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Titre: Détection pour l’Imagerie Radar à TraversMurs par décompositions de rang faible et parci-monieuse
Mots clés: radar à travers murs, detection, problème inverse, decomposition matricielle, opti-misation, apprentissage profond
Résumé: L’imagerie radar à travers murs estun domaine de recherche visant à imager despièces cachées à l’œil nu par un mur. Celaprésente des défis dus notamment à la distor-sion du signal causée par lemur ainsi que par lascène à imager. À cela s’ajoute un bruit ambiantqui complique la détection des signaux faiblesprovenant des cibles. Les travaux entreprisdans cette thèse se concentrent sur la détectionet la localisation de cibles stationnaires dans unscénario en deux dimensions spatiales.Nous introduisons des méthodesd’imagerie basées sur la reconstruction jointedes éléments constituant la scène, à savoirle mur et les cibles cachées. Nous utilisonsune décomposition en rang faible et parci-monieux via une extension de RPCA. Nous

étudions ensuite son extension à des bruitshétérogènes via une distance robuste dite deHuber. Nous étudions également son exten-sion non-convexe sur la variété des matricesde rang fixe. Finalement, nous abordons latransition vers uneméthode basée sur les don-nées, en utilisant une méthode hybride dite deréseau déroulé basé sur un gradient proximal.Les résultats montrent que les méth-odes proposées surpassent les approches clas-siques en simulations. Toutefois, des défis per-sistent, notamment dans la prise en comptedes effets physiques complexes sur le signal.Nous soulignons le potentiel de ces méthodespour des applications plus larges, comme lesradars à pénétration de sol et l’imagerie com-putationnelle.

Title: Detection for Through-Wall Radar Imaging based on low rank plus sparse decompositions
Keywords: through wall radar imaging, inverse problem, matrix decomposition, optimization,deep learning
Abstract: ThroughWall Radar Imaging is a fieldof research aimed at imaging rooms hiddenfrom the naked eye. This presents challenges,notably due to the signal’s attenuation and dis-tortion caused by the wall and the scene ele-ments. Additionally, ambient noise complicatesthe detection of weak signals coming from thetargets. The work in this thesis focuses on thedetection and localization of stationary targetsin a two-dimensional spatial scenario.We introduce imaging methods based onthe joint reconstruction of the elements con-stituting the scene, namely the wall and thehidden targets, by decomposition into low-rankand sparse components (via an extension ofRPCA). We then study its extension to hetero-

geneous noise via robust distances, such asHu-ber’s. We delve into optimization techniques onRiemannian manifolds using the one of fixedrank matrices. Finally, we address the tran-sition to a data-driven method using a hybridmethod known as unrolled networks, specifi-cally a proximal gradient unrolling.The results show that the proposed meth-ods outperform classical approaches in simu-lations. However, challenges remain, particu-larly in accounting for the complex physical ef-fects on the signal. We highlight the poten-tial of these methods for broader applications,such as Ground Penetrating Radar and compu-tational imaging.
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Introduction

Through the Wall Radar Imaging (TWRI) is a topic of research [Amin, 2017]
that aims at detecting targets in an enclosed scene from its outside via radar
measurements, the scene being unobservable to the naked eye. TWRI is
grounded in the principles of radar aka Radio Detection and Ranging. As
its name suggests, the system functions by emitting electromagnetic waves
capable of penetrating walls. Upon encountering objects or persons, these
waves are reflected back to the radar system. By analyzing the round-trip de-
lay time of these waves and the properties of these reflections, the system
can reconstruct an image of the occluded area. The essential components
of TWRI include a transmitter that generates electromagnetic waves capable
of penetrating walls, a receiver that captures the reflected signals, and a sig-
nal processing unit that interprets these signals to produce images or detect
movements. Different types of TWRI systems exist, each with unique opera-
tional principles. Pulsed radar systems emit brief bursts of radio waves, using
the time delay of echoes to gauge the distance to objects. Continuous Wave
(CW) radar systemsmaintain a continuous transmission, leveraging frequency
shifts (i.e. using the Doppler shift) in the reflected waves to detect motion. Ul-
tra Wideband (UWB) radar systems use a broad frequency spectrum, which
enhances the resolution. The applications of TWRI are varied. In search and
rescuemissions, it facilitates the location of survivors amidst rubble following
building collapses. In law enforcement, it supports surveillance and strategic
planning in critical situations such as hostage rescues or standoffs. Military
operations benefit from its ability to enhance situational awareness in urban
combat by detecting hidden adversaries. In the realm of structural health
monitoring, TWRI is used to assess the integrity of buildings, identifying con-
cealed defects. It may also be used in health monitoring [Li et al., 2021b, Yang
et al., 2021].

However, TWRI also encounters several challenges and limitations. Signal
attenuation is a primordial concern, as the strength of the radar signal dimin-
ishes when passing through dense or thick materials, therefore challenging
the imaging process. Clutter and noise from multiple surface reflections can
generate false positives and complicate image interpretation. Moreover, the
ability of TWRI to see through walls raises significant privacy issues, necessi-
tating strict regulation and ethical oversight. Future developments in TWRI
are focused on advancements in materials, signal processing algorithms, and
computational power, which contribute to improving the capabilities of these
systems. Research aims to enhance resolution, reduce noise, and develop
more portable and user-friendly systems. Integrating TWRI with artificial in-
telligence and machine learning holds promise for more accurate imaging.
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Figure 1: Typical TWRI scenario [Qu et al., 2022] with the radar on the right ofthe wall

On the processing side (as opposed to the acquisition), past works have
focused on several aspects of TWRI: localization of targets, change detection,
movement characterization [Debes et al., 2011, Clemente et al., 2013, Gennarelli
et al., 2015, Li et al., 2019]. Here, we focus on the detection and localization of
stationary targets, which can be readily extended to moving targets by col-
lecting measurements over time and applying the same methodology.

We will focus on a 2D scenario that necessitates the use of multiple an-
tennas (or a single traveling one) to achieve a sufficient resolution. A stan-
dard hypothesis in TWRI is for the wall to be homogeneous, with permittiv-
ity and thickness considered to be known, or to be estimated in a previous
step [Protiva et al., 2011, Jin et al., 2013]. Other works have developed meth-
ods for the unknown case based on focusing techniques [Wang and Amin,
2006, Ahmad et al., 2007]. In an earlier phase of TWRI, somemethods [Ahmad,
2008, Dehmollaian and Sarabandi, 2008] were developed that use Synthetic
Aperture Radar (SAR) techniques [Soumekh, 1999] such as Back-Projection
(BP). Thosemethods require the acquisition of measurements from an empty
scene to remove the front wall. Subsequently, two-step techniques were de-
veloped [Amin and Ahmad, 2013] which consist in: a) filtering the front wall
echoes based on subspace decomposition [Verma et al., 2009, Tivive et al.,
2011, Tivive et al., 2015] b) recovering the target positions, based on the hypoth-
esis of the targets sparsity w.r.t. the scene dimensions, with the possible use
of Compressive Sensing (CS) methods to reduce computation times [Huang
et al., 2010]. This approach requires the use of a dictionary to map the re-
turns onto a grid covering the scene. This formalism also handles multipaths
or front wall reflections more precisely [Leigsnering et al., 2014]. Building on
this, we will work on one-step methods that have been explored during the
past years via the framework of Robust Principal Component Analysis (RPCA)

2



[Candès et al., 2011, Chandrasekaran et al., 2011, Mardani et al., 2013]. RPCA
decomposes a matrix in two separate components: one being low rank and
the other being sparse, the two parts capturing respectively the returns of the
front wall and the returns of the targets. Such one-step methods have been
shown to performbetter than their counterparts in several radar experiments
[Tang et al., 2016, Tang et al., 2020, Breloy et al., 2018, Mériaux et al., 2019].

The manuscript is organized as follows. Chapter 1 serves as an introduc-
tion to the topic of detection and localization in TWRI. Basic notions of radar
and classical techniques for TWRI are presented. Chapter 2 presents basic
and advanced optimization methods used throughout the manuscript. Chap-
ter 3 introduces our first work about a refined low rank and sparse decom-
position tailored for our setup. Then, Chapter 4 presents a robust extension
to the method against heterogeneous noise, with an extension to Rieman-
nian optimization to handle a non-convex form. Finally, Chapter 5 connects
thesemodel-based approaches to data-driven ones via hybridmethods called
unrolling networks to gain a number of advantages: higher detection perfor-
mance and lower runtime.

The work carried out during this thesis and the results obtained have led
to the following international publications:

• Brehier, H., Breloy, A., Ren, C., Hinostroza, I., and Ginolhac, G. (2022a).
Robust PCA for through-the-wall radar imaging. In 2022 30th European
Signal Processing Conference (EUSIPCO), pages 2246–2250

• Brehier, H., Breloy, A., Ren, C., and Ginolhac, G. (2023b). Through the
wall radar imaging via Kronecker-structured Huber-type RPCA. Signal
Processing, page 109228

• Brehier, H., Breloy, A., Ren, C., and Ginolhac, G. (2024b). Through-the-
wall radar imaging with wall clutter removal via riemannian optimiza-
tion on the fixed-rank manifold. In 2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 8596–8600

• Brehier, H., Breloy, A., Ren, C., and Ginolhac, G. (2024a). Deep unrolling
of Robust PCA and convolutional sparse coding for stationary target lo-
calization in through wall radar imaging. In 2024 32th European Signal
Processing Conference (EUSIPCO)

And the following national (french) publications:
• Brehier, H., Breloy, A., Ren, C., Hinostroza, I., and Ginolhac, G. (2022b).
Robust PCA pour l’imagerie radar à travers les murs. In XXVIIIème Col-
loque Francophone de Traitement du Signal et des Images, GRETSI
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• Brehier, H., Breloy, A., Ren, C., and Ginolhac, G. (2023a). Atténuation
robuste du fouillis mural en imagerie radar à travers murs par optimi-
sation riemannienne. In XXIXème Colloque Francophone de Traitement du
Signal et des Images, GRETSI
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1 - Background on Through Wall Radar Imag-
ing

Contents

1.1 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 Wall effects: attenuation and dispersion . . . . . . . . . 5
1.1.2 System considerations . . . . . . . . . . . . . . . . . . . 8
1.1.3 SAR imaging in free-space . . . . . . . . . . . . . . . . . 10

1.2 Classical TWRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Wall returns mitigation . . . . . . . . . . . . . . . . . . . 13
1.2.2 Through wall propagation delay . . . . . . . . . . . . . . 14

1.3 Sparse recovery approach . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Forward model . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Experiments on simulated data . . . . . . . . . . . . . . 18

1.4 Multipath exploitation . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Accounted types of multipath . . . . . . . . . . . . . . . 20
1.4.2 Forward model with multipath exploitation . . . . . . . 21
1.4.3 Experiments on simulated data . . . . . . . . . . . . . . 23

This first chapter serves as an introduction to the topic of imaging and
detection through walls using a radar system. It comprises an overview of
the effects the wall has on the radar signal as well as the system used for the
signal acquisition. Finally, classical signal processing techniques are described
as background for our methods.

1.1 . Preliminary Concepts

1.1.1 . Wall effects: attenuation and dispersion
Electromagnetic properties of walls and building materials are crucial to

study andmodel the effects ofwalls on signal delay time, amplitude, andpulse
shape. When electromagnetic waves traverse amedium, they experience dis-
tortion in amplitude and phase. These distortions can be attributed to the dis-
persive and attenuative properties of the medium through which the waves
propagate.

Wall compositions are, in general, dielectric and nonmagnetic in nature.
Thus, they exhibit no response to magnetic fields. when exposed to electric
fields, numerous electric dipoles are generated within their molecular struc-
tures. These dipoles tend to alignwith the external electric field. The collective
effect of the localized shifts between bound positive and negative charges is
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called polarization. This polarization corresponds to a state of stress within
the material, leading to potential energy storage, which is released when the
external electric field is removed. A material’s ability to be polarized by exter-
nal fields is determined by its molecular structure. Within the wall material,
polarization increases the density of electric field lines. The ratio of the num-
ber of field lines inside the material to that in free space (in the absence of
material) is known as the dielectric constant, or relative permittivity, of the
material and denoted ϵr. The real part ϵ′r of the relative permittivity repre-
sents the material’s ability to be polarized in response to an applied electric
field, thereby storing energy. Its imaginary part ϵ′′r represents the energy lossin the material, which is associated with the absorption and dissipation of en-
ergy, e.g. in the form of heat. The loss tangent tan δ ≜ ϵ′′r

ϵ′r
, is a measure of the

dielectric losses in a material relative to its ability to store energy. It is defined
as the ratio of the imaginary part to the real part of the complex permittivity.
Then:

ϵr = ϵ′r − jϵ′′r = ϵ′r(1− j tan δ) (1.1)
The loss tangent provides a way to quantify the effect of loss on the electro-
magnetic field within a material. Estimations of the dielectric constant and
loss tangent of somematerials are shown in Figure 1.1 on the frequency band
of 1− 3 GHz.

Figure 1.1: Estimation of permittivity [Amin, 2017]
In addition to the materials composing the wall, factors such as the wall’s

shape and thickness significantly influence propagation effects. The dielectric
constants of the wall, along with its thickness, introduce varying delays in the
propagation path. Whenhigh accuracy is required, the travel time through the
thickness of objects along the signal path becomes critical for precise delay
measurement. Multiple reflections within the wall further complicate these
effects. A significant challenge also occurs when dealing with thick walls or
highly lossy materials, such as reinforced concrete which exhibit substantial
transmission loss due to reflection and absorption. The attenuation of a sig-
nal traversing a wall is generally caused by conductivity loss, reflection loss
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and multiple internal reflections within the wall. It is shown in Figure 1.2a.
Assuming antennas and target in the far-field regions of the wall, a modified
radar equation with wall and target losses for the ratio of the received to the
transmitted power, gives the results in Figure 1.2b.

(a) Estimation of wall attenuation (b) Estimation of received power froma human
Figure 1.2: Attenuation through wall [Amin, 2017]

The frequency-dependent properties of materials comprising the propa-
gation medium also impact the signal. Across a broad frequency spectrum,
materials display varying behaviors when interacting with electromagnetic
waves. As the frequency of the electromagnetic field increases, the molec-
ular dipoles within the material are unable to respond instantaneously. This
delayed response of the material to the electromagnetic waves leads to the
phase velocity of waves to depend on its frequency, a phenomenon called dis-
persion. The most significant consequences of these effects are pulse broad-
ening, amplitude loss, and overall signal distortion as shown in Figure 1.3.

(a) Signal through wood (b) Signal through reinforced concrete(through signal scaled up by a factor
10)

Figure 1.3: Measurement through (one way travel) different walls [Amin, 2017]
The presence of noise and the limited dynamic range of measurement
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equipment hinder the accurate measurement of weak signal levels under
these conditions. Noise can be heterogeneous i.e. varying across the radar’s
field of view. The statistical properties of the noise differ from one region
to another, leading to a non-uniform noise environment. In a heterogeneous
noise environment, the clutter can change significantly across different areas.
For example, clutter might be stronger in some areas and weaker in others.
This variability makes it more challenging to detect targets, as the radar sys-
tem cannot assume a consistent noise level and must adapt its processing to
different noise conditions.

In the first chapters on optimization techniques, we will set aside the dis-
persion problematic. We will consider better detection performance in the
context of the wall heavy attenuation and heterogeneous noise. We will study
dispersion in the last chapter on data driven techniques.

1.1.2 . System considerations
TWRI first necessitates a wavelength that is not too small compared to

the wall depth (15cm - 23cm outer wall thickness and∼ 10cm inner wall thick-
ness), in order to penetrate the wall without toomuch loss (see Figure 1.2b), as
higher frequencies get more highly attenuated, while still being small enough
to reflect off the target of interest. The radar systems used are typically Ultra-
Wideband (UWB), meaning that their bandwidth is more than 20% of the cen-
ter frequency i.e. more than 1 GHz of bandwidth for a center frequency of 2
GHz. This allows better resolution and thus more accurate imaging. Indeed,
the range resolution is given by [Amin, 2017, Section 2.2.2]:

Rr =
c

2B
(1.2)

where c is the speed of light in vacuum and B the signal bandwidth. Thus,
the larger the bandwidth the better the resolution. The range resolution is
15cm at 1GHz of bandwidth and 3cm at 5Ghz of bandwidth. Two types of
UWB waveforms exist:

• time-domain methods: the signal is a short impulse (in the order of
the nanosecond) which can take a Gaussian form or its first or second
derivatives. For example, the Ricker (or Mexican Hat) waveform is the
negative, normalized second derivative of a Gaussian waveform (see
Figure 1.4). The range profile is constructed from the matched filtered
returned signal.

• frequency-domain methods: measurements are conducted at various
frequencies using a Vector Network Analyser. The primary advantage of
the frequency-domain approach compared to the time-domainmethod
is its larger dynamic range. The signal produced is called a stepped fre-
quency signal, shown on Figure 1.5. The range profile is then obtained
by Fourier transform.
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Figure 1.4: Ricker waveform (GprMax [Warren et al., 2016] documentation)

Figure 1.5: Stepped frequency signal [Kebe et al., 2020]
Usingmultiple transceivers, the azimuth resolution becomes a function of

the radar antenna aperture and the distance to the target. For a linear array
of antennas, we have the following formula [Amin, 2017, Section 2.2.2]:

Rc =
λ

D
R (1.3)

whereR is the distance between target and antennawhile λ is thewavelength
sent and D the length of the array (with the ratio λ

D being the angular reso-
lution) . Thus, for a typical TWRI setup where the distance to target is slightly
higher than the array length, it will be in the order of the wavelength or so,
implying a cross resolution of 10 cm at 3 GHz . The number of positions to
consider is then ruled by Shannon’s sampling theorem. Indeed, if d is the
spacing between array elements, then the spatial sampling must be greater
than twice the maximum spatial frequency:

1

d
> 2

1

λmin =⇒ d <
λmin
2

(1.4)
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For aminimumwavelength of 10cm corresponding to 3GHz, the needed spac-
ing between elements is below 5cm. Thus, a higher frequency improves the
azimuth resolution but requires more sampling points (antenna elements)
while also being more attenuated through the wall. Moreover, for a stepped-
frequency radar, the unambiguous maximum range is:

Rmax =
c

2∆f
(1.5)

where ∆f is the frequency step. Setting the range to 10 meters gives a fre-
quency step of 15MHz. This illustrates the typical characteristics of the radar
system to be used for TWRI: bandwidth, frequency range, frequency step, etc.
Particularly, the cross resolution implies an array length (radar aperture) as
large as possible while the sampling theorem implies using a large number
of array elements (spatial sampling points). This is unpractical for real arrays,
while this can be alleviated using synthetic apertures.

1.1.3 . SAR imaging in free-space
Signal model

The signal returns can be collected from a singlemoving antenna, a type of ac-
quisition called Synthetic Aperture Radar (SAR) [Soumekh, 1999]. This has be-
come a staple of Remote Sensing with airborne and satellite-mounted radars.

Let the SARmove along the azimuthal axis u. The SAR emits a signal e(t) of
central frequency f0 and bandwidth B at all positions uk, k ∈ [1, n], situated
on the u axis. Each position is separated from the previous by a distance δu.We consider a monostatic configuration, meaning that the emitter and recep-
tor are at the same position. After emitting the signal e(t), the radar receives a
signal zk(t) at the position uk. We use the so-called "stop and go" assumption
which considers that there is neither radar nor target displacement between
emission and reception of a signal. We also consider the radar antenna direc-
tion is fixed across all positions uk i.e. in "stripmap" mode. Finally, we reduce
ourselves to a 2D configuration, with the radar and targets situated at null
height, as shown in Figure 1.6.

Let yk(t) be the received signal at uk reflected by a point target situated atposition (x, y). Let σ(x, y) be its reflectivity coefficient, assumed to be invari-
ant to incidence angle (isotropic targets). So:

yk(t) = σ(x, y)e(t− τk(x, y)) (1.6)
where τk(x, y) is the round-trip delay time for the signal to go from the radar
at (0, uk) to the target at (x, y). In free-space (this will change for TWRI), we
have:

τk(x, y) =
2
√
x2 + (y − uk)2

c
(1.7)
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Figure 1.6: 2D stripmap SAR in free-space [Durand, 2007]
Using ê(t) and ŷk(t) to denote the baseband signals, we have:

ŷk(t) = σ(x, y)ê(t− τk(x, y)) exp(−jω0τk(x, y)) (1.8)
whereω0 = 2πf0 is the angular frequency. Let us use the baseband signal andstate e(t) = ê(t) and yk(t) = ŷk(t). The signal received by the radar containsthe reflected signals of all P targets:

zk(t) =
P∑

p=1

σp(xp, yp)e(t− τk(xp, yp)) exp(−jω0τk(xp, yp)) (1.9)

Back-Projection algorithm

A classical SAR algorithm for image formation is the Back-Projection (BP) algo-
rithm. Primarily, it is based on summing coherently the returned signals from
all antenna positions. The signal model is:

mk(t, x, y) = e(t− τk(x, y)) exp(−jω0τk(x, y)) (1.10)
The intensity of a pixel at coordinates (x, y) can be expressed :

I(x, y) =

n∑
k=1

∫
t
zk(t)m

∗
k(t, x, y)dt

=

n∑
k=1

(∫
t
zk(t)e

∗(t− τk(x, y))dt
)
exp(jω0τk(x, y))

=

n∑
k=1

pk(τk(x, y)) exp(jω0τk(x, y))

(1.11)
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where:
pk(t) =

∫
x
zk(x)e

∗(x− t)dx = zk(t) ⋆ e(t) = zk(t) ∗ e∗(−t) (1.12)
with ⋆ the cross-correlation operator and ∗ the convolution one. It is the out-
put of a matched filter of input zk(t) by impulse response e(t). The whole BP
method can be viewed as the application of the radar system point spread
function (PSF), i.e. the response of the radar imaging system to a point target,
over thewhole radar returns [Amin, 2017, Section 3.5.1]. It may also be derived
in a physics approach using the Green function for the wave equation which
yields a method called Kirchoff migration [Garnier and Papanicolaou, 2016,
Section 4.1.7]. Using a stepped-frequency radar system, we acquire at each
position uk a signal Zk in the frequency domain, withM equispaced frequen-
cies over a bandwidth B. By the convolution theorem, the matched filtering
can be executed by pointwise multiplication of the spectrums of the signals.
Denote the Fourier Transform of e as F{e}. Denote respectively Pk, Zk andEthe frequency domain representation of pk, zk and e. Then:

Pk(f) = F{zk}(f) · F{e}(f)
= Zk(f) · E∗(f)

=⇒ pk(t) = F−1{Zk · E∗}(t)
(1.13)

where F−1 is the Inverse Fourier Transform. Numerically we make use of
the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT)
algorithms, which output a lengthM frequency-domain vector from a length
M time-domain vector (and vice-versa).

pk = IFFT (Zk ⊙E∗) (1.14)
where⊙ is the elementwise (Hadamard) product. Retrieval of the delay τk(x, y)leads to a position index ik(x, y) over which to sum coherently. It is defined
by:

ik(x, y) =

⌊
τk(x, y)

∆t

⌉
(1.15)

where ⌊·⌉denotes rounding to the nearest integer and∆t ≈ 1
B is the time step

after IFFT. To be applied to TWRI, the BPmethodmust be used on returns with
wall returns removed, which would otherwise obscure the scene behind. This
motivates us to present the most classical way to achieve this wall returns
removal. Moreover, the BP must be computed with adjusted propagation
delays that account for the wall, not simply using the free space described in
(1.7), as it changes its path and velocity. This causes false localization of targets
if not taken into account. We thus need to compensate for this by computing
the delay change through the wall.
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1.2 . Classical TWRI

1.2.1 . Wall returns mitigation
Let us consider a stepped-frequency radar operating as a SAR in stripmap

mode. We organize the collected signal returns in a matrix Y ∈ CM×N with
M the number of frequencies and N the number of SAR positions:

Y = [y1,y2, . . . ,yN ] (1.16)
so that yi is the signal return of the ith SAR position. Contrary to free-space
radar SAR imaging, we need to remove the clutter from the wall before form-
ing an image. A classical wall mitigation framework is to decomposeY by sep-
arating subspaces of the wall and targets. Indeed, assuming the signal acqui-
sitions have beenmadeparallel to thewall, thewall returns are expected to be
approximately invariant across acquisitions. Since wall returns are stronger
compared to target returns, they lie in the subspace spanned by the first sin-
gular vectors associated with the largest singular values. The simplest way to
proceed would be to choose an arbitrary number of singular values to repre-
sent the wall subspace, such as the first one only. For completeness, we can
also mention the method of [Tivive et al., 2015] as an informed way to obtain
the cutoff in the range of singular values. The singular value decomposition
ofY is written:

Y
SVD
= UΣVH , (1.17)

whereU ∈ CM×M ,V ∈ CN×N are unitary matrices of left/right singular vec-
tors, and Σ = diag (σ1, . . . , σr, 0, . . . , 0) ∈ CM×N is the diagonal matrix com-
posed of (non-negative and real) singular values σ1 > . . . > σr > 0 where r
is the rank of Y. The mitigation techniques assume that the wall and target
subspaces can be separated. Then:

Y =
∑
i∈W

σiuiv
H
i +

∑
i∈T

σiuiv
H
i +

∑
i∈N

σiuiv
H
i (1.18)

withW ,T andN the (disjoint) sets of indices forwall, target, andnoise singular
components. We remove the wall returns by projecting the signal matrix onto
the orthogonal complement to the wall subspace. The projector onto the wall
subspace is:

Πw =
∑
i∈W

uiv
H
i (1.19)

Thus, projecting the signalmatrix onto the orthogonal complement of thewall
subspace is achieved by:

Ŷ = (I−ΠwΠ
H
w )Y (1.20)

Ŷ ismostly composed of target returnswith small or no returns from thewall.
A similar procedure is proposed to remove noise. An AIC (Akaike Information
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Criterion) can be derived [Wax and Kailath, 1985] to determine the dimension
of the target subspace. Let:

AIC(i) = −2 log

( ∏M
j=i+1 σ

1/(M−i)
j

1/(M − i)
∑M

j=i+1 σj

)(M−i)N

+ 2i(2M − i) (1.21)

where i determines the optimal dimension of the target subspace. Then the
optimal i is:

i⋆ = argmin
i

AIC(i) (1.22)
Thus, the index set generating the noise subspace is : N = {i⋆ + 1, . . . , N} .
We can project Ŷ against the orthogonal complement of the noise subspace
to obtain the signal matrix with noise removed:

Ŷ
SVD
= ÛΣ̂V̂H

Πn =
∑
i∈N

ûiv̂
H
i

Ȳ = (I−ΠnΠ
H
n )Ŷ

(1.23)

We are thus able tomitigate the wall influence from the radar returns. We
know turn to the propagation delay through a simple wall.

1.2.2 . Through wall propagation delay
Contrary to free space SAR imaging, the delay of the received signal at each

antenna is impacted by a wall. We can solve it, in the simplest case of a homo-
geneous wall (i.e. a dielectric slab), in order to correct the BP focus. Hereby,
we consider a homogeneous wall of thickness d and dielectric constant ϵ lo-
cated along the x-axis at a distance zoff to the SAR transceivers. Consider
a propagation from the nth transceiver at position xtm to a target in the qth
pixel, with position xq , as shown in Figure 1.7. The angle of refraction ψmq , asshown in Figure 1.7, is deduced from the Snell-Descartes law as:

ψmq = arcsin

(
sin θmq√

ϵ

)
(1.24)

with θmq the angle of incidence. Moreover, we can deduce the delays:
lmq,air,1 =

zoff
cos θmq

lmq,wall =
d

cosψmq

lmq,air,2 =
zq − d
cos θmq

(1.25)
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air

wall

air

Figure 1.7: Propagation scheme through a wall
The pointA in Figure 1.7 has coordinates (xtm+zoff tan θmq, 0). From the law
of cosines applied to the triangle with vertices (A,B,xq), we get:

(xq − (xtm + zoff tan θmq))
2 + z2q = l2mq,wall + l2mq,air,2

− 2lmq,walllmq,air,2 cos(π + ψmq − θmq)(1.26)
Equation (1.26) is a transcendantal equation in θmq as we fix the values for theradar and target positions. Solving for θmq amounts to finding the roots of
f(θmq) defined by:
f(θmq) = (xq − (xtm + zoff tan θmq))

2 + z2q

− (l2mq,wall + l2mq,air,2 − 2lmq,walllmq,air,2 cos(π + ψmq − θmq))
(1.27)

Thus, we can solve for f(θmq) = 0 numerically using a root-finding algorithm,
such as Newton’s method, which can handle transcendental equations. At
iteration k + 1, the update rule of Newton’s method is:

θk+1
mq = θkmq −

f(θkmq)

f ′(θkmq)
(1.28)

The derivative f ′ is easily computed (by hand or using algebraic computation
software). A good starting point θ0mq so that Newton’s method converges can
be found using as an approximation a free-space propagation (without wall
refractions). Finally, the (two-way) propagation delay is:

τmq =
2lmq,air,1

c
+

2lmq,wall

v
+

2lmq,air,2

c
, v =

c√
ϵ

(1.29)
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Algorithm 1 BP(Ȳ ∈ CM×N , Nx, Nz)

1: Initialize the BP image: I← 0 ∈ CNx×Nz

2: for all nx = 1, . . . Nx, nz = 1, . . . Nz do3: [I]nx,nz =
∑N

n=1[Ȳ]i,n4: with i = in(nx, nz) as in (1.15) with delay from (1.29)
5: end for
6: I← |I|
We may apply the BP algorithm with those delays after mitigation of the

wall returns to achieve our goal of imaging through a wall. However, this pro-
cedure cannot handle multipaths which causes false detections. It is also not
robust to noise. This motivates the introduction of another approach to solve
the problem.

1.3 . Sparse recovery approach

1.3.1 . Forward model
We introduce below a forward model [Amin and Ahmad, 2013] leading to

a regularized inverse problem, in order to recover the target positions from
the radar returns. It is a special case of the model in (1.9) for TWRI, by adding
the returns from the wall to the model and not using a modulation signal
e. Consider a N -element array with the nth transceiver sending a stepped-
frequency signal ofM equispaced frequencies over the bandwidth ωM − ω1:

ωm = ω1 +m∆ω, m = 0, 1, . . . ,M − 1 (1.30)
with ω1 the lowest frequency and ∆ω the step size in frequency. The reflec-
tions from targets is measured only at the same transceiver. Let the returned
signal for themth frequency and nth position be:

y(m,n) =
K∑
k=1

σ(k)w exp (−jωmτ
(k)
w )︸ ︷︷ ︸wall returns

+
R∑
i=1

P∑
p=1

σ(i)p exp(−jωmτ
(i)
p,n)︸ ︷︷ ︸target returns

(1.31)

withK the number of reverberations in the wall, R the number of multipath
and P the number of targets. Additionally, σ(k)w and τ (k)w are the complex over-
all attenuation coefficient and round-trip delay for the wall returns associated
with the kth reverberation while σ(i)p and τ (i)p,n are those associated with the pthtarget, ith multipath and nth radar position. Assume first that:

• the clutter coming from the wall has been removed.
• the multipath effects are negligible.
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Then the signal is the simple superposition of reflected signal from all targets:
y(m,n) =

P∑
p=1

σp exp (−jωmτp,n) (1.32)
Equation (1.32) can be rewritten in a matrix-vector form. Assume the scene is
divided into a grid of pixels of size Nx × Nz (in crossrange vs downrange) as
shown in Figure 1.8.

Wall
SAR positions

Target

Cross range

Downrange

Figure 1.8: Division of the scene in a grid
Then the received signal at the nth transceiver is:

yn = Ψnr (1.33)
where r ∈ CNxNz is a vector whose kth component equals zero except if the
pth target lies in the space occupied by this pixel, in which case it takes the
value σp. Ψn ∈ CM×NxNz is a dictionary withmth row being:

[Ψn]m = [exp (−jωmτ1,n) . . . exp (−jωmτ(NxNz),n)] (1.34)
Expressed in another way, each column ofΨn represents the expected returnat the nth SAR position, from some target located at a specific grid point, to
be scaled by an attenuation factor. We can consider all N antenna measure-
ments in one vector:

y = [yT
1 yT

2 . . . yT
N ]T (1.35)

As well as all N dictionnaries:
ΨA = [ΨT

1 ΨT
2 . . . ΨT

N ]T (1.36)
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Leading to a linear model:
y = ΨA r (1.37)

The vector r is assumed to be sparse, i.e. with a few numbers of non-zero
entries, as there are few targets assumed in the scene. This lends itself to
sparse recovery methods where the linear model is regularized by a sparsity
inducing function on r:

min
r
∥r∥0 s.t. y = ΨAr (1.38)

where ∥r∥0 is the ℓ0 pseudo-norm counting the number of non-zero entries.
It can be relaxed convexly to:

min
r
∥r∥1 s.t. y = ΨA r (1.39)

where ∥r∥1 is the ℓ1 norm defined as the sum of the absolute values of the en-
tries. For now, we assumewemay obtain an approximate solution viaOrthog-
onal Matching Pursuit (OMP, see Chapter 2 for more details). Then an image
is formed by unvectorizing the recovered r and taking its amplitude. Via Com-
pressive Sensing [Donoho, 2006], we can reconstruct r based on only a subset
of all measurements y. We can use a measurement matrix Φ ∈ RQ1Q2×MN

such that:
Φy = ΦΨA r (1.40)

where:
Φ = θ ⊗ IQ1 · diag {ϕ1,ϕ2, . . . ,ϕN} (1.41)

with IQ1 ∈ RQ1×Q1 an identity matrix. θ ∈ RQ2×N is constructed by random
selection of rows of IN , denoting the sampling of transceiver locations, while
ϕn ∈ RQ1×M with n = 1, 2, . . . , N is constructed by random sampling of rows
of IM and denotes the frequencies sampled at the nth transceiver.

Having presented basic methods for TWRI, we present some results for
illustrative purposes before delving into further details.

1.3.2 . Experiments on simulated data
Setup

We generate a received signal according to the model described in (1.32), i.e.
via raytracing. The scene is 4.9× 5.4m in crossrange (x-axis) vs downrange(z-
axis). Two targets are situated at (x, z) coordinates (2, 2) and (2.5, 4). The
Signal to Noise Ratio (SNR) is set to 80 dB with noise modeled by a complex
Gaussian white noise. The stepped-frequency signal is composed of 728 fre-
quencies from 1 Ghz to 3 Ghz. The SAR moves 0.0187 m along the x-axis be-
tween each acquisition with 67 different positions overall. Its track is centered
over the x-axis, thus it starts around x = 1.82 and ends at x = 3.05. The wall
(positioned parallel to the SAR displacement axis) is at a standoff distance to
the SAR of 1.2m, of thickness 0.5m, of relative permittivity ϵ = 4.5. We com-
pared the sparse reconstruction with the classical BP.
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Results

First, we compare the algorithms in free space, i.e. without a wall, displayed in
Figure 1.9. Secondly, we add a wall. We use the wall mitigation technique de-
scribed above to erase the wall returns from the image. The propagation time
of a wave is impacted by that wall. For example in a direct path, it is refracted
entering and leaving the wall. The dictionary (1.36) can take this propagation
delay into account. As seen in Figure 1.10, the result is satisfying as the targets
are detected at the right places with no return detected from the wall.

(a) Backprojection in free-space (tar-gets at (2, 2) and (2.5, 4)) (b) Via OMP in free-space (targets at
(2, 2) and (2.5, 4))

Figure 1.9: Methods in free-space

(a) Backprojectionwithwallmitigation(targets at (2, 2) and (2.5, 4)) (b) Via OMP with wall mitigation (tar-gets at (2, 2) and (2.5, 4))
Figure 1.10: Methods with a mitigated wall

1.4 . Multipath exploitation

BP cannot handle multipath. We will present a way to achieve this via
structured sparse methods. For multipath exploitation, interior wall reflec-
tions on side walls and wall ringing inside the front wall are considered. This
will enable us to create a model to integrate them.
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1.4.1 . Accounted types of multipath
Interior walls

For the first case, consider the pth target located at xp = (xp, zp) and the in-
terior wall parallel to the z-axis at location x = xw (see Figure 1.11). Then, the
propagation from the nth antenna to the target with an interior wall reflection
is along the path P ′′ and back from P ′. With the assumption of specular re-
flection at the wall, the return path P ′ can be constructed as a direct path P̃ ′

to a virtual target at x’p = (2xw − xp, zp). This simplifies the calculation as we
just have to compute the direct (still through the front wall) path to x’p. Thepropagation delay associated with this interior wall multipath is thus the sum
of two (through the front wall) direct paths, which we know how to compute.

Interior wall

Antenna

Target Virtual target

Figure 1.11: Multipath propagation via reflection at an interior wall

Wall ringing

For the wall ringing multipath, we can express from geometrical considera-
tions (see Figure 1.12):

∆x = (∆z − d) tan (θair) + d(1 + 2iw) tan (θwall) (1.42)
with ∆x and ∆z the distances in cross-range and down-range between the
current transceiver position and the target, θair and θwall the angles in air andthe wall, respectively. The integer iw denotes the number of internal reflec-
tions (within the wall), with iw = 0 being the special case of direct through-
the-wall propagation derived previously.

From Snell’s law, we can state another equation in θair and θwall:
sin θair
sin θwall

=
√
ϵ (1.43)
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antenna

target

Figure 1.12: Multipath propagation via internal bounces ("wall ringing")

Equations (1.42) and (1.43) form a nonlinear system of equations in θair and
θwall. Let f : R2 → R2 , f(θair, θwall) = (f1(θair, θwall), f2(θair, θwall)), where:

f1(θair, θwall) = (∆z − d) tan θair + d(1 + 2iw) tan θwall −∆x

f2(θair, θwall) =
sin θair
sin θwall

−
√
ϵ

(1.44)

We are then searching for some root of this function. This can be solved using
any standard numerical method for root-finding of vector-valued functions.
For example, Newton’s method extended to a system of equations is, at iter-
ation k + 1:

xk+1 = xk − (Df(xk))
−1f(xk) (1.45)

where Df(x) is the jacobian (the matrix of 1st order partial derivatives) of f
at x. In our case, it is square. This can be expressed as solving the following
linear system in∆x ≜ xk+1 − xk and updating xk :

Df(xk)∆x = −f(xk)

xk+1 = xk +∆x
(1.46)

Many more advanced methods exist such as Powell’s method, Levenberg-
Marquardt algorithm, Broyden’s Quasi-Newton methods,etc. Once this sys-
tem solved for θair and θwall, we can express the associated propagation delayas:

τ =
∆z − d
c cos θair

+

√
ϵd(1 + 2iw)

c cos θwall
(1.47)

1.4.2 . Forward model with multipath exploitation
We are now able to compute the propagation delays of some types of

multipath propagation of the signal, we can develop a model to exploit it.
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Again, suppose the front wall returns suppressed. Note that a round-trip is
divided into depart and return paths from emitter to target and back to re-
ceiver. Supposing R1 possible depart paths and R2 possible return paths, weget R ≤ R1R2 possible round-trips. In practice R ≪ R1R2 due to symmetry
or strong attenuation of some paths.

The round-trip delay associated to some multipath indexed by i ∈ [0, R−
1], is:

τ (i)p,n = τ (i1)p,n + τ (i2)p,n (1.48)
where i1 ∈ [0, R1 − 1] and i2 ∈ [0, R2 − 1] index the depart and return path
taken in the ith multipath scheme.

Furthemore, we associate a complex amplitude w(i)
p to the ith multipath

at the pth target. Assuming P point targets and the wall returns erased, the
received signal at the nth transceiver for themth frequency is:

y(m,n) =

R∑
i=1

P∑
p=1

w(i)
p σ(i)p exp(−jωmτ

(i)
p,n) (1.49)

Equivalently:
y = Ψ(1)r(1) +Ψ(2)r(2) + . . .+Ψ(R)r(R) (1.50)

This can be written compactly in matrix-vector form as:
y1

y2...
yN


︸ ︷︷ ︸

y

= [Ψ(1),Ψ(2), . . . ,Ψ(R)]︸ ︷︷ ︸
ΨA


r(1)

r(2)...
r(R)


︸ ︷︷ ︸

r

=⇒ y = ΨAr

(1.51)

where r ∈ CNxNzR andΨA ∈ CMN×NxNzR. Each r(i) ∈ CNxNz is the scene vec-
tor associatedwith the ithmultipath propagation schemeandΨ(i) ∈ CMN×NxNz

is the dictionary matrix with propagation delay computed according to the ith
multipath scheme:

Ψ(i) =


Ψ

(i)
1

Ψ
(i)
2...

Ψ
(i)
N

 (1.52)

Again, for Compressive Sensing purposes, we can use a measurement matrix
Φ ∈ RQ1Q2×MN as in (1.41) to reduce the number of measurement used.

The crucial point to reconstruct r is to note that all scene vectors r(i), i ∈
[1, . . . , R] describe the same physical scene. Thus, a target will appear at the
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same pixel location in different scene vectors (associated with different prop-
agation paths). However, ghost targets frommultipath effects will not appear
across all propagation paths at the same pixel location.

The idea is then to enforce group-sparsity across scene vectors, where a
group is formed of the same pixel location across all scene vectors. This sug-
gests a regularization by the ℓ2,1-norm, which is defined as the sum of the
Euclidean norm of the rows of some matrix. It induces structured sparsity,
across rows. The use of the ℓ2,1 norm in order to promote structured sparsity
across rows [Kowalski, 2009] has been developed for multipath exploitation
in [Leigsnering et al., 2014]. We are then looking to resolve the following opti-
mization problem:

min
r

1

2
∥y −ΨAr∥2 + λ

∥∥vec−1(r)
∥∥
2,1

(1.53)
where the ℓ2,1-norm is taken over an unvectorized form of r. Indeed, vec−1

is the inverse operator of vectorization: vec−1(vec(A)) = A. We assume we
may get an approximate solution. We will see the method (Proximal Gradient
Descent i.e. PGD) in the next Chapter 2. Having obtained r, we need to form
an image I from all r(i), i ∈ [1, . . . , R] composing it. One way is to average
squared amplitudes across multipaths (and unvectorize):

[vec(I)]q =
1

R

∥∥∥[r(1)]q . . . [r(R)]q]
∥∥∥2
F

(1.54)
1.4.3 . Experiments on simulated data

We showcase here the advantage of considering multipath effects via the
sparse recovery model versus BP imaging.
Setup

The signal is generated via raytracing according to (1.49). Interior wall mul-
tipath is considered with two side walls (parallel to the z-axis) on the edges
of the scene. Wall-ringing multipath is only considered with iw = 1 i.e. one
internal reflection. The multiplication attenuation factor for every multipath
is 0.1. The radar specifications are the same as for the previous simulations.
There are still two point-like targets at coordinates (2, 2) and (2.5, 4).
Results

First, we look at the results of the algorithms that do not take into account
the multipath when it is indeed present. We only consider the case where
the front-wall returns have been suppressed. The results are shown in Figure
1.13. We need to exploit the multipath model to reduce phantom targets as
seen in Figure 1.14. We can observe the effect of increasing the thresholding
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parameter λ. Next, we add the returns of a front wall and the wall mitigation
technique as a preprocessing step. In Figure 1.15, on the first image, we clearly
see that a target is hidden by wall returns. In the second image, we can clearly
see both targets while ghosts and wall returns have been eliminated.

(a) Backprojection with multipath(front wall suppressed) and targets at
(2, 2), (2.5, 4)

(b) Compressive Sensing (OMP) withmultipath (front wall suppressed) andtargets at (2, 2), (2.5, 4)
Figure 1.13: Methodswithoutmultipath considerations (frontwall suppressed)

(a) Compressive Sensing (PGD) with
λ = 1 (front-wall suppressed) (b) Compressive Sensing (PGD) with

λ = 100 (front-wall suppressed)
Figure 1.14: Methods with multipath considerations (front wall suppressed)
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(a) Compressive Sensing (PGD) with
λ = 100 and front-wall returns (b) Compressive Sensing (PGD) with

λ = 100 and wall mitigation
Figure 1.15: Methods with multipath considerations and front wall

We presented a classical TWRImethod [Amin andAhmad, 2013]. It consists
in two steps: a wall mitigation followed by a structured sparse reconstruction
of the targets. We hereby denote it SR-CS (Sparse Recovery - Compressed
Sensing).

However, it may not be optimal as some target informationmay be erased
by the wall mitigation. Parallel retrieval of both the wall and targets compo-
nents is possible via matrix decomposition methods, which we propose to
study. In the next chapter, we first present optimization methods that we
leverage later on.
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2 - Overview of inverse methods
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Before entering the heart of the matter with our new TWRI methods, we
summarize some optimization techniques in this chapter.

2.1 . Basics of sparse recovery/coding

We have seen in the previous chapter that TWRI can be formulated as
the recovery of a sparse vector. More broadly, sparse recovery/sparse coding
aims at recovering a solution to an underdetermined system of equations
which is the sparsest. It uses the ℓ0 norm (while being the limit of ℓp norms
when p tends to zero but it is in fact not a true norm), defined as the number
of non-zero entries of the vector. Sparse recovery problems thus consider the
following problem:

min
x

∥x∥0
s.t. Ax = y

(2.1)

While the above problem is NP-hard, we may obtain an approximate solution
using several methods. We will present the two main approaches to solving
it: greedy approaches and gradient-type alternatives.

2.1.1 . Greedy methods: resolution via OMP
Greedy approachs, which also fall under the name of matching pursuit

methods, represent the signal in a sparse basis taken one by one from the
columns of a dictionary matrix, also called atoms. The dictionary is called
complete if it spans the whole signal space and redundant if it is composed of
linearly dependent atoms. Often, the dictionary is complete and redundant.
Thus, these methods search for the expansion coefficients in that basis. For
a signal y with coefficients {xk} in a basis of atoms {ak}, where k indexes an
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element of the desired basis, we have:
y =

∑
k

xkak (2.2)
Matching pursuit algorithms search for the best sparse approximation by

choosing the atomof the dictionarywhich ismost representative of the signal.
This is achieved by choosing the one with the largest inner product with the
residual signal e:

k⋆ = argmax
k

|⟨e,ak⟩| (2.3)
where e is the signal y from which we subtract the approximation by already
chosen atoms:

e = y −
∑
k∈K

xkak (2.4)
where K is the set of indices selected in previous iterations. The coefficient
associated to the atom ak⋆ is then xk⋆ = ⟨e,ak⋆⟩. OMP [Pati et al., 1993]
further constrains the residual to be orthogonal to the previously selected
atoms. This results in convergence for a d-sparse vector after at most d steps.
The added procedure consists in projecting the residual on the orthogonal
complement to the subspace spanned by previously selected atoms, thus re-
moving any part of the residual lying in the subspace spanned by previously
selected atoms. This ensures that already selected atoms will not be selected
again. Under suitable conditions on the dictionary (mutual coherence or re-
stricted isometry) it was shown the solution is unique and is the one recovered
by OMP.

We show the algorithmic flow of OMP in Algorithm 2, whereΛ denotes the
support of the recovered sparse signalx through a dictionaryA andmeasure-
ments y. xΛ denotes the vector x restricted to the support Λ.

2.1.2 . Gradient methods: resolution via PGD
The sparse recovery problem is non-convex due to the ℓ0 norm. It may be

relaxed to a convex problem with:
min
x

∥x∥1
s.t. y = Ax

(2.5)
Indeed the ℓ1 norm is the convex envelope of the ℓ0 norm (on the unit ℓ∞ ball,
the dual norm of the ℓ1 norm). It is defined as the sum of absolute values of
the entries of the vector.

It can be further relaxed to include noisy observations:
min
x

∥x∥1
s.t. ∥y −Ax∥22 ≤ ϵ

(2.6)
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Algorithm 2 OMP(A,y)

1: x0 ← 0
2: e0 ← y
3: Λ0 ← ∅
4: k ← 0
5: repeat
6: hk+1 = AHek

7: λk+1 = argmaxj ̸∈Λk |hk+1
j |8: Λk+1 = Λk ∪ {λk+1}

9: xk+1 = 0
10: xk+1

Λk+1 = A†
Λk+1y11: yk+1 = Axk+1

12: ek+1 = y − yk+1

13: k ← k + 1
14: until stopping criterion is met
15: x← xk (reconstructed sparse signal)
16: Λ← Λk (support of the reconstructed signal)
17: e← ek (end residual vector)

In Lagrangian form, this yields the Least Absolute Shrinkage and Selection
Operator (LASSO) [Tibshirani, 1996]:

min
x

λ∥x∥1 +
1

2
∥y −Ax∥22 (2.7)

where λ is a scalar hyper-parameter that balances the regularization strength.
Amethod to solve this optimization problem is the Proximal Gradient Descent
(PGD) [Parikh and Boyd, 2014]. PGD aims at minimizing a composite function:

f(X) = g(X) + h(X) (2.8)
where g is a differentiable and (proper closed i.e. lower semi-continuous) con-
vex function whereas h is a (proper closed) convex function but not necessar-
ily differentiable, making it impossible to use a standard gradient descent.
However, h can be extended valued (taking infinite values) to encode con-
straints (using an indicator function). The following definitions use a matrix
variable which can be reduced to a vector.
Definition 1. The proximal operator [Parikh and Boyd, 2014] of a convex function
h : X → R where X is some Hilbert space, is:

Proxh(V) = argmin
X∈X

h(X) +
1

2
∥X−V∥2F (2.9)

which is unique due to the strict convexity of the objective function.
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Gradientmethods using proximals are very important in convex optimiza-
tion. A good reference for more details is [Parikh and Boyd, 2014] from which
the following overview is inspired.
Definition 2. Each iteration k = 0, 1, 2, . . . of the Proximal Gradient Descent
(PGD) method [Parikh and Boyd, 2014, Section 4.2] takes the form:

Xk+1 = Proxth(Xk − t∇g(Xk)) (2.10)
where t denotes a step-size. For a L-Lipschitz ∇g, it converges sub-linearly at the
rate O(1/k) (in objective function value) for t ∈ [0, 1/L).

Definition 3. A function f defined on a normed space with norm ∥·∥ mapping
to another normed space (via the induced norm) is L-Lipschitz continuous if there
exist a real constant L > 0 such that:

∥f(X)− f(Z)∥ ≤ L∥X− Z∥ (2.11)
Any L veryfing this condition is called a Lipschitz constant of f .

In the case of LASSO:
g(x) =

1

2
∥y −Ax∥22 h(x) = λ∥x∥1 (2.12)

Interestingly, the proximal of some norms are computable in close-form. The
following propositions can be found in [Parikh and Boyd, 2014, Section 6.5].
Proposition 1. the proximal operator of the ℓ1-norm, the so-called soft-thresholding
operator Sλ : C→ R is:

Sλ(z) = sgn(z)(|z| − λ)+ =

{
z − sgn(z)λ if |z| > λ

0 if |z| ≤ λ
(2.13)

with the sign operator sgn : C → R, z 7→ sgn(z) = z
|z| (if z ̸= 0 in which

case the sign is zero) and the positive part operator (·)+ : R → R+, x 7→ (x)+ =

max(0, x). Over matrices, it is used element-wise, as the proximal can be sepa-
rated across entries:

[Sλ(X)]ij = Sλ([X]ij) (2.14)
with [X]ij the element in the i row and j column ofX.

Proposition 2. Consider the nuclear norm, defined as the sum of the singu-
lar values of a matrix. the proximal operator of the nuclear norm is Dλ(X) =

USλ(Σ)VH whereX SVD
= UΣVH is the SVD ofX.
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Proposition 3. the proximal operator of the ℓ2,1 norm, denoted Tλ , operates
row by row over someA. For the ith row ai, it is:

[TλA]i: =

(
1− λ

∥ai∥

)
+

ai (2.15)
where (x)+ = max(x, 0).

We may easily derive the gradient of g at x:
∇g(x) = −AH(y −Ax) (2.16)

As well as the Hessian:
Hg(x) = AHA (2.17)

which takes the formof aGrammatrix. The choice of t follows from the deriva-
tion of PGD as a Majorization Minimization (MM) method [Parikh and Boyd,
2014], by taking a quadratic upper bound of the function to minimize, lead-
ing to (2.10) with t ∈ (0, 1/L] (the method actually converges for t ∈ (0, 2/L])
where L is the Lipschitz constant of ∇g. For our particular problem, we can
easily findL from the definition of a Lipschitz function and sub-multiplicativity
of the spectral norm (the matrix norm induced by the ℓ2 norm, which equals
the largest singular value):

∥∇g(x)−∇g(z)∥2 =
∥∥AH(y −Ax)−AH(y −Az)

∥∥
=
∥∥AHA(x− z)

∥∥
2

≤
∥∥AHA

∥∥
2
∥x− z∥2

= ∥A∥22∥x− z∥2

(2.18)

Thus, we set the step-size to t = 1
∥A∥22

where we can note that ∥A∥22 is also thelargest eigenvalue value of the HessianHg. We recapitulate this in Algorithm
3. Note that this method is also called the Iterative Shrinkage and Threshold-
ing Algorithm (ISTA).
Algorithm 3 PGD for LASSO (ISTA) (λ,y,A)

1: t← 1/∥A∥222: x0 ← 0
3: repeat (for k = 0, 1, 2, . . .)
4: xk+1 = Sλt

(
xk + tAH(y −Axk)

)
5: until stopping criterion is met
6: x← xk

This may be accelerated in Nesterov’s way by an extrapolation step to
give the so-called Accelerated Proximal Gradient Descent (APGD) [Parikh and
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Boyd, 2014, Section 4.3]. Thismethod is also called the Fast Iterative Shrinkage
and Thresholding Algorithm (FISTA) [Beck and Teboulle, 2009]. This changes
the rate of convergence from O(1/k) for PGD to O(1/k2) for APGD. This is
summarized in Algorithm 4.
Algorithm 4 APGD for LASSO (FISTA) (λ,y,A)

1: t← 1/∥A∥222: θ0 ← 0
3: x0 ← 0
4: repeat (for k = 0, 1, 2, . . .)
5: x̂k+1 = xk + θk(xk − xk−1)6: xk+1 = Sλt

(
x̂k+1 + tAH(y −Ax̂k+1)

)
7: θk+1 =

k+1
(k+1)+38: until stopping criterion is met

9: x← xk

Later on, we will be interested in solving more involved problems that in-
volve several variables under constraints whose algorithmic resolution calls
for more advanced methods. We present an overview before using them in
the next chapters. Those include various notions thatmay not usually be seen
along each other.

2.2 . More advanced methods

We present more advanced notions that we will use in later chapters.
2.2.1 . MM

The framework of Majorization Minimization (MM) [Sun et al., 2016] is a
generic one that englobes awide variety ofmethods: Expectation-Maximisation
(EM), Proximal Gradient Descent (PGD), etc. It consists of iteratively:

• majorizing tightly the function of interest by another function
• minimizing this majorizer

which is shown in Figure 2.1. More precisely, consider the problem:
min
X

f(X) (2.19)
We may construct a local majorizer of f(X) at the pointXt which we denote
g(X|Xt) that satisfies:

f(X) ≤ g(X|Xt) ∀X
g(Xt|Xt) = f(Xt)

(2.20)
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By this construct, we can choose the next iterate by:
Xt+1 = argmin

X
g(X|Xt) (2.21)

Then, we have:
f(Xt+1) ≤ g(Xt+1|Xt) ≤ g(Xt|Xt) = f(Xt) (2.22)

This points out that this iteration scheme converges to a local minimumof
the function f . The convergence speed depends on the majorizing function:
the more it aligns with the original function, the less iterations are required,
as the approximation error is reduced. However, the function g should be
simple to minimize in order to have a straightforward/economical update.
This means that there is a trade-off between these two objectives.

Figure 2.1: MM principle

2.2.2 . ADMM
The framework of Alternating Directions Method of Multipliers (ADMM)

[Lions andMercier, 1979, Boyd et al., 2011] aims atminimizing a function of two
variables that can be separated, with linear constraints. It first constructs the
Augmented Lagrangian [Hestenes, 1969], thenminimizes it by alternating over
the different variables (instead of minimizing jointly like in the Augmented
Lagrangian framework) and finally updates the dual variable by dual ascent.
Consider some separable function of two variables under linear constraints:

min
X,Z

f(X,Z) = g(X) + h(Z)

s.t. X+ Z = C
(2.23)

where g, h are simple i.e. their proximal can be computed in closed form.
The Augmented Lagrangian is the standard (unaugmented) Lagrangian with
an added quadratic penalty:

l(X,Z,Γ) = g(X) + h(Z) + ⟨Γ,C−X− Z⟩+ µ

2
∥C−X− Z∥2F (2.24)
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with Γ the dual variable of Lagrange multipliers. Then, it alternates minimiza-
tion over the two variables. OverX:

argmin
X

l(X,Z,Γ) = argmin
X

g(X) + ⟨Γ,C−X− Z⟩+ µ

2
∥C−X− Z∥2F

= argmin
X

g(X) +
µ

2

∥∥∥∥C−X− Z+
Γ

µ

∥∥∥∥2
F

= prox 1
µ
g

(
C− Z+

Γ

µ

)
(2.25)

Similarly for Z:
argmin

Z
l(X,Z,Γ) = prox 1

µ
h

(
C−X+

Γ

µ

)
(2.26)

Finally, the dual update is a so-called dual ascent step which stems from opti-
mality conditions. Indeed, consider optimal variables (X⋆,Z⋆,Γ⋆). Then, op-
timality conditions on the standard Lagrangian state that:

∂g(X⋆)− Γ⋆ = 0 (2.27)
Then, as (X⋆,Z⋆)minimize the Augmented Lagrangian, optimality conditions
on the Augmented Lagrangian give:

∂g(X⋆)− (Γ+ µ(C−X⋆ − Z⋆)) = 0 (2.28)
Leading to the choice:

Γ⋆ = Γ+ µ(C−X⋆ − Z⋆) (2.29)
makes the iterate dual-feasible (i.e. respect the standard Lagrangian optimal-
ity conditions). Note that derivingw.r.t. Z instead ofX in this derivationwould
yield the same result. ADMM converges sublinearly at rateO(1/k) for convex
functions. The method gained popularity in the last decade thanks to its dis-
tributed optimization possibilities for large scale problems as well as its fast
convergence rate in practice.

A variable under consideration may be under the action of a composition
of a generic convex function and a linear operator:

min
X

g(X) + h(AX) (2.30)
The proximal can’t be computed if A is not orthogonal thus PGD cannot be
used. In order to use ADMM, the problem above can be decoupled using an
auxiliary variableY:

min
X,Y,Z

g(X) + h(Z)

s.t. Z = AY

Y = X

(2.31)
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2.2.3 . Chambolle-Pock
The Chambolle-Pock method [Chambolle and Pock, 2011] is a primal-dual

method i.e. considering a saddle-point formulation. It is an alternativemethod
which, contrary to ADMM, can handle a linear operatorA that is not orthog-
onal (thus not the identity) without further decoupling. It was first applied to
total variation image denoising.
Definition 4. Wedenote h∗ the convex (Legendre-Fenchel) conjugate of a function
h acting on some vector space, defined as:

h∗(y) = sup
x
{⟨x,y⟩ − h(x)} (2.32)

Consider the primal problem:
min
x
g(x) + h(Ax) (2.33)

where h, g are convex functions taking values in a normed space. Its Fenchel
dual problem is:

max
y
−h∗(y)− g∗(−Ay) (2.34)

In between them is the primal-dual saddle point formulation:
max
y

min
x
g(x)− h∗(y) + ⟨Ax,y⟩ (2.35)

We may separate the optimization of the two variables and alternate be-
tween them. The addition of a trust region yields the so-called Arrow–Hurwicz
method. The original version [Uzawa, 1958] does not consider proximals (they
weren’t discovered yet...) and uses the Lagrangian saddle-point problem. The
method arises naturally fromusing gradient descent/ascent on theprimal/dual
variables. Anyhow, we have:

xk+1 = argmin
x

g(x) +
〈
x,AHyk

〉
+

1

2τ

∥∥∥x− xk
∥∥∥2
F

yk+1 = argmax
y

−h∗(y) +
〈
Axk,y

〉
− 1

2σ

∥∥∥y − yk
∥∥∥2
F

(2.36)

where τ, σ can be considered as stepsizes. Adding an extrapolation step with
parameter θ and rearranging the problem to reveal the proximals gives:

yk+1 = proxσh∗(yk + σAx̂k)

xk+1 = proxτg(x
k − τAHyk+1)

x̂k+1 = xk+1 + θ(xk+1 − xk)

(2.37)

with convergenceproved in [Chambolle andPock, 2011] for θ = 1 and τσ∥A∥22 ≤
1 with rate O(1/k) in the decrease of the primal dual gap. Note that primal-
dual Fenchel optimality conditions state that for optimal (x⋆,y⋆):

Ax⋆ ∈ ∂h∗(y⋆)

−AHy⋆ ∈ ∂g(x⋆)
(2.38)
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where ∂ is the subdifferential operator. Knowing those subgradients high-
lights the method being a primal-dual (accelerated) hybrid gradient method.
Note that the proximal of the dual of some function is readily computed from
the proximal of the original function via the Moreau decomposition.
Proposition 4. The Moreau decomposition in general form states that:

x = proxλh(x) + λ proxh∗/λ(x/λ) (2.39)
2.2.4 . Riemannian optimization

Basics on an embedded manifold

It may happen that the variable is constrained to some space called a Rieman-
nian manifoldM:

min
X∈M

f(X) (2.40)
Suchmanifolds are ones on which wemay use calculus and optimization pro-
cedures (for example via specific gradient methods). Later on, we will notably
work on the manifold of fixed rank matrices of some fixed dimension. We
shortly present some notions of Riemannian optimization on a embedded
manifold, although we refer to [Boumal, 2023] for a recent and complete ref-
erence.
Definition 5. A smooth (differentiable) manifoldM is a locally diffeomorphic
space to a vector space i.e. there exists an invertible function that maps one dif-
ferentiable manifold to another such that both the function and its inverse are
continuously differentiable. Consider Rd such that d is the dimension of the man-
ifold. In other words, for all X ∈ M there exists a neighbourhood of X denoted
UX ⊂M and a diffeomophism ϕX : UX → Rd.

Then, we can use some calculus tools, such as the directional derivative.
Definition 6. Let f : Rm×n → Rp×q be differentiable atX ∈ Rm×n.

Consider a linear application (in ξ) : D f(X) : Rm×n → Rp×q such that:

lim
∥ξ∥→0

∥f(X+ ξ)− f(X)−D f(X)[ξ]∥
∥ξ∥

= 0 (2.41)
Then if D f(X) exists, it is unique and called the directional derivative of f .

Equivalently:
D f(X)[ξ] = f(X+ ξ)− f(X) + o(∥ξ∥) (2.42)

which allows for its derivation in many cases.
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Figure 2.2: Diffeomorphic neighbourhood

On differentiable manifolds, it is practical to work with curves. Denote as
γ such a curve mapping from an interval of the real line to the manifold at
hand. Indeed, composing a function f defined on the whole Euclidean space
with the curve mapping onto the manifold (i.e. f ◦ γ) allows us to work in a
straightforward manner on the manifold.
Definition 7. The tangent spaceTXM ofX ∈M is defined asTXM = {γ′(0) | γ :

R→M, differentiable, γ(0) = X} and dim(TXM) = dim(M) = d

Then,X∗ is a critical point of f if ∀ξ ∈ TxM
D f(X∗)[ξ] = 0 (2.43)

Definition 8. A Riemannianmetric ⟨·, ·⟩X atX ∈M is amap of TXM×TXM→
R : bilinear, symetric, positive definite (with ⟨ξ, ξ⟩X ≥ 0 and equality only at ξ =

0X).

Equipping a differentiable manifold with a metric makes it into a Rieman-
nian manifold which allows the introduction of geometric notions such as a
gradient.
Definition 9. The Riemannian gradient of f atX ∈ M is the unique element of
TXM such that ∀ξ ∈ TXM

⟨grad f(X), ξ⟩X = D f(X)[ξ] (2.44)
Then X∗ ∈ M being a critical point of f implies that grad f(X∗) = 0. In

most cases, manifolds are submanifolds embedded in a euclidean space. Let
M be a Riemannian manifold with metric ⟨·, ·⟩M.
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Definition 10. A submanifoldM ofM is a space included inM such that:

M = {x ∈M : φ(x) = 0} (2.45)
where φ :M→M is a smooth map andM = φ−1({0}).

When considering amanifold embedded in another one, e.g. an Euclidean
space, the Riemannian gradient can be defined the orthogonal projection P t

Xof the embedding Euclidean gradient to the tangent space (which is a sub-
space of the embedding space):

grad f(X) = P t
X(∇f(X)) (2.46)

with ∇f denoting the Euclidean gradient of f . The final tool is the retraction
which maps from tangent space back to the manifold.
Definition 11. RX : TXM→M is a retraction if:
1) RX(0X) = X

2)DRX(0X)[η] = η

Then, the Riemannian Gradient Descent (RGD) has jth iteration:
Xj+1 = RXj (−αjP

t
Xj

(∇f(Xj))) (2.47)
with αk a step size found by line-search. This is illustrated in Figure 2.3.

Figure 2.3: RGD
It can be shown that RGD converges to critical points with the main as-

sumption being equivalent to a Lipschitz-type condition on the objective func-
tion, i.e. the second-order term of its Taylor expansion is bounded. Moreover,
it has a (sublinear) convergence rate of O(1/√k) in terms of the norm of the
(Riemannian) gradient of the iterates, although faster convergence (linear) can
happen locally, typically when we get in the neighbourhood of a minimum.
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Extension to a quotient manifold

Furthemore, wemay consider quotientmanifolds as the parametrizationmay
be subject to some invariances. LetM be a Riemannian manifold. If there
exist an equivalence relation ∼ onM verifying, for allX , Y and Z ∈M :

• X ∼ X (reflexivity)
• X ∼ Y et Y ∼ Z alorsX ∼ Z (transitivity)
• X ∼ Y ⇐⇒ Y ∼ X (symmetry)
thenM =M/ ∼= {π(X) : X ∈ M} is a quotient manifold where π(X)

is the equivalent class defined by π(X) = {Y ∈ M : Y ∼ X}. Working in
the abstract space defined by the quotient manifold is complicated. We may
work in the total (non-quotient) space, which is more practical. However, it
necessitates a further space to be introduced. Indeed, the horizontal space is
the ’interesting’ part of the tangent space for quotient manifolds. There is a
one-to-one correspondence between abstract tangent vectors and concrete
horizontal vectors so that horizontal vectors may be taken as representations
for the underlying abstract tangent vectors. The remaining part is the vertical
space. Their direct sum forms the whole tangent space. This is illustrated in
Figure 2.4.

M

TXM VX
HX

•
X

π−1(π(X))

P h
X (ξ)

ξ

π

M•
X = π(X)

• • •

Figure 2.4: A generic quotientmanifoldM embedded in its total space M̄ andthe decomposition of the tangent space TX at a point X in the direction ξ̄ inthe horizontalHX and vertical spaces VX.
RGD for a quotient manifold has jth iteration:

Xj+1 = RXj (−αjP
h
Xj

(P t
Xj

(∇f(Xj)))) (2.48)
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with∇f denoting the Euclidean gradient of f and αk a step size found by line-search. P t
Xj

is the projection from ambient space to tangent space whileP h
X is

the projection from the tangent space to the horizontal space andRX denotes
the retraction of a horizontal vector to the manifold at the pointX.

This concludes this chapter of introduction of some notions of advanced
optimization. We are ready to delve into the main subject, the methods we
developed for TWRI using them.
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3 - Inversion via decomposition methods
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We presented a two-step method in the first chapter, which can be found

in [Amin and Ahmad, 2013] and we hereby denote SRCS (Sparse Recovery -
Compressed Sensing). It considers a vectorized model where the total sig-
nal model is created by stacking the measurements at the N radar positions
in a long composite vector. Then, it consists of a sequential method in two
steps as we: a) filter the front wall (for example via methods using the SVD
[Tivive et al., 2011, Tivive et al., 2015]), b) recover the target positions via sparse
reconstruction (e.g. a LASSO-like method).

Recent works [Tang et al., 2016, Tang et al., 2020] suggest that a parallel
recovery of both components can improve performances, although they do
not consider robustness to multipaths or complex noise cases. Indeed, we
may consider a one-step method where we filter the wall and achieve target
detection in parallel. This can be done through a low rank plus sparse decom-
position of the data which was notably developed in the framework of Robust
PCA (RPCA) [Candès et al., 2011, Chandrasekaran et al., 2011]. In this chapter,
we present a new method of low rank and sparse decomposition for TWRI
detection. The results were published in [Brehier et al., 2022a].

3.1 . Refresher on RPCA

The framework of RPCA [Candès et al., 2011] searchs for a decomposition
of a matrixY as a sum of a low rank matrix L and a sparse matrix S. The low
rank matrix represent the low dimensional subspace where the data points
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lie, except for some outliers which are accounted for in the sparse matrix. In
[Mardani et al., 2013], it was extended to a settingwith a compressing operator
acting on the sparse component. In our case, the role of the two components
is reversed: the outlier matrix is not the one we will discard but the one we
are interested while the low rank component contains the wall clutter to be
discarded.

The solution of RPCA is commonly achieved by considering a convex re-
laxation of the problem called Principal Component Pursuit (PCP):

min
L,S

∥L∥∗ + λ∥S∥1

s.t. Y = L+ S
(3.1)

where ∥·∥∗ is the nuclear norm (the sum of singular values) and ∥·∥1 the ℓ1norm (the sum of the entries absolute values). Those two norms are known
to be the convex envelope of the rank and cardinality (i.e. ℓ0 norm) of amatrix
(restricted to the unit dual norm ball [Fazel, 2002]).

Assuming the above model and under suitable conditions, it was shown
that RPCA can accomplish the recovery of the true components [Candès et al.,
2011, Chandrasekaran et al., 2011]. Firstly, the true components of the de-
composition should be low-rank and sparse enough. Secondly, we should be
concerned with the identifiability of the two components: the low rank term
should not be sparse and vice-versa. We can mention the so-called incoher-
ence property that the low rank component should verify, which asserts that
its singular vectors are reasonably spread out. The sparse component may
be assumed to have its support chosen uniformly at random. Although such
recovery results have been the subject of many works, we will focus on the
effective resolution and its application of TWRI. Indeed, a variety of algorithms
have been proposed to solve the PCP problem for RPCA. We give a few exam-
ples for the reader to get an idea.

3.1.1 . ADMM resolution
RPCA via PCP can be solved through ADMM. The Augmented Lagrangian

associated with (3.1) is:
l(L,S,Γ) = ∥L∥∗ + λ∥S∥1 + ⟨Γ,Y − L− S⟩+ µ

2
∥Y − L− S∥2F (3.2)

where Γ is the matrix Lagrange multiplier associated with the equality con-
straint. Its optimization over L, S,Γ gives the updated variables L⋆,S⋆,Γ⋆.
L step

For one variable, we have:
L⋆ = argmin

L
l(L,S,Γ) = argmin

L
∥L∥∗ +

µ

2

∥∥Y − L− S+ µ−1Γ
∥∥2
F

= D1/µ(Y − S+ µ−1Γ)
(3.3)
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whereD is the proximal of the nuclear norm i.e. singular value thresholding.

S step

And for the other:
S⋆ = argmin

S
l(L,S,Γ) = argmin

S
λ∥S∥1 +

µ

2

∥∥Y − L− S+ µ−1Γ
∥∥2
F

= Sλ/µ(Y − L+ µ−1Γ)
(3.4)

where S is the proximal of the ℓ1 norm i.e. soft-thresholding.

Γ step

Lastly, the dual update is a standard ADMM dual ascent step:
Γ⋆ = Γ+ µ(Y − L− S) (3.5)

This is summarized in Algorithm 5.
Algorithm 5 ADMM for RPCA (λ, µ > 0,Y)

1: S0 ← 0
2: Γ0 ← 0
3: repeat (for k = 0, 1, 2, . . .):
4: Lk+1 = D1/µ(Y − Sk + µ−1Γk)5: Sk+1 = Sλ/µ(Y − Lk+1 + µ−1Γk)6: Γk+1 = Γk + µ(Y − Lk+1 − Sk+1)7: until stopping criterion is met
8: L← Lk9: S← Sk

3.1.2 . Proximal Gradient Descent resolution
Another possible algorithm for RPCA is the use of the Proximal Gradient

Descent method. Indeed, the equality constraint in RPCA (3.1) may be relaxed
to obtain:

min
L,S

∥L∥∗ + λ∥S∥1 +
1

2µ
∥Y − L− S∥2F (3.6)

which recovers the same solution as RPCA via PCP when µ approaches zero.
Now, let us consider Z =

[
L
S

]
. Then, this can be rewritten as:
min
Z
f(Z) + g(Z) (3.7)
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where f(Z) = µ∥L∥∗ + µλ∥S∥1 and g(Z) = 1
2∥Y − L− S∥2F = 1

2∥Y −KZ∥2FwithK = [I, I] and g being differentiable. Indeed:
∇g(Z) = KH(Y −KZ) = −

[
Y − L− S
Y − L− S

]
(3.8)

Then, one iteration of PGD is:
proxtf (Z− t∇g(Z)) (3.9)

with t > 0 a step-size. Since f consists in a separable sum across L and S, its
proximal can be written as:

proxtf (Z) =

[
Dtµ(L)
Sλµt(S)

]
(3.10)

Thus, the PGD iteration above can be decomposed as:
L⋆ = Dtµ(L+ t(Y − L− S))

S⋆ = Sλµt(S+ t(Y − L− S))
(3.11)

Note that in this case, as the Hessian of g is known: Hg(Z) = KHK (with only
eigenvalue 2) so that we may use t = 1

2 . This is summarized in Algorithm 6.
We may also use the accelarated version, APGD, as summarized in Algorithm
7.
Algorithm 6 PGD for RPCA (λ, µ > 0,Y)

1: t← 1
22: S0 ← 0

3: L0 ← 0
4: repeat (for k = 0, 1, 2, . . .):
5: Lk+1 = Dµt(Lk + t((Y − Lk − Sk)))6: Sk+1 = Sλµt(Sk + t((Y − Lk − Sk)))7: until stopping criterion is met
8: L← Lk9: S← Sk

3.1.3 . Chambolle-Pock resolution
Another method (the list not being exhaustive) for RPCA is to use the

Chambolle-Pock (CP) method [Chambolle and Pock, 2011] which is a primal
dual algorithm. Indeed, consider the standard Lagrangian formulation of the
RPCA problem:

min
L,S

max
Γ

∥L∥∗ + λ∥S∥1 + ⟨Γ,Y − L− S⟩

= min
Z

max
Γ

f(Z) + ⟨KZ,Γ⟩ − h∗(Γ)
(3.12)
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Algorithm 7 APGD for RPCA (λ, µ > 0,Y)

1: t← 1
22: θ0 = 0

3: L0, L̂0 ← 0
4: S0, Ŝ0 ← 0
5: repeat (for k = 0, 1, 2, . . .):
6: L̂k+1 = Lk + θk(Lk − Lk−1)7: Ŝk+1 = Sk + θk(Sk − Sk−1)8: Lk+1 = Dµt(L̂k+1 + t((Y − L̂k+1 − Ŝk+1)))

9: Sk+1 = Sλµt(Ŝk+1 + t((Y − L̂k+1 − Ŝk+1)))10: θk+1 =
k+1

(k+1)+311: until stopping criterion is met
12: L← Lk13: S← Sk

where f and K are as defined in the previous section and h∗(Γ) = ⟨Y,Γ⟩
being the convex conjugate of some function h. The problem is suited for the
Chambolle-Pock method. We get, at iteration k + 1:

Γk+1 = proxσh∗(Γk + σKẐk)

Zk+1 = proxτf (Zk − τKHΓk+1)

Ẑk+1 = Zk+1 + θ(Zk+1 − Zk)

(3.13)

Note that we need the proximal of h∗ which is readily found as:
proxλh∗(V) = argmin

X

1

2λ
∥X−V∥2F + ⟨Y,X⟩

= argmin
X
∥X− (V − λY)∥2F

= V − λY

(3.14)

We may again separate the proximal over the composite variable Z in its
components L,S giving the final result. Notice that we can use the conver-
gence properties of the method to choose θ = 1 and τ, σ > 0 such that
τσ ≤ ∥K∥22 = 2. The method is summarized in Algorithm 8.

3.1.4 . Simulation results
We compare the different methods quickly to get an idea of their differ-

ence. More importantly, we will look at their convergence speed. We create a
rank k matrix L ∈ C100×80 by constructing it from its rank factorization:

L = LLL
T
R (3.15)

where LL ∈ C100×4 and LR ∈ C80×4 are randomly sampled from a standard
normal distribution. The sparse component S is created by random choice of
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Algorithm 8 CP for RPCA (λ, µ, θ, τ, σ > 0,Y)

1: L0, L̂0 ← 0
2: S0, Ŝ0 ← 0
3: Γ0 ← 0
4: repeat (for k = 0, 1, 2, . . .):
5: Γk+1 = Γk + σ(L̂k + Ŝk −Y)
6: Lk+1 = Dτ (Lk − τΓk+1)7: Sk+1 = Sλτ (Sk − τΓk+1)8: L̂k+1 ← Lk+1 + θ(Lk+1 − Lk)9: Ŝk+1 ← Sk+1 + θ(Sk+1 − Sk)10: until stopping criterion is met
11: L← Lk12: S← Sk

the non-zero matrix entries. Those components are shown in Figure 3.1. All

0 50

0

20

40

60

80

0 50

0

20

40

60

80

0 50

0

20

40

60

80

Figure 3.1: Data matrix Y (left) decomposed via ADMM in L (middle) plus S(right)
methods do manage to recover the true components as expected from the
recovery theorems of [Candès et al., 2011, Chandrasekaran et al., 2011]. We can
monitor the convergence at each iteration (they are comparable across algo-
rithms) by the distance to the true components that we know aswe generated
them:

∥L− Lalg∥F
∥L∥F

+
∥S− Salg∥F
∥S∥F

(3.16)
where Lalg,Lalg are the components retrieved by some algorithm at some
iteration. The results are shown in Figure 3.2 in log scale. We can see the faster
practical convergence of ADMM which motivates its use in the next chapters.
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Figure 3.2: Convergence of RPCA algorithms (log scale)
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3.2 . A low rank and sparse decomposition for TWRI

3.2.1 . Signal model
Let us reconsider the model from Section 1.4.2. We have:

y1

y2...
yN

 =


l
l...
l

+ [Ψ(1),Ψ(2), . . . ,Ψ(R)]


r(1)

r(2)...
r(R)

 (3.17)

Where:

Ψ(i) =


Ψ

(i)
1

Ψ
(i)
2...

Ψ
(i)
N

 (3.18)

So:

yn = l+ [Ψ(1)
n ,Ψ(2)

n , . . . ,Ψ(R)
n ]︸ ︷︷ ︸

=Ψn


r(1)

r(2)...
r(R)


︸ ︷︷ ︸

=r

=⇒ yn = l+Ψnr

(3.19)

Again, we can concatenate the observations {yi}Ni=1 in a matrix as:

[y1| . . . |yN ]︸ ︷︷ ︸
=Y

= [l| . . . |l]︸ ︷︷ ︸
=L

+ [Ψ1| . . . |ΨN ]︸ ︷︷ ︸
=Ψ


r 0 . . . 0

0
. . . . . . ...... . . . . . . 0

0 . . . 0 r


︸ ︷︷ ︸

=R

(3.20)

In short, this is written:
Y = L+ΨR = L+Ψ (IN ⊗ r) (3.21)

with ⊗ denoting the Kronecker product. Note that Y ∈ CM×N , L ∈ CM×N

is a rank-one matrix while Ψ ∈ CM×NxNzRN is a dictionnary matrix and R ∈
CNxNzRN×N is a sparse matrix.
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3.2.2 . RPCA with dictionary
RPCA with dictionary [Mardani et al., 2013] aims at solving:

min
L,R

∥L∥∗ + λ∥R∥1

s.t. Y = L+ΨR
(3.22)

whereΨ is a dictionary (also called compression matrix). Notice that we can-
not use a structured sparsity constraint as we ignore the Kronecker struc-
ture. As for RPCA, there exist exact recovery conditions. This fits our problems
stated in (3.21) if we denoteR = IN ⊗ r, thus neglecting the inner structure in
this first approach. While we could directly tackle the above problem via PGD
over the concatenation of the two variables, this yields difficult ℓ1 norm mini-
mization subproblems as the dictionaryΨ couples the entries of the two ma-
trix variables. Another option consists in decoupling the sparse matrix from
the low rank one. A common technique is to introduce an auxiliary variable ,
and formulate the following optimization problem:

min
L,R

∥L∥∗ + λ∥R∥1

s.t. Y = L+ΨS

S = R

(3.23)

Then, the associated Augmented Lagrangian is:
l(L,R,S,Γ, Γ̃) = ∥L∥∗ + λ∥R∥1 + ⟨Γ,Y − L−ΨS⟩+ µ

2
∥Y − L−ΨS∥2F

+
〈
Γ̃,S−R

〉
+
µ

2
∥S−R∥2F

(3.24)
where Γ, Γ̃ are the matrix Lagrange multipliers associated with the (respec-
tively) first and second constraints. We are then in the position to use ADMM,
that is optimizing over each variable alternatively. The updates of the first
group of primal variables are simple proximals.
L step

The minimization over L is a standard procedure in the literature, which re-
duces to:

L⋆ = argmin
L

l(L,R,S,Γ, Γ̃) = D1/µ(Y −ΨS+ µ−1Γ) (3.25)

R step

Similarly forR, the optimization yields:
R⋆ = argmin

R
l(L,R,S,Γ, Γ̃) = Sλ/µ(S+ µ−1Γ̃) (3.26)
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S step

The update of the decoupling variable S can be derived using the first-order
condition for optimality:

∇S⋆ l(L,R,S⋆,Γ, Γ̃) = 0 (3.27)
=⇒ S⋆ = R+

(
ΨHΨ+ I

)−1
[
ΨH(Y − L−ΨR)− µ−1(Γ̃−ΨHΓ)

] (3.28)
where we use the matrix inversion identity (I + P)−1 = I − (I + P)−1P to
obtain this factorization. However, the inversion of (ΨHΨ+ I

) is costly as the
dimension of this square matrix is NxNzN . A way to overcome this obstacle
is through the Woodbury matrix inversion lemma. Indeed:

Ψ
SVD
= UdSdVd

H

=⇒ ΨHΨ = Vd(Sd)
2Vd

H(
ΨHΨ+ I

)−1 Woodbury
= I−VdΠVd

H

(3.29)

whereΠ =
(
(Sd

2)−1 + I
)−1 is a diagonal matrix with (Π)i,i =

s2i
1+s2i

, si being
the ith singular value of Ψ. By developping the expression for the S-update,
we have:

S⋆ =
(
R+ΨH(Y − L)− µ−1(Γ̃−ΨHΓ)

)
−
(
VdΠ

(
Vd

HR+ SdUd
H(Y − L)− µ−1(Vd

HΓ̃− SdUd
HΓ)

)) (3.30)

This does not use any square matrix in NxNzN which solves our problem.
The computation of the SVD of Ψ can be done once in the initialization and
reused for the S-update.
Γ, Γ̃ steps

The dual updates are standard dual ascent steps:
argmin

Γ
l(L,R,S,Γ, Γ̃) = Γ+ µ(Y − L−ΨS)

argmin
Γ̃

l(L,R,S,Γ, Γ̃) = Γ̃+ µ(S−R)
(3.31)

This is summarized in Algorithm 9. Using the same setup as in previous sec-
tions, we get the results in Figure 3.3. We cannot achieve a much higher reso-
lution as it is very time-consuming. These simulations show the underwhelm-
ing quality of the recovery via this method. Moreover, it is not suitable for
multipath exploitation as not structured sparsity may be enforced. Clearly,
we need to enforce sparsity on the true sparse vector, not a matrix contain-
ing several replicas of it as for RPCA with a dictionary. This motivates the
introduction of a finer model.
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Algorithm 9 ADMM for RPCA with dictionary (λ, µ,Y,Ψ)

1: L0,Y0 ← 0M×N2: R0,S0, Ỹ0 ← 0NxNzN×N

3: Ψ SVD
= UdSdVd

H with (Sd)i,i = si

4: Π diagonal s.t. (Π)i,i =
s2i

1+s2i5: repeat (for k = 0, 1, 2, . . .):
6: Γk+1 = Γk + µ(Y − Lk −ΨSk)7: Γ̃k+1 = Γ̃k + µ(Sk −Rk)8: Lk+1 = D1/µ(Y −ΨSk + µ−1Γk+1)

9: Rk+1 = Sλ/µ(Sk + µ−1Γ̃k+1)

10: Sk+1 =
(
Rk+1 +ΨH(Y − Lk+1)− µ−1(Γ̃k+1 −ΨHΓk+1)

)
−(

VdΠ
(
Vd

HRk+1 + SdUd
H(Y − Lk+1)− µ−1(Vd

HΓ̃k+1 − SdUd
HΓk+1)

))
11: until stopping criterion is met
12: L← Lk13: R← Rk

Figure 3.3: Two samples of detectionmaps of RPCA-dict on a scenario withoutmultipath (targets at (2, 2), (2.5, 4))
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3.3 . KRPCA: a specific decomposition for TWRI

3.3.1 . First resolution without decoupling
We can formalize the TWRI problem via the framework of RPCA, with the

sparse component appearing in a Kronecker product, a special case of the
model in [Mardani et al., 2013]. We may then tailor a resolution via the ADMM
framework [Boyd et al., 2011]. Some works of low-rank plus sparse matrix de-
composition exist in the context of TWRI [Tang et al., 2016, Tang et al., 2020].
Weproposehere amatrixmodel called KRPCA (for Kronecker-structuredRPCA):

min
L,R

∥L∥∗ + λ∥R∥2,1

s.t. Y = L+Ψ (IN ⊗ vec(R))
(3.32)

where we define R ≜ vec−1(r) for ease of notation. A solution can be found
via ADMM. The Augmented Lagrangian associated with (3.32) is:

l(L,R,Γ) = ∥L∥∗ + λ∥R∥2,1 + ⟨Γ,Y − L−Ψ(IN ⊗ vec(R))⟩

+
µ

2
∥Y − L−Ψ(IN ⊗ vec(R))∥2F

(3.33)

where Γ is the matrix of Lagrange multipliers, λ is the sparsity regularization
parameter and µ is the augmented Lagrangian penalty parameter.
L step

The subproblem forL is obtained simply by completing the squarednormand
recognizing the proximal of the nuclear norm (with threshold λ), denotedDλ:

L⋆ = D1/µ(Y −Ψ(IN ⊗ r) + µ−1Γ) (3.34)
R step

For the subproblem forR, we may directly use a PGD step since the objective
function of this step is a sumof two convex terms, one derivable and the other
one (the ℓ2,1-norm) on which we may use its proximal Tλ. We can use a fixed
step-size which is readily computed via the Hessian of the derivable part of
the objective function.

The derivable part whose gradient we need is:
⟨Γ,Y − L−Ψ(IN ⊗ vec(R))⟩+ µ

2
∥Y − L−Ψ(IN ⊗ vec(R))∥2F (3.35)

whose optimization overR is equivalent to the one of:
µ

2

∥∥∥∥Y − L−Ψ(IN ⊗ vec(R)) +
Γ

µ

∥∥∥∥2
F

(3.36)
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i.e. we have completed the squared norm. Then, we may use the fact that
the Frobenius norm of a matrix is the same as the ℓ2 norm on its vectorized
version. Consider y, l,γ the vectorized version of Y,L,Γ. Also remember
that vec(Ψ(IN ⊗ vec(R))) = ΨAr. Then we have:

g = ∇r
µ

2

∥∥∥∥y − l−ΨAr+
γ

µ

∥∥∥∥2
F

= −µΨH
A (y − l−ΨAr+

γ

µ
) (3.37)

To get the PGD iteration:
R⋆ = Tλt(vec

−1(vec(R)− tg)) (3.38)

Γ step

Finally, the subproblem for Γ is a standard ADMM step of dual ascent. The
interesting point is that the step-size is already known: it is the parameter of
the Augmented Lagrangian:

Γ = Γ+ µ(Y − L−Ψ(IN ⊗ r)) (3.39)
The whole method is summarized in Algorithm 10.
Algorithm 10 KRPCA via PGD
1: Have: {yi}Ni=1, {Ψi}Ni=12: Choose: λ, µ
3: Y ≜ [y1,y2, . . .yN ]4: Ψ ≜ [Ψ1,Ψ2, . . .ΨN ]5: ΨA ≜ [ΨT

1Ψ
T
2 . . .ΨT

N ]
T

6: P = ΨA
HΨA7: t = 1/λmax(µP)

8: Initialize: L,R,Γ

9: repeat
10: L = D1/µ(Y −Ψ(IN ⊗ r) + µ−1Γ)
11: repeat:
12: g = µΨH

A (vec(L−Y − Γ
µ
)) +Pr

13: R = Tλt(vec
−1(r− tg))

14: r = vec (R)
15: until stopping criterion is met
16: Γ = Γ+ µ(Y − L−Ψ(IN ⊗ r))
17: until stopping criterion is met
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Analysis

The convergence of the algorithm is ensuredby the theory surroundingADMM.
In our case, both functions in the objective functions are proper closed con-
vex functions. Assuming the (non-augmented) Lagrangian has a saddle point,
this ADMM algorithm for KRPCA guarantees residual convergence, objective
convergence and dual convergence [Boyd et al., 2011].

The computational complexity of the derived algorithm for KRPCA is de-
pendent on some assumptions on the order of the dimensions considered.
Assume thatMN > D > M > N whereD = NxNzR is the discretized scene
grid size for all multipaths (and recall thatM,N are respectively the number
of frequencies and radar snapshots). Under those assumptions, the major
cost of the overall algorithm is the computation of P during the initialization,
which is of complexityO(MND2). Wemay considerP as cached beforehand
and study the rest of the method. As Ψ(IN ⊗ r) = vec−1(ΨAr), this opera-tion can be seen to be of complexityO(MND). The PGD step has complexity
O(KD2). We then conclude that the algorithm (withP cached) has complexity
O(KMND). In practice,K is relatively small.

3.3.2 . Alternative method via decoupling
We may actually use a similar decoupling strategy for KRPCA as for ’RPCA

with dictionary’:
min
L,R,S

∥L∥∗ + λ∥R∥2,1

s.t. Y = L+Ψ (IN ⊗ vec(S))

S = R

(3.40)

The associated Augmented Lagrangian is then:
l(L,R,S,Γ, Γ̃) = ∥L∥∗ + λ∥R∥2,1 + ⟨Γ,Y − L−Ψ(IN ⊗ vec(S))⟩

+
µ

2
∥Y − L−Ψ(IN ⊗ vec(S))∥2F +

〈
Γ̃,S−R

〉
+
ν

2
∥S−R∥2F

(3.41)
L step

Over L, we have a (well-known by now) proximal update:
L = D1/µ(Y −Ψ(IN ⊗ vec(S)) + µ−1Γ) (3.42)

R step

OverR, we also have a proximal update:
R = Sλ/ν(S+ ν−1Γ̃) (3.43)
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S step

Over S, we have a sum of quadratic terms which can be solved by first-order
optimality conditions. Indeed, this can be more easily handled when noting
that the Frobenius inner product and norm are equivalent to working on vec-
torized variables. With l, r, s,γ, γ̃ the vectorized variables L,R,S,Γ, Γ̃, we
have:

l(l, r, s,γ, γ̃) =
∥∥vec−1(l)

∥∥
∗ + λ

∥∥vec−1(r)
∥∥
2,1

+ ⟨γ,y − l−ΨAs⟩

+
µ

2
∥y − l−ΨAs∥2F + ⟨γ̃, s− r⟩+ ν

2
∥s− r∥2F

(3.44)

Then, considering the first-order optimality conditions, this amounts to solv-
ing a linear system in s:

(µΨH
AΨA + νI)s = µΨH

A (y − l+ µ−1γ) + ν(r− ν−1γ̃) (3.45)
and unvectorizing to retrieve S.
Γ,Γ̃ step

Finally, the dual variables are updated by the usual dual ascent.
Γ = Γ+ µ(Y − L−Ψ(IN ⊗ r))

Γ̃ = Γ̃+ ν(S−R)
(3.46)

We summarize this in Algorithm 11.
Algorithm 11 KRPCA via decoupling
1: Have: {yi}Ni=1, {Ψi}Ni=12: Choose: λ, µ
3: Y ≜ [y1,y2, . . .yN ]4: Ψ ≜ [Ψ1,Ψ2, . . .ΨN ]5: ΨA ≜ [ΨT

1Ψ
T
2 . . .ΨT

N ]
T

6: Initialize: L,R,S,Γ, Γ̃

7: repeat
8: L = D1/µ(Y −Ψ(IN ⊗ vec(S)) + µ−1Γ)

9: R = Tλ/ν(S+ ν−1Γ̃)
10: S = vec−1

[
(µΨH

AΨA + νI)−1
[
µΨH

A (y − l+ µ−1γ) + ν(r− ν−1γ̃)
]]

11: Γ = Γ+ µ(Y − L−Ψ(IN ⊗ r))
12: Γ̃ = Γ̃+ ν(S−R)
13: until stopping criterion is met

In this form, the optimization procedures fits the consensus variant of
ADMM, where local variables (L,R) are tied via a global consensus variable
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(S). It still inherits the convergence properties of ADMM. The computational
complexity is also identical to the non-decoupled case with the difference that
there is no inner loop.

3.3.3 . Some simulation results
We test KRPCA on simulated raytracing data as done previously, with mul-

tipath. The resulting detection map is shown in Figure 3.4a. For more repre-
sentative results, we run a Monte-Carlo simulation over a range of SNR. We
use 100 draws at each SNR, and stop each method at iterate k when two it-
erates are close by, meaning ∥∥rk − rk−1

∥∥
F
≤ 1e−6. This generally amounts

to around 20 iterations for both algorithms. The error evaluated is defined as
the count of false alarms plus non-detections. To this end, we consider blocks
of 2 by 2 pixels to allow for small clusters of pixels and set a detection thresh-
old equal to 10 % of the highest pixel intensity. The hyper-parameters are set
to a value manually found to be optimal and remain constant over all draws.
Typically, we first tune µ (which controls the wall mitigation) to a level that
visibly erases the wall contribution. Then, we tune λ (which controls scene
sparsity) in order to clean the remaining image. It would be hard to set it in
order to control the probability of false alarm (PFA) as the thresholding value
is implicitly set via λ and not explicitly, which usually allows to control the PFA
via the noise statistics. We observe in Figure 3.4b that KRPCA performs better
than SRCS (themethod detailled in Chapter 1), as our error tends to zero while
SRCS stays around one. The likely reason is that the ghost target (visible in the
previous images) is difficult to erase with SRCS.

(a) Results of KRPCA
15 20 25 30 35 40 45 50
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3.0 SR-CS
kRPCA

(b) Error vs SNR for SRCS and KRPCA
Figure 3.4: Comparison of KRPCA results and Error vs SNR for SRCS and KRPCA

3.4 . Conclusion

The performance of KRPCA and other methods using a least squares data
fidely term is susceptible to be impacted by heterogeneous noise or outliers
that appears in the context of TWRI. Indeed, as described in [Ollila et al., 2012],
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most radar clutter types can be described as heterogeneous. For example, in
the context of TWRI, a drywall will not have homogeneous returns in power
across measurement positions. Moreover, the wall characteristics (permittiv-
ity and conductivity) may be dependent on frequency i.e. thewall is dispersive
[Amin, 2017]. This motivates us to inspect robust extensions of KRPCA.
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4 - Robustifying KRPCA
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In order to alleviate the potential problems in estimation caused by het-

erogeneous noise or outliers, we set out to include a robust distance [Maronna
et al., 2019] in our problem formulation to model the data closeness. The
works in this chapter were published in [Brehier et al., 2023b] and [Brehier
et al., 2024b].

4.1 . HKRPCA: a robust low rank and sparse decomposition

4.1.1 . Problem statement
Recall KRPCA’s problem:

min
L,R

∥L∥∗ + λ∥R∥2,1

s.t. Y = L−Ψ (IN ⊗ vec(R))
(4.1)

which may be relaxed to handle noise:
min
L,R

∥L∥∗ + λ∥R∥2,1

s.t. ∥Y − L−Ψ (IN ⊗ vec(R))∥2F ≤ ϵ
(4.2)

This can be tackled via the following regularized form:
min
L,R

∥L∥∗ + λ∥R∥2,1 +
µ

2
∥Y − L+Ψ (IN ⊗ vec(R))∥2F (4.3)
59



which shows the balance between a regularization term and a data fitting
term. In an Euclidean space, without constraints, the squared distance be-
tween two pointsX1,X2 is defined as:

dist2(X1,X2) = ∥X1 −X2∥2F (4.4)
We may extend this distance to many others. Of particular interest are dis-
tances that are robust to outliers in the data. An outlier is a data point that
differs significantly from other observations (see Figure 4.1).
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Figure 4.1: 1000 samples points of a 2D standard normal distribution (top) anda standard student-t distribution with 2 degrees of freedom (down). Outliersappear for the t-distribution
In statistical terms, the presence of outliers implies that the noise is not

adequately represented by a normal distribution. Rather it may be repre-
sented by heavy-tailed ones, such as the student-t distribution, which arises

60



as the ratio of a normally distributed random variable and the square root of a
chi-squared one divided by its degrees of freedom. For example, wemay con-
struct a robust distance via the Huber function [Huber, 1964] (with threshold
c ∈ R+) denotedHc and defined for any x ∈ C as:

Hc(x) =

{
1
2 |x|

2 if |x| ≤ c
c(|x| − 1

2c) if |x| > c
(4.5)

The rationale behind such a function is that outliers are higher contributors to
the data fitting term than other points. Having a linear term in the loss specif-
ically for them will lower their influence while the inliers will contribute to the
loss via a quadratic term, similar to classical least squares. The Huber func-
tion is shown in Figure 4.2 versus a simple quadratic (squared) function.This
functionHc is convex and continuously differentiable since it has equal slopesfrom both ends at the two junction points where |x| = c. From the theory of
M-estimators [Maronna et al., 2019], we know that, for the estimation of a lo-
cation parameter, least squares minimization would yield the mean whereas
least absolute deviations minimization the median. Using Hc yields a solu-
tion closely related to winsorizing (setting outliers points outside some cen-
tral percentile range to the value at this is cutoff percentile) as explained in the
seminal work [Huber, 1964]. It manages to balance robustness while not ne-
glecting the overall behavior and has become a staple of robust estimation.
It is not the only function which can accomplish this task: we can mention
the log cosh function (see Figure 4.2) among others (many aim at smoothing
the absolute value function at zero). Now, recall that the norm inducing the
Euclidean distance is separable across entries. ForX1,X2 ∈ CM×N :

∥X1 −X2∥2F =

M∑
i=1

N∑
j=1

[X1 −X2]
2
i,j (4.6)

Then, we may change the distance function as follows:
M∑
i=1

N∑
j=1

Hc([X1 −X2]
2
i,j) (4.7)

Moreover, we are not restricted to taking the sum over entries. We may con-
sider any block structure as long as it forms a partition of the entries. With
this in mind, we define a new optimization problem, which we call HKRPCA
(for Huber-type KRPCA):
min
L,R

∥L∥∗ + λ∥R∥2,1 +
µ

2

∑
pi∈P

Hc

(
∥[Y − L−Ψ(IN ⊗ vec(R))]pi∥F

) (4.8)

with P a partition of the entries of the residual matrix with ith element pi.Thus, pi represents the support of the ith block. The block-wise partition of
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Figure 4.2: Huber function (c = 1) vs quadratic/squared (top) and other robustfunctions (down)

entries allows us to model the outliers flexibly: we may consider an entriwise
partition or a columnwise partition,etc. For example, if the wall materials are
structured rather than homogeneous, the noise power may be variable by
radar position, which induces a column-wise heterogeneity that can be taken
into account in a column-wise partition.

4.1.2 . Resolution: ADMM algorithm with a semi-split of variables

Handling the problem (4.8) directly can be achieved by proximal gradient
descent alternated on the two variables. However, a strategy to obtain closed
form updates is to introduce auxiliary variables to decouple the terms of the
objective function. We introduce one auxiliary variable M = L to decouple
the nuclear norm from the Huber cost. Wewill see later that the split of r does

62



not yield a similar proximal closed form. We consider the problem:
min

L,R,M
∥M∥∗ + λ∥R∥2,1 +

µ

2

∑
pi∈P

Hc(∥[Y − L−Ψ(IN ⊗ vec(R))]pi∥F )

s.t. M = L

(4.9)
This semi-splitting problem (4.9) can be tackled through the ADMM frame-
work. The Augmented Lagrangian associated with (4.9) is:

l(L,R,M,Γ) = ∥M∥∗ + λ∥R∥2,1 + ⟨Γ,M− L⟩+ ν

2
∥M− L∥2F

+
µ

2

∑
pi∈P

Hc(∥[Y − L−Ψ(IN ⊗ vec(R))]pi∥F )
(4.10)

As for KRPCA, the following subsections will detail the update of each variable
for minimizing l(L,R,M,Γ).
L-update

For this variable, the minimization consists in finding:
argmin

L

µ

2

∑
pi∈P

Hc(∥[Y − L−Ψ(IN ⊗ vec(R))]pi∥F ) +
ν

2

∥∥∥∥M− L+
1

ν
Γ

∥∥∥∥2
F

(4.11)
The resulting update solving for (4.11) is given in the following proposition.

Proposition 5. The solution is ∀pi ∈ P :

[L]pi = prox(µ/2ν)Hc◦∥·∥F

(
[M+

1

ν
Γ−Y +Ψ(IN ⊗ vec(R))]pi

)
+ [Y −Ψ(IN ⊗ vec(R))]pi

(4.12)

with the proximal defined in the proof below (equations (4.15) and (4.16)).
Proof. The problem (4.11) is separable in the blocks {[L]pi}:

min
{[L]pi}

µ

2

∑
pi∈P

Hc(∥[Y − L−Ψ(IN ⊗ vec(R))]pi∥F )

+
ν

2

∑
pi∈P

∥∥∥∥[M− L+
1

ν
Γ]pi

∥∥∥∥2
F

(4.13)

By the separability property of the proximals [Parikh and Boyd, 2014], we can
consider the proximal over each block separately:

min
[L]pi

µ

2
Hc(∥[Y − L−Ψ(IN ⊗ vec(R))]pi∥F ) +

ν

2

∥∥∥∥[M− L+
1

ν
Γ]pi

∥∥∥∥2
F

(4.14)
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We then compute the proximal of f(X) = Hc(∥X+B∥F ) with B a constant
term. The proximal of the Huber function has a known form [Beck, 2017]:

proxaHc
(x) =

(
1− a

max(|xc |, a+ 1)

)
x (4.15)

We can then leverage a theorem of norm composition [Beck, 2017] to get:

proxaHc◦∥·∥F
(X) =

{proxaHc
(∥X∥F ) ·

X
∥X∥F

ifX ̸= 0

0 ifX = 0
(4.16)

We finally use the translation properties of proximal operators, so that, ∀pi ∈
P , the update is:

[L]pi = prox(µ/2ν)Hc◦∥·∥F

(
[M+

1

ν
Γ−Y +Ψ(IN ⊗ vec(R))]pi

)
+ [Y −Ψ(IN ⊗ vec(R))]pi

(4.17)

This gives a closed-form update for the L-step. We will see later that the
auxiliary variableM as well as the dual variable Γ also have closed-forms.
R-update: via PGD

The minimization problem overR is:
min
R

µ

2

∑
pi∈P

Hc(∥[Y − L−Ψ(IN ⊗ vec(R))]pi∥F ) + λ∥R∥2,1 (4.18)

It is possible to use PGD for the minimization of this variable. We will con-
sider the vectorized variable r to compute the gradient and unvectorize the
solution to apply the proximal operator. At iteration t+1, with step-size s, we
have:

Rt+1 = Tλs

(
vec−1

(
rt − s

µ

2
gt

)) (4.19)
where g is the needed gradient of the sum of Huber functions.
Proposition 6. The gradient g w.r.t. r is:

g = −
∑
pi∈P

H ′
c(∥[E]pi∥F )
∥[E]pi∥F

 ∑
(j,k)∈pi

[E]j,k(Ψk)
H
j,:

 (4.20)

where E = Y − L−Ψ(IN ⊗ r) and (Ψk)j,: denotes the jth line ofΨk.
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Proof. The gradient is computed according to the Wirtinger calculus, since
we have an objective function of complex variables. This is detailed in the
Appendix A. Gradient descent in this setting is achieved with:

g = 2
d

dr∗

∑
pi∈P

Hc(∥[Y − L−Ψ(IN ⊗ r)]pi∥F )

 (4.21)
Using the chain rule, we get:

g = 2
d

dr∗

∑
pi∈P

Hc(∥[E]pi∥F ) =
∑
pi∈P

H ′
c(∥[E]pi∥F )
∥[E]pi∥F

· d
dr∗
∥[E]pi∥

2
F (4.22)

with the derivative ofHc being:
H ′

c(x) =

{
x if |x| ≤ c
c sgn(x) if |x| > c

(4.23)
where sgn denotes the sign function. Finally, we compute:

d

dr∗
∥[E]pi∥

2
F =

∑
(j,k)∈pi

d

dr∗
|[Y]j,k − [L]j,k − (Ψk)j,:r|2

=
∑

(j,k)∈pi

−([Y]j,k − [L]j,k − (Ψk)j,:r)(Ψk)
H
j,:

(4.24)

where (Ψk)j,:r is a scalar as (Ψk)j,: denotes the jth line ofΨk. Then:

g = −
∑
pi∈P

H ′
c(∥[E]pi∥F )
∥[E]pi∥F

 ∑
(j,k)∈pi

[E]j,k(Ψk)
H
j,:

 (4.25)

The stepsize can be found by backtracking line-search (via Armijo’s rule),
which consists of iteratively shrinking an initially large step size until a suf-
ficient decrease has been achieved. In practice, the stepsize does not vary
over iterations so that it can be fixed to one precomputed value (linked to the
Lipschitz constant of the gradient above). The gradient g may be compactly
written for faster implementation:

g = −Ψgbdiag(eg)[h]g = −Ψg(eg ⊙ ([h]g ⊗ 1)) (4.26)
where 1 is a vector of ones and ⊙ denotes the Hadamard product. The oper-
ator bdiag assigns a block diagonal matrix to a composite vector,Ψg collectsthe dictionary vectors in the innermost sum, eg the associated residues, and
[h]g the fraction of norms in the outermost sum. Note that eg ⊙ ([h]g ⊗ 1) is
faster to compute than bdiag(eg)[h]g as it avoids summing over the zeros of
the block-diagonal matrix.
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M-update

Thanks to the variable split, the update M appears as a classical proximal
problem with a closed form solution. Indeed, after completing the squared
norm, the problem of solving (4.10) overM consists in finding:

argmin
M

∥M∥∗ +
ν

2

∥∥∥∥M− L+
1

ν
Γ

∥∥∥∥2
F

(4.27)
which is a proximal of the nuclear norm. Thus:

M = D1/ν(L−
1

ν
Γ) (4.28)

Γ-update

Finally, the Γ update is a standard step of ADMM, the dual ascent step:
Γ = Γ+ ν(M− L) (4.29)

The method is summarized in Algorithm 12.
Algorithm 12 Algorithm for HKRPCA (semi variable splitting)
1: Have: {yi}Ni=1, {Ψi}Ni=12: Choose: λ, µ, ν, η, c, t and P
3: Y ≜ [y1,y2, . . .yN ]4: Ψ ≜ [Ψ1,Ψ2, . . .ΨN ]5: ΨA ≜ [ΨT

1Ψ
T
2 . . .ΨT

N ]
T

6: Initialize: L,R,M,Γ

7: repeat:
8: [L]pi = prox(µ/2ν)Hc◦∥·∥F

(
[M+ 1

ν
Γ−Y +Ψ(IN ⊗ vec(R))]pi

)
+ [Y −Ψ(IN ⊗ vec(R))]pi ∀pi ∈ P9: repeat:

10: E = Y − L−Ψ(IN ⊗ vec(R))

11: G = − vec−1

(∑
pi∈P

H′
c(∥[E]pi∥F )

∥[E]pi∥F

(∑
(j,k)∈pi [E]j,k(Ψk)

H
j,:

))
12: R = Tλs

(
R− sµ

2
G
)

13: until stopping criterion is met
14: M = D1/ν(L− 1

ν
Γ)

15: Γ = Γ+ ν(M− L)
16: until stopping criterion is met
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4.1.3 . Alternative resolution: ADMM algorithm with full variable
splitting

The update for r via PGD is not the only option, we may avoid the use of
an unknown stepsize tuned via linesearch. To do so, we begin by splitting r

similarly to L, in order to decouple the terms it appears in. If we take this
route, the formulation is:

min
L,R,M,S

∥M∥∗ + λ∥S∥2,1 +
µ

2

∑
pi∈P

Hc(∥[Y − L−Ψ(IN ⊗ vec(R))]pi∥F )

s.t. M = L, S = R

(4.30)
This full variable splitting problem (4.30) can be tackled through the ADMM
framework. The Augmented Lagrangian associated with (4.30) is:
l(L,R,M,S,Γ, Γ̃) = ∥M∥∗ + λ∥S∥2,1 + ⟨Γ,M− L⟩+ ν

2
∥M− L∥2F

+
〈
Γ̃,S−R

〉
+
η

2
∥S−R∥2F

+
µ

2

∑
pi∈P

Hc(∥[Y − L−Ψ(IN ⊗ vec(R))]pi∥F )

(4.31)

L,M,Γ-updates

TheL,M andΓupdates donot change from the semi-variable splittingmethod.
Indeed, the major difference is in theR update.
R-update via MM

The objective function is in this case:
min
R

µ

2

∑
pi∈P

Hc(∥[Y − L−Ψ(IN ⊗ vec(R))]pi∥F ) +
η

2

∥∥∥∥S−R+
1

η
Γ̃

∥∥∥∥2
F(4.32)

Via decoupling, we cannot find a similar closed-form proximal evaluation
for r as for L in Proposition 5. Indeed, the sum of Huber functions is not
separable over r. Instead, we will show that the Majorization-Minimization
(MM) framework [Sun et al., 2016] gives us a way to solve this subproblem
iteratively.
Proposition 7. Let ei(rt) = ∥[Y − L−Ψ(IN ⊗ rt)]pi∥F . Then,W is defined as
[W]j,k = wi(rt) where the (j, k)th entry is in the ith patch, with:

w2
i (rt) =

{
1 if ei(rt) ≤ c

c
ei(rt)

else
(4.33)
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Moreover, we have LW = W ⊙ L, YW = W ⊙Y, ΨAW = vec(W)1T ⊙ΨA.
Then, a MM scheme can be tailored which converges to a critical point of (4.32),
with iteration t+ 1:

rt+1 =
(µ
2
ΨH

AW (rt)
ΨAW (rt) + ηI

)−1
×(µ

2
ΨH

AW (rt)
(vecYW (rt) − vecLW (rt)) + (η vecS+ vec Γ̃)

) (4.34)

Proof. Consider the vectorized variable r whose update we can unvectorize
for R. The first step is to find a majorizing function of Hc(x) at some point
xt that we will denote Gc(x|xt). It must be equal to Hc at the point xt andgreater at all other points. We can use the result from [de Leeuw and Lange,
2009, Theorem 4.5]:

Gc(x|xt) =
H ′

c(xt)

2xt
(x2 − x2t ) +Hc(xt) (4.35)

This is the sharpest quadratic majorizer. We can obtain:
Gc(x|xt) =

{
1
2x

2 if |xt| ≤ c
1
2

c
|xt|x

2 + 1
2c(|xt| − c) if |xt| > c

(4.36)
This majorizer is plotted in Figure 4.3.
Note ∀pi ∈ P that ei(r) = ∥[Y − L−Ψ(IN ⊗ r)]pi∥F and ei(rt) is the same

quantity but with rt, the variable at the previous MM iteration. By the defini-
tion of G just above, we can write:

argmin
r

Gc(ei(r)|ei(rt)) = argmin
r

1

2
w2
i (rt)e

2
i (r) (4.37)

where w2
i (rt) = 1 if ei(rt) ≤ c or else w2

i (rt) = c
ei(rt)

. Also note that we can
sum the majorizers over all blocks to get a global one. Then, it follows that
by adding the remaining quadratic term of the objective function, we get the
following majorizer at point rt to the objective function (4.32):

Gc(r|rt) =
µ

2

∑
pi∈P

Gc(ei(r)|ei(rt)) +
η

2

∥∥∥∥r− (vecS+
1

η
vec Γ̃)

∥∥∥∥2
F

(4.38)
So that, via the MM framework, we are left with finding:

rt+1 =argmin
r
Gc(r|rt)

= argmin
r

µ

4

∑
pi∈P

w2
i (rt)e

2
i (r) +

η

2

∥∥∥∥r− (vecS+
1

η
vec Γ̃)

∥∥∥∥2
F

=argmin
r

µ

4
∥W ⊙ (Y − L−Ψ(IN ⊗ r))∥2F

+
η

2

∥∥∥∥r− (vecS+
1

η
vec Γ̃)

∥∥∥∥2
F

(4.39)
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Figure 4.3: majorizing function (in orange) at xt = −1.5, xt = 0.5, xt = 1.5with
c = 0.8

where W is such that [W]j,k = wi(rt) where the (j, k)th entry is in the ith
patch. To find the minimizer in (4.39), we vectorize the first term since the
Frobenius norm acts component-wise. Then:

rt+1 = argmin
r

µ

4
∥ΨAW r− (vecYW − vecLW )∥2F

+
η

2

∥∥∥∥r− (vecS+
1

η
vec Γ̃)

∥∥∥∥2
F

(4.40)

where LW = W ⊙ L, YW = W ⊙Y and ΨAW = vec(W)1T ⊙ΨA. Via thefirst-order optimality conditions, we get:
rt+1 =

(µ
2
ΨH

AW (rt)
ΨAW (rt) + ηI

)−1
×(µ

2
ΨH

AW (rt)
(vecYW (rt) − vecLW (rt)) + (η vecS+ vec Γ̃)

) (4.41)

Finally, the S,Γ̃ updates are found in closed form.
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S-update

The update for S can be expressed as:
min
S

λ∥M∥2,1 +
η

2

∥∥∥∥S−R+
1

η
Γ̃

∥∥∥∥2
F

(4.42)
whose solution is a proximal of the ℓ2,1-norm:

S = Tλ/η(R−
1

η
Γ̃) (4.43)

where T is the row thresholding operator.
Γ̃-update

The Γ̃-update is a generic ADMM step of dual ascent:
Γ̃ = Γ̃+ η(S−R). (4.44)

Moreover, the dual balancing scheme [Boyd et al., 2011] to adapt the dual
hyper-parameters proved useful in practice. The method is summarized in
Algorithm 13.

4.1.4 . Convergence analysis
Semi-splitting algorithm

We consider the semi-splitting algorithm for HKRPCA, which we can write in
the following equivalent formulation to (4.9):
min

L,R,M
∥M∥∗ + λ∥R∥2,1 +

µ

2

∑
pi∈P

Hc(∥Spi(− vecY + vecL+ΨA vecR)∥F )

s.t. vecM− [IMN ,0MN×NxNzR]

[
vecL
vecR

]
= 0MN

(4.45)
where Spi denotes the selection matrix associated to the ith block, which has
a unique or no unit entry in each column/row and zeros elsewhere. 0M×N de-
notes a matrix of zeros ofM rows byN columns. The above problemmay be
cast in a 2-block ADMMwith one composite variable [vec(L)T , vec(R)T ]T with
coefficient matrix [IMN ,0MNΨA] = [IMN ,0MN×NxNzR]. In practice, solving
directly over the composite variable is difficult sowe solve for its sub-variables
separately in a pass of Block Coordinate Descent (BCD), which is inexact and
not part of the standard ADMM framework. Some works denoted General-
ized ADMM (GADMM) [Fang et al., 2015] have been developed for approximate
minimization but involve the introduction of a relaxation factor that changes
the problem to solve.
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Algorithm 13 Algorithm for HKRPCA (full variable splitting)
1: Have: {yi}Ni=1, {Ψi}Ni=12: Choose: λ, µ, ν, η, c and P
3: Y ≜ [y1,y2, . . .yN ]4: Ψ ≜ [Ψ1,Ψ2, . . .ΨN ]5: ΨA ≜ [ΨT

1Ψ
T
2 . . .ΨT

N ]
T

6: Initialize: L,R,M,S,Γ, Γ̃,W

7: repeat:
8: [L]pi = prox(µ/2ν)Hc◦∥·∥F

(
[M+ 1

ν
Γ−Y +Ψ(IN ⊗ vec(R))]pi

)
+ [Y −Ψ(IN ⊗ vec(R))]pi ∀pi ∈ P9: repeat:

10: E = Y − L−Ψ(IN ⊗ vec(R))
11: [W]j,k = 1 if ∥[E]pi∥F ≤ c else√c/ ∥[E]pi∥F ∀(j, k) ∈ pi12: ΨAW = vec(W)1T ⊙ΨA

13: ΨAWI =
(
µ
2
ΨH

AWΨAW + ηI
)−1

14: r = ΨAWI

(
µ
2
ΨH

AW (vecYW − vecLW ) + 1
η
vecS+ vec Γ̃

)
15: until stopping criterion is met
16: M = D1/ν(L− 1

ν
Γ)

17: S = Tλ/η(R− 1
η
Γ̃)

18: Γ = Γ+ ν(M− L)
19: Γ̃ = Γ̃+ η(S−R)
20: until stopping criterion is met

We might think to cast the problem in a 3-block ADMM, which has been
a topic of research the past few years [Han, 2022, Chen et al., 2016]: not nec-
essarily convergent, a simple sufficient condition for its convergence is that
any two coefficient matrices in the constraints must be orthogonal to each
other. But, in our case, the objective function is not separable in the different
components of the composite variable, so that we cannot apply the 3-block
ADMM. Thus, to the best of our knowledge, the analysis of the convergence
of such a BCD split in a 2-block ADMM remains an open question while our
experiments in the following Section 4.2 show its good practical recovery of
the seeked result. The alternative use of GADMMmay be investigated but will
necessitate to solve new subproblems and to verify some additional subopti-
mality conditions.
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Full-splitting algorithm

In the case of a full split of variables i.e. splitting both L and r, we can rewrite
the problem in the equivalent formulation:

min
L,R,M,S

∥M∥∗ + λ∥S∥2,1 +
µ

2

∑
pi∈P

Hc(∥Spi(− vecY + vecL+ΨA vecR)∥F )

s.t.
[
vecM
vecS

]
−
[
vecL
vecR

]
=

[
0MN

0NxNzR

]
(4.46)

we see that it lies within the 2-block ADMM with two composite variables
[vec(L)T , vec(R)T ]T and [vec(M)T , vec(S)T ]T . Again, we only do inexact mini-
mization over [vec(L)T , vec(R)T ]T as well as for [vec(M)T , vec(S)T ]T via Block
Coordinate Descent (BCD). The question of its convergence is thus also open
while experiments show good results.

4.1.5 . Computational complexity
Semi-splitting algorithm

Assuming the same ordering of dimensions as for KRPCA, i.e. that D > M >

N where D = NxNzR and that MN > D. The proximal operator of the
Huber function composed with the Frobenius norm (plus a translation) is not
themost costly operation as it scales linearly with the inputmatrix dimensions
(so it is O(MN)). The evaluation ofΨ(IN ⊗ r) is O(MND) as well as for the
gradient evaluation in the PGD. Setting the number of PGD iterations to K ,
we have a computational complexity of O(KMND) for the algorithm.
Full-splitting algorithm

Via full splitting, thus via aMMstep for r, we have the task of inverting amatrix
at each MM iteration (or solving the associated linear system of equations) of
sizeD which will beO(D3) via Gaussian elimination. However, the major cost
is the computation of the matrix productΨH

AWΨAW inside the inverse, which
will be O(NMD2) and cannot be cached. This time again, consider K itera-
tions of MM. Then, the cost of the r-update via MM isO(KMND2), which will
be the overall computational complexity of the full splitting algorithm. Table
4.1 recapitulates the complexities of all algorithms proposed in this chapter.
We see the higher iteration cost of the full decoupling method compared to
the semi-decoupling one.

Figure 4.4 presents a study of the convergence speed of the different
methods. In the point-block method, ∀pi ∈ P , pi is the ith entry of vec(Y).
We denote this setup for the semi-decoupling algorithm as HKRPCA SD-pt and
HKRPCA FD-pt for the full-decoupling algorithm. In the column-blockmethod,
∀pi ∈ P , pi is the support of the ith column yi. We denote this setup for the
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Method KRPCA HKRPCA SD HKRPCA FDComplexity O(KMND) O(KMND) O(KMND2)

Table 4.1: Computational complexity of the introduced methods
semi-decoupling algorithm as HKRPCA SD-col and HKRPCA FD-col for the full-
decoupling algorithm. It should be kept in mind that the different methods
have different objective functions. Nevertheless, we see that their conver-
gence in terms of iterations, except SRCS, behaves similarly. Over time, we
see that the point-wise HKRPCA methods (HKRPCA SD-pt and HKRPCA FD-pt)
perform similarly albeit a bit slower than KRPCA, whereas their column-wise
counterparts are noticeably slower (HKRPCA SD-col and HKRPCA FD-col). This
is explained by the implementation: the point-wise application of the Huber
function can be vectorized over the matrix, whereas the column-wise case
necessitates the slicing of the matrix along the columns before applying the
Huber function, which is computationally more demanding.

4.2 . Experiments

4.2.1 . Simulation setup
FDTD data

We test ourmethods on electromagnetic simulations via Finite-Difference Time-
Domain (FDTD)with GprMax [Warren et al., 2016]. We detail thismethod in the
Appendix B. The scene, as described in Figure 1.8, is 4.9× 5.4m in crossrange
(x-axis) vs downrange (z-axis) with a discretization step of 3mm. The front
wall (parallel to the SAR movement) is at a standoff distance to the radar of
1.2m. It is homogeneous and non-conductive, of thickness 20cm and relative
permittivity ϵ = 4.5. One target is behind the wall, a perfect electric conductor
(PEC) cylinder of radius 3mmsituated at coordinates (2.6, 4). The radarmoves
2cm along the x-axis between each acquisition, starting from x = 1.824m,
with 67 different positions overall. As GrpMax works by sending pulses, we
use a ricker wavelet centered at 2 GHz on which we apply a FFT to extract the
frequency spectrum within the range of the bandwidth (1− 3 GHz).
Noise generation

To simulate different data acquisitions, we add random heterogeneous noise
drawn from student-t noise. We will consider both pointwise and columnwise
noise. The column-wise noise heterogeneity may arise as a result of the wall
structure, e.g., drywall. The pointwise casemay arise by adding the possibility
of a frequency-dependant relative permittivity of the wall. Additionally, we
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Figure 4.4: Convergence (log scale) vs iterations (top) and time (bottom)
consider the possibility of outliers coming from a different random process,
which can be interpreted as mishandling in the acquisition process, etc. We
first consider two pointwise cases.

• pointwise noise only: [Y]i,j = [L+Ψ(IN ⊗ vec(R)]i,j + [T]i,j

• pointwise noise + outliers: [Y]i,j = [L+Ψ(IN⊗vec(R)]i,j+[T]i,j+[O]i,j

withTi,j being i.i.d. centered univariate complex t-random variables with f >
2 degrees of freedom (d.f.). 1 O is a matrix of outliers, whose number is set

1i.e. Ti,j ∼ Ctν(0, σ) where the standard deviation σ is ajusted to get the desiredSNR level. This can be written in the stochastic compound Gaussian form as Ti,j =d√
τNi,j where τ =d

ν
x is a positive and real valued random variable with x ∼ χ2(ν)multiplying the normally distributedNi,j ∼ CN (0, σI).
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by the user and whose support Ω is randomly selected at uniform among all
entries. The outliers are then drawn from a standard gaussian i.e. OΩ ∼
CN (0, I). Entries ofO not in Ω are then set to zero. Second, we consider two
column-wise cases.

• column-wise noise only: yi = [L+Ψ(IN ⊗ vec(R)]:,i + [T]:,i

• column wise noise + outliers: yi = [L+Ψ(IN ⊗vec(R)]:,i+[T]:,i+[O]:,i

where columns of T are i.i.d. random variables drawn from a m-variate t-
distribution. 2 The outlying columns are selected uniformly at random among
all columns, with their support denotedΩ. The entries ofO on those columns
then follow a standard gaussian distribution i.e. OΩ ∼ CN (0, I) while entries
not supported on Ω are set to zero.

Hyperparameter tuning

The hyperparameters have been tuned by hand in the following study. For
fair comparisons, all algorithms are used with hyperparameters (when appli-
cable): λ = 1, µ = 10, ν = 1, c = 0.1, η = 1e10, which have given good results
for all methods. The tuning of λ, µ follow the same reasoning as for KRPCA.
Then ν, η are set in order for the auxiliary matrices to converge to the primary
ones i.e. so as to enforce the equality constraints. Finally, the Huber threshold
c is typically set to the median of the data matrix entries value.

All methods are run the same number of iterations, as all algorithms itera-
tions cycle through every variable, and a comparison in terms of convergence
is not possible, the methods converging based on different functionals. In
order to avoid this tedious process, one may alternatively tune the hyperpa-
rameters using Bayesian optimization (see, e.g., [Snoek et al., 2012] and refer-
ences therein). It uses a Gaussian Process (GP) prior over the f1-score of the
detection map of the algorithm to tune. It is then possible to get an analytical
formula for the posterior GP and to find sample hyperparameters to eval-
uate next based on some metric such as Expected Improvement. This can
be readily implemented with the package BayesianOptimization [Nogueira,
2014]. This may make less calls to the algorithm, which is the proeminent cost
of finding good hyperparameters, compared with a brute force grid-search
where past iterations provide no information for the next chosen hyperpame-
ters to probe.

2i.e. the ith column T:,i ∼ Ctm,ν(0, σI) with ν > 2. Denote the complex m-dimensional t-distribution with ν degrees of freedom (d.f.) parametrized by (µ,Σ)as Ctm,ν(µ,Σ). We then set µ = 0,Σ = I. If z ∼ Ctm,ν(0, I) then it admits the Coum-
pound Gaussian stochastic representation: z d

= τnwhere τ d
= ν

x is a positive and realvalued random variable with x ∼ χ2(ν) and n ∼ CNm(0, I).
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The influence of the hyperparameters (λ, µ) on the performance of HKR-
PCA has been studied in Figure 4.5. There, each point’s Area Under the Curve
(AUC) is averaged over 30 draws. We see that there is a fairly large range of val-
ues λ ∈ [0, 20], µ ∈ [1, 100] where the AUC is high. Additionally, we observed
empirically that the Bayesian hyperparameter tuning method does propose
values in this area (e.g. λ = 14, µ = 99 here).
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Figure 4.5: AUC over a grid of hyperparameters for HKRPCA FD-pt (left) andHKRPCA SD-pt (right) with pointwise noise

4.2.2 . Performance evaluation
Sample results are shown for the different methods in Figure 4.6 with

pointwise noise only. The target location is indicated with a red circle. We
evaluate quantitatively the performance of the methods based on their Re-
ceiver Operator Characteristic (ROC) averaged over 100 draws at each point
of the curve.
Pointwise noise only

We begin with a setup consisting of only pointwise heterogeneous noise, that
follow a centered multivariate student-t distribution. We chose the setup of
degrees of freedom: d.f. = 2.01 and Signal to Noise Ratio: SNR = 10dB to
visualize at best the difference in performance of the different methods. In
Figure 4.7a, we plotted the resulting ROC. We observe that all methods with
theHuber cost perform in a similar fashion. KRPCAperformsworse andfinally
SRCS is the worst performing method.
Pointwise noise and point outliers

Next, we are interested in a setup with pointwise heterogeneous noise plus
100 point outliers, i.e. with perturbations coming from a different random
process. Here the outlying entries have pointwise noise generated from a uni-
variate standard Gaussian distribution. On Figure 4.7b, we have the resulting
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(a) SRCS (b) KRPCA

(c) HKRPCA FD-pt
Figure 4.6: Sample detection maps (one target with location circled in red)

ROC. We see that both HKRPCA SD-pt and HKRPCA FD-pt perform similarly
and better than HKRPCA SD-col and HKRPCA FD-col. KRPCA and SRCS are the
least well performing again.
Column wise noise only

To evaluate the effect of the block-wisemethods, we thus generate block-wise
noise to see its effects and the resulting discrepancy in the performance of the
differentmethods. In Figure 4.8a we have the resulting ROCwith column-wise
heterogeneous noise. In our setup, this means that the noise is considered
radar position per radar position, and may change in power over radar ac-
quisitions. We see here, with a bit more degraded setup than previous ones,
that HKRPCA FD-col performs the best. Other methods except SRCS are a bit
below the graph, and SRCS is last.
Column wise noise and column outliers

For one last setup, we add outliers to the column-wise setup. To the column-
wise heterogeneous noise, we add 25 column outliers i.e. with column-wise
noise generated from a standard multivariate Gaussian. In Figure 4.8b we
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have the corresponding ROC. We see a clearer separation of performance
between all methods. HRKPCA FD-col performs better than HKRPCA SD-col
which in turn performs better than HRKPCA FD-pt. The method HRKPCA SD-
pt comes after and KRPCA and SRCS are last.

On the whole, we have seen that the robust cost methods do perform
better in heterogeneous noise scenarios, and that the correct block structure
does impact the performance of those robust methods, especially and more
clearly with outliers. Finally, the full decoupling method with an MM step per-
forms better than the semi-decoupling method for blockwise setups.
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(a) ROCwith only pointwise heterogeneous noise (student pointwisenoise with d.f. = 2.01 and SNR= 10 dB)
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(b) ROC with pointwise noise and point outliers (student noise withd.f. = 2.1, SNR= 12 dB and 100 outliers)
Figure 4.7: ROC with pointwise corruptions
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(a) ROC with only column-wise heterogeneous noise (studentcolumn-wise noise with d.f. = 2.01 and SNR= 6 dB)
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Figure 4.8: ROC with column-wise corruptions
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4.3 . HBCD: via Riemannian optimization

The previous section displayed amethod for robust and one-stepwallmit-
igation and target detection for TWRI through a robust data fitting in a decou-
pled convex relaxation. This has the advantage of having closed-formupdates
for L,M,S via proximal operators [Parikh and Boyd, 2014]. ForR, we can tai-
lor a Majorization-Minimization [Sun et al., 2016] scheme which removes the
need for a gradient descent and a step-size to tune.

However, this may slightly degrade performance due to the convex re-
laxation and the decoupling of variables. We can bypass the need for those
elements by considering directly the non-convex optimization of the rank con-
straint. We have a good a priori of the true rank of the low-rankmatrixL from
the knowledge of the physical setup. We may then fix the rank constraint to
a certain value and use Riemannian optimization. This does not require a
convex relaxation of the rank nor a decoupling variable. Moreover, using a
factorized representation of the low-rank component, the optimization may
be done without computing a Singular Value Decomposition (SVD) at each it-
eration. The following work was published in [Brehier et al., 2024b].

We thus consider the following optimization program where the rank and
cardinality constraint have not been convexely relaxed:

min
L,R

∑
ij

Hc([Y − L−Ψ(I⊗ vec(R))]ij)

s.t. rk(L) = k , ∥R∥2,0 ≤ l
(4.47)

which can be tackled via a Block Coordinate Descent (BCD) over L andR. We
first study the optimization over L in a non-convex manner.

4.3.1 . Wall mitigation: Riemannian estimation of L
The problem we are interested in, over L, is then:

min
L∈CM×N

k

f(L) =
∑
i,j

Hc([Y −Ψ(IN ⊗ vec(R))− L]ij) (4.48)
where CM×N

k = {X ∈ CM×N : rk (X) = k}. Notice that we went from
a non-fixed low rank optimization to a fixed-rank constraint. A way to di-
rectly tackle the fixed-rank constraint is via Riemannian optimization [Boumal,
2023]. Such geometrical consideration allows for elegant algorithmic solu-
tions, as the space CM×N

k forms a Riemannian manifold.
The manifold of fixed-rank matrices

Via the truncated SVD of rank k ≤ n, we can parameterize a fixed-rank matrix
as:

L
TSVD
= U(ΣWH) = UVH (4.49)
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withU ∈ CM×k,Σ ∈ Ck×k,V ∈ CN×k. Note that (4.49) leads to the subspace
projection parameterization of the fixed-rank matrix manifold, described in
[Mishra et al., 2012, Absil et al., 2012] whereas another possibility is the em-
bedded one [Boumal, 2023, Vandereycken, 2013]. We shortly introduce the
tools needed for optimization via Riemannian gradient Descent (RGD). Since
(4.49) is invariant under an orthogonal factor, it gives rise to a quotient mani-
fold:

St(m, k)× Cn×k
∗ /O(k) (4.50)

with the Stiefel manifold St(m, k) = {X ∈ Cm×k : XHX = Ik}, the manifold
of full rank matrices Cn×k

∗ = {C ∈ Cn×k : rk(C) = k} and the orthogonal
group O(k) = {X ∈ Ck×k : XHX = Ik}. Its tangent space can be decom-
posed into:

T(U,V)(St(m, k)× Cn×k
∗ ) = TU St(m, k)× Cn×k (4.51)

with the tangent space of the Stiefel manifold TU St(m, k) = {UΩ+U⊥W :

Ω ∈ A(k),W ∈ C(m−k)×k} and the tangent space of the manifold of full rank
matrices TUCn×k

∗ = Cn×k where A(k) = {X ∈ Ck×k : XH = −X} is the set
of skew-symmetric matrices of size k×k which is the orthogonal complement
of O(k). Projection onto the tangent space is then:

P t
(U,V)(U̇, V̇) = (U̇−U sym(UHU̇), V̇) (4.52)

where sym(A) = 1
2(A

H +A).
A fiber of this quotient manifold is {(UO,VO) : O ∈ O(k)} and the verti-

cal space V(U,V) is the space tangent to the fiber: V(U,V) = {(UΩ,VΩ) : Ω ∈
A(k)}. This parametrization may be endowed with the metric:

ḡ(U,V)((U̇, V̇), (Ũ, Ṽ)) = tr(U̇HŨ) + tr((VHV)−1V̇HṼ) (4.53)
where the first term is the standard Euclidean metric and the second term
the natural metric on full rank matrices which renders it invariant to a change
of basis. The horizontal space [h](U,V) which we want to work in, is then the
orthogonal complement to V(U,V) w.r.t. the metric, which gives:

[h](U,V) = {(U̇, V̇) ∈ Cm×k × Cn×k :

UHU̇ ∈ A(k),UHU̇+VHV̇ ∈ O(k)}
(4.54)

Note that we can write the projection onto the horizontal space and along the
vertical space, for someΩ ∈ A(k) as:

P h
(U,V)(U̇, V̇) = (U̇−UΩ, V̇ −VΩ) (4.55)

Using the property that P h
(U,V)(U̇, V̇) ∈ [h](U,V) it follows after some rear-

rangement that we may obtain Ω by solving a nested symmetric Lyapunov
equation:
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(VHV)Ω̃+ Ω̃(VHV) = 2 skew((VHV)(U̇HU)(VHV))

− 2 skew((V̇HV)(VHV))
(4.56a)

Ω̃ = (VHV)Ω+Ω(VHV) (4.56b)
where skew(A) = 1

2(A
H −A). Finally, we introduce a retraction of horizontal

vectors onto the manifold. In our case, it can be decomposed in terms of the
retractions of the components St(m, k) andCn×k

∗ which can be found in [Absil
et al., 2008, section 4.1.2]. For (Ū, V̄) ∈ [h](U,V), it is:

R(U,V)(Ū, V̄) = (uf(U+ Ū),V + V̄) (4.57)
where uf extracts the unitary factor (of the polar decomposition) of a full col-
umn rank matrix.
Algorithmic solution

Wemay use RGD with the addition of quotient space considerations. RGD for
quotient manifold has jth iteration:

(U,V)j+1 = R(U,V)j (−αjP
h
(U,V)j

(P t
(U,V)j

(∇f((U,V)j)))) (4.58)
with∇f denoting the Euclidean gradient of f and αk a step size found by line-search. P t

(U,V) is the projection from ambient space to tangent space while
P h
(U,V) is the projection from the tangent space to the horizontal space and

R(U,V) denotes the retraction of a horizontal vector to the manifold (notions
we expand on in the next section) at the point (U,V). Indeed, the horizontal
space is the ’interesting’ part of the quotient manifold as horizontal vectors
may represent the underlying abstract tangent vectors of the quotient mani-
fold at some point.
Proposition 8. The Euclidean gradient is found via Wirtinger calculus as ∇f =

( ∂f
∂U∗ ,

∂f
∂V∗ ) with:

∂f

∂U∗ =
∑
ij

H ′
c([UVH − Ỹ]ij)([J

mnVT ]ij)mn (4.59)

∂f

∂V∗ =
∑
ij

H ′
c([UVH − Ỹ]∗ij)([J

mnUT ]ji)mn (4.60)
where Ỹ = Y −Ψ(I ⊗ r) and Jmn is the single-entry matrix which has 1 at the
(m,n)th entry and 0 elsewhere. Moreover [A]ij extracts the (i, j)th entry of A
whereas (A)mn constructs a matrix entry by entry.
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Proof. Let the problem be:
min
U,V

f(U,V) =
∑
ij

Hc([UVH − Ỹ]ij) (4.61)

Denote z = [UVH − Ỹ]ij . Then via Wirtinger calculus and its chain rule, we
find the steepest ascent direction:

∂f

∂U∗ =
∑
ij

(
∂Hc(z, z

∗)

∂z

∂z

∂U∗ +
∂Hc(z, z

∗)

∂z∗
∂z∗

∂U∗

)
(4.62)

∂Hc(z,z∗)
∂z∗ is equivalent toH ′

c(z), the derivative of the real Huber function, while
∂Hc(z,z∗)

∂z is equivalent to H ′
c(z

∗). Note that ∂z
∂U∗ =

∂[UVH−Ỹ]ij
∂U∗ = 0. Moreover

∂z∗

∂[U∗]mn
=

∂[U∗VT−Ỹ]ij
∂[U∗]mn

= [JmnVT ]ij We can then construct the whole matrix
∂z∗

∂U∗ elementwise. Thus:
∂f

∂U∗ =
∑
ij

H ′
c([UVH − Ỹ]ij)([J

mnVT ]ij)mn (4.63)

And similarly:
∂f

∂V∗ =
∑
ij

H ′
c([UVH − Ỹ]∗ij)([J

mnUT ]ji)mn (4.64)

4.3.2 . Target detection: Sparse r-step via PGD
The target detection is achieved via convex relaxation. No sparse Rieman-

nian manifold exist, we therefore cannot use RGD or other riemannian meth-
ods for this step. We could use a row-wise hard-thresholding [Min et al., 2023,
Definition 2] but it showed to underperform while other non-convex meth-
ods [Zhang et al., 2023] use a least squares data fitting. We thus resort to the
classical convex relaxation via the ℓ2,1-norm. It is then possible to use prox-
imal gradient descent (PGD) for the minimization over this variable. We will
denote this method as HBCD for Huber-BCD. The minimization problem over
R in regularized form is:

min
R

∑
pi∈P

Hc(∥[Y − L−Ψ(IN ⊗ vec(R))]pi∥F ) + λ∥R∥2,1 (4.65)

We consider the vectorized variable r = vec(R) in order to compute the gradi-
ent whichwe then unvectorize in order to apply the proximal step. At iteration
t+ 1, we have:

Rt+1 = Tλs
(
vec−1 (rt − sgt)

) (4.66)
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where T is the proximal of the ℓ2,1-norm, s is a step-size that can be found by
line-search (which does not vary over iterations in practice so that it can be
fixed) and g is the needed gradient of the robust fitting term that we already
derived:

g = −
∑
pi∈P

H ′
c(∥[E]pi∥F )
∥[E]pi∥F

 ∑
(j,k)∈pi

[E]j,k(Ψk)
H
j,:

 (4.67)

where E = Y − L−Ψ(IN ⊗ r) and (Ψk)j,: denotes the jth line ofΨk.
Algorithm 14 HBCD
1: Have: {yi}Ni=1, {Ψi}Ni=12: Choose: λ
3: Y ≜ [y1,y2, . . .yN ]4: Ψ ≜ [Ψ1,Ψ2, . . .ΨN ]5: Initialize: L,R
6: repeat:
7: Update L via RGD (4.58)
8: UpdateR via PGD (4.66)
9: until stopping criterion is met

4.4 . Simulations

We test the method on Finite-Difference Time-Domain [Yee, 1966] (FDTD)
simulated data obtained via GprMax [Warren et al., 2016] while the Rieman-
nian optimization is carried out with Pymanopt [Townsend et al., 2016] which
we completed by transposing the real manifolds to the complex case. We
compare SRCS [Amin and Ahmad, 2013] as well as KRPCA [Brehier et al., 2022a]
and HKRPCA to the method of this section (HBCD) with rank fixed to either 1
or 2 (as denoted by the suffixes rk1 or rk2). We generate heterogeneous noise
following a student-t distribution with 2.1 degrees of freedom (d.f.) which is a
renowned distribution having heavier tails [Ollila et al., 2012] than the nor-
mal distribution (for finite d.f.). We consider a point-wise structure of the
noise, whereas column-wise (by radar position) may be alternatively consid-
ered. Sample detection maps are displayed in Figure 4.9 which show promis-
ing results: it appears that the method HBCD proposed here better handles
the heterogeneous noise (which follows here a student-t distribution with 2.1

degrees of freedom (d.f.) which is a renowned distribution having heavier tails
than the normal distribution for finite d.f.). We perform a quantitative study
by constructing the Receiver Operator Characteristic (ROC) of the different
methods. Each point on the curve is averaged over 60 Monte-Carlo trials. At
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a specific SNR we observe the better performance of the method proposed
here.

(a) SRCS (b) KRPCA

(c) HKRPCA FD-pt (d) HBCD
Figure 4.9: Sample detection maps with student-t noise with 2.1 d.f. and SNRof 10 dB (one target with location circled in red)
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4.5 . Conclusion

We studied a newmethod of one-step localization of targets in the context
of TWRI called HKRPCA. It is designed to be robust to heterogeneous noise
and outliers. The proposed resolution relies on the ADMM framework with
two distinct algorithms tailored. On the one hand, a single split of the vari-
able comprising the wall returns results in a closed form proximal evaluation.
On the other hand, an additional split of the variable comprising the target
returns lends itself to tailored MM step. We show on FDTD simulated data,
in more complex scenarios where the noise is heterogeneous or outliers are
present, that our method achieves better performance than the state-of-the-
art. We then developed an extension which leverages the performance of Rie-
mannian optimization over fixed-rank matrices. Detection results achieved in
a standard detection step show its advantage in a context of heterogeneous
noise.

We have shown thatmethods belonging to the framework of low rank and
sparse decomposition, i.e. Robust PCA (RPCA), are effective for TWRI detection
and localization. However, several issues are raised:

• reliance on a frequency-domain dictionary Ψ that is very large (and
grows in sizewith the image resolution) whichmakes it unusable in real-
time and requires a lot of memory. To relieve this problem, wemay use
to a non-dense dictionary, e.g. a convolutional one, which naturally lies
in the image domain.

• the underlying model yielding the dictionary is limited as it does not in-
clude such things as dispersity (e.g. frequency-dependant permittivity)
leading to a model misspecification.

All in all, wemay aim for a convolutional dictionary over an image formed from
the radar returns. However, it is unknown to us. Wemay resolve this issue by
learning it using a data-driven approach, i.e. learning from data. However, we
are limited in the amount of datawe have. Obtaining it from FDTD simulations
is not so cheap. We may explore the field of hybrid model-based/data-driven
approaches to tackle this problem. This is the problem we explore in the next
chapter.
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5 - Inversion via unrolling
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We underlined at the end of the previous chapter the limitations of the

model (associatedwith a dictionary). Wepresented the interest of othermeth-
ods such as Deep Learning (DL) methods, which have shown their effective-
ness in Computer Vision (CV). However, these are black-box methods with
heavy data usage. We aim to solve these issue by introducing a hybrid model-
based and data-driven method. We retain the underlying physical model of
TWRI used in RPCAwhichwemix with Convolutional Sparse Coding (CSC). This
allows us to transition to the image domain while restraining the number of
parameters to learn, thus reducing the need in data. This is important for our
application where data is scarce. In turn, this allows the use of a non-dense
convolutional dictionary, lighter but unknown in practice. The learning pro-
cess is then specifically aimed at learning this dictionary. This chapter’s work
is associated with [Brehier et al., 2024a].

5.1 . Towards image domain processing and deep methods

5.1.1 . CSC: from optimization...

CSC [Wohlberg, 2016] can be seen as the analog to the standard sparse
recovery/coding (i.e. the problem LASSO tackles) but with local structure. On
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some imageY ∈ RPx×Pz , it may be written as:

min
{Rk}Kk=1

λ
K∑
k=1

∥Rk∥1

s.t. Y =

K∑
k=1

Ψk ∗Rk

(5.1)

where ∗ denotes a convolution and with {Ψk}Kk=1 a collection of K (small)
convolution filters while {Rk}Kk=1 is a collection of sparse activationmaps (the
same size as the input imageY) which we aim to retrieve. This can be solved
using ADMM as described in [Wohlberg, 2016]. CSC can be augmented with a
low rank term (e.g. [Gallet et al., 2023]) :

min
L,{Rk}Kk=1

µ∥L∥∗ + λ
K∑
k=1

∥Rk∥1

s.t. Y = L+

K∑
k=1

Ψk ∗Rk

(5.2)

This is an analog to our low rank and sparse model transposed to the image
domain: the low rank term will capture the wall contribution. One issue is
that the set of convolution kernels is not known as we have not constructed
them explicitly. In the literature, this may be tackled with dictionary learning
which boils down to adding a step in ADMM over the filters (this method is
called Constrained Convolutional Method of Moment (CCMOD) in [Wohlberg,
2016]). However, we will lean towards using a data-driven approach such as
DL, specifically those used in CV. Indeed, the main takeaway is that using DL,
the filters can be tailored to the objective of target detection in mind, by min-
imizing a detection loss instead of just unsupervised data reconstruction.

5.1.2 . ...to learning
The low rank plus sparse signal model remains a simplified approxima-

tion of the actual undergoing physics: dispersive walls, anisotropic targets,
clutter, etc., are not considered. With this in mind, Deep Learning (DL) meth-
ods have recently been successfully used for TWRI [Li et al., 2021a, Qu et al.,
2022] by learning from the data i.e. changing from a model-driven method to
a data-driven one. In order to transition to Convolutional Neural Networks
(CNN), we first recall that the convolution structure may be equivalently writ-
ten in linear form using convolutional matrices (equivalent to a concatenation
of banded and circulantmatrices) applied on vectorized images [Papyan et al.,
2016], which is shown in Figure 5.1). Next, CSC may be modified by cascading
the sparse component: we get a multi-layered CSC (ML-CSC)[Papyan et al.,
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Figure 5.1: CSC dictionary structure in matrix form [Papyan et al., 2016]

2016]. For the 2-layer case:
y = Ψ1r1

r1 = Ψ2r2
(5.3)

whereΨ1,Ψ2 represent CSC filters (in linear form) for two layers while r1, r2are the associated sparse activations. Then, we propose the following algo-
rithm:

r̂1 = Sβ(Ψ
T
1 y)

r̂2 = Sβ(Ψ
T
2 r̂1)

(5.4)
where we recall that S is the soft-thresholding operator i.e. the proximal of
the ℓ1 norm (c.f. Proposition 1).

The equation (5.4) is a projection of the measurements on the atoms of
the dictionary and threshold them in order to keep the most influential ones
and enforce sparsity. This procedure is similar to OMP (recall Algorithm 2). In
short:

r̂2 = Sβ(Ψ
T
2 Sβ(Ψ

T
1 y)) (5.5)

This is very close to the architecture of a CNN, although the optimization
is very different. Indeed we may write the output r2 of a generic 2-layer CNNas:

r2 = ReLU(ΨT
2 ReLU(ΨT

1 y + b1) + b2) (5.6)
with ReLU(x) = max(x, 0) the so-called Rectified Linear Unit operator. For
analysis purposes, the max-pooling (i.e. subsampling to the maximal value
of a neighbourhood) can be seen as convolutional layer with increased stride
while a fully connected layer can be seen as a special case of a convolutional
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layer with filter size being the size of its input. Notice how restricting the soft
thresholding operator Sβ(x) = sgn(x)(|x|−β)+ to be non-negative yields (for
a real argument x):

S+
β (x) =

{
x− β if x > β

0 if x ≤ β = ReLU(x− β) (5.7)
Thus, changing the thresholding operator, ML-CSC rewrites as :

r̂2 = S+
β (Ψ

T
2 S

+
β (Ψ

T
1 y))

= ReLU(ΨT
2 ReLU(ΨT

1 y − b1)− b2)
(5.8)

which is similar to the aforementioned 2-layers CNN. However, this is only
similar to a forward model (the forward pass of the CNN). In the backward
pass, a CNN is typically optimized w.r.t. to some objective function (called
the loss) that models a task based on the output of the convolution layers
(the innermost representation). This can be a detection task hence a detec-
tion loss such as binary cross-entropymay be used. Hence, The convolutional
structure acts a feature extractor to serve for some task. Typically, this back-
ward pass is achieved by the so-called Back-Propagation (not to be confused
with Back-Projection...) which updates each parameter by stochastic gradient
descent on the loss using the chain rule. There exist some variants: with addi-
tional momentum/extrapolation or with adaptive weights/ weight decay (e.g.
the popular Adam optimizer [Kingma and Ba, 2015]).

5.1.3 . U-Net
A variant that we will compare to is the U-Net [Ronneberger et al., 2015],

a form of Fully Convolutional Network (FCN) as used in [Li et al., 2021a] in the
context of TWRI. It is very popular to achieve image to image transformation.
It is characterized by a symmetric, U-shaped structure consisting of two main
parts: the contracting path and the expansive path as shown in Figure 5.2.
Unlike autoencoders, U-net contains shortcut connections from the contract-
ing path to the expansive path which makes it efficient for image segmenta-
tion tasks. Typically, the contracting path consists of convolutions followed
by max-pooling. It may be modified by using strided convolutions instead
of max-pooling which has the same effect of reducing the output size. The
expansive path consists of transposed convolutions. Their output is concate-
natedwith the result of the contracting path of the same size tomaintain both
spatial and semantic information. This may also be enhanced by adding an
attention mechanism [Vaswani et al., 2017].

The attention gate in [Li et al., 2021a] is shown in Figure 5.3: it consists
in processing both inputs by pointwise convolutions (1 × 1 kernels), added
elementwise. A ReLU activation is used and a further pointwise convolution
is followed by a sigmoid to form weights that represent the attention at each
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Figure 5.2: Special case of a U-Net [Ronneberger et al., 2015]: the AttentionU-Net [Li et al., 2021a]

pixel. Residual connections such as this one have the known effect of allowing
for deeper networks by stabilizing the gradient through the weights. Here, it
also enhances the network by combining low-level and high-level information
from the different resolutions more effectively.

Figure 5.3: The attention gate in[Li et al., 2021a] (inspired by [Vaswani et al.,2017])
The concatenated elements will be the result of the transposed convolu-

tion (the expansive path) as well as the result of the contracting path of the
same size multiplied by a weight matrix corresponding to attention coeffi-
cients.

5.1.4 . Hybrid model-based and data-driven methods: unrolling
One concern we have with these black box model is that their architec-

ture may too generic, not tailored enough for a specific purpose. In turn, this
means that they require a large amount of training data samples and com-
puting power in order to fit to the task at hand. An area of study to overcome
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this problem is to mix the newer data driven paradigm of deep learning with
the traditional model based approach. This has given rise to several meth-
ods such as Plug-and-Play (PnP) [Kamilov et al., 2023] or unrolling frameworks
[Monga et al., 2021].

PnP methods arise from traditional model based methods with regular-
ization. From a Bayesian perspective, a method such as LASSO effectively
retrieves a Maximum A Posteriori (MAP) estimate in the presence of Gaus-
sian noise using a sparsity prior (which might be in a transformed space e.g.
Fourier or Wavelet). We have seen that the optimization on the sparsity con-
straint is achieved using a proximal operator in PGD (Algorithm 3) or ADMM
(Algorithm 5). Interpreted as a denoising step, the idea is then to replace
the proximal operator (e.g. the soft-thresholding operator) induced by some
prior (e.g. sparsity), with a black-box one with unknown prior (e.g. a U-Net
pretrained on other data to perform denoising). However, it retains the opti-
mization based procedure for CSC, whereas we want to learn the filters.

We will instead be interested in unrolling, whose fundamental procedure
is to truncate a fixed number of iterations of a reference iterative optimization
method and convert each operation in these iterations into learnable compo-
nents of a network. This process maintains the original processing structure
where each iteration is now translated into the layer of a network. All layers
together then form a valid neural networkwhich can be optimized in standard
manner. We delve into this further as we will use this framework.
LISTA

The precursor to unrollingmethods is the Learned Iterative Soft Thresholding
Algorithm (LISTA) [Gregor and LeCun, 2010]. It is based on ISTA, which is simply
PGD (Algorithm 3) applied to the LASSO. Recall the LASSO:

min
r
λ∥r∥1 +

1

2
∥y −ΨAr∥22 (5.9)

Which can be solved via the PGD iteration:
ri+1 = Sλt

(
ri + tΨH

A (y −ΨAri)
)

= Sλt
(
(I− tΨH

AΨA)ri + tΨH
Ay
) (5.10)

with t a step-size equal to the inverse of the largest eigenvalue of the above
gram matrix. The last equation show its closeness to a fully connected (FC)
/Multi-Layer Perceptron (MLP) layer. Indeed, we may consider casting this
iteration to a FC layer with weightsW1,W2 and non-linear activation Sλ (withlearnable threshold):

ri+1 = Sλ (W1ri +W2y) (5.11)
Then, we can stack a certain number of such layers to form a MLP that

mimics the source algorithm (ISTA/PGD) for a fixed number of iterations. No-
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tice that if the parameters are shared across layers, this resembles a Recur-
rent Neural Network (RNN) as seen in Figure 5.4.

+

Figure 5.4: LISTA flowchart
The authors in [Gregor and LeCun, 2010] consider it as a way to obtain fast

approximation of the iterative method ISTA. In doing so, the loss of training
the network is a distance from the results of the iterative methods. Thus, if
ISTA yields so-called codes rISTA and the network output is r̂, then the lossmay
be the Mean Squared Error (MSE) over N samples {yn}Nn=1:

L =
1

N

N∑
n=1

∥rISTA,n − r̂n∥22 (5.12)
which is used in Back-Propagation to update the weightsW1 andW2 as wellas the threshold λ of the non-linear activation.
LCSC

An extension to a convolutional structure was proposed and coined Learned
CSC (LCSC) in [Sreter andGiryes, 2018] by using the convolutionalmatrix struc-
ture we saw previously. Recall the CSC problem:

min
{Rk}Kk=1

λ
K∑
k=1

∥Rk∥1 +
1

2

∥∥∥∥∥Y −
K∑
k=1

Ψk ∗Rk

∥∥∥∥∥
2

2

(5.13)
which may be rewritten as suggested in standard linear form, giving a PGD
iteration:

ri+1 = Sλt
(
ri + tΨH

C (y −ΨCri)
) (5.14)

We may observe that the dictionaryΨC (which is of convolutional form here)
is applied once on the codes rk and its adjointΨH

C is applied once on the resid-
ualsy−ΨCrk. This implies that wemay rewrite the dictionary in convolutional
form as well as its adjoint:

Ri+1 = Sλt

(
Ri + tΨadj ⋆

(
Y −

K∑
k=1

Ψk ∗Rk,i

))
(5.15)
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where Ψadj ⋆Y ≜ [flip(Ψ1) ∗Y, . . . ,flip(ΨK) ∗Y] with flip having the effect
of reversing entries in both directions and Ri = [R1,i, . . . ,RK,i] is the con-catenation of the K sparse activations maps at iteration i. To transition to a
neural network, we may learn the filters:

Ri+1 = Sλ

(
Ri + {W2,k}Kk=1 ∗

(
Y −

K∑
k=1

W1,k ∗Rk,i

))
(5.16)

Notice that we relaxed the adjoint constraint by decoupling the set of learned
filters {W1,k}Kk=1 and {W2,k}Kk=1. Also note that we implicitly define the out-
puts of the set of filters convoluted one-by-one with an input to be concate-
nated together. LCSC finally adds a third set of filters {W3,k}Kk=1 in order to
reconstruct the data from the sparse activation mapsRI of the last iteration
I :

Ŷ =
K∑
k=1

W3,k ∗Rk,I (5.17)
The whole network is then trained as an auto-encoder:

L = dist(Y, Ŷ) (5.18)
with Y denoting the ground truth. Moreover, dist denotes a distance which
can be the Euclidean ℓ2 distance or the ℓ1 one, although it is suggested to mix
them with the Multi-Scale Structural Similarity Index Measure (MS-SSIM) loss
[Wang et al., 2003] which specifically measures visual similarity between im-
ages. The unsupervised training scheme means that the sparsity is enforced
implicitly through the operator Sλ (which is assumed to have λ > 0).
CORONA

The final method we will mention is Convolutional rObust pRincipal cOmpo-
Nent Analysis (CORONA)[Solomon et al., 2020] which unrolls RPCA for the ap-
plication of clutter suppression in Ultrasound imaging. It does so by using the
PGD approach mentioned in Algorithm 6. Indeed, recall the PGD iteration:

L = Dtµ(L+ t(Y − L− S))

S = Sλµt(S+ t(Y − L− S))
(5.19)

CORONA extends it with dictionaries/compressionmatricesΨ1,Ψ2 whichare typically measurement operators in imaging applications. Indeed, the for-
ward model is:

Y = Ψ1L+Ψ2S (5.20)
And the PGD iteration can be written as:

L = Dtµ

(
(I− tΨH

1 Ψ1)L−ΨH
1 Ψ2S−ΨH

1 D
)

S = Sλµt
(
(I− tΨH

2 Ψ2)L−ΨH
2 Ψ1S−ΨH

2 D
) (5.21)
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A layer of CORONA is then:
L = Dµ (W1 ∗ L+W2 ∗ S+W3 ∗D)

S = Sλ (W4 ∗ L+W5 ∗ S+W6 ∗D)
(5.22)

with learnable parameters the weights {Wi}6i=1 as well as λ, µ. The trainingis similar to LISTA with a loss w.r.t. (L,S) precomputed from an iterative algo-
rithm such as RPCA or from ground truth acquired via simulations. However,
it allows the parameters to vary from layer to layer contrary to LISTA. We thus
investigate a new method as the aforementioned ones lack in some aspects:

• LCSC was only develop for sparse coding, it doesn’t involve a low rank
term making it unproprer for our use.

• Corona does not properly source itself from a convolutional model. It
simply translate the dense dictionary to a single convolution. It also
increases the number of parameters by decoupling every learned op-
erator {Wi}6i=1 without preserving the relations among them (such as
being transposes of each other).

• In contrast to both, we aim to leverage the true target position of the
training data samples (known in simulations) to make the method truly
robust to artefacts from complex radar effects, which may defocus the
input BP image.
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5.2 . LCRPCA: hybrid model/learning method for TWRI

Recall our problem concerning TWRI: the model with a dense linear dic-
tionary is very heavy, and it does not model some physical effects which can
impact the imaging process. We proposed a convolutional structure on the
image formed from the signalmatrix (also called B-Scanmatrix) by somenaive
method such as BP. In turn, the hybrid model/learning method we aim at de-
velopingwill clean that image: erasemultipath ghosts, refocus the target from
dispersion effects, etc. which the BP cannot achieve. This is shown on the
flowchart in Figure 5.5.

BP LCRPCA

Figure 5.5: LCRPCA pipeline
We consider the CSC model mixed with a low rank component on the im-

age Y ∈ RPx×Pz , resulting from BP (parametrized by the permittivity ϵ and
thickness d of the wall to penetrate) on the B-Scan Yf i.e. BPϵ,d(Yf ) ≜ Y.
This may then be written as:

min
L,{Rk}Kk=1

µ∥L∥∗ + λ
K∑
k=1

∥Rk∥1

s.t. Y = L+

K∑
k=1

Ψk ∗Rk

(5.23)

with {Ψk}Kk=1 a collection of K (small) convolutional filters and {Rk}Kk=1 acollection of sparse activation maps (the same size as the input BP imageY)
to retrieve.

5.2.1 . Source algorithm: a composite PGD for CSC/RPCA
We can rewrite this by considering the linear form of CSC, which uses a

concatenation of Toeplitz matricesΨC containing the filters {Ψk}Kk=1 , plus alow rank component as in RPCA:
min
L,R

1

2
∥vec(Y)− vec(L)−ΨC vec(R)∥2F + λ∥R∥1 + µ∥L∥∗ (5.24)

with L low rank and R = [R1, . . . ,RK ] the concatenation of the K sparse
activation maps. We may use PGD over a composite variable as in Algorithm
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6 and CORONA, and return to the convolutional form as in LCSC. We reca-
pitulate this for readers’ comprehension. The optimization program may be
compacted as:

min
z
f(z) +

1

2
∥vec(Y)−Kz∥2F (5.25)

where :
z = [vec(L), vec(R)]T K = [I,Ψc] f(z) = µ∥L∥∗ + λ∥R∥1 (5.26)

The proximal of f(z) is separable in its components and thus computable as:
prox f(z) = [vec(Dµ(L)), vec(Sλ(R))]T (5.27)

The gradient of the differentiable part is readily known as:
∇z

1

2
∥vec(Y)−Kz∥2F = −KH(vec(Y)−Kz) (5.28)

Giving a PGD iteration that we separate in the components of z :
vec(L) = vproxµt∥·∥∗(vec(L) + t(vec(Y − L)−Ψc vec(R)))

vec(R) = vproxλt∥·∥1(vec(R) + t(ΨH
c (vec(Y − L)−Ψc vec(R))))

(5.29)
where vproxλf (x) = vec(proxλf (vec

−1(x))) and t is some stepsize. Then, re-
turning to the original convolutional form yields:

L = Dµt(L+ t(Y − L−
∑
k

Ψk ∗Rk))

R = Sλt(R+ t({Ψk} ⋆ (Y − L−
∑
k

Ψk ∗Rk)))
(5.30)

5.2.2 . Proposed network: LCRPCA
We are ready to propose an unrolling of the optimization scheme outlined

in (5.30) which wewill call Learned Convolutional Robust PCA (LCRPCA). This is
similar in spirit to CORONA which considers unrolling RPCA algorithms. How-
ever, we include a genuine collection of filters instead of replacing one matrix
multiplication by a convolution thanks to sourcing the method from CSC as
in LCSC, as well as staying closer to the source algorithm by not decoupling
all weight matrices. We also train our network differently. A layer of our pro-
posed method is:

L = Dµ(L+ w0(Y − L−
∑
k

W1,k ∗Rk))

R = Sλ(R+ {W2,k} ∗ (Y − L−
∑
k

W1,k ∗Rk))
(5.31)

This is summed up graphically in Figure 5.6.
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Figure 5.6: LCRPCA flowchart

At the endof the network, an image Ŷ is formed aswell as a detectionmap
R̂d obtained using the sigmoid operator (denoted σ) on the overall sparse
component (instead of taking a pixel-wise average of the sparse activation
maps {Rk}). This allows us to capturemore precisely the shape of the targets
via the pattern inscribed in the filters. Accordingly:

Ŷ = L+
∑
k

W1,k ∗Rk, R̂d = σ(
∑
k

W1,k ∗Rk) (5.32)

The network will learn on training data the set of filters {W1,k} and {W2,k}as well as the scalars w0 and µ, λ. As for all RPCA methods, we aim at finding
components L andR that faithfully reconstruct the data. We do not consider
ground truths for L which would necessitate an empty scene for TWRI. How-
ever, wemay consider having access to the ground truth of the detectionmap
as we control the measurement setup, which we leverage during training. In-
deed, the lossL used during training is a weighted sum of two components: a
reconstruction loss in the form of an Euclidean distance and a detection loss
as seen in [Li et al., 2021a] in the form of the Cross-Entropy plus the Dice Coef-
ficient (also known as F1-score). It is used to cope with class imbalance as the
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target class contains much fewer pixels than the background one:

L(Ŷ, R̂d) =

∥∥∥Y − Ŷ
∥∥∥2
F
+CE(R̂d,Rd)

PxPz
+ (1−DC(R̂d,Rd)) (5.33)

where CE is the cross-entropy loss and DC is the Dice coefficient. The Dice
loss is used in addition to the cross-entropy as detection here consists in a
binary classification of pixels (target or background) which are unbalanced:
there are far more background pixels. the Dice coefficient helps alleviate this.
Here, (Ŷ, R̂d) is the network output while (Y,Rd) is the reference obtainedfrom FDTD simulations: the detectionmapRd is the simulated scene (that we
thus know) whileY is the output returns passed through BP. This loss without
explicit references for L,R (such as the ones of RPCA) allows the algorithm to
learn new representations instead of mimicking pre-obtained ones, as does
CORONA.

5.3 . Simulation study

5.3.1 . Setting
The dataset for training is collected via GprMax [Warren et al., 2016] simu-

lations. We consider metallic cylinders varying in radius (5−10 cm) in number
(1− 3 targets in one scene) and in position. We generate 330 different scenes
with the same dispersive wall via the multi-pole Debye model [Zhekov et al.,
2020].

Each scene is then added with 10 different draws of a heterogeneous
student-t noise (10 - 30 dB and 2.5-5 d.f.). We then have a dataset of 3300
noised returns. The Train/Validation/Test dataset sizes are respectively 2400,
800 and 100. The implementation of the network was carried out using Py-
Torch. The proximal of the nuclear uses a SVD whose gradient during back-
propagation is unstable when singular values are near zero (something which
we try to enforce). We thus use the randomized SVD implementation instead
of the standard one. This necessacitates fixing some upper bound on the low
rank dimension, which we choose to be 5.

We use a learning rate of 0.001 for 30 epochs and the Adam optimizer
[Kingma and Ba, 2015]. We initialize (ie. we feed the first layer of the network)
with L̂ = Y and R̂d = {0}64. Our method LCRPCA is used withK = 64 filters,
6 layers of size 2 × (7 × 7), 2 × (5 × 5), 2 × (3 × 3) which implies that filters
are not shared across layers. For comparison, we use HKRPCA and CORONA
which we adapted to our 2D setup as well as the method of [Li et al., 2021a]
that relies on a U-Net with attention.

5.3.2 . Visualization
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In Figures 5.7,5.8 and 5.9 we show the low rank components L which are
supposed to capture wall returns (the U-Net model does not have a low rank
component and is thus not shown). We see that the one of HKRPCA (5.7a)
is more complex, with some sprawl on the side. The one of CORONA (5.7b)
has more ghosts while the one of LCRPCA (5.7c) is cleaner. We then have
sparse components, which are supposed to capture target returns. The one
resulting of RPCA on the BP image, which is the input of the DL methods, is
in Figure 5.8a. The one of HKRPCA may be seen in Figure 5.8b, where we see
some ghosts behind the true targets. The dispersive wall also has the effect of
defocusing the detection. The sparse component of CORONA (5.8c) is cleaner
but retains a small ghost. Finally, we have the detection maps (Figures 5.9a
and 5.9b) of LCPRCA and U-Net which are quite similar.

Otherwise, we may look at some components of the network such as the
scalars learned which are displayed in Figure 5.10a. We then see the sparse
component evolution across layers in Figure 5.10b. In Figure 5.11 we can ob-
serve the decomposition of the sparse component in the featuremaps of each
filter learned.

(a) HKRPCA L̂ (b) CORONA L̂ (c) LCRPCA L̂

Figure 5.7: Sample results: low rank components.
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(a) BP-RPCA R̂ (b) HKRPCA R̂ (c) CORONA R̂

Figure 5.8: Sample results: sparse components.

(a) U-Net R̂d (b) LCRPCA R̂d

Figure 5.9: Sample results: detection maps

(a) λ,µ,w0 across layers (b) Sparse component across layers
Figure 5.10: Comparison of λ, µ, w0 and sparse component across layers
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Figure 5.11: Feature map
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5.3.3 . Performance comparison
Wemove on to the quantitative evaluation with Receiver Operating Char-

acteristic (ROC) and Precision-Recall curves. The legends are enhanced with
the Area Under the Curve (AUC) of the ROC and the Average Precision (AP).
We see the same ordering of the methods in the two graphs 5.12a and 5.12b,
with the U-Net followed by LCPRCA then CORONA and RPCAmethods last. We
then compute the same metrics but with 10 % of the training data in Figures
5.13a and 5.13b. The U-Net performance backs down to the level of LCRPCA
and even falls off at the tail end of the curves. LCRPCA is better both in AUC
and AP. This highlights the better efficiency of our method under a restricted
training regime which is an interesting property in our application where data
is scarce. Note especially that the U-Net has 8, 650, 474 trainable parameters
while LCRPCA has 21, 656.

We also show in Table 5.1 the Target to Clutter Ratio (TCR) of the methods.
On the first row, we see when the DL methods are trained on 100% of the
data where we see the same ordering. The next row is with 10% of the data
and shows how LCRPCA and the U-Net get closer. LCRPCA has lost 6dB in
TCR while the U-Net has lost 8dB. CORONA, the other DL method generating
a low-rank component, totally collapses with a 20dB loss in TCR.

TCR (dB) HKRPCA BP-RPCA Corona U-Net LCRPCAfull training data 18.46 19.52 32.01 41.40 39.93scarce training data 18.46 19.52 12.60 33.78 33.64
Table 5.1: TCR with different trainings
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(b) Precision-Recall curve with full training data
Figure 5.12: ROC and PR curves with full training (100% training data)
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Figure 5.13: ROC and PR curves with scarce training (10% training data)
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5.3.4 . Limitations
Until now, the scene setting has been the same for the training and test

data. Only the target position and number could vary. In practical applica-
tions, we would be interested in using the trained network on one setting to
another setting. This could mean a wall with different parameters: permittiv-
ity, thickness, structure. This is readily understandable to be a complicated
undertaking: the returns delay is heavily dependent on the wall characteris-
tics. If those change, without further considerations, this may lead the net-
work to wrong localizations.
Test wall differing from the train wall

We first evaluate how a different wall would impact the imaging, if we naively
used a network trained on another wall. We change the wall thickness from
20cm to 40cm and relative permittivity from 8 to 6 as well as the dispersivity
profile corresponding to concrete with large gravels rather than concrete with
small gravels. The results are presented in Figure 5.14. We can observe a shift
in target localization as well as ghosts target in all the considered methods.
The original BP is clearly perturbedwhich impacts all the data-drivenmethods
which have it as input image and cannot correct it, having seen only a different
wall in training.
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(a) BP RPCA (b) HKRPCA

(c) Corona (d) UNet

(e) LCRPCA
Figure 5.14: Algorithms with test wall different than the training wall
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Two different walls in the training dataset

We then evaluate if we can train LCRPCA on a training dataset composed of
two walls. The question is whether the network has the capacity to separate
the two walls via a standard training procedure. We noticed that the loss ne-
cessitates an adjustment in training procedure to decrease smoothly. Indeed,
we adjusted the optimizer with a learning rate scheduler, which modifies the
learning rate over iterations. We used the one cycle learning rate scheduler
[Smith and Topin, 2018] over the Cosine Annealing learning rate scheduler
[Loshchilov and Hutter, 2017]. Moreover, we selected the AdamW optimizer
[Loshchilov and Hutter, 2019] over the original Adam [Kingma and Ba, 2015]
which is a slight correction on the former. This is empirically described in [Bi-
logur, 2021].

The evolution of the loss over epoch is shown in Figure 5.15. Sample re-
sults are shown in Figure 5.16 and Figure 5.17. We see that the wall returns
clearly indicate two different walls while the detection are achieved at correct
locations.

(a) vanilla Adam (b) CosAnh Adam

(c) OneCycle Adam (d) OneCycle AdamW
Figure 5.15: Training with different learning rate schedules
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(a) L associated with wall 1 (b) L associated with wall 2
Figure 5.16: wall returns with both walls in the training dataset

(a) detection map associated with wall 1 (b) detection map associated with wall 2
Figure 5.17: detection maps with both walls in the training dataset

5.4 . Conclusion

This chapter presented a deep unrolling of RPCAmixed with CSC for TWRI
localization of targets. Thanks to its data-driven framework, it proved to out-
performed our previous purely model-based methods for TWRI detection.
Under limited training schemes, i.e. with less training samples, it showed to be
competitive with a U-Net with attention gates. There remain open questions
about handling several unknownwalls aswell as cluttered environments, which
we may hope to tackle by extending this method in the future.
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Conclusion and perspectives

5.5 . Conclusion

This manuscript explored new imaging methods for Through Wall Radar
Imaging, specifically for imaging stationary targets. We started themanuscript
by describing a classical acquisition setup consisting in stepped-frequency
SAR returns collected along to the wall to penetrate. The classical method-
ology then consists in mitigating the returns of the wall to penetrate followed
by a detection of the targets. The wall mitigation is typically achieved by as-
suming the returns from the wall span a subspace different than the targets.
Effectively, we choose the subspace formed via a subset of singular vectors
and project onto its orthogonal complement. Imaging the scene in order to re-
trieve the position of targets can be done by standard beamforming method,
such as Back-Projection, which can be seen as the application of the Point
Spread Function of the Radar system. Otherwise, to handle multipath effects,
the number of targets can be assumed to be few with respect to the scene di-
mension. Then, imaging can be done via sparse reconstruction methods. The
question raised is that of the optimality of such sequential methods. Indeed,
the wall returns that are erased may in fact contain target information.

This started our first work, where we applied low rank and sparse decom-
position methods, also known under the name of Robust PCA, to Through
Wall Radar Imaging. We reformulated the original vectorized model in a ma-
trix form and tailored the ADMM, a convex optimization framework, to our
needs. The ADMM has proven convergence and is widely used for its prac-
tical speed when functions are separables, as is our case. We showed on
ray-tracing simulations that the method performs better, when considering
detection metrics, than the classical sequential method.

We then investigated the possibility of making the method robust to com-
plex noise, specifically when the noise level is not homogeneous over the field
of view of the SAR: it is then heterogeneous. In our application, this can hap-
pen as SAR acquisitions are made at several positions such that the wall re-
turns are not homogeneous as well as the scene environment behind. We
tackled this problematic by introducing a robust distance, which down-weight
the contribution of positions and frequencies that are considered as outliers.
We developed algorithms for the resolution of this problem and studied their
practical properties. We also explored the use of Riemannian optimization
to tackle the low rank constraint by using the fixed-rank matrix manifold, as
opposed to the more widely used nuclear norm relaxation. Afterwards, we
showed on FDTD simulations the performance gain of these methods under
heterogeneous noise.
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However, these optimization based method suffer from a heavy compu-
tation cost. The modelization of the radar returns also do not consider some
physical, such as dispersion that distort the signal. We explored a transition
of this model based approach to a data driven one. We specifically proposed
a hybrid between the two, by considering unrolling networks. We proposed
a new network trained in a supervised fashion, with roots in optimization via
Convolutional Sparse Coding. Thismethod advantages include its significantly
faster execution (once training is achieved), while being able to handle dis-
persion effects which are hard to model. We underlined how the training on
one wall is hard to transfer to another wall. Although the method can be
trained on a dataset comprising several walls, the extrapolation capabilities
on a never seen wall are underwhelming and should be subject to future re-
search.

5.6 . Perspectives

5.6.1 . Generalization problematic of data driven methods
When using a data driven unrolling method such as LCRPCA, the training

data returns are tied to a setting such as a specific wall. However, we would
typically like our method to work on another set of returns that are handed
to us without associated train samples. This can also represent going from
synthetic to real data. Among the domains of research that aim at addressing
this generalization problematic, one is called Domain Adaptation (DA). In DA,
we have source samples with labels as well as unlabelled target samples. The
goal is to predict the target labels.

The first type ofmethods consist in aligning the distributions of the fea-
tures extracted from samples before the last step (classification, detection...).
This is done considering all samples together, as there is no one-to-one cor-
respondence between target and source samples. One popular distance be-
tween distributions is the MaximumMean Discrepancy (MMD) [Gretton et al.,
2006] which measures the distance between the samples mean embedded
in a feature space. Several methods exist based on this: Transfer Compo-
nent Analysis (TCA) [Pan et al., 2011] or Deep Adaptation Networks (DAN) [Long
et al., 2015]. Other methods exist based on other means of feature aligne-
ment: Optimal Transport (OT) methods [Courty et al., 2017b, Courty et al.,
2017a] or Domain-Adversarial Neural Networks (DANN) [Ganin et al., 2016].

Other methods use an alignment in the pixel space such as CycleGAN
[Zhu et al., 2017], Cycada [Hoffman et al., 2018] or Fourier Domain Adaptation
(FDA) [Yang and Soatto, 2020]. Interestingly, those last three were evaluated
on the task of semantic segmentation, which is the task of classyfing each
pixel of an image. In fact, this is what we are interested in since we classify
each pixel of the BP image as target or not (binary case).
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We rapidly tested FDA to see if it can make LCRPCA transferable to a dif-
ferent test wall. However, the experiment was not successful and FDA did not
seem to be able to improve on the simple training (using only source data)
while the mixed training (both walls in the training dataset) would be the ob-
jective to attain. Altough this may not be tractable for testing on a different
wall, the subject of DA remains interesting to optimize performance on real
data after training on simulated samples. For example, to handle the real
antenna compared to the one simulated which is often simpler. For a large
variety of walls, it remains to be studied if a single network has the capacity
to handle them simultaneously and obtain interpolation capabilities on never
seen walls.

5.6.2 . Other perspectives
It should be emphasized that these methods cover a broad range of

methodologies: from sequential classical imaging to alternating optimization
methods, from recent convex optimization frameworks to Riemannian op-
timization, from model-based approaches to data driven approaches. The
work done here may be useful in the comparison it allows over a diversity of
methods on a single common application. The underlying frameworks can
also be transferred to other Radar applications, such as Ground Penetrating
Radar to image the subsurface. Someaspects are also sharedwith other Com-
putational Imagery applications such as Magnetic Resonance Imaging.

We point out that this work may be continued in different paths. This
concerns the applied mathematics/processing domain and not the broader
research that may be led in physics, antenna for TWRI. Concerning the op-
timization methods, they might be extended to a three dimensional spatial
setting by considering tensor decompositions. The model might be extended
and rewritten to a non-uniform dielectric constant across the frequency band
to capture important effects. The dictionary may also be enhanced thanks to
a standard dictionary learning procedure. Another perspective for LCRPCA is
its ability to discriminate target whichmaymake it an useful tool for classifica-
tion of targets: for example based on their material composition and shape.
This would allow some clutter from inside the scene to be ignored. All in all,
the general objective to move up from the simplified setting usually consid-
ered should be a driving force in steering future research towards a useful
direction.
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A - Wirtinger Calculus
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For the most part, our application is concerned with complex variables.
We are therefore interested in the optimization of functions defined on such
complex variables. We will see that complex derivability is too restrictive and
that we can apply another type of calculus called Wirtinger calculus [Hunger,
2007].

A.1 . Complex differentiability

Definition 12. LetA ⊂ C be an open set. Then, a function f : C → C is complex
differentiable at z0 ∈ A if there exist a limit:

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

(A.1)
which is independent of the path for which z → z0.

A function that is complex differentiable on every point of its domain is
called holomorphic. It can be shown that the derivative of an holomorphic
function is also holomorphic. By induction, it is then also analytic i.e. of class
C∞ which is a stronger requirement than for a real function to be derivable.
Moreover, the basic properties of the differential of a sum, product and com-
position of two functions arising in the real case remain valid in the complex
case. In order to check for complex differentiability, wemay check the validity
of the necessary conditions called Cauchy-Riemann equations.
Theorem 1. Let f(z) = u(z) + jv(z) with u(z), v(z) ∈ R where z = x + jy

with x, y ∈ R. Then we can express f(z) as F (x, y) = u(x, y) + jv(x, y) where
u(x, y), v(x, y) ∈ R. A necessary condition for f(z) to be holomorphic is that the
following system of partial differential equations, called Cauchy-Riemann equa-
tions, holds for every point in the domain of f :

∂u(x, y)

∂x
=
∂v(x, y)

∂y
and ∂u(x, y)

∂y
= −∂v(x, y)

∂x
(A.2)
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This can be seen directly via the definition of complex differentiability with paths
for z → z0 along both axes i.e. along x or y and equating them.

Additionally, the Cauchy-Riemannequations are sufficient for f being holo-
morphic if the partial derivatives u(x, y), v(x, y) are continuous.

A.2 . Extension to non-holomorphic functions

A.2.1 . Wirtinger derivatives
The total differential of the function F (x, y) = f(z)|z=x+jy is:

dF =
∂F (x, y)

∂x
dx+

∂F (x, y)

∂y
dy

=
∂u(x, y)

∂x
dx+ j

∂v(x, y)

∂x
dx+

∂u(x, y)

∂y
dy + j

∂v(x, y)

∂y
dy

(A.3)

Note also that:
dz = dx+ jdy dz∗ = dx− jdy (A.4)

So that:
dx =

1

2
(dz + dz∗) dy =

1

2
(dz − dz∗) (A.5)

Then, the total differential is:
dF =

1

2

(
∂u(x, y)

∂x
+
∂v(x, y)

∂y
+ j

(
∂v(x, y)

∂x
− ∂u(x, y)

∂y

))
dz

+
1

2

(
∂u(x, y)

∂x
− ∂v(x, y)

∂y
+ j

(
∂v(x, y)

∂x
+
∂u(x, y)

∂y

))
dz∗

(A.6)

Note that for a holomorphic function (satisfying theCauchy-Riemannequa-
tions), the second term is zero and thus its differential does not depend on
dz∗. Anyhow, the total differential can be rearranged:

dF =
1

2

(
∂

∂x
(u(x, y) + jv(x, y))− j ∂

∂y
(u(x, y) + jv(x, y))

)
dz

+
1

2

(
∂

∂x
(u(x, y) + jv(x, y)) + j

∂

∂y
(u(x, y) + jv(x, y))

)
dz∗

=
1

2

(
∂

∂x
− j ∂

∂y

)
F (x, y)dz +

1

2

(
∂

∂x
+ j

∂

∂y

)
F (x, y)dz∗

(A.7)

In analogy with the total differential for bivariate real functions, this leads
us to the following.
Definition 13. Let the two partial differential operators ∂

∂z ,
∂

∂z∗ be:

∂

∂z
=

1

2

(
∂

∂x
− j ∂

∂y

)
∂

∂z∗
=

1

2

(
∂

∂x
+ j

∂

∂y

)
(A.8)
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So that we get the following.
Theorem 2. The differential of a complex valued function f is:

df(z) =
∂f

∂z
dz +

∂f

∂z∗
dz∗ (A.9)

The two operators ∂
∂z ,

∂
∂z∗ are also called Wirtinger derivatives. Their ex-

pressions also imply the following.
Theorem 3. z and z∗ can be regarded as constant when differentiating w.r.t. the
other one, as:

∂z∗

∂z
=

∂z

∂z∗
= 0 (A.10)

which is implied by the expression of the Wirtinger derivatives with z = x+jy and
z∗ = x− jy.

For example, the function |z|2 = zz∗ is not holomorphic. Indeed, it does
not satisfy the Cauchy-Riemann equations as it maps to R, thus having a null
imaginary part. Then, via Wirtinger calculus:

∂|z|2

∂z
=
∂zz∗

∂z
= z∗ (A.11)

A.2.2 . Real valued functions
Since we are interested in optimizing complex values functionmapping to

the positive real numbers, we will face non-holomorphic functions.
Theorem 4. for all functions f : C→ R we have:

df = 2ℜ
(
∂f

∂z
dz

)
= 2ℜ

(
∂f

∂z∗
dz∗
)

(A.12)
We need a way to study stationary points of such functions.

Theorem 5. for all functions f : C→ R, we have the relation:

df = 0 ⇐⇒ ∂f

∂z
= 0 (A.13)

Which leads to the ascent direction.
Theorem 6. for all functions f : C→ R, the steepest ascent direction is:

dz =
∂f

∂z∗
ds (A.14)

where ds is a real valued differential (i.e. a stepsize for optimization purposes).
Indeed, from Cauchy Schwartz inequality, ∂f

∂z∗dz
∗ is maximized when dz∗ and(

∂f
∂z∗

)∗
are colinear. Removing the conjugate, this means dz = ∂f

∂z∗ds for some
real valued ds.

This suggests the gradient descent method:
z ← z − 2

∂f(z)

∂z∗
ds (A.15)
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A.2.3 . Multivariate case
The extension to multivariate cases is achieved by summing the differen-

tials overall dimensions.
Theorem 7. The differential of a multivariate function f : CN → R is:

df(z) =

N∑
k=1

∂f(z)

∂zk
dzk +

N∑
k=1

∂f(z)

∂z∗k
dz∗k

=
∂f(z)

∂z

T

dz+
∂f(z)

∂z∗

T

dz∗

(A.16)

where ∂
∂z = [ ∂

∂z1
, . . . , ∂

∂zN
]T acts a gradient operator.

Similarly to the univariate case, a gradient descent method can be imple-
mented as:

z← z− 2
∂f(z)

∂z∗
ds (A.17)

for some real-valued scalar ds acting as a step-size.
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We introduce the Finite-Difference Time-Domain (FDTD) which allows us
to createmore realistic synthetic radar data. It is useful for testing purposes as
well as creating datasets for data-driven methods, as real radar acquisitions
are costly.

B.1 . General elements

B.1.1 . Introduction
The FDTD [Yee, 1966] method is one of the most popular techniques for

solving electromagnetic problems today. It has been effectively applied to a
wide range of issues, including scattering from metal objects and dielectrics,
antennas, microstrip circuits, and electromagnetic absorption in the human
body exposed to radiation. The primary reason for the success of the FDTD
method is its simplicity. All electromagnetic phenomena, on a macroscopic
scale, are described by thewell-knownMaxwell’s equations, which are first or-
der partial differential equations expressing the relations between the funda-
mental electromagnetic field quantities and their dependence on their sources:

∇×E = −∂B
∂t

∇×B = µ0

(
ϵ0
∂E

∂t
+ J

)
∇ ·E =

ρ

ϵ0
∇ ·B = 0

(B.1)

where E,B are the electric and magnetic fields while ϵ0, µ0 are free space
permittivity and permeability. J is the current density and ρ the electric charge
density.
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B.1.2 . Algorithm
In order to simulate the returns from a pre-designed scene, the above

equations have to be solved subject to the geometry of the problem and the
initial conditions. Any material can be used as long as the permeability, per-
mittivity, and conductivity are specified in the cells locations. The forward
problem can be classified as an initial value with an open boundary problem.
The initial value consists of the emission of a signal by the excitation of the
transmitting antenna, while there is no boundary on which the fields take a
predetermined value, which means they reach zero at infinity. This is tackled
in practice by using an absorbing boundary around the scene of interestwhich
absorbs incoming waves to truncate the computation space. The FDTD gives
an approximated numerical solution to Maxwell’s equations by discretization
both in space and time domains, giving rise to Yee’s cell (as shown in Figure
B.1).

Figure B.1: Yee cell (with magneticH field)

More precisely, it considers the electric andmagnetic fields shifted in space
by half a (time and spatial) step and uses a central difference approximation
of the derivatives. They are then alternatively updated based on the other
one. By assigning appropriate constitutive parameters to the locations of the
electromagnetic field components, complex shaped targets can be included
easily in the models.

B.1.3 . Constraints
Note that the time and space discretization steps are dependent on each

other. Indeed, energy should not be able to propagate any further than one
spatial step for each temporal step, because in the FDTD algorithm each node
only affects its nearest neighbors. This implies the following.
Definition 14. The Courant–Friedrichs–Lewy (CFL) condition is a necessary con-
dition for the convergence of numerical solvers for some partial differential equa-
tions, including FDTD. For our particular problem, it states that the discretization
spatial steps (∆x,∆y,∆z) and the time step∆tmust be such that:
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c∆t

√
1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2
≤ 1 (B.2)

To avoid errors associated with numerically induced dispersion, a rule of
thumb is that the discretization step ∆l ∈ (∆x,∆y,∆z) be smaller than a
tenth of the smallest wavelength of the propagating electromagnetic fields:

∆l ≤ λ

10
(B.3)

For our purposes, a source can be generated by a current density term at
some electric field location i.e. a Hertzian dipole with a (isotropic) Gaussian
waveform.

B.2 . Complex media

B.2.1 . Dispersion
When we subject a dielectric material to an electric field, it reacts by po-

larizing. This reaction is not instantaneous and depends on the frequency of
the applied field. Recall that the permittivity is modeled as a complex variable
for lossy media (non-zero conductivity):

ϵc = ϵ′ − jϵ′′ (B.4)
where ϵ′′ = σ

ω with σ, ω the material conductivity and the applied field angular
frequency. The imaginary part is non-zero in lossy media, where dissipation
of the propagating wave energy into current and then heat occurs. The factor
ϵ′′

ϵ′ = tan δ is also called the loss tangent. This can then be rewritten as:
ϵc = ϵ′(1− j tan δ) (B.5)

Dielectric relaxation is the momentary lag in the permittivity of a material
caused by the delay in molecular polarisation with respect to a changing elec-
tric field. Debye relaxation is the dielectric relaxation response of an ideal,
non-interacting population of dipoles to an alternating external electric field.
It can be written as:

ϵc(ω) = ϵ∞ +
ϵs − ϵ∞
1 + jωτ

+
σs
jωϵ0

(B.6)
where ϵ∞ is the complex permittivity limit in high frequencies, ϵs the static one(for low frequencies), σs the static conductivity while τ is the characteristic
relaxation time of the medium. For common wall materials, it may not be
described accurately with the Debye model [Zhekov et al., 2020]. A multi-pole
extension may be used:
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ϵc(ω) = ϵ∞ +
N∑

n=1

∆ϵd,n
1 + jωτd,n

+
σs
jωϵ0

(B.7)
where ϵd,n and τd,n constitute Debye models parameters to be fitted for N
poles.

B.2.2 . Other effects
Another effect we can model but that we will not delve into is anisotropy,

by modeling the constitutive parameters of the materials as second rank ten-
sors, for example as a diagonal matrix over the spatial dimension:

ϵ =

ϵxx 0 0
0 ϵyy 0
0 0 ϵzz

 (B.8)

Other elements include surface roughness or more realistic antennas.
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