
HAL Id: tel-04844034
https://theses.hal.science/tel-04844034v1

Submitted on 17 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-Assembly on Various Surfaces
Shahrzad Heydarshahi

To cite this version:
Shahrzad Heydarshahi. Self-Assembly on Various Surfaces. Computer Science [cs]. Université
d’Orléans, 2023. English. �NNT : 2023ORLE1098�. �tel-04844034�

https://theses.hal.science/tel-04844034v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ D’ORLÉANS
ÉCOLE DOCTORALE MATHÉMATIQUES, INFORMATIQUE,
PHYSIQUE THÉORIQUE ET INGÉNIERIE DES SYSTÈMES

LABORATOIRE D’INFORMATIQUE FONDAMENTALE D’ORLÉANS

THÈSE présentée par :

Shahrzad HEYDARSHAHI
Soutenue le : 20 décembre 2023

pour obtenir le grade de : Docteur de l’Université d’Orléans

Discipline/Spécialité : Informatique

Self-Assembly on Various Surfaces
Auto-assemblage sur surfaces diverses

THÈSE dirigée par :

M. BECKER Florent Maître de conférences, Université d’Orléans
M. DURAND-LOSE Jérôme Professeur des Universités, Université d’Orléans

RAPPORTEURS :
M. FERNIQUE Thomas Chargé de Recherche HDR, CNRS/Université Sorbonne

Paris Nord
M. PATITZ Matthew John Associate Professor, University of Arkansas

JURY :
M. BECKER Florent Maître de conférences, Université d’Orléans, Encadrant

de thèse
M. DURAND-LOSE Jérôme Professeur des Universités, Université d’Orléans,

Directeur de thèse
M. FERNIQUE Thomas Chargé de Recherche HDR, CNRS/Université Sorbonne

Paris Nord, Rapporteur
M. PATITZ Matthew John Associate Professor, University of Arkansas, Rapporteur
M. REGNAULT Damien

M. SENÉ Sylvain

Maître de conférences HDR, Université d’Évry Paris-
Saclay, Examinateur
Professeur des Universités, Université d’Aix-Marseille,
Président du jury

Acknowledgements

Acknowledgements

I would like to express my deepest gratitude to my PhD supervisors, Jérôme and
Florent, for their invaluable guidance and support throughout my PhD journey. Jérôme,
your constant presence and the wisdom and kindness you shared have been a source of
great learning and inspiration for me. Florent, thank you for being more a friend to me
than an advisor. Your unwavering support over the years has meant so much to me. The
best part of pursuing my PhD in Orléans was having the privilege of being supervised by
both of you. Thank you.

I also extend my heartfelt thanks to my PhD referees, Matthew J. Patitz and Thomas
Fernique, for their thorough reading and insightful comments on my manuscript, as well
as their participation in my defense.

Further gratitude goes to Damien Regnault and Sylvain Sené for serving as examiners
during my PhD defense.

I am deeply grateful to my former professors who inspired and encouraged me to
pursue a PhD: in particular, Marc Chardin, Morteza Mohammad-Noori, Aline Parreau,
Bernard Teissier, and Siamak Yassemi. I learned a lot from you, not only in science but
also in morality and ethics. I was fortunate to have you as my guides during this journey.

I thank all my colleagues at LIFO, the Computer Science Department of COST, and
the Computer Science Department of IUT. Special thanks to Anaïs and Benjamin for their
unwavering support, as well as Ali, Anthony, Ioan, Jean-Michel, Jacques, Laure, Marta,
Mathieu, Mirian, Noël, Pierre, Sébastien, Sophie, Sylvie, Wadoud and other colleagues. I
also appreciate the technical and administrative staff of LIFO and the Computer Science
Department for their assistance: Brigitte, Florence, Isabelle, Pascal, and Rali.

My thanks extend to my fellow PhD students, ATER, and postdocs at LIFO for the
memorable times we shared, both in and out of LIFO, particular: Antoine, Aurélien, Ben-
jamin, Florian, Giacomo, Hai-Yen, Imane, Kevin, Nedra , Sajad, Sofiane, Tenji, Thibaut.
I would like to thank Darine for the good times that we had together. A special thanks to
Maël and Samuel; our friendship has been one of the most rewarding aspects of my time
at LIFO. I am also grateful to my friends and colleagues outside of Orléans, whom I met
at conferences and other events, making these experiences enjoyable: Abeer, Ahmed, Cai
and Carole.

I want to thank Katayoun Niloufari, my first French language teacher, who, when I
was a teenager, sparked my interest in this language. I also extend my gratitude to the
Embassy of France in Tehran and all its staff for supporting my first scientific visit to
France at the end of my master’s program in Tehran. In particular, I want to thank
Mohammad Majlessi, who was very kind and helpful with my project of coming to France
to continue my studies. I am grateful to the Fondation Sciences Mathématiques de Paris
for their support and for preparing everything for starting my stay in France.

I want to give special thanks to my uncle, an incredible man whose presence in France
gave me the chance to spend more time with him. Not only did I learn from his vast
knowledge, but more importantly, I also enjoyed the simple pleasure of his company.
Amoo Mohammad, I really appreciate what you did for me during all these years: thank
you for everything.

I further thank the greatest gift in my life: my family. My mum, Minoo, that taught
me patience and generosity for family love. My dad, Reza, the best father anyone could
wish for and kindest person in the world for giving me always courage and confidence.
My brother Amin, who is always ready to help and bring happiness to me; and Behnam,
my caring brother, my friend and my soulmate that always makes me feel that someone

iii

Acknowledgements

is beside me. I love you all so much. I also thank Bababozorg and Mamanbozorg, Didier,
Gerda, Jurgen, Khale Mali, Nelly, and other family members for their love and support
over these years. I have a special thanks to Mamanjoon, whose influence from living with
her for years has shaped who I am. Your logic, intelligence, sense of humor, and poetry,
along with your kindness and self-confidence, have always inspired me. You are always in
my mind. Thank you for teaching me to be strong. I wish I could be like you in life.

Finally, I thank my friends: Aida, Aryana, Anahita, Azadeh, Barbara, Bertille, Elina,
Elmira, Farbod, Farhang, Farshid, Fargol, Fatemeh, Hossein, Hiwa, Julien, Kaan, Laya,
Leila, Mahdieh, Mahsa, Mahya, Maryam, Mina, Mitra, Mohammad, Mohammad Javad,
Mona, Nairuhi, Narges, Niloufar, Parisa, Payam, Samaneh, Sanaz, Sara, Sahar, Shima,
and Zohreh, and all my other friends who have helped and brought happiness to my life
during these years. I also would like to express my special gratitude to Christelle, Nora,
Karine, Solène and Tchakamé for all their support.

Writing an acknowledgment section is difficult, not only because it’s easy to forget
someone important but also because so many wonderful people have helped me along the
way. It is impossible to mention all of them here, just as it is impossible to adequately
describe the boundless love and support of my husband in mere words. All I can say is:
my love, thank you for everything.

iv

Résumé

Auto-assemblage sur surfaces diverses

Résumé : Nous étudions l’auto-assemblage par tuiles sur divers types de surfaces. L’auto-
assemblage par tuiles est un processus dynamique basé sur des tuiles carrées ayant quatre
côtés distingués, qui peuvent s’attacher deux à deux sous certaines conditions. Le proces-
sus commence avec une configuration initiale appelée graine, et s’arrête si aucune autre
tuile ne peut être ajoutée. Ce modèle peut être implémenté en pratique via les nanotech-
nologies de l’ADN, et il est étudié depuis la fin des années 1990. Il a été démontré que ce
modèle permet de réaliser des calculs arbitraires : il s’agit d’un modèle de calcul universel.
Nous étudions l’auto-assemblage par tuiles d’un point de vue théorique. La plupart des
travaux sur ce sujet portent sur l’auto-assemblage par tuiles sur le plan Euclidien 2D.
Nous nous intéressons à son comportement sur des surfaces plus complexes. La question
centrale que nous posons est si l’on peut concevoir un système d’auto-assemblage par
tuiles permettant de détecter le type de surface sur laquelle il est effectué ? Nous nous
intéressons d’abord au cas de quatre types de surfaces plates : le tore plat, le cylindre
vertical plat, le cylindre horizontal plat, et le plan Euclidien. Nous présentons un sys-
tème d’auto-assemblage par tuiles dans le modèle classique abstract Tile Assembly Model
(aTAM). Notre système peut être appliqué sur toute surface appartenant à l’un des quatre
types de surfaces, et présente des particularités uniques en fonction du type de surface.
Plus précisément, certaines tuiles apparaissent uniquement si l’assemblage a lieu sur l’un
de ces types de surfaces. Nous abordons également des surfaces 3D plus complexes : celles
d’objets 3D appelés polycubes. Les polycubes sont constitués de cubes unitaires collés
les uns aux autres via leurs faces. La propriété la plus fondamentale d’une surfaces est
sans doute son genre ; pour simplifier, il s’agit du nombre de trous qui perçent la sur-
face. Notre but est de créer un système d’auto-assemblage par tuiles capable de détecter
le genre du polycube sous-jacent. Afin d’effectuer de l’auto-assemblage par tuiles sur la
surface d’un polycube, nous définissons tout d’abord un nouveau modèle adapté, appelé
Surface Flexible Tile Assembly Model (SFTAM). Ce modèle étend le modèle aTAM et est
inspiré par un autre modèle, le Flexible Tile Assembly Model (FTAM). Nous conçevons
un système d’auto-assemblage par tuiles qui détecte le genre d’un type particulier de po-
lycubes. Ces polycubes sont appelés cuboïdes d’ordre 1, et ils peuvent avoir genre 0 ou
genre 1. Notre système est tel que, dans tout assemblage terminal, si le genre est 1, une
tuile d’un ensemble particulier Y de types de tuiles apparaît nécessairement. Si le genre
est 0, les tuiles dont le type est dans Y n’apparaissent dans aucun assemblage productible.

Mots clés : Auto-assemblage par tuiles, Calcul ADN, Surfaces géométriques, Genre,
Polycubes

Résumé vulgarisé pour le grand public : Nous étudions l’auto-assemblage par tuiles
sur divers types de surfaces. Il sagit d’un processus dynamique basé sur des tuiles carrées
ayant quatre côtés distingués, qui peuvent se lier sous certaines conditions. Le processus
commence par une configuration initiale appelée graine, et s’arrête si aucune autre tuile ne
peut être ajoutée. Ce modèle peut être implémenté en pratique via les nanotechnologies de
l’ADN, et il est l’objet de recherches depuis la fin des années 1990. Il a été démontré que
c’est un modèle de calcul universel. La plupart des travaux du domaine portent sur l’auto-
assemblage par tuiles sur le plan Euclidien. Nous nous intéressons à son comportement

v

Résumé

sur des surfaces plus complexes. La question centrale que nous posons est si l’on peut
concevoir un système d’auto-assemblage par tuiles permettant de détecter le type de
surface sur laquelle il est effectué ? Nous répondons à cette question pour deux types de
surfaces : les surfaces plates et certains polycubes.

vi

Résumé

Self-assembly on various surfaces

Abstract : We investigate tile self-assembly on various types of surfaces. Tile self-
assembly is a dynamic process based on square tiles that have four distinguished sides
that can attach to each other under certain conditions. The process starts with a specific
predetermined configuration called a seed, and stops if no further tile can be attached.
This model can be implemented in practice using DNA nanotechnology and has been
investigated since the late 1990s. It has been shown theoretically to allow performing
arbitrary computations : it is a universal computation model. We study tile self-assembly
from the theoretical side. Most works in the area deal with the Euclidean 2D plane. We
are interested in studying its behaviour on more complex surfaces. The central question
that we ask, is, can we design a tile self-assembly system that can detect the type of
surface that it is performed on? We first address this question for the case of four types
of flat surfaces : the flat torus, the flat vertical cylinder, the flat horizontal cylinder, and
the Euclidean plane. We design a tile self-assembly system in the classic abstract Tile
Assembly Model (aTAM) that can be performed on any surface from one of these four
types, and that exhibits specific features for each type. More precisely, certain tiles will
uniquely appear if the assembly is taking place on one of these types of surfaces. We
are also interested in more complex 3D surfaces that form the surface of objects called
polycubes. Polycubes are made from unit cubes that are glued to each other by their
faces. Perhaps the most fundamental property of a surface is its genus ; informally, it is
the number of holes piercing the surface. Our goal is to design a tile self-assembly system
that can detect the genus of the underlying polycube surface. In order to perform tile
self-assembly on polycubes, we first define a new suitable model, that we call the Surface
Flexible Tile Assembly Model (SFTAM). This model extends the aTAM and is inspired
by another existing model, the Flexible Tile Assembly Model (FTAM). We design a tile
self-assembly system that detects the genus of a special type of polycubes. These poly-
cubes are called order-1 cuboids, and they can have genus 0 or genus 1. In any terminal
assembly of our system, if the genus is 1, a tile from a special subset Y of tile types must
appear. When the genus is 0, however, tiles of Y never appear in any producible assembly.

Keywords : Tile self-assembly, DNA computing, Geometric surfaces, Genus, Polycubes

Abstract for general audience: We investigate tile self-assembly on various types of
surfaces. Tile self-assembly is a dynamic process based on square tiles that have four
distinguished sides that can attach to each other under certain conditions. The process
starts with a specific predetermined configuration called a seed and stops if no further tile
can be attached. This model can be implemented in practice using DNA nanotechnology
and has been investigated since the late 1990s. As this model has been shown theoretically
to allow performing arbitrary computations, it can be seen as a universal computation
model. Most works on this topic deal with tile self-assembly in the 2D plane. We study
its behaviour on more complex surfaces. The central question that we ask, is, can we
design a tile self-assembly system that can detect the type of surface that it is performed
on? We do this for two types of surfaces: flat surfaces and specific polycubes.

vii

Contents

viii

Contents

1 Résumé en français 1

2 Introduction 7
2.1 From assembly to self-assembly . 7
2.2 Tilings . 8
2.3 DNA computing and self-assembly of nanostructures 9
2.4 Tile self-assembly . 11
2.5 Theoretical questions in self-assembly . 11
2.6 Goal of the thesis . 13
2.7 Outline of the thesis . 13

3 Preliminaries and state of the art 15
3.1 Preliminary mathematical definitions . 15

3.1.1 Mathematical notation . 15
3.1.2 Graphs . 16
3.1.3 The 2D and 3D infinite lattices . 16

3.2 Surfaces and associated discrete structures 18
3.2.1 Surfaces and discrete surfaces . 18
3.2.2 Genus of a surface . 20
3.2.3 Polycubes . 22

3.3 The abstract Tile Assembly Model (aTAM) 24
3.3.1 History . 24
3.3.2 Definitions . 25
3.3.3 Fundamental examples: simulating counters via the aTAM 28
3.3.4 Another example: simulating a Turing machine 32
3.3.5 Computing using the aTAM . 40
3.3.6 Creating specific shapes . 41
3.3.7 Complexities of assemblies . 41

3.4 Tile self-assembly on 2D surfaces other than the plane 43
3.4.1 Tile self-assembly on mazes . 43
3.4.2 Shape identification . 43
3.4.3 Shape replication . 44
3.4.4 Self-assembled coatings of surfaces . 45

3.5 Assemblies to construct 3D shapes . 45
3.5.1 The Flexible Tile Assembly Model (FTAM) 46
3.5.2 Self-assembly of polycubes using unit cubes as “3D tiles” 47
3.5.3 Particle-based assembly . 48
3.5.4 Crystal self-assembly . 49

ix

CONTENTS

3.5.5 Origami-like folding processes . 50
3.6 Conclusion . 52

4 Classification of flat surfaces using the aTAM 53
4.1 Flat surfaces . 53
4.2 The aTAM on flat surfaces . 56
4.3 Classifying flat surfaces using the aTAM . 57
4.4 Concluding remarks . 61

5 The SFTAM: Surface Flexible Tile Assembly Model 65
5.1 The definition of SFTAM . 66
5.2 Examples and remarks . 68
5.3 Comparison and connections with previous models 71

5.3.1 Assemblies of aTAM systems on polycubes 71
5.3.2 Producible SFTAM assemblies on polycubes may not be producible

in Z2 . 71
5.3.3 Comparison of SFTAM with FTAM 72

5.4 Concluding remarks . 72

6 Finding the middle of a track in the aTAM or SFTAM 73
6.1 Preliminaries . 74
6.2 The increasing binary counter system . 75
6.3 The decreasing binary counter system . 77
6.4 The U-turn system . 82
6.5 The middle finding system . 88
6.6 Concluding remarks . 91

7 Detecting the genus of order-1 cuboids using the SFTAM 93
7.1 The order-1 cuboids . 94
7.2 Statement of the main theorem . 95
7.3 Our framework: region partition of order-1 cuboids 97
7.4 Description of the TAS SG . 99
7.5 Overview of the assemblies of SG on O1 and proof ideas 102
7.6 Description of terminal assemblies of SG on order-1 cuboids: AC1

◻ [SG] . . . 104
7.6.1 Terminal assemblies on order-0 cuboids: AC0

◻ [SG] 104
7.6.2 Terminal assemblies on order-1 cuboids with genus 1 : ACt

◻ [SG] . . . 111
7.6.3 Terminal assemblies on order-1 cuboids with genus 0 : ACc

◻ [SG] and
A

Cp

◻ [SG] . 115
7.7 Detecting the genus of order-1 cuboids via SG: proof of the main theorem . 116
7.8 Concluding remarks . 119

8 Conclusion 123

Bibliography 127

List of figures 134

List of tables 141

x

Chapitre 1

Résumé en français

Cette thèse porte sur l’auto-assemblage par tuiles sur des surfaces diverses. En voici
un résumé succinct en français, le reste de la thèse étant rédigée en anglais.

De l’assemblage à l’auto-assemblage. L’assemblage de structures complexes à par-
tir de blocs de construction simples liés les uns aux autres est une tâche très générale.
Cela se produit, par exemple, lorsque l’on construit des objets complexes, par exemple
des machines, à partir de composants plus simples. C’est également une caractéristique
fondamentale de la nature : les molécules sont composées d’atomes plus simples. Nous
parlons d’auto-assemblage lorsque les blocs de construction simples sont dispersés de ma-
nière désordonnée et se lient les uns aux autres de manière spontanée et non déterministe
pour former une structure organisée.

En fait, les processus naturels sont un exemple fondamental d’auto-assemblage : en
effet, la formation de molécules à partir d’atomes peut être considérée comme de l’auto-
assemblage. De plus, dans de nombreux processus biologiques, les molécules se lient les
unes aux autres pour former des molécules plus grandes, par exemple, les protéines d’ADN
et d’ARN qui peuvent être recombinées.

Cela est beaucoup étudié dans le domaine des sciences des matériaux, où l’auto-
assemblage est utilisé pour former des cristaux moléculaires [10, 49], des couches mo-
léculaires [74], des molécules médicamenteuses [80], ou d’autres matériaux microscopiques
ou nanométriques [83]. Le Nabat, une sucrerie persane d’Ispahan, est un exemple d’auto-
assemblage de cristaux moléculaires. En Iran, mon pays d’origine, l’une des premières
expériences scientifiques pour les élèves des écoles primaires est de fabriquer un cristal de
Nabat : préparer une solution sursaturée de sucre, y laisser tremper un fil, et attendre
plusieurs jours pour que les cristaux adhèrent au fil. La durée du processus et la forme des
cristaux de Nabat dépendent de plusieurs paramètres : la concentration de la solution, la
température de l’eau, etc.

Dans cette thèse, nous étudions certains aspects théoriques d’une forme d’auto-assemblage,
où les objets de base qui sont assemblés sont des tuiles. Ce processus, appelé auto-
assemblage de tuiles, est très puissant car il permet de réaliser des calculs arbitraires
et il est très étudié, à la fois sur le plan théorique et expérimental.

Revêtements par tuiles. Les tuiles sont de petits objets relativement plats de dif-
férentes couleurs et formes, souvent des carrés. Le revêtement de surfaces a été réalisé
depuis l’Antiquité dans l’art et l’architecture.

1

Les tuiles carrées sont également présentes dans de nombreuses activités de la culture
populaire, telles que les jeux de société et les casse-têtes. Ici, les pièces adjacentes doivent
avoir des côtés similaires (dans jeux de société, comme les dominos ou le jeu Carcassonne)
ou complémentaires (comme dans les puzzles).

L’art du revêtement par tuiles a également attiré les mathématiciens : en 1961, Wang [72]
a défini les tuiles de Wang comme une abstraction mathématique des tuiles : des carrés
unitaires avec des bordures spécifiques. La motivation pour de telles tuiles était de savoir
si l’on pouvait concevoir des ensembles (non-triviaux) de tuiles qui pourraient être utilisés
pour revêtir (sans trous) l’intégralité du plan Euclidien, de telle sorte que si deux tuiles
sont placées côte à côte, leurs côtés en contact doivent être identiques. Wang a conjec-
turé que toutensemble de tuiles permettant un tel revêtement permettrait un revêtement
périodique, mais cela a rapidement été réfuté par son étudiant Berger. En 1965 [17], il
a montré que ces revêtements pouvaient simuler n’importe quel processus informatique
et donc pouvaient être non-périodiques. Il a prouvé l’existence d’un ensemble de 20426
types de tuiles qui pouvaient revêtir le plan, mais seulement de manière apériodique (le
plus petit nombre de types de tuiles d’un tel ensemble de tuiles est connu depuis 2021 :
11, voir [41]). Ce résultat a montré l’existence d’une connexion entre les revêtements par
tuiles et le calcul : on pourrait, en théorie au moins, construire un ordinateur en utilisant
de telles tuiles ! Cependant, pour passer de la théorie à la pratique, il faut passer à des
échelles plus petites. En effet, les résultats expérimentaux dans ce domaine, utilisent des
nano-tuiles d’ADN.

Informatique basée sur l’ADN et auto-assemblage de nanostructures. Éton-
namment, la clé du calcul via les tuiles passe par de minuscules molécules présentes dans
tous les êtres vivants. La molécule d’Acide DésoxyriboNucléique (ADN) est une molécule
mondialement célèbre composée de deux chaînes (appelées brins), liées l’un à l’autre sous
la forme d’une double hélice. Cette molécule a été découverte dans les années 1950 par
Watson et Crick [73]. Chaque brin d’ADN est formé par une séquence de nucléotides (dont
il existe quatre types : cytosine [C], guanine [G], adénine [A] et thymine [T]). Les deux
brins d’ADN sont liés de telle manière que leurs nucléotides se correspondent deux à deux
(A avec T et C avec G), en effet ils forment des liaisons complémentaires. Les molécules
d’ADN portent intrinsèquement des informations, et pour la plupart des formes de vie
connues sur Terre, l’ADN est essentiel car il encode le développement de l’organisme.
Ainsi, on peut le considérer comme le “code source” de la vie.

Inspiré par les processus naturels d’auto-assemblage en chimie et en biologie, dans les
années 1980, Ned Seeman a été un pionnier dans la conception de nano-structures basées
sur des molécules d’ADN [66]. En effet, deux propriétés de l’ADN sont utiles pour cette
tâche. Tout d’abord, les molécules d’ADN se lient les unes aux autres en raison de leurs
structures complémentaires come deux pièces de puzzle, donc elles peuvent être utilisées
comme blocs de construction pour des structures plus complexes. Deuxièmement, il existe
de nombreux types de brins d’ADN d’une longueur donnée (un nombre exponentiel en
cette longueur), et donc on peut facilement contrôler quels brins peuvent se lier les uns
aux autres. Ainsi, l’ADN est l’ingrédient parfait pour assembler des nano-structures (à
condition de pouvoir contrôler de si petites molécules). Seeman a effectivement démontré
qu’il était possible de manipuler l’ADN pour construire des structures nanométriques très
complexes.

Inspiré par ces travaux sur les nanostructures d’ADN, en 1994, Adelman [2] a conçu un
système de calcul nanoscopique basé sur l’ADN résolvant le célèbre problème du voyageur

2

de commerce (TSP) sur une instance avec sept villes. Dans ce problème, on donne un
ensemble de villes et leurs distances mutuelles, et il faut trouver une tournée de longueur
totale minimale qui passe par toutes les villes. Il s’agit d’un problème très célèbre en
informatique théorique, qui est très difficile à résoudre en temps efficace, même pour des
ordinateurs puissants. Ainsi, ce résultat a été très inspirant et a démontré le potentiel des
techniques de calcul nanométriques basées sur l’ADN.

Auto-assemblage de tuiles. Dans cette thèse, nous étudions l’auto-assemblage de
tuiles d’ADN, qui combine les idées du revêtement par tuiles, du calcul d’ADN et de
l’auto-assemblage. Ce domaine a été initié par Erik Winfree dans sa thèse de doctorat de
1998 [75]. Inspiré par les travaux de Wang, Seeman, Adelman et d’autres et en combinant
leurs approches, il a introduit le abstract Tile Assembly Model (aTAM), qui est une tra-
duction mathématique des expériences pratiques réalisées en laboratoire. L’objectif est de
concevoir des tuiles (similaires aux tuiles de Wang) avec quelques propriétés supplémen-
taires, qui peuvent être construites expérimentalement en utilisant des molécules d’ADN.
Ces tuiles moléculaires, lorsqu’elles sont placées dans une solution adaptée et en quantités
appropriées, s’auto-assemblent et produisent des formes spécifiques qui représentent des
calculs.

Les tuiles utilisées dans le modèle aTAM ont quatre côtés spécifiques, appelés colles,
chacun avec une force donnée. Deux tuiles peuvent se lier si elles sont adjacentes le long
de côtés ayant la même colle. Les tuiles sont placées proches les unes des autres, et elles
se lient spontanément de manière non déterministe. Winfree a montré que ce modèle
théorique simple peut être utilisé pour calculer, en concevant soigneusement les types de
tuiles pour contrôler les assemblages produits. De plus, il a démontré très tôt que l’on peut
simuler n’importe quel processus informatique réalisé par un ordinateur classique avec ce
modèle.

Pour ce faire, certaines tuiles sont pré-assemblées en tant qu’assemblage initial. Elles
codent l’entrée d’un problème informatique donné (par exemple, deux nombres encodés
en codage binaire à l’aide de deux types de tuiles). Ensuite, les tuiles s’assemblent dans
n’importe quel ordre, jusqu’à ce qu’aucune autre tuile ne puisse être attachée : nous
obtenons un assemblage terminal. Cet assemblage représente le résultat du calcul (dans
notre exemple, cela pourrait être la somme des deux nombres d’entrée, encore une fois
encodée en binaire).

En pratique, de telles tuiles sont construites à l’aide de molécules d’ADN et sont
souvent en forme de croix plutôt que de carré [42, 68]. De nos jours, il s’agit d’un domaine
de recherche très fructueux, avec de nombreuses applications pratiques et des études
expérimentales. Cependant, aller et venir entre les études théoriques et expérimentales
dans ce domaine est très difficile.

Questions théoriques en auto-assemblage. Au cours des vingt-cinq dernières an-
nées, l’auto-assemblage de tuiles a connu un énorme développement, tant sur le plan
théorique que pratique. Du point de vue théorique (qui est celui de cette thèse), il existe
de nombreux types de questions pertinentes. Voici quelques exemples de questions qui ont
été étudiées dans ce domaine.

– Concevoir des modèles d’auto-assemblage de tuiles qui correspondent aux capaci-
tés expérimentales existantes. Comment exprimer aussi fidèlement que possible les
contraintes des expériences réelles, tout en conservant la puissance du modèle ma-
thématique ?

3

– Quels types de formes peuvent être construits par auto-assemblage de tuiles, dans un
modèle spécifique ? Peut-on concevoir des systèmes d’auto-assemblage de tuiles qui
produisent une catégorie de formes géométriques ? On peut penser ici à des formes
comme des carrés, des rectangles, des fractales, etc.

– Concevoir des systèmes d’auto-assemblage de tuiles qui peuvent résoudre des pro-
blèmes informatiques spécifiques. Certains problèmes de base qui ont été étudiés sont
par exemple de concevoir des compteurs binaires, assembler des formes spécifiées,
simuler d’autres modèles de calcul...

– Effectuer l’auto-assemblage aussi efficacement et/ou de manière aussi fiable que
possible. Pour l’efficacité, on peut mesurer le nombre de tuiles différentes ou la
vitesse de l’assemblage. Pour la fiabilité, on peut limiter le nombre d’erreurs ou
demander un seul assemblage terminal possible.

– etc.

Dans cette thèse, nous nous concentrons sur le troisième type de question : notre
objectif est de résoudre un type spécifique de problème lié à la surface sous-jacente de
l’assemblage, décrit dans la section suivante.

Objectif de la thèse. Le principal objectif de cette thèse est d’étudier l’auto-assemblage
de tuiles lorsqu’il est réalisé sur des surfaces qui sont plus complexes que le plan Euclidien
2D. Quels problèmes peuvent être résolus dans ce cadre ? La principale question générale
que nous abordons dans cette thèse, est de savoir si l’on peut concevoir des systèmes
d’auto-assemblage qui peuvent détecter le type de surface sur laquelle ils se trouvent. Une
façon de le faire est de concevoir des systèmes d’auto-assemblage de tuiles qui peuvent être
réalisés sur plusieurs types de surfaces, mais qui contiennent des caractéristiques uniques
selon le type de surface sur laquelle l’assemblage est effectué.

Nous commençons par cela en utilisant le classique abstract Tile Assembly Model
(aTAM) sur des surfaces plates (en termes intuitifs, des surfaces qui ont une courbure
régulière) en considérant quatre types de surfaces planes (de n’importe quelle dimension).
Notre stratégie est de concevoir un système d’auto-assemblage de tuiles qui produit des
assemblages terminaux qui dépendent du type de surface sur laquelle il est effectué. Pour
ce faire, nous définissons certains types spécifiques de tuiles, avec des combinaisons spé-
cifiques de types de tuiles qui apparaissent uniquement dans les assemblages sur un type
de surface donné.

Cependant, le modèle aTAM est limité aux surfaces pour lesquelles la notion de direc-
tion est cohérente, car les tuiles ne sont pas autorisées à tourner. Cela peut ne pas convenir
à certains types de surfaces. Ainsi, l’un de nos objectifs est de proposer un modèle d’auto-
assemblage de tuiles qui autorise les rotations de tuiles et qui convient à des surfaces plus
complexes. À cette fin, nous introduisons un modèle d’auto-assemblage de tuiles appelé
Surface Flexible Tile Assembly Model (SFTAM) qui permet d’effectuer l’auto-assemblage
de tuiles sur des surfaces quadrangulées complexes, telles que les surfaces de polycubes
(qui sont des objets 3D constitués de cubes unitaires parallèles aux axes, collés les uns
aux autres le long de leurs faces).

D’après les résultats classiques en topologie, on peut dire que la propriété la plus
importante d’une surface est son genre. Intuitivement, il s’agit du nombre de “trous”
présents à l’intérieur de cette surface : une sphère a un genre 0, mais un tore a un genre 1.
Si nous effectuons un auto-assemblage sur des surfaces compliquées, nous nous attendons
à ce que les formes possibles des assemblages varient fortement en fonction du genre de

4

la surface sous-jacente. Ainsi, notre objectif principal est de démontrer que nous pouvons
utiliser le modèle SFTAM afin de distinguer le genre des polycubes.

À cette fin, nous concevons un système du modèle SFTAM qui permet de détecter
le genre d’une classe spéciale de polycubes que nous appelons cuboides d’ordre 1. Ces
polycubes peuvent avoir un genre 0 ou un genre 1 (dans ce cas, ils ont un tunnel). Notre
système a également quelques types de tuiles spéciales qui n’apparaissent dans les assem-
blages terminaux que si le polycube sous-jacent a un genre 1.

Plan de la thèse. Dans le Chapitre 3, nous commençons par définir les notions ma-
thématiques nécessaires pour cette thèse, telles que les surfaces et leurs propriétés, ou les
objets discrets comme les graphes et les polycubes. Nous définissons ensuite formellement
l’auto-assemblage par tuiles, en particulier le classique abstract Tile Asssembly Model
(aTAM). Nous décrivons quelques-unes de ses propriétés de base et les illustrons avec
des exemples. Nous passons en revue une partie de la littérature sur l’auto-assemblage de
tuiles et les sujets connexes, que nous jugeons pertinents pour cette thèse. En particulier,
l’auto-assemblage qui est effectué sur d’autres surfaces que le plan, et les modèles d’auto-
assemblage qui assemblent des surfaces 3D, puisque cette thèse étudie l’auto-assemblage
sur diverses surfaces.

Dans le Chapitre 4, nous étudions quatre types de surfaces plates : le tore plat (avec
deux dimensions finies), le cylindre vertical plat et le cylindre horizontal plat (qui sont
infinis le long d’une dimension et finis le long de l’autre), et le plan Z2 (infini dans les deux
dimensions). Nous présentons un système d’auto-assemblage par tuiles qui, sur chacune de
ces quatre types de surfaces, produit des assemblages terminaux uniques. Nous présentons
des constructions pour ces quatre types de surfaces. Ces résultats montrent que l’on peut
effectivement détecter le type de surface sur laquelle l’auto-assemblage est effectué, en
utilisant le modèle aTAM.

Dans le Chapitre 5, notre objectif est d’effectuer l’auto-assemblage sur des surfaces plus
complexes, qui ne sont pas nécessairement aussi régulières que les surfaces plates. Pour ce
faire, nous introduisons le nouveau Surface Flexible Tile Assembly Model (SFTAM). Ce
modèle est conçu pour étendre le modèle aTAM et permettre d’effectuer l’auto-assemblage
de tuiles sur des polycubes, qui sont des surfaces d’objets 3D obtenus en collant des cubes
unitaires parallèles aux axes le long de leurs faces. La raison pour laquelle on ne peut
pas utiliser le modèle aTAM à cette fin est que ces surfaces peuvent être très irrégulières,
avec divers types de coins, de puits, de tunnels ou de concavités. Ainsi, il est nécessaire
d’ajouter la capacité pour les tuiles de tourner (ce qui n’est pas le cas dans le modèle
aTAM). Nous comparons le modèle SFTAM avec le modèle aTAM et avec un autre modèle
de la littérature, le Flexible Tile Assembly Model (FTAM).

Dans le Chapitre 6, nous prouvons quelques résultats techniques sur la façon de conce-
voir des systèmes d’auto-assemblage de tuiles dans les modèles aTAM et SFTAM pour
trouver le milieu d’une piste donnée. En termes informels, une piste est une portion d’une
surface quadrangulée qui est isomorphe à une grille rectangulaire en deux dimensions. Les
résultats de ce chapitre s’appliquent de manière indéterminée au modèle SFTAM pour
les pistes sur des surfaces 3D telles que les polycubes, ou dans le modèle aTAM en deux
dimensions. Le système qui permet de trouver le milieu d’une piste est appelé middle
finding system, et notre construction est basée sur des compteurs binaires qui permettent
de mesurer la longueur de la piste. Le système de recherche du milieu est utilisé comme
bloc de construction dans le chapitre suivant.

Dans le Chapitre 7, nous présentons le principal résultat de cette thèse. Notre objectif

5

est de montrer que, dans le modèle SFTAM, on peut distinguer entre différents types de
surfaces selon leur caractéristique la plus fondamentale : le genre. Comme les polycubes
généraux sont difficiles à manipuler et peuvent avoir un genre arbitrairement élevé, nous
nous limitons à une famille naturelle de polycubes qui peuvent avoir un genre 0 ou un
genre 1, que nous appelons cuboïdes d’ordre 1. Intuitivement, ce sont des polycubes qui
peuvent être construits à partir de deux cuboïdes (c’est-à-dire des polycubes avec exacte-
ment six faces) en soustrayant l’un à l’autre. Nous prouvons un résultat analogue à celui
des surfaces plates du Chapitre 4. Plus précisément, nous concevons un système d’auto-
assemblage par tuiles dans le modèle SFTAM qui est capable de distinguer le genre du
cuboïde d’ordre 1 sur lequel il est effectué. Pour ce faire, le système contient un sous-
ensemble spécial Y de types de tuiles, qui apparaît sur chaque assemblage terminal si le
cuboïde d’ordre 1 est de genre 1, et aucune tuile de Y n’apparaît jamais si le genre est 0.

Enfin, nous concluons dans le Chapitre 8 en réfléchissant à nos résultats et en proposant
d’autres perspectives.

6

Chapter 2

Introduction

This thesis deals with the subject of tile self-assembly on various surfaces. In this
chapter, we briefly introduce the topic.

2.1 From assembly to self-assembly 7

2.2 Tilings . 8

2.3 DNA computing and self-assembly of nanostructures 9

2.4 Tile self-assembly . 11

2.5 Theoretical questions in self-assembly 11

2.6 Goal of the thesis . 13

2.7 Outline of the thesis . 13

2.1 From assembly to self-assembly

Assembling complex structures from simple building blocks that are bound to each other
is a very general task. It happens for example when humans build complex objects and
machines out of simpler components. It is also a basic feature of nature: molecules
are composed of simpler atoms. We speak of self-assembly when the simple building
blocks lie around in a disordered way, and bind with each other in a spontaneous and
nondeterministic fashion, to form an organized structure.

In fact, natural processes are a fundamental example of this topic: indeed, the forma-
tion of molecules out of atoms can be seen as self-assembly. Even more, in many biological
processes, molecules bind with each other to form larger molecules, for example, DNA
and RNA proteins that can get recombined.

This is studied a lot in the field of material sciences, where self-assembly is used
to form molecular crystals [10, 49], molecular layers [74], drug molecules [80], or other
microscopic or nanometric materials [83]. Nabat, a Persian sweet from Isfahan, is an
example of self-assembly of molecular crystals. In Iran, my home country, one of the

7

2.2. Tilings

first scientific experiments for students in primary schools is to make a Nabat crystal:
preparing a solution supersaturated by sugar, and waiting several days so that crystals
stick to the string, as in Figure 2.1. Notably, the duration of the process and the shape
of Nabat crystals depends on several parameters: the concentration of the solution, the
water temperature, and some other environmental variables of the experiment.

(a) Some Nabat. (b) The process of making Nabat crystal.

Figure 2.1: Nabat, the Persian sugar crystals, an example of self-assembly.1

In this thesis, we study some theoretical aspects of a form of self-assembly, where the
basic objects that get assembled are tiles. This process, called tile self-assembly, is very
powerful, as it enables to make arbitrary computations, and it is successfully studied both
in theory and experimentally.

2.2 Tilings

Tiles are small, relatively flat objects of various colours and shapes, often squares. Tiling
surfaces has been performed since antique times in art and architecture, see for example
traditional Persian tilings in Figure 2.2.

(a) On a simple surface. (b) On a complex surface.

Figure 2.2: Traditional Persian tiling.2

1Images from https://www.irandestination.com/visit-iran-8/ and
http://aradseyyedtahery.blogfa.com/post/1.

2Images from https://commons.wikimedia.org/wiki/File:Roof_hafez_tomb.jpg and
https://atticus.aminus3.com/image/2018-04-18.html.

8

https://www.irandestination.com/visit-iran-8/
http://aradseyyedtahery.blogfa.com/post/1
https://commons.wikimedia.org/wiki/File:Roof_hafez_tomb.jpg
https://atticus.aminus3.com/image/2018-04-18.html

2.3. DNA computing and self-assembly of nanostructures

Square tiles are also present in many popular culture activities such as board games
and puzzles, see Figure 2.3. Here, the adjacent pieces must either have similar or comple-
mentary sides.

(a) A jigsaw puzzle. (b) The game of Carcassonne, where tiles have to
be placed while matching the neighboring tiles.

Figure 2.3: Two games based on square tiles that bind at complementary edges (a) or
similar edges (b).3

The art of tiling has also attracted mathematicians: in 1961, Wang [72] defined Wang
tiles as a mathematical abstraction of tiles: unit squares with specific borders. The
motivation for such tiles was whether one can design sets of tiles that can be used to tile
non-trivially and without holes the entire 2D plane, in such a way that if two tiles are
placed next to each other, their touching sides must be the same. See Figure 2.4 for an
example of such a tiling. Wang conjectured that any tile set that allows such a tiling would
allow a periodic one, but this was soon disproved by his student Berger. In 1965 [17], he
proved that these tilings could simulate any computational process, and thus, could be
non-periodic. He proved the existence of a set of 20426 tile types that could tile the plane,
but only in an aperiodic way (the smallest number of tile types of such a tile set is now
known to be 11, see [41]). This result showed the existence of a connection between tiling
and computation: one could, in theory at least, build a computer using such tiles! But,
interestingly, to go from theory to practice, one needs to go to smaller scales. Indeed,
experimental results involve nanotiles of DNA.

2.3 DNA computing and self-assembly of nanostruc-
tures

Surprisingly, the key to computing via tiles is through tiny molecules that are present in
all our bodies. The molecule DeoxyriboNucleic Acid (DNA) is a world-famous molecule
composed of two chains (called strands), tied to each other in a shape of a double helix:
see Figure 2.5. This molecule was fully uncovered in the 1950s by Watson and Crick [73].
Each strand of DNA is formed by a sequence of nucleotides (of which there are four types:
cytosine [C], guanine [G], adenine [A] and thymine [T]). The two strands are connected in
a way that their nucleotides pairwise match (A with T and C with G), indeed they form

3Images from https://commons.wikimedia.org/wiki/File:Editing_FilePuzzle1_found_bw.jpg
and https://missgeeky.com/2009/03/18/game-review-carcassonne/.

9

https://commons.wikimedia.org/wiki/File:Editing_FilePuzzle1_found_bw.jpg
https://missgeeky.com/2009/03/18/game-review-carcassonne/

2.3. DNA computing and self-assembly of nanostructures

(a) A periodic tiling using four types
of Wang tiles, from [28].

(b) An aperiodic tiling using eleven types of
Wang tiles, from [41].

Figure 2.4: Two tilings of the plane using Wang tiles.

complementary bonds. DNA molecules inherently carry information, and for most known
lifeforms on Earth, DNA is essential as it encodes the development of the organism. Thus,
it can be seen as the “source code” of life.

Figure 2.5: The molecular structure of DNA.4

Inspired by the natural self-assembly processes in chemistry and in biology, in the
1980s, Ned Seeman pioneered the design of nanostructures based on DNA molecules [66].
Indeed, two properties of DNA are useful for this task. First, DNA molecules bind with

4Image from https://commons.wikimedia.org/wiki/File:DNA_Structure%2BKey%2BLabelled.
pn_NoBB.png

10

https://commons.wikimedia.org/wiki/File:DNA_Structure%2BKey%2BLabelled.pn_NoBB.png
https://commons.wikimedia.org/wiki/File:DNA_Structure%2BKey%2BLabelled.pn_NoBB.png

2.4. Tile self-assembly

each other (like pieces of a jigsaw puzzle) due to their complementary structures, hence
they can be used as building blocks for more complex structures. Second, there are
exponentially many types of DNA strands of a given length, and thus one can easily
control which strains can bind with each other or not. Thus, DNA is the perfect ingredient
for assembling nanostructures (provided one can control such small molecules). Seeman
demonstrated indeed that one can manipulate DNA to build very complex nanometric
structures.

Inspired by these works on DNA nanostructures, in 1994, Adelman [2] designed a
nanoscopic DNA-based computing system solving the Travelling Salesman Problem (TSP)
on an instance with seven cities. In this problem, one is given a set of cities and their
pairwise distances, and one must find a tour with shortest total length that passes through
all cities. This is a very famous problem in theoretical computer science that is very
difficult to solve even for powerful computers. So, this result was very inspiring and
demonstrated the potential of nanometric DNA-based computing techniques.

2.4 Tile self-assembly

In this thesis, we study DNA tile self-assembly, which combines the ideas of tiling, of
DNA computing and of self-assembly. This field was pioneered by Winfree in his 1998
PhD thesis [75]. Inspired by the works of Wang, Seeman, Adelman and others and
combining their approaches, he introduced the abstract Tile Assembly Model (aTAM),
that is a mathematical translation of real-life experiments. The goal is to design tiles
(similar to Wang tiles) with some additional properties, that can be built experimentally
using DNA molecules. These molecular tiles, when placed in a suitable solution in suitable
quantities, self-assemble, and produce specific shapes that represent computations.

The tiles that are used in the aTAM model have four specified sides, called glues, each
coming with a specific strength. Two tiles can bind if they are adjacent along sides that
have the same glue. Tiles are placed near to each other, and they bind spontaneously in
a nondeterministic fashion. It was shown by Winfree that this simple theoretical model
can be used to compute, by carefully designing the types of tiles to control the assemblies.
Even more so, it was shown early on that it can simulate any computational process
performed by a classic computer.

To do this some tiles are pre-assembled as a seed assembly. They encode the input of
a given problem (for example, two numbers encoded in binary using two types of tiles).
Then, tiles assemble in any order, until no further tile can be attached: we obtain a
terminal assembly. This resulting assembly represents the output of the computation (in
our example, it could be the sum of the two input numbers, again encoded in binary).

In practice, such tiles are built using DNA molecules and are often cross-shaped instead
of square-shaped [42, 68] (see Figure 2.6 and Figure 2.7). Nowadays, this is a very fruitful
research area, with many practical applications and experimental studies. However, going
back and forth between the theoretical and the experimental studies in this area is very
challenging.

2.5 Theoretical questions in self-assembly

In the last twenty-five years, tile self-assembly has seen a huge development, both in
theory and in practice. From the theoretical perspective (which is the one of this thesis),

11

2.5. Theoretical questions in self-assembly

(a) Single-stranded DNA, from [25]. (b) Schematics of a DNA-based Wang tile,
from [69].

Figure 2.6: How to build Wang tiles using DNA.

Figure 2.7: An assembly of four cross-shaped DNA-based tiles, from [84].

there are many types of relevant questions. Here are a few examples of questions that
have been studied in this field.

– Design tile self-assembly models that correspond to existing experimental capabili-
ties. How to express as closely as possible the constraints from real-life experiments,
while keeping the power of the mathematical model?

– What types of shapes can be built by tile self-assembly, in a specific model? Can
we design tile self-assembly systems that assemble into a large class of (geometric)
shapes? Here one can think of shapes like squares, rectangles, fractals, etc.

– Design tile self-assembly systems that can solve specific computational problems.
Some basic problems that have been studied are for example to design binary coun-
ters, assemble specified shapes, simulate other computational models...

– Perform self-assembly as efficiently and/or reliably as possible. For the efficiency,
one can measure the number of different tiles or the speed of the assembly. For the
reliability, one can bound the number of errors or have a unique possible terminal
assembly.

– etc.

In this thesis, we are focused on the third type of question: our goal is to solve a
specific type of problem related to the underlying surface of the assembly, described in
the next section.

12

2.6. Goal of the thesis

2.6 Goal of the thesis

The main goal of this thesis is to study tile self-assembly that is performed on surfaces
that are more complex than the 2D Euclidean plane. What problems can be solved in
this setting? The main general question that we address in this thesis is whether one
can design self-assembly systems that can detect the type of surface that they are located
on. One way to do this is to design tile self-assembly systems that can be performed on
several types of surfaces, but that contain unique features depending on which type of
surface the assembly is actually performed on.

We first do this using the classic abstract Tile Assembly Model (aTAM) on flat surfaces
(intuitively speaking, surfaces that have a regular curvature) by considering four types of
flat surfaces (of any dimension). Our strategy is to design a tile self-assembly system that
produces terminal assemblies that depend on the type of surface that it is performed on.
To do so, we will have some specific types of tiles, with specific combinations of tile types
that will appear only in the assemblies on a given surface type.

However, the aTAM is limited to surfaces that have a consistent concept for directions,
as tiles are not allowed to rotate. This may not be suitable for some types of surfaces.
Thus, one of our goals is to propose a tile self-assembly model that allow tile rotations and
is suitable for more complicated surfaces. To this end, we introduce a tile self-assembly
model called Surface Flexible Tile Assembly Model (SFTAM) which enables to perform
tile self-assembly on complex quadrangulated surfaces, such as surfaces of polycubes (3D
objects made of axis-parallel unit cubes glued together along their faces).

Arguably, from classic results in topology, the most important property of a surface is
its genus. Intuitively, this is the number of “holes” present inside that surface: a sphere
has genus 0, but a torus has genus 1. If we perform self-assembly on complicated surfaces,
we expect that the possible shapes of the assemblies will strongly vary depending on the
genus of the underlying surface. Thus, our main goal is to demonstrate that we can use
the SFTAM in order to distinguish the genus of polycubes.

To this end, we design a SFTAM system that enables to detect the genus of a special
class of polycubes that we all order-1 cuboids. These polycubes can have genus 0 or
genus 1 (in this case, they have a tunnel). Our system also has some special tile types
that appear in terminal assemblies only if the underlying polycube has genus 1.

2.7 Outline of the thesis

In Chapter 3, we start by defining mathematical notions necessary for this thesis, such
as surfaces and their properties and discrete objects like graphs and polycubes. We then
formally define tile self-assembly, in particular the classic abstract Tile Assembly Model
(aTAM). We describe some basic properties and illustrate with examples. We review
some of the literature on tile self-assembly and related topics, that are relevant to this
thesis. In particular, self-assembly that is performed on other surfaces than the plane,
and self-assembly models that assemble 3D surfaces, since this thesis studies self-assembly
on various surfaces.

In Chapter 4, we study four types of flat surfaces : the flat torus (finite along two
dimensions), the flat vertical cylinder and the flat horizontal cylinder (finite along one
dimension), the plane Z2 (infinite in both dimensions). Our goal is to show that self-
assembly performed on one of these flat surfaces, can distinguish the surface it is performed

13

2.7. Outline of the thesis

on. More precisely, we design an aTAM tile self-assembly system with two specific tile
types x and y. This system can be used on any of the four types of flat surface, in such
a way that in any terminal assembly, the subset of {x, y} that appears in the assembly
uniquely depends on the type of the surface the assembly is performed on.

In Chapter 5, our aim is to perform self-assembly on more complex surfaces, which are
not necessarily as regular as flat surfaces. To do so, we introduce the new Surface Flexible
Tile Assembly Model (SFTAM). This model is designed to extend the aTAM and enable
to perform tile self-assembly on polycubes, which are surfaces of 3D objects obtained by
gluing axis-parallel unit squares along their faces. The reason one cannot use the aTAM
for this purpose is that these surfaces can be very irregular, with various types of corners,
pits, tunnels or concavities. Thus, one needs to add the ability for tiles to rotate (which
is not there in the aTAM). We compare the SFTAM with the aTAM and with another
model from the literature, the Flexible Tile Assembly Model (FTAM).

In Chapter 6, we prove some technical results on how to design aTAM or SFTAM
tile assembly systems to find the middle of a given track. Informally speaking, a track
is a portion of a quadrangulated surface that is isomorphic to a rectangular grid in two
dimensions. The results from this chapter apply indeterminately to the SFTAM for tracks
on 3D surfaces such as polycubes, or to the aTAM in two dimensions. The system that
enables to find the middle of a track is called middle finding system, and the construction
is based on binary counters that enable to measure the length of the track. The middle
finding system will be used as a building block in the next chapter.

In Chapter 7, we present the main result of this thesis. Our goal is to show that, in
the SFTAM, one can distinguish between different types of surfaces according to their
most fundamental characteristic: the genus. As general polycubes are difficult to handle
and can have arbitrarily high genus, we restrict ourselves to a natural family of polycubes
that can have genus 0 or genus 1, that we call order-1 cuboids. Intuitively speaking, they
are polycubes that can be built from two cuboids (that is, polycubes with exactly six
faces) by subtracting one from the other. We provide an analogous result as that for flat
surfaces from Chapter 4. More precisely, we design an SFTAM tile self-assembly system
that is able to distinguish the genus of the order-1 cuboid it is performed on. To do so, the
system contains a distinguished subset Y of tiles that appears on every terminal assembly
if the host order-1 cuboid is of genus 1, and no tile of Y ever appears if the genus is 0.

Finally, we conclude in Chapter 8 by reflecting on our results and proposing further
perspectives.

Usage of the PyTAS software Many figures in this thesis were produced using the
Python-based Tile Assembly Simulator software developed by Patitz and others since
2017 [57]. In this software, one can specify a tile self-assembly system and simulate the
assembly, which is shown in a graphical interface. We have used the software to check the
validity of some of our systems. As the software also visualizes the tiles and the assemblies,
we have used the produced pictures (after some editing using the GIMP software) to
illustrate the assemblies of this thesis, mainly in Chapter 4, Chapter 6 and Chapter 7
(sometimes we have drawn the assemblies “manually”, using the TikZ LATEXpackage).

14

Chapter 3

Preliminaries and state of the art

In this chapter, we present preliminary notions, definitions and examples necessary for
understanding the next chapters. We also briefly survey existing results in the area of tile
self-assembly (and some related topics) and mention important references. In particular,
we mention the previous works of tile self-assembly on surfaces other than the Euclidean
plane, and tile self-assembly for 3D objects.

3.1 Preliminary mathematical definitions 15

3.2 Surfaces and associated discrete structures 18

3.3 The abstract Tile Assembly Model (aTAM) 24

3.4 Tile self-assembly on 2D surfaces other than the plane 43

3.5 Assemblies to construct 3D shapes 45

3.6 Conclusion . 52

3.1 Preliminary mathematical definitions

We start with some definitions that will be useful to define the necessary notions for tile
self-assembly systems.

3.1.1 Mathematical notation

We denote by N the set of natural numbers, that is, the set {1,2,3, . . .} and by Z, the set
of integers: {. . . ,−3,−2,−1,0,1,2,3, . . .}.

For a (partial) function f ∶ X ⇢ Y , we denote by Dom(X) the domain of X (the
elements of X over which f is defined) and by Im(f), the image of f (the elements of Y
that have a pre-image by f).

15

3.1. Preliminary mathematical definitions

3.1.2 Graphs

We now give the definition of a graph, which is a fundamental object in discrete mathe-
matics to represent sets of elements that are in relation with each other, and that will be
used at many places in this thesis.

Definition 3.1 (Graph). A (simple, undirected) graph G = (V,E) is a discrete object
defined over a (possibly infinite) set V of vertices and a (possibly infinite) set E of edges,
which are pairs of vertices of V . Two vertices of G are adjacent if they belong to the same
edge of E.

The notion of subgraph is defined as follows.

Definition 3.2 (Subgraph). Given a graph G = (V,E), a subgraph H = (V ′,E′) of G is
a graph such that V ′ ⊆ V and E′ ⊆ E. For a set S of vertices of V , the subgraph of G
induced by S is the subgraph H = (S,ES) of G where ES contains all edges of E with two
endpoints in S.

We also need to define connectivity notions for graphs.

Definition 3.3 (Graph connectivity). A graph is connected if for any two vertices of G,
there exists a path in G between these two vertices. A connected component of a graph
G is a maximal subgraph of G that is connected. (If a graph is connected, it has only one
connected component.)

The following notion will be useful to us, to say if two graphs have the same size and
the same structure.

Definition 3.4 (Graph isomorphism). An isomorphism of a graph G1 to a graph G2 is a
bijective function f ∶ V (G1) → V (G2) such that two vertices v,w of G1 are connected by
an edge if and only if f(v) and f(w) are connected by an edge in G2.

3.1.3 The 2D and 3D infinite lattices

We now define two infinite structures, that can be seen as infinite graphs, which will be
the hosts of some of our tile assemblies.

Definition 3.5 (2D lattice). The 2-dimensional lattice (2D lattice for short) is the in-
finite graph with vertex set Z2, with an edge between two vertices (x1, y1) and (x2, y2) if
(i) ∣x2 − x1∣ = 1 and y1 = y2 or (ii) ∣y2 − y1∣ = 1 and x1 = x2.

Definition 3.6 (3D lattice). The 3-dimensional lattice (3D lattice for short) is the infi-
nite graph with vertex set Z3, with an edge between two vertices (x1, y1, z1) and (x2, y2, z2)
if (i) ∣x2 − x1∣ = 1, y1 = y2 and z1 = z2, (ii) ∣y2 − y1∣ = 1, x1 = x2 and z1 = z2, or (iii)
∣z2 − z1∣ = 1, x1 = x2 and y1 = y2.

See Figure 3.1 and Figure 3.2 for illustrations of the 2D and 3D lattices, respectively.

Definition 3.7 (Facet of the 2D and 3D lattices). A facet is a face of the lattice Z2 or
Z3, i.e. a unit square whose vertices have integer coordinates.

We can also work with a finite subgraph of the 2D lattice, defined as follows.

Definition 3.8 (Rectangular grid graph). The rectangular grid graph Gn,m is the sub-
graph of the 2D lattice containing all vertices (x, y) with 0 ≤ x ≤ n − 1 and 0 ≤ y ≤m − 1.

See Figure 3.3 for an illustration of the rectangular grid graph G5,9.

16

3.1. Preliminary mathematical definitions

(0, 0)

Figure 3.1: The 2D lattice.

X

Y

Z

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

(0, 0, 0)
•

Figure 3.2: The 3D lattice.

(0, 0)

Figure 3.3: The rectangular grid graph G9,5.

17

3.2. Surfaces and associated discrete structures

3.2 Surfaces and associated discrete structures

We now give some definitions about the mathematical objects of surfaces, a part of the
field of topology. Indeed, the goal of this thesis is to study tile self-assembly when it is
performed on various surfaces. For a deeper mathematical covering of these topics, we
refer to the classic textbook [9] on topology and the more recent book on surfaces [56].

3.2.1 Surfaces and discrete surfaces

We begin with some basic definitions.

Definition 3.9 (Topological space). A topological space is a set X whose elements are
called points, with a collection τ of subsets of X called open sets and satisfying the fol-
lowing axioms:

– the empty set and X itself belong to τ ;
– τ is closed under finite or infinite unions;
– τ is closed under finite intersections.

The following definition is central in topology.

Definition 3.10 (Homeomorphism of topological spaces). A homeomorphism of a topo-
logical space S1 to another topological space S2 is a bijective and continuous function
f ∶ S1 → S2 that has a continuous inverse function. If such a homeomorphism exists, we
say that S1 and S2 are homeomorphic.

Homeomorphisms are the isomorphisms for topological spaces: they preserve all the
topological properties of a space. When two topological spaces are homeomorphic, from
a topological viewpoint, they are the same.

We are now ready to formally define the notion of a surface.

Definition 3.11 (Surface). A (continuous) surface is a 2-dimensional topological mani-
fold, that is, a Hausdorff topological space such that each point has a neighborhood home-
omorphic to an open disk in the Euclidean plane.

As we will consider discrete versions of surfaces, we need the following definition of a
graph embedding.

Definition 3.12 (Graph embedding on a surface). For a graph G = (V,E) and a surface
S, an embedding of G in S is an injective mapping ρV ∶ V → S of the vertices of G to
the points of S together with a mapping ρE ∶ E → S of the edges of E to arcs of S such
that any edge xy of G is mapped to a simple arc between ρV (x) and ρV (y), in a way
that any two edges xy and vw may only intersect at their endpoints (in the case where
{x, y} ∩ {v,w} ≠ ∅).

The regions of S that are enclosed by arcs of the embedding are called faces.

We can now define discrete surfaces.

Definition 3.13 (Discrete surface). A discrete surface is a surface S with a graph G
embedded on S.

The 2D lattice defined in Definition 3.5 can be seen as a discrete version of the Eu-
clidean plane, partitioned into the set of unit square facets of the 2D lattice. See Figure 3.4
for a discrete sphere and a discrete torus.

18

3.2. Surfaces and associated discrete structures

(a) A discrete sphere. (b) A discrete torus.

Figure 3.4: Two orientable discrete surfaces.1

One may want to restrict the shape of the faces of a discrete surface, as follows.

Definition 3.14 (Triangulation and Quadrangulation). A triangulation of a surface S is
a graph embedded on S so that each face is a triangle. A quadrangulation of a surface S
is a graph embedded on S so that each face is a quadrangle (a polygon with four sides).

For example, the lattice Z2, or the surface of a polycube, if seen as graphs, form
natural quadrangulations, since their facets are quadrangles. Quadrangulations are nat-
urally useful for tile self-assembly, since tiles are quadrangles. See Figure 3.4(b) for a
quadrangulated torus.

Orientability and genus are the most classical tools for categorising surfaces. Here is
an informal definition of orientability (for a rigorous, but rather complicated, definition,
see the book [56]).

Definition 3.15 (Orientability of surfaces). A surface is called orientable if it admits a
consistent and continuous notion of clockwise and counterclockwise orientations at every
point of the surface. Otherwise, it is called non-orientable.

The Euclidean plane Z2, the sphere or the torus are examples of orientable surfaces.
A Möbius strip (Figure 3.5) is an example of a non-orientable surface.

Figure 3.5: A discretized Möbius strip, a simple non-orientable surface.2

1Images from https://commons.wikimedia.org/wiki/File:Sphere_wireframe_10deg_3r.svg and
https://commons.wikimedia.org/wiki/File:Simple_Torus.svg.

2Image from https://commons.wikimedia.org/w/index.php?curid=15278313.

19

https://commons.wikimedia.org/wiki/File:Sphere_wireframe_10deg_3r.svg
https://commons.wikimedia.org/wiki/File:Simple_Torus.svg
https://commons.wikimedia.org/w/index.php?curid=15278313

3.2. Surfaces and associated discrete structures

3.2.2 Genus of a surface

The most important property of an orientable surface is its genus. This notion was
defined during the 19th century, when surfaces were studied more deeply than before, see
the book [62] for more details, (in particular, the term genus was first used by Clebsch in
1865 see [62, p.59]). The genus can be defined as follows.

Definition 3.16 (Genus of a surface). The genus of an orientable surface S is the maxi-
mum number of closed curves that one can cut from the surface, while keeping it connected.

The Euclidean plane and the sphere are examples of orientable surfaces of genus 0.
The torus is an example of orientable surface of genus 1. For two polycubes of genus 1
and 2, see Figure 3.6.

Figure 3.6: Two polycubes, of genus 1 and 2.

The importance of the genus stems from the notion of homeomorphism of surfaces
(Definition 3.10). Informally, two surfaces are homeomorphic if we can obtain one from
the other by stretching, bending, squeezing or shrinking it (possibly after cutting it to
unknot it, and gluing the sides of the cut back together in the exact same place as before).
A famous joke is that, supposedly, a doughnut and a coffee mug are both indistinguishable
to a topologist, since they are both homeomorphic to a torus: indeed they have the
same genus (one), and they are homeomorphic. See Figure 3.7 for a visualization of this
homeomorphism.

Figure 3.7: A doughnut and a coffee mug are the same from the viewpoint of a topologist.3

3Image from https://commons.wikimedia.org/wiki/File:Topology_joke.jpg.

20

https://commons.wikimedia.org/wiki/File:Topology_joke.jpg

3.2. Surfaces and associated discrete structures

The notion of genus is also important for graphs. The definition can be transferred to
graphs, through the notion of embedding of a graph on a surface (Definition 3.12).

Definition 3.17 (Genus of a graph). The genus of a graph G is the smallest genus of a
surface on which G can be embedded.

Graphs that can be embedded on a surface of genus 0 are called planar (for example,
all triangulations of a sphere are planar). Not all graphs are planar, for example, the
complete graph on five vertices is a famous example of a graph with genus 1. See the
book [39] for more on this topic.

The following definition comes from the works of Euler on polyhedra. In fact, the
formula was already proved by Descartes but not published (see [62, p.147]). For an
excerpt of the original paper see Figure 3.8.

Definition 3.18 (Euler number, [31]). Let S be a discrete orientable surface coming from
a graph G embedded on S, with v vertices, e edges and f faces. The Euler number of S
is v − e + f .

Figure 3.8: The Euler formula in Euler’s original paper [31], in Latin, and reproduced
from [62, p.147].

Euler showed that v − e + f = 2 for graphs embedded on the discrete sphere, inde-
pendently of the graph and the embedding. More generally, it is known that the Euler
number determines the genus of the surface, as follows (this theorem is attributed to the
admiral De Jonquières by Poincaré, see [62, p.150]).4

Theorem 3.19 (De Jonquières). For any discrete orientable surface of genus g, we have
v − e + f = 2 − 2g.

The value v − e+ f is usually denoted by χ, and it is called the Euler characteristic of
a discrete surface.

What happens for more general (not necessarily discrete) surfaces? Famous mathe-
maticians like Jordan and Möbius already had the intuition in the 19th century that for all
compact5 surfaces, the genus determines the surface up to homeomorphism. After many
attempts to show this, it was finally proved by Brahana in 1921 [20], as the Classification
Theorem for Compact Surfaces. See the book [34] for the history and a presentation of
the proof. One main difficulty of the proof is to show that this type of surface can always

4Poincaré later showed that such a formula can be extended to dimensions higher than 3.
5A surface with point set X is compact if, for every collection C of open subsets of it whose union

is X, there is a finite subcollection of C whose union is X. For example, the sphere or the torus are
compact, but if one removes a finite set of points from one of them, it becomes non-compact.

21

3.2. Surfaces and associated discrete structures

be triangulated. The following statement is a simplified version of the Classification The-
orem for Compact Surfaces (for orientable surfaces without boundaries) and shows the
importance of the genus for “natural” surfaces.

Theorem 3.20 (Brahana [20], see also [34, Theorem 6.1]). Two compact orientable sur-
faces without boundary are homeomorphic if and only if they have the same genus.

Thus, the genus determines the shape of a surface. Using the homeomorphism between
surfaces of the same genus, the geometric constructions that can exist on one surface (such
as arrangements of cycles or lines) also exist on any surface of the same genus (after some
stretching and resizing).

In the context of tile self-assembly performed on a given surface, these constructions
are the shapes of the assemblies. Intuitively, it seems that tile self-assembly performed
on two surfaces with the same genus will behave similarly (as compared to surfaces with
different genus). This is the reason why the focus of Chapter 7 is on the genus of a given
surface.

Perhaps the most famous result in the area of surface classifiation is the 1904 Poincaré
conjecture, which was deemed a “millenium problem” by The Clay Mathematics Institute,
and which was proved by Perelman in 2003 [51]. It states that every simply connected,
closed 3-manifold is homeomorphic to the 3-sphere (thus, this concerns surfaces in 4D,
which we do not consider in this thesis).

3.2.3 Polycubes

We now define 3D objects called polycubes. Indeed, Chapters 5 and 7 of this thesis deal
with tile self-assembly performed on polycube surfaces.

Informally speaking, polycubes are special kinds of orthogonal polyhedra made from
unit cubes that are glued together along their faces. See Figure 3.9 for some examples.
Polycubes are a natural discrete version of 3D surfaces, indeed for any 3D surface one
can approximate it using sufficiently small polycubes [23]. Polycubes have been studied
in previous works in the context of self-assembly [18, 19, 30] and origami-like folding
processes in 3D [6]. Polycubes generalize polyominoes in the 2D plane [6, 18].

For the formal definition, we work in 3-dimensional space, on the integer lattice Z3.
Recall that a facet is a unit square in Z3 with integer coordinates (Definition 3.7).

Definition 3.21 (Polycube). A polycube is a 3D structure that is a subset of Z3 and
is formed by the union of axis-parallel unit cubes whose vertices have integer coordinates,
and that are pairwise attached by their facets.

All small polycubes that fit inside a 2 × 2 cube are represented in Figure 3.9.
See Figure 3.10 for a polycube containing 11 facets, 10 of them being on its surface.
It will be useful to define graphs from polycubes as follows.

Definition 3.22 (Facet graph). Given a polycube C, we define its facet graph Gf(C) as
the graph whose vertex set is the set of facets on the surface of C, and where two facets
are adjacent if they share the same edge of C.

An example with two simple polycubes and their facet graphs is given in Figure 3.11.
In Figure 3.9, notice the possible complexity in terms of how many facets can be

incident with a given vertex. In these polycubes, the number of facets incident with the
vertex in the middle of the figure are respectively: 3 in (a), 4 in (b), 5 in (c), 4 in (d), 6

22

3.2. Surfaces and associated discrete structures

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Figure 3.9: All polycubes that fit in a 2 × 2 cube, from [30].

Figure 3.10: A polycube made of two unit cubes. It contains 11 facets, but only 10 of
them belong to the surface of the polycube.

•

•

•
•

•

•

(a) A polycube C1 made of a sin-
gle unit cube.

•

•

•
•

•

•

(b) The facet graph of C1.

•

•
•

•

•
•

•

•
•

•

•

(c) A polycube C2 made of two
unit cubes.

•

•
•

•

•
•

•

•
•

•

(d) The facet graph of C2.

Figure 3.11: Two polycubes with their corresponding facet graphs.

in (e), 6 in (f), 5 in (g), 4 in (h), 7 in (i), 6 in (j), 6 in (k), 3 in (l), 0 in (m). We can

23

3.3. The abstract Tile Assembly Model (aTAM)

define different types of vertices of a polycube as follows.

Definition 3.23 (Types of polycube vertices). Let C be a polycube and v, a vertex of C.
Vertex v is concave if there are two unit-length edges vx and vy of C (x, y are vertices

of C) containing v forming a right angle, and the segment xy is not in the inside of C.
On the other hand, vertex v is convex if for any two unit-length edges vx and vy

containing v, the segment xy is in the inside of C.

For example, all vertices in the polycube of Figure 3.9(a) are convex, while the central
vertices of the polycubes of Figure 3.9(e) and Figure 3.9(l) are concave. The central vertex
of the polycube in Figure 3.9(d) is neither concave nor convex.

3.3 The abstract Tile Assembly Model (aTAM)

In this section, we formalize the classic model for tile self-assembly, called abstract Tile
Assembly Model (aTAM), and we review some results from the literature. Before, we
briefly summarize the history of the area.

3.3.1 History

The field of tile self-assembly originates in the area of tiling. In 1961, Wang [72] introduced
Wang tiles, that is, 2-dimensional unit squares with labels/colors on each edge (later called
glues). Berger [17] proved in 1965 that this model provides a Turing-universal computation
model, based on these tiles. More precisely, he proved that for every Turing machine M
with some input I, there exists a tile set T (M,I) that can tile the entire plane if and only
if M halts on input I.

In the 1980s, Seeman [66, 42] developed the area of DNA nanotechnology. The idea
of this field is to use the power of DNA molecules (that can attach each other using their
complementary patterns) to assemble nanoscopic objects.

In 1994, Adleman [2] used such tiny DNA objects to perform computations. He
encoded an instance of the famous Travelling Salesman Problem as DNA molecules, and
the molecules assembled in such a way as to provide a solution to the problem. This
feature is now labelled as DNA computing.

In 1998, inspired by Wang tiles and the works of Seeman and Adleman, Winfree
introduced in his PhD thesis from 1998 [75], the abstract Tile Assembly Model (aTAM),
which was refined in the 2001 PhD thesis of Rothemund [63], and by Rothemund and
Winfree together in [65]. This model uses Wang tiling, with the extra information of
a non-negative integer strength for each glue label, and the notion of temperature to
help controlling the assemblies. Self-assembly was implemented in practice, and although
the aTAM model is a simplification of real-life experiments, many theoretical works and
techniques have been confirmed experimentally.

Winfree showed that the power of DNA self-assembly enables to compute anything
that (given enough time) is computable by a computer: tile self-assembly is Turing-
universal [76]. This has proved the importance of this model and increased he interest of
researchers.

After these early results, numerous other works have been performed on tile self-
assembly, both on the theoretical side and on the practical side. Many models have been
introduced over the years, and many problems have been studied. We will review some of
them, however we cannot cover them all here. We refer to the 2014 survey by Patitz [58] for

24

3.3. The abstract Tile Assembly Model (aTAM)

more details on the literature, and to the online bibliography of Seeman’s laboratory [67].
See also the 2008 PhD thesis of Becker [12], the 2014 PhD thesis of Evans [32], the 2015
PhD thesis of Hendricks [40] and the 2022 PhD thesis of Bohlin [18].

3.3.2 Definitions

We now proceed with the formal definitions for tile self-assembly in the aTAM.

Definition 3.24 (Tile type in the aTAM). Let Σ be a finite label alphabet and ϵ represent
the null label. A tile type t is a 4-tuple t = (t1, t2, t3, t4) with ti ∈ Σ ∪ {ϵ} for each
i = {1,2,3,4}. Each copy of a tile type is a tile. t1 is the northern glue; t2 is the
eastern glue; t3 is the southern glue; t4 is the western glue. A strength str ∶ Σ ∪ {ϵ} → N
will be given to each label. A tile of a given tile type t is a 2D unit square whose sides are
assigned the glues of t.

A glue label of ϵ indicates that the tile cannot bind on this side of the tile.
Tiles are allowed to translate, but not to rotate. Figure 3.12 shows a representation

of a tile of type t = (a, b, c, d) with str(a) = 2 and str(b) = str(c) = str(d) = 1. The glue
labels are written near the corresponding edges of the tile (glues with label ϵ are usually
omitted). We represent the strength of the glue by either one or two notches (in this
thesis all considered strengths are at most 2).

t b

c

d

a

Figure 3.12: An aTAM tile of type t = (a, b, c, d) with str(a) = 2 and str(b) = str(c) =
str(d) = 1.

In the definition of tile types, we show labels by numbers rather than cardinal direc-
tions. In Figure 3.12, the northern label is a, the eastern label is b, the southern label is
c, and the western label is d.

A position (for placing a tile) is a couple (x, y) of Z2.
Now we can define a tile assembly system in the aTAM.

Definition 3.25 (Tile assembly system (TAS) in the aTAM). A tile assembly system, or
TAS, in Z2 is a quintuple S = (Σ, T,ασ, str, τ), where:

– Σ is an alphabet;
– T is a finite set of tile types on Σ;
– the seed assembly (or seed for short) ασ is a set of tiles, each associated with a

distinct position of Z2;
– str is a function from Σ∪{ϵ} to non-negative integers called strength function such

that str(ϵ) = 0; and
– τ ∈ N is called the temperature.

We now give a first example of a TAS in the aTAM. This is a very simple TAS, with
three tile types.

Example 3.26 (aTAM TAS). Let S = (Σ, T,ασ, str, τ) be the aTAM TAS where:

– Σ = {a, b, c} is the alphabet;

25

3.3. The abstract Tile Assembly Model (aTAM)

– T = {t0, t1, t2} with t0 = (a, a, b, c), t1 = (b, ϵ, ϵ, a) and t2 = (ϵ, c, a, ϵ) are the tile types;
– the seed assembly ασ is a tile of type t0 placed at (0,0);
– str(ϵ) = 0, str(a) = 1 and str(b) = str(c) = 2;
– the temperature τ = 2.

The tile types of the TAS S from Example 3.26 are depicted in Figure 3.13; for a
better visualization, we give a distinct color to each tile type and to the different glues.

t0 a

b

c

a

t1a

b

t2 c

a

Figure 3.13: The tile types of the aTAM TAS S from Example 3.26.

Remark 3.27. Although in Definition 3.25, a TAS is defined with a unique seed assembly,
in practice, the seed assembly is often regarded as the input of the TAS, which behaves
differently depending on that input. Thus, we often relax this by describing, for the same
TAS, a family of allowed seed assemblies.

Next, we present some further notations and definitions regarding the assembly dy-
namics. Note that tiles can be placed anywhere on Z2, but cannot rotate.

Definition 3.28 (Assembly). An assembly α of an aTAM TAS S = (Σ, T,ασ, str, τ) on
Z2 is a partial function α ∶ Z2

⇢ T .
For two adjacent positions (x1, y1) and (x2, y2) of Z2 with α(x1, y1) = t and α(x2, y2) =

t′, we say that t and t′ bind if the glues of t and t′ on the touching sides of t and t′ are
equal and have positive strength.

Definition 3.29 (Assembly graph). The assembly graph Gα associated with an assembly
α has the set Im(α) as its vertices, and two positions (x1, y1) and (x2, y2) are adjacent
in Gα if the tiles α(x1, y1) and α(x2, y2) bind.

See Figure 3.14 for the assembly graph of the assembly from Figure 3.19(g).

Figure 3.14: The assembly graph of the assembly from Figure 3.19(g).

Definition 3.30 (τ -stable assembly). For an integer τ (usually, the temperature of the
TAS), an assembly α is τ -stable if for breaking the assembly graph Gα into several con-
nected components by removing any set C of edges of Gα, the sum of strengths of the
bonds corresponding to edges of C is at least τ .

Two simple assemblies with different values of stability are given in Figure 3.15. In
the left assembly, the two tiles are attached via a glue of strength 1, so the assembly is

26

3.3. The abstract Tile Assembly Model (aTAM)

1-stable but not 2-stable. In the right assembly however, since the tiles are attached by a
glue of strength 2, the assembly is 2-stable.

t0 a

b

c

a

t1a

b

(a) A 1-stable assembly.

t2 c

a

t0 a

b

c

a

(b) A 2-stable assembly.

Figure 3.15: Two assemblies of the TAS S from Example 2.26. With temperature τ = 2,
the left assembly is not producible, but the right assembly is producible.

In the process of tile self-assembly, we start with the seed assembly and then we add
tiles one by one. This is formally described as follows.

Definition 3.31 (Producible and terminal assemblies). Let S = (Σ, T,ασ, str, τ) be an
aTAM TAS. An assembly α of S is producible if either α is ασ, or if α can be obtained
from a producible assembly β by τ -stably adding a single tile from T .

We write β →S α when α is producible from β and we denote the set of producible
assemblies of S by A[S].

A producible assembly α is the result res(α) of an assembly sequence α0 → α1 → . . .→
α, where α0 = ασ.

An assembly is terminal if no tile can be τ -stably attached to it. The set of producible,
terminal assemblies of S is denoted by A◻[S].

As an example, a more interesting producible assembly is shown in Figures 3.16, 3.17,
3.18 and 3.19. The assembly starts with a single seed tile of type t0. On each of its south
and west glues, which have strength 2, tiles of type t1 and t2, respectively, can attach.
As these tiles each have a strength 1 glue at the west and south, respectively, since the
temperature τ is 2, this creates room for another tile of type t0 to attach to these two tiles
simultaneously. Then, the assembly can go on indefinitely in this way, creating a ribbon
directed from north-east to south-west.

Remark 3.32. We note that aTAM tile self-assemblies are inherently nondeterministic
and asynchronous. Thus, one of the challenges in designing a TAS in the aTAM is to
overcome this limitation to control the growth of the assembly as required.

As Z2 is infinite, one can also consider infinite assemblies in the aTAM. Most definitions
from the classic aTAM transfer to the infinite case. We will need the following definition
for infinite assemblies, that slightly vary, as an infinite assembly can be called terminal.

Definition 3.33 (Infinite assemblies). The result of an infinite assembly sequence is its
limiting assembly. An infinite assembly is terminal if no tile can be τ -stably attached to
it.

Infinite self-assembly is studied mainly to uncover the absolute limits of the model.
In particular, what kind of infinite shapes can or cannot be assembled, under various
constraints on the type of assembly. We refer to the survey [59] for more on infinite
aTAM assemblies.

27

3.3. The abstract Tile Assembly Model (aTAM)

⋮

⋮

⋯⋯

t0 a

b

c

a

(a) First stage of the assembly: the seed is
placed.

⋮

⋮

⋯⋯

t0 a

b

c

a

t1a

b

t2 c

a

(b) Second stage of the assembly,
after addition of two tiles of type t1

and t2.

Figure 3.16: Example aTAM assembly for the TAS in Example 3.26 (part 1 of 4).

⋮

⋮

⋯⋯

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

(c) Third stage of the assembly:
one tile of type t0 is added.

⋮

⋮

⋯⋯

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

(d) Fourth stage of the assembly:
two tiles of type t1 and t2 are

added.

Figure 3.17: Example aTAM assembly for the TAS in Example 3.26 (part 2 of 4).

3.3.3 Fundamental examples: simulating counters via the aTAM

One fundamental ingredient of many complex tile self-assembly systems are binary coun-
ters, as they enable to control the growth of assemblies, as well as complex computations.

We first present an aTAM TAS that represents a limited counter. It is able to deter-
mine the parity of the number of tiles labelled “one” in an input seed. It is taken from [24]
(with the minor modification of the final seed assembly tile, in order to obtain terminal
assemblies).

28

3.3. The abstract Tile Assembly Model (aTAM)

⋮

⋮

⋯⋯

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

(e) Fifth stage of the assembly:
one tile of type t0 is added.

⋮

⋮

⋯⋯

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

(f) Sixth stage of the assembly:
two additional tiles of types t1

and t2 are placed.

Figure 3.18: Example aTAM assembly for the TAS in Example 3.26 (part 3 of 4).

⋮

⋮

⋯⋯

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

(g) Seventh stage of the assembly.

⋮

⋮

⋯⋯

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

t1a

b

t2 c

a

t0 a

b

c

a

⋰

(h) Advanced stage of the
assembly.

Figure 3.19: Example aTAM assembly for the TAS in Example 3.26 (part 4 of 4).

Example 3.34 (Parity aTAM TAS [24]). Let Sp = (Σ, T,ασ, str, τ) be the TAS where:

– Σ = {0,1, p} is the alphabet;
– T = {t0+0, t0+1, t1+0, t1+1, tb, ts, tp, t0, t1} (see Figure 3.20 for the tile types);
– the seed assembly ασ is composed of a tile of type tp at (0,0), a tile of type ts at
(0,1), a sequence of k tiles, each of type t0 or t1 at (1,0), . . . , (k,0), and a tile of
type tb at (k + 1,0).

– str(ϵ) = 0, str(0) = str(1) = 1 and str(p) = 2;
– the temperature τ = 2.

29

3.3. The abstract Tile Assembly Model (aTAM)

The tile types of the TAS Sp from Example 3.34 are depicted in Figure 3.20. We have
a seed that is made of a horizontal row of tiles representing zeroes (type t0) and ones
(type t1). The goal is to have a terminal self-assembly that puts at the rightmost tile, a
tile representing the parity of number of ones that have been placed in the seed assembly:
if there is an even number of “one” tiles, the eastern glue label will be “0”, and otherwise
it will be “1”. Two terminal assemblies are given in Figures 3.21 and 3.22. In Figure 3.21,
the seed represents the input binary string “11001”. Since the temperature is 2, the only
position where a tile can be placed is at the leftmost side of the row above the seed. Since
the leftmost bit tile of the seed is of type t1, the only tile that can attach is of type t0+1,
indicating that at this stage, the number of detected tiles of type t1 was even (in this case,
zero) but the current read tile is of type t1. As 0 + 1 is odd, this tile has an eastern glue
with label 1. There are four types of such tiles, that correspond to the four possibilities
ta+b where a, b ∈ {0,1}, a represents the parity of the number of tiles of type t1 read so
far, and b represents the type of the currently read seed tile, and the eastern glue of ta+b
has label a + bmod 2. Thus, at the end of the assembly, the second row is filled (until
just before the seed tile of type tb), and the eastern glue label of the north-eastern tile
has value 1. The assembly of Figure 3.22 is similar, with the binary string “10001”, and
so the outcome is an eastern glue label of 0.

t0+0 0

0

0 t0+1 1

1

0 t1+0 1

0

1 t1+1 0

1

1

(a) Parity tiles.

tbp ts 0

p

tp p

p

t1 p

1

p t0 p

0

p

(b) Seed tiles.

Figure 3.20: The tile types from the TAS Sp of Example 3.34.

30

3.3. The abstract Tile Assembly Model (aTAM)

ts 0

p

tp p

p

t1 p

1

p t1 p

1

p t0 p

0

p t0 p

0

p t1 p

1

p tbp

(a) A seed assembly with three tiles of type t1.

ts 0

p

tp p

p

t1 p

1

p t1 p

1

p t0 p

0

p t0 p

0

p t1 p

1

p tbp

t0+1 1

1

0

(b) First step of the assembly.

ts 0

p

tp p

p

t1 p

1

p t1 p

1

p t0 p

0

p t0 p

0

p t1 p

1

p tbp

t0+1 1

1

0 t1+1 0

1

1

(c) Second step of the assembly.

ts 0

p

tp p

p

t1 p

1

p t1 p

1

p t0 p

0

p t0 p

0

p t1 p

1

p tbp

t0+1 1

1

0 t1+1 0

1

1 t0+0 0

0

0 t0+0 0

0

0 t0+1 1

1

0 1

(d) Final step of the assembly.

Figure 3.21: Stages of a terminal assembly for the parity aTAM from Example 3.34, for
input 11001. Unlike the general case, here the order of the assembly is fully deterministic.

ts 0

p

tp p

p

t1 p

1

p t0 p

0

p t0 p

0

p t0 p

0

p t1 p

1

p tbp

(a) A seed assembly with two tiles of types t1.

ts 0

p

tp p

p

t1 p

1

p t0 p

0

p t0 p

0

p t0 p

0

p t1 p

1

p tbp

t0+1 1

1

0

(b) First step of the assembly.

ts 0

p

tp p

p

t1 p

1

p t0 p

0

p t0 p

0

p t0 p

0

p t1 p

1

p tbp

t0+1 1

1

0 t1+0 1

0

1

(c) Second step of the assembly.

ts 0

p

tp p

p

t1 p

1

p t0 p

0

p t0 p

0

p t0 p

0

p t1 p

1

p tbp

t0+1 1

1

0 t1+0 1

0

1 t1+0 1

0

1 t1+0 1

0

1 t1+1 0

1

1 0

(d) Final step of the assembly.

Figure 3.22: Stages of a terminal assembly for the parity aTAM from Example 3.34, for
input 10001. Unlike the general case, here the order of the assembly is fully deterministic.

Our next example is a more complicated binary counter, taken from [65].

Example 3.35 (Binary counter TAS [65]). Let Sb = (Σ, T,ασ, str, τ) be the aTAM TAS:

– Σ = {0,1, c, n, ∣∣, } is the alphabet;
– T = {S,R,L, t0+c, t1+n, t0+n, t1+c} (see Figure 3.23 for the tile types);
– the seed assembly ασ is composed of a tile of type S at (0,0), a horizontal sequence

of tiles, each of type L starting at (−1,0); and a vertical sequence of tiles, each of
type R starting at (0,1).

– str(0) = str(1) = str(c) = str(n) = 1, str() = 0 and str(∣∣) = 2;
– the temperature τ = 2.

31

3.3. The abstract Tile Assembly Model (aTAM)

(a) Tile types of Sb. (b) Example assembly for the TAS Sb.

Figure 3.23: The binary counter TAS Sb from Example 3.35, with the seven tile types on
the left, and an example assembly on the right. Image taken from [65].

The tile types of the TAS Sb from Example 3.35 are depicted in Figure 3.23. They
include S,R,L, and four tile types that are labeled by their associated values: 1 for t0+c
and t1+n, and 0 for t0+n and t1+c.

The TAS Sb implements an unbounded binary counter, starting from the binary rep-
resentation of the number “1” in the second row, and increasing by 1 in each row. The
seed is made of the tile type S, a horizontal sequence of tiles of type L and a vertical
sequence of tiles of type R that are bounded to each other by strength 2 label ∣∣. Since the
temperature is 2, the only position where a tile can first be placed is at the north-west
side of the tile of type S, and it must be a tile of type t0+c. Then, tiles of type t0+c and
t1+c will fill the vertical column at its north side; and tiles of type t0+n form a horizontal
column of tiles at its west side. More precisely, the first tile to bind in each row is the
easternmost. Once a tile of type t0+c appears, tiles of type t0+n continue the row to the
west. Each tile is bound by its eastern and southern neighbors, i.e. in order to have a
tile of type t∗ with the value of its northern label as a+ b, there is a tile at its south with
northern label a, and there is a tile at its east with western label b. The carry over of the
sum appears in the western label of the tile of type t∗. Moreover, at each step, the tiles
of type R cause the increment of the row below, thanks to the label c. See an example of
an assembly in Figure 3.23.

In the PhD thesis of Evans [32], a binary counter was implemented using DNA tiles.
See Figure 3.24 for an illustration.

3.3.4 Another example: simulating a Turing machine

Next, we show how an aTAM TAS can simulate a Turing machine to perform some
computations. We recall the definition of a Turing machine, imagined in 1937 by Alan
Turing [70].

Definition 3.36 (Turing machine). A (deterministic) Turing machine M = (Q,Γ, q0, δ, F)

32

3.3. The abstract Tile Assembly Model (aTAM)

Figure 3.24: The physical implementation of a binary counter (going from left to right),
taken from [32]. The red, yellow, green and purple squares represent bits where an error
happened.

consists of an alphabet Γ, a set Q of states, where q0 ∈ Q is the start state and F ⊆ Q is a
set of accepting states, and a transition function δ ∶ Q×(Γ∪{♯}) → Q×(Γ∪{♯})×{←,→, ●},
where ♯ is a blank symbol with ♯ ∉ Γ.

M has an infinite discrete tape (represented by Z) and a head positioned on the tape,
that can read and write.

Initially, the head is positioned at the coordinate 0 of the tape, and a finite input string
from Γk is written at coordinates 0, . . . , k − 1 of the tape. All the other coordinates of the
tape contain the blank symbol ♯. The current state is the start state q0.

The computation is done following the transition function δ: if the machine is in state
q and the symbol s ∈ Γ ∪ {♯} is at the head’s coordinate, and δ(q, s) = (q′, s′,m), the
machine goes into state q′, writes symbol s′ on the current coordinate of the tape, and
moves to the left (if m =←), right (if m =→) or does not move (if m = ●). If q′ ∈ F , the
Turing machine accepts the input and the computation stops.

The concept of a Turing machine is a fundamental model of any computing process.
Indeed, Turing showed that there exists a universal Turing machine MU that can take
as an input, the description of another Turing machine M and its input I, such that MU

simulates the computation of M on input I, and accepts the input (M,I) if and only if
M accepts I.

We next give an example of a simple Turing machine, that, given an input string over
the binary alphabet {0,1}, erases all the 0’s at the end of the input.

Example 3.37 (Turing machine that deletes all final 0’s). Let M = (Q,Γ,E, δ,{F}) be a
Turing machine that removes all the final zeros of a binary string, defined as follows.

– Q = {H,E,F} is the set of states,
– Γ = {0,1} is the alphabet and ♯ is the blank symbol,
– E ∈ Q is the start state,
– F ∈ Q is the final state, and
– δ ∶ Q × Γ→ Q × Γ × {←,→, ●} is the transition function with:
δ(H,1) = (H,1,→)
δ(H,0) = (H,0,→)
δ(H, ♯) = (E, ♯,←)
δ(E,1) = (F,1, ●)
δ(E,0) = (E, ♯,←)
δ(E, ♯) = (F, ♯, ●)

33

3.3. The abstract Tile Assembly Model (aTAM)

The Turing machine M works by first reading the input string, moving the head to
the right until it reaches a blank symbol. During that stage it stays in state H. When
it reads a blank symbol, it goes to state E and starts going back, replacing the 0’s by a
blank symbol. When it reaches a 1, it goes to state F and stops. The space-time diagram
of the machine M for the input 101000 is presented in Table 3.25. On this diagram, the
bottom row represents the initial tape, and each further row represents the tape during
the next computation of M . The orange cells represent the positions of the head on the
tape.

Table 3.25: The space-time diagram of Turing machine M for input string 101000.

Next, we show how to simulate the computations of M using an aTAM TAS. To do
so, the assembly will represent the space-time diagram of M . We will represent the input
string by a seed assembly. The assembly is terminal if and only if the Turing machine
reaches a final state. The simulation of Turing Machine M of Example 3.25 via an aTAM
TAS is shown in Figure 3.26 and the details of the process are presented in Example 3.38.

Example 3.38 (TAS simulating the Turing machine from Example 3.37). The TAS
SM = (Σ, T,ασ, str, τ) is defined as follows.

– Σ = {0,1,R,L,H0,H1,E,E0,E1, F inal},
– the set T = {tL,0, tL,1, tR,0, tR,1, t ↰ ,0, t

↰

,1, t↱,0, t↱,1, t↰,♯, t ↱,0, t ↱,1, tF , t♯, t

↰

,♯, t↰,♯} of tile
types is shown in Figure 3.27;

– the seed assembly ασ consists of a row of tiles t ↰ ,1, tL,0, tL,1, tL,0, tL,0, tL,0 and t♯ (see
Figure 3.28(a) for an example);

– the strength function is str(0) = str(1) = str(R) = str(L) = str(E) = str(#) = 1 and
str(H0) = str(H1) = str(E0) = str(E1) = 2, and str(Final) = 0; and

– the temperature is τ = 2.

See Figures 3.28, 3.29 and 3.30 for an example of an assembly, where the input bi-
nary string is 101000. The assembly starts with the seed assembly ασ presented in Fig-
ure 3.28(a). From the northern strength 2 labels of the tile of type t ↰ ,1, the head’s more
to the right is represented by the tile of type t↱,1 (Figure 3.28(b)). The arrows ↰, ↱, ↰ and

↱ on the tile types represent the simulation of the movement of the head of M (left/right),

34

3.3. The abstract Tile Assembly Model (aTAM)

Figure 3.26: The simulation of the computation of Turing Machine M of Example 3.25
by its space-time diagram, via the aTAM TAS SM , with input string 101000. The tiles
representing the position of the head are marked by a star.

jointly with the direction of the assembly (top/down). In the second step, the head is
represented by the tile of type t ↰ ,0 and the row is filled by tiles of types tR,0, tR,1 and
t♯. The following rows continue like this: the head tiles of type t ↰ ,0 or t ↰ ,1 are replaced
respectively by tiles of type t↱,0 or t↱,1, and each row fills with tiles of type tL,0 and tL,1
at the left of the head, and of type tR,0, tR,1 and t♯ at the right of the head, such that the
rightmost tile is of type t♯.

Once the head arrives to a tile of type t♯, in the next step a tile of type t ↰ ,♯ is the
rightmost tile and represents the head. Then, via the rightmost tile of type t↰,♯ the left
movement starts. In this step (step 7), the rightmost 0 is erased. In the following, each
row opens by a tile of type t↰,♯, the tile of type t ↱,E0 erases the zero, and the rest of the
row is filled by tiles of types tR,0 , tR,1 and t♯. When there is no tile of type tR,0 left to
erase, a tile of type t ↱,E1 leads the assembly to the appearance of the tile type tF . Since
this tile has no strength 2 label, no new row can be created, and after the topmost row is
filled, the assembly is terminal.

Recall that by Remark 3.32, tile self-assemblies are not necessarily deterministic. In
this case, although M is a deterministic Turing machine, the assemblies of SM are indeed

35

3.3. The abstract Tile Assembly Model (aTAM)

not deterministic. For example, in Figure 3.29(c), a tile of the top row is placed before
the previous row is filled (it could have happened in reverse order: first the filling of the
row, then the new row is started). However, the simulation is correct.

(a) Tiles types tL,0 and tL,1
at the left of the head.

(b) Tiles types tR,0 and tR,1

at the right of the head.
(c) Blank tile types t♯, t

↰

,♯

and t↰,♯.

(d) Transition tile types
t ↰ ,0, t

↰

,1, t↱,0 and t↱,1 on the
head, when the movement is
to the right →.

(e) Transition tile types t↰,♯
and t ↱,E0 on the head, when
the movement is to the left
←.

(f) Tile types t ↱,E1 and tF
on the head, when there is
no movement ●.

Figure 3.27: The tile types of the TAS SM simulating Turing machine M .

36

3.3. The abstract Tile Assembly Model (aTAM)

(a) The seed assembly, that represents the
input string 101000.

(b) Step 1 of the assembly.

(c) Stage of the assembly that represents
the two first steps of the computation.

(d) Stage of the assembly that starts the
next computation step of M .

(e) Stage of the assembly representing the computation
step of M where the head reached the end of the input.

Figure 3.28: First stage of the assembly for the TAS SM , simulating the Turing machine
M for the input string 101000. This stage simulates the computation of M from the start
to the point where it finishes to read the input string.

37

3.3. The abstract Tile Assembly Model (aTAM)

(a) Step of the assembly representing the
computation step of M where the head
starts going to the left.

(b) Next step of the assembly.

(c) Next step of the asssembly. (d) Stage of the assembly after two moves
of the head to the left.

Figure 3.29: Second stage of the assembly for the TAS SM , simulating the Turing machine
M for the input string 101000. This stage simulates the computation of M from the point
where it finishes to read the input string and erases all the 0’s at the end of the input
string. (Part 1 of 2)

38

3.3. The abstract Tile Assembly Model (aTAM)

(a) Stage of the assembly representing the
last time a 0 symbol is erased from the tape.

(b) The terminal assembly, when all the fi-
nal O’s have been erased. It is shown by
the presence of the red tile at the top of the
assembly.

Figure 3.30: Second stage of the assembly for the TAS SM , simulating the Turing machine
M for the input string 101000. This stage simulates the computation of M from the point
where it finishes to read the input string and erases all the 0’s at the end of the input
string. (Part 2 of 2)

39

3.3. The abstract Tile Assembly Model (aTAM)

3.3.5 Computing using the aTAM

We have seen in Example 3.34 that a simple aTAM TAS can compute the parity of the
number of some special tiles in a seed assembly. Moreover, in Example 3.38, we have seen
how a TAS can simulate a simple Turing machine. What is the maximum computational
power of tile self-assembly? Winfree showed in 1998 that one can perform arbitrary
computations using self-assembly, by the following theorem.

Theorem 3.39 (Winfree [75, 76]). There is an aTAM TAS with temperature 2 that can
simulate any Turing machine.

In the language of computational complexity theory, the above theorem says that tile
self-assembly in the aTAM is Turing-universal : informally speaking, any computation
that can be performed by a computer, can be performed by the TAS of this theorem. To
do so, the input of the problem is encoded in the seed, and the result of the computation
can be read in the terminal assembly of the TAS.

Theorem 3.39 is proved by simulating a class of Turing-universal cellular automata,
which form a model of computation that also takes place in the d-dimensional lattice
(for d-dimensional cellular automata). Each position of Zd is called a cell and a cell can
be in a finite number of states. The model works step by step, and in each step the
cells update their state as a function of the states of neighbouring cells. This function is
described by a set of transition rules. The rules are applied in parallel. It is known that
some cellular automata can simulate any Turing machine, and this is true even for specific
1-dimensional cellular automata (as proved by Lindgren and Nordahl in 1990 [47]). The
way that a 1-dimensional cellular automaton C can be simulated by a tile self-assembly
system, is to associate a type of tile for each transition rule of C, and the southern and
northern glues of the tiles represent the sate of the corresponding cell of C at some time
steps i (south) and i + 1 (north). The first row of the assembly will represent the initial
states of the cells of C, and at each step, a new row is added to represent the next states
of cells of C. Thus, similarly as for Example 3.38, the assembly represents the space-
time diagram of the cellular automaton C. The terminal assembly represents the final
states of cells of C. Thus, C is simulated by such an aTAM TAS, and so the aTAM is
Turing-universal.

One can also directly simulate any Turing machine, similarly as the simulation of a
specific Turing machine from Example 3.38 and the simulation of a 1-dimensional cellular
automaton described above, but this is more complicated. We refer to the 2011 paper of
Lathrop et al. [46] for details.

Winfree, Xu and Seeman experimentally verified in 1996 [77] that the crucial steps
for the construction can indeed be done using real DNA tiles. Moreover, it was shown
experimentally that practical DNA-based tile self-assembly systems can solve many tasks
such as “copying, sorting, recognizing palindromes and multiples of 3, random walking,
obtaining an unbiased choice from a biased random source, electing a leader, simulating
cellular automata, generating deterministic and randomized patterns, and counting to 63”
(Woods et al., 2019 [78]).

The type of theoretical simulation results as described above has been refined even
more, for example, Doty et al. showed in 2012 [29] that there exists a single tile assembly
system that simulates all other systems at temperature 2; this property is called intrinsic
universality.

On the other hand, it was proved by Meunier and Woods [54] that at temperature 1,
the aTAM is not intrinsically universal. Even more, Meunier, Regnault and Woods [52]

40

3.3. The abstract Tile Assembly Model (aTAM)

showed that precise control of the assemblies at temperature 1 is impossible, and thus the
type of results described in the previous paragraphs cannot be obtained at temperature 1.
Meunier and Regnault also showed that aTAM tile assembly systems at temperature 1
with only one terminal assembly are decidable, and thus, cannot simulate all Turing
machines [53].

3.3.6 Creating specific shapes

A large portion of the work in self-assembly is to design tile self-assembly systems that
result in specific shapes, in the sense that their terminal assembly forms the desired shape.

Perhaps the most natural shape that can be assembled is an n×n square. This simple
shape has been used as a reference shape in many works, to compare the different models
and solutions. See Figure 3.31 for a TAS with O(logn) tile types that assembles an n×n
square, designed in 2000 by Rothemund and Winfree [65].

Figure 3.31: A TAS for assembling an n × n square, with an illustration of the assembly.
Image taken from [65].

Another fundamental shape for which a TAS was designed in 1998 by Winfree [75]
is the Sierpinski triangle. See Figure 3.32 for an illustration. Here, the growth of the
assembly is controlled by the fact that new tiles can only attach if two previous tiles are
present (one on the west and one on the south), similarly as the assemblies from the TAS
of Example 3.26, where south and west are replaced by north and east. Hence, there is
no need to enforce synchronization in this assembly.

3.3.7 Complexities of assemblies

As we have seen in Section 3.3.5, any computation that can be performed using a classical
computer, can be done by a carefully designed TAS. Thus, most shapes can be formed as
well, as long as they can be computed by a computer. However, a TAS that builds the
shape could be very complex, and the Turing-universality result by Winfree is based on

41

3.3. The abstract Tile Assembly Model (aTAM)

Figure 3.32: The assembly of a Sierpinski triangle, from [75].

the simulation of a cellular automation that itself simulates a Turing machine, hence the
resulting TAS is inherently very complex. One can measure the complexity along different
measures, as proposed by Rothemund and Winfree in 2000 [65] as follows.

Definition 3.40 (Tile complexity). The tile complexity of a shape S is the smallest
number of tile types in an aTAM TAS whose unique terminal assembly is S.

For a family F of shapes, the tile complexity of F is the smallest number of tile types
in an aTAM TAS whose terminal assemblies are exactly the shapes in F .

For example, the tile complexity for the family of all squares is 5, and the one for the
family of all rectangles is 6 [12, Chapter 4]. It was shown in 2001 by Adleman et al. [3]
that the tile complexity of a single (fixed) square of dimension n × n is in Θ (logn

log logn).

However, for general shapes, determining the optimal tile complexity of a given shape
is an NP-hard problem, as shown by Adleman et al. in 2002 [4], which means it is
computationally difficult to determine the optimal tile complexity of a shape.

Besides the number of tiles, one can also count the optimal number of steps of an
assembly, for a given shape. Here, it is assumed that two tiles that do not interact can
attach at the same time, and the maximum time is thus the largest sequence of tiles such
that two consecutive tiles in the sequence interact.

Definition 3.41 (Time complexity). The time complexity of a shape S is the smallest
number of steps needed by a TAS whose unique terminal assembly is S.

For a family F of shapes, the time complexity of F is the smallest number of steps
needed by a TAS whose terminal assemblies are exactly the shapes in F .

For example, in 2008, Becker et al. designed in [16] a TAS with provably optimal time
complexity, for assembling the family of all squares. Indeed, they designed an aTAM TAS
with 24 tile types (with rotation allowed) that can produce any n × n square in 2n time
steps, which is optimal. For a single (fixed) n × n square, the time complexity is also in
Θ(n) [3].

A larger class of shapes is considered by Becker et al. in 2006 [15] (rectangles, squares
and diamonds).

42

3.4. Tile self-assembly on 2D surfaces other than the plane

3.4 Tile self-assembly on 2D surfaces other than the
plane

In this thesis, we are interested in performing self-assembly on existing 3D surfaces, such
as polycubes. We are not aware of any previous work on this topic. However, there have
been some recent works on DNA tile self-assembly where also, the self-assembly is done
on an existing surface. We now present these works.

3.4.1 Tile self-assembly on mazes

One recent work of interest, where the self-assembly is performed on a complicated surface,
is the one of self-assembly in mazes.

In 2021, Cook et al. [27] defined a new self-assembly model, where the tile placement
is done along the walls of a certain maze, as depicted in Figure 3.33. This model is called
the Maze-Walking Tile Assembly Model (Maze-Walking TAM for short). It is similar to
the aTAM, but the TAS contains a fixed maze, and they allow multiple disconnected
seeds (one for each entry of the maze). Tiles attach to the maze if the glues on two sides
of the tile match the glues of the maze walls. In this process, the time complexity of the
assembly partially depends on the environment.

Intuitively speaking, exploring a maze is seen in [27] as a computational process: the
maze represents the constraints and the problem can be solved if there is a path from the
start to the end.

The authors of [27] show that any Boolean circuit can be simulated by a TAS in the
Maze-Walking TAM using only four tile types. This shows that this model enables to
perform arbitrary computations by putting together several mazes.

Figure 3.33: A maze on which self-assembly is performed, from [27].

3.4.2 Shape identification

In 2010, Patitz and Summers studied the problem of identifying a given 2D shape (in the
form of a seed assembly) [60]. They work in the variant of the aTAM called two-handed
aTAM. In their work, a TAS correctly identifies the target shape if a special type of tiles
appears along the entire border of the shape when the seed assembly matches the target
shape, and the border does never form when the seed assembly does not match the target
shape. See Figure 3.34 for an illustration (taken from [60]).

43

3.4. Tile self-assembly on 2D surfaces other than the plane

Figure 3.34: Illustration of the shape identification framework studied in [60], in the case
where the input shape matches the target shape and is correctly identified.

The authors of [60] design a TAS in this model that can correctly identify an n × n

square using O (logn
log logn) tile types. They also design a TAS with O(1) tile types that can

identify whether the shape is a square (of any size). They also design TASes for a more
general class of certain hole-free shapes.

3.4.3 Shape replication

Another interesting type of work where the self-assembly is made along an existing arbi-
trary surface (called a shape) is the topic of shape replication.

In 2010, Abel et al. [1] used a variant of the aTAM called enzyme self-assembly model
to implement shape replication. In this model, enzymes can be used to destroy tiles of
a given tile type, that have been placed previously. The goal is that a preexisting shape
or pattern is given, and the tiles react to the shape in order to reproduce it. Here, the
assembly takes place on the 1-dimensional border of a 2D pattern. The main challenge is
that the system must react to the shape of the space around, rather than to an external
input it can read as it wants. See Figure 3.35 for an illustration of the shape replication
presented in [1].

In [1], it is shown that one can replicate a given shape in this model using a tile system
with a constant number of tile types. They consider both the problem of replicating the
shape indefinitely, or replicating it exactly n times, for a given integer n.

In 2017, Chalk et al. [22] showed that the results from [1] can be obtained in a simpler
model, where we do not need to destroy some of the tiles using enzymes. However, they
use the additional feature of negative glues, which enforces that no tile can be attached
at the edge of this negative glue.

Similar results have been obtained using a model of Signal-passing Tile Assembly
Model (STAM), see [7, 8, 44]. The signals in this model, propagate across assemblies to
activate or deactivate glues. In [7], Alseth, Hader and Patitz obtain a single TAS in the
STAM that can replicate any 2D or 3D shape, and they show that for such a result, the
deactivation of glues (and deconstruction of the initial shape) is necessary. They consider
the shapes as assemblies. In their model, one needs to deconstruct the input shape in
order to replicate it, see Figure 3.36 for an illustration.

44

3.5. Assemblies to construct 3D shapes

Figure 3.35: Illustration of the shape replication performed in [1]. A first self-assembled
RNA-based layer surrounds the shape, followed by a second DNA-based layer. Then, the
first layer is destroyed using enzymes, and the second layer becomes free from the initial
shape. The second layer can then be filled to obtain a copy of the shape.

Figure 3.36: The method of shape replication used in [7]. Here, the initial shape is an
assembly that may have to be destroyed in the process.

3.4.4 Self-assembled coatings of surfaces

An interesting application of self-assembly is in material sciences, where materials are
created using self-assembly of molecules. In one particular class of applications, the as-
sembled materials are coatings, that is, layers of molecules around an existing object [21],
that give additional properties to the object, such as increased resistance to the envi-
ronment. These coatings are applied to many different areas, for example self-assembled
coatings for the design of drugs [71] and self-assembled coatings on metallic objects [81].
See Figure 3.37 for an illustration from [37].

Although these self-assembly processes are quite different from those studied in this
thesis, the setting is similar, since the self-assembly of these coatings takes place on a
pre-existing surface.

3.5 Assemblies to construct 3D shapes

We are interested in performing self-assembly on the surface of 3D shapes. We are not
aware of such existing works, but many previous works from the literature deal with
constructing 3D shapes, in various models. Many of them deal with polycubes, which are
of special interest to us since we will study them in Chapters 5 and 7. We next present

45

3.5. Assemblies to construct 3D shapes

Figure 3.37: Coating a surface of gold using a layer of slef-assembling molecules, from [37].

the works in this area, that we are aware of.

3.5.1 The Flexible Tile Assembly Model (FTAM)

We now describe a model that inspired us to introduce the SFTAM model in Chapter 5.
In this model, 3D structures (in particular, polycubes) are assembled using 2D square
tiles.

Recently, a new tile self-assembly model called Flexible Tile Assembly Model (FTAM)
was introduced by Durand-Lose et al. in [30], as an extension of earlier work [16, 43].
Here, we have Wang tiles but they self-assemble (without an input surface) in 3D space
(modeled by the lattice Z3) as they can have, in addition to standard rigid bonds, flexible
bonds that allow tiles to bind at any angle along the tile edges. Because of this flexibility,
the assemblies are able to move and fold, which makes the model rather complicated.

In the FTAM, the tile types are as defined in the aTAM (Definition 3.24), and tiles
are placed on facets of Z3. However, it is not enough to know on which facet the tile
is placed at, indeed the tiles can rotate and reflect. Thus, in the FTAM, the following
definition was given to describe how a tile is placed.

Definition 3.42 (Placement in the FTAM [30]). In the FTAM, a placement of a tile
p = (l, n, o) consists of a location l ∈ Z3, a normal vector n which starts at the center of
the tile and points perpendicular to the plane in which the tile lies, and an orientation o
which is a vector lying in the same plane as the tile which starts at the center of the tile
and points to the northern side of the tile.

The main goal of the work in [30] is to construct polycubes using FTAM tile self-
assembly. To do so, the assembly must control the way that the flexible and the rigid
bonds interact. FTAM assemblies are either rigid or flexible. See Figure 3.38 for an
illustration of an FTAM assembly sequence, taken from [30].

The first result proved in [30], is that every polycube that satisfies three conditions,
can be assembled deterministically using a temperature 2 FTAM TAS. The conditions
are the following: (i) the polycube is symmetric, (ii) it contains no vertices such as in
Figure 3.9(e) or Figure 3.9(i) and (iii) the edges of the polycube are connected.

Then, they consider computational complexity questions. They show that, given an
FTAM TAS, it is undecidable whether this TAS can produce a terminal assembly that

46

3.5. Assemblies to construct 3D shapes

Figure 3.38: An assembly sequence in the FTAM, from [30].

is rigid. They prove this by simulating a Turing machine in the FTAM, and the Turing
machine halts if and only if the assembly is rigid.

Moreover, they show that given an FTAM TAS and an assembly α, deciding whether
α is rigid is a coNP-complete problem. They prove this by reducing from the complement
of the NP-complete Boolean Satisfiability (SAT) problem.

3.5.2 Self-assembly of polycubes using unit cubes as “3D tiles”

We now review some works where 3D polycubes have been self-assembled using cubic 3D
tiles.

In some practical applications, instead of unit square tiles, the building blocks for
self-assembly are unit cubes, like in [68], where hydrogel cube assembly was performed
experimentally.

On the theoretical side, it was shown that when using 3D unit cube tiles, and unlike
in 2D, self-assembly is Turing-universal even at temperature 1, as proved in 2001 by Cook
et al. [26] with extensions by Furcy and Summers in 2018 [33]. The model that they use
is called 3D abstract Tile Assembly Model and it is like the traditional aTAM, but with
unit cube tiles instead of unit square tiles. Like in the aTAM, they can bind by their faces
if the two binding faces are similar.

In 2008, Becker et al. [12, 16] used a similar model, where the basic tiles are 3D unit
cubes. In these works, the time complexity of assembling the family of all n×n×n cubes
is studied, and they designed a TAS in temperature 3 that produces this family in optimal
time 3n. See Figure 3.39 for an illustration of an assembly of a cube in this model.

A similar model is used by Bohlin et al. in 2022 [18, 19], however, there, the model is
stochastic, that is, they require the assemblies to be produced with a certain (high enough)
probability. The problem studied in these works is how to design such self-assembly
systems in order to assemble specific polycubes. More precisely, they provide an “assembly
pipeline” that, given a polycube, automatically computes a TAS able to assemble the given
polycube with high probability. For this, they formulate the problem in the language of
Boolean Satisfiability (SAT) and use dedicated tools to solve the corresponding SAT
problems. They perform simulations using self-assembly simulation softwares “oxView”
and “oxDNA”. See Figure 3.40 for an illustration of an assembly in this model, taken
from [18].

47

3.5. Assemblies to construct 3D shapes

Figure 3.39: The assembly of a cube using cube-shaped “3D tiles”, from [12, 16].

Figure 3.40: A polycube assembly using cube-shaped “3D tiles”, from [18].

3.5.3 Particle-based assembly

Another related work (dealing with assembly, but not self -assembly) has been used to
assemble polycubes. Here, unit cubes called particles bind along their faces, but they have
no distinguished sides. They are released one by one and guided (in practice, this can be
done using electric fields, see Becker et al., 2020 [11]) to their eventual final location, which
is adjacent to a particle that is already placed; then, the two particles bind, in the same
way as in self-assembly models. In some works, it was studied how specific polycubes can
be constructed (or not) using this model. See Figure 3.41 for two polycubes addressed by
Keller et al. in 2022 [45].

In [45], the authors study the variant where the path of the particle is an arbitrary
connected path. They show that deciding whether a given 3D shape can be constructed,
is an NP-complete problem. However, for the shapes that are tree-like, they design a
polynomial-time algorithm. In [11], the particle path has to be a straight line. The
authors prove that it is NP-hard to decide if a given polycube can be constructed in this
model.

48

3.5. Assemblies to construct 3D shapes

(a) A polycube that can be built in the par-
ticle model from [45].

(b) A polycube that cannot be built in the
particle model from [45].

Figure 3.41: Two polycubes from [45].

3.5.4 Crystal self-assembly

Another type of 3D self-assembly are those creating complex molecules, and in particular,
crystals [10, 82, 50]. In these experimental works, the goal is to design self-assembly
systems based on basic components resembling tiles, that can grow crystals of various
types. One important work is a construction built from basic DNA triangles [48]. See
Figure 3.42 for a schematic view of such an assembly, from [82]. A recent perspective
article about these crystal assemblies is available in [50].

Figure 3.42: Schematic view of the assembly of a DNA crystal lattice, from [82].

49

3.5. Assemblies to construct 3D shapes

3.5.5 Origami-like folding processes

We now describe some related assembly processes which have been used to produce 3D
shapes, in particular, polycubes.

Inspired by the Japanese traditional art of origami, Rothemund invented in 2006 [64]
the concept of DNA origami, where a long DNA strand is folded into a given shape
and “stapled” together using multiple short strands. He used this model to produce
experimentally various kinds of 2D shapes, see Figure 3.43. This model has then been
extended to enable the design of 3D objects, see [38] (see Figure 3.44 for an illustration).

Figure 3.43: Shapes assembled by DNA origami, from [64].

Figure 3.44: 3D objects assembled by DNA origami, from [38].

A related topic is studied in 2010 by Aloupis et al. in [6]. An unfolding of a polycube
is a connected planar arrangement of unit squares obtained by cutting the polycube along
some of its edges. One question studied in [6] is whether one can find a common unfolding
for a large class of polycubes (see Figure 3.45 for an example of a common unfolding of two

50

3.5. Assemblies to construct 3D shapes

polycubes). More precisely, the authors prove that the class of all “tree-like” pentacubes
(polycubes made of five unit cubes, and whose shape is tree-like) do not have a common
unfolding. However, they show that planar tree-like “non-spiralling” polycubes made of k
unit cubes, do have a common unfolding.

More recently, in 2018, Aichholzer et al. [5] studied a generalized version of the prob-
lem, where folding is allowed on diagonals also. They introduce several different models
with various constraints, with the goal of folding a 2D shape into a given polycube. They
characterized the 2D shapes that can be folded into a unit cube under these different
models.

Figure 3.45: A common unfolding of two tree-like polycubes, from [6].

A game called cubigami and that inspired work as that from [6] was designed by Knuth
and Miller [55], see Figure 3.46.

Figure 3.46: The game cubigami designed by Miller and Knuth [55].

Another model is called Oritatami and was introduced in 2019 by Geary et al. [35].
In this model, similarly as in the aTAM, we are placing elements on a lattice. Here,
however, the authors consider a triangular lattice. The elements are called beads that,
like the tiles in the aTAM, can be from a fixed finite set of types. The beads attach as
a sequence to form a path-like construction, and the last bead of the sequence is able to
fold according to some specified attraction rules. See Figure 3.47 for an example of an
oritatami configuration that simulates a binary counter, from [35].

The authors of [35] introduced the model and described how to simulate a binary
counter in the model, thus showing that one can possibly use this model to compute.
However, they also show that designing an Oritatami system that folds into a prescribed
set of shapes is an NP-hard problem. Then, in [36], the same authors proved that the
Oritatami model is Turing-universal. More recently, Pchelina et al. [61] showed that the

51

3.6. Conclusion

shapes that can be folded in the Oritatami model are as complex as the ones that can be
assembled in the aTAM.

Figure 3.47: An Oritatami configuration simulating a binary counter, from [35].

3.6 Conclusion

Most of the classic work in tile self-assembly was done for the aTAM in the 2D lattice Z2.
As we have seen, some works have explored self-assembly and related models in 3D, espe-
cially, in order to construct 3D objects such as polycubes, such as the FTAM, 3D aTAM,
or DNA origami (Section 3.5). There has been some work on self-assembly on surfaces,
mainly in the areas of shape replication from a theoretical perspective (Section 3.4.3),
and self-assembled coatings in material sciences, from an experimental perspective (Sec-
tion 3.4.4).

It is thus natural to further study tile self-assembly on 3D surfaces from a theoretical
point of view. We will do this in the next chapters.

52

Chapter 4

Classification of flat surfaces using the
aTAM

This chapter deals with the classification of a family of surfaces called flat surfaces using
tile self-assembly. Flat surfaces are similar to the plane Z2, but they can be finite along
one or two dimensions, and they wrap around themselves along their finite dimension(s)
(in the first case they are called torus and in the latter case, cylinder). We will consider
four types of flat surfaces, depending on which of their dimensions are finite. The way we
want to classify these surfaces is to design a tile assembly system that can self-assemble
on all these surfaces, and in which, for every kind of flat surface, some designated set of
tile types appears in every terminal assembly if and only if the assembly takes place on a
surface of that kind.

In Section 4.1, the types of flat surfaces that we consider are introduced: the flat torus,
the flat vertical cylinder, the flat horizontal cylinder, and the plane Z2. In Section 4.2, the
notion of aTAM on this family of surfaces is described. Finally, in Section 4.3, we present
a TAS ST that is able to identify the flat surface on which the assembly is performed.

4.1 Flat surfaces . 53

4.2 The aTAM on flat surfaces . 56

4.3 Classifying flat surfaces using the aTAM 57

4.4 Concluding remarks . 61

4.1 Flat surfaces

In this section, we define flat surfaces via the 2-dimensional integer lattice Z2. For a
positive integer n, Z/nZ is the additive group with elements {0, . . . , n − 1}. If n = ∞, we
define Z/nZ as Z. Using these, we formalize the definition of the flat surfaces as follows.

53

4.1. Flat surfaces

Definition 4.1 (Flat surface). For m,n ∈ N ∪ {∞}, the lattice Z/mZ × Z/nZ is called
a flat surface and we denote it by Fm,n. Two positions (x1, y1) and (x2, y2) of Fm,n are
adjacent if (i) ∣min{x1, x2} − max{x1, x2}∣ = 1 modm and y1 = y2 or (ii) x1 = x2 and
∣min{y1, y2} −max{y1, y2}∣ = 1 mod n. For a position p = (x, y) of Fn,m:

– the position (x, (y + 1)modm) is the northern neighbor of p;
– the position (x, (y − 1)modm) is the southern neighbor of p;
– the position ((x + 1)mod n, y) is the eastern neighbor of p;
– the position ((x − 1)mod n, y) is the western neighbor of p;

For two integers m,n ∈ N, the flat surface Fm,n is a rectangular lattice of length m and
height n on Z2. It is called a flat torus.

Definition 4.2 (Flat torus). The flat surface Fm,n is called a flat torus when m,n are
integers.

The flat torus Fm,n with m,n ∈ N when embedded in the plane Z2 is equivalent to a
torus in Z3, by identifying parallel opposite sides without twisting, as shown in Figure 4.1.

Example 4.3. The flat torus F11,9 is presented in Figure 4.1. In F11,9, the pink parallel
sides are identified from west to east, and the blue parallel sides are identified from south
to north.

Figure 4.1: Representation of the flat torus F11,9 in 2D.

Next, we consider the case where, for a flat surface Fm,n, exactly one of m and n is
infinity. In this case, only two parallel sides are identified, and as before the identification
is done in the same direction.

Definition 4.4 (Flat horizontal cylinder). The flat surface Fm,n where m is ∞ and n in
an integer, is called a flat horizontal cylinder and is denoted by F∞,n.

Example 4.5. The flat horizontal cylinder F∞,9 is depicted in Figure 4.2. The pink
horizontal sides of F∞,9 are identified along the direction of west to east.

The flat vertical cylinder is defined similarly to the flat horizontal cylinder.

Definition 4.6 (Flat vertical cylinder). The flat surface Fm,n, where m is an integer and
n is ∞, is called a flat vertical cylinder and is denoted by Fm,∞.

Example 4.7. The flat vertical cylinder F11,∞ is shown in Figure 4.3. The blue vertical
parallel sides of F∞,9 are identified along the direction of south no north.

54

4.1. Flat surfaces

Figure 4.2: Representation of the flat horizontal cylinder F∞,9 in 2D.

Figure 4.3: Representation of the flat vertical cylinder F11,∞ in 2D.

Remark 4.8. The 2-dimensional discrete lattice Z2 corresponds to the flat surface Fm,n

when m and n both are infinity. See Figure 4.4 for an illustration.

Figure 4.4: The 2-dimensional discrete lattice Z2 corresponds to the flat surface F∞,∞.

Remark 4.9. The flat surfaces Fm,n and Fn,m are isomorphic by the isomorphism i ∶

55

4.2. The aTAM on flat surfaces

(x, y) ↦ (y, x). However, for a given position (x, y) of Fm,n, its northern neighbor (say)
corresponds to the eastern neighbor of i(x, y) = (y, x) in Fn,m.

4.2 The aTAM on flat surfaces

The abstract Tile Assembly Model (aTAM) was presented in Section 3.3 on the plane Z2.
In this section, we show that aTAM is applicable on Fm,n for m,n ∈ N∪{∞}. Indeed, the
notions of north, east, south and west directions are consistent on those surfaces.

Proposition 4.10. The aTAM is well-defined on flat surfaces.

Proof. To be able to produce assemblies of an aTAM TAS S, one needs the property
that every position has four neighbors (north, east, south, west) and that the global
north is well-defined. This is the case for all flat surfaces, with the directions as given in
Definition 4.1. Thus, the statement follows.

By Proposition 4.10, the notions for the aTAM on flat surfaces are derived in a natural
way from the ones of the aTAM on the plane Z2. The tile types are the same.

Based on these explanations, next, we restate the formal definitions for the aTAM
on flat surfaces. They are similar to the definitions of Chapter 3.3.2. Definition 4.11 is
similar to Definition 3.25, Definition 4.12 is similar to Definition 3.28, Definition 4.13 is
similar to Definition 3.30, and Definition 4.14 is similar to Definition 3.31. For infinite
assemblies, Definition 3.33 is also valid for aTAM assemblies on flat surfaces.

A position (for a tile) is a couple (x, y) of Fn,m.

Definition 4.11 (aTAM tile assembly system on flat surfaces). An aTAM tile assembly
system (TAS for short) on flat surfaces, is a quintuplet S = (Σ, T,ασ, str, τ), where for
every flat surface Fm,n with m,n ∈ N ∪ {∞}:

– Σ is an alphabet,
– T is a finite set of tile types,
– τ is a positive integer, the temperature,
– str is a function from Σ∪{ϵ} to non-negative integers called strength function such

that str(ϵ) = 0, and
– The seed assembly ασ is a set of tiles, each associated to a position of Fn,m.

Definition 4.12 (Assembly on flat surface). Let Fn,m be a flat surface, where m,n ∈
N ∪ {∞}.

An assembly α of an aTAM TAS S = (Σ, T, σ, str, τ) on Fn,m is a partial function
α ∶ Fn,m ⇢ T defined on at least one position (x, y).

For two adjacent positions (x1, y1) and (x2, y2) of Fn,m with α(x1, y1) = t and α(x2, y2) =
t′, we say that t and t′ bind if the glues of t and t′ on the touching sides of t and t′ are
equal and have positive strength.

We recall that the assembly graph Gα associated to α (defined in Definition 3.29) has
as its vertices, the placements of Pl(C) that have an image by α, and two placements p
and p′ are adjacent in Gα if the tiles α(p) and α(p′) bind.

Definition 4.13 (τ -stable assembly on flat surface). For an integer τ (usually, the tem-
perature of the TAS), an assembly α is τ -stable if for breaking Gα into several connected
components by removing any set C of edges of Gα, the sum of strengths of the bonds
corresponding to edges of C is at least τ .

56

4.3. Classifying flat surfaces using the aTAM

Definition 4.14 (Producible and terminal assemblies on flat surfaces). Let S = (Σ, T,ασ, str, τ)
be a TAS and F be a flat surface. An assembly α of S is producible on F if either α is
the seed assembly, or if α can be obtained from a producible assembly β by τ -stably adding
a single tile on F .

We write β →S α when α is producible from β and we show the set of producible
assemblies of S on F by AF

[S].
A producible assembly α is the result of an assembly sequence α0 → α1 → . . . → α,

where α0 = ασ.
A (possibly infinite) producible assembly is a terminal assembly if no tile can be τ -stably

attached to it. The set of producible, terminal assemblies of S is denoted by AF
◻ [S].

Remark 4.15. Note that every flat surface is invariant under translation. Thus, the set
of producible assemblies of any aTAM TAS is independent of the position of the seed (up
to translation of the whole assembly).

4.3 Classifying flat surfaces using the aTAM

We now have the necessary definitions for presenting the main result of this chapter:
classifying flat surfaces via an aTAM tile assembly system. In this TAS, two special tile
types, x and y, distinguish these four surface types. Figure 4.5 displays a Venn diagram
for such a tile assembly system and its two distinguishing tile types. In this illustration,
the blue circle represents the flat surfaces that contain the tile type x in all terminal
assemblies, and the pink circle represents the ones containing the tile type y.

Z2x

Flat
horizon-
tal cylinder

y

Flat
vertical
cylinder

Flat torus

Figure 4.5: The Venn diagram that illustrates the presence of the two distinguishing tile
types x and y that identify the flat surfaces. The blue circle represents the flat surfaces
that contain the tile type x in all the terminal assemblies, and the pink circle represents
the ones containing the tile type y. The flat vertical cylinder contains x and not y, the
flat horizontal cylinder contains y and not x, the flat torus contains both of them, and
the plane Z2 contains none of them.

Theorem 4.16. There exists a TAS SF = (Σ, T,ασ, str, τ) with tile types {x, y} ⊂ T such
that on every flat surface F = Fm,n with m,n ∈ N∪ {∞} and m,n ≥ 3, the following holds:

1. if m ∈ N, for every terminal assembly α ∈ AF
◻ [SF], y ∈ α. Otherwise (if m = ∞),

there is no α ∈ AF
[SF] such that y ∈ α, and

57

4.3. Classifying flat surfaces using the aTAM

2. if n ∈ N, for every terminal assembly α ∈ AF
◻ [SF], x ∈ α. Otherwise (if n = ∞), there

is no producible assembly α ∈ AF
[SF] such that x ∈ α.

Moreover, the terminal assemblies of SF are unique, and unless both m,n ∈ N, the assem-
blies of SF leading to a (limiting) terminal assembly are infinite.

The tile assembly system SF = (Σ, T, σ, str, τ) is as follows:

– Σ = {h′′, hn, hs, v′′, ve, vw} is the alphabet,
– T is the finite set of tile types {σ, v, h, x, y}. See Figure 4.6 for a representation of

the tile types.
– ασ takes a single tile of type σ = (ϵ, h′′, ϵ, v′′), placed at (0,0).
– str ∶ Σ ∪ {ϵ} Ð→ {0,1,2} such that str(ϵ) = 0, str(h′′) = str(v′′) = 2 (the double

quotes ” refer to their strength 2) and all other values are 1.
– τ = 2

Figure 4.6: The tile types of the aTAM TAS SF for classification of flat surfaces. The
seed is in red.

Proof. The process of growing a producible assembly α ∈ AF
[SF] on a flat surface F = Fm,n

with m,n ∈ N∪ {∞} and m,n ≥ 3, starts once the seed σ = (ϵ, h′′, ϵ, v′′) is placed at (0,0).
Afterwards, a horizontal ribbon of tile types of h = (hn,h′′, hs, h′′), and a vertical ribbon
of tile types of v = (v′′, ve, v′′, vw) from south and east of the seed grow respectively via
the strength 2-labels of h′′ and v′′, as shown in Figure 4.7. This is the case because no
other tile type can be attached to the seed.

Let m be a finite positive integer and α ∈ AF
◻ [SF] be a terminal assembly of SF on

Fm,n. In every terminal assembly, the horizontal ribbon comes back to the west of the
seed, by wrapping around the surface of Fm,n using m − 1 tiles of type h. As a result,
the tile type x = (hs, vw, ϵ, ϵ) appears in α at this new collision of horizontal ribbon and
vertical ribbon, as shown in Figure 4.8. Due to the assumption that m ≥ 3, there is enough
space for this collision and for the tile type x there. The tile of type x is added to the
assembly α via label hs between the south of h and north of x, and via label vw between
the west of v and the east of x.

Now, let m = ∞ and α ∈ AF
[SF] be a producible assembly of SF on Fm,∞. Considering

that the eastern label of x is wv, a tile of type x can appear in the assembly only on the
western side of the ribbon of tiles of type v (the only tile type of the system with label
vw at its west side). Thus, this happens only when some tiles of type h appear west of
the seed. However, when m = ∞, the growth of the tiles of type h continues indefinitely
towards the east and the tiles of type h never appear at the west of the seed. As a result,
when m = ∞, no tile of type x can appear in an assembly of SF on Fm,n.

The proof is similar for n and the tile of type y.
Let n be a finite number and α ∈ AF

◻ [SF] be a terminal assembly of SF on Fm,n.
In every terminal assembly, the vertical ribbon comes back to the north of the seed by
wrapping around the surface of Fm,n. Consequently, a tile of type y = (ϵ, ϵ, hn, ve) appears

58

4.3. Classifying flat surfaces using the aTAM

Figure 4.7: An assembly α ∈ AF
[SF] on the plane Z2. α starts by the seed σ, and vertical

and horizontal ribbons of tile types v and h grow respectively from the south and the east
of σ.

in the assembly at the new collision between the vertical ribbon and horizontal ribbon, as
shown in Figure 4.8. Due to assumption that n ≥ 3, there is enough space for this collision
and for the tile of type y to appear there. A tile of type y is added to the assembly α via
label hn between the north of h and south of y, and label ve between the east of v and
west of y.

Now, let n = ∞ and α ∈ AF
[SF] be a producible assembly of SF on Fm,∞. Since the

south label of y is hn, a tile of type y appears in the assembly only on the north side of
the ribbon of tiles of type h. This happens only when some tiles of type h appear in the
positive positions of the assembly. However, when n = ∞, the growth of the tiles of type
v continues indefinitely towards the south and the tiles of type v never appear north of
the seed. As a result, when n = ∞, no tile of type y can appear in an assembly of SF on
Fm,n.

Finally, it follows from the tile types that no terminal assembly other than the ones
described above are possible on flat surfaces. In the case of a torus, the terminal assembly
is finite. In the other cases, the assembly sequence leading to a terminal assembly is
infinite, and we have a limiting terminal assembly.

For the TAS SF introduced in Theorem 4.3, the presence of tile types x and y in the
terminal assemblies on a given flat surface identifies its type. In fact, the tile type x
appears in the assembly if and only if m is finite. In other words, the flat surface is either
the flat horizontal cylinder Fm,∞, or the torus Fm,n. In addition, the tile type y appears
in the assembly if and only if n is finite i.e. if the flat surface is either the flat vertical
cylinder F∞,n, or the torus Fm,n. The main result is stated as follows:

Corollary 4.17 (Classification of flat surfaces by an aTAM TAS). Let SF = (Σ, T, σ, str, τ)
(with two tile types {x, y} ⊂ T) be the tile assembly system presented in Theorem 4.3. For
every flat surface F = Fm,n with m,n ≥ 3, the following holds:

– F is a flat vertical cylinder if and only if x appears in every terminal assembly

59

4.3. Classifying flat surfaces using the aTAM

Figure 4.8: An assembly α ∈ AF
[SF] on a flat surface when m = 11 and n = ∞. α starts

by the seed σ, and a vertical ribbon of tiles of type v grow from the south of σ. Also, a
horizontal ribbon of tiles of type h grows from the east of σ. After adding 5 tiles of type
h, the tiles reach the eastern side of this figure and continue from the western side. When
the ribbon of tiles of type h arrives to the west of the seed, x appears there, between tiles
of types h and v. The assembly on the figure is the terminal limiting assembly (assuming
the vertical ribbon is infinite).

α ∈ AF
◻ [SF] on F and y does not;

– F is a flat horizontal cylinder if and only if y appears in every terminal assembly
α ∈ AF

◻ [SF] on F and x does not,
– F is a flat torus if and only if both x and y appear in every terminal assembly
α ∈ AF

◻ [SF] on F , and
– F is the plane Z2 if and only if none of x and y appear in any terminal assembly
α ∈ AF

◻ [SF] on F .

Proof. Let F = Fm,n be a flat surface with m,n ≥ 3 and α ∈ AF
◻ [SF] on F . Firstly, F is a

flat vertical cylinder if and only if m ∈ N and n = ∞. Thus, according to Theorem 4.16,
F is a flat vertical cylinder if and only if the tile type x appears in α and x does not. See
Figure 4.8 for an illustration.

60

4.4. Concluding remarks

Figure 4.9: An assembly α ∈ AF
[SF] on a flat surface with m = ∞ and n = 9. α starts

by the seed σ, and a horizontal ribbon of tiles of type h grows from the south of σ. A
vertical ribbon of tiles of type v grows from the east of σ. After adding four tiles of type
v, the tiles arrive to the southern side of the figure and α continues from the northern
side. When the ribbon of tiles of type v collides with the north of the seed, y appears,
adjacent to tiles of both types h and v. The assembly on the figure is the terminal limiting
assembly (assuming the horizontal ribbon is infinite).

Secondly, F is a flat horizontal cylinder if and only if m = ∞ and n ∈ N. Thus,
according to Theorem 4.16, F is a flat horizontal cylinder if and only if the tile type y
appears in α and x does not. See Figure 4.9 for an illustration.

Next, F is a flat torus if and only if m ∈ N and n ∈ N. Thus, according to Theorem 4.16,
F is a flat torus if and only if both tile types x and y appear in α. See Figure 4.10 for an
illustration.

Lastly, F is the plane Z2 if and only if m = ∞ and n = ∞. Thus, according to
Theorem 4.16, F is Z2 if and only if none of the tile types x and y appear in α. See
Figure 4.7 for an illustration.

4.4 Concluding remarks

Corollary 4.17 obtained in this chapter implies that via the TAS SF , we are able to
classify the type of flat surface on which the assembly takes place: if a terminal assembly
α ∈ AF

◻ [SF] contains a tile of type x or y, then we are not on Z2. If it contains both x
and y, then we are on a finite torus. If α contains x but not y, the flat surface is a flat
vertical cylinder and if it contains y but not x, it is a flat horizontal cylinder. For further

61

4.4. Concluding remarks

Figure 4.10: An assembly α ∈ AF
[SF] on a flat torus F9,11. α starts by the seed σ, and

vertical and horizontal ribbons of tile types v and h grow respectively from the south and
the east of σ. After adding 6 tiles of type h, the horizontal ribbon reaches the eastern side
of F9,11 and α continues from its western side. After placing again 5 tiles of type h, the
ribbon of tiles of type h collides with the west of the seed. At this new junction between
tiles of types h and v, a tile of type x appears. Moreover, After adding 5 tiles of type v,
the tiles reach the southern side of F9,11 and α continues from the northern side of F9,11.
After placing 4 tiles of type v, the ribbon of tiles of type v collides with the north of the
seed. At this new junction between tiles of types h and v, a tile of type y appears. The
assembly on the figure is the terminal assembly.

illustration, Table 4.11 summarizes this classification.

As noted in Remark 4.9, the two flat surfaces Fm,n and Fn,m are isomorphic, however,
if m ≠ n, for a given aTAM TAS, their assemblies are not necessarily the same, since their
global north is along a dimension of different length. This is because tiles are not allowed
to rotate in the aTAM, unlike in the FTAM described in Chapter 3.5.

In flat surfaces, the assemblies are invariant under translations. However, this may
not be the case if the surface is irregular, for example for a polycube. Our main goal is
to extend the type of classification obtained in this chapter to more complicated types of
surfaces. We will tackle the case of simple polycubes of genus at most 1 in Chapter 7.
Before this, we have to introduce an extension of the aTAM that works on more complex
surfaces, in Chapter 5.

62

4.4. Concluding remarks

Flat torus Flat vertical cylinder Flat horizontal cylinder Z2

✓ ✗ ✓ ✗

✓ ✓ ✗ ✗

Table 4.11: The table of presence of tile types x (in blue) and y (in pink) in terminal
assemblies of SF on flat surfaces.

63

Chapter 5

The SFTAM: Surface Flexible Tile
Assembly Model

In this chapter we present the new Surface Flexible Tile Assembly Model or SFTAM.
Our goal of introducing the SFTAM is to enable tile self-assembly using classic unit square
tiles on 3D surfaces more complex than the 2D plane. In Chapter 4, we have designed
a TAS that distinguishes between the four types of flat surfaces. Our goal is to obtain a
similar result for more complicated types of surfaces, in particular, determine the genus
of certain polycube surfaces. However, as such surfaces can be irregular, the aTAM is not
suitable. Thus, we need to introduce an extension of the aTAM suitable for our study.
We believe that our model could be useful in practical scenarios where we have a host
surface on which we want to perform assemblies. As seen in Chapter 3.4, previous work
(like the FTAM) has mostly focused on creating certain 3D shapes using self-assembly, in
particular polycubes, or, assembly was performed on rather restricted surfaces like mazes.

The SFTAM can be seen as an intermediate between aTAM and FTAM. Unlike in the
FTAM, our aim for introducing the SFTAM is not for building 3D structures or surfaces:
we assume that the host surface already exists. The SFTAM assemblies resemble those of
the aTAM, and we avoid the difficulty of creating shapes one is faced with in the FTAM.

Polycubes are a natural option as the first choice to do tile self-assembly in 3-dimensional
space. Indeed, as the faces of polycubes are made of unit squares, we can easily place
on them classic square tiles as the ones used in the aTAM. The main difference with the
aTAM will be that the bonds between tiles bend on the edges of polycubes.

We first give the basic necessary notions and the formal definition of the SFTAM
in Section 5.1. We give some examples in Section 5.2. In Section 5.3, we compare the
SFTAM with some previous models. Finally, we conclude in Section 5.4.

5.1 The definition of SFTAM . 66

5.2 Examples and remarks . 68

5.3 Comparison and connections with previous models 71

5.4 Concluding remarks . 72

65

5.1. The definition of SFTAM

5.1 The definition of SFTAM

In this section, we formally define the Surface Flexible Tile Assembly Model, SFTAM.
In classical models like the aTAM, the assemblies are on the plane Z2. Here, we work
on 3-dimensional surfaces. To upgrade tile self-assembly on 3-dimensional surfaces using
rigid tiles, it is mandatory that the bonds between them be flexible so that the assemblies
grow on edges of surfaces and beyond.

The definitions of this section are adapted from the definitions for the aTAM in
Chapter 3.3.2. Definition 5.1 is similar to Definition 3.24, Definition 5.4 is similar to
Definition 3.25, Definition 5.6 is similar to Definition 3.28, Definition 5.7 is similar to
Definition 3.30, and Definition 5.8 is similar to Definition 3.31.

Like in the aTAM, tiles are 2D unit squares whose sides are assigned the labels of the
tile type, but there are some differences in the definition.

Definition 5.1 (Tile type in the SFTAM). Let Σ be a finite label alphabet and ϵ represent
the null label. A tile type t is a 4-tuple t = (t1, t2, t3, t4) with ti ∈ Σ ∪ Σ ∪ {ϵ} for each
i = {1,2,3,4}, where ϵ is the null label. Each copy of a tile type is a tile. By analogy with
the aTAM, t1, t2, t3 and t4 are called the northern label, eastern label, southern label
and western label, respectively. Each label l ∈ Σ ∪ Σ will receive a strength str(l) ∈ N,
with str(l) = str(l).

Remark 5.2. In the SFTAM, tiles are allowed to translate and rotate (unlike in the
aTAM), but do not reflect as in the FTAM. To prevent two tiles of the same type attaching
each other on the same glue after a 180 degree rotation of one of them, we have added the
complementary glue labels in order to control the assembly better (this is also present in
the FTAM [30]).

Figure 5.1 shows the four possible orientations of a single tile of type t = (a, b, c, d)
with str(a) = 2 and str(b) = str(c) = str(d) = 1.

t b

c

d

a

t a

b

c

d

t d

a

b

c

t c

d

a

b

Figure 5.1: The four possible orientations of a tile of type t in the SFTAM.

We now formally define the way we can place a tile on the surface of a polycube. This
definition is a simlification of the one used in the FTAM (Definition 3.42).

Definition 5.3 (Placement in SFTAM). Let C be a polycube. A placement p = (f, o) on
C consists of a facet f on the surface of C, and a side o of f , called its orientation. We
denote the set of all placements in C by Pl(C).

An example of a facet on a polycube and the four possible placements on it are shown
in Figure 5.2.

Note that for a given facet of a polycube, there are four possibilities for placing a given
tile for each orientation. Given a tile type t = (t1, t2, t3, t4) and a placement p = (f, o),
placing t at the placement p defines a mapping from the edges of f to the glues of t :
the i-th side of f (starting from the orientation o and going clockwise, looking from the
exterior of the surface of C) is associated with ti.

Now we can define a tile assembly system in the SFTAM.

66

5.1. The definition of SFTAM

X

Y

Z (1,0,1)

•

X

Y

Z (1,0,1)

••

X

Y

Z (1,0,1)

•

X

Y

Z (1,0,1)

•

Figure 5.2: A facet f of a polycube and the four possible placements of a tile on it. For a
tile of type t = (t1, t2, t3, t4), the arrow indicates the side o of f where the side with glue
t1 of t will be placed; this corresponds to the placement (f, o).

Definition 5.4 (Tile assembly system (TAS) in the SFTAM over a surface). A tile
assembly system, or TAS, over the surface of a given polycube C is a quintuple S =
(Σ, T,ασ, str, τ), where:

– Σ is an alphabet;
– T is a finite set of tile types on Σ;
– the seed assembly ασ is a set of tiles, each with a specified placement of Pl(C);
– str is a function from Σ∪{ϵ} to non-negative integers called strength function such

that str(ϵ) = 0 and str(ti) = str(ti) for ti ∈ Σ, and;
– τ ∈ N is called the temperature.

Remark 5.5. As in Remark 3.27, although the formal definition asks that the seed as-
sembly gives a fixed set of placements, in practice we might have a TAS where the seed
assembly can vary, i.e., it belongs to a family of possible placements. Moreover, even for
the same seed configuration, the exact placement on the polycube might also vary.

Next, we present some further notations. The following definitions of the assembly
dynamics are almost the same as the ones of the aTAM given in Chapter 3.3.2, with
some necessary modifications (as noted in Remark 5.2, binding is done for complementary
labels).

Definition 5.6 (Assembly in the SFTAM). An assembly α of a SFTAM TAS S =
(Σ, T,ασ, str, τ) on a polycube C is a partial function α ∶ Pl(C) ⇢ T defined on at least
one placement and such that for each facet f of C, there is at most one placement (f, o)
where α is defined.

67

5.2. Examples and remarks

For placements p = (f, o) and p′ = (f ′, o′) of Pl(C) with α(p) = t and α(p′) = t′ such
that f and f ′ are distinct but have a common side s, we say that t and t′ bind if the glues
l of t and l′ of t′ placed on s are complementary (i.e. l = l′) and have positive strength.

We recall that the assembly graph Gα associated to α (defined in Definition 3.29) has
as its vertices the placements of Pl(C) that have an image by α, and two placements p
and p′ are adjacent in Gα if the tiles α(p) and α(p′) bind. Recall the following definition.

Definition 5.7 (τ -stable assembly). For an integer τ (usually, the temperature of the
TAS), an assembly α is τ -stable if for breaking Gα into several connected components by
removing any set C of edges of Gα, the sum of strengths of the bonds corresponding to
edges of C is at least τ .

We start with a seed and then we add tiles one by one. This is formally described as
follows.

Definition 5.8 (Producible and terminal assemblies in the SFTAM). Let C be a polycube
and S = (T,ασ, τ) a SFTAM TAS with ασ positioned on C. An assembly α of S is
producible on C if either α is ασ where ασ is placed on a set of facets of C, or if α can
be obtained from a producible assembly β by τ -stably adding a single tile from T on C.

We write β →S α when α is producible from β and we denote the set of producible
assemblies of S by AC

[S].
An assembly is terminal if no tile can be τ -stably attached on C. The set of producible,

terminal assemblies of S is denoted by AC
◻ [S].

5.2 Examples and remarks

We now give an example of a TAS in the SFTAM.

Example 5.9 (SFTAM TAS). Let S = (Σ, T,ασ, str, τ) be the SFTAM TAS where:

– Σ = {a, b, c} is the alphabet;
– T = {t0, t1, t2} with t0 = (d, a, b, c), t1 = (b, ϵ, ϵ, a) and t2 = (ϵ, c, d, ϵ) are the tile types;
– the seed assembly ασ is a single tile of type t0 placed on a placement;
– str(ϵ) = 0, str(a) = str(a) = 1 and str(b) = str(b) = str(c) = str(c) = 2;
– the temperature τ = 2.

The tile types of the TAS S from Example 5.9 are depicted in Figure 5.3, and an
assembly is shown in Figure 5.4.

t0 a

b

c

d

t1a

b

t2 c

d

Figure 5.3: The tile types of the SFTAM TAS S from Example 5.9.

68

5.2. Examples and remarks

t0

(a) First stage of the assembly: the seed is
placed.

t0
t1

t2

(b) Second stage of the assembly, after ad-
dition of two tiles of type t1 and t2.

t0
t1

t2
t0

(c) Third stage of the assembly: one tile of
type t0 is added.

t0
t1

t2
t0

t1

t2

(d) Fourth stage of the assembly: two tiles
of type t1 and t2 are added.

t0
t1

t2
t0

t1

t2
t0

(e) Fifth stage of the assembly: one tile of
type t0 is added.

t0
t1

t2
t0

t1

t2
t0

t1

t2

(f) Sixth stage of the assembly: two addi-
tional tiles of types t1 and t2 are placed.

t0
t1

t2
t0

t1

t2
t0

t1

t2

t0

(g) Seventh stage of the assembly.

t0
t1

t2
t0

t1

t2
t0

t1

t2

t0

t1

t2

t0

t1

t2

t0

t1
t2

t0

(h) Advanced stage of the assembly.

Figure 5.4: An assembly of the SFTAM TAS S from Example 5.9.

69

5.2. Examples and remarks

Remark 5.10. For a given polycube C and an SFTAM TAS S, for different placements
of the seed, the sets of producible assemblies of S on C can be different. The SFTAM
TAS S1 with tiles presented in Figure 5.5(a) and the tile type t0 as seed is an example of
such a SFTAM system in temperature 2. See Figure 5.5(b)–(e) for an illustration of the
situations that by changing the placement of the seed, the assembly can change.

Moreover, for two different polycubes, the sets of producible assemblies for the same
TAS can change too: consider two polycubes each having a type of vertex not present on
the other polycube (for example, a vertex incident with five facets, like in Figure 5.5(b)
may or may not be present). They give rise to different topologies of the facet graphs, and
to assemblies that are not producible on the other surface.

t0

a

d t1b

a

t2 b

c

t3 d

c

x d

d

y b

d

(a) Tile types of the SFTAM TAS S1.

t 0

t1y

(b) On a convex corner. The order of place-
ment of the tiles is first t0, then t1, and fi-
nally y.

t0

t1t2

t 3

x

(c) On a concave corner. The order of place-
ment of the tiles is first t0, then t1, t2, t3,
and then x.

t0

t1
t2

t3

(d) On an edge. The order of placement of
the tiles is first t0, then t1, t2 and finally t3.

t0
t1

t2

t3

(e) On a face. The order of placement of
the tiles is first t0, then t1, t2 and finally t3.

Figure 5.5: Illustration of Remark 5.10: four different assemblies of a TAS S1 seeded at
different placements of a polycube.

70

5.3. Comparison and connections with previous models

5.3 Comparison and connections with previous models

5.3.1 Assemblies of aTAM systems on polycubes

In the SFTAM, unlike in the aTAM, the tiles are allowed to rotate. This is because on a
3D surface, the “global north” is not well-defined. For example, recall that is Chapter 4,
the aTAM assemblies on the two flat surfaces Fn,m and Fm,n for m ≠ n can be different.
This would not be the case in the SFTAM. In some special cases however, the assemblies
can corrrespond in the aTAM and SFTAM.

Note that an assembly of an aTAM TAS S can take place on a polycube surface C in
the SFTAM (by considering S as an SFTAM TAS), as long as there is enough space on
C. This is formalized in the following lemma.

Lemma 5.11. Let α be a producible assembly of an aTAM TAS S on Z2, and let C be
a polycube. If there exists a function i ∶ Dom(α) → C such that i taken as a function of
the assembly graph Gα to the subgraph of the facet graph Gf(C) induced by Im(i) is a
graph isomorphism, then the image of α under i is producible on C in the SFTAM (after
a suitable relabeling of the glues of S).

Proof. One may need to relabel the glues to obtain an SFTAM TAS from S: if there
are glues that are used both on north/south and east/west tile sides in S, they can be
renamed to give two distinct glues. Moreover, if there is a glue label, say l, on the west
side of a tile, it should be renamed as l on the east sides of tiles, so that binding is possible
in the SFTAM.

If a tile of the seed assembly of S is placed at a point ps in Z2, it is placed at i(ps) on
C. Since the tile bonds can fold along edges of C, the assembly on C proceeds exactly as
it proceeds on Z2, and each tile placed at a point p in Z2 is placed at point i(p) on C.

Instead of using Lemma 5.13, we may use a stronger assumption using the following
definition.

Definition 5.12 (Underlying rectangle). Given an aTAM assembly α on Z2, we call the
smallest axis-parallel rectangle containing the assembly, its underlying rectangle.

If an SFTAM assembly is on a 3D surface, it is permitted to fold along the tiles’ edges.
It is then possible to generalize the underlying rectangle to SFTAM assemblies as the
smallest subset R of the surface which contains the assembly and such that the subset of
the facet graph Gf(C) induced by R is isomorphic to a rectangular grid graph, if it exists.
With this definition, we can reformulate a weaker version of Lemma 5.11 as follows.

Lemma 5.13. Let α be a producible assembly of an aTAM TAS S on Z2 with underlying
rectangle R, and let C be a polycube. If there exists a function i ∶ R → C such that i taken
as a function of the subgraph of the 2D lattice induced by R to the subgraph of the facet
graph Gf(C) induced by Im(i) is a graph isomorphism, then the image of α under i is
producible on C in the SFTAM (after a suitable relabeling of the glues of S).

5.3.2 Producible SFTAM assemblies on polycubes may not be
producible in Z2

For a given TAS S in a SFTAM and a polycube C, the assemblies of S in C may not
correspond to the ones in Z2 for the corresponding aTAM system. There are several

71

5.4. Concluding remarks

reasons for this. Firstly, tiles can rotate in the SFTAM, which is not possible in the
aTAM. Nevertheless, one could introduce three additional tile types for each tile type of
S (to simulate the ability to rotate tiles) and argue that the producible assemblies of S in
the SFTAM can also be producible in the aTAM. However, a more serious obstacle exists:
the fact that the polycubes have corners. Indeed, as seen in Section 3.2.3, the vertices of
the polycubes may be incident with up to six facets of the surface in complicated ways,
while in Z2, every vertex is adjacent to exactly four facets. See Figure 5.5(b) for a simple
example of an assembly that needs three mutual adjacent placements, something that is
not possible in Z2.

5.3.3 Comparison of SFTAM with FTAM

In the SFTAM, unlike in the FTAM, the tiles do not reflect. Indeed, the tiles stick to a
given polycube and the normal vector n of the placement in the FTAM is not needed.
The reason is that we fix that the normal vector (as used in the FTAM) so that it always
starts inside of the polycube and points to the outside of the structure. So, the cyclic order
of the tiles’ sides is uniquely determined by the orientation of its placement. Moreover,
we can assume that the tiles have an inner face and an outer face, and that they always
attach with the inner face in contact with the surface. Hence, we do not need to consider
a normal vector for the placement of a tile. However, if we would consider non-orientable
surfaces, then we would still need a normal vector since inside and outside of the surface
is not well-defined.

Another essential point is that if we are able to obtain a surface via the FTAM, it is
possible to do SFTAM tile self-assembly on it. Thus, one could combine the FTAM and
SFTAM to first produce a 3D surface via the FTAM and then run a SFTAM assembly
on the surface.

5.4 Concluding remarks

We remark that the SFTAM can be used on surfaces other than polycubes. In fact, on
any orientable quadrangulated surface, where the quadrangles are all unit squares, one
can use the SFTAM. For example, this is the case of the flat surfaces studied in Chapter 4.

In experimental studies, as tiles are built from DNA strands (which are not rigid),
it is difficult to precisely control the shapes of the tiles. Hence, one can also imagine
a scenario where the tiles are stretchable, and in this case, any quadrangulated surface
would be admissible for the SFTAM.

The absence of the normal vector in the definition of the SFTAM works well with
orientable polycubes/surfaces. If we were working on a non-orientable surface, we would
need a normal vector for the placement of tiles.

72

Chapter 6

Finding the middle of a track in the
aTAM or SFTAM

The aim of this chapter is to define a SFTAM system that can be used to find the
middle of a track on a polycube. Informally speaking, a track on a polycube is a set of
facets on the surface of the polycube that, when unfolded and embedded in Z2, forms a
rectangle. When two of its parallel sides are distinguished as Start and Finish, it is called
an explicitly bounded track. Consider Figure 6.1(b) for an illustration, where p (in green)
is the track on the polycube with the start and finish points, and the explicitly bounded
track is seen in dark gray. The width of the explicitly bounded track needs to be at least
3 log(N), where N is its height, in order to have enough space for our construction.

In order to find the middle of p, we present an aTAM TAS S1/2 named middle finding
system such that if an assembly of S1/2 grows from a seed in the start point, a particular
tile tm sits only in the middle of the track and not anywhere else.

According to Lemma 5.13, for the underlying rectangle R of an aTAM assembly α in
Z2, if we can find a track of the same structure as R on the surface of a polycube C, then
we can produce the same assembly on C in the SFTAM. (Up to renaming of labels to
prevent tiles to rotate and attach differently as they should, as described in the proof of
Lemma 5.11.) Hence, in this chapter we only work with tracks and underlying rectangles
on Z2 in the aTAM, but the results can be applied to tracks and underlying rectangles
on polycubes.

Finding the middle of a track on a polycube will be an essential tool for the construc-
tions developed in Chapter 7. Moreover, this construction is general enough that it can
be useful in different contexts.

We first present some aTAM TAS’s that will be used as building blocks for the middle
finding system. They are based on binary counters used to measure the length of the
track. By Lemma 5.13, we can assume that we are on Z2, and our results will also hold
for tracks on polycubes.

The outline of this chapter is as follows. First in Section 6.1 we start with some pre-
liminaries. Next, in Section 6.2 we introduce the Increasing Binary Counter (Lemma 6.5)
and in Section 6.3, the Decreasing Binary Counter (Lemma 6.6). In Section 6.4, we
present a TAS called U-turn system (Lemma 6.7). Then, we present the main result of
this section, the middle finding system lemma (Lemma 6.8) in Section 6.5 to find the
middle of a track. We conclude in Section 6.6.

73

6.1. Preliminaries

Finish

Middle

Start

(a) in Z2

Middle

Start

F inish

(b) on a polycube

Figure 6.1: Finding the middle of a track on a polycube. The track is made of the facets
that are in the dark grey area.

6.1 Preliminaries . 74

6.2 The increasing binary counter system 75

6.3 The decreasing binary counter system 77

6.4 The U-turn system . 82

6.5 The middle finding system . 88

6.6 Concluding remarks . 91

6.1 Preliminaries

We start by defining some essential notions for this chapter.
One essential point is how to represent a number via tiles. This is classic in the

literature of tile self-assembly, see for example the binary counter from [65] presented in
Example 3.35. To this aim, we use the binary representation of numbers and we associate
a number to a row of tiles such that every bit of the number is assigned to a tile with the
appropriate label.

Definition 6.1 (Row tile number). Let T0 and T1 be two sets of tiles with labels 0 and
1, respectively. Let N be an integer and a1...a2an be its binary representation with n =
⌈log2N⌉. A row of tiles with labels a∗1, a2, ..., an is the row tile number representation of
N such that the distinct tile a∗1, represents the most significant bit of the number.

74

6.2. The increasing binary counter system

Example 6.2. See an example of the row tile number of the number 12 in Figure 6.2.

Figure 6.2: Representation of the number 12 by its row tile number.

We now formalize the notion of a track.

Definition 6.3 (Track). Given a polycube C, a track is a set F of facets of the surface of
C such that the subgraph of the facet graph Gf(C) induced by the facets in F is isomorphic
to a rectangular grid graph.

See Figure 6.1 for an example of a track on a polycube.
In order to do finite tile self assembly or block the growth of an assembly inside a

restricted area, we define explicitly bounded tracks as follows.

Definition 6.4 (Explicitly bounded track). An explicitly bounded track R (on Z2 or on
a polycube) is a track with a partial assembly consisting of two rows of tiles placed on two
opposite sides of R.

See Figure 6.1 for a representation of an explicitly bounded track.
The tiles that border an explicitly bounded track can be considered part of the seed

of an assembly on this track.

6.2 The increasing binary counter system

We will use the tile representation of numbers in binary introduced in Section 6.1 to read
or measure the length of a track on the underlying rectangle of an assembly. To do so,
we introduce specific counter systems.

We now introduce the Increasing Binary Counter system (IBC), which is similar to
the binary counter TAS from Example 3.35 from [65] (with the main difference that our
counter is bounded, while that from [65] is unbounded). First, we explain what the IBC
system is, then we present its tile types. Afterwards, we show how it works by explaining
the assembly process.

In the production of the IBC system, the tiles of each row (excluding the tiles σ+ and
t++) form a row tile number representing the index of the row in which they are located.
Consequently, whenever the assembly stops by getting to the finish point of a track, the
length of the assembly corresponds to the last row tile number. This number is a measure
of the length of the underlying rectangle of the assembly.

Lemma 6.5 (Increasing binary counter system, IBC). The increasing binary counter
system or IBC system, is a SFTAM tile assembly system over Z2 such that if the bottom
of the seed is placed at the origin, each row (excluding the tiles of type σ+ and t++) denotes
its position in binary on the y axis and the leftmost tiles of all rows whose number is 2k

for some k ≥ 1 is of type tO.
The system is described by a quintuple S = (Σ, T,αI

σ, str, τ), where:

– Σ = {0,1,1s,++, over, ϵ}
– T = {σ+, t++, t0+0, t0+1, t1+0, t1+1, tS, tO, tOS}

75

6.2. The increasing binary counter system

– αI
σ places a tile of type σ+ = (++, ϵ, ϵ, over) (the ϵ labels can be replaced by other labels

depending on the situation) together with a column of support tiles of arbitrary size,
placed on the north side of σ+, all of whose west labels are 1 (the other labels can be
arbitrary).

– str ∶ Σ ∪ {ϵ} Ð→ {0,1,2} such that str(ϵ) = 0. The values of the str function for Σ
are str(0) = str(1) = str(++) = str(1s) = 1 and str(++) = str(over) = 2.

– τ = 2

The IBC tile types are shown in Figure 6.3.

(a) The initial seed tile σ+ (b) The support incrementor tile t++

(c) The rule tile types t0+0, t0+1, t1+0
and t1+1

(d) The tile types tO, tS and tOS re-
lated to the most significant bit

Figure 6.3: The IBC tile types.

Proof. We start by describing the IBC tiles.

The seed of the IBC.
There is one tile type σ+ = (++, ϵ, ϵ, over), and one incrementor tile type t++ = (++, ϵ,++,1)

(the gray tile in Figure 6.3) called the support tiles. Together, one tile of type σ+ with a
column of tiles of type t++ form the block seed of the IBC. Note that the tile type of the
support is allowed to be different from t++, as long as its western labels are 1.

The rule tile types of IBC.
There are also seven sum rule tile types: four "standard" rule tile types and three rule

tile types related to the most significant bit. However, from now on when we mention
rule tiles, we refer to standard rule tiles.

First, we explain how the binary sum is done by these tiles. In each rule tile type,
the inputs are the labels at the east and south of the tile, for example a and b. The
two outputs are: the classic binary sum a + b in the northern label, and the carry bit,
which is displayed on the western label of the tile. The rule tile types of the IBC are:
t0+0 = (0,0,0,0), t0+1 = (1,0,1,1), t1+0 = (1,1,0,0) and t1+1 = (0,1,1,0) with the side labels
as mentioned, and where the inner label is the value of the sum, the same as the northern
label.

The most significant bit tile types of the IBC.
There are three tile types for the most significant bit. They use the same logic as the

rule tile types. The tile type tS = (1S,0,1, ϵ) represents the most significant bit of the row
number when that number is not a power of 2. In case a = b = 1 in the currently most
significant bit, there is an overflow after the sum operation a + b. In this case, the two
rule tiles tOS, tO are used to change the most significant bit. The tile tOS = (0,1,1s, over)

76

6.3. The decreasing binary counter system

is the connecting tile between tO and tS in case of the overflow and tO = (1s, over, ϵ, ϵ) is
the new most significant bit when the row number is a power of 2.

The process of the assembly in the IBC TAS.
The process starts with the seed. The tiles of the support start the process of incre-

menting the row below.
A tile of type tO binds to the west of the seed tile by label "over" with strength 2 in

the east. Note that the label of tO is 1, which corresponds to row number 1, where it is
located. Now the incrementation process starts. Each tile is bound by its eastern and
southern neighbors, i.e. for having a tile t∗ with the label a+ b, there is a tile at the south
with north label a and there is a tile at the east with west label b. The first tile to bind in
each row is the easternmost, it binds with the support. The carry bit of the sum appears
in the west side of the tile t∗. The northern label of t∗ is a + b too. See an example of an
assembly for the number 16 in Figure 6.4.

Note again that each row represents the row number in which it is located along the
y axis. This process continues for the whole height of the support of αI

σ.
In the terminal assembly, the top row is the row tile number N , where N is the length

of the support. Moreover, the tiles of type tO only appear at the left of a row when the
row is a power of 2, and the highest one is the row number max{c ∣ 2c ≤ N}.

The features of our IBC System regarding previous models

Other binary counters were introduced in the literature, for example the one presented
in Example 3.35 from [65]. However, the IBC system has some specific features that are
necessary in the construction of the middle finding system. Among them, we do not need
the support tiles at the bottom of the production. More remarkable, there is no infinite
(or arbitrarily large) line of 0 tiles at the left of the binary number of each row. Thus,
the counter does not fill the whole plane and instead, we have a counter ribbon of tiles
as a production. In consequence, a production of the IBC System is able to measure the
length of a track on a given polycube due to Lemma 5.13.

6.3 The decreasing binary counter system

The decreasing binary counter system is a tile assembly system that implements a reverse
counter.

This counter starts with row tile number N , and decreases until the (N + 1)st row
representing row tile number 2⌈log(N)⌉ − 1, where a special tile (of type t∗1−0) is placed at
the left. Exactly one tile of this type is present in the terminal assembly, indeed, for all
the next rows, the assembly uses other tile types for the most significant bit and cycles
until it reaches an obstacle. This special tile can then be used by a later assembly, for
example as a seed.

Lemma 6.6 (Decreasing Binary Counter system, DBC system). The Decreasing binary
counter system or DBC system for short, is a tile assembly system over Z2 defined by a
quintuple S = (Σ, T,αD

σ , str, τ), where:

– Σ = {0,0′,1,1′,−−, ϵ}
– T = {σ−, t−−, t0−0, t0−1, t1−0, t1−1, t∗0−0, t

∗
0−1, t

∗
1−0, t

∗
1−1}, see Figure 6.5.

– the seed assembly αD
σ is made of a binary row tile number N , a tile of type σ− =

(−−, ϵ, ϵ,0) (where the ϵ labels are arbitrary) at the east of it, and at the north of

77

6.3. The decreasing binary counter system

Figure 6.4: Assembly of row tile number 16 in the IBC.

this tile, a column of support tiles that have western label 1, of arbitrary size (for
example of type t−−, but they can be of other types) placed on the north of the σ−
tile. The column has height at least N .

– str ∶ Σ∪{ϵ} Ð→ {0,1,2} such that str(ϵ) = 0, str(−−) = 2 and all other values are 1.
– τ = 2

The terminal assembly of the DBC system is a rectangle with exactly one tile of type
t∗1−0 located at the left of the (N +1)st row (which corresponds to row tile number 2⌈log(N)⌉−
1).

Proof. The DBC tiles are shown in Figure 6.5.

The seed of the DBC.

78

6.3. The decreasing binary counter system

(a) The seed tile σ− (b) The support decrementor tile t−−

(c) The tiles t∗0−0, t
∗
0−1, t

∗
1−0, and t∗1−1 (d) The tiles t0−0, t0−1, t1−0 and t1−1

Figure 6.5: The DBC tile types.

An assembly of the DBC TAS starts when a binary row number binds to the decre-
ment operation tile of type σD = (−−, ϵ, ϵ,0) to form a DBC seed for the decrementation
operation.

There is a decrementor tile of type t−− = (−−, ϵ,−−,1) which triggers the decrementa-
tion of the row below it into a new row to the left of the next tile of type t−−.

The rule tile types of the DBC.
There are eight rule tiles, four for the most significant bit and four for the others. The

inputs are the labels of the east and south of the tile, for example a and b, and there are
two outputs. The first one, that is located in the northern label, is the result of the binary
subtraction a − b. The second output is the western label of the tile such that its value
is needed to borrow for the next operation. The label of the new tile itself is also a − b.
With this description, the rule tiles are ta−b = (a − b, b, a, borrow), i.e. t0−0 = (0,0,0,0),
t0−1 = (0,1,1,1), t1−0 = (1,0,1,0), t1−1 = (1,1,0,0), t∗0−0 = (0′,0,0′, ϵ), t∗0−1 = (0′,1,1′, ϵ),
t∗1−0 = (1

′,0,1′, ϵ), t∗1−1 = (1′,1,0′, ϵ). See Figure 6.6 for an illustration.

a − b b

abo
rr
ow

a − b

Figure 6.6: DBC rule tiles

The process of the assembly in the DBC TAS.
The counter starts at an arbitrary value N and grows along a vertical column of

support tiles. A decrementation process starts by relying on the support tiles that trigger
the decrementation of the row below it into a new row to the left of the support tile. Each
row i shows the number N − i modulo min{2k ∣ N ≤ 2k}. Indeed, when the row’s value
counts down to 0, the value of the next row will be the bits’ maximum possible capacity of
the number that the process was started with. Moreover, note that the most significant
bit tiles are the tiles of types t∗0−0, t∗0−1, t∗1−1 and the row of the number 0 for the first
time is exposed whenever a tile t∗1−0 appears in the most significant bit in the row after
the one of 0, i.e. the row of −1. An example of a DBC assembly for N = 12 is presented
in Figure 6.7, where the tile of type t∗1−0 is presented in red. After the appearance of
t∗1−0, the tiles of types t∗0−0, t∗0−1, t∗1−0, t∗1−1 do not appear in the assembly anymore and
the process continues with tiles of types t0−0, t0−1, t1−0 and t1−1. After that, the process

79

6.3. The decreasing binary counter system

repeats for the whole length of the support. Since the length of the support is at least N ,
the terminal assembly is a rectangle with exactly one tile of type t∗1−0 located at the left
of the (N + 1)st row.

80

6.3. The decreasing binary counter system

(a) Two full cycles of the assembly. (b) Zoom on the first cycle.

Figure 6.7: The assembly of the DBC System for number 12 to negative 15. The assembly
goes on to the north until it reaches an obstacle. The red tile is the t∗0−1 that marks the
left of row number N + 1.

81

6.4. The U-turn system

6.4 The U-turn system

We now introduce a TAS which copies a row tile number to its left, as shown in Figure 6.8.

Figure 6.8: The goal of the U-turn system is to copy a row tile number to its left.

To do so, a U-shape rotation of each of its tiles will be performed (see Figure 6.12),
which is why we gave the “U-turn” name to it. The seed is analogous to that of IBC and
DBC.

Lemma 6.7 (U-turn system lemma). There exists a TAS SU = (Σ, TU , αU
σ , str, τ) with the

following properties. Assume a row tile number N is placed on a track of width at least
2log(N)+1 and height at least log(N) with the most significant bit placed on the coordinate
(log(N) + 1, log(N)). Then, S makes a copy of N to the left of its most significant bit.
More precisely, if N was in positions [(x, y), ..., (x+k, y)], in the terminal assembly, there
is a copy of N in positions [(x − k − 1, y), . . . , (x − 1, y)].

The system is formally defined as follows.

– Σ = {0,0′′,1,1′′,1′,1′∗, a, b, b′′, c, d, ϵ}
– TU = {σu, tu, t0∗← , t

1∗
← , t

0′′
← , t1

′′

← , ta0← , t
a1
← , t

b
←, t

0 ↱, t1 ↱, t0,0↙ , t0,1↙ , t1,0↙ , t1,1↙ , t1∗↑ , t
1
↑ , t

0
↑ , t⇇, t

0′′

↱

, t1
′′

↱

}.
– The seed assembly αU

σ is formed by a tile of type σu = (ϵ, ϵ, b′′, c) (where ϵ can be
arbitrary labels) which is placed on the right of a row tile number, and at the north
of the tile of type σu, a vertical column of support tiles of arbitrary size (with at least
as many tiles as in the row tile number) with western label b.

– str ∶ Σ ∪ {ϵ} Ð→ {0,1,2} such that str(ϵ) = 0. The values of the str function in Σ
are str(0′′) = str(1′′) = str(b′′) = 2, and 1 for the others.

– τ = 2

Proof. Let TU be the set of tiles shown in Figure 6.9, its temperature is 2.

The seed and the block tiles in the U-turn system.
The U-turn system is a TAS that starts with a multiple seed such that the number

of support tiles is at least the number of tiles of the row tile number. Let the tile σu =

(ϵ, ϵ, b′′, c) bind to a row tile number N with n = ⌈log2N⌉. We assume that the assembly
is oriented as in Figure 6.10, where the initial row tile number is at the top right. From
the south of σu, support tiles of type tu = (b′′, ϵ, b′′, b) with northern and southern labels
b′′ whose strength are 2, are placed one after another. These tiles form a ribbon of tiles of
type tu that is perpendicular with respect to the seed. Once the number of support tiles
becomes n, all these tiles together form the seed of the U-turn system, and the assembly
begins.

After this step, the tiles below the seed start to grow and the assembly continues row
by row. The overview of the assembly’s process of the U-turn system is as below.

82

6.4. The U-turn system

(a) The initial seed tile σu (b) The row tile number tile types: t1∗↑ , t0↑ and t1↑

(c) The support tile tu (d) The tile types t0↱and t1↱

(e) The tile types t0,0↙ , t1,1↙ , t0,1↙ and t1,0↙ (f) The tile types t0
′′

← and t1
′′

←

(g) The tile types t0
′′

↱

and t1
′′

↱

(h) The tile type tb← (i) The tile types ta0← and ta1←

(j) The marked tile types for copying the most significant bit tile (which is of type t1∗↑)

Figure 6.9: The U-turn system and support tile types.

Overview of the assembly’s process in the U-turn system.
The word "U-turn" refers to the process of the assembly in this system: each bit tile

is copied along a U-shaped path to be copied to the left of the initial row tile number.
More precisely, each tile ak that is placed at the k-th bit of the row tile number, is copied
k times to the south, then it is copied n times to the west, and at the end k times to the
north. Furthermore, the assembly progresses row by row under the seed. Indeed, the last
tile of each row has strength 2 at the west and increments the number of row tiles. Thus,
the next tile is placed at the (n + k)-th column (starting from the rightmost column of
Figure 6.10). This tile makes a base, and using the support of the last tiles of each row,
a vertical column is constructed that sends the value of ak to the north.

The first stage of the assembly in the U-turn system.
First, we explain the tiles of the very first row under the seed. For an illustration

during this stage see Figure 6.11. This row is made of the tiles that transfer the value of
the rightmost tile i.e. the least significant bit a1 of the row tile number, to the column
n + 1. At first, a tile of type t0 ↱= (0, b, b,0) or t1 ↱= (1, b, b,1) (depending on the value of
the least significant bit, for short we use t ↱) appears in the assembly. The tiles of type
t ↱transfer the value of the north label to the west label. These tiles are colored in dark
green in Figure 6.10.

Then, tiles of type t1,1↙ = (1,1,1,1), t
1,0
↙ = (1,0,1,0), t

0,1
↙ = (0,1,0,1) and t0,0↙ = (0,0,0,0)

(for short t↙, light green in Figure 6.10), that copy the north label to the south label, and
the east label to the west label, appear under the row tile number N , at the west of the

83

6.4. The U-turn system

Figure 6.10: Copying 11111001 in the U-turn system. The gray bracket on the right shows
the minimum number of support tiles that are necessary for this assembly.

84

6.4. The U-turn system

Figure 6.11: In the first stage of the assembly of the U-turn system, the value of the least
significant bit is transferred n times to the left (here n = 8).

tile of type t ↱(dark green in Figure 6.10) except the leftmost one, which corresponds to
the most significant bit. Notice that in the U-turn system, all the tile types that transfer
the value of the most significant bit tile are distinct from the other tiles.

The tile below the most significant bit is a special tile of type t1∗←Ð = (1
′∗,1,1′,1′′) or

t0∗←Ð = (1
′∗,0,1′,0′′) (cyan in Figure 6.10) that copies the north label to the south label and

the east label to the west label with strength 2. Thus, this tile of type t1∗←Ð or t0∗←Ð allows to
open a new column. The tile after it is of type t0

′′

↱

= (0′′, d, c,0) or t1
′′

↱

= (1′′, d, c,1) (light
blue in Figure 6.10) with strength 2 at the east label and brings its value to the north.
Now, the first copied tile, which corresponds to the least significant bit tile, appears at
the left of the most significant bit tile of N .

Note that the tile of type t ↱also copies the east label, i.e. block label b from the
support tiles tu, to the south label. Thus, at the south of the tile of type t ↱, the tiles of
types tb←Ð = (b, b, b, b) (named block tiles) appear vertically with the support of tu.

The overall transfer of the value in the U-turn assembly.
Now, we explain the general process of the assembly for transferring the value of the

k-th least significant bit of the row tile number. In Figure 6.12 this stage is marked with
yellow-bordered rectangles on the left side of the assembly. In this part, each new tile can
be placed if and only if their northern and eastern labels correspond to the previous tiles.

Assume that we are in the k-th stage i.e. the value of the k-th least significant bit is
being transferred.

In the previous stages before k, the block tiles of types tb←Ð grow vertically from the
south of the tile of type t ↱. Thus, the tiles of type tb←Ð are placed between the support
tiles of type tu and t ↱in each row and copy the block label b from the east to the west.
Therefore, the tile t ↱appears in the k-th row and the k-th column with help of the tiles
of type t↙ in the north and tb←Ð at its east. Then, the tile that is placed at the k-th bit of
the row number is copied k − 1 times to the south before it meets the block tile, the place
where the tile of type t ↱(that transfers the north label to the west label) appears.

Then, the value of the k-th bit tile is copied one time to the south, and n times to the
west. Before arriving at the (k+n)-th column, the value passes through the n-th column,
i.e. the column of the most significant bit tiles.

As mentioned before, the path that the most significant bit goes through is created
with marked tiles to keep it distinguished from the other bit tiles. From the column of the
most significant tile types, the tiles of type ta←Ð transfer their eastern value to the western
value until arriving to the (n + k)-th column at the left. Note that, at the (n + k − 1)-th
bit towards the left, a tile of type t1

′′

← = (d,0, a,0
′′
) or t0

′′

← = (d,1, a,1
′′
) (dark blue in

Figure 6.10) open a new column that starts with t0
′′

↱

= (0′′, d, c,0) or t1
′′

↱

= (1′′, d, c,1)
(light blue in Figure 6.10) that transfers the value from the west to the north. Observe in
Figure 6.10 that these tiles form a light blue diagonal bisector between the column of the

85

6.4. The U-turn system

Figure 6.12: The k-th stage of the assembly in the U-turn system is shown by yellow-filled
rectangles. The value of the k-th significant bit is copied down by k − 1 rows during the
previous stages. The k-th stage copies the value one time to the south and n times to the
left and finally k times to the top. Here, k = 5 and n = 8. In addition, in the k-th stage,
the tiles of type tb←Ð in the gray rectangle appear below the tile of type t ↱, and they will
be the supports for the (k + 1)-th stage. The seed is highlighted in the black rectangle.

86

6.4. The U-turn system

most significant bit below it, and the copied row tile number of N . After these tiles are
placed, the value of each tile is copied to the north using t↑-type tiles. Note that the tile
types of the (n + k)-th column are placed by matching with their southern and eastern
tiles.

This process continues until the value of each tile bit is placed in a new tile bit in the
same row as N but with a shift of n columns. In the terminal assembly, there is a copy of of
N (which was in positions [(x, y), ..., (x+k, y)]) in positions [(x−k−1, y), . . . , (x−1, y)].

87

6.5. The middle finding system

6.5 The middle finding system

Now we are ready to present the main result of this chapter. The following lemma uses
the IBC, DBC and U-turn systems to present a SFTAM TAS in order to find the middle
of the height of R. See Figure 6.13.

Lemma 6.8 (Middle finding system lemma). Let R be an explicitly bounded track of width
at least 3 log(N), where N is the height of R, and the two rows of R having tiles form
the sets Start in the south side and Finish in the north side, respectively. There is a
TAS S1/2 = (Σ, T1/2, αM

σ , str, τ) such that for all assemblies with a seed located at the start,
there is a tile tm which appears only at coordinate (x, ⌊N2 ⌋) with no other tiles to its left.
Formally the system is:

– Σ = ΣIBC1 ∪ΣIBC2 ∪ΣU ∪ΣDBC ∪ {org, c} where the labels in Σ are the same as in
each system, except when a modification is explicitly mentioned. However, any two
labels from two distinct systems are distinct from each other.

– T1/2 = TIBC1 ∪ TIBC2 ∪ TU ∪ TDBC ∪ {tv, tcopy}
– The seed assembly αM

σ is composed of a tile of type σ+ from the IBC System, together
with the tiles of Start and Finish and with a column of an arbitrary number of
support tiles (the ones from the IBC System) placed on the north side of σ+, all of
whose west labels are 1 (the other labels can be arbitrary), going up to the Finish
row.

– str ∶ Σ ∪ {ϵ} Ð→ {0,1,2} such that str(ϵ) = 0 and str(org) = str(c) = 1. The values
of the str function in Σ are the same as each system.

– τ = 2

Proof. Let R be an explicitly bounded track as described in the statement, and N = 2n+k
with k < 2n be the height of R. We assume that the specially marked horizontal sides of
R form the sets Start at the bottom and the other, Finish, at the top, as in Figure 6.13.

We use the IBC, DBC and U-turn systems from the previous sections to define our
middle finding SFTAM TAS that finds N

2 = 2
(n−1)

+
k
2 . There are two copies of the IBC,

named IBC1 and IBC2. To avoid any confusion regarding tile types of IBC, DBC and
U-turn systems each label is marked with its system name.

For example, we use 1IBC for the IBC system, and 1DBC for the DBC system. However,
whenever there is no ambiguity, we only use label 1 for simplicity. See an overview of the
assembly in Figure 6.13 to follow the structure of the proof. Now we describe the steps
for the middle finding system.

0. Growing a column of tiles of type t++ until "Finish".
The assembly starts to grow when σ+ from the IBC1 System is placed besides the

starting tiles. The tiles of type t++ pave the way until becoming blocked by "Finish" tiles,
creating a column of tiles. These tiles are the support for the IBC1 system.

1. Using the IBC System IBC1 to find the height N = 2n + k of R.
Recall from Lemma 6.5 of IBC systems, that each row tile number represents the

height of the assembly along the y axis. At the end, the assembly is blocked at the
endpoint tiles of R in the row tile number N .

Here we modify the labels of the most significant bit tiles. We set tS = (1S,0,1,1)
instead of tS = (1S,0,1, ϵ), i.e the last label is changed to 1. This change will be used for
starting the growth of the second IBC system. In addition, instead of tO = (1s, over, ϵ, ϵ) we

88

6.5. The middle finding system

have tO = (1s, over, org, org) (“org” stands for “orange”). The reason for this modification
is that it will be useful in the third step, where we copy the value of k.

Here, because of this modification, two types of tiles will be able to be attached to
the assembly. These tiles will be useful for the later stages of the assembly. Firstly, each
time that in the IBC system, a new most significant bit tile is added, a vertical tile bond
grows in its south by tv = (org,1, org,1), where org is the new southern label of tO, and
the label 1 is 1copy. (These tiles will be used in the copy system.) Secondly, when tv tiles
collide with previous tv tiles, a double column of tiles of type tb appears. (These tiles will
be used as block tiles in the U-turn system.)

2. Returning to row number 2n using the second IBC system IBC2, which then outputs
the value of k

Afterwards, at the collision of IBC1 with the finish block tiles, IBC2 appears next to
the most significant bit tile of IBC1. This is where our modification of IBC1 becomes
useful. In fact, changing the fourth label of the most significant bit tile of the IBC1 system
to 1, enables this new IBC system IBC2 to start growing, using the most significant
column of IBC1 as its support.

Note that due to the SFTAM rotating tiles, the two IBC systems are able to grow in
opposite directions. Thus, the assembly returns towards the row tile number of 2n using
the IBC2 system.

consequently, the value of the last row tile number of IBC2 is k.

3. Copying k until 2n−1 (the middle of 2n).
Now, the topmost column of tiles of type tv from the first step will act as the support for

the third step. Thanks to the vertical tile bond that is located below the most significant
bit tile of the 2n row tile number, the k-row tile number is copied 2n−1 times until the
2n−1-row tile number of IBC1 (this is half of 2n). To this aim, we use tiles of types
tcopy = (x, copy, x, copy) and t∗copy = (x, copy, x,1DBC) (for x ∈ {0,1}) such that x is the
label of the IBC system, and t∗copy is used for copying the most significant bit tiles of the
IBC system.

Since the column of tiles of type tv is the support of this step, the copy process stops
after 2n−1 copies.

4. Halving k by eliminating its least significant bit.
Now, the copied row tile number with value k is halved by getting rid of its least

significant bit. The block tiles that already appeared when two vertical tile bonds of type
tv met each other, discard the least significant bit tile of the k-row tile number and copy
the k

2 -row tile number to the left of the first block tiles. The tiles here are a tile of type
tb′ = (org, c, ϵ, u) such that u is a label with strength 2, and a seed σu of the U-turn system
that binds to it. These are block tiles. Also, from the south of σu, there are tiles of type
tu, the support tiles of the U-turn system. They are shown in black in Figure 6.13.

5. Shifting k
2 to the left by a U-turn system.

The column of tiles of type tu from the previous step form the support for this step.
The binding of the block tiles to the k

2 -row tile number form a U-turn block seed and the
k
2 -row tile number shifts to its left. Remember that the U-turn system needs space for
the k

2 tiles in the south of the U-turn seed; this condition is true at the row number 2n−1

along the y axis, since k
2 < 2

n−1.

6. Going up by k
2 using the DBC system.

89

6.5. The middle finding system

After shifting k
2 to the left at the row 2n

2 , a DBC system starts from k
2 along the side

of the Copy system. Note that here the label 1DBC of t∗copy (from the Copy system) plays
the role of the support tile type in this DBC system. Moreover, the first row of the DBC
system i.e. the seed, is the copied k

2 row tile number from the U-turn system. We add
two final modifications to the DBC. We change the tile type t∗0−1 to tm = (1′,0,1′,−−) by
changing the fourth label.

After passing the zero with the DBC system, a tile of type tm appears in row N
2 =

2n−1 + k
2 . The process of finding the middle finishes here by the appearance of tm in the

assembly.
At the end, note that a tile of type tm only appears once, because the support of the

DBC system is the left side of the copy system. Moreover, in the middle finding system
on an explicitly bounded track, we have a width of at least 3 log(N), where N is its height
so that IBC1, IBC2 and DBC with IBC Support systems are able to grow without any
space restriction. For an outline of the middle finding system, see Figure 6.13, where tm
is in red on the left.

Start

F inishY

X

0.
IB

C
Support

σ+

1. IBC1

2.IBC2

3. Copy 1. tv

4. k
2

4.
U

-turn
support

5. U-turn

6. DBC

tmMiddle

≥ 3 log(N)

Figure 6.13: The steps of the middle finding system process. The tile tm is the left red
one.

90

6.6. Concluding remarks

6.6 Concluding remarks

We have proposed the middle finding system, a TAS that works both in the aTAM in Z2

and (via Lemma 5.13) in the SFTAM on polycubes, to find the middle of a track. Note
that both the increasing and decreasing binary counters are essential here, as without
them it would not be possible to determine the length of the track.

We believe that this TAS may be useful for future works in other contexts.
The middle finding system for polycubes paves the way to identify the genus of some

3D surfaces in Chapter 7.

91

Chapter 7

Detecting the genus of order-1 cuboids
using the SFTAM

This chapter deals with detecting the genus of a family of surfaces of 3D objects called
cuboids, which are special types of polycubes. Polycubes can form complex surfaces, and
their genus can be high. We focus on a simple family of polycubes that can have genus 0
or genus 1, called order-1 cuboids. In this chapter, we will suppose that the SFTAM
self-assembly is performed on the surface of an order-1 cuboid C. We design a SFTAM
tile assembly system which is able to distinguish the order-1 cuboids with genus 1 from
the others using its terminal assemblies. The definitions and lemmas from Chapter 6 will
be needed for this task. A brief description of our main result is sketched as follows.

There is a SFTAM tile self-assembly system SG and a subset of tile-types Y ⊆ T such
that for an order-1 cuboid C, if SG assembles on C starting from a seed which is placed
in a proper way, the following holds:

– if C has genus 1, every terminal assembly of S on C contains at least one tile of Y ,
and

– if C has genus 0, then no tile of Y appears in any producible assembly of S on C.

In other words, the genus of C can be determined using the assemblies of SG on C.
The goal of this study is to show that performing self-assembly on surfaces of higher

genus can be helpful. We also demonstrate some techniques which may prove useful in
characterizing the topological properties of a wide range of surfaces.

In Chapter 4, we obtained a similar classification for four types of flat surfaces. As these
surfaces are more regular than cuboids, our task was much easier. Indeed, the position
of the seed was not important, as the assemblies were invariant under translations. In
the case of cuboids however, this is not the case and we have to come up with a more
complicated strategy to distinguish between genus 0 and genus 1 cuboids.

As noted in Remark 3.32, tile self-assembly is asynchronous and nondeterministic.
Thus, one of the main difficulties we need to overcome is to control the assembly. For
that, in order to prevent such conflicts, we will have several successive phases in our
assembly.

Remark 7.1. For simplicity of presentation, we do only specify labels as l and not as
the complement l. However, if a TAS has a label l on some west sides and on some east
sides of tiles, we implicitly assume that the western labels are actually l and the eastern
labels are the complement l. Similarly, if a label l is present both on the north/south

93

7.1. The order-1 cuboids

of some tiles and on the east/west of some tiles, we implicitly assume that the label for
the north/south is lV and the label for east/west sides is lH , to prevent a rotation and
unwanted attachment.

We start with defining the cuboids in Section 7.1. We then formally state the main
theorem of this chapter, Theorem 7.6, in Section 7.2. We give an overview of the frame-
work in Section 7.3. We describe the TAS SG in Section 7.4. We then give a closer
intuitive idea of the proof in Section 7.5. We then describe in more detail the assemblies
of SG in Section 7.6, and we finalize the proof of Theorem 7.6 in Section 7.7. We conclude
in Section 7.8.

7.1 The order-1 cuboids . 94

7.2 Statement of the main theorem 95

7.3 Our framework: region partition of order-1 cuboids 97

7.4 Description of the TAS SG . 99

7.5 Overview of the assemblies of SG on O1 and proof ideas 102

7.6 Description of terminal assemblies of SG on order-1 cuboids:
AC1
◻ [SG] . 104

7.7 Detecting the genus of order-1 cuboids via SG: proof of the
main theorem . 116

7.8 Concluding remarks . 119

7.1 The order-1 cuboids

In this section, we introduce the structures that we work on: order-1 cuboids, which are
special types of polycubes. We work in 3-dimensional space, on the integer lattice Z3. We
start with some definitions.

Definition 7.2 (Order-0 cuboid). An order-0 cuboid C = (sC , xC , yC , zC) is a 3D struc-
ture, where sC = (sx, sy, sz) ∈ Z3 is the point of C with smallest coordinates and xC , yC , zC
are integers representing the length, width and height of C. It contains all points (x, y, z)
of Z3 such that sx ≤ x ≤ sx + xC, sy ≤ y ≤ sy + yC and sz ≤ z ≤ sz + zC. We denote the set
of all cuboids by O0.

Note that we work on the boundary surface of cuboids.
We are interested in 3D structures that are more complicated than order-0 cuboids, in

particular 3D structures that can have tunnels, that is, “holes”. To this aim, we introduce
a family of polycubes called order-1 cuboids. A cuboid is connected if one can reach any
point of its surface from any other point by a connected path.

Definition 7.3 (Order-1 cuboid). An order-1 cuboid C1 is a connected cuboid that is
the difference between two order-0 cuboids. Given C0 = (sC0 , xC0 , yC0 , zC0) and C ′0 =
(sC′0 , xC′0

, yC′0 , zC′0) in O0, C1 = C0 ∖ C ′0 is an order-1 cuboid if there is a i ∈ {x, y, z}
such that iC0 ≤ iC′0. We note O1 the set of all order-1 cuboids.

94

7.2. Statement of the main theorem

Note that an order-0 cuboid is a classic “cuboid”, i.e. it has six rectangular faces. An
order-1 cuboid can have an asymmetric surface, including a hole or a concavity. Moreover,
the condition that there is a i ∈ {x, y, z} such that iC0 ≤ iC′0 ensures that there is no “hole”
in C1 that would be unreachable from its surface.

The genus of an order-1 cuboid is at most 1. Note that the set of order-0 cuboids is a
subset of the set of order-1 cuboids, that is, O0 ⊆ O1.

Definition 7.4. An order-1 cuboid C1 = C0∖C ′0 can be of three different types, depending
on how C0 and C ′0 interact: (i) C0 and C ′0 have no intersection, and C1 is an order-0
cuboid, (ii) C ′0 cuts a hole in C0, and C1 is called an order-1 cuboid with a tunnel; and
(iii) C0 and C ′0 intersect but C ′0 does not cut a hole in C0. If the cut is in the inner face
of C0, C1 is an order-1 cuboid with a pit and if the cut is in the side of a face of C0, C1

is an order-1 cuboid with a concavity.

An order-1 cuboid with a tunnel has genus 1. In both cases of order-1 cuboid with a
pit or with a concavity, the genus is 0. See Figure 7.1 for illustrations of the four types of
order-1 cuboids.

Definition 7.5. We denote by O∗1 the set of order-1 cuboids that are not order-0 cuboids,
that is, the ones from items (ii) and (iii) above.

The set of cuboids of O∗1 with a pit are denoted by Op
1, the ones with a tunnel, by Ot

1,
and the ones with a concavity, by Oc

1.

7.2 Statement of the main theorem

We now state our main result.

Theorem 7.6. There is a SFTAM tile self-assembly system SG = (Σ, T, σ, str, τ) and a
subset of tile-types Y = {treg, tmfs, tibc1, tibc2} ⊆ T such that for any order-1 cuboid C =
C0 ∖C ′0 with the dimensions at least 10 for C ′0, if SG assembles on C starting from a seed
which is placed in a normal placement, the following holds:

– if C has genus 1, every terminal assembly of S on C contains at least one tile of Y ,
and

– if C has genus 0, then no tile of Y appears in any producible assembly of S on C.

There is a crucial point to consider: the system presented here works for the case
where the assemblies’ seed is placed on a normal placement p of an order-1 cuboid, i.e.
the place p is “far enough” from the boundaries of the face of the surface where the
placement belongs to, so that there is enough space for our assemblies. The notion of a
normal placement is formalized in the following definition.

Definition 7.7 (Normal placement). Let C be an order-1 cuboid such that (x1, y1, z1),
(x2, y2, z2), ... ,(xn, yn, zn) are its vertices. A placement p ∈ Pl(C) with position (x, y, z)
is a normal placement of C if and only if for all i ∈ N, two of the following inequalities
hold: ∣ xi − x ∣≥ 6⌈log(N)⌉ + 9, ∣ yi − y ∣≥ 6⌈log(N)⌉ + 9 and ∣ zi − z ∣≥ 6⌈log(N)⌉ + 9, where
N is the largest of the three dimensions of the cuboid. The set of all normal placements
is denoted by PlN(C).

The simplest example to demonstrate the concept of normal placement is on a cuboid
C ∈ O0. In this case, normal placements consist of the cuboid’s surface minus its “frame”
i.e. the border of the cuboid’s edges with a thick margin. Hence there are 6 disconnected

95

7.2. Statement of the main theorem

(a) Order-0 cuboid C0 ∈ O0 ⊂ O1. (b) Order-0 cuboid C ′0 ∈ O0 ⊂ O1.

(c) Order-1 cuboid Cc ∈ O
c
1 with concavity,

obtained by substracting a translated copy
of C ′0 from C0.

(d) Order-1 cuboid Cp ∈ O
p
1 with pit, ob-

tained by substracting a translated copy of
C ′0 from C0.

(e) Order-1 cuboid Ct ∈ O
t
1 with tunnel, ob-

tained by substracting a translated copy of
C ′0 from C0.

Figure 7.1: The four types of cuboids studied in this chapter: order-0 cuboids C0 and C ′0,
and order-1 cuboids that are obtained by subtraction of (a translated copy of) C ′0 from
C0.

96

7.3. Our framework: region partition of order-1 cuboids

(a) The normal placements of an order-0
cuboid C0. The normal placements of C0

contain 6 disconnected areas (here, 3 of
them are visible from our point of view).

(b) The normal placements of an order-1
cuboid Cc with a concavity. The normal
placements of Cc belong to 9 disconnected
areas (here, 6 of them are visible from our
point of view).

Figure 7.2: Illustration of the normal placements on two order-1 cuboids from Defini-
tion 7.7. Intuitively, these are the placements p that are sufficiently far from every edge
belonging to the same face as p. The normal placements are the placements in the gray
area, and the placements that are not normal are in the red areas.

areas on the faces where the normal placements are. The normal placements on order-1
cuboids can be described similarly. It should be noted that in this case there can be more
than 6 disconnected areas: there are up to 9 disconnected areas with normal placements
for C ∈ Cc

1, 10 for C ∈ Ot
1 and 11 for C ∈ Op

1, depending on the new faces that are generated
by the nature of the order-1 cuboid’s construction. For example in Figure 7.2, the normal
placements are shown by the areas colored in gray.

Remark 7.8. Note that when the smallest dimension is large enough with respect to the
others, “almost all” the placements on order-1 cuboids are normal placements.

From now on, we assume that the seed of assemblies in SG is placed on a normal
placement of an order-1 cuboid.

7.3 Our framework: region partition of order-1 cuboids

Let C = C0∖C ′0 be an order-1 cuboid. In order to detect a potential tunnel whose entrances
are on parallel faces, the construction separates these faces. For this purpose we use three
planes, one for each pair of parallel faces of C, located between them. Let PX , PY , PZ be
three planes in this way: take p ∈ PlN(C). The plane PX is passing on p and is parallel
to the plane formed by the Y -axis and Z-axis. The plane PY is parallel to the plane
formed by the X-axis and Z-axis and is passing on p. The plane PZ is parallel to the
plane formed by the X-axis and Y -axis and contains the center of C0. In Figure 7.9 the
seed in yellow is in the point p and the plane PX , PY and PZ are framed respectively by
the ribbons RX (in red), RY (in green) and RZ (in blue) on C. For i ∈ {X,Y }, Ri is the
connected component of ∂C ∩Pi that contains p. If RX and RY intersect in one point, RZ

is the empty set. If they intersect in two points, R′Z = PZ ∩ ∂C and RZ is the connected

97

7.3. Our framework: region partition of order-1 cuboids

component of R′Z that has an intersection with RY . The difference C ∖ {RX ,RY ,RZ}

consists up to 8 connected components is called regions. They are noted by RXY Z such
that X,Y,Z ∈ {0,1} where 0 represents the left, down and back sides, and 1 represents
the right, up and front sides. For example, R101 refers to the region at the right, down
and front side of C. This way of partitioning C helps to define the graph GC , the region
graph of C:

Definition 7.9 (Region graph). Let C = C0 ∖ C
′

0 be an order-1 cuboid with p as a po-
sition on C, the planes PX , PY two perpendicular planes passing on p, and PZ a plane
perpendicular to both planes passing through the middle of PY . Also, let Ri = ∂C0 ∩ Pi

for i ∈ {X,Y,Z}. There is a graph assigned to C named the region graph GC(p) whose
vertices are the regions separated by RX , RY and an edge is added between two regions if
and only if they share PX , PY or PZ.

R000

R101

R011

R110R010

R001

R100

R111

(a) The region graph

R000

R101

R011

R110R010

R001

R100

R111

teven

teven

teven

teven

todd

todd

todd

todd

(b) Tile coloring of the region graph, and
filling up the regions via inner filling tiles of
types teven and todd.

Figure 7.3: The region graph GC : V (GSG
) are the distinct regions, and E(GSG

) contains
the edges between neighboring regions.

For an order-0 cuboid C, GC(p) is a bipartite graph and therefore it is 2-colorable.
The region graph for an order-0 cuboid is presented in Figure 7.3.

If C is an order-1 cuboid with a tunnel, the number of disconnected regions can be
less than 8 depending on the intersection of the tunnel with three planes. The axis of
the tunnel is the direction orthogonal to its entrances. The three planes can intersect the
tunnel in two ways: along the width of the tunnel when the plane is perpendicular to the
axis of the tunnel, or along the length of the tunnel when the plane is parallel to the axis
of the tunnel. Thus, a tunnel may have an intersection with up to three perpendicular
planes, one along the width, and up to two other planes along the length. Based on this,
three types of partitions into regions are possible and the possible numbers of regions are:
7 regions when one plane intersects along the width of the tunnel, 5 regions when one
plane intersects along the length of the tunnel and one along the width (See Figure 7.21),
and 1 region when three perpendicular planes intersect along the tunnel, one along the
width and the others along the length.

98

7.4. Description of the TAS SG

7.4 Description of the TAS SG
Before starting the details of SG assemblies, in this section we describe TAS SG = (Σ, T, σ, str, τ).
The tiles are presented in the following:

The tile types of the ribbon RX :

– A seed tile σ = (ϵ, ϵ, x′, ϵ)
– x′ = (x′, x′′e , x, x

′′
w) and x = (x,xe, x, xw)

– x′e = (x
′
e, x

′
e, xe, x′′e) and x′w = (x

′
w, x

′′
w, xw, x′w)

– xe = (xe, xe, xe, xe) and xw = (xw, xw, xw, xw)

These tiles are presented in Figure 7.4.

Figure 7.4: The tile types for RX .

The tile types for RY :

– The 13 starter tile types : Ywn = (y +wn, ϵ, ywn, ϵ), Ywns = (ywn, yw2, yws, ϵ), Yws =

(yws, ϵ, y +ws, ϵ), Yw2 = (ϵ, yw1, ϵ, yw2), Yw1 = (ϵ, yw, ϵ, yw1), Yw = (xw, ϵ, x′w, yw),
Ye = (xe, ye, x′e, ϵ), Ye1 = (ϵ, ye1, ϵ, ye), Ye2 = (ϵ, ye2, ϵ, ye1), Yens = (yen, yew, yes, ye2),
Yen = (y + en, ϵ, yen, ϵ), Yes = (yes, ϵ, y + es, ϵ), Yew = (ywn, yew, yws, yew).

– The tile types of four middle finding systems are the similar to tile types pre-
sented in Lemma 6.8 with minor modifications on seeds and supports. The east-
ern systems MFSen, MFSes have respectively σ+en = (overen,++en, y+en, ϵ), σ+es =
(y+es,++es, overes, ϵ) as seeds, and support tiles of type ++en = (1en,++en, en,++en)
and ++es = (es,++es,1es,++es). The western systems MFSwn, MFSws have respec-
tively seeds σ+wn = (overwn, ϵ, y+en,++wn), σ+ws = (y+ws, ϵ, overws,++ws), and support
tiles of type ++wn = (1wn,++wn,wn,++ewn) and ++ws = (ws,++ws,1ws,++s).
Apart from that, each system has also its own distinct other tile types of middle
finding systems.

These tiles are presented in Figure 7.5.

The tile types of RZ:

– tmr = (1,1,0′, z′′r), z1r = (ze, z′′r, z′′r, zr), z2r = (z′′r, ϵ, zo, zo), zr = (ze, zr, r, zr),
zor = (r, zo, zo, zo).

– tml = (1, z′′l, o′,1), z1l = (z′′l, zl, ze, z′′l), z2l = (zo, zo, zl′′, ϵ), zl = (l, zl, ze, zl), zol =
(zo, zo, l, zo).
These tiles are presented in Figure 7.6.

The tile types of the inner filling: The 20 tile types of the four inner ribbons at the
intersection of RX and RZ are presented in Figure 7.8, the tile types teven and todd forming
inner filling ribbons for regions and tile type treg = (ze, xod, zo, xev) that appears only when
the genus is 1 are:

99

7.4. Description of the TAS SG

(a) The tile types which always appear in RY .

(b) The four distinct seeds and supports of MFSen, MFSes, MFSwn and MFSws. Their other
tiles are similar to the tile types presented in Lemma 6.8, but distinct for each one.

Figure 7.5: The tile types of RY .

(a) The tile types that always appear in RZ ribbons.

Figure 7.6: The tile types for RZ .

– tee = (ze1, xev, ze, xe), tee1 = (ze2, ϵ, ze1, xe), tee2 = (ze3, ϵ, ze2, xe), tee3 = (ze4, ϵ, ze3, xe),
tee4 = (ze, ϵ, ze4, xe).

– teo = (zo, xod, zo1, xe), teo1 = (zo1, ϵ, zo2, xe), teo2 = (zo2, ϵ, zo, xe).

– twe = (ze, xw, ze1, xev), twe1 = (ze1, xw, ze2, ϵ), twe2 = (ze2, xw, ze3, ϵ), twe3 = (ze3, xw, ze4, ϵ),
twe4 = (ze4, xw, ze, ϵ).

– two = (zo1, xw, zo, xod), two1 = (zo2, xw, zo1, ϵ), two2 = (zo, xw, zo2, ϵ).

100

7.4. Description of the TAS SG

(a) The tile type treg
that appears when there
is a tunnel inside re-
gions.

(b) The tile types tibc1 and tibc2, which
may only appear if C has genus 1,
when the RY ribbons do not meet the
RX ribbons.

(c) The tile type tmfs,
which may only appear
if C has genus 1, when
the RZ ribbons meet
each other.

Figure 7.7: The tile types that show the presence of a tunnel in an order-1 cuboid.

– todd = (zo, xod, zo, xod) and teven = (ze, xev, ze, xev).

(a) The tile types of four inner ribbons at the
intersection of RX and RZ .

(b) The tile types of inner filling ribbons.

Figure 7.8: Tile types of inner filling of regions

The tile types which demonstrate a tunnel on the cuboid, and form the set Y :

– treg = (ze, ϵ, zo, ϵ),
– Tibc = {tibc1, tibc2} such that tibc1 = (ws, ϵ, yws, ϵ) and tibc2 = (wn, ϵ, ywn, ϵ), and
– tmfs = (ze, zo, ze, zo).

These tiles are showed in Figure 7.7.

The temperature of the system SG is 2. The alphabet of the system is the unions of
all labels on the side of tiles and the strength of each label is equal to the number of black
sticks on the sides. The label ϵ does not necessary needs to appear on the sides of tiles.

101

7.5. Overview of the assemblies of SG on O1 and proof ideas

7.5 Overview of the assemblies of SG on O1 and proof
ideas

X

Y

Z

Seed

X

Y

Z

Seed

Figure 7.9: The skeleton of a terminal assembly of SG on an order-0 cuboid starting from
a seed (in yellow) in a normal placement. On the left, the traces of the ribbons RX (in
red), RY (in green) and RZ (in blue). On the right, the shape of the skeleton.

Let C be an order-1 cuboid. An assembly of SG starts from a seed in an arbitrary
normal placement on C. In the TAS SG, the seed acts like a compass for the assemblies.
Without loss of generality, we assume that the side on which the seed is located is the face
parallel to the XY -plane and intersects the Z axis, and the north label of the seed’s tile
points towards the Y axis. In order to control the assemblies’ growth of SG, it is structured
into different successive phases, that cannot overlap. It consists of two phases, a first
phase for forming a skeleton, and a second phase for filling up the skeleton, summarized
as follows.

1. Constructing the skeleton of the assembly’s structures by at most 7 perpendicular
ribbons on C. By frame, we informally mean the intersection of a given plane with
the surface of the cuboid, that wraps around it. Here, the planes PX , PY and PZ

are being framed by several ribbons of tiles (forming the three sets RX , RY and
RZ defined previously) during the assembly, and each step starts only when the
previous step is finished.

– RX includes one ribbon for framing the first plane PX .
– RY includes two ribbons for framing the second plane PY .
– RZ includes zero or four ribbons (depending on the intersection of the two

previous planes; details will be given later) for the frame of the third plane PZ .

2. Filling the inside of the assembly’s skeleton by distinctive tiles. In this step, the
interior of the regions is partially filled by their distinctive tiles in a way that no
connected component of the surface of C (as delimited by the three planes) has a
neighbor with the same inner filling tile.

102

7.5. Overview of the assemblies of SG on O1 and proof ideas

See Figure 7.10 for an illustration of the main elements of the assembly, when per-
formed on a genus 0 cuboid.

X

Y

Z

teven

teven

teven

teven

todd

todd

todd

todd

Seed

Figure 7.10: The skeleton of a SG assembly on an order-0 cuboid is shown in color. It is
started from a seed (in yellow) and after the formation of the skeleton, the regions are
partially filled by tiles of types todd and teven.

Proof ideas

We now give an intuition of how Theorem 7.6 is proved. The key of the proof is the
partition into regions using the three planes as described previously.

– The first case is when C has genus 0. Then the skeleton forms as intended, divides
C into 8 disconnected regions (since there is no tunnel). Since the tiles of Y have
labels occurring in tiles present in distant parts of the assembly only (and need to
attach to two such tiles), no tile of Y can be part of the assembly in this case.

– The other case is when C has genus 1, that is, there is a tunnel. Assume that the
skeleton has formed completely and has divided C into 8 initial regions, with two
of them being identified due to the tunnel that connects two opposite sides of C.
These two (initially distinct) regions will be filled with inner filling tiles of different
types (teven and todd). Moreover, the filling is done with stripes that are spaced
differently. More precisely, the two spacings of the two regions (for the even and
odd inner fillings) are coprime, in our case, 3 and 5. These coprime spacings ensure
that, when the two inner fillings meet each other through the tunnel, not every
stripe of the first region faces a stripe of the other region. (One stripe of a region
might meet a stripe of the other region, but then for the next stripe, this does not
happen.) Thus, in that case, there is always room for a tile of type treg, that will
necessarily be present in the terminal assembly.

103

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

Special cases are when the skeleton passes inside the tunnel. If RZ passes through
the tunnel, then two ribbons of RZ meet and a tile of type tmfs will appear. If RX

or RY passes inside the tunnel, then RZ is not formed and no inner filling exists.
In this case, the ribbon of Yew tile types (part of RY) rebounds from east to west,
parallel and between the support tiles; and ribbons of support tiles of the eastern
and western middle finding systems meet each other. As a result, the tiles of types
tibc1 and tibc2 appear between the tiles of type Yew and the western support tiles.
(The details will be presented in upcoming sections.)

In order to simplify the explanation of the process of the assemblies, first, phase 1 is
presented:

– how the skeleton grows depending on the placement of the seed;
– how the skeleton partitions C into distinct connected components;
– what its assigned region graph is.

Then, we study the phase of inner filling. Afterwards, we conclude with the proof of
Theorem 7.6.

7.6 Description of terminal assemblies of SG on order-1
cuboids: AC1

◻ [SG]

For the study of the shape of the productions in Ot
1, the productions on O0 will be useful

as a reference. Hence first we show that SG partitions order-0 cuboids into eight distinct
regions as presented in Section 7.3. Later we study the case of order-1 cuboids, that can
have genus 1 or genus 0.

7.6.1 Terminal assemblies on order-0 cuboids: AC0
◻
[SG]

Now, we characterise the set AC0
◻ [SG] of terminal assemblies on an order-0 cuboid C0.

The structure of the skeleton

Lemma 7.10. Let C ∈ O0 be an order-0 cuboid and assume that the seed ασ is placed at
a normal placement p ∈ PlN(C). Every terminal assembly of SG on C includes a “3-step
skeleton” noted by RX ∪RY ∪RZ where each part is located on the corresponding ribbon
defined in Section 7.3.

Proof. The assembly starts from the single seed tile σ = (ϵ, ϵ, x′, ϵ) placed as a seed as-
sembly ασ. It has label x′ with strength 2 at the south, and its other labels are ϵ with
strength 0. In the first step, tiles make a vertical segment ribbon of tiles around C as the
ribbon RX , starting from the south of the seed and finishing at its north. More precisely,
a tile of type x′ = (x′, x′′e , x, x

′′
w) sits at σ’s south and the label x gives rise to a vertical

ribbon of tiles of type x = (x,xe, x, xw) such that it grows around C and returns to the seed
from the north. Moreover, two tiles of types x′e = (x′e, x′e, xe, x′′e) and x′w = (x

′
w, x

′′
w, xw, x′w)

come at the east and the west of x′. By supporting the tile of type x, ribbons of tiles of
types xeand xw form respectively in the south of x′e and x′w. Now, there is a ribbon made
of three columns of tiles that build the ribbon RX . See Figure 7.11 for an illustration,
where the seed, shown in red, is in the center of RX . The ribbon RX divides C into

104

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

two regions, the right side and the left side of C with respect to the seed assembly ασ.
(We always assume that we view the cuboid from the point of view of the Z-axis, as in
Figure 7.9, and thus left, right, up, down, back, front refer to this point of view.)

Figure 7.11: The ribbon RX . The assembly starts from the south of the seed tile (in red
at the center) and wraps around the order-1 cuboid.

Therefore, RY starts to form only when RX rebounds to the north of the seed, using
tiles of type ye and yw. The ribbons starting from both right and left sides of ασ develop
perpendicular to RX by using four middle finding systems (defined in Lemma 6.8).

To elaborate, the tiles of type ye = (xe, ye, x′e, ϵ) and yw = (xw, ϵ, x′w, yw1) sit in the
assembly respectively between tiles of type x′e and xe at the east of RX , and between
tiles of type x′w and xw at the west of RX . The tiles of type ye1 = (ϵ, ye1, ϵ, ye) and
yw1 = (ϵ, yw, ϵ, yw1) bind to ye and yw; and the tiles of type ye2 = (ϵ, , ye1, ϵ, ye2) and
yw2 = (ϵ, yw1, ϵ, yw2) bind to the tiles of type ye1 and yw1, respectively. Then, the tile
types yens and ywns appear next to ye2 and yw2. From the east of yens, a ribbon of tiles
of type Yew grows. Moreover, at the north and at south of yens and ywns, the tiles of
type yen, yes, ywn and yws respectively appear, that are starting points for the eastern

105

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

and western IBC systems (Lemma 6.5) of the middle finding systems, that is, the seeds
σ+en = (overen,++en, y+en, ϵ), σ+es = (y+es,++es, overes, ϵ); and σ+wn = (overwn, ϵ, y+en,++wn),
σ+ws = (y+ws, ϵ, overws,++ws) start four IBC systems IBC1en, IBC1es (east), and IBC1wn,
IBC1ws (west) with supports ++en = (1en,++en, en,++en) and ++es = (es,++es,1es,++es),
and ++wn = (1wn,++wn,wn,++ewn) and ++ws = (ws,++ws,1ws,++s) respectively. Note
that each system has its own distinguished tile types. See Figure 7.12 for an illustration
of the growth of RY after the completion of RX .

Figure 7.12: The formation of the RY ribbon (horizontal), out of RX (vertical). The
initial seed of the assembly is in the center (in red). When RX is finished, from the
east and the west of the seed the starter tiles of RY appear. Then, four middle finding
systems MFSEN , MFSES, MFSWS, and MFSWE, each with distinct labels, start to
form respectively from four red seeds σ + +EN , σ + +ES, σ + +WN , σ + +WS.

After that, the ribbons of the four IBC1 systems in RY meet the RX ribbon for the
second time. See Figure 7.13. Then, the tiles of types xe and xw of RX act as finishing
block tiles for the middle finding system.

Then, the four tiles of types teu = (1s, ϵ, xe,1), ted = (1s,1, xe, ϵ), twu = (1s,1, xw, ϵ)
and twd = (1s, ϵ, xw,1) respectively, appear as row tile number of 1 for the second set of
IBC systems IBC2en, IBC2es (east), and IBC2wn, IBC2ws (west) of the middle finding
systems. Note that the tiles of the IBC2 systems also have different labels from the ones
of the IBC1 systems (except the exterior labels of the most significant bit tiles in the
IBC1 systems). On the same underlying rectangle as the underlying rectangle of RY , the
ribbons grow and they stop in the middle of RY ’s ribbons.

Once the RY ribbons form, they separate C into an up side and a down side. Thus,
C is now partitioned into four separate regions due to the first and second step ribbons.

Next, by finding the middle of each of RY ’s ribbons on the right and left faces, four new
perpendicular ribbons are generated from the tiles of type tml = (1, z′′l ,0

′,1) at the left-up

106

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

Figure 7.13: The second collision of RY and RX .

and right-down sides, and tmr = (1,1,0′, z′′r) at the right-up an left-down sides. They are
the replacements of the tile of type tm of the middle finding systems. See Figure 7.14
for an illustration. They go on until they reach RX on the upper and down faces (see
Figure 7.15). The union of these four ribbons forms a frame for the plane PZ . This step
creates a separation between the front side and the back side of the cuboid C with respect
to ασ. Note that all the ribbons are able to form completely because by our hypothesis,
the seed is located on a normal placement. This is an essential condition since we need
enough space for using counters in the assembly. We show the detailed assembly of RX ,
RY and RZ in Figure 7.16 that starts from the seed tile ασ (in red) at the left of the
Figure where RX rebounds on C. The two western middle finding systems and the parts
of RZ that grow from them are omitted in the figure, however they are simply the mirror
images of the eastern ones that are shown in the figure.

Similar to Section 7.3, these three steps partition C into 8 distinct regions. Note that,
because the seed started in a normal placement, there is enough space for this assembly.
Indeed, a normal placement implies that there are at least 6⌈log(N)⌉ + 9 free tile spaces
around the seed (on the same face of the cuboid where the seed is placed).

Our assembly needs at most 6⌈log(N)⌉+9 tile spaces. Firstly, it needs ⌈log(N)⌉ space
for each of IBC1 systems and IBC2 systems, and DBC systems; for each of the two
middle finding systems. Moreover, 9 further tile spaces are needed: one for Yew tiles, 2
for the support of middle finding systems, two for the space between them, and 2 other
for each ribbon RZ .

Inner filling of the skeleton After the formation of the skeleton, the second phase is
to fill the eight regions by lines of interior tiles, once the RZ ribbons reach RX . Since the
region graph of an order-0 cuboid C is a 2-colorable (i.e. bipartite) graph, we use two tile
types to distinctly tile C.

Lemma 7.11. Let C ∈ O0 be an order-0 cuboid. For all the terminal assemblies α ∈
AC0
◻ [SG] started from a seed σ ∈ PlN(C), the tile teven = (ze, xev, ze, xev) appears in the

even regions and the tile todd = (zo, xod, zo, xod) appears in the odd regions.

107

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

Figure 7.14: Two ribbons of RZ .

Figure 7.15: Two ribbons of RZ meeting the ribbons of RX .

Proof. For an assembly that is started from a seed in a normal placement, by Lemma 7.10,
the cuboid C is partitioned by a skeleton into odd and even regions. First, four ribbons
of tiles appear at the intersection of the RX and RZ ribbons. These ribbons are formed
by tiles of the types of Figure 7.8. From the parts along RX , straight lines of tiles start
growing parallel to the x axis using strength 2 glues xev and xod. Thanks to modulo 5 (resp.
3) counters on the even (resp. odd) RX border tiles, there is one such line every other 5
(resp. 3) position along that part of the border with tiles of type teven = (ze, xev, ze, xev)

(resp. todd = (zo, xod, zo, xod)). These lines form the even (resp. odd) filling tiles and fill
the partitioned regions. See Figure 7.17 for an illustration of the assembly.

The 2-coloring of GC indicates also where the tiles of type teven and of type todd can
be placed. Therefore, the regions RXY Z (X,Y,Z ∈ {0,1}) are tiled with teven if and only
if the sum X +Y +Z is even, and the regions with odd sum are covered by todd. For more
clarity, see Figure 7.3 where the regions corresponding to teven are colored white and the
ones with todd are colored black in the region graph GC of the order-0 cuboid C.

108

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

Figure 7.16: The assembly of RX , RY and RZ on an order-0 cuboid. The seed is located
in the middle of RX , on the left. RX grows from the south of the seed and finishes at its
north. Then, RY grows, including northern and southern middle finding systems, and a
ribbon of green yew tiles between them that ends by arriving at PX . At the end, RZ starts
to assemble from the found middle tile of RY (in red) and finishes by arriving at RX .
Note that The western middle finding systems and its assigned parts of RZ are omitted
for the sake of brevity, however they are the mirror image of the eastern ones, excluding
yew ribbon of tiles.

109

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

(a) Up side collision of RX and RZ .

(b) Down side collision of RX and RZ .

Figure 7.17: The inner filling with tiles of types teven (white) and todd (black) at the two
places where the RZ ribbons meet RX .

110

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

7.6.2 Terminal assemblies on order-1 cuboids with genus 1 : ACt
◻
[SG]

We consider now in detail the process of the assembly of SG for order-1 cuboids with
a tunnel. This section will characterise the set ACt

◻ [SG] of terminal assemblies on such
order-1 cuboid Ct. Let C be an order-1 cuboid. The key element of the proof is the
appearance of some specific tile in each assembly when it has less than 8 regions. The
assemblies on C have a skeleton with a different shape depending on the region graph
associated with the placement of the seed. Let Pi and Ri for i ∈ {X,Y,Z} be defined as
presented in Section 7.3. If a plane Pi intersects along the width of the tunnel, it acts
like a separator between the two parallel faces where the tunnel’s entrances are located.
If a plane Pi intersects along the length of the tunnel, the tiles of Ri enter and pass inside
the tunnel. Moreover, three types of partitions into regions are possible and the possible
numbers of regions are: 7 regions when one plane intersects along the width of the tunnel,
5 regions when one plane intersects along the length of the tunnel and one along the
width, and 1 region when three perpendicular planes intersect along the tunnel, one along
the width and the others along the length.

Depending on each case, the presence of some tiles from Y = {treg, tmfs} ∪ Tibc ⊆ T in
assemblies of SG witnesses the presence of a tunnel. In Figure 7.26, the places where the
tunnel implies the presence of each of these tiles are demonstrated.

Note that in the following, GC(σ) refers to the region graph GC(p) such that p is the
position of the seed ασ on C.

Case 1 (7 regions): one plane intersects along the width of the tunnel.

In this case, tiles of types todd and teven touch, which enforces the attachment of treg
or tmfs.

At least one of the planes PX , PY and PZ introduced in Section 7.3 intersects with
the tunnel of C, since its entrances are on parallel faces of the cuboid, and these planes
are located between parallel faces. When the tunnel has an intersection with only one
of the three planes, the plane intersects along the width of the tunnel. For example, in
Figure 7.18, the tunnel has an intersection with the plane PX only.

Lemma 7.12. Let C = C0 ∖C ′0 ∈ O
t
1 be an order-1 cuboid with the dimensions at least 10

for C ′0. Assume that the seed ασ is placed in a normal placement p ∈ Pl(C). In a terminal
assembly of the system SG, if only one of the planes defined in Section 7.3 intersect with
the tunnel, GC(σ) has 7 regions and a tile of type treg or tmfs appears in the assembly.

Proof. Let the seed be placed in a manner that only one of the planes PX , PY or PZ

intersects along the width of the tunnel. The plane that intersects the tunnel is the
separating buffer of two regions Rxyz and Rx′y′z′ containing the two tunnel’s entrances.
In this case, the two regions Rxyz and Rx′y′z′ get combined into a single region via the
tunnel. Therefore, the number of distinct regions decreases to 7 regions. See Figure 7.18
for an illustration.

Without loss of generality, assume that x+y+ z is an odd number and x′ +y′ + z′ is an
even number. When two regions Rxyz and Rx′y′z′ are joined by the tunnel, tiles of type
todd = (zo, xod, zo, xod) from Rxyz and of type teven = (ze, xev, ze, xev) from Rx′y′z′ both exist
in the new unique region. See Figure 7.17. We show that the tile type treg = (ze, ϵ, zo, ϵ)
or tmfs must then occur in the assembly. Indeed, the tile types treg and tmfs are the only
tile types of SG with labels zo and ze of inner filling tiles todd and teven. In Figure 7.23, the

111

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

places on C that reveal a tunnel by treg or tmfs are shown. To conclude the proof, one
needs to show that in a region with a disconnected border, there is a good empty space,
that is an empty space which sees both an even tile and an odd tile through strength 1
sides. Then, this space can be filled by neither type of filling tiles, but it must eventually
be filled by a tile of type treg = (ze, ϵ, zo, ϵ) or tmfs = (ze, zo, ze, zo). In a region with a
tunnel, on each side of the tunnel, the border of every 10 × 10 square must be crossed by
either

– at least two of the lines of tiles starting from RX on that side of the tunnel, or
– at least two of the lines exiting the tunnel.

In particular, because C ′0 is at least 10×10 units wide, there are at least two lines crossing
one of the edges the tunnel in the same direction. Each such line must either reach the
opposite connected component of the border, be stopped orthogonally by a line from the
opposite side of the tunnel, or run head-first into an opposite line. Consider such a pair of
lines, with minimal distance between them. In particular, that distance must be at most
10.

– If one of the lines reaches the opposite connected component of the border, either
of the spaces next to its end is good and in this case the tile of type treg appears in
the assembly;

– likewise, if one of them is stopped orthogonally by a line from the opposite side of
the tunnel, one of the spaces next to the intersections is good and a tile of type tmfs

appears.

Moreover, if one of them runs head-first into an opposite line, the other cannot, because
their distance cannot be at the same time divisible by 15, positive and less than 10.
Hence the pair satisfies one the previous cases. This concludes the proof of that case of
our construction.

R000

R101

R110R010

R001

R100

R011 = R111

(a) The region graph

Seed

(b) The cuboid and the three planes.

Figure 7.18: The case where C ∈ Ot
1 is partitioned into 7 distinct regions. If there is a

tunnel between two distinct regions, a tile of type treg or tmfs, which have common labels
with both teven and todd, must appear in the assembly.

112

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

Case 2 (5 regions): the tunnel intersects with PZ, and exactly one of PX and
PY .

Lemma 7.13. Let C ∈ Ot
1 be an order-1 cuboid and assume that the seed ασ is placed

in a normal placement p ∈ Pl(C). In a terminal assembly of the system SG, if the plane
PZ and exactly one of the planes PX and PY defined in Section 7.3 have an intersection
with the tunnel, there exist 5 regions on the cuboid and a tile of type tmfs appears in the
assembly.

Proof. If the seed is placed where the tunnel has intersection with two perpendicular
planes, one of them intersects the tunnel along its width and the other one along its
length. If PZ intersects with the tunnel along the length, the ribbons of RZ meet each
other inside the tunnel. However, if PZ intersects the tunnel along its width, they meet
outside the tunnel.

In both cases, the tile tmfs = (ze, zo, ze, zo) appears in the assembly when two frame
ribbons of PZ meet each other. Note that when the tunnel has intersection with PZ and
one of the planes PX or PY , the cuboid is separated into two connected components such
that one of them is a cuboid with genus 0 and the other one is a cuboid with genus 1.
The part with genus 0 has 4 distinct regions, and the part with genus 1 (containing a tile
of type tmfs) has one single region. In total, there exist 5 distinct regions on the cuboid
C. For an illustration of the skeleton and its graph in this case, see Figure 7.21.

Case 3 (1 region): the tunnel intersects with PX and PY .

Lemma 7.14. Let C ∈ Ot
1 be an order-1 cuboid and assume that the seed ασ is placed

in a normal placement p ∈ Pl(C). In a terminal assembly of the system SG, if the two
planes PX and PY defined in Section 7.3 intersect the tunnel, there exists one region on
the cuboid and a tile of type Tibc = {tibc1, tibc2} appears in the assembly.

Proof. In this case, the skeleton of the assembly is not the same as before. Recall the
process of the assembly’s skeleton: the ribbon RX is generated independently from ασ.
Two segment ribbons of RY begin to grow after rebounding on RX , regardless of passing
through a tunnel or not. However, the ribbons of RZ start to grow only after finding the
middle of RY and they end by reaching the ribbon of RX . Considering this process, when
the two planes PX and PY intersect with the tunnel, the plane PZ is not able to form
since there is a tunnel that does not permit to have the second collision of RY and RX .
Therefore, the process of finding the middle of RY is not able to continue and the ribbons
of RZ are not able to form.

Moreover, the eastern and western parts of RY meet each other and tiles of type of
Tibc appear there. This happens inside the tunnel if PY intersects the tunnel along its
length, and outside the tunnel if it intersects the tunnel along its width. In either case, a
tile of one of the Tibc types appears. See Figure 7.19 for an illustration of the assembly in
this case, and Figure 7.25 for an illustration of the places where the presence of a tunnel
entrance implies that we have a tile of one of the Tibc types.

Note that the skeleton consists of two closed loops of RX ribbons and RY ribbons. This
phenomenon demonstrates that the genus of C is 1. In order to have a better overview,
see Figure 7.20. Furthermore, there is only one single region throughout the whole surface
of C.

Note that the situation when the seed is located inside the tunnel is similar to Case 3,
up to topological isomorphism.

113

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

(a) When the genus of the order-1 cuboid is 1, there is no second collision between RX and RY .
In this case, the support tiles of the eastern and western middle finding systems meet each other.
As a result, the tiles of types tibc1 and tibc2 appear between the tile types of Yew and the western
support tiles. The orange rectangle shows the first time that tiles of types tibc1 and tibc2 appear
in the assembly, and the yellow rectangles show the tiles of types tibc1 and tibc2 in the assembly.

(b) RX and RY when the genus of the order-1 cuboid is 1. In this case, the ribbon of tiles of
type Yew meets the western tiles, and so the tile types tibc1 and tibc2 appear in the assembly,
witnessing that the genus of the order-1 cuboid is 1.

Figure 7.19: The RY ribbons when the genus of the order-1 cuboid C is 1.

From Lemmas 7.12, 7.13 and 7.14, the following corollary is obtained:

Corollary 7.15. Let C = C0 ∖C ′0 ∈ O1 be an order-1 cuboid with the dimensions at least
10 for C ′0 and α be an assembly of the TAS SG = (Σ, T, σ, str, τ) such that its seed is placed
at a normal placement. If there is a tunnel on C (i.e. its genus is 1), at least one tile
type from Y = {treg, tmfs, tibc1, tibc1} ⊆ T exists in all terminal assemblies of SG on C.

114

7.6. Description of terminal assemblies of SG on order-1 cuboids: AC1
◻ [SG]

Tibc

Seed

(a) The tunnel intersects along the
length of plane PX and width of plane
PY .

Tibc

Seed

(b) The tunnel intersects along the
width of plane PX and length of plane
PY .

Figure 7.20: Intersection of tunnel with two planes PX (red) and PY (green).

Proof. If there is a tunnel on C, at least one of the planes PX , PY and PZ defined
in Section 7.3 intersects with the tunnel since its entrances are on parallel faces of the
cuboid, and these planes are located between parallel faces.

First, if the tunnel of C intersects with only one of the planes, due to Lemma 7.12, a
tile of type treg or tmfs, which are the only tile types of SG with labels in common with
both inner filling tile types todd and teven, appear in the assembly. In Figure 7.23, the
places where the presence of these tile types displays the presence of the tunnel is shown.

Next, if two planes (among them PZ) intersect with the tunnel on C, a tile of type
tmfs appears in all terminal assemblies on C by Lemma 7.13. See Figure 7.24 for the
places where the presence of a tile of type tmfs displays the presence of the tunnel.

Finally, if the two planes PX and PY intersect with the tunnel, Lemma 7.13 implies
that tile types of the set Tibc = {tibc1, tibc2} are present in the assembly. See Figure 7.25
for the places where the presence of a tunnel implies the presence of a tile of one of the
Tibc types.

The places where a tunnel implies the presence of a tile of Y are shown in Figure 7.26.

7.6.3 Terminal assemblies on order-1 cuboids with genus 0 : ACc
◻
[SG]

and A
Cp

◻
[SG]

Now notice on the cases that SG assembles are on an order-1 cuboid C ∈ Oc
1 (the order-1

cuboids with concavity whose genus is 0), or C ∈ Op
1 (the order-1 cuboids with a pit whose

genus is 0). In these cases, the assembly’s process is similar to the assembly on order-0
cuboids. The frame ribbons form completely by the assumption that the seed is located
on a normal placement of C, the assembly’s skeleton is formed completely and separates
C into 8 distinct regions, and the insides of the regions are tiled independently by inner
filling lines of tiles of types todd and teven. However, in the case of Oc

1, the regions do not
necessarily meet edge to edge, see Figure 7.22 for an illustration.

115

7.7. Detecting the genus of order-1 cuboids via SG: proof of the main theorem

R000

R101R001

R100

R011 = R111 = R010 = R110

(a) The region graph

tmfs

Seed

(b) The tunnel intersects along the width of
plane PX and length of plane PZ .

tmfs

Seed

(c) The tunnel intersects along the length
of plane PX and width of plane PZ .

(d) A tile of type tmfs appears if and only if two segments of RZ (in purple) intersect each other
by passing through a tunnel (instead of reaching RX).

Figure 7.21: The case where C ∈ Ot
1 and C is partitioned into 5 distinct regions.

7.7 Detecting the genus of order-1 cuboids via SG: proof
of the main theorem

Before proving Theorem 7.6, we need to prove following lemma:

Lemma 7.16. Let C be an order-1 cuboid. If one tile of Y={treg}∪{tmfs}∪Tibc ⊆ T exists

116

7.7. Detecting the genus of order-1 cuboids via SG: proof of the main theorem

Seed

Figure 7.22: Cuboid with concavity: The three planes PX (red), PY (green) and PZ (blue),
which consists of two semi-planes.)

Seed

treg/mfs treg/mfs

treg/mfstreg/mfs

treg/mfs

treg/mfs

treg/mfs

treg/mfs

treg/mfs treg/mfs

treg/mfstreg/mfs

Figure 7.23: The places on an order-1 cuboid where, if a tunnel is placed there, a tile of
type treg ou tmfs appears.

in a terminal assembly of SG on C starting from a seed in a normal placement, there is a
tunnel on C.

Proof. Firstly, if a tile of type treg is in the terminal assembly, its common labels with
both inner filling tile types todd and teven shows that at least two regions are connected
i.e. there are at most 7 distinct regions on C. Recall that by Section 7.6.1, a terminal
assembly of SG on an order-1 cuboid with genus 0 partitions the cuboid into 8 distinct
regions. Therefore, C cannot have genus 0 and there is a tunnel between these two regions.

Secondly, if a tile of type tmfs exists in a terminal assembly on C, two cases are
possible. In one case there is a tunnel that intersect only PX with width and teven and

117

7.7. Detecting the genus of order-1 cuboids via SG: proof of the main theorem

tmfs

tmfs

Seed

tmfstmfs

tmfstmfs

tmfs

tmfs

Figure 7.24: The places on an order-1 cuboid where, if a tunnel is placed there, a tile of
type tmfs appears.

todd intersect perpendicularly each other and as a result tmfs appears in the assembly.
In the other case, two ribbons of RZ must meet each other since the tiles whose labels
correspond to the labels of tmfs are those of the RZ ribbons. Recall that the RX and
RY ribbons intersect at two places: one at the seed (since RY grows out of RX) and a
second time, where the tiles of type teu, ted, twu or twd appear in the assembly as the row
tile number 1, in the second IBC system of the middle finding systems. The two ribbons
of RZ , together with the parts of the middle finding system located between the second
intersection of RX and RY on the one hand, and RZ on the other hand, form a closed
ribbon on the surface of C (highlighted in green and blue Figure 7.27). This ribbon and
RX pass through each other perpendicularly at only one place. Since they pass through
each other perpendicularly, it can be concluded that the cuboid C cannot be topologically
homeomorphic to the sphere, or in other words, be a genus 0 cuboid and a tunnel must
exist.

Lastly, assume that a tile of Tibc = {tibc1, tibc2} types appears in the assembly. Note
that these tiles has only two labels with strength 1. One of two labels of each tile types
of Tibc tile types is in common with label of Yew that grow from the eastern parts of RY ,
and the other one is as those of the labels of tiles of western IBC1 systems in RY . Since
the eastern and western ribbons are located opposite of each other Therefore, the ribbons
of RY must collide. As a result there is a tile of one of the Tibc types in the assembly
and they do not reach the RX . Thus the ribbons RX and RY have no intersection except
at the seed. Since they pass through each other perpendicularly, as in the previous case,
C cannot be topologically homeomorphic to a sphere. Therefore, a tunnel must exist so
that RX and RY do not intersect in two places.

118

7.8. Concluding remarks

Seed

tibc

tibc

Tibc

tibc

tibc

tibc

Figure 7.25: The places on C where tibc displays the presence of a tunnel on C. Note that
the tunnel appears by tibc also when the seed is inside the tunnel, since up to topological
isomorphism, it is the same case

Proof of the Main Theorem

We are now ready to prove Theorem 7.6. Informally, the general principle of the con-
struction is as follows: cut the order-1 cuboid into regions and check if the partition is
the same as it would be on a cube. If it is the case, the cuboid has genus 0, eight regions
and the tiles of Y cannot be used in any terminal assembly. Otherwise, the cuboid has
genus 1, less than eight regions, and at least one of the tile types of Y must be used in
any terminal assembly. We next proceed with the formal proof.

Proof of Theorem 7.6. Let C = C0 ∖ C ′0 ∈ O1 be an order-1 cuboid with the dimensions
at least 10 for C ′0 and α be an assembly of the TAS SG = (Σ, T, σ, str, τ) such that its
seed is placed at a normal placement. Note that if C0 is too small there is no normal
placement. According to Corollary 7.15 and Lemma 7.16, there is a tile type from Y =
{treg}∪{tmfs}∪Tibc ⊆ T in all terminal assemblies of SG on C if and only if there is tunnel
on C (i.e. its genus is 1).

7.8 Concluding remarks

We have shown that we can use the SFTAM to determine the genus of order-1 cuboids.
Despite the fact that our method is applicable only when the seed is placed on a normal

placement, we do not consider it to be a strong restriction. Indeed, for large order-1
cuboids, unless one of the dimensions is exponentially small with respect to another one,
almost all placements are normal placements. This creates a high probability for a seed

119

7.8. Concluding remarks

tmfs

tmfs

Seed

Tibc

Tibc

Tibc tmfstmfs

treg/mfs treg/mfs

treg/mfstreg/mfs

tmfstmfs

Tibc

Tibc

Tibc

treg/mfs

treg/mfs

treg/mfs

treg/mfs

treg/mfs treg/mfs

treg/mfstreg/mfs

tmfs

tmfs

Figure 7.26: The places on a cuboid where, if there is a tunnel, a tile of Y must appear
in the assembly.

tmfs

Seed

tmfs

Seed

Figure 7.27: The closed ribbon formed by parts of the middle finding system (green) and
the two ribbons of RZ (blue), when two RZ ribbons meet each other instead of reaching
RX . They meet the red ribbon RX only once.

being placed in a normal placement, and hence having an assembly that detects the genus
of the host of the order-1 cuboid.

The essential ingredient of the proof is the Middle Finding System, which enables to
build a skeleton that partitions the cuboid into regions that can be distinguished. If we
would apply a similar strategy without the Middle Finding System, the partition of the

120

7.8. Concluding remarks

surface of the cuboid into regions could fail, see for example Figure 7.28.

Seed

(a) Although there is no tunnel, the surface
of the cuboid is partitioned into less than 8
regions.

Seed

(b) A tunnel is undetected because its two
ends are in the same region.

Figure 7.28: A scenario where we apply the same strategy as in our work, but without
using the Middle Finding System. Because the ribbons of RZ do not start in the middle
of RY , the regions do not partition the surface meaningfully.

The complexity of our assemblies illustrates the challenges of working on an unknown
surface. For future work, it would be interesting to extend our results to a larger family of
polycubes. In this work, the Middle Finding System was used to detect a potential tunnel
on an order-1 cuboid. However, for more complicated surfaces, one needs to ensure that
some part of the construction does go through the tunnel, and that it can be differentiated
from the tiles it meets on the other side. Indeed, the idea of having regions with distinct
identities can be reused in this context, but the Middle Finding System needs to be
supplemented or replaced.

121

Chapter 8

Conclusion

In this thesis, we have studied the problem of determining the type of the surface on
which an assembly is taking place, by using a specific set of tile types, whose tiles appear
only for certain types of surfaces. We have first demonstrated this idea on flat surfaces
to distinguish the flat torus, the horizontal flat cylinder, the vertical flat cylinder, and
the infinite plane from each other. We then have given a more complicated solution for
certain polycubes, in order to distinguish the ones of genus 0 and of genus 1.

To work on polycubes, we have introduced a new tile self-assembly model, the Surface
Flexible Tile Assembly Model (SFTAM). We have shown that we can use self-assembly
in this model to determine the genus of a given surface. For this, we have worked on a
simple and special family of polycubes of genus at most 1, the order-1 cuboids. As our
construction for order-1 cuboids is rather complex, it would be good to simplify it, in
order to be able to generalize it more easily.

In both these results, it is interesting that we are able to determine a global property
of the surface (the type of flat surface it belongs to, or the genus of the polycube) although
tile self-assembly is a local process.

As possible future work, it would be interesting to extend our results to a larger family
of polycubes. To do so, one possible first step would be to define the family On of order-
n cuboids. We define On as the set of order-n cuboids for an integer n by a recursive
definition: an order-n cuboid is obtained from the difference of an order-(n − 1)-cuboid
and an order-0 cuboid. Perhaps one can extend our main theorem by designing SFTAM
self-assembly systems that can characterize order-n cuboids by their genus. However, the
tools presented here are probably not sufficient. Some intermediate steps towards this goal
could be tried first. For example, a simpler question is whether, for an order-n cuboid,
we can distinguish the case that the genus is 0, from all other cases. A restricted class
of order-n cuboids is that where all tunnels are placed on the same face. Perhaps our
methods are applicable to that simpler problem on this simpler class of order-n cuboids.

We hope that one can do more with the SFTAM in the future. One could also use it
to identify other properties of the host surface, such as the number of pits or concavities,
or the dimensions of the surface.

Moreover, it seems natural to us to perform tile self-assembly on an existing arbitrary
surface, and hence we believe that the SFTAM can be used in other contexts. One
immediate possible extension of the SFTAM is to use it on surfaces other than polycubes.
Indeed, if an orientable surface is quadrangulated (with only unit square faces), one can
use the SFTAM. For example, one could use it on the surface of a quadrangulated “sheet

123

of paper”, where bonds can be placed on the edges of the sheet of paper. More generally,
the SFTAM could be used with quadrangulated surfaces whose quadrangular faces are
not necessarily square. Indeed, there could be applications where the molecular tiles are
stretchable and do not necessarily correspond to a unit square. For example, in Figure 8.1,
an example from architecture shows a quadrangulated surface where the quadrangles have
various shapes, that could be the host for such an extended SFTAM.

Figure 8.1: The surface of the building of the FRAC (Fonds Régional d’Art Contemporain)
in Orléans is a quadrangulation, so one could try to perform tile self-assembly on it.1

Another possible extension of the SFTAM would be an orientable version of the SF-
TAM, if we wish to work on a surface that is not necessarily orientable, such as a Möbius
strip. Here, the main difference would be how a placement of a tile can be described.
Indeed, a non-orientable surface may not have the notion of interior and exterior, and
one would need to also associate a normal vector to a placement of a tile, to show how
the tile must be placed. The idea of a normal vector was already used in the FTAM
(Section 3.5.1), since in that context, the tiles are placed in 3D space, so they needed to
describe more precisely the orientation of the tile. This idea could be used in the context
of general surfaces as well.

Furthermore, it would be very interesting to know if there is a difference between the
computations that can be performed using self-assembly on surfaces of different genus.

As tile self-assembly has important practical applications and can be performed on
many types of surfaces/objects, we hope that this thesis will inspire more work in this re-
search direction, with more studies on the genus of the host surfaces. As a setting relevant
to practical applications, one could imagine to have 3D objects that need to be identified.
One could coat them using SFTAM assemblies that contain some special marking tiles:
the configuration of these marking tiles would help for this task of identification. This
setting resembles our work, where the marking tiles would be the ones of the set Y . This
is a sort of computational coating.

Generally, as self-assembly is used in applications as coating of surfaces (for example
for coating drug molecules), perhaps our work can be used in this kind of setting. Another
potential application could be to detect certain diseases: for example, in certain diseases,
like the sickle cell disease, the red blood cells of affected patients have a different shape
than in healthy individuals. One could thus use similar assemblies as the ones from this
thesis to detect the disease.

1Image from https://www.azuremagazine.com/article/the-fantastic-frac-centre-in-france/.

124

https://www.azuremagazine.com/article/the-fantastic-frac-centre-in-france/

Publications obtained during the PhD

Chapters 5, 6 and 7 are expanded from a paper presented at the DNA 29 conference in
September 2023 and published as [14].

In the beginning of my PhD, I collaborated on a separate project that was published
in [13] but which is not included in this thesis.

125

Bibliography

[1] Z. Abel, N. Benbernou, M. Damian, E. D. Demaine, M. L. Demaine, R. Flat-
land, S. Kominers and R. Schweller. Shape replication through self-assembly
and RNase enzymes. Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2010), pages 1045–1064, 2010.

[2] L. Adleman. Molecular computation of solutions to combinatorial problems.
Science 266(5187):1021–1024, 1994.

[3] L. Adleman, Q. Cheng, A. Goel and M. Huang. Running time and program size
for self-assembled squares. Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing (STOC 2001), pages 740–748, 2001.

[4] L. Adleman, Q. Cheng, A. Goel, M. Huang, D. Kempe, P. Moisset de Es-
panès and P. W. K. Rothemund. Combinatorial optimization problems in
self-assembly. Proceedings of the 34th annual ACM symposium on Theory
of computing (STOC 2002), pages 23–32, 2002.

[5] O. Aichholzer, M. Biro, E. D. Demaine, M. L. Demaine, D. Eppstein, S. P.
Fekete, A. Hesterberg, I. Kostitsyna and C. Schmidt. Folding polyominoes into
(poly)cubes. International Journal of Computational Geometry and Applica-
tions 28(3):197–226, 2018.

[6] G. Aloupis, P. Bose, S. Collette, E. D. Demaine, M. L. Demaine, L. Douïeb,
V. Dujmović, J. Iacono, S. Langerman and P. Morin. Common unfoldings of
polyominoes and polycubes. Proceedings of the International Conference on
Computational Geometry, Graphs and Applications (CGGA 2010), Lecture
Notes in Computer Science 7033:44–54, 2010.

[7] A. Alseth, D. Hader and M. J. Patitz. Universal shape replication via self-
assembly with signal-passing tiles. Proceedings of the 28th International Con-
ference on DNA Computing and Molecular Programming (DNA 28), LIPIcs
238:2:1–2:24, 2022.

[8] A. Alseth, J. Hendricks, M. J. Patitz and T. A. Rogers. Replication of arbitrary
hole-free shapes via self-assembly with signal-passing tiles. New Generation
Computing 40:553–601, 2022.

[9] M. A. Armstrong. Basic topology. Undergraduate Texts in Mathematics, 1983.

[10] R. D. Barish, R. Schulman, P. W. K. Rothemund and E. Winfree. An
information-bearing seed for nucleating algorithmic self-assembly. Proceedings
of the National Academy of Sciences 106(15):6054–6059, 2009.

127

Bibliography

[11] A. T. Becker, S. P. Fekete, P. Keldenich, D. Krupke, C. Rieck, C. Scheffer and
A. Schmidt. Tilt assembly: Algorithms for micro-factories that build objects
with uniform external forces. Algorithmica 82(2):165-187, 2020.

[12] F. Becker. Géométrie pour l’auto-assemblage. PhD thesis, ENS de Lyon, 2008.

[13] F. Becker, T. Besson, J. Durand-lose, A. Emmanuel, M. Foroughmand-Araabi,
S. Goliaei and S. Heydarshahi. Abstract Geometrical Computation 10: An In-
trinsically Universal Family of Signal Machines. ACM Transactions on Com-
putation Theory 13(1):4, 2021.

[14] F. Becker and S. Heydarshahi. DNA tile self-assembly for 3D-surfaces: To-
wards genus identification. Proceedings of the 29th International Conference
on DNA Computing and Molecular Programming (DNA 29), LIPIcs 276, 8:1–
8:20, 2023.

[15] F. Becker, I. Rapaport and E. Rémila. Self-assemblying classes of shapes with
a minimum number of tiles, and in optimal time. Proceedings of the 26th
International Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS 2006), Lecture Notes in Computer Science
4337:45–56, 2006.

[16] F. Becker, E. Rémila and N. Schabanel. Time optimal self-assembly for 2D
and 3D shapes: the case of squares and cubes. Proceedings of the 14th Inter-
national Conference on DNA Computing and Molecular Programming (DNA
14), Lecture Notes in Computer Science 5347:144–155, 2008.

[17] R. Berger. Undecidability of the domino problem. Memoirs of the American
Mathematical Society, 1965.

[18] J. Bohlin. Design and modular self–assembly of nanostructures. PhD thesis,
University of Oxford, 2022.

[19] J. Bohlin, A. J. Turberfield, A. A. Louis and P. Šulc. Designing the self-
assembly of arbitrary shapes using minimal complexity building blocks. ACS
Nano 17(6):5387–5398, 2023.

[20] H. R. Brahana. Systems of circuits on two-dimensional manifolds. Annals of
Mathematics 23(2):144–168, 1921.

[21] C. J. Brinker, Y. Lu, A. Sellinger. and H. Fan. Evaporation-induced self-
assembly: nanostructures made easy. Advanced Materials 11:579–585, 1999.

[22] C. T. Chalk, E. D. Demaine, M. L. Demaine, E. Martinez, R. T. Schweller,
L. Vega and T. Wylie. Universal shape replicators via self-Assembly with at-
tractive and repulsive forces. Proceedings of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2017), pages 225–238, 2017.

[23] C. C. Chang and C. Y. Lin. Texture tiling on 3D models using automatic
polycube-maps and Wang tiles. Journal of Information Science & Engineering
26(1):291–305, 2010.

128

Bibliography

[24] H.-L. Chen and A. Goel. Error free self-assembly using error prone tiles. Pro-
ceedings of the 10th International Conference on DNA Computing and Molec-
ular Programming (DNA 10), Lecture Notes in Computer Science 3384:62–75,
2004.

[25] I. R. Cohen and A. Marron. The evolution of universal adaptations of life
is driven by universal properties of matter: energy, entropy, and interaction.
F1000Research 9:626, 2020.

[26] M. Cook, Y. Fu and R. Schweller. Temperature 1 self-assembly: Deterministic
assembly in 3D and probabilistic assembly in 2D. Proceedings of the 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), 2011.

[27] M. Cook, T. Stérin and D. Woods. Small tile sets that compute while solving
mazes. Proceedings of the 27th International Conference on DNA Computing
and Molecular Programming (DNA 27), LIPIcs 205, 8:1–8:20, 2021.

[28] M. da Ronch, M. Gandit and S. Gravier. Du problème de Wang vers une
nouvelle situation de recherche pour la classe. Repères IREM 121:77–105, 2020.

[29] D. Doty, J. H. Lutz, M. J. Patitz, . T. Schweller, S. M. Summers and D.
Woods. The tile assembly model is intrinsically universal. Proceedings of the
53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS
2012), pages 302–310, 2012.

Intrinsic universality in self-assembly. Proceedings of the 39th International
Symposium on Theoretical Aspects of Computer Science (STACS 2010),
LIPIcs 5:275–286, 2010.

[30] J. Durand-Lose, J. Hendricks, M. J. Patitz, I. Perkins and M. Sharp. Self-
assembly of 3-D structures using 2-D folding tiles. Natural Computing 19,
337–355, 2020.

[31] L. Euler. Elementa doctrinae solidorum. Novi Commentarii academiae scien-
tiarum Petropolitanae 4, 109–140, 1758. Republished in Opera Omnia, Serie
1 26:71–93, 1992.

[32] C. G. Evans. Crystals that count! Physical principles and experimental inves-
tigations of DNA tile self-assembly. PhD thesis, California Institute of Tech-
nology, Los Angeles, 2014.

[33] D. Furcy and S. M. Summers. Optimal self-assembly of finite shapes at tem-
perature 1 in 3D. Algorithmica 80:1909–1963, 2018.

[34] J. Gallier and D. Xu. A guide to the Classification Theorem for Compact
Surfaces. Springer, 2013.

[35] C. Geary, P.-É. Meunier, N. Schabanel and S. Seki. Oritatami: a computa-
tional model for molecular co-transcriptional folding. International Journal of
Molecular Sciences 20(9):2259, 2019.

129

Bibliography

[36] C. Geary, P.-É. Meunier, N. Schabanel and S. Seki. Proving the Turing uni-
versality of oritatami cotranscriptional folding. Proceedings of the 29th Inter-
national Symposium on Algorithms and Computation (ISAAC 2018), LIPIcs
23:1–23:13, 2018.

[37] M. Godin, V. Tabard-Cossa, Y. Miyahara, T. Monga, P. J. Williams, L. Y.
Beaulieu, R. B. Lennox and P. Grutter. Cantilever-based sensing: The origin
of surface stress and optimization strategies. Nanotechnology 21(7):075501,
2010.

[38] D. Han, S. Pal, J. Nangreave, Z. Deng, Y. Liu and H. Yan. DNA origami with
complex curvatures in three-dimensional space. Science 332(6027):342–346,
2011.

[39] F. Harary. Graph Theory. Addison-Wesley, 1994.

[40] J. Hendricks. Simulation in algorithmic self-assembly. PhD thesis, University
of Arkansas, Fayetteville, 2015.

[41] E. Jeandel and M. Rao. An aperiodic set of 11 Wang tiles. Advances in Com-
binatorics 2021.

[42] M. B. Jones, N. C. Seeman and C. A. Mirkin. Programmable Materials and
the Nature of the DNA Bond. Science 347:840–840, 2015.

[43] M. Y. Kao and V. Ramachandran. DNA self-assembly for constructing 3D
boxes. Proceedings of the 12th International Symposium on Algorithms and
Computation (ISAAC 2001), Lecture Notes in Computer Science 2223:429–
441, 2001.

[44] A. Keenan, R. Schweller and X. Zhong. Exponential replication of patterns in
the signal tile assembly model. Natural Computing 14(2):265–278, 2015.

[45] J. Keller, C. Rieck, C. Scheffer and A. Schmidt. Particle-based assembly using
precise global control. Algorithmica 84:2871–2897, 2022.

[46] J. I. Lathrop, J. H. Lutz, M. J. Patitz and S. M. Summers. Computability
and complexity in self-assembly. Theory of Computing Systems 48(3):617–647,
2011.

[47] K. Lindgren and M. Nordahl. Universal computation in simple one-
dimensional cellular automata. Complex Systems 4(3):299–318, 1990.

[48] D. Liu, M. Wang, Z. Deng, R. Walulu and C. Mao. Tensegrity: construction
of rigid DNA triangles with flexible four-arm DNA junctions. Journal of the
American Chemistry Society 126(8):2324–2325, 2004.

[49] W. Liu, H. Zhong, R. Wang and N. C. Seeman. Crystalline two-dimensional
DNA-origami arrays. Angewandte Chemie International Edition 50(1):264–
267, 2011.

[50] B. Lu, S. Vecchioni, Y. P. Ohayon, J. W. Canary and R. Sha. The
wending rhombus: Self-assembling 3D DNA crystals. Biophysical Journal
121(24):4759–4765, 2022.

130

Bibliography

[51] D. Mackenzie. The Poincaré Conjecture – Proved. Science 314:1848–1849,
2006.

[52] P.-É. Meunier, D. Regnault and D. Woods. The program-size complexity of
self-assembled paths. Proceedings of the 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC 2020), pages 727–737, 2020.

[53] P.-É. Meunier and D. Regnault. Directed non-cooperative tile assembly is de-
cidable. Proceedings of the 27th International Conference on DNA Computing
and Molecular Programming (DNA 27), LIPIcs 205, 6:1–6:21, 2021.

[54] P.-É. Meunier and D. Woods. The non-cooperative tile assembly model is
not intrinsically universal or capable of bounded Turing machine simulation.
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing (STOC 2017), pages 328–341, 2017.

[55] G. Miller and D. Knuth. Cubigami. http://www.puzzlepalace.com/#/
puzzles/200610

[56] V. Muñoz, Á. González-Prieto and J. Á. Rojo. Geometry and topology of man-
ifolds: surfaces and beyond. Series: Graduate Studies in Mathematics 208,
2020.

[57] M. J. Patitz. Python-based Tile Assembly Simulator (PyTAS). http://
self-assembly.net/software/PyTAS/.

[58] M. J. Patitz. An introduction to tile-based self-assembly and a survey of recent
results. Natural Computing 13, 195–224, 2014.

[59] M. J. Patitz and S. M. Summers. Self-assembly of infinite structures: A survey.
Theoretical Computer Science 412:159–165, 2011.

[60] M. J. Patitz and S. M. Summers. Identifying shapes using self-assembly. Al-
gorithmica 64:481–510, 2012.

[61] D. Pchelina, N. Schabanel, S. Seki and G. Theyssier. Oritatami systems as-
semble shapes no less complex than tile assembly model (ATAM). Proceedings
of the 39th International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2022), LIPIcs : 51:1-51:23, 2022.

[62] P. Popescu-Pampu. What is the genus? Lecture Notes in Mathematics 2162,
Springer, 2016.

[63] P. W. K. Rothemund. Theory and experiments in algorithmic self-assembly.
Ph.D. thesis, University of Southern California, Los Angeles, 2001.

[64] P. W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns.
Nature 440(7082):297–302, 2006.

[65] P. W. K. Rothemund and E. Winfree. The program-size complexity of self-
assembled squares. Proceedings of the 32nd Annual ACM Symposium on The-
ory of Computing (STOC 2000), pages 459–468, 2000.

131

http://www.puzzlepalace.com/#/puzzles/200610
http://www.puzzlepalace.com/#/puzzles/200610
http://self-assembly.net/software/PyTAS/
http://self-assembly.net/software/PyTAS/

Bibliography

[66] N. C. Seeman. Nucleic acid junctions and lattices. Journal of Theoretical Bi-
ology 99(2):237–247, 1982.

[67] DNA Nanotechnology: Bibliography from Ned Seeman’s Laboratory. http:
//seemanlab4.chem.nyu.edu/nanobib.html

[68] V. A. Sontakke and Y. Yokobayashi. Programmable Macroscopic Self-
Assembly of DNA-Decorated Hydrogels. Journal of the American Chemical
Society 144 (5), 2149-2155, 2022.

[69] Q. Tang and D. Han. Obtaining Precise Molecular Information via DNA Nan-
otechnology. Membranes 11(9):683, 2021.

[70] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society 2-42(1):230–
65, 1937.

[71] M. M. de Villiers, D. P. Otto, S. J. Strydom and Y. M. Lvov. Introduction to
nanocoatings produced by layer-by-layer (LbL) self-assembly. Advanced Drug
Delivery Reviews 63(9):701–715, 2011.

[72] H. Wang. Proving theorems by pattern recognition – II. Bell System Technical
Journal 40 (1):1–41, 1961.

[73] J. D. Watson and F. H. C. Crick. A structure for deoxyribose nucleic acid.
Nature 171:737–738, 1953.

[74] G. M. Whitesides, J. K. Kriebel and J. C. Love. Molecular engineering of
surfaces using self-assembled monolayers. Science Progress 88(1):17–48, 2005.

[75] E. Winfree. Algorithmic Self-Assembly of DNA. Ph.D.thesis, California Insti-
tute of Technology, 1998.

[76] E. Winfree. Simulations of computing by self-assembly. DNA Based Computers
IV, 1998.

[77] E. Winfree, X. Yang and N. C. Seeman. Universal computation via self-
assembly of DNA: Some theory and experiments. In DNA Based Computers
II, volume 44 of DIMACS, pages 191–213. American Mathematical Society,
1996.

[78] D. Woods, D. Doty, C. Myhrvold, J. Hui, F. Zhou, P. Yin and E. Winfree.
Diverse and robust molecular algorithms using reprogrammable DNA self-
assembly. Nature 567(7748):366–372, 2019.

[79] J. F. Woods, L. Gallego, P. Pfister, M. Maaloum, A. V. Jentzsch and M. Rick-
haus. Shape-assisted self-assembly. Nature Communications 13:3681, 2022.

[80] Y. Yang, J. Wang, H. Shigematsu, W. Xu, W. M. Shih, J. E. Rothman and C.
Lin. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nature
Chemistry 8(5):476–483, 2016.

132

http://seemanlab4.chem.nyu.edu/nanobib.html
http://seemanlab4.chem.nyu.edu/nanobib.html

Bibliography

[81] Y. Yu, L. Chen, D. Weng, J. Wang, C. Chen and A. Mahmood. A promis-
ing self-assembly PTFE coating for effective large-scale deicing. Progress in
Organic Coatings 147:105732, 2020.

[82] F. Zhang, C. R. Simmons, J. Gates, Y. Liu and H. Yan. Self-assembly of a 3D
DNA crystal structure with rationally designed six-fold symmetry. Angewandte
Chemie International Edition 57(38):12504-12507, 2018.

[83] S. Zhung. Fabrication of novel biomaterials through molecular self-assembly.
Nature Biotechnology 21:1171–1178, 2003.

[84] R. Zhuo, F. Zhou, X. He, R. Sha, N. C. Seeman and P. M. Chaikin. Litters
of self-replicating origami cross-tiles. Biophysics and Computational Biology
116(6):1952–1957, 2019.

133

List of Figures

2.1 Nabat, the Persian sugar crystals, an example of self-assembly. 8
2.2 Traditional Persian tiling. 8
2.3 Two games based on square tiles that bind at complementary edges (a) or

similar edges (b). 9
2.4 Two tilings of the plane using Wang tiles. 10
2.5 The molecular structure of DNA. 10
2.6 How to build Wang tiles using DNA. 12
2.7 An assembly of four cross-shaped DNA-based tiles, from [84]. 12

3.1 The 2D lattice. 17
3.2 The 3D lattice. 17
3.3 The rectangular grid graph G9,5. 17
3.4 Two orientable discrete surfaces. 19
3.5 A discretized Möbius strip, a simple non-orientable surface. 19
3.6 Two polycubes, of genus 1 and 2. 20
3.7 A doughnut and a coffee mug are the same from the viewpoint of a topologist. 20
3.8 The Euler formula in Euler’s original paper [31], in Latin, and reproduced

from [62, p.147]. 21
3.9 All polycubes that fit in a 2 × 2 cube, from [30]. 23
3.10 A polycube made of two unit cubes. It contains 11 facets, but only 10 of

them belong to the surface of the polycube. 23
3.11 Two polycubes with their corresponding facet graphs. 23
3.12 An aTAM tile of type t = (a, b, c, d) with str(a) = 2 and str(b) = str(c) =

str(d) = 1. 25
3.13 The tile types of the aTAM TAS S from Example 3.26. 26
3.14 The assembly graph of the assembly from Figure 3.19(g). 26
3.15 Two assemblies of the TAS S from Example 2.26. With temperature τ = 2,

the left assembly is not producible, but the right assembly is producible. . 27
3.16 Example aTAM assembly for the TAS in Example 3.26 (part 1 of 4). . . . 28
3.17 Example aTAM assembly for the TAS in Example 3.26 (part 2 of 4). . . . 28
3.18 Example aTAM assembly for the TAS in Example 3.26 (part 3 of 4). . . . 29
3.19 Example aTAM assembly for the TAS in Example 3.26 (part 4 of 4). . . . 29
3.20 The tile types from the TAS Sp of Example 3.34. 30
3.21 Stages of a terminal assembly for the parity aTAM from Example 3.34, for

input 11001. Unlike the general case, here the order of the assembly is fully
deterministic. 31

135

LIST OF FIGURES

3.22 Stages of a terminal assembly for the parity aTAM from Example 3.34, for
input 10001. Unlike the general case, here the order of the assembly is fully
deterministic. 31

3.23 The binary counter TAS Sb from Example 3.35, with the seven tile types
on the left, and an example assembly on the right. Image taken from [65]. 32

3.24 The physical implementation of a binary counter (going from left to right),
taken from [32]. The red, yellow, green and purple squares represent bits
where an error happened. 33

3.26 The simulation of the computation of Turing Machine M of Example 3.25
by its space-time diagram, via the aTAM TAS SM , with input string
101000. The tiles representing the position of the head are marked by
a star. 35

3.27 The tile types of the TAS SM simulating Turing machine M 36
3.28 First stage of the assembly for the TAS SM , simulating the Turing machine

M for the input string 101000. This stage simulates the computation of M
from the start to the point where it finishes to read the input string. 37

3.29 Second stage of the assembly for the TAS SM , simulating the Turing ma-
chine M for the input string 101000. This stage simulates the computation
of M from the point where it finishes to read the input string and erases
all the 0’s at the end of the input string. (Part 1 of 2) 38

3.30 Second stage of the assembly for the TAS SM , simulating the Turing ma-
chine M for the input string 101000. This stage simulates the computation
of M from the point where it finishes to read the input string and erases
all the 0’s at the end of the input string. (Part 2 of 2) 39

3.31 A TAS for assembling an n×n square, with an illustration of the assembly.
Image taken from [65]. 41

3.32 The assembly of a Sierpinski triangle, from [75]. 42
3.33 A maze on which self-assembly is performed, from [27]. 43
3.34 Illustration of the shape identification framework studied in [60], in the case

where the input shape matches the target shape and is correctly identified. 44
3.35 Illustration of the shape replication performed in [1]. A first self-assembled

RNA-based layer surrounds the shape, followed by a second DNA-based
layer. Then, the first layer is destroyed using enzymes, and the second
layer becomes free from the initial shape. The second layer can then be
filled to obtain a copy of the shape. 45

3.36 The method of shape replication used in [7]. Here, the initial shape is an
assembly that may have to be destroyed in the process. 45

3.37 Coating a surface of gold using a layer of slef-assembling molecules, from [37]. 46
3.38 An assembly sequence in the FTAM, from [30]. 47
3.39 The assembly of a cube using cube-shaped “3D tiles”, from [12, 16]. 48
3.40 A polycube assembly using cube-shaped “3D tiles”, from [18]. 48
3.41 Two polycubes from [45]. 49
3.42 Schematic view of the assembly of a DNA crystal lattice, from [82]. 49
3.43 Shapes assembled by DNA origami, from [64]. 50
3.44 3D objects assembled by DNA origami, from [38]. 50
3.45 A common unfolding of two tree-like polycubes, from [6]. 51
3.46 The game cubigami designed by Miller and Knuth [55]. 51
3.47 An Oritatami configuration simulating a binary counter, from [35]. 52

136

LIST OF FIGURES

4.1 Representation of the flat torus F11,9 in 2D. 54
4.2 Representation of the flat horizontal cylinder F∞,9 in 2D. 55
4.3 Representation of the flat vertical cylinder F11,∞ in 2D. 55
4.4 The 2-dimensional discrete lattice Z2 corresponds to the flat surface F∞,∞. 55
4.5 The Venn diagram that illustrates the presence of the two distinguishing

tile types x and y that identify the flat surfaces. The blue circle represents
the flat surfaces that contain the tile type x in all the terminal assemblies,
and the pink circle represents the ones containing the tile type y. The flat
vertical cylinder contains x and not y, the flat horizontal cylinder contains
y and not x, the flat torus contains both of them, and the plane Z2 contains
none of them. 57

4.6 The tile types of the aTAM TAS SF for classification of flat surfaces. The
seed is in red. 58

4.7 An assembly α ∈ AF
[SF] on the plane Z2. α starts by the seed σ, and

vertical and horizontal ribbons of tile types v and h grow respectively from
the south and the east of σ. 59

4.8 An assembly α ∈ AF
[SF] on a flat surface when m = 11 and n = ∞. α

starts by the seed σ, and a vertical ribbon of tiles of type v grow from
the south of σ. Also, a horizontal ribbon of tiles of type h grows from the
east of σ. After adding 5 tiles of type h, the tiles reach the eastern side of
this figure and continue from the western side. When the ribbon of tiles
of type h arrives to the west of the seed, x appears there, between tiles of
types h and v. The assembly on the figure is the terminal limiting assembly
(assuming the vertical ribbon is infinite). 60

4.9 An assembly α ∈ AF
[SF] on a flat surface with m = ∞ and n = 9. α starts

by the seed σ, and a horizontal ribbon of tiles of type h grows from the
south of σ. A vertical ribbon of tiles of type v grows from the east of σ.
After adding four tiles of type v, the tiles arrive to the southern side of the
figure and α continues from the northern side. When the ribbon of tiles of
type v collides with the north of the seed, y appears, adjacent to tiles of
both types h and v. The assembly on the figure is the terminal limiting
assembly (assuming the horizontal ribbon is infinite). 61

4.10 An assembly α ∈ AF
[SF] on a flat torus F9,11. α starts by the seed σ, and

vertical and horizontal ribbons of tile types v and h grow respectively from
the south and the east of σ. After adding 6 tiles of type h, the horizontal
ribbon reaches the eastern side of F9,11 and α continues from its western
side. After placing again 5 tiles of type h, the ribbon of tiles of type h
collides with the west of the seed. At this new junction between tiles of
types h and v, a tile of type x appears. Moreover, After adding 5 tiles of
type v, the tiles reach the southern side of F9,11 and α continues from the
northern side of F9,11. After placing 4 tiles of type v, the ribbon of tiles of
type v collides with the north of the seed. At this new junction between
tiles of types h and v, a tile of type y appears. The assembly on the figure
is the terminal assembly. 62

5.1 The four possible orientations of a tile of type t in the SFTAM. 66

137

LIST OF FIGURES

5.2 A facet f of a polycube and the four possible placements of a tile on it.
For a tile of type t = (t1, t2, t3, t4), the arrow indicates the side o of f where
the side with glue t1 of t will be placed; this corresponds to the placement
(f, o). 67

5.3 The tile types of the SFTAM TAS S from Example 5.9. 68
5.4 An assembly of the SFTAM TAS S from Example 5.9. 69
5.5 Illustration of Remark 5.10: four different assemblies of a TAS S1 seeded

at different placements of a polycube. 70

6.1 Finding the middle of a track on a polycube. The track is made of the
facets that are in the dark grey area. 74

6.2 Representation of the number 12 by its row tile number. 75
6.3 The IBC tile types. 76
6.4 Assembly of row tile number 16 in the IBC. 78
6.5 The DBC tile types. 79
6.6 DBC rule tiles . 79
6.7 The assembly of the DBC System for number 12 to negative 15. The

assembly goes on to the north until it reaches an obstacle. The red tile is
the t∗0−1 that marks the left of row number N + 1. 81

6.8 The goal of the U-turn system is to copy a row tile number to its left. . . . 82
6.9 The U-turn system and support tile types. 83
6.10 Copying 11111001 in the U-turn system. The gray bracket on the right

shows the minimum number of support tiles that are necessary for this
assembly. 84

6.11 In the first stage of the assembly of the U-turn system, the value of the
least significant bit is transferred n times to the left (here n = 8). 85

6.12 The k-th stage of the assembly in the U-turn system is shown by yellow-
filled rectangles. The value of the k-th significant bit is copied down by
k − 1 rows during the previous stages. The k-th stage copies the value one
time to the south and n times to the left and finally k times to the top.
Here, k = 5 and n = 8. In addition, in the k-th stage, the tiles of type tb←Ð
in the gray rectangle appear below the tile of type t ↱, and they will be
the supports for the (k + 1)-th stage. The seed is highlighted in the black
rectangle. 86

6.13 The steps of the middle finding system process. The tile tm is the left red
one. 90

7.1 The four types of cuboids studied in this chapter: order-0 cuboids C0 and
C ′0, and order-1 cuboids that are obtained by subtraction of (a translated
copy of) C ′0 from C0. 96

7.2 Illustration of the normal placements on two order-1 cuboids from Defini-
tion 7.7. Intuitively, these are the placements p that are sufficiently far from
every edge belonging to the same face as p. The normal placements are the
placements in the gray area, and the placements that are not normal are
in the red areas. 97

7.3 The region graph GC : V (GSG
) are the distinct regions, and E(GSG

) con-
tains the edges between neighboring regions. 98

7.4 The tile types for RX . 99
7.5 The tile types of RY . 100

138

LIST OF FIGURES

7.6 The tile types for RZ . 100
7.7 The tile types that show the presence of a tunnel in an order-1 cuboid. . . 101
7.8 Tile types of inner filling of regions . 101
7.9 The skeleton of a terminal assembly of SG on an order-0 cuboid starting

from a seed (in yellow) in a normal placement. On the left, the traces of
the ribbons RX (in red), RY (in green) and RZ (in blue). On the right, the
shape of the skeleton. 102

7.10 The skeleton of a SG assembly on an order-0 cuboid is shown in color. It
is started from a seed (in yellow) and after the formation of the skeleton,
the regions are partially filled by tiles of types todd and teven. 103

7.11 The ribbon RX . The assembly starts from the south of the seed tile (in red
at the center) and wraps around the order-1 cuboid. 105

7.12 The formation of the RY ribbon (horizontal), out of RX (vertical). The
initial seed of the assembly is in the center (in red). When RX is finished,
from the east and the west of the seed the starter tiles of RY appear. Then,
four middle finding systems MFSEN , MFSES, MFSWS, and MFSWE,
each with distinct labels, start to form respectively from four red seeds
σ + +EN , σ + +ES, σ + +WN , σ + +WS. 106

7.13 The second collision of RY and RX . 107
7.14 Two ribbons of RZ . 108
7.15 Two ribbons of RZ meeting the ribbons of RX 108
7.16 The assembly of RX , RY and RZ on an order-0 cuboid. The seed is located

in the middle of RX , on the left. RX grows from the south of the seed and
finishes at its north. Then, RY grows, including northern and southern
middle finding systems, and a ribbon of green yew tiles between them that
ends by arriving at PX . At the end, RZ starts to assemble from the found
middle tile of RY (in red) and finishes by arriving at RX . Note that The
western middle finding systems and its assigned parts of RZ are omitted
for the sake of brevity, however they are the mirror image of the eastern
ones, excluding yew ribbon of tiles. 109

7.17 The inner filling with tiles of types teven (white) and todd (black) at the two
places where the RZ ribbons meet RX . 110

7.18 The case where C ∈ Ot
1 is partitioned into 7 distinct regions. If there is a

tunnel between two distinct regions, a tile of type treg or tmfs, which have
common labels with both teven and todd, must appear in the assembly. . . . 112

7.19 The RY ribbons when the genus of the order-1 cuboid C is 1. 114
7.20 Intersection of tunnel with two planes PX (red) and PY (green). 115
7.21 The case where C ∈ Ot

1 and C is partitioned into 5 distinct regions. 116
7.22 Cuboid with concavity: The three planes PX (red), PY (green) and PZ

(blue), which consists of two semi-planes.) 117
7.23 The places on an order-1 cuboid where, if a tunnel is placed there, a tile of

type treg ou tmfs appears. 117
7.24 The places on an order-1 cuboid where, if a tunnel is placed there, a tile of

type tmfs appears. 118
7.25 The places on C where tibc displays the presence of a tunnel on C. Note

that the tunnel appears by tibc also when the seed is inside the tunnel, since
up to topological isomorphism, it is the same case 119

139

LIST OF FIGURES

7.26 The places on a cuboid where, if there is a tunnel, a tile of Y must appear
in the assembly. 120

7.27 The closed ribbon formed by parts of the middle finding system (green)
and the two ribbons of RZ (blue), when two RZ ribbons meet each other
instead of reaching RX . They meet the red ribbon RX only once. 120

7.28 A scenario where we apply the same strategy as in our work, but without
using the Middle Finding System. Because the ribbons of RZ do not start
in the middle of RY , the regions do not partition the surface meaningfully. 121

8.1 The surface of the building of the FRAC (Fonds Régional d’Art Contem-
porain) in Orléans is a quadrangulation, so one could try to perform tile
self-assembly on it. 124

140

List of Tables

3.25 The space-time diagram of Turing machine M for input string 101000. . . 34

4.11 The table of presence of tile types x (in blue) and y (in pink) in terminal
assemblies of SF on flat surfaces. 63

141

Shahrzad HEYDARSHAHI
Auto-assemblage sur surfaces diverses

Résumé : Nous étudions l’auto-assemblage par tuiles sur divers types de surfaces. L’auto-assemblage par
tuiles est un processus dynamique basé sur des tuiles carrées ayant quatre côtés distingués, qui peuvent
s’attacher deux à deux sous certaines conditions. Le processus commence avec une configuration initiale
appelée graine, et s’arrête si aucune autre tuile ne peut être ajoutée. Ce modèle peut être implémenté
en pratique via les nanotechnologies de l’ADN, et il est étudié depuis la fin des années 1990. Il a été
démontré que ce modèle permet de réaliser des calculs arbitraires : il s’agit d’un modèle de calcul
universel. Nous étudions l’auto-assemblage par tuiles d’un point de vue théorique. La plupart des travaux
sur ce sujet portent sur l’auto-assemblage par tuiles sur le plan Euclidien 2D. Nous nous intéressons à
son comportement sur des surfaces plus complexes. La question centrale que nous posons est si l’on peut
concevoir un système d’auto-assemblage par tuiles permettant de détecter le type de surface sur laquelle
il est effectué ? Nous nous intéressons d’abord au cas de quatre types de surfaces plates : le tore plat,
le cylindre vertical plat, le cylindre horizontal plat, et le plan Euclidien. Nous présentons un système
d’auto-assemblage par tuiles dans le modèle classique abstract Tile Assembly Model (aTAM). Notre
système peut être appliqué sur toute surface appartenant à l’un des quatre types de surfaces, et présente
des particularités uniques en fonction du type de surface. Plus précisément, certaines tuiles apparaissent
uniquement si l’assemblage a lieu sur l’un de ces types de surfaces. Nous abordons également des surfaces
3D plus complexes : celles d’objets 3D appelés polycubes. Les polycubes sont constitués de cubes
unitaires collés les uns aux autres via leurs faces. La propriété la plus fondamentale d’une surfaces est
sans doute son genre ; pour simplifier, il s’agit du nombre de trous qui perçent la surface. Notre but est
de créer un système d’auto-assemblage par tuiles capable de détecter le genre du polycube sous-jacent.
Afin d’effectuer de l’auto-assemblage par tuiles sur la surface d’un polycube, nous définissons tout
d’abord un nouveau modèle adapté, appelé Surface Flexible Tile Assembly Model (SFTAM). Ce modèle
étend le modèle aTAM et est inspiré par un autre modèle, le Flexible Tile Assembly Model (FTAM).
Nous conçevons un système d’auto-assemblage par tuiles qui détecte le genre d’un type particulier de
polycubes. Ces polycubes sont appelés cuboïdes d’ordre 1, et ils peuvent avoir genre 0 ou genre 1.
Notre système est tel que, dans tout assemblage terminal, si le genre est 1, une tuile d’un ensemble
particulier Y de types de tuiles apparaît nécessairement. Si le genre est 0, les tuiles dont le type est dans
Y n’apparaissent dans aucun assemblage productible.

Mots clés : Auto-assemblage par tuiles, Calcul ADN, Surfaces géométriques, Genre, Polycubes

Self-Assembly on Various Surfaces

Abstract : We investigate tile self-assembly on various types of surfaces. Tile self-assembly is a dynamic
process based on square tiles that have four distinguished sides that can attach to each other under
certain conditions. The process starts with a specific predetermined configuration called a seed, and
stops if no further tile can be attached. This model can be implemented in practice using DNA
nanotechnology and has been investigated since the late 1990s. It has been shown theoretically to allow
performing arbitrary computations : it is a universal computation model. We study tile self-assembly
from the theoretical side. Most works in the area deal with the Euclidean 2D plane. We are interested
in studying its behaviour on more complex surfaces. The central question that we ask, is, can we design
a tile self-assembly system that can detect the type of surface that it is performed on? We first address
this question for the case of four types of flat surfaces: the flat torus, the flat vertical cylinder, the
flat horizontal cylinder, and the Euclidean plane. We design a tile self-assembly system in the classic
abstract Tile Assembly Model (aTAM) that can be performed on any surface from one of these four
types, and that exhibits specific features for each type. More precisely, certain tiles will uniquely appear
if the assembly is taking place on one of these types of surfaces. We are also interested in more complex
3D surfaces that form the surface of objects called polycubes. Polycubes are made from unit cubes that
are glued to each other by their faces. Perhaps the most fundamental property of a surface is its genus;
informally, it is the number of holes piercing the surface. Our goal is to design a tile self-assembly system
that can detect the genus of the underlying polycube surface. In order to perform tile self-assembly
on polycubes, we first define a new suitable model, that we call the Surface Flexible Tile Assembly
Model (SFTAM). This model extends the aTAM and is inspired by another existing model, the Flexible
Tile Assembly Model (FTAM). We design a tile self-assembly system that detects the genus of a
special type of polycubes. These polycubes are called order-1 cuboids, and they can have genus 0 or
genus 1. In any terminal assembly of our system, if the genus is 1, a tile from a special subset Y of
tile types must appear. When the genus is 0, however, tiles of Y never appear in any producible assembly.

Keywords : Tile self-assembly, DNA computing, Geometric surfaces, Genus, Polycubes

Laboratoire d’Informatique Fondamentale d’Orléans
6 rue Léonard de Vinci, 45100 Orléans, France

	Résumé en français
	Introduction
	From assembly to self-assembly
	Tilings
	DNA computing and self-assembly of nanostructures
	Tile self-assembly
	Theoretical questions in self-assembly
	Goal of the thesis
	Outline of the thesis

	Preliminaries and state of the art
	Preliminary mathematical definitions
	Mathematical notation
	Graphs
	The 2D and 3D infinite lattices

	Surfaces and associated discrete structures
	Surfaces and discrete surfaces
	Genus of a surface
	Polycubes

	The abstract Tile Assembly Model (aTAM)
	History
	Definitions
	Fundamental examples: simulating counters via the aTAM
	Another example: simulating a Turing machine
	Computing using the aTAM
	Creating specific shapes
	Complexities of assemblies

	Tile self-assembly on 2D surfaces other than the plane
	Tile self-assembly on mazes
	Shape identification
	Shape replication
	Self-assembled coatings of surfaces

	Assemblies to construct 3D shapes
	The Flexible Tile Assembly Model (FTAM)
	Self-assembly of polycubes using unit cubes as ``3D tiles''
	Particle-based assembly
	Crystal self-assembly
	Origami-like folding processes

	Conclusion

	Classification of flat surfaces using the aTAM
	Flat surfaces
	The aTAM on flat surfaces
	Classifying flat surfaces using the aTAM
	Concluding remarks

	The SFTAM: Surface Flexible Tile Assembly Model
	The definition of SFTAM
	Examples and remarks
	Comparison and connections with previous models
	Assemblies of aTAM systems on polycubes
	Producible SFTAM assemblies on polycubes may not be producible in Z2
	Comparison of SFTAM with FTAM

	Concluding remarks

	Finding the middle of a track in the aTAM or SFTAM
	Preliminaries
	The increasing binary counter system
	The decreasing binary counter system
	The U-turn system
	The middle finding system
	Concluding remarks

	Detecting the genus of order-1 cuboids using the SFTAM
	The order-1 cuboids
	Statement of the main theorem
	Our framework: region partition of order-1 cuboids
	Description of the TAS SG
	Overview of the assemblies of SG on O1 and proof ideas
	Description of terminal assemblies of SG on order-1 cuboids: AC1[SG]
	Terminal assemblies on order-0 cuboids: AC0[SG]
	Terminal assemblies on order-1 cuboids with genus 1 : ACt[SG]
	Terminal assemblies on order-1 cuboids with genus 0 : ACc[SG] and ACp[SG]

	Detecting the genus of order-1 cuboids via SG: proof of the main theorem
	Concluding remarks

	Conclusion
	Bibliography
	List of figures
	List of tables

