
HAL Id: tel-04845491
https://theses.hal.science/tel-04845491v1

Submitted on 18 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal verification of processor microarchitecture to
analyze system security against fault attacks

Simon Tollec

To cite this version:
Simon Tollec. Formal verification of processor microarchitecture to analyze system security against
fault attacks. Hardware Architecture [cs.AR]. Université Paris-Saclay, 2024. English. �NNT : 2024UP-
ASG077�. �tel-04845491�

https://theses.hal.science/tel-04845491v1
https://hal.archives-ouvertes.fr

T
H

È
S
E

D
E

D
O

C
T

O
R
A
T

N
N

T
:2

02
4U

PA
SG

07
7

Formal Verification of Processor
Microarchitecture to Analyze System

Security against Fault Attacks
Vérification formelle de la micro-architecture de processeurs

pour l’analyse de sécurité des systèmes contre
les attaques par injection de fautes

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580 : Science et technologies
de l’information et de la communication (STIC)

Spécialité de doctorat : Informatique
Graduate School : Informatique et sciences du numérique

Référent : Faculté des sciences d’Orsay

Thèse préparée à l’institut LIST (Université Paris-Saclay, CEA),
sous la direction de Mathieu JAN, directeur de recherche,

le co-encadrement de Karine HEYDEMANN, maîtresse de conférences,
de Mihail ASAVOAE, ingénieur-chercheur,

et de Damien COUROUSSÉ, ingénieur-chercheur.

Thèse soutenue à Paris-Saclay, le 15 novembre 2024, par

Simon TOLLEC

Composition du jury
Membres du jury avec voix délibérative

Emmanuelle ENCRENAZ-TIPHENE Présidente
Professeure des universités, Sorbonne Université
Vincent BEROULLE Rapporteur & Examinateur
Professeur des universités, Université Grenoble Alpes
Jean-Max DUTERTRE Rapporteur & Examinateur
Professeur des universités, École des Mines de Saint-Étienne
Guillaume BOUFFARD Examinateur
Ingénieur de recherche, Agence nationale de la sécurité des
systèmes d’information (ANSSI)
Guillaume HIET Examinateur
Professeur des universités, Centrale Supélec
Ulrich KÜHNE Examinateur
Maître de conférences, Télécom Paris
David MONNIAUX Examinateur
Directeur de recherche, Université Grenoble Alpes

Titre: Vérification formelle de la micro-architecture de processeurs pour l’analyse de
sécurité des systèmes contre les attaques par injection de fautes.

Mots clés: Attaques par injection de fautes · Vérification formelle · Processeur · Con-
tremesures · Model Checking · SAT.

Résumé: Les attaques par injection de
fautes représentent une menace majeure
pour la sécurité des systèmes, car elles per-
mettent aux attaquants de déjouer des mé-
canismes de protection ou d’accéder à des
informations sensibles. Alors que la sécu-
rité de ces systèmes est traditionnellement
évaluée au niveau du logiciel ou du matériel,
des recherches récentes soulignent la néces-
sité de prendre en compte les deux niveaux
et d’analyser la microarchitecture du pro-
cesseur pour comprendre pleinement les con-
séquences des attaques par injection fautes.
Dans ce contexte, cette thèse vise à éla-
borer une méthodologie d’analyse exhaus-
tive et automatisée, prenant en compte à la
fois les descriptions logicielles et matérielles
du système, afin d’avoir une évaluation fine
des conséquences des fautes sur le logiciel
ou de fournir des garanties formelles sur la
sécurité du système. À cette fin, nous pro-
posons µArchiFI, une méthodologie formelle
de modélisation et de vérification permettant
d’évaluer les effets des fautes sur les sys-
tèmes combinés matériel/logiciel. Contraire-
ment aux méthodologies existantes, µArchiFI
est exhaustif et permet l’identification au-
tomatique des vulnérabilités difficiles à dé-
tecter, ainsi que la preuve de robustesse
des systèmes contre les attaques par in-
jection de fautes. Implémenté à partir de
l’infrastructure de compilation Yosys, notre
approche génère une modélisation du sys-

tème adaptée aux techniques de vérification
formelle telles que le model checking borné.
Nous validons notre méthodologie sur les
processeurs RISC-V en identifiant automa-
tiquement les attaques connues exploitant
les mécanismes microarchitecturaux et en
découvrant des effets de fautes jusqu’alors
inconnus que les techniques de simulation
classique pourraient manquer. De plus,
nous évaluons formellement la sécurité d’une
contre-mesure conjointe logiciel et matériel
MAFIA, tâche qui ne n’aurait pas été possi-
ble en ne travaillant uniquement qu’à l’un de
ces niveaux.
Pour améliorer les performances de notre ap-
proche et résoudre le problème de l’explosion
de l’espace d’état, l’un des défis majeurs des
techniques exhaustives, nous décomposons
la co-vérification matériel/logiciel en étapes
plus faciles à résoudre. Cette décomposi-
tion s’appuie sur une évaluation préliminaire
des contre-mesures matérielles potentielles
existantes. Par conséquent, nous démon-
trons que des problèmes auparavant insol-
ubles, tels que l’analyse de la robustesse de
l’élément sécurisé OpenTitan exécutant un
processus de démarrage sécurisé, peuvent dé-
sormais être résolus grâce à notre méthodolo-
gie. Notre approche a également identifié
des vulnérabilités dans le banc de registres,
pour lesquelles nous avons fourni et prouvé
un correctif de sécurité qui a ensuite été in-
tégré dans le projet OpenTitan.

ii

Title: Formal Verification of Processor Microarchitecture to Analyze System Security
against Fault Attacks.

Keywords: Fault injection attack · Formal verification · Processor · Countermeasures ·
Model Checking · SAT.

Abstract:
Fault injection attacks are a serious threat
to system security, enabling attackers to by-
pass protection mechanisms or access sensi-
tive information. While the security of these
systems is traditionally assessed at the soft-
ware or hardware level, recent research high-
lights the need to consider both and analyze
the processor microarchitecture to fully un-
derstand the consequences of fault attacks.
In this context, this thesis introduces an ex-
haustive and automated analysis technique,
comprising both software and hardware sys-
tem descriptions, to better understand the
final consequences of hardware-level faults
on software and provide formal guarantees of
software security. For this purpose, we pro-
pose µArchiFI, a formal modeling and ver-
ification methodology to evaluate fault ef-
fects on combined hardware/software sys-
tems. Built on top of the Yosys compiler,
this tool generates a system model suitable
for formal verification techniques such as
bounded model checking. Unlike previous
methodologies, µArchiFI is exhaustive and al-
lows for automatic identification of corner-
case vulnerabilities, as well as proving sys-

tem robustness against fault attacks. We
validate our methodology on RISC-V proces-
sors by automatically identifying known fault
attacks exploiting microarchitectural mech-
anisms and by discovering previously unre-
ported fault effects that existing simulation-
based techniques might miss. Additionally,
we formally evaluate the security of the com-
bined countermeasure MAFIA, something
that would not be possible through hardware
or software verification alone.
To improve performance and address the
state space explosion problem—one of the
most significant challenges of exhaustive
techniques—we decompose hardware/soft-
ware co-verification into more manageable
steps. This decomposition leverages a pre-
liminary evaluation of potential hardware-
level countermeasures. Consequently, we
demonstrate that previously intractable prob-
lems, such as analyzing the robustness of the
OpenTitan secure element running a secure
boot process, can now be solved using our
methodology. Our approach also identified
vulnerabilities in the register file, for which
we provided and proved a security fix before
integrating it into the OpenTitan project.

iii

Remerciements

Après avoir rédigé ce manuscrit de thèse de 120 pages, il n’est pas facile de sortir
de son rôle de scientifique pour prendre la plume et partager l’expérience que cela a
représenté. Cependant, il me tient à cœur de remercier toutes les personnes qui ont con-
tribué à l’accomplissement de cette thèse, enrichi mon quotidien et rendu cette période,
entre le monde académique et le monde professionnel, aussi formatrice qu’enrichissante.

Je tiens tout d’abord à exprimer ma profonde gratitude à l’équipe encadrante de
cette thèse, qui m’a chaleureusement accueilli lors de mon stage au CEA, et avec qui
j’ai choisi de prolonger l’aventure sur un sujet à la fois passionnant et complexe en
raison des nombreuses thématiques qu’il recoupe. Mihail Asavoae, Damien Couroussé,
Karine Heydemann, Mathieu Jan, je vous remercie pour votre accompagnement et votre
expertise, qui ont largement contribué à la réussite de cette thèse et ont grandement
contribué à mon développement tout au long de ces trois années.

Je souhaite également remercier tous mes collègues du CEA, chercheurs et doctor-
ants, dont la richesse des échanges, parfois informels autour de la machine à café, a
marqué ces trois années. Sans vous, cette aventure aurait été bien plus solitaire. Un
merci particulier à notre groupe de doctorants : Benjamin Binder, qui m’a ouvert la
voie dans l’exercice de la thèse, mais aussi Pierre-Emmanuel Clet, Jonathan Fontaine,
Valentin Gilbert, Robin Ollive, Marc Renard, Julien Rodriguez, Guillaume Roumage, et
tant d’autres, avec qui j’ai partagé aussi bien les bons moments que les défis et difficultés
de la thèse. Au-delà du travail, nous avons su trouver des moments de respiration, que
ce soit lors de nos sorties d’escalade, au bar, au restaurant, lors de notre excursion au
CERN, d’un périple au Mont-St-Michel, ou encore sur les pistes de ski. Je souhaite par
ailleurs bonne chance à la prochaine génération de doctorants.

Je tiens à remercier le CEA d’avoir accueilli ma thèse, ainsi que ma hiérarchie pour son
soutien et pour m’avoir permis de participer à de nombreux événements : conférences,
écoles d’été, séminaires et mobilités internationales. Je remercie tout particulièrement
Yann Gallais, mon chef de laboratoire, pour avoir facilité mon projet de visite scientifique
à l’Université technologique de Graz au cours de ma deuxième année de thèse.

I would like to extend my thanks to the entire IAIK team at TU Graz for their
warm welcome and for the collaboration that led to the publication of an excellent
paper at the CHES conference. I am especially grateful to Prof. Stefan Mangard for
offering me the opportunity to join the SESYS team for three months. This experience
was deeply enriching, both scientifically and in terms of international collaboration. I
highly recommend such an experience to any PhD student. A special thank you goes
to thank Pascal Nasahl, who generously found time to collaborate with me despite his

iv

busy schedule at the end of his thesis. I wish you all the best in your new chapter in
Switzerland, and I’m confident our paths will cross again soon. I would also like to
express my gratitude to Vedad Hadžić and Prof. Roderick Bloem for joining the project
and contributing to the rigor and quality of our results. Your involvement, even after my
departure from Graz, was decisive in the successful publication of our paper. Lastly, my
thanks to all the PhD students and post-docs I had the pleasure of meeting during my
stay, who made those three months so enjoyable. While I cannot mention everyone, I
would like to give special thanks to Gaëtan Cassiers, Barbara Gigerl, Lukas Maar, Rishub
Nagpal, Robert Primas, and Moritz Waser for the insightful discussions and memorable
mountain excursions.

Je souhaite enfin remercier mes proches et ma famille, qui m’ont soutenu tout au
long de cette période. Je sais qu’il n’a pas toujours été facile de comprendre la nature de
mon travail, mais cela m’a permis d’affiner mes compétences en communication et en
vulgarisation, même si, pour certains, je resterai un dresseur de puce. Il était également
souvent difficile de justifier que, malgré mes 10 semaines de congés et de nombreux
déplacements en conférences ou formations, il m’arrivait parfois de travailler ! Un merci
tout particulier à Emma, qui a partagé avec moi ces trois années de labeur, relu mes
articles avec une rigueur parfois supérieure à celle de certains reviewers, et avec qui nous
allons bientôt pouvoir tourner la page vers un nouvel épisode de notre vie.

Pour conclure, je remercie chaleureusement les membres de mon jury qui ont accepté
d’examiner mes travaux, et tout particulièrement Vincent Beroulle et Jean-Max Dutertre,
qui ont relevé le défi de rapporter mon manuscrit, parfois dans l’urgence face à des
changements de dernière minute.

v

Synthèse en français

Les attaques par injection de fautes représentent une menace majeure pour la sécu-
rité des systèmes embarqués, car elles peuvent permettre à un attaquant d’extraire des
secrets ou d’obtenir un accès non autorisé à des fonctionnalités sensibles du système. Si
ces menaces sont traditionnellement évaluées séparément au niveau logiciel (programme)
ou matériel (circuit du microcontrôleur), des recherches récentes soulignent la nécessité
de prendre en compte les deux niveaux et d’analyser la microarchitecture du processeur
pour comprendre pleinement les conséquences des attaques par injection fautes. Dans ce
contexte, cette thèse vise à élaborer une méthodologie d’analyse exhaustive et automa-
tisée, prenant en compte à la fois les descriptions logicielles et matérielles du système,
afin d’avoir une évaluation fine des conséquences des fautes ou de fournir des garanties
formelles sur la sécurité. La thèse est structurée en quatre chapitres auxquels s’ajoutent
une introduction et une conclusion.

Le chapitre 1 dresse un état de l’art des attaques par injection de fautes, des contre-
mesures, et des outils d’évaluation, avant de poser la problématique adressée par le
manuscrit de thèse. Il met en évidence la nécessité d’une analyse multi-niveaux, en-
globant les différents niveaux d’abstraction, du matériel au logiciel. Les contre-mesures
présentées incluent des solutions matérielles, logicielles et mixtes, avec un accent parti-
culier sur celles visant à protéger l’intégrité du flot de contrôle du code embarqué (CFI)
qui nécessitent une analyse multi-niveaux. Cependant, l’analyse effectuée dans cet état
de l’art révèle une lacune dans les méthodologies actuelles : aucune ne propose d’analyse
logicielle/matérielle basée sur les techniques formelles. Les méthodes existantes reposent
sur une approche par simulation non-exhaustive, n’apportant pas de garanties de sécurité.

Le chapitre 2 présente µArchiFI, une méthodologie innovante pour la modélisation
et la vérification formelle de systèmes combinés matériel/logiciel. Contrairement aux
méthodologies existantes, µArchiFI est exhaustif et permet l’identification automatique
des vulnérabilités difficiles à détecter, ainsi que la preuve de robustesse des systèmes
contre les attaques par injection de fautes. Cette méthodologie repose sur une machine
à états finis de type Mealy, où le matériel est modélisé comme un système de transition
d’états, tandis que le code logiciel est encodé dans l’état initial. Les fautes sont intégrées
en modifiant les transitions du système et l’objectif de vulnérabilité d’un attaquant est
exprimé par une propriété d’accessibilité sur un sous-ensemble d’états du système. La
vérification des propriétés de sécurité est effectuée grâce à des techniques formelles
du type model checking borné. µArchiFI est mis en oeuvre dans l’infrastructure de
compilation Yosys, et disponible publiquement en open source.

Le chapitre 3 illustre l’utilisation de µArchiFI dans deux cas d’étude : la détection

vi

de vulnérabilités dans la microarchitecture d’un cœur CV32E40P et la validation d’une
contre-mesure CFI (MAFIA). Dans le premier cas, µArchiFI identifie des vulnérabilités
complexes dans le forwarding et le prefetch buffer, démontrant l’efficacité de la méth-
ode. Dans le second cas, la robustesse de MAFIA face à des fautes symboliques est
formellement prouvée, tâche qui ne n’aurait pas été possible en travaillant séparément
aux niveaux d’abstraction logiciel ou matériel. µArchiFI s’avère également performant
pour évaluer la sécurité de codes et de cœurs matériels, avec des résultats obtenus en
moins de cinq minutes pour des circuits jusqu’à 50 000 portes.

Pour répondre aux défis posés par des systèmes plus complexes, le chapitre 4 propose
une amélioration de la méthodologie en deux étapes : une évaluation préliminaire des
contre-mesures matérielles (intitulée partitionnement résistant aux fautes d’ordre k) pour
réduire l’espace des états, suivie d’une vérification multi-niveaux des fautes restantes, en
intégrant le matériel et le logiciel. Cette approche a été validée sur des implémentations
sécurisées d’algorithmes cryptographiques symétriques tels que AES, où elle prouve la ro-
bustesse des circuits jusqu’à trois fautes, surpassant les outils existants. La méthodologie
a ensuite été appliquée au cœur sécurisé Ibex d’Open Titan, où elle identifie des vul-
nérabilités dans le banc de registre du processeur. L’étape de co-vérification démontre
cependant que ces fautes sont capturées par les contre-mesures logicielles, prouvant ainsi
la sécurité du premier étage du boot sécurisé d’OpenTitan face aux fautes uniques. En
conclusion, cette méthodologie permet d’analyser des systèmes de grande complexité,
comprenant jusqu’à 130 000 portes et des logiciels de plusieurs milliers d’instructions,
ce qui constitue une avancée majeure par rapport à l’état de l’art.

vii

Contents

Introduction 1
Context . 1
Motivation . 2
Contributions . 3

1 State of the Art and Problem Statement 5
1.1 Fault Injection Attacks . 6

1.1.1 Physical Means . 6
1.1.2 Abstraction Layers . 8
1.1.3 Fault Models . 13

1.2 Countermeasures against Faults . 16
1.2.1 Hardware . 17
1.2.2 Software . 17
1.2.3 Combined Countermeasures . 18

1.3 Fault Evaluation Tools . 19
1.3.1 Hardware . 20
1.3.2 Software . 21
1.3.3 Combined Frameworks . 22

1.4 Problem Statement and Manuscript Outline 23

2 µArchiFI Workflow: Formal Modeling and Implementation 25
2.1 System Modeling . 26

2.1.1 Hardware Modeling . 27
2.1.2 Software Modeling . 29
2.1.3 Faults Injection Attacks . 31
2.1.4 Summary . 33

2.2 Background on Model Checking . 34
2.2.1 Overview . 34
2.2.2 Symbolic Model Checking . 35
2.2.3 Decision Procedures . 37
2.2.4 Abstractions in Model Checking 38
2.2.5 Languages and Tools in Hardware Model Checking 40
2.2.6 Summary . 41

2.3 Background on Yosys . 41
2.3.1 Overview . 42
2.3.2 Intermediate Representation . 42
2.3.3 Transfomation Passes . 43

viii

Contents

2.3.4 Backends . 44
2.3.5 Yosys-SMTBMC . 44

2.4 µArchiFI Workflow . 45
2.4.1 Tool Overview . 45
2.4.2 Modeling Process . 46
2.4.3 Formal Verification . 49
2.4.4 Software-Driven Optimizations 50
2.4.5 Previous µArchiFI Versions . 52

2.5 Conclusion . 54

3 Experimental Evaluation using µArchiFI 55
3.1 Case Study I: Microarchitectural Exploits 56

3.1.1 Experimental Set-Up . 56
3.1.2 Microarchitectural Exploits . 63
3.1.3 Discussion . 67

3.2 Case Study II: Control Signal Integrity 68
3.2.1 Experimental Set-Up . 69
3.2.2 Evaluation Results . 71
3.2.3 Conclusion . 72

3.3 Performance Evaluation . 72
3.3.1 Performance of µArchiFIv0 . 73
3.3.2 Evaluation Scenarios . 74
3.3.3 Performance Results . 76
3.3.4 Influence of Verification Strategies 78
3.3.5 Discussion . 79

3.4 Conclusion . 80

4 Preliminary Hardware Analysis using Fault-Resistant Partitioning 82
4.1 Overview . 83

4.1.1 Methodology . 84
4.1.2 Hardware Verification . 85
4.1.3 Summary . 85

4.2 Background . 86
4.2.1 OpenTitan Secure Element . 86
4.2.2 Bit-Level System Modeling . 87
4.2.3 Concurrent Error Detection Schemes 90
4.2.4 Hardware Equivalence Checking 91

4.3 Fault-Resistant Partitioning . 94
4.3.1 Intuition . 94
4.3.2 Formal Definition . 95
4.3.3 Algorithm to Identify a Fault-Resistant Partitioning 97

4.4 Implementation . 99
4.4.1 Hardware Verification Flow . 100
4.4.2 System Co-verification using Verilator 100

4.5 Validation on Impeccable Circuits . 102

ix

Contents

4.5.1 Evaluation Results . 103
4.5.2 Comparison against Related Work 104

4.6 Evaluation of OpenTitan . 104
4.6.1 Hardware Verification: the Secure Ibex 105
4.6.2 System Verification . 108
4.6.3 Fixing Register File Vulnerability 110

4.7 Discussion on Methodology Improvements 111
4.8 Conclusion . 112

5 Conclusion 114
5.1 Conclusion . 114
5.2 Perspectives . 115

Publications 117

A Proof of Theorem 4.1 118

B Vulnerabilities in Impeccable Circuits Implementations 120

List of Figures ii

List of Tables iv

List of Listings v

Bibliography v

x

Introduction

Contents
Context . 1
Motivation . 2
Contributions . 3

Context

Embedded systems are designed to perform specific tasks efficiently and reliably
while operating under strict resource constraints, such as limited power, memory,
and computing capacity. These systems are omnipresent in our daily lives and
are widely used in security-critical applications, making them privileged targets for
cyberattacks. For instance, in medical devices that control life-sustaining functions,
such as pacemakers and insulin pumps, a security breach could lead to severe health
risks or fatalities. In automotive systems, a security compromise could alter brak-
ing, acceleration, or navigation, potentially leading to accidents or loss of vehicle
control. Similarly, a security incident in industrial control systems, such as those
used in nuclear plants or manufacturing lines, could disrupt essential services, caus-
ing economic damage and safety hazards. Last but not least, personal devices like
smartphones, smartwatches, and smart home systems collect and process personal
data, making security vulnerabilities in these systems a serious concern for privacy.
Ensuring the security of embedded systems is therefore crucial, as breaches can result
in significant consequences, including safety risks, financial losses, and compromised
privacy.

At the heart of an embedded system is typically a microcontroller or proces-
sor executing specialized software. Each of these components—the processor and
the software—can be targeted by various types of attacks. Famous illustrations of
these attacks include buffer overflows such as Morris Worm exploit [Con88], buffer
over-read such as Heartbleed [Con14], and side-channel attacks that leverage extra
information, such as the computation timing, power consumption, and electromag-
netic emissions, to gain knowledge on the sytem [Koc96]. Among this wide range of
existing security threats, fault injection attacks are particularly powerful and con-

1

Introduction

cerning. In these attacks, malicious adversaries apply physical stress during system
operation, such as manipulating the supply voltage, applying an electromagnetic
field, or shooting the circuit with a laser. These attacks create incorrect values
within the microelectronics, known as faults, which can alter system behavior, al-
lowing attackers to compromise security by bypassing authentication mechanisms
or gaining access to sensitive information.

Protecting against these attacks is a challenging but tremendously important
task in the development of secure and reliable systems. During the design process,
security engineers must first establish a threat model—or fault model—to describe
the capabilities of a malicious attacker. Accurately understanding and modeling
potential attacks is critical because inaccuracies can lead to ineffective protections
or excessive cost and performance overhead. In a second step, hardware designers
and software developers must carefully select or develop effective countermeasures
to protect the system against the considered fault attacks. These countermeasures
can be implemented across different system components, including hardware and
software, and are designed to detect, prevent, or mitigate fault attacks. Finally,
once the countermeasures have been implemented, the overall system security must
be rigorously evaluated to ensure that these protections effectively thwart fault at-
tacks. These security evaluations are conducted by the manufacturers themselves
as well as by independent certification authorities to ensure compliance with secu-
rity standards such as Common Criteria [Cri22]. Numerous techniques have been
proposed in the literature to assess the effects of fault attacks on embedded systems
at both the software and hardware levels, using techniques such as experimental
characterization, simulation, and formal verification.

Motivation

Over the past decade, the emergence of open-source initiatives like RISC-V pro-
cessors has facilitated access to implementation details, enabling the development of
new approaches to better characterize the consequences of faults. While traditional
security evaluation techniques have typically focused on either software or hardware
analysis, a few recent studies have considered both and investigated fault effects on
processor microarchitecture.

Notably, the PhD theses of Bilgiday Yuce [Yuc18] and Johan Laurent [Lau20]
emphasize the importance of considering microarchitectural processor optimizations,
such as pipelining and forwarding. These studies reveal that fault effects can be far
more subtle and potent than previously understood, resulting from a complex inter-
play between software and hardware. Consequently, a single fault attack can com-
promise countermeasures like instruction duplication, which are designed to protect
against the instruction skip fault model. These findings challenge the conventional
evaluation techniques that independently analyze system security at the software or

2

Introduction

hardware level. Furthermore, they raise concerns about current security evaluation
methodologies, which may rely on oversimplified fault models and, consequently, fail
to accurately assess system security.

Establishing more accurate fault models and understanding the final conse-
quences of faults requires to adopt cross-layer evaluation methodologies. Therefore,
developing systematic analysis methods that integrate both software and hardware
descriptions is essential for a better understanding of fault effects and for assessing
system security against fault attacks with stronger guarantees.

Contributions

The research conducted during this PhD and presented throughout this manuscript
provides the following key contributions:

- We introduce µArchiFI, a novel methodology for modeling combined hard-
ware/software systems and evaluating system security against fault attacks
using bounded model checking techniques. Unlike existing approaches, our
methodology is exhaustive and allows the automatic identification of corner-
case vulnerabilities as well as proving system robustness against fault attacks.
The details of µArchiFI are discussed in Chapter 2.

- We evaluate the security of RISC-V processors, including the CV32E40P and
Ibex cores, running various lightweight software applications such as the au-
thentication program VerifyPIN. We validate our approach by reproducing
known results, such as the vulnerability exploiting the forwarding mechanism
highlighted by Johan Laurent. Additionally, our methodology discovers pre-
viously unreported fault effects, such as those targetting the prefetch buffer
and the multiplication unit, allowing to skip or replay multiple instructions
under specific software conditions. These experimental findings are detailed
in Chapter 3.

- We formally assess the security of a combined hardware/software countermea-
sure called MAFIA, implemented in the CV32E40P processor. We prove that
this countermeasure effectively protects known vulnerabilities in VerifyPIN
from fault attacks. Such an analysis is not feasible using hardware or software
verification alone, as it requires modeling software integrity signatures that
are checked during hardware execution. The results of this analysis are also
presented in Chapter 3.

- We enhance the fault evaluation methodology by performing a preliminary
evaluation of hardware-level countermeasures. For this purpose, we introduce
and formalize the novel concept of fault-resistant partitioning, which ensures

3

Introduction

that faults are effectively captured by hardware countermeasures. This pre-
liminary evaluation allows the co-verification step to focus only on potentially
harmful faults not captured by hardware protections, thereby improving the
performance of the approach. We also propose an algorithm to identify and
prove such fault-resistant partitions. The fault-resistant partitioning method-
ology is described in Chapter 4.

- We validate our fault-resistant partitioning methodology by replicating known
results on fault-hardened Skinny and AES circuits [AMR+20], as no similar
work has been done on processors. We show that our approach is compet-
itive with related work by proving the 2-fault security of AES in less than
4 hours, compared to 130 hours for FIVER [RRSS+21] or 30 minutes for
FIRMER [TGC+23]. We also demonstrate the scalability of our approach
by analyzing the 3-fault security of AES, which has never been done before.
Evaluations of Skinny and AES are detailed in Chapter 4.

- Finally, we analyze the fault-hardened Ibex processor [lowa] used in the Open-
Titan secure element [JRR+18] which was previously intractable using existing
methodologies. Our analysis reveals that the Ibex dual-core lockstep protec-
tion is secure against one fault but its register file does to capture certain
bit-flips, potentially leading to software vulnerabilities. The co-verification
process shows that these vulnerabilities could be exploited in VerifyPIN or
during differential fault analysis of AES software [kok19]. However, we prove
the robustness of OpenTitan running the first step of a secure boot, as its
software countermeasures prevent the register file vulnerability from being ex-
ploited. We disclosed and fixed the register file vulnerability, which has since
been integrated into the OpenTitan project. The evaluation of OpenTitan is
detailed in Chapter 4.

The next chapter introduces fault injection attacks and reviews existing fault
characterization and security evaluation techniques to establish the problem that
this manuscript addresses.

4

Chapter 1
State of the Art and Problem
Statement

Contents
1.1 Fault Injection Attacks . 6

1.1.1 Physical Means . 6
1.1.2 Abstraction Layers 8
1.1.3 Fault Models . 13

1.2 Countermeasures against Faults 16
1.2.1 Hardware . 17
1.2.2 Software . 17
1.2.3 Combined Countermeasures 18

1.3 Fault Evaluation Tools . 19
1.3.1 Hardware . 20
1.3.2 Software . 21
1.3.3 Combined Frameworks 22

1.4 Problem Statement and Manuscript Outline 23

This thesis explores the consequences of hardware-level fault injection on the
security of CPU-based systems. To effectively address this topic and propose mean-
ingful advancements, it is crucial to thoroughly understand the current state of
knowledge in this field. This chapter surveys the literature related to fault injec-
tion, providing a comprehensive overview while also highlighting key observations
and identifying an open question that this thesis aims to address. This chapter is
organized as follows.

First, Section 1.1 examines the root causes of fault injections in microelectronics
and details their final consequences on program execution. Next, Section 1.2 de-
scribes how software and hardware security designers develop countermeasures to
enhance system security against these attacks. Finally, Section 1.3 reviews auto-
mated analysis methodologies and tools used to understand fault effects and assess
the security of embedded systems. This chapter concludes with observations and
questions on the necessary steps to better evaluate the effects of faults, thereby
establishing the problem addressed in this manuscript.

5

Chapter 1. State of the Art and Problem Statement

1.1 Fault Injection Attacks

Fault injection research originally emerged from safety-critical domains such as
aerospace and nuclear sectors, where integrated circuits are exposed to hazardous
perturbations like radioactive particles and cosmic radiation [MW78, ZL79]. The
reliability of these systems is crucial, as malfunctions can lead to dangerous hazards.
In the security domain, adversaries realized they could intentionally induce faults
in systems to reproduce these effects and create security breaches. In 1997, Boneh,
DeMillo, and Lipton showcased that hardware faults can break the security of the
RSA cryptosystem [BDL97]. Later, in 2002, Skorobogatov and Anderson used a
laser source to inject faults into the SRAM memory of microcontrollers [SA02].
These pioneering works paved the way for fault injections in the field of computer
security, highlighting the critical need to protect embedded systems against such
vulnerabilities.

In this section, we delve deeper into fault injection attacks. We describe how
they manifest in the physical platform, their impact on software, and how research
has explored and characterized their effects over the past few decades.

1.1.1 Physical Means

Fault injection attacks aim to apply abnormal physical stress to integrated cir-
cuits to produce incorrect values in the microelectronics. These erroneous values
are denoted as hardware faults and alter the system behavior. In the following
of this section, we survey the multiple fault injection means existing in the litera-
ture [BCN+06, BBKN12, YSW18, RSG22], starting from the most affordable before
describing the most advanced ones. We report their main characteristics and detail
their consequences.

Clock Glitches. Sequential circuits rely on a clock signal to sample the circuit’s
internal state at a given operating frequency and store digital values in state-holding
units like flip-flops. Tampering with the clock signal disrupts this sampling process,
leading to the storage of incorrect values in flip-flops. Clock glitches are a relatively
inexpensive technique that exploits this erroneous sampling process by instrument-
ing the external clock signal. Clock glitches have a high temporal accuracy, but
the exact location of the resulting hardware faults is uncertain. In practice, this
fault injection technique typically affects the circuit’s critical path, i.e., the longest
combinational path between two flip-flops. In the literature, clock glitches were first
demonstrated efficient to break cryptographic algorithms on dedicated integrated
circuits [AD10, ESH+11] before being later applied to processors [BGV11, KHEB14].
From a security standpoint, clock glitches were used to defeat software countermea-
sures [YGS+16], and bypass authentication mechanisms [CPHR21] skipping multiple
CPU instructions.

6

1.1. Fault Injection Attacks

Table 1.1: Fault injection techniques overview.

Technique Spatial
Accuracy

Temporal
Accuracy Cost Remote

Access
Injection

Parameters
Overheating Low Low Low ✗ Temperature

Clock Glitches Low High Low ✗
Timing, glitch width,

glitch amplitude
Underpowering Low Low Low ✗ Voltage amplitude

Voltage Glitches Low High Low ✗
Timing, glitch width,

glitch amplitude
Electromagnetic

Pulses Moderate High Moderate ✗
Timing, intensity,
duration, location

Laser Beams High Very High High ✗
Timing, intensity,
duration, location

Body Biasing Moderate High Moderate ✗
Timing, intensity,
duration, location

X-ray Very High Low Extreme ✗ Location, intensity
Software-based FI Varies Varies Low ✓ Platform-dependent

Underpowering and Voltage Glitches. Similar to manipulating the clock signal
with clock glitches, underpowering and voltage glitches are low-cost fault injec-
tion techniques with limited spatial accuracy. Voltage glitches are temporally pre-
cise, as they involve lowering the supply voltage for a very short duration. Un-
derpowering, on the other hand, reduces the power supply throughout the entire
execution of the circuit. By decreasing the power supply, the propagation delay
of the circuit gates increases, leading to an erroneous sampling process akin to
clock glitches [ZDCT13]. Initially, the first practical experiments were achieved on
cryptographic algorithms [SGD08, BBPP09, ZDCT13]. More recently, advanced
attacks have targeted CPUs to escalate privileges [TM17] and compromised boot-
loaders [TS16, BFP19].

Electromagnetic Pulses. Electromagnetic fault injection (EMFI) is one of the most
popular attack methods due to its practicality, affordability, and accuracy. By cre-
ating a local electromagnetic field with a probe, an attacker can induce a current in
the circuit that disrupts the power supply [DLM19]. Experiments have shown that
EMFIs can cause timing violations on the critical path [DDRT12, ZDT+14]. Further
studies refined these observations and proposed the sampling fault model [OGT+15,
OGM15, OGM17, DLM19, DLM21]. From a security perspective, a seminal paper
in 2002 demonstrated the injection of EM faults in microprocessor memory [QS02].
Subsequent research targeted more complex architectures, breaking cryptographic
implementations [SH07, DDRT12, DMM+13] and creating software vulnerabilities,
including buffer overflows [BLLL18].

Laser Beams. Laser fault injections (laser FI), popularized by Skorobogatov and
Anderson in 2002 [SA02], focus a light beam on circuit transistors to create a
photoelectric effect, inducing a transient current [RSDT13, DDCS+14]. In recent
years, laser techniques have become more accurate, demonstrating effectiveness on
45 nm [SBHS16] and 28 nm technologies [DBC+18], with timing precision down to a

7

Chapter 1. State of the Art and Problem Statement

few picoseconds [LBC+15]. Consequently, lasers are also effective tools for injecting
multiple faults in a single attack [WMP20, CGV+22]. Initially, the practical use of
laser FI in security was demonstrated in cryptography [TK10]. Recently, laser FIs
have also enabled attackers to bypass authentication mechanisms [DRPR19] and
secure boot processes [VTM+17].

Software-controlled. In all the previously mentioned scenarios, hardware faults are
injected by an attacker with physical access to the system. However, the situation
has changed and recent research has shown that hardware faults can also be triggered
remotely by a virtual attacker using malicious software. In these cases, the hardware
fault no longer arises from abnormal environmental conditions but from internal
software-controlled mechanisms. A well-known example of these software-based fault
attacks is the Rowhammer vulnerability [KDK+14], which induces bit flips in DRAM
memory by performing intensive data accesses in adjacent memory rows. Other
notable attacks exploit the power management unit, such as CLKSCREW [TSS17],
Plundervolt [MOG+20], and PMFault [CO23].

Miscellaneous Techniques. Other fault injection techniques have also proven to be
effective in the literature. These include overheating [Sko09], body biasing [MTOL12,
BLE+16], and X-ray [ABC+17, BAM+23]. A summary of all the aforementioned
techniques is provided in Table 1.1 and details the characteristics and the parameters
of each fault injection means.

1.1.2 Abstraction Layers

Attackers have a wide diversity of fault injection techniques to disturb the opera-
tion of embedded systems, ranging from clock glitches to laser beams. However,
understanding the final consequences of these attacks on the running software is a
challenging task. Since the software is the primary target of the attack and the
vulnerability originates from the hardware, all system components must be con-
sidered in the analysis. To better understand how fault attacks lead to security
vulnerabilities, we propose to open the box and delve into the typical anatomy of
a secure embedded system from its hardware layer—including the processor—to its
software component, the program [YSW18]. The boundary between the software
and hardware worlds is known as the instruction set architecture (ISA). A detailed
description of the abstraction levels is depicted in Figure 1.1. In the following, we
examine each of these levels, starting from the physical layer. Additionally, for each
level, we discuss the various fault effects induced by fault injection attacks.

Physical Level

The physical level of an embedded system refers to the actual implementation of the
integrated circuit (IC). This includes the transistors—the fundamental IC’s building
blocks acting as switches and performing the operations—and the metallic connec-
tions between transistors. As the lowest level of abstraction, the physical level’s com-

8

1.1. Fault Injection Attacks

0x.......
0x.......
0x.......
0x.......

Instruction Set Architecture (ISA)

µArchitecture level

Physical level

Circuit level

Binary level

Source-code level

.text .data

int main (password) {
if check(password)

authenticate();
else error();

}

H
ar

dw
ar

e
La

ye
r

S
of

tw
ar

e
La

ye
r

Fault Injection

Fault Propagation

Fault Consequences

Fault Exploitation

0x.......
0x.......
0x.......
0x.......

Bit-flip, bit-set,
bit-reset

Faulty prefetch,
Faulty branch-pred.,
Faulty forwarding

Instr. skip,
Branch inversion,
Register corruption

Control-flow and
Data corrpution

Logic Gates
D

QFlip-Flops Memory R
A

M
D

at
a

M
em

or
y

In
st

r
M

em
or

y
Buffer

Instr
Fetch

Instr
Decode

Reg
file

Execute

ALU

MULT

Write
Back

LSU

Abstraction Levels Anatomy of Fault Attacks Fault Effects

Transistors and
Metal Layers

Physical Stress

Clock EM Light Voltage

Figure 1.1: Fault abstraction levels and fault effects, adapted from [YSW18].

ponents are highly sensitive to external perturbations. As discussed in the previous
section, dysfunctions can occur when tampering with the clock signal or applying
an electromagnetic field to the IC.

At this level, the effects of faults are described by the physical stress applied to
the system. This includes specifying the fault injection technique used, such as laser
or underpowering, and detailing the experimental parameters, like timing, intensity,
and duration, as summarized in Table 1.1. In the remainder of this manuscript,
we set aside physical considerations to focus on the digital level of systems, where
data is represented as digital values rather than voltages with propagation delays.
Therefore, the lowest abstraction level we consider is the circuit level, which we
introduce next.

Circuit Level

The circuit level represents the lowest logical view of a system and is usually one
of the key elements provided to manufacturers for chip production. The circuit’s
building blocks include logic gates such as and, or, not, and xor gates, as well as
flip-flops and memory elements, all of them primarily constructed from transistors.
These components consequently assume that the underlying physical level behaves
as expected, enabling circuit elements to implement logic, arithmetic or memorizing
functionalities.

However, when physical stress is applied to the system, this assumption fails,
and we say that faults are injected into the circuit. The fault injection process
is illustrated in Figure 1.1. Representing fault effects at the circuit level involves

9

Chapter 1. State of the Art and Problem Statement

describing how the basic circuit’s building blocks malfunction. This description
usually includes parameters such as the location (e.g., flip-flops, and gates), the
logical effect (e.g., bit-flip, bit-reset), the duration (e.g., transient, permanent), and
the multiplicity (e.g., single or multiple faults). A wide range of circuit-level fault
effects exist depending on the type of physical stress applied.

Microarchitectural Level

The microarchitectural level is the highest abstraction level within the hardware
layer. While the physical and circuit descriptions apply to both application-specific
systems, like cryptographic accelerators and general-purpose CPUs, the microarchi-
tectural view is specific to processors. This level details the implementation choices
made by hardware designers to meet the requirements specified in the ISA.

The microarchitecture typically includes mechanisms to optimize cost and per-
formance, which are hidden from software programmers. Key optimizations include
pipelining, forwarding, and memory hierarchy [HP12]. We provide a brief descrip-
tion of these mechanisms below.

Pipelining: Processor pipelining enhances CPU performance by dividing the pro-
cessing of instructions into several elementary steps, each handling a different stage
of the instruction execution. This allows multiple instructions to be processed con-
currently. Typical pipeline stages include instruction fetch, instruction decode, exe-
cute, and write-back, as depicted in Figure 1.1. However, pipelining can introduce
pipeline hazards, where dependencies between consecutive instructions cause per-
formance penalties.

Forwarding: Data forwarding addresses data hazards caused by pipelining. This
technique passes the result of an instruction directly to the subsequent instruction
that needs it, bypassing the register file to speed up execution. Other techniques
to mitigate hazards include stalling, branch prediction, and speculative execution,
which are not detailed here.

Memory Hierarchy: Memory hierarchy refers to the way of organizing data storage
to optimize speed, cost, and capacity. Since memory operations are time-consuming,
memory is structured in layers, from the faster to the slower: register file, cache,
and main memory. The closer the data storage is to the processor, the faster the
operations, but the lower the capacity. Replacement policies ensure that the most
frequently used data remains near the processor. In addition, prefetch buffer also
exist to store instructions before the processor executes them.

When a fault is injected into the underlying circuit, we say that the fault prop-
agates through the microarchitecture. The faulty values are memorized in registers
and moved through pipeline stages. In contrast with circuit-level fault effects, fault
locations are not identified by logic gates but by dysfunctional blocks or modules.
These erroneous values are described using bit-vector variables, referred to as the
word level, rather than at the bit level. For example, as shown in Figure 1.1, microar-

10

1.1. Fault Injection Attacks

chitectural fault effects may include malfunctioning forwarding or branch prediction
mechanisms.

Binary Level

The binary language operates at the lowest level of the software layer, specific to a
given processor architecture (ISA), and provides the machine code executed by the
CPU. Its human-readable form is known as assembly language, which uses mnemon-
ics (or opcodes) such as mov, add, and sub to represent machine-level instructions.
These instruction mnemonics are followed by operands, which can be registers (e.g.,
r1, r9), constants, or memory addresses. A binary program is structured into multi-
ple sections. Typically, the .text section contains the instructions, which are stored
in the instruction memory, while the .data section holds data values.

At the binary level, there is no information about the actual implementation of
the processor. Instead, the instruction set architecture (ISA) serves as a contract
between software and hardware, specifying the expected behavior of the underlying
hardware to ensure the correct functioning of the software. For instance, when
executing the instruction add r1, r14, r15, it is expected that r1 will contain the
sum of r14 and r15 before the next instruction is executed. However, when fault
injections compromise the processor’s microarchitecture, the ISA specification is no
longer valid, and assumptions made at the software layer about the correct operation
of the hardware fail.

The ISA fault effects describe the impact of faults on binary program execution.
Faults are often categorized into those affecting the control flow—the order of in-
struction execution—and the data flow, which involves data values and computation
results. Control-flow faults include instruction skips, instruction replacements, or
branch inversions. Data-flow faults include register corruption or operand corrup-
tion. These effects are mentionned in Figure 1.1.

Source-Code Level

The source-code level represents the highest abstraction of the software layer. Pro-
grammers typically write code using languages like C, C++, or Rust, which are then
compiled into lower-level binary code. This manuscript focuses on secure software
that implements sensitive functionalities like authentication mechanisms, integrity
checks, or secret data manipulation.

Faults originating from the physical level and manifesting at the binary level can
lead to misbehavior of the executed program. Representing faults at the source-code
level is often very inaccurate as significant discrepancies exist between source code
and the binary program. Nevertheless, fault effects are coarsely modeled between
data corruption and control-flow corruption.

11

Chapter 1. State of the Art and Problem Statement

Fault Observation and Exploitation

From a security perspective, a malicious attacker selects a fault injection technique
to disrupt hardware operation and observe the resulting fault consequences at the
software layer. The following paragraphs detail various exploitation methods at-
tackers use to leverage fault observations, thereby compromising the security of
embedded software.

Direct Attacks. Direct attacks occur when the consequences of a fault on the run-
ning program immediately create a vulnerability without requiring additional effort
from the attacker. Examples of such attacks include control flow hijacking [BIL11,
TSW16], bypassing secureboot [TS16, VTM+17], privilege escalation [GMM16, TM17],
and subverting memory isolation [BTG10, TSS17].

Cryptanalysis. Fault injection attacks have been extensively used to compromise
the security of cryptographic algorithms that are mathematically robust but whose
implementation has weaknesses. For instance, differential fault analysis exploits
observable behavioral differences between two encryptions to gain knowledge of se-
cret variables, such as plaintext or cryptographic keys [BS97, PQ03, Gir05, TFY07,
AM11, TMA11]. Additional techniques, such as differential fault intensity analy-
sis [GYTS14] and safe error attacks [SJ00], have also been studied in the literature.

Combined Attacks with Side Channel. Similar to fault injection attacks, side-
channel attacks (SCAs) exploit the hardware implementation of a microprocessor
to compromise the security of a running program. SCAs involve observing the
physical leakage of a device during sensitive operations, such as cryptographic en-
cryption. Common sources of leakage include power consumption, timing infor-
mation, and electromagnetic emissions. Combined attacks enhance the effective-
ness of side-channel attacks by leveraging additional leakage induced by fault in-
jections [Sko06, AVFM07, RLK11]. Additionally, combined attacks can use side-
channel measurements to set up fault injections and choose the best timing to per-
form the attack [FGA+23].

This section has established that fault attacks on embedded systems target soft-
ware security, even though the root vulnerability lies in the hardware. Given the
various representation levels involved from fault injection to its exploitation at the
software level, it is essential to consider these multiple system layers in the analysis
to understand and evaluate the impact of hardware-induced faults on software. The
necessity for cross-layer evaluation raises the following questions:

Questions for Problem Statement

Q1. How can system security against fault attacks be evaluated across multiple
abstraction levels?
Q2. How can the causal relationship between hardware-level fault effects and
their consequences on software security be better understood?

12

1.1. Fault Injection Attacks

1.1.3 Fault Models

At this stage of this Section 1.1, we have reviewed existing fault injection techniques
at the physical level and described their corresponding effects for each abstraction
level. However, understanding the actual fault effects resulting from a specific fault
injection technique on a given hardware/software system is challenging. This task
becomes even more complex when evaluators cannot observe fault effects at inter-
mediate abstraction levels, as is often the case with already-manufactured chips or
closed-source processors.

To address this issue, fault models are proposed to describe fault effects observed
in practice. Establishing accurate fault models at various abstraction levels is cru-
cial for developing effective countermeasures and methodologies to analyze system
security. Inaccurate fault models can lead to ineffective protections or can increase
costs due to oversized countermeasures.

In the following, we review works that characterized the consequences of faults
on secure embedded software in order to derive the so-called fault models.

Blackbox Experimental Characterization

To understand the effects of fault injection attacks and derive a fault model, experi-
mental studies use simple test cases and observe the system’s state before and after
applying physical stress. Given that designs are typically proprietary (e.g., from ven-
dors like ARM or Intel), evaluators lack information about implementation details.
Consequently, they limit their observations to values specified in the ISA and visible
during software execution, such as data in memory or in the register file. Based on
these black-box observations, they propose explanations for the software-level fault
consequences, also known as the ISA fault model.

Over the past decades, numerous fault models have been developed. Initially,
the effects of fault attacks on software were categorized into those affecting the
control flow and those affecting the manipulated data [BCN+06]. Faults impacting
the control flow were initially associated with instruction skips and used in practical
attacks to bypass critical instructions, such as counter increments or function calls,
during AES or RSA execution [CT05, KQ07, SH08]. Further experimental studies
on the instruction skip fault model revealed that instructions are more likely to
be replaced by other instructions rather than skipped. When the faulty instruction
opcode is invalid, some microprocessors treat them as a nop (no operation) [BGV11].
More recently, more complex effects have been reported, such as multiple instruction
skips [MDP+20] and instruction replay targeting the instruction cache [RNR+15].

Another approach to developing ISA fault models involves conducting both ex-
perimental fault injections and faulty simulations to find correlations between sim-
ulations and experimental observations [MDH+13, GJL20]. To better understand
fault effects, a top-down approach was used in [TBC20], where the assembly test
vector is crafted and adapted according to the observed effects to finely characterize

13

Chapter 1. State of the Art and Problem Statement

the consequences of faults. The authors also reported that new effects can appear
depending on the processor state. The work conducted by Proy et al. on a super-
scalar processor successfully reproduced known effects, including instruction skips,
operand corruption, register corruptions, and instruction replay [PHB+19]. Addi-
tionally, they observed combinations of these effects, as well as inexplicable ones
dubbed magic edges, where the program branches to an illegal destination block in
the control-flow graph.

These recent findings highlight the limitations of black-box experimental charac-
terization in interpreting the consequences of faults at the software level. The effects
of fault attacks result from a complex interplay between the hardware undergoing
physical stress and the software running on the platform.

Whitebox Manual Characterization

With the emergence of open-source initiatives like RISC-V processors, new methods
have appeared for characterizing the consequences of faults on embedded systems.
The consequences of faults on software security can now be evaluated through a
white-box approach that also considers intermediate levels of abstraction in the
analysis, such as the circuit or the microarchitectural levels. Including these ad-
ditional descriptions in the analysis helps evaluators to understand the impact of
implementation details on the consequences of faults at the ISA level. The white-
box approach also helps to refine and improve fault models at intermediate levels
by leveraging insights into the processor microarchitecture. It is also a step for-
ward in explaining the misunderstood or inexplicable fault effects observed through
experimental characterization.

Recently, a few works proposed to include observations from the microarchi-
tecture to better understand the effects of fault attacks. These works highlight
the impact of microarchitectural optimizations such as pipelining, forwarding, and
memory hierarchy. Some detailed results from these studies are provided below.

Pipeline. As previously detailed, processor pipelining allows multiple instructions
to be processed concurrently into distinct stages. In their works [BGV11, YGS15],
Balash et al. and Yuce et al. highlighted that a fault injected into a pipelined pro-
cessor can affect multiple stages, thus corrupting multiple instructions at the same
time. The resulting consequences are complex and powerful enough to defeat fault
protections designed based on the instruction skip fault model, such as instruction
duplication [YGS+16].

Forwarding. Later, Laurent et al. reported an attack that exploits the forwarding
mechanism of pipelined processors [LBD+18]. As a recall, forwarding mitigates data
hazards caused by pipelining by transmitting the result of an instruction directly to
the subsequent instruction that needs it. This mechanism is consequently exploited
in a fault attack to reintroduce a previously computed value into the pipeline. This
attack can bypass a comparison by forwarding a wrong value or skip instructions
protected with instruction duplication countermeasure [LBD+19].

14

1.1. Fault Injection Attacks

Hidden Registers. Another notable characteristic of processor implementations is
the existence of microarchitectural registers that temporarily hold data or control
values during code execution. In [LBDP19], the authors reported several examples
of these so-called hidden registers such as the last computed result from the multipli-
cation unit or the most recent data read from memory. They showcased how values
stored in hidden registers can be leveraged in an attack to bypass a PIN comparison
or leak sensitive data, thereby compromising system security.

Memory Interface. In [TBE+21], the authors conducted a comprehensive study
of fault effects on the memory hierarchy of a modern CPU. They first targeted the
instruction cache and confirmed the instruction corruption fault model. They also
targeted the memory management unit (MMU) and observed more complex effects
where faults in the MMU shift the page tables in memory.

Variable-length Instructions. Fault analysis was also conducted on the instruction
buffer and decoder unit. Alshaer et al. reported that fault injections on variable-
length instructions can lead to effects akin to skip or repeat and skip fault models
based on instruction misalignment [ACD+22].

All the aforementioned fault models resulting from microarchitectural mecha-
nisms pave the way for a deeper understanding of fault consequences on secure
embedded systems. The actual consequences of faults on software execution are
far more complex than they may initially appear in Figure 1.1. Additional param-
eters must be considered to make the correspondence between hardware-level and
software-level fault models, such as the implementation details, the processor’s inter-
nal state, e.g., hidden registers, and the program being executed. As a result, a single
fault in the underlying hardware can result in a wide range of ISA-level fault effects.
As illustrated in Figure 1.2, a single bit-set fault can lead to software data corruption,
an instruction replay, or a yet-unreported fault effects, for instance. Conversely, a
fault observed at the software level may have its root cause in a wide variety of hard-
ware faults, such as a bit-flip or a bit-reset in various processor areas. There is no
one-to-one mapping between hardware and software fault models. While the well-
known instruction skip fault model is a good approximation, it may have additional
side effects in practice. Moreover, these subtle and complex fault effects may have
significant implications for software security. They can be exploited in attacks to
defeat protections such as software-level redundancy [PCNM15, YGS+16, LBD+18]
or to bypass secure authentication processes [VWWM11, LBDP19].

Several works have proposed categorizing all possible fault effects into tables
enumerating potential hardware faults, microarchitectural implementation details,
and the type of instruction currently executed in the pipeline [YSW18, LBD+19].
However, enumerating all possible fault consequences is an endless task, given the
vast diversity of instruction sets and microarchitectural implementations.

Over the past decades, researchers and analysts have accumulated extensive
knowledge about fault models. However, these analyses have primarily relied on

15

Chapter 1. State of the Art and Problem Statement

Instr.
SkipBit-Flip

ALU

Bit-Set
Decode

Data
Corrupt

Instr.
Replay

Hardware-Level
Faults

Software-Level
Faults

Figure 1.2: Mismatch between hardware-level and software-level fault models.

manual processes, such as experimental characterization and microarchitecture in-
spection. To deepen our understanding about fault consequences on software se-
curity and to determine the conditions under which faults are exploitable, manual
characterization alone is insufficient—it is time-consuming, incomplete, and prone
to errors. We have now reached a stage where it is crucial to integrate this vast
amount of knowledge into cross-layer automated methods that consider both the
software and hardware characteristics of embedded systems. This necessity raises
the following questions:

Questions for Problem Statement

Q3. Which analysis techniques are best suited to systematically explore the
entire system state space, including system behaviors, and fault effects?
Q4. Can these techniques be adapted to determine which hardware-level faults
lead to security exploits at the software level?

This section has introduced fault injection attacks and illustrated that attack-
ers have a wide diversity of techniques, leading to a wide variety of fault effects,
to compromise the security of embedded systems. The next section demonstrates
that hardware designers and software programmers also have a broad panoply of
countermeasures to protect against fault attacks.

1.2 Countermeasures against Faults

Embedded systems ensuring security functionalities, such as data confidential-
ity or the authenticity of executed programs, must be protected against fault at-
tacks to prevent undesired system behaviors. Countermeasures can be deployed
at various abstraction levels, from hardware to software, and are designed based
on specific fault models they aim to protect against. As mentioned in the previous
section, establishing accurate fault models is crucial for developing or selecting effec-
tive countermeasures, as inaccurate fault models can lead to ineffective protections.

16

1.2. Countermeasures against Faults

Mitigating fault attacks often relies on spatial or temporal redundancy [BCN+06]
to detect erroneous values and involves a trade-off between the effectiveness of the
countermeasure and its overhead in terms of cost and performance.

In the rest of this section, we describe state-of-the-art fault injection counter-
measures, covering the hardware layer, the software layer, and combinations of both.

1.2.1 Hardware

Hardware countermeasures against fault attacks are designed to detect, prevent, or
mitigate fault attacks at various levels of the hardware layer. At the physical level,
circuits implement detectors or shielding mechanisms to detect when an attacker at-
tempts to manipulate environmental conditions to induce a fault. Detectors monitor
light, power supply, or clock frequency to ensure that physical environmental pa-
rameters remain within the system’s nominal operation range [ZDT+14, MNH+16].
Additionally, protections such as active or passive shielding have been proposed,
mainly to guard against laser fault injections (FIs) that require chip decapsulation
before performing the optical attack [LM06].

At the circuit level, protections are based on either temporal redundancy, i.e.,
performing the same computation multiple times, or spatial redundancy, i.e., per-
forming the same computation on several hardware blocks in parallel. Spatial re-
dundancy, also referred to as Concurrent Error Detection (CED) schemes [MM00],
often involves duplicating parts of the circuit and comparing each result for equal-
ity, though this results in considerable overhead. Alternatively, CED can rely on
informational redundancy using error detection codes [BBK+03, AMR+20].

Another category of countermeasures aims not at detecting or correcting in-
jected faults but at making the attacker’s task more difficult or the results of an
attack unusable. For example, inserting random dummy clock cycles or dummy
instructions during processor execution complicates the experimental setup of an
attack [GST12, low18]. Similarly, since many attacks exploit data on the bus or
in memory, scrambling is an effective countermeasure to randomize the visible data
from an attacker’s point of view [lowc].

Hardware countermeasures are undoubtedly the most effective means of pro-
tecting against attackers, as faults are detected at their root cause. However, they
significantly increase the area and the cost of the design. Additionally, manufac-
tured chips cannot be updated when a new vulnerability is exposed. Consequently,
designers also develop countermeasures on the software side.

1.2.2 Software

The main advantages of software-based countermeasures are their low cost compared
to hardware-based protections and their portability across various systems without

17

Chapter 1. State of the Art and Problem Statement

requiring any hardware modifications. Additionally, software countermeasures can
be updated to address new vulnerabilities as they are discovered. However, perfor-
mance penalties offset these benefits, as countermeasures increase program size and
execution time.

Software countermeasures assume a given ISA fault model to propose protections
that thwart its effects. Since fault attacks can affect both control and data, software
countermeasures are categorized into control and data protections.

On the one hand, control-flow protection ensures that instructions are executed
correctly and in proper order. A primary protection against the ubiquitous instruc-
tion skip fault model is instruction duplication [OSM02b, RCV+05, BBK+10]. Here,
the compiler duplicates program instructions and intertwines them with the original
instructions before comparing the results. Instruction duplication using idempo-
tent instructions, i.e., instructions that can be executed multiple times in a row,
has also been proposed [Mor14]. Control-flow integrity (CFI) protection, first in-
troduced in 2002 [OSM02a], implements control-flow checks at runtime, also known
as checkpoints. Counters are incremented, or signatures computed, during program
execution, and their values are checked at strategic locations such as function calls
and returns [RCV+05].

On the other hand, data integrity protections ensure that data manipulated in
memory or in the bus connecting memory with the processor are not modified by
faults. These protections often rely on detection codes to guarantee data integrity
or cryptographic signatures to ensure both the authenticity and integrity of manip-
ulated data and instructions [BBK+10].

However, while software countermeasures aim to thwart fault exploitability at
the software level, the root cause of fault attacks originates from hardware. Some-
times, the fault model considered for designing the countermeasure is too simplistic,
and single fault injection attacks can defeat these countermeasures due to com-
plex fault effects related to the microarchitectural implementation details [YGS+16].
Nonetheless, software countermeasures are a valuable complement to hardware pro-
tections, working together to ensure better fault coverage.

1.2.3 Combined Countermeasures

Software-only or hardware-only countermeasures have limitations in their ability
to protect against fault attacks [YGS+16] and often come with significant over-
head [AMR+20]. Consequently, recent works have combined hardware and software
aspects in their proposed countermeasures.

To achieve the highest level of security, software-based CFI protections have
been ported to hardware [DCGÜ+17, WUSM18]. In these approaches, signatures
are inserted into the code at compile time and checked on the fly during execution
by a hardware module extension.

18

1.3. Fault Evaluation Tools

These protections have been further enhanced to provide stronger security guar-
antees. For example, in [CCH22, CCH23], the authors propose mechanisms for code
integrity to protect the program during transfers between the core and memory,
as well as control-signal integrity to protect against faults in the microarchitec-
ture. Hardware-based control-flow integrity has also been implemented on RISC-V
cores [ZPRD23], secure elements [NM23], and Intel platforms [NSL+23].

Conclusion

After selecting and implementing countermeasures, the overall system security must
be rigorously evaluated to ensure that chosen protections effectively thwart fault at-
tacks. Common verification techniques typically operate at either the hardware
or software level and require exhaustive coverage of all possible attack scenar-
ios specified in the fault model. However, combined countermeasures—such as
hardware-CFI—as well as subtle microarchitectural fault effects—as highlighted in
Section 1.1—necessitate cross-layer security evaluation techniques to accurately cap-
ture the complex interplay between software and hardware. This need for exhaustive
and combined techniques raises the following question:

Questions for Problem Statement

Q5. How to guarantee that countermeasures effectively prevent all hardware-
level faults from compromising system security at the software level?

1.3 Fault Evaluation Tools

First, Section 1.1 presented fault injection attacks, described their effects at
various abstraction layers, and introduced characterization techniques to derive the
so-called fault models, representing the experimentally observed fault effects. Sec-
tion 1.1 concluded by emphasizing the need for cross-layer automated fault eval-
uation methods. Second, Section 1.2 described existing fault countermeasures at
various abstraction layers and stressed the need for exhaustive security evaluation
techniques to ensure that protections effectively thwart fault attacks. The present
section, therefore, describes existing tools and methodologies to systematically eval-
uate the consequences of various fault models.

The tools discussed here are pre-silicon, meaning they perform their evaluations
on system models before chip manufacturing. These techniques complement the
experimental characterizations described earlier in Section 1.1.3 and are crucial for
identifying security vulnerabilities at the early stages of development. The tools pre-
sented operate at the software layer, the hardware layer, or a combination of both.
They employ various verification techniques such as simulation, which executes con-

19

Chapter 1. State of the Art and Problem Statement

Table 1.2: Tools for evaluating fault consequences at various levels of abstraction.

Tool Target Input Format Verif. Technique Fault Model Description

H
ar

dw
ar

e

AutoFault [BGE+17] Cipher RTL: VHDL Formal: SAT Single or multiple bit-/byte-flips.

VerFI [AWMN20] Cipher RTL: Verilog/VHDL Simu: custom Multiple Stuck-at/bit-flip

FIVER [RRSS+21] Cipher Netlist: Verilog Formal: EC (BDD) Fault model from [RSG22]

SYNFI [NOV+22] Cipher/CPU Netlist: Verilog Formal: EC (SAT) Multiple faults, stuck-at or transient.

FIRMER [TGC+23] Cipher Netlist: Verilog Formal: SAT Fault model from [RSG22]

So
ft

w
ar

e

SymPLFIED [PNKI08] CPU Binary: RISC Formal: BMC (Maude) Transient in memory/registers.

LAZART [PMPD14] CPU LLVM IR Formal: SE (KLEE) Symbolic data, test inversion.

Given-Wilson [GJLL17] CPU Binary: 32-bit x86 Formal: BMC (LLBMC) Binary manually edited.

RobustB [BHE+19] CPU Binary:ARMv7-M Formal: SA + EC (SMT) Single skip or register corruption.

FiSim [Ris20] CPU Binary: ARM Simu: custom Skip, flip, custom.

ARCHIE [HGA+21] CPU Binary:ARM,RISC-V, x86 Simu: QEMU Transient, permanent, data.

ARMORY [HSP21] CPU Binary:ARM-M Simu: ARMv7 Skip, replace, data/op/addr corrupt.

SAMVA [GHHR23] CPU Binary:ARMv7-M Formal: SA Multiple instruction skips.

BINSEC [DBP23] CPU Binary: 32-bit x86 Formal: SE (BINSEC) Symbolic data, test invers., instr skip.

C
om

bi
ne

d MEFISTO [JAR+94] CPU RTL: VHDL Simu: custom Single stuck-at or transient bit-flip.

VeriFY [STB97] CPU RTL: VHDL Simu: custom Single stuck-at, transient bit-flip.

LIFTING [BN08] CPU RTL: Verilog Simu: custom Multiple stuck-at and single bit-flip.

SimpliFI [GS21] CPU Netlist + RISC-V Binary Simu: Xilinx Clock glitch (timing violation)

SE: Symbolic Exec. SA: Static Analysis EC: Equiv. Check. BMC: Bounded Model Check. BDD: Binary Decision Diag.

crete instances of the system to observe fault consequences, and formal methods,
which allow reasoning on the system model to prove properties, thus considering
multiple system executions simultaneously. The tools we discuss are summarized in
Table 1.2 where the columns indicate 1) the name of the tool, 2) whether the tool
supports cryptographic- or CPU-based systems, 3) the input description format, 4)
the verification technique and, 5) the supported fault models.

1.3.1 Hardware

Very few works focus on analyzing CPUs at the hardware level, and recent advances
in hardware fault evaluation are primarily driven by the cryptographic field. Ta-
ble 1.2 reports five recent tools that evaluate fault effects on cryptographic circuits.
Although these tools do not model software instructions and operate solely at the
hardware level, they are noteworthy for their exhaustive evaluation of fault effects,
which is crucial for ensuring the security of cryptographic primitives.

One category of work focuses on evaluating cryptographic accelerators against
cryptanalysis fault attacks. For example, AutoFault [BGE+17] proposes a frame-
work to automatically evaluate the security of block ciphers against differential fault
analysis (DFA). Given a fault model, AutoFault generates a Boolean formula solved
by a SAT solver. However, AutoFault’s methodology is specific to the cryptographic
algorithm evaluated and cannot be adapted for CPU analysis.

A second category, represented by VerFI, FIVER, and FIRMER in Table 1.2,
evaluates whether faults can modify circuit behavior by comparing fault-free and
faulted versions of the circuit. These techniques are well-suited for evaluating the

20

1.3. Fault Evaluation Tools

security of hardware-level countermeasures designed to detect or correct faulty val-
ues. VerFI [AWMN20] introduces an automated process operating at the bit-level
granularity on circuit netlists to evaluate countermeasure robustness. The tool sim-
ulates all possible faults specified in the fault model and classifies them as detected,
ineffective, or non-detected. FIVER [RRSS+21] extends VerFI by exhaustively cov-
ering the entire state space using formal methods. Through bounded equivalence
checking, the circuit is unrolled over several clock cycles with symbolic input values
and faults, and the outputs are compared to reveal potential fault consequences
on cryptographic circuits. FIRMER [TGC+23] presents a methodology to classify
faults as effective or ineffective, using a new encoding of the problem with SAT
solvers instead of Binary Decision Diagrams (BDD) as in FIVER. It is noteworthy
that FIRMER can evaluate AES against one fault in a few minutes and two faults
in approximately 30 minutes.

SYNFI [NOV+22] is another relevant tool operating at the hardware level. It
is a pre-silicon fault analysis framework that allows hardware designers to evaluate
the robustness of a circuit and its countermeasures against faults. The authors
demonstrated that SYNFI can also evaluate small parts of CPUs, such as finite-
state machines.

Despite their capabilities, existing hardware-level tools have limitations that
prevent their use in evaluating fault consequences at the software level on CPU-
based systems. First, they lack support for specifying the executed program, and
the evaluated properties either focus only on algorithm-specific attacks like DFA
or on evaluating whether the countermeasure detects the fault. Consequently, the
verification techniques employed are not suited to observe fault propagation in the
circuit and evaluate its final consequences on software execution. Second, most of
these tools evaluate circuits over a single clock cycle, such as a single encryption
round, while CPUs need to be evaluated over multiple clock cycles, as faults may
have visible consequences only after a certain time period.

1.3.2 Software

At the software level, a wide variety of tools have been developed to evaluate fault
effects. These tools typically take a binary program as input and execute it with
faults for a given instruction set, such as RISC-V or ARM. The following describes
various techniques, including simulation, static analysis, and symbolic execution, to
determine if faults can lead to undesired instruction executions.

In the safety and dependability domain, SymPLFIED [PNKI08] was one of the
first works to propose a formal framework based on bounded model checking to eval-
uate fault effects on running programs. In the security domain, relevant works are
more recent. One category of work relies on simulation [Ris20, HSP21, HGA+21].
ARMORY [HSP21] is a framework capable of automatically injecting faults during
program execution using an ARMv7-M emulator to analyze their effects. Simi-

21

Chapter 1. State of the Art and Problem Statement

larly, ARCHIE [HGA+21] injects faults into software executed on an emulator and
supports multiple architectures, including ARM, RISC-V, and x86. FiSim [Ris20]
injects faults into instructions to determine if specific attack goals, such as skipping
a password check, can be achieved.

A second category of tools relies on static analysis to assess program robust-
ness to fault injection without executing it. Tools like RobustB [BHE+19] and
SAMVA [GHHR23] evaluate the consequences of the instruction skip fault model
based on a structural evaluation of the control-flow graph.

A third category of work uses symbolic execution, a formal technique where
program inputs are treated as symbolic variables representing a range of possible
values rather than a single concrete value [Kin76, BCD+18]. Faults injected into the
program can also be treated as symbolic variables, allowing symbolic execution to
explore multiple paths simultaneously. This technique is exhaustive but suffers from
the state space explosion problem, limiting the number of instructions that can be
analyzed. It has been implemented using the intermediate language of the LLVM
compiler [PMPD14] and on binary programs [DBP23], scaling up to ten faults.

While formal techniques such as static analysis or symbolic execution offer ex-
haustive evaluation of software security, these frameworks perform their analysis
using architectural models instead of actual implementations. Consequently, they
are unable to identify vulnerabilities induced by subtle microarchitectural effects.

1.3.3 Combined Frameworks

The earliest works proposing combined hardware/software methodologies to evaluate
fault effects were in the context of safety. These tools, based on simulation tech-
niques, aimed to assess the dependability of fault-tolerant systems against cosmic
radiation. In 1994, MEFISTO [JAR+94] was among the first to introduce auto-
mated techniques for emulating hardware faults and observing their consequences
on running software. This work involved modifying a 32-bit processor design by
inserting a saboteur or mutating the RTL model to reproduce fault injection effects.
MEFISTO analyzed two sorting programs with instructions directly encoded in the
VHDL description. This allowed the authors to classify the observed fault conse-
quences during program execution and report the fault latency between the injection
instant and its visible manifestation. Similar tools include VERIFY [STB97] and
LIFTING [BN08].

To our knowledge, the first work proposing a combined hardware/software eval-
uation tool to assess security against fault attacks was SimpliFI [GS21] in 2021.
SimpliFI offers a framework for hardware simulation of a processor running software.
The authors included timing information in their hardware model to reproduce re-
alistic faults similar to clock glitch attacks. The simulator can shorten the clock
period during one cycle to create timing violations. The usability of this approach
was demonstrated on a RISC-V embedded processor running an AES application.

22

1.4. Problem Statement and Manuscript Outline

All the aforementioned tools rely on simulation techniques to explore the conse-
quences of fault injections on software. However, simulation is limited in its ability
to explore the entire state space, including all possible inputs and fault attacks,
and cannot provide security guarantees when the completeness threshold is not
reached. Conversely, exhaustive techniques such as formal methods, employed in
hardware- and software-only tools, have proven to be better suited for exploring
large state spaces and are valuable for identifying corner-case vulnerabilities that
simulation-based approaches might miss. To the best of our knowledge, no such
formal method-based tool currently exists, which naturally leads us to the following
questions:

Questions for Problem Statement

Q6. Can existing formal verification techniques at the hardware or software
layers be adapted to cross-layer methodologies for evaluating fault effects?
Q7. Can the state explosion problem, inherent to the exhaustive exploration
of system behaviors be overcome or contained?

1.4 Problem Statement and Manuscript Outline

Overview. This chapter has reviewed the literature on fault injection attacks for
processor security evaluations. In Section 1.1, we presented fault injection attacks,
described their effects at various abstraction layers, and introduced characterization
techniques to derive the so-called fault models. Throughout this section, open ques-
tions were raised, emphasizing the need for cross-layer fault evaluation to understand
the causal relationship between hardware-level fault effects and their consequences
on software security (Questions Q1 and Q2). Additionally, the necessity for au-
tomated verification techniques to discover corner-case vulnerabilities that manual
approaches might miss was highlighted (Questions Q3 and Q4).

In Section 1.2, we presented existing fault countermeasures at the software layer,
the hardware layer, and combinations of both. In the conclusion of this section,
we stressed the need for exhaustive security evaluation techniques to ensure that
protections effectively thwart fault attacks (Question Q5).

Finally, in Section 1.3, we explored existing tools and methodologies to evaluate
the consequences of various fault models. The tools presented operate at different
abstraction layers and employ various verification techniques such as simulation
and formal methods. This section concluded by emphasizing the benefits of formal
methods for exhaustively exploring the state space and noted the absence of such
methodologies for combined hardware/software evaluation (Questions Q6 and Q7).

These observations and the open questions raised in this preliminary chapter lead
us to formulate the following problem statement, which this manuscript addresses:

23

Chapter 1. State of the Art and Problem Statement

Problem Statement. Establishing exhaustive and automated analysis methods
comprising both software and hardware system descriptions is crucial to better un-
derstand the final consequences of hardware-level faults or provide formal guarantees
of software security.

However, developing such an analysis method involves several significant challenges.

1) System modeling. Exhaustive verification techniques such as formal methods
require establishing a modeling of the system to reason about and prove invariants
or security properties. This modeling process is challenging because it requires
describing both the software and hardware layers to accurately represent the security
objectives of an attacker and the effects of hardware faults, which are the root cause
of the attack. As described in Section 1.3, existing tools have proposed combined
hardware/software models for simulation purposes only.

2) State space explosion problem. Analyzing fault effects on systems modeled at the
software or hardware level is known to encounter scalability issues, as highlighted
in Section 1.3. Establishing an exhaustive cross-layer verification approach will
undoubtedly face similar challenges since the analysis must explore the entire system
state space, encompassing all system behaviors and fault effects. Addressing the
state space explosion problem is therefore essential for the practical applicability of
a cross-layer fault evaluation methodology.

Outline. To address the problem statement outlined above and overcome the asso-
ciated challenges, the contributions of this thesis are organized into three chapters.

First, Chapter 2 introduces µArchiFI, a formal modeling and verification method-
ology to evaluate fault effects on combined hardware/software systems. This chapter
proposes a first solution by integrating the hardware description of the processor with
the running program into a single model suitable for formal verification techniques.

Second, Chapter 3 evaluates the security of several software and hardware case
studies using µArchiFI. We first validate the methodology by automatically iden-
tifying known fault attacks exploiting microarchitectural mechanisms such as for-
warding, and by discovering previously unreported fault effects. Then, we formally
evaluate the security of a combined countermeasure, which would not have been
feasible through hardware or software verification alone. Finally, we report the
performance of µArchiFI approach across various use cases.

Third, Chapter 4 enhances the methodology by developing a preliminary analysis
of hardware-level countermeasures. This improvement simplifies the co-verification
process since only faults not captured by hardware protections need to be evaluated,
therefore helping to contain the state space explosion.

Chapter 5 concludes this manuscript and discusses future research directions.

24

Chapter 2
µArchiFI Workflow: Formal
Modeling and Implementation

Contents
2.1 System Modeling . 26

2.1.1 Hardware Modeling 27
2.1.2 Software Modeling 29
2.1.3 Faults Injection Attacks 31
2.1.4 Summary . 33

2.2 Background on Model Checking 34
2.2.1 Overview . 34
2.2.2 Symbolic Model Checking 35
2.2.3 Decision Procedures 37
2.2.4 Abstractions in Model Checking 38
2.2.5 Languages and Tools in Hardware Model Checking . 40
2.2.6 Summary . 41

2.3 Background on Yosys . 41
2.3.1 Overview . 42
2.3.2 Intermediate Representation 42
2.3.3 Transfomation Passes 43
2.3.4 Backends . 44
2.3.5 Yosys-SMTBMC . 44

2.4 µArchiFI Workflow . 45
2.4.1 Tool Overview . 45
2.4.2 Modeling Process 46
2.4.3 Formal Verification 49
2.4.4 Software-Driven Optimizations 50
2.4.5 Previous µArchiFI Versions 52

2.5 Conclusion . 54

25

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

The background on fault injection attacks presented in Chapter 1 led us to
the following conclusion: a comprehensive, automated verification methodology to
analyze fault effects, considering both hardware and software layers, would be a
significant step forward in evaluating system security.

This Chapter 2 is the first contribution of this Ph.D. thesis. We introduce an
initial solution to the problem statement through the µArchiFI tool. µArchiFI is
a workflow that combines the hardware description of a processor with a binary pro-
gram to formally analyze the effects of faults. To achieve such a tool, we first need to
integrate the different components of our system—hardware, software, faults—into
a single model. This is the focus of Section 2.1. Section 2.2 presents the background
on model-checking techniques to verify whether the system model satisfies a given
property. This section also reviews the languages and model-checking tools com-
monly used in the literature. To automate the security evaluation of our system,
we need to automatically build the system model and convert it into a language
suitable for formal verification techniques. Several tools are available to facilitate
this transformation. This is notably the case with Yosys, which is introduced in
Section 2.3. Finally, Section 2.4 describes µArchiFI’s workflow, details its usage,
and provides two verification strategies to enhance security evaluation.

The content of this chapter is adapted from our publication at Workshop on Fault
Detection and Tolerance in Cryptography (FDTC) [TAC+22] in 2022, and Formal
Methods in Computer Aided Design (FMCAD) [TAC+23] in 2023. This work was
also presented at Groupe de Travail sur les Méthodes Formelles pour la Sécurité
(GTMFS) [Tol23] in 2023.

2.1 System Modeling

The methodology we propose in this chapter aims to evaluate the security of
a hardware/software system. This section addresses our first challenge: combining
the hardware description of the processor with the running software program into
a single model. This model must also represent how fault injection attacks alter
system operation. The rest of this section is organized as follows.

First, we describe hardware circuits as a directed graph and model their exe-
cution through time with a Mealy machine [Mea55]. Second, we characterize the
software as constraints on the system to restrict the possible executions to those cor-
responding to the evaluated program. Third, we describe how fault attacks modify
the circuits’ operation by introducing new faulty behaviors during system execution.
Finally, we define the attacker goal as a reachability property. The notations used
in this thesis are summarized in Table 2.1.

26

2.1. System Modeling

Table 2.1: Notations used in this manuscript to model hardware/software systems.

Notation Description

S
tr

u
ct

u
ra

l
C

ir
cu

it
V

ie
w

C = (G,W) Circuit modeled as a directed graph.
G = I ∪O ∪R ∪ C Set of circuit elements a.k.a. gates.
W ⊆ G×G Set of wires connecting two gates.
I =

{
x1, . . . , x|I|

}
Set of circuit inputs.

O =
{
y1, . . . , y|O|

}
Set of circuit outputs.

R =
{
r1, . . . , r|R|

}
Set of sequential gates a.k.a. registers.

C =
{
c1, . . . , c|C|

}
Set of combinational gates.

Fu
n
ct

io
n
al

C
ir

cu
it

V
ie

w X ⊆ Bin Set of variable vectors holding input values.
Y ⊆ Bout Set of variable vectors holding output values.
S ⊆ Bstates Set of variable vectors holding circuit states.
g : Bu → Bv Boolean function implemented by gate g.

val(g) ∈ Bv Gate output value.

T
em

p
or

al
C

ir
cu

it
V

ie
w MC = (X, Y, S, S0, δ, λ) Mealy machine associated with circuit C.

S0 ⊆ X × S Set of variable vectors holding initial states.
δ : X × S → S Next-state transition function.
λ : X × S → Y Circuit output function.

(si)
n
i=1 ∈ Sn Circuit execution trace of length n.

Fa
u
lt

s

F ⊆ G× E Transient fault model.
e : Bv → Bv ∈ E Fault effect as a Boolean function.
F ⊆ G× E × N Fault attack a.k.a. timed fault model.
k = |F| ∈ N Fault attack order.
φ : X × S → {0, 1} Attacker goal.

2.1.1 Hardware Modeling

Modeling a system to analyze fault effects requires multiple levels of representation.
First, a structural view of the hardware, formalized in Definition 2.1, allows to accu-
rately describe which hardware component is targeted with a fault by an attacker.
Then, a functional view of the circuit, formalized in Definition 2.2, defines the logical
functions the circuit implements. This functional view is also essential to model the
fault effects and to describe how such an attack alters the system operation. Finally,
since circuits process values through time, we need to represent its behavior as a
transition system.

Definition 2.1 (Circuit Model). A hardware circuit is structurally defined as a di-
rected graph C = (G,W), whereG is a set of circuit elements (gates), andW ⊆ G×G
is the set of wires connecting the gates. Furthermore, each gate g ∈ G has a type and
belongs to one of the disjoint sets representing inputs I, outputs O, register gates
R, and combinational gates C such that G = I ∪ O ∪ R ∪ C. Additionally, every
loop in the circuit must contain at least one register r ∈ R to prevent combinational
loops.

Example 2.1. Figure 2.1 illustrates a simple circuit example where I = {x1, x2, x3} ⊆

27

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

G are the inputs, R = {r1, r2, r3} ⊆ G are the registers, C = {c1, c2, c3} ⊆ G are
the combinational gates, and O = {y1} ⊆ G is the circuit output.

Figure 2.1: Simple circuit example.

Since circuits are designed to process digital values, Definition 2.2 introduces the
circuit functionality.

Definition 2.2 (Gate Function). Let C = (G,W) be a circuit. Each structural gate
g ∈ G of the circuit implements a Boolean function g : Bu → Bv where B is the
Boolean field {0, 1}, and u (resp. v) is the number of input (resp. output) bits of
the gate g. We denote val(g) ∈ Bv the output value of gate g.

In the rest of this work, we consider sequential circuits, and we assume that
all registers r ∈ R and inputs x ∈ I are synchronized on the same clock signal.
Consequently, we use the clock cycle as the timing unit of the circuit. As a result,
since circuits process values through time, we model their execution as a Mealy
Machine [Mea55].

Definition 2.3 (Mealy Machine). Let C = (G,W) be a circuit, I =
{
x1, . . . , x|I|

}
⊆

G be its inputs, and R =
{
r1, . . . , r|R|

}
⊆ G be its registers, where | · | is the

cardinality operator. We model the circuit execution as a Mealy machine M =

(X,Y, S, S0 , δ, λ) where X, Y , S, and S0 are the set of inputs, outputs, states, and
initial states, respectively.

Furthermore, let s =
(
val(r1), . . . , val(r|R|)

)
, x =

(
val(x1), . . . , val(x|I|)

)
, and

y =
(
val(y1), . . . , val(y|I|)

)
be variable vector holding the values for the states

s ∈ S, the inputs x ∈ X, and outputs y ∈ Y , respectively.

δ : X × S → S denotes the next-state function, and λ : X × S → Y is the output
function. Finally, a transition between two states s, s′ ∈ S is valid iff ∃x ∈ X such
that s′ = δ(x, s).

A graphical representation of a Mealy machine M is given in Figure 2.2. In
comparison with the circuit view presented in Definition 2.1, the Mealy machine
does not expose the circuit structure, i.e., the logic gates. In contrast, the important
elements highlighted in the Mealy machine are the input vector x, the output vector
y, and the registers R holding the current state s. Notably, the atomic Boolean

28

2.1. System Modeling

functions implemented by the circuit combinational gates c ∈ C are hidden within
the next-state function δ and the output function λ.

Figure 2.2: Mealy machineM executing the sequential circuit C.

Example 2.2. Figure 2.3 illustrates a simple 3-bit counter. The left-hand side (a)
of the figure shows the circuit representation of the counter, while the right-hand
side (b) presents the associated state-transition diagram. Since the circuit has 3
bits of registers, 23 = 8 states are possible. However, only the reachable states are
represented in the figure. Valid transitions between states are indicated with arrows,
and the incoming arrow on the state (0, 0, 0) symbolizes the initial state.

(a) Counter circuit model.
(b) State-transition diagram of the
counter with s = {cnt2 , cnt1 , cnt0}.

Figure 2.3: Counter modeling.

Finally, Definition 2.4 defines a sequence of consecutive circuit states called an
execution trace where each state depends on its predecessor.

Definition 2.4 (Execution Trace and Reachability). Let C = (G,W) be a circuit
and M = (X,Y, S, S0 , δ, λ) be the associated Mealy machine. An execution trace
(si)

n
i=1 ∈ Sn is a sequence of n circuit states (s1, . . . , sn) such that s1 ∈ S0, and

∀i < n, ∃x ∈ X, si+1 = δ(x, si). Furthermore, we say that a state sn ∈ S is
reachable if there exists such an execution trace.

2.1.2 Software Modeling

As this Ph.D. thesis focuses on hardware/software systems, the central component
to model is the processor, also known as a central processing unit (CPU). In the

29

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

previous paragraphs of this section, we described the structural, functional, and
temporal views of a circuit. In the following, we see how to restrict the range of
behaviors exhibited by CPU-based circuits to those specified by the program of
interest.

Essentially, a program is composed of instructions and data stored in memory.
The processor interacts with memory by fetching instructions for computation and
by reading/writing data. During its operation, the processor updates its internal
state by storing values in the register file. Modeling the execution of a given program
on a processor implies representing these memory operations in the circuit transition
system defined in Definition 2.3. As illustrated in Figure 2.4, two possible solutions
exist depending on whether the memory is included in the modeling or not.

Open SystemEnvironment

CPUSW

in

out

(a) Software as environmental constraints.

Closed SystemE
nv

iro
nm

en
t

CPUSW

in

out

(b) Software as internal state.

Figure 2.4: Software modeling.

The first option, shown in Figure 2.4a, excludes the program memory from the
system modeling. The Mealy machineM that models the processor behavior treats
the program as environmental constraints on the input values X. This approach
has the advantage of maintaining a smaller size for the resulting hardware/software
system since the memory is not modeled alongside the CPU. However, the main
drawback is the challenge of generating these environmental constraints. As de-
tailed in the next section, precomputing these constraints is not always possible due
to non-deterministic control flow resulting from symbolic data or fault attacks. Ad-
ditionally, these environmental constraints must be updated according to the store
operations performed by the CPU. For example, when the processor performs a
read operation after a write at a specific memory location, the value provided by
the environment must match the one previously written back into memory.

A second option, shown in Figure 2.4b, includes the instruction and data mem-
ories in the system modeling. The hardware encompasses both the processor design
and the program memory. Instructions and data are encoded in the initial states S0
of the Mealy machineM. The resulting system is closed as it does not interact with
its environment. This approach is easier to implement since the memory content is
updated along with the processor execution. However, the main limitation is the
increase in the system’s state space. This latter option is the one we use for the
remainder of this chapter, while keeping the memory size as small as possible.

30

2.1. System Modeling

2.1.3 Faults Injection Attacks

As mentioned in Chapter 1, attackers can inject faults during circuit computation
to induce incorrect system behavior. In Sections 2.1.1 and 2.1.2, we formalized a
hardware/software system as a transition system whose initial state corresponds to
the program to be executed. In the following, we extend this modeling to describe
an attacker’s ability to modify system operation using fault injection attacks.

First, Definition 2.5 defines the fault model as a functional modification of cir-
cuit operation. Second, Definition 2.6 introduces the transient temporal dimension
and defines a transient fault attack, which modifies an execution trace. Finally, Def-
inition 2.7 introduces the attacker goal as a reachability problem over a transition
system achieved through fault injection attacks.

Definition 2.5 (Fault Model). Let C = (G,W) be a circuit. A fault model F ⊆ G×E
for the circuit C is a set of pairs where each fault (g, e) ∈ F has a fault location g ∈ G,
and a fault effect e ∈ E. As a consequence, the fault model results in a faulty circuit
CF where each fault (g, e) ∈ F causes gate g to compute e ◦ g, with g : Bu → Bv the
gate function, and e : Bv → Bv the fault effect.

Intuitively, a fault model F describes the range of possible faults an attacker can
inject into the circuit. The fault locations correspond to the circuit gates affected by
the attack and the fault effects represent the functional modifications induced in the
gate due to the perturbations. As an example, unary fault effects E1 for bit-level
gates include bit-reset : x 7→ 0, bit-set : x 7→ 1, and bit-flip : x 7→ ¬x.

Although in general F = G×E, Definition 2.5 allows the user to restrict the set
of considered faults to a subset. This restriction occurs either because the attacker
cannot fault certain gates due to protection or infeasibility, or because only specific
fault effects can be introduced due to circuit technology or fault injection methods.

Example 2.3. Electromagnetic fault injections are known to induce an erroneous
sampling process in the circuit, which is akin to bit flips in registers (cf. Section 1.1).
Figure 2.5 depicts such a situation where fault fi induces a bit-flip in register ri.

Figure 2.5: Fault model example affecting sequential gates only.

31

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

The fault model provides a structural and functional description of faults. How-
ever, to evaluate the consequences of faults on hardware/software systems and to
enable the attacker to control the timing of the fault injection, we need to include
a timing representation in our fault model. Definition 2.6 defines the notion of
transient fault attacks, which modifies the execution of the Mealy machine.

Definition 2.6 (Transient Fault Attack). Let C be a circuit, M = (X,Y, S, S0 , δ, λ)

be its associated Mealy machine, and F ⊆ G × E be a fault model. A transient
fault attack F ⊆ F ×N∗ is a set of timed faults injected during the execution ofM.
For each fault (g, e, i) ∈ F, the temporal dimension of the fault i ∈ N∗ is denoted
as the fault timing. As a consequence, the fault-free transition system M results
in a faulty Mealy machine MF = (X,Y, S, S0, δ

F, λF) where the faulty function δF

and λF relies on a faulty version of the circuit to compute the next states and the
outputs. In other words, any valid execution trace (si)

n
i=1 yields a faulty execution

trace
(
sFi
)n
i=1

where each fault (g, e, i) ∈ F causes gate g to compute e ◦ g at clock
cycle i. Finally, the number of faults |F| is referred to as the attack order.

Example 2.4. Let us consider Figure 2.6, which is an adaptation of the 3-bit counter
previously introduced in Example 2.2. Let F = {f} be a transient fault attack with
an attack order equal to 1—a single fault in injected—targeting the gate g1, at cycle
2, with a bit-flip effect (a). This results in a faulty state-transition diagram (b)
where the fault leads to the previously unreachable system state (1, 0, 1).

(a) Counter circuit model.
(b) State-transition diagram of the faulty
counter with s = {cnt2 , cnt1 , cnt0}.

Figure 2.6: Counter modeling under fault attack F.

At this stage of the section, we have defined a hardware/software system model-
ing including the possible perturbations an attacker can induce with a fault attack.
However, in practice, an attacker utilizes this fault attack on a CPU-based system
to create an exploit. Definition 2.7 formalizes this attacker goal.

Definition 2.7 (Attacker Goal). Let C be a circuit, M = (X,Y, S, S0 , δ, λ) be its
associated Mealy machine, and F be a fault model. An attacker goal is a Boolean
predicate φ over inputs X and circuit states S determining whether they are desir-
able, i.e., φ : X × S → {0, 1}.
We say that an attacker reaches his goal φ at attack order k if there exists a fault
attack F ⊆ F × [1, n], with |F| ≤ k, a faulty execution trace

(
sFi
)n
i=1

, and an input
vector x ∈ X such that φ

(
x, sFn

)
= 1.

32

2.1. System Modeling

Example 2.5. Known attacks on a CPU-based system involve executing a malicious
payload. The associated attacker goal φpayload, which evaluates to true when the
attack succeeds, can be expressed as an equality between the program counter (PC)
value and the payload address: φpayload := (PC = @payload).

Alternatively, another kind of attack involves reading sensitive data in memory:
φsecret := (read_address = @secret).

2.1.4 Summary

This section has formalized the modeling of a CPU-based system, including its hard-
ware description, software program, faults, and attacker goal. Figure 2.7 summarizes
the proposed modeling and represents system security evaluation as a reachability
problem on the faulty state-transition diagram.

First, the hardware circuit is modeled as a Mealy machine, where each green node
represents a circuit state and green arrows indicate valid transitions between states.
Second, the software program is encoded in the system’s initial state, restricting
possible execution paths to those corresponding to the program of interest, marked in
blue. Third, purple transitions represent faulty transitions allowed by the considered
fault model F over time, including transitions to previously unreachable system
states. Finally, undesirable circuit states, where the attacker goal φ evaluates to
true, are symbolized with red nodes. Given an attack order k, a reachability analysis
on this Mealy machine can determine if an attacker can reach his goal using at most
k faulty transitions.

Figure 2.7 provides a comprehensive overview of the system modeling to keep
in mind for the remainder of this chapter, as it serves as a baseline for building
µArchiFI. The next section focuses on reachability analysis techniques to evaluate
whether the system is vulnerable to fault attacks.

Hardware
Software
Fault Injections
Attacker Goals

Figure 2.7: Fault injection modeling on a transition system.

33

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

2.2 Background on Model Checking

Section 2.1 has laid the foundation of µArchiFI by integrating the hardware
and software descriptions, along with faults, into a single model. In this section,
we review model checking, an automated formal technique used to verify whether a
system satisfies a given property.

Verifying properties on transition systems is a well-known and extensively stud-
ied area. Consequently, this section does not contribute to new findings but sum-
marizes existing results on model checking. Nevertheless, it is a crucial step toward
achieving µArchiFI, as understanding these methods and selecting the best-suited
verification approach is essential.

First, we provide a general overview of model checking before focusing on sym-
bolic methods. Next, we briefly describe decision procedures and discuss some com-
mon abstractions. Finally, we present state-of-the-art model-checking languages and
tools dedicated to hardware verification.

2.2.1 Overview

Back in the 1980s, computer science was experiencing exponential growth, and
computer-aided verification was synonymous with unsolvable problems [Tur37, Ric53].
In 1981, Clarke and Emerson introduced model checking [CE81] as an algorithmic
method for determining if a system satisfies certain properties expressed in a tem-
poral logic specification. This invention marked a paradigm shift from intractable
correctness proofs using deductive reasoning to bug finding and model verification.
In today’s applications, the major benefit of model checking is its ability to effi-
ciently catch difficult corner-case errors. Additionally, when no bugs are found, it
provides a complete proof that the system satisfies the formal specification.

In this work, we focus on a type of temporal properties known as reachabil-
ity properties as defined in Definition 2.7. Roughly speaking, reachability analysis
answers the question "Can the system reach an undesirable state?".

An initial approach to performing model checking relies on search algorithms,
such as depth-first search and breadth-first search, on the transition system. This
method is referred to as explicit model checking. States are explored successively
until a reachability property φ is satisfied. All reachable states are visited as the
algorithm starts from the initial states and visits their direct successors. For finite
transition systems, as is the case for hardware circuits, reachability analysis theo-
retically terminates. However, in practice, the number of states to explore may be
prohibitively large, consuming excessive run-time or memory space, leading to the
classical state-space explosion problem. For instance, the 3-bit shown in the previous
section (Example 2.2) only has four reachable states to explore. In contrast, a chip
with 100 flip-flops has 2100 = 1267650600228229401496703205376 states to explore.

34

2.2. Background on Model Checking

The systems we analyze in the following chapters of this manuscript have thousands
of flip-flops. To address this state-space explosion problem, symbolic techniques
have been proposed.

2.2.2 Symbolic Model Checking

The key idea of symbolic model checking [BCM+92] is to reason about sets of states
instead of reasoning on each state individually. For this purpose, both the transition
relation and the set of states are modeled by Boolean functions and represented
symbolically using propositional logic formulas.

Characteristic function. Let M = (X,Y, S, S0 , δ, λ) be a Mealy machine, and let
Q ⊆ S be a subset of states. The characteristic function of Q, denoted by [[Q]], is a
Boolean function over state variables of S, defined as follows:

[[Q]] : S → {0, 1}

s 7→
{

1 if s ∈ Q
0 otherwise

That is, [[Q]](s) evaluates to true if and only if s is an element of Q. Similarly, we
define the characteristic function of the transition relation δ : X × S → S, denoted
[[δ]], by a Boolean function as follows:

[[δ]] : S × S → {0, 1}

(s, s′) 7→
{

1 if ∃x, s′ = δ(x, s)
0 otherwise

In other words, [[δ]](s, s′) evaluates to true if and only if (s, s′) is a valid transition
of the Mealy machineM.

Successor Function. Let M be a Mealy machine, and let Q ⊆ S be a subset of
states. The set of successor states of Q, i.e., the reachable states after a 1-step
transition, is defined as follows:{

s′ ∈ S | ∃s ∈ Q,∃x ∈ X : s′ = δ(x, s)
}

This set is symbolically represented by the Boolean successor function succ as fol-
lows:

succ([[Q]](s)) :=
(
∃s : [[Q]](s) ∧ [[δ]](s, s′)

)
[s′ ⇝ s]

Intuitively, ∃s : [[Q]](s)∧ [[δ]](s, s′) is the symbolic representation of successors states
of Q, and [s′ ⇝ s] renames variables s′ so that the resulting predicate is over current
state variables s. That is, succ([[Q]](s)) evaluates to true if and only if s is a valid
successor state of Q.

Symbolic Model Checking. Let M = (X,Y, S, S0 , δ, λ) be a Mealy machine. By
means of the characteristic and the successor functions previously defined, we can
iteratively compute the set of reachable states as illustrated in Figure 2.8.

35

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

...

Figure 2.8: Symbolic reachability analysis.

Algorithm 2.1 provides a high-level view of symbolic model checking for a reach-
ability property φ. First, the algorithm initializes the symbolic predicate reachable
with the predicate associated with the initial states S0 (line 1). For each itera-
tion, the set of 1-step successors is computed using the succ function (line 5). For
each new set of reachable states, the algorithm returns true is the property φ holds
(line 3). Otherwise, the algorithm iterates until it reaches a fixed point (line 6), i.e.,
it cannot visit new states and Sn = Sn+1.

Algorithm 2.1: Symbolic reachability analysis using model checking.
Input: a Mealy machineM = (X,Y, S, S0 , δ, λ), and a state property φ.
Output: a Boolean value indicating whether φ is reachable.

1 reachable← [[S0]](s);
2 while true do
3 if (SAT(reachable ∧ φ)) then
4 return true;

5 tmp← reachable ∨ succ(reachable);
6 if (tmp ⇐⇒ reachable) then
7 return false;

8 reachable← tmp;

While symbolic model checking has significantly enhanced verification capabil-
ities by several orders of magnitude [BCM+92], some problems remain intractable.
In practice, the number of iterations can be excessively high and Algorithm 2.1 may
not converge to a fixed point.

Bounded Model Checking. Bounded Model Checking (BMC) [CBRZ01] limits
the search to states reachable within n system transitions. Consequently, BMC is
not sound for proving reachability properties, as it does not consider traces (si)

m>n
i=1

longer than n transitions. However, BMC is an efficient framework for detecting
any bugs that are reachable in less than n transitions. In this context, BMC is said
to be n-complete. Algorithm 2.2 introduces a revised version of Algorithm 2.1 using
bounded model checking. In contrast with the previous version, Algorithm 2.2 takes
a bound n as input and terminates when the for loop (line 2) has been completed.

36

2.2. Background on Model Checking

Algorithm 2.2: Symbolic reachability analysis using bounded model checking.
Input: a Mealy machineM, a state property φ, and a bound n.
Output: a Boolean value indicating whether φ is reachable within n steps.

1 reachable← [[S0]](s);
2 for i from 1 to n do
3 if (SAT(reachable ∧ φ)) then
4 return true;

5 reachable← reachable ∨ succ(reachable);

6 return false;

In practice, BMC is often sufficient for catching or proving the absence of bugs,
offering a good trade-off between performance and completeness. The bound is
typically chosen according to practical knowledge on the evaluated system, such
as the length of the program under evaluation. Several works in the literature
propose methods to extend bounded techniques to provide unbounded guarantees.
Examples include induction [SSS00], interpolation [McM03], and property-directed
reachability [Bra11, EMB11].

In the remainder of this chapter, we choose to rely on BMC techniques to eval-
uate the reachability of the attacker goal in the hardware/software modeling intro-
duced in Section 2.1. The bound is chosen according to the length of the program
to be analyzed on the hardware.

2.2.3 Decision Procedures

The underlying concept behind symbolic model checking is the reasoning about sets
of states using characteristic propositional formulas. While model-checking algo-
rithms iteratively compute the set of reachable states, as illustrated in Algorithm 2.1,
they require efficient decision procedures to determine if a formula φ holds for the
current set of reachable states (line 3). A decision procedure is an algorithm that,
given a decision problem, terminates with a correct yes/no answer [KS16]. In the
remainder of this subsection, we introduce BDD-, SAT-, and SMT-based decision
procedures.

Binary Decision Diagrams (BDDs). Randal E. Bryant has introduced binary de-
cision diagrams in the mid-80s [Bry86, Bry92]. BDDs are efficient data structures to
manipulate Boolean expressions based on graph theory and are certainly one of the
most famous breakthroughs in the area of formal verification. Each logical operation
performed on the propositional formula has an efficient set-theoretic correspondence
on BDDs. For example, a conjunction between two formulas is an intersection, a
disjunction is a union, and a satisfiability check is a non-emptiness check.

37

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

Boolean Satisfiability (SAT). The Boolean satisfiability problem determines whether
a variable assignment exists such that a given propositional formula evaluates to
true. Besides its theoretical interest due to its NP-completeness, SAT has found
many applications, such as model checking. Even if it is very likely that there is
no polynomial algorithm to solve these problems, SAT solvers have undergone re-
markable improvements since the 1990s. Modern solvers implement search-based
algorithms based on the Davis-Logemann-Loveland algorithm (DPLL) [DLL62] or,
more recently, the Conflict Driven Clause Learning (CDCL) [MS99].

Satisfiability Modulo Theories (SMT). When encoding systems from program-
ming languages like C into propositional SAT formulas, complex syntax and seman-
tics, such as modular arithmetic or memory reasoning, require non-trivial decision
procedures.

Boolean satisfiability problems are formulated using Boolean propositional logic,
but other problems are more naturally and compactly expressed in other logic, such
as first-order logic, that includes non-Boolean variables, linear arithmetic operators,
or quantifiers. In such cases, we speak of Satisfiability Modulo Theories.

Choosing some logical background theories is always a trade-off between the ex-
pressiveness and the ability to automatically check the satisfiability of formulas.
For example, encoding a word-level operation between two 32-bit integers requires a
translation into bit-level formulas. This task, also known as bit blasting, is expensive
as it grows exponentially with the size of the bit vector. This exponential explosion
can be avoided using the first-order theory of bit vectors. Similarly, handling memo-
ries to read and store data structures is expensive to model using bit-level operators.
The first-order theory of arrays addresses this issue.

The work presented in this thesis focuses on hardware/software systems where
bit vectors and memories are extensively used to model CPU-based systems. Conse-
quently, we choose to rely on SMT as the backend decision procedure for the model-
checking framework. In the rest of this manuscript, SMT refers to the quantifier-free
fragment of the first-order theory of arrays over bit vectors (QF_ABV). According
to the 18th International Satisfiability Modulo Theories Competition [SMT23], the
best state-of-the-art SMT solvers for the QF_ABV theory are Yices [Dut14] and
Bitwuzla [NP23]. All these solvers comply with the Smt-lib language [BST10],
which is the standard specification to describe SMT problems. µArchiFI, described
in detail in Section 2.4, utilizes these two solvers.

2.2.4 Abstractions in Model Checking

While symbolic model checking improves scalability, it can sometimes be insufficient
for addressing complex systems. Abstractions provide a more aggressive approach
to mitigating state explosion by reducing the state space through the omission of
certain system details. Analyzing the effects of faults on systems modeled at the

38

2.2. Background on Model Checking

software or hardware level is known to encounter scalability issues, as highlighted in
Section 1.3 when describing related fault evaluation tools. This scalability issue is
also inherent to our cross-layer approach and is one of the challenges we must face in
this thesis. The following paragraphs introduce existing model-checking abstraction
techniques that can be beneficial to µArchiFI.

Localization Abstraction. Localization abstraction [Kur95, CKV10] hides irrel-
evant system variables for the property φ under verification. Consequently, the
resulting abstract system is built by merging all states that agree on the valuation
of visible variables.

Intuitively, we may remove irrelevant parts of the hardware design if they are not
used by the program under verification. For example, functional units like multipli-
cation or floating point are unnecessary if the considered program does not perform
these operations. However, faults break this intuition, and targeting unused func-
tional units may trigger undesired operations that impact the overall system behav-
ior. Such an example is illustrated in Chapter 3, where a fault in the multiplication
module leads to a security breach.

Under- and Over-approximations. Under- and over-approximations focus on sim-
plifying or abstracting the system’s state space to ease property verification.

Under-approximation restricts the system’s state space to a subset likely to con-
tain errors. For instance, bounded model checking under-approximates classical
model checking. Under-approximation is used to find bugs, since if a counterexample
(bug) is identified, it is a valid error in the real system. However, this technique can-
not guarantee that the system satisfies a given specification if no counterexample is
found, as it does not explore all possible states. Consequently, under-approximation
is a relevant abstraction for bug finding.

Over-approximation enlarges the system’s state space to include additional be-
haviors that may not exist in the actual system, in order to simplify its overall
specification, thereby easing the verification process. For example, symbolic model
checking over-approximates explicit model checking as symbolic variables may in-
volve spurious behaviors. Over-approximation ensures that if a property is satisfied
in the over-approximated model, it is also satisfied in the actual system. However,
if a counterexample is found, it might be a false positive (spurious counterexam-
ple) due to the inclusion of extra behaviors. Consequently, over-approximation is a
relevant abstraction for proving properties and demonstrating the absence of errors.

Over- and under-approximations are not only applied to system’s behaviors but
can also be applied to a formula φ by checking an easier-to-solve property φ′. If
φ′ implies φ, proving that a model M satisfies φ′ implies it satisfies φ. Otherwise,
nothing can be concluded. Conversely, if φ implies φ′, examplifying that M does
not satisfy φ′ with a counterexample implies that φ does not hold onM. Otherwise,
nothing can be concluded.

39

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

The work presented in this manuscript relies on model-checking techniques, and
scalability is a major bottleneck that limits their practical application. Scalabil-
ity is undoubtedly the biggest challenge we face throughout this work. To address
this issue in our contributions, both under- and over-approximations are employed
to efficiently analyze hardware/software systems under fault attacks. For under-
approximation, sandboxing, as described in Chapter 2, is used to improve the iden-
tification of security vulnerabilities. For over-approximation, fault-resistant parti-
tioning provides a valuable approach to facilitate proving robustness against faults.
This optimization is the focus of Chapter 4.

2.2.5 Languages and Tools in Hardware Model Checking

Sections 2.2.1 to 2.2.4 have provided a theoretical introduction to symbolic model
checking and underlined how this technique can be employed to perform reachability
analysis. This section adopts a more practical view and describes formal specification
languages and tools that could be relevant to develop µArchiFI. Since 2007, the
Hardware Model Checking Competition (HWMCC) [HWM20] showcases the recent
advances for hardware symbolic model checkers. The languages and tools overview
that follows summarizes these results.

Table 2.2: Languages classically used for hardware model checking.

Language Year Level Description

Aiger 1.9 [BHW11] 2011 Bit-level HWMCC standard between 2007 and 2017. De-
scribes a bit-level system using an and-inverter graph.

Smv 2.0 [BCC+19] 2019 Word-level Language of the nuXmv model checker. It supports
bit vectors, memories, and infinite types like integers.

Btor2 [NPWB18] 2018 Word-level Word-level generalization of Aiger to support bit
vectors and memories. HWMCC standard since 2019.

Languages. Several languages have been developed over the past few years to de-
scribe hardware transition systems for formal verification. Some of these languages,
such as Smv [BCC+19], are proprietary and tied to specific verification frameworks.
Others have been proposed as standards and have been widely adopted by the com-
munity, such as Aiger. These languages vary not only in syntax but also in the
features they support for system description. Since 2019, Btor2 has become the
new standard for describing hardware systems at the word level. Tools like Yosys and
Btor2tools facilitate the conversion of systems described with hardware descrip-
tion languages like Verilog into Btor2. Table 2.2 summarizes the most well-known
languages.

Tools. Table 2.3 lists state-of-the-art hardware model checkers. These solvers im-
plement efficient algorithms (see Algorithm 2.1) to explore the system state space
and prove the specified formal properties. These model checkers are specialized to
evaluate hardware designs as they efficiently handle bit-vector and array data types.
Since 2018, all these tools now support the Btor2 format as input.

40

2.3. Background on Yosys

Table 2.3: Model Checkers for hardware verification.

Tool Year Languages Description

nuXmv [CCD+14] 2014 Smv Supports finite and infinite transition systems.
Yosys-Bmc [Wolb] 2016 Smt-lib In-house MC from Yosys, described in Section 2.3.
Ebmc [KP17] 2017 Verilog Hardware variant of CBMC [KT14].
BtorMC [NPWB18] 2018 Btor2 MC proposed along with the Btor2 language.
CoSA [MMB+18] 2018 Btor2, CoreIR, ... SMT-based model checker.
Pono [MIL+21] 2020 Btor2 Successor of CoSA. Awarded at HWMCC’19.
Avr [GS20] 2020 Btor2 Winner of HWMCC’20.

The formal modeling of hardware systems and their evaluation using hardware
model-checking techniques is a well-established field of research, as attested by the
Hardware Model Checking Competition held in conjunction with the CAV and FM-
CAD conferences since 2007. The languages and model checkers discussed above
are therefore valuable assets for the formal evaluation of systems with faults.

2.2.6 Summary

This section provided a comprehensive overview of model-checking techniques and
detailed an algorithmic procedure to perform reachability analysis. We refer the
interested reader to the Principles of Model Checking [BK08] and the Handbook of
Model Checking [CHVB18] for more details.

Consequently, symbolic model checking seems perfectly suited to evaluate whether
an attacker can reach a vulnerable state in the hardware/software modeling with
faults we introduced in Section 2.1. Expressive formal specification and efficient tools
also exist as they have been developed for a few decades, as showcased in the Hard-
ware Model Checking Competition [HWM20]. We will rely on them in the remain-
der of this chapter. However, to automate the complete flow which includes system
modeling—Section 2.1—and formal verification—Section 2.2—we must translate the
hardware and software description with faults into a formal specification. This is
the focus of the next section.

2.3 Background on Yosys

Sections 2.1 and 2.2 represent two major steps in the development of µArchiFI:
system modeling and formal verification. To move toward automated security eval-
uation, we need to automatically build the formal model and provide it to a model
checker. Several tools are available to facilitate this transformation. This is notably
the case with Yosys, which we describe in this section.

41

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

2.3.1 Overview

Yosys [Wolb] is an open-source synthesis tool with a compiler-like infrastructure.
Figure 2.9 illustrates the workflow of the tool. Initially, its frontend takes a hard-
ware description language as input and compiles it into Yosys’s internal data format,
the RTL Intermediate Language (Rtlil). Yosys typically supports languages like
Verilog, and VHDL through the third-party Ghdl project [Tri]. Once the design
is expressed in the Rtlil representation, a wide range of passes can apply trans-
formations to the design, typically performing the various synthesis steps. Finally,
Yosys’s backends translate the Rtlil design into various outputs, ranging from Ver-
ilog netlists to formal languages.

In the following, we provide insights into Yosys to better understand how we
utilize and modify it for the purposes of µArchiFI. A comprehensive description of
the tool is available online [Wolb].

Verilog

P
as
se
s

Frontend

Intermediate
Language

Backend

VHDL

RTLIL

Verilog RTLIL Btor2 Smt-Lib

Logic
Synthesis

...

...

...

Technical
Synthesis

Simulation

RTLILSystem
Verilog

Flatten

Figure 2.9: Yosys workflow.

2.3.2 Intermediate Representation

Rtlil (Register Transfer Level Intermediate Language) is the intermediate repre-
sentation used by Yosys for representing hardware designs. It serves as a unified
language to apply a wide variety of optimization and transformation passes, as il-
lustrated in Figure 2.9. Rtlil is structured with modules, wires, cells, processes,
and attributes.

Modules are the hierarchical blocks of the design that contain wires, cells, pro-
cesses, and instances of other modules. The design is said to be flattened when
it has only one module.

Wires represent connections between different parts of the design and carry
single-bit or multi-bit digital values.

Cells are the basic building blocks of the design. Different types include com-
binational cells like XOR, ADD, NOT, sequential cells like Flip-Flop and Latch,

42

2.3. Background on Yosys

and formal cells like Assume, Assert, and Cover. Each cell has input and
output ports connected to wires.

Processes describe the behavior of sequential logic in the design and include
statements for synchronous and asynchronous operations, such as clocked as-
signments and resets.

Furthermore, each design element has a list of parameters providing additional in-
formation, including name, type, data width, etc.

Yosys’s Rtlil intermediate representation is reminiscent of the hardware mod-
eling introduced in Section 2.1.1. Rtlil modules composed of cells and wires are
similar to circuit C = (G,W), where G and W are the sets of gates and wires (cf.
Definition 2.1). Rtlil appears sufficiently expressive to describe hardware/software
systems, where the circuit initial state can be constrained using the \init attribute
for sequential cells.

2.3.3 Transfomation Passes

Yosys’s transformation passes are operations that manipulate and modify the Rtlil
representation of a design. These transformation passes are essential for preparing
the Rtlil representation for various backends and ensuring that the design meets
the necessary requirements for synthesis, simulation, or formal verification. Some of
these operations are depicted in the Passes box in Figure 2.9 and described in the
following paragraphs.

Logic Synthesis. This pass is usually the first one applied to the intermediate rep-
resentation. It translates the high-level Rtlil produced by the frontend to elemen-
tary logic cells such as ADD. It also ensures that the sequential and the combinational
logics are properly separated and performs basic optimizations as described in the
next paragraph.

Optimization. This pass is designed to simplify the Rtlil to reduce the design in
size and complexity. It includes various optimizations such as constant propagation,
logic simplification, finite-state machine optimization, flip-flop retiming, memory
reconfiguration, and dead code elimination.

Flattening. Hardware designs are usually described using a hierarchy of modules,
i.e., a top module instantiates several modules, which in turn, instantiate sub-
modules. This pass flattens the design by removing module boundaries, meaning
that all the logic and connections defined within the submodules are brought into
the parent module.

Selection. This command is useful for selecting a subset of circuit components—
modules, cells, wire—and determines the part of the design on which the next com-
mand operates. The selection language is a series of commands for a simple stack

43

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

machine. Components are selected according to pattern matching, cell type, or
cell-width with basic operations like union, intersection, or set difference.

Simulation. This command simulates the circuit using the given top-level module.
The result of the simulation can be dumped into a VCD file or used to constrain
the design’s initial state.

Technology Mapping. This pass implements a very simple technology mapper that
replaces the RTLIL representation to specific technology libraries or cells, such as
standard cell libraries for ASIC or LUTs for FPGAs.

2.3.4 Backends

Yosys backends are components responsible for converting the internal Rtlil repre-
sentation of a design into various output formats (cf. Figure 2.9). These outputs can
be used for different purposes, such as further synthesis with EDA tools, simulation,
or formal verification.

A first category of backends in Yosys that convert designs to netlists for simula-
tion or synthesis purposes include Verilog, Edif, and Blif formats. Alternatively,
other backends can dump the Rtlil representation into a text or Json file. These
outputs are useful for saving the design or for custom post-processing with other
tools. However, this work seeks an automated process to convert a system descrip-
tion into a transition system. For this purpose, Yosys provides specific backends
such as Aiger, Smv, Btor2, and Smt-lib. Note that Yosys’s Smt-lib output is
not a standard model-checking specification and is uniquely designed to work with
Yosys-Bmc, as described below.

2.3.5 Yosys-SMTBMC

Yosys-SMTBMC, denoted Yosys-Bmc for short in the following, is a tool that
combines Yosys with SMT solvers to perform formal verification of hardware designs.

The toolchain takes as input a Smt-lib description of the hardware design with
its properties to be checked. During operation, Yosys-Bmc unrolls the circuit and
provides SMT queries to an external solver, e.g., Yices or Boolector, that are
checked for satisfiability. This combination between Yosys and SMT solvers facili-
tates various formal verification tasks such as bounded model checking (BMC) and
equivalence checking. When the SMT solver returns a counterexample, Yosys con-
verts it to VCD (Value Change Dump) waveform traces of the successive hardware
states.

44

2.4. µArchiFI Workflow

2.4 µArchiFI Workflow

This section presents the µArchiFI workflow. In particular, we link together
the three previous sections of this chapter to provide a tool capable of automatically
analyzing the consequences of fault in a hardware/software system. µArchiFI has
undergone many improvements throughout the Ph.D., and we present here the latest
version of the tool. The main evolutions and differences between tool versions are
discussed at the end of this section.

- Sandboxing

- Concretization

Figure 2.10: µArchiFI architecture and verification toolchain.

2.4.1 Tool Overview

µArchiFI is an automated framework designed to evaluate the effects of faults on a
hardware/software system with respect to an attacker goal. The workflow consists
of two main parts: modeling and verification, as illustrated in Figure 2.10.

In the modeling step, µArchiFI begins by converting the hardware description
into a circuit model C = (G,W) represented in Rtlil. Next, the binary program is
utilized to determine the initial state of the memory model. A fault model, along
with an attacker goal φ and an attack order k, are provided to the FaultRtlil
pass. FaultRtlil operates on the Rtlil representation to transform the circuit
C into its faulty version CF . The faulty circuit is then converted into a transition
systemMF in either the Smt-lib or Btor2 format using Yosys’ formal backend.

During the verification step, µArchiFI uses the previously generated faulty
transition systemMF and relies on third-party model checkers to verify the reach-
ability of the attacker goal. State-of-the-art model checkers compatible with these
formats include Yosys-Bmc [Wola], Pono [MIL+21], and BtorMC [NPWB18].
When the (bounded) model checker succeeds in satisfying the attacker goal, a VCD
file is generated to precisely report the attack. Analyzing the generated VCD wave-
form allows for understanding where the fault is injected and how the faulty values

45

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

propagate through the microarchitecture, leading to the vulnerability. Otherwise,
when no counterexample exists, we have a formal guarantee that the attacker goal
is unsatisfiable given the provided fault model.

Practical and technical implementation details on the modeling and verification
processes are in Sections 2.4.2 and 2.4.3. Two verification strategies, labeled sand-
boxing and concretization in Figure 2.10, are discussed in detail in Section 2.4.4.

2.4.2 Modeling Process

This section provides insights into µArchiFI’s modeling process. First, we explain
how to use Yosys to model a hardware/software system in Rtlil. Using Yosys
saves us from developing a similar tool from scratch, which would be impracticable.
However, Yosys does not support specifying a fault model. Therefore, we developed
our own transformation pass, FaultRtlil, to model faults in Rtlil, which is also
described below.

Hardware Modeling

µArchiFI relies on Yosys to translate a hardware description into a circuit model
C = (G,W). First, we must ensure that the input design falls within the subset
of Verilog supported by Yosys. If the design uses SystemVerilog features, we can
translate it from SystemVerilog to Verilog using the open-source tool sv2v [Sno].
Additionally, Yosys supports VHDL designs through the Ghdl plug-in [Tri].

The required hardware design includes the processor description to be analyzed
and a memory model. In the current version of µArchiFI, the memory model must
be provided to Yosys at the RTL level and must comply with the memory protocol
interface to communicate with the processor.

Software Modeling

The source code to be evaluated must be compiled for the targeted processor ar-
chitecture using the riscv32-unknown-elf-gcc tool suite. The resulting object file,
which contains the machine code, is then linked with Bsp (board support pack-
age) files to produce an Elf (executable and linkable format) file. Essential Bsp
files include Crt0.s (C runtime zero)—which performs the system initial setup e.g.,
stack and heap pointers, global variables—the linker script (link.ld)— which maps
object files in memory, defines memory regions, and sets the boot address—, and
syscall.c—which contains low-level system functions like printf and memcpy since
the executable does not link to the standard C library to minimize the executable
size. Before being loaded into the memory model for execution, the Elf file must
be converted to a valid Yosys input using the elf2v script (visible in Figure 2.10)
to constrain the initial state of the memory model with Verilog directives.

46

2.4. µArchiFI Workflow

Initial State Configuration

The previous sections described how to express a hardware/software system in the
Yosys infrastructure. However, the current processor’s initial state has not yet been
constrained and does not match the context of the software program to be verified.
To address this, we precompute the system’s initial state from the boot point to the
software function to be verified.

1 sim −zinit −clock clk_sys −resetn rst_sys_n −n 83 −rstlen 3 −w

Listing 2.1: Yosys’s simulation pass to set the system’s initial states.

As depicted in Listing 2.1, the simulation pass sim of Yosys addresses this issue.
The parameters are:

-zinit: Sets all uninitialized registers and memory to zero,

-clock: Specifies the clock signal,

-resetn: Specifies a negative reset signal (active low),

-n: Provides the number of cycles to simulate the design,

-resetlen: Indicates the duration of the reset signal.

-w: Uses the simulation result as the design’s new initial state.

Choosing the simulation length based on the number of instructions to execute
from the entry point to the function of interest ensures the proper initial state for
formal verification. By definition, simulation is deterministic and does not allow
for symbolic data. However, once the system has been simulated, it is possible to
insert symbolic data by removing the \init attribute of memory and registers in the
Rtlil specification. Consequently, the hardware/software system can have multiple
initial states due to unconstrained memory regions.

Fault Modeling

Faults, defined by a fault model F , can be encoded into the Rtlil representation of
the system using the FaultRtlil pass. This pass operates on the current selection
and has multiple options to specify the effect, timing, and maximum number of
faults. Listing 2.2 summarizes the FaultRtlil syntax.

Locations. The FaultRtlil pass does not take the fault location as input, as it
directly operates on the current selection (see §Selection in Section 2.3.3). Executing
Yosys’s select command before calling FaultRtlil allows choosing fault locations
based on pattern-matching, cell-type, or cell-width operations.

47

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

1 fault_rtlil [options]
2

3 −effect { set | reset | flip | fixed <value> | symbolic | diff }
4

5 −timing <range>
6

7 −cnt [local] <max_fault>

Listing 2.2: FaultRtlil command syntax.

Effects. In Section 2.1, we defined fault effects e ∈ E as functions Bv → Bv that
replace the original gate output value with a faulty value. Using µArchiFI, the user
can specify multiple fault effects. Options like set, reset, flip, and fixed correspond
to setting all bits of the target to one, zero, flipping them, or fixing them to a
specific value, respectively. µArchiFI also supports symbolic fault effects to cover
every possible effect simultaneously. A symbolic fault effect is an uninterpreted
function [BD94, BLS02] that maps the fault-free variable to a fresh new symbolic
value, encompassing set, reset, or flip effects. The diff effect is a symbolic fault with
the additional constraint that the faulty value must differ from the fault-free one.

Figure 2.11 shows how faults are injected in Rtlil and summarizes the various
fault effects: (a) depicts the fault-free circuit, (b) shows a fault injection involving
a concrete fault effect, e.g., a bit-flip, and (c) illustrates a symbolic-effect fault
injection. Since we work with transient faults, a multiplexer c2 selects when the
fault effect must be applied.

(a) Fault-free circuit. (b) Concrete fault injection. (c) Symbolic fault injection.

Figure 2.11: Rtlil transformation using the FaultRtlil pass.

Timing. The timing is specified to FaultRtlil as a range of integers, defining
when the transient fault effect must be applied to the circuit. To implement this in
Rtlil, which has no notion of time (being a structural and functional circuit view),
we introduce a clock_cnt variable initialized to zero. This variable acts as a simple
counter when the circuit model is converted into a transition system using Yosys’s
backend. As a result, the fault selector signal (sel in Figure 2.11) is set to false
when clock_cnt is not within the specified timing range. This constraint is specified
in Rtlil using the formal assume statement as follows:

assume ¬sel ∨ (clock_cnt ∈ range)

Order. The -cnt parameter of FaultRtlil specifies the attack order, i.e., the
maximum number of faults to be injected into the system. This option generates a
cnt variable in Rtlil, initialized to 0 and incremented each time a fault is injected.

48

2.4. µArchiFI Workflow

It serves as a cardinality constraint over fault selector signals (sel) to ensure that
the number of faults injected into the system cannot exceed the attack order k. The
local option specifies whether the generated counter should be local to each module
in the hierarchy or global for the entire design.

Attacker Goal

An attacker goal φ : X ×S → {0, 1} is a Boolean predicate over circuit input values
X and register values S (cf. Definition 2.7). µArchiFI does not provide a dedicated
pass to specify the attacker goal. Instead, the user must encode φ directly in the
hardware design using a SystemVerilog Assertions [CDHK15] construction as follows:

assert property ¬φ

In this example, we assert φ’s negation as the assert property keyword is used to
specify system invariants. The attacker goal must be expressed using the Verilog
syntax. Then, φ is translated into Rtlil using Yosys’s Verilog frontend and finally
converted into the formal specification of the transition system.

2.4.3 Formal Verification

This section provides insights into µArchiFI’s verification process. First, we detail
how to use third-party model checkers to evaluate the hardware/software system’s
security against fault attacks. Then, we explain how to interpret verification results
and understand the consequences of faults on software security when the attacker
goal is satisfiable.

Model Checking

µArchiFI performs symbolic reachability analysis using any third-party model
checker compatible with the Btor2 language, such as Pono [MIL+21] and BtorMC
[NPWB18]. The formal Smt-lib specification generated by Yosys is uniquely de-
signed to work with Yosys-Bmc.

Each model checker requires additional parameters such as the backend SMT
solver, the bound (i.e., the maximum number of transitions to perform in the sys-
tem), and the output witness file when a counterexample is found.

For a reminder of the reachability problem we are checking and the symbolic
reachability analysis algorithms, we refer the reader to Section 2.1 (Figure 2.7) and
Section 2.2 (Algorithm 2.2).

The witness output by model checkers is a system execution trace (si)
n
i=1 ∈ S

n

where s1 ∈ S0 is an initial state and sn fulfills the attacker goal φ. The witness
is then converted to a counterexample in VCD (value change dump) format using
Yosys-Bmc or Btor2tools.

49

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

In some specific cases, the user may want to enumerate multiple fault attacks
that enable an attacker to reach their goal. Currently, µArchiFI does not support
model counting or enumeration. A workaround for this limitation is to generate
multiple model-checking problems with different fault models.

Counterexample Analysis

The VCD counterexample reports a faulty system execution trace. However, un-
derstanding the propagation of faults and their consequences on software security
requires human expertise. To ease this task, we developed a VcdDiff tool that com-
putes the difference between the counterexample trace and a reference one. This
step is shown in Figure 2.10.

depth

width

early-et

(a) Sandboxing.

depth

width

À

concretizing

(b) Concretization.

Figure 2.12: Optimization effects on the state space to explore.

2.4.4 Software-Driven Optimizations

As previously introduced in Section 2.2.4, a well-known approach to mitigate the
state space explosion consists in reducing the state space through abstractions. In
the case of µArchiFI, performance limitations may come from the complexity of the
SMT queries sent to the SMT solver. To address this issue, this section proposes two
verification strategies to improve the efficiency of the workflow. These optimizations
are said software-driven as we rely on program counter (PC) values to reduce the
state space. First, the sandboxing technique restricts the range of possible PC
values. Second, concretization splits the formula to be solved into several sub-
formulas according to the PC.

Sandboxing

Sandboxing is an example of under-approximation of system behaviors where addi-
tional constraints are applied to the model according to the software evaluated. The
program counter (PC) is restricted to a range of values that a simple static analysis
can extract from binary addresses, e.g., using an objdump tool. The benefit of this
approach is that it only considers the paths that satisfy the sandboxing condition.
This situation often occurs when analyzing a given (set of) function, and we do not

50

2.4. µArchiFI Workflow

want the program to jump to another memory location as its content is not modeled
in the analysis. As illustrated on Figure 2.12a, the verification stops exploring soft-
ware execution paths that do not satisfy this sandboxing constraint. Consequently,
the BMC procedure can also terminate faster when the entire state space has been
explored. Using sandboxing, our approach loses the completeness. Even if we as-
sume that the possible solutions we miss are not relevant, this technique must be
used to explore possible vulnerabilities rather than prove the system’s robustness.

While only one PC exists at the software level, several microarchitectural reg-
isters store its value in the processor design. Identifying the proper PC variable
to constrain is consequently the main challenge when implementing the sandbox-
ing strategy in practice. The fetch stage PC speculates on the next addresses to
be read from memory. Applying the sandboxing technique on this register would
thus require relaxing the sandboxing constraint. The execute stage PC misses un-
conditional branches that are resolved directly in the decode stage. We therefore
implement sandboxing by constraining the PC of the decode stage of in-order pro-
cessors, as presented later in Chapter 3.

Concretization

Concretization is an optimization technique inspired by path-based encodings like
symbolic execution [Kin76, BCD+18]. The fundamental idea behind symbolic ex-
ecution is to split the formula to be checked into sub-formulas according to the
different execution paths. However, this technique may encounter an exponential
number of paths to check, the so-called path explosion problem.

Informally, concretization selects a system state variable and enumerates its
possible values to divide the formula into several easier-to-solve sub-formulas. Like
sandboxing, we rely on PC values to distinguish between different execution paths.

The concretization procedure is detailed in Algorithm 2.3. First, we define a
BMC function, adapted from Algorithm 2.2, to compute the sets of reachable states
and check the validity of φ at each iteration (lines 1 to 6). At lines 7 and 8, we
initialize the predicate reachable with the initial states S0, and perform BMC up to
the concretization depth m. Then, the concretization loop enumerates the possible
values for the PC (lines 10 to 16). This loop successively asks an SMT solver to give
models of the system with different PC values. It stops when no more system model
exists, i.e., ψ becomes unsatisfiable, or after a given number of concretizations nbconc.
A new BMC procedure is performed for each enumerated PC value until bound n

(lines 17 to 20). When the PC enumeration is incomplete, the remaining paths are
encoded within a single formula and checked together (lines 21 to 24). A preliminary
program analysis can identify branches’ locations and determine the most suitable
depth m for which the user should perform the concretization.

51

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

Algorithm 2.3: Bounded model checking with concretization.
Input: a Mealy machineM = (X,Y, S, S0 , δ, λ), a property φ, a bound n,

a concretization depth m, and a number of concretizations nbconc.
Output: exit on success if φ is reachable within n steps, failure otherwise.

1 Function BMC_loop(M,Φ, φ, n): ▷ BMC (see Algorithm 2.2)
2 for i from 1 to n do
3 if (SAT(Φ ∧ φ)) then
4 exit success;

5 Φ← Φ ∨ succ(Φ);

6 return Φ;

7 reachable← [[S0]](s);
8 reachable← BMC_loop(M, reachable, φ,m);

9 ψ ← reachable; enumPC ← {}; terminate← false;
10 for iter from 1 to nbconc do ▷ Concretization loop
11 if (SAT(ψ)) then
12 address← get_model (ψ) (PC);
13 enumPC ← enumPC ∪ address;
14 ψ ← ψ ∧ (PC ̸= address);
15 else
16 terminate← true; break;

17 for each address ∈ enumPC parallelize ▷ BMC runs on concretized paths
18 reachable← reachable ∧ (PC = address);
19 BMC_loop(M, reachable, φ, n−m);
20 exit failure;

21 if ¬terminate then ▷ BMC on remaining paths, if needed
22 reachable← reachable ∧ (PC /∈ enumPC);
23 BMC_loop(M, reachable, φ, n−m);
24 exit failure;

2.4.5 Previous µArchiFI Versions

µArchiFI has undergone many improvements throughout the Ph.D. thesis, and this
section has presented the latest version of the tool. However, the results presented
later in Chapter 3 also rely on a previous version of µArchiFI, which we refer
to as µArchiFIv0. The following paragraphs describe the main evolutions and
differences between the tool versions.

Incomplete Initial State Configuration. Initially, the system’s initial states were
not computed using Yosys’s sim command but rather with an external simulator like
QuestaSim. We simulated the design up to the desired clock cycle and dumped the
contents of specific design elements, such as memory or the register file, to constrain
the system’s initial state. However, other flip-flops, such as pipeline-stage registers,

52

2.4. µArchiFI Workflow

were not retrieved from the simulation and were consequently initialized to their
default reset values. This incomplete microarchitectural state initialization could
lead to spurious evaluation results.

Fault Expressiveness. µArchiFIv0 modeled faults directly in the generated Smt-
lib specification instead of injecting them into Rtlil using the FaultRtlil pass.
Consequently, the previous µArchiFI version supported only a limited fault model.
Selecting fault locations was a manual task and did not take advantage of Yosys’s
select command to apply automated selection rules. Additionally, some logic gates
were not faultable as they were directly optimized when using Yosys’s formal back-
end. Furthermore, only the symbolic fault effect was supported by the tool. Finally,
additional constraints encoding the fault timing, attack order, or attacker goal were
specified in an external file of constraints (cf. smtc files [Wola]).

Model Checker Support. Since faults were directly encoded in Smt, µArchiFIv0
was bound to use Yosys-Bmc as the Smt-lib output of Yosys is not a standard
model-checking specification. The Btor2 format was not supported, and the pre-
vious µArchiFI version could not benefit from state-of-the-art model checkers like
Pono or BtorMC.

Limitations of the Current Version. Despite its many advantages over the previous
version, the current µArchiFI still has some limitations.

First, the hierarchical representation of designs using modules in Rtlil is a
bottleneck for specifying global constraints like the fault attack order or properties
such as the attacker goal. The visibility of variables from one module to another
is restricted, as hardware modules can only exchange values through input/output
ports. One solution to this limitation is to flatten the design.

Second, and this is probably the major limitation of µArchiFI, the modeling
and verification steps are unable to interact with each other. The only interface
between these two steps is the Smt-lib or Btor2 file produced by Yosys. Con-
sequently, everything must be encoded in that formal specification, including the
hardware/software system, the fault model, and the attacker goal. This restriction
means it is not possible to modify the model during the model-checking phase. Be-
ing able to modify the model by pushing and popping assumptions would have been
practical for enumerating counterexamples or implementing optimizations. For in-
stance, sandboxing is integrated into µArchiFI as it only requires adding a global
constraint on the PC value. However, the concretization technique, which requires
interactions between the model checker and the modeling part, cannot be integrated
into the tool. Instead, we instrumented Yosys’s in-house solver, Yosys-Bmc, as it
allows us to stop the model checking at the desired depth to concretize the PC
value. This optimization, however, has not been ported to other solvers like Pono,
as modifying the model checker itself would have been impractical.

53

Chapter 2. µArchiFI Workflow: Formal Modeling and Implementation

2.5 Conclusion

In this chapter, we first introduced a formal modeling for CPU-based systems,
including fault attacks. We then provided the necessary background on model check-
ing to evaluate reachability properties on these models using formal techniques. Ad-
ditionally, we presented the Yosys synthesis tool with the objective of leveraging
its existing synthesis infrastructure to focus on the automated integration of faults
into the system. Finally, we described µArchiFI, the first tool designed to formally
evaluate the security of hardware/software systems against fault attacks.

µArchiFI is currently available in open access on Zenodo1, Github2, and a pull
request will be submitted to integrate the FaultRtlil pass into Yosys.

In conclusion, this chapter has proposed an initial solution to bridge the gap
between automated fault evaluation tools operating at the circuit level and those
working at the binary level. However, this chapter primarily focused on defining
the tool, whereas one of the main challenges of formal verification methods lies in
their practical usage. Therefore, the next chapter showcases several applications of
µArchiFI and evaluates its performance.

1https://zenodo.org/records/7958412
2https://github.com/CEA-LIST/uArchiFI

54

https://zenodo.org/records/7958412
https://github.com/CEA-LIST/uArchiFI

Chapter 3
Experimental Evaluation using
µArchiFI

Contents
3.1 Case Study I: Microarchitectural Exploits 56

3.1.1 Experimental Set-Up 56
3.1.1.1 CV32E40P Processor 57
3.1.1.2 VerifyPIN 59
3.1.1.3 Generated Circuit Model 61
3.1.1.4 Attacker Model 61
3.1.1.5 Model Checking Protocol 62

3.1.2 Microarchitectural Exploits 63
3.1.2.1 Forwarding 63
3.1.2.2 Multiplier 63
3.1.2.3 Aligner . 65
3.1.2.4 Prefetch Buffer 65
3.1.2.5 Remaining Faults 67

3.1.3 Discussion . 67
3.2 Case Study II: Control Signal Integrity 68

3.2.1 Experimental Set-Up 69
3.2.1.1 MAFIA Protection 69
3.2.1.2 VerifyPIN 70
3.2.1.3 Generated Circuit Model 70
3.2.1.4 Attacker Model 70

3.2.2 Evaluation Results 71
3.2.3 Conclusion . 72

3.3 Performance Evaluation . 72
3.3.1 Performance of µArchiFIv0 73
3.3.2 Evaluation Scenarios 74

3.3.2.1 Use Case I: Robust Software 74
3.3.2.2 Use Case II: Robust Hardware 75
3.3.2.3 Use Case III: Cryptographic Software 76

3.3.3 Performance Results 76
3.3.4 Influence of Verification Strategies 78
3.3.5 Discussion . 79

3.4 Conclusion . 80

55

Chapter 3. Experimental Evaluation using µArchiFI

Chapter 1 of this manuscript identified the need for a formal and automated
approach to verifying the effect of faults on the security of CPU-based systems.
An initial response to this problem was provided by the µArchiFI tool introduced
in Chapter 2. However, to determine whether µArchiFI effectively addresses this
challenge, it is necessary to evaluate its usage through case studies. This is the focus
of the present chapter.

Chapter 3 is divided into two main topics: security and performance evaluation.
Initially, Section 3.1 demonstrates the use of µArchiFI to reveal attacks exploiting
microarchitectural mechanisms of processors. Section 3.2 focuses on proving the ro-
bustness of a system integrating the control-flow countermeasures. The performance
of these evaluations is examined in Section 3.3, which also proposes three additional
use cases to evaluate the influence of verification parameters on µArchiFI.

The content of this chapter is adapted from our publications at Workshop on
Fault Detection and Tolerance in Cryptography (FDTC) [TAC+22] and Formal Meth-
ods in Computer Aided Design (FMCAD) [TAC+23]. This work was also presented
at Journée sur les attaques par injection de fautes (JAIF) [Tol22] in 2022.

3.1 Case Study I: Microarchitectural Exploits

As introduced in Section 1.1, recent works have highlighted the importance of
considering microarchitectural mechanisms, such as pipelining and forwarding, when
evaluating the consequences of fault injections [YGS15, LBD+18, ACD+22]. How-
ever, these evaluations were performed manually as the simulation techniques em-
ployed were insufficient to exhaustively analyze the effect of faults. In this section,
we demonstrate the capability of µArchiFI to perform these analyses automati-
cally. We validate our approach by reproducing known results from the literature
and expose previously unknown vulnerabilities. The rest of this section is organized
as follows.

First, we describe the evaluated case study—a secure authentication mechanism
running on a RISC-V processor—and define the attacker goal as well as the types of
faults he can inject into the processor. Second, we detail microarchitectural exploits
identified using µArchiFI. Finally, since the security evaluations utilized an earlier
version of the tool, µArchiFIv0, a discussion concludes this section.

3.1.1 Experimental Set-Up

The following paragraphs describe the use case analyzed with µArchiFI and the
formal model it generates for model-checking verification.

56

3.1. Case Study I: Microarchitectural Exploits

PC

WB

IF
ID

ID
EX

EX
WB

IM

RF

EX

WB

IM

RF

EX

RF

CV32E40P

register
file

DIA

rB
rA DA

DB
DC

DIB

rC

CSROpA

OpB
RD

ALUOpB

OpC

RD

OpA

MULT
OpA

OpB RD

OpC

prefetch
buffer decoder

controller

aligner

LSU
OpA

OpB

RD
OpC

compress
decoder

hwloop
regs

sleep unit

interrupt interfacedebug interface

in
st

ru
ct

io
n

in
te

rf
ac

e

da
ta

in
te

rf
ac

e

Figure 3.1: CV32E40P block diagram.

3.1.1.1 CV32E40P Processor

The CV32E40P is a 32-bit, in-order, RISC-V core from the OpenHW Group designed
for light-embedded use [Opeb]. It implements the RV32IMC ISA with a 4-stage
pipeline (IF, ID, EX, WB) as illustrated in Figure 3.1. The CV32E40P is developed
in SystemVerilog, and the sources are publically available [Opea]. The CV32E40P
does not include protections against faults. In the following, we introduce three
microarchitecture features of the CV32E40P processor, which, as detailed later in
Section 3.1.2, are vectors of vulnerability during FI attacks.

Forwarding (FWD). Forwarding is a microarchitectural optimization designed to
avoid processor stalls due to data hazards (cf. Section 1.1). The forwarding mech-
anism bypasses the write-back of an operation result to the register file to provide
it to the previous pipeline stages as soon as it is available. The implementation is
subject to many factors, such as pipeline depth and the location of the bypasses that
retrieve the available data. In the CV32E40P, the forwarding mechanism shortcuts
data dependencies in the ID stage (dashed lines on Figure 3.1). Any result from
functional units, e.g., ALU, MULT, LSU, can then be used in the ID stage without
passing through the register file.

Multiplier (MULT). The multiplier, denoted as MULT in Figures 3.1 and 3.2,
performs the multiplication between two 32-bit integers and stores the result in the
register file. This unit implements two types of instruction that either output the
32 least significant bits (mul instruction) or the 32 most significant bits (mulh in-
struction) of the result. The computation time depends on the requested operation.
Only one cycle is sufficient for mul, whereas five cycles are needed for the mulh in-
struction. In this latter case, a finite state machine drives the operation and two
signals indicate to other processor pipeline stages that a multi-cycle multiplication

57

Chapter 3. Experimental Evaluation using µArchiFI

IF
ID

ID
EX

ALU branch

MULT
OpA

OpB

OpC

prefetch
buffer

ID stage

multicycle

mulh_ready

ex_ready

Figure 3.2: Multiplier input/output signals and their use to stall the preceding
pipeline stages in case of a multicycle multiplication.

is in progress.

1. multicycle: this signal is sent to the ID stage to determine if the intermediate
result, computed over iterations, needs to be returned to MULT via the signal
OpC. Consequently, the ID stage stops decoding new instructions.

2. mulh_ready: this signal indicates if a multicycle multiplication is in progress.
As a result, the EX stage is tagged as busy, and this information is then
propagated to the IF stage to stop fetching new instructions.

Prefetch Buffer (PFB). The CV32E40P processor has a prefetch buffer in the IF
stage as shown on Figure 3.1. The PFB performs word-aligned 32-bit memory read-
ings and stores the fetched words in a FIFO with a queue of two instruction words.
At the microarchitectural level, two independent program counters (PCs) exist. The
first one, PCIF , specifies the last instruction that passed the IF stage. It is used in
the following stages, in particular, to compute the target address of direct branches.
The second one, PCPFB , indicates the address of the next instruction to fetch in
memory. Because of the speculative nature of the PFB, the PCPFB is incremented
ahead of time and independently from PCIF . Both PCs are resynchronized when a
branch is taken.

push

pop

flush

data_i

full

empty

status_cnt

data_o

FIFO write

read
32 32

Figure 3.3: Prefetch buffer FIFO in the CV32E40P.

Figure 3.3 shows the FIFO used in the PFB to store fetched instruction words.
The signal status_cnt corresponds to the number of instructions contained in the
FIFO. The signals full and empty indicate its status, i.e., whether it is full or empty,
respectively. The pointers read and write indicate the buffer location where the
next value should be read or written. These pointers are incremented modulo the

58

3.1. Case Study I: Microarchitectural Exploits

1 #define PIN_SIZE 4
2 SBYTE g_ptc;
3 BOOL g_authenticated, g_countermeasure;
4 UBYTE g_userPin[PIN_SIZE], g_cardPin[PIN_SIZE];
5 void initialize() {
6 g_countermeasure = false;
7 g_ptc = 3;
8 for (int i = 0; i < PIN_SIZE; ++i) {
9 g_cardPin[i] = i + 1;

10 }
11 for (int i = 0; i < PIN_SIZE; ++i) {
12 g_userPin[i] = 0;
13 }
14 }
15 BOOL byteArrayCompare(UBYTE* a1, UBYTE* a2, UBYTE size) {
16 for (int i = 0; i < size; i++) {
17 if (a1[i] != a2[i]) {
18 return false;
19 }
20 }
21 return true;
22 }
23 BOOL verifyPIN() {
24 g_authenticated = false;
25 if (g_ptc > 0) {
26 if (byteArrayCompare(g_userPin, g_cardPin, PIN_SIZE) == 1) {
27 g_ptc = 3;
28 g_authenticated = true;
29 return true;
30 }
31 g_ptc--;
32 return false;
33 }
34 return false;
35 }
36 int main() {
37 initialize();
38 verifyPIN();
39 assert(g_countermeasure == false && g_authenticated == true); // φauthen
40 assert(g_countermeasure == false && g_ptc >= 3); // φptc
41 return 0;
42 }

Listing 3.1: C code of VerifyPIN_v0 which has no countermeasures.

queue size since the buffer is circular. The FIFO ports for receiving and transmitting
instructions are data_i and data_o, respectively.

3.1.1.2 VerifyPIN

A critical piece of software that needs to be robust against fault injections is the
memcmp-like mechanism used in authentication or signature verification, e.g., in a
secure boot process. As practical examples, the VerifyPIN programs from the FISSC
benchmark suite [DPP+16] will be used as a common thread over the next sections.
VerifyPIN compares two PIN codes stored in memory: a user and a secret (card)
PIN, and allows user authentication when PIN codes are identical.

Listing 3.1 provides the C code of VerifyPIN. First, the initialize function
initializes the countermeasure flag to false, the try counter (g_ptc) to 3, and the
cardPIN and userPIN codes. Then, the byteArrayCompare function returns true if

59

Chapter 3. Experimental Evaluation using µArchiFI

the two input arrays are equal. Finally, the VerifyPIN function performs the com-
parison and updates the global variables g_authenticated and g_ptc accordingly.
The program is available in eight versions with an increasing number of protections
against fault attacks. VerifyPIN_v0 has no protection, while VerifyPIN_v7 is the
version with the highest number of countermeasures. The proposed countermeasures
are reported in Table 3.1 and their principle is detailed below:

Table 3.1: VerifyPIN suite and its countermeasures, adapted from [DPP+16].

VerifyPIN version HB CL IC BC SC DT
v0
v1 ✓

v2 ✓ ✓ ✓

v3 ✓ ✓ ✓ ✓

v4 ✓ ✓ ✓ ✓ ✓

v5 ✓ ✓ ✓ ✓

v6 ✓ ✓ ✓ ✓

v7 ✓ ✓ ✓ ✓ ✓

Program Features
CL Constant time loop
IC Inline call

Countermeasures
HB Harden Boolean
BC Backup copy
SC Step counter
DT Double test

HB Booleans are hardened by using non-trivial true and false values whose Ham-
ming distance is maximal.

CL The comparison loop has a fixed number of iterations.

IC The byteArrayCompare function is inlined to protect against instruction skips.

BC Global variables are duplicated. Their values are affected and tested twice.

SC The loop counter is compared against the expected number of iterations upon
loop exit.

DT Critical tests are duplicated.

In the following, we evaluate VerifyPIN_v3 and VerifyPIN_v7 using two different
compiler optimization levels, -Og and -Os. We target the RV32IM instruction set
using version 10.2 of riscv32-gcc. The compilation flag -Og produces a machine code
with a limited number of optimization passes so that it preserves a good traceability
between the C code and the generated binary code, while the -Os optimization
level uses more aggressive optimizations and focuses on code size reduction. We
use these two optimization levels for each selected VerifyPIN version to produce
binary programs with different structures and instruction ordering. This allows us
to analyze more patterns from a single input program and highlight the impact of
the binary code on the presence of subtle vulnerabilities. Both selected optimization
levels can remove or alter the implemented countermeasures. When necessary, we
manually added them to the final assembly file to impose their presence at the
binary level. In the remainder, we denote the four resulting binaries as follows:
v3_Og, v3_Os, v7_Og, v7_Os.

60

3.1. Case Study I: Microarchitectural Exploits

In all experiments, we consider userPIN and cardPIN to have three 8-bit digits,
i.e., PIN_SIZE = 3 in Listing 3.11. In addition, each digit is treated as a symbolic
variable, meaning it has no concrete value. However, each pair of digits is different,
and modifying only one of them is not sufficient for authentication. Equation (3.1)
formalizes this assumption.

∀i ∈ [0, PIN_SIZE− 1], userPIN[i] ̸= cardPIN[i] (3.1)

3.1.1.3 Generated Circuit Model

µArchiFI produces a circuit model of the CV32E40P processor. As described in
Section 2.1, we considered a closed system, embedding a memory model connected
to the CPU and initialized with VerifyPIN. Table 3.2 summarizes the circuit char-
acteristics.

Table 3.2: CV32E40P circuit model characteristics.

Design
Name

Size
(GE)

Wires Gates
(#)

Registers Memory Model
(#) (# bits) (#) (# bits) Size Symbolic Data

CV32E40P 48 000 3 855 39 944 3 180 179 2 786 32× 210 8× 2× 3

First, we report the circuit size in gate equivalent (GE). GE is a standard in-
dicator of circuit complexity often used in the industry. It is independent of the
technological library used and the formal model generated.

Then, we provide the circuit characteristics in terms of wires W , gates G,
and registers R. Since several levels of circuit representation will be used in this
manuscript—word-level in this section and bit-level in Chapter 4—we also report
the wire and register sizes in terms of bits. For instance, 179 resisters represent
2 786 bits since most of them are 32-bit registers. The number of registers’ bits also
indicates the state space size to explore.

Finally, the memory model we use has 210 32-bit words of storage. Its size
is defined according to a bare-metal linker script, which determines the required
space to store the VerifyPIN instructions, as well as the necessary space for data
storage, e.g., the stack and the heap. The memory is initialized with the content
of the VerifyPIN program. Additionally, we precomputed the initial state of the
heap, stack, register file, and program counter, initializing these memory locations
accordingly so that the formal analysis can start directly from the first instruction
of VerifyPIN. We zero out unused memory locations and leave the userPIN and
cardPIN values as symbolic.

3.1.1.4 Attacker Model

The vulnerability analysis in this section is motivated by the desire to highlight the
importance of considering microarchitectural details when evaluating fault effects.

1VerifyPIN originally uses 4-digit PINs.

61

Chapter 3. Experimental Evaluation using µArchiFI

Consequently, we exclude faults affecting data and general-purpose registers, as these
can be easily modeled at a higher level of abstraction. Instead, we focus on faults
occurring in control signals that drive instruction fetching, decoding, and the control
path. These faults are particularly interesting because they can lead to effects that
cannot be modeled at the ISA level, as discussed in Section 1.1.

Fault model. The fault model F we consider is defined as follows:

F = {(g, e) ∈ G× E | size_of (g) ≤ 6 ∧ is_named (g) ∧ e = symbolic} (3.2)

We target gates whose output width is less than or equal to 6 bits and that cor-
respond to a named signal in the provided RTL description. Informally, a signal
is a bit-vector used in hardware description languages like Verilog. We choose to
arbitrarily filter out large signals—as they correspond to data—as well as unnamed
signals to limit the results obtained to simpler and easier-to-explain effects. Finally,
our evaluation considers symbolic fault effects, which encompass every possible effect
e ∈ E, as described in Section 2.4.2.

Given the fault model F , we consider that an attacker can inject a single tran-
sient fault anytime during the program execution as formalized below:

F ⊆ F × [1, n], with |F| = 1

The integer n corresponds to the program execution time, as shown in Table 3.3.
For each version of VerifyPIN, we simulated the program to determine the required
number of clock cycles and set the value of n accordingly.

Attacker goal. The attacker wants to authenticate without triggering the counter-
measure as formalized in Equation (3.3).

φauthen := g_authenticated ∧ ¬g_countermeasure (3.3)

A manual inspection of the VerifyPIN binary files provides the memory addresses
of the global variables g_authenticated and g_countermeasure. Then, the attacker
goal φauthen is specified directly in the hardware memory model using SystemVerilog
Assertions. This property is translated into Rtlil and finally converted into the
formal specification of the transition system.

3.1.1.5 Model Checking Protocol

As mentioned earlier in this section, we use a previous version of the tool to evaluate
system security. Specifically, we use µArchiFIv0 to generate an Smt-lib descrip-
tion of the system and rely on Yosys-Bmc for the model checking analysis, with

Table 3.3: Execution time and verification bound for each VerifyPIN version.

VerifyPIN versions v3_Og v3_Os v7_Og v7_Os

Length n (clock cycle) 66 54 68 58
BMC bound n+ ϵ 74 62 76 66

62

3.1. Case Study I: Microarchitectural Exploits

Yices as the backend SMT solver. Other formal backends like Pono or BtorMC,
which require a Btor2 format input, were not usable.

The BMC bound is set to n + ϵ, where n is the execution time in clock cycles,
and ϵ is a small increment relative to n, as shown in Table 3.3.

To enumerate all potential fault attacks that could allow an attacker to reach the
goal φauthen, we generated multiple instances of the verification problem. Each in-
stance represents a fault at a specific circuit location and clock cycle according to the
fault model F . When φauthen is satisfiable, µArchiFIv0 outputs a counterexample.

3.1.2 Microarchitectural Exploits

The analyses performed on the four configurations of VerifyPIN revealed a total
of 250 successful fault attacks. Table 3.4 shows a summarized version of these
results since several fault attacks produce exactly the same consequences due to
signal renaming in the hardware description, i.e., the same wire can be targeted at
multiple locations or timings. Each successful fault injection is given according to its
Verilog module (leftmost column, corresponding to the block diagram in Figure 3.1),
its targeted signal name (i.e., spatial location), and the processor cycle at runtime
(i.e., temporal location). The Category column refers to a manual classification of
the hardware feature corrupted by the fault. In the remainder of this section, we
illustrate the consequences corresponding to each category on selected examples of
successful fault injection. The injected faulty value is not mentioned in this table
but is given when relevant in the illustrative examples developed below.

3.1.2.1 Forwarding

By faulting the forwarding mechanism, an attacker can retrieve a value previously
computed by a functional unit or read from memory, and then forward this value into
one of the operands of the EX stage. Laurent et al. have demonstrated similar results
on the Rocket Processor [LBDP19]. The vulnerabilities reported in Table 3.4 under
the category FWD exploit this mechanism. Both v3_Og and v3_Os are vulnerable
to such faults. The fault injection inverts the conditional branch corresponding
to the if statement at line 26 in Listing 3.1, resulting in a successful malicious
authentication. Due to the differences between the two binary programs, the fault
is injected at different clock cycles for v3_Og and v3_Os.

3.1.2.2 Multiplier

The MULT category in Table 3.4 corresponds to faults impacting the finite-state
machine of the multiplier module, even if no multiplication is performed in the Veri-
fyPIN program. As explained in Section 3.1.1.1, when MULT enters an active state,
it stalls the ID stage via the multicycle signal for up to 4 cycles. The security
concern only arises when the ALU is calculating a branch address at the moment

63

Chapter 3. Experimental Evaluation using µArchiFI

Table 3.4: Results of the FI analysis on VerifyPIN: each reported fault model (des-
ignated by the signal name and the FI cycle) satisfies the attacker goal φauthen.

Module Targeted RTL Signal Category Cycle of Fault Injection
v3_Og v3_Os v7_Og v7_Os

fifo empty PFB 46
status_cnt_n PFB 18, 21-26 26, 27, 45

prefetch_ctrl flush_cnt_q PFB 18, 45, 46

aligner

instr_valid other 18 18, 19, 46
branch_i ALGNR 47
update_state ALGNR 47 47, 52
state other 18, 19

id_stage

alu_bmask_b_mux_sel other 39
alu_vec_mode_ex other 58 48
bmask_b_mux other 46 19, 20, 39
branch_taken_ex other 58 48
id_valid other 19 19, 20, 47
imm_b_mux_sel other 19, 20
reg_d_alu_is_reg_a_id FWD 57 20, 47
regfile_alu_waddr_mux_sel other 19 19, 20

controller

ctrl_fsm_cs other 19, 20, 47, 48
deassert_we other 19 19, 20, 47
halt_id other 19 19, 20, 47
is_decoding other 19 19, 20, 47
jump_in_dec other 57
operand_a_fw_mux_sel FWD 56, 57 19, 20, 46, 47
operand_b_fw_mux_sel FWD 57 47
pc_set other 48

decoder

alu_en other 19, 20, 47
alu_op_a_mux_sel other 57 19, 20, 47
alu_op_b_mux_sel FWD 57 19, 20, 39, 47
ctrl_transfer_insn other 57 47
regfile_alu_we other 19 19, 20
regfile_mem_we other 46, 51 19, 20, 39

ex_stage

alu_cmp_result other 58 48
mult_en MULT 19, 20
mult_multicycle other 19 19, 20, 47
regfile_alu_we_fw FWD 20 20, 21
regfile_we_wb other 21, 22

alu cmp_result other 48
shift_left other 20, 21

mult multicycle MULT 19
mulh_CS MULT 46

lsu data_be other 17

64

3.1. Case Study I: Microarchitectural Exploits

of fault injection. In this scenario, the EX stage notifies the IF stage to remain
ready (via the ex_ready signal shown in Figure 3.2) since a branch might be taken.
Consequently, the IF stage continues fetching instructions from memory while the
ID and EX stages are stalled by multiplication, leading to the fetched instructions
being ignored. If the ALU is calculating no branch, the injected fault does not affect
the program’s behavior, as the multiplication result is ignored anyway. Depending
on the faulty value injected into the multiplication module, up to three instructions
following a non-taken branch can be skipped. Similar to the forwarding vulnera-
bility, this fault exploits the comparison at line 26 in Listing 3.1. However, this
vulnerability does not exist in v3_Og due to the different instruction order.

As mentioned in Section 2.2.4, this microarchitectural fault contradicts the in-
tuition that unused functional units can be safely optimized away, as they can still
be targeted by faults to compromise system security.

3.1.2.3 Aligner

The attacks targeting the Aligner module are grouped in Table 3.4 under the cat-
egory ALGNR. Injecting a fault into the Aligner module prevents the PCIF from
being updated, desynchronizing it from the PCPFB . Until the next taken direct
branch, the program keeps running normally since the instructions are correctly
read from memory and sent to the next pipeline stage. When a direct branch is
taken, the PCIF is used as a reference to calculate the target address. As the PCIF

does not correspond to the address of the currently executed instruction because of
the attack, the program jumps to an incorrect address. The instruction flow then
differs from the expected one.

A fault in the Aligner leads to a successful authentication in v3_Og and v7_Og by
jumping a certain amount of instructions. Here, the exit branch of the comparison
loop (line 21 in Listing 3.1) directly jumps at the instruction that allows a successful
authentication (line 28).

3.1.2.4 Prefetch Buffer

Faults categorized with the PFB label in Table 3.4 consist of modifying signals
that control the prefetch buffer FIFO, as depicted in Figure 3.3. For instance,
the signal status_cnt indicates the number of instructions currently in the queue.
The different possible consequences of an attack injecting a non-null value in the
signal status_cnt when the FIFO is empty are described below and illustrated in
Figure 3.4.

1. Execute the FIFO content: A fault injection at cycle 22 sets the signal
status_cnt to 1. As a consequence, the FIFO is no longer considered empty:
the instruction IA†, which is a witness of a previous execution, is executed (pop
signal). Moreover, the fetched instruction I1⋆ is written in the FIFO (push
signal). The status_cnt is then still equal to one as a push and pop had

65

Chapter 3. Experimental Evaluation using µArchiFI

Figure 3.4: Consequences of fault injection on the PFB. The upper part named gold
represents the non-faulty execution while the lower part named fault illustrates the
faulty execution where the signal status_cnt is subject to fault injection. Symbols
r and w indicate the position of the read and write pointers in the prefetch buffer

(buff). Ix⋆ denotes instructions that should have been executed but were not be-
cause of the fault. Ix† identifies instructions badly fetched from the prefetch buffer
due to the fault. Colored signals indicate a divergence wrt. to the golden execution.

occurred at the same time. However, the read (r) and write (w) pointers
have been incremented. As a result, at cycle 23, instruction IB, which is also
a witness of a previous execution, is sent to the ID stage (pop signal at cycle
23) and executed. The FIFO is now empty (cycle 24), and the read pointer
points to I1, which has not been executed yet.

2. Desynchronize the read and write pointers: When reading instructions
IA and IB in the FIFO due to the fault injection, the read pointer is in-
cremented. Consequently, when the FIFO is empty again (cycle 24), the two
pointers which should point to the same address are now misaligned. This has
no effect during cycles 24-27 because the instructions are directly transmitted
to the ID stage without going through the PFB since the FIFO is empty.
However, when a stall occurs at cycle 27, the instruction I5⋆ is stored and
should be executed at the next cycle. Instead, the instruction I1† from the
location pointed by the read pointer is sent to the pipeline at cycle 28. This
effect lasts until the next taken branch that resynchronizes the two pointers
by flushing the FIFO.

3. Branching to an incorrect address: As explained before, the PFB has
its own PC (PCPFB) to perform read requests in the instruction memory.
However, since the contents of the FIFO have been replayed without notifying
the rest of the processor, the PCIF has shifted by the number of replayed
instructions, i.e., the value injected in the status_cnt signal – one in this
example. Consequently, the next branch will be made one instruction too far

66

3.1. Case Study I: Microarchitectural Exploits

(I10 instead of I9 at cycle 32).

As a result, a single fault injection in the PFB can lead to various effects with
immediate and potentially long-term consequences. In particular, the faulty value
set to the 2-bit signal status_cnt can further desynchronize the read and write
pointers: a branch up to 3 instructions after the correct address may happen.

In both v3_Og and v3_Os, the instructions contained in the buffer are replayed
without side effects for successful faults that fall in this category. However, the
desynchronization of the pointers read and write allows the PIN-comparison loop
to be exited prematurely. The countermeasure verifying the loop counter detects
this faulty behavior. A call to the countermeasure function is then performed, but
it jumps three instructions further. Consequently, the execution continues in the
code region where the user is assumed to be authenticated.

3.1.2.5 Remaining Faults

Some faults identified in Table 3.4 are categorized as other. Many of these are related
to multiplexer selection signals that control operations in the EX stage. These fault
effects are mostly computational errors, and we detail one of them below. Injecting
a fault into the bmask_b_mux signal in both the Og and Os versions of VerifyPIN
allows successful authentication. In the last update the Boolean variable holding
the result of the PIN comparison, the Boolean false is written instead of true. This
occurs due to the encoding choice for hardened Boolean values, where false = 0x55
and true = 0xAA. The fault injection causes a one-bit right shift of the result, i.e.,
0xAA ≫ 1 = 0x55. This behavior raises concerns about the choice of hardened
Boolean encodings. While they maximize the Hamming distance, some elementary
operations can convert one value to the other (e.g., false + false = true; false ≪ 1
= true), which should be avoided.

3.1.3 Discussion

We discuss the important results of this section.

Microarchitectural Faults. The previous results involve subtle fault effects that
cannot be directly addressed with an ISA-level analysis. Specifically, we targeted
mechanisms in the microarchitecture, such as the pipeline or speculative behavior
of the PFB, which are not visible at the ISA level. We observed that the vulner-
abilities are closely tied to the microarchitectural state. Both the state before the
fault injection—the replayed PFB content—and the state after the fault injection—
remaining data in flip-flops—must be considered. These microarchitectural elements
can lead to the manifestation of vulnerabilities a long time after the injection and
depend on software conditions, such as the next branch, to exploit the fault effects.

Finally, it is worth mentioning that vulnerabilities are often the result of a good
timing of the fault injection, with a well-chosen instruction sequence, and a specific

67

Chapter 3. Experimental Evaluation using µArchiFI

microarchitectural state left by the previously executed instructions. Consequently,
minor differences in the binary code, such as the number of instructions, code layout,
or instruction order, can cause some vulnerabilities to disappear or emerge. There-
fore, vulnerabilities stemming from hardware implementation specificities are subtle
and require analysis of both the software and hardware, as proposed by µArchiFI.

VerifyPIN_v3 vs. VerifyPIN_v7. The differences between the results from Veri-
fyPIN_v3 and VerifyPIN_v7 can be attributed to two main reasons. First, many
previously identified fault injections resulted in inverting or skipping a conditional
branch. The test duplication countermeasure prevents skipping both tests with a
single fault injection, thus eliminating these vulnerabilities. However, two fault
injections exploiting the ALGNR category remain, as the duplication test counter-
measure is ineffective against this fault effect. Second, as described above, many
successful fault attacks depend on a specific microarchitectural state and software
conditions that make the fault exploitable. A different ordering of instructions be-
tween both versions is sufficient to remove vulnerabilities.

Previous Version of µArchiFI. The results presented in this section were published
at the FDTC conference [TAC+22] using µArchiFIv0, which only supports the
Smt-lib and Yosys-Bmc model-checking backend. As described in Section 2.4.5,
faults were directly modeled in Smt-lib rather than injecting them into Rtlil. This
made µArchiFIv0 less expressive for fault injection, and the fault model F used
was not exhaustive due to optimizations by Yosys’s backend, which rendered some
fault locations untargetable in the Smt file. However, this limitation did not impact
the purpose of this section, which was to identify security weaknesses due to the
processor microarchitecture. We ensured the reproducibility of the results described
using µArchiFI.

Conclusion. In this section, we demonstrated various uses of µArchiFI to inves-
tigate and highlight the consequences of faults on the hardened VerifyPIN program.
We validated our approach by reproducing known attacks exploiting the forwarding
mechanism and discovering new effects, such as those involving the prefetch buffer.
Consequently, the design of security-critical systems requires a thorough analysis
of both hardware and software, as the intricate coupling between microarchitecture
and the running program leads to subtle fault consequences.

The next section focuses on evaluating a robust version of the CV32E40P core
implementing the MAFIA countermeasure, which ensures code, control flow, and
control signal integrity.

3.2 Case Study II: Control Signal Integrity

As discussed in Section 1.3, related works on hardware/software system evalua-
tion have primarily conducted their analyses in a safety and reliability context using

68

3.2. Case Study II: Control Signal Integrity

simulation techniques [JAR+94, STB97]. In this section, we demonstrate the capa-
bility of µArchiFI to perform these analyses exhaustively using formal methods to
prove system security against fault attacks when no vulnerabilities are found. The
rest of this section is organized as follows.

First, we describe a case study implementing the MAFIA countermeasure. Sec-
ond, we present and discuss the evaluation results.

3.2.1 Experimental Set-Up

The following paragraphs describe the use case analyzed with µArchiFI and the
formal model it generates for model-checking verification.

3.2.1.1 MAFIA Protection

MAFIA [CCH22, CCH23] is a countermeasure designed to protect against fault in-
jection attacks by ensuring the integrity of code, control-flow, and control signals.
The cornerstone of this countermeasure is the pipeline state, which is derived from
the control signals emitted by the ID stage in the processor. The pipeline state
is designed to detect up to 8-bit alterations in (i) the binary encoding of program
instructions, or (ii) the control signals in the IF and ID stages. At each cycle, an
integrity signature is calculated based on the current pipeline state value and the pre-
vious integrity signature. Thus, any modification of the pipeline state should result
in an altered integrity signature. This integrity signature is then compared against
reference values placed at specific locations in the binary program (e.g., control-flow
transfers). This process ensures code and control-flow integrity up to the end of the
ID stage. To complete the integrity protection throughout the processor, a redun-
dancy mechanism protects the control signals issued by the ID stage (downstream
of the pipeline state calculation). An alarm signal is triggered whenever an integrity
violation is detected.

A thorough security assessment of a MAFIA implementation against fault at-
tacks must consider the following security properties:

ϕup Faults applied upstream from the pipeline state lead to an alteration of the
pipeline state.

ϕdown Faults applied downstream from the pipeline state are detected by the redun-
dancy mechanism, i.e., the alarm signal is triggered.

ϕcheck Pipeline state alterations or faults in the integrity signature calculation do not
produce valid signature values. Faults applied to integrity signature verifica-
tion and alarm signal propagation do not create exploitable vulnerabilities.

In this section, we examine the MAFIA implementation integrated into the
baseline CV32E40P core. The pipeline state integrates 13 carefully chosen signals

69

Chapter 3. Experimental Evaluation using µArchiFI

from the microarchitecture.

3.2.1.2 VerifyPIN

MAFIA is a combined countermeasure that inserts signatures into the binary pro-
gram at compile time. For the countermeasure to operate correctly, we assume that
the program is correctly built and that the signatures are inserted in the appropriate
locations. Since µArchiFI is designed to evaluate reachability properties for hard-
ware/software systems, it cannot prove the robustness of MAFIA independently of
the executed program and must evaluate it in the context of a given program, e.g.,
VerifyPIN. Additionally, we use concrete values for userPIN and cardPIN instead of
symbolic ones, as given below:

userPIN = {1, 2, 3} , and cardPIN = {5, 6, 7}

As a result, we focus on evaluating MAFIA in the context of the VerifyPIN function,
as introduced in Section 3.1.

MAFIA is verified using two versions of VerifyPIN: VerifyPIN_v3, identified as
the most vulnerable version in the previous section, and a weaker version of Veri-
fyPIN without the step counter countermeasure (SC). Both versions are compiled
with the 0g optimization to ease the manual inspection of the result and ensure
that the compiler does not optimize away the countermeasure. These versions are
referred to as mafia_v3_Og and mafia_v3_weak_Og, respectively.

3.2.1.3 Generated Circuit Model

Similar to Section 3.1, Table 3.5 reports the characteristics of the circuit model.
First, we observe that the design size is 56 500 GE, representing an 18% increase
compared to the baseline version of the CV32E40P core, which is in line with the
original work [CCH22]. Additionally, the size of the memory model is larger than
that of the baseline VerifyPIN versions because MAFIA requires the insertion of
CFI signatures into the binary. Finally, the memory is initialized with the content
of the VerifyPIN program, with unused memory locations zeroed out.

In contrast to Section 3.1, we cannot precompute the system’s initial state to
start the analysis from the first VerifyPIN instruction. The technique employed to
constrain the initial state cannot perfectly restore the pipeline state, which results
in incorrect signatures at runtime. Consequently, we begin the analysis from the
booting point, requiring the execution of 50 instructions before reaching the first
VerifyPIN instruction.

3.2.1.4 Attacker Model

Fault model. Similar to the previous section, the fault model F targets control
signals, arbitrarily defined to be less than 6 bits, with symbolic fault effects as
formalized in Equation (3.2). Given this fault model F , we assume that an attacker

70

3.2. Case Study II: Control Signal Integrity

Table 3.5: MAFIA circuit model characteristics.

Design
Name

Size
(GE)

Wires Gates
(#)

Registers Memory Model

(#) (# bits) (#) (# bits) Size Symbolic Data

MAFIA ∼ 56 500 5 629 56 986 4 954 212 3 444 32× 211 0

can inject a single transient fault at any time during the VerifyPIN execution, as
formalized below:

F ⊆ F × [51, n], with |F| = 1

Faults are not injected during the first 50 instructions as they are not part of the
VerifyPIN program. The integer n corresponds to the program execution time, as
summarized in Table 3.6. The verification bound is set to 140 for each program.

Table 3.6: Execution time and BMC bound for each VerifyPIN version on MAFIA.

VerifyPIN versions mafia_v3_weak_Og mafia_v3_Og

Length n (clock cycle) 115 120
BMC bound n+ ϵ 140 140

Attacker goal. As introduced above, our study focuses on verifying properties
ϕup and ϕdown. The verification of ϕcheck is related to the security analysis of the
integrity signature wrt. an attacker model that depends on the function signature
implemented. This was already carried out in the original work [CCH22] and we
assume that ϕcheck is correct in the following.

Our security assessment verifies that an attacker cannot inject a fault that mod-
ifies the control flow, more precisely that bypass the authentication (φauthen), with-
out modifying the pipeline state or being detected by the redundancy mechanism.
Equation (3.4) summarizes this property.

φmafia := φauthen ∧ (¬ϕup ∨ ¬ϕdown) (3.4)

Intuitively, Equation (3.4) allows an attacker to reach his goal using two differ-
ent attack scenarios. On the one hand, a fault can be injected upstream to the
pipeline state and allow authentication without modifying the pipeline state, i.e.,
φauthen∧¬ϕup is true. On the other hand, a fault can be injected downstream to the
pipeline state and allow authentication without being detected by the redundancy
mechanism, i.e., φauthen ∧ ¬ϕdown is true.

3.2.2 Evaluation Results

Results. The formal verification we carried out did not identify any vulnerabilities
in mafia_v3_Og or mafia_v3_weak_Og. Therefore, we have proven that MAFIA
effectively protects these versions of VerifyPIN against the considered fault model,
preventing an attacker from bypassing the authentication mechanism.

71

Chapter 3. Experimental Evaluation using µArchiFI

Discussion. In this section, MAFIA’s security analysis was conducted on the Veri-
fyPIN program, making the results software-dependent. However, to our knowledge,
no existing methodology can verify combined countermeasures like MAFIA, which
requires modeling both the microarchitecture—to represent control signals, perform
control-flow integrity calculations, and inject faults—and the software that inte-
grates the reference signatures to be verified at runtime. µArchiFI is, therefore,
the first methodology capable of formally modeling a hardware CFI countermeasure
and analyzing the effects of faults on software security. Proving the robustness of
MAFIA independently of the executed program would be an interesting future re-
search direction, but this would require modeling the insertion of signatures for an
arbitrary class of software, which is beyond the scope of this thesis.

Another important topic for discussion is the completeness of the fault evalu-
ation. Similar to Section 3.1, evaluations in this section used the previous version
of the tool, µArchiFIv0. The fault model considered is exhaustive in terms of
injection timing, as faults were injected throughout the program execution, and
exhaustive in terms of effects, as we considered symbolic effects. However, due to
restrictions on the tool’s expressiveness, the fault model does not include all possi-
ble microarchitectural elements. Consequently, the security proof only holds for the
chosen fault model F (cf. Equation (3.2)). To achieve stronger security guarantees,
it is necessary to consider a fault model targeting all circuit logic elements. However,
increasing the size of the fault model may negatively impact performance, making
the analysis impractical. Therefore, performance is the focus of Section 3.3.

3.2.3 Conclusion

This section demonstrated µArchiFI’s capability to formally prove the security of
a CFI countermeasure against a specified fault model. Achieving such a security
proof was previously impossible with either software-only or hardware-only evalu-
ation techniques, as they could not model the operation of a CFI countermeasure.
Additionally, existing co-verification approaches based on simulation could not pro-
vide a formal proof of security as they are unable to cover the entire state space.
µArchiFI thus presents a novel approach to tackling these co-verification challenges.

Sections 3.1 and 3.2 deliberately focused on experimental results, setting aside
performance considerations. The next section concentrates on performance analysis.

3.3 Performance Evaluation

Previous sections of this chapter have focused on demonstrating µArchiFI’s
ability to automatically identify corner-case microarchitectural vulnerabilities and
to prove system robustness against a given fault model. However, formal verifica-

72

3.3. Performance Evaluation

Table 3.7: Verification time for each VerifyPIN analysis. The faults column indi-
cates the number of fault locations (spatial and temporal) explored.

Hardware VerifyPIN version Run Time (h) Faults (#) BMC bound

CV32E40P

v3_Og 12.9 15 240 74

v7_Og 13.9 17 526 76

v3_Os 14.1 14 478 62

v7_Os 14.5 15 240 66

+ MAFIA
mafia_v3_weak_Og 26.7 9 706 140

mafia_v3_Og 20.5 8 685 140

tion techniques come at a cost: they are time-consuming. This section focuses on
µArchiFI’s performance.

Section 3.3 is not intended to exhaustively benchmark µArchiFI’s performance,
as too many parameters enter into consideration. From the modeling side, verifica-
tion time depends on the size of the hardware/software model—including the circuit
and program size—and the number of possible fault injections. From the verifica-
tion side, computation time depends on the complexity of the attacker’s goals, the
bound of the BMC analysis, and the model checker employed, including all the
optimizations they implement. Furthermore, any change in these parameters may
have non-intuitive effects on verification performance due to the solvers being used
as a black box. For example, reducing the state space with additional constraints
can increase verification time since the SMT queries become more complex to solve.
Consequently, exhaustively quantifying the performance impact of all these parame-
ters is beyond our reach. Instead, we propose additional case studies representative
of various security scenarios to highlight the impact of solvers on performance and
the effect of using sandboxing and concretization strategies. We also demonstrate
that µArchiFI scales with multiple fault injections. The rest of this section is
organized as follows:

First, we report the performance of evaluations conducted in Sections 3.1 and 3.2.
Second, we introduce three use cases to evaluate the impact of the backend solver
and verification strategies. Finally, we conclude this section with a discussion on
performance evaluation. Results presented in this section are available in open access
for reproducibility2.

3.3.1 Performance of µArchiFIv0

We begin this section by reporting the performance of the analyses conducted in
Sections 3.1 and 3.2. Table 3.7 shows the verification times using an Intel Xeon
E7-4870 2.40GHz CPU. First, the fault evaluation on the unprotected CV32E40P

2https://zenodo.org/records/7958412

73

https://zenodo.org/records/7958412

Chapter 3. Experimental Evaluation using µArchiFI

took between 12.9 and 14.5 hours to complete for each version of VerifyPIN. In
contrast, evaluating VerifyPIN programs with the CFI protection MAFIA took up
to 26.7 hours. The Faults column indicates the number of faults considered in the
fault model, and the BMC bound column indicates the length of the execution trace
we evaluate. It is important to note that faults were not injected during the first 50
clock cycles of programs running on MAFIA.

To compare our approach against existing simulation frameworks and under-
stand the number of concrete executions required to achieve the same coverage, it is
essential to emphasize that symbolic variables were used during our analyses. First,
the 48 bits of PIN codes are left unconstrained on VerifyPIN running on the base-
line CV32E40P. Second, the effects of the injected faults are also symbolic, covering
every possible effect. These results demonstrate that the developed workflow can
formally verify the execution of a hundred instructions with symbolic data in the
presence of faults within a reasonable verification time.

To further evaluate the verification performance of µArchiFI, the remainder of
this section introduces three use cases designed to have a reasonable execution time
and discusses the impact of various formal verification backends and optimizations.

3.3.2 Evaluation Scenarios

In contrast to the results presented in Sections 3.1 and 3.2, the evaluations con-
ducted in this section have been performed using the latest version of µArchiFI
as described in Section 2.4. Below, we introduce three use cases that illustrate
various security scenarios: robust software, robust hardware, and cryptographic soft-
ware. These use cases are manually dimensioned to ensure reasonable verification
times, allowing us to evaluate the impact of the backend solver and the verification
strategies introduced in Section 2.4.4.

Table 3.8: Use cases characteristics.

Use
Case

Hardware Design Software Program Fault Model Attacker

Name kGE Gates Regs Name gcc Location Effect Timing Goal Order

I CV32E40P 46.8 2 842 179 VerifyPIN_v7 Og R in Control path Symbolic 60:75 φI 1

II Secure Ibex 61.3 4 422 211 VerifyPIN_v1 Os R in Lockstep Symbolic ∞ φII 5

III Ibex 26.4 1 983 114 KeySchedule Os C in EX Stage Reset ∞ φIII 2

3.3.2.1 Use Case I: Robust Software

Use Case I illustrates the possibility for a user to analyze the robustness of a secure
program running on a processor. It is an adaptation of Section 3.1 with a different
fault model. Key components of the use case are described below and summarized
in Table 3.8.

74

3.3. Performance Evaluation

Software. In Use Case I, we target VerifyPIN_v7, the most secure version of the
VerifyPIN suite as introduced in Section 3.1.1.2. The program is compiled with the
optimization flag Og to prevent the compiler from removing the countermeasures,
and it runs in constant time, finishing in 69 clock cycles. In this scenario, we consider
3-digit symbolic PIN values, and we assume that the user PIN and the secret PIN
differ in each digit (cf. Equation (3.1)).

Hardware. The program is executed on the CV32E40P processor [Opeb], as in-
troduced in Section 3.1.1.1. The processor circuit is represented at the word level
and flattened, i.e., we instantiate every module. This flattening is necessary to con-
strain the maximum number of faults, as explained in Section 2.4.5 regarding tool
limitations.

Attacker goal. In this system, the attacker aims to bypass the secure authentica-
tion mechanism without triggering the software countermeasures.

φI := (g_authenticated ∧ ¬g_countermeasure)

Fault model. The attacker we consider targets the comparison evaluating the re-
sults of the byteArrayCompare function, as shown between lines 26 to 30 in List-
ing 3.1. We target this code sequence as it was revealed to be vulnerable during
previous evaluations in Section 3.1. We evaluate the robustness of these instructions
against a single fault injected into the sequential logic of the processor control path,
i.e., registers whose size is less than 6 bits. The considered fault model targets 102
registers out of the 179 registers in the processor and is formalized below:

F ⊆ Fi×[60, 75], with |F| = 1, and Fi = {(g, e) ∈ G×E | g∈R ∧ size_of (g) ≤ 6}

3.3.2.2 Use Case II: Robust Hardware

Use Case II details how a user can determine whether a fault injected into a secure
processor can induce a vulnerable behavior on the software without being detected
by the hardware countermeasure. In contrast with Section 3.1, we evaluate another
secure processor, the Ibex core.

Software. We consider VerifyPIN_v1, the baseline version of the VerifyPIN col-
lection, without any countermeasure except hardened Booleans. As in Use Case I,
we consider symbolic 3-digit PINs. VerifyPIN_v1 is compiled with the optimization
flag Os.

Hardware. The Ibex [low18] is a parametrizable open-source 32-bit, in-order pro-
cessor. We analyze the small version of the core [lowb] in its secure configuration.
The secure Ibex implements protections against physical attacks like the dual-core
lockstep mechanism that instantiates the core twice and compares outputs. The
duplicated core is called the shadow core and an alert signal is triggered if an at-
tack has been detected during the operation of the processor. More details on Ibex
security are later provided as it is the focus of Chapter 4.

75

Chapter 3. Experimental Evaluation using µArchiFI

Attacker goal. In this second use case, the attacker still aims to bypass the secure
authentication mechanism without triggering the hardware countermeasures.

φII := (g_authenticated ∧ ¬hardware_alert)

Fault model. The attacker we consider can inject at most five faults into the sys-
tem. In order to investigate if the dual-core lockstep is well designed, we restrict
fault locations to the shadow core only as we do not want to inject the same fault
in both cores. Faults are injected into registers as formalized below:

F ⊆ Fii × N, with |F| = 5, and Fii = {(g, e) ∈ G×E | g ∈ Rshadow}

3.3.2.3 Use Case III: Cryptographic Software

Use Case III details how a user can apply the tool to software implementations of
cryptographic algorithms.

Software. Tiny AES [kok19] is a small software implementation of the standard
AES. The key schedule function of the AES program expands the key into several
separate round keys. We focus here on a round of the key schedule function from
the 128-bit AES. Input data such as the key and the plaintext have been set to
arbitrary values. The program is compiled with the optimization flag Os.

Hardware. We run the key schedule function on the baseline version of the small
Ibex core without any countermeasure.

Attacker goal. The attacker wants to set to zero a byte in the penultimate round
key as it is a requirement for some known differential fault attacks [TFY07, AM11].
Fault consequences are evaluated at the end of the key schedule function to limit
the analysis to a small sequence of instructions.

φIII := (9 th Round_keybyte = 0)

Fault model. We allow an attacker to inject up to two reset faults anywhere in the
execute stage combinational logic of Ibex, as follows:

F ⊆ Fiii × N, with |F| = 2, and Fiii = {(g, e) ∈ G×E | g ∈ Cex ∧ e = reset}

3.3.3 Performance Results

All verifications are executed on an 11th Gen Intel Core i7-1185G7 CPU. Each
program presented in this section is compiled with the RISC-V toolchain for the
RV32IMC architecture (gcc version 10.2.0). For each use case verification, the BMC
bound n is set according to the longest program execution trace plus a 10-percent
increment to capture possible modifications in the control flow.

76

3.3. Performance Evaluation

Table 3.9: Use-cases verification time (in seconds) with three model checkers.

Use
Case

BMC
Bound

BMC without Fault BMC with Faults

Pono Yosys-Bmc BtorMC Reach φ Pono Yosys-Bmc BtorMC Reach φ

I 75 12.6 11.1 1.5 ✗ 107 249 273 ✓

II 46 20.7 10.6 3.5 ✗ 250 373 timeout ✗

III 38 0.3 2.4 0.1 ✗ 313 1 945 3 427 ✗

Table 3.10: Verification time improvement with the sandboxing technique wrt. the
baseline verification time (in seconds) with faults in Table 3.9.

Use Case PC Sandboxing Pono Yosys-Bmc BtorMC

I 0x1c4 ≤ PC ≤ 0x234 110 (+2.8%) 242 (-2.8%) 205 (-24.9%)

II 0x84 ≤ PC ≤ 0x114 206 (-17.6%) 297 (-20.4%) timeout

III 0x40 ≤ PC ≤ 0xc0 107 (-65.8%) 1 454 (-25.2%) 1 659 (-52.0%)

Use Case I: Robust Software Table 3.9 compares the verification performance
of use cases with and without faults, using three model checkers: Yosys-Bmc,
Pono, and BtorMC. Performing the verification without fault ensures that the
attacker goal φ does not hold outside of an attack. The analysis results in Table 3.9
highlight that the attacker can bypass the authentication by injecting a single fault.
Counterexamples provided by the model checkers allow the user to find the exact
location of the fault that leads to the vulnerability φI. All solvers have identified
the same fault model for this use case, but Pono was the fastest in solving the
model-checking problem. The location of the identified fault is the alu_vec_mode_ex
signal which is located in the id_stage module. This fault was already discovered
in Section 3.1 as shown in Table 3.4.

Use Case II: Robust Hardware Table 3.9 reports that an attacker cannot bypass
the secure authentication with the considered fault model. This use case leverages
the fact that the secure Ibex implements hardware countermeasures. The assump-
tion that the hardware_alert cannot be triggered makes sense as the attacker wants
to bypass the authentication without being detected. Additionally, this assumption
helps the solver to simplify the formula during verification. The second line of Ta-
ble 3.9 shows the verification performance. BtorMC fails to solve the problem,
and we stopped the verification with a 2-hour timeout.

Use Case III: Cryptographic Software As reported in Table 3.9, an attacker cannot
reach his goal with the considered fault model. Notably, verifying φIII on the AES
program without fault is faster than both Use Case I and II because the AES key
is fixed, whereas the two 3-digit PINs are symbolic for the VerifyPIN program.

77

Chapter 3. Experimental Evaluation using µArchiFI

Table 3.11: Verification time improvement with the concretization technique wrt.
the baseline verification time (in seconds) with faults from Table 3.9.

Use Case Concretized step Baseline
Yosys-Bmc

Concretization

Parallelized Accumulated

I 62 (Status comparison) 249 189 (-24.1%) 509 (+104%)

II 31 (PIN comparison) 373 304 (-18.5%) 891 (+139%)

III 23 (No branch instruction) 1 945 1 504 (-22.7%) 2 955 (+51%)

3.3.4 Influence of Verification Strategies

In the following, we evaluate and discuss the impact of software-based verification
strategies on performance with regard to the baseline version of µArchiFI.

Sandboxing

For each use case, we determine the range of possible values for the program counter
(PC) by manually examining addresses from the binary file. Here, the possible
addresses are contiguous, and we add a global constraint on the system to force the
PC to stay in this set of values. Table 3.10 illustrates that the sandboxing strategy
results in a performance improvement up to 65%, and these additional constraints
do not prevent model checkers from retrieving the vulnerability highlighted in Use
Case I.

Such improvements are due to two factors. First, some fault effects are not
analyzed if they lead to PC values that are out of the memory range considered.
Second, the verification may end before the bound n if all possible execution paths
exit from the considered range of PC addresses. We also observe that improvements
vary between the different solvers even if Pono remains more efficient on the use
cases analyzed.

Concretization

Performance is given for the Yosys-Bmc since other evaluated model checkers do
not permit to retrieve the SMT formula encoding the unrolled system. We apply
the concretization strategy for each use case with an arbitrarily chosen enumeration
bound L = 3 to split the bounded verification procedure into L+1 sub-verifications
(cf. Algorithm 2.3).

Table 3.11 reports the concretization steps, the baseline verification time from
Table 3.9, and the concretization performance. We show each experiment’s wall-
clock time and accumulated verification time since we can parallelize the executions.

On Use Case I, we concretize the execution at the first branching instruction
targeted by fault injection. It corresponds to the PIN-status comparison to allow
authentication (step 62 mentioned at line 1 in Table 3.11). This results in an im-

78

3.3. Performance Evaluation

provement of the verification time by 24%. On Use Case II, we apply concretization
during a PIN-digit comparison and enumerate PC values associated to different ex-
ecution paths. However, few performance improvements are observed, especially
regarding the accumulated verification time. We believe this is due to the hardware
countermeasure that already prevents executing different paths due to the faults.
No branching instruction exists on Use Case III. However, many execution paths
are possible due to fault injections. Concretization is applied at step 23, at half of
the verification time. This results in a 22.7% improvement of the verification time
(cf. line 3 in Table 3.11).

The concretizing technique splits a complex formula reachable into simpler for-
mulas. Intuitively, the resulting formulas are easier to solve since symbolic variables
are replaced with constant values. In practice, even if the resulting state space has
fewer states to explore, solvers may have more difficulty simplifying and solving
the concretized formula. As a result, the concretization strategy showed a limited
improvement with respect to the baseline version.

In conclusion, concretization often improves the verification time thanks to the
parallelization of the executions. However, these verification times remain higher
than those obtained using the Pono model checker (Table 3.9).

3.3.5 Discussion

Several questions on µArchiFI performance may stem from the previous analyses.
We discuss them in the following.

Case Study Selection. In this section, we arbitrarily choose three case studies
representative of various security-critical scenarios. However, even if the choice of
these use cases was not discussed in this section, it results from a thorough expertise
from the evaluator. We select these cases to have reasonable verification time that
can run on a laptop and for which we can benchmark the impact of some verification
parameters. The user of µArchiFI must find a sweet spot between the size of the
hardware design, the size of the analyzed program, and the complexity of the fault
model.

Influence of Solvers. The first lesson to be learned from this section is the impor-
tance of the backend solver. We evaluated two state-of-the-art solvers, Pono [MIL+21],
and BtorMC [NPWB18], and Yosys-Bmc which is the in-house solver of Yosys.
Pono was on average, two to ten times faster than the others, and we experienced
some timeouts using BtorMC.

Impact of Verification Strategies. On the one hand, sandboxing has decreased
the verification time by 25% on average. It is an interesting under-approximation to
find security vulnerabilities but must be used carefully to prove system robustness to
faults as it loses completeness. On the other hand, concretization applied to Yosys-
Bmc is less efficient than state-of-the-art solvers like Pono. Other configurations

79

Chapter 3. Experimental Evaluation using µArchiFI

or parameters of these optimizations could have been explored, such as modifying
the number of concretizations or the depth at which they are performed. Also, a
combination of the two strategies would have been interesting to study. However,
these methods showed small improvements with respect to the baseline version.
To scale up to larger case studies, we must improve our approach by orders of
magnitude, which software-based optimizations cannot achieve.

Performance Limitations of µArchiFI. The bottleneck of µArchiFI is the com-
plexity of the generated model checking problem which is still too difficult to be
efficiently solved by state-of-the-art model checkers. This is primarily due to the
monolithic approach that models every system component inside a single formal
model. Intuitively, the complexity of the model-checking problem depends on the
size of the design, the number of combinations of fault injections, and the number
of unrolling corresponding to the program length. As a future work, an interesting
idea to investigate is to prove intermediate properties and use them to simplify the
model checking procedure. This idea is developed in the next chapter.

3.4 Conclusion

Chapter 3 concludes the presentation of µArchiFI, a workflow designed to for-
mally analyze the impact of hardware-level faults on software security. In Section 3.1,
we showcased µArchiFI’s capability to identify multiple vulnerabilities in security-
critical contexts. These results highlight its practical relevance for automatically
detecting corner-case vulnerabilities that simulation-based analyses could miss. In
Section 3.2, we showed that µArchiFI is valuable for proving the robustness of
countermeasures like MAFIA. While state-of-the-art methodologies focus on either
the formal verification of cryptographic circuits or fault analysis at the software
level, none could verify joint protections such as hardware CFI, which require rep-
resentation at both levels. µArchiFI fills this gap. In Section 3.3, we reviewed
µArchiFI’s performance, showing how different model checkers, sandboxing, and
concretization strategies influence verification time. µArchiFI can verify up to a
hundred instructions on a small microcontroller with a single fault injection. The
analysis can be extended to multiple faults if the attack area is limited to a processor
sub-module.

Developing µArchiFI has involved overcoming several scientific challenges we
identified in Section 1.4. First, we proposed a joint modeling of software, hardware,
and faults, and selected the most relevant verification algorithm, as outlined in
Chapter 2. Next, we adapted the theoretical model to real-world security evaluations
through representative case studies of various security scenarios. The final challenge
introduced in Section 1.4 that remains to be addressed is scalability. This issue has
been addressed in previous sections through various methods for abstracting and
simplifying the verification problem. However, even if µArchiFI benefits from state-

80

3.4. Conclusion

of-the-art model checkers, the generated transition-state system is often too complex
to solve. For example, the fault model evaluated in Section 3.2 was incomplete
because we limited our focus to control signals. A more exhaustive proof would not
have been feasible with the current approach. Achieving a thorough formal security
proof for real-world case studies, such as secure elements where security is critical,
requires new verification paradigms due to the inherent complexity of these systems.

Overcoming the scalability problem to achieve an exhaustive proof of security is
the focus of the next chapter.

81

Chapter 4
Preliminary Hardware Analysis
using Fault-Resistant Partitioning

Contents
4.1 Overview . 83

4.1.1 Methodology . 84
4.1.2 Hardware Verification 85
4.1.3 Summary . 85

4.2 Background . 86
4.2.1 OpenTitan Secure Element 86
4.2.2 Bit-Level System Modeling 87
4.2.3 Concurrent Error Detection Schemes 90
4.2.4 Hardware Equivalence Checking 91

4.3 Fault-Resistant Partitioning 94
4.3.1 Intuition . 94
4.3.2 Formal Definition 95
4.3.3 Algorithm to Identify a Fault-Resistant Partitioning . 97

4.4 Implementation . 99
4.4.1 Hardware Verification Flow 100
4.4.2 System Co-verification using Verilator 100

4.5 Validation on Impeccable Circuits 102
4.5.1 Evaluation Results 103
4.5.2 Comparison against Related Work 104

4.6 Evaluation of OpenTitan 104
4.6.1 Hardware Verification: the Secure Ibex 105

4.6.1.1 Register File Analysis 105
4.6.1.2 Dual-Core Lockstep (DCLS) Analysis. . . . 107
4.6.1.3 Full Ibex Analysis 107
4.6.1.4 Discussion on Ibex Analysis with k = 2 . . 107

4.6.2 System Verification 108
4.6.2.1 Secure Boot 108
4.6.2.2 Differential Fault Analysis on tiny AES . . . 109
4.6.2.3 Analysis of VerifyPIN 109

4.6.3 Fixing Register File Vulnerability 110
4.7 Discussion on Methodology Improvements 111
4.8 Conclusion . 112

82

4.1. Overview

In Chapter 2, we introduced µArchiFI, a methodology that integrates software
and hardware into a unified formal model for applying model-checking techniques.
However, as shown in Chapter 3, modeling all system components together leads to
scalability issues, and state-of-the-art model checkers cannot handle such complex
models. This limitation is particularly restrictive when proving system robustness,
as an exhaustive fault model is required to cover every possible attack scenario.
Consequently, only up to a hundred instructions executed on a microcontroller-like
processor can be analyzed for a single fault injection. To challenge our approach, we
decided to tackle the formal security proof of the OpenTitan secure element running
the first stage of its secure boot. However, such a verification problem is beyond the
capabilities of the current µArchiFI version, necessitating an enhanced verification
methodology. This chapter focuses on addressing this challenge.

This Chapter 4 is a step aside from the previous work done with µArchiFI.
Verifying a secure element while considering its software and hardware layers is too
significant to be treated as a single verification step. Instead, the approach devel-
oped in this chapter involves breaking down the verification problem into several
preliminary steps based on the existing countermeasures in the secure element. An
overview of this chapter’s content is given in Section 4.1 with an emphasis on the new
methodology we propose, the challenges we face, and the contributions we make.

The content of this chapter is adapted from the publication at IACR Transac-
tions on Cryptographic Hardware and Embedded Systems (CHES) [THN+24]. This
work was also presented at Groupe de Travail sur les Méthodes Formelles pour la
Sécurité (GTMFS) [Tol24b] and Journée sur les attaques par injection de fautes
(JAIF) [Tol24a] in 2024. All the code and experimental artifacts presented in this
chapter are publicly available1.

4.1 Overview

This chapter presents a methodology that decomposes hardware/software co-
verification into more manageable steps. Our approach leverages that security-
critical systems, such as secure elements, implement hardware and software coun-
termeasures to prove intermediate security properties. Specifically, we propose a
preliminary evaluation of hardware-level countermeasures to ensure they effectively
detect or correct faults, preventing incorrect circuit behavior. Consequently, only
faults not captured by hardware protections need to be evaluated in the hardware/
software co-verification step, helping to contain the state space explosion.

In the following paragraphs, we present an overview of the two-stage methodol-
ogy. We also discuss the hardware verification techniques needed to provide sufficient
guarantees for simplifying the fault model in the co-verification step. This section
concludes with a summary of the chapter’s contributions.

1https://github.com/CEA-LIST/Fault-Resistant-Partitioning

83

https://github.com/CEA-LIST/Fault-Resistant-Partitioning

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

Hardware
Verification

Hardware
Design

Binary
Program

Fault
Model

Attacker
Goal

Attack
Order

Circuit Model

Hardware
Modeling

System
Modeling

System
Verification

.sv

Counter
example

.elf

System Model

Step 1 – HW Verification

Step 2 – System Verification

Verification result

Verification
logs.vcd.vcd

.vcd

Fault
Modeling

Fault
Model

VulnerableRobust

Verification result

Reduced
Fault Model

VulnerableRobust

.vcd

Figure 4.1: Two-step methodology to improve verification of hardware/software
systems against faults attacks.

4.1.1 Methodology

The proposed methodology is illustrated in Figure 4.1. Similarly to µArchiFI, the
workflow takes as input a hardware design, a binary program, and the fault attack
parameters. The novelty of the approach lies in the two verification steps. The
first step, labeled hardware verification in the top box of Figure 4.1, evaluates the
robustness of the hardware circuit’s countermeasures against faults at order k. As a
result of this first step, the analysis outputs verification results indicating whether
the circuit is robust against the considered fault model and provides verification
logs for understanding the results. Additionally, a reduced fault model is generated
to indicate the faults not protected by the hardware that could be harmful to the
system and potentially exploited by an attacker.

The second step, labeled system verification and depicted in the bottom box
of Figure 4.1, focuses on the co-verification of the entire system, including both
hardware and software. This step can be seen as a generalization of the µArchiFI
workflow, replacing the input fault model with a reduced fault model generated by
the hardware verification.

The advantages of conducting this preliminary hardware verification are mani-
fold. First, it is independent of the executed program, meaning it only needs to be
conducted once, and the verification results can be used for multiple software eval-
uations. If no exploitable faults are identified, the circuit is secure unconditionally
of the executed software, and the system verification is no longer necessary. Con-
versely, if the hardware cannot be proved secure, every possible fault must be con-
sidered in the co-verification step, similar to the baseline situation with µArchiFI
alone. Generally, only some areas of the circuit can be proven secure. Remaining
exploitable faults help selecting the best-suited abstraction level during the system
modeling step. For example, an ISA-level model suffices when only the values read
from memory can be corrupted. When hardware description is necessary, the sys-

84

4.1. Overview

tem modeling process can optimize sub-circuits if the reduced fault model does not
target them. There is no need to consider a fine-grained detail level for protected
parts of the circuit when a behavioral modeling is sufficient.

4.1.2 Hardware Verification

Composing the hardware verification step with the co-verification step requires ap-
propriate hardware guarantees so that the size of the fault model can be reduced.
Subsequent paragraphs describe existing definitions and techniques in the literature
for evaluating the circuit’s robustness to faults.

In 2020, Dhooghe and Nikova introduced the notion of k-order active security
to build secure systems using small pieces of circuits named gadgets [DN20]. In
essence, a k-active secure gadget attacked with at most k faults either aborts or
produces a correct output. However, their definition focuses only on combinational
circuits and does not consider sequential logic. Section 3.1 has demonstrated that
faults can remain hidden in microarchitectural registers, such as the prefetch buffer,
and modify outputs after an unknown amount of time. Consequently, Dhooghe and
Nikova’s definition cannot be generalized to sequential circuits like CPUs.

Similarly, the related work on circuit verification described in Section 1.3, such as
FIVER [RRSS+21] and SYNFI [NOV+22], relies on bounded equivalence checking.
These bounded techniques provide guarantees assuming a fault propagation bound n
but cannot prove fault security in the general case and may struggle as the checking
complexity increases with n. Unfortunately, state-of-the-art tools scale only for a
few clock cycles, which is insufficient to ensure that faults have no long-term effects
when evaluating software with hundreds or thousands of instructions.

Since no existing definition or methodology provides strong enough guarantees
to abstract faults in the co-verification step, this chapter also contributes in that
direction by proposing the new notion of fault-resistant partitioning to provide un-
bounded guarantees on hardware security.

4.1.3 Summary

The contributions of this chapter are twofold:

1) We first extend the k-order active security definition to support sequential
circuits and propose the new notion of fault-resistant partitioning to prove k-
fault security with unbounded guarantees. We provide an algorithm to build
and prove fault-resistant partitioning of circuits and compare its effectiveness
against state-of-the-art bounded methods.

2) We leverage fault-resistant partitioning as a preliminary analysis of OpenTi-
tan’s hardware countermeasures and evaluate the consequences of remaining
undetected faults on software security.

85

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

The remainder of this chapter is organized as follows:

First, Section 4.2 introduces the additional notations and background neces-
sary for this work. Section 4.3 describes the fault-resistant partitioning property
at the root of our contributions before detailing its implementation in Section 4.4.
Section 4.5 validates our approach against prior work on cryptographic circuits be-
fore leveraging our full co-verification methodology to evaluate the fault resistance
of OpenTitan’s secure processor in Section 4.6. Finally, Section 4.7 evaluates the
improvements relative to µArchiFI, and Section 4.8 concludes this work.

4.2 Background

Before formalizing the notion of k-fault-resistant partitioning and demonstrating
its practical use in evaluating systems like secure elements against fault attacks, we
must first introduce additional notations and background essential for this chapter.

First, we introduce the OpenTitan secure element, which motivates the method-
ology presented in this chapter. Second, the systems we evaluate implement hard-
ware countermeasures that must be analyzed with a bit-level representation, as
synthesis tooling might otherwise optimize them away. Therefore, we adapt the no-
tations introduced in Section 2.1 to model bit-level systems with faults. Third, we
introduce hardware protections, also known as Concurrent Error Detection (CED)
schemes, and specify the security properties they must fulfill. Finally, we describe
formal equivalence-checking techniques commonly used in the literature to prove
the fault security of application-specific circuits, such as cryptographic ones, and
highlight their limitations for general-purpose CPUs.

4.2.1 OpenTitan Secure Element

OpenTitan is an open-source project [JRR+18] which provides a trustworthy hard-
ware secure element [lowe]. The core components of OpenTitan are hardware de-
signs, such as a processor and accelerators; firmware, such as a secure bootloader;
and software and security services, such as cryptographic functions or utilities for
key management. The secure element implements a wide range of countermeasures
to protect the chip’s confidentiality, integrity, and authenticity [lowd]. It was no-
tably designed to be resistant to an attacker having physical access to the platform
capable of interfering with its operation by performing fault injection attacks.

Internally, OpenTitan uses the 32-bit RISC-V Ibex processor [low18] which in-
teracts with memories and cryptographic accelerators, such as AES or OpenTitan
Big Number (OTBN) for asymmetric cryptographic operations like RSA, as shown
in Figure 4.2. In this chapter, the hardware analysis focuses on the secure con-
figuration of the Ibex core [lowa], which uses different spatial Concurrent Error

86

4.2. Background

Ibex Core
(RV32IMCB)

DUAL CORE LOCKSTEP

Memories
SRAM / ROM / FLASH

TL - Bus

Cryptographic
IPs

OTBN / AES / HMAC

Peripherals
TIMERS / GPIO / UARTs

POWER MANAGER / ...

RNG
(Entropy Source)

Figure 4.2: OpenTitan block diagram, Earl Grey design [lowc].

Detection (CED) schemes. The dual-core lockstep (DCLS) mechanism instantiates
the Ibex core twice, compares outputs between the main core and the shadow core,
and triggers an alert signal on a mismatch. To increase the protection against faults,
the shadow core inputs are delayed for d cycles, where d is fixed at synthesis time.
Both core instances share the register file, which is protected against faults with
Error Detection Codes (EDC) and a write-enable glitch detection mechanism.

4.2.2 Bit-Level System Modeling

Analyzing the security of hardware countermeasures against fault attacks requires
working with a post-synthesis bit-level circuit representation. This approach ensures
that countermeasures can effectively detect faults and are not optimized away by
synthesis tools. To this end, we adapt the notations introduced in Section 2.1 to
work with bit-level circuits.

Bit-Level Circuit Model

A circuit C = (G,W) is composed of circuit elements including inputs I, outputs O,
combinational gates C, and registers R (cf. Definition 2.1). Definition 4.1 specializes
these circuits in the bit-precise manner as follows:

Definition 4.1 (Bit-Level Circuit). Let C = (G,W) be a circuit. We say that C is a
bit-level circuit if each gate g ∈ G outputs a single Boolean value, i.e., g : Bv → B.

To reason about circuit execution in a bit-precise manner, we use sequences of
circuit states, known as execution traces. Explicitly manipulating circuit states,
rather than transition systems, facilitates access to bit-level circuit elements. Def-
inition 4.2 extends the circuit state notation (cf. Definition 2.3) to include inputs,
allowing all gate values to be deduced from a circuit state σ. Definition 4.3 then
recalls the notion of execution trace.

Definition 4.2 (Circuit State). Let C be a bit-level circuit, I =
{
x1, . . . , x|I|

}
⊆ G

be its inputs, and R =
{
r1, . . . , r|R|

}
⊆ G be its registers. The state of circuit C at

clock cycle i is the value tuple σCi =
(
val(x1), . . . , val(x|I|), val(r1), . . . , val(r|R|)

)
87

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

containing its inputs and registers values at the given clock cycle. The set of possible
circuit states is denoted by Σ.

Definition 4.3 (Circuit Execution Trace). Let C be a bit-level circuit. A circuit
execution trace (σi)

n
i=1 ∈ Σn is a sequence of n circuit states (σ1, . . . , σn) such that

σ1 is a valid initial state, and, for all i < n, σi+1 is a valid next state of σi.

Based on Definitions 4.2 and 4.3, the value of every gate g ∈ G in the current
clock cycle i can be considered a function of the current circuit state σi, denoted as
g (σi). Assuming the gates G are topologically sorted, we define the notation S (σi),
with S ⊆ G an arbitrary subset of gates, as the value tuple of all gates g ∈ S in the
state σi. As an example, this notation is used in this chapter to refer to the circuit’s
output values O (σi) at state σi or to express equalities over output values between
different circuit states, e.g., O(σi) = O(σj).

Circuit Partitioning

The methodology we introduce in this chapter relies on special ways of partitioning
circuits’ registers. Definition 4.4 gives a general definition of a circuit partitioning.

Definition 4.4 (Circuit Partitioning). Let C = (G,W) be a circuit. We define a
circuit partitioning P = {Pj}mj=1 as a complete partitioning of R such that Pj are
disjoint sets of registers, i.e., Pj ⊆ R, with ∀j ̸= j′ : Pj ∩ Pj′ = Ø and R =

⋃m
j=1 Pj .

Furthermore, for two states σ and σ̂, we write ∆P (σ, σ̂) := |{P ∈ P | P (σ) ̸= P (σ̂)}|
for the number of partitions in P that have different values between states σ and σ̂.

Example 4.1. Figure 4.3 illustrates a simple circuit partitioning where r1 and r2
belongs to partition P1 and r3 to P2. Moreover, assuming two states σ and σ̂ where:

• r1(σ) = 0, r2(σ) = 1, r3(σ) = 0
• r1(σ̂) = 1, r2(σ̂) = 1, r3(σ̂) = 0

we have ∆P (σ, σ̂) = 1 since P1 (σ) ̸= P1 (σ̂) and P2 (σ) = P2 (σ̂).

Figure 4.3: Circuit partitioning example with P = {{r1, r2} , {r3}}.

88

4.2. Background

Fault Injection Attacks

The notations for fault injection attacks are consistent with the definitions intro-
duced in Section 2.1. However, Definition 4.5 restricts fault models (cf. Defini-
tion 2.5) to bit-level fault effects.

Definition 4.5 (Bit-Level Fault Model). Let C = (G,W) be a bit-level circuit. A bit-
level transient fault model for circuit C is characterized as a set of pairs F ⊆ G×U ,
with U = {bit-reset : x 7→ 0, bit-set : x 7→ 1, bit-flip : x 7→ ¬x}. Each fault (g, e) ∈ F
describes a potential fault with the fault location g ∈ G and the fault effect e ∈ U .

Faults in bit-level circuits are represented using unary functions U . The remain-
der of Chapter 4 only considers the bit-flip fault effect as it encompasses every other
effect, such as bit-set and bit-reset faults. For instance, a bit-reset fault causes a
gate to always output 0. If the expected output should have been 0, the fault has
no consequences. Otherwise, it is akin to a bit-flip.

In addition, the definition of a transient fault attack F is identical to Defini-
tion 2.6. As a reminder, a fault attack F ⊆ F × [1, n] is a set of timed faults
injected into the circuit C with an attack order of |F|. For the purpose of notation
in the remainder of this chapter, we write FJ = {(g, e, j) ∈ F | j ∈ J} to denote the
restriction of F to faults occurring in clock cycles J ⊆ [1, n].

The notion of fault-resistant partitioning, later introduced in Section 4.3, requires
a deep understanding of fault consequences and how they propagate in bit-level
circuits. Example 4.2 details three types of fault consequences.

Figure 4.4: Fault propagation on a simple circuit.

Example 4.2. As shown in Figure 4.4, the fault f1 = (c1, bit-flip, j) has immediate
consequences, i.e., within the same clock cycle, on the combinational gates c1 and
c3, and the output y1. The fault f2 = (r1, bit-set, j) on the register r1 propagates
through the circuit and has delayed consequences on r2, c3, and y1 at clock cycle
j+1. Fault f2 can also have no consequences if the effect does not induce a different
value, i.e., if a 1 is already stored in r1 or if the mux c3 never selects the output from
r2. Finally, f3 = (r3, bit-flip, j) illustrates a specific case of delayed consequences,
where the fault can remain hidden in the register r3 for an unknown amount of time
without propagating to the output y1, depending on the value of x3 and c1.

89

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

Target

Prediction Checker

output
input

alert

delay

Figure 4.5: Concurrent Error Detection (CED) scheme.

4.2.3 Concurrent Error Detection Schemes

Concurrent Error Detection (CED) schemes attempt to protect a system against
fault attacks using spatial redundancy [MM00]. Figure 4.5 depicts such a scheme
where the target function T produces an output T (x) for a given input x, while
the prediction function P independently generates a predicted characteristic of the
output based on the input x, and the checker function compares the outputs and
raises an alert signal on a mismatch. In its simplest form, the prediction circuit
is a duplication of the target, and the checker simply compares them for equality.
Alternatively, P can also be implemented with error detection codes [BBK+03,
AMR+20]. Some implementations also introduce a delay between the operation of
the target and the prediction functions [VM02, MP23]. This delay has the advantage
of increasing the practical difficulty of faulting both functions but introduces a circuit
area overhead due to buffering. Definition 4.6 formalizes CED schemes.

Definition 4.6 ((d,A)-CED). A circuit C = (G,W) with outputs O implements a
(d,A)-CED when its outputs are divided into alert signals A ⊆ O with associated
delay of d clock cycles and primary outputs O′ = O \A. Without loss of generality,
we say that C raises an alert at clock cycle i if A (σi) ̸= (0, . . . , 0), which we will
write A (σi) ̸= 0 for brevity.

As noted in Section 4.1, existing definitions of circuit security against fault at-
tacks focus only on combinational circuits. The concept of fault-secure CED was
introduced by Siewiorek et al. in 1998 [SS98] to ensure system reliability against ex-
ternal perturbations. This notion was adapted for security by Dhooghe and Nikova
in 2020 [DN20]. However, these definitions are too restrictive as they do not consider
faults that remain in the circuit, modifying the outputs over multiple clock cycles or
after an indeterminate amount of time, as illustrated in Example 4.2. Additionally,
the CED countermeasures we study implement delayed detection, as formalized in
Definition 4.6. Definition 4.7 extends the previous definitions to formalize k-fault
security, considering potential detection delays.

Definition 4.7 (k-fault secure (d,A)-CED). Let C = (G,W) be a circuit implement-
ing a (d,A)-CED, (σi)

n+d
i=1 be an arbitrary execution trace of length n + d, F be a

fault model and k be the attack order. We say that the (d,A)-CED is k-fault secure

90

4.2. Background

against the fault model F if and only if, ∀n ∈ N∗,

∀ (σi)
n+d
i=1 , ∀F ⊆ F × [1, n+ d], |F| ≤ k :(

n+d∧
i=1

A
(
σ
F[1,i]

i

)
= 0

)
=⇒

(
n∧

i=1

O′ (σi) = O′
(
σ
F[1,i]

i

))
.

(4.1)

Intuitively, Definition 4.7 says that k-fault security against fault model F guar-
antees that whenever there are no alerts in the first n+ d clock cycles, the primary
outputs are correct up to clock cycle n. Since this must hold for all executions of
arbitrary length, we can infer that an alert is raised at most d cycles after a cor-
rupted primary output. A delay d = 0 implies an immediate detection, whereas
d = 2 means the alert is raised up to two cycles after the corrupted output.

4.2.4 Hardware Equivalence Checking

Equivalence Checking (EC) formally ensures whether two design specifications are
functionally equivalent [LMMS17, §I.4]. EC found a wide field of application in the
electronic design automation world to verify the absence of functional discrepancies
introduced by the tooling during the different conception-flow steps. Today, formal
equivalence checking is a key component of the overall chip validation to guaran-
tee the correspondence between different levels of specification—from higher levels
like the instruction set architecture, mid-range levels such as the register-transfer-
level (RTL) implementation, or lower levels like the post-synthesis gate-level netlist.
Commercial tools from Mentor, Cadence, or Synopsys heavily rely on these tech-
niques, and so does Yosys through the verification tool ABC [BM10] or using its
in-house tool EQY [Yos21].

The following paragraphs first introduce the general concept of equivalence
checking before describing its applications in the context of fault attacks. Finally,
we expose its limitations when applied to general-purpose circuits like CPUs.

Classic Equivalence Checking

In essence, two synchronous designs are said to be functionally equivalent if, at each
clock cycle, they produce exactly the same output values for any valid sequence of
input values.

Let M1 = (X1, Y1, S1, S0,1, δ1, λ1) and M2 = (X2, Y2, S2, S0,2, δ2, λ2) be two
Mealy machines. In the sequel, we assume the following simplifications. First, we
restrict the comparison between two machines that have exactly the same inputs
and outputs, i.e., X1 = X2 and Y1 = Y2. We denote the product Mealy machine

91

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

M = (X,Y, S, S0 , δ, λ) =M1 ×M2 as follows:

X = X1 = X2

O = {0, 1}
S = S1 × S2
S0 = S0,1 × S0,2

δ(x, (s1, s2)) = (δ1(x, s1) , δ2(x, s2))

λ(x, (s1, s2)) =

{
1 if λ1(x, s1) = λ2(x, s2)
0 otherwise

A schematic view of the product Mealy machine is given in Figure 4.6. We say that
the two machines are functionally equivalent if, and only if, the output function λ

produces 1 for all reachable states.

Figure 4.6: Product Mealy machine for comparing two finite-state machines.

Two main approaches are classically employed to compute the equivalence be-
tween two machines: combinational or sequential. Combinational equivalence check-
ing, on the one hand, exploits a one-to-one register correspondence betweenM1 and
M2. If such a correspondence can be found, proving the equivalence between M1

andM2 can be reduced to show that δ1 and δ2 are equivalent as well as λ1 and λ2.
On the other hand, sequential equivalence checking addresses the general case where
no register correspondence can be identified, i.e., check if the outputs are equal for
the same inputs in all the reachable states. However, this second approach is more
expensive as it requires unrolling the circuit to compute all the reachable states. As
a result, classical symbolic reachability analysis (cf. Algorithm 2.1 in Section 2.2)
can be applied to the product Mealy machine M with the reachability property φ
defined as follows:

φ : s 7→ ∃x : λ1(x, s) ̸= λ2(x, s)

Finally, both approaches rely on classical Boolean decision procedures such as
BDD and SAT solving, as introduced in Section 2.2.3.

Fault Equivalence Checking

Given a fault model F , proving that a circuit C is k-fault secure against F amounts
to demonstrate that the fault-free transition system M and its faulty version MF

92

4.2. Background

are equivalent, i.e., always produce the same primary outputs assuming there is
no alert. At first, one might want to apply combinational equivalence checking
as the two circuits are structurally equivalent and agree on each of their registers.
However, this verification is too fine-grained and fails as soon as a register memorizes
a faulty value, i.e., the fault-free next-state function δ and its faulty version δF are
not equivalent. Such a situation usually arises in processors where registers, like
pipeline stages or the register file, memorize values at each clock cycle. Additionally,
countermeasures implementing a detection delay necessarily need to be evaluated
over multiple clock cycles. Consequently, sequential equivalence checking must be
used to observe the fault propagation over multiple clock cycles.

Figure 4.7c illustrates sequential equivalence checking for fault analysis as imple-
mented in state-of-the-art tools like FIVER [RRSS+21] and SYNFI [NOV+22]. In
essence, the analysis compares a golden trace (σi)

n+d
i=1 on the left side of Figure 4.7c

with a faulty trace
(
σFi
)n+d

i=1
on the right. Both traces start from the same initial

state σ1 but diverge due to the fault attack F. k-fault security is ensured by veri-
fying that both traces produce the same outputs for each pair of states σi and σFi ,
assuming no alert is raised. The other figures, (a) and (b), shown in Figure 4.7, are
described in the next section.

However, as discussed in Section 4.1 and illustrated in Figure 4.4, the duration
of fault propagation is not always known a priori, making it challenging to find a
bound n because faults can remain hidden in the circuit indefinitely. Consequently,
bounded techniques cannot prove k-fault security in the general case and may strug-
gle as the checking complexity increases with n.

Unbounded security guarantees are indeed necessary to correctly use the results
of the preliminary hardware analysis in the co-verification step. This issue is solved
in the next section.

no alert + sam
e inputs

same outputs

at most
faulty partitions

at most
faulty partitions

Golden
Trace

Faulty
Trace

(a) k-fault-resistant partitioning.

at most
faulty partitions

no alert

Golden
Trace

Faulty
Trace

same outputs

same outputs

Fault attack

(b) Inductive property.

Golden
Trace

Faulty
Trace

same outputs

Fault attack

no alert

same outputs

same outputs

(c) k-fault secure CED.

Figure 4.7: Overview of different properties a circuit implementing CED can fulfill,
where (a) is the strongest property that implies (b), which in turn implies (c).

93

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

4.3 Fault-Resistant Partitioning

Section 4.1 has introduced our enhanced methodology based on a preliminary
analysis of the hardware. It has also highlighted the lack of verification techniques
offering sufficient guarantees to abstract faults during the co-verification step. Sec-
tion 4.2 provided the necessary background for modeling bit-level circuit execution
with faults, defined the k-fault security property that such circuits must fulfill, and
detailed the limitations of equivalence checking with faults.

This section is the core of the methodology introduced in this chapter. It in-
troduces the notion of k-fault-resistant partitioning to provide unbounded security
guarantees, thus addressing the limitations of equivalence checking. First, we de-
scribe the notion of k-fault-resistant partitioning and present its underlying intu-
ition. Next, we provide the formal definition of k-fault-resistant partitioning and
prove that it implies k-fault security. Finally, we describe an algorithm that auto-
matically identifies such a partitioning and proves its k-fault resistance.

4.3.1 Intuition

As discussed in Section 4.2.4, directly proving that a circuit implementing a CED
fault countermeasure provides k-fault security by means of equivalence checking is
not always feasible. As depicted in Figure 4.7c, direct bounded proofs must unroll
both the golden and faulty versions of the circuit an a priori unknown number of
times, until symbolically visiting all reachable states. Considering that transient
faults can often linger within the state of the circuit indefinitely, this methodology
quickly becomes intractable and a completeness threshold is never reached. In the
following, we define such a property called k-fault-resistant partitioning and prove
it guarantees the k-fault security of a (d,A)-CED.

Intuition. Before providing the formal definition of a k-fault-resistant partitioning,
this paragraph gives the underlying intuition with k = 1. Let C be a circuit imple-
menting a (d,A)-CED as illustrated on Figure 4.8. As such, the circuit C has a set
of primary outputs O = {y1}, and a set of alert signals A = {alert}. This CED
implements an immediate detection, i.e., d = 0. Let P = {P1, P2} be an arbitrary
circuit partitioning with P1 = {r1, r2} and P2 = {r3, r4}. We remind that circuit
partitioning applies to circuit registers only, as defined in Definition 4.4.

We say that a partitioning P is a k-fault-resistant partitioning under two condi-
tions. First, the fault confinement property ensures that incorrect register values are
either detected or confined in partitions for any set of k faults injected in the circuit.
In other words, it means that a single fault injected in one partition cannot propa-
gate to other partitions without being detected. However, the consequence of a fault
can freely propagate within a partition without further consequences. As illustrated
in Figure 4.8, with k = 1, a single fault injected in g2 (resp. g6) can propagate to
r1 and r2 (resp. r3 and r4), but cannot modify r1 and r3 at the same time. As a

94

4.3. Fault-Resistant Partitioning

Figure 4.8: Fault-resistant partitioning on a circuit implementing duplication.

result, the partitioning P fulfills the fault confinement property. Note that multiple
partitions may exist in a circuit because of circuit structure, i.e., the partitions are
not connected with wires, or because of semantical reasons, i.e., the propagation of
the fault is stopped by a checker mechanism that raises an alert. Fault confinement
implies that the injection of k faults cannot corrupt more than k partitions without
being detected. Therefore, a k-fault-resistant partitioning necessarily has at least
k + 1 partitions to ensure fault detection at attack order k.

The second property that P must ensure is the output integrity. Assuming there
is no alert, circuit outputs must be correct under any set of k faults targeting either
combinational gates or partitions of registers. As illustrated in Figure 4.8, any
single fault modifying the output y1 will automatically trigger the alert signals. In
the sequel, Definition 4.8 formally defines the k-fault-resistant partitioning concept.

4.3.2 Formal Definition

Definition 4.8 (k-Fault-Resistant Partitioning). Let C = (G,W) be a circuit imple-
menting a (d,A)-CED. Let j ∈ N∗ be an arbitrary offset and let (σi)

j+l
i=j and (σ̂i)

j+l
i=j

be two arbitrary execution traces of length l+1, where l = max(1, d). Finally, let P
be a partitioning of the circuit C, F be a fault model, and let k ∈ N∗ be an attack
order. We say that P is a k-fault-resistant partitioning of C against the fault model
F if and only if

∀ (σi)
j+l
i=j , (σ̂i)

j+l
i=j , F ⊆ F × [j, j + d], k′ ∈ N, |F|+ k′ ≤ k :j+d∧

i=j

I (σi) = I (σ̂i)

 ∧ (∆P
(
σj , σ̂j

)
≤ k′

)
∧

j+d∧
i=j

A
(
σ̂
F[j,i]

i

)
= 0

 =⇒

(
∆P

(
σj+1, σ̂

F{j}
j+1

)
≤ k′ +

∣∣F{j}
∣∣) ∧ (O′ (σj) = O′

(
σ̂
F{j}
j

))
.

(4.2)

95

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

Similar to proving the k-fault security with equivalence checking, Definition 4.8
also considers two execution traces (σi)

j+l
i=j and (σ̂i)

j+l
i=j where the former is the ref-

erence trace and a fault attack targets the latter. In Equation (4.2), the left-hand
side of the implication can be considered as an assumption under which the de-
sign must guarantee that the right-hand side holds. First, it is assumed that both
execution traces have the same inputs, their initial states σj and σ̂j differ in at
most k′ partitions at clock cycle j, and no alerts are triggered in the faulty trace(
σ̂Fi
)j+d

i=j
. Intuitively, this situation represents two execution traces of circuit C, de-

picted in Figure 4.7a, processing the same inputs but where at most k′ partitions
have a different state due to faults injected before clock cycle j. In addition, we con-
sider a fault attack F with an attack order |F| ≤ k − k′ modifying execution trace
(σ̂i)

j+l
i=j between clock cycles j and j+d but without triggering any alert signal. The

right-hand side of the implication in Equation (4.2) specifies the two characteristics
a k-fault-resistant partitioning must fulfill. First, the number of newly corrupted
partitions is less than or equal to

∣∣F{j}
∣∣ which is equal to the number of faults

introduced by the fault attack F at clock cycle j (k-fault confinement). Newly cor-
rupted partitions are evaluated after one transition, i.e., at clock cycle j + 1, since
faults have delayed consequences on registers. Second, the circuit’s primary outputs
must be identical at clock cycle j between the two execution traces since faults have
immediate consequences on the outputs (output integrity).

Theorem 4.1 states that a circuit with a k-fault-resistant partitioning is neces-
sarily also k-fault secure.

Theorem 4.1 (k-fault-resistant partitioning implies k-fault security). Let C = (G,W)

be a circuit implementing a (d,A)-CED and let F be a fault model targeting the
circuit. If there exists a k-fault-resistant partitioning P against F then C is k-fault
secure.

Proof. To prove that Definition 4.8 (Figure 4.7a) implies Definition 4.7 (Figure 4.7c),
we first show that it implies a stronger inductive property (Figure 4.7b), which in
turn, implies Definition 4.7. Figure 4.7 shows the proof intuition, where k′ faulty
partitions in the initial state σ̂i of (4.7a) correspond to k′ faults injected during the
previous clock cycles of the same execution trace

(
σFi
)n
i=1

in (4.7b). The complete
proof is given in Appendix A.

Theorem 4.1 provides a new strategy to prove the k-fault security of a (d,A)-CED
circuit, giving unbounded guarantees on the fault attack consequences. Although k-
fault-resistant partitioning is only a sufficient condition for k-fault security, it signifi-
cantly simplifies the endeavor of the proof since the circuit is only unrolled max(1, d)
times, compared to the bounded equivalence checking approach. In converse, a k-
fault secure circuit may not fulfill the k-fault-resistant partitioning property. Our
approach is not sufficient to highlight genuine vulnerabilities, and counterexamples
require further analysis as false positives exist. The following section provides an
algorithm to build such a k-fault-resistant partitioning.

96

4.3. Fault-Resistant Partitioning

Algorithm 4.1: Build and prove a k-fault-resistant partitioning of circuit C.
Input: a circuit C = (G,W) implementing a (d,A)-CED, a fault model F ⊆ G× u,

an attack order k, and an initial partitioning P
Output: On success, returns a k-fault-resistant partitioning P = {Pj}mj=1, a set of

exploitable faults F ′ ⊆ F , and a set of exploitable partitions P ′ ⊆ P.

1 Create symbolic executions (σi)
l+1
i=1 and (σ̂i)

l+1
i=1, with l = max(1, d);

2 Create symbolic fault attack F ⊆ F × [1, d+ 1];

3 ψInsEqAndNoAlert ←
(∧d+1

i=1 I (σi) = I (σ̂i)
)
∧
(∧d+1

i=1 A
(
σ̂F
i

)
= 0
)
;

4 Procedure BuildPartitioning: ▷ Build k-fault-confining partitioning
5 for k′ from 0 to k do
6 ψMoreInfected ← (∆P (σ1, σ̂1) ≤ k′) ∧ (|F| ≤ k − k′) ∧

(
∆P (σ2, σ̂2) > k′ +

∣∣F{1}
∣∣);

7 while (ψInsEqAndNoAlert ∧ ψMoreInfected) is SAT do
8 PInit ← {P ∈ P | P (σ1) ̸= P (σ̂1)};
9 PNext ←

{
P ∈ P | P (σ2) ̸= P

(
σ̂F
2

)}
;

10 P ← merge (P,PInit,PNext);

11 if |P| ≤ k then return failure;
12 F ′ ← {}, P ′ ← {};
13 Procedure CheckIntegrity: ▷ Find faults that compromise outputs
14 for k′ from 0 to k do
15 ψNoFaultsOnForbidden ←

(∧
P∈P′ P (σ1) = P (σ̂1)

)
∧ (F ∩ F ′ × [1, d+ 1] = Ø);

16 ψOutsBad ← (∆P (σ1, σ̂1) ≤ k′) ∧ (|F| ≤ k − k′) ∧
(
O′ (σ1) ̸= O′ (σ̂F

1

))
;

17 while (ψInsEqAndNoAlert ∧ ψNoFaultsOnForbidden ∧ ψOutsBad) is SAT do
18 P ′ ← P ′ ∪ {P ∈ P | P (σ1) ̸= P (σ̂1)};
19 F ′ ← F ′ ∪ {(g, e) ∈ G× u | ∃j, (g, e, j) ∈ F};

20 return (P,P ′,F ′);

4.3.3 Algorithm to Identify a Fault-Resistant Partitioning

Overview. Algorithm 4.1 describes a process to identify a circuit partitioning P re-
sistant to k fault injections using SAT solving. It takes as input a circuit model C, a
fault model F , an attack order k, and an initial partitioning P. Algorithm 4.1 com-
prises two main procedures, BuildPartitioning and CheckIntegrity, where the former
builds a partitioning ensuring k-fault confinement or detection, and the latter finds
all remaining fault injections compromising the integrity of outputs. Eventually, the
algorithm either returns a k-fault-resistant partitioning P with a set of assumptions
under which the circuit is k-fault secure or fails to find such a partitioning and
provides counterexamples detailing what happened.

Build Partitioning. The initial partitioning can be chosen freely, but for an initial
run of the algorithm, it should be chosen as P = {{r} | r ∈ R}, where each register
r ∈ R belongs to a separate partition. In subsequent runs of the algorithm, one can
set the partitioning P to one that was previously computed with a different value
of k, for instance. At the start, the algorithm first creates two symbolic execution
traces (σi)

l+1
i=1 and (σ̂i)

l+1
i=1 of length l + 1, with l = max(1, d), and a symbolic fault

97

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

attack F that describes all possible faults an attacker can induce.

Procedure BuildPartitioning iteratively analyzes whether the current partition-
ing P guarantees that, whenever k′ partitions are compromised and there are

∣∣F{1}
∣∣

new faults in the first clock cycle, there are at most k′ +
∣∣F{1}

∣∣ compromised par-
titions in the second clock cycle (line 6). It does this by iterating through all
combinations of k′ and |F| = k − k′ (line 5) and asking a SAT solver whether
there are execution traces (σi)

l+1
i=1 and (σ̂i)

l+1
i=1 as well as a concrete fault attack F

where the left-hand side of (4.2) is true but the first part of the right-hand side,
i.e.,

(
∆P (σ2, σ̂2) ≤ k′ +

∣∣F{1}
∣∣), is false (line 7). If the SAT solver finds such an

example, i.e., the formula is SAT, the procedure gathers the compromised partitions
PInit and PNext from respectively the first and second clock cycle, and then merges
partitions from PNext until there are only k′ +

∣∣F{1}
∣∣ left, while avoiding merges

between the partitions also present in PInit (lines 8 to 10). As |P| decreases at each
iteration, procedure BuildPartitioning converges to a fixed point where partitioning
P fulfills the relevant part of (4.2), and the solver must return UNSAT. After all k′

are analyzed, the procedure concludes.

After BuildPartitioning finishes, the algorithm checks whether the partitioning
has less than k partitions (line 11), as such a partitioning cannot guarantee the
output integrity for the second procedure. Procedure BuildPartitioning may fail for
one of the three following reasons:

(i) the circuit C has some flaws and is not k-fault secure,

(ii) there is no k-resistant partitioning even if C is k-fault secure (cf. Section 4.3.2),

(iii) the merging heuristics fails to build a k-resistant partitioning even though one
exists.

We generate log files for each counterexample given by the solver and the correspond-
ing partition merges the algorithm performs. In general, the logs are invaluable for
understanding why a design might be insecure, but this analysis must be performed
manually.

For higher-order fault analysis, one should start with k = 1 and iteratively feed
the found partitioning P back into the algorithm for the next higher k as a k-fault
resistant partitioning must be (k − 1)-fault resistant.

Check Output Integrity. Procedure CheckIntegrity iteratively determines the sets
P ′ and F ′ of partitions and locations where faults can compromise the output in-
tegrity. The procedure iteratively verifies if the partitioning P guarantees outputs’
integrity in the presence of k′ faulty partitions and k − k′ new faults while not tar-
geting the known-to-be exploitable partitions P ′ and fault locations F ′ identified in
previous iterations (lines 15 and 16). Whenever the solver returns SAT, it means
that it found a new set of fault locations and initially corrupted partitions that com-
promises output integrity and must be added to P ′ and F ′, respectively (lines 17

98

4.4. Implementation

to 19). If the solver returns UNSAT instead, it means that the partitioning P is
proven k-fault secure assuming there are no faults on the P ′ and F ′.

Optimizations. The number of Boolean variables in the SAT queries, and conse-
quently the complexity of these queries, directly depends on the size of the circuit
and the number of faults to consider. In the following, we propose optimizations
based on a structural analysis of the circuit to remove unnecessary faults. As a re-
sult, we simplify the SAT query provided to the solver and speed up the proof. Let
us start by understanding the three possible consequences of a fault on the k-fault-
resistant partitioning property: i) the fault can infect more partitions at state σ2
(ψMoreInfected, line 6), ii) the fault can modify primary outputs at state σ1 (ψOutsBad,
line 16), or iii) the fault can disable the alert signals (ψInsEqAndNoAlert, line 3).

i) In order to infect more partitions at state σ2, faults must be injected during
the initial state σ1, as they have delayed consequences on registers. Addition-
ally, gates or partitions where the faults are injected must be combinationally
connected to at least two partitions. Faults not fulfilling these conditions do
not impact the satisfiability of formula ψMoreInfected.

ii) In order to modify primary outputs at state σ1, faults must be injected at
the initial state σ1, as they have immediate consequences on outputs. Ad-
ditionally, the gates (resp. partitions) where the faults are injected must
be combinationally connected to primary outputs. Faults not fulfilling these
conditions do not impact the satisfiability of formula ψOutsBad.

iii) In order to disable the alert signal between states σ1 and σ1+d, faults can be
injected in gates in each one of these clock cycles, as they have immediate or
delayed consequences on the alert signal. However, gate locations of the fault
have to be structurally connected to the alert signal, and the propagation
delay to the alert signal must be less than d. Otherwise, the fault has no
impact on the formula ψInsEqAndNoAlert.

As a result, faults considered during procedure BuildPartitioning have to satisfy
conditions i) and iii). Other faults are optimized away to simplify the SAT query.
For example, combinational gates connected to one single partition no longer need
to be faulted. Indeed, the consequences obtained by faulting these gates are totally
subsumed by considering a symbolic faulty state of the partitions. Similarly, faults
during CheckIntegrity have to satisfy conditions ii) and iii).

4.4 Implementation

Section 4.3 has introduced the theoretical concept of fault-resistant partition-
ing, which is the cornerstone of the methodology proposed in this chapter. To
demonstrate its practical application in evaluating different case studies, this sec-
tion presents the implementation of the methodology.

99

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

Algorithm 4.1
Fault-Resistant PartitioningHardware

Design

Fault
Model

Attack
Order

Circuit Model

BuildPartitioning

Prove -fault
confinement or

detection

Hardware
Modeling

.sv

Step 1 – HW Verification

Verification
logs

.vcd.vcd
.vcd

Failure

Verification result

Fault
Modeling

Fault
Model

- exploitable
- exploitable

Exploitable
Faults

Exploitable
Partitions

partitioning

CheckIntegrity

Figure 4.9: Workflow implementing fault-resistant partitioning (Step 1).

First, we detail the hardware verification flow that implements Algorithm 4.1.
Next, we describe the system verification flow implementation we use to evaluate
the OpenTitan secure element.

4.4.1 Hardware Verification Flow

As illustrated in Figure 4.9, the design is first converted into a bit-level netlist
using the synthesis tool Yosys [Wolb] to produce a circuit model C according to
Definition 2.1. Additionally, input, output and alert signals must be provided by
the user to define the CED circuit to be analyzed. The fault model F , which specifies
the exact locations of faults, is then derived from the circuit model C. In this work,
we only focus on bit-flip fault effects as it encompasses every other bit-level effect.

We then rely on the C++ API of the CaDiCaL SAT solver [BFFH20] for the
formal analysis described in Algorithm 4.1 and shown in the Fault-Resistant Parti-
tioning box in Figure 4.9. Circuit elements are encoded with Boolean variables and
execution traces (σi)

l+1
i=1 and (σ̂i)

l+1
i=1 are modeled unrolling the circuit l = max(1, d)

times. Fault injections are applied to execution traces using new Boolean variables
to control the effect of faults. For each procedure, BuildPartitioning and CheckIn-
tegrity, assumptions ψ made by Algorithm 4.1 are provided to the SAT solver to
check their satisfiability. CaDiCaL is used in incremental mode to update assump-
tions during subsequent iterations of the procedures. Log files and VCD waveforms
are generated to keep track of successive iterations, understand how the algorithm
builds the circuit partitioning, and analyze why the proof may fail. The implemen-
tation is about 4000 lines of C++ code and is publically available2.

4.4.2 System Co-verification using Verilator

The whole chapter is motivated by the security proof of the OpenTitan secure ele-
ment running the first stage of its secure boot. However, such a verification requires

2https://github.com/CEA-LIST/Fault-Resistant-Partitioning

100

https://github.com/CEA-LIST/Fault-Resistant-Partitioning

4.4. Implementation

Simulation
Controller

Hardware
Design

System Model

C++System
Modeling

Attacker
Goal

Attack
Order Check

Goal

Exploitable
Faults

Exploitable
Partitions

Fault
Timing

System State

Save
state

Restore
state

Vulnerable

Robust

Counter
Examples

Attack report

.vcd.vcd.vcd

Simulations
with faults

Timeout

.sv

.elfBinary
Program

Figure 4.10: Hardware/software co-verification flow using Verilator (Step 2).

emulating the entire OpenTitan chip, as introduced in Section 4.2.1, because hard-
ware accelerators like OTBN are involved in computing cryptographic signatures.
Modeling these components within the µArchiFI infrastructure is currently imprac-
ticable. To address this limitation, we utilized the Verilator simulation environment
provided by the OpenTitan project to perform fault injections. This Verilator-based
co-verification framework serves as a proof of concept to validate our methodology.

In the following, we first explain how the exploitable faults and partitions iden-
tified during the fault-resistant partitioning can be converted into a unique reduced
fault model. Next, we describe the implementation of the co-verification workflow.

Reduced Fault Model. The set of exploitable faults F ′ and partitions P ′ needs to
be translated into a unique fault model G, as defined in Definition 2.5, before being
provided to the co-verification step. This operation is done as follows:

G =

{
(g, e) ∈ G× E

∣∣∣ (g, e) ∈ F ′ ∨ g ∈
⋃

P∈P ′

P

}

That is, G introduces a new fault model where the faults are either in the set
of exploitable faults F ′ or the gates are a register that belongs to the set of ex-
ploitable partitions P ′. As a result, integrating the results of the k-fault-resistant
partitioning analysis into the co-verification flow can significantly reduce the size of
the initial fault model F , assuming the hardware countermeasures are proven ro-
bust. In other words, we are only interested in analyzing faults that are not detected
by the hardware and can potentially cause incorrect system behavior.

Co-verification workflow Figure 4.10 illustrates our simulation-based co-verification
framework. First, the system modeling step relies on the open-source tool Veri-
lator [Sny] to convert the hardware design and the binary program into a cycle-
accurate C++ model. The system modeling also takes as input the sets of ex-
ploitable faults F ′ and partitions P ′ computed in Step 1 to determine the remaining
fault locations in gates and registers. Verilator optimizes the generated model for
simulation performance reasons, and the effectiveness of optimizations depends on
the number of fault locations. Then, the simulation controller exhaustively simu-

101

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

lates the circuit with a maximum of k faults. The fault timing specifies the cycles
where the faults must be injected during the simulation. The predicate φ is evalu-
ated on the system state at each clock cycle to determine if the attacker can reach
its goal. Simulations can be parallelized on multiple threads. Finally, the framework
provides an attack report for each fault attack evaluated. The report classifies the
attack between i) robust, i.e., the fault attack does not fulfill φ and the simulation
terminates as expected, ii) vulnerable, i.e., φ has been reached, and iii) timeout, i.e.,
neither the attacker goal nor the normal program exit point has been reached, and
the simulation stops after a timeout. The timeout is computed according to the
program length. Verilator generates logs such as the ISA states or VCD waveforms
to understand where the faults were injected and how they propagate in the system
to create the vulnerability.

To speed up the analysis, we adapted a simulator feature to save the system
state in a file. The state is restored for each new verification, which avoids simulat-
ing irrelevant parts of the program for the fault analysis. In addition, we used the
Verification Procedural Interface (VPI), supported by Verilator, to observe the cir-
cuit state and compute φ or to inject faults on circuit elements retrieved according
to their hierarchical names.

This Verilator-based co-verification framework offers the advantage of easily in-
cluding the behavior of peripherals that can be simulated simultaneously with the
CPU. These peripherals include interconnects, memories, or hardware accelerators
for which building a formal model would have been neither relevant nor scalable.
However, it also has the same limitations as simulation-based analysis tools: it is
not exhaustive on program inputs and it does not provide security guarantees in
the general case. In addition, a timeout is needed to stop the simulation when the
control flow has been modified by the attack but without reaching the attacker goal.

4.5 Validation on Impeccable Circuits

This section validates our methodology against prior work on formal verification
of CED schemes. We evaluate the robustness of Skinny-64 and AES-128 implementa-
tions from Impeccable Circuits [AMR+20] protected with code-based CEDs against
faults attacks. Although providing unbounded guarantees on cryptographic circuits
is not as crucial as on a CPU, i.e., their operation usually takes a few clock cycles,
these case studies allow us to compare against related work, e.g., FIVER [RRSS+21],
as no similar work exists on CPUs. This section also discusses the impact of opti-
mizations on performance.

102

4.5. Validation on Impeccable Circuits

Table 4.1: Evaluation of Skinny-64 and AES-128 circuits using k-fault-resistant
partitioning.

Circuit Characteristics Faults Algorithm 4.1 Performance Results

Name
Size
(GE)

Regs
(#)

Loc.
(#)

Order
k

Build
Partitioning (s)

Check
Integrity (s)

Partitions
(#)

Exploitable
Faults (#)

Skinny-64
red-1

3 270 235 1 707 1 1.18 0.043 235

128 inputs
+ 64 outputs

Skinny-64
red-3

4 163 305 2 959
1 1.32 0.052 305
2 9.06 0.324 305

Skinny-64
red-4

6 316 341 3 417
1 2.48 0.127 341
2 10.23 0.404 341
3 38.50 0.693 341 + 335 in checker

AES-128
red-1

20 532 427 16 262 1 597 1.20 427

257 inputs
+ 129 outputs

AES-128
red-4

29 092 527 23 390
1 1 073 2.14 527
2 13 983 2.28 527

AES-128
red-5

32 284 561 26 166
1 1 471 2.32 561
2 17 376 2.57 561
3 201 272 2.79 561 + 22 in checker

4.5.1 Evaluation Results

As shown in Table 4.1, our algorithm successfully proves the 2-fault security of AES-
128 (resp. Skinny-64) implementation in less than 4 h (resp. 10 s) using an Intel Core
i7-1185G7 laptop. Our approach also reports that circuit inputs and outputs can
be faulted as EDC does not protect them.

Our methodology also assessed the 3-fault security of these circuits, an attacker
model unreachable by any existing state-of-the-art tools. However, our fault analysis
first fails to build a circuit partitioning. The manual investigation of the logs pro-
duced during procedure BuildPartitioning shows that three faults defeat the EDC
protection by simultaneously targeting: 1) the original function, 2) the redundant
function, and 3) the checker disabling the alert at a specific clock cycle. During the
following clock cycles, the injected faults propagate and lead to collisions that are
undetected by the checker mechanism. Explaining the exploitable faults in more
detail is beyond the scope of this thesis.

However, assuming that the exploitable faults identified in the checker cannot be
corrupted, i.e., 335 bits in Skinny-64, and only 22 bits in AES-128 where fewer col-
lisions exist, we prove the 3-fault security of AES (resp. Skinny) in 55 h (resp. 39 s).
For each algorithm, we reproduced the attack for a full encryption to ensure that
the reported counterexamples are not false positives. Attack scenarios are given in
Appendix B.

103

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

4.5.2 Comparison against Related Work

This section compares our approach against two similar tools: FIVER and FIRMER.

FIVER [RRSS+21] is a formal tool that compares the outputs of a golden
model with those of a faulty model to reveal the consequences of faults. Similarly,
FIRMER [TGC+23] evaluates the resistance of protected cryptographic circuits by
translating the hardware design description into SAT formulas. Both tools perform
bounded equivalence checking, unrolling the circuit over several clock cycles for anal-
ysis. This technique is not suitable for processor verification, as fault consequences
may manifest after an unknown amount of time.

Performance-wise, the authors of FIVER reported 130 hours to prove the 2-fault
security of the same AES circuit using an Intel Xeon server, while our approach
requires only 4 hours on an Intel Core i7-1185G7 laptop. The authors of FIRMER
reported 31 minutes to prove the 2-fault security of AES-128 red-1 using 8 threads of
an Intel Xeon Gold 6342 2.80GHz. Our approach thus outperforms FIVER by orders
of magnitude when proving the 2-fault security of AES but is slower than FIRMER,
which executes on eight threads. However, our proof is inductive, meaning it is
valid for multi-round encryption, whereas FIVER’s and FIRMER’s results hold for
a single round. Additionally, we analyzed the 3-fault security of AES, which was
previously impossible with state-of-the-art tools.

Furthermore, SYNFI [NOV+22] is a pre-silicon fault analysis framework that
allows hardware designers to evaluate the robustness of a circuit and its counter-
measures against faults. However, a meaningful performance comparison is not
possible as SYNFI only analyzed parts of the AES block (e.g., the FSM).

4.6 Evaluation of OpenTitan

In this section, we apply our co-verification methodology to analyze the resilience
of a development version of the OpenTitan platform (cf. Section 4.2.1) running three
different programs.

Hardware Countermeasures. Our hardware analysis focuses on the secure con-
figuration of the Ibex core [lowa], which uses different spatial Concurrent Error
Detection (CED) schemes (Figure 4.11). The dual-core lockstep (DCLS) mechanism
instantiates the Ibex core twice, compares the outputs between the main core and
the shadow core, and triggers an alert signal on a mismatch. To increase the protec-
tion against faults, the shadow core inputs are delayed for d cycles, where d is fixed
at synthesis time. Our evaluation uses the default value d = 2 but also discusses
the results for d = 3. Both core instances share the register file, which is protected
against faults with Error Detection Codes (EDC) and a write-enable glitch detection
mechanism.

104

4.6. Evaluation of OpenTitan

Main Core partition

Other partitions

Alert

Outputs

Register File
In

st
ru

ct
io

n
M

em
or

y
In

te
rfa

ce

D
at

a
M

em
or

y
In

te
rfa

ce

IF

Shadow Core

EDC-Checker
Register File

EDC-Checker
iCache

Dual-Core Lockstep

input buffer

output buffer

Lockstep
Checker

ID EXIF

Main Core

ID EX

EDC-Checker
Register File

EDC-Checker
iCache

 iCache RAM

Shadow Core partition

Alerts

Alerts

Register File partitions

Inputs

delay

Figure 4.11: Secure Ibex countermeasures and partitioning obtained with Algo-
rithm 4.1.

Threat Model. We consider an attacker having physical access to the Secure Ibex
processor capable of interfering with its operation by performing fault injection
attacks (attacker goal). We consider a single transient bit-flip everywhere in the
microarchitecture (fault model), which is in line with the protection level provided
by the countermeasures. The rest of this section is organized as follows:

First, we evaluate the robustness of the hardware countermeasures implemented
in the Secure Ibex processor. Second, we leverage the hardware verification results to
analyze whether the identified vulnerabilities can be exploited in different programs.
Third, we provide a hardware fix for the vulnerability discovered and re-evaluate the
security.

4.6.1 Hardware Verification: the Secure Ibex

In the following, we apply our hardware verification methodology individually to
the register file and the DCLS before analyzing the entire Ibex core. Table 4.2
summarizes the area in gate equivalent (GE) for each circuit, provides the number
of possible fault locations, and reports verification results and performance using
an Intel Xeon Gold 6154 CPU. Our analysis does not consider the sleep mode of
the Secure Ibex processor that disables the clock signal, as our circuit model only
considers synchronous circuits (Definition 2.1). First, we focus on k = 1 since the
countermeasures of Secure Ibex aim to mitigate a single fault before discussing the
evaluation results with k = 2.

4.6.1.1 Register File Analysis

The register file consists of thirty-two 32-bit registers, each protected by a 7-bit EDC.
Register file countermeasures ensure that written data is stored at the correct address

105

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

1-hot
encoding

Encoding
Checker

EDC
Checkers Alert

Alert

wdata

waddr

raddr_a
raddr_b

rdata_b
rdata_a...

Figure 4.12: Register file protections and
the identified vulnerability.

1-hot
encoding

Encoding
Checker

EDC
Checkers Alerts

Alert

wdata

waddr

raddr_a
raddr_b

rdata_b
rdata_a... ...

...

Alerts

1-
ho

t M
U

X

Encoding
Checkers

1-hot
encoding

Figure 4.13: Register file with fixed vul-
nerability.

(encoding checker box in Figure 4.12) and that read data have not been modified
(EDC checkers box in Figure 4.12). Procedure BuildPartitioning has proven that
a fault injected in the circuit cannot propagate to multiple registers without being
detected by the protections. Table 4.2 reports that each register is an independent
partition.

However, procedure CheckIntegrity has enumerated 172 fault locations in the
combinational logic that lead to the corruption of primary outputs. As shown in
Figure 4.12, the internal multiplexer tree that selects the register to read according
to the inputs signals raddr_a_i or raddr_b_i is not protected. Hence, a single fault
in the mux logic can change which register file value is written back to the core.
This is not detected by DCLS as the register file is only read once by the main core,
and the value is then stored in the input buffer of the shadow core, i.e., both cores
retrieve the same faulty register file value (Figure 4.11). We discuss the mitigation
we designed in Section 4.6.3.

In addition, we also evaluate the register file against a weaker fault model tar-
geting only the sequential logic. The EDC protection claims to be robust against 3
faults injected in the data and our analysis proves it as reported in Table 4.2.

Table 4.2: Evaluation of Secure Ibex and its modules using k-fault-resistant parti-
tioning.

Circuit Characteristics Faults Algorithm 4.1 Performance Results

Name Size
(GE)

Regs
(#)

Locations
(#)

Order
k

BuildPartitioning CheckIntegrity
Time

Partitions
(#)

Exploitable Faults

Iter. (#) Time P ′ (#) F ′ (#)

Register File 12 075 1 326
8 392 1 172 38 s 53 s 1 326 0 172

1 326a 3 1 349 s 344 s 1 326 0 0

Register File
with fix

11 913 1 326
8 668 1 1 17 s 73 s 1 326 0 0

1 326a 3 1 135 s 383 s 1 326 0 0

DCLS 117 998 5 918 116 561
1 508 20 h 12 5 h 10 1 108 0 0

2 11 11 s — 445 — —

Secure Ibex
(no iCache)

130 194 7 248 125 080
1 1 10 h 45 30 h 50 2 438 0 0 (+172)

2 48 53 s — 421 — —

a Restricted fault model targeting the sequential logic only

106

4.6. Evaluation of OpenTitan

4.6.1.2 Dual-Core Lockstep (DCLS) Analysis.

At first, procedure BuildPartitioning described in Algorithm 4.1 failed to build a
correct partitioning of the DCLS and grouped every register inside the same parti-
tion. Counterexamples provided by the analysis showed that the checker mechanism
can be disabled when initializing a specific register to 0. This register drives the
enable_cmp_q signal and is intended to disable the alert during the first d clock
cycles after a system reset as the shadow core and the main core produce different
outputs because of the delay. Formal verification leverages this register to turn off
the protection failing to prove system 1-fault security. In the following, and without
loss of generality, we assume this register is initialized to 1 as it should be during the
normal processor operation. Faults can still be injected into this register. Nonethe-
less, this highlights that the whole DCLS security relies on a 1-bit register that can
be written to 0 to disable the protection. We reported this finding to the OpenTitan
project and provided a security enhancement that got integrated3 into the project.

Assuming enable_cmp_q = 1, our analysis builds 1 108 partitions. The main
core and the shadow core are two of these, while the others are registers that faults
cannot corrupt without raising an alert. Figure 4.11 denotes them as other partitions.
Building P takes 508 iterations in 11 h, and then the proof of fault confinement in
P takes 9 h 20 (Table 4.2). Finally, procedure CheckIntegrity proves that the DCLS
can detect any single bit-flip in one of the two cores and in its internal comparison
logic in 5 h 10.

To observe the influence of the DCLS detection delay on the evaluation, we also
carried out experiments with d = 3. As a result, the design size increases by 3.1%,
the number of registers by 13.4%, and the verification time by 24.6%, since the
circuit has to be unrolled once more. The analysis concludes with the same results
as with d = 2.

4.6.1.3 Full Ibex Analysis

Full Ibex comprises the DCLS and the register file. The remaining gates are involved
in the sleep unit module, which we disabled. First, we assume that the 172 faults
already identified in the register file cannot be reproduced here. Then, we reuse the
partitions found when verifying the DCLS and the register file modules to initialize
Algorithm 4.1. As a result, procedure BuildPartitioning only needs one iteration
to prove the fault confinement (Table 4.2), and our methodology proves the 1-fault
security of the full Ibex processor against a single fault injection.

4.6.1.4 Discussion on Ibex Analysis with k = 2

OpenTitan is designed to be 1-fault secure. Two faults are logically not detected
when targeting both cores or disabling the 1-bit alert. However, we report in Ta-
ble 4.2 how our methodology behaves, with k = 2, on an unprotected design. For

3https://github.com/lowRISC/ibex/pull/2129

107

https://github.com/lowRISC/ibex/pull/2129

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

Load BL0 manifest,
compute digest,
check signature

Second stage — ROM_EXT

Initialize ePMP,
C runtime and

hardware
peripherals

Load ROM_EXT
manifest, compute

digest, check
signature

Check if boot services
were requested,

execute them if so

First boot stage of
device owner code,

jump to kernel or
further stage

BL0First stage — Mask ROM

Secure Boot

Figure 4.14: OpenTitan secure boot flow.

both the DCLS and the Secure Ibex, procedure BuildPartitioning merges most of
the previously identified partitions, with k = 1, within a few seconds. Multiple
partitions remain due to structurally impossible merges or because of non-faultable
registers that drive the alert signal directly. Notably, the main core and the shadow
core are merged, and the partitioning that results no longer guarantees the output
integrity against one fault. We omit the CheckIntegrity results as enumerating all
the exploitable faults is irrelevant and does not necessarily report genuine vulnera-
bilities.

4.6.2 System Verification

In this section, we analyze if the exploitable faults previously identified in the regis-
ter file can be exploited in an attack on the running software. Since the OpenTitan
development environment is based on Verilator, all co-verifications have been con-
ducted in the Verilator-based framework described in Section 4.4.2. This framework
is very convenient to simulate the whole chip with its hardware accelerators neces-
sary to operate the secure element. Our analysis focuses on the secure boot provided
by the OpenTitan project. The other evaluated programs are typical fault injection
benchmarks [DRPR19, PHB+19, TAC+22], i.e., VerifyPIN and tiny AES that are
not provided by the OpenTitan project. Table 4.3 reports evaluation results and
performance using an Intel Xeon Gold 6154 CPU.

4.6.2.1 Secure Boot

The secure boot process guarantees the integrity and authenticity of the code run-
ning on the device after a system reset, as illustrated on Figure 4.14. The first stage
configures the peripherals, sets up the software environment, and also verifies the
integrity of the second boot stage, ROM_EXT, stored in Flash memory before booting
on it. The second stage of the secure boot provides boot services and verifies the
next stage’s integrity, i.e., the boot loader (BL0) code for the kernel. We focus on
verifying the first boot stage, a typical target for fault injection attacks, since it is
stored in read-only memory and cannot be modified. We analyze the rom_verify
function in the Mask_ROM code, which is responsible for verifying the authenticity and
integrity of the next boot stage. It first computes the digest of the ROM_EXT image
and checks its RSA signature against the signature stored in the boot manifest.

108

4.6. Evaluation of OpenTitan

Attacker Goal. Assuming a malicious ROM_EXT code, the attacker wants to bypass
the signature check and call the rom_boot function:

φboot_flash := (PC = @rom_boot)

Our analysis evaluates faults injected in the rom_verify function, assuming that
the RSA hardware accelerator (OTBN module) has already computed the signature.
Our framework shows that controlling, with a fault, the register file value that is
written back is insufficient to bypass the first stage of the secure boot. Even if not
detected by the hardware, these faults are captured by the software countermeasures.
Hence, the secure boot’s signature verification is robust to single bit-flip attacks.

4.6.2.2 Differential Fault Analysis on tiny AES

Differential fault analysis [BS97] enables adversaries to retrieve the cryptographic
key by injecting faults during the AES encryption. These attacks can be performed
on hardware or software implementations of AES. As our work focuses on the eval-
uation of hardened CPUs, we do not analyze the AES driver provided in the Open-
Titan cryptography library as it utilizes the AES hardware accelerator. Instead, we
port the tiny AES [kok19] program, which is not officially provided by the project,
to OpenTitan. As previously, we used the framework described in Section 4.4.2 to
inject faults into the register file during the AES execution. We illustrate how an at-
tacker can exploit these faults at the software level by reproducing the requirements
of two attacks known from the literature [KQ08, TMA11]. An arbitrary plaintext
and symmetric key were used for the analysis.

Attacker Goal. The first attack targets the key schedule function to corrupt one
byte in the first column of the 9th round key (φkey_sched) [TFY07, KQ08]. The
second attack targets the AES algorithm to corrupt a single byte in the 8th round
state matrix (φaes) [TMA11].

For each experiment, the fault is injected during the round preceding the round
of interest. We observe the 9th round key and the 8th round state matrix stored
in the data memory4 and compare them against the precomputed reference values
to determine if the fault induced a single-byte corruption. Table 4.3 summarizes
our evaluation results for each attack. Our analysis reported 532 successful fault
injections over the 5 760 possibilities to satisfy φkey_sched. Similarly, 4 084 successful
fault injections were identified over the 38 912 configurations tested to reach φaes.
Inspecting the analysis reports shows that successful fault injections are mainly
applied to memory load and store operations.

4.6.2.3 Analysis of VerifyPIN

For the last software verification, we focus on the VerifyPIN test suite [DPP+16]
that we port to the chip as it is not part of the OpenTitan project. In this simple

4Actually, we observe values on the data memory interface as OpenTitan implements
memory scrambling.

109

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

Table 4.3: Co-verification results on software use cases exploiting the undetected
fault in the register file.

Program Characteristics Fault Characteritics Analysis Results Performance

Name
Function/
Version

Instr.
(#)

Attacker
Goal φ

Timing
(clock cycles)

Locations
(#)

Success Fail Timeout
Threads

(#)
Verification
Time (s)

Secure Boot Mask ROM
signature check 2 526 φboot_flash 0 - 1 907 122 048 0 95 238 26 810 8 9 235

Tiny AES

Key Schedule
8th-9th round 221 φkey_sched 0 - 90 5 760 532 4 666 562 2 458

AES
7th-8th round 1 144 φaes 0 - 610 38 912 4 084 29 477 5 228 8 1 742

VerifyPIN

v0 114
φauthen 0 - 49 3 136

2
2 890 160 1 145

φptc 84

v1 121
φauthen 0 - 51 3 264

1
2 990 185 1 154

φptc 89

v2 162
φauthen 0 - 91 5 824

1
5 200 537 1 311

φptc 87

v3 166
φauthen 0 - 95 6 080

1
5 456 537 1 309

φptc 87

v4 189
φauthen 0 - 117 7 488

1
6 714 679 1 468

φptc 95

v5 169
φauthen 0 - 97 6 208

0
5 503 628 1 311

φptc 77

v6 160
φauthen 0 - 88 5 632

0
5 019 528 1 264

φptc 85

v7 187
φauthen 0 - 116 7 424

1
6 682 681 1 399

φptc 61

authentication mechanism, we have described in detail in Section 3.1.1.2, a user
has a maximum number of g_ptc attempts to enter the correct 4-digit userPIN
matching the secret cardPIN. When the authentication succeeds, a global variable
g_authenticated is set to true. The program is available in eight versions with an
increasing number of protections against fault attacks and we evaluate all of them
in the following.

Attacker Goal. The attacker aims to i) bypass the secure authentication:

φauthen := (g_authenticated = true)

or ii) manipulate the maximum number of authentication tries:

φptc := (g_ptc ≥ 3)

For each analysis, the attacker’s goal is evaluated at the end of VerifyPIN func-
tion once the program counter reaches the exit point. Faults can be injected during
the entire execution of the program. As a result, Table 4.3 illustrates that φauthen

and φptc are reachable by an attacker in most of the eight versions of VerifyPIN.
For example, injecting a fault when decrementing g_ptc fulfills φptc. In addition,
we observed that φauthen can be reached by setting the cardPIN pointer equal to
the userPIN pointer and comparing the cardPIN code to itself.

4.6.3 Fixing Register File Vulnerability

As demonstrated in Section 4.6.1, a single fault into the output mux tree of the
register file could modify which value is written back to the Secure Ibex. Figure 4.13

110

4.7. Discussion on Methodology Improvements

depicts our hardware modifications to protect the register file from faults.

First, the read addresses raddr_a and raddr_b are converted to one-hot encoded
signals, and their integrity is ensured by checker modules. Then, the one-hot encoded
read addresses are each fed into a mux directly operating on these signals. Internally,
the one-hot mux selects each output bit individually by performing and- and or-
reductions on the one-hot encoded addresses and the register file values. As a result,
a single bit-flip is immediately detected either by the one-hot encoding checkers or
the EDC protections.

As reported in Table 4.2, our verification flow proves the 1-fault security of the
fixed register file. Since the fixed Ibex is robust to one single fault injection, no
exploitable faults need to be verified in the system verification step, which reduces
the overall security verification time. We reported this finding to the OpenTitan
project and provided a security enhancement that got integrated5 into the project.

4.7 Discussion on Methodology Improvements

This section compares the baseline version of µArchiFI described in Chapters 2
and 3 with the co-verification workflow presented in this chapter.

Complexity-wise, the state space to analyze depends on the design size in terms
of gates |G|, the program length n, and the size of the fault model |F| raised to
the power of the fault order k. The approach in this chapter divides the verification
into two steps to reduce this complexity. First, by analyzing the hardware design
independently of the program, we no longer depend on the program length n and only
need to unroll the circuit d times, where the countermeasure delay d is much smaller
than n, i.e., d ≪ n. Second, the co-verification introduces the software program in
the model while the design complexity |G| and the remaining exploitable faults |F ′|
can be tremendously reduced, provided countermeasures are proven robust.

Security-wise, the two-step methodology provides much stronger guarantees.
First, the hardware is checked only once. If no vulnerabilities are found, all pro-
grams are secure. Otherwise, the hardware verification results are used for any
program co-verification. Second, in the specific case of Secure Ibex, this chapter
formally proves that only faults in the register file are possible and analyzes their
consequences on various programs. In contrast, the results obtained on Secure Ibex
in Section 3.3 only hold for VerifyPIN, and the entire software/hardware verification
must be rerun for each program.

Performance-wise, Use Case II presented in Section 3.3 evaluated the Secure
Ibex processor with a restricted fault model F targeting the shadow core’s registers
only, which included 2 500 fault locations and verified a 46-instruction program in

5https://github.com/lowRISC/ibex/pull/2117

111

https://github.com/lowRISC/ibex/pull/2117

Chapter 4. Preliminary Hardware Analysis using Fault-Resistant Partitioning

5 minutes. However, Chapter 3 concludes that the current version of µArchiFI
cannot process more than a hundred instructions nor evaluate a larger design with
more faults. In contrast, our two-step method considered all possible bit-flips, i.e.,
125 000 faults, and reduced them to a smaller set of exploitable faults F ′ with 172
undetected faults in the register file. This proved that targeting only the shadow
core is futile. The co-verification step then verified the robustness of 2 526 secure
boot instructions in 2 hours and 30 minutes.

4.8 Conclusion

Summary. This chapter has introduced the novel notion of k-fault-resistant parti-
tioning to decompose hardware/software co-verification into more manageable steps.
Specifically, we propose a preliminary security evaluation of hardware-level counter-
measures to analyze only the faults not captured by hardware protections in the
hardware/software co-verification step, thereby containing the state space explo-
sion. We validate our approach by replicating known results on Skinny and AES
cryptographic circuits protected with a code-based CED from the Impeccable Cir-
cuits [AMR+20], as no similar work exists on CPUs. Further, we show that our
methodology outperforms related work, i.e., proves the 2-fault security of AES in
less than 4 h compared to 130 h for FIVER [RRSS+21]. In addition, we demonstrate
the scalability of k-fault-resistant partitioning by analyzing the 3-fault security of
AES, which was not conducted by related work.

Then, to demonstrate the capabilities of the complete fault co-verification method-
ology, we analyze the k-fault security of a development version of the fault-hardened
Ibex processor [lowa] used in OpenTitan [JRR+18]. We first verify two hardware
countermeasures, namely its Dual-Core LockStep (DCLS) and the Error Detection
Code (EDC) of its register file. Our analysis reveals that DCLS correctly detects
any single bit-flip in one of the two cores or in its internal comparison logic, i.e., it
is labeled 1-fault secure. However, some single bit-flips injected in the Ibex’s regis-
ter file are not captured by the EDC protection, thus leading to potential software
exploitations. The hardware/software co-verification step showcases that an adver-
sary can exploit this vulnerability to manipulate the control flow of the VerifyPIN
authentication program [DPP+16] or to perform a differential fault analysis on an
AES software implementation [kok19]. Nevertheless, we verify the robustness of the
OpenTitan secure element running the first step of a secure boot process, as its soft-
ware countermeasures prevent the register file vulnerability from being exploited.
Performance-wise, k-fault-resistant partitioning allows us to analyze a secure pro-
cessor with a 130 kGE circuit. The hardware/software co-verification step can then
address previously intractable software verification of thousands of instructions.

We disclosed the fault vulnerability of the register file in the Ibex core used in a
development version of OpenTitan to the project, which acknowledged our findings.

112

4.8. Conclusion

The fix we provided and formally proved was integrated6 into the OpenTitan project.

6https://github.com/lowRISC/ibex/pull/2117

113

https://github.com/lowRISC/ibex/pull/2117

Chapter 5
Conclusion

Contents
5.1 Conclusion . 114
5.2 Perspectives . 115

5.1 Conclusion

The literature has proposed numerous formal analysis techniques to analyze fault
attacks, either at the circuit level—to accurately represent faults in logic gates—or
at the software level—to evaluate the consequences of faults on software programs.
However, recent works have reported experimental observations that are inexplica-
ble with classical ISA fault models, such as the instruction skip, or have highlighted
subtle fault effects due to processor microarchitecture, such as pipelining. These
findings emphasize the need for a system co-verification that considers faults in pro-
cessor microarchitecture and that analyzes their consequences on software security.
In this context, the goal of this Ph.D. thesis was to design a cross-layer fault verifi-
cation methodology that is exhaustive, efficient, automatic, and capable of proving
system security with formal guarantees or detecting subtle fault effects that are
difficult to spot manually.

First, Chapter 2 introduced µArchiFI, the first workflow to evaluate the secu-
rity of hardware/software systems against fault attacks using formal techniques. To
develop this tool, we first modeled the hardware/software into a unified representa-
tion and formalized the effects of faults on such a system. We then integrated our
approach into Yosys to leverage its existing synthesis framework and extend it to
represent fault attacks. Finally, µArchiFI generates a formal system specification
embedding faults that can be analyzed with model-checking techniques.

Second, Chapter 3 showcases the use of µArchiFI on several versions of the
CV32E40P RISC-V processor. We identified multiple microarchitectural mecha-
nisms, such as forwarding, prefetching, and multiplication unit, that can be lever-

114

5.2. Perspectives

aged in attacks to defeat software security. These observations validate our approach
by reproducing known results from the literature and highlight the necessity of con-
sidering both software and hardware in a joint analysis to fully understand the
potential of fault injections. Additionally, we demonstrated that µArchiFI is valu-
able for proving the robustness of the CFI-like countermeasure MAFIA, which was
previously impossible with hardware- or software-only methodologies. To address
more complex systems embedding countermeasures and to cope with the state space
explosion problem inherent in formal methods, we investigated software-based op-
timizations like sandboxing or concretization of the program counter value. These
methods showed small performance improvement but were insufficient for verifying
more ambitious systems like secure elements.

Finally, Chapter 4 presented the novel notion of fault-resistant partitioning to de-
compose hardware/software co-verification into more manageable steps. Specifically,
we proposed a preliminary security evaluation of hardware-level countermeasures to
analyze only the faults not captured by hardware protections in the hardware/-
software co-verification step, thereby containing state space explosion. Experimen-
tal results demonstrated that our notion of fault-resistant partitioning, when used
for hardware verification alone, outperforms state-of-the-art methodologies in prov-
ing the robustness of a secure AES implementation. Additionally, when used in a
co-verification process, fault-resistant partitioning allows us to address previously
intractable problems, such as OpenTitan running a secure boot process.

Essentially, the work done in this Ph.D. thesis is a significant step toward formal
hardware/software security evaluations and a better understanding of microarchi-
tectural fault effects on running software.

5.2 Perspectives

The following paragraphs present several directions to extend the work presented
in this thesis.

µArchiFI Improvements. After proposing the initial version of µArchiFIv0 in
Chapter 2, the remainder of this manuscript has focused on enhancing the scalabil-
ity of the approach. First, we integrated the methodology into Yosys to improve the
fault modeling process and leverage state-of-the-art backend solvers. Next, we inves-
tigated software-based optimization strategies based on restrictions on the program
counter (PC) values. Additionally, we decomposed the co-verification process by
conducting a preliminary analysis of hardware countermeasures, thereby reducing
the number of faults to be analyzed in the subsequent step. Further improvements
based on compositional approaches could be explored to reduce problem complex-
ity. For example, a compositional verification strategy could decompose the attacker
goal—which is often a global property encompassing the entire system state—into
local properties.

115

Chapter 5. Conclusion

Control Flow Integrity (CFI) Support. To propose more effective countermeasures
with limited overhead, recent works have introduced combined hardware/software
protections, such as hardware-based CFI [DCGÜ+17, CCH22, NSL+23]. Assessing
the security of these protections is crucial and cannot be achieved using software-
or hardware-only verification techniques. µArchiFI is currently the only tool ca-
pable of formally evaluating these countermeasures, as demonstrated in Section 3.2.
However, as these countermeasures become more prevalent, improving verification
scalability is essential. Future research direction could focus on adapting the k-fault-
resistant partitioning approach to these protections.

Better Software Support. This thesis focused on hardware/software co-verification.
To accurately model faults in the microarchitecture, we adopted a circuit-level sys-
tem representation in µArchiFI. Additionally, the work in Chapter 4 further empha-
sized this near-circuit modeling using a bit-level representation to assess hardware
countermeasures. As a result, the software is essentially seen as a set of constraints
restricting hardware behavior. Future work could better involve software in the veri-
fication process. For instance, it would be interesting to exploit instruction semantics
to determine whether a fault is more likely to affect a given instruction based on
its class, such as arithmetic or jump instructions. Moreover, this manuscript high-
lighted the importance of faults remaining hidden in the microarchitecture. When
evaluating the fault effects on instructions, the microarchitecture state must also be
considered before and after execution. By achieving a detailed characterization of
the effects of faults on the microarchitecture, these fault models could be elevated
to the ISA level and enrich state-of-the-art fault analyses at the software level.

New Horizons. Performance limitations are the current bottleneck of hardware/
software co-verification and efficient methodologies are needed to scale to more am-
bitious use cases. Assuming these limitations are overcome, the range of verifica-
tion use cases we can explore is exciting. We will address more complex processor
architectures and evaluate the consequences of faults on microarchitectural mech-
anisms such as out-of-order execution and branch prediction. Additionally, recent
research in cryptography has focused on other implications of fault attacks, such as
statistically ineffective fault attacks (SIFA) [DEK+18, SRM20] and combined side-
channel/fault-injection attacks [DN20, RFSG22, FGM+23]. Although properties
on combined attacks are not currently supported with µArchiFI as the attacker
goal cannot be directly modeled as a reachability property, studying these attacks
promises exciting findings by adding microarchitectural considerations.

116

Publications

Papers
• Benjamin Binder, Samira Ait Bensaid, Simon Tollec, Farhat Thabet, Mihail

Asavoae, and Mathieu Jan. Formal Processor Modeling for Analyzing Safety
and Security Properties. In Embedded Real Time Systems (ERTS), 2022.

• Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann, and
Mathieu Jan. Exploration of Fault Effects on Formal RISC-V Microarchitec-
ture Models. In Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pages 73–83. IEEE, 2022. doi:10.1109/FDTC57191.2022.00017.

• Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann, and
Mathieu Jan. µArchiFI: Formal Modeling and Verification Strategies for Mi-
croarchitectural Fault Injections. In 2023 Formal Methods in Computer Aided
Design (FMCAD), 2023. doi:10.34727/2023/isbn.978-3-85448-060-0_18.

• Simon Tollec, Vedad Hadžić, Pascal Nasahl, Mihail Asavoae, Roderick Bloem,
Damien Couroussé, Karine Heydemann, Mathieu Jan, and Stefan Mangard.
Fault-Resistant Partitioning of Secure CPUs for System Co-Verification against
Faults. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems (CHES), pages 179–204, 2024. doi:10.46586/tches.v2024.i4.179-204.

Communications
• The Spring 2022 RISC-V Week, Poster, May 2022, Paris, France.

• The Eleventh Summer School on Formal Techniques (SSFT), Oral presenta-
tion, June 2022, Palo Alto, USA.

• Journée sur les attaques par injection de fautes (JAIF), Oral presentations,
November 2022, Valence, and October 2024, Rennes, France.

• Winter School on « Technologies de Conception des Systèmes Embarqués
Hétérogènes » (FETCH), Poster, February 2023, Lavey-les-Bains, Suisse.

• Journées du groupe de travail sur les méthodes formelles pour la sécurité
(GTMFS), Oral presentation, March 2023 and April 2024, France.

Artifacts
• µArchiFI: https://github.com/CEA-LIST/uArchiFI

https://zenodo.org/records/7958412

• Partitioning: https://github.com/CEA-LIST/Fault-Resistant-Partitioning

117

https://doi.org/10.1109/FDTC57191.2022.00017
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_18
https://doi.org/10.46586/tches.v2024.i4.179-204
https://github.com/CEA-LIST/uArchiFI
https://zenodo.org/records/7958412
https://github.com/CEA-LIST/Fault-Resistant-Partitioning

Appendix A
Proof of Theorem 4.1

Proof. To prove that a circuit C with partitioning P fulfilling Definition 4.8 also
fulfills Definition 4.7, we first prove that it satisfies a stronger inductive property for
all n ∈ N∗:

∀ (σi)
n+d
i=1 , ∀F ⊆ F × [1, n+ d], |F| ≤ k :

(
n+d∧
i=1

A
(
σ
F[1,i]

i

)
= 0

)
=⇒

(
∆P

(
σn+1, σ

F[1,n]

n+1

)
≤
∣∣F[1,n]

∣∣) ∧(n∧
i=1

O′ (σi) = O′
(
σ
F[1,i]

i

))
.

(A.1)

Trivially, (A.1) implies it must also satisfy (4.1) for all n ∈ N∗. As mentioned, the
proof proceeds inductively over n, generalizing from an arbitrary execution (σi)

n+d
i=1 .

(Basis.) For the base case, we must demonstrate (A.1) for n = 1, i.e.,

∀ (σi)
d+1
i=1 , ∀F ⊆ F × [1, d+ 1], |F| ≤ k :

(
d+1∧
i=1

A
(
σ
F[1,i]

i

)
= 0

)
=⇒(

∆P

(
σ2, σ

F[1,1]

2

)
≤
∣∣F[1,1]

∣∣) ∧ (O′ (σ1) = O′
(
σ
F[1,1]

1

))
.

(A.2)

This follows directly from (4.2). Let F ⊆ F × [1, d + 1] be an attack with |F| ≤ k,
(σi)

d+1
i=1 be an execution, and lastly, (σ̂i)

d+1
i=1 be a second execution with σ̂i = σ

F[1,i−1]

i .
Applying (4.2) with j = 1 and k′ = 0 yields(

d+1∧
i=1

I (σi) = I
(
σ
F[1,i−1]

i

))
∧
(
∆P

(
σ1, σ

F[1,0]

1

)
≤ 0
)
∧

(
d+1∧
i=1

A
(
σ
F[1,i]

i

)
= 0

)
=⇒

(
∆P

(
σ2, σ

F[1,1]

2

)
≤
∣∣F[1,1]

∣∣) ∧ (O′ (σ1) = O′
(
σ
F[1,1]

1

))
.

As faults in prior states cannot corrupt the input in the current state, we can con-
clude that

(∧d+1
i=1 I (σi) = I

(
σ
F[1,i−1]

i

))
= ⊤. Furthermore, since σ

F[1,0]

1 = σ
FØ
1 =

σ1, we get ∆P

(
σ1, σ

F[1,0]

1

)
= 0, simplifying the left-hand side of the implication to

just the last term. Generalizing the result, i.e., introducing quantification over free
variables (σi)

d+1
i=1 and F ⊆ F × [1, d+1] with |F| ≤ k, produces (A.2) and concludes

the induction basis.

118

.

(Step.) For the induction step, we have to show that necessarily

∀ (σi)
n+d+1
i=1 , ∀F ⊆ F × [1, n+ d+ 1], |F| ≤ k :

(
n+d+1∧
i=1

A
(
σ
F[1,i]

i

)
= 0

)
=⇒

(
∆P

(
σn+2, σ

F[1,n+1]

n+2

)
≤
∣∣F[1,n+1]

∣∣) ∧(n+1∧
i=1

O′ (σi) = O′
(
σ
F[1,i]

i

))
(A.3)

under the assumption that (A.1) holds. First, let (σi)
n+d+1
i=1 be an arbitrary execu-

tion and F ⊆ F × [1, n + d + 1] be an arbitrary attack with |F| ≤ k. Consider the
expression

(∧n+d+1
i=1 A

(
σ
F[1,i]

i

)
= 0
)

and assume it is true (⊤). Consequently, the

weaker expression from 1 up to n+ d is also true, i.e.,
(∧n+d

i=1 A
(
σ
F[1,i]

i

)
= 0
)
= ⊤.

This, together with an application of (A.1) to the execution (σi)
n+d
i=1 , means that(

∆P

(
σn+1, σ

F[1,n]

n+1

)
≤
∣∣F[1,n]

∣∣) = ⊤ and
(∧n

i=1O
′ (σi) = O′

(
σ
F[1,i]

i

))
= ⊤. Next,

instantiate (4.2) for the executions (σi)
n+l+1
i=n+1 and (σ̂i)

n+l+1
i=n+1, with σ̂i = σ

F[1,i−1]

i , the
number k′ =

∣∣F[1,n]

∣∣ and fault attack F[n+1,n+d+1], which works because
∣∣F[n+1,n+d+1]

∣∣+
k′ =

∣∣F[n+1,n+d+1]

∣∣+ ∣∣F[1,n]

∣∣ = |F| ≤ k, to get(
n+d+1∧
i=n+1

I (σi) = I
(
σ
F[1,i−1]

i

))
∧
(
∆P

(
σn+1, σ

F[1,n]

n+1

)
≤
∣∣F[1,n]

∣∣) ∧(n+d+1∧
i=n+1

A
(
σ
F[1,i]

i

)
= 0

)
=⇒

(
∆P

(
σn+2, σ

F[1,n+1]

n+2

)
≤
∣∣F[1,n]

∣∣+ ∣∣F{n+1}
∣∣) ∧ (O′ (σn+1

)
= O′

(
σ
F[1,n+1]

n+1

))
.

Similarly to the basis step, past faults cannot lead to different inputs in the cur-
rent state, and therefore

(∧n+d+1
i=n+1 I (σi) = I

(
σ
F[1,i−1]

i

))
= ⊤. Moreover, the weaker

term from n+1 to n+d+1 of our assumption must also be true, i.e.,
(∧n+d+1

i=n+1 A
(
σ
F[1,i]

i

)
= 0
)
=

⊤. The left-hand side of the implication is⊤, yieling
(
∆P

(
σn+2, σ

F[1,n+1]

n+2

)
≤
∣∣F[1,n+1]

∣∣) =

⊤ and
(
O′ (σn+1

)
= O′

(
σ
F[1,n+1]

n+1

))
= ⊤. Joining the previous facts about the out-

put into
(∧n+1

i=1 O
′ (σi) = O′

(
σ
F[1,i]

i

))
, we have proven the implication in (A.3).

After generalization, we get (A.3) itself.

119

Appendix B
Vulnerabilities in Impeccable
Circuits Implementations

The Skinny-64 and AES-128 implementations from Impeccable Circuit [AMR+20]
protected against 3 faults revealed to be vulnerable. For each cipher, we detail re-
producible attack scenarios providing the Plaintext, the Key, and the faults to be
injected according to the circuit nomenclature to produce incorrect ciphertexts with-
out triggering an alert.

Skinny-64 red-4
• Plaintext: 0x06034f957724d19d;

• Key: 0xf5269826fc681238;

• Expected ciphertext: 0xbb39dfb2429b8ac7;

• 1st fault: (bit-flip, round 0, Red_StateReg. s_current_state[44]);

• 2nd fault: (bit-flip, round 0, SubCellOutput[46]);

• 3rd fault: (bit-flip, round 0, Check1.in1[244]);

• Faulty ciphertext: 0x0897810d2aa02f8e.

AES-128 red-5
• Plaintext: 0xd2228cc9f8b8f239b0162a9ad3632127;

• Key: 0x7f287089fbbebdb8f364377b97f5c9ef;

• Expected ciphertext: 0x6666b1677c13464929f286aca090eb74;

• 1st fault: (bit-flip, at round 0, InputMUX.Q[31]) ;

• 2nd fault: (bit-flip, at round 0, RedFinalRoundControlLogicInst.Red_FinalRoundBit[2]);

• 3rd fault: (bit-flip, at round 0, Check1.result[2]);

• Faulty ciphertext: 0xfd711dada3bfa30b6406f71be54e20a1.

120

List of Figures

1 State of the Art and Problem Statement 5

1.1 Fault abstraction levels and fault effects, adapted from [YSW18]. . . 9

1.2 Mismatch between hardware-level and software-level fault models. . . 16

2 µArchiFI Workflow: Formal Modeling and Implementation 25

2.1 Simple circuit example. 28

2.2 Mealy machineM executing the sequential circuit C. 29

2.3 Counter modeling. 29

2.4 Software modeling. 30

2.5 Fault model example affecting sequential gates only. 31

2.6 Counter modeling under fault attack F. 32

2.7 Fault injection modeling on a transition system. 33

2.8 Symbolic reachability analysis. 36

2.9 Yosys workflow. 42

2.10 µArchiFI architecture and verification toolchain. 45

2.11 Rtlil transformation using the FaultRtlil pass. 48

2.12 Optimization effects on the state space to explore. 50

3 Experimental Evaluation using µArchiFI 55

3.1 CV32E40P block diagram. 57

3.2 Multiplier input/output signals and their use to stall the preceding
pipeline stages in case of a multicycle multiplication. 58

3.3 Prefetch buffer FIFO in the CV32E40P. 58

3.4 Consequences of fault injection on the PFB. 66

i

List of Figures

4 Preliminary Hardware Analysis using Fault-Resistant Partitioning 82

4.1 Two-step methodology to improve verification of hardware/software
systems against faults attacks. 84

4.2 OpenTitan block diagram, Earl Grey design [lowc]. 87

4.3 Circuit partitioning example with P = {{r1, r2} , {r3}}. 88

4.4 Fault propagation on a simple circuit. 89

4.5 Concurrent Error Detection (CED) scheme. 90

4.6 Product Mealy machine for comparing two finite-state machines. . . 92

4.7 Overview of different properties a circuit implementing CED can ful-
fill, where (a) is the strongest property that implies (b), which in
turn implies (c). 93

4.8 Fault-resistant partitioning on a circuit implementing duplication. . . 95

4.9 Workflow implementing fault-resistant partitioning (Step 1). 100

4.10 Hardware/software co-verification flow using Verilator (Step 2). . . . 101

4.11 Secure Ibex countermeasures and partitioning obtained with Algo-
rithm 4.1. 105

4.12 Register file protections and the identified vulnerability. 106

4.13 Register file with fixed vulnerability. 106

4.14 OpenTitan secure boot flow. 108

ii

List of Tables

1 State of the Art and Problem Statement 5

1.1 Fault injection techniques overview. 7

1.2 Tools for evaluating fault consequences at various levels of abstraction. 20

2 µArchiFI Workflow: Formal Modeling and Implementation 25

2.1 Notations used in this manuscript to model hardware/software systems. 27

2.2 Languages classically used for hardware model checking. 40

2.3 Model Checkers for hardware verification. 41

3 Experimental Evaluation using µArchiFI 55

3.1 VerifyPIN suite and its countermeasures, adapted from [DPP+16]. . 60

3.2 CV32E40P circuit model characteristics. 61

3.3 Execution time and verification bound for each VerifyPIN version. . 62

3.4 Results of the FI analysis on VerifyPIN using µArchiFI. 64

3.5 MAFIA circuit model characteristics. 71

3.6 Execution time and BMC bound for each VerifyPIN version on MAFIA. 71

3.7 Verification time for each VerifyPIN analysis. The faults column in-
dicates the number of fault locations (spatial and temporal) explored. 73

3.8 Use cases characteristics. 74

3.9 Use-cases verification time (in seconds) with three model checkers. . 77

3.10 Verification time improvement with the sandboxing technique wrt.
the baseline verification time (in seconds) with faults in Table 3.9. . 77

3.11 Verification time improvement with the concretization technique wrt.
the baseline verification time (in seconds) with faults from Table 3.9. 78

iii

List of Tables

4 Preliminary Hardware Analysis using Fault-Resistant Partitioning 82

4.1 Evaluation of Skinny-64 and AES-128 circuits using k-fault-resistant
partitioning. 103

4.2 Evaluation of Secure Ibex and its modules using k-fault-resistant par-
titioning. 106

4.3 Co-verification results on software use cases exploiting the undetected
fault in the register file. 110

iv

Listings

2 µArchiFI Workflow: Formal Modeling and Implementation 25
2.1 Yosys’s simulation pass to set the system’s initial states. 47
2.2 FaultRtlil command syntax. 48

3 Experimental Evaluation using µArchiFI 55
3.1 C code of VerifyPIN_v0 which has no countermeasures. 59

v

Bibliography

[ABC+17] Stéphanie Anceau, Pierre Bleuet, Jessy Clédière, Laurent Maingault, Jean-luc
Rainard, and Rémi Tucoulou. Nanofocused X-Ray Beam to Reprogram Secure
Circuits. In IACR Transactions on Cryptographic Hardware and Embedded
Systems (CHES), volume 10529, pages 175–188. Springer, 2017. doi:10.
1007/978-3-319-66787-4_9. (Cited on page 8).

[ACD+22] Ihab Alshaer, Brice Colombier, Christophe Deleuze, Vincent Beroulle, and
Paolo Maistri. Variable-Length Instruction Set: Feature or Bug? In Euromicro
Conference on Digital System Design (DSD), pages 464–471. IEEE, 2022. doi:
10.1109/DSD57027.2022.00068. (Cited on pages 15 and 56).

[AD10] Michel Agoyan and Jean-Max Dutertre. When Clocks Fail: On Critical
Paths and Clock Faults. In Smart Card Research and Advanced Applica-
tion, volume 6035, pages 182–193. Springer Berlin Heidelberg, 2010. doi:
10.1007/978-3-642-12510-2_13. (Cited on page 6).

[AM11] Sk. Subidh Ali and Debdeep Mukhopadhyay. A Differential Fault Analysis on
AES Key Schedule Using Single Fault. In Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pages 35–42. IEEE, 2011. doi:10.1109/
FDTC.2011.10. (Cited on pages 12 and 76).

[AMR+20] Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi,
Falk Schellenberg, and Tobias Schneider. Impeccable Circuits. IEEE Trans-
actions on Computers, 69:361–376, 2020. doi:10.1109/TC.2019.2948617.
(Cited on pages 4, 17, 18, 90, 102, 112, and 120).

[AVFM07] Frederic Amiel, Karine Villegas, Benoit Feix, and Louis Marcel. Passive and
Active Combined Attacks: Combining Fault Attacks and Side Channel Analy-
sis. In Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pages 92–102. IEEE, 2007. doi:10.1109/FDTC.2007.12. (Cited on page 12).

[AWMN20] Victor Arribas, Felix Wegener, Amir Moradi, and Svetla Nikova. Cryp-
tographic Fault Diagnosis using VerFI. In International Symposium on
Hardware Oriented Security and Trust (HOST), pages 229–240. IEEE, 2020.
doi:10.1109/HOST45689.2020.9300264. (Cited on pages 20 and 21).

[BAM+23] Sophie Bouat, Stéphanie Anceau, Laurent Maingault, Jessy Clédière, Luc
Salvo, and Rémi Tucoulou. X ray nanoprobe for fault attacks and circuit
edits on 28-nm integrated circuits. In IEEE International Symposium on De-
fect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages
1–6. IEEE, 2023. doi:10.1109/DFT59622.2023.10313553. (Cited on page
8).

[BBK+03] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Error analy-
sis and detection procedures for a hardware implementation of the advanced
encryption standard. IEEE Transactions on Computers, 52:492–505, 2003.
doi:10.1109/TC.2003.1190590. (Cited on pages 17 and 90).

vi

https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1109/DSD57027.2022.00068
https://doi.org/10.1109/DSD57027.2022.00068
https://doi.org/10.1007/978-3-642-12510-2_13
https://doi.org/10.1007/978-3-642-12510-2_13
https://doi.org/10.1109/FDTC.2011.10
https://doi.org/10.1109/FDTC.2011.10
https://doi.org/10.1109/TC.2019.2948617
https://doi.org/10.1109/FDTC.2007.12
https://doi.org/10.1109/HOST45689.2020.9300264
https://doi.org/10.1109/DFT59622.2023.10313553
https://doi.org/10.1109/TC.2003.1190590

Bibliography

[BBK+10] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi, and
Francesco Regazzoni. Countermeasures against fault attacks on software im-
plemented AES: Effectiveness and cost. In Proceedings of the 5th Workshop on
Embedded Systems Security, pages 1–10. ACM, 2010. doi:10.1145/1873548.
1873555. (Cited on page 18).

[BBKN12] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache.
Fault Injection Attacks on Cryptographic Devices: Theory, Practice, and
Countermeasures. Proceedings of the IEEE, 100:3056–3076, 2012. doi:
10.1109/JPROC.2012.2188769. (Cited on page 6).

[BBPP09] Alessandro Barenghi, Guido Bertoni, Emanuele Parrinello, and Gerardo
Pelosi. Low Voltage Fault Attacks on the RSA Cryptosystem. In Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 23–31. IEEE,
2009. doi:10.1109/FDTC.2009.30. (Cited on page 7).

[BBT+22] Benjamin Binder, Samira Ait Bensaid, Simon Tollec, Farhat Thabet, Mihail
Asavoae, and Mathieu Jan. Formal Processor Modeling for Analyzing Safety
and Security Properties. In Embedded Real Time Systems (ERTS), 2022. No
cited.

[BCC+19] Marco Bozzano, Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Al-
berto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco
Roveri, and Stefano Tonetta. nuXmv User Manual. Fondazione Bruno Kessler,
2019. (Cited on page 40).

[BCD+18] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. A Survey of Symbolic Execution Techniques. ACM Com-
puting Surveys, 2018. URL: http://arxiv.org/abs/1610.00502, arXiv:
1610.00502. (Cited on pages 22 and 51).

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 10^20 States and beyond. Information and Computation,
98:142–170, 1992. doi:10.1016/0890-5401(92)90017-A. (Cited on pages
35 and 36).

[BCN+06] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The Sor-
cerer’s Apprentice Guide to Fault Attacks. Proceedings of the IEEE, 94:370–
382, 2006. doi:10.1109/JPROC.2005.862424. (Cited on pages 6, 13, and 17).

[BD94] Jerry R. Burch and David L. Dill. Automatic verification of pipelined micro-
processor control. In Computer Aided Verification (CAV), volume 818, pages
68–80. Springer, 1994. doi:10.1007/3-540-58179-0_44. (Cited on page
48).

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance of
Checking Cryptographic Protocols for Faults. In Advances in Cryptology (EU-
ROCRYPT), pages 37–51, 1997. doi:10.1007/3-540-69053-0_4. (Cited on
page 6).

[BFFH20] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger.
CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT
Competition 2020. In Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, pages 51–53, 2020. (Cited on page 100).

[BFP19] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shaping the
Glitch: Optimizing Voltage Fault Injection Attacks. IACR Transactions on
Cryptographic Hardware and Embedded Systems (CHES), pages 199–224, 2019.
doi:10.46586/tches.v2019.i2.199-224. (Cited on page 7).

vii

https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/FDTC.2009.30
http://arxiv.org/abs/1610.00502
https://arxiv.org/abs/1610.00502
https://arxiv.org/abs/1610.00502
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1007/3-540-58179-0_44
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.46586/tches.v2019.i2.199-224

Bibliography

[BGE+17] Jan Burchard, Mañl Gay, Ange-Salomé Messeng Ekossono, Jan Horáček,
Bernd Becker, Tobias Schubert, Martin Kreuzer, and Ilia Polian. AutoFault:
Towards Automatic Construction of Algebraic Fault Attacks. In Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 65–72. IEEE,
2017. doi:10.1109/FDTC.2017.13. (Cited on page 20).

[BGV11] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An In-depth and
Black-box Characterization of the Effects of Clock Glitches on 8-bit MCUs. In
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages
105–114. IEEE, 2011. doi:10.1109/FDTC.2011.9. (Cited on pages 6, 13,
and 14).

[BHE+19] Jean-Baptiste Bréjon, Karine Heydemann, Emmanuelle Encrenaz, Quentin
Meunier, and Son-Tuan Vu. Fault attack vulnerability assessment of binary
code. In Workshop on Cryptography and Security in Computing Systems
(CS2), pages 13–18. ACM, 2019. doi:10.1145/3304080.3304083. (Cited
on pages 20 and 22).

[BHW11] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and beyond.
2011. doi:10.35011/FMVTR.2011-2. (Cited on page 40).

[BIL11] Guillaume Bouffard, Julien Iguchi-Cartigny, and Jean-Louis Lanet. Com-
bined Software and Hardware Attacks on the Java Card Control Flow.
Smart Card Research and Advanced Applications, 7079:283–296, 2011. doi:
10.1007/978-3-642-27257-8_18. (Cited on page 12).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, April 2008. (Cited on page 41).

[BLE+16] Noemie Beringuier-Boher, Marc Lacruche, David El-Baze, Jean-Max Dutertre,
Jean-Baptiste Rigaud, and Philippe Maurine. Body Biasing Injection Attacks
in Practice. In Workshop on Cryptography and Security in Computing Systems
(CS2), pages 49–54. ACM, 2016. doi:10.1145/2858930.2858940. (Cited on
page 8).

[BLLL18] Sebanjila K. Bukasa, Ronan Lashermes, Jean-Louis Lanet, and Axel Leqay.
Let’s shock our IoT’s heart: ARMv7-M under (fault) attacks. In International
Conference on Availability, Reliability and Security (ARES), pages 1–6. ACM,
2018. doi:10.1145/3230833.3230842. (Cited on page 7).

[BLS02] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Modeling and
Verifying Systems Using a Logic of Counter Arithmetic with Lambda Expres-
sions and Uninterpreted Functions. In Computer Aided Verification (CAV),
volume 2404, pages 78–92. Springer, 2002. doi:10.1007/3-540-45657-0_7.
(Cited on page 48).

[BM10] Robert Brayton and Alan Mishchenko. ABC: An Academic Industrial-
Strength Verification Tool. In Computer Aided Verification (CAV), volume
6174, pages 24–40. Springer, 2010. doi:10.1007/978-3-642-14295-6_5.
(Cited on page 91).

[BN08] Alberto Bosio and Giorgio Di Natale. LIFTING: A Flexible Open-Source
Fault Simulator. In 2008 17th Asian Test Symposium, pages 35–40, 2008.
doi:10.1109/ATS.2008.17. (Cited on pages 20 and 22).

[Bra11] Aaron R. Bradley. SAT-Based Model Checking without Unrolling. In Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI). Springer, 2011.
doi:10.1007/978-3-642-18275-4_7. (Cited on page 37).

viii

https://doi.org/10.1109/FDTC.2017.13
https://doi.org/10.1109/FDTC.2011.9
https://doi.org/10.1145/3304080.3304083
https://doi.org/10.35011/FMVTR.2011-2
https://doi.org/10.1007/978-3-642-27257-8_18
https://doi.org/10.1007/978-3-642-27257-8_18
https://doi.org/10.1145/2858930.2858940
https://doi.org/10.1145/3230833.3230842
https://doi.org/10.1007/3-540-45657-0_7
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1109/ATS.2008.17
https://doi.org/10.1007/978-3-642-18275-4_7

Bibliography

[Bry86] Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35:677–691, 1986. doi:10.1109/TC.1986.
1676819. (Cited on page 37).

[Bry92] Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24:293–318, 1992. doi:10.
1145/136035.136043. (Cited on page 37).

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Advances in Cryptology (CRYPTO), volume 1294, pages 513–525.
Springer Berlin Heidelberg, 1997. doi:10.1007/BFb0052259. (Cited on pages
12 and 109).

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard.
Proceedings of the 8th international workshop on satisfiability modulo theories
(Edinburgh, UK), page 104, 2010. (Cited on page 38).

[BTG10] Guillaume Barbu, Hugues Thiebeauld, and Vincent Guerin. Attacks on Java
Card 3.0 Combining Fault and Logical Attacks. Smart Card Research and Ad-
vanced Application, 6035:148–163, 2010. doi:10.1007/978-3-642-12510-2_
11. (Cited on page 12).

[CBRZ01] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded
Model Checking Using Satisfiability Solving. Formal Methods in System De-
sign, 2001. doi:10.1023/A:1011276507260. (Cited on page 36).

[CCD+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,
Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and
Stefano Tonetta. The nuXmv Symbolic Model Checker. In Computer
Aided Verification (CAV), pages 334–342. Springer, 2014. doi:10.1007/
978-3-319-08867-9_22. (Cited on page 41).

[CCH22] Thomas Chamelot, Damien Courousse, and Karine Heydemann. SCI-FI:
Control Signal, Code, and Control Flow Integrity against Fault Injection
Attacks. In Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), pages 556–559. IEEE, 2022. doi:10.23919/DATE54114.2022.
9774685. (Cited on pages 19, 69, 70, 71, and 116).

[CCH23] Thomas Chamelot, Damien Couroussé, and Karine Heydemann. MAFIA: Pro-
tecting the Microarchitecture of Embedded Systems Against Fault Injection
Attacks. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pages 1–1, 2023. doi:10.1109/TCAD.2023.3276507. (Cited on
pages 19 and 69).

[CDHK15] Eduard Cerny, Surrendra Dudani, John Havlicek, and Dmitry Korchemny.
SVA: The Power of Assertions in SystemVerilog. 2015. doi:10.1007/
978-3-319-07139-8. (Cited on page 49).

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Workshop on Log-
ics of Programs, volume 131, pages 52–71, 1981. doi:10.1007/BFb0025774.
(Cited on page 34).

[CGV+22] Brice Colombier, Paul Grandamme, Julien Vernay, Émilie Chanavat, Lilian
Bossuet, Lucie De Laulanié, and Bruno Chassagne. Multi-Spot Laser Fault
Injection Setup: New Possibilities for Fault Injection Attacks. In Smart Card
Research and Advanced Applications (CARDIS), volume 13173, pages 151–
166, 2022. doi:10.1007/978-3-030-97348-3_9. (Cited on page 8).

ix

https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-642-12510-2_11
https://doi.org/10.1007/978-3-642-12510-2_11
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.23919/DATE54114.2022.9774685
https://doi.org/10.23919/DATE54114.2022.9774685
https://doi.org/10.1109/TCAD.2023.3276507
https://doi.org/10.1007/978-3-319-07139-8
https://doi.org/10.1007/978-3-319-07139-8
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-030-97348-3_9

Bibliography

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors. Handbook of Model Checking. Springer International Pub-
lishing, 2018. doi:10.1007/978-3-319-10575-8. (Cited on page 41).

[CKV10] Edmund M. Clarke, Robert P. Kurshan, and Helmut Veith. The Localization
Reduction and Counterexample-Guided Abstraction Refinement. In Time for
Verification, volume 6200, pages 61–71. Springer Berlin Heidelberg, 2010. doi:
10.1007/978-3-642-13754-9_4. (Cited on page 39).

[CO23] Zitai Chen and David Oswald. PMFault: Faulting and Bricking Server CPUs
through Management Interfaces: Or: A Modern Example of Halt and Catch
Fire. IACR Transactions on Cryptographic Hardware and Embedded Systems
(CHES), pages 1–23, 2023. doi:10.46586/tches.v2023.i2.1-23. (Cited
on page 8).

[Con88] Wikipedia Contributors. Morris worm — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/wiki/Morris_worm, 1988. Accessed: June 12,
2024. (Cited on page 1).

[Con14] Wikipedia Contributors. Heartbleed — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/wiki/Heartbleed, 2014. Accessed: June 12,
2024. (Cited on page 1).

[CPHR21] Ludovic Claudepierre, Pierre-Yves Péneau, Damien Hardy, and Erven Rohou.
TRAITOR: A Low-Cost Evaluation Platform for Multifault Injection. In Pro-
ceedings of the 2021 International Symposium on Advanced Security on Soft-
ware and Systems, pages 51–56. ACM, 2021. doi:10.1145/3457340.3458303.
(Cited on page 6).

[Cri22] Common Criteria. Common criteria for information technology security eval-
uation – cc v3.1. release 5. https://www.commoncriteriaportal.org/cc/
index.cfm, 2022. Accessed: July 12, 2024. (Cited on page 2).

[CT05] Hamid Choukri and Michael Tunstall. Round Reduction Using Faults. In
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). IEEE,
2005. (Cited on page 13).

[DBC+18] Jean-Max Dutertre, Vincent Beroulle, Philippe Candelier, Stephan De Castro,
Louis-Barthelemy Faber, Marie-Lise Flottes, Philippe Gendrier, David Hely,
Regis Leveugle, Paolo Maistri, Giorgio Di Natale, Athanasios Papadimitriou,
and Bruno Rouzeyre. Laser Fault Injection at the CMOS 28 nm Technology
Node: An Analysis of the Fault Model. In Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pages 1–6. IEEE, 2018. doi:10.1109/
FDTC.2018.00009. (Cited on page 7).

[DBP23] Soline Ducousso, Sébastien Bardin, and Marie-Laure Potet. Adversar-
ial Reachability for Program-level Security Analysis. In European Sym-
posium on Programming (ESOP), pages 59–89, 2023. doi:10.1007/
978-3-031-30044-8_3. (Cited on pages 20 and 22).

[DCGÜ+17] Ruan De Clercq, Johannes Götzfried, David Übler, Pieter Maene, and In-
grid Verbauwhede. SOFIA: Software and control flow integrity architecture.
Computers & Security, 68:16–35, 2017. doi:10.1016/j.cose.2017.03.013.
(Cited on pages 18 and 116).

[DDCS+14] Jean-Max Dutertre, Stephan De Castro, Alexandre Sarafianos, Noemie Boher,
Bruno Rouzeyre, Mathieu Lisart, Joel Damiens, Philippe Candelier, Marie-
Lise Flottes, and Giorgio Di Natale. Laser attacks on integrated circuits: From
CMOS to FD-SOI. In International Conference on Design & Technology of

x

https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-642-13754-9_4
https://doi.org/10.1007/978-3-642-13754-9_4
https://doi.org/10.46586/tches.v2023.i2.1-23
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Heartbleed
https://doi.org/10.1145/3457340.3458303
https://www.commoncriteriaportal.org/cc/index.cfm
https://www.commoncriteriaportal.org/cc/index.cfm
https://doi.org/10.1109/FDTC.2018.00009
https://doi.org/10.1109/FDTC.2018.00009
https://doi.org/10.1007/978-3-031-30044-8_3
https://doi.org/10.1007/978-3-031-30044-8_3
https://doi.org/10.1016/j.cose.2017.03.013

Bibliography

Integrated Systems in Nanoscale Era (DTIS), pages 1–6. IEEE, 2014. doi:
10.1109/DTIS.2014.6850664. (Cited on page 7).

[DDRT12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. Elec-
tromagnetic Transient Faults Injection on a Hardware and a Software Imple-
mentations of AES. In Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC), pages 7–15. IEEE, 2012. doi:10.1109/FDTC.2012.15. (Cited
on page 7).

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: Exploiting Ineffective Fault
Inductions on Symmetric Cryptography. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (CHES), pages 547–572, 2018.
doi:10.46586/tches.v2018.i3.547-572. (Cited on page 116).

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Commununications of the ACM, 1962. doi:10.1145/
368273.368557. (Cited on page 38).

[DLM19] Mathieu Dumont, Mathieu Lisart, and Philippe Maurine. Electromagnetic
Fault Injection : How Faults Occur. In Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pages 9–16. IEEE, 2019. doi:10.1109/
FDTC.2019.00010. (Cited on page 7).

[DLM21] M. Dumont, M. Lisart, and P. Maurine. Modeling and Simulating Electro-
magnetic Fault Injection. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 40:680–693, 2021. doi:10.1109/TCAD.2020.
3003287. (Cited on page 7).

[DMM+13] Amine Dehbaoui, Amir-Pasha Mirbaha, Nicolas Moro, Jean-Max Dutertre,
and Assia Tria. Electromagnetic Glitch on the AES Round Counter. Con-
structive Side-Channel Analysis and Secure Design (COSADE), 7864:17–31,
2013. doi:10.1007/978-3-642-40026-1_2. (Cited on page 7).

[DN20] Siemen Dhooghe and Svetla Nikova. My Gadget Just Cares for Me - How
NINA Can Prove Security Against Combined Attacks. In Topics in Cryp-
tology – CT-RSA 2020, volume 12006, pages 35–55. Springer International
Publishing, 2020. doi:10.1007/978-3-030-40186-3_3. (Cited on pages 85,
90, and 116).

[DPP+16] Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-Ha Le, Aude Cro-
hen, and Philippe de Choudens. FISSC: A Fault Injection and Simulation Se-
cure Collection. In Computer Safety, Reliability, and Security (SAFECOMP),
2016. doi:10.1007/978-3-319-45477-1_1. (Cited on pages 59, 60, 109,
112, and iii).

[DRPR19] Jean-Max Dutertre, Timothé Riom, Olivier Potin, and Jean-Baptiste Rigaud.
Experimental Analysis of the Laser-Induced Instruction Skip Fault Model.
In Nordic Conference on Secure IT Systems, volume 11875, pages 221–237.
Springer International Publishing, 2019. doi:10.1007/978-3-030-35055-0_
14. (Cited on pages 8 and 108).

[Dut14] Bruno Dutertre. Yices 2.2. In Computer Aided Verification (CAV), volume
8559, pages 737–744. Springer, 2014. doi:10.1007/978-3-319-08867-9_49.
(Cited on page 38).

[EMB11] Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient implementa-
tion of property directed reachability. In Formal Methods in Computer-Aided
Design (FMCAD), pages 125–134. IEEE, 2011. (Cited on page 37).

xi

https://doi.org/10.1109/DTIS.2014.6850664
https://doi.org/10.1109/DTIS.2014.6850664
https://doi.org/10.1109/FDTC.2012.15
https://doi.org/10.46586/tches.v2018.i3.547-572
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1109/FDTC.2019.00010
https://doi.org/10.1109/FDTC.2019.00010
https://doi.org/10.1109/TCAD.2020.3003287
https://doi.org/10.1109/TCAD.2020.3003287
https://doi.org/10.1007/978-3-642-40026-1_2
https://doi.org/10.1007/978-3-030-40186-3_3
https://doi.org/10.1007/978-3-319-45477-1_1
https://doi.org/10.1007/978-3-030-35055-0_14
https://doi.org/10.1007/978-3-030-35055-0_14
https://doi.org/10.1007/978-3-319-08867-9_49

Bibliography

[ESH+11] Sho Endo, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki, and Akashi
Satoh. An on-chip glitchy-clock generator for testing fault injection at-
tacks. Journal of Cryptographic Engineering, 1:265–270, 2011. doi:10.1007/
s13389-011-0022-y. (Cited on page 6).

[FGA+23] Clément Fanjas, Clément Gaine, Driss Aboulkassimi, Simon Pontié, and
Olivier Potin. Combined Fault Injection and Real-Time Side-Channel Analy-
sis for Android Secure-Boot Bypassing. In Smart Card Research and Advanced
Applications, volume 13820, pages 25–44. Springer International Publishing,
2023. doi:10.1007/978-3-031-25319-5_2. (Cited on page 12).

[FGM+23] Jakob Feldtkeller, Tim Güneysu, Thorben Moos, Jan Richter-Brockmann,
Sayandeep Saha, Pascal Sasdrich, and François-Xavier Standaert. Combined
Private Circuits - Combined Security Refurbished. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security, pages
990–1004. ACM, 2023. doi:10.1145/3576915.3623129. (Cited on page 116).

[GHHR23] Antoine Gicquel, Damien Hardy, Karine Heydemann, and Erven Rohou.
SAMVA: Static Analysis for Multi-fault Attack Paths Determination. Con-
structive Side-Channel Analysis and Secure Design (COSADE), pages 3–22,
2023. doi:10.1007/978-3-031-29497-6_1. (Cited on pages 20 and 22).

[Gir05] Christophe Giraud. DFA on AES. In Advanced Encryption Standard – AES,
volume 3373, pages 27–41. Springer Berlin Heidelberg, 2005. doi:10.1007/
11506447_4. (Cited on page 12).

[GJL20] Thomas Given-Wilson, Nisrine Jafri, and Axel Legay. Combined software and
hardware fault injection vulnerability detection. Innovations in Systems and
Software Engineering, 16:101–120, 2020. doi:10.1007/s11334-020-00364-5.
(Cited on page 13).

[GJLL17] Thomas Given-Wilson, Nisrine Jafri, Jean-Louis Lanet, and Axel Legay. An
Automated Formal Process for Detecting Fault Injection Vulnerabilities in Bi-
naries and Case Study on PRESENT. In IEEE Trustcom/BigDataSE/ICESS,
pages 293–300. IEEE Computer Society, 2017. doi:10.1109/TRUSTCOM/
BIGDATASE/ICESS.2017.250. (Cited on page 20).

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. Detection of Intrusions
and Malware, and Vulnerability Assessment, 9721:300–321, 2016. doi:10.
1007/978-3-319-40667-1_15. (Cited on page 12).

[GS20] Aman Goel and Karem Sakallah. AVR: Abstractly Verifying Reachability. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 413–422. Springer, 2020. doi:10.1007/978-3-030-45190-5_23.
(Cited on page 41).

[GS21] Jacob Grycel and Patrick Schaumont. SimpliFI: Hardware Simulation of Em-
bedded Software Fault Attacks. Cryptography, 5:15, 2021. doi:10.3390/
cryptography5020015. (Cited on pages 20 and 22).

[GST12] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective com-
putation and dummy rounds: Fault protection for block ciphers without check-
before-output. Progress in cryptology – LATINCRYPT 2012, pages 305–321,
2012. doi:10.1007/978-3-642-33481-8_17. (Cited on page 17).

[GYTS14] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa Taha, and Patrick Schau-
mont. Differential Fault Intensity Analysis. In Workshop on Fault Diag-
nosis and Tolerance in Cryptography (FDTC), pages 49–58. IEEE, 2014.
doi:10.1109/FDTC.2014.15. (Cited on page 12).

xii

https://doi.org/10.1007/s13389-011-0022-y
https://doi.org/10.1007/s13389-011-0022-y
https://doi.org/10.1007/978-3-031-25319-5_2
https://doi.org/10.1145/3576915.3623129
https://doi.org/10.1007/978-3-031-29497-6_1
https://doi.org/10.1007/11506447_4
https://doi.org/10.1007/11506447_4
https://doi.org/10.1007/s11334-020-00364-5
https://doi.org/10.1109/TRUSTCOM/BIGDATASE/ICESS.2017.250
https://doi.org/10.1109/TRUSTCOM/BIGDATASE/ICESS.2017.250
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.3390/cryptography5020015
https://doi.org/10.3390/cryptography5020015
https://doi.org/10.1007/978-3-642-33481-8_17
https://doi.org/10.1109/FDTC.2014.15

Bibliography

[HGA+21] Florian Hauschild, Kathrin Garb, Lukas Auer, Bodo Selmke, and Jo-
hannes Obermaier. ARCHIE: A QEMU-Based Framework for Architecture-
Independent Evaluation of Faults. In Workshop on Fault Diagnosis and Tol-
erance in Cryptography (FDTC), pages 20–30. IEEE, 2021. doi:10.1109/
FDTC53659.2021.00013. (Cited on pages 20, 21, and 22).

[HP12] John L. Hennessy and David A. Patterson. Computer Architecture - A Quan-
titative Approach. Morgan Kaufmann, 2012. (Cited on page 10).

[HSP21] Max Hoffmann, Falk Schellenberg, and Christof Paar. ARMORY: Fully
Automated and Exhaustive Fault Simulation on ARM-M Binaries. IEEE
Transactions on Information Forensics and Security, 16:1058–1073, 2021.
doi:10.1109/TIFS.2020.3027143. (Cited on pages 20 and 21).

[HWM20] Hardware model checking competition (hwmcc). https://fmv.jku.at/
hwmcc20, 2020. Accessed: April 29, 2024. (Cited on pages 40 and 41).

[JAR+94] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection
into VHDL models: The MEFISTO tool. In Proceedings of IEEE 24th In-
ternational Symposium on Fault- Tolerant Computing, pages 66–75, 1994.
doi:10.1109/FTCS.1994.315656. (Cited on pages 20, 22, and 69).

[JRR+18] Scott Johnson, Dominic Rizzo, Parthasarathy Ranganathan, Jon McCune,
and Richard Ho. Titan: enabling a transparent silicon root of trust for cloud.
In Hot Chips: A Symposium on High Performance Chips, volume 194, 2018.
(Cited on pages 4, 86, and 112).

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
ACM SIGARCH Computer Architecture News, 42:361–372, 2014. doi:10.
1145/2678373.2665726. (Cited on page 8).

[KHEB14] Thomas Korak, Michael Hutter, Baris Ege, and Lejla Batina. Clock Glitch
Attacks in the Presence of Heating. In Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pages 104–114. IEEE, 2014. doi:10.
1109/FDTC.2014.20. (Cited on page 6).

[Kin76] James C. King. Symbolic execution and program testing. Communications of
the ACM, 19:385–394, 1976. doi:10.1145/360248.360252. (Cited on pages
22 and 51).

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, Advances in Cryptology —
CRYPTO ’96, volume 1109, pages 104–113. Springer Berlin Heidelberg, 1996.
doi:10.1007/3-540-68697-5_9. (Cited on page 1).

[kok19] kokke. Tiny AES, release 1.0. https://github.com/kokke/tiny-AES-c,
2019. Accessed: February 22, 2024. (Cited on pages 4, 76, 109, and 112).

[KP17] Daniel Kroening and Mitra Purandare. Ebmc. https://github.com/
diffblue/hw-cbmc, 2017. Accessed: April 29, 2024. (Cited on page 41).

[KQ07] Chong Hee Kim and Jean-Jacques Quisquater. Fault Attacks for CRT Based
RSA: New Attacks, New Results, and New Countermeasures. Information Se-
curity Theory and Practices. Smart Cards, Mobile and Ubiquitous Computing
Systems, 4462:215–228, 2007. doi:10.1007/978-3-540-72354-7_18. (Cited
on page 13).

xiii

https://doi.org/10.1109/FDTC53659.2021.00013
https://doi.org/10.1109/FDTC53659.2021.00013
https://doi.org/10.1109/TIFS.2020.3027143
https://fmv.jku.at/hwmcc20
https://fmv.jku.at/hwmcc20
https://doi.org/10.1109/FTCS.1994.315656
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1109/FDTC.2014.20
https://doi.org/10.1109/FDTC.2014.20
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/3-540-68697-5_9
https://github.com/kokke/tiny-AES-c
https://github.com/diffblue/hw-cbmc
https://github.com/diffblue/hw-cbmc
https://doi.org/10.1007/978-3-540-72354-7_18

Bibliography

[KQ08] Chong Hee Kim and Jean-Jacques Quisquater. New Differential Fault Analysis
on AES Key Schedule: Two Faults Are Enough. In Smart Card Research and
Advanced Applications, volume 5189, pages 48–60. Springer Berlin Heidelberg,
2008. doi:10.1007/978-3-540-85893-5_4. (Cited on page 109).

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures. Texts in Theoret-
ical Computer Science. An EATCS Series. Springer Berlin Heidelberg, 2016.
doi:10.1007/978-3-662-50497-0. (Cited on page 37).

[KT14] Daniel Kroening and Michael Tautschnig. CBMC – C Bounded Model
Checker. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 8413, pages 389–391. Springer Berlin Heidelberg, 2014.
doi:10.1007/978-3-642-54862-8_26. (Cited on page 41).

[Kur95] Robert P Kurshan. Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton university press, 1995. (Cited on
page 39).

[Lau20] Johan Laurent. Modélisation de fautes utilisant la description RTL de mi-
croarchitectures pour l’analyse de vulnérabilité conjointe matérielle-logicielle.
PhD thesis, Université Grenoble Alpes, 2020. (Cited on page 2).

[LBC+15] Marc Lacruche, Nicolas Borrel, Clement Champeix, Cyril Roscian, Alexandre
Sarafianos, Jean-Baptiste Rigaud, Jean-Max Dutertre, and Edith Kussener.
Laser fault injection into SRAM cells: Picosecond versus nanosecond pulses.
In 2015 IEEE 21st International On-Line Testing Symposium (IOLTS), pages
13–18. IEEE, 2015. doi:10.1109/IOLTS.2015.7229820. (Cited on page 8).

[LBD+18] Johan Laurent, Vincent Beroulle, Christophe Deleuze, Florian Pebay-
Peyroula, and Athanasios Papadimitriou. On the Importance of Analysing
Microarchitecture for Accurate Software Fault Models. In Euromicro Confer-
ence on Digital System Design (DSD), pages 561–564, 2018. doi:10.1109/
DSD.2018.00097. (Cited on pages 14, 15, and 56).

[LBD+19] Johan Laurent, Vincent Beroulle, Christophe Deleuze, Florian Pebay-
Peyroula, and Athanasios Papadimitriou. Cross-layer analysis of software
fault models and countermeasures against hardware fault attacks in a RISC-
V processor. Microprocessors and Microsystems, 71:102862, 2019. doi:
10.1016/j.micpro.2019.102862. (Cited on pages 14 and 15).

[LBDP19] Johan Laurent, Vincent Beroulle, Christophe Deleuze, and Florian Pebay-
Peyroula. Fault Injection on Hidden Registers in a RISC-V Rocket Processor
and Software Countermeasures. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 252–255, 2019. doi:10.23919/DATE.
2019.8715158. (Cited on pages 15 and 63).

[LM06] H. Li and S. Moore. Security evaluation at design time against optical fault
injection attacks. IEE Proceedings - Information Security, 153:3, 2006. doi:
10.1049/ip-ifs:20055021. (Cited on page 17).

[LMMS17] Luciano Lavagno, Igor L Markov, Grant Martin, and Lou Scheffer. Electronic
Design Automation for IC Implementation, Circuit Design, and Process Tech-
nology. CRC Press, 2017. (Cited on page 91).

[lowa] lowRISC. Ibex RISC-V Core github repository. https://github.com/
lowRISC/ibex. Accessed: February 22, 2024. (Cited on pages 4, 86, 104,
and 112).

[lowb] lowRISC. Ibex RISC-V Core github repository. https://github.com/
lowRISC/ibex#configuration. Accessed: February 22, 2024. (Cited on
page 75).

xiv

https://doi.org/10.1007/978-3-540-85893-5_4
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1109/IOLTS.2015.7229820
https://doi.org/10.1109/DSD.2018.00097
https://doi.org/10.1109/DSD.2018.00097
https://doi.org/10.1016/j.micpro.2019.102862
https://doi.org/10.1016/j.micpro.2019.102862
https://doi.org/10.23919/DATE.2019.8715158
https://doi.org/10.23919/DATE.2019.8715158
https://doi.org/10.1049/ip-ifs:20055021
https://doi.org/10.1049/ip-ifs:20055021
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex#configuration
https://github.com/lowRISC/ibex#configuration

Bibliography

[lowc] lowRISC. OpenTitan Documentation. https://opentitan.org/
documentation/index.html. Accessed: December 22, 2023. (Cited
on pages 17, 87, and ii).

[lowd] lowRISC. OpenTitan: Lightweight Threat Model. https://opentitan.org/
book/doc/security/threat_model/index.html. Accessed: December 22,
2023. (Cited on page 86).

[lowe] lowRISC. OpenTitan: Open source silicon root of trust. https://github.
com/lowRISC/opentitan. Accessed: December 22, 2023. (Cited on page 86).

[low18] lowRISC. Ibex: An embedded 32 bit RISC-V CPU core. https://ibex-core.
readthedocs.io/en/latest/, 2018. Accessed: February 22, 2024. (Cited on
pages 17, 75, and 86).

[McM03] K. L. McMillan. Interpolation and SAT-Based Model Checking. In Computer
Aided Verification (CAV), volume 2725, pages 1–13. Springer, 2003. doi:
10.1007/978-3-540-45069-6_1. (Cited on page 37).

[MDH+13] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and
Emmanuelle Encrenaz. Electromagnetic Fault Injection: Towards a Fault
Model on a 32-bit Microcontroller. In Workshop on Fault Diagnosis and Tol-
erance in Cryptography (FDTC), pages 77–88. IEEE, 2013. doi:10.1109/
FDTC.2013.9. (Cited on page 13).

[MDP+20] Alexandre Menu, Jean-Max Dutertre, Olivier Potin, Jean-Baptiste Rigaud,
and Jean-Luc Danger. Experimental Analysis of the Electromagnetic Instruc-
tion Skip Fault Model. In International Conference on Design & Technol-
ogy of Integrated Systems in Nanoscale Era (DTIS), pages 1–7. IEEE, 2020.
doi:10.1109/DTIS48698.2020.9081261. (Cited on page 13).

[Mea55] George H. Mealy. A method for synthesizing sequential circuits. The Bell
System Technical Journal, 34(5):1045–1079, September 1955. doi:10.1002/
j.1538-7305.1955.tb03788.x. (Cited on pages 26 and 28).

[MIL+21] Makai Mann, Ahmed Irfan, Florian Lonsing, Yahan Yang, Hongce Zhang,
Kristopher Brown, Aarti Gupta, and Clark Barrett. Pono: A Flexible
and Extensible SMT-Based Model Checker. In Computer Aided Verification
(CAV), pages 461–474. Springer, 2021. doi:10.1007/978-3-030-81688-9_
22. (Cited on pages 41, 45, 49, and 79).

[MM00] S. Mitra and E.J. McCluskey. Which concurrent error detection scheme to
choose ? In Proceedings International Test Conference 2000 (IEEE Cat.
No.00CH37159), pages 985–994. Int. Test Conference, 2000. doi:10.1109/
TEST.2000.894311. (Cited on pages 17 and 90).

[MMB+18] Cristian Mattarei, Makai Mann, Clark Barrett, Ross G. Daly, Dillon Huff,
and Pat Hanrahan. CoSA: Integrated Verification for Agile Hardware Design.
In Formal Methods in Computer-Aided Design (FMCAD), pages 1–5. IEEE,
2018. doi:10.23919/FMCAD.2018.8603014. (Cited on page 41).

[MNH+16] Noriyuki Miura, Zakaria Najm, Wei He, Shivam Bhasin, Xuan Thuy Ngo,
Makoto Nagata, and Jean-Luc Danger. PLL to the rescue: A novel EM fault
countermeasure. In ACM/IEEE Design Automation Conference (DAC), pages
1–6. ACM, 2016. doi:10.1145/2897937.2898065. (Cited on page 17).

[MOG+20] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. Plundervolt: Software-based Fault Injection Attacks
against Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 1466–1482. IEEE, 2020. doi:10.1109/SP40000.2020.00057. (Cited
on page 8).

xv

https://opentitan.org/documentation/index.html
https://opentitan.org/documentation/index.html
https://opentitan.org/book/doc/security/threat_model/index.html
https://opentitan.org/book/doc/security/threat_model/index.html
https://github.com/lowRISC/opentitan
https://github.com/lowRISC/opentitan
https://ibex-core.readthedocs.io/en/latest/
https://ibex-core.readthedocs.io/en/latest/
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1109/FDTC.2013.9
https://doi.org/10.1109/FDTC.2013.9
https://doi.org/10.1109/DTIS48698.2020.9081261
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1007/978-3-030-81688-9_22
https://doi.org/10.1007/978-3-030-81688-9_22
https://doi.org/10.1109/TEST.2000.894311
https://doi.org/10.1109/TEST.2000.894311
https://doi.org/10.23919/FMCAD.2018.8603014
https://doi.org/10.1145/2897937.2898065
https://doi.org/10.1109/SP40000.2020.00057

Bibliography

[Mor14] Nicolas Moro. Sécurisation de programmes assembleur face aux attaques visant
les processeurs embarqués. PhD thesis, Pierre and Marie Curie University,
Paris, France, 2014. (Cited on page 18).

[MP23] Krzysztof Marcinek and Witold A. Pleskacz. Variable Delayed Dual-Core
Lockstep (VDCLS) Processor for Safety and Security Applications. Electron-
ics, 12:464, 2023. doi:10.3390/electronics12020464. (Cited on page 90).

[MS99] J.P. Marques-Silva and K.A. Sakallah. GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Transactions on Computers, 48:506–521, 1999.
doi:10.1109/12.769433. (Cited on page 38).

[MTOL12] Philippe Maurine, Karim Tobich, Thomas Ordas, and Pierre Yvan Liardet.
Yet Another Fault Injection Technique: By Forward Body Biasing Injection.
YACC’2012: Yet Another Conference on Cryptography, 2012. (Cited on page
8).

[MW78] Timothy C. May and Murray H. Woods. A New Physical Mechanism for Soft
Errors in Dynamic Memories. In 16th International Reliability Physics Sym-
posium, pages 33–40. IEEE, 1978. doi:10.1109/IRPS.1978.362815. (Cited
on page 6).

[NM23] Pascal Nasahl and Stefan Mangard. SCRAMBLE-CFI: Mitigating Fault-
Induced Control-Flow Attacks on OpenTitan. In Proceedings of the Great
Lakes Symposium on VLSI 2023, pages 45–50. ACM, 2023. doi:10.1145/
3583781.3590221. (Cited on page 19).

[NOV+22] Pascal Nasahl, Miguel Osorio, Pirmin Vogel, Michael Schaffner, Timothy Trip-
pel, Dominic Rizzo, and Stefan Mangard. SYNFI: Pre-Silicon Fault Anal-
ysis of an Open-Source Secure Element. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (CHES), 2022:56–87, 2022. doi:
10.46586/TCHES.V2022.I4.56-87. (Cited on pages 20, 21, 85, 93, and 104).

[NP23] Aina Niemetz and Mathias Preiner. Bitwuzla. In Computer Aided Veri-
fication (CAV), volume 13965, pages 3–17. Springer, 2023. doi:10.1007/
978-3-031-37703-7_1. (Cited on page 38).

[NPWB18] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2 ,
BtorMC and Boolector 3.0. In Computer Aided Verification (CAV), pages
587–595. Springer, 2018. doi:10.1007/978-3-319-96145-3_32. (Cited on
pages 40, 41, 45, 49, and 79).

[NSL+23] Pascal Nasahl, Salmin Sultana, Hans Liljestrand, Karanvir Grewal, Michael
LeMay, David M. Durham, David Schrammel, and Stefan Mangard. EC-CFI:
Control-Flow Integrity via Code Encryption Counteracting Fault Attacks. In
International Symposium on Hardware Oriented Security and Trust (HOST),
pages 24–35. IEEE, 2023. doi:10.1109/HOST55118.2023.10132915. (Cited
on pages 19 and 116).

[OGM15] S. Ordas, L. Guillaume-Sage, and Philippe Maurine. EM Injection: Fault
Model and Locality. In Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 3–13. IEEE, 2015. doi:10.1109/FDTC.2015.9.
(Cited on page 7).

[OGM17] S. Ordas, L. Guillaume-Sage, and P. Maurine. Electromagnetic fault injection:
The curse of flip-flops. Journal of Cryptographic Engineering, 7:183–197, 2017.
doi:10.1007/s13389-016-0128-3. (Cited on page 7).

xvi

https://doi.org/10.3390/electronics12020464
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/IRPS.1978.362815
https://doi.org/10.1145/3583781.3590221
https://doi.org/10.1145/3583781.3590221
https://doi.org/10.46586/TCHES.V2022.I4.56-87
https://doi.org/10.46586/TCHES.V2022.I4.56-87
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1109/HOST55118.2023.10132915
https://doi.org/10.1109/FDTC.2015.9
https://doi.org/10.1007/s13389-016-0128-3

Bibliography

[OGT+15] S. Ordas, L. Guillaume-Sage, K. Tobich, J.-M. Dutertre, and P. Maurine. Ev-
idence of a Larger EM-Induced Fault Model. In Smart Card Research and
Advanced Applications (CARDIS), volume 8968, pages 245–259. Springer In-
ternational Publishing, 2015. doi:10.1007/978-3-319-16763-3_15. (Cited
on page 7).

[Opea] OpenHW group. CV32E40P GitHub repository. https://github.com/
openhwgroup/cv32e40p. Accessed: April 22, 2023. (Cited on page 57).

[Opeb] OpenHW group. CV32E40P User Manual. https://docs.openhwgroup.
org/projects/cv32e40p-user-manual/en/latest/index.html. Accessed:
February 22, 2024. (Cited on pages 57 and 75).

[OSM02a] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Control-flow
checking by software signatures. IEEE Transactions on Reliability, 51:111–
122, 2002. doi:10.1109/24.994926. (Cited on page 18).

[OSM02b] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error detection
by duplicated instructions in super-scalar processors. IEEE Transactions on
Reliability, 51:63–75, 2002. doi:10.1109/24.994913. (Cited on page 18).

[PCNM15] Sikhar Patranabis, Abhishek Chakraborty, Phuong Ha Nguyen, and Debdeep
Mukhopadhyay. A Biased Fault Attack on the Time Redundancy Counter-
measure for AES. In Constructive Side-Channel Analysis and Secure Design
(COSADE), volume 9064, pages 189–203. Springer International Publishing,
2015. doi:10.1007/978-3-319-21476-4_13. (Cited on page 15).

[PHB+19] Julien Proy, Karine Heydemann, Alexandre Berzati, Fabien Majéric, and Al-
bert Cohen. A First ISA-Level Characterization of EM Pulse Effects on Su-
perscalar Microarchitectures: A Secure Software Perspective. In Proceedings
of the 14th International Conference on Availability, Reliability and Security,
pages 1–10. ACM, 2019. doi:10.1145/3339252.3339253. (Cited on pages
14 and 108).

[PMPD14] Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil.
Lazart: A Symbolic Approach for Evaluation the Robustness of Secured Codes
against Control Flow Injections. In Verification and Validation 2014 IEEE
Seventh International Conference on Software Testing, pages 213–222, 2014.
doi:10.1109/ICST.2014.34. (Cited on pages 20 and 22).

[PNKI08] Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar
Iyer. SymPLFIED: Symbolic program-level fault injection and error detection
framework. In 2008 IEEE International Conference on Dependable Systems
and Networks With FTCS and DCC (DSN), pages 472–481, 2008. doi:10.
1109/DSN.2008.4630118. (Cited on pages 20 and 21).

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack Tech-
nique against SPN Structures, with Application to the AES and Khazad.
IACR Transactions on Cryptographic Hardware and Embedded Systems
(CHES), 2779:77–88, 2003. doi:10.1007/978-3-540-45238-6_7. (Cited
on page 12).

[QS02] Jean-Jacques Quisquater and David Samyde. Eddy current for magnetic anal-
ysis with active sensor. Proceedings of eSMART, 2002. (Cited on page 7).

[RCV+05] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and
David I. August. SWIFT: Software Implemented Fault Tolerance. In Inter-
national Symposium on Code Generation and Optimization, pages 243–254.
IEEE, 2005. doi:10.1109/CGO.2005.34. (Cited on page 18).

xvii

https://doi.org/10.1007/978-3-319-16763-3_15
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p
https://docs.openhwgroup.org/projects/cv32e40p-user-manual/en/latest/index.html
https://docs.openhwgroup.org/projects/cv32e40p-user-manual/en/latest/index.html
https://doi.org/10.1109/24.994926
https://doi.org/10.1109/24.994913
https://doi.org/10.1007/978-3-319-21476-4_13
https://doi.org/10.1145/3339252.3339253
https://doi.org/10.1109/ICST.2014.34
https://doi.org/10.1109/DSN.2008.4630118
https://doi.org/10.1109/DSN.2008.4630118
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1109/CGO.2005.34

Bibliography

[RFSG22] Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, and Tim
Güneysu. VERICA - Verification of Combined Attacks: Automated formal
verification of security against simultaneous information leakage and tamper-
ing. IACR Transactions on Cryptographic Hardware and Embedded Systems
(CHES), pages 255–284, 2022. doi:10.46586/tches.v2022.i4.255-284.
(Cited on page 116).

[Ric53] H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision Prob-
lems. Transactions of the American Mathematical Society, 74:358–366, 1953.
arXiv:1990888, doi:10.2307/1990888. (Cited on page 34).

[Ris20] Riscure. Fisim. https://github.com/Riscure/FiSim, 2020. Accessed:
February 22, 2024. (Cited on pages 20, 21, and 22).

[RLK11] Thomas Roche, Victor Lomné, and Karim Khalfallah. Combined Fault
and Side-Channel Attack on Protected Implementations of AES. Smart
Card Research and Advanced Applications, 7079:65–83, 2011. doi:10.1007/
978-3-642-27257-8_5. (Cited on page 12).

[RNR+15] Lionel Rivière, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien Bringer,
and Laurent Sauvage. High Precision Fault Injections on the Instruction
Cache of ARMv7-M Architectures. In International Symposium on Hard-
ware Oriented Security and Trust (HOST), pages 62–67. IEEE, 2015. arXiv:
1510.01537, doi:10.1109/HST.2015.7140238. (Cited on page 13).

[RRSS+21] Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir
Moradi, and Tim Güneysu. FIVER – Robust Verification of Countermea-
sures against Fault Injections. IACR Transactions on Cryptographic Hardware
and Embedded Systems (CHES), pages 447–473, 2021. doi:10.46586/tches.
v2021.i4.447-473. (Cited on pages 4, 20, 21, 85, 93, 102, 104, and 112).

[RSDT13] Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria.
Fault Model Analysis of Laser-Induced Faults in SRAM Memory Cells. In
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages
89–98. IEEE, 2013. doi:10.1109/FDTC.2013.17. (Cited on page 7).

[RSG22] Jan Richter-Brockmann, Pascal Sasdrich, and Tim Guneysu. Revisiting Fault
Adversary Models – Hardware Faults in Theory and Practice. IEEE Trans-
actions on Computers, pages 1–1, 2022. doi:10.1109/TC.2022.3164259.
(Cited on pages 6 and 20).

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction At-
tacks. In IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems (CHES), volume 2523 of Lecture Notes in Computer Science, pages 2–12.
Springer, 2002. doi:10.1007/3-540-36400-5_2. (Cited on pages 6 and 7).

[SBHS16] Bodo Selmke, Stefan Brummer, Johann Heyszl, and Georg Sigl. Precise Laser
Fault Injections into 90 nm and 45 nm SRAM-cells. In Smart Card Re-
search and Advanced Applications (CARDIS), volume 9514, pages 193–205.
Springer International Publishing, 2016. doi:10.1007/978-3-319-31271-2_
12. (Cited on page 7).

[SGD08] Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. Practical Setup Time
Violation Attacks on AES. In 2008 Seventh European Dependable Computing
Conference, pages 91–96. IEEE, 2008. doi:10.1109/EDCC-7.2008.11. (Cited
on page 7).

[SH07] Jörn-Marc Schmidt and Michael Hutter. Optical and EM Fault-Attacks on
CRT-based RSA: Concrete Results. Austrochip, 2007. (Cited on page 7).

xviii

https://doi.org/10.46586/tches.v2022.i4.255-284
https://arxiv.org/abs/1990888
https://doi.org/10.2307/1990888
https://github.com/Riscure/FiSim
https://doi.org/10.1007/978-3-642-27257-8_5
https://doi.org/10.1007/978-3-642-27257-8_5
https://arxiv.org/abs/1510.01537
https://arxiv.org/abs/1510.01537
https://doi.org/10.1109/HST.2015.7140238
https://doi.org/10.46586/tches.v2021.i4.447-473
https://doi.org/10.46586/tches.v2021.i4.447-473
https://doi.org/10.1109/FDTC.2013.17
https://doi.org/10.1109/TC.2022.3164259
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/978-3-319-31271-2_12
https://doi.org/10.1007/978-3-319-31271-2_12
https://doi.org/10.1109/EDCC-7.2008.11

Bibliography

[SH08] Jörn-Marc Schmidt and Christoph Herbst. A Practical Fault Attack on Square
and Multiply. In Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pages 53–58. IEEE, 2008. doi:10.1109/FDTC.2008.10. (Cited on
page 13).

[SJ00] Sung-Ming Yen and M. Joye. Checking before output may not be enough
against fault-based cryptanalysis. IEEE Transactions on Computers, 49:967–
970, Sept./2000. doi:10.1109/12.869328. (Cited on page 12).

[Sko06] Sergei Skorobogatov. Optically Enhanced Position-Locked Power Analy-
sis. IACR Transactions on Cryptographic Hardware and Embedded Systems
(CHES), 4249:61–75, 2006. doi:10.1007/11894063_6. (Cited on page 12).

[Sko09] Sergei Skorobogatov. Local heating attacks on Flash memory devices. In
2009 IEEE International Workshop on Hardware-Oriented Security and Trust,
pages 1–6. IEEE, 2009. doi:10.1109/HST.2009.5225028. (Cited on page
8).

[SMT23] 18th international satisfiability modulo theories competition – smt-comp’23.
https://smt-comp.github.io/2023/, 2023. Accessed: April 30, 2024.
(Cited on page 38).

[Sno] Zachary Snow. sv2v. https://github.com/zachjs/sv2v. Accessed: Febru-
ary 22, 2024. (Cited on page 46).

[Sny] Wilson Snyder. Verilator. https://veripool.org/verilator/. Accessed:
February 22, 2024. (Cited on page 101).

[SRM20] Aein Rezaei Shahmirzadi, Shahram Rasoolzadeh, and Amir Moradi. Impecca-
ble Circuits II. In ACM/IEEE Design Automation Conference (DAC), pages
1–6. IEEE, 2020. doi:10.1109/DAC18072.2020.9218615. (Cited on page
116).

[SS98] Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems - Design
and Evaluation (3. Ed.). A K Peters, 1998. (Cited on page 90).

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking Safety Prop-
erties Using Induction and a SAT-Solver. In Formal Methods in Computer-
Aided Design (FMCAD), pages 127–144. Springer, 2000. doi:10.1007/
3-540-40922-X_8. (Cited on page 37).

[STB97] V. Sieh, O. Tschache, and F. Balbach. VERIFY: Evaluation of reliability using
VHDL-models with embedded fault descriptions. In Proceedings of IEEE 27th
International Symposium on Fault Tolerant Computing, pages 32–36. IEEE
Comput. Soc, 1997. doi:10.1109/FTCS.1997.614074. (Cited on pages 20,
22, and 69).

[TAC+22] Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann, and
Mathieu Jan. Exploration of Fault Effects on Formal RISC-V Microarchitec-
ture Models. In Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pages 73–83. IEEE, 2022. doi:10.1109/FDTC57191.2022.00017.
(Cited on pages 26, 56, 68, and 108).

[TAC+23] Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann, and
Mathieu Jan. µArchiFI: Formal Modeling and Verification Strategies for Mi-
croarchitectural Fault Injections. In 2023 Formal Methods in Computer Aided
Design (FMCAD), 2023. doi:10.34727/2023/isbn.978-3-85448-060-0_
18. (Cited on pages 26 and 56).

xix

https://doi.org/10.1109/FDTC.2008.10
https://doi.org/10.1109/12.869328
https://doi.org/10.1007/11894063_6
https://doi.org/10.1109/HST.2009.5225028
https://smt-comp.github.io/2023/
https://github.com/zachjs/sv2v
https://veripool.org/verilator/
https://doi.org/10.1109/DAC18072.2020.9218615
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1109/FTCS.1997.614074
https://doi.org/10.1109/FDTC57191.2022.00017
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_18
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_18

Bibliography

[TBC20] Thomas Trouchkine, Guillaume Bouffard, and Jessy Clédière. Fault Injection
Characterization on Modern CPUs: From the ISA to the Micro-Architecture.
In Information Security Theory and Practice, volume 12024, pages 123–138.
Springer International Publishing, 2020. doi:10.1007/978-3-030-41702-4_
8. (Cited on page 13).

[TBE+21] Thomas Trouchkine, Sébanjila Kevin Bukasa, Mathieu Escouteloup, Ro-
nan Lashermes, and Guillaume Bouffard. Electromagnetic fault injec-
tion against a complex CPU, toward new micro-architectural fault mod-
els. Journal of Cryptographic Engineering, 11:353–367, 2021. doi:10.1007/
s13389-021-00259-6. (Cited on page 15).

[TFY07] Junko Takahashi, Toshinori Fukunaga, and Kimihiro Yamakoshi. DFA Mech-
anism on the AES Key Schedule. In Workshop on Fault Diagnosis and Tol-
erance in Cryptography (FDTC), pages 62–74. IEEE, 2007. doi:10.1109/
FDTC.2007.13. (Cited on pages 12, 76, and 109).

[TGC+23] Huiyu Tan, Pengfei Gao, Taolue Chen, Fu Song, and Zhilin Wu. SAT-based
Formal Fault-Resistance Verification of Cryptographic Circuits, 2023. URL:
http://arxiv.org/abs/2307.00561, arXiv:2307.00561. (Cited on pages
4, 20, 21, and 104).

[THN+24] Simon Tollec, Vedad Hadžić, Pascal Nasahl, Mihail Asavoae, Roderick Bloem,
Damien Couroussé, Karine Heydemann, Mathieu Jan, and Stefan Man-
gard. Fault-Resistant Partitioning of Secure CPUs for System Co-Verification
against Faults. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems (CHES), pages 179–204, 2024. doi:10.46586/tches.v2024.i4.
179-204. (Cited on page 83).

[TK10] Elena Trichina and Roman Korkikyan. Multi Fault Laser Attacks on Protected
CRT-RSA. In Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pages 75–86. IEEE, 2010. doi:10.1109/FDTC.2010.14. (Cited on
page 8).

[TM17] Niek Timmers and Cristofaro Mune. Escalating Privileges in Linux Using
Voltage Fault Injection. In Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 1–8. IEEE, 2017. doi:10.1109/FDTC.2017.16.
(Cited on pages 7 and 12).

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential Fault
Analysis of the Advanced Encryption Standard Using a Single Fault. In
Information Security Theory and Practice. Security and Privacy of Mobile
Devices in Wireless Communication, pages 224–233. 2011. doi:10.1007/
978-3-642-21040-2_15. (Cited on pages 12 and 109).

[Tol22] Simon Tollec. Exploration of fault effects on formal risc-v microarchitecture
models. In Journée sur les attaques par injection de fautes – JAIF’22, 2022.
https://jaif.io/2022/. (Cited on page 56).

[Tol23] Simon Tollec. Analysis of fault effects on formal risc-v microarchitecture mod-
els. In Annual Meeting of the working group "Formal Methods for Security" –
GTMFS’23, 2023. https://gtmfs2023.sciencesconf.org/. (Cited on page
26).

[Tol24a] Simon Tollec. Fault-resistant partitioning of secure cpus for system co-
verification against faults. In Journée sur les attaques par injection de fautes
– JAIF’24, 2024. https://jaif.io/2024/. (Cited on page 83).

xx

https://doi.org/10.1007/978-3-030-41702-4_8
https://doi.org/10.1007/978-3-030-41702-4_8
https://doi.org/10.1007/s13389-021-00259-6
https://doi.org/10.1007/s13389-021-00259-6
https://doi.org/10.1109/FDTC.2007.13
https://doi.org/10.1109/FDTC.2007.13
http://arxiv.org/abs/2307.00561
https://arxiv.org/abs/2307.00561
https://doi.org/10.46586/tches.v2024.i4.179-204
https://doi.org/10.46586/tches.v2024.i4.179-204
https://doi.org/10.1109/FDTC.2010.14
https://doi.org/10.1109/FDTC.2017.16
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1007/978-3-642-21040-2_15
https://jaif.io/2022/
https://gtmfs2023.sciencesconf.org/
https://jaif.io/2024/

Bibliography

[Tol24b] Simon Tollec. Proving hardware security of cpus to analyze software resistance
against faults attacks. In Annual Meeting of the working group "Formal Meth-
ods for Security" – GTMFS’24, 2024. https://gtmfs2024.sciencesconf.
org/. (Cited on page 83).

[Tri] Tristan Gingold and contributors. GHDL 3.0. https://github.com/ghdl/
ghdl. Accessed: February 22, 2024. (Cited on pages 42 and 46).

[TS16] Niek Timmers and Albert Spruyt. Bypassing Secure Boot using Fault Injec-
tion, 2016. (Cited on pages 7 and 12).

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Management. In 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017, pages 1057–1074. USENIX Association,
2017. URL: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/tang. (Cited on pages 8 and 12).

[TSW16] Niek Timmers, Albert Spruyt, and Marc Witteman. Controlling PC on ARM
Using Fault Injection. In Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC), pages 25–35. IEEE, 2016. doi:10.1109/FDTC.2016.18.
(Cited on page 12).

[Tur37] A. M. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42:230–
265, 1937. doi:10.1112/plms/s2-42.1.230. (Cited on page 34).

[VM02] T. Verdel and Y. Makris. Duplication-based concurrent error detection in
asynchronous circuits: Shortcomings and remedies. In IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Sys-
tems (DFT), pages 345–353. IEEE Comput. Soc, 2002. doi:10.1109/DFTVS.
2002.1173531. (Cited on page 90).

[VTM+17] Aurelien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adele Morisset,
and Sebastien Ermeneux. Laser-Induced Fault Injection on Smartphone By-
passing the Secure Boot. In Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 41–48. IEEE, 2017. doi:10.1109/FDTC.2017.
18. (Cited on pages 8 and 12).

[VWWM11] Jasper G.J. Van Woudenberg, Marc F. Witteman, and Federico Menarini.
Practical Optical Fault Injection on Secure Microcontrollers. In Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 91–99. IEEE,
2011. doi:10.1109/FDTC.2011.12. (Cited on page 15).

[WMP20] Vincent Werner, Laurent Maingault, and Marie-Laure Potet. An End-to-End
Approach for Multi-Fault Attack Vulnerability Assessment. In Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 10–17. IEEE,
2020. doi:10.1109/FDTC51366.2020.00009. (Cited on page 8).

[Wola] Claire Wolf. Symbiyosys (sby) documentation. https://symbiyosys.
readthedocs.io/en/latest/index.html. Accessed: June 22, 2024. (Cited
on pages 45 and 53).

[Wolb] Claire Wolf. Yosys open synthesis suite. https://yosyshq.net/yosys. Ac-
cessed: February 22, 2024. (Cited on pages 41, 42, and 100).

[WUSM18] Mario Werner, Thomas Unterluggauer, David Schaffenrath, and Stefan Man-
gard. Sponge-Based Control-Flow Protection for IoT Devices. In 2018 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 214–226,
2018. doi:10.1109/EuroSP.2018.00023. (Cited on page 18).

xxi

https://gtmfs2024.sciencesconf.org/
https://gtmfs2024.sciencesconf.org/
https://github.com/ghdl/ghdl
https://github.com/ghdl/ghdl
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://doi.org/10.1109/FDTC.2016.18
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1109/DFTVS.2002.1173531
https://doi.org/10.1109/DFTVS.2002.1173531
https://doi.org/10.1109/FDTC.2017.18
https://doi.org/10.1109/FDTC.2017.18
https://doi.org/10.1109/FDTC.2011.12
https://doi.org/10.1109/FDTC51366.2020.00009
https://symbiyosys.readthedocs.io/en/latest/index.html
https://symbiyosys.readthedocs.io/en/latest/index.html
https://yosyshq.net/yosys
https://doi.org/10.1109/EuroSP.2018.00023

Bibliography

[YGS15] Bilgiday Yuce, Nahid Farhady Ghalaty, and Patrick Schaumont. Improving
Fault Attacks on Embedded Software Using RISC Pipeline Characterization.
In Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pages 97–108. IEEE, 2015. doi:10.1109/FDTC.2015.16. (Cited on pages
14 and 56).

[YGS+16] Bilgiday Yuce, Nahid Farhady Ghalaty, Harika Santapuri, Chinmay Desh-
pande, Conor Patrick, and Patrick Schaumont. Software Fault Resistance
is Futile: Effective Single-Glitch Attacks. In Workshop on Fault Diag-
nosis and Tolerance in Cryptography (FDTC), pages 47–58. IEEE, 2016.
doi:10.1109/FDTC.2016.21. (Cited on pages 6, 14, 15, and 18).

[Yos21] Equivalence checking with yosys (eqy). https://yosyshq.readthedocs.io/
projects/eqy, 2021. Accessed: May 15, 2024. (Cited on page 91).

[YSW18] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. Fault Attacks
on Secure Embedded Software: Threats, Design and Evaluation. Jour-
nal of Hardware and Systems Security, pages 111–130, 2018. URL: http:
//arxiv.org/abs/2003.10513, arXiv:2003.10513. (Cited on pages 6, 8, 9,
15, and i).

[Yuc18] Bilgiday Yuce. Fault Attacks on Embedded Software: New Directions in Model-
ing, Design, and Mitigation. PhD thesis, Virginia Polytechnic Institute, 2018.
(Cited on page 2).

[ZDCT13] Loic Zussa, Jean-Max Dutertre, Jessy Clediere, and Assia Tria. Power supply
glitch induced faults on FPGA: An in-depth analysis of the injection mecha-
nism. In 2013 IEEE 19th International On-Line Testing Symposium (IOLTS),
pages 110–115. IEEE, 2013. doi:10.1109/IOLTS.2013.6604060. (Cited on
page 7).

[ZDT+14] Loic Zussa, Amine Dehbaoui, Karim Tobich, Jean-Max Dutertre, Philippe
Maurine, Ludovic Guillaume-Sage, Jessy Clediere, and Assia Tria. Efficiency
of a glitch detector against electromagnetic fault injection. In Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pages 1–6. IEEE
Conference Publications, 2014. doi:10.7873/DATE.2014.216. (Cited on
pages 7 and 17).

[ZL79] J. F. Ziegler and W. A. Lanford. Effect of Cosmic Rays on Computer Mem-
ories. Science, 206:776–788, 1979. doi:10.1126/science.206.4420.776.
(Cited on page 6).

[ZPRD23] Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, and Jean-Max
Dutertre. CIFER: Code Integrity and control Flow verification for pro-
grams Executed on a RISC-V core. In International Symposium on Hard-
ware Oriented Security and Trust (HOST), pages 100–110. IEEE, 2023.
doi:10.1109/HOST55118.2023.10133542. (Cited on page 19).

xxii

https://doi.org/10.1109/FDTC.2015.16
https://doi.org/10.1109/FDTC.2016.21
https://yosyshq.readthedocs.io/projects/eqy
https://yosyshq.readthedocs.io/projects/eqy
http://arxiv.org/abs/2003.10513
http://arxiv.org/abs/2003.10513
https://arxiv.org/abs/2003.10513
https://doi.org/10.1109/IOLTS.2013.6604060
https://doi.org/10.7873/DATE.2014.216
https://doi.org/10.1126/science.206.4420.776
https://doi.org/10.1109/HOST55118.2023.10133542

	Introduction
	Context
	Motivation
	Contributions

	State of the Art and Problem Statement
	Fault Injection Attacks
	Physical Means
	Abstraction Layers
	Fault Models

	Countermeasures against Faults
	Hardware
	Software
	Combined Countermeasures

	Fault Evaluation Tools
	Hardware
	Software
	Combined Frameworks

	Problem Statement and Manuscript Outline

	µArchiFI Workflow: Formal Modeling and Implementation
	System Modeling
	Hardware Modeling
	Software Modeling
	Faults Injection Attacks
	Summary

	Background on Model Checking
	Overview
	Symbolic Model Checking
	Decision Procedures
	Abstractions in Model Checking
	Languages and Tools in Hardware Model Checking
	Summary

	Background on Yosys
	Overview
	Intermediate Representation
	Transfomation Passes
	Backends
	Yosys-SMTBMC

	µArchiFI Workflow
	Tool Overview
	Modeling Process
	Formal Verification
	Software-Driven Optimizations
	Previous µArchiFI Versions

	Conclusion

	Experimental Evaluation using µArchiFI
	Case Study I: Microarchitectural Exploits
	Experimental Set-Up
	Microarchitectural Exploits
	Discussion

	Case Study II: Control Signal Integrity
	Experimental Set-Up
	Evaluation Results
	Conclusion

	Performance Evaluation
	Performance of µArchiFIv0
	Evaluation Scenarios
	Performance Results
	Influence of Verification Strategies
	Discussion

	Conclusion

	Preliminary Hardware Analysis using Fault-Resistant Partitioning
	Overview
	Methodology
	Hardware Verification
	Summary

	Background
	OpenTitan Secure Element
	Bit-Level System Modeling
	Concurrent Error Detection Schemes
	Hardware Equivalence Checking

	Fault-Resistant Partitioning
	Intuition
	Formal Definition
	Algorithm to Identify a Fault-Resistant Partitioning

	Implementation
	Hardware Verification Flow
	System Co-verification using Verilator

	Validation on Impeccable Circuits
	Evaluation Results
	Comparison against Related Work

	Evaluation of OpenTitan
	Hardware Verification: the Secure Ibex
	System Verification
	Fixing Register File Vulnerability

	Discussion on Methodology Improvements
	Conclusion

	Conclusion
	Conclusion
	Perspectives

	Publications
	Proof of thm:1
	Vulnerabilities in Impeccable Circuits Implementations
	List of Figures
	List of Tables
	List of Listings
	Bibliography

