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1.1 Context

According to the World Bank, global manufacturing, valued at €44.3 trillion in
2023, is expected to grow by 2.7% in 2024. In this vast sector, even a 1% efficiency
improvement can significantly restructure the entire industrial landscape, which
is precisely where Prognostics and Health Management (PHM) can offer signifi-

cant enhancement.

Our focus: Design the generic end-to-end methodology

to improve the different PHM tasks’ performance
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Rapid break-in practices for cost-effective usage life extension.
(4) Traceability and improvement of failure roots to enhance
product design and operations strategy iterations

Figure 1.1: PHM roles in the machine lifecycle.
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PHM is interdisciplinary engineering. It utilizes current and historical data
for real-time monitoring, diagnostics, and prognostics of machines, aiming to
predict failures and provide cost-effective maintenance support for extending
the usage life [1]. As shown in Fig. 1.1, the PHM pipeline involves acquiring
data through sensors and pre-processing it to extract health state insights for ab-
normal detection, fault diagnostics, and remaining useful life (RUL) predictions.
Within these results, throughout the product degradation cycle, PHM technology
can be employed to expedite break-in during the early phase, prolong stable op-
eration in the mid-phase, and detect anomalies for timely diagnosis, and enables
the proactive formulation of an optimized maintenance strategy for the rapid
degradation phase at the later stage. Ultimately, PHM enhances manufacturing
efficiency by reducing downtime, which aligns with different national strategies
such as the United States “Re-industrialization Strategy,” the EU’s “Horizon Eu-
rope Strategic Plan 2025-2027”, and Chinese “New Productivity Force”

Applying PHM, which brought visible benefits, has driven the market, valued
at $6.5 billion in 2023, to an expected 17% compound annual growth rate through
2028. For example, in the operations and maintenance of F-35 air fighters, PHM
reduces non-reproducible faults by 82%, cuts maintenance manpower by 40%,
lowers logistics costs by over 50%, and extends the aircraft’s lifespan to 8000
flight hours. Similar in civilian applications, 95% of companies report improved
KPIs and a positive return on investment from PHM [2], with 60% noting a 9%
increase in machine uptime and 27% achieving amortization within a year [3,
4]. Therefore, PHM services prompt machinery’s role in generating future cash
flows by cost-effective continuous production, beyond merely being fixed assets
in economic life.

Despite widespread recognition, challenges persist in the implementation of
PHM solutions. According to PHM market reports, the sustainable development
of PHM services, particularly those integrating machine learning (ML) and deep
learning (DL), faces critical obstacles due to limitations in data quality, quantity,
and the consistency of physics knowledge [2, 5]. Numerous successes often exist
only in exceptional pilot projects and are difficult to replicate, leading to a crisis
of trust and deployment of advanced PHM technologies.

In this context, our thesis aims to advance the theoretical foundations and prac-
tical deployment solutions of PHM, ultimately proposing a generic PHM model ca-
pable of effective replication and adaptation across various scenarios and evolving
conditions.

In the following 4 sections, we provide a comprehensive overview of the un-
derlying dilemma we encountered and outline the innovative research program
proposed in this chapter. In Section 1.2, the problem statement offers a detailed
overview of the key challenges and motivations that underpin this research. Sec-
tion 1.3 addresses the research issues that arise from the problem statement, fol-
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lowed by a comprehensive discussion of the main contributions of our thesis.
Finally, Section 1.4 outlines the structure of this thesis, offering a clear roadmap
for the reader. It summarizes the content and organization of each subsequent
chapter, guiding the reader from the identification of the research problem to
the proposed solutions and their comprehensive analysis throughout the thesis.
Section 1.5 lists the publications and awards related to this thesis.

1.2 Problem statement

Fig. 1.2 highlights the dual challenges inherent in traditional PHM paradigms,
with particular emphasis on the complexities associated with both data-driven
and physics-based approaches.

Data Space Physics Space

Incomplete working condition cognitive

Sparse & noisy observation
Sparse run to failure information

Incomplete engineering system cognitive

Sparse label Incomplete failure mechanism cognitive

Small Data Some Data Big Data

r Purely data driven

Purely physics driven

Full physics Partial physics Empirical conjecture

Figure 1.2: Dual challenges on the physics side and the data side.

Data-driven models leverage statistical and ML techniques to analyze moni-
toring data, facilitating the identification of patterns and the prediction of future
system behaviors [6]. These physics-agnostic models excel when information-
rich data are available, enabling the capture of intricate relationships in degra-
dation. In contrast, physics-based models (PBMs) are grounded in the funda-
mental principles governing system behaviour, such as physics, chemistry, and
engineering mechanics [5, 7, 8], offering insights into failure mechanisms and
allowing for interpretable diagnostics and prognostics. These huge-data insen-
sitive models are particularly effective in scenarios with substantial mechanistic
research and robust first-principles modelling, providing precise analytical rep-
resentations of degradation processes.

However, we posit that the PHM domain occupies a nuanced position
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within the continuum of modelling approaches, residing in an “inter-
mediate” region characterized by “Some data and Partial physics” This
information insufficient region lies beyond the effective reach of purely PBMs
and data-driven approaches.

In data space, although we are in the age of big data, the mere presence of
a large volume of data does not equate to an equivalent abundance of informa-
tion. PHM models often face insufficient information challenges from “spare
and noise data” problems. These issues arise from the difficulties in complete
degradation process data acquisition, the limitations of measurement systems,
and the high cost of data processing, cleaning, and labelling [9]. They result in
the problems of the imbalance in health-failure data, the scarcity of run-to-failure
records, the lack of data labels, and data missing [10].

In the physics space, we identify insufficient information issues as “scarce
knowledge”. This scarcity emerges from barriers in interdisciplinary knowl-
edge, unknown failure mechanisms, and the computational complexities of phys-
ical models [11]. These factors limit our understanding of the degradation pro-
cess and obscure the coupling effects within and between different systems, mak-
ing it particularly difficult to establish analytical first-principle physics [12, 13].
Consequently, despite extensive analysis, modelling, and experiments of vari-
ous failure cases, the development of specialized models has not led to a unified
model. Instead, these models remain separate and isolated from each other, fur-
ther highlighting the challenges posed by scarce knowledge in the physics space.

Inspired by the neurogenic computational model developed for studying hip-
pocampal learning mechanisms [14], our thesis conceptualizes the PHM mod-
elling challenges in the context of “sparse and noisy data” as well as “scarce
knowledge,” as an “ill-posed” problem. The detailed mathematical modeling pro-
cess of this problem is provided in Appendix A.1. The “ill-posed” problem arises
when its key Hadamard’s well-posedness criteria of existence, uniqueness, and
stability—collectively are not satisfied. This implies methodological shortcom-
ings in mapping observed information to system states as shown in Fig. 1.3.

Existence may be compromised when data sparsity or noise results in ob-
servations falling outside the expected range, leading to inaccurate mapping.
Scarce knowledge further complicates this by making it difficult to accurately
define the mapping function. Uniqueness issues arise when multiple system
states produce the same observations, causing ambiguity. This is common for
sparse observations, as the same characterization is often coupled behind differ-
ent faults. Stability is challenged when small changes in input cause significant
fluctuations in the estimated solutions. In contrast, a “well-posed” mapping
has a more compact and consistent solution space with clear boundaries,
making it robust to different scenarios. In PHM applications, well-posed map-
ping represents fewer false alarms, more accurate detections, more reliable
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Figure 1.3: “Ill-posed” problem in PHM modelling.

methodology modelllng@

predictions, and stronger generalization performance.
We argue that there are three critical research questions (RQ) arise in trans-
forming an “ill-posed” mapping model into a “well-posed” one:

« RQ1-How to refine mapping paths: This involves exploring how to re-
structure the operations within ML or NN models to enhance their accu-
racy and strengthen their ability in prognostics and diagnostics by using
the established physics as the mapping constraints.

« RQ2-How to expand available observation states: This explores how
to expand the range of observable states, particularly by extracting valu-
able information from unlabelled data and transforming previously inac-
cessible observations into actionable insights.

« RQ3-How to build generalized mapping family: The focus is on how
to standardize input data across these scenarios and link the model’s in-
ternal dynamics to the specific characteristics of each PHM scenario. This
approach aims to develop a model that can accurately represent and re-
spond to a wide range of industrial conditions, ensuring it remains both
practical and adaptable in diverse real-world applications.

1.3 Research directions and main contributions

1.3.1 Research directions

The research questions outlined in Section 1.2 form the foundation for this the-
sis. To develop robust, adaptable, and accurate PHM models, ensuring practical
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applicability, we explore the following research directions:

 Constructing physics-informed machine learning (PIML) based hy-
brid models using PBMs and data-driven approaches to refine the
“mapping path”. This approach starts by analyzing the system’s physical
principles to identify key elements that can be turned into mathematical
constraints. These constraints are then incorporated into the model’s op-
timization process during training. By aligning data processing with these
physical laws, the model becomes better at accurately reflecting real-world
system behaviours. Restructuring the model’s operations ensures that ma-
chine learning or neural networks are not solely data-driven but are also
guided by established physics, resulting in a model that can more effec-
tively predict and diagnose system conditions across various scenarios.

« Expanding the range of observable states with self-supervised learn-
ing (SSL) techniques. SSL allows the model to extract useful information
from unlabelled data, transforming previously inaccessible observations
into actionable insights. This path involves designing learning tasks that
convert unlabeled data into formats that the PHM model can effectively
use. By expanding the available observation states, the model can more
accurately map the relationship between different system states and ob-
served data. This allows the model to utilize vast amounts of unlabelled
data, thereby increasing its robustness and applicability across diverse con-
ditions, even in scenarios where labelled data is scarce.

+ Developing a generic and flexible PHM framework based on physics-
informed SSL. The proposed framework optimizes the synergy between
different components, ensuring they work together effectively to achieve
desired outcomes. By integrating physical constraints with relevant infor-
mation extracted from unlabeled data, this approach enhances the preci-
sion and robustness of the model’s solutions. Furthermore, a key aspect
of this research path is the development of a robust pretraining and local
fine-tuning procedure. This helps the model stay stable and perform well
across different scenario in real-world situations.

1.3.2 Main contributions

Building upon the research directions outlined in Section 1.3.1, this thesis makes
several key contributions that advance the field of PHM. It addresses both scien-
tific and practical challenges through the development of innovative modelling
approaches, validated across diverse case studies.

11
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1. Developing the innovative PIML models for PHM. One of the most
significant scientific contributions of this thesis is the introduction of new
PIML models specifically tailored for PHM applications. These models in-
tegrate physical principles with machine learning techniques, enhancing
the model’s ability to predict and diagnose system conditions with higher
accuracy and reliability. For instance, the novel PIML model inspired by the
“Mimetic Theory” offers a unique approach to diagnostics, effectively val-
idated in the rotor compound faults case study. Additionally, the develop-
ment of a new PIML training strategy based on the “Constraint Projection”
theory addresses the challenge of few-shot diagnostics, further reinforcing
the scientific novelty of this work. These innovations highlight the poten-
tial of PIML to bridge the gap between theoretical physics and data-driven
modelling, contributing new knowledge to the field.

2. Advancements in SSL for PHM. The thesis also contributes to the sci-
entific community by advancing SSL techniques tailored for PHM. The in-
troduction of contrastive SSL strategies for prognostics represents a novel
approach to handling unlabelled data, a common challenge in PHM ap-
plications. By improving the model’s ability to utilize unlabelled data ef-
fectively, these contributions broaden the range of observable states and
enhance the robustness of PHM models. The innovative application of
SSL strategies, particularly those that consider downstream information,
demonstrates a significant leap forward in the field, offering new method-
ologies for data-driven prognostics.

3. Development of a generic and flexible PHM framework. A key scien-
tific achievement of this thesis is the creation of a generic PHM framework
that synergizes PIML with SSL. This framework is designed to be highly
adaptable, and capable of discovering knowledge from both labeled and un-
labeled data. By extending the PIML concept to actively uncover insights
from unlabeled data and enhancing SSL to simultaneously exploit labeled
and unlabeled data, this work sets a new standard for flexible and general-
izable PHM models. The framework’s validation across various prognostic
scenarios, including bearings, batteries, tool wear, and CFRP fatigue, un-
derscores its scientific originality and potential for broad application.

4. Demonstrating the scalability and adaptability of the proposed PHM
framework across diverse industrial applications. The generic PHM
framework developed in this thesis represents a major practical advance-
ment, offering a scalable and adaptive solution for a wide range of indus-
trial applications. The framework’s ability to dynamically adjust to differ-
ent scenarios without the need for extensive parameter tuning makes it an

12
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attractive option for real-world deployment. By reducing computational
complexity and enhancing model efficiency, this framework addresses key
challenges in PHM, such as resource constraints and the need for fast, re-
liable predictions.

Table 1.1: “4Cs” requirements.

4Cs: Cross-machine & devices, Cross-monitoring timescales, Cross-physical
measurements, and Cross-prediction targets

Cross-scenario Description Requirements

Machine Unified  model | Adapt knowledge across machine
for different | types, and implement flexible in-
machine types put architectures for varying sen-

sor configurations.

Monitoring Handling various | Integrating short-term and long-

timescales degradation term memory mechanisms, and im-
modes and faults | plementing adaptive strategies for
across time scales | different time scales.

Physical measure- | Combining di- | Developing robust sensor fusion

ments verse data types | techniques, and implementing self-
from industrial | adaptive feature extraction meth-
systems ods.

Prediction targets Accommodating | Handle diverse physical meanings
various PHM | of targets, adapt to different trend
targets patterns and accommodate varying

scale scopes of prediction targets.

From an engineering perspective, the proposed generic PHM framework is
designed to effectively adapt to the “4Cs” requirements, presented in Table 1.1.
These “4Cs” requirements represent the critical ability of the framework to han-
dle diverse cross-scenarios, including different machine types, various monitor-
ing timescales, a range of physical measurements, and multiple prediction tar-
gets. Specifically, the framework must be capable of adapting knowledge across
different machine types, implementing flexible input architectures for varying
sensor configurations, and integrating short-term and long-term memory mech-
anisms to handle degradation modes and faults across different time scales. Ad-
ditionally, it requires robust sensor fusion techniques and self-adaptive feature
extraction methods to combine diverse data types from industrial systems. Fi-
nally, the framework must be versatile enough to accommodate various PHM
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1.4. Thesis overview

targets, adapting to different trend patterns and prediction scopes. This adapt-
ability ensures that the framework can effectively address the complexities and
variabilities inherent in real-world industrial applications.

1.4 Thesis overview

Fig. 1.4 presents an overview of the thesis structure. It is organized to progres-
sively build upon the foundational concepts of PIML and SSL, leading to the de-
velopment of a comprehensive and adaptable PHM framework.

Contributions Validations Publications

B

Comprehensive bibliometric analysis and review on: “ \
«  Physic-informed machine learning in PHM (PIML) [ ¢ 1 V1: Bearing RUL prediction J1,J5
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New PIML training strategy based on the “Constraint projection” diagnostics J2,J4,C1,C4,C5
Chapter Il theory for few-shot diagnostics (V2)
Novel generic PIML framework for prognostics (V3) _
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Development of effective SSL approaches in PHM: gg V3: Battery RUL prediction
Chapter IV New contrastive SSL strategies for prognostics (V1) J5,C3
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V4: Tool wear prediction
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% Conclusion and future work: ¢
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scenarios by combing PIML and SSL (V1, V3, V4, V5)

[

(@]
=
=
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Figure 1.4: Structure and main contributions of our thesis.

Chapter 2 presents a comprehensive bibliometric analysis and review con-
ducted on two emerging areas in PHM: PIML and SSL. This review synthesizes
existing knowledge, identifying key trends, challenges, and opportunities in these
fields. The insights gained from this analysis serve as a basis for the subsequent
development of novel PHM methodologies, guiding the integration of these tech-
niques into effective PHM models.

Building on the insights from the literature review, Chapter 3 introduces new
PIML approaches tailored for PHM applications. These include:

« A novel PIML model inspired by the “Mimetic Theory” for diagnostics,
which has been validated through the rotor compound faults diagnostics
case study (V2).

14
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+ A new PIML training strategy based on the “Constraint Projection” theory,
specifically designed for few-shot diagnostics, also validated on the rotor
compound faults diagnostics (V2).

+ A generic PIML framework for prognostics, demonstrated through its ap-
plication to battery RUL prediction (V3).

In Chapter 4, the thesis delves into the application of the “Global pretraining-
local finetuning” procedure within SSL to expand the range of observable states,
a crucial aspect of PHM modelling. This chapter introduces improved SSL strate-
gies, particularly through new contrastive learning approaches, providing both
theoretical advancements and practical demonstrations. The efficacy of these
strategies is showcased through a case study focused on bearing RUL predic-
tions, highlighting the successful implementation of directional representation
learning.

Building on the methodologies introduced in previous chapters, Chapter 5
extends the conventional concepts of PIML and SSL to propose a comprehen-
sive physics-informed SSL methodology. This chapter presents a unified, generic
prognostics model designed to be applicable across a variety of degradation sce-
narios. The model is specifically tailored to complete degradation predictions
within complex “4Cs” scenarios, achieving these outcomes with a lightweight
and computationally efficient model. This chapter thus represents a significant
step towards a more versatile and generalizable PHM framework.

Chapter 6 offers a comprehensive summary and forward-looking perspective
on the entire thesis. It begins by synthesizing the key contributions made to the
field of PHM through the integration of advanced PIML and SSL techniques. The
chapter then highlights the successful application of the proposed models across
various PHM scenarios, demonstrating their practical impact and versatility. Fi-
nally, it discusses future perspectives, outlining the potential of these approaches
to meet the critical and evolving requirements of PHM systems, and paving the
way for further advancements in the field.
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This chapter is based on the following publications:

J1 WeiKun DENG, Khanh T.P.NGUYEN, Christian GOGU, Jérome Morio,
Kamal MEDJAHER (2023). Physics-informed machine learning in prog-
nostics and health management: State of the art and challenges. Applied
Mathematical Modelling, 124: 325-352.

J5 Weikun DENG, Khanh T.P.NGUYEN, Christian GOGU, Jérome Morio, Ka-
mal MEDJAHER (2024). Enhancing Prognostics for Sparse Labeled Data
Using Advanced Contrastive Self-Supervised Learning with Downstream
Integration. (Submitted to Engineering Applications of Artificial Intelligence,
Accepted).

2.1 Introduction

This chapter has 4 sections. They provide a critical analysis of the state-of-the-art
(SOTA) for constructing hybrid models and learning from unlabelled data. The
discussion is framed from both qualitative and quantitative perspectives, focus-
ing on research directions aimed at addressing the “ill-posed” problem within the
context of “Sparse, noise data and scarce knowledge” introduced in Chapter 1.
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2.2. Bibliometric literature analysis and quantitative review

Section 2.2 begins with a bibliometric analysis with a research roadmap sur-
vey detailed in Section 2.2.1. The analysis of the technological roadmap indi-
cates that physics-informed machine learning (PIML) and self-supervised learn-
ing (SSL) represent the leading edge and foundational solutions in hybrid mod-
eling and unlabelled data learning, respectively. Section 2.2.2 presents quanti-
tative statistical analyses of PHM applications involving PIML and SSL, while
Section 2.3 offers a systematic qualitative review of relevant PHM cases and the-
oretical developments. Finally, Section 2.4 provides a scientific positioning map
that situates our study within the broader research landscape.

2.2 Bibliometric literature analysis and quantita-
tive review

The entire bibliographic analysis procedure is presented in Fig.2.1.

}<— Input ‘>{<— Search stage: 10 years review

Processing stage —>‘% Output —s)|

Limit research Bibliometrics:
s Journal applications to CiteSpace *  Word frequency Technology
' —> frontiers: PHM: 2352 ——— Xem?lnc%I atist development
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, 19832 papers bapers ] +co-citation analysis roadmap
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Subject string A Provide S ™ and bibliometrics
for searching 7| supplementary and Q\\“i%\ -(\6\’6 ) for 162 papers and PIML and SSL
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ProQuest_ (=) Dissertation questions and Topic filtering and bibliometrics: Methodological
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6532 theses 151 theses + co-citation analysis,

J

Figure 2.1: Schematic flow of the bibliometric analysis.

The dataset analyzed covers the period from January 2014 to June 2024, ob-
tained from Web of Science (WoS) and ProQuest, including technical papers, re-
ports, and dissertations. To ensure completeness, Google Scholar was utilized to
verify, complement, and de-duplicate the search results from WoS and ProQuest.
Based on the search results, a subsequent co-citation analysis is performed us-
ing the CiteSpace tool [15]. This analysis reveals the frequency of prominent
keywords, as discussed in Section 2.2.1, and helps identify prevailing research
trends, mapping the technological evolution of hybrid models and unlabelled
data learning. In Section 2.2.2, the thesis further undertakes a quantitative anal-
ysis of PIML and SSL, providing a systematic investigation into existing gaps in
their application to PHM.
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2.2. Bibliometric literature analysis and quantitative review

2.2.1 Research trend analysis

Technology evolution trends are identified through the clustering of keywords
across yearly slices, offering insights into how specific research areas have de-
veloped over time. The results of this clustering are visually depicted in Fig. 2.2
and Fig. 2.3, illustrating the progression of technology trends concerning PIML
and SSL.

2.2.1.1 Evolution of hybrid approaches

Fig. 2.2 illustrates the evolving focus of keywords in research of hybrid approaches.
Major focuses include anomaly detection, RUL estimation, and process optimiza-
tion, all crucial for effective PHM applications. The proposal of “Physics In-

_— rema/n/ng useful life
dyffefentyat/on #5 physncs -informed deep neural network
’ 3”0"'5/}: detection * #3 multi-view feature construction
/” .extended kalmanfilter ﬂfﬁ'ocess monitoring multiple feature construction
1#6 equation-based domain knowledge utilization
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% \deep neural network
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(fault diagnosis v
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Figure 2.2: A technological roadmap for hybrid model architectures.

formed Machine Learning” in 2018 marked a pivotal methodologies advance-
ment [16], catalyzing the development of physics-informed sparse identifica-
tion [17], and physics-informed deep neural networks [18]. This transition was
initially focused on expert systems and progressed to weighted class associa-
tion rule mining by 2014. The shift towards Physics-Informed Neural Networks
(PINN) [19] highlights the necessity of integrating physical principles directly
into the ML pipeline rather than merely combining physics and ML in the input
or output space. In particular, “Deep neural networks” are frequently leveraged
to establish sophisticated PIML frameworks. This integration is driven by en-
hancing complex systems’ model accuracy, reliability, and interpretability [20].
Integrating equation-based domain knowledge underscores the critical role of
leveraging domain-specific physical laws in ML models, ensuring predictions
are data-driven and aligned with established scientific principles. There is a no-
Table increase in research incorporating differential equations modeling lifetime
degradation processes into machine learning models, as shown by the clustered
hot words in the figure.

This analysis motivates our research to focus on PINN and to address the ques-
tions “What form of physics to embed” and “How to embed physics knowledge.”
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2.2. Bibliometric literature analysis and quantitative review

2.2.1.2 Evolution of unlabelled data learning

As depicted in Fig. 2.3, initially, unsupervised learning and deep clustering tech-
niques enhanced the identification of patterns and anomalies without labeled
data. Subsequently, the focus shifted towards SSL, especially the contrastive
learning-based paradigm, leveraging data’s hidden pattern and structure for ad-
vanced anomaly detection and domain adaptation. Integrating neural networks,
particularly autoencoders and variational autoencoders, facilitated complex tasks
such as image-like monitoring data reconstruction and data augmentation, which
are crucial for predictive maintenance and intelligent fault diagnosticss. Recent
developments have seen the emergence of representation learning, which im-
proves model robustness and accuracy using limited labeled data.
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Figure 2.3: A technological roadmap for unlabelled data learning.

It is important to highlight that semi-supervised learning was another promi-
nent technique in the early stages of development. In our view, SSL is more
suiTable for PHM applications as it can effectively learn from large volumes of
unlabeled sensor data without the need for costly manual annotation during the
feature learning phase. SSL leverages unlabeled data to create supervised signals
intrinsically, resulting in more generic learned features. These advancements are
applied in specific PHM areas such as crack detection, defect classification, and
RUL prediction.

Consequently, our thesis is driven by the need to develop robust SSL model
frameworks for PHM. It aims to explore novel applications with a focus on data
structures and knowledge mining. Additionally, it seeks to address the underdevel-
oped theoretical foundations of SSL.
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2.2. Bibliometric literature analysis and quantitative review

2.2.2 Statistical analysis of PIML and SSL in PHM

This section provides a comprehensive analysis of key statistics for PIML and SSL
in PHM, examining three principal aspects: application domains, PHM tasks, and
monitoring signals.
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Figure 2.4: Main application areas and data sources of PIML in PHM.

Fig. 2.4 presents the distribution of application areas and data sources of the
studies on PIML in PHM. From Fig. 2.4 (a), one can see that most of the current
PIML studies in PHM focus on material damage (41.2%) because there already
exists in this area numerous studies in mathematical and physical modeling of
material dynamic behaviors. These studies provide a solid foundation for the
rapid development of PIML models. Other applications such as aviation struc-
ture and equipment (20.0%), production equipment (13.0%), bearing and gearbox
(15.0%), and power grid (9%) have also attracted more attention from the research
community in recent years. Besides, considering data sources Fig. 2.4 (b), we find
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2.2. Bibliometric literature analysis and quantitative review

that most data sources for PIML studies come from simulation (30%). Also, the
most used bench-marking datasets are the Turbo engine simulation dataset (C-
MAPSS and AGTF30) and battery dataset (Oxford and NASA). The studies of
PIML models for real systems are limited to small experimental platforms (16%).
Those observations can be explained by the lack of exploiTable physics-based
knowledge of real systems that are usually difficult to model. Especially, a large
proportion of PIML research focuses on solving the PHM tasks in the presence
of sparse (26%) or noisy data (38%).
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Figure 2.5: Main application areas and data sources of SSL in PHM.

As shown in Fig. 2.5, one can see that SSL finds significant applications across
various industrial domains. The rolling bearing fault diagnosticss counts the ma-
jor part around 11.7%, followed closely by the rotating machinery fault diagnos-
ticss at 10.7%. SSL also plays a crucial role in industrial product surface defect
detection, with a 9.7% usage. Other noTable applications include semiconduc-
tor manufacturing monitoring and wind turbine fault diagnosticss, each at 5.8%,
steel surface defect detection at 3.9%, and electrical equipment fault diagnosticss
and aircraft turbofan engine life prediction, both at 2.9%. These diverse applica-
tions underscore SSL importance in enhancing industry life cycle management,
predictive maintenance, and operation safety. In “others”, they include studies
with a share of less than 2%, including Centrifugal pump fault diagnosticss, air
conditioning system fault detection, and so on. Additionally, existing studies re-
lating application of PIML and SSL in PHM are synthesized in Tables B.1 and B.2
of Appendix B.1.
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In summary, the statistical analysis reveals that PIML and SSL techniques
are predominantly applied in diagnosticss and detection studies, with relatively
few applications in prognostics. Additionally, there is a noticeable focus on
single-scenario case studies, with a significant lack of research addressing cross-
scenario applications. These findings underscore the need for further exploration
of prognostic scenarios and the development of models capable of handling cross-
scenario studies, which serves as a key motivation for this thesis.

2.3 Qualitative literature review

Section 2.3.1 and Section 2.3.2 provide a comprehensive qualitative literature re-
view, focusing on the advancements and PHM applications of PIML and SSL.
Through reviewing the key methodologies, innovative approaches, and chal-
lenges, we aim to elucidate the existing landscape and identify opportunities for
future research in these emerging fields. In particular, a comparative analysis of
existing PhD dissertation, extending beyond the scope of PHM, is presented in
Section 2.3.3 to underscore the scientific contributions of this research to PIML
and SSL topics.

2.3.1 An overview of PIML in PHM

Compared to the existing review papers that we give the introduction in Ap-
pendix B.2, our review offers a novel and comprehensive overview of PIML specif-
ically tailored to PHM. We explore this topic from two critical perspectives: “how
to inform different types of knowledge” (see Section 2.3.1.1) and “what kind of
knowledge can be informed” (see Section 2.3.1.2). This dual focus not only fills
a gap in the existing literature but also provides a deeper understanding of the
integration of PIML within PHM, making our work one of the first to thoroughly
examine PIML in this specific context.

2.3.1.1 Knowledge informed methods

The PIML methods in our research are classified into three categories: Physics-
informed input space, physics-embedded algorithm structure, and physics con-
strained learning, as shown in Fig. 2.6. This division depends on the role of physical
knowledge and its informed position in the ML pipeline.
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Figure 2.6: Taxonomy of existing PIML methods in PHM.

1) Physics-informed input space. This category seeks to gain physics in-
formation in the ML input space, distilling the multi-sources and heterogeneous
monitoring data [21, 22] by assisting data augmentation, feature transformation,
feature selection, dimensionality reduction [23], and information fusion [24].

“Physics-informed input space” can be seen as an extension of the traditional
“feature engineering” or “simulation-based data augmentation” processes. We
have summarized three major paradigms: “Simulator”, “Gauge”, and “Extractor.”
shown in Table. 2.1.

Table 2.1: Summary of physics-informed input space studies in PHM.

Ref. Application Knowledge Informed ML model PHM
source tasks
(25, Aeronautical Component-‘ ' ' Classification ' ‘
26] structure based digital Simulator tree  and Diagnostics
He twin SVM
Auto-
Triplex Component- encoder
[27] P based digital Simulator Diagnostics
pump . transfer
twin .
learning
p o .\
[28] Oil produc- b.:\(s)g(:l1 CtlOndi ital Simulator Autoencoder rcn(z)rrll(ii—ltlon
tionline . & & LSTM .
twin model toring
Hamiltonian
A priori evalu- autoen-
ation of feature coder NN
29 imul > Di i
[29] Rotor space separabil- Simulator PCA, & iagnostics
ity of loads random
forest

Continued on next page
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Table 2.1 - continued from previous page

Ref. Application Knowledge Informed ML model PHM
source tasks
Electro-
Hydrostatic : Degradation
Ph 1 -
[30] Actuator ysica degra Simulator LSTM predic-
dation model ]
degrada- tion
tion
Engine air path RUL
[16] TubF) fan performance Simulator DNN predic-
engine .
model tion
. Bonded joints fa- Fatigue
1
31, Composite tigue FE or lattice Simulator FCN predic-
32] structure .
surrogate model tion
Time domain
[33]  Bearing statistical feature Simulator SVM Diagnostics
generation model
Aircraft A numerical so-
[34] composite  lutions of Lamb Simulator CNN Diagnostics
structure waves
Time-series
Industrial derivative
[35] . weighting Simulator VAE Diagnostics
production .
for perturbation
values
Physics-
. informed
Invariable char- .
acteristics of multi-
[36]  Building 1 Gauge source Diagnostics
building  struc- .
domain
ture .
adversarial
networks
Additive Geometry invari- o
. Condition
manu- ant in thermal Tree-based .
[37] . . Gauge . moni-
facturing history features regression .
o toring
monitoring and trend

Continued on next page
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Table 2.1 - continued from previous page

Ref. Application Knowledge Informed ML model PHM
source tasks
Implicit physical Deep oo
association  be- volutional
[38] Gearbox tween unlabeled Gauge Ei,l:?:r‘if; Diagnostics
and labeled data
network
Vibration in-
[39] Gearbox herent' Y™ Extractor Autoencoder Diagnostics
clostationary
characteristics
Vibration modal
analysis and PINN and . .
[40] Bandsaw finite  element Extractor DCNN Diagnostics
analysis
Health-adaptive
physics time-
[41]  Gearbox scale represen- Extractor CNN Diagnostics
tation embeded
input module
Electro- Feature space
VM
[42] mechanical load separability Extractor SDNN and Diagnostics
load prior evaluating
Dynamic Mode
Decomposition
First Order with control
Plant with and continu- Transfering
4 E
[43] Time Delay ous wavelet xtractor DNN
system transform based
system fault
feature picture
Importance fea- : .
. 1sserstein
Air  han- ture selection enerative
[43] . . based on the Extractor © . Diagnostics
dling units . adversarial
semantics of the
. network
physical model

According to the summary in Table. 2.1, “simulators” generate data across dif-
ferent health states and system behaviors, enhancing training information. This
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requires data synthesis models that balance computational cost and fidelity, in-
cluding but not limited to using digital twins [25], reduced order models [26], or
physics-based numerical simulations [27]. “Gauges” addresses the limitations of
simplified simulators by designing transfer criteria. It is concerned with building
invariant features or implicit physical associations in data into suiTable metrics,
as illustrated in building structure diagnosticss [36] and additive manufacturing
monitoring [37]. “Extractors” guide data preprocessing with physics knowledge
to ensure fault physics-related features are included, such as in gearbox diagnos-
ticss [39] and bandsaw diagnosticss [40].

2) Physics-embedded algorithm structure. Regarding “Physics-embedded
algorithm structure”, PIML seeks to make the traditional physics-agnostic ML
become physics-aware so that the governing processes are added to the design
of ML algorithm structures and the parameters searching process. It is prone
to integrate the “Hard Constraint Projections (HCP)” [44] with ML, including

the three following paradigms: “Basic operator”, “ML Structure blueprint”, and
“Parameter initializer,” as shown in Table 2.2.

Table 2.2: Summary of physics-embedded algorithm structure in PHM.

Ref. Application Knowledge Informed ML model PHM
source tasks
Crack Paris laws for
growth fatigue crack and RUL pre-
[43] and filter pressure  drop Operator  ANN diction
clogging analog formula
Wavelet-
: based Fault di-
Pairs ~ laws ~ for feature en- agnostics
[20] Wm.d fatigue crack and Operator gineering  and RUL
turbine pressure  drop

in the Par- predic-
ticle filter tion
framework

analog formula

Continued on next page
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Table 2.2 — continued from previous page

Ref. Application Knowledge Informed ML model PHM
sourcce tasks
Hybrid
Degradation data aug-
. mentation
model incor- .
porating the based on Degradation
[46] Lube oil shift and  diffu Operator State space predlc-
. . model in tion
sion coefficient .
rameters the  parti-
pa cle filter
framework
Predict  future
capacity  mea-
Lithium- suremen’Fs .bas.ed Particle fil- Degr'adatlon
[47] . on the similarity Operator predic-
ion battery e ter .
of capacities in tion
the historical
data
Fault frequency .
(48] Il:/ll*gioern bar and square enve- Operator CNN zaﬁgsti(cl;
lope threshold &
Embedding
hydraulic coeffi-
[49] Dirill pipe cient relationship Operator DNN
between two
DNNs
Dynamic wavelet .
[0, Bearing or FFT informed Operator CNN&Resnet Fault .dl
51] agnostics
layer
Reduced-order
Lithium- model based RUL pre-
[52] ion battery on Nernst and Operator RNN P
diction
battery Butler—Volmer
equations
Adaptive
Sinos  empirical neuro- Degradation
[53] Tool wear pos —ermp Operator fuzzy predic-
wear-time . .
inference tion
system

Continued on next page
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Table 2.2 — continued from previous page

. .. K led PHM
Ref. Application nowlecge Informed ML model
sourcce tasks
Topology of
[54, Material ::\{:Ztc;og;;der?etic Overator Siamese Fault di-
55]  defect mag P CNN agnostics
acoustic  sensor
systems
D .
Mortar Non-linear frac- ynamie Degradation
. mode .
[56] cube crack ture amplitude Operator . predic-
- decomposi- |,
prediction  modes : tion
tion
[57] Bearing fa- Paris—l.aws based Operator NN
tigue corrosion
Damage differen-
tial ti & D dati
[58, Structure & edhahions Structure ceradation
Dirichlet bound- .. DeepONet  predic-
59]  crack blueprint .
ary based growth tion
laws
. Differential - Stacked Degradati
[60, Crackiden- .1 crentiatequa Structure acke egr.a aton
. ) tion for crack ex- .. auto- predic-
61]  tification . blueprint .
tension encoder tion
62, - : .
! Aviation Crack extension Degradation
63, . i Structure i
structure or vibration .. RNN predic-
64, blueprint ]
65] crack anomaly models tion
Implicit recursive
structure of cu-
[66, Avaition mulative bearing
Structure
67, structure damage, crack . RNN
A . blueprint
68] crack extension or vi-
bration anomaly
models
Eulerian i - D i
[68, Structure .u eran lntegra Structure RNN o egr'adatlon
67, . tion for fatigue . predic-
fatigue . blueprint CNN .
63] crack extension tion

Continued on next page
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Table 2.2 — continued from previous page

Ref. Application Knowledge Informed ML model PHM
sourcce tasks
Governing differ-
Batteries ential equations
[52] RUL pre- based on mea- Structl}re RNN RUL pres
. . blueprint diction
diction sured capacity &
voltage curves
Empirical rules
for cutting tem- Structure Logistics
[69]  Tool wear perature,speed blueprint classifier
and tool life
[70,  Structure E}tgfhel;al due Structure Stacked Fault di-
71]  damage & blueprint NODE agnostics
to damages
Degradation
[72] Batteries Charge losses Structgre UODE predic-
and changes blueprint .
tion
(73,
74, Grid and Physics  spatial Structure Fault di-
75, or spectrum .. Graph NN .
Buses FD o blueprint agnostics
76, associativity
77]
The stiffness
T.Orsm.nal and : damping Structure Custom
[78] vibration coefficients  are )
blueprint ANN
dampers used as nodes of
NN
SVM, NN,
Boosted
Spatial  depen- Trees, :
[79] Ir)()I:AM “ dence of the Initializer Naive zaigsti(::
DRAM Bayes, &
Random
forest
InterpreTable weights Supervised .
. e 1 i Fault di-
[80] Bearing based envelope Initializer learning .
. agnostics
spectrum dichotomy

Continued on next page
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Table 2.2 — continued from previous page

. . K led PHM
Ref. Application nowlecge Informed ML model
sourcce tasks
) ) Non- .
Casting de- One-dimensional ne?r;tive Condition
[81] & heat transfer Initializer o, monitor-
fect , matrix fac- |
equation . ing
torization
) G hanical )
Materials eome.c an%ca e K-Means Fault di-
[82] alteration index Initializer .
cracks/fracturef . cluster agnostics
cluster basis

Decision  space

arameterized Degradation
[69] Tool wear p . Initializer CNN predic-
by cutting speed :
tion
and temperature
ind oscillation aussian .
Wind llat G
Power . e 1 Fault di-
[57] : equations  and Initializer Process .
grids . . . agnostics
grid equations Regression
Offshore . . Degradation
. Degradation ex- - Bayesian &
[83] wind . Initializer predic-
. cess matrix network .
turbine tion

The “Operator” paradigm incorporates physics knowledge into ML modules
to better capture input-output relationships, as shown in Fig. 3.9. It is the most
commonly used and basic paradigm. Two approaches are proposed: 1) Replac-
ing ML modules with physical input-output models, and 2) Designing custom
layers and neurons to express physics equations. The first approach transforms
raw data into health indicators using physically meaningful methods, such as
the wavelet layer discussed in [50], while the second expresses physical func-
tions within ML modules, as demonstrated in [18]. Both methods aim to en-
hance system accuracy, robustness, and interpretability by leveraging physical
insights [84, 65].

The “Blueprint” paradigm focuses on identifying topological similarities and
mapping unit dependencies from geometric structures, system behaviours, or in-
ternal material interactions to prioritize physical reasoning in ML model train-
ing [85, 73]. It involves tailoring neural networks according to physical laws [86],
modeling potential energy functions [87], and representing dynamic behaviors
through recursive structures [67]. This approach helps optimize ML training
by abstracting system behaviour from physics-based models and implementing
specific physical relationships within the ML structure [60, 66, 70, 71].

The “Parameters Initializers” paradigm concentrates on selecting and assign-
ing ML parameters and hyperparameters based on physical principles. This in-
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Physics-informed ML operator
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Figure 2.7: Two ways for embedding physics knowledge as a ML operator.

The left portion of the diagram depicts the operator formed by substituting the
original ML input/output module with the entire formula, while the right por-
tion illustrates the operator constructed by equating the ML model’s learnable
parameters to the unknown parameters in the physical model.

cludes weight selection based on physical energy minimum states in Markov
random fields [79], parameter initialization using solutions from physical mod-
els [20], and setting initial parameters as probability distributions derived from
empirical models. By grounding parameter initialization in physical understand-
ing, this approach aims to improve the starting point and overall performance of
ML models in physics-related applications, as demonstrated in techniques like
non-negative matrix factorization for casting defect monitoring [81].

3) Physics-constrained learning. Unlike the rigid constraints inherent in
“physics-embedded algorithm structures”, PIML can also incorporate soft con-
straints that allow for the approximate satisfaction of physical principles via
the objective function’s design. These soft constraints can manifest in vari-
ous forms such as integration, differentiation, probability, and logic rules. De-
pending on the different physics-informed objective functions, this study cate-
gorizes “physics-constrained learning” into two paradigms: “consistency check”
and “conflict test” as detailed in Table 2.3.
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Table 2.3: Summary of Physics-constraint learning in PHM.

Ref. Application Knowledge Informed ML model PHM
source tasks
(85] Turbo Loss based on Consistenc Stacked Rr[f:iic—
engine PDE residuals Y CNN fion
Deformation Normalized Fault
[89]  identifica-  physics model’s Consistency DNN diagnos-
tion modal residual tics
. . Fault
[90] Material Finite . Element Consistency DNN diagnos-
damage Analysis .
tics
Rty oo
[91]  Bearing distribution Consistency ANN d'1agnos—
tics
property
. ReSI.d ue gen- Neyman- Fault
Vehicle eration based . .
[92] Consistency Pearson diagnos-
sensor on transferable .
test tics
operators
High Elliptic .equatlon
impedance of rotational tra- Fault
(86] P jectories of the Consistency Autoencoder diagnos-
fault detec- .
. voltages and cur- tics
tion
rents
) Fault
[93]  Building Attribute- . Consistency MatConvNet diagnos-
category matrix .
tics
Characteristics
in frequency
[94] Coucreraerrllt domain _ of  the Consistenc PCA ~ and I;?; 1:1os-
. mean water flow Y CNN (28
turbine tics

velocity in the
fan balance

Continued on next page
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Table 2.3 — continued from previous page

Ref. Application Knowledge Informed ML model PHM
source tasks
Atomic  update
based on the
Metal dam- regularization Fault
[95] & Consistency K-SVD diagnos-
age term  of  the .
. . tics
one-dimensional
wave equation
Fault. frequency Deep con-
domain feature . Fault
Workshop . volutional .
[96] . loss related Pear- Consistency diagnos-
machinery . autoen- .
son correlation tics
) coders
coefficient
Damage Fault
[97] stress FEM.bas'e d stress Conflict LSTM diagnos-
- distribution .
prediction tics
Expert
experience- Fault
[98]  Bearing based fault Conflict CNN diagnos-
degree threshold tics
model
: . Fault
[99] Steel build- Output of a finite Conflict DNN diagnos-
ing damage element model tics
(100 Wind farm Physically com- Fault
10 1]’ & gas tur- plete historical Conflict ANN diagnos-
bine dataset tics

In Table. 2.3, both paradigms aim to converge ML results towards physical
consistency, as shown in Fig. 2.8, balancing the trade-off between data-driven
learning and physics-based constraints. The total error of the PIML model in-
cludes a traditional ML prediction error (“Error1”) and a physical consistency
error (“Error2”). In general, the numerical best fit to the available data (residual
loss) and the consistent satisfaction of physics principles (boundary loss) show
discrepancies [102].
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Figure 2.8: Two ways to construct physics-constrained learning.

In brief, in the “consistency check” approach, the objective function is de-
signed to ensure that the ML output conforms to physical principles. This can in-
volve incorporating residuals from physical equations, normalized model resid-
uals, or domain-specific knowledge directly into the loss function. Examples
include using PDE residuals for turbo engine RUL prediction [88], modal resid-
uals for deformation identification [89], and finite element analysis for material
damage assessment [90].

The “conflict test” paradigm, on the other hand, builds the objective func-
tion based on the discrepancies between the ML output and the physical model
output. This approach often involves comparing ML predictions with outputs
from physics-based models or expert knowledge. For instance, Finite element
method (FEM) based-based stress distribution was used for constraining the dam-
age stress prediction [97], while expert experience-based fault degree threshold
models were incorporated for bearing fault diagnosticss [98].

2.3.1.2 Informed knowledge types

Physics knowledge is the prerequisite for implementing PIML. In review [103],
the authors propose categorizing the knowledge sources according to their ori-
gin. However, our thesis found the PIML implementation methods de-
pend on the form of knowledge rather than the source of knowledge.
Similar forms of knowledge may be embedded in different cases and
frameworks. For example, the proposed PIML frameworks in papers [99] and
[90] come from different fields (building construction and material industry) with
different knowledge sources, but both of them use the same knowledge form, i.e.,
finite element methods, to build the “consistency check” loss function. In addi-
tion, the exclusive reliance on physics knowledge is limited when the underlying
system complexity increases. Concomitantly, the data that can accurately repre-
sent this knowledge is becoming increasingly large and complex [104].

Therefore, our thesis categorizes the physics knowledge forms into three
classes, as shown in Fig. 2.9.
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Figure 2.9: Different knowledge forms of PIML in PHM.

First category: Explicit knowledge related to analytical failure mod-
els. The explicit knowledge is represented by analytical models or equa-
tions of system dynamic behaviors, such as the generator of inertia con-
stants, damping coefficients, and rotating speed in rotor dynamics [105].
They are mathematically and physically unambiguous, formal, symbolic
and structured. Particularly, in PHM, they demonstrate the quantifiabil-
ity of the failure processes, including algebraic, governing equations, and
probabilistic relations.

Second category: embedded knowledge related to a structure or spe-
cific process. It is locked into the physics derivation process, system con-
vention, structure, or layout. It provides information related to the se-
quence orders and the requirements of each process step or component
structure. It uses ML modules to express information concerning the sys-
tem structure [86], the unit dependencies [79], or the system topology
framework. In particular, some physics is non-symbolic and non-explicit,
merely an input-output or mutual verification relationship between the
derivation procedures.

Third category: Tacit knowledge relating wide range of physical in-
formation. It involves hypotheses, expert rules and experiences, and also
diverse underlying physical properties. It refers to the knowledge about
degradation which is somewhat intuitive and difficult to quantify.

Building knowledge as constraints involves several approaches that enhance
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the model’s physical consistency and interpretability. One method is explicit
knowledge integration, where analytical equations are used to create simulators,
extractors, or operators, ensuring that the model adheres to known physical laws.
Embedding this explicit knowledge closer to the output layer improves the phys-
ical consistency of the predictions. Another approach is embedded knowledge
structuring, where ML models are designed to mimic real physical processes or
derivations. This involves creating structure blueprints based on physical rela-
tionships or embedding known steps as local operators within the ML frame-
work, allowing the model to replicate the flow of information as seen in actual
physical systems. Tacit knowledge transformation is also employed, where tacit
knowledge is converted into a form that can be integrated into objective func-
tions or used to design physics similarity tests and conflict loss functions. Addi-
tionally, knowledge discovery integration leverages ML models to uncover fault-
related information and employs stacked architectures for knowledge discovery
and validation [36, 56, 72, 106].

When choosing knowledge for different PIML frameworks, it’s crucial to con-
sider several factors to optimize model performance and applicability. Frame-
work compatibility is key, where the type of knowledge is matched to the struc-
ture and capabilities of the PIML framework. For example, neural network-
based frameworks may benefit from embedded knowledge, while probabilistic
frameworks may require explicit knowledge represented as prior distributions
or constraints. The problem domain and data availability also guide the selec-
tion process; explicit and embedded knowledge is prioritized in data-scarce sce-
narios, while tacit knowledge discovery techniques are more applicable when
data is abundant. Additionally, the interpretability requirements and computa-
tional efficiency of the model should be balanced, favoring explicit knowledge
for higher interpretability and considering the computational cost of integrat-
ing different knowledge types. Other considerations include uncertainty han-
dling, where probabilistic approaches may be needed, multi-physics integration
for complex systems, and adaptability to ensure the model can evolve with new
information. By carefully evaluating these factors, researchers can effectively
integrate various forms of knowledge into PIML frameworks, enhancing their
utility in different PHM applications [86, 57, 98].

2.3.2 An overview of SSL in PHM

Unlike PIML, which incorporates external constraints, SSL focuses on mining
the inherent structure or latent information within the data to generate pseudo-
labels, facilitating training on unlabeled data.
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Figure 2.10: The main steps in self-supervised learning.

Typically, SSL involves a self-supervised pretext task followed by a fine-tuning
task aimed at accurately predicting diagnostics or prognostic outcomes, particu-
larly utilizing features learned during the pretext phase, as shown in Fig. 2.10.

Since 2017 RUL prediction (4 papers) Anomaly detection and fault diagnostic (20 papers)

SSL in PHM

. r. |
Generative Contrastive Generative-contrastive

Series reconstruction or autoregression-

based predictive state validation Distinctness of series of truncated segments

discrimination

Abnormal detection and prognostic Fault classification and prognostic Defect detection

Reconstructing the sample with i

Principal Component
Analysis

Context based

Figure 2.11: Taxonomy of self-supervised learning in PHM.

SSL was introduced to PHM around 2017, with 35 related research articles
published. These can be categorized into three main SSL paradigms: “Genera-
tive” and “Contrastive” approaches ranging from fault detection and diagnostics
to failure prognostics. The “Generative-Contrastive” category, on the other hand,
is commonly used in RUL prediction and fault diagnostics tasks. These can be
represented by Fig. 2.11.

A comprehensive overview to examine how these approaches are practically
implemented in the context of PHM tasks is summarized in Table 2.4. In this
table, “D-i” denotes incorporating downstream information into the pre-training
stage, and “P-f” represents frozen pre-training knowledge into the downstream
finetuning stage.
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Table 2.4: Summary of SSL in PHM.

Insights Pretext tasks D-i P-f
Generative group: Some input
Siamese CNN for power image parts are masked, and the
line abnormal detec- tower-conductor region is recon- Vv X
tion [107]. structed using a two-branch struc-
ture.
Multi-mode non-
Gaussian variational au- Generative group: Capture the
toencoder for anomaly input data’s underlying distribu- o v
detection in complex tion for effective reconstruction
electromechanical equip- and anomaly scoring.
ment [108].
Generative group: The Kernel
Kernel PCA for Metal PCA model is trained on normal
etching process fault de- samples, and faulty samples are de- X v
tection [109]. tected using a learned reconstruc-
tion error threshold.
Encoder only transformer Generative group: Randomly
for abnormal detection masking inputs and training the
. X v
in Tennessee Eastman model to reconstruct the masked
Process dataset [110]. portions.
Generative group: Reconstruct
Sparse autoencoders for the 2D time-frequency spectro-
motor fault diagnos- gram through encoding-decoding, x v
tics [111]. using the final encoding layer’s
output for fault diagnosticss.
Generative group: Autoencoders
Aluminum alloy ~struc- (AE) 'reconstruct input, Aptore—
) gressive (AR) models predict the
tures fatigue damage . v v
prognostics [112] next jamestep, both capture se-
quential patterns and dependen-
cies.
Generative group: Generates
1D ResNet-18 for Bear- pseudo-labels for data trans-
ings RUL  predic- formation using semantic and X v
tion [113]. manifold regularization to obtain

unsupervised consistency.

Continued on next page
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Table 2.4 — continued from previous page

Insights Pretext tasks D-i P-f
Variational automatic en- Generative group: The model is
coder for C-MAPSS RUL trained to reconstruct the input un- X v
prediction [114]. labeled data.
G ti :  Enh d
Masked autoencoders for e Ve Broup nhanee
. RUL prediction model initial-
machine tool RUL pre- ization through masked patch %
diction [115]. oug P
reconstruction.
Gated recurrent unit Generative group: Predicts fu-
for RUL prediction ture vibration data patterns by as- o v
in Prognistia bearing sessing correlations between mea-
dataset [116]. surements at different time steps.
Variational-autoencoder =~ Generative group: Utilizing part
for Tool wear predic- or all input data as labels in input X v
tion [117]. reconstruction process.
Two 3-layer 1-D ResNets . .
. Contrastive group: Contrastive
as backbones for different .. . .
. . . . pre-training clusters similar time
time series classification and frequency representations in %
encoders in fault detec- time-freq uency s gce
tion [118]. quency space.
CNN for wind turbine Contrastive group: Shared CNN
blade damage detec- branches distinguish diverse sam- x v
tion [119]. ples via output differences.
GRU for fault detec- .
. . . Contrastive group: It treats aug-
tion in bearings and o
mented samples as positives and
gears [120].  CNNfor randomly selected samples as neg- x v
wind turbines fault di- . Y P &
. atives to learn compact representa-
agnostics and abnormal tions
detection [121] ’
Contrastive group: In dual
branches structure, pair aug-
. mented samples closel ositive
Deep convolutional . P oSy P
pairs). Separate distinct samples
neural network  for . . . -
widely (negative pairs). Utilize x v

bearing incipient fault
detection [122].

InfoNCE loss for similarity and
dissimilarity. Update one branch’s
parameters, while the other update
with momentum.

Continued on next page
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Table 2.4 — continued from previous page

Insights

Pretext tasks

D-i

P-f

Domain adversarial neu-
ral networks for rolling
bearing fault diagnos-
tics [123].

Contrastive group: Iteratively la-
bel target samples with a source
domain classifier and optimize the
network by minimizing classifier
and domain discriminator losses.

Signal momentum con-
trast network for Aero-
Engine bearing fault di-
agnostics [124].

Contrastive group: The query
network extracts input data fea-
tures, while the key network, up-
dated through momentum and In-
foNCE loss, supplies reference fea-
tures for comparison.

Down-sampling and
interaction network in
Paderborn University
(PU) dataset on fault
diagnostics [125].

Contrastive group: Employs clas-
sifier to capture long-term tempo-
ral relations between past and fu-
ture segments

Siamese autoencoder
for bearing fault diag-
nostics in Politecnico di
Torino dataset [126].

Contrastive group: Enhance fea-
ture similarity between raw data
and their geometric transforma-
tions in the encoder branches.

1D ResNet encoder for
cutting tool and bearing
fault diagnostics [127].

Contrastive group: Maximiz-
ing agreement between differently
augmented views of a signal sam-
ple.

ResNet-18 for UoC par-
allel gearbox fault diag-
nostics [128].

Contrastive group: Similar sam-
ples are kept close while different
samples are pushed further apart.

Variant generative adver-
sarial network for fault
diagnostics in rotating
machine [129].

Contrastive group: Maps similar
domains using classifier features,
quantifies differences with MMD,
and promotes latent representation
interpolation.

One-stage = momentum
encoder for cross-domain
bearing fault diagnos-
tics [130].

Contrastive group: Lower loss
for high positive similarity, low
negative similarity.

Continued on next page
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Table 2.4 — continued from previous page
Insights Pretext tasks D-i P-f
Contrastive:Augment wavelet fea-
tures, then employ SimCLR to max-

ResNet for bear-

ing fault diagnos- imize consistency across data ver- %
tics [zhang2021self]. . Y

sions.
C-MAPSS RUL predic- P x v

values and distinguishes dissimilar

ones.

Contrastive group: Adding a cy-

cle loss term to InfoNCE function

amplifies weights for larger cycle X v
differences and diminishes them

for smaller ones.

tion [131].

RUL prediction on
CMAPPS engine dataset,
NASA, and CALCE
battery dataset [132].

k-nearest neighbor for
fatigue life prediction
in composite materi-
als [133].

Contrastive group: Maximize
neighbor entropy, then predict us- x v
ing a convex combination.

Generative-Contrastive group:
Train the GAN to recognize and
generate these waveforms, and
identify the variations created by
the translation of the original data
along the X-axis.

Few-shot fault diag-
nostics  of  hoisting
systems. [134].

Tensor domain-
adversarial network
with deep auto-encoder
for multi-bearing dataset
RUL prediction [135,
136].

Generative-contrastive group:

Pretrain the network to fit
pseudo-failure thresholds for re- Vv v
constructing increasing vibration
sequences monotonically.

According to the Table. 2.4, we found that the “Generative” SSL approach fo-
cuses on “series reconstruction or auto-regression based predictive state valida-
tion.” This method teaches models to recreate data patterns or features, enabling
them to rebuild full sequences from partial data by leveraging natural patterns.
Models also learn to predict future sequence events based on earlier data [112].
The approach employs context-based models such as autoencoders, variational
autoencoders, recurrent neural networks, and transformers. It is predominantly
used for fault detection and failure prediction tasks, with limited application in
fault diagnosticss. However, it faces challenges when dealing with real-world
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data that significantly deviate from the training dataset, especially in the pres-
ence of anomalies [137].

“Contrastive” learning-based approach aims to discern the “uniqueness of
truncated segment series.” This method trains models to identify data variances,
helping acquire meaningful feature representations. It encourages the model
to recognize similarities among related samples while differentiating unrelated
ones. The approach primarily uses contrast loss functions (e.g., infoNCE [138])
and specific processing structures (e.g., Siamese structures [139]). In RUL (Re-
maining Useful Life) prediction, it assumes a direct correlation between the tem-
poral difference of samples and the variance in degraded features. This approach
is more common in fault diagnosticss but less widespread in failure prediction
tasks. However, it faces challenges in constructing suiTable negative samples and
aligning with the ultimate goal of predicting degradation sequence trends [140].

“Generative-contrastive” approach combines elements from the first two groups.
This method ensures the preservation and accurate reconstruction of discrimina-
tive features, maintaining essential distinguishing characteristics. It’s exempli-
fied by techniques like GANs [134]. This approach utilizes a contrastive objective
function to overcome limitations in the generative group. Compared to the con-
trastive group, it has an additional decoder that accurately depicts primary data
traits, such as waveform reconstruction in monitoring data [134]. The recon-
structed samples closely correspond to the degradation features [136], allowing
for more insightful analysis. However, current designs of these architectures do
not adequately address the representation of the degradation, and there is a mis-
match between the upstream-generated contrast task and the downstream RUL
prediction task.

2.3.3 Focus of existing doctoral theses

This section reviews the theoretical research presented in existing PhD disser-
tations on PIML and SSL, to identify potential methodological research gaps. It
is important to note that these methodologies were originally developed out-
side the PHM domain. By examining the challenges encountered across various
fields, this review seeks to contribute novel insights for the application of PIML
and SSL in PHM, thereby avoiding the redundancy of reinventing existing so-
lutions. The key works and contributions of these dissertations are detailed in
Appendix B.3. Additionally, we analyze the major unresolved challenges in PIML
and SSL, which are summarized in Table 2.5 and 2.6.
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2.3. Qualitative literature review

Table 2.5: Unresolved challenges in PIML.

Unresolved challenges  Citation Remarks
PIML methods, especially PINNs,
- tationally intensive, dif-
Scalability, Computa- [141, 142, are computationaty enswg .1
; ] ficult to scale, and prone to training
tional Complexity, and 143, 144, | . .
.. - instability and convergence issues,
Training Stability 145, 146] . . : . .
particularly in high-dimensional
problems or large datasets.
PIML models are sensitive to hy-
Sensitivity to  Hyper- perparameter selection, network
[147, 148, : )
parameters, Network design, and can struggle with han-
. . 149, 145, . . N
Architecture, and Train- 150, 147] dling discontinuities and sharp gra-
ing Dynamics ’ dients, necessitating careful tuning
and design.
Embedding complex physical
(16, 151 O s phenomens. into
Incorporation of complex 142, 152, puysies P .
. . PIML models is challenging, often
physics, boundary Condi- 153, 144, L. ;
. X . requiring problem-specific adapta-
tions, and multi-physics 154, 155, . .. .
tions and specialized architectures,
phenomena 156, 157, otherwise will influence the
158, 159]

generalization, and extrapolation,.

Table 2.6: Unresolved challenges in SSL.

Unresolved challenges

Remarks

Lack of supervisory sig-
nals

Citation
[160, 161,
162]

SSL relies on automatically gener-
ated pseudo-labels or proxy tasks,
which may not always align well
with the downstream task of inter-
est. This can limit the quality of the
learned representations.

Continued on next page
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2.4. Summary

Table 2.6 — continued from previous page
Unresolved challenges  Citation Remarks

The performance of SSL meth-
ods often heavily depends on the
choice of data augmentations used
to generate different “views” of
the input data. Designing effec-
tive augmentations requires do-
main knowledge and can be chal-
lenging for some modalities.

Sensitivity to data aug-

. [163, 164]
mentations

Many SSL techniques are devel-
oped and evaluated primarily on
Scalability to diverse do- [165, 166, image datasets. Extending these
mains 167] methods to other domains like text,
audio, or sensor data may require
non-trivial adaptations.

While empirical results have
shown the effectiveness of SSL, the
[168, 169] theoretical underpinnings of why
and when these methods work
well are still not fully understood.

Limited theoretical under-
standing

2.4 Summary

To the best of our knowledge, the analyses and reviews in this chapter
represented the first comprehensive reports of PIML and SSL in PHM.
Because from both qualitative and quantitative perspectives, it conducted a thor-
ough bibliometric analysis of 162 research papers and 42 dissertations to identify
research trends, summarize key application cases, and highlight methodological
advances in PIML and SSL for various PHM tasks.

In summary, We categorized existing PIML approaches based on how physi-
cal knowledge was incorporated into the machine learning pipeline, identifying
three major paradigms and their realization processes: “physics-informed in-
put spaces,” “physics-embedded algorithm structures,” and “physics-constrained
learning.” We also discussed the different forms of physical knowledge (explicit,
embedded, and tacit) and their respective roles in PIML frameworks, proposing
choices of knowledge and PIML paradigms. Then we presented a taxonomy of
SSL approaches in PHM, focusing on “generative,” “contrastive,” and “generative-
contrastive” hybrid methods. The strengths and limitations of each approach for
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2.4. Summary

various PHM tasks were analyzed.

From the literature review, we found that although PIML and SSL represent
the forefront of hybrid modeling and learning from unlabeled data, their ap-
plication within PHM remains relatively nascent. Consequently, less attention
has been given to prognostics, and cross-scenario applications are still more of
a vision than a reality. In terms of underlying theories, we observed that these
methods remain highly task-specific, though we identified common phenomena
such as the reuse of similar knowledge representations and pre-training strate-
gies across different cases. Current models and frameworks still lack comprehen-
sive summarization and theoretical analysis, leading to insufficient theoretical
support. It is also noteworthy that PIML and SSL were not originally developed
for PHM, resulting in challenges when applying them locally in this domain.
Based on these findings, we articulated the scientific positioning of the rest parts
of our work in Fig. 2.12.

~ Chap 5 - Sec 5.4 Extending the content of SSL.

crack the boundaries of their
respective capabilities. | i
Pioneering - \ Generic PHM model.

Deployment-focused ‘ Chap 5 - Sec 5.3 End to end, cross scenarios model.
challenges

« Combining PIML and SSL to
‘ Breaking the expert experience dependency of PIML.

-~ Chap 5 - Sec 5.2 Extending PIML to active knowledge mining.

« The principles of PHM

. ; Ot F! ~Chap 3 - Sec 3.4 Generic PIML architecture, gainful learning strategies.
/ o adaptive modification. |
Know-hovy, . « The generic modelling < Chap 3 - Sec 3.3 Embedded incomplete physics into ML.

strategy. \

: ; + Mechanism validation ~Chap 4 - Sec 4.3 PHM-related SSL pretraining logic design.

: LT Prove that the PIML and SSL considering downstream PHM information.
What e SSL are better than the ~ Chap 3 - Sec 3.2 Equivalence and differences between different PIMLs.
Lo benchmark in specific PHM ‘
. cases.

SN et The strengths and
T B weaknesses of existing PIML ‘
SOTA concentratioh™=.-:  and SSL. ~ Chap 4 - Sec 4.3 SSL strategies for RUL prediction.

Figure 2.12: Scientific positioning of our thesis.

The scientific positioning of our thesis is categorized into three distinct tiers:
“What,” “Know-How,” and “Pioneering.” Each tier represents a different level
of contribution and disciplinary depth, highlighting the novelty, originality, and
pioneering aspects of our research.

« “What” tier: Establishing the foundation. The first tier, “What,” en-
compassed the foundational studies that established the rationale for em-
ploying PIML and SSL in PHM. Many studies within this tier demonstrated
the superiority of these techniques in specific PHM scenarios, providing a
solid basis for understanding their strengths and weaknesses. Our research
built on this foundation by filling existing application gaps and conduct-
ing a detailed analysis of the equivalences and differences between various
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2.4. Summary

PIML approaches, as discussed in Chapter 3-Section 3.2.1. Additionally, we
explored SSL strategies specifically for bearings” RUL prediction in Chap-
ter 4-Section 4.2, refining the application of SSL in PHM contexts.

“Know-How” tier: Advancing methodological expertise. The sec-
ond tier, “‘Know-How,” delved into the localization and adaptation of PIML
and SSL techniques within the specific context of PHM. This tier repre-
sented the core methodological advancements made in Chapters 3 and 4
of the thesis. We focused on developing a generic PIML architecture and
gainful learning strategies, as detailed in Chapter 3-Section 3.4, while ad-
dressing the challenges of incorporating incomplete physical knowledge
into the models, discussed in Chapter 3-Section 3.2. Furthermore, Chap-
ter 4-Section 4.3 introduced the theoretical logic behind PHM-related pre-
training designs in SSL, emphasizing the importance of considering down-
stream PHM information. These contributions were crucial for advancing
the practical application of PIML and SSL in PHM, providing the necessary
“know-how” for effective implementation in real-world scenarios.

“Pioneering” tier: Expanding frontiers and shaping the future. The
third tier, “Pioneering,” represented the cutting-edge contributions of our
thesis, where theory and practice converged to push the boundaries of
PIML and SSL. In Chapter 5, we extend the concepts of both PIML and
SSL, focusing on breaking the expert experience dependency of PIML and
exploring deployment-focused challenges. Chapter 5-Sections 5.2 and 5.3
highlight our efforts to extend PIML to active knowledge mining and de-
velop an end-to-end, cross-scenario PHM model. These advancements are
particularly groundbreaking, as they propose a comprehensive, lightweight
PHM framework capable of addressing complex “4Cs” scenarios with high
adaptability and efficiency. Finally, in Chapter 5-Section 5.4, we present the
culmination of our research: a generic PHM framework that successfully
integrates the extended content of SSL and PIML. This model exhibits the
ability to handle “Sparse, noisy data and scarce knowledge” across diverse
PHM scenarios, offering a promising solution for future PHM systems.
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framework for PHM
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3.1. Introduction

This chapter is based on the following publications:

J2 WeiKun DENG, Khanh T.P.NGUYEN, Christian GOGU, Jéré6me Morio,
Kamal MEDJAHER (2023). Rotor dynamics informed deep learning for de-
tection, identification, and localization of shaft crack and unbalance de-
fects. Advanced Engineering Informatics.

J4 WeiKun DENG, Hung LE, Khanh T.P.NGUYEN, Christian GOGU, Jéréme
Morio, Kamal MEDJAHER, Dazhong WU (2024). Generic Physics-Informed
Machine Learning Framework for Battery Remaining Useful Life Predic-
tion Using Small Early-Stage Lifecycle Data. Available at SSRN 4770354
(Submitted to Applied Energy, Finished the revision, waiting for the Edi-
tor’decision).

C1 WeiKun DENG, Khanh T.P.NGUYEN, Christian GOGU, Jéréme Morio,
Kamal MEDJAHER (2022). Physics-informed lightweight temporal convo-
lution networks for fault prognostics associated to bearing stiffness degra-
dation. PHM Society European Conference, 7(1): 118-125.

C4 WeiKun DENG, Khanh T.P.NGUYEN, Christian GOGU, Jéréme Morio,
Kamal MEDJAHER (2023). A Few-Shot Learning Framework for Rotor
Unbalance and Shaft Crack Fault Diagnostic Based on Physics-Informed
Neural Network. Structural Health Monitoring 2023.

C5 WeiKun DENG, Khanh T.P.NGUYEN, Christian GOGU, Jéréme Morio,
Kamal MEDJAHER (2024), Hung LE, Dazhong WU. A Novel PIML Archi-
tecture with Innovative Learning Paradigm Applied in Battery Prognostics.
CODIT 2024.

3.1 Introduction

The previous chapter highlighted PINNs within PIML as crucial for enhancing
PHM. However, integrating physics into neural networks for PHM presents sev-
eral challenges:

1. Interpreting the acting mechanism and flexibly applying informed knowl-
edge in machine learning.

2. Using incomplete and empirical knowledge to inform ML models for com-
plex PHM tasks, such as fault identification, localization, and diagnostics
simultaneously with limited data or prognostics in small early-stage life
monitoring data.
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3.1. Introduction

3. Ensuring the gainful benefits of the informed ML model when embedding
physics, maintaining the reliability, robustness, and accuracy of physics
knowledge in ML models to improve performance.

4. Reducing the expert experience reliance on PIML framework customizing

design.

This chapter has 5 sections. They aim to address these aforementioned chal-
lenges through a structured approach, divided into three subsequent sections, as
illustrated in Fig. 3.1.

3.1. Introduction
Motivations:
(1) How to incorporate incomplete physics seamlessly? (2) How to build PIML generically?

Rotor systems compound 3.2. Mimetic theory 34,
faults recognition and Generic PIML framework
localization ;

8 Similar]_ O \—— 34.1. Dual-branch PIML

O ML Physics™
3.3. Constraint pro;ectlon *

= 3.4.2. Pretrained-physics Small early-stage
Physics wuZalws alignment based multistep lifecycle data-based
Few-shot rotor compound % training lithium-ion battery RUL
faults diagnostic Where the PIML direction? prediction

Figure 3.1: Research framework for constructing a generic PIML in PHM.

First, Section 3.2 focuses on the integration of incomplete physics-informed
knowledge within ML frameworks, based on the “Mimetic theory” It first in-
vestigated the mechanisms and effectiveness of three physics integration ap-
proaches—PI input space, PI algorithm structure, and physics constraint learn-
ing—through a comprehensive comparative analysis of their equivalences and
differences in a simulated bearing degradation scenario. The insights gathered
from this analysis then guide us in refining and applying the most promising
integration method to a more complex real-world problem—detecting and local-
izing combined defects in rotor systems.

Next, Section 3.3 details a specialized training methodology tailored for PIML,
aimed at enhancing the performance of machine learning models after the incor-
poration of physical laws. This section introduces the “Constrained projection”
learning strategy, which ensures that the ML model maintains physical consis-
tency while avoiding any potential performance degradation that might arise
from the embedding process. The effectiveness of this strategy is demonstrated
through its application to a few-shot learning task in compound fault diagnostics.

Finally, Section 3.4 presents the development of a “Generic PIML architec-
ture” from an engineering perspective. This architecture is designed to incor-
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3.2. PIML model based on mimetic theory

porate physics, using the “Mimetic theory” as a parallel plug-in to existing ML
models. Additionally, it simplifies the “Constrained projection” approach into
a sequential multi-step optimization process. The versatility and robustness of
this architecture are validated through its application to the RUL prediction of
fast-charging lithium-ion batteries, focusing on early-stage lifecycle data.

3.2 PIML model based on mimetic theory

In the previous chapter, our literature review identified three distinct methods for
integrating physics knowledge into machine learning models: Physics-Informed
(PI) input space, PI algorithm structure, and Physics constraint learning. Each
method provides a different approach to embedding the same physical principles
within the model. Subsection 3.2.1 aims to explore the working mechanisms of
these three approaches using a simulated dataset of bearing degradation. Build-
ing on the insights gained from this analysis, Subsection 3.2.2 will focus on the
most promising knowledge-integration approach, developing a model to tackle
the more complex real-world challenge of detecting and localizing combined de-
fects in rotor systems.

3.2.1 Investigating physics integration approaches: A sim-
ulated bearing degradation case study

This section seeks to address three critical questions: 1) Can the integration of
physics knowledge enhance model performance? 2) If so, how does this improve-
ment manifest? And finally, 3) which of the three methods delivers the best per-
formance? To explore these questions, we conduct a detailed case study using
simulated bearing degradation data, comparing the effectiveness of each PIML
approach in incorporating physics knowledge to optimize model outcomes.

To assess the impact of physics-informed knowledge on machine learning
model performance, we utilize a simulated bearing degradation scenario where
the RUL of the bearing is predicted using a Temporal Convolutional Network
(TCN). This study showcases the versatility of integrating physics knowledge at
three different stages of the machine learning pipeline, resulting in the develop-
ment of three distinct models: the PI input space model, the physics-embedded
layer model, and the PI loss model. The numerical simulation of the vibration
signals generated during the bearing degradation process, which forms the basis
of our analysis, is comprehensively detailed in Appendix C.1.

The proposed TCN is depicted in Fig. 3.2, is introduced as a lightweight and
purely data-driven benchmark model. The TCN is designed to predict the nor-
malized RUL of bearings using time-domain statistical features, including mean,
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3.2. PIML model based on mimetic theory

variance, maximum, minimum-maximum, root mean square, skewness, kurto-
sis, peak factor, waveform factor, impulse factor, and margin values. The model
comprises 3,411 parameters, and its architecture incorporates a residual block
(resblock) structure that utilizes a causal, separable 1D convolution layer acti-
vated by H-swish [170].

I—.

[ Input Layer (30,11) ] [ v ]

Normalization

Convld (30,11)

(1) Leaky_RelLu |

Dropout (0.4) . [ Separable_Convld ]

Resblockl ] [ Normalization ]
I i :

Resblock2 ] [ Dropout (0.4) ]

!

[ Globalaveragepoolingld (16) | |

@ Shortcut +
H-swish :
@ H-swish i
Out L
'

Figure 3.2: Lightweight TCN architecture diagram.

Separable_Convid ]

The relationship between stiffness and vibration amplitude shown in Eq.(3.1)
[171] are used as the physics knowledge in building the three PIML models,
where V'ib,, is the peak value of the vibration signal and stiff represents the cor-
responding equivalent contact stiffness level. ¢ denotes the relevant imbalance
in the system load. It is the extrinsic excitation of the bearing vibration. m rep-
resents the equivalent system mass. 2 is the rotation speed. In real conditions,
the exact values of ¢ and m are unknown. Only the parameters 2 and V'ib, are
available in vibration-based RUL prediction.

0?2

Vlbp = stif f 0?2

(3.1)

3.2.1.1 Different PIML models embedding the same physics knowledge

Factor Q% /V'ib,, designed as a physics-informed feature to predict bearing RUL,
reflects stiffness degradation trends, making it a valuable addition to the original
set of 11 time-domain statistical features. This feature replaces the Max feature,
maintaining the dimensionality of the dataset at 60 x 11, consistent with the
benchmark model. Although ©2?/V'ib, does not directly measure stiffness, its
inclusion introduces a physically meaningful quantity into the model, enhanc-
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3.2. PIML model based on mimetic theory

ing predictive capability. The updated model configuration, incorporating this
physics-informed health indicator (PHI), is illustrated in Fig. 3.3.

\' Physics equation \

- - — - . e0?
[ Time domain statistics calculation ] Vib, = Suif 2

m

|

mean,var, minmax, RMSE, skew, kurtosis, peak 02 :
factor, waveform factor, impulse factor and Vib :
iby, |

|

|

)

margin factor

Augmented Input space

[ Benchmark Model J

Figure 3.3: Updated model configuration with physics-informed health indica-
tor.

Eq. (3.1) can be also integrated into ML framework as an input-output mod-
ule, compensating for model incompleteness, as depicted in Fig. 3.4. In this
framework, the unknown function ¢(-) is approximated by a custom neural net-
work layer function /(-), enabling the extraction of the PHI Q?/V'ib, via a trans-
formation layer. This transformation processes the physics-based input, allow-
ing the subsequent custom hidden layer to approximate stiffness degradation
functions. The unknown parameters €, m, and Ug;; are treated as trainable
variables, updated during training to optimize model predictions.

Input Layer(30,11)

[ Lambda - tensor slice ]

— = — 7 stiff = h(e x mQ2/vib, +m x Q) |
@) Form) (i ) Qe et

‘
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=
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.
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@ H-swish
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Figure 3.4: Embedding physics equations into a neural network layer.

In addition, Eq.(3.1) can also be used to constraint a constraint module, en-
suring consistency by evaluating discrepancies between the physics-informed
and original NN outputs. An output layer following the physics-informed layer
generates a hidden indicator, influencing hyper-parameter optimization through
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3.2. PIML model based on mimetic theory

conflict loss, as shown in Fig. 3.5. This shared optimization process promotes
physics consistency within the TCN.
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Figure 3.5: Constructing Physics-Informed Loss based on model conflicts.

3.2.1.2 Investigation of the PI-TCN models’ performance.

During training, a 1000-epoch regime with early stopping (patience of 80 epochs)
is used. Parameters are uniformly initialized, with a batch size of 128 and an
input shape of 30 x 11. The Adam optimizer [172] is consistently applied across
all models.

Fig.3.6 presents predictions from various models on 10 randomly selected
test set trajectories, while Fig. 3.7 displays box plots illustrating differences be-
tween predicted and true RUL for the entire test set. These results highlight
PI-TCN models’ performance compared to the benchmark data-driven model,
indicating diverse possibilities for incorporating physics knowledge and poten-
tial benchmark improvements. Notably, the PI loss model demonstrates superior
performance, with an error range of [17.97, 15.65], outperforming benchmark,
physics-embedded layer, and PI loss model errors [-95.51, 79.83], [-26.85, 36.66],
and [-33.38, 26.11] respectively.

Comparing the performance of the proposed PI-TCN models with the TCN
model on the overall test sets, we find that:

1. All the PI-TCN model’s predictions are more accurate with smaller predic-
tion error limits than the Benchmark model.
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Figure 3.6: Prediction results of different models.

2. Among the three different PI-TCN models, PILLM (represented by the green
line) has the best prediction stability with the most compact upper and lower
error limits and the minimum error means, as presented in Fig.3.7, showing
the effectiveness in informing physics by the custom structure design.

A deep discussion on the PIML model performance, particularly the impact
of embedded physics knowledge on bearing RUL predictions is detailed in Ap-
pendix C.2. We use channel-by-channel testing on layers with embedded physi-
cal knowledge, assessing their influence on final test loss across various weight
compression ratios. Additionally, we analyze the output of hidden layers corre-
sponding to each channel, generating information output heatmaps to visualize
the distribution of channel information and the degree of correlation between
channels. The analysis reveals that the location and manner of embedding phys-
ical knowledge significantly affect its efficacy. Generally, embedding closer to
the input layer proves more effective but risks dilution by subsequent network
layers. The study identifies a trade-off between highlighting physical features
and obtaining robust integrated representations. Notably, in the PIFM, chan-
nels containing 2?/Vib, show predominant focus, indicating that changes in
the weighting of this information have the greatest impact on loss changes.

Additionally, we conduct a thorough analysis of the loss landscape to evaluate
the optimization behavior of the PI models. To achieve this, we use the weights
and biases from the trained models as reference points and generate a grid of
equally spaced points that represent scaling factors (ranging from 0 to 1) applied
to these weights and biases. The loss function is then evaluated at each point on
the grid, allowing us to create a detailed map of the loss landscape, as shown in
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Figure 3.7: Model evaluation results.

Fig. 3.8. In this figure, the horizontal axis represents the scaling factor for the
original weights of the layer, while the vertical axis represents the scaling factor
for the original biases. The red arrow curve highlights the path of minimum loss.
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Figure 3.8: Loss landscapes of three PIML models.

From Fig. 3.8, we can observe that:

(1) Both standard and PI models exhibit a distinct, narrow “canyon” of mini-
mum loss, indicating a high sensitivity to small perturbations in weights

and biases.
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(2) The PI model demonstrates gentler gradients around the minimum loss
path and a broader “basin” near the optimum, suggesting enhanced fault
tolerance and a reduced risk of overfitting.

(3) The loss range for the PI model (13,500 to 121,500) is 2.25 times that of the
benchmark model, indicating a wider exploration space.

(4) The minimum loss value decreases from 0.96 in the benchmark model to
0.20 in the PI model, demonstrating superior optimization.

(5) Inthe middle hidden layer, the PI model presents a narrower, more pointed
“canyon” running vertically, suggesting a more constrained optimal weight
range.

(6) In the output layer, the PI model exhibits a wider, parabola-like minimum
loss path, indicating greater robustness to weight perturbations.

These findings underscore the substantial impact of incorporating domain-
specific physical knowledge into ML architectures, leading to models with en-
hanced robustness, accuracy, and generalization capabilities. In summary, we
proposed using “PI-algorithm structure” to gradually integrate physics. It is re-
alized by the segmentation of comprehensive knowledge into sub-items, which are
then strategically embedded across various NN hidden layers. This approach es-
tablishes a data flow consistent with physics principles and enables a gradual
integration of physics knowledge, thereby managing its impact on the loss land-
scape more effectively.

3.2.2 New PIML model based on mimetic theory: Rotor fi-
nite element mimetic neural network

Building on the findings from the previous section, where the “Pl-algorithm
structure” was identified as a promising approach for gradually integrating physics
into machine learning models, this subsection introduces a new PIML model
based on mimetic theory. We begin by presenting the fundamentals of mimetic
theory in Subsection 3.2.2.1 which provides a framework for embedding incom-
plete physical knowledge into neural networks. Following this, we apply this
theory to develop the Rotor Finite Element Mimetic Neural Network (RFEMNN)
model in Subsection 3.2.2.2, specifically designed to tackle the challenges of di-
agnosing compound faults in rotor systems, see Subsection 3.2.2.3.
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3.2. PIML model based on mimetic theory

3.2.2.1 Mimetic theory

Mimetic theory in the context of neural networks, see Fig. 3.9, involves the de-
composition of physics formulas into the NN fundamental operators and associ-
ated learnable parameters. Each operator is mimicked by a corresponding neural
network component, such as weights, biases, and tensor operators, which are
designed to replicate the behavior of these physical operators. The relationships
between these operators are then mimicked through the architecture of the neu-
ral network, including the design of layer connections and activation functions.
This approach allows the neural network to embody the underlying physical
laws, resulting in a physics-informed model that can more accurately predict
outcomes by incorporating domain-specific knowledge.
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Figure 3.9: Illustration of mimetic theory in the context of neural networks.

We call the NN’s computational units operators, which define the data flow
through layers such as convolutions and activation functions. The targets of the
mimetic theory are shown in Fig. 3.10. At the “Mimic operator” level, the physical
formula is broken down into its constituent mathematical operators, and then in-
dividual neurons or a layer of neurons are designed to replicate these operators.
Each neuron can be viewed as an operator with a tensor calculator capable of
executing various mathematical transformations. The corresponding variable-
dependent coefficients of this physical operators physics formula are then de-
noted as the learnable weights W in the layer, and the variable-independent co-
efficients to be determined are denoted as the bias b in the layer.

The “Mimic operator relation” integrates the results from the “Mimic oper-
ator”, aiming to simulate how these operators interact with each other in the
context of the overall physical formula. This involves designing the connections
between layers (interlayer relationships) to reflect the composite structure of the
physical formula f. For instance, if the formula involves the product of two
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Figure 3.10: Mimetic theory for deriving logical and operator content alignment.

operations, the network would have a structure where the outputs of neurons
representing these operations are multiplied.

3.2.2.2 Rotor finite element mimetic neural network

Building on the foundation of mimetic theory introduced in the previous subsec-
tion, this section presents the RFEMNN, a model specifically designed to mimic
rotor dynamics for diagnosing compound faults in rotor systems. The RFEMNN
model is structured to replicate the diagnostic logic inherent in rotor dynamics
through its data flow, allowing it to effectively capture the complex interactions
and behaviors governed by physical equations. In this context, RFEMNN serves
as an empirical validation of mimetic theory, enabling us to explore its practical
application and identify any challenges that arise in modeling real-world rotor
faults. The rotor dynamics, central to this model, are governed by the fundamen-
tal equations outlined in Eq. (3.2):

M G +Sq+Dq=F(q,t) (3.2)
known

Where ¢ is the vibration displacement, ¢ and ¢ are the velocity and the ac-
celeration of the rotor. Among those parameters, only the ¢ is monitored in this
work by vibration signals collected using accelerometers. M, S, D, and F(-) are
the mass, stiffness, damping, and excitation force of the rotor. It is important to
note that the variables M, S, and D are matrices whose elements are contingent
upon environmental and degradation factors, with only partially known mathe-
matical expressions. In practical applications, the precise expressions and values of

F(x,t) are difficult to ascertain due to incomplete knowledge of the excitation.
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Figure 3.11: FEM-based rotor fault diagnostic.

Fault responses and locations are captured by the variation of M, S, D in the
finite element matrix as shown in Fig. 3.11. In the rotor dynamcis-based diag-
nostic process, fault identification is done based on the matrix type of abnormal
changes in the matrix elements and the position of these elements in the matrix,
combined with response analysis [173]. We simulate this process through neural
networks.

Overview of the proposed RFEMNN model. We developed the RFEMNN using
the CNN-LSTM hybrid architecture, which, to the best of our knowledge, is the
first diagnostic model capable of performing both classification and regression
tasks simultaneously.

RFEMNN model synthesizes known physical relationships among the vari-
ables M, S, D, F, and ¢q by designing specific NN layers and connections as rep-
resented in Fig. 3.12, it comprises two main modules: the first simulates the struc-
ture of rotor finite element method (FEM) enclosed by a green dashed line, while
the second emulates a rotor FEM solver for fault diagnostics, indicated by a red
dashed line.

RFEMNN generates three outputs: fault positions, fault types, and vibration
features. The finite element division ratio of the shaft elements is determined us-
ing “CNN layers 1” based on the input raw signals. The “Out 3” output, indicative
of rotor vibration features, is characterized by a codec-like structure, comparing
predicted features with actual features extracted from raw vibration signals to
constrain the model that has the physics consistency with the real dynamic sys-
tem behaviour.

Fault positions (“Out 2”) are predicted through regression analysis of vari-
ations in structural parameters across different shaft nodes, a process encapsu-
lated in the “Structure changes” layer. This embedded physics knowledge within
the hidden layers facilitates accurate localization of faults.
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Figure 3.12: Schematic diagram of the proposed RFEMNN model.

Finally, fault types (“Out 17) are output from “CNN layers 4,” which utilizes
both the “Structure changes” and the temporal vibration features from “Out 3.
The “Structure changes” incorporate alterations in the matrices M, K, and D,
which simulate the diagnostics based on the physics properties changes.

Customizing layers to mimic the Finite Element Model. The RFEMNN frame-
work inputs raw vibration signals and employs a specialized NN architecture to
simulate the FEM generation and assembly processes. At its core, a CNN layer
processes these signals to simulate the estimation of the shaft elements’ propor-
tional lengths. The total shaft length determines the specific lengths of elements,
denoted as neuron output values Len; for i = 1,2,3,...,n, which are subse-
quently utilized to compute the equivalent elementary mass m;, stiffness s;, and
damping d; in Eq. (3.2.2.2).

The properties of each finite element, such as node position, cross-sectional
area, moment of inertia /, Young’s modulus F, and mass, are encapsulated in a
vector and serve as inputs to the “PIML layer” This layer adheres to the finite
element assembly rules, ensuring that the displacement at one shaft element’s
right endpoint aligns with that of the next element’s left, as shown in Fig. 3.14.
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Figure 3.14: Building customized layers according to FEM assembly rules.

RFEMNN further incorporates disc mass, bearing stiffness, and damping into
its neural network layer. Distributing these attributes based on the shaft ge-
ometry and bearing node positions though estimating these parameters remains
challenging, as suggested by Table. C.3 in Appendix C.4. The assembly of the
stiffness, mass, and damping layers results in a banded asymmetric matrix span-
ning dimensions.
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Mimic FEM-based diagnostics by customizing layer connections. RFEMNN
simulates both the healthy and faulty states of the rotor, facilitating advanced
diagnostics by comparing the information difference in the “General mimic FE
model” against the “Raw mimic FE model”
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Figure 3.15: Vibration behaviour-based physics consistency supervises the
mimetic process.

As depicted in Fig. 3.16, a physics function is inserted into the input data
between the stacked residual block layer and the LSTM layer. A two-layer LSTM
and Dense layers then process the equivalent displacement, and the output is
considered a time-domain feature of the acceleration sequence. The model is
optimized through supervised training using the labels “out3”
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Figure 3.16: Structure of CNN-LSTM layer to mimic the FEM solution process.

The modules in the blue rectangular portion of Fig. 3.12 are information
encoders capturing anomalous mimicry of structural degradation information,
which is supervised by comparing the decoded information in the green rectan-
gular portion in Fig. 3.12 with the two types of rotor behaviours in Fig. 3.15.

3.2.2.3 Validation of the proposed RFEMNN

To assess the performance of the proposed RFEMNN model, we conduct the un-
balanced and shaft crack experiments on platform PT 500, forming a mixed data
set with different operating conditions and rotor structures. The experimental
details are shown in Appendix C.3. Data conditions were established in which
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health-failure state data were unevenly distributed, exhibiting a bias towards the
failure category.

We evaluated the RFEMNN model and different benchmark models’ effective-
ness by hierarchical 10-fold cross-validation. The metrics used in evaluating its
performance are defined in Appendix C.6. The results of fault type identification
are presented in Table 3.1 while the ones of the fault localization are shown in
Fig. 3.17. A detailed comparative analysis of the RFEMNN’s performance against
benchmark models, focusing on fault identification and location accuracy, is pre-
sented in Appendix C.7.
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Figure 3.17: Average results of fault localization with 10 fold-cross validation
on diagnostics fault location.

Table 3.1: Comparison of the proposed RFEMNN model with the SOTA models.

Leny: Average positioning accuracy for unbalanced defects, Lenc: Average
positioning accuracy for shaft cracks, p: Average positioning accuracy for all
faults, A: Accuracy, Fa: False alarm, M: Missing rate, NO_RFEM_NN:
Replacing the physics informed layers by normal CNN layer to keep the control
variables on the embedded physics.

Model Input | A Fa M Leny | Leng | P Total A
CNN Wavelet| 75.21% | 60.44% | 0.73% | - - - -

CNN Raw 40.59% | 0.6% 18.81% | - - - -
DRSN Wavelet| 91.48% | 2.09% | 1.11% | - - - -
DRSN Raw 83.07% | 35.81% | 2.86% | - - - -
Semi-DCNN Raw 50.80%| 57.56%| 9.24% | - - - -
STFNN Wavelet| 59.35% | 58.62% | 2.88% | - - - -
ANN Wavelet| - - - 24.25% | 25.90% | 75.63% | -
LSTM Raw - - - 19.84% | 23.66% | 78.05% | -

ELM Raw - - - 23.87% | 24.85% | 75.64% | -
NO_RFEM_NN | Raw 46.45% | 3.74% | 22.90 | 9.89% | 17.05%| 86.53% | 40.19%
RFEMNN Raw 97.79% 9.20% | 1.56% | 1.95% | 4.37% | 96.84%| 94.70%

In Figure 3.17, the horizontal axis represents the number of test samples, each
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randomly selected from varied experimental fault data. The vertical axis indi-
cates the fault’s relative position along the rotor’s axis. The qualitative results
shown in the figure indicate that the RFEMNN can effectively capture the on-axis
location where the fault occurs in most of the test samples with a small bias.
According to Table 3.1, the RFEMNN model outperforms other diagnostic
models with an accuracy of 97.79%, despite higher false (F'a) and missing alarm
(Mis) rates compared to the deep residual shrinkage networks (DRSNs) model
using wavelet spectrum inputs. Crucially, RFEMNN does not require additional
feature engineering processes such as wavelet transformation, which simplifies
its implementation. Furthermore, RFEMNN yields superior results over DRSNS
when both use raw data inputs. However, models like NO_RFEM_NN and CNN,
despite having low false alarm rates, suffer from poor accuracy and high miss-
ing alarm rates, as demonstrated by the confusion matrices in Appendix C.6,
where these models predominantly misclassify unbalanced faults as non-faulty.
DRSN models exhibit better performance under identical input conditions, un-
derscoring the impact of network architecture on diagnostic efficacy. In defect
localization, RFEMNN outshines all other models, achieving a top diagnostics
performance metric (7') of 94.7%. The removal of physics-embedded layers in
NO_RFEM_NN results in a drastic reduction in diagnostics performance to only
42.43% of its original value, highlighting the critical roles of embedded physics.
Further results and an in-depth discussion are provided in Appendix C.7.

3.3 Constraint projection for PIML in few-shot
faults diagnostics

Building on the successes of the RFEMNN model in enhancing fault diagnos-
tics and localization, the previous section demonstrated its robust performance
despite the incomplete implementation of rotor dynamics physics. To further
evaluate the generalizability of RFEMNN, especially in scenarios with limited
data, we extend our analysis to a “Few-shot” learning framework. This section
focuses on optimizing PIML using a constraint projection theory, presented in
Subsection 3.3.1, specifically designed to improve the RFEMNN model’s perfor-
mance under sparse data conditions, see Subsection 3.3.2. Finally, we assess the
few-shot adaptability and effectiveness of RFEMNN in Subsection 3.3.3.

3.3.1 Constraint projection theory

The general formulation of the convex optimization problem for the PIML
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loss function is presented in Eq. (3.4).
min = L(DPg(X), V) + L(Po(X), Ppry) + L(||BPe(X) — b]],0) (3.4)

where £(+) is the non-convex learning objective function, B is the constraint
matrices with the constraint vectors b. ®,, is the PIML model which has the
physic consistent characteristics such as positive definiteness or sparsity of a
certain parameter distribution shape. Pursuing multiple goals simultaneously is
unwise because, at a fixed point in the solution space, different goals do not go in
the same direction, as shown in Fig. 3.18.

We propose to transfer Eq. (3.4) into an approximate convex optimization
problem which requires constructing the feasible Karush-Kuhn-Tucker condi-
tions so that any locally optimal solution is close to globally optimal (see Eq. (3.5)).

min  ||®(X) - V|[?
s.t. (3.5)
B(bphy(X) S b, (I)g(.)() ~ q)phy

There exist two approaches to solving Eq. (3.5), as illustrated in Fig. 3.18, to
avoid falling into sub-optimal local minima since not all constraints align con-
sistently with the ideal task performance of PHM. Our thesis proposed that the
gradual integration strategy adopted for the “PI algorithm structure” can be also
employed during the process of constraint satisfaction.

Therefore, we narrow the search space by dividing the problem into multiple
manageable stages, as the sequential optimization approach shown in Fig. 3.18.
This strategy decomposes the overarching problem into multiple, manageable
stages, progressively focusing on achieving the primary objective, ®y(X) ~ ).
This is what we called “Constraint projection” theory, which involves adjust-
ing a solution to meet a specific constraint by mapping it onto the nearest point
that complies with the constraint’s stipulations.

| Data-driven optimization Data-driven optimization

Physics-consistency
constraint

Y Y
Traditional PIML training ideas Learning concepts based on constrained projections

Figure 3.18: Learning strategies with different solution ideas.
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3.3.2 Enhancing RFEMNN’s performance in few-shot learn-
ing with “Constraint projection” theory

In this section, we realize the “Constraint Projection” method using a deep de-
terministic policy gradient (DDPG) based reinforcement learning (RL) approach.
As illustrated in Fig. 3.19, the RL-driven constrain theory approach leverages the
RFEMNN model restricted to the path leading to the specific output, “Outputs”
To ensure that the model maintains its diagnostic, localization, and temporal
feature reconstruction capabilities while preserving physical consistency, a pre-
trained and frozen RFEMNN, also limited to the “Outputs” path, is used as a
benchmark for data reconstruction during the calculation of policy rewards (Rpqicy)-

System equivalence vt —> Data Collection &
— A . R bration data s(t
matrix in simulation | R Vibration data s(t) S Ir'voQ(s, p RF(s)) Incentive Calculation

—> Critic NN Updates
Frozen RFEMNN: F-RF; RFEMNN: RF, Critic NN: C-RF —> Policy NN Updates
Generic mimic Generic mimic
FE model FE model Stacked Dense
parameter parameters ()
The output of the Raw data Consist ith th Q :;J" y * max(Q(s, 0, (RFy(s), F-RF(5))))
FEM-like equivalent || reconstruction results c_)n_ms ency wit €
structure hidden layer comparison [— original datafd_r!ven j
model capabilities
L———>A =S+ oM+a;D Reolicy = 0:SSIM - BKL[Pgey(Sy) - Prea(S]
| Normalized grayscale map |
24, 1) (2 g
5510 (o) = st + )20y + 1)
(13 + 15 + 1) (0F + 05 + c2)
’ * 1 and p,: Average element intensities of two matrices.
e 0,2 and oyzz Variances of element intensities in the matrices.

\t/_/ * 0y, Covariance between element intensities of the two matricey

. | ]
tructural larity (SSIM - - .
|S ructural Similarity ( ) | Evaluate physics consistency capability

Figure 3.19: Workflow for enhancing RFEMNN performance using constraint
projection driven by reinforcement learning.

This setup is designed to maintain the fidelity of the originally trained RFEMNN
while avoiding computationally expensive procedures. The reward function,
Ryolicy, is derived from evaluating the Structural Similarity Index (SSIM) and
Kullback-Leibler (KL) divergence between the RFEMNN’s outputs and the bench-
mark, assessing both the consistency of the reconstructed data and the adherence
to physical principles.

In addition, a Critic Neural Network (NN) is employed to estimate the Q-
value for a given state-action pair. This Critic NN is composed of three dense
layers, each with 64 neurons, where the first two layers utilize the ReLU activa-
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tion function, and the final layer outputs a single Q-value without any activation
function. The current state in this RL framework is the raw vibration data s(¢),
and the action is the output of the RFEMNN (R F}), which includes both the FEM-
like equivalent hidden layer output and the raw data reconstruction results.

The optimization process for the RFEMNN follows a continuous three steps
loop:

1. Data collection and incentive calculation. The RFEMNN (RF7) pro-
cesses the raw vibration data s(t), generating outputs that are then com-
pared with those from the frozen RFEMNN and the system equivalence
matrix obtained from the simulation. The reward policy Rjicy is com-
puted using SSIM and KL divergence, focusing on maintaining the original
RFEMNN'’s diagnostic accuracy and physical consistency.

2. Critic NN updates. The Critic NN estimates the Q-value by analyzing the
current state and the RFEMNN’s output, learning to predict the long-term
cumulative rewards ().

3. Policy RFEMNN updates. Finally, the RFEMNN’s parameters are ad-
justed using the policy gradient method, following the update equation
for 6%, to maximize the expected Q-value. This process iteratively refines
the model parameters to align with 6%, enhancing the model’s performance
and consistency.

3.3.3 Application of constrain theory: Few-shot learning for
rotor fault diagnostics

We implement the aforementioned approach to enhance few-shot learning
in the RFEMNN model, as shown in Fig. 3.20. The traditional two-step few-
shot learning approach [174] is extended into a novel three-phase framework
that integrates unsupervised learning, physically-informed reinforcement learn-
ing (RL), and supervised fine-tuning.

In the initial pretraining phase, unsupervised learning is applied to a large
dataset consisting of both unlabeled real vibration data and simulated data. This
allows the RFEMNN to acquire general feature representations, where the “Generic
mimic FE model” with only the “Output 3” path as the encoder, as illustrated in
Fig. 3.20, learning the encoding features through raw signal reconstruction.

The second phase introduces an innovative “Constraint projection,” wherein
deep DDPG is employed on the RFEMNN, as depicted in Fig. 3.19. This step fine-
tunes the model to ensure physics consistency by comparing the RFEMNN out-
put with our simulation data trained diagnostic model (the frozen RFEMNN) and
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the system equivalence matrix derived from simulation, utilizing our policy re-
ward function as explained in Section 3.3.2. Thus, by practicing our “Constrained
projection” theory, we ensure that the selected points on the diagnostic perfor-
mance loss surface are as close as possible to physically consistent parameter
values. This approach systematically aligns the parameter space with the physi-
cal constraints while maintaining the diagnostic performance within acceptable
bounds.

<—> Loss D Trainable module D Freeze module
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real data
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(2) Constraint projection

Time series
reconstruction
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learning labeled data model abels

Figure 3.20: Applying RL-driven constraint theory in RFEMNN model’s few-
shot learning.

The final phase involves supervised learning on a small set of labelled real
fault data with the frozen feature encoder- the “Generic mimic FE model” part
in RFEMNN, effectively leveraging the rich, physics-consistent representation
mappings developed in the preceding steps. We argue that the method effec-
tively addresses the few-shot learning challenge by employing a soft constraint,
which mitigates the rigidity associated with the direct embedding of physical
knowledge. This approach utilizes a heuristic that prioritizes diagnostic perfor-
mance by separating primary and secondary contradictions. Initially, the model
focuses on maintaining diagnostic accuracy, and then it gradually aligns with
physical consistency, freezing this structure to preserve consistency. This pro-
cess ensures that the model retains insights from unlimited simulated samples
without re-learning aspects that cannot be derived from such limited data.

3.3.3.1 Physics consistency validation results

To assess the RFEMNN'’s physics consistency, we closely monitor the hidden
layer weights and reward loss changes during the learning process of the “Generic
mimic FE model” part, whose inside weights and connections change during the
pre-training and intermediate task phases. The corresponding results are pre-
sented in Fig. 3.21.
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Figure 3.21: Vibration reconstruction (left) and physics consistency (right) in-
vestigation after RL fine-tuning.

Regarding Fig. 3.21, “Reward” and “SSIM” curves illustrate a dynamic bal-
ance between satisfying physics-based knowledge and achieving data-driven sig-
nal reconstruction accuracy. The discrepancy between these curves represents
the KL divergence of the reconstructed time series results, comparing the Policy
RFEMNN model RF} with the frozen model /'R F}, effectively denoting the mean
squared error (MSE) in time series reconstruction. By the end of the fine-tuning
process, the MSE reduces to 0.04, confirming the high similarity between the
real and reconstructed vibration signals. Initially, the hidden layer outputs ex-
hibited distinct channel characteristics with significant differences, which were
misaligned with the physics matrix’s band symmetry and diagonal distribution.
However, after the RL process, the PIML output closely aligns with the ideal, as
evidenced by the SSIM of 0.984 and a reward of 0.941. This improved alignment
is shown in the square matrix colour map on the right side of Fig. 3.21.

In particular, we observe that the gap difference between “Reward” and “SSIM”
is non-linear, increasing initially and then decreasing. This pattern reflects a
corresponding rise and fall in KL scatter. This suggests that the incorporation
of physics impacts the ability of the initially learned data-driven model to cap-
ture insights relevant to the PHM task. The subsequent decrease shows that
without simultaneously optimizing for multiple objectives, including physical
consistency, conflicting optimization directions are reduced, leading to a more
optimal position on the loss plane.

3.3.3.2 Rotor few-shot diagnostic results

The few-shot learning capability of the proposed method is validated under zero-
shot, one-shot, and few-shot settings, where zero-shot uses only simulated faults,

72



3.4. A generic PIML framework

one-shot includes a set of real faults and simulated data, and few-shot employs
one of 10 folds of original experimental data.

Table 3.2: Diagnostic results across various limited-labelled-data scenarios.

Z: Zero-shot, O: one-shot, F: Few-shot, H: Healthy, U: Unbalance, C: Crack,
U&C: Unbalance and Crack, LA: Location accuracy. We mark the correct results
in orange.

Diagnostics results

H U C U&C LA(%)
z|lo| F |z | o| F|z|O|F| zZ | O] F Z | O| F
H |o 1102 | 1134 | 560 |0 | 1 | 0 | 713 | 0 0 E
Real U 0 | 245 8 0 1 63 | 1259 36 0 65.79 | 92.0 | 99.2
Result [ C |o| 2 | o | 155 | 61 [ 0 |0 256 | 86 | 0 |51.79 | 8438 | 97.1
U&C| 0| 0 | 0 | 36 |18 [ 0 |of[ 2 | 0 -

The results in Table. 3.2 reveal that zero-shot learning achieves a diagnostic
accuracy of 44.87%, classifying 2866 real samples correctly, but tends to misclas-
sify due to simulation configuration biases, often labelling faults as unbalanced
or combined. One-shot learning, enhanced by adding a single real fault data,
improves diagnostic performance, notably in crack fault identification. Few-shot
learning proves most effective, reaching an accuracy of 90.7% and improving fault
types identification, although misclassifications and false alarms for unbalanced
and healthy samples persist. Enhanced data slice length and careful selection
of simulated samples are suggested to boost diagnostic accuracy and reliability.
Despite limitations in zero-shot and one-shot scenarios, the model maintains par-
tial diagnostic capability for fault location, benefiting from the pretraining on the
simulated data.

3.4 A generic PIML framework

This section proposes a generic PIML architectural framework from an engineer-
ing perspective, aiming to integrate the core principles of “Physics” and “ML”
into a practical scheme. By reviewing the advantages and disadvantages of “Con-
strained projection” and “Mimetic theory” based on previous cases, we identify
key characteristics for an effective PIML approach: (1) gradual embedding of
constraints within both the ML structure and the training methodology
with independence in structure and training, and (2) avoiding conflicts
between ML and embedded physics by solving the problem sequentially.
With these principles, we refine and simplify the essence of both theories.
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3.4. A generic PIML framework

Therefore, for “Mimetic theory,” we adopt the parallel architectural approach
proposed in Section 3.4.1, viewing the PIlayers as the extension of the model’s
original data flow. To streamline the complex optimization associated with
“Constrained projections,” we propose the simplified, branch-independent and
three-step training strategy outlined in Section 3.4.2. Since the PI branch and
the original data-driven part of the PIML model are designed as parallel archi-
tectures, different parts of the model can satisfy distinct optimization ob-
jectives in different steps. This design retains the core concept of calibrating
physical consistency based on the ML model’s performance, thereby establish-
ing the lower performance bound of the PIML model. Finally, we validate
the proposed “Generic PIML framework” on battery remaining discharging cy-
cles prediction, using small early life-stage charging-discharging cycle data in
Section 3.4.3.

3.4.1 A two-branch parallel PIML framework

The proposed PIML model employs a dual-branch, end-to-end framework, as il-
lustrated in Fig. 3.22. This hybrid model consists of a PI branch and a data-driven
branch. The data-driven branch can function independently or in conjunction
with the PI branch. PI branch augments the data-driven model by contributing
features p to its latent space and outputs features p,,; for final decisions. The PI
branch cannot independently generate reliable predictions.

Data-driven branch

Input
Ry Feature  Decision ----------ooooooooooooos
00 06— extractor modlule
Different physical 00— _:| i [ | ' : - v v "”-'—>(' Dutput
measurements , 00 -0 J [ X1 Sy, p-]—> :
i o0 o Dimension i ! ' = E
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data driven layer in PI branch.
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Figure 3.22: Embedding physical knowledge into neural network models using
parallel architectures.

74



3.4. A generic PIML framework

The data-driven and PI branches share inputs but process them through dis-
tinct mechanisms. The data-driven branch integrates all measured samples within
a batch of dimensions [batchsize, m,len,n| through an encoding module de-
signed to extract latent trends. Conversely, the PI branch processes finite physics-
based measurements through individual formulas f;(-) and specific inter-layer
connections as depicted in Fig. 3.22. These connections, tailored based on the re-
lationships between various equations and parameters, culminate in combined
feature tensors. PI branch is constructed based on the “Mimetic theory”, and the
decomposition of the formulae is carried out by placing the PI layer in the data
processing, depending on whether the operator is more biased towards process-
ing the input raw data or outputting decision-relevant features.

The data-driven branch’s end-to-end (E2E) deep learning paradigm directly
processes raw data to get PHM results without requiring manual signal process-
ing or expert domain intervention. The final feature representation is processed
through a dense layer with d; neurons to get the feature 5.

In the output part, the final “Full connectivity neural network (FCNN)” con-
siders the PI branch’s output p,,; in the decision-making process and the data
insights from feature p. FCNN is tailored for the many-to-one process to gen-
erate the output of the remaining discharging cycles. The overall framework is
modeled and explained in detail in Appendix. C.8.

3.4.2 Pretrained-physics alignment multistep training

We present a branch-independent learning paradigm tailored for the pro-
posed dual-branch model, comprising three phases as illustrated in Fig. 3.23. This
three-step approach underscores the necessity of starting with a pre-trained ML
model, ensuring the PI-ML model’s performance remains at least equivalent to
that of the standalone ML model.

Step 1: - .Ste.p 2: Step 3:
Purely data—dpyen Physws qurmed Joint training
based pretraining consistency alignment

Input Input Input
‘ Y Frozen Unfrozen

Feature extractor in Physics-informed Physics-informed Feature extractor in
data-driven branch branch branch data-driven branch
Decision module in Decision module in Decision module in
data-driven branch data-driven branch data-driven branch

Ol%)ut Olt)ut Ol%)ut

Figure 3.23: Novel PIML learning strategy.

Step 1: Data-driven pre-training, we train only the data-driven branch,
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3.4. A generic PIML framework

setting the PI-branch parameters as untrainable and initializing them with zero-
mean to ensure outputs p and p,,; are 0. This phase focuses on optimizing the
data-driven branch independently.

Step 2: Physics-informed alignment involves loading and freezing the
pre-trained data-driven branch. The PI branch’s parameters are then initialized
randomly and made trainable, functioning with the data-driven branch as a fixed
feature extractor. This setup allows the PI branch to align physically with the
pre-trained data, enhancing the model’s coherence.

Step 3: Joint training is initiated upon reaching convergence in the data-
driven branch and initial training in the PI branch. Both branches are then made
trainable to fine-tune the entire model towards a global optimum. This step
not only addresses inconsistencies between the branches but also enhances the
model by integrating data-derived insights with embedded physical knowledge.

This innovative training strategy allows us to maintain the original architec-
ture’s data-fitting capabilities and extends PIML applicability to a broader range of
scenarios by leveraging mature data-driven models.

3.4.3 Case study: Battery RUL prediction using small early-
stage lifecycle data

We develop the SEI-DCN model by incorporating a battery solid electrolyte
interphase (SEI) health indicator into the Physics-Informed (PI) branch, as illus-
trated in Fig. 3.24. This model leverages formula-embedded layers, guided by
the SEI growth model proposed by Attia et al. [175], to inform the design of
the Dilated CNN (D-CNN) architecture. Further details on the development and
structure of the SEI-DCN model can be found in Appendix C.8.

The SEI growth formulas are shown in Eq.(3.6) and (3.7). In Eq. (3.6), D is the
SEI degradation parameter. D represents the initial or baseline SEI degradation
parameter. [, is the effective activation energy for SEI growth, determined by
the Arrhenius relation. k5 denotes Boltzmann’s constant, a fundamental physi-
cal constant. 7" is the monitoring temperature of the battery, reflecting the expo-
nential relationship of SEI degradation in accordance with the Arrhenius equa-
tion’s principles on temperature-dependent chemical processes.

D = Dye "o7 (3.6)

The p,.: of is estimated using the equation:

C
Pout = 5 + b (37)
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Figure 3.24: SEI informed DCNN model diagram.

In this context, p,,; refers to an approximate lifespan indicator, as it is not
the final RUL output of the proposed PIML model. This distinction arises due
to the simplified nature of the models, often incorporating empirical parameters
and assumptions that do not fully capture the complexities of actual battery op-
eration and degradation phenomena. This formulation emulates the Paris laws
in material fatigue and posits that a battery’s cycle life is inversely proportional
to the rate of SEI degradation, adjusted by the empirical factor C'. Considering
the input-output relationships and the logical relationship between Eq.(3.6) and
(3.7), only the temperature data are taken as the input of the PI branch. and the
cross-layer connections are used in Fig. 3.24. Eq.(3.6) and (3.7) are the activation
functions of these custom design layers.

A standard D-CNN model developed by Hong et al. [176] served as a bench-
mark model for investigating the superior performance of SEI-DCN. It was also
used as the data-driven branch in SEI-DCN to design a controlled variable com-
parison test. The selected D-CNN structure had already been validated on our
testing dataset. The critical difference between our approach and the selected
D-CNN is the addition of a PI branch and our multi-step training method.

We conduct the proposed controlled variable comparison test on the fast-
charging lithium-ion battery dataset developed by the MIT-Stanford team and
described in the article [175]. This dataset comprises three experiments. The bat-
tery sets from “2017-05” and “2017-06” are set up for model training and testing.
Initially, a random data splitting method equally divides the dataset into training
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and testing subsets. This involves shuffling the dataset indices before splitting
them into two groups to ensure a balanced partition. As clarified in [175], the
battery sets recorded in “2018-04” are different from the sets in “2017-05” and
“2017-06. It can be used as the second test set to evaluate the model’s general-
ization ability on new data. More details of this controlled variable comparison
test are shown in Appendix C.9.

3.4.3.1 Comparison results with SOTA models

Table 3.3 presents a comparison of the proposed model’s performance against
several SOTA models from the literature. Notably, the DCNN model from [176]
has been reproduced and specifically optimized in this study, serving as the basis
for an ablation analysis. Table 3.3 highlights significant advancements in pre-

Table 3.3: Performance of different models.

Model Required cycles length | Predicted cycle error
(MAE)
Shallow MLP [176] | 4 150
MLP [176] 4 174
Full model [177] 100 99
Variance [177] 100 112
SVR [176] 100 245
CNN [176] 4 82
CNN + LSTM [176] | 4 72
DCNN in [176] 4 65
Our optimized | 4 55
DCNN
Proposed SEI- | 4 15
DCN

dicting cycle errors for battery life estimation, with the proposed parallel model
standing out by achieving the lowest predicted MAE of 15 cycles. This outcome
is achieved using a data sample truncated to 2500 seconds, typically spanning 3
to 4 cycles. It demonstrates that our SEI-DCN can deliver more precise usage in-
sights with short-term data, enhancing the adaptability of prediction algorithms
to real-time user habits. In addition, using a platform equipped with a single
16 GB NVIDIA T4 Tensor Core GPU, the prediction time for one test sample is
approximately 3.5 x 107° seconds.
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3.4. A generic PIML framework

3.4.3.2 Comparison results of prediction performance on a new dataset
without re-learning

To demonstrate the generalizability and adaptability of the proposed SEI-informed
DCNN model, we evaluate its performance on a new dataset collected during the
experiment “2018-04”, without any additional retraining. The results are then
compared with those of the optimized DCNN model, as illustrated in Fig. 3.25.
In Fig. 3.25, the “Identity line” represents perfect predictions where predicted
values match true values. The “Regression line” reflects the overall prediction
trend. Ideally, the “Regression line” should align with the “Identity line”, indicat-
ing that the model’s predictions are accurate. The blue scatter points in the figure
represent the actual predictions made by the model. Through this generalization
ability test, several key observations can be made, as illustrated in Fig. 3.25:

1. Itis clear that although the purely DCNN model captures the overall trend,
there is a significant difference between the predicted and actual values,
indicating that the accuracy of the model could be significantly improved.

2. Considering that the RUL span in the training set does not include the
case where the remaining discharging cycle life is greater than 2000, it
can be seen that DCNN does not have the prediction ability in that case.
Still, SEI-DCN does match the real data significantly better, which proves
that SEI-DCN has a superior generalization ability by embedding physical
knowledge.

3. The predictions of the SEI-DCN model (our approach) have higher variabil-
ity on this new dataset, along with outliers with relatively large deviations
from the true values in the deep degradation stage. However, its perfor-
mance declined much less than that of the DCNN.

4. The SEI-DCN model’s MAE is 81. Whereas the pure DCNN is 311, which
quantifies the significant generalization advantage our the proposed physics-
informed approach.

Moreover, in Appendix C.9, we provide a comprehensive performance eval-
uation and an investigation of SEI-DCN’s action mechanism. We conduct an
in-depth comparison between the DCNN and SEI-DCN models, focusing
on prediction accuracy and error distribution, where the data-driven branch of
SEI-DCN mirrors the structure, parameters, inputs, and outputs of the DCNN.
The results show that both models capture the linear decay trend of remaining
discharging cycles; however, SEI-DCN delivers more accurate predictions with
fewer outliers, underscoring the benefit of integrating physics-based knowledge
with data-driven approaches. Detailed error analysis via cell-by-cell box

79



3.5. Summary

Monitoring samples of test batteries L Monitoring samples of test batteries

Regression Line

Regression Line
------ Identity Line

I

000

ycles

2000f ~T Identity Line

< 1500
1500

discharging c;

ining

1000 1000

S
S

500

Predicted remaining discharging cycles

Predicted rema

0 500 1000 1500 2000 0 500 1000 1500 2000
Actual remaining discharging cycles Actual remaining discharging cycles
(a) DCNN model’s prediction results. (b) SEI-informed DCNN’s prediction results.

Figure 3.25: Predicted trajectory results for the new test battery packs’s remain-
ing discharging cycles.

plots reveals SEI-DCN’s superior performance, particularly in early and late
battery life stages, with a narrower error distribution and enhanced robustness.
Further analysis of the feature integration and branch decision fusion
process within SEI-DCN, as demonstrated by channel weight visualiza-
tions, confirms the successful unification of data-driven and physics-informed
features. This unification, achieved through a three-step training process, op-
timizes the sparse distribution of model channel weights across both branches
in the knowledge fusion process. Additionally, the model’s flexibility was as-
sessed by altering the embedded physics knowledge within the PI branch
while keeping the data-driven branch constant, with consistent improve-
ments observed across different physics models, highlighting the model’s adapt-
ability and generalization capabilities even when the physics knowledge does
not most directly align with RUL metrics.

3.5 Summary

This chapter introduced a flexible PIML architecture framework for integrating
physics knowledge with implicit analytical relations and incomplete parameter
estimation. It began with a simulated bearing degradation scenario, where the
similarities, differences, and risks associated with various PIML approaches were
analyzed. The embedded empirical “stiffness-vibration” relations were then veri-
fied to enhance the TCN’s performance in bearing RUL prediction, and the mech-
anisms underlying this improvement were explored, offering tutorial guidance
in building different PIML models. The conclusions drawn suggest that unify-
ing existing PIML methods under a “PI algorithm structure” is a better choice.
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Inspired by this unification, the “Mimetic theory” was proposed, advocating for
gradually embedding comprehensive knowledge into sub-components of the ML
algorithm structure to enable a more controlled PIML paradigm during training
and result improvement.

This theory was applied to rotor fault diagnosis, using the total mass unit of
a rotor finite element as a mimetic basis to simulate inverse dynamics via vibra-
tion signals. A band symmetry matrix forced sparsity and geometric specificity
in the interlayer weight distribution of the rotor finite element model, integrated
into the RFEMNN for diagnosing fault types and locations. Experimental results
demonstrated that the RFEMNN model outperformed traditional data-driven al-
gorithms across various rotor structures and speeds, establishing it as the first
neural network capable of simultaneously identifying fault types and locations.
However, mechanistic analysis revealed that the embedded physical knowledge
tended to degrade during training, reducing physical properties and scalability,
especially in few-shot scenarios. To address this, the focus shifted from struc-
tural design to learning strategies, incorporating “constraint projection” theory
from optimization into PIML. This approach distinguished between data-driven
and physical consistency goals during training, optimizing structural parameters
through reinforcement learning to maintain physical integrity without compro-
mising learning objectives. Through pre-training on simulated data and physical
consistency alignment, the constraint projection-enhanced RFEMNN’s few-shot
ability in compound fault diagnostics for rotors.

The “Mimetic theory” was further refined through a parallel structural design
model with a physics-informed branch and a data-driven branch, trained using a
three-stage strategy as a simplified “constraint projection:” pre-training the data-
driven branch, training the PI branch while freezing the data-driven output, and
then jointly training both branches. This multi-step process enhanced cooper-
ation between branches, approximating the global optimum while preserving
local optima. This strategy was applied to RUL prediction for fast-charging Li-
ion batteries using an SEI growth-informed Dilated CNN model, reducing the
required charge/discharge cycles from 65 to 4, improving prediction accuracy by
at least 20 cycles, and demonstrating the robustness and resource efficiency of
the generalized PINN design strategy in a new-scenario test and comprehensive
mechanism analysis.

This chapter explored different perspectives on how “ML” and “Physics” in-
teract. The “Mimetic theory” aimed to integrate physics within the ML frame-
work to achieve physics-consistent data flow, ensuring structural and output
congruence. While most PIML research focuses on innovations in structural and
constraint design, often through customized approaches, standardized solutions
were provided. The “Constrained projection” theory refined the optimization
problem by aligning the divergent optimization directions of ML and Physics,

81



3.5. Summary

guiding PIML model parameters toward an optimal solution, a challenge that
has been recognized but insufficiently addressed in existing research. To our
knowledge, developing a “Generic PIML architecture” remains unexplored due
to its dependence on expert experience, lack of established architectures, train-
ing guarantees, and difficulties in convergence and effective training, for which
we propose a viable solution. These works lay a solid foundation for the generic
PHM framework that will be presented in Chapter 5.
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4.1. Introduction

4.1 Introduction

In the previous chapter, we explored how PIML models can enhance ML perfor-
mance by integrating domain-specific physics knowledge, particularly in scenar-
ios with limited data and incomplete physical parameters. However, a significant
limitation identified was the reliance on supervised learning, which is often con-
strained by the scarcity of labeled data. To address this challenge, Chapter 4
shifts the focus to SSL as a strategy to leverage vast amounts of unlabeled data.
The main motivation of this chapter is to explore how SSL can enhance ML per-
formance in real-world applications, particularly in PHM, by developing mod-
els that are more flexible, adaptable, and capable of learning from diverse data
sources.

This chapter has 4 sections, they are structured to explore and validate the
application of SSL strategies in PHM, which includes two major contents.

It begins with an introduction to novel contrastive SSL methods in Section 4.2,
where the limitations of existing contrastive SSL approaches are identified, set-
ting the stage for constructing the new one. This approach is validated through
a detailed case study in Section 4.2.3, where a CNN-LSTM model is built and
tested on the “PRONOSTIA” bearing dataset, filling the gaps of contrastive SSL
in RUL prediction. The chapter then progresses to a deeper enhancement of the
proposed contrastive SSL approach in Section 4.3, advancing the prediction focus
from normalized RUL to actual RUL. This section highlights the importance of
aligning SSL pre-training tasks with specific downstream prediction tasks, repre-
senting a significant theoretical advancement in the development of SSL models
for PHM.

4.2 Novel contrastive SSL in sequential mining for
RUL prediction

In this section, we explore how SSL can enhance ML models by leveraging un-
labeled data, complementing the physics-informed approaches discussed in the
previous chapter. By utilizing SSL, we aim to increase data availability and ad-
dress “ill-posed” problems where labeled data is limited. To achieve this, we
develop a transformation that maps the original input data into a new represen-
tation space, allowing the model to automatically extract relevant PHM informa-
tion directly from the data structure. This transformation is implemented using
contrastive SSL, which trains the model to distinguish between different states
by ensuring that their representations are distinct, even if their observed data
appear similar. The contrastive loss function, defined in Eq. (4.1), encourages the
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model to separate the representations of different states by penalizing similarities
between them.

Lamaa(T) = 3 Smax (0, | T(A (@) - TA)) @)
irj

where N is the total number of pairs (i, j) considered, z; and z; are distinct
input states. £ encourages 7 to map different states to distinct representations in
Z, even if they yield similar observations in ), pushing apart the representations
of data or knowledge into different states. Here, A represents the mapping from
the observed data to the system’s health status, and .A* is a specific part of this
mapping. By employing this approach, we aim to improve the model’s ability
to analyze sequential data for fault detection and prediction without relying on
labeled data.

The traditional approaches of contrastive SSL, presented in Subsection 4.2.1
have been effectively applied in fault diagnostics, where it helps identify distinct
faults within a system. However, when these methods are adapted for RUL pre-
diction, they uncover deeper insights within the time series structure that are
often overlooked. These insights stem from the unique characteristics of time-
series data, where information is distributed along the time axis across different
health states. This temporal distribution is crucial for accurately predicting early
wear and tear as well as long-term degradation.

Building on this foundation, we introduce a novel contrastive SSL approach
in Subsection 4.2.2 to enhance RUL prediction performance. This new method
is tailored to be more effective in real-world applications, particularly in bearing
health monitoring, as demonstrated in Subsection 4.2.3.

4.2.1 Existing contrastive SSL paradigm problem statement

Traditionally, the contrastive SSL learning process involves the following
steps:

1. Pretraining:

(a) Contrastive pair selection - Choose pairs of distinct input states (z;, ;) €
Z from the unlabeled dataset. These pairs should ideally represent
varied conditions or states of the system to enhance the learning of
separability in the feature space.

(b) Distance computation - Calculate the distance between the transformed

representations of each pair (7 (A*(z;)), T (A*(z;))).
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(c) Optimization - Compute the contrastive loss using the specific con-
trastive loss function defined by Eq. (4.1). Update the parameters of
the transformation 7 by minimizing the contrastive loss.

2. Downstream-training:

(a) Model initialization - Initialize A with the pretrained’s A*’s weights.
Freeze A* to keep its learned representation ability in downstream.

(b) Fine tuning - The rest part A \ A* in A is fine-tuned by training it on
a labeled dataset,

In both phases, pre-training on unlabelled data Z forms the foundation for
the directed representation learning. Fine-tuning on labeled data allows the
model to further refine its use of the learned comparison features. Central to
this process are two critical components: “Contrastive pair selection” and the
design of a “Distance computation” task for 7. A key challenge arises by a)
ensuring that data pairs represent distinct system conditions, enhancing feature
space separability—an empirically driven setup with inherent robustness issues.
Additionally, traditional contrastive learning methods, such as sequence mask-
ing, data rotation, and future state prediction, struggle with a core challenge: b)
ensuring that T aligns with degradation-related features. To address this, many
approaches empirically enforce a pretext task logic that keeps temporally close
samples close in feature space while pushing temporally distant samples apart,
thereby establishing a connection to degradation.

There is a fundamental logical conflict between the two empirical settings dis-
cussed above. First, most degradation processes exhibit periodic behaviour, mak-
ing it challenging to accurately determine which two data segments the samples
should be drawn from and what degradation stages they represent. Even when
a methodology is established, it often becomes specific to the machine or case,
losing adaptability when the objective changes. Second, anchoring sample differ-
ences to temporal proximity can indirectly indicate degradation. However, this
approach is undermined by the weak correlation and the significant impact of
noise in monitoring measurements, particularly in high-frequency sampling sce-
narios. For instance, in vibration-based prognostics, vibration levels often remain
stable throughout much of the degradation phase, resulting in minimal variation
in characteristic differences between periodic data samples, despite changes in
temporal distance. Up to these points, in the next section, we suggest shifting
the focus from merely selecting samples to actively constructing them using con-
trastive manipulations of the same sequence.
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4.2.2 Novel contrastive SSL

The conceptual framework presented in this study draws inspiration from
the medical diagnostic process illustrated in Fig. 4.1. In this process, healthcare
professionals evaluate a patient’s health by analyzing sequential medical images
acquired at various disease stages in conjunction with pertinent medical records.
While there may be similarities in cellular morphology concerning shape and
size between different points in the exacerbation (¢; — ¢;) and recovery (¢; —
t;) phases, physicians can extract valuable insights by discerning information
patterns within sequences of medical records.

Exacerbatlon

Rccow ery

Figure 4.1: Physiologically degraded monitoring processes.

In ML, akin to medical diagnostics, the focus is on identifying positive and
negative sequences generated from a single machine’s monitoring data, rather
than analyzing correlations across different time intervals, as shown in Sec-
tion 4.2.2.1. Sequential features, denoted as p;, capture hidden patterns that fol-
low the natural progression from ¢; to t,, representing the degradation trend.
Conversely, negative sequence features, denoted as n,, reveal hidden patterns
in reverse order, from ¢,, to ¢, indicating an inverse degradation trend. These
patterns are extracted using a self-supervised feature extractor, represented as
A*(-). The key differences between the hidden patterns in A*(p;) and A*(n,)
provide crucial insights into the degradation process. In SSL, varying input se-
quences to the feature extractor generate distinct trend information (See Sec-
tion 4.2.2.2). The primary objective of the pretext task is to maximise the distinc-
tion between the extractor’s outputs for different sequential directions, achieved
through contrastive loss. This methodology enhances the precision of degrada-
tion trend analysis and subsequently improves the accuracy of RUL predictions,
which is validated in Section 4.2.3.

During the early stages of failure, the degradation process is typically slow,
resulting in subtle differences in the hidden patterns A*(p;), A*(n;). However,
the degradation rate often accelerates as the system progresses toward failure,
leading to more significant disparities between positive and negative sequence
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features. The extent of these differences is crucial in determining the rate of
change in the system’s condition over time.

4.2.2.1 Contrastive pairs design

As shown in Fig. 4.2, we truncate the raw time series into overlapping windows,
sliding along the timeline in fixed steps, with slices of data along the positive
timing in each window as positive samples, such as the data in (¢, ;). Negative
samples are obtained by inverting the time sequence of positive sequential order
samples, e.g., ({0, to). The whole sequence is divided into 7 samples.

Step 1 e e O
Data truncation ' Slide windows

L T . S (E1T o ML o
Step 2 ? iti i
DaE[)a Invert POSIt“_/e sequence Contrastive sample pairs n
_ e Negative sequence
augmentation Contrastive sample pairs 1
Step 3 v v e —-1
Contrastive

. Preprocessin
Learning pretext { - P lg } ) ‘

task ( {Feature extractor A } T H
| A Small Severe
T \ v | degradation  degradation
: Pos Neg | v v

Figure 4.2: Construction of contrastive sample pairs.

4.2.2.2 Proposed contrastive SSL strategy

Eventually, identical data preprocessing operations are applied to each sam-
ple pair within each window, and the feature extraction component A* of the
PHM model A is trained by the transforming task 7. The objective is to maxi-
mize the disparity between the encoded features of positive (pos) and negative
(neg) samples, aiming to learn a degradation-related feature under the metric set
T, which is physically indicative of the system’s state change magnitude over a
fixed period across different phases (see Fig. 4.2).

In the context of medical diagnostics, where a fixed level of expertise en-
ables doctors to diagnose a patient’s health state, the SSL strategy proposed here
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Figure 4.3: Multi-hierarchy Siamese models with nested structural reuse.

replicates this fixed expertise by employing nested structural reuse in Siamese
modules. As depicted in Fig. 4.3, the Siamese structure in the hidden layers com-
prises two parallel branches in Siai;, which share weights and process paired
inputs independently. When contrastive pairs X; are fed into the network, each
input, such as ;1 pos and ;1 ney, undergoes a separate forward pass through its
corresponding branch. Despite the shared weights, each branch generates dis-
tinct activations and representations based on the specific features of the inputs.

Furthermore, the nesting and reusing of Siamese structures facilitates the cre-
ation of more complex and hierarchical similarity-based architectures. By con-
structing a larger Siamese structure through identical modules Siai, and Siaiy
which have the same weights and configuration branches, developers can estab-
lish multi-level comparison systems capable of processing and comparing inputs
at varying levels of abstraction. This hierarchical design is particularly advanta-
geous for tasks requiring multi-scale feature comparison or handling data with
inherent hierarchical relationships.

The output representations from different Siamese levels are then compared
or combined for tasks such as contrastive learning. To derive a degradation-
responsive representation, appropriate distance metrics are designed to constrain
the learning of representations at various levels, e.g., Dis;; for both pos;; & neg1,
and pos;s & neg. Dis; for Po; and Ne;. We suggest some feasible metrics for
designing Dis;s and Dis;o in Appendix D.1.
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4.2.3 Application of the proposed contrastive SSL for accu-
rate bearing RUL prediction

This section validates the proposed novel contrastive SSL by building the
CNN-LSTM model with the test on “PRONOSTIA Bearing Dataset.” It is gener-
ated from the running-to-failure experiment on the bearing aging platform [178].
In this dataset, acceleration sensors are placed to collect the horizontal and verti-
cal vibration signals with the sampling frequencies 25.6kHz. It is recorded every
10 seconds, with each collection time of 0.1 seconds. They had three different
operating conditions: 6 complete degenerate trajectories for training and 11 in-
complete trajectories for testing. Detailed information about the dataset and pre-
processing steps can be found in Appendix D.2.

This research constructs contrastive sample pairs through the following pro-
cess:

1. The first two-thirds of each degradation trajectory are randomly cut, with
the cut length being half of the entire trajectory, to create unlabeled degra-
dation segments.

2. In each randomly cut segment, twelve consecutive historical samples are
selected as a positive sequence, maximizing data utilization.

3. The order of this segment is then inverted to form a negative sequence,
and both sequences are combined to create contrastive pairs.

For pre-training, 60,544 labeled samples were generated, with 30,277 samples
used for training (each with dimensions 6x64). For downstream training, 15,857
labeled samples were used, each with dimensions 6x64. Additionally, 25,152 sam-
ples were obtained for pretext training, and 7,360 labeled samples were used for
downstream training. The labels represent degradation degree in percentage,
normalized from the true RUL in seconds for each degradation trajectory.

4.2.3.1 Proposed model

In this section, we validate the proposed SSL theory through a series of com-
parative experiments involving two models: a benchmark CNN-LSTM (See Sec-
tion. 4.2.3.1) and an SSL-enhanced CNN-LSTM (See Section. 4.2.3.1). Both models
share an identical structure and training set, with the primary distinction being
that the SSL-based model leverages a broader range of unlabelled data, extracted
from both the training and test sets, for pre-training.
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Benchmark CNN-LSTM.

As shown in Fig. 4.4, CNN-LSTM effectively harnesses the spatial feature ex-
traction capabilities of CNNs and the sequence modeling prowess of LSTMs. The
input data first undergoes a wavelet transform, enhancing its suitability for fur-
ther processing by highlighting essential features while suppressing noise. The
CNN modules consist of separable 2D convolutional layers, each followed by
batch normalization and ReLU activation. This configuration reduces computa-
tional demands while ensuring efficient learning dynamics.

After the CNN layers, the LSTM units receive the spatially refined features,
processing them through complex gate-regulated cycles to maintain and ma-
nipulate temporal dependencies. Each LSTM unit includes components such as
sigmoid and tanh functions to manage the gates’ behavior, crucial for learning
sequences effectively. The culmination of this process is through a dense layer
that aggregates the learned features into a final output, optimized against a mean
squared error criterion.

Raw data

Wavelet transform

[
CNN module

e Separable 2d convolutional Iayerj

e Batch normalization layer
e Reluactivation

g———— LSTM_
X hoo % he Xio ho |
i ] I I :
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Figure 4.4: Benchmark CNN-LSTM network architecture.

CNN-LSTM at SSL.
The CNN, depicted in Fig. 4.5, employs a Siamese structure, achieved by
reusing a single CNN module across multiple input channels.
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Figure 4.5: Siamese CNN-LSTM implementation diagram.

CNN-LSTM at SSL comprises two key phases: pretraining and downstream
fine-tuning. During pretraining, similar to the benchmark model, unlabeled vi-
bration data is first subjected to a wavelet transform to extract multifaceted fea-
tures. However, unlike the benchmark, these features are organized into con-
trastive pairs before wavelet transformation, yielding input features X,,,; and
Xneg- These inputs are utilized in a pretext task designed to maximize the dif-
ferentiation between positive and negative encoded features Pos and Neg, as
generated by the feature extractor. The objective function in Eq. (4.2) seeks to
optimize the pretext task by minimizing the error through an inverse relationship
that maximizes the distance between Pos and Neg.

1

L.y = + out, — out, . (4.2)
08892

losst

Given that the monitoring data is collected from multiple channels, each cor-
responding to a different direction (e.g., horizontal = and vertical y), it is crucial to
prevent metric interference across channels. Consequently, losss is formulated
to ensure consistency in processing results across different channels. Simultane-
ously, loss; enhances the CNN’s ability to capture sequential information across
various directions, where pos; and neg; represent the feature encoding results of
positive and negative sequential orders, respectively. The pretraining phase op-
timizes L, through backpropagation across the entire CNN till the input layer.

In the downstream fine-tuning stage, the pretrained feature extractor, with
its parameters frozen, processes labeled vibration data. The downstream model
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mirrors the benchmark structure, with the distinction that the CNN modules in
the CNN-LSTM are initialized with pretraining weights. Unlike the pretraining
phase, CNN now accepts a single input, X, rather than contrasting pairs. Dur-
ing this stage, MSE backpropagation is applied up to the CNN output layer.

4.2.3.2 Result discussion

The training of both benchmark and SSL model uses a batch size of 64, and
the early stop mechanism is activated after 50 epochs of patience. The results
of the proposed model are also compared to the SOTA methods presented in the
research [131]. The qualitative prediction of the degradation trajectory is given
in Appendix D.4, while the quantitative performance is analysed as follows.
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Figure 4.6: Prediction errors of different models.

CNN-LSTM at SSL demonstrates superior prediction performance compared
to the SOTA model presented in [116], as illustrated in Table. 4.2.

Table 4.1: Comparison of the prediction MAE of different models.

Testing bearing No.
Methods 1 2 3 4 5 6 7 8 9 10

SAE+GRU 040 029 035 035 035 033 035 027 034 029
CNN+LSTM(Benchmark model) 021 0079 0.0 0088 0036 015 019 017 0083 0.046
CNN+BiLstm 035 024 029 029 033 032 034 026 032 023
SSL+GRU(SOTA) 034 023 029 028 027 027 029 020 027 022
BiLstm+Attention 059 023 029 031 028 027 028 021 035 029
CNN-LSTM at SSL 0.12 0.042 0057 0.084 0.026 0.061 0.11 0.16 0.093 0.063

Quantitative comparisons between the benchmark model and the proposed
SSL model are presented in Fig. 4.6, with the evaluation conducted using the fully
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labeled training dataset. The results indicate that the RMSE error bounds of the
proposed SSL models are superior to those of the benchmark model.

Additionally, to test the model’s generality for few-shots scenarios, the train-
ing sets consist of 6 aging bearing are selected in increasing order from 1/6 to 1
ratio in the downstream supervised fine tuning, as shown on the horizontal axis
of Fig. 4.7. The vertical coordinates of Fig. 4.7 indicate the RMSE for the entire
test set. The results show that the SSL framework is more effective for low label-
ing percentages. Additionally, it can adapt to degraded situations with unknown
operating conditions feasibly.
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Figure 4.7: Performance of SSL and CNN-LSTM (Benchmark) models at different
percentages of the labeled degradation trajectories in the training set.

We propose that the prediction performance of the proposed SSL-based CNN-
LSTM model is less sensitive to the percentage of labeled data. When a model
trained on an inadequately sized dataset is used to predict the RUL on a different,
unknown dataset, there is a high likelihood of over-fitting. This over-fitting is
often reflected in the similarity of the feature vectors in the output layer. Specif-
ically, over-fit models tend to produce output feature vectors that are overly spe-
cific to the training dataset, failing to generalize effectively. In contrast, SSL
algorithms, which leverage a broader unlabeled dataset for feature extraction,
are less prone to over-fitting. This is because SSL models develop a more robust
and generalized feature extractor that captures essential characteristics across
diverse data, enhancing their ability to perform accurately even with limited la-
beled data. This theory will be further analysed in the next section when we
conduct deep optimisation of CNN-LSTM at SSL.
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4.3 Considering downstream information in SSL
pretext task design

The results obtained in Section 4.2.3 underscore the strength of SSL in improv-
ing the bearing RUL prediction and few-shot prognostics by learning the PHM-
related representations on the unlabelled data. But this method is not the full
implementation of “Expanding mapping sources” mentioned in Section 1.3.1. We
still have two concerns in the technology development:

+ The first concern arises from the methodology outlined in Section 4.2. The
proposed contrastive learning approach captures degradation trends using
a single localized window of samples, which fails to provide a representa-
tion that encompasses the global degradation behaviour.

+ The second concern pertains to the dataset. Traditional methods normalize
RUL labels by setting an artificial endpoint, such as the operational cut-off
time, which may not align with the actual failure point. This normaliza-
tion introduces bias, reduces the physical interpretability of the RUL, and
complicates its practical application in maintenance planning. Although
normalized RUL values simplify upstream and downstream ML tasks by
providing a consistent range (e.g., [0, 1]), they obscure the true degrada-
tion state, as the same normalized value can represent different failure
stages across various systems. Conversely, using true RUL values, while
more representative of actual conditions, increases the complexity of fea-
ture learning due to their uneven distribution in a large scope.

To address these issues, We first analyze the existing problem in Section 4.3.1.
Subsequently, in Section 4.3.2, we introduce an improved SSL model that incor-
porates downstream information into the pre-training process to solve the afore-
mentioned problem. Finally, in Section 4.3.3, we validate the effectiveness of the
improved SSL model.

4.3.1 Analysis of the proposed SSL drawbacks

When employing our pre-trained model to predict the true RUL by adjusting
the downstream supervised labels to the actual values, the results depicted in
Fig. 4.8 reveal a significant overall prediction error.

However, the SSL model demonstrates strong predictive accuracy in specific
instances, such as with Bearing 2. This suggests that as the complexity of down-
stream tasks increases, the upstream pre-trained features struggle to provide pre-
cise predictions. Therefore, it becomes imperative to reevaluate and redesign the
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Figure 4.8: Negative impacts of converting normalized labels to true labels on
downstream task predictions.

pretext tasks to improve the model performance in these more challenging sce-
narios. An effective feature extractor should not be confined to predicting sim-
plified, and normalized data distributions; it must also be adept at handling more
realistic predictive tasks, as illustrated in Fig. 4.9. The sub-optimal performance
observed during the transition from pre-training to downstream tasks can be at-
tributed to a misalignment between the learned features and the specific
requirements of the downstream task. While the pretext tasks may produce
useful features, these features may not be fully exploitable by the downstream
model.

Downstream task variants. We innovatively propose to solve the misalign-
ment problem by adding intermediate tasks similar to the downstream task in
the pre-training to add variants of the downstream task in the upstream pretext
task, as shown in Fig. 4.9.

Pretext Downstream Pretext Downstream
AL =4
& ot N
- —
-
Pre-training to get useful features that can Simivlérity
be used for degradation prediction but Introducing variants of downstream tasks during pre-training to
cannot be fully matched downstream obtain useful features that can be fully exploited downstream

Figure 4.9: Self-supervised learning considering downstream information.

The downstream prediction task can be transferred as a learnable intermedi-
ate task by selecting two prediction targets of the same object at different peri-
ods and designing the relative relationship or absolute constant features between
them as a “ratio-matched intermediate gear” between upstream and downstream.
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The “ratio-matched intermediate gear” strategy integrates downstream pre-
diction task considerations into upstream pre-training through two key com-
ponents: (1) incorporating the downstream task-related structure into the pre-
training model, and (2) embedding the downstream task-related loss function
into the pre-training process, as detailed in Section 4.3.2.

4.3.2 Deep enhancement of the contrastive SSL

As detailed in Appendix D.5, we enhance the proposed SSL-based CNN-LSTM
model in three key aspects, guided by the aforementioned “Downstream task
variants” theory. The new flowchart is illustrated in Fig. 4.10.
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Figure 4.10: Contrastive SSL architecture considering downstream information.

The entire model have three key modules: “Feature extractor,” “Predictor,”
and “RUL Calculator” “Feature extractor” and “Predictor” appear both in “Pretext
task” and “Downstream task” Our enhancements to the existing SSL strategy
focus on these three modules and the “Conservation loss” in Fig. 4.10.

1) Novel End-to-End contrast pair construction approach. An NN layer-
based tensor operation is employed for temporal axis reversal to build contrastive
input pairs. As shown in Section 4.2.2, the construction of contrastive pairs often
relies on extensive data augmentation or the generation of new data samples,
which can be computationally costly and risk overfitting. In contrast, as shown
in Fig. D.5, temporal axis reversal is a lightweight technique applied directly to
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the input tensor, efficiently utilizing the existing dataset without the need for
additional sample generation.

Tensor Dimension-reversal

(INone, [t1,ta, ..., t,], M) —————— (INone, [ty_1,tn_2,...,11],m)

Figure 4.11: Inversion of the input temporal feature dimension to generate the
contrastive tensor sample.

In addition, we propose a new modeling strategy that eliminates the need
for feature extraction and data pre-processing in building the input space by
utilizing raw time series as inputs in an end-to-end model, thereby simplifying
the application process.

2) Feature extractor and pseudo failure time predictor. The feature ex-
tractor f extracts hidden patterns f(-), which are subsequently used as input for
the failure time predictor.

Feature sequence Hidden patterns f (+)
{xtilﬂxtjl} {[ptilrntil]J 1299 ntjl]} {[f(ptil)'f(ntil)]r [f (Bej,)s ntjl)]}
{xti1rxtj1} .Tenso.r {[Ptizrntiz]' [ptjz'ntjz]} Feature {[f(Ptiz)rf(ntiz)]: [f @), ntjz)]}
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k=12..n | reversal ‘ :
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Figure 4.12: Basic structure of feature extractor.

As shown in Fig. D.6, we still use the nested structural reused Siamese struc-
ture in employing the feature extractor f. For example, sample z;, and z;, repre-
sent sequences truncated by two sliding windows. From each window, we obtain
temporal frequency features input pairs p,, n;, and p;,, ny;, corresponding to z,
and ;. In the pretext task, the inputs p;,andn;, of f are the contrastive input
pairs, outputing the hidden patterns f(p;,)andf(n.,). For samples from ¢;, the
operation is the same. learning objective that will be defined later.

Failure time “Predictor” produces the failure time 7're used as input for the
RUL calculator. In pretext task, it generates pseudo-failure thresholds 7're;,,
T'rey, based on the input pairs f(py,), t; and f(py,), ;. These thresholds, denoted
as T'rey,, Trey,, are optimized concerning the “Conservation loss”

Downstream, the “Feature Extractor” loads pretrained, frozen weights, while
the “Predictor” loads pretrained weights and undergoes fine-tuning.

3) RUL calculator. To capture the precise failure time (7're) and avoid intro-
ducing bias in using a theoretical or practical cut-off time for RUL labeling, we
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Figure 4.13: Basic structure of failure time predictor.

integrate operation time (/27" into the RUL prediction model. Instead of fore-
casting a linear sequence of RUL points, our model predicts a series of fault times
(T're), constant for a specific bearing trajectory. RUL is then calculated by sub-
tracting R from the predicted T're values, as shown in Eq. (4.3).

RUL = Tre — RT (4.3)

The normalized RUL value is calculated for training purposes as shown in

Fig. 4.14.
Operation time RT-+e Stacked
Predicted failure threshold RUL
Figure 4.14: The structure of RUL calculator in the proposed neural network.

“RUL calculator” is only used in the downstream’s supervised process.

4) Contrastive and conservation combined loss function. In the pretext
task phase, we introduce a combined loss function, denoted as the “Contrastive
and Conservation Combined Loss,” by adding L5 to the original contrastive loss
L,. The feature extractor is guided by L;, which is designed to maximize the
discrepancy between n;; and py;, thereby capturing the expressive power of the
degradation trend within a sliding window. Simultaneously, L, incorporates the
learned representations of n;; and p;;, which provide global insights by being
supervised through L;. This approach ensures that the learned features are more
suitable for usage in the downstream’s “Predictor” and “RUL calculator.”

In the context of bearing degradation, the “ratio-matched intermediate gear”
serves as a constant failure threshold across different observation points on the
same aging trajectory. We assume identical failure times (7}..) for samples along
the same trajectory, integrating downstream prediction information into feature
extraction during pre-training. This forms a consistent pipeline from input fea-
tures to failure time prediction. Although RUL labels are not available during
pre-training, the assumption of equivalent predicted failure times aligns with
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the physical understanding expressed in Eq. (4.4), which relates RUL (RU L;,)
and operation time (R7},) at time ¢;:

RULy, + RT,, = RULy, + RT,, = ---= RUL,, + RT,, =T,. ~ (4.4)

Thus, calculating the RUL can be seen as determining a series of 7. at differ-
ent points along the same trajectory. When the predictor estimates the positive
encoded features from two time points ¢; and ?o, their 7,.,, and 7T,.,, should be
as close as possible, constrained by Lo, as depicted in Fig. 4.10.

In the downstream phase, the entire model is trained using the MAE loss,

defined as:
1 N

Liown = N Z(yRUL - gRUL)a (4.5)

i=1
Here, yruL represents the predicted RUL from the RUL calculator layer, §ry., de-
notes the labeled normalized RUL in the dataset, and /N stands for the number
of samples under test.

4.3.3 Validation of the improved contrastive SSL model on
bearing prognostics
We modify the CNN-LSTM model, described in Section 4.2.3, by replacing the

CNN stacking in the nested Siamese module with residual module stacking, en-
hancing the model’s expressiveness.
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Figure 4.15: CNN-LSTM network arhitecture.

Fig. 4.15 illustrates the SSL model architecture tailored for downstream tasks.
The architecture begins with Separable Convolution 1D layers, known for their
efficiency in both parameter usage and computation. These layers are followed
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by batch normalization and dropout, which serve to normalize activations and
prevent overfitting, respectively. “AveragePooling1D” layer is then applied to re-
duce data dimensionality by summarizing features within specified windows. At
the core of the model are stacked ResNet-like blocks featuring residual connec-
tions, which facilitate gradient flow through network layers, thereby mitigating
vanishing and exploding gradient issues. These blocks employ varying kernel
sizes to capture multi-scale patterns, with residual connections enabling identity
mappings as proposed by He et al. [179], thereby stabilizing the learning process
in deeper networks.

For failure time prediction, the model leverages LSTM networks to process
sequences. In the input preparation phase, feature fusion is performed on the
hidden patterns f(-) and operation time ¢. This involves expanding and broad-
casting t to match the feature dimensions defined by f(-). A dense layer with
8 units then transforms this broadcasted data into a concise feature vector. The
processed features are concatenated with f(-), forming a comprehensive input
for the subsequent stacked LSTM layers. These LSTM layers, organized hierar-
chically with decreasing units (128, 64, and 32), progressively refine the extracted
features, with each layer followed by dropout for regularization.

The results of the Benchmark model and the improved constrative SSL model
are discussed in Subsections 4.3.3.1 and 4.3.3.2.

4.3.3.1 Benchmark results

A CNN-LSTM model, mirroring the structure depicted in Fig. 4.15 of the pro-
posed SSL model, serves as the benchmark in our research for investigating the
performance of the SSL mechanism. The SSL model has the same structure as
the benchmark model, using the hyperparameters provided in the Appendix D.3
and the dimensional structure in Fig. 4.15. The difference is that the frequency
feature sequence of the benchmark model is not inverted by Section 4.2.2.1, and
the benchmark model does not incorporate SSL pretext task but aligns with the
proposed SSL framework in terms of data preprocessing, labeling, and supervised
training phases. Consequently, the primary distinction between the two models
hinges on the influence of the SSL learning process.

The results obtained with the considered benchmark model (CNN-LSTM with-
out SSL) are provided in Fig. 4.16, where orange dots represent RUL predictions
over time, while the blue line indicates the actual RUL until bearing failure. The
X-axis and Y-axis represent monitoring time and RUL in seconds, respectively.
This figure shows the RUL prediction using the Benchmark model for the test-
ing bearings over time, with Mean Absolute Error (MAE) serving as the accuracy
metric. Its overall MAE is 1203.74 (s) and the normalized error is 8.43%.

Several key observations can be made from the results. Firstly, the benchmark
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Figure 4.16: Prediction results of Benchmark model.

model demonstrates an ability to effectively capture degradation trends. How-
ever, it is important to note that predicting the true RUL exhibits a notable dis-
persion of results, largely attributed to the substantial variability in the model’s
output. Moreover, the analysis reveals instances where the model tends to sig-
nificantly overestimate the RUL, suggesting the presence of potentially risky sit-
uations in the predictions.

Furthermore, we also present a box plot of predicted errors to illustrate the
distribution of predictions for each test bearing, as depicted in Fig. 4.17. The
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Figure 4.17: Box plots of quantitative statistics of Benchmark model prediction
errors.

box plot in Fig. 4.17 visualizes the RUL prediction errors for ten different bear-
ings using the benchmark model, revealing considerable variation in prediction
accuracy. The MAE range from 759.24 seconds for Bearing 7 to 1490.73 seconds
for Bearing 10, indicating an average discrepancy in predicted versus actual RUL.
The interquartile ranges (IQRs) suggest varying levels of consistency across bear-
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ings, with Bearing 4 exhibiting the most significant spread of errors and Bearing
8 the least. Notably, several bearings display outliers, representing substantial
deviations from typical error values. Negative values in the error data suggest
overestimations of RUL, whereas positive values indicate underestimations. This
variability across bearings underscores the benchmark model’s inconsistent pre-
dictive performance.

4.3.3.2 Validation results of the proposed method

We present the qualitative and quantitative results here, keep the detailed
discussions in the Appendix D.6, where the validation results of the proposed
method for RUL prediction are discussed, with an emphasis on qualitative re-
sults (Appendix D.6.1), prediction uncertainty (Appendix D.6.2), computational
cost comparison (Appendix D.6.3), the impact of labelled data availability (Ap-
pendix D.6.4), model architecture (Appendix D.6.5), and generalization testing on
the tool wear dataset (Appendix D.6.6). Monte Carlo Dropout was used to quan-
tify uncertainty, revealing higher uncertainty during mid-operation stages. The
computational cost analysis highlighted that while the proposed model incurs
higher Floating Point Operations (FLOPs) due to SSL, it achieves better predic-
tion accuracy compared to benchmark models. The study also demonstrated that
the SSL model outperforms traditional methods even with reduced labeled data,
indicating its robustness in scenarios with limited data availability. Furthermore,
an exploration of the model architecture revealed that selective freezing of ex-
pressive pre-training sections enhances performance during fine-tuning. Finally,
the generalization test using a milling process dataset validated the robustness
and applicability of the SSL method in noisy industrial environments, underscor-
ing its potential for improving predictive accuracy in real-world settings.

Qualitativeresults. The RUL predictions obtained with the proposed SSL model
are presented in Fig. 4.18.

Comparing the RUL prediction results obtained by the proposed improved
SSL in Fig. 4.18 with the one of benchmark model presented in 4.16, we find that:

« The overall SSL model’s MAE 1is 496.14 (s) and its normalized error im-
proves from 8.43% to 3.48%.

« The MAE values of the SSL model, shown in Fig. 4.18, are significantly
lower than those in Fig. 4.16 for each bearing.

+ The model performance on bearings 1, 5, 9, and 10 are greatly improved.
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Figure 4.18: Prediction results of SSL model.

Blue curve is the manual RUL labels, yellow points are predicted values.

« With a large range of variation in the true RUL values, the RUL predictions
of the SSL model, shown in Fig. 4.18, have less dispersion.

« Significant errors in early-stage RUL predictions for bearings are primarily
due to the lack of sufficient degradation trend data at the beginning of
operation. During initial operation phases, degradation patterns are not
yet clearly established.
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Figure 4.19: Box plots of quantitative statistics of SSL model prediction errors.

Upon comparing the box plots in Fig.4.17 and Fig.4.19, one can see that the SSL
model surpasses the benchmark model in RUL prediction accuracy. Quantita-
tively, the SSL model consistently exhibits a lower MAE. For example, the MAE
for Bearing 1 is reduced from 1302.59 seconds in the benchmark model to 480.73
seconds in the SSL model. Furthermore, the interquartile range (IQR) is consid-
erably narrower in the SSL model, indicating more consistent predictions. This
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is exemplified in Bearing 6, where the IQR shows a significant reduction. The
SSL model also demonstrates fewer and less pronounced outliers, which sug-
gests an improvement in prediction reliability. Overall, the SSL model clearly
shows a quantitative advantage in terms of both accuracy and consistency in
RUL prediction. Specifically, we observed that prediction deviations increase as
RUL approaches the end, likely because at the experiment’s termination, some
bearings have deteriorated significantly while others only slightly. This suggests
a true severe failure threshold beyond the experimental termination condition,
as detailed in Appendix D.6.5.

Quantitative results. We compared our results with multiple SOTA meth-
ods presented in [116]. Note that in the existing studies, only normalized RUL
predictions are considered. To compare with these results, we also assess the
normalized RUL predictions by our improved SSL model, as shown in Table. 4.2.

Table 4.2: Comparison of different models on the normalized RUL predictions.

Testing bearing No.

Methods 1 2 3 1 5 6 7 8 9 10

SAE+GRU 0.40 0.29 0.35 0.35 0.35 0.33 0.35 0.27 0.34 0.29
CNN+LSTM(Benchmark model) 0.19 0.054 0.047 0.057 038 0.060 0.035 0.061 0.70 0.24
CNN+BiLstm 0.35 0.24 0.29 0.29 0.33 0.32 0.34 0.26 0.32 0.23

SSL+GRU(SOTA) 0.34 0.23 0.29 0.28 0.27 0.27 0.29 0.20 0.27 0.22

BiLstm+Attention 0.59 0.23 0.29 0.31 0.28 0.27 0.28 0.21 0.35 0.29
CNN+LSTM with contrastive SSL (No Downstream Info) 0.12 0.042 0.057 0.084 0.026 0.061 0.11 0.16 0.093 0.063
Proposed model 0.072 0.032 0.024 0.028 0.095 0.033 0.015 0.032 0.12 0.081

Table 4.2 provides a comparative analysis of the different SOTA methods ap-
plied to RUL prediction across the ten test bearings of the dataset. From the
table, we can observe the following key points: The proposed model consis-
tently demonstrates superior performance across all test cases, achieving sig-
nificantly lower MAE values compared to other models. While the benchmark
CNN-LSTM model shows relatively good performance, it still falls short of the
proposed model’s results.

Comparing the proposed model with the CNN-LSTM model using contrastive
SSL without downstream task information reveals a noticeable performance im-
provement in the proposed model. The results indicate that including down-
stream task information in the contrastive SSL framework leads to a substantial
reduction in MAE. For example, in test case 1, the MAE decreases from 0.1214
(without downstream information) to 0.0716 (with downstream information),
showing significant performance gains.

Our proposed model exhibits the lowest error rates across all bearings. For
instance, it achieves an error rate of 0.0716 for Bearing 1, which is substantially
lower than the benchmark model output (0.1941) and even more pronounced
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when compared to the SAE+GRU’s result (0.4036). The proposed model’s highest
error rate is 0.1221 for Bearing 9, still significantly lower than the benchmark’s
highest of 0.6966 for the same bearing,.
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Figure 4.20: Box plots of the impact of different amounts of labelled data on the
prediction results of the model.

Additionally, Fig. 4.20 presents the boxplots of prediction errors for specific
models across different numbers of labeled datasets. The triangular arrows in
the boxplot represent the mean value of the absolute error of prediction, which
is shown on the right side of the figure. The whiskers in the box plot extend to
the highest and lowest values within the range that are not considered outliers.
Outliers are displayed as individual points positioned outside the whiskers. In
Fig. 4.20, we observe that the SSL model consistently outperforms the bench-
mark model across various levels of data availability. Specifically, the SSL model
maintains a stable error distribution, even when the number of labeled datasets
is reduced from six to three. In contrast, the benchmark model experiences a
significant increase in prediction error under the same reduction in labeled data,
highlighting the SSL model’s robustness.

Quantitatively, with six labeled datasets, the SSL model achieves a median
prediction error of merely 561.1 seconds, while the benchmark model’s median
error is significantly higher, at 12980 seconds. This substantial difference in per-
formance is also reflected in the relative compactness of the SSL model’s error
distribution boxes within the box plots, indicating not only lower median errors
but also a tighter error range across varying labeled dataset sizes.

However, it should be noted that the prediction capabilities of both models
experience a marked decline when available labeled datasets fall below three.
This threshold signifies the critical point beyond which the models, reliant on
data-driven mechanisms, are unable to glean sufficient information to make ac-
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curate RUL predictions. This underscores the necessity for a minimum dataset
size to ensure reliable model performance and suggests an area for further re-
search into how SSL can be made more robust against significant data scarcity.

4.4 Summary

The contributions presented in this chapter advanced the field of SSL and its
applciation in PHM by addressing key challenges related to sequential informa-
tion mining, downstream task alignment, and dynamic knowledge representa-
tion. The proposed methods laid the foundation for developing more robust and
adaptable prognostic models in the presence of limited labeled data and diverse
operating conditions. The key contributions of this chapter are summarized as
follows:

1. Development of a contrastive learning strategy for sequential in-
formation mining. A novel SSL approach was proposed that capitalized
on distinguishing between sequential orders to capture essential degrada-
tion trend information. This model not only refined the understanding of
degradation trends but also enhanced RUL prediction accuracy. By maxi-
mizing the differences in feature outputs for data processed in various se-
quential orders, the model achieved enhanced performance. The stability
and effectiveness of this SSL strategy in RUL prediction with limited labels
were confirmed (See details in Appendix D.6), highlighting the benefits of
freezing the pre-trained feature extractor for consistent feature processing.

2. Integration of downstream task information into the SSL frame-
work. A consistency condition was introduced based on a constant failure
threshold prediction for failure time predictions as an intermediary step.
This approach ensured that the learned features aligned with the require-
ments of the downstream task, improving the relevance of feature repre-
sentations for degradation processes and boosting overall SSL model per-
formance. The impact of this consistency condition on both upstream and
downstream tasks was explored (See details in Appendix D.6), demonstrat-
ing a noteworthy phenomenon: the upstream pretext task learned what to
predict, while the downstream task further aligned the already reasonable
distribution of results with real-world scenarios.

3. Case study of SSL theory applied to bearing prognostics. A case
study employed a contrastive SSL approach using two CNN-LSTM models
on the PRONOSTIA Bearing Dataset. Initially, a Siamese CNN-LSTM
architecture was proposed, featuring step-by-step SSL pre-training and
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fine-tuning phases. A novel objective function (Eq. (4.2)) optimized SSL
performance, and comparative analysis confirmed that this approach out-
performed SOTA models by achieving lower mean absolute error (MAE)
values on all tested bearings (Table 4.2). This validation underscored the
robustness and generalization capabilities of the enhanced SSL-based
residual CNN-LSTM model, emphasizing its potential in scenarios with
sparse labeled data.

4. Comprehensive evaluation of the proposed models. Comprehensive
evaluations of the proposed models were carried out, focusing on predic-
tion error metrics, uncertainty quantification, computational cost, and the
impact of labeled data availability. Further testing on a milling process
dataset confirmed the model’s superior performance in RUL prediction.
While the enhanced performance through SSL came with a higher com-
putational cost due to an increase in FLOPs, this trade-off was justified.
The additional computational effort was crucial for effectively leveraging
information from unlabeled data and ensuring precise and reliable RUL
predictions, which are vital for PHM applications.

The next chapter builds on these foundational developments, transitioning
from specialized feature learning to the practical application of these strate-
gies in developing a generalized PHM model. Chapter 5 focuses on enhanc-
ing computational efficiency, managing variable-length sequences, and overcom-
ing integration challenges across diverse industrial systems. With the ground-
work laid for “Directional Mining” of meaningful degraded representations, it
delves into leveraging and mining higher-level information—specifically, physics
knowledge, from unlabelled data through advanced PIML techniques to further
refine and optimize PHM models.
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Improving existing PIML and SSL
paradigms to build a common
PHM model across scenarios
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in the Context of Sparse and Noisy Data. PHM Society European Conference
7 (1), 574-576.

5.1 Introduction

This chapter builds on insights from previous chapters to enhance PIML and
SSL methodologies. Our objective is to develop a generic PHM model that is
lightweight, computationally efficient, and hardware-friendly. Additionally, the
model is designed with self-adaptive capabilities, making it versatile for a wide
range of deployment scenarios.
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Figure 5.1: Research framework for building the generic PHM model across
scenarios based on the combination of improved PIML and SSL paradigms.

However, existing PIML methods still face significant challenges, particularly
in model design and training alignment. Despite the advantages of the generic
PIML architecture, such as reducing dependence on experts, the development of
custom physical operators often requires trial and error. Moreover, integrating
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prior physics knowledge with data-driven models remains a complex process,
making PIML a passive learning method when it comes to model selection. Sim-
ilarly, SSL methods encounter difficulties in designing pretext tasks and choosing
appropriate models. The diversity of objectives complicates the creation of pre-
text tasks, necessitating iterative refinement for both pretext and downstream
tasks. This experimental and customized approach limits the expressive and
adaptive capabilities of the models, often leading to empirical and case-specific
customization. Furthermore, the application of physics knowledge varies across
different devices, measurable quantities, and timescales, affecting how model in-
puts and outputs are processed. The degraded representations of unlabeled data
in various scenarios also show significant variation. Therefore, in the following 4
sections, we present three key contributions that shape our generic PHM model.

« We extend PIML by introducing autonomous operator discovery and sym-
bolic relation exploration, which we term “active knowledge discovery”
in Section 5.2. This advancement shifts PIML from a passive to an active
learning approach, enabling the model to uncover and utilize underlying
physical principles more effectively.

« We develop a lightweight, end-to-end backbone model that can efficiently
process inputs across a wide range of measurable quantities, varying con-
text lengths, and different timescales in Section 5.3. This model is designed
to be flexible, allowing it to adapt seamlessly to different prediction targets
without sacrificing computational efficiency or hardware compatibility.

« We enhance the multi-step training process by implementing a refined SSL
strategy called “Hybrid Learning” in Section 5.4. This approach integrates
downstream information and physics discovery tasks, improving represen-
tation learning for both labeled and unlabeled data. This hybrid strategy
ensures more robust and accurate model performance across diverse sce-
narios.

These contributions collectively address the limitations of existing PIML and

SSL methods, paving the way for a more versatile, efficient, and adaptive PHM
model that is validated across different real-world applications.

5.2 Extend PIML to active mining of knowledge

This section introduces a new concept by transforming the tradition knowledge-
embedded representation to active discovery, as illustrated in Fig. 5.2.
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Figure 5.2: From knowledge embedded representation to active discovery.

tradition PIML relies on fixed operator arithmetic and rigid enforcement of
physical constraints on ML data flows by static learned weights and biases which
restricts flexibility. The nature of active knowledge discovery change this by ap-
plying morphological discovery, similar to how water adapts to the shape of
its container. The primary concept of morphological discovery can be summa-
rized as “Employ nonlinear operators as activation functions to analytically trans-
form hidden layer inputs. Subsequently, determine the optimal relationship between
inputs and nonlinear operators to construct the underlying physical dynamics.”
We refer to this as a “Liquid” connection, wherein inputs from various scenar-
ios serve as the foundation for modifying operator relationships, especially in
“Sparse data” environments. This “Liquid” connection is based on the theory of
gated neurons proposed in Section 5.2.1. The entire morphological discovery
process is then demonstrated and validated through a case study involving the
discovery of robotic arm dynamical regularities in Section 5.2.2 and 5.2.3.

5.2.1 Gated neuron theory for liquid NN

This approach partly contradicts the principles of cognitive science, which advo-
cate for the flexible application of learned knowledge. In practice, models should
adapt and create variations in learned knowledge, akin to how water conforms to
the shape of different containers. This flexibility is not solely rooted in attention
mechanisms, as illustrated in Fig. 5.3.

In attention-based mechanisms, attention maps highlight specific regions of
the input using varying shades of color, allowing the model to focus on relevant
information. However, this attention mechanism does not directly modify the
network’s internal structure. In contrast, the liquid-like adaptive mechanism we
aim to develop in this section involves adjusting the layer weights and connec-
tions within the neural network based on the input. This process creates different
activated connectivity pathways, much like how the human brain forms distinct
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Figure 5.3: Differences between attention mechanism and liquid NN dynamics.

connections when processing various types of data.

Building on the mimetic theory discussed in Chapter 3, this section applies
gated neuron theory to establish a dynamic knowledge representation mecha-
nism. This mechanism serves as a foundation for pre-training and allows the
network to dynamically adjust its internal structure in response to different in-
puts from different scenarios. To illustrate this approach, we use a dynamics
modeling representation problem for a robotic arm in Section 5.2.3. This exam-
ple demonstrates how the methodology can be applied to dynamically character-
ize a system by fitting predicted moments from joint angular velocities, angular
accelerations, and angular displacements.

Generally, neural networks contain multiple neurons per layer, structurally
identical but functionally distinct due to unique weights and biases. This diver-
sity enables them to learn various features from input data, forming a distributed
representation. In a trained network, neuron mappings between layers remain
fixed, ensuring consistent input-output predictions, and making the model reli-
able and efficient.

This study argues that the “Liquid” mechanism involves establishing adaptive
feature combinations within layers, creating input-controlled inter-layer connec-
tions, ensuring information flow controllability, and selectively transferring fea-
tures between layers. Gated neurons, as shown in Fig. 5.4, are proposed as the
basic units executing these dynamics.

In Fig. 5.4, inputs at different stages are shown. The raw input represents
the original data, such as sensor readings or pixel values. The layer input is the
processed information from previous layers. The state input retains historical
context from previous steps, capturing temporal dynamics. The gate value g
regulates the influence of two feedforward layers, f f; and f f5, on the neuron’s
state. This gating mechanism is a dynamic filter, determining how much past
(state input) and present (layer input) information influences the current state.
The output is a weighted combination, f f; x (1 — g) + ¢ x f f2, balancing imme-
diate and historical data. This enhances the model’s understanding of temporal
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Figure 5.4: Liquid neuron design.

sequences and dependencies, improving predictions and decision-making. The
proposed gate neuron can be integrated into layers like liquid-Conv1d or liquid-
RNN cells, providing different properties for diverse tasks.

5.2.2 Discovering physics on unlabeled data

This section introduces a novel approach to physics discovery using an Equation
Embedded Neural Network (E2NN), which is enhanced by the gated neuron the-
ory. In E2NN, inverse dynamics equations are used to construct neural layers,
allowing the network to encode physical knowledge directly through its activa-
tion functions and interconnections. The liquid-like mechanism within E2NN
enables dynamic adaptation of interlayer connections based on the input data,
which enhances the model’s real-time flexibility and performance.

To further strengthen this approach, we integrate the E2NN module with a
deep residual shrinkage network (DRSN), resulting in the E2NN-ResNet model.
This integration combines the physics-based structure of E2NN with the pow-
erful feature extraction capabilities of DRSN, as illustrated in Fig.5.5. This pro-
posed new model structure aims to improve both the accuracy and adaptability of
the network in real-world applications. For comparison, the conventional DRSN
model is given in AppendixE.1.

In detail, the E2NN enhances the DRSN model by innovatively modifying
the activation function and interconnections within the residual blocks, incor-
porating unique blocks utilizing trigonometric functions, which are absent in
conventional DRSN models. This integration of PI principles into ANN architec-
tures significantly improves the model’s capability to mimic inverse dynamics
processes under physical constraints. The model’s structure includes Residual
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Shrinkage Blocks and a Liquid Layer. Specifically, the first Residual Shrinkage
Block (“RSB1”) calculates the cosine of ¢ (shortcut = tf.cos(¢)) and maps it to the
filters via a dense layer, while the second block (“RSB2”) processes ¢ and §. A
“Concat” layer merges the three outputs from the residual shrinkage blocks, and
their products (R1 x R1, R1 x R2) are concatenated. The Liquid Layer then as-
similates these components and approximates them to 7 in a mathematical form.
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Figure 5.5: E2NN: Deep Residual Shrinkage Network with embedded equations.

5.2.3 Validation of the proposed methodology for dynamic
identification in robotic arms

In robotic modeling, system modeling with limited joint data challenges both
tradition PBMs and ML techniques. PBMs struggle with uncertainties, variable
conditions, diverse configurations, and incomplete parameters. ML methods face
issues with physical consistency, interpretability, and extensive data needs. This
section introduces a novel approach: E2NN, enhanced by the proposed gated

115



5.2. Extend PIML to active mining of knowledge

neuron theory. E2NN uses inverse dynamics equations to construct specialized
neural layers, with activation functions and interconnections as composition op-
erators, encoding physical knowledge. The Liquid mechanism allows dynamic
adaptation to changing inputs and motion equations, enhancing flexibility and
performance.

The metrics used to evaluate the proposed methods are MSE, Polygon Area
Difference, Fréchet Distance, and Time cost. These metrics’ definitions are de-
tailed in Appendix E.2.

5.2.3.1 Test E2NN performance on real data

This investigation meticulously evaluates and compares various ML methodolo-
gies for robot manipulator torque estimation. We selected methods suited for
small sample sizes and complex data structures typical in robotics. These in-
clude classical algorithms like K-Nearest Neighbors (KNN) and Support Vector
Machine (SVM), known for their efficacy with smaller datasets. We also employ
Deep Multilayer Perceptron (MLP) and DRSN for their capabilities in handling
high-dimensional data, and XGBRegressor for its proficiency in regression tasks.
Additionally, Nonlinear Regression with Lasso Regularization is used, treating
each sub-term of the torque equation as an individual operator. Finally, the
E2NN-enhanced DRSN, as depicted in Fig. 5.5, stands as a testament to the inte-
gration of PIML into this multifaceted comparative study. Their performance is
given in Table 5.1.

Table 5.1: Validation on real-world data.

Metric .

Method MSE | Area Difference | Fréchet Distance Maximum error (N-m)
Deep MLP 0.00272 3.998 0.249 0.510
SVM 0.575 9.791 1.513 2.263
XGBRegressor 0.00247 3.703 0.223 0.391
KNN 0.00442 4.029 0.209 0.528
DRSN 0.00314 4.835 0.160 0.374
Physics estimation | 0.00542 6.519 0.256 0.572
E2NN 0.00103 1.248 0.173 0.172

According to Table. 5.1, it appears that KNN, with an MSE of 0.00442, Area Dif-
ference of 4.029, and Fréchet Distance of 0.209, would be a strong contender in
this application. However, a deeper analysis reveals while KNN does outperform
SVM (which has a significantly higher MSE of 0.575 and an Area Difference of
9.791), it falls short when compared to more advanced methods like Deep MLP
and DRSN. The performance gap is particularly noticeable in the context of com-
plex dynamics modeling for robotic arms, where Deep MLPs and DRSNs excel
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due to their multi-level data representation capabilities. These models, with their
advanced feature extraction and noise tolerance abilities, are especially adept at
handling the intricate interplay between various input and output variables, such
as angular displacement and torque.
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0.6 - Real Torque
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Figure 5.6: Prediction results on real robot manipulators.

Considering Fig. 5.6, which presents scatter plots comparing the predicted
torque and real torque as a function of movement angular velocity, we observe
that the E2NN model significantly outperforms all others. It achieves a MSE
of 0.00103, making it the most accurate model. The E2NN not only provides a
better overall fit to the trajectory, but its joint torque predictions exhibit minimal
deviations, with only a few minor errors and the absence of any large, severe
deviations.

5.2.3.2 Investigation on the E2NN’s robustness

This section employs data generated under the “Friction” working condition to
evaluate the robustness of the E2NN. This process involves applying the bench-
mark model and the E2NN, which have been trained on the same dataset, directly
to the new test without any additional training. The size of the new test set is
8996 samples. The prediction results of the two models are presented in Table. 5.2.
During the steady-state motion of the robot manipulators in the angular velocity
range of -2 to 2, it can be observed that the benchmark DRSN model produces
large outlier points and extremely unstable predicted curves. The maximum er-
ror of DRSN model is 5.3, which is higher than that of the E2NN, and there are
significant outliers in the slewing process around -3 and 3. The benchmark model
shows that the prediction results deviate significantly from the observation in the
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Table 5.2: Comparison of the robustness of different methods across various
metrics when applied to new data.

Metrics .
Method MSE | Area Difference | Fréchet Distance Response time  Parameters
DRSN | 1.1 14.4 8.2 1.2 x 107 66753
E2NN | 0.3 1.6 1.6 8.8 x 107° 56223

enlarged view of the entire steady-state movement formation. In addition, the
E2NN can fit the actual trajectory with promised trend tracking.

More validation on the benefits and the exploration of E2NN are provided in
Appendix E.3 using both simulated and real-world data from a 7-DOF KUKA
robotic manipulator. In joints’ dynamic response simulations, E2NN outper-
formed the benchmark DRSN model, achieving lower MSE (0.5 vs 0.6), Area Dif-
ference (8.3 vs 42.9), and Fréchet Distance (14.3 vs 56.7). The E2NN’s capability to
identify inverse dynamics parameters was evaluated by comparing the weights of
its embedded operator’s neural network layer with the known  values from sim-
ulated data. The average accuracy of parameter estimation, measured as MAE,
was approximately 0.05433. The reconstructed trajectories using E2NN’s weights
demonstrated high torque fitting accuracy, reaching 97.1%. These results show
that E2NN could effectively simulate the actual behavior of the robot manipula-
tor, bridging the gap between theoretical modeling and practical applications.

5.3 E2E data-driven model for cross-scenario time
series processing

As discussed in previous chapters, the performance of the generic parallel PIML
framework hinges on its data-driven branches. This section focuses on construct-
ing an optimal data-driven branch model suitable for various datasets. Prior
studies have examined models such as Temporal Convolutional Neural Networks
(1.2 MB), CNN-LSTM (3.2 MB), and Dilated CNN (78.3 MB), each demonstrating
varying degrees of effectiveness and efficiency. However, these models lack the
capability to handle long sequences and varying length inputs.

Tradition RNNs offer a solution by considering only the previous hidden state
and current input, avoiding the need to recalculate hidden states. This enables
fast inference and scalable context length but impedes parallel training and can
lead to information loss over time. Recent advancements emphasize Transformer
models, known for their capacity to capture long-term dependencies and paral-
lelize computations, rendering them promising for time series processing. While
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Transformer models excel in complex data within a context window, they face
challenges with fixed context windows, which limit their ability to capture dis-
persed information and impose significant computational costs, particularly for
long sequences in high-frequency time series monitoring (see Appendix E.4).
In PHM applications, where computational resources are constrained, achiev-
ing computational efficiency while managing long-range dependencies remains
crucial.

Therefore, we explored models like the selective state space (SSM)-based
calculation units in combining RNN and Transformer benefits, allowing paral-
lel training, information retention, and linear time complexity growth with se-
quence length. Therefore, this section develops a generic time series pro-
cessing model based on a gated SSM. This model is suited for various sample
lengths, measurement characteristics, time scales, and device monitoring scenar-
ios.

5.3.1 Gated selective state spaces mechanism

The model proposed in this section introduces inputs-related model hid-
den status selective mechanisms based on the parallelization transfor-
mation of RNNs. We detailed the derivation progression from continuous state
space representation to the design of SSM models for machine learning, and the
incorporation mathmatical basis of gated selectivity for discrete ML parallel com-
puting units in Appendix E.5.

Yn = Chn
=C (Ahn_l + Bun)
=C (A”_l (flho + Bul) + A" 2Buy + -+ - + Bun)

_ no_ (5.1)
k=1
n
— CAMhy + Y CA*Bu,
k=1

The hidden states update process of RNN is given in Eq.(5.1), where A, the
State Transition Matrix, governs how the current state evolves into the next state;
B, the Input Matrix, dictates the influence of external inputs on the system state;
C, the Output Matrix, links the internal states / to observable outputs; and D,
the Feedforward Matrix, represents the direct impact of inputs on outputs. The
problem with RNNs is that the matrix A, B, C' does not vary with the input, and
targeted inference on the inputs is not possible.
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The selective mechanism proposed in [180] vary its attention this issue by
highlighting that the tradeoff between efficiency and effectiveness in sequential
models depends on state compression. Moreover, applying selective mechanism
in state space model is computional fridendly which has a small, fixed while
effective hidden states, retaining all necessary contextual information.

During training, A is a time-varying parameter that reflects the discretiza-
tion scale of the state space model at different time steps. It plays an important
role in the state update process and influences the state discretization and com-
putation. It is generated from the input through the projection module and can
be dynamically adapted to the characteristics of the input data, thus forming the
selection mechanism, as shown in Fig. 5.7. It adjusts the parameters A,, By, C,
and A, based on the current input x; and previous hidden state i, ;. This dy-
namic adjustment helps the model focus on relevant features and dependencies
at each time step.
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Figure 5.7: Selectivity mechanism to construct input-dependent state matrices.

(A, B, C, D) are state matrices at SSM.

To address selective long-term dependencies, we introduce a gated skip con-
nection mechanism. This retains part of the input information, similar to residual
connections, optimizing relevant information retention for task representation.
As shown in Fig. 5.7, fg. and f; use activation functions in the range (0,1), while
f2, f3, and feompressea are linear layers for information compression.

The parallelization of the computation of the above processes, in particular
for the optimization of the core hidden states, is implemented using a hardware-
aware parallel scanning algorithm, as shown in Fig. 5.8.

As summarized in [182], the Sweep-up and Sweep-down phases can be per-
formed by hardware with different computational speeds. During Sweep-up,
data is processed and reduced in parallel chunks, using fast-access SRAM in
GPUs. The Sweep-down phase combines and finalizes results, efficiently handled
by HBM (High Bandwidth Memory) for larger data movements. This completes
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Parallel computation O(n/t)

Figure 5.8: Parallel scanning algorithm for accelerated computation to update
hidden state [181].

the design of the gated SSM unit.

5.3.2 End-to-End (E2E) CNN-SSM model

Based on the SSM units designed in Section 5.3.1, we constructed a new gener-
ation of end-to-end time-series data processing model for varying length
sequences, directly handling raw data from various degradation scenar-
ios. Normally, the basic three-dimensional structure of the input time-series data
is defined as (number of samples, sample length, and monitoring channels), cor-
responding to the total number of monitoring windows, the size of each window,
and the number of physical quantities being monitored. However, the time se-
ries, collected during discrete monitoring processes, have varying sampling rates.
For instance, rotating machinery requires sampling at least 2.5 times the maxi-
mum fault frequency, while battery temperature and voltage-current, considered
slow variables, may be sampled at 1 Hz. High-frequency time-series data from
long-term monitoring often have low information density, necessitating different
lengths of monitoring windows to ensure sufficient information content.

The variability in sample numbers and lengths poses significant challenges
for tradition deep learning models in PHM. These models struggle to compress
and extract information from varying length sequences, requiring samples to
be segmented using a sliding window approach and then padded. This ensures
consistent input dimensions, with the variable dimension being the number of
samples, allowing for batch processing of different sizes.

Current DL models lack the capability to handle diverse lengths and sampling
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Figure 5.9: End-to-End CNN-SSM model architecture for processing variable
input length sequences.

frequencies in real-world data, necessitating preprocessing steps like sliding win-
dow segmentation and padding. These steps can introduce noise, reduce feature
extraction effectiveness, and increase computational burden due to redundant
data points.

Furthermore, traditional models often have difficulty capturing long-range
temporal dependencies in sequences of varying lengths. They use “Padding” to
fill the sequence which disrupts temporal continuity, diminishing the model’s
ability to learn sequential patterns crucial for accurate prognostics and health
management. This limitation affects the model’s adaptability to different opera-
tional scenarios and fault conditions, undermining the reliability and robustness
of predictive maintenance strategies.

The newest end-to-end model for processing varying length inputs is based
on a CNN-LSTM-like stacked module, as verified in Chapter 3 and 4. This archi-
tecture is reused to construct the stacked CNN-SSM module. Additionally, the
“S6” model from Mamba [180] is integrated for the hidden layer state update.
The final architecture is given in Fig. 5.9.

The proposed model efficiently processes varying length sequences by inte-
grating a sophisticated state space model within a gated block structure. The data
flow begins with an encoding stage, where the unlimited-length input is passed
through dense, GMP-1D, and Conv-1D layers. These layers are employed to re-
duce the dimensionality of the input data and extract relevant features, preparing
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the data for subsequent processing. The encoded data then undergoes normal-
ization, ensuring a consistent input distribution for the model, essential for stable
training and efficient convergence.

The core architecture integrates a State Space Model (56) to update hidden
states. The S6 model uses operations like Einsum, Softplus, Exp, and Silu to com-
pute state transitions. Custom weights A adjust these transitions via matrix cal-
culations. Hidden states, initialized to zero, are updated at each time step based
on the current input and previous hidden state, efficiently capturing and prop-
agating information. The processed data then passes through linear projection
layers and a Sigmoid activation function to produce the final output.

5.3.3 Performance evaluation of E2E CNN-SSM model on
different datasets

The proposed CNN-SSM model supports a maximum input shape of (4096, 4)
to optimize computational resources. For the bearing dataset, inputs expanded
from single-direction vibration signals to x-y dual-direction vibration signals.
This expansion includes both vector amplitude and phase, with a raw data length
of 2560. For the battery dataset, inputs expanded from 3 to 4 channels (voltage,
current, operation time, and temperature) with a raw data length of 2500. Despite
the larger input size, the CNN-SSM model has fewer parameters, resulting in a
model size of 227 KB. Thanks to this, it can reduce the training time and shows
efficiency and scalability compared to other models presented in the previous
chapters. We show quantitative prediction results below and provide a further
comparative analysis of qualitative trend predictions in Appendix E.6.

5.3.3.1 Bearing prediction results

Fig. 5.10 presents the violin diagram to compare the predicted and true bearing
RUL. Violin plots are powerful data visualization tools that combine the bene-
fits of box plots and density plots to display data distributions. They provide a
detailed view of data by showing density and variability, with the plot’s width
at any given value representing data density. Symmetric in shape, each violin
includes a central box plot that highlights the median, first, and third quartiles,
with whiskers indicating the data range and outliers clearly marked. In the con-
text of RUL prediction, violin plots facilitate model performance evaluation by
visually comparing predicted and actual RUL distributions, identifying discrep-
ancies, and aiding model optimization. They also reveal data trends, variability,
and outliers, which are essential for analysis and anomaly detection. Addition-
ally, violin plots enable the comparison of multiple data groups, such as different
devices or bearings, within a single plot.
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Figure 5.10: Violin diagram for prediction error analysis of bearing RUL.

Fig. 5.10 presents violin plots comparing predicted and actual RUL values.
Violin plots, which merge box plots and density plots, provide a detailed view of
data distributions, showing density, variability, median, quartiles, and outliers.

Each violin in Fig. 5.10 represents a bearing group, with the width indicating
data density and the central box plot showing median, quartiles, and potential
outliers. The violin plots of actual and predicted RUL values are roughly similar,
indicating the model’s fair predictive ability. The distributions for most bearing
groups, such as Bearing 1 and Bearing 5, align closely around central values,
showing good predictive capability. The medians for several groups, like Bearing
3 and Bearing 6, are nearly identical, reflecting accuracy in predicting central
tendencies. Moderate interquartile ranges, like those in Bearing 3 and Bearing
7, suggest relatively low prediction errors, with few outliers indicating stable
performance, as seen in Bearing 5 and Bearing 10.

However, groups like Bearing 2 and Bearing 8 show higher predicted RUL
values, indicating optimistic errors. Further optimization is needed for groups
like Bearing 4 and Bearing 9, which exhibit anomalies and prediction deviations,
suggesting the model tends to overestimate RUL in certain scenarios. Overall,
while the model performs well, improvements are needed for better accuracy in
extreme-value regions.
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5.3.3.2 Battery prediction results

Fig. 5.11 shows that the predicted and actual battery RUL values are highly con-
sistent across most battery groups, indicating good model accuracy. The dis-
tributions are similar, reflecting the model’s ability to capture the actual decay
process.
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Figure 5.11: Violin diagram for prediction error analysis of battery RUL.

In Battery 1 and Battery 5, the predicted and actual medians overlap at 0.76,
demonstrating high accuracy. Battery 2 has a higher maximum error (0.82), but
the predicted median (0.77) is close to the actual (0.76). Battery 3 shows a pre-
dicted median (0.77) near the actual (0.73), with a maximum error of 0.54. Battery
4 has slight overestimation at higher RUL values, with both medians at 0.76 and
a maximum error of 0.68. Battery 6 exhibits the best performance, with a low
MAE of 0.12 and closely aligned medians (predicted 0.74, actual 0.76). These re-
sults show that while the model generally provides accurate predictions, there is
room for improvement, such as Battery 2 and Battery 4.

The longer observation scale (2500s) for batteries, compared to bearings (0.1s),
contributes to superior performance. Additionally, cleaner data from batteries,
unconnected to other components, enhances model accuracy. This comparison
highlights the importance of data relevance and the absence of external interfer-
ences in optimizing model performance.
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5.4 A generic model incorporating the advanced
PIML and SSL

Based on the previous sections’ results, we propose a generic cross-scenario
PHM model with active knowledge discovery capability. This model employs
an improved multi-step training strategy: “Pretraining, physics-alignment learn-
ing, joint training” incorporating self-supervised learning during the physics-
alignment phase. The model architecture is illustrated in Fig. 5.12, and the learn-
ing strategy is given in Fig. 5.13.

|Datadrivenbranch
Unlimited length

input High dimension Stacked CNN-SSM Ly Feature fusion ds Different degradation
(Batch size, length, encoding module T modules module for PHM task indicators

Liquid NN >{Weights  Operatorsie_ gperator pool
-

Physics informed branch

Figure 5.12: Generic end-to-end cross-scenario time series processing model for
prognostic tasks.

In Fig. 5.12, the data-driven branch employs modules to encode and compress
inputs into stacked CNN-SSM modules, generating feature fusions for the task of
predicting degradation metrics. This branch leverages CNN-SSM modules to dis-
cover relevant patterns and representations from high-dimensional input data,
which are crucial for the PHM task.

The physical information branch uses a liquid neural network to generate dy-
namic weights and operators, creating diverse knowledge representations that
complement the data-driven branch. This branch includes a pool of basic lin-
ear and nonlinear transformation operators. By dynamically combining these
operators as activation functions, the system achieves powerful approximation
capabilities, allowing it to activate and express knowledge flexibly. The CNN-
SSM modules in the data-driven branch guide the learning of the liquid neural
networks by providing informational features and representations. Conversely,
the physical information branch regularizes and directs the CNN-SSM modules
to learn physically consistent patterns, ensuring coherence between data-driven
insights and physical principles. The detailed structure is demonstrated by a
lightweight liquid physics-informed CNN-SSM presented in Section 5.4.1.

The training method shown in Fig. 5.13 builds on the multi-step training
method of PIML. In “Step 17, the data-driven branch of the model is pre-trained
using input data. During this phase, the data-driven branch captures relevant
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Figure 5.13: A multi-step hybrid learning strategy for generic model training.

features and representations through forward computation and backward prop-
agation. These learned representations are then used to predict various degrada-
tion metrics, serving as true labels for supervised learning. This process ensures
the model effectively learns from the input data and enhances its predictive ca-
pabilities.

“Step 2” introduces a novel learning approach, called physical alignment learn-
ing phase. Its crucial aspect is the application of self-supervised learning. Dur-
ing this step, the model is trained using a frozen pre-trained data-driven branch,
which provides the necessary data-driven features. Additionally, a PI branch is
introduced to take these data-driven features as input. Here, the encoded fea-
tures before CNN-SSM processing serve as reconstruction targets, eliminating
the need for external labels. The PI branch uses a codec-like architecture, with
the encoder’s hidden layers containing rich degenerate representations [183].
The encoder incorporates an operator regression structure for autonomous dis-
covery of physics knowledge, while the decoder remains data-driven. The model
benefits from a hybrid learning approach, using both supervised ground truth
labels and self-supervised reconstruction targets, enhancing data utilization ef-
ficiency. Details on generating pseudo-ground truth and self-supervised labels
are in Section 5.4.2.
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“Step 3” involves a joint training phase, where the pre-trained data-driven
branch is unfrozen, and the physical information branch is frozen to preserve the
knowledge learned from unlabeled data not present in the training set species.
Subsequently, the data-driven branch is fine-tuned to deepen the application of
the learned knowledge and enhance the fusion and matching of features from
both branches. This fine-tuning process enables the model to make accurate pre-
dictions by leveraging both data-driven and physical information knowledge. By
integrating these learning approaches, the model can achieve improved perfor-
mance and robustness.

Ultimately, this modeling and training methodology will train a generic model
for cross-scenario degradation prediction on the PHM dataset, meeting the 4C
requirements. This will complete the prognostic task in Section 5.4.3, including
predictions for bearing and battery RUL, tool wear, and composite fatigue cycle
counts.

5.4.1 Liquid physics-informed CNN-SSM model

Based on the proposed theory and the validated CNN-SSM and liquid PIML struc-
tures discussed earlier in this chapter, our research innovatively establishes a liq-
uid physics-informed CNN-SSM model, illustrated in Fig. 5.14. It is a comprehen-
sive DL model architecture that incorporates both data-driven and knowledge-
driven approaches. The model accepts an input sequence of unlimited length
(batch size, length, feature channels). The design and data flow details of this
generic model are clarified as follows:
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Figure 5.14: Auto-discovered knowledge informs CNN-SSM in liquid form.

128



5.4. A generic model incorporating the advanced PIML and SSL

The initial stage involves encoding, where the sequence is transformed by
Dense, GMP-ID (Global Max Pooling ID), and Conv-ID (Convolution ID) layers
into a compressed representation, enabling variant-input length processing. This
encoded representation is subsequently refined through two consecutive Gated
Mamba blocks, which utilize learned gates to selectively pass information. The
output from the second Gated Mamba block is then flattened and passed through
dense layers, culminating in a sigmoid activation function that produces the task-
specific final output.

The model also includes a Liquid Neural Network (Liquid NN) component as
the PI branch. In each iteration, the Liquid NN takes the previous layer input
x(t — 1) and state input h(t — 1), using a Gating NN to generate a gate value
g that modulates information flow. The Backbone NN, comprising two dense
layers, processes z(t — 1) to produce f2, which is combined with A(t — 1) in a
Gated Cell using the function h(t) = f1 x (1 — g) + g x f2. A GMP-2D (Global
Max Pooling 2D) layer in the knowledge component provides a global summary
of prominent features. The core of the model dynamically expresses knowledge
through input-dependent weights, generating various forms of knowledge by
combining operators differently. This informs the data-driven branch by adding
the PI feature to the final output decision module. This integration enhances the
model’s capability to handle complex tasks and capture intricate patterns.

To further enhance the model’s capability, a GMP-2D (Global Max Pooling
2D) layer is included in the operator pool of the knowledge component. This
layer performs a max pooling operation over the spatial dimensions of the in-
put, providing a global summary of the most prominent features. Through these
mechanisms, the model achieves a robust integration of data-driven encoding, it-
erative refinement via Liquid Neural Networks, and knowledge-driven augmen-
tation. This enhances its ability to handle complex tasks and capture intricate
patterns in the data.

Overall, the core design of the model aims to minimize the need for exten-
sive scaling by creating rich, input-dependent computational dynamics. This
approach forms a more expressive base module compared to tradition models,
enabling the model to handle diverse and complex data more effectively.

5.4.2 Hybrid learning strategy

5.4.2.1 Supervised information generation

The supervised information used in the SSL is generated by the methodology
shown in Fig. 5.15.

By using y as pseudo-ground truth labels, the model can align its predictions
with the actual task objectives, ensuring consistency between the self-supervised

129



5.4. A generic model incorporating the advanced PIML and SSL

Dense

Unlimited length GMP-1D | ] Dense
inout ® X Gated  Mam, Gated [ Output
! > - >® 5 Mamba —> Mamba —={{—> Sigmoid >
(Batch size, length, B ® “block ook W OH W T y
feature channels) , ComiD [
onv- —
Encoding Flatten Task
Self-supervised labels

label —
Unlabeled data Pseudo-ground truth labels

Figure 5.15: Generating labels for unlabelled data for supervised learning.

learning and the supervised learning goals. The encoded features z;, from the
pre-trained CNN-SSM modules in the data-driven branch contain rich informa-
tion about the input data. By using x}, as self-supervised labels, the model learns
to reconstruct these features, thereby capturing the underlying patterns and rep-
resentations of the data.

Generally, the codec-like approach uses the input data itself as the recon-
struction objective, learning to reconstruct the high-level representations. For
long sequence inputs, reconstructing the hidden layer output x;, is more compu-
tationally efficient than reconstructing the raw data. In addition, the hidden layer
output xp, from the pretrained CNN-SSM modules represents high-level features
and patterns. By reconstructing these representations, the PI branch aligns itself
with the informative abstractions captured by the pretrained CNN-SSM modules.

5.4.2.2 Simultaneous supervised and self-supervised learning

In “Step 2” hybrid learning, the proposed model expands the single-output struc-
ture to a dual-output architecture. During training, both the labeled and unla-
beled data are used. The loss function consists of two parts as shown in Eq. (5.2).
Both loss and val_loss contain the supervised degradation indicator prediction
loss and the self-supervised reconstruction loss. The term (2 — (loss, +loss,;, )) is
used to weight the validation loss based on the training loss, allowing the model
to dynamically adjust its learning.

The sum_loss design offers significant advantages over tradition validation
loss minimization, especially when using both labeled and unlabeled data. It dy-
namically balances supervised and self-supervised learning, adjusting the model’s
focus based on training loss. When training loss is high, sum_loss enhances fea-
ture representation learning. When training loss is low, it improves performance
on labeled data. This approach mitigates overfitting by weighting validation loss
more heavily when needed, guiding the model toward better generalization. Ad-
ditionally, incorporating self-supervised tasks encourages the learning of robust,
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semantically meaningful features, crucial for generalization on unlabeled data.
The sum_loss also accelerates convergence by effectively using unlabeled data
from the start, unlike tradition methods. Moreover, it provides a more flexible
early stopping criterion by considering both training and validation losses, en-
suring superior generalization performance.

sum_loss = loss, +loss,, +(2— (loss, +loss,, )) x (val_loss, +val_loss,, ) (5.2)

Where the suffix x;, represents the supervised validation loss on labeled data,
aiding the model in learning meaningful hidden representations. The suffix y
measures the model’s performance on pseudo-labeled data for the main predic-
tion task. The prefix val is the validation loss.

The addition of the hidden feature reconstruction decoder makes the model
structure heavy. To address this, in “Step 3” Joint training, the model is adjusted
to have a single output (degradation indicators) without the decoder part, making
it lightweight again. This is possible because the self-supervised reconstruction
task has already helped the model learn meaningful hidden representations dur-
ing the previous training stage.

5.4.3 Investigating the performance of liquid PI CNN-SSM
model

This section investigates the performance of the Liquid physics-informed CNN-
SSM model using a mixed cross-scenario dataset that fulfils the “4C” require-
ments. Table 5.3 provides an overview of the dataset’s characteristics. The mixed
dataset’s significance and composition, highlighting its cross-scenario nature
and the advanced methodologies used in the analysis, are introduced. For each
dataset, no data preprocessing is done other than the normalisation of its predic-
tion targets.

The model’s training process is optimized by dynamically monitoring and
adjusting key parameters. Monitors are set for several tasks: One halts train-
ing if there is no improvement in training loss for a specified number of epochs,
preventing overfitting and saving resources. Another saves the model’s weights
whenever the custom loss metric improves, preserving the best version of the
model. A learning rate monitor reduces the rate if the custom loss metric shows
no improvement for a set number of epochs, helping to fine-tune the learning
process and avoid plateauing. Additionally, a custom sum_loss monitor recal-
culates the custom loss metric at the end of each epoch by combining training
loss and weighted validation loss, ensuring validation performance is consid-
ered. These measures create a robust system for effective training, improving
generalization, and preventing issues like overfitting and stagnation.
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Figure 5.16: Prediction results of the same CNN-SSM with Physics-informed
CNN-SSM on multiple datasets.

Note that, Green: Ground truth value, Blue: CNN-SSM results, and Yellow: PI-
CNN-SSM results.
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Table 5.3: Cross-scenarios dataset introduction.

Cross-scenarios
content

Data characteristics (All on time series signal, end-to-end
model, without feature extraction)

Different studied
systems

Prognostia dataset (Bearing aging [178]), MIT dataset
(Battery aging [175]), Tool wear (Milling process tool
wear [184]), Composite material (Fatigue data for car-
bon fibre-reinforced polymers [185])

Diverse sampling
frequencies

Bearing (25.60 kHz), battery (1 Hz), Tool wear (500 Hz,
25 kHz), Composite material (150-200 Hz)

Multiple physics

Bearing (Vibration directions), battery (Voltage, Current,
Temperature, Charging time), Tool wear (Position control,

measurements tool position, motor torque, cut force), Composite mate-
rial (Axial position, Force, Rotation, Torque)

Varying sample | Bearing (2560), battery (2500), Tool wear (512), Com-

lengths posite material (1024)

Diverse predic- Bearing (Remaining useful life), battery (Remaining dis-

tion targets

charging cycles), Tool wear (Wear degree), Composite
material (Remaining cycles)

Suitable  input
length and maxi-
mum number of
channels

Supports 4K inputs (Max 4096 points), 4 channels

Mamba module (Linear computational cost) + Liquid

Hardware . . .
friend] physics branch (Input-based weights), processing 23.9 GB
Y data with 450 KB model size, supports parallel computation
Table 5.4: Updated prediction accuracy of different models.
Methods Bearing degradation Battery aging Tool wear Composite fatigue
CNN-LSTM 0.789 - - -
CNN-LSTM (SSL) 0.927
CNN-SSM 0.830 0.79 0.85 0.77
SEI-DCN - 0.91 - -
PI CNN-SSM(Hybrid learning) 0.900 0.87 0.91 0.86

The results in Table 5.4 and Fig. 5.16 compare model performances for bearing
degradation, battery aging, tool wear, and composite fatigue. The table shows er-
ror rates, highlighting the CNN-LSTM model’s improvement with SSL, achieving
the lowest error rate of 0.073 in bearing degradation. The proposed CNN-SSM
model has moderate performance with error rates from 0.15 to 0.23. The Physics-

133



5.4. A generic model incorporating the advanced PIML and SSL

informed CNN-SSM (PI CNN-SSM) model excels with the lowest error rates in
tool wear (0.09) and composite fatigue (0.14). The SEI-DCN model performs well
in battery aging with an error rate of 0.09.

Considering Fig. 5.16, the green lines present the ground truth values, the
blue ones indicate the CNN-SSM results, and the yellow ones show PI-CNN-SSM
results. For bearing RUL prediction, both models closely follow the ground truth,
but the PI CNN-SSM model’s predictions align more tightly, indicating superior
performance. In battery discharging cycles, while both models exhibit good fits,
the PI CNN-SSM consistently provides more accurate predictions. Similar trends
are observed in tool wear and CFRP tube remaining loading cycles, where the
PI CNN-SSM model’s predictions are more precise compared to the CNN-SSM
model. These visual results corroborate the quantitative findings, emphasizing
the PI CNN-SSM model’s effectiveness, particularly due to the incorporation of
physical knowledge.

However, while the PI CNN-SSM model often outperforms the CNN-SSM
model, it does not consistently do so across all datasets. This inconsistency sug-
gests that the model’s performance could be further improved by incorporating
operators with greater approximation expressiveness.

We further demonstrate the change in model performance before and after
incorporating autonomously discovered physical knowledge on unlabeled data
in different scenarios using polar violin plots. These plots combine kernel density
estimation with box-and-line plots to display data distributions and probability
densities. The violin-shaped curve represents the data distribution probability,
with wider sections indicating higher data density. The middle box plot shows
the five-number summary: the maximum and minimum of non-outliers, the up-
per and lower quartiles, and the median. Figures 5.17, 5.18, 5.19, and 5.20 il-
lustrate the results: the left half shows Physics-informed CNN-SSM after hybrid
learning and joint training, while the right half shows CNN-SSM with supervised
learning only.

Fig.5.17,5.18,5.19, and 5.20 compare the prediction errors between the Physics-
Informed CNN-SSM model and a generic data-driven model.

We can see from the violin plots that significant differences exist in the error
distributions between the two models across all 10 bearings. Compared to the
data-driven model, the PIML model generally exhibits smaller error ranges, as
indicated by the more compact violins. This suggests that incorporating physics
knowledge into the machine learning model leads to more consistent and ac-
curate RUL predictions. Looking at the specific error metrics, the PIML model
consistently outperforms the data-driven model. The MAE, represented by the
red lines, is lower for the PIML model in all cases. The 3rd quartile of errors (black
lines) is also significantly lower for the PIML model, indicating that 75% of the
PIML model’s predictions have smaller errors than the corresponding percentile
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Figure 5.17: Performance difference in bearing RUL predictions before and after
physics learning.

In order along the radius: green - Min error value, red - MAE, black - 3rd
quartile, blue - Max error value, Polar axis range [-1, 0.8]. The left semicircle is
the result of CNN-SSM, and there semicircle is the result of Liquid PI CNN-SSM.
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of the data-driven model.
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Figure 5.18: Performance difference in battery RUL predictions before and after
physics learning. Polar axis range [-1, 0.5].

The position of the error distributions relative to zero is also noteworthy. For
the data-driven model, the violins are mostly centered above zero, with the 3rd
quartile line (black) often above zero. This indicates a bias towards conservative
predictions, where the model frequently underestimates the remaining useful
life. In contrast, the PIML model’s error distributions are more centered around
zero, suggesting less bias and more balanced predictions.

It’s important to note that the prediction error is calculated as the true RUL
minus the predicted RUL. Therefore, positive errors indicate conservative pre-
dictions (underestimation of RUL), while negative errors indicate hazardous pre-
dictions (overestimation of RUL). The PIML model’s more balanced error distri-
bution, with the majority of the 3rd quartile lines close to zero, demonstrates its
ability to make more accurate and less biased predictions compared to the purely
data-driven approach.
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Figure 5.19: Performance difference in tool wear predictions before and after
physics learning.

Note that, Polar axis range [-1, 0.5].
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Figure 5.20: Performance difference in CFRP tubes remaining loading cycle pre-
dictions before and after physics learning.

Note that, Polar axis range [-1, 0.5].
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5.4.4 Interpretable outcomes of knowledge representation
after Hybrid learning

In addition to predicting results, we examined the interpretable knowledge learned
by the model within hidden layers. By analyzing the output weights of specific
“Liquid NN” layers, we investigate how these weights combine different oper-
ators under various input situations. This analysis demonstrates the model’s
knowledge representation process and enhances understanding of its internal
mechanisms. Using Bearing 1, Bearing 2, and Battery 1 cases, we loaded the
weights of the P CNN-SSM training model, created sub-models to freeze specific
layer weights, applied different activation functions, and visualized the weight
changes in Fig. 5.21, 5.22, 5.23, and Appendix E.6.

The adjustment of operator weights with degradation is common, showing
the model’s dependence on specific embedded features throughout the process.
This dependence is both operator-specific and channel-specific. For example, in
Fig. 5.21, 5.22, and 5.23, the predictions of 291”—; on different bearings in different
directions are consistently consistently show higher activation in channels 20
to 32. This indicates that operator combination weights vary for unmonitored
physical quantities of the same test object, and knowledge representation pat-
terns differ for the same monitored quantities across different objects.

The attention of the model is shifted between different operators, e.g., in
the near-failure phase, we observe a significant activation of the “0.5x” oper-
ator, which reflects the learning and adaptation of the model to the changing
degradation patterns in the data. In addition, %@”3) shows good generality
and smoothing properties, receiving long-term attention across different signals
and devices. For bearing degradation, operators with higher-order powers of the
input data receive the main attention, while for batteries, the focus is primarily
on lower-order powers.

In addition, we find that the abrupt shifts in attention seen in bearings are
absent in battery predictions, as shown in Fig. 5.21, 5.22. For bearings, attention
jumps across channels and operators, while for batteries, certain channels con-
sistently receive attention. We believe this discrepancy arises because bearing
measurement signals contain more noise. As bearings approach failure, the fault
signals become much stronger than the noise, causing attention shifts similar to
the sudden amplitude increases in the time series signals near failure.

All of this supports the chapter’s initial point that knowledge should be
dynamic. tradition PIML paradigms embed physical knowledge in fixed repre-
sentations, limiting their application and validation. This static approach relies
heavily on trial and error and empirical methods, underscoring the need for more
flexible, dynamic models.

Furthermore, the diverse operator combinations across channels on individ-
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Figure 5.21: Operator weight changes in the actively discovered knowledge
about the horizontal vibration during 1st bearing’s degradation.

Note that, the vertical axis represents the feature channel after initial data em-
bedding and operator processing in the high-dimensional space. The horizontal
axis represents the remaining lifetime decay process, with colors indicating the
weights assigned to the operators.
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Figure 5.22: Operator weight changes in the actively discovered knowledge
about the vertical vibration during 1st bearing’s degradation.
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Figure 5.23: Operator weight changes when actively discovering knowledge
from horizontal vibration signals during 2nd bearing’s degradation.
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ual weight maps indicate that tradition PIML struggles to rely solely on the non-
linear fitting capabilities of machine learning. This often necessitates stacking
complex, large-parameter deep structures, which hampers interpretability and
generalization. Combining different operators through channel weights offers a
cost-effective approach to multivariate and diverse knowledge discovery in Al
for science. This method enhances the generalization of hidden layer represen-
tations, aligning them more closely with known physics.

5.5 Conclusion

This chapter presented a comprehensive approach to developing a generic, end-
to-end cross-scenario physics-informed SSL model with active knowledge dis-
covery capabilities. It breaks through tradition PIML and SSL boundaries and
makes the following major contributions:

« Extending PIML to active knowledge discovery using gated neuron theory
and liquid neural networks. This allows for dynamic and flexible knowl-
edge representation, adapting to different input data. A physics discovery-
oriented unlabeled mining approach using E2NN-enhanced is developed
by applying gated neuron theory. E2NN uses inverse dynamics equations
to construct specialized neural layers, encoding physical knowledge through
activation functions and interconnections.

« Proposing an end-to-end data-driven model called CNN-SSM for cross-
scenario time series processing. This model efficiently handles varying
length sequences and supports a maximum input shape of (4096, 4) to op-
timize computational resources.

« Introducing a multi-step hybrid learning strategy that combines super-
vised and self-supervised learning. This strategy enhances data utilization
efficiency and improves the model’s performance by leveraging both la-
beled and unlabeled data with the downstream task matching knowledge
discovery as part of the SSL learning task.

« Validating the proposed liquid physics-informed CNN-SSM model on a
cross-scenario dataset that fulfills the “4C” requirements. The model demon-
strated superior performance compared to purely data-driven approaches.

+ Analyzing the interpretable knowledge learned by the model in the hidden
layers reveals the dynamics of combining weights of different operators in
various input situations. This analysis enhances the understanding of the
model’s internal mechanisms and knowledge representation.
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By eliminating the need for a priori knowledge and domain-specific exper-
tise, and enabling knowledge discovery from unsupervised data, this approach
addresses the issue of scarce knowledge in PHM. We aim to connect the discov-
ered knowledge to real-world problems and develop more expressive knowledge
operators. Additionally, by training models on both real and simulated data, we
can leverage the ability of these generic models to accept raw sequences of vari-
able lengths without the need for extensive data processing and augmentation,
effectively addressing the issue of limited data.
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CHAPTER 6

Conclusion and future work
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Our thesis offers multiple insights to answer the research question: How to
build a generic PHM model under sparse data and scarce physics knowledge con-
ditions. We have presented the novel theory, algorithms, and training strategies
of PIML and SSL, along with their applications to various PHM problems. This
chapter has 3 sections. We summarized our contributions in Section 6.1, dis-
cussed their insights in Section 6.2, and recommended future research directions
in Section 6.3.

6.1 Summary of our contributions

Our research contributes to the field in three key ways: enhancing existing method-
ologies, introducing and validating new approaches, and accelerating practical
implementation.

For the existing PIML strategy, our contributions are:
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« Mimetic theory proposal: We proposed “Mimetic Theory”, which repli-
cates physically-driven data flows by customizing ML operators and inter-
operator connections based on physical knowledge. This forms a standard
methodology for constructing PIML (Section 3.2).

« Constraint projection strategy: We developed a constraint projection
strategy to address the flaws of existing PIML methods lacking safeguard
mechanisms for embedding poor physical knowledge. This strategy en-
sures physical consistency and performance gains during the learning pro-
cess, validated through sequential feedback training in reinforcement learn-
ing (Section 3.3).

+ Generic PIML model architecture: We proposed a generic PIML model
architecture integrating constraint projection and response sequential learn-
ing (Section 3.4). This architecture features both physically-driven and
data-driven parallel branches, presenting a new perspective on embed-
ded knowledge and data-driven models. The “Pretraining, Physics Align-
ment, Joint Training” strategy guarantees PIML model to have the better
optimization during the learning process, using the original data-driven
model’s performance as a lower bound and the quality of embedded knowl-
edge as an upper bound to solve the problem of embedding bad knowledge.

For the existing SSL strategy, our contributions focus on:

+ Contrastive learning for RUL prediction: We leveraged degradation
characteristics in time-series data, using the differences in positive and
negative order of samples along the temporal direction as a contrastive
feature extraction strategy. This method underpins the effective applica-
tion of SSL in RUL prediction (Section 4.2).

« Upstream-downstream task alignment: We addressed the mismatch
between upstream and downstream tasks in SSL within PHM by integrat-
ing downstream task-related models into upstream pretext tasks. This en-
hances self-supervised training objectives with downstream task variants,
ensuring that features learned upstream are functionally relevant and ap-
plicable to PHM tasks (Section 4.3).

Beyond optimizing existing paradigms from structural simulation, computer
vision, and natural language processing, we further extend PIML and SSL in
Chapter 5:

+ Active knowledge discovery: We advanced PIML by incorporating ac-
tive knowledge discovery using gated neuron theory and liquid neural net-
works. This enhancement allows for dynamic and adaptable knowledge
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representation tailored to varying input data, reducing reliance on expert
experience and making knowledge acquisition and PI structuring more ef-
ficient.

« Hybrid learning strategy: We proposed a multi-step hybrid learning
strategy that combines supervised and self-supervised learning. This ap-
proach significantly improves data utilization and model performance by
leveraging both labeled and unlabeled data. It aligns knowledge discovery
with SSL task requirements, standardizing the learning process and en-
abling a seamless flow of information between labeled and unlabeled data.

Finally, our proposed methodology and model extend beyond theoretical and

laboratory validation to practical applications. We aim for our model to serve as
a prototype or basic architecture for a generalized PHM model. To ensure prac-
tical applicability, we considered the high computation efficiency and fast rea-
soning requirements essential for PHM deployment. Our model was validated
in scenarios meeting the “4Cs” requirements: cross-machine, cross-monitoring
timescales, cross-physical measurements, and cross-prediction targets. This com-
prehensive validation demonstrates the model’s robustness, adaptability, and po-
tential for real-world implementation in diverse PHM tasks.

 Efficient computational resources: We developed the CNN-Selective
State Space Model, which efficiently processes variable-length time series
with a maximum context input shape of (4096, 4). It operates effectively
on onboard computing power, maintaining a compact model size while
handling huge data.

- Easy implementation and versatility: Our liquid physics-informed CNN-
SSM model serves as a generic solution for cross-scenario datasets that
meet the “4C” requirements. It delivers superior performance, approach-
ing state-of-the-art levels of customized PIML models, and offers clear in-
terpretability of physical knowledge within its hidden space.

+ Scalable knowledge discovery: This approach facilitates knowledge dis-
covery from unsupervised data without requiring prior domain expertise,
addressing knowledge scarcity in PHM. It processes raw data sequences
of variable lengths without the need for preprocessing or augmentation,
simplifying implementation and enhancing data utilization.

6.2 Discussion of our key findings

This section aims to delve into the critical insights and challenges identified in
our research. We will discuss the implications of our findings, highlight the ad-
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vancements made, and address the ongoing challenges.

6.2.1 Insights and challenges in PIML and SSL for PHM ap-
plications

In Chapter 2, we conducted both qualitative and quantitative analyses of the
PIML and SSL approaches. Our research proposes a hybrid model development
roadmap with PIML and SSL as key approaches for handling sparse data and
scarce knowledge in PHM. We identified that PIML is predominantly applied in
material damage, aerospace, production equipment, and power grids, leveraging
extensive existing mathematical and physical modeling research. Conversely,
SSL finds applications in fault diagnostics and surface defect detection, with in-
creasing utilization of 2D image-based data.

Our literature review found that the existing studies focus on archi-
tecture development and different application cases without addressing
methodology foundation and deployment issues. Particularly, PIML re-
search has primarily integrated domain knowledge with advanced algorithms
to enhance robustness and accuracy. These studies aim to solve complex prob-
lems governed by partial differential equations and tackle issues like scalability,
training stability, and discontinuities. Concurrently, SSL research has empha-
sized improving model generalization in low-data scenarios, innovating archi-
tectures, and refining loss functions to better capture self-supervised representa-
tions. Both fields continue to face challenges such as computational com-
plexity, data quality sensitivity, and the integration of complex physical
laws and multi-physics phenomena.

Our research also revealed that PIML applications across different fields often
use similar mathematical formulas as the embedded knowledge. However, these
applications show both common and unique variations in their overall structure,
depending on the specific task. Furthermore, few studies address the impact
of poor-quality degradation knowledge in PIML, suggesting a need for a more
generic architectural approach and a clearer perspective on the relationship be-
tween embedded physical knowledge and ML models.

For SSL, there is a disconnect between upstream pretext tasks and down-
stream PHM tasks, highlighting the necessity for integrating downstream tasks
into upstream training. Additionally, PIML and SSL are highly complementary,
with PIML benefiting from physical knowledge and SSL capable of learning fixed
knowledge by pretext tasks. However, many PHM studies fail to explore this syn-
ergy, often relying on existing knowledge rather than discovering it through SSL
strategies. These insights underscore the need for innovative approaches to en-
hance the robustness, generalization, and practical application of PIML and SSL
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in PHM.

6.2.2 Building generic PHM model by thinking outside the
box

6.2.2.1 A generic architectural approach to PIML modeling

Chapter 3 demonstrated that various PIML architectures can be unified by intro-
ducing physics-based constraints at different stages of the ML pipeline. These
constraints, integrated as specific input-output relationships, significantly im-
pact model behavior, loss landscapes, and gradient calculations. Mimetic theory,
which employs customized layers and connections to replicate physical struc-
tures and behaviors, emerged as a key approach. This theory was applied in
the RFEMNN, which showed strong performance in diagnosing rotor compound
faults by learning physical relationships in the rotor system matrices.

However, traditional PIML models sometimes deviate from physical princi-
ples due to the unique optimization landscape created by explicit gradients and
higher-order derivatives. To address this, constraint projection theory was intro-
duced, reformulating the optimization problem to include physical constraints.
This method maintains model adherence to physical principles through a se-
quential learning process, enhancing the model’s ability to generalize to unseen
fault scenarios. The RFEMNN, fine-tuned with reinforcement learning, demon-
strated exceptional diagnostics performance in zero-shot, one-shot, and few-shot
settings.

The research identified the need for a generic PIML architectural solution. A
dual-branch architecture was proposed, consisting of a data-driven branch and
a physics-informed branch, integrated through a three-step training approach:
data-driven pre-training, physics-informed alignment, and joint training. This
framework ensures that the model retains the performance of data-driven models
while incorporating physical knowledge. In battery RUL prediction, this archi-
tecture significantly improved prediction accuracy and generalization, achieving
an average absolute error of 15 cycles with only 4 cycles of input data, highlight-
ing its effectiveness and potential for broader application.

6.2.2.2 SSL pretext task design considering downstream PHM tasks and
information

Chapter 4 explored the challenges and solutions for learning from unlabeled data
due to the difficulty and laborious nature of acquiring high-quality labeled data.
A novel SSL framework was introduced to enhance feature learning and improve
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model performance in PHM tasks by leveraging sequential information mining
and aligning pretext tasks with downstream requirements.

Key findings include the successful application of a contrastive learning strat-
egy to capture degradation trends by distinguishing features from different se-
quential directions. This approach, using a Siamese CNN-LSTM architecture
guided by a custom contrastive loss function, effectively learns robust degra-
dation feature representations. Incorporating failure time predictions as an in-
termediary step ensures that the learned features align with downstream RUL
prediction tasks. Validation through a case study on bearing RUL prediction
showed the framework’s superior performance, particularly when labeled data
is scarce. The model demonstrated stable error distribution and outperformed
state-of-the-art methods in median prediction error and error range. The ob-
tained results highlight the critical role of considering downstream task infor-
mation in pretext task design and the impact of model architecture on overall
performance. It also underscores the necessity of identifying the most expres-
sive parts of the pre-trained Siamese CNN-LSTM model for effective transfer to
downstream tasks.

These findings highlight the potential for developing more adaptable and
generalized prognostics models that can handle diverse operating conditions and
work effectively with unlabeled data. Such a pre-training task design and model
structure design strategy pave the way for future research in the field of SSL for
PHM applications.

6.2.2.3 Breaking the old PIML and SSL paradigms to solve the problem
of sparse data and scarce knowledge

Chapter 5 applied the improved PIML and SSL, that we developed before to
real-world scenarios, highlighting several key findings. First, the integration of
gated neuron theory and liquid neural network layer connections into PIML has
shown significant enhancements in dynamic and flexible knowledge represen-
tation, which is crucial for supporting self-supervised tasks effectively. Second,
the development of an enhanced E2NN model for torque monitoring in robotic
manipulators illustrated the effectiveness of active knowledge discovery. This
approach aligns with the generic PIML model, proposed in Chapter 3, demon-
strating the ability to discover inverse dynamics knowledge and improve diag-
nostics accuracy.

Additionally, the hybrid learning paradigm proposed in this chapter, which
incorporates SSL into the “Pretraining, Physics Alignment, Joint Training” strat-
egy, has proven to significantly improve model performance. By leveraging both
labeled and unlabeled data, this approach enhances data utilization and aligns
learning tasks with the physical knowledge required for RUL prediction.
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Besides advancements in the concept expansions of PIML and SSL Chap-
ter 5 also addressed the computation requirements during deployment. The
hardware-efficient lightweight CNN-SSM effectively combined data-driven and
physics-informed branches, capturing high-dimensional patterns and dynami-
cally generating weights and operators to handle complex tasks and intricate data
patterns. A key finding is its efficient use of computational resources, with par-
allel computing capabilities and linear scaling of computational complexity en-
abling large dataset processing without a significant increase in resource require-
ments. Furthermore, the proposed model is compact, processing large amounts
of degenerate data (e.g., 23.9 GB) with a relatively small model size of only 450 KB.
This allows reducing memory needs and speeds up inference, making it highly
suitable for real-world deployment.

Finally, the liquid Physics-Informed CNN-SSM model has been validated in
various degradation scenarios, meeting the “4Cs” criteria and achieving state-
of-the-art prediction performance. It consistently outperforms the generic data-
driven CNN-SSM model, demonstrating lower error rates in bearing degradation
(0.10), battery aging (0.13), tool wear (0.09), and composite fatigue (0.14). Visual-
ization through polar violin plots highlighted the model’s superior performance,
showing smaller error ranges, lower mean absolute errors, and less biased predic-
tions. These findings underscore the effectiveness of integrating physical knowl-
edge into machine learning models, enhancing their accuracy and generalization
capabilities across diverse real-world applications.

6.3 Limitations and Future work

Building on the previous key findings, this section addresses the limitations and
outlines potential directions for future work. While our results demonstrate the
transformative potential of models with enhanced internal dynamics and expres-
sive capacity in the PHM field, several challenges remain.

6.3.1 Limitation of the existing research

While the existing research shows a lot of exciting potential, there are still some
shortcomings that need to be improved.

1. The operator pool needs optimization. Currently, only one universal
operator for h,;s, has been identified, effective across various failure sce-
narios. This is attributed to the smoothness of /s, and its strong univer-
sal function approximation in neural networks. However, the remaining
operators are limited in their expressive power.
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2. The lack of an end-to-end information filtering mechanism. This
drawback affects operator weight changes during knowledge discovery
about the current signal and at various stages of degradation. The weight
change graph shows discontinuous changes resembling water mist, indi-
cating noise interference. This section suggests that masking-induced sig-
nal noise, especially in high-frequency cyclic time-series vibrations, high-
lighted the absence of an effective information-filtering mechanism. The
interference is not solely due to noise but also from irrelevant information
affecting some operators.

3. The current learning strategy is not efficient enough. During the hy-
brid learning phase, the model doesn’t make full use of the labeled data.
Currently, the model only considers the validation loss on labeled data af-
ter training with pseudo-labeled data, which is a passive approach. This
method lacks the active feedback mechanism found in reinforcement learn-
ing, where both strategy and value losses are used. A more proactive ap-
proach would involve using both types of data to generate feedback and
guide the learning process.

4. The current model cannot yet cross task types. It does not achieve ab-
normal detection, fault diagnostics, and prognostics in a grand unification,
and similarly lacks the multi-modal ability to time arbitrary format input
grand unification.

6.3.2 Future perspectives

We posit that a model with greater internal dynamics and expressive capacity is
more likely to transform the PHM field, similar to how transformer-based GPT
has revolutionized NLP. Our bold prediction is that “the expressive power of the
basic computational unit determines the model’s intelligence and generalization”.
This vision in PHM requires extensive reflection and further development, with
significant potential for future work in the following key areas:

+ Scaling law application. Expanding the model’s scale and training it
on more extensive computational resources could enhance its capacity to
represent complex internal dynamics, following the scaling law principle
in Al development.

+ Pre-trained datasets. Developing pre-trained datasets encompassing di-
verse monitoring time series and modalities across the industry is crucial.
Although proprietary data poses challenges, simulated and synthetic data
can effectively facilitate knowledge learning.
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 Synthetic data exploration. Leveraging a vast corpus of synthetic knowl-
edge to train PIML and SSL models, and developing a Liquid CNN-SSM
trained on cleanly degraded simulated data, represents a promising ap-
proach.

« Cross-modal knowledge dynamics. Aligning diverse data forms, in-
cluding two-dimensional images and higher-dimensional video data, to
capture cross-modal knowledge dynamics is vital for the development of
generalized PHM models.

« Integration of discovered Knowledge. Integrating newly discovered
knowledge with existing human knowledge obtained from experiments,
observations, and simulations can achieve consistent expressions and in-
sights, influencing the design of next-generation products and optimizing
operation and maintenance strategies.

These future directions highlight the potential for further refining and ex-

panding the approaches presented in this thesis, paving the way for more ad-
vanced and generalized PHM solutions.
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APPENDIX A

Appendix of Introduction

A.1 “Ill-posed” problematic nature

We approach the modelling of PHM from the perspective of inverse modelling, as
represented in Eq. (A.1). Here, A;,,, : X — ) is an operator representing the in-
verse PHM model, p;,, € X is the system state or parameter to be estimated (e.g.,
RUL, degradation states, faults), and G;,,, € ) is the observed data (e.g., sensor
measurements, operational parameters), where €;,,, (t) represents the compound
noise and model uncertainties.

In PHM, “ill-posed” occurs when Hadamard’s conditions for well-posedness
are violated. These conditions require that a solution to a problem should exist,
be unique, and depend continuously on the input data (stability):

+ The existence condition is violated when the observed data falls outside
the range of the PHM model. This violation often results from model lim-
itations that fail to capture all potential system behaviours within “Sparse
and noisy data.” “Scarce knowledge” exacerbates this issue by affecting ac-
curately define A;;,,. Unknown failure mechanisms and complex system
interactions mean that A;,, is often an approximation, leading to model
uncertainties. As a result, an exact solution p;,, that satisfies Eq. (A.1) and
perfectly aligns with the observations G;,,, () may not exist.

+ The uniqueness condition is compromised when multiple system states
can produce identical observations. Uniquely determining the system state
is difficult with insufficient information, resulting in an underdetermined
system where the number of unknowns exceeds the number of equations.
There are infinite sets of possible solutions that equally fit the available
data. Furthermore, model simplifications and intrinsic limitations in sens-
ing capabilities can result in non-injective mappings in A, (Piny, t), as
it introduces additional ambiguity in the mapping between system states
and observations, potentially increasing the set of system states that could
produce the same observed data.
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A.1. “lll-posed” problematic nature

« The stability condition is breached when A4;,,, is highly sensitive to in-
put perturbations. This manifests as substantial variations in the estimated
system state due to measurement errors or noise. Data sparsity aggravates
this issue by amplifying the influence of individual singular measurements.
Additionally, the nonlinear nature of many PHM problems leads to situa-
tions where small changes in input can cause disproportionately large vari-
ations in output, further destabilizing the model. The model uncertainties
represented by AA;,, add another layer of instability by propagating the
small errors in the system.
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Appendix: Litterature review
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B.1. Supplementary notes on PIML and SSL in PHM

B.1 Supplementary notes on PIML and SSL in PHM

B.1.1 Statistical analysis of PIML in PHM

The observations of Table. B.1 is summarized as follows:

« Table. B.1 details the training and testing metrics used in PHM tasks such as
condition monitoring, fault diagnostics, and Remaining Useful Life (RUL)
prediction for evaluating PIML models. Metrics like Mean Square Error
(MSE), Mean Absolute Error (MAE), Precision, Recall, and F1-score are uti-
lized, with MSE, MAE, and RMSE being the most common at 35.7%, 20.0%,
and 10% respectively.

« Paper [69] applies binary cross-entropy, typically used in classifications, to
predict degradation levels, transforming them into a classifiable format.

+ The choice of embedded knowledge in PIML models often appears sub-
jective and closely linked to the types of monitoring signals used, such as
the correlation between strain signals and structural damage or between
temperature and fatigue. This suggests a practical approach to embedding
knowledge by leveraging available monitoring data.

« Table. B.1 also specifies the monitoring signals used in each task, predom-
inantly one-dimensional time-series data like displacement, voltage, and
temperature, with a minor focus on two-dimensional image signals.

+ Predominantly, PIML applications target structural health monitoring us-
ing signals mainly derived from vibration and stress. The diversity of met-
rics and signals across PIML studies underscores the complex, multidimen-
sional nature of PHM tasks, emphasizing the need for tailored approaches
that align with specific application needs and system characteristics. This
diversity serves as a guide for selecting suitable evaluation measures and
sensor inputs in PHM applications.
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B.1. Supplementary notes on PIML and SSL in PHM

Table B.1: Summary of the training metrics, testing metrics, and monitoring
signals for PIML according to PHM tasks.

Ref. Train metric Test metric Tasks Signals
(186] Displacement, volt-
[187], [96], MSE MSE CM age, vibration, cur-
[ 4 8] rents, time measure-
ments
Precision, re-
[188], MAE, Cross- call, Fi-score, Vibration, acoustic,
[100], [74], entropy loss, accuracy, CM image, temperature,
[86], [41], Customized macro F1, FD power, pressure, air
[80], [16] design loss G-mean, flow
RMSE
Confusion Temperature,
[43], [27], matrix, recall, pressure, fuel co-
[38], [101], precision, efficient, acoustic
[189], MAE MSE f-measure, signal, strain,
[190], [66], Binar’ cross—’ Pearson torque, acoustic
[191], [94], entroy correlation emission, magnetic
[55], [192], Custorz,ize d coefficients D flux leakage image,
[59], [90], loss.  Similar- test, Relative far-field loads, stress
[54], [98], ..~ .. percentage ratio, corrosivit
ity  distance, . Y
[95], [34], Kernel norm error, Cate- index, ultrasonic
[193], [60], gorical cross- signal, guided wave
[99], [79], entropy, MAE, signal, mode shapes
[97] Customized signal, wave data,
metric stress
1941, (20], .
%47]] [1[95} a_A\ distribu-
[23]’ [88]’ tion accuracy, Phase field images,
(19 6,] 7 1]’ Cross-entropy One o toler- vibration, voltage,
(1 97]’ ;3 1]’ loss, MAE, ance interval, RP current, temper-
s S ature, capacities,
[65] ’ [52]’ RMSE RMSE, MAE paciti
1 98,] [ 1]’ R2, Relative stress or strain
(18] ’ ’ error rate

Continued on next page
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B.1. Supplementary notes on PIML and SSL in PHM

Table B.1 - continued from previous page

Ref. Train metric Test metric = Tasks Signals
Forces, vibrations,
[45], [199], MAE MSE MAE, RMSE, acoustic signal,
[91], [40], Binar’ cross—’ F1-score, cutting speed, tem-
[200], [58], entroy MAPE, perature, stress or
[201], [69], 24 NMAE, Sensi- image, spindle mo-
Customized .. .
[63], [202], loss. NMSE tivity analysis, DP tor current, far-field
[56], [84], RMéE Ne _’ absolute error stress, viscosity,
[53], [64], ative ’ lc;g variance, wind speed, rise
[83], [30], .., . & Discretization time, displacement,
likelihood
[203] error stress, crack length,
pressure

CM: Condition monitoring, FD: Fault diagnostic, RP: RUL prediction, DP: Degra-
dation prediction.

B.1.2 Statistical analysis of SSL in PHM

Planetary gearbox RUL prediction, Complex groove welding monitoring, Pot-
hole detection power line insulator detection, Screw product surface defect de-
tection, Ductile cast iron pipe defect classification, Aeroengine turbine blade
defect detection, Corrosion detection in marine vessels, Stamping progressive
die anomaly detection, Oil and gas pipeline defect detection, Civil infrastructure
damage and corrosion detection, Laser powder bed fusion anomaly detection,
Cyber-physical power systems fault diagnosis, Helical gearbox defect detection,
Industrial blower ball bearing condition monitoring, Flatness defect classification
in the steelworks industry)

Table B.2: Summary of applications, models, and signal types for SSL in PHM.

Application Dataset/Case Ref. Models Signals
CNN, GAN,
Semiconductor WM-811K wafer 5)24’ ggg’ PatchCore, En- oD
manufacturing map dataset ’ ’ semble learning,
208,209] o0

Continued on next page
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B.1. Supplementary notes on PIML and SSL in PHM

Table B.2 - continued from previous page

Application Dataset/Case Ref. Models Signals
GAN, Autoen-
MVTec AD [210, 211, oden  ONN
. Attention
Industrial prod- dataset, DAGM 212, 213, mechanism
uct surface defect dataset, AITEX 214, 215, ’ 2D
) . Transformer,
detection dataset, magnetic 216, 217, )
. Contrastive
tile dataset 218, 219] )
learning, Capsule
network
CWRU  bearing %’irrll\;[f"ormerCNN,
XJTU-SY ’
dataset, JTU-S [220, 221, Autoencoder,
bearing dataset, ) 1D, 2D,
IMS bearin 222, 223, Attention mech- D time
Rolling bearing & 224, 225, anism, GRU, .
X . dataset, Pader- ) series,
fault diagnosis 226, 227, Contrastive .
born dataset, ) 2D time-
self-made ex- 216, 228, learning, ~ Ran- frequenc
. . 229, 230] dom forest, q y
periment rig
Wavelet trans-
dataset
form
NEU-Seg dataset,
Steel surface de- Severstal Steel [231, 232, lilt\ig’ltion n?il;ll_’ oD
fect detection Defect Detection 233] Anism
(SSDD) dataset
CNN, LSTM,
Autoencoder,
Transfer learn-
) ing, D i
Rotating machin- Motor  bearing  [234, 235, :(Iiga tation Ofélsgf 1D, 1D
er faui diagno- dataset, CWRU 236, 237, trasI;ive lee’lrnin tim’e
, Y & dataset, gearbox 238, 239, & )
sis dataset 240, 225] Transformer, series
’ GAN, LSTM
Autoencoder,

Stacked Denois-
ing Autoencoder

Continued on next page
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B.1. Supplementary notes on PIML and SSL in PHM

Table B.2 - continued from previous page

Application Dataset/Case Ref. Models Signals
LSTM, CNN,
Transformer,
Autoencoder,
Attention mech-
i i 1D 1-
Wind turbine VZ:;SOX turb1Vn: anism, Meta tiv;i\i/[alie
fault  diagnosis & . [241, 242, learning, Wiener .
) bration data, . time
and remain- . 243, 244, process, Semi- .
) . SCADA and vi- ; series,
ing useful life . 245, 246] supervised learn-
- bration data from . . Time
prediction . : ing algorithms, .
wind turbines . series
Variational
Autoencoder,
Kernel Density
Estimation
s GAN, CNN,
Lithium ba’Ftery - [247, 248] Markov  chain, 2D, 3D
defect detection
Neural network
1D, 2D
Centrifugal Centrifugal ’
. . CNN, Con- kur-
pump fault pump vibration [249] ) .
. . trastive learning  togram
diagnosis data .
images
Air conditioning
system fault de- - [250] Machine learning 1D
tection
Nuclear power Simulated time- 1D, 2D
plant fault detec- series data from (251, 252] CNN, Diffusion 1p1aged
tion nuclear power model time-
plants series
CNN, LSTM,
Electrical equip- Simulated data of (253, 254 Contrastive 1D, 2D,
ment fault diag- induction motor 5 42]’ " learning, Ma- Time
nosis faults chine learning series
algorithms
Kernel PLS,
Chemical process E;nesse;roizzz- LSTM, VAE, ;13;:[;2_
fault  detection .  [255] Reduced Kernel .
. Chemical process . time
and monitoring Partial Least .
datasets series

Squares

Continued on next page
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Table B.2 - continued from previous page

Application Dataset/Case Ref. Models Signals
Aircraft turbofan LSTM, Autoen- Multivariate
engine remaining C-MAPSS coder, Trans- .
) . [243, 256] . time se-
useful life predic- datasets former, domain ries
tion adaptation
Pl -
anetary gear Planetary gear- LSTM, Fractional ..
box  remaining . . Time se-
. . box degradation [244] Generalized )
useful life predic- . ries
. data Pareto Motion
tion
Cyber-physical IEEE 118-bus Multivariate
power systems system simulated [257] GAN time se-
fault diagnosis data ries
Current magni-
Transformer o
. tude and phase Multivariate
bushings LSTM  Autoen- .
angle data from [258] time se-
anomaly de- coder .
. transformer ries
tection .
bushings
Monitoring
and brior- Sparse  autoen-

) coder, CNN, 1D time,
mal detection [259, 260, Attention and  multi-
across different no specific men- 261, 262, )

) ) transformer, variate
manufacturing tioned 238, 169, L
and  industrial 263] Markov —transi- time
.. tion field, LSTM, series
transmission
) Autoencoder
settings

Continued on next page
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Table B.2 - continued from previous page

Application Dataset/Case Ref. Models Signals
CNN, Segmen-
tation model,

Including but not Location-aware

limited to defect [264, 265, CNN, Neighbor-

detection, qual- 266, 267, hood coordinate

ity inspection, 215, 240, descriptor,

and anomaly 268, 166, Denoising au-

monitoring no specific men- 269, 270, toencoder, Con- oD

across  various tioned 225, 271, trastive learning,

industries  like 272, 273, GGaussian den-

aerospace, civil 253, 227, sity estimation,

infrastructure, 274, 275, Siamese net-

electronics, and 276] work,  Entropy

automotive pruning, Image
segmentation,
GAN

In Table. B.2, the signal used in SSL for PHM span 1D, 2D, and multivariate
time series data. Compared to PIML, 2D image-based data is prevalent in SSL
applications. Time series data, both univariate and multivariate, is majorly en-
countered in applications like rolling bearing fault diagnosis, wind turbine fault
diagnosis, and aircraft turbofan engine RUL prediction. In addition, the models
commonly used in SSL include convolution neural networks (CNN), long short-
term memory (LSTM), auto-encoders, transformers, and generative adversarial
networks (GAN).

B.2 Review articles on PIML

The review articles in Table. B.3 section has provided valuable insights into PIML,
including the establishment of a PIML taxonomy, the identification of key re-
search challenges, and the recognition of PIML as a promising approach to ad-
dress issues such as physical consistency, data scarcity, and model interpretabil-
ity. However, these existing reviews primarily focus on the methodological as-
pects of embedding physics within machine learning architectures and do not
specifically address the unique challenges and applications within the field of
PHM.
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B.2. Review articles on PIML

Table B.3: Existing review papers that mention PIML in PHM

Authors Topics Challenges Taxonomy
- Discretization ap-
proximation of the
continuous sys-
Cyber- tem behavior in a | - Physics-based data
Rai, Rahul, | physical chaotic  environment | pre-processing -
and Chan- | system’s - Scenario-oriented | Physics-guided ML
dan K. | dynamic PIML hybrid frame- | algorithm  structure
Sahu[277] | behavior work - Efficient | design - Physics-based
modeling extraction of causal | ML regularization item
and model parameter
relationships in big
data
Englneerlr}g - Embedding in- | _ Physics-based reg-
: and envi- | complete physics T .
Willard, i ularization item
. ronmental | knowledge - Keeping | . .

L, Jia, X, systems hysical consistency in | 1. ML algorithm -
Xu, S., yster puysicarc y Physics-guided ML
, modeling, | data mining - Sparse | . .. .~ © .
Steinbach, model data and uncertaint initialization - Physics-
M.[278] . e Y informed ML algorithm

solving quantitative identifica- . .
X architecture design
methods tion
Physics-
informed - Designing  prior o
Kim, S. W,, | deep learn- | informed deep learn- Physms. 1nfo‘rmed
. . . Feature engineering -
Kim, L, | ing in | ing framework - ML ..
. - . Physics-informed NN
Lee, J., Lee, | dynamical | training data scarcity ]
S.[279] systems - Keepin hysical structure - Physics-
) ysten \CepIng - phy informed loss function
behavior consistency
modeling
- Parallel/Series
- ML black-box nature | physics-ML combi-
Jan Ha- .. . .. .
Condition explanation - Training | nation  structure -
gendorfer, monitoring | data scarcity - Keeping | Physics-based  regu-
Elias[280] & y - heepimg | Ty &

physical consistency

larization item in ML
objective function
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B.2. Review articles on PIML

Table B.3 — Continued from previous page

Authors Topics Challenges Taxonomy
- Physics-based data
. pre-processing -
Finegan . .
, Battery . . Physics-guided ML
D. P, Zh K h 1 - . .
P LU ell  state | o oPinE physical con algorithm architecture
], Feng, - sistency . .
prediction design - Physics-based
et.al.[19] e .
regularization item in
ML algorithm
- Physical model bias
Data  cu- . .
. - Non-interpretable | compensation and
L ration and - ..
Jianjing model prediction logic in | unknown parameters
Zhang, . deep learning - Error | estimation via deep
interpre- . .. . .
Robert X. tation  for | °F imbalance training | learning - Involving
Gao[281] data - Data and data | Physics-constraints
smart man- . . .
. labels scarcity into deep learning
ufacturing .
training
Reliability | - Scenario-oriented
analysis PIML hybrid frame-
Xu, Yan- | and risk as- | work and its com- .
. . - Physics-informed
wen and | sessment, | putational efficiency . .
architecture - Physics-
Kohtz, Uncer- - Incompleteness of informed loss function
et.al.[282] | tainty physics knowledge and
quantifica- | limited representatives
tion of the training dataset
- The need for accurate
and reliable data to
create an accurate o
digital twin model - | | Mgdlfylng the loss
Thelen . function - Generat-
Integrating data from | . .
Adam, . ing  synthetic data
. . different sources and .
Zhang Xi- | Physical . - Pre-training on
formats - Scaling up .
aoge, and | system . . physics-based data
. . the digital twin model .
Fink Olga | modeling to larser and more | Correcting  mod-
et al.[283, com 15{ svstemns - els with unmodeled
284] P Y physics - Learning to

Validating the digital
twin model against
the physical system it
represents

predict inputs
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B.3 Focus of existing doctoral theses

Phd thesis on PIML.

Table B.4: Summary of recent PhD theses on physics-informed machine learn-

ing (PIML).
Ref. Year | Focus Contribution
Integrating domain | Developed approaches to incor-
knowledge into | porate domain expertise into
Mann, .
Vipul [285] 2024 | language  models | language models for improved
P for process systems | accuracy, interpretability, and
engineering generalization
Investigated challenges and
Theoretical founda- | limitations of PINNs and
Wang, 2023 tions, algorithms, | DeepONet; proposed loss
Sifan [286] and applications of | re-weighting algorithms and
PIML architectures for improved
performance
. Introduced manifold embedding
. Geometry-informed . .
Bahmani, Ba- . data-driven paradigm and geo-
2024 | data-driven me- .
hador [287] . metric autoencoders for learn-
chanics . . .
ing noise-free embeddings
Nonlinear system | Developed methods for extract-
Romeo, Shafi 2023 discovery and ma- | ing physics from data, including
A.S. [288] chine learning for | sparse identification of nonlin-
dynamical systems | ear dynamical systems (SINDy)
Demonstrated PINN’s  abil-
PINN for solving | ity to solve heat conduction
Russell, parametric, nonlin- | problems with parameterized,
. 2023 .
Collin [289] ear heat conduction | temperature-dependent mate-
problems rial properties without training
data
K;?;Zilediie dorrialitri: Developed hybrid frameworks
Huynh, Phat & . combining physics-based mod-
2023 | informed machine . . .
K. [290] els with machine learning for

learning and multi-
scale modeling

various damage scenarios

Continued on next page
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Table B.4 - continued from previous page

Ref. Year | Focus Contribution
Physics-informed
data-driven models | Introduced hybrid models for
Ghaderi, 2023 for inelastic, aging, | predicting durability and prop-
Aref [291] failure behavior | erties of elastomers under envi-
of crosslinked | ronmental damage
polymers
Physics-infused Demonstrated improved perfor-
LSTM for marine | mance of physics-infused LSTM
Haque, Tas- . .
. 2023 | vessel track associ- | over physics-based models for
miah [292] . . 1 e
ation based on AIS | vessel tracking with time gaps
data and overlaps
Combined physics-based mod-
. Applications of | eling with machine learning for
Ansari, . . . . .
2023 | PIML in chemical | computational fluid dynamics,
Mehrad [293] . . . : . .
engineering epidemiological modeling, and
peptide design
PINNS for ultrasonic | Explored PINN as an alternative
Stone, guided wave propa- | to FEM for efficiently simulating
2023 . . : . . .
Thomas [294] gation in solid me- | ultrasonic guided wave inspec-
dia tions
Understanding Employed meso-scale modeling,
chromatin re- | manifold learning, and convo-
Alvarado, . .
2023 | modeling through | lutional autoencoders to study
Walter [295] . : .
physics-based chromatin folding and tetranu-
machine learning cleosome motifs
. Strl'lctured' illumi- Developed  physics-informed
Dajkhosh, nation microscope . .
. GAN with attention-based
Seyedeh 2023 | image reconstruc- . .
. . super-resolution for improved
P. [296] tion using unrolled 3D-SIM imace reconstruction
PIGAN ge reconstru
Designed physics-informed ar-
Interpretable PIML | chitectures and representation
Lu, Peter methods for scien- | learning methods for system
2023 . . . . . .
Y. [297] tific modeling and | identification, spatiotemporal

data analysis

analysis, and conservation law
discovery

Continued on next page
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Table B.4 - continued from previous page

Ref. Year | Focus Contribution
Data-physics driven Developed hybrid data-physics
Yu, Yang [298] | 2023 | reduced order ho- driven app ?oaCh for re'duced-
mogenization order multiscale modeling of
& complex material systems
Phvsics-informed Introduced orbital-based ge-
nleal approaches ometric deep learning and
120, uo- . stochastic process models for
: Zh 2023 | for Ir)rf)ultlscale hastic p dels f
ran [299] molecular modelin predicting quantum chemical
and desien & properties and protein-ligand
& complexes
Prantikos PINN solution of | Demonstrated feasibility of
Konstanti,— 2022 point kinetics equa- | training a PINN to solve point
nos [300] tions for nuclear | kinetics equations for a startup
reactor monitoring | transient of the PUR-1 reactor
Phvsics-informed Introduced El-UNet architecture
Kamali deey learnin and self-adaptive spatial loss
Al [301] 2023 forp uasi-stati% weighting for improved accu-
elasticit qima in racy in solving inverse elasticity
y unagmeg problems
Developed approaches to in-
Wan Physics-guided deep | corporate physical constraints,
Rui [%’8 6] 2023 | learning for dynam- | leverage multi-fidelity data, and
ics forecasting embed symmetries for improved
generalization
Physics-aware Proposed physics-aware GANS,
Rahman, deep learning for | domain adaptation, and cross-
Mohammad 2023 | radar-based cyber- | modal fusion for data-efficient
M. [302] physical human | learning from multi-frequency
systems radar
Introduced TinyNS framework
Saha, Swapnil 2023 Physics-aware tiny | for automated neurosymbolic

S. [303]

machine learning

architecture search within hard-
ware constraints

Continued on next page
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Table B.4 - continued from previous page

Ref. Year | Focus Contribution
PINNs for solving D?Veloped rpu.ltl-ﬁdehty qu-
Aliakbari forward and inverse cling combining low-fidelity
i 2023 : CFD with PINN and ensemble
Maryam [304] fluid flow and heat .
PINN for improved accuracy
transfer problems .
and uniqueness
PIML models for | Explored PINN, DeepONet, and
Seman, 2023 PDEs with appli- | FNO for solving heat diffusion
Matthew [305] cations to laser | PDE in multi-layer skin and oc-
bioeffects ular tissue models
PIML: from con- Asses§ed scalability of PIML
Moseley, Ben- techniques to complex, real-
. 2022 | cepts to real-world . .
jamin [306] L world problems in lunar science
applications .
and geophysics
PINNs for solving | Developed modal approach
Raynaud, Gaé- 2021 fluid-structure prob- | and investigated robustness of
tan [307] lems in turbine-like | PINNs to incomplete, sparse, or
phenomena noisy measurements
Physics-guided ma- | Proposed frame invariant neural
Pawar chine learning for | network and concatenated neu-
Sura; E308] 2022 | turbulence closure | ral network for data-efficient,
J and reduced-order | generalizable turbulence model-
modeling ing
Investigated physics-informed
Desai, PINNs for data- archlt?ctures for learr'nng‘ bi-
2021 . ) ases, integrators, Hamiltonians
Shaan [309] efficient learning
to model complex systems from
sparse data
Incorporated imaging physics
into neural networks via algo-
Monakhova, 2022 PIML for computa- rithm unrolling, differentiable

Kristina [310]

tional imaging

models, unsupervised learning,
and GANs

Continued on next page
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Table B.4 - continued from previous page

Ref. Year | Focus Contribution
Thermodynamically
consistent physics- | Developed data-driven solvers,
He, Xiao- 2022 informed data- | autoencoders, and non-
long [311] driven computing | intrusive ROM for nonlinear
and reduced-order | materials modeling
modeling
Modeling water
waves and sediment | Developed coupled flow-wave
Wang, 2023 transport using | models, soft computing models,
Nan [312] physics-based and | hybrid approaches, and PINNs
machine learning | for nearshore processes
methods
Embedding physics Proposed convolutional-
. . recurrent PINN, super-
Ren, Pu [313] | 2022 intodeep .learnmg resolution, and sparse re-
for modeling spa- .
tiotemporal systems gression for' forward and
inverse modeling of PDEs
Freeway traffic | Developed hybrid PIML, PGML,
Zhang flow modeling and | and PG-LSTM for improved ac-
y 2022 | forecasting  using | curacy and generalization in
Zhao [314] . ) .
physics-guided traffic state estimation and pre-
machine learning diction
Developed Proximal Bilateral
. PIML models for Randqm Projection f9r event
Kong, Xiang- 2022 | power transmission detection and physics-based
hao [315] neural ODEs for generator
systems . .
parameter estimation from
PMU data
Demonstrated PINNs’ ability
Thunde, Application of | to honor governing physics
Thelma 2022 | PINNs to composi- | in compositional fluid flow
A. [316] tional modeling modeling compared to standard

neural networks

Continued on next page
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Table B.4 - continued from previous page

Ref. Year | Focus Contribution
PINN  framework | Developed preprocessing
Cofré Martel, for prognostics and | methodology and interpretable
Sergio Manuel | 2022 | health management | PINN-RUL framework for re-
Ignacio using big machinery | maining useful life estimation
data in complex engineering systems
Investigated combining
PIML for wuncer- | physics-based models with
Kapusuzoglu, . . . . . .
2022 | tainty quantification | machine learning for design
Berkcan [317] o o .
and optimization optimization under uncertainty
in additive manufacturing
Developed  physics-informed
learning to incorporate sym-
Ghosh, Aban- 2022 PIML for optical | metries and solve eigenvalue
tika [318] metamaterials problems in electromagnetic
metamaterial design and char-
acterization
Reduced-order Demonstrated hybrid physics-
Behl,  Mark 2020 modeling using | ML reduced-order models for
V. [319] reservoir simulation | efficient and accurate reservoir
and PIML production forecasting
Sparse-sensor Developed PINN for guided
. structural ~ health | wave  reconstruction  and
Zargar, Sakib . . . .
A. [320] 2022 | monitoring via | deep learning models for im-
’ physics-informed pact/damage diagnostics from
deep learning reconstructed wavefields
Physics-informed ?ntroduced‘ Bayesian learn-
. ing, sparsity-promoted PIDL,
Chen, learning of complex .
2021 . symbolic  neural networks,
Zhao [321] systems with sparse . .
data and Bayesian physics-encoded
forecasting for sparse data
PIML and uncer- | Extended FROST method for
Fuks tainty propagation | uncertainty quantification and
Olga [322] 2020 | for multiphase | investigated PIML for handling

transport in porous
media

shocks in two-phase transport
PDEs.

Phd thesis on SSL. The thesis related to SSL highlights several major contri-
butions to the methodologies development of SSL. Improved architectures and
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loss functions have been proposed, including novel neural network designs (e.g.,
Siamese networks, autoencoders) and objective functions (e.g., contrastive loss,
reconstruction loss), which enhance self-supervised representations [323, 324,
325]. Multi-modal and cross-modal methods have been developed to leverage
complementary information from multiple modalities (e.g., audio-visual data),
enabling applications in diverse domains [326, 327, 328]. The combination of self-
supervision with semi-supervised learning has emerged as a promising paradigm,
where self-supervised pre-training followed by fine-tuning on a small labeled
dataset improves performance in low-data regimes [160, 329]. Additionally, the-
oretical analyses have provided insights into the principles of SSL, such as con-
nections to mutual information estimation and the role of data augmentations
[168, 330].

In applications, SSL has been effectively applied across various domains to
enhance the generalization ability of diagnostic models and improve performance
in scenarios with limited labeled data. In biomedical data analysis, techniques
have been used to analyze electrocardiogram signals and x-ray images, result-
ing in improved diagnostic models [329, 331]. In human activity recognition,
SSL has enabled the development of robust models using unlabeled sensor data,
with applications in healthcare, entertainment, and fitness [332, 167]. For in-
dustrial monitoring, these techniques have been utilized for tasks such as defect
detection in wafer maps and learning representations for machine vision [327,
324]. In computer vision, self-supervised methods have been widely applied to
problems like object recognition, tracking, and representation learning, support-
ing downstream tasks such as few-shot learning and domain adaptation [333,
325, 232]. Additionally, in natural language processing, SSL has facilitated the
development of efficient representations for text data with limited annotations,
benefiting applications like sentiment analysis, and machine translation [166].

Ref. Year | Focus Contribution

Developed methods for making
Al systems more explainable to
humans and applicable to scien-
tific problems

[334] 2024 | Explainable Al

Proposed using sparse symbolic
regression to learn causal dy-
[330] 2024 | Dynamic causality | namic equations from data and
applied it to counterfactual rea-
soning

Continued on next page
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Table B.5 - continued from previous page

Ref. Year | Focus Contribution
Developed representation
[335] 2024 I?omain generaliza- | learning techniques to improve
tion model performance on new
domains
Combined semi-supervised
[160] 2023 Semi-supervised learning with self-supervision
learning to handle both closed-set and
open-set scenarios
Advanced  theoretical un-
(326] 2024 Multi-modal learn- ders’FanQing and p'ractical
ing applications of multi-modal
deep simultaneous learning
Demonstrated the effectiveness
[(327] 2093 Industrial monitor- | of self-supervised learning tech-
ing niques for monitoring industrial
environments
Proposed efficient methods for
[161] 2023 Few-shot and semi- | few-shot and semi-supervised
supervised learning | learning in computer vision
with limited labeled data
Augmented limited gamma
.~ | spectrosco data and ap-
[163] 2023 Nuc'lear nonprolif- le)ied self—iﬁpervised learnirIl)g
eration . )
for nuclear nonproliferation
monitoring
Investigated techniques for ef-
Human-AI collabo- | fective knowledge transfer be-
[336] 2023 )
ration tween humans and Al systems
during collaboration
Developed NLP methods that
[166] 2023 NLP with limited | can work well in low-resource
data settings with limited data and
compute
Enabled knowledge discovery
[165] 2023 | Heterogeneous data | and natural language querying

of heterogeneous data sources

Continued on next page
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Table B.5 - continued from previous page

Ref. Year | Focus Contribution
Showed how to learn edge de-
tectors fi labeled natural
[337] 2021 Edge detection .ec ors r.om tnabeied natura
images without human annota-
tion
. Proposed representation learn-
Effi -
[164] 2023 tiorfllZZLIier? resenta ing methods that are more data
& and label efficient
Provided an overview of tech-
Automatic data la- | niques, challenges and solutions
[338] 2023 : . :
beling for automatically labeling data
with machine learning
Introduced ViewMix augmenta-
[339] 2023 prust representa- | tion strategy to 'learn rr‘10re ro-
tion bust representations with self-
supervision
Structured  repre- Incorporated structural infor-
[169] 2023 ) °p mation into the representation
sentation learning .
learning process
Used  self-supervised  pre-
[162] 2023 | Explainable models | training to improve the explain-
ability of learned models
Graph learning with Developed techr.liques to learn
[340] 2022 . from graphs with sparse and
noisy labels . . .
noisy label information
Enabled agents to learn action
1 1 learn-
[341] 2023 i\i\lford model learn policies from diverse data via
& learned world models
. Used metric learning to align
Multi-modal - . .
[342] 2023 b ti-modal repre representations across modali-
sentation learning . .
ties and learn from limited data
Proposed  sequential  self-
[167] 2022 Humag . activity | supervised ' learning to share
recognition representations across sensor

modalities for HAR

Continued on next page
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Table B.5 - continued from previous page

Ref. Year | Focus Contribution
Integrated neural and symbolic
. approaches for more inter-
[343] 2023 | Neural-symbolic Al pretable and generalizable Al
systems
Proposed a unified model to
[344] 2023 | Noisy label learning | handle various types of label
noise in machine learning
. Enabled learning in cyber-
[345] 2023 tC‘;ll)ser—physmal Sys physical systems with limited
and imperfect sensor data
Causal representa- Analyzed deep visual represen-
[216] 2023 tion learning tations using causal frameworks
and unlabeled data
Leveraged task relationships
[346] 2023 | Task affinity to improve knowledge transfer
and multi-task learning
Learning with lim- Developed methods to learn in
[347] 2023 | . .. realistic limited-supervision set-
ited supervision )
tings
Object  recognition Utilized self-supervision on
[325] 2023 . downstream tasks to improve
and tracking . . .
object recognition and tracking
Multimodal  learn- Advan'ced self—s.upervised repre-
[328] 2021 ing sentation learning from multi-
ple modalities
Visual object repre- Learned structural visual rep-
[348] 2021 ) resentations without human la-
sentations . . .
bels via self-supervision
Showed the importance of rep-
[232] 2022 | Few-shot learning resentation learning for few-
shot model building
Used curiosity as a self-
(349] 2021 | Autonomous agents supervised objective to improve

learning in situated autonomous
agents

Continued on next page
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Table B.5 - continued from previous page

Ref. Year | Focus Contribution
Advanced representation learn-
Domain and modal- | ing techniques for improved
[324] 2022 | .
ity transfer cross-domain and cross-modal
transfer
Compressed self-supervised
[323] 2022 | Lightweight models | representations  for  more
efficient lightweight models
Advanced theoretical under-
[168] 2022 | Theory standing 'of self—.superv.ise.d
representation learning princi-
ples
Human activit Demonstrated how to build ro-
[332] 2022 .\ Y | bust HAR models using unla-
recognition
beled sensor data
Utilized disentanglement and
[(331] 2022 Eiomedical applica- sc?mi—supervised learning for
tions biomedical  problems  with
limited labels
Enabled machine learning sys-
Open-world learn- e e
[350] 2022 inpen wor AT tems to cope with limited labels
& in open-world settings
Studied how robots can learn
[351] 2022 | Robot learning perception and control in par-
tially unknown environments
Showed benefits of self-
Semi-supervised de- | supervision for semi-supervised
[324] 2022 . o :
fect recognition wafer defect classification with
few labels
Visual feature learn- | Learned effective visual features
[333] 2021 | | - :
ing from limited labeled images
Appli hine learning f
Rare failure detec- | “:P¥ 1§d maciine ‘earniig fot
[352] 2021 . detecting rare failures in analog
tion . .
and mixed-signal hardware
Used disentangled represen-
(329] 2091 Biomedical applica- | tations and semi-supervised

tions

methods for biomedical tasks
with limited labels
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The thesis related to SSL highlights several major contributions to the method-
ologies development of SSL. Improved architectures and loss functions have been
proposed, including novel neural network designs (e.g., Siamese networks, au-
toencoders) and objective functions (e.g., contrastive loss, reconstruction loss),
which enhance self-supervised representations [323, 324, 325]. Multi-modal and
cross-modal methods have been developed to leverage complementary informa-
tion from multiple modalities (e.g., audio-visual data), enabling applications in
diverse domains [326, 327, 328]. The combination of self-supervision with semi-
supervised learning has emerged as a promising paradigm, where self-supervised
pre-training followed by fine-tuning on a small labeled dataset improves perfor-
mance in low-data regimes [160, 329]. Additionally, theoretical analyses have
provided insights into the principles of SSL, such as connections to mutual in-
formation estimation and the role of data augmentations [168, 330].

In applications, SSL has been effectively applied across various domains to
enhance the generalization ability of diagnostic models and improve performance
in scenarios with limited labeled data. In biomedical data analysis, techniques
have been used to analyze electrocardiogram signals and x-ray images, result-
ing in improved diagnostic models [329, 331]. In human activity recognition,
SSL has enabled the development of robust models using unlabeled sensor data,
with applications in healthcare, entertainment, and fitness [332, 167]. For in-
dustrial monitoring, these techniques have been utilized for tasks such as defect
detection in wafer maps and learning representations for machine vision [327,
324]. In computer vision, self-supervised methods have been widely applied to
problems like object recognition, tracking, and representation learning, support-
ing downstream tasks such as few-shot learning and domain adaptation [333,
325, 232]. Additionally, in natural language processing, SSL has facilitated the
development of efficient representations for text data with limited annotations,
benefiting applications like sentiment analysis, and machine translation [166].

Although these applications do not specifically focus on PHM, the demon-
strated potential of SSL in addressing the challenges of limited labeled data and
advancing the state-of-the-art inspires further exploration and application within
the PHM domain. However, several challenges need to be addressed for board
usage:

« Lack of supervisory signals: SSL relies on automatically generated pseudo-
labels or proxy tasks, which may not always align well with the down-
stream task of interest. This can limit the quality of the learned represen-
tations [160, 161, 162].

« Sensitivity to data augmentations: The performance of self-supervised meth-
ods often heavily depends on the choice of data augmentations used to

204



B.3. Focus of existing doctoral theses

generate different “views” of the input data. Designing effective augmenta-
tions requires domain knowledge and can be challenging for some modal-
ities [163, 164].

« Scalability to diverse domains: Many self-supervised techniques are devel-
oped and evaluated primarily on image datasets. Extending these methods
to other domains like text, audio, or sensor data may require non-trivial
adaptations [165, 166, 167].

« Limited theoretical understanding: While empirical results have shown the
effectiveness of SSL, the theoretical underpinnings of why and when these
methods work well are still not fully understood [168, 169].
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APPENDIX C
Appendix: Physics-informed
machine learning in PHM

C.1 Detailed description of the data generation
process for the validation case in Section 3.2.1

Critical components like bearings are susceptible to fatigue damage, often initi-
ated internally. Detection of degradation signs is challenging, especially during
the crack expansion phase when they are not visible [353]. However, once visi-
ble cracks emerge, they tend to propagate rapidly, hastening the path to failure
[354]. Thus, challenges in using vibration signal RUL prediction include:

« Vibration signals exhibit a subtle “light trend”, complicating early degra-
dation trend capture [355].

+ Capturing the underlying non-linear degradation dynamics without ex-
plicit knowledge of the bearing’s condition is challenging.

Bearing degradation, modeled by stiffness deterioration, significantly affects
vibration response amplitude (Eq. C.1 [171]).Notably, Vib, represents peak vibra-
tion signal value, while stiff denotes equivalent contact stiffness.c reflects system
load imbalance due to extrinsic excitation, with m as equivalent system mass and
(2 as rotation speed.Typically, € and m remain unknown in real conditions, with
only €2 and V'ib, being measurable.

QQ
Vib °

= G (€1

Figure C.1 depicts 200 simulated bearing stiffness degradation trajectories,
averaging a failure time of 8.04 x 10° cycles with a standard deviation of 1.47 x
10* cycles.Among these, 50 trajectories are reserved for testing, while the re-
maining 150 serve for training and validation. Each trajectory encompasses dis-
tinct health states, non-linear degradation periods, and uncertainties from oper-
ational conditions.
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C.1. Detailed description of the data generation process for the validation case

in Section 3.2.1
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Figure C.1: Simulation process of contact stiffness degradation.

The stiffness for different damage states is calculated by Equation (C.2) [356]:

1
g (le22)?

nskp

stiff = + Ustiff (C.2)

Here, v = 20° is the contact angle, k, is the Hertzian elastic contact stiffness,
and Uy ¢y represents model uncertainty, assumed to follow a skewed distribution
with parameters centered at 10% mean and 5% variance of sti f f.ns = 180 is the
initial number of contact surfaces, with £ = 0.003 m as the roller radius, v = 0.3
for Poisson’s ratio, and £ = 2.1 x 10! Pa as Young’s modulus.

4 Rl /2
kp =~ (C3)
6 (%)
Health contact surface Defective contact surface
i— v—3 -
1 v
I “

@ @ ---- Contact surface nsk—uf @

: > Vibration time series for degradation monitoring

Figure C.2: Defective contact and roller failure schematic.

The simulated decrease in n, is modeled by:

Mg = Ngo X steps X i X (180 — steps X i) + Ugey, @ €N (C.4)
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C.2. Deep discussion on the performance of the PIML models proposed in
Section 3.2.1

Uiegq also follows a skewed distribution, with mean and variance set to 10% and
5% of ng;, respectively. During degradation, vibration amplitudes are calculated
every six hours, and the resultant simulated signal is modelled by Equation (C.5):

27 2mQ2
z(t) = vib, X sin (g—0t> + vib, X sin (g—ot(l + nd1)> + ng, (C.5)

C.2 Deep discussion on the performance of the
PIML models proposed in Section 3.2.1

Investigating the impact of embedded physics-knowledge on the final re-
sults. This section investigates the impact of embedded knowledge in PIML
through two perspectives. Firstly, it conducts a channel-by-channel test on the
layer embedded with physical knowledge, assessing the channel’s influence on
the final test loss across different weight compression ratios (0-1). Secondly, it
calculates the output of the hidden layer corresponding to each channel and av-
erages the values across all samples to generate a heatmap of information output.
The final results are illustrated in Fig. C.3, C.4, and C.5.

Pl-channels™ ~~

30.0 —— Data-driven channel
—— Physics-informed channel

-
<
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© O =N W

Testing loss

-0.5

-1.0

=N W s U a0

0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
Scale factor NN layer channel -

Figure C.3: Heat map of the PI-input space model.

In the channel information heat map of the PIFM, see Fig. C.3, a predominant
focus on channels containing the 2% /V'ib, is observed. This is because changes
in the weighting of the information for this channel will have the greatest impact
on changes in the loss. However, the first Conv1D layer’s output of this feature
does not occupy the most prominent position on the feature heat map.

This phenomenon is still present in the PI-layer model, but since the location
of the physical knowledge is limited to the hidden layer at this point, the effect
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C.2. Deep discussion on the performance of the PIML models proposed in
Section 3.2.1
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Figure C.4: Heat-map of PI-layer model.

of the change in the weight of its corresponding channel is significant but not
the dominant factor, and at this point the effect of the corresponding output of
the first “Conv1d” layer in “Resblock” after the “Add” layer in the corresponding
output heat map of the section is not significant.
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Figure C.5: Heat map of the PI-loss model “Add” Layer.

On the basis of the PI-layer model, the branches embedded with physical
knowledge have separate outputs, and the final result is obtained by combining
the results of the branch NN and Main NN, so that it can be seen that features
belonging to the PI-branches are highlighted, but correspondingly, the fluctua-
tion of their output loss under the variation of the weights of these channels is
overall smaller.

Since then, the following insights about embedding physical knowledge in
different network structures is obtained: the location and manner in which phys-
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Section 3.2.1

ical knowledge is embedded can greatly affect its effect. In general, the closer to
the input layer, the more effective the embedding is, but it may also be diluted
by the subsequent network layers. In architecture design, there is a trade-off be-
tween highlighting physical features and obtaining robust integrated representa-
tions, and the information under the physical knowledge informed by cross-layer
connections should be involved in the final decision-making as much as possible
to reduce the dilution.

Impact of embedded physical knowledge on model optimization. The pre-
ceding theoretical analysis demonstrated that the informed mathematical formu-
lation knowledge significantly influences the model’s gradient-seeking optimiza-
tion, particularly impacting the loss landscapes. This study, therefore, examines
the loss contour maps of both the benchmark model and the physics-informed
positions in PI-TCN to elucidate the effect of embedded knowledge on model
performance.

The values of weights and biases extracted from the trained model are utilized
to construct the coordinates for the contour maps. An array of equally spaced
grid points is generated to express, based on the ranges of the combinations of
weights and biases, raw data at different scaling scales to serve as coordinates
for the contour plots. The corresponding loss function values are calculated for
each combination of weights and biases. The findings are depicted in Fig. C.6.

Analysis of the minimum loss path reveals a distinct, narrow “canyon” in both
models, indicating high sensitivity to slight perturbations in the input layer’s
weights and biases. Deviations from this path lead to a rapid increase in loss,
highlighting a significant performance decline. The loss landscape is predomi-
nantly smooth, with few local minima. The vicinity of the minimum loss point
features a “flat” area, forming a “basin” that provides fault tolerance near the op-
timum. With the integration of physical features to construct the physics-input
space model, the fundamental contour of the optimal path remains consistent;
however, the gradients flanking the minimum loss path become gentler, and the
“basin’s” extent broadens, suggesting that physical constraints offer a larger pa-
rameter adjustment space near the optimal solution, thus reducing the likelihood
of overfitting. The loss range for the physics-input space model extends from
13,500 to 121,500, which is 2.25 times that of the benchmark model. This ex-
pansion in loss value space is attributed to the enriched information from the
physical features, likely facilitating the exploration of a wider range of loss val-
ues. Furthermore, the minimum loss value decreases from 0.96 in the benchmark
model to 0.20 in the physics-informed model, indicating that the incorporation
of physical features reduces the optimization challenge and enables the achieve-
ment of lower loss values.
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Section 3.2.1
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Figure C.6: Comparison of loss landscapes under different conditions.

The horizontal axis represents the scaling factor for the original weights of the
layer, while the vertical axis represents the scaling factor for the original biases.
The red arrow curve indicates the path of minimum loss.

Comparative analysis of the layer parameter perturbation test at the middle
hidden layer shows that the benchmark model’s minimum loss path or “canyon”
is more complex and curved, unlike the straight path observed in the PI-layer
model. The “canyon” of the PI-layer model is narrower and more pointed, run-
ning vertically through the middle, with steep slopes on either side forming a
“V” shape, altering the entire loss landscape. This narrow path suggests that the
PI-layer model is “locked” into a very specific and narrow range of weights for
minimum loss, making it less flexible and robust than the benchmark model. In
contrast, the benchmark model exhibits a much wider range of losses and is less
sensitive to weight perturbations.

When perturbations occur in the output layer, the minimum loss paths of
the two models differ significantly. The benchmark model’s path is straight and
narrow, resembling a “V” shape, whereas the PI-loss model’s path is wider and
closer to a parabola, indicating greater robustness under weight perturbations.
The minimum loss value of the PI-loss model is approximately 0.18, lower than
the benchmark model’s 0.23, suggesting that the PI-loss model guides conver-
gence to an optimal point with superior generalization performance, achievable
over a broader range of loss search. The PI loss model’s optimal region is gentler,
and the overall landscape is smoother, facilitating stable convergence through
the gradient descent algorithm.
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C.3. Rotor unbalance and shaft crafk experiments

C.3 Rotorunbalance and shaft crafk experiments

Rotating equipment, critical to energy production and transmission, operates un-
der harsh conditions, making it susceptible to rotor unbalances and other compo-
nent defects due to manufacturing errors and extreme operating environments
[357]. These defects can escalate into catastrophic failures, such as shaft trans-
verse cracks, leading to severe economic losses and safety risks [cost]. A new
PIML approach is proposed to address these challenges with two main objectives:

1. Effectively utilizing rotor responses to detect and localize combined fail-
ures of rotor unbalance and shaft cracks.

2. Developing a versatile model applicable across different rotor configura-
tions to accommodate the diversity of rotating system structures.

Fig. C.7 depicts the PT 500 diagnostics platform [platform], equipped with a
three-phase AC motor operating at 3000 rpm and featuring multiple components
such as two long shafts, one short shaft, three supports, two discs, and a flange
coupling. This setup allows for investigating diverse rotor structures by reposi-
tioning supports and discs. Vibration data is captured by two accelerometers on
different supports, sampling at 4096 Hz via NI-DAQ 9174.

+_ . |Rotating speed
“Raw data
— _ TTime domain featues
Change the Software

connection
Uzl " e
db and position
__ oflongand \
—— short shaft Fat Disc 2

Figure C.7: Schematic diagram of the experimental platform.

Multi-faults experiments. In this study, the unbalance fault was created ar-
tificially by adding a 2g screw to a counterweight hole on the disc (Fig. C.7).
The position of the screw on the disc varied to investigate different unbalance
positions and the number of screws used to simulate the degree of unbalance.

In the shaft-cracking experiments, different crack positions are simulated by
connecting the long or short shaft to the rotor shaft (as in Fig. C.7).
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C.3. Rotor unbalance and shaft crafk experiments

Table. C.1 summarizes different experiments investigated in this work. Four
health states of the rotor are considered: healthy states (H), unbalance fault (U),
crack fault (C), and combined fault (U&C). The positions of unbalanced defects
and shaft cracks in different experiments are varied along the shaft length. Also,
to highlight the robustness of the proposed model, different rotor structures (with
3 shaft lengths and 4 layouts, see Fig. C.8) are tested by varying the rotating

speed.

Table C.1: Overview of the experimental setup.

Healthy states (H), unbalance fault (U), crack fault (C), and a combined fault

(U&C).
Status | Shaft Structure | Rotating speed | Fault posi- | Samples
length (m) (rpm) tion (m)
H 1 0.355 Layout A | 1200, 1500, 1800, | - 300
2100, 2400, 2700,
3000
U_1 0.355 Layout A | 1200, 1500, 1800, | 0.175 300
2100, 2400, 2700,
3000
H 2 0.409 Layout B | 1500, 1800 - 40
C_1 0.409 Layout B | 1500, 1800 0.120 40
U_2 0.409 Layout B | 1500, 1800, 2400 0.290 60
H_3 0.605 Layout C | 1200, 1500, 1800 - 60
C_2 0.605 Layout D | 1500, 1800, 2400 0.355 60
U_3 0.605 Layout D | 1500, 1800, 2400 0.207 60
U_4 0.605 Layout D | 1500, 1800, 2400 0.110 60
U_5 0.605 Layout D | 1500, 1800, 2400 0.155 60
U&C_1| 0.605 Layout C | 1200, 1500, 1800, | C:0.155, 60
2100, 2400 U:0.586
U&C_2| 0.605 Layout C | 1200, 1500, 1800, | C:0.355, 60
2100, 2400 U:0.175
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C.3. Rotor unbalance and shaft crafk experiments

Layout B

Layout C Layout D

Figure C.8: Different structure layouts of the test bench.

Labeling data. The manually labeled fault type, location, and rotor behavior
features are defined for the multi-task learning (MTL) process:

Firstly, the classification labels are encoded using a binary one-hot method
to denote the healthy state as (1, 0, 0), the unbalanced defect as (0, 1, 0), the shaft
crack as (0, 0, 1), and the combined defects (resulting from both rotors unbalance
and shaft cracks) as (0, 1, 1).In the RFEMNN, for multi-label classification results,
sigmoid functions are used to produce a probability score for each possible la-
bel. By establishing a threshold, the resulting multi-label classification is then
transformed from probability scores to binary values of either 0 or 1.

Secondly, the position label is provided by the axial distance of the defect
from one end of the rotor. Since experimental tests involve several rotor struc-
ture layouts with different shaft lengths, it is necessary to normalize the defect
distance by the corresponding whole shaft length L,,;s separately.

Finally, the rotor vibration behavior label is the temporal statistical features,
such as margin factor, impulse factor, peak factor, wave factor, kurtosis, skew-
ness, RMSE, variance, and mean. They are used as labels to constrain the neural
network’s behavior by guiding RFEMNN to recover these characteristics of the
raw data. These features are explained in detail in reference [358]. The predicted
value corresponding to this label in NN is obtained through FEM inference using
NN structural information rather than direct signal processing of the original
data.

All the monitoring vibration signals are sliced into 39342 samples with a
length of 256 points. Note that the labels of fault types, location, and tempo-
ral vibration features are assigned for each sample, as illustrated in Tab. C.2.
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C.4. RFEMNN structure details and the related physics introduction

Table C.2: Illustration of the data labeling.

Healthy (H), unbalance (U), crack (C), and a combined fault (U&C).

Status Fault type Fault location(%) Time features
H_1 (1,0, 0) (0, 0) Margin factor
U_1 (0, 1,0) (0.175, 0)/0.355x 100 Impulse factor
H2 (1,0,0) (0, 0) Peak factor
C_1 (0,0, 1) (0, 0.120)/0.409x 100 Wave factor
U 2 (0, 1, 0) (0.290, 0/0.409x100  Kurtosis
H_3 (1,0,0) (0, 0) Skewness
C 2 (0,0, 1) (0, 0.355)/0.605x100  Rmse
U 3 (0, 1, 0) (0.207, 0)/0.605x100  Variance
U 4 (0, 1, 0) (0.110, 0)/0.605x100  Mean
U5 (0, 1, 0) (0.155, 0)/0.605 x 100

(0.586,
v&c.1 (0,1,1) 0.155)/0.605x 100

(0.175,
v&c_2 (0,1,1) 0.55)/0.605x 100

C.4 RFEMNN structure details and the related physics
introduction

Table. C.3 summarizes the physical parameters involved in the RFEMNN model
and presents their determination method.

Table C.3: Physics parameters in RFEMNN.

Symbol Parameter meaning Determination method
p Structure density Design parameter

. . Field measurement or Design parame-
Ry Shaft section outer diameter ter gnp

L . Field measurement or Design parame-
Td Shaft section inner diameter ter gnp

. . Field measurement or Design parame-

th; Thickness of the disc ter snp
55 Support stiffness Estimation or Design parameter
dj; Support damping Estimation or Design parameter

The support stiffness and damping come from the coupling of the bearing
and the support structure. In practice, it is difficult to obtain their exact values
but can be adjusted during the training by the “variation matrices” presented in
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Fig. 3.12.

C.5. Multi-task supervised training

C5

Multi-task supervised training

The proposed model utilizes a multi-task learning framework optimized through
a composite loss function as defined in Eq. (C.6). The components of the loss
function include L;, L,,,, and L, which correspond to fault type recognition, un-
balance fault location error, and shaft crack fault location error, respectively. Ad-
ditionally, L, quantifies the accuracy of reconstructing temporal vibration fea-
tures. The respective loss functions are binary cross entropy for L; and mean

square error for L,,, L, and L,. These components are weighted by oy, a,,, a,
and «, respectively, as shown in the following equation:

Lo=oL; + oLy, + gLy + o, L

(C.6)
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Optimized models selected based on fault identification, unbalance
localization, and crack localization.

The complexity of multi-task supervised training stems from the need to si-
multaneously optimize faults recognition, fault localization, and temporal vibra-
lowing factors:

tion feature analysis. Addressing this requires careful consideration of the fol-
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C.6. RFEMNN’s evaluation metrics

1. Varying output magnitudes: To mitigate discrepancies in output magni-

tudes, the loss weights (ay, ., and «) for fault type and position are set
to 100, while «, for vibration features is adjusted to 1.

. Conflicting optimization goals: While the overall diagnostic performance

hinges on the accuracy of fault localization and identification (L,,, Ls, and
L), optimizing the global loss function (Lo) does not necessarily ensure
simultaneous optimization of individual loss components.

To tackle these challenges, the RFEMNN model uses Lo to steer the training,

saving the state every three epochs to a model pool. Training halts if L, fails to
improve after 50 epochs. The best model is then chosen from the pool based on
its overall task performance, as shown in Fig. C.9.

C.6 RFEMNN’s evaluation metrics

The classification metrics, i.e., accuracy (Ac), false alarm rate (F'a), and missing
rate (Mis), are calculated by Eq. (C.7).In this equation, the values a;; and r;
are given by Table. C.4, where the term a;; represents the number of samples

belonging to the state 7, but the proposed model indicates state j.

Table C.4: Confusion matrix for multiple fault diagnostics results.

fo — a21taszitaqr
Mg = 42119317441

i=1 "1

diagnosticss results
Healthy Unbalance Crack Un & Cra
Healthy a1l ai12 a3 ai4
43 Unbalance | ao; a99 a23 a94
® Crack a3l asn ass as4
é’ Un&Cra a4l Q42 a43 Q44
= Tt = a1+ | T2 = a2+ | r3 = a3+ | r4 = aus +
Sum: a + ag1 + | a2 + asz2 + | a3 + azz + | a4 + az4 +
a41 (42 a43 a44
Fq = —%12+a13+ais
aiitaiztaiztaisa
Ac = a11-&;a22+3133+a44
Y i1 2,7:1 a;j (C.7)

To assess defect localization performance, the mean absolute error is used to evalu-

ate location errors of unbalanced defects (Ly) and shaft cracks (L¢).The average local-
ization accuracy of all defects is denoted by p.Metric T is defined in Eq. (C.8), which
combines fault localization and type identification accuracy to evaluate overall model
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C.7. Supplementary comparison of RFEMNN and other benchmark models

redict

performance.Ly, and Lc¢,,.,.., represent the mean error of diagnostics fault loca-
tion, measured as a percentage of shaft length, while Ly, and L¢,_,, indicate actual
fault locations measured with the same method.The fault locations along the axial direc-
tion are expressed as percentages for four variables: unbalanced fault diagnostics loca-
tion Upredict, unbalanced fault real location U,.cq, shaft crack fault diagnostics location

Cpredict> and shaft crack fault real location Cj.cq.

T = al1+1122:24+ai§+a44 X P
i=1'"%
LU = Upredict - Ureal (CS)

LC = Cpredict - Creal

C.7 Supplementary comparison of RFEMNN and
other benchmark models

C.7.1 Recognition results of the proposed RFEMNN and other
SOTA models

Using the proposed RFEMNN framework, the confusion matrices of fault classifi-
cation results are presented in Table. C.5. Besides, the result of the fault localization is
shown in Fig. C.10.
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Figure C.10: Average results of fault localization with 10 fold-cross validation
on diagnostics fault location.

The fault localization results of the RFEMNN in different rotor structures are pre-
sented in Fig.C.10, where the horizontal axis represents the number of test samples. Each
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C.7. Supplementary comparison of RFEMNN and other benchmark models

test sample was randomly selected from different experimental data of faults. The verti-

cal axis represents the relative position of the fault along the entire axis length.

Table C.5: Confusion matrices of RFEMNN faults recognition.

True state

Diagnostics results
Healthy unbalance Crack Im&Cra
Healthy 1648 167 0 0
unbalance | 100 2262 0 0
Crack 0 0 411 0
Im&Cra 0 0 0 1805
Total: 1748 2429 411 1805

From Table.C.5 and Fig. C.10, one can see that:

1.

Considering different rotor structures with multiple rotor-speed-varying processes,
the diagnostic results provided by RFEMNN are close to the ground truth on both
aspects: fault identification and error location. Particularly, unbalanced faults,
shaft cracks, and combined defects are completely distinguished by the proposed
RFEMNN (see Table.C.5).

. All combined defects are detected and identified correctly.

There are still some cases of false and missing alarms. In detail, 167 healthy sam-
ples are incorrectly misrepresented as faulty ones while 100 unbalanced faulty
samples are misidentified as healthy (Table.C.5). However, the false (F'a) and
missing (Mis) rates are small enough. They are 9.2% and 1.56%, respectively.

For localization of unbalanced defects and shaft cracks, the results provided by
RFEMNN are close to the true ones (see Fig. C.10). Only a small number of samples
have significant prediction errors.

. As can be seen from Fig. C.10, the results of the shaft crack localization are gener-

ally better than the ones of unbalanced defects. This can be explained by the fact
that the shaft cracks have greater effects on vibration signals than the unbalanced
faults, because any rotating system has its initial unbalance.

In this study, four state-of-the-art models used for diagnosing unbalanced and shaft
crack defects are reconstructed for comparison with the proposed RFEMNN. These mod-
els include: 1) Continuous wavelet transform scalogram assisted CNN (CWTS) [359], 2)
Deep Residual Shrinkage Networks (DRSNs) [360], 3) Deep CNN with a support vector
machine classifier (semi-DCNN) [361], and 4) Spatio-temporal fusion neural network
(STFNN) [362].

However, the above models only consider fault identification without defect local-
ization. To the best of our knowledge, no existing PHM framework in the literature has
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C.7. Supplementary comparison of RFEMNN and other benchmark models

been developed for fault identification and defect localization on rotating shafts. Tradi-
tionally, these tasks are handled by distinct ML algorithms, as evidenced in the literature
[363, 364]. To facilitate a valid comparison with the proposed model, it is essential to
adapt existing models that incorporate defect localization. Therefore, three established
benchmark models have been selected for reconstruction and comparison: 1) ANN [364],
2) LSTM [365], and 3) Extreme learning machine (ELM) [363].

In addition to the above benchmark models, a CNN-LSTM model with the same
architecture as our proposed RFEMNN but without the customized physical layers, called
NO_RFEM_NN, is investigated. It is used to prove the importance of embedding physics
knowledge into ML.

Egs. C.7 and C.8 are used to evaluate the multi-fault diagnostics metrics of the pro-
posed RFEMNN and other benchmark models. The results are shown in Table. 3.1.

Table C.6: Confusion matrices of CNN (raw data as input) [359].

Diagnostic results
Healthy unbalance Crack Im&Cra
Healthy 1783 11 0 21
% unbalance | 1199 70 0 1094
@ Crack 4 12 0 1789
5 Im&Cra 0 54 0 1751
= Total: 765 2665 241 2723
Table C.7: Confusion matrices of CWSCNN [359].
Diagnostic results
Healthy unbalance Crack Im&Cra
Healthy 718 1097 0 0
£ unbalance | 38 1452 0 873
7 Crack 9 62 241 99
5 Im&Cra 0 54 0 1751
I Total: 765 2665 241 2723

Table C.8: Confusion matrices of DRSNs (wavelet spectrum as input) [360].

Diagnostic results
Healthy unbalance Crack Im&Cra
Healthy 1777 38 0 0
£ unbalance | 71 2035 52 205
7 Crack 0 0 400 11
g Im&Cra 0 80 1 1724
= Total: 1848 2153 453 1940
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Table C.9: Confusion matrices of DRSNs (raw data as input) [360].

Diagnostic results
Healthy unbalance Crack Im&Cra
Healthy 1156 650 4 5
£ unbalance | 170 1917 37 239
@ Crack 13 5 347 46
5 Im&Cra 0 253 12 1540
= Total: 1339 2825 400 1830
Table C.10: faults recognition confusion matrices of CNN-SVM[361].
Diagnostic results
Healthy unbalance Crack Im&Cra
Healthy 893 572 9 341
43 unbalance | 418 1079 38 828
7 Crack 83 148 48 132
3 Im&Cra 90 205 1 1509
I Total: 1482 2004 96 2810
Table C.11: faults recognition confusion matrices of STFNN[362].
Diagnostic results
Healthy unbalance Crack Im&Cra
Healthy 751 346 0 718
£ unbalance | 184 913 0 1266
i Crack 0 0 0 411
5 Im&Cra 0 0 0 1805
. Total: 935 1259 0 4546
Table C.12: faults recognition confusion matrices of STFNN.
Diagnostic results
Healthy unbalance Crack Im&Cra
Healthy 1747 64 1 3
< unbalance | 1414 307 6 636
> Crack 50 106 74 181
§ Im&Cra 2 57 0 1746
=
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| | Total: | 3213 | 534 | 81 | 2566 |

C.7.2 Faultlocation results
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Figure C.11: Average results of ANN-based fault localization with 10 fold-cross
validation[364].
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Figure C.12: Average results of LSTM-based fault localization with 10 fold-cross
validation[365].

Extreme Learning Machine
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Figure C.14: Average results of NO_FEM_NN based fault localization with 10

fold-cross validation.

C.8 SEI-DCN model structure

End to end input.

Raw sensor data are initially truncated to construct the inputs

Zin- The sliding window technique splits continuous time series data into overlapping
training samples from the start to the end of the monitoring sequence, as shown in
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C.8. SEI-DCN model structure

Fig. C.15. For instance, when truncating temperature measurements, the sliding win-
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Figure C.15: Truncate the original sequence in a fixed-length time window to
construct an end-to-end input.

dow length parameter m determines the number of samples in each window, with each
sample having a fixed dimension of [len, 1]. Another parameter, d, consecutive window,
ensure the continuity of the truncated samples. Each training sample gathers data from
the period starting at ¢; +m X len, retaining its 2D-dimensional structure for subsequent
channel merging and splitting processes. As a result, each training sample x; (where
i =1,2,...,n)has a dimension of [m, len, 1]. The number of discharge cycles remaining
¢; at the time point ¢; + m x len is recorded as the sample’s RUL label. The parame-
ters [en and m determine the extent of cyclic data covered in a training sample. Smaller
values of len and m can enhance the proposed model’s practical value by increasing the
data’s granularity and thereby improving the model’s prediction accuracy.

It is worth noting that within each truncated data segment, we have used a fixed
length of time rather than a fixed number of cycles, as pinpointing the exact timing of
the 3-4 charge/discharge cycles is difficult and results in a variable length of the input
sequence segments. The window length len roughly contains the information of 3-4
complete charge/discharge cycles. Since this is an end-to-end model for online prediction
in real-world applications, “sample i” in Fig. C.15 may start or end at any point within a
discharge or charge cycle. Although the specific start and end points within a cycle can
vary, the fixed time length ensures that the data spans approximately 3-4 cycles. This
model’s predictive ability does not rely on complete cycle granularity, making it more
practical for real-world applications.

End to end data-driven branch. The data-driven branch employs an end-to-end
(E2E) deep learning (DL) paradigm to acquire degradation-related features for the battery
RUL prediction from raw data directly. This approach eliminates the need for intricate
signal processing or expert domain intervention.

The input comprises three parallel channels: temperature, voltage, and current. The
samples within each channel are partitioned into multiple batches. In each learning
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Figure C.16: Schematic diagram of D-CNN with a data flow.

batch, these independent physics measurements are combined through “Concatenate”
layers to construct the inputs X, with the dimension [m, len, 3].

A Dilated convolution Neural Network (D-CNN) is shown in Fig. C.16 to demonstrate
the application of the E2E paradigm above. D-CNN has a series of dilated convolution
layers with increasing dilation factors (dilated, ;) to encapsulate the interdependences
between temperature, voltage, and current concerning the battery’s discharge cycles. By
leveraging dilated convolutions, DCN can encompass larger receptive fields of each layer
by incorporating gaps between weight connections to build positional jump connections.

Subsequently, the final feature representation is obtained through a dense layer with
dy neurons, yielding the data-driven feature h; (dimension: [batch size,d;]).

Physics informed branch. The physics-informed branch utilizes the “physics-
embedded algorithm structure” paradigm, as detailed in [366], to obtain the physics-
consistency features and insights relevant to degradation.

The PI branch utilizes the SEI growth formula proposed by Attia et al. [175] as shown
in Eq.(C.9) and (C.10). In Eq. (C.9), D is the SEI degradation parameter. Dy represents
the initial or baseline SEI degradation parameter. E, is the effective activation energy
for SEI growth, determined by the Arrhenius relation. kp denotes Boltzmann’s constant,
a fundamental physical constant. 7" is the monitoring temperature of the battery. This
expression captures the exponential dependence of SEI degradation, aligning with the
Arrhenius equation’s insights into temperature-dependent chemical processes.
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C.8. SEI-DCN model structure

E
D = Dgexp <— - > (C.9)
kp
The poy+ of is estimated using the equation:
C
Pout = 5 +0b (C.10)

In this context, p,,¢ refers to an approximate lifespan indicator, as it is not the final RUL
output of the proposed PIML model. This distinction arises due to the simplified nature of
the models, often incorporating empirical parameters and assumptions that do not fully
capture the complexities of actual battery operation and degradation phenomena. This
formulation emulates the Paris laws in material fatigue and posits that a battery’s cycle
life is inversely proportional to the rate of SEI degradation, adjusted by the empirical
factor C'.

Considering the input-output relationships and the logical relationship between Eq.(C.9)
and (C.10), only the temperature data are taken as the input of the PI branch. and the
cross-layer connections are used in Fig.C.20. Eq.(C.9) and (C.10) are the activation func-
tions of these custom design layers.

Merge the two branches’ information. In the output part, the final “Full con-
nectivity neural network (FCNN)” considers the output p,,; of the PI branch in the
decision-making process and the data insights from feature p. FCNN is tailored for the
many-to-one process to generate the output of the remaining discharging cycles.

The data flow processing of the entire PIML framework can be represented by the
following equation. In the data-driven branch, the input tensors x1, ..., ,, undergo pro-
cessing through L hidden layers, where each layer progressively extracts higher-level
features. This process can be modeled in Eq. (C.11):

hil = glt (W%]g[lfl] (W%*” .. gl (Wg]g[l] (WE]X + b;}l) + b?) S b%il]) + b;?)
(C.11)
Each layer apples a linear transformation (via the weights W and biases bY) fol-
lowed by a non-linear activation function g!!l. The final network output is a continuous
transformation product from the inputs with dimensions [m, len, n] to the last hidden
layer output features h;.
Simultaneously, in K layers PI-branch, the entire process can be represented as a
data flow in the NN through Eq. (C.12):

p = 81 (WP (w1 (w2 (w4 pf) 4 Bf2) b1 4 )

(C.12)

Comparing Eq. (C.12) with Eq. (C.11), it’s worth noting that the custom architecture

in the PIML branch replaces the conventional intermediate hidden layer to represent the
physics input-output relationship.
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In summary, the complete proposed PIML model can be represented by Eq. (C.13).

Decision fusion

y=hy wls[r] (W’g]slr]] (Wl[irl] sl (W’[f] sl (Wgcp]p + W_[;”]h,[l] + b[fl]) + b?) s bgz]) ) + WaPout + bg]

Feature fusion

(C.13)

In this context, p is defined and elucidated in Eq.(C.12), while h; is formulated and

expounded upon in Eq.(C.11). The weights w; and wy pertain to the final output layer of

the proposed PIML model, while bl"] represents the bias associated with this final output
layer.

The configuration of the PIML model. Table. C.13 presents the benchmark
model’s data processing and optimized learning hyperparameters for reference.

Combining the optimized DCNN architecture as the data-driven branch in the pro-
posed PIML framework, the hyperparameters of the “PI branch” and the “decision net-
work” in Fig. C.20 are detailed in Table. C.14. Additionally, the coefficients utilized in
the physics model equations, Eq. C.9 and Eq. C.10, are also provided in Table. C.14 for
reference.

C.9 Supplementary controlled variable compari-
son test results of the SEI-DCN and other SOTA
models

Controlled variable comparison test. A standard DCNN model developed by
Hong et al. [176] serves as a benchmark model for investigating the superior perfor-
mance of the PIML paradigm. The DCNN model has been validated on the MIT-Stanford
dataset [176, 177]. In addition to directly referencing the existing models in the literature
that has been validated on the MIT-Stanford dataset, we further performed structural
parameter optimisation on the DCNN in developed by Hong et al. [176] to construct
a DCNN that outperforms the original one. This new DCNN is also used as the model
in the data-driven branch of the SEI-DCN proposed in this paper. The key distinction
between DCNN in SEI-DCN and benchmark model lies in the presence of a PI branch
and the incorporation of “Physics-informed alignment” and “Joint training” throughout
the model. Consequently, we set the control variables as detailed in Table. C.15.

In evaluating the performance of ML models, two key metrics are commonly em-
ployed: the number of monitoring data cycles required for prediction and the calculation
accuracy of the predicted RUL, which are indicated by the predicted mean absolute error
(MAE) of the remaining discharging cycles. The number of data cycles required is a crit-
ical measure [367] for predicting remaining discharging cycles, making timely decision-
making, and achieving efficient resource allocation. In the time span of the sample used
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and other SOTA models

Table C.13: Data processing and hyperparameters for benchmark model.

Parameters | Physics meaning / Description | Setting
len The length of time represented by | 2500(s), approximately
the sliding window 3 4 cycle length.
) The overlap area of two windows | 2250(s)
Hyperparameters
Input  chan- | Number of types of input monitor- | 3
nels ing quantities
Batch size The number of processed samples | 256
in one forward and backward pass
Input shape Input data shape [Batch size, 1, 2500]
Concatenate;,, | Inputs’ concatenation layer output | [Batch size, 2500, 3]

Conv1D-Bat,
Kernel size
Convi1D-Bat,
Dialted, 4¢c
Kernel size

Knum

Padding mode
Flatten
Stack-Dense 1
Activation 1
Optimizer

Validation ra-
tio

Loss function

shape

The number of 1D convolution
layer with batch normalization af-
ter inputs concatenation

The number of 1D convolution
layer with batch normalization af-
ter inputs concatenation

1D convolution layer output shape
Jump interval of dilated convolu-
tion

The 1D convolution layer kernel
size

The number of kernels used in 1D
convolution layer

The specific way in NN in which
extra values (usually zeros) are
added to the edges of input data
Flattened output shape

3 stacked dense layer as the deci-
sion NN in the data-driven branch
Activation function for all dense
and convolution layers

Type of optimizer used

How much data is randomly di-
vided in the training set as the val-
idation set

Loss function used for model train-
ing

3

[Batch size, 2500, 64]
[1,2, 4,8, 16]

64

Casual

(None, 160000)

K,.mn In each dense
layer:[128,64,1]

Relu

Adam(learning

rate=0.001)
0.2

Mean squared error
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and other SOTA models

Table C.14: Hyperparameters in physics informed branch.

Parameters| Physics meaning / De- | Setting
scription
Units; Number of neurons corre- | 64
sponding to SEI growth’s Ar-
rhenius equation terms
Ea Activation energy parameter | 0.122 eV
in the Arrhenius equation,
indicative of SEI growth rate
kB Boltzmann constant, relates | 1.380649 x 10~2% J/K
temperature to energy
Do Pre-exponential factor in the | 1.0 s}
Arrhenius equation, a rate
constant
Frozen data-driven branch | Inputs: 3 x[Batch size, 1, 2500]
Extractor serves as the feature extrac-
tor for the feature fusion and
decision fusion.
Output 1, data-driven branch
feature: [Batch size, 64]
Output 2, data-driven branch
RUL: [Batch size, 1]
Number of features from dif- | Concatenate  layer  dimen-
Fusiony ferent branches in concate- | sion:[Batch size, 128]
nate layer
Feature  from  data-driven
branch:[Batch size, channel
1-64]
Feature from PI branch:[Batch
size, channel 64-128]
Dense-PI Dense layer preceding the | Number of neurons: 64
physics-informed (PI) layer
PI-output Output layer of the PIbranch, | Output dimension: [Batch size,
predicting the physical in- | 1]
formed metrics
Stack- Three successive dense lay- | Neurons in each layer:
Dense 1 ers in the decision-making | [128,64,1]
neural network branch
Activation | Activation function for all | Relu
2 dense layers in the decision

network
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Table C.15: Schematic representation of the differences in SEI-DCN compared
to the original DCNN model.

Control vari- | Benchmark DCNN SEI-DCN

ables

Learning One-time supervised training The proposed 3 steps

strategy training strategy

Network ar- | Multi-Channel Input - Deep Null | Adding a parallel PI

chitecture Convolution - Stacked Fully Con- | branch to the DCNN
nected Layers Output

Parameters 20,559,681 20,749,976

scale

to pre-RUL, the less lifecycle involved, the higher the model capacity to make accurate
predictions with limited data. Concurrently, the mean absolute error (MAE) quantifies
the agreement between the model’s predictions and the actual cycle life, indicating its
reliability.

The encoder structure we selected has already been validated on the benchmark
dataset as a published paper in Applied energy [176], maintaining the same structure,
hyperparameters, and sample truncation lengths for consistent comparison. The key
difference in our approach compared to the state-of-the-art DCNN is the addition of a PI
branch and the application of our proposed multi-step training method. This controlled
variable experiment aims to highlight the specific advantages of our method.

Moreover, our framework is flexible and can accommodate other data-driven mod-
els beyond DCNN. Notable alternatives that effectively utilize partial cycle information
include the bilateral-branched visual transformer with dilated self-attention or RNN-
LSTM. These options are also worth exploring for their potential benefits, as their ability
in these “small-early cycles” scenarios is already detailed in references [fei2023deep],
and [368].

Comparison results with solely data-driven branch predictions. The quan-
titative comparison is made between the DCNN model alone and the SEI-DCN model,
whose data-driven branch is identical to the DCNN model in terms of structure, parame-
ters, inputs, and outputs. The qualitative prediction results are detailed in Fig. C.17, with
a detailed quantitative comparison of predictions for each test cell presented in Fig. C.18.
Fig. C.17’s “Identity line” represents perfect predictions, where predicted values match
true values. The “Regression line” indicates the general trend of predictions. Ideally,
the “Regression line” should align with the “Identity line.” The blue scatter points show
the actual predictions. Results in Fig. C.17 reveal that both models effectively capture
the linear decay trend of remaining discharging cycles. However, our SEI-DCN model
outperforms traditional DCNNs by providing more accurate predictions, aligning better
with trends, reducing prediction deviation, and with fewer outliers. This improvement
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underscores the value of incorporating physics and tailored learning strategies, provid-
ing the enhanced system security prognostic service. To further compare the two mod-
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(a) DCNN model’s prediction results. (b) SEI model informed DCNN’s prediction re-
sults.

Figure C.17: Demonstration of predicted trajectory results for remaining dis-
charging cycles of test battery packs.

els, we utilized box plots to visualize the predictions for each group. Fig. C.18 presents
the results of this comparison. Both methods accurately predicted the RUL decreasing
trend for batteries with varying lifespans (45 to 1200 remaining charge cycles) despite
the measurements missing gaps (batteries 19, 27). However, early in the battery life,
the DCNN’s predictions are significantly higher than actual values, in contrast to the
more accurate SEI-DCN (our approach) predictions for batteries 4, 11, 12, and 29. This
accuracy makes SEI-DCN more suitable for early-life task planning in fast-charging bat-
teries. Towards the end of the battery life, with RUL nearing zero, DCNN’s predictions
remained overly optimistic compared to actual values and SEI-DCN predictions for bat-
teries 1, 2, 23, and 28. This suggests that SEI-DCN provides more reliable information
for safely operating fast-charging batteries in their late degradation stages. Moreover,
a comparison of overall prediction errors revealed that SEI-DCN had a narrower error
distribution with fewer outliers, indicating its greater robustness and reliability over the
purely data-driven DCNN.

In test cell 5, SEI-DCN slightly underperformed compared to DCNN, with a predicted
MAE of 28 versus 22, even though the upper and lower quartiles of SEI-DCN’s box plots
are closer. This demonstrates that SEI-DCN has more predicted outliers smaller than the
true value for cell 5, whereas the predicted outliers for the DCNN are all larger than the
true value. Combined with the overall prediction results, we argue that the predictions
of the SEI-DCN are biased towards conservatism by the constraints of knowledge of
physics. Moreover, in cells 6 to 9 and 17, SEI-DCN has worse performance with an MAE
higher than 15 compared to its performance in other cells. This suggests the potential
for further model improvements and adjustments to enhance its generalization across
different cells by finding more representative physics and applying long-term learning.
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Figure C.18: Box plots the prediction errors of remaining discharging cycles
(RDCs) for DCNN and SEI-DCN (our approach).

The x-axis of each subplot represents the true RUL, while the y-axis represents
the predicted RUL. The embedded boxplot of each subplot has boxes on the left
representing the prediction error of DCNN as a benchmark model and boxes on
the right representing the prediction error of SEI-DCN as a PIML model. The
number above the boxplot is the predicted MAE.
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Decision mechanistic exploration in learning process. In a hybrid model
that combines data-driven and physics-informed branches, efficiently exploiting useful
features from both branches is essential. We focus on the proposed PIML model’s treat-
ment of fused features [h;,p] within the concatenate layer with dimensions [Batch size,
128]. This layer effectively merges data-driven features spanning channels 1 to 64 with PI
features spanning channels 64 to 128. We plotted a 3D schematic of the channel weights
to illustrate the integration process, as shown in Fig. C.19.

We transformed it from a cartesian coordinate system to a cylindrical coordinate sys-
tem. which unveils the relative significance assigned to the features from each branch.
This visualization is a valuable tool for understanding the rationale behind the priori-
tization of certain features and the consequential impact of their weights on prediction
outcomes. The weights distribution map generated after the two-step training process
reveals a dense matrix of weights across numerous units in the dense layer. This in-
dicates a comprehensive consideration of features across various channels during the
model’s decision-making process.

When the model is trained in three steps, Fig. C.19(b) shows a sparser distribution
of weights with more pronounced extremes. This suggests that after completing the
three-step joint training process, the model learns to assign more pronounced weights, to
specific hidden layer features. This is a desirable result in many machine learning tasks,
as it is often associated with a more refined and potentially more generalized model. At
this point, the weights for PI branch have decreased in magnitude. We believe that the
knowledge from both branches has been unified and integrated into a more expressive
data-driven branch. Indeed the PI branch following the second step can be seen as a
regularization, helping the data-driven branch in the final step to find a way out of a
local optimum and converge closer to the global optimum.

Evaluating the flexibility of the PI branch for knowledge switching. To
evaluate the flexibility of PI branching in knowledge switching, this study changes the
knowledge model embedded in the PI branch while keeping the data-driven branch in-
tact, using a new empirical SEI model [369] to constrain the output relationship of the
PI branch. The new empirical formula elucidates the relationship between the thickness
L(t) of the SEI layer and time . It provides the following Eq. (C.14):

2D.CY
L(t) = ,/ZSS“ (C.14)

The entire SEI-informed DCNN model is shown in Fig. C.20.

The model in Fig. C.20 is denoted as “PIML model 17, the model in Fig. C.20 is denoted
as “PIML model 2” Their comparison results are shown in Table. C.16.

Table. C.16 summarizes the performance metrics for two PIML models, each designed
with distinct SEI growth knowledge. Within our proposed parallel framework, it be-
comes evident that models presented in Eq.(C.9) and Eq.(C.10) outperform the model
described in Eq. (C.14) after two steps. This suggests that PIML model 1 and its incorpo-
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(b) Channel weights distribution in the “Joint training” pre-trained PIML
model for processing the integrated features [h;,p].

Figure C.19: Schematic depiction of the modulation in channel weights after in-
tegrating features across various branches during the multi-step learning phases.

The model above has been trained in the second step, and the model below has
been trained in the full three steps.
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Figure C.20: SEIlayer thickness growth model informed DCNN functional mod-
ule integration diagram.

ration of physics exhibit superiority within the same data-driven branch and informed
framework.

Table C.16: Performance metrics of different PIML models.

Model | Mean absolute percentage error (%) Cycle Error (MAE)
After “Physics- | After After After
informed align- | “Joint “Physics- “Joint
ment” training” informed train-

alignment” | ing”

PIML 1 10.9 8.4 15 11

PIML 2 12.7 8.3 17 9

Another conclusion that can be drawn is that the three-step training process outper-
forms the two-step training process for both of the proposed PIML models. Specifically,
the MAPE of “PIML model 1” improves from 10.9% to 8.4%, and the cycle error is reduced
from 15 to 11. Similarly, the MAPE of PIML Model 2 improved from 12.7% to 8.3%, and
the cycle error was reduced from 17 to 9. Even though the overall MAPE declined by
only a limited number of percentage points, the actual forecast cyclic error was reduced
by a very large amount. These improvements suggest that the additional training step
effectively enhances the model’s accuracy and ensures the model’s flexibility in embed-
ding different physics knowledge. This optimization enables improved generalization
and more accurate predictions. This highlights that even if the initial knowledge is sub-
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optimal in that it is not directly generating certain RUL-related metrics, but rather an
empirical understanding of changes in system behaviour (e.g., SEI thickness growth), it
can be refined through this complementary training to achieve promised performance.

236



APPENDIX D

Appendix: Improved Self
Supervised Learning strategy for
Prognostics and Health
Management

D.1 Novel contrastive metrics for SSL

Table D.1: Common Contrast Loss Functions.

Loss Function Formula Description

Measures angular dif-
ference between posi-
— cos(f(Zpos), f(Tneg)) tive and negative fea-
tures. Ignores magni-
tude.
Distinguishes positive
i (o) f (2 anchor)) and negative pairs us-
NT-Xent Loss ~log ( exP( T ) ) ing a similarity func-
S exp (sim(f(zneg> f (Zanchor)) )

Cosine Similar-
ity Loss

tion and temperature

T

T.

Enforces a margin
max (0, d( f(Tanchor), f(Tpos)) ~ — | between positive and
d(f(@anchor); f(%neg)) + margin) negative pairs based
on their distance d.

Triplet Loss

Captures temporal de-
pendencies in sequen-
CPCL “log exp(f (@r4x) " Wi f(c1)) tial data with context

2 exP(f (@) Wi (c0)) vector f(c;) and pre-

diction weight W7
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D.2. Prognostia bearing dataset and the data processing method for the
proposed SSL approach validation

D.2 Prognostia bearing dataset and the data pro-
cessing method for the proposed SSL approach
validation

D.2.1 PRONOSTIA dataset introduction

This section entails the validation of the model’s performance on the “PRONOSTIA Bear-
ing Dataset” which originates from run-to-failure experiments conducted on a research
platform as detailed in [178]. Acceleration sensors are placed to capture both horizontal
and vertical vibration signals, with a sampling frequency of 25.6 kHz. Data is recorded
at 10-second intervals, each recording lasting for 0.1 seconds. The dataset encompasses
three distinct operating conditions and comprises six complete degenerate trajectories
for training purposes, along with eleven incomplete trajectories designated for testing.
Specifically, the testing trajectories are truncated in proximity to the point of impend-
ing failure, facilitating the prediction of the RUL at the truncation point. The training
dataset comprises data from six bearings undergoing degradation monitoring. Addition-
ally, there are ten bearings in the test set.

After data preprocessing, the number of unlabeled samples obtained for pre-training
is 60000. The number of labeled samples obtained for testing is 30277. The number of
samples with labeled data for downstream training is 15857

D.2.2 Data preprocessing setting

This research applies the “db” wavelet transformation to the original data. The obtained
approximate and detail coefficient truncated spectrum is shown in Fig. D.1. The trunca-
tion length is half of the whole spectrum, and it is used as the input for the CNN with a
computation size of (2, 1280).

D.3 CNN-LSTM benchmark model configuration

In this study, we designed a vanilla model with a focus on both data processing and
learning hyperparameters to ensure efficient and accurate predictions as shown in Ta-
b