
HAL Id: tel-04846767
https://theses.hal.science/tel-04846767v1

Submitted on 18 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning spatial representations for single-task
navigation and multi-task policies

Pierre Marza

To cite this version:
Pierre Marza. Learning spatial representations for single-task navigation and multi-task policies.
Vision par ordinateur et reconnaissance de formes [cs.CV]. INSA de Lyon, 2024. Français. �NNT :
2024ISAL0105�. �tel-04846767�

https://theses.hal.science/tel-04846767v1
https://hal.archives-ouvertes.fr

N◦ d’ordre NNT : 2024ISAL0105

Thèse de Doctorat de l’INSA LYON,

membre de l’Université de Lyon

École doctorale n◦ 512
Informatique et Mathématiques de Lyon (Infomaths)

Spécialité de doctorat :
Informatique

Soutenue publiquement le 25 Novembre 2024, par :
Pierre Marza

Learning spatial representations for single-task navigation and

multi-task policies

Devant le jury composé de :

Laptev Ivan Directeur de Recherche Rapporteur

INRIA Paris / MBZUAI

Alahari Karteek Directeur de Recherche Rapporteur

INRIA Grenoble

Thome Nicolas Professeur des Universités Examinateur

Sorbonne Université

Chalvatzaki Georgia Full Professor Examinatrice

TU Darmstadt

Matignon Laëtitia Maître de Conférences Co-Directrice de thèse

Université Claude Bernard Lyon 1

Simonin Olivier Professeur des Universités, Co-Directeur de thèse

INSA Lyon

Wolf Christian Principal Scientist Co-Directeur de thèse

Naver Labs Europe

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Pierre Marza, Learning spatial representations for single-task navigation and multi-task policies, ©2024

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Département FEDORA – INSA Lyon - Ecoles Doctorales

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

ED 206

CHIMIE

CHIMIE DE LYON

https://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr

M. Stéphane DANIELE
C2P2-CPE LYON-UMR 5265
Bâtiment F308, BP 2077
43 Boulevard du 11 novembre 1918
69616 Villeurbanne
directeur@edchimie-lyon.fr

ED 341

E2M2

ÉVOLUTION, ÉCOSYSTÈME, MICROBIOLOGIE, MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Bénédicte LANZA
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.e2m2@univ-lyon1.fr

Mme Sandrine CHARLES
Université Claude Bernard Lyon 1
UFR Biosciences
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69622 Villeurbanne CEDEX
e2m2.codir@listes.univ-lyon1.fr

ED 205

EDISS

INTERDISCIPLINAIRE SCIENCES-SANTÉ

http://ediss.universite-lyon.fr
Sec. : Bénédicte LANZA
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.ediss@univ-lyon1.fr

Mme Sylvie RICARD-BLUM
Laboratoire ICBMS - UMR 5246 CNRS - Université Lyon 1
Bâtiment Raulin - 2ème étage Nord
43 Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
Tél : +33(0)4 72 44 82 32
sylvie.ricard-blum@univ-lyon1.fr

ED 34

EDML

MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Yann DE ORDENANA
Tél : 04.72.18.62.44

yann.de-ordenana@ec-lyon.fr

M. Stéphane BENAYOUN
Ecole Centrale de Lyon
Laboratoire LTDS
36 avenue Guy de Collongue
69134 Ecully CEDEX
Tél : 04.72.18.64.37
stephane.benayoun@ec-lyon.fr

ED 160

EEA

ÉLECTRONIQUE, ÉLECTROTECHNIQUE, AUTOMATIQUE
https://edeea.universite-lyon.fr
Sec. : Philomène TRECOURT
Bâtiment Direction INSA Lyon
Tél : 04.72.43.71.70

secretariat.edeea@insa-lyon.fr

M. Philippe DELACHARTRE
INSA LYON
Laboratoire CREATIS
Bâtiment Blaise Pascal, 7 avenue Jean Capelle
69621 Villeurbanne CEDEX
Tél : 04.72.43.88.63
philippe.delachartre@insa-lyon.fr

ED 512

INFOMATHS

INFORMATIQUE ET MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46
infomaths@univ-lyon1.fr

M. Dragos IFTIMIE
Université Claude Bernard Lyon 1
Bâtiment Braconnier (ex-101)
21 Avenue Claude Bernard
69622 VILLEURBANNE Cedex
Tél : 04.72.44.79.58

direction.infomaths@listes.univ-lyon1.fr

ED 162

MEGA

MÉCANIQUE, ÉNERGÉTIQUE, GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Philomène TRECOURT
Tél : 04.72.43.71.70
Bâtiment Direction INSA Lyon
mega@insa-lyon.fr

M. Etienne PARIZET
INSA Lyon
Laboratoire LVA
Bâtiment St. Exupéry
25 bis av. Jean Capelle
69621 Villeurbanne CEDEX
etienne.parizet@insa-lyon.fr

ED 483

ScSo

ScSo1

https://edsciencessociales.universite-lyon.fr
Sec. : Mélina FAVETON
Tél : 04.78.69.77.79
melina.faveton@univ-lyon2.fr

M. Bruno MILLY (INSA : J.Y. TOUSSAINT)
Univ. Lyon 2 Campus Berges du Rhône
18, quai Claude Bernard
69365 LYON CEDEX 07
Bureau BEL 319
bruno.milly@univ-lyon2.fr

1

 ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Abstract

Autonomously behaving in the 3D world requires a large set of skills, among which are

perceiving the surrounding environment, representing it precisely and efficiently enough to

keep track of the past, making decisions and acting to achieve specified goals. Animals, for

instance humans, stand out by their robustness when it comes to acting in the world. In

particular, they can efficiently generalize to new environments, but are also able to rapidly

master many tasks of interest from a few examples. This manuscript will study how artificial

neural networks can be trained to acquire a subset of these abilities.

We will first focus on training neural agents to perform semantic mapping, both from

augmented supervision signal and with proposed neural-based scene representations. Neural

agents are often trained with Reinforcement Learning (RL) from a sparse reward signal. Guid-

ing the learning of scene mapping abilities by augmenting the vanilla RL supervision signal

with auxiliary spatial reasoning tasks will help navigating efficiently. Instead of modifying

the training signal of neural agents, we will also see how incorporating specific neural-based

representations of semantics and geometry within the architecture of the agent can help im-

prove performance in goal-driven navigation. Then, we will study how to best explore a 3D

environment in order to build neural representations of space that are as satisfying as possible

based on robotic-oriented metrics we will propose. Finally, we will move from navigation-only

to multi-task agents, and see how important it is to tailor visual features from sensor observa-

tions to the task at hand to perform a wide variety of tasks, but also to adapt to new unknown

tasks from a few demonstrations.

This manuscript will thus address different important questions such as: How to represent

a 3D scene and keep track of previous experience in an environment? – How to robustly adapt to new

environments, scenarios, and potentially new tasks? – How to train agents on long-horizon sequential

tasks? – How to jointly master all required sub-skills? – What is the importance of perception in

robotics?

i
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Résumé

Agir de manière autonome dans notre monde 3D requiert un large éventail de compétences,

parmi lesquelles se trouvent la perception du milieu environnant, sa représentation précise et

suffisamment efficace pour garder une trace du passé, la prise de décisions et l’action en vue

d’atteindre des objectifs. Les animaux, par exemple les humains, se distinguent par leur ro-

bustesse lorsqu’il s’agit d’agir dans le monde. En particulier, ils savent s’adapter efficacement

à de nouveaux environnements, mais sont aussi capables de maîtriser rapidement de nom-

breuses tâches à partir de quelques exemples. Ce manuscrit étudiera comment les réseaux

neuronaux artificiels peuvent être entrainés pour acquérir un sous-ensemble de ces capacités.

Nous nous concentrerons tout d’abord sur l’entrainement d’agents neuronaux à la car-

tographie sémantique, à la fois à partir d’un signal de supervision augmenté et avec des

représentations neuronales de scènes. Les agents neuronaux sont souvent entrainés par ap-

prentissage par renforcement (RL) à partir d’un signal de récompense peu dense. Guider

l’apprentissage des capacités de cartographie d’une scène en ajoutant au signal de supervision

des tâches auxiliaires favorisant le raisonnement spatial aidera à naviguer plus efficacement.

Au lieu de travailler sur le signal d’entrainement des agents neuronaux, nous verrons égale-

ment comment l’incorporation de représentations neuronales spécifiques de la sémantique et

de la géométrie à l’architecture de l’agent peut contribuer à améliorer les performances de nav-

igation sémantique. Ensuite, nous étudierons la meilleure façon d’explorer un environnement

3D afin de construire des représentations neuronales de l’espace qui soient aussi satisfaisantes

que possible sur la base de métriques pensées pour la robotique que nous proposerons. Enfin,

nous passerons d’agents de navigation à des agents multi-tâches et nous verrons à quel point

il est important d’adapter les caractéristiques visuelles extraites des observations de capteurs

à chaque tâche à accomplir pour réaliser une variété de tâches, mais aussi pour s’adapter à de

nouvelles tâches inconnues à partir de quelques démonstrations.

Ce manuscrit abordera donc différentes questions : Comment représenter une scène 3D et

garder une trace de l’expérience passée dans un environnement ? – Comment s’adapter de manière

robuste à de nouveaux environnements, scénarios et potentiellement de nouvelles tâches ? – Comment

entrainer des agents à des tâches séquentielles à horizon long ? – Comment maîtriser conjointement

toutes les sous-compétences requises ? – Quelle est l’importance de la perception en robotique ?

iii
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Acknowledgements

Acknowledgements in French

Je tiens à remercier tout d’abord mes encadrants, Laëtitia, Olivier et Christian. Je garderai

de bons souvenirs de nos réunions, discussions au sujet de nouvelles idées, articles scien-

tifiques et résultats d’expériences. Vous m’avez apporté une vraie stimulation scientifique et

m’avez permis d’apprendre beaucoup. Mention spéciale à Christian que j’ai recontré lors d’un

projet en dernière année d’école d’ingénieur, et avec qui j’ai poursuivi pour un stage de fin

d’étude et finalement... une thèse ! Merci Christian pour ta bienveillance et ton enthousiasme,

et surtout ton implication scientifique sans faille. Même si toutes nos idées n’ont pas toujours

aboûti, j’ai pris beaucoup de plaisir à les imaginer, les discuter avec toi et les implémenter au

cours de ces dernières années.

Je remercie également les membres de mon jury, Ivan Laptev, Karteek Alahari, Nicolas

Thome et Georgia Chalvatzaki pour leurs questions et retours constructifs.

Merci au LIRIS et au CITI de m’avoir accueilli durant cette thèse et de m’avoir permis de

côtoyer des gens formidables. Côté LIRIS, merci à Corentin (avec qui j’ai aussi eu la chance de

collaborer durant mon stage de fin d’étude d’école d’ingénieur – j’en profite donc pour glisser

un merci à Moez et Grigory qui m’ont co-encadrés durant ce stage et aux côtés de qui, avec

Corentin, j’ai beaucoup appris sur le travail de recherche !), Théo, Quentin, Steeven, Edward,

Assem, Guillaume, Olivier, Eric, Aurélien et Juliana dont j’ai croisé la route. Côté CITI, jai eu la

chance de rencontrer Antoine, Théotime, Benoit, Benjamin, Florian, Simon, Idham, Aurélien,

Johan, Alessandro, Romain, Damien, Thierry, Alix, Maxime, Guillaume, et bien d’autres, avec

qui j’ai pu discuter de nombreux sujets passionnants. Mention spéciale à Xiao avec qui je me

suis entrainé pendant plusieurs mois pour courir notre premier marathon (Run in Lyon 2023).

Je me souviendrai surtout de nos footings au Parc de la Tête d’Or et des discussions qui les

accompagnaient !

Et bien sûr, pour finir, un grand merci à ma famille, en particulier mes parents et ma soeur

pour leur soutien. Un exemple de celui-ci: de temps en temps pendant la thèse, je recevais

un petit meme sur le quotidien des doctorants de la part de ma soeur me rappelant que les

périodes difficiles existent et doivent être vécues avec le sourire ! Ceci n’est qu’un exemple

v
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

parmi d’autres de l’impact positif que vous avez tous les trois eu, merci ! J’ai également

partagé de bons moments avec mes amis pendant ces dernières années. Mention spéciale à

Josué pour nos longues discussions, Hugo pour les sorties sportives (et l’intérêt que tu as

porté à ce manuscrit !), et Anthony qui est venu me rendre visite en Californie durant mon

stage de thèse !

Acknowledgements in English

I first wanted to thank the Computer Vision team at Huawei Noah’s Ark Lab in London

where I interned in 2019. This was my first experience with research and the work I conducted

with people in the team, among which were Sean, Greg, Sarah and Steven, made me realise I

really enjoyed research and wanted to pursue a PhD.

This time, during my PhD, I interned in the Embodied AI team at Meta AI in Summer

2022. I would like to thank all members of the team for making this internship a great expe-

rience, and in particular Dhruv and Devendra who made it happen. Devendra, I enjoyed our

discussions about research and other topics, thank you! I also had a lot of fun spending time

with other interns such as Jacob, Theo, Nicklas, Claire and Corentin, so thanks to you all!

vi
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

vii
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Contents

Abstract i

Résumé iii

Acknowledgements v

Contents viii

List of Figures x

List of Tables xiv

Acronyms xvi

1 Introduction 1

1.1 Autonomy in the world as a measure of intelligence 3

1.2 Perceiving the world is crucial but not enough alone 4

1.3 Knowledge arises from interaction . 5

1.4 Artificial neural agents can learn to interact . 7

1.5 Organization of the manuscript and contributions 10

2 Preliminary concepts 13

2.1 Deep Learning . 13

2.2 Computer Vision . 18

2.3 Sequential Decision-Making . 38

3 Progress in Embodied AI 51

3.1 Simulation . 51

3.2 Encoding past experience . 62

3.3 Training neural agents . 67

3.4 Neural scene representations . 74

4 Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spa-

tial Reasoning 81

4.1 Context . 82

4.2 Learning to map . 84

4.3 Experimental results . 89

viii
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

CONTENTS CONTENTS

4.4 Conclusion . 94

5 Neural implicit representations as a means to better navigate to multiple

objects 95

5.1 Context . 96

5.2 Navigating with implicit representations . 98

5.3 Experimental results . 107

5.4 Conclusion . 115

6 Training of Neural Implicit Representations through Autonomous Scene Ex-

ploration 117

6.1 Context . 118

6.2 AutoNeRF . 120

6.3 Experimental results . 126

6.4 Conclusion . 134

7 Efficiently adapting visual features to multiple tasks 136

7.1 Context . 137

7.2 Task-conditioned adaptation . 138

7.3 Experimental results . 143

7.4 Conclusion . 156

8 Conclusion 157

8.1 Summary of the presented contributions and directly related perspectives 157

8.2 Current and future trends in Embodied AI touched in this manuscript 158

8.3 Other future perspectives in Embodied AI . 163

8.4 Closing remarks . 164

Bibliography 168

ix
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

List of Figures

1.1 Illustration of the coffee dilemma. 2

1.2 ALVINN architecture . 7

1.3 ALVINN simulation . 8

2.1 Non-local attention block . 21

2.2 Vision Transformer . 22

2.3 Masked Auto-Encoding . 24

2.4 SimCLR training objective . 25

2.5 CLIP pre-training . 27

2.6 3D scene representations . 28

2.7 NeRF training . 30

2.8 Instant-NGP . 34

2.9 Gaussian Splatting . 35

2.10 Original and online SLAM problems . 37

2.11 The agent-environment interaction . 39

2.12 Behavior Cloning objective and distributional mismatch 47

3.1 The simulation software stack . 52

3.2 Semantic annotations in HM3DSEM . 54

3.3 RGB-D observations and top-down maps rendered with the Habitat simulator 56

3.4 Multi-ON (3-ON) task overview . 60

3.5 Task samples from Adroit, DeepMind Control and MetaWorld 61

3.6 Episodic memory . 63

3.7 Topological memory . 64

3.8 Explicit vs implicit map features . 65

3.9 PONI . 68

3.10 Vision pre-training pipeline for robotics . 70

3.11 Auxiliary supervision for the PointNav task 72

3.12 GO to Any Thing . 74

3.13 iMap . 75

3.14 iNeRF . 77

x
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

LIST OF FIGURES LIST OF FIGURES

3.15 Learning 3D-aware scene representations with NeRF guidance 78

4.1 Overview of the introduced auxiliary tasks . 83

4.2 Base Multi-ON agent architecture . 85

4.3 Example agent trajectory . 92

4.4 Linear probes of representations optimized with and without auxiliary su-

pervision . 93

5.1 Overview of the proposed neural implicit representations 97

5.2 Navigating with implicit representations . 98

5.3 Training the Global Reader . 106

5.4 Agent rollout on an example episode . 111

5.5 Lifelong learning of the semantic representation 112

5.6 Capacity of the semantic representation . 113

5.7 Training stability . 114

5.8 Importance of Fourier features . 115

6.1 AutoNeRF overview . 118

6.2 Downstream tasks . 119

6.3 Modular policy overview . 121

6.4 Mesh reconstruction . 127

6.5 Navigating in the Habitat simulator . 128

6.6 Rollouts by Frontier-Based Exploration vs. Modular policy (obs cov) 132

6.7 BEV map tasks . 133

6.8 Quality of rendering (RGB and semantic) . 134

7.1 Task-conditioned adaptation . 138

7.2 Considered tasks . 139

7.3 Method overview – Training the policy and adapters 140

7.4 Method overview – Optimization of the task embedding in the

Few-shot setting . 141

7.5 Method overview – Inference for the Known task and Few-shot settings . 141

7.6 Known task — Qualitative results . 144

7.7 Known task — Impact of visual adapters . 146

7.8 Known task — Per-task performance . 147

7.9 Few-shot — Per-task performance . 149

7.10 Few-shot — Qualitative results . 150

7.11 Visualization of attention maps (Assembly task) 151

7.12 Visualization of attention maps (Relocate task) 152

7.13 Task-related information inside visual embeddings 153

xi
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

LIST OF FIGURES LIST OF FIGURES

7.14 Few-shot — Impact of the number of demonstrations on few-shot adapta-

tion to unseen tasks . 154

8.1 PRISM-1 reconstruction sample . 159

8.2 Holodeck generation samples . 160

8.3 Voyager . 163

8.4 Deployment of a modular exploration policy on a HelloRobot Stretch robot . 166

xii
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

List of Tables

3.1 Evolution in the characteristics of indoor datasets 53

3.2 Comparison of indoor simulators . 55

4.1 Summary of environment representations in Multi-ON baseline agents . . . 87

4.3 Impact of different auxiliary tasks . 90

4.2 PPO hyperparameters . 90

4.4 Consistency over multiple models . 91

4.5 CVPR 2021 Multi-ON Challenge Leaderboard 91

5.1 Architecture of involved convolutional layers 107

5.2 Impact of the implicit representations . 108

5.3 Importance of the uncertainty estimation . 108

5.4 Comparison with state-of-the-art methods . 109

5.5 Performance of the global reader . 112

6.1 Navigating inside a NeRF-generated mesh . 128

6.2 PointNav Finetuning . 129

6.3 Rendering performance . 130

6.4 Map estimation performance . 131

6.5 Planning performance . 131

6.6 Pose refinement performance . 132

6.7 NeRF semantic maps . 133

6.8 Navigating with sensor and actuation noise 135

7.1 Known task — Impact of visual adapters . 145

7.2 Known task — Additional ablation studies 148

7.3 Known task — Impact on other visual backbones 148

7.4 Known task — Non-linear probing of actions 155

7.5 Known task — Diversity of known tasks . 155

7.6 Few-shot — Performance of a finetuned baseline 155

xiv
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Acronyms

AI Artificial Intelligence

BC Behavior Cloning

CNN Convolutional Neural Network

CV Computer Vision

DRL Deep Reinforcement Learning

GRU Gated Recurrent Unit

LSTM Long-Short Term Memory

MAE Masked Auto-Encoding

MDP Markov Decision Process

MLP Multi-Layer Perceptron

NLP Natural Language Processing

POMDP Partially Observable Markov Decision Process

RL Reinforcement Learning

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

ViT Vision Transformer

xvi
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Chapter

1
Introduction

Perceiving the world and acting in it are key abilities of any autonomous entity. More im-

portantly, learning to master them robustly, i.e. adapting to changes in the surroundings, is

necessary to accomplish any goal of interest. In this manuscript, we will first study how to

train artificial neural networks to act in unknown 3D environments, more specifically navigate

efficiently thanks to scene mapping strategies to keep track of explored areas and important

landmarks. We will also consider the adaptability to multiple tasks involving visuomotor con-

trol by modulating visual features extracted from observations. The conducted work spans

the topics of Computer Vision, Reinforcement Learning, Robotics, and the more recent field of

Embodied AI that we will describe in more detail later.

Now that we have presented a high-level view of what will be discussed in this

manuscript, let us take a step back and consider a larger picture that goes beyond the scope

of the studies that will be presented but helps motivate the followed research direction. We

will come back to the precise questions we will ask ourselves in the last two sections of this

chapter, but before this, we will see why the ability to autonomously interact with the world is

a relevant objective when targeting some form of artificial intelligence, and also why it might

be interesting to address the sub-problems of perception and action together at the same time.

For now, we will start by defining two general concepts: agent and skill.

Agent: an entity able to take actions in a given environment, and have effects on it.

A powerful abstraction that will often be used in this manuscript is the one of the agent.

We will consider specific implementations of agents such as policies in Reinforcement Learning

1
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Introduction

Figure 1.1: Illustration of the coffee dilemma – generated by a Deep Learning model (Podell et al.,

2024). This is not presented as an illustration only, but will serve another purpose: one should pay

attention to the wrong details in these images to get a hint at how hard modeling the physical world

can be for current Artificial Intelligence (AI) models.

(RL), or robots in Robotics, but we will often refer to agents to keep drawn conclusions general

enough.

Skill: the ability for an agent to transform an input into a relevant output.

As for the agent, we keep the definition of a skill quite general as it will depend on the

considered tasks and scopes of the studies. However, what is important is that an agent, to

successfully interact with a 3d environment, will have to combine different skills together

(sometimes referred to as sub-skills later in this manuscript), each one providing partial in-

formation to solve a task. Examples of skills could be detecting obstacles on a visual input,

planning a high-level path to a location from a representation of an environment, detecting

important semantic objects, or predicting a sequence of local actions to reach a high-level

target.

Let us now consider a simple thought experiment that we will call the coffee dilemma (see

Figure 1.1 for an illustration): you arrived yesterday at a house where you will spend your

holidays. You have already been here for a day, so you start being familiar with the place. This

morning, you need a coffee! You have two options: (i) either prepare it yourself, or (ii) make

a bet with your friend – if you beat them at chess they will bring you a coffee, if not you will

not have a coffee this morning. Importantly, this friend is actually a professional chess player.

Most people will probably pick option (i) as it appears much easier: you would just need to

grab a cup and make coffee with the coffee machine, while option (ii) seems out of reach for

most humans.

2
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Autonomy in the world as a measure of intelligence Introduction

However, our current AI agents, also called neural models, if tasked to get a coffee as an

instruction, might rather pick option (ii). After all, some models have already achieved chess

professional-level performance in the past (Campbell et al., 2002; Silver et al., 2017; Ruoss et al.,

2024). And if we really think about it, option (i) might not be as easy as we might assume

in the first place. Re-visiting the well-known Moravec’s Paradox (Moravec, 1988a), stating that

tasks that seem the simplest to humans are often the most difficult to solve by algorithms, one

should not underestimate the difficulty of getting a cup of coffee in the morning. Indeed, an

agent should first remember the location of cups, coffee, and the coffee machine. It then has

to navigate to these different landmarks in the right order (first to the cup and coffee before

the coffee machine) while avoiding obstacles and following an efficient path for the task to be

solved in a reasonable amount of time. Another hard part is about precisely manipulating all

considered objects and potential containers. Thus, making coffee requires properly perceiving

its surrounding environment (vision), planning navigation and manipulation paths (high-level

reasoning), and executing the paths (low-level control). One should also not underestimate

the amazing human haptics that an autonomous agent might need to emulate, i.e. sensing

and manipulating through touch, requiring an accurate model of physical surface contact

interactions. Even if we, humans, do most of these things unconsciously, it is very challenging

for an AI model to perform. More importantly, it is even harder to do it reliably, in any house,

with any lighting condition, any type of coffee machine, and any shape of cup. This thus

motivates the interest in the research direction followed in our work.

Current AI models can now generate stunning images (Figure 1.1), that most humans

would not be able to create from scratch, and yet are far from solving robotic tasks. In fact,

if you actually look at the details of generated images in Figure 1.1, you might get a hint

at why we are still far from having agents interacting with the world. Many errors, even

if tiny, reveal something important: these generative models have a hard time building a

robust model of the physical world, which is primordial to then act in the world. However,

it is important to acknowledge that such generative models are not trained to model physics

and dynamics explicitly, but we could assume that such implicit understanding would be

necessary to generate convincing images. Is it just a question of supervision, or could it be

due to them not being able to take actions in an interactive environment? These are only open

questions, but we will come back to them later.

1.1 Autonomy in the world as a measure of intelligence

Intelligence is still considered today a controversial notion (Legg et al., 2007). In this

manuscript, we will not propose another definition of this concept, but will instead think

about a fuzzy version of it from a specific point of view, i.e. the ability to behave autonomously

in human-like environments. Indeed, the world we live in is highly unstructured and full of

different variants of given concepts. Being able to navigate such environments thus constitutes

3
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Perceiving the world is crucial but not enough alone Introduction

a relevant test-bed to some form of intelligence, that might not be considered proper general

intelligence but comes close to a subset of human capabilities, mainly the ability to interact

with the physical world and generalize to new or poorly represented scenarios and concepts.

This manuscript studies autonomy through the lens of algorithms, more specifically Ma-

chine Learning approaches where artificial neural networks are trained to address different

tasks of interest. We consider different design choices, both in terms of neural architectures

and supervision signal, that can lead to autonomous agents taking actions in 3D environ-

ments. In this context, learning to behave in scenes that would look realistic to a human has

another interest: indeed, a great example of a neural network being able to robustly generalize

to new scenarios is the human brain, and its development was likely influenced by the types

of tasks and environments human beings have to deal with. Some contributions presented in

this manuscript are indeed inspired by practices or theories from the field of neuroscience.

Properly behaving in realistic environments requires two main components: perception, the

ability to extract information from high-dimensional sensory data, and agency, the capacity to

take correct actions influencing the world to reach goals of interest. We will consider how the

former is necessary to construct structured representations of the surrounding environment,

but is not enough alone without the latter, as perception and agency are tightly related.

1.2 Perceiving the world is crucial but not enough alone

Perception is the first step towards understanding the world by extracting the underlying

structure from high-dimensional signals coming from the surroundings. Even if not restricted

to it, this work mainly considers visual perception as we study how autonomous agents can

behave from visual information as input. This choice is explained by the richness of the

visual modality, from which a lot of information can be recovered. Other modalities such as

language, proprioception, radar, lidar, or touch are obviously useful and very likely necessary

for autonomous agents to behave interestingly, but we believe vision is a modality we can

hardly operate without.

Visual perception with algorithms is often referred to as Computer Vision (CV), which is

an active field of research, trying to answer a fundamental question: How to extract rich infor-

mation from low-level raw visual data? One of the first references to CV was the Summer Vision

Project in 1966 (Papert, 1966), where a group of researchers from the Massachusetts Institute

of Technology (MIT) decided to spend a summer working on a computer-based vision system

able to distinguish objects from the background, and from what they mentioned as "chaos".

This work was full of great ideas, such as dividing this hard goal into easier sub-problems, or

studying shapes and surface properties, but needless to say one summer was not enough to

obtain a robust object detector. This shows there is a gap between our own evaluation (even

as researchers!) of the difficulty of providing human-level vision to algorithms and what it

4
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Knowledge arises from interaction Introduction

really takes. Indeed, only today, 58 years after the end of the Summer Vision Project, we start

reaching strong object detection performance, with, however, a lack of robustness to long-tail

scenarios. The road is still long before reaching human-level generalization in vision systems,

even if we have witnessed some amazing progress in the field during the past few years.

CV has evolved since the Summer Vision Project with a growing number of challenging

sub-problems being proposed and new solutions to them, relying more and more on artificial

neural networks being trained to extract visual information. A more thorough review of

the literature will be given in chapters 2 and 3, but an important characteristic of many CV

problems, already during the Summer Vision Project and in more recent tasks, is that perception

is considered separately from action. We often view our vision algorithm as a passive observer

of the world without any effect on it. CV models will be trained to understand the content of

images from a fixed set of data, without the ability to interact with the world.

However, in the past few years, a subdomain known as Embodied AI has started to emerge

in the CV community, where agents learn to process visual information by interacting with

environments. Such considerations are not new, and this appears more as a convergence

with other fields such as Robotics or Reinforcement Learning. Indeed, the long-term objective

appears to be similar to the one of robotics, i.e. building autonomous embodied agents able

to interact with the world, but the difference might rather be about the starting point. The

Embodied AI community finds its roots in Computer Vision and Deep Learning fields and

approaches the problem from a learning-focused point of view. While robotics has been

incorporating learning-based components, Embodied AI is motivated by the goal of training

agents on large-scale datasets to allow the implicit emergence of required sub-skills. Despite

the introduction of robotics-related inductive biases, e.g. explicit environment mapping, the

scaling hypothesis is also heavily studied, i.e. whether all skills can be learned end-to-end when

scaling neural architecture complexity and data size. Similar to what has been done recently

in Natural Language Processing (NLP) with neural network approaches trained from large-

scale text databases, a part of the Embodied AI community believes the same path can be

followed to get autonomous agents acting in the physical 3D world.

We will now discuss why training perception and action simultaneously, or at least taking

each one into account when considering the other, might be important.

1.3 Knowledge arises from interaction

We must perceive in order to move, but we must also move in order to perceive. – Gibson (1979)

As stated by Gibson and studied through the lens of his theory of affordances (Gibson,

1966), perception and action are tightly related. This strong connection has indeed been an

important research subject in psychology with other contributions such as the ideomotor the-

ory of William James (James et al., 1890) stating that specific actions are taken by humans as

5
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Knowledge arises from interaction Introduction

they anticipate the sensory signal they will receive based on their behavior. These concepts

have then been re-used in cognitive sciences, artificial intelligence, and robotics to better un-

derstand the behavior of autonomous agents perceiving their environment and interacting

with it.

According to Gibson, navigating the world smoothly requires perceiving it, but at the

same time, being unable to act would greatly reduce the perceptual diversity of one’s expe-

rience. Such a statement could seem wrong in the era of the internet: a lot of data from

everywhere in the world, under diverse conditions is stored and available. This is particularly

important when considering learning algorithms. However, again, what would be lacking

here is the ability to intentionally explore the surrounding environment to look for specific

data. The web is large but is still static.

The importance of interacting with the world to understand and improve perception is

also motivated when considering two timelines: the one of human evolution, and the one of

a single human lifetime. As done by Jitendra Malik in some of the great talks he gave (e.g.

The Sensorimotor Road to Artificial Intelligence, Martin Meyerson Berkeley Faculty Research Lecture,

March 2023), looking back at our evolutionary timeline is quite informative. A particularly

important moment is known as the Cambrian explosion, i.e. a central period in evolution when

many developed species started to emerge with diverse specificities and abilities. If focusing

on the Hominidae family, this was the period when bipedalism and opposable thumbs ap-

peared, allowing one to move and use tools more efficiently. An important part of evolution

from the first living organisms to current human beings could thus be seen as a search for

the necessary abilities to adapt to the surrounding environment, as this is crucial for survival.

This is particularly true for perception: our perceptual system has evolved to help us act more

efficiently in the world. Indeed, Parker (2003) studied how vision played an important role

in the Cambrian explosion. Now, even considering the lifetime of a human, it always starts

with hands-on interaction. This is indeed what childhood is all about: right before being able

to read and thus access knowledge this way, children spend most of their time playing, i.e.

manipulating objects and moving around to understand the core concepts of the world they

behave in (Thelen and Smith, 1994; Thelen et al., 2001; Smith and Gasser, 2005). The underly-

ing motivations for this behavior are not yet clearly understood, but the concept of intrinsic

curiosity is often mentioned and has been studied in algorithms (Gottlieb et al., 2013; Oudeyer

and Kaplan, 2007; Oudeyer et al., 2007; Pathak et al., 2017).

Neuroscience also shows there is a strong relationship between perception and action

through the existence of bottom-up and top-down processes in our visual system (Corbetta

and Shulman, 2002; Buschman and Miller, 2007). The first ones, bottom-up processes, were

shown to extract all information from available visual signals, while the second, top-down

processes, seem to adapt perception to the task at hand. It seems that the way we perceive

is impacted by our prior knowledge and the task we want to solve. Indeed, adapting the

6
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Artificial neural agents can learn to interact Introduction

Figure 1.2: ALVINN architecture – reproduced from Pomerleau (1988)

structure of the information we extract to the problem we are trying to solve appears as a

relevant approach. Some tasks might rather rely on semantics, others on 3D geometry for

example.

When designing learning algorithms, using interaction as a test-bed to improve perception

thus appears as an appealing direction. Embodied AI, bridging CV and robotics, with a

specific focus on learning from egocentric interactions, then becomes a great framework to

ask many important questions that we will present in the next section.

1.4 Artificial neural agents can learn to interact

Training neural networks to navigate the physical world is not that new. Already back in 1988,

ALVINN (Autonomous Land Vehicle In a Neural Network – Pomerleau (1988)) was developed at

Carnegie Mellon University. This system (Figure 1.2) was based on a fully end-to-end trained

neural network taking images as inputs and outputting the direction a car should follow

to stay on a road. What has changed since then are the new advances in the field of Deep

Learning, with new architectures or supervision strategies. For example, we are now able to

train deep neural networks composed of hundreds of layers while the one in ALVINN was

only composed of three neural layers.

However, another important component when training artificial neural networks is the

access to data. Great advances were made in NLP and CV when large-scale datasets were

introduced (e.g. Imagenet (Deng et al., 2009) in CV). Accessing this amount of data in robotics

7
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Artificial neural agents can learn to interact Introduction

Figure 1.3: ALVINN simulation – reproduced from Pomerleau (1988)

or Embodied AI is however much harder, particularly if we want our systems to be trained by

interacting with an environment. A great alternative is simulation, where we try to emulate

a given environment, with different levels of realism (sensing, photo-realism, etc.). Recent

improvements in Embodied AI systems, which will be reviewed in chapter 3, are partly due

to the increase in simulation quality and dataset sizes, and new generations of neural models

will likely benefit from further advances. Interestingly enough, simulation was already a topic

in the ALVINN paper! Indeed, the neural network was trained from simulated images of the

road (Figure 1.3). It is humbling to witness how prior work such as ALVINN was ahead of its

time.

Let us now conclude this introduction by going back to our current times, and considering

what challenges are still to be faced, some of which we address in this manuscript. Many

questions indeed start to emerge when considering neural agents autonomously interacting

with the world:

• How to represent a 3D scene and keep track of previous experience in an environment? When

perceiving the world from an egocentric viewpoint, building specific representations al-

lowing to interact with it is an important requirement. This is also true for keeping track

of the past: previous experience, e.g. detected landmarks or specific geometry of the en-

vironment, can turn out to be very informative later on and should be stored efficiently.

This manuscript (chapters 4 and 5) will study how to explicitly teach neural agents to

keep track of important landmarks, and how to build neural-based representations that

can be queried efficiently to retrieve semantic and geometric information of interest.

• How to robustly adapt to new environments, scenarios, and potentially new tasks? We could

hardly consider an agent as autonomous if it was not able to address given tasks in new

environments or even adapt to variations of known tasks. An important part of this

8
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Artificial neural agents can learn to interact Introduction

manuscript is thus about evaluating these generalization abilities: all neural agents will

be trained to navigate in environments that are different from the ones seen at test time,

in order to study how well they can generalize (chapters 4, 5 and 6). Generalization to

new manipulation tasks will also be covered (chapter 7) as it is another important ability

to have. Transferring acquired knowledge and sub-skills to new domains and tasks is

indeed a great ability of living species and a challenging direction to pursue in AI.

• How to train agents on long-horizon sequential tasks? Most considered tasks in this

manuscript require an agent to take many actions sequentially to be considered success-

ful. This poses several challenges, both at inference and training time. When deploying

a trained agent in a new scene, the length of sequences of actions to take will introduce

memory challenges, i.e. properly remembering the past (cf. previous point) will become

harder and yet more important than for shorter sequences. At training time, as we will

often rely on RL, a well-known challenge will be the credit assignment problem (presented

in more detail in the next chapter), i.e. the difficulty in identifying the actions or combi-

nations of actions that had the strongest influence on a success or a failure. We will have

to overcome the difficulty of training agents with RL on such long-horizon tasks from

sparse rewards by following standard practices in the literature.

• How to jointly master all required sub-skills? Some parts of this manuscript (chapters 4

and 5) will deal with end-to-end neural agents trained with RL to navigate. In this case,

many sub-skills have to be learned implicitly from reward alone: perceiving the environ-

ment (detecting landmarks and obstacles), mapping the environment, remembering previous

experience, mastering the available actions to navigate properly. Learning all these abili-

ties at the same time can be challenging, but also simplifies the problem of specifying

necessary sub-skills as those are learned automatically given the task to solve. Another

technique that will be considered in the manuscript (chapter 6) will be to decompose the

policy into specific modules with only some of them being trained to perform a specific

sub-task.

• What is the importance of perception in robotics? This manuscript will be mainly biased

towards studying the impact of perception on different robotic tasks. We will indeed

consider the relationships between perception-based representations of space and navi-

gating agents (chapters 4, 5 and 6) along with the impact of task-specific visual features

to address different tasks of interest based on a single pre-trained visual backbone (chap-

ter 7).

These questions make the Embodied AI problem interesting and will be studied in this

manuscript. We will now provide more details about the content of the next chapters, along

with their associated contributions.

9
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Organization of the manuscript and contributions Introduction

1.5 Organization of the manuscript and contributions

The manuscript is divided into eight chapters (including the current one). We will start with

a literature review in chapters 2 and 3, before to present our contributions in chapters 4 - 7.

Finally, chapter 8 concludes this manuscript and takes a step back from presented concepts,

considering relevant future perspectives. A more detailed presentation of each chapter is

given below:

• Chapter 2 introduces preliminary concepts the next chapters will build on top of. We will

cover topics such as Deep Learning, Computer Vision, or Sequential decision-making. We will

review common approaches in different subdomains, highlighting current trends and

state-of-the-art methods and algorithms that will later be leveraged in this manuscript.

More than listing concepts, we will try to mention which role they play in the context of

the work presented later in this manuscript.

• Chapter 3 reviews recent progress in Embodied AI. Once the core concepts will have

been presented in the previous chapter, it will be time to zoom in on the field of Em-

bodied AI to present current advances and directions. More specifically, we will talk

about simulation (datasets, simulators, tasks and benchmarks), methods to encode past ex-

perience (episodic memory, recurrent hidden state, topological or metric maps), different

agent training methods such as reinforcement learning, imitation learning, pre-trained visual

backbones helping the generalization to new tasks, or auxiliary supervision to guide the

training of autonomous agents. We will also review the use of implicit representations

in robotics. As done in the previous chapter, more than listing papers and approaches,

we will try to position the work presented in the next chapters with respect to existing

work.

• Chapter 4 studies the emergence of mapping abilities in RL-trained agents when aug-

menting their supervision signal with auxiliary tasks. We focus on training neural agents

to navigate new 3D environments to explore them and detect landmarks whose location

should be memorized to reach them later. In such a setting, vanilla RL-based approaches

would leverage reward signals to incentivize the agent to implicitly learn to map the lo-

cation of objects of interest. While this can work to some extent, we show in this chapter

that explicitly training the agent to memorize the location of targets in addition to the

original RL supervision signal improves navigation efficiency. More importantly, this

finding transfers to different agent types, either fully neural or equipped with an ex-

plicit map.

Related contributions

Paper: P. Marza, L. Matignon, O. Simonin, C. Wolf, Teaching Agents how to Map:

Spatial Reasoning for Multi-Object Navigation, IROS 2022 (Marza et al., 2022)

10
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Organization of the manuscript and contributions Introduction

Project page: https://pierremarza.github.io/projects/teaching_agents_how_to_map/

Code: https://github.com/PierreMarza/teaching_agents_how_to_map

Application: Winning entry in the MultiON Challenge, Embodied AI Workshop,

CVPR 2021 (http://multion-challenge.cs.sfu.ca/2021.html).

• Chapter 5 proposes to learn implicit representations of 3D scenes (geometry and seman-

tics), but more importantly to train RL agents to use them to navigate. While focusing

on the same task as the previous chapter, it will be about designing specific neural-based

representations of an environment to be used by an agent instead of augmenting its su-

pervision signal. We introduce two dynamically-updated representations of scenes, one

mapping semantic objects, the other unexplored area and geometry of known parts of

the environment. An important challenge is to efficiently integrate such representations

in the forward pass of a neural agent so that it can be trained with RL to use them

properly. We show that the proposed representations improve navigation efficiency at

test time on new unknown scenes.

Related contributions

Paper: P. Marza, L. Matignon, O. Simonin, C. Wolf, Multi-Object Navigation with

dynamically learned neural implicit representations, ICCV 2023 (Marza et al., 2023)

Project page: https://pierremarza.github.io/projects/dynamic_implicit_representations/

Code: https://github.com/PierreMarza/dynamic_implicit_representations

• Chapter 6 presents a method to autonomously collect training data for neural implicit

representations of 3D space (NeRF – will be presented in chapter 2) with modular agents.

Implicit representations have been used to perform novel view synthesis in 3D scenes,

but often require a manual acquisition of training data. Unlike the previous chapter

that studies how to use implicit representations to help with navigation, we focus here

on the opposite: how can neural agents navigate to autonomously collect data to build

neural representations of scenes in a second stage? We also reflect on relevant robotics-

related metrics to evaluate the underlying quality of an implicit scene representation

and present a use-case of our method to scan a new scene and safely fine-tune a policy

of interest in simulation.

Related contributions

Paper: P. Marza, L. Matignon, O. Simonin, D. Batra, C. Wolf, D.S. Chaplot, AutoNeRF:

Training Implicit Scene Representations with Autonomous Agents, IROS 2024 (Marza

et al., 2024a)

Project page: https://pierremarza.github.io/projects/autonerf/

Code: https://github.com/PierreMarza/autonerf

• Chapter 7 considers the adaptation of visual features of pre-trained vision models con-

11
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

https://pierremarza.github.io/projects/teaching_agents_how_to_map/
https://pierremarza.github.io/projects/teaching_agents_how_to_map/
https://github.com/PierreMarza/teaching_agents_how_to_map
https://github.com/PierreMarza/teaching_agents_how_to_map
http://multion-challenge.cs.sfu.ca/2021.html
http://multion-challenge.cs.sfu.ca/2021.html
https://pierremarza.github.io/projects/dynamic_implicit_representations/
https://pierremarza.github.io/projects/dynamic_implicit_representations/
https://github.com/PierreMarza/dynamic_implicit_representations
https://github.com/PierreMarza/dynamic_implicit_representations
https://pierremarza.github.io/projects/autonerf/
https://pierremarza.github.io/projects/autonerf/
https://github.com/PierreMarza/autonerf
https://github.com/PierreMarza/autonerf

Organization of the manuscript and contributions Introduction

ditioned on a task to solve, and generalization to new tasks in the context of training

robotic multitask policies. General vision models have been studied in different domains

including robotics: a single versatile feature extractor that can be shared among tasks is

indeed appealing. However, we assume in this chapter that visual features should be de-

pendent on the task at hand. We introduce task-conditioned adapters to modulate visual

features based on the downstream task and validate their interest experimentally. We

additionally show that new task embeddings used to condition the proposed adapters

can be optimized provided a few expert demonstrations, to address new tasks unseen

at training time.

Related contributions

Paper: P. Marza, L. Matignon, O. Simonin, C. Wolf, Task-conditioned adaptation of

visual features in multi-task policy learning, CVPR 2024 (Marza et al., 2024b)

Project page: https://pierremarza.github.io/projects/task_conditioned_adaptation/

Code: https://github.com/PierreMarza/task_conditioned_adaptation

• Chapter 8 takes a step back and draws conclusions from the conducted studies in this

manuscript. More than this, we will also mention interesting perspectives and current

challenges that still need to be solved in Embodied AI, with a particular focus on simu-

lation, fluid intelligence, i.e. the ability to robustly adapt to new tasks from few examples,

and real-world experiments.

12
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

https://pierremarza.github.io/projects/task_conditioned_adaptation/
https://pierremarza.github.io/projects/task_conditioned_adaptation/
https://github.com/PierreMarza/task_conditioned_adaptation
https://github.com/PierreMarza/task_conditioned_adaptation

Chapter

2
Preliminary concepts

If I have seen further, it is by standing on the shoulders of giants. – Newton, 1675.

Science is indeed a collaborative process, where each new work builds on top of previous

ones to increase a global knowledge pool. In this chapter, we will thus introduce general

concepts and methods in Deep Learning, Computer Vision, and Sequential Decision-Making,

before reviewing the recent progress made in the field of Embodied AI in the next chapter.

More than listing scientific notions, this chapter will try to motivate the use of the con-

sidered techniques in our work and highlight how our contributions are inspired and/or

different from previous work. Context from work presented later in the manuscript will be

presented in boxes like the one below,

Context

We will mention here how the reviewed concepts are considered in this manuscript

and how our contributions relate to previous work.

2.1 Deep Learning

Deep Learning (DL) is a subfield of Machine Learning (ML), itself included in the broader

field of Artificial Intelligence (AI). The main goal of Deep Learning is to train artificial neural

networks to extract patterns from high-dimensional data to obtain compact and informative

representations of complex signals.

13
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Deep Learning Preliminary concepts

2.1.1 Supervised learning

Artificial neural networks must be trained, and the choice of the learning signal to do so

is often at least as important as the choice of neural architecture. We will here present the

simplest learning approach, i.e. supervised learning, before introducing other methods later

in this chapter.

Trade-off between guidance and flexibility – When training neural networks, there is a subtle

equilibrium to find: providing enough information for the model to learn required concepts

within reasonable time and compute constraints, without overly constraining the optimization

process with simplified or approximate assumptions. In supervised learning, training samples

are labeled to guide the learning of specific skills. Self-supervised learning does not require

specific annotations but deals with training a neural model to extract the underlying structure

and patterns from data without explicit labels. Finally, in reinforcement learning, a sparse

learning signal allows an autonomous agent to explore and implicitly discover important

concepts autonomously to solve a task of interest. Self-supervised and reinforcement learning

will be presented in later sections when more relevant.

Supervised training signal – The training dataset S= {zi}n
i=1 = {(xi, yi)}n

i=1 is composed of

inputs {xi}n
i=1 and labels {yi}n

i=1 that were explicitly crafted for the task at hand. Prior knowl-

edge about the task to solve is thus used to provide informative training labels. Levels of

annotation details can vary depending on the task: in image classification, each training im-

age is associated with a single 1−in−K vector denoting the corresponding high-level class

among the K ground-truth categories, while in dense prediction tasks such as image segmen-

tation, pixel-level supervision is provided with a semantic class associated with each image

pixel.

Training is optimization – To train a neural network, we optimize a parametrized mapping

from an input space X , where our initial signal lies, to an output representation space Y .

More specifically, we can represent a neural network as a function fθ predicting an output

ŷ ∈ Y from an input x ∈ X , conditioned on parameters θ, also called neural weights,

ŷ = fθ(x; θ). (2-1)

The objective is to minimize a loss function measuring the error between the predictions

of the neural network {ŷi}n
i=1 and ground-truth labels {yi}n

i=1, where ŷi= fθ(xi; θ) following

eq. 2-1. The optimization is done by Stochastic Gradient Descent (SGD), where we iteratively

sample a batch of data s ⊂ S to update θ (Bottou, 2010). If we denote the loss function

evaluating the error of fθ on samples from s as L(θ, s), and the gradient of this loss function

w.r.t parameters θ as ∇θL(θ, s), one update of neural network weights can be performed as,

14
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Deep Learning Preliminary concepts

θ := θ − η · ∇θL(θ, s), (2-2)

where η is the learning rate. This step is repeated until a stopping criterion is satisfied.

SGD is the simplest optimization algorithm, but more sophisticated optimizers exist (Ruder,

2016). A well-known example is the Adam optimizer (Kingma and Ba, 2014) which, instead

of having a single learning rate η shared among all neural weights, adapts specific learning

rates for all optimized parameters from first and second orders of the gradients.

2.1.2 Neural architectures

Artificial Neural Networks (ANN) are defined as a sequential computation graph mixing

parametrized learnable blocks, i.e. neural blocks, and unparametrized non-learnable opera-

tions. Such a computation graph is known as an architecture. We will briefly review the core

neural architectures along with their associated assumptions about the underlying function

to approximate. The common pattern of all architectures is a sequence of neural layers, each

receiving as input the output from the previous layer, and outputting a tensor fed to the next

layer as input.

Inductive biases – Deep Learning can be framed as a search in the space of parametrized

functions. However, such a space can be large, resulting in a hard optimization problem. To

make the latter simpler, an important and useful concept is called inductive biases (Mitchell,

1980). These can be defined as the set of assumptions on the function to search for, or the

constraints to apply to our search space. Inductive biases can also be seen as the set of prior

knowledge injected within the neural architecture. We will now consider different types of

neural architectures, highlighting their associated inductive biases.

Multi-Layer Perceptron – Adapted from the original Perceptron (Rosenblatt, 1957), the Multi-

Layer Perceptron (MLP) is the simplest and most flexible neural network as it is not equipped

with any particular inductive bias. It is defined as a sequence of fully-connected layers, com-

posed of a set of neurons, each computing a weighted sum of outputs from all neurons in the

previous layer, where weights are the learned parameters. The output of a neuron is passed

through a non-linear activation function to be able to approximate non-linear mappings. If we

denote the learnable weight matrix and bias for a given layer as W and b, the activation func-

tion as σ and its input vector as x, the layer output vector h is computed as h = σ(Wx + b).

An MLP is then built as a sequence of such feed-forward layers, where the output of one layer

is the input of the next one. Universal approximation theorems (Hornik et al., 1989; Csáji et al.,

2001) state that for any function f and closeness criteria ϵ > 0, there exists an MLP network

with enough neurons to approximate f within ϵ. However, it is important to keep in mind that

these are limit theorems, and there are thus no guarantees about the existence of a finite size,

i.e. number of neurons, for an MLP to map certain functions.

15
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Deep Learning Preliminary concepts

Context

MLPs are present in many neural architectures considered in our work, acting as a

classifier, a data fusion block, or as a probing tool.

Convolutional Neural Network – The Convolutional Neural Network (CNN) has initially

been introduced to encode images (LeCun et al., 1998) but has then been used to extract rep-

resentations from various modalities. If we focus on image processing, CNNs were designed

with two important inductive biases in mind: (i) locality, i.e. image pixels spatially close share

information, (ii) translation equivariance, i.e. when associating features with different parts of

the image, such features are shifted spatially if the parts of the image are themselves shifted.

The core operation in CNNs is the learned convolution, where a convolution kernel is passed

on the input image and performs a weighted sum of the neighboring pixels. As for the MLP,

weights used when performing the sum are learned. Other operations, such as pooling, can

also be used to reduce the resolution of the image representation, increasing the receptive

field of neurons.

Context

CNNs are parameter-efficient image encoders and are thus widely used in our work,

often to extract compact information from visual agent observations.

Recurrent Neural Network – Mentioned by Rumelhart et al. (1986), but finding its roots

in other domains such as neuroscience (McCulloch and Pitts, 1943), the Recurrent Neural

Network (RNN) is a simple architecture, very close to the MLP. The only difference is that

it is used to extract information from sequential data and thus, maintains a vectorial hidden

memory, fed as an additional input. If we denote the input vector and hidden memory at time

t as xt and ht, we have,

ht+1 = σ(Wht + Uxt + b), (2-3)

where W and U are weight matrices, b a bias term, and σ an activation function (fully-

connected layer). An underlying inductive bias is related to the Markov property: the next

hidden state of the network, and thus its output, only depends on the previous hidden state

without taking the full history of past inputs into account. Simple RNNs will often struggle

to memorize information over a long horizon in practice. Improved architectures such as the

Long-Short Term Memory (LSTM – Hochreiter and Schmidhuber (1997)) or the Gated Recur-

rent Unit (GRU – Cho et al. (2014)) were thus introduced to better deal with long sequences

of data. They are based on gating mechanisms allowing to explicitly forget old information

and memorize new important experiences. These are other inductive biases enforcing LSTM

or GRU to predict useless information to forget and data to remember.

16
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Deep Learning Preliminary concepts

Context

Leveraging temporal information is very valuable when interacting with the world.

Recurrent neural networks of different kinds (GRU, LSTM) are thus a common block

of many of the methods that will be discussed later as they allow keeping track of the

past, e.g. previously seen landmarks.

Transformer model – The Transformer model was introduced by Vaswani et al. (2017), and has

had a strong impact first in the field of NLP replacing common RNN-based methods, before

being applied in many other fields such as CV. The original Transformer (Vaswani et al., 2017)

is composed of an encoder and a decoder. We will here only present the Transformer encoder

(right part of Figure 2.2). The latter can be decomposed into a sequence of blocks, each made

of the same operations: batch normalization, multi-head self-attention, and a MLP. The core

part of the Transformer block is the multi-head attention that we will now detail.

A Transformer block receives a set of embeddings {xi}n
i=1, each representing the informa-

tion associated with an element or token, as input. The number of elements in an embedding

vector will be denoted as de. The goal is to refine the representation of each token through a

multi-head self-attention mechanism: a similar self-attention mechanism is performed nh times

in parallel, where nh is the number of attention heads, and the final representations of a given

token for all heads are concatenated and fused with a fully-connected layer. For a given head,

the self-attention mechanism in itself is about predicting a query qi ∈ Rdk , a key ki ∈ Rdk

and a value vi ∈ Rdv from each embedding xi. This is done with fully-connected layers

parametrized by matrices Wq ∈ Rde×dk , Wk ∈ Rde×dk , Wv ∈ Rde×dv . If we introduce E ∈ Rn×de ,

a matrix where the i-th row contains xi, we can compute the matrices of queries Q ∈ Rn×dk ,

keys K ∈ Rn×dk and values V ∈ Rn×dv as Q=EWq, K=EWk, V=EWv. A similarity matrix

S ∈ Rn×n can then be computed by performing a dot product between all queries and all

keys,

S =
QKT
√

dk
. (2-4)

A softmax operation is applied to S to obtain an attention matrix A containing a prob-

ability distribution over all keys for each query. Finally, if we denote the matrix containing

the new representations of all tokens as Ẽ, we compute it as the sum of values weighted by

attention scores,

Ẽ = AV. (2-5)

The default Transformer model is powerful at extracting rich representations for input

elements belonging to an unordered set. The underlying inductive bias is permutation invari-

ance as the set of output representations will not change if input tokens are permuted within

17
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

the input set. Another assumption behind the design of the Transformer encoder is the impor-

tance of explicitly performing a token-to-token attention operation based on the specifically

chosen query, key, and value quantities.

However, when dealing with ordered data, such as sequences of language tokens in NLP,

encoding the position of elements in their initial embedding fed to the Transformer becomes

very important (e.g. the order of words in a sentence brings a lot of information to understand

it). Thus, Vaswani et al. (2017) introduced positional encodings, which are specific embeddings

to encode the position of input elements. These can take the form of sine and cosine functions

of different frequencies, known as Fourier features, but can also be learned from data. Trans-

formers have also been applied to images, and the associated adaptations will be detailed in

the next section.

Context

The Transformer model will be used in chapter 5 to extract a latent representation from

a set of neural weights (more details will be presented later), but also as a backbone

vision model in chapter 7.

RNN vs Transformer – If we focus on two approaches that have been extensively used to

process temporal sequences, i.e. the RNN and Transformer, we can witness a few differences.

On the one hand, the RNN (and variants) only maintains a single hidden vectorial memory

that is updated at each timestep based on new information. The update is fast but can suffer

from long-context forgetting. On the other hand, the self-attention operation in Transformers

processes the full input sequence in one pass, suffering from a quadratic complexity with

respect to the number of tokens: Vaswani et al. (2017) report a per-layer O(n2d) complexity

for the self-attention operation alone, where n is the number of input tokens and d their di-

mension. However, another important operation is the projection of input tokens into queries,

keys and values which has a O(nd2) complexity, leading to a O(n2d + nd2) for a single-head

self-attention Transformer forward pass, compared with O(nd2) for a recurrent layer. There

is thus a trade-off between the efficiency of the RNN and the compactness of its memory

representation, and the better ability of the self-attention to model long-range dependencies.

Finally, in a decoding context, an advantage of a Transformer decoder is that a full sequence

of output tokens can be predicted in a single forward pass (in parallel) at training time, while

it is not the case for a RNN.

2.2 Computer Vision

Computer Vision (CV) aims at extracting relevant information from visual signal (Torralba

et al., 2024). Recently, many CV applications have been involving Deep Learning methods,

and this section will thus be biased towards the latter (while keeping in mind that CV can not

only be summarized as recent contributions involving Deep Learning).

18
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

Context

An important point to note is that many original CV applications can be considered as

disembodied: if we see the CV algorithm as an agent, the latter will receive observations

of the environment from a visual sensor and will be tasked to extract information

from them without having any impact on the environment. While such tasks remain

very informative, this is an important difference with problems considered later in this

manuscript that mainly involve visual inputs but where agents can take actions in 3D

worlds and interact with the latter. We will start by introducing disembodied standard

vision tasks and will focus on embodied tasks in the next chapters.

2.2.1 Encoding 2D images

Feature extraction from 2D images is an important application. While earlier works in CV

leveraged SIFT (Lowe, 2004) or HoG (Dalal and Triggs, 2005) features (still powerful and used

in certain applications), the current trend consists in extracting high-level features with neural

networks such as a CNN or Transformer model presented previously.

Standard vision tasks – Such features can then be used to solve various tasks of interest.

Well-known CV tasks include:

• Image classification: a class among a dictionary of semantic concepts must be associated

with an input image.

• Semantic segmentation: a class must be associated with every pixel in the image de-

pending on the type of object it belongs to, without differentiating instances of a given

concept.

• Instance segmentation: in addition to predicting the class of a pixel, the instance of this

object class should also be provided.

• Panoptic segmentation: semantic segmentation for non-countable concepts (e.g. grass)

and instance segmentation for other object types.

• Object detection: Objects belonging to a dictionary of concepts should be detected in

the image. The output is a set of bounding boxes defined by their coordinates and the

related semantic class.

Context

Some of our work will involve segmentation as a sub-task to solve when detecting ob-

jects of interest is necessary (object segmentation will be explicitly tackled in chapters 5

and 6 but will appear as an implicit requirement in other chapters). Some probing ex-

periments will also involve image classification.

19
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

The above tasks are solely based on vision but many problems involving mixing this

modality with others such as text or audio have been studied with more and more attention.

Examples are Visual Question Answering (VQA – Antol et al. (2015); Ben-Younes et al. (2017);

Cadene et al. (2019)), image captioning (Chen et al., 2015), image generation from text (Schuh-

mann et al., 2022), or eventually from language and vision (Zhang et al., 2023).

Context

Vision-Language tasks have also been introduced in the Embodied AI space. Even if

we do not directly tackle such tasks in our work, they will be mentioned in chapter 3

presenting progress in Embodied AI.

CNN models as feature extractors – More generally, convolutional neural networks have been

used extensively in CV, following the unprecedented performance of the CNN-based AlexNet

method (Krizhevsky et al., 2017) on the now famous Imagenet classification dataset (Deng

et al., 2009) in 2012. A following trend has then be to increase the depth of CNN models to

increase their expressivity power. Examples are the VGG network (Simonyan and Zisserman,

2014), or the ResNet model (He et al., 2016) that introduced residual connections to make the

training of deeper CNN models easier. ResNets are still in use today as they are lightweight

and efficient models providing a strong performance on many challenging tasks. Some works

such as MobileNet (Howard et al., 2017) have also studied how to make CNN models more

efficient to run on a low-resource platform while maintaining performance. Task-specific

architectures have then been proposed depending on the requirements of the problems to

solve.

Transformer models as feature extractors – A more recent trend is about using Transformer-

based networks to extract features from images. Khan et al. (2022) survey such a trend and

divide approaches into two categories: (i) CNN models augmented with local or global single-

head self-attention and (ii) Transformer-based models in vision that do not use convolutional

layers but multi-head self-attention blocks instead.

Indeed, the first works (i) integrated single-head attention inside CNN architectures. A

potential issue with convolutional layers is that they process information in a local neighbor-

hood, and thus make it hard to model long-range pixel dependencies. Wang et al. (2018) thus

proposed a non-local operator computing a similarity (attention) between all positions in a

CNN feature map (this operator can also be applied in recurrent networks along the time

axis) to share information between far spatial locations. Figure 2.1, reproduced from Wang

et al. (2018), shows a specific instance of the non-local operator applied to a space-time input

(T × H ×W × 1024, where T, H and W respectively denote time, spatial height and width).

We see that tensors θ, ϕ and g are projected from the input. θ and ϕ are then compared with a

dot-product operation followed by a softmax, as done with queries and keys in attention mech-

anisms. Finally, a sum of values in g weighted by obtained similarity scores is produced. g

20
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

θ: 1×1×1 φ: 1×1×1 g: 1×1×1

1×1×1

softmax

z

T×H×W×1024

T×H×W×512 T×H×W×512 T×H×W×512

THW×512 512×THW

THW×THW

THW×512

THW×512

T×H×W×512

T×H×W×1024

x

Figure 2.1: Non-local attention block – reproduced from Wang et al. (2018)

thus acts here as the values tensor in the previously presented attention mechanism. However,

by computing a dense attention map for each cell in the feature map, the non-local operator is

computationally and memory intensive. Huang et al. (2019) introduced criss-cross attention,

allowing to only compute a sparse attention map for each pixel. Another potential shortcom-

ing of the CNN is that, after training, it will process the input with the same set of fixed

weights no matter the values in the input. Hu et al. (2019) propose a local attention mecha-

nism that computes local aggregation weights based on the similarities between features in a

local window. Finally, some works completely replace convolutional layers with self-attention

layers, while keeping similarities with standard CNN architectures. For example, Ramachan-

dran et al. (2019) replace convolutions with local self-attention layers. Despite no convolution

being applied, the local self-attention layers still resemble convolutional kernels as they are

only applied in a local neighborhood.

Following this direction, many multi-head attention architectures (ii) have been proposed

in CV. We will present here the Vision Transformer (ViT) from Dosovitskiy et al. (2020), shown

in Figure 2.2. A main challenge was to transform an image into a set of tokens: this is done

by dividing an input image into patches, each transformed into a vector embedding through

a linear projection. After adding positional encoding to patch vectors, the final embeddings

are fed to a standard Transformer encoder, outputting a final representation of each token, i.e.

image patch.

Context

The ViT model will be used as a visual backbone in chapter 7 to extract visual features

from observations in different visuomotor control tasks.

The ViT model was pre-trained on a large proprietary dataset before being fine-tuned

21
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

Transformer Encoder

MLP
Head

Vision Transformer (ViT)

*

Linear Projection of Flattened Patches
* Extra learnable

 [c l ass] embedding

1 2 3 4 5 6 7 8 9

0Patch + Position
Embedding

Class
Bird
Ball
Car
...

Embedded
Patches

Multi-Head
Attention

Norm

MLP

Norm

+
L x

+

Transformer Encoder

Figure 2.2: Vision Transformer – reproduced from Dosovitskiy et al. (2020)

on smaller downstream datasets, leading to the first strong performance of a fully attention-

based vision model on medium-size datasets. Indeed, Transformer-based approaches, unlike

CNNs, are only equipped with a weak inductive bias (permutation equivariance over patches),

and thus need to learn additional image priors from large-scale datasets. DeiT (Touvron

et al., 2021) then showed that Transformer-based vision models could be trained on medium-

sized datasets by using augmentation and regularization techniques, but more importantly,

performing a teacher-student distillation where the teacher is a CNN model. Unlike ViT

which was pre-trained on a dataset of 300 million images, DeiT only requires 12 million

ImageNet (Deng et al., 2009) images.

Transformer models are also extensively used in multi-modal applications involving vi-

sion and other modalities such as language. The best example is the very active space of

image generation from text. A few examples are DALL-E (Ramesh et al., 2021), Stable Diffu-

sion (Rombach et al., 2022; Podell et al., 2024) or Imagen (Saharia et al., 2022).

CNN vs Transformer as feature extractors for images – A current belief is that Transformer

architectures might scale better than CNN models to large amounts of training data. Even

if CNNs might thus still be used in lower resource applications, a recent study (Smith et al.,

2023) shows that CNN models trained on web-scale datasets match the final performance of

a ViT model. This shows that with a proper design, CNN models might still be a great choice

for any application, even when it requires learning patterns from large-scale data.

22
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

2.2.2 General pre-trained vision models

A promising direction is in pre-training general vision models whose features – sometimes

still requiring weight fine-tuning or adaptation techniques – can be used in various down-

stream tasks. To this end, self-supervised learning is an appealing alternative compared with

supervised learning presented earlier, as it allows training vision models (also true in other

domains such as NLP) on large unlabeled datasets.

Self-supervised learning – does not require any explicit ground-truth labels. Instead, a neural

network is trained to extract patterns from unlabeled data. It allows training models on large

diverse datasets to learn general feature extraction abilities, without requiring any labeling

process. Unlike what is done in supervised learning, we only consider access to a training

dataset S= {xi}n
i=1, where xi is an input, e.g. a sentence in NLP or an image in CV.

Auto-Encoding – One of the standard self-supervised learning approaches is auto-

encoding (Hinton and Salakhutdinov, 2006). The idea is to learn to encode an input signal

as a compact latent code from which the input signal can be reconstructed. Let us consider

an input x ∈ Rdx , an encoder eθ and a decoder dϕ. eθ will be trained to predict a latent code

h ∈ Rdh from x so that dϕ can reconstruct x from h as,

h = eθ(x; θ) (2-6)

x̂ = dϕ(h; ϕ). (2-7)

x̂ will be compared to x with a chosen loss function L(.) (e.g. Mean Squared Error) to

provide a supervision signal to train eθ and dϕ. The training objective is thus as follows,

θ̂∗ = arg min
θ

n

∑
i=1
L(dϕ(eθ(xi; θ); ϕ), xi) (2-8)

= arg min
θ

n

∑
i=1
L(dϕ(hi; ϕ), xi) (2-9)

= arg min
θ

n

∑
i=1
L(x̂i, xi) (2-10)

However, without an important constraint, this setup will not allow learning to extract

meaningful representations. Indeed, for auto-encoding to be successful as a self-supervised

learning method, the latent representation should be a compact version of the input (dh <<

dx). This is the necessary constraint to force eθ to learn data patterns. Compression with

limited loss of information is thus here a great self-supervised objective also called pre-text

task.

23
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

encoder

....

....

decoder

input target

Figure 2.3: Masked Auto-Encoding – reproduced from He et al. (2022)

A variant of auto-encoders is known as denoising auto-encoders (Vincent et al., 2008) where

the encoder-decoder network is fed with a corrupted version of the signal and asked to re-

construct the original (uncorrupted) signal. Such an approach allows the encoder to become

more robust to noisy perturbations. A balance must then be found between perturbing the

input enough to make the task challenging, but still preserving necessary information.

Masked Auto-Encoding – Recent approaches such as BERT (Devlin et al., 2019) in NLP intro-

duce a type of corruption to the input signal called masking, consisting in removing some parts

of the input and reconstructing them from latent representations of unmasked parts. In the

same spirit as BERT, but this time in CV, another approach known as Masked Auto-Encoding

(MAE – He et al. (2022)) was presented. MAE was applied to images, but the concept is easily

generalizable to other modalities. As shown in Figure 2.3, MAE follows an encoder-decoder

scheme, where the encoder is trained to extract a meaningful latent representation of the in-

put. The decoder will only be used at training time and discarded later. More specifically,

the encoder and decoder are Transformer-based models and the encoder, a ViT, is trained

to encode an image, i.e. predicting latent embeddings for different patches at different lo-

cations. The idea is to mask some input tokens and only encode non-masked input patches

(Figure 2.3). Then, the masked tokens should be decoded based on information from non-

masked token representations. To properly reconstruct masked regions, the encoder should

learn to produce informative and semantically rich embeddings.

Contrastive learning – Other self-supervised learning methods do not rely on reconstructing

signals based on a compact latent representation. Examples are contrastive learning meth-

ods (Chen et al., 2020; He et al., 2020). The main objective of contrastive learning is to train an

encoder eθ to extract general concepts from high-dimensional inputs. There are many varia-

tions of contrastive objectives but, as shown in Figure 2.4, given an input signal x, the original

24
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

←−Representation−→

x

x̃i x̃j

hi hj

zi zj

t ∼ T
t
0 ∼ T

f(·) f(·)

g(·) g(·)

Maximize agreement

Figure 2.4: SimCLR training objective – reproduced from Chen et al. (2020)

idea is to produce two augmented versions of it, x̃i and x̃j, and to train eθ to extract similar

latent representations hi and hj from both inputs. Examples of augmentations used on im-

ages in Chen et al. (2020) are cropping, resizing, color distortion, rotation, cutout, gaussian noise,

gaussian blur, or sobel filtering. More specifically, in Chen et al. (2020), the training loss is not

exactly computed between hi and hj, but rather between embeddings zi and zj predicted by a

projection head gψ (zi = gψ(hi; ψ), zj = gψ(hj; ψ)) as this was shown beneficial. In contrastive

learning, (x̃i, x̃j) is called a positive pair as it is composed of two variants of the same input

that should thus lead to close representation vectors in the latent embedding space. However,

the presented setup is not enough as it could lead to a mode collapse where eθ would output

the same representation no matter the input. An important part of contrastive learning is thus

known as hard negative mining, i.e. finding negative samples that are different from x to train

eθ . If the same input u is considered different from x – this notion of difference should be

defined based on the task to solve, but an example could be a difference in the semantic class

the main element of an image belongs to – then (x̃i, u) and (x̃j, u) are called negative pairs and

eθ is thus trained to extract different embedding vectors for both inputs in such pairs. Con-

trastive learning is thus about bringing closer representations for inputs from positive pairs

and pushing away latent vectors for inputs from negative pairs. The success of these methods

is thus highly dependent on two points: (i) the types of augmentations used in order to define

what eθ should be invariant to, (ii) the mining of negative pairs that should be challenging

enough, i.e. u should not be too different (depending on how such a notion of difference is

defined) from x.

Non-contrastive learning – Some approaches (Grill et al., 2020; Zbontar et al., 2021; Bardes

et al., 2022) try to get rid of the necessary negative mining from contrastive learning.

BYOL (Grill et al., 2020) proposes to not have a single encoder eθ that will be trained but rather

an online network eθ and a teacher network eθ̂ , where θ̂ is updated as a moving-average of θ

and the online network is trained to match embeddings predicted by the teacher network lead-

ing to a strong performance without negative mining. Methods such as Barlow Twins (Zbontar

25
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

et al., 2021) or VICReg (Bardes et al., 2022) are known as non-contrastive as they only focus

on bringing closer representations of positive pairs while naturally avoiding any mode col-

lapse by reducing the redundancy between components of the latent embeddings. Finally, a

pre-trained vision model called DINO (Caron et al., 2021; Oquab et al., 2023) has been exten-

sively used and studied recently. Inspired by the beneficial use of self-supervised learning

on Transformer-based models in NLP, the original DINO paper (Caron et al., 2021) was one

of the first to study the impact of self-supervised learning on ViT networks. It takes inspira-

tion from the direction followed in BYOL, as it employs the same student-teacher approach.

However, they propose another loss function inspired by knowledge distillation (Hinton et al.,

2015) and leverage a multi-crop augmentation strategy (Caron et al., 2020). Importantly, they

show the emergence of attention towards whole objects, with attention masks following object

boundaries similarly to what would be expected from a segmentation model, without enforc-

ing this at training time. They also show that extracted features lead to strong performance

when processed by a simple nearest neighbors classifier, leading to high Imagenet classifica-

tion performance without training any task-specific linear classifier, or finetuning the feature

extractor, as often done. The more recent DINOv2 (Oquab et al., 2023) mostly focuses on

improving the speed and stability of known self-supervised learning methods when trained

on larger scale datasets than what has been done in the vision community before. Another

important part of their work is about efficiently building a large curated dataset of images.

Context

We will later present work using auto-encoding as a pre-training method in chapter 5,

and modules to adapt a large vision model pre-trained with MAE in chapter 7.

Approaches such as SimCLR (Chen et al., 2020), MoCo (He et al., 2020), BYOL (Grill et al.,

2020) or MAE (He et al., 2022) have led to strong pre-trained vision models that have been

used in downstream applications such as image classification.

Context

General models are strong tools to solve diverse tasks requiring high-level and rich

representations. Chapter 7 of this manuscript will be dedicated to the adaptation of

pre-trained vision models in robotics to solve multiple tasks with a single policy.

Multi-modal pre-trained models – Many backbone models used in CV are also multi-modal,

often vision-language models, i.e. trained to project both text and images in a common em-

bedding space. An example of a large-scale vision-language model is CLIP (Radford et al.

(2021) – see Figure 2.5) that leveraged a contrastive learning objective to simultaneously train

a text and vision encoders to respectively project language and vision inputs into a common

embedding space, leading to close embeddings for matching inputs (e.g. an image and its

associated caption). Other backbone vision-language models are trained with a generative

objective such as the already mentioned Stable Diffusion (Rombach et al., 2022; Podell et al.,

26
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

I1·T2 I1·T3 …

I2·T1 I2·T3 …

I3·T1 I3·T2 …

⋮ ⋮ ⋮

I1·T1

I2·T2

I3·T3

(1) Contrastive pre-training

Image
Encoder

Text
EncoderPepper	the

aussie	pup
Pepper	the
aussie	pup
Pepper	the
aussie	pup
Pepper	the
aussie	pup

T1 T2 T3 …

I1

I2

I3

⋮

(2) Create dataset classifier from label text

plane

car

dog

⋮

bird

A	photo	of
a	{object}.

⋮

Text
Encoder

T1 T2 T3 TN

…

(3) Use for zero-shot prediction

Image
Encoder I1 I1·T2 I1·TNI1·T1

…

…

A	photo	of
	a	dog.

TN

IN·T1 IN·T2 IN·T3

I1·TN

I2·TN

I3·TN

⋮

…IN

…

⋮ ⋱

IN·TN

I1·T3

Figure 2.5: CLIP pre-training – reproduced from Radford et al. (2021)

2024) or Imagen (Saharia et al., 2022). Indeed, being able to generate realistic images requires

learning about the semantics and geometry of images, and thus internal representations of

such generative models can provide strong representations of images (or text as they handle

both modalities). For instance, Li et al. (2023) show that a generative diffusion model can be

used as a zero-shot, i.e. without any additional training, image classifier.

2.2.3 Representing 3D space

3D scene representations are another important topic in CV. Indeed, representing 3D space

is both interesting from a scientific point of view as, we, humans, are able to greatly repre-

sent our surrounding environment in different ways, but also because it is necessary for any

downstream task involving some scene understanding. We will thus present different ways

to represent 3D information, summarized in Figure 2.6 along with neural-based approaches

to build and/or use such representations.

Depth maps – are a first way of representing the geometry of a part of a 3D scene visible

from a given viewpoint. Let us consider a standard RGB camera located at a specific position

and orientation in a 3D scene. Depending on the specifications of the camera, it will be able

to capture a 2D RGB image i ∈ RH×W×3, where H and W correspond to the pixel height

and width of the image. A corresponding depth image with the same resolution will be

d ∈ RH×W×1. Instead of the three channels of an RGB image, a depth map only has a single

channel associating the distance from the camera to the closest surface in the world to each

pixel. This is also known as a 2.5D representation since 3D distance is represented as a 2D

structure. Depth maps can be obtained with specific sensors (e.g. Microsoft Kinect or Intel

Realsense depth camera), or estimated from RGB images. There are two main paradigms

when it comes to estimating depth from RGB: (i) stereo depth estimation and (ii) monocular depth

27
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

Voxel grid Point Cloud Triangular Mesh

3D Scene

Egocentric

RGB image Depth map Surface normals

Figure 2.6: 3D scene representations – the depth map and surface normals are predicted by AutoNeRF

(see chapter 6).

estimation. In (i), we use at least two RGB images to retrieve depth information. This is similar

to how humans perceive 3D (with our two eyes acting as two sensors, allowing us to perform

stereo vision). A popular method is known as Structure-from-motion (Schonberger and Frahm,

2016) and can be used to retrieve depth maps from a set of images by extracting features (e.g.

SIFT or Deep Learning-based features) from the latter to then find correspondences between

them, providing information to estimate the underlying geometry. Structure-from-motion is

not limited to generating depth maps, but most of the 3D representations that we will present

can actually be obtained from it provided a dense enough set of images. Deep Learning-

based methods have also been proposed to perform stereo depth estimation (Li et al., 2021;

Smolyanskiy et al., 2018; Tankovich et al., 2021). In (ii) however, we consider only a single

RGB image, making the task more challenging. Recent work predicts depth maps from single

RGB images using Deep Learning (Eigen and Fergus, 2015; Bhat et al., 2021; Kim et al., 2022;

Ranftl et al., 2020, 2021; Yin et al., 2021).

Context

Depth maps are popular in robotics and Embodied AI, as accessible and reliable sen-

sors are available with robots and implemented in simulators. Much of the work that

will be presented in this manuscript (chapters 4, 5 and 6) will thus deal with depth

maps as compact representations of the surrounding 3D geometry.

28
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

Surface normals – When perceiving the world from an egocentric viewpoint, another repre-

sentation of a visible 3D scene is known as surface normals. Again, it takes the form of a 2D

map but with three channels as this time each pixel is not associated with the distance to the

closest surface, but rather with the coordinates of the vector normal to the latter. As for depth

maps, surface normals can be predicted with deep neural networks (Eigen and Fergus, 2015;

Wang et al., 2015; Lenssen et al., 2020).

Depth and surface normal maps both represent a part of a 3D scene perceived from a

given location. Their 2D structure makes depth and normal maps easily usable as inputs

to a vision neural network. However, we might want to construct a representation of a full

3D environment, and not only represent the currently visible scene. We will now review the

structures to do this.

Voxel grids – are the simplest representation: it is a 3D tensor with as many channels as

required depending on the information to store. In the same way that we divide a 2D image

into pixels, here the 3D world is divided into voxel cubes with a certain size. Each voxel will

be associated with channels: there is always one to represent occupancy, i.e. 0 if the location

is free space and 1 if it intersects an obstacle. Then, we could have additional channels, for

instance to store semantic information such as object classes (simple extension of the semantic

segmentation problem from 2D to 3D). Voxel grids can be processed with neural models using

3D convolutional operations (Wu et al., 2015). Interestingly, voxel grids can also be generated

from a 2D image of the scene of interest. For example, Choy et al. (2016) present a neural

method to generate a voxel representation of a 3D scene provided one or more 2D views of

the said scene. First, a 2D CNN predicts a latent feature vector for each input view. Then,

they introduce 3D-LSTM units, which are LSTM units spatially arranged as a 3D grid, each

responsible for representing a part of the 3D scene. The recurrent structure allows the 3D-

LSTM units to update their representation as features from a new view are provided, and

importantly, each unit only receives the hidden states of its neighbors. Finally, the high-level

3D representation from the 3D-LSTM is fed to a 3D decoder outputting an occupancy grid.

As already mentioned, an advantage of the voxel representation is its simplicity as it is

nothing more than a 3D tensor. However, scaling voxel grids to fine resolutions can be memory

intensive depending on the size of the scene to represent. A great alternative is to represent

voxel information with an octree structure (Tatarchenko et al., 2017). It is a tree where each

node represents a part of 3D space and has exactly eight children representing sub-parts of its

associated space (that is thus subdivided into eight regions at the next tree level). An octree

provides various levels of resolution (the more one goes down the tree, the finer the structure

is) and, more importantly, allows to adapt the level of details required for different parts of

space (e.g. an empty part would only require the first level of resolution), leading to memory

savings.

29
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

(x,y,z,θ,ϕ)

FΘ

(RGBσ)

5D Input
Position + Direction

Output
Color + Density

Volume
Rendering

Ray 1σ

σ

Rendering
Loss

g.t.

g.t.

2

2

2

2

Ray 2

Ray 1

Ray Distance

Ray 2

Figure 2.7: NeRF training – reproduced from Mildenhall et al. (2020)

Because of its simplicity, the voxel representation is also popular in robotics and Embodied

AI, and we will see it can be used to represent free space, obstacles and objects in a scene.

3D point cloud representations – are another popular method, where the geometry of a 3D

scene is represented as a set of points all associated with a 3D euclidean coordinate of a non-

empty location. Points can be associated with other features than only their coordinates, e.g. a

color or a semantic label. Processing a point cloud requires specific neural architectures such

as PointNet (Qi et al., 2017a) or PointNet++ (Qi et al., 2017b). PointNet treats the input point

cloud as a set, i.e. without any order between points in the representation, by extracting a

point-specific representation with a MLP. The different point representations are then pooled

to obtain a global representation of the whole point cloud. A point cloud can also be generated

from a 2D input image as shown by Fan et al. (2017).

Point clouds are also popular in robotics and Embodied AI, as they are easily computable

from available sensors. Indeed, a depth map can be directly converted into a point cloud

representing the visible geometry by projecting each 2D pixel depth to its associated 3D coor-

dinate, i.e. a 3D point, from camera intrinsics.

Triangular meshes – are a final 3D representation we will consider. A 3D scene is now

represented as a set of vertices V and a set of triangles over these vertices. Compared with

voxel grids or point clouds, they are less straightforward to process with neural networks.

However, this has been successfully achieved with specialized CNN models (Hanocka et al.,

2019) or graph neural networks (Pfaff et al., 2021).

Meshes are a standard representation in computer graphics. Even if they might be less

used in robotic applications, they are however often chosen to represent 3D scenes and assets

to be loaded in simulators.

More recently, a new scene representation method known as neural field based was pro-

posed and will be presented in more detail below.

30
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

2.2.4 Neural fields

Neural fields were introduced by Mescheder et al. (2019); Park et al. (2019); Chen and Zhang

(2019) as an alternative to discrete scene representations such as voxels, point clouds and

meshes, with the idea of encoding information of a 3D scene using a continuous neural map-

ping. A neural network FΘ, taking the form of a simple MLP, can be queried with a position

x = (x, y, z) ∈ R3 to obtain some information of interest ix about the location x in the scene as

ix = FΘ(x; Θ). For example, Mescheder et al. (2019) introduce Occupancy networks that map a

3D coordinate to a probability of occupancy (ix ∈ [0, 1]). Park et al. (2019) propose a neural

signed distance field representation, thus ix ∈ R+ represents the predicted distance between

a given 3D coordinate (x as input) and the closest surface in the scene.

NeRF – An important work in this emergent field is the one by Mildenhall et al. (2020) that

proposed Neural Radiance Fields (NeRFs). They kept the idea of encoding a 3D scene with

the weights of a simple neural network but mainly introduced a new supervision signal based

on volume rendering to train it.

Volume rendering is a computer graphics method (Kajiya and Von Herzen, 1984) used to

compute a 2D projection of a 3D scene. NeRFs were initially introduced to perform novel view

synthesis where a 3D scene is described from a set of 2D frames along with camera poses from

which the images are obtained. The goal is then to build a representation of the 3D scene to

render new 2D views from novel viewpoints (camera poses unseen before). The idea behind

the NeRF paper was thus to use volume rendering to supervise the neural representation of

the scene by training it to render 2D ground-truth images provided associated camera poses.

In particular, NeRF models were new as they introduced the notion of radiance into neu-

ral fields, i.e. considering the impact of viewing direction on color when performing RGB

rendering. Thus, with NeRFs, the input to the neural network is denoted (x, d), where

x = (x, y, z) ∈ R3 still represents a location in the 3D scene and d ∈ R3 is the 3D unit vector

describing the direction of the viewing camera. The NeRF will output the density σ ∈ R at

the 3D location (x, y, z) and the color c = (r, g, b) ∈ {0, 1}3 of this point seen from the camera

orientation d. The forward pass of a NeRF model FΘ can then be formulated as,

(σ, c) = FΘ(x, d; Θ) (2-11)

More specifically, a NeRF model is an MLP that can be divided into two blocks. The first

block is composed of 8 fully-connected layers and only takes the 3D location x as input to

predict the density σ (which is independent of the camera direction) and a 256-dimensional

embedding. The latter is concatenated to the camera direction d and fed to the second block

composed of a single fully-connected layer predicting the color c.

In order to understand the training scheme of NeRFs, we can first consider we have a

31
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

trained model and wonder how to render a 2D frame provided an arbitrary camera pose. A

pixel in the final image to render has a location lp ∈ R3 in the scene (that can be retrieved from

the camera pose and specifications). Following principles in volume rendering, for each pixel

in the image, we will emit a ray ip(t) = lp + td starting at position o and following direction

d. As formalized by Mildenhall et al. (2020), if we define near and far emission bounds tn and

t f , the expected color of the ray C(ip) is,

C(ip) =
∫ t f

tn

T(t)σ(ip(t))c(ip(t), d)dt, where T(t) = exp
(
−
∫ t

tn

σ(ip(s))ds
)

, (2-12)

where T(t), the accumulated transmittance along the ray from tn to t, denotes the proba-

bility for the ray to travel from tn to t without encountering a dense particle.

In practice, this continuous integral is numerically estimated by sampling K random

quadrature points {tk}K
k=1 between near and far bounds. More specifically, this is done with

stratified sampling, i.e. dividing the space between bounds into K evenly-spaced bins and

sampling one quadrature point uniformly inside each bin, leading to more diverse queries

compared with querying the NeRF model at fixed positions along the ray. The approximated

expected ray color is then,

Ĉ(ip) =
N

∑
i=1

Ti (1− exp (−σiδi)) ci, where Ti = exp

(
−

i−1

∑
j=1

σjδj

)
, (2-13)

with δi = ti+1 − ti.

Context

NeRF models, and more generally neural-based representations of 3D scenes, will be

used in chapters 5 and 6 in the context of navigating agents.

Two important concepts were also presented by Mildenhall et al. (2020): positional encoding

and hierarchical volume sampling.

Positional encoding – Representing high-frequency color and geometry details with a neural

network taking a low-dimensional 3D location and camera orientation as inputs is hard. A

NeRF model is thus fed with a higher-dimensional transformed version of such input values,

obtained by separately applying an encoding function γ to all coordinates of x and d. The

encoding function used by Mildenhall et al. (2020) is described as,

γ(p) =
(

sin
(
20πp

)
, cos

(
20πp

)
, · · · , sin

(
2L−1πp

)
, cos

(
2L−1πp

))
(2-14)

32
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

This operation is similar to what was done with the Transformer (Vaswani et al., 2017)

that was presented earlier and already called positional encoding, mapping low-dimensional

input coordinates to a high-dimensional space. A follow-up paper (Tancik et al., 2020) studies

further the importance of these high-dimensional embeddings, also called Fourier features, to

learn high-frequency functions.

Context

Some work presented in this manuscript deals with training neural implicit represen-

tations of scenes, and we also witnessed the significant gains brought by positional

encoding when it comes to reconstruction quality in chapter 5.

Hierarchical volume sampling – Performing stratified sampling along a ray to estimate the

color of the corresponding pixel can be inefficient as useless parts of the scene, such as free

space or occluded regions, will be queried extensively while not bringing any important infor-

mation. Taking inspiration from previous work in volume rendering (Levoy, 1990) advocating

for a hierarchical representation of space, two different NeRF models are trained: a coarse and

a fine model. Kc points will be selected by stratified sampling as presented previously and be

used to query the coarse model as described in equation 2-13. We can re-write the latter as a

weighted sum of all predicted colors along the ray,

Ĉc(ip) =
Kc

∑
i=1

wici, wi = Ti (1− exp (−σiδi)) (2-15)

Then, another sampling of K f query points can be performed, informed by the predictions

of the coarse network, favoring locations playing an important role in the final color to render.

After normalizing weights {wi}i=1...Kc as ŵi = wi/ ∑Kc
j=1 wj, we can get a piece-wise constant

probability density function (PDF) along the ray, and sample K f new points according to

this PDF. The fine network can finally be queried with all points from the two sampled sets

(Kc + K f) to render the pixel color following equation 2-13.

Improving over the vanilla NeRF model – Follow-up work has addressed some drawbacks of

the original NeRF model, mostly training and rendering speed, rendering quality or sensitivity

to noisy camera poses, and sparse training views.

An example of work tackling training and rendering speed is Instant-NGP (Müller et al.,

2022), illustrated in Figure 2.8. The objective in Instant-NGP is to provide a new encoding of

the location input x allowing to have a faster training while conserving the rendering quality.

The scene space is first divided into L sets of voxels of varying resolutions. For each voxel

set, the voxel containing x is selected, and indices of its corner are retrieved. A look-up table

is then queried with the corner indices to get an embedding per corner. The embeddings

are linearly interpolated based on the relative position of x in the voxel, leading to a final

embedding per voxel set. The L embeddings are then concatenated along with potential

33
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

x

y

< (y;�)

)

�

! · �

⇢

b

! = 2, 1 = 1.5

1/#1

1/#0

; = 0

; = 1

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

02

3 6

0 4

1 7

(1) Hashing of voxel vertices (2) Lookup (3) Linear interpolation (4) Concatenation (5) Neural network

Figure 2.8: Instant-NGP – reproduced from Müller et al. (2022)

additional inputs such as the encoded camera direction. The obtained vector is finally fed

to the MLP model. Importantly the hash table entries are trained along the MLP weights by

backpropagating the loss gradients through the concatenation and linear interpolation.

A concurrent work, Plenoxel (Fridovich-Keil et al., 2022), provides another approach to

faster training by modeling the neural field with a sparse voxel grid instead of a neural net-

work. They keep the idea of a differentiable volume rendering but show that a sparse voxel

grid is faster to optimize. Fast-NeRF (Garbin et al., 2021) does not try to improve the training

but the rendering speed. They show they can reach up to 200FPS by caching NeRF outputs to

render new pixels faster, following practices in computer graphics.

Another line of work is about representing scenes from only a few images. PixelNeRF (Yu

et al., 2021) proposes to jointly train an image encoder and a NeRF model on a dataset com-

posed of different scenes to learn scene priors. The encoder extracts a feature map from an

image of a new scene. The NeRF model is then queried with the standard 3D location and

camera direction, but also a feature associated with the location, obtained by projecting the

3D point to the 2D camera plane and selecting the corresponding feature on the map from the

encoder. They also extend their approach to the multi-view setting. This allows PixelNeRF to

generalize to new scenes, and thus to represent any new environment from a limited set of

views.

Finally, a last interesting direction is about making NeRF models more robust to noisy

camera poses. BARF (Lin et al., 2021) optimizes input camera poses along with the NeRF

weights during training. They propose a coarse-to-fine view registration method consisting

in masking all dimensions in the positional encoding vector at the beginning of training and

gradually activating dimensions corresponding to higher frequencies. This allows to ignore

fine details when performing camera registration at the beginning of training, and refine poses

based on higher-frequency details. Follow-up work called SPARF (Truong et al., 2023b) focuses

on training NeRF from noisy poses but also sparse training views. Their main contribution

34
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

Differentiable
Tile Rasterizer

Adaptive
Density Control

Projection

Initialization

SfM Points 3D Gaussians

Image

Camera

Gradient FlowOperation Flow

Figure 2.9: Gaussian Splatting – reproduced from Kerbl et al. (2023)

is about augmenting the vanilla NeRF supervision with a multi-view consistency objective

to better optimize camera poses: provided with a set of 2D images, the idea is to match

pixels in different views with similar features, and then optimize camera poses so that when

backprojecting a 3D point into the 2D plane of two views, we obtain two matched pixels. This

is performed while also training the NeRF model to render training views.

Gaussian Splatting – More recently, a novel approach, known as 3D Gaussian Splatting (Kerbl

et al., 2023), competes with NeRF models, by replacing the underlying neural network as a

scene encoding method with a mixture of gaussians. As shown in Figure 2.9, the process

starts from a set of camera poses along with a sparse scene point cloud (as presented earlier)

estimated with Structure-from-motion. The scene is not represented by an MLP but instead a

set of 3D gaussians. Each gaussian is defined by a position p (mean), a covariance matrix Σ,

an opacity coefficient α, and a view-dependent RGB color represented by spherical harmonic

coefficients sh. 3D gaussians are differentiable and can be projected to 2D to render an image.

This work employs a tile-based rasterizer (Lassner and Zollhofer, 2021) to do so. A 2D view

can then be rendered at training time to be compared to a provided ground-truth image to

compute loss gradients to be backpropagated to the gaussians to adapt their parameters (p,

Σ, α, sh). Another important contribution is the adaptive density control: during training,

gaussians are regularly added to densify certain areas, and gaussians with an alpha value

lower than a certain threshold are pruned. Gaussian Splatting allows reaching high-quality

visual rendering while training rapidly, and the tile-based rasterization leads to real-time

rendering.

Extracting information from neural field weights – Neural implicit representations are in-

stances of function spaces, which are represented through their trainable parameters. We can

thus question whether one can extract global information from their learned weights.

Related work has already been performed on different types of neural networks (differ-

ent from NeRF models): previous work performed analyses by predicting the classification

accuracy of neural networks from their weights as input (Unterthiner et al., 2020; Martin and

Mahoney, 2020; Martin et al., 2021) or estimating the generality gap between train and test

performance from hidden neural activations (Jiang et al., 2019; Yak et al., 2019).

Another related direction pioneered by Hypernetworks (Ha et al., 2016) is about predict-

35
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

ing neural network weights. Recently, Zhmoginov et al. (2022) generate the weights of a CNN

from support samples in the context of few-shot learning. More related to our interests, Pan

et al. (2023) learn to predict the weights of an implicit representation based on external factors

in the context of spatio-temporal dynamics encoding.

Finally, some recent work has been studying how to extract information from the weights

of neural implicit representations. Dupont et al. (2022) represent implicit neural representa-

tions (INR) as data points called functa and train models to perform downstream tasks ranging

from classification to generative modeling (generating new functa). They use SIREN (Sitz-

mann et al., 2020) as the base architecture to represent different signals as neural functa.

Rather than directly using weight values as the representation of an INR, they rely on what

is known as modulations: representing a neural network as its activation variations compared

with a base network (Perez et al., 2018; Chan et al., 2021). More specifically, they use latent

shift modulations, by mapping shift variations in activations to a latent embedding (Chan et al.,

2021). Very related to this subject, Zhou et al. (2024) introduce a method to automatically con-

struct weight-space models that are equivariant to neuron permutations in a network. Such

a universal approach leveraging prior knowledge about permutation symmetries in neural

models could be used to extract a compact representation of a neural field.

Context

Chapter 5 will involve a neural-based reader estimating a global embedding from the

weights of a neural scene representation.

2.2.5 3D representations for robotics

Representing 3D space has not only been a focus in CV but also in robotics. Indeed, keeping

track of the surrounding 3D world is essential to navigate an environment and/or manipulate

objects.

Scene representations – We will focus here on two important structures used to represent

space: metric and topological maps, that can eventually be combined (Thrun, 1998). Metric

maps are reminiscent of voxel grid representations in CV as they often have a grid-like struc-

ture, but are more frequently 2D (projected from 3D voxel grids or point clouds), although 3D

metric maps also exist. In robotics, specific channels can be introduced to map information of

interest, e.g. free space, obstacles, eventually semantic channels to map the location of objects.

The particular case of metric maps representing obstacles and free space is known as occu-

pancy grids (Borenstein et al., 1991; Schiele and Crowley, 1994; Kortenkamp et al., 1998; Thrun,

1998; Konolige and Chou, 1999; Thrun, 2003). Topological representations (Kortenkamp and

Weymouth, 1994; Yamauchi and Beer, 1996; Shatkay and Kaelbling, 1997, 2002) are based on

graphs where nodes might represent important landmarks of interest and edges relationships

between nodes (e.g. distances). We can associate features with the nodes depending on the

36
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Computer Vision Preliminary concepts

Figure 2.10: Original and online SLAM problems: Graphical illustration of the original SLAM prob-

lem (left) and the online SLAM problem at time k+2 (right) – reproduced from Bresson et al. (2017)

type of information to solve (e.g. semantic information to describe each landmark).

Simultaneous Localization and Mapping – In robotics, as an agent is navigating inside an

environment, the goal can be to both map such a scene but also to localize inside it. To this end,

an important research direction is known as Simultaneous Localization And Mapping (SLAM).

Introduced by Smith and Cheeseman (1986), SLAM is an important topic in robotics. Bresson

et al. (2017) review advances in this field. Figure 2.10 reproduced from Bresson et al. (2017)

illustrates the original SLAM problem (left) and the variant online SLAM problem (right). Let

us denote the pose of an agent at time step k as xk and the map of the environment it explores

as m. The goal in SLAM is to estimate both variables as precisely as possible to have as much

information as possible about the environment (with the estimation of m) and our location

inside it (with the estimation of xk). To this end, we can rely on control inputs uk that provide

an estimate of the motion between timesteps k− 1 and k. However, we generally also leverage

sensors providing readings denoted here as zk, i.e. additional information to locate and build

a map of the environment. These sensors could be RGB, depth cameras, or LIDAR sensors.

In full SLAM (left part of Figure 2.10), we have access to the full sequence of control inputs

and sensor readings and thus estimate the joint posterior over the whole sequence of poses

and the map from sensory data. This internal estimation is also called belief and noted as,

bel (x0:k, m) = p(x0:k, m | z0:k, u0:k) (2-16)

In online SLAM (right part of Figure 2.10), we estimate the location of the agent at time k

and the map from previous data,

bel (xk, m) = p(xk, m | z0:k, u0:k) (2-17)

There are many SLAM variants, relying on metric or topological maps, but we will mostly

37
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

consider here how cameras can be used to improve mapping and localization in SLAM. The

subdomain addressing this problem is known as Visual SLAM (Macario Barros et al., 2022),

and methods relying only on visual inputs can be roughly divided into two types of ap-

proaches: feature-based and direct methods. An important point to note is that the main

pipeline in Visual SLAM is very similar to Structure-from-motion in CV as the goal will be to

match parts of different views that represent the same locations in 3D space to optimize the

associated camera poses. The difference between feature-based and direct methods will be

about the nature of the frame representations used to perform matching. Feature-based ap-

proaches will extract a sparse set of features from visual frames, and match similar features in

different images. A famous feature-based method is ORB-SLAM (Mur-Artal et al., 2015; Mur-

Artal and Tardós, 2017; Campos et al., 2021) that extracts ORB features (Rublee et al., 2011)

from each new image and matches them with the ones from previous frames. More recently,

Deep Learning features have been leveraged as well (Sarlin et al., 2020, 2021; Lindenberger

et al., 2023). On the contrary, direct methods perform mapping in pixel space, by comparing

RGB or depth frames. Unlike feature-based methods that extract sparse features from images,

direct methods such as DTAM (Newcombe et al., 2011) perform a denser reconstruction of the

3D scene.

2.3 Sequential Decision-Making

Now that we have covered concepts related to visual perception, we will dive into another

important concept in this manuscript, i.e. sequential decision-making, where an agent takes

actions sequentially in an environment to achieve some goals of interest.

2.3.1 Markov Decision Processes

Introduced by Bellman (1957), a Markov Decision Process (MDP) provides a framework to

formalize sequential decision-making processes. Let us dive into the different core elements

characterizing it.

The agent-environment interaction – As illustrated in Figure 2.11, the two central blocks

are the agent and the environment. The agent is the decision-maker that takes actions in an

environment. The agent and environment interact sequentially with discretized time. At each

timestep t, the agent receives a description of the environment known as state st ∈ S , where

S is the set of states describing all possible configurations of the environment. Given st, the

agent will pick an action at ∈ A, where A is the set of all possible actions.

State transitions – Taking the action at will affect the environment that will transition to state

st+1 at the next timestep t + 1. An important property of a MDP is thus the transition function

P(st, at, st+1) = P(st+1 | st, at) modeling the probability of transitioning from a state st at time

t to a state st+1 at time t + 1 given an action at. Importantly, the probability to reach state st+1

38
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

st
rt+1

rt

st+1

at

Figure 2.11: The agent-environment interaction – reproduced from Sutton and Barto (2018)

does not depend on previous states (s0, ..., st−1) as the environment describing a MDP follows

the Markov property. This could be re-written as P(st+1 | s0, ..., st−1, st, at) = P(st+1 | st, at).

Reward – A MDP is also defined by a reward function R(st, at, st+1), which will output a

scalar reward value rt+1 given st, at and st+1, quantifying how helpful the taken action at is in

solving the problem formalized by the MDP.

Trajectories – The maximal length of a sequence of interactions is known as the horizon H,

which could be infinite (H=∞) for an infinite-horizon MDP or an integer for a finite-horizon

MDP. We refer to the sequence of states and actions as a trajectory τ, also called episode, where

τ = (s0, a0, s1, a1, ..., sH). s0 is the initial state and is obtained by sampling an initial state

distribution µ (s0 ∼ µ).

Policy – The agent implements a mapping from states to actions called a policy and denoted

as π. In this manuscript, we will particularly consider stochastic policies mapping states to

probability distributions over all possible actions. The process of choosing action at with a

stochastic policy π can now be written as,

at ∼ π(· | st). (2-18)

Return – In order to quantify the performance of a policy, an important quantity is the return

R(τ), i.e. the discounted sum of rewards in a trajectory τ,

R(τ) =
H

∑
t=0

γtrt, (2-19)

where γ ∈ [0, 1] is the discount factor, and allows to decrease the importance of atomic

rewards with time. This is particularly important when dealing with infinite-horizon MDPs,

but even with finite-horizon MDPs where the goal is to maximize the cumulated reward

along an episode, a given reward quantity should often be better obtained early than later in

the sequence.

39
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

The final goal is to maximize the expected return across episodes J(π) defined as,

J(π) = E
τ∼π

[R(τ)] (2-20)

MDP description – To summarize, a MDP can thus be characterized by,

• A set of states S the environment can be in.

• A set of actions A the agent can take.

• A transition function P(st, at, st+1) modeling the transition from a state st at time t to a

state st+1 at time t + 1 given an action at.

• A reward function R(st, at, st+1) modeling the quality of a taken action at leading to a

transition from st to st+1.

• An initial state distribution µ.

• An horizon H that describes the maximum length of an episode.

• A discount factor γ to control the decrease in the impact of atomic rewards with time

on the return R(τ).

Extension to Partially Observable Markov Decision Processes – In an MDP, the environment

is considered fully observable as the agent receives its full state st at each timestep t. Partially

Observable Markov Decision Processes (POMDP – Kaelbling et al. (1998)) assume that the

environment dynamics follow a MDP, but that states are not directly observable by the agent.

Instead, it receives an observation ot ∈ Ω, where Ω defines the set of possible observations,

partially describing the state st. When describing a POMDP, an observation function O(st, at)

outputting a probability distribution over observations from the state st and action at as inputs

should be specified. Such an observation process could for example be defined by a set of

sensors capturing partial state information.

A POMDP is thus characterized by the same quantities as an MDP, to which the set of

observations Ω and observation function O(st, at) should be added.

Context

The navigation problems we will consider in this manuscript can be formalized as

POMDPs as trained agents do not have access to the state of the environment, but

rather partial observations of its state coming from sensors such as RGB-D cameras

or odometry sensors. Aggregating observations from previous timesteps will thus be-

come necessary to act properly in the considered environments. More importantly,

studying this process of converting partial observations into a well-suited representa-

40
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

tion of the world to solve a problem of interest is a main target of this manuscript.

2.3.2 Reinforcement Learning

Reinforcement Learning (RL) is about training agents to interact with an environment provid-

ing observations and rewards depending on taken actions. More specifically, any RL problem

can be formulated as an MDP or, as for the tasks we will consider later in this manuscript,

a POMDP. A challenge in RL, particularly when dealing with long-horizon trajectories and

sparse reward signals, is known as the credit assignment problem. Indeed, policy training will

be about determining which decisions, i.e. actions or combinations of actions, have led to

a delayed success or failure, with the final goal to obtain a policy picking optimal actions

leading to success.

An important question in RL is the following: How good is it for a policy to reach state st in

order to maximize the expected episode return? Such a question can be answered with the help of

value functions, i.e. the state-value function and the action-value function.

The state-value function Vπ(st) is equal to the expected return when starting in state st and

following policy π until the end of the episode,

Vπ(st) = Eπ

[
H−t

∑
k=0

γkrt+k+1 | st

]
, for all st ∈ S . (2-21)

The action-value function Qπ(st, at) outputs the expected return when starting in state st,

taking action at and then following policy π,

Qπ(st, at) = Eπ

[
H−t

∑
k=0

γkrt+k+1 | st, at

]
, for all st ∈ S and at ∈ A. (2-22)

It can also be useful to know how much an action is better than the others. The advan-

tage function Aπ(st, at) quantifies this by computing the difference between the action-value

function and the state-value function as,

Aπ(st, at) = Qπ(st, at)−Vπ(st). (2-23)

In RL, a policy π1 can be considered as better than another policy π2 if it leads to a higher

expected return. In this sense, we can then define the optimal policy π∗ as the one reaching the

highest possible expected return for a given task (π∗ = arg maxπ J(π)). The state-value and

action-value functions of the optimal policy are called the optimal state-value function V∗(st)

and the optimal action-value function Q∗(st, at), and can be defined as,

41
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

V∗(st) = max
π

Vπ(st), (2-24)

Q∗(st, at) = max
π

Qπ(st, at). (2-25)

The optimal action-value function can also be defined recursively through the Bellman

Equation,

Q∗(st, at) = ∑
st+1∈S

P (st, at, st+1)

(
R (st, at, st+1) + γ max

at+1∈A
Q∗ (st+1, at+1)

)
. (2-26)

Our goal is not to provide an exhaustive taxonomy of all existing RL algorithms, but

rather to focus on a few important characteristics allowing to compare many of them: model-

based/model-free, online/offline, on-policy/off-policy. First, we should differentiate model-based

and model-free methods. Model-based methods are either provided with or try to estimate a

model of the environment, more specifically of state transitions (P) and rewards (R), while

model-free algorithms do not explicitly build a model of the environment. Then, an RL algo-

rithm can either be online or offline, depending on how the training data is collected: it can

either be collected interactively (online) or come from a pre-recorded dataset (offline). Finally,

an important difference is between on-policy and off-policy methods. In on-policy algorithms,

the trained policy is also used to collect the training data, while off-policy methods are about

using a different policy to collect data used to update the policy of interest. Note that in

off-policy methods, the policy used to gather data can be the same as the trained policy, but

earlier in the training process (i.e. with an old version of neural weights).

2.3.3 Deep Reinforcement Learning

Neural policies – When dealing with problems that can be formalized as MDP or POMDP,

the objective is to find a policy π that maps a state (MDP) or an observation (POMDP) to a

distribution over actions. Such a policy can be a neural network that takes a state or obser-

vation represented as a tensor as input and outputs a probability distribution over actions. A

neural policy πθ is parametrized by neural weights θ and finding the optimal policy will be

implemented as a training, or weights optimization.

Context

All considered policies in our work are neural-based: neural networks predict the best

actions given an observation (POMDP) as input.

In this manuscript, we will focus on a subset of model-free algorithms, known as policy gra-

dient methods, where a policy is a neural network πθ and parameters θ are directly optimized

42
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

to maximize the expected return J(πθ) as introduced in equation 2-20 where π is replaced by

πθ .

In order to optimize θ, we need to compute ∇θ J(πθ). The Policy Gradient Theorem (Sutton

et al., 1999) lets us write it as,

∇θ J(πθ) = E(st,at)∼πθ
[Qπθ (st, at)∇θ ln πθ(at | st, θ)] . (2-27)

A simple policy gradient method is called REINFORCE (Williams, 1992), or Monte-Carlo

policy gradient (algorithm 1). At each optimization step, we generate a full-length episode (as

it is a Monte-Carlo method) with πθ . Then, for each time step t in the episode, we compute

the discounted return Gt = ∑H−t
k=0 γkrt+k+1 that is used as an unbiased sample of Qπθ (st, at)

in equation 2-27. Parameters θ are then updated by gradient ascent with a learning rate α as

θ ← θ + αγtGt∇θ ln πθ (at | st).

Algorithm 1: REINFORCE
Data: Learning rate α, discount factor γ, episode length H

1 Initialize θ at random.

2 while stopping criterion is not met do

3 (s0, a0, r0, ..., sH−1, aH−1, rH−1) ∼ πθ

4 for t = 0 to H − 1 do

5 Gt = ∑H−t
k=0 γkrt+k+1

6 θ ← θ + αγtGt∇θ ln πθ (at | st, θ)

7 end for

8 end while

The REINFORCE algorithm is a great method because of its simplicity, but suffers from

high return variance between trajectories, either because of the stochasticity of the environ-

ment and/or of the policy (particularly at the beginning of training with a random policy).

This leads to a high variance between gradient updates. The simplest solution is to collect

more trajectories and aggregate their associated gradients. Indeed, algorithm 1 presents the

vanilla REINFORCE algorithm where we generate a single trajectory at a time and update the

policy at each step of the trajectory. However, we could generate a batch of trajectories and

average gradients between trajectories and steps within these trajectories. Increasing the batch

size might reduce sample efficiency, so there is a balance to find.

Another technique to reduce variance substracts a baseline value b(st) from the computed

return Gt. This allows to reduce the variance of gradient estimates while leaving their bias

unchanged. The update at time t now becomes,

43
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

θ ← θ + αγt(Gt − b(st))∇θ ln πθ (at | st) . (2-28)

A popular choice for the baseline is the estimated state value: b(st) = vw(st | w), where

vw can be a neural network parametrized by weights w. Algorithm 2 presents REINFORCE

with the state value estimate as a baseline. We now have two learning rates (αθ and αw) as

both θ and w must be updated.

Algorithm 2: REINFORCE with a state value estimate baseline
Data: Learning rates αθ and αw, discount factor γ, episode length H

1 Initialize θ and w at random

2 while stopping criterion is not met do

3 (s0, a0, r0, ..., sH−1, aH−1, rH−1) ∼ πθ

4 for t = 0 to H − 1 do

5 Gt = ∑H−t
k=0 γkrt+k+1

6 δt = Gt − vw(st | w)

7 w← w + αwδt∇wvw(st | w)

8 θ ← θ + αθγtδt∇θ ln πθ (at | st, θ)

9 end for

10 end while

REINFORCE with baseline only uses the estimated state value of the first state in each

state transition (st → st+1). There is another class of policy gradient methods known as

Actor-critic approaches. They are n-step Temporal Difference (TD) methods as they leverage

n-step state-value bootstrapping and do not collect full trajectories before updating the policy.

In these non-Monte-Carlo methods, we train a neural policy πθ called the actor and a state-

value function estimator vw (or an action-value function estimator qw) known as the critic.

Both can either be two distinct neural networks or often share their first layers. Algorithm 3

shows the vanilla one-step actor-critic algorithm, but as for the REINFORCE algorithm, weight

updates could be performed based on batches of actions (from different trajectories). Specific

implementations of actor-critic methods are A2C and A3C (Mnih et al., 2016).

Finally, we will present a last popular policy gradient method called Proximal Policy Opti-

mization (PPO – Schulman et al. (2017)). While most policy gradient methods perform a single

gradient update per data sample, the objective of PPO is to allow several gradient updates to

be performed on each collected trajectory to improve the policy. The risk of iterating several

times on the same trajectory without any constraint on the magnitude of weight changes is to

perform an unreasonably large policy update in a given gradient direction, leading to poten-

tial training instabilities. A method called Trust Region Policy Optimization (TRPO – Schulman

et al. (2015)) was introduced to avoid too strong updates by introducing a constraint on the KL

divergence between πθold before the gradient update and πθ after. However, TRPO was con-

44
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

Algorithm 3: One-step Actor-Critic
Data: Learning rates αθ and αw, discount factor γ, episode length H

1 Initialize θ and w at random

2 while stopping criterion is not met do

3 Initialize t← 0, st ∼ µ, I ← 1

4 while st is not terminal do

5 at ∼ πθ(· | st, θ)

6 st+1 ∼ P(· | st, at)

7 rt = ∇(st, at, st+1)

8 δ = rt + γvw(st+1 | w)− vw(st | w)

9 w← w + αwδ∇wvw(st | w)

10 θ ← θ + αθ Iδ∇θ ln πθ (at | st, θ)

11 t← t + 1, I ← γI, st ← st+1

12 end while

13 end while

sidered a complicated method and was not compatible with neural operations dealing with

noise (e.g. dropout) or with parameter sharing between networks (e.g. between actor and

critic). The objective of PPO was thus to keep the benefits of TRPO while having a simpler

method to implement, and that is more general and scales better to more problems. Let us

now present this approach.

PPO alternates between sampling and optimization phases. At sampling time, the policy

πθ is used to collect a set of trajectories that are stored for the optimization phase. During

the latter, batches of trajectories are replayed to compute a loss that will be differentiated with

respect to weights θ to be updated. The same trajectory will be involved in several backward

passes while ensuring each update does not move the new weights too far from the previous

ones. More specifically, at sampling time k, a set Uk of trajectories τ with length T are collected

using the latest policy πθ . Note that T is smaller than the length of a full episode. If we write

the PPO loss to minimize by gradient descent as done in most Deep Reinforcement Learning

(DRL) implementations (instead of an objective to maximize with gradient ascent), we have,

LPPO =
−1
|Uk| T ∑

τ∈Uk

T−1

∑
t=0

[
min

(
ρt(θ)Âπθ

t , C(ρt(θ), ϵ)Âπθ
t
)]

(2-29)

where,

• ϵ is a hyperparameter to fix.

• ρt(θ) =
πθ(at|st,θ)

πθold
(at|st,θold)

is the probability ratio between the updated and old versions of the

policy.

• C(ρt(θ), ϵ) = clip (ρt(θ), 1− ϵ, 1 + ϵ)

45
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

• Âπθ
t is an estimate of the advantage function Aπθ (st, at) at time t.

There are two terms inside the min(.) operation. The first one (ρt(θ)Âπθ
t) is the objective

function to maximize, i.e. increasing the probability associated to actions that lead to an

increased reward (positive estimated advantage). The second one (C(ρt(θ), ϵ)Âπθ
t) clips ρt(θ)

between 1− ϵ and 1+ ϵ. The minimum between both unclipped and clipped objectives is then

taken to ensure the final objective is a lower bound on the unclipped objective. Interestingly,

when considering the gradients computed from such a loss, this leads to updating the policy

only either when the probability ratio is within the chosen range, or lower than 1− ϵ with a

positive advantage, or higher than 1+ ϵ and with a negative advantage (in both cases, bringing

the ratio closer to the chosen range after the update).

Context

DRL is used in different chapters of this manuscript (chapters 4, 5 and 6) to train au-

tonomous navigating agents. In particular, we use the PPO algorithm in these studies

because of its practical simplicity and efficiency.

2.3.4 Imitation Learning

A particularly interesting type of supervised learning when training agents to interact is im-

itation learning and, more specifically, Behavior Cloning (BC). The goal in BC is to generate

expert trajectories and train an agent to mimic them. If we consider a problem that can be for-

malized as a POMDP, we will consider a neural policy πθ implemented as a neural network

mapping an input observation to a distribution over actions. More importantly, with BC, we

do not consider the reward function R, but instead train πθ from a dataset of demonstrations

obtained by executing an expert policy π∗ (the term policy includes all types of experts includ-

ing human demonstrators). Here, xi will be a sequence of observations (xi={oi,0, ..., oi,H}) and

yi a sequence of expert actions (yi={a∗i,0, ..., a∗i,H}). The Behavior Cloning objective can then be

defined as,

θ̂∗ = arg min
θ

n

∑
i=1

H

∑
h=0
L(πθ(oi,h; θ), π∗(oi,h)) (2-30)

= arg min
θ

n

∑
i=1

H

∑
h=0
L(πθ(oi,h; θ), a∗i,h), (2-31)

where L(.) is a loss function (Mean Squared Error to regress continuous actions, or Cross

Entropy to classify discrete actions).

However, a first challenge in BC is to access an expert agent to generate training trajec-

tories. Such an agent could be a human operator (Shafiullah et al., 2023; Iyer et al., 2024;

Fu et al., 2024), or sometimes task-specific policies reaching state-of-the-art performance on

a single task (Majumdar et al., 2023). Task-specific policies can be used as experts to gather

46
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

Start state Goal state

Expert trajectory

Policy trajectory

Training

Start state Goal state

Expert policy (new episode — unavailable data)

Trained policy

Distributional mismatch (test time)

Figure 2.12: Behavior Cloning objective and distributional mismatch: Illustration of the Behavior

Cloning objective at training time and the problematic distributional mismatch that may occur at test

time.

trajectories from different tasks and training a single general policy. Importantly, it is not

because an expert performs better than another on the task at hand that data collected with

it will lead to better downstream policy performance. Indeed, the problem of expert demon-

strations that can not be reproduced by a policy without access to privileged information has

been studied (Ramrakhya et al., 2023). It is thus crucial to collect realistic trajectories that can

be followed with available information.

A second well-known challenge with BC is generalization to states which have a low

likelihood to be visited by π∗. Indeed, a severe drawback of BC is that πθ will only be trained

on states visited by π∗, reducing its generalization to out-of-distribution states (Figure 2.12).

In particular, after training, when acting with πθ from new starting states, it will be able to

imitate the behavior of the expert policy, but will eventually drift after some time: this is when

it will start visiting unknown states, leading to poor performance. Regarding this last issue,

a simple yet powerful idea, presented by Ross et al. (2011), is to collect new training data

as needed. A quite strong assumption is the availability of the expert policy when required.

Then, whenever πθ encounters new states, π∗ can be queried to generate ground-truth actions

for these states. The introduced method is called DAgger (Dataset Aggregation).

The issues encountered with BC are largely related to the inability of πθ to interact with

an environment of interest. Despite the simplicity of framing the problem of learning to act

as a supervised learning task, taking actions and observing the impact of the latter on an

47
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

environment overcomes the need to find an expert and the potential mismatch between states

at training and test times.

Context

In chapter 7, we use BC to train a multi-task policy on different tasks by leveraging

diverse task-specific expert policies.

2.3.5 Discrete planning

Planning is an important module of the autonomy stack (LaValle, 2006): it is the ability to

create a plan to execute in order to reach a goal. We will only consider a subset of planning

methods, i.e. discrete planning, while many other approaches exist such as sampling-based

planners like RRT* (Karaman and Frazzoli, 2011).

Discrete planners require a discretized environment, i.e. composed of a finite number

of states (or at least a countably infinite state space). Dijkstra’s algorithm (Dijkstra, 1959)

is a path-finding method applied to problems formalized as weighted graphs where nodes

represent locations in an environment and edge weights the cost to move from one location to

another. Given an oriented graph G=(V, E) defined by a set of vertices V, a set of edges E and

a cost function c : E→ R+ mapping each edge, i.e. a pair of linked vertices, to a positive cost,

Dijkstra’s algorithm allows to find the shortest path from a source node v0 to all other vertices

in the graph. Other discrete planning methods exist such as the A* algorithm (Hart et al., 1968,

1972; Dechter and Pearl, 1985). It could be seen as an extension of Dijkstra’s algorithm, but

instead of returning the shortest-path tree from a given node to all other vertices in the graph,

A* only finds the shortest path from a source to a node as it uses goal-specific heuristics to

guide the search for a shorter path. This goal-specific strategy allows A* to be more efficient

in practice at finding the shortest path for a given (source, goal) pair.

However, discrete planning problems have also been addressed with numerical methods

such as the Fast Marching Method (FMM – Sethian (1996)). FMM can be considered as an

extension of Dijkstra’s algorithm where the graph update is replaced by a local resolution

of the Eikonal equation describing a wave propagation. Garrido et al. (2006) detail how fast

marching methods can be used to perform path planning.

Context

The Fast Marching Method will be used in chapter 6 of this manuscript to plan a path

from the position of an agent to a long-term goal to reach on a 2D top-down grid map

of a considered environment.

2.3.6 Robotic tasks involving sequential decision-making

Finally, we present below two families of tasks that we will be interested in and that require

performing some sequential decision-making, but also building scene representations.

48
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

Visual Navigation – is an important task in the field of robotics and has thus been exten-

sively studied (Bonin-Font et al., 2008; Thrun et al., 2005). It consists of an agent placed in an

environment, that can be unknown, and that must solve a specified task based on visual in-

put. Bonin-Font et al. (2008) distinguish map-based, map-building-based and map-less navigation.

This is indeed an important difference as in map-based visual navigation, the robot agent is

provided with a model of the environment, with different levels of details depending on the

application and the available information, while in map-building-based and map-less navigation,

no prior information about the scene the agent will be navigating in is available. Map-less nav-

igation approaches do not require any representation of the environment as they will navigate

from environment observations only, with optical flow- and appearance-based navigation be-

ing two well-known techniques. Finally, map-building-based navigation methods will map their

environment in real time while navigating as they rely on an explicit scene representation to

achieve their goal. Another important difference is between indoor and outdoor navigation.

Outdoor navigation might involve harder navigation conditions with more challenging ter-

rains and longer routes to drive, but on the other hand, indoor navigation will require the

agent to navigate in narrower spaces with potentially more obstacles and constrained layouts.

Context

In this manuscript, we consider a specific variant of visual navigation, i.e. indoor

and map-building-based, where an agent is placed in a completely unknown indoor

environment and must fulfill a goal. In particular, we consider two types of goals, pre-

sented later in more detail: Multi-object Navigation (chapters 4 and 5), where an agent

must reach target objects in a specific order, and a variant of active scene exploration

to collect NeRF training data (chapter 6).

Manipulation – is another important subdomain of robotics where an agent is tasked with

interacting with physical objects to achieve a defined goal. Kroemer et al. (2021) review ma-

nipulation challenges from a learning perspective, i.e. what are sub-problems to solve to train

neural agents to manipulate objects? A first one is learning object and environment representa-

tions. The notion of objectness is indeed a strong semantic prior humans are equipped with:

when perceiving the world, we are able to decompose the visualized scene into entities with

specific properties. A second core topic is about learning transition models, i.e. being able to

model the changes in the states of objects from the actions of the agent manipulating them.

Such representations are also referred to as world models (Ha and Schmidhuber, 2018) or dy-

namics models (Lesort et al., 2018) in the broader literature. A third and final important topic

is about acquiring skills (e.g. with Reinforcement Learning or Behavior Cloning) that can be

reusable between different tasks and with diverse levels of abstraction (high-level planning

skills and lower-level control abilities).

49
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Sequential Decision-Making Preliminary concepts

Context

Chapter 7 in this manuscript will deal with a set of tasks where some of them involve

manipulating objects. We will study how visual features should be adapted depending

on manipulation tasks to target and whether a policy can be adapted to new manipu-

lation tasks from a few demonstrations.

50
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Chapter

3
Progress in Embodied AI

Now that we have introduced important preliminary concepts, we will review works in the

field of Embodied AI related to the contributions presented in this manuscript. More specif-

ically, we will start by presenting simulation methods, i.e. datasets, simulators and tasks,

allowing to train and evaluate neural agents efficiently, before reviewing proposed neural

agent architectures, with a specific focus on how to encode past experience and represent 3D

scenes, and will finally present different ways such agents can be trained. Importantly, many

of the presented concepts find their roots in prior literature (e.g. some considered Embodied

AI tasks), but we will focus here on their specificities in the context of Embodied AI.

As done in the previous chapter, we will also put the presented work into perspective

with respect to the studies that will be conducted in the next chapters with the same box

notations. Although not limited to it, this section somewhat focuses on navigation problems.

We will also refer to non-navigation tasks in the context of multi-task policy learning.

3.1 Simulation

Simulating the real world is an important ability to safely experiment with autonomous

agents, in particular when the latter are neural-based and must be trained through trial and

error. Indeed, directly experimenting in the real world can have several disadvantages: exper-

imentation is slow and dangerous as the considered neural policies can be suboptimal during

training or evaluation, and experimental control and reproducibility are hard to reach as the

environment might be changing often.

51
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Simulation Progress in Embodied AI

Datasets

MP3D (Chang et al., 2018) Replica (Straub et al., 2019) HM3D (Ramakrishnan et al., 2021)

DSLR Image

iPhone RGB

ScanNet++ (Yeshwanth et al., 2023)

:

Object

Randomization

Material

Randomization

Agent’s View

×

iGibson (Shen et al., 2021)SAPIEN (Xiang et al., 2020) AI2THOR (Kolve et al., 2022) Habitat 3.0 (Puig et al., 2023)

PointNav (Deitke et al., 2022)

Task: Find the Bed

ObjNav (Deitke et al., 2022) Room Rearrangement (Deitke et al., 2022)

Simulators

SemanRc SLAM (Deitke et al., 2022)

1

2 3

4
5 6

"walk to the coffee
maker on the right"

"wash the mug in the sink"
"put the clean mug
in the coffee maker"

"pick up the mug and go
back to the coffee maker"

"pick up the dirty mug
from the coffee maker" "turn and walk to the sink"

visual navigation

visual navigation
memory

object interaction
state changes

visual navigationobject interaction

object interaction

Goal: "Rinse off a mug and place it in the coffee maker"

t 0= t 10= t 21=

t 50=t 27= t 36=

ALFRED (Deitke et al., 2022)

Tasks

Figure 3.1: The simulation software stack from Savva et al. (2019) – inspired by Figure 1 in Savva et al.

(2019).

Inspired by the software stack required to train embodied agents presented by Savva et al.

(2019), we can indeed formalize the simulation setup as a hierarchy of three components: (i) at

the root, datasets providing 3D assets for scenes, objects, eventually accompanied by semantic

annotations (e.g. object classes, room names), (ii) then simulators that can load datasets and

render observations (e.g RGB, depth, semantic masks) and emulate all types of sensors (e.g.

odometry, LIDAR) and actuators, and (iii) finally tasks formalizing problems to solve involving

datasets, observation spaces, associated sensors and goal specifications. Figure 3.1 provides

an overview of this hierarchy of concepts.

Datasets – are an important component when training embodied agents in simulation. We

will present the evolution in indoor scene datasets ranging from the ScanNet (Dai et al., 2017),

Matterport3D (MP3D – Chang et al. (2018)), Gibson (Xia et al., 2018), Replica (Straub et al.,

2019) and RoboTHOR (Deitke et al., 2020) datasets to the more recent HM3D (Ramakrishnan

et al., 2021a; Yadav et al., 2023b) and ScanNet++ (Yeshwanth et al., 2023) datasets.

All mentioned datasets provide RGB mesh representations of indoor scenes along with

semantic annotations. There are differences in how these datasets were collected, but we

will rather focus here on another main difference, i.e. the evolution in the characteristics

of introduced datasets. Table 3.1 is adapted from Ramakrishnan et al. (2021a) and shows

such an evolution with regard to different metrics: number of scanned scenes, total floor area

covered, navigable area, navigation complexity and scene clutter. As defined by Ramakrishnan et al.

(2021a), navigation complexity measures how hard it is to navigate a scene and is computed as

the maximal ratio between the geodesic and Euclidian distance between any two randomly

52
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Simulation Progress in Embodied AI

————— Room-scale ————— ————— Building-scale —————

Dataset ScanNet Replica RoboTHOR MP3D Gibson (4+ only) HM3D

Year 2017 2019 2020 2018 2018 2021a

Number of scenes 1613 18 75 90 571(106) 1000

Floor area
(
m2) 39.98k 2.19k 3.17k 101.82k 217.99k(17.74k) 365.42k

Navigable area
(
m2) 10.5k 0.56k 0.75k 30.22k 81.84k(7.18k) 112.50k

Navigation complexity 3.78 5.99 2.06 17.09 14.25(11.90) 13.31

Scene clutter 3.15 3.4 8.2 2.99 3.14 (3.04) 3.90

Table 3.1: Evolution in the characteristics of indoor datasets – adapted from Ramakrishnan et al.

(2021a)

sampled points in the scene. The scene clutter evaluates the amount of obstacles available in

the scene and is computed as the ratio between the raw scene mesh area within 0.5m of the

navigable regions and the navigable space. We should first differentiate two types of datasets:

room-scale datasets where a scene corresponds to a single room and building-scale datasets

where each scene spans multiple rooms and even different floors.

The study shown in Table 3.1 is mainly biased toward studying the relevance of available

datasets to train and/or evaluate agents on navigation tasks. Room-scale datasets, because of

the small size of their scenes, are thus losing on most of the considered metrics. However,

such datasets are still very important as they provide additional data that can complement

building-scale datasets and are potentially better suited to tasks involving both navigating

and interacting with objects. Indeed, an interesting trend is the increase in scene clutter,

particularly true for the RoboTHOR dataset (Deitke et al., 2020). It is important to notice

how large the ScanNet dataset (Dai et al., 2017) was in terms of number of scanned scenes

in 2017. Both Replica and RoboTHOR seem to indicate the same trend regarding room-scale

datasets: the goal has shifted toward less but higher-quality scene scans, focusing on other

characteristics such as navigation complexity or scene clutter.

The more interesting trend is when it comes to building-scale datasets: as greatly shown

by the HM3D dataset (Ramakrishnan et al., 2021a), recent datasets have increased in size,

both in terms of number of scenes, floor areas, and navigation areas. Indeed, training general

embodied agents requires diverse data. Navigation complexity and scene clutter have not

evolved significantly, showing that the focus has rather been on the scale of 3D scenes.

The ScanNet++ dataset (Yeshwanth et al., 2023) is not studied by Ramakrishnan et al.

(2021a) as it came later, but should be classified as a room-scale dataset. While it contains

fewer scenes (460) than the original ScanNet (Dai et al., 2017), the authors focus on the quality

and resolution of the reconstruction, mainly focusing on novel view synthesis. This choice

validates our assumption about the decrease in size and increase in quality of room-scale

datasets.

53
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Simulation Progress in Embodied AI

Figure 3.2: Semantic annotations in HM3DSEM – reproduced from Yadav et al. (2023b)

Despite the scale, semantic annotations of 3D scenes can also become important when

implementing tasks dealing with semantics. In this sense, the Habitat-Matterport 3D Seman-

tics Dataset HM3DSEM (Yadav et al., 2023b) provides a semantic annotation layer on top of

the HM3D scenes. Figure 3.2 provides visual samples. 143k object instances were annotated,

covering 216 scenes and a total of 3100 rooms. Other presented datasets also provide semantic

annotations, but HM3DSEM is currently the largest one to date.

Context

The work presented in this manuscript mainly leverages the Gibson and MP3D datasets

(chapters 4, 5 and 6) as they both provide many 3D scenes with high navigation com-

plexity, and were chosen standards in considered tasks.

Simulators – In the context of Embodied AI tackling the deployment of neural-based agents

in the real world, simulation must have two important properties: (i) photo-realism, i.e. ren-

dering realistic environments to narrow the sim-to-real gap, (ii) allowing fast simulation to be

able to train neural networks with reasonable compute times. Simulators leverage previously

presented datasets made of environment scans and/or 3D assets that they will load to render

observations provided by emulated suites of sensors.

Many simulators were introduced in the past years. Just as datasets, simulators have

evolved from Deepmind Lab (Beattie et al., 2016) or VizDoom (Kempka et al., 2016) rendering

3D mazes to newer simulators trying to come closer to real-world rendering and summarized

in Table 3.2 adapted from Szot et al. (2021). As can be seen, simulators employ different solu-

tions to perform rendering and handle physics. There are also differences in the complexity

of handled scenes and rendering speed.

When thinking about simulating 3D space, one will likely consider the rendering and

physics simulation quality, but the efficiency of the simulation is also primordial when consid-

ering training neural agents. Indeed, the realism of the rendering and the simulated physics is

important, but if they come at the price of a too-slow simulation and/or difficulty in handling

54
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Simulation Progress in Embodied AI

Rendering Physics Scene Speed————————————– ————————————————–
Library Supports Library Supports Complexity (steps/sec)

Habitat Magnum 3D scans none continuous navig. building-scale 3000
(Savva et al.) (navmesh)

AI2-THOR Unity Unity Unity rigid dynamics, room-scale 30 - 60
(Kolve et al.) animated interactions

ManipulaTHOR Unity Unity Unity AI2-THOR room-scale 30 - 40
(Ehsani et al.) + manipulation

ThreeDWorld Unity Unity Unity (PhysX) rigid + particle room/ 5 - 168
(Gan et al.) + FLEX dynamics house-scale

SAPIEN OpenGL/ configurable PhysX rigid/articulated object-level 200 - 400
(Xiang et al.) OptiX dynamics

RLBench CoppeliaSim Gouraud CoppeliaSim rigid/articulated table-top 1 - 60
(James et al.) (OpenGL) shading (Bullet/ODE) dynamics

iGibson PyRender PBR shading PyBullet rigid/articulated house-scale 100
(Shen et al.) dynamics

Habitat 2.0 Magnum 3D scans Bullet rigid/articulated house-scale 1400
(Szot et al.) + PBR shading dynamics + navmesh

Habitat 3.0 ———————————— Habitat 2.0 + simulation of humans ————————————
(Puig et al.)

Table 3.2: Comparison of indoor simulators – adapted from Szot et al. (2021)

large enough scenes, this will not allow proper experimentation. A focus of some simulators

such as the first version of Habitat (Savva et al., 2019) has been on simulation speed to allow

training agents with RL in a reasonable (can still be considered as too long!) time. In their first

version, they indeed decided to simplify physics to focus on fast simulation of large 3D scenes

to train autonomous agents to navigate. Their original paper shows that end-to-end neural

agents can actually reach greater performance than what had been previously shown (Mishkin

et al., 2019) when scaling training experience. Habitat 2.0 (Szot et al., 2021) proposes a better

physics simulation without sacrificing speed thanks to additional optimizations such as clev-

erly interleaving GPU-based rendering and CPU-based physics simulation. A newer version,

Habitat 3.0 (Puig et al., 2023), now integrates simulated humans inside 3D scenes. Figure 3.3

shows examples of RGB-D observations rendered with the Habitat simulator, along with the

computation of a navigable top-down map from the mesh of a 3D scene and of unexplored

and explored areas by taking the location of the agent into account.

Physics simulation should still remain an important topic, particularly when targeting

tasks involving fine control. Indeed, as Habitat is mainly designed for high-level naviga-

tion and object interaction, a more accurate simulation of physics might not be as critical. A

famous example of a physics simulator is MujoCo (Todorov et al., 2012) which was specifi-

cally designed to efficiently simulate robot multijoint dynamics. It was originally designed

to benchmark model-based control approaches, but can also be used to train neural agents to

control actuators.

55
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Simulation Progress in Embodied AI

Unseen area

Seen area

Goal(s)Start loca0on

Agent’s pathAgent’s loca0on

RGB Depth Top-down map

Figure 3.3: RGB-D observations and top-down maps rendered with the Habitat simulator

Context

We used the Habitat Simulator in our work dealing with autonomous visual navigation

(chapters 4, 5 and 6) because of its fast and realistic rendering. MujoCo was also used

to simulate tasks that were not compatible with the Habitat framework (chapter 7).

Tasks and benchmarks – An important concept in research is known as the Common task

framework (Donoho, 2017), referring to the importance for a given field to follow a standard

evaluation methodology in order to properly study the progress towards a common goal.

A practical implementation of such a concept is the introduction of formalized tasks and

benchmarks to compare methods. In the case of Deep Learning, it requires the use of common

datasets and metrics to fairly evaluate the gain brought by a new approach compared with

previous work. We will start by presenting some navigation tasks studied by the Embodied

AI community along with their associated metrics, before mentioning another interesting

benchmark focusing on the evaluation of visual representations for multi-task policy learning.

As already surveyed (Bonin-Font et al., 2008), many navigation tasks have been intro-

duced by the robotics community. We will now review recent tasks considered in Embodied

AI, which are sometimes specific implementations of existing general tasks to be better suited

to neural-based approaches. We will provide implementation details of certain tasks as they

were originally presented but note that follow-up work has sometimes modified them (obser-

vation, action spaces, success constraints, metrics) and that other specifications could lead to

56
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Simulation Progress in Embodied AI

identically-interesting results. It is also important to know that tasks are often implemented

on a specific simulator and methods to address them can thus be restricted to it.

A series of tasks and metrics to evaluate embodied navigation agents were initially in-

troduced by Anderson et al. (2018a). Most of the considered navigation tasks are framed as

goal-reaching problems, where the nature of the goal to reach could be different. Deitke et al.

(2022) present the evolution of the different challenges implementing these common tasks and

the improvement of solutions over the years. We will only focus here on a subset of navigation

tasks that have been extensively studied and are relevant in the context of this manuscript,

including a non-goal-reaching one, i.e. scene exploration.

We will start by presenting the similarities between all these tasks before detailing their

specificities. A first common trait between all these navigation tasks is about the environments

used to train and evaluate neural agents: different scenes are used at training and evaluation

time, with episodes varying based on the starting agent’s location and the goal to find when

we have a goal-reaching task. The purpose of the introduced tasks is thus to benchmark the

ability of agents to generalize to any new 3D environment without any a priori knowledge

about it. In all considered tasks, at the beginning of an episode, the agent is placed at a

random location within the scene. The observation available to the agent at timestep t always

includes an egocentric RGB image rt ∈ RH×W×3 (H and W define the height and weight of the

image) from an RGB camera with specific characteristics (e.g. height and field of view) and

an optional depth frame dt ∈ RH′×W ′ . Additional sensors can be provided depending on the

task. Each task is associated with a maximum number of discrete timesteps before an episode

is over.

PointNav is a visual navigation task requiring an agent to reach a specific location in a pre-

viously unseen 3D environment. There are actually two variants of this task: the point

to reach is specified in terms of Euclidian distance and direction, either relative to the

agent’s starting location in the episode (Static PointNav), or updated to be provided rela-

tive to the current agent’s position at each timestep (Dynamic PointNav). Additionally to

RGB and optional depth, a sensor to specify the goal to reach (either always returning

the same Euclidian distance and angle relative to the agent’s start position, or updated

at each timestep to compute these relative to the current agent’s location) is included.

An example action space (considered in the original PointNav task) is composed of 4 dis-

crete high-level actions: Move Forward 0.25m, Rotate Right 30
◦
, Rotate Left 30

◦
, Done. Other

action spaces, e.g. continuous, could be used instead of the specific one considered here.

The Done action allows the agent to specify it considers being close enough to the goal

to find and stops the episode here. An episode is successful if the agent calls the Done

action while being closer to the goal location than a threshold distance (e.g. 0.2m) and if

the length of the episode is smaller than a maximum number of steps (e.g. 500 steps).

57
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Simulation Progress in Embodied AI

Scene exploration is a longstanding problem (Yamauchi, 1997) and has been studied in Em-

bodied AI as a coverage maximization problem (Chen et al., 2018). Unlike in PointNav,

an odometry sensor is also often provided, to estimate (sometimes perfectly) the agent’s

motion between two timesteps. Some work also introduces a bump sensor indicating a

collision with an obstacle (Chen et al., 2018; Ramakrishnan et al., 2021b). The goal is to

maximize the scene floor coverage within a fixed time budget. The action space intro-

duced by Chen et al. (2018) was composed of 6 discrete actions: Move Forward 0.25m,

Move Backward 0.25m, Strafe Left 0.25m, Strafe Right 0.25m, Rotate Left 9
◦
, Rotate Right 9

◦
.

There is no goal to reach, the episode stops when the steps budget is over.

ObjNav is also about reaching a specified goal in a new 3D scene. However, instead of a

location to reach as in PointNav, the agent must navigate to the closest instance of a

given object class (e.g. chair, bed, potted plant). Providing a high-level abstract description

of the goal instead of its specific location forces the agent to perform scene exploration to

locate it before navigating towards it. A goal sensor specifying the object class to find is

provided along with an optional odometry sensor. Depending on the implementation of

the task (e.g. RoboTHOR ObjNav Challenge vs Habitat ObjNav Challenge), the same action

space as in PointNav is used, with eventually additional actions such as Look Up and Look

Down to allow the agent to rotate its camera around the horizontal axis. We consider

an episode to be successful if the agent calls Done before the time limit while the goal is

within the camera’s field of view and the agent is closer to it than a threshold distance

(e.g. 1m).

ImageNav is another goal-reaching task where the goal to reach is specified as an image.

The latter was initially an image taken from the target location to reach (Chaplot et al.,

2020d; Hahn et al., 2021), with different specificities depending on the work, e.g. 360
◦

panoramic images in Chaplot et al. (2020d). More recently, Krantz et al. (2022) proposed

a new version of ImageNav called InstanceImageNav addressing two limitations of pre-

vious implementations of the ImageNav task. First, instead of randomly sampling goal

locations which could lead to uninformative images (e.g. photo of a white wall), they

only sample target images containing a central well-depicted object. Secondly, while

target images were initially obtained from the same RGB camera as the one available

on the agent, they follow a more general setup where target images can be captured

from cameras with other settings. These two improvements allow the task to be more

aligned with potential user requirements, i.e. taking a picture of a specific object a robot

might need to navigate to with a camera that is not the one of the robot itself (e.g. a

smartphone). The task thus now appears very similar to ObjNav with only a difference

in the goal-specific sensor, as the agent also has to navigate as close as possible to an

object that was captured by an external camera.

Sequential Tasks (Beeching et al., 2020a; Wani et al., 2020) were introduced with two impor-

58
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Simulation Progress in Embodied AI

tant characteristics, (i) their sequential nature, i.e. an episode is composed of a sequence

of goals to reach, and (ii) the use of external objects as target objectives, i.e. the objects

to find are not part of the scanned 3D scenes used as environments (unlike in ObjNav),

but are for example randomly placed colored cylinders as in Wani et al. (2020).

Multi-Object Navigation (Multi-ON – Wani et al. (2020)) is a task requiring to sequentially

retrieve objects, but unlike the Ordered K-item task (Beeching et al., 2020a), the order

is not fixed between episodes. As in other tasks, the agent is initialized at a random

location in an unknown 3D scene at the beginning of each episode. It has access to an

RBG-D camera, an odometry sensor and a goal sensor specifying the target object to

reach. Once a target is reached, the goal sensor will update its output with the new

goal in the sequence. Importantly, the order between goals to find is not known a priori,

i.e. the agent only knows about the target to find at the current timestep. The action

space is composed of 4 actions: Move Forward 0.25m, Rotate Right 30
◦
, Rotate Left 30

◦
,

Found. Found is similar to Done in PointNav as it allows to specify the current target has

been reached. We will still use the name Found when mentioning Multi-ON as it is how

it was introduced by Wani et al. (2020). An implementation of this task is known as

3-ON, where the agent must navigate to 3 target objects in a row. There are 8 classes,

corresponding to 8 possible colors for the cylinders. 3 cylinder colors are thus sampled

for each episode, and the 3 cylinders are randomly localized in the scene. Figure 3.4

provides an overview of the task. An episode is considered successful if the agent

correctly finds all goals within the time limit (2500 steps), where reaching a goal means

calling the Found action while being close enough to it (1m).

A sequential task is interesting as it requires the agent to remember and to map potential

objects it might have seen while exploring the environment, as reasoning on them might

be required in a later stage. Moreover, using external objects as goals prevents the

agent from leveraging knowledge about the environment layouts, thus focusing solely

on memory. Exploration is another targeted capacity as objects are placed randomly

within environments.

Navigation metrics are important to assess the quality of the paths taken by agents to solve

a task. Anderson et al. (2018a) introduced two metrics, Success Rate (SR) and Success weighted

by Path Length (SPL) that are used in PointNav, ObjNav, and ImageNav. If we denote si as the

binary success (1 if successful, 0 otherwise) for episode i among N evaluation episodes, we

have,

SR =
1
N

N

∑
i=1

si, (3-1)

59
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Simulation Progress in Embodied AI

RGB Depth

Top-down mapSequence of goals to find

GoalOdometry

Observa@ons

Episode informa@on (not given to the agent)

Start loca@on

Unseen area

Seen area

Goals

Agent’s path

Agent’s loca@on

Figure 3.4: Multi-ON (3-ON) task overview

SPL =
1
N

N

∑
i=1

si
li

max(pi, li)
, (3-2)

where li is the shortest path from the start to the goal location and pi is the length of the

path taken by the agent. While success rate is a useful metric, SPL is particularly interesting

because it measures both the ability of the agent to reach goals, but also the efficiency of the

paths it takes.

The SR metric can be used in Multi-ON based on the mentioned definition of a successful

episode. As it is a sequential navigation problem, SPL must be adapted. The sum term for

an episode i becomes si l̃i/ max(pi, l̃i), where pi is still the distance of the agent’s path, but

l̃i = ∑K
k=1 dk−1,k with dk−1,k denoting the shortest path from the (k−1)th to the kth goal (d0,1 is

the geodesic distance from the starting point to the first goal).

Multi-ON also introduced two new metrics: Progress Rate (PR) and Progress weighted by

Path Length (PPL). The PR metric corresponds to the average percentage of found objects in

all episodes (PR = SR in the 1-ON scenario where there is a single goal to find). PPL is an

extension of SPL replacing success with progress,

PPL =
1
N

N

∑
i=1

si
li

max(pi, li)
, (3-3)

where si is the progress of episode i and li = ∑F
k=1 dk−1,k with F denoting the number of

correctly found targets (PPL = SPL in the 1-ON scenario where there is a single goal to find).

Finally, specific metrics are used to evaluate the quality of the scene coverage performed

60
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Simulation Progress in Embodied AI

Adroit DeepMind Control MetaWorld

Figure 3.5: Task samples from Adroit, DeepMind Control and MetaWorld

by an agent in scene exploration. Two popular ones are the absolute coverage area in m2, and the

percentage of area explored computed as the ratio between the covered area and the total scene

area.

Many other navigation tasks have been introduced, either specifying goals to reach as

language queries in Vision-Language Navigation (VLN) (Anderson et al., 2018b; Shridhar et al.,

2020; Thomason et al., 2020), or mixing navigation and object manipulation in Rearrangement

tasks (Batra et al., 2020). An example of the latter is the Mobile-Pick task where an agent must

navigate toward an object whose location is specified (3D center of mass), pick it, and bring it

to an end location (specified again as a target 3D center of mass).

Context

Some work presented in this manuscript focuses on studying the ability of neural-

based agents to map unknown environments. We thus used Multi-Object Navigation

in chapters 4 and 5 as our evaluation test-bed based on its mentioned advantages to

benchmark mapping abilities.

The previously introduced tasks evaluate the ability of agents to perform a specific navi-

gation behavior robustly in previously unseen environments, thus benchmarking their gener-

alization to new scenes. However, another interesting direction is about addressing different

tasks with the same agent, or with the same agent architecture and training protocol. An

assumption is that generalization abilities could come from large pre-trained vision models,

allowing to extract relevant visual features for different tasks of interest. A new benchmark,

called Cortexbench (Majumdar et al., 2023), was thus introduced to evaluate such an idea.

Cortexbench is not composed of any new task but is instead a gathering of known bench-

marks spanning diverse robotic tasks. The chosen tasks come from 5 existing benchmarks:

61
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Encoding past experience Progress in Embodied AI

• Habitat: Visual navigation tasks (ObjNav, ImageNav and Mobile-Pick).

• Adroit (Rajeswaran et al., 2018): 28-DoF hand control for manipulation tasks (Relocate,

Reorient-pen).

• DeepMind Control (Tassa et al., 2018): continuous control tasks dealing with locomotion

and manipulation (Finger-Spin, Reacher-Hard, Cheetah-Run, Walker-Stand, Walker-Walk).

• MetaWorld (Yu et al., 2020): robot arm (Sawyer robot arm) control for object manipulation

tasks (Assembly, Bin-Picking, Button-Press, Drawer-Open, Hammer).

• TriFinger (Wüthrich et al., 2020) 3-finger hand (3-DoF per finger) control for manipulation

tasks (Push-Cube, Reach-Cube)

Context

Chapter 7 of this manuscript studies the ability to adapt visual representations to the

task at hand. To this end, we leveraged a subset of the Cortexbench benchmark (Adroit,

DeepMind Control, MetaWorld) to evaluate our method on a standard set of tasks. Fig-

ure 3.5 presents two task samples from Adroit, DeepMind Control and MetaWorld.

3.2 Encoding past experience

Interacting with a 3D environment can be framed as a learning problem, leveraging the abil-

ities of deep networks to extract regularities from training data. Agents can be reactive (Zhu

et al., 2017a), but recent work tends to augment them with memory, which is a key com-

ponent, in particular in partially-observable environments (Hausknecht and Stone, 2015; Oh

et al., 2016). An important question is then: How to encode past experience?

3.2.1 Recurrent memory

The simplest representation of the past is the memory of an RNN. If we come back to the

concept of inductive bias introduced earlier, such recurrent memory is built with very weak

priors in mind, the only one being that the past should be encoded in a vectorial form. Wij-

mans et al. (2019) showed that PointNav could be solved with a simple policy equipped with

only a recurrent memory, requiring however large training experience (2.5B frames of expe-

rience). Interestingly, Wijmans et al. (2022) even showed that map-based structures emerged

in the hidden memory of recurrent blind agents learning to navigate without access to vision.

This thus indicates that a recurrent memory could be enough to learn to map a scene. This is

echoing more recent work (Bono et al., 2023b) showing that in addition to training a recurrent

agent to navigate, supervising the construction of its hidden memory by feeding it to a blind

agent to navigate enriches the map-related stored information. However, depending on the

task to solve, a more structured scene representation could still be beneficial.

62
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Encoding past experience Progress in Embodied AI

Prev. action

Prev. state

Goal

Embeddings
State

O
b
s
e
rv

a
ti
o
n

Last K

elements

Query

Retrieve

Multi-head attention

Iterate

Append

goal

Append

state

Shared

MLP

Feature-wise

max

Choose action

turn left

Policy

network

Residual

Optional direct path

Episodic storage

Write new memory
(at time t+1)

a)

b)

GoalState

Episode n – 1

Task m Task 1 Task 1Task 2

...

Task m

Episode n Episode n + 1

sample

environment

sample

environment

Figure 3.6: Episodic memory – reproduced from Ritter et al. (2021)

3.2.2 Episodic memory

A bit more structured than a recurrent memory, we can mention episodic memory as used

by Ritter et al. (2021). As shown in Figure 3.6, each new encoded observation is appended

to an episodic storage, allowing to retrieve information after querying the memory. Such

retrieval is processed using a multi-head attention mechanism. In a very similar way, Fang

et al. (2019) was already building a Scene Memory by appending observations when available

and was using a Transformer encoder to predict the action to take. Using Transformers to

process temporal information is also done in RL with approaches such as the Decision Trans-

former (Chen et al., 2021a) that is fed with a sequence of tuples (At, St, Rt), where At is the

action taken at time t leading to the state St and reward Rt, and is trained to predict the next

action to take. Other recent works have also leveraged Transformer models to learn to act (Du

et al., 2021; Chen et al., 2021b, 2022b; Reed et al., 2022; Mezghani et al., 2023a).

3.2.3 Topological memory

Even more structured, neural agents can be equipped with a topological representation of the

environment (Savinov et al., 2018a; Chaplot et al., 2020d; Beeching et al., 2020c; Wiyatno et al.,

2022; Kim et al., 2023). This representation seems particularly suited to the ImageNav task as

most recent work in Embodied AI using topological scene representations targets this task.

An example is the work done by Chaplot et al. (2020d) (Figure 3.7) in which the goal

to find is presented as a panoramic image, showing the view of the surrounding scene the

agent should have when reaching it. As such a task requires an agent to explore a scene,

they build a topological memory to keep track of the information seen by the policy. At

each timestep in an episode, the graph representation is updated, before being fed to a Global

63
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Encoding past experience Progress in Embodied AI

Figure 3.7: Topological memory – reproduced from Chaplot et al. (2020d)

Policy predicting a sub-goal to be reached by a Local Policy. In the maintained graph, each node

represents an area and an edge between two nodes indicates both areas are close and one can

navigate from one to the other. There are two types of nodes: Regular nodes corresponding

to areas that have already been explored since the beginning of the episode, and ghost nodes

denoting explorable areas that have not yet been visited. Each regular node is associated with

a panoramic image taken by the agent when being in the corresponding area. When visiting a

new area, a regular node is added to the graph and directions leading to explorable areas are

also predicted to add corresponding ghost nodes. Once the graph has been updated, a ghost

node to be explored must be selected based on the specified goal image from the ImageNav

task. In order to perform the graph updates and selections of the next ghost node to visit,

four functions are proposed: (i) graph localization (FL), (ii) geometric explorable area prediction

(FG), (iii) semantic score prediction (FS), (iv) relative pose prediction (FR). All these functions

are implemented with a shared ResNet-18 encoder followed by a specific neural architecture

for each function. FL classifies a pair composed of an image Is and the image Igi associated

with the graph node i as whether Is belongs to node i. FG predicts the visible explorable area

in an image Is by dividing the latter into 12 vertical sections (corresponding to 12 angle bins

as we have a panoramic image). From a source image Is and a goal image Ig, FS predicts the

most likely direction in which the agent should move if observing Is to reach Ig. Finally, FR

predicts the relative pose between two images Is and Ig.

More recent work (Kim et al., 2023) also targets the ImageNav task with a method featuring

a topological memory. However, in addition to representing each new area with a node in a

graph (image graph) as in Chaplot et al. (2020d), they also maintain a second topological mem-

ory populated with object nodes (object graph) corresponding to specific objects detected by

a Mask R-CNN model (He et al., 2017). They build a scene context by integrating information

from the image and object graphs, using a cross-graph message passing approach inspired by

MPNN (Gilmer et al., 2017). At navigation time, they select the most promising node to visit,

i.e. the one that should be the closest to the goal to find, with an attention mechanism.

Beeching et al. (2020c) have also studied the use of topological memories in neural agents

to address the ImageNav task. However, an important contribution and difference compared

with prior such as Chaplot et al. (2020d) is their use of a Graph Neural Network (GNN) to

learn to plan a path from a start to a target location from an uncertain graph whose nodes

64
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Encoding past experience Progress in Embodied AI

Explicit map features (obstacles, explored area, semantic objects) 𝝅 𝒗 𝝅 𝒗

Differentiable

affine

transform

Perception

module

Controller Controller

Inverse projective

mapping

Time-step t Time-step t+1

Perception

module

ht-1 ht ht+1

Implicit map features (extracted by a CNN model)

Figure 3.8: Explicit (reproduced from Chaplot et al. (2020a)) vs implicit (reproduced from Beeching

et al. (2020b)) map features

are associated with visual features extracted by a CNN and node connectivity is estimated

by a neural network as whether one node location is visible from another one. However, the

important point is that such a graph is uncertain and can thus contain errors, either due to

noise in the sensed data or from mistakes by the connectivity estimation module. Beeching

et al. (2020c) thus train a GNN high-level planner to predict the best next node to visit in a

topological representation of the explored area of a scene to come closer to a target specified

as an image. Training is performed on a large set of pre-computed graphs (72M) created

from exploration policy rollouts (Chen et al., 2018). They compare their high-level planner

with optimal planners such as Dijkstra’s algorithm and show their method better handles

graphs including errors. At navigation time, the neural graph planner is coupled with a

local policy trained to perform PointNav and reach high-level locations fed by the high-level

planner, achieving strong ImageNav performance.

3.2.4 Metric map memory

Finally, many works have been equipping neural agents with grid-based representations (Hen-

riques and Vedaldi, 2018; Parisotto and Salakhutdinov, 2018; Beeching et al., 2020b; Chaplot

65
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Encoding past experience Progress in Embodied AI

et al., 2020b,a; Wani et al., 2020; Ramakrishnan et al., 2022; Sadek et al., 2023; Zhai and Wang,

2023; Chang et al., 2023), providing a more detailed picture of the scene. Navigating efficiently

requires extracting features about the surrounding world that will be projected on a grid-based

representation. We will distinguish two types of map features presented in Figure 3.8: explicit

and implicit features.

Approaches populating their map with explicit features will select the ones that will be

important to solve the task of interest (top part of Figure 3.8). In the case of Chaplot et al.

(2020a) targeting the ObjNav task, each map cell is associated with channels indicating whether

it contains an obstacle, and even more specifically one of the semantic objects among a fixed

vocabulary of concepts, and whether it has already been visited. In this work, the agent

receives an RGB and a depth frames with the same resolution at each timestep. The RGB

observation is fed to a Mask R-CNN (He et al., 2017) model to segment semantic objects. The

depth map is then used to create a 3D point cloud with a point per depth pixel. In addition to

its 3D location, each point is associated with a semantic label coming from the prediction of

Mask R-CNN for the corresponding RGB pixel. The point cloud is converted into a 3D voxel

grid that will be projected to a 2D grid using a sum operation across the height. Such a map

can then be used to find a next waypoint to navigate to. Chaplot et al. (2020a) do it by feeding

it to a neural-based global policy trained with RL to output global goals to follow to explore

the scene. More recent work (Ramakrishnan et al., 2022; Zhai and Wang, 2023; Chang et al.,

2023) follows this direction to iteratively build a 2D map of explicit features while navigating,

storing obstacles, visited cells, and important semantic landmarks.

Another direction is about storing implicit features of the observed environment (bottom

part of Figure 3.8). These features are often extracted from a neural network such as done

by Beeching et al. (2020b) projecting cells from feature maps into a 2D map using depth

information. The interest of this approach is to learn features based on the task to solve

without the need to design them explicitly. Indeed, the projection of 2D feature maps to

3D space is differentiable, allowing to train the perception module to extract useful features

for the agent to navigate. Beeching et al. (2020b) for example show that features related to

landmark objects to find are written on the map. Wani et al. (2020) also follow this direction

of mapping a new environment with neural implicit features by proposing a baseline named

ProjNeuralMap that we will present in more detail in chapter 4 along with other baseline

methods.

There is thus a balance to find: implicit features leave more representation power to the

neural modules to learn what are the important characteristics of perceived signals, while

explicit features leverage our prior knowledge about important information to solve a task.

Explicit features will then allow faster training but can be limited if more representational

flexibility is required.

66
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Training neural agents Progress in Embodied AI

Context

In this manuscript, we have considered both mapping approaches. Chapters 4 and 5

will deal with implicit map features and chapter 6 will involve a map with explicit

features.

3.3 Training neural agents

Independently of the method used to encode past experience in an environment, approaches

can be trained differently to navigate. Formalisms to train navigation agents range from

Deep RL (DRL) (Mirowski et al., 2017; Jaderberg et al., 2017; Zhu et al., 2017a; Wijmans et al.,

2019; Chaplot et al., 2020b,d; Wijmans et al., 2022) to Imitation Learning (Ding et al., 2019;

Ramrakhya et al., 2022), or even supervised learning of global goals to reach (Ramakrishnan

et al., 2022; Zhai and Wang, 2023). This will not be covered in this manuscript but some ap-

proaches also leverage self-supervised learning to train goal-conditioned policies (Mezghani

et al., 2023b).

3.3.1 Reinforcement Learning

Training the full agent – Previous work (Wijmans et al., 2019) has already shown we could

train an agent end-to-end with RL only, more specifically with the PPO algorithm, to solve

PointNav but, as already mentioned, required a large amount of experience data. Even if this

method represents its environment with a simple recurrent memory, neural agents can still

be trained end-to-end with RL when they involve more developed mapping strategies: this is

the case of Beeching et al. (2020b) or Wani et al. (2020) that train map-based agents with RL,

including the perception modules. Beeching et al. (2020b) and Wani et al. (2020) respectively

leverage the A2C (Mnih et al., 2016) and PPO (Schulman et al., 2017) algorithms.

Such an end-to-end learning scheme is appealing because of its simplicity and flexibility

but can have some drawbacks, such as sample inefficiency or lack of generalization outside

the training domain. Reinforcement Learning indeed provides a sparse supervision signal

which can lead to slow training, and not enough diversity in training data might lead to the

policy overfitting to the training scenarios.

Training a specific function – A way to make RL training more efficient and the policy po-

tentially more robust to distribution changes is to predict only high-level goals from domain-

agnostic inputs and thus to relegate local navigation and state representation to other mod-

ules, that will either be neural-based or not. Modular approaches have indeed been introduced

by Chaplot et al. (2020b) to learn to explore scenes and then adapted to the ObjNav task (Chap-

lot et al., 2020a). In both works, a grid-based map representation is estimated from sensory

inputs (with semantic channels in Chaplot et al. (2020a) provided by a generic Mask R-CNN

model as already presented before) and fed to a global policy that will output a global goal

67
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Training neural agents Progress in Embodied AI

Figure 3.9: PONI – reproduced from Ramakrishnan et al. (2022)

to be reached by a local policy. The local policy can be trained with RL, but it was shown

not to be better than analytical planning. Thus, the local policy is implemented by Chaplot

et al. (2020a) with the FMM algorithm. Only the global policy is then trained with RL from a

map input that is agnostic to visual conditions in the scene, leading to faster and more robust

training. Gervet et al. (2022) showed this modular approach was also effective when deployed

on real robots performing the ObjNav task in various real-world environments.

Context

Chapter 6 in this manuscript is about modular policies inspired by the ones presented

here, with a global policy trained with RL to predict global goal locations.

While RL is a gold standard in Embodied AI, it has drawbacks as presented earlier. A

solution could be to replace it with another training method such as imitation learning or

supervised learning as we will present in the next subsection.

3.3.2 Imitation learning and supervised global waypoint prediction

Faster training can be achieved with supervised learning in two different ways: (i) imitation

learning from expert trajectories, (ii) turning the prediction of global waypoints to follow as a

supervised problem.

Imitation Learning – Ramrakhya et al. (2022) showed it was possible to train a policy with

imitation learning on the ObjNav task from a set of human-generated demonstrations. To

this end, they collected 70k demonstrations on training scenes and trained a simple recurrent

agent to mimic human actions with Behavior Cloning, outperforming RL-based counterparts.

Imitation learning is indeed a great strategy to provide a richer supervision signal but requires

collecting expert trajectories.

Global waypoint prediction – Another way to turn policy training into a supervised learning

problem is to go back to modular policies where only the global policy is trained. While

Chaplot et al. (2020b) and Chaplot et al. (2020a) train the latter with RL, other work (Ramakr-

ishnan et al., 2022; Zhai and Wang, 2023) decided to train the global policy to predict global

goals in a supervised fashion. PONI (Ramakrishnan et al., 2022), illustrated in Figure 3.9,

68
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Training neural agents Progress in Embodied AI

introduces a potential function network that plays the role of the global policy as presented in

previous work. A potential function associates a value between 0 and 1 to each location at the

frontier between unexplored and explored area on a given map based on how promising they

are to visit. This work proposed to train an encoder to extract features from an input semantic

map and two decoders predicting frontier potential values: an area potential decoder and an

object potential decoder, relatively predicting how frontier cells are likely to lead to a large

unexplored area and to the goal to find. Both predictions are aggregated to select a long-term

goal followed by a local policy. Interestingly, the map encoder and the two decoders are not

trained by interaction, but in a supervised fashion. Indeed, it is possible to pre-compute se-

mantic maps from annotations in 3D scene datasets along with ground-truth potential values

as we have access to the positions of objects and sizes of unexplored areas. Instead of pre-

dicting frontier potentials, the more recent PEANUT (Zhai and Wang, 2023) directly predicts

an object probability map where each cell is filled with a probability to find the goal object.

Despite a more simple design, they show they reach competitive performance. These works

thus question the initial assumption on the importance of interacting to learn to navigate.

Other work (Hahn et al., 2021) also studies the ability to learn to navigate without RL and

simulation.

In order to make policy training more efficient, alternative solutions could be to guide

the learning process either with a preliminary pre-training of a part of the policy (often the

perception module), or to augment the supervision signal with auxiliary tasks. This is what

we will review in the next two subsections.

3.3.3 Pre-training for Embodied AI

Pre-training is extensively used in many domains as a great way to learn general abilities with

supervised or more often self-supervised methods as presented previously (chapter 2), that

will then be fine-tuned and specialized to a domain or task of interest.

Pre-training for visual navigation – Visual navigation also follows this direction. Early

work (Zhu et al., 2017a) showed that it was possible to train a simple method composed

of a frozen ResNet-50 encoder pre-trained on Imagenet and a fully-connected policy to nav-

igate towards a target specified as an image (similar to ImageNav). Only the fully-connected

policy was thus trained with RL, more specifically with the A3C algorithm (Mnih et al., 2016).

Many works have been using pre-training as part of their solution since then, but we can

mention Hao et al. (2020) or Bono et al. (2023a) that explicitly study pre-training approaches

as their contributions. Hao et al. (2020) propose a pre-trained vision-language model to align

images and textual instructions in the context of VLN. Bono et al. (2023a) show that the percep-

tion module of a policy strongly benefits from a cross-view completion pre-training to solve

the ImageNav task. They indeed leverage a large pre-trained vision model called CroCo (Wein-

zaepfel et al., 2022) that was pre-trained with a variant of MAE where the encoder is fed with

69
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Training neural agents Progress in Embodied AI

…

Assembled
Dataset

Visual Representation
Learning

Cortex

Evaluation on 

Adroit Dexterous

………

7 datasets
7 methods 17 tasks

Ego4D

RealEstate10K

encoder

....

....

decoder

input target

MAE

“stirs the
snacks…”

Time Contrastive Learning

Video-Language Alignment

“removes the
battery…”

R3M
Goal Image

Evaluation on 

Habitat ImageNav

Behavior Cloning 

Policy training

RL Policy training

Evaluation 
Results

Figure 3.10: Vision pre-training pipeline for robotics – reproduced from Majumdar et al. (2023)

two views of a scene, where one of them is partially masked. The objective of the decoder

is then to reconstruct pixels in the masked view. Such a pretext objective helps learning to

extract robust geometric features, which are very useful in ImageNav. Bono et al. (2023a) go

further than this by also finetuning their visual encoder on another pretext task about predict-

ing the relative pose of two views, and whether a part of a view is visible from the other, i.e.

if there is a content overlap between them. The encoder is finally frozen and only the policy

along with a few visual adapters (we will present adapters in more detail later in this chapter)

are trained with RL.

Pre-trained visual representations for multi-task learning – Backbone models pre-trained

on large and diverse data have recently shown great promises in robotics when considering

their generalization over different tasks (Majumdar et al., 2023; Parisi et al., 2022; Nair et al.,

2023; Radosavovic et al., 2023; Ma et al., 2022; Khandelwal et al., 2022; Yadav et al., 2022,

2023a). Parisi et al. (2022) study visual pre-training methods for visuomotor control, showing

the quality of self-supervised representations. Nair et al. (2023) introduce R3M, a general

vision model pre-trained on egocentric video data to capture temporal dynamics and semantic

features, improving downstream manipulation performance. Radosavovic et al. (2023) employ

the MAE framework (He et al., 2022) to pre-train a single vision encoder (MVP) applied to

robots in the real world. Ma et al. (2022) pre-train a visual model with a self-supervised value

function objective on egocentric human videos to improve control policies. Finally, recent

work (Khandelwal et al., 2022; Yadav et al., 2022, 2023a) has shown the great promise of pre-

trained models, either CLIP-based (Khandelwal et al., 2022) or self-supervised (Yadav et al.,

2022, 2023a), in visual navigation.

The work introducing Cortexbench (Majumdar et al., 2023) presented earlier explicitly stud-

ies the differences in visual representations from pre-trained backbones in the context of policy

learning. More specifically, they both compare previous existing visual backbones and intro-

duce a new one called VC-1. Figure 3.10 presents the general setup they follow: based on a

visual dataset, a visual model will be pre-trained following one of various visual representa-

tion learning approaches. The given model will then be used as a frozen feature extractor to

70
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Training neural agents Progress in Embodied AI

generate observations fed to a neural policy for each task in Cortexbench. Depending on the

task, the policy will have a specific architecture and tailored inputs, and will either be trained

with BC or RL. Finally, task-specific policies will be evaluated to obtain a global score to as-

sess the quality of the visual representations from the considered backbone model. Regarding

existing pre-trained models, they show that no single one among MVP (Radosavovic et al.,

2023), CLIP (Radford et al., 2021), VIP (Ma et al., 2022), or R3M (Nair et al., 2023) leads to

consistent improvements on all tasks. They then introduce a new visual model called VC-1.

It is a Vision Transformer (ViT) Dosovitskiy et al. (2020) model pre-trained from a set of 7

out-of-domain datasets with a focus on egocentric visual frames with a MAE representation

learning objective. They show that data diversity helps improve the quality of produced visual

features and reach strong performance on all considered tasks.

Transformer adapters – Transferring Transformer-based pre-trained models to new tasks or

domains is an important topic. Methods involving adapter modules were introduced in

NLP (Houlsby et al., 2019; Pfeiffer et al., 2021; Hu et al., 2021) to allow a fast and parameter-

efficient transfer. Recent works employ the same methods in robotics (Sharma et al., 2022;

Liang et al., 2022). Sharma et al. (2022) insert visual adapters in a Vision Transformer (ViT) pre-

trained model. They introduce different types of adapter blocks ("bottom", "middle", "top")

located at diverse places in the visual model and show that combining them improves perfor-

mance. Liang et al. (2022) also show the positive impact of inserting task-specific adapters,

trained with imitation learning, in a pre-trained Transformer-based model to adapt to robotics

tasks.

Context

Chapter 7 will be dedicated to studying the adaptation of pre-trained visual features

with a special conditioning on the task at hand. We will present adapters from Sharma

et al. (2022) in more detail, and present our proposed improvement.

3.3.4 Auxiliary supervision

Instead of, or in addition to, pre-training, another approach is known as in-training auxil-

iary supervision. This is about augmenting the downstream objective to be optimized with

additional training signals. It can be particularly interesting to speed up training and/or

reach higher final performance. For this to be true, the additional supervision must be well-

motivated to guide training towards a relevant solution. The training signal in RL tends to be

sparser than with other training paradigms (supervised, dense self-supervised training), and

thus can particularly benefit from denser auxiliary supervision.

Supervised auxiliary supervision – Mirowski et al. (2017) augment the vanilla reward-based

RL training signal by learning to predict loop closure and reconstruct depth observations. In

the same fashion, Lample and Chaplot (2017) also employ supervised auxiliary tasks, by aug-

71
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Training neural agents Progress in Embodied AI

CNN CNN

Linear

CNN CNN

Linear

Predicted: Predicted:

GRU GRU GRU

+ + +

CNN

MLPMLPMLPMLP

Belief

MLPMLP

(a) Inverse Dynamics (b) Temporal Distance (c) CPC|A

Figure 3.11: Auxiliary supervision for the PointNav task – reproduced from Ye et al. (2020)

menting the base Deep Recurrent Q-Network model (DRQN – Hausknecht and Stone (2015))

with fully-connected layers to predict game features in the context of learning to play a First-

person shooter (FPS) game, improving significantly the downstream performance. A poten-

tial drawback of such supervised auxiliary supervision is the need for privileged information.

However, RL training is generally performed in simulated environments (Kempka et al., 2016;

Beattie et al., 2016), where basic information about the position of the goals for instance is

simple to access as it is necessary to reward the agent. As a result, required annotations are

obtained with very few supplementary work.

Unsupervised auxiliary supervision – Unlike these works, Jaderberg et al. (2017) propose

unsupervised tasks such as pixel or feature-based control and reward prediction. In the same

direction, Ye et al. (2020) (Figure 3.11) introduce self-supervised auxiliary tasks to speed

up the training of agents in the PointNav task. They augment the base agent from Wijmans

et al. (2019) with an inverse dynamics estimator as in Pathak et al. (2017), a temporal distance

predictor that outputs the normalized number of steps between two observations, as well

as an action-conditional contrastive module. In the latter, a dedicated GRU network takes

a sequence of future actions as input and produces a hidden state that is concatenated to

either a positive, i.e. the real observation that occurs after the given sequence of actions, or a

negative sample, i.e. an observation sampled from other timesteps. The agent must predict

if the sequence of actions will lead to the given observation, forcing to build long-horizon

representations. In this work, authors also propose a new scheme to fuse multiple auxiliary

tasks with several dedicated belief modules followed by a fusion module. Ye et al. (2021)

introduce auxiliary tasks for the ObjNav task to mitigate overfitting and sample inefficiency

of current agents. They build on top of Ye et al. (2020) and introduce the Action Distribution

Prediction and Generalized Inverse Dynamics tasks, that both consist in predicting the actions that

lead from one observation to another one, respectively with a 2-layer MLP and a GRU updated

with actions taken. Finally, they have a Coverage Prediction task as, unlike with PointNav,

exploration is important in ObjNav.

72
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Training neural agents Progress in Embodied AI

Context

In this manuscript, we also show the impact of auxiliary supervision when learning to

navigate. More specifically, in chapter 4, we show that auxiliary tasks related to the

mapping of semantic objects of interest improve the final navigation abilities towards

goals.

3.3.5 Multi-task robotic policies

Having a single policy performing a wide range of tasks is a long-standing problem in

robotics. With Deep Learning-based solutions becoming more popular, some prior work

focuses on training multi-task neural agents. Approaches like BC-Z (Jang et al., 2022), RT-

1 (Brohan et al., 2022), RT-2 (Zitkovich et al., 2023) or Gato (Reed et al., 2022) study the scaling

abilities of neural models to large-scale datasets. Trained generalist agents show strong per-

formance on a wide set of tasks, and can generalize to some extent to novel tasks. Another

recent work is TD-MPC2 (Hansen et al., 2024), which introduces a model-based RL algorithm

to learn general world models and studies task embeddings to condition a multi-task pol-

icy. Data-driven models can also be replaced by physics-informed models in model-based

RL (Asri et al., 2024). Some work also learns to master multiple tasks by maximizing some

intrinsic motivation objective (D’Eramo and Chalvatzaki, 2022). Finally, another direction is

about learning multi-task policies from videos of humans interacting with the world (Soucek

et al., 2024; Chane-Sane et al., 2023). This allows leveraging available large-scale datasets

without requiring any task-specific labeling.

Context

More than only tackling visual features adaptation, chapter 7 will consider it in the

context of multi-task policy learning.

3.3.6 Neural agents with no task-specific training

So far we have reviewed ways to train neural agents to solve one or several tasks of interest,

while keeping in mind that some modular approaches will only train a specific global policy

that will play the role of a single block in the final autonomous system. We have also consid-

ered pre-training approaches to leverage diverse external data in a first step. However, in all

these cases, some training was happening with the final task in mind, either with a sparse RL

training signal or more informative supervised learning methods. An interesting question is

then the following: could the final neural agent be a combination of modules, some of them

being non-neural and others being pre-trained general neural networks, that would just need

to be assembled to solve a new task without performing any task-specific training?

The recent GO to Any Thing (GOAT – Chang et al. (2023)), illustrated in Figure 3.12, follows

this path. It has the same modular form as previous work with a map-based representation,

73
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Neural scene representations Progress in Embodied AI

Figure 3.12: GO to Any Thing – reproduced from Chang et al. (2023)

a global policy and a local policy, but does not require any task-specific training. The method

can reach goals specified by images (ImageNav), language (VLN) and object category (ObjNav),

but the global policy is not trained with RL: when a new goal is specified, it will query

(differently depending on the modality) a semantic memory built from the map, and will

output an exploration goal using frontier-based exploration (Yamauchi, 1997) if the specified

goal was not yet stored in memory. This work shows that neural-based modules are necessary

to navigate as they are used to perceive, build a semantic map and embed goal queries, but

we can reach satisfying performance on different tasks without a trained neural-based policy.

Another work (Krantz et al., 2023) focusing on InstanceImageNav also follows this direction.

It is a modular method where exploration and local navigation are respectively performed by

a Frontier-based exploration algorithm and the Fast Marching Method. The neural part is

responsible for the identification of the target in the current observation. This is done by first

extracting features with the neural-based SuperGlue method (Sarlin et al., 2020) in both the

current observation and the target image. Features are then matched to check whether the

goal is in sight. Once the goal has been identified, the agent can plan a path towards it with

the Fast Marching method.

3.4 Neural scene representations

We have presented different approaches to encode past experience and, thus, represent 3D

scenes while navigating in section 3.2. We have not yet mentioned a family of representations

based on neural networks as we will dedicate this section to review the use of neural fields

in robotics. These representations have originally been proposed in computer vision and

computer graphics (see Chapter 2), in particular for novel view synthesis, but have been

recently discovered for robotics, where they are starting to get used for representing scenes

74
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Neural scene representations Progress in Embodied AI

T
ra

ck
in

g

P
ro

ce
ss

M
a

p
p

in
g

P
ro

ce
ss

RGB-D
Image

Keyframe Set

Implicit
Network

Tracked
Pose

Tracking

Is Keyframe?

- Yes

Joint

Optimisation

I, D T

Add
Keyframe

<latexit sha1_base64="AX/jZ4RZsdHWeQ2suUnrAy8Ajl0=">AAAD5HicfVJLb9NAEN42PEp4tXBCXFbk0lZWFFcVHFCkCnqAQ0WRWloptqL1emIv2YeZXZMUy+IHcERcuXEFiX/Dv2HdphJOJebi8ew3r++bpJDCusHgz8pq59r1GzfXbnVv37l77/76xoN31pTI4ZgbafA0YRak0HDshJNwWiAwlUg4SaYvm/eTj4BWGH3kzgqIFcu0mAjOnA+N1x9FEiYuql4HdD+gRzRCkeUuqsdivN4b9AfnRq864cLpkYUdjjdWf0ep4aUC7bhk1o7CncLFFUMnuIS6G5UWCsanLIMqQ1bkgs8DOpHwQQfUsaSUDH1g5p8mImvjmbIuVwH1X8Vc7vEwd9yoogUbSXAOsGAFYEAVw0zo4aD/VOi4ysAocHjWTkjMHNKANvRZXaoEEFI/sswMCt9wpz32SLEpoDEqrjjTHOTyq8sXewRyElcHQnuSD9G0d7FlwlnR8N+On6cbI207nBgz9VXtMngKfoD2BFXuJUaEyRK2lE6gmbWjl4y3d4B5YbBRLX1fWufpWUoS0091txvtg5cY4cCP/Ma3ZM7gdhV5whWb117yLAoa739AoS+B3vMlNcy8oIrpdDviAv3JpKMwrqKm5ejyxoebPGfYb3634qpL/7FImxRGNvfiDy/ygxTZLBBaA1K/wrA5R3peYItWvbB+Xtf+ysPlm77qnOz0w91+GL7d7e29WBz8GnlMnpBNEpJnZI+8IofkmHDymfwgP8mvDnS+dL52vl1AV1cWOQ9Jyzrf/wL9s01x</latexit>

{I,D, T}
i

<latexit sha1_base64="HN0CGi6HkFtx4Sr8ZpKBJUzDG0I=">AAAD0XicfVJLb9NAEN4mPEp4tXDkYpFLW1lRHFVwQJEqQIhLRUCERIqtaL2e2Ev2YWbXJMWKhLhy4wq/gn/Dv2GdJhJOJebi8ew3r++bOBfc2G73z16jee36jZv7t1q379y9d//g8MEHowtkMGRaaBzH1IDgCoaWWwHjHIHKWMAonr+o3kefAQ3X6r29yCGSNFV8xhm1LjR+NQ1tBpZOD9rdTndt3lUn2DhtsrHB9LDxO0w0KyQoywQ1ZhL0chuVFC1nAlatsDCQUzanKZQp0jzjbOl7MwGflO9ZGheCogss3NOMp3U8lcZm0vfcV1KbOTwsLdMyr8EmAqwFzGkO6HuSYspVv9t5wlVUpqAlWLyoJ8R6CYnvVVwZVcgYEBI3skg1ctewVx97IukcUGsZlYwqBmL31WabPXwxi8pzrhyjA9T1XUwRM5pXZNfj63SthamHY63nrqrZBc/BDVCfoMycnogw28EWwnLUi3p0y3h9B1jmGivVko+FsY6enSQ+/7JqtcKX4CRGOHcjv3EtqdV4UoaOcEmXKyd5GvqV9z8gV1ug81xJBQsnqKQqOQkZR3cyySSIyrBqOdkedP+IZRQ71e9xVLa8fyxUOoGJyZz4/ct8P0G68LlSgJ5boV+do7cucOyV7WD1bLVyVx7s3vRVZ9TrBKedIHh72j57vjn4ffKIPCZHJCBPyRl5TQZkSBgR5Af5SX413zWXza/Nb5fQxt4m5yGpWfP7X7ojRxs=</latexit>

Fθ

Figure 3.13: iMap – reproduced from Sucar et al. (2021)

during navigation or object manipulation. We dedicate a subsection to the use of NeRF-like

representations in Embodied AI as it is a quite recent phenomenon that has been gaining

interest, and that will play an important role in this manuscript (see chapters 5 and 6).

We can isolate three important research directions when it comes to using neural fields in

robotics:

• NeRF-based SLAM: neural fields are updated in real-time to map a new 3D environment

while localizing in the scene (3D online SLAM).

• NeRF for planning and control: this line of work studies the use of neural fields to per-

form planning or control, sometimes starting from a trained NeRF representing the scene

of interest (the NeRF is not learned as in NeRF-based SLAM, but instead considered as

known a priori).

• Active learning for neural fields: the goal here is to autonomously navigate a scene to

collect NeRF training data to obtain the highest quality possible neural scene represen-

tation.

3.4.1 NeRF-based SLAM

Neural SLAM targets real-time SLAM with neural implicit representations. A first attempt at

this was the iMap method (Sucar et al., 2021) illustrated in Figure 3.13. As presented by Sucar

et al. (2021), a SLAM system must be memory-efficient, data-efficient, and predictive, i.e. able to

reasonably predict the geometry of unobserved regions. An MLP-based representation thus

appears as an interesting alternative as its continuous nature allows to automatically adapt

the resolution (memory-efficient) to different parts of the scenes depending on the requirements

(e.g. level of details of objects in a given region). Moreover, the interpolation abilities of

neural networks can be useful in providing reasonable reconstructions of unobserved object

parts (predictive). These advantages can only be leveraged if such models can be updated in

real-time from a limited amount of data (data-efficient). The latter has been the main focus of

the iMap paper, i.e. how to efficiently train an MLP-based SLAM system from sparse incoming data?

75
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Neural scene representations Progress in Embodied AI

Unlike the original NeRF model, iMap does not require provided camera poses as local-

ization is done in parallel with mapping. However, another difference is that iMap is provided

with depth frames along with RGB images. Figure 3.13 shows the joint optimization of the

camera poses and NeRF weights while new data is continually added when visiting a scene,

with a supervision signal based on color and depth rendering. The implicit network is iden-

tical to the original NeRF implementation and the training process is very similar, with an

additional depth rendering loss. We will rather focus on the challenges associated with solv-

ing the targeted problem: new data is continually arriving when the camera is moving and

the network weights must be updated accordingly in real-time. This means it is important

to focus on important new information to efficiently allocate the available computation, but

also to overcome catastrophic forgetting problems, i.e. forgetting about parts of the scene that

were seen a long time ago. In order to avoid the latter, they propose a replay-based approach

where a replay buffer is populated with keyframes that will be continuously sampled to train

the model. However, to keep computations efficient, not all keyframes are added: a frame is

only selected if it shows a region of 3D space that is novel enough. A chosen proxy to measure

novelty is the magnitude of the model training loss, i.e. keyframes associated with higher loss

are likely to contain newer information that should be stored to be replayed later. Similarly, at

optimization time, predicting color and depth for all pixels in all replay buffer frames is not

computationally possible. Frames and a subset of their pixels are thus also actively sampled

to allow the optimization process to run in real-time, combining uniform sampling and focus

on regions where the neural network makes more mistakes.

Follow-up work adds semantic predictions to iMap (Zhi et al., 2021a) by augmenting the

implicit model with a semantic head. An interesting specificity of this work is that scene-

scale semantic labeling is learned from sparse semantic annotations of the scene, highlighting

the interpolation abilities of NeRF-like models, and showing that they could realistically be

deployed in a robotic system. Similarly, Zhi et al. (2021b) is also built on top of iMap and

allows a user to interactively provide semantic annotation for the implicit representation to be

trained in real-time.

Neural SLAM systems have then tried to overcome two limitations of iMap: the need

to be provided with depth frames in real-time and the relatively small scale of scenes it can

reconstruct robustly. NICE-SLAM (Zhu et al., 2022) propose a hierarchical grid-based rep-

resentation to better handle the representation of large scenes: the scene is divided into 3

different voxel grids with different levels of detail (coarse, mid, fine). Pre-trained MLP de-

coders (one for each level of detail) fed with voxel locations and scene-specific features are

used to render RGB and depth. Pre-training of the decoders is done following the setup from

previous work (Peng et al., 2020), and only scene-specific features are optimized at NeRF

training time. This leads to faster optimization but also the ability for decoders to encode

resolution-specific priors. Follow-up work called NICER-SLAM (Zhu et al., 2024) builds on

76
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Neural scene representations Progress in Embodied AI

NeRFEstimated
Pose

Sampled Pixels Rays Rendered Pixels Observed Pixels
Loss

Backpropagation

FΘ
<latexit sha1_base64="wIZvrwMZbsarO/wb5mO5nuEZUb8=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GNREI8V+oVtKJvtpl262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7C2vrG5Vdwu7ezu7R+UD49aJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px7cxvP3FtRKwaOEm4H9GhEqFgFK30eNfPeo0RRzrtlytu1Z2DrBIvJxXIUe+Xv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nr94Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCaz98lAaM5QTiyhTAt7K2EjqilDG1LJhuAtv7xKWhdVz616D5eV2k0eRxFO4BTOwYMrqME91KEJDBQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fg/mQzQ==</latexit><latexit sha1_base64="wIZvrwMZbsarO/wb5mO5nuEZUb8=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GNREI8V+oVtKJvtpl262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7C2vrG5Vdwu7ezu7R+UD49aJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px7cxvP3FtRKwaOEm4H9GhEqFgFK30eNfPeo0RRzrtlytu1Z2DrBIvJxXIUe+Xv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nr94Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCaz98lAaM5QTiyhTAt7K2EjqilDG1LJhuAtv7xKWhdVz616D5eV2k0eRxFO4BTOwYMrqME91KEJDBQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fg/mQzQ==</latexit><latexit sha1_base64="wIZvrwMZbsarO/wb5mO5nuEZUb8=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GNREI8V+oVtKJvtpl262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7C2vrG5Vdwu7ezu7R+UD49aJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px7cxvP3FtRKwaOEm4H9GhEqFgFK30eNfPeo0RRzrtlytu1Z2DrBIvJxXIUe+Xv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nr94Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCaz98lAaM5QTiyhTAt7K2EjqilDG1LJhuAtv7xKWhdVz616D5eV2k0eRxFO4BTOwYMrqME91KEJDBQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fg/mQzQ==</latexit><latexit sha1_base64="wIZvrwMZbsarO/wb5mO5nuEZUb8=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GNREI8V+oVtKJvtpl262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7C2vrG5Vdwu7ezu7R+UD49aJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px7cxvP3FtRKwaOEm4H9GhEqFgFK30eNfPeo0RRzrtlytu1Z2DrBIvJxXIUe+Xv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nr94Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCaz98lAaM5QTiyhTAt7K2EjqilDG1LJhuAtv7xKWhdVz616D5eV2k0eRxFO4BTOwYMrqME91KEJDBQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fg/mQzQ==</latexit>

FΘ
<latexit sha1_base64="wIZvrwMZbsarO/wb5mO5nuEZUb8=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GNREI8V+oVtKJvtpl262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7C2vrG5Vdwu7ezu7R+UD49aJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px7cxvP3FtRKwaOEm4H9GhEqFgFK30eNfPeo0RRzrtlytu1Z2DrBIvJxXIUe+Xv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nr94Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCaz98lAaM5QTiyhTAt7K2EjqilDG1LJhuAtv7xKWhdVz616D5eV2k0eRxFO4BTOwYMrqME91KEJDBQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fg/mQzQ==</latexit><latexit sha1_base64="wIZvrwMZbsarO/wb5mO5nuEZUb8=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GNREI8V+oVtKJvtpl262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7C2vrG5Vdwu7ezu7R+UD49aJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px7cxvP3FtRKwaOEm4H9GhEqFgFK30eNfPeo0RRzrtlytu1Z2DrBIvJxXIUe+Xv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nr94Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCaz98lAaM5QTiyhTAt7K2EjqilDG1LJhuAtv7xKWhdVz616D5eV2k0eRxFO4BTOwYMrqME91KEJDBQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fg/mQzQ==</latexit><latexit sha1_base64="wIZvrwMZbsarO/wb5mO5nuEZUb8=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GNREI8V+oVtKJvtpl262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7C2vrG5Vdwu7ezu7R+UD49aJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px7cxvP3FtRKwaOEm4H9GhEqFgFK30eNfPeo0RRzrtlytu1Z2DrBIvJxXIUe+Xv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nr94Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCaz98lAaM5QTiyhTAt7K2EjqilDG1LJhuAtv7xKWhdVz616D5eV2k0eRxFO4BTOwYMrqME91KEJDBQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fg/mQzQ==</latexit><latexit sha1_base64="wIZvrwMZbsarO/wb5mO5nuEZUb8=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GNREI8V+oVtKJvtpl262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7C2vrG5Vdwu7ezu7R+UD49aJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4Px7cxvP3FtRKwaOEm4H9GhEqFgFK30eNfPeo0RRzrtlytu1Z2DrBIvJxXIUe+Xv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nr94Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCaz98lAaM5QTiyhTAt7K2EjqilDG1LJhuAtv7xKWhdVz616D5eV2k0eRxFO4BTOwYMrqME91KEJDBQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fg/mQzQ==</latexit>

+
<latexit sha1_base64="aWOcHJrcbrsxJSLO3n80z068CGE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mEmCfkSHkoecUWOlxkW/XHGr7hxklXg5qUCOer/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S1mXVc6te46pSu83jKMIJnMI5eHANNbiHOjSBAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcYWMrw==</latexit><latexit sha1_base64="aWOcHJrcbrsxJSLO3n80z068CGE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mEmCfkSHkoecUWOlxkW/XHGr7hxklXg5qUCOer/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S1mXVc6te46pSu83jKMIJnMI5eHANNbiHOjSBAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcYWMrw==</latexit><latexit sha1_base64="aWOcHJrcbrsxJSLO3n80z068CGE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mEmCfkSHkoecUWOlxkW/XHGr7hxklXg5qUCOer/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S1mXVc6te46pSu83jKMIJnMI5eHANNbiHOjSBAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcYWMrw==</latexit><latexit sha1_base64="aWOcHJrcbrsxJSLO3n80z068CGE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mEmCfkSHkoecUWOlxkW/XHGr7hxklXg5qUCOer/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S1mXVc6te46pSu83jKMIJnMI5eHANNbiHOjSBAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcYWMrw==</latexit>

T
<latexit sha1_base64="+PBvf+lnnsnFY014vABWwPiSxYo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW+gVtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfTmFjc2t7p7hb2ts/ODwqH5+0dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5n/udJ1Sax7Jppgn6ER1JHnJGjZUazUG54lbdBcg68XJSgRz1QfmrP4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0Bm5sMqQhLGyJQ1ZqL8nMhppPY0C2xlRM9ar3lz8z+ulJrz1My6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6rnVr3GdaV2l8dRhDM4h0vw4AZq8AB1aAEDhGd4hTfn0Xlx3p2PZWvByWdO4Q+czx+vqYzY</latexit><latexit sha1_base64="+PBvf+lnnsnFY014vABWwPiSxYo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW+gVtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfTmFjc2t7p7hb2ts/ODwqH5+0dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5n/udJ1Sax7Jppgn6ER1JHnJGjZUazUG54lbdBcg68XJSgRz1QfmrP4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0Bm5sMqQhLGyJQ1ZqL8nMhppPY0C2xlRM9ar3lz8z+ulJrz1My6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6rnVr3GdaV2l8dRhDM4h0vw4AZq8AB1aAEDhGd4hTfn0Xlx3p2PZWvByWdO4Q+czx+vqYzY</latexit><latexit sha1_base64="+PBvf+lnnsnFY014vABWwPiSxYo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW+gVtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfTmFjc2t7p7hb2ts/ODwqH5+0dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5n/udJ1Sax7Jppgn6ER1JHnJGjZUazUG54lbdBcg68XJSgRz1QfmrP4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0Bm5sMqQhLGyJQ1ZqL8nMhppPY0C2xlRM9ar3lz8z+ulJrz1My6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6rnVr3GdaV2l8dRhDM4h0vw4AZq8AB1aAEDhGd4hTfn0Xlx3p2PZWvByWdO4Q+czx+vqYzY</latexit><latexit sha1_base64="+PBvf+lnnsnFY014vABWwPiSxYo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW+gVtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfTmFjc2t7p7hb2ts/ODwqH5+0dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5n/udJ1Sax7Jppgn6ER1JHnJGjZUazUG54lbdBcg68XJSgRz1QfmrP4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0Bm5sMqQhLGyJQ1ZqL8nMhppPY0C2xlRM9ar3lz8z+ulJrz1My6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6rnVr3GdaV2l8dRhDM4h0vw4AZq8AB1aAEDhGd4hTfn0Xlx3p2PZWvByWdO4Q+czx+vqYzY</latexit>

C(r)
<latexit sha1_base64="wiGoFXnOuVJfdeJPP9sAqqg09UY=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkWomzIjgi6L3bisYB/QDiWTZtrQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05fiy4No7zjQobm1vbO8Xd0t7+weFR+fikraNEUdaikYhU1yeaCS5Zy3AjWDdWjIS+YB1/0sj8zpQpzSP5aGYx80IykjzglBgreY1qPyRm7Aepml8OyhWn5iyA14mbkwrkaA7KX/1hRJOQSUMF0brnOrHxUqIMp4LNS/1Es5jQCRmxnqWShEx76SL0HF9YZYiDSNknDV6ovzdSEmo9C307mUXUq14m/uf1EhPceimXcWKYpMtDQSKwiXDWAB5yxagRM0sIVdxmxXRMFKHG9lSyJbirX14n7aua69Tch+tK/S6vowhncA5VcOEG6nAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDTIWRyA==</latexit><latexit sha1_base64="wiGoFXnOuVJfdeJPP9sAqqg09UY=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkWomzIjgi6L3bisYB/QDiWTZtrQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05fiy4No7zjQobm1vbO8Xd0t7+weFR+fikraNEUdaikYhU1yeaCS5Zy3AjWDdWjIS+YB1/0sj8zpQpzSP5aGYx80IykjzglBgreY1qPyRm7Aepml8OyhWn5iyA14mbkwrkaA7KX/1hRJOQSUMF0brnOrHxUqIMp4LNS/1Es5jQCRmxnqWShEx76SL0HF9YZYiDSNknDV6ovzdSEmo9C307mUXUq14m/uf1EhPceimXcWKYpMtDQSKwiXDWAB5yxagRM0sIVdxmxXRMFKHG9lSyJbirX14n7aua69Tch+tK/S6vowhncA5VcOEG6nAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDTIWRyA==</latexit><latexit sha1_base64="wiGoFXnOuVJfdeJPP9sAqqg09UY=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkWomzIjgi6L3bisYB/QDiWTZtrQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05fiy4No7zjQobm1vbO8Xd0t7+weFR+fikraNEUdaikYhU1yeaCS5Zy3AjWDdWjIS+YB1/0sj8zpQpzSP5aGYx80IykjzglBgreY1qPyRm7Aepml8OyhWn5iyA14mbkwrkaA7KX/1hRJOQSUMF0brnOrHxUqIMp4LNS/1Es5jQCRmxnqWShEx76SL0HF9YZYiDSNknDV6ovzdSEmo9C307mUXUq14m/uf1EhPceimXcWKYpMtDQSKwiXDWAB5yxagRM0sIVdxmxXRMFKHG9lSyJbirX14n7aua69Tch+tK/S6vowhncA5VcOEG6nAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDTIWRyA==</latexit><latexit sha1_base64="wiGoFXnOuVJfdeJPP9sAqqg09UY=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkWomzIjgi6L3bisYB/QDiWTZtrQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05fiy4No7zjQobm1vbO8Xd0t7+weFR+fikraNEUdaikYhU1yeaCS5Zy3AjWDdWjIS+YB1/0sj8zpQpzSP5aGYx80IykjzglBgreY1qPyRm7Aepml8OyhWn5iyA14mbkwrkaA7KX/1hRJOQSUMF0brnOrHxUqIMp4LNS/1Es5jQCRmxnqWShEx76SL0HF9YZYiDSNknDV6ovzdSEmo9C307mUXUq14m/uf1EhPceimXcWKYpMtDQSKwiXDWAB5yxagRM0sIVdxmxXRMFKHG9lSyJbirX14n7aua69Tch+tK/S6vowhncA5VcOEG6nAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDTIWRyA==</latexit>

Ĉ(r)
<latexit sha1_base64="qDYNst2S5gZgEJWc7++iUrRyNjA=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBItQNyURQZfFblxWsA9oQplMJ+3QySTMTIQQ4q+4caGIWz/EnX/jpM1CWw8MHM65l3vm+DGjUtn2t1HZ2Nza3qnu1vb2Dw6PzOOTvowSgUkPRywSQx9JwignPUUVI8NYEBT6jAz8eafwB49ESBrxB5XGxAvRlNOAYqS0NDbr7gyprJM33RCpmR9kIr8Ymw27ZS9grROnJA0o0R2bX+4kwklIuMIMSTly7Fh5GRKKYkbymptIEiM8R1My0pSjkEgvW4TPrXOtTKwgEvpxZS3U3xsZCqVMQ19PFhHlqleI/3mjRAU3XkZ5nCjC8fJQkDBLRVbRhDWhgmDFUk0QFlRntfAMCYSV7qumS3BWv7xO+pctx24591eN9m1ZRxVO4Qya4MA1tOEOutADDCk8wyu8GU/Gi/FufCxHK0a5U4c/MD5/AK3glMY=</latexit><latexit sha1_base64="qDYNst2S5gZgEJWc7++iUrRyNjA=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBItQNyURQZfFblxWsA9oQplMJ+3QySTMTIQQ4q+4caGIWz/EnX/jpM1CWw8MHM65l3vm+DGjUtn2t1HZ2Nza3qnu1vb2Dw6PzOOTvowSgUkPRywSQx9JwignPUUVI8NYEBT6jAz8eafwB49ESBrxB5XGxAvRlNOAYqS0NDbr7gyprJM33RCpmR9kIr8Ymw27ZS9grROnJA0o0R2bX+4kwklIuMIMSTly7Fh5GRKKYkbymptIEiM8R1My0pSjkEgvW4TPrXOtTKwgEvpxZS3U3xsZCqVMQ19PFhHlqleI/3mjRAU3XkZ5nCjC8fJQkDBLRVbRhDWhgmDFUk0QFlRntfAMCYSV7qumS3BWv7xO+pctx24591eN9m1ZRxVO4Qya4MA1tOEOutADDCk8wyu8GU/Gi/FufCxHK0a5U4c/MD5/AK3glMY=</latexit><latexit sha1_base64="qDYNst2S5gZgEJWc7++iUrRyNjA=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBItQNyURQZfFblxWsA9oQplMJ+3QySTMTIQQ4q+4caGIWz/EnX/jpM1CWw8MHM65l3vm+DGjUtn2t1HZ2Nza3qnu1vb2Dw6PzOOTvowSgUkPRywSQx9JwignPUUVI8NYEBT6jAz8eafwB49ESBrxB5XGxAvRlNOAYqS0NDbr7gyprJM33RCpmR9kIr8Ymw27ZS9grROnJA0o0R2bX+4kwklIuMIMSTly7Fh5GRKKYkbymptIEiM8R1My0pSjkEgvW4TPrXOtTKwgEvpxZS3U3xsZCqVMQ19PFhHlqleI/3mjRAU3XkZ5nCjC8fJQkDBLRVbRhDWhgmDFUk0QFlRntfAMCYSV7qumS3BWv7xO+pctx24591eN9m1ZRxVO4Qya4MA1tOEOutADDCk8wyu8GU/Gi/FufCxHK0a5U4c/MD5/AK3glMY=</latexit><latexit sha1_base64="qDYNst2S5gZgEJWc7++iUrRyNjA=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBItQNyURQZfFblxWsA9oQplMJ+3QySTMTIQQ4q+4caGIWz/EnX/jpM1CWw8MHM65l3vm+DGjUtn2t1HZ2Nza3qnu1vb2Dw6PzOOTvowSgUkPRywSQx9JwignPUUVI8NYEBT6jAz8eafwB49ESBrxB5XGxAvRlNOAYqS0NDbr7gyprJM33RCpmR9kIr8Ymw27ZS9grROnJA0o0R2bX+4kwklIuMIMSTly7Fh5GRKKYkbymptIEiM8R1My0pSjkEgvW4TPrXOtTKwgEvpxZS3U3xsZCqVMQ19PFhHlqleI/3mjRAU3XkZ5nCjC8fJQkDBLRVbRhDWhgmDFUk0QFlRntfAMCYSV7qumS3BWv7xO+pctx24591eN9m1ZRxVO4Qya4MA1tOEOutADDCk8wyu8GU/Gi/FufCxHK0a5U4c/MD5/AK3glMY=</latexit>

�

r∈R
||Ĉ(r) − C(r)||22

<latexit sha1_base64="gmFn0/BhefSvtKT+mBHsO9QYJ1U=">AAACNnicbVDLSsNAFJ34rPVVdelmsAh1YUmKoMtiN26EKvYBTQ2T6aQdOpmEmYlQ0nyVG7/DXTcuFHHrJzhpA9bWAwPnnnMvc+9xQ0alMs2JsbK6tr6xmdvKb+/s7u0XDg6bMogEJg0csEC0XSQJo5w0FFWMtENBkO8y0nKHtdRvPREhacAf1CgkXR/1OfUoRkpLTuHWlpHvxLaP1MD1YpFAm3I4LTFi8X2SwPHYHiAV15LSb9cZPIe1+Xo8diqPFadQNMvmFHCZWBkpggx1p/Bq9wIc+YQrzJCUHcsMVTdGQlHMSJK3I0lChIeoTzqacuQT2Y2nZyfwVCs96AVCP67gVJ2fiJEv5ch3dWe6qFz0UvE/rxMp76obUx5GinA8+8iLGFQBTDOEPSoIVmykCcKC6l0hHiCBsNJJ53UI1uLJy6RZKVtm2bq7KFavszhy4BicgBKwwCWoghtQBw2AwTOYgHfwYbwYb8an8TVrXTGymSPwB8b3DxjqrKc=</latexit><latexit sha1_base64="gmFn0/BhefSvtKT+mBHsO9QYJ1U=">AAACNnicbVDLSsNAFJ34rPVVdelmsAh1YUmKoMtiN26EKvYBTQ2T6aQdOpmEmYlQ0nyVG7/DXTcuFHHrJzhpA9bWAwPnnnMvc+9xQ0alMs2JsbK6tr6xmdvKb+/s7u0XDg6bMogEJg0csEC0XSQJo5w0FFWMtENBkO8y0nKHtdRvPREhacAf1CgkXR/1OfUoRkpLTuHWlpHvxLaP1MD1YpFAm3I4LTFi8X2SwPHYHiAV15LSb9cZPIe1+Xo8diqPFadQNMvmFHCZWBkpggx1p/Bq9wIc+YQrzJCUHcsMVTdGQlHMSJK3I0lChIeoTzqacuQT2Y2nZyfwVCs96AVCP67gVJ2fiJEv5ch3dWe6qFz0UvE/rxMp76obUx5GinA8+8iLGFQBTDOEPSoIVmykCcKC6l0hHiCBsNJJ53UI1uLJy6RZKVtm2bq7KFavszhy4BicgBKwwCWoghtQBw2AwTOYgHfwYbwYb8an8TVrXTGymSPwB8b3DxjqrKc=</latexit><latexit sha1_base64="gmFn0/BhefSvtKT+mBHsO9QYJ1U=">AAACNnicbVDLSsNAFJ34rPVVdelmsAh1YUmKoMtiN26EKvYBTQ2T6aQdOpmEmYlQ0nyVG7/DXTcuFHHrJzhpA9bWAwPnnnMvc+9xQ0alMs2JsbK6tr6xmdvKb+/s7u0XDg6bMogEJg0csEC0XSQJo5w0FFWMtENBkO8y0nKHtdRvPREhacAf1CgkXR/1OfUoRkpLTuHWlpHvxLaP1MD1YpFAm3I4LTFi8X2SwPHYHiAV15LSb9cZPIe1+Xo8diqPFadQNMvmFHCZWBkpggx1p/Bq9wIc+YQrzJCUHcsMVTdGQlHMSJK3I0lChIeoTzqacuQT2Y2nZyfwVCs96AVCP67gVJ2fiJEv5ch3dWe6qFz0UvE/rxMp76obUx5GinA8+8iLGFQBTDOEPSoIVmykCcKC6l0hHiCBsNJJ53UI1uLJy6RZKVtm2bq7KFavszhy4BicgBKwwCWoghtQBw2AwTOYgHfwYbwYb8an8TVrXTGymSPwB8b3DxjqrKc=</latexit><latexit sha1_base64="gmFn0/BhefSvtKT+mBHsO9QYJ1U=">AAACNnicbVDLSsNAFJ34rPVVdelmsAh1YUmKoMtiN26EKvYBTQ2T6aQdOpmEmYlQ0nyVG7/DXTcuFHHrJzhpA9bWAwPnnnMvc+9xQ0alMs2JsbK6tr6xmdvKb+/s7u0XDg6bMogEJg0csEC0XSQJo5w0FFWMtENBkO8y0nKHtdRvPREhacAf1CgkXR/1OfUoRkpLTuHWlpHvxLaP1MD1YpFAm3I4LTFi8X2SwPHYHiAV15LSb9cZPIe1+Xo8diqPFadQNMvmFHCZWBkpggx1p/Bq9wIc+YQrzJCUHcsMVTdGQlHMSJK3I0lChIeoTzqacuQT2Y2nZyfwVCs96AVCP67gVJ2fiJEv5ch3dWe6qFz0UvE/rxMp76obUx5GinA8+8iLGFQBTDOEPSoIVmykCcKC6l0hHiCBsNJJ53UI1uLJy6RZKVtm2bq7KFavszhy4BicgBKwwCWoghtQBw2AwTOYgHfwYbwYb8an8TVrXTGymSPwB8b3DxjqrKc=</latexit>

r ∈ R
<latexit sha1_base64="grFlHRQurEZvpvB+iDEi4/5lTv4=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slgETyURQY9FLx6r2FpoQtlsN+3SzSbsboQSCl78K148KOLVP+HNf+MmzUFbHyy8fW+GmXlBwpnSjvNtVZaWV1bXquu1jc2t7R17d6+j4lQS2iYxj2U3wIpyJmhbM81pN5EURwGn98H4KvfvH6hULBZ3epJQP8JDwUJGsDZS3z7wIqxHQZjJKfKYQMWXYJ7dTvt23Wk4BdAicUtShxKtvv3lDWKSRlRowrFSPddJtJ9hqRnhdFrzUkUTTMZ4SHuGChxR5WfFDVN0bJQBCmNpntCoUH93ZDhSahIFpjJfUc17ufif10t1eOFnTCSppoLMBoUpRzpGeSBowCQlmk8MwUQysysiIywx0Sa2mgnBnT95kXROG67TcG/O6s3LMo4qHMIRnIAL59CEa2hBGwg8wjO8wpv1ZL1Y79bHrLRilT378AfW5w8u2Zfa</latexit><latexit sha1_base64="grFlHRQurEZvpvB+iDEi4/5lTv4=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slgETyURQY9FLx6r2FpoQtlsN+3SzSbsboQSCl78K148KOLVP+HNf+MmzUFbHyy8fW+GmXlBwpnSjvNtVZaWV1bXquu1jc2t7R17d6+j4lQS2iYxj2U3wIpyJmhbM81pN5EURwGn98H4KvfvH6hULBZ3epJQP8JDwUJGsDZS3z7wIqxHQZjJKfKYQMWXYJ7dTvt23Wk4BdAicUtShxKtvv3lDWKSRlRowrFSPddJtJ9hqRnhdFrzUkUTTMZ4SHuGChxR5WfFDVN0bJQBCmNpntCoUH93ZDhSahIFpjJfUc17ufif10t1eOFnTCSppoLMBoUpRzpGeSBowCQlmk8MwUQysysiIywx0Sa2mgnBnT95kXROG67TcG/O6s3LMo4qHMIRnIAL59CEa2hBGwg8wjO8wpv1ZL1Y79bHrLRilT378AfW5w8u2Zfa</latexit><latexit sha1_base64="grFlHRQurEZvpvB+iDEi4/5lTv4=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slgETyURQY9FLx6r2FpoQtlsN+3SzSbsboQSCl78K148KOLVP+HNf+MmzUFbHyy8fW+GmXlBwpnSjvNtVZaWV1bXquu1jc2t7R17d6+j4lQS2iYxj2U3wIpyJmhbM81pN5EURwGn98H4KvfvH6hULBZ3epJQP8JDwUJGsDZS3z7wIqxHQZjJKfKYQMWXYJ7dTvt23Wk4BdAicUtShxKtvv3lDWKSRlRowrFSPddJtJ9hqRnhdFrzUkUTTMZ4SHuGChxR5WfFDVN0bJQBCmNpntCoUH93ZDhSahIFpjJfUc17ufif10t1eOFnTCSppoLMBoUpRzpGeSBowCQlmk8MwUQysysiIywx0Sa2mgnBnT95kXROG67TcG/O6s3LMo4qHMIRnIAL59CEa2hBGwg8wjO8wpv1ZL1Y79bHrLRilT378AfW5w8u2Zfa</latexit><latexit sha1_base64="grFlHRQurEZvpvB+iDEi4/5lTv4=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slgETyURQY9FLx6r2FpoQtlsN+3SzSbsboQSCl78K148KOLVP+HNf+MmzUFbHyy8fW+GmXlBwpnSjvNtVZaWV1bXquu1jc2t7R17d6+j4lQS2iYxj2U3wIpyJmhbM81pN5EURwGn98H4KvfvH6hULBZ3epJQP8JDwUJGsDZS3z7wIqxHQZjJKfKYQMWXYJ7dTvt23Wk4BdAicUtShxKtvv3lDWKSRlRowrFSPddJtJ9hqRnhdFrzUkUTTMZ4SHuGChxR5WfFDVN0bJQBCmNpntCoUH93ZDhSahIFpjJfUc17ufif10t1eOFnTCSppoLMBoUpRzpGeSBowCQlmk8MwUQysysiIywx0Sa2mgnBnT95kXROG67TcG/O6s3LMo4qHMIRnIAL59CEa2hBGwg8wjO8wpv1ZL1Y79bHrLRilT378AfW5w8u2Zfa</latexit>

Figure 3.14: iNeRF – reproduced from Yen-Chen et al. (2021)

top of NICE-SLAM but removes the need for depth frame inputs. They achieve real-time RGB

SLAM with NeRF models by augmenting the vanilla supervision signal with additional loss

terms favoring the quality of the geometric representation. They still have a depth rendering

loss term, but instead of requiring ground-truth depth, they use an off-the-shelf monocular

depth predictor. They also predict normal maps with the same approach, add a warping loss,

eikonal loss, and an optical flow loss. More recent work (Chung et al., 2023) combines NeRF

and ORB-SLAM2 (Mur-Artal and Tardós, 2017) to provide a pre-training-free RGB SLAM

method reaching better reconstruction performance than iMap and NICE-SLAM while being

faster to optimize.

Similarly, more recent works start to tackle SLAM with Gaussian Splatting scene recon-

struction (Yan et al., 2024; Keetha et al., 2024; Matsuki et al., 2024; Huang et al., 2024). The

main advantage of Gaussian Splatting over NeRF is the higher training and rendering speeds,

which are particularly important when performing real-time SLAM.

3.4.2 NeRF for planning and control

Instead of focusing on how to optimize NeRF-like models to map scenes, other works have

studied how one could use an already-optimized NeRF model of a scene. A first interesting

application of a trained NeRF model is to perform camera pose refinement, as in iNeRF (Yen-

Chen et al., 2021) illustrated in Figure 3.14. The setup is as follows: we are provided with

a noisy camera pose along with an image from this camera, and the goal will be to refine

the pose. The idea in iNeRF is rather simple yet effective: we can use the same optimization

strategy as when training a NeRF model, but instead of updating weight values, we will

freeze them and only optimize the input camera pose to minimize the difference between

the rendered frame and the camera frame. This is done with SGD directly in pixel space

as when training a NeRF. Follow-up has looked at how to use a NeRF representation of a

scene to perform visuomotor control. Adamkiewicz et al. (2022) propose to use NeRF density

prediction to control a drone to avoid obstacles. Everything from state estimation to trajectory

planning is based on the NeRF predictions. Adamkiewicz et al. (2022) improve upon iNeRF

to estimate the state of the drone from visual inputs: at each timestep, the minimized loss to

estimate the current pose is not only composed of the NeRF photometric loss as in iNeRF but

77
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Neural scene representations Progress in Embodied AI

Figure 3.15: Learning 3D-aware scene representations with NeRF guidance – reproduced from Li

et al. (2022b)

also an additional loss term minimizing the difference between the estimated state and the

expected state according to the previously estimated one and a dynamics model of the drone

given the previous taken action. This allows a more robust estimation, particularly when the

drone passes through areas where the photometric loss brings little information (e.g. poor

texture or no feature). Regarding planning a path while avoiding obstacles, they consider

the probability of a light ray to be stopped at a given location, i.e. estimated by the NeRF

density, to be a good approximation of the probability of collision at this location. Provided

an estimated state, a path is thus updated to avoid high-density NeRF regions.

Li et al. (2022b) also propose to use a NeRF in the context of state estimation for vi-

suomotor control, more specifically robotic manipulation. Figure 3.15 shows an overview of

their approach. Compared with Adamkiewicz et al. (2022), the NeRF model is not used at

state estimation time, but is used to supervise the training of an image encoder to extract a

global 3D-aware representation of a full scene. More specifically, their introduced setup can

be viewed as a form of auto-encoding where the NeRF model acts as a decoder only used at

training time (discarded at inference time). The original NeRF model considers the scene to be

static, while the scene is often dynamic when interacting with it. As a result, they introduce

an additional input to the NeRF model which is a state vector encoding information about

the 3D scene at a given timestep. At training time, the image encoder extracts features from

different views of the same scene. Multi-view features are aggregated to form a scene state

that is fed to the NeRF model which itself acts as a decoder trained to render back the differ-

ent views from their associated camera poses. This auto-encoding approach guides the image

encoder to extract information-rich features describing the whole 3D scene. The training sig-

nal is also augmented with a time contrastive loss forcing the image encoder to extract similar

embeddings for views from the same timesteps and different representations for views from

different timesteps. Once trained, the encoder can be used to extract the state of the scene at

each timestep, from which a dynamics prediction model will be trained to predict next states

78
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Neural scene representations Progress in Embodied AI

conditioned on actions. The encoder and dynamics prediction model can finally be used to

perform visuomotor control.

Finally, Kwon et al. (2023) introduce a method with a similar spirit as it will use a neural

field to guide the training of an image encoder, but this time, in the context of visual navi-

gation, more specifically ImageNav. Reminiscent of 2D maps with implicit features presented

earlier (Beeching et al., 2020b; Wani et al., 2020), they build a map, called RNR-Map, with

neural features registered at each cell. The contribution in this work is about how the encoder

is trained to extract map features: from a given image, features are extracted and projected to

a 2D map. The latent 2D map is fed to a decoder based on generative scene networks (GSN

– DeVries et al. (2021)) trained to reconstruct the input image. Enforcing the map to store the

right features at different locations to render the 3D scene is a strong prior to solve ImageNav

as the goal to reach is specified as an RGB image. The encoder is trained by sampling images

in diverse 3D scenes with this auto-encoding setup. Once trained, the decoders are discarded,

and only the encoder will be used to build latent maps while navigating, used to explore

scenes, and identify goal locations to reach specified as RGB frames.

Context

Chapter 5 will present neural implicit representations keeping track of semantic objects,

explored area, obstacles, and free space, and trained in real-time while navigating

a scene. More importantly, we study how to train an RL-based policy to use such

representations to navigate more efficiently.

3.4.3 Active learning for neural fields

Neural field active learning studies the selection of frames to efficiently train neural fields,

i.e. reach the highest representation quality with the fewest number of samples. Unlike in

NeRF-based SLAM where the collection of training frames is often externalized (e.g. done

by a human holding a camera or in simulation by a given navigation method) and the focus

is only made on the localization and mapping conditioned on the collected data, the story is

different here: what we care about is the efficient data collection itself to optimize the quality

of the underlying representation.

Active Learning for NeRF originally tackles the active selection of training data in fixed

datasets of 2D frames: ActiveNeRF (Pan et al., 2022) estimates NeRF uncertainty by expressing

radiance values as Gaussian distributions, and ActiveRMAP (Zhan et al., 2022) maximizes an

entropy-based information gain metric.

More recent work (Zeng et al., 2023; Yan et al., 2023) studies robot navigation to actively

collect data to train a 3D neural representation. Such approaches are very related to the task

of scene exploration introduced earlier along with other Embodied AI tasks. A well-known

baseline in this space is Frontier Based Exploration (FBE) (Yamauchi, 1997). Different variants

79
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Neural scene representations Progress in Embodied AI

exist (Dornhege and Kleiner, 2013; Xu et al., 2017), but the core principle is to maintain a

frontier between explored and unexplored space and to sample points on it. Learning-based

approaches have also been proposed in recent work (Chaplot et al., 2020b; Chen et al., 2018;

Ramakrishnan et al., 2021b). Similarly, active exploration of environment dynamics has also

been studied in robotic manipulation (Schneider et al., 2022).

Going back to active exploration to collect neural field training data, Zeng et al. (2023)

focus on improving planning efficiency. They introduce an implicit representation of the

information gain brought by viewpoints in the form of a trainable MLP that will be queried to

select parts of the environment to explore in priority. Unlike previous work (Ran et al., 2023)

that was querying the scene representation itself to compute viewpoint information gain, the

use of a specific information gain network is presented as more efficient. Indeed, querying the

scene implicit representation itself to estimate information gain requires shooting a significant

amount of rays through the 3D space. While still using a neural field to perform a fine-

grained reconstruction of the scene, they combine the latter with a coarse explicit Truncated

Signed Distance Field (TSDF) volumetric representation to allow fast collision checking when

planning a path.

Yan et al. (2023) also study how to best explore a new scene to collect training data for

a neural field, this time using the implicit representation itself to select waypoints. They

specifically tackle the autonomous collection of data to learn an implicit neural signed distance

field network provided depth inputs. To this end, they tend to favor regions of space where

the neural field has the highest uncertainty. Their main contribution is a method to estimate

such uncertainty: they show that unexplored regions will have a higher prediction variance

when querying the neural field with the same input but randomly perturbing its weights.

The 10% sampled 3D points with the highest prediction variance are selected and spatially

clustered. The next waypoint to explore is then chosen by balancing maximum variance in the

cluster, maximum number of cluster points, and minimal distance between the cluster and

the current agent’s location. Local navigation to the waypoint is carried out by a DD-PPO

PointNav baseline (Wijmans et al., 2019).

Context

Chapter 6 studies how to autonomously explore a 3D scene to collect NeRF training

data with a modular RL-based policy. We study data collection for RGB-only NeRF

models on large realistic 3D scenes and present metrics to evaluate the quality of NeRF

reconstructions in the context of robotics along with a use-case for our method.

Now that we have introduced necessary concepts and reviewed the recent progress in

Embodied AI, we can begin with the next chapter studying the implicit learning of mapping

abilities with auxiliary losses.

80
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Chapter

4
Mapping Abilities Emerge in Multi-Object Navigation

through Auxiliary Spatial Reasoning

Abstract

In the context of visual navigation, the capacity to map a novel environment is necessary

for an agent to exploit its observation history in the considered place and efficiently reach

known goals. This ability can be associated with spatial reasoning, where an agent is able

to perceive spatial relationships and regularities, and discover object characteristics. Previous

work introduces learnable policies parametrized by deep neural networks and trained with

RL. In classical RL setups, the capacity to map and reason spatially is learned end-to-end, from

reward alone. In this setting, we introduce supplementary supervision in the form of auxiliary

tasks designed to favor the emergence of spatial perception capabilities in agents trained for

a goal-reaching downstream objective. We show that learning to estimate metrics quantifying

the spatial relationships between an agent at a given location and a goal to reach has a high

positive impact in Multi-Object Navigation. Our method improves the performance of different

baseline agents, that either build an explicit or implicit representation of the environment,

even matching the performance of incomparable oracle agents taking ground-truth maps as

input. A learning-based agent from the literature trained with the proposed auxiliary losses

was the winning entry to the Multi-Object Navigation Challenge, part of the CVPR 2021 Embodied

AI Workshop.

81
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Context Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

4.1 Context

Navigating in a previously unseen environment requires different abilities, among which is

mapping, i.e. the capacity to build a representation of the environment. The agent can then

reason on this map and act efficiently towards its goal. How biological species map their en-

vironment is still an open area of research (Peer et al., 2020; Warren et al., 2017). As presented

in chapter 3, spatial representations in robotics have taken diverse forms, for instance met-

ric (Elfes, 1989; Bresson et al., 2017) or topological maps (Shatkay and Kaelbling, 1997; Thrun,

1998). Most of these variants have lately been presented in neural counterparts, i.e. involving

artificial neural networks — metric neural maps (Parisotto and Salakhutdinov, 2018; Beeching

et al., 2020b; Henriques and Vedaldi, 2018) or neural topological maps (Beeching et al., 2020c;

Chaplot et al., 2020d) learned from RL or with supervision.

This chapter focuses on improving the RL-based training strategy of autonomous agents

parametrized by deep neural networks. We study whether the emergence of mapping and

spatial reasoning capabilities can be favored by the use of spatial auxiliary tasks that are

related to a downstream objective. We target the Multi-ON task (Wani et al., 2020), presented

in chapter 3, where an agent must reach a sequence of specified objects in a particular order

within a previously unknown environment. Such a task is interesting because it requires

an agent to recall the position of previously encountered objects it will have to reach later

in the sequence. The objective is not to introduce a new agent architecture, but rather to

showcase the impact of augmenting the vanilla RL training of state-of-the-art (SOTA) agents

selected in Wani et al. (2020) to solve the Multi-ON task. As already mentioned in chapter 3,

augmenting the RL training of agents with auxiliary tasks has shown promise in many recent

works introducing several variants (Mirowski et al., 2017; Jaderberg et al., 2017; Lample and

Chaplot, 2017; Ye et al., 2021, 2020). The study performed in this chapter belongs to the

group of supervised auxiliary tasks, with an application to 3D complex and photo-realistic

environments, and specifically targets the learning of mapping and spatial reasoning, which

has not been the scope of previous work.

We take inspiration from behavioral studies of human spatial navigation (Ekstrom et al.,

2018). Experiments with human subjects aim at evaluating the spatial knowledge they acquire

when navigating a given environment. Ekstrom et al. (2018) consider two important measures

referred to as the sense of direction and judgement of relative distance. Regarding knowledge of

direction, a well-known task is scene- and orientation- dependent pointing (SOP), where partici-

pants must point to a specified location that is not currently within their field of view. Being

able to assess its relative position compared to other objects in the world is critical to navigate

properly, and disorientation is considered a main issue. In addition to direction, evaluating

the distance to landmarks is also of high importance.

We conjecture that an agent able to estimate the location of target objects relative to its

82
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Context Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

i

j

ϕt

i

j

dt

Figure 4.1: Overview of the introduced auxiliary tasks: In the context of DRL for Multi-ON, two

auxiliary tasks predict the direction (left) and the distance (right) to the next object to retrieve if it has

been observed during the episode. The green object (square) is the current target, and other targets exist

and have already been found or might be required to be found later (ex: blue object / square). Red

dot: position of the agent. White and gray cells respectively indicate free space and obstacles. Both

the angle ϕt and the distance dt between the center of the map (i.e. the agent) and the target at time t

are discretized and associated with a class label. A third sub-task is to predict if the current target has

already been within the agent’s field of view during the episode.

current pose will implicitly extract more useful representations of the environment and nav-

igate more efficiently. A fundamental skill for such an agent is thus to remember previously

encountered objects. Our auxiliary supervision targets exactly this ability. Classical methods

based on RL rely on the capacity of the learning algorithm to develop mapping strategies from

reward alone. While this has been shown to be possible in principle (Beeching et al., 2020b),

we will show that the emergence of a spatial mapping strategy is boosted through auxiliary

tasks, which require the agent to continuously reason on the presence of targets with respect

to its viewpoint — see Figure 4.1.

We introduce three auxiliary tasks, namely estimating if a target object has already been

observed since the beginning of the episode, and if it is the case, the relative direction and

the Euclidean distance to this object. If an object is visible in the current observation, it

will be helpful for training the agent to recognize it (discover its existence and relevance to

the task) and estimate its relative position. More importantly, if the target object was seen

in the past, the auxiliary supervision will encourage the learning of representations of the

environment, either implicitly or explicitly predicted by the agent, that are better spatially-

structured and populated with more relevant semantic information, leading to an update of

the neural memory of the agent.

The content of this chapter can be summarized as follows:

• We show that the auxiliary tasks improve the performance of previous neural baselines,

83
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Learning to map Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

which even allows to reach the performance of (incomparable) agents using ground-

truth oracle maps as input.

• We study the consistency of the gains over different inductive biases, i.e. different ways

to structure neural networks, reaching from simple recurrent models to agents struc-

tured with projective geometry. This raises the question whether spatial inductive biases

are required or whether spatial organization can be learned.

• The proposed method reaches SOTA performance on the Multi-ON task, and corre-

sponds to the winning entry of the CVPR 2021 Multi-ON challenge 1 (Test-Standard leader-

board 2).

4.2 Learning to map

We target the Multi-ON task (Wani et al., 2020), where an agent is required to reach a sequence

of target objects, more precisely colored cylinders, in a certain order, and which was used for

a recent challenge organized in the context of the CVPR 2021 Embodied AI Workshop. Com-

pared to other tasks like PointNav or (Single) ObjNav, Multi-ON requires more difficult spatial

reasoning capacities, in particular mapping the position of an object once it has been seen.

The following capacities are necessary to ensure optimal performance: (i) mapping the object,

i.e. storing it in a suitable latent memory representation; (ii) retrieving this location on request

and using it for navigation and planning, including deciding when to retrieve this informa-

tion, i.e. solving a correspondence problem between sub-goals and memory representation.

4.2.1 SOTA agents in Multi-ON

The proposed method is independent of the actual implementation choices in agents solving

the Multi-ON task as we rather target an improvement of the learning objective. We therefore

explored several neural baselines with different architectures, as selected in Wani et al. (2020).

The considered agents share a common base shown in Figure 4.2, which extracts informa-

tion from the current RGB-D observation with a convolutional neural network (CNN) c, and

computes embeddings of the target object class and the previous action taken by the agent.

Differences between the considered baselines is in their representation of the environment.

The simplest recurrent baseline NoMap does not construct a map of its environment. Ora-

cleMap and OracleEgoMap baselines do not build a global map, but rather have access to oracle

global maps of the environment containing channels for occupancy information and location

of goal objects. Finally, ProjNeuralMap builds a map of the environment in real time, associat-

ing feature vectors from c with discrete cells in the spatial 2D representation using projective

geometry. In variants that keep a global map, i.e. all except NoMap, it is first transformed into

an egocentric representation centered around the agent’s position (explained further below).

1http://multion-challenge.cs.sfu.ca/2021.html
2https://eval.ai/web/challenges/challenge-page/805/leaderboard/2202

84
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

http://multion-challenge.cs.sfu.ca/2021.html
https://eval.ai/web/challenges/challenge-page/805/leaderboard/2202

Learning to map Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

RGBD

observation

Oracle Map

Target object

class

Previous
action

Ego Map

CNN

GRU

Linear Linear

Dir. Dist.

Actor

Critic
CNN Linear

Linear

1

3 Mask

4 Mask unobserved objects

Projective

Map

Ego Map

CNN Linear2

Inverse projection

Embedding

Embedding

Linear

Obs.

Figure 4.2: Base Multi-ON agent architecture: To study the impact of our auxiliary losses on different

agents (Wani et al., 2020), we explore several input and inductive biases. All variants share basic

observations ➀ (RGB-D image, target class, previous action). Variants also use a map ➁ produced

with inverse projective mapping. Oracle variants receive ground truth maps ➂, where in one further

variant unseen objects are removed ➃. These architectures have been augmented with classification

heads implementing the proposed auxiliary tasks (green rectangle).

A vector representation of the map is then extracted using another CNN c̃. Such operation can

be considered as a global read of the map. The vector representations are concatenated and

fed to a GRU (Cho et al., 2014) unit that integrates temporal information, and whose output

serves as input to an actor and a critic heads, that respectively output a distribution over the

set of actions to take and an estimation of the value of the state the agent is currently in. All

agents are trained with the same RL algorithm (and same training hyperparameter values)

detailed in subsection 4.2.3, as well as the actor-critic formulation.

We present here in more details the considered variants which have been explored by Wani

et al. (2020), but have been introduced in prior work (numbers ➀➁➂➃ correspond to choices

in Figure 4.2):

NoMap ➀ – is a recurrent GRU baseline that does not explicitly build nor read a spatial map.

The only memory available for storing mapping information is the flat vectorial hidden state

of the GRU, a variant of a recurrent neural network. While the agent could in principle still

learn (through RL) to use this vectorial memory like a spatial map, this is in no way enforced

through any design choice.

ProjNeuralMap ➀➁ (Henriques and Vedaldi, 2018; Beeching et al., 2020b) – is a neural

network structured with spatial information and projective geometry. Or, stated in different

terms, in this work the map is not pre-computed by a handcrafted and engineered function

(e.g. with estimated occupancy) and fed to an agent, as done in classical robotics; rather,

85
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Learning to map Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

the map is an internal activation of a neural network layer without trainable parameters.

As such the content of the map is not predefined and interpretable through a handcrafted

definition, the content is trained through machine learning, in our case RL. This layer is a

map in the sense that (i) it is spatially organized and corresponds to an allocentric birds-

eye representation, which is shifted and rotated with each agent motion through estimated

odometry; (ii) using calibrated cameras, pixels are mapped to corresponding points on the

map. However, the actual values stored at each position are determined through training

and can, according to the learning signal, correspond to a latent representation of anything

ranging from occupancy to more semantic information like object positions.

More specifically, ProjNeuralMap maintains a global allocentric map of the environment

Mt ∈ RH×W×n composed of n-channel vector representations, n being a hyperparameter, at

each position within the full H×W environment. Similar to Bayesian occupancy grids (BOG),

which have been used in mobile robotics for many years (Moravec, 1988b; Rummelhard et al.,

2015), the map is updated in the two-step process already mentioned above: (1) resampling

taking into account estimated agent motion, and (2) integration of the representation of the

current observation produced by a CNN c.

Writing to the map — Given the current RGB observation ot ∈ Rh×w×3, c extracts an

n-channel feature map o′t, which is then projected onto the 2D ground plane following the

procedure in MapNet (Henriques and Vedaldi, 2018) to obtain an egocentric map of the agent’s

spatial neighborhood mt ∈ Rh′×w′×n. The ground projection module assigns a discrete location

on the ground plane to each element within o′t conditioned on the input depth map dt ∈ Rh×w

and known camera intrinsics. Registration of the observation mt to the global map is based

on the assumption that the agent has access to odometry, as in Wani et al. (2020). The update

to Mt is performed through an element-wise max-pooling between mt and Mt−1.

Reading the map — The global map is first cropped around the agent and oriented to-

wards its current heading to form an egocentric map of its neighborhood at time t, which

is then fed to c̃ producing a context feature vector. The latter is then concatenated to the

rest of the input, i.e. representations of the current observation, target object and previous

action, producing the input to the recurrent memory (GRU) unit. The full model is trained

end-to-end with RL, including networks involved in map writing and reading operations.

OracleMap ➀➂ – has access to a ground-truth grid map of the environment with 2 channels.

The first channel is dedicated to occupancy information with a binary value per cell indicating

the presence of free space or an obstacle. The second channel encodes the presence of objects

and their classes with thus ntarget + 1 possible values per cell, i.e. 1 to ntarget for one of the

ntarget object classes, or 0 for no object. Each channel information is passed through a learned

embedding layer to output a m-dim vector, m being a hyperparameter, as it is common practice

to represent categorical data fed to a neural network. This leads to a map with 2×m channels.

86
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Learning to map Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

Agent GRU

state

Map Map

update

Map

reading

Full

visibility

Oracle

occupancy

Oracle

goals

Neural

features

NoMap ✓ − − − − − − −
OracleMap ✓ ✓ − ✓ ✓ ✓ ✓ −

OracleEgoMap ✓ ✓ − ✓ − − ✓ −
ProjNeuralMap ✓ ✓ ✓ ✓ − − − ✓

Table 4.1: Summary of environment representations in Multi-ON baseline agents

The map is cropped and centered around the agent to produce an egocentric map as input to

the model.

OracleEgoMap ➀➂➃ – gets the same egocentric map as OracleMap with only object channels,

and revealed in regions that have already been within its field of view during the episode. This

variant corresponds to an agent capable of perfect mapping — no information gets lost, but

only observed information is used.

Table 4.1 summarizes the environment representation strategies used by the different

baselines.

4.2.2 Learning to map objects with auxiliary tasks

We introduce auxiliary tasks, additional to the classical RL objectives, and formulated as clas-

sification problems, which require the agent to predict information on object appearances,

which were in its observation history in the current episode. To this end, the base model is

augmented with three classification heads (Figure 4.2) taking as input the contextual repre-

sentation produced by the GRU unit. It is important to note that these additional classifiers

are only used at training time to encourage the learning of spatial reasoning. At inference

time, i.e. when deploying the agent on new episodes and/or environments, predictions about

already seen targets, their relative direction are distance are not considered. Only the output

of the actor is taken into account to select actions to execute.

Direction – the agent predicts the relative direction of the target object, only if it has been

within its field of view in the observation history of the episode (Figure 4.1 left). The ground-

truth direction towards the goal is computed as,

ϕt = ∢(ot, e) = − atan2(ot,x − ex, ot,y − ey) (4-1)

where e = [ex ey] (“ego”) are the coordinates of the agent on the grid and o = [ot,x ot,y]

are the coordinates of the center of the target object at time t. As the ground-truth grid is

egocentric, the position of the agent is fixed, i.e. at the center of the grid, while the target

object gets different coordinates with time. The angles are kept in the interval [0, 2π] and then

discretized into K bins, giving the angle class. The ground-truth one-hot vector is denoted

87
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Learning to map Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

ϕ∗t . At time instant t, the probability distribution over classes ϕ̂t is predicted from the GRU

hidden state ht through an MLP as p(ϕ̂t) = fϕ(ht; θϕ) with parameters θϕ.

Distance – The second task requires the prediction of the Euclidean distance in the egocentric

map between the center box, i.e. position of the agent, and the mean of the grid boxes

containing the target object (Figure 4.1 right) that was observed during the episode, dt =

||ot − e||2. Again, distances are discretized into L bins, with d∗t as the ground-truth one-hot

vector, and at time instant t, the probability distribution over classes d̂t is predicted from the

hidden state ht through an MLP as p(d̂t) = fd(ht; θd) with parameters θd.

Observed target – This third loss favors learning whether the agent has previously encoun-

tered the target object. The model is required to predict the binary value 1obs
t , defined as 1 if

the target object at time t has been within the agent’s field of view at least once in the episode,

and 0 otherwise. The model predicts the probability distribution over classes ˆobst given the

hidden GRU state ht through an MLP as p(ˆobst) = fobs(ht; θobs) with parameters θobs.

4.2.3 Training agents with Deep RL

Following Wani et al. (2020), all agents are trained with PPO (Schulman et al., 2017) and a

reward composed of three terms,

Rt = 1reached
t · Rgoal + Rcloser + Rtime-penalty (4-2)

where 1reached
t is the indicator function whose value is 1 if the Found action was called at time

t while being close enough to the target, and 0 otherwise. Rcloser is a reward shaping term

equal to the decrease in geodesic distance to the next goal compared to previous timestep.

Finally, Rtime-penalty is a negative slack reward to force the agent to take short paths.

The PPO loss denoted LPPO can then be computed as presented in equation 2-29 from

chapter 2.

4.2.4 Modification of the training objective with auxiliary tasks

We now present the additional terms to the base PPO loss introduced to encourage spatial

reasoning in trained agents. Let us recall that, as stated in chapter 2, at sampling time k in

the PPO algorithm, a set Uk of trajectories τ with length T are collected using the latest policy.

LPPO is computed from such data and our auxiliary supervision too. Direction, distance and

observed target predictions are supervised with cross-entropy losses from ground truth values

88
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

ϕ∗t , d∗t and 1obs
t , respectively, as

Lϕ =
1
|Uk| T ∑

τ∈Uk

T−1

∑
t=0

[
−1obs

t

K

∑
c=1

ϕ∗t,c log p(ϕ̂t,c)

]
(4-3)

Ld =
1
|Uk| T ∑

τ∈Uk

T−1

∑
t=0

[
−1obs

t

L

∑
c=1

d∗t,c log p(d̂t,c)

]
(4-4)

Lobs =
1
|Uk| T ∑

τ∈Uk

T−1

∑
t=0
−(1obs

t log p(ˆobst) + (1− 1obs
t) log(1− p(ˆobst))) (4-5)

where 1obs
t is the binary indicator function specifying whether the current target object has

already been seen in the current episode (1obs
t =1), or not (1obs

t =0).

The auxiliary losses Lϕ, Ld and Lobs are added as follows,

Ltot = LPPO + λϕLϕ + λdLd + λobsLobs (4-6)

where λϕ, λd and λobs weight the relative importance of auxiliary losses.

4.3 Experimental results

We focus on the 3-ON version of the Multi-ON task, where the agent deals with sequences

of 3 objects. The time limit is fixed to 2500 environment steps, and there are 8 object classes.

The agent receives a (256×256×4) RGB-D observation and the one-in-K encoded class of the

current target object within the sequence. We recall the discrete action space introduced in

chapter 3: Move Forward 0.25m, Rotate Right 30
◦
, Rotate Left 30

◦
, and Found, which signals that

the agent considers the current target object to be reached. As the aim of the task is to focus

on evaluating the importance of mapping, a perfect localization of the agent was assumed as

in the protocol proposed by Wani et al. (2020).

Dataset and metrics – we used the standard train/val/test split over scenes from the Matter-

port3D dataset (Chang et al., 2018), ensuring no scene overlap between splits, as done by Wani

et al. (2020). There are 61 training scenes, 11 validation scenes, and 18 test scenes. The train

split consists of 50, 000 episodes per scene, while there are 12, 500 episodes per scene in the val

and test splits. Reported results on the val and test sets (Tables 4.3 and 4.4) were computed on

a subset of 1, 000 randomly sampled episodes. Figure 4.3 shows an example of episode (from

the Mini-val set of the CVPR 2021 Multi-ON Challenge) with RGB-D inputs.

We consider standard metrics of the field as given by Wani et al. (2020) and presented in

chapter 3: Success Rate, Progress Rate, SPL, PPL. Note that for an object to be considered found,

the agent must take the Found action while being within 1.5m of the current goal. The episode

ends immediately if the agent calls Found in an incorrect location.

89
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

Agent Dir. Dist. Obs. Success Progress SPL PPL †

OracleMap − − − 44.9± 1.7 55.7± 2.4 35.4± 1.4 43.7± 2.2 −
OracleEgoMap − − − 27.5± 2.7 42.8± 2.8 21.3± 2.5 32.7± 2.9 −

ProjNeuralMap

− − − 21.8± 1.7 38.6± 1.3 15.4± 0.7 27.0± 0.7 ✓

− − ✓ 22.4± 2.9 40.2± 2.2 16.2± 2.7 28.9± 2.3 ✓

− ✓ − 27.3± 3.3 43.0± 3.6 19.2± 2.1 30.6± 2.4 ✓

✓ − − 40.2± 4.2 55.9± 3.5 26.1± 2.2 36.4± 2.0 ✓

✓ ✓ − 44.3± 6.6 58.9± 4.9 29.0± 3.7 39.0± 2.2 ✓

✓ ✓ ✓ 49.2 ± 7.1 62.8 ± 5.2 32.0 ± 2.7 41.1 ± 1.1 ✓

Table 4.3: Impact of different auxiliary tasks (validation performance) – The † column specifies com-

parable agents. Performance is reported as mean ± std over training runs (seeds).

Optimizer Adam

Adam eps 1e-5

Learning rate 2.5e-4

Linear learning rate decay ✓

Number of epochs 2

Env. steps per update 128

Clipping ratio 0.2

Linear clip decay ✓

Value loss coefficient 0.5

Entropy coefficient 0.01

Max Grad Norm 0.2

GAE ✓

GAE-λ 0.95

Discount factor 0.99

Reward window size 50

Table 4.2: PPO hyperparameters:

Values for PPO hyperparameters

used when training agents (same in

chapter 5).

Implementation details – training and evaluation hyper-

parameters, as well as architecture details have been taken

from Wani et al. (2020). All reported quantitative re-

sults are obtained after 4 training runs (6 runs were com-

puted for ProjNeuralMap with the three auxiliary losses

for job scheduling reasons) for each model, during 70M

steps (increased from 40M in Wani et al. (2020)). This

amount of training time is standard when considering pre-

vious work targeting visual navigation with learning-based

agents trained with RL. We report the average perfor-

mance and standard deviation among training runs (ran-

dom seeds) for each variant as mean ± std. Ground-truth

direction and distance measures are respectively split into

K=12 and L=36 classes. Indeed, angle bins span 30◦, and

distance bins span a unit distance on the egocentric map

which is 50 × 50 (the maximum distance between center

and a grid corner is thus 35). The map used to compute

ground-truth labels for auxiliary losses is the one fed to the

OracleEgoMap agent. Training weights λϕ, λd and λobs are

all fixed to 0.25. Each classification head is a single linear layer followed by a softmax ac-

tivation function. Table 4.2 presents PPO training hyperparameters that will be identical in

chapter 5.

Do the auxiliary tasks improve the downstream objective? – in Table 4.3, we study the

impact of the different auxiliary tasks on the 3-ON benchmark when added to the training

objective of ProjNeuralMap, and their complementarity. Direction prediction significantly im-

proves performance, adding distance prediction further increases all metrics, outperforming

the performance of (incomparable) OracleEgoMap. Both losses have thus a strong impact and

90
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

Agent Aux. Sup. Success Progress SPL PPL †

OracleMap − 50.4± 3.5 60.5± 3.1 40.7± 2.2 48.8± 1.9 −

OracleEgoMap
− 32.8± 5.2 47.7± 5.2 26.1± 4.5 37.6± 4.7 −
✓ 44.0± 7.1 55.1± 7.0 35.0± 5.2 43.8± 5.0 −

ProjNeuralMap
− 25.9± 1.1 43.4± 1.0 18.3± 0.6 30.9± 0.7 ✓

✓ 57.7 ± 3.7 70.2 ± 2.7 37.5 ± 2.0 45.9 ± 1.9 ✓

NoMap
− 16.7± 3.6 33.7± 3.3 13.1± 2.4 26.0± 1.7 ✓

✓ 43.0± 4.7 58.2± 4.0 29.5± 1.8 39.9± 1.3 ✓

Table 4.4: Consistency over multiple models (test set) – The † column specifies comparable agents.

Performance is reported as mean ± std over training runs (seeds).

Agent/Method — Test Challenge — — Test Standard —

Success Progress SPL PPL Success Progress SPL PPL

Ours (Aux. losses) 55 67 35 44 57 70 36 45

SGoLAM 52 64 32 38 62 71 34 39

VIMP 41 57 26 36 43 57 27 36

ProjNeuralMap∗ − − − − 12 29 6 16

NoMap∗ − − − − 5 19 3 13

Table 4.5: CVPR 2021 Multi-ON Challenge Leaderboard – Test Challenge are the official challenge

results. Test Standard contains pre- and post-challenge results. Ranking is done with PPL. The ∗ symbol

denotes Challenge baselines.

are complementary, confirming the assumption that sense of direction and judgement of relative

distance are two key skills for spatially navigating agents. The third loss about observed target

objects brings a supplementary non-negligible boost in performance, showcasing the effec-

tiveness of explicitly learning to remember whether objects have already been seen, and is

complementarity with distance and direction prediction.

Table 4.4 presents results on the test set, confirming the impact on each of the consid-

ered metrics. ProjNeuralMap with auxiliary losses matches the performance of (incomparable)

OracleMap on Progress Rate and Success Rate, again outperforming OracleEgoMap when con-

sidering all metrics. OracleMap has higher PPL and SPL, but has also access to very strong

privileged information.

Interestingly, OracleEgoMap also benefits from the use of the auxiliary tasks at training

time. As such agent already has access to priviledged information about the position of seen

objects, this might suggest the auxiliary losses improve its spatial reasoning capabilities.

Can an unstructured recurrent agent learn to map? – we explore whether an agent without

spatial inductive bias, i.e. the assumption that the representation of the environment must

be a 2D map, can be trained to learn a mapping strategy, to encode spatial properties of the

91
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

Step 1

Agent’s pos.

Step 7

Step 13 Step 27

Step 32 Step 46

Step 57 Step 102

Step 191 Step 212

Pred goal pos.

Target

Figure 4.3: Example agent trajectory (sample from competition Mini-val set): The agent properly

explores the environment to find the pink object. It then successfully backtracks to reach the white

cylinder, and finally goes to the yellow one after another exploration phase (see text for a detailed

description). In columns 3 and 6, the relative direction and distance predictions are combined into

a visualised blue point on top of the oracle egocentric map (Ground-truth object positions). The red

point corresponds to the position of the agent. Note that these predictions are not used by the agent

at inference time, and are only shown for visualisation purposes. The top down view and oracle

egocentric map are also provided for visualisation only.

environment into its unstructured hidden representation. As shown in Table 4.4, NoMap in-

deed strongly benefits from the auxiliary supervision (Success Rate for instance jumping from

16.7% to 43.0%). The improvement is important, as NoMap trained with auxiliary lossess

outperforms ProjNeuralMap trained without auxiliary supervision, and closes the gap with

OracleEgoMap. The quality of extra supervision can thus help to guide the learned representa-

tion, mitigating the need for incorporating inductive biases into neural networks. When both

are trained with our auxiliary losses, ProjNeuralMap still outperforms NoMap, indicating that

spatial inductive bias still provides an edge.

Comparison with the state-of-the-art – using our auxiliary losses to train ProjNeuralMap lead

to the winning entry of the CVPR 2021 Multi-On Challenge organized with the Embodied AI

Workshop, shown in Table 4.5. Test-standard is composed of 500 episodes and Test-challenge

of 1000 episodes. In the context of the Challenge, the ProjNeuralMap agent was trained for

80M steps with the auxiliary objectives, and then finetuned for 20M more steps with only the

vanilla RL objective. The official challenge ranking is done with PPL, which evaluates correct

mapping (quicker and more direct finding of objects), while mapping does not necessarily

have an impact on Success Rate, which can be obtained by pure exploration.

Visualization – Figure 4.3 illustrates an example trajectory from the agent trained with the

92
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

Distance

DirectionObs. Target Obs. TargetDirection

Distance

Without auxiliary supervision With auxiliary supervision
Predicted

G
T

Predicted

G
T

Predicted Predicted Predicted Predicted

G
T

G
T

G
T

G
T

Figure 4.4: Linear probes of representations optimized with and without auxiliary supervision:

Confusion matrices (validation set) of linear probes trained on representations from both ProjNeuralMap

initially optimized with and without auxiliary supervision. Red lines indicate matrix diagonals.

auxiliary supervision in the context of the CVPR 2021 Multi-ON Challenge. The agent starts

the episode (Step 1) seeing the white object, which is not the first target to reach. It thus starts

exploring the environment (Step 7), until seeing the pink target object (Step 13). Its prediction

of the goal distance immediately improves, showing it is able to recognize the object within

the RGB-D input. The agent then reaches the target (Step 27). The new target is now the white

object (that was seen in Step 1). While it is still not within its current field of view, the agent

can localize it quite precisely (Step 32), and go towards the goal (Step 46) to call the Found

action (Step 57). The agent must then explore again to find the last object (Step 102). When the

yellow cylinder is seen, the agent can estimate its relative position (Step 191) before reaching

it (Step 212) and ending the episode.

Information about observed targets, their relative distance and direction – Is such knowl-

edge extracted by ProjNeuralMap without auxiliary supervision? We perform a probing ex-

periment by training three linear classifiers to predict this information from the contextual

representation of the GRU unit, both for ProjNeuralMap agent initially trained with and with-

out auxiliary losses. We generate rollout trajectories on 1000 training and validation episodes.

It is important to note that, as both agents behave differently, linear probes are not trained and

evaluated on the same data. Fig. 4.4 shows that linear probes trained on representations from

our method perform better, and more consistently, suggesting the presence of more related

spatial information.

93
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Conclusion Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning

4.4 Conclusion

This chapter presented a method to guide the learning of mapping and spatial reasoning

capabilities by augmenting vanilla RL training objectives with auxiliary tasks. We showed

that learning to predict the relative direction and distance of already seen target objects, as

well as to keep track of those observed objects, improved the performance on various metrics

and that these gains were consistent over agents with or without spatial inductive bias.

The next chapter will also focus on improving the mapping abilities of neural agents in

the context of the Multi-ON task, but instead of augmenting the supervision strategy, we will

present an implicit mapping of semantic objects and occupancy, and more importantly will

study how to train agents with RL to use such scene representations to navigate efficiently.

94
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Chapter

5
Neural implicit representations as a means to better

navigate to multiple objects

Abstract

As already motivated in the previous chapter 4, understanding and mapping a new en-

vironment are core abilities of any autonomously navigating agent. While classical robotics

usually estimates maps in a stand-alone manner with SLAM variants, which maintain a topo-

logical or metric representation, end-to-end learning of navigation keeps some form of mem-

ory in a neural network. Networks are typically imbued with inductive biases, which can

range from vectorial representations to birds-eye metric tensors or topological structures. In

this work, we propose to structure neural networks with two neural implicit representations,

which are learned dynamically during each episode and map the content of the scene: (i) the

Semantic Finder predicts the position of a previously seen queried object; (ii) the Occupancy and

Exploration Implicit Representation encapsulates information about explored area and obstacles,

and is queried with a global read mechanism which directly maps from function space to a

usable embedding space. Both representations are leveraged by an agent trained with RL and

learned online during each episode. We evaluate the agent on Multi-Object Navigation and

show the impact of using neural implicit representations as a memory source.

95
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Context Neural implicit representations as a means to better navigate to multiple objects

5.1 Context

Autonomous navigation in complex unknown 3D environments from visual observations re-

quires building a suitable representation of the environment, in particular when the targeted

navigation task requires high-level reasoning. Whereas classical robotics builds these repre-

sentations explicitly through reconstructions, possibly supported through machine learning,

end-to-end training learns them automatically either from reward, by imitation learning or

through self-supervised objectives.

While spatial representations can emerge even in unstructured agents, as shown in the

form of grid-cells in artificial (Cueva and Wei, 2018; Banino et al., 2018) and biological

agents (Hafting et al., 2005), spatial inductive biases can support learning actionable spatial

representations and decrease sample complexity. As already presented in previous chapters,

popular inductive biases are metric maps (Parisotto and Salakhutdinov, 2018; Beeching et al.,

2020b; Henriques and Vedaldi, 2018), topological maps (Beeching et al., 2020c; Chaplot et al.,

2020d) and more recently, self-attention, adapting Transformers (Vaswani et al., 2017) to se-

quential decision-making and navigation (Fang et al., 2019; Du et al., 2021; Chen et al., 2022b;

Reed et al., 2022). The chosen representation should support robust estimation of navigable

space even in difficult conditions, mapping features and objects of interest, as well as query-

ing and reusing this information at a later time. The representation should be as detailed as

required, span the full (observed) scene, easy to query, and efficient to read and write to, in

particular when training is done in large-scale simulations.

Our work builds on neural fields and implicit representations, a category of models which

represent the scene geometry, and eventually the semantics, by the weights of a trained neural

network (Xie et al., 2022). They have the advantage of avoiding the explicit choice of scene

representation (e.g. volume, surface, point cloud etc.) and inherently benefit from the gener-

alization abilities of deep networks to interpolate and complete unobserved information. As

presented in chapters 2 and 3, neural implicit representations have demonstrated impressive

capabilities in novel view synthesis (Mildenhall et al., 2020; Sitzmann et al., 2020), and have

potential as a competitive representation for robotics (Ortiz et al., 2022; Li et al., 2022a; Sucar

et al., 2021; Adamkiewicz et al., 2022). Their continuous nature allows them to handle level

of detail efficiently through a budget given as the amount of trainable weights. This allows

to span large environments without the need of discretizing the environment and handling

growing maps.

We explore and study the potential of implicit representations as inductive biases for

visual navigation. Similar to recent work in implicit SLAM (Sucar et al., 2021), our represen-

tations are dynamically learned in each episode. Going beyond, we exploit the representation

dynamically in MultiON. We introduce two complementary representations, namely a query-

able Semantic Finder trained to predict the scene coordinates of an object of interest specified

96
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Context Neural implicit representations as a means to better navigate to multiple objects

fs xg

fo
θo

s fo
θo er

x

θs

Dec

(x, s)

1 2

3 4

Figure 5.1: Overview of the proposed neural implicit representations: We propose two implicit

representations as inductive biases for autonomous agents — both are learned online during each

episode. ➁ a semantic representation fs predicts positions x from goals g given as semantic codes.

We show Ground Truth object positions (rectangles) and predictions (round; radius shows uncertainty,

unit-less, as an illustration). Blue and pink objects have been observed, but not the yellow target.

➂ A structural representation fo predicts occupancy and exploration s from positions x; we provide

a global read which directly maps from function space fo (represented by trainable weights θo) to a

context embedding e used by the agent. ➃ shows the reconstruction produced by a decoder Dec during

training. Orange=navigable, Green=Obstacles, Blue=Unexplored. ➀ a ground-truth map is shown for

reference, simulating a fully explored scene.

as input, and an Occupancy and Exploration Implicit Representation, which maps 2D coordinates

to occupancy information, see Figure 5.1. We address the issue of the efficiency of querying

an implicit representation globally by introducing a global read mechanism, which directly

maps from function space, represented through its trainable parameters, to an embedding

summarizing the current status of occupancy and exploration information, useful for navi-

gation. Invariance with respect to reparametrization of the queried network is favored (but

not enforced) through a Transformer-based solution. Our method does not require previous

rollouts on the scene for pre-training or building a representation.

This chapter targets a fundamental aspect of visual and semantic navigation, the mapping

of space and key objects of interest. Its content can be summarized as follows:

• We propose two implicit representations for semantic, occupancy and exploration infor-

mation, which are trained online during each episode.

• We introduce a global read procedure which can extract summarizing context informa-

97
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Navigating with implicit representations Neural implicit representations as a means to better navigate to multiple objects

Mapping	=	training	
representations

Query

Global	read

fs

fo
θo

θs

p

Inverse	projectionSegmentation

x x∗L

s s∗L
e

x

Goal

RGB-D	
observation

gt
r

ot

htatht−1

Representation	perception	
(pre-trained)

Implicit
representations

Reactive	Perception	
(pre-trained)

c

at−1
ActionVectorial	memory

Figure 5.2: Navigating with implicit representations: Red connections indicate the training pro-

cess of the two implicit representations (=mapping), which is also done during agent deployment.

Black connections show the forward pass of the agent. are discrete learned embeddings (LUT).

Policy training is not shown in this figure.

tion directly from the neural representation itself.

• We show that the representations lead to performance gains compared to classical neural

agents.

• We evaluate and analyze key design choices, the representation’s scaling laws and its

capabilities of lifelong learning.

5.2 Navigating with implicit representations

We follow and augment the base end-to-end architecture presented in chapter 4, with

the RGB-D observation, class of the current target and previous action as input to the agent.

Temporal information is aggregated with a GRU unit whose output is fed to actor and critic

heads. We equip this agent with two implicit representations, trained to hold and map es-

sential information necessary for navigation: the positions of different objects of interest, and

occupancy / exploration information, as shown in Figure 5.1,

fsfoThe goal of the Semantic Finder fs(.; θs) parametrized by trainable weights θs is to predict

the absolute position of an object as x = [xx xy xz] = fs(q; θs) specified through an input

query vector q. Uncertainty u is also estimated — see Section 5.2.1 for details. x is then

converted into coordinates relative to the agent to be fed to the GRU. Compared to clas-

sical metric representations (Henriques and Vedaldi, 2018; Parisotto and Salakhutdinov,

2018; Chaplot et al., 2020d; Beeching et al., 2020b), querying the location of an object can

be done through a single forward pass.

98
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Navigating with implicit representations Neural implicit representations as a means to better navigate to multiple objects

fsfo The Occupancy and Exploration Representation fo(.; θo) parametrized by trainable weights

θo encodes information about free navigable space and obstacles. It predicts occupancy

s as a classification problem with three classes {Obstacle, Navigable, Unexplored}, with s =

fo(ϕ; θo), ϕ being a position feature vector encoded from coordinates x — see Section 5.2.2

for details.

The Occupancy and Exploration Representation can in principle be queried directly for a

single position, but reading out information over a large area directly this way would require

multiple reads. We propose to compress this procedure by providing a trainable global read

operation r(.; θg), which predicts an embedding e containing a global context about what has

already been explored, and positions of navigable space. The prediction is done directly from

the trainable parameters of the implicit representation, as e = r(θo; θr). Here θo is input to r,

whereas θr are its parameters.

Given representations fs and fo, a single forward pass of the agent at timestep t and for a

goal gt involves reading the representations and providing the input to the policy. The current

RGB-D observation ot is also encoded by the convolutional network c (different from the

projection module p used to generate samples for training the Semantic Finder). Previous action

at−1 and current goal gt are passed through embedding layers, named L(.) in the following

equations. These different outputs are fed to the policy,

xt = fs(gt; θs,t), et = r(θo,t; θr), ct = c(ot; θc), (5-1)

ht = GRU(ht−1, xt, ut, et, L(at−1), L(gt), ct; θG), (5-2)

at = π(ht; θπ), (5-3)

where we added indices ·t to relevant variables to indicate time. Please note that the trainable

parameters θs,t and θo,t of the two implicit representations are time dependent, as they depend

on the observed scene and are updated dynamically, whereas the parameters of the policy π

and the global reader r are not. Here, GRU corresponds to the update equations of a GRU

network, where we omitted gates for ease of notation. The notation at = π(.) predicting action

at is also a simplification, as we train the agent with PPO — see Section 5.2.5.

Mapping means training! – The implicit representations fs and fo maintain a compact and

actionable representation of the observed scene, and as such need to be updated at each

timestep from the current observation ot. Given their implicit nature and implementation as

neural networks, updates are gradient-based and done with SGD. The implicit representations

are therefore trained from scratch at each episode even after deployment.

Training a representation from observations obtained sequentially during an episode also

raises a serious issue of catastrophic forgetting (Goodfellow et al., 2014), as places of the scene

observed early might be forgotten later in the episode (Sucar et al., 2021; Zhi et al., 2021a). We

solve this by maintaining two replay buffers throughout the episode, one for each represen-

tation. Training samples are generated from each new observation and added to the replay

99
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Navigating with implicit representations Neural implicit representations as a means to better navigate to multiple objects

buffers at each timestep. Both representations are then trained for a number of gradient steps

(ns for the Semantic Finder and no for the Exploration and Occupancy Representation). Details on

the two representations and their training are given in Sections 5.2.1 and 5.2.2. The global

reader r is not trained or fine-tuned online but rather trained once offline.

5.2.1 The Semantic Finder fs

While recent work on implicit representations for robotics focused on signed distance func-

tions (Ortiz et al., 2022; Li et al., 2022a), occupancy (Sucar et al., 2021) or density, assuming

light density approximates mass density (Adamkiewicz et al., 2022), the aim of our model is

to localize an object of interest within the scene, which can be seen as inverse operation to

classical work. From a query vector given as input, the Semantic Finder predicts the position

of the object, which is particularly useful for an agent interacting with an environment in the

context of a goal conditioned task. It is implemented as a 3-layer MLP with ReLu activations

in the intermediate layers and a sigmoid activation for the output. Hidden layers have 512

neurons. The query vector q corresponds to the 1-in-K encoding of the target object class,

which during navigation is directly determined by the object goal gt provided by the task.

Mapping/Training – The implicit representation is updated minimizing the L1 loss between

the prediction xi = fs(qi; θs) and the supervised coordinates x∗i (we avoided the term “ground-

truth” here on purpose), Ls = ∑i ∥x∗i − xi∥1, where the sum goes over the batch sampled from

the scene replay buffer. Coordinates x∗i are normalized ∈ [0, 1].

The data pairs (x∗i , qi) for training are created from each observation ot at each timestep,

every data point corresponding to an observed point. Pixels in ot are inversely projected into

3D coordinates in the scene using the depth channel, the camera intrinsics, as well as agent’s

coordinates and heading that are assumed to be available, as introduced by Wani et al. (2020).

The query vector q corresponds to a 9-dimensional vector encoding a distribution over ob-

ject classes (8 target objects and the “background” class). Let us recall that while the training

of the representation is supervised, this supervision cannot use “ground-truth” information

available only during training. All supervision information is required to be predicted from

the data available to the agent even after deployment. We predict object class information

through a semantic segmentation model p, which is applied to each current RGB-D observa-

tion ot ∈ Rh×w×4, recovering the output segmentation map νt ∈ Rk×l×9. The model has been

pre-trained on the segmentation of the different target objects, i.e. colored cylinders, and is

not fine-tuned during training of the agent itself.

Training data pairs (x∗i , qi) are sampled from this output. The supervised coordinates x∗i
are simply the mean 3D coordinates of each feature map cell, after inverse projection. The

query vector qi is the distribution over semantic classes. After the replay buffer is updated, a

training batch must be sampled to update the neural field. One fourth of the samples in the

batch of size b correspond to the b/4 last steps. The rest are sampled from the previous steps

100
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Navigating with implicit representations Neural implicit representations as a means to better navigate to multiple objects

in the replay buffer. Uniform sampling is also performed among pairs collected at a given

timestep.

Estimating uncertainty — is an essential component, as querying yet unseen objects will

lead to wrong predictions, which the agent needs to recognize as such, and discard. The

estimation of uncertainty in neural networks is an open problem, which has been previously

addressed through different means, including drop out as a Bayesian approximation (Gal and

Ghahramani, 2014), variational information bottlenecks (Shah et al., 2021), density estima-

tion (Kobyzev et al., 2021), and others. In this work, we approximate a density estimate in the

scene replay buffer by calculating the minimum Euclidean distance between the input query

and all embeddings in the replay buffer at the current timestep. The method is simple and

efficient and does not require explicitly fitting a model to estimate the marginal distribution

p(q), in particular as the uncertainty representation is latent, can be un-normalized as not

required to be a probability.

5.2.2 Occupancy and Exploration Implicit Representation fo

Unlike fs, the occupancy representation fo is closer to classical implicit representations in

robotics (Sucar et al., 2021; Ortiz et al., 2022; Li et al., 2022a; Adamkiewicz et al., 2022), which

map spatial coordinates to variables encoding information on navigable area like occupancy

or signed distances. Different to previous work, our representation also includes exploration

information, which changes over time during the episode. Once explored, a position changes

its class, which makes our neural field dynamic. Another difference with fs is that the latter

deals with 3D coordinates while fo is a top-down 2D representation. Inspired by Xie et al.

(2022) or Tancik et al. (2020), the model uses Fourier features ϕ extracted from the 2D coordi-

nates x previously normalized ∈ [0, 1],

ϕ = (cos(x20), sin(x20), ..., cos(x2
κ
4), sin(x2

κ
4)). (5-4)

The network fo is a 3-layer MLP with ReLu intermediate activations and a softmax function

at the output layer. Hidden layers have 512 neurons, and κ = 40.

Mapping/Training – The implicit representation is updated minimizing the Cross Entropy

loss between the prediction s of the neural field and the supervised label s∗ of three classes

{Obstacle, Navigable, Unexplored}, as Lo = −∑3
c=1 s∗c log sc. As for the Semantic Finder, training

data pairs (s∗, s) are created through inverse perspective projection of the pixels of the obser-

vation ot into 3D scene coordinates. Thresholding the z (height) coordinate decides between

Navigable and Obstacle classes. Points with a z coordinate higher than a certain threshold are

discarded. The replay buffer is balanced between both classes, and only samples of the last

1000 steps are kept. Samples of the Unexplored class are not stored.

The replay buffer is sampled similarly to the one for the Semantic Finder. However, addi-

tional samples for the Unexplored class are created by sampling uniformly inside the scene, for

101
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Navigating with implicit representations Neural implicit representations as a means to better navigate to multiple objects

speed reasons simply ignoring conflicts with explored areas and treating them as noisy labels.

5.2.3 Global Occupancy Read r — handling reparametrization invariance

The global Occupancy reader r allows to query the occupancy information of the scene glob-

ally, beyond point-wise information, and as such is a trainable mapping from the space

of functions fo(.; .) to an embedding space e. In particular, two functions fo and f ′o s.t.

fo(x) = f ′o(x) ∀x should be mapped to identical or close embeddings. However, as the oc-

cupancy networks fo are implemented as MLPs, any given instance fo(.; θo) parametrized by

trainable weights θo can be reparametrized by any permutation of hidden units, which leads

to permutations of the rows and columns, respectively, of two weight matrices, its own and

the one of the preceding layer. This reparametrization keeps the functions identical, although

their representations as weight vectors are different.

To favor learning a global occupancy reader which is invariant with respect to these trans-

formations, we implement it as a Transformer model with self-attention (Vaswani et al., 2017)

— this, however, does not enforce full invariance. The model takes as input a sequence of

tokens (w1, ..., wNn), where wi ∈ Ra is a learned linear embedding of the incoming weights of

one neuron within the implicit representation fo, and Nn is the number of neurons of fo. Each

token is summed with a positional encoding in the form of Fourier features. An additional

“CLS” token with learned embedding is concatenated to the input sequence. The reader is

composed of 4 self-attention layers, with 8 attention heads. The output representation of the

“CLS” token is used as the global embedding of the implicit representation.

Training – The global reader r is trained with full supervision from a dataset of 25k trajectories

composed of MLP weights θo,i and absolute maps Mi, i = 1..25k. Each map is a metric tensor

providing occupancy information extracted from the corresponding implicit representation,

i.e. Mi(xy, xx) = fo(x, θo,i). The dataset also contains an egocentric version M′i of each map,

which is centered on the agent and oriented depending on its current heading. The reader r

is trained in an Encoder-Decoder fashion, where r plays the role of the encoder,

ei = r(θo,i), M̂i = Dec(ei, pi), (5-5)

where pi is the agent pose (position and heading), necessary to decode egocentric information.

We minimize a cross entropy loss on the prediction of egocentric maps,

Lg = −∑i ∑k ∑l ∑3
c=1 M′∗i,c(k, l) log M′i,c(k, l) (5-6)

Directly training this prediction proved to be difficult. We propose a procedure involving

several steps, detailed in section 5.2.6. After the training phase, the reader g is used in the

perception + mapping module of the agent as given in equation 5-1, and kept frozen during

agent RL training.

102
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Navigating with implicit representations Neural implicit representations as a means to better navigate to multiple objects

5.2.4 Algorithmic description of an agent forward pass

Algorithm 4 gives a high-level overview of the different steps happening after receiving the

current observation from the environment to take the most suitable action.

Lines 1− 5 — Adding training samples to the semantic replay buffer

The segmentation map νt is obtained by passing the RGB-D observation ot through the rep-

resentation perception module, i.e. a segmentation model pre-trained to segment the target

objects (Line 2). An inverse projection operation, denoted invProj() is used to project pixels

from ot into their 3D coordinates nt using the depth channel of ot and the known camera

intrinsics K (Line 3). A meanpooling operation, denoted meanPooling() is then applied to nt

in order to obtain the mean 3D coordinates of all pixels in each cell of the segmentation map

νt (Line 4). Finally, pairs of softmax distribution over classes from νt and mean 3D coordinates

are added to the training replay buffer of the Semantic Finder. This is implemented as the

addSemSamples() in the algorithm (Line 5).

Lines 6− 8 — Adding training samples to the occupancy replay buffer

The 3D coordinates of projected pixels in nt are compared with threshold values along their

vertical coordinate to be either labelled as navigable space or obstacle. Only 3D points with a

vertical coordinate below than another threshold value are kept. These comparisons are done

in the labelOccPos() function (Line 7). Pairs of label and 2D coordinates (discarding vertical

coordinates) are then sampled in order to keep the balance between the two classes and added

to the training replay buffer of the Occupancy and Exploration Implicit Representation. This is the

addOccSamples() function (Line 8).

Lines 9− 13 — Updating the Semantic Finder

Two operations are repeated ns times. First a batch of training examples bs is sampled

(getSemBatch(), line 11). Then, the SGD() function encapsulates the forward pass of fs on

the sampled batch, the L1 loss computation, gradient computation and finally backpropaga-

tion. In this work, we fixed ns = 1.

Lines 14− 22 — Updating the Occupancy and Exploration Implicit Representation

The implicit representation is iteratively updated for a maximum of no steps while the error

of the model (loss, initialized to 0 in line 15) is higher than a threshold. Same as for the

Semantic Finder, a training batch bo is first sampled (getOccBatch(), line 18). The model is then

evaluated on samples from bo (Line 19). The SGD() function is then applied to update the

implicit representation. In this work, we chose no = 20 and thresh = 0.3.

103
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Navigating with implicit representations Neural implicit representations as a means to better navigate to multiple objects

Algorithm 4: Different steps necessary to update implicit representations at each

agent step.
Input : Observation ot, camera intrinsics K, goal gt, replay buffers rs and ro, weights

θs,t, θo,t

1 // Adding training samples to the semantic replay buffer

2 νt = p(ot)

3 nt = invProj(ot, K)

4 kt = meanPooling(nt)

5 rs = addSemSamples(rs, νt, kt)

6 // Adding training samples to the occupancy replay buffer

7 lt = labelOccPos(nt)

8 ro = addOccSamples(ro, nt, lt)

9 // Updating the Semantic Finder

10 for i← 0 to ns − 1 do

11 bs = getSemBatch(rs)

12 θs,t = SGD(bs, θs,t)

13 end for

14 // Updating the Occupancy and Exploration Implicit Representation

15 loss = 0

16 j = 0

17 while loss > thresh and j < no do

18 bo = getOccBatch(ro)

19 loss = eval(bo, θo,t)

20 θo,t = SGD(bo, θo,t)

21 j = j + 1

22 end while

104
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Navigating with implicit representations Neural implicit representations as a means to better navigate to multiple objects

5.2.5 Training the agent

The agent is trained with RL, more precisely PPO (Schulman et al., 2017). The inner training

loops of the implicit representations are supervised (red arrows in Figure 5.2) and occur at

each timestep in the forward pass, whereas the RL-based outer training loop of the agent

occur after Na acting steps (black arrows in Figure 5.2). As the perception module used to

generate training data from RGB-D observations for the Semantic Finder fs is independent of

the visual encoder c in the agent (see Figure 5.2), and as its query qt is fixed to the navigation

goal gt, there is no need to track the weights θs at each timestep in order to backpropagate the

PPO loss (outer training). This is a key design choice of our method.

Training assumptions – We do not rely on the existence of global ground-truth maps for occu-

pancy, as fo() and r() were trained on observation data from agent trajectories only. However,

as done in the previous chapter 4, we exploit object positions in simulation, and require pixel-

wise segmentation masks (similar to other work such as Pashevich et al. (2021)) during the

pre-training of the segmentation head only (not for RL agent training, or at inference time).

5.2.6 Training the global reader

The proposed training procedure for the global reader r (performed before training the agent)

can be split into 3 phases. The architecture for the convolutional decoder Dec() is kept the

same in all of them. The hyperparameters of its different layers are detailed in subsection 5.2.7.

It is composed of 6 transpose convolution layers along with batch norm layers and ReLU

activations, except for the last layer with a softmax activation. Figure 5.3 provides an overview

of the 3 steps involved in the training of the global reader.

Fully convolutional autoencoder — The first step is to train a fully convolutional autoen-

coder on the set of absolute maps Mi, i = 1..25k. Only the decoder weights are kept.

Global reader training on absolute maps — The second step consists in training the global

reader to output embeddings fed to the frozen decoder from the previous step. The

objective is to reconstruct absolute maps from the weights of the implicit representation.

The global reader weights are kept after this training phase.

Global reader fine-tuning on egocentric maps — The global reader, whose weights are ini-

tialized from the weights obtained in the previous step, is now trained along with the

same decoder from the first step (also used in the second step) on the set of egocentric

maps M′i, i = 1..25k. Both the global reader and decoder are fine-tuned. The output of

the global reader is not directly fed to the decoder, but is passed through linear layers

in order to fuse information about first the position of the agent, and then its heading

because this time the right operations of shift and rotation must be applied in order to

reconstruct egocentric maps.

105
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Navigating with implicit representations Neural implicit representations as a means to better navigate to multiple objects

Forward	pass

Training	supervision1

2

Convolutional autoencoder on absolute maps

Global reader on absolute maps

Weights	init

3 Global reader on egocentric maps

p

Global	occupancy	reader

Convolutional	decoder

Convolutional	encoder

Linear	layers

Frozen	weights

Absolute	point	coordinates

Egocentric	point	coordinates

Implicit	representation	(occupancy)

p Agent	pose

ℒ

ℒ

ℒ

Figure 5.3: Training the Global Reader in 3 steps: ➀ Training a convolutional auto-encoder on absolute

maps; ➁ extension to weight-based (θo) inputs; ➂ extension to predicting egocentric maps, better suited

to navigation problems.

Integrating the pre-trained global reader into the agent — After this pre-training in 3 steps,

the weights of the global reader are frozen and not updated during the RL training.

However, a linear layer is learned to project the 576-dim embedding from the global

reader into a 256-dim representation fed to the GRU. This linear layer is trained from

reward signals.

5.2.7 Perception modules

Two different perception modules are used in the presented method. The first one, responsible

for representation perception, extracts representations from the RGB-D observation to populate

the training replay buffer of the Semantic Finder. The second one, tackling reactive perception,

encodes the observation into a vector fed to the GRU. This representation of the observation

is thus more directly used in the decision-making process — the name Reactive is certainly not

100% accurate, since the output of this module is still used to update agent memory, but this

concerns only the hidden GRU memory and not the main implicit representations.

Reactive perception We use the encoder module from Wani et al. (2020), which encodes vi-

sual observations at each step. Table 5.1 (Enc) presents the hyperparameters of the

convolutional layers in this visual encoder. It is composed of 3 convolutional layers fol-

lowed by a linear layer. ReLU activations are used. The embedding produced by this

visual encoder is fed to the GRU module. In some of our experiments (presented later

in this chapter), this reactive perception module was pre-trained with auxiliary losses

106
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Neural implicit representations as a means to better navigate to multiple objects

Model layer id type in channels out channels kernel size stride in padding out padding

Dec

0 TransposeConv2D 64 32 3 2 0 0

1 TransposeConv2D 32 32 3 2 0 0

2 TransposeConv2D 32 16 3 2 0 0

3 TransposeConv2D 16 8 3 2 0 0

4 TransposeConv2D 8 8 3 2 0 0

5 TransposeConv2D 8 3 3 2 0 1

Enc

0 Conv2D 4 32 8 4 0 −
1 Conv2D 32 64 4 2 0 −
2 Conv2D 64 32 3 1 0 −

Seg

0 Conv2D 32 32 5 1 2 −
1 Conv2D 32 32 5 1 2 −
2 Conv2D 32 9 3 1 1 −

Table 5.1: Architecture of involved convolutional layers: Hyperparameter values in the different

presented CNN architectures. Dec is the CNN decoder trained with the global reader, Enc is the

visual encoder used in both the representation and reactive perceptions, Seg is the segmentation head

combined with Enc in the representation perception module c.

presented in the previous chapter 4, and was then frozen and not updated during RL

training. We also compare other variants where it is updated during the RL-based agent

training.

Representation perception The goal of the representation perception module is to extract

vectors to be added to the Semantic Finder training replay buffer. The backbone encoder

is the same as the reactive perception module (see Enc in Table 5.1). This network

is augmented with a segmentation head and is fine-tuned end-to-end on the task of

segmenting MultiON target objects (before agent training). Table 5.1 (Seg) details the

architecture of the segmentation head. It is composed of 3 convolutional layers with

ReLU activations, except for the last layer where a softmax activation is applied. After

this training phase, the weights of the representation perception module are frozen and

not updated during RL training.

5.3 Experimental results

Task, dataset, episodes and metrics – The same task (MultiON – 3-ON), dataset (Matter-

port3d Chang et al. (2018)), training and evaluation episodes (train/val/test split), as well as

metrics (Success Rate, Progress Rate, SPL, PPL) as in chapter 4 are used in this section.

Global reader dataset – The Global reader r was trained on a dataset of 25k trajectories obtained

from rollouts performed by the best agent from chapter 4 (ProjNeuralMap + auxiliary losses).

95% were used for training and the rest for validation. On these trajectories we first trained the

107
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Neural implicit representations as a means to better navigate to multiple objects

0− 30 30− 50 50− 70 — Val — — Test —

S O S O S O Success Progress SPL PPL Success Progress SPL PPL

µ

− − − − − − 33.2± 1.2 49.0± 1.1 21.2± 0.5 31.6± 1.2 42.3± 1.5 56.7± 0.9 28.1± 1.0 37.8± 1.8

− − ✓ − ✓ − 37.8± 1.6 52.3± 0.9 26.35± 1.5 36.5± 0.8 47.0± 1.7 60.5± 1.6 34.5± 0.8 44.2± 1.0

− − ✓ − ✓ ✓ 38.5± 4.6 52.5± 4.8 28.2± 2.1 38.3± 1.7 46.7 ± 3.0 60.1 ± 3.1 35.1 ± 1.4 44.8 ± 1.0

↑
− − − − − − 32.1 47.7 21.6 32.6 41.0 55.9 28.9 39.0

− − ✓ − ✓ − 38.1 51.9 27.3 37.1 48.6 61.5 35.2 44.2

− − ✓ − ✓ ✓ 43.1 56.8 30.5 40.1 49.7 63.4 36.4 45.9

Table 5.2: Impact of the implicit representations: Navigation performance on MultiON val and Mul-

tiON test. S= fs activated, O= fo activated in the corresponding training period (see text). Top/µ: means

over 3 runs (Performance is reported as mean ± std over runs); Bottom/↑: best validation seeds over 3

runs.

Uncertainty Success Progress SPL PPL

− 35.4± 3.0 49.7± 3.3 29.4± 2.0 40.9± 2.4

✓ 43.4± 3.1 58.0± 3.0 35.1± 0.8 46.4± 1.0

Table 5.3: Importance of the uncertainty estimation: Comparing training w/ semantic input only, no

occupancy, from the beginning of training, w/ and w/o uncertainty. Performance is reported as mean

± std over training runs (seeds).

occupancy representation fo “in-situ”, i.e. as if it were deployed on the agent, and we recorded

training samples i for training the reader r: pairs of network weights θo,i and associated

maps Mi obtained by iteratively querying the implicit representation. Egocentric maps were

generated from the absolute ones and both were cropped around their center.

Perception module dataset – The perception module p was trained to segment the different

target objects. The generated dataset is composed of 132k pairs of RGB-D observations and

segmentation masks. Samples from 4 scenes were kept as a validation set.

Training details – We use the reward function presented in the previous chapter 4 (equation 4-

6), and train all agents for the same number of frames as well (70M steps). PPO hyperparam-

eters are the same as in chapter 4 (Table 4.2). For all agents in Table 5.2 and some in Table 5.4

(w/ pre-train: ✓ in ρ column), the encoders (visual encoder c, as well as goal and previous

action embedding layers, see Figure 5.2) are pre-trained with a baseline, which corresponds

to the ProjNeuralMap agent trained with auxiliary losses from chapter 4. This is done to faster

training, as it will be shown later (in Table 5.4) that the same final performance can be reached

without this initial pre-training of encoders. All reported quantitative results for our method

are obtained after 3 training runs for each model. We report the average performance and

standard deviation among training runs (random seeds) for each variant as mean ± std.

Impact of the implicit representations – Table 5.2 shows the impact of the two implicit repre-

sentations on navigation (top: means over 3 runs; bottom: best validation seeds over 3 runs).

To keep compute requirements limited and decrease sample complexity, in these ablations

108
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Neural implicit representations as a means to better navigate to multiple objects

Agent ρ α γ Success Progress SPL PPL AUX ORC

(a) OracleMap − ✓ 50.4± 3.5 60.5± 3.1 40.7± 2.2 48.8± 1.9 − ✓

(b) OracleEgoMap − ✓ 32.8± 5.2 47.7± 5.2 26.1± 4.5 37.6± 4.7 − ✓

(c) NoMap − ✓ 16.7± 3.6 33.7± 3.3 13.1± 2.4 26.0± 1.7 − −
(d) ProjNeuralMap − ✓ 25.9± 1.1 43.4± 1.0 18.3± 0.6 30.9± 0.7 − −
(e) NoMap ✓ − 42.3± 1.5 56.7± 0.9 28.1± 1.0 37.8± 1.8 − −
(f) ProjNeuralMap ✓ − 39.7± 2.3 55.4± 1.4 28.7± 1.1 40.1± 1.9 − −
(g) Ours w/ curriculum w/ pre-train ✓ − − 46.7± 3.0 60.1± 3.1 35.1± 1.4 44.8± 1.0 − −
(h) ProjNeuralMap + AUX N/A ✓ N/A 57.7 ± 3.7 70.2 ± 2.7 37.5 ± 2.0 45.9 ± 1.9 ✓ −
(i) Ours w/o curriculum w/ pre-train + AUX ✓ ✓ ✓ 58.3± 0.8 69.4± 1.1 43.8± 1.0 52.1± 1.6 ✓ −
(j) Ours w/o curriculum w/o pre-train − ✓ ✓ 54.8± 3.6 68.0± 3.4 41.7± 1.9 51.3± 1.6 − −
(k) Ours w/o curriculum w/o pre-train + AUX − ✓ ✓ 57.9± 2.0 69.5± 0.6 43.3± 2.2 51.9± 3.7 ✓ −

Table 5.4: Comparison with state-of-the-art methods on MultiON test:“AUX” = auxiliary losses using

privileged information. “ORC”=non-comparable, uses oracle information. ρ = pre-training of input

encoders from agent trained with auxiliary losses. α = fine-tuning of input encoders with RL. γ =

implicit representations are accessible to the agent since the beginning of RL training (w/o curriculum).

(h) is the agent from chapter 4. Performance is reported as mean ± std over training runs (seeds).

we do not train the full agent from scratch, in particular since the early stages of training

are spent on learning basic interactions. We decompose training into three phases: 0−30M

steps (no implicit representations, i.e. all entries to the agent related to fs and fo are set to 0);

30M−50M steps (training includes the Semantic Finder fs) and finally 50M−70M steps (full

model). This 3-steps approach is used to train all agents in Table 5.2, and will be denoted as

curriculum (See Table 5.4, w/ curriculum: − in γ column). All metrics on both val and test sets

are improved, with the biggest impact provided by the Semantic Finder, which was expected.

We conjecture that mapping object positions is a more difficult task, which is less easily del-

egated to the vectorial GRU representation, than occupancy. We also see an impact of the

occupancy representation, which not only confirms the choice of the implicit representation

fo itself, but also its global read through r(θo).

Uncertainty – has an impact on agent performance, as we show in the ablation in Table 5.3.

Indeed, when training an agent with the semantic input since the beginning of training (w/o

curriculum) and no occupancy input (as the uncertainty is only related to semantic informa-

tion), feeding the agent with the computed uncertainty about the output of the Semantic Finder

brings a boost in performance.

Comparison with previous SOTA methods – is done in Table 5.4. The performance entries

of these baselines are taken from the previous chapter 4. The introduced method outperforms

the different competing representations, even when they benefit from the same pre-training

scheme and are thus completely comparable. NoMap with pre-training corresponds to the

first row of Table 5.2. The difference between (g) and (i) is the use of the auxiliary tasks

109
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Neural implicit representations as a means to better navigate to multiple objects

presented in the previous chapter 4, but also that the implicit representations are available

to the agent during the whole training period for (i), i.e. no decomposition into 3 phases as

in the ablations in Table 5.2 (w/o curriculum). Moreover, compared to (g), in (i) the weights

of the pre-trained encoders are fine-tuned. We see that the gains of our representations are

complementary to the auxiliary losses. (j) and (k) confirm this finding, showing that most of

the gain compared with (h) comes from the implicit representations, with the auxiliary losses

bringing an additional boost. (j) and (k) also show that, even though pre-training can help

speed up RL training, similar test performance is achieved without it.

Visualization of the agent behavior – Figure 5.4 provides an example for an episode rollout

from the minival set of the MultiON CVPR 2021 Challenge. The agent is equipped with both

implicit representations. For each line, from left to right, we first see the RGB-D egocentric

view of the agent, then a topdown map with the three goals (white, pink and yellow squares)

and their estimated location by the Semantic Finder (white, pink and yellow dots, with a shaded

region to denote uncertainty). The radius illustrating uncertainty is unit-less and only given

for visualization purposes - is not available to the agent in this particular form. The third

illustration shows the implicit map obtained by querying the Occupancy and Exploration Implicit

Representation, and on the right, there is the reconstructed output when feeding the embedding

of the global reader to the convolutional decoder it was trained with. The last element is

a curve showing the evolution of the uncertainty estimation of the Semantic Finder on the

currently provided target object.

In this episode, the agent starts with the white object within its field of view, but the first

target to reach is the pink cylinder (Row 1). As we can see, the estimation of goal positions

from the Semantic Finder are wrong, which is expected as the episode has not yet started.

However, the associated uncertainty is high, allowing the agent to discard this information.

The agent then explores until it observes the pink object (Row 2). At that point, the uncertainty

about the object to find drops. The estimate of the position of the pink object will be updated

as training samples will be added to the semantic replay buffer. Also note that at that point

the estimate of the position of the white object from the Semantic Finder is accurate as the

object has already been seen previously. The agent then goes towards the pink target object

and calls the Found action (Row 3). Estimation of the positions of pink and white objects are

accurate. The next target to find is the white object. The uncertainty about the current target

is low as the white object has already been observed. The agent backtracks (Row 4) and goes

towards the white object to call the Found action (Row 5). The next goal is the yellow cylinder.

At that point, the uncertainty about the current target increases as the yellow cylinder has not

yet been within the agent’s field of view. The agent explores (Row 6) and when the target is

within its field of view (Row 7) the uncertainty related to the target to find drops. The agent

goes towards the yellow object and calls the Found action (Row 8). At the end of the episode,

the Semantic Finder is able to localize the 3 objects, and the associated uncertainties are low.

110
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Neural implicit representations as a means to better navigate to multiple objects

Target:

Target:

Target:

Target:

Target:

Target:

Target:

Target:

Pink object seen: Drop in uncertainty

about current target

White object to find: Uncertainty still
low as white object already seen

Yellow object to find: High uncertainty as
never seen before

Yellow object seen: Drop in uncertainty

about current target

Figure 5.4: Agent rollout on an example episode from the MultiON CVPR 2021 Challenge minival set.

From left to right: RGB-D ego view, topdown map (viz only) with targets (squares) and their estimated

location by the Semantic Finder (dots, shaded region for uncertainty), map from the Occupancy and

Exploration Implicit Representation, reconstructed egomap from the global reader and CNN Decoder

trained end-to-end, uncertainty of the Semantic Finder on the currently selected target.

111
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Neural implicit representations as a means to better navigate to multiple objects

Figure 5.5: Lifelong learning of the semantic representation fs: We report mean error in meters, test

set, 600 episodes, as a function of the number of timesteps since the object was first seen in the episode

(t=0). The error falls immediately and stays low over the episode.

All objects have been successfully found, so this episode is considered as a success.

Reconstruction performance of the Global Reader r – although the task of reconstructing

egocentric maps from occupancy functions fo (represented by θo) is only used as a proxy task

to train the Global reader r, we see it is a reliable proxy for the quality of extracting the global

latent vector e fed to the agent.

Accuracy Jaccard Index

83.4 56.5

Table 5.5: Performance of

the global reader r: We

report accuracy and Jac-

card index.

In Table 5.5 we report reconstruction performance measured as ac-

curacy and mean Jaccard Index on the validation split of the dataset

used to train the reader. We judge that an accuracy of 83.4% is satis-

factory, given that the global reader needs to reconstruct the content

of the representation directly from its parameters θo, that each im-

plicit representation has been initialized randomly, and that the reader is

required to be invariant with respect to reparametrization (see Sec-

tion 5.5). The task is even made harder as neural weights can be

considered as an absolute representation of the environment and the reader must combine it

with information about the agent pose to reconstruct an egocentric map.

Evaluating catastrophic forgetting – we evaluate the capacity of the Semantic Finder fs to

hold the learned information over the full length of the sequence in spite of the fact that

it is continuously trained. Figure 5.5 shows the evolution of the mean error in distance for

the predicted position of queried target objects as a function of time. The error quickly goes

below 1.5m once the object has been seen the first time (t=0 in the plot), which is the distance

threshold required by the MultiON task, and stays there, providing evidence that the model

does not suffer from catastrophic forgetting.

112
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Neural implicit representations as a means to better navigate to multiple objects

Figure 5.6: Capacity of the semantic representation: We report mean distance prediction error (nor-

malized ∈ [0, 1]) as a function of the number of stored objects. Replay buffers are composed of dummy

queries: (a) one-hot queries with same dimension as number of objects; (b) random query with dimen-

sion 9; (c) random query with same dimension as number of objects.

Capacity of the Semantic Finder – Unlike all other results presented in this chapter, this

experiment is performed independently of the official MultiON benchmark. As the granularity

of the implicit representations is handled through the budget in terms of trainable parameters,

we construct a synthetic dataset to evaluate the capacity of the Semantic Finder fs to store large

numbers of objects. Results are presented in Figure 5.6.

We consider three new scenarios, and for each one, a dataset is generated and used to

train the Semantic Finder. All datasets are made of (query, position) pairs with positions

being uniformly sampled between arbitrary scene bounds (between 0 and 1 along each axis).

For each dataset, we also create variants varying the sample size. To reduce the amount of

hyperparameters (e.g. batch size), we resort to gradient descent as opposed to stochastic

gradient descent, i.e. each gradient step is computed over the whole dataset. The considered

metrics is the mean L1 error on the prediction of positions as a function of the number of

objects to memorize. The difference between the three scenarios is in the nature of queries

associated with positions, and each scenario corresponds to a sub figure of Figure 5.6.

In Figure 5.6(a), for a given size of the dataset, i.e. for a given number of objects, each

query is a 1-in-K encoded vector of the object category, which means that the query dimen-

sions grow with increasing numbers of objects. This evaluates the representation in situations

where objects are identified by a unique class index. Provided a sufficient number of gradient

steps, we can see that the error stays low even with an increasing number of objects. We con-

jecture that the good performance of this setting is due to the growth in, both, query size and

thus capacity of the model (as the query is the input to the model) as the number of objects

grows.

In Figure 5.6(b), the query vectors have a fixed dimension of 9, equivalent to the dimen-

sion in the MultiON benchmark. Queries are not 1-in-K encoded, but composed of randomly

113
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Neural implicit representations as a means to better navigate to multiple objects

(a) (b)

Figure 5.7: Training stability: (a) Evolution of the collected reward on training episodes for the 3

models presented in Table 1 in the main paper. (b) Evolution of PPL, the official ranking metrics in

the MultiON Challenge leaderboard, on val episodes for model checkpoints from the last 10M training

frames.

sampled values. Even though more gradient steps are helpful, the conclusion here is that in-

creasing the number of objects has a negative impact on the mean error of the model. Unlike

in (a), the number of parameters does not increase here with number of objects as queries

have a fixed size. This is thus an illustration of the challenge to memorize an increasingly

high number of objects with a fixed model capacity.

Figure 5.6(c) is a combination of (a) and (b) with query size increasing with number

of objects and queries composed of random values (no one-hot vectors). The increase in

model capacity with more objects seems again to be beneficial provided enough gradient

steps. However, its is clear that the positions associated with random queries are more difficult

to memorize than for one-hot queries. This emphasizes the importance of the chosen query

representation when building query-able semantic implicit representations.

Runtime performance – despite requiring to continuously train the representations, we

achieve 45 fps during parallelized RL training, including the environment steps (simulator

rendering), forward passes, representation training and RL training on a single V100 GPU.

The average time of one agent forward pass, including updates of implicit representations is

20ms on a V100 GPU, which is equivalent to 50 fps, enough for real-time performance.

Training stability – Figure 5.7 shows the training curves of the 3 different agents we compared

in Table 5.2: the recurrent baseline agent (blue), with the Semantic Finder (orange) and with

both implicit representations (green). On the left, (a), we see the evolution of the training

reward as a mean and standard deviation over 3 runs. The right part, (b), shows PPL, the

main metric chosen for ranking the agents in the MultiON leaderboard, which we show for

different checkpoints during training and evaluated on the validation set. As can be seen,

114
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Conclusion Neural implicit representations as a means to better navigate to multiple objects

Figure 5.8: Importance of Fourier features: Comparison of top-down maps obtained by querying the

Occupancy and Exploration Implicit Representation trained with (left) and without (right) Fourier features.

training is quite stable over runs, and adding the two representations provides a boost in

performance (as already reported in Table 5.2).

Importance of Fourier features – Figure 5.8 compares the top-down map obtained after query-

ing the Occupancy and Exploration Implicit Representation trained with and without Fourier fea-

tures. On each plot, the left and right maps respectively show the impact of using and not

using Fourier features. Without the latter, no detail about the environment layout can be

reconstructed. This corroborates findings also reported in other literature on implicit repre-

sentations and coordinate networks, e.g. Mildenhall et al. (2020).

5.4 Conclusion

This chapter introduced two implicit representations to map semantic, occupancy and explo-

ration information. The first estimates the position of an object of interest from a vector query,

while the second encapsulates information about occupancy and explored area in the current

environment. We also introduced a global read directly from the trainable weights of this

representation. Our experiments showed that both implicit representations have a positive

impact on the navigation performance of the agent. We also studied the scaling laws of the

semantic representation and its behavior in the targeted lifelong learning problem.

The next chapter will also study the relationships between visual navigation and neural

representations of 3D scenes. However, unlike in this chapter where we wondered how to

use implicit representations as tools to use by navigating agents, we will next focus on a

115
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Conclusion Neural implicit representations as a means to better navigate to multiple objects

different problem: how can neural agents navigate autonomously to collect training data for

a high-quality neural representation of a scene to be computed in a second time?

116
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Chapter

6
Training of Neural Implicit Representations through

Autonomous Scene Exploration

Abstract

Implicit representations such as Neural Radiance Fields (NeRF) are very effective at novel

view synthesis. However, these models typically require manual and careful human data col-

lection for training. This chapter presents AutoNeRF, a method to collect data required to

train NeRFs using autonomous embodied agents. The introduced method allows an agent

to explore an unseen environment efficiently and use the experience to build an implicit

map representation autonomously. We compare the impact of different exploration strategies

including handcrafted frontier-based exploration, end-to-end and modular approaches com-

posed of trained high-level planners and classical low-level path followers. We train these

models with different reward functions tailored to this problem and evaluate the quality of

the learned representations on four different downstream tasks: classical viewpoint render-

ing, map reconstruction, planning, and pose refinement. Empirical results show that NeRFs

can be trained on actively collected data using just a single episode of experience in an unseen

environment, and can be used for several downstream robotic tasks, and that modular trained

exploration models outperform other classical and end-to-end baselines. Finally, we show

that AutoNeRF can reconstruct large-scale scenes, and is thus a useful tool to perform scene-

specific adaptation as the produced 3D environment models can be loaded into a simulator to

fine-tune a policy of interest.

117
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Context Training of Neural Implicit Representations through Autonomous Scene Exploration

Autonomous explorative rollout

Downstream tasks: reconstruction,
planning, mapping, rendering, pose

refinement

NeRF Training

Figure 6.1: AutoNeRF overview: We propose a method for automatically generating 3D models of a

scene by training NeRFs from data collected by autonomous agents. We compare classical and RL-

trained exploration policies, with different reward definitions and evaluate the implicit representations

on reconstruction, planning, mapping, rendering, and pose refinement.

6.1 Context

Exploration is a key challenge in building autonomous navigation agents that operate in un-

seen environments. As already presented in previous chapters, in the last few years, there

has been a significant amount of work on training exploration policies to maximize cover-

age (Chaplot et al., 2020b; Chen et al., 2018; Savinov et al., 2018b), find goals specified by ob-

ject categories (Gupta et al., 2017; Chaplot et al., 2020a; Ramakrishnan et al., 2022; Ramrakhya

et al., 2022), images (Zhu et al., 2017b; Chaplot et al., 2020d; Hahn et al., 2021; Mezghani

et al., 2022) or language (Anderson et al., 2018b; Krantz et al., 2020; Min et al., 2022) and

for embodied active learning (Chaplot et al., 2020c, 2021). Among these methods, modular

learning methods have shown to be very effective at various embodied tasks (Chaplot et al.,

2020b,a; Deitke et al., 2022; Gervet et al., 2022). These methods learn an exploration policy

that can build an explicit semantic map of the environment which is then used for planning

and downstream embodied AI tasks such as ObjNav or ImageNav.

Concurrently, in the computer graphics and vision communities, there has been a recent

but large body of work on learning implicit map representations, particularly based on Neu-

ral Radiance Fields (NeRF) (Mildenhall et al., 2020; Müller et al., 2022; Garbin et al., 2021; Yu

118
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Context Training of Neural Implicit Representations through Autonomous Scene Exploration

Mesh Generation BEV map generation
(Accuracy, P, R)

Camera
Pose

Refinement
(Convergence rate)

New view
rendering

(PSNR, SSIM, LPIPS,
Sem acc, mIoU)

Time

Trained NeRF Model

Planning
(Success, SPL)

Figure 6.2: Downstream tasks: The model trained from autonomously collected data is used for several

downstream tasks related to robotics: Mesh generation for the covered scene (color or semantic mesh);

Birds-eye-view map generation and navigation/planning on this map; new view generation of RGB

and semantic frames; camera pose refinement (visual servoing).

et al., 2021; Xie et al., 2022). Prior methods (Tancik et al., 2022; Vora et al., 2021; Zhi et al.,

2021a,b) demonstrate strong performance in novel view synthesis and are appealing from a

scene understanding point of view as a compact and continuous representation of appearance

and semantics in a 3D scene. However, most approaches require training frames (RGB, depth,

semantics) that should be collected manually. Can we train embodied agents to explore an

unseen environment efficiently to collect data that can be used to create implicit map repre-

sentations or NeRFs autonomously? In this chapter, our objective is to tackle this problem of

active exploration for autonomous NeRF construction. If an embodied agent is able to build

an implicit map representation autonomously, it can then use it for a variety of downstream

tasks such as planning, pose estimation, and navigation. Just a single episode or a few minutes

of exploration in an unseen environment can be sufficient to build an implicit representation

that can be utilized for improving the performance of the agent in that environment for several

tasks without any additional supervision.

This chapter introduces AutoNeRF, a modular policy trained with RL that can explore an

unseen 3D scene to collect data for training a NeRF model autonomously (Figure 6.1). While

most prior work evaluates NeRFs on rendering quality, we propose a range of downstream

tasks to evaluate them (and indirectly, the exploration policies used to gather data for training

these representations) for Embodied AI applications. Specifically, we use geometric and se-

mantic map prediction accuracy, planning accuracy for ObjNav and PointNav and camera pose

refinement (Figure 6.2). We show that AutoNeRF outperforms the well-known frontier-based

exploration algorithm as well as state-of-the-art end-to-end learned policies, and also study

the impact of different reward functions on the downstream performance of the NeRF model.

We finally study how AutoNeRF can be used as a tool to autonomously adapt policies to a

specific scene at deployment time by providing a high-quality reconstruction of large-scale

environments that can be loaded into a simulator to improve the performance of any given

agent safely.

119
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

AutoNeRF Training of Neural Implicit Representations through Autonomous Scene Exploration

The content of this chapter can thus be summarized as follows,

• AutoNeRF: a modular RL-based policy to autonomously collect NeRF training data in a

new 3D environment.

• A study of different reward functions to favor the collection of relevant NeRF training

data.

• A reflexion on how to evaluate the quality of learned neural fields in the context of

Embodied AI, going further than novel view synthesis.

• Comparisons with frontier-based and end-to-end exploration baselines.

• A use-case showcasing the potential of the method to automatically scan a 3D scene and

load it in a simulator in a second stage to finetune a policy of interest.

6.2 AutoNeRF

We present AutoNeRF, a method to collect data required to train NeRFs using autonomous

embodied agents. In our task setup, the agent is initialized in an unseen environment and

is tasked with gathering data in a single episode with a fixed time budget. The observations

collected by the agent in this single trajectory are used to train a neural implicit representation

of the scene, which will serve as a compact and continuous representation of the density, the

RGB appearance, and the semantics of the considered environment. Finally, the trained scene

model is evaluated on several downstream tasks in robotics: new view rendering, mapping,

planning and pose refinement.

Task Specification – The agent is initialized at a random location in an unknown scene and

at each timestep t can execute one of 3 discrete actions: Move Forward 0.25m, Rotate Right 30
◦
,

Rotate Left 30
◦
. At each step, the agent receives an observation ot composed of an egocentric

RGB frame and a depth map. The field of view of the agent is 90◦. It also has access to

odometry information. The agent can navigate for a limited number of 1500 discrete steps.

AutoNeRF can be broken down into two phases: Exploration Policy Training and NeRF

Training. In the first phase, we train an exploration policy to collect the observations. The

policy is self-supervised, trained in a set of environments using intrinsic rewards. In the

second phase, we use the trained exploration policy to collect data in unseen test scenes, one

trajectory per scene, and train a NeRF model using this data. The trained NeRF model is then

evaluated on the set of downstream tasks.

6.2.1 Background

We first briefly recall relevant background on modular exploration policies and neural radi-

ance fields presented in chapters 2 and 3, but with more details and oriented toward our

120
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

AutoNeRF Training of Neural Implicit Representations through Autonomous Scene Exploration

Semantic Map

Mapping

Local PolicyAction

Global Policy

Waypoint

Environment Trajectory, data collection:

(Ego RGB-D, odometry)

Reward definition

Figure 6.3: Modular policy overview: We adapted the modular policy from Chaplot et al. (2020a): a

mapping module generates a semantic and occupancy top-down map from egocentric RGB-D obser-

vations and sensor pose. A high-level policy trained with RL predicts global waypoints, which are

followed by a handcrafted low-level policy (Fast Marching Method). The sequence of observations

comprises the data input to NeRF training.

proposed method.

Modular exploration policies

The trained policy aims to allow an agent to explore a 3D scene to collect a sequence of 2D

RGB and semantic frames and camera poses, that will be used to train the continuous scene

representation. Following Chaplot et al. (2020a,b), we adapt a modular policy composed of

a Mapping process that builds a Semantic Map, a Global Policy that outputs a global waypoint

from the semantic map as input, and finally, a Local Policy that navigates towards the global

goal, see Figure 6.3.

Semantic Map – a 2D top-down map is maintained at each time step t, with several com-

ponents: (i) an occupancy component mocc
t ∈ RM×M stores information on free navigable

space; (ii) an exploration component mexp
t ∈ RM×M sets to 1 all cells which have been

within the agent’s field of view since the beginning of the episode; (iii) a semantic compo-

nent msem
t ∈ RS×M×M, where M×M is the spatial size and S denotes the number of channels

storing information about the scene. Additional maps store the current and previous agent

locations. All maps are updated at each timestep from sensor information. Structural compo-

nents are updated by inverse projection of the current depth observation and pooling to the

ground plane, a similar computation is done for the exploration component. The semantic

maps additionally use predictions obtained with Mask R-CNN (He et al., 2017). Egocentric

121
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

AutoNeRF Training of Neural Implicit Representations through Autonomous Scene Exploration

maps are integrated over time taking into account agent poses estimated from sensor infor-

mation.

Policies – intermediate waypoints are predicted by the Global Policy, a convolutional neural

network taking as input the stacked maps (we use the architecture from Chaplot et al. (2020a))

and is trained with RL/PPO (Schulman et al., 2017). A Local Policy navigates towards the way-

point taking discrete actions for 25 steps with the analytical Fast Marching Method (Sethian,

1996).

Neural radiance fields

Vanilla Semantic NeRF – Neural Radiance Fields (Mildenhall et al., 2020) are composed of

MLPs predicting the density σ, color c and, eventually as in Zhi et al. (2021a), the semantic

class s of a particular 3D position in space x ∈ R3, given a camera viewing direction d ∈ R3.

NeRFs have been designed to render new views of a scene provided a camera position and

viewing direction. The color of a pixel is computed by performing an approximation of

volumetric rendering, sampling N quadrature points along the ray. Given multiple images

of a scene along with associated camera poses, a NeRF is trained with Stochastic Gradient

Descent minimizing the difference between rendered and ground-truth images.

Enhanced NeRF (Semantic Nerfacto) – we leverage recent advances to train NeRF models

faster while maintaining high rendering quality and follow what is done in the Nerfacto

model from Tancik et al. (2023), that we augment with a semantic head. The inputs x and

d are augmented with a learned appearance embedding e ∈ R32. Both x and d are first

encoded using respectively a hash encoding function h as x̃ = h(x) and a spherical harmonics

encoding function sh as d̃ = sh(d). x̃ is fed to an MLP fd predicting the density at the given 3D

position, yielding (σ, hd) = fd(x̃; Θd), where hd is a latent representation. hd is fed to another

MLP model fs that outputs a softmax distribution over the S considered semantic classes as

s = fs(hd; Θs) where s ∈ RS. Finally, hd, d̃ and e are the inputs to fc that predicts the RGB

value at the given 3D location, c = fc(hd, d̃, e; Θc) where c ∈ R3.

At training time, points must be sampled along shot rays to reconstruct image pixels.

First, piecewise sampling will choose half of the points uniformly up to a distance ds from the

camera, the other half of the points are distributed with an increasing step size. In the second

step, this initial set of samples is improved by proposal sampling, which consolidates samples

in regions that have the most impact on the final rendering. This requires a fast query and

coarse density representation, different from the neural field itself, implemented as a small

MLP with hash encoding.

122
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

AutoNeRF Training of Neural Implicit Representations through Autonomous Scene Exploration

6.2.2 Exploration Policy Training

As described previously, we use a modular exploration policy architecture with the Global Pol-

icy primarily responsible for exploration. We consider different reward signals for training the

Global Policy tailored to our task of scene reconstruction, and which differ in the importance

they give to different aspects of the scene. All these signals are computed in a self-supervised

fashion using the metric map representations built by the exploration policy.

Explored area — (Ours (cov.)) optimizes the coverage of the scene, i.e. the size of the ex-

plored area, and has been proposed in the literature, e.g. in Chaplot et al. (2020a,b). It

accumulates differences in the exploration component mexp
t ,

rcov
t =

M−1

∑
i=0

M−1

∑
j=0

mexp
t [i, j]−mexp

t−1[i, j]

Obstacle coverage — (Ours (obs.)) optimizes the coverage of obstacles in the scene, and

accumulates differences in the corresponding component mocc
t−1[i, j]. It targets tasks where

obstacles are considered more important than navigable floor space, which is arguably the

case when viewing is less important than navigating.

robs
t =

M−1

∑
i=0

M−1

∑
j=0

mocc
t [i, j]−mocc

t−1[i, j]

Semantic object coverage — (Ours (sem.)) optimizes the coverage of the S semantic classes

detected and segmented in the semantic metric map msem
t . This reward removes obstacles

that are not explicitly identified as a notable semantic class — see section 6.3 for their

definition.

rsem
t =

M−1

∑
i=0

M−1

∑
j=0

S−1

∑
k=0

msem
t [i, j, k]−msem

t−1[i, j, k]

Viewpoints coverage — (Ours (view.)) optimizes for the usage of the trained implicit repre-

sentation as a dense and continuous representation of the scene usable to render arbitrary

new viewpoints, either for later visualization as its own downstream task or for training

new agents in simulation. To this end, we propose to maximize coverage not only in terms

of agent positions but also in terms of agent viewpoints. Compared to Chaplot et al. (2020a),

we introduce an additional 3D map mview[i, j, k], where the first two dimensions correspond

to spatial 2D positions in the scene and the third dimension corresponds to a floor plane

angle of the given cell discretized into V=12 bins. A value of mview
t [i, j, k] = 1 indicates that

cell (i, j) has been seen by the agent from a (discretized) angle k. The reward maximizes its

changes,

rview
t =

M−1

∑
i=0

M−1

∑
j=0

V−1

∑
k=0

mview
t [i, j, k]−mview

t−1 [i, j, k]

6.2.3 NeRF training

The sequence of observations collected by the agent comprises egocentric RGB frames

{ot}t=1...T, first-person semantic segmentations {st}t=1...T and associated poses {pt}t=1...T in

123
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

AutoNeRF Training of Neural Implicit Representations through Autonomous Scene Exploration

a reference frame, which we define as the starting position t=0 of each episode. In our ex-

periments, we leverage privileged pose and semantics information from simulation. We also

conduct an experiment showcasing the difference between using ground-truth semantics from

a simulator and a Mask R-CNN (He et al., 2017) model. As in Zhi et al. (2021a), we add a

semantic head to the implicit representation, which predicts the semantic classes defined in

the segmentation maps {st}.

An important property of this procedure is that no depth information is required for

reconstruction. The implicit representation is trained by mapping pixel coordinates xi for

each pixel i to RGB values and semantic values with the volume rendering loss described in

Section 6.2.1. The input coordinates xi are obtained using the global poses pt and intrinsics

from calibrated cameras.

6.2.4 Downstream tasks

Prior work on implicit representations generally focused on two different settings: (i) evalu-

ating the quality of a neural field based on its new view rendering abilities given a dataset of

(carefully selected) training views, and (ii) evaluating the quality of a scene representation in

robotics conditioned on given (constant) trajectories, evaluated as reconstruction accuracy. We

cast this task in a more holistic way and more aligned with our scene understanding objective.

We evaluate the impact of trajectory generation (through exploration policies) directly on the

quality of the representation, which we evaluate in a goal-oriented way through multiple tasks

related to robotics (cf. Figure 6.2).

Task 1: Rendering – This task is the closest to the evaluation methodology prevalent in the

neural field literature. We evaluate the rendering of RGB frames and semantic segmentation

as proposed by Zhi et al. (2021a). Unlike the common method of evaluating an implicit

representation on a subset of frames within a collected trajectory, we evaluate it on a set of

uniformly sampled camera poses within the scene, independently of the trajectory taken by

the policy used to collect training data. This allows us to evaluate the representation of the

complete scene and not just the ability of the NeRF model to interpolate between close poses

within the training trajectory.

We render ground-truth images and semantic masks associated with sampled camera

poses using the Habitat simulator (Savva et al., 2019; Szot et al., 2021) and compare them

against the NeRF rendering. RGB rendering metrics are PSNR (Peak Signal-to-Noise Ratio),

SSIM (Structural Similarity Index Measure) and LPIPS (Zhang et al., 2018). PSNR estimates

absolute errors while SSIM evaluates the amount of retrieved structural information in the

image by incorporating priors such as pixel inter-dependencies, and LPIPS attempts to reflect

human perception by computing distance between ground-truth and rendered frames in the

feature space of a VGG network (Simonyan and Zisserman, 2014). Rendering of semantics is

evaluated in terms of average per-class accuracy and mean intersection over union (mIoU).

124
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

AutoNeRF Training of Neural Implicit Representations through Autonomous Scene Exploration

Task 2: Metric Map Estimation – While rendering quality is linked to the perception of

the scene, it is not necessarily a good indicator of its structural content, which is crucial for

robotic downstream tasks. We evaluate the quality of the estimated structure by translating

the continuous representation into a format, which is very widely used in map-and-plan

baselines for navigation, a binary top-down (bird’s-eye-view=BEV) map storing occupancy

and semantic category information and compare it with the ground-truth from the simulator.

We evaluate obstacle and semantic maps using accuracy, precision, and recall.

Cells in the occupancy and semantic top-down maps generated from NeRF models are

of size 1cm× 1cm. In order to create the occupancy map, we first compute a 3D voxel grid

by regularly querying the NeRF density head between scene bounds along x and z axes, and

between 0 and the agent’s height along the vertical y axis. We then transform the 3D grid into

a 2D top-down map by applying a sum operation along the vertical axis. We found that, when

using a Semantic Nerfacto model, generating a point cloud where each point is associated with

a semantic class from the train camera poses works best when generating the semantic top-

down map. The point cloud is converted into a 3D voxel grid, where each cell is associated

with a channel for each semantic class. A per-class sum operation can finally transform the

3D grid into a 2D map with one channel per class. The same cell resolution is used when

generating ground-truth maps from the Habitat simulator.

Task 3: Planning – Using maps for navigation, it is difficult to pinpoint the exact precision

required for successful planning, as certain artifacts and noises might not have a strong im-

pact on reconstruction metrics, but could lead to navigation problems, and vice-versa. We

perform goal-oriented evaluation and measure to what extent path planning can be done on

the obtained top-down maps.

We sample Np (= 100) points on each scene and plan from those starting points to two

different types of goals: to selected end positions, PointNav planning, and to objects categories,

ObjNav planning. The latter, ObjNav, requires planning the shortest path from the given

starting point to the closest object of each semantic class available on the given scene. For

a given episode i, Success Si is 1 if the last cell in the planned path is closer than 1m to the

goal and if less than 10 planned cells are obstacles, otherwise it is 0. We chose to allow up

to 10 obstacle cells on the planned path to keep the task from being overly complex and thus

uninformative (as each cell is rather small, i.e. 1cm× 1cm). For both PointNav planning and

ObjNav planning, we plan with the Fast Marching Method and report mean Success and SPL.

Resolution of the top-down maps used to plan a path are the same as for the Metric Map

Estimation task. Once generated, the path is evaluated on the ground-truth top-down map

from the Habitat simulator. In order to account for the size of a potential robot of radius

18cm, obstacles on the ground-truth map are dilated. We also apply a dilation with a 20cm

radius to obstacles on our top-down map before planning the path.

125
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Training of Neural Implicit Representations through Autonomous Scene Exploration

Task 4: Pose Refinement – This task (Yen-Chen et al., 2021) involves correcting an initial

noisy camera position and associated rendered view and optimizing the position until a given

ground-truth position is reached, which is given through its associated rendered view only.

The optimization process therefore leads to a trajectory in camera pose space. This task is

closely linked to visual servoing with a “eye-in-hand” configuration, a standard problem

in robotics, in particular in its “direct” variant (Marchand, 2020), where the optimization is

directly performed over losses on the observed pixel space.

We address this problem by taking the trained NeRF model f and freezing its weights θ.

In what follows, we will denote the function rendering a full image o given camera pose c and

viewing direction d as o = R(c, d). Then, given a ground truth view o∗, the camera position

and direction can be directly optimized from a starting position (c, d)[0] with gradient descent

as

(c, d)[t+1] = (c, d)[t] + ν

[
∂L(o∗,R(c, d))

∂c, d

]
,

where L is the Mean Squared Error loss and ν is a learning rate.

To generate episodes of starting and end positions, we take Nc (= 100) sampled camera

poses in each scene and apply a random transformation to generate noisy poses. The model

is evaluated in terms of rotation and translation convergence rate, i.e. percentage of samples

where the final difference with ground truth is less than 3◦ in rotation and 2cm in translation.

We also report the mean translation and rotation errors for the converged samples.

At each pose refinement optimization step, we would ideally want to render the full image

associated with the estimated camera pose to compare with the RGB frame from the camera.

As already noticed in previous work (Yen-Chen et al., 2021), doing this is expensive, and we

thus instead randomly sample pixels to be rendered within the image at each optimization

step.

Task 5: Mesh generation – In order to create a mesh from a trained NeRF model, we first

build a 3D voxel grid by querying the implicit representation regularly on a grid between the

scene bounds. Each voxel will be associated with a density, and either a color or a semantic

class depending on the nature of the mesh (color or semantic mesh) to generate. The voxel

grid is converted into a mesh by applying the Marching Cubes algorithm (Lorensen and Cline,

1987).

6.3 Experimental results

Modular Policy training – is performed on one V100 GPU for 7 days. All modular policies

are trained on the 25 scenes of the Gibson (Xia et al., 2018)-tiny training set. The used Mask

R-CNN model is pre-trained on the MS-COCO dataset (Lin et al., 2014) and finetuned on

Gibson train scenes. We consider S=15 semantic categories: {chair, couch, potted plant, bed,

126
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Training of Neural Implicit Representations through Autonomous Scene Exploration

Corozal Darden Markleeville

Predicted
RGB Mesh

Predicted
Seman3c Mesh

Ground-truth
RGB Mesh

Scene name

Figure 6.4: Mesh reconstruction: Reconstruction of 3 Gibson val scenes extracted from a NeRF model

trained on data gathered by our modular policy. Both geometry, semantics, and appearance are satis-

fying. Exploration with the modular policy, Ours (obs).

toilet, tv, dining table, oven, sink, refrigerator, book, clock, vase, cup, bottle}.

External baselines – We first compare our trained modular policies against a Frontier baseline

that is similar in terms of mapping and local navigation, but only replaces the Global Policy

with a classical Frontier-Based Exploration algorithm (Yamauchi, 1997) that maintains a 2D

frontier computed from the exploration channel of the map (same map used by modular poli-

cies: the only difference is the selection of global goals from the frontier instead of predicting

them with a neural-based Global Policy). Then, we also compare against end-to-end policies

trained with RL. More specifically, we consider 4 end-to-end policies from Ramakrishnan

et al. (2021b), that all share the same architecture but were trained with different exploration-

related reward functions: coverage (E2E (cov.)), curiosity (E2E (cur.)), novelty (E2E (nov.)),

reconstruction (E2E (rec.)). Reward functions are presented by Ramakrishnan et al. (2021b).

Evaluation – consists in running 5 rollouts with different start positions in each of the 5

Gibson-tiny val scenes for each policy, always on the first house floor. A NeRF model is then

trained on each trajectory data.

NeRF models – In our experiments, we consider two different NeRF variants presented in

Section 6.2.1. Most experiments are conducted with Semantic Nerfacto, as it provides a great

trade-off between training speed and quality of representation. Semantic Nerfacto is built on

top of the Nerfacto model from the nerfstudio library (Tancik et al., 2023). We augment the

model with a semantic head and implement evaluation on test camera poses independently

of the collected trajectory. Only the next two subsections (6.3.1, 6.3.3) will involve training a

127
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Training of Neural Implicit Representations through Autonomous Scene Exploration

Figure 6.5: Navigating in the Habitat simulator: The underlying mesh was extracted from the trained

NeRF, Ours (cov). Rendering quality and the generated BEV map are correct, as are free navigable

space and collision handling. Temporal order indicated by .

Mesh Success SPL

Original Gibson mesh 88.1 73.3

Rollout→ NeRF training→ Mesh generation 78.4 67.7

Table 6.1: Navigating inside a NeRF-generated mesh: Average PointNav performance of a policy

planning a path to the goal with the Fast Marching Method and taking discrete actions on 4 Gibson

val scenes in the Habitat simulator, from either the original mesh (Gibson) or the mesh extracted from

the NeRF model (Rollout + NeRF train. + Mesh gen.) trained from autonomously collected data by

Ours (obs.). Our reconstruction does not require depth data.

vanilla Semantic NeRF model, more precisely the one introduced by Zhi et al. (2021a) that also

contains a semantic head. We chose this variant for these specific experiments to illustrate the

possibility of providing high-fidelity representations of complex scenes as a vanilla Semantic

NeRF model trained for a longer time (12h) leads to better-estimated geometry. Results from

Semantic Nerfacto are still very good (see Figures 6.7 and 6.8) but we found meshes to be of

higher quality with a vanilla NeRF model.

6.3.1 Reconstructing house-scale scenes

We illustrate the possibility of autonomously reconstructing complex large-scale environments

such as apartments or houses from the continuous representations trained on data collected

by agents exploring the scene using the modular policy. Figure 6.4 shows RGB and semantic

meshes for 3 Gibson val scenes. Geometry, appearance, and semantics are satisfying. In

Figure 6.5 we show that such meshes can be loaded into the Habitat simulator and allow

proper navigation and collision computations. Both occupancy top-down map generation

and RGB renderings are performed by the Habitat simulator from the generated mesh.

128
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Training of Neural Implicit Representations through Autonomous Scene Exploration

Policy Success SPL

Finetuned on Gibson meshes (not comparable)† 99.7 97.9

Pre-trained (no finetuning) 90.2 82.9

Finetuned on AutoNeRF meshes 92.9 86.7

Table 6.2: PointNav Finetuning: Finetuning a PointNav agent on a mesh automatically collected from

a rollout and a NeRF with AutoNeRF improves mean performance over a pre-trained policy on a

specific scene. † an upper bound which finetunes on the original mesh. In a real use case involving a

robot automatically collecting data, this mesh would not be available (not comparable).

6.3.2 Navigating inside a NeRF-generated mesh

To further evaluate the quality of the geometry learned by an autonomously generated NeRF

and assess to what extent it can be used inside a simulator, we perform PointNav navigation

on an original mesh and a NeRF-generated one for 4 Gibson val scenes. The considered agent

is based on the introduced modular policy, restricted to the planning part: the output of the

Global Policy is replaced with the input PointNav vector. Planning is performed using the Fast

Marching Method, relying on the map channels storing information about obstacles and ex-

plored area. Table 6.1 shows that there is a performance drop between the navigation on the

original Gibson meshes and the reconstructed ones, but Success and SPL are close. The perfor-

mance on the original mesh is a “soft upper bound”, as data was collected from navigating in

this original mesh, before training a NeRF and finally generating a new mesh representation.

These results show that our NeRF-generated mesh features a satisfying geometry, allowing

to navigate properly when loaded within the Habitat simulator. Some further mesh post-

processing could be needed, along with additional work on improving lighting within the

simulator.

6.3.3 Autonomous adaptation to a new scene

A long-term goal of Embodied AI is to train general policies that can be deployed on any new

scene and perform a task of interest. Even if some policies already showcase strong general-

ization abilities, they will likely struggle with some specificities of a given environment. When

considering the deployment of trained agents on real robots in a house or apartment, such

failure modes can be problematic. A scene-specific adaptation of a pre-trained policy thus ap-

pears as a relevant alternative to learn about a new environment. However, such adaptation

should happen in simulation to ensure safety. We here explore the usage of AutoNeRF to first

explore the environment to build a 3D representation, which is then loaded into a simulator

to safely finetune a policy of interest. More specifically, we consider a policy for an agent

taking a depth frame as input at each timestep t and pre-train it on PointNav navigation on

the Gibson train scenes. It is then fine-tuned on 4 Gibson val scenes, using meshes generated

with AutoNeRF, before being evaluated on the original Gibson meshes. Sampling of training

129
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Training of Neural Implicit Representations through Autonomous Scene Exploration

RGB Semantics

Policy PSNR SSIM LPIPS (↓) Per-class acc. mIoU

Frontier 19.75 0.743 0.343 81.4 65.7

E2E (cov.) 20.94 0.750 0.332 80.1 63.9

E2E (cur.) 20.60 0.747 0.338 78.7 61.9

E2E (nov.) 23.36 0.801 0.268 84.6 71.4

E2E (rec.) 23.17 0.797 0.270 84.1 70.5

Ours (cov.) 24.89 0.837 0.218 90.2 81.2

Ours (sem.) 25.34 0.843 0.207 91.9 81.8

Ours (obs.) 25.56 0.846 0.203 91.8 83.2

Ours (view.) 25.17 0.842 0.211 91.3 82.0

Table 6.3: Rendering performance on uniformed sampled viewpoints of the full scene after training

on a single trajectory.

and validation episodes, as well as training and validation, are performed in the Habitat simu-

lator. For each environment, we sample 50k episodes from our mesh to finetune the policy for

10M training frames using PPO with a learning rate of 2.5e−6. For evaluation, we sample 1k

episodes per scene on the original Gibson meshes and report mean Success and SPL. Table 6.2

shows that the pre-trained policy already achieves great performance. However, some vali-

dation episodes fail because of certain specific scene configurations. Scene-specific finetuning

on autonomously reconstructed 3D meshes allows to improve both Success and SPL compared

with the pre-trained policy.

We also compare with finetuning directly on the Gibson mesh (for 10M frames with a

learning rate of 2.5e−5), which provides a non-comparable soft upper bound — in a real

robotic scenario, these meshes would not be accessible. We can see that performance could

still be improved further by increasing mesh reconstruction quality. However, it is important to

note that the mistakes from the pre-trained policy occur in very specific places in the environ-

ment, and thus reaching the performance of the upper bound might be about reconstructing

fine details.

6.3.4 Quantitative results

Frontier-Based Exploration vs Modular Policy – as can be seen from the quantitative compar-

isons on the different downstream tasks (Tables 6.3, 6.4, 6.5, 6.6), RL-trained modular policies

outperform Frontier-based Exploration on all metrics and should thus be considered as the

preferred means of collecting NeRF data. This is a somewhat surprising result, since Frontier-

Based Exploration generally performs satisfying visual coverage of the scene, even though it

can sometimes get stuck because of map inaccuracies. This shows that vanilla visual cover-

age, the optimized metrics in many exploration-oriented tasks, is not a sufficient criterion to

130
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Training of Neural Implicit Representations through Autonomous Scene Exploration

Occupancy Semantics

Policy Acc. Prec. Rec. Acc. Prec. Rec.

Frontier 81.2 86.9 49.9 99.7 26.6 21.0

E2E (cov.) 77.1 86.2 50.4 99.7 22.1 16.1

E2E (cur.) 81.8 90.3 50.7 99.7 19.2 12.5

E2E (nov.) 83.1 88.7 61.3 99.7 25.5 18.3

E2E (rec.) 81.6 87.6 60.0 99.7 26.2 18.0

Ours (cov.) 86.8 89.1 74.7 99.8 35.1 27.1

Ours (sem.) 86.6 88.3 76.5 99.8 35.7 29.8

Ours (obs.) 86.4 89.4 76.5 99.8 36.2 29.8

Ours (view.) 88.1 90.9 77.0 99.8 37.4 30.2

Table 6.4: Map estimation performance: Comparison of BEV maps estimated from the NeRF.

PointNav ObjNav

Policy Success SPL Success SPL

Frontier 22.4 21.4 9.6 9.1

E2E (cov.) 30.0 29.3 8.9 8.3

E2E (cur.) 29.8 29.2 8.5 8.0

E2E (nov.) 32.3 31.9 11.4 10.8

E2E (rec.) 32.8 32.6 10.5 10.0

Ours (cov.) 39.5 39.0 14.8 14.3

Ours (sem.) 37.7 37.4 16.0 15.4

Ours (obs.) 38.2 37.8 15.8 15.3

Ours (view.) 39.0 38.6 15.9 15.3

Table 6.5: Planning performance on the BEV maps estimated from the NeRF obtained with the Fast

Marching method.

collect data for NeRF training. Figure 6.6 illustrates this point with rollouts from FBE and

a modular policy trained to maximize obstacle coverage. FBE properly covers the scene but

does not necessarily cover a large diversity of viewpoints, while the modular policy provides

richer training data to the NeRF.

End-to-end Policy vs Modular Policy – Tables 6.3, 6.4, 6.5, 6.6 also show that the modular

policies outperform end-to-end RL policies on all considered metrics. Interestingly, novelty

and reconstruction seem to be the best reward functions from Ramakrishnan et al. (2021b)

when training end-to-end policies if the final goal is to autonomously collect data to build a

NeRF model.

Comparing trained policies – Rewarding modular policies with obstacles (Ours (obs.)) and

viewpoints (Ours (view.)) coverage appears to lead to the best overall performance when we

131
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Training of Neural Implicit Representations through Autonomous Scene Exploration

Policy Conv. rate Rot. Error (◦) (↓) Trans. Error (m) (↓)

Frontier 7.2 0.383 0.00955

E2E (cov.) 15.4 0.319 0.00775

E2E (cur.) 12.5 0.325 0.00799

E2E (nov.) 19.4 0.315 0.00774

E2E (rec.) 19.3 0.292 0.00734

Ours (cov.) 20.2 0.283 0.00734

Ours (sem.) 23.0 0.319 0.00784

Ours (obs.) 22.5 0.305 0.00765

Ours (view.) 21.1 0.316 0.00769

Table 6.6: Pose refinement performance: Optimizing camera viewpoints given a rendered target view-

point.

Fron%er Explora%on

Step 67 Step 105 Step 159 Step 177 Step 1499

Step 1499Step 88 Step 493 Step 795 Step 980

Ours (obs.)

Figure 6.6: Rollouts by Frontier-Based Exploration vs. Modular policy (obs cov): FBE properly covers

the scene, but does not collect a large diversity of viewpoints, while the modular policy provides richer

training data for the neural field.

consider the different metrics. Explored area coverage (Ours (cov.)) leads to highest Point-

Nav performance, corroborating its importance for geometric tasks, whereas other semantic

reward functions lead to higher ObjectNav performance, again corroborating its importance

for semantic understanding of the scene.

Semantics from Mask R-CNN – Table 6.7 shows the impact of using Mask R-CNN to compute

the semantics training data of the NeRF model compared with semantics from simulation. As

expected, performance drops because Mask R-CNN provides a much noisier training signal,

which could partly be explained by the visual domain gap between the real world and simu-

lators. However, performance on the different downstream tasks is still reasonable, showing

that one could autonomously collect data and generate semantics training signal without re-

quiring additional annotation.

132
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Training of Neural Implicit Representations through Autonomous Scene Exploration

Task Metrics Sim. Mask R-CNN

Rendering
Per-class acc. 91.8 65.4

mIoU 83.2 61.1

Map comparison
Sem acc. 99.8 99.7

Sem prec. 36.2 14.1

Sem rec. 29.8 8.5

Planning
ObjNav Success 15.8 6.8

ObjNav SPL 15.3 6.5

Table 6.7: NeRF semantic maps: Impact of the choice of ground-truth semantics vs. semantics esti-

mated by Mask R-CNN when data is collected by Ours (obs.).

GT map Predicted map

BEV map generation PointGoal planning

Goal: potted plantGoal: bed

ObjectGoal planning

Goal: refrigerator

Figure 6.7: BEV map tasks: Generation of semantic BEV maps (Left), PointNav (Middle) and ObjNav

planning (Right).

6.3.5 Qualitative results

BEV maps – Figure 6.7 gives examples of the BEV maps generated from the continuous

representation: structural details and dense semantic information are nicely recovered (Left).

Planned trajectories are close to the shortest paths, for both PointNav tasks (Middle) and

ObjNav (Right).

Semantic rendering – Figure 6.8 compares the segmentation maps and RGB frames rendered

with the continuous representation (trained with semantic masks from simulation) to the

ground-truth maps from the simulator. Again, the structure of the objects and even fine details

are well recovered, and only local noise is visible in certain areas. The semantic reconstruction

is satisfying.

6.3.6 Navigating with sensor and actuation noise

All presented experiments were conducted following task specifications from Chaplot et al.

(2020c), among which are perfect odometry information and actuation. We thus conduct an

additional experiment to evaluate the impact of sensor and actuation noise on AutoNeRF. We

add noise using realistic models from Chaplot et al. (2020b) and correct odometry information

using the pose estimation module trained by Chaplot et al. (2020b). This allows our modular

133
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Conclusion Training of Neural Implicit Representations through Autonomous Scene Exploration

RGB

Sem.

Rendered GT

Figure 6.8: Quality of rendering (RGB and semantic): RGB and semantic renderings on different

scenes, compared with ground-truth (GT) from simulation. Data collected by Ours (obs).

policy (Ours (obs.)) to explore properly environments and collect NeRF training data. We

then refine camera poses with bundle adjustment before using them to train NeRF models.

Sub-tables from Table 6.8 show that performance obviously decreases when adding noise,

but we still reach a satisfying performance in all metrics. It is also important to note that,

even after using the pose estimation module and post-processing bundle adjustment, camera

poses spanning such large scenes are still noisy, and training NeRF models on noisy poses is

considered a challenging problem in the literature Truong et al. (2023b). Better performance

might thus come from new techniques to make NeRF models more robust to camera pose

noise, which is orthogonal to the focus of this chapter.

6.4 Conclusion

This chapter introduced a task involving navigating in a 3D environment to collect NeRF

training data. We showed that RL-trained modular policies outperform classic frontier-based

exploration as well as other end-to-end RL baselines on this task, and compared different

training reward functions. We also suggested evaluating NeRFs from a scene-understanding

point of view and with robotics-oriented tasks: BEV map generation, planning, rendering, and

camera pose refinement. Finally, we showed that it is possible with the considered method

to reconstruct house-scale scenes, allowing to automatically scan a new environment to safely

finetune another policy of interest safely in simulation.

The policy considered in this chapter tackles a single task, i.e. scene exploration, and

is modular. In the next chapter, we will study the adaptation of visual features to allow a

single end-to-end neural policy to target different tasks of interests. Unlike in this chapter

and the two previous ones, we will not consider generalizing a task-specific policy to different

environments, but instead tackle the problem of generalization to different visuomotor control

tasks, even new ones unseen at training time.

134
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Conclusion Training of Neural Implicit Representations through Autonomous Scene Exploration

RGB Semantics

Policy Noise PSNR SSIM LPIPS (↓) Per-class acc mIoU

Ours (obs.) − 25.56 0.846 0.203 91.8 83.2

Ours (obs.) ✓ 20.87 0.761 0.264 85.4 73.6

(a) Rendering performance

Occupancy Semantics

Policy Noise Acc. Prec. Rec. Acc Prec. Rec.

Ours (obs.) − 86.4 89.4 76.5 99.8 36.2 29.8

Ours (obs.) ✓ 86.8 89.8 69.6 99.7 29.9 24.1

(b) Map estimation performance

PointNav ObjNav

Policy Noise Success SPL Success SPL

Ours (obs.) − 38.2 37.8 15.8 15.3

Ours (obs.) ✓ 34.5 33.8 12.9 12.4

(c) Planning performance

Policy Noise Conv. rate Rot. Error (◦) (↓) Trans. Error (m)(↓)

Ours (obs.) − 22.5 0.305 0.00765

Ours (obs.) ✓ 7.9 0.405 0.01125

(d) Pose refinement performance

Table 6.8: Navigating with sensor and actuation noise – NeRF training data is collected by Ours (obs).

135
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Chapter

7
Efficiently adapting visual features to multiple tasks

Abstract

Successfully addressing a wide variety of tasks is a core ability of autonomous agents,

requiring flexibly adapting the underlying decision-making strategies and, as will be pre-

sented in this chapter, also adapting the perception modules. An analogical argument would

be the human visual system, which uses top-down signals to focus attention determined by

the current task. Similarly, we adapt pre-trained large vision models conditioned on specific

downstream tasks in the context of multi-task policy learning. We introduce task-conditioned

adapters that do not require finetuning any pre-trained weights, combined with a single policy

trained with BC and capable of addressing multiple tasks. We condition the visual adapters

on task embeddings, which can be selected at inference if the task is known, or alternatively

inferred from a set of example demonstrations. To this end, we propose an optimization-based

estimator. We evaluate the method on a wide variety of tasks from the CortexBench benchmark

and show that, compared to existing work, it can be addressed with a single policy. In partic-

ular, we demonstrate that adapting visual features is a key design choice and that the method

generalizes to unseen tasks given a few demonstrations.

136
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Context Efficiently adapting visual features to multiple tasks

7.1 Context

Vision is one of the most important modalities for agents interacting with the world and is al-

most indispensable for dexterous manipulation or locomotion, as no other sensor can provide

information as rich and versatile. The inherent flexibility of the sensor comes with a price,

the high dimensionality of the information, and the complexity of the processes necessary

to extract useful information. Humans and other biological agents are capable of adapting

their perception systems to the task at hand. There is indeed evidence for bottom-up and

top-down processes in human vision, with the latter guiding attention to regions determined

by the requirements of the task (Corbetta and Shulman, 2002; Buschman and Miller, 2007).

There is a growing need for a similar versatility in artificial systems, and general neural

networks have been trained from large-scale data in different domains such as NLP, CV, and,

more recently, robotics. A single general vision model coupled with a neural policy would be

an appealing choice if it could allow an easy generalization to new domains or tasks. The wide

adoption of attention mechanisms in several domains has made it easier for trained models to

adapt their behavior to the requirements of different tasks without changing parameters, and

it has been shown that attention plays a crucial role in specialization on a specific instance in

language models (Voita et al., 2019) and vision and language models (Kervadec et al., 2021).

However, even powerful generally pre-trained models can benefit from parameter adaptations

to specific tasks, either through fine-tuning (Hu et al., 2022) or by adding additional trained

adapter layers to a frozen model (Chen et al., 2022a).

In robotics, prior work on the generalization capabilities of agents has focused on large-

scale end-to-end training (Reed et al., 2022) or, targeting vision specifically, on pre-trained

visual models required to generalize to various different policies (Majumdar et al., 2023; Ma

et al., 2022; Nair et al., 2023). In this chapter, we show that a single policy can be trained for

different tasks including manipulation, locomotion, and that the adaptation of visual features

is highly beneficial, beyond the inherent adaptation capabilities of attention-based models.

In particular, different tasks require diverse types of invariance and symmetries. While in

principle it should be possible to learn to disentangle a sufficiently wide set of factors of

variation in a captured representation such that it optimally performs on a wide variety of

tasks, we will show that this is not the case for an arguably dominant pre-training method,

masked auto-encoding (MAE – He et al. (2022)).

We propose task-conditioned adaptation, which allows leveraging the high-quality repre-

sentations of generally pre-trained large vision models, while keeping the required flexibil-

ity to address a wide variety of tasks, and also new (unseen) tasks. We introduce a set of

task-conditioned visual adapters that can be inserted inside a pre-trained visual Transformer-

based backbone. The task is characterized by an embedding space, which is learned from

supervision during training. We show that this embedding space captures regularities of

137
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Task-conditioned adaptation Efficiently adapting visual features to multiple tasks

Visual Adapters

New task demonstration

Known tasks

Task embedding space

Task embedding search

Task embedding

Multi-task policy

Visual features

Adapted visual

features

Figure 7.1: Task-conditioned adaptation: A single policy can be trained to address multiple heteroge-

neous tasks including manipulation, legged motion etc., and few-shot learning is possible to address

tasks given as demonstrations but unseen during training. A key element is the task-conditioned adap-

tation of visual features.

tasks and demonstrate this with few-shot capabilities: the single policy and (adapted) visual

representations can address new unseen tasks, whose embedding is estimated from a few

demonstrations (cf. Figure 7.1).

We can summarize what will be presented in this chapter as:

• Task-conditioned visual adapters to flexibly modulate visual features to a specific task.

• A single multi-task policy solving tasks with different embodiments and environments.

• A task embedding optimization procedure based on a few demonstrations of a new task

(unseen at training time) to adapt the model in a few-shot manner without any weight

fine-tuning.

• Quantitative and qualitative results assessing the gain brought by the different novelties.

7.2 Task-conditioned adaptation

All tasks considered in this work are sequential decision-making problems, where at each

discrete timestep t an agent receives the last 3 visual frames as an observation vt ∈ R3×h×w×3,

where h and w are the height and width of images, and a proprioception input pt ∈ Rda , and

138
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Task-conditioned adaptation Efficiently adapting visual features to multiple tasks

Stand Walk Run Spin Reach

Assembly Bin picking

Bu8on Press

Top. Drawer Open Hammer

Relocate

Pen

MetaWorld

Deepmind Control

Adroit

Handle Press

Faucet Close

Window Close

Faucet Open

Plate Slide

Back

Drawer Close

Bu8on Press

Wall

Peg Insert

Side

Door Close

Push Back

Bu8on Press

Top. Wall Door Open

Handle Press

SidePlate Slide

Plate Slide

Back Side

Known task Few-shot

Figure 7.2: Considered tasks: We train the method on a set Tk of known tasks and evaluate it either

on the same set, with the task known (Known task setting), or in a Few-shot setting, where a new

unseen task from a set Tu is inferred from a few demonstrations.

predicts a continuous action ât ∈ Rda , where da is the dimension of the action space, which

depends on the task at hand. We are provided with a training dataset of expert demonstrations

to train a single policy, and for inference we study two different setups: Known task , where

we a priori know the task to be executed, and Few-shot , where the trained policy must be

adapted to a new unseen task without fine-tuning only given a small set of demonstrations.

Known tasks – Following Majumdar et al. (2023), we consider K=12 robotics tasks from 3

benchmarks, Adroit (Rajeswaran et al., 2018), Deepmind control suite (Tassa et al., 2018) and

MetaWorld (Yu et al., 2020). The set of all known tasks is denoted as Tk = {tk
i }[i=1..K], where

tk
i is a 1-in-K vector encoding a known task, and is illustrated in Figure 7.2.

Unknown tasks – The ability of our method to adapt to new skills is evaluated on a set of

U=15 tasks from MetaWorld (Yu et al., 2020), for which we artificially generate demonstra-

tions with a process described in section 7.3. The set of all unknown tasks is denoted as

Tu = {tu
i }[i=1..U], where tu

i is a 1-in-U vector encoding an unknown task, and is also presented

in Figure 7.2. Most importantly, Tk ∩ Tu = ∅.

7.2.1 Base agent architecture

Following a large body of work in end-to-end training for robotics, the agent directly maps

pixels to actions and decomposes into a visual encoder and a policy.

Visual encoder without adapters – following Majumdar et al. (2023), the visual encoder,

denoted as ϕ, is a ViT model (Dosovitskiy et al., 2020) pre-trained with masked auto-encoding

(MAE). We keep pre-trained weights from VC-1 by Majumdar et al. (2023), which are publicly

available. However, we change the way the representation is collected from the pre-trained

model. Unlike Majumdar et al. (2023), the representation is not taken as the embedding of the

’CLS’ token, which we consider to be undertrained by the MAE pretext task. Instead, we train

a fully-connected layer ψ to aggregate all the token representations of the last layer of the ViT

except the ’CLS’ token. The visual observation vt associated with timestep t is thus encoded

139
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Task-conditioned adaptation Efficiently adapting visual features to multiple tasks

Vision Model

Frames

̂at

ℒ(̂at, at)

GT ac2on

at

Task id

0 1 0 0 0

Training expert demonstra2ons

θg

θψ

Proprio.

pt

Policy

Frozen
Forward pass
Backward pass

Task embedding

θτθψ

Visual adapters

vt θϕ θA θϕ θA

Figure 7.3: Method overview – Training the policy and adapters: the adapted policy is trained

with BC from expert demonstrations and given a visual encoder pre-trained with MAE. The model is

conditioned on a task embedding learned from ground-truth 1-in-K task identifiers.

as,

rt = ψ
[
ϕ(vt; θϕ); θψ

]
, (7-1)

where θϕ and θψ are weights parametrizing ϕ and ψ respectively. rt ∈ R3×dr as it contains the

dr-dim encoding of each of the 3 last visual frames processed as a data batch, where dr is the

output dimension of ψ.

As this will be relevant later, we recall here that a ViT ϕ is composed of a sequence of

Nl self-attention blocks, where ϕl is the layer at index l. If we denote the internal hidden

representation predicted at layer l as sl
t, and omit the weights of ϕl for simplicity, we have,

sl
t = ϕl(sl−1

t), (7-2)

where s0
t=vt.

Single-task policy – following Majumdar et al. (2023), the policy π is implemented as an MLP

predicting actions from the input which is a concatenation of the current frame, two frame

differences and the proprioception input pt,

ât = π
([

rt,1−rt,0, rt,2−rt,1, rt,2, pt

]
; θπ

)
, (7-3)

where [] is the concatenation operator and θπ are weights parametrizing π.

7.2.2 Adaptation

Our key contributions are visual adapter modules along with a multi-task policy, which are

all conditioned on the task at hand. This is done with a specific task embedding for each

task, taken from an embedding space of dimension de, which is aimed to have sufficient

regularities to enable few-show generalization to unseen tasks. Importantly, the different

140
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Task-conditioned adaptation Efficiently adapting visual features to multiple tasks

Vision Model

Frames

̂at

ℒ(̂at, at)

GT ac2on

at

θψ

Proprio.

pt

Policy

θτθψvt θϕ θA θϕ θA

op2mised task embedding

Few-shot adapta2on demonstra2ons

Few-shot

Figure 7.4: Method overview – Optimization of the task embedding in the Few-shot setting: In the

Few-shot case, a task embedding is estimated by optimization, maximizing the likelihood of a given

demonstration of an unknown task.

Vision Model

̂at
vt

Task id

0 1 0 0 0

θϕ

θg

θA
θψ

pt

Policy

θϕ

Predicted

θτθψ

Few-shot op8mised

θA

Known task Few-shot

Figure 7.5: Method overview – Inference for the Known task and Few-shot settings: Inference

uses a task embedding given in the Known task case, or estimated in the Few-shot case.

adapters and the multi-task policy are conditioned on the same task embedding, leading to

a common and shared embedding space. For the known task setting, where the ground-truth

label of the task is available, the task embedding is projected from a 1-in-K vector with a

linear function g trained jointly with the adapters and the policy with the downstream loss

(imitation learning). In the Few-shot setting, at test time a new unknown task is described

with a few demonstrations, and a task embedding is estimated through optimization, as will

be detailed in subsection 7.2.4. Figures 7.3, 7.4, 7.5 outline the architecture.

Conditioned on a task embedding we denote as e, the proposed adaptations are based on

“middle” and “top” adapters following Houlsby et al. (2019); Sharma et al. (2022).

Middle adapters – we add one trainable adapter after each ViT block to modulate its output.

We introduce a set of middle adapters A = {αl}[l=1..Nl], where αl is a 2-layer MLP. In the

141
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Task-conditioned adaptation Efficiently adapting visual features to multiple tasks

modified visual encoder ϕm, each adapter modulates the output of the corresponding self-

attention block and is conditioned on the task embedding e. Its output is combined with the

one of the self-attention layer through a residual connection. If we denote the internal hidden

representation predicted at layer l as sm,l
t , and omit references to the weights of ϕl and αl as in

equation 7-2 for simplicity, the associated forward pass of a given layer becomes,

sm,l
t = ϕm

l (s
m,(l−1)
t) (7-4)

= ϕl(s
m,(l−1)
t) + αl(ϕl(s

m,(l−1)
t), e). (7-5)

Top adapter – A top adapter τ, also conditioned on the task at hand, is added after the ViT

model, to transform the output of the aggregation layer ψ to be fed to the multi-task policy

(presented below). τ has the same architecture as a single middle adapter αl . The prediction

of rm
t , equivalent to rt in the non-adapted case, can be written as,

rm
t = τ

[
ψ
[
ϕm(vt, e; θϕ, θA); θψ

]
, e; θτ

]
, (7-6)

where θA and θτ are the weights parametrizing the middle adapters (each middle adapter has

a different set of weights) and the top adapter respectively.

Multi-task policy – We keep the architecture of the single-task policy in equation 7-3, as in

Majumdar et al. (2023). However, instead of re-training a policy for each downstream task of

interest, we train a single multi-task policy πm, whose action space is the union of the action

spaces of the different tasks. During training we apply a masking procedure on the output,

considering only the actions possible for the task at hand.

Let’s denote r̃m
t as the input to the policy derived from the adapted representation rm

t and

the proprioception input pt as done in equation 7-3. The conditioning on the task is done by

concatenating r̃m
t with the task embedding e, giving

ât = πm ([r̃m
t , e] , θπm) , (7-7)

where θπm are weights parametrizing πm.

7.2.3 Training

We train the model by keeping the weights of the pre-trained vision-encoder model θϕ frozen,

only the weights of the adapter modules (θA, θτ), aggregation layer (θψ), embedding layer (θg)

and multi-task policy (θπm) are trained, cf. Figure 7.3. Lets’ denote by Θ={θA, θτ, θψ, θg, θπm}
the set of optimized weights. We train with imitation learning, more specifically BC: for each

known task tk
i , we have access to a set of Ni expert trajectories that are composed of Ti discrete

steps, including expert actions. The optimization problem is given as,

Θ̂ = arg min
Θ

K

∑
i=1

Ni

∑
n=1

Ti

∑
t=1
L(âi

n,t, ai∗
n,t), (7-8)

142
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

where âi
n,t and ai∗

n,t are the predicted and ground-truth actions for a given step in a trajectory,

and L(.) is the Mean Squared Error loss.

7.2.4 Few-shot adaption to new tasks

For the Few-shot setting, the task embedding e is unknown at inference and needs

to be estimated from a set of Nd example demonstrations D={dn}[n=1..Nd] where

dn={(v∗n,t, p∗n,t, a∗n,t)}[t=1..Td] is composed of observations and actions, with Td being the length

of each demonstration. We exploit the conditioning property of the policy itself to estimate the

embedding ê as the one which obtains the highest probability of the demonstration actions,

when the policy is applied to the demonstration inputs, i.e.

ê = arg min
e

Nd

∑
n=1

Td

∑
t=1
L(πm ([r̃m∗

n,t , e
]

, θπm
)

, a∗n,t), (7-9)

where r̃m∗
n,t is the representation extracted from the demonstration input (v∗n,t, p∗n,t), and which

itself depends on e (not made explicit in the notation). The minimization is carried out with

SGD from an embedding initialized to zero.

7.3 Experimental results

Training – all variants involving adapters and/or a multi-task policy (rows (b)-(f) in Table 7.1)

were trained for 50 epochs with BC, cf. §7.2.3, following training hyperparameters in Majum-

dar et al. (2023). Between 20 and 95 expert trajectories are available depending on the task.

We used the datasets of trajectories from Majumdar et al. (2023).

Evaluation – to better handle possible overfit on hyperparameter selection, our evaluation

setup is slightly different from Majumdar et al. (2023) as we perform 100 validation rollouts to

select the best checkpoint of each model, and then test the chosen model on 100 test rollouts.

For our multi-task policy, the best checkpoint is the one with the highest average validation

performance across all tasks. Single-task policies are validated only on the task they were

trained on, giving them an advantage, and for this reason, they are reported as “soft upper

bounds”. We report the average performance and standard deviation among 3 trained models

(3 random seeds) for each variant as mean ± std (Table 7.1).

In total, we conduct evaluations of our method on 27 different tasks, 12 known and 15

unknown, with varying environments, embodiments, and required sub-skills. This allows to

evaluate the adaptation and generalization abilities of the multi-task policy.

Evaluation metrics – Following Majumdar et al. (2023), we consider a rollout success (1 if the

task was completed properly, 0 otherwise) for tasks in the Adroit and MetaWorld benchmarks,

and report the normalized return for DMC. Episodes have a maximum length of 1000 steps

and each step reward is comprised between 0 and 100 in DMC, normalization is therefore

done by dividing the agent’s return by 10. For all tasks, performance is averaged across

143
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

Figure 7.6: Known task — Qualitative results: Three successful policy rollouts on known tasks from

the test set. The multi-task approach performs well on a variety of diverse tasks while being trained

on a limited set of demonstrations.

rollouts.

Architecture details – are presented below.

Vision encoder: we use a ViT-B backbone, initialized from VC-1 weights, as the base

vision encoder ϕ. It is made of 12 self-attention layers, each composed of 12 attention heads,

with a hidden size of 768. The input image of size 224×224×3 is divided into a grid of

14×14 patches, where each patch has thus a size of 16×16 pixels. An additional ’CLS’ token

is appended to the sequence of image tokens to follow the setup used to pre-train the model.

Task embedding: the task embedding is a 1024-dim vector. For known tasks, it is predicted

by a linear embedding layer from a 1-in-K vector where K=12.

Middle adapters: one adaptation module αl is inserted after each self-attention layer in-

side ϕ. It is composed of 2 fully-connected layers with respectively 384 and 768 neurons.

A GELU activation function is applied to the output of the first layer. The input to a mid-

dle adapter is the concatenation of the task embedding and a token representation from the

previous self-attention layer. It thus processes all tokens as a batch.

Aggregation fully-connected layer: the input to the aggregation fully-connected layer ψ

is a concatenation of the 768-dim representation of all 14×14=196 tokens. It is implemented

as a simple fully-connected layer predicting a 768-dim vector representation.

Top adapter: the top adapter τ is fed with the output of ψ, again concatenated to the task

embedding. It is composed of 2 fully-connected layers that both have 768 neurons. A ReLU

activation function is applied to the output of the first layer.

144
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

MT Adapters Task Multi-task performance
π Mid. Top emb. Adroit DMC MetaWorld Benchmarks avg Tasks avg

Val Test Val Test Val Test Val Test Val Test

(a) − − − N/A 44.0 ± 1.1 38.3 ± 2.5 49.6 ± 0.5 48.0 ± 0.3 53.5 ± 2.1 47.8 ± 2.0 49.1 ± 0.5 44.7 ± 0.3 50.3 ± 0.9 46.3 ± 0.4

(b) ✓ − − L 36.3 ± 1.7 33.0 ± 4.0 55.3 ± 1.4 54.1 ± 0.3 41.7 ± 1.6 34.7 ± 0.9 44.4 ± 1.0 40.6 ± 1.8 46.5 ± 1.1 42.5 ± 1.2

(c) ✓ NC − L 40.2 ± 1.2 37.3 ± 2.8 54.0 ± 1.5 54.8 ± 1.9 45.8 ± 4.5 36.3 ± 2.5 46.7 ± 1.6 42.8 ± 1.9 48.3 ± 1.9 44.2 ± 1.8

(d) ✓ C − L 42.0 ± 2.5 43.8 ± 2.2 59.1 ± 1.3 58.8 ± 0.3 48.6 ± 4.8 40.8 ± 3.0 49.9 ± 2.1 47.8 ± 1.4 51.9 ± 2.1 48.8 ± 1.3

(e) ✓ C NC L 44.3 ± 1.2 43.2 ± 1.5 60.5 ± 0.5 60.3 ± 2.5 58.6 ± 1.6 48.4 ± 1.9 54.5 ± 0.7 50.6 ± 0.8 57.0 ± 0.7 52.5 ± 1.1

(f) ✓ C C L 42.0 ± 0.8 42.3 ± 1.0 59.9 ± 0.9 60.0 ± 0.5 65.3 ± 1.0 54.5 ± 3.3 55.8 ± 0.1 52.3 ± 1.0 59.2 ± 0.1 54.8 ± 1.2

(g) ✓ C C Rd 4.2 ± 4.0 1.3 ± 0.9 10.3 ± 0.7 8.5 ± 1.1 1.3 ± 0.9 0.1 ± 0.1 5.3 ± 0.8 3.3 ± 0.2 5.5 ± 0.1 3.8 ± 0.4

(h) ✓ C C RdP 0.7 ± 0.9 3.2 ± 2.5 5.7 ± 1.2 9.5 ± 6.1 0.9 ± 0.6 0.3 ± 0.4 2.4 ± 0.5 4.3 ± 2.2 2.9 ± 0.4 4.6 ± 2.5

Table 7.1: Known task — Impact of visual adapters: Validation and test performance on known tasks

of different baselines highlighting the gain brought by adapters. Both middle and top adapters bring

a boost in performance, and conditioning them on the learned task embedding increases performance.

Our multi-task policy outperforms single-task policies with VC-1 non-adapted features. MT π: multi-

task policy – NC: Non-conditioned – C: Conditioned – Task emb.: whether to input at evaluation time,

either the learned task embedding and chosen from ground-truth (L), a random vector as the task

embedding (Rd), or a randomly picked task embedding among the set of K=12 embeddings (RdP) –

Benchmarks avg: average performance across the 3 considered benchmarks (Adroit, DMC, MetaWorld)

– Tasks avg: average performance across all 12 known tasks. Performance is reported as mean ± std

over 3 training runs (seeds).

Multi-task policy: the policy πm is a 3-layer MLP, with 256 neurons for all layers and

ReLU activation functions. A batch normalization operation is applied to the input to the

policy. πm outputs a 30-dim action vector, as 30 is the number of components in the action

space with the most components among the 12 known tasks. When solving a task with a

smaller action space, we mask out the additional dimensions.

Known task — Impact of visual adapters – Table 7.1 presents a detailed comparison of

different methods on the known task setting. The baseline in row (a) follows the setup in Ma-

jumdar et al. (2023) to train single-task policies (one per task) from non-conditioned VC-1

features. For this variant, we use the representation of the ’CLS’ token as the vector fed to the

policy as done by Majumdar et al. (2023), while all other baselines use our proposed token

aggregation layer.

Row (b) is our multi-task policy without any adapter. As expected there is a performance

drop compared to the specialized policies in row (a), as the problem to solve has become

more difficult. Adding adapters and conditioning them on the task embedding, shown in

rows (c)-(f), brings a boost in performance, both for middle and top adapters. In particular,

conditioning adds a further boost compared to non-conditioned adapters, with all choices

enabled, row (f), obtaining the best average performance.

Rows (g) and (h) are ablation experiments evaluating the impact of choosing random task

145
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

10 20 30 40 50

30

40

50

60
Tasks avg

(b) M(-) / T(-)
(c) M(NC) / T(-)
(d) M(C) / T(-)
(e) M(C) / T(NC)
(f) M(C) / T(C)

10 20 30 40 50

30

40

50

Benchmarks avg

10 20 30 40 50
20

30

40

Adroit

10 20 30 40 5030

40

50

60
DMC

10 20 30 40 50
20

40

60

MetaWorld

25 50
20

40

60

Pen

25 50

40

60

Relocate

25 500

10

20

Stand

25 50

60

70

80

Walk

25 50

40

60

Reach

25 50

40

60

Run

25 50

10

20

30

40 Spin

25 50

40

60

Assembly

25 50
0

25

50

75
Bin pick

25 50
0

20

40

60 Button

25 500

20

40

60
Drawer

25 50
40

60

80

100 Hammer

Figure 7.7: Known task — Impact of visual adapters: Evolution of the validation performance

during training for rows (b)-(f) in Table 1 of the main paper. In the legend, M and T refer respectively

to the state of middle and top adapters, and -, NC or C mean they are absent, not conditioned or

conditioned on the task embedding. On all plots, the y-axis represents the performance score and the

x-axis corresponds to the training epoch. Colored lines represent the evolution of mean performance

over 3 training runs (3 random seeds) and shaded areas represent standard deviation.

embeddings, row (g), or of taking a random choice between the 12 learned embeddings, row

(h). In both cases, the performance collapses.

A particularly important conclusion that can be drawn from the experiments outlined

in Table 7.1 is that the proposed multi-task approach (row (f)) outperforms the single-task

policies without adapters (row (a)). This shows that a multi-task policy can perform well on

a series of tasks while being trained on a limited set of demonstrations. Figure 7.6 presents 3

successful test rollouts of our multi-task approach on diverse known tasks.

Figure 7.7 shows the evolution of the validation score as a function of training epochs

for rows (b)-(f) in Table 7.1. These curves confirm the gain brought by both middle and top

adapters, and the positive impact of conditioning them on the task at hand.

Finally, Figure 7.8 visualizes the per-task test performance on known tasks of single-task

146
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

Adroit Deepmind Control MetaWorld

Figure 7.8: Known task — Per-task performance of policies in Table 7.1: Single-task policies (row

(a)), our approach without any adapter (row (b)) and with conditioned middle and top adapters (row

(f)). The adapters lead to a performance gain on most tasks, and our multi-task solution is competitive

with single-task policies. Colored bars and error bars respectively show mean and std over 3 training

runs (seeds).

policies (row (a) in Table 7.1), our approach without any adapter (row (b) in Table 7.1) and

with conditioned middle and top adapters (row (f) in Table 7.1). The proposed adapters lead

to a performance gain on most tasks compared with the solution without adapters, and the

multi-task solution is competitive with single-task policies, even outperforming them on half

the tasks.

Known task — Additional ablation studies – After studying the impact of introduced

adapters, we conduct other studies presented below to learn more about specific design

choices. Results are shown in Table 7.2.

Impact of conditioning the policy on the task at hand: Row (b) in Table 7.2 reaches

the same performance, even slightly better, as row (a), showing that when adapters are con-

ditioned on the task at hand, conditioning the policy itself is not necessary. This seems to

indicate that conditioned adapters already insert task-related information into visual embed-

dings fed to the policy.

Using the ’CLS’ token representation as input to the policy: Row (c) in Table 7.2 per-

forms worse than row (a), indicating that our introduced tokens aggregation layer ψ improves

over the strategy used in previous work consisting in feeding the output ’CLS’ token to the

policy. This confirms our assumption that the ’CLS’ token is undertrained under the MAE

pre-training task.

Impact of the middle adapters when using top adapters: Row (d) in Table 7.2 also per-

forms worse compared with row (a), showing that when training a conditioned top adapter,

middle adapters are still very important, bringing a significant boost in performance.

Known task — Impact on other visual backbones – Table 7.3 shows the impact of our task-

147
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

Cond. Adapters ’CLS’ Multi-task performance
π Mid. Top token Adroit DMC MetaWorld Benchmarks avg Tasks avg

Val Test Val Test Val Test Val Test Val Test

(a) ✓ C C − 42.0 ± 0.8 42.3 ± 1.0 59.9 ± 0.9 60.0 ± 0.5 65.3 ± 1.0 54.5 ± 3.3 55.8 ± 0.1 52.3 ± 1.0 59.2 ± 0.1 54.8 ± 1.2

(b) − C C − 42.3 ± 2.0 40.8 ± 3.0 59.2 ± 1.0 59.2 ± 2.3 68.7 ± 2.2 57.6 ± 3.4 56.8 ± 0.8 52.5 ± 0.9 60.4 ± 0.8 55.5 ± 0.5

(c) ✓ C C ✓ 38.8 ± 5.9 36.2 ± 2.3 57.8 ± 1.9 58.1 ± 2.6 57.5 ± 8.0 50.9 ± 4.3 51.4 ± 2.8 48.4 ± 0.6 54.5 ± 2.9 51.4 ± 1.3

(d) ✓ − C − 34.7 ± 1.5 34.7 ± 3.3 51.4 ± 0.4 52.1 ± 0.5 53.6 ± 4.4 44.5 ± 4.7 46.6 ± 1.6 43.8 ± 1.8 49.5 ± 2.0 46.0 ± 1.9

Table 7.2: Known task — Additional ablation studies: Validation and test performance on known

tasks of different neural variants. Row (a) is equivalent to row (f) in Table 1 of the main paper. When

using conditioned adapters, giving the task embedding as input to the policy is not necessary. Our

introduced tokens aggregation layer is better than using the representation of the ’CLS’ token. Finally,

when training a conditioned top adapter, middle adapters are still important and bring a boost in

performance. Cond π: policy conditioned on the task embedding – C: Conditioned – ’CLS’ token:

using the ’CLS’ token representation as the frame embedding fed to the policy. Performance is reported

as mean ± std over 3 training runs (seeds).

ViT Ours Multi-task performance
Adroit DMC MetaWorld Benchmarks avg Tasks avg

Val Test Val Test Val Test Val Test Val Test

PVR (Parisi et al.)
− 34.7±2.8 30.2± 1.0 58.1±3.0 55.3± 7.2 41.8± 1.7 33.5± 1.4 44.8± 1.3 39.6± 3.0 47.4± 1.3 42.0± 3.5

✓ 43.3± 2.5 41.0± 5.1 61.9± 1.3 61.3± 1.2 66.8± 2.3 55.7± 3.4 57.3± 1.0 52.7± 3.1 60.9± 0.8 55.6± 2.7

MVP (Radosavovic et al.)
− 38.0±1.3 34.3±2.4 56.5±2.1 56.5±1.7 42.8±6.9 35.9±5.6 45.8±1.5 42.2±2.2 47.7±1.9 44.2±2.2

✓ 47.7±5.9 46.2±2.4 57.3±2.9 56.9±2.5 64.9±12.1 55.4±12.2 56.6±4.0 52.8±2.6 58.9±4.4 54.5±3.8

Table 7.3: Known task — Impact on other visual backbones: Validation and test performance on

known tasks for two additional visual backbones (PVR Parisi et al. (2022) and MVP Radosavovic et al.

(2023)). Our task-conditioned adapters improve the extracted visual features in both cases, leading

to higher multi-task policy performance. Performance is reported as mean ± std over 3 training runs

(seeds).

148
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

Handle

Press

Faucet

Close

Window

Close

Faucet

Open

Plate

Slide

Back

Drawer

Close

Button

Press

Wall

Peg

Insert

Side

Door

Close

Push

Back

Button

Press

Top.

Wall

Door

Open

Handle

Press

Side

Plate

Slide

Plate

Slide

Back

Side

Mean

Success

Figure 7.9: Few-shot — Per-task performance: After optimizing the task embedding for each task

from 5 demonstrations, our method can adapt to many of them (without finetuning). Colored bars and

error bars respectively show mean and std over 3 training runs (seeds).

conditioned adapters on the visual features extracted by two other SOTA ViT-B backbones, i.e.

PVR (Parisi et al., 2022) and MVP (Radosavovic et al., 2023). As can be seen, our adapters bring

a boost in policy performance for both pre-trained backbones, generalizing the conclusions

obtained with VC-1.

Few-shot – adaptation to new tasks without finetuning model weights is an important ability

of any general policy, which we evaluate with the following experiments: for each task within

a set of unknown tasks (cf. Figure 7.2), we collect only 5 demonstrations used to optimize

a task embedding specific to this task with the method detailed in section §7.2.4. We then

evaluate the method conditioned on the optimized embedding on 100 test rollouts.

To generate the set Tu of unknown tasks, we select tasks from the MetaWorld dataset that

do not belong to CortexBench, and are thus not part of the set of training known tasks Tk.

We collect demonstrations using single-task policies from TD-MPC2 (Hansen et al., 2024) that

were specifically trained on each task of MetaWorld independently. To ensure high-quality

demonstrations, we only consider tasks where TD-MPC2 policies reach a success rate higher

than 95%. Furthermore, to be compatible with the setup from CortexBench authors, in partic-

ular, to keep the same camera locations, we filter out the tasks where the goal is not always

visible in the camera FOV. This leads to a set of 15 unknown tasks that are quite different from

the tasks in the training set Tk as they involve different objects (handle press, faucet, plate, door,

window, etc.) and types of manipulation (sliding an object, lowering a press, opening a window,

etc.). Each collected demonstration is a sequence of visual frames, proprioception inputs, and

expert actions. The optimization of the task embedding is performed independently for each

task (cf. §7.2.4). We use the AdamW optimizer and a learning rate of 1e−1 during the task

embedding search.

Figure 7.9 presents the per-task performance in this setting. Despite the large variations

between the new tasks in Tu and the ones in the training set (Tk), the multi-task policy can

149
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

(a) Successful rollouts

(b) Failed rollouts

Figure 7.10: Few-shot — Qualitative results: (a) The policy tackles new tasks involving objects

and/or manipulation requirements unseen during training. (b) In the first row (button-press-wall task),

it performs the task correctly until the end where it fails to properly push the button fully. In the

second row (push-back task), it properly moves the cube but fails to bring it to the goal position (green

dot).

adapt to many of them, without requiring any weight finetuning. Interestingly, the method

performs particularly well on the Drawer Close task, which could be related to the presence

of the time-inversed Drawer Open task in the training set. This provides some evidence that

the method can exploit regularities between tasks, which seem to be captured by the task

embedding space, making it possible to generalize to unseen variations. Figure 7.10 (a) shows

qualitative examples of successful rollouts on the new tasks. The policy manipulates new

objects (faucet, plate, window) and performs new moves (rotating the faucet or sliding the plate)

not seen during training.

Finally, Figure 7.10 (b) shows failure cases on unknown tasks. As seen on the first row, the

policy avoids the wall, reaches the button, and starts pushing it, but fails to push it fully. This

particular behavior was also observed on other rollouts, explaining the low success rate on this

button-press-wall task while mastering a part of the required sub-skills. On the second row, the

policy is able to move the cube but fails to bring it to the goal location (green dot). This gives

some indication of the difficulty of the few-shot generalization case: exploiting regularities

in the task space requires that tasks be performed more than just approximately, as often the

success metric is sparse, and rollouts only count to the metric when they are executed fully

and correctly.

150
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

Middle Adapter (C)

Middle Adapter (NC)

No Adapter

Final goal

Observed frames

Figure 7.11: Visualization of attention maps (Assembly task) – First row: observed input frames.

Following blocks: for each model type, we show the attention map of the last ViT layer, first overlaid

on top of the visual frame and below as a colored heatmap. In this example, middle adapters allow

to focus the attention on important regions, and task conditioning leads to a better covering of entire

objects and agent parts, along with greater attention towards the final goal for all frames.

Known task — Visualizing the influence of task-conditioned adaptation on attention –

Sequences of visual frames used in this experiment are taken from a held-out set of expert

trajectories not used at training time. We visualize here the attention map of the last layer

of the vision encoder. To this end, we sum attention maps for all tokens and all heads, and

normalize them between 0 and 1. These visualizations are shown in Figures 7.11 and 7.12.

In both figures, the first row presents a sequence of visual frames and below, for each model

variant (No Adapter, Middle Adapter (NC), Middle Adapter (C)), one can see the attention map

overlaid on top of the visual frame and displayed below as a colored heatmap.

As can be seen in Figure 7.11, the middle adapters help focus the attention on the most

important parts of the image compared with vanilla VC-1 attention without adapters. When

151
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

Middle Adapter (C)

Middle Adapter (NC)

No Adapter

Final goal

Observed frames

Figure 7.12: Visualization of attention maps (Relocate task) – First row: observed input frames.

Following blocks: for each model type, we show the attention map of the last ViT layer, first overlaid

on top of the visual frame and below as a colored heatmap. In this example, middle adapters allow to

focus the attention on important regions, and task conditioning leads to a better covering of the robotic

hand and the sphere goal in all frames.

adapters are not conditioned (NC), they tend to produce very narrow attention. Conditioning

on the task at hand keeps the focus on important regions and leads to covering the entire ob-

jects of interest and important agent parts. Most importantly, when adapters are conditioned

on the task embedding, more attention is put on the final goal in all frames, while this is not

the case for unconditioned adapters.

Figure 7.12 presents another visualization of the attention map of the last layer of the

vision encoder, confirming that middle adapters lead to better-focused attention around im-

portant objects related to the task, compared with vanilla VC-1. Unconditioned adapters (NC)

tend to either produce very narrow (first frames in Figure 7.12) or quite broad (last frames

in Figure 7.12) attention. Task conditioning leads to a better coverage of entire objects and

152
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

Middle Adapter (NC)No Adapter Middle Adapter (C)

Figure 7.13: Task-related information inside visual embeddings: t-SNE plots of visual embeddings

for a set of frames for DMC Stand and Walk tasks. We chose these tasks for their visual similarity,

making it hard to distinguish between them from vision only. Conditioning of the middle adapters

leads to two properly separated clusters, showing the insertion of task-related information into the

visual embeddings.

important agent parts, again improving the attention towards the final goal to reach.

Known task — Conditioning middle adapters helps insert task-related information into

visual embeddings – In order to study the underlying mechanisms of adapter modules, we

examine the content of produced visual embeddings. Figure 7.13 shows t-SNE plots of visual

embeddings for a set of frames for both the DMC Stand and Walk tasks. Visual observations

are identical for both tasks at the beginning of rollouts, and very similar in the rest of the

sequences, making it very hard to distinguish between these 2 tasks from a visual observation

only. Embeddings from the conditioned middle adapters form two well-separated clusters,

showcasing the task-related information brought by conditioning adapters on the task at hand.

Known task — Non-linear probing of actions – Table 7.4 shows the performance of a prob-

ing MLP network trained to regress the expert action to take from the visual embedding of

a single frame only. As can be seen, its performance improves drastically when trained on

embeddings predicted by a vision encoder composed of conditioned middle and top adapters.

A conditioned top adapter thus inserts action-related information within visual embeddings.

Known task — Diversity of known tasks – Table 7.5 (b) and Table 7.6 (c) show a model

trained on MetaWorld only, which performs better on MetaWorld than models trained on all

3 benchmarks (the domain gap between them is large). The lower performance on MetaWorld

when training on all 3 benchmarks is largely outweighed by the ability to address Adroit and

153
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

0 20 40 60 80 100
Number of demonstrations

25

30

35

40

M
ea

n
fe

w-
sh

ot
 p

er
fo

rm
an

ce

Figure 7.14: Few-shot — Impact of the number of demonstrations on few-shot adaptation to unseen

tasks: Few-shot performance as a function of the number of demonstrations used to optimize the task

embedding. We can achieve 23.8% from a single demonstration, and more demonstrations can lead

to higher performance. However, the trend is not as simple as 100 demonstrations lead to the same

performance as 5 demonstrations.

DMC.

Few-shot — Few-shot adaptation baseline – Table 7.6 compares model finetuning on new

tasks (b) with our task embedding search (a). As expected, (b) performs better but task

embedding search (a) solves a harder problem, as we keep a single policy. Our adapters can

thus be used in 2 settings: (i) task embedding search, keeping a single policy addressing

all tasks (low memory footprint), (ii) task-specific fine-tuning to reach the best performance

possible if memory is not an issue (one specific set of 130M parameters for each task).

Few-shot — Impact of the number of demonstrations on few-shot adaptation to unseen

tasks – Figure 7.14 presents the evolution of the average few-shot performance of our method

across the 15 unknown tasks depending on the number of available demonstrations when

optimizing the task embedding. From only a single demonstration per task, we can already

reach a satisfying 23.8% mean performance. Adding more demonstrations can allow reach-

ing higher performance, but the scaling law does not appear to be as simple as using 100

demonstrations leads to the same final performance as 5 demonstrations.

154
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Experimental results Efficiently adapting visual features to multiple tasks

Middle adapters Top adapter MSE R2

(a) − − 0.067 0.69

(b) NC − 0.069 0.57

(c) C − 0.069 0.59

(d) C NC 0.037 0.90

(e) C C 0.034 0.92

Table 7.4: Known task — Non-linear probing of actions: We explore the performance of action

regression from the visual embedding of a single frame. Considered metrics are the Mean Squared

Error (MSE) and coefficient of determination (R2). The top adapter seems to insert action-related

information into the visual embedding, as the probing MLP achieves the best performance.

Training MetaWorld

Val Test

(a) All 3 benchmarks 65.3±1.0 54.5 ±3.3

(b) MetaWorld only 75.6±1.6 67.8±2.6

Table 7.5: Known task — Diversity of known tasks: Validation and test performance on MetaWorld

known tasks when our approach with task-conditioned adapters is either trained on the three con-

sidered benchmarks (Adroit, DMC, MetaWorld), or on tasks from MetaWorld only. As expected, the

model trained on known tasks from MetaWorld only reaches higher performance. Performance is re-

ported as mean ± std over 3 training runs (seeds).

Opt. Train. Setting tu
0 tu

1 tu
2 tu

3 tu
4 tu

5 tu
6 tu

7 tu
8 tu

9 tu
10 tu

11 tu
12 tu

13 tu
14 Mean

(a) TE opt. All 3 Single policy 2±4 1±2 55 ±26 41±21 4±4 34±10 81±21 72±12 0±0 11±17 34±30 48±6 47±2 53±21 4±1 33±2

(b) Ft. All 3 15 policies 1±2 0±0 49±44 69±22 5±2 62±8 96±4 91±7 2±3 54±8 50±4 22±19 66±7 89±1 3±2 44±3

(c) TE opt. MW Single policy 3±6 0±0 56±44 64±20 1±2 69±19 100±0 77±20 0±1 6±6 22±38 19±3 55±13 57±17 5±3 36±5

Table 7.6: Few-shot — Performance of a finetuned baseline (Ft.) and task embedding search (TE opt.)

for a policy either trained on MetaWorld only (MV) or all 3 benchmarks (All 3). tu
i refers to the i-th

unknown task. Performance is reported as mean ± std over 3 training runs (seeds).

155
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Conclusion Efficiently adapting visual features to multiple tasks

7.4 Conclusion

Perception and action are closely tied together, and studies of human cognition have shown

that a priori knowledge about a downstream task guides the visual system. We followed

this direction in the context of artificial agents by introducing task-conditioned adapters that

modulate the visual features of a pre-trained neural backbone. Such adapters, conditioned

on a learned task embedding, improve the performance of a multi-task policy across bench-

marks and embodiments. Even more interesting is the use of task embeddings to adapt in

a few-shot manner, i.e. from a small set of demonstrations, to new tasks unseen at training

time. We proposed an optimization procedure to estimate a new task embedding and achieve

generalization to unseen tasks, involving new objects and manipulation sub-skills, providing

evidence for regularities in the learned embedding space.

The next chapter will be the occasion to summarize what we covered in this manuscript,

and to take a step back: what are current promising trends in Embodied AI and, more impor-

tantly, what are future perspectives?

156
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Chapter

8
Conclusion

Do you remember the coffee dilemma from the introduction of this manuscript? We have cov-

ered a few different subjects related in one way or another to it. Needless to say we are still

far from autonomous agents able to reliably make a coffee themselves. We will first review

what we have covered in this manuscript, before taking a step back to consider prominent

directions in Embodied AI, either touched in the previous chapters or further in terms of

considered concepts.

8.1 Summary of the presented contributions and directly related perspectives

First, chapter 4 explored the use of mapping-related auxiliary supervision to help the emer-

gence of spatial reasoning abilities in neural agents. Interestingly, we were able to show that

teaching agents to remember the location of previously seen landmark objects improves the

navigation abilities of different variants, either encoding past experience with a grid map

representation but also with a simple recurrent memory. This provides a relevant alterna-

tive to augmenting neural architectures with inductive biases: instead, one can include prior

information about the task to solve directly in the supervision signal. Reducing inductive

biases might be a way to keep more representation flexibility while augmenting the super-

vision signal could lead to the same performance with a simpler model and could be more

straightforward to implement.

However, equipping neural agents with specific modules to help with important sub-

skills such as scene mapping is still a promising direction as shown in chapter 5 where we

studied the integration of neural implicit representations of space in RL-trained agents. As

157
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Current and future trends in Embodied AI touched in this manuscript Conclusion

presented in chapter 3, neural fields have been leveraged in robotics, in particular, to perform

real-time visual SLAM, but without experimenting with how to incorporate them into an

agent navigating autonomously to solve a task of interest. We thus targeted the real-time

optimization of semantic and geometric neural representations and the RL-based training

of neural agents to use these representations, showing good navigation performance. More

specifically, we introduced continuous representations of semantic landmark locations and

explored area, the latter requiring a special global reader to extract a global summary from

representation weights. Our studies showed that implicit representations are an interesting

direction but come with efficiency challenges, mainly if included in an RL training loop, for

which we proposed solutions.

Unlike in chapter 5 where we questioned how to use neural fields optimized in real-time

to support semantic navigation, chapter 6 dealt with a related yet different question: how to

autonomously navigate a new environment to collect NeRF training data? This time, the neural field

is not used at navigation time, but the agent tries to explore the environment as thoroughly

as possible to build a permanent 3D reconstruction of the scene in a second stage to be used

later for downstream tasks. We also reflected on how to best evaluate the quality of a trained

neural field in the context of robotics, going further than the standard novel view synthesis

evaluation task. We showed that a modular policy could explore a house-scale unknown scene

to collect data in a single episode allowing to reconstruct the environment. Further than this,

we also motivated the interest of such an approach to perform an automatic scanning of a

new scene, allowing to then use the obtained 3D representation to perform safe fine-tuning of

other policies of interest in simulation.

While chapters 4, 5 and 6 targeted the evaluation of the generalization abilities of neural

agents to new scenes for a specific task, chapter 7 studied how to best adapt visual features to

solve different tasks with a single policy, even considering generalizing to new ones. Visual

perception has been an important topic of this whole manuscript, but this last chapter was

about explicitly adapting a pre-trained visual model to flexibly extract relevant features de-

pending on the task to solve. We introduced task-conditioned adapters, allowing to modulate

the features of a pre-trained vision backbone. Adapters have been extensively used in NLP

or CV and our study showed that task-conditioned adaptation could be a relevant solution to

the problem of on-the-fly adaptation we would like autonomous agents to be able to solve.

Indeed, the strategy to first pre-train a general vision model on a large diverse dataset that

will then be adapted from a few demonstrations of a task of interest is appealing because very

efficient.

8.2 Current and future trends in Embodied AI touched in this manuscript

This manuscript studied the improvement of mapping abilities in neural agents, both by aug-

menting the underlying supervision signal and proposing neural-based mapping methods.

158
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Current and future trends in Embodied AI touched in this manuscript Conclusion

Figure 8.1: PRISM-1 reconstruction sample – reproduced from1

We also covered the active collection of training data for such neural-based representations

using autonomous agents. Finally, we considered the adaptation of visual features extracted

by pre-trained vision models to the task at hand.

The common point between these different topics is the generalization to new 3D environ-

ments and/or tasks for neural-based agents. Indeed, the ability to robustly adapt to novelty

is essential when targeting autonomy.

8.2.1 Generalization to new environments

As presented in chapter 3, generalization to new environments can be improved thanks to

the increase in the quality and scale of 3D datasets, but also the neural models themselves to

make them more robust.

More realistic simulation – Current efforts in the community are directed toward simula-

tion realism to narrow the gap between simulation and reality. A recent example is in the

autonomous driving domain, which shares many similarities with Embodied AI, with the

PRISM-1 model introduced by Wayve1. A reconstruction sample is shown in Figure 8.1,

highlighting the high-quality rendering of dynamic outdoor scenes. PRISM-1 is a 4D scene

reconstruction model where in addition to space, time is also taken into account in the re-

construction of a scene. It is thus possible to train an agent to interact in a photo-realistic

dynamic scene with pedestrians, bikes, cars moving. Methods like NeRF or the more recent

Gaussian Splatting might lead to higher-quality simulations if their rendering speed can still

be increased to match the requirements of learning algorithms such as ones based on Rein-

forcement Learning.

Increasing data diversity – The scale of current 3D datasets could also benefit the recent im-

1https://wayve.ai/thinking/prism-1/

159
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

https://wayve.ai/thinking/prism-1/

Current and future trends in Embodied AI touched in this manuscript Conclusion

a spa with large hot tubs

three professors’ office connected to a long hallway, the professor in office 1 is a fan of Star Wars

a 1b1b apartment of a researcher who has a catVictorian-style living roomModern-style living room

an arcade room with a pool table a sculpture museum with diverse statues

Figure 8.2: Holodeck generation samples – reproduced from Yang et al. (2024)

provements in generative models. Indeed, 2D language-prompted generative models have

been successfully introduced during the past years (Ramesh et al., 2021; Rombach et al., 2022;

Saharia et al., 2022; Podell et al., 2024), leading to a significant improvement in image gener-

ation from language queries. This trend is now entering the space of 3D generative modeling

with approaches like Holodeck (Yang et al., 2024) generating 3D scenes from a text prompt. Fig-

ure 8.2 provides examples of generated 3D environments. All appear to be realistic, detailed,

and well aligned with specified prompts. Automatic generation of 3D assets thus becomes a

promising direction to follow in the future to increase the size and diversity of Embodied AI

datasets. Moreover, this might provide more control over the characteristics of used scenes

with for instance the ability to control the semantics of objects inside generated environments,

with potentially additional semantic maps available without the need to rely on human anno-

tators.

Improving the robustness of neural representations – In addition to improving the quality

and quantity of data, important work should also be conducted on neural models themselves

to make them more robust to domain shifts and generalize better to long-tail scenarios. Visual

perception is indeed an important part of Embodied AI systems and current methods still suf-

fer from a lack of robustness. Some works like the recent COLOSSEUM benchmark (Pumacay

et al., 2024) evaluate the generalization abilities of current manipulation models to environ-

160
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Current and future trends in Embodied AI touched in this manuscript Conclusion

ment perturbations. More specifically, they study 20 manipulation tasks and implement 14

perturbation factors such as changes in object mass, friction, table color, texture, or different

camera poses. They show that many vision-based models such as R3M (Nair et al., 2023)

or MVP (Radosavovic et al., 2023) already considered in chapter 7 in this manuscript suffer

from perturbations, leading to low performance of policies trained with BC from their visual

observations as input. Benchmarks such as COLOSSEUM will be helpful to better evaluate

the robustness of vision models and policies to environment perturbations.

8.2.2 Generalization to new tasks

Autonomous agents should be able to robustly operate in any environment, but also to adapt

to new tasks that might be variants of already known ones, or to learn new skills on the

fly from limited data. Generalizing to new tasks is thus another crucial ability to consider,

as it is currently very hard for our neural-based methods. Indeed, most progress has been

achieved with a combination of scientific novelties (e.g. architectures or training signals) and

data scaling. A regime where our approaches shine less is when encountering new tasks, in

particular when specified through a limited set of data samples.

Benchmarking fluid intelligence – In chapter 7, we started to touch an important topic, re-

ferred to by Chollet (2019) as fluid intelligence, i.e. the ability to efficiently learn to master new

skills from sparse supervision. We studied this from a robotic point of view with the gener-

alization to new manipulation tasks from a few expert demonstrations, but other benchmarks

in the broader AI landscape study it as well. A well-known example is the ARC challenge in-

troduced by Chollet (2019), where the goal is to solve IQ test-like problems without knowing

about them a priori and from only a few examples. Studying few-shot generalization in do-

mains with simple observation spaces (e.g. 2D discrete grids in ARC) might allow designing

new fundamental learning and adaptation methods that could later be applied to robotics.

General visual backbones in Embodied AI – Generalizing to different tasks might require

general feature extractors, pre-trained visual models in the case of the vision modality. As

presented in chapter 7, previous work has already studied the use of pre-trained frozen mod-

els to extract features from visual observations fed to a single or several task-specific policies.

This direction appears very promising as a single model pre-trained on a large and diverse

dataset might lead to rich features containing all required information for any task of interest.

However, an interesting question thus arises: Can a single feature-based representation provide the

required information for any task? In a very recent position paper, Huh et al. (2024) introduce

the Platonic Representation Hypothesis stating that "Neural networks, trained with different objec-

tives on different data and modalities, are converging to a shared statistical model of reality in their

representation spaces". They experimentally verify this hypothesis, focusing on vector embed-

ding representations only, showing signs of a general representation space of the world, to

which different models trained on various modalities seem to converge. While these results

161
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Current and future trends in Embodied AI touched in this manuscript Conclusion

are very intriguing and worth further studying, such a general representation space might not

be guaranteed to provide the required representational flexibility to extract relevant features

for all tasks. An alternative direction is thus, as presented in chapter 7, to train visual models

to adapt the final representation of an observation based on the task to solve, reminiscent of

the top-down processes observed in visual regions of the human brain. While we will not

present works in this area as already done earlier in this manuscript (chapters 3 and 7), this

direction appears very appealing and is worth considering in the future.

8.2.3 Inductive biases in neural architectures

Another important question is about the structure of autonomous agents, with a recurrent

opposition happening between end-to-end and modular agents. Another way to frame this

question could be: Should all sub-skills be implicitly learned by a full neural agent, or should we

integrate prior knowledge through specific modules? One should probably consider two different

timelines when thinking about this question: short-term and long-term progress.

Modular agents – are currently very efficient as showcased in recent work (Gervet et al.,

2022; Chang et al., 2023). The right combination between strong general neural modules

and other non-neural blocks indeed allows reaching great performance, even in real-world

environments. As of today, integrating knowledge priors about building blocks required

to solve certain sub-tasks thus appears as a great short-term solution. However, one might

wonder whether this might not constrain the flexibility and generality of neural agents in the

long term.

End-to-end agents – on the other hand offer more flexibility as every required sub-skill will

be learned to solve a downstream task. This can come with currently known caveats such as

sample complexity, shortcut learning, or overfitting to specificities of observations (e.g. RGB,

depth) in simulators. However, such end-to-end agents might be a great choice in the long

term when the field progresses. Interesting findings showed the implicit emergence of map-

like structures in the hidden memory of recurrent end-to-end agents (Wijmans et al., 2022),

opening future perspectives. Such implicit phenomenons should be studied in more detail

as they could help us better understand the way end-to-end agents learn to represent their

environments. More than this, we could even want to guide agents in learning high-quality

representations of environments, as shown in our chapter 4. Indeed, prior knowledge does not

have to only support the design of the neural architecture but also the training signal. A richer

training signal could allow to keep a simple end-to-end architecture but make it more sample

efficient and help it better represent its past experience. Finally, very recent work (Bono et al.,

2023a; Khanna et al., 2024) draws conclusions that seem to contradict the story about modular

policies being generally superior to end-to-end agents in terms of navigation performance

and generalization. Indeed, both works present end-to-end agents outperforming modular

counterparts, opening new directions: in particular, Bono et al. (2023a) leverage a pre-trained

162
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Other future perspectives in Embodied AI Conclusion

Figure 8.3: Voyager – reproduced from Wang et al. (2023)

vision backbone that is only adapted along with the policy being trained and showcase state-

of-the-art performance on the InstanceImageNav task.

8.3 Other future perspectives in Embodied AI

The Embodied AI space is broad, and we have obviously not covered all of it in this

manuscript. We will now review two exciting work directions that have received attention

recently and will likely continue in the coming years.

8.3.1 Intrinsic curiosity

The ability to autonomously explore the world to improve its understanding is an exciting

direction to pursue. It has already been shown (Pathak et al., 2017) that agents could learn

to visit environments following a curiosity metric based on the inability to predict the future.

Such an approach allows to also relegate data collection to the neural agents themselves, truly

interacting with the world to self-improve. Self-supervised learning in 3D environments has

already been studied (Chaplot et al., 2021), even following curiosity-based metrics (Chaplot

et al., 2020c), but still has a lot to offer. A relevant recent work in this domain is Voyager (Wang

et al., 2023), an agent based on a Large Language Model (LLM) that autonomously explores

the world of Minecraft and acquires new sub-skills that are stored to be used again later (Fig-

ure 8.3). Here we see the tight connection between such lifelong learning, intrinsic curiosity-

driven exploration, and the discovery of and adaptation to new tasks of interest.

8.3.2 Experimenting in the real world

Real-world experimentation is another important direction in the Embodied AI field. This

is indeed a way to verify how well current agents can behave in real conditions, and more

163
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Closing remarks Conclusion

importantly, study the potential differences between simulation and the real world (sim-to-real

gap). There have been works trying to better understand and even quantify such gap (Kadian

et al., 2020; Anderson et al., 2021; Sadek et al., 2022; Truong et al., 2023a), and more will likely

come as it is an important problem. More generally, evaluating neural-based systems in the

real world has been done in the recent past (Gervet et al., 2022; Chang et al., 2023; Krantz

et al., 2023; Sadek et al., 2023; Bono et al., 2024) and this trend will probably continue further.

An example is the introduction of new tasks such as HomeRobot (Yenamandra et al., 2023) that

explicitly evaluates the ability of agents to perform open-vocabulary mobile manipulation on a

real platform. Such effort allows comparing state-of-the-art methods based on their real-world

performance under a common setup.

While it has not been presented in this manuscript, we have also performed experiments

related to the deployment of modular exploration policies similar to the ones from chapter 6

in a house-scale scene. Figure 8.4 presents a sample rollout of a modular policy deployed on

a HelloRobot Stretch robot (Kemp et al., 2022). The platform is composed of an RGB-D camera

and a 2D LIDAR, the latter being used for localization and collision avoidance. RGB frames are

used to perform semantic segmentation as shown in the first column of Figure 8.4 (RGB input

+ Mask R-CNN semantic mask output). Depth frames are converted to 3D point clouds that

will allow building the obstacle and semantic map (second column of Figure 8.4). Finally, the

third column in Figure 8.4 shows 3rd person views of the agent from external cameras. This

information is not accessible to the policy but only serves visualization purposes. As can be

seen, the agent properly covers the scene, visiting the different rooms, and builds a relatively

complete semantic map of objects encountered along the way, highlighting the robustness of

modular policies when deployed in the real world, echoing previous work (Gervet et al., 2022;

Chang et al., 2023).

Deploying policies on real platforms is an important requirement to assess their abilities

to interact with the real world we, humans, live in. Important engineering efforts should thus

be spent to provide common robotic platforms allowing different research teams to reproduce

experiments and compare algorithms rigorously. An example is the recent LeRobot project 2

from Huggingface aiming at providing a common framework to deploy neural policies on real

robots.

8.4 Closing remarks

As already mentioned, robustly behaving in the 3D world to tackle useful tasks is a hard

goal to achieve. However, the Embodied AI community has followed interesting directions

in the past years and many perspectives are identifiable. An important challenge will be

to make neural agents robust to different scenarios, environments and conditions, but more

importantly able to adapt efficiently to new tasks and acquire the right sub-skills. Learn-

2https://github.com/huggingface/lerobot

164
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

https://github.com/huggingface/lerobot

Closing remarks Conclusion

ing by interacting is a great paradigm from a scientific point of view as neuroscience seems

to indicate this is how we, humans, learn some of our skills. More than being an exciting

research direction, action-based learning might even prove to be necessary to build proper

world models.

165
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Closing remarks Conclusion

RGB + Semantics Map 3rd person view

Bedroom camera Office camera

Bedroom camera

Bedroom camera

Office camera

Living room camera

Living room camera

Living room cameraLiving room camera

Living room camera

Figure 8.4: Deployment of a modular exploration policy on a HelloRobot Stretch robot (work done as a

PhD intern at Meta AI in 2022). 166
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Bibliography

Adamkiewicz, M., Chen, T., Caccavale, A., Gardner, R., Culbertson, P., Bohg, J., and Schwager,

M. (2022). Vision-only robot navigation in a neural radiance world. Robotics and Automation

Letters.

Anderson, P., Chang, A. X., Chaplot, D. S., Dosovitskiy, A., Gupta, S., Koltun, V., Kosecka,

J., Malik, J., Mottaghi, R., Savva, M., and Zamir, A. R. (2018a). On evaluation of embodied

navigation agents. arXiv preprint.

Anderson, P., Shrivastava, A., Truong, J., Majumdar, A., Parikh, D., Batra, D., and Lee, S.

(2021). Sim-to-real transfer for vision-and-language navigation. In Conference on Robot Learn-

ing.

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünderhauf, N., Reid, I., Gould, S.,

and Van Den Hengel, A. (2018b). Vision-and-language navigation: Interpreting visually-

grounded navigation instructions in real environments. In Conference on Computer Vision

and Pattern Recognition.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., and Parikh, D. (2015). Vqa:

Visual question answering. In International Conference on Computer Vision.

Asri, Z. E., Sigaud, O., and Thome, N. (2024). Physics-informed model and hybrid planning

for efficient dyna-style reinforcement learning. arXiv preprint.

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., Pritzel, A., Chad-

wick, M., Degris, T., Modayil, J., Wayne, G., Soyer, H., Viola, F., Zhang, B., Goroshin,

R., Rabinowitz, N., Pascanu, R., Beattie, C., Petersen, S., Sadik, A., Gaffney, S., King, H.,

Kavukcuoglu, K., Hassabis, D., Hadsell, R., and Kumaran, D. (2018). Vector-based naviga-

tion using grid-like representations in artificial agents. Nature.

Bardes, A., Ponce, J., and LeCun, Y. (2022). Vicreg: Variance-invariance-covariance regulariza-

tion for self-supervised learning. In International Conference on Learning Representations.

Batra, D., Chang, A. X., Chernova, S., Davison, A. J., Deng, J., Koltun, V., Levine, S., Malik, J.,

168
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Mordatch, I., Mottaghi, R., et al. (2020). Rearrangement: A challenge for embodied ai. arXiv

preprint.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq, A.,

Green, S., Valdés, V., Sadik, A., et al. (2016). Deepmind lab. arXiv preprint.

Beeching, E., Dibangoye, J., Simonin, O., and Wolf, C. (2020a). Deep reinforcement learning

on a budget: 3d control and reasoning without a supercomputer. In International Conference

on Pattern Recognition.

Beeching, E., Dibangoye, J., Simonin, O., and Wolf, C. (2020b). Egomap: Projective mapping

and structured egocentric memory for deep RL. In European Conference on Machine Learning

and Principles and Practice of Knowledge Discovery in Databases.

Beeching, E., Dibangoye, J., Simonin, O., and Wolf, C. (2020c). Learning to plan with uncertain

topological maps. In European Conference on Computer Vision.

Bellman, R. (1957). A markovian decision process. Journal of mathematics and mechanics.

Ben-Younes, H., Cadene, R., Cord, M., and Thome, N. (2017). Mutan: Multimodal tucker

fusion for visual question answering. In International Conference on Computer Vision.

Bhat, S. F., Alhashim, I., and Wonka, P. (2021). Adabins: Depth estimation using adaptive bins.

In Conference on Computer Vision and Pattern Recognition.

Bonin-Font, F., Ortiz, A., and Oliver, G. (2008). Visual navigation for mobile robots: A survey.

Journal of intelligent and robotic systems.

Bono, G., Antsfeld, L., Chidlovskii, B., Weinzaepfel, P., and Wolf, C. (2023a). End-to-end

(instance)-image goal navigation through correspondence as an emergent phenomenon. In

International Conference on Learning Representations.

Bono, G., Antsfeld, L., Sadek, A., Monaci, G., and Wolf, C. (2023b). Learning with a mole:

Transferable latent spatial representations for navigation without reconstruction. In Interna-

tional Conference on Learning Representations.

Bono, G., Poirier, H., Antsfeld, L., Monaci, G., Chidlovskii, B., and Wolf, C. (2024). Learning

to navigate efficiently and precisely in real environments. In Conference on Computer Vision

and Pattern Recognition.

Borenstein, J., Koren, Y., et al. (1991). The vector field histogram-fast obstacle avoidance for

mobile robots. Transactions on robotics and automation.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Interna-

tional Conference on Computational Statistics.

169
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Bresson, G., Alsayed, Z., Yu, L., and Glaser, S. (2017). Simultaneous localization and mapping:

A survey of current trends in autonomous driving. Transactions on Intelligent Vehicles.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J., Finn, C., Gopalakrishnan, K.,

Hausman, K., Herzog, A., Hsu, J., et al. (2022). Rt-1: Robotics transformer for real-world

control at scale. arXiv preprint.

Buschman, T. J. and Miller, E. K. (2007). Top-down versus bottomup control of attention in the

prefrontal and posterior parietal cortices. Science.

Cadene, R., Ben-Younes, H., Cord, M., and Thome, N. (2019). Murel: Multimodal relational

reasoning for visual question answering. In Conference on Computer Vision and Pattern Recog-

nition.

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002). Deep blue. Artificial intelligence.

Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., and Tardós, J. D. (2021). Orb-slam3:

An accurate open-source library for visual, visual–inertial, and multimap slam. Transactions

on robotics.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and Joulin, A. (2020). Unsuper-

vised learning of visual features by contrasting cluster assignments. In Neural Information

Processing Systems.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., and Joulin, A. (2021).

Emerging properties in self-supervised vision transformers. In International Conference on

Computer Vision.

Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J., and Wetzstein, G. (2021). pi-gan: Periodic

implicit generative adversarial networks for 3d-aware image synthesis. In Conference on

Computer Vision and Pattern Recognition.

Chane-Sane, E., Schmid, C., and Laptev, I. (2023). Learning video-conditioned policies for

unseen manipulation tasks. In International Conference on Robotics and Automation.

Chang, A., Dai, A., Funkhouser, T., Halber, M., Niebner, M., Savva, M., Song, S., Zeng, A.,

and Zhang, Y. (2018). Matterport3d: Learning from rgb-d data in indoor environments. In

International Conference on 3D Vision.

Chang, M., Gervet, T., Khanna, M., Yenamandra, S., Shah, D., Min, S. Y., Shah, K., Paxton, C.,

Gupta, S., Batra, D., et al. (2023). Goat: Go to any thing. arXiv preprint.

Chaplot, D. S., Dalal, M., Gupta, S., Malik, J., and Salakhutdinov, R. R. (2021). Seal: Self-

supervised embodied active learning using exploration and 3d consistency. In Neural Infor-

mation Processing Systems.

170
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Chaplot, D. S., Gandhi, D., Gupta, A., and Salakhutdinov, R. (2020a). Object goal navigation

using goal-oriented semantic exploration. In Neural Information Processing Systems.

Chaplot, D. S., Gandhi, D., Gupta, S., Gupta, A., and Salakhutdinov, R. (2020b). Learning to

explore using active neural slam. In International Conference on Learning Representations.

Chaplot, D. S., Jiang, H., Gupta, S., and Gupta, A. (2020c). Semantic curiosity for active visual

learning. In European Conference on Computer Vision.

Chaplot, D. S., Salakhutdinov, R., Gupta, A., and Gupta, S. (2020d). Neural topological slam

for visual navigation. In Conference on Computer Vision and Pattern Recognition.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., and

Mordatch, I. (2021a). Decision transformer: Reinforcement learning via sequence modeling.

In Neural Information Processing Systems.

Chen, S., Ge, C., Tong, Z., Wang, J., Song, Y., Wang, J., and Luo, P. (2022a). Adaptformer:

Adapting vision transformers for scalable visual recognition. In Neural Information Processing

Systems.

Chen, S., Guhur, P.-L., Schmid, C., and Laptev, I. (2021b). History aware multimodal trans-

former for vision-and-language navigation. In Neural Information Processing Systems.

Chen, S., Guhur, P.-L., Tapaswi, M., Schmid, C., and Laptev, I. (2022b). Think Global, Act

Local: Dual-scale Graph Transformer for Vision-and-Language Navigation. In Conference on

Computer Vision and Pattern Recognition.

Chen, T., Gupta, S., and Gupta, A. (2018). Learning exploration policies for navigation. In

International Conference on Learning Representations.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for con-

trastive learning of visual representations. In International Conference on Machine Learning.

Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollár, P., and Zitnick, C. L. (2015).

Microsoft coco captions: Data collection and evaluation server. arXiv preprint.

Chen, Z. and Zhang, H. (2019). Learning implicit fields for generative shape modeling. In

Conference on Computer Vision and Pattern Recognition.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and

Bengio, Y. (2014). Learning phrase repr. using RNN encoder–decoder for statistical machine

translation. In Empirical Methods in Natural Language Processing.

Chollet, F. (2019). On the measure of intelligence. arXiv preprint.

171
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S. (2016). 3d-r2n2: A unified approach for

single and multi-view 3d object reconstruction. In European Conference on Computer Vision.

Chung, C.-M., Tseng, Y.-C., Hsu, Y.-C., Shi, X.-Q., Hua, Y.-H., Yeh, J.-F., Chen, W.-C., Chen,

Y.-T., and Hsu, W. H. (2023). Orbeez-slam: A real-time monocular visual slam with orb

features and nerf-realized mapping. In International Conference on Robotics and Automation.

Corbetta, M. and Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention

in the brain. Nature Reviews Neuroscience.

Csáji, B. C. et al. (2001). Approximation with artificial neural networks. Faculty of Sciences,

Etvs Lornd University, Hungary.

Cueva, C. and Wei, X.-X. (2018). Emergence of grid-like representations by training recur-

rent neural networks to perform spatial localization. In International Conference on Learning

Representations.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., and Nießner, M. (2017). Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In Conference on Computer Vision and

Pattern Recognition.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In

Conference on Computer Vision and Pattern Recognition.

Dechter, R. and Pearl, J. (1985). Generalized best-first search strategies and the optimality of

a. Journal of the ACM.

Deitke, M., Batra, D., Bisk, Y., Campari, T., Chang, A. X., Chaplot, D. S., Chen, C., D’Arpino,

C. P., Ehsani, K., Farhadi, A., et al. (2022). Retrospectives on the embodied ai workshop.

arXiv preprint.

Deitke, M., Han, W., Herrasti, A., Kembhavi, A., Kolve, E., Mottaghi, R., Salvador, J., Schwenk,

D., VanderBilt, E., Wallingford, M., et al. (2020). Robothor: An open simulation-to-real

embodied ai platform. In Conference on Computer Vision and Pattern Recognition.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale

hierarchical image database. In Conference on Computer Vision and Pattern Recognition.

D’Eramo, C. and Chalvatzaki, G. (2022). Prioritized sampling with intrinsic motivation in

multi-task reinforcement learning. In International Joint Conference on Neural Networks.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). BERT: pre-training of deep bidirec-

tional transformers for language understanding. In Burstein, J., Doran, C., and Solorio, T.,

editors, Annual Conference of the North American Chapter of the Association for Computational

Linguistics.

172
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

DeVries, T., Bautista, M. A., Srivastava, N., Taylor, G. W., and Susskind, J. M. (2021). Uncon-

strained scene generation with locally conditioned radiance fields. In International Conference

on Computer Vision.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. In Edsger Wybe

Dijkstra: His Life, Work, and Legacy.

Ding, Y., Florensa, C., Abbeel, P., and Phielipp, M. (2019). Goal-conditioned imitation learning.

In Neural Information Processing Systems.

Donoho, D. (2017). 50 years of data science. Journal of Computational and Graphical Statistics.

Dornhege, C. and Kleiner, A. (2013). A frontier-void-based approach for autonomous explo-

ration in 3d. Advanced Robotics.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,

M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Trans-

formers for image recognition at scale. In International Conference on Learning Representations.

Du, H., Yu, X., and Zheng, L. (2021). VTNet: Visual Transformer Network for Object Goal

Navigation. In International Conference on Learning Representations.

Dupont, E., Kim, H., Eslami, S. A., Rezende, D. J., and Rosenbaum, D. (2022). From data to

functa: Your data point is a function and you can treat it like one. In International Conference

on Machine Learning.

Ehsani, K., Han, W., Herrasti, A., VanderBilt, E., Weihs, L., Kolve, E., Kembhavi, A., and Mot-

taghi, R. (2021). Manipulathor: A framework for visual object manipulation. In Conference

on Computer Vision and Pattern Recognition.

Eigen, D. and Fergus, R. (2015). Predicting depth, surface normals and semantic labels with

a common multi-scale convolutional architecture. In International Conference on Computer

Vision.

Ekstrom, A. D., Spiers, H. J., Bohbot, V. D., and Rosenbaum, R. S. (2018). Human spatial

navigation. Princeton University Press.

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer.

Fan, H., Su, H., and Guibas, L. J. (2017). A point set generation network for 3d object recon-

struction from a single image. In Conference on Computer Vision and Pattern Recognition.

Fang, K., Toshev, A., Fei-Fei, L., and Savarese, S. (2019). Scene memory transformer for em-

bodied agents in long-horizon tasks. In Conference on Computer Vision and Pattern Recognition.

Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., and Kanazawa, A. (2022). Plenox-

173
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

els: Radiance fields without neural networks. In Conference on Computer Vision and Pattern

Recognition.

Fu, Z., Zhao, T. Z., and Finn, C. (2024). Mobile aloha: Learning bimanual mobile manipulation

with low-cost whole-body teleoperation. arXiv preprint.

Gal, Y. and Ghahramani, Z. (2014). Dropout as a bayesian approximation: Representing model

uncertainty in deep learning. In International Conference on Machine Learning.

Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf, M., Traer, J., De Freitas, J., Kubilius, J.,

Bhandwaldar, A., Haber, N., et al. (2021). Threedworld: A platform for interactive multi-

modal physical simulation. In NeurIPS Datasets and Benchmarks Track.

Garbin, S. J., Kowalski, M., Johnson, M., Shotton, J., and Valentin, J. (2021). Fastnerf: High-

fidelity neural rendering at 200fps. In International Conference on Computer Vision.

Garrido, S., Moreno, L., Abderrahim, M., and Martin, F. (2006). Path planning for mobile

robot navigation using voronoi diagram and fast marching. In International Conference on

Intelligent Robots and Systems.

Gervet, T., Chintala, S., Batra, D., Malik, J., and Chaplot, D. S. (2022). Navigating to objects in

the real world. Science Robotics.

Gibson, J. J. (1966). The senses considered as perceptual systems.

Gibson, J. J. (1979). The ecological approach to visual perception.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural message

passing for quantum chemistry. In International Conference on Machine Learning.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. (2014). An empirical

investigation of catastrophic forgetting in gradient-based neural networks. In International

Conference on Learning Representations.

Gottlieb, J., Oudeyer, P.-Y., Lopes, M., and Baranes, A. (2013). Information-seeking, curiosity,

and attention: computational and neural mechanisms. Trends in cognitive sciences.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C.,

Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al. (2020). Bootstrap your own latent-a

new approach to self-supervised learning. In Neural Information Processing Systems.

Gupta, S., Davidson, J., Levine, S., Sukthankar, R., and Malik, J. (2017). Cognitive mapping

and planning for visual navigation. In Conference on Computer Vision and Pattern Recognition.

Ha, D., Dai, A., and Le, Q. V. (2016). Hypernetworks. arXiv preprint.

174
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Ha, D. and Schmidhuber, J. (2018). World models. arXiv preprint.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser, E. (2005). Microstructure of a

spatial map in the entorhinal cortex. Nature.

Hahn, M., Chaplot, D. S., Tulsiani, S., Mukadam, M., Rehg, J. M., and Gupta, A. (2021). No

rl, no simulation: Learning to navigate without navigating. In Neural Information Processing

Systems.

Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., and Cohen-Or, D. (2019). Meshcnn:

a network with an edge. Transactions on Graphics.

Hansen, N., Su, H., and Wang, X. (2024). Td-mpc2: Scalable, robust world models for contin-

uous control. In International Conference on Learning Representations.

Hao, W., Li, C., Li, X., Carin, L., and Gao, J. (2020). Towards learning a generic agent for

vision-and-language navigation via pre-training. In Conference on Computer Vision and Pattern

Recognition.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determination

of minimum cost paths. Transactions on Systems Science and Cybernetics.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1972). Correction to" a formal basis for the heuristic

determination of minimum cost paths". SIGART Bulletin.

Hausknecht, M. and Stone, P. (2015). Deep recurrent q-learning for partially observable mdps.

In AAAI Conference on Artificial Intelligence.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2022). Masked autoencoders are

scalable vision learners. In Conference on Computer Vision and Pattern Recognition.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for unsupervised

visual representation learning. In Conference on Computer Vision and Pattern Recognition.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask R-CNN. In International Confer-

ence on Computer Vision.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In

Conference on Computer Vision and Pattern Recognition.

Henriques, J. F. and Vedaldi, A. (2018). Mapnet: An allocentric spatial memory for mapping

environments. In Conference on Computer Vision and Pattern Recognition.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network.

arXiv preprint.

175
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with

neural networks. Science.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Comput.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are

universal approximators. Neural networks.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., At-

tariyan, M., and Gelly, S. (2019). Parameter-efficient transfer learning for nlp. In International

Conference on Machine Learning.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,

and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision

applications. arXiv preprint.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., and Chen, W. (2022). Lora:

Low-rank adaptation of large language models. In International Conference on Learning Rep-

resentations.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al. (2021). Lora:

Low-rank adaptation of large language models. In International Conference on Learning Rep-

resentations.

Hu, H., Zhang, Z., Xie, Z., and Lin, S. (2019). Local relation networks for image recognition.

In International Conference on Computer Vision.

Huang, H., Li, L., Cheng, H., and Yeung, S.-K. (2024). Photo-slam: Real-time simultaneous

localization and photorealistic mapping for monocular stereo and rgb-d cameras. In Confer-

ence on Computer Vision and Pattern Recognition.

Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., and Liu, W. (2019). Ccnet: Criss-cross

attention for semantic segmentation. In International Conference on Computer Vision.

Huh, M., Cheung, B., Wang, T., and Isola, P. (2024). Position: The platonic representation

hypothesis. In International Conference on Machine Learning.

Iyer, A., Peng, Z., Dai, Y., Guzey, I., Haldar, S., Chintala, S., and Pinto, L. (2024). Open teach:

A versatile teleoperation system for robotic manipulation. arXiv preprint.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and Kavukcuoglu,

K. (2017). Reinforcement learning with unsupervised auxiliary tasks. In International Con-

ference on Learning Representations.

176
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

James, S., Ma, Z., Arrojo, D. R., and Davison, A. J. (2020). Rlbench: The robot learning

benchmark & learning environment. Robotics and Automation Letters.

James, W., Burkhardt, F., Bowers, F., and Skrupskelis, I. K. (1890). The principles of psychology.

Macmillan London.

Jang, E., Irpan, A., Khansari, M., Kappler, D., Ebert, F., Lynch, C., Levine, S., and Finn, C.

(2022). Bc-z: Zero-shot task generalization with robotic imitation learning. In Conference on

Robot Learning.

Jiang, Y., Krishnan, D., Mobahi, H., and Bengio, S. (2019). Predicting the generalization gap in

deep networks with margin distributions. In International Conference on Learning Representa-

tions.

Kadian, A., Truong, J., Gokaslan, A., Clegg, A., Wijmans, E., Lee, S., Savva, M., Chernova, S.,

and Batra, D. (2020). Sim2real predictivity: Does evaluation in simulation predict real-world

performance? Robotics and Automation Letters.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in partially

observable stochastic domains. Artificial intelligence.

Kajiya, J. T. and Von Herzen, B. P. (1984). Ray tracing volume densities. SIGGRAPH computer

graphics.

Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning.

International Journal of Robotics Research.

Keetha, N., Karhade, J., Jatavallabhula, K. M., Yang, G., Scherer, S., Ramanan, D., and Luiten,

J. (2024). Splatam: Splat track & map 3d gaussians for dense rgb-d slam. In Conference on

Computer Vision and Pattern Recognition.

Kemp, C. C., Edsinger, A., Clever, H. M., and Matulevich, B. (2022). The design of stretch: A

compact, lightweight mobile manipulator for indoor human environments. In International

Conference on Robotics and Automation.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaśkowski, W. (2016). Vizdoom: A doom-

based ai research platform for visual reinforcement learning. In C. on Comp. Intelligence and

Games.

Kerbl, B., Kopanas, G., Leimkühler, T., and Drettakis, G. (2023). 3d gaussian splatting for

real-time radiance field rendering. Transactions on Graphics.

Kervadec, C., Jaunet, T., Antipov, G., Baccouche, M., Vuillemot, R., and Wolf, C. (2021). How

Transferrable are Reasoning Patterns in VQA? In Conference on Computer Vision and Pattern

Recognition.

177
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., and Shah, M. (2022). Transformers

in vision: A survey. ACM computing surveys.

Khandelwal, A., Weihs, L., Mottaghi, R., and Kembhavi, A. (2022). Simple but effective: CLIP

embeddings for embodied AI. In Conference on Computer Vision and Pattern Recognition.

Khanna, M., Ramrakhya, R., Chhablani, G., Yenamandra, S., Gervet, T., Chang, M., Kira, Z.,

Chaplot, D. S., Batra, D., and Mottaghi, R. (2024). Goat-bench: A benchmark for multi-

modal lifelong navigation. In Conference on Computer Vision and Pattern Recognition.

Kim, D., Ka, W., Ahn, P., Joo, D., Chun, S., and Kim, J. (2022). Global-local path networks for

monocular depth estimation with vertical cutdepth. arXiv preprint.

Kim, N., Kwon, O., Yoo, H., Choi, Y., Park, J., and Oh, S. (2023). Topological semantic graph

memory for image-goal navigation. In Conference on Robot Learning.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. (2021). Normalizing flows: An introduction and

review of current methods. Transactions on Pattern Analysis and Machine Intelligence.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Deitke, M., Ehsani,

K., Gordon, D., Zhu, Y., et al. (2017). Ai2-thor: An interactive 3d environment for visual ai.

arXiv preprint.

Konolige, K. and Chou, K. (1999). Markov localization using correlation. In International Joint

Conference on Artificial Intelligence.

Kortenkamp, D., Bonasso, R., and Murphy, R. (1998). Ai-based mobile robots: Case studies of

successful robot systems.

Kortenkamp, D. and Weymouth, T. (1994). Topological mapping for mobile robots using a

combination of sonar and vision sensing. In AAAI Conference on Artificial Intelligence.

Krantz, J., Gervet, T., Yadav, K., Wang, A., Paxton, C., Mottaghi, R., Batra, D., Malik, J., Lee,

S., and Chaplot, D. S. (2023). Navigating to objects specified by images. In International

Conference on Computer Vision.

Krantz, J., Lee, S., Malik, J., Batra, D., and Chaplot, D. S. (2022). Instance-specific image goal

navigation: Training embodied agents to find object instances. arXiv preprint.

Krantz, J., Wijmans, E., Majumdar, A., Batra, D., and Lee, S. (2020). Beyond the nav-graph:

Vision-and-language navigation in continuous environments. In European Conference on

Computer Vision.

178
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep

convolutional neural networks. Communications of the ACM.

Kroemer, O., Niekum, S., and Konidaris, G. (2021). A review of robot learning for manipula-

tion: Challenges, representations, and algorithms. Journal of Machine Learning Research.

Kwon, O., Park, J., and Oh, S. (2023). Renderable neural radiance map for visual navigation.

In Conference on Computer Vision and Pattern Recognition.

Lample, G. and Chaplot, D. S. (2017). Playing fps games with deep reinforcement learning. In

AAAI Conference on Artificial Intelligence.

Lassner, C. and Zollhofer, M. (2021). Pulsar: Efficient sphere-based neural rendering. In

Conference on Computer Vision and Pattern Recognition.

LaValle, S. M. (2006). Planning algorithms. Cambridge university press.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to

document recognition. IEEE.

Legg, S., Hutter, M., et al. (2007). A collection of definitions of intelligence. Frontiers in Artificial

Intelligence and applications.

Lenssen, J. E., Osendorfer, C., and Masci, J. (2020). Deep iterative surface normal estimation.

In Conference on Computer Vision and Pattern Recognition.

Lesort, T., Díaz-Rodríguez, N., Goudou, J.-F., and Filliat, D. (2018). State representation learn-

ing for control: An overview. Neural Networks.

Levoy, M. (1990). Efficient ray tracing of volume data. Transactions on Graphics.

Li, A. C., Prabhudesai, M., Duggal, S., Brown, E., and Pathak, D. (2023). Your diffusion model

is secretly a zero-shot classifier. In International Conference on Computer Vision.

Li, X., De Mello, S., Wang, X., Yang, M.-H., Kautz, J., and Liu, S. (2022a). Learning Con-

tinuous Environment Fields via Implicit Functions. In International Conference on Learning

Representations.

Li, Y., Li, S., Sitzmann, V., Agrawal, P., and Torralba, A. (2022b). 3d neural scene representa-

tions for visuomotor control. In Conference on Robot Learning.

Li, Z., Liu, X., Drenkow, N., Ding, A., Creighton, F. X., Taylor, R. H., and Unberath, M.

(2021). Revisiting stereo depth estimation from a sequence-to-sequence perspective with

transformers. In International Conference on Computer Vision.

179
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Liang, A., Singh, I., Pertsch, K., and Thomason, J. (2022). Transformer adapters for robot

learning. In CoRL Workshop on Pre-training Robot Learning.

Lin, C.-H., Ma, W.-C., Torralba, A., and Lucey, S. (2021). Barf: Bundle-adjusting neural radi-

ance fields. In International Conference on Computer Vision.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick,

C. L. (2014). Microsoft coco: Common objects in context. In European Conference on Computer

Vision.

Lindenberger, P., Sarlin, P.-E., and Pollefeys, M. (2023). Lightglue: Local feature matching at

light speed. In International Conference on Computer Vision.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3d surface con-

struction algorithm. SIGGRAPH computer graphics.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision.

Ma, Y. J., Sodhani, S., Jayaraman, D., Bastani, O., Kumar, V., and Zhang, A. (2022). Vip:

Towards universal visual reward and representation via value-implicit pre-training. In In-

ternational Conference on Learning Representations.

Macario Barros, A., Michel, M., Moline, Y., Corre, G., and Carrel, F. (2022). A comprehensive

survey of visual slam algorithms. Robotics.

Majumdar, A., Yadav, K., Arnaud, S., Ma, Y. J., Chen, C., Silwal, S., Jain, A., Berges, V.-P.,

Abbeel, P., Malik, J., et al. (2023). Where are we in the search for an artificial visual cortex

for embodied intelligence? arXiv preprint.

Marchand, E. (2020). Direct visual servoing in the frequency domain. Robotics and Automation

Letters.

Martin, C. H. and Mahoney, M. W. (2020). Heavy-tailed universality predicts trends in test

accuracies for very large pre-trained deep neural networks. In International Conference on

Data Mining.

Martin, C. H., Peng, T. S., and Mahoney, M. W. (2021). Predicting trends in the quality of state-

of-the-art neural networks without access to training or testing data. Nature Communications.

Marza, P., Matignon, L., Simonin, O., Batra, D., Wolf, C., and Chaplot, D. S. (2024a). Autonerf:

Training implicit scene representations with autonomous agents. In International Conference

on Intelligent Robots and Systems.

Marza, P., Matignon, L., Simonin, O., and Wolf, C. (2022). Teaching agents how to map:

180
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Spatial reasoning for multi-object navigation. In International Conference on Intelligent Robots

and Systems.

Marza, P., Matignon, L., Simonin, O., and Wolf, C. (2023). Multi-object navigation with dy-

namically learned neural implicit representations. In International Conference on Computer

Vision.

Marza, P., Matignon, L., Simonin, O., and Wolf, C. (2024b). Task-conditioned adaptation of

visual features in multi-task policy learning. In Conference on Computer Vision and Pattern

Recognition.

Matsuki, H., Murai, R., Kelly, P. H., and Davison, A. J. (2024). Gaussian splatting slam. In

Conference on Computer Vision and Pattern Recognition.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., and Geiger, A. (2019). Occupancy

networks: Learning 3d reconstruction in function space. In Conference on Computer Vision

and Pattern Recognition.

Mezghani, L., Bojanowski, P., Alahari, K., and Sukhbaatar, S. (2023a). Think before you act:

Unified policy for interleaving language reasoning with actions. In Workshop on Reincarnat-

ing Reinforcement Learning (ICLR).

Mezghani, L., Sukhbaatar, S., Bojanowski, P., Lazaric, A., and Alahari, K. (2023b). Learning

goal-conditioned policies offline with self-supervised reward shaping. In Conference on Robot

Learning.

Mezghani, L., Sukhbaatar, S., Lavril, T., Maksymets, O., Batra, D., Bojanowski, P., and Ala-

hari, K. (2022). Memory-augmented reinforcement learning for image-goal navigation. In

International Conference on Intelligent Robots and Systems.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng, R. (2020).

Nerf: Representing scenes as neural radiance fields for view synthesis. In European Confer-

ence on Computer Vision.

Min, S. Y., Chaplot, D. S., Ravikumar, P., Bisk, Y., and Salakhutdinov, R. (2022). Film: Follow-

ing instructions in language with modular methods. In International Conference on Learning

Representations.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A., Banino, A., Denil, M., Goroshin, R.,

Sifre, L., Kavukcuoglu, K., Kumaran, D., and Hadsell, R. (2017). Learning to navigate in

complex environments. In International Conference on Learning Representations.

181
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Mishkin, D., Dosovitskiy, A., and Koltun, V. (2019). Benchmarking classic and learned navi-

gation in complex 3d environments. arXiv preprint.

Mitchell, T. M. (1980). The need for biases in learning generalizations. Rutgers University.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and

Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In In-

ternational Conference on Machine Learning.

Moravec, H. (1988a). Mind children: The future of robot and human intelligence. Harvard Univer-

sity Press.

Moravec, H. (1988b). Sensor fusion in certainty grids for mobile robots. AI magazine.

Müller, T., Evans, A., Schied, C., and Keller, A. (2022). Instant neural graphics primitives with

a multiresolution hash encoding. Transactions on Graphics.

Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-slam: a versatile and accurate

monocular slam system. Transactions on robotics.

Mur-Artal, R. and Tardós, J. D. (2017). Orb-slam2: An open-source slam system for monocular,

stereo, and rgb-d cameras. Transactions on robotics.

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., and Gupta, A. (2023). R3m: A universal visual

representation for robot manipulation. In Conference on Robot Learning.

Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. (2011). Dtam: Dense tracking and

mapping in real-time. In International Conference on Computer Vision.

Oh, J., Chockalingam, V., Satinder, and Lee, H. (2016). Control of memory, active perception,

and action in minecraft. In International Conference on Machine Learning.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernandez, P.,

Haziza, D., Massa, F., El-Nouby, A., et al. (2023). Dinov2: Learning robust visual features

without supervision. arXiv preprint.

Ortiz, J., Clegg, A., Dong, J., Sucar, E., Novotny, D., Zollhoefer, M., and Mukadam, M. (2022).

iSDF: Real-Time Neural Signed Distance Fields for Robot Perception. arXiv preprint.

Oudeyer, P.-Y. and Kaplan, F. (2007). What is intrinsic motivation? a typology of computational

approaches. Frontiers in neurorobotics.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation systems for au-

tonomous mental development. Transactions on evolutionary computation.

182
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Pan, S., Brunton, S. L., and Kutz, J. N. (2023). Neural implicit flow: a mesh-agnostic dimen-

sionality reduction paradigm of spatio-temporal data. Journal of Machine Learning Research.

Pan, X., Lai, Z., Song, S., and Huang, G. (2022). Activenerf: Learning where to see with

uncertainty estimation. In European Conference on Computer Vision.

Papert, S. A. (1966). The summer vision project.

Parisi, S., Rajeswaran, A., Purushwalkam, S., and Gupta, A. (2022). The unsurprising ef-

fectiveness of pre-trained vision models for control. In International Conference on Machine

Learning.

Parisotto, E. and Salakhutdinov, R. (2018). Neural map: Structured memory for deep rein-

forcement learning. In International Conference on Learning Representations.

Park, J. J., Florence, P., Straub, J., Newcombe, R., and Lovegrove, S. (2019). Deepsdf: Learning

continuous signed distance functions for shape representation. In Conference on Computer

Vision and Pattern Recognition.

Parker, A. (2003). In the blink of an eye: how vision sparked the big bang of evolution.

Pashevich, A., Schmid, C., and Sun, C. (2021). Episodic transformer for vision-and-language

navigation. In International Conference on Computer Vision.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven exploration by

self-supervised prediction. In International Conference on Machine Learning.

Peer, M., Brunec, I. K., Newcombe, N. S., and Epstein, R. A. (2020). Structuring knowledge

with cognitive maps and cognitive graphs. Trends in Cognitive Sciences.

Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., and Geiger, A. (2020). Convolutional

occupancy networks. In European Conference on Computer Vision.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2018). Film: Visual reasoning

with a general conditioning layer. In AAAI Conference on Artificial Intelligence.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and Battaglia, P. (2021). Learning mesh-based

simulation with graph networks. In International Conference on Learning Representations.

Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., and Gurevych, I. (2021). Adapterfusion: Non-

destructive task composition for transfer learning. In Conference of the European Chapter of the

Association for Computational Linguistics.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Müller, J., Penna, J., and

Rombach, R. (2024). Sdxl: Improving latent diffusion models for high-resolution image

synthesis. In International Conference on Learning Representations.

183
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Pomerleau, D. A. (1988). Alvinn: An autonomous land vehicle in a neural network. In Neural

Information Processing Systems.

Puig, X., Undersander, E., Szot, A., Cote, M. D., Yang, T.-Y., Partsey, R., Desai, R., Clegg, A.,

Hlavac, M., Min, S. Y., et al. (2023). Habitat 3.0: A co-habitat for humans, avatars, and

robots. In International Conference on Learning Representations.

Pumacay, W., Singh, I., Duan, J., Krishna, R., Thomason, J., and Fox, D. (2024). The colosseum:

A benchmark for evaluating generalization for robotic manipulation. arXiv preprint.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Pointnet: Deep learning on point sets for

3d classification and segmentation. In Conference on Computer Vision and Pattern Recognition.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Pointnet++: Deep hierarchical feature

learning on point sets in a metric space. In Neural Information Processing Systems.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,

A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural

language supervision. In International Conference on Machine Learning.

Radosavovic, I., Xiao, T., James, S., Abbeel, P., Malik, J., and Darrell, T. (2023). Real-world

robot learning with masked visual pre-training. In Conference on Robot Learning.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J., Todorov, E., and Levine, S.

(2018). Learning complex dexterous manipulation with deep reinforcement learning and

demonstrations. In Robotics: Science and Systems.

Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., and Shlens, J. (2019).

Stand-alone self-attention in vision models. In Neural Information Processing Systems.

Ramakrishnan, S. K., Chaplot, D. S., Al-Halah, Z., Malik, J., and Grauman, K. (2022). Poni:

Potential functions for objectgoal navigation with interaction-free learning. In Conference on

Computer Vision and Pattern Recognition.

Ramakrishnan, S. K., Gokaslan, A., Wijmans, E., Maksymets, O., Clegg, A., Turner, J. M.,

Undersander, E., Galuba, W., Westbury, A., Chang, A. X., et al. (2021a). Habitat-matterport

3d dataset (hm3d): 1000 large-scale 3d environments for embodied ai. In NeurIPS Datasets

and Benchmarks Track.

Ramakrishnan, S. K., Jayaraman, D., and Grauman, K. (2021b). An exploration of embodied

visual exploration. International Journal of Computer Vision.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever, I.

(2021). Zero-shot text-to-image generation. In International Conference on Machine Learning.

184
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Ramrakhya, R., Batra, D., Wijmans, E., and Das, A. (2023). Pirlnav: Pretraining with imitation

and rl finetuning for objectnav. In Conference on Computer Vision and Pattern Recognition.

Ramrakhya, R., Undersander, E., Batra, D., and Das, A. (2022). Habitat-web: Learning embod-

ied object-search strategies from human demonstrations at scale. In Conference on Computer

Vision and Pattern Recognition.

Ran, Y., Zeng, J., He, S., Chen, J., Li, L., Chen, Y., Lee, G., and Ye, Q. (2023). Neurar: Neural

uncertainty for autonomous 3d reconstruction with implicit neural representations. Robotics

and Automation Letters.

Ranftl, R., Bochkovskiy, A., and Koltun, V. (2021). Vision transformers for dense prediction.

In International Conference on Computer Vision.

Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., and Koltun, V. (2020). Towards robust monoc-

ular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. Transactions on

Pattern Analysis and Machine Intelligence.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron, G., Gimenez,

M., Sulsky, Y., Kay, J., Springenberg, J. T., et al. (2022). A generalist agent. Transactions on

Machine Learning Research.

Ritter, S., Faulkner, R., Sartran, L., Santoro, A., Botvinick, M., and Raposo, D. (2021). Rapid

task-solving in novel environments. In International Conference on Learning Representations.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-resolution

image synthesis with latent diffusion models. In Conference on Computer Vision and Pattern

Recognition.

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project Para. Cornell

Aeronautical Laboratory.

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of imitation learning and structured

prediction to no-regret online learning. In International Conference on Artificial Intelligence and

Statistics.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). Orb: An efficient alternative to

sift or surf. In International Conference on Computer Vision.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations

by error propagation, parallel distributed processing, explorations in the microstructure of

cognition, ed. de rumelhart and j. mcclelland. vol. 1. 1986. Biometrika.

185
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Rummelhard, L., Nègre, A., and Laugier, C. (2015). Conditional Monte Carlo Dense Occu-

pancy Tracker. In International Conference on Intelligent Transportation Systems.

Ruoss, A., Delétang, G., Medapati, S., Grau-Moya, J., Wenliang, L. K., Catt, E., Reid, J., and

Genewein, T. (2024). Grandmaster-level chess without search. arXiv preprint.

Sadek, A., Bono, G., Chidlovskii, B., Baskurt, A., and Wolf, C. (2023). Multi-Object Naviga-

tion in real environments using hybrid policies. In International Conference on Robotics and

Automation.

Sadek, A., Bono, G., Chidlovskii, B., and Wolf, C. (2022). An in-depth experimental study of

sensor usage and visual reasoning of robots navigating in real environments. In International

Conference on Robotics and Automation.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E. L., Ghasemipour, K., Gon-

tijo Lopes, R., Karagol Ayan, B., Salimans, T., et al. (2022). Photorealistic text-to-image

diffusion models with deep language understanding. In Neural Information Processing Sys-

tems.

Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich, A. (2020). Superglue: Learning

feature matching with graph neural networks. In Conference on Computer Vision and Pattern

Recognition.

Sarlin, P.-E., Unagar, A., Larsson, M., Germain, H., Toft, C., Larsson, V., Pollefeys, M., Lepetit,

V., Hammarstrand, L., Kahl, F., et al. (2021). Back to the feature: Learning robust camera

localization from pixels to pose. In Conference on Computer Vision and Pattern Recognition.

Savinov, N., Dosovitskiy, A., and Koltun, V. (2018a). Semi-parametric topological memory for

navigation. In International Conference on Learning Representations.

Savinov, N., Raichuk, A., Vincent, D., Marinier, R., Pollefeys, M., Lillicrap, T., and Gelly,

S. (2018b). Episodic curiosity through reachability. In International Conference on Learning

Representations.

Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., Straub, J., Liu, J., Koltun,

V., Malik, J., Parikh, D., and Batra, D. (2019). Habitat: A platform for embodied ai research.

In International Conference on Computer Vision.

Schiele, B. and Crowley, J. L. (1994). A comparison of position estimation techniques using

occupancy grids. Robotics and autonomous systems.

Schneider, T., Belousov, B., Chalvatzaki, G., Romeres, D., Jha, D. K., and Peters, J. (2022).

Active exploration for robotic manipulation. In International Conference on Intelligent Robots

and Systems.

186
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Schonberger, J. L. and Frahm, J.-M. (2016). Structure-from-motion revisited. In Conference on

Computer Vision and Pattern Recognition.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M., Coombes, T.,

Katta, A., Mullis, C., Wortsman, M., et al. (2022). Laion-5b: An open large-scale dataset for

training next generation image-text models. In Neural Information Processing Systems.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy

optimization. In International Conference on Machine Learning.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy

optimization algorithms. arXiv preprint.

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts.

Proceedings of the National Academy of Sciences.

Shafiullah, N. M. M., Rai, A., Etukuru, H., Liu, Y., Misra, I., Chintala, S., and Pinto, L. (2023).

On bringing robots home. arXiv preprint.

Shah, D., Eysenbach, B., Rhinehart, N., and Levine, S. (2021). Rapid Exploration for Open-

World Navigation with Latent Goal Models. In Conference on Robot Learning.

Sharma, M., Fantacci, C., Zhou, Y., Koppula, S., Heess, N., Scholz, J., and Aytar, Y. (2022).

Lossless adaptation of pretrained vision models for robotic manipulation. In International

Conference on Learning Representations.

Shatkay, H. and Kaelbling, L. P. (1997). Learning topological maps with weak local odometric

information. In International Joint Conference on Artificial Intelligence.

Shatkay, H. and Kaelbling, L. P. (2002). Learning geometrically-constrained hidden markov

models for robot navigation: Bridging the topological-geometrical gap. Journal of Artificial

Intelligence Research.

Shen, B., Xia, F., Li, C., Martín-Martín, R., Fan, L., Wang, G., Pérez-D’Arpino, C., Buch, S.,

Srivastava, S., Tchapmi, L., et al. (2021). igibson 1.0: a simulation environment for interactive

tasks in large realistic scenes. In International Conference on Intelligent Robots and Systems.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., Zettlemoyer, L., and

Fox, D. (2020). Alfred: A benchmark for interpreting grounded instructions for everyday

tasks. In Conference on Computer Vision and Pattern Recognition.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre,

L., Kumaran, D., Graepel, T., et al. (2017). Mastering chess and shogi by self-play with a

general reinforcement learning algorithm. arXiv preprint.

187
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale

image recognition. arXiv preprint.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wetzstein, G. (2020). Implicit neural

representations with periodic activation functions. In Neural Information Processing Systems.

Smith, L. and Gasser, M. (2005). The development of embodied cognition: Six lessons from

babies. Artificial life.

Smith, R. C. and Cheeseman, P. (1986). On the representation and estimation of spatial uncer-

tainty. International Journal of Robotics Research.

Smith, S. L., Brock, A., Berrada, L., and De, S. (2023). Convnets match vision transformers at

scale. arXiv preprint.

Smolyanskiy, N., Kamenev, A., and Birchfield, S. (2018). On the importance of stereo for

accurate depth estimation: An efficient semi-supervised deep neural network approach. In

CVPR workshops.

Soucek, T., Alayrac, J.-B., Miech, A., Laptev, I., and Sivic, J. (2024). Multi-task learning of

object states and state-modifying actions from web videos. Transactions on Pattern Analysis

and Machine Intelligence.

Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., Engel, J. J., Mur-Artal, R., Ren,

C., Verma, S., et al. (2019). The replica dataset: A digital replica of indoor spaces. arXiv

preprint.

Sucar, E., Liu, S., Ortiz, J., and Davison, A. J. (2021). imap: Implicit mapping and positioning

in real-time. In International Conference on Computer Vision.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods

for reinforcement learning with function approximation. In Neural Information Processing

Systems.

Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao, Y., Turner, J., Maestre, N., Mukadam,

M., Chaplot, D., Maksymets, O., Gokaslan, A., Vondrus, V., Dharur, S., Meier, F., Galuba,

W., Chang, A., Kira, Z., Koltun, V., Malik, J., Savva, M., and Batra, D. (2021). Habitat 2.0:

Training home assistants to rearrange their habitat. In Neural Information Processing Systems.

Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P. P., Barron, J. T., and

Kretzschmar, H. (2022). Block-nerf: Scalable large scene neural view synthesis. In Conference

on Computer Vision and Pattern Recognition.

188
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ra-

mamoorthi, R., Barron, J., and Ng, R. (2020). Fourier features let networks learn high

frequency functions in low dimensional domains. In Neural Information Processing Systems.

Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Kerr, J., Wang, T., Kristoffersen, A., Austin, J., Salahi,

K., et al. (2023). Nerfstudio: A modular framework for neural radiance field development.

In SIGGRAPH.

Tankovich, V., Hane, C., Zhang, Y., Kowdle, A., Fanello, S., and Bouaziz, S. (2021). Hitnet:

Hierarchical iterative tile refinement network for real-time stereo matching. In Conference on

Computer Vision and Pattern Recognition.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L., Budden, D., Abdolmaleki, A.,

Merel, J., Lefrancq, A., et al. (2018). Deepmind control suite. arXiv preprint.

Tatarchenko, M., Dosovitskiy, A., and Brox, T. (2017). Octree generating networks: Efficient

convolutional architectures for high-resolution 3d outputs. In International Conference on

Computer Vision.

Thelen, E., Schöner, G., Scheier, C., and Smith, L. B. (2001). The dynamics of embodiment: A

field theory of infant perseverative reaching. Behavioral and brain sciences.

Thelen, E. and Smith, L. B. (1994). A dynamic systems approach to the development of cognition and

action. MIT press.

Thomason, J., Murray, M., Cakmak, M., and Zettlemoyer, L. (2020). Vision-and-dialog naviga-

tion. In Conference on Robot Learning.

Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation. Arti-

ficial Intelligence.

Thrun, S. (2003). Learning occupancy grid maps with forward sensor models. Autonomous

robots.

Thrun, S., Burgard, W., Fox, D., et al. (2005). Probabilistic robotics.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control.

In International Conference on Intelligent Robots and Systems.

Torralba, A., Isola, P., and Freeman, W. T. (2024). Foundations of Computer Vision. MIT Press.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jégou, H. (2021). Training

data-efficient image transformers & distillation through attention. In International Conference

on Machine Learning.

Truong, J., Rudolph, M., Yokoyama, N. H., Chernova, S., Batra, D., and Rai, A. (2023a). Re-

189
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

thinking sim2real: Lower fidelity simulation leads to higher sim2real transfer in navigation.

In Conference on Robot Learning.

Truong, P., Rakotosaona, M.-J., Manhardt, F., and Tombari, F. (2023b). Sparf: Neural radiance

fields from sparse and noisy poses. In Conference on Computer Vision and Pattern Recognition.

Unterthiner, T., Keysers, D., Gelly, S., Bousquet, O., and Tolstikhin, I. (2020). Predicting neural

network accuracy from weights. arXiv preprint.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and

Polosukhin, I. (2017). Attention is all you need. In Neural Information Processing Systems.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing

robust features with denoising autoencoders. In International Conference on Machine Learning.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I. (2019). Analyzing multi-head self-

attention: Specialized heads do the heavy lifting, the rest can be pruned. In Annual Meeting

of the Association for Computational Linguistics.

Vora, S., Radwan, N., Greff, K., Meyer, H., Genova, K., Sajjadi, M. S., Pot, E., Tagliasacchi,

A., and Duckworth, D. (2021). Nesf: Neural semantic fields for generalizable semantic

segmentation of 3d scenes. arXiv preprint.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., and Anandkumar, A.

(2023). Voyager: An open-ended embodied agent with large language models. Transactions

on Machine Learning Research.

Wang, X., Fouhey, D., and Gupta, A. (2015). Designing deep networks for surface normal

estimation. In Conference on Computer Vision and Pattern Recognition.

Wang, X., Girshick, R., Gupta, A., and He, K. (2018). Non-local neural networks. In Conference

on Computer Vision and Pattern Recognition.

Wani, S., Patel, S., Jain, U., Chang, A. X., and Savva, M. (2020). Multion: Benchmarking se-

mantic map memory using multi-object navigation. In Neural Information Processing Systems.

Warren, W. H., Rothman, D. B., Schnapp, B. H., and Ericson, J. D. (2017). Wormholes in virtual

space: From cognitive maps to cognitive graphs. Cognition.

Weinzaepfel, P., Leroy, V., Lucas, T., Brégier, R., Cabon, Y., Arora, V., Antsfeld, L., Chidlovskii,

B., Csurka, G., and Revaud, J. (2022). Croco: Self-supervised pre-training for 3d vision tasks

by cross-view completion. In Neural Information Processing Systems.

Wijmans, E., Kadian, A., Morcos, A., Lee, S., Essa, I., Parikh, D., Savva, M., and Batra, D.

190
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

(2019). Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames. In

International Conference on Learning Representations.

Wijmans, E., Savva, M., Essa, I., Lee, S., Morcos, A. S., and Batra, D. (2022). Emergence of

maps in the memories of blind navigation agents. In International Conference on Learning

Representations.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist rein-

forcement learning. Machine learning.

Wiyatno, R. R., Xu, A., and Paull, L. (2022). Lifelong topological visual navigation. Robotics

and Automation Letters.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. (2015). 3d shapenets:

A deep representation for volumetric shapes. In Conference on Computer Vision and Pattern

Recognition.

Wüthrich, M., Widmaier, F., Grimminger, F., Akpo, J., Joshi, S., Agrawal, V., Hammoud, B.,

Khadiv, M., Bogdanovic, M., Berenz, V., et al. (2020). Trifinger: An open-source robot for

learning dexterity. arXiv preprint.

Xia, F., Zamir, A. R., He, Z., Sax, A., Malik, J., and Savarese, S. (2018). Gibson env: Real-world

perception for embodied agents. In Conference on Computer Vision and Pattern Recognition.

Xiang, F., Qin, Y., Mo, K., Xia, Y., Zhu, H., Liu, F., Liu, M., Jiang, H., Yuan, Y., Wang, H., et al.

(2020). Sapien: A simulated part-based interactive environment. In Conference on Computer

Vision and Pattern Recognition.

Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan, N., Tombari, F., Tompkin, J., Sitzmann,

V., and Sridhar, S. (2022). Neural fields in visual computing and beyond. In Computer

Graphics Forum.

Xu, K., Zheng, L., Yan, Z., Yan, G., Zhang, E., Niessner, M., Deussen, O., Cohen-Or, D., and

Huang, H. (2017). Autonomous reconstruction of unknown indoor scenes guided by time-

varying tensor fields. Transactions on Graphics.

Yadav, K., Majumdar, A., Ramrakhya, R., Yokoyama, N., Baevski, A., Kira, Z., Maksymets, O.,

and Batra, D. (2023a). Ovrl-v2: A simple state-of-art baseline for imagenav and objectnav.

arXiv preprint.

Yadav, K., Ramrakhya, R., Majumdar, A., Berges, V.-P., Kuhar, S., Batra, D., Baevski, A., and

Maksymets, O. (2022). Offline visual representation learning for embodied navigation. arXiv

preprint.

Yadav, K., Ramrakhya, R., Ramakrishnan, S. K., Gervet, T., Turner, J., Gokaslan, A., Maestre,

191
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

N., Chang, A. X., Batra, D., Savva, M., et al. (2023b). Habitat-matterport 3d semantics

dataset. In Conference on Computer Vision and Pattern Recognition.

Yak, S., Gonzalvo, J., and Mazzawi, H. (2019). Towards task and architecture-independent

generalization gap predictors. arXiv preprint.

Yamauchi, B. (1997). A frontier-based approach for autonomous exploration. In International

Symposium on Computational Intelligence in Robotics and Automation.

Yamauchi, B. and Beer, R. (1996). Spatial learning for navigation in dynamic environments.

Transactions on Systems, Man, and Cybernetics.

Yan, C., Qu, D., Xu, D., Zhao, B., Wang, Z., Wang, D., and Li, X. (2024). Gs-slam: Dense visual

slam with 3d gaussian splatting. In Conference on Computer Vision and Pattern Recognition.

Yan, Z., Yang, H., and Zha, H. (2023). Active neural mapping. In International Conference on

Computer Vision.

Yang, Y., Sun, F.-Y., Weihs, L., VanderBilt, E., Herrasti, A., Han, W., Wu, J., Haber, N., Kr-

ishna, R., Liu, L., et al. (2024). Holodeck: Language guided generation of 3d embodied ai

environments. In Conference on Computer Vision and Pattern Recognition.

Ye, J., Batra, D., Das, A., and Wijmans, E. (2021). Auxiliary tasks and exploration enable

objectnav. arXiv preprint.

Ye, J., Batra, D., Wijmans, E., and Das, A. (2020). Auxiliary tasks speed up learning pointgoal

navigation. In Conference on Robot Learning.

Yen-Chen, L., Florence, P., Barron, J. T., Rodriguez, A., Isola, P., and Lin, T.-Y. (2021). inerf:

Inverting neural radiance fields for pose estimation. In International Conference on Intelligent

Robots and Systems.

Yenamandra, S., Ramachandran, A., Yadav, K., Wang, A., Khanna, M., Gervet, T., Yang, T.-

Y., Jain, V., Clegg, A. W., Turner, J., et al. (2023). Homerobot: Open-vocabulary mobile

manipulation. In Conference on Robot Learning.

Yeshwanth, C., Liu, Y.-C., Nießner, M., and Dai, A. (2023). Scannet++: A high-fidelity dataset

of 3d indoor scenes. In International Conference on Computer Vision.

Yin, W., Zhang, J., Wang, O., Niklaus, S., Mai, L., Chen, S., and Shen, C. (2021). Learning to

recover 3d scene shape from a single image. In Conference on Computer Vision and Pattern

Recognition.

Yu, A., Ye, V., Tancik, M., and Kanazawa, A. (2021). pixelnerf: Neural radiance fields from one

or few images. In Conference on Computer Vision and Pattern Recognition.

192
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S. (2020). Meta-world:

A benchmark and evaluation for multi-task and meta reinforcement learning. In Conference

on Robot Learning.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. (2021). Barlow twins: Self-supervised

learning via redundancy reduction. In International Conference on Machine Learning.

Zeng, J., Li, Y., Ran, Y., Li, S., Gao, F., Li, L., He, S., Chen, J., and Ye, Q. (2023). Efficient view

path planning for autonomous implicit reconstruction. In International Conference on Robotics

and Automation.

Zhai, A. J. and Wang, S. (2023). Peanut: predicting and navigating to unseen targets. In

International Conference on Computer Vision.

Zhan, H., Zheng, J., Xu, Y., Reid, I., and Rezatofighi, H. (2022). Activermap: Radiance field for

active mapping and planning. arXiv preprint.

Zhang, L., Rao, A., and Agrawala, M. (2023). Adding conditional control to text-to-image

diffusion models. In International Conference on Computer Vision.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018). The unreasonable

effectiveness of deep features as a perceptual metric. In Conference on Computer Vision and

Pattern Recognition.

Zhi, S., Laidlow, T., Leutenegger, S., and Davison, A. J. (2021a). In-place scene labelling and

understanding with implicit scene representation. In International Conference on Computer

Vision.

Zhi, S., Sucar, E., Mouton, A., Haughton, I., Laidlow, T., and Davison, A. J. (2021b). ilabel:

Interactive neural scene labelling. arXiv preprint.

Zhmoginov, A., Sandler, M., and Vladymyrov, M. (2022). Hypertransformer: Model generation

for supervised and semi-supervised few-shot learning. In International Conference on Machine

Learning.

Zhou, A., Finn, C., and Harrison, J. (2024). Universal neural functionals. arXiv preprint.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., and Farhadi, A. (2017a).

Target-driven visual navigation in indoor scenes using deep reinforcement learning. In

International Conference on Robotics and Automation.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., and Farhadi, A. (2017b).

Target-driven visual navigation in indoor scenes using deep reinforcement learning. In

International Conference on Robotics and Automation.

193
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

BIBLIOGRAPHY BIBLIOGRAPHY

Zhu, Z., Peng, S., Larsson, V., Cui, Z., Oswald, M. R., Geiger, A., and Pollefeys, M. (2024).

Nicer-slam: Neural implicit scene encoding for rgb slam. In International Conference on 3D

Vision.

Zhu, Z., Peng, S., Larsson, V., Xu, W., Bao, H., Cui, Z., Oswald, M. R., and Pollefeys, M. (2022).

Nice-slam: Neural implicit scalable encoding for slam. In Conference on Computer Vision and

Pattern Recognition.

Zitkovich, B., Yu, T., Xu, S., Xu, P., Xiao, T., Xia, F., Wu, J., Wohlhart, P., Welker, S., Wahid,

A., et al. (2023). Rt-2: Vision-language-action models transfer web knowledge to robotic

control. In Conference on Robot Learning.

194
Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

FOLIO ADMINISTRATIF

THESE DE L’INSA LYON, MEMBRE DE L’UNIVERISTE DE LYON

Nom : Marza Date de soutenance: 25 Novembre 2024

Prénom : Pierre

Titre : Learning spatial representations for single-task navigation and multi-task policies

Nature : Doctorat Numéro d’ordre : 2024ISAL0105

Ecole doctorale : Infomaths

Spécialité : Informatique

Résumé : Agir de manière autonome dans notre monde 3D requiert un large éventail de compétences, parmi

lesquelles se trouvent la perception du milieu environnant, sa représentation précise et suffisamment efficace

pour garder une trace du passé, la prise de décisions et l’action en vue d’atteindre des objectifs. Les animaux,

par exemple les humains, se distinguent par leur robustesse lorsqu’il s’agit d’agir dans le monde. En parti-

culier, ils savent s’adapter efficacement à de nouveaux environnements, mais sont aussi capables de maîtriser

rapidement de nombreuses tâches à partir de quelques exemples. Ce manuscrit étudiera comment les réseaux

neuronaux artificiels peuvent être entrainés pour acquérir un sous-ensemble de ces capacités. Nous nous con-

centrerons tout d’abord sur l’entrainement d’agents neuronaux à la cartographie sémantique, à la fois à partir

d’un signal de supervision augmenté et avec des représentations neuronales de scènes. Les agents neuronaux

sont souvent entrainés par apprentissage par renforcement (RL) à partir d’un signal de récompense peu dense.

Guider l’apprentissage des capacités de cartographie d’une scène en ajoutant au signal de supervision des tâches

auxiliaires favorisant le raisonnement spatial aidera à naviguer plus efficacement. Au lieu de travailler sur le

signal d’entrainement des agents neuronaux, nous verrons également comment l’incorporation de représenta-

tions neuronales spécifiques de la sémantique et de la géométrie à l’architecture de l’agent peut contribuer à

améliorer les performances de navigation sémantique. Ensuite, nous étudierons la meilleure façon d’explorer un

environnement 3D afin de construire des représentations neuronales de l’espace qui soient aussi satisfaisantes

que possible sur la base de métriques pensées pour la robotique que nous proposerons. Enfin, nous passerons

d’agents de navigation à des agents multi-tâches et nous verrons à quel point il est important d’adapter les car-

actéristiques visuelles extraites des observations de capteurs à chaque tâche à accomplir pour réaliser une variété

de tâches, mais aussi pour s’adapter à de nouvelles tâches inconnues à partir de quelques démonstrations.

Mots-clés : Apprentissage profond, Vision par ordinateur, Apprentissage par Renforcement, Représentations

spatiales, Navigation Visuelle, Politiques multi-tâches

Laboratoires de recherche : LIRIS, CITI

Directeur de thèse : Olivier Simonin

Président du jury : Nicolas Thome

Composition du jury : Ivan Laptev, Karteek Alahari, Georgia Chalvatzaki, Nicolas Thome, Laëtitia Matignon,

Olivier Simonin, Christian Wolf

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0105/these.pdf © [P. Marza], [2024], INSA Lyon, tous droits réservés

	Notice XML
	Page de titre
	Abstract
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Autonomy in the world as a measure of intelligence
	Perceiving the world is crucial but not enough alone
	Knowledge arises from interaction
	Artificial neural agents can learn to interact
	Organization of the manuscript and contributions

	Preliminary concepts
	Deep Learning
	Supervised learning
	Neural architectures

	Computer Vision
	Encoding 2D images
	General pre-trained vision models
	Representing 3D space
	Neural fields
	3D representations for robotics

	Sequential Decision-Making
	Markov Decision Processes
	Reinforcement Learning
	Deep Reinforcement Learning
	Imitation Learning
	Discrete planning
	Robotic tasks involving sequential decision-making

	Progress in Embodied AI
	Simulation
	Encoding past experience
	Recurrent memory
	Episodic memory
	Topological memory
	Metric map memory

	Training neural agents
	Reinforcement Learning
	Imitation learning and supervised global waypoint prediction
	Pre-training for Embodied AI
	Auxiliary supervision
	Multi-task robotic policies
	Neural agents with no task-specific training

	Neural scene representations
	NeRF-based SLAM
	NeRF for planning and control
	Active learning for neural fields

	Mapping Abilities Emerge in Multi-Object Navigation through Auxiliary Spatial Reasoning
	Abstract
	Context
	Learning to map
	SOTA agents in Multi-ON
	Learning to map objects with auxiliary tasks
	Training agents with Deep RL
	Modification of the training objective with auxiliary tasks

	Experimental results
	Conclusion

	Neural implicit representations as a means to better navigate to multiple objects
	Abstract
	Context
	Navigating with implicit representations
	The Semantic Finder fs
	Occupancy and Exploration Implicit Representation fo
	Global Occupancy Read r — handling reparametrization invariance
	Algorithmic description of an agent forward pass
	Training the agent
	Training the global reader
	Perception modules

	Experimental results
	Conclusion

	Training of Neural Implicit Representations through Autonomous Scene Exploration
	Abstract
	Context
	AutoNeRF
	Background
	Exploration Policy Training
	NeRF training
	Downstream tasks

	Experimental results
	Reconstructing house-scale scenes
	Navigating inside a NeRF-generated mesh
	Autonomous adaptation to a new scene
	Quantitative results
	Qualitative results
	Navigating with sensor and actuation noise

	Conclusion

	Efficiently adapting visual features to multiple tasks
	Abstract
	Context
	Task-conditioned adaptation
	Base agent architecture
	Adaptation
	Training

	Experimental results
	Conclusion

	Conclusion
	Summary of the presented contributions and directly related perspectives
	Current and future trends in Embodied AI touched in this manuscript
	Generalization to new environments
	Generalization to new tasks
	Inductive biases in neural architectures

	Other future perspectives in Embodied AI
	Intrinsic curiosity
	Experimenting in the real world

	Closing remarks

	Bibliography
	Folio Administratif

