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Résumé

Les dernières décennies ont été témoins de l’émergence et de la prolifération d’objets con-
nectés, communément appelés Internet des Objets (IdO). Cet écosystème divers correspond à
une large gamme de dispositifs spécialisés, allant de la caméra IP aux capteurs détectant les
fuites d’eau, chacun conçu pour répondre à des objectifs et des contraintes de consommation
d’énergie, de puissance de calcul ou de coût. Le développement rapide de nombreuses tech-
nologies et leur connexion en réseau s’accompagne de la génération d’un important volume
de données, soulevant des préoccupations en matière de vie privée, en particulier dans des
domaines sensibles tels que la santé ou les maisons connectées.

Dans cette thèse, nous exploitons les techniques d’apprentissage automatique (machine
learning) pour explorer les problèmes liés à la vie privée des objets connectés via leurs pro-
tocoles réseau. Tout d’abord, nous étudions les attaques possibles contre LoRaWAN, un
protocole longue distance et à faible coût d’énergie. Nous explorons la relation entre deux
identifiants du protocole et montrons que leur séparation théorique peut être contrecarrée en
utilisant les métadonnées produites lors de la connexion au réseau. En nous appuyant sur
une approche multi-domaines (contenu, temps, radio), nous démontrons que ces métadonnées
permettent à un attaquant d’identifier les objets connectés de manière unique malgré le chiffre-
ment du trafic, ouvrant la voie au traçage ou à la ré-identification.

Nous explorons ensuite les possibles contre-mesures, en analysant systématiquement les
données utilisées lors de ces attaques et en proposant des techniques pour les obfusquer ou
réduire leur pertinence. Nous démontrons que seule une approche combinée offre une réelle
protection. Par ailleurs, nous proposons et évaluons diverses solutions de pseudonymes tem-
poraires adaptées aux contraintes de LoRaWAN, en particulier la consommation énergétique.

Enfin, nous adaptons notre méthodologie d’apprentissage automatique à DNS, un pro-
tocole largement déployé dans l’IdO grand public. À nouveau basées sur les métadonnées,
notre attaque permet d’identifier les objets connectés, malgré le chiffrement du flux DNS-
over-HTTPS. Explorant les contre-mesures potentielles, nous observons un non-respect des
standards liés au padding, entrâınant la compromission partielle de la vie privée des utilisa-
teurs.

Plus généralement, nos travaux mettent en évidence que les efforts déployés par les pro-
tocoles IdO tels que LoRaWAN pour protéger la vie privée sont insuffisants. Des évolutions
potentiellement profondes sont nécessaires pour correctement répondre à ces enjeux.

Mots-clefs : Vie privée; Internet des Objets; Objets connectés; Sécurité; Protocoles; Ra-
dio; Réseaux sans fil; Métadonnées; Empreinte; Re-identification; Inférence d’activités; Lo-
RaWAN; LPWAN; DNS; DNS-over-HTTPS.
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During the past decades, we have witnessed the emergence of connected devices, commonly
referred to as the Internet-of-Things (IoT). Unlike general-purpose, consumer-grade comput-
ers, IoT is not a monolithic concept with a singular, clear definition. Instead, it represents a
diverse ecosystem corresponding to a wide range of specialized devices, each designed to meet
specific objectives and constraints, whether it is energy efficiency, computational power, or
affordability. For instance, IoT encompasses devices as varied as wired IP cameras deployed in
smart home environments and wireless water leakage sensors installed in industrial settings.
Despite their disparate functionalities and deployment scenarios, both examples fall under
the umbrella of IoT devices.

By definition, these devices are connected to their surroundings through networks of var-
ious topologies and technologies. This connectivity leads to the generation of specialized
data, much of which raises privacy concerns, especially in sensitive domains such as health
monitoring or activity tracking in smart homes.

In parallel to the expanding capabilities and ubiquitous deployment of IoT, machine learn-
ing techniques have proved to be powerful tools for automating the analysis of large volumes
of data and showcasing privacy attacks. By applying these methods to the network traffic
generated by IoT devices, we study network protocols and uncover new insights into their
vulnerabilities to various privacy attacks.

In this thesis, we leverage such tools to explore privacy issues in IoT devices through the
lens of their communications. With a specific focus on the highly constrained LoRaWAN
protocol, we study the trade-offs between privacy and energy consumption. We complete this
analysis by adapting our machine learning methodology to encrypted DNS, a battle-tested
and widely deployed protocol in consumer-grade IoT devices.

1.1 Challenges and contributions

The central theme of this thesis is organized around three main research questions, leading
to various contributions. Figure 1.1 illustrates a summary of the overall process. To support
it, we conduct a thorough state of the art on eavesdropping-enabled attacks and associated
defenses in IoT networks.

Q1 What are the privacy challenges of the LoRaWAN protocol?

LoRaWAN is a recent protocol, which saw most of its related research focus on either ap-
plicability to specific use-cases [34, 38, 96, 114, 137, 147, 175, 187, 192, 199, 204] or secu-
rity [99, 100, 154, 159, 212]. On the other hand, privacy in this context have seldom been
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Tailoring pseudonyms 
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privacy challenges in
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What are the privacy
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LoRaWAN protocol?

Linking LoRaWAN
identifiers (contribution #1)

Fingerprinting LoRaWAN
devices (contribution #2)

Feature-based
countermeasures in 

LoRaWAN (contribution #3)

Can this methodology
be adapted to other IoT
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Identifying IoT devices
 via encrypted DNS traffic

 (contribution #5)

Lack of impact

Imperfect protection
mechanisms

Other protocol/paradigm

Figure 1.1: Thesis research questions and contributions.

studied [74, 131, 196], with major features lacking attention from the community. By focusing
on identifiers leveraged by the protocol, we identify two possible privacy threats during the
lifetime of a LoRaWAN device: imperfect protection mechanisms in the join process, and
identifiable patterns in the actual transmission.

Contribution #1: Linking LoRaWAN identifiers (Chapter 4).

• We analyze the LoRaWAN join process mechanism and identify keys features leading
to a potential linkage.

• We leverage a large-scale dataset of millions of LoRaWAN messages, captured over
three years to test our hypothesis. To the best of our knowledge, this is the most
comprehensive dataset studied in the literature.

• We utilize a robust machine learning method and reliably link two seemingly unrelated
messages and their identifiers (DevEUI and DevAddr).

Contribution #2: Fingerprinting LoRaWAN devices (Chapter 5).

• We provide a high-level analysis of network fingerprinting related works and extensively
compare their solutions.

• We propose a new fingerprinting representation and evaluate it on LoRaWAN traffic.
Our machine learning method is able to reliably re-identify the origin of sequences
of messages via a multi-domain approach leveraging content, time, and radio-based
features.

• By exploiting a real-world, large-scale dataset of third-party operators, we explore var-
ious attack scenarios, including a limited number of received messages, the availability
of listening stations, and access to radio information when targeting mobile devices.

Q2 How can we address privacy challenges in LoRaWAN?

Following the discovery of two privacy threats in the LoRaWAN protocol, we study how they
could be mitigated through easily deployable software-based solutions.
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Contribution #3: Feature-based countermeasures in LoRaWAN (Chapter 6).

• We design a set of mitigations for each feature previously identified as posing a threat
against privacy, and respecting the constraints of the protocol. This includes padding,
delay, and radio power modulation.

• Through careful evaluation on the same datasets used for conducting attacks, we mea-
sure the individual and combined impact of such countermeasures.

• We study their inherent overhead and outline how both their limited effect on attacks
performance and restrictions of the LoRaWAN protocol restrict their potential viability.

Based on the marginal influence of feature-based countermeasures and on the presence
of stable identifiers in LoRaWAN, we propose an alternative, privacy-oriented, design of
pseudonyms specifically for this protocol.

Contribution #4: Tailoring pseudonyms for LoRaWAN (Chapter 7).

• We study multiple state-of-the-art pseudonyms solutions in other wireless technologies,
including Wi-Fi, BLE, and VANETs, and compare their existing design based on various
targeted properties.

• Given the constraints of LoRaWAN, we tailor two solutions for the protocol and propose
a renewal strategy to rotate pseudonyms.

• We thoroughly assess their performance and intrinsic limitations via a set of theoretical
and simulation-based evaluations.

• Finally, we reflect on possible adaptations in other Low Power Wide Area Network
protocols under similar constraints.

Q3 Can this methodology be adapted to other IoT networks?

While our machine learning methodology demonstrates great efficiency for LoRaWAN, it is
interesting to test in a different context. DNS is utilized by a high number of IoT devices,
operating in less constrained environments, such as smart homes [203]. By following a similar
methodology, we show the robustness of our approach to detect privacy vulnerabilities in a
different network protocol.

Contribution #5: Identifying IoT devices via encrypted DNS traffic (Chapter 8).

• We analyze potential contenders for encrypted DNS in IoT devices and choose to focus
on DNS-over-HTTPS (DoH).

• Only leveraging metadata from the network traffic, we evaluate machine learning meth-
ods and find that device identification is both possible and reliable despite encryption.

• We study possible countermeasures and analyze various padding strategies via simula-
tions.

• Coincidentally, we find that multiple DNS resolvers do not respect relevant standard,
failing to correctly protect the privacy of their users.

1.2 Outline

This thesis is structured as follows. Chapter 2 presents a state of the art regarding privacy
in the IoT, both from an offensive and defensive perspective. Additional elements on the
LoRaWAN protocol and machine learning are summarized in Chapter 3.

The first part of this thesis proposes some answers to Q1 What are the privacy challenges
of the LoRaWAN protocol?. Chapter 4 deals with linking theoretically unrelated identifiers
during the join process, allowing an eavesdropper to associate a device identity with its
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activity. We design a second attack in Chapter 5, and fingerprint devices based on their
communication patterns.

The second part explores the second research question, Q2 How can we address privacy
challenges in LoRaWAN?, studying possible countermeasures. Chapter 6 applies various
noises to machine learning features in order to reduce their susceptibility to linkage and
identification attacks. A more radical and impactful solution is presented in Chapter 7, with
the design of rotating pseudonyms for LoRaWAN.

The third - and last - part includes Chapter 8, answering Q3 Can this methodology be
adapted to other IoT protocols?, by adjusting the machine learning methodology to identify
IoT devices via encrypted DNS, despite its encryption.

Finally, Chapter 9 concludes this thesis, summarizing our contributions and hinting at
both short and long-term perspectives.

1.3 Funding

This thesis was carried out within the CITI laboratory (INSA Lyon & Inria), in the Privatics
team (Inria). It was funded by the ANR-BMBF PIVOT project (ANR-20-CYAL-0002), and
supported by the H2020 SPARTA project, as well as the IoT SPIE ICS - INSA Lyon chair.
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Building upon the thesis outline and research questions presented in the previous section,
we delve deeper into the multifaceted realm of the IoT privacy. Through this exploration, we
aim to offer an overview of various techniques, both offensive and defensive, related to the
specific context of IoT privacy, while setting reasonable boundaries to such a broad scope. We
begin by highlighting the inherent challenges and security vulnerabilities of IoT ecosystems.
Next, we explore the nuanced concept of privacy in the context of IoT, exploring its various
dimensions and implications. Subsequently, we dissect the prevalent attacks targeting IoT
privacy, outlining a generic eavesdropping threat model and the main methodologies employed
by adversaries. Finally, we analyze the countermeasures and mitigation strategies deployed
to combat these privacy attacks.

2.1 Security in wireless communications for the IoT

The open nature of wireless communication makes the IoT ecosystem particularly vulnerable
to various security threats. In recent years, eavesdropping on largely deployed protocols such
as Wi-Fi [198] and Bluetooth [20] has become increasingly easy thanks to affordable off-the-
shelf hardware and Software-Defined Radios (SDRs). Both active and passive attacks can
be conducted on open, user-facing networks with minimal investments. Previous vulnerabil-
ities include denial-of-service [45], forging authentication messages [126], man-in-the-middle
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(MitM) [41, 154], MAC spoofing attacks [41], and many others [159]. Emerging IoT protocols
such as LoRaWAN suffer from similar weaknesses, from the process allowing devices to join
a network, to data transmission [100, 154]. For instance, a bit flipping attack is possible by
design as the payload authentication is not checked by the application server [100]. Although
newer versions tackle most of these vulnerabilities, a few still remain, such as denial-of-service
attacks [212, 99].

A significant portion of security research focuses on data integrity and confidentiality. Con-
fidentiality, achieved through encryption and access controls, plays a crucial role in preventing
unauthorized access to sensitive information. It is important to note that privacy cannot exist
without encryption and the confidentiality measures it provides. However, privacy extends
beyond mere confidentiality by encompassing metadata generation and individuals’ rights to
control their personal data, regardless of security mechanisms. As explored further in Sec-
tion 2.2, it includes broader ethical and legal considerations regarding data collection, use,
and sharing.

2.2 Privacy for the IoT

Our work is heavily immersed in technology and highly specialized, to the extent that dis-
cerning human involvement behind network traces can be challenging. In this section, we
highlight its broader context by first proposing an IoT-centric definition of privacy, consider-
ing historical, sociological, and technological perspectives. Then, we present relevant texts of
law in our jurisdiction, the European Union (EU), before highlighting associated guidelines
and standards.

2.2.1 From human to data

According to Serge Gutwirth, privacy is a “cornerstone of contemporary [...] society”, while
“[remaining] out of the grasp of every academic chasing it” [94]. Its perception fluctuates
through History and other cultural contexts, as each social group adapts the concept to its
customs. For instance, it would be foolish to directly compare modern views on privacy
with the ones held during Roman antiquity, when communal living with less distinct personal
boundaries was the norm [52]. Likewise, the interpretation of privacy is highly contextual [158,
193]: teenagers over-sharing on the Internet generally do not want their parents to know about
their personal information [51].

As they are social constructs, we argue privacy definitions follow the technologies develop-
ments of the authors’ era. Seminal article “The Right To Privacy” published in 1890 defines
privacy as “the right to be left alone” [221]. This somewhat limited vision is usually comple-
mented by Westin’s 1968 book, motivated by advances in surveillance technology: “privacy is
the claim of individuals, groups, or institutions to determine for themselves when, how, and
to what extent information about them is communicated to others” [223, Chap. 1]. Inherit-
ing from this information-centric definition, multiple high-level classifications have emerged
during the past decades, adding more types of privacy. Clark highlights its multidimensional
aspect by introducing privacy of the person (or bodily privacy), privacy of personal data,
privacy of personal behavior and privacy of personal communication [60]. Finn et al. update
these categories to account for new advancements, up to 7 types [82]. For instance, it includes
privacy of thoughts and feeling, to protect them from emerging neurodata innovations.

As a new technology, the IoT borrows from existing definitions while enhancing them with
its own requirements [139]. Inspired by Finn et al. [82] and Hahn et al. [95], we select three
types of privacy relevant to data produced by IoT devices:

• Activity : what kind of actions is performed, and when.

• Location: where the action is performed, or more generally, where the device is used.

• Identity : who is using the device, or more generally, which device is used.

For instance, when capturing traffic from a device using the address A and known to be
a glucose monitor [55], the identity corresponds to A and the activity to monitoring blood
glucose levels. We can also infer the location based on radio signals (see Section 2.3.3). Of
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course, such a baseline could be leveraged to infer additional information: a glucose monitor
is probably used by someone with diabetes, and the attacker could know who uses the device
with address A.

In a broader sense, we examine the privacy of IoT users through the lens of their in-
formational identities [218]. Instead of a single identifier (e.g. name only), the identity is
considered as a set of multidimensional information forming a profile (e.g. behavior, prefer-
ences) [83, 184].

2.2.2 Privacy regulations

While privacy may appear abstract, its modern foundation lies in various legal documents
designed to ensure responsible handling of collected personal data. Privacy laws serve to
safeguard personal data from misuse, breaches, and unauthorized surveillance [218].

Privacy protection is a concern for legislators worldwide, leading to the establishment of
comprehensive frameworks in numerous countries [46], such as the California Consumer Pri-
vacy Act (CCPA) in the United States of America, or the more recent Digital Personal Data
Protection Act (DPDPA-2023) in India. Likewise, more low-level, technical legal documents
are pushed to regulate IoT devices: United Kingdom’s Product Security and Telecommunica-
tions Infrastructure (Security Requirements for Relevant Connectable Products) Regulations
enacted in 2023 describes various security requirements for manufacturers, including pass-
words complexity and support periods [163].

In this section, we outline EU-based documents, because 1) it is geographically relevant
to our work, and 2) the legal framework is well-defined, comparatively advanced compared
to the other countries. Its main component has been deployed for a few years and, following
(and completed by) decades of national laws, such as the 1978’s “Informatique et Libertés”
(Information Technology and Liberty) French law [6]. We provide an overview of two major
legal documents: the currently enacted General Data Protection Regulation (GDPR), and a
future implementation of the ePrivacy Regulation (ePR).

The GDPR is a comprehensive data protection law enacted by the EU to safeguard individ-
uals’ privacy rights and regulate the processing of personal data [209]. GDPR imposes strict
requirements on how data collected by these interconnected technologies is handled, empha-
sizing principles such as data minimization, purpose limitation, and transparency. IoT device
manufacturers and service providers with customers from the EU are obligated to ensure
that personal data processing activities comply with GDPR provisions, including obtaining
informed consent from users, implementing appropriate security measures, and facilitating
individuals’ rights to access, rectify, and erase their personal data [209].

The ePR is a proposed EU legislation intended to complement the GDPR by specifically
addressing privacy in electronic communications [62].1 While still under interinstitutional
negotiations, the ePR is expected to have significant implications for IoT devices. Contrary
to the GDPR, it covers the large scope of electronic communications, independently whether
it is personal or non-personal data. This also includes metadata, defined by Article 4 as
“data processed in an electronic communications network for the purposes of transmitting,
distributing or exchanging electronic communications content; including data used to trace
and identify the source and destination of a communication, data on the location of the device
generated in the context of providing electronic communications services, and the date, time,
duration and the type of communication”. Additionally, Article 8 is particularly relevant to
our work on consumer IoT devices. Titled “Protection of information stored in and related
to end-users’ terminal equipment”, it applies GDPR concepts, such as purpose and consent,
to processing and storage capabilities of IoT devices, expanding the scope of data privacy
regulations in the EU. The broad approach of the ePR offers compelling avenues for both
legal and technical research.

Our work follows the trend of current and future regulations requiring companies to priori-
tize data protection, implement robust security measures, and uphold transparency standards
to ensure compliance and safeguard individuals’ privacy in the IoT ecosystem.

1The ePrivacy Directive has been active since 2002 and inspires the proposed Regulation. A directive is
a goal that member states should achieve, without defined means to achieve said results. It is implemented
nationally as laws and regulations. On the other hand, a European regulation is effective as law in all member
states at once (e.g. GDPR).
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2.2.3 Guidelines and standards

In addition to legal frameworks, multiples non-biding documents containing advices and good
practices have been published in recent years, both as general guidelines and technical stan-
dards. Often providing a step-by-step translation of legal documents, they help manufacturers
comply with regulations and developers implement specific privacy-enhancing technologies.

At a high level, guidelines provided by the European Data Protection Board (EDPB)
clarify the legal framework established by the GDPR, providing concrete examples for better
understanding. More specifically, many documents are driven by the Article 35 of the GDPR,
requiring a Data Protection Impact Assessment (DPIA) when a processing is “likely to result
in a high risk to the rights and freedoms of natural persons” [209]. For instance, the European
Data Protection Authorities provide a unified interpretation on DPIA, to ensure compliance
with GDPR requirements [164]. Additionally, the French administrative regulatory body
(Commission Nationale de l’Informatique et des Libertés (CNIL)) published guidelines on
how to conduct a Privacy Impact Assessment specifically for IoT devices. They detail the
process, from defining the processed data to associated feared events, and provide advices to
manufacturers on how to mitigate privacy risks for their products [61].

Other documents are less compliance-motivated yet remain impactful, including proto-
col standards such as Requests For Comments (RFCs) for the Internet or 802.11 for Wi-Fi.
RFCs are published by Internet Engineering Task Force (IETF) and written by individu-
als or organizations, documenting methods, behaviors, research, or innovations applicable to
the operation of the Internet and Internet-connected systems. Not all RFCs are standards;
they are organized by various status: Standards Track, Best Current Practice, Informational,
Experimental, or Historic. For instance, multiple RFCs detail privacy considerations [226]
(Informational) and privacy-preserving mechanisms [144, 145] (Standard track and Experi-
mental) for the Domain Name System (DNS) protocol, later implemented by developers.

The IEEE 802.11 is a set of technical standards specifying physical and MAC layers of
wireless network protocols, such as Wi-Fi. It includes recommended practice for privacy [63],
such as a threat model and a checklist for protocol designers. Additional work on privacy is
ongoing with two specification amendments: “Operation with Randomized and Changing MAC
Addresses” (P802.11bh) and “Enhanced Service with Data Privacy Protection” (P802.11bi),
that should be unveiled in late 2024.2

These documents form an ever-expanding corpus, following both legal regulations and
technology innovations. We hope our work acts as inspiration and support for new and
improved privacy-preserving solutions, and even more accurate guidelines.

2.3 Attacks on IoT privacy

In this section, we first outline the threat model under which we operate, before discussing
how each type of privacy presented in Section 2.2.1 is associated with a specific class of
attacks. An overview of the attack hierarchies is available in Figure 2.1.

2.3.1 Threat model

Multiple threat models for both security and privacy are detailed in the IoT literature [81,
206, 222]. At a high level, they can be analyzed through two axes: the capabilities of the
attacker, and which element of the network is targeted. For instance, an attacker can be
passive (only listening to communications) or active (injecting new frames, altering existing
or replaying previously transmitted ones); they can benefit from full physical access to IoT
devices or be limited to eavesdropping. Likewise, Torres et al. [206] define 6 attack vectors
against IoT networks, based on the target: the environment around the sensor, the device
itself, the medium between the device and the gateway, the gateway itself, the link between
the gateway and the server, and the server itself.

Analyzing a complete infrastructure at once is an overwhelming task, so we restrict their
model and focus on a specific class of privacy attacks enabled by the very nature of open
wireless communication. As seen in Figure 2.2, any attacker having access to the medium, for

2https://www.ieee802.org/11/PARs/P802.11bi.pdf
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Figure 2.2: Threat model overview.

instance via their own gateway or off-the-shelf hardware, can eavesdrop on communications
between devices and receivers.

Our threat model is thus defined as follows. First, every other part of the infrastructure is
trusted [222], including device, gateways, and servers physical and software integrity. Second,
contrary to scenarios detailed by Torres et al. [206], the attacker is only passive. For instance,
they cannot alter existing frames, inject new ones in the communication, jam it, or replay
previous exchanges. This is a reasonable assumption as messages generally benefit from
integrity protection and counters are used to detect replays (see Section 3.1.3). Third, we
assume the cryptographic layer is secured: it is impossible to access the content of encrypted
payloads, and the integrity as well as authentication are robust. Following sections present
various attacks under these assumptions.

2.3.2 Activity inference

As outlined in Section 2.2.1, actions executed via IoT devices may be directly tied with
people’s activities, and the data they produce can reveal user behaviors, preferences, and
patterns [131]. Activity inference typically falls into three categories: smart home, human,
and smart city. While these align with expected applications for official purposes, malicious
actors can leverage network traffic patterns to extract this information as well.

2.3.2.1 Smart home activity

Analyzing sensor data from devices like motion detectors, door sensors, and smart thermostats
enables the extraction of occupancy patterns within a home, which could provide valuable
information to potential thieves [15, 27, 66, 131, 186]. For instance, Copos et al. show that
application traffic (HTTP, DNS, NTP, TLS protocols) coming from a thermostat as well as
a smoke and carbon dioxide detector can be used to infer home occupancy [66]. Their work
is further expanded to other smart home appliances (e.g. camera switch, lightbulb, home
assistants) via traffic rate analysis by Apthorpe et al. [27].
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Such attacks also concern lower level and more IoT specific protocols such as ZigBee [186]
or LoRaWAN [131]. Interesting information can be gleaned not only from the traffic con-
tent but also from its structure: Leu et al. demonstrate that if a real-life event is directly
linked to network messages, a single frame is enough to infer a device state (e.g. a garage
door opening) [131]. Although Copos et al. extract features from clear-text protocols such
as DNS [66], following works only leverage metadata such as length and timing of mes-
sages [27, 131]. For instance, Acar et al. provide a detailed analysis on smart home activity
inference via encrypted traffic, from device activation to movements in the house [15]. They
distinguish between time-independent, non-sequential events (e.g. device power cycling) and
time-dependent, sequential events (e.g. movement between locations), shedding light on the
intricacies of activity inference in smart home environments.

2.3.2.2 Human activity

Wearable devices equipped with sensors like accelerometers and gyroscopes can track and infer
various human activities such as walking, running, cycling, or even specific exercises [123].
Fitness trackers are generally connected via Bluetooth Low Energy (BLE) to smartphone
applications, letting eavesdroppers monitor their encrypted traffic. Das et al. show that each
activity has distinctive patterns (e.g. the number of messages increases with the physical
activity intensity), making it possible to re-identify them [72]. External attacks are also
possible via adversarial motion detection through wireless signals. For instance, existing
Wi-Fi signal can be used to reliably detect users paths in specific rooms [198].

2.3.2.3 Smart city activity

Connected city infrastructure enables large-scale monitoring of various aspects such as traffic
flow, air quality, and energy consumption [199]. However, attackers are also able to infer
various information based on the generated traffic. For instance, frequent smart metering
measurements can be leveraged to infer highly precise information, such as household occu-
pancy, lifestyle, economic status [32], or even which TV program is currently watched [91].
Likewise, Dujicrodic et al. expose that signal power fluctuations of parking sensors used to
monitor space occupancy in real-time are enough to discern patterns of user activity [74].
While we focus on users’ privacy, smart city activity inference is also relevant in industrial
sites.

2.3.3 Radio-based positional tracking

IoT devices embedded in everyday objects, like smartphones, wearables, or smart vehicles,
maintain constant communication with their surroundings. Whether they are scanning to
detect other devices and receivers, or transmitting data within established connections, they
generate numerous messages that can be intercepted by eavesdroppers. Such information
is easily associated with location data to enable positional tracking, for instance via known
receivers.

Radio-based tracking of IoT devices involves using Radio Frequency (RF) signals emitted
by the devices to determine their location. By nature, this approach is relevant to any wireless
network protocol. Indoor and outdoor positioning are dynamic and intricate areas of study,
with advanced techniques typically relying on two fundamental approaches: range-free and
range-based methodologies. [135].

2.3.3.1 Range-free tracking

Range-free positioning consists of two phases. First, a collection of known positions is mapped
with radio features of receivers, which are then converted into fingerprint positions. In Fig-
ure 2.3, they are denoted as FP . Such fingerprints can take on different formats, such as mean
or distributions of Received Signal Strength Indicator (RSSI) values [25, 135, 174]. Second,
when determining the location of a device, its fingerprint position is compared to the existing
dataset to identify the closest match [135].

The accuracy of fingerprint-based approaches highly depends on the discrete dataset qual-
ity, both at its creation and in time [135]. For instance, this solution may not work if a device

24

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0075/these.pdf © [S. Pélissier], [2024], INSA Lyon, tous droits réservés



25 CHAPTER 2. STATE OF THE ART

...

Position 1

Position 2

Position n

Phase 1: dataset generation Phase 2: matching

...

Figure 2.3: Range-free positioning process.

is located somewhere that was not previously surveyed. Hernández et al. estimate the lo-
cation of non-mapped fingerprints for indoor Wi-Fi positioning through continuous dataset
thanks to support vector machines [98]. From an attacker’s point of view, this approach al-
lows reducing by half the number of surveyed positions used to train the model while keeping
the same mean distance error [98].

2.3.3.2 Range-based tracking

Range-based positioning is more robust to unknown settings as it does not exploit a pre-
generated dataset. Figure 2.4 present the two main techniques: triangulation and trilatera-
tion [79, 124]. In both cases, the receivers positions (A, B, or C) are known, and we search
for the location of a source device S.

)

)

(a) Triangulation. (b) Trilateration.

Figure 2.4: Range-based positioning.

As seen in Figure 2.4a, triangulation requires two receivers with directional antennas.
The position of S is computed through trigonometry using the Angle of Arrival (AoA) at
both A and B, and the distance d(A,B). Triangulation based on AoA requires less hardware
compared to other methods, but its effectiveness is optimized in scenarios with clear line-
of-sight [172]. As the distance between the device and receivers increases, the accuracy of
AoA-based triangulation tends to decrease [172].

Figure 2.4b presents trilateration based on 3 receivers with non-directional antennas using
Time of Arrival (ToA). The distance between each receiver and S is obtained via subtraction
of a timestamp included in the frame sent by S and the timestamp of arrival at A, B, and
C. To precisely compute the position, time synchronization is required between device and
receivers, which can be challenging [79, 135]. Such a technique falls outside the scope of
our threat model, as it requires a close synchronization with the device, that should not be
possible for a passive attacker.

Multilateration expands such a concept by including more than 3 receivers [124]. Another
improvement also involves computing the distance based on relative time instead of absolute
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Figure 2.5: TDoA-based positioning, with tr the time of arrival at a receiver r.

time. Figure 2.5 illustrates how the Time Difference of Arrival (TDoA) can be computed at
each receiver to find the position of S, without time synchronization (i.e. without collaboration
from S). Fargas and Petersen leverage such a method in LoRaWAN with 4 receivers, obtaining
an outdoor precision of around 100 meters [79]. Their work is improved by Podevijn et al.:
they evaluate various trajectories (walking, cycling, and driving) in a larger network, reaching
a median accuracy of 75 meters when enriching TDoA with the underlying road map [172].
Although such figures are impressive, they may not be sufficient when tracking devices in
dense environments where multiple devices are deployed within meters of each other. Instead,
alternative solutions based on the protocol itself can be explored.

2.3.4 Protocol-based tracking

Protocol-based tracking is enabled by any piece of information that is both stable across
packets and unique to the device. The most obvious field is the device identifier (e.g. MAC
address), but other adjacent data can also uniquely identify the device.

2.3.4.1 Stable identifiers

Wireless link-layer network protocols are generally organized in two stages. First, a device
goes through a setup phase, where it discovers and connects to access points, through probe
request frames in Wi-Fi [213] or advertising packets in BLE [111]. Second, once the connection
is initiated, the device communicates using a variety of data packets. During both steps,
devices include identifiers in their messages, allowing them to be easily tracked across various
locations and timeframes [89]. Real-world deployments of such solutions include the one
described by Bonne et al., which tracks visitors at large social events including at concerts
and in city campuses [47]. Such a straightforward privacy vulnerability is generally countered
by address randomization and pseudonyms, presented in Section 2.4.5. However, this issue is
still relevant in constrained protocols utilizing stable identifiers such as LoRaWAN.

2.3.4.2 Other fields and metadata

The address itself is not the only piece of data able to identify a device. Vanhoef et al.
highlight that certain protocol components may still disclose identifying information. For
instance, some devices include their Universally Unique Identifier (UUID) in probe requests,
circumventing MAC address randomization [213]. Additionally, companies leverage BLE
features, including custom fields in advertising packets, to develop their own advertising
protocols. Becker et al. illustrate that certain implementations enable user tracking even when
randomized addresses are employed. For instance, the payload remains unchanged when a
pseudonym is updated [44]. Similarly, Martin et al. show that BLE-based protocols employed
in Apple products may facilitate tracking through various fields [143]. For example, a sequence
number is incremented only when specific actions are performed, allowing eavesdroppers to
track the device via the value itself. This also defeats MAC address randomization as the
value is carried over to the new pseudonym. Their work is completed by Celosia and Cunche,
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highlighting that interlayer synchronization, i.e. changing all identifiers and counters at once,
is required to correctly protect from protocol-based tracking [56].

2.3.5 Device fingerprinting

A device’s identity is closely tied with multiple information, including the identity of its user,
the type of device, and its related activities. For instance, knowledge of the device’s identity
may reveal vulnerabilities and enable targeted attacks [206]. Likewise, knowing which device
is currently in use may be highly relevant for activity recognition [15, 131]. Contrary to
unique device identifiers presented in Section 2.3.4, we consider fingerprints as snapshots of
the identity of the device, possibly encompassing multiple elements, from the radio signal
and/or protocol headers.

Similar concepts apply to device fingerprinting. Fundamentally, it is a tool gathering a set
of distinguishing features describing an object and organizing them in an intelligible manner.
First, raw features are extracted from network traces as a vector v = (x1, x2, ..., xn). Second,
a fingerprinting function f(.) produces a fingerprint F = f(v), corresponding to a specific
device. Finally, a distance function d(.) is computed over two input fingerprints as D =
d(FA, FB). The distance value D should reflect the (dis)similarity of provided fingerprints
and hint at their origin. In this section, we explore both aspects: data representations after
the fingerprint function, and distances between fingerprints.

Table 2.1: Summary of fingerprint representations and associated distances.

Data representation Distance

Vector of values Euclidean [17], Jaccard index [162]
Histograms Euclidean [78, 174], Cosine similarity [156],

Kullback-Leibler divergence [217],
ML-based [35, 208], Unknown [19]

Descriptive statistics ML-based [117, 160]
Markov chain Maximum likelihood Criterion [121, 189],

Custom solution [161]

Although most related works ask “do these two fingerprints come from the same device?”,
the others choose a different path. Instead of computing a distance between two fingerprints,
they let a machine learning model determine to which device (i.e. class) the fingerprint
corresponds. This advantageously avoids computing a distance, but is less robust: adding a
new device to the network requires to re-train the machine learning model. Such an approach
is abusively denoted as “ML-based” distance in Table 2.1 for completeness.

2.3.5.1 Data representations

Distinguishing between a fingerprint’s representation and its actual content is important.
The term “content” encompasses features extracted from network traces, irrespective of their
origin, while “representation” refers to the format used to refine, organize, and utilize these
features as a fingerprint. For instance, when looking at the payload lengths of captured
frames, the content corresponds to actual length values, while a possible representation is
the mean of those values. In this section, we explore different fingerprint representations
employed in prior research on network fingerprinting.

Vectors of values : Multiple works rely on vectors of raw values, without any modification
of information extracted from network traces [17, 162], such as F = v. For instance, Aernouts
et al. fingerprint the location of LoRaWAN devices based on their signal power, with values
directly associated with GPS positions [17]. When dealing with more than one feature, the
fingerprint is a concatenation of multiple vectors: Pang et al. identify devices via various
features extracted from their wireless traces, including a vector of packet lengths and a
vector of network identifiers (SSID) [162]. For n features, the fingerprint thus corresponds to:
∀v, F = f(v1, v2, ..., vn) = (v1, v2, ..., vn).
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Histograms : Binning, also known as discretization, is a data preprocessing technique used
in statistics and machine learning to reduce the number of distinct values in a continuous
variable by grouping them into a smaller number of bins or categories. The process involves
dividing the range of a continuous variable into intervals or bins, and then assigning each
data point to the appropriate bin based on its value.

Binning is often employed to simplify complex datasets, reduce noise, and improve the
efficiency of algorithms by making them less sensitive to small variations in the data [118].
Additionally, using a vector of values directly may be impractical because of the high num-
ber of measurements, or asymmetries between devices. For example, if one device sent 100
messages and another one only 50, how should their values be paired during comparison?

After binning raw data, a fingerprint is a vector of nb elements representing the number
of values in each bin (i.e. heights of a discrete histogram Hnb

). This representation provides
a compact yet interpretable format, and is one of the most prevalent in the literature. It
has been used with a variety of network features, including timing [19, 35, 208] and packet
length [156]. Additionally, it is often chosen for radio-based features, such as received signal
strength [174, 78], or lower level physical characteristics (e.g. carrier frequency offset) [217].

Fingerprints, and hence bin sizes, should reflect reality while providing exploitable infor-
mation. For instance, IAT of network packets is often measured in milliseconds, but such
a precision is unnecessary when identifying low-throughput devices (e.g. a message every
hour). Worse, it can be detrimental if slight variations put a value in the wrong bin, re-
ducing the accuracy. Multiple formulas (or “rules”) exist to determine the optimal width
and number of bins (or “class intervals”), depending on data distribution and acceptable
number of bins [185]. Weirdly, all works cited previously use 300 bins to classify their time
values [19, 35, 208]. Uluagac et al. “empirically determined” this number [208], but to the
best of our knowledge, other histogram-based fingerprinting research simply does not mention
the way bins are created.

Descriptive statistics : Alternatively to histograms, some works leverage descriptive
statistics as a way to fingerprint devices, e.g. F = (v, σ). This is particularly useful when
the raw data is too large or too complex to analyze at once [117]. Additionally, it does not
require optimizing for the right number of bins. For instance, Overdorf et al. re-identifies
visited Tor websites based on mean and mode of various features [160]. Additionally, more
complex statistics such as variance, skewness, and kurtosis are leveraged by Klein et al. to
fingerprint wireless devices based on radio signals [117].

Markov chains : IoT devices have distinct communication patterns (cf. Section 2.3.2.1).
For example, a sensor can be programmed to send a report every hour, or every day at
midnight, with occasional alerts in between if a threshold is exceeded. Previous fingerprint
representation do not fully exploit such a stateful behavior.

Although this aspect has seldom been investigated in wireless networks, a few works
consider Web browsing as a stochastic process and model it as Markov chains [121, 161, 189].
They all model TLS communication as a series of states, constructing homogeneous3 Markov
chains from browsing traces, with the fingerprint corresponding to a stochastic matrix P =
{pi,j}, where pi,j is the probability of transition from state i to state j. These chains, built
using known websites, are then compared to unknown visits to infer users’ browsing habits
despite encryption.

More precisely, initial work by Korczynski and Duda considers a single state based on the
TLS message type (e.g. Application Data, Client Hello, etc.), with an enter state, various
transition states, and an exit state [121]. Following research by Shen et al. and Pan et al.
improves the solution in two ways: 1) a state is now a combination of TLS message type and
message length, and 2) their Markov chains are not first order, but second order, meaning that
the next state is not only influenced by the current state, but also the previous one [161, 189].
While more accurate, this approach generates complex chains with many states. Increasing
the order and number of states in Markov chains results in high computational complexity
due to the underlying representation as transition matrices.

3The transition probabilities do not vary across time.
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Image-based : A subset of radio fingerprinting works focus on the physical layer using
techniques previously developed for image recognition. This approach is based on the envi-
ronment differences between devices, as well as the unique hardware generating identifying
variations in the radio signal [197]. It involves converting radio frequency signals into visual
representations, including spectrograms illustrating signal frequency over time [113, 188].
These representations are then analyzed using image recognition techniques, such as convo-
lutional neural networks (CNNs). A highly visual example is provided by Jiang et al. [113],
reproduced in Figure 2.6. By drawing the differential constellation trace figure4 of various
LoRa devices (Figure 2.6a), they are able to uniquely identify them (Figure 2.6b).

(a) Example of differential constellation
trace figure.

(b) Clustering for 6 LoRa devices based on
differential constellation traces.

Figure 2.6: Image-based radio fingerprinting, figures by Jiang et al. [113].

These works are currently limited by the medium quality, with their accuracy depending
on good Signal-to-Noise Ratio (SNR) [188] while some physical layer protocols, such as Long
Range (LoRa), are designed to operate effectively with low SNR. Although our work primarily
focuses on higher-level network protocols and fundamental radio information such as signal
power, it is essential to acknowledge physical layer fingerprinting as a potential threat to
privacy.

2.3.5.2 Fingerprint distances

Fingerprinting is always deployed along some technical way to compare two fingerprints to
determine their origin. Such a distance is highly depended on the fingerprint representation.
Sadly, not all literature works cited in Section 2.3.5.1 explicitly select a distance function, let
alone justify their choice. In this section, we present those who do provide information on
their distance computations.

The simplest approach for vectors of raw values [17] or histograms [174, 78] is to compute
the Euclidean distance. The Jaccard similarity index has also been used for vectors of raw
values [70, 162]. Defined as the size of the intersection of the sets divided by the size of the
union of the sets, it does not take into account the rarity of elements in each set. To address
this issue, some weight can be added based on known data [162].

Histograms can be compared through the cosine similarity [156] or Kullback-Leibler (KL)
divergence [217]. For two vectors A and B of length n corresponding to discrete probability
distributions, they are computed as:

cosine similarity =

∑n
i=1 AiBi√∑n

i=1 A
2
i ·

√∑n
i=1 B

2
i

DKL(A ∥ B) =
n∑

i=1

Ai log

(
Ai

Bi

)
4A constellation trace is a graphical representation of the signal based on its amplitude and phase shift.

The differential version studies their variations across time.
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Works leveraging Markov chains depend on the Maximum Likelihood Criterion [121, 189].
It seeks to find the parameter values that make the observed data the most probable under
the assumed statistical model. In the Web browsing fingerprinting scenario, it helps identify
the website that is most likely to be the source of the captured encrypted traffic.

In text classification and document clustering, the KL divergence outperforms the cosine
similarity [103], which in turn outclasses the Jaccard index [132] and Euclidean distance [103].
However, results highly depend on the studied dataset [103, 132]. To the best of our knowl-
edge, no comparison of these various distance have been published in the context of network
traffic fingerprinting.

2.4 Countermeasures against IoT privacy attacks

Although finding privacy vulnerabilities in IoT systems is a mentally stimulating first step, it
is also crucial to provide mitigations protecting end-users. In this section, we highlight some
privacy metrics used to measure the impact of countermeasures. Then, we present various
approaches to reduce the efficiency of privacy attacks, such as dummy traffic, adding noise,
modifying the radio medium, and pseudonym rotation strategies. A summary of countermea-
sures relative to the attack(s) they thwart is available in Figure 2.7.

Attacks on 
IoT privacy

Activity inference Location
& tracking

Identity
& device fingerprinting

Smart home 
activity inference

Physical
activity inference

Smart city
activity inference

Radio-based
positional tracking

Protocol-based
tracking

Range-free
tracking

Range-based
tracking Stable identifiers Other fields 

and metadata

Pseudonyms
+ pseudonym

rotations

Modified radio medium

Dummy traffic + noise-based perturbations 
+ pseudonym rotations

Noise-based
perturbations +

obfuscation

Dummy traffic + noise-based perturbations 
+ pseudonym rotations

Figure 2.7: Countermeasures associated to each privacy attack.

Please note that each mitigation is presented in isolation, but combining multiple coun-
termeasures is often required for higher impact. For example, padding alone (included in
“noise-based perturbations” in Figure 2.7) may not be sufficient to counter DNS fingerprint-
ing [53]. Furthermore, practicing data minimization whenever possible is mandatory: an
attacker cannot exploit information they do not have [27]. Finally, for attacks based on clear-
text fields leaking information (see Section 2.3.4.2), hiding their content through encryption
remains the best countermeasure.

2.4.1 Privacy metrics

Privacy metrics are quantitative measures used to evaluate the level of privacy protection
provided by a system, algorithm, or protocol. They play a crucial role in designing and
evaluating privacy-preserving systems and ensuring compliance with privacy regulations and
standards. They enable researchers, developers, and policymakers to assess the effectiveness
of privacy-enhancing techniques and make informed decisions regarding data handling and
protection. Wagner and Eckhoff provide a complete overview of such metrics and highlight
that they are context-dependent [219]. First, they vary based on the specific type of privacy
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being targeted. For instance, different metrics are employed for location privacy compared
to protecting against activity inference. Second, privacy metrics are influenced by the threat
model, which encompasses the goals and capabilities of potential attackers [219].

From the eighty privacy metrics Wagner and Eckhoff cite, authors usually pick a few
depending on their use-case. For instance, Becker et al. work on pseudonyms in BLE and
define an anonymity set (i.e. the set of users that an attacker cannot distinguish from the
targeted user) and the maximum tracking time (ie. the cumulative time during which an user
is uniquely identified) [44]. More generally, machine learning-based privacy research often
focuses on the change of accuracy of models trained with or without countermeasures [22, 53].

2.4.2 Dummy traffic

To counter both activity inference and device fingerprinting, one can break existing patterns
by inserting artificial or irrelevant data. Doing so obfuscates legitimate information, thus
protecting user privacy, and can be done directly by the device [131, 153], or by an external
anonymity provider [27]. For instance, some works have focused on protecting the location
of nodes or sink in wireless sensor networks to conceal the actual origin of legitimate nodes
message [112, 229]. Likewise, dummy traffic has been used in the context of anonymous
Web browsing: Yu et al. leverage server-side predictions of adjacent pages to hide the actual
visit [230].

More generally, constant rate transmission has been proposed to mitigate activity inference
based on event detection. However, selecting the interval is a complex problem: too short, and
it depletes device batteries, too long, and near real-time capabilities are lost [139]. Instead,
Yang et al. design a system leveraging an exponential rate of transmission: if an event occurs,
sensor nodes wait for the next interval following the existing distribution. Such an approach
greatly reduces the event transmission delays compared to a constant rate scheme [228].

More closely related to our field of research, Acar et al. artificially obfuscate smart home
traffic and find that: “injecting false data equivalent to 10% of packets exchanged during
the observation time resulted in a decrease by 13%” of accuracy [15]. Leu et al. actually
implement countermeasures and explore the difficulties of generating dummy packets for Low
Power Wide Area Networks (LPWANs) in a statistically convincing way (i.e. taking into
account generic traffic and rare anomalies) [131]. They find that not knowing the actual
communication pattern greatly increases the risk of information leakage and that generating
only a few fake anomalies has a limited impact, contrary to saturating communications with
dummy traffic.

Instead, Möllers propose naive exponential dummies, which generate traffic only if no
message is sent during a specified time window, effectively reducing spent energy. The author
notes that this approach does not provide protection guarantees against actions generating
different number of messages. For example, if switching on a light produces 3 frames, and
opening a door leads to 4 messages, it is possible the system still outputs 3 frames, letting an
attacker infer the performed action [153]. Apthorpe et al. follow a similar path by developing
stochastic traffic padding, which hides existing burst patterns by randomly adding data during
or in between user activity via a middlebox [27].

In any case, generating dummy traffic comes at a cost, while offering imperfect protections.
Similarly to previous works [112, 229], Leu et al. outline that additional traffic generates
significant energy consumption [131]. Following research by Möllers confirms that constant-
rate dummy traffic is not suited for low throughput networks (e.g. home automation) [153].

2.4.3 Noise-based perturbations

Machine learning-based attacks against IoT privacy require large amount of data to train
models. Based on a variety of features (e.g. length of payloads, timing), they are fundamen-
tally statistical representations and can be countered by adding noise to the data. In this
section, we present perturbation-based mitigations whose goal is to reduce identifiability of
network traces, such as padding and delay.
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2.4.3.1 Padding data

While most IoT network protocols are encrypted, few conceal the length of the underlying
data. Hence, the encryption process typically results in an output length depending on the
input. As seen in Sections 2.3.2.1 and 2.3.5.1, such an information can be exploited by
attackers. Padding is a straightforward solution adding data at the end of the payload to
hide its actual length once it is encrypted.

Dyer et al. define multiple padding strategies for encrypted HTTP traffic [76], such as:

1. Linear padding : Packets are padded to the nearest multiple of 128 (or to the Maximum
Transmission Unit (MTU), usually 1500 bytes).

2. Packet Random MTU padding : Packets are randomly padded, up to the MTU.

3. Pad to MTU : Packets are padded to the MTU.

4. Exponential padding : Packets are padded to the nearest power of 2 (or to the MTU).

5. Mice-Elephants padding : Packets are padded to 128 if smaller, or to the MTU if bigger.
This is relevant when packets are generally small, with a few large outliers.

The RFC 8467 [145] on DNS padding cites the first 3 strategy and advocates only for the
first (named Block-Length Padding), while proposing Random-Block-Length Padding, which
pads to a randomly selected multiple of 128.

At a high level, two main strategies emerge from the remaining literature: padding to
the maximum length possible or randomly padding within a specified interval. These involve
trade-offs between privacy and performance: padding to the MTU provides perfect protec-
tion, but requires significant resources. Pinheiro et al. observe that real-world packet lengths
are mostly under 100 bytes long, suggesting that uniform padding up to the MTU is ineffi-
cient [171]. They propose a hybrid approach: padding packets to the nearest hundred up to
300 and randomly beyond 301 to the MTU. This method reduces resource consumption while
maintaining privacy. Additionally, they explore adaptive padding based on network activity,
padding more during idle periods to obscure information and less during active network us-
age. Engelberg and Wool evaluate the approach and find that while it effectively hides the
specific device being used in the network, it does not prevent detecting the number of active
devices [77].

Most of the literature focuses on high-throughput network protocols (e.g. HTTP [76] or
DNS [145]) allowing to pad 128-bytes long blocks of data. However, Shafqat et al. outline
that this approach may not be feasible in constrained protocols, such as ZigBee for which
they propose a random padding of 0 to 3 bytes [186] (also see Section 3.1.7).

Finally, Alshehri et al. explore the choice of distribution for random padding selection,
aiming to achieve Differential Privacy [22]. While Laplace noise seemed promising, its imple-
mentation requires reducing half of the packet lengths. Instead, they demonstrate that uni-
formly random noise satisfies (ϵ, δ) Approximate Differential Privacy, a more lenient form [75].
Parameters ϵ = 0 and δ = ∆s

n are selected, with n the maximum number of bytes, ensuring
optimal privacy protection (minimal ϵ). Here, ∆s denotes the maximum difference in packet
size: higher potential padding correlates with stronger privacy guarantees.

2.4.3.2 Delaying messages

Intentionally adding delay to packet transmissions mitigates the risk of privacy breaches by
making it more difficult for adversaries to infer sensitive information from network activities
(see Section 2.3.2.1) [139]. Even if delay and dummy traffic are often used together, we
purposefully separate them as only delay may be conceivable in constrained networks.

The main difference of various literature works is based on the protocol type and amount
of delay. For instance, Zhang and Zang focus on mesh sensor networks, where each node on
path adds a slight delay [231]. In smart home settings, Srinivasan et al. advocate for 15 to 20
minutes of random delay, demonstrating that rare events require more time to be hidden from
eavesdroppers [197]. Ashur et al. go even further when designing a BLE & LoRa privacy-
preserving device tracking system: messages are randomly sent in a one-hour interval [33].
Additionally, Prates et al. discover that the time between request and answer can also be
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used to identify devices [173]. They address this issue by introducing a random 10ms delay
before responding to a request. However, their analysis combines this countermeasure with
dummy traffic, making it challenging to determine which measure has the most significant
impact.

Unlike padding, delaying packets can significantly disrupt the application flow, poten-
tially causing timeouts or incorrect arrival order if the delay is too high [139]. Srinivasan
et al. emphasize the importance of adjusting delay values for each application, as some can
handle extended delays of several minutes, while others cannot tolerate any delay at all (e.g.
emergency applications) [197].

2.4.4 Modified radio medium

Radio-based countermeasures are in theory extremely powerful in mitigating privacy attacks
within wireless networks at their source. Physical layer security techniques focus on reducing
the eavesdropper ability to access the medium while others mitigate the identifiability of radio
signals. For instance, selective jamming [23], signal reflection [198], and frequency hopping [20]
have been developed to secure wireless communication channels and prevent eavesdropping.

Anajemba et al. utilize multiple antennas on both the transceiver and receiver sides,
alongside a jamming station, to minimize the number of messages accessible to attackers while
preserving link quality for legitimate receivers [23]. Likewise, Staat et al. develop a prototype
of intelligent reflecting surface targeting adversarial motion detection. By introducing random
variations in the wireless propagation, the surface perturbs the signal enough to counter
sensing [198]. Finally, Albazrqaoe et al. propose software-based solutions to better obfuscate
the channel hopping mechanism of Bluetooth, by flipping the status of randomly selected
subchannels [20].

To counter hardware-based identification, Srinivasan et al. cite more effective yet complex
and/or costly solutions, such as using a single radio transceiver for multiple sensors, or using
potentiometers instead of resistors and varying these between communications [197]. As we
highlight in Chapter 6, additional software-based countermeasures can be deployed to reduce
signal power relevance during fingerprinting.

However, contrary to more generic approaches such as padding (see Sections 2.4.3.1),
modifying the medium itself requires significant resource investments (e.g. adding new an-
tennas, deploying reflective surfaces). Likewise, jamming techniques are generally used in
space-limited environments. For instance, Anajemba et al. deploy their system with 3 meters
between nodes, which is far from the multiple kilometers separating LPWAN devices (see
Section 3.1) [20].

2.4.5 Pseudonyms

Instead of relying on stable identifiers, modern devices often opt for random and ephemeral
link-layer addresses to enhance privacy, often named pseudonyms. Pseudonyms are intimately
linked with the devices capabilities they are deployed on and the protocol requirements for
address space (i.e. the number of bits available). As seen in Section 2.2.3, this is still an
open question for the 802.11 family, and work is required to bridge the gap between resource-
intensive pseudonym solutions and constrained IoT devices. We propose a tailored solution
to this problem in Chapter 7.

In this section, we present various pseudonym schemes for 802.11/Wi-Fi [30, 90], sensor
networks [152, 231], BLE [92], and vehicular networks [138, 169]. The solutions discussed
here only support mutual authentication, where both the device and central authority can
authenticate the message’s source. Hence, we consider device anonymity without two-way
verification as out of scope. For instance, we exclude randomized MAC addresses in Android
Wi-Fi module [88] or group signatures in vehicular networks [169], for which the receiver can
not authenticate the sender.

2.4.5.1 Encrypted link-layer pseudonyms

A first way to hide the value of the link-layer identifier field is to completely encrypt it.
Armknecht et al. apply this context in a new link-layer protocol and discuss its adaptation
to 802.11 [30]. An encryption key is pre-shared between each device and the Access Point
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(AP) they are connected to. It is used to encrypt MAC addresses along a sequence number
si by both the devices and AP. Such encrypted number si is also appended at the end of
the frame. Then, the receiving device or AP matches the encrypted pseudonym with its own
pre-generated values.5

If a frame is lost, the sender still updates si, meaning the device and AP are now desyn-
chronized. Upon receiving a frame containing a pseudonym not matching any pre-generated
value, the AP tries to decrypt si with each pre-shared key. If si is found, the pseudonym can
be decrypted and both parties are synchronized again.

This approach has been updated by Greenstein et al. [90]. Their solution, named Shroud,
is different in two aspects. First, they encrypt the sequence number via AES-128, selecting
the whole block as identifier, instead of appending a sequence value at the end of the frame.
Second, they generate multiple encrypted pseudonyms at once, contrary to one at a time.
Thus, the receiver can look up a larger set of pre-generated pseudonyms when packet loss
occurs. Although this approach requires slightly more initial computation power and memory
storage, Greenstein et al. leverage hash tables instead of lists to reduce complexity and do not
require a costly process to re-synchronize, as long as enough pseudonyms are pre-generated.

2.4.5.2 HASHA

Zhang and Zhang propose an alternative design to protect device location in sensor net-
works [231]. First, devices transmit their original address (i.e., MAC) through beacon frames,
resulting in each device maintaining a list of all nearby identifiers. Second, each pseudonym
is generated using a rolling key, starting with an arbitrary fixed value. The temporary
pseudonym TP of the first data message is generated by both devices using a fixed-value key
k and the original address OA of both source S and destination D as: TPs = HMAC(k,OAs).
Finally, devices update the key by XORing it with the payload of the previous message. All
messages are acknowledged to make sure the keys are correctly synchronized between two
devices.

2.4.5.3 Resolvable random private address

So far, all solutions require some sort of synchronization between sender and receiver, which
is not the case for Resolvable random Private Addresses (RPAs), the alternative solution
deployed in BLE. RPAs are created by generating a 24-bit hash h using a hash function H,
an Identity Resolution Key (IRK) Ik, shared between the sender and receiver, and a 22-bit
random value r: h = H(Ik, r) [92, sec. 1.3.2.2]. Upon receiving a pseudonym, it can be
resolved by comparing the transmitted hash value with the one computed locally using the
corresponding IRK.

2.4.5.4 Pooling pseudonyms

Although they operate as mesh networks instead of star topologies, Vehicular Ad hoc NET-
works (VANETs) are notorious pseudonym users [169]. Each vehicle can request a trusted
third-party for multiple pseudonyms (i.e. certificates based on asymmetric cryptography)
and sign their messages with private keys to prove their origin upon reception. VANET
pseudonyms are delivered in bulk and valid for a specific period, meaning a vehicle randomly
selects one of its certificate for authentication [138]. As connectivity can not be guaran-
teed, receivers must be able to verify the validity of incoming pseudonyms locally. Thus, the
pseudonym (i.e. complete certificate) is appended to each message [169].

A similar approach is described by Misra and Xue for wireless sensor network. The base
station allocates random subranges from a network-wide pool of pseudonyms to the nodes.
Nodes subsequently select a pseudonym value randomly from their allocated subrange. Both
the base station and nodes maintain tables correlating subranges with devices, facilitating
encryption and path forwarding capabilities among neighboring nodes [152].

5We note a similar method leveraging an encrypted counter is used in rolling codes, deployed in Remote
Keyless Entry systems [86]. In their case, the mechanism is used to prevent replays.
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2.4.6 Pseudonym rotations

As discussed in Section 2.4.5, numerous pseudonym schemes are available. However, relying on
a single pseudonym for an extended period of time is insufficient to effectively thwart tracking.
Therefore, regular updates to pseudonyms are necessary to enhance privacy protection, either
unsynchronized or with devices working together to protect their privacy. We also note
that rotating pseudonyms can thwart any attack based on collecting large amounts of data
corresponding to a device’s identity. For instance, activity inference and fingerprinting are less
effective if the information available for a single identifier is reduced by frequent pseudonym
rotation.

Most rotation strategies are based on uncoordinated timings. For example, BLE RPAs
are usually rotated every 15 minutes without external synchronization [92, 143]. Martin et al.
note that such a naive approach offers limited privacy protection as 1) infrequent pseudonym
rotation increases the risk of linking two pseudonyms when one disappears and a new one
appears, and 2) updates every a precise number of minutes make it easier to monitor user
activities. Instead, they advocate drawing a random time after which the pseudonym should
be updated [143]. Such a concept is applied by Liu et al. to VANETs [138]. Vehicles randomly
pick a new pseudonym from a pool (see Section 2.4.5.4), use it until its expiration date, and
then wait for a random delay before communicating again. This approach requires a buffering
period where the device does not generate any traffic [138].

Similar synchronized solutions were initially developed to protect location privacy. They
rely on mix zones, where multiple devices operate together to mix their traces and mislead an
attacker [84]. Huang et al. introduce a silent mix zone: pseudonyms are updated only after
a random delay during which devices do not communicate [104]. However, situations with
limited number of devices nearby are frequent. Vaas et al. address this issue in VANETs. By
broadcasting dummy traffic of chaff vehicles via roadside units, they create safe zones where
a vehicle can update its pseudonym [211].

Again, authors highlight that, no matter the complexity and intricacies of pseudonym
rotation, it is mandatory to correctly take into account other metadata to avoid address
carry-over [44, 143] (see Section 2.3.4.2).

2.5 Conclusion

Privacy, influenced by cultural, sociological, legal and technological factors, remains a com-
plex concept, even within the reduced scope of IoT devices. Our work aligns with evolving
regulations that emphasize data protection, security, and transparency to uphold privacy
in the IoT ecosystem. As guidelines and standards continue to evolve alongside legal and
technological advancements, our research hopes to inspire privacy-preserving solutions and
contribute to more precise guidelines.

While this section sheds light on various eavesdropping-based attacks in the IoT landscape,
there remains ample opportunity for further exploration, particularly in resource-constrained
protocols like LPWANs. We also outline that existing tools such as fingerprinting are battle-
tested but rarely systematically compared.

Countermeasures against IoT privacy attacks span a diverse array of strategies, reflecting
the multifaceted nature of the threats they mitigate. However, implementing these counter-
measures often entails navigating a delicate balance between enhancing privacy and minimiz-
ing the impact on network performance, ranging from increased bandwidth usage to potential
message loss. Such trade-offs are even more apparent in highly constrained network protocols
such as LoRaWAN.
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This chapter provides additional elements required for the rest of the thesis. It details
applications, architecture and various technical features of the LoRaWAN protocol, followed
by an introduction to the fundamentals of machine learning and its pitfalls.

3.1 LoRaWAN

In this section, we introduce Long Range Wide Area Network (LoRaWAN), a Low Power
Wide Area Network (LPWAN) protocol. Standardized for the first time in 2015 by the
LoRa Alliance, its adoption grew rapidly and LoRaWAN is now deployed by 181 operators
worldwide [67]. Although multiple versions evolve in parallel, we focus on LoRaWAN v1.1 as
it provides the most mature solution [65, 140]. Likewise, the protocol is available in various
frequency bands, but we are interested in the ones deployed in Europe: EU863-870MHz and
EU433MHz [64].

Although we refrain from rewriting the entire LoRaWAN specification [65], we provide
an overview of relevant concepts related to networks and privacy. Thus, we first present
existing LoRaWAN application, before delving into its network architecture. We introduce
the frame structure and relevant fields for our thesis, including identifiers. We then detail the
join process along with keys generation and message types. Finally, we present the multiple
constraints under which the protocol operates.

3.1.1 Applications

Anything connected to a low data rate sensor, sending at most a few messages per hour, can
leverage LoRaWAN for data extraction or occasional notifications. Following in the steps
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of large-scale IoT networks, LoRaWAN now connects 300 million devices to a wide range of
applications [67].

From urban environments to rural landscapes, LoRaWAN finds utility in various sec-
tors such as smart cities, agriculture, environmental monitoring, logistics, healthcare, and
industrial automation [96, 199]. In smart cities, LoRaWAN facilitates intelligent infrastruc-
ture management, including waste management [175], street lighting, and parking [74]. In
agriculture, it aids in precision farming [192], crop monitoring, and livestock tracking [114].
Environmental monitoring applications leverage LoRaWAN for air and water quality monitor-
ing [137, 204], weather stations, and wildlife conservation [34, 38]. Furthermore, LoRaWAN
plays a pivotal role in asset tracking, supply chain management, and fleet monitoring in logis-
tics [187]. In healthcare, it enables remote patient monitoring, medication adherence tracking,
and telemedicine initiatives [147].

3.1.2 Architecture

As seen in Figure 3.1, a classic LoRaWAN architecture includes various components [65].

End-Devices Gateway Network Server

Radio (LoRa)

TCP/IP Join Server

Application Server

TCP/IP

Figure 3.1: LoRaWAN architecture overview.

At the core are End-Devices, which include sensors or actuators deployed in the field
to collect or act on data. These End-Devices transmit information to gateways acting
as intermediaries between the End-Device and the network infrastructure. Gateways thus
receive data from End-Devices via the LoRa radio modulation and forward it through a
classic TCP/IP link. We note that LoRa is different from LoRaWAN : the radio modulation
is only one of the physical layers hosting the MAC layer protocol. In our work, we focus on
LoRaWAN.

Following the gateways, a set of servers manages the incoming messages (uplink) and,
if necessary, responds to End-Devices (downlink). Many LoRaWAN implementations use a
single node to host the servers for deployment simplicity. In any case, they can be functionally
separated as three entities:

• The Network Server is responsible for managing the communication between End-
Devices and gateways. It handles network-related tasks, including message deduplica-
tion, radio parameter optimization, and MAC layer commands. The NS also enforces
security mechanisms, such as authentication and encryption to protect the integrity and
confidentiality of the data transmitted over the network. Finally, it acts as a routing
interface between End-Devices and the other servers. For instance, it routes uplink
application payloads to the designated Application Server (AS) and facilitates the join
process with the Join Server (JS) (see Section 3.1.6).

• The Join Server handles the onboarding process for new End-Devices joining the net-
work. It manages the authentication and key generation process between End-Devices
and the NS (see Section 3.1.6).

• The Application Server receives and processes data from End-Devices forwarded by
the NS. It interfaces with external systems or applications, integrating LoRaWAN data
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and triggering actions or alerts for real-time decision-making and automation.

3.1.3 Frame structure

MAC payload

Frame Header FPort

DevAddr FCnt FOpts

Frame Payload

FCtrlMAC header FPort Frame Payload

MIC

MAC header MIC

MAC header

MIC

Figure 3.2: Frame format of uplink and downlink LoRaWAN messages.

Both uplink (End-Device to server) and downlink (server to End-Device) messages follow
the same structure [65, Sec. 4]. They are encapsulated in a MAC payload, along with a MAC
header, which includes the Message Type (uplink, downlink, etc.) and the protocol Major
Version (v1.0, v1.1). The following fields are relevant to our work (from left to right in
Figure 3.2):

• DevAddr: The Device Address is used to identify End-Devices in the network (see
Section 3.1.4.2).

• FCnt: Each uplink and downlink message is ordered via a separate Frame Counter,
respectively FCntUp and FCntDown. Starting at 0 after the join process (see Section 3.1.6)
and sent unencrypted, the values are initially computed on 32 bits but only the 16 least-
significant bits are actually transmitted.

Although the FCntUp is a unique value, the FCntDown corresponds to two counters
incremented independently. The NFCntDown is increased for each downlink messages on
port 0 (or when the field is missing), while AFCntDown is incremented for each downlink

messages with a port different from 0. Both End-Devices and NS track FCnt values to
re-order messages or detect duplicate messages.

• FOPts: Frame options are used to send MAC commands for network management and
configuration tasks, including device status request, data rate adjustments, and security
parameters management.

• FPort: Similarly to the TCP/IP model, LoRaWAN leverages a Frame Port to direct
traffic to specific applications. For instance, one port may serve maintenance functions
while another is selected to transmit sensor data.

• Frame Payload: Containing application data or MAC commands, the payload is
encrypted using AES-128 CCM* (see Section 3.1.6). Its maximum length depends on
a radio parameter controlling the number of bits sent per second, the DataRate (DR).
Table 3.1 details possible length and DR values [64, Sec. 2.1.6].

• MIC: The Message Integrity Code enables the verification of the frame integrity by
computing an AES-128 CMAC over various fields (see Section 3.1.6). It may also be
used for resolution of identifier conflicts in some cases (see Section 3.1.4.2).

The payload and FOpts are encrypted (see Section 3.1.6) but all other fields are sent in
clear-text and thus available to any eavesdropper.

3.1.4 LoRaWAN identifiers

In LoRaWAN, two link-layer identifiers with distinct roles are used: the DevEUI, and DevAddr.
As seen in Chapter 4, both of them are highly relevant to privacy.
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Table 3.1: Maximum payload length based on the DataRate (EU863-870Hz band).

DataRate value(s) Maximum payload length

0..2 51
3 115

4..7 222

3.1.4.1 DevEUI

Each LoRaWAN device is identified by a globally unique EUI-64 identifier named DevEUI.
Allocated by the manufacturer or owner, the DevEUI remains unchanged throughout the
device lifespan. Similarly to a BLE or Wi-FI MAC addresses, the first 3 bytes corresponds
to the Organizationally Unique Identifier (OUI) of the End-Device, identifying the device’s
vendor, manufacturer or organization [5], and registered to the Institute of Electrical and
Electronics Engineers (IEEE) [108].

3.1.4.2 DevAddr

Every time an End-Device joins the network, the NS allocates a new 32-bit temporary identi-
fier called DevAddr. It is then used for the duration of the session. Similarly to IP addresses,
this identifier conveys both routing and identity information. More precisely the DevAddr is
divided into two subfields:

• The AddrPrefix is fixed and identifies the network an End-Device belongs to.

• The NwkAddr is randomly generated by the NS and identifies the device within the
network it belongs to (designated by the AddrPrefix).

Table 3.2: DevAddr format based on the network type.

Network type AddrPrefix (bits) NwkAddr (bits)

0 7 25
1 8 24
2 12 20
3 15 17
4 17 15
5 19 13
6 22 10
7 25 7

Due to the diverse requirements of network operators, LoRaWAN supports 8 network types
(type 0 to type 7), each offering an increasing range of available addresses. As indicated in
Table 3.2, End-Devices are addressed over 7 to 25 bits, corresponding to 27 to 225 unique
identifiers per network.

Multiple End-Devices might share a single DevAddr. This happens due to configuration er-
rors or address allocation optimization [97]. In such instances, End-Devices are differentiated
through the Message Integrity Code (MIC). The receiver computes the MIC using various
potential keys until one of them produces a value equal to the one received, thereby singling-
out the device.1 In case of an End-Device receiving the message, it only has to compute the
MIC with its own key.

3.1.5 Message types

LoRaWAN leverages multiple types of messages for various purposes within the protocol, such
as device registration, data transmission, and acknowledgment. Each LoRaWANmessages has

1An example of such an implementation can be found in the The Things Network repository: https:

//github.com/TheThingsNetwork/lorawan-stack/blob/301af52a0e64d67f90576ededa59836bca19a03b/pkg

/networkserver/grpc_gsns.go#L931
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a type defined through the Message Type (MType) field in the MAC header and summarized
below:

• Join Request: an End-Device asks to join the network.

• Rejoin Request: an End-Device asks to re-join the network, by changing a part or all
of the session context (inducing a DevAddr update).

• Join Accept: the NS validates a connection to the network (answering both Join and
Rejoin requests).

• Data up: uplink data frame, can require acknowledgment (Confirmed) or (Uncon-
firmed) from the NS.

• Data down: downlink data frame, can require acknowledgment (Confirmed) or (Un-
confirmed) from the End-Device.

• Proprietary: available for non-standard communications.

3.1.6 Join process and keys generation

An End-Device has two ways of joining a LoRaWAN network: Activation By Personalization
(ABP) or Over-The-Air-Activation (OTAA). In both cases, two keys are assumed shared
between the End-Device and the infrastructure: the NwkKey and AppKey [65, fig. 49]. The
OTAA mechanism is further analyzed from a privacy perspective in Chapter 4.

3.1.6.1 Activation By Personalization

In ABP, End-Devices are pre-provisioned with various information by the network adminis-
trator. This includes the DevAddr, and all hard-coded session keys.

ABP is simpler and quicker to implement than OTAA. However, it is not possible to up-
date the cryptographic materials without physically accessing the End-Device. This a) poses
a threat to data security if the keys are compromised and b) is cumbersome for network man-
agement as an End-Device cannot change of network provider without manual intervention.

3.1.6.2 Over-The-Air-Activation

In OTAA, End-Devices dynamically obtain the DevAddr and cryptographic materials during
the join process. Figure 3.3 illustrates this sequence of events.

End-Device Gateway Network
Server

Join
Server

Application
Server

LoRa: Join-request

IP: Success

IP: Join-request
DevEUI IP: Join-request

IP: Join-accept
LoRa: Join-accept

DevAddr

LoRa: Uplink
IP: Uplink

IP: Uplink
DevAddr

JoinNonce

DevAddr, JoinNonce
DevAddr, JoinNonce

DevAddr

DevEUI
DevEUI

Figure 3.3: Join procedure using OTAA (red open lock: this specific field is unencrypted;
green closed lock: these specific fields are encrypted).

First, an End-Device sends a join-request including its unique, clear-text DevEUI. The
Network Server (NS) forwards this information to the Join Server (JS), which authenticates
the device. Then, the JS generates the JoinNonce and sends it to the NS. The NS produces
a new DevAddr and forwards it along with the nonce to the End-Device. At this point, both
End-Device and JS possess the same JoinNonce value and can derive various session keys:
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• The pre-shared AppKey derives the AppSKey, shared with the Application Server (AS),
and responsible for payload confidentiality via AES-128 CCM* encryption [65, sec. 6.2.5].

• The pre-shared NwkKey derives the NwkSEncKey, FNwkSIntKey, and SNwkSIntKey, all
shared with the NS.2 Network-specific information such as MAC commands and FOpts

are encrypted using the NwkSEncKey via AES-128 CCM*. FNwkSIntKey and SNwkS-

IntKey are leveraged to compute the MIC via AES-128 CMAC, guaranteeing integrity [65,
sec. 6.2.5].

Once every key is derived, the End-Device can start the actual communication, by inserting
its clear-text DevAddr in all following uplink messages. The same value is used by the NS in
downlink messages.

3.1.7 Constraints

LoRaWAN operates under several constraints, making it suitable primarily for low-bandwidth
applications, such as sensor networks, rather than high-throughput ones. As we propose a
new design in Chapter 7, it is crucial to consider these constraints.

First, End-Devices usually operate on battery power during long period of time, spanning
multiple years. Energy is a scarce resource and everything is made to optimize its usage.
For instance, high transmission costs encourage developers to reduce the payload to a mini-
mum [54].

Second, LoRaWAN devices transmit in unlicensed frequency bands, respecting the ETSI
EN 300 220-2 standard for channel access restrictions [110]. Along with low data rates (250
to 11000 bit/s [64, Sec. 2.1.3]) and limited payload sizes inherent to LoRaWAN, the standard
imposes strict duty cycles: an End-Device must not transmit more than 0.1% to 10% of the
maximum time depending on the band [110, Tab. B.1].

Third, End-Devices are generally low-cost sensors with limited computational and memory
capabilities, placing them between class 0 and class 1 of IETF classification of constrained de-
vices [49]. They are often equipped with CPUs operating at a few dozen megahertz (contrary
to the gigahertz of modern personal computers) [50]. Semtech, the leading manufacturer of
LoRaWAN chipsets, states that RAM can be as low as 8 kB. 3

Finally, contrary to low range wireless protocols such as Wi-Fi and BLE, LoRaWAN is
expected to work in large and dense environments (e.g. cities). In this context, the Packet
Loss Rate (PLR) is high; average values ranging from 1% to 40% have been reported in
real-world deployments [128, 136, 170].

3.2 A machine learning primer

Machine learning is a common denominator across the contributions presented in this thesis.
Rather than a fundamental research subject, it is used as a tool. In this section, we present the
basics of the discipline while providing insights on the steps taken to avoid common pitfalls.

3.2.1 Step-by-step overview

Data
Collection

Data
Preprocessing

Model
Selection

Model
Evaluation

Complete
dataset

Training+testing
dataset

Held-out
dataset

Figure 3.4: Typical research machine learning pipeline.

Machine learning is generally organized in sequential phases presented in Figure 3.4, in-
cluding [36]:

2Here, F corresponds to “Forwarding” and S to “Serving”, a terminology relative to roaming scenarios,
which are outside the scope of this thesis.

3https://lora-developers.semtech.com/documentation/tech-papers-and-guides/mcu-memory-manag

ement/
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1. Data Collection: Gathering relevant data that will be used to train and test the machine
learning model. This data should include features (inputs) and corresponding labels
(outputs).

2. Data Preprocessing : Cleaning the data to make it suitable for modeling, and preparing
sub-datasets for training and testing.

3. Model Selection: Choosing the appropriate machine learning algorithm based on the
nature of the problem, the type of data, and the desired outcomes.

4. Model Evaluation: Training the model and assessing its performance.

In real-world deployments, the initial steps involve selecting the most effective model to
be used in production (e.g. make predictions on incoming data). However, our research goal
is only to show that it is possible to build a robust model, not to actually exploit it in the
wild. Thus, some steps are left out, including as Hyperparameter Tuning (when possible, see
Section 8.6.3), model deployment, and continuously monitoring and maintaining the model.

3.2.2 Unsupervised vs supervised learning

In machine learning, two prominent approaches exist depending on the task and technical
requirements: unsupervised and supervised learning [36].

Unsupervised learning involves training a model on unlabeled data, aiming to uncover
hidden patterns or structures within the data without guidance from labeled examples. Un-
supervised learning is valuable for exploratory data analysis and uncovering insights from
large datasets where labeled data may be scarce or unavailable. Clustering and dimensional-
ity reduction are common tasks in unsupervised learning [36]. For example, such techniques
can be used to group devices exhibiting similar behavior together. However, the lack of ground
truth makes it challenging to evaluate the performance of unsupervised learning models ob-
jectively. The interpretation of the discovered patterns or clusters may also vary depending
on the context and domain knowledge [210].

Conversely, supervised learning involves training a model on labeled data, where the input
data is paired with corresponding output labels [36]. The model learns the relationship
between the input and output data, enabling it to make predictions or classifications when
presented with new, unseen data. This approach is effective for tasks such as classification,
regression, and prediction [36]. For instance, in a supervised learning scenario, a model can
be trained to classify network traces and detect known attacks (e.g. DoS) [37]. In this thesis,
we work with labeled data and therefore select supervised learning as the evaluation method.

3.2.3 Common pitfalls

Machine learning highly depends on the utilized dataset, which is why we make sure to
conduct extensive, large-scale, and realistic studies involving a substantial number of devices
(see Sections 4.3, 5.3, and 8.4). In this section, we cite some of its technical pitfalls [31] and
how we avoid them.

3.2.3.1 Data snooping

Data snooping occurs when information from the test dataset, which would not be available
to the model in reality, influences the model during training, leading to overly optimistic
performance estimates. To prevent data snooping, it is mandatory to separate the dataset
into distinct training and test datasets [31].

3.2.3.2 Training on imbalanced data

In many classification tasks, the dataset contains more samples corresponding to one class
than the other, creating an imbalance. This can lead to biased models that favor the majority
class, resulting in poor performance for detecting rare events [42]. For instance, this is par-
ticularly relevant in intrusion detection, where attacks constitute a small fraction of network
traffic; a model that incorrectly labels intrusions as benign is ineffective [31].
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To balance the training dataset, multiple techniques exist. Under-sampling reduces the
number of majority class samples, while over-sampling increases the size of the minority
class [36]. Under-sampling may lead to loss of information from the majority class, while over-
sampling can result in overfitting (see Section 3.2.3.3). As loosing information can produce
subpar results, we prefer over-sampling, along with other methods to reduce overfitting. More
precisely, we select Synthetic Minority Oversampling Technique (SMOTE) [59, 129]. This
method generates synthetic samples for the minority class without directly duplicating original
data. It has been shown to correctly prevent overfitting and has been used in various network
security-oriented works [74, 201].

In any case, only the training dataset is balanced while testing is kept intact. First,
it avoids data leakage [115], since SMOTE selects certain data points during resampling,
potentially including them in testing (see Section 3.2.3.1). Second, maintaining the natural
imbalance in the testing dataset helps identify any biases present in the model by reflecting
the original dataset’s distribution [31].

3.2.3.3 Overfitting on training data

One common challenge of machine learning is overfitting, where a model learns to capture
noise in the training data rather than the underlying patterns, resulting in poor performance
on unseen data [31].

To avoid this, one can hold a part of the dataset from the training process, and use it
to test the trained model. Such cross-validation is interesting but remains perilous: there is
no guarantee that the selected test set is overall representative of the data. To improve this,
one can leverage a k-fold cross-validation [119, 227], where the dataset is split into k smaller
subsets. For each of the k subsets, a model is trained with k − 1 subsets of data, and tested
with the kth remaining fold. As the test set changes every time, all data is used in a test at
some point. Finally, performances are averaged over the k iterations.

Cross-validation is generally used to estimate performances on unseen data and to compare
machine learning processes. Once it is done, one can train the best performing model on the
whole dataset and deploy it in production for actual predictions.

3.2.3.4 Incorrect performance metrics

Performance metrics in machine learning are essential for assessing the effectiveness of mod-
els [31]. As said in Section 3.2.3.2, only the training set is virtually balanced: the testing set
used to evaluate the performance of the model keeps the original distribution.

In classification tasks, the predictions are classified as:

• True Positive (TP): the model correctly predicts a positive outcome;

• True Negative (TN): the model correctly predicts a negative outcome;

• False Positive (FP): the model incorrectly predicts a positive outcome when the actual
outcome is negative;

• False Negative (FN): the model incorrectly predicts a negative outcome when the actual
outcome is positive.

Then, a classic evaluation metric such as the Accuracy (A) can be computed. It is the
ratio between the number of correct predictions and the total number of predictions:

A =
TP + TN

TP + FN + FP + TN

However, the accuracy may be skewed by the high number of correct predictions because
of the class imbalance. For instance: in intrusion detection, a model biased toward predict-
ing benign traffic would generate numerous TPs due to the rarity of attacks, resulting in a
seemingly high accuracy despite its limitations.

Instead, we use the Balanced Accuracy (BA) [31]. It represents the mean of the sensitivity
and specificity, correctly taking into account the class imbalance of the dataset:

BA =
1

2
× (

TP

TP + FN
+

TN

TN + FP
)
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3.2.4 Summary

In this thesis, we leverage supervised machine learning based on labeled datasets extracted
from network traffic. Additionally, we take into account the inherent imbalance of such
datasets, by re-sampling the training dataset, using cross-validation, and measuring perfor-
mance via the balanced accuracy.
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Unveiling Vulnerabilities:
Privacy Threats in LoRaWAN
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Chapter 4
Linking LoRaWAN identifiers
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This chapter explores how LoRaWAN separates the identity from the activity of a device
during the join process by using two identifiers in distinct, theoretically unlinkable messages.
By leveraging a large-scale real-world dataset of more than 27 millions messages, we analyze
various content, time, and radio-based domains features. We demonstrate that a machine
learning process can reliably link back the two relevant messages, reaching a balanced accuracy
of ∼0.999. Notably, we find that a single field of the header is particularly relevant during
classification, and should be obfuscated.

This chapter is partially based on our peer-reviewed and published work Device Re-
identification in LoRaWAN through Messages Linkage [166]. The present chapter
differs mainly by the following points:

• A larger dataset is leveraged and analyzed. Instead of roughly one year and a
half, experiments are conducted on three years of LoRaWAN traffic, making it
the most complete dataset to date in the literature [195, 196].

• We provide more details on the intuition behind the work and further justify the
feature selection process.

• We streamline our approach to meet current methodology standards and conduct
a thorough analysis of the FCnt’s impact on message linkage. Additionally, we
explore the relevance of each feature using a more robust solution.
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4.1 Introduction

LoRaWAN utilizes two identifiers: the DevEUI, and the DevAddr. Looking back at the pri-
vacy definition for IoT devices given in Section 2.2.1, this mechanism allows LoRaWAN to
separate the identity (DevEUI) from the activity (DevAddr) of a device.1 As illustrated by
Figure 4.1, the DevAddr is sent to the device encrypted, preventing an eavesdropper from
trivially associating it to a DevEUI. In that sense, both identifiers are by design theoretically
unlikable.

End-Device Gateway

Join-request (DevEUI)

Join-accept (DevAddr)

Linking

Uplink (DevAddr)

Figure 4.1: Linking LoRaWAN identifiers during the join process.

Linking back the join-request with the following uplink message opens up the path
to two types of attacks. First, one can infer the identity corresponding to known activity
traces. For instance, in the case of a smart parking lot [74], an attacker could precisely
link network communications with a physical spot. Likewise, linking enriches the existing
traces with additional context: the DevEUI contains an OUI related to the End-Device’s
manufacturer, with some makers focusing only on a certain type of devices (e.g. smart home
sensors). Second, it enables tracking a known identity across its multiple communications if
a disconnection or re-join occurs, by linking a set of DevAddr to a single DevEUI. Hence, an
attacker could follow a specific mobile End-Device as it moves around between its (re)join
process.

In this section, we propose a solution to link back the DevEUI sent in the join-request

and the following DevAddr, contrary their initial design. First, we present the threat model
under which we operate, before detailing the dataset used to carry out experiments. Then,
we showcase the overall process and finish by discussing our experimental results.

4.2 Threat model

The generic threat model based on a passive eavesdropper presented in Section 2.3.1 can
reasonably be adapted to LoRaWAN and the two types of attacks presented previously for
multiple reasons:

• Long range of transmission: by design, LoRaWAN transmits over hundreds of me-
ters in dense environments and kilometers in less crowded spaces [96]. Unlike eavesdrop-

1In practice, the DevAddr can also be considered a secondary yet temporary identity.
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ping on Wi-Fi or BLE, where proximity is required (tens of meters at most), an attacker
can easily deploy sniffing devices outside the immediate vicinity and thus stealthily cap-
ture traffic for longer periods of time.

• Low financial investment: an attacker can build a gateway using affordable hard-
ware, such as a Raspberry Pi and a LoRa concentrator, for less than 200€ [106].

• Multi-band access: an attacker can listen to all bands simultaneously and thus have
access to all uplink messages.

• Publicly available demodulation: while the LoRa radio modulation scheme is pro-
prietary to Semtech, Robyns et al. have published an open-source SDR implementa-
tion [178]. Thus, an attacker are not limited to official commercial gateways and can
build a listening station based on off-the-shelf hardware.

4.3 Dataset

To carry out our experiments, we utilize network traces captured via CampusIoT. This
experimental platform is managed by the University of Grenoble2 and focuses on teaching
and research projects. Thanks to its private LoRaWAN network and ∼50 gateways deployed
around the city of Grenoble, France, CampusIoT continuously listens to surrounding traffic
on the EU 868MHz band. More specifically, gateways listen to 8 channels: 867.1, 867.3, 867.5,
867.7,867.9,868.1,868.3,868.5 MHz. While other additional channels can be used by private
operators, they are not received by the current gateways and are irrelevant for our work.

We have access to these logs from the 23rd June 2020 to the 20th August 2023, representing
a total of 419,688,857 LoRaWAN messages. Table 4.1 provides an overview of messages
available to us. For more information on message types, please refer to Section 3.1.5.

Table 4.1: Distribution of message types in the CampusIoT dataset.

Message Type Number of occurences

Unconfirmed Data Up 278,223,701
Join Request 81,205,339

Confirmed Data Up 34,491,710
Unconfirmed Data Down 11,133,851

Proprietary 6,617,186
Join Accept 3,101,259

Rejoin request 2,747,406
Confirmed Data Down 2,168,405

For the current experiment, only join-request and uplink messages for which we know
the valid association are relevant. As this information is unavailable for third-party operators,
we focus solely on CampusIoT’s End-Devices, summing up to ∼1.2M join-request, and 26M
uplink messages. This represents respectively ∼1.9k DevEUI and 36k DevAddr.

We note such a dataset is based on experimental data, where End-Devices may be affected
by abnormal behaviors (e.g. high frequency of transmission). However, it is impossible to
produce a reliable ground truth based on more realistic third-party traces because of the
protocol’s design.

4.4 Linking join requests and uplink messages

In this section, we detail a method leveraged to link a DevEUI with the corresponding DevAddr.
To do so, we compare various features of the join-request with the ones from uplink

messages following it during a 1-hour time window. If characteristics from both join-request

2https://campusiot.github.io/
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and uplink messages are similar, there is a high chance both originate from the same End-
Device. We begin by developing this intuition and further detail selected features, before
presenting our machine learning method.

4.4.1 Intuitions

We motivate our process with two intuitions: based on the protocol design, and on the
nature of End-Devices as well as their environment. First, the FCnt is initialized at zero
after a join process, which should be a reliable indicator of the relevant uplink following a
join-request. Additionally, LoRaWAN End-Devices should send their first uplink message
soon after joining the network. The End-Device is not obligated to immediately utilize the
newly acquired DevAddr upon reception. However, it is generally advantageous for a sensor to
either request its configuration or start data transmission promptly. Figure 4.2 displays the
distribution of times between a join-request (containing the DevEUI) with the first uplink
(with the DevAddr). Generally, both messages are sent close to each other, with a majority
following a ∼10 seconds delay.

0 10 20 30 40 50 60
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10000

15000

C
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Figure 4.2: Time between a join-request and its associated first uplink message.

Second, End-Devices communication features should not vary significantly in between two
messages. If static (e.g. metering sensors), devices should exhibit stable radio signals [25], as
gateways distance and surroundings do not change. While mechanisms adapting transmission
power exist and could influence radio-based features, they are generally used after 20 uplink

messages, and not directly post join process [68]. If mobile (e.g. position trackers), other
header fields should still help us link back the DevEUI and DevAddr.

4.4.2 Features

We extract content, time, and radio-based features from on our real-world dataset. To deter-
mine which ones to select, we study their distribution for the actual uplink directly following
a join-request (valid pair), and for other unrelated uplink messages (invalid pair). This is
possible because we control the network and possess the ground truth of associations between
DevAddr and DevEUI. Some features correspond to a single value in the uplink, while others
are distances compared with the join-request of reference or previously known information.
A complete list is available below.

The feature is deemed important, i.e able to discriminate between valid and invalid pairs,
if the variation from one category to the other is significant. Figure 4.3 shows the distri-
bution discrepancy between normalized values from valid and invalid pairs, highlighting the
difference between them. For instance, the FCnt is equal to 0 for the first uplink following
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a join-request, with some outliers when packet loss occurs. While this does not guarantee
relevance during the machine learning process, it hints at strong distinguishability.
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Figure 4.3: Distinguishing behavior of features based first uplink received after a
join-request, or other uplink messages.

4.4.2.1 Content-based features

Content-based features are extracted either directly from the clear-text message header, or
from metadata. We consider three of them: Frame counter, Frame port, and Payload length.

• Frame counter (FCnt): Initiated at zero after a join or re-join process and incremented
by 1 with each subsequent message, up to 65535, the FCnt is included in each uplink

message unencrypted. Used to detect packet loss, duplications, and re-order received
messages, it also provides an easy way to spot the first uplink. Given the likelihood of
packet losses [136], analyzing low frame counter values is essential.

• Frame port (FPort): Ranging from 0 to 255, the FPort allows developers to target
specific applications. Its value may vary depending on the nature of the message;
for instance, a port might be designated for management tasks such as configuration
updates, while another might be assigned for sensor data transfer. Some values are
reserved: 0 corresponds to MAC commands, 1 to 223 target applications, and 224
to 255 are utilized for the LoRaWAN MAC layer test protocol [65, sec 4.3.2]. Here, a
specific value could be used during the first uplink to request configuration information,
and another one for the rest of data transfer.

• Payload Length (PL): LoRaWAN payloads are small: from 0 to 242 bytes. Their length
vary based on radio parameters and regions [21]. While payloads are encrypted, they
are not padded, leaking some information about the underlying data length. Similarly
to FPort, it could change depending on the uplink order.

4.4.2.2 Time-based features

Metadata can be extracted from traffic based on message timings. Three time-based features
are selected: Time Difference, Gateway Time Distance, and DevAddr Difference.

• Time Difference (TD): The difference between timestamps of join-request and uplink
messages is computed for the first gateway receiving them as an integer. Following pre-
vious works, we expect a low value for valid links [24].
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• Gateway Time Distance (GTD): A message is sent once but can be received by multiple
gateways with a slight delay. The difference of time of arrival at gateways is computed
pair-wise and saved in vectors. A euclidean distance is computed between the vector
produced by the join-request, and following uplink messages. Assuming numerous
End-Devices are static, relative time differences and distances should be low.

• DevAddr Difference (DD): As seen in Section 3.1.6, the DevAddr is randomly generated
during the join process. Thus, we compute the last time such an identifier has been
seen, expecting the correct uplink to be its first occurrence.

4.4.2.3 Radio-based features

The radio layer provides multiple interesting raw features that should be similar for both the
join-request and following uplink message. First, messages from static End-Devices are
transmitted over a stable environment, and received by a consistent list of gateways. This
produces similar values for classic quality-of-medium features depending on the radio power
(RSSI, SNR, and ESP). Second, some radio parameters may change based on the device or
the period of communication (Spreading Factor & DataRate).

• Receiving Gateways Distance (RGD): Static devices should be received by similar sets
of gateways for both the join-request and subsequent uplink messages. Hence, we
compute the Hamming distance using gateways as vector indexes, expecting low distance
values for valid links.

• Spreading Factor (SF) & DataRate (DR): Radio configuration utilizes default values for
the first uplink message(s) and may change for later ones. Transmission information
such as the data rate (number of bits transmitted per second, from 0 to 7) and SF
(number of bits encoded per symbol, from 7 to 12) are not directly linked to the uplink
order. However, they are determined dynamically based on the network’s Adaptive Data
Rate (ADR) mechanism, which re-evaluates the link quality after 20 uplinkmessages by
default [68]. This optimization adjusts SF and DR accordingly, with potential variations
expected between first and subsequent uplink messages.

• SNR: Defined as the ratio between received power signal and the noise floor power
level, the Signal-to-Noise Ratio (SNR) can be positive or negative, depending on the
transmission quality. In our dataset, the SNR varies from -26 to +30.5.

• ESP : Derived from both RSSI and SNR, the Estimated Signal Power (ESP) is used to
compare the channel quality in radio communications. It is an integer ranging from
0 to -160dBm in our dataset, providing more precise values than the RSSI when its
value drops around -120dBm. Experiments show that, contrary to the ESP, the RSSI
distribution saturates when signal is way below the noise floor [14]. It is computed via
the formula 4.1.

ESPdBm = RSSIdBm + SINRdB

−10 log10(1 + 100.1SNRdB )
(4.1)

RSSI, SNR, and thus ESP, are available for each receiving gateways. Hence, we com-
pute the euclidean distance for each of these values between the join-request and uplink

messages, and expect low values for valid links (RSSI D., SNR D. ESP D.).

4.4.3 Method

In order to link a join-request with the following uplink messages, we consider a machine
learning-based method utilizing features detailed in Section 4.4.2. The problem can be de-
signed as a binary classification: either a given uplink corresponds to a join-request (valid
pair), or it does not (invalid pair). In this section, we present steps followed to prepare the
data, considered classifiers, performance metrics, and overall process.
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4.4.3.1 Data preparation

We extract messages from the original dataset (cf. Section 4.3), with a set J containing
join-request messages, and U for uplink messages. We then leverage a set of known links
K to create two classes. These are available thanks to our administrator access on the NS.
Based on this ground truth, we select valid pairs (j, uv) ∈ K, with j ∈ J and uv ∈ U . Invalid
pairs (j, ui) /∈ K, with ui ∈ U , are generated by randomly selecting leftover uplink messages.
This ensures the second class is heterogeneous and contains a vast variety of associations.

In both cases, features are extracted as vectors from join-request and uplink messages
along their state (valid or invalid), and fed to the machine learning models. At the end of
the process, the complete dataset contains 56 133 valid links, and 256 003 invalid ones.

4.4.3.2 Considered classifiers

Taking inspiration from the work of Acar et al. [15], who employed multiple machine learning
methods to classify smart-home network traces effectively, we adopt a similar approach. We
select the following classifiers: Decision Tree (DT), Naive Bayes (NB), Logistic regression
(LR), K-Nearest Neighbours (kNN), Random Forest (LR), AdaBoost (AB), and LightBGM
(LBGM). Contrary to previous works [15], we upgrade XGBoost with LightBGM, an equiv-
alent but faster gradient boosting method [116].

Our goal is to find at least one machine learning method among those that can convincingly
carry the attack, proving that it is indeed possible to link back a join-request with the
following uplink messages.

4.4.3.3 Training and evaluation

As described in Section 3.2, we follow a classic machine learning approach. The dataset
is split into training/testing (75%) and held-out (25%). Each pair of join-request and
uplink is independent: the existence of one pair has no impact on the existence of another.
Therefore, we can randomly sample pairs to create the training and testing datasets without
the risk of data snooping (see Section 3.2.3.1). We use SMOTE on the training set to reduce
the imbalance and stratified 5-fold cross validation to avoid overfitting on training data (see
Section 3.2.3.2). Finally, we repeat the process 15 times with different random seeds to
smooth results and select the balanced accuracy as a performance metric.

4.5 Experimental results

In this section, we present the various results obtained through the machine learning evalua-
tion process.

4.5.1 Models comparison

We train each model indenpendently and compare their performance in Table 4.2. We note
the balanced accuracy remains stable during cross validation, hinting at good generalization
properties. All models are highly accurate when linking join-request with the corresponding
uplinkmessages, with Naive Bayes (NB) lagging behind others. Random Forest (RF) reaches
a nearly perfect ∼0.9985 balanced accuracy, showing that a) a linking attack is possible, and
b) it is extremely reliable.

4.5.2 Features importance

To study the importance of each feature used by machine learning models, we carry out a
permutation feature importance analysis. The method involves systematically permuting the
values of a single feature while keeping the others constant and observing the impact on the
balanced accuracy. By measuring the change in performance, one can assess how much each of
them contributes to the predictive power of a given model. Features that lead to a significant
drop in performance when shuffled are considered more important, as they contain valuable
information to make predictions. We note this does not predict the generic future importance
of a feature, but rather indicate how relevant it is for a particular model.
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Table 4.2: Performance comparison of various classifiers via 5-fold cross validation.

Classifier TP TN FP FN Balanced accuracy

RF 14030 63866 115 16 0.9985
LGBM 14027 63855 15 136 0.9985
AB 14023 63760 222 13 0.9979
kNN 14011 63713 267 25 0.9970
DT 13960 63877 115 79 0.9962
LR 13949 63004 993 67 0.9896
NB 13878 40817 23194 153 0.8114

The process is repeated 15 times for each random seed to smooth values. Following
Section 4.4.2, we expect the FCnt to have significant influence on the results due to its
straightforward exploitation. Additionally, it can be easily obfuscated via encryption (see
Section 6.2.1.1) and we anticipate a future removal from available features.

Results are presented in Figure 4.4 (high value means high impact), from which we can
draw multiple insights. First, both FCnt and Time Difference are strongly relevant. This is
expected, as nearly all uplink messages have a FCnt equal to 0. Likewise, the time between
join-request and the following valid uplink is distinctively low (cf. Figure 4.2). Second,
when removing the FCnt, models tend to favor the Time Difference and Frame Port (as well
as the Payload Length more marginally), while other features remain low importance.
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Figure 4.4: Permutation feature importance.

To complete this analysis by anticipating a possible obfuscation of the FCnt, we train and
compare models with all features (Baseline), with all features but no FCnt (Without FCnt ),
and with FCnt only.

Figure 4.5 shows that all machine learning models (with Naive Bayes (NB) as a notable
exception) follow a similar pattern: removing the FCnt slightly decreases performance, further
reduced when using FCnt only. For instance, Random Forest decreases from ∼0.999 to 0.997
when removing the FCnt, and as low as ∼0.986 with FCnt only.

First, this confirms that other features are able to effectively compensate a lack of FCnt:
the attack would work even if it was not available. Second, the FCnt is in itself highly relevant
for an eavesdropper, achieving high accuracy using only that piece of information.

4.6 Conclusion

We demonstrate the robust association of two theoretically unlinkable messages: the join-request
and the corresponding first uplink message. Through this linkage, we establish a connection
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Figure 4.5: Comparison of machine learning models performance.

between the identity (DevEUI) and activity (DevAddr) of a LoRaWAN End-Device. Our ma-
chine learning model matches both identifiers with a ∼0.999 balanced accuracy, revealing that
additional efforts on the protocol design are required. Notably, we underscore the significance
of the FCnt, which enables accurate linking of both messages, even when used alone. Our
analysis of each selected feature underscores the critical role of timing between join-request

and uplink, calling for additional countermeasures.
While linking identifiers poses a privacy risk, other potential attacks on communication

data warrant attention. Given our ability to reliably link identity and activity, in the next
chapter, we investigate privacy threats associated with the activity itself.
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Fingerprinting LoRaWAN devices
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This chapter studies how communication patterns of LoRaWAN devices can be leveraged
to accurately identify them. After analyzing relevant features and proposing a new, holistic
approach to fingerprinting, we utilize a large and realistic dataset consisting of 41 million
uplink messages from third-party professional operators. Our machine learning approach
successfully re-identifies the origin of message sequences with a ∼0.98 balanced accuracy.
Supported by various scenarios, such as identifying mobile devices and utilizing a limited
number of listening stations, we show that fingerprinting LoRaWAN devices is both largely
applicable and robust.
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This chapter is partially based on Introducing Multi-Domain Fingerprints for Lorawan
Device Linkage [167] (currently under review). The present work differs mainly by the
following points:

• We expand motivations and further introduce fingerprinting as an additional
security measure to monitor wireless networks.

• We offer additional insights into the dataset used in our research, providing a
more comprehensive overview of its characteristics and composition.

• We enhance the justifications for feature selection, offering more technical expla-
nations to support our choices.

• We outline the limitations inherent in our approach, acknowledging potential
constraints and challenges that may affect the interpretation and application of
our findings.

5.1 Introduction

Linking the join-request with the following uplink messages is only one of the steps in
tracking LoRaWAN End-Devices. The flow of messages is equally interesting for eavesdrop-
pers. It contains all the actual communication data and metadata, revealing information
about the identity, activity and location of a device.

End-Devices are distinguished by their DevAddr, which may change throughout their lifes-
pan, after each rejoin process or disconnection event. This process can be frequent (cf. Ta-
ble 4.1), and we find that around 50% of devices in our year-long dataset use an identifier
lasting less than a week. While such high numbers can be explained by short activity periods,
experiments and packet losses, other mechanisms including pseudonyms rotation, already uti-
lized in BLE [92, 143], may be further increase them in future versions of LoRaWAN if they
are deployed. In any case, a changing pseudonym breaks the flow of data for an eavesdropper,
leaving them with only part of the whole communication.

Fingerprinting is a generic tool for network traffic analysis, enabling tracking devices based
solely on their characteristics and bypassing pseudonym-based protections (see Section 2.3.5).
While already utilized across various protocols such as BLE [19], Wi-Fi [174, 213], and Web
browsing [121, 161, 189], it has seldom been studied in LoRaWAN networks.

In this chapter, we explore fingerprinting LoRaWAN End-Devices based on their distinct
communication patterns. We begin by outlining our motivations and the threat model under
which we operate. Then, we present the dataset leveraged during experiments and its relevant
characteristics. After proposing a new fingerprint representation, we illustrate its usage via
a method to link back sequences of uplink messages generated before and after a change of
DevAddr. We end by showcasing the experimental results of fingerprinting End-Devices, and
by exploring some limitations of our approach.

5.2 Motivation & threat model

A comprehensive study of fingerprinting in the specific context of LoRaWAN (and more
broadly, on the LPWAN family) has never been done. As such protocols show fundamen-
tally different communication patterns than other wireless technologies (see Section 3.1.7),
it is valuable to provide an overview of their fingerprintability. While Section 2.3.5 presents
fingerprinting as a tool leveraged against privacy, it can be also be used defensively (e.g. in
intrusion detection scenarios). In this section, we explore both visions, and refine the threat
model accordingly.

5.2.1 Fingerprinting as a privacy threat

Existing attacks against privacy in wireless networks are enabled mainly by stable identifiers.
For instance, grouping the traffic based on the DevAddr allows to 1) identify the sending
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device, and 2) link the trace to an activity (e.g. occupying a parking space) [74]. As explored
in Section 2.4.5, some protocols support identifier rotations through pseudonyms (e.g. in
Bluetooth) [92]. While LoRaWAN does not support rotating addresses yet (see Chapter 7),
a disconnection or rejoin process induce the NS to generate a new DevAddr. An End-Device
can trigger this process independently of its application traffic by sending a “Rejoin-Request
message” [65, sec. 6.2.4]. Additionally, the server can initiate a rejoin via a “ForceRejoinReq”
command [65, sec. 5.13]. As seen in Table 4.1, this feature is already employed in real-world
deployments, thwarting tracking and profiling solutions.

Fingerprinting enables attackers to establish a consistent device identity by leveraging
diverse (meta)data. Contrary to others consumer-grade IoT devices such as smartwatches,
LoRaWAN devices are generally tied to a specific activity (e.g. water metering). Hence, iden-
tifying the devices is usually enough to gain information on the underlying activity. However,
fingerprinting can also serve as a tool for more general activity inference, by comparing the
targeted traffic with known, generic communication patterns. In this study, we focus on
device identification as a proof-of-concept.

5.2.2 Fingerprinting as security protection

LoRaWAN faces a multitude of security threats, as outlined in existing literature [159]. Such
attacks range from denial-of-service [99] to MitM [154], jamming [100] and replaying pack-
ets [159], all of which have the potential to severely disrupt communications and compromise
network integrity. Additionally, devices can be taken over, through physical access or soft-
ware, leading to cryptographic material leakage. An adversary could then impersonate a fake
device, send spurious information, and escalate their attacks on the network.

To counter those threats, and more generally to detect intrusion in wireless networks,
device fingerprinting has been presented as a promising approach [28, 71, 117, 217]. Building
fingerprints for known devices can be used by two security features.

First, it enables another soft authentication mechanism by identifying signals coming
from external devices. For instance, Arackaparambil et al. leverage this technique to iden-
tify trusted 802.11 access points and detect fake ones [28]. In LoRaWAN, Danish et al.
demonstrate that legitimate devices can be detected during the join process, thus reducing
the impact of specific jamming attacks [71]. Such an approach rarely utilizes fingerprinting
alone, as it can not provide sufficient security guarantees. It is viewed as support of other
cryptographic-based authentication mechanisms [28].

Second, a network administrator could detect changes in behavior in previously genuine
End-Devices over long periods of time and thus dynamically identify compromise of elements
in the network. Fingerprinting thus provides a way to reinforce the security of LoRaWAN
networks by detecting malicious devices [190].

5.2.3 Updated threat and security model

We combine both offensive (against privacy) and defensive (for network security) fingerprint-
ing under a single use-case. Instead of referring to an “attacker”, we outline the goal and
capabilities of a “fingerprinting actor”. As illustrated by Figure 5.1, this actor eavesdrops
LoRaWAN communications during an initial period and later attempts to link new uplink

messages to previously recorded traffic. Such a setup induces a privacy breach in the offensive
case, and a detection of malicious device in the defensive one.

In offensive fingerprinting, the actor strategically places LoRaWAN listening stations
within the target area. As already demonstrated in Section 4.2, this setup is realistic based
on both protocol’s design and easy access to LoRaWAN hardware. In contrast, the defensive
fingerprinting actor controls the infrastructure and has direct access to this data.

In both scenarios, data collection is passive, with no injection or modification of wire-
less messages by the actor. We assume encryption remains unchanged, and the content of
encrypted payloads is inaccessible to an eavesdropper and to the network administrator (on
the NS). While an application administrator (on the AS) could potentially access clear-text
payloads for defensive fingerprinting, such a scenario falls outside the scope of our current
study. Regardless, we obtain a high linkage accuracy without clear-text payloads data.
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Figure 5.1: Offensive and defensive fingerprinting of LoRaWAN devices.

5.3 Dataset

For the current work, we utilize a subset of the dataset previously employed for linking,
as discussed in Section 4.3. We focus on December 2021 to September 2022, because this
period shows regular activity, corresponding to 41 million uplink messages, a significant
enough number to draw insights from. Instead of relying on traffic generated directly by
CampusIoT to establish ground truth, we study the data of third-party operators. This
approach enables us to analyze realistic traces from professional deployments, aiming for
high accuracy in fingerprinting real-world traffic. The counterpart is a lack of knowledge
of the actual deployment nature: it is impossible to know precisely which End-Devices are
communicating, and from where. As shown in Section 5.7.3, we find alternative ways to
overcome these limitations.

5.3.1 Selecting relevant data

We clean up the dataset to select only relevant data for our evaluation using multiple methods.
First, we exclusively study uplink messages. LoRaWAN is primarily designed for device-
to-server communications and we find that uplink messages provide enough information
to reliably fingerprint End-Devices. Additionally, we lack access to third-party downlink
messages, as they are not monitored by the gateways of CampusIoT.

Second, we exclude data generated by known experimental devices [107], notably every
End-Device using a DevAddr below 0x03FFFFFF, as they are officially reserved for experi-
ments. Tests often exaggerates End-Device behavior due to controlled and artificial network
conditions. This can lead to communication patterns not representative of real-world scenar-
ios, such as devices transmitting as frequently as every minute, which is uncommon in actual
deployments to preserve battery.

Similarly, The Things Network is an operator known for its openness towards hobbyists,
allowing anyone to register an account for free and start experimenting.1 While this approach
is valuable for the community, it may generate significant unwanted noise in the dataset.
For the same reason, we exclude traffic from both The Things Network and CampusIoT.
In the initial dataset, ∼10% of uplink messages belong to experimental addresses, 35% to
CampusIoT, and 16% to The Things Network. While we take steps to remove irrelevant
data sources from the dataset, we acknowledge the possibility that professional third-party
operators may occasionally use their address space for experimental purposes. However, we
believe that such instances are infrequent enough that the majority of their traffic remains
relevant to our experiments.

Finally, our experiments exclusively deal with DevAddr that appear at least five times in
the complete dataset (see Section 5.6.2), and we discard the rest. In the end, we keep 41
million messages originating from more than 50 third-party operators. They correspond to
∼25,000 unique DevAddr, with 140,000 daily messages on average.

1https://www.thethingsnetwork.org/

58

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0075/these.pdf © [S. Pélissier], [2024], INSA Lyon, tous droits réservés

https://www.thethingsnetwork.org/


59 CHAPTER 5. FINGERPRINTING LORAWAN DEVICES

5.3.2 Characterizing uplink messages

Our fingerprinting solution groups messages based on their DevAddr. Figure 5.2 displays the
percentage of DevAddr sending at least a given number of uplink messages. A significant
portion (67%) only appears once in the dataset, attributable to two potential factors. First,
our dataset encompasses third-party End-Devices that may be situated at the edge of the
gateways’ range, resulting in only one message being received. Second, occasional errors or
experimental activity may have caused some addresses to appear less often.
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Figure 5.2: Reverse cumulative distribution of the number of uplink messages received by
DevAddr, after cleaning the dataset.

As highlighted in Section 4.5.2, time-based features play a significant role in linking the
join-request with following uplinkmessages. To further study uplinkmessages, Figure 5.3
displays the distribution of time window between each message, named IAT. IAT measure-
ments are concentrated around recognizable values, such as 10, 15, 20 minutes. Albeit with
fewer occurrences, this periodicity is also observed for full hours, including 24 and 48 hours.
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Figure 5.3: Distribution of IAT occurrences (limited to 60 minutes for clarity).

5.4 A new fingerprinting representation

As presented in Section 2.3.5.1, fingerprints can be formatted in multiple data representations.
On top of studying the various state-of-the-art solutions, we propose our own approach: the
holistic fingerprint. Instead of selecting one of the representations, we leverage all of them at
once (vectors of values v, histograms hb, descriptive statistics including mean v, variance σ2,
standard deviation σ, skewness γ1, and kurtosis Kurt, as well as Markov chains P ):

F = (v, hb, v, σ
2, σ, γ1,Kurt, P )
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The machine learning approach alleviates concerns regarding the high dimensionality of
the fingerprint. Through this method, models can effectively identify patterns and prioritize
the most pertinent features, thus minimizing the impact of the representation’s complexity.

In contrast to simpler formats like vectors of values, combining multiple representations
simultaneously, including Markov chains, requires computing distances between matrices. We
consider this feasible for two reasons: 1) fingerprinting occurs outside constrained nodes, and
2) LoRaWAN is designed as a low-throughput protocol.2 This ensures sufficient power and
time between each message to compute fingerprints, even dynamically.

5.5 Fingerprint-based linkage

Our 3-step methodology aims to ascertain whether two sequences of uplink messages orig-
inate from the same End-Device; it is illustrated in Figure 5.4. Following previous work on
linking join-request and uplink, we extract features from three domains: content, time,
and radio. These features are utilized to create fingerprints based on the representations
outlined in Section 2.3.5.1. Subsequently, a distance computation is performed between the
two fingerprints. The resulting vector of distances is then inputted into a supervised machine
learning model, which finally classifies it as either linked (indicating both sequences originate
from the same End-Device), or not linked (suggesting different origins).

Linked or not linked

Vector of distances

Fingerprint
A

Fingerprint
B

Sequence of
messages B

Sequence of
messages A

Fingerprinting

Distance computation

Machine learning

Figure 5.4: Overview of the 3-step fingerprint and linking process.

We select similar features as the ones presented in Section 4.4.2, focusing on both stable
and possibly stateful features. We remove low impact ones based on our previous results in
Chapter 4 and empirical study. Notably, we observe that parameters derived from the Adap-
tive Data Rate mechanism, such as Spreading Factor and DataRate, do not contribute signif-
icantly to the fingerprint. Additionally, the Receiving Gateways Distance is excluded because
similar information is already available via other radio-based features saved in gateway-based
vectors (RSSI, SNR, and ESP). A summary of the 8 selected raw features corresponding to
the same three domains (content, time, and radio) is available in Table 5.1.

2We also note that, in our case, matrices are sparse due to the limited number of states an End-Device
occupies.
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Table 5.1: Summary of features leveraged for linking.

Domain Raw feature
Considered stateful

(Markov chains)

Content FPort YES
Payload length YES

Time Arrival time
(refined as: Hour of day, Day of week)

YES

Inter-Arrival Time YES

Radio RSSI NO
SNR NO
ESP NO

5.5.1 Content-based features

We select two content-based features: the FPort, and payload length. Both display significant
values on their own, along potentially interesting variations across a sequence of messages.
Following works on Web fingerprinting by Shen et al. and Pan et al. [161, 189], we combine
the FPort and payload length as a single Markov chain state and empirically confirm that
combining them yields better results. This is possible thanks to the low number of available
values for both raw features: the resulting matrix remains small.

The FCnt is only relevant to re-order messages and lacks meaning during the fingerprinting
process. We thus exclude it from raw features, but use it throughout to correctly generate
states of Markov chains for on other features. Additional header-based features could be
added, such as FOpts. However, as noted in Chapter 7.6.1, remaining header fields lack
sufficient entropy in our dataset and do not actually improve fingerprinting accuracy.

5.5.2 Time-based features

We select two new time-related features: Arrival time, and IAT.

• Arrival time: Defined as a Unix timestamp precise to the millisecond, it denotes the
moment a message is received by a listening station.

• IAT : The time interval between two consecutive uplink messages is computed based on
the first listening stations receiving them. Contrary to others features, the IAT requires
two messages.

Both features target End-Devices programmed to send recurring reports, for instance
communicating sensor data every hour with an occasional management frame or alert. They
are refined in two ways.

First, the arrival time serves as the basis for deriving additional time-based features,
including the hour of reception (in ranges of 10 minutes, e.g. 2:30 PM) and the day of the
week (e.g. Thursday).

Second, the millisecond precision measured by the listening station is too high to create
significant states, due to various latency and treatment delays, long propagation over the air,
and clock drift between the NS and End-Devices. For example, a message every 3600042 or
3599068 milliseconds roughly corresponds to 1 hour in both cases. To reduce the precision,
we bin values and generate multiple sizes of bins, letting the machine learning model pick the
most relevant one.3 Based on the apparent periodicity shown in Figure 5.3, we select peaks
corresponding to more than 1% of the total number of IAT values, translating them into bins
of 1, 5, 10, 15, 20, 30, 40 minutes, as well as 1, 2, and 4 hours.

Finally, as seen in Section 5.3, a majority of IAT values clusters around rounded increments
(e.g. a message every hour). Figure 5.5 illustrates how values theoretically sent at exactly
tj and tj+1 can be misclassified into the wrong bin due to various time perturbations. By
shifting the bins bi and bi+1, we are able to group clustered values in the correct context. As

3We empirically find that manually selecting only a subset of bins is detrimental to final results.

61

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0075/these.pdf © [S. Pélissier], [2024], INSA Lyon, tous droits réservés



62 CHAPTER 5. FINGERPRINTING LORAWAN DEVICES

depicted in Figure 5.3, the time drift never exceeds 3 minutes around significant values. To
err on the side of caution, we shift bins by 5 minutes.

Figure 5.5: Shifting bins to correctly classify clustered measurements.

5.5.3 Radio-based features

We select three radio features: RSSI, SNR, ESP, based on concepts already explored in
Chapter 4 for join-request and following uplink messages. The environment surrounding
an End-Device typically experiences minimal changes, except in cases involving mobile objects
equipped with tracking sensors. Consequently, sequences of messages originating from the
same End-Device are expected to demonstrate similar radio-based features. This is confirmed
by related works showing that RSSI exhibit stability in scenarios involving geographically
static End-Devices [25].

Finally, we do not represent radio-based features as Markov chains. Radio power does not
depend on the internal application state of a static End-Device, contrary to the length, port,
or IAT. For instance, there should be no difference between the radio power corresponding to
an application message compared to an update message.

5.6 Evaluation methodology

In this section, we outline the process of dataset creation and the generation of its groundtruth.
Additionally, we detail the specifics of the machine learning techniques employed and discuss
the performance metrics utilized in our analysis.

5.6.1 Dataset generation

To produce a fingerprint dataset, we first extract sequences of uplink messages labeled by
their DevAddr. We then process each sequence to extract relevant features and format them
following the fingerprint representations detailed in Section 2.3.5.1. As seen in Section 2.3.5.2,
there are numerous distance functions to compare two fingerprints. We select the most
straightforward ones for ease of implementation: statistical aggregates features (e.g. average
or distributions) are compared via Euclidean distance, and we utilize the Euclidean norm (or
l2-norm) for matrices representing Markov chains.

Dealing with third-party operator traffic raises two issues: there is no guarantee that a
specific DevAddr a) corresponds to the same End-Device for the whole duration of our capture
as it can be re-assigned, or b) belongs to one and only one End-Device as multiple End-Devices
could share the same identifier.

To address a), we introduce a period of inactivity after which the DevAddr is considered
associated with a new End-Device. We choose T = 1 week under the assumption that the
majority of End-Devices transmit at least one message per week. If a device communicates
less often than T , it produces too few messages per sequence; the rest of our process excludes
it from evaluation (see Section 5.6.2).

To address b), we identify multiple End-Devices using the same DevAddr via their unco-
ordinated FCnt. We detect any sequence of messages with unordered FCnt values and discard
them. We note this also filter out malfunctioning End-Devices with ordering issues.
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5.6.2 Groundtruth: labeling sequences

Section 3.2 emphasizes the necessity of a dataset with labels (i.e. ground truth) for supervised
machine learning. Hence, vectors of distances between fingerprints are labeled based on the
origin of sequences: linked pairs of fingerprints originate from the same End-Device, and not
linked are emitted by distinct End-Devices. Once generated, these pairs can be leveraged to
train our machine learning model.

To produce a ground truth from third-party operators’ traffic, we segment sequences of
uplink messages based on already publicly known origins, i.e. DevAddr. For each set of
uplink messages S identified via its DevAddr and corresponding to a single End-Device, S is
divided into chronologically ordered sequences S1, S2, ..., Sm, each containing c messages. As
seen in Figure 5.6, a DevAddr corresponding to M messages generates ⌊M

c ⌋ sequences.

Sequence 1

...

Sequence 2 Sequence 3

Uplink messages 
corresponding to
a given DevAddr

Figure 5.6: Splitting a set of uplink messages coming from the same End-Device into
sequences of length 5.

In practice, we select c ∈ {5, 10, 20, 50, 100, 200} based on the distribution of uplink

messages received by a DevAddr (see Figure 5.2). For instance, if a set contains 233 messages,
a total of 46, 23, 11, 4, 2, and 1 sequences of lengths 5, 10, 20, 50, 100, and 200 are respectively
created. End-Devices associated with a significant number of messages in the dataset generate
a large number of sequences, resulting in over-representation, particularly for short-length
sequences. To address this issue, we limit the maximum number of sequences per End-Device
for each length to 3.

Finally, we virtually match sequences of correct and incorrect origins to generate both
linked and not linked vectors of distances. With the DevAddr identifying the origin of each
sequence, we can precisely label the vectors, thereby establishing a reliable ground truth.

5.6.3 Linkage via machine learning

The objective of the linkage process is to determine whether two distinct sequences of messages
originate from the same End-Device. This process entails applying the previous method to
a pair of sequences: fingerprints are generated for each sequence, distances are computed
accordingly, resulting in a vector that is then given to the pre-trained machine learning
model. The model finally generates a binary prediction: linked or not linked.

For this task, we follow a classic machine learning approach already presented in Sec-
tion 3.2. As the dataset is imbalanced (75% incorrect to 25% correct pairs), we equalize the
training set using SMOTE [59] to reduce biases (see Section 3.2.3.2). After going through
5-fold cross validation, we select the Random Forest algorithm, following previous results on
identifier linkage (see Section 4.5). To reduce data snooping [31] (see Section 3.2.3.1), we
make sure fingerprints generated by the same End-Device (i.e. using the same DevAddr) are
either in the training or testing dataset.4

Finally, the evaluation process is repeated 15 times with different seeds initializing Pseu-
dorandom Number Generators (PRNGs). Results are presented using the Balanced Accuracy
(BA), with graph axes limited from 0.7 to 1 whenever possible for clarity.

4This method effectively avoid fingerprints coming from the same DevAddr to be used in both training and
testing. However, it does not protect from End-Devices updating their DevAddr and randomly being present
in both datasets. Given the relative rarity of re-join processes (as indicated in table 4.1) and the inability to
detect such behavior third-party traffic, we believe this unlikely event does not significantly impact the overall
process.
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5.7 Experimental results

This section presents the evaluation of the fingerprinting and linkage process, using the 41
million messages real-world dataset presented in Section 5.3. Unless stated otherwise, all
available listening stations are utilized.

We begin by assessing the effectiveness of our approach and investigate the influence of
different feature domains. We then present various scenarios, including mobile End-Devices
and limited number of controlled listening stations.

5.7.1 Fingerprint representations analysis

The quality of a fingerprint is based on two key attributes: consistency and discriminatory
power. A robust fingerprinting process yields similar values for data originating from the
same device (consistency) and produces notably distinct values for data from different en-
tities (discriminatory power) [151]. In our case, linked pairs of fingerprints should exhibit
high consistency, resulting in minimal distances, while non-linked pairs should demonstrate
significantly larger distances.

Figure 5.7 illustrates the distribution of distances between two pairs of fingerprints across
all sequence lengths for each representation (vectors, distributions, descriptive statistics,
Markov chains, and a combination of all of them). Since two fingerprints generate a vector
of distances spanning various orders of magnitude, we normalize the values. A preliminary
examination reveals a stark difference in distributions between linked and non-linked pairs:
linked pairs generally yield lower distances. Furthermore, distribution-based fingerprints ex-
hibit considerable heterogeneity in distances, with non-linked pairs consistently surpassing
their linked counterparts.
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Figure 5.7: Normalized distances between linked and not linked fingerprints pairs w.r.t.
fingerprint representation.

Similar patterns are observed when analyzing individual features. As depicted in Fig-
ure 5.8, certain features demonstrate superior consistency and discriminatory power com-
pared to others. For instance, the length distribution exhibits discernible differences between
linked and non-linked pairs, contrary to the port variance which remains consistent across
both categories, hinting at lower relevance during classification.

While these findings suggest decent consistency and discriminatory power for fingerprints,
they do not reveal the actual performance variations for each representation during classifica-
tion. Therefore, we train models using only one fingerprint representation and compare their
balanced accuracy.
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Figure 5.8: Two examples of fingerprint distances between linked and not linked pairs.

Figure 5.9 illustrates that the holistic fingerprint expectedly outperforms other represen-
tations from the literature. Remarkably, distributions and descriptive statistics yield similar
results for sequences longer than 100 uplink messages, indicating that these simpler represen-
tations remain relevant when sufficient data is available.
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Figure 5.9: Performance w.r.t. fingerprint representations.

Radio-based features are considered stateless and thus not represented as Markov chain.
This can explain why the Markov chains representation initially produces a comparatively
low balanced accuracy compared to other representations. However, upon removal of Markov
chains from the holistic fingerprint, we observe a slight reduction in balanced accuracy. There-
fore, we retain it as part of the holistic fingerprint representation despite its lower performance.
All other results presented in the following sections are derived from the holistic fingerprint
representation.

5.7.2 Measuring the impact of sequence length and feature domains

Once the fingerprint representation is selected, we can consider other parameters, such as
the sequence lengths. We consider sequences containing 5, 10, 20, 50, 100, and 200 uplink

messages (see Section 5.6.2). Figure 5.10 displays the balanced accuracy obtained by models
trained using the various lengths, utilizing fingerprints based on all features, or limited to one
of the three feature domains.
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Figure 5.10: Performance w.r.t. feature domains.

In the all features setting, the performance remains consistently high across all sequence
lengths, with a balanced accuracy ranging from ∼0.95 for sequences of 5 messages to 0.98
for sequences of 200 messages. In other words, even a few messages are sufficient to produce
reliable fingerprints. The improvement in performance with longer sequences is expected, as
more data points contribute to more accurate fingerprints.

Additionally, figure 5.10 illustrates the performance when using only one domain of fea-
tures. Content-based features alone achieve the highest performance, starting at a balanced
accuracy of 0.90 for sequence length of 5 and increasing to nearly match the performance of
the all features configuration for longer sequences. On the other hand, performances with
time-based features alone start lower at 0.76 and gradually increase but remain below the all
features setting.

When using only radio-based features, the balanced accuracy starts at 0.8532 for 5-message
sequences and is somewhat stable regardless of sequence length, ending at 0.8537 for 200-
message sequences. This could be attributed to the selection bias of End-Devices with longer
message sequences, where their radio features may be less reliable than other devices.

In defense-oriented scenarios such as network security monitoring, rapid fingerprinting and
linkage are imperative. Our sequences consist of a minimum of 5 uplink messages. Despite
this brief sequence length, LoRaWAN networks generally maintain a low transmission rate. In
our dataset, it takes approximately 6 hours, as per the median time, to collect 5 messages from
the same End-Device. While this duration might appear significant, the detection process
remains fast when considering the numerical aspect.

Moreover, attackers aiming to remain under the radar would likely avoid disrupting exist-
ing communication patterns and thus be limited by the current low-throughput constraints.
On the other hand, sending rapid successions of messages during the exploitation would result
in both a) an easily identifiable disruption of reference patterns, and b) a reduction of the
overall time of detection.

5.7.3 Fingerprinting mobile End-Devices

Our fingerprinting approach incorporates features that capture the attributes of the radio
channel between the sender and the listening station. However, radio-based fingerprinting may
be less effective for mobile end devices, as factors like distance, environment, and obstacles
can significantly alter the channel. Determining the mobility of an end device solely based
on fluctuations in radio features is impractical. Therefore, we explore a scenario where radio-
based features are unavailable.

Figure 5.11 illustrates that for sequences comprising 5 messages, the balanced accuracy
decreases from approximately 0.94 to 0.92 (-2.87%), while for sequences of 200 messages,
the decrease is minimal (around -0.30%). Despite the slight reduction in performance, our
scheme demonstrates applicability in scenarios where radio features are either unavailable or
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Figure 5.11: Performance w.r.t. radio-based features.

unreliable, particularly relevant for mobile End-Devices.

5.7.4 Impact of the number of controlled listening stations

Radio-based features enhance classification accuracy, particularly for short sequences of mes-
sages. Presently, our findings are based on utilizing all available listening stations, approxi-
mately 50 in total. Each of these stations contributes a segment of radio-based information,
collectively enriching the dataset. Studying scenarios with fewer listening stations offers
insights into situations with limited eavesdropper capabilities and coverage, deepening our
understanding of how reduced monitoring impacts our approach’s effectiveness.

To do so, we analyze nested datasets corresponding to varying numbers of listening sta-
tions. The process involves the following steps:

• Filtering the dataset to retain only the information received by n listening stations.

• Training machine learning models using the filtered dataset.

• Reusing the subset containing information from the n listening stations and filtering
messages from n− 1 listening stations.

• Repeating the process iteratively, progressively reducing the number of listening stations
until reaching a single receiving station.

Thus, for a set containing all messages received by n listening stations Sn, we obtain
Sn ⊇ Sn−1... ⊇ Sn−(n−1). Hence, fingerprints used for each classification are identical,
mimicking the control - or absence thereof - of each receiver.5

We repeat the process for 10 unique groups of the top receiving listening stations and
opt for n = 5 to manage computational complexity. Figure 5.12 illustrates the evolution
of performance based on the number of available listening stations. Moving from 1 to 5
listening stations, the balanced accuracy for sequences of 5 messages increases by 9.43%,
while for sequences of 200 messages, the improvement is slightly lower at 7.96%.

The number of listening stations directly influences performance, with balanced accuracy
increasing as the number of stations rises. However, as sequence lengths increase, the signif-
icance of the number of listening stations diminishes. This decline is due to the increasing
amount of information from other domains, such as time and content, as the number of
messages in a sequence grows.

Nevertheless, results obtained with fewer listening stations remain noteworthy, despite
yielding lower performance compared to scenarios with all stations available. Given that we

5We note that this property cannot be established by directly segmenting the complete dataset to filter
messages received by n, n− 1, ..., n− (n− 1) listening stations. For instance, if a message is received by n− 1
listening stations, it does not appear in the Sn superset.
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Figure 5.12: Performance w.r.t. the number of controlled listening stations.

did not consider the positions of listening stations, it is conceivable that results could be
further enhanced with strategically deployed stations. In practical terms, even with only a
handful of listening stations, fingerprinting would remain effective in real-world scenarios

5.8 Limitations and future works

An overview of the study’s limitations reveals some considerations to be taken into account.

Dataset Imperfections: Despite our best efforts to curate the dataset, it is not flawless.
We may have failed to filter out experimental devices deployed by third-party operators
without external notice. However, it remains the most extensive and comprehensive dataset
available compared to related works [195, 196].

Ground truth generation: By considering short sequences of messages, we assume that
End-Devices have a method for generating new DevAddr. This is currently supported by the
protocol through a costly rejoin process, which generates exploitable messages and metadata.
We do not take these into account and assume the existence of a transparent mechanism,
such as the one proposed in Chapter 7. On the other hand, if End-Devices use short-lived
DevAddr, it becomes difficult to generate a ground truth. We assume the attacker can build
this in a closed-world setting before testing on an open-world dataset. Further experiments
could be conducted in this regard.

Selection of Inactivity Period: Setting the maximum period of inactivity to T = 1
week may not capture all End-Devices accurately. Some of them may communicate even less
frequently. However, the choice of one week is justified by the rarity of such occurrences and
the abundance of available data.

Holistic Fingerprint Applicability: While the holistic fingerprinting approach yields ex-
cellent results, its applicability to specific defensive use cases in other wireless protocols (ne-
cessitating rapid recognition) remains uncertain. This aspect warrants further investigation
beyond the scope of this thesis.

Minimum Sequence Length Constraint: Due to complexity considerations, the study
limits sequences to a minimum of five messages. It could be possible to reliably fingerprint
End-Devices using even less uplink messages, but additional research is required.
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Device Similarities and Differentiation: Fingerprinting relies on the premise that dif-
ferent devices produce distinguishable data. However, End-Devices with identical software
and configurations may exhibit similarities in content and time-based features. While radio-
based features can aid in differentiation, distinguishing between End-Devices deployed in the
same location may pose challenges. Further experiments, beyond the scope of the current
dataset, are necessary to investigate this highly specific scenario.

5.9 Conclusion

In this study, we demonstrate the feasibility of reliably fingerprinting LoRaWAN End-Devices,
effectively linking sequences of messages even if they use different identifiers.

We first introduce the holistic fingerprint, a novel agnostic representation applied to Lo-
RaWAN End-Device communication. Through rigorous comparisons, we establish its superi-
ority over existing formats, demonstrating remarkable classification accuracy. Leveraging this
representation, we effectively fingerprint End-Devices using content, time, and radio-based
features.

Our experiments reveal the robustness of our approach, reliably identifying origins of
sequences as short as 5 messages with a balanced accuracy of 0.95, up to 0.98 based on
sequences of 200 messages. Additionally, we explore various simulated scenarios, including
mobile End-Devices and eavesdroppers with limited resources. Despite these challenges, our
fingerprinting technique remains effective across all scenarios, demonstrating its versatility
and resilience.

Beyond offensive applications, our work has broader implications for network security, of-
fering a reliable framework for device identification and classification. By studying LoRaWAN
fingerprinting, we pave the way for enhanced network monitoring and security measures.
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Chapter 6
Feature-based countermeasures in
LoRaWAN
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In this chapter, we explore ways to counter linkage and fingerprinting attacks (Chapters 4
and 5) based on machine learning models. By studying each feature and selecting or de-
signing specific mitigations w.r.t. LoRaWAN’s constraints, we apply countermeasures to the
dataset and observe the protection gained via the loss in attack efficiency. When combining
all mitigations at once, we reduce linking attacks by 12.5% and device fingerprinting by 7.32%
in realistic settings. We complete our analysis by estimating the inherent overhead of such
countermeasures, for instance the additional bytes transmitted due to padding.

This chapter is partially based on our work Device Re-identification in LoRaWAN
through Messages Linkage [166] (peer-reviewed and published) and Introducing Multi-
Domain Fingerprints for Lorawan Device Linkage [167] (currently under review). The
present chapter differs mainly by the following points:

• We enhance justifications and descriptions of possible countermeasure deploy-
ments in LoRaWAN.

• We introduce a novel evaluation of mitigations, measuring its impact on the
linking attack for the first time, and complete previously reported results on
fingerprinting.

• We discuss the effects of countermeasures on End-Devices and offer comprehen-
sive assessments of the associated overhead. Additionally, we outline potential
research directions for addressing challenges that remain beyond our current
scope.
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6.1 Introduction

The privacy attacks discussed in previous chapters rely on robust machine learning models
that utilize diverse features, many of which overlap (e.g. radio-based features are all derived
from the radio power). Given the effectiveness of these attacks, there is a pressing need
for further investigation into potential countermeasures to safeguard End-Devices and their
users effectively. As explored in Section 2.4, numerous mitigations for wireless networks have
been proposed for various contexts, including dummy traffic [15, 27, 112, 131, 153, 229],
padding [22, 76, 145, 171, 186], random delay between messages [33, 139, 173, 197, 231], or
modifying the radio medium [20, 23, 198].

However, such countermeasures have seldom been studied in the specific context of Lo-
RaWAN, nor in a similar scale. In this chapter, our primary focus lies in formulating viable
mitigations for each of these features, and assessing their feasibility within the framework
of LoRaWAN. Through a methodical approach, we first study the potential deployment sce-
narios of these mitigations and their efficacy in thwarting attacks. Then, we evaluate their
accuracy in isolation, before examining their combined effects under diverse settings. Finally,
we measure how these mitigations impact End-Devices by inherently producing overhead,
both in computation and communication.

6.2 Feature-based countermeasures

Inspired by related works on mitigations presented in Section 2.4, we explore how each feature
previously exploited can be mitigated through tailored countermeasure. A summary of each
of them and their corresponding mitigations is available in Table 6.1.

An alternative approach to introducing noise to break communication patterns is generat-
ing dummy traffic. As outlined in Section 2.4.2, developing a convincing solution is complex
and induces significant overhead [131]. In LoRaWAN, transmission consumes more energy
than other operations and should be minimized [43]. Hence, we exclude dummy traffic from
possible countermeasures, focusing on noise-based perturbations.

Table 6.1: Summary of studied countermeasures.

Features Countermeasure Specified by
Supported by

LoRaWAN standard

FCnt & FPort Encryption Standard No
Payload length Padding Application Yes
Time-based Delay Application Yes
Radio-based Transmit power modulation Application Yes

Additionally, we focus on software-based countermeasures due to easier large-scale imple-
mentation: they do not require additional hardware, and could be deployed via a firmware
update. However, this approach inherently comes with a drawback: some features are by
design nearly impossible to influence. For instance, the time difference of arrival of the same
message at each gateway used in Chapter 4 is inherently tied to the physics of wave propa-
gations. Similarly, the last time a DevAddr has been observed is difficult to hide in isolation.
As we will see in Chapter 7, more global alternatives exist.

6.2.1 Content-based features

Attacks presented in Chapters 4 and 5 extensively leverage content-based features. We start
by studying the header fields, including FCnt and FPort, and then discuss how noise can be
added to the payload length.

6.2.1.1 FCnt & Fport

Both FCnt and FPort are relevant in privacy attacks against LoRaWAN. As seen in Sec-
tion 4.5.2, the FCnt is notably utilized to easily link the join-request with following uplink

messages. While the FPort is less prevalent, its patterns are also utilized for fingerprinting
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(see Section 5.5.1). In practice, the server relies on precise values from these fields, rendering
noise-based countermeasures ineffective. Therefore, we opt to encrypt both FCnt and FPort

using existing cryptographic primitives.

Encrypting the FCnt: The FCnt is encrypted using the NwkSEncKey, shared with the NS,
along other already obfuscated network-specific information including MAC commands and
FOpts.

Encrypting the FPort: The FPort is encrypted using the NwkSEncKey and decrypted by
the NS, before relaying the clear-text value to the AS. The FPort is leveraged by both the
NS and AS to correctly route traffic to relevant applications. For instance, when the FPort

is set to 0, it indicates that the payload contains encrypted MAC commands destined for the
NS, while values ranging below 223 are application-specific. This solution necessitates trust
in the NS, but it represents an improvement over the current situation.

With both fields encrypted, their corresponding information are now unavailable to a
passive eavesdropper. In practice, they are removed from datasets used in the machine
learning process.

6.2.1.2 Payload length

In both attacks, we heavily rely on payload length as a distinguishing feature, making padding
an intuitive method for obfuscation. Such an approach necessitates two building blocks: a) a
way to distinguish between actual data and padding, b) enough available space to pad.

First, this can be achieved by employing a designated byte as a separator or by prefixing
the payload with the length of the useful portion [144] (see Figure 6.1). As padding is
introduced along the payload, this process can be left to the application and does not affect
the LoRaWAN protocol itself.

Payload Padding

Payload Padding

Separator

Payload length

Figure 6.1: Padding implementation strategies.

Second, the amount of padding is limited by the maximum payload length. In LoRaWAN,
it depends on the DataRate (DR) (from 51 to 222 bytes, see Table 3.1). Figure 6.2 presents
the observed payload sizes for uplink messages in our real-world dataset already presented
in Sections 4.3 and 5.3. We note that 99.82% of the 71 million uplink messages captured
from June 2020 to August 2023 contain a payload shorter than 51 bytes, allowing for padding
even in the most conservative scenarios where DR 0 to 2 are used (max. 51 bytes).

Given a message of payload size ℓ and a maximum size L, the padding amplitude pA is
calculated as L−ℓ. Based on these parameters, we explore two padding strategies, illustrated
by Figure 6.3.

Max-padding: We fill the payload to its maximum size, ensuring that all uplink messages
have a consistent length of L after padding. Messages that are already at the maximum size
remain unaffected by this process.

Uniform padding: We randomly select a length of padding from a uniform distribution
over the range [0, pA]. This method ensures that messages with a length ℓ < L are padded to a
length greater than or equal to their initial size, while messages already at the maximum size
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Figure 6.2: Cumulative distribution function of payload lengths for uplink messages.

Maximum payload length

Max-padding

Uniform padding

Figure 6.3: Padding strategies, with original payload on the left and padding (hatched) on
the right.

remain unchanged. As discussed in Section 2.4.3.1, applying this padding method provides
guarantees of Approximate Differential Privacy, a relaxed version of Differential privacy [75].
In practice, we arbitrarily select pA ∈ 5, 10, 40, 80, 200, corresponding to an Approximate
Differential Privacy of parameters (0, L

pA
) [75].

6.2.2 Time-based features

Time-based features have proven to be highly valuable in previous attacks. A viable strategy
illustrated in Figure 6.4 involves introducing random delays in message transmission [173,
197, 231]. Such measures disrupt the regularity of message timing, making it more chal-
lenging for attackers to discern patterns and derive meaningful information. Both the time
difference between join-request and uplink (Chapter 4) and Inter-Arrival Time between
uplink messages (Chapter 5) are impacted by random delays. They can be deployed at the
application level, directly implemented by the End-Device.

Disrupting communications by adding delay may not be possible with time-sensitive ap-
plications. For instance, alerts when temperature exceeds a specific threshold should be sent
as soon as possible. We choose to ignore this issue and present best-case scenarios where all
messages can be delayed, while proposing realistic values of said delay.
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Figure 6.4: Introducing random delay between messages.

In practice, we draw random values from an interval [0..∆].1 To counter linking join-request
and following uplink messages, we select ∆ ∈ {30, 60, 300, 600, 1800, 3600} seconds (from 30
seconds to 1 hours). As the time between consecutive uplink messages is larger than between
join-request and following uplink messages, we increase the possible delay for fingerprint-
ing: ∆ ∈ {60, 300, 600, 900, 1200, 1800, 2400, 3600, 7200, 14400} seconds (from 1 minute to 4
hours).

6.2.3 Radio-based features

Radio-based features provide a robust foundation for constructing our attacks, as demon-
strated in Section 5.7.2. Even if other features are protected, they inherently contain sufficient
information to fingerprint devices. In our approach, we concentrate on passive countermea-
sures, refraining from jamming eavesdroppers and deploying directional antennas [23], or
physical shielding [198]. Instead, we choose a strategy introducing noise through dynamic
adjustments in transmission power to minimize the distinguishability of signals between mes-
sages.

Radio-based indicators (RSSI, SNR, and ESP) are all influenced by the transmit power.
According to the Friis transmission equation [85], the power at the transmitting and receiving
antennas (resp. Pt and Pr) are linked to the respective gain of those antennas (resp. Gt and
Gr), their distance R, and the constant λ:

Pr

Pt
= GtGr

(
λ

4πR

)2

Thus, modifying the transmit power Pt results in a proportional adjustment of Pr, upon
which both the RSSI and SNR linearly depend (and consequently, the ESP).

In LoRa modules, the transmit power can be adjusted from -4dBm to 20dBm, with 1dBm
steps [48]. We implement this countermeasure by introducing a random and uniformly dis-
tributed offset to the power signal for each record, and we adjust the RSSI, SNR, and ESP
accordingly. It is assumed that End-Devices operate at their base power level, enabling ad-
justments up to 20dBm or down to -4dBm. This approach is considered more representative
of typical deployment scenarios. Hence, we vary the size of the intervals from which the power
offsets are drawn: [0; 5], [0; 10], [0; 15], [0; 20], and [−4; 20].

Because of the lack of information on actual deployments, we do not account for the
potential effects on frame transmission success or failure, such as simulating message loss or
reception by gateways that were previously out of range.

1We do not consider negative delay (i.e. sending a report before it should have been transmitted), as it
requires knowing exactly which type of application is running.
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6.3 Evaluation methodology

We follow the same methodology presented in Sections 4.4.3 and 5.6. However, we apply
countermeasures during the process, training machine learning models on noisy data.

As shown in Figure 6.5, we first implement countermeasures in isolation, meaning only one
feature is impacted. As other features may compensate and smooth results when updating
mitigations parameters (e.g. the amount of padding), we train and evaluate models with and
without having access to features left intact. Finally, we combine multiple countermeasures
to create two scenarios, one of moderate and another of aggressive impact, based on their
expected disruption of LoRaWAN applications and energy consumption. In doing so, we try
to offer more realistic settings to appreciate the impact of all mitigations if they were actually
deployed.

Original dataset

Feature 1 Feature 2 Feature 3

Attack evaluation

Countermeasure

Impact in isolation

Original dataset

Feature 1 Feature 2 Feature 3

Attack evaluation

Countermeasure Countermeasure Countermeasure

Impact combined

Figure 6.5: Countermeasures applied in isolation (left) and combined (right).

For the linkage attack (Chapter 4), we intentionally keep the Gateway Time Distance,
the DevAddr Difference, Receiving Gateways Distance, Spreading Factor, and DataRate, as
no countermeasure presented here influence them. When targeting the fingerprinting attack
(Chapter 5), we select a sequence length equal to 50 uplink messages. This offers a good
compromise between attack performance, realistic number of available sequences to an eaves-
dropper, and comparatively quick results generation. For combined countermeasures, we
study the impact evolution on all sequence lengths.

In both cases, evaluations are done using all listening stations, and are repeated 15 times
with different random seeds to smooth results, showcased using the Balanced Accuracy (BA).

6.4 Experimental results

In this section, we present results obtained when implementing countermeasures various sce-
narios: in isolation with or without other features, and combined. We conclude by examining
the inherent overheads associated with these solutions.

6.4.1 Applying countermeasures in isolation

By first applying mitigations in isolation, we are able to detect trends and confirm that
increasing the amplitude of noise parameters (e.g. the amount of bytes used in padding)
decreases the performance of attacks. To demonstrate this, we focus on two examples, one
for each attack: padding against fingerprinting and delay against linking. Finally, we show
that isolated features do not actually protect LoRaWAN from our attacks and should be
applied in combination to thwart attacks. In all cases, we compare models against a baseline,
obtained without any countermeasure applied.

6.4.1.1 Reducing fingerprintability through padding

Figure 6.6 illustrates the impact of introducing padding on End-Devices fingerprinting, while
keeping other features impact. The max-padding strategy yields the best results, decreasing
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the balanced accuracy of the attack from ∼0.97 to 0.92 (-4.7%) in all cases. Uniform-padding
provides less protection, producing a -2.92% decrease for a padding amplitude of 40 bytes. In
both cases, the decrease in balanced accuracy is ultimately limited, with a small progression
for uniform-padding when increasing the padding amplitude.
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Figure 6.6: Impact of the padding on fingerprinting performances.

As seen in figure 6.2, many uplink messages are 11 bytes long, with 78% of the dataset
transmitted using DR 0 - 2, allowing for 51-byte payloads at most. Such configuration can
explain the plateau of performance from 40 bytes and onwards, as all available bytes are
already padded.

Based on these results, padding alone does not significantly reduce the fingerprintability
of LoRaWAN devices, with max-padding showing a slightly higher impact.

6.4.1.2 Thwarting linkage attack via random delay

Figure 6.7 shows the impact of adding random delay between join-request and uplink, both
with and without keeping other features. For instance, the balanced accuracy when using only
the delay-impacted features (i.e time-based features) starts at ∼0.67 with 30 seconds delay,
decreasing to ∼0.51 with 1-hour delays. Such a trend is not visible when other features remain
available to the machine learning model.
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Figure 6.7: Impact of the delay on linking performances.

To summarize, adding a small delay effectively reduces the accuracy of the attack when
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looking at time-based features only. However, it is useless when taking into account other
features.

6.4.1.3 Limits of isolated countermeasures

Table 6.2 showcases the impact of mitigations used in isolation, i.e. when all other unaffected
features are still available to machine learning models. As hinted at by previous results,
applying countermeasures individually shows limited impact on attacks’ performance. At
best, uniformly padding messages decreases the efficiency of the fingerprinting attack by
2.92%.

Table 6.2: Impact of isolated countermeasures compared to the baseline of both attacks.

Countermeasure Values Linking (%) Fingerprinting (%)

Uniform-padding 10 bytes 0.01 -1.61
40 bytes 0.01 -2.92

Delay 10 minutes -0.26 -0.37
60 minutes -0.34 -0.28

Power modulation [0; 10] 0.0 -0.57
[−4; 20] 0.0 -0.74

Encrypted FPort -0.0 -1.78

Encrypted FCnt -0.15

These small values can be attributed to models adjusting for the presence of counter-
measures by selecting alternative features. For example, as previously demonstrated in Sec-
tion 4.5.2, the linking attack heavily rely on the FCnt alone to achieve a high balanced
accuracy, which is still available in all but the “Encrypted FCnt ” case.

Additionally, as noise amplifies within certain features, machine learning models can more
easily discard outliers and concentrate on meaningful data. This pattern is observed in
fingerprinting, where increased perturbation of time-based features via random delay actually
improves the attack accuracy instead of decreasing it.

6.4.2 Combining countermeasures

To enhance our assessment, we measure the collective impact of all countermeasures by ob-
serving the reduction in balanced accuracy compared to the baseline, where no mitigations
are applied. We study two perturbation settings based on varying levels of perturbations.
In the moderate perturbation scenario, countermeasures exert a moderate influence on com-
munication, including 10 bytes of uniform-padding amplitude, a transmit power modulation
ranging from 0 to 10 dBm, and a random delay spanning 10 minutes.

In the aggressive perturbation scenario, countermeasures could significantly impair com-
munication performance, with 40 bytes of uniform padding amplitude, a transmit power
modulation spanning −4 to 20 dBm, and a random delay extending to 1 hour. Although
longer delays are theoretically feasible, we limit the maximum duration to realistic values.

In both scenarios, we encrypt both FCnt and FPort, and select uniform-padding to avoid
excessive overheads (see Section 6.4.3).

6.4.2.1 Impact of combined countermeasures on linking attacks

Table 6.3 showcases the impact of combining all mitigations against the linking attack. The
balanced accuracy is decreased by ∼12.5% with moderate settings, and 15.7% with aggressive
countermeasures.

While those values may seem underwhelming, we highlight that it is currently impossible
to completely thwart the attack while preserving energy. First, some information remains in
features disrupted via noise, such as payload length, time difference between join-request

and uplink message, or radio characteristics. Second, several features are not influenced by
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Table 6.3: Impact of combined countermeasures on linking performance.

Settings Balanced accuracy

Baseline 0.9984
Moderate 0.8740 (-12.5%)
Aggressive 0.8414 (-15.7%)

our approach, including the last time a DevAddr has been seen, or the list of gateways that
received both join-request and uplink messages.

6.4.2.2 Impact of combined countermeasures on End-Devices fingerprinting

Figure 6.8 illustrates the impact of combining all countermeasures against the fingerprinting
attack. For 50 messages per sequence, the balanced accuracy decreases by roughly -2.24%
with moderate mitigations, and by -5.10% with aggressive settings. When decreasing the
number of messages per sequence to 5, the balanced accuracy also decreases: -7.32% with
moderate settings, and -10.22% with aggressive countermeasures.
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Figure 6.8: Impact of combined countermeasures on fingerprinting performance.

Additionally, we train models using a limited number of listening stations with a similar
methodology as in Section 5.7.4. We observe that diminishing the number of listening stations
amplifies the effectiveness of countermeasures. For example, implementing transmit power
modulation across sequences of 50 messages results in a performance reduction of -0.03%
across all listening stations, yet it escalates to -2.50% when only three listening stations are
present under moderate settings. This suggests that countermeasures could potentially be
more impactful in real-world scenarios, where eavesdroppers are constrained to a limited
number of listening stations.

In summary, aggressive mitigations expectedly show greater impact on the attack’s per-
formance compared to moderate settings. However, all things considered, fingerprinting is
seldom affected, even when all countermeasures are combined. Moreover, their impact dimin-
ishes as the number of uplink messages per sequence grows: models are able to efficiently
classify End-Devices despite aggressive settings, thanks to data aggregations corresponding
to a single identity. Even more aggressive methods would be required to further thwart the
attack, which may not be acceptable from the point of view of LoRaWAN applications.

6.4.3 Countermeasures overhead and impact on communications

In this section, we explore overheads and possible impacts on communication generated by the
various mitigations presented previously. However, not all countermeasures induce an easily
measurable impact. For instance, while delay potentially disrupt traffic, it is hard to measure
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its exact impact without knowing the requirements of underlying applications. Hence, we
focus on encryption of FCnt and FPort, padding, and transmit power modulation.

6.4.3.1 The limited impact of encrypting FCnt and FPort

Encrypting the FCnt and FPort could induce both communication and computation over-
heads.

First, by encrypting these fields via AES-128 CCM*, we preserve their length.2 Hence,
this process does not introduce additional bytes on air: there is no communication overhead.

Second, AES-128 deals with 16-byte data blocks, which means that any input shorter than
this threshold requires 1 encryption block. For instance, a 4-byte MAC command requires 1
block, and adding a 2-byte FCnt and 1-byte FPort, summing up to 7 bytes, would still require
1 encryption operation.

To determine if additional AES-128 blocks are required by the End-Device, we monitor
the length of MAC commands encrypted by the NS, either in FOpts or in the actual payload
with FPort equal to 0.

We observe ∼ 14 million uplink messages containing a command over the whole dataset.
While encrypting FCnt and FPort increases the number of encrypted bytes by ∼64%, it only
corresponds to a 4% increase in encrypted AES blocks. Hence, the minimal overhead of
encrypting both fields makes it a compelling solution, especially to thwart fingerprinting.

6.4.3.2 Increasing on-air bytes via padding

Introducing additional data and expanding the payload size inevitably implies an overhead, as
lengthier messages consume more energy and increase the occupation of the shared medium.
In LoRaWAN, those overheads are characterized by the Time On Air (TOA), the time required
for an End-Device to send data to the receiver. The TOA does not linearly depend on the
length but can be derived from parameters related to the DataRate [127]. As communications
are particularly energy-consuming [43], the TOA is directly linked to battery depletion.

Figure 6.9 displays the evolution of the TOA for each padding strategy, compared to the
baseline. Unsurprisingly, the max-padding strategy produces the highest overhead with a
∼96% increase in TOA. On the other hand, uniform-padding varies between ∼5% and 46%
overhead for padding amplitudes of 5 and 200 bytes respectively.
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Figure 6.9: Impact of padding on Time On Air.

Unless a privacy threat is deemed severe by a network administrator, the adoption of
maximum padding seems impractical due to its substantial energy consumption. Although
less demanding, the utilization of uniform padding still results in a noteworthy increase in
TOA. Selecting a low number of bytes for padding is mandatory.

2CCM is derived from CTR (counter mode), an AES implementation allowing for encrypted outputs of
equal size as clear-text inputs.
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6.4.3.3 Complex transmit power modulation overheads and impacts

Estimating the impact of power modulation poses several challenges. First, employing power
modulation with negative values introduces increased risks of loosing messages. As actual con-
ditions during communication are unknown, logs can not be leveraged to accurately estimate
if an uplink message would be lost when reducing the transmit power.

Second, increasing transmit power increases energy consumption, depleting the battery
of End-Devices. Despite some works on LoRaWAN radio parameters and corresponding
energy consumption [48], further investigation and real-world deployments are necessary to
accurately assess both potential losses and increased energy consumption.

6.5 Conclusion

Our exploration into implementing feature-based countermeasures to mitigate privacy attacks
has revealed both opportunities and challenges. While it is feasible to introduce mitigations,
our findings highlight the importance of combined approaches. Merely applying isolated
countermeasures without considering the broader context proves ineffective, as demonstrated
by the adaptability of machine learning models. Nevertheless, our experiments demonstrate
that combining multiple mitigations can yield improved results. Despite this, even aggressive
countermeasures induce at most ∼ 15% of decrease in balanced accuracy. Moreover, the
adoption of these mitigations inherently introduces overheads, which poses challenges for
resource-constrained end-devices.

In light of these limitations, alternative strategies warrant investigation, such as reducing
the number of uplink messages associated with a single identity. Pseudonym-based technolo-
gies offer promising avenues for further research and development in enhancing the security
and privacy of LoRaWAN networks.

81

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0075/these.pdf © [S. Pélissier], [2024], INSA Lyon, tous droits réservés



Chapter 7
Privacy-preserving pseudonyms for
LoRaWAN

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Limits of existing pseudonym schemes . . . . . . . . . . . . . . . 84

7.3.1 Legacy schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3.2 HASHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.3 Pool-based pseudonyms . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.4 Resolvable pseudonyms . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.5 Encrypted link-layer pseudonyms . . . . . . . . . . . . . . . . . . . 87

7.4 Adapting pseudonym schemes to LoRaWAN . . . . . . . . . . . 87

7.4.1 Resolvable pseudonyms . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4.2 Sequential pseudonyms . . . . . . . . . . . . . . . . . . . . . . . . 88

7.5 Renewal strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.6.1 P1: Unlinkability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.6.2 P2: Minimal communication overhead . . . . . . . . . . . . . . . . 91

7.6.3 P3: Low computation/memory overhead . . . . . . . . . . . . . . . 91

7.6.4 P4: Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.6.5 P5: Legacy support . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.6.6 Summary and artifacts . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.7 Complementary security considerations . . . . . . . . . . . . . . 95

7.8 Applicability to other LPWAN protocols . . . . . . . . . . . . . 96

7.9 Limitations and future works . . . . . . . . . . . . . . . . . . . . 96

7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

In this chapter, we design rotating pseudonyms tailored to the specific constraints of Lo-
RaWAN. We first analyze the limits of existing schemes, including alternatives already sup-
ported by the protocol’s standard and certificate-based approaches implemented in VANETs.
We then study how resolvable pseudonyms implemented in BLE, and sequential pseudonyms
designed for Wi-Fi, can be adapted to LoRaWAN, evaluating them based on various desired
properties. We reinforce our proposition with theoretical analyses and simulations on a large-
scale dataset, discussing limitations of each solution, and we find that sequential pseudonyms
match the requirements. Finally, we explore potential generalization to other LPWAN proto-
cols.
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This chapter is partially based on our peer-reviewed and published work Privacy-
Preserving Pseudonyms for LoRaWAN [165]. The present chapter differs mainly by
the following points:

• We complete the initial analysis with additional pseudonyms solutions, such as
HASHA [231], certificate-based [138, 169], range-based [152], and encrypted link-
layer pseudonyms [30].

• We thoroughly discuss possible renewal strategies for pseudonyms in the specific
context of LoRaWAN.

• We enhance the evaluation of resolvable and sequential schemes, providing addi-
tional insights on observed behaviors.

• We extend our analysis to other LPWAN protocols, demonstrating that it is
possible to adapt pseudonyms to enhance privacy across similar ecosystems.

• We highlight the limitations of the selected solution and discuss corresponding
leads for future works.

The content of the theoretical analysis in Section 7.6.4.1 has been jointly authored
with Jan Aalmoes and is further developed in [13].

7.1 Introduction

Clear-text and stable identifiers allow eavesdroppers to track devices across time and space [89].
For instance, fingerprinting attacks discussed in Chapter 5, along with other activity infer-
ence threats [131], rely on aggregating numerous messages behind a single address. As seen
in Section 2.4.5, a viable countermeasure is to deploy temporary, unlinkable, and regularly
updated values called pseudonyms. For example, introducing such a mechanism would re-
duce the number of messages per sequence available as ground truth for the machine learning
model, effectively thwarting the fingerprinting attack presented in Chapter 5.

Existing solutions deployed in technologies such as BLE [92] or VANETs [138, 169] were
not specifically designed with strict energy usage optimization in mind. As outlined in
Section 3.1.7, LoRaWAN operates under distinct constraints, including the need for op-
timized energy consumption, low communication throughput, and limited computational
power. Given these differences, further research is needed to assess the feasibility of im-
plementing pseudonyms in the context of LoRaWAN. In this section, we explore how the
DevAddr, crucial for network access and communication, can be replaced by a rotating pseu-
donym to minimize the number of messages associated with a single identity, while preserving
its functionality.

According to Petit et al., a pseudonym [...] should be useable for authentication, but must
not contain any personal identifiable information that could link to the pseudonym holder’s
real identity [169]. First, we extend their definition by proposing multiple properties tailored
for the constraints of the LoRaWAN protocol. Then, we explore existing solutions in light
of those constraints, and select two contenders to evaluate, through both theoretical analysis
and simulations. Finally, we generalize our work to other LPWAN technologies and discuss
security-related issues.

7.2 Properties

We define several properties, stemming from our threat model based on a passive eavesdrop-
per lacking knowledge of the cryptographic keys shared between devices and servers (see
Section 2.3.1). More precisely, the attacker aims to compile sets of uplink messages cor-
responding to a specific device to track and/or fingerprint it. Currently, linking messages
is trivially achieved through the DevAddr. Our goal is to thwart such an approach while
respecting the constraints of the LoRaWAN protocol (see Section 3.1.7)
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A suitable privacy-preserving pseudonym scheme for LoRaWAN should have the following
properties:

• P1: Unlinkability: Two messages originating from the same device should not be
linked using the pseudonym (previously DevAddr) and other frame fields available in
clear (e.g. FCnt).

• P2: Minimal communication overhead: Because of the strict duty cycle and energy
constraints of End-Devices, the communication overhead has to be kept minimal [54].

• P3: Low computation/memory overhead: The computation and memory overhead
has to be minimal, in particular for constrained End-Devices [54].

• P4: Reliability: Receivers should be able to recover the identity of End-Devices with-
out the scheme introducing additional message losses.

• P5: Legacy support: To facilitate its co-existence with current specifications and
progressive adoption, the scheme should require only limited modifications of the pro-
tocol. In particular, the general structure of the frame should be preserved to facilitate
adapting parsers and to ensure a progressive adoption. The scheme should only use
cryptographic primitives available in the specifications of LoRaWAN (e.g. AES).

In practice, P2 (Minimal communication overhead) is more important than P3 (Low com-
putation/memory overhead), as LoRaWAN communications incur significant energy costs.
Indeed, a complete transmission (a few millijoules) consumes ∼ 109 times more than encryp-
tion (only picojoules), for the same payload length [43, 207].

Additionally, P3 (Low computation/memory overhead) should take both End-Devices and
servers into account: the later can currently handle thousands of concurrent devices. While
it is easier to scale up the deployment of grid-connected machines than constrained IoT
devices, taking into account complexities while receiving uplink messages is important to
avoid resource exhaustion.

7.3 Limits of existing pseudonym schemes

In this section, we explore existing pseudonym schemes in light of LoRaWAN constraints and
expected properties defined in Section 7.2. On top of two legacy solutions, already available
in the LoRaWAN standard, we discuss approaches inspired by related works, detailed in
Section 2.4.5.

7.3.1 Legacy schemes

The LoRaWAN standard currently supports two ways of implementing rotating pseudonyms:
the rejoin process, and multiple End-Devices sharing the same DevAddr.

7.3.1.1 Rejoin process

In LoRaWAN, the DevAddr is assigned by the NS to an End-Device during the join process
(see Section 3.1.6.2). At any time, a rejoin process can be triggered, thereby renewing the
DevAddr to another randomized value, effectively acting as rotating pseudonym. A rejoin
process can be initiated by both the End-Device via a ReJoin-request message, or the NS via
a ForceRejoinReq downlink MAC command. This approach implies a costly communication
overhead of at least one ReJoin request and one Join Accept. Moreover, as demonstrated in
Chapter 4, an eavesdropper can easily leverage the generated traffic of the join process to link
back the rejoin-request and following uplink messages.

As this solution is weak w.r.t. P1 (Unlinkability) and P2 (Minimal communication over-
head), we exclude it from further comparisons.
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7.3.1.2 Shared DevAddr

In LoRaWAN, multiple End-Devices can be assigned the same DevAddr by the NS (see Sec-
tion 3.1.4.2). Upon receiving an uplink message, the NS leverages the MIC to identify
devices: it iterates through all keys corresponding to the DevAddr until the computed MIC
value matches the one present in the message header. While straightforward and already
supported, such an approach has several shortcomings.

First, it does not offer a built-in way of rotating pseudonym, other than leaning on the
rejoin process. As stated in Section 7.3.1.1, it induces significant energy consumption and
generates metadata dangerous for privacy.

Second, this solution produces significant computation overhead on the NS. For D devices
sharing the same DevAddr, receiving an uplink message generates 1+D−1

2 MIC computations
on average, contrary to 1 without shared DevAddr.

Third, this scheme would provide only a k-anonymity type of privacy protection [200], by
hiding the End-Device in a set of indistinguishable devices. Generating such sets is a complex
problem: heterogeneous groups of End-Devices makes it easy to differentiate between devices,
and homogeneous groups introduce the risk of forming clusters containing only the same class
of devices. Finally, it incites to increase the number of devices per group, further intensifying
the computation overhead.

As shared DevAddr do not satisfy properties P1 (Unlinkability), P2 (Minimal communi-
cation overhead), and P3 (Low computation/memory overhead), we exclude it from further
comparisons.

7.3.2 HASHA

Another potential avenue for pseudonyms, called HASHA, has been proposed by Zhang and
Zhang to protect the location privacy of wireless sensor networks [231]. Here, the pseudonym
is encrypted via a rolling key derived based on the hash of the previous payload. Unfortu-
nately, this approach has several shortcomings. First, an eavesdropper can circumvent address
randomization: 1) pseudonyms are generated based on original addresses and a fixed, publicly
known value, and 2) the original address is sent in clear-text via sniffable beacon frames.

Second, the unlinkability property hinges on the attacker missing a single data packet,
leading to a loss of synchronization with the targets. As long as the attacker is synchronized
with senders, they can predict following identifier values. One could argue that LoRaWAN’s
reported 40% packet loss in urban environments [136] would help in that regard, but it does
not offer a strong guarantee.

Third, devices must send acknowledgment frames to maintain synchronization. It would
require LoRaWAN End-Devices to receive and parse downlink for all of their uplink, incur-
ring higher energy consumption. Additionally, high numbers of downlink messages has been
shown to deteriorate the overall performance of the network [150].

Because of these various issues regarding properties P1 (Unlinkability) and P2 (Minimal
communication overhead), we exclude the HASHA scheme from further comparisons.

7.3.3 Pool-based pseudonyms

In this section, we explore the possible implementation of two solutions based on randomly
sampling pseudonyms from a pool assigned to End-Devices.

7.3.3.1 Certificate-based pseudonyms

Due to unreliable network conditions, some Vehicular Ad hoc NETworks (VANETs) generate
their pseudonyms in bulk, with vehicles randomly pooling one of them for a given time
period [138]. As outlined in Section 2.4.5.4, this approach requires a cryptographic certificate
to be sent along each data message [169], which poses multiple problems, both for their
transfer, and storage.

First, it supposes the presence of the following lengthy fields in the header of messages:

• Public Key : generated by the vehicle for secure communication.

• Actual pseudonym: unique identifier assigned to the vehicle for a specific period.
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• Signature from the Sender (Vehicle): a mean for the receiver to verify the authenticity
of the sender. When the vehicle sends a message, it signs the message using its private
key, corresponding to the public key included in the certificate.

• Signature from the Trusted Authority : a mean for the receiver to trust the sender. The
vehicle’s certificate is signed by a trusted authority, ensuring authenticity and integrity.

The security of asymmetric cryptography depends particularly on key lengths. As of Jan-
uary 2019, the National Institute of Standards and Technology, USA (NIST) advise selecting
RSA keys of at least 2048 bits. When using Elliptic Curves, keys must be over 224 bits for
the same level of security [39]. These recommendations are relevant for years prior to 2030;
longer keys will be required later. Similar values are given by other state-funded organization,
such as the French National Agency for the Security of Information Systems (ANSSI) [26].
A 224-bit cryptographic key corresponds to 55% of the maximum LoRaWAN payload size,
in the most used DR case (see Section 6.2.1.2). Its usage is unrealistic in a protocol as con-
strained as LoRaWAN. Multiple projects propose lightweight alternatives to existing public
key cryptography schemes [202], both in key size and computations. However, they require
(at best) 80 bits for keys alone, not accounting for signatures and pseudonym.

Second, one vehicle stores multiple pseudonyms, valid for a specific period of time. Con-
strained LoRaWAN End-Devices may not be able to manage a pool of lengthy pseudonyms,
requiring additional costly communications to rotate them.

Thus, the implementation of pseudonyms in VANETs goes against properties P2 (Mini-
mal communication overhead), P3 (Low computation/memory overhead), and P5 (Legacy
support), and can not be transferred to the highly constrained LoRaWAN. We exclude
certificate-based pseudonyms from further comparisons.

7.3.3.2 Range-based pseudonyms

Pseudonym ranges are akin to computers controlling multiple subnets instead of a single
IP address, and randomly sampling an identifier when sending messages. Misra and Xue
advise to split the original pseudonym space to protect the unlinkability of pseudonyms; “the
pseudonym space [is] divided into at least N2 subranges”, with N as the number of active
devices [152]. As the available address space in LoRaWAN is limited, further dividing it into
subranges would create two major issues.

First, following the definition of subranges given by Misra and Xue, a NwkAddr of b bits
would allow ⌊

√
2b⌋ unique active devices without permanent collisions. For instance, type 7

networks can currently be addressed using only b = 7 bits, corresponding 27 = 128 unique
End-Devices. Using subranges, this number would drop to 11. Increasing the number of
active devices over that threshold produces collisions, generating extra MIC computations,
as exposed for shared addresses in Section 7.3.1.2.

Second, when maximizing the number of active devices in a network, which happens
quickly, ranges correspond to 1 or 2 pseudonyms. Once an End-Device has used all of its
possible values, it is forced to re-use pseudonyms. Thus, an attacker can link back commu-
nications to previously observed values. As subranges should be communicated during a join
process, requiring extra bytes on the air, updating them regularly would deplete battery life.

As this approach applied to LoRaWAN contradicts properties P1 (Unlinkability), P2 (Min-
imal communication overhead), and possibly P3 (Low computation/memory overhead), we
exclude it from further comparisons.

7.3.4 Resolvable pseudonyms

Resolvable random Private Addresses (RPAs) include a random value and a hash com-
puted using the random value and a private key, shared between sender and receiver. This
straightforward mechanism is already deployed in BLE and represent a well-tested pseudonym
scheme [92, sec. 1.3.2.2].

By design, resolvable pseudonyms respect most desired properties: they are unlinkable,
reliable, and do not generate additional communication. Hence, we propose to study them
further in LoRaWAN.
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7.3.5 Encrypted link-layer pseudonyms

The approach by Armknecht et al [30], proposes to encrypt the MAC address via a pre-
shared key along a sequence number to keep sender and receiver synchronized. However,
this solution has several limitations. First, it is a completely new link-layer protocol, with no
possible legacy support. Second, it introduces some delay and jitter after 7 nodes connected to
an AP [30], but this may not be relevant for low-throughput LoRaWAN applications. Third,
the implementation suffers from a significant computational complexity: each packet with an
unknown address (i.e. no pre-generated value matches) requires to decrypt the si block for all
keys. Ignoring apparent energy consumption issues, this can lead to denial-of-service attacks.
Thus, we exclude it from further comparisons.

Some of these issues are resolved by Shroud, proposed by Greenstein et al. [90]. By pre-
generating sequential pseudonyms on both the sender and receiver, they avoid having to
communicate the counter itself, embedding it into the pseudonyms. However, pre-generating
addresses still has a cost (encrypting the sequence number, and managing memory). In
their paper, Greenstein et al. advocate for 50 pre-generated addresses, which corresponds to
1MB for 256 devices connected to an AP. Additionally, they propose a complete new link-
layer protocol and extend address size without consideration for existing implementation and
legacy support.

As the length of pseudonyms and the number of pre-generations can be adapted to Lo-
RaWAN, we propose to further study the concept as a possible adaptation respecting the pro-
tocol’s constraints.

7.4 Adapting pseudonym schemes to LoRaWAN

In this section, we present two pseudonym schemes adapted to LoRaWAN’s constraints,
inspired by resolvable private addresses (Section 2.4.5.3) and encrypted link-layer pseudonyms
(Section 2.4.5.1).

7.4.1 Resolvable pseudonyms

In this section, we explore how BLE’s Resolvable random Private Addresses (RPAs) can be
adapted to LoRaWAN, by listing their requirements, equivalences, and associated challenges.
Figure 7.1 illustrates both pseudonym generation and resolution.

Generation Resolution

=?

Figure 7.1: Generation and resolution of resolvable pseudonyms in LoRaWAN.

7.4.1.1 Requirements and adaptation

RPAs require devices to possess a resolution key k shared with the server, a random value
r, and a hash function H. LoRaWAN includes a key derivation process during OTAA (see
Section 3.1.6.2); k can thus be generated at the same time, and shared between the NS and
End-Device. Generating a random value in constrained hardware can be a difficult task, as
entropy sources are scarce and may lack robustness. For instance, the SX1272 transceiver
utilizes the RSSI signal to produce random values, and can be influenced by jamming [205].
However, such an active attack aiming at predicting random values falls outside the scope of
our threat model, and we consider randomness sources strong enough for this task. Finally, we
select AES-128 CMAC as the hash function of the resolvable scheme, based on its deployment
by default in the LoRaWAN standard (initially for MIC computations).
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In practice, a LoRaWAN resolvable pseudonym leverages the NwkAddr field. We propose
to subdivide it into 2: r (3 to 12 bits, based on the network type), and a truncated hash
value o = Truncb(H(r, k)), where Truncb is the function that keeps only the first b bits, and
b is between 4 and 13 bits.

To resolve a pseudonym ϕ = (r′, o′), the NS needs the same shared resolution key k used
during generation. If both Truncb(H(r′, k)) and o′ are equal, the sender’s identity is recovered;
otherwise, the message may belong to another device and the remaining shared keys must be
tested.

7.4.1.2 Challenges

The limited available space poses two significant challenges. First, 24-bit hashes in BLE
RPAs are highly likely to be resolved by a single key. In contrast, hashes in LoRaWAN can
be as short as 4 bits, leading to collisions, i.e. multiple keys generating the same hash, and
a pseudonym corresponding to more than one End-Device. To avoid identity conflicts during
the resolution, we propose to utilize the MIC (see Section 3.1.3), as illustrated by Figure 7.2.
In case of collisions, the NS can compare the received MIC with the re-computed value based
on the shared key, reliably identifying the actual sender.

Possible keys

...
FailMIC computation

Device's
identity

Hash computation Match

MIC computationHash computation Match Match

Figure 7.2: Device identification via MIC computation when using resolvable pseudonyms.

Second, LoRaWAN networks are designed to host a higher number of devices than BLE,
leading to complexity issues when resolving pseudonyms. For instance, Android supports only
7 associated BLE devices simultaneously1, in stark contrast with the thousands of concurrent
End-Devices in some LoRaWAN deployments. When the NS receives an uplink message, it
has to try all the keys of N active devices until it successfully resolves the received pseudonym
(1 + N−1

2 tries on average). This open challenge for the uplink message resolution leads us
to explore sequential pseudonyms in Section 7.4.2.

We note that this issue does not arise with downlink messages because an End-Device
simply needs to resolve the pseudonym using its own key. Additionally, End-Devices listen to
downlink channels during time slots closely following their uplink message, mostly receiving
messages intended for them, and therefore requiring only a few resolution attempts.

Finally, to protect the FCnt from being used for pseudonym linkage purposes (see Chap-
ter 4), we propose to encrypt this field like other network-specific information, as explored in
Section 6.2.1.1, using the NwkSEncKey shared with the NS.

7.4.2 Sequential pseudonyms

In this section, we present how Shroud, the solution by Greenstein et al. [90] based on en-
crypted link-layer identifiers, can be adapted to LoRaWAN as sequential pseudonyms. Con-
trary to the initial proposition leveraging 128-bit identifiers, we design a tailored scheme
respecting the space constraint already presented for RPAs in Section 7.4.1. We highlight
technical requirements, steps taken to adapt the scheme to LoRaWAN, and accompanying
challenges.

1https://android.googlesource.com/platform/external/bluetooth/bluedroid/+/master/include/bt

_target.h#1428
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7.4.2.1 Requirements and adaptation

Figure 7.3: Sequential pseudonyms in LoRaWAN.

As illustrated in Figure 7.3, sequential pseudonyms require a counter i, a key k shared
with the server, and an encryption function E. The LoRaWAN standard provides a counter
by default, the FCnt, and a key derivation process between the NS and End-Devices (see Sec-
tion 3.1.6.2). Likewise, we encrypt the counter using AES-CTR, which is already supported
in the LoRaWAN specification. To match the size requirements of the NwkAddr, the encrypted
output is truncated to b bits via the Truncb function, resulting in ϕi = Truncb(E(i, k)).

aaa
ddd
bbb

1
2
3

Device 1

Device 2

Device 3

abb
bba
abc

15
16
17

aaa
ccc
fff

42
43
44

Pre-generated 
pseudonyms

Corresponding 
counters

Figure 7.4: Server-side storage of sequential pseudonyms, for m = 3 and an example of
collision in bold.

In practice, both the NS and End-Device generate a sequence of encrypted pseudonyms
based on a synchronized counter, up to m values. Upon receiving a pseudonym ϕ′, it is
matched against pre-generated values, retrieving the underlying counter value and the sender’s
identity. As seen in Figure 7.4, the NS can potentially receive uplink messages from N active
End-Devices, thus it maintains N lists of m pseudonyms. End-Devices only have to update
their own.

7.4.2.2 Challenges

As highlighted previously, LoRaWAN identifiers are tightly constrained in space: only 7 to
25 bits are available. Hence, the probability of collision, i.e. multiple devices using the same
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sequential pseudonym, is high. For instance, both Device 1 and 2 in Figure 7.4 use the
pseudonym aaa, corresponding to different counters. Following propositions for resolvable
pseudonyms, we leverage the MIC to detect the actual origin when two or more devices
generate the same pseudonym.

The FCnt field can not be kept in clear to avoid linkability attacks (see Chapter 4). It
is redundant with sequential pseudonyms, already functioning as counters themselves. We
propose to extend the NwkAddr field by the 2 vacated bytes of the FCnt to reduce the number
of potential collisions. The sequential scheme can thus utilize pseudonyms of length ranging
from 23 (i.e. 16 + 7) to 41 (i.e. 16 + 25) bits, depending on the network type

7.5 Renewal strategies

We differentiate the pseudonym itself from its renewal strategy, i.e. how (often) it is updated,
which applies to both approaches presented previously.2 Inspired by existing solutions pre-
sented in Section 2.4.6, we discuss various methods to renew a pseudonym with regard to
LoRaWAN specificities.

To counter a stable DevAddr (see Section 3.1.4.2), renewal strategies are organized along
two axes: the renewal origin, and the renewal frequency. First, a pseudonym can be updated
either at the demand of the server, or by the device independently. For both privacy and
energy efficiency considerations, it is preferable for the End-Device to autonomously change its
pseudonym (respectively: no metadata generation, and no additional costly communication).

Second, the renewal frequency is set following solutions detailed in related works: either on
a time window (every M minutes) [92, 84, 138], or a number of messages (every N message).
For instance, addresses in BLE are renewed every 15 minutes [92]. Both strategies can be
enriched with random offsets (e.g.: a pseudonym is updated every M + sr minutes with sr a
random number of seconds) to break patterns [138].

The renewal frequency faces additional challenges due to synchronization issues: a) unco-
ordinated timing-based solutions can be abused [143] or require a buffer period [138], which
may not be available for event-centric systems, b) synchronization between devices is complex
to deploy [169], requiring numerous devices to correctly mix the signals [211].

Solutions based on precise coordination and mix zones are not conceivable in LoRaWAN,
with its low traffic, uncoordinated End-Devices, and loosely synchronized servers/devices.
On the other hand, generating pseudonyms is based on low-cost encryption operations and
communications are sparse, enabling energy-efficient pseudonym renewals (see Section 7.6.3).
Thus, we consider an approach similar to Shroud [90], where pseudonyms are renewed for
each uplink message.

7.6 Evaluation

We evaluate both resolvable and sequential pseudonym schemes w.r.t. the properties pre-
sented in Section 7.2. When possible, we complement theoretical analyses by conducting
simulations on a real-world dataset. Already presented in Sections 4.3 and 5.3, this dataset
corresponds to 71 million of uplink messages from third-parties captured from June 2020 to
August 2023.

7.6.1 P1: Unlinkability

The unlinkability property is related to pseudonyms themselves as well as surrounding meta-
data. First, both resolvable and sequential schemes generate their pseudonyms for each
message via AES as a Cryptographically Secure PRNG (CSPRNG). This guarantees a high
entropy output, meaning the pseudonyms themselves are unlinkable.

Second, both the payload encryption and MIC computation require unique clear-text
FCnt values. Even if we encrypt the FCnt with resolvable pseudonyms or hide it in sequential
pseudonyms, its underlying value is still available to both the End-Device and NS. Thus,
for two payloads with equal inputs (e.g. temperature sensors reporting the same value), the
encrypted output is guaranteed to remain different [65, sec. 4.3.3].

2In theory, the counter i of sequential pseudonyms could be incremented only every 10 messages.
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Additionally, the rest of the header (FCtrl and FPort) contains flags and options amount-
ing for a total of 16 bits. In practice, only the FPort exhibits some contextual variation, with
∼3.5 bits of entropy. As outlined in Section 6.4.3.1, it can be encrypted with limited overhead.

Hence, after encrypting the FCnt and FPort, we consider that both resolvable and sequential
pseudonyms are unlinkable.

7.6.2 P2: Minimal communication overhead

In terms of communication, both resolvable and sequential pseudonyms are indistinguishable.
There is no alteration to the message size, and under the assumption of no desynchroniza-
tion (see Section 7.6.4.2), no additional communication overhead is induced. If an unlikely
desynchronization occurs, a rejoin process is required and previously lost data must be sent
again.

7.6.3 P3: Low computation/memory overhead

We analyze computation and memory overheads, for both End-Devices and the NS in worst
case scenarios. We start by considering N active End-Devices managed via a single NS. For
both schemes, we assume c collisions at the NS for an uplink message, i.e. c End-Devices
using the same pseudonym. A summary of the comparison between both schemes is available
in Table 7.1. We choose to estimate the overhead produced by the generation and handling of
pseudonyms in AES-128 encryption block operations, as well as the amount of memory in bits.
AES-128 encryption is a one of the most expensive operations done by the device (excepting
communication itself), which means that other operations are comparatively negligible. As a
fundamental tool already supported by the standard, it is utilized throughout both pseudonym
schemes, making it a perfect candidate to estimate their overhead on common grounds.

Table 7.1: Computation and memory overhead of resolvable and pseudonym schemes.

Scheme
Transmission

(# AES)
Reception
(# AES)

Memory
(bits)

Resolvable (Network Server) 2 4c+ 2N + 2 -
Sequential (Network Server) 2 4c+ 2 N(3mb− ℓ)

Resolvable (End-Device) 5 4 -
Sequential (End-Device) 2 2 3mb− ℓ

We note values correspond to overhead, meaning they do not represent existing require-
ments of the current version of the standard.

7.6.3.1 Computation overhead

We do not take into account existing encrypted data such as MAC commands (see Sec-
tion 6.4.3.1) and consider each encryption operation in isolation. For instance, the resolvable
scheme encrypts the FCnt, inducing an overhead of one AES block encryption, for both
transmission and reception. While suboptimal, we select the worst case scenario, regardless
of possible optimizations during implementation.

Transmission: Sequential pseudonyms require only 1 AES encryption to encrypt the coun-
ter and generate the pseudonym on both End-Device and NS, and 1 to encrypt the FPort. On
the other hand, for resolvable pseudonyms, the End-Device has to do 5 encryption operations:
it generates a random value (1 operation), produces the hash via CMAC (2 operations) [194],
as well as encrypts of the FCnt (1 operation) and FPort (1 operation). Both FCnt and FPort

are also encrypted by the NS.

Reception: On the server side, the computation overhead depends on the number of colli-
sions c. By default, a collision is handled by computing the MIC, requiring 4 AES encryption
(2 CMAC operations), totaling to 4c AES encryption operations [65, sec. 4.4]. For resolvable
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pseudonyms, the NS needs to resolve pseudonyms by computing the hash via CMAC using
the shared keys of all N active devices, so 2N AES encryption operations.3 Finally, it also
has to decrypt the FCnt and FPort, summing up to 4c+ 2N + 2 encryption operations. For
sequential pseudonyms, the NS only has to maintain the list of pre-generated pseudonyms by
producing a new one once a message is received (1 operation) as well as decrypting the FPort
(1 operation), resulting in 4c+ 2 encryption operations.

For End-Devices, resolvable pseudonyms require 4 encryption operations: 2 for hash com-
putation via CMAC to resolve the pseudonym, and 2 for FCnt and FPort decryption. Se-
quential pseudonyms only need 2 encryption operations, to produce a new pseudonym while
maintaining the pre-generated list length, and to decrypt the FPort.4

In summary, sequential pseudonyms show a significantely lower computation overhead
than resolvable pseudonyms, notably during reception server-side, as well as in both trans-
mission and reception device-side.

7.6.3.2 Memory overhead

Sequential pseudonyms require 3mb−ℓ bits of storage, for m pre-generated pseudonyms, with
the NS needing it for all N active devices. More precisely, each End-Device utilizes 3 lists of
m pre-generated pseudonyms, one for each FCnt (see Section 3.1.3). A pseudonym requires b
bits, and we make sure to subtract the existing length (ℓ) of the NwkAddr from the overhead.

We confirm in Section 7.6.4.2 that m can be kept as low as 15 and pseudonyms are at
most 41 bits. In a worst case scenario (high number of lengthy pre-generated pseudonyms),
it would correspond to 3mb− ℓ = 3× 15× 41− 41 = 1804 bits. Although much higher than
current implementations, this is still manageable, corresponding to ∼3% of RAM of lower-end
End-Devices.5

Thus, the lower computation overhead of sequential pseudonyms comes with a higher, yet
low, memory overhead than their resolvable counterpart.

7.6.4 P4: Reliability

We investigate two dimensions of pseudonym robustness. First, as outlined in Section 7.4,
both resolvable and sequential schemes can result in pseudonym collisions, necessitating addi-
tional operations. Second, packet loss might lead to desynchronization between End-Devices
and the NS, requiring a costly rejoin process upon detection.

7.6.4.1 Pseudonym collisions

We analyze collisions, first through analytical evaluation and then via simulations on the
dataset presented in Sections 4.3 and 5.3.

Analytical evaluation: Our objective is to theoretically determine the number of pseudo-
nym collisions (Y ) for both schemes. We note that this problem concerns solely the NS,
which has to track multiple End-Devices and associated shared keys. We start by analyzing
sequential pseudonyms.

Let ϕ be a pseudonym and X the number of devices using this pseudonym at a given time.
For N devices, sequential pseudonyms require the NS to maintain N lists of m pseudonyms.
Let p be the probability that ϕ belongs to a generated pseudonym list. Counting the number of
devices producing ϕ in their pseudonym list is the same as counting the number of successes of
a Bernoulli experiment of probability p. Formally, this counting follows a binomial probability
law with the number of lists tested and p as parameters. Since ϕ necessarily belongs to at
least one of the lists, we can write X = 1+Y , where Y is the number of pseudonym collisions
and X the number of matching lists. Y follows the binomial law of parameter (N − 1, p).

3We ignore the cost of looking up keys, assuming it is negligible compared to the actual CMAC computa-
tions.

4We note an encryption operation is required when receiving a sequential pseudonym on the End-Device
because the NS do not answer with the last sequential pseudonym used in an uplink. Rather, it communicates
a pseudonym generated specifically for downlink communications, following the existing concept of direction-
based counters (FCntUp and FCntDown).

5https://lora-developers.semtech.com/documentation/tech-papers-and-guides/mcu-memory-manag

ement/
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Let T be the size of the address space; for instance, a 32-bit pseudonym has T = 232

available addresses. Then p = 1 − (1 − 1
T )

m. In conclusion, the probability law of X is the
same as 1 + Y where Y follows a binomial law of parameter

(
N − 1, 1− (1− 1

T )
m
)
.

Considering resolvable pseudonyms, half of the available bits are utilized to store a random
value. Thus, for a b-bit pseudonym, there are T = 2

b
2 available addresses. Using the expression

deduced above for Y , we notice that decreasing T increases the probability of collisions.
In conclusion, because resolvable pseudonyms have a smaller address space than sequential
pseudonyms, they have a higher probability of collisions.

Simulation: In addition to the analytical evaluation, we simulate the two pseudonym
schemes on the dataset detailed in Sections 4.3 and 5.3. To do so, we need to know which End-
Devices are active at a given time. Third-party data does not include such an information:
an End-Device could disconnect and its DevAddr be re-assigned later to a new End-Device
without external notice.

Hence, we chronologically analyze incoming uplink messages in sliding time windows of
one month, considering all observed DevAddr as unique active End-Devices during the whole
duration. We replicate the process for each month in the dataset, average the results, and
corresponding to a median of 4789 active End-Devices monthly. Selecting one month as a
time window insures enough End-Devices are considered active, simulating a well-populated
network.

For each received uplinkmessage, we simulate both resolvable and sequential pseudonyms,
and enumerate the number of collisions. When a pseudonym matches n devices, we count
n−1 collisions (because one of them is the real receiver). We configure sequential pseudonyms
with m ∈ {5, 10, 15, 30} pre-generated pseudonyms, with and without utilizing the FCnt for
comparison purposes.
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Figure 7.5: Median number of collisions for an uplink message received by the NS (data
points for sequential pseudonyms overlapping for 0 collisions with b ≥ 20).

Figure 7.5 illustrates the median number of collisions for a single uplink message based on
the required number of bits per pseudonym. The sequential scheme generates fewer collisions
than the resolvable scheme across nearly all numbers of available bits, even in scenarios where
the FCnt is not utilized (less than 25 bits). As the number of collisions is computed for a
single incoming uplink message, resolvable pseudonyms producing a median of 1 collision
with 25-bits addresses could increase quickly as networks grow to thousands of active devices.

In summary, sequential pseudonyms outperform resolvable ones, demonstrating signifi-
cantly fewer collisions on the server-side, both analytically and through simulations.

7.6.4.2 Message losses and desynchronization

Desynchronization occurs between End-Devices and the NS when consecutive losses surpass
the number of pre-generated sequential pseudonym. Any subsequent message is unrecognized
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by the receiving end, both potentially loosing data and necessitating an energy-consuming
rejoin process upon detection.

One option to detect desynchronization requires some sort of periodic acknowledgment in
downlink messages and has to be done on the End-Device side, as it is impossible for the
NS to directly contact a device. An End-Device would still send multiple uplink messages
before detecting the lack of periodic downlink acknowledgment and then proceed with a
rejoin process. Thus, it is significantly better to avoid desynchronization completely.

As seen in Section 3.1.7, the Packet Loss Rate (PLR) of LoRa networks highly depends on
the environment and deployment conditions, reaching as high as 40% PLR [136], suggesting
that desynchronization could be a recurring problem for sequential pseudonyms. To alleviate
such concerns, we analyze the probability of desynchronization both analytically and through
simulation.

Analytical evaluation: For a packet loss rate PLR, the average number of uplinkmessages

sent before m consecutive losses is PLR−m−1
1−PLR [87], where m is the pre-generated list length.
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Figure 7.6: Average number of packets before desynchronization (cropped for clarity).

As seen in Figure 7.6, lists of 15 pre-generated pseudonyms require ∼ 105 packets on
average before a desynchronization under an extreme 50% PLR. To put it into perspective,
it would take roughly 11 years for an End-Device communicating every hour to lose synchro-
nization with the NS. This duration usually exceeds the battery lifetime.

Simulation: We compute the percentage of End-Devices desynchronized at least once during
the observation period based on the third-party real-world dataset. We leverage the FCnt to
identify losses (i.e. gaps in sequences) and select End-Devices with an estimated PLR below
50% to exclude devices with significantly erratic behavior, probably due to experiments or
End-Devices at the limit of our coverage area.

Table 7.2: Comparison between simulations and theoretically expected fractions of devices
desynchronizing at least once.

Number of pre-generated pseudonyms (m) 5 10 15 30

Measured fraction of devices 30.5% 9.6% 4.8% 0.0%
Expected probability 31.5% 1.6% 0.0% 0.0%

Table 7.2 compares the measurements based on the simulation versus the expected prob-
ability computed following the theoretical approach. 30.5% of devices experience desynchro-
nization with only 5 pre-generated pseudonyms, but this number falls to 0.0% with a longer
list of 30 pseudonyms, following expectation. For m ∈ {10, 15}, we measure a higher fraction
of desynchronized devices. This difference can be explained by End-Devices at the edge of
our coverage area, entering and leaving reception range. With smartly deployed gateways,
we believe effective desynchronizations would fall to numbers closer to theoretical values.

In conclusion, such results demonstrate that a long enough list of pre-generated pseudonyms
prevents desynchronization for most to all devices. Based on the theoretical framework and
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simulations, at least 15 pseudonyms are enough to avoid this feared event, while leading to
acceptable memory overhead (see Section 7.6.3.2).

7.6.5 P5: Legacy support

Both schemes re-purpose the NwkAddr field of the DevAddr. Preserving the length of said
field allows existing parsers to be quickly updated. While multiple addressing schemes could
cohabit, the FCnt encryption and re-purposing requires updating the standard version. A new
version can be defined through the Major Version field, currently leveraged to differentiate
messages using LoRaWAN 1.0.X or 1.1.Y.

7.6.6 Summary and artifacts

According to the results presented in this section, sequential pseudonyms are the best solution
for privacy-preserving pseudonyms in LoRaWAN. They outperform their resolvable alterna-
tive w.r.t. to nearly all properties, with two slight drawbacks. First, they require marginally
more memory to store all the pre-generated pseudonyms. Second, desynchronization can in-
duce additional communication costs when dealing with high packet loss rate and low number
of pre-generated pseudonyms. However, this last issue can be resolved by adopting lists of at
least 15 pseudonyms.

We provide a proof-of-concept of sequential addresses implemented in Python to demon-
strate the main logic6 as well as the source code used to estimate collisions and desynchro-
nizations7.

7.7 Complementary security considerations

We examine the security implications of both resolvable and sequential pseudonyms, delving
into possible side-channel attacks.

First, jamming techniques are a threat against synchronized sequential pseudonyms. How-
ever, it would require to 1) block all gateways potentially receiving uplink messages, and
2) effectively jam a significant number of consecutive messages, i.e. surpassing the number
of pre-generated pseudonyms m, which could span multiple days. Failing to jam a single
message would allow the End-Device and NS to maintain synchronization.

Second, an eavesdropper could capture uplink messages and replay them later to trigger
specific server behavior [100, 232]. For example, Zang and Lin demonstrate that BLE central
devices respond differently depending on whether a pseudonym is included in their allow-
list [232]. By replaying packets, they are able to effectively track devices regardless of MAC
address randomization. In practice, such an attack is possible due to the lack of sequence
number or time-based randomized address generation. In LoRaWAN, both resolvable and
sequential pseudonym scheme specifically preserve the FCnt, allowing the NS to ignore any
replayed message. To further protect pseudonyms from jamming and replays attacks (where
the original message is never received by the NS) [100], it is possible to include a timestamp
in the header.8 However, it induces significant energy consumption due to extra bytes for
each transmitted message.

Third, uplink message length has been used for linking and fingerprinting (see Part II), as
well as activity inference [15]. Although the same payload encrypted twice produces different
outputs, its length is stable and could be used to link pseudonyms. At the cost of communica-
tion overhead (see Section 6.4.3.2), the payload could be padded. Lastly, LoRaWAN already
provides a robust mechanism to detect message tampering via the MIC [100], effectively
protecting the pseudonyms.

6https://gitlab.inria.fr/spelissi/lorawan-pseudonyms/-/tree/pseudonyms/simulator
7https://gitlab.inria.fr/jaalmoes/spistats
8Introducing a timestamp in the payload is ill-advised, because the encryption is done by the AS and the

NS should have access to this information. Additionally, the timestamp has to be included into the MIC
computation to avoid tampering.
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7.8 Applicability to other LPWAN protocols

Although widely deployed, LoRaWAN is not the only LPWAN protocol, nor will it be the
sole technical solution forever. In this section, we discuss how the constraints and properties
applied to (sequential) pseudonyms in LoRaWAN can be extended to other existing or future
LPWAN protocols.

According to surveys [16, 58, 206], there are around 3 prevalent LPWAN standards: Sigfox
(11 millions devices deployed) [134], NB-IoT (based on the 3GPP LTE standard) [11], and
Dash7 [225].9 While their exact technical implementation, scope, and business model may
differ, their constraints are similar. They are all designed with long range and reasonably
low energy consumption in mind. Table 7.3 summarizes the current state of identifiers in
LPWANs.

Table 7.3: Overview of the identifiers in various LPWAN protocols.

Protocol Identifier Rotation Field length

LoRaWAN DevAddr Every join/rejoin 7 to 25 bits [65, Sec. 6.1.2.1]

Sigfox Identifier (ID) Never 32 bits [134, Sec. 3.7]

NB-IoT

Temporary
Mobile

Subscriber
Identity (TMSI)

Every join/rejoin 32 bits [11, Sec. 2.4]

Dash7 Virtual ID (VID)
At the discretion

of the administrator
16 bits [225]

LPWAN protocols can be classified into two groups based on their identifier policy: a) a
lifetime static identifier (e.g. Sigfox), and b) a session pseudonym (e.g. LoRaWAN). In the
second case, the pseudonym is updated only if the device is disconnected from the network or
by explicitly sending a command (e.g. the ForceRejoinReq in LoRaWAN). Neither option
fully satisfies the unlinkability property P1, demanding regular pseudonym rotations.

At a high level, pseudonyms technically require two building blocks that are already
available to LPWANs: enough bits to transmit them, and cryptographic primitives for their
generation and resolution. First, while LPWAN protocols leverage identifiers of limited size to
reduce time-on-air and energy consumption, we have demonstrated that this number is man-
ageable for sequential pseudonyms. Second, all LPWAN protocols presented here support the
cryptographic primitives required to produce encrypted counters for sequential pseudonyms.
Sigfox [134, Sec. 5.3] and Dash7 [224] operate using AES-128, and NB-IoT is based on the
LTE standard utilizing AES-128 for various tasks [12, Sec. 5.1.3.2].

Adapting sequential pseudonyms to other LPWAN protocols would require additional
research to correctly implement them while taking into account all the specificities. For
example, a similar update to the FCnt in LoRaWAN can be done in Sigfox to hide its 12-bits
Message Counter [134, sec. 3.7]. However, we believe regular pseudonym rotations is both
possible and highly beneficial for the privacy of LPWAN protocols.

7.9 Limitations and future works

Despite our best efforts to conduct a thorough analysis of privacy-preserving pseudonyms in
LoRaWAN, some limitations remain.

Additional identification techniques: While we make sure to encrypt and/or hide meta-
data such as the FCnt and FPort, other information can be utilized to link uplink messages,

9Other protocols are often cited, such as Ingenu [109] or Weightless-P. However, they did not achieve
widespread adoption. In any case, they show similar design trends, including identifiers of limited length,
respectively of 32 and 18 bits.
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notably the radio signal itself (see RSSI fingerprinting in Chapter 5). In this case, a lack of sta-
ble identifiers to group messages during training would warrant additional work in real-world
scenarios.

Lack of implementation: Actually implementing sequential pseudonyms in open source
libraries such as Chirpstack or The Things Network would encourage the standardization
body to consider our approach. Although it requires significantly more investment to deploy
a complete solution, we provide a proof-of-concept in Python, demonstrating the feasibility
of sequential pseudonyms.10 After presenting our work to the LoRa Alliance, responsible for
specifying the LoRaWAN protocol, we received interest and positive feedback.

Major Version required: Multiple versions of the protocol can cohabit thanks to the
Major Version field. Hence, backward compatibility is guaranteed with introducing a new
major version. Previous implementations of NS would not be able to handle pseudonyms and
could dynamically discard them based on the protocol’s version number, while up-to-date
servers could support both solutions.

Limited to uplink messages: As we focus on the DevAddr, we did not explore possi-
ble pseudonyms replacing the 64-bit DevEUI used in linkage attacks (Chapter 4). Instead of
sending this unique identifier in clear to any eavesdropper, End-Devices could generate a tem-
porary and unlinkable value via their stored NwkKey, resolved by the NS akin to Resolvable
random Private Address in BLE. Then, linking the pseudonym to following uplink message
would be meaningless, as it would correctly separate the identity of a device from its activity.
Further research is required to study the feasibility of such a solution.

7.10 Conclusion

While pseudonyms have been widely studied in the literature and are already deployed in some
wireless technologies, we present the first solution tailored to LoRaWAN. After defining key
properties motivated by both privacy and resource consumption, we analyze various existing
approaches, from VANETs to LoRaWAN’s legacy features. Then, we propose two solutions
thwarting identifier-based tracking: resolvable and sequential pseudonyms. We evaluate them
both theoretically and via simulations on a real-world dataset, based on computation and
memory overheads, and probability of adverse events. We show that the sequential scheme
outperforms its resolvable counterpart, with a reduced memory overhead and limited risks of
collisions and desynchronization when configured to work with 15 pre-generated pseudonyms.

While our work focuses on LoRaWAN, based on our preliminary analyses, such a solution
could also be adapted to other LPWAN protocols, including Sigfox and NB-IoT. Moving
forward, this proposal still needs to be validated with an integration and evaluation in a real
LoRaWAN network.

10https://gitlab.inria.fr/spelissi/lorawan-pseudonyms/-/tree/pseudonyms/simulator
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In order to broaden the scope of our research and adapt our methodology, we now study
on a cornerstone of the Internet (of Things): DNS. In order to protect end-users’ privacy,
multiple recent solutions, such as DNS-over-HTTPS (DoH), encrypt DNS.
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In this chapter, we explore IoT device identification based solely on encrypted DNS traffic,
and assess if protections are sufficient to protect privacy. Focusing on the use-case of a
smart home, we leverage a extensive IoT dataset and show that consumer-grade devices can
be reliably identified, with up to 0.98 balanced accuracy. We study possible countermeasures
such as padding and show that they effectively thwart our attack. Finally, we discover that
half of the evaluated DNS resolvers do not respect the corresponding standard, compromising
users’ privacy.

This chapter is partially based on our work Does Your Smart Home Tell All? IoT
Device Identification through DNS-over-HTTPS (currently under review). The present
chapter differs mainly by the following points:

• We provide comprehensive motivation and contextualization w.r.t. previous
works, as well as background information, including a comparison of various
alternatives for encrypted DNS.

• We expand the threat model to include both defensive IoT identification, and
IPv6-based vulnerabilities.

• We compare in greater details various machine learning methods with the state
of the art, both in terms of accuracy and prediction time. In addition, we further
analyze the cause of misbehaving DNS resolvers w.r.t. padding responses.

8.1 Introduction

Contrary to LoRaWAN devices studied in previous chapters, consumer-grade IoT devices
generally have access to greater amounts of computation power and battery. Equally ubiqui-
tous in everyday environment, there are often deployed in smart homes, including speakers,
baby monitors, and automation devices [203].

In this ecosystem, DNS plays a crucial role, allowing communication over the Internet be-
tween devices and their respective application servers. Efforts have been made in recent years
to protect this previously clear-text protocol: multiple alternatives encrypting its content are
now available and widely deployed, including DNS-over-HTTPS (DoH). Its ties with human
activity as well as large-scale deployment make it a prime candidate for studies to better
understand associated privacy implications. Indeed, as seen in Section 2.3.2.1, determining
which device is currently deployed in a house represents a threat to users, allowing outsiders
to profile and identify them [15, 27, 66, 131, 186].

Inferring activity or identifying devices through their DNS traffic have been studied in
various contexts. Table 8.1 outlines the current state of research. While extensive work have
been conducted on clear-text DNS for both Web browsing and IoT devices, as well as DoH for
Web browsing, a notable gap remains in the analysis of IoT-based DoH traffic. Additionally,
it has been shown that IoT traffic exhibits distinct characteristics compared to Web browsing,
such as length of queried domain names and timing of communications [168, 220]. This
prompts for further research to confirm whether existing identification techniques remain
effective in encrypted DNS within IoT networks.

Table 8.1: Summary of related works on DNS-based identification.

Traffic type
Protocol

Clear-text DNS DNS-over-HTTPS (DoH)

Web browsing [93, 122] [53, 69, 191]
IoT [18, 168, 203] Our work

In this chapter, we address this gap by analyzing a large dataset of DoH traffic generated
by 34 consumer-grade IoT devices representative of a smart home environment. First, we
summarize necessary background on DNS and its encrypted versions, before adapting the
threat model to a smart home setup. Then, we detail our testbed and our DoH-based IoT
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device identification process. After presenting the evaluation methodology, we highlight key
results and discuss their implication for privacy as well as inherent limitations of our approach.

8.2 Background

In this section, we provide essential information on DNS in IoT devices and its encryption.

8.2.1 DNS in consumer-grade IoT

Consumer-grade IoT devices regularly communicate over IP with remote hosts, retrieving
software updates or transmitting data. Instead of identifying remote connections with hard-
coded IP addresses, which can change overtime, devices address servers via a domain name,
dynamically resolved by a DNS server/resolver.

IoT device

DHCP server

(2) DHCP offer 
(Device's IP address 
+ DNS server's
 IP address)

DNS server

Application server

(3) DNS request
(DNS name)

Internet

(5) HTTPS request/answer
(Status, data, etc.)

(4) DNS answer
(Application server's IP address)(1) DHCP

request

Figure 8.1: Example architecture of a consumer-grade IoT setup.

Figure 8.1 illustrates a typical domestic IoT environment. As soon as devices are switched
on, they obtain their own IP address from a DHCP server within the local network, as well as
the IP address of a DNS server. A DNS resolver may be preconfigured within devices [220];
however, such occurrences are rare to prevent malfunctioning when the IP of the DNS resolver
is updated. Alternatively, DNS servers can be deployed locally, which does not significantly
change the setup nor the threat model and attack. Then, devices obtain IP addresses of
remote application servers by sending their corresponding domain names to the DNS resolver.
Following communications usually occur over TLS-encrypted HTTP sessions.1

While IoT devices continuously report to application servers [220], the majority of their
DNS requests are generated within the first few minutes of establishing a connection to fetch
updates and transmit status reports. Hence, analyzing communication patterns in the initial
traffic offers an effective and easily automated method for device identification [203] (see
Section 8.6.1.1).

8.2.2 Encrypted DNS protocols

DNS is historically a clear-text protocol: requests and responses are transmitted unencrypted,
exposing resources (e.g. domain names) and corresponding IP addresses to any eavesdropper
on the path between a device and the DNS resolver. In order to provide confidentiality and
privacy for users, multiple approaches implementing an encryption layer have recently been
developed.

As presented in Table 8.2, most privacy enhancing solutions encapsulate DNS in another
protocol providing encryption. For instance, multiple IETF standards select this approach
by transmitting DNS in a Transport Layer Security (TLS) session, either directly or over

1Mischievous readers will note that some HTTP sessions may be unencrypted, but we hope they are.
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another protocol: DNS-over-TLS (DoT) [102], DNS-over-QUIC (DoQ) [105], or DNS-over-
HTTPS (DoH) [101]. Additionally, experimental IETF standards such as DNS-over-DTLS
(DoDTLS) [176], ongoing works on DNS-over-CoAP (DoC) [130], or open source alternative
including DNSCrypt2 exist, but lack large-scale adoption [141].

Table 8.2: Encrypted DNS solutions.

Name Encryption IETF standard Port

DNS-over-HTTPS (DoH) TLS Yes 443 (TCP)
DNS-over-TLS (DoT) TLS Yes 853 (TCP)
DNS-over-QUIC (DoQ) TLS Yes 853 (UDP)
DNS-over-DTLS (DoDTLS) TLS Experimental 853 (UDP)
DNS-over-CoAP (DoC) TLS or OSCORE Draft 5683
DNSCrypt Custom No 443 (TCP & UDP)

We focus our study on DoH for two main reasons.3 First, it benefits from a large-scale
support in several major DNS resolvers, such as Cloudflare [2] and Google [4], and in Linux
systems via multiple solutions (e.g. BIND [1] or Unbound [9]). Second, routing DNS traffic
in port 443 along other existing HTTPS communications (e.g. Web browsing) [3] provides
another layer of privacy protection, as DNS needs to be successfully extracted, and then
analyzed. On the other hand, port 853 is utilized exclusively for DoT or DoQ (respectively
over TPC and UDP), facilitating the attack.

8.2.3 DNS-over-HTTPS

DoH is a simple encapsulation: a DNS request is sent as an HTTP POST or GET request to
a DNS server, encoded in the same binary format it would have directly over UDP:

GET /dns-query?dns=q80BAAABAAAAAAAAA3d3dwdleGFtcGxlA2NvbQAAAQAB HTTP/1.1

Host: dns.google

Accept: application/dns-message

Here, the dns URL query parameter contains a DNS request for www.example.com’s A
record, in binary format (and base64 encoded to be used as URL parameter). Alternatively,
some resolvers such as Google and Cloudflare support a non-standardized JSON format for
easier human parsing and development [2, 4]. In this work, we focus on the official and widely
deployed standard using DNS in wire format.

From an eavesdropper’s perspective, there are two main distinctions between DoH and
traditional DNS traffic. First, DoH includes extra messages for TCP and TLS session initia-
tion and termination, in addition to packets carrying requests and responses, whereas DNS
traffic comprises only the latter messages. Second, the size of packets containing queries and
responses varies: while encapsulation in HTTPS adds a constant amount of data to each
message, the message size still depends on the content of the request or response.

8.3 Threat model

In this section, we present the threat model relative to device identification via DoH traffic.
Previous threat models are targeting wireless protocols with a passive eavesdropper possessing
some sort of receiver. We adapt the privacy threat model presented in Section 2.3.1 to a smart
home setting and define two scenarios where stable patterns of DNS traffic allow an attacker
to reliably track IoT devices, illustrated in Figure 8.2.

2https://dnscrypt.info/
3While we only present results obtained using DoH, we also test DoT observe similar values and behaviors.

All TLS-based DNS encryption (excluding DoDTLS because of possible fragmentation) should follow the same
trends.
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IoT device Local router

A

On path equipments DNS server

B

Figure 8.2: Threat model, with an attacker A in the local network, and an external attacker
B on path.

8.3.1 Position in the network

We consider two possible locations for an attacker. First, they can monitor communications
on the local network. For instance, eavesdroppers could have access to a malicious IoT device
sniffing the surrounding traffic [149], or a compromised local router.

Second, we discuss an attacker outside the local network, between the local router and
DNS resolver, tracking devices via uniquely attributed IPv6 addresses. We consider this sce-
nario relevant and possible for multiple reasons. The ongoing large-scale adoption of IPv6
enables directly addressing devices behind a router, offering a one-to-one mapping without
relying on NAT [181]. To avoid tracking, both parts of the IPv6 address can be dynami-
cally updated: 1) Internet Service Providers (ISPs) offer Network Prefix rotation, a way to
change the prefix corresponding to a given router (e.g. all devices in a household), and 2)
devices can update their unique Interface Identifier accordingly. However, this process occurs
by default every 24 hours which still enables an eavesdropper to track devices during this
time period [40]. Additionally, multiple works have shown that correctly implementing IPv6
address rotation is complex, and some vulnerabilities may persist, leading to robust tracking
via this protocol [180, 181].

8.3.2 Data access

Following the works from Thompson et al. on rapid IoT device identification via clear-text
DNS traffic [203], we focus on the first minutes of communication, assuming an attacker
captures network traces during the device’s boot. Additionally, we consider DoH traffic in
isolation for identification, excluding underlying protocols such as IP or Ethernet, for two
reasons: 1) we demonstrate the high reliability of DoH alone for device identification, and 2)
other information such as MAC or IP addresses may vary over time [80] and/or may not be
available to an eavesdropper based on their position in the network.

8.3.3 Alternative scenarios

Finally, we note that device identification can also be leveraged in defensive scenarios, as
studied in Chapter 5 and illustrated by a shield on the local router in Figure 8.2. Previ-
ous works have indeed shown that a network administrator can detect misbehaving and/or
compromised IoT devices through continuous monitoring [149].

8.4 IoT testbed

To conduct our experiments, we set up a testbest collecting DNS traffic produced by IoT
devices. As seen in Figure 8.3, they are plugged in a set of smart plugs. Both devices
and smart plugs are connected via Wi-Fi to a server providing IP connectivity towards the
Internet as an Access Point. This server fulfills two roles: 1) it records all network activity
going through its access point, and 2) it controls smart plugs via automation scripts to switch
them on and off, effectively restarting IoT devices (see Section 8.6.1.1).

8.4.1 IoT Devices

The complete list of the 34 selected consumer IoT devices is available in Table 8.3. We
consider a significant number of devices commonly used in smart homes and offering high
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Power on/off scripts

Smart plugs

IoT devices

Wi-Fi interface

Local server

Internet

Figure 8.3: Testbed overview, with smart plugs and IoT devices all connected via Wi-Fi to a
local orchestration server.

variety across several categories: Appliance (4), Baby Monitor (2), Camera (5), Doorbell (4),
Hub (2), Light (6), Pet (2), Plug (1), Medical (1), Sensor (2) and Speaker (5). While they do
not support DoH yet, we design a way to realistically simulate this protocol in Section 8.6.1.2.

Table 8.3: IoT devices present in the testbed.

Category Device name

Appliance
Alexa Swan Kettle, Coffee Maker Lavazza, Cosori Air
Fryer, Meross Garage Door

Baby Monitor Boifun Baby, VTech Baby Camera

Camera
Arlo Camera Pro4, Blink Mini Camera, Google Nest
Camera, SimpliCam, Wyze Cam Pan v2

Doorbell
Eufy Chime, Google Nest Doorbell, Reolink Doorbell,
Ring Chime Pro

Hub Aqara HubM2, Google Nest Hub

Light
Govee Strip Light, Lepro Bulb, Lifx Mini, NanoLeaf Tri-
angles, Wiz Bulb, Yeelight Bulb

Medical Withings Sleep Analyser
Pet Furbo Dog Camera, Petsafe Feeder
Plug Tapo Plug
Sensor Netatmo Weather Station, Sensibo Sky Sensor

Speaker
Bose Speaker, Echodot4, Echodot5, Homepod, Sonos
Speaker

This selection is interesting for two reasons. First, some categories of devices are relevant
to eavesdropper. For instance, in case of burglary, knowing whether cameras are installed
inside a house or if a dog is present could be valuable information. Second, we want to test if
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similar devices (same manufacturer) exhibit similar behaviors and can still be distinguished.
To study this question further, we also include two versions of the same device: Echodot4
and Echodot5.

8.4.2 DNS resolvers

While DoH is an official IETF standard, slight variations can be detected in the transmit-
ted data depending on the resolver, for instance due to the HTTP header [157]. To broaden
our approach and mitigate dependence on a single resolver implementation, we select 6 public
DNS resolvers based on their widespread usage (default integration in Web browsers like Fire-
fox and Chromium) and longevity [69]. These resolvers include Google, Cloudflare, Quad9,
CleanBrowsing, NextDNS, and AdGuard.

8.5 Identifying IoT devices via DoH traffic

Building upon previous chapters, we describe our process for IoT device identification using
DoH traffic. We first characterize and select relevant features, before explaining how they
are extracted. Then, we employ machine learning to classify network traces based on said
features, effectively identifying devices.

8.5.1 Features selection

In this section, we discuss which features can be used to train our models. Previous works
utilize clear-text DNS messages and access the full domain name directly [203]. While this
is impossible due to traffic encryption in DoH, metadata remain: packets length and Inter-
Arrival Time (IAT) are still available to eavesdroppers. The intuition is that each device
requests different domain names, both in terms of length and times, producing discriminative
enough patterns to identify them.
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Figure 8.4: Discriminative behavior of length and IAT.

To detect possible discrepancies between devices, we normalize both message length and
IAT of DNS messages for all devices in our dataset, and examine their respective distributions.
Figure 8.4 illustrates these distributions by category for clarity, but later results are reported
per device. Analysis of the message size reveals significant variability across device categories,
hinting at possible length-based identification. Notably, plugs and hubs exhibit smaller mes-
sage length compared to sensors. IAT values remain consistently low across most device
categories, with pet-oriented devices and appliance showing higher values than speakers and
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doorbells. Therefore, we opt to include both message length and IAT of DNS messages as
features.

8.5.2 Features extraction

To extract both features, we collect the DNS traffic for each power cycle (switching on and off
smart plugs). For each DNS request, we ignore irrelevant network data, including the generic
TCP handshake and TLS negotiation, and extract the length from the TLS Application Data
packets containing the DNS domain name and corresponding IP. Additionally, we compute
the IAT in between DNS requests.

After extracting raw length and IAT values from the DoH traffic, we format them to a
format exploitable by a machine learning model. Figure 8.5 illustrates the process. First, we
save raw features as vectors: based on the maximum number of DNS requests observed during
a power cycle, their number is low enough to be utilized directly (up to 30). We complete
them with descriptive statistics already proved to be effective [117, 174, 208, 217, 19]: mean,
variance, standard deviation, skewness, and kurtosis.

Length

Time0

5

10

Raw values (zeros to 30)

10, 5, 15, 0, ..., 0

Descriptive statistics

IoT Device Name, 10, 5, 15, 0, ..., 0, 10, 16.67, 4.08, 0, -1.50

Data fed to machine learning models

Mean: 10
Variance: 16.67

Standard deviation: 4.08
Skewness: 0,

Kurtosis: -1.50

Captured packets

Figure 8.5: Extracting features from DNS traffic (here: length).

Contrary to our previous holistic approach on LoRaWAN fingerprinting (see Chapter 5),
we utilize less complex data representations, excluding distributions and Markov chains. First,
we empirically find that such complex implementations are not required to reach high ac-
curacy. Second, an alternative use-case of IoT device identification is security, with related
works focusing on fast identification on edge device (e.g. routers) [203]. In the case of Markov
chains, we observe a median of 5 DNS requests per power cycle. Based on previous chapters,
this is far fewer than the required number of messages to witness significant improvements
(>50, see Figure 5.7).
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8.6 Experimental methodology

In this section, we present how we collect DoH to build our comprehensive dataset and handle
its inherent imbalance, as well as how the machine learning model is selected.

8.6.1 Dataset collection

To collect our dataset, we first generate DNS traffic by powering on and off devices and then
convert clear-text DNS to DoH by replaying requests, effectively simulating DoH adoption
for all IoT devices.

8.6.1.1 Power experiments

Previous studies have shown that IoT devices tend to generate a significant volume of DNS
requests immediately after being powered on [203]. To optimize the capture of DNS requests,
we perform a power cycle (switching on and off a device) for each experiment. Hence, each
test run comprises 5 minutes of network traffic captured using the Mon(IoT)r tool [177],
followed by a 2-minute timeout period to guarantee the device shuts down properly.

To ensure thorough coverage of different time periods for a longitudinal analysis, we repeat
the entire process 50 times per day for 15 consecutive days. This extended duration guarantees
a robust and comprehensive dataset, yielding a total of 25,500 on-off experiments.

8.6.1.2 DNS traffic encryption

IoT devices in our testbed currently lack support for DoH, requiring encrypting existing
clear-text DNS requests. The number and variety of IoT devices in the testbed, as well as
the unavailability of the source code, prevent us from updating all of their firmware to deploy
encrypted DNS in a timely fashion.

Additionally, studying multiple mitigations techniques (cf. Section 8.7.6) increases the
number of DoH requests corresponding to one original clear-text DNS query. The high number
of requests may lead a resolver to block them, especially if they are not slightly rate limited.
These limitations present challenges in implementing a proxy that can seamlessly convert
clear-text requests to DoH on-the-fly.

Instead, we propose a two-steps process: 1) capture the clear-text traffic generated by
IoT devices, and 2) replay DNS requests using DoH from the same vantage point. To ensure
consistency, the DNS requests are replayed with the same timings they were originally sent,
thereby minimizing discrepancies such as differences in DNS cache states. Unlike other com-
ponents of our pipeline, replaying each DNS request is executed only once due to the high
number of requests (i.e. the 15 days with 50 on-off periods are each replayed consecutively
once).

8.6.2 Handling dataset imbalance

While some devices consistently generate dozens of DNS queries upon powering on, others
send only a few requests. This behavior produces a dataset where some devices are more
represented than others. As suggested in Section 3.2.3.2, we address the imbalance in the
dataset by employing oversampling on the training set and keeping the evaluating set imbal-
anced to reflect real-world conditions. In our previous research, we employed SMOTE due
to its high efficiency; however, to match the implementation of Thompson et al. [203], we
have opted for random oversampling in this study. Following earlier chapters and to address
dataset imbalance [31], we utilize balanced accuracy, calculating the average recall for each
class.

8.6.3 Machine learning method selection

To benchmark against prior state-of-the-art IoT device identification using DNS traffic [203],
we adopt a methodology that deviates slightly from the approaches outlined in previous
chapters. This process allows us to 1) compare the various machine learning methods in
the same environment as Thompson et al. [203], 2) extract the best possible results, while
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3) avoiding test snooping and demonstrating that the method correctly generalizes against
unseen data [31].

First, as presented in Chapter 4, we select various well-known multi-class machine learning
methods: Random Forest, K-Nearest Neighbors, Complement Naive Bayes, Logistic Regres-
sion, Support Vector Classification (linear, one-vs-one, one-vs-the-rest). We complete them
by re-implementing the solution deployed by Thompson et al. using a Neural Network [203],
with the same layers.4

Second, in order to evaluate each method to its full potential and correctly compare with
the state of the art where it is used, we select best performing hyperparameters via Halving
Random Search Cross-Validation [133].

Following best practices highlighted in Section 3.2, we split the dataset into training and
held-out data following a 80:20 ratio. Then, cross validation is used by Halving Random
Search, further splitting the training dataset into 5 subsets of 80:20 training:testing to avoid
overfitting on training data. After selecting the hyperparameters producing the highest bal-
anced accuracy for each machine learning method and comparing them, we pick the best
performing method itself. Finally, we train the model using relevant hyperparameters on the
original 80% of the dataset, and validate it against the held-out 20%, producing the final
results.

The machine learning pipeline is run 15 times, each initialized with a different seed for
the PRNGs. Unless otherwise specified, we aggregate model performances across all DNS
resolvers and a single day of replay. We ensure performance consistency across multiple days
through manual confirmation and designate a random day as an illustrative baseline.

8.7 Results

In this section, we present the performance analysis of identification over the 34 IoT devices
deployed in our testbed. We start by selecting the best performing machine learning method,
and then proceed with actual identification.

8.7.1 Comparison of machine learning methods

Table 8.4 showcases the performance of all machine learning methods initially tested. More
specifically, it reports the median value of averaged balanced accuracy over all cross-validations.
Random Forest is the best performing method, reaching ∼0.97 balanced accuracy, well above
results obtained via the setup of Thompson et al. based on a Neural Network [203] (∼0.89
only).

Table 8.4: Performance of machine learning methods during Halving Random Search
Cross-Validation.

Machine learning method Balanced accuracy

Random Forest 0.9684
Neural Network [203] 0.8931
SVC (linear) 0.8861
Logistic Regression 0.8485
K-Nearest Neighbors 0.8462
SVC (one-vs-the-rest) 0.8433
SVC (one-vs-one) 0.8392
Complement Naive Bayes 0.5816

For security purposes, rapid identification is crucial to promptly detect any unidentified
or malfunctioning devices. Contrary to LoRaWAN, DNS traffic is generally more frequent,
possibly generating multiple requests per seconds when an IoT device is switched on, and
requiring a fast responding model. To estimate the time required for a single prediction when
receiving a new message, we utilize the mean duration needed to compute balanced accuracy
during the cross-validation process.

4We simply adapt the last layer to match the number of output classes (34).
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In practice, the Random Forest method is faster than many other machine learning ap-
proaches, with a mean scoring time of ∼35 milliseconds.5 Given that this time frame cor-
responds to thousands of predictions for the balanced accuracy, we infer that the prediction
time is sufficiently brief for quick identification.

8.7.2 Device identification

Once the machine learning method is selected, we study its performance w.r.t. to actual
identification in more details. Figure 8.6 displays the confusion matrix for all devices, where
predictions are represented on the y-axis and actual devices on the x-axis. The matrix is
normalized to accurately account for the varying occurrences of each device. Any values
outside the diagonal indicate misclassifications.

Notably, there are very few false positives, resulting in a balanced accuracy of approx-
imately 0.97 for all devices. We note that three devices distributed by the same company
(Google’s Nest Camera, Nest Doorbell, and Nest Hub) are correctly classified. Similarly, de-
spite only differing in version (4 and 5), the two Echo Dot devices exhibit sufficiently distinct
traffic patterns to enable accurate classification.

Al
ex

a 
Sw

an
 K

et
tle

Aq
ar

a 
H

ub
M

2
Ar

lo
 C

am
er

a 
Pr

o4
B

lin
k 

M
in

i C
am

er
a

B
oi

fu
n 

B
ab

y
B

os
e 

Sp
ea

ke
r

C
of

fe
e 

M
ak

er
 L

av
az

za
C

os
or

i A
ir

 F
ry

er
E

ch
od

ot
4

E
ch

od
ot

5
E

uf
y 

C
hi

m
e

Fu
rb

o 
D

og
 C

am
er

a
G

oo
gl

e 
N

es
t C

am
er

a
G

oo
gl

e 
N

es
t D

oo
rb

el
l

G
oo

gl
e 

N
es

t H
ub

G
ov

ee
 S

tr
ip

 L
ig

ht
H

om
ep

od
Le

pr
o 

B
ul

b
Li

fx
 M

in
i

M
er

os
s 

G
ar

ag
e 

D
oo

r
N

an
ol

ea
f T

ri
an

gl
es

N
et

at
m

o 
W

ea
th

er
 S

ta
tio

n
Pe

ts
af

e 
Fe

ed
er

R
eo

lin
k 

D
oo

rb
el

l
R

in
g 

C
hi

m
e 

Pr
o

Se
ns

ib
o 

Sk
y 

Se
ns

or
Si

m
pl

ic
am

So
no

s 
Sp

ea
ke

r
Ta

po
 P

lu
g

Vt
ec

h 
B

ab
y 

C
am

er
a

W
ith

in
gs

 S
le

ep
 A

na
ly

se
r

W
iz

 B
ul

b
W

yz
e 

C
am

 P
an

 v
2

Ye
el

ig
ht

 B
ul

b

Alexa Swan Kettle
Aqara HubM2

Arlo Camera Pro4
Blink Mini Camera

Boifun Baby
Bose Speaker

Coffee Maker Lavazza
Cosori Air Fryer

Echodot4
Echodot5

Eufy Chime
Furbo Dog Camera

Google Nest Camera
Google Nest Doorbell

Google Nest Hub
Govee Strip Light

Homepod
Lepro Bulb

Lifx Mini
Meross Garage Door

Nanoleaf Triangles
Netatmo Weather Station

Petsafe Feeder
Reolink Doorbell
Ring Chime Pro

Sensibo Sky Sensor
Simplicam

Sonos Speaker
Tapo Plug

Vtech Baby Camera
Withings Sleep Analyser

Wiz Bulb
Wyze Cam Pan v2

Yeelight Bulb
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Figure 8.6: Devices identification confusion matrix.

While other results are presented as an average across all DNS resolvers, we also study the
identification performance for each of them in Table 8.5. There is minimal variation observed
among DNS resolvers, with stable values observed across all results. Said differently, changing
DNS resolver has no impact on the performance of the attack.

5For comparison purposes with the state of the art, Neural Network require ∼520 milliseconds.
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Table 8.5: Impact of the resolvers on performance.

Resolver Balanced accuracy

AdGuard 0.9820
Google 0.9788
Quad9 0.9781

Cloudflare 0.9778
NextDNS 0.9768

CleanBrowsing 0.9765

8.7.3 Rapid identification

In this section, we virtually restrict the number of consecutive messages available to machine
learning models to simulate a shorter traffic capture, either by absolute number (only the first
n DNS requests), or time (only the first s seconds).

As depicted in Figure 8.7, even a single message is adequate for identifying devices with
a balanced accuracy of approximately 0.92. Similar results are achieved when analyzing the
time window of activity instead of focusing solely on the absolute number of DNS requests. We
notice that only 1 second after switching a device on is sufficient to achieve the same balanced
accuracy, enabling eavesdroppers to quickly assess the content of the targeted network. While
such results may degrade in denser networks where DoH is more widely adopted, they hint
at the possibility of rapid detection of misbehaving devices in defensive scenarios.
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Figure 8.7: Evolution of the balanced accuracy based on the number DNS requests.

8.7.4 Importance of length vs IAT

Reaching a high balanced accuracy using only one DNS request raises doubts regarding the
utility of the IAT, necessitating at least 2 messages. We find that length-based features
alone yield a balanced accuracy of ∼0.98, compared to 0.79 for IAT-based features across all
resolvers.

Such a steep decrease can be explained by multiple factors. First, as demonstrated in
Section 8.5.2, IAT values tend to exhibit greater concentration compared to length. Second,
the overall number of DNS requests is low (with a median of 5 per power cycle), resulting
in a lower number of IAT values available. Third, IAT is susceptible to random variations,
influenced by factors including DNS resolver response time and cache, as well as time required
by a device to process incoming information.
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8.7.5 Model degradation over time

In machine learning, a well-known phenomenon is the degradation of model performance over
time. As features gradually drift away from their values at the time of training (e.g. due to
software updates), the initial model produces increasingly worse results [120].

To assess this decline in performance, we evaluate the model using new, unseen data
collected in the days following the reference training. Figure 8.8 illustrates that our model
maintains a mean balanced accuracy of over ∼0.91 across all resolvers over a span of 15 days,
with day 0 serving as the reference point.

This stability can be attributed to DoH traffic exhibiting consistent patterns over time.
Optionally, it may indicate a robust model able to generalize against an evolving dataset.
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Figure 8.8: Performance evolution over 15 days, with day 0 used as reference.

8.7.6 Countermeasures

Due to the limited number of raw features in the machine learning process (IAT and length),
options for mitigating our attack are restricted. In this section, we explore potential delays
and grouping DNS requests, as well as padded queries.

8.7.6.1 Delay and reducing the number of DNS requests

It is difficult to introduce meaningful delays in consumer-grade IoT devices. First, the IAT is
deeply tied with the application logic. For instance, a device may first contact an update server
and then request the IP address of an application server to upload its data. Second, contrary
to LoRaWAN devices characterized by their low throughput and limited reliance on time-
sensitive functionalities, consumer-grade IoT devices generally rely on real-time applications
and do not tolerate delays.

Hence, it would require a device-by-device analysis of the underlying application, which
is not feasible. Additionally, deploying a network middleware to introduce delays could lead
to certain requests timing out, possibly causing denial-of-service for devices.

Alternatively, DNS queries correspond to a single DNS resource, meaning there is a one-
to-one relationship between domain names and observed packets on the wire. One would want
to merge all requests into a single packet to obfuscate exactly which domains are queried.
Although the original DNS RFC hints at multiple resources in one message via QDCOUNT [10],
its under-specification (e.g. how to deal with partial resource availability) led to lack of
support by resolvers. Multiple attempts to standardize this approach have been made [215,
216], but they failed gaining adoption. Other solutions include forwarding queries to neighbors
in a mesh network [29], yet they lack implementation and real-world usage. Thus, we consider
merging queries currently out of scope but interesting for future works.

111

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0075/these.pdf © [S. Pélissier], [2024], INSA Lyon, tous droits réservés



112 CHAPTER 8. IDENTIFYING IOT DEVICES VIA ENCRYPTED DNS TRAFFIC

8.7.6.2 Padded DNS

The DNS request length can be partially concealed through the addition of padding before
encryption via the EDNS(0) Padding Option [144]. RFC 8467 advises DNS clients to select the
“closest multiple of 128 octets” and “multiple of 468 octets” for servers [145]. Additionally,
authors propose the “Random-Block-Length Padding” method, which randomly selects a
block length (128, 256, etc.) to pad with. Alternative solutions such as padding up to the
maximal length (MTU) or drawing from a known distribution (see Section 2.4.3.1) generate
excessive overhead or are impractical in diverse IoT networks [53].

Evaluating padding strategies: We utilize two padding strategies by configuring the
EDNS(0) option in the DNS query. The first strategy involves padding to the nearest 128-
byte block, while the second involves randomly selecting the closest block size from the range
of [128, 256, 384, 512] bytes. While expanding this range is possible, we refrain from increas-
ing the number of padding bytes to prevent reaching the MTU and generating unrealistic
overhead.

Then, we replicate the replay methodology with padded queries and extract features
accordingly. Finally, we train separate models for each resolver using only the length of
messages with each padding strategy and compare their performance against models trained
without any padding. Additionally, we explore a hypothetical scenario of perfect padding
protection where the length does not leak any information. In such a case, potential attackers
are limited to leveraging only the IAT for identification purposes.
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Random-Block-Length Padding (length only)
Perfect protection (IAT only)

Figure 8.9: Impact of padding strategies on the performance, compared to no padding and
perfect protection.

Figure 8.9 shows that balanced accuracy is significantly reduced for Cloudflare, Google,
and AdGuard with both strategies. For instance, using 128-byte padding with Cloudflare
results in a ∼33% decrease. Random-Block-Length Padding yields similar results while gen-
erating considerably more overhead (respectively 125% and 67% additional bytes on the wire).

Detecting misconfigurations: Through manual analysis of network traces, we find that
the differences of behaviors between DNS resolvers stems from the failure of Quad9, Clean-
Browsing, and NextDNS to respect padding standards, i.e. padded requests are not answered
with padding. More precisely, we observe that each DNS resolver follow a different padding
strategy upon receiving a padded query:

• Cloudflare and Google pad up to a fixed value the response to any padded request
(respectively: exactly 707 encrypted bytes and around 850 encrypted bytes).

• AdGuard roughly matches the padding in the request.
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• CleanBrowsing nearly never pads the answer, based on unknown heuristics.6

• NextDNS and Quad9 send an empty ENDS(0) option containing no padding, effectively
adding a few bytes but maintaining a similar length to the original.

RFC 7830 states that “responders MUST pad DNS responses when the respective DNS
query included the Padding option” [144], and RFC 8467 adds that resolvers “SHOULD pad
the corresponding response to a multiple of 468 octets”. Hence, multiple widely used public
DNS servers (Quad9, CleanBrowsing, and NextDNS) do not respect the standard and put
the privacy of their users at risk.

To confirm this failure as the cause of previous results, we train new models using only
the length, separated based on the message direction: either from a) request messages (IoT
devices to DNS resolvers), or b) answer messages (DNS resolvers to IoT devices). As expected,
models trained solely on padded requests show a significant drop in balanced accuracy across
all servers (from ∼0.97 to 0.64 on average). On the other hand, models trained on answers
only are not affected when Quad9, CleanBrowsing, and NextDNS are used.

8.8 Discussion

In this section, we explore how padding could be deployed based on our threat model and
technical requirements. We analyze the impact of such an attack on privacy and discuss the
limitations of our approach.

8.8.1 Implementing padding mitigation

If an adversary gains direct access to the local network (e.g. via a compromised device or
the router itself), the only viable course of action is deploying padding directly on the IoT
devices. However, implementing countermeasures directly within IoT devices poses signifi-
cant scale challenges, and waiting for widespread deployment or updates by manufacturers is
impractical.7

When considering an eavesdropper outside the local network, we advocate for the deploy-
ment of a middlebox at the router level, acting as a local DNS resolver and effectively relaying
clear-text DNS requests as padded DoH. Similarly to our experimental setup, a default DNS
server is attributed to IoT devices via the Domain Name Server DHCP option [73]. For this
approach to work, devices must accept DHCP-assigned DNS resolvers. In our experiments,
only 3-12% of devices do not support it8, with similar values reported in previous works [220].
If devices ignore DHCP-assigned DNS resolvers, we can resort to a man-in-the-middle solu-
tion intercepting clear-text DNS and forwarding them as padded DoH. In practice, such an
approach could be deployed directly in routers, for example via an extension of open source
software OpenWRT [7].

8.8.2 Implications for privacy and broader scope

We reliably identify IoT devices via DoH traffic and show that corresponding mitigations are
conceivable for manufacturers and end-users. However, they rely on both DNS clients and
resolvers to respect the standard, which does not seem to be currently the case.

Furthermore, this issue affects well-behaved clients, that correctly sends padded DoH
requests and thus expect the best level of protection. We again highlight that DNS answers
do not show any form of warning when padding is asked for but ultimately missing. Without
detailed network trace analysis (e.g. via wireshark), or an automated check of DNS options
client-side, it is impossible to detect this misconfiguration.

As DoH continues to be deployed in large-scale and critical user-facing applications like
Web browsers, it becomes increasingly important to provide the best privacy protection pos-
sible, with clear mechanisms to inform users about any missing features.

6We believe it is related to the cache of the resolver. We could not confirm this theory, as CleanBrowsing
did not reply to our emails.

7The difficulty in updating existing IoT devices does not diminish the global impact of implementing mit-
igations directly at the IoT manufacturer level, anticipating new deployments, or upgrading existing devices.

8We can not be certain of the DNS used by Google devices because our DHCP server advertises 8.8.8.8
and 8.8.4.4 as DNS resolvers.
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8.8.3 Limitations and future work

An overview of the study’s limitations reveals some considerations to be taken into account:

Dataset Completeness: Our dataset is limited to traffic originating from 34 devices, which
may appear to be a small sample size. While previous works [203, 220] operate using fewer
devices, hopping to reach internet scale in a lab is not feasible. However, we make sure to
match the diversity of IoT setups, considering similar devices: same usage, or same manufac-
turer and different version. In both cases, our model is able to reliably identify each device,
hinting at its robustness in broader deployments.

Traffic capture: We specifically focus on DNS traffic directly following a device power on,
as it generates a high number of requests [203]. This supposes either that a) an attacker
can monitor such an event, or b) the DNS traffic generated throughout the remainder of
a device’s lifespan is equally identifiable. While previous works have shown that long-term
monitoring via DNS queries is possible [168], its possible adaptation to DoH require additional
investigation.

Identifying DoH itself: Based on our threat model, we consider that DoH is already
extracted from other encrypted traffic on port 443. This assumption is supported by prior
research, which has demonstrated that distinguishing DoH from HTTPS is trivial via known
IP addresses (e.g. 1.1.1.1 for Cloudflare, or 8.8.8.8 for Google) [53, 157]. Additionally, it can
be achieved thanks to specific features, including shorter packet length and communication
timing [69, 157, 155, 214].

Static IP addresses: Some IoT devices may not be affected by our attack as they do
not rely on DNS and rather use hard-coded IP addresses. However, due to the maintenance
challenges associated with static IP addresses, very few IoT devices adopt this approach.9

8.8.4 Responsible disclosure

The padding misconfiguration has been disclosed to the relevant DNS resolvers. Only Quad9
provided clarifications, stating there is currently no support for padding via the front-end
they use, dnsdist [8]. 5 months after disclosure, we have yet to receive a comment from
others; they still do not respect RFC 7830 when receiving a padded request.

8.9 Conclusion

While DoH brings significant privacy improvements in consumer-grade IoT devices, it does not
guarantee a perfect protection. In this study, we show that the remaining metadata, including
length and IAT, is enough to yield a 0.98 balanced accuracy when identifying 34 devices, across
all studied DNS resolvers. Likewise, devices distributed by the same manufacturer, or even
only differentiated by their version, are reliably classified.

Although other mitigations are too complex to implement, we find that padding is a
straightforward and appropriate countermeasure. However, we discover that some DNS re-
solvers do not respect the corresponding standard and threaten their user’s privacy.

More generally, we demonstrate that the trends observed in protocol operating under
completely different constraints, LoRaWAN, also apply to DoH. We are able to re-adapt
our methodology and successfully build an attack against privacy, while proposing similar
countermeasures.

9We have yet to see a modern device behave like this in our dataset.
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This chapter concludes the thesis by first presenting a summary of our contributions, before
exploring both short and long term perspectives.

9.1 Contributions summary

In this section, we summarize how we explored each research question introduced in Chapter 1.

Q1 What are the privacy challenges of the LoRaWAN protocol? We discovered that
metadata inherently produced by the LoRaWAN protocol, including the size of encrypted
messages and various header fields, timing between messages, as well as radio characteristics,
poses significant privacy risks.

First, we showed that metadata generated during the join process allows an eavesdropper
to effectively link the identity of a device with its activity. By leveraging machine learning
techniques and various features from content, time, and radio domains, we were able to
associate two theoretically unlinkable identifiers, the DevEUI and DevAddr. We also identified
key features, such as the FCnt, that are crucial for reliable linking.

Second, we explored device identification through fingerprinting based on metadata and
traffic patterns observed in sequences of messages. We compared the performance of var-
ious fingerprint representations by formatting features from the content, time, and radio
domains, and demonstrated that combining all of them into a holistic representation yields
the best results. Additionally, we studied multiple scenarios, including mobile devices and
situations where the attacker has access to limited resources, such as a reduced number of
listening stations. In doing so, we showed the robustness of our approach and its reliability
in fingerprinting LoRaWAN devices. While this contribution is initially thought as a privacy
assessment, it can also be leveraged in defensive scenarios such as network monitoring.

Q2 How can we address privacy challenges in LoRaWAN? We found that previous
privacy attacks based on metadata and traffic patterns can be thwarted via two approaches,
with varying overhead costs.

First, we systematically analyzed the features exploited in previous attacks and designed
methods to either completely obfuscate them or introduce noise to reduce their relevance for
machine learning models. Our findings indicated that countermeasures applied in isolation
rarely diminish the efficiency of attacks; therefore, mitigations need to be combined. Un-
fortunately, implementing these countermeasures leads to additional resource consumption,
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such as increased transmitted bytes due to padding. Even with significant network impacts,
feature-based mitigations alone proved insufficient to effectively thwart the attacks.

Second, due to the fact that the attacks were not significantly impacted and the overhead
was considerable, we investigated the root cause. Using a stable identifier throughout the
entire session allows an eavesdropper to group sequences of messages. Replacing the sta-
ble DevAddr, we designed a privacy-preserving pseudonym scheme for LoRaWAN. We first
established desired properties for the scheme and excluded multiple existing solutions due
to the LoRaWAN’s resource constraints. We then further evaluated resolvable pseudonyms,
inspired by Resolvable random Private Addresses in BLE, and sequential pseudonyms, based
on Shroud by Greenstein et al. [90]. Our findings showed that sequential pseudonyms offer a
compelling solution, generating limited extra energy consumption, ensuring a reduced number
of collisions, and proving to be reliable. We concluded our study by expanding our analysis to
other LPWAN protocols, stating that privacy-preserving pseudonyms could be both valuable
and implementable.

Q3 Can this methodology be adapted to other IoT networks? We found that our
machine learning approach can be applied to different IoT contexts to assess privacy, with
similarly high accuracy.

To explore this, we focused on DNS, a protocol widely deployed in consumer-grade IoT
devices, specifically its encrypted version, DNS-over-HTTPS (DoH). Despite the differences in
resource consumption and communication patterns compared to LoRaWAN, we demonstrated
that devices can be identified based solely on packet lengths and timings. Our process shows
high reliability regardless of the DNS resolver used or whether the devices were from the same
manufacturer. Furthermore, we demonstrated rapid identification and model stability over
time. Finally, we explored countermeasures and found that padding has a significant impact
on mitigating our attack. Additionally, we discovered that some DNS resolvers do not respect
padding specifications, compromising users’ privacy.

To conclude, we showed that privacy attacks are possible against different IoT networks
such as LoRaWAN and encrypted DNS, leveraging the same machine learning approach.
While we explore some conceivable countermeasures, various protocol constraints, as well as
the inherent difficulty to update both the standard and devices, suggest that further efforts
are required for truly privacy-preserving communication in IoT networks.

As IoT devices become increasingly intertwined with human activities, privacy should
be a default consideration during protocol design. This assessment should go beyond basic
payload encryption and take metadata into account to fully protect the activity, location, and
identity of end-users.
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9.2 Perspectives

We first presented how our contributions are built upon years of prior research in the state
of the art (see Chapter 2). In this section, we highlight how they could pave the way for new
explorations, whether in the near or distant future.

9.2.1 Short-term

While we outlined some limitations and associated future works in previous sections, we now
select five generic, short-term possible extensions of our work.

Fingerprinting LoRaWAN activity: Fingerprinting LoRaWAN devices has proven to
be highly efficient in Chapter 5, but it can be further developed. Instead of focusing solely
on device identification, we could perform device activity inference in a more generic and
large-scale manner than what is currently presented in the literature [74, 131]. For instance,
we could infer that a given network trace corresponds to a health monitoring device. This
requires a correctly labeled dataset with known devices and their associated activities, which
was virtually impossible with our deployment.

Fingerprinting distance evaluation: Although we compare various fingerprint represen-
tations in Chapter 5, we do not study the impact of distances between fingerprints, solely
leveraging the Euclidean distance (see Section 2.3.5.2). A meta-analysis on the choice of
distance metrics could provide valuable insights into their influence on identification accu-
racy (e.g. Jaccard similarity index [70, 162], cosine similarity [156], Kullback-Leibler diver-
gence [217]).

Implementing data transmission pseudonyms for LoRaWAN: Our work on pseudo-
nyms (Chapter 7) could be expanded. So far, we only have proposed a theoretical framework
for privacy-preserving pseudonyms, with a prototypical proof-of-concept. An actual imple-
mentation in open source Network Servers (e.g. Chirpstack1 or The Things Network’s2) would
greatly help the community embrace pseudonyms, eventually leading to its standardization
and large-scale adoption.

Designing and implementing join pseudonyms for LoRaWAN: In Chapter 7, we
focused solely on the DevAddr, ignoring the DevEUI. This completely static identifier is exposed
to eavesdroppers and allows them to track End-Devices during their (re)join process. As
outlined at in Section 7.9, the required tools are already available to design and implement
another privacy-preserving pseudonym for this use-case. Doing so would also thwart the
linking attack presented in Chapter 4.

Large-scale fingerprinting attack on encrypted DNS: The encrypted DNS identifi-
cation attack presented in Chapter 8 is tied to the devices used to produce the dataset. By
working conjointly with Internet Service Providers, it could be possible to collect a large
dataset of consumer IoT-based IPv6 traffic3. This would enable an analysis of the complete
attack pipeline: first extracting DoH from the HTTPS traffic, and then identifying devices,
thereby enabling effective measurements of the actual impacts on privacy.

1https://github.com/chirpstack/chirpstack
2https://github.com/TheThingsNetwork/lorawan-stack
3This would require serious discussions with the relevant ethics committee and possible safeguards to

respect user privacy.
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9.2.2 Long-term

In addition to low-hanging fruits mainly targeting LoRaWAN, we propose four long-term
perspectives related to machine learning, protocol design, and energy consumption.

Towards expert-agnostic machine learning for privacy: While we strive to extract
all relevant features from analyzed network protocols, this process ultimately depends on our
technical expertise. Like the previous engineers who designed the protocol and overlooked
privacy aspects, we might miss significant features. Alternative machine learning-based ap-
proaches, such as those relying on genetic algorithms [18], can automatically select a subset of
relevant features without needing expert knowledge. Taking it a step further, deep learning
solutions can directly use raw network bytes to classify traffic [142].

With the increasing complexity of network protocols as well as feature extraction and as-
sociated machine learning models, it is crucial to prioritize explainability [179]. Allowing users
to interpret model results is essential for drawing meaningful insights when analyzing tech-
nologies through the lens of privacy. Instead of relying on a set of pre-determined rules [57],
a solution could be developed to automatically extract relevant features from raw network
traces, regardless of the underlying protocol, and provide clear privacy insights to engineers
and users (e.g., linkable identifiers). Contrary to our contributions, which focus on a single
protocol, such an approach could lead to the design of a generic framework to analyze the
privacy of network protocols through all their layers.

Guidance for privacy-preserving LPWAN protocols design: Our contributions are
among many technical research projects that highlight the lack of consideration for privacy
in the design of network protocols. For instance, other members of the LPWAN family, such
as Sigfox and NB-IoT, are designed with similar constraints as LoRaWAN and similarly lack
a foundational approach to privacy beyond basic encryption (see Section 7.8).

Efforts by legal bodies to protect privacy, notably via the GDPR or ePR, provide general
principles, with interpretations and high-level examples detailed by the European Data Pro-
tection Board. They are completed by national-level guidelines, including the ones published
by the CNIL, proposing recommendations for a given technology (e.g. how to conduct a
Privacy Impact Assessment for IoT devices [61]). Finally, standardization bodies precisely
describe network protocols, such as the IEEE 802.11 specifying physical and MAC Layers of
wireless protocols (e.g. Wi-Fi), including their privacy aspects [63].

This structure can be impacted in multiple places to improve the state of network proto-
cols’ privacy. First, there is a lack of privacy guidelines specifically thought for LPWAN and
other communication-constrained protocols. Producing such a document would both shed a
light on these issue, and help the industry navigate them.

Second, while general legal requirements are usually taken into account when designing
technical standards, concerns regarding metadata and stable identifiers remain out of scope.
Collaborating with legal scholars on this specific privacy issue could be beneficial, potentially
leading to updates in the legal framework and reinforcing the importance of privacy in protocol
design. This approach can draw inspiration from research community feedback on legal texts,
including the upcoming ePR [183].

Improved popularization: In addition to the significant volume of privacy research pub-
lished over the past decades, already existing guidelines, and researchers generally willing
to help4, protocol designers have access to tools enabling formal proofs of security, such as
Tamarin [148]. In parallel, the concept of privacy by design dates back to the early 2000s [125]
and is now well known, yet it is evidently not widely implemented in practice.

We believe that the absence of privacy considerations during the design phase is not due to
insufficient external resources, but rather to an overall lack of consideration, motivation, and
incentives. Therefore, broader popularization of privacy research, including its motivations
and implications, is a first crucial step for achieving a significant and lasting impact. To reach
new audiences, we could participate in more industry-focused conferences (e.g. international

4For instance, TLS is specified partly with researchers validating its security proposals: https://datatr

acker.ietf.org/group/tls/about/. A similar approach could be implemented for privacy in other protocols.
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ones regrouping numerous major companies or more local alternatives such as SIDO5) or even
organize interventions with the public (e.g. Fête de la Science.6) To complete this bottom-up
approach, large-scale awareness campaigns could be organized in collaboration with official
structures, such as the CNIL7, to inform citizens about privacy implications of the IoT and
latest measures taken to protect their privacy.

Finally, successful software such as Signal shows that there is a demand for privacy-
preserving solutions. Although private partnerships were seldom investigated during this
thesis, joint work with companies on IoT devices with privacy as a selling point could be an
interesting avenue to further popularize the concept.

Data minimization and energy consumption in network protocols: Working on
constrained protocols and their privacy often involves complex and difficult choices between
enhanced privacy properties and increased energy consumption. Finding the right balance
is essential, as robust security measures can significantly drain the limited power resources
of devices, particularly in IoT applications. Countermeasures to attacks presented in pre-
vious chapters generally involve trade-offs between privacy and energy consumption, given
that LoRaWAN is already highly optimized for a low footprint. Finding the right trade-off
requires additional research, selecting representative privacy metrics (see Section 2.4.1) and
acceptability values for energy consumption.

However, this does not imply that alternative solutions for both privacy and resource-
constrained network protocols are unattainable; future projects should strive to design such
solutions. Since communication is usually the energy bottleneck, these approaches should be
implemented over physical layers further optimized for energy consumption [182]. Moreover,
lightweight cryptography [146, 202] would enable low-cost header encryption for metadata
minimization and privacy-preserving pseudonyms.

Ultimately, only cross-disciplinary approaches involving standardization bodies, legal enti-
ties, sustainability experts, and privacy specialists can effectively address these challenges.

5https://www.sido-lyon.com/
6https://www.fetedelascience.fr/
7The CNIL already works with the press: https://cnil.fr/fr/espace-presse.
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