

⌘
for the `2-error kbxN � x⇤k2 with high probability.2 This is the

best “asymptotic” rate attainable when solving (6.2). However, those algorithms have two major
limitations. They both need a number of iterations to reach a given accuracy proportional to the

initial error R = kx⇤ � x0k1 and the sparsity level s must be of order O
⇣
⌃

q
N

lnn

⌘
for the sparse

1We use A � B for two symmetric matrices A and B if B �A ⌫ 0, i.e. B �A is positive semidefinite.
2Some flows in the proofs in [63] we fixed by [154].
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linear regression. These limits may be seen as a consequence of dealing with non-smooth objective
g(x). Although it slightly restricts the scope of corresponding algorithms, we shall consider smooth
objectives and algorithm for minimizing composite objectives (cf. [151, 155, 156]) to mitigate the
aforementioned drawbacks of the multistage algorithms from [63, 154].

Principal contributions. We provide a refined analysis of Composite Stochastic Mirror Descent
(CSMD) algorithms for computing sparse solutions to Stochastic Optimization problem leveraging
smoothness of the objective. This leads to a new “aggressive” choice of parameters in a multistage
algorithm with significantly improved performances compared to those in [63]. We summarize
below some properties of the proposed procedure for problem (6.2).

Each stage of the algorithm is a specific CSMD recursion; They fall into two phases. During the
first (preliminary) phase, the estimation error decreases linearly with the exponent proportional to
⌃

s lnn
. When it reaches the value O

⇣
�sp
⌃

⌘
, the second (asymptotic) phase begins, and its stages

contain exponentially increasing number of iterations per stage, hence the estimation error decreases

as O
⇣
�s

⌃

q
lnn

N

⌘
where N is the total iteration count.

Organization and notation The remaining of the paper is organized as follows. In Section 6.2,
the general problem is set, and the multistage optimization routine and the study of its basic prop-
erties are presented. Then, in Section 6.3, we discuss the properties of the method and conditions
under which it leads to “small error” solutions to sparse GLR estimation problems. Finally, a small
simulation study illustrating numerical performance of the proposed routines in high-dimensional
GLR estimation problem is presented in Section 6.3.3.

In the following, E is a Euclidean space and k · k is a norm on E; we denote k · k⇤ the conjugate
norm (i.e., kxk⇤ = supkyk1 hy, xi). Given a positive semidefinite matrix ⌃ 2 Sn, for x 2 R

n we

denote kxk⌃ =
p
xT⌃x and for any matrix Q, we denote kQk1 = maxij |[Q]ij |. We use a generic

notation c and C for absolute constants; a shortcut notation a . b (a & b) means that the ratio a/b
(ratio b/a) is bounded by an absolute constant; the symbols

W
,
V

and the notation (.)+ respectively
refer to ”maximum between”, ”minimum between” and ”positive part”.

6.2 Multistage Stochastic Mirror Descent for Sparse Stochastic

Optimization

This section is dedicated to the formulation of the generic stochastic optimization problem, the
description and the analysis of the generic algorithm.

6.2.1 Problem statement

Let X be a convex closed subset of an Euclidean space E and (⌦, P ) a probability space. We
consider a mapping G : X ⇥ ⌦ ! R such that, for all ! 2 ⌦, G(·,!) is convex on X and smooth,
meaning that rG(·,!) is Lipschitz continuous on X with a.s. bounded Lipschitz constant,

8x, x0 2 X, krG(x,!)�rG(x0,!)k⇤  L(!)kx� x0k, L(!)  ⌫ a.s.. (6.4)

We define g(x) := E{G(x,!)}, where E{·} stands for the expectation with respect to !, drawn
from P . We shall assume that the mapping g(·) is finite, convex and di↵erentiable on X and we
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aim at solving the following stochastic optimization problem

min
x2X

[g(x) = E{G(x,!)}], (6.5)

assuming it admits an s-sparse optimal solution x⇤ for some sparsity structure.
To solve this problem, stochastic oracle can be queried: when given at input a point x 2 X,

generates an ! 2 ⌦ from P and outputs G(x,!) and rG(x,!) := rxG(x,!) (with a slight abuse
of notations). We assume that the oracle is unbiased, i.e.,

E{rG(x,!)} = rg(x), 8x 2 X.

To streamline presentation, we assume, as it is often the case in applications of stochastic
optimization problem (6.5), that x⇤ is unconditional, i.e., rg(x⇤) = 0. or stated otherwise
E{rG(x⇤,!)} = 0; we also suppose the sub-Gaussianity of rG(x⇤,!), namely that, for some
�⇤ < 1

E

n
exp

⇣
krG(x⇤,!)k2⇤/�2⇤

⌘o
 exp(1). (6.6)

6.2.2 Composite Stochastic Mirror Descent algorithm

As mentioned in the introduction, (stochastic) optimization over the set of sparse solutions can
be done through ”composite” techniques. We take a similar approach here, by transforming the
generic problem (6.5) into the following composite Stochastic Optimization problem, adapted to
some norm k · k, and parameterized by  � 0,

min
x2X

⇥
F(x) :=

1
2g(x) + kxk = 1

2E{G(x,!)}+ kxk
⇤
. (6.7)

The purpose of this section is to derive a new (proximal) algorithm. We first provide necessary
backgrounds and notations.

Proximal setup, Bregman divergences and Proximal mapping. Let B be the unit ball of
the norm k · k and ✓ : B ! R be a distance-generating function (d.-g.f.) of B, i.e., a continuously
di↵erentiable convex function which is strongly convex with respect to the norm k · k,

hr✓(x)�r✓(x0), x� x0i � kx� x0k2, 8x, x0 2 X.

We assume w.l.o.g. that ✓(x) � ✓(0) = 0 and denote ⇥ = maxkzk1 ✓(z).
We now introduce a local and renormalized version of the d.-g.f. ✓.

Definition 18 For any x0 2 X, let XR(x0) := {z 2 X : kz � x0k  R} be the ball of radius R
around x0. It is equipped with the d.-g.f. #Rx0

(z) := R2✓ ((z � x0)/R).

Note that #Rx0
(z) is strongly convex on XR(x0) with modulus 1, #Rx0

(x0) = 0, and #Rx0
(z)  ⇥R2.

Definition 19 Given x0 2 X and R > 0, the Bregman divergence V associated to # is defined by

Vx0(x, z) = #Rx0
(z)� #Rx0

(x)� hr#Rx0
(x), z � xi, x, z 2 X.

We can now define composite proximal mapping on XR(x0) [85, 156] with respect to some convex
and continuous mapping h : X ! R.
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Definition 20 The composite proximal mapping with respect to h and x is defined by

Proxh,x0(⇣, x) := argmin
z2XR(x0)

�
h⇣, zi+ h(z) + Vx0(x, z)

 

= argmin
z2XR(x0)

�
h⇣ �r#Rx0

(x), zi+ h(z) + #Rx0
(z)
 

(6.8)

If (6.8) can be e�ciently solved to high accuracy and ⇥ is “not too large” (we refer to [85, 151,
157]); those setups will be called “prox-friendly”. We now introduce the main building block of our
algorithm, the Composite Stochastic Mirror Descent.

Composite Stochastic Mirror Descent algorithm. Given a sequence of positive step sizes
�i > 0, the Composite Stochastic Mirror Descent (CSMD) is defined by the following recursion

xi = Prox�ih,x0(�i�1rG(xi�1,!i), xi�1), x0 2 X. (6.9)

After m steps of CSMD, the final output is bxm (approximate solution) defined by

bxm =

P
m�1
i=0 �ixiP
m�1
i=0 �i

(6.10)

For any integer L 2 N, we can also define the L-minibatch CSMD. Let !(L)
i

= [!1
i
, ...,!L

i
] be i.i.d.

realizations of !i. The associated (average) stochastic gradient is then simply defined as

H
⇣
xi�1,!

(L)
i

⌘
=

1

L

LX

`=1

rG(xi�1,!
`

i ),

which yields the following recursion for the L-minibatch CSMD recursion:

x(L)
i

= Prox�ih,x0

⇣
�i�1H

⇣
xi�1,!

(L)
i

⌘
, x(L)

i�1

⌘
, x0 2 X, (6.11)

with its approximate solution bx(L)m =
P

m�1
i=0 �ix

(L)
i

/
P

m�1
i=0 �i after m iterations.

From now on, we set h(x) = kxk.

Proposition 6.2.1 If step-sizes are constant, i.e., �i ⌘ �  (4⌫)�1, i = 0, 1, ..., and the initial
point x0 2 X such that x⇤ 2 XR(x0) then for any t &

p
1 + lnm, with probability at least 1� 4e�t

F(bxm)� F(x⇤) . m�1
⇥
��1R2(⇥+ t) + R+ ��2⇤(m+ t)

⇤
, (6.12)

and the approximate solution bx(L)m of the L-minibatch CSMD satisfies

F(bx(L)m )� F(x⇤) . m�1
⇥
��1R2(⇥+ t) + R+ ��2⇤⇥L

�1(m+ t)
⇤
. (6.13)

For the sake of clarity and conciseness, we denote CSMD(x0, �,, R,m,L) the approximate

solution bx(L)m computed after m iterations of L-minibatch CSMD algorithm with initial point x0,
step-size �, and radius R using recursion (6.11).
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6.2.3 Main contribution: a multistage adaptive algorithm

Our approach to find sparse solution to the original stochastic optimization problem (6.5) consists
in solving a sequence of auxiliary composite problems (6.7), with their sequence of parameters (,
x0, R) defined recursively. For the latter, we need to infer the quality of approximate solution
to (6.5). To this end, we introduce the following Reduced Strong Convexity (RSC) assumption,
satisfied in the motivating example (it is discussed in the appendix for the sake of fluency):

Assumption [RSC] There exist some � > 0 and ⇢ < 1 such that for any feasible solution bx 2 X
to the composite problem (6.7),

kbx� x⇤k  �


⇢s+

(F(bx)� F(x⇤))+


�
. (6.14)

Given the di↵erent problem parameters s, ⌫, �, ⇢,, R and some initial point x0 2 X such that
x⇤ 2 XR(x0) Algorithm 1 works in stages. Each stage represents a run of CSMD algorithm with
properly set penalty parameter . More precisely, at stage k+1, given the approximate solution bxkm
of stage k, a new instance of CSMD is initialized onXRk+1(x

k+1
0 ) with xk+1

0 = bxkm and Rk+1 = Rk/2.
Furthermore, those stages are divided into two phases which we refer to as preliminary and

asymptotic:

Preliminary phase: During this phase, the step-sizes � and the number of CSMD iterations per
stage are fixed; the error of approximate solutions converges linearly with the total number
of calls to stochastic oracle. This phase terminates when the error of approximate solution
becomes independent of the initial error of the algorithm; then the asymptotic phase begins.

Asymptotic phase: In this phase, the step-size decreases and the length of the stage increases
linearly; the solution converges sublinearly, with the “standard” rate O

�
N�1/2

�
where N

is the total number of oracle calls. When expensive proximal computation (6.8) results in
high numerical cost of the iterative algorithm, minibatches are used to keep the number of
iterations per stage fixed.

In the algorithm description, K1 andK2 ⇣ 1+log( N

m0
) stand for the respective maximal number

of stages of the two phases of the method, here, m0 ⇣ s⇢⌫�2(⇥+ t) is the length of stages of the first
(preliminary) phase. The pseudo-code for the variant of the asymptotic phase with minibatches is
given in Algorithm 2.

The following theorem states the main result of this paper, an upper bound on the precision of
the estimator computed by our multistage method.

Theorem 6.2.1 Assume that the total sample budget satisfies N � m0, so that at least one stage
of the preliminary phase of Algorithm 1 is completed, then for t &

p
lnN the approximate solution

bxN of Algorithm 1 satisfies, with probability at least 1� C(K1 +K2)e�t,

kbxN � x⇤k . R exp

⇢
� c

�2⇢⌫

N

s(⇥+ t)

�
+ �2⇢�⇤s

r
⇥+ t

N
.

The corresponding solution bx(b)
N

of the minibatch Algorithm 2 satisfies with probability � 1�C(K1+
eK2)e�t

kbx(b)
N

� x⇤k . R exp

⇢
� c

�2⇢⌫

N

s (⇥+ t)

�
+ �2⇢�⇤s

r
⇥ (⇥+ t)

N
.
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Algorithm 1 CSMD-SR

Initialization : Initial point x0 2 X, step-size � = (4⌫)�1, initial radius R0, confidence level t,
total budget N .

Set m0 ⇣ s⇢⌫�2(⇥+ t), K1 ⇣ ln
⇣

R
2
0⌫

�2�2
⇤⇢s

⌘
^ N

m0
, L = 1

if R0 & �⇤�
q

⇢s

⌫
continue with preliminary stage,

else proceed directly to asymptotic phase
end

for stage k = 1, . . . ,K1 do . Preliminary Phase
Set k ⇣ Rk(�⇢s)�1

Compute approximate solution bxkm0
=CSMD(x0, �,k, Rk,m0, L) at stage k

Reset the prox-center x0 = bxkm0

Set Rk = Rk�1/2
end for

Set bxN = bxK1
m0

, B = N �m0K1, m1 ⇣ m0

if m1 > B output : bxN and return; endif . Asymptotic Phase
Set r0 = R

K1

Set k = 1
while mk  B do

Set k ⇣ 2�k�⇤(⇢⌫s)�1/2, �k ⇣ 4�k⌫�1

Compute approximate solution bxkmk
=CSMD(x0, �k,k, rk,mk, L) at stage k

Reset the prox-center x0 = bxkmk

Set B = B �mk, k = k + 1, rk = rk�1/2, mk ⇣ 4km0

end while

output : bxN = bxk

where eK2 ⇣ 1 + ln
�

N

⇥m0

�
is the bound for the number of stages of the asymptotic phase of the

minibatch algorithm.

Remark 6.2.1 Along with the oracle computation, proximal computation to be implemented at
each iteration of the algorithm is an important part of the computational cost of the method. It
becomes even more important during the asymptotic phase when number of iterations per stage
increases exponentially fast with the stage count, and may result in poor real-time convergence. The
interest of minibatch implementation of the second phase of the algorithm is in reducing drastically
the number of iterations per asymptotic stage. The price to be paid is an extra factor

p
⇥ that could

also theoretically hinder convergence. However, in the problems of interest (sparse and group-
sparse recovery, low rank matrix recovery) ⇥ is logarithmic in problem dimension. Furthermore, in
our numerical experiments we did not observe any accuracy degradation when using the minibatch
variant of the method.
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Algorithm 2 Asymptotic phase of CSMD-SR with minibatch

Input : The approximate solution bxK1
m0

at the end of the preliminary stage, step-size parameter �,
radius at the end of the preliminary phase R

K1
, initial batch size `1 ⇣ ⇥

1: Set r0 = R
K1

, x0 = bxK1
m0

, B = N �m0K1 . Asymptotic Phase
2: k = 1
3: while m0`k  B do

4: k ⇣ 2�k�⇤(⇢⌫s)�1/2

5: Compute approximate solution bxkm0
=CSMD(x0, �k,k, rk,m0, L = `k) at stage k

6: Reset the prox-center x0 = bxkm0

7: Set B = B �m0`k, k = k + 1, rk = rk�1/2, `k ⇣ 4k`1
8: end while

output: bx(b)
N

= bxkm2

6.3 Sparse generalized linear regression by stochastic approxima-

tion

6.3.1 Problem setting

We now consider again the original problem of recovery of a s-sparse signal x⇤ 2 X ⇢ R
n from

random observations defined by

⌘i = r(�Ti x⇤) + �⇠i, i = 1, 2, ..., N, (6.15)

where r : R ! R is some non-decreasing and continuous “activation function”, and �i 2 R
n and

⇠i 2 R are mutually independent. We assume that ⇠i are sub-Gaussian, i.e., E
�
e⇠

2
i
 

 exp(1),
while regressors �i are bounded, i.e., k�ik1  ⌫. We also denote ⌃ = E{�i�Ti }, with ⌃ ⌫ ⌃I
with some ⌃ > 0, and k⌃jk1  � < 1.
We will apply the machinery developed in Section 6.2, with respect to

g(x) = E
�
s(�Tx)� xT�⌘

 

where r(t) = rs(t) for some convex and continuously di↵erentiable s, applied with the norm
k · k = k · k1 (hence k · k⇤ = k · k1), from some initial point x0 2 X such that kx⇤ � x0k1  R. It
remains to prove that the di↵erent assumptions of Section 6.2 are satisfied.

Proposition 6.3.1 Assume that r is r-Lipschitz continuous and r-strongly monotone (i.e., |r(t)�
r(t0)| � r|t� t0| which implies that s is r-strongly convex) then

1. [Smoothness] G(·,!) is L(!)-smooth with L(!)  r⌫2.

2. [Quadratic minoration] g satisfies

g(x)� g(x⇤) � 1
2rkx� x⇤k2⌃. (6.16)

3. [Reduced Strong Convexity] Assumption [RSC] holds with � = 1 and ⇢ = (⌃r)�1.

4. [Sub-Gaussianity] rG(x⇤,!i) is �2⌫2-sub Gaussian.
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The proof is postponed to the appendix. The last point is a consequence of a generalization of the
Restricted Eigenvalue property [48], that we detail below (as it gives insight on why Proposition
6.3.1 holds). This condition, that we state and call Q(�, ) in the following Lemma 8, and is
reminiscent of [83] with the corresponding assumptions of [158, 159].

Lemma 8 Let � > 0 and 0 <   1, and suppose that for all subsets I ⇢ {1, ..., n} of cardinality
smaller than s the following property is verified:

8z 2 R
n kzIk1 

r
s

�
kzk⌃ + 1

2(1�  )kzk1 Q(�, )

where zI is obtained by zeroing all its components with indices i /2 I. If g(·) satisfies the quadratic
minoration condition, i.e., for some µ > 0,

g(x)� g(x⇤) � 1
2µkx� x⇤k2⌃, (6.17)

and that bx is an admissible solution to (6.7) satisfying, with probability at least 1� ",

F(bx)  F(x⇤) + �.

Then, with probability at least 1� ",

kbx� x⇤k1 
s

�µ 
+

�

 
. (6.18)

Remark 6.3.1 Condition Q(�, ) generalizes the classical Restricted Eigenvalue (RE) property
[48] and Compatibility Condition [135], and is the most relaxed condition under which classical
bounds for the error of `1-recovery routines were established. Validity of Q(�, ) with some � > 0
is necessary for ⌃ to possess the celebrated null-space property [160]

9 > 0 : max
I, |I|s

kzIk1  1
2(1�  )kzk1 8z 2 Ker(⌃)

which is necessary and su�cient for the s-goodness of ⌃ (i.e., bx 2 Argminu {kuk : ⌃u = ⌃x⇤}
reproduces exactly every s-sparse signal x⇤ in the noiseless case).
When ⌃ possesses the nullspace property, Q(�, ) may hold for ⌃ with nontrivial kernel; this is
typically the case for random matrices [158, 161] such as rank deficient Wishart matrices, etc.
When ⌃ is a regular matrix, condition Q(�, ) may also holds with constant � which is much
higher that the minimal eigenvalue of ⌃ when the eigenspace corresponding to small eigenvalues of
⌃ does not contain vectors z with kzIk1 > 1

2(1�  )kzk1.

Special cases. The quadratic minoration bound (6.16) for g(x) � g(x⇤) is usually overly pes-
simistic. Indeed, consider for instance, Gaussian regressor � ⇠ N (0,⌃) (even if they are not a.s.
bounded, this is for illustration purposes) and activation r, define for some 0  ↵  1 (with the
convention, 0/0 = 0)

r(t) =

⇢
t, |t|  1,
sign(t)[↵�1(|t|↵ � 1) + 1], |t| > 1.

(6.19)

When passing from � to ' = ⌃�1/2� and from x to z = ⌃1/2x and using the fact that

' =
zzT

kzk22
'+

✓
I � zzT

kzk22

◆
'

| {z }
=:�
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with independent zz
T

kzk22
' and �, with E{�} = 0, we obtain

H(z) =E{'[r('T z)]} = E

⇢
zzT

kzk22
' r('T z)

�

=
z

kzk2
E {&r(&kzk2)} =

⌃1/2x

kxk⌃
E {&r(&kxk⌃)}

where & ⇠ N (0, 1). Thus, H(⌃1/2x) is proportional to ⌃1/2
x

kxk⌃ with coe�cient

h
�
kxk⌃

�
= E {&r(&kxk⌃)} .

Figure 6.1 represents the mapping h for di↵erent values of ↵ (on the left), along with the dependence
on r of moduli of strong monotonicity of corresponding mappings H on the centered at the origin
k · k2-ball of radius r (on the right).
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Figure 6.1: Given the activation function r in (6.19) and ↵ = (0, 0.01, 0.1, 0.25, 1); left plot: mappings h;
right plot: moduli of strong monotonicity of mappings H on {z : kzk2  r} as function of r.

In the case of linear regression where r(t) = t, it holds

g(x) = E
�
1
2(�

Tx)2 � xT�⌘
 

= 1
2E
�
(�T (x⇤ � x))2 � (�Tx⇤)2

 

= 1
2(x� x⇤)T⌃(x� x⇤)� 1

2x
T
⇤ ⌃x⇤

= 1
2kx� x⇤k2⌃ � 1

2kx⇤k
2
⌃

and rG(x,!) = ��T (x� x⇤)� �⇠�. In this case L(!)  k��T k1  ⌫2.

6.3.2 Stochastic Mirror Descent algorithm

In this section, we describe the statistical properties of approximate solutions of Algorithm 1 when
applied to the sparse recovery problem. We shall use the following distance-generating function of
the `1-ball of Rn (cf. [151, Section 5.7.1])

✓(x) =
c

p
kxkpp, p =

⇢
2, n = 2
1 + 1

ln(n) , n � 3,
c =

⇢
2, n = 2,
e lnn, n � 3.

(6.20)

It immediately follows that ✓ is strongly convex with modulus 1 w.r.t. the norm k · k1 on its unit
ball, and that ⇥  e lnn. In particular, Theorem 6.2.1 entails the following statement.
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Proposition 6.3.2 For t &
p
lnN , assuming the samples budget is large enough, i.e., N � m0

(so that at least one stage of the preliminary phase of Algorithm 1 is completed), the approximate
solution bxN output satisfies with probability at least 1� Ce�t lnN ,

kbxN � x⇤k1 . R exp

⇢
�c

r⌃
r⌫2

N

s(lnn+ t)

�
+
�⌫s

r⌃

r
lnn+ t

N
(6.21)

The corresponding solution bx(b)
N

of the minibatch variant of the algorithm satisfies with probability
� 1� Ce�t lnN ,

kbx(b)
N

� x⇤k1 . R exp

⇢
�c

r⌃
r⌫2

N

s (lnn+ t)

�
+
�⌫s

r⌃

r
lnn (lnn+ t)

N

Remark 6.3.2 Bounds for the `1-norm of the error bxN�x⇤ (or bx(b)N
�x⇤) established in Proposition

6.3.2 allows us to quantify prediction error g(bxN ) � g(x⇤) (and g(bx(b)
N
) � g(x⇤)), and also lead to

bounds for kbxN � x⇤k⌃ and kbxN � x⇤k2 (respectively, for kbx(b)
N

� x⇤k⌃ and kbx(b)
N

� x⇤k2). For
instance, Proposition 6.2.1 in the present setting implies the bound on the prediction error after N
steps of the algorithm that reads

g(bxN )� g(x⇤) .
R2⌃r

s
exp

⇢
� c⌃r

�2r⌫2
N

s(⇥+ t)

�
+
�2⌫2s(⇥+ t)

⌃rN

with probability � 1� C lnNe�t. We conclude by (6.16) that

kbxN � x⇤k22  �1
⌃ kbxN � x⇤k2⌃  2�1

⌃ r�1[g(bxN )� g(x⇤)]

. R2

s
exp

⇢
� c⌃r

�2r⌫2
N

s(⇥+ t)

�
+
�2⌫2s(⇥+ t)

2⌃r
2N

.

In other words, the error kbxN � x⇤k2 converges geometrically to the “asymptotic rate” �⌫

⌃r

q
s(⇥+t)

N

which is the “standard” rate established in the setting (cf. [48, 138, 144], etc).

Remark 6.3.3 The proposed approach allows also to address the situation in which regressors are
not a.s. bounded. For instance, consider the case of random regressors with i.i.d sub-Gaussian
entries such that

8j  n, E


exp

✓
[�i]2j
{2

◆�
 1.

Using the fact that the maximum of uniform norms k�ik1, 1  i  m, concentrates around
{
p
lnmn along with independence of noises ⇠i of �i, the “smoothness” and “sub-Gaussianity”

assumptions of Proposition 6.3.2 can be stated “conditionally” to the event
⇢
! : max

im

k�ik21 . {2(ln[mn] + t)

�

of probability greater than 1 � e�t. For instance, when replacing the bound for the uniform norm
of regressors with {2(ln[mn] + t) in the definition of algorithm parameters and combining with
appropriate deviation inequality for martingales (cf., e.g., [162]), one arrives at the bound for the
error kbxN�x⇤k1 of Algorithm 1 which is similar to (6.21) of Proposition 6.3.2 in which ⌫ is replaced
with {

p
ln[mn] + t.
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6.3.3 Numerical experiments

In this section, we present results of a small simulation study illustrating the theoretical part
of the previous section. 3 We consider the GLR model (6.15) with activation function (6.19)
where ↵ = 1/2. In our simulations, x⇤ is an s-sparse vector with s nonvanishing components
sampled independently from the standard s-dimensional Gaussian distribution; regressors �i are
sampled from a multivariate Gaussian distribution � ⇠ N (0,⌃), where ⌃ is a diagonal covariance
matrix with diagonal entries �1  ...  �n. In Figure 6.2 we report on the experiment in which
we compare the performance of the CSMD-SR algorithm from Section 6.2.3 to that of four other
methods. The contenders are (1) “vanilla” non-Euclidean SMD algorithm constrained to the `1-ball
equipped with the distance generating function (6.20), (2) composite non-Euclidean dual averaging
algorithm (p-Norm RDA) from [163], (3) multistage SMD-SR of [64], and (4) “vanilla” Euclidean
SGD. The regularization parameter of the `1 penalty in (2) is set to the theoretically optimal
value � = 2�

p
2 log(n)/T . The corresponding dimension of the parameter space is n = 500000,

the sparsity level of the optimal point x⇤ is s = 200, and the “total budget” of oracle calls is
N = 250000; we use the identity regressor covariance matrix (⌃ = In) and � 2 {0.001, 0.1}. To
reduce computation time we use the minibatch versions of the multi-stage algorithms—CSMD-SR
and algorithm (3), the data to compute stochastic gradient realizations rG(xi,!) = �(r(�Txi)�⌘)
at the current search point xi being generated “on the fly.” We repeat simulations 20 times and plot
the median value along with the first and the last deciles of the error kbxi � x⇤k1 at each iteration
of the algorithm against the number of oracle calls.

� = 0.1 � = 0.001

Figure 6.2: Comparison between CSMD-SR and baseline algorithms in Generalized Linear Regression
problem: `1 error as a function of the number of oracle calls

The proposed method outperforms other algorithms which struggle to reach the regime where
the stochastic noise is dominant.

3The reader is invited to check Section 6.6 of the supplementary material for more experimental results.



159

Figure 6.3: Preliminary stages of the CSMD-SR and its variant with data recycling: linear regression
experiment (left pane), GLR with activation r1/10(t) (right pane).

In the second experiment we report on here, we study the behavior of the multistage algorithm
derived from Algorithm 2 in which, instead of using independent data samples, we reuse the same
data at each stage of the method. In Figure 6.3 we present results of comparison of the CSMD-SR
algorithm with its variant with data recycle. This version is of interest as it attains fast the noise
regime while using limited amount of samples. In our first experiment, we consider linear regression
problem with parameter dimension n = 100 000 and sparsity level s = 75 of the optimal solution;
we consider the GLR model (6.15) with activation function r1/10(t) in the second experiment. We
choose ⌃ = In and � = 0.001; we run 14 (preliminary) stages of the algorithm with m0 = 3500 in
the first simulation and m0 = 4500 in the second. We believe that the results speak for themselves.

6.4 Proofs

We use notation Ei for conditional expectation given x0 and !1, ...,!i.

6.4.1 Proof of Proposition 6.2.1

The result of Proposition 6.2.1 is an immediate consequence of the following statement.

Proposition 6.4.1 Let

f(x) = 1
2g(x) + h(x), x 2 X.

In the situation of Section 6.2.2, let �i  (4⌫)�1 for all i = 0, 1, ..., and let bxm be defined in
(6.10), where xi are iterations (6.9). Then for any t � 2

p
2 + lnm there is ⌦m ⇢ ⌦ such that
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Prob(⌦m) � 1� 4e�t and for all !m = [!1, ...,!m] 2 ⌦m,

 
m�1X

i=0

�i

!
[f(bxm)� f(x⇤)] 

m�1X

i=0

h
1
2�ihrg(xi), xi � x⇤i+ �i+1(h(xi+1)� h(x⇤))

i

 V (x0, x⇤) + �0[h(x0)� h(x⇤)]� �m[h(xm)� h(x⇤)]

+ V (x0, x⇤) + 15tR2 + �2⇤

"
7
m�1X

i=0

�2i + 24t�2
#
. (6.22)

In particular, when using the constant stepsize strategy with �i ⌘ �, 0 < �  (4⌫)�1, one has

1
2 [g(bxm)� g(x⇤)] + [h(bxm)� h(x⇤)]

 V (x0, x⇤) + 15tR2

�m
+

h(x0)� h(xm)

m
+ ��2⇤

✓
7 +

24t

m

◆
. (6.23)

Proof. Denote Hi = rG(xi�1,!i). In the sequel, we use the shortcut notation #(z) and V (x, z)
for #Rx0

(z) and Vx0(x, z) when exact values x0 and R are clear from the context.

1
o
. From the definition of xi and of the composite prox-mapping (6.8) (cf. Lemma A.1 of [85]),

we conclude that there is ⌘i 2 @h(xi) such that

h�i�1Hi + �i⌘i +r#(xi)�r#(xi�1), z � xii � 0, 8 z 2 X ,

implying, as usual [164], that 8z 2 X

h�i�1Hi + �i⌘i, xi � zi  V (xi�1, z)� V (xi, z)� V (xi�1, xi).

In particular,

�i�1hHi, xi�1 � x⇤i+ �ih⌘i, xi � x⇤i
 V (xi�1, x⇤)� V (xi, x⇤)� V (xi�1, xi) + �i�1hHi, xi�1 � xii
 V (xi�1, x⇤)� V (xi, x⇤) +

1
2�

2
i�1kHik2⇤.

Observe that due to the Lipschitz continuity of rG(·,!) one has

⌫hrG(x,!)�rG(x0,!), x� x0i � krG(x,!)�rG(x0,!)k2⇤, 8x, x0 2 X , (6.24)

so that

krG(x,!)k2⇤  2krG(x,!)�rG(x⇤,!)k2⇤ + 2krG(x⇤,!)k2⇤
 2⌫hrG(x,!)�rG(x⇤,!), x� x⇤i+ 2krG(x⇤,!)k2⇤
= 2⌫hrG(x,!), x� x⇤i � 2⌫hrG(x⇤,!), x� x⇤i+ 2krG(x⇤,!)k2⇤

so that

�i�1hHi, xi�1 � x⇤i+ �ih⌘i, , xi � x⇤i
 V (xi�1, x⇤)� V (xi, x⇤) + �2i�1[⌫hHi, xi�1 � x⇤i � ⌫⇣i + ⌧i]
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where ⇣i = hrG(x⇤,!i), xi�1 � x⇤i and ⌧i = krG(x⇤,!)k2⇤. As a result, by convexity of h we have
for �i  (4⌫)�1

3
4�i�1hrg(xi�1), xi�1 � x⇤i+ �i[h(xi)� h(x⇤)]

 (�i�1 � �2i�1⌫)hrg(xi�1), xi�1 � x⇤i+ �ih⌘i, xi � x⇤i
 V (xi�1, x⇤)� V (xi, x⇤) + (�i�1 � �2i�1⌫)h⇠i, xi�1 � x⇤i+ �2i�1[⌧i � ⌫⇣i]

where we put ⇠i = Hi �rg(xi�1). When summing from i = 1 to m we obtain

mX

i=1

�i�1

⇣
3
4hrg(xi�1), xi�1 � x⇤i+ [h(xi�1)� h(x⇤)]

⌘

 V (x0, x⇤) +
mX

i=1

[�2i�1(⌧i � ⌫⇣i) + �i�1(1� �i�1⌫)h⇠i, xi�1 � x⇤i]
| {z }

=:Rm

+ �0[h(x0)� h(x⇤)]� �m[h(xm)� h(x⇤)]. (6.25)

2
o
. We have

�i�1h⇠i, xi�1 � x⇤i = �i�1

�iz }| {
h[rG(xi�1,!i)�rG(x⇤,!i)]�rg(xi�1), xi�1 � x⇤i

+�i�1hrG(x⇤,!i), xi�1 � x⇤i
= �i�1[�i + ⇣i],

so that

Rm =
mX

i=1

�2i�1⌧i +
mX

i=1

(�i�1 � �2i�1⌫)�i +
mX

i=1

(�i�1 � 2⌫�2i�1)⇣i =: r(1)m + r(2)m + r(3)m . (6.26)

Note that r(3)m is a sub-Gaussian martingale. Indeed, one has Ei�1{⇣i} = 0 a.s.,4 and

|⇣i|  kxi�1 � x⇤k krG(x⇤,!)k⇤,

so that by the sub-Gaussian hypothesis (6.6), Ei�1

n
exp

⇣ ⇣2
i

4R2�2⇤| {z }
⌫2⇤

⌘o
 exp(1). As a result (cf. the

proof of Proposition 4.2 in [165]),

8t Ei�1

n
et⇣i
o
 exp

�
tEi�1{⇣i}+ 3

4 t
2⌫2⇤
�
= exp

�
3t2R2�2⇤

�
,

and applying (6.31a) to Sm = r(3)m with

rm = 6R2�2⇤

m�1X

i=0

(�i � 2⌫�2i )
2  6R2�2⇤

m�1X

i=0

�2i

4We use notation Ei�1 for the conditional expectation given x0,!1, ...,!i�1.
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we conclude that for some ⌦(3)
m such that Prob(⌦(3)

m ) � 1� e�t and all !m 2 ⌦(3)
m

r(3)m  2

vuut3tR2�2⇤

m�1X

i=0

�2
i
 3tR2 + 3�2⇤

m�1X

i=0

�2i . (6.27)

Next, again by (6.6), due to the Jensen inequality, Ei�1{⌧i}  �2⇤, and

Ei�1 {exp (tkrG(x⇤,!i)k⇤)}  exp
�
tEi�1{krG(x⇤,!i)k⇤}+ 3

4 t
2�2⇤
�
 exp

�
t�⇤ +

3
4 t

2�2⇤
�
.

Thus, when setting

µi = �i�1�⇤, s2i =
3
2�i�1�

2
⇤, s = max

i

�isi,

Mm = r(1)m , vm + hm = 21
4 �

4
⇤
P

m�1
i=0 �4

i
, and applying the bound (6.31b) of Lemma 9 we obtain

r(1)m  3�2⇤

m�1X

i=0

�2i +

vuut21t�4⇤

m�1X

i=0

�4
i

| {z }
=:�

(1)
m

+3t�2�2⇤

for � = maxi �i and !m 2 ⌦(1)
m where ⌦(1)

m is of probability at least 1� e�x. Because

�2
m�1X

i=0

�2i �
m�1X

i=0

�4i ,

whenever
q
21t�4⇤

P
m�1
i=0 �4

i
�
P

m�1
i=0 �2

i
, one has 21t�2 �

P
m�1
i=0 �2

i
and

21t
m�1X

i=0

�4i  21t�2
m�1X

i=0

�2i  (21t�2)2

Thus,

�(1)
m  min

"
21t�2⇤�

2,�2⇤

m�1X

i=0

�2i

#
 21t�2⇤�

2 + �2⇤

m�1X

i=0

�2i ,

and

r(1)m  �2⇤

"
4
m�1X

i=0

�2i + 24t�2
#

(6.28)

for !m 2 ⌦(1)
m .

Finally, by the Lipschitz continuity of rG (cf. (6.24)), when taking expectation w.r.t. the distri-
bution of !i, we get

Ei�1{�2i }  4R2
Ei�1{krG(xi�1,!i)�rG(x⇤,!i)k2⇤}

 4R2⌫Ei�1{hrG(xi�1,!i)�rG(x⇤,!i), xi�1 � x⇤i} = 4R2⌫hrg(xi�1), xi�1 � x⇤i.
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On the other hand, one also has |�i|  2⌫kxi�1 � xik2  8⌫R2. We can now apply Lemma 10 with
�2
i
= 4�2

i�1R
2⌫hrg(xi�1), xi�1 � x⇤i to conclude that for t � 2

p
2 + lnm

r(2)m  4

vuuttR2⌫
m�1X

i=0

�2
i
hrg(xi), xi � x⇤i

| {z }
=:�

(2)
m

+16t⌫R2�

for all !m 2 ⌦(2)
m such that Prob(⌦(2)

m ) � 1� 2e�t. Note that

�(2)
m  2tR2 + 1

4⌫
m�1X

i=0

�2i hrg(xi), xi � x⇤i,

and �i  (4⌫)�1, so that

r(2)m  ⌫
m�1X

i=0

�2i hrg(xi), xi � x⇤i+ 12tR2  1
4

m�1X

i=0

�ihrg(xi), xi � x⇤i+ 12tR2 (6.29)

for !m 2 ⌦(2)
m .

3
o
. When substituting bounds (6.27)–(6.29) into (6.26) we obtain

Rm  1
4

P
m�1
i=0 �ihrg(xi), xi � x⇤i+ 12tR2 + �2⇤

h
4
P

m�1
i=0 �2

i
+ 24t�2

i
+ 2
q
3tR2�2⇤

P
m�1
i=0 �2

i

 1
4

P
m�1
i=0 �ihrg(xi), xi � x⇤i+ 15tR2 + �2⇤

h
7
P

m�1
i=0 �2

i
+ 24t�2

i

for all !m 2 ⌦m =
T3

i=1⌦
(i)
m with Prob(⌦m) � 1 � 4e�t and t � 2

p
2 + lnm. When substituting

the latter bound into (6.25) and utilizing the convexity of g and h we arrive at

 
m�1X

i=0

�i

!⇣
1
2 [g(bxm)� g(x⇤)] + [h(bxm)� h(x⇤)]

⌘


m�1X

i=0

�i
⇣
1
2 [g(xi)� g(x⇤)] + [h(xi)� h(x⇤)]

⌘


mX

i=1

�i�1

⇣
1
2hrg(xi�1), xi�1 � x⇤i+ [h(xi�1)� h(x⇤)]

⌘

 V (x0, x⇤) + 15tR2 + �2⇤

"
7
m�1X

i=0

�2i + 24t�2
#
+ �0[h(x0)� h(x⇤)]� �m[h(xm)� h(x⇤)].

In particular, for constant stepsizes �i ⌘ � we get

1
2 [g(bxm)� g(x⇤)] + [h(bxm)� h(x⇤)]

 V (x0, x⇤) + 15tR2

�m
+

h(x0)� h(xm)

m
+ ��2⇤

✓
7 +

24t

m

◆
.

This implies the first statement of the proposition.
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5
o
. To prove the bound for the minibatch solution bx(L)m =

⇣P
m�1
i=0 �i

⌘�1P
m�1
i=0 �ix

(L)
i

, it su�ces to

note that minibatch gradient observationH(x,!(L)) is Lipschitz-continuous with Lipschitz constant

⌫, and that H(x⇤,!(L)) is sub-Gaussian with parameter �2⇤ replaced with �2⇤,L . ⇥�2
⇤

L
, see Lemma

11. ⇤

6.4.2 Deviation inequalities

Let us assume that (⇠i,Fi)i=1,2,... is a sequence of sub-Gaussian random variables satisfying5

Ei�1

n
et⇠i
o
 etµi+

t2s2i
2 , a.s. (6.30)

for some nonrandom µi, si, si  s. We denote by Sn =
P

n

i=1 ⇠i � µi, rn =
P

n

i=1 s
2
i
, vn =P

n

i=1 s
4
i
,Mn =

P
n

i=1 ⇠
2
i
� (s2

i
+ µ2

i
), and hn =

P
n

i=1 2µ
2
i
s2
i
. The following well known result is

provided for reader’s convenience.

Lemma 9 For all x > 0 one has

Prob
�
Sn �

p
2xrn

 
 e�x, (6.31a)

Prob
n
Mn � 2

p
x(vn + hn) + 2xs2

o
 e�x. (6.31b)

Proof. The inequality (6.31a) is straightforward. To prove (6.31b), note that for t < 1
2s

�2 and
⌘ ⇠ N (0, 1) independent of ⇠0, ..., ⇠n , we have:

Ei�1

n
et⇠

2
i

o
= Ei�1

n
E⌘

n
e
p
2t⇠i⌘

oo
= E⌘

n
Ei�1

n
e
p
2t⇠i⌘

oo

 E⌘

n
exp

np
2t⌘µi + t⌘2s2i

oo
= (1� 2ts2i )

�1/2 exp

⇢
tµ2

i

1� 2ts2
i

�
a.s.,

and because, cf [65, Lemma 1],

�1
2 ln(1� 2ts2i ) +

tµ2
i

1� 2ts2
i

� t(s2i + µ2
i ) 

t2s2
i
(s2

i
+ 2µ2

i
)

1� 2ts2
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 t2s2
i
(s2

i
+ 2µ2

i
)

1� 2ts2
,

one has for t < 1
2s

�2

E
�
etMn

 
 exp

⇢
t2(vn + hn)

1� 2ts2

�
.

By Lemma 8 of [166], this implies that

Prob
n
Mn � 2

p
x(vn + hn) + 2xs2

o
 e�x

for all x > 0. ⇤
Now, suppose that ⇣i, i = 1, 2, ... is a sequence of random variables satisfying

Ei�1{⇣i} = µi, Ei�1{⇣2i }  �2i , |⇣i|  1 a.s. (6.32)

Denote Mn =
P

n

i=1[⇣i � µi] and qn =
P

n

i=1 �
2
i
. Note that qn  n.

5Here, same as above, we denote Ei�1 the expectation conditional to Fi�1.
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Lemma 10 Let x � 1; one has

Prob
n
Mn �

p
2xqn + x

o


e

✓
2x ln


9n

2x

�
+ 1

◆
+ 1

�
e�x.

In particular, for x � 4
p
2 + lnn one has

Prob
n
Mn �

p
2xqn + x

o
 2e�x/2.

Proof. In the premise of the lemma, applying Bernstein’s inequality for martingales [162, 167] we
obtain for all x > 0 and u > 0,

Prob
n
Mn �

p
2xu+

x

3
, qn  u

o
 e�x.

We conclude that

Prob

⇢
Mn � x, qn  2x

9

�
 e�x,

and for any u > 0

Prob
n
Mn �

p
2(x+ 1)qn +

x

3
, u  qn  u

�
1 + 1/x

�o
 e�x,

so that
�n(x;u) := Prob

n
Mn �

p
2xqn +

x

3
, u  qn  u

�
1 + 1/x

�o
 e�x+1.

Let now u0 = 2x/9, uj = min{n, (1 + 1/x)ju0}, j = 0, ..., J , with

J =
⇧
ln
⇥
n/u0

⇤
ln�1[1 + 1/x]

⌅
.

Note that ln[1 + 1/x] � 1/(2x) for x � 1, so that

J  ln
⇥
n/u0

⇤
ln�1[1 + 1/x] + 1  2x ln

⇥
n/u0

⇤
+ 1.

On the other hand,

Prob
�
Mn �

p
2xqn + x

 
 e�x +

P
J

j=1 �n(x;uj)  e�x + Je�x+1


h
e
⇣
2x ln

h
9n
2x

i
+ 1
⌘
+ 1
i
e�x

Finally, we verify explicitly that for x � 4
p
2 + lnn one has

h
e
⇣
2x ln

h9n
2x

i
+ 1
⌘
+ 1
i
e�x/2  2,

implying that for such x

Prob
n
Mn �

p
2xqn + x

o
 2e�x/2. ⇤

Let (⇠i)i=1,... be a sequence of independent random vectors in R
n such that

Ei�1

⇢
exp

✓
k⇠ik2⇤
s2

◆�
 exp(1),
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and let ⌘ =
P

m

i=1 ⇠i, m 2 Z+. We are interested in “sub-Gaussian characteristics” of r.v. ⇣ = hu, ⌘i
for some u 2 R

n, kuk  R, and of ⌧ = k⌘k⇤.
Because E{hu, ⇠ii} = 0 and |hu, ⇠ii|  kuk k⇠ik⇤, for all t one has (cf.,e.g., Proposition 4.2 of [165])

E

n
ethu,⌘i

o
=

mY

i=1

E

n
ethu,⇠ii

o


mY

i=1

exp
�
3
4 t

2s2
�
= exp

�
3
4mt2s2

�
.

Let ⇠`, ` = 1, 2, ... be a sequence of independent random vectors ⇠` 2 E, such that E{⇠`} = 0 and

E

n
ek⇠`k

2
⇤/s

2
o
 exp(1). Denote ⌘j =

P
j

`=1 ⇠`. We have the following result.

Lemma 11

8L 2 Z+, w E

⇢
exp

✓
k⌘Lk2⇤
18⇥s2L

◆�
 exp(1) (6.33)

where ⇥ = maxkzk1 ✓(z) for the d.-g.f. ✓ of the unit ball of norm k · k in E, as defined in Section
6.2.2.

Proof. Let for ⌘ 2 E, ⇡(⌘) = supkzk1[h⌘, zi � ✓(z)]. Observe that for all � > 0,

k⌘Lk⇤ = sup
kzk1

h⌘L, zi  max
kzk1

�✓(z) + �⇡(⌘L/�)  �⇥+ �⇡
�⌘L
�

�
. (6.34)

On the other hand, we know (cf. [59, Lemma 1]) that ⇡ is smooth with kr⇡k  1, and r⇡ is
Lipschitz-continuous w.r.t. to k · k⇤, i.e.,

kr⇡(z)�r⇡(z0)k  kz � z0k⇤ 8z, z0 2 E.

As a consequence of Lipschitz continuity of ⇡, when denoting ⇡�(⌘) = �⇡
�
⌘

�

�
, we have

⇡�(⌘j�1 + ⇠j)� ⇡�(⌘j�1)  k⇠jk⇤,

so that E
�
exp

�
[⇡�(⌘j)� ⇡�(⌘j�1)]2/s2

� 
 exp(1). Furthermore,

⇡�(⌘j�1 + ⇠j)  ⇡�(⌘j�1) + hr⇡�(⌘j�1), ⇠j/�i+ k⇠jk2⇤/�,

and, because ⌘j�1 does not depend on ⇠j and E{k⇠jk2⇤}  s2, we get

Ej�1{⇡�(⌘j)� ⇡�(⌘j�1)}  s2/�.

By [165, Proposition 4.2] we conclude that random variables �j = ⇡�(⌘j)� ⇡�(⌘j�1) satisfy for all
t � 0,

Ej�1

n
et�j
o
 exp

�
ts2��1 + 3

4 t
2s2
�
.

Consequently,

E

n
et⇡�(⌘L)

o
 E

n
et⇡�(⌘L�1)

o
exp

�
ts2��1 + 3

4 t
2s2
�
 exp

�
ts2L��1 + 3

4 t
2s2L

�
.

When substituting the latter bound into (6.34), we obtain for �2 = s2L/⇥

E

n
etk⌘Lk⇤

o
 exp

⇣
2ts

p
⇥L+ 3

4 t
2s2L

⌘
8t � 0. (6.35)



167

To complete the proof of the lemma, it remains to show that (6.35) implies (6.33). This is straight-
forward. Indeed, for � ⇠ N (0, 1), ↵ > 0 and ⇣ = k⌘Lk⇤ one has

E

n
e↵⇣

2
o
= E

n
E⌘

⇣
e
p
2↵⇣�

⌘o
= E�

n
E

n
e
p
2↵⇣�

oo

 E�

n
exp

⇣
2
p
2↵⇥Ls�+ 3

2↵Ns2�2
⌘o

= (1� 3↵Ls2)�1/2 exp

⇢
4↵⇥Ls2

1� 3↵Ls2

�

When setting ↵ = (18⇥s2L)�1, we conclude that

E

n
e↵⇣

2
o
 exp(1)

due to ⇥ � 1/2. ⇤

6.4.3 Proof of Theorem 6.2.1

We start with analysing the behaviour of the approximate solution bxkm0
at the stages of the pre-

liminary phase of the procedure.

Lemma 12 Let m0 = d64�2⇢⌫s(4⇥ + 60t)e (here dae stands for the smallest integer greater or
equal to a), � = (4⌫)�1, and let t satisfy t � 4

p
2 + log(m0).

Suppose that R � 2��⇤
p
6⇢s/⌫, that initial condition x0 of Algorithms 1 and 2 satisfies kx0 �

x⇤k  R, and that at the stage k of the preliminary phase we choose

k = Rk�1

s
⌫(4⇥+ 60t)

⇢sm0
(6.36)

where (Rk)k�0 is defined recursively:

Rk+1 =
1
2Rk +

16�2⇤�
2⇢s

⌫Rk

, R0 = R.

Then the approximate solution bxkm0
at the end of the kth stage of the CSMD-SR algorithm satisfies,

with probability � 1� 4ke�t

kbxkm0
� x⇤k  Rk  2�kR+ 4�⇤�

p
2⇢s/⌫. (6.37)

In particular, the estimate bxK1
m0

after K1 =
l
1
2 log2

⇣
R

2
⌫

32�2
⇤�

2⇢s

⌘m
stages satisfies with probaility at

least 1� 4K1e�t

kxK1
m0

� x⇤k  8�⇤�
p

2⇢s/⌫. (6.38)

Proof of the lemma.

1
o
. Note that initial point x0 satisfies x0 2 XR(x⇤). Suppose that the initial point xk0 = bxk�1

m0
of the

kth stage of the method satisfy xk0 2 XRk�1(x⇤) with probability 1� 4(k � 1)e�t. In other words,
there is a set Bk�1 ⇢ ⌦, Prob(Bk�1) � 1� 4(k� 1)e�t, such that for all !k�1 = [!1; ...;!m0(k�1)] ⇢
Bk�1 one has xk0 2 XRk�1(x⇤). Let us show that upon termination of the kthe stage bxkm0

satisfy
kxkm0

�x⇤k  Rk with probability 1�4ke�t. By Proposition 6.4.1 (with h(x) = kkxk) we conclude
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that for some ⌦k ⇢ ⌦, Prob(⌦k) � 1� 4e�t, solution bxkm0
after m0 iterations of the stage satisfies,

for all for all !k = [!(k�1)m0+1, ...,!km0 ] 2 ⌦k,

F (bxkm0
)� F (x⇤)  1

m0

�
⌫R2

k�1(4⇥+ 60t) + kRk�1

�
+
�2⇤
⌫

⇣
7
4 + 6t

m0

⌘
.

When using the relationship (6.14) of Assumption [RSC] we now get

kbxkm0
� x⇤k  �

"
⇢sk +

Rk�1

m0
+
⌫R2

k�1

km0
(4⇥+ 60t) +

�2⇤
⌫k

⇣
7
4 + 6t

m0

⌘#
. (6.39)

Note that k as defined in (6.36) satisfies k  Rk�1(8�⇢s)�1, while km0 � 8�(4⇥ + 60t)Rk�1⌫.

Because m0 � 3840t due to ⇢⌫ � 1 and � � 1, one also has
⇣
7
4 + 6t

m0

⌘
�1
k

< 16�⇢s/Rk�1. When

substituting the above bounds into (6.39) we obtain

kbxkm0
� x⇤k  �Rk�1

⇣
1
4� +

1
m0

⌘
+

16�2⇢s�2⇤
Rk�1⌫

 1
2Rk�1 +

16�2⇢s�2⇤
Rk�1⌫

= Rk. (6.40)

We conclude that bxkm0
2 XRk(x⇤) for all !

k 2 Bk = Bk�1 \ ⌦k, and

Prob(Bk) � Prob(Bk�1)� Prob(⌦
c

k) � 1� 4ke�t.

2
o
. Let now a = 16�2⇢s�2⇤/⌫, and let us study the behaviour of the sequence

Rk =
Rk�1

2
+

a

Rk�1
=: f(Rk�1), R0 = R �

p
2a.

Function f admits a fixed point at R =
p
2a which is also the minimum of f , so one has Rk �

p
2a

8k. Thus,

dk := Rk �
p
2a =

Rk�1 �
p
2a

2
+

2a�
p
2aRk�1

2Rk�1
 1

2dk�1  2�kd0  2�k(R�
p
2a).

We deduce that Rk  2�kR0 +
p
2a which is (6.37). Finally, after running K1 stages of the

preliminary phase, the estimate bxK1
m0

satisfies

kbxK1
m0

� x⇤k  8��⇤
p
2⇢s/⌫. ⇤

We turn next to the analysis of the asymptotic phase of Algorithm 2. We assume that the prelim-
inary phase of the algorithm has been completed.

Lemma 13 Let t be such that t � 4
p

2 + log(m1), with m1 = d81�2⇢s⌫(4⇥ + 60t)e, � = (4⌫)�1,
and let `k = d10⇥ 4k�1⇥e. We set

k = rk�1

s
⌫(4⇥+ 60t)

⇢sm1
, rk = 2�kr0, r0 = 8��⇤

p
2⇢s/⌫.

Then the approximate solution by Algorithm 2 bxkm1
at the end of the kth stage of the asymptotic

phase satisfies, with probability � 1� 4(K1 + k)e�t, kbxkm1
� x⇤k  rk, implying that

kbxkm1
� x⇤k . �2�⇤⇢s

s
⇥ (⇥+ t)

Nk

, (6.41)

where Nk = m1
P

k

i=1 `i is the total count of oracle calls for k asymptotic stages.
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Proof of the lemma. Upon terminating the preliminary phase, the initial condition x0 = bxK1
m0

of the asymptotic phase satisfies (6.38) with probability greater or equal to 1 � 4K1e�t. We are
about to show that 8k � 1, with probability at least 1� 4(K1 + k)e�t,

kbxkm1
� x⇤k  rk = 2�kr0, r0 = 8��⇤

p
2⇢s/⌫.

The claim is obviously true for k = 0. Let let us suppose that it holds at stage k � 1 � 0, and let
us prove that it also holds at stage k. To this end, we reproduce the argument used in the proof of
Lemma 12, while taking into account that now `k observations are averaged at each iteration of the
CSMD algorithm. Recall (cf. Lemma 11) that this amounts to replacing sub-Gaussian parameter
�2⇤ with �2⇤ = 18⇥�2⇤/`k. When applying the result of Proposition 6.4.1 and the bound of (6.14) we
conclude (cf. (6.39)) that, with probability 1� (K1 + k)e�t,

kbxkm1
� x⇤k  �

"
⇢sk +

rk�1

m1
+
⌫r2

k�1

km1
(4⇥+ 60t) +

18⇥�2⇤
⌫k`k

⇣
7
4 + 6t

m1

⌘#

By simple algebra, we obtain the following analogue of (6.40):

kbxkm1
� x⇤k < �rk�1

⇣
2
9� +

1
m1

⌘
+ 10

4�k+1�2⇢s�2⇤
rk�1⌫

< rk�1

4 + rk�1

4 = rk.

Observe that upon the end of the kth stage we used Nk = m1
P

k

i=1 `k < 3m1⇥
P

k

j=1 4
j�1  4k⇥m1

observations of the asymptotic stage. As a consequence, 4�k < ⇥m1/Nk and

rk = 2�kr0 . �2�⇤

s
⇥(⇥+ t)s⌫⇢

Nk

. ⇤

Assuming that the preliminary phase of Algorithm 1 was completed, we now consider the asymptotic
phase of the algorithm.

Lemma 14 Let t � 4
p
2 + logmk, mk =

⌃
4k+4(4⇥+ 60t)�2⇢s⌫

⌥
,

�k =
rk�1

2�⇤

s
(4⇥+ 60t)

2mk

, 2
k
=

5�⇤rk�1

⇢s

s
(4⇥+ 60t)

mk

(6.42)

where
rk := 2�kr0, r0 = 8��⇤

p
2⇢s/⌫.

Then the approximate solution bxkmk
upon termination of the kth asymptotic stage satisfies with

probability � 1� 4(K1 + k)e�t

kbxkmk
� x⇤k  2�kr0 . 2�k�⇤�

p
⇢s⌫�1 . �2�⇤⇢s

q
⇥+t

Nk
(6.43)

where Nk =
P

k

j=1mj is the total iteration count of k stages of the asymptotic phase.

Proof of the lemma.

We are to show that 8k � 0, kbxkmk
� x⇤k  rk with probability � 1� 4(K1 + k)e�t is true. By

Lemma 12, the claim is true for k = 0 (at the start of the asymptotic phase, the initial condition

x0 = bxK1
m0

satisfies the bound (6.38)). We now assume it to hold for k � 1 � 0, our objective is to
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implement the recursive step k � 1 ! k of the proof. First, observe that the choice of �k in (6.42)
satisfies �k  (4⌫)�1, k = 1, ..., so that Proposition 6.4.1 can be applied. From the result of the
proposition and bound (6.14) we conclude (cf. (6.39)) that it holds, with probability 1�(K1+k)e�t,

kbxkmk
� x⇤k  �

"
⇢sk +

rk�1

mk

+
r2
k�1 (4⇥+ 60t)

�kkmk

+ 8
�k�2⇤
k

#

When substituting the value of �k from (6.42) we obtain

kbxkmk
� x⇤k  �

2

4⇢sk +
rk�1

mk

+
4�⇤rk�1

k

s
2(4⇥+ 60t)

mk

3

5 ,

which, by the choice of k in (6.42), results in

kbxkmk
� x⇤k2  2�2

"
10⇢s�⇤rk�1

r
4⇥+ 60t

mk

+
r2
k�1

m2
k

#


r2
k�1

4
= r2

k
.

It remains to note that the total number Nk =
P

k

j=1mj of iterations during k stages of the

asymptotic phase satisfies Nk . 4k(⇥+t)�2⇢s⌫, and 2�k . �
q

(⇥+t)⇢s⌫
Nk

, which along with definition

of r0 implies (6.43). ⇤

Proof of Theorem 6.2.1. We can now terminate the proof of the theorem. Let us prove the
accuracy bound of the theorem for the minibatch variant of the procedure.

Assume that the “total observation budget” N is such that only the preliminary phase of
the procedure is implemented. This is the case when either m0K1 � N , or m0K1 < N and
m0K1 + m1`1 > N . The output bxN of the algorithm is then the last update of the preliminary
phase, and by Lemma 12 it satisfies kbxN � x⇤k  R2�k where k is the count of completed stages.
In the case of m0K1 � N this clearly implies that (recall that N � m0) that k � cN/m0 and, with
probability � 1� 4ke�t

kbxN � x⇤k . R exp

⇢
� c0N

�2⇢s⌫(⇥+ t)

�
. (6.44)

On the other hand, when m0K1 < N < m0K1 + m1`1, by definition of m1 and `1, one has
N  Cm0K1, so that bound (6.44) still holds in this case.

Now, consider the case where at least one asymptotic stage has been completed. When m0K1 >
N

2 we still have N  Cm0K1, so that the bound (6.44) holds for the approximate solution bx(b)
N

at
the end of the asymptotic stage. Otherwise, the number of oracle calls Nk of asymptotic stages
satisfies Nk � N/2, and by (6.41) this implies that with probability � 1� 4(K1 +K2)e�t,

kbx(b)
N

� x⇤k . �2�⇤⇢s

r
⇥(⇥+ t)

N
.

To summarize, in both cases, the bound of Theorem 6.2.1 holds with probability at least 1�4(K1+
K2)e�t.

The proof of the accuracy bound for the “standard” solution bxN is completely analogous, making
use of the bound (6.43) of Lemma 14 instead of (6.41). ⇤
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Remark 6.4.1 Theorem 6.2.1 as stated in Section 6.2.3 does not say anything about convergence
of g(bxN ) to g(x⇤). Such information can be easily extracted from the proof of the theorem. Indeed,
observe that at the end of a stage of the method, one has, with probability 1� Cke�t,

Fk(bx
k)� Fk(x⇤)  �k,

or
g(bxk)� g(x⇤)  �k + k(kbxkk � kx⇤k)  �k + kkbxk � x⇤k

where bxk is the approximate solution at the end of the stage k. One the other hand, at the end of
the kth stage of the preliminary phase one has kbxk � x⇤k  Rk  2�kR, with k . Rk(�⇢s)�1 
2�kR(�⇢s)�1 and �k . 4�k

R
2

�2⇢s
implying that

g(bxk)� g(x⇤) . �k +
R2

k

�2⇢s
. (��2 + ��1)

R2

⇢s
exp

⇢
� c

�⇢⌫

N

s(⇥+ t)

�

where N is the current iteration count. Furthermore, at the end of the kth asymptotic stage, one

has, with probability 1�(K1+k)e�t, kbxk�x⇤k  Rk . �2�⇤⇢s
q

⇥+t

mk
, while k ⇣ 2�k��⇤(⇢⌫s)�1/2 .

��⇤
q

⇥+t

mk
, and �k . �2�2⇤⇢s(⇥+ t)/mk. As a result, the corresponding bxk satisfies

g(bxk)� g(x⇤)  �k + kkbxk � x⇤k . (�2 + �3)⇢�2⇤s
⇥+ t

mk

.

When putting the above bounds together, assuming that at least 1 stage of the algorithm was com-
pleted, we arrive at the bound after N steps:

g(bxN )� g(x⇤) . (��2 + ��1)
R2

⇢s
exp

⇢
� c

�2⇢⌫

N

s(⇥+ t)

�
+ (�2 + �3)⇢s�2⇤

⇥+ t

N
(6.45)

with probability 1� (K1 +K2)e�t.

6.4.4 Proof of Proposition 6.3.1

1
o
. Recall that r is r-Lipschitz continuous, i.e., for all t, t0 2 R

m

|r(t)� r(t0)|  r|t� t0|.

As a result, for all x, x0 2 X,

k�[r(�Ti x)� r(�Ti x
0)]k1  rk�ik1|�Ti (x� x0)|  rk�ik21kx� x0k1  r⌫2kx� x0k1,

so that rG(x,!) = �[r(�Tx) � ⌘] is Lipschitz continuous w.r.t. `1-norm with Lipschitz constant
L(!)  r⌫2.

2
o
. Due to strong monotonicity of r,

g(x)� g(x⇤) =
R 1
0 rg(x⇤ + t(x� x⇤))T (x� x⇤)dt

=
R 1
0 E

n
�[r(�T (x⇤ + t(x� x⇤))� r(�Tx⇤)]

o
T

(x� x⇤)dt

�
R 1
0 rE

�
(�T (x� x⇤))2

 
tdt = 1

2rkx� x⇤k2⌃,

what is (6.16).
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3
o
. The sub-Gaussianity in the “batchless” case is readily given by rG(x⇤,!i) = ��i⇠i with

k�i⇠ik1  k�ik1|⇠i|  ⌫k⇠ik2 and

E

⇢
exp

✓
krG(x⇤,!i)k21

�2⌫2

◆�
 e

due to E
�
e⇠

2
i
 
 exp(1). Because ⇥ variation of the d.-g.f. ✓, as defined in (6.20), is bounded with

C lnn, by Lemma 11 we conclude that batch observation

H
⇣
x⇤,!

(L)
i

⌘
=

1

L

LX

`=1

rG(x⇤,!
`

i ) =
1

L

LX

`=1

��`i , ⇠
`

i

is sub-Gaussian with parameter . �2⌫2 lnn.

4
o
. In the situation of Section 6.3.1, ⌃ is positive definite, ⌃ ⌫ ⌃I, ⌃ > 0, and condition

Q(�, ) is satisfied with � = ⌃ and  = 1. Because quadratic minoration condition (6.17) for
g is verified with µ � r due to (6.16), when applying the result of Lemma 8, we conclude that
Assumption [RSC] holds with � = 1 and ⇢ = (⌃r)�1.6 ⇤

6.5 Properties of sparsity structures

6.5.1 Sparsity structures

The scope of results of Section 6.2 is much broader than “vanilla” sparsity optimization. We discuss
here general notion of sparsity structure which provides a proper application framework for these
results.
In what follows we assume to be given a sparsity structure [168] on E—a family P of projector
mappings P = P 2 on E such that

A1.1 every P 2 P is assigned a linear map P on E such that PP = 0 and a nonnegative weight
⇡(P );

A1.2 whenever P 2 P and f, g 2 E such that kfk⇤  1, kgk⇤  1,

kP ⇤f + P
⇤
gk⇤  1

where for a linear map Q : E ! F , Q⇤ : F ! E is the conjugate mapping.

Following [168], we refer to a collection of the just introduced entities and sparsity structure on E.
For a nonnegative real s we set

Ps = {P 2 P : ⇡(P )  s}.

Given s � 0 we call x 2 E s-sparse if there exists P 2 Ps such that Px = x. Typically, one is
interested in the following “standard examples”:

1. “Vanilla (usual)” sparsity: in this case E = R
n with the standard inner product, P is

comprised of projectors on all coordinate subspaces of Rn, ⇡(P ) = Rank(P ), and k ·k = k ·k1.
6We refer to Section 6.5.2 and Lemma 15 for the proof of Lemma 8.
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2. Group sparsity: E = R
n, and we partition the set {1, ..., n} of indices into K nonoverlapping

subsets I1, ..., IK , so that to every x 2 R
n we associate blocks xk with corresponding indices in

Ik, k = 1, ...,K. Now P is comprised of projectors P = PI onto subspaces EI = {[x1, ..., xK ] 2
R

n : xk = 08k /2 I} associated with subsets I of the index set {1, ...,K}. We set ⇡(PI) =
card(I), and define kxk =

P
K

k=1 kxkk2—block `1/`2-norm.

3. Low rank structure: in this example E = R
p⇥q with, for the sake of definiteness, p � q, and

the Frobenius inner product. Here P is the set of mappings P (x) = P`xPr where P` and Pr

are, respectively, q ⇥ q and p⇥ p orthoprojectors, P (x) = (I � P`)x(I � Pr), and k · k is the
nuclear norm kxk =

P
q

i=1 �i(x) where �1(x) � �2(x) � ... � �q(x) are singular values of x,
k · k⇤ is the spectral norm, so that kxk⇤ = �1(x), and ⇡(P ) = max[Rank(P`),Rank(Pr)].

In this case, for kfk⇤  1 and kgk⇤  1 one has

kP ⇤(f)k⇤ = kP`fPrk⇤  1, kP ⇤
(g)k⇤ = k(I � P`)g(I � Pr)k⇤  1,

and because the images and orthogonal complements to the kernels of P and P are orthogonal
to each other, kP ⇤(f) + P

⇤
(g)k⇤  1.

6.5.2 Condition Q(�, )

We say that a positive semidefinite mapping ⌃ : E ! E satisfies condition Q(�, ) for given s 2 Z+

if for some  ,� > 0 and all P 2 Ps and z 2 E

kPzk 
p
s/�kzk⌃ + kPzk �  kzk. (6.46)

Lemma 15 Suppose that x⇤ is an optimal solution to (6.5) such that for some P 2 Ps, k(I �
P )x⇤k  �, and that condition Q(�, ) is satisfied. Furthermore, assume that objective g of (6.5)
satisfies the following minoration condition

g(x)� g(x⇤) � µ
�
kx� x⇤k⌃

�

where µ(·) is monotone increasing and convex. Then a feasible solution bx 2 X to (6.7) such that

Prob {F(bx)� Fk(x⇤)  �} � 1� ✏.

satisfies, with probability at least 1� ✏,

kbx� x⇤k 
µ⇤
⇣

p
s/�
⌘
+ �

 
+

2�

 
(6.47)

where µ⇤ : R+ ! R+ is conjugate to µ(·), µ⇤(t) = supu�0[tu� µ(u)].

Proof. When setting z = bx� x⇤ one has

kbxk = kx⇤ + zk = kPx⇤ + (I � P )x⇤ + zk � kPx⇤ + zk � k(I � P )x⇤k
� kPx⇤k+ kPzk � kPzk � �
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where we used the relation

kPx⇤ + zk � kPx⇤k � kPzk+ kPzk

(cf. Lemma 3.1 of [168] applied to w = Px⇤). When using condition Q(�, ) we obtain

kbxk � kPx⇤k �
p
s/�kzk⌃ +  kzk � �,

so that Fk(bx)  Fk(x⇤) + � implies

 (kPx⇤k+  kzk � �)  1
2 [g(x⇤)� g(bx)] + 

p
s/�kzk⌃ + kx⇤k+ �

 �1
2µ(kzk⌃) + 

p
s/�kzk⌃ + kx⇤k+ �

 1
2µ

⇤(2
p
s/�) + kx⇤k+ �,

and we conclude that
 kzk  1

2µ
⇤(2

p
s/�) + 2� + �

due to kx⇤k � kPx⇤k  k(I � P )x⇤k  �. ⇤
Note that when µ(u) = µ

2u
2, one has µ⇤(t) = 1

2µ t
2, and in the case of k · k = k · k1, with

probability 1� ✏,

kbx� x⇤k1 
s

µ� 
+

�

 
+

2�

 
.

This, in particular, implies bound (6.18) of Lemma 8.

Remark 6.5.1 We discuss implications of condition Q(�, ) and result of Lemma 15 for “usual”
sparsity in Section 6.3 of the paper. Now, let us consider the case of the low rank sparsity. Let
z 2 R

p⇥q with p � q for the sake of definiteness. In this case, k · k is the nuclear norm, and we
put P (z) = P`zPr where P` and Pr are orthoprojectors of rank s  q such that k(I � P )(x)k =
kx⇤ � P`x⇤Prk  �.7

Furthermore, for a p⇥ q matrix z let us put

�(k)(z) =
kX

i=1

�i(z), 1  k  q.

With the sparsity parameter s being a nonnegative integer,

8(z 2 R
p⇥q, P 2 Ps) : kP (z)k  �(s)(z), kP (z)k � kzk � �(2s)(z).8

and we conclude that in the present situation condition

�(s)(z) + �(2s)(z) 
p
s/�kzk⌃ + (1�  )kzk (6.48)

is su�cient for the validity of Q(�, ). As a result, condition (6.48) with  > 0 is su�cient for
applicability of the bound of Lemma 15. It may also be compared to the necessary and su�cient
condition of “s-goodness of ⌃” in [169]:

9 > 0 : 2�(s)(z)  (1�  )kzk 8z 2 Ker(⌃).

7E.g., choose P` and Pr as left and right projectors on the space generated by s principal left and right singular
vectors of x⇤, so that kx⇤ � P`x⇤Prk = k(I � P`)x⇤(I � Pr)k =

Pq
i=s+1 �i  �.

8Indeed, let P 2 Ps, so that Rank(P`)  s and Rank(Pr)  s, and kP (z)k = kP`zPrk  �
(s)(z). Since the

matrix P (z) di↵ers from z by a matrix of rank at most 2s, by the Singular Value Interlacing theorem we have
�i(P (z)) � �i+2s(z), whence kP (z)k � kzk � �

(2s)(z).
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6.6 Supplementary numerical experiments

This section complements the numerical results appearing on the main body of the paper. We
consider the setting in Section 6.3.3 of sparse recovery problem from GLR model observations
(6.15). In the experiments below, we consider the choice (6.19) of activation function r↵(t) with
values ↵ = 1 and ↵ = 1/10; value ↵ = 1 corresponds to linear regression with r(t) = t, whereas
when ↵ = 0.1 activation have a flatter curve with rapidly decreasing with r modulus of strong
convexity for |t|  r. Same as before, in our experiments, the dimension of the parameter space is
n = 500 000, the sparsity level of the optimal point x⇤ is s = 100; we use the minibatch Algorithm
2 with the maximal number of oracle calls is N = 250 000. In Figures 6.4 and 6.5 we report results
for ⌃ 2 {0.1, 1} and � 2 {0.001, 0.1}; the simulations are repeated 10 times, we trace the median
of the estimation error kbxi � x⇤k1 along with its first and the last deciles against the number of
oracle calls.

In our experiments, multistage algorithms exhibit linear convergence on initial iterations. Sur-
prisingly, “standard” (non-Euclidean) SMD also converges fast in the “preliminary” regime. This
may be explained by the fact that iteration xi of the SMD obtained by the “usual” proximal
mapping Prox(�i�1rG(xi�1,!i), xi�1) is computed as a solution to the optimization problem with
“penalty” ✓(x) = ckxkpp, p = 1 + 1/ lnn which results in a “natural” sparsification of xi. As iter-
ations progress, such “sparsification” becomes insu�cient, and the multistage routine eventually
outperforms the SMD. Implementing the method for “flatter” nonlinear activation r(t) or increased
condition number of the regressor covariance matrix ⌃ requires increasing the lengthm0 of the stage
of the algorithm.
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(a) ⌃ = 1,� = 0.1,m0 = 5000 (b) ⌃ = 1,� = 0.001,m0 = 5000

(c) ⌃ = 0.1,� = 0.1,m0 = 7500 (d) ⌃ = 0.1,� = 0.001,m0 = 7500

Figure 6.4: CSMD-SR and “vanilla” SMD in Linear Regression problem (activation function r(t) = t); `1
error as a function of the number of oracle calls
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(a) ⌃ = 1,� = 0.1,m0 = 8000 (b) ⌃ = 1,� = 0.001,m0 = 8000

(c) ⌃ = 0.1,� = 0.1,m0 = 10 000 (d) ⌃ = 0.1,� = 0.001, ,m0 = 10 000

Figure 6.5: CSMD-SR and “vanilla” SMD in Generalized Linear Regression problem: activation function
r1/10(t) ; `1 error as a function of the number of oracle calls
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Chapter 7

Extensions

7.1 Adaptive CSMD-SR via Lepski’s Procedure

We present in this section an algorithm inspired by the CSMD-SR with hyper-parameters indepen-
dent of problem parameters ⇢ and s, and thus adaptive to the latter. We call this new algorithm
Ada-CSMD-SR.
More precisely, we are given N samples, a desired precision level ✏ 2 (0, 1) and a starting point x0
with an initial prior R such that kx0 � x⇤k  R. We also assume that parameters �⇤, ⌫, �,⇥ are
known, and that we have access to a stochastic approximation of objective function g’s gradient, as
in the previous chapter. Here, objective g satisfies the (RSC) assumption with unknown parameter
⇢, and is minimized by x⇤ that is a sparse vector with unknown level of sparsity s. With this setting
in place, we aim to produce an estimate bx(a) with guarantees on the 1� ✏ quantile of

kbx(a) � x⇤k

that are almost the same as those we provide for the CSMD-SR estimate computable when knowing
⇢ and s.
In deterministic optimization, [170] proposes a first order algorithm adaptive to the smoothness
of the objective, whereas in [152], the proposed multistage method is respectively adaptive to the
uniform convexity-parameter. Authors in [152] also provide a stochastic variant of their algorithm,
whereas [171] proposes a version of SGD adaptive to local strong convexity of the objective.
For the rest of this section, we will say that the pair (g, x⇤) satisfies the (RSC) assumption with
parameter ⇢s if (6.2.3) holds with parameters ⇢ and s.

7.1.1 Motivation

Observe that in our previous developments, one of the crucial hyper-parameter choice is the constant
stage-length of the preliminary phase. In the situation where one knows ⌫,⇥, �, ⇢, s, we advocate
the choice

m = d64�2⌫⇢s(4⇥+ 60t)e, t � 4
p
2 + ln(m).

Observe that this hyper-parameter can replace the term ⇢s in other ones. Indeed, at the k-th stage
of the preliminary phase, recall that

k = Rk�1

s
⌫(4⇥+ 60t)

⇢sm
⇣ Rk�1

�⌫(⇥+ t)

m
,
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Rk = 1
2Rk�1 +

16�2⇤�
2⇢s

⌫Rk�1
⇣ 1

2Rk�1 +
⇣�⇤
⌫

⌘2 m

(⇥+ t)Rk�1
.

This illustrates that our algorithm’s hyper-parameters can be formulated based on the stage-length
m, rather than the parameters ⇢ and s. Hence, for any objective g and its minimizer x⇤, an
estimate that adapts to the former is also adaptive to both ⇢ and s. This leads us to focus on
generating estimates adaptive to the stage-length m. It’s worth mentioning that previous work in
[172] introduces a deterministic multistage method that adjusts the length of each stage without
knowing the sharpness parameters of the objective function. We begin by briefly analyzing a version
of the CSMD-SR algorithm where hyper-parameters are modified to depend on m.

The stage-length dependent CSMD estimate.

Let integer m 2 [d4�, N ], and define �(m) := m

(64�)2⌫t , with

t :=max
n
⇥; 4

p
2 + ln(m); t✏(m)

o
, (7.1)

t✏(m) := ln

 
4

✏
log2

 ✓
2⌫R

�⇤
p
m

_
1

◆r
1 +

8N

3⇥m

!!
.

Observe that if (g, x⇤) satisfies the RSC with ⇢s  �(m), then

m �
⌃
(64�)2⌫t⇢s

⌥
�
⌃
64�2⌫⇢s(4⇥+ 60t)

⌥
.

Thus, we say hat a specific stage-length m is adapted for (g, x⇤) if the latter satisfies RSC with
parameter �(m). We now present the notations used to define a version of the CSMD-SR algorithm
that depends on m. For k � 0, define the sequence of preliminary rates

Rk(m) :=
Rk�1(m)

2
+

✓
�⇤

⌫

◆2 m

128Rk�1(m)
, R0(m) = R, (7.2)

and asymptotic rates

rk(m) := �
⇤

⌫

p
m

2 2�k. (7.3)

Observe that for all k � 1, Rk(m) � �⇤
p
m

16⌫ , implying in turn that Rk(m)  2�kR + �⇤
p
m

4⌫ . In
particular,

RK0(m)(m)  r0(m), with K0(m) :=

✓⇠
log2

✓
4⌫R

�⇤
p
m

◆⇡◆

+

.

With this definition, the total number of stages in the preliminary phase is

KP (m) :=

�
N

m

⌫^
K0(m).

For the asymptotic phase, we consider the mini-batch version of the CSMD-SR algorithm with
batches of size Ll = 4l�1d9⇥/8e at its l-th stage. Therefore, in the asymptotic phase, one can
compute a maximum of KA(m) stages, with the latter being defined as

KA(m) :=

✓�
1

2
log2

✓
1 +

3

d9⇥/8e

✓�
N

m

⌫
�KP (m)

◆◆⌫◆

+

(7.4)

:= max

(
k : k � 0,

k�1X

l=0

d9⇥/8e4l 
✓�

N

m

⌫
�KP (m)

◆)
.
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Given these definitions, we define the total number of stages that can be completed with N samples
as K(m) := KP (m) +KA(m).
We now introduce the adaptive version of the CSMD-SR algorithm, beginning with the initial
starting point x0 = bx0(m). For k 2 [1 : K(m)], if

we are in the preliminary phase, i.e. 1  k  K0(m), we define the k-th stage’s output be

bxk(m) = CSMD

✓
bxk�1(m),

1

4⌫
,k, Rk�1(m),m, 1

◆
, (7.5)

with k := 512�⌫tRk�1(m)
m

.

we are in the asymptotic phase, i.e. k > K0(m), we define the l-th stage’s output

bxk(m) = CSMD

✓
bxk�1(m),

1

4⌫
,k, rl�1(m),m, Ll

◆
, (7.6)

with l = k �K0(m) and k := 512�⌫t rl�1(m)
m

.

Finally, we will denote the output of the final stage

bx(m) := bxK(m)(m) (7.7)

and refer to it as the CSMD-SR estimate associated with stage-length m. We also use the notation

R(m) := RKP (m)(m)1{KA(m)=0} + rKA(m)(m)1{KA(m)>0}, (7.8)

for the high-probability upper bound on its error, as shown in the following

Proposition 7.1.1 Let m 2 [d4�e : N ]. Provided that (g, x⇤) is such that ⇢s  �(m), the inequality

kbx(m)� x⇤k  R(m) (7.9)

holds with probability greater than 1� ✏.

Proof of 7.1.1:

We use the same arguments as for the proof of 12 and 13, adapted to the outlined choices of
hyperparameters.
1 : Assume that we are at the k + 1-th stage of the preliminary phase, starting with point bxk(m)
such that with probability greater than 1� 4ke�t,

kbxk(m)� x⇤k  Rk(m).

Inserting the values � = (4⌫)�1,  ⌘ k+1(m) into the equation (6.23) results in the upper bound

F(bxk+1(m))� F(x⇤) 
64⌫t (Rk(m))2

m

✓
1 +

8�

m

◆
+
�2⇤
⌫

✓
7

4
+

6t

m

◆
.

which occurs on an event of probability greater than 1 � 4(k + 1)e�t. Combining the latter with
the RSC assumption being satisfied with ⇢s  �(m) yields

kbxk+1(m)� x⇤k  Rk(m)

✓
1

4
+

�

m

◆
+
⇣�⇤
⌫

⌘2✓7

4
+

6t

m

◆
m

64t

1

Rk(m)
.
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Since m � 4� � 4 and (7.14) implies t � 1, one has that on the same event,

kbxk+1(m)� x⇤k  Rk+1(m)

2
+
⇣�⇤
⌫

⌘2 m

128Rk(m)
= Rk+1(m).

From the results we’ve juste established, it follows through induction that at the conclusion of the
preliminary phase, with a probability exceeding 1� 4KP (m)e�t

kbxKP (m)(m)� x⇤k  RKP (m)(m)  R2�KP (m) +
�⇤

p
m

4⌫
, (7.10)

holds true. Moreover, if KP (m) = K0(m), the last inequality can be upper bounded by �⇤
p
m

2⌫ =
r0(m).
2 : Assume thatKA(m) > 0 and that we have already completed k stages, with k 2 [KP (m);K(m)�
1]. It follows that we are in the l + 1-th stage of the asymptotic phase, with l = k �K0(m), with
bxk(m) as our starting point, such that

Prob [kbxk(m)� x⇤k  rl(m)] � 1� 4ke�t.

We use similar calculations and arguments as for the proof of 13. Recall that when using batches
of size L, one can replace the sub-gaussianity parameter �2⇤ by 18⇥�2⇤/L. This yields that with
probability greater than 1� (k + 1)e�t, one has that

kbxk+1(m)� x⇤k  rl(m)

2
+
⇣�⇤
⌫

⌘2 m

128rl(m)

18⇥

d9⇥/8e4l�1

 rl(m)

✓
1

2
+

18⇥

36⇥

◆
= rl+1(m). (7.11)

3 : Setting k = K(m) leads to

Prob
⇥
kbxK(m)(m)� x⇤k  R(m)

⇤
� 1� 4K(m)e�t.

Noting that K0(m)  log2(
2⌫R
�⇤

p
m

W
1) and KA(m)  log2

✓q
1 + 8N

3⇥m

◆
, we can derive

4K(m)e�t  4e�t(K0(m) +KA(m))

 4e�t log2

 ✓
2⌫R

�⇤
p
m

_
1

◆r
1 +

8N

3⇥m

!
 ✏, (7.12)

where the final inequality is justified by definition (7.1). ⇤

7.1.2 The adaptive CSMD-SR estimate

The adaptive estimate we propose is based on Lepski’s [5] adaptive procedure. In our setting, the
latter is applied to a collection of estimates (bx(i))I

i=1 to select the best estimate in the context
of (g, x⇤). More formally, for an integer I, we assume that we are given the following grid of
stage-lengths

d4�e = m1 < ... < mI  N. (7.13)
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For all i, we define estimates bx(i) := bx(mi), generated by the CSMD-SR algorithm presented above,
with parameter

ti := max
n
⇥; 4

p
2 + ln(mi); t✏(mi)

o
+ ln(I) (7.14)

instead of t. We also define the associated quantities �i :=
mi

(64�)2⌫ti
, K(i) := K(mi), and R(i) :=

R(mi).

Proposition 7.1.2 Let collection of estimates (bx(i))I
i=1 be as previously stated. The event

”For all i 2 [1 : I] such that (g, x⇤) satisfies the RSC assumption with ⇢s  �i,

kbx(i) � x⇤k  R(i).” (7.15)

holds with probability greater than 1� ✏.

Proof of 7.1.2:

1 : Using similar arguments as for the proof of (7.12), one has that

4
IX

i=1

K(i)e�ti  4
IX

i=1

log2

 ✓
2⌫R

�⇤
p
mi

_
1

◆r
1 +

8N

3⇥mi

!
e�ti


IX

i=1

✏

I
= ✏. (7.16)

2 : We are now ready to prove (7.15). Let us call Ei the event
”If the RSC property is satisfied with parameters smaller than �i, one has kbx(i) � x⇤k  R(i).”
Proposition 7.1.1 states that Prob [Ei] � 1 � 4K(i)e�ti . As the event we are interested in is E =T

I

i=1 Ei, the result follows directly from the fact that

Prob [E ] � 1� Prob

"
I[

i=1

Ei

#
� 1� 4

IX

i=1

K(i)e�ti � 1� ✏,

where we have used (7.16) to prove the last inequality. ⇤
Given the grid (mi)Ii=1, we now propose the following construction of our adaptive estimate

For all i 2 [1 : I], compute bx(i), and set bx(I+1) = x0, R(I+1) = R.

Define the set of admissible indexes

A :=
n
i 2 [1 : I] : 8j, i < j  1 + I, kbx(i) � bx(j)k  R(i) +R(j)

o
, (7.17)

and let bi := minA.

Select bx(a) := bx(bi) if A is non empty, and x0 otherwise.

Prior to establishing guarantees on the error quantile of its estimation, we define the error of a
CSMD-SR estimate that knows the value of ⇢s. With notation

m(t) := d(64�)2⇢s⌫te, (7.18)

we define parameters t⇤ := max
�
⇥; t⇤

 
and tI⇤ := t⇤ + ln(I), where

t⇤ := min
n
t : t � max

n
4
p
2 + ln(m(t)); t✏(m(t))

oo
. (7.19)

The next proposition requires that R, ✏, ⌫,�⇤, N, � are such that they verify the following assump-
tions.
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Assumption 1:

For all m such that d4�e  m  N , one has R(m) < R(m+ 1)  2R(m).

Assumption 2:

One can compute I and integers (mi)
I+1
i=1 such that for all i 2 [1 : I], d4�e  mi < mi+1  N and

2R(i)  R(i+1)  4R(i), (7.20)

and in particular

2R(I) +R(I�1)  R  2R(I+1) +R(I). (7.21)

Assumption 3:

⇢ is large enough so that m(t⇤) � d4�e.

Proposition 7.1.3 With probability greater than 1� ✏, one has

kbx(a) � x⇤k  9R
�
m(tI⇤)

�^
3R (7.22)

 27R
�
mI

⇤
�
. (7.23)

Remark 7.1.1 Observe that assumptions 1 is not overly restrictive. Indeed, it can be compu-
tationally verified in a number of operation linear in N by simply calculating all the R(m) for
m 2 [d4�e, N ]. Moreover, the second inequality in (7.20) being true essentially depends on ratio
�⇤/(⌫

p
R). For instance, if one has

�2⇤d4�e
⌫2R

� 1,

for all considered m, the resulting CSMD-SR algorithm will always be in the asymptotic phase,
and one essentially needs to multiply m by 4 to perform KA(m) - 1 stages, which will result in
multiplying the rate by two. On the other hand, when �⇤/⌫ ! 0, our algorithm always stays in the
preliminary phase, and in that case, we can not ensure the upper bound on R(m+1)/R(m)  2 as
bN/(m+ 1)c � bN/mc can be greater than 1, and R(m) ⇣ R2�bN/mc.

Remark 7.1.2 Note that if assumption 1 holds, assumption 2’s fulfillement only depends on N
being large enough. Indeed, starting with m1 = d4�e, one can sequentially choose mi+1 from the
interval [mi + 1 : N ] as the largest m satisfying (7.20), until condition (7.21) is achieved.

Remark 7.1.3 Note that if the last assumption does not hold, our procedure still yields the upper
bound

kbx(a) � x⇤k  R(d4�e),

corresponding to the smallest stage-length ensuring division of the error by 2 in the preliminary
phase. Moreover, it is guaranteed to hold when ⇢ � 1

4096⌫ . In the situation of 6.3, the latter is true
when

⌃  4096r

r
⌫2,

where ⌃ is such that E
⇥
��T

⇤
⌫ ⌃I.
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Proof of 7.1.3:

1 : We first treat the case where it exists i 2 [1 : I] such that �
i�1 < ⇢s  �

i
.

Using proposition 7.1.2, we have that on an event E of prability greater than 1� ✏, the following is
true:
For all i � i and j > i, one has that

kbx(i) � bx(j)k  kbx(i) � x⇤k+ kbx(j) � x⇤k  R(i) +R(j).

In particluar, this proves that i 2 A, implying that on event E , bi  i. We first treat the case where
bi < i, where one has

kbx(bi) � x⇤k  kbx(bi) � bx(i)k+ kbx(i) � x⇤k

 2R(i) +R(bi)

 2R(i)(N) + max
l<i

R(l)(N) (7.24)

 2R(i)(N) +R(i�1)(N), (7.25)

where last inequality is a direct consequence of sequence
�
R(i)

�I
i=1

being increasing. Observe that

in the case where bi = i, inequality (7.25) is still valid. By definition, one has that m
i�1 <

⇢s(64�)2⌫tI  m
i
. Using assumption 1, one also has

R(i�1) < R(m(tI⇤))  R(i),

which yields the desired result when combined with first part of assumption 2.
2 : If ⇢s � �I , then either x0 is selected, or an index j 2 [1 : I] is. If index j is selected, then

kbx(a) � x⇤k  kbx(a) � x0k+ kx0 � x⇤k  R(j) + 2R  3R.

Observing that one has 2R(I+1) +R(I)  9R(I) implies that R(I) � R/9, and that �I < ⇢s, one has

3R  27R(I)  27R(m(tI⇤)),

which yields (7.23). ⇤
Under the same assumptions, we state the main result of this section, an upper bound on the

precision of our adaptive estimate.

Theorem 7.1.1 One has with probability greater than 1� ✏ that

kbx(a) � x⇤k . R exp

⇢
� cN

�2⇢s⌫(t⇤ + ln(I))

�
+ ⇢s�⇤�

2

r
⇥(t⇤ + ln(I))

⌫N
. (7.26)

Moreover, under assumption 2, the grid-size I is such that

I  log2

✓
R

R(d4�e)

◆
. (7.27)
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Proof of Theorem 7.1.1: Using the same arguments as for the proof of 6.2.1, one has that
(7.23) implies that with probability greater than 1� ✏,

kbx(a) � x⇤k . R exp

⇢
� cN

�2⇢s⌫tI⇤

�
+ ⇢s�⇤�

2

r
⇥tI⇤
⌫N

.

Moreover, observe that assumptions (7.21) and (7.20) implies that

R � 5RI�1 � 5R1

4
2I � 2IR1,

which in turn implies (7.27) when noticing that R1 = R(d4�e).

7.2 Analysis under Reduced Uniform Convexity hypothesis (RUC)

We present in this section an extension for the analysis of the CSMD-SR algorithm, introduced in
the last chapter, when applying it to solve sparse recovery problem of the form (6.2). This section
is justified by the introduction of a new condition on the regularity of the objective function g,
that is linked to the notion of uniform convexity [152, 172–175]. We replace the quadratic lower
bound assumption verified by the objective function g by a higher order polynomial lower bound.
As discussed in the previous chapter, we will see that the Q(�, ) condition and the new lower
bound assumption can be integrated to establish a new assumption, similar to our approach with
the RSC assumption. Before introducing this general assumption, we present for the sake of clarity
a definition of uniform convexity for a di↵erentiable function h.

Definition 21 Let X be a convex closed subset of an Euclidean space E. A di↵erentiable function
h : X ! R is said to be (µ, p)-uniformly convex on X if there exists p � 2 and µ > 0 such that
8x, y 2 X,

h(x)� h(y)� hrh(y), x� yi � µ

p
kx� ykp. (7.28)

Note that this definition simply reduces to µ-strong convexity when h is (µ, 2)-uniformly convex.
Recall that in the previous chapter, the Reduced Strong Convexity (RSC) assumption was in-
troduced to o↵er a comprehensive framework for analyzing sparse problems across various setups
of sparsity structures. The RSC assumption takes it origins from Lemma 15 where the function
µ(x) = µ

2x
2 is used to provide the quadratic lower bound on the suboptimality. This section is

devoted to give the analysis of the CSMD-SR algorithm when the objective function g satisfies
the minoration condition presented in Lemma 15 using µ(x) = µ

p
xp with p > 2. This leads us to

introduce the Reduced Uniform Convexity assumption (RUC).

Assumption [RUC] For a general norm k · k and two constants p > 2 and q 2 [1, 2) such that
1/p + 1/q = 1, there exist � � 1, and problem dependent positive constants ⌫, ⇢,↵ such that as
long as feasible solution bx 2 X to the composite problem ((6.7)) satisfies

kbx� x⇤k  RRUC := �p,n,k·k ·
✓
⌫↵p

⇢p�1

◆ 1
p�2

and (F(bx)� F(x⇤))+  �,

it holds that

kbx� x⇤k  ��1
h
⇢s

q
2q + �

i
, (7.29)
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where �p,n,k·k is a problem dependent constant.
In line with our approach in the previous chapter, where the CSMD-SR algorithm was formulated
based on the RSC assumption, we will now leverage the RUC assumption in the following sections.
This will allow us to explore new parameter choices aimed at adapting the multistage algorithm
for this updated framework.

Remark 7.2.1 Notice that when taking p = 2, we retrieve assumption RSC. The maximal radius
RRUC on which the assumption can hold goes to infinity, meaning that the condition holds on R

n,
while the final bound on kbx� x⇤k remains unchanged. This is not surprising as assuming uniform
convexity around the optimum tends to assuming strong convexity around the optimum when p goes
to 2.

7.2.1 An example motivating the RUC assumption

In this section we motivate the use of the RUC assumption by studying a theoretical example. We
place ourselves in the ”vanilla” sparsity setting that has been thoroughly studied in Section 6.5 of
the previous chapter. Consider X a bounded convex set such that X ⇢ E = R

n, and we have
k · k = k · k1. Our objective is to accurately recover an s-sparse unconditional ground truth x⇤.
Recall that these assumptions are made in our analysis :

the stochastic gradients rG(·,!) are assumed to be ⌫-Lipschitz almost surely, i.e.,

8x, x0 2 X, krG(x,!)�rG(x0,!)k1  L(!)kx� x0k1, L(!)  ⌫ a.s.. (7.30)

for some ⌃ 2 S
n
+, g is lower bounded around x⇤ such that

8x 2 X, g(x)� g(x⇤) �
µ

p
kx� x⇤kp⌃. (7.31)

There exists two positive constants �, , such that condition Q(�, ) holds for the positive
definite matrix ⌃.

Let us note initially that the first assumption inherently suggests that the objective function g
exhibits ⌫-smoothness. When combined with the fact that the optimal point x⇤ is unconditional,
it follows that the subsequent inequality holds true

8x 2 X, g(x)� g(x⇤) 
⌫

2
kx� x⇤k21. (7.32)

Additionally, recall that both of the following results are valid : 8x 2 R
n, kxk1  nkxk2 and

kxk⌃ =
p
xT⌃x = k⌃1/2xk2. These relations enable us to recast the second assumption in the

following manner:

8x 2 X, g(x)� g(x⇤) �
µ&min(⌃)p/2

pnp
kx� x⇤kp1, (7.33)

where &min(⌃) represents the smallest eigenvalue of the matrix ⌃.
Simple calculations reveal that (7.32) and (7.33) cannot be both true for all elements of X. The
first and second assumptions are, however, valid whenever x 2 X statisfies the following condition

8x 2 X, kx� x⇤k1 
 
p⌫

2µ

 
np

&min(⌃)

!
p
! 1

p�2

=: R. (7.34)
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This indicates that the compatibility of the first and second assumptions is confined to a particular
region within X of radius R.
Almost analogously, we can draw few consequences from the last assumption leading to assumption
RUC being true. The first consequence being that s-sparsity of x⇤ and condition Q(�, ) being
true for some ⌃ < 0 insures that for any point bx 2 X the following inequality holds true:

kbxk1 � kx⇤k1 �  kbx� x⇤k1 �
r

s

�
kbx� x⇤k⌃.

The precedent inequality is obtained by a direct application of the inequality (6.46) presented in
the last chapter and adapted to our ”vanilla” sparsity setting. The second one is that lower bound
(7.31) being true implies that as soon as bx is such that F(bx)� F(x⇤)  �, one has

� � 1
2
µ

p
kbx� x⇤kp⌃ + 

�
 kbx� x⇤k1 �

p
s

�
kbx� x⇤k⌃

�

� �1
2max

t�0

n
2
p

s

�
t� µ

p
tp
o
+  kbx� x⇤k1

= � (2
p

s/�)q

2qµq�1 +  kbx� x⇤k1,

since the Fenchel-Legendre transform of function t 7! µ

p
tp is t 7! 1

qµq�1 tq where q is such that

p�1 + q�1 = 1. The last inequality can then be rewritten as

kbx� x⇤k1 
1

 


�


+

1

q

⇣2
µ

⌘
q�1⇣ s

�

⌘ q
2

�
,

as long as bx is at a k · k1-radius of at most

R =

 
p⌫

2µ�p/2

 
n
p
�p

&min(⌃)

!
p
! 1

p�2

.

Remark 7.2.2 In the proposed motivating example, assumption RUC holds for k · k = k · k1 and

� = 1
 
, ⇢ = 1

q

�
2

µ�p/2

�
q�1

, ↵ =
p
�/&min(⌃), and �p,n,k·k = pnp/(p�2)/4.

7.2.2 Prescribed choice of parameter and convergence results

In this section, we present the analysis of the CSMD-SR algorithm, focusing on its adaptation to
the new setting where the RUC Assumption is valid. Similar to the analysis provided in the last
chapter, the CSMD-SR algorithm is characterized by two distinct phases: a Preliminary phase
and an Asymptotic phase. Accordingly, we will outline a convergence analysis and will prescribe
a choice of parameter that is associated to each phase. For any stage k � 1, we introduce the

notations (P )
k

and m(P )
k

to denote the penalization and length of the k-th stage in the CSMD-SR

algorithm’s Preliminary phase, respectively. Similarly, (A)
k

and m(A)
k

refer to the penalization and
length of the k-th stage in its Asymptotic phase.
Next lemma provides the theoretical guarantees for the multistage method when applied in solving
the sparse recovery problem.
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Lemma 16 Assume that problem’s parameters and the algorithm’s initialization point x0 are such
that R := kx0 � x⇤k verifies

r0  R  RRUC ^R(P ), (7.35)

where
r0 := C1(p)�

p
s⇢

p�1
p ⌫�1/p�2/p⇤ and R(P ) := 1

4(p�1)
p�1
p�2

(⇢p�1⌫)
1

p�2 .

This ensures that both the RUC Assumption and some other condition that will be discussed in the
proof of the Lemma are verified.

Consider the size of the Preliminary phase defined as K1 :=
l
log2

⇣
2R
r0

⌘m
. Now for k 2 {1, . . . ,K1}

and t � 4

r
2 + ln

⇣
m(P )

K1

⌘
we define the value of the penalization parameter chosen at the k-th stage

and the length of the k-th stage of the Preliminary phase such as

(P )
k

:=
1p
s

 
R2

k�1⌫ (4⇥+ 60t)

m(P )
k
⇢(q � 1)

! p�1
p

and m(P )
k

:=

⇠
4ppp

(p� 1)p�1
�ps

p
2 ⇢p�1⌫ (4⇥+ 60t)R2�p

k�1

⇡
,

where the sequence (Rk)k�0 verifies the following recursion

Rk+1 =
1

2
Rk +

C0(p)�2⇤
⌫

0

@�
p
s⇢

p�1
p

R
p�1
p

k

1

A
p

, and R0 = R.

Given this setup, for any k 2 {1, . . . ,K1}, the approximate solution bxk
m

(P )
k

computed at the end of

the k-th stage of the CSMD-SR algorithm satisfies with probability � 1� 4ke�t

kbxk
m

(P )
k

� x⇤k  Rk  2�kR+ 1
2C1(p)�⌫

� 1
p�

2
p
⇤
p
s⇢

p�1
p . (7.36)

In particular, the estimate bxK1

m
(P )

K1

computed after K1 stages of the preliminary phase, satisfies with

probability at least 1� 4K1e�t

kbxK1

m
(P )

K1

� x⇤k  C1(p)�
2
p
⇤ �

p
s⇢

p�1
p ⌫�

1
p = r0. (7.37)

The values of the ’constants’ C0(p) and C1(p) can be found in the proof of the lemma.

The analysis of the Preliminary phase presented in Lemma 16 demonstrates that under the RUC
Assumption, the stage lengths exhibit exponential growth with the stage count. This contrasts with
the behavior appearing under the RSC Assumption, where stage lengths remain constant. As a
result, the linear decay observed in the Preliminary phase under the RSC Assumption does not
occur in analyses based on the RUC Assumption. This is presented later in the manuscript in
Theorem 7.2.1.

Now we assume that the Preliminary phase of the algorithm is terminated, in other words that
we have completed K1 stages of the Preliminary phase, we transition to analysis of the Asymptotic
phase. For the sake of simplicity, the analysis is provided in the mini-batch setting.
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Lemma 17 Recall that the initial radius verifies r0  R  RRUC ^R(P ) as defined in Lemma 16.
Consider the size of the Asymptotic phase defined as

K2 := max

8
<

: k
��

kX

i=1

m(A)
i
`i  N �

K1X

i=1

m(P )
i

9
=

; .

Now for k 2 {1, . . . ,K2} and t � 4

r
2 + ln

⇣
m(P )

K2

⌘
we define the value of the penalization param-

eter, the length of the stages and the batch-size chosen at the k-th stage of the Asymptotic phase
such as

(A)
k

= 2�k(p�1)C2(p)

 
�2⇤

s
p

2(p�1) ⇢⌫

! p�1
p

, m(A)
k

=

⇠
2k(p�2)C3(p)�

2(⌫⇢)
2(p�1)

p s(4⇥+ 60t)�
2(2�p)

p
⇤

⇡
,

(7.38)

`k =
l
2kpC4(p)⇥

m
.

We set the sequence (rk)k�0 such that it verifies the following recursion

rk = 2�kr0, and r0 = C1(p)�
2
p
⇤ �

p
s⇢

p�1
p ⌫�

1
p .

Given this setting, the approximate solution produced by the CSMD-SR Algorithm denoted bxk
m

(A)
k

,

satisfies at the end of the k-th stage of the Asymptotic phase, for k 2 {1, . . . ,K2}, with probability
� 1� 4(K1 + k)e�t, kbxk

m
(A)
k

� x⇤k  rk, implying that

kbxk
m

(A)
k

� x⇤k 
 
C5(p)�2⇤�

2psp⇢2(p�1)⇥ (4⇥+ 60t)

Nk

! 1
2(p�1)

, (7.39)

where Nk =
P

k

i=1m
(A)
i
`i is the total count of oracle calls for k asymptotic stages. The values of

the constants C2(p), C3(p), C4(p), C5(p) are provided in the proof of the lemma.

Similar to the result appearing in the first lemma, Lemma 17 shows that during the Asymptotic
phase both the length of the stages and the minibatch size grow exponentially with the stage count.

Now we present the main result of the current analysis. In the following theorem, we present
the rate of recovery achieved by the CSMD-SR algorithm under the RUC assumption when the
sample size N is fixed in advance.

Theorem 7.2.1 Assume that the total sample budget satisfies N � m(P )
1 , so that at least one stage

of the Preliminary phase of the CSMD-SR Algorithm is completed, then for t � 4
q

2 + ln(m(A)

K2
),

the corresponding solution bx(b)
N

of the CSMDR-SR algorithm satisfies with probability at least 1 �
4(K1 +K2)e�t

kbx(b)
N

� x⇤k 
 
C6(p)�ps

p
2 ⇢p�1⌫(⇥+ t)

N

! 1
p�2

+

 
C7(p)�2⇤�

2psp⇢2(p�1)⇥ (⇥+ t)

N

! 1
2(p�1)

.

where K2 := max
n

k
��Pk

i=1m
(A)
i
`i  N �

P
K1
i=1m

(P )
i

o
is the count for the number of stages of

the Asymptotic phase of the algorithm. Value of C6(p) and C7(p) can be found in the proof of the
theorem.
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Remark 7.2.3 At first glance there seems to be a discrepancy between the settings where p = 2
and p > 2 since the term related to the Preliminary phase in the bound of Theorem 7.2.1 exhibits
a sublinear decay whereas the same term of Theorem 6.2.1 exhibits a linear decay. This di↵erence
arises due to the majoration made in the proof of the theorem in equation (7.49) to obtain equation
(7.50). Indeed, if we look back at (7.49) when p is close to 2 we have 2k(p�2) � 1 ⇠

p!2
k(p� 2) and

similarly 2p�1 � 1 ⇠
p!2

p � 2. Plugging everything together, we have N . m0k, which ultimately

leads to the bound (6.44) represented in the precedent chapter.

Remark 7.2.4 In the same way as the CSMD-SR algorithm can be made adaptive to the quantity
⇢s under the RSC assumption, it can also made adaptive to the quantity ⇢s

q
2 by using Lepski’s

adaptation protocole under the RUC assumption. Note that the algorithm can also be made adaptive
to the uniform convexity parameter p since the convergence bounds are monotone in p.

7.3 Appendix: proofs.

7.3.1 Proof of Lemma 16

Proof.

1
o
. First let us start by proving that 8k � 0, we have Rk  2�kR+ r0/2.

Set ↵ = C0(p)�2⇤�
p
p
sp⇢p�1⌫�1, and let us study the behaviour of the sequence

Rk =
Rk�1

2
+

↵

Rp�1
k�1

=: f(Rk�1) 8k � 1, R0 = R.

One can easily check that function f is convex and admits a minimum at R := (2(p� 1)↵)
1
p . For

any initial radius R0 > 0, we have 8k � 0, Rk+1 = f(Rk) � f(R), where f(R) = q

2 (2(p� 1)↵)
1
p ,

we thus have 8k � 1, Rk � q

2 (2(p� 1)↵)
1
p . Then, by using the precedent result, we can upper

bound R�(p�1)
k�1 as follows, R�(p�1)

k�1 
⇣
2
q

⌘
p�1

(2(p� 1)↵)�
1
q . We have then shown that

8k � 1, Rk = f(Rk�1) 
1

2
Rk�1 +

✓
2

q

◆
p�1

(2(p� 1))�
1
q ↵

1
p

By plugging the value of ↵ into the last inequality and by setting

C1(p)/4 := C0(p)
1/p

✓
2

q

◆
p�1

(2(p� 1))�
1
q

we obtain that

8k � 1, Rk  1

2
Rk�1 +

r0
4
. (7.40)

Now by invoking the recursive relationship of the sequence (Rk)k�0 and last inequality, we imme-
diately have that

8k � 1, Rk  2�kR+
r0
4

k�1X

i=0

2�i  2�kR+
r0
2
. (7.41)
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2
o
. We provide a brief explanation of the idea of the proof. Observe that under the hypothesis

validating Proposition 6.2.1, for t � 4
p
2 + ln (m), we have with probability at least 1 � 4e�t, for

bxm an approximate solution obtained after having applied m-step of the CSMD algorithm, that
the following inequality holds true

F(bxm)� F(x⇤) 
R2

m�
(⇥+ 15t) +

R

m
+ �2⇤�

✓
7 +

24t

m

◆
:= �.

Recall that with the choice � = (4⌫)�1, the quantity � becomes

� =
R2⌫

m
(4⇥+ 60t) +

R

m
+
�2⇤
⌫

✓
7

4
+

6t

m

◆
.

We can now use the Reduced Uniform Convexity assumption since the radius R is such that R 
RRUC. Therefore the above value of � together with result (7.29) results in

kbxm � x⇤k  �


q�1s

q
2 ⇢+

R2⌫

m
(4⇥+ 60t) +

R

m
+
�2⇤
⌫

✓
7

4
+

6t

m

◆�
. (7.42)

The rest of the proof is carried out by induction. It consists in applying result (7.42) for each stage
of the algorithm and choosing its parameters accordingly to the statement of Lemma 16.
First note that initial point x0 satisfies x0 2 XR(x⇤) with probability 1 by definition. Now suppose
that the initial point xk0 = bxk�1

mk�1
of the kth stage of the method satisfy xk0 2 XRk�1(x⇤) with

probability 1� 4(k � 1)e�t. In other words, there is a set Bk�1 ⇢ ⌦, with Prob(Bk�1) � 1� 4(k �
1)e�t, such that for all !k�1 = [!1; ...;!

m
(P )
k�1

] ⇢ Bk�1 one has xk0 2 XRk�1(x⇤). Let us show that

upon termination of the kth stage bxk
m

(P )
k

satisfy kbxk
m

(P )
k

� x⇤k  Rk with probability 1� 4ke�t. By

result (7.42) we conclude that for some ⌦k ⇢ ⌦, Prob(⌦k) � 1 � 4e�t, solution bxk
m

(P )
k

after m(P )
k

iterations of the stage satisfies, for all for all !k = [!
m

(P )
k�1+1

, ...,!
m

(P )
k

] 2 ⌦k,

kbxk
m

(P )
k

� x⇤k  �

"
(P )
k

q�1
s

q
2 ⇢+

R2
k�1⌫

(P )
k

m(P )
k

(4⇥+ 60t) +
Rk�1

m(P )
k

+
�2⇤

(P )
k
⌫

 
7

4
+

6t

m(P )
k

!#
. (7.43)

We now choose (P )
k

in order to minimize the first two terms of equation (7.43), i.e.,

(P )
k

=
1p
s

 
R2

k�1⌫ (4⇥+ 60t)

m(P )
k

(q � 1)⇢

! 1
q

Plugging the parameter value into (7.43) gives

kbxk
m

(P )
k

� x⇤k  �

2

4qR
2
p

k�1

p
s⇢

1
q

 
⌫ (4⇥+ 60t)

(q � 1)m(P )
k

! 1
p

+
Rk�1

m(P )
k

+
�2⇤

p
s

⌫R
2
q

k�1

 
7

4
+

6t

m(P )
k

! 
(q � 1)⇢m(P )

k

⌫(4⇥+ 60t)

! 1
q

3

5 .

(7.44)

Now observe that by choosing the length of each stage such that 8k 2 {1, . . . ,K1}

m(P )
k

=
l⇣

4p�
p
s⇢

p�1
p

⌘p
⌫(p� 1)1�p (4⇥+ 60t)R2�p

k�1

m
,
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we have

m(P )
k

�
⇣
4p

p
s⇢

p�1
p �
⌘p
⌫(p� 1)1�p (4⇥+ 60t)R2�p

k�1,

the value is specifically chosen to bound the first term of (7.44) by Rk�1

4 . We will now establish

that the second term is likewise bounded by Rk�1

4 . Let us introduce K1 := log2

⇣
2R
r0

⌘
such that

K1 = dK1e. Recall from the initial part of the proof that we proved

8k 2 {1, . . . ,K1}, Rk�1  2�k+1R+
r0
2
.

Coupling the latter with the choice of the initial point x0 such that R � r0 and

2�K1+1R � 2�K1R =
r0
2

� 2�K1R

boils down to state that

8k 2 {1, . . . ,K1}, Rk�1  2�k+2R. (7.45)

By using (7.45), the assumption R  RRUC ^ R(P ) and p � 2, we immediately obtain that the
following inequalities holds true

Rp�2
k�1 

⇣
2(�k+2)R(P )

⌘
p�2

 2�k(p�2)(p� 1)1�p(⇢p�1⌫)�1..

The last inequality gives us that

(4p
p
s�)p⇢p�1⌫(p� 1)1�pR2�p

k�1 � 2k(p�2)(4p
p
s�)p � 1,

since s, � � 1, p � 2 and k 2 {1, . . . ,K1}. We have just proved that from the latter choice of the

length of each stages of the Preliminary phase m(P )
k

we have

m(P )
k

� (4⇥+ 60t) > 60t > 339,

this implies that at the same time the following inequalities holds true

Rk�1

m(P )
k

 Rk�1

4
, and

6t

m(P )
k

 1

4
.

By bringing all these results together we can show that

kbxk
m

(P )
k

� x⇤k  Rk�1

2
+

2�2⇤�
p
s

⌫R
2
q

k�1

 
(q � 1)⇢m(P )

k

⌫(4⇥+ 60t)

! 1
q

(7.46)

By using the fact that for all x � 1, dxe  2x, we can bound m(P )
k

and obtain

kbxk
m

(P )
k

� x⇤k  Rk�1

2
+
�2⇤
⌫

�p
p
sp⇢p�1

Rp�1
k�1

qp�12
1
q+2p�1

| {z }
=:C0(p)

= Rk. (7.47)

We conclude that bxk
m

(P )
k

2 XRk(x⇤) for all !k 2 Bk = Bk�1 \ ⌦k, and by application of the union

bound we obtain
Prob(Bk) � Prob(Bk�1)� Prob(⌦

c

k) � 1� 4ke�t.

Proof of results (7.36) and (7.37) follows immediately by bounding the sequence (Rk)k�0 with (7.41)
and plugging the value of K1. This concludes the proof of the lemma. ⇤
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7.3.2 Proof of Lemma 17

Proof. Note that proof of Lemma 17 is very similar to the proof of Lemma 16. It starts with the
exact same arguments as invoked in the precedent proof except that now we consider the sequence

(rk)k�0 and we replace at each stage the sub-Gaussian parameter �2⇤ by �2⇤ = 18�2
⇤⇥
`k

since we are
using mini-batches of increasing size `k (cf. Lemma 11 presented in the previous chapter). In other
words, for k 2 {1, . . . ,K2} the claim (7.43) becomes

kbxk
m

(A)
k

� x⇤k  �

"
(A)
k

q�1
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q
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(A)
k

(4⇥+ 60t) +
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m(A)
k

+
18�2⇤⇥

(A)
k
`k⌫

 
7

4
+

6t

m(A)
k

!#
,

We choose the parameters (A)
k

and m(A)
k

using the same arguments as presented in the proof

of Lemma 16, except that now, after having chosen (A)
k

and plugged its value in the previous
relationship we obtain
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2
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7

4
+

6t

m(P )
k

!3

5

The parameter m(A)
k

is then chosen to bound each of the appearing first two terms of the last
inequality by rk�1

8 . The latter choice of parameter still implies that

rk�1

m(A)
k

 rk�1

8
, and

6t

m(A)
k

<
1

4

since r0  R  RRUC ^R(P ), and it results in the following bound

kbxk
m

(A)
k

� x⇤k  rk�1

4
+

36��2⇤⇥

(A)
k
`k⌫

.

Then we choose `k = d 144��2
⇤⇥

rk�1
(A)
k ⌫

e in order to bound the last term by rk�1

4 , this finally results in

8k 2 {1, . . . ,K2}, kbxk
m

(A)
k

� x⇤k  rk�1

4
+

rk�1

4
=

rk�1

2
= rk = 2�kr0. (7.48)

This immediately results in (7.39). Values of the constants are provided below for the interested
reader:

C2(p) =

✓
C1(p)

4q

◆
p�1

, C3(p) = 2(p� 1)(4q)pC1(p)
2�p, C4(p) = 72⇥ (4q)p�1

C1(p)p
.

Now let us express the total count of oracle call after k stages of asymptotic stage.

Nk =
kX

i=1

m(A)
i
`i = C3(p)C4(p)⇥(4⇥+ 60t)s�2(⇢⌫)

2
q �

2(q�2)
q

⇤

kX

i=1

22i(p�1)

 C3(p)C4(p)

4p�1 � 1
⇥(4⇥+ 60t)s�2(⇢⌫)

2
q �

2(q�2)
q

⇤ 22(p�1)k.
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By inverting the last inequality, we express 2�k as a function of Nk up to a constant depending
only on p, and result (7.39) follows after plugging this value and the value of r0 within result (7.48).
The multiplicative term appearing in (7.48) and denoted C5(p) is as follows :

C5(p) :=
C1(p)2(p�1)C3(p)C4(p)

4p�1 � 1
.

⇤

7.3.3 Proof of Theorem 7.2.1

Proof. Let assume that the “total observation budget” N is such that only the preliminary phase

of the procedure is implemented. This is the case when either
P

K1
i=1m

(P )
i

� N , or
P

K1
i=1m

(P )
i

< N

and
P

K1
i=1m

(P )
i

+ m(A)
1 `1 > N . The output bxN of the algorithm is then the last update of the

Preliminary phase, and by Lemma 16 it satisfies kbxN � x⇤k  Rk  2�k+1R where k is the count
of completed stages. In the first case we have that

N 
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⇣
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p
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Note that a proof by induction readily demonstrates that 8k 2 {1, . . . ,K1}, we have 2�kR  Rk.
Consequently, it follows that 2�k(p�2)Rp�2  Rp�2

k
, which yields the following result:
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< 2
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⇣
4q
p
s⇢

1
q �
⌘p
⌫ (4⇥+ 60t)R2�p

2k(p�2)

2p�2 � 1
. (7.50)

The following bound can be obtained by rearranging the last equation

2�k  1

R

✓
2

q�1

⇣
4q
p
s⇢

1
q �
⌘p ⌫ (4⇥+ 60t)
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◆ 1
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.

Finally, we have shown that with probability at least 1� 4ke�t

kbxN � x⇤k 
 
C6(p)�ps

p
2 ⇢p�1⌫(⇥+ t)

N

! 1
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, (7.51)

where C6(p) := 30(p� 1) (8q)p

2p�2�1 .

On the other hand, when
P

K1
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(P )
i

< N <
P

K1
i=1m

(P )
i

+ m(A)
1 `1, by using the definition of

m(P )
i

,K1,m
(A)
1 and `1, and by giving a similar reasoning as stated above, one has
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Recall that we have

K1 =

2

666
log2

0

@ 2R⌫
1
p
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2
p
⇤
p
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1
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A+ 1.

Plugging this into the last equation and using the fact that 2⇥ � 1, we have

N <
h
4p�1C4(p)C3(p) +

24p+5qp

(q � 1)(2p�2 � 1)C1(p)p�2
| {z }

=: eC7(p)
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2
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q

⇤ .

Or similarly,
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Note that as the Preliminary phase is terminated, bound (7.37) is valid with probability greater
than 1� 4K1e�t, this together with the previous inequality results in the following bound

kbxN � x⇤k  C1(p)�
2
p
⇤ �

p
s⇢

1
q ⌫�

1
p 

 
C7(p)�2⇤�
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! 1
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where C7(p) := 60C1(p)2(p�1) eC7(p).
Now, consider the case where at least one asymptotic stage has been completed. WhenP

K1
i=1m

(P )
i

> N

2 we still have N  2
P

K1
i=1m

(P )
i

, so that the bound ((7.51)) holds for the ap-

proximate solution bx(b)
N

at the end of the Asymptotic stage with the same multiplicative constant.
Otherwise, the number of oracle calls Nk of asymptotic stages satisfies Nk � N/2, and by ((7.39))
this implies that with probability � 1� 4(K1 +K2)e�t,

kbx(b)
N

� x⇤k 
 
120C5(p)�2⇤�

2psp⇢2(p�1)⇥ (⇥+ t)

N

! 1
2(p�1)

.

We then set C7(p) := C7(p)
W

120C5(p) to obtain the value of the last multiplicative term.
To summarize, in both cases, after termination of the algorithm, the bound of Theorem 7.2.1

holds with probability at least 1� 4(K1 +K2)e�t. This concludes the proof. ⇤
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thesis (École normale supérieure de Cachan-ENS Cachan, 2010) (Cited on page 148).



205

144. Agarwal, A., Negahban, S. & Wainwright, M. J. Fast global convergence rates of gradient
methods for high-dimensional statistical recovery. Advances in Neural Information Processing
Systems 23 (2010) (Cited on pages 148, 157).

145. Blumensath, T. & Davies, M. E. Iterative hard thresholding for compressed sensing. Applied
and computational harmonic analysis 27, 265–274 (2009) (Cited on page 148).

146. Jain, P., Tewari, A. & Kar, P. On iterative hard thresholding methods for high-dimensional m-
estimation. Advances in neural information processing systems 27 (2014) (Cited on page 148).

147. Barber, R. F. & Ha, W. Gradient descent with non-convex constraints: local concavity de-
termines convergence. Information and Inference: A Journal of the IMA 7, 755–806 (2018)
(Cited on page 148).

148. Liu, H. & Foygel Barber, R. Between hard and soft thresholding: optimal iterative threshold-
ing algorithms. Information and Inference: A Journal of the IMA 9, 899–933 (2020) (Cited
on page 148).

149. Shalev-Shwartz, S. & Tewari, A. Stochastic methods for l 1 regularized loss minimization
in Proceedings of the 26th Annual International Conference on Machine Learning (2009),
929–936 (Cited on page 148).

150. Srebro, N., Sridharan, K. & Tewari, A. Smoothness, low noise and fast rates. Advances in
neural information processing systems 23 (2010) (Cited on page 148).

151. Juditsky, A., Nemirovski, A., et al. First order methods for nonsmooth convex large-scale
optimization, I: general purpose methods. Optimization for Machine Learning 30, 121–148
(2011) (Cited on pages 148, 149, 151, 156).

152. Juditsky, A. & Nesterov, Y. Deterministic and stochastic primal-dual subgradient algorithms
for uniformly convex minimization. Stochastic Systems 4, 44–80 (2014) (Cited on pages 148,
179, 186).

153. Ghadimi, S. & Lan, G. Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization, II: shrinking procedures and optimal algorithms. SIAM
Journal on Optimization 23, 2061–2089 (2013) (Cited on page 148).

154. Gaillard, P. & Wintenberger, O. Sparse accelerated exponential weights in Artificial Intelli-
gence and Statistics (2017), 75–82 (Cited on pages 148, 149).

155. Lei, Y. & Tang, K. Stochastic composite mirror descent: Optimal bounds with high proba-
bilities. Advances in Neural Information Processing Systems 31 (2018) (Cited on page 149).

156. Nesterov, Y. Gradient methods for minimizing composite functions. Mathematical program-
ming 140, 125–161 (2013) (Cited on pages 149, 150).

157. Nemirovski, A., Juditsky, A., Lan, G. & Shapiro, A. Robust stochastic approximation ap-
proach to stochastic programming. SIAM Journal on optimization 19, 1574–1609 (2009)
(Cited on page 151).

158. Raskutti, G., Wainwright, M. J. & Yu, B. Restricted eigenvalue properties for correlated
Gaussian designs. The Journal of Machine Learning Research 11, 2241–2259 (2010) (Cited
on page 155).

159. Dalalyan, A. & Thompson, P. Outlier-robust estimation of a sparse linear model using `-
1-penalized Huber’s M -estimator. Advances in neural information processing systems 32

(2019) (Cited on page 155).



206

160. Cohen, A., Dahmen, W. & DeVore, R. Compressed sensing and best k-term approximation.
Journal of the American mathematical society 22, 211–231 (2009) (Cited on page 155).

161. Rauhut, H. Compressive sensing and structured random matrices. Theoretical foundations
and numerical methods for sparse recovery 9, 92 (2010) (Cited on page 155).

162. Bercu, B. et al. Concentration inequalities for martingales (Springer, 2015) (Cited on pages 157,
165).

163. Xiao, L. Dual averaging method for regularized stochastic learning and online optimization.
Advances in Neural Information Processing Systems 22 (2009) (Cited on page 158).

164. Chen, G. & Teboulle, M. Convergence analysis of a proximal-like minimization algorithm
using Bregman functions. SIAM Journal on Optimization 3, 538–543 (1993) (Cited on
page 160).

165. Juditsky, A. & Nemirovski, A. S. Large deviations of vector-valued martingales in 2-smooth
normed spaces. arXiv preprint arXiv:0809.0813 (2008) (Cited on pages 161, 166).
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174. Azé, D. & Penot, J.-P. Uniformly convex and uniformly smooth convex functions in Annales
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Chapter 8

Executive summary on Conic

Programming

8.1 Cones

A cone in Euclidean space E is a nonempty set K which is stable w.r.t. taking linear combinations
of its element with nonnegative coe�cients1. More precisely, subset K ⇢ E is a cone if it is
nonempty, and

x, y 2 K ) x+ y 2 K;

x 2 K,� � 0 ) �x 2 K.

Note that definition of a cone directly implies that is also a convex set. We call a cone K

regular if it is closed,

pointed if it is such that K
T
[�K] = {0} and it possesses a nonempty interior

For K ⇢ E a cone, we introduce its dual cone K⇤ defined as

K⇤ = {y 2 E : hy, xi � 0, 8x 2 K} [h·, ·i is inner product on E.]

Observe that by definition, K⇤ is a closed cone. Moreover, one always has that K ⇢ (K⇤)⇤. It is
also well known that

if K is a closed cone, it holds K = (K⇤)⇤,

K is a regular cone if and only if K⇤ is so.

Examples of regular cones “useful in applications” are as follows:

1. Nonnegative orthants Rd
+ =

�
x 2 R

d : x � 0
 
;

2. Lorentz cones Ld
+ =

⇢
x 2 R

d : xd �
qP

d�1
i=1 x2

i

�
;

1We refer to such linear combinations as conic.
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3. Semidefinite cones S
d
+ of positive semidefinite symmetric d ⇥ d matrices. Semidefinite cone

S
d
+ lives in the space S

d of symmetric matrices equipped with the Frobenius inner product

hA,Bi = Tr(ABT ) = Tr(AB) =
dX

i,j=1

AijBij , A,B 2 S
d.

All cones listed so far are self-dual, i.e., such that they equal their dual.

4. Let k · k be a norm on R
n. The set {[x; t] 2 R

n ⇥R : t � kxk} is a regular cone, and its dual
cone is {[y; ⌧ ] : kyk⇤  ⌧}, where

kyk⇤ = max
x

{xT y : kxk  1}

is the norm on R
n conjugate to k · k.

An additional example of a regular cone useful in our developements is the conic hull of a convex
compact set. Let T be a convex compact set with a nonempty interior in Euclidean space E. We
define its closed conic hull as

T = cl
�
[t; ⌧ ] 2 E+ = E ⇥R : ⌧ > 0, t/⌧ 2 T

 
| {z }

Ko(T )

.

One directly has that T is a regular cone. Additionally, the latter can be obtained as the union of
convex set Ko(T ) and the origin of E+. Moreover, one can “see T in T:”—the former being equal
to the cross-section of T by the hyperplane ⌧ = 1 in E+ = {[t; ⌧ ]}:

T = {t 2 E : [t; 1] 2 T}.

Finally, the cone T⇤ dual to T is given by

T⇤ = {[g; s] 2 E
+ : s � �T (�g)},

where
�T (g) = max

t2T
hg, ti

is the support function of T .

8.1.1 Conic problems and their duals

The primal

Given regular cones (Ki ⇢ Ei)mi=1, consider an optimization problem of the form

Opt(P ) = min

⇢
hc, xi : Aix� bi 2 Ki, i = 1, ...,m

Rx = r

�
, (P )

where x 7! Aix � bi are a�ne mappings acting from some Euclidean space E to the spaces Ei.
Problem (P ) is called a conic problem on the cones K1, ...,Km; the constraints Aix� bi 2 Ki on x
are called conic constraints. A conic problem (P ) is strictly feasible if it admits a strictly feasible
solution x̄, meaning that the latter

satisfies the equality constraints Rx̄ = r

satisfies strictly the conic constraints, i.e., Aix̄� bi 2 intKi.
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The dual

Observe that one can obtain lower bounds on the optimal value Opt(P ) of primal problem (P ) in
the following way. Let x be a feasible solution to (P ). Given aggregation weitghs yi 2 K⇤

i
, called

Lagrange multiplier, one can proceed to the linear aggregation of constraints by associating each
corresponding conic constraint Aix� bi 2 Ki. More precisely, we have

8i, 1  i  m, hyi, Aixi � hyi, bii.

Similarly, we equip the system Rx = r of equality constraints in (P ) with Lagrange multiplier z, a
vector of the same dimension as r. Naturally, we also have

zTRx � rT z.

Summing up all resulting inequalities, we arrive at the scalar linear inequality
D
R⇤z +

X
i
A⇤

i yi, x
E
� rT z +

X
i
hbi, yii (!)

where A⇤
i
are the conjugates to Ai: hy,AixiEi ⌘ hA⇤

i
y, xiE , and R⇤ is the conjugate of R. By

construction, (!) is satisfied for every x feasible for primal problem. If we impose on the yi’s and z
the additional equality constraint

R⇤z +
X

i

A⇤
i yi = c,

(!) yields the lower bound, which is valid for all x feasible for the primal problem,

hc, xi � rT z +
X

i

hbi, yii.

From this lower bound, we introduce the conic dual of (P ) as the problem

Opt(D) = max
yi,z

(
rT z +

X

i

hbi, yii :
yi 2 K⇤

i
, 1  i  m

R⇤z +
P

m

i=1A
⇤
i
yi = c

)
(D)

of maximizing the latter.
The relations between the primal and the dual conic problems are the subject of the standard

Conic Duality Theorem as follows:

Theorem 8.1.1 (Conic Duality Theorem) Consider conic problem (P ) (where all Ki are reg-
ular cones) along with its dual problem (D). Then

1. Duality is symmetric: the dual problem (D) is conic, and the conic dual of (D) is (equivalent
to) (P );

2. Weak duality: It always holds Opt(D)  Opt(P )

3. Strong duality: If one of the problems (P ), (D) is strictly feasible and bounded, then the other
problem in the pair is solvable, and the optimal values of the problems are equal to each other.
In particular, if both (P ) and (D) are strictly feasible, then both problems are solvable with
equal optimal values.

The proof of the Conic Duality Theorem can be found in numerous sources, e.g., in [13, Section
2.4].

1For a minimization problem, boundedness means that the objective is bounded from below on the feasible set, for
a maximization problem, that it is bounded from above on the feasible set.



210

8.1.2 Schur Complement Lemma

When dealing with conic optimization problems, We make extensive use of the following simple
lemma:

Lemma 18 [Schur Complement Lemma] A symmetric block matrix

A =


P QT

Q R

�

with R � 0 is positive (semi)definite if and only if the matrix P �QTR�1Q also is.

Proof. Let u, v be respectively of the same sizes as P and R. Using direct computations and the
fact that R � 0, we have that

min
v

n
[u; v]T A [u; v]

o
= uTPu+min

v

�
2vTQu+ vTRv

 

= uT [P �QTR�1Q]u.

It follows that the quadratic form associated with A is nonnegative everywhere if and only if the
quadratic form with the matrix [P �QTR�1Q] is nonnegative everywhere. ⇤
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