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Abstract

The retail landscape has undergone a profound transformation in recent years, driven by
technological advancements, consumer preferences, and the proliferation of digital chan-
nels. In this dynamic environment, retailers face many challenges, from optimizing pricing
strategies and inventory management to navigating the complexities of multichannel retail-
ing. This thesis explores critical opportunities and challenges in modern retail management
across three domains: multichannel retailing, dual-channel pricing, and data-driven inventory
management.

Firstly, we delve into the complexities of multichannel retailing, where the convergence
of physical and online channels presents both opportunities and challenges for inventory
management. We uncover the strategic imperatives and operational considerations that
shape modern retailing by examining customer behavior, channel preferences, and market
dynamics.

Secondly, building upon our exploration of multichannel retailing, we investigate the
realm of dual-channel pricing, where the strategic balancing act between profitability and
customer satisfaction takes center stage. Drawing on insights from market-share models and
demand theory, we develop a novel pricing model that captures the complex interactions
between channels and sheds light on the elusive quest for pricing decisions in a dual-channel
environment.

Thirdly, to further investigate the importance of service level in retailing, we focus
on data-driven inventory management, where historical data and advanced methodologies
converge to inform decision-making under uncertainty. Leveraging the power of Kernel
Density Estimation (KDE) and nonlinear programming (NLP), we tackle the formidable
challenge of integrating service-level constraints into inventory optimization models, offering
a glimpse into the future of data-driven decision-making in retail.

Our journey through multichannel retailing, dual-channel pricing, and data-driven inven-
tory management has yielded several key insights. We have highlighted the importance of
adopting a customer-centric approach, leveraging data-driven methodologies, and embracing
continuous adaptation to navigate the complexities of modern retail environments.
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xii

The contributions of this thesis extend beyond theoretical insights to practical method-
ologies and findings. We have developed a comprehensive conceptual framework for under-
standing multichannel retailing, advanced dual-channel pricing optimization methodologies,
and novel data-driven inventory management approaches. Through numerical experiments,
we have uncovered valuable insights into the effectiveness of different retail management
strategies and the potential of data-driven methodologies to drive business success.

Looking to the future, several avenues for further research beckon. Advanced demand
modeling techniques, dynamic pricing strategies, supply chain resilience considerations,
and sustainability and ethics in retail management represent promising areas for future
exploration and innovation.

In conclusion, this thesis offers a comprehensive exploration of key challenges and
opportunities in modern retail management, providing valuable insights and practical method-
ologies for retailers to handle the complexities of the digital age and drive business growth in
an increasingly dynamic and interconnected world.
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Chapter 1

Getting started

1.1 Problem statement

The retail business has profoundly evolved in an era of unprecedented technological advance-
ment and rapid digital transformation. The rise of e-commerce, the proliferation of digital
channels, and the growing influence of data analytics have revolutionized how consumers
shop and interact with brands. In this dynamic and ever-changing environment, retailers face
many challenges, from optimizing pricing strategies and inventory management to navigating
the complexities of multichannel retailing.

The modern retailing is complex, uncertain, and intense competition. Retailers must
grapple with shifting consumer preferences, fluctuating market trends, and disruptive tech-
nological innovations while striving to deliver seamless, personalized experiences across
multiple channels. In this environment, success depends on adapting quickly, making in-
formed decisions, and staying ahead of the curve.

The intricate interplay between pricing, inventory management, and channel strategy lies
at the heart of these challenges. Retailers must carefully balance the competing demands of
maximizing profitability, minimizing stockouts, and satisfying customer expectations while
navigating the nuances of multichannel retailing. From the strategic allocation of inventory
to the tactical execution of pricing strategies, every decision has implications for the bottom
line and the business’s overall success.

Against this backdrop, the need for rigorous analysis, innovative methodologies, and
data-driven decision-making has never been greater. By leveraging advanced analytics,
optimization techniques, and empirical insights, retailers can better understand consumer
behavior, market dynamics, and competitive pressures, empowering them to make smarter,
more strategic decisions.

Supply chain management in the digital age
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2 Getting started

To fulfill its promises to customers, a company must effectively utilize its resources to
balance supply and demand. Supply chain management is vital in aligning the company’s
manufacturing and service resources with suppliers, internal partners, distribution channels,
and customers. In today’s business environment, information is a critical component that
significantly influences supply chains and their management. With the increasing availability
of information, one of the challenges businesses face today is handling and leveraging this
information to create more value in the supply chain. In a customer-driven world where
consumers have a stronger voice through social media, greater reach, higher expectations,
and more choices, supply chain management must adapt.

The development of the internet and advancements in information technology, such as
cloud storage and telecommunications capabilities, has provided supply chain managers
access to vast amounts of data in real time. The emergence of the “Internet of Things” (IoT)
has further accelerated this development by integrating technologies and communication
solutions, enabling the interaction between physical and virtual worlds. This interaction has
led to the multichannel concept, with conditions on the channel interaction and customers’
expectations.

This thesis aims to develop innovative frameworks for flow management that blur the
boundaries between the physical and digital supply chain and facilitate an integrated and
optimized multichannel configuration.

While the operations management community has examined various aspects of online
retailing, such as the costs and benefits of “buy online and pick up in store” policies, informa-
tion sharing, and multichannel price optimization, there is still a research gap when it comes
to optimizing end-to-end flow management in a stochastic decision-making environment.

To contextualize this thesis within the broader research outlook, the following section
offers an introduction to three key research areas: operations management, supply chain
management, and inventory management.

1.2 Overview on the landscape of research

In this section, we give an overview of the related base knowledge for the thesis, from the most
general operations management to supply chain management and inventory management.

Operations management
The most general background that the thesis falls into is operation management. Oper-

ations management (OM) is a subject of multifaceted inquiry, marked by many issues and
diverse research methodologies. Although some degree of coherence exists between the
subject matter and chosen research methods, the discipline still exhibits notable, occasionally
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1.2 Overview on the landscape of research 3

intricate, variability. A fundamental concept within OM pertains to operations as a trans-
formation process, wherein resources (including machinery and human labor) and inputs
(encompassing materials, personnel, and information) are transmuted into concrete outputs
in the form of goods and services. This foundational notion underscores the ubiquity of
operations in our daily existence, extending its purview beyond manufacturing to encompass
sales, services, administrative processes, and numerous other domains.

The scope of OM is extensive and hinges on the operational aspect, which has several
vital facets. First and foremost is the strategic perspective, which delves into the function
and objectives of operations, particularly the pivotal role it plays within an organization’s
business model. A key point is how operations contribute to business model innovation
and development. This, in turn, informs the strategic direction for operations and how they
enable a firm to remain competitive in the marketplace. Operations systems are inherently
intertwined with the products and services intended to generate. The design of these systems
encompasses not only internal processes but also external elements such as procurement and
distribution systems. This comprehensive design process includes the planning of information
and material flows, layout decisions, and the selection of appropriate process technologies
for transformation activities. Operations design extends to shaping the organization, its
processes, structures, and the allocation of human resources. Moreover, it entails the critical
selection and development of capacity, inventory, and transformation activity planning and
control mechanisms within both internal and external production and service systems. The
design process also extends to the creation of supportive systems for quality assurance,
system maintenance, and continuous improvement.

The field of OM exhibits distinctive characteristics that shape its approach and methodol-
ogy. It is a practical discipline with a managerial orientation, addressing real-world issues and
challenges. OM is inherently interdisciplinary, drawing from economics, finance, account-
ing, organizational behavior, marketing, mathematics, etc. Within each of these domains,
research investigates many issues using diverse research methods, often informed by the
perspectives of different disciplines. The research methodologies include surveys employing
questionnaires and interviews, single and multiple case studies, longitudinal field studies,
action research, as well as modeling and simulation techniques Karlsson (2016).

The advent of the Internet has brought about significant transformations in the operational
and functional aspects of businesses. It has reshaped how companies procure resources and
meet customer expectations. This shift is driven by various factors, including advances in
information technology (IT), the globalization of markets, the decentralization of operations,
and a growing awareness of environmental concerns. As a result, industries are compelled to
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4 Getting started

reevaluate their strategies and techniques related to productivity and quality, including their
overall approach to OM.

Meredith (2001) and Zhao et al. (2009) have highlighted several significant trends in the
field of OM, including the following:

• Emphasis on resource-based theory and transaction cost theory: These theories have
gained importance in understanding and shaping OM practices.

• Integration of operations and supply chain strategies: The interplay between operations
and supply chain strategies is explored through contingency and configuration theories.

• Operations choice from theoretical perspectives: Decisions regarding operations are
made while drawing insights from institutional, contingency, and configuration theo-
ries.

• Supply chain management and management issues: The supply chain is a focal point,
with an emphasis on aspects like trust, commitment, and configuration.

Our thesis aims to advance, in particular, the knowledge of supply chain management.
Supply chain management
Supply chain management (SCM) is described as the systematic and strategic alignment

of conventional business operations and strategies across these operations within a specific
organization, as well as among businesses throughout the supply chain, with the goal of
enhancing the sustained performance of both individual companies and the overall supply
chain (Mentzer et al., 2001).

The list of topics and their definitions in supply chain management are as follows. In
cases where feasible, the definitions have been sourced from the Council of Supply Chain
Management Professionals (CSCMP) and the American Production and Inventory Control
Society (APICS) (or Association for Supply Chain Management (ASCM)).

• Contracts and coordination: This area centers on topics related to legal agreements and
documentation. A contract is a legal arrangement between two or more parties to pro-
vide specific products or services. Coordination relates to the processes and activities
within various business functions, such as marketing, sales, product design, finance,
and information technology (Council of Supply Chain Management Professionals,
2013).

• Customer service strategy: This addresses activities that enhance or facilitate the sale
or use of a seller’s products or services through interactions between the buyer and
seller (Council of Supply Chain Management Professionals, 2013).
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1.2 Overview on the landscape of research 5

• Demand management and forecasting: This field encompasses the management of all
demand for goods and services to support the marketplace (APICS The Association
for Operations Management, 2011).

• Human resource development: This process involves developing and maximizing
human expertise through organizational development and personnel training, ultimately
aimed at enhancing performance (Swanson, 2022).

• Humanitarian operations, logistics, and supply chains: This encompasses planning,
implementing, and controlling the cost flow’s efficiency and effectiveness and storage
of goods, materials, and related information from the point of origin to the point
of consumption. The primary objective is to alleviate the suffering of vulnerable
populations (Swanson et al., 2018).

• Information technology and data analytics: This area involves the use of technology
for the development, maintenance, and utilization of computer systems, software,
and networks to process and distribute data. It also encompasses the examination,
cleansing, transformation, and modeling of data to discover valuable insights, draw
conclusions, and support decision-making.

• Inventory: Inventory refers to components, raw materials, work in process, finished
goods, and supplies needed for the creation of goods and services. It can also denote
the quantity and value of goods held in stock by a company (Council of Supply Chain
Management Professionals, 2013).

• Manufacturing: Manufacturing is the process of converting raw materials, components,
or parts into completed goods that meet customer expectations or specifications. Typi-
cally, manufacturing operations involve a combination of human labor and machinery,
with the division of labor in large-scale production.

• Network analysis (optimization): Network analysis, or optimization, is a process or
methodology used to maximize the efficiency, functionality, and effectiveness of a
network. It may employ mathematical techniques to identify the best solutions (Council
of Supply Chain Management Professionals, 2013).

• Performance measurement and metrics: Performance measurement involves assessing
the work performed and the outcomes achieved in an activity, process, or organizational
unit. These measures encompass both non-financial and financial indicators and facili-
tate periodic comparisons and benchmarking (Council of Supply Chain Management
Professionals, 2013).
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• Product and process innovation: Product innovation involves the introduction of new
or significantly enhanced goods or services, while process innovation relates to the
implementation of novel or markedly improved production or delivery methods.

• Purchasing and supply management (planning): This process involves identifying,
prioritizing, and aggregating all sources of supply that add value to the management
of a product or service at the desired level, horizon, and interval (Council of Supply
Chain Management Professionals, 2013).

• Quality: Quality refers to the extent to which the defined characteristics of a product or
service meet known requirements. It is a perceptual and somewhat subjective attribute,
with its meaning contingent on specific functions and objects (Council of Supply Chain
Management Professionals, 2013).

• Relationships and collaboration: This refers to cooperative efforts and communication
among individuals and systems, including business partners, suppliers, and customers,
to achieve common business objectives. It also involves a strategy for cost reduction
through the consolidation of shipments from multiple sources under a mutual agree-
ment between shippers and carriers. This approach may include collaborating with
competing shippers (Council of Supply Chain Management Professionals, 2013).

• Reverse logistics: Reverse logistics denotes the process of shifting goods from their
final destination for the sake of capturing value or ensuring proper disposal, which
may involve activities such as remanufacturing and refurbishing (Reverse Logistics
Association, 2022).

• Risk management: Risk management encompasses the identification and evaluation
of risks, followed by the coordination and cost-effective allocation of resources to
mitigate, monitor, and control the likelihood and impact of unfavorable events (Council
of Supply Chain Management Professionals, 2013).

• Strategy: Strategy involves specific actions taken to achieve an objective (Council of
Supply Chain Management Professionals, 2013).

• Supply chain agility: This refers to the ability to swiftly and cost-effectively adapt to
market changes without significant negative effects on quality or reliability (Council
of Supply Chain Management Professionals, 2013).

• Supply chain integration: Supply chain integration measures the extent to which a
manufacturer strategically collaborates with its supply chain partners and manages
processes both within and between organizations (Flynn et al., 2010).
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• Supply chain resilience: Supply chain resilience denotes the extent to which the supply
chain is fortified against disasters (Council of Supply Chain Management Professionals,
2013).

• Sustainability: Sustainability involves the strategic and transparent integration and
attainment of an organization’s social, environmental, and economic objectives in the
systematic coordination of crucial inter-organizational business practices, all aimed
at enhancing the long-term economic performance of the individual enterprise and its
supply chains (Carter and Rogers, 2008).

• Third-party logistics and outsourcing: This entails outsourcing some or all of a com-
pany’s logistics operations to a specialized company. Initially, the term “3PL” was
used to identify intermodal marketing companies (IMCs) in transportation contracts.
These companies, acting as intermediaries, accept shipments from shippers and tender
them to rail carriers. As such, they became the third party to the contract, hence
“3PL”. The definition has since expanded to include any company offering logistics
services for hire, often integrating various services such as transportation, warehousing,
cross-docking, inventory management, packaging, and freight forwarding (Council of
Supply Chain Management Professionals, 2013).

• Transportation and logistics: This involves the process of planning, implementing,
and controlling procedures to efficiently and effectively transport and store goods,
including related information and services, from the point of origin to the point of
utilization in line with customer requirements. This definition encompasses inbound,
outbound, internal, and external movements (Council of Supply Chain Management
Professionals, 2013).

Over the last twenty years, there has been a notable emphasis on advancing theoretical
research within the field of SCM, and scholars have been responsive to this call. Nevertheless,
it is evident that certain subjects have received greater attention in research compared to
others, implying that these areas may be deemed more “theoretical” and are progressing at a
swifter pace. For a comprehensive analysis of the research on these topics, we refer to the
work of Swanson et al. (2018).

Our thesis focuses on inventory management in particular, taking into account customer
behaviors in a multichannel business with advancing data analytics.

Inventory management
Inventory management is a crucial aspect of operations for organizations across various

industries. It involves the careful control and tracking of materials, parts, and finished goods
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that a company possesses. These inventories are maintained for future use in production
processes or for eventual sale to customers. Effective inventory management is important
because it directly impacts a company’s operational efficiency and financial performance.

The challenges associated with inventory management are multifaceted. On one hand,
not having enough inventory can be costly. Shortages of essential materials and parts can
disrupt production processes, leading to delays in product delivery and even stockouts of
finished goods. Such stockouts can result in lost sales opportunities and harm a company’s
reputation. On the other hand, carrying excess inventory also incurs costs. This includes
the opportunity cost of capital tied up in inventory, storage expenses, insurance premiums,
taxes, and costs related to spoilage and obsolescence. Therefore, striking the right balance in
inventory levels is of paramount importance for any organization.

Inventory theory is a field of study that provides analytical models and solution techniques
to assist organizations in managing their inventories optimally. Its primary objective is to
help organizations meet their service requirements while minimizing the total expected costs
associated with ordering, holding inventory, and addressing shortages. These models take
into account various tradeoffs, including economies of scale, lead time (the time taken to
receive ordered items), and uncertainties in supply and demand. A fundamental outcome
of inventory theory is the development of inventory-control policies. These policies dictate
when to reorder items (referred to as the reorder point) and how much to order (referred to
as the order quantity). The choice of an appropriate inventory-control policy depends on
several factors, including the nature of demand (deterministic or stochastic, stationary or
nonstationary), product characteristics (perishability), and the handling of shortages (lost
sales or backlogging).

Inventory models can be categorized based on several characteristics:

• Cost structure: The cost structure can include fixed ordering costs, among other factors,
which influence the economic order quantity and optimal inventory-control policies.

• Demand nature: The nature of demand can be deterministic or stochastic, stationary or
nonstationary, and the demand distribution may be known or unknown.

• Inventory monitoring: Models can involve discrete-time or continuous-time inventory
monitoring, affecting how inventory levels are tracked.

• Planning period: Inventory models can be single or multiple planning periods, depend-
ing on whether they consider a short-term or long-term perspective.

• Product and stage: Inventory models may apply to single or multiple products, as well
as single or multi-stage (or location) scenarios within the supply chain.
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• Supply system: The supply system can vary in terms of single- or dual-source, exoge-
nous or endogenous supply, and finite or infinite capacity.

There are several research-based textbooks and handbooks that offer in-depth coverage
and references in this field, including works by Arrow et al. (1958); Axsäter (2015); de Kok
and Graves (2003); Graves et al. (1993); Hadley and Whitin (1963); Julien and David (1997);
Nahmias (2011); Porteus (2002); Silver et al. (1998); Snyder and Shen (2019); Song (2023);
Zipkin (2000).

Recently, inventory models have been categorized into three primary classes (Petropoulos
et al., 2023):

1. Optimal inventory-control policies: This class focuses on characterizing optimal inven-
tory control policies within specific supply and demand contexts and cost structures.
A common approach involves formulating multi-period inventory decision problems
as dynamic programs, simplifying the original formulations through state reduction.
Researchers then identify the structural attributes of the cost function for a single
period to establish the optimal policy form for individual periods. It is essential to
demonstrate that these properties remain valid over time. Calculating optimal policy
parameters may pose challenges, motivating the development of efficient algorithms
for their computation.

2. Performance evaluation tools: This class of models is dedicated to devising effective
tools for assessing the performance of specific inventory policies. This is particularly
valuable when state reduction is impractical, given the exponential growth of system
state dimensions over periods, often termed “the curse of dimensionality”. These
models analyze continuous-review systems characterized by stochastic demand pat-
terns and yield performance metrics for various policies, including average inventory
levels, average backorders, stockout rates, and long-term average costs. Subsequently,
optimization tools are employed to identify policy parameters that minimize long-term
average costs.

3. Asymptotic analysis: The third class of models conducts asymptotic analysis to es-
tablish the asymptotic optimality of simple-structured policies for complex inventory
systems where exact optimal policies are challenging to ascertain.

In inventory literature, there are some classic models in which optimal policies are
demonstrated to exhibit uncomplicated structures: the economic order quantity (EOQ) model,
the newsvendor model, and dynamic backlogging models. Our thesis utilizes the newsvendor
model as a foundation for mathematical formulations.
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10 Getting started

The newsvendor model, also known as the newsboy or single-period model, is a pivotal
mathematical construct within operations management and applied economics. It serves as a
robust framework for optimizing inventory levels in scenarios characterized by fixed pricing
structures and unpredictable demand dynamics, particularly applicable to perishable products.
Historically, the origins of this mathematical conundrum can be traced back to 1888, when
Edgeworth invoked the central limit theorem to ascertain the optimal cash reserves required
to address random withdrawals from depositors (Edgeworth, 1888). According to Chen et al.
(2016), the term “newsboy” gained prominence as it was introduced in Morse and Kimball’s
book. However, the modern conceptualization of the newsvendor model is largely attributed
to a paper published in Econometrica by Arrow et al. (1951). In this paper, Arrow et al.
(1951) examined the newsvendor-type inventory planning model and derived the critical
fractile solution. The newsvendor model addresses the challenge of managing inventory
levels amidst demand uncertainty, particularly for seasonal products. This model operates as
a single-period model, allowing for just one ordering opportunity before the selling season
commences. It assumes an estimated demand distribution and negligibly low fixed order
costs. Following the arrival of the ordered quantity, the selling season begins, and demand is
realized. At the season’s end, there may be either unsold units (overage) or unmet demand
(underage). The unit overage cost (o) corresponds to the purchasing cost minus the salvage
value, while the unit underage cost (u) relates to lost profit. The optimal newsvendor order
quantity is determined by the demand distribution’s critical ratio, expressed as u/(u+ o).
This model can be extended to incorporate various complexities, including random yield,
diverse cost structures, pricing considerations, distribution-free bounds (Gallego and Moon,
1993; Petruzzi and Dada, 1999; Qin et al., 2011), and multi-location scenarios featuring
risk-pooling effects (Bimpikis and Markakis, 2016; Eppen, 1979). Our thesis focuses on the
extension of pricing for the newsvendor problem in multichannel settings and the data-driven
newsvendor problem.

While extensive research exists on inventory control utilizing the newsvendor model,
there remains a significant gap in understanding inventory and pricing decisions within
multichannel environments. Given the evolving landscape of shopping behaviors facili-
tated by technological advancements, managers need to collaboratively address pricing
and inventory policies while integrating customer behaviors into their decision-making pro-
cesses. Consequently, further research is warranted to develop practical models for inventory
decision-making that account for customer criteria and behaviors, leveraging advanced analyt-
ics to guide inventory managers in formulating optimal strategies. For instance, how should
retailers determine optimal pricing and inventory policies while considering factors such
as customer service levels, demand uncertainty, and interactions between different selling
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1.3 Research questions 11

channels? Moreover, how can the application of advanced techniques, including data-driven
learning models, enhance the derivation of informed decisions in this regard? These inquiries
underscore the complexity of the issue and highlight the potential for valuable insights to be
gained through future research endeavors.

In summary, inventory management is a multifaceted field that plays a pivotal role in the
efficient functioning of organizations. By leveraging inventory theory and various modeling
techniques, companies can make informed decisions regarding when and how much to order,
ultimately enhancing their operational efficiency and financial performance. The ongoing
research and development in this field continue to yield insights and strategies that help
organizations navigate the complexities of inventory management in an ever-developing
business scene.

1.3 Research questions

To address this research gap in the multichannel supply chain, we embark on a journey to
explore the following key questions:

• How can supply chain flow management enhance the multichannel shopping experience
with a focus on customer service level satisfaction?

• What are the unique challenges introduced by multichannel supply chain management,
and how have cross-channel interactions reshaped the flow management? How can tra-
ditional flow management policies be adapted to address these challenges effectively?

• To what extent do data-driven approaches and advanced decision-making analytics
contribute to the advancement of the shopping experience in multichannel retailing?

The aim of this thesis is to investigate the above research questions. Thus, each research
question corresponds to one chapter of the thesis.

1.4 Scope of the thesis

This thesis comprehensively investigates the challenges and opportunities presented by
integrating digital and physical supply chains within a multichannel environment. It explores
various factors, including demand modeling, pricing optimization, inventory control, and
customer behavior analysis. The research is geared towards developing practical solutions
that can be applied by businesses seeking to thrive in this dynamic environment.

In particular, the scope of this thesis is given as follows.
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• Explore the strategies and practices that supply chain flow management can employ to
enhance the shopping experience across multiple channels. It aims to investigate how
factors such as inventory availability, order fulfillment efficiency, and customer service
quality contribute to customer satisfaction and influence purchasing behavior.

• Identify and analyze the unique challenges multichannel supply chain management
introduces. It seeks to understand how the integration of various channels complicates
traditional flow management practices and impacts inventory management and order
fulfillment. Additionally, it aims to propose innovative solutions and adaptations to
traditional policies to effectively address these challenges by incorporating customer
behavior and retailer offers of promotion to prevent stockout.

• Explore the role of data analytics and advanced analytical techniques in optimizing
supply chain flow management and enhancing the multichannel shopping experience.
It aims to investigate how retailers can leverage data insights to improve inventory
management, order quantity optimization, and personalized customer experiences.
Additionally, it seeks to assess the impact of data-driven approaches on operational
efficiency, cost reduction, and revenue growth in multichannel retail environments.

1.5 Structure of the thesis

The thesis unfolds in five parts, each dedicated to addressing critical aspects of operations
management, supply chain management in general, and inventory management in particular:

• Part I (Chapter 1: Getting started). Chapter 1 introduces the research topic, em-
phasizing the shifting panorama of retailing amidst technological advancements and
centering consumer behavior. We highlight the importance of robust analysis, in-
novative methodologies, and data-driven decision-making to optimize supply chain
flow management. The chapter outlines research questions and associated objectives
while providing an overview of recent advances in inventory, operations, and supply
chain management. This sets the stage, underlining the impact of technology, data
availability, and changing consumer expectations, urging innovative approaches to
adapt to multichannel retail complexities and elevate customer experiences.

• Part II (Chapter 2: Optimal pricing for a multichannel stochastic demand with
service levels). Chapter 2 delves into the complexities of multichannel retailing, where
multiple physical and online sales channels coexist. Within this dynamic setting, we
confront the challenge of simultaneously optimizing prices and inventory levels while
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adhering to service-level requirements. The problem involves determining optimal
prices across channels to maximize expected profit while meeting service levels. This
challenge is compounded by the fact that customer demand is influenced by the price
of the corresponding channel and the prices set in other channels. Our research
thus explores innovative pricing strategies that consider the stochastic nature of global
demand and the non-linear relationships between prices and channel demand to address
this intricate problem.

• Part III (Chapter 3: Optimal pricing for dual-channel retailing with stochastic
attraction demand model): Chapter 3 extends the investigation into dual-channel
retailing, where companies operate a physical store and an online sales platform. This
chapter grapples with optimizing prices when customer behavior is pivotal in channel
choice. The problem entails determining optimal pricing strategies that maximize ex-
pected profit across both online and physical channels while factoring in the uncertainty
of potential market demand and the influence of prices on channel selection. Further
complexity arises from customers’ diverse reactions when physical stores experience
stockouts, with some opting to purchase online in response to promotions.

• Part IV (Chapter 4: Data-driven nonlinear optimization for the chance-constrained
newsvendor problem): Chapter 4 outlines our innovative solution to address the data-
driven newsvendor problem. Our methodology utilizes Kernel Density Estimation
(KDE) to represent service level constraints and investigates a nonlinear programming
(NLP) formulation. Importantly, our approach guarantees that the achieved service
level exceeds the target, affirming its efficacy in improving inventory decision-making.
This study advances inventory management practices by harnessing data-driven method-
ologies and novel modeling techniques, furnishing businesses with more resilient and
dependable strategies for navigating dynamic and uncertain conditions.

• Part V (Chapter 5: Conclusion and perspectives): In this concluding chapter, we
offer a thorough overview of the thesis, emphasizing its narrative, the acquired insights,
contributions to inventory, operations, and supply chain management, and prospects
for further research. We delve into the exploration of multichannel retail, dual-channel
pricing, and data-centric inventory management, weaving connections across chapters
and underlining the importance of our discoveries.

Each of the three chapters, Chapter 2, Chapter 3, and Chapter 4, starts with the gen-
eral abstract, introduction, literature review, research problems and solutions analysis, and
conclusion, corresponding to the three research questions.
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1.6 Related publications

Here, we represent all the publications linked to the thesis.

• Tran, M. T., Rekik, Y., & Hadj-Hamou, K. (2024). Optimal pricing for dual-channel
retailing with stochastic attraction demand model. International Journal of Production
Economics, 268, 109127.

• Tran, M. T., Rekik, Y., & Hadj-Hamou, K. (2021, August). Pricing Decisions for an
Omnichannel Retailing Under Service Level Considerations. In IFIP International
Conference on Advances in Production Management Systems (pp. 175-185). Cham:
Springer International Publishing.

• Tran, M. T., Rekik, Y., & Hadj-Hamou, K. Optimal pricing for a multi-channel
stochastic demand with service levels. Under revision in OR Spectrum, 2024.

• Tran, M. T., Rekik, Y., & Hadj-Hamou, K. Data-driven nonlinear optimization for
chance-constrained newsvendor problem. Finalized and targeted to International
Journal of Production Economics, 2024.

Chapter 2 of this thesis constitutes the revised manuscript submitted to the OR Spectrum
journal and the proceeding (Tran et al., 2021). Chapter 3 represents the paper published in
the International Journal of Production Economics (Tran et al., 2024). Chapter 4 involves the
manuscript preparing for submission to the International Journal of Production Economics.

1.7 Summary for the first chapter

In this chapter, we introduce the research topic, shedding light on the evolving domain
of retailing amidst technological advancements and consumer behaviors. Emphasizing
the significance of rigorous analysis, innovative methodologies, and data-driven decision-
making, we explore the opportunities and challenges faced in optimizing supply chain flow
management.

The chapter outlines the research questions that guide the study and the objectives
associated with each research question. In particular, we aim to investigate how customer
behaviors impact supply chain management practices, explore the implications of consumer
expectations and requirements on operations management strategies, and assess the role of
innovative approaches in adapting to the complexities of multichannel retailing.

Furthermore, the chapter provides an overview of recent advances and topics in inventory
management, operations management, and supply chain management. This discussion
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underscores the necessity for inventive solutions to adapt to the developing retail practice,
driven by technological advancements, data accessibility, and evolving consumer demands.

Overall, this chapter serves as a comprehensive introduction to the research topic, laying
the groundwork for subsequent discussions on theoretical frameworks, methodology, and
findings of the study.
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Chapter 2

Optimal pricing for a multichannel
stochastic demand with service levels

In practice, the service level (SL) is used to measure service quality and to set the inventory
policy. As retail enterprises integrate physical and online stores, one question arises regarding
multichannel retail under SL requirements. To investigate this issue, we propose a multichan-
nel inventory-pricing model, price-based stochastic demand, and SL-based order quantity.
Motivated by market-share models, we adopt a demand model involving attraction between
channels. In contrast to previous works, we consider that the global demand is stochastic and
channel demand is a non-linear function of prices across channels. The chapter delivers two
contributions. First, by attraction model structure, the profit function is not jointly concave
with its variables; thus, we propose a novel approach to prove that in the case of target SLs,
the objective function is still reasonably well-behaved. In particular, we show the existence of
a unique solution to the first-order conditions with non-linear demand and objective functions
under mild assumptions. The second contribution is related to the applicability of the model
in practice. In particular, we characterize the behavior of the optimal prices and analyze
the performance gap with different SL and price settings. We find that common knowledge
on service levels in inventory control cannot apply in the same way under a multichannel
configuration.

2.1 Introduction

Multichannel retail is the practice of selling merchandise and services to consumers on
more than one sales channel (Levy et al. (2012)). Multichannel retailers are companies that
participate in multichannel retailing as their principal source of revenue. Today, many leading
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18 Optimal pricing for a multichannel stochastic demand with service levels

retailers adopt a multichannel business model and modern innovations to integrate their
multiple selling channels and to provide clients with a comprehensive buying experience.
These channels frequently aim to captivate several consumer segments and enable retailers to
cater to different purchasing habits and preferences (Kireyev et al. (2017)).

Multichannel is an inventory management study cluster with various difficulties con-
cerning demand modeling, pricing optimization, and inventory decision-making (Tsay and
Agrawal (2004)). The inventory of each channel in a multichannel setting affects how ef-
ficiently the orders from customers are filled. Sharing the demand through these channels
depends moreover on the associated prices, which raises another challenge. Despite recent
investigations on multichannel retailing, few studies take into account the influence of cross-
channel interaction and channel integration on store operations, and how retailers should
respond (Mou et al. (2018)).

Furthermore, profitability in retailer pricing has become a paramount concern. While
attempting to maximize profitability, retailers must pay attention to every marketing mix
component. Pricing has always been a crucial strategic aspect for them to “get right" (Kireyev
et al. (2017)).

In this context, this research presents a cross-channel price interaction-based framework
that structures the customers’ demand and decision process through which the retailer can
develop and implement a multichannel pricing strategy. In particular, an attraction demand
model is employed to quantify the cross-channel interaction. This model is drawn from
Harsha et al. (2019) and used to represent the price-dependent and integrated decision under
multichannel configurations. Here, from a more general perspective than that of Harsha et al.
(2019), the potential market demand is stochastic and has a known distribution.

To shed light on the multichannel pricing problem, we consider a pricing and inventory
decision model for a retail company selling a single product to consumers through several
channels. We concentrate on merchandise rather than service retailing since product manage-
ment and delivery issues are significantly more straightforward for service retailing (Zhang
et al. (2010)). The model incorporates the effects of service level on the retailer’s pricing
and ordering decisions. In particular, the retailer is interested in determining the prices
corresponding to its selling channels to maximize its expected profit when the order quantity
satisfies the constraints at a service level. In our settings, each channel’s demand depends not
only on its related price but also on the other channels’ prices. Given the potential market
stochastic demand, each channel’s demand is determined through an attractive model (a
function of all the selling prices across channels). The price-setting single-period newsvendor
model then determines the profit of each channel. Thus, the proposed model applies to
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2.1 Introduction 19

seasonal products as well as products with short life cycles. It is also applicable to perishable
products when units carried on the shelf are all of the same age.

The optimization problem aims to maximize the retailer’s total expected profit while
respecting a target service level for each channel. We focus on the relationship between
expected profit and the service level for a price-setting multichannel model since the service
level (SL) is frequently used by inventory managers as a metric to measure business quality
and set the inventory policy, rather than using the shortage cost to represent the economic
consequence of a stock out (Abad (2014); Wei et al. (2021)). Thus, the equality constraints
are set initially on the α-type service level - the probability that the demand does not exceed
the order quantity. Consequently, it is a non-linear chance-constrained problem, and given the
equality constraints, there are numerous mathematical difficulties. Most of these are related
to structure, the stability of transforming chance constraints into deterministic constraints,
and the existence and uniqueness of the optimal solution.

This might raise a question concerning the convergence of numerical methods to de-
termine the solution. Consider a particular form of the attractive model with deterministic
demand, the multinomial logit model Hanson and Martin (1996) construct an example in
which the profit function is not jointly concave (and also, not jointly quasi-concave) on its
decision variables (prices across channels and related order quantities). Thus, in our setting,
when demand is stochastic, without the service level constraints, the profit function is not
jointly concave (and quasi-concave) in both prices and order quantities. Therefore, deter-
mining the optimal solution for the optimization problem without constraints may require a
complex and difficult search procedure.

Despite these challenges, we prove that the optimization problem under the service level
requirements behaves well mathematically. In particular, we transform the initial pricing
problem (when the decision variables are both prices and order quantities and the objective
function is not jointly quasi-concave) to an equivalent unconstrained problem in which
the decision variables are only the prices. We show the existence and uniqueness of a
vector of prices that satisfies the first-order conditions. This is the optimal solution to the
equivalent unconstrained problem with a non-linear objective function and stochastic non-
linear attraction channel demand. It implies that a single vector of prices and order quantities
exists that solves the initial multichannel pricing problem under the inventory service level.
Thus, a simple search procedure should be sufficient to find the optimal solution.

The main contributions of this chapter could be summarized as follows:

• Multichannel demand modeling: We introduce a multichannel stochastic demand
model on which a series of advanced multichannel retail studies and decisions can
be built. While considering that the potential market demand faces uncertainty, our
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20 Optimal pricing for a multichannel stochastic demand with service levels

model employs the attraction choice model to quantify the proportion of each channel’s
demand and the cross-channel interactions. This framework enables us to simulate
multichannel demand for big retail chains that launch many stores (or channels).

• Multichannel price optimization with stochastic demand: We study a single-period
product’s multichannel pricing problem (MCPS) when the potential market demand
meets uncertainty with known distribution. The MCPS objective is to maximize
total expected profit across all channels while satisfying service-level performance
constraints. Although the objective function of MCPS is not jointly concave on its
decision variables (prices across channels), we show that there exists a unique solution
to the first-order conditions under mild assumptions, and that this is the global solution
to our MCPS problem. The solution procedure should be computationally efficient in
calculating the optimal price.

• Management value assessment: We perform a management value assessment based
on a numerical analysis for different SL settings. We analyze the variation of optimal
prices, order quantities, market share, and expected profit with SL. The case study
illustrates that when the service level is high enough, there is always a trade-off between
the total expected profit and the service level. This suggests that inequality-constrained
and equality-constrained problems are equivalent if the minimal service level (and
target service level) is high enough.

2.2 Literature review

2.2.1 Service level and inventory management

One of the most fundamental and difficult core problems in inventory management is to
increase profits over time while offering high-quality customer service in the presence of
demand uncertainty. Many inventory systems can be classified as either a backorder, a
lost-sales system, or a combination of the two.

In the inventory control literature, backorder and lost-sales inventory models have been
widely examined in the so-called canonical cost-based model, where there is no specific
targeted service level guarantee, and the goal is commonly to minimize the predicted total
holding, ordering, and stock-out costs (Zipkin (2000)). A widespread misconception is
that optimizing a lost-sales inventory system is considerably more difficult than optimizing
a backorder inventory system when there is positive lead time (i.e., the time lag between
when a purchase order is placed to replenish products and when the order is received in the
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warehouse). While the backorder system typically has an ideal order-up-to (or base-stock)
policy (e.g., Zipkin (2000)), the lost-sales system is complicated to analyze, and the structure
of its optimal policy appears to be little understood. As an exact solution is unavailable (for a
literature overview, see Bijvank and Vis (2011)), asymptotic analysis has been provided by
many academics.

While much of the inventory literature has previously concentrated on the cost-based
model due to analytical tractability rather than proper characterization of reality (Bertsimas
and Paschalidis (2001)), there are also works in the literature that study inventory policy
using a so-called service-based model. This is because the cost of unfulfilled demand is
frequently challenging to quantify in practice (e.g., Chen and Krass (2001)). Service level is
therefore generally employed as a more direct criterion for evaluating the performance of
inventory replenishment procedures (Ghiani et al. (2004)).

In practice, the notion of service levels is actually frequently used. Service levels are
one of the key performance indicators used by many businesses, including Walmart (Xin
et al. (2017)). Service level agreements are severely enforced in some industries (such
as semiconductors) to ensure product delivery (Katok et al. (2008)). When determining
reorder points or order-up-to levels, the enterprise resource planning system SAP Retail (a
commercial version of ECC 6.04) uses only service level (Rawe (2008)). Research by Jing
and Lewis (2011), Craig et al. (2016) shows that inventory service levels and stockout rates
have a significant influence on demand.

There are several ways to determine a service level in inventory literature. The event-
oriented α-service level (or “ready rate") is defined as the probability of no stock-out. The
quantity-based β -service level (or “fill rate") is defined as the proportion of total demand
instantaneously satisfied without time lag, capturing the stock-out event and the amount of
stock-out. The time-and-quantity-related γ-service level is defined to represent the number
of backorders and the time it takes for the backorder requests to be fulfilled. Among these
three, the α-service level is one of the most commonly utilized service level criteria in both
the literature and practice of inventory management (e.g., Rawe (2008), Snyder and Shen
(2019), Jiang et al. (2019)). Our research adopts the α-type service level as a performance
constraint for our model.

In inventory management, one line of study is to investigate the inventory models under
service level constraints in a multi-period setting. Bitran and Yanasse (1984) propose a
deterministic approximation to stochastic production problems. Chen and Krass (2001)
study an inventory model with periodic review, constant lead time, and i.i.d. demands under
minimal service level constraints. Wei et al. (2021) investigate a deterministic approximation
of inventory systems given the constraints on sequential α-service level. Sachs et al. (2022)
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analyze a manufacturer’s ordering decisions from the perspective of a multi-product, multi-
period problem with an aggregate service-level constraint in which the problem can be broken
down on a daily basis and considered as a single-period problem.

Another line of research is investigating the effect of service level on the single-period
models. In the inventory world, the single-period problem is often referred to as a newsvendor
problem.

The newsvendor problem is one of the main issues in operations management. The
fundamental model considers a decision-maker who must choose how many perishable
products to order to maximize expected profit in the presence of stochastic demand. Its
natural extension, the problem of price-setting or a monopolistic newsvendor, has been
studied extensively. Many model variations and extensions have been developed in the
literature (Choi (2012)). A review of these models is provided by Petruzzi and Dada (1999).

The service level is useful for a newsvendor-based problem. In particular, when demand
faces uncertainty, the newsvendor must make an implicit tradeoff between profit and the
potential loss of goodwill and future profits related to a stock-out situation. The difficulty
is reduced using the shortage cost technique to either maximize implicit profit or minimize
implicit cost. However, it can be challenging to estimate the cost of a shortage. Practitioners
interpret the service level and cost as conflicting goals and the inventory control as a dual-
criterion issue. It follows that they will prefer the service level approach when it is available
(Abad (2014)).

In general, it is noteworthy that the α-service level is helpful for single-period problems.
In particular, solving a single-period problem with underage (u) and overage (h) unit cost
configuration is equivalent to solving it by setting the probability of not stocking out, i.e.,
the service level equal to the ratio u

u+h . Even if it is not explicitly mentioned as a metric
in solving the single-period problem, the service level is used. Results deduced from the
single-period model could moreover be applicable in a multi-period setting under some
conditions where the latter is a series of independent single-period problems. This is the case
of myopic policies. Veinott Jr (1965a,b) established a set of conditions for optimizing the
myopic base stock policy for different dynamic inventory settings. Heyman and Sobel (1984)
provide some practical examples where solving the dynamic multi-period problem is as easy
as solving an equivalent static single-period problem. This is the case, for instance, when a
retailer uses debt financing, ensuring that the preference is to avoid storing unsold items and
ordering each selling period (Heyman and Sobel (1984)). Perishable products which should
be disposed of at the end of each period could fit with a myopic policy.

Existing inventory papers that consider α-service level constraints in a single-period
setting include Jammernegg and Kischka (2013), Abad (2014), and Jiang et al. (2019).
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Jammernegg and Kischka (2013) study the optimal ordering decisions under the condition
that the service level must be greater than the critical service level, and the probability
of actual profit being negative must be lower than the predetermined limit. Abad (2014)
investigates a price-setting single-channel newsvendor model under service level with both
additive and multiplicative demand uncertainty, and studies its optimal strategy. Jiang et al.
(2019) study a model that incorporates the service-level constraints and the penalty cost for
each unsatisfied demand. Both of them consider a single-channel scenario.

Compared to the existing models in the service level literature, our model shares similari-
ties in the adoption of α-service level as the constraint for a single-period model. However,
unlike the existing literature, we focus on studying the optimal decisions for a price-setting
newsvendor-based model in a multichannel configuration.

2.2.2 Multichannel and pricing decisions

In business management, multichannel and its particular case of a dual-channel supply chain
are the clusters for inventory management research with several challenges of demand mod-
eling, price optimization, and inventory decision-making (Tsay and Agrawal (2004)). In
the multichannel literature, the studies focus on channel selection (Matsui (2018); Zhang
et al. (2017)), channel coordination (Atan et al. (2018); Gallino et al. (2017); Haitao Cui
et al. (2007)), channel competition (Bernstein et al. (2009); Lan et al. (2018); Ouardighi et al.
(2013)), and pricing with decision optimization (He et al. (2020)). Despite recent investiga-
tions on multichannel retailing, few studies consider the impact of channel integration on
store operations and how retailers should respond (Mou et al. (2018)).

There are several options for choosing the demand model, depending on the features it
captures and the relevant estimation parameters using historical sales data. Attraction demand
models are one of the most often employed demand functions to characterize buyer behavior
in the marketing, economics, and revenue management literature, both in empirical studies
and theoretical models (see Leeflang and Wittink (2000)). They generalize the widespread
multinomial logit (MNL) and multiplicative competitive interaction (MCI) demand models,
which are based on the random utility theory of economics (Harsha et al. (2019)). According
to Luce (1959), the attraction demand model can be axiomatically constructed from basic
presumptions about customer behavior. The attraction demand model, as detailed in Anderson
et al. (1992) and Lariviere (1999), has been used successfully in econometric research to
estimate demand and is becoming more widely recognized in marketing (Besanko et al.
(1998)). For its uses in the operations management community, see So (2000), Bernstein and
Federgruen (2004), Gallego et al. (2006), Harsha et al. (2019), and references therein.
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In the multichannel field, we employ these attraction demand functions to simulate
consumer demand and the channel choice of a consumer. The multichannel demand model
that comes closest to ours is the one in Harsha et al. (2019), which analyzes a joint price and
fulfillment planning problem. However, three critical features differentiate their work from
ours. First, in a price-setting newsvendor framework, we consider the service-level measure
“non-stockout probability", which results in a more sophisticated objective function. Second,
Harsha et al. (2019) essentially assumes deterministic demand functions. In comparison,
we assume stochastic demands. Third, we consider a general multichannel setting without
requiring that the prices be the same for some channels. Thus, our work complements theirs
in certain dimensions, to set it closer to practical considerations in retailing.

Our research is related to the existing literature on pricing decisions of a multichannel
supply chain. In marketing and operations management, pricing and inventory decisions
of multichannel retailing have received considerable attention (Li and Mizuno (2022)).
The multichannel supply chain’s pricing and inventory control problem has been studied
in some works in a multi-period setting, with the assumption that the demand in each
channel is deterministic. These works have endeavored to bring managerial insights and
perspectives to increase long-term company profitability (He et al. (2020); Li et al. (2021);
Moon et al. (2010)). Several works have studied the determination of optimal prices and
inventory/order quantities for a multichannel supply chain with uncertain demand in a
single-period environment. Dumrongsiri et al. (2008) have developed a model involving a
manufacturer and a retailer over a consumer choice process with a price and service quality-
sensitive demand. Huang et al. (2021) examine the optimal pricing decisions of both retailer
and manufacturer with the stochastic demand in a Stackelberg game framework. Lan et al.
(2018) analyze competition and coordination in a three-tier supply chain with two competing
suppliers. Modak and Kelle (2019) investigate inventory decisions of a multichannel supply
chain when stochastic consumer demand depends on both price and delivery time. Qiu et al.
(2021) formulate a Stackelberg game model for a multichannel supply chain under different
order fulfillment policies and study pricing, ordering, and order fulfillment decisions with a
distribution-free approach.

To the best of our knowledge, there is no research that explicitly analyzes retailers’
pricing and ordering problems in a multichannel environment when the service level acts as
a performance constraint. Thus, in line with this research stream, we study the multichannel
optimal pricing and ordering decisions, given the service level constraints.
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2.3 Proposed multichannel stochastic demand and opti-
mization problem

2.3.1 Multichannel stochastic demand model

In this section, we present the design of a stochastic multichannel demand framework to
quantify cross-channel demand interactions on which a series of advanced retailing decisions
can be built.

Let us consider a multichannel retailer selling a single perishable product to customers
through n channels I = {1,2, . . . ,n}. Let ri be the price for the product sold via channel
i ∈ I, and rrr = (r1,r2, . . . ,rn) be the corresponding vector of prices in all the channels. Let
DDD = (D1,D2, . . . ,Dn) be the vector of demand in all the channels. In order to simulate
customer preferences across channels in a multichannel environment, we assume that the
demand for the product in a specific channel depends on the attributes of all the channels.

There are several options for selecting the demand model, depending on the attributes
it captures as well as the practical estimation parameters using past sales data. In the
marketing, economics, and revenue management literature, attraction demand models are one
of the most widely used demand functions to describe consumer choice. They are based on
economics’ random utility theory and generalize the well-known multinomial logit (MNL)
and multiplicative competitive interaction (MCI) demand models (Harsha et al. (2019)). In
the multichannel research field, we employ these attraction demand functions to simulate
consumer demand and the channel choice of a consumer. In particular, we assume that the
demand Di of channel i has the following form:

Di(rrr) = Potential Market Size∗Market Share of channel i (2.1)

= ξ
gi(ri)

g0 +∑i∈I gi(ri)
, (2.2)

where ξ is the market size, gi(ri) is the attraction function of buyers to channel i, g0 is the
attractiveness of the no-purchase option, assumed to be positive.

This demand modeling framework for the multichannel environment accurately quantifies
cross-channel demand interactions. The potential market size shows the upper bound of the
number of people who are interested in the product, whereas the market share, also known
as the purchase/choice probability, describes how people choose amongst multiple options,
including not buying. Here, the potential market size, ξ , is assumed to be stochastic. It is
treated as a continuous random variable, characterized by its probability density functions
(PDF) fξ (x) and cumulative distribution functions (CDF) Fξ (x). The model is thus referred to
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as the stochastic multichannel demand model. It is similar to the Luce selection model (Luce
(1959)). In the literature, there are some commonly used attraction models: linear attraction
model: gi(ri) = ai − biri, with ai > 0,bi > 0,minai − biri > 0; multinomial logit (MNL)
model: gi(ri) = exp(ai − biri) with ai > 0,bi > 0; multiplicative competitive interaction
(MCI) model: gi(ri) = air

−bi
i with ai > 0, bi > 1 (Gallego et al. (2006)). In general, ai, bi are

constants that ensure the negative price elasticity of demand. We assume that the attractive
function satisfies the following standard conditions.

Assumption 1. Consider an attraction function g : R→ R+. It then satisfies:

i. g(·) is strictly decreasing and is twice differentiable on R,

ii. limx→∞ g(x) = 0, and limx→∞ xg(x) = 0.

Assumption 1 states that the attractiveness of a channel is decreasing in its corresponding

price. This assumption implies that
gi(ri)

g0 +∑i∈I gi(ri)
is decreasing in ri and increasing in ri′ for

i′ ̸= i, which can be interpreted as follows: the expected demand for channel i is decreasing
in its own retailing price and increasing in the retailing prices of the other channels. It also
ensures that a channel’s contribution (channel’s demand) becomes zero as its price becomes
arbitrarily large.

Our formulation includes information about the no-purchase part. It refers to the instances
when consumers find all the available purchase choices less attractive. Mathematically, it
refers to the component ξ

g0

g0 +∑i∈I gi(ri)
. In practice, g0 is often normalized by setting

g0 = 1 (Harsha et al. (2019); Subramanian and Harsha (2021)).
The next section investigates a pricing problem based on the stochastic multichannel

demand model.

2.3.2 Multichannel price optimization with stochastic demand and ser-
vice level

In this section, we propose a multichannel pricing optimization framework for seasonal
perishables as well as products with short life cycles. The purpose is to find the best
prices across all channels, taking into account a variety of retailer goals and actual business
standards. We focus on the relationship between the retail chain’s expected profit and the
service level. This link is essential since practitioners prefer to investigate the economic
consequences of a stock out using the service level measure rather than the shortage cost
(Abad (2014); Wei et al. (2021)).
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2.3 Proposed multichannel stochastic demand and optimization problem 27

In our proposed stochastic multichannel pricing framework, the newsvendor model is
used to determine the order quantity and the selling price for every single channel. The
newsvendor approach is used for inventory management of seasonal products, products with
a short life cycle, or perishable products like clothing, electronics, and so on. It can also be
used to support long-term strategic capacity investment (Van Mieghem (2003)). Thus, our
stochastic multichannel pricing model is generally valid for any type of product, such that the
newsvendor strategy is applicable. From a mathematical perspective, it allows the integrated
pricing problem across the retail chain to be seen as a single-period pricing problem.

Using the notation introduced in Section 2.3.1, for each channel i∈ I, let ci denote the unit
item retailing cost (including purchase cost, operating cost, and shipping cost if necessary)
(ci ≤ ri); si (0 ≤ si ≤ ci) the unit salvage value; and Qi (Qi ≥ 0) the order quantity. Let QQQ be
the vector of order quantity, ccc be the vector of retailing cost per unit, and sss be the vector of
salvage values for unsold units left at the end of the period. If Qi ≥ Di, then Qi −Di units are
left over at the end of the period and are salvaged for a per unit value of si; and if Qi < Di,
then Di −Qi units cost the retailer zero per unit. At the end of the selling season, the actual
profit for the retailer from channel i ∈ I is

Πi (Di,Qi,ri) = ri min(Di,Qi)+ si(Qi −Di)
+− ciQi. (2.3)

The retailer’s total actual profit at the end of the selling period is

ΠΠΠ = ∑
i∈I

Πi (Di,Qi,ri) . (2.4)

The retailer wants to optimize the profit. However, the retailer is unable to determine
the actual end-of-selling period profit because the demand was not realized at the start of
the selling season. As a result, the classical method to solve the optimization problem is to
assume a risk-neutral retailer who makes the best pricing decision at the start of the sales
season in order to maximize the overall expected profit.

In this research, the α-service level is considered as the performance constraint since
it is useful for retailers to evaluate the quality of their selling process (Abad (2014); Wei
et al. (2021)). Recall that the service level related to channel i ∈ I is the probability that the
demand does not exceed the order quantity P(Di ≤ Qi). Let SLi ∈ [0,1] be the target service
level related to channel i, specified by the retailer. Thus, the equality constraint on SL for
channel i is

P(Di ≤ Qi) = SLi. (2.5)
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28 Optimal pricing for a multichannel stochastic demand with service levels

The general non-linear multichannel price optimization problem with stochastic demand
and target service level denoted by MCPS-I is as follows.

max
Qi,ri

∑
i∈I

E[Πi (Di,Qi,ri)]

s.t. P(Di ≤ Qi) = SLi,∀i ∈ I

ri ≥ ci,∀i ∈ I

Qi ≥ 0,∀i ∈ I.

(MCPS-I)

The decision variables in the above formulation are the prices and order quantities in all
channels, and the objective is to maximize the total expected profit of the retailer across the
retail chain.

For all i ∈ I, denote

Gi(rrr) =
gi(ri)

g0 +∑i∈I gi(ri)
. (2.6)

It follows that
Di(rrr) = ξ Gi(rrr). (2.7)

Given Assumption 1, it is obvious that 0 < Gi < 1 and ∑i∈I Gi < 1. Hence, Gi(rrr) can be seen
as the proportion of market sharing of channel i.

Thus, the expected profit for channel i ∈ I,

E[Πi (Di,Qi,ri)] = E[Πi (ξ Gi(rrr),Qi,ri)] := Πi (Qi,rrr) , (2.8)

is a function of the corresponding channel order quantity and all the retailing prices. The
explicit formula is given in the Remark 1 as follows.

Remark 1. The expected profit for each channel i ∈ I is as follows.

Πi (Qi,rrr) = (ri − si)Gi(rrr)E[ξ ]− (ci − si)Qi

− (ri − si)Gi(rrr)
∫

∞

Qi
Gi(rrr)

(
x− Qi

Gi(rrr)

)
fξ (x)dx. (2.9)

Proof. Sketch of the proof. We embed the Eq. 2.7 into the objective function of Problem
MCPS-I and proceed with a process of algebraic transformation and simplification. See
Appendix A.3.1 for the detail of the proof.

However, it is not possible to verify if ∑i∈I Πi(Qi,rrr) is jointly concave on all its variables
(all (Qi)i∈I and (ri)i∈I). Thus, the (unconstrained) problem of maximizing ∑i∈I Πi(Qi,rrr)
includes difficulties (algorithmic, computational approaches) in finding global solutions.
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From the service level constraint given in Eq. 2.5, we have

SLi = P(Di ≤ Qi) = P(ξ Gi(rrr)≤ Qi) = P
(

ξ ≤ Qi

Gi(rrr)

)
= Fξ

(
Qi

Gi(rrr)

)
(2.10)

⇔ F−1
ξ

(SLi) = F−1
ξ

(
Fξ

(
Qi

Gi(rrr)

))
=

Qi

Gi(rrr)
. (2.11)

Or equivalently,
Qi = Gi(rrr)F−1

ξ
(SLi) . (2.12)

Therefore, we can derive the relationship between the order quantity of each channel with
respect to the retailing prices across channels, which is given in Proposition 1 as follows.

Proposition 1. Consider a non-negative random variable ξ , if SLi > 0, then

i.
∂Qi

∂ ri
(rrr)< 0.

ii.
∂Qi

∂ r j
(rrr)> 0.

Proof. Note that by Assumption 1, we have gi(ri)> 0, g′i(ri)< 0, 0 < Gi(rrr)< 1 for all i ∈ I.
Moreover, F−1

ξ
(SLi)> 0, since

F−1
ξ

(SLi)> 0 ⇔ Fξ (F
−1
ξ

(SLi))> Fξ (0)⇔ SLi > Fξ (0)⇔ SLi > P(ξ < 0)⇔ SLi > 0.

(2.13)

Thus, the results are deduced from the representations as follows.

∂Qi

∂ ri
(rrr) =

∂Gi

∂ ri
(rrr)F−1

ξ
(SLi) =

g′i(ri)

gi(ri)
Gi(rrr)(1−Gi(rrr))F−1

ξ
(SLi)< 0, (2.14)

∂Qi

∂ r j
(rrr) =

∂Gi

∂ r j
(rrr)F−1

ξ
(SLi) =−

g′j(r j)

g j(r j)
Gi(rrr)G j(rrr)F−1

ξ
(SLi)> 0. (2.15)

Proposition 1 states that the order quantity of each channel decreases with its correspond-
ing retailing price and increases with other channels’ retailing prices. Or, equivalently, the
order quantity has the property of price elasticity.

Given the service level requirements, Eq. 2.12 gives us a relation between order quantity
and retailing price so that the decision variables of the optimal problem MCPS-I are only the
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30 Optimal pricing for a multichannel stochastic demand with service levels

prices across channels. The expected profit for channel i ∈ I,

E[Πi (Di,Qi,ri)] = E
[
Πi

(
ξ Gi(rrr),Gi(rrr)F−1

ξ
(SLi) ,ri

)]
:= Πi(rrr), (2.16)

is a function of only the retailing prices. The explicit formula is given in the Remark 2 as
follows.

Remark 2. Given the constraints on service level, the expected profit for channel i ∈ I is
represented as follows

Πi(rrr) = Gi(rrr)

[
(ri − ci)F−1

ξ
(SLi)− (ri − si)SLiF−1

ξ
(SLi)

+(ri − si)
∫ F−1

ξ
(SLi)

−∞

x fξ (x)dx

]
. (2.17)

Proof. Sketch of the proof. We embed the Eq. 2.12 into the expected profit function given in
Remark 1 and proceed with a process of algebraic transformation and simplification. See
Appendix A.3.2 for detail of the proof.

Consider a non-negative potential market demand ξ . Since SLi ≥ 0, then F−1
ξ

(SLi)≥ 0.
Thus, Qi ≥ 0. Let Ω = [c1,∞)× [c2,∞)× ·· ·× [cn,∞) be the feasible domain for rrr. The
multichannel price optimization problem with stochastic demand and target service level
MCPS-I becomes

max
rrr∈Ω

∑
i∈I

Πi(rrr) (MCPS-II)

The optimization problem MCPS-II is a non-constrained optimization problem and
equivalent to the initial multichannel pricing problem MCPS-I. The decision variables for
Problem MCPS-II are only prices across channels.

In the next section, we prove that the objective function of Problem MCPS-II behaves
well mathematically. Although it is difficult to examine the joint concavity, we show that
there exists a unique solution to the first-order conditions, and it is the global solution for
Problem MCPS-II.

2.4 Solution of integrated multichannel pricing problem

In general, the difficulty in dealing with stochastic multichannel pricing problem MCPS-I is
that the corresponding objective function is not jointly concave in all the decision variables
(prices and order quantities). Given the constraints on service level, we can transform the
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Problem MCPS-I into an equivalent problem, which is the Problem MCPS-II. In this section,
we show that the objective function of Problem MCPS-II is mathematically well-behaved
under a set of assumptions. In particular, there exists a unique solution to the first-order
conditions, which is the unique solution of Problem MCPS-II. Consequently, there is a unique
vector of prices and order quantities solving the integrated stochastic multichannel pricing
Problem MCPS-I, derived via the optimal solution of Problem MCPS-II.

Recall that a C 2 multi-variable function is jointly concave at a point if its associated
Hessian matrix is negative semi-definite Boyd et al. (2004). To examine the existence
and uniqueness of the solution of Problem MCPS-II, the general approach of checking
the negative semi-definiteness of the Hessian matrix at all the points in the domain is not
applicable. We therefore use a novel approach based on a property where a function has
a unique stationary point if: (i) there exists at least one point such that the gradient of
the function at this point is zero and (ii) at all the stationary points, it follows that the
corresponding Hessian matrix is a diagonal matrix with strictly negative elements on its
diagonal. Note that statement (ii) is a sufficient condition for strict concavity at a point. Thus,
it can be seen that if we have a good structure (a particular form for associated Hessian
matrices) for all the zero-gradient points, the objective function also has a good structure
(uniqueness of the stationary point). The property is represented in two lemmas for the
uni-dimensional and multi-dimensional cases, Lemma 1 and Lemma 2, which are shown
later in this section.

Consider Problem MCPS-II. It is challenging to analyze the joint concavity of the
objective function of Problem MCPS-II since it is impossible to check if its associated
Hessian matrix is negative semi-definite at every point in Ω. Despite the difficulties, we
claim that the function

Π(rrr) := ∑
i∈I

Πi(rrr) (2.18)

is well-behaved, given a set of assumptions as follows.

Assumption 2. For all i ∈ I, let ζi(ri) :=
g′i(ri)

gi(ri)
. Consider the potential market ξ . It satisfies

i. ξ ≥ 0, E[ξ ]< ∞

ii. limri→∞ ζi(ri)>−∞, ζi(ri)−
ζ ′

i (ri)

ζi(ri)
< 0

iii. ∃ccc∗∈ Ω : ∇Π(ccc∗)> 000.

Assumption 2.i guarantees that the demand is non-negative and has a finite expectation.
If the support of ξ contains a negative part, its truncated version can be used to restrict
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32 Optimal pricing for a multichannel stochastic demand with service levels

the domain. When Assumption 2.i is satisfied, then F−1
ξ

(SLi) ≥ 0. Thus, Qi is obviously
non-negative for all i ∈ I.

Assumption 2.ii is rather technical and not very restrictive. For instance, the assumption
is satisfied for linear, MCI, and MNL attraction functions. By Assumption 1, we deduce that
ζi(ri)< 0 for all ri.

From a management interpretation point of view, Assumption 2.iii states that there is
a vector of prices, ccc∗, in the domain so that the related expected profit increases when we
increase a small value of prices. For simplicity, one can consider that ccc∗ equal to ccc, the
lower bound of the prices. Mathematically, Assumption 2.iii is to secure the existence of a

point rrr∗ satisfying
∂Π

∂ ri
(rrr∗) = 0 for all i ∈ {1,2, . . . ,n} (solution to the first-order conditions).

Moreover, to our best understanding through experiments, the solution to the first-order
conditions exists without Assumption 2.iii, but no analytical proof is available.

Assumptions 1 and 2 ensure the existence and uniqueness of the stationary point of Π(rrr).
To provide the structural results on the stochastic multichannel pricing problem MCPS-I, we
now introduce two key lemmas mentioned at the beginning of this section.

Lemma 1. Given a real number a, let ψ : [a,∞)→R be a C 2 function of the single variable
u. Suppose that

i. There exists at least one point u∗ ∈ [a,∞) such that ψ ′(u∗) = 0,

ii. At any u∗ that satisfies ψ ′(u∗) = 0, it follows that ψ ′′(u∗)< 0.

Then, there exists a unique u∗ that satisfies ψ ′(u∗) = 0, and u∗ is the argument of the maxima
of ψ(·).

Proof. From the first part of the lemma, there exists at least one point u such that ψ ′(u) = 0.
We need to prove its uniqueness.

Let u∗ = min{u|ψ ′(u) = 0}. By definition, we have ψ ′(u∗) = 0 and from condition (ii),
ψ ′′(u∗)< 0. Thus, u∗ is a local maximizer of ψ(·). Moreover, ψ ′′(u) is a continuous function.
Therefore, by the fundamental theorem of integral calculus, there exists an ε > 0 such that
ψ ′(u)< 0 for u ∈ (u∗,u∗+ ε).

Now, assuming that there exists at least one point u such that u > u∗ and ψ ′(u) = 0. Let
u∗∗ = min{u|u > u∗,ψ ′(u) = 0}. By the definition of u∗∗ and the continuity of ψ ′(u), ψ ′(u)
does not change its sign between two zero points u∗ and u∗∗. As ψ ′(u)< 0 for u∈ (u∗,u∗+ε),
we deduce that ψ ′(u)< 0 for u ∈ (u∗,u∗∗).

Besides, by the condition (ii) of the lemma, we have ψ ′′(u∗∗)< 0, or u∗∗ is also a local
maximizer of ψ(·). Thus, there exists an η > 0 such that ψ ′(u)> 0 for u ∈ (u∗∗−η ,u∗∗),
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which is a contradiction to the above property that ψ ′(u)< 0 for u ∈ (u∗,u∗∗). Thus, no such
a u∗∗ exists.

Lemma 2 extends the result of Lemma 1 in the multi-dimensional case as follows.

Lemma 2. Given a real value vector aaa = (a1,a2, . . . ,an) ∈Rn, let Ψ : W1×W2×·· ·×Wn →
R,Wi = [ai,∞)⊂ R, be a C 2 function of uuu = (u1,u2, . . . ,un) ∈W1 ×W2 ×·· ·×Wn. For all
i ̸= j, and i, j ∈ I = {1,2, . . . ,n}, suppose that

i. There exists at least one point uuu∗ such that ∇Ψ(uuu∗) = 000,

ii. At all the points uuu∗ mentioned above,
∂ 2Ψ

∂u2
i
(uuu∗)< 0 and

∂ 2Ψ

∂ui∂u j
(uuu∗) = 0 ( j ̸= i) hold

true.

Then, there exists a unique vector uuu∗ that satisfies ∇Ψ(uuu∗) = 0, and uuu∗ maximizes Ψ(···).

Proof. Sketch of the proof. We prove this by induction on the number of dimensions of space.
The base case holds true from Lemma 1. The induction step is proved by using the induction
hypothesis and envelope theorem. See Appendix A.1.1 for the detail of the proof.

From now, to simplify and shorten the formulations, for all i ∈ I, let us denote

i. αi := F−1
ξ

(SLi),

ii. Ai :=
∫

αi
−∞

x fξ (x)dx,

iii. Ui := αi(1−SLi)+Ai,

iv. Vi(ri) := αi
[
(ri − ci)− (ri − si)SLi

]
+(ri − si)Ai.

Given SLi, αi,Ai, and Ui are constants. Vi(·) is a function of ri only. Furthermore,
Πi(rrr) = Gi(rrr)Vi(ri) and Π(rrr) = ∑i∈I Gi(rrr)Vi(ri).

Remark 3. Assume that SLi > 0 for all i ∈ I. We then have

i. αi > 0

ii. Ai > 0

iii. Ui > 0

iv. Vi(ci)< 0

v. Ui < αi
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vi. Ui is an increasing function in αi and SLi.

Proof. i. αi = F−1
ξ

(SLi). If ξ is a non-negative random variable and SLi > 0 then αi > 0.
ii. Ai =

∫
αi
−∞

x fξ (x)dx. If ξ is a non-negative random variable and SLi > 0, then αi > 0,
thus Ai =

∫
αi
0 x fξ (x)dx > 0.

iii. Ui = αi(1−SLi)+Ai. If ξ is a non-negative random variable and SLi > 0, then αi > 0
and Ai > 0, thus Ui ≥ 0.

iv. Sketch of the proof. We have Vi(ci) = (ci − si)H(αi), where H(t) := −tFξ (t) +∫ t
−∞

x fξ (x)dx. Then the result follows from H(αi)≤ 0. See Appendix A.3.3 for the detail of
the proof.

v. Note that H(αi) =Ui −αi and H(αi)≤ 0, the result is followed.
vi. Sketch of the proof. Calculate the first-order derivative of Ui with respect to SLi, and

the result is followed. See Appendix A.3.3 for the detail of the proof.

The proposition below shows the relationship between second-order derivatives and cross
derivatives with first-order derivatives of the objective function of problem MCPS-II. It
represents key equations to prove the uniqueness of the stationary point.

Proposition 2. For all i, j ∈ {1,2, . . . ,n}, i ̸= j, we have

i.
∂ 2Π

∂ r2
i
(rrr) =

[
ζi(ri)−

ζ ′
i (ri)

ζi(ri)

]
Gi(rrr)Ui +

[
ζ ′

i (ri)

ζi(ri)
+ζi(ri)(1−2Gi(rrr))

]
∂Π

∂ ri
(rrr),

ii.
∂ 2Π

∂ ri∂ r j
(rrr) =−

{
ζ j(r j)G j(rrr)

∂Π

∂ ri
(rrr)+ζi(ri)Gi(rrr)

∂Π

∂ r j
(rrr)
}
.

Proof. Sketch of the proof. The results are obtained by transformation by combining the
results of Lemma 6, Lemma 5, and Lemma 7 in the appendix. See Appendix A.2.1 for the
detail of the proof.

Remark 4. From Proposition 2 and Remark 3, we deduce that

i. If there exists a point rrr∗ satisfying
∂Π

∂ ri
(rrr∗) = 0, it follows that

∂ 2Π

∂ r2
i
(rrr∗)< 0.

ii. If there exists a point rrr∗ satisfying
∂Π

∂ ri
(rrr∗) =

∂Π

∂ r j
(rrr∗) = 0, it follows that

∂ 2Π

∂ ri∂ r j
(rrr∗) =

0.

iii. If there exists a point rrr∗ satisfying ∇Π(rrr∗) = 000, it follows that
∂ 2Π

∂ r2
i
(rrr∗) < 0 and

∂ 2Π

∂ ri∂ r j
(rrr∗) = 0, for all i, j ∈ {1,2, . . . ,n}, i ̸= j.
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Proof. i. If
∂Π

∂ ri
(rrr∗)= 0, by Proposition 2, it follows that

∂ 2Π

∂ r2
i
(rrr∗)=

[
ζi(r∗i )−

ζ ′
i (r

∗
i )

ζi(r∗i )

]
Gi(rrr∗)Ui.

By Assumption 2 and Remark 3, we have ζi(r∗i )−
ζ ′

i (r
∗
i )

ζi(r∗i )
< 0 and Ui > 0. Note that

0 < Gi(rrr∗)< 1. Thus,
∂ 2Π

∂ r2
i
(rrr∗)< 0.

ii. If
∂Π

∂ ri
(rrr∗) =

∂Π

∂ r j
(rrr∗) = 0, it follows directly from Proposition 2 that

∂ 2Π

∂ ri∂ r j
(rrr∗) = 0.

iii. The result is the consequence of the results in i and ii.

From Lemma 2 and Proposition 2, we obtain the structural results on the multichannel
pricing problem. They are represented in Proposition 3 as follows.

Proposition 3. Suppose that Assumptions 1, 2 hold. Then, there exists a unique point rrr∗

satisfying ∇Π(rrr∗) = 000, and it is the global solution for Problem MCPS-II.
Furthermore, let QQQ∗=(G1(rrr∗)F−1

ξ
(SL1) ,G2(rrr∗)F−1

ξ
(SL2) , . . . ,Gn(rrr∗)F−1

ξ
(SLn)). Then,

(QQQ∗,rrr∗) is the unique global solution to the maximization Problem MCPS-I.

Proof. We claim that there exists a point rrr∗ such that ∇Π(rrr∗) = 000. By Assumption 2, we

have
∂Π

∂ ri
(ccc∗) > 0 for all i ∈ {1,2, . . . ,n}. Thus, to prove the claim, we need to show that

limri→∞

∂Π

∂ ri
(rrr)< 0. We show that limri→∞

∂Π

∂ ri
(rrr) = 0−. Here, the upper-script minus sign

means that limri→∞

∂Π

∂ ri
(rrr) = 0 and

∂Π

∂ ri
(rrr)< 0 when ri is big enough.

Our analysis uses big O notation (Landau’s symbol) to represent the speed at which a
function grows or declines Cormen et al. (2022). For the formal definition, suppose f (x) and
g(x) are two functions defined on some subset of the real numbers. We write f (x) = O(g(x))
(or f (x) = O(g(x)) for x → ∞ to be more precise) if and only if there exist constants N and
C such that | f (x)|<C|g(x)| for all x > N. Intuitively, this means that f does not grow faster
than g.

From Lemma 7, we have

∂Π

∂ ri
(rrr) = Gi(rrr)

{
Ui +ζi(ri)

[
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]}
(2.19)

= Gi(rrr)
{

Ui +ζi(ri)
[
Vi(ri)−Gi(rrr)Vi(ri)−∑

k ̸=i

(
Gk(rrr)Vk(rk)

)]}
. (2.20)
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Note that Ui > 0 is a constant with respect to rrr, and
∂Vi(ri)

∂ ri
=Ui. Thus limri→∞Vi(ri) =∞

and Vi(ri) =O(ri). From Assumption 1, we have limri→∞ Gi(rrr) = 0 and limri→∞ riGi(rrr) = 0,
for all i ∈ {1,2, . . . ,n}. Therefore limri→∞ Gi(rrr)Vi(ri) = 0.

Since ζi(ri)< 0 and limri→∞ ζi(ri)>−∞, we have

Ui +ζi(ri)Vi(ri)< 0 for ri big enough, and Ui +ζi(ri)Vi(ri) = O(ri). (2.21)

Therefore,

lim
ri→∞

∂Π

∂ ri
(rrr) = lim

ri→∞
Gi(rrr)

{
Ui +ζi(ri)

[
Vi(ri)−Gi(rrr)Vi(ri)−∑

k ̸=i

(
Gk(rrr)Vk(rk)

)]}
(2.22)

= lim
ri→∞

Gi(rrr)(Ui +ζi(ri)Vi(ri)) = 0−. (2.23)

Together with Assumption 2, we deduce the existence of such a point rrr∗ satisfying
∂Π

∂ ri
(rrr∗) = 0 for all i ∈ {1,2, . . . ,n}. Together with the results given in Remark 4 and Lemma

2, it completes the proof for Proposition 3.

Remark 5.
From the proof of Proposition 3, limri→∞

∂Π

∂ ri
= 0−. Thus, the Assumption 2 is to

technically provide the existence of a zero point of ∇Π(rrr). Through numerical experiments,
we believe that a zero-gradient point exists without Assumption 2, but no analytical proof
can be provided.

Lemma 2 above assures that if there exists a point satisfying the first-order conditions,
then it is unique. In practice, even if the Assumption 2 is not satisfied, if the zero-point of
the first-order derivatives can be found numerically, then it is not only unique but also the
optimal solution to the proposed multichannel pricing model.

To summarize, in this section, we study a stochastic multichannel optimization problem
under equality constraints on SL. We prove that the objective function of the problem is
well-behaved, given a set of assumptions. In particular, there exists a unique solution derived
from first-order conditions, and a simple search procedure should be sufficient to find the
optimal solution.

Next, we discuss the behavior of the order quantities, market share, and expected profit at
optimal prices by varying the value of SL.
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2.5 Numerical analysis

The previous section proves that our objective function is mathematically well-behaved
under certain assumptions. As in the Remark 5, if there exists a point satisfying the first-
order conditions, it is unique. In practice, even if the Assumption 2 is violated, if the point
satisfying the first-order conditions can be found numerically, then it secures the existence
and uniqueness of the optimal solution to the pricing problem.

In this section, we aim to derive some managerial insights on using the SL constraint in a
multichannel configuration. We provide an analysis of the model given a particular set of
parameters, and we particularly focus on the following questions:

• Does the common knowledge on service levels in inventory control apply similarly
under a multichannel configuration?

• If there is a lower bound for SL, how should the target service level be set for each
channel?

• Is there any trade-off between a higher target SL and the total expected profit?

From a managerial perspective, it would be useful to consider a lower bound at service
level. However, equality in the service level constraint is motivated by the mathematical
complexity of the model. It is worthwhile to notice that the resulting profit function in the
developed framework is generally non-concave and non-linear. Thus, standard non-linear
search procedures may terminate at a local optimum, which is far from the global optimum.
Because of this, finding a global solution may require a sophisticated search procedure
Hanson and Martin (1996); Harsha et al. (2019). According to Hanson and Martin (1996),
“as the logit model approaches the integer programming model at the limit, and the integer
programming optimization problem is NP-hard, it is logical to conclude that optimizing
problems involving logit probabilities are also difficult”. Considering equality constraints,
we are successful in deriving the optimal conditions in a tractable way for attraction profit
functions. In practice, studying optimization problems with inequality (or lower bounds)
on service-level constraints can be seen as the study of several optimization problems with
equality constraints at a service level. In particular, if we assume that the minimal service
level requirement for a single channel is 80%, we can investigate and compare the results of
optimization problems with equality constraints set by 80%, 81%, 82%, . . . , etc., and decide
the pricing strategy. Therefore, in the numerical analysis, we perform a sensitivity study
by varying the target SLi for each channel and deriving managerial insights on the linkage
between these fixed targets and the associated profit expectation/market sharing for each
channel. We do think that the tractable mathematical optimization followed by the sensitivity
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Table 2.1 Optimal prices and related values for given service levels extracted from extended
tables in the appendix

SL1 SL2 r∗1 r∗2 Q∗
1 Q∗

2 G∗
1 G∗

2 G∗
0 Π1 Π2 Π(Q∗,r∗)

0.1 0.1 15.423 18.471 60 156 0.195 0.506 0.298 196.9 510.4 707.3
0.1 0.2 15.678 18.43 48 202 0.155 0.540 0.305 168.1 615.8 783.9
0.1 0.3 15.793 18.447 44 230 0.142 0.545 0.313 158.7 659.8 818.5
0.1 0.4 15.831 18.489 43 248 0.140 0.537 0.322 158.7 671.1 829.8
0.1 0.5 15.81 18.551 45 260 0.148 0.520 0.332 166.1 657.5 823.5

...
...

...
...

...
...

...
...

...
...

...
...

0.9 0.5 15.932 18.605 95 258 0.137 0.516 0.347 183.3 664.1 847.4
0.9 0.6 15.889 18.69 103 264 0.148 0.491 0.360 195.4 630.7 826.1
0.9 0.7 15.813 18.81 116 264 0.167 0.456 0.377 214.2 574.4 788.7
0.9 0.8 15.698 18.994 138 252 0.199 0.402 0.399 243.4 488.3 731.7
0.9 0.9 15.523 19.332 178 215 0.257 0.311 0.433 292.1 353.6 645.7

analysis permits us to make the equality assumption on SL constraint less critical from a
managerial perspective.

For simplicity, let us consider the case with two channels, a particular case of multichannel
(n = 2): a pricing problem with stochastic logit demand in which the online (resp. offline)
channel demand is characterized by a1 = 15 and b1 = 1 (resp. a2 = 19 and b2 = 1). We
assume the non-purchased option is normalized, g0 = 1. With the higher parameter a2, the
offline channel has more selling potential. The unit purchase costs are set by c1 = 12 and
c2 = 15. Here, the smaller value of c1 compared to c2 explains that the total purchase cost
and operation cost for the online channel is lower than those of the offline channel. The unit
salvage costs are s1 = 9 and s2 = 10. We consider a (truncated) normal distribution for the
global market demand ξ ∼ N (500,1502). All the numbers mentioned after this paragraph
are already rounded off.

To produce the following analysis, we first fix a couple of target service levels SL1,SL2.
We then derive the optimal price r∗1, r∗2 corresponding to these target SLs. The resulting order
quantity of channel 1, order quantity of channel 2, total order quantity, market sharing of
channel 1, market sharing of channel 2, total market sharing in two channels, expected profit
of channel 1, expected profit of channel 2, and total expected profit are then deduced given
the target SLs and related optimal price r∗1, r∗2. The SL1,SL2 are varied to investigate their
impact on related indicators (optimal price, order quantity, market sharing, and expected
profit).

Table 2.1 represents the optimal prices and related resulting indicators for a part of the
results when we vary SL1 in [0.1, 0.2, 0.3,. . . 0.9] and SL2 in [0.1, 0.2, 0.3,. . . 0.9]. The full
table of numerical results for this setting is in Appendix Table A.1. Figure 2.1 represents
the visualizations of results related to the scheme that SL1 = SL2 with a step size of 0.01
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(a) The variation of optimal prices with SL (b) The variation of order quantities with SL

(c) The variation of market share with SL (d) The variation of expected profit with SL
(a), (b), (c), (d) evaluated with SL1 = SL2 = SL, and (b), (c), (d) evaluated at the optimal prices.

Figure 2.1 The variation of optimal prices, order quantities, market share, and expected profit
given equal SL.

(see Appendix Table A.2 for the full numerical results). In this scheme, the optimal price
of both the channels, order quantity of channel 2, total order quantity, market sharing of
channel 1, market sharing of channel 2, total market sharing of two channels, expected profit
for channel 1, expected profit for channel 2, and total expected profit curves are concave with
respect to SL. The order quantity of the first channel increases with SL. The maximal order
quantity of channel 1 is 214, attained when SL = 0.99; the maximal order quantity of channel
2 is 233, attained when SL = 0.71; the maximal total order quantity is 393, attained when
SL = 0.91. The maximal market sharing of channel 1 is 26.2%, attained when SL = 0.96;
the maximal market sharing of channel 2 is 51.6%, attained when SL = 0.01; the maximal
market sharing of two channels is 70.7%, attained when SL = 0.01. The maximal expected
profit of channel 1 is 304.9, attained when SL = 0.76; the maximal expected profit of channel
2 is 611.5, attained when SL = 0.37; the maximal expected profit of two channels is 888.8,
attained when SL = 0.45.

This first set of results shows that some of the established and known results in inventory
control no longer apply in our multichannel configuration. It is well known in the classical
inventory literature that the service level is strictly increasing with the ordering quantity.
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Under a multichannel configuration with cross-interactions between channels’ demands, this
common knowledge result does not apply. As illustrated in Figure 2.1, the ordering quantity
for channel 2 decreases with SL for high target SLs. Despite the fact that they both have the
same demand elasticity (b1 = b2 = 1), channel 2’s optimal price considerably increases by
setting a higher target service level, whereas channel 1’s ordering quantity increases when
the target service level is set higher.

It is moreover a common practice in retailing to target high service levels. Setting a
high target service for both channels leads to an increase in the non-purchase option with a
low market share for each channel. This is due to the high pricing “filter" applied by both
channels to achieve these high target SLs. As illustrated in Figure 2.1, the expected profit for
both channels could be negatively impacted by such a strategy. This result is intuitive: for
a higher service level, the retailer has to sacrifice the expected profit. It also suggests that
when the same lower bound on service levels is set high enough, the optimal pricing decision
should be taken at this boundary to maximize the profit. These results imply that the retailer
should take into account the interaction between channels and the trade-off between profit
and service level in order to provide reasonable pricing decisions.

Let us now investigate the scenario where the target service level for each channel is
different. In particular, we focus on a case study where there is a “strict” requirement for
the service level of a single channel and a “flexible” option for the other. For this purpose,
we first assume that channel 1 is “strict" in the choice of the target service level by fixing
its own SL equal to 90%, and we vary the target service level for the second channel with a
step size of 0.01. The full table of numerical results for this setting is in the Appendix Table
A.3. Figure 2.2 illustrates the optimal solution (ordering, pricing, market share, and expected
profit) under this scenario.

When SL1 = 0.9: The maximal order quantity of channel 1 is 272, attained if the retailer
sets channel 2’s target service level equal to SL2 = 0.99. This also corresponds to the highest
expected profit channel 1 could achieve (equal to 391.5). In other words, channel 1 is better
off if the retailer aims to avoid second channel’s shortage by setting a very high target service
level. Channel 1 can profit from such a situation by, in contrast, lowering its selling price
and reaching the highest market share. Concerning the retailer’s decision, if the condition
SL1 = 0.9 target level is set for channel 1, the retailer should set channel 2’s target service
level SL2 = 0.4 to achieve channel 2’s highest profit (676.5) and should set it equal to
SL2 = 0.42 in order to achieve the highest profit for both channels (853.2 as total expected
profit). In practice, if the minimal service level for channel 2 is higher than 42%, the trade-off
between service level and total expected profit can be seen.
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(a) The variation of optimal prices with SL2 (b) The variation of order quantities with SL2

(c) The variation of market share with SL2 (d) The variation of expected profit with SL2
(a), (b), (c), (d) evaluated with SL1 = 90%, and (b), (c), (d) evaluated at the optimal prices.

Figure 2.2 The variation of optimal prices, order quantities, market share, and expected profit
with respect to the SL of channel 2 at a fixed SL level of channel 1: SL1 = 90%.

Conversely, we now assume that channel 2 is “strict" in the choice of the service level
by setting its target level SL2 equal to 90%. We vary SL1 with a step size of 0.01 to analyze
what the best pricing strategy would be if we had a boundary condition for SL1. The related
numerical results for this settings is in the Appendix Table A.4. Figure 2.3 illustrates the
optimal solution (pricing, ordering quantity, market share, and expected profit). It is worth
noticing that the shape of plots is now completely different from those illustrated in Figure 2.2.
For instance, the maximal expected profit of channel 2 is 431.4, attained when SL1 = 0.01.
In other words, channel 2 is better off totally excluding channel 1. If the retailer has to decide
on channel 1’s target service level to derive the highest expected profit from channel 1, based
on channel 2’s ’strict’ condition, he should set it to SL1 = 0.46, which is close to the SL1 level
needed to achieve the highest profit for the two-channels. The maximal expected profit of the
two channels is 722.1, attained when SL1 = 0.5. The latter total profit for the two channels
is lower than the one achieved in the previous case where channel 1 is under the “strict"
condition of the target service level. These results also suggest a trade-off between the profit
and service level of channel 1 when the latter is higher than 0.5. In particular, maximizing
total profit under the minimal service level of channel 1 is equivalent to maximizing total
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(a) The variation of optimal prices with SL1 (b) The variation of order quantities with SL1

(c) The variation of market share with SL1 (d) The variation of expected profit with SL1
(a), (b), (c), (d) evaluated with SL2 = 90%, and (b), (c), (d) evaluated at the optimal prices.

Figure 2.3 The variation of optimal prices, order quantities, market share, and expected profit
with respect to the SL of channel 1 at a fixed SL level of channel 2: SL2 = 90%.

profit under the equality constraint on the minimal service level if the minimal service level
is no less than a certain value.

From a macro vision, the impacts of an increase in service level on the optimal selling
price, order size, market share, and expected profit are indeterminate in the multichannel
attractive demand configurations. However, through the case study, when the service level
is high enough, there is always a trade-off between the total expected profit and service
level. Figure 2.4 illustrating total profit and total market share for the two channels can help
decision-makers set these levels by trading-off economic function and customer satisfaction.
It suggests that inequality-constrained and equality-constrained problems are equivalent if
the minimal service level (and target service level) is high enough.
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(a) The variation of total expected profit (b) The variation of total market share
(a), (b) evaluated at the optimal prices.

Figure 2.4 The variation of total expected profit and total market share with SL1 and SL2.

2.6 Conclusion and future research

This chapter investigates a stochastic multichannel pricing problem under service level
effects on retailers’ pricing and ordering decisions. In particular, each channel’s demand is
a stochastic function of prices. Each channel’s order quantity satisfies the retailer’s service
level constraint. A multiplicative attractive model is employed to quantify the cross-channel
dependencies. Under the constraints on service level and some regular conditions, we reduce
the number of decision variables and prove that the objective function of the multichannel
pricing problem is mathematically well-behaved. In particular, there is a unique global
solution: a vector of prices and order quantities, which corresponds to the zero point of
the gradient of the objective function. The methodology for verifying the existence and
uniqueness of the optimal solution is highlighted when the usual approach of checking the
negative semi-definiteness of the objective function’s associated Hessian matrix at all the
points in the domain is not applicable. This chapter represents a novel approach by looking
at the structure of zero-gradient points and their associated Hessian matrices, which secures
the stationary point’s existence and uniqueness, resulting in a global solution. This method
can also be applied to other objective functions in case they are not jointly concave. Thus, it
enables researchers and retailers to examine more complex profit functions.

We provide a management value assessment based on numerical analysis for various
SL scenarios. We study how the order quantities, market share, and expected profit change
with SL, given the optimal prices in a particular multichannel case study: a dual-channel
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environment. We discovered that some conventional knowledge about inventory control with
the service level does not hold in a dual-channel environment in particular or a multichannel
environment in general. For example, the service level does not always increase when the
number of orders increases. Furthermore, channel coordination is required to trade off
expected profit for different stores, as well as the service levels attained and losses in the
market share. A negative impact for all the parts could be caused by decisions on target
SLs. It also allows an inequality-constrained problem to be seen as an equality-constrained
problem.

For future research, one line of study would be to analyze the optimization problem for a
more extensive collection of demand models (for example, addictive demand) and another
service measure (such as fill rate). It would also be interesting to improve the multichannel
model, which is embedded in the objective function, with multiple choice of ordering and
dynamic pricing. Last but not least, it would be meaningful to investigate the case of a
decentralized supply chain and its effects on the objective function and the optimal solutions.
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Chapter 3

Optimal pricing for dual-channel
retailing with stochastic attraction
demand model

In dual-channel supply chains, where retailers sell their goods both online and in physical
stores, determining the optimal pricing strategy while considering customer behavior is a
critical challenge. This study introduces and investigates a dual-channel pricing model that
accounts for customer channel choice behavior. Drawing inspiration from market-share
models, we incorporate a demand model that reflects the attraction between online and
physical stores. Our approach includes stochastic assumptions for potential market demand
and price-based interactions between the two channels. In particular, we model the channel’s
stochastic demand as a non-linear function of prices and we allow for different customer
reactions when the physical store runs out of stock. This chapter makes two key contributions.
First, we highlight the analytical complexity involved in verifying the joint concavity of the
retailer’s expected profit function with respect to selling prices. To address this challenge,
we introduce a novel approach to establish the existence of optimal global prices in the
context of non-linear demand and a non-linear, non-concave objective function. Secondly,
our study offers practical insights by applying the model to various operational scenarios.
We provide guidance on the best pricing strategy when physical store capacity is limited.
Depending on customer channel preferences, prioritizing the showroom may lead to higher
profits. However, optimizing for profit could result in a reduced market share. In a showroom
configuration, the retailer’s choice may shift between exclusive physical and exclusive online
retailing to maximize profit.
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3.1 Introduction

The practice of selling products and services on more than one sales channel is known as
Multichannel Retail (Levy et al., 2012). Multichannel retailers are businesses that derive their
primary source of income from multichannel retailing. Today’s leading retailers frequently
use a multichannel business strategy, which involves selling their items both offline and online.
These channels typically try to attract various consumer categories and allow retailers to
accommodate diverse buying interests and habits (Kireyev et al., 2017). According to Neslin
and Shankar (2009), research on multichannel management provides important insights
on topics like channel choice (Montoya-Weiss et al., 2003), channel migration (Ansari
et al., 2008), and the value of multichannel versus single channel customers (Kushwaha and
Shankar, 2008). However, there are many remaining managerial and research-related issues
to explore(Liu et al., 2018).

Multichannel and its particular case of a dual-channel supply chain are the clusters for
inventory management study, with various issues concerning demand modeling, inventory
decision-making, and pricing optimization (Tsay and Agrawal, 2004). The inventory of each
channel in a multichannel setting affects how efficiently the orders from the customers are
filled. Sharing the demand through these channels depends moreover on the associated prices,
which raises another challenge. Despite recent investigations on multichannel retailing, few
studies take into account the influence of cross-channel interaction and channel integration
on store operations and how retailers should respond (Mou et al., 2018).

Profitability in retailer pricing has become a paramount concern. While attempting
to maximize profitability, retailers must pay attention to every marketing mix component.
Pricing has always been a crucial strategic aspect for them to “get right" (Kireyev et al.,
2017). A typical supermarket today has thousands of items, is bigger than ever, and is a part
of a much larger retail chain due to mergers and acquisitions (Bolton et al., 2010). Retailers
are therefore challenged to develop a coherent and profitable pricing strategy (Bolton and
Shankar, 2018).

This chapter presents a cross-channel price interaction-based framework that structures
the customers’ demand and decision process, so that the retailer can develop and implement
a dual-channel pricing strategy. We concentrate on product rather than service retailing
since product management and delivery issues are significantly more straightforward for
service retailing (Zhang et al., 2010). We consider the problem of optimal pricing for a retail
company selling a single product to consumers through two channels: online and physical
stores. Our model acknowledges the inherent limitations of physical store inventory capacity,
which primarily constitutes a long-term tactical decision. Therefore, in our single-period
problem formulation, we do not treat it as an operational decision. The retailer faces the
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problem of determining pricing policies in two channels where the channel’s demand depends
not only on its related price but also on the price of the other channel. Given the potential
market stochastic demand, each channel’s demand is determined through a channel choice
model as a function of all the selling prices across channels. In particular, the demand
settings are inspired from the attraction demand model, (Gallego et al., 2006; Harsha et al.,
2019) in order to capture the price-dependent and cross-channel interaction in dual-channel
configurations. Here, more general than Harsha et al. (2019), the potential market demand
is stochastic and has a known distribution. Furthermore, using the exogenous model for
the online channel, we consider different reactions of the retailer when the physical store is
stock-out: customers can buy online or receive promotions from the retailer. Therefore, key
questions involve the existence, uniqueness, and stability of the optimal solution when the
retailer jointly decides the prices across channels to maximize total profits.

Consider the multinomial logit model, a particular form of the attraction demand model
with deterministic setting. Hanson and Martin (1996) construct an example in which the
profit function is not jointly concave on its decision variables. Thus, determining the optimal
solution may require a complex and challenging search procedure. Generally, the objective
function is not jointly concave on its decision variables (prices across channels). In our
attraction demand-based model, it is impossible to analytically provide a set of conditions
based on the Hessian matrix’s negative semi-definiteness to secure the joint concavity. We
introduce a novel approach to derive a property in which the existence of a local optimizer
will result in its uniqueness. Thus, the existence of a local optimizer is a sufficient condition to
guarantee the uniqueness of the optimal global solution to the proposed dual-channel pricing
problem with a non-linear objective function and stochastic non-linear attraction channel
demand. It follows that a simple search procedure is sufficient to find the approximation of
the optimal solution.

Our research makes significant contributions to the dual-channel management literature:

• It offers an approach for researchers and practitioners to develop and estimate an
optimal pricing strategy.

• It incorporates cross-channel effects based on channels’ prices and the attraction
demand model.

• It produces several interesting substantive insights regarding cross-channel effects.

The rest of the chapter is structured as follows. First, we conduct a literature review.
We then introduce and investigate the retailer’s profit optimization problem. We consider
the effect of the potential market, channel choice, and attraction model on the retailer’s
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pricing decision. Following that, we represent the structural results of the retailer’s profit
maximization problem. We provide numerical studies, analyze their consequences, and end
with research objectives for the future.

3.2 Literature review

In this section, we start by introducing the attraction demand models and their utilization
in Economics and Management; and we then embed our research within this stream of
study. Thereafter, we show our contribution to the dual-channel pricing problem literature by
reviewing the research gap of demand modeling under uncertainty with attraction models
and its related pricing problem in dual-channel retailing.

Attraction demand models are among the most often employed demand functions to char-
acterize buyer behavior in the Marketing, Economics, and Revenue Management literature
(Feng et al., 2022; Gallego et al., 2006; Mahajan and van Ryzin, 1999). They generalize the
widespread multinomial logit (MNL) and multiplicative competitive interaction (MCI) de-
mand models, which are based on the random utility theory of economics (Harsha et al., 2019).
According to Luce (1959), the attraction demand model can be axiomatically constructed
from basic presumptions about customer behavior. The attraction demand model, as detailed
in Anderson et al. (1992) and Lariviere (1999), has been used successfully in econometric
research to estimate demand and is becoming more widely recognized in marketing (Besanko
et al., 1998). Furthermore, empirical studies have also embraced the attraction model. Among
them, Besanko et al. (1998) theoretically and empirically found the Nash equilibrium prices
for multiple manufacturers and retailers using the MNL model, which is one of the attraction
models. For other MNL models in the empirical studies, the reader is referred to Khan and
Jain (2005) and Nevo (2000). Few researchers (Nakanishi and Cooper, 1982; Parks, 1969)
conducted empirical research employing MCI models, which also belong to the category of
price attraction models. In empirical studies, the MNL and MCI models are transformed into
linear models to estimate the model parameters (Cooper and Nakanishi, 1988; Nakanishi
and Cooper, 1982). Recently, the attraction demand model has been recommended to study
the profit optimization problem (Harsha et al., 2019; Subramanian and Harsha, 2021) and
consumer choice models and estimation (Feng et al., 2022). It is operationally convenient
because of its parsimony in the number of coefficients to be estimated (see, e.g., Harsha et al.
(2019)). For its uses in the operations management community, see So (2000), Bernstein and
Federgruen (2004), Gallego et al. (2006), Feng et al. (2022) and references therein.

As a first step toward analyzing channel strategies, understanding and modeling consumer
preferences are essential in a multichannel world (Neslin et al., 2006). Some recent publi-
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cations in the marketing literature have investigated customer dynamics in a multichannel
environment, namely consumer migration across various channels like the web and catalogs
(Ansari et al., 2008) or online and brick-and-mortar channels (Chintagunta et al., 2012).
Between sales made online and in physical stores, Goolsbee (2001) discovers significant
cross-price elasticity. He draws the conclusion that channels cannot be viewed as different
marketplaces because the decision to purchase online is based on the costs in-store. These
articles use logit models to adjust the consumer substitution behavior between two channels.
We likewise employ discrete choice models, the attraction demand models, to estimate
consumer channel preferences.

Considering the demand function under uncertainty, several research papers treat demand
in each channel as a random variable in a dual-channel environment (Huang et al., 2013).
Many assume that online and physical store demand are uncorrelated and follow a standard or
well-known probability distribution (Ozbilge et al., 2022). Some research considers the price-
dependent and cross-channel interaction in dual-channel settings, but the demand is linearly
dependent on the prices across channels Cai et al. (2009); Dumrongsiri et al. (2008). Our
proposed dual-channel formulation based on the attraction demand model differs from these
models by the non-linear structure for the dependence of demand and prices across channels.
Huang et al. (2013) highlight that both linear and attraction models yield analytically tractable
results for price competition scenarios. However, the attraction models offer an advantage by
accommodating non-linear effects that often arise in competitive settings. This advantage has
led many researchers to prefer attraction models when exploring price competition among
firms.

In addition, the stochastic demand is commonly specified as an additive, a multiplica-
tive, or an additive–multiplicative model (Young, 1978), and is frequently used for pricing
newsvendor-type problems (Petruzzi and Dada, 1999). Although these assumptions may
sound relatively simple, they allow researchers to handle novel dual-channel phenomena,
such as demand spillovers from the competing channel in the case of stock-outs (Boyaci,
2005; Geng and Mallik, 2007; Yang et al., 2017). Similar to the consideration in the above
papers, we assume that the potential market demand is stochastic with a known probability
distribution function. However, since almost all the stochastic formulations for the demand
are based on a deterministic linear demand model, our model differs from the others insofar
as it proposes a non-linear function of prices across channels.

In marketing and operations management, studies on dual-channel pricing have primarily
targeted the scenarios in which a dual-channel system would benefit the manufacturer (e.g.,
Cai (2010); David and Adida (2015); Zhou et al. (2019)) or the retailer (e.g.,Kireyev et al.
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(2017); Nie et al. (2019); Sun et al. (2022)). In line with the stream of dual-channel pricing
problems, our research targets retailers’ decision problems.

From an operational perspective, many academic studies concentrate on single-product
pricing problems (Chen and Simchi-Levi, 2012). To our knowledge, the focus has been
on single-channel or multichannel pricing with independent channel operation settings.
Commercially available pricing solutions employed by retailers today do not incorporate
cross-channel interactions and often price the multiple channels separately (Harsha et al.,
2019). In contrast, this chapter focuses on an integrated dual-channel pricing problem in the
presence of cross-channel demand interactions and critical operational considerations.

Several publications have examined various parametric and non-parametric approaches
from the perspective of pricing optimization using customer choice models Harsha et al.
(2019). (Hanson and Martin, 1996) demonstrate that the profit as a function of prices is not
quasi-concave for the multinomial logit (MNL) demand model. Further investigation of
this issue, by Akçay et al. (2010), revealed that the resulting profit function is unimodal in
the pricing space. To show that the objective function is jointly concave in the space of the
market share variables, Dong et al. (2009) presented a market share variable transformation.
Later, Schön (2010) and Keller et al. (2014) extended this transformation concept for MNL
demand models to a generic class of attraction models.

Our research on single-product pricing is connected to the price optimization problem
utilizing a combination of the attraction demand models. It is acknowledged by (Keller et al.,
2014) that this is an open problem, and they create a local optimal heuristic solution by using
an approximate demand model and supposed convexity. Similarly, assuming that the cost
function with attraction demand is convex, Gallego et al. (2006) showed the existence of a
unique Nash equilibrium for the price competition game. We propose a novel approach and a
set of conditions in which there is only one candidate for the optimal global solution to the
general non-concave, non-linear objective function of the dual-channel pricing problem with
attraction demand models.

In short, motivated by the unexplored dual-channel retailing problems under the stochastic
attraction demand consideration, our research proposes a dual-channel pricing model under
the impacts of customer behavior on retailers’ pricing decisions. We contribute to the dual-
channel literature by considering the different offers of the retailer when the physical store
is stock-out, which is a practical problem faced by numerous firms in reality. Moreover,
we propose a novel approach to go beyond the difficulty of the non-concave structure of
the objective function under attraction models. Our research also contributes to the pricing
problem literature by demonstrating its significant role in affecting optimal price decisions in
dual distribution channels.
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3.3 Dual-channel price optimization with stochastic attrac-
tion demand model

Model practical context:
We formulate a pricing problem based on the stochastic dual-channel attraction demand

model, considering the case where the stock related to the physical channel is limited
compared to an unlimited stock capacity for the online channel. This framework could model
the practical case where a retailer uses a capacitated local store/showroom for the physical
distribution and is able to fulfill online orders by using a central uncapacitated warehouse.
Customers who need to test the product or who would like an instantaneous fulfillment of
their orders could be satisfied by the physical store and online customers are satisfied by the
central warehouse. Given the limited capacity of the physical store, out-of-stock demand
could be partially converted into an online demand and customers are offered a voucher in
such cases (this voucher could be a free shipping delivery for instance).

To solve the problem described above, we propose a dual-channel pricing optimization
framework for products in order to find the best prices across online and physical stores,
taking into account a variety of retailer goals and actual business standards. We focus on
the relationship between the retail chain’s expected profit and customer behavior in case of
stockout in the physical channel. This link is essential since practitioners prefer to investigate
the economic consequences of a stock out (Abad, 2014).

Our proposed framework employs the newsvendor model to represent the connection
between the central warehouse and the local store. The latter with a fixed capacity of K
should be replenished in a regular selling period (daily or weekly for instance). Prices for the
online and physical channels are decided for the period leading to two demand distributions
resulting from the attraction model. The pricing decisions are a trade-off between the overage
and underage risks in the physical store. In case of a shortage in the physical store, a margin
loss might occur, but some of the lost demand could be converted into online sales. We
also assume a voucher code is provided to customers in such a case. In case of overstock in
the physical store, a unit holding cost is applied to model either the necessity to return the
unsold items to the central warehouse or to transfer them to the forthcoming selling period.
Even if the product does not belong to single-period type products (perishable, fashion, . . . ),
the connection between the central warehouse and the local store could be modeled as a
newsvendor framework since it targets trade-offs between overage and underage risks.

It is worth noting that the developed framework can model retail situations involving
anticipatory shipping. In this scenario, the decision maker proactively delivers a certain
quantity to a local location, like a pickup store, to meet the immediate needs of customers.
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The physical store capacity K is not a decision variable in our model, but the numerical
section will vary it in a sensitivity analysis to investigate the effect of this capacity on the
pricing strategy. Hence, the single-period problem that we develop in this chapter could
be extended in a straightforward way to a multi-period setting since the myopic policy is
by design optimal in our model. That is, the optimization of the multi-period problem is a
sequence of optimization of the single-period problem.

Model description:
There is a retailer who sells a product through two channels, physical and online channels.

We denote the set of the channels by I = {p,o}: channel p represents the physical store, and
channel o represents the online store.

The main stock of the retailer is located in a central warehouse. As the inventory policy of
the central warehouse is not within the scope of the chapter, we assume that the online stock
at the central warehouse is uncapacitated. The physical store’s capacity is however limited
and fixed equal to K. In each selling period, the stock of the physical store is replenished,
and pricing decisions for the two channels are decided. In the physical store, the retailer
faces a price-setting newsvendor problem: there is a pricing decision rp to be made before
random demand is realized, so there may eventually be unmet demand or leftovers in the
physical store. Let cp be the unit cost of inventory and hp be the value of leftover units at
the end of the selling period. The cost cp models the unit cost of the product after being
transferred to the local cost (including purchasing cost, delivery, and operational cost at the
physical store). The unit cost hp models the overage penalty paid for each unsold unit which
could cover the transfer of the product to the forthcoming period, or the reverse logistics cost
if it needs to be shipped back to the central warehouse.

The online channel is modeled exogenously: each unit of online demand results in a net
profit margin of ro−co for the retailer. Here, ro and co are respectively the unit retailing price
and the per unit cost for the online channel. The cost c0 models costs incurred for a product
in the central warehouse (including purchasing cost and operational costs in the warehouse).

3.3.1 Dual-channel stochastic attraction demand model

In this part, we outline the construction of a stochastic dual-channel attraction demand
framework that could quantify cross-channel demand interactions and serve as the foundation
for several sophisticated retailing decisions. In the dual-channel world, we employ attraction
models to simulate the channel choice of a consumer.

Let DDD = (Dp,Do) be the vector of demands pertaining to the two stores. To simulate
customer preferences across channels in a dual-channel environment, we assume that the
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demand for the product in a particular store depends on the attributes of the two selling
channels. In particular, we assume that the demand Di of channel i (i ∈ I) has the following
form:

Di(rrr) = Potential Market Size∗Market Share of Channel i (3.1)

= ξ
gi(ri)

1+∑i∈I gi(ri)
, (3.2)

where

• ξ is the potential market size,

• gi(ri) is the attraction function of customers to channel i.

This framework quantifies the cross-channel demand interactions in particular. The
potential market size depicts the total number of consumers interested in the goods. In
contrast, the market share, also known as the purchase/choice probability, illustrates how
consumers choose between physical and online stores, including choosing not to buy the
product. Here, the market size, ξ , is assumed to be stochastic. It is considered as a
continuous random variable, characterized by its cumulative distribution function (CDF)
Fξ (x) and probability density function (PDF) fξ (x). As a result, the model is referred to as
the stochastic dual-channel attraction demand model.

Our research considers that ξ is a bounded random variable, |ξ |< M (big M refers to a
large number). It follows that E[|ξ |]< M. In practice, if the support of ξ is not bounded, we
can use an equivalent truncated distribution for ξ . It is intuitive since demand realization is
non-negative and bounded from above.

Frequently used attraction models in the literature are:

• Linear attraction model: gi(ri) = ai −biri, with ai > 0,bi > 0,minai −biri > 0;

• Multinomial logit (MNL) model: gi(ri) = exp(ai −biri) with ai > 0,bi > 0;

• Multiplicative competitive interaction (MCI) model: gi(ri) = air
−bi
i with ai > 0, bi > 1.

In general, ai and bi are constants that guarantee the negative price elasticity of demand
(Gallego et al., 2006). All these parameters can be estimated by fitting the real-world data
with the desired attraction model.

Our research considers a more extensive set of attraction models. The theoretical results
later hold not only for the linear, MNL, and MCI models but also for all the attraction models
that satisfy all the following assumptions. Similar to Harsha et al. (2019), the first assumption
below shows standard conditions for attraction functions.
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Assumption 3. Consider an attraction function g : R→ R+. It then satisfies

i. g(·) is strictly decreasing and is twice differentiable on R,

ii. limx→∞ g(x) = 0, and limx→∞ xg(x) = 0.

According to assumption 3, a channel’s attractiveness reduces as its corresponding price

increases, which implies that
gp(rp)

1+∑i∈I gi(ri)
is increasing in ro and decreasing in rp. This

property can be interpreted as the expected demand for the physical store increasing in the
retailing price of the online store and decreasing in the retailing price of the physical store,
and vice versa for the demand for the online store. Moreover, this assumption guarantees
that a channel’s demand becomes zero as its price becomes arbitrarily large.

The second assumption represents a sufficient condition to prove the theoretical result
given in Proposition 4. It naturally comes from our model settings and is defined as follows.

Assumption 4. For all i ∈ I, let ζi(ri) :=
g′i(ri)

gi(ri)
. It satisfies

i. limri→∞ ζi(ri)>−∞

ii. ζi(ri)−
ζ ′

i (ri)

ζi(ri)
< 0

Assumption 4 is rather technical and not very restrictive. For instance, the assumption is
satisfied for the linear, MNL, and MCI models. By assumption 3, we deduce that ζi(ri)< 0
for all ri, which is also needed for the mathematical analysis later.

Significantly, the two assumptions above create a set of attraction models. This set
contains all the linear, MNL, and MCI models.

In our model, the component
1

1+∑i∈I gi(ri)
quantifies the probability of the no-purchase

option, capturing the situation when customers may still be interested in the item, but do
not decide to buy it (Harsha et al., 2019; Subramanian and Harsha, 2021). It follows that
even the “potential market demand” ξ remains fixed by its distribution function, the “total
real demand” - i.e. the total number of items that are generated after pricing decisions of the

retailer, ξ
gp(rp)+go(ro)

1+∑i∈I gi(ri)
- is not fixed and price-dependent. Given the retailing prices of

online and physical stores, the law of “total realized demand” is determined by the law of
“potential market demand”.
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3.3.2 Dual-channel price optimization with stochastic attraction de-
mand

To shorten the formulation, for all i ∈ I, we denote

Gi(rrr) =
gi(ri)

1+∑i∈I gi(ri)
. (3.3)

Therefore, Di(rrr) = ξ Gi(rrr) for all i ∈ I.
We now consider the retailer’s decision problem, assuming that the retailer knows the

potential market size distribution. If a customer goes to the online store, all his demands will
be fulfilled. If he goes to the physical store, he may encounter two possible outcomes:

• If the store has inventory, then he can make a purchase on the spot.

• If the store is out of stock, the customer receives a promotion offer (denoted by ν)
from the physical store’s staff to encourage him to order the item online. If he does not
accept the offer, he will be considered as a lost customer. We assume that customers’
probability of accepting the offer (denoted by β ) is known. It is worth to noting that ν

and β are supposed to be independent.

In addition, since customers tend to make an additional purchase (other products) when
they come to the physical store (Cavallo, 2017; UPS, 2015), there is an extra profit α from
every demand fulfilled in this channel. The retailer’s expected profit under the attraction
demand model is then as follows.

Π = rpE[min(Dp,K)]+hpE[(K −Dp)
+]− cpK +αE[Dp]

+β ((1−ν)ro − co)E[(Dp −K)+]+ (ro − co)E[Do] (3.4)

= rpE[min(Gp(rrr)ξ ,K)]+hpE[(K −Gp(rrr)ξ )+]− cpK +αE[Gp(rrr)ξ ]

+β ((1−ν)ro − co)E[(Gp(rrr)ξ −K)+]+ (ro − co)E[Go(rrr)ξ ]. (3.5)

Given the store inventory capacity of K, the retailers’ expected profit from selling the
product in the store channel is shown in the first three terms above. The fourth term represents
the additional profit for the retailer obtained when customers visiting the physical store buy
other products. The fifth describes the profit from customers who encounter stockouts in the
physical channel and who are converted into online buyers, and the last represents the profit
generated by customers who shop online directly.
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Remark 6. The explicit formulation of expected profit for the retailer is as follows:

Π(rp,ro) = (rp −hp +α)Gp(rrr)E[ξ ]− (cp −hp)K +(ro − co)Go(rrr)E[ξ ]

− [(rp −hp)−β ((1−ν)ro − co)]Gp(rrr)
∫

∞

K
Gp(rrr)

(
x− K

Gp(rrr)

)
f (x)dx. (3.6)

Proof. We have min(Dp,K) = Dp − (Dp −K)+ and (K −Dp)
+ = (Dp −K)+− (Dp −K).

Thus

Π = rpE[min(Dp,K)]+hpE[(K −Dp)
+]− cpK +αE[Dp]

+β ((1−ν)ro − co)E[(Dp −K)+]+ (ro − co)E[Do] (3.7)

= rpE[Dp − (Dp −K)+]+hpE[(Dp −K)+− (Dp −K)]− cpK +αE[Dp]

+β ((1−ν)ro − co)E[(Dp −K)+]+ (ro − co)E[Do] (3.8)

= (rp −hp +α)E[Dp]− (cp −hp)K − (rp −hp)E[(Dp −K)+]

+β ((1−ν)ro − co)E[(Dp −K)+]+ (ro − co)E[Do] (3.9)

= (rp −hp +α)E[Dp]− (cp −hp)K +(ro − co)E[Do]

− [(rp −hp)−β ((1−ν)ro − co)]E[(Dp −K)+] (3.10)

= (rp −hp +α)E[Gpξ ]− (cp −hp)K +(ro − co)E[Goξ ]

− [(rp −hp)−β ((1−ν)ro − co)]E[(Gpξ −K)+] (3.11)

= (rp −hp +α)GpE[ξ ]− (cp −hp)K +(ro − co)GoE[ξ ]

− [(rp −hp)−β ((1−ν)ro − co)]GpE

[(
ξ − K

Gp

)+
]

(3.12)

= (rp −hp +α)Gp(rrr)E[ξ ]− (cp −hp)K +(ro − co)Go(rrr)E[ξ ]

− [(rp −hp)−β ((1−ν)ro − co)]Gp(rrr)
∫

∞

K
Gp(rrr)

(
x− K

Gp(rrr)

)
f (x)dx. (3.13)

The dual-channel pricing (DCP) problem with stochastic attraction demand is as follows:

max
rp,ro

Π(rp,ro)

s.t. ri ≥ ci, i ∈ I.
(DCP)
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3.4 Solution to the dual-channel pricing problem

In the previous section, we present a general mathematical formulation for optimization
problems DCP. The decision problem is to find the optimal rp,ro to maximize the expected
profit function Eq. 3.6. In this section, we study the existence of an optimal global solution
to the problem DCP.

Note that a C 2 multi-variable function is jointly concave at a point if its associated
Hessian matrix is negative semi-definite (Boyd et al., 2004). A function is jointly concave in
the whole domain if it is jointly concave at every point in the domain. This is a sufficient
condition for the uniqueness of an optimal global solution. However, the mathematical
complexity of all the derivatives of the DCP objective function makes it impossible to verify
its joint concavity property in the whole domain. In fact, it is difficult to analyze the negative
semi-definiteness of the associated Hessian matrix at every point in the unbounded domain
([cp,∞)× [co,∞)). In general, this function is not jointly concave in its domain Hanson and
Martin (1996). Although we have explicit derivative formulations, searching algorithms
(gradient descent, stochastic gradient descent, etc.) may terminate at a local optima.

In this situation, we represent a mathematical property of a C 2 function in which the
existence of a stationary point (the point where the associated gradient is zero) results in the
existence and uniqueness of the global solution. In particular, a C 2 function has a unique
stationary point if:

• there exists at least one point such that the gradient of the function at this point is zero
(stationary point);

• at every stationary point, the corresponding Hessian matrix is diagonal with strictly
negative elements on its diagonal.

Note that the second condition is a sufficient condition for strict concavity at a point.
Thus, we can see that if we have a good structure (a particular form for associated Hessian
matrices) for all the zero-gradient points, the objective function also has a good structure
(uniqueness of the stationary point). The property is represented by Lemma 3 and 4 as
follows:

Lemma 3. Given a real number a, let ψ : [a,∞)→ R be a C 2 function of the single variable
u. Suppose that

i. There exists at least one point u∗ ∈ [a,∞) such that ψ ′(u∗) = 0,

ii. At any u∗ that satisfies ψ ′(u∗) = 0, it follows that ψ ′′(u∗)< 0.
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Then, there exists only one u∗ that satisfies ψ ′(u∗) = 0, and u∗ is the argument of the maxima
of ψ(·).

Proof. See B.1.1 for the detail of the proof.

Lemma 4 extends the result of Lemma 3 in the multi-dimensional case as follows.

Lemma 4. Given a real value vector aaa = (a1,a2, . . . ,an) ∈Rn, let Ψ : W1×W2×·· ·×Wn →
R,Wi = [ai,∞)⊂ R, be a C 2 function of uuu = (u1,u2, . . . ,un) ∈W1 ×W2 ×·· ·×Wn. For all
i ̸= j, and i, j ∈ I = {1,2, . . . ,n}, suppose that

i. There exists at least one point uuu∗ such that ∇Ψ(uuu∗) = 000,

ii. At all the points uuu∗ mentioned above,
∂ 2Ψ

∂u2
i
(uuu∗)< 0 and

∂ 2Ψ

∂ui∂u j
(uuu∗) = 0 ( j ̸= i) hold

true.

Then, there exists only one vector uuu∗ that satisfies ∇Ψ(uuu∗) = 0, and uuu∗ maximizes Ψ(···).

Proof. Sketch of the proof. We prove this by induction on the number of dimensions of
space. The base case holds true from Lemma 3. The induction step is proved by using the
induction hypothesis and envelope theorem. See B.1.2 for the detail of the proof.

The two lemmas above represent the main idea of showing the uniqueness of an optimal
global solution to the optimization problem DCP. This method is recommended when the
uniqueness of the optimal global solution cannot be analyzed by checking the negative
semi-definiteness property of the Hessian matrix at all the points in the domain. Thus, it
enables researchers to study the existence and uniqueness of an optimal global solution for
attractive profit functions and other complex objective functions.

Based on this idea, Proposition 4 below gives us a structural result on problem DCP.

Proposition 4. Given a non-negative bounded potential market demand distribution ξ , ξ <

M, let Ω be a subset of the domain such that Gp(rp,ro)≤
K
M

, ∀(rp,ro)∈Ω⊂ [cp,∞)× [co,∞).
The objective function Π(rp,ro) is then mathematically well-behaved over Ω. In particular,
if a stationary point exists in Ω, then it is unique and represents the global solution to the
optimal problem DCP.

Proof. The proof for Proposition 4 is based on the idea represented above. The detail of the
proof is given in B.2.1.
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In Proposition 4, we show that in a part of the domain Ω =

{
(rp,ro)|Gp(rp,ro)≤

K
M

}
,

if a stationary point exists, then it is unique and represents the optimal global solution.
Thus, the existence of a local optimizer implies the existence and uniqueness of a global
optimizer. In short, from the above results, we deduce that considering the attraction demand
model, it is impossible to analyze the joint concavity property, existence, and uniqueness of a
global solution with a traditional approach by verifying the negative semi-definiteness of the
associated Hessian matrix for all the points in the domain. In such a difficult situation, we
prove that there is a part of the domain in which the objective function has good mathematical
behavior. In particular, if a local solution exists, then it is unique and represents the global
solution.

The methodology for verifying the uniqueness of the optimal global solution is highlighted
when the usual approach of checking the negative semi-definiteness of the objective function’s
associated Hessian matrix at all the points in the domain is not applicable. The idea for the
proof of Proposition 4 represents a novel approach by looking at the structure of zero-gradient
points and their associated Hessian matrices. This structure secures the stationary point’s
uniqueness, resulting in a global solution. This method can also be applied to other objective
functions in case they are not jointly concave. Thus, it enables researchers and retailers to
investigate complex profit functions.

Proposition 4 also suggests that when the objective function is complex and generally not
jointly concave, a simple search procedure is enough to find the optimal global solution if
the domain can be divided into some parts so that it is not difficult to find the global solution
numerically for every single part. The optimal global solution in the whole domain is then
delivered based on optimization results from all the parts of the domain. In the case that it is
challenging to find such a partition, then a set of boundary conditions should be applied.

Proposition 5. If we assume that
gp(cp)

1+gp(cp)
≤ K

M
, then the objective function Π(rp,ro) of

problem DCP is mathematically well-behaved over its domain. In particular, if a stationary
point exists, then it is unique and represents the optimal global solution to the problem DCP.

Proof. Note that Gp(rp,ro) is monotonically decreasing with rp and Gp(rp,ro) is monoton-
ically increasing with ro. By assumption 3, recall that gi(·) is a non-negative decreasing
function. Thus, for all (rp,ro) ∈ [cp,∞)× [co,∞), we have

Gp(rp,ro) =
gp(rp)

1+gp(rp)+go(ro)
≤

gp(cp)

1+gp(cp)+go(ro)
(3.14)

≤
gp(cp)

1+gp(cp)
≤ K

M
. (3.15)
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Therefore, for all (rp,ro) ∈ [cp,∞)× [co,∞), we have Gp(rp,ro)≤
K
M

. Proposition 2 is then
deduced from the result of Proposition 1.

Remark 7. Proposition 5 implies that if a simple search procedure (gradient descent,
stochastic gradient descent, etc.) converges in [cp,∞)× [co,∞) , it converges to the unique
global solution.

In practice, assumption
gp(cp)

1+gp(cp)
≤ K

M
may be violated. In such a case, because of the

mathematical complexity, it is challenging to find a partition of [cp,∞)× [co,∞) such that it
will be simple to find the global solution to the problem on every single subset. We therefore
need to have boundary conditions rp ≤ rmax

p and ro ≤ rmax
o for searching the domain to ensure

that a simple search procedure converges to the optimal global solution. If the domain is
bounded in R2, then it is a compact set. Therefore, the optimal global solution always
exists (see, e.g., Rudin et al. (1976), Theorem 4.16). In a real-world problem, the prices are
normally lower than a certain value. Moreover, we only need to provide an approximation
for the optimal prices. Then, with an acceptance rate of error, we can find the optimal
pricing solution by studying all the profit function values on the grid values of rp and ro over
[cp,rmax

p ]× [co,rmax
o ]. The step size is small enough to keep the error rate acceptable.

In summary, this section represents a novel approach to prove the existence of an optimal
global solution to problem DCP. This global optimizer can be found by a simple search
procedure. This method allows us to go beyond the difficulty when the classical approach by
verifying the joint concavity property of the objective function is not valid.

3.5 Numerical analysis

This section aims to derive some managerial insights from the model. As demonstrated in the
previous section, a bounded domain should be considered to secure the existence of a global

solution to the optimization problem DCP when the condition
gp(cp)

1+gp(cp)
≤ K

M
is violated.

We delve into and investigate in this section the numerical results for a demand involving
linear attraction. Results for MNL and MCI demand models, which have similar messages
are put in B.3.1 and B.3.2, respectively. In particular, we consider gi = ai −biri, for all i ∈ I.
This type of demand results in a unit selling price rp upper-bounded by

ap

bp
for the physical

channel, and an upper bound
ao

bo
for the online channel price ro.

We provide an analysis of the model given a particular set of parameters, and we particu-
larly focus on the following managerial insights:
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• What would be the best capacity for the physical store, when a showroom configuration
should be preferred, and what are the trade-offs involved in the choice of the best
capacity value?

• What is the impact of customer "behavioral" type parameters on the pricing strategy?
The conversion of stock-outs in the physical store into possible sales in the online
channel with a promotion voucher (such as free online shipping for instance) is
compared to the added profit enabled thanks to the physical presence of the customers
in the store.

• What is the effect of the online operational cost on the pricing strategy? How might the
dual-channel configuration provide more flexibility to the retailer to enable a smooth
transfer of clients between the two channels.

With regards to the potential market size, we consider a uniform distribution with an
average equal to 500 and we assume two variability configurations: ξ ∼ U (100,900) for
the high variability and ξ ∼ U (400,600) for the low variability.
Table 3.1 represents optimization results with different level of K. All the fixed parameters
are as follows.

• Attraction demand coefficients: ap = 20,bp = 1,ao = 18,bo = 1

• Cost coefficients: cp = 6,hp = 1,co = 3,α = 0.5,β = 0.8,ν = 0.1

The physical store capacity K is not an operational decision, but rather a more long-term,
tactical one. However, changing it in a sensitivity analysis allows us to derive interesting
managerial results. One can imagine that the retailer’s operating history as an online business
is afforded the opportunity to sell products through a physical selling point with a limited
capacity of K. Changing K from zero to the upper bound of the demand allows for the
conditions under which the retailer has to use the dual channel structure: using the physical
store as a showroom with no stock or with limited stock, or completely relying on it to fulfill
the demand. On the other hand, it could help for a long-term strategic decision incorporating
the future market demand and increase/reduce the store capacity dedicated to the desired
item.

With the problem parameters of Table 3.1, the two channels are similar in terms of
demand sensitivity to price and they have close demand intercept (ap is slightly higher than
ao).

Given that the operational cost of the physical channel is twice that of the online store,
the retailer has a real interest in using the physical channel as a showroom by setting K = 0
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(a selling point for demonstration purposes and sales are fulfilled online for the fraction
β ). Because of the closeness of demand parameters and the high conversion of physical
stock-outs to online sales (β = 0.8), the optimal prices for the two channels are close and the
showroom scenario promotes the channel with the highest unit margin.

Table 3.1 Optimal prices and related values for given inventory levels when ap = 20,bp =
1,ao = 18,bo = 1,cp = 6,hp = 1,co = 3,α = 0.5,β = 0.8,ν = 0.1

ξ ∼ U (100,900) ξ ∼ U (400,600)
K r∗p r∗o Gp(rrr∗) Go(rrr∗) Gp +Go Π(rrr∗) r∗p r∗o Gp(rrr∗) Go(rrr∗) Gp +Go Π(rrr∗)
0 6.00 18.00 0.933 0.000 0.933 5160.9 16.62 16.87 0.613 0.206 0.819 6366.5
100 18.44 15.40 0.302 0.504 0.806 4800.0 16.62 16.87 0.613 0.206 0.819 5866.5
200 17.79 15.67 0.399 0.420 0.819 4799.7 16.59 16.92 0.620 0.198 0.818 5366.1
300 17.34 15.95 0.466 0.359 0.825 4609.5 16.96 16.40 0.539 0.283 0.822 4820.1
400 17.00 16.34 0.530 0.293 0.823 4282.6 16.62 16.87 0.613 0.206 0.819 4366.5
500 16.74 16.69 0.585 0.236 0.821 3857.6 16.62 16.87 0.613 0.206 0.819 3866.5
600 16.62 16.87 0.613 0.206 0.819 3366.5 16.62 16.87 0.613 0.206 0.819 3366.5
700 16.62 16.87 0.613 0.206 0.819 2866.5 16.62 16.87 0.613 0.206 0.819 2866.5
800 16.62 16.87 0.613 0.206 0.819 2366.5 16.62 16.87 0.613 0.206 0.819 2366.5
900 16.62 16.87 0.613 0.206 0.819 1866.5 16.62 16.87 0.613 0.206 0.819 1866.5

The result is completely different in Table 3.2 where all the parameters are the same as the
settings of Table 1, except for the demand intercept of the online channel which is decreased
to ao = 12 (the other parameters are ap = 20,bp = 1,bo = 1 and cp = 6,hp = 1,co = 3,α =

0.5,β = 0.8,ν = 0.1. The showroom option is no longer the best one for the demand with
high variability (ξ ∼ U (100,900)). In fact, the retailer would be better off with a capacity
of K = 300 for the physical store.

The price difference between the two channels is now more important since the maximum

marginal unit profit for the physical store
(

ap

bp
− cp

)
is sufficiently higher than the marginal

unit profit for the online store
(

ao

bo
− co

)
.
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Table 3.2 Optimal prices and related values for given inventory levels when ap = 20,bp =
1,ao = 12,bo = 1,cp = 6,hp = 1,co = 3,α = 0.5,β = 0.8,ν = 0.1

ξ ∼ U (100,900) ξ ∼ U (400,600)
K r∗p r∗o Gp(rrr∗) Go(rrr∗) Gp +Go Π(rrr∗) r∗p r∗o Gp(rrr∗) Go(rrr∗) Gp +Go Π(rrr∗)
0 6.00 12.00 0.933 0.000 0.933 3145.0 16.47 12.00 0.779 0.000 0.779 6221.9
100 17.58 10.67 0.509 0.280 0.789 3143.3 16.47 12.00 0.779 0.000 0.779 5721.9
200 17.51 10.85 0.537 0.248 0.785 3501.9 16.47 12.00 0.779 0.000 0.779 5221.9
300 17.19 11.21 0.611 0.171 0.782 3631.3 17.20 11.39 0.635 0.138 0.773 4113.4
400 17.04 11.62 0.683 0.087 0.770 3595.7 16.88 12.00 0.757 0.000 0.757 4108.0
500 16.89 12.00 0.757 0.000 0.757 3439.9 16.47 12.00 0.779 0.000 0.779 3721.9
600 16.71 12.00 0.767 0.000 0.767 3152.7 16.47 12.00 0.779 0.000 0.779 3221.9
700 16.48 12.00 0.779 0.000 0.779 2721.9 16.47 12.00 0.779 0.000 0.779 2721.9
800 16.47 12.00 0.779 0.000 0.779 2221.9 16.47 12.00 0.779 0.000 0.779 2221.9
900 16.47 12.00 0.779 0.000 0.779 1721.9 16.47 12.00 0.779 0.000 0.779 1721.9

The results in the two tables above show that the use of the physical store either as a
regular store with a given capacity or as a showroom may result in a profit loss or gain,
depending on the demand parameters. It suggests that when the maximum marginal unit

profit for the physical store
(

ap

bp
− cp

)
is sufficiently higher than the marginal unit profit for

the online store
(

ao

bo
− co

)
, then the physical store should be used as a regular store and its

capacity could be optimized.
For a more detailed illustration, we keep the same parameters as above and we vary K

from 0 to 900 with a step size of 10. We thus derive some figures concerning the relationship
between K and optimization results.

Assuming that the capacity of the physical store is not free, we introduce the term
“potential extra cost” since each unit of inventory in the physical store can generate an extra
cost for the retailer (unit renting space for instance). For simplicity of presentation, we
consider that this potential extra cost has a linear relationship with K. In particular, we
consider potential extra cost = 0.5K. The adjusted profit is then equal to the resulting optimal
profit decreased by the potential extra cost.

Figure 3.1 confirms that a sequential optimization is possible to determine the best
physical store capacity. This best capacity results from a complex trade-off between:

• The demand attraction and the interaction between the two channels’ price elasticities.

• The margin difference between the physical and online channels.

• The rate of conversion of stock-outs in the physical channel, to online sales.
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• The loss of margin incurred in case of sales with a voucher (promotion).

• The extra potential benefit is enabled by the physical presence of customers in the store
(modeled with the parameter α .

(a) Optimal profit versus K, ξ ∼ U (100,900)(b) Market share versus K, ξ ∼ U (100,900)

(c) Optimal profit versus K, ξ ∼U (400,600)(d) Market share versus K, ξ ∼ U (400,600)

Figure 3.1 The variation of resulted optimal profit and market share at the optimal prices
when ap = 20,bp = 1,ao = 12,bo = 1,cp = 6,hp = 1,co = 3,α = 0.5,β = 0.8,ν = 0.1

Remember that the presence of customers in the physical store is beneficial because it
could generate extra sales of other products. But it is also risky, for in cases of shortage there
is no guarantee of conversion to online sales, and even with conversion, the customer may
have paid with a promotion voucher. To investigate margin loss due to promotion vouchers in
case of stock-out and extra margin enabled by the presence of customers in the physical store,
we consider a new instance of parameters. We set ap = 20,bp = 1,ao = 18,bo = 1,cp =

6,hp = 1,co = 3,β = 0.8,K = 250. Figure 3.2 represents the evolution of the optimal profit
with α (step size 0.1) for different promotion values ν = 0%,5%,10%,15%,20% when
ξ ∼ U (100,900) and ξ ∼ U (400,600). Figure 3.2 shows that in both demand settings,
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a higher α results in higher profits, as one would intuitively expect. Moreover, different
combinations of α and ν can imply the same optimal profit. However and counter-intuitively,
giving a higher promotion offer with the same α will not always result in a lower profit (cf.
Figure 3.2. b).

(a) Optimal profit versus α , ξ ∼ U (100,900)(b) Optimal profit versus α , ξ ∼U (400,600)

Figure 3.2 The variation of resulted optimal profit at the optimal prices with respect to α and
ν when ap = 20,bp = 1,ao = 18,bo = 1,cp = 6,hp = 1,co = 3,β = 0.8,K = 250.

Delivery cost is known to be very important for online businesses. This cost is embedded
in co in our model. We now consider an instance by fixing ap = 20,bp = 1,ao = 18,bo =

1,cp = 6,hp = 1,α = 0.5,β = 0.8,K = 250 or K = 0. Figure 3.3 represents the implication
on optimal prices when increasing co (step size 0.5) given ν = 0%,10%,20% when ξ ∼
U (100,900) and ξ ∼ U (400,600). In the case of a regular physical store with K = 250, it
is worth noting that the price increase for the online channel does not follow the same slope
increase of the cost co and, more interestingly, the price in the physical store is decreasing to
allow the transfer of sales opportunities between the two channels. Under the low demand
uncertainty, Figure 3.3. b) shows the threshold co = 6, above which the online price is set

to its maximum value
(

ao

bo

)
, pushing the system to rely exclusively on the physical store

to fulfill the demand. In the showroom configuration, the same result applies, but a switch
between exclusively physical and exclusively online could be a “binary" choice for the highly
variable market, as shown in Figure 3.3. c).
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(a) Optimal prices versus c0, ξ ∼
U (100,900),K = 250

(b) Optimal prices versus c0,
ξ ∼ U (400,600),K = 250

(c) Optimal prices versus c0, ξ ∼
U (100,900),K = 0

(d) Optimal prices versus c0,
ξ ∼ U (400,600),K = 0

Figure 3.3 The variation of resulted optimal prices with respect to co and different ν when
ap = 20,bp = 1,ao = 18,bo = 1,cp = 6,hp = 1,α = 0.5,β = 0.8,K = 250 and K = 0.

Until now, we have assumed a high value for the conversion of stockouts in the physical
store to online sales. Given the importance of the rate β , we now consider an instance by
fixing ap = 20,bp = 1,ao = 18,bo = 1,cp = 6,co = 3,hp = 1,α = 0.5. Figure 3.4 represents
the implication on optimal prices and profit when increasing β (step size 0.05) given K =

0,250 when ξ ∼U (100,900) and ξ ∼U (400,600). Unsurprisingly, for K = 250, the profit
increases with β . However, the optimal prices could increase or decrease with β , depending
on the market size variability. The online and physical prices behave oppositely for each
market variability, as illustrated in 3.4. b). Under the case K = 0 and ξ ∼ U (100,900),
there is a threshold of β above which the retailer moves from online only to a physical only
channel. The total profit increases considerably after this threshold. For the other case (K = 0
and ξ ∼ U (400,600)), the optimal profit is counter-intuitively insensitive to β . This could
be explained by the closeness of the optimal prices.
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(a) Optimal profit versus β , K = 250 (b) Optimal prices versus β , K = 250

(c) Optimal profit versus β , K = 0 (d) Optimal prices versus β , K = 0

Figure 3.4 The variation of resulted optimal profit and prices with respect to β when
ap = 20,bp = 1,ao = 18,bo = 1,cp = 6,co = 3,hp = 1,α = 0.5,K = 250 and K = 0,
ξ ∼ U (100,900) and ξ ∼ U (400,600)

.

In brief, this section offers a numerical analysis-based management value assessment for
different parameter configurations. Using the optimal prices, we examine how the market
share and anticipated profit change with variations in inventory level, extra profit, promotion,
the proportion of customers who opt to buy online, and the operational cost of the online
channel. Furthermore, our numerical analysis indicates that determining the optimal capacity
for the physical store is complex. Depending on the attraction model parameters or, in other
words, customers’ channel preference, a showroom may be more advantageous for profit.
A better capacity value for profit might result in a lower market share, which is the number
of items sold divided by the potential market demand. We also contrast the conversion of
stock-outs in the physical store into potential sales in the online channel with a promotion
voucher, against the added profit enabled by the physical presence of customers in the store.
Moreover, the pricing decisions are influenced by the online channel’s operational cost. The
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prices in both channels can increase or decrease to enable the transfer of sales opportunities
between them. In a showroom configuration, the retailer’s “binary" choice could be to switch
between exclusively physical and exclusively online sales.

3.6 Conclusion and future research

This chapter proposes a retail model and investigates the corresponding optimal pricing
strategy. The model employs attraction models as the framework to quantify the cross-
channel effects of prices. Numerical analysis then provides a set of managerial insights from
the pricing decisions.

In particular, this chapter investigates a stochastic dual-channel pricing problem and
how consumer behavior affects retailers’ pricing decisions. We develop a stylized model
that captures the situation where the stock of the physical channel may be depleted. In
this scheme, customers receive offers from the retailer to instead shop online. We employ
attraction models to quantify the cross-channel dependencies and the customers’ channel
choice. Each channel’s demand is thus a non-concave, non-linear function of prices multiplied
by the stochastic potential market demand. The total market demand is generated from the
pricing decision of the retailer.

The attraction model commonly used in marketing and economics literature is investigated
less in the inventory control literature. This could be related to the non-linear, non-convex
profit function derived from the attraction model. Our research focuses on an integrated dual-
channel pricing problem in the presence of cross-channel demand interactions and critical
operational considerations. We prove that the objective function of the dual-channel pricing
problem is mathematically well-behaved. In particular, the existence of a local solution in a
subset of the domain results in the existence and uniqueness of the optimal global solution
over it. This implies that if a simple search algorithm converges in this subset, it converges to
the unique optimal global solution.

This chapter also highlights the methodology for verifying the uniqueness of the optimal
solution over its domain when the usual approach of checking the negative semi-definiteness
of the objective function’s associated Hessian matrix at all the points in the domain is
not applicable. In particular, by looking at the structure of zero-gradient points and their
associated Hessian matrices, this research represents a novel approach to ensure that a local
optimizer is unique, resulting in a global solution. This method can be applied when the
objective function is not jointly concave. Thus, it enables researchers and retailers to examine
more complex profit functions.
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We also provide a management value assessment based on numerical analysis for various
parameter settings. Given the optimal prices, we study how the market share and expected
profit vary with the inventory level K, the extra profit α , the promotion ν , the proportion of
customers who agree to buy online β , and the operational cost of the online channel co. The
numerical study shows that it is complicated to figure out the best capacity for the physical
store. Depending on the attraction model parameters, or equivalently, the channel preference
of customers, a showroom can be given priority for profit. Better capacity value for the sake
of profit may result in a lower market share, i.e., the number of sold items divided by the
potential market demand. Second, the conversion of stock-outs in the physical store into
possible sales in the online channel with a promotion voucher (like free online shipping,
for instance) is contrasted to the added profit enabled thanks to the physical presence of
the customers in the store. Last but not least, the online channel’s operational cost impacts
the pricing decisions. The price in the two channels can increase or decrease to permit the
transfer of sales opportunities between the two channels. In the showroom configuration, a
switch between exclusively physical and exclusively online could be the retailer’s “binary”
choice.

Beyond the scope of our current analysis, one line of study would be to analyze the
optimization problem for a more extensive collection of demand models (for example,
addictive demand). It would also be interesting to improve the multichannel model, which is
embedded in the objective function, with multiple choice of ordering and dynamic pricing. To
simplify the analysis, in our model, we have imposed an assumption that the online channel
is exogenous and always in stock. Thus, another line of research would be to consider
the extension of the model when the retailer has limited inventory in both the store and
online channels. Furthermore, our model acknowledges the inherent limitations of physical
store inventory capacity, which primarily constitute a long-term tactical decision. Therefore,
another stream of research would be to theoretically investigate the optimal physical store
capacity as a long-term decision. Our research also acknowledges the assumption that
the probability of customers choosing to shop online during stockout in physical stores
is independent of prices and promotion. This independence assumption between prices,
promotional activities, and customer acceptance is a limitation in our work, prompting
avenues for future research to explore the potential dependency of this probability on prices
and promotion. Thanks to the applicability of our model on different attraction models, we
have detailed the managerial insights for the linear attraction and showed in the appendix that
these insights are not contradicted for the MNL and MCI models. A more comprehensive
comparative study on different attraction models would be an interesting direction for this
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research. Last but not least, it would be meaningful to investigate the case of a decentralized
supply chain and its effects on the objective function and the optimal solutions.
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Chapter 4

Data-driven nonlinear optimization for
the chance-constrained newsvendor
problem

The newsvendor model integrates considerations of inventory costs, customer service levels,
and ordering decisions within the framework of known demand distribution. Yet in practical
settings, decision-makers often face challenges accessing true demand distributions and their
associated parameters. To tackle this issue, empirical approaches leveraging datasets have
gained prominence, providing more precise insights and reducing the risk of uninformed
decisions. The proliferation of high-quality datasets, advancements in optimization algo-
rithms, and increased computational capabilities have collectively fueled the emergence of
data-driven methodologies. However, the data-driven inventory decision in existing literature,
which is constructed thanks to mixed integer linear programming (MILP) will not meet
the constraint of the service-level based newsvendor model, resulting in the non-validity of
solution when the constraint on service level is strict. Thus, this research aims to propose a
different approach to solve the data-driven newsvendor problem. We use the Kernel Density
Estimation (KDE) to model the constraint on service level and investigate a nonlinear pro-
gramming (NLP) formulation of the problem. The numerical results show that on average,
our nonlinear programming approach is better than the mixed integer linear programming
approach. Our proposed methodology provides a smaller gap between the achieved and
target service levels. The achieved service level of our method is also more stationary given
the same size of the data compared to the MILP formulation. Additionally, the achieved
service level of our model is higher than the target service level, giving the validity for the
proposed methodology.
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4.1 Introduction

The newsvendor problem stands as a classical problem within operations management,
focusing on a decision-maker tasked with determining the optimal quantity of perishable or
seasonal products to order, aiming to maximize expected profit amidst uncertain demand.
This problem considers a retailer who plans to sell a good that has a stochastic demand with
a known distribution. Various model variations and extensions have been explored in the
academic literature (Choi, 2012).

In practice, managers cannot access the actual demand distribution before making in-
ventory decisions. In particular, although decision-makers typically rely on historical data
related to demands and various influencing factors such as price, promotions, quality, and
seasonality, they cannot access the exact demand distribution (Erkip, 2022). The difficulty
in determining actual demand distributions has led to a recent surge in the adoption of
data-driven approaches in the newsvendor problem. Notably, Levi et al. (2015), Ban and
Rudin (2019), Oroojlooyjadid et al. (2020), and Bertsimas and Koduri (2022) have explored
data-driven newsvendor problems, considering historical demands and feature data.

The concept of service level, especially α-type service level (or “non-stockout prob-
ability”), proves invaluable in addressing newsvendor-based problems. When available,
practitioners tend to favor the service-level approach over other methods (Abad, 2014).
While there are two formulations for the newsvendor model, the cost-based model and the
service level-based model, most existing research focuses on the former model. There exist
only two research of Beutel and Minner (2012) and van der Laan et al. (2022) consider-
ing data-driven newsvendor problems under service level formulation. However, based on
mixed-integer linear programming (MILP), their method has a drawback because the average
achieved service level is lower than the target service level.

Within this observation, our research investigates the data-driven newsvendor problem
incorporating features and employing the widely-used α-type service level. Our objective is
to develop novel approaches to attain the target service level. Similar to the idea represented
in Beutel and Minner (2012) and van der Laan et al. (2022), the motivation behind our
approaches stems from recognizing that the newsvendor problem with a constraint in the
non-stockout probability can be considered as a chance constraint optimization problem.
Chance constraint optimization problems have been extensively studied in the stochastic
programming literature (Birge and Louveaux, 2011; Shapiro et al., 2021).

Building upon the fact that the inventory decision taken as the result of the MILP formu-
lation cannot achieve the required (minimum) service level, we introduce a new formulation
for the approximation of the service level constraint considering the data-driven newsvendor
problem as a chance-constrained program and solve it as a nonlinear programming (NLP)
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problem, leveraging earlier theoretical findings from relevant literature. In particular, the
proposed approach and corresponding mathematical optimization model are derived from
the Kernel Density Estimation (KDE) methodology. Notably, the application and empirical
evaluation of KDE in the context of the data-driven newsvendor problem have yet to be
previously explored.

Consequently, our primary contributions revolve around demonstrating the efficacy
of the Kernel Density Estimation method in handling service constraints and empirically
substantiating its viability for addressing the data-driven newsvendor problem. To validate
our claims, we conducted an extensive numerical study encompassing structured experiments
based on simulation.

The detailed contributions of our study can be summarized as follows.

• New data-driven nonparametric approach: We propose a methodology to address the
data-driven newsvendor problem with features under a service-level constraint. To that
end, we use the KDE approach to approximate the constraint of the chance-constrained
optimization problems. Our approaches come with asymptotic optimality guarantees.

• Numerical experiments based on simulation: We conduct a set of numerical studies,
including comparative analyses against the MILP method, to assess the effectiveness
of the proposed approach. Through these evaluations, we aim to provide a thorough
and reliable assessment of the performance and applicability of our approach.

The subsequent sections of this chapter are structured as follows. In Section 2, we present
a formal depiction of the data-driven newsvendor problem, outlining its key characteristics
and considerations. Subsequently, we conduct a comprehensive literature review focusing
on previous studies addressing the problem and highlighting pertinent theoretical findings
originating from the realm of chance-constrained stochastic programming and an in-depth
analysis of the Kernel Density Estimation (KDE) approach, delving into its fundamental
principles and methodologies. Building upon this understanding, in Section 3, we introduce
novel data-driven approaches based on KDE for chance-constrained optimization, presenting
the underlying framework and mathematical models. To evaluate the performance of our
proposed approaches, Section 4 encompasses extensive numerical experiments that examine
and compare their efficacy. Finally, in Section 5, we conclude our findings, provide insights
into potential avenues for future research, and summarize the contributions of this study.
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4.2 Problem description and literature review

4.2.1 Newsvendor problem

The newsvendor problem holds significant importance in operations management, focusing
on a decision-maker task of determining the optimal quantity of perishable products to
order, aiming to maximize expected profit in the face of stochastic demand. The classical
formulation of the newsvendor problem involves a decision-maker who must determine the
optimal order quantity, denoted as Q, before observing the uncertain demand, represented
as D, for a product with a limited shelf life. This core model has been extensively studied,
with its natural extension involving pricing strategies or monopolistic scenarios receiving
considerable attention in research. Many model variations and extensions have been explored
in academic literature (Choi, 2012; Qin et al., 2011).

The concept of service level proves invaluable in addressing newsvendor-based problems,
especially when demand is stochastic. In such situations, the newsvendor must implicitly
balance profit considerations against the potential loss of goodwill and future earnings due
to stockouts. The challenge is mitigated by employing the shortage cost technique to either
maximize implicit profit or minimize implicit cost. However, accurately estimating the
cost associated with shortages poses a notable challenge. Practitioners often view service
level and cost as conflicting objectives, framing inventory control as a dual-criterion issue.
Consequently, they tend to favor the service level approach whenever feasible (Abad, 2014).

In the newsvendor as a service-level constrained problem, the objective is to identify
an inventory level that ensures a certain prescribed probability of meeting the demand
while minimizing the expected excess inventory. This formulation aims to strike a balance
between satisfying customer demand and minimizing the potential waste of unsold products.
Mathematically, the service-level based newsvendor problem can be formulated as follows:

min
Q≥0

E[(Q−D)+]

s.t. P(Q ≥ D)≥ α.
(4.1)

Here, we define the parameter α , which lies within the interval [0,1], as a lower limit on the
probability of non-stockout (α-type service level). Equivalently, 1−α is an upper limit on
the probability of stockout. Furthermore, the notation a+ is used to denote the maximum
value between a and 0, i.e., a+ := max{a,0}.

The formulation of the newsvendor problem described above is considered well-defined
if the distribution of the demand is known. If this is the case, then the optimal solution of
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problem 4.1 is Q∗
service level = F−1(α), where F(·) is the cumulative distribution function of

the demand distribution and F−1(·) is its inverse.
It is noteworthy that the α-service level is useful in addressing newsvendor or single-

period problems. Specifically, solving a single-period problem with configured unit costs
for underages (u) and overages (o) is equivalent to determining the probability of avoiding
stockouts, i.e., setting the service level as the ratio u

u+o . Even if not explicitly stated as a
metric in solving single-period problems, the service level remains implicitly employed.

In practical scenarios, it is unlikely that the actual demand distribution is known, rendering
the representation for optimal solutions infeasible. When the demand distribution is unknown,
it becomes impossible to directly evaluate the optimal order quantity. Consequently, we are
left with the possibility of obtaining only an approximate solution for problem 4.1 (Levi
et al., 2015).

We target to solve problem 4.1. In the situation of unknown demand distribution, we
propose a new numerical approach based on historical information to handle the newsvendor
problem under the service level constraint.

4.2.2 Data-driven newsvendor problem

There has been a growing trend among companies to gather extensive data and utilize data
science methodologies to enhance their decision-making processes (Huber et al., 2019).
This shift towards data-driven approaches has sparked significant interest in the realm of
inventory management, particularly concerning the newsvendor problem. In the context
of the data-driven newsvendor problem, decision-makers have access to historical demand
data, as well as potentially influential features that can impact demand. These features
may encompass various factors such as price, promotions, weather conditions, and seasonal
variations, among others.

Within this context, two primary categories of methods have emerged for addressing the
challenge of unknown demand distribution in inventory decision-making: parametric and
nonparametric approaches. The parametric approach assumes that the demand distribution
belongs to a specific parametric family, albeit with unknown parameter values (Huh et al.,
2011). The Bayesian approach, as one of the earliest solutions within this group, is well-
documented in (Scarf, 1959). Another parametric approach, known as Operational Statistics,
has been developed to simultaneously estimate demand and optimize inventory, and its details
can be found in (Liyanage and Shanthikumar, 2005).

In contrast, the nonparametric methods belong to a family of techniques that require no
specific assumptions about the demand distribution or its parameters. These approaches,
often referred to as data-driven in the literature, rely on empirical information rather than
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assumptions to derive solutions (Cheung and Simchi-Levi, 2019). They can be implemented
as single-stage methods or as separate steps for parameter estimation and optimization.
Moreover, these methods have the flexibility to incorporate contextual information, commonly
referred to as data features, to enhance predictive analytics models.

Other methodologies employed for data-driven inventory control problems include Artifi-
cial Intelligence approaches, learning-based approaches, and hybrid combinations of different
methodologies (Erkip, 2022). For a comprehensive review of data-driven approaches to in-
ventory problems, readers are encouraged to refer to (Erkip, 2022), which offers a structured
overview of the field.

Interestingly, a noteworthy observation is that, except for two studies, the data-driven
newsvendor problem predominantly focuses on minimizing costs as the primary objective.
The two exceptions are the investigations conducted by Beutel and Minner (2012) and
(van der Laan et al., 2022), which tackle the more challenging and arguably more practical
service-level constrained problem. In particular, Beutel and Minner (2012) propose a linear
programming formulation to address the newsvendor problem with features data. The key
implication is that the conventional percentile-based solution for the newsvendor problem
becomes a function of the features, making it dependent on these characteristics. The
identification of features is problem-specific and may vary accordingly. The study considers
service level benchmarks to compare various models addressing the same problem. The
linear programming problem resolves the order quantity decision of the demand model and
regression coefficients as dependent on the features data. However, Beutel and Minner
(2012)’s approach is prone to overfitting, posing a risk of generating infeasible solutions.
van der Laan et al. (2022) demonstrate that Beutel and Minner (2012)’ method can be
translated into an application of the sample average approximation - hindsight approach,
providing theoretical and practical insights into its ineffectiveness. The hindsight approach
may suffer from poor estimation of the solution.

There is a recent surge in interest in developing data-driven solutions, highlighting the
novelty and early stages of this topic. However, it could not yet be concluded to what
extent the data-driven approaches are more accurate and applicable than their model-based
counterparts and in what scenarios the single-stage solutions outperform the two-step methods
(Ban and Rudin, 2019; Huber et al., 2019).

Our study extends the knowledge in solving data-driven newsvendor problems as a
service-level constrained problem. We propose a new approach to approximate the probability
constraint and numerically solve the approximated problem. The data-driven newsvendor
problem is also referred to as the feature-based newsvendor problem, as follows.
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Feature-based newsvendor formulation

In this research, we assume that the historical data consists of N demand observations
D1, . . . ,DN ∈R, and corresponding d-dimensional feature information xxx1, . . . ,xxxN ∈X ⊂Rd .
The decision maker’s problem in the subsequent decision period is to choose an inventory
level Q upon observing the new feature vector xxxN+1. The structure of data is given in the
Table 4.1. To that end, the decision maker should use a decision rule of the form function
Q(·) : X → R.

Table 4.1 Features and demand observations

Observation X D
1 xxx1 = (x1

1 · · · xd
1) D1

2 xxx2 = (x1
2 · · · xd

2) D2
...

...
...

...
N xxxN = (x1

N · · · xd
N) DN

N +1 xxxN+1 = (x1
N+1 · · · xd

N+1) N/A

The decision space, denoted as Q, within which the function Q(·) operates, offers various
options for selection. A commonly employed approach, as demonstrated in prior studies
(Ban and Rudin, 2019; Beutel and Minner, 2012; van der Laan et al., 2022), involves utilizing
a linear relationship. For technical convenience, let us assume that the first element of the
feature vector is 1 for each observation. Thus, we have xxxi = (1, x̃xxi). The decision rule can be
formulated as follows:

Q =

{
Q : X → R : Q(xxxi) = qqq⊤xxxi =

d

∑
j=1

q jx
j
i

}
, (4.2)

where xxxi = (1, x̃xxi) = (1,x2
i , . . . ,x

d
i ) ∈ Rd , and qqq = (q1, . . . ,qd) ∈ Rd . In this formulation, the

coefficient q1 represents the “intercept” and (q2, . . . ,qd) represents the “slopes” related to
the features information.

4.2.3 Chance constrained optimization

In order to formulate our approach, we adopt the interpretation of the service-level constraint
as a chance constraint. By considering it as such, we can leverage relevant findings from
the field of chance-constrained programming, which will be examined and discussed in the
following.
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Suppose that ξ is an m-dimensional random vector defined on some probability space
Ω,A ,P. Consider then the chance-constrained optimization problem

min
q∈Q

J(qqq,ξ )

s.t. P(G(qqq,ξ )≥ 0)≥ α,
(4.3)

where

• Q ⊂ Rd is the admissible set for the decision variables qqq

• J : Q×Rm → R is the objective function

• G : Q×Rm → R defines an inequality constraint

• α ∈ [0,1] is a probability threshold

The treatment of this type of problem dates back to the 1950s (Charnes et al., 1958). In
1959, Charnes and Cooper (1959) presented chance-constrained programming as a method
for solving optimization problems in the face of uncertainty. They handled the problem
by proposing a methodology for ensuring that a model’s decision resulted in a certain
probability of constraint compliance. Notably, a comprehensive theory was then established
by Prekopa (Prškopa, 1970; Prekopa, 1973), who introduced the concept of convexity theory
based on log concavity. Further advancements in the log concavity theory in stochastic
programming can be found in related works by Dentcheva and Ruszczynski (2003); Prekopa
(1995); Ruszczyński and Shapiro (2003); Shapiro et al. (2021). Numerous results have
been derived concerning the regularity of the constraint function and the error between
approximate solutions of chance-constrained optimization problems. Two fundamental
theorems concerning the continuity and convexity of the constraint function were proven
by Prekopa (1973) and Raik (1971). In situations where the probability distribution of ξ is
unknown and replaced by an estimator, Henrion and Römisch (2004) established hypotheses
that enable the estimation of the difference between the solution of the original problem and
the one where the estimator is employed.

Chance-constrained optimal control problems have also been addressed using alternative
techniques, including the scenario approach (Calafiore and Campi, 2006; Campi and Garatti,
2011; Carś et al., 2015; van der Laan et al., 2022) and Monte Carlo approach (Shapiro et al.,
2021). The scenario approach offers the advantage of providing a priori certificates for the
chance constraint. However, when extending this approach to incorporate an optimal control
context, a challenge arises in that the problem may become infeasible for certain samples due
to a lack of controllability. In contrast, this issue does not arise when employing a Kernel
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Density Estimation-based approach (Caillau et al., 2018). In the case of the Monte Carlo
approach, Monte Carlo algorithms involve repeatedly sampling variables and parameters of
a problem to obtain numerical results, treating them as random quantities. This approach
can be particularly advantageous when dealing with problems that have a high number
of dimensions, numerous degrees of freedom, or unknown probability distributions. The
core step in a Monte Carlo method is selecting a probability distribution for the inputs
and generating random input values within the specified domain. The mathematical theory
supporting these methods depends on the specific type chosen; however, the fundamental
result on which Monte Carlo methods are based is the strong law of large numbers.

The methodology we introduce in the subsequent section for numerically solving the data-
driven newsvendor problem as a chance-constrained control problem based on Kernel Density
Estimation (KDE). This technique involves estimating the probability density function (PDF)
of an unknown distribution random variable based on a provided sample. Unlike Monte Carlo
methods, which typically necessitate a substantial number of simulations, KDE can provide
reliable density approximations with a limited number of samples in practical applications.

4.2.4 Kernel Density Estimation

Kernel Density Estimation is a numerical solution approach for solving chance-constrained
control problems. This technique involves the approximation of the probability density
function (PDF) of a random variable that possesses an unknown distribution using a provided
sample.

Consider U , a random variable with an unknown distribution f that requires estimation,
and let U1,U2, . . . ,UN be a sample of size N drawn from U . A Kernel Density Estimator for
the probability density function (PDF) f can be defined as follows.

f̂N,h(u) :=
1

Nh

N

∑
i=1

K
(

u−Ui

h

)
, (4.4)

where the function K is called kernel, and the smoothing parameter h is called bandwidth.
The origins of the Kernel Density Estimation method in its current form can be traced

back to the early 1950s, as evidenced by the works of Rosenblatt (1956) and Parzen (1962).
This method is sometimes referred to as the Parzen-Rosenblatt window. Silverman’s book
(Silverman, 1986) is considered a foundational text, providing a comprehensive understanding
of KDE. Additionally, Terrell and Scott (1992) offers a detailed analysis of the various
properties associated with this technique.
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A crucial milestone in the development of KDE is the consistency result established by
Nadaraya (1965). Variations of this theorem have been explored by Silverman (1978) and
Devroye (1985), while an earlier but less general version of this result can also be found in
the original work of Parzen (1962).

Theorem 6. (Nadaraya, 1965). Assume that the kernel K : R → R+ is a function of
bounded variation and f : R→ R+ is a uniformly continuous density function. If h satisfies
+∞

∑
N=1

e−ζ Nh2
<+∞, then

P
[

lim
N→+∞

sup
u
| f̂N,h(u)− f (u)|= 0

]
= 1. (4.5)

The approximation error between f and f̂n,h depends on the choice of both kernel K and
bandwidth h. The kernel K is assumed to be satisfying the following standard conditions.∫ +∞

−∞

K(u)du = 1,
∫ +∞

−∞

uK(u)du = 0, and
∫ +∞

−∞

u2K(u)du > 0. (4.6)

The application of KDE extends beyond its use in the field of statistics. It has found
relevance in diverse disciplines such as archaeology, banking, climatology, economics,
genetics, hydrology, and physiology. For a more extensive list of references, Sheather’s
work (Sheather, 2004) can be consulted. However, to the best of our knowledge, there is no
application of the KDE in inventory control in general and data-driven newsvendor problems
in particular. Thus, our research offers an initial framework to fill this gap.

4.3 Application of KDE approach to data-driven newsven-
dor problem

Consider the following service-level constrained newsvendor problem:

min
Q≥0

E[(Q−D)+]

s.t. P(Q ≥ D)≥ α

(4.7)

To gain an understanding of the connection between chance-constrained programs and a
service-level constraint in the context of the data-driven newsvendor problem, consider a
scenario where the decision rule Q associates an observed feature vector xxx with a desired
inventory level. Similar to the discussion of feature-based newsvendor formulation above,
we suppose that this decision rule is linear in xxx, expressed as Q = Q(xxx) = qqq⊤xxx.
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The chance-constrained programming for newsvendor problem is thus:

min
qqq∈Q

E[(qqq⊤xxx−D)+]

s.t. P(qqq⊤xxx−D ≥ 0)≥ α

(4.8)

which becomes a special case of (4.3) if we define ξ = (xxx,D) and G(qqq,ξ ) = qqq⊤xxx−D.
Chance constraints are typically challenging to handle due to their inherent computational

complexity Nemirovski and Shapiro (2007). This is because even for a fixed vector qqq,
evaluating the probability P[G(qqq,ξ ) ≥ 0] requires the computation of a multidimensional
integral. Moreover, the feasible region defined by (4.3), i.e., qqq ∈ Q : P(G(qqq,ξ )≥ 0)≥ α , is
generally non-convex, even if the set Q itself is convex. Consequently, optimizing under the
framework of (4.3) becomes highly challenging, particularly when the distribution of ξ is not
known. To tackle these difficulties, this study proposes the use of Kernel Density Estimation
to approximate chance constraints.

Through the use of Kernel Density Estimation, we can construct an estimate of the
probability density function that defines the chance constraint. This enables us to replace
the probability calculation with the integral of the estimated PDF, thereby transforming the
stochastic optimization problem into a deterministic one. For a given qqq within the set Q, let
fqqq represent the true PDF of the random variable qqq⊤xxx−D, where qqq serves as a parameter.
Additionally, let f̂qqq denote the approximation of the PDF. To maintain clarity in the notation,
we omit the subscripts denoting the number of samples, kernel, and bandwidth, as used in
(4.4). Nevertheless, it is important to note that the approximated PDF, f̂qqq, is dependent on
the sample size, choice of kernel, and bandwidth. We have

P(qqq⊤xxx−D ≥ 0) =
∫ +∞

0
fqqq(u)du, (4.9)

where Fqqq denotes the cumulative distribution function of the random variable qqq⊤xxx−D for a
given qqq ∈ Q. We then build the estimator f̂qqq of fqqq via KDE.

We can write an approximation of the chance-constrained programming for the newsven-
dor problem (4.8) in the form

min
qqq∈Q

1
N

N

∑
i=1

(qqq⊤xxxi −Di)
+

s.t.
∫ +∞

0
f̂qqq(u)du ≥ α

(4.10)
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Let qqq∗ and q̂qq∗ denote the solutions to problems (4.8) and (4.10), respectively. While an
explicit estimation of the error between qqq∗ and q̂qq∗ in terms of the difference between f̂q̂qq∗ and
fqqq∗ may not be available, we can still rely on the law of large numbers to validate our results
retrospectively.

Remark 8. Note that

P(qqq⊤xxx−D ≥ 0) = 1−P(qqq⊤xxx−D < 0) = 1−
∫ 0

−∞

fqqq(u)du = 1−Fqqq(0), (4.11)

where Fqqq denotes the cumulative distribution function of the random variable qqq⊤xxx−D for a
given qqq ∈ Q. Thus, by defining

F̂qqq(s) :=
∫ s

−∞

f̂qqq(u)du, (4.12)

we can write an approximation of our chance-constrained optimization problem (4.8) in the
form

min
qqq∈Q

1
N

N

∑
i=1

(qqq⊤xxxi −Di)
+ (4.13)

s.t. F̂qqq(0)≤ 1−α (4.14)

The numerical solution of the chance-constrained programming for the newsvendor
problem involves the following steps.

Data preparation.
Obtain a sample ξ1,ξ2, . . . ,ξN of size N from historical data of the random vector ξ =

(xxx,D). This operation is performed only once at the beginning of the optimization procedure
because the realizations of ξ depend solely on its historical data and are independent of
the decision variable qqq. For any given value of qqq, the data contains N realizations qqq⊤xxx1 −
D1, . . . ,qqq⊤xxxN −DN of the random variable qqq⊤xxx−D.

Compute the constraint function.
We need to determine the value of f̂qqq(u) for any given qqq. For each element ξi in the sample,

we evaluate the constraint function qqq⊤xxx−D. This allows us to compute an approximation
of the probability density function (PDF) based on the chosen kernel and bandwidth, as
described in equation (4.4).

To estimate
∫ +∞

0
f̂qqq(u)du, we employ a quadrature rule to approximate the integral of

the estimated density function. This involves a two-level approximation scheme for the
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chance constraint, where Kernel Density Estimation is used for PDF estimation, followed by
quadrature to approximate the cumulative distribution function of the estimated density.

For the quadrature, we employ the composite Simpson’s rule. It involves dividing the
interval [a,b] into an even number M of subintervals and applying the corresponding formula
to compute the integral of the function v:

∫ b

a
v(u)du ≈ 1

3
b−a

M

(
v(a)+2

M/2−1

∑
i=1

v(u2i)+4
M/2

∑
i=1

v(u2i−1)+ v(b)
)
, (4.15)

where ui := a+
b−a

M
i, i ∈ {0,1, . . . ,M−1}. We utilize Simpson’s rule due to its favorable

trade-off between code implementation simplicity and precision. This quadrature formula
ensures a bounded error, which can be expressed as follows:(

b−a
M

)4

(b−a) max
u∈[a,b]

|v(4)(u)| (4.16)

Further information regarding this formula can be explored in the study conducted by Young
and Gregory (1988).

In our data-driven newsvendor problem, we can choose zero for the lower bound of the
integration. Consider the upper bound of the integration. If we assume that the random
variable qqq⊤xxx−D is normally distributed, i.e., G(qqq,ξ ) ∼ N (µ,σ2) with both µ and σ

unknown and its N realization are {G1, . . . ,GN} = {qqq⊤xxx1 −D1, . . . ,qqq⊤xxxN −DN}, then we
can choose the upper bound for the integration equal to ḠN +TpsN

√
1+(1/N), where ḠN

is the sample mean and Tp is the 100(1− p)th percentile of Student’s t-distribution with
N − 1 degrees of freedom. The upper bound is thus chosen with the confidence level of
100(1− p)%, i.e., P(GN+1 ≤ ḠN +TpsN

√
1+(1/N)) = 1− p. In general, if we don’t have

an assumption on the distribution of G, the nonparametric approach gives us the upper bound,
which is the maximum value of N realizations, G1, . . . ,GN . Since all observations have
an equal probability of being the maximum, the probability that GN+1 is the maximum is

1
N +1

. Therefore, P(GN+1 ≤ max{Gi, i = 1, . . . ,N}) = N
N +1

. When N = 20,50,100, this
probability is approximately 95%, 98%, 99%, respectively. For more advanced technical
methods to find the upper bound, we refer readers to the conformal prediction and the work of
(Shafer and Vovk, 2008), (Barber et al., 2023), and (Angelopoulos et al., 2023). In practice,
the upper bound can be considered big enough but not very big to avoid computational
complexity.

Solve the approximated problem.
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Having established the approximation for the constraint, we are now able to treat the
problem (4.10) as a conventional deterministic optimization problem and proceed with its
solution. It is a nonlinear constrained optimization, and we use Artelys Knitro solver on a
hosted local Jupyter Notebook on a personal computer with CPU RAM 8G to solve it.

The nonlinear programming (NLP) for solving the data-driven newsvendor problem is
given as follows.

min
qqq,ϕϕϕ

1
N

N

∑
i=1

ϕi (4.17)

s.t. ϕi ≥ qqq⊤xxxiii −Di, i = 1, . . . ,N (4.18)

ϕi ≥ 0, i = 1, . . . ,N (4.19)

1
3

b−a
M

(
f̂ (a)+2

M/2−1

∑
j=1

f̂ (u2 j)+4
M/2

∑
j=1

f̂ (u2 j−1)+ f̂ (b)
)
≥ α (4.20)

where

•

f̂ (u) :=
1

Nh

N

∑
i=1

K
(

u− (qqq⊤xxxiii −Di)

h

)
, (4.21)

• K(z) is the Kernel function,

• h is the optimal bandwidth for the Kernel function K(z),

• a and b are the estimations for the upper and lower bounds of the integration. As
discussion in the previous step, we can choose a = 0 and b = max(qqq⊤xxxiii −Di, i =
1, . . . ,N).

• u j = a+ j
b−a

M
.

• xxxiii = (1, x̃i) and Di, i = 1, . . . ,N, are the observed features and corresponding demand
data.

• ϕϕϕ = (ϕ1, . . . ,ϕN) is the surplus inventory.

• qqq = (q1, . . . ,qd) is the decision rule need to be determined.

In the above formulation, equations (18-20) represent the objective function, and equation
(21) describes the service level constraint. When we establish the solution process in the
previous settings, the optimal bandwidth and estimated boundaries of the integration depend
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on the decision variable qqq, which causes the model to be very complex to solve. Indeed,
through experiments, we observe that the Jupyter Notebook hosting the solver runs out of
memory and then crashes even if N is small. Therefore, we can not solve it due to a memory
crash. Thus, a way to go beyond this difficulty is to provide a posterior estimation of the
bandwidth and boundaries for the integration.

The mixed integer linear programming (MILP) now works as a tool to estimate the
bandwidth and the boundaries of the integration. Similar to Beutel and Minner (2012), the
MILP for data-driven newsvendor problem is as follows:

min
qqq,ϕϕϕ,ζζζ

1
N

N

∑
i=1

ϕi (4.22)

s.t. ϕi ≥ qqq⊤xxxiii −Di, i = 1, . . . ,N (4.23)

ϕi ≥ 0, i = 1, . . . ,N (4.24)

qqq⊤xxxiii +ζiC ≥ Di, i = 1, . . . ,N (4.25)
N

∑
i=1

ζi ≤ (1−α)N (4.26)

ζi ∈ {0,1}, i = 1, . . . ,N (4.27)

where C is a large positive constant. In this MILP formulation, the decision rule produced by
the optimum qqq minimizes the overall inventory level while achieving a service level of at
least α in the past. To illustrate this, note that unless ζi = 1, equation (26) requires that the
demand be satisfied in the ith period. As per equation (27), the maximum number of periods
during which the market demand is unsatisfied is (1−α)N, meaning that the demand is
satisfied in at least αN of N times. Additionally, equations (23), (24), and (25) are the same
as equations (18), (19), and (20) of the NLP formulation. Thus, the goal of the MILP is also
to reduce the overall amount of excess inventory with a different approach for approximating
the service level constraint. Note that the solution of the mixed integer linear programming
is not validated since, on average, the achieved service level is always lower than the target
one Beutel and Minner (2012).

Let us denote the solution of the MILP by qqqMILP. Then, the estimation for the bandwidth
and boundaries of the integration is obtained by considering the set of values {(qqqMILP)⊤xxxiii −
Di, i = 1, . . . ,N}. In literature, given N observations {(qqqMILP)⊤xxxiii −Di, i = 1, . . . ,N}, the
related optimal bandwidth can be obtained by several methods, including cross-validation
and plug-in methods (Chiu, 1991). These methods are not valid to apply directly in our NLP
formulation because of the dependency of the optimal bandwidth h and the decision variable
qqq, which is the target solution of the NLP. Thus, with MILP solution qqqMILP, we are not only
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86 Data-driven nonlinear optimization for the chance-constrained newsvendor problem

available to provide an estimation for the boundaries of the integration but also an estimation
for the bandwidth by applying complex methods like cross-validation and plug-in methods
to the set {(qqqMILP)⊤xxxiii −Di, i = 1, . . . ,N}.

In the numerical application for the methodology introduced in this chapter, for the sake of

simplicity, we consider only the Gaussian kernel, i.e., K(z) :=
e−z2/2
√

2π
. Thus, Silverman’s rule

of thumb is applied to provide the optimal bandwidth, i.e., h = 1.06min
(

sN ,
IQR
1.34

)
N−1/5,

where sN is the standard deviation and IQR represents an approximation of the interquartile
range of the sample (Wilcox, 2011). In essence, IQR provides an estimation of the differ-
ence between the third and the first quantiles of the sample {qqqMILP)⊤xxxiii −Di, i = 1, . . . ,N}.
Although the numerical application in this chapter only considers the Gaussian kernel and
Silverman’s rule of thumb, it is noteworthy that other kernel functions and their estimation
for the optimal bandwidth through the MILP decision rule are also eligible to be considered
in a real-world problem.

Remark 9. Given the above discussion, the general procedure to solve the data-driven
service-level-based newsvendor problem is given as follows.

i. First step. Solve the MILP to obtain qqqMILP, which will be used as a foundation to
provide estimation for the bandwidth and the boundaries of the integration.

ii. Second step. Given qqqMILP, calculate and investigate the set of values {qqqMILP)⊤xxxiii −
Di, i = 1, . . . ,N} to obtain an estimation for the boundaries of the integration and the
bandwidth. We can generally consider any kernel function and its related optimal
bandwidth.

iii. Third step. Solve the NLP with the kernel function and its estimated optimal bandwidth
to obtain qqqNLP.

The next section will provide numerical results of the proposed NLP approach considering
the Gaussian kernel with simulated sample data.

4.4 Numerical analysis

In a controlled simulation study, we assess the efficacy of the proposed Nonlinear Program-
ming (NLP) approach against the conventional Mixed Integer Linear Programming (MILP)
method. Our experiment involves the generation of datasets, varied sample sizes, and the
application of the proposed methodology for comprehensive evaluation.
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4.4 Numerical analysis 87

We assume here that, in addition to demand (apart from the constant term), the historical
data also includes one more attribute. In particular, we consider the case when the demand is
a linear function of the sales price x̃ plus an error component e that is normally distributed,
with a mean of zero and a variance of σ2. Mathematically, the demand is defined as
D = κ −ω x̃+ e. For an overview of price-dependent demand, we refer the readers to the
work of Petruzzi and Dada (1999). In practical situations, the parameters κ , ω , and σ2 must
be estimated since they are unknown. The pricing range is normalized to [0,1] for each
randomly generated problem instance, and then we draw the known parameters κ , ω , and σ2

in the following manner:

• Market size is uniformly distributed κ ∼ U (100,200),

• Slope is uniformly distributed ω ∼ U (30,50),

• The volatility of demand is generated in such a manner that the coefficient of variation
(CV) at the mean price x̃ is set to 0.3, expressed as CV =

σ

µ
= 0.3.

While κ and ω are unknown to the decision maker, they are fixed for every instance of
the problem. For a given instance (a fixed value of κ and ω), the feature x̃ is sampled from
the uniform distribution U (0,1). The demand is truncated at zero to prevent negative values.
An example with 200 demand observations taken for an instance with κ = 189.356013 and
ω = 37.614526 is shown in Fig. 4.1.

Figure 4.1 Example of demand observations for one instance
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Within the same instance, from all N observations, the models are estimated, and order
quantities are set such that the constraint on the target service level (the probability of non-
stockout) is met. Let qqqMILP =(qMILP

1 ,qMILP
2 ) be the MILP decision rule, qqqNLP =(qNLP

1 ,qNLP
2 )

be the NLP decision rule. The following table gives us the results of the MILP decision rule,
bandwidth estimation (ĥ), the NLP decision rule, the achieved service level of the MILP
decision rule (SLMILP), and the achieved service level of the NLP decision rule (SLMILP) for
out of sample testing data (100000 sample points) when the minimum service level is set at
90%. The size of data used for training is increasing from 10 to 200.

Table 4.2 Example of decision rule and achieved service level for one instance

N qMILP
1 qMILP

2 ĥ SLMILP qNLP
1 qNLP

2 SLNLP
10 266.2175 -118.9785 33.53863 0.73626 235.7603 -15.59856 0.86605
20 217.0735 0 27.13921 0.81217 235.0427 -6.465675 0.8794
30 248.8846 -47.43279 27.845 0.85529 274.175 -56.79324 0.92763
40 245.0613 -30.51236 25.58473 0.87614 270.096 -42.94082 0.93562
50 247.4383 -42.76741 23.7493 0.85936 265.5149 -48.13231 0.91627
60 247.0716 -41.58426 24.14976 0.86053 258.6216 -33.12421 0.91785
70 247.0716 -41.58426 22.40278 0.86053 255.4594 -32.01039 0.91009
80 245.0613 -30.51236 21.5157 0.87614 252.1073 -21.35275 0.91525
90 244.7195 -28.50158 21.13481 0.87867 251.8907 -17.54084 0.91986
100 259.8818 -52.56872 21.36075 0.89026 252.7805 -13.70197 0.9271
110 259.8818 -52.56872 20.80239 0.89026 253.6881 -17.25707 0.92529
120 249.5863 -36.22668 20.0828 0.8829 252.2686 -18.29202 0.91996
130 249.5863 -36.22668 19.78155 0.8829 254.0026 -22.4929 0.91947
140 251.6159 -39.44825 19.52841 0.88483 257.8692 -28.43501 0.92239
150 249.5863 -36.22668 19.11758 0.8829 258.6068 -34.09133 0.9165
160 251.6159 -39.44825 18.77785 0.88483 257.7052 -32.4755 0.91601
170 244.4777 -27.07959 18.60586 0.88029 258.0031 -35.48973 0.91265
180 259.8818 -52.56872 18.43569 0.89026 258.1032 -33.36557 0.91597
190 251.6159 -39.44825 18.14028 0.88483 257.9045 -35.79798 0.91187
200 244.4777 -27.07959 18.10078 0.88029 256.7589 -35.57276 0.9085

From Table 4.2, it can be seen that the achieved SL of MILP is always lower than the
target SL of 0.9, making this method not validated if the constraint on SL is strictly imposed.
The achieved SL from NLP is always higher than the MILP case, and for this instance, the
achieved SL for NLP is higher than the target SL of 0.9 when N is at least 30.

The actual optimal order quantity at a fixed price, knowing the dependency of demand
and price, is given as follows (Beutel and Minner, 2012):

Qtrue = µ +SI, (4.28)

where µ is the mean demand and SI is the safety inventory. As we consider normally
distributed errors e, letting Φ denote the PDF of the standard normal distribution Z ∼N (0,1),
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i.e.,

Φ(z) = P(Z ≤ z) =
1√
2π

∫ z

−∞

exp
{
−u2

2

}
du,

then the required safety factors under service level constraint become:

SI = σΦ
−1(α). (4.29)

The true decision rule for a new observation x = (1, x̃), where x̃ is the feature value (price in
our case study), is given as follows.

qqqtrue = (κ +σΦ
−1(α),−ω), (4.30)

and the order quantity decision at a given price x̃ is κ +σΦ−1(α)−ω x̃.
Given N = 200, Figure 4.2 represents the dependency of order quantity and the price in

three cases: known demand (actual), MILP, and NLP decisions for the above instance.

Figure 4.2 Example of order quantity decision for one instance

The results observed can vary for different instances. To evaluate the performance of the
proposed NLP method compared to MILP and known demand, we solve the problem for
100 instances and calculate the average and the variance of the results, including the average
achieved SL and its variance. The results of analyzing 100 instances are given in Table 4.3
and Figure 4.3.
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Table 4.3 Mean and variance of the achieved service level for 100 instances

N Mean SLTrue Var SLTrue Mean SLMILP Var SLMILP Mean SLNLP Var SLNLP
10 0.899972 1e-06 0.748454 0.016859 0.884024 0.007667
20 0.899972 1e-06 0.817137 0.006175 0.906279 0.002917
30 0.899972 1e-06 0.836877 0.004067 0.912276 0.001744
40 0.899972 1e-06 0.852812 0.00277 0.915041 0.001396
50 0.899972 1e-06 0.856726 0.002544 0.913277 0.001205
60 0.899972 1e-06 0.8631 0.002038 0.913142 0.00102
70 0.899972 1e-06 0.866044 0.001626 0.913583 0.000928
80 0.899972 1e-06 0.870114 0.001431 0.914869 0.00078
90 0.899972 1e-06 0.873076 0.001156 0.913853 0.000608

100 0.899972 1e-06 0.873288 0.000785 0.91221 0.000566
110 0.899972 1e-06 0.873547 0.00074 0.911296 0.000466
120 0.899972 1e-06 0.873426 0.000768 0.911753 0.000465
130 0.899972 1e-06 0.87575 0.000706 0.911001 0.000461
140 0.899972 1e-06 0.876258 0.000687 0.911139 0.000429
150 0.899972 1e-06 0.877423 0.000685 0.910843 0.000419
160 0.899972 1e-06 0.878364 0.000664 0.910789 0.000412
170 0.899972 1e-06 0.878108 0.00063 0.910303 0.000375
180 0.899972 1e-06 0.879006 0.000566 0.910147 0.00035
190 0.899972 1e-06 0.878747 0.000577 0.909412 0.000343
200 0.899972 1e-06 0.881085 0.000571 0.909408 0.000344

Figure 4.3 The average achieved service level and its variance

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0058/these.pdf © [M.T. Tran], [2024], INSA Lyon, tous droits réservés



4.4 Numerical analysis 91

In Table 4.3, the achieved SLs when we know the actual distribution (Mean SLTrue) are
calculated through the decision rule qqqtrue based on 100000 out of sample. Thus, they can
deviate slightly from the actual value of 0.9. It can be seen that the average achieved SL
results of NLP (Mean SLNLP) are always closer to the target SL. The variance of the SL
achieved by our proposed method is smaller than the MILP’s, meaning our NLP formulation
performs better than the MILP formulation. Moreover, while the average achieved service
level of MILP is always lower than the target level of 0.9, the average achieved service level
of NLP is higher than the target level when the sample size is bigger than 20. Therefore,
when the constraint on service level is strictly applied, the MILP decision rule is invalid, and
our proposed method is more appropriate.

To test the robustness of our proposed NLP model, we consider different values of the ser-
vice level requirement α ∈ {0.7,0.8,0.9,0.95,0.99} and sample size N ∈ {20,50,100,200}.
We solve the MILP and NLP for 100 instances. The results are given in Table 4.4. Table 4.4

Table 4.4 Mean and variance of the achieved service level with different values of target
service level α and sample size N

α N Mean SLTrue Var SLTrue Mean SLMILP Var SLMILP Mean SLNLP Var SLNLP
0.7 20 0.700086 1.97e-06 0.591069 0.009973 0.703479 0.008148
0.7 50 0.700086 1.97e-06 0.648405 0.004926 0.714194 0.003734
0.7 100 0.700086 1.97e-06 0.666462 0.002185 0.710584 0.001497
0.7 200 0.700086 1.97e-06 0.675676 0.001212 0.708506 0.000889
0.8 20 0.800199 1.37e-06 0.691106 0.010177 0.808442 0.005953
0.8 50 0.800199 1.37e-06 0.755963 0.00378 0.818228 0.002594
0.8 100 0.800199 1.37e-06 0.765878 0.001634 0.814267 0.001074
0.8 200 0.800199 1.37e-06 0.779018 0.000872 0.810759 0.000628
0.9 20 0.899972 7.36e-07 0.817137 0.006175 0.906279 0.002917
0.9 50 0.899972 7.36e-07 0.856727 0.002544 0.913277 0.001205
0.9 100 0.899972 7.36e-07 0.873288 0.000785 0.912211 0.000566
0.9 200 0.899972 7.36e-07 0.881085 0.000571 0.909409 0.000344
0.95 20 0.94997 3.73e-07 0.863662 0.005522 0.952375 0.0014
0.95 50 0.94997 3.73e-07 0.917545 0.00138 0.956313 0.000561
0.95 100 0.94997 3.73e-07 0.922787 0.00067 0.957018 0.00029
0.95 200 0.94997 3.73e-07 0.933415 0.000318 0.955745 0.000172
0.99 20 0.990003 7.99e-08 0.931528 0.002804 0.984756 0.000313
0.99 50 0.990003 7.99e-08 0.968635 0.000699 0.989335 9.67e-05
0.99 100 0.990003 7.99e-08 0.96925 0.000382 0.99085 4.86e-05
0.99 200 0.990003 7.99e-08 0.977818 0.000114 0.991018 2.21e-05

confirms the same behavior observed in Table 4.3, i.e., the NLP is better than the MILP in
the solution performance and the validation of the service level requirement.

With the same considerations for α ∈{0.7,0.8,0.9,0.95,0.99} and N ∈{20,50,100,200},
Table 4.5 represents the mean time in seconds used for solving MILP and NLP models. The
first four columns illustrate the wall time and CPU time used to solve the MILP and the NLP
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models, while the last two columns display the “aggregate” time consumption to solve the
NLP model. This aggregate time is equal to the sum of the time consumed to solve the MILP
and NLP models, as the MILP model is used to provide an estimation for the bandwidth for
the NLP model. Table 4.5 confirms that with not too much additional calculation time, the
NLP model provides a better solution compared to the MILP model.

Table 4.5 The average time (seconds) used to solve the MILP and NLP problem

α N
Wall time

MILP
CPU time

MILP
Wall time

NLP
CPU time

NLP
Aggregate

wall time NLP
Aggregate

CPU time NLP
0.7 20 0.17 0.43 1.78 4.82 1.95 5.25
0.7 50 1.74 4.31 5.96 15.63 7.70 19.95
0.7 100 8.96 24.20 16.13 42.57 25.09 66.77
0.7 200 186.45 591.62 35.47 93.38 221.92 685.00
0.8 20 0.26 0.49 2.02 5.43 2.28 5.92
0.8 50 2.50 5.20 6.33 16.59 8.83 21.79
0.8 100 13.67 33.55 20.58 53.62 34.25 87.17
0.8 200 184.40 542.74 42.17 110.67 226.57 653.41
0.9 20 0.27 0.35 2.19 5.92 2.47 6.26
0.9 50 2.40 4.93 7.29 19.13 9.69 24.05
0.9 100 12.32 28.01 17.93 47.21 30.26 75.22
0.9 200 95.50 283.93 46.19 122.56 141.69 406.49
0.95 20 0.17 0.18 2.35 6.34 2.52 6.52
0.95 50 1.02 1.37 7.25 19.10 8.27 20.47
0.95 100 11.23 29.05 18.18 47.48 29.41 76.53
0.95 200 40.22 108.43 43.38 114.74 83.60 223.16
0.99 20 0.01 0.02 2.43 6.57 2.44 6.59
0.99 50 0.02 0.02 7.56 19.71 7.57 19.73
0.99 100 0.33 0.37 16.95 44.87 17.29 45.24
0.99 200 7.14 22.44 41.49 109.79 48.63 132.24

Note that in the numerical example, we use a simple model for NLP with the Gaussian
kernel, and an approximation of integration by considering the number of sub-intervals M =

1000. In practice, given more computational capacity, the approximation for the constraint
can be better thanks to increasing the number of sub-intervals and another method to estimate
optimal bandwidth. As the first research on applying the nonlinear approach to solving
the data-driven newsvendor problem, we consider the Gaussian kernel and Silverman’s
rule of thumb for the optimal bandwidth for numerical study in this chapter. We keep the
comparative study for different kernel functions and their estimated optimal bandwidth of
the NLP for the data-driven newsvendor problem for future research.
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4.5 Extension for multichannel setting

In this section, we introduce the data-driven nonlinear optimization model for the service-
level constrained inventory control problem in a multichannel setting as a natural extension
of the single-channel data-driven newsvendor represented earlier in this chapter. Because of
the computational complexity, we only represent the formulation of the multichannel setting.
We keep the numerical analysis and comparative study for future research.

Consider a retailer who manages n channels of sales. We denote each channel in the
set of n channels by k ∈ {1,2, . . . ,n}. The objective of the multichannel inventory model
is to minimize the waste of unsold products while satisfying a minimum service level for
each channel. In practice, each channel can have a different priority. Thus, to model the
importance of each channel, we associate the unsold products in each channel with a “weight”
coefficient. The multichannel inventory control problem under service level constraints is
given as follows.

min
Q1,Q2,...,Qn≥0

n

∑
k=1

βkE[(Qk −Dk)+]

s.t. P(Qk ≥ Dk)≥ αk,∀k ∈ {1,2, . . . ,n}
(4.31)

In the above formulation, for each channel k ∈ {1,2, . . . ,n}, βk represents the weight
coefficient, Qk,Dk stand for the inventory decisions and demand, and αk is the minimum
service level for this channel.

We assume that there is a correlation between the two channels through the channels’
feature values. For example, the price, seasonality, promotion, ..., of each channel have
an impact on the demand of the other channel. Thus, the feature vector xxx contains all
the features of the two channels. Similar to the single channel setting, we assume that the
inventory decision for the two channels is linear depending on the feature values. In particular,
Qk = qqqk,⊤xxx, where qqqk,⊤ = (qqqk)⊤ for k ∈ {1,2, . . . ,n}. The chance-constrained programming
for the multichannel retailing problem is given as follows.

min
qqq1,qqq2,...,qqqn∈Q

n

∑
k=1

βkE[(qqqk,⊤xxx−Dk)+]

s.t. P(qqqk,⊤xxx−Dk ≥ 0)≥ αk,∀k ∈ {1,2, . . . ,n}
(4.32)

For k ∈ {1,2, . . . ,n}, let

f̂k(u) :=
1

Nhk

N

∑
i=1

Kk

(
u− (qqqk,⊤xxxiii −Dk

i )

hk

)
. (4.33)
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The nonlinear programming (NLP) for solving the data-driven multichannel retailing problem
is given as follows.

min
qqq1,qqq2,...,qqqn,ϕϕϕ1,ϕϕϕ2,...,ϕϕϕn

n

∑
k=1

βk
1
N

N

∑
i=1

ϕk,i (4.34)

s.t. ϕk,i ≥ qqqk,⊤xxxiii −Dk
i , i = 1, . . . ,N,∀k ∈ {1,2, . . . ,n} (4.35)

ϕk,i ≥ 0, i = 1, . . . ,N,∀k ∈ {1,2, . . . ,n} (4.36)

1
3

bk −ak

M

(
f̂k(ak)+2

Mk/2−1

∑
j=1

f̂k(uk,2 j)+4
Mk/2

∑
j=1

f̂k(uk,2 j−1)+ f̂k(bk)

)
≥ αk,

∀k ∈ {1,2, . . . ,n} (4.37)

where for each channel k, we have

• Kk(z) is the Kernel function,

• hk is the optimal bandwidth for the Kernel function Kk(z),

• ak and bk are the estimations for the upper and lower bounds of the integration estima-
tion for service level constraint.

• uk, j = ak + j
bk −ak

Mk
.

• xxxiii = (1, x̃i) and Dk
i , i = 1, . . . ,N, are the observed features and corresponding demand

data.

• ϕϕϕk = (ϕk,1, . . . ,ϕk,N) is the surplus inventory.

• qqqk = (qk
1, . . . ,q

k
d) is the decision rule need to be determined.

The above formulation is challenging to solve because of computational complexity.
Compared to the single-channel setting, the difficulty of the multichannel configuration
additionally comes from the possibility of different kernel choices for each channel. Moreover,
the number of decision variables is significantly higher, even in the simplest case of two
channels. In particular, if we consider that n = 2 and only one feature of price as the single
channel case, i.e., assuming that D1 = κ1 −ω1x̃1 +ν1x̃2 + e1 and D2 = κ2 −ω2x̃2 +ν2x̃1 +

e2, the decision rules are qqq1 = (q1
1,q

1
2,q

1
3) and qqq2 = (q2

1,q
2
2,q

2
3). This study also needs a

comprehensive comparative study of different kernel choices for each channel and an initial
estimation of the bandwidth and boundary of the integration with MILP. Therefore, we
will continue with the numerical analysis and comparative investigation of the multichannel
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setting in future research once we have the feedback of the research community on the single
channel analysis.

4.6 Conclusion and future research

In this study, we have addressed the data-driven newsvendor problem, a significant chal-
lenge in inventory management, by introducing novel methodologies leveraging Kernel
Density Estimation (KDE) within the framework of chance-constrained optimization. Our
contributions have advanced the understanding and resolution of this problem in several
key aspects. Firstly, we proposed a data-driven nonparametric approach that integrates
features and service-level constraints, using KDE to approximate chance constraints. This
methodology offers asymptotic optimality guarantees, providing decision-makers with ro-
bust tools to manage inventory under uncertainty while meeting stringent service quality
requirements. Secondly, through numerical experiments and comparative analyses against
the MILP method, we have demonstrated the effectiveness and applicability of our approach.
Our results show superior performance in achieving target service levels, underlying the
practical value of adopting data-driven methodologies in inventory control decision-making.

There are several avenues for further research and development followed. Firstly, ex-
ploring the application of advanced machine learning techniques, such as deep learning and
reinforcement learning, could enhance the predictive capabilities of our models, particularly
in capturing complex demand patterns and dynamic market conditions. Additionally, inves-
tigating the scalability and computational efficiency of our methodologies for large-scale
inventory management problems remains a crucial area of interest. This entails devising
optimization algorithms and heuristics capable of handling massive datasets and real-time
decision-making scenarios, thereby facilitating seamless integration into industrial appli-
cations. In our model, we consider the process involves evaluating the PDF within the
quadrature through KDE; this step becomes the primary bottleneck of the proposed approach.
Thus, one promising direction for future research is to study how to model and evaluate the
constraint effectively. Furthermore, extending our research to consider additional constraints
and objectives, such as sustainability goals and supply chain resilience, would enrich the
applicability and relevance of our methodologies in contemporary inventory management
practices.

Overall, our study contributes to bridging the gap between theory and practice in inventory
management by offering innovative solutions based on data-driven approaches, which can
be considered as a novel framework for enhancing operational efficiency in an increasingly
dynamic and uncertain business environment.

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0058/these.pdf © [M.T. Tran], [2024], INSA Lyon, tous droits réservés



Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0058/these.pdf © [M.T. Tran], [2024], INSA Lyon, tous droits réservés



Chapter 5

Conclusion and perspectives

In this concluding chapter, we offer a comprehensive summary of the thesis, highlighting
the story it tells, the insights it reveals, the contributions it delivers, and avenues for future
research. Our reflection on the adventure undertaken, spanning multichannel retail, dual-
channel pricing, and data-driven inventory management, seeks to draw connections across
chapters and emphasize the significance of our findings.

Overview of the thesis
Our exploration through inventory management, operations management, and supply

chain management to multichannel retailing, dual-channel pricing, and data-driven inventory
management has been a rich tapestry of exploration, discovery, and innovation. Each chapter
has added depth and nuance to our understanding of modern retail management, from the
complexities of consumer behavior to the intricacies of pricing optimization. Our adventure
begins amidst the bustling world of multichannel retail, where the convergence of physical
and online channels presents opportunities and challenges for retail managers.

Chapter 1: We begin our research by providing an overview of recent advances and
topics in operations management, supply chain management, and inventory management.
This discussion highlights the necessity for inventive solutions to adapt to the evolving retail
business, driven by technological advancements, data accessibility, and uncertain consumer
demands.

Chapter 2: We examine the complexities of multichannel retailing, exploring the chal-
lenges of inventory allocation and pricing optimization across several physical and online
channels. Through comprehensive modeling of customer behavior, channel preferences,
market dynamics, and service level requirements, we uncover the strategic imperatives and
operational considerations that shape the modern retail landscape.

In particular, in this chapter, we address a multichannel pricing problem that considers
the effects of service level on retailers’ pricing and ordering decisions. Our approach involves
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modeling each channel’s demand as a stochastic function of prices, with order quantities
subject to service level constraints. Utilizing attraction demand models, we quantify cross-
channel dependencies. We establish the mathematical well-behavedness of the objective
function under service level and regular conditions, identifying a unique global solution
corresponding to the zero point of the gradient. Our methodology ensures the existence and
uniqueness of the optimal solution, even when conventional approaches are not applicable,
by examining zero-gradient points and associated Hessian matrices. This novel method
extends applicability to non-concave objective functions, offering insights for researchers
and retailers into complex profit functions.

Through numerical analysis, we provide managerial insights for various service-level
scenarios. We study implications in order quantities, market share, and expected profit
with varying service levels. Coordination between channels becomes crucial, necessitating
trade-offs between expected profit, service levels, and market share losses.

For future research, we propose extending the analysis to consider a broader range of
demand models and service measures, such as addictive demand and fill rate. Enhancing the
multichannel model with multiple ordering choices and dynamic pricing presents an exciting
avenue. Additionally, investigating decentralized supply chains’ impact on the objective
function and optimal solutions promises valuable insights.

Chapter 3: Building upon our exploration of multichannel retailing, we delve into
dual-channel pricing, where the strategic balancing act between profitability and customer
satisfaction takes center stage. Drawing on insights from market-share models and demand
theory, we develop a novel pricing model that captures the complex interactions between
channels, retailers, and customers and sheds light on the elusive quest for pricing decisions
in a dual-channel environment.

Specifically, our study delves into a stochastic dual-channel pricing problem and its impact
on retailer pricing decisions amidst consumer behavior dynamics. We develop a stylized
model capturing scenarios where physical store stock depletion enables online shopping
offers to customers. We quantify cross-channel dependencies and customer channel choices
by employing attraction models, resulting in non-concave, non-linear demand and objective
functions. We establish the well-behavedness of the objective function, demonstrating the
existence and uniqueness of the optimal global solution within its domain. We continue to
use the methodology mentioned in Chapter 2 to verify the optimal solution’s uniqueness and
confirm a novel approach based on zero-gradient points and associated Hessian matrices. This
method extends applicability to non-concave objective functions, facilitating the examination
of complex profit functions.
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Our numerical analysis provides managerial insights across various parameter settings,
highlighting complexities in determining optimal physical store capacity and addressing
stock-out conversions to online sales with promotions. Additionally, we identify the impact
of online channel operational costs on pricing decisions, indicating potential adjustments to
channel prices for sales transfer between channels.

Future research directions include analyzing optimization problems with broader demand
models, improving retailing models with dynamic pricing, and extending the model to con-
sider limited inventory in physical and online channels. Investigating optimal physical store
capacity as a long-term decision and exploring dependencies between prices, promotions,
and customer acceptance during stock-outs also warrant attention. In addition, comparative
studies on different attraction models are promising avenues for further research.

Chapter 4: Finally, we focus on data-driven inventory management, where historical
data and advanced methodologies converge to inform decision-making under uncertainty.
Leveraging the power of Kernel Density Estimation (KDE) and nonlinear programming
(NLP), we tackle the formidable challenge of integrating service-level constraints into
inventory optimization models, offering a glimpse into the future of data-driven decision-
making in retail.

In particular, this chapter tackles the data-driven newsvendor problem in inventory man-
agement by introducing novel methodologies leveraging Kernel Density Estimation (KDE)
within the framework of chance-constrained optimization. Our contributions enhance un-
derstanding and resolution of this problem in several key aspects. Firstly, we propose a
data-driven nonparametric approach integrating features and service-level constraints, using
KDE to approximate chance constraints. This methodology offers asymptotic optimality
guarantees, providing decision-makers with robust tools to manage inventory under uncer-
tainty while meeting stringent service quality requirements. Secondly, through numerical
experiments and comparative analyses against the mixed-integer linear programming (MILP)
method, we demonstrate the effectiveness and applicability of our approach. Our results
show superior performance in achieving target service levels, highlighting the practical value
of adopting data-driven methodologies in inventory control decision-making.

Several avenues for further research and development are identified. Exploring advanced
machine learning techniques like deep and reinforcement learning could enhance predic-
tive capabilities, particularly in capturing complex demand patterns and dynamic market
conditions. Investigating scalability and computational efficiency for large-scale inventory
management problems is crucial, requiring optimization algorithms and heuristics capable of
handling massive datasets and real-time decision-making scenarios. Additionally, modeling
and evaluating constraints effectively, particularly the PDF evaluation within the quadrature
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through KDE, presents promising future research directions. Extending our research to
consider additional constraints and objectives, such as sustainability goals and supply chain
resilience, would enrich the applicability and relevance of our methodologies in contemporary
inventory management practices.

Overall, our study contributes to bridging the gap between theory and practice in inventory
management by offering innovative solutions based on data-driven approaches. These
methodologies represent a novel framework for enhancing operational efficiency in an
increasingly dynamic and uncertain business environment.

Chapter 5: We conclude our study by summarizing the story throughout the thesis,
encapsulating its essence, and reaffirming the significance of our contributions to retail
management.

Insights
Throughout the thesis, several key insights emerge:

• Customer-centric approach: Success in retail hinges on a customer-centric approach,
where pricing strategies, inventory management decisions, and service-level considera-
tions are tailored to meet the needs and preferences of customers across channels.

• Multichannel retailing: Incorporating service-level constraints introduces complex
interactions between physical and online channels, necessitating sophisticated pricing
and inventory management strategies to optimize performance across channels.

• Dual-channel retailing: Understanding customer behavior is crucial for effective
pricing decisions, especially in environments where customers may exhibit varying
preferences and purchase behaviors, depending on the promotion offer and intention to
switch between channels when stockout occurs.

• Data-driven decision making: Leveraging data-driven approaches enables more in-
formed inventory management decisions, allowing retailers to adapt to dynamic market
conditions and uncertainty more effectively.

Contributions
Our exploration of multichannel, dual-channel, and data-driven inventory management

has made several notable contributions to the field:

• Conceptual framework: We have developed a comprehensive conceptual framework
for understanding and addressing the unique challenges of multichannel retailing,
providing a roadmap for retailers to navigate the complexities of modern retail envi-
ronments.
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• Methodological advances: Our exploration has led to the development of novel method-
ologies and analytical tools for pricing optimization, inventory management, and data-
driven decision-making, pushing the boundaries of theoretical and practical approaches
in retail management.

• Managerial insights: Through numerical experiments, we have uncovered valuable in-
sights into the effectiveness of different inventory management strategies, the impact of
customer behavior on pricing decisions, and the potential of data-driven methodologies
to drive business success.

Future research
Results obtained in this dissertation provide interesting aspects of retail management and

stimulate the development of further research. Among research perspectives, the following
ones are of special interest.

• Advanced modeling: Further exploration of advanced modeling techniques, especially
for chapter 4, such as machine learning algorithms and predictive analytics, could
enhance the accuracy and predictive capabilities of inventory management models,
enabling retailers to anticipate better and respond to uncertain market conditions.

• Dynamic pricing strategies: All the models considered in this thesis are single-period.
Thus, investigating dynamic pricing strategies, personalized pricing algorithms, and
real-time pricing adjustments could unlock new opportunities for revenue optimization
and customer targeting in long-term multichannel retail environments.

• Supply chain resilience: Exploring the integration of supply chain resilience considera-
tions into inventory management models, including risk mitigation strategies, supply
chain diversification, and adaptive logistics, could help retailers build more resilient
and adaptable supply chains.

• Sustainability and ethics: Examining the intersection of retail management with
sustainability and ethical considerations, including environmentally friendly practices,
fair labor standards, and ethical sourcing, could pave the way for more responsible and
socially conscious retail practices.

Conclusion
In conclusion, this thesis has addressed the multifaceted challenges facing retailers in the

era of digital transformation and technological advancement. The evolving retail landscape,
characterized by the rise of e-commerce, the proliferation of digital channels, and the growing
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influence of data analytics, has presented retailers with complex and dynamic scenarios that
demand innovative solutions.

Throughout this study, we have highlighted the critical role of supply chain management
in navigating the complexities of modern retailing. Recognizing the importance of effectively
balancing supply and demand, we have emphasized the need for retailers to leverage advanced
analytics and optimization techniques to optimize flow management across channels. Our
exploration of innovative frameworks for flow management has underscored the significance
of blurring the boundaries between the physical and digital supply chain. By facilitating an
integrated and optimized multichannel configuration, these frameworks offer retailers the
opportunity to enhance customer experiences and drive competitive advantage.

Furthermore, our analysis has shed light on the transformative impact of information
technology on supply chain management. The emergence of the Internet of Things (IoT) and
advancements in information technology have provided supply chain managers with access
to vast amounts of real-time data, enabling more informed decision-making and excellent
responsiveness to customer demands. However, despite the strides made in understanding
and addressing the challenges of modern retailing, there remain areas that need to be explored
for further research and exploration. The optimization of end-to-end flow management in
stochastic decision-making environments represents a notable research gap that warrants
attention from the operations management community.

In summary, this thesis has contributed to advancing our understanding of retailing in the
digital age. It has provided valuable insights and frameworks for retailers seeking to thrive in
an increasingly complex and competitive environment. By embracing innovation, leveraging
data-driven approaches, and prioritizing customer-centric strategies, retailers can position
themselves for success in the dynamic world of modern retailing.

Final note
This thesis presents a comprehensive investigation into the complexities of retail man-

agement in the digital age, focusing on multichannel retailing, dual-channel pricing, and
data-driven inventory management. Through a series of interconnected chapters, we explore
the strategic imperatives and operational considerations shaping the modern retail landscape,
offering insights and methodologies to address the multifaceted challenges faced by retailers.

Chapter 1 provides an overview of recent topics and advancements in operations man-
agement, supply chain management, and inventory management, emphasizing the need for
inventive solutions to adapt to evolving retail dynamics driven by technological developments
and uncertain consumer demands.

Chapter 2 delves into the intricacies of multichannel retailing, examining inventory
allocation and pricing optimization across physical and online channels. We address a

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0058/these.pdf © [M.T. Tran], [2024], INSA Lyon, tous droits réservés



103

multichannel pricing problem, considering the effects of service level on pricing and ordering
decisions, and propose a methodology to ensure the existence and uniqueness of the optimal
solution, even for non-concave objective functions. Managerial insights gleaned from
numerical analysis highlight the importance of channel coordination and the impact of
service levels on market share and profitability.

Building upon our exploration of multichannel retailing, Chapter 3 investigates dual-
channel pricing, focusing on the strategic balancing act between profitability and customer
satisfaction. We develop a novel pricing model capturing complex interactions between
channels, retailers, and customers. We establish the well-behavedness of the objective
function, ensuring the existence and uniqueness of the optimal global solution. Managerial
insights underscore the importance of determining optimal physical store capacity and
addressing stock-out conversions to online sales with promotions.

Chapter 4 introduces data-driven inventory management methodologies leveraging Ker-
nel Density Estimation (KDE) within chance-constrained optimization frameworks. Our
approach offers robust tools for managing inventory under uncertainty while meeting strin-
gent service quality requirements, demonstrating superior performance in achieving target
service levels compared to traditional methods. Future research directions include exploring
advanced machine learning techniques and extending the model to consider sustainability
and supply chain resilience.

In conclusion, this thesis promotes our understanding of retail management in the digital
age, offering valuable insights and methodologies for navigating the complexities of modern
retailing. By embracing innovation, leveraging data-driven approaches, and prioritizing
customer-centric strategies, retailers can position themselves for success in an increasingly
dynamic and competitive environment.
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Appendix A

Appendix of Chapter 2

A.1 Proofs of Lemmas

In this section, we first give the proof for Lemma 2, then introduce Lemma 6, Lemma 5, and
Lemma 7 with their detailed proofs.

A.1.1 Proof of Lemma 2

The first condition (i) of the lemma secures the existence of a point uuu∗ such that ∇Ψ(uuu∗) = 000.

Thus, if uuu∗ is an argument of the maxima of Ψ(uuu), then
∂Ψ

∂ui
(uuu∗) = 0 for all i ∈ {1,2, . . . ,n}.

In order to complete the proof, we need to show the uniqueness. We prove by induction on n,
the number of decision variables.

When n = 1, the result follows from Lemma 1. Assuming that the lemma holds when
n = k−1, we need to show that it is true when n = k.

At a given uk, Ψ(uuu) can be seen as a function of k−1 variables. By the induction assump-
tion, given uk, there exists unique vector of decision variables uuu∗(uk)= (u∗1(uk),u∗2(uk), . . . ,u∗k−1(uk))

that satisfies
∂Ψ

∂ui
(u∗1(uk),u∗2(uk), . . . ,u∗k−1(uk),uk) = 0, (A.1)

for all i ∈ {1,2, . . . ,k−1}. Moreover, uuu∗(uk) is the maximizer of Ψ(uuu) for this given value
of uk.

Now, instead of maximizing Ψ(uuu) over uuu= (u1,u2, . . . ,uk), we can maximize the function
Ψ∗(uk) := Ψ(uuu∗(uk),uk) over uk. Applying the envelope theorem, the first-order derivative
of Ψ∗(uk) is given as follows:

∂Ψ∗

∂uk
(uk) =

∂Ψ

∂uk
(uuu∗(uk),uk). (A.2)
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Thus, the second-order derivative of Ψ∗(uk) is given as follows

∂ 2Ψ∗

∂u2
k
(uk) =

∂ 2Ψ

∂u2
k
(uuu∗(uk),uk)+

k−1

∑
i=1

∂ 2Ψ

∂uk∂ui
(uuu∗(uk),uk)

∂u∗i (uk)

∂uk
. (A.3)

Now, we will prove that at all the point uk such that
∂Ψ∗

∂uk
(uk) = 0, then

∂ 2Ψ∗

∂u2
k
(uk)< 0.

Indeed, when
∂Ψ∗

∂uk
(uk) = 0, from Eq. A.1, Eq. A.2, for all i ∈ {1,2,3, . . . ,k}, we have

∂Ψ

∂ui
(u∗1(uk),u∗2(uk), . . . ,u∗k−1(uk),uk) = 0. (A.4)

Then, by assumption (ii) of the lemma, we have

∂ 2Ψ

∂u2
k
(uuu∗(uk),uk)< 0,

∂ 2Ψ

∂uk∂ui
(uuu∗(uk),uk) = 0, i ∈ {1,2, . . . ,k−1}. (A.5)

Embedding these properties in Eq. A.3, we deduce that

∂ 2Ψ∗

∂u2
k
(uk)< 0, (A.6)

given that
∂Ψ∗

∂uk
(uk) = 0.

The lemma holds for n= 1 (confirm by Lemma 1), we deduce that there exists a unique u∗k
that maximizes Ψ∗(uk). Therefore, there exists a unique vector uuu∗=(u∗1(u

∗
k),u

∗
2(u

∗
k), . . . ,u

∗
k−1(u

∗
k),u

∗
k)

that satisfies
∂Ψ

∂ui
(uuu∗) = 0 for i ∈ {1,2,3, . . . ,k} and uuu∗ maximizes Ψ(uuu).

A.2 Proofs of Propositions

In this section, we provide all the complement proofs for the propositions in the main body
of the paper.

A.2.1 Proof of Proposition 2

With the above notations, to prove this proposition, we need to represent explicit formulations
for the part of the market function Gi(rrr); channel’s profit function Πi(rrr); total profit function
Π(rrr); their first-order derivatives, second-order derivatives, and cross derivatives via Lemma
5, Lemma 6, and Lemma 7 as follows.
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Lemma 5. For all i, j,k, l ∈ {1,2, . . . ,n}, i ̸= j, i ̸= l, j ̸= l, we have

a.
∂Gi

∂ ri
(rrr) = ζi(ri)Gi(rrr)(1−Gi(rrr))< 0 (A.7)

b.
∂G j

∂ ri
(rrr) =−ζi(ri)Gi(rrr)G j(rrr)> 0 (A.8)

c.
∂ 2Gi

∂ r2
i
(rrr) =

[
ζ
′
i (ri)+(1−2Gi(rrr))ζ

2
i (ri)

]
Gi(rrr)(1−Gi(rrr)) (A.9)

d.
∂ 2G j

∂ r2
i
(rrr) =−

[
ζ
′
i (ri)+(1−2Gi(rrr))ζ

2
i (ri)

]
Gi(rrr)G j(rrr) (A.10)

e.
∂ 2Gi

∂ ri∂ r j
(rrr) =−ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)(1−2Gi(rrr)) (A.11)

f.
∂ 2Gl

∂ ri∂ r j
(rrr) = 2ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)Gl(rrr) (A.12)

Proof. Note that we have ζi(ri)< 0,0 < Gi(rrr)< 1.

a.

∂Gi

∂ ri
(rrr) (A.13)

=

∂
gi(ri)

g0 +∑
n
k=1 gk(rk)

∂ ri
(A.14)

=
1

(g0 +∑
n
k=1 gk(rk))

2

[
g′i(ri)

(
g0 +

n

∑
k=1

gk(rk)

)
−gi(ri)

∂ (g0 +∑
n
k=1 gk(rk))

∂ ri

]
(A.15)

=
g′i(ri)

g0 +∑
n
k=1 gk(rk)

− gi(ri)g′i(ri)

(g0 +∑
n
k=1 gk(rk))

2 (A.16)

=
g′i(ri)

gi(ri)

gi(ri)

g0 +∑
n
k=1 gk(rk)

− g′i(ri)

gi(ri)

g2
i (ri)

(g0 +∑
n
k=1 gk(rk))

2 (A.17)

= ζi(ri)Gi(rrr)−ζi(ri)G2
i (rrr) (A.18)

= ζi(ri)Gi(rrr)(1−Gi(rrr))< 0. (A.19)
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b.

∂G j

∂ ri
(rrr) =

∂
g j(r j)

g0 +∑
n
k=1 gk(rk)

∂ ri
(A.20)

=
1

(g0 +∑
n
k=1 gk(rk))

2

[
−g j(r j)

∂ (g0 +∑
n
k=1 gk(rk))

∂ ri

]
(A.21)

=−
g j(r j)g′i(ri)

(g0 +∑
n
k=1 gk(rk))

2 (A.22)

=−g′i(ri)

gi(ri)

gi(ri)

g0 +∑
n
k=1 gk(rk)

g j(r j)

g0 +∑
n
k=1 gk(rk)

(A.23)

=−ζi(ri)Gi(rrr)G j(rrr)> 0. (A.24)

c.

∂ 2Gi

∂ r2
i
(rrr) =

∂

∂ ri

(
∂Gi

∂ ri

)
(rrr) (A.25)

=
∂

∂ ri
[ζi(ri)Gi(rrr)(1−Gi(rrr))] (A.26)

= ζ
′
i (ri)Gi(rrr)(1−Gi(rrr))+ζi(ri)

(
∂Gi

∂ ri
(rrr)(1−Gi(rrr))−Gi(rrr)

∂Gi

∂ ri
(rrr)
)

(A.27)

= ζ
′
i (ri)Gi(rrr)(1−Gi(rrr))+ζi(ri)

(
∂Gi

∂ ri
(rrr)(1−2Gi(rrr))

)
(A.28)

= ζ
′
i (ri)Gi(rrr)(1−Gi(rrr))+ζi(ri)

(
[ζi(ri)Gi(rrr)(1−Gi(rrr))] (1−2Gi(rrr))

)
(A.29)

= ζ
′
i (ri)Gi(rrr)(1−Gi(rrr))+ζ

2
i (ri)Gi(rrr)(1−Gi(rrr))(1−2Gi(rrr)) (A.30)

= Gi(rrr)(1−Gi(rrr))
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
. (A.31)

d.

∂ 2G j

∂ r2
i
(rrr) (A.32)

=
∂

∂ ri

(
∂G j

∂ ri

)
(rrr) (A.33)

=
∂

∂ ri

[
−ζi(ri)Gi(rrr)G j(rrr)

]
(A.34)
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=−
[

ζ
′
i (ri)Gi(rrr)G j(rrr)+ζi(ri)

∂Gi

∂ ri
(rrr)G j(rrr)+ζi(ri)Gi(rrr)

∂G j

∂ ri
(rrr)
]

(A.35)

=−
{

ζ
′
i (ri)Gi(rrr)G j(rrr)+ζi(ri)

[
ζi(ri)Gi(rrr)(1−Gi(rrr))

]
G j(rrr)

+ζi(ri)Gi(rrr)
[
−ζi(ri)Gi(rrr)G j(rrr)

]}
(A.36)

=−
[
ζ
′
i (ri)Gi(rrr)G j(rrr)+ζ

2
i (ri)Gi(rrr)(1−Gi(rrr))G j(rrr)−ζ

2
i (ri)G2

i (rrr)G j(rrr)
]

(A.37)

=−Gi(rrr)G j(rrr)
[
ζ
′
i (ri)+ζ

2
i (ri)(1−Gi(rrr))−ζ

2
i (ri)Gi(rrr)

]
(A.38)

=−Gi(rrr)G j(rrr)
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
. (A.39)

e.

∂ 2Gi

∂ ri∂ r j
(rrr) =

∂

∂ r j

(
∂Gi

∂ ri

)
(rrr) (A.40)

=
∂

∂ r j
[ζi(ri)Gi(rrr)(1−Gi(rrr))] (A.41)

= ζi(ri)

[
∂Gi

∂ r j
(rrr)(1−Gi(rrr))−Gi(rrr)

∂Gi

∂ r j
(rrr)
]

(A.42)

= ζi(ri)
∂Gi

∂ r j
(rrr)(1−2Gi(rrr)) (A.43)

= ζi(ri)
[
−ζ j(r j)Gi(rrr)G j(rrr)

]
(1−2Gi(rrr)) (A.44)

=−ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)(1−2Gi(rrr)) . (A.45)

f.

∂ 2Gl

∂ ri∂ r j
(rrr) =

∂

∂ r j

(
∂Gl

∂ ri

)
(rrr) (A.46)

=
∂

∂ r j
[−ζi(ri)Gi(rrr)Gl(rrr)] (A.47)

=−ζi(ri)

[
∂Gi

∂ r j
(rrr)Gl(rrr)+Gi(rrr)

∂Gl

∂ r j
(rrr)
]

(A.48)

=−ζi(ri)
{[
−ζ j(r j)Gi(rrr)G j(rrr)

]
Gl(rrr)+Gi(rrr)

[
−ζ j(r j)G j(rrr)Gl(rrr)

]}
(A.49)

=−ζi(ri)
[
−2ζ j(r j)Gi(rrr)G j(rrr)Gl(rrr)

]
(A.50)

= 2ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)Gl(rrr). (A.51)
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Lemma 6 and Lemma 7 represent profit functions and their derivatives as follows.

Lemma 6. For all i, j, l ∈ {1,2, . . . ,n}, i ̸= j, i ̸= l, j ̸= l, we have

a.

Π(rrr) =
n

∑
k=1

Gk(rrr)Vk(rk) (A.52)

b.
∂Πi

∂ ri
(rrr) = Gi(rrr)Ui +

∂Gi

∂ ri
(rrr)Vi(ri) (A.53)

c.
∂Π j

∂ ri
(rrr) =

∂G j

∂ ri
(rrr)Vj(r j) (A.54)

d.
∂Π

∂ ri
(rrr) = Gi(rrr)Ui +

n

∑
k=1

(
∂Gk

∂ ri
(rrr)Vk(rk)

)
(A.55)

e.
∂ 2Πi

∂ r2
i
(rrr) = 2

∂Gi

∂ ri
(rrr)Ui +

∂ 2Gi

∂ r2
i
(rrr)Vi(ri) (A.56)

f.
∂ 2Π j

∂ r2
i
(rrr) =

∂ 2G j

∂ r2
i
(rrr)Vj(r j) (A.57)

g.
∂ 2Π

∂ r2
i
(rrr) = 2

∂Gi

∂ ri
(rrr)Ui +

n

∑
k=1

(
∂ 2Gk

∂ r2
i
(rrr)Vk(rk)

)
(A.58)

h.
∂ 2Πi

∂ ri∂ r j
(rrr) =

∂Gi

∂ r j
(rrr)Ui +

∂ 2Gi

∂ ri∂ r j
(rrr)Vi(ri) (A.59)

i.
∂ 2Πl

∂ ri∂ r j
(rrr) =

∂ 2Gl

∂ ri∂ r j
(rrr)Vl(rl) (A.60)

j.
∂ 2Π

∂ ri∂ r j
(rrr) =

∂Gi

∂ r j
(rrr)Ui +

∂G j

∂ ri
(rrr)U j +

n

∑
k=1

(
∂ 2Gk

∂ ri∂ r j
(rrr)Vk(rk)

)
(A.61)

Proof. a. Deduce from the notation introduced in the paper.

b. Note that
∂Vi(ri)

∂ ri
=Ui, then take the derivative w.r.t ri with Πi(rrr) = Gi(rrr)Vi(ri).
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c. Similar to the proof of part b, note that
∂Vj(r j)

∂ ri
= 0.

d. Take the sum over all derivatives calculated in part a and part b.
e.,. . . , j. Take the derivative with respect to ri,r j both sides of part b, and part c and take

the sum over all indexes.

Lemma 7. For all i, j,k, l ∈ {1,2, . . . ,n}, i ̸= j, i ̸= l, j ̸= l, we have

a.
∂Πi

∂ ri
(rrr) = Gi(rrr)[Ui +ζi(ri)(1−Gi(rrr))Vi(ri)] (A.62)

b.
∂Π j

∂ ri
(rrr) =−ζi(ri)Gi(rrr)G j(rrr)Vj(r j) (A.63)

c.
∂Π

∂ ri
(rrr) = Gi(rrr)

{
Ui +ζi(ri)

[
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]}
(A.64)

d.

∂ 2Πi

∂ r2
i
(rrr) = Gi(rrr)(1−Gi(rrr))

{
2ζi(ri)Ui +

[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
Vi(ri)

}
(A.65)

e.
∂ 2Π j

∂ r2
i
(rrr) =−Gi(rrr)G j(rrr)

[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
Vj(r j) (A.66)

f.

∂ 2Π

∂ r2
i
(rrr) = Gi(rrr)

{
2ζi(ri)(1−Gi(rrr))Ui

+
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

][
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]}
,

(A.67)

g.
∂ 2Πi

∂ ri∂ r j
(rrr) =−ζ j(r j)Gi(rrr)G j(rrr)[Ui +ζi(ri)(1−2Gi(rrr))Vi(ri)] (A.68)

h.
∂ 2Πl

∂ ri∂ r j
(rrr) = 2ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)Gl(rrr)Vl(rl) (A.69)
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i.

∂ 2Π

∂ ri∂ r j
(rrr) =−Gi(rrr)G j(rrr)

{
ζ j(r j)

[
Ui +ζi(ri)

(
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

))]
+ζi(ri)

[
U j +ζ j(r j)

(
Vj(r j)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

))]}
.

(A.70)

Proof. a.

∂Πi

∂ ri
(rrr) = Gi(rrr)Ui +

∂Gi

∂ ri
(rrr)Vi(ri) (A.71)

= Gi(rrr)Ui +ζi(ri)Gi(rrr)(1−Gi(rrr))Vi(ri) (A.72)

= Gi(rrr)[Ui +ζi(ri)(1−Gi(rrr))Vi(ri)]. (A.73)

b.

∂Π j

∂ ri
(rrr) =

∂G j

∂ ri
(rrr)Vi(ri) (A.74)

=−ζi(ri)Gi(rrr)G j(rrr)Vi(ri). (A.75)

c.

∂Π

∂ ri
(rrr) = Gi(rrr)Ui +

n

∑
k=1

(
∂Gk

∂ ri
(rrr)Vk(rk)

)
(A.76)

= Gi(rrr)Ui +
∂Gi

∂ ri
(rrr)Vi(ri)+∑

k ̸=i

(
∂Gk

∂ ri
(rrr)Vk(rk)

)
(A.77)

= Gi(rrr)Ui +ζi(ri)Gi(rrr)(1−Gi(rrr))Vi(ri)+∑
k ̸=i

(
−ζi(ri)Gi(rrr)Gk(rrr)Vk(rk)

)
(A.78)

= Gi(rrr)
{

Ui +ζi(ri)(1−Gi(rrr))Vi(ri)−ζi(ri)∑
k ̸=i

(
Gk(rrr)Vk(rk)

)}
(A.79)

= Gi(rrr)
{

Ui +ζi(ri)
[
(1−Gi(rrr))Vi(ri)−∑

k ̸=i

(
Gk(rrr)Vk(rk)

)]}
(A.80)

= Gi(rrr)
{

Ui +ζi(ri)
[
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]}
. (A.81)
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d.

∂ 2Πi

∂ r2
i
(rrr) (A.82)

= 2
∂Gi

∂ ri
(rrr)Ui +

∂ 2Gi

∂ r2
i
(rrr)Vi(ri) (A.83)

= 2ζi(ri)Gi(rrr)(1−Gi(rrr))Ui +Gi(rrr)(1−Gi(rrr))
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
Vi(ri)

(A.84)

= Gi(rrr)(1−Gi(rrr))
{

2ζi(ri)Ui +
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
Vi(ri)

}
. (A.85)

e.

∂ 2Π j

∂ r2
i
(rrr) =

∂ 2G j

∂ r2
i
(rrr)Vj(r j) (A.86)

=−Gi(rrr)G j(rrr)
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
Vj(r j). (A.87)

f.

∂ 2Π

∂ r2
i
(rrr) (A.88)

= 2
∂Gi

∂ ri
(rrr)Ui +

n

∑
k=1

(
∂ 2Gk

∂ r2
i
(rrr)Vk(rk)

)
(A.89)

= 2
∂Gi

∂ ri
(rrr)Ui +

∂ 2Gi

∂ r2
i
(rrr)Vi(ri)+∑

k ̸=i

(
∂ 2Gk

∂ r2
i
(rrr)Vk(rk)

)
(A.90)

= 2ζi(ri)Gi(rrr)(1−Gi(rrr))Ui +Gi(rrr)(1−Gi(rrr))
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
Vi(ri)

+∑
k ̸=i

(
−Gi(rrr)Gk(rrr)

[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
Vk(rk)

)
(A.91)

= Gi(rrr)
{

2ζi(ri)(1−Gi(rrr))Ui +
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
(1−Gi(rrr))Vi(ri)

+
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
∑
k ̸=i

(
−Gk(rrr)Vk(rk)

)}
(A.92)

= Gi(rrr)
{

2ζi(ri)(1−Gi(rrr))Ui

+
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

][
Vi(ri)−Gi(rrr)Vi(ri)−∑

k ̸=i

(
Gk(rrr)Vk(rk)

)]}
(A.93)
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= Gi(rrr)
{

2ζi(ri)(1−Gi(rrr))Ui

+
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

][
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]}
. (A.94)

g.

∂ 2Πi

∂ ri∂ r j
(rrr) =

∂Gi

∂ r j
(rrr)Ui +

∂ 2Gi

∂ ri∂ r j
(rrr)Vi(ri) (A.95)

=−ζ j(r j)Gi(rrr)G j(rrr)Ui −ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)(1−2Gi(rrr))Vi(ri)

(A.96)

=−ζ j(r j)Gi(rrr)G j(rrr)[Ui +ζi(ri)(1−2Gi(rrr))Vi(ri)]. (A.97)

h.

∂ 2Πl

∂ ri∂ r j
(rrr) =

∂ 2Gl

∂ ri∂ r j
(rrr)Vl(rl) (A.98)

= 2ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)Gl(rrr)Vl(rl). (A.99)

i.

∂ 2Π

∂ ri∂ r j
(rrr) (A.100)

=
∂Gi

∂ r j
(rrr)Ui +

∂G j

∂ ri
(rrr)U j +

n

∑
k=1

(
∂ 2Gk

∂ ri∂ r j
(rrr)Vk(rk)

)
(A.101)

=
∂ 2Πi

∂ ri∂ r j
(rrr)+

∂ 2Π j

∂ ri∂ r j
(rrr)+ ∑

k ̸=i,k ̸= j

(
∂ 2Πk

∂ ri∂ r j
(rrr)
)

(A.102)

=−ζ j(r j)Gi(rrr)G j(rrr)[Ui +ζi(ri)(1−2Gi(rrr))Vi(ri)]

−ζi(ri)Gi(rrr)G j(rrr)[U j +ζ j(r j)
(
1−2G j(rrr)

)
Vj(r j)]

+ ∑
k ̸=i,k ̸= j

(
2ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)Gk(rrr)Vk(rk)

)
(A.103)

=−ζ j(r j)Gi(rrr)G j(rrr)[Ui +ζi(ri)Vi(ri)−2ζi(ri)Gi(rrr)Vi(ri)]

−ζi(ri)Gi(rrr)G j(rrr)[U j +ζ j(r j)Vj(r j)−2ζ j(r j)G j(rrr)Vj(r j)]

+2ζi(ri)ζ j(r j)Gi(rrr)G j(rrr) ∑
k ̸=i,k ̸= j

(
Gk(rrr)Vk(rk)

)
(A.104)

=−ζ j(r j)Gi(rrr)G j(rrr)[Ui +ζi(ri)Vi(ri)]+2ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)Gi(rrr)Vi(ri)

−ζi(ri)Gi(rrr)G j(rrr)[U j +ζ j(r j)Vj(r j)]+2ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)G j(rrr)Vj(r j)
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+2ζi(ri)ζ j(r j)Gi(rrr)G j(rrr) ∑
k ̸=i,k ̸= j

(
Gk(rrr)Vk(rk)

)
(A.105)

=−ζ j(r j)Gi(rrr)G j(rrr)[Ui +ζi(ri)Vi(ri)]−ζi(ri)Gi(rrr)G j(rrr)[U j +ζ j(r j)Vj(r j)]

+2ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)
n

∑
k=1

(
Gk(rrr)Vk(rk)

)
(A.106)

=−Gi(rrr)G j(rrr)
{
[ζ j(r j)Ui +ζi(ri)ζ j(r j)Vi(ri)]+ [ζi(ri)U j +ζi(ri)ζ j(r j)Vj(r j)]

−2ζi(ri)ζ j(r j)
n

∑
k=1

(
Gk(rrr)Vk(rk)

)}
(A.107)

=−Gi(rrr)G j(rrr)
{[

ζ j(r j)Ui +ζi(ri)ζ j(r j)Vi(ri)−ζi(ri)ζ j(r j)
n

∑
k=1

(
Gk(rrr)Vk(rk)

)]
+
[
ζi(ri)U j +ζi(ri)ζ j(r j)Vj(r j)−ζi(ri)ζ j(r j)

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]}
(A.108)

=−Gi(rrr)G j(rrr)
{

ζ j(r j)
[
Ui +ζi(ri)Vi(ri)−ζi(ri)

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]
+ζi(ri)

[
U j +ζ j(r j)Vj(r j)−ζ j(r j)

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]}
(A.109)

=−Gi(rrr)G j(rrr)
{

ζ j(r j)
[
Ui +ζi(ri)

(
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

))]
+ζi(ri)

[
U j +ζ j(r j)

(
Vj(r j)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

))]}
. (A.110)

Let us return to Proposition 2. From the formulations given in Lemma 5, Lemma 6,
Lemma 7, we have

∂Π

∂ ri
(rrr) = Gi(rrr)

{
Ui +ζi(ri)

[
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]}
(A.111)

⇔ 1
Gi(rrr)

∂Π

∂ ri
(rrr) =Ui +ζi(ri)

[
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]
(A.112)

⇔ 1
Gi(rrr)

∂Π

∂ ri
(rrr)−Ui = ζi(ri)

[
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]
(A.113)

⇔ 1
ζi(ri)

(
1

Gi(rrr)
∂Π

∂ ri
(rrr)−Ui

)
=Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

)
. (A.114)
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∂ 2Π

∂ r2
i
(rrr) = Gi(rrr)

{
2ζi(ri)(1−Gi(rrr))Ui

+
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

][
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

)]}
(A.115)

= Gi(rrr)
{

2ζi(ri)(1−Gi(rrr))Ui

+
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

][ 1
ζi(ri)

(
1

Gi(rrr)
∂Π

∂ ri
(rrr)−Ui

)]}
(A.116)

= Gi(rrr)
{

2ζi(ri)(1−Gi(rrr))Ui −
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

] 1
ζi(ri)

Ui

+
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

] 1
ζi(ri)

1
Gi(rrr)

∂Π

∂ ri
(rrr)
}

(A.117)

= Gi(rrr)
{

Ui

[(
2ζi(ri)−2ζi(ri)Gi(rrr)

)
−
(

ζ ′
i (ri)

ζi(ri)
+ζi(ri)−2ζi(ri)Gi(rrr)

)]}
+

[
ζ ′

i (ri)

ζi(ri)
+ζi(ri)(1−2Gi(rrr))

]
∂Π

∂ ri
(rrr) (A.118)

= Gi(rrr)Ui

[
ζi(ri)−

ζ ′
i (ri)

ζi(ri)

]
+

[
ζ ′

i (ri)

ζi(ri)
+ζi(ri)(1−2Gi(rrr))

]
∂Π

∂ ri
(rrr). (A.119)

∂ 2Π

∂ ri∂ r j
(rrr) =−Gi(rrr)G j(rrr)

{
ζ j(r j)

[
Ui +ζi(ri)

(
Vi(ri)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

))]
+ζi(ri)

[
U j +ζ j(r j)

(
Vj(r j)−

n

∑
k=1

(
Gk(rrr)Vk(rk)

))]}
(A.120)

=−Gi(rrr)G j(rrr)
{

ζ j(r j)
1

Gi(rrr)
∂Π

∂ ri
(rrr)+ζi(ri)

1
G j(rrr)

∂Π

∂ r j
(rrr)
}

(A.121)

=−
{

ζ j(r j)G j(rrr)
∂Π

∂ ri
(rrr)+ζi(ri)Gi(rrr)

∂Π

∂ r j
(rrr)
}
. (A.122)

Thus, Proposition 2 is proved.

A.3 Proofs of Remarks

In this section, we provide complementary proof of the remarks that are mentioned in the
paper.
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A.3.1 Proof of Remark 1

The actual end-of-period profit for the retailer is

Πi (Di,Qi,ri) = ri min(Di,Qi)+ si(Qi −Di)
+− ciQi. (A.123)

We claim that it can also be represented as follows

Πi (Di,Qi,ri) = (ri − si)Di − (ci − si)Qi − (ri − si)(Di −Qi)
+. (A.124)

Indeed, when Di > Qi, then

ri min(Di,Qi)+ si(Qi −Di)
+− ciQi = riQi − ciQi = (ri − ci)Qi, (A.125)

and

(ri − si)Di − (ci − si)Qi − (ri − si)(Di −Qi)
+

= (ri − si)Di − (ci − si)Qi − (ri − si)(Di −Qi) (A.126)

= (ri − si)Di − (ci − si)Qi − (ri − si)Di +(ri − si)Qi (A.127)

= [(ri − si)− (ci − si)]Qi = (ri − ci)Qi. (A.128)

Similarly, when Di ≤ Qi, we have

ri min(Di,Qi)+ si(Qi −Di)
+− ciQi = riDi + si(Qi −Di)− ciQi (A.129)

= (ri − si)Di − (ci − si)Qi, (A.130)

and

(ri − si)Di − (ci − si)Qi − (ri − si)(Di −Qi)
+ = (ri − si)Di − (ci − si)Qi. (A.131)

Thus, the expected profit for channel i is

E[Πi (Di,Qi,ri)] = E[(ri − si)Di − (ci − si)Qi − (ri − si)(Di −Qi)
+]. (A.132)

Since Di = ξ Gi(rrr), we deduce that

E[Πi (Di,Qi,ri)] = E[(ri − si)ξ Gi(rrr)− (ci − si)Qi − (ri − si)(ξ Gi(rrr)−Qi)
+]. (A.133)
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Moreover, Gi(rrr)> 0, it follows that

Πi (Qi,rrr) = E[Πi (Di,Qi,ri)] (A.134)

= (ri − si)Gi(rrr)E[ξ ]− (ci − si)Qi

− (ri − si)Gi(rrr)
∫

∞

Qi
Gi(rrr)

(
x− Qi

Gi(rrr)

)
fξ (x)dx. (A.135)

Thus, Remark 1 holds true.

A.3.2 Proof of Remark 2

For each index i, Qi = Gi(rrr)F−1
ξ

(SLi). Thus

∫
∞

Qi
Gi(rrr)

(
x− Qi

Gi(rrr)

)
fξ (x)dx

=
∫

∞

F−1
ξ

(SLi)

(
x−F−1

ξ
(SLi)

)
fξ (x)dx (A.136)

=
∫

∞

F−1
ξ

(SLi)
x fξ (x)dx−F−1

ξ
(SLi)

∫
∞

F−1
ξ

(SLi)
fξ (x)dx (A.137)

= E[ξ ]−
∫ F−1

ξ
(SLi)

−∞

x fξ (x)dx−F−1
ξ

(SLi)

(
1−

∫ F−1
ξ

(SLi)

−∞

fξ (x)dx

)
(A.138)

= E[ξ ]−
∫ F−1

ξ
(SLi)

−∞

x fξ (x)dx−F−1
ξ

(SLi)
(

1−Fξ

(
F−1

ξ
(SLi)

))
(A.139)

= E[ξ ]−
∫ F−1

ξ
(SLi)

−∞

x fξ (x)dx−F−1
ξ

(SLi)(1−SLi). (A.140)

Therefore

Πi(rrr) = Πi(Gi(rrr)F−1
ξ

(SLi),rrr) (A.141)

= (ri − si)Gi(rrr)E[ξ ]− (ci − si)Gi(rrr)F−1
ξ

(SLi)

− (ri − si)Gi(rrr)
∫

∞

F−1
ξ

(SLi)

(
x−F−1

ξ
(SLi)

)
fξ (x)dx (A.142)

= (ri − si)Gi(rrr)E[ξ ]− (ci − si)Gi(rrr)F−1
ξ

(SLi)

− (ri − si)Gi(rrr)

(
E[ξ ]−

∫ F−1
ξ

(SLi)

−∞

x fξ (x)dx−F−1
ξ

(SLi)(1−SLi)

)
(A.143)

=−(ci − si)Gi(rrr)F−1
ξ

(SLi)
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+(ri − si)Gi(rrr)
∫ F−1

ξ
(SLi)

−∞

x fξ (x)dx

+(ri − si)Gi(rrr)F−1
ξ

(SLi)− (ri − si)Gi(rrr)F−1
ξ

(SLi)SLi (A.144)

= (ri − ci)Gi(rrr)F−1
ξ

(SLi)− (ri − si)Gi(rrr)F−1
ξ

(SLi)SLi

+(ri − si)Gi(rrr)
∫ F−1

ξ
(SLi)

−∞

x fξ (x)dx (A.145)

= Gi(rrr)

[
(ri − ci)F−1

ξ
(SLi)− (ri − si)SLiF−1

ξ
(SLi)

+(ri − si)
∫ F−1

ξ
(SLi)

−∞

x fξ (x)dx

]
. (A.146)

Thus, Remark 2 is proved.

A.3.3 Proof of Remark 3

iv. We have

Vi(ci) = αi
[
(ci − ci)− (ci − si)SLi

]
+(ci − si)Ai (A.147)

= (ci − si)(−αiSLi +Ai) (A.148)

= (ci − si)

(
−αiFξ (F

−1
ξ

(SLi))+
∫

αi

−∞

x fξ (x)dx
)

(A.149)

= (ci − si)

(
−αiFξ (αi)+

∫
αi

−∞

x fξ (x)dx
)
. (A.150)

Denote H(t) :=−tFξ (t)+
∫ t
−∞

x fξ (x)dx, we have

∂H
∂ t

(t) =−Fξ (t)− t fξ (t)+ t fξ (t) =−Fξ (t)≤ 0. (A.151)

Thus, when t > 0, H(t)≤ H(0) =
∫ 0
−∞

x fξ (x)dx. If ξ is a non-negative random variable,
then H(0) = 0. We deduce that H(t)≤ 0 for all t ≥ 0. As αi ≥ 0, we have H(αi)≤ 0. Then
Vi(ci) = (ci − si)H(αi)≤ 0.

vi. We have

Ui = αi(1−SLi)+Ai (A.152)

= αi −αiFξ (F
−1
ξ

(SLi))+
∫

αi

−∞

x fξ (x)dx (A.153)
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= αi −αiFξ (αi)+
∫

αi

−∞

x fξ (x)dx := K(αi). (A.154)

Let K(t) := t − tFξ (t)+
∫ t
−∞

x fξ (x)dx, we have

∂K
∂ t

(t) = 1−Fξ (t)− t fξ (t)+ t fξ (t) = 1−Fξ (t)≥ 0. (A.155)

We also have

Fξ (αi) = SLi (A.156)

⇒
∂Fξ (αi)

∂SLi
= 1 (A.157)

⇒
∂Fξ (αi)

∂αi

∂αi

∂SLi
= 1 (A.158)

⇒ fξ (αi)
∂αi

∂SLi
= 1 (A.159)

⇒
∂F−1

ξ
(SLi)

∂SLi
=

∂αi

∂SLi
=

1
fξ (αi)

=
1

fξ (F
−1
ξ

(SLi))
> 0. (A.160)

Therefore,

Ui = αi(1−SLi)+Ai (A.161)

= F−1
ξ

(SLi)(1−SLi)+
∫ F−1

ξ
(SLi)

−∞

x fξ (x)dx (A.162)

⇒ ∂Ui

∂SLi
=

1
fξ (F

−1
ξ

(SLi))
(1−SLi)−F−1

ξ
(SLi) (A.163)

+
1

fξ (F
−1
ξ

(SLi))
F−1

ξ
(SLi) f (F−1

ξ
(SLi)) (A.164)

=
1

fξ (F
−1
ξ

(SLi))
(1−SLi)> 0. (A.165)

A.4 Extended tables

Table A.1 shows the full table of numerical results of pricing problem varying CSL1 and
CSL2 with step size 0.1.

SL1 SL2 r∗1 r∗2 Q∗
1 Q∗

2 G∗
1 G∗

2 G∗
0 Π1 Π2 Π

0.1 0.1 15.423 18.471 60 156 0.195 0.506 0.298 196.9 510.4 707.3

Thèse accessible à l'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0058/these.pdf © [M.T. Tran], [2024], INSA Lyon, tous droits réservés



A.4 Extended tables 121

0.1 0.2 15.678 18.43 48 202 0.155 0.540 0.305 168.1 615.8 783.9
0.1 0.3 15.793 18.447 44 230 0.142 0.545 0.313 158.7 659.8 818.5
0.1 0.4 15.831 18.489 43 248 0.140 0.537 0.322 158.7 671.1 829.8
0.1 0.5 15.81 18.551 45 260 0.148 0.520 0.332 166.1 657.5 823.5
0.1 0.6 15.737 18.636 50 265 0.164 0.493 0.343 180.8 620.9 801.7
0.1 0.7 15.612 18.757 59 262 0.192 0.453 0.355 204.9 559.0 763.9
0.1 0.8 15.425 18.944 74 244 0.241 0.390 0.369 243.2 464.6 707.7
0.1 0.9 15.153 19.292 101 198 0.329 0.287 0.384 305.3 320.8 626.0
0.2 0.1 15.219 18.586 91 140 0.242 0.456 0.302 266.2 475.7 741.9
0.2 0.2 15.421 18.515 75 185 0.200 0.495 0.305 234.3 579.8 814.2
0.2 0.3 15.515 18.521 70 212 0.186 0.503 0.311 224.1 623.4 847.5
0.2 0.4 15.546 18.558 69 229 0.185 0.496 0.319 224.6 634.2 858.8
0.2 0.5 15.532 18.619 72 240 0.193 0.480 0.328 233.1 620.6 853.7
0.2 0.6 15.477 18.707 78 244 0.210 0.453 0.338 249.7 584.5 834.2
0.2 0.7 15.382 18.834 89 239 0.238 0.412 0.349 275.8 524.3 800.1
0.2 0.8 15.24 19.03 107 220 0.285 0.352 0.363 315.7 433.8 749.5
0.2 0.9 15.036 19.395 137 177 0.366 0.255 0.379 377.9 298.7 676.6
0.3 0.1 15.157 18.651 110 133 0.261 0.433 0.306 301.5 460.2 761.7
0.3 0.2 15.336 18.565 92 177 0.219 0.474 0.307 268.5 563.6 832.1
0.3 0.3 15.42 18.565 86 203 0.205 0.482 0.312 258.1 606.7 864.8
0.3 0.4 15.449 18.6 86 220 0.204 0.477 0.319 258.8 617.5 876.2
0.3 0.5 15.438 18.66 89 230 0.212 0.461 0.328 267.6 604.2 871.8
0.3 0.6 15.391 18.749 96 233 0.228 0.434 0.338 284.6 568.7 853.3
0.3 0.7 15.308 18.878 108 228 0.257 0.394 0.349 311.4 509.6 821.0
0.3 0.8 15.186 19.079 127 210 0.301 0.335 0.363 351.4 421.5 772.9
0.3 0.9 15.009 19.449 159 168 0.377 0.243 0.380 413.2 290.4 703.6
0.4 0.1 15.148 18.687 123 130 0.267 0.423 0.310 318.2 454.3 772.5
0.4 0.2 15.315 18.593 104 174 0.226 0.465 0.309 284.9 557.3 842.2
0.4 0.3 15.392 18.591 98 199 0.212 0.473 0.314 274.8 599.9 874.7
0.4 0.4 15.42 18.624 97 216 0.211 0.468 0.321 275.5 610.7 886.3
0.4 0.5 15.41 18.684 101 226 0.219 0.452 0.329 284.5 597.6 882.1
0.4 0.6 15.367 18.773 109 229 0.235 0.426 0.339 301.6 562.5 864.2
0.4 0.7 15.292 18.903 121 224 0.262 0.387 0.351 328.2 504.4 832.6
0.4 0.8 15.18 19.105 141 206 0.305 0.329 0.366 367.9 417.6 785.5
0.4 0.9 15.018 19.478 174 165 0.377 0.238 0.384 429.2 288.4 717.6
0.5 0.1 15.172 18.7 132 130 0.264 0.423 0.313 320.9 455.5 776.4
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0.5 0.2 15.33 18.605 112 173 0.224 0.463 0.312 288.7 557.6 846.3
0.5 0.3 15.405 18.601 106 199 0.211 0.472 0.317 278.7 600.2 878.9
0.5 0.4 15.431 18.634 105 215 0.210 0.466 0.323 279.7 610.9 890.5
0.5 0.5 15.422 18.694 109 225 0.218 0.451 0.332 288.7 597.8 886.5
0.5 0.6 15.381 18.783 117 228 0.234 0.425 0.342 305.6 563.1 868.7
0.5 0.7 15.31 18.913 130 224 0.260 0.386 0.354 331.7 505.5 837.2
0.5 0.8 15.203 19.115 151 206 0.301 0.329 0.369 370.9 419.3 790.2
0.5 0.9 15.049 19.487 185 166 0.371 0.239 0.390 431.3 290.9 722.1
0.6 0.1 15.223 18.693 136 132 0.253 0.430 0.317 311.9 462.4 774.3
0.6 0.2 15.378 18.602 116 175 0.216 0.469 0.315 281.2 563.9 845.1
0.6 0.3 15.45 18.599 110 201 0.204 0.477 0.319 271.9 606.1 878.1
0.6 0.4 15.476 18.632 109 218 0.203 0.471 0.326 273.0 616.8 889.8
0.6 0.5 15.467 18.692 113 228 0.210 0.455 0.335 281.8 603.9 885.7
0.6 0.6 15.427 18.781 121 231 0.225 0.430 0.345 298.3 569.3 867.7
0.6 0.7 15.358 18.91 135 227 0.250 0.392 0.358 323.6 512.1 835.7
0.6 0.8 15.253 19.11 156 210 0.291 0.335 0.374 361.8 426.2 788.0
0.6 0.9 15.101 19.48 193 170 0.358 0.245 0.396 421.3 297.2 718.4
0.7 0.1 15.308 18.667 136 137 0.235 0.446 0.319 290.6 475.6 766.3
0.7 0.2 15.461 18.584 116 180 0.200 0.482 0.318 262.6 576.1 838.7
0.7 0.3 15.532 18.584 110 206 0.189 0.488 0.322 254.3 617.9 872.2
0.7 0.4 15.557 18.618 109 223 0.189 0.482 0.329 255.6 628.4 884.0
0.7 0.5 15.548 18.678 113 233 0.195 0.466 0.338 264.0 615.6 879.7
0.7 0.6 15.509 18.766 121 237 0.210 0.441 0.349 279.6 581.5 861.1
0.7 0.7 15.439 18.894 135 233 0.234 0.403 0.363 304.0 524.2 828.2
0.7 0.8 15.334 19.091 158 217 0.272 0.347 0.380 340.5 438.3 778.8
0.7 0.9 15.18 19.455 196 178 0.338 0.257 0.405 398.3 308.1 706.3
0.8 0.1 15.442 18.617 129 145 0.207 0.472 0.322 255.2 496.2 751.4
0.8 0.2 15.598 18.549 110 188 0.176 0.503 0.321 230.9 595.4 826.3
0.8 0.3 15.669 18.555 104 214 0.167 0.508 0.325 224.1 636.6 860.7
0.8 0.4 15.693 18.591 104 231 0.166 0.501 0.333 225.6 647.0 872.6
0.8 0.5 15.683 18.651 108 243 0.173 0.485 0.342 233.5 634.3 867.8
0.8 0.6 15.643 18.738 117 247 0.186 0.460 0.354 247.8 600.5 848.2
0.8 0.7 15.571 18.863 130 245 0.208 0.423 0.369 270.2 543.5 813.6
0.8 0.8 15.463 19.055 153 230 0.244 0.367 0.388 304.1 457.3 761.4
0.8 0.9 15.303 19.41 193 191 0.307 0.276 0.416 358.9 325.2 684.0
0.9 0.1 15.687 18.535 113 158 0.163 0.514 0.323 198.2 528.4 726.6
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0.9 0.2 15.847 18.491 96 201 0.139 0.538 0.323 180.0 625.5 805.4
0.9 0.3 15.92 18.505 91 227 0.131 0.540 0.329 175.0 666.1 841.0
0.9 0.4 15.944 18.544 91 246 0.131 0.532 0.337 176.5 676.5 853.0
0.9 0.5 15.932 18.605 95 258 0.137 0.516 0.347 183.3 664.1 847.4
0.9 0.6 15.889 18.69 103 264 0.148 0.491 0.360 195.4 630.7 826.1
0.9 0.7 15.813 18.81 116 264 0.167 0.456 0.377 214.2 574.4 788.7
0.9 0.8 15.698 18.994 138 252 0.199 0.402 0.399 243.4 488.3 731.7
0.9 0.9 15.523 19.332 178 215 0.257 0.311 0.433 292.1 353.6 645.7

Table A.1 Numerical results when varying SL1 and SL2 with step size 0.1

Table A.2 shows the full table of numerical results of pricing problem when SL1 = SL2 =

SL. We vary SL1 with step size 0.01.

SL1 SL2 r∗1 r∗2 Q∗
1 Q∗

2 G∗
1 G∗

2 G∗
0 Π1 Π2 Π

0.01 0.01 15.426 18.433 29 78 0.191 0.516 0.293 98.3 265.4 363.7
0.02 0.02 15.426 18.437 37 99 0.192 0.515 0.293 124.6 335.0 459.6
0.03 0.03 15.425 18.442 42 112 0.192 0.514 0.294 141.3 377.7 519.0
0.04 0.04 15.425 18.446 46 122 0.193 0.513 0.295 153.6 409.0 562.6
0.05 0.05 15.425 18.45 49 130 0.193 0.512 0.295 163.6 433.6 597.1
0.06 0.06 15.425 18.454 52 136 0.193 0.511 0.296 171.9 453.9 625.8
0.07 0.07 15.424 18.458 54 142 0.194 0.510 0.296 179.3 471.0 650.3
0.08 0.08 15.424 18.462 56 147 0.194 0.509 0.297 185.7 485.9 671.6
0.09 0.09 15.424 18.466 58 152 0.195 0.508 0.298 191.5 499.0 690.5
0.1 0.1 15.423 18.471 60 156 0.195 0.506 0.298 196.9 510.4 707.3
0.11 0.11 15.423 18.475 62 160 0.196 0.505 0.299 201.8 520.8 722.6
0.12 0.12 15.423 18.479 64 163 0.196 0.504 0.300 206.3 530.1 736.4
0.13 0.13 15.423 18.483 65 167 0.197 0.503 0.300 210.4 538.6 749.0
0.14 0.14 15.422 18.488 67 170 0.197 0.502 0.301 214.6 546.1 760.6
0.15 0.15 15.422 18.492 68 173 0.198 0.501 0.301 218.2 553.1 771.3
0.16 0.16 15.422 18.497 70 175 0.198 0.500 0.302 221.8 559.4 781.2
0.17 0.17 15.422 18.501 71 178 0.199 0.499 0.303 225.1 565.3 790.4
0.18 0.18 15.422 18.506 72 180 0.199 0.497 0.304 228.3 570.6 798.9
0.19 0.19 15.421 18.51 74 183 0.200 0.496 0.304 231.4 575.4 806.8
0.2 0.2 15.421 18.515 75 185 0.200 0.495 0.305 234.3 579.8 814.2
0.21 0.21 15.421 18.52 76 187 0.201 0.494 0.306 237.1 583.9 821.0
0.22 0.22 15.421 18.524 77 189 0.201 0.493 0.306 239.7 587.7 827.4
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0.23 0.23 15.421 18.529 78 191 0.201 0.492 0.307 242.3 591.1 833.3
0.24 0.24 15.421 18.534 80 193 0.202 0.490 0.308 244.8 594.1 838.9
0.25 0.25 15.42 18.539 81 195 0.203 0.489 0.308 247.3 596.8 844.0
0.26 0.26 15.42 18.544 82 197 0.203 0.488 0.309 249.6 599.3 848.8
0.27 0.27 15.42 18.549 83 199 0.204 0.486 0.310 251.8 601.5 853.3
0.28 0.28 15.42 18.555 84 200 0.204 0.485 0.311 254.0 603.4 857.4
0.29 0.29 15.42 18.56 85 202 0.205 0.484 0.312 256.1 605.2 861.3
0.3 0.3 15.42 18.565 86 203 0.205 0.482 0.312 258.1 606.7 864.8
0.31 0.31 15.42 18.571 88 205 0.206 0.481 0.313 260.1 608.0 868.1
0.32 0.32 15.42 18.576 89 206 0.206 0.480 0.314 261.9 609.1 871.1
0.33 0.33 15.42 18.582 90 208 0.207 0.478 0.315 263.9 609.9 873.8
0.34 0.34 15.42 18.588 91 209 0.207 0.477 0.316 265.7 610.6 876.3
0.35 0.35 15.42 18.593 92 210 0.208 0.476 0.317 267.3 611.1 878.5
0.36 0.36 15.42 18.599 93 212 0.209 0.474 0.317 269.1 611.4 880.5
0.37 0.37 15.42 18.605 94 213 0.209 0.473 0.318 270.7 611.5 882.3
0.38 0.38 15.42 18.611 95 214 0.210 0.471 0.319 272.3 611.5 883.8
0.39 0.39 15.42 18.617 96 215 0.210 0.470 0.320 273.9 611.2 885.1
0.4 0.4 15.42 18.624 97 216 0.211 0.468 0.321 275.5 610.7 886.3
0.41 0.41 15.42 18.63 99 217 0.212 0.466 0.322 277.0 610.2 887.2
0.42 0.42 15.42 18.637 100 218 0.212 0.465 0.323 278.5 609.4 887.9
0.43 0.43 15.42 18.643 101 219 0.213 0.463 0.324 279.8 608.6 888.4
0.44 0.44 15.42 18.65 102 220 0.214 0.461 0.325 281.2 607.5 888.7
0.45 0.45 15.421 18.657 103 221 0.214 0.460 0.326 282.5 606.3 888.8
0.46 0.46 15.421 18.664 104 222 0.215 0.458 0.327 283.8 604.9 888.7
0.47 0.47 15.421 18.671 105 223 0.215 0.456 0.328 285.1 603.4 888.5
0.48 0.48 15.421 18.679 107 224 0.216 0.454 0.330 286.4 601.6 888.0
0.49 0.49 15.422 18.686 108 225 0.217 0.453 0.331 287.4 599.9 887.3
0.5 0.5 15.422 18.694 109 225 0.218 0.451 0.332 288.7 597.8 886.5
0.51 0.51 15.422 18.702 110 226 0.218 0.449 0.333 289.9 595.6 885.5
0.52 0.52 15.423 18.71 111 227 0.219 0.447 0.334 290.9 593.4 884.3
0.53 0.53 15.423 18.718 112 227 0.220 0.445 0.335 291.9 590.9 882.8
0.54 0.54 15.424 18.726 114 228 0.220 0.443 0.337 292.8 588.4 881.3
0.55 0.55 15.424 18.735 115 229 0.221 0.441 0.338 293.9 585.5 879.5
0.56 0.56 15.425 18.743 116 229 0.222 0.439 0.339 294.7 582.8 877.5
0.57 0.57 15.425 18.752 117 230 0.223 0.437 0.341 295.7 579.6 875.3
0.58 0.58 15.426 18.762 119 230 0.224 0.434 0.342 296.6 576.3 873.0
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0.59 0.59 15.427 18.771 120 231 0.224 0.432 0.344 297.4 573.0 870.4
0.6 0.6 15.427 18.781 121 231 0.225 0.430 0.345 298.3 569.3 867.7
0.61 0.61 15.428 18.79 122 232 0.226 0.428 0.347 298.9 565.8 864.7
0.62 0.62 15.429 18.801 124 232 0.227 0.425 0.348 299.8 561.8 861.5
0.63 0.63 15.43 18.811 125 232 0.228 0.423 0.350 300.4 557.8 858.2
0.64 0.64 15.431 18.822 127 233 0.228 0.420 0.352 301.0 553.5 854.6
0.65 0.65 15.432 18.833 128 233 0.229 0.417 0.353 301.6 549.1 850.8
0.66 0.66 15.433 18.844 129 233 0.230 0.415 0.355 302.2 544.6 846.7
0.67 0.67 15.435 18.856 131 233 0.231 0.412 0.357 302.6 539.8 842.5
0.68 0.68 15.436 18.868 132 233 0.232 0.409 0.359 303.1 534.8 838.0
0.69 0.69 15.437 18.881 134 233 0.233 0.406 0.361 303.6 529.6 833.2
0.7 0.7 15.439 18.894 135 233 0.234 0.403 0.363 304.0 524.2 828.2
0.71 0.71 15.441 18.907 137 233 0.235 0.400 0.365 304.2 518.7 822.9
0.72 0.72 15.442 18.921 139 233 0.236 0.397 0.367 304.5 512.8 817.4
0.73 0.73 15.444 18.936 140 233 0.237 0.394 0.369 304.8 506.7 811.6
0.74 0.74 15.447 18.951 142 233 0.238 0.390 0.372 304.8 500.6 805.4
0.75 0.75 15.449 18.966 144 233 0.239 0.387 0.374 304.9 494.1 799.0
0.76 0.76 15.451 18.982 145 232 0.240 0.383 0.377 304.9 487.3 792.2
0.77 0.77 15.454 18.999 147 232 0.241 0.380 0.379 304.8 480.3 785.1
0.78 0.78 15.457 19.017 149 231 0.242 0.376 0.382 304.6 473.0 777.6
0.79 0.79 15.46 19.036 151 231 0.243 0.372 0.385 304.5 465.3 769.7
0.8 0.8 15.463 19.055 153 230 0.244 0.367 0.388 304.1 457.3 761.4
0.81 0.81 15.467 19.076 155 229 0.245 0.363 0.392 303.7 449.0 752.7
0.82 0.82 15.471 19.097 157 228 0.247 0.358 0.395 303.0 440.4 743.5
0.83 0.83 15.475 19.12 159 227 0.248 0.354 0.399 302.4 431.3 733.7
0.84 0.84 15.48 19.144 162 226 0.249 0.348 0.402 301.5 421.9 723.4
0.85 0.85 15.486 19.17 164 225 0.250 0.343 0.407 300.4 412.0 712.5
0.86 0.86 15.492 19.198 166 223 0.251 0.337 0.411 299.3 401.6 700.9
0.87 0.87 15.498 19.227 169 222 0.253 0.331 0.416 297.9 390.6 688.5
0.88 0.88 15.505 19.259 172 220 0.254 0.325 0.421 296.3 379.0 675.2
0.89 0.89 15.514 19.294 175 218 0.255 0.318 0.427 294.3 366.7 661.0
0.9 0.9 15.523 19.332 178 215 0.257 0.311 0.433 292.1 353.6 645.7
0.91 0.91 15.534 19.374 181 212 0.258 0.303 0.440 289.4 339.6 629.1
0.92 0.92 15.547 19.421 184 209 0.259 0.294 0.447 286.3 324.6 610.9
0.93 0.93 15.562 19.474 188 205 0.260 0.284 0.456 282.5 308.4 590.8
0.94 0.94 15.579 19.535 191 200 0.261 0.273 0.466 278.0 290.5 568.4
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0.95 0.95 15.601 19.607 196 194 0.262 0.260 0.478 272.3 270.7 543.0
0.96 0.96 15.63 19.695 200 187 0.262 0.246 0.492 265.1 248.4 513.4
0.97 0.97 15.668 19.807 205 178 0.262 0.228 0.510 255.5 222.3 477.7
0.98 0.98 15.725 19.964 210 165 0.260 0.204 0.536 241.7 190.2 431.9
0.99 0.99 15.829 20.228 214 144 0.252 0.169 0.578 218.1 146.3 364.4
Table A.2 Numerical results when SL1 = SL2 = SL, we vary SL with step size 0.01

Table A.3 shows the full table of numerical results of pricing problem when SL1 = 0.9
and SL2 is varied with step size 0.01.

SL1 SL2 r∗1 r∗2 Q∗
1 Q∗

2 G∗
1 G∗

2 G∗
0 Π1 Π2 Π

0.9 0.01 15.228 19.338 220 43 0.317 0.284 0.399 315.1 184.9 500.0
0.9 0.02 15.339 18.936 178 74 0.256 0.384 0.360 268.7 286.1 554.8
0.9 0.03 15.417 18.784 157 93 0.227 0.428 0.345 246.8 346.3 593.1
0.9 0.04 15.477 18.702 145 108 0.209 0.454 0.337 233.3 389.4 622.7
0.9 0.05 15.526 18.649 136 119 0.196 0.472 0.332 223.7 423.2 646.9
0.9 0.06 15.567 18.612 129 129 0.187 0.485 0.329 216.4 450.9 667.3
0.9 0.07 15.603 18.584 124 138 0.179 0.495 0.326 210.4 474.5 684.9
0.9 0.08 15.634 18.564 119 145 0.172 0.503 0.325 205.7 494.7 700.4
0.9 0.09 15.662 18.548 116 152 0.167 0.509 0.324 201.7 512.5 714.2
0.9 0.1 15.687 18.535 113 158 0.163 0.514 0.323 198.2 528.4 726.6
0.9 0.11 15.71 18.525 110 164 0.159 0.519 0.323 195.2 542.7 737.9
0.9 0.12 15.731 18.516 107 169 0.155 0.523 0.322 192.5 555.6 748.1
0.9 0.13 15.75 18.51 105 174 0.152 0.526 0.322 190.2 567.2 757.4
0.9 0.14 15.767 18.504 103 179 0.149 0.529 0.322 188.2 577.9 766.0
0.9 0.15 15.783 18.5 102 183 0.147 0.531 0.322 186.4 587.6 774.0
0.9 0.16 15.798 18.497 100 187 0.145 0.533 0.322 184.8 596.5 781.3
0.9 0.17 15.812 18.494 99 191 0.143 0.535 0.322 183.3 604.7 788.0
0.9 0.18 15.825 18.492 98 194 0.141 0.536 0.323 182.0 612.3 794.3
0.9 0.19 15.836 18.491 97 198 0.140 0.537 0.323 180.9 619.1 800.1
0.9 0.2 15.847 18.491 96 201 0.139 0.538 0.323 180.0 625.5 805.4
0.9 0.21 15.857 18.49 95 204 0.137 0.539 0.324 179.0 631.4 810.4
0.9 0.22 15.867 18.491 94 207 0.136 0.539 0.324 178.2 636.8 815.0
0.9 0.23 15.875 18.491 94 210 0.135 0.540 0.325 177.5 641.7 819.3
0.9 0.24 15.883 18.492 93 213 0.134 0.540 0.325 176.9 646.3 823.2
0.9 0.25 15.891 18.494 93 216 0.134 0.540 0.326 176.4 650.4 826.9
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0.9 0.26 15.898 18.495 92 218 0.133 0.541 0.326 175.9 654.3 830.2
0.9 0.27 15.904 18.497 92 221 0.132 0.541 0.327 175.6 657.7 833.3
0.9 0.28 15.91 18.499 91 223 0.132 0.541 0.328 175.3 660.9 836.1
0.9 0.29 15.915 18.502 91 225 0.131 0.540 0.328 175.1 663.6 838.7
0.9 0.3 15.92 18.505 91 227 0.131 0.540 0.329 175.0 666.1 841.0
0.9 0.31 15.924 18.508 91 230 0.131 0.539 0.330 174.9 668.3 843.2
0.9 0.32 15.928 18.511 90 232 0.131 0.539 0.330 174.8 670.2 845.0
0.9 0.33 15.931 18.514 90 234 0.131 0.538 0.331 174.8 671.9 846.7
0.9 0.34 15.934 18.518 90 236 0.130 0.538 0.332 175.0 673.2 848.2
0.9 0.35 15.937 18.522 90 237 0.130 0.537 0.333 175.1 674.4 849.5
0.9 0.36 15.939 18.526 90 239 0.130 0.536 0.334 175.3 675.3 850.5
0.9 0.37 15.941 18.53 90 241 0.131 0.535 0.334 175.5 676.0 851.4
0.9 0.38 15.942 18.535 91 242 0.131 0.534 0.335 175.8 676.3 852.1
0.9 0.39 15.943 18.54 91 244 0.131 0.533 0.336 176.2 676.4 852.6
0.9 0.4 15.944 18.544 91 246 0.131 0.532 0.337 176.5 676.5 853.0
0.9 0.41 15.944 18.55 91 247 0.132 0.530 0.338 177.1 676.1 853.2
0.9 0.42 15.944 18.555 91 249 0.132 0.529 0.339 177.5 675.6 853.2
0.9 0.43 15.944 18.56 92 250 0.132 0.528 0.340 178.0 675.0 853.0
0.9 0.44 15.943 18.566 92 251 0.133 0.526 0.341 178.7 674.0 852.7
0.9 0.45 15.942 18.572 92 252 0.133 0.525 0.342 179.3 672.9 852.2
0.9 0.46 15.941 18.578 93 254 0.134 0.523 0.343 180.0 671.6 851.6
0.9 0.47 15.939 18.585 93 255 0.135 0.521 0.344 180.8 669.9 850.7
0.9 0.48 15.937 18.591 94 256 0.135 0.520 0.345 181.6 668.2 849.8
0.9 0.49 15.935 18.598 94 257 0.136 0.518 0.346 182.4 666.3 848.7
0.9 0.5 15.932 18.605 95 258 0.137 0.516 0.347 183.3 664.1 847.4
0.9 0.51 15.93 18.612 95 259 0.138 0.514 0.349 184.2 661.8 846.0
0.9 0.52 15.926 18.62 96 260 0.139 0.512 0.350 185.3 659.1 844.4
0.9 0.53 15.923 18.628 97 260 0.140 0.509 0.351 186.3 656.3 842.6
0.9 0.54 15.919 18.636 97 261 0.141 0.507 0.352 187.5 653.3 840.7
0.9 0.55 15.915 18.644 98 262 0.142 0.505 0.354 188.6 650.1 838.7
0.9 0.56 15.91 18.652 99 263 0.143 0.502 0.355 189.8 646.7 836.5
0.9 0.57 15.906 18.661 100 263 0.144 0.500 0.356 191.0 643.1 834.1
0.9 0.58 15.9 18.67 101 264 0.145 0.497 0.357 192.5 639.2 831.6
0.9 0.59 15.895 18.68 102 264 0.147 0.494 0.359 193.9 635.1 829.0
0.9 0.6 15.889 18.69 103 264 0.148 0.491 0.360 195.4 630.7 826.1
0.9 0.61 15.883 18.7 104 265 0.150 0.488 0.362 196.9 626.2 823.1
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0.9 0.62 15.877 18.71 105 265 0.151 0.486 0.363 198.5 621.5 820.0
0.9 0.63 15.87 18.721 106 265 0.153 0.482 0.365 200.2 616.5 816.7
0.9 0.64 15.863 18.733 107 265 0.155 0.479 0.367 202.0 611.2 813.2
0.9 0.65 15.856 18.744 108 265 0.156 0.476 0.368 203.7 605.8 809.5
0.9 0.66 15.848 18.756 110 265 0.158 0.472 0.370 205.6 600.1 805.7
0.9 0.67 15.84 18.769 111 265 0.160 0.468 0.372 207.7 594.1 801.7
0.9 0.68 15.831 18.782 113 265 0.163 0.464 0.373 209.8 587.8 797.6
0.9 0.69 15.823 18.796 114 264 0.165 0.460 0.375 211.9 581.3 793.2
0.9 0.7 15.813 18.81 116 264 0.167 0.456 0.377 214.2 574.4 788.7
0.9 0.71 15.804 18.825 117 263 0.170 0.451 0.379 216.6 567.4 783.9
0.9 0.72 15.794 18.84 119 263 0.172 0.447 0.381 219.0 560.0 779.0
0.9 0.73 15.783 18.856 121 262 0.175 0.442 0.383 221.6 552.2 773.9
0.9 0.74 15.772 18.873 123 261 0.178 0.437 0.385 224.4 544.2 768.5
0.9 0.75 15.761 18.891 125 260 0.181 0.432 0.387 227.2 535.8 763.0
0.9 0.76 15.749 18.909 127 258 0.184 0.426 0.389 230.1 527.1 757.2
0.9 0.77 15.737 18.929 130 257 0.188 0.421 0.392 233.3 517.9 751.2
0.9 0.78 15.725 18.949 132 255 0.191 0.415 0.394 236.4 508.6 745.0
0.9 0.79 15.711 18.971 135 254 0.195 0.408 0.397 239.9 498.6 738.5
0.9 0.8 15.698 18.994 138 252 0.199 0.402 0.399 243.4 488.3 731.7
0.9 0.81 15.683 19.018 141 249 0.203 0.395 0.402 247.2 477.5 724.7
0.9 0.82 15.669 19.043 144 247 0.207 0.388 0.405 251.0 466.3 717.3
0.9 0.83 15.653 19.071 147 244 0.212 0.380 0.408 255.3 454.4 709.7
0.9 0.84 15.637 19.1 150 241 0.217 0.372 0.411 259.6 442.1 701.8
0.9 0.85 15.62 19.131 154 238 0.223 0.363 0.414 264.2 429.2 693.5
0.9 0.86 15.603 19.165 158 234 0.228 0.354 0.418 269.1 415.7 684.8
0.9 0.87 15.584 19.201 163 230 0.235 0.344 0.421 274.3 401.4 675.7
0.9 0.88 15.565 19.241 167 226 0.241 0.334 0.425 279.9 386.4 666.2
0.9 0.89 15.545 19.284 172 221 0.249 0.323 0.429 285.7 370.5 656.2
0.9 0.9 15.523 19.332 178 215 0.257 0.311 0.433 292.1 353.6 645.7
0.9 0.91 15.501 19.385 183 209 0.265 0.298 0.437 298.8 335.8 634.6
0.9 0.92 15.477 19.445 190 201 0.274 0.283 0.442 306.2 316.6 622.8
0.9 0.93 15.451 19.513 197 193 0.285 0.268 0.447 314.3 296.0 610.3
0.9 0.94 15.424 19.592 205 184 0.296 0.251 0.453 323.0 273.8 596.9
0.9 0.95 15.395 19.686 214 173 0.309 0.231 0.459 332.7 249.6 582.3
0.9 0.96 15.362 19.801 225 160 0.325 0.209 0.466 343.8 222.6 566.4
0.9 0.97 15.326 19.949 237 144 0.342 0.184 0.474 356.4 192.1 548.5
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0.9 0.98 15.284 20.157 252 123 0.364 0.152 0.484 371.7 156.2 527.9
0.9 0.99 15.232 20.503 272 94 0.393 0.110 0.496 391.5 110.5 502.0

Table A.3 Numerical results when SL1 = 0.9, we vary SL2 with step size 0.01

Table A.4 shows the full table of numerical results of pricing problem when SL2 = 0.9
and SL1 is varied with step size 0.01.

SL1 SL2 r∗1 r∗2 Q∗
1 Q∗

2 G∗
1 G∗

2 G∗
0 Π1 Π2 Π

0.01 0.9 16.376 19.05 17 299 0.115 0.432 0.454 75.3 431.4 506.8
0.02 0.9 15.802 19.1 37 266 0.191 0.385 0.425 137.6 393.8 531.4
0.03 0.9 15.572 19.139 51 247 0.232 0.357 0.411 177.8 373.0 550.7
0.04 0.9 15.442 19.171 61 235 0.259 0.339 0.402 207.3 359.2 566.4
0.05 0.9 15.355 19.198 70 225 0.278 0.325 0.397 230.7 348.9 579.7
0.06 0.9 15.293 19.221 78 218 0.293 0.315 0.393 250.1 341.1 591.2
0.07 0.9 15.245 19.242 85 212 0.305 0.306 0.389 266.8 334.5 601.3
0.08 0.9 15.208 19.26 91 207 0.314 0.298 0.387 281.1 329.2 610.4
0.09 0.9 15.178 19.277 96 202 0.323 0.292 0.385 293.9 324.7 618.6
0.1 0.9 15.153 19.292 101 198 0.329 0.287 0.384 305.3 320.8 626.0
0.11 0.9 15.132 19.306 106 195 0.335 0.282 0.383 315.6 317.3 632.9
0.12 0.9 15.114 19.319 110 192 0.341 0.278 0.382 325.0 314.2 639.2
0.13 0.9 15.099 19.331 114 189 0.345 0.274 0.381 333.6 311.5 645.1
0.14 0.9 15.086 19.342 118 187 0.349 0.270 0.381 341.4 309.1 650.5
0.15 0.9 15.074 19.352 122 185 0.353 0.267 0.380 348.7 306.9 655.6
0.16 0.9 15.065 19.362 125 183 0.356 0.264 0.380 355.4 305.0 660.3
0.17 0.9 15.056 19.371 128 181 0.359 0.262 0.379 361.7 303.1 664.8
0.18 0.9 15.048 19.379 131 180 0.361 0.260 0.379 367.5 301.5 669.0
0.19 0.9 15.042 19.387 134 178 0.363 0.257 0.379 372.8 300.1 672.9
0.2 0.9 15.036 19.395 137 177 0.366 0.255 0.379 377.9 298.7 676.6
0.21 0.9 15.031 19.402 139 176 0.367 0.254 0.379 382.6 297.4 680.1
0.22 0.9 15.026 19.408 142 174 0.369 0.252 0.379 387.0 296.3 683.3
0.23 0.9 15.023 19.415 144 173 0.371 0.250 0.379 391.1 295.3 686.4
0.24 0.9 15.019 19.421 147 172 0.372 0.249 0.379 395.1 294.3 689.3
0.25 0.9 15.017 19.426 149 171 0.373 0.248 0.379 398.5 293.6 692.1
0.26 0.9 15.014 19.431 151 171 0.374 0.247 0.379 401.9 292.7 694.7
0.27 0.9 15.013 19.436 153 170 0.375 0.246 0.380 405.0 292.1 697.1
0.28 0.9 15.011 19.441 155 169 0.376 0.244 0.380 408.0 291.4 699.4
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0.29 0.9 15.01 19.445 157 169 0.376 0.244 0.380 410.7 290.9 701.5
0.3 0.9 15.009 19.449 159 168 0.377 0.243 0.380 413.2 290.4 703.6
0.31 0.9 15.009 19.453 161 168 0.377 0.242 0.381 415.5 290.0 705.5
0.32 0.9 15.009 19.457 162 167 0.378 0.241 0.381 417.7 289.6 707.3
0.33 0.9 15.009 19.46 164 167 0.378 0.241 0.381 419.6 289.3 708.9
0.34 0.9 15.009 19.463 166 166 0.378 0.240 0.382 421.5 289.0 710.5
0.35 0.9 15.01 19.466 167 166 0.378 0.240 0.382 423.1 288.8 711.9
0.36 0.9 15.011 19.469 169 166 0.378 0.239 0.382 424.7 288.6 713.2
0.37 0.9 15.012 19.472 170 165 0.378 0.239 0.383 426.1 288.4 714.5
0.38 0.9 15.014 19.474 172 165 0.378 0.239 0.383 427.2 288.4 715.6
0.39 0.9 15.016 19.476 173 165 0.378 0.238 0.384 428.2 288.4 716.7
0.4 0.9 15.018 19.478 174 165 0.377 0.238 0.384 429.2 288.4 717.6
0.41 0.9 15.02 19.48 176 165 0.377 0.238 0.385 430.0 288.4 718.4
0.42 0.9 15.022 19.481 177 165 0.377 0.238 0.385 430.6 288.6 719.2
0.43 0.9 15.025 19.483 178 165 0.376 0.238 0.386 431.2 288.7 719.9
0.44 0.9 15.027 19.484 179 165 0.376 0.238 0.386 431.7 288.8 720.4
0.45 0.9 15.03 19.485 181 165 0.375 0.238 0.387 431.9 289.0 720.9
0.46 0.9 15.034 19.486 182 165 0.374 0.238 0.387 432.0 289.3 721.3
0.47 0.9 15.037 19.486 183 165 0.374 0.239 0.388 432.0 289.7 721.7
0.48 0.9 15.041 19.487 184 165 0.373 0.239 0.388 431.9 290.0 721.9
0.49 0.9 15.044 19.487 185 165 0.372 0.239 0.389 431.7 290.3 722.1
0.5 0.9 15.049 19.487 185 166 0.371 0.239 0.390 431.3 290.9 722.1
0.51 0.9 15.053 19.487 186 166 0.370 0.240 0.390 430.8 291.3 722.1
0.52 0.9 15.057 19.487 187 166 0.369 0.240 0.391 430.3 291.7 722.0
0.53 0.9 15.062 19.487 188 167 0.368 0.241 0.391 429.6 292.3 721.9
0.54 0.9 15.067 19.486 189 167 0.367 0.241 0.392 428.7 292.9 721.6
0.55 0.9 15.072 19.485 190 167 0.365 0.242 0.393 427.7 293.5 721.3
0.56 0.9 15.077 19.485 190 168 0.364 0.242 0.393 426.8 294.1 720.9
0.57 0.9 15.083 19.484 191 168 0.363 0.243 0.394 425.6 294.8 720.4
0.58 0.9 15.089 19.482 192 169 0.361 0.244 0.395 424.1 295.7 719.8
0.59 0.9 15.095 19.481 192 169 0.360 0.245 0.396 422.7 296.4 719.2
0.6 0.9 15.101 19.48 193 170 0.358 0.245 0.396 421.3 297.2 718.4
0.61 0.9 15.108 19.478 193 170 0.357 0.246 0.397 419.5 298.1 717.6
0.62 0.9 15.114 19.476 194 171 0.355 0.247 0.398 417.7 299.0 716.7
0.63 0.9 15.122 19.474 194 172 0.353 0.248 0.399 415.7 300.0 715.7
0.64 0.9 15.129 19.472 194 173 0.351 0.249 0.400 413.7 301.0 714.6
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0.65 0.9 15.137 19.47 195 173 0.349 0.250 0.400 411.5 302.0 713.5
0.66 0.9 15.145 19.467 195 174 0.347 0.252 0.401 409.1 303.2 712.2
0.67 0.9 15.153 19.464 195 175 0.345 0.253 0.402 406.6 304.3 710.9
0.68 0.9 15.162 19.461 195 176 0.343 0.254 0.403 403.9 305.6 709.5
0.69 0.9 15.171 19.458 196 177 0.340 0.256 0.404 401.1 306.8 707.9
0.7 0.9 15.18 19.455 196 178 0.338 0.257 0.405 398.3 308.1 706.3
0.71 0.9 15.19 19.452 196 179 0.336 0.258 0.406 395.2 309.4 704.6
0.72 0.9 15.201 19.448 196 180 0.333 0.260 0.407 391.8 311.0 702.8
0.73 0.9 15.211 19.444 196 181 0.330 0.262 0.408 388.4 312.4 700.8
0.74 0.9 15.223 19.44 195 182 0.327 0.264 0.409 384.8 314.0 698.8
0.75 0.9 15.235 19.435 195 184 0.324 0.266 0.410 380.9 315.8 696.7
0.76 0.9 15.247 19.431 195 185 0.321 0.267 0.411 377.0 317.4 694.4
0.77 0.9 15.26 19.426 194 187 0.318 0.269 0.413 372.8 319.2 692.0
0.78 0.9 15.274 19.421 194 188 0.315 0.272 0.414 368.3 321.2 689.5
0.79 0.9 15.288 19.416 193 190 0.311 0.274 0.415 363.8 323.1 686.8
0.8 0.9 15.303 19.41 193 191 0.307 0.276 0.416 358.9 325.2 684.0
0.81 0.9 15.319 19.404 192 193 0.304 0.279 0.418 353.7 327.4 681.1
0.82 0.9 15.336 19.398 191 195 0.299 0.281 0.419 348.4 329.6 678.0
0.83 0.9 15.354 19.391 190 197 0.295 0.284 0.420 342.6 332.1 674.7
0.84 0.9 15.373 19.384 189 199 0.291 0.287 0.422 336.7 334.6 671.3
0.85 0.9 15.394 19.377 187 201 0.286 0.291 0.424 330.3 337.3 667.6
0.86 0.9 15.416 19.369 186 204 0.281 0.294 0.425 323.6 340.2 663.8
0.87 0.9 15.439 19.36 184 206 0.275 0.298 0.427 316.4 343.2 659.7
0.88 0.9 15.465 19.352 182 209 0.269 0.302 0.429 308.9 346.4 655.3
0.89 0.9 15.493 19.342 180 212 0.263 0.306 0.431 300.7 349.9 650.7
0.9 0.9 15.523 19.332 178 215 0.257 0.311 0.433 292.1 353.6 645.7
0.91 0.9 15.557 19.321 175 218 0.249 0.316 0.435 282.7 357.7 640.4
0.92 0.9 15.595 19.31 172 222 0.241 0.321 0.438 272.6 362.0 634.6
0.93 0.9 15.637 19.297 168 226 0.233 0.327 0.440 261.6 366.7 628.3
0.94 0.9 15.686 19.283 164 231 0.223 0.334 0.443 249.3 372.0 621.4
0.95 0.9 15.744 19.267 158 237 0.212 0.342 0.446 235.5 378.1 613.6
0.96 0.9 15.813 19.249 152 243 0.200 0.351 0.450 219.9 384.9 604.8
0.97 0.9 15.902 19.228 144 250 0.184 0.362 0.454 201.3 393.1 594.5
0.98 0.9 16.025 19.202 133 260 0.165 0.376 0.460 178.2 403.5 581.7
0.99 0.9 16.228 19.166 116 274 0.137 0.396 0.467 145.6 418.3 563.8

Table A.4 Numerical results when SL2 = 0.9, we vary SL1 with step size 0.01
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Appendix B

Appendix of Chapter 3

B.1 Proofs of Lemmas

B.1.1 Proof of Lemma 1

From the first part of the lemma, there exists at least one point u such that ψ ′(u) = 0. We
need to prove the uniqueness of such point. Let u∗ = min{u|ψ ′(u) = 0}. By definition, we
have ψ ′(u∗) = 0 and from condition (ii), ψ ′′(u∗)< 0. Thus, u∗ is a local maximizer of ψ(·).
Moreover, ψ ′′(u) is a continuous function. Therefore, by the fundamental theorem of integral
calculus, there exists an ε > 0 such that ψ ′(u)< 0 for u ∈ (u∗,u∗+ ε).

Now, assuming that there exists at least one point u such that u > u∗ and ψ ′(u) = 0. Let
u∗∗ = min{u|u > u∗,ψ ′(u) = 0}. By the definition of u∗∗ and the continuity of ψ ′(u), ψ ′(u)
doesn’t change its sign between two zero points u∗ and u∗∗. As ψ ′(u)< 0 for u ∈ (u∗,u∗+ε),
we deduce that ψ ′(u)< 0 for u ∈ (u∗,u∗∗).

Besides, by the condition (ii) of the lemma, we have ψ ′′(u∗∗)< 0, or u∗∗ is also a local
maximizer of ψ(·). Thus, there exists an η > 0 such that ψ ′(u)> 0 for u ∈ (u∗∗−η ,u∗∗),
which is a contradiction to the above property that ψ ′(u)< 0 for u ∈ (u∗,u∗∗). Thus, no such
a u∗∗ exists.

B.1.2 Proof of Lemma 2

The first condition (i) of the lemma secures the existence of a point uuu∗ such that ∇Ψ(uuu∗) = 000.

Thus, if uuu∗ is an argument of the maxima of Ψ(uuu), then
∂Ψ

∂ui
(uuu∗) = 0 for all i ∈ {1,2, . . . ,n}.

In order to complete the proof, we need to show uniqueness. We prove by induction on n, the
number of decision variables.
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134 Appendix of Chapter 3

When n = 1, the result follows from Lemma 3. Assuming that the lemma holds when
n = k−1, we need to show that it is true when n = k.

At a given uk, Ψ(uuu) can be seen as a function of k−1 variables. By the induction assump-
tion, given uk, there exists unique vector of decision variables uuu∗(uk)= (u∗1(uk),u∗2(uk), . . . ,u∗k−1(uk))

that satisfies
∂Ψ

∂ui
(u∗1(uk),u∗2(uk), . . . ,u∗k−1(uk),uk) = 0, (B.1)

for all i ∈ {1,2, . . . ,k−1}. Moreover, uuu∗(uk) is the maximizer of Ψ(uuu) for this given value
of uk.

Now, instead of maximizing Ψ(uuu) over uuu= (u1,u2, . . . ,uk), we can maximize the function
Ψ∗(uk) := Ψ(uuu∗(uk),uk) over uk. Applying the envelope theorem, the first-order derivative
of Ψ∗(uk) is given as follows:

∂Ψ∗

∂uk
(uk) =

∂Ψ

∂uk
(uuu∗(uk),uk). (B.2)

Thus, the second-order derivative of Ψ∗(uk) is given as follows

∂ 2Ψ∗

∂u2
k
(uk) =

∂ 2Ψ

∂u2
k
(uuu∗(uk),uk)+

k−1

∑
i=1

∂ 2Ψ

∂uk∂ui
(uuu∗(uk),uk)

∂u∗i (uk)

∂uk
. (B.3)

Now, we will prove that at all the point uk such that
∂Ψ∗

∂uk
(uk) = 0, then

∂ 2Ψ∗

∂u2
k
(uk)< 0.

Indeed, when
∂Ψ∗

∂uk
(uk) = 0, from Eq. B.1, Eq. B.2, for all i ∈ {1,2,3, . . . ,k}, we have

∂Ψ

∂ui
(u∗1(uk),u∗2(uk), . . . ,u∗k−1(uk),uk) = 0. (B.4)

Then, by assumption (ii) of the lemma, we have

∂ 2Ψ

∂u2
k
(uuu∗(uk),uk)< 0,

∂ 2Ψ

∂uk∂ui
(uuu∗(uk),uk) = 0, i ∈ {1,2, . . . ,k−1}. (B.5)

Embedding these properties in Eq. B.3, we deduce that

∂ 2Ψ∗

∂u2
k
(uk)< 0, (B.6)

given that
∂Ψ∗

∂uk
(uk) = 0.
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The lemma holds for n= 1 (confirm by Lemma 3), we deduce that there exists a unique u∗k
that maximizes Ψ∗(uk). Therefore, there exists a unique vector uuu∗=(u∗1(u

∗
k),u

∗
2(u

∗
k), . . . ,u

∗
k−1(u

∗
k),u

∗
k)

that satisfies
∂Ψ

∂ui
(uuu∗) = 0 for i ∈ {1,2,3, . . . ,k} and uuu∗ maximizes Ψ(uuu).

B.2 Proofs of Propositions

B.2.1 Proof of Proposition 1

To prove this proposition, we introduce two lemmas concerning the detailed formulation of
the (first and second order) derivatives for the part of the market and profit functions.

We represent explicit formulations for the part of the market function Gi(rrr) and its first-
order derivatives, second-order derivatives, and cross derivatives via Lemma 8 as follows.

Lemma 8. For all i, j ∈ I, i ̸= j, we have

a.
∂Gi

∂ ri
(rrr) = ζi(ri)Gi(rrr)(1−Gi(rrr))< 0 (B.7)

b.
∂G j

∂ ri
(rrr) =−ζi(ri)Gi(rrr)G j(rrr)> 0 (B.8)

c.
∂ 2Gi

∂ r2
i
(rrr) =

[
ζ
′
i (ri)+(1−2Gi(rrr))ζ

2
i (ri)

]
Gi(rrr)(1−Gi(rrr)) (B.9)

d.
∂ 2G j

∂ r2
i
(rrr) =−

[
ζ
′
i (ri)+(1−2Gi(rrr))ζ

2
i (ri)

]
Gi(rrr)G j(rrr) (B.10)

e.
∂ 2Gi

∂ ri∂ r j
(rrr) =−ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)(1−2Gi(rrr)) (B.11)

Proof. Note that we have ζi(ri)< 0,0 < Gi(rrr)< 1.

∂Gi

∂ ri
(rrr) =

∂
gi(ri)

1+∑i∈I gi(ri)

∂ ri
(B.12)

=
1

(1+∑i∈I gi(ri))
2

[
g′i(ri)

(
1+∑

i∈I
gi(ri)

)
−gi(ri)

∂ (1+∑i∈I gi(ri))

∂ ri

]
(B.13)
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=
g′i(ri)

1+∑i∈I gi(ri)
− gi(ri)g′i(ri)

(1+∑i∈I gi(ri))
2 (B.14)

=
g′i(ri)

gi(ri)

gi(ri)

1+∑i∈I gi(ri)
− g′i(ri)

gi(ri)

g2
i (ri)

(1+∑i∈I gi(ri))
2 (B.15)

= ζi(ri)Gi(rrr)−ζi(ri)G2
i (rrr) (B.16)

= ζi(ri)Gi(rrr)(1−Gi(rrr))< 0. (B.17)

∂G j

∂ ri
(rrr) =

∂
g j(r j)

1+∑i∈I gi(ri)

∂ ri
(B.18)

=
1

(1+∑i∈I gi(ri))
2

[
−g j(r j)

∂ (1+∑i∈I gi(ri))

∂ ri

]
(B.19)

=−
g j(r j)g′i(ri)

(1+∑i∈I gi(ri))
2 (B.20)

=−g′i(ri)

gi(ri)

gi(ri)

1+∑i∈I gi(ri)

g j(r j)

1+∑i∈I gi(ri)
(B.21)

=−ζi(ri)Gi(rrr)G j(rrr)> 0. (B.22)

∂ 2Gi

∂ r2
i
(rrr) =

∂

∂ ri

(
∂Gi

∂ ri

)
(rrr) (B.23)

=
∂

∂ ri
[ζi(ri)Gi(rrr)(1−Gi(rrr))] (B.24)

= ζ
′
i (ri)Gi(rrr)(1−Gi(rrr))+ζi(ri)

(
∂Gi

∂ ri
(rrr)(1−Gi(rrr))−Gi(rrr)

∂Gi

∂ ri
(rrr)
)

(B.25)

= ζ
′
i (ri)Gi(rrr)(1−Gi(rrr))+ζi(ri)

(
∂Gi

∂ ri
(rrr)(1−2Gi(rrr))

)
(B.26)

= ζ
′
i (ri)Gi(rrr)(1−Gi(rrr))+ζi(ri)

(
[ζi(ri)Gi(rrr)(1−Gi(rrr))] (1−2Gi(rrr))

)
(B.27)

= ζ
′
i (ri)Gi(rrr)(1−Gi(rrr))+ζ

2
i (ri)Gi(rrr)(1−Gi(rrr))(1−2Gi(rrr)) (B.28)

= Gi(rrr)(1−Gi(rrr))
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
. (B.29)

∂ 2G j

∂ r2
i
(rrr) =

∂

∂ ri

(
∂G j

∂ ri

)
(rrr) (B.30)
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=
∂

∂ ri

[
−ζi(ri)Gi(rrr)G j(rrr)

]
(B.31)

=−
[

ζ
′
i (ri)Gi(rrr)G j(rrr)+ζi(ri)

∂Gi

∂ ri
(rrr)G j(rrr)+ζi(ri)Gi(rrr)

∂G j

∂ ri
(rrr)
]

(B.32)

=−
{

ζ
′
i (ri)Gi(rrr)G j(rrr)+ζi(ri)

[
ζi(ri)Gi(rrr)(1−Gi(rrr))

]
G j(rrr)

+ζi(ri)Gi(rrr)
[
−ζi(ri)Gi(rrr)G j(rrr)

]}
(B.33)

=−
[
ζ
′
i (ri)Gi(rrr)G j(rrr)+ζ

2
i (ri)Gi(rrr)(1−Gi(rrr))G j(rrr)−ζ

2
i (ri)G2

i (rrr)G j(rrr)
]

(B.34)

=−Gi(rrr)G j(rrr)
[
ζ
′
i (ri)+ζ

2
i (ri)(1−Gi(rrr))−ζ

2
i (ri)Gi(rrr)

]
(B.35)

=−Gi(rrr)G j(rrr)
[
ζ
′
i (ri)+ζ

2
i (ri)(1−2Gi(rrr))

]
. (B.36)

∂ 2Gi

∂ ri∂ r j
(rrr) =

∂

∂ r j

(
∂Gi

∂ ri

)
(rrr) (B.37)

=
∂

∂ r j
[ζi(ri)Gi(rrr)(1−Gi(rrr))] (B.38)

= ζi(ri)

[
∂Gi

∂ r j
(rrr)(1−Gi(rrr))−Gi(rrr)

∂Gi

∂ r j
(rrr)
]

(B.39)

= ζi(ri)
∂Gi

∂ r j
(rrr)(1−2Gi(rrr)) (B.40)

= ζi(ri)
[
−ζ j(r j)Gi(rrr)G j(rrr)

]
(1−2Gi(rrr)) (B.41)

=−ζi(ri)ζ j(r j)Gi(rrr)G j(rrr)(1−2Gi(rrr)) . (B.42)

The lemma below shows the relationship between second-order derivatives and cross
derivatives with first-order derivatives of the objective function of problem DCP when
(rp,ro) ∈ Ω. It represents key equations to prove Proposition 4.

Lemma 9. For all (rp,ro) ∈ Ω, for all i ∈ I, we have

i.
∂ 2Π

∂ r2
i
(rrr) = E[ξ ]Gi(rrr)

[
ζi(ri)−

ζ ′
i (ri)

ζi(ri)

]
+

[
ζ ′

i (ri)

ζi(ri)
+ζi(ri)(1−2Gi(rrr))

]
∂Π

∂ ri
(rrr)

ii.
∂ 2Π

∂ rp∂ ro
(rrr) =−

{
ζo(ro)Go(rrr)

∂Π

∂ rp
(rrr)+ζp(rp)Gp(rrr)

∂Π

∂ ro
(rrr)
}
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From now on, to shorten the formula representations, we denote ζi(ri) by ζi, Gi(rrr) by

Gi,
∂Gi

∂ ri
(rrr) by

∂Gi

∂ ri
,

∂Gi

∂ r j
(rrr) by

∂Gi

∂ r j
,

∂Π

∂ ri
(rrr) by

∂Π

∂ ri
. We denote by µ the expectation of ξ ,

µ = E[ξ ].

Proof. When (rp,ro) ∈ Ω, we have Gp(rp,ro)< K/M. Thus,
K

Gp(rp,ro)
> M. Note that ξ

is bounded by M. Therefore,
∫

∞
K

Gp(rrr)

(
x− K

Gp(rrr)

)
f (x)dx = 0. It follows that

Π(rp,ro) = µ(rp −hp +α)Gp − (cp −hp)K +µ(ro − co)Go (B.43)

∂Π

∂ rp
= µGp +µ(rp −hp +α)

∂Gp

∂ rp
+µ(ro − co)

∂Go

∂ rp
(B.44)

= µGp +µ(rp −hp +α)[δpGp(1−Gp)]+µ(ro − co)[−δpGpGo] (B.45)

= µGp +µ(rp −hp +α)δpGp(1−Gp)−µ(ro − co)δpGpGo (B.46)

∂Π

∂ ro
= µ(rp −hp +α)

∂Gp

∂ ro
+µ(ro − co)

∂Go

∂ ro
+µGo (B.47)

= µ(rp −hp +α)[−δoGpGo]+µ(ro − co)[δoGo(1−Go)]+µGo (B.48)

=−µ(rp −hp +α)δoGpGo +µ(ro − co)δoGo(1−Go)+µGo (B.49)

∂ 2Π

∂ r2
p
= µ

∂Gp

∂ rp
+µ

∂Gp

∂ rp
+µ(rp −hp +α)

∂ 2Gp

∂ r2
p

+µ(ro − co)
∂ 2Go

∂ r2
p

(B.50)

= 2µ[δpGp(1−Gp)]+µ(rp −hp +α)[Gp(1−Gp)(δ
′
p +δ

2
p(1−2Gp))]+

µ(ro − co)[−GpGo(δ
′
p +δ

2
p(1−2Gp))] (B.51)

= 2µδpGp(1−Gp)+µ(rp −hp +α)Gp(1−Gp)(δ
′
p +δ

2
p(1−2Gp))

−µ(ro − co)GpGo(δ
′
p +δ

2
p(1−2Gp)) (B.52)

∂ 2Π

∂ r2
o
= µ(rp −hp +α)

∂ 2Gp

∂ r2
o

+µ
∂Go

∂ ro
+µ(ro − co)

∂ 2Go

∂ r2
o

+µ
∂Go

∂ ro
(B.53)

= 2µ[δoGo(1−Go)]+µ(rp −hp +α)[−GpGo(δ
′
o +δ

2
o (1−2Go))]+

µ(ro − co)[Go(1−Go)(δ
′
o +δ

2
o (1−2Go))] (B.54)

= 2µδoGo(1−Go)−µ(rp −hp +α)GpGo(δ
′
o +δ

2
o (1−2Go))

+µ(ro − co)Go(1−Go)(δ
′
o +δ

2
o (1−2Go)) (B.55)
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∂ 2Π

∂ rp∂ ro
= µ

∂Gp

∂ ro
+µ

∂Go

∂ rp
+µ(rp −hp +α)

∂ 2Gp

∂ rp∂ ro
+µ(ro − co)

∂ 2Go

∂ rp∂ ro
(B.56)

= µ[−δoGpGo]+µ(rp −hp +α)[−δpδoGpGo(1−2Gp)]+

+µ[−δpGpGo]+µ(ro − co)[−δpδoGpGo(1−2Go)] (B.57)

=−µδoGpGo −µ(rp −hp +α)δpδoGpGo(1−2Gp)

−µδpGpGo −µ(ro − co)δpδoGpGo(1−2Go) (B.58)

For the first part of the lemma, we have[
ζ ′

p

ζp
+ζp (1−2Gp)

]
∂Π

∂ rp
=

[
ζ ′

p

ζp
+ζp (1−2Gp)

]
× [µGp +µ(rp −hp +α)δpGp(1−Gp)−µ(ro − co)δpGpGo]

(B.59)

=

[
ζ ′

p

ζp
+ζp (1−2Gp)

]
µGp

+µ(rp −hp +α)Gp(1−Gp)(δ
′
p +δ

2
p(1−2Gp))

−µ(ro − co)GpGo(δ
′
p +δ

2
p(1−2Gp)) (B.60)

=

[
ζ ′

p

ζp
+ζp (1−2Gp)

]
µGp −2µδpGp(1−Gp)+

∂ 2Π

∂ r2
p

(B.61)

= µGp

[
ζ ′

p

ζp
+ζp (1−2Gp)−2δp(1−Gp)

]
+

∂ 2Π

∂ r2
p

(B.62)

= µGp

[
ζ ′

p

ζp
−ζp

]
+

∂ 2Π

∂ r2
p

(B.63)

Thus,

∂ 2Π

∂ r2
p
(rrr) = µGp(rrr)

[
ζp(rp)−

ζ ′
p(rp)

ζp(rp)

]
+

[
ζ ′

p(rp)

ζp(rp)
+ζp(rp)(1−2Gp(rrr))

]
∂Π

∂ rp
(rrr) (B.64)

Similarly,[
ζ ′

o
ζo

+ζo (1−2Go)

]
∂Π

∂ ro
=

[
ζ ′

o
ζo

+ζo (1−2Go)

]
× [µGo −µ(rp −hp +α)δoGpGo +µ(ro − co)δoGo(1−Go)]

(B.65)

=

[
ζ ′

o
ζo

+ζo (1−2Go)

]
µGo
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−µ(rp −hp +α)GpGo(δ
′
o +δ

2
o (1−2Go))

+µ(ro − co)Go(1−Go)(δ
′
o +δ

2
o (1−2Go)) (B.66)

=

[
ζ ′

o
ζo

+ζo (1−2Go)

]
µGo −2µδoGo(1−Go)+

∂ 2Π

∂ r2
o

(B.67)

= µGo

[
ζ ′

o
ζo

+ζo (1−2Go)−2δo(1−Go)

]
+

∂ 2Π

∂ r2
o

(B.68)

= µGo

[
ζ ′

o
ζo

−ζo

]
+

∂ 2Π

∂ r2
o

(B.69)

Thus,

∂ 2Π

∂ r2
o
(rrr) = µGo(rrr)

[
ζo(ro)−

ζ ′
o(ro)

ζo(ro)

]
+

[
ζ ′

o(ro)

ζo(ro)
+ζo(ro)(1−2Go(rrr))

]
∂Π

∂ ro
(rrr) (B.70)

Therefore, the first part of the lemma holds true. For the second part, we have

δoGo
∂Π

∂ rp
= δoGo[µGp +µ(rp −hp +α)δpGp(1−Gp)−µ(ro − co)δpGpGo] (B.71)

= µδoGpGo +µ(rp −hp +α)δpδoGpGo(1−Gp)−µ(ro − co)δpδoGpG2
o

(B.72)

δpGp
∂Π

∂ ro
= δpGp[−µ(rp −hp +α)δoGpGo +µ(ro − co)δoGo(1−Go)+µGo] (B.73)

= µδpGpGo −µ(rp −hp +α)δpδoG2
pGo +µ(ro − co)δpδoGpGo(1−Go)

(B.74)

Thus,

δoGo
∂Π

∂ rp
+δpGp

∂Π

∂ ro
= µδoGpGo +µ(rp −hp +α)δpδoGpGo(1−Gp)−µ(ro − co)δpδoGpG2

o

+µδpGpGo −µ(rp −hp +α)δpδoG2
pGo +µ(ro − co)δpδoGpGo(1−Go)

(B.75)

= µδoGpGo +µ(rp −hp +α)δpδoGpGo(1−2Gp)

+µδpGpGo +µ(ro − co)δpδoGpGo(1−2Go) (B.76)

=− ∂ 2Π

∂ rp∂ ro
(B.77)
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Therefore,

∂ 2Π

∂ rp∂ ro
(rrr) =−

{
ζo(ro)Go(rrr)

∂Π

∂ rp
(rrr)+ζp(rp)Gp(rrr)

∂Π

∂ ro
(rrr)
}

(B.78)

The lemma is proved.

We now have enough materials to prove Proposition 4. For all the values of rrr, we have

0 < Gi(rrr) < 1 and ζi(ri)−
ζ ′

i (ri)

ζi(ri)
< 0. Note that the later inequality condition is given in

Assumption 4, and is satisfied by the linear attraction demand model, multinomial logit
demand model, and multiplicative competitive interaction demand model. We then deduce

that µGi

[
ζi(ri)−

ζ ′
i (ri)

ζi(ri)

]
< 0. Lemma 9 above then implies that at all the point rrr∗ such

that ∇Π(rrr∗) = 0, we then have
∂ 2Π

∂ rp∂ ro
= 0 and

∂ 2Π

∂ r2
i
< 0 for all i ∈ I. Apply the result of

Lemma 4 with dimension two (n = 2), and the result of Proposition 4 holds true.

B.3 Numerical results for MNL and MCI demand models

B.3.1 Numerical results for MNL demand model

In this part, we provide a set of numerical results considering the MNL model, i.e.,

gi(ri) = exp(ai −biri),

with ai > 0,bi > 0. Note that, if the condition

gp(cp)

1+gp(cp)
≤ K

M
(B.79)

is not met, our objective function does not exhibit joint concavity. As a result, finding an
optimal global solution becomes challenging. In practical scenarios, even when our decision
variables are bounded, algorithms may converge to optimal local solutions. Therefore, it
is necessary to establish upper bounds for prices to facilitate grid search for locating the
optimal global solution. In the following discussion, we will explore how to pragmatically
establish these boundaries.

Our demand can be described as a bounded random variable with |ξ | < M. When the
market segment corresponding to a particular channel is relatively small, the number of items
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sold in that channel approaches zero, indicating channel saturation. Consequently, in practice,
the upper price bounds should be determined when the respective channels are saturated.

Mathematically, a physical channel is considered saturated when the integer part of ξ Gp

is 0, or equivalently,
ξ Gp < 0.5. (B.80)

We can establish the following inequality:

ξ Gp < MGp = M
eap−bprp

1+ eap−bprp + eao−boro
< Meap−bprp. (B.81)

If rp >
ap + ln(M)+ ln(2)

bp
, then Meap−bprp < 0.5, which implies ξ Gp < 0.5, or the

physical channel is saturated. Consequently, we can define the upper bound for rp as

rmax
p :=

ap + ln(M)+ ln(2)
bp

.

Similarly, the upper bound for ro can be set as rmax
o :=

ao + ln(M)+ ln(2)
bo

. We acknowl-

edge that when the online channel is saturated, the demand transferred from the physical
store due to accepting a promotional offer will be met from the warehouse with the same
parameters (price, cost, etc.) as the online channel.

With regards to the potential market size we consider a uniform distribution with an
average equal to 500 and we assume two variability configurations: ξ ∼ U (100,900) for
the high variability and ξ ∼ U (400,600) for the low one. We use the same notations and
definitions (for example, potential extra cost, adjusted profit, etc.) as given in Section 3.5.

Consider potential extra cost = 0.5K, attraction demand coefficients: ap = 20,bp =

1,ao = 12,bo = 1, cost coefficients: cp = 6,hp = 1,co = 3,α = 0.5,β = 0.8,ν = 0.1 figure
B.1 represents optimization results with different level of physical store inventory capacity
K. In both two cases ξ ∼ U (100,900) and ξ ∼ U (400,600), the boundaries for prices are
(cp,27.5) and (co,19.5), respectively.
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(a) Optimal profit versus K, ξ ∼ U (100,900)(b) Market share versus K, ξ ∼ U (100,900)

(c) Optimal profit versus K, ξ ∼U (400,600)(d) Market share versus K, ξ ∼ U (400,600)

Figure B.1 The variation of resulted optimal profit and market share at the optimal prices
when ap = 20,bp = 1,ao = 12,bo = 1,cp = 6,hp = 1,co = 3,α = 0.5,β = 0.8,ν = 0.1

The variation of resulted optimal profit at the optimal prices with respect to α and ν when
ap = 20,bp = 1,ao = 18,bo = 1,cp = 6,hp = 1,co = 3,β = 0.8,K = 250 is represented
in Figure B.2 as follows. In both two cases ξ ∼ U (100,900) and ξ ∼ U (400,600), the
boundaries for prices are (cp,27.5) and (co,25.5), respectively.
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(a) Optimal profit versus α , ξ ∼ U (100,900)(b) Optimal profit versus α , ξ ∼U (400,600)

Figure B.2 The variation of resulted optimal profit at the optimal prices with respect to α and
ν when ap = 20,bp = 1,ao = 18,bo = 1,cp = 6,hp = 1,co = 3,β = 0.8,K = 250.

Figure B.3 represents the variation of resulted optimal prices with respect to co and
different ν when ap = 20,bp = 1,ao = 20,bo = 1,cp = 6,hp = 1,α = 0.5,β = 0.8,K = 250
and K = 0. In both two cases ξ ∼ U (100,900) and ξ ∼ U (400,600), the boundaries for
prices are (cp,27.5) and (co,27.5), respectively.
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(a) Optimal prices versus c0, ξ ∼
U (100,900),K = 250

(b) Optimal prices versus c0,
ξ ∼ U (400,600),K = 250

(c) Optimal prices versus c0, ξ ∼
U (100,900),K = 0

(d) Optimal prices versus c0,
ξ ∼ U (400,600),K = 0

Figure B.3 The variation of resulted optimal prices with respect to co and different ν when
ap = 20,bp = 1,ao = 20,bo = 1,cp = 6,hp = 1,α = 0.5,β = 0.8,K = 250 and K = 0.

The variation of resulted optimal profit and prices with respect to β when ap = 20,bp =

1,ao = 18,bo = 1,cp = 6,co = 3,hp = 1,α = 0.5,K = 250 and K = 0, ξ ∼U (100,900) and
ξ ∼U (400,600) is represented in Figure B.4 as follows. In both two cases ξ ∼U (100,900)
and ξ ∼ U (400,600), the boundaries for prices are (cp,27.5) and (co,25.5), respectively.
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(a) Optimal profit versus β , K = 250 (b) Optimal prices versus β , K = 250

(c) Optimal profit versus β , K = 0 (d) Optimal prices versus β , K = 0

Figure B.4 The variation of resulted optimal profit and prices with respect to β when
ap = 20,bp = 1,ao = 18,bo = 1,cp = 6,co = 3,hp = 1,α = 0.5,K = 250 and K = 0, ξ ∼
U (100,900) and ξ ∼ U (400,600)

.

B.3.2 Numerical results for MCI demand model

In this part, we provide a set of numerical results considering the MCI model, i.e.,

gi(ri) = air
−bi
i ,

with ai > 0, bi > 1. With the same idea as the MNL model, we can establish the following
inequality:

ξ Gp < MGp = M
apr−bp

p

1+apr−bp
p +aor−bo

o

< Mapr−bp
p . (B.82)
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If rp > bp
√

2Map, then Mapr−bp
p < 0.5, which implies ξ Gp < 0.5, or the physical channel

is saturated. Consequently, we can define the upper bound for rp as rmax
p := bp

√
2Map.

Similarly, the upper bound for ro can be set as rmax
o := bo

√
2Mao. We acknowledge that

when the online channel is saturated, the demand transferred from the physical store due
to accepting a promotional offer will be met from the warehouse with the same parameters
(price, cost, etc.) as the online channel.

With regards to the potential market size we consider a uniform distribution with an
average equal to 500 and we assume two variability configurations: ξ ∼ U (100,900) for
the high variability and ξ ∼ U (400,600) for the low one. We use the same notations and
definitions (for example, potential extra cost, adjusted profit, etc.) as given in Section 3.5.

Consider potential extra cost = 0.15K, attraction demand coefficients: ap = 20,bp =

3,ao = 20,bo = 3, cost coefficients: cp = 4,hp = 1,co = 3,α = 0.5,β = 0.8,ν = 0.1, figure
B.5 represents optimization results with different level of physical store inventory capacity
K. When ξ ∼ U (100,900), the boundaries for prices are (cp,33.1) and (co,33.1); when
ξ ∼ U (400,600), the boundaries for prices are (cp,28.9) and (co,28.9), respectively.
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(a) Optimal profit versus K, ξ ∼ U (100,900)(b) Market share versus K, ξ ∼ U (100,900)

(c) Optimal profit versus K, ξ ∼U (400,600)(d) Market share versus K, ξ ∼ U (400,600)

Figure B.5 The variation of resulted optimal profit and market share at the optimal prices
when ap = 20,bp = 3,ao = 20,bo = 3,cp = 4,hp = 1,co = 3,α = 0.5,β = 0.8,ν = 0.1

The variation of resulted optimal profit at the optimal prices with respect to α and ν when
ap = 20,bp = 3,ao = 18,bo = 3,cp = 6,hp = 1,co = 3,β = 0.8,K = 50 is represented in
Figure B.6 as follows. When ξ ∼ U (100,900), the boundaries for prices are (cp,33.1) and
(co,31.9); when ξ ∼ U (400,600), the boundaries for prices are (cp,28.9) and (co,27.9),
respectively.
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(a) Optimal profit versus α , ξ ∼ U (100,900)(b) Optimal profit versus α , ξ ∼U (400,600)

Figure B.6 The variation of resulted optimal profit at the optimal prices with respect to α and
ν when ap = 20,bp = 3,ao = 18,bo = 3,cp = 6,hp = 1,co = 3,β = 0.8,K = 50.

Figure B.7 represents the variation of resulted optimal prices with respect to co and
different ν when ap = 20,bp = 3,ao = 20,bo = 3,cp = 4,hp = 1,α = 0.5,β = 0.1,K = 30
and K = 0. When ξ ∼ U (100,900), the boundaries for prices are (cp,33.1) and (co,33.1);
when ξ ∼ U (400,600), the boundaries for prices are (cp,28.9) and (co,28.9), respectively.
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(a) Optimal prices versus c0, ξ ∼
U (100,900),K = 30

(b) Optimal prices versus c0,
ξ ∼ U (400,600),K = 30

(c) Optimal prices versus c0, ξ ∼
U (100,900),K = 0

(d) Optimal prices versus c0,
ξ ∼ U (400,600),K = 0

Figure B.7 The variation of resulted optimal prices with respect to co and different ν when
ap = 20,bp = 3,ao = 20,bo = 3,cp = 4,hp = 1,α = 0.5,β = 0.1,K = 30 and K = 0.

The variation of resulted optimal profit and prices with respect to β when ap = 20,bp =

3,ao = 20,bo = 3,cp = 4,co = 3,hp = 1,α = 0.5,K = 30 and K = 0, ξ ∼ U (100,900) and
ξ ∼ U (400,600) is represented in Figure B.8 as follows. When ξ ∼ U (100,900), the
boundaries for prices are (cp,33.1) and (co,33.1); when ξ ∼ U (400,600), the boundaries
for prices are (cp,28.9) and (co,28.9), respectively.
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(a) Optimal profit versus β , K = 30 (b) Optimal prices versus β , K = 30

(c) Optimal profit versus β , K = 0 (d) Optimal prices versus β , K = 0

Figure B.8 The variation of resulted optimal profit and prices with respect to β when
ap = 20,bp = 3,ao = 20,bo = 3,cp = 4,co = 3,hp = 1,α = 0.5,K = 30 and K = 0, ξ ∼
U (100,900) and ξ ∼ U (400,600)

.
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