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Stratégies pour la résolution de problèmes : Un modèle de classification de comportements de
résolution

Résumé :
La régulation de l’apprentissage est l’ensemble des compétences permettant de faciliter l’apprentissage.
Cela inclut des compétences motivationnelles, émotionnelles, ainsi que des compétences de métacog-
nition, comme le contrôle des objectifs et des stratégies d’apprentissage. Les situations d’apprentissage
sont présentes au quotidien, et peuvent prendre la forme de problèmes ouverts, problèmes dont on ne
connaît pas de solution ou bien de méthode pour y parvenir. La résolution de problème ouvert nécessite
l’apprentissage des éléments inconnus, ce qui sollicite des compétences de régulation. Comprendre les
stratégies employées par des apprenants pour résoudre des problèmes ouverts permet donc de mieux
comprendre les processus de régulation et donc le processus d’apprentissage. Les processus de régula-
tion peuvent être influencés et entraînés, et cette compréhension des processus pourrait mener, en plus,
à des méthodes pédagogiques toujours plus adaptées.
Cette thèse présente un modèle représentant le processus d’apprentissage d’un apprennant confronté
à un problème ouvert, ainsi qu’une méthode permettant, à partir d’observations externes d’actions faites
par des apprennants, de grouper des séquences de résolution de problème ouvert en fonction des straté-
gies employées. Les méthodes d’analyse ont recours à des algorithmes de regroupement utilisant l’alignement
temporel comme mesure de la proximité entre des séquences de résolution de problèmes. Cet aligne-
ment temporel s’applique sur des données symboliques comparables grâce à une notion de métrique
préalablement définie. Dans le cadre de petits jeux de données, une méthode de metaclustering est
présentée à des fins de robustesse. Deux études de cas utilisent la méthode définie ici pour montrer les
potentiels usages d’une telle méthode mais également en discuter ses limitations. La première, CreaCube,
est l’étude d’une tâche créative de résolution de problème, dans laquelle nous essayons de cerner les
processus de la créativité. La deuxième, Outer Wilds, essaye d’étendre l’analyse à des problèmes longs.
Mots-clés : Résolution créative de problème, Stratégies, Régulation, Alignement temporel

Strategies in problem-solving : a model to cluster problem-solving behaviours

Abstract:
Learning regulation is the set of skills that facilitate learning. This includes motivational and emotional
skills, as well as meta-cognition skills, such as monitoring goals and strategies.
Learning situations are present in every-day life, and mostly take the form of open problems, problems for
which there is an unknown solution or method to achieve them. Open problem solving requires learning
unknown elements, which requires regulation skills.
Understanding the strategies used by learners to solve open-ended problems allows us to better under-
stand the regulation processes and therefore the learning process. Regulatory processes can be influ-
enced and trained, and this understanding of the processes could lead, to better-suited teaching meth-
ods.
This thesis presents a model representing the learning process of a learner confronted with an open
problem, as well as a method allowing, based on external observations of actions carried out by learners,
to group problem-solving sequences depending on the strategies used.
The analysis methods use clustering algorithms, which using dynamic time warping as a measure of sim-
ilarity between problem-solving sequences. This dynamic time warping measure is applied to symbolic
data, which can be compared through the use of proper metrics. In the context of small datasets, a meta-
clustering method is presented for robustness purposes.
Two case studies use the method defined here to show the potential uses of such a method but also to
discuss its limitations. The first, CreaCube, is the study of a creative problem-solving task, in which we try
to understand the processes of creativity. Second, Outer Wilds tries to extend the analysis to long prob-
lems.
Keywords: Creative problem solving, Strategies, Regulation, Dynamic Time Warping

MNEMOSYNE
Centre INRIA de l’Université de Bordeaux



RÉSUMÉ ÉTENDU

CONTEXTE Les compétences transversales (créativité, pensée informa-

tique, résolution de problèmes) sont des enjeux majeurs dans le domaine

de l’éducation aujourd’hui. Nous postulons que l’enseignement de ces

compétences transversales pourraient bénéficier d’une compréhension

toujours plus fines des comportements des apprenants dans les activités

sollicitant les compétences transversales. Nous postulons également

que, plus généralement, cette compréhension de l’application des com-

pétences transversales peut également bénéficier directement aux ap-

prenants pour les aider à comprendre leurs mécanismes de régulation.

Pour cela, nous travaillons dans une action exploratoire tridisciplinaire

qui mêle sciences de l’apprentissage, neurosciences cognitives et infor-

matique, pour essayer de modéliser et comprendre des tâches de résolu-

tion de problème, qui peuvent également soliciter d’autres compétences

transversales.

Le travail présenté ici se concentre donc sur la modélisation de la ré-

solution de problème en général, et à la modélisation des problèmes

mal défini en particulier. Les problèmes mal définis correspondent aux

problèmes pour lesquels il existe chez le sujet une incertitude concer-

nant la ou les méthodes permettant de résoudre le problème et/ou à quoi

ressemble la ou les solutions du problème.

En particulier, nous nous intéressons aux différents comportements que

les personnes appliquent pour pouvoir résoudre ces problèmes. D’une

manière générale, nous nous attendons à des alternances entre explo-

ration (expérimentation de nouvelles alternatives, génération de nou-

veaux stimuli) et exploitation (utilisation des connaissances, qu’elles

soient sémantiques ou procédurales). Ces comportements sont à mettre

en lien avec la double notion de pensée convergente et divergente, qui

ont été décrites comme étant au coeur de la cognition créative (Alexan-

dre, 2020a) : la première génère de nouvelles idées, tandis que la sec-

onde sélectionne une des idées comme solution du problème.

REPRÉSENTATION DES PROBLÈMES MAL DÉFINIS Pour représenter ces prob-

lèmes mal définis, nous partons d’une définition classique des prob-

lèmes bien définis comme présenté par Newell et Simon (1979):
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• Un espace de problème, qui contient tous les états possibles d’un

problème, et d’un ensemble d’opérateurs employables par le sujet

pour passer d’un état à un autre.

• Un problème est constitué d’un ensemble d’états initiaux (le début

du problème), d’états finaux (les différentes solutions), et d’un en-

semble de contraintes limitant l’emploi des opérateurs.

Nous étendons ce modèle aux problèmes mal définis en considérant

les états d’un espace de problème comme le couple contenant à la fois

l’état du problème, mais également l’état "mental" du sujet, à savoir

l’ensemble de connaissances actuel dont il ou elle dispose sur le prob-

lème pour pouvoir le résoudre. Comme il est difficile d’accéder à l’état

mental d’un sujet, nous proposons également une représentation d’un

problème en cours de résolution par un sujet comme l’espace des états

physiques de l’activité sur lequel on ajoute un brouillard de guerre :

pour chaque état possible de l’espace (connu ou non du sujet), on ap-

plique un "score d’incertitude", compris entre 1 (quand l’état n’est pas

découvert) et 0 (quand l’état est connu), comme illustré Figure 1. Ce

score n’est pas binaire, et peut permettre de prendre en compte à la fois

des évolutions dans l’activité qui ne passent pas par des changements

physiques: le sujet peut en apprendre plus sur les états possibles sans

agir matériellement sur l’activité, diminuant alors l’incertitude, ou bien

oublier l’existence de certains états ou les manières de les atteindre,

augmentant alors l’incertitude.

Figure 1: Représentation de l’espace de problème connu et inconnu d’un sujet à un
moment de la résolution
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MÉTHODE DE CLASSIF ICATION DES COMPORTEMENTS DANS DES PROBLÈMES

MAL DÉFINIS En se basant sur notre représentation des problèmes ou-

verts, nous proposons une méthode pour représenter les différentes ré-

solutions de problèmes effectuées par différents sujets et permettre de

les classifier afin d’essayer d’obtenir de potentiels comportements-types

de résolution de problème.

Pour cela, nous nous proposons de représenter la résolution de prob-

lème d’un sujet par une séquence d’évènements. Ces évènements sont

représentés sous la forme de symboles, ce qui donne lieu à une représen-

tation d’une résolution de problème d’un sujet par une séquence de sym-

boles. Cette séquence de symboles nous permet de retracer l’avancée

du sujet dans l’espace de problème défini : chaque sujet est donc asso-

cié à une trajectoire dans l’espace de problème. Notre objectif étant de

comparer ces trajectoires, nous devons d’abord définir une distance en-

tre les différents symboles et groupes de symboles. Cette distance nous

permet d’avoir une mesure de "l’éloignement" des différents ensembles

de symboles. Cette distance nous sert de base pour obtenir une mesure

de la dissimilarité entre deux trajectoires, c’est-à-dire à quel point deux

trajectoires sont éloignées.

A partir de cette mesure, nous sommes alors capables de calculer l’éloignement

entre les différentes trajectoires d’un jeu de données de multiples réso-

lutions d’un même problème. Nous pouvons alors appliquer des méth-

odes de partitionnement comme le k-medoids clustering pour pou-

voir générer des groupes de trajectoires, sensées représenter différents

comportements-types.

Cependant, comme les expériences des sciences de l’apprentissage

s’effectuent généralement à notre connaissance sur des corpus réduits,

nous appliquons également du metaclustering. Au lieu d’utiliser comme

mesure pour réaliser les partitionnements la mesure de dissimilarité en-

tre les trajectoires, nous calculons une autre mesure de similarité. Cette

autre mesure est calculée en appliquant le k-medoids clustering sur

toutes les configurations initiales possibles : plus deux trajectoires sont

placées souvent dans le même groupe, plus elles seront proches.

Cet algorithme permet d’effacer une partie des biais concernant le choix

des conditions initiales pour un corpus réduit, mais ne peut s’appliquer

que sur des corpus réduits et sur un nombre limité de groupes différents.
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Nous avons alors décidé d’appliquer notre méthode sur deux expéri-

ences différentes.

CREACUBE : UNE TÂCHE DE RÉSOLUTION CRÉATIVE DE PROBLÈME Romero,

David et al. (2019) propose une tâche de résolution de problème ap-

pelée CreaCube, centrée autour de la résolution créative de problèmes

et la pensée informatique. Dans cette tâche, le sujet se voit présenter

deux points de repère et quatre cubes robotiques modulaires qu’il peut

assembler, pour construire une structure répondant à la consigne don-

née, à savoir "construire un véhicule autonome", comme illustré Figure

2. Ce problème est un problème mal défini, dont on peut représenter

l’évolution par un ensemble de symboles nommés observables. Par ex-

emple, chaque possibilité d’assemblage des 4 cubes correspond à une

observable spécifique. Les observables ne sont pas limités aux informa-

tions matérielles, mais elles contiennent également des suppositions sur

l’état mental du sujet. En particulier, l’expérience se concentre sur la dé-

couverte de ce que Gibson (1979) nomme "affordances", c’est-à-dire la

découverte de potentialités d’action, comme la découverte de roues sur

un cube qui suggère de placer la face des roues sur le sol.

Figure 2: Etat initial de CreaCube

En découpant les trajectoires à différents moments et en essayant de

classifier ces trajectoires, nous essayons de déterminer si certains mo-

ments impliquent plus que d’autres des changements dans les trajec-

toires des sujets. En particulier, nous considérons les affordances comme

des points d’inflexion, à partir desquels il y a un changement de com-

portement du sujet et par extension une modification de la trajectoire.

Cela tend à renforcer la découverte d’affordances comme des insights

(des moments "eurêka" qui modifient la conception que se fait le sujet du

problème).
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OUTERW ILDS : UNE LONGUE TÂCHE DE RÉSOLUTION DE PROBLÈME Nous

nous proposons d’étudier le jeu vidéo Outer Wilds sous le prisme de la

résolution de problème. Dans le jeu, le sujet est mis face à un grand es-

pace de jeu sans objectif bien défini et doit découvrir comment accéder

à la fin du jeu en assemblant des informations d’intrigues différentes,

qui peuvent être découvertes et suivies dans n’importe quel ordre et de

manière fragmentée. En considérant les découvertes de nouvelles infor-

mations (représentées de manière visible dans le jeu) comme les sym-

boles, les sujets suivent donc différentes trajectoires de résolution, tout

en se dirigeant finalement vers la même fin.

En découpant les trajectoires à différents moments ou à la découverte

de certaines informations-clés, nous remarquons que, contrairement

à CreaCube, il semble difficile d’associer certains points de découpe à

des points d’inflexion à partir desquels la trajectoire change. Ou plutôt,

la majorité des points de découpe permettent, après application de la

méthode de regroupement, de classer dans des groupes différents les

trajectoires pré- et post-découpe. Cela tend à renforcer une observation

qui est que la résolution du jeu tend à se faire sur une compréhension

progressive et diffuse du problème, ce qui correspond à de l’intuition. A

l’inverse de l’insight, il n’y a pas de moment de changement soudain de

conceptualisation de problème (par exemple par la découverte d’affordances).

CONCLUSION Bien qu’elle en soit à un stade préliminaire, une telle for-

malisation des problèmes mal définis ainsi que notre méthode d’analyse

pourraient ouvrir la voie à une meilleure compréhension de la complexité

des processus de résolution de problèmes :

• En permettant une spécification de problèmes mal définis et des

observables d’intérêt à collecter pendant les tâches liées à ces prob-

lèmes;

• En proposant une représentation dynamique de la compréhension

d’un problème mal défini de la part du sujet;

• En proposant une méthode permettant de réaliser des études prélim-

inaires sur la présence d’évènements semblables à des insights, ou

à la présence d’un apprentissage du problème par une intuition dif-

fuse.
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Cela pourrait permettre, à terme, à une conception d’activités péda-

gogiques toujours plus adaptées à l’étude de l’enseignement des compé-

tences trasnversales, tout en tenant compte des différences individuelles

que peuvent avoir les apprenants dans leur apprentissage.
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D ISCLAIMER : HOW TO READ THIS THESIS ?

As you may have noticed, the format of this thesis is unusual. The font

and spacing are larger. Therefore this thesis may look bigger than others.

Don’t be fooled by the format!

Why are we using it, then ?

I always have been interested in accessibility of science. This accessibil-

ity can come in multiple forms : popularization events, scientific outreach,

etc.

For this thesis in particular, I wanted to create something that was ac-

cessible to a large audience. Obviously, it is not for everyone, as it is the

result of a 3-years work on the topic.

One way of making this thesis accessible is the readability. Reading sci-

entific articles is often difficult, with specific vocabulary and complicated

sentences. I decided to write this thesis in respect to the recommenda-

tions of the British dyslexia association1 . The recommendations in-

clude:

• A font size of 12-14 points, larger than usual;

• Larger inter-letter and character spacing;

• The use of bold for emphasis instead of italics;

• Left align text without justification and no multiple columns;

• Avoidance of green, red and pink for references (for color blind peo-

ple).

A difficult recommendation to follow is about the writing style. They en-

courage to be concise and avoid long and dense paragraphs. This part

is difficult to follow in scientific papers with a lot of in-sentences citations

with specific terminology.

To face this problem, I decided to create a boxed-header in each section.

This boxed-header will sum up the content of the section, with the spe-

cific writing style recommended by the British dyslexia association:

• Avoidance of long paragraphs;

• Concision;
1See here for the complete recommendation guide.
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DISCLAIMER : HOW TO READ THIS THESIS ?

• Clear language using every day words;

• Bullet points for clarity;

• No double negatives;

• No abbreviations.

The content of each boxed-header will be less precise than the content of

the section, but I hope they will be enough to follow the process behind

my work. If you are used to the literature, these boxed-headers may not

appear very precise.

In the end, I decided to choose Helvet as a font. It is a compromise be-

tween readability and style : Readability because sans serif fonts are

more readable; Style because fonts designed for dyslexia are often un-

pleasant for non-dyslexic people, like comic sans and open dyslexic.

Thank you Quentin for your help regarding this choice.

HOW SHOULD YOU READ THIS THESIS ? If you are reading this thesis you

are obviously free to read it the way you want, but here are some sugges-

tions depending on your profile :

• You are used to scientific papers I would suggest skipping the

boxed-headers if you’re looking for a complete reading. Boxed-headers

can act as little incomplete summaries of sections to help you find

the notions you are looking for while browsing the thesis. If you are

dyslexic and used to scientific papers, I hope the format suits you.

• You are not used to scientific papers Maybe you are here out of

curiosity, or maybe you want to understand what are the results of

the experiment you took part in. I suggest you read mostly boxed-

headers, and deep dive into a section if you are curious to get de-

tails about a specific one.
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INTRODUCTION

Education, teaching and learning are three different things that overlap

with each other.

Teaching is the process of transmitting skills or knowledge.

Learning is the process of acquiring new skills, knowledge or understand-

ing.

Education is the transmission of knowledge, skills and norms. Education

can be formal or informal. Formal education is greatly related to teach-

ing, structured in institutional frameworks like schools. Informal educa-

tion refers to what is acquired outside of these frameworks, for example

during daily-life experience in a family.

Here, we are interested in learning. We want to know how learning works,

because we think that if people know how their learning process works,

they will be able to learn more efficiently.

This process of organizing our way of learning is called regulation.

Education is the transmission of knowledge, skills, and character traits

and comes in many forms. Formal education happens in a complex in-

stitutional framework, like public schools. Non-formal education is also

structured but takes place outside the formal schooling system, while in-

formal education is unstructured learning through daily experiences. For-

mal and non-formal education are divided into levels that include early

childhood education, primary education, secondary education, and ter-

tiary education. Other classifications focus on the teaching method, like

teacher-centered and student-centered education, and on the subject,

like science education, language education, and physical education. The

term "education" can also refer to the mental states and qualities of edu-

cated people and the academic field studying educational phenomena.

Teaching is the transmission of knowledge, know-how or interpersonal

skills by a teacher to one (or more) learner. It is performed in educational

settings, as part of education.

Learning is the process of acquiring new understanding, knowledge, be-

haviours, skills, values, attitudes, and preferences. Humans, animals,

and some machines have the ability to learn; there is also evidence for

some kind of learning in certain plants. Some learning is immediate, in-

duced by a single event (e.g. being burned by a hot stove), but much skill

and knowledge accumulate from repeated experiences. The changes

induced by learning often last a lifetime, and it is hard to distinguish
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INTRODUCTION

learned material that seems to be "lost" from that which cannot be re-

trieved.

The learning process is a never-ending one. It occurs at any stage of

life, and it is not limited to learning through formal education. In particu-

lar, we postulate that learning can occur at any moment in everyday life.

Each problem that a person needs to solve is an occasion to learn. Prob-

lems can be faced because of necessity (e.g. because a person needs to

eat, they need to learn how to gather food, or cook) or be self-imposed

(e.g. because a person wants to know more about a specific topic), with

different degrees in the middle of both ends. The learning process is

also mainly individual. Even if learning occurs often in situations in which

other people are involved, we see it as a self-improvement process.

However, we also need to take into account that, even if the learning

process is mainly individual, the means to learning are not evenly dis-

tributed. For instance, formal education in schools is not exactly the

same for everyone. Formal education systems change over time, are not

identical from culture to culture, country to country, or even from school

to school in one country. As such, other processes are at work in the edu-

cational process of one’s learning.

For instance, the process of social reproduction describes the reproduc-

tion of social structures and systems, based on preconditions in demo-

graphics, education and inheritance of material property or legal titles,

leading to the maintenance and continuation of existing social relations.

It is a variation of Karl Marx’s economic reproduction, and has been stud-

ied, e.g., by Pierre Bourdieu and Jean-Claude Passeron. Such precon-

ditions consist of capitals that are transmitted from one generation to

another. Bourdieu distinguishes four types of capital :

• Economic: The income and wealth of a person

• Cultural: Outlooks, beliefs, knowledge and skills passed between

generations

• Human: Education and job training a person receives

• Social: The social network to which one belongs

Those capitals influence each other, e.g. wealthy people are more likely

to offer better education opportunities (with personal teachers for in-

stance). Included in these capitals, we can find knowledge, skills and
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education in cultural and human capitals. As such, a part of our learning

opportunities are inherited.

Our main goal in this thesis is to foster learning. By focusing on the in-

dividual level, we are missing central points for the individual’s develop-

ment. However, we also think that understanding learning at the individ-

ual level, in addition to a better understanding of ourselves as humans,

is a good opportunity to fight some of the inequalities implied by social

positions. We think that a good understanding of our learning process

naturally leads to a better regulation of it, and thus leads to a more effi-

cient learning process. Regulation processes are detailed in this thesis,

but consists partly of metacognitive processes (organisation of learning,

monitoring the advancement of the learning process) for which their un-

derstanding leads naturally to a better use of them, e.g. knowing how our

brain learns new information can help us organize our learning in a way

that favours such information learning.

The experiments done in this thesis are playful activities. Play has been

approached by several theorists as a form of learning. Children exper-

iment with the world, learn the rules, and learn to interact through play.

Lev Vygotsky agrees that play is pivotal for children’s development, since

they make meaning of their environment through playing educational

games. There, our activities are also a way to illustrate what informal

learning is, as learning occurs in playful situations that are apart from

formal learning in, e.g., schools.

In this thesis, we will start by defining what regulation of learning is. We

will consider the individual aspects and put them in relation to collabora-

tive aspects of regulation for learning. We will finally introduce what are

problem-solving activities for us and for learning.

With these concepts in mind, as our goal is to understand learning, we

will try to understand how do we learn in problem-solving activities. We

will then present a model of problem-solving representation, as well as a

way to represent a subject’s actions as a trajectory in the defined model.

This will allow us to create a measure of similarity between different sub-

jects’ trajectories, that we will use to create multiple classifications of

subjects’ trajectories. Our main assumption is that these classifications

may correspond to different "learning strategies" that subjects adopt,

thus leaning us to a better understanding of problem-solving strategies

implemented by learners.
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INTRODUCTION

Finally, we will put this model to the test with two different experiments.

The first one, Creacube, has been extensively studied by, e.g., Romero

et al. (2021), and we will try to implement the model based on previ-

ous observations on the activity. We can also use the model as a way

to make preliminary observations about what can be inferred about learn-

ing strategies from activities. The second experiment, Outer Wilds, is an

illustration of this.

Thanks to these experiments, we will discuss the pros and cons of the

model we developed as a preliminary model that can be applied to under-

stand problem-solving activities.
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1 Regulation of learning

1 REGULATION OF LEARNING

1.1 REGULATION

1.1.1 SELF-REGULATION

Learning is the acquisition of new knowledge, skills and know-hows.

Regulation is the process of facilitating learning. It allows the learner

to have the skills and confidence to take control of their own learning.

This process is mainly individual, and the personal regulation process

is called self-regulated learning (SRL). Self-regulated learning refers

to metacognitive skills that allow the learner to reach the learning goal.

Successful self-regulated learning consists of the piloting of :

• cognition, to set goals and plans relative to the learning situation.

• behaviour, to monitor and control behaviour in line with goals.

• emotion, to associate the learning process to positive emotions.

• motivation, to stay motivated to achieve the learning process.

B. Zimmerman (2008) identifies three phases of SRL models :

• a pre-task preparation phase : The learner analyses the task, plans

et sets goals.

• an execution phase : The learner performs the action and monitor

their progress and performance.

• a post-task reflection phase : The learner evaluates their perfor-

mance and adapts accordingly.

Self-regulated learning processes are skills that can be trained and im-

proved. Our work focuses on self-regulated learning skills applied to

problem-solving tasks. In particular, I am interested in cognition and be-

haviour:

What kind of strategy a learner can adopt when facing a problem,

and what do these strategies imply for learning ?

Answering this question will help us better understand learners.
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1.1 Regulation

Learning often occurs in social situations : we rarely learn alone. The en-

vironment plays an important role in learning, in particular when learning

situations are built upon group situations such as the classroom. How-

ever, we can’t ignore the personal skills of individuals that facilitate the

learning process. Regulation of learning "refers to the ways that stu-

dents take strategic control of their behaviour, cognition, motivation and

emotions toward achieving an optimal learning objective or completing

a learning task" (S. Zhang et al., 2021). Regulation occurs at different

levels (individual, group) and thus can be represented as a multi-layered

process, in which each layer influences one another.

At the most restrained level, self-regulated learning (SRL) consists

of the mastering of a student’s learning processes (B. J. Zimmerman,

2015). During SRL, students pilot their behaviour, cognition, emotions

and motivation to achieve a task or a learning objective (Hadwin et al.,

2011). It is an adaptive process rooted in the recognition of successes

and failures (Sanchez, 2017). It generally implies goal-driven, achieve-

ment and optimisation-focused behaviours (Piotrkowicz et al., 2021), that

is the narrowing of the gaps between current condition and stated goals

by elaborating and adjusting strategies (Sun et al., 2022). Puustinen and

Pulkkinen (2001) conducted a review on SRL models and concluded that

three phases are identifiable on said models : a preparatory phase which

includes task analysis, planning, and goal setting; a performance phase

in which the actual task is done with progress and performance monitor-

ing; and an appraisal phase, in which the student reflects and adapts for

future performances, for instance to consolidate learning gains (Schraw

et al., 2006). For instance, B. Zimmerman (2008) suggests three phases

during SRL: the pre-task preparation (including orientation and planning),

the execution phase (monitoring), and the post-task reflection phase

(evaluation).

Multiple other models of SRL exist concomitantly to this general decom-

position, as discussed in e.g. (Panadero, 2017). For instance, Boekaerts

(2011) proposed a Dual processing model in which strategies either pro-

tect the learner’s ego (triggering negative cognitions) or reinforce the

interest (triggering positive cognitions) depending on the learner’s goals

and needs. Hadwin et al. (2011) decompose SRL in four phases : task

definition, goal setting and planning, enacting study tactics and strate-

gies, and metacognitively adapting studying. Pintrich (2000)’s proposes
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1 Regulation of learning

a similar four-phase decomposition : (1) Forethought, planning and acti-

vation; (2) Monitoring; (3) Control; and (4) Reaction and reflection. Addi-

tionnaly, the Metacognitive and affective mode of Self-Regulated Learn-

ing model (MASRL) of Efklides (2011) separates the macrolevel of the

person (and general skills of SRL associated to it), and a microlevel

(with task-specific interactions between the learner and the subject). Fi-

nally, another relevant model is the socially-shared regulation of learning

(SSRL), as developed by e.g. Hadwin et al. (2011). This model shows

that despite the advantages of collaboration and computer-supported

collaboration for learning (Dillenbourg and Schneider, 1995b), collabora-

tion poses cognitive, motivational, social, and environmental challenges

(Järvelä et al., 2013; Koivuniemi et al., 2017), and necessitates another

level of regulation. The SSRL model (Hadwin et al., 2011) proposed the

existence of three modes of regulation in collaborative settings: self-

regulation (SRL), co-regulation (CoRL), and shared regulation (SSRL).

In this model, SRL refers to the individual learner’s regulatory actions

(cognitive, metacognitive, motivational, emotional, and behavioral) that

involve adapting to the interaction with the other group members. We will

develop the other levels in section 1.1.2.

As the piloting of behaviour, motivation and cognition are crucial for the

execution of the SRL phases, emotional piloting is also playing a role in

SRL as higher SRL is related to more positive emotions (Lajoie, 2021).

Boekaerts (2011), for instance, takes emotions into account to explain

behaviours like ego-preservation (protection of self-esteem).

High levels of SRL also allow a better use of learning tools. For instance,

in suitable conditions, digital environments are known to improve the per-

formance of knowledge workers (Järvelä et al., 2007) by giving access

to a lot of self-regulation tools (for planning, monitoring, etc.), but may

also be less-suited to people with low levels of SRL. MOOCs (Massive

Open Online Course) and other platforms of online learning require good

self-regulation skills of individuals to be efficient (Fan et al., 2021).

Understanding self-regulation processes is then a way, on the one hand,

to create more accessible tools for learning (i.e. that do not require high

levels of SRL) and, on the other hand, to be able to develop methods to

help people work on their SRL skills. This goal requires to consider other

aspects of regulation. Indeed, as previously said, learning is a process
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1.1 Regulation

that is rarely achieved alone, and we need to consider effects of collabo-

ration on learning. We will discuss these effects in section 1.1.2.

We want to focus on a specific part of self-regulated learning skills, namely

SRL skills related to problem-solving tasks. We are convinced that those

skills are solicited often, as problems appear frequently in everyday life,

especially ill-defined problems (see section 1.3.1). Thus, studying them

will allow us to reach a better understanding of our everyday-life learning

processes. We think that a person conscious of their learning processes

will be able to improve their SRL skills.

In this thesis, our goal is to reach a better understanding of problem-

solving strategies done by human learners by the behavioural analysis of

problem-solving activities.
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1 Regulation of learning

1.1.2 COLLABORATIVE LEARNING

Different levels of regulation exist. Self-regulation is personal, but regula-

tion exists also at the interpersonal level and at the group level.

• Regulation through interpersonal interactions is called co-regulation.

In co-regulation, people engage in each other’s metacognitive pro-

cesses. It contributes to deepen the learning process by sharing.

People can elaborate on others’ contributions. They can explain,

question and provide feedback to each other. They can also share

regulating processes like task planning and execution.

• Regulation within a group is called socially-shared regulation.

The group regulates everyone by fixing goals, conducts, etc. It al-

lows members to share the cognitive load of the task. Members can

share knowledge and understanding. They can also help to maintain

a positive socioemotional atmosphere. Socially-shared regulation

becomes more difficult as the size of the group increases. For in-

stance, the bigger a classroom, the more difficult the socially-shared

regulation can maintain the motivation of its members.

These three levels are interdependent (S. Zhang et al., 2021). For in-

stance, a better engagement in the social space implies better individual

achievement. My focus on self-regulated learning implies that we need to

concentrate on individual activities.

Collaboration in the classroom is widely used by teachers as a means

to enhance learning (Freinet, 1993) as well as a means for inclusion

(Mulholland and O’Connor, 2016). More than just taking into account the

group as a constraint (given that there are more students than teachers),

the presence of a group and the creation of group activities can lead to

collaborative learning.

COLLABORATIVE LEARNING Collaborative learning can be defined as "any

instructional method in which students work together in small groups

toward a common goal" (Prince, 2004). We can view it as the set of all

group-based methods for learning. For Dillenbourg and Fischer (2010),

collaborative learning is "the co-construction of shared understanding".

The members of the group each make the individual effort to try to under-

stand what the others mean, and this effort leads to cognitive activities
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such as dialogue which in turn allow each individual to make cognitive

changes in relation to their own understanding. These efforts provide

access to shared understanding. As such, student interactions can in-

crease group performance and individual learning outcomes (Diziol et

al., 2010), and at the engagement level, group work "facilitates learning

through social interactions and increases the students personal engage-

ment in the learning process" (Marfisi-Schottman and George, 2014). For

the case of students, reciprocal peer tutoring increases learning in class-

room settings, because students are more inclined to reflect, elaborate

and feel more accountable for their knowledge (Roscoe and Chi, 2007).

For instance, in the field of programming education, as well as educa-

tional robotics, Zhong et al. (2017) showed that pair learning improves

students’ confidence, productivity, achievement and the quality of cooper-

ation. As such, collaborative learning has multiple pedagogical benefits

(Law et al., 2021). It helps to foster deep learning and build knowledge.

It is considered as one of the 21st-century skills, and helps to develop

other 21st-century skills such as creativity, critical thinking or problem-

solving. In particular, for problem-solving, collaborative problem-solving

refers to problem solving activities that involve interaction between indi-

viduals in a group. In educational settings, collaborative problem-solving

is "a process in which two or more collaborative parties interact with

each other to share and negotiate ideas and a priori experiences, jointly

regulate and coordinate behaviours and learning activities, and apply so-

cial strategies to sustain the interpersonal exchanges to solve a shared

problem" . Thus, there are a variety of approaches to learning, as de-

scribed by Stahl (2005). They vary from individually-centered in which

individual learning is assisted by collaboration, like the zone of proximal

development (Vygotsky and Cole, 1978), to socially-centered in which all

learning is social or collaborative as it resides in culture and history, like

distributed cognition (J. Zhang and Norman, 1994). Grounded in the the-

oretical contributions of these theories, socially-shared regulation tries to

model the regulation of learning by a group for collaborative learning.

As groups require the investment of individuals, different levels of regu-

lation must be considered, from the self-regulation of an individual (SRL)

to the regulation of an entire group. In addition to self-regulation, regula-

tion processes that consider collaborative processes exist. S. Zhang et

al. (2021) describes two different supplementary levels for collaborative
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learning, as they unfold different collaborative processes : co-regulation

and socially-shared regulation.

CO-REGULATION Co-regulation learning is a transitional process through

interpersonal interactions (S. Zhang et al., 2021). Students influence

one another’s regulatory process. It implies to engage in two dialogical

spaces : cognitive and relational (Saqr and López-Pernas, 2021). Cogni-

tive space encompasses both cognitive and metacognitive activities like

discussing concepts, while relational space encompasses expressions

of ideas, negotiations, communications... Both spaces play a role in

the achievement of a shared understanding about concepts used in the

cognitive space. Interactions allow deep-level metacognitive activities

(depth) and the building and elaboration on other members’ metacogni-

tive contributions (sharedness) while discussing, explaining, questioning

each other (Piotrkowicz et al., 2021). Co-regulation effects are present

at the participant’s contributions (how a student responds, connects and

engages with other’s contribution) and at the level of reasoning and argu-

mentation strategies (Saqr and López-Pernas, 2021).

SOCIALLY-SHARED REGULATION Socially-shared regulation, that we will

also call group regulation, consists of the regulation of everyone by the

group, by fixing goals, conducts etc. (Zheng et al., 2019). It integrates

cognitive, motivational and emotional components. There is a need for

group regulation during collaboration: members need to be able to work

on shared goals, communicate to share knowledge and understanding

and monitor their progress and process. Group members react to peer’s

previous metacognitive contributions in order to achieve a shared under-

standing of the task but also in order to ensure a shared planning of the

execution of the task or to ensure coordination between members (Malm-

berg et al., 2021). Regulation intervenes also to maintain a positive so-

cioemotional atmosphere to facilitate collaboration. Socially-shared reg-

ulation becomes more difficult as the size of the group increases. In a

classroom for instance, collaborative learning becomes challenging. In

class-wide collaboration practices, "students rarely achieve a deepening

of knowledge" (Chen et al., 2021).

These different types of regulation (SRL included) are interdependent,

starting from the point that there is a construction of shared understand-
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ing in co-regulation and socially-shared regulation that require the use

of self regulation skills for interaction (Järvelä et al., 2007). Self regula-

tion can make use of social-regulation skills for an effective collaborative

learning and is correlated to positive collaborative learning performance

(S. Zhang et al., 2021), and in the other way, engagement in the social

space is positively related to individual achievement (Slof et al., 2021).

Given this interdependence, we need to consider the different mecha-

nisms of collaboration that may be impactful on an individual’s learning,

that is the subject of the next section.

COLLABORATION MECHANISMS We will now describe different processes

of collaboration among the literature that are helpful to consider collab-

orative mechanisms outside of only individuals’ contributions. The the-

ory of common ground of Clark and Brennan (1991) explains that col-

laboration, communication and collective actions are built on common

ground and its accumulation. While critiqued by for instance Koschmann

and LeBaron (2003), this theory explains the concept of "grounding",

which is the process of updating the common ground in order to reach

an (unattainable) mutual belief. At least, group members must develop

a shared mental model to specify how they will communicate and coor-

dinate their actions to share the group knowledge (Järvelä and Rosé,

2022). This coordination can take place during different processes. The

first one is (self-)explanation, in which a more knowledgeable other does

an explanation to help the group. This cognitive activity is beneficial for

the whole group (Dillenbourg and Schneider, 1995a), because learning

can occur when there is reinterpretation of another one’s appropriated

knowledge (appropriation), and because verbal interactions have intrin-

sic learning effects (internalization). Explanatory and argumentative in-

teractions that play a role in the co-construction of scientific knowledge

are called epistemic interactions (Sanchez, 2017). These epistemic inter-

actions can take place via peer feedback (Tan and Chen, 2022), or more

generally peer contributions like peer-assessment, peer-feedback and

peer-rating (Kollar and Fischer, 2010). There are different characteristics

of feedback:

• Unidirectional or bi-directional: The process of giving feedback ben-

efits students as observation and comparison can lead to improve-

ment (Chang et al., 2012);
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• Number of individuals, from dyads to a classroom : Class-wide inter-

ventions could provide a wider learning scope, but the management

task is more difficult;

• Specific versus nonspecific feedback : The specificity of the feed-

back concerns the contextual relevance, specific feedback being

more effective because they give a more appropriate amount of in-

formation;

• Affective or cognitive : Affective feedback (positive or negative feel-

ings shared) is generally less specific than cognitive feedback (sum-

marizing, specifying, etc).

Exchanges can also lead to conflicts that cannot be ignored, but can lead

to decreasing confirmation biases (alternative proposal) and a shared

cognitive load (Dillenbourg and Schneider, 1995b). Epistemic interac-

tions are also transformed by an evolving social exchange. The group

has a corporate identity residing in their past and their composition. Crook

(2022) calls the effect group awareness. The group can reduce group

members’ efforts to coordinate their actions (Zhong and Xia, 2022). How-

ever, it has a tendency to converge in process, more than in knowledge

(Dillenbourg and Fischer, 2010). It can also be detrimental to the entire

group : S. Zhang et al. (2021) found that low-performing groups (for on-

line collaborative learning activities) tend to have more "routine-level"

regulatory behaviours, focusing more on task planning and process moni-

toring (superficial aspects) rather than content monitoring. Collaborative

mechanisms are not the only mechanisms that occur when adding the

social environment of a group. General dynamics on groups are known

to highly influence individual behaviours. We also need to take that into

account.

Kauffeld and Lehmann-Willenbrock (2012) propose the input-process-

output model to represent group dynamics in general :

• Input : incentives, size of the group, personalities, constraints (time

for instance);

• Process : activities mediation relationship between input and out-

put such as planning monitoring behaviour, managing conflict and

commitment

• Output : productivity, satisfaction, effectiveness
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We will first focus on inputs and outputs to analyse the general charac-

teristics of a group. First, there are general characteristics of a group,

representing elements that exist only within the existence of the group

for the duration of the task, and that can influence group members’ be-

haviours and ultimately outputs. Those parameters are :

• The size : For Dillenbourg and Schneider (1995a), large groups

may be detrimental to some members that tend to be "asleep" or ex-

cluded from interactions. Large groups tend to work differently than

small groups, with the creation of sub-groups, that is for instance a

common organization in classrooms.

• The heterogeneity of group’s members : Hoffman (1965) describes

heterogeneity of members as their intrinsic heterogeneity : Age,

gender or religion are important factors of heterogeneity; and can

trigger conflicts and imply a difficult social grounding, which is the

mechanism by which an individual attempts to maintain the belief

that their partner has understood what they meant. There is also

heterogeneity in regard to the task that can be beneficial to the

group’s performance : Differences in prior knowledge (Chiu, 2000),

general level of group-working skills (systematic sharing of infor-

mation, critique of ideas and not people etc.) or interdependence

of knowledge or material between members (Johnson et al., 1994)

are also influencing factors. Detrimental effects may also happen

with this heterogeneity. For instance, expert students may become a

leader rather than a peer, interrupting teammates’ cognitive process

(Sanchez and Mandran, 2017).

• Past experience within and outside of the group : Hoffman (1965)

indicates past experience within the group may encourage members

perceived as "better" to speak more and encourage more of their

ideas. Past experience may also influence the level of collaboration

within members given their prior relations from individual work with

sharing to total collaboration (Chiu, 2000, Bales and Strodtbeck,

1951).

• Pre-existing structures : The group’s usual functioning is influenced

by its structure: Hierarchical structures, horizontal structures, dis-

tributed roles structures etc. For instance, Qu and Liu (2021) showed

that the presence of a leader moderates the relationship between
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idea generation and implementation. This influence is perceptible

even when the structure is artificial. In education, assigning roles

tends to support and stimulate students in undertaking specific ac-

tivities that they would otherwise not engage in (De Wever and Strij-

bos, 2021).

• Environmental influences : The environment of the group influences

its functioning, whether because of cultural norms, physical environ-

ment, financial or time constraints (Bales and Strodtbeck, 1951). For

instance Sanchez and Mandran (2017) points out that time-pressure

factors may lead to anxiety and pressure, inhibiting learning, and

that a competitive environment affects the self-conception of stu-

dents.

• Group mood : A mood is a diffuse feeling state without clear an-

tecedent or cause (Barsade and Gibson, 2007), in relation to individ-

uals’ affects and emotions. It is a collective phenomenon as there is

mood convergence between group members through communicative

reactions and mutual emotional contagion (Lehmann-Willenbrock

et al., 2011). It is partly responsible for circles of complaints and

actions (Kauffeld and Lehmann-Willenbrock, 2012) : complaining

cycles are linked to a passive group mood and pronounced negative

effects such as dysfunctional communication, whether interest-in-

change cycles are correlated with an active group mood and the con-

tagion of positive affect leads to improved cooperation, decreased

conflict, and enhanced creativity among other. It is not a simple di-

chotomy, as sometimes a negative mood can improve team perfor-

mance with an increase of conflicts and a more careful assessment

of task problems (Jordan et al., 2006).

At the individual level, different characteristics are able to influence the

group functioning. Characteristics relative to the heterogeneity of the

group : age, gender, religion (Hoffman, 1965), prior knowledge, group-

working skills (Chiu, 2000) etc. Whether an individual is extrovert, talkative

or shy will influence the individual’s participation in the group. In particu-

lar, certain personalities are more inclined to adapt to group effects such

as searching for uniformity or agreeing to the majority (Hoffman, 1965).

Finally, an individual’s affect (composed of feeling states and traits) and

emotions (feeling states accompanied with physiological reactions) are
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responsible for part of the group mood as there are emotional reactions

between members of the group (Barsade and Gibson, 2007).

Given all characteristics of collaborative learning, we can consider mul-

tiple ideas on what can be done to foster learning. Although the work of

this thesis focuses solely on individual learning, it was very important to

put it in context both to show the limits of our study but also to open up

its perspectives. To this end, Chapter 5 will discuss possible future work

that can be done or existing work that we can be inspired by given the

way collaborative learning works in relation to self-regulation.

1.2 CREATIVITY : A CASE OF SELF-REGULATION

1.2.1 CREATIVITY AT AN EDUCATIONAL LEVEL

Creativity is both a skill to develop and a skill to solicit. Kupers et al.

(2019) defines it as an iterative process. The person interacts with the

task and the social environment. These interactions allow to create it-

eratively a creative output. This is based on the 4 P’s of creativity from

Rhodes (1961) :

• Person (the person doing the task)

• Process (the creative process of the person)

• Press (the environment in which creativity occurs)

• Product (the creative output)

Creativity can be considered at multiple levels. We can study it at the

group level, for instance in classrooms. We can study it at the individual

level. We can also consider a macro-level : creativity is then a static trait

of the personality of individuals. However, we are more interested in the

micro-level : the way the creative process works at the level of one task.

In education, creativity is both a skill to develop and a skill to solicit. On

the one hand, a creative approach to disciplinary learning at both the

teacher and student levels is of great benefit, for instance, to optimize

student engagement, or to widen the ways to better learn (Leroy et al.,

2021). On the other hand, creativity on its own is one of the important

21st century skills, and is thus a competence in itself (Engeness, 2020).

In Kupers et al. (2019), creativity is defined, considering child students,

as an iterative process of interrelations between the child, the task, and
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the social environment, with "constraints" and "emergences". It is based

on the 4 P’s of creativity from Rhodes (1961) as reviewed in, e.g., Gruszka

and Tang (2016) : person, product, process, press organized in a hier-

archical way, and considers that they are interrelated to create "con-

straints" in the top-down direction and "emergences" in the bottom-up

direction.

Another clarification in the framework proposed by Kupers et al. (2019)

concerns the different levels of creativity : micro-level within a task, in a

dynamic view on an evolving and measurable "creative act" (behaviours,

strategies), macro-level considering "creative personalities" in a static

way) and how it can be evaluated (e.g., by assessment or personality

questionnaires), whether the study is static (measurement at a given

time) or dynamic (measurement of the evolution of creativity over time),

and whether possibly proposed intervention is unidirectional (simple

evaluation of its effect on creativity) or within a causality process (ex-

amining the chain of causes and effects over time). Here, our geomet-

ric formulation of CPS is rather micro, dynamic and in a causality pro-

cess, therefore complementary to what is generally studied, according

to Kupers et al. (2019) for children or Thurlings et al. (2015) at the level

of teacher innovative behaviours and pedagogical innovation. A step

further, Mansfield et al. (1978) highlights the fact that studies of the ef-

fectiveness of creativity training methods generally suffer from method-

ological weaknesses, e.g. the Hawthorne effect (the fact that individuals

modify aspects of their behaviour in response to their awareness of being

observed). Considering creativity training, they observe that only con-

sidering divergent thinking as a creativity process yields biased results,

whereas it is a complete process influenced by cognitive, motivational,

personality and situational factors.

While cognitive neuroscience advances the understanding on how our

brains function in creative tasks (Alexandre, 2020, Daikoku et al., 2021),

educational and psychology researchers developing creative studies

develop a diversity of approaches in which we can find studies at the cog-

nitive level (Hao et al., 2016, Lubart and Sternberg, 1995, Radel et al.,

2015), the behavioural level (Nemiro et al., 2017), the small group level

(cassoneGroupProcessesCreative2020, Kelly and Karau, 1999, Paulus,

2000, Sarmiento and Stahl, 2008) and the organizational level (Selkrig

and Keamy, 2017). Learning scientists more often focus on situated
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learning tasks in ecological contexts of education to analyse in some

cases the creative process, as in Savic (2016), considering the emer-

gence of the creative process at the individual, small group, or classroom

level (Mathisen et al., 2004, Stinkeste et al., 2021) and observing differ-

ences with respect to culture, personality and recognized values (Basan-

tia, 2017, Lubart, 1998). These approaches also lead to applications in

pedagogy as reported in Ni et al. (2014) where the theoretical approach

allowed to successfully help students in improving divergent thinking.

These different levels of analysis of creativity create a diversity not only

of conceptual but also methodological models in the study of this phe-

nomenon in education. In order to advance in the consideration of a mul-

tilevel approach of creativity, we consider a pluralistic epistemological

approach (Turkle and Papert, 1992) in the study of creativity in domain

specific tasks, thus restrained to an activity oriented approach (Albero

and Guérin, 2014, Romero et al., 2021) and focus on ill-defined problem-

solving tasks engaging one learner. Despite this specificity, we acknowl-

edge that studying human creativity requires to consider also a socio-

cultural perspective to analyse how knowledge is being shaped by prior

experiences, cultural context and the activity system in which the sub-

jects are developing their creative processes.
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1.2.2 CREATIVITY AT A NEURAL LEVEL

Different kind of memory intervene in the creative process :

• Working memory: A system temporarily storing chunks of informa-

tion. It can receive stimuli, and even process information, controlled

by the prefrontal cortex.

• Semantic memory : A long-term memory that stores concepts, built

from experience. Concepts are hierarchical. Relations between con-

cepts can be used for creative thinking.

• Episodic Memory : A system storing episodes, based on the hip-

pocampus. Episodes are neural activity patterns corresponding

to experiences personal situations. The hippocampus can recall

episodes to make predictions about future outcomes.

• Procedural Memory : A system storing know-hows, skills. Autom-

atized know-how are called procedures. Procedural Memory can

associate objects with memory of what to do with it.

When in need of these memories, different regions of the brain can be

solicited. Some regions are dedicated to monitor stimuli, internal infor-

mation and external information. But networks of regions are activated

differently between a deliberate search for ideas, and the spontaneous

emergence of an idea.

Whereas children’s creativity is mainly conceptualized today as a static

and stable trait, it is probably more realistic and fruitful to study it at the

micro-level, as a dynamic process with moment-to-moment interactions

between the child and his or her environment (Kupers et al., 2019). In

addition, authors claim that interventions could be more beneficial if they

were related to chains of causes and effects in the underlying processes.

Elucidating the neural bases of creativity is an interesting way to propose

such a description at the micro and dynamic level. In addition, such a

study can also bring a lot to related questions like understanding the

influences between creativity and motivation or considering the role of

behavioural disorders (e.g. hyperactivity or autism spectrum disorders)

in children’s creativity.
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MEMORY

The role of memory in creativity has been extensively studied (Gerver

et al., 2023), more precisely the interactions between memories that are

of several types (Alexandre, 2020). A distinction is traditionally made

between short-term (i.e., working) memory and long-term explicit (or

declarative) and implicit memories, with regard to how the information is

stored in the brain. Different types of memory intervene in the creative

process.

WORKING MEMORY Working memory is primarily a system allowing the

temporarily storage of chunks of information. It is also a processing sys-

tem (Cowan, 2008). Stimuli received are encoded in a "sensory buffer"

or sensory memory (Cowan, 2010) for a limited period of time. Stimuli

can be either external or internal received information that activated sen-

sory areas. Sensory areas include exteroception (the perception of the

situation by, e.g. the visual or auditory cortical areas), proprioception

(the perception of one’s own body and movement) and interoception (the

sensation of pain, pleasure, and emotions in the insular cortex). From

immediate perception, regularities and rules are extracted from past ex-

perience, and different kinds of learning shape cerebral circuits’ abil-

ity to be exploited in creative problem-solving tasks. After being filtered

through attentional mechanisms, some of them can be temporarily re-

tained in working memory for future use and manipulation. This is mainly

controlled by the prefrontal cortex (PFC). For example, when solving a

problem, working memory can be used to store traces useful to the pro-

cesses involved in carrying out the task, as well as updating them as the

task progresses. Because these processes often require prior informa-

tion, working memory also enables retrieval from longer-term memories.

SEMANTIC MEMORY Semantic memory is a declarative long-term mem-

ory in which the organization of knowledge extends beyond the simple

association of frequently linked stimuli: a hierarchy of concepts is built

from experience and can be found in a semantic network, with both the

idea of hierarchy (one specific class belonging to a more general class,

like a cat being an animal, the relation being "is-a-kind-of") and the idea

of associated relations and properties (visual or auditory characteristics

but also more abstract as a name or a link to the owner). Building on this,
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the sensory cortex is associated with the elaboration of semantic mem-

ory, It is also worth noting that, on the surface of the sensory cortex, the

features and properties related to the identification of the corresponding

"objects" are mapped onto the ventral regions (called the what pathway),

whereas those related to their localization or use are mapped onto the

dorsal regions (the how pathway). The associative nature of semantic

memory is believed to be of primary importance in creative thinking (Di-

etrich, 2004; Jung et al., 2013; Gerver et al., 2023) as a function of both

educational experience (Denervaud et al., 2021) and lifespan (Cosgrove

et al., 2021).

EPISODIC MEMORY Episodic memory involves a cerebral region called

the hippocampus (or more generally the hippocampal formation) and

corresponds to memorizing episodes, i.e. multimodal neural activity pat-

terns related to personally experienced situations within their spatio-

temporal contexts and associated responses and outcomes. Episodes

including a strong emotional dimension (for example associated with an

error, novelty, or other kinds of reinforcement) correspond to stronger

traces, and episodes in which nothing special happened have the ten-

dency to be forgotten quickly. To store such information, the hippocam-

pus receives as an input a compressed summary of the activities of most

regions of the cortex at the moment of the episode and has a powerful

mechanism associated with its recurrent architecture that allows the

binding of the references to these multimodal elements to form a unique

trace: frequently repeated segments of temporal inputs are concatenated

into single conceptual units (Gobet and Sala, 2019). Episodic memory re-

trieval is a dynamic process that draws upon the sequential ability to re-

construct past experiences from corresponding cues, by a phenomenon

called replay (Rabinovich et al., 2023). Later, when a similar episode

(or a part of it, referred to as a cue) is experienced, the hippocampus is

able to recall the full initial episode and to reactivate the corresponding

cortical regions, yielding the same various sensations associated with

that episode. Furthermore, when similar episodes are stored, an internal

mechanism within the hippocampal formation allows the brain to detect

that these episodes bind common features. In a process called consoli-

dation (Eichenbaum, 2017), if this binding is not yet represented in the

semantic memory, these episodes will be sent back by replay to the cor-
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tex during specific resting moments (particularly during sleep), to train

the cortex actively and help in the formation of new concepts binding

these features, improving the quality of the information representation

in the semantic network. More, the hippocampus is not only able to re-

call some full initial episode or some episode with common features but

to also replay a partial episode or composite episodes made of several

pieces. This allows to do prediction about the future outcome by simula-

tion of unrealized episodes (by an imaginative process). This capability

provides another way to decide which behaviour to select in a certain

situation, apart from the dominant behaviour, by remembering similar

cases in which dominant behaviour was applied or not. The capability

to decide which behaviour to select is essential in creative behaviour.

When subjects have a creative intention and aim to engage in creative

behaviour, they should develop a metacognitive judgment of candidate

ideas based on their creative properties (mainly novelty and usefulness)

and select those that can lead to an efficient and creative process or

outcome. This yields a regulatory process to behave in a creative way

instead of reusing existing habitual behaviours, especially when these

become inappropriate.

PROCEDURAL MEMORY Procedural memory is an example of implicit

memory: it stores know-how and integrated procedures that have been

automatized, such as motor skills. These procedures are gradually learned

through a transfer from declarative and working memories. In problem-

solving tasks, the brain figures out the problem situations by associat-

ing its sensory representations with a physical or mental behaviour en-

coded in the motor and premotor cortex (respectively for elementary

and integrated action plans) and in the orbito-frontal cortex (for giving

an emotional value to a situation and making a decision accordingly).

More precisely, this goal-directed organization can be broken down into

what–why–where–how loops (Alexandre, 2021) in which the value of an

action is evaluated in terms of general preference (what) and motiva-

tion (why) to decide both a general goal and a next-step sub-goal, allow-

ing the generation of rules for action (where and how). The elaborated

multiscale distributed representation of sensory information is associ-

ated through training with a variety of behaviours, corresponding to re-

sponses that can be given in the physical and mental worlds. What is

37



1 Regulation of learning

specifically considered here is the capacity to anticipate the resulting

situation when the response is triggered. This is the case for procedural

learning, mainly associating the motor and premotor cortex with the dor-

sal (how) cortical regions. Throughout this learning, the consequences

of actions in the real world can be anticipated. This gives rise to the con-

cept of affordances (Gibson, 1977), whereby the perception of a situation

can pre-activate possible actions and anticipate their outcomes (see sec-

tion 3.1). Each object is always associated with some "what to do with"

properties. This is also the case for respondent conditioning, associ-

ating the orbito-frontal cortex with the what cortical regions. Here, the

decision to give a certain emotional value to a situation allows us to an-

ticipate the corresponding reinforcement (reward or punishment). In both

cases, such learning involves loops associating the cortex with the basal

ganglia. After a certain time, this process results in what is called the

dominant behaviour, the behaviour generally triggered in the correspond-

ing situation. After extensive training, it can even become a habitual be-

haviour in the sense that the response is automatically triggered when

the situation is perceived, with no anticipation of the forthcoming out-

come. This response is called stimulus-based behaviour, as traditionally

opposed to goal-directed behaviour. Such automatic behaviours, which

are very frequent in a stable and predictable world, are exactly the oppo-

site to what is sought in a creative intention oriented towards novelty and

appropriateness.

A REPRESENTATION OF THE BRAIN NETWORKS IN THE CREATIVE PROCESS

Observing brain activity with imaging devices (e.g., fMRI and MEG) dur-

ing elementary cognitive tasks has led to the definition of large-scale

brain networks, associating widespread brain regions. Among them,

three are particularly active in some steps of the creative process (Beaty

et al., 2016), illustrated in Figure 1.1. The default mode network (DMN)

corresponds to brain regions that are active during spontaneous thought

and mind wandering. It includes regions surrounding the hippocampus

(precisely the precuneus cortex), together with the ventro-medial pre-

frontal cortex and the lateral parietal cortex; a primary function of this

network is episodic memory retrieval. The central executive network

(CEN) includes the dorso-lateral prefrontal cortex and is activated for

the control of sustained attention and planning, thus playing a key role
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in working memory. The salience network (SN) mainly consists of the

insular cortex and the anterior cingulate cortex (ACC). It monitors the

salience of stimuli, integrating a variety of internal and external informa-

tion. It is hypothesized to play the role of mediator activating a switch

between the DMN and CEN (Uddin, 2015). Beaty et al. (2016) reported

a major association between the DMN and the CEN during creativity, in

which the DMN proposes candidate ideas (divergent phase) and the CEN

stands for the evaluation of their appropriateness (convergent phase).

Figure 1.1: Large-scale brain networks involved in CPS, according to Beaty et al. (2016)
and supported by Dietrich (2004), Jung et al. (2013) and Kounios and Bee-
man (2014).

The DMN, involved in mind wandering and idea generation, is mainly

composed of the ventro-medial prefrontal cortex (vMPFC), the lateral

parietal cortex (LPC) and the precuneus cortex (PCC). Thanks to the

connection of the PCC to the hippocampal regions (precisely the caudal

part of the parahippocampus), it enables episodic memory retrieval and

replay. The CEN, involved in cognitive control, is mainly composed of the

dorso-lateral prefrontal cortex (dLPFC) and the posterior parietal cor-

tex (PCC). There is a slight asymmetry between the right and left hemi-

sphere, the dLPFC and PPC of the dominant hemisphere (left here) be-

ing more active in convergent mode. Finally, the SN, involved in attention

and control, is mainly composed of the rostral prefrontal cortex (rPFC),

the anterior cingulate cortex (ACC) and the insular cortex (INS - primarily

the anterior insula AI).
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SPONTANEOUS AND DELIBERATE MODES We can make a distinction be-

tween the spontaneous emergence of an idea and a deliberate search for

new ideas, including questioning existing beliefs or knowledge about the

problem to solve.

In a spontaneous mode, new ideas are generated from the default net-

work and episodic memory (Kounios and Beeman, 2014), subsequently

evaluated by the CEN. In a more deliberate mode, the SN and CEN can

take into account the characteristics of the task and orient the DMN to-

ward a more systematic exploration of possible ideas. Dietrich (2004)

related the first mode to intuition and discussed the correlation of age

with this dual process of imposing constraints to be appropriate and re-

laxing them to be creative, with a more spontaneous approach observed

in childhood. Kounios and Beeman (2014) also reported a neural inhi-

bition of visual inputs by the CEN to reduce distracting inputs, facilitate

the retrieval of weak solutions, and evoke actors influencing insight (see

below), like mood (positive affects and reduced anxiety favouring a long-

term view and broadened semantic processing; see also Diamond and

Ling (2016) on these topics).

These modes are different but they do not lead to a single dichotomy in

processes. For van Ede et al. (2020), the distinction proposed between

goal-directed and stimulus based behaviours is highly related to sources

of attentional selection, that is, to focus voluntarily on things that are rel-

evant to our goals rather than involuntarily capturing salient events in

the external world. These two sources jointly influence the selection of

internal memory representations. Thus, we cannot limit stimulus-based

mechanisms to a simple bottom-up process because attentional mecha-

nisms of the brain are, from the beginning, modulated by top-down pro-

cessing: in the posterior (temporal/parietal) cortex, this top-down pro-

cess is modulatory and maps the injection of prior information onto the

involved perceptual stimulus processing (Friston, 2003). Following this

track, in line with W. Zhang et al. (2020)’s metacontrol approach, both

persistent (i.e., characterized by a strong top-down bias and competi-

tion between goals) and flexible (i.e., characterized by some weak top-

down bias and weak competition goals) behaviours are goal-directed

behaviours. Furthermore, goal-directed behaviour is hierarchical as soon

as the problem-solving task becomes complex, (Eppe et al., 2022). Ac-

cording to W. Zhang et al. (2020), creative cognition in divergent and con-
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vergent thinking is modulated by metacontrol states.Divergent thinking

and insight solutions are enhanced by goal flexibility whereas convergent

thinking seems to benefit from metacontrol biases toward goal persis-

tence. Flexibility towards the goal is characterized by a weak top-down

bias and a weak mutual competition between alternative decisions. W.

Zhang et al. (2020) report that flexibility is promoted by a weak activation

of the dorsolateral prefrontal cortex (dLPFC) together with the tempo-

ral/parietal cortex (T/PC) while the inferior frontal gyrus (IFG) is strongly

activated in the dominant hemisphere (represented on the left here) in

comparison with the non-dominant hemisphere. The opposite pattern is

observed for goal persistence.

To this end, the prefrontal cortex is a major cerebral region to behave be-

yond stimulus driven dominant behaviour and to promote more flexible

behaviour driven by internal analysis. This is achieved through two in-

ternal processes (O’Reilly, Hazy, et al., 2014): the medial part monitors

errors, suggesting that the dominant behaviour might not be adopted in

certain circumstances, and aims to predict when these errors might oc-

cur to inhibit the dominant behaviour accordingly; while the lateral part

learns new contextual rules, which are better adapted to new specific

cases, based on interactions with episodic memory. In both processes,

this is implemented with the specific mechanism of working memory, in

which prefrontal neurons display sustained activity to evaluate histories

of activity, maintain constant inhibition of the dominant behaviour, and

bias the activity of the sensory cortex to promote other more adapted

rules instead. In particular, the biasing might correspond to increasing

the saliency of some (classically supposed) minor features to orient the

behaviour toward responses dealing with them. Behaviour switching is

much more efficient than learning and unlearning a new behaviour and

is crucial in CPS. The prefrontal cortex implements biasing activity to

orient other cortical regions toward non-dominant behaviour, rather than

implementing a behavioural rule per se. The consequence is genericity,

and, in the framework of reasoning by analogy, for example, it should

be rather easy to adapt the contextual rule to another similar biasing of

activity in another cortical region. The task set model reviewed below

proposes a model for such behaviour switching.
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IDEA GENERATION AND EVALUATION Jung et al. (2013) insisted on the im-

portant role of episodic memory in the replay of retrospective and prospec-

tive memories and of interoception in the insular cortex to set the selec-

tion of replays toward more original ideas. Amnesic patients suffering

from episodic memory loss due to hippocampal damage have been re-

ported to perform poorly on tests to assess creativity (Jung-Beeman

et al., 2004). More, the hippocampus is not only able to recall a full ini-

tial episode or an episode with common features but episodes also able

to replay a partial episode or composite episodes made up of several

pieces, in other words to predict unrealized episodes through simulation

(Stachenfeld et al., 2017). The prefrontal cortex plays a fundamental bi-

asing role towards hippocampal replay, these two structures being deeply

interconnected (Eichenbaum, 2017). In one direction, the hippocampus

can provide arbitrary cue binding to the PFC, allowing to refine the con-

texts in which the dominant behaviour should be inhibited and replaced

by specific rules. In the other direction, the prefrontal cortex can control

the retrieval of memories in the hippocampus in certain contexts by sup-

pressing the recall of inappropriate memories. Altogether, this forms the

basis of prospective memory (Buckner, 2010), a phenomenon whereby

the prefrontal cortex can control the hippocampus step by step to make it

produce a virtual (i.e., not really experienced) trajectory within the map-

ping of previous episodes. This generative capability of the hippocampus

thus allows for imagination and generation of candidate ideas, for which

metacognitive judgement will help selecting those that can lead to an ef-

ficient and creative process or outcome. Altogether, as pointed out by

Schlichting and Preston (2015), it is interesting to observe that imagi-

nation is achieved through the recombination of prior memories and is

consequently not so novel. Such recombinations are performed under

the control of both spontaneous and deliberate regulatory processes, al-

lowing to behave in a creative way instead of reusing existing habitual

behaviours, especially when these become inappropriate. At this stage,

a rather subtle difference is to be made between regulation and eval-

uation: during the divergent thinking phase, the role of the deliberate

system is not to evaluate the result of the spontaneous generation pro-

cess but rather to regulate the way in which the generation process is

performed (Tubb and Dixon, 2014). This involves judgment along both

"hot" (affective) and "cold" (analytic) dimensions (Dietrich, 2004), emo-
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tion allowing the comparison of different signals using emotional value as

a common currency (Levy and Glimcher, 2012). Tubb and Dixon (2014)

maps this distinction onto an explicit-implicit dimension: implicit judge-

ment is fast and affective, resulting in what is sometimes called a "gut

feeling", whereas explicit judgement is more demanding but provides

additional information such as the value function gradient.

Regarding the control of idea appropriateness, the same distinction be-

tween the ventral (what, semantic representation) and the dorsal (how,

perception for action) regions of the sensory cortex can be made for the

PFC (Bunge, 2004). In the PFC, the former is in charge of biasing the

activity of the ventral part of the sensory cortex, setting the focus on "ob-

jects" and dimensions that will be of specific interest for the contextual

rule, and keeping the representation of the desired goal active. The latter

takes care of the organization of the generated behaviour, including over

time, so that the global behaviour obeys the constraints of the ongoing

task and displays appropriate temporal characteristics. More specifi-

cally, Dietrich (2004) reported that the dorsal lateral PFC is involved in

its syntactic aspect, whereas the dorsal medial PFC is for the control and

inhibition of common ideas (Mayseless et al., 2015) (also useful in the

regulation of divergent thinking phases, as reviewed earlier). In addition,

the posterior to anterior axis of the lateral PFC seems to correspond to a

concrete to abstract axis. At the how level, it has been observed (Badre,

2008) that more concrete and proximal in time rules are represented on

the posterior side, whereas more anterior regions display more abstract

and temporally extended rules, leading to a hierarchical view of the rep-

resentation of rules, in which more abstract rules can control more con-

crete ones. At the what level, this concrete to abstract axis corresponds

to the level of abstraction of the representation (O’Reilly, Bhattacharyya,

et al., 2014).
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1.2.3 CREATIVITY AS A SET OF COMPUTATIONAL PROCESSES

We want to implement divergent thinking and convergent thinking phases.

For that, we create a data structure of knowledge. This data structure

consists of symbols. For instance, a bird is a symbol in this data struc-

ture. Symbols are associated to sensori-motor features. Features are

properties that can be numerical or not. For a bird, a numerical features

can be its weight. Another feature can be the capability to fly. We can

associate symbols with each other to create meaning. Associations are

done hierarchically :

For instance, bird and vertebrate are symbols. We can associate them

with a is a property : A bird is a vertebrate.

For divergent thinking, the creative process extends the data structure to

create creative results. Some methods are :

• Reasoning by analogy : "Robin is to Batman what Sancho is to

Don Qixote". We can use the relation between Batman and Robin to

imagine the relation between Sancho and Don Qixote.

• Interpolation : By taking features from an elephant and a penguin,

we can imagine what is an eleguin. By varying which feature comes

from which animal, we can imagine different versions of eleguin.

SYMBOLIC REPRESENTATION

The symbolic representation of creativity can have multiple representa-

tion at the computational level. We present here an example computation

of an approach based on the litterature.

44



1.2 Creativity : a case of self-regulation

In order to implement the idea generation, i.e., divergent thinking pro-

cess and evaluation, i.e. convergent thinking process, we propose to rep-

resent the information related to these concepts using a minimal and uni-

fied data structure, which is quite common in computational approaches

of creativity. This representation allows us to define the notion of a con-

cept region as well as a distance between two concepts, thus turning any

set of concepts into a structured concept metric space. Practically, such

a metric is useful for evaluation, as it provides a basis for deciding how

similar two concepts are.

The unified data structure corresponds to a symbolic representation of

human knowledge. In order to properly use it, we need to define what is

a symbol. A first approach, at the syntactic level, is to consider a symbol

as an "atom of knowledge", which is no more than the label (or identi-

fier) of an object in the wide sense. It has a "meaning" in the sense of

Harnad (1990), as reviewed and discussed in Taddeo and Floridi (2005),

when it is semantically grounded, in which grounding is the process of

embedding symbolic computations onto real-valued features (Badred-

dine et al., 2021), thus providing a semantic interpretation or model of

the symbolic system (in the sense of a model of a set of logical asser-

tions), which involves the capacity to pick referents of concepts and also

a notion of consciousness. This includes affordances, i.e. not only fea-

tures but also the capability of interaction with it, to attain an objective,

and receive some outcome. This means that it is no longer an abstract

set of assessments (potentially without any concrete implementation) but

something that corresponds to a real object.

As discussed in, e.g., Raczaszek-Leonardi and Deacon (2018), in rela-

tion to the emergence of symbolic thinking (De Villiers, 2007), the key

problem is "ungrounding", i.e., how to represent symbols from senso-

rimotor features and interaction with the environment. This aspect of

the emergence of symbols, i.e., the fact that a symbolic representation

emerges from a biological or any physical system in interaction with its

environment, is enlightened by the semiotic approach as reviewed in

De Villiers (2007), first considering a wider notion of "sign" and introduc-

ing a hierarchical meaning of an "icon" built only from sensorimotor fea-

tures, i.e. at the level of the likeness with the object, e.g., with features

such as color or smell, structures at an "index" level built by concrete re-

lationships between given objects, i.e., at the level of a relation with the
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object, e.g., a weathercock indexing the wind direction and strength, this

giving rise to a "symbol" in the semiotic sense, which corresponds to ab-

stract general relationships between concrete concepts or sensorimotor

features, but with a qualitative break-up with respect to concrete object

features, e.g., a road sign, as schematized in Figure 1.2.

Figure 1.2: The semiology hierarchy of sign and symbols

At the computing level, we aim at manipulating the symbolic represen-

tation of knowledge of the form shown in Figure 2.2, as introduced in

Mercier and Vieville (2023). In our context, we represent concepts as a

hierarchical data structure. Concepts are anchored in an input/output,

i.e., stimulus/response, framework, which might consist of sensorimotor

feature spaces (colored regions) corresponding, for example, to differ-

ent sensor modalities. Inherited features (e.g., the penguin "is-a" bird

and thus inherits the features of a bird) are shown with dotted lines, while

red lines represent overwritten values (e.g., a penguin can also swim

but cannot fly). Green arrows point toward concepts that are themselves

attributes of other concept features, accounting for inter-concept rela-

tionships. Values are completed by meta-information that is not explicitly

manipulated by the agent but is used for process specification or inter-

pretation (e.g., the weight unit and bounds).

At the modeling level, we follow Gärdenfors (2004), with the simple idea

that an individual resource can be defined by "feature dimensions", i.e.,

attributes with some typed value. For instance, a bird could be the follow-

ing. The used syntax is a weak form of the JSON syntax. For instance,

using a weak form of the JSON syntax, we can represent a bird as the

following representation :

b i r d : {
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Figure 1.3: Hierarchical data structure representing concepts, see text. From Mercier
and Vieville, 2023.

i s_a : v e r t e b r a t e
can : { s ing f l y eat : { worm f i s h } }
has : { f e a t h e r beak }
i s : { weight : { min : 0.010 max : 50 u n i t : k i logram } }

} ,

with some exceptions like penguins:

penguin : {
i s_a : b i r d
can : { f l y : f a l s e walk }

} .

This general approach of semantic knowledge representation using a hi-

erarchical taxonomy ("is_a") with capability features ("can"), including

those related to other resources (McClelland and Rogers, 2003), extrin-

sic features ("has"), and intrinsic features ("is").

Some features are properties, and others are relations. A property can

be qualitative, e.g., the "is-covered-by" property takes a value in an enu-

meration (e.g., "sing", "fly"), or quantitative (e.g., the "weight"). The fea-

tures can be hierarchical, either because the value is an enumeration

(e.g., "can") or because the value has some features (e.g., "weight").

Such a data structure defines a "concept" in the sense of Gärdenfors,

2004 (e.g., "a bird"), which is both a convex region of the state space

(e.g., the region of all birds) and a prototype: Each feature has a default

value, and this also defines a prototype (e.g., a typical, i.e., prototypi-

cal, bird). It corresponds to the third cognitive memory architecture, as
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proposed by Eichenbaum, 2017. At the programming level, it is going

to be implemented as a "type". At the geometric level, data value corre-

sponds to points and concept to regions, but with tricky property: Any

data structure is the prototype of a region. When defining such data

structure, there are several design choices and the following general

recommendation that might be useful:

• Atomic value: It is always better to decompose the information as

much as possible in atomic irreducible elements (e.g., <tt>family_name:

Smith first_names: [John Adam]</tt> instead of <tt>name: ’Smith,

John Adam’</tt>) for algorithmic processing.

• Maximal tree structure: It is always better to organize features in

sub-structures than to present flattened information (e.g., create

a sub-structure for the name, birth date, etc.) in order to maximize

modularity.

At the implementation level, it is always preferable to choose explicit and

standard names for features, i.e., look at already established vocabulary,

otherwise avoid acronym or abbreviation, i.e., choose the most common

word for the feature to name.

Using Vector Symbolic Architecture implemented at the neural spiking

assembly level thanks to the Neural Engineering Framework (Eliasmith,

2013), such a cognitive symbolic data structure can be implemented as

biologically plausible memory, allowing to manipulate it conjointly at both

a symbolic and numeric level (Mercier and Vieville, 2023).

Based on such representation, we can now define creativity as a set of

divergent and convergent thinking processes allowing reasoning.

D IVERGENT THINKING PROCESSES

Creative problem solving requires divergent thinking as analyzed in Romero

et al. (2024) and formalized in Alexandre et al. (2024). Divergent think-

ing requires not only interpolating but to extrapolate new resources from

existing ones. Let us illustrate these opportunities by considering three

non-exclusive examples, as illustrated in Figure 1.4:

• Projective divergent extrapolation: Given a present state repre-

sented as a data structure, we can extrapolate another state, only
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1.2 Creativity : a case of self-regulation

constrained by some requirement (e.g., we want to invent a "pen-

guinemu" which is a penguin morphing towards an emu) which the

only constraints that it has some of the emu’s features.

• Sequential extrapolation: Let us consider two resources and the

sequence defining a path from the former to the latter, for instance,

the yesterday state and the today state, re-applying the editing se-

quence on the today state allows us to extrapolate what could be

the tomorrow state, under the assumption that the evolution will be

the same. We could also add some randomness to explore alterna-

tives or introduce some constraints, as in the previous example, to

conform to any requirement.

• Reasoning by analogy: Following the definition of analogy reason-

ing proposed by Han et al. (2018), e.g. reasoning of the form "Robin

is to Batman what Sancho is to Don Quixote" we can use the editing

sequence from Robin to Batman in the source context, to re-apply it

to Sancho in the target context in order to generate by analogy qual-

ities that could apply to Don Quixote. The mapping from Robin to

Sancho, i.e., from the source to the target domain, forms a commu-

tative diagram with the source and target relations. This mechanism

is iterative in Han et al. (2018) and performs only at a symbolic (on-

tologic, see Mercier (2022)) level.

Figure 1.4: A schematic representation of two kinds of generative processes. Left:
Search, by extrapolation in the mirror of an interpolation between two struc-
tures. Right: Reasoning by analogy, as formalized in Han et al. (2018).

STATE EVALUATION AND BAYESIAN REASONING In a geometric model, both

the current state approximative estimation and the targeted goal cor-

respond to regions of the state space. Each of them is estimated with

regard to both bottom-up, external stimuli and top-down, internal informa-
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tion (that is, prior knowledge as well as emotional and cognitive consid-

erations). Each state may be assigned some valuations called rewards,

which can be either extrinsic (external and typically tangible, such as

food or money, but also social, such as fame or praise) or intrinsic (i.e.

fulfilling an intrinsic need such as curiosity, e.g. the learning progress).

Furthermore, the estimated value is both imprecise, i.e., partially defined,

and approximate, i.e., bound to some uncertainty (in the probabilistic

case) or precision (in the deterministic case). Given these two ingredi-

ents, in a probabilistic framework, the notions of a priori versus a poste-

riori probability, e.g. in Bayesian approaches, implement such ideas with

a numeric data representation. Such a computing mechanism (Viéville,

2021) corresponds to a geometric projection of the incoming stimulus

onto the region specified by prior information. In other words, given a

stimulus and prior information, the estimated value is the state value as

close as possible to the stimulus and compatible with prior information.

We can also consider the notion of partial knowledge and its related de-

gree of belief, i.e., the estimation of the available knowledge by a sub-

ject, which seems to be closer to cognitive representations. We need to

define this notion of belief considering necessity and possibility, "distin-

guishing what is plausible from what is less plausible, what is the nor-

mal course of things from what is not, what is surprising from what is

expected" (Denœux et al., 2020). At the data representation level, we

simply add an attribute with a belief value, while the chosen theory pro-

vides rules to combine different belief values. This simply means that the

estimated value is now weighted by a level of belief combining the belief

in a priori information and the level of confidence in the stimulus. These

elements allow us to offer a complete operational description of how a

partially defined and partially observable state value is estimated, and

how to evaluate to what extent the targeted goal has been attained or

not.

REGULATION We now have to discuss not only how we evaluate, but also

how we manage the subgoals and goals. Choosing and keeping track

of goals is a key point in regulation processes. Goal setting takes into

account both external and internal stimuli, which are considered with re-

spect to extrinsic motivations (e.g. physiological needs) and intrinsic mo-

tivations. In problem-solving tasks, there may be concurrent goals, e.g.
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1.2 Creativity : a case of self-regulation

directed either towards performance (solving the task efficiently) or to-

wards a better mastery of the problem, like developing task-related self-

improvement, which corresponds to some intrinsic motivation (Poortvliet

et al., 2007).

Following the proposal of Mercier, Roux, et al. (2021) we propose to

evaluate the cost towards a given goal from the previously defined dis-

tance between a current state and the estimated subgoal state. Regard-

ing performance related goal, we can make the strong assumption that

the shorter this distance, the lower the potential cost, i.e. that editing

distance operations can be related to actions generating a trajectory in

the state space. We also consider that the reward provided by a subgoal

is related to the estimated distance to the desired goal, the shorter this

distance, the higher the reward. Combining cost and reward provides a

rule to choose the goal: the one with the maximal reward at minimal cost.

Such a common currency is directly related to emotion (Alexandre, 2021,

Dietrich, 2004)
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1.3 PROBLEM-SOLVING ACTIVIT IES AND STRATEGIES

1.3.1 PROBLEM-SOLVING ACTIVIT IES

Problem solving is the process by which individuals attempt to overcome

difficulties, achieve plans that move them from a starting situation to a

desired goal, or reach conclusions. It requires the use of higher mental

functions, such as reasoning and creative thinking.

We mainly separate problems in two categories:

• Well-defined problems are problems with clear starting positions,

clear goals and clear allowable actions. They can be usually solved

with precise methods and algorithms. For instance, jigsaw puzzles

are well-defined : The goal is to start from the stack of pieces and,

by fitting pieces into each other, reach the final picture.

• Ill-defined problems are lacking one or more properties of well-

defined problems. The goal may be unclear, and it may exist mul-

tiple solutions. The potential actions possible may be unknown to

the subject beforehand. Drawing a beautiful picture is ill-defined :

the goal is fizzy, subjective and the method to reach the goal is not

specified. Ill-defined problems often require creativity.

Most problems of everyday life are ill-defined problems. Ill-defined prob-

lems generally require the discovery or understanding of solutions, or

actions to take. This implies a process of learning : learning the rules,

identify a viable solution, etc.

We think that understanding how we solve ill-defined problems will help

us foster our learning process. Ill-defined problems will be our focus from

now on.

Problem solving is the process by which individuals attempt to overcome

difficulties, achieve plans that move them from a starting situation to a

desired goal, or reach conclusions. For Popper (1971), all life is problem-

solving: Humans engages in processes of conjecture and refutation to

learn. Problem-solving is nowadays central in most of the competency

frameworks of the OECD countries. It requires the use of higher mental

functions, such as reasoning and creative thinking.

For Newell (1979), problem solving is the "fundamental organizational

unit of all human foal oriented symbolic activity". This has led to the def-

inition of well-defined problems, that have strong assumptions about
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the learner’s capabilities to solve the problem. In particular, they can be

solved through a path that is known or deduced from the initial problem-

space. In either case, problems can be solved by working forward or

backwards to isolate the path to take to solve the problem. Thus, such

problems can be different, depending on if the problem has a solution

model that is known or not from the subject. Uncertainty in subject’s

knowledge is a way to separate problems into different categories.

We mainly separate problems in two categories:

• Well-defined problems are problems with clear starting positions,

clear goals and clear allowable actions. They can be usually solved

with precise methods and algorithms. For instance, jigsaw puzzles

are well-defined : The goal is to start from the stack of pieces and,

by fitting pieces into each other, reach the final picture. A more de-

tailed definition of well-defined problems will be done in section 2.1.

• Ill-defined problems are lacking one or more properties of well-

defined problems. The goal may be unclear, and it may exist mul-

tiple solutions. The potential actions possible may be unknown to

the subject beforehand. Drawing a beautiful picture is ill-defined :

the goal is fizzy, subjective and the method to reach the goal is not

specified. Ill-defined problems often involve creativity.

Most problems of everyday life are ill-defined problems. Ill-defined prob-

lems generally require the discovery or understanding of solutions, or

actions to take. Considering that uncertainty in path is a parameter of

ill-defined problems, what is a well-defined problem for someone can

be an ill-defined problem for another one, falling back to the separation

between people knowing a solution model or not.

The solving process of an ill-defined problem (except for a completely

random strategy) often implies a process of learning, whether it is learn-

ing the rules, or learning what can be a viable solution to the problem.

Ill-defined problems are at the core of learning. We postulate that a bet-

ter understanding of how we solve ill-defined problems will help us foster

our learning process. Thus, ill-defined problems will be our focus from

now on.
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1.3.2 STRATEGIES IN PROBLEM-SOLVING

Strategies are a set of actions oriented to achieve a goal. For instance, a

strategy can be :

• Completely random : the subject takes a random action, hoping they

get a relevant feedback.

• Trial-and-error : the subject tries to reach a solution by a specific

sequence of actions (trial), and get potentially relevant feedback

from failure (error).

However, there is no definitive classification of the different strategies

someone can apply to solve a problem, and strategies above are just

potential examples. For instance, some strategies can be relative to spe-

cific domain. In mathematics, a proof by contradiction is a strategy in

which the subject tries to prove a statement true by showing that the neg-

ative is contradictory.

Yet, we can consider two general categories of strategies :

• Exploration strategies are used to discover attributes of the prob-

lem. It includes the search for features, limitations, functions and

attributes. It also includes abstract conceptualizations of the prob-

lem. For instance, taking random actions to get feedback is an ex-

ploration strategy. We associate these strategies to divergent think-

ing phases of the creative process, more in a stimulus-driven way.

• Exploitation strategies are used to evaluate prior knowledge and

present information, like trial-and-error strategies. We associate

these strategies to convergent thinking phases of the creative pro-

cess, more in a goal-driven way.

A problem-solving strategy is "a plan of action used to find a solution"

(Amit and Portnov- Neeman, 2017).

In well-defined problem-solving tasks, prior knowledge can support the

identification of the problem and the use of existing relevant knowledge

to solve the problem (Brand-Gruwel et al., 2005). On the contrary, in ill-

defined problems, prior knowledge and early ideas of the solution may

need to be inhibited in order to think outside-the-box. Thus, the learner

needs to be aware of this need (Leroy et al., 2021).
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As ill-defined problems are our focus, we consider situations in which

prior knowledge does not allow to engage in a conservative behaviour,

i.e. to only exploit prior knowledge and skills, but requires to generate

novel ideas and implement them to succeed in solving an unknown prob-

lem situation (Romero, Lille, et al., 2018).

A first model, described by Polya (1945), can fit the needs of an ill-defined

problem solving approach :

• Understanding the problem (estimating the actual situation and

choosing a goal or subgoal)

• Devising the plan

• Carrying out the plan

• Looking back to compare predicted result and observed result of the

plan.

This echoes the different processes of creativity and more generally self-

regulation. A strategy, in this case, corresponds to the set of actions en-

acted by the subject to transform their environment. For instance, trying

a random action is a strategy.

Strategies in problem solving has usually been considered as domain-

specific. For instance, in writing studies, the study of strategies have

permitted to identify different types of strategies at the sentence gener-

ation and revision (Flower and Hayes, 1981) which are specific to the

writing tasks. As they are learning strategies, they can be specific to the

field of learning. Biggs (2012) tried to propose three main approaches to

learning :

• Deep approach in which critical evaluation and syntheses if informa-

tion are performed. It is driven by intrinsic motivation.

• Surface approach in which superficial cognitive strategies are per-

formed. It is driven by extrinsic motivation.

• Strategic approach, which alternates between deep and surface

approaches.

This model is mainly focused on motivation. We postulate that, in ill-

defined problem solving, strategies are not only related to motivation

but also constrained by the ill-definition of the problem, in order to form a

broader learning strategy.
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In neuroscience, Womelsdorf et al. (2021) separates learning strategies

in two :

• Slow learning, using prediction errors between planning and judg-

ing the outcome to slowly update value expectations to improve

choices;

• Fast learning, using working memory of recent rewards to guide

choices.

Gubenko et al. (2021) differentiates generation and exploitation strate-

gies. Generative strategies are defined as the integration of prior knowl-

edge with present information, while exploration strategies are more at-

tribute finding in the environment. We can consider generative strate-

gies as more goal driven while exploration strategies are more stimulus

driven focusing the attention into the features the environment can pro-

vide. These strategies, as shown Figure 1.5, are complementary.

Figure 1.5: Gubenko et al. (2021)’s strategies

Thus, Gubenko et al. (2021) defines four generation strategies :

• Trial-and-error

• Analogical transfer

• Mental Synthesis

• Categorical reduction

And four exploitation strategies building upon obtained knowledge :

• Discovery of emergent features
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• Conceptual interpretation

• Using environment’s affordances

• Searching for limitations

It is important to note that strategies can be applied at multiple levels,

and their use is not set in stone : learners can freely adapt their strate-

gies, this is one of the main use of self-regulated skills.

There are a lot of different approaches to the categorization of problem-

solving strategies, leading to multiple classification of learners’ behaviours.

For instance, Chiew and Wang (2004) proposed seven "cognitive ap-

proaches to problem solving" (p. 2) : facts (knowing the solution by facts),

hill climbing (advancing with small steps), working backward (starting

from the known solution and then working step-by-step back to the initial

problem), algorithm application, exhaustive search, heuristic approaches

(which can be divided into three subcategories, namely rule of thumb,

mean-ends analysis, and brainstorming) and analogy approach.

Learning problem-solving skills is about learning perseverance and chang-

ing the attitudes towards problems. For instance, Wismath et al. (2014)

reported that "almost all the students began the course reporting limited

confidence in their abilities to tackle problems, and expressed a belief

that the key attributes involved in successful problem solving were intel-

ligence and creativity". While these are important, it is in fact often per-

sistence which leads to the most success: knowing what to do when you

are stuck, and being willing to keep going rather than giving up (Polya,

1945). Gaining a deep understanding that most problems are solvable

with sustained effort we suggest marks a fundamental and irreversible

threshold in students’ development of problem solving skills. As such,

Wismath et al. (2014) reported an increase in reported levels of acquired

problem-solving skill and confidence in those skills among student partic-

ipants.

POSITIONING In this chapter, we have produced a state of the art of the

regulation of learning, from self-regulation to collaborative learning, and

considered the particular case of creativity. Here, we are particularly in-

terested in regulation during the problem-solving process. As mentioned

in the introduction, we think that the learning process occurs at any stage

of life, and is not limited to formal education. It can occurs at any point,
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at any moment in everyday life and, as stated in section 1.3.1, they are

often ill-defined problems.

In the literature, well-defined problems are extensively studied. Models

of representation of such problems exist, and they can be used to study

learning strategies. Unfortunately, there are at the best of our knowledge

no general models of representation of ill-defined problems. It does not

mean that models do not exist. For instance, in chapter 3, we will refer to

existing work on an activity called Creacube and existing models used to

represent and study it. There is no such thing as an "activity-agnostic"

model of representation of ill-defined problems that exist for well-defined

problems (developed in section 2.1).

We think that developing such model of representation could be bene-

ficial to the domain. This model should take into account the richness

of ill-defined problems (which is the subject’s knowledge and lack of

knowledge to solve the problem). With such model, comparing different

ill-defined problems in order to find similarities and specificities of each

activities will lead to a better understanding of general mechanisms of

learning.

In this thesis, we propose to tackle the creation of such model. Chapter

2 will develop our method to reach this goal. The idea is to start from the

well-known model of representation of well-defined problems represent-

ing each possible state of a problem as a state that can be attained from

near other states. We will then extend it to ill-defined problems by consid-

ering the subject’s knowledge and skills as part of the state of the prob-

lem. This representation is impossible to grasp fully because we can’t

access the subject’s complete set of knowledge and skills, but it can be

partially reconstructed after the activity by looking at the problem-solving

process.

If this created model is valid, we will be able to use it to discover poten-

tial similarities and/or differences between different ill-defined problems.

For this, we will use two different activities, namely Creacube in chapter

3 and Outer Wilds in chapter 4.
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REPRESENTATION

2.1 WELL-DEFINED PROBLEM-SPACES

Newell (1981b) proposed a formalization of well-defined problems. This

formalization allows to represent problems by a problem space and a

problem.

A problem space consists of :

• A set including all possible states of the problem.

• A set of operators. An operator is an action a person can take to

change the state of the problem.

A problem consists of :

• A set of all possible initial states. A person solving the problem

starts in one of these state.

• A set of all possible goal states. A person solving the problem wins

by reaching one goal state.

• A set of path constraints. Path constraints are all the rules that limit

the possible actions a person can take.

A person solving a well-defined problem starts at an initial state and

moves state-by-state until they reach a goal state. They need to respect

all rules given by the path constraints. See Figure 2.1 for an example.

In Human Problem Solving, Newell and Simon (1972) proposed an infor-

mation processing approach to problem solving along with a formaliza-

tion of well-defined problems. Newell (1981b) illustrated it with the well-

known problem of the Tower of Hanoi: Considering three towers, with

disks on tower 1, move all disks from tower 1 to tower 3. Disks can be

moved only one at a time, must be placed on a tower, but not on smaller

disks.
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This approach, based on the computer metaphor, consists of applying a

search algorithm to a mental representation of what they call the problem

space. This problem space, once specified, allows the use of heuristics,

i.e. decision methods based on a search of the best possible alternative

at each branching based on available information. Such heuristic may

not be always the best because of, for instance, the size of the problem

can make impossible an exhaustive computation.

For Newell (1981b), the problem space consists of:

• A set of symbolic structures called the states of the space. They

allow to represent at least each possible situation that may happen

during the problem-solving process.

• A set of operators over the space. Operators are functions that are

(maybe partially) defined over the state space and produce states

as outputs. Sequences of operators define paths that can be inter-

preted into sequences of states.

With this definition, we can then define a problem as :

• A set of initial set, subset of the states of the space.

• A set of goal states, subset of the states of the space.

• A set of path constraints, reducing the set of operators over the

state space.

Solving a problem consists of finding a path in the problem space, start-

ing at any initial state and ending at any goal state while satisfying path

constraints (Newell, 1981a). This information processing approach al-

lows to test problem solving algorithms using computer simulations. This

has been done with the General Problem Solver (Newell and Simon,

1972 and later on other computational cognitive architectures like SOAR

(J. Laird et al., 1986; J. E. Laird et al., 2017) or ACT-R (Anderson et al.,

1997)

The key principle, which the General Problem Solver relies on, is the

physical symbol system hypothesis (Newell and Simon, 1972), that is,

the problem space is represented as units of information called symbols

that are manipulated and combined into structures (expressions) using

logical rules. This is the basis for what we now call symbolic artificial

intelligence.
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Let’s consider the Hanoi Tower representation. Figure 2.1 shows a repre-

sentation of the Tower of Hanoi problem.

Figure 2.1: An exhaustive search of possible states of the Tower of Hanoi problem.
Credits to Vinod Goel for the image.

Following the previous definition, we can determine what applies to the

Tower of Hanoi problem :

• States : Configurations of the disks on the three pegs.

• Operators :

– Move a disk by placing it from one peg on another

– Recognize a configuration as an instance of a pattern

• Initial state : The configuration shown at the top in Figure 2.1, that is

the state in which all disks are on the first peg.

• Goal state : The state in which all disks are on the third peg.

• Path constraints : No disk can be placed on a smaller disk.

Despite being a significant advance in the computational study of prob-

lem solving, Newell and Simon (1972)’s approach remains limited to well-

defined problems such as the Tower of Hanoi.

In the next section, we propose to extend this formalization to ill-defined

problems. This will also allow to represent divergent and convergent pro-

cesses as discussed in section 1.2.3.

2.2 THE THREE-PROBLEM -SPACE FRAMEWORK AND THE FOG

OF WAR ANALOGY

The framework presented in this section consists on an iterative process

of a construction of a computable problem space for ill-defined problem
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solving. As such, the exact problem space (section 2.2.1) serves as a

limit in order to approximate the well-defined problem space from Newell

and Simon (1972), that is indeed never reached. The subject-related

problem space (section 2.2.2) reduces it to plausible situations, while

the observer problem-space (section 2.2.3) reduces it to a computable

problem space for an external observer, thanks to what we call a fog of

war analogy.

2.2.1 EXACT PROBLEM-SPACE

We create an extension of well-defined problem spaces to ill-defined

problems : the exact problem-space.

In this model, we can represent everything at any given time:

• The physical representation of all matter in the universe.

• A complete understanding of the mental representation of every in-

telligent being.

In this model, a state is just the description of everything at a given time.

Constraints prevents impossible states to happen.

This model is absurd to use: it is an abstraction to approximate the well-

defined problem-space. We are not able to represent the entire state of

the material universe. We do not have access to complete mental repre-

sentations of intelligent beings.

This model is useful because an ill-defined problem becomes a well-

defined problem, because abstract representations that make ill-defined

problems are entirely known. With this representation, we can find a path

from an initial state to a solution.

However, we can use it as a complete model to reduce. We want to re-

duce it to a model that we can compute.

We want to extend the well-defined problem representation of Newell to

ill-defined problems. Such representation should consider every possibil-

ity of ill-defined problems, which will lead to computational problems.

For now, let’s try to construct a problem representation based on Newell.

But first, let’s consider two problems that will serve to illustrate the con-

struction.

A PROBLEM OF ORIENTATION We consider the following open problem: A

person arrives at the train station for the first time, and must meet an-
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other person at a monument of the city they arrived at, not knowing what

does the monument look like. Every other element of the problem is con-

sidered unknown for now.

We will extend it along the creation of what could be the representation

of an ill-defined problem. It is an ill-defined problem as the goal and the

path to reach the goal are unknown to the subject beforehand.

WHAT IS A STATE? WHAT IS AN OPERATOR ? In order to define what is a

state in an ill-defined problem, we need to understand what is the pur-

pose of a state. For well-defined problems like the Tower of Hanoi prob-

lem, a state is an abstract representation of what could be the situation

of all relevant elements of the problem : on which towers are the disks.

No matter if the disks are made of wood or of steel, the abstract config-

uration stays the same. No matter either if the disks are put on the tow-

ers upside-down, because the orientation of the disk is not relevant to

the problem. A state of the problem ignores any change in the real sit-

uation that does not change the abstract representation defined. This

abstract representation is possible thanks to the well-defined property

of the problem. As all possible states and operators are defined before-

hand, the subject may know that any other action will have no effect on

the problem-solving process.

From this, we postulate that a state of a problem should include all rel-

evant features of the environment for the problem. The difficulty for ill-

defined problem is that, as there exists uncertainty and unknowns, it is

difficult for a subject to precisely determine which feature is relevant or

not. In fact, one main relevant feature of an ill-defined problem is the

degree of knowledge of the obfuscated states or operators. Thus, every-

thing that can lead to disambiguation or learning of previously unknown

states or operators should be considered as a relevant element of the

problem.

Unfortunately, everything present in the environment can be, for the sub-

ject, a potentially relevant element of the problem (with different degree

of uncertainty concerning the relevance of the problem). As such, for an

ill-defined problem, every change in the environment may have an effect

on the problem-solving process, and thus two slightly different environ-

ments should be considered as two different states.
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Moreover, the knowledge of the subject, i.e. what they know (or don’t

know), is relevant to solve ill-defined problems. Knowing the code of a

locked door can allow the subject to pass through it. If the code was to

be learned during the problem, then the different states leading to the

subject knowing the code and using it are useful.

As such, any possible change in the material environment of the prob-

lem or in the abstract representation of the subject is susceptible to be a

relevant change in the problem-solving process.

Let’s consider our orientation problem. The action of asking a stranger

the way is a valid operator that can update the knowledge of the subject

in order for them to learn what does a goal state looks like. The state

goes from "unknown monument" to "known monument". Still using the

stranger example, maybe the stranger will offer to guide the person to

the monument. The problem will be solved this way, and the goal state

may be still unknown (the subject does not have to known what does the

monument look like). However, we can consider that this change of the

environment is a state change, because it reveals the path to the monu-

ment by having someone leading the way.

Let’s then define a state for an ill-defined problem space.

• An exact state is an exact description of the entire physical world

and all abstract representations of intelligent beings present during

a problem at a given time.

With this definition of an exact state, we can define simply an operator by

the shift from one state to another.

• An operator is a couple of exact states (a, b), a being the exact start-

ing state, b being the exact arrival state

From these definitions, we can deduce that an ill-defined problem con-

sists of :

• A set of all possible initial exact states that is a subset of all exact

states of the problem.

• A set of all possible goal exact states that is a subset of all exact

states of the problem.

• A set of path constraints, that contains all the operators that can’t

happen.
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These definitions are far too general. However, we consider them as the

necessary definitions to precisely define ill-defined problems. To prop-

erly represent a problem in real-life, we should be able to represent not

only the entire universe but also exact characterizations of the internal

states of every sentient being in the universe. More, we would need an

infinite amount of states to store each of these representations. This is

absurd in terms of computation (and even in terms of imagining).

However, to represent the absurdity of the situation, let’s consider some

extreme situations of our orientation problem. Consider this part as funny

little thoughts experiments :

• Why not a priori exclude any physical element ? Let’s consider

that the subject slips on a banana peel or is hit by a car. They are

rescued by a paramedic that will bring them to an hospital near the

monument. Looking through the window, they can discover the path

they have to take to go to the monument.

• Why not a priori exclude any macro description item of the en-

tire universe ? Let’s consider that the subject only knows that the

monument shines in the dark. A sudden eclipse illuminates it, ren-

dering it visible to the subject, now knowing where the monument

is.

• Why include the physical state of the subject ? Let’s consider

that the person is hungry and decide to go to a restaurant. There,

they find a tourism flyer of the city, and are able to go to the correct

monument.

• Okay, but what about things on the other side of earth ? Let’s

consider that a catastrophe happens on the other side of earth. The

phone rings, it’s a notification of the incident. The subject takes their

phone, and remembers at this moment that they can use the map

app on their phone.

• Why include the internal representation of the subject ? In every

previous example, we can also have the situation in which the sub-

ject is completely unaware of their surrounding, thus missing every

occasion to discover unknown states or the goal.

• Why include the internal representation of other sensient be-

ings ? Let’s consider the friend the subject needs to find. Maybe
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they will grow tired of waiting, and go in search of the missing sub-

ject. Thus, the real goal states change.

• Why operators do not correspond to actions relative to the sub-

ject anymore ? Let’s consider the previous situation. The friend,

tired of waiting, come directly to see the subject. The problem is

solved without any actions taken. Also, it is difficult to determine

what is an action.

• What is an operator anyway ? Let’s consider the operator "asking

someone". We can consider that, while the actions is at the begin-

ning of its execution, the subject, having a little bit of social anxi-

ety, suddenly remembers, thanks to stress, that they can use their

app on their phone. The action is not performed, but the situation

changed.

We will call this definition of the problem and the problem space the exact

problem and problem space.

PURPOSE OF THE EXACT PROBLEM AND PROBLEM SPACE As stated previ-

ously, this model is a useless abstraction as it : it is for instance impossi-

ble to compute. We do not have the capacity to store the entire material

universe, neither can we access precisely a subject’s internal state. We

need to reduce the size of the model to be more accessible.

However, we think that this general model is still relevant for our under-

standing of ill-defined problems representation. It is a limit case that

shows that we cannot exclude elements a priori in ill-defined problems.

The iterative method of construction applied here led us to the consider-

ation of the subject’s mental state, absent from the well-defined problem

model.

This general representation allows us to re-evaluate the problem and

problem-space of the Hanoi tower problem.

First, let’s consider problems that we will call problems of deception

: problems in which the goal state or the operators are, in addition to

be partially unknown, misled by wrong or purposefully incomplete in-

structions. For instance, let’s consider that the goal state of the Tower

of Hanoi problem is given by a picture that the subject needs to repro-

duce. The real goal is not to solve the Tower of Hanoi problem but also

to reproduce the image. For instance, this time the disks may have a top
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and a bottom, and all disks must be put on their bottom face to repro-

duce the image. The subject may think that solving the tower of Hanoi

problem is enough and face incomprehension when it isn’t, leading them

to re-evaluate their knowledge about the problem, operators and state.

This problem is technically not the Tower of Hanoi problem, because

the relevant states are different. However, their representation for the

learner may be the same. Including the subject’s internal state to the

state seems relevant in this case, because a shift needs to occur for the

subject to solve the problem.

This doesn’t explain why the tower of Hanoi can be an ill-defined problem.

For this, let’s consider the problem the other way around. The problem

is a simple Tower of Hanoi problem, well-defined. However, the subject,

used to problems of deception, may consider it as a deception problem,

and stop advancing the problem to start and search for other ways to

solve the problem. For the subject, the problem transformed into an ill-

defined problem.

CONCLUSION There is a significant difference between an ill-defined and

a well-defined problem: the latter considers the subject. A well-defined

problem has a definition that excludes the subject, whereas an ill-defined

problem can’t afford to exclude it, because there is a need to charac-

terize the degree of knowledge of the hidden states or operators. An ill-

defined problem with no uncertainty for a subject could even be consid-

ered as a well-defined problem. This observation implies that, within a

state of an ill-defined problem, we can consider two distinct parts : the

physical state that is, and therefore has no degree of uncertainty, and

the subject’s internal state, that includes knowledge about the problem

and the problem space with different degree of uncertainty. The consid-

eration of other sentient being’s internal states is out of the scope of this

thesis.

We can try to characterize both to be able to represent the state of the

problem given the internal state of the subject. This is the purpose of the

next section.
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2.2.2 SUBJECT PROBLEM-SPACE

We reduce the exact problem-space to a model that considers the sub-

ject, creating what we call a subject problem-space. First, we represent

the material environment, by :

• Limiting the environment : We limit the environment of the task to

a realistic environment of features we can observe. For data collec-

tion, we need to eliminate data in which unobserved featureds play a

role in the problem solving process.

• Creating a symbolic structure :We can reduce multiple features

into one or more symbols. We describe a bycicle by the bycicle sym-

bol instead of all physical properties of the matter it is composed

of.

• Ignoring irrelevant features : For instance, if we can’t control the

height of a subject, but in most cases, we can suppose that their

height is not relevant in the problem-solving process.

Reducing the environment requires a level of assumption about what is

relevant to the subject and what is not.

Based on a symbolic data structure, we can create the representation of

the learner.

In a subject problem-space, a state is a composed of a pair of states :

the state of the material environment, and the mental state of the learner.

The problem is that we can’t access the mental state of the learner. We

need to reduce it to a representable level.

Thanks to our elaboration on the abstract notion of exact problem state,

we have made explicit two key aspects regarding the representation of an

ill-defined problem:

• Model the material environment of the learner

• Model the internal representation of the learner.

MODELING THE MATERIAL ENVIRONMENT In the last section, the "perfect"

problem state was iteratively constructed to consider the entire universe

as a material space because of the need to consider the learner’s evolv-

ing mental representation. However, in order to reach a modelling that

is computable, we need to reduce this "perfect" problem in order to be
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able to study specific ill-defined problems. We will do it in three steps,

ordered by the number of assumptions required.

• Limiting the environment: The first step is to limit the physical

state to the material environment that is realistically in the scope

of the chosen experiment. For instance, considering a problem that

is presented in a room without any way to access the outside of the

room, we can ignore the material environment outside of the room,

because any change in the outside material state cannot be per-

ceived by the learner, and thus cannot influence their internal repre-

sentation.

For instance, the temperature of the room or its brightness because

of the sun are still parameters that are considered at this point. How-

ever, other outside elements can be unrepresented in the state of

the problem. Classically, any experiment in which the outside envi-

ronment forces a change in the representation (e.g. a little earth-

quake shaking the room) should be removed from the dataset.

This doesn’t mean that the outside of the room should not be con-

sidered. If the subject knows that someone is waiting outside of the

room, their behaviour may differ from a case in which no one is wait-

ing. However, this kind of feature has to be considered in the inter-

nal representation of the learner that we will describe in the next

part.

• Reducing the state to interpretable symbolic data: In the last

section, we didn’t elaborate on the way to represent the "perfect"

states. If we consider an atomist vision, the potential representation

of the material environment could be given by the precise position

of each atom of the material environment. A reasonable reduction is

the interpretation of the material space into a state of symbols. For

instance, a piece of cake with or without a little piece of crumb can

still be considered as the same piece of cake. We can turn every

element of the material space into symbols that can have a numeri-

cal value. For instance, a cube can have a color (a symbol) or a size

(a number). This echoes the computational representation of the

creative process presented in section 1.2.3.

• Making assumptions about relevant features: Lastly, it is possible

to make assumptions about what is important and what isn’t in the

69



2 A model of problem-solving representation

problem solving process. For instance, using a previous example,

we can assume that temperature doesn’t affect the problem solving

process.

The first step is part of the definition of the experiment. However the two

next steps necessitate a level of assumption about what is relevant for

the subject and what is not. It is necessary to point it out as this can be a

source of error or imprecision in experimental results.

REPRESENTING THE LEARNER ’S INTERNAL REPRESENTATION At the comput-

ing level, we aim at manipulating the symbolic representation of knowl-

edge of the form shown in Figure 2.2, as introduced in Mercier and Vieville

(2023). In our context, we represent concepts as a hierarchical data

structure. Concepts are anchored in an input/output, i.e., stimulus/re-

sponse, framework, which might consist of sensorimotor feature spaces

(colored regions) corresponding, for example, to different sensor modal-

ities. Inherited features (e.g., the penguin "is-a" bird and thus inherits

the features of a bird) are shown with dotted lines, while red lines rep-

resent overwritten values (e.g., a penguin can also swim but cannot fly).

Green arrows point toward concepts that are themselves attributes of

other concept features, accounting for inter-concept relationships. Val-

ues are completed by meta-information that is not explicitly manipulated

by the agent but is used for process specification or interpretation (e.g.,

the weight unit and bounds).

At the modeling level, we follow Gärdenfors (2004), with the simple idea

that an individual resource can be defined by "feature dimensions", i.e.,

attributes with some typed value. For instance, a bird could be the follow-

ing. The used syntax is a weak form of the JSON syntax.

b i r d : {
i s_a : v e r t e b r a t e
can : { s ing f l y eat : { worm f i s h } }
has : { f e a t h e r beak }
i s : { weight : { min : 0.010 max : 50 u n i t : k i logram } }

} ,

with some exceptions like penguins:

penguin : {
i s_a : b i r d
can : { f l y : f a l s e walk }

} .
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Figure 2.2: Hierarchical data structure representing concepts, from Mercier and Vieville
(2023)

Here, we choose the general approach of semantic knowledge represen-

tation using a hierarchical taxonomy (is-a) with capability features (can),

including those related to other resources, extrinsic features (has), and

intrinsic features (is) (McClelland and Rogers, 2003). This illustrative

example is sufficient to allow us to detail the main characteristics of our

representation. Some features are properties, and others are relations. A

property can be qualitative, e.g., the is-covered-by property takes a value

in an enumeration (e.g., "sing, fly"), or quantitative (e.g., the weight). The

features can be hierarchical, either because the value is an enumeration

(e.g., can) or because the value has some features (e.g., weight).

Such a data structure defines a "concept" in the sense of Gärdenfors

(2004) (e.g., "a bird"), which is both a convex region of the state space

(e.g., the region of all birds) and a prototype: Each feature has a default

value, and this also defines a prototype (e.g., a typical, i.e., prototypical,

bird). It corresponds to the third cognitive memory architecture, as pro-

posed by Eichenbaum (2017). At the programming level, it is going to be

implemented as a "type". At the geometric level, data value corresponds

to points and concept to regions, but with tricky property: Any data struc-

ture is the prototype of a region.

When defining such data structure, there are obviously several design

choices and the following general recommendation might be useful:
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• Atomic values : It is always better to decompose the information as

much as possible in atomic irreducible elements (e.g., <tt>family_name:

Smith first_names: [John Adam]</tt> instead of <tt>name: ’Smith,

John Adam’</tt>) for algorithmic processing.

• Maximal tree structure: It is always better to organize features in

sub-structures than to present flattened information (e.g., create

a sub-structure for the name, birth date, etc.) in order to maximize

modularity.

• We already mentioned the importance of providing as much as a

possible default value, and this is a design requirement at several

levels, see for instance Appendix B for a discussion at the numeric

data representation level.

• We also point out, at the very concrete implementation level, that it

is always preferable to choose explicit and standard names for fea-

tures, i.e., look at already established vocabulary, otherwise avoid

acronym or abbreviation, i.e., choose the most common word for the

feature to name.

Using Vector Symbolic Architecture implemented at the neural spiking

assembly level thanks to the Neural Engineering Framework Eliasmith,

2013, such a cognitive symbolic data structure can be implemented as

biologically plausible memory, allowing to manipulate it conjointly at both

a symbolic and numeric level Mercier and Vieville, 2023.

A (SIMPLIF IED) PROBLEM OF ORIENTATION A learner is put into a labyrinth

and needs to find the exit. If they were to look to the plan pinned on the

map on their left, they’ll have access to the plan of the labyrinth to leave

more easily.

We can represent the material environment in a graphical 2-D space if

we consider that no other action than moving will have a change on the

material representation. We exclude from the experiment those who try

to break the walls (limiting the environment), we do not consider the out-

side of the labyrinth (limiting the environment), we assume that all walls

are identical and immovable to be considered as only one object (reduc-

ing the state to interpretable symbolic data) and we assume that the wind

from the exit of the labyrinth will not help the learner to find the solution

(making assumptions about relevant features).
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A representation of this material environment can be reduced to Figure

2.3

Figure 2.3: The representation of the material environment of our simplified problem of
orientation

Note that a state is technically the entire material environment plus the

actual position of the learner in the labyrinth, that we make coincide

graphically to the map of the labyrinth plus the position of the learner.

As for the internal representation of the subject, we can consider the

previously defined representation.

HOW DO WE USE THESE CONCOMITANT PROBLEM-SPACES? As the task ad-

vances, both the material and the internal representation progress. They

may not change at the same time (no material change can happen while

the subject thinks for instance). Initial and goal states set can be defined

as set of state couples (from one and the other).

We think that the main goal of learning science is the understanding of

the internal representation of the learner, while we have mostly access

to the material representation (only mostly because there are methods to

get a glimpse at the internal representations, e.g. post-task interviews).

This duality of approaches between the material representation and the

representation of the learner is extremely important and makes it possi-
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ble to introduce the notion of computational learning science (Romero

et al., 2020) that we try to formalize here.

The next section propose a way to adapt these spaces to be used by an

external observer.

2.2.3 OBSERVER PROBLEM-SPACE

We can keep the material representation of the subject problem-space

: we choose to represent a state by a set of observables. An observ-

able is a feature of the environment or the player that can be computed

by an external observer. We can’t access the mental representation of

the learner. We will reduce it to their knowledge of the material problem-

space at any given moment. We apply a fog of war on the states of the

material environment. The fog of war disappear when unknown spaces

are explored or learned. The fog of war may reappear on zone that the

subject forgets. We can represent it this way :

The fog of war is not just "present or not" : it allows to consider uncer-

tainty from subjects.

We think that, based on the trajectory we can observe on a material

state, we could represent the fog of war of a subject a posteriori.

In the previous section, we proposed to represent problem solving with

two concomitant problem and problem space for one problem : the envi-

ronment and the learner. However, it is difficult to represent the learner’s
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state of their internal representation. As we have mostly access to the

environment space, we propose a reduction of the internal representa-

tion with a fog of war analogy.

THE FOG OF WAR ANALOGY The fog of war is a term referring to the un-

certainty in situational awareness. It was experienced by participants in

military operations, but it is also commonly used in mechanics of video

games.

We will define the fog of war as a continuous process of "the actual state

of known information, with a degree of uncertainty". In the problem space,

the fog of war exists on the states that are partially or totally hidden, and

disappears as new information about the states or operators are discov-

ered.

Let’s take the example of the simplified problem of orientation defined in

the previous section. Figure 2.4 shows different possible situations of the

learner and the associated fog of war.

(a) Initial perceived material states and fog
of war

(b) Fog of war update after a material state
change

(c) Discovery of all the material environ-
ment in one state

(d) Forgetting of previous knowledge, fog of
war reappears

Figure 2.4: A possible evolution of the observer problem-space with the fog of war anal-
ogy
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• Figure 2.4a is the beginning : the learner can only perceive their sur-

roundings. Therefore, the rest of the material state is unknown. The

learner cannot represent it, and thus the fog of war covers eveything

that is not in their surroundings.

• Figure 2.4b happens when the learner takes the action of move-

ment (one of the operators). By moving, the surroundings change.

Therefore, the fog of war is gradually revealed by the learner, as

they update their knowledge of the environment, in particular the

path constraints (the walls). The initial state may not be perceivable

anymore, but the learner knows what is present there, and thus the

fog of war is still revealed in the initial state.

• Figure 2.4c shows a situation in which the learner goes at a point

where they can find a map of the entire labyrinth. By looking at it (an

other operator), they learn the entire map, and thus the entire space

is revealed.

• Figure 2.4d is a possible continuation of the discovery. The learner

moves towards the goal, but they forget a part of the map. By forget-

ting, the fog of war covers once again the parts that are no longer

known by the learner.

The analogy proposed in this example can be extended to any material

problem space. This way, the internal representation of the learner is

applied to the material state space through the fog of war. Note that two

different states of the learner’s internal representation may lead to the

same fog of war : it is another reduction of the space.

We can apply this analogy more precisely by adding a "degree of cer-

tainty" behind the fog of war. The fog of war can be partially present on

a state if, e.g. two different possibilities are considered by the learner.

If one of them is true and the other is false, the fog of war is partially re-

moved.

We insist on the fact that the fog of war corresponds to the real meaning

of the learner’s internal representation. If the learner makes a bad as-

sumption about the situation, then the fog of war is not revealed even if

the learner thinks that there is something there. For instance, let’s take

once again our simplified problem of orientation. Instead of having ac-

cess to the map of the labyrinth, the learner has access to a wrong map
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of the labyrinth. The learner may think they know the map, but the fog of

war is not revealed in the area that are wrong in the fake map.

OBSERVABLES FOR EXPERIMENTS As an external observer, we need a way

to access the problem space of the activity. This requires an access to

the material space, which may be easy, and the internal representation,

which is more difficult.

To represent the material environment, there is a need to define observ-

ables relative to it. These observables do generally correspond to the fea-

tures that were chosen in the last section : all the relevant features that

exist in the material environment. All features are observables, and the

state of each observable correspond to the value (symbolic or numeric)

of the associated feature. To be considered as an observable, it must be

potentially subject to change. A proper set of observables is then a set of

observables that suffice to determine in which material state the learner

is at any moment during the activity.

We also need a way to characterize the learner’s internal representation.

When choosing observables for this, this is more difficult. Observables

are features that must be perceivable by an external observer. They are

more subject to experimenters’ interpretation. Defining the learner’s ob-

servables is a challenge, and deciding what is important to observe and

what is not is the main questioning that must be answered when design-

ing an experiment.

For instance, let’s come back to the simplified problem of orientation.

There is no need to observe the position of the walls during the activity,

as their position will not change. However, the position of the subject

in the labyrinth is relevant to observe (and their position only is enough

to determine in which material state the learner actually is). The set of

observables is, in this case, composed only of the position of the learner.

The observables relative to the learner are more difficult to infer. Our

proposition, for this experiment, is to consider if the learner looked at

the map or not. For an interpretation, a learner that looked up the map

would be considered as someone who knows the entire labyrinth, while

a learner that did not look it up would be considered as someone who

knows only the places in the labyrinth that they visited.
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COMPARING FOG OF WARS With a perfect definition of observables rela-

tive to the learner, we would be able to understand the learner’s internal

representation. However, it is not possible right now to do that : it would

require the understanding of human learning, which is exactly what we

aim for in this kind of research. Our definition of the observables relative

to the learner are then assumptions about human learning. This is where

the fog of war analogy can help, by comparing two different kind of fog of

wars : the "real" fog of war and the "supposed" fog of war.

The real fog of war is the one that is deduced by the internal represen-

tation of the learner. As we cannot access it, our observables are able

to generate another kind of fog of war, based on the hypothesis of the

research. Let’s consider the orientation problem : In Figure 2.4, we pro-

posed in the fifth step that the learner may have forgotten the map that

they discovered. As our only observable is if the learner looked up the

map or not, we are unable to characterize what parts of the labyrinth they

did forget. Two person with the same observable, one with forgetting and

the other without, will then not behave the same way. Thus, characteriz-

ing, for instance, the moments when the learner stops (to think, or try to

remember) may be a relevant observable to add.

D ISCUSSION : HOW CAN THIS MODEL BE USED ? In the last sections, we cre-

ated, step-by-step, a model of representation of ill-defined problems and

problem spaces, starting from the largest considerations up to a reason-

able observable space that we could use in experiments. Which kind of

questions can this model help to answer ? We propose here some use-

cases of this model :

• Testing relevant observables When defining relevant observables,

observations of multiple experiments can allow to determine whether

an observable has an influence or not on the behaviour. It can be a

material observable or not. For instance, if an observable is consid-

ered but the value of this feature has no influence on the task perfor-

mance, this can be an indicator that the observable is not relevant.

• Associating observables with behaviours Doing a classification

of outcomes or behaviours can lead to have interesting results if

specific observables are present in a category and not in the other.

This can lead to a better understanding of the reasons why we adopt

behaviours. This use-case will be developed in section 3
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• Characterizing oversight Observables can help to identify when

there was an oversight of the learner. This may help to characterize

oversight in general. This will be developed in section 4.

With this model in mind, we will now develop the methods and algorithm

we will use to generate experiments on ill-defined problem solving.

2.3 OPERATIONALIZ ING ABSTRACT PROBLEM -SPACES

2.3.1 DEFINING DISTANCES IN SYMBOLIC DATA STRUCTURES

We need to define a distance between different states of a problem space.

A distance is a function d that satisfies three properties :

• separation : The distance between two different states is always

strictly positive, and if the distance between two states is null, then

those two states are identical.

• symmetry : The distance between state x and y is the same as the

distance between state y and state x, i.e., moving from x to y is the

same as moving from y to x.

• triangle inequality : Moving from x to z and then z to y, instead of

moving directly form x to y, can not shorten the path distance.

For instance, the shortest time to go from one city to another by car is a

distance. The shortest time to go from one city to another by walking is

also a distance. They are different, but are defined on the same space.

This is coherent with our common conception of this concept.

This can be applied to abstract symbolic problem spaces. An usual dis-

tance for this is the editing distance. The editing distance is the number

of different editions necessary to transform one state into another. For in-

stance, with one letter change and one letter addition, we can transform

power into flower. The edit distance between power and flower is then 2 :

d(flower, power) = 2

The pivotal idea of a geometric definition of problem-spaces is to con-

sider an abstract state space where each point is a symbolic data struc-

ture, representing contextual information about the physical space, and

even about the agent’s internal state. Performing an action corresponds

to deciding, as a step in the problem-solving process, to modify some

characteristics of the state space both at the external level (e.g., moving

79



2 A model of problem-solving representation

an object) and at the internal level (i.e., modifying the internal represen-

tation).

Based on the framework defined in the previous section, this section will

consider the observer problem-space of section 2.2.3. Before applying

the fog of war analogy to represent player knowledge, we need first to

consider the data structure of the material environment of the problem-

space. This environment is a symbolic data structure : a state in this

structure is composed of multiple symbolic information, linked (or not)

to numerical values.

As a symbolic data structure, there is no direct way to operationalize this

data structure. The operationalization requires to be able to compare

multiple states of this data structure. This can be done by the definition

of a distance between different states.

A distance is a function d that satisfies three properties :

• symmetry : The distance between state x and y is the same as the

distance between state y and state x :

d(x, y) = d(y, x)

• separation : The distance between two different states is always

strictly positive. If the distance between two states is null, then those

two states are identical.

d(x, y) = 0 ⇐⇒ x = y

• triangle inequality : It is impossible to reduce the distance be-

tween x and y by stopping by any other state z. Adding a step can-

not shorten the path :

d(x, y) ≤ d(x, z) + d(z, y)

Defining a distance is a key process to represent path constraints of

the environment. When finding a path from one state to another, path

constraints are factors of distance increase. Having a properly defined

distance allows the existence of a metrizable symbolic data structure,

giving access to a notion of proximity : a state easily attainable from an-

other translates into a small distance between these two states, whereas

states distant from each other (higher distance) are separated by path

constraints and are not easily attainable from each other.

There is no such thing as an unique distance. To take the example of

maps, shortest time to go from one city to another by car is a distance,
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while the shortest time to go from one city to another by walking is also a

distance. They are different, but are defined on the same space.

Distances are usually used on numerical spaces like the euclidian dis-

tance. For symbolic data structures, we can define distances that are

relevant for particular problems. However, there is a well-known distance

that we can apply on most (if not all) problem spaces : the edit distance.

An edit distance between two symbolic states x and y is the minimal num-

ber of operations to transform x into y. Possible operations are :

• Addition : Adding a symbol to the state

• Suppression : Removing a symbol from the state

• Edition : Changing a symbol into another. This is not necessary

to include, as it could be represented by a suppression of the old

symbol and the addition of the new symbol.

For instance, if we consider a word as a symbolic state, with symbols

being letters, we can transform power into flower by doing:

• A transformation of p into l, creating lower;

• An addition of f, creating flower.

Thus, the edit distance is : d(power, flower) = 2.

For symbolic structures, it may still be easier sometimes to convert a

symbolic space into one or more numerical values. In this case, the no-

tion of distance can obviously still be defined. However, it is important to

know whether the multiple numerical values of a state are dependent (The

modification of a value affects others) or independent (Each value may

evolve separately without affecting each other), or a mix. We will discuss

this case in section 2.4.1.

With the notion of distance can come the notion of trajectory, as a way to

represent problem-space exploration (and so problem-solving process).
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2.3.2 PROBLEM-SPACE EXPLORATION ON METRIC SPACES

A trajectory is a way to represent the advancement of a subject over time

on a problem. It is a sequence of states from a problem space. If sub-

jects act differently during the problem-solving process, their trajectories

will differ. This is done on a metric space, that can be numerical or, as

defined with the editing distance, symbolic.

If we put reward on the goal states, and negative rewards to constraints,

we can mimic problem-solving trajectories. We can create algorithms

that solve the problem : the algorithm tries to move from state to state, in

order to reach the maximal possible reward. It will naturally avoid nega-

tive rewards and move towards the goal :

Starting with Newell (1981b), a general problem solver can be stated in

the form of a trajectory generator, including at a biologically plausible

algorithmic level (Viéville, 2002), including hierarchic in terms of scale

and precision as developed by Pizlo (2006). Such representation allows

to represent a conceptual space in the sense of Gärdenfors (2004).

Such complex problem is solved in several steps by generating sub-goals

on the trajectory, as discussed in details in Alexandre et al. (2024). The

open-ended goal is not well defined but simply constrained by certain

requirements, making the final state not unique but corresponding to

a region. Such a goal and obstacles are not known from the beginning

while discovered during exploration, while the initial state is only partially

known (and observable) to the learner, and there is no explicit operation

to move from one state to another, but potential actions are discovered

by the learner when interacting with the environment.

The key point is that such a formalism yields to a universal algorithm to

solve a problem formalized that way, considering a reward null at the

initial state, unbounded and negative of obstacles and unbounded and

positive when a goal is reached, i.e., scalar-field, written:
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V(x) def
= ∑

i
Vi(x) − ∑

j
Vj(x), Vi(x) def

=
ω(xi)

δ(x, xi)
, ω(·) > 0

where xi and x j are points respectively sampled by projection on the goal

regions and on the obstacles or constraints regions by the algorithm.

Here, δ() is an editing distance as developed previously. Goals can be

weighted by ω(·), i.e., given with a certain reward value that corresponds

to their importance. Similarly, obstacles can be weighted, i.e., given a

certain repulsion value that corresponds to the importance to avoid them.

We always can choose ω(·) = 1 as the default value, if there is no benefit

to introducing a priori information at this stage.

In order to reach a goal from a given position, taking constraint into ac-

count, a more generic method is to consider a reward potential, i.e, very

high on the goal position or the goal region, say +∞, and very low when

on obstacle or where a given constraint is not satisfied, say −∞. In this

context, the notion of obstacles to avoid is equivalent here to path con-

straints to apply: The former is a geometric interpretation of the latter.

Then finding a "global plan", i.e. a trajectory, from any initial position to-

wards a goal location, reduces to locally maximizing the reward potential,

thus moving towards the goal while avoiding the obstacles.. Usually we

consider the minimization of such potential, thus the opposite potential

(i.e., −V(x) instead of V(x)) but, here, we consider the potential as a

reward thus increasing when approaching the goal.

Figure 2.5: A valid trajectory from an initial state to some final state satisfying path
constraints.

In a numerical space, given a set of points {x1 · · · xi · · · x I} on the goal

regions and points {x1 · · · x j · · · x J} on the obstacles, we can define the

reward potential as

V(x) def
= ∑ xi ∈ {Goals} 1

∥x − xi∥d − γ ∑
x j∈{Obstacles}

1
∥x − x j∥d
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with d > 0, γ > 0

with obviously limx→xi V(x) = +∞ and limx→x j V(x) = −∞, i.e., is in-

finitely high on points belonging to the goal and infinitely low on points

belonging to the obstacles.

Given such a reward potential, maximizing this potential drives toward

the goal, and avoiding obstacles.

Given this variational formulation, solving the problem reduces to the

global maximization of this scalar field from the symbolic data structures

to the reward values. Such a potential corresponds up to a constant to

the reward represented in Fig. 2.5, while it attains a maximum on a goal

state, maximization avoiding obstacles. It also means that a gesture or

a plan is within this framework encoded by the goal and constraints, as

it is the case in the hippocampus for navigation or in arm gesture as re-

viewed by Höge (2020), showing that such representation is biologically

coherent.

We talk about reward here because the potential is directly linked to re-

inforcement learning. However, our formalism is not like reinforcement

learning based on the optimization of an average gain but on obtaining a

maximum deterministic gain which is estimated better and better as the

generation of the trajectory. It is more to be linked to concepts of optimal

control more effectively at such a level of abstraction (Viéville, 2002).

We thus have a general mechanism of trajectory generation in a symbol-

ing space. A demonstration of such mechanism is accessible at:

https://line.gitlabpages.inria.fr/aide-group/symboling/Trajectory.html
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2.4 DYNAMIC T IME WARPING AND CLUSTERING AS A

METHOD OF BEHAVIOUR CLASSIF ICATION

2.4.1 DYNAMIC T IME WARPING : EXTENDING DISTANCE OF STATE TO

SIMILARITY OF SEQUENCE

We want to compare trajectories instead of points. For this, we create a

measure of dissimilarity. If the value is low, trajectories are similar. If the

value is high, they are very different.

A basic way to do it is to compare each trajectory, point by point. This is

called the Euclidian match. However, this can lead to similar trajectories,

with minor time differences, with a very high dissimilarity. We want to

avoid that.

The measure of dissimilarity we use is called Dynamic

Time Warping. It can associate one point with multiple

points from the other sequence. In comparison, the left is

the Euclidian match and the right is Dynamic Time Warping :

Dynamic Time Warping always tries to match different points with the

following rules :

• The first state of each sequence are matched together.

• The last state of each sequence are matched together

• Each state must be matched with one or more states from the other

sequence

• A state from sequence 1 cannot be matched with a state i from se-

quence 2 if a previous state of sequence 1 was already matched to a

state j after state i in sequence 2.

In the previous section, the definition of a distance in a symbolic state

space allows us to generate trajectories, representing a path towards

the goal state(s). As such, a trajectory is a sequences of states from

the corresponding data structure. We consider in this section that we
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defined an adapted metric of distance between states from the symbolic

representation of the observer problem state.

One of our goals in this research is to be able to classify behavioural

data on multiple subject’s trajectories. A subject’s trajectory is the result

of their actions over the course of an activity, and can represent a good

abstraction of that subject’s behaviour(s) performed during this activity.

There are a lot of multiple classification algorithms. Clustering tech-

niques allow to create groups of data points based on measures of dis-

tance between those points. Classifying trajectories, however, requires

to consider trajectories as data points. Thus, the notion of distance must

be extended from points to sequences of points. To be more precise, we

need to build upon a distance between points in order to create a dis-

tance for trajectories.

As we are mainly working with trajectories performed by humans, we

need to take into account multiple elements considering unavoidable dif-

ferences between subjects. In particular, subjects may perform the same

actions, but with a difference in execution speed. To account these differ-

ences, we are choosing to use Dynamic Time Warping, as presented in

“Dynamic Time Warping” (2007).

Dynamic Time Warping (DTW) is an algorithm used for measuring sim-

ilarity between two temporal sequences which may vary in speed (“Dy-

namic Time Warping”, 2007). This is important to compare behaviours,

as we want to ignore differences due to execution speed of subjects’ ac-

tions. The DTW method consists on finding an optimal match between

two given time sequences by associating points from a time sequence to

one or more points from the other sequences, with some restrictions :

• The first state of each sequence are matched together.

• The last state of each sequence are matched together

• Each state must be matched with one or more states from the other

sequence

• A state i from sequence 1 cannot be matched with state j from se-

quence 2 if a state k before state i in sequence 1 was already matched

to a state k after state j in sequence 2.

With these restrictions, it is possible to create a lot of different matches

between two sequences. We are interested in the optimal match. The
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optimal match between two given time sequences is then the mapping

of associated points that satisfies all of the previous restrictions and has

the minimal cost of satisfying mappings, the minimal cost being the sum

of absolute differences between values of each paired points.

(a) Euclidian match example (b) Dynamic Time Warping example

Figure 2.6: Different matching between two sequences shifted in time. Creadits to Tave-
nard (2021)

Let us compare, Figure 3.5, the difference between Euclidian match and

Dynamic Time Warping for 2-dimensional sequences. By matching only

points of the same timestamp value, Figure 2.6a associates multiple

points (associations in red) that are different in value, leading to a big-

ger total distance than with Figure 2.6b.

The main benefit of using a dynamic matching algorithm like DTW is

that it is able to take into account little variations between two similar

sequences. Another benefit is that this method allows to compare trajec-

tories of different total time.

We will now detail the algorithm for the dynamic time warping algorithm.

Let us consider two sequences x = x1 , ...xn and y = y1 , ..., yn of respec-

tive lengths n and m. We also consider a distance d between two points

of the state space from which sequences x and y happened.

DTWDistance ( x : a r ray [ 1 . . . n ] , y : a r ray [ 1 . . .m] ) :

DTW = mat r i x [ 0 . . . n , 0 . . .m]
f o r i i n range 0 to n :

f o r j i n range 0 to m:
DTW[ i , j ] = i n f i n i t y

DTW[ 0 , 0 ] = 0
f o r i i n range 1 to n :

f o r j i n range 1 to m:
cos t = d ( x [ i ] , y [ j ] )
DTW[ i , j ] = cos t + min (DTW[ i −1 , j ] , DTW[ i , j −1 ] , DTW[ i −1 , j − 1 ] )

r e t u r n DTW[ n , m]
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In this algorithm, DTW[n, m] is the total distance between x and y with

the best alignment. More precisely, DTW[i, j] is the distance between

subsequences x ′ = x1 , ..., xi and y ′ = y1 , ..., y j . This algorithm dynami-

cally computes the best possible match, but doesn’t get the optimal set

of matches. This can be done by knowing which option was chosen for

the minimum for the update value, respectively insertion, deletion and

match.

This algorithm is entirely based on the proper notion of distance, in par-

ticular for symbolic data structures. As previously noted, we will some-

times want to convert symbolic states into one or more numeric values.

Thus, a trajectory may be composed of multiple numerical trajectories.

Note that the same argument can be done for symbolic states, but the nu-

merical case corresponds to applications that will be explained in chap-

ters 3 and 4.

Let us consider a trajectory as a set of multiple time sequences. It is im-

portant to adapt Dynamic Time Warping to multiple time sequences, see

Stübinger and Walter (2022) or Olivares-Atarcos et al. (2019) :

• If sequences are independant, which means that no modification

on one sequence has any effect on another, then we can sum Dy-

namic Time Warping on each individual pair of sequences from the

pair of trajectories to get the general Dynamic Time Warping result

on two trajectories.

• If sequences are dependent, which means that a modification

on one sequence can effect another of the same trajectory, then

we need to apply Dynamic Time Warping the complete trajectory :

The distance used for it is then a distance that can compare pairs,

triplets, etc. instead of individual values.

For instance, if we consider two points xi = (xi,a , xi,b , xi,c) and yi =

(y j,a , y j,b , y j,c) from two sequences (on which we apply DTW), for inde-

pendent DTW, we’ll use separately da(xi,a , y j,a), db(xi,b , y j,b), dc(xi,c , y j,c),

while dependent DTW would require d(xi , yi).

To sum up, Dynamic Time Warping is a way to compute similarity be-

tween temporal sequences. The similarity score can be then used as

a measure of proximity between these trajectories : the higher the simi-

larity, the more we can consider that two trajectories should be classified
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in a same group in classification approaches. Amongst different classifi-

cation methods, we opted for k-medoids clustering.

2.4.2 K-MEDOID CLUSTERING

K-medoids clustering is a clustering algorithm that creates k groups

of points in a dataset based on how close they are to each other. It is an

incremental algorithm consisting of multiple steps :

• Step 0 : Decide of a number of groups (the value of k) and choose k

arbitrary points in the dataset. They are the medoids, one for each

k groups.

• Step 1 : For each point of the dataset, compute the distance be-

tween the point and each medoid. Put the point in the group corre-

sponding to the closest medoid: This is the medoid with the minimal

distance to the point.

• Step 2 : For each k group, compute the distance of each point with

each other point in the group. Then, for each point, compute the

sum of every distance between the point and the other points. The

point with the minimum sum is the new medoid of the group.

• Step 3 : Repeat step 1 and 2. Stop if medoids do not change any-

more or after a predetermined number of repetitions.

With this algorithm, each group updates its most central point after each

cycle. By updating its central points, a point that was previously in an-

other group may be closest to a new central point and then change its

group. When medoids do not change anymore, groups can’t change ei-

ther.

This algorithm requires the use of points and an appropriate way to com-

pare them. For the clustering of behaviours, we use trajectories as points

(each point represent one subject solving the problem). We use dynamic

time warping as a measure of similarity to determine which trajectory

medoid is the most similar.

AVERAGE SEQUENCE VERSUS MEDOID SEQUENCE In classification methods,

it is often interesting to look at what could be a representative data point

for each group. For trajectories, it corresponds to a "prototypical" tra-

jectory, that is the sequence that represents the group. For behavioural
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analysis, one goal can be to associate different "prototypical" trajectory

from different groups with different behaviours.

The choice of the "prototypical" trajectory can be discussed. We can

mainly consider two possibilities : an average sequence or a medoid.

An average sequence would be an hypothetical trajectory (not neces-

sarily present in the dataset), based on the "mean" of data points from

one cluster. This is easy to grasp for numerical sequences : for instance,

when comparing two time sequences of the same length, we can con-

sider the average sequence as the sequence resulting of the mean of

each pair of points at the same time.

When considering Dynamic Time Warping, Petitjean et al. (2011) pro-

posed an algorithm called Dynamic Time Warping Barycenter Averaging

(DBA) in order to iteratively compute an average sequence with DTW,

on which it is possible to apply k-means clustering as in Ferreira et al.

(2012). The method is the following :

The algorithmic method then consists of the following steps : (Initiali-

sation) : Create an initial average sequence A. This sequence can be

random, preprocessed or even a sequence from the corpus For each se-

quence S from the corpus, compute the DTW algorithm between S and A.

For each point a from A, create a set s(a) containing all points associated

with a from all sequences from the DTW algorithm. For each point a from

the average sequence A, compute the barycenter of all points from the

s(a) set, coordinate by coordinate. The resulting barycenter becomes

the new point a, thus modifying all points from sequence A. Repeat 2 and

3 until the average sequence A is stable (does not change during step

3) or until a determined number of iterations. (End) A is the average se-

quence.

The method is discussed in details in Palaude and Viéville (2023). The

main flaw of this method is its application to symbolic data : the barycen-

ter of multiple symbolic value doesn’t have a clear meaning. One ex-

plored solution was a temporary translation into numerical values. How-

ever, this leads to explainability problems : An average sequence con-

tains data-points that may not belong to a valid state (not existing at all,

or belonging to forbidden states by path constraints).

As such, a medoid approach seems to be better-suited. A medoid is

a representative point of a data set, while being a point from the data

set itself. It is the datapoint whose sum of dissimilarities to all the data

90



2.4 Dynamic Time Warping and clustering as a method of behaviour
classification

points in its cluster is minimal. In other words, for X = x1 , ..., xn a data set

and d a dissimilarity measure (including DTW), the medoid is defined as

xmedoid = argmin
y∈X

n

∑
i=1

d(y, xi)

As it is a point from a dataset, there is not the same problem of explain-

ability. For dataset of individuals performing problem-solving tasks, a

medoid is the trajectory resulting of one individual.

K-MEDOIDS CLUSTERING K-medoids clustering is a process of partition-

ing dataset into k groups in order to solve k-medoid problems (Kaufman

and Rousseeuw, 1990). Multiple heuristic solutions exist to create such

partitions. We are going to present one of them, based on the creation of

a distance matrix, as presented, e.g., in Park and Jun (2009):

• Step 0 : Create distance matrix M that keeps all the similarity values

between each pair of points : For xi and x j two points in the dataset,

Mi , j = d(xi , x j)

• Step 1 : Decide of a number of groups (the value of k) and choose k

arbitrary points in the dataset. They are the initial medoids, one for

each k groups.

• Step 2 : For each point of the dataset, using the distance matrix M,

put it in the group corresponding to the closest medoid: This is the

medoid with the minimal value to the point.

• Step 3 : For each point, compute the sum of every distance between

the point and the other points. The point with the minimum sum be-

comes the new medoid of the group.

• Step 4 : Repeat step 2 and 3. Stop if medoids do not change any-

more or after a predetermined number of repetitions.

With this algorithm, each group updates its most central point after each

cycle. By updating its central points, a point that was previously in an-

other group may be closest to a new central point and then change its

group. When medoids do not change anymore, groups can’t change ei-

ther. Note that this algorithm, as an "alternating’ heuristic, tends to pro-

duce sub-optimal results, mainly because the search space is smaller
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(medoids will slowly move towards their position during each step), it is

greatly influenced by which points are chosen as initial points.

Other methods, such as Partitioning Around Medoids (PAM) by Kaufman

and Rousseeuw (1990), are usually more optimal, but the runtime com-

plexity is too important for bigger dataset. This is technically not a prob-

lem for our datasets in general. For instance, datasets from chapters 3

and 4 are composed of maximum 200 points. However, we are not neces-

sarily interested in optimal matching. It is mainly due to the fact that our

datasets are, in fact, usually small. An optimal matching may not be in

our best interest. Our goal is not to determine precisely which sequence

belongs to which group, but instead to try to interpret such groups for

educational research. As such, we are more interested in groups in them-

selves, but rather in their relations to each other.

This is the same reason why an exhaustive search is possible (and will

be done in the next section) but not to obtain the optimal clusters.
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2.4.3 META-CLUSTERING

Clustering algorithm are better suited to large datasets. For smaller

datasets, we use Meta-clustering for more robust results. Robust, in

this case, means that we are less likely to get clusters that correspond to

unwanted particular cases.

• We create a meta-matrix. This is a matrix of n lines and columns, n

being the number of points in the dataset. Each cell of the matrix is

initialized at 0.

• We apply a k-medoid algorithm with a predetermined set of initial

medoids.

• We update the meta-matrix. Given two points i and j from the

dataset, if i and j are in the same cluster we increase M(i, j) by one.

Otherwise, we do nothing.

• We repeat Step 2 and 3 until we applied the k-medoid algorithm on

all possible initial medoids.

In the final matrix, if two point i and j were clustered together often, M(i, j)

will be a high number. If they were not, M(i, j) will be a low number. If an

execution of the k-medoid algorithm gives an unwanted particular case,

the increase it implies is negligible in the final matrix. We can then apply

a clustering algorithm on the dataset with a new measure of similarity :

The higher the score of two points in the meta-matrix, the closest they

are to each other.

One of the main problems of our clustering method is the different re-

sults obtained when having access to different initial points. The meta-

clustering approach, as inspired by Zeng et al. (2002), or Caruana et al.

(2006)), takes into account the fact that different clustering methods will

give different results. The idea is to consider multiple unique clustering

solutions as an ensemble from which we can create a similarity metama-

trix. This matrix contains, for each pair of observations, the probability of

being in the same cluster.

We propose to define our own metamatrix based on the application of

k-medoids clustering on all possible initial points (with a fiwed value for

k).

For this, we adopt the following method :
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2 A model of problem-solving representation

• Step 0 : We create an empty metamatrix. This is a matrix of n lines

and columns, n being the number of points in the dataset. Each cell

of the matrix is initialized at 0.

• Step 1 : We apply a k-medoid algorithm with a set of different initial

medoids.

• Step 2 : We update the meta-matrix. Given two points i and j from

the dataset, if i and j are in the same cluster we increase M(i, j) by

one. Otherwise, we do nothing.

• We repeat Step 2 and 3 until we applied the k-medoid algorithm with

a new and different set of initial medoids, until all possible initial

medoids are treated.

In the final matrix, considering two point i and j were clustered together

often, Mi, j corresponds to the number of times i and j were clustered

together among the different initial medoids. If they were not, Mi, j will be

a low number, up to 0 if i and j were systematically clustered in different

groups.

We can convert M into a real distance metamatrix by associating the

number of each cell to the "proximity" of each point, with the simple oper-

ation :

M ′
i, j = 1 −

Mi, j

Mi,i

This operation transforms the metamatrix into a similarity metamatrix.

We are not calling it a distance, as at least the separation is not veri-

fied. On one hand, if an execution of the k-medoid algorithm gives an

unwanted particular case, the increase it implies is negligeable in the

final similarity metamatrix. This metamatrix is also a percentage meta-

matrix : Based on all iterations, given that we choose the initial medoids

randomly, Mi, j gives the probability that points i and j are not in the same

cluster by the end of the execution.

As we want to interpret such similarity matrix, we can apply hierarchical

clustering on it to create a hierarchy of clusters. However, this requires

to transform the similarity metamatrix into a proper distance metamatrix.

This can be done by converting the matrix into a square-form distance

matrix.

94



2.4 Dynamic Time Warping and clustering as a method of behaviour
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For more details on the implementation on both the square-form trans-

formation and the hierarchical clustering implementation, see the associ-

ated scipy modules : spatial.distance and cluster.hierarchical

As an illustrative example, to apply hierarchical clustering, we can use a

bottom-up approach :

• Each data point starts in its own cluster

• Until each data point is in one cluster, compute the distance be-

tween each clusters, for instance by considering the minimal dis-

tance between points from each cluster. The two nearest clusters

are merged with each other.

Example of hierarchical clustering results will be discussed in chapters 3

and 4.

To sum up the different algorithms we presented, our proposed method

for analyzing datasets of subject’s trajectories on symbolic state space is

the following :

• Using dynamic time warping, we measure the similarity between

the different trajectories. Dynamic time warping allows to measure

similarity of sequences that may vary in speed. This allows to ig-

nore execution speed differences of subject during problem-solving

tasks.

• Using a k-medoid clustering algorithm for a set value of k, we create

an arbitrary number of groups of similar sequences, based on the

similarity given by the dynamic time warping algorithm.

• We apply metaclustering in order to reinforce the robustness of our

result. It creates clusters of trajectory based on a similarity given by

how often two trajectories were clustered together in during multiple

executions of the previous step.

We designed our method as an observational method : our goal is to get

different representations of datasets in order to make observations about

the data or the model. For instance, we can apply the method on sub-

trajectories. Sub-trajectories are parts of a trajectory. For instance, if we

cut a trajectory halfway through the task, we have two sub-trajectory for

each subject : first half and second half. In chapter 3, we cut trajectories

at different points and try to create clusters on these sub-trajectories, in
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2 A model of problem-solving representation

order to determine if the cutting point is a moment that imply a shift in the

strategy of most subjects or not.

In order to show potential pros and cons of the method, we will use it on

two different problem-solving activities, in chapters 3 and 4. The code of

our work is available at https://gitlab.inria.fr/line/aide-group/creadata
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3 Creacube : an ill-defined problem-solving task

3 CREACUBE : AN ILL-DEFINED

PROBLEM -SOLVING TASK

3.1 PRESENTATION OF THE ACTIVITY

Creacube is an ill-defined robotic game-based activity : Four cubes are

presented on a table with a black point and a red point on it. The instruc-

tions are repeatable at will : Build a vehicle made up of four pieces that

moves by itself from the red point to the black point.

This is a creative problem-solving task. The subject assembles the cubes

in order to create a vehicle. Each cube has a different property, unknown

to the subject at first. They are also magnetic and can be assembled.

Their roles and names are :

• Wheels: the white cube has wheels that can be powered up to

move.

• Battery: the blue cube has a switch that power the other connected

cubes.

• Sensors: the black cube has sensors that look like eyes that send a

value to the wheels to make them move.

• Inverter: The red cube changes the value sent by sensors depend-

ing on its position in the four-cube configuration.

Only the first three are necessary to create a vehicle but the fourth must

be added to succeed. Four visible features can be discovered in this ac-

tivity. They are called affordances and they suggest how cubes can be

used : magnets on all cubes, switch on battery, wheels on wheels and

eyes on sensors.

A problem space representation of this task may be as follows :
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3.1 Presentation of the activity

CreaCube is an ill-defined robotic game-based activity (Leroy et al.,

2021; Romero, DeBlois, and Abadjyan, 2018). Building with modular

bricks is based on visual constructive play objects (Ness and Farenga,

2007). They are used to make learners engage into tangible program-

ming brick games (Kalmpourtzis and Romero, 2020; McNerney, 2004)

with modular educational robots (Leroy et al., 2021; Romero, 2019).

Robotic elements will influence the actions of the participant (Jamone

et al., 2016) towards the objects, leading to observation, assembly, etc.

In the context of an ill-defined problem solving task, these legal opera-

tors are not specified beforehand.

In the Creacube task, the participant is invited to manipulate four cubes

of different colors. Each cube has different properties such as wheels or

sensors, but these technological properties are unknown to the subject

when starting the activity. The goal of this CPS task is to build a vehicle

composed of four pieces that can move autonomously from one point to

another, without any further initial information about the problem.

Figure 3.1 shows the initial configuration of the activity : Four different

cubelets (red, white, blue and black) are presented on a table (with a

black point and a red point on it) to a player. The instructions, repeatable

at will, consist in one sentence : "build a vehicle made up of four pieces

that moves by itself from the red point to the black point".

Figure 3.1: The initial configuration of the Creacube task

In this task, operators are suggested by the physical features of the ar-

tifacts. For example, the blue cube has a switch on one of its faces, ap-

pealing to be activated. Gibson (1977) defined such suggestions given

by the environment as affordances. Norman (2013) adapted the con-
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3 Creacube : an ill-defined problem-solving task

cept of affordances to human-computer interaction to refer to "action

possibilities" that are perceivable by the subject. In Norman’s definition,

affordances depend not only on the physical capabilities of the subject,

but also on their goals, beliefs, and past experiences. Through their in-

teractions with the environment, the learner relates the perceived phys-

ical properties of the artifacts to prior knowledge (e.g., "a switch can

be flipped to activate a device") and generates new hypotheses. Affor-

dances are a way to make sense of stimuli, and a key point in the cre-

ative process is to be able to think of different appropriate ways to use

the material to solve the problem, using mechanisms such as analogy

to transfer knowledge from a task to another (Alexandre, 2020; Guilford,

1967). Considering the models of creativity developed in section 1.2, we

can associate this to the preparation phase, whereby one recognizes a

problem from both the external stimuli and the internal goals and prior

knowledge, thus combining both topdown and bottom-up mechanisms.

As for the Creacube task, each cube has a set of affordances. One of

them is common to every cube : they have magnetic faces. Magnets sug-

gest the way to connect the cubes with each other, by putting one mag-

netic face on another. In addition to this affordance, we can focus on

each cube individually :

• The white cube has wheels and can receive electrical power to move.

The main affordance here is the wheel, suggesting the way the ve-

hicle can move. An example of action to take when discovering this

affordance is to put the white cube on the table, wheels on the table.

• The blue cube has a switch that can power other connected cubes.

The main affordance here is the switch, suggesting the activation of

the battery.

• The black cube has sensors that look like eyes. Two different but

similar affordances were identified for this cube : sensors and eyes.

They serve a similar effect but depending on the subject, the "eyes"

were not identified as such but directly as "sensors", leading to po-

sitioning of the sensors at different positions than, for instance, the

front suggested by the "eyes". However, the "eyes" affordance is

here a slightly more precise affordance than sensors, and discover-

ing it is often equivalent to sensors (see section 3.2).
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• The red cube doesn’t have any affordance other than the magnets.

It is the only cube with all 6 faces with magnets. That said, it has an

effect on the structure.

In the following sections, we will refer to these for cubes by respectively

Wheels, Battery, Sensors and Inverter. For a structure to properly

function, the Battery switch needs to be activated to power the wheels.

The Sensors, depending on its distance to an obstacle, sends a signal to

the Wheels, making the wheels move with a corresponding speed. The

behaviour of this can be altered by the presence of the Inverter.

As for the problem space of this activity, we have here an example (illus-

trated Figure 3.2) of a problem structure with one initial state and multi-

ple goal states (i.e. structures of four that respect the conditions) with

different path constraints corresponding to different types of problems

(imbalance, unactivated battery etc.).

Figure 3.2: An abstract representation of the problem space of Creacube

We can use the CreaCube activity in order to study some transversal

competencies, also known as 21st-century skills, including problem solv-

ing, collaboration, creativity and computational thinking (Romero et al.,

2017)

We aim to use the method presented in chapter 2 on the Creacube activ-

ity. We aim to use it as an observation experiment to show the capabili-

ties and limits of the metaclustering method on the activity.
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3 Creacube : an ill-defined problem-solving task

3.2 DATA COLLECTION

To assess the creative process, we adapt criteria of Guilford (1967) into a

triplet:

• Fluidity: The number of final structures done by the subject;

• Flexibility: The number of conceptually different ideas, here the

number of different shapes ;

• Innovation: The number of uncommon ideas amongst participants.

Uncommon shapes are done by less than 5 percent of subjects.

Following Mercier (2022), we have a set of observables for Creacube:

At a given moment, only some observables are activated. We are inter-

ested in two observables in particular :

• F observables are all final structures. Only one can be activated at a

time. We can associate an observable with a color code correspond-

ing to the ordering of the cubes in the structure.

• A observables are all affordances. They are activated from the

moment they are discovered for the first time.

A sequence of a subject will be a sequence of these triplets with increas-

ing values.
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3.2 Data collection

Different tests have been develop to assess creativity, like the Alterna-

tive Uses Test (AUT) (Guilford, 1967), the Remote Associates Test (Med-

nick, 1968) or the Torrance test of Creative Thinking (Torrance, 1974,

Torrance, 1990). They were created to assess different aspects of cre-

ativity.

The Torrance Test of Creative Thinking (TTCT) is one of the most used

creativity assessment tools (Cramond et al., 2005, Besançon et al., 2011)

without being an universally praised model, with Almeida et al., 2008, for

instance, pointing out the format, content and demand on TTCT specific

tasks to explain some factors of the test, while Kim, 2006 critiquing the

originality measure.

The Torrance Test of Creative Thinking consists on sets of verbal and

figural tasks, with stimuli or not. For instance, a task in the TTCT can be

finding unusual uses of objects, creating a story, a drawing, etc. In its

first versions, the TTCT was based on the four criteria of the Alternative

Uses Test of Guilford, 1967 :

• Fluency (or fluidity) : The number of ideas the subject comes up

with;

• Flexibility : The number of conceptual domains the answers relate

to;

• Originality (or novelty) : A measure of how uncommon the response

of a subject is, compared to, say, other subjects. The less common it

is, the more original it is;

• Elaboration : A measure of how detailed the answers of a subject

are.

Later versions of the TCTT did not have flexibility (because of a high cor-

relation between fluency and flexibility), but instead a measure of resis-

tance to premature closure (a measure of tolerance to ambiguity), ab-

stractness of titles (the level of abstraction of titles for figural tasks e.g.

tasks in which pictures are drawn and named), and a checklist of thirteen

creative strengths.

In the CreaCube task, DT dimensions have been assessed as follows

(Kohler and Romero, 2023):

• Fluidity: the number of configurations made, regardless of differ-

ences between configurations;
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• Flexibility: the number of different configurations created by a sub-

ject.

• Originality (often called Innovation): the number of configurations

appearing in less than 5 percent of the total number of configura-

tions done by all subjects. This threshold is subjective, but this value

may be re-evaluated later, see section 3.3.

We work mainly on the model of Guilford (1967) as the TTCT model in-

cludes also measures not related to divergent thinking measure. The

measure of elaboration is not considered here as there is no need for the

subject to detail an answer and so to measure the level of detail of the

answer. One solution may be to consider that evaluation happens when a

configuration is tested.

The data collection of CreaCube experiments consists of sets of observ-

ables, and a set of observables represents the state of the activity at a

given time. In this context, an observable represents a specific element

of the scene : the actual configuration of cubes or the player’s behaviour.

Observables require a decision on the way direct analysis of the situation

or indirect one (through video analysis) or other data such learning ana-

lytics provided by the modular cubes can inform these observables. The

set of observables used for this study is based on the work of Mercier

(2022), as seen in Figure 3.3.

Figure 3.3: The set of observables of the CreaCube experiment, see Mercier (2022)
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3.2 Data collection

• Final Configurations - F F observables represent each a configu-

ration. For each structure shape, there are a lot of different configu-

rations, depending on the position of each cube and where specific

cube faces are situated (mostly wheels and eyes). For instance, we

will consider the structure F000, where all cubes are aligned. There

are 24 different configurations, some of them are detailed in Figure

3.3. For each configuration, the wheels may touch the ground or not,

and sensors can see obstacles (if directed to the bottom where the

table is) or not (if placed in front of the line for instance). For each

configuration, goal structures can exist but are not systematic (de-

pending on the orientation. Four letters S (sensors), W (wheels), B

(Battery) and I (inverter) are used to represent the order, and the

letter T or F (True or False) indicates if the structure can meet the

requirements to solve the problem.

• Partial Structures - AS AS observables indicate how many cubes

are connected with each other while not forming a configuration:

none (AS00), two (AS01), three (AS02) and four but with two uncon-

nected pairs (AS03).

• Switch - S S observables indicates if the switch is on or off.

• Affordances - AF AF observables indicates whether each affordance

detailed in section 3.1 is discovered or not.

• Emotions - E E observables are based on a specific model of emo-

tion representation using Plutchik’s wheel of emotions The model

has a classification of 8 main types of emotions, and observables

only take the main types into account.

• User - U U observables are related to actions taken by the subject,

both for understanding of instructions (playing the instructions) and

manipulation of cubes (number of cubes in hands).

• Testing, problems and rearranging - T, P and FL T observables

indicates whether the subject is testing a configuration, succeeding

or giving up. While testing, the subject can face problems. P observ-

ables correspond to main problems identified by observers that can

occur during an activity : imbalance of the structure, the structure

moving in the wrong direction, etc. FL observables correspond to
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changes of a structure without changing the shape in order to try to

solve a problem.

In Palaude et al. (2022), we discussed different ways to refine these

observables to get a better representation of the evolution of the ma-

terial environment by the sequence of observables, leading to observ-

ables less related to subjective interpretation of the situation (for FL ob-

servables for instance). Some suggestions are the consideration of au-

tonomous vehicles of three pieces, shapes of partial structures, and the

consideration of which cubes are in hand at any moment.

However, the data collection process was done beforehand, thanks to the

work of the ANR CreaMaker. Based on a subset of the CreaCube corpus,

selecting only children (7-12 years old) who performed the task individ-

ually (93 subjects), we have for each experiment a data set including a

time sequence starting when the subject hears the instructions for the

first time and stopping when the subject succeeds or gives up. In each

sequence, key events that can be observed have been annotated, result-

ing in 83 different types of observables annotated across all experiments.

Those time sequences are thus the symbolic trajectories. Using the DT

dimensions given by Kohler and Romero (2023), another representation

of the subject’s sequence can be specified, as shown in Figure 3.4.

Figure 3.4: A time sequence (in seconds) from the Creacube dataset (fluidity is red,
flexibility is blue and innovation is green)

Our dataset also includes, for each children, a second experiment done

right after the first one. Children had to perform the same task with the

same instructions. The main difference is that they did solve it once.
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However, as other dimension than learning are considered here (mostly

motivational), this second experiment is out of the scope of this thesis,

but could be a welcome addition in future work.

Based on the method presented in section 2.4, we will now visualize the

dataset in order to make observations about the subject’s trajectories

during the task.

3.3 DATA ANALYSIS

3.3.1 METACLUSTERING CREACUBE SEQUENCES

We apply Dynamic Time Warping on trajectories from the Creacube

dataset. We use sequences composed of the three Divergent-Thinking

components : innovation, fluidity, and flexibility.

We put every value into a matrix S : Si, j is the similarity between se-

quence i and j. We apply our metaclustering method : we compute possi-

ble results of every possible execution of k-medoid clustering for a given

value of k. Then we create a proximity matrix M ′ : M ′
i, j will be low (near

0) if sequences i and j are clustered together often. M ′
i, j will be high

(near 1) if sequences i and j are clustered often in different groups.

Based on it, we can see the hierarchy of proximity between sequences :

For instance, green trajectories are similar between each other, but are

very different from yellow and red trajectories.

Given the DT dimensions used to represent a subject’s sequence, we

do have three numerical sequences that are increasing over time, de-

pending on if a configuration of four cubes counts towards fluidity, flexi-

bility and innovation. These three dimensions are not independent, but
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this representation allows us to apply dependent Dynamic Time Warping

to the different sequences. This will be our measure of distance for the

metaclustering we are going to apply. Figure 3.5 shows an example of

DTW between two sequences of Creacube.

Figure 3.5: DTW applied to two different Creacube trajectories. Each point of the first
sequence is matched as to a point of the second sequence. Fluidity is blue,
flexibility is green and innovation if orange

Now we have a distance, we can apply our metaclustering method on

k-medoids executions. We will apply the method on k = 3.

The first step is to create a matrix M (the metamatrix for k = 3) of size

90 by 90, the size being the number of different sequences. M1,2 cor-

responds to the number of times sequences 1 and 2 were clustered to-

gether. The metamatrix is empty at the start of the metaclustering method.

Note that the matrix is symmetrical.

The second step is to compute every possible outcome of a k-medoid al-

gorithm. Assuming there is no loop in a single k-medoid execution, we

have a maximum of (90
3 ) different potential outcomes (we skipped com-

binations if two points were identical, resulting in the loss of one cluster

during the execution). Let us consider a result in which s1 and s2 are in

the same cluster, but in a different cluster than s3 .

The third step is to update the metamatrix to add the results of each spe-

cific execution. M1,2 is increased by 1, but neither M1,3 or M2,3 are in-

creased, because s3 was not in the same cluster. We do it for every other

outcome, even if they are identical to a previous one (as long as the ini-

tial points are different).

For our Creacube corpus, the resulting metamatrix is shown Figure 3.6.
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3.3 Data analysis

Figure 3.6: The metamatrix of all executions of k-medoid clustering for k = 3 of the
Creacube dataset. The brighter the color, the more often the points were
clustered together.

For instance, it is normal to have a really bright diagonal : a point is nec-

essarily clustered with itself. We need to convert this metamatrix into a

distance matrix, because the number of times two points are clustered

together is not a distance.

The associated distance is easy to compute: we can divide everything by

the total number of executions, and then the distance is one minus this

result. The resulting matrix M ′ (of size 90 by 90) is then

M ′
i, j = 1 −

Mi, j

M1,1

1

Each value is between 0 (the point to itself or identical sequences) and 1

(two points that were never clustered together).

We can then apply hierarchical clustering on this M ′ matrix. The results

specifically for k = 3 are shown Figure 3.7.

This can also be done for other values of k, namely 2, 4 and 5. We need

to choose which metamatrix is the more relevant for our clustering pur-

pose.

1As a point is necessarily clustered with itself, any other point of the diagonal is the same.
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Figure 3.7: Hierarchical clustering of k-medoids clustering of the Creacube dataset for
k = 3

For this, we decide to compute the silhouette coefficient of each result.

The silhouette coefficient is a measure of how similar an object is to its

own cluster (cohesion) compared to other clusters (separation). The sil-

houette goes from −1 to +1, and a high value indicates that the object is

well matched to its own cluster and poorly matched to neighboring clus-

ters. If most objects have a high value, then the clustering configuration

is appropriate.

Let’s consider a data point i in the cluster Ci , the cohesion is :

co(i) = 1
|Ci |−1 ∑ j∈Ci ,i ̸= j M ′

i, j

Similarly, the separation is :

mini ̸= j
1

|C j | ∑ j∈Ci
M ′

i, j

Finally, the silhouette S of sequence i is :

Si =
co(i)−s(i)

max{co(i),se(i)} , i f |Ci | > 1

The silhouette coefficient, as adapted from Kaufman and Rousseeuw

(1990) is then the mean silhouette of each point of the dataset.

For this metamatrix, the silhouette coefficient is 0.59. We want to choose

a value of k that is small while having a good silhouette coefficient. For

this, we compute the silhouette coefficient for each metamatrix we can

compute, from 2 to 5. The results are shown in Figure 3.8.

Now that we need to choose which k to choose, we are using a simple

elbow method (taking the value at the elbow of the curve). For the rest

of this section, we will use the metamatrix for k = 4. The associated

dendogram is shown in Figure 3.9).
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3.3 Data analysis

Figure 3.8: Silhouette coefficient of metaclustering on k-medoids executions on the
Creacube dataset for multiple values of k

Figure 3.9: Hierarchical clustering of k-medoids clustering of the Creacube dataset for
k = 4. Silhouette of 0.68

ANALYSING OUR CLUSTERS The first thing that we can notice with this

method is the apparition of identical sequences. They are at a distance

of 0, and there is an entire subgroup of sequences that are identical.

These sequences correspond to sequences in which the subjects fin-

ish the task with just one try : the first configuration of four is sufficient

to solve the problem. Subjects did not take the same time to do so, but

thanks to Dynamic Time warping, they are properly associated with each

other.

Our goal is to determine if the clusters we created here can correspond

to well-known strategies in the literature. For this, we decide to take a

look at the different medoids, and for each medoid, the point within their

group that is at the farthest distance from it. Figure 3.10 shows each of

these points.
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(a) Medoid of group 1 (b) Farthest point away within group 1

(c) Medoid of group 2 (d) Farthest point away within group 2

(e) Medoid of group 3 (f) Farthest point away within group 3

(g) Medoid of group 4 (h) Farthest point away within group 4

Figure 3.10: Medoids of each group and their farthest away points within the group.
Fluidity is red, flexibility is blue and innovation is green
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Unfortunately, this method is not very conclusive in terms of explainabil-

ity. Medoids look more similar to each other than to points from their own

cluster.

This can be explained by the nature of the Dynamic Time Warping al-

gorithm. As DTW tries to match points from sequences to points from

the other sequence, poor sequences (with little to no changes over time)

tend to be less distant to rich sequences (i.e. with multiple increases of

DT components over time). This leads to clusters centered around poor

sequences. It is then difficult to associate different problem-solving pro-

files to each clusters as we wanted to do. The only thing we can do is to

compare the different poor sequences with each other, and, except for

the first medoid that corresponds to immediate success (which is clearly

not the case for the farthest point away in its own cluster).

The method was not efficient for obtaining behavioural clusters. However,

we will now try to verify on subsequences of Creacube if the model is

relevant for identifying insights.

3.3.2 SEARCHING FOR INFLEXION POINTS WITHIN THE CREACUBE TASK

Another idea is to cut sequences in two : pre-cut and post-cut sequences.

We can cut them at a certain time (in half or at the quarter for instance).

We can also cut it when specific events are triggered.

For Creacube, the idea is to cut sequences at the discovery moment of

an affordance, for instance the wheels.

When we apply metaclustering on it, we can compute a derivation score.

The derivation score is based on the number of pre-cut pre and post-cut

post sequences on each cluster Ci

d(Ci) =

∣∣∣∣0.5 − pre(i)
pre(i) + post(i)

∣∣∣∣
If the derivation is 0.5, metaclustering properly separates pre-cut and

post-cut sequences. The lower the derivation is, the worst the separation

between pre-cut and post-cut sequences is.

For cuts at the discovery moment of wheels, switch and magnets, we can

observe that the derivation score is better than when we cut sequences

at the mean time of discovery. It means that these affordances are impor-

tant for trajectories’ shape.

113



3 Creacube : an ill-defined problem-solving task

An insight is a phenomenon corresponding to a sensation that we often

call a "Aha effect" or a eureka moment. Insight occurs when "what" could

be the solution emerges. This process is generally defined as immediate,

as it is the result of a restructuring of thoughts.

A question that we want to answer about the Creacube task is the pres-

ence of such insights :

Are there any insight moments within Creacube sequences ?

In particular, within the Creacube task, we postulate that insight may oc-

cur after the discovery of an affordance, allowing to shift the perception

of the activity. For instance, finding the wheels can change the mental

process from "how do I make a vehicle" to "How do I make these wheels

move". Such insights can occur immediately, later, or not happen at all.

The question we will try to answer now is the following :

Can we associate the discovery of affordances to insight moments within

the Creacube task ?

In order to answer this question, we need to determine what could be

an insight for our sequences. This requires a strong assumption : we

assume that an insight implies a change in problem-solving behaviour.

The restructuring of thoughts allows the subject to adapt their strategy to

better fit updated knowledge. This way, whenever an insight happens, a

shift in strategy may become visible.

Do affordances lead to shifts in Creacube sequences’ trajectories that

are significant enough to be associated to insight moments ?

Our hypothesis is that all necessary affordances (that are required to

find to create a valid structure) can be associated to insight moments.

The goal of this second experiment is to determine if, by using our meta-

clustering method, we can reach a conclusion that direct us towards the

validation or invalidation of this hypothesis.

CUTTING SEQUENCES FOR METACLUSTERING We are still using sequences

containing the three DT components trajectories used in previous section

: fluidity, flexibility and innovation. We will define the notion of inflexion

point as a point in a sequence from which the sequence that happens

after is different from the sequence that happened before. An inflexion
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point can not necessarily associated to an insight. For instance, if we

consider the point happenning after the first second of the task of each

sequence and cut each sequence at this moment, pre-cut sequences will

all be one-second long (and for Creacube, nearly all of them would be

empty) and will be very different from post-cut sequences.

We will consider the discovery of each affordance as a potential inflex-

ion point. For each of them, we create a new dataset composed of pre-

cut sequences and post-cut sequences with the cutting point being the

discovery of such affordance. For instance, for the affordance AF03

(switch), the dataset contains twice the number of sequences form the

Creacube dataset : half are sequences starting at the beginning of the

task and finishing at the discovery of affordance AF03, and the other

half are sequences starting at the discovery of affordance AF03 and fin-

ishing at the end of the task. For post-cut sequences, we need to sub-

stract each DT-component by their number at the start of the post-cut

sequence, because we want to compare the shape of the evolution and

not the value

For example, let’s consider the following sequence :

f l u i d i t y : { 0 , 0 , 0 , 1 , 1 ( d iscovery o f sw i tch ) , 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 }
f l e x i b i l i t y : { 0 , 0 , 0 , 1 , 1 ( d iscovery o f sw i tch ) , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 3 }
i nnova t i on : { 0 , 0 , 0 , 0 , 0 ( d iscovery o f sw i tch ) , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 }

would be cut in two separate sequences, with the post-cut sequence be-

ing reinitialized to 0.

pre−cu t w i t h cu t a t AF03
f l u i d i t y : { 0 , 0 , 0 , 1 , 1 }
f l e x i b i l i t y : { 0 , 0 , 0 , 1 , 1 }
i nnova t i on : { 0 , 0 , 0 , 0 , 0 }

post−cu t w i t h cu t a t AF03
f l u i d i t y : { 0 , 1 , 1 , 2 , 2 , 3 , 3 , 4 }
f l e x i b i l i t y : { 0 , 0 , 0 , 1 , 1 , 1 , 1 , 2 }
i nnova t i on : { 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 }

Doing this for each affordance gives each time a different new dataset.

We decided to create 5 specific cuts : AF01 (magnets), AF02 (wheels),

AF03 (switch), discovery of the subject’s first affordance, and discovery

of the subject’s last affordance. It is not possible to do it for the two other

affordances (eyes and sensors), are they are not found often enough to

still have a dataset to work on.

Doing so also revealed sequences from which affordances were not an-

notated. Some affordances must be found in order to solve the problem
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3 Creacube : an ill-defined problem-solving task

(the switch needs to be activated for instance to allow the cubes to be

powered), so sequences lacking those were removed. This reduced our

dataset from 90 sequences to 66 sequences.

We want to see if these cuts are better inflexion points than random cuts

done on sequences. We will then also perform cuts at specific time in

order to compare cuts. We will compare with multiple datasets for which

cuts were done not on the happening of specific events, but on a propor-

tion of the total time of the sequence, ranging from 10 % to 90% (before

and after that, some sequences are too short to be properly cut in pre-

and post-cut sequences).

PERFORMING METACLUSTERING ON K-MEDOIDS CLUSTERING TO COMPUTE THE

DERIVATION Our next step is to apply our clustering method on newly cre-

ated datasets. The idea behind the method is that the more pre-cut and

post-cut sequences are different, the greater the DTW distance between

those sequences. Thus, when creating clusters from our datasets, if pre-

cut and post-cut sequences are classified in different clusters, this is an

indication that they were different enough to be categorized differently.

Let us take the example of the AF03 (switch) cut dataset. We can apply

metaclustering on k-medoids execution for different values of k. For each

of them, similarly to the previous section, we compute the silhouette co-

efficient for each of them. The results are shown Figure 3.11.

Figure 3.11: Silhouettes coefficient of k-medoids metaclustering on the AF03-cut
dataset for multiple k values

Using the same elbow technique as we did in the previous section, we

decided to go with k = 3. The resulting hierarchical clustering is shown

Figure 3.7. The 66 first sequences are pre-cut sequences, while the rest

are post-cut sequences.
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Figure 3.12: Hierarchical clustering of k-medoids metaclustering on the AF03-cut
dataset for k = 3

Our goal now is to verify, for each cluster, the proportion of each pre-cut

and post-cut sequence. For this, we will compute an indicator that we are

calling the derivation.

DERIVATION COMPUTATION Derivation is a measure on how clusters are

properly separating pre-cut sequences to post-cut sequences. The goal

is to verify if pre-cut sequence and post-cut sequence are in different

clusters. This is a way to take into account that subjects may have differ-

ent behaviours, and a trajectory at the start of the task for a subject can

correspond to the trajectory at the end of the task for another.

Let pre(i), post(i) be respectively the number of pre-cut sequences and

post-cut sequences in cluster Ci . The derivation score of cluster Ci is :

d(Ci) =

∣∣∣∣0.5 − pre(i)
pre(i) + post(i)

∣∣∣∣
To get the general derivation score, we compute the weighted mean of

clusters’ derivation scores, weighted by the number of sequences.

Derivation scores range from 0 (both parts of complete sequences are

systematically in same clusters) to 0.5 (no pre-cut sequence is in the

same cluster as its associated post-cut sequence).

Figure 3.13 shows the different derivation scores obtained with cuts be-

ing a proporition of the total time sequence, that we will compare to the

resulting derivations of AF01, AF02 and AF03 cuts, that have a deriva-

tion of, respectively, 0.33, 0.37, 0.34.
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3 Creacube : an ill-defined problem-solving task

Figure 3.13: Derivation scores of different proportional cuts of the Creacube dataset

The first thing to note is that the better derivation scores are at the ex-

treme cut proportions. This is coherent, considering that even if DTW

can ignore small time differences, fluidity, flexibility and innovation in-

crease a lot more in the longer sequences. The more equivalent in size

pre-cut and post-cut sequences are, the less this effect is present.

The mean derivation of all time cuts is 0.34 with a standard derivation of

0.04.

• The mean time of discovery of AF01 (magnets) is at 32.2 % of a se-

quence. The derivation of AF01-cut is 0.33, and 0.37 for the 0.32-

cut.

• The mean time of discovery of AF02 (wheels) is at 27.7 % of a se-

quence. The derivation of AF02-cut is 0.37, and 0.36 for the 0.32-

cut.

• The mean time of discovery of AF03 (switch) is at 41.7 % of a se-

quence. The derivation of AF03-cut is 0.34, and 0.34 for the 0.32-

cut.

These cuts do not have a significantly better derivation than the mean

derivation of all time cuts, or than the cut at their mean time of discov-

ery. However, most good derivation scores (except the extreme points)
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happen during the first half of the task. This is coherent with the fact that

most important discoveries must be made at the beginning of the task

anyway : It is impossible to create a structure without sticking the mag-

nets together (thus discovering the affordance) and the wheels are more

apparent than other affordances and usually put on the table before the

beginning of the first configuration. While not indicating that specifically

one affordance is an inflexion point that changes a trajectory’s shape,

this shows that a shift occurs within the first part of the activity, and this

shift happens after that most affordances are discovered.

We think that these affordances may be associated to insights : they al-

low the subject to create their first configurations, allowing a shift in be-

haviours from random of observational approaches to potential trial-and-

error methods for instance. This is purely illustrative, as we are not able

to determine what kind of strategies the subject apply over the course of

the activity at this point of our study.

We will put these results in perspective with results from the next ex-

periment of chapter 4, and use them to discuss the potential use of the

method as a way to find insights in chapter 5.

3.3.3 D ISCUSSION : F IRST OBSERVATIONS ABOUT THE METHOD

We can make multiple observations of our results :

• Different clusters of trajectories do not necessarily correspond to

different problem-solving behaviours.

• Our method tend to create clusters with medoids that are poor tra-

jectories. Poor trajectories have less changes of states. They have

usually low dissimilarity scores with any other trajectories. This ex-

plains our first observation.

• Clustering cut sequences tend to show that discovering specific af-

fordances change the trajectories’ shape. This confirms that discov-

ering the switch, the wheels and the magnets have a big influence

on the problem-solving behaviour : they trigger insights. Insights

are immediate reconfiguration of the problem’s representation of the

learner.

In this chapter, we tried to use a metaclustering method in order to visu-

alize and analyse the Creacube dataset, discovering uses and limits of

the method that we may extend to a more general case :
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• As a partitioning method, medoids tend to be as "easy to associate"

to other sequences by the Dynamic Time Warping algorithm. This

implies that medoids will be usually poor sequences, that are se-

quences with minimal symbolic state shifts. At the other end of the

spectrum, furthest neighbors of medoids will be usually rich se-

quences, that are sequences with multiple symbolic state-shifts.

This may be corrected by choosing a more appropriate measure

than the DT-component for this specific use. For instance, having

access to multiple trajectories with similar ends can help, as we will

have for the Outerwilds experiment in next section 4. This doesn’t

mean that correcting this method will allow, to get clusters of similar

trajectories that are interpretable and explainable, but rather this

change can help to lean towards this goal.

• From observation of partitioning pre-cut and post-cut sequences

cut at different times, we associated the precision decrease of our

clustering method to a natural decrease of precision around the cen-

ter of a task (not necessarily the middle). We can imagine that the

derivation computed on multiple time-cuts will show a sort of para-

ble, going down from a maximal derivation score of 0.5 (meaning a

perfect separation) to the central moment of the task before going

up to a maximal derivation score at the end, with perfect derivation

scores decreasing only some time after the beginning and increas-

ing back to maximal score at some time before the end. We will dis-

cuss this hypothesis in chapter 5.

• From observation of partitioning pre-cut and post-cut sequences,

we think that the three mandatory affordances that are AF01 (mag-

nets), AF02 (wheels) and AF03 (switch) and their discovery (or the

moment where all three are discovered) are key moments of the ac-

tivity. As pre-affordances and post-affordances trajectories are more

easily separated by our method with affordances rather than their

associated mean time of discovery, we postulate that this is an indi-

cator that these discoveries are more than inflexion points by being

insights, allowing a change in the mental state of the learner.
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4 OUTER W ILDS : LONG TASKS AND

ADAPTIVE BEHAVIOURS

4.1 OUTERW ILDS, DATA COLLECTION AND POTENTIAL

BIASES

Outer Wilds is a video game about exploring a solar system. It is also an

ill-defined problem : there is no other obstacle to finish the game than

the subject’s knowledge of the method to solve it.

We want to observe long sequences of ill-defined problem-solving. It

has been possible to collect a rather small dataset of 14 subjects on

which we annotated their playthroughs. We also conducted multiple semi-

directed interview to try to get their strategies.

The experiment bias is present here. Self-Regulation contains motivation.

Players often reported a motivational boost from their participation :some

would have given up if they weren’t part of it.

Outer Wilds is a video-game developed by Mobius digital and published

by Annapurna Interactive. It is a puzzle-game in which the player is an

astronaut that is going into space, in order to unravel the secrets of an

ancient, long-gone species called the nomais that lived in their solar sys-

tem. Before continuing this presentation section (and the analysis

we are going to do on the game), we highly recommend the reader to

try and play the game themselves. The only kind of progress in the

game is the acquisition of new knowledge via the exploration of this

solar system. This PhD thesis will not go into all the details of the

game, but it will certainly alter the experience for the reader if they

were to play it after. The game progression is interesting in two points :

• Every time the player dies in the game, or every 22 minutes of play

without death, the game resets to its original state (the exception be-

ing the ship log, as developed below). In the game, this is presented

via a time loop.
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• It is possible to reach the end from the very start of the game, but

it is very unlikely, as the process is unknown from the player at the

beginning. The only way to progress in the game is through the ac-

quisition of new knowledge. This knowledge is discovered over time.

Once every major piece of information is discovered, the player can

infer the process to finish the game.

Three important pieces of information needs to be gathered in order to

reach the conclusion :

• The player must learn the location (and the way to go to such loca-

tion) of the winning state. In the game, this corresponds to the dis-

covery of The Vessel, the spaceship of the previous ruling species

of the solar system.

• The player must power the vessel with a source of energy that it is

possible to find in the center of a planet called Ash Twin.

• The player must learn a code to enter in the vessel once the energy

source from Ash Twin powers it. This can be obtained in a location

called the Probe Tracking Module.

From these three pieces of information, the player must infer that they

need to take the power source from Ash Twin in order to bring it to the

Vessel in order to enter the code to finish (and – in our case – win) the

game. Each of these pieces of information is the culmination of three dif-

ferent intrigues, that are separated in the game by different color codes,

respectively red, orange and green. A fourth and optional intrigue exists,

associated to the purple color, that reach its conclusion by the encounter

with a nomai called Solanum. Finally, other pieces of informations un-

related to a specific intrigue is colorless. A typical playthrough of this

videogame is around 20 hours of play. As such, it is rarely achieved in

only one session of play, and players are invited to finish it through mul-

tiple sessions. There is no particular order in which any information can

be obtained. All planets are accessible from the start of the game and,

apart from the uncertainty on how to reach some places, the player can

go wherever they want From this description of the game concept, we

can associate it with an open problem, in which, at the start, neither the

actions that are possible, nor the way to reach the end are known to the

player. However, it differs from Creacube in one major point, which is the
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time required to finish the task. We want to study this task as we want

to determine if, thanks to our model, we are able to find a potential influ-

ence of the pauses in-between sessions on the behaviour of a player.

DATA COLLECTION We collected and annotated the playthroughs of 14

different players. From this little corpus, 2 of them (17%) are female and

all of them (100%) are french. 7 of them (50%) are between 18 and 25

years old, and 7 of them (50%) are between 26 and 30 years-old. Finally,

83% of them have a high-level of education (license’s degree) while 17%

are working in the artistic industry. All of these informations are based on

a questionnaire answered by subjects at the start of the experiment. The

goals of this research was completely explained to the players before-

hand, and they knew that their playthrough was being recorded. They

were also asked to participate to semi-directed questionnaires before

and after each session. The details of the questionnaires are accessible

in Appendix C.

B IASES We need to point that our corpus is highly imbalanced in terms

of parity, level of education and even age. These imbalances, when study-

ing problem-solving behaviors, may lead to the loss or underestimation

of the prevalence of some problem-solving behaviors. Our goal with this

experiment is to do a preliminary study of the task as, unlike Creacube,

Outer Wilds is not studied a lot. Our dataset of annotated playthroughs

will be accessible online for whoever wanting to iterate on it. For now,

this preliminary work’s purpose is to determine properties and generate

observations on the task thanks to our method. The potential extensions

of this work will be discussed in section 4.4. From the semi-directed

questionnaires, we can also point the well-known observation bias : play-

ers reported that they were behaving differently from what they would

have done if they were not part of a scientific project.

« Je pense que je me suis comporté différemment de ce que j’aurais fait

d’habitude parce que je savais que j’étais observé. »

(I think I was behaving differently from usual because I knew I was

recorded.)

In particular, it seems that the main perceived difference was a differ-

ence in motivation.
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« Si je n’avais pas fait partie d’une expérience, j’aurais abandonné il y a

un moment. Je serais allé voir une soluce pour continuer ! »

(If i wasn’t part of an experiment, i would have given up a long time ago. I

would have checked a solution to advance!)

As motivational processes are part of self-regulation skills, this is an im-

portant point to consider. For now, we make the assumption that this

motivational change was not responsible for significant changes in the

session-to-session planning and execution of the task.

4.2 COLLECTING AFFORDANCES AND CHOOSING RELEVANT

MEASURE

Important annotations we did was about the update of what is called a

ship log in the game. The ship log contains pieces of informations discov-

ered by the learner. It is a sort of external memory for them. Every time a

player discovers something new, the ship log is updated. For trajectories,

we considered multiple sequences based on multiple observables :

• Color sequences : ship log updates can be of 5 colors : green, red,

orange, purple and colorless. They correspond to 4 intrigues, the

purple one is optional. Colorless updates do not relate to a particu-

lar intrigue.

• Location sequences : ship log updates can come from multiple

locations. We reduced them to 8 different class of locations. They

mainly correspond to each diferent planet the player can explore.

Details can be accessed in Appendix D.

We study trajectories based on color sequences, location sequences, or

both.

AFFORDANCES AND PLAYTHROUGHS ’ ANNOTATIONS In Outer Wilds, the

player can finish the game from the start, but the method to do so is un-

known. The progression of the game consists only of the gathering of

new information. The game has already an in-game method to measure

such gathering : the ship log. It starts with a limited amount of informa-

tion, and is updated with each piece of information that the game consid-

ers as a relevant piece of information, the moment the game considers
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that the information is obtained. The player may already know an infor-

mation without having collected it. It is also possible that the player may

not consider a piece of information even if the game considers that they

should. Our main assumption for the actual knowledge of the player is

strong : we will consider from now on that the knowledge of a player at

any given time corresponds to the state of the ship log at this very same

time.

Figure 4.1 shows a completed ship log with the number of different infor-

mations written as sentences accessible on each element of the graph1 .

Figure 4.1: The Outer Wilds shiplog completed. Each color corresponds to a different
intrigue. The biggest rectangle on each color correspond to the main loca-
tion of the intrigue, not necessary the final one.

The update of a shiplog allows to determine when a player gains new

knowledge. Usually, whenever the ship log updates itself, a sound and

a textual notifications happen. The exception is whenever the astro-

naut doesn’t have their spatial suit on, which can happen at any time but

mostly happen in the first hour of the game, before the player has access

to it. We decided to annotate every time an update happens. Our first

affordances are what we call update affordances. To each update, we

associate the general location in which the information was discovered

(from a total of 8 different general locations), which color corresponds

to the update (from a total of 5, including colorless) and what part of the

1For more details, the ship log is accessible at https://outerwilds.ventures
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ship log was updated precisely. In case of multiple squares updated at

the same time, all updates are annotated. Even without notifications, it is

possible to annotate updates by witnessing the trigger of the update. For

more details on how annotations were performed, see Appendix D.

In addition to the acquisition of new knowledge, the player can perform

actions. We decided to annotate some of them (see D for more details).

Each annotations includes the general location in which the action was

performed :

• talk : Whenever the player talks to a character, the name of the char-

acter is noted. While the player stays facing the character and starts

talking to them again after finishing one dialogue, a new talk is not

annotated.

• enter : This is annotated every time the player enters a different

planet. Entering a planet means to land on it or to enter its atmo-

sphere, depending on the planet.

• teleport : This is similar to enter, except teleportation can happen

only on specific locations of planets and is then more precise than a

simple enter.

• die variants : Every time the player is sent back to the beginning of

the time loop. Most of the time, it is by dying in different ways, but it

corresponds to every way to start a new loop, for instance leaving

the game back to the menu and restart it is a die variant.

• ship_ log and end_ ship_ log : Every time a player looks at the ship

log is annotated. This way, we are capable of

• Other, more minor actions (like sleeping at a campfire or roasting a

marshmallow) were annotated in case future works need them.

For each annotation, the timestamp of the session and of the entire playthrough

was annotated.

RESEARCH QUESTIONS AND HYPOTHESIS Our first goal, as for Creacube,

is to see if it is possible, with the metaclustering approach, to determine

different classes of behaviours. However, we think that, given how small

our corpus is, it is very unlikely.
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Each playthrough of Outer Wilds can be decomposed into multiple gam-

ing sessions. In total, if we consider sessions instead of entire playthroughs,

we have a dataset of 132 sequences. With this decomposition, our goal

is to determine if it is possible to classify different session-to-session

behaviors. In particular, if such classification can be done, we will try to

identify if there is a special moment, an inflexion point that could be asso-

ciated to insight, that could corresponds to a change in player behaviour.

Is it possible to classify playthroughs or sessions in terms of player

behaviour, and if so, is there any sort of insight moment inside such

sequences ?

At this sake, we need first to determine a proper measure of the advance-

ment of the player within the game, in order to apply dynamic time warp-

ing on sequences or subsequences and allowing us to use a metacluster-

ing technique on k-medoids executions, as described in section 2.

DEFINING RELEVANT MEASURES Given these different annotations, we

need to define a way to represent each playthrough by one or more tra-

jectories the same way that was done in the previous experiment (see

section 3). The first thing to note is that we are not able to define trajec-

tories based on the same idea of the Guilford AUT from previous section,

in particular when it comes to innovation. We observed that most people

did find nearly all of the knowledge accessible in the different locations,

with the exception of one specific location (the volcanic testing site was

found by less than half of the player). This impossibility comes from the

fact that Outer Wilds is an open problem-solving activity that was not

specifically designed to allow creative outcomes. Creative processes are

solicited over the course of a playthrough, and creative solutions can be

found for specific subtasks, some puzzles inside the game having multi-

ple solutions. We focus on open problem analysis, so it is not a problem

for our research questions, but it has to be noted.

talk, enter, teleport and die variants will not be our focus. Based on the

results of the previous chapter 3, we observed that actions for which the

number varies greatly from one playthrough to another could lead to the

same problem of clusters with sequences with little to no actions taken

instead of a separation in, say, different behaviours implying different

trajectories. The actions may not occur the same amount between play-
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ers depending on the skill of each player, that is why we decide to not

consider them.

From the annotations of the player’s progression, we can focus on both

characteristics of a ship log update :

• Given that each update has a color associated to it, we can define 5

different sequences associated with 5 different colors, tracking pro-

gression on each intrigue : red, green, orange, purple and colorless.

Every time an update happens in the ship log, we can increase the

"progress value" of the corresponding color. We could add different

weights to different updates, because some informations are less im-

portant than other. However, it would be difficult to do so, because,

even if some informations are clearly less important, it is not usually

obvious to the player which of two updates was more important. To

sum up, every time an update happens, we can increase by one the

"intrigue-color" sequence associated with it.

• Following the same logic, we can create different sequences based

on the location where the update was found, for a total of 8 different

increasing sequences.

• We can also consider both at the same time, abstracting a playthrough

by the trajectory of 13 different increasing sequences.

From these decompositions, we can expect two extreme behaviours and

multiple variants in-between those behaviours : a planet-by-planet or an

intrigue-by-intrigue method, and other, unrelated to both, methods.

It is not relevant to consider each ship log entry as a separate sequence,

as it would lead to 60 sequences that would be relevant once or twice

only.
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4.3 RESULTS : WHEN INSIGHT DIFFER FROM INTUIT ION

4.3.1 K-MEDOIDS METACLUSTERING FOR PLAYTHROUGHS AND

SUBSEQUENCES

We observed that :

• We are not able to create categories of player behaviour based on

our trajectories. However, thanks to the semi-directed interviews,

we observed mostly a planet-by-planet method or a more freeform

method. Freeform methods correspond to players following clues as

they come, not following a particular order.

• We separated each one’s entire playthrough into all different gaming

sessions done by that player. We were not able to create a proper

classification. The problem is that Dynamic Time Warping cannot

erase too big differences of playtime. A player finds more informa-

tion in a 5-hour session rather than in a 1-hour session, in general.

We can compare entire playthrough because the total number of

new information is roughly the same between subjects. This is not

the case for gaming sessions

OBSERVATIONS ON ENTIRE PLAYTHROUGHS Given how small our dataset

is, it is difficult to extract something else than observations about the

different clustering methods applied here.

Figure 4.2 shows silhouette’s evolution over the number of clusters for

the different measures we defined previously : color, location and color-

location trajectories. We will use the elbow method as a way of choosing

a potentially more relevant number of clusters. As such, for each method,

we decided to go with 5 clusters for color trajectories, and 4 for location

and color-location trajectories. The hierarchical clustering based on the

metaclustering of k-medoids executions is shown in Figure 4.3.

As stated previously, this does not allow us to reach a general conclusion

about general strategies. However, from our semi-directed interviews, it

seems that, while planet-by-planet method seems to exist, intrigue-by-

intrigue methods are less apparent. We have several explanations for

these :
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4 Outer Wilds : Long tasks and adaptive behaviours

(a) Silhouettes for color trajectories (b) Silhouettes for location trajectories

(c) Silhouettes for color-location trajecto-
ries

Figure 4.2: Silhouettes of k-medoids metaclustering for three different representations
of players’ trajectories

• Planet-by-planet methods are easily formulated by players. In pre

and post-session interviews, several players stated that they were

following such method :

« Aujourd’hui, je vais essayer de finir Léviathe. »

(Today, I’ll try to finish Giant’s Deep.)

• Intrigue-by-intrigue are less formulated by players. As they are not

sure that they correspond to different, mostly unrelated intrigues,

the method they formulate is to follow clues as they come. This im-

plies that, while they could be following an intrigue for some time,

they may be put on the road of another one without noticing a change

(or without caring), and jump from intrigue to intrigue during the

play.

« Je vais me laisser porter par le jeu. // Je me suis laissé porté par

ce que je lisais. »

(I’m going to let myself be carried away by the game. // I let myself

be carried away by what I read.)
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4.3 Results : When insight differ from intuition

(a) Color, k = 5 (b) Location, k = 4

(c) Color-location, k = 4

Figure 4.3: Hierarchical clustering of metaclustering on k-medoids executions for values
of k determined with the elbow method

• The planet-by-planet method is easier to apply. Most locations in

each general location can be accessed without needing knowledge

coming from another planet. As such,it is easier to spend multiple

sessions on the same planet to try to "finish" it. Even if not every-

thing is found on a planet, moving from a planet to another brings

the knowledge discovered in the previous one, allowing complete

more easily the planets that would require knowledge from other

ones.

• The intrigue-by-intrigue strategy is also difficult to follow with our

system of annotation. Even if a player was formalizing such "wan-

dering along the game" method, it is easy for them to stumble upon

places unrelated to the intrigue that they complete, and even if they

were voluntarily ignoring other intrigues, they are not usually capa-

ble of predicting if the new place they reach is related to their cur-

rent intrigue or not.

In addition to this observation, we can observe that neither intrigue-by-

intrigue and planet-by-planet methods were fully followed for the entirety

of a playthrough. This is normal, as knowledge to solve puzzles inside

one planet or for one intrigue can be obtained on other planets, or while

following other intrigues. This process can be cut by insight or intuition

processes, but there are multiple occurences of such obstacles, and it

greatly reduces the probability that a player finishes it following only one
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of the aforementioned method from start to finish. This is similar to well-

known exploration-exploitation strategies. The methods we were hypoth-

esizing at the beginning of this section can refer to exploration strategies,

alongside random exploration : there is a first phase of exploration in

which a player gathers as much knowledge as possible, by following dif-

ferent methods (trying to investigate each planet fully, going at different

places every time they reset, trying to follow the path they think the game

gives them etc.) and an exploitation phase in which the player tries to

complete their understanding of all of the intrigues for the completion of

the game, or the completion of the ship log (a complete ship log not be-

ing required to finish the game). We will keep this observation in mind

when tackling sequence cutting in section 4.3.2

OBSERVATIONS ON GAMING SESSIONS We cut our dataset of playthroughs

into 154 gaming sessions of varying lengths (the players were asked

to play between 40 minutes and 6 hours every time). Each session has

every sequence (color or location) reset to 0. This means that we have

trajectories for each individual gaming sequence. Our goal is to see if, by

getting different clusters, we are able to determine if there are redundan-

cies in, say, the beginning of each player in terms of obtained knowledge.

This may lead us to understand potential session-to-session behaviours.

Instead, the results showed a limit to the model that is worth discussing :

the problem of high differences in terms of sequence length.

To illustrate this, we are going to use our hierarchical metaclustering

method on k-medoids clustering only for color trajectories. The silhou-

ette coefficients are accessible on Figure 4.4.

Figure 4.4: Silhouette coefficients of metaclustering on k-medoids executions for differ-
ent values of k
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Given how bad the silhouette coefficients are, we decided fix k to 2. Fig-

ure 4.5 shows the results we obtained by applying hierarchical clustering

on metaclustering on 2-medoids executions.

Figure 4.5: Hierarchical clustering on metaclustering for k = 2 on color trajectories

From this result, we should consider subsequence 116 as an entire set

alone, while the rest is in the other cluster. This can be explained by

cluster length. The subsequences that are clustered alone from the rest

(namely subsequence 116, 10, 58 and 109) were longer than other sub-

sequences. A typical subsequence and gaming session was around one

or two hours of game time, while those sessions are all exceeding the

five hours mark. This has one major implication : in a 5-hours session,

a player tends to discover more knowledge than in a 1-hour one, even

when erasing gameplay speed. To recall our method, Dynamic Time

Warping, the algorithm we use to compare trajectories, more precisely

dependent Dynamic Time Warping, allows to erase small differences in

terms of speed. For instance, for creacube, two players doing nearly the

same thing with a difference of 5 seconds are nearly identical in terms of

DTW distance. The same is true here : if a player find in a 2-hours ses-

sion what another found in a 1-and-a-half session, the DTW distance

between them is small. The problem is that DTW erases only differences

in execution speed, but not in terms of quantity of information obtained

over time. When a 5-hours session has multiple discoveries that could

not have been discovered in a 1-hour session, the difference between

both sessions cannot be erased. The only comparable trajectories, in

this case, would potentially be between the 5-hours session of a player

and the fusion of multiple 1-hour sessions into one for another. Another
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4 Outer Wilds : Long tasks and adaptive behaviours

possibility would be to arbitrarily cut longer sessions into smaller ones.

However, in any case, this would not correspond anymore to "session-to-

session" trajectories.

To conclude, for our dataset specifically, we observed that it does not

seem possible to extract session-to-session behaviours with our meta-

clustering method. We will propose multiple improvements of what we’ve

done in the discussion section 4.4.

4.3.2 TRYING TO FIND INFLEXION POINTS IN PLAYTHROUGHS

We apply the same cutting method that we used for Creacube in section

3.3.2. Our main cutting ideas were the following :

• Cutting at the end of an intrigue : Does the player behave differ-

ently after ending an intrigue ? Our observation tend to say no. This

is not surprising. Players do not know usually that they reached the

end of the intrigue. Thus, they do not change their strategies.

• Cutting based on the time passed in the ship log : Usually, play-

ers do not need the ship log in the first part of the game. Plenty of

unexplored locations are accessible. Players can easily progress

without it. In the second part of the game, finding new locations be-

comes difficult. This could mean a switch from an exploration phse

to an exploitation phase. Our hypothesis is that players are reading

the ship log more often and longer in the second part of the game.

This is not true for every player.

Based on this observation, we considered that, after a given propor-

tion of the total time spent into the ship log, we switch from the first

to the second part.

We cut sequences at different given proportions because we don’t

know when players go from one phase to another.

However, we show that we do not find any cut that is better than its

mean-time of happening. We think that this is because Outer Wilds

is a game of intuition. Intuition is different than insight. Intuition is

a slow process. Changes in the mental representation of the learner

is progressive. This would be why there is no clear moment of switch

in trajectories’ shape : evolution is slow and not perceivable.
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EXPLORATION AND EXPLOITATION In this section, similarly to what we did

for Creacube (see section 3.3.2), we want to cut entire playthroughs into

two different sequences, in order to see if the cutting point is a good indi-

cator of a shift in strategies. Based on what we observed in the previous

section, our first way of cutting sequences will be based on an under-

standing of exploration and exploitation. For this, we are going to use the

ship log, based on what some players where explaining at the end of the

playthrough.

Au début de regardais pas du tout le journal de bord, mais quand je suis

arrivé à la fin et que ça devenait difficile d’avancer, j’ai commencé à le

regarder pour savoir quoi faire ensuite.

At the start I was not reading the ship log at all, but when I was reaching

the end and it was becoming difficult to progress, I started to read it to

know what to do next.

Given this, our hypothesis is that the time reading the ship log is longer

over time, because it becomes difficult to find where to explore next. This

corresponds to an exploration-exploitation strategy, in which the player

starts to read the ship log once the first exploratory part is done and the

exploitation part begins.

Figure 4.6 shows an example of the cumulative percentage of ship log

accesses over sessions. We can observe a change around session 6

or 7, from which the player spends more time inside the ship log than

before.

Figure 4.6: Cumulative percentage of ship log accesses over sessions
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To transform this observation into a cut, we define a threshold separating

what we imagine is the exploratory part and the exploitation part. This

threshold may differ from one to another, so we will apply our method to

multiple values of threshold, namely 20, 30, 40 and 50 %.

END-OF- INTRIGUES CUT Another idea is to cut sequences whenever a

player reaches the conclusion of an intrigue (solanum, ash twin, orbital

probe cannon or the vessel). Unfortunately, we face two caveats with this

method :

• First, most intrigues are finished near the end of the game. From the

sequences we have in our dataset, most players reach the end of

the intrigues nearly at the same time, when they discovered most

of all the informations there is to know in the game. This would im-

ply the same problem as the one we faced in previous section 4.3.1

: Pre-cut sessions would be significantly longer than post-cut ses-

sions, in terms of time and in terms of number of updates. Our method

would separate pre-cut and post-cut sequences into two different

groups.

• As external observers, we know that these moments are the end of

an intrigue, but this may not be clear to the player, potentially lead-

ing to nothing.

In the end, we decided to try once by cutting at the meeting with Solanum

(end of the purple intrigue), in addition to other cutting methods, to be

able to put other results in perspective.

STANDARD CUTS As we did in Creacube, we will create multiple cuts de-

pending on nothing else but the time spent on the activity. For instance,

sequences will be cut in half in the middle of the sequence (in terms of

time played). This will allow to get standard results to compare other

cuts. The different cuts will do are the following: 1
4 , 1

3 , 2
5 , 3

7 , 1
2 , 4

7 , 3
5 , 2

3 , 3
4 .

CHOOSING THE CORRECT NUMBER OF CLUSTERS For each cut defined pre-

viously, we create the evolution of the silhouette coefficient of the appli-

cation of metaclustering on dataset consisting of pre-cut and post-cut

sequences. As a reminder, we consider that a post-cut trajectory has

136



4.3 Results : When insight differ from intuition

all of their sequences reset to 0, in order to compare only what happens

within the trajectory to other trajectories.

Figure 4.8 shows the set of silhouette coefficient for standard cuts.

(a) Color-location, cut = 1
4 , choice: 3 (b) Color-location, cut = 1

3 , choice: 4

(c) Color-location, cut = 2
5 , choice: 4 (d) Color-location, cut = 3

7 , choice: 4

(a) Derivation score depending on the time
cut proportion

(b) Derivation score depending on the
shiplog completion threshold

Figure 4.8: Derivation scores of hierarchical metaclustering of k-medoids executions for
each cut

When facing unusual value, as we want to separate roughly two cate-

gories of sequences, we opted for 2 as a value for k. We then did the

same for the solanum and thresholds cuts, as shown in Figure 4.10 and

4.11
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From these silhouettes, we obtain results when applying metaclustering

for the chosen values of k available Figures 4.12, 4.13 and 4.14. Using

the derivation method explained in section 3.3.2, we can compute the

derivation for each result.

As a reminder, the derivation is an indicator of how properly separated

are pre-cut and post-cut sequences : a cluster with either pre-cut se-

quences or post-cut sequences has a derivation of 0.5, while a cluster

with an equal mix of both has a derivation of 0. The derivation scores are

represented in Figure 4.8 and has an interesting shape.

In comparison to Creacube results, most of the standard cuts have a

derivation of 0.5, which means that pre-cut and post-cut are successfully

classified in different clusters. This is true even for cuts in half, so we

can dismiss the problem of sequences of different sizes. This has two

different implications :

• First, it is not possible to really compare specific cuts like thresh-

old cuts or intrigue cuts to standard cuts as we did before, as most

standard cuts allow to properly separate pre-cut and post-cut se-

quences. It doesn’t mean that such cut cannot exist, but rather than

our method cannot help to notice such cut.

• On the other hand, this also means that, based on what we see of

a sequence, we may be able to determine whether it is at the begin-

ning or at the end of a playthrough. This is interesting, as it is more

related to the notion of intuition rather than insight : there could be

no particular inflexion point, but rather, a diffuse evolution that leads

the player from start to finish. This is coherent with the progressive

understanding of the game’s big picture from players: a progressive

understanding on what is going on in the game, even with specific

pieces locked behind puzzles locked, puzzles, that, on the contrary,

necessitate a ah-ah moment to be solved.

In addition, the quarter cut and the 20% threshold cut have a smaller

derivation score in comparison to the rest, which means that some pre-

cuts were classified inside post-cuts groups and/or vice-versa. This does

not lead us to a strong conclusion, but rather an other clue of a potential

exploration-exploitation strategy : the entire solar system has undiscov-

ered knowledge at the start, the first part of a playthrough (in terms of

ship log consultation or just time passed in the game) are richer in terms
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of number of updates, leading to similar increasing numbers between

pre-cut and post-cuts. The exploration strategy does have a decreasing

value over time, as the number of unexplored areas decrease, and a ran-

dom exploration cannot lead to new knowledge anymore.

Again, this is just an observation of what could be interpreted from the re-

sults given how the game and our annotations work. Our method doesn’t

allow to make strong claims about what can be observed, but rather

give more clues for reaching understanding of tasks and task-related

behaviours.

We will now sum up our observations and discuss what could be done to

improve and elaborate on our work.
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(a) Color-location, cut = 1
2 , choice: 3 (b) Color-location, cut = 4

7 , choice: 3

(c) Color-location, cut = 3
5 , choice: 4 (d) Color-location, cut = 2

3 , choice: 2

(e) Color-location, cut = 3
4 , choice: 2

Figure 4.9: Silhouette coefficient for multiple values of k for k-medoid metaclustering
(standard cuts)
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(a) Color-location, cut = 20%, choice: 4 (b) Color-location, cut = 30%, choice: 4

(c) Color-location, cut = 40%, choice: 4 (d) Color-location, cut = 50%, choice: 3

Figure 4.10: Silhouette coefficient for multiple values of k for k-medoid metaclustering
(threshold cuts)

Figure 4.11: Silhouette coefficient for multiple values of k for k-medoid metaclustering
(solanum cut, color-location choice: 2)
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(a) Color-location, cut = 1
4 , k: 3, derivation :

0.35
(b) Color-location, cut = 1

3 , k: 4, derivation :
0.46

(c) Color-location, cut = 2
5 , k: 4, derivation :

0.5
(d) Color-location, cut = 3

7 , k: 4, derivation :
0.46

(e) Color-location, cut = 1
2 , k: 3, derivation :

0.5
(f) Color-location, cut = 4

7 , k: 3, derivation :
0.5

(g) Color-location, cut = 3
5 , k: 4, derivation :

0.5
(h) Color-location, cut = 2

3 , k: 2, derivation :
0.5

(i) Color-location, cut = 3
4 , k: 2, derivation :

0.5

Figure 4.12: Hierarchical metaclustering of k-medoids executions (standard cuts)
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(a) Color-location, cut = 20%, k: 4, deriva-
tion : 0.35

(b) Color-location, cut = 30%, k: 4, deriva-
tion : 0.5

(c) Color-location, cut = 40%, k: 4, deriva-
tion : 0.5

(d) Color-location, cut = 50%, k: 3, deriva-
tion : 0.5

Figure 4.13: Hierarchical metaclustering of k-medoids executions (threshold cuts)

Figure 4.14: Hierarchical metaclustering of k-medoids executions (solanum cut, color-
location, k: 2, derivation : 0.5)
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4.4 D ISCUSSION : OBSERVATIONS AND IMPROVEMENTS

• On such a small dataset, it is difficult to make preliminary observa-

tions and classify entire playthroughs of players.

• It is not relevant to use metaclustering on gaming sessions as the

differences in terms of length of play is too significant between 1-

hour and 5-hours sessions, the difference in execution speed being

irrelevant when a player can do much less in the first one than in the

second one.

• It doesn’t seem that there is an insight moment at the scale of the

entire game, but rather a diffuse progression corresponding to a

slow understanding of the game’s big picture.

• The amount of discovered knowledge in the first two or three ses-

sions can match the amount of the entire following sessions, orient-

ing us to an exploration-exploitation method that could be inherent

to the game.

We can imagine multiple improvements to build upon this experiment. For

instance, the dataset could be enriched with new points. As another idea,

future experiments could limit the playtime of each gaming session.

To conclude on the analysis on our small Outer Wilds corpus, we have in

total 4 observations that we want to discuss :

• On such a small dataset, it is difficult to make preliminary observa-

tions and classify entire playthroughs of players.

• It is not relevant to use metaclustering on gaming sessions as the

differences in terms of length of play is too significant between 1-

hour and 5-hours sessions, the difference in execution speed being

irrelevant when a player can do much less in the first one than in the

second one.

• It doesn’t seem that there is an insight moment at the scale of the

entire game, but rather a diffuse progression corresponding to a

slow understanding of the game’s big picture.

• The amount of discovered knowledge in the first two or three ses-

sions can match the amount of the entire following sessions, orient-
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ing us to an exploration-exploitation method that could be inherent

to the game.

We can build on these observations to create better-suited experiments

to work on the game and to judge the relevance of our model.

4.4.1 ENTIRE PLAYTHROUGHS AND LIMITED DATASETS

Our dataset was smaller than the Creacube dataset, and it didn’t allow us

to find explainable clusters in terms of the ways players progress through

the game. A possible extension would be to expand the dataset to have

access to more different playthroughs. In order to build upon our dataset,

a good starting point would be to try to get different profiles of players.

This could lead to a more diverse set of player behaviour. For instance,

amongst high-education players of our corpus working on computer-

science related topics, some of them were able to formalize easily the

type of method they wanted to use and associate it with well-known meth-

ods and algorithms :

« J’ai fait une sorte de parcours en largeur. »

(I did sort of a breadth-first search.)

This cannot help us but to imagine that players less aware of the execu-

tion of such algorithms could behave differently.

Another thing to consider is the way the data was collected : Subjects

were free to progress at their own pace. This has led to difficult to un-

even session time, with wide ranges of time between each sessions, from

half a day to entire months. We wanted to let players advance at their

own pace to try to not interfere to much with motivational self-regulatory

processes, however, given that this motivation self-regulatory process

is already modified by the participation of the experiment, adding other

constraints may not change the outcomes too much. Limiting gaming ses-

sions to 1 to 2-hours sessions could be a proper starting point to try to

substitute difference in terms of quantity of different explorations done

for difference in terms of execution speed.

4.4.2 WORKING ON MULTIPLE SUBSECTIONS

The actual problem with this dataset’s decomposition into gaming ses-

sion is the difference in time between different sessions. We tackled
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in the previous part the upgrade that can be done by having access to

a better dataset, but we can also imagine different ways of cutting dif-

ferent sequences. We do not think that cutting sequences at each loop

would be relevant, as a significant proportion of them would be empty or

nearly empty, and a difference not in execution speed but in execution

skill could appear more. Another possible future work could be to cut ses-

sions in subparts of, say, one hour or one hour rolling. This could allow

to suppress length differences. However, the possible conclusions are

not the same, as it could be used to conclude on session-to-session be-

haviours, but instead on hour-to-hour behaviours. However, they may be

related. A dataset of sessions of approximately the same length would

allow a better exploration of our research question.

4.4.3 F INDING INTUIT ION ON THE MODEL AND IN THE GAME

We observed that, by cutting at different times of an entire playthrough,

our metaclustering technique allowed us to properly classify pre-cut se-

quences and post-cut sequences into different clusters. This is partially

explained by the difference in length of sequences when they are cut in

extremes (for instance, isolating the last quarter of each sequence, a

part in which not a lot of new knowledge is discovered, allows an easy

classification) but this is not the only criterion (as seen with cuts near the

middle of each playthrough). We think that having properly classified se-

quences between pre-cut and post-cut sequences can be explained by

two other factors :

• In a best-case scenario, this can be explained by intuition, as pre-

cut and post-cut sequences are each time different enough to be

classified differently, without identifying an only turning point. This

corresponds to intuition.

• In a worst-case scenario, this difference is partially or totally ex-

plained by the way we annotated knowledge, creating patterns of

knowledge gathering that override general patterns. An example can

be found in the orbital cannon that is accessible near Giant’s deep

in the game. It is a closed location in which most updates that can

happen are green, and in addition to that, there is not only one or

two new updates that can happen. If this exploration was to happen

systematically at the beginning of most playthroughs, this could lead

146



4.4 Discussion : Observations and improvements

to a classification that overrides differences in process and separate

sequences on if the area was explored within the sequence or not.

In this fake scenario in which the orbital probe cannon is explored

at the start of each playthrough, that would imply that the metaclus-

tering method would separate pre-cut and post-cut with disregard to

the cut itself, because pre-cut sequences would systematically have

a common point.

We can try to find the correct scenario by adding specific questions to

pre-sessions and post-sessions semi-directed interviews, that would try

to find the presence - or absence - of such intuition.

Finally, in relation to exploration-exploitation strategies, we could also

modify consequently the semi-directed interviews to isolate such meth-

ods, and if so, the moment there is a shift from the first to the other.

Other hypothesis may also be tested. For instance, as for creativity, there

are maybe multiple occurrences of exploration-exploitation strategies,

e.g. for players exploring with a planet-by-planet method.
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5 Discussion and final conclusion

5 D ISCUSSION AND FINAL

CONCLUSION

5.1 D ISCUSSION

Symbolic approaches to problem solving can be put in relation with nu-

merical approaches of problem-solving. They are usually easier to inter-

pret. Numerical approaches are usually more powerful. Coupling them

can lead to better understanding of complex problem-solving.

Our framework of multiple problem space could be used, for instance, in

computer-supported learning science.

We can see two main uses of our metaclustering method based on trajec-

tories :

• We can use it on in-development activities. The model can lead to

preliminary observations. For instance, the model can help identify

insight or intuition processes with the derivation score. Both cases

were observed here :

Smaller parabolas could be associated to intuition. Parabolas with

a high amplitude can be used to compare potential insight moments

with their respective mean time of discovery.

• Trajectories can be more than just one subject at a time. We can

imagine trajectories composed of multiple simultaneous subjects.

This can be a way to represent collaborative learning, with a focus

on changes of behaviours because of subjects’ interactions.
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5.1 Discussion

The main goal of this thesis is to build links between computational repre-

sentation and learning sciences as a way to better understand transver-

sal skills like creativity. As we discussed in section 1.2 for creativity,

there are strong links between learning science, neuroscience and com-

putational approaches. We postulate that this tridisciplinarity can extend

more generally to self-regulation mechanisms, and this thesis focused on

ill-defined problem solving as a specific example of necessary regulatory

skills. Studies from a computational point of view allow us to consider

what are the limits of natural intelligence : for instance, the field of gen-

erative machine learning developed powerful models, including creative

abilities, despite having no access to sensorimotor interactions (Harnad,

2024).

Numerical and symbolic approaches can be complementary for compu-

tational approaches. Numerical approaches can be more efficient, while

symbolic representations can help with interpretability and explainability.

Coupling both approaches can help for complex problem solving, and to

model complex brain functions. This coupling can take different forms. In

their review, d’Avila Garcez and Lamb (2023) presented different levels

of couplings :

• Type 1 consists of a standard numeric computation with symbolic

input/output like word2vec (Rong, 2016): Symbolic inputs are em-

bedded in a numerical space.

• Type 2 and 3 consists of hybrid systems with symbolic and numeri-

cal interactions, like AlphaGo.

• Type 4 and 5 are compilations of symbolic knowledge into Symbolic

architectures like Vector Symbolic Architextures (Eliasmith, 2013).

Our approach also consisted, by the translation of symbolic states into

numerical values (DT components for Creacube and shiplog updates for

Outer Wilds). A complementary approach and discussion of these topics

can be found in mercierphd2024<empty citation>.

THE THREE-SPACE PROBLEM FRAMEWORK We proposed a framework of

symbolic representation that is generic for representing problem solving.

This iterative approach can help the construction of observer framework.

In particular, there is a need for a separation between the material envi-

ronment and the learner’s internal state, because they do not require the
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5 Discussion and final conclusion

same level of assumption. As such, the fog of war analogy allows to con-

sider the learner’s internal state completely in a different way than the

material environment. Bayesian values associated to a fixed symbolic

state space is a way to represent a learner’s internal state with minimal

parameters. This is useful when building a general understanding on the

evolution of the problem-space exploration. However, this simplicity has

a major caveat : this doesn’t really allow to create a symbolic representa-

tion of a learner; In such representation, there is no way of representing

the knowledge of a car : this information is diluted in the bayesian values’

computation, along other effects like oversight. As such, this represen-

tation doesn’t construct representation of what is known but rather what

can be known. Let’s suppose that the notion of car is necessary, tempo-

rary oversight of this notion doesn’t mean that the learner doesn’t know

what a car is. This implies that this model is mainly a descriptive model.

Future work could build upon the model and try to infer hidden formula

of Bayesian values over time, but this is way beyond the scope of this

thesis.

Another advantage of spatializing symbolic spaces is the possibility to

use pathfinding solutions to solve ill-defined problems. We already pre-

sented a general trajectory generation method, but this can also be a

good representation for the use of pathfinding algorithms like A-star of

Dijkstra for solving ill-defined problems, in addition to other machine

learning methods. As proposed in Mercier, Alexandre, and Viéville (2021),

we can consider a problem-solving task at a geometric level, considering

being located somewhere in a symbolic state-space, with the goal of hav-

ing an autonomous behaviour in interaction with an environment. We can

then consider a reinforcement learning mechanism, in one of its simplest

instance: Q-Learning. Considering the Q-learning mechanism is of inter-

est to us, targeting cognitive modeling, because it is a basic ingredient

of effective high-level cognitive functions such as the PROBE model and

its extensions (Donoso, 2013, A. Collins and Koechlin, 2012, Domenech

and Koechlin, 2015).

This framework could maybe be used efficiently in computer-supported

learning sciences. Digital environments are known to improve the per-

formance of knowledge workers (Järvelä et al., 2007), for instance by

giving access to a lot of self-regulation tools (for planning, monitoring

etc.). These tools help to structure and regulate collaborative learning,
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5.1 Discussion

however Dillenbourg and Fischer (2010) indicate that computers do not

constitute effective educational tools per se. This field could benefit from

another way to analyse multiple digital learning analytics as observables

in our model.

METACLUSTERING AND PARTIT IONING TRAJECTORIES The method developed

in this thesis can be used as a visualization tool for preliminary research,

as the required amount of data is small. The data collection process is

very important. For instance, unless specifically targeted, sequences

should contain similar amount of information. There is a risk of a trade-

off between trajectory length and trajectory shape : if changes in trajec-

tory is unbounded, sequences of different lengths could be partitioned in

different clusters only because of the amount of changes in the trajectory.

Such partitioning may not be relevant for behavioural study. As we saw

in chapter 4, some annotations could happen differently not because of

behaviour but because of player skill.

This method seems to be a good starting point to determine the presence

of insight or intuition within the studied task. Let us consider both deriva-

tion scores of CreaCube and Outer Wilds. Derivation scores were used

to make assumptions about the presence (or absence) of insight points,

with inflexion points. The method was to create clusters on datasets cre-

ated by cutting sequences in two parts, pre-cut and post-cut, the cut-

ting point being either a proportion of total time or other indicators. If

resulting clusters separate properly pre-cut and post-cut sequences, that

means that there is a notable difference in trajectories between pre-cut

and post-cut sequences. In this case, the derivation score can go up to

0.5 (pre-cut and post-cut sequences are perfectly clustered).

The first thing to note is that this method of metaclustering will create a

parabola of derivation scores for clustered time-cut sequences :

• Time cuts near the beginning of the activity will approach or attain

0.5, as pre-cut and post-cut sequences do have incomparable lengths

: the clustering method tends to create separate clusters for se-

quences with a big difference in length.

• The same argument applies to time cuts near the end of the activity.

• If we consider a basic case of sequences with the same trajectory

evolution over time, cutting sequences in the middle can lead to
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5 Discussion and final conclusion

make pre-cut and post-cut indiscernible, leading to a score of 0 or

near 0.

When plotting the CreaCube corpus and the Outer Wilds corpus with

derivation scores of multiple time-cuts, we can fit a parabola as shown in

Figures 5.1a and 5.1b.

(a) Derivation scores and associated
parabola for the Creacube corpus

(b) Derivation scores and associated
parabola for the Outer Wilds corpus

Figure 5.1: Derivation scores evolution when cutting at different proportions of the total
time of each sequences

From this observation, we can try to compute such parabola as a "stan-

dard deviation score evolution" and compare other derivation scores from

time-unrelated cuts to the derivation score predicted on the parabola

a the mean cutting time of time-unrelated time cuts. Better derivation

scores are clues of possible insights, that are key moments in the se-

quence that change the internal representation of the learner and thus

their trajectory in the problem space.

Also, the height and width of the parabola can also be an indicator of

if the game does contains insights or not. In particular, parabolas with

small width and height are more likely to represent activities in which

there is no clear moment of behavioural change and more of a contin-

uous process. In the case of ill-defined problem solving, a continuous

process is more likely to correspond to the process of intuition, that is the

slow understanding of the problem space. In the fog of war analogy, an

insight would be an immediate diminution of the fog of war in a big area

at a key moment, while insight corresponds more to a slow reveal of the

fog of war by a continuous moving from state to state.

154
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Using this method for this use was not its main focus when we started

to develop it. However, these results completely fall into the use-case

that we wanted to get by developing such model : with this model, we

are capable of finding a difference in process between two ill-defined

problems. This could be particularly useful for extending our research

to collaborative learning : finding moments of change within a sequence

could be sued to find moment of co-construction and sharing of knowl-

edge between multiple learners, each having their own trajectories (or

influencing each other in one big trajectory). As our social organization

today revolves a lot around classroom-wide teaching methods, being

able to extend methods to collaborative learning is a step towards a bet-

ter understanding on how we can better learn and teach.

5.2 PERSPECTIVE FOR COMPUTER SCIENCE AND LEARNING

SCIENCE

We think that our method follows important principles for experimental

design :

• Reducing the study environment

• Noting and fixing unnecessary elements of the study environment.

This is done to avoid unexpected differences across experiments.

Our model is inspired partly from wargames (and by extension

videogames) and AI models inspired by these domains could be consid-

ered in the future.

Our method could be extended to experiments with groups instead of just

different individual subjects. For instance, we could try to use it to anal-

yse learners’ progress within a classroom while identifying key points of

their understanding.

For Creacube, multiple work were done to continue this research :

• Xlim (in Poitiers) tried to automatize the annotation process of the

Creacube dataset.

• Le Meudec et al. (2024) created a VR implementation of the activity.

This is a new way to collect data, and could be used to train artificial

agents on the problem.

For Outer Wilds, the dataset can be used for future work on it.
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5 Discussion and final conclusion

PERSPECTIVES OF THE MODEL OF ILL-DEFINED PROBLEM REPRESENTATION

We iteratively created a model of representation for ill-defined problems,

following different ideas that are, in our opinion, in adequacy with other

experiment design principles, and that we want to emphasize here:

• It is necessary to reduce the environment of the experiment to a

reasonable observable state.

• Non-necessary elements of the environment for the experiment

must be taken into account for study (in case they become relevant

for subjects), but should be identical for all subjects to avoid unex-

pected behavioural differences across experiments.

We decided to call our analogy fog of war to represent the learner’s

uncertainty. This is to be put in relation with (non-necessary research)

domains that consider fog of war as a concept. The fog of war is a notion

corresponding to the uncertainty to military operations, and was appropri-

ated to wargames, videogames and roleplaying (tabletop) games, once

again to represent uncertainty. The state is in this case physical (cor-

responding to the map the player is playing in) and reveals itself during

the exploration, leading to a difference of uncertainty of 3 states : the

perceivable environment is certain, the unexplored environment is com-

pletely uncertain (i.e. the player has no idea of what is in a part of the

map before exploring it) and the rest is in-between (i.e. the player can

access the map to see where they were, but they cannot determine if, for

instance, a monster to fight appeared in a previously visited zone). This

relation takes us back to computer science, as we can consider in these

domains which algorithms are used to simulate an AI needing to explore

a space with fog of war. Such algorithms could be considered to simulate

or to associate with learning patterns in the future.

PERSPECTIVES ON THE ANALYSIS METHOD In our opinion, the method de-

veloped here has the potential to be used for preliminary analysis on

other experiment. The method can be adapted to other activity as a way

to determine what could be the potential inflexion points of an activity.

We already discussed the benefit of determining if an activity is more

solved by insight or intuition. As such, this could also be a way to better

design activities in general, depending on what effect is aimed for.
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5.2 Perspective for computer science and learning science

More generally, we can imagine the use of the method to determine if

there are pivotal moments in the trajectory of a group (e.g. a classroom

of students), i.e. understanding, for instance, which part of a teaching

sequence is pivotal to the learning process of students. This can be an

interesting addition to add to the toolbox of learning science researchers,

that can be done in addition to other relevant methods of analysis. From

my personal experience with computer science teachers and the learn-

ing science field, this could be used as an introductory analysis tool for

teachers (mostly STEM) that are more reluctant to participate in learn-

ing science studies (because of a certain rejection of learning science

methods, rejection that still exist today).

FUTURE WORK The studies of Creacube and Outer Wilds could be more

detailed in the future. For instance, we could compare the use of the

model on Creacube with another way to represent trajectories instead of

the DT components of creativity. The same can be done for Outer Wilds,

in addition to more data. We believe that this model could be extended

to form a more complete preliminary tool for ill-defined problem solving

analysis. The present work was bound to the exploratory research ac-

tion AIDE (Artificial Intelligence for Education) and is indeed still at an

exploratory stage, with numerous perspectives and only preliminary re-

sults. As for the date of this thesis, multiple works were done to continue

to explore this field :

• Thanks to Xlim in Poitiers, we are looking at algorithms to autom-

atize the annnotation of the CreaCube dataset1 . This may lead to

a more precise dataset, without loss of data, and even a bigger

dataset.

• Thanks to Le Meudec et al. (2024)’s work, a VR implementation of

Creacube is now available, allowing another way to collect data with

multiple new (and maybe different) potential observables, and also

to potentially train or test artificial agents on the solving of such cre-

ative problem-solving task, potentially in a more embodied way.

F INAL WORDS This present work was part of the exploratory research

action AIDE (Artificial Intelligence for Education) and is indeed at an ex-

ploratory stage, with numerous perspectives and only preliminary results.
1A first prototype can be accessed here as the result of Théo Carmes’ internship
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5 Discussion and final conclusion

As an exploratory phase, this thesis could be considered one of the di-

vergent thinking phase of the tridisciplinary approach developed here.

We believe that this approach constitutes a promising step towards a bet-

ter collaboration for a better understanding of complex problem-solving

processes.
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A DUAL NOTIONS IN INTERACTION

DURING CPS

The Creative Problem-Solving literature produced a variety of models

describing the CPS process. However, despite their differences in ter-

minology, they are rather similar in how they decompose the process in

several stages, as shown in Figure A.1.

Figure A.1: Creative process models, as compared by Howard et al. (2008)

Beyond the previous well-accepted dichotomy between divergent and

convergent phases, authors make the distinction between other dual

modes in interaction, sometimes called implicit versus explicit, or sponta-

neous versus deliberate, to be put in relation with stimulus-based versus

goal-directed creative behaviour, likely influenced by the dual process-

ing model of fast-thinking versus slow-thinking view of Kahneman (2011).

The general idea is to differentiate explicit CPS that can be reported and

consciously organized, experimented and analysed from an implicit CPS

with possibly the same level of efficiency but carried out automatically
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A Dual notions in interaction during CPS

from the expression of the problem with no access to its constituents

and its motivations. Cognitive science researchers agree on such dis-

tinctions, but when getting to details, their descriptions differ, leading to

an established effect on the scientific community, as discussed in Zan-

der et al. (2016). On the one hand, as summarized by Tubb and Dixon

(2014) and detailed in Table A.2, there is the idea that these complemen-

tary dual-processes can all be related one to the other. Such a view is

not far from the taoist concepts of yin and yang, as discussed in Deborah

Frisch commentary in Stanovich and West (2000). We assume that this

is an interesting integrated view, but that it should be considered as an

inspired outline, while (i) both systems can act conjointly and interact, (ii)

some qualities may also be related to the other system, for instance we

may consciously (thus explicitly) partially control our implicit system, as

discussed by Kühberger in Stanovich and West (2000).

System 1 (implicit) System 2 (explicit)
Spontaneous mode Deliberate mode
Associative reasoning Rule-based reasoning
Parallel processing Sequential processing
Holistic dialectical reasoning (un-
derstanding a system as a whole,
large-scale patterns, re-enactions of
such patterns)

Analytic reasoning (thinking about
system parts and how they work to-
gether)

Automatic processing Controlled processing
Machine learning numeric process-
ing implementation

Machine learning symbolic process-
ing implementation

Short-term reactions Long-term planning
Relatively undemanding Cognitively demanding
Large associative memory Limited working memory capacity
Acquisition through biology and ex-
perience

Acquisition through cultural and for-
mal tuition

Slow learning (quantity to extract
regularities and adapt)

Faster learning (a few examples can
be enough)

Fast retrieval thanks to acquisition of
automatisms

Slow retrieval, requires more cogni-
tive load

Phylogenetically evolved first Evolved recently

Figure A.2: The S1/S2 system, reproduced from Romero et al. (2024), with contribu-
tions from Stanovich and West (2000), d’Avila Garcez and Lamb (2020) and
Tubb and Dixon (2014)

On the other hand, as summarized in Tables A.3 and A.4, other dual as-

pects are to be taken into account which can not be projected on the

S1/S2 dual axis, thus showing that cognitive processes involved in cre-

ative complex ill-defined problem solving are multi-dimensional.
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Divergent /
convergent
thinking

These are two temporally separated phases in creativity, in fact
forming a triad with the preparation phase, as analysed by Ama-
bile (1996).

Fast think-
ing (S1) /
slow think-
ing (S2)

As shown in Table A.2 and discussed by Tubb and Dixon (2014)
and Augello et al. (2015). They considered that the divergent pro-
cess de composes into exploratory versus reflective mechanisms,
respectively, with regard to the S1 versus the S2 system, and the
convergent process decomposes into tacit versus analytic mecha-
nisms, respectively.

Emotional /
cognitive

According to Dietrich (2004), the emotional versus cognitive
knowledge domain is crossed with the spontaneous versus de-
liberate (thus S1 versus S2) domain to produce four basic types
of creativity at the cognitive neuroscience level.

Semantic /
syntactic

In the study by Alexandre (2020), the standard S1/S2 distinction
was discussed at the neuro-cognitive level, with different per-
spectives making the difference between semantic and syntactic
aspects. Furthermore, semantic value was related to emotional
valuation.

Exploration
/ exploita-
tion

This polysemic notion has a precise definition in reinforcement
learning and has been related to divergent versus convergent pro-
cesses by several authors, as reviewed by Quillien (2019); to the
best of our understanding, it has a different meaning. The diver-
gent process in implicit (S1) mode was also named exploration by
Tubb and Dixon (2014) and subsequent authors, and this seems
to be yet another concept.

Model-free
/ model-
based

In problem solving involving reinforcement learning, as discussed
by, for example, A. G. E. Collins and Cockburn (2020), learning
and decision making may involve a predictive mechanism of the
environment either explicitly or implicitly (with or without a model).
When considering a creative process, these aspects interact with
other dimensions mentioned here, as discussed by the authors.

Figure A.3: Other dual notions encountered in CPS, reproduced from Alexandre et al.
(2024) (1)
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A Dual notions in interaction during CPS

Stimulus-
driven
/ goal-
directed

Alexandre (2021) considered a systemic approach, distinguishing
two different neuro-cognitive modalities, relating to the attention
to external versus internal goals (van Ede et al., 2020). This is
also related to top-down versus bottom-up processes, which are a
relevant but polysemic notion.

Flexibility /
persistence

W. Zhang et al. (2020), following Nijstad et al. (2010) and Hom-
mel and Wiers (2017), drew a link between divergent thinking
and cognitive flexibility, promoting "loose thinking" and creative
thought as a process introducing more positive mood states, as
opposed to convergent thinking, which is associated with cog-
nitive persistence, for instance narrowing the focus of attention
and increasing the top-down control. As discussed by A. Collins
and Koechlin (2012), flexibility is related to a form of exploration
(as detailed above) when referring to the choice of task sets and
related actions when attempting to complete a task, while the per-
sistence of using a given task set is related to exploitation, the
link with the corresponding reinforcement learning mechanisms
being made by the authors at the implementation level.

Default
mode net-
work (DMN)
/ central ex-
ecutive net-
work (CEN)

As reviewed by Alexandre (2020) and Dietrich and Haider (2017),
the DMN network is involved in the spontaneous bottom-up pro-
cessing mode of creativity, while the CEN network is used in cre-
ativity that emanates from the explicit system, a deliberate top-
down mode.

Figure A.4: Other dual notions encountered in CPS, reproduced from Alexandre et al.
(2024) (2)
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B NUMERIC SCALAR DATA

Numerical quantity related to a sensory input or an algorithm numerical

value, corresponds to a bounded value (between minimal and maximal

bounds), up to a given precision threshold (above which two values may

differs and below which two values are indistinguishable, being equal

or not), an approximate neighbourhood sampling size or "step" (below

which two distinct values are in the same local area), a default value

(used in initialization, or to avoid undefined value), expressed in a given

unit (e.g., second, meter, etc), if any, as schematized in Figure B.1.

Figure B.1: Specification of a numerical value. Metadata includes a name, a unit, a
default value, bounds (minimum and maximum), a precision under which
two values are not distinguishable, and a step value corresponding to a
neighbourhood size used to cover the value range.

Such specification is important to properly manipulate quantitative infor-

mation. In particular, the values can be normalized (e.g., mapped onto

the [−1, 1] interval) and mapped onto a finite set of relevant values. One

consequence is that algorithm precision thresholds can be deduced (of-

ten using first-order approximations), spurious values can be detected,

numerical conditioning of algorithms is enhanced, and so on (see Viéville

et al., 2001 for a discussion). At the computational specification level,

these parameters define a sub-type of usual numerical types, yielding a

better definition of the related code.

This concerns numerical sensory data and internal quantitative data

(e.g., derived data, calculation output, etc.). A step further, symbolically

coded data can always be sampled (e.g., a vector font drawn on a canvas

and then sampled as pixels) at a given precision.
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B Numeric scalar data

It is obvious that any quantitative measure is bounded (e.g. physical ve-

locity magnitude stands between 0, for a still object, and the light speed)

and is given up to a given precision (e.g., a localization in an image is

given up to one-pixel size, a school ruler up to 1-millimeter graduation).

The key point is that it is useful to make explicit this obvious fact (e.g.,

that any measurement device has a given precision and a measurement

range) at the specification level instead of using it implicitly when re-

quired.

The notion of the positive sampling step, in order to define a local neigh-

bourhood size, is used to weight distance calculation, and to properly

sample the data space: The underlying idea is that the state space is lo-

cally convex so that in a given neighborhood local search of an optimum

yields to the optimal local value. This idea has been implemented in the

stepsolver variational solver, i.e., optimizer and controller.

This specification induces a pseudometric:

d(x, x ′) =
|x − x ′ |

ste p
, |x − x ′ | > precision ⇒ x ̸= x ′ ,

in words, the distance is weighted by the ste p, i.e., the neighborhood

approximate size, while if two differ by a quantity below the precision

threshold, they are indistinguishable (thus either equal or not), so that we

can decide if two values are different but not decide about their equality.

164

https://line.gitlabpages.inria.fr/aide-group/stepsolver
https://en.wikipedia.org/wiki/Pseudometric_space


C SEMI-DIRECTED QUESTIONNAIRE

METHODOLOGY

This appendix contains every base question of each interview performed

with subjects of the Outer Wilds experiment of chapter 4. Questions are

in french with an immediate translation in english. The goal of these in-

terviews was to incite people to elaborate on their answers.

C.1 PRE-EXPERIMENT INTERVIEW

• As-tu déjà entendu parler du jeu ? (If yes) Qu’est-ce que tu sais

de celui-ci ?

• Did you heard of this game ? (If yes) What do you know about it ?

• Comment est-ce que tu décrirais ton profil de joueur ?

• How would you describe the type of gamer you are ?

• Comment est-ce que tu comptes aborder le jeu ?

• How do you want to play this game ?

C.2 PRE-SESSION INTERVIEW

• (Except first session) As-tu réfléchi au jeu depuis la dernière

session ? A quoi as-tu pensé ?

• (Except first session) Did you think about the game since last ses-

sion ? What did you think about ?

• Quel est ton plan pour cette session de jeu ?

• What is your plan for this session ?

• (Except first session) Est-ce que tu te souviens du plan donné à

la fin de la dernière session ? Est-ce que tu dirais que ton plan

actuel correspond à cet ancien plan ?

165



C Semi-directed questionnaire methodology

• (Except first session) Do you remember the plan that you gave me

at the end of last session ? Do you think that your actual plan corre-

sponds to this previous plan ?

C.3 POST-SESSION INTERVIEW

• Est-ce que tu peux me décrire ce qu’il s’est passé pendant ta

session ?

• Can you describe what happened during your session ?

• De quelle manière as-tu joué au jeu pendant cette session ?

(Est-ce que tu as adopté une stratégie particulière ?)

• How did you play during this session ? (Did you adopt a particualr

strategy ?)

• Comment (ré-)expliquerais-tu l’intrigue actuellement ?

• How would you explain the story of the game so far ?

• Est-ce que tu as suivi le plan que tu avais indiqué au début de la

session ? (If no) Quelle a été ta nouvelle stratégie ? Qu’est-ce

qui a déclenché ce changement ?

• Did you follow your plan of the pre-session interview ? (If no) What

was your new strategy ? What did cause the change ?

• (Except last session) Quel est ton plan pour la prochaine ses-

sion ?

• (Except last session) What is your plan for next session ?

C.4 POST-EXPERIMENT INTERVIEW

• Est-ce que tu peux m’expliquer ce que tu as compris des in-

trigues du jeu ?

• Can you tell me what did you understand of the stories of the game

?

• En repensant aux différentes sessions que tu as faite, est-ce

que tu dirais avoir suivi une stratégie générale particulière ?
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C.4 Post-experiment interview

• Looking back at your sessions, do you think that you followed a gen-

eral strategy ?

• Y a-t-il des éléments qui, selon toi, ont influencé la manière

dont tu as joué au jeu ?

• Is there anything that, according to you, influenced the way you

played the game ?
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D PRECISIONS ABOUT OUTER W ILDS

ANNOTATIONS

updates were notified by a sound and a visual cue. Each time a notifi-

cation happens, it is noted with its location, color, and specific ship log

update:

• For locations in which multiple updates can happen at the same time

(mainly by discussing with other travelers on the different planets),

updates are done in order of appearance (e.g. in dialogue), start-

ing at the notification point, second by second. This is not exactly

the moment of discovery, but the difference is in seconds. This is

taken into account by Dynamic Time Warping little time differences

erasure.

• Even when the update is done on the ship without a suit, there is a

notification sound and visual cue on the ship board (for instance for

entering giant’s deep ocean depths.

• In case player discovers elements without the suit on (which allows

notifications), multiple playthroughs and ship log consultations al-

low to determine what was the update moment a posteriori. This is

particularly true for the beginning of the game : before getting to the

ship log and the suit, the player has the opportunities to get updates

without the suit. Some are mandatory (mainly updates about Timber

Hearth’s village) but other are optional, depending on some dialogue

options (consultation of the piece of nomai writingin the museum for

eye signal locator, specific dialogue with Hornfels for esker’s camp

and discussion post-statue activation with Hal for gabbro’s island.

Table D.1 contains the list of die variants annotated. Table D.2 contains

the list of other keys annotated. Table D.3 contains the description of

locations considered for each location sequence of the Outer Wilds tr-

jaectory processing. Finally , Table D.4 contains a description of when

each enter observable was noted.
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D Precisions about Outer Wilds annotations

Die variant How to get it
Supernova End of the loop by Sun’s explosion
Retrieve End of the loop outside of Sun’s supernova’s reach

Oxygen
In space or water without a suit or with no oxygen left in
the suit

Fire
On campfires, Hollow’s Lantern and on the Sun (via inter-
loper, sun station or when going into the sun)

Fall
Fall from high places, but also crashes with different ob-
jects (e.g. island crashing on the player on Giant’s Deep

Crushed
Crushed by the elevator of Timber Hearth or sand on
Hourglass Twins

Fish Swallowed by an angler fish
Meditate Go to next loop with the hidden "meditate" option
Menu Restart the loop by quitting and reloading the save
Thorns Damage from thorns
Electrocution Touching Jellyfishes or Feldspar’s ship
Ghost Matter Damage from Ghost Matter
Explosion Explosion of the ship
Time-travel Going back in time in the Ash Twin Project

Figure D.1: Annotated die variants and how to trigger them
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Annotation How to get it

talk
Talking to an hearthian or Solanum (name added in com-
ment of the action)

launch codes Getting launch codes from Hornfels (mandatory)

pick DG
Picking the distortion generator (first step of end se-
quence)

put DG
Putting the distortion generator on the Vessel (second
step of end sequence)

coordinates
added

Adding the coordinates found in Giant’s Depp (third step
of end sequence)

win
Teleport to the Eye of the Universe (we are not interested
in what happens after)

giving up Go to next loop with the unlockable "meditate" option
ship log Entering the ship log
end ship log Exiting the ship log
stop session Stopping a session
marshmallow Roasting a marshmallow at a campfire
sleep Sleep at a camp-fire to accelerate the passing of time

new signal
Unlocking a signal by using the signalscope near objects
or people emitting signals (signal name added in com-
ment of the action)

projection
Using a projection pool (location is the location of the
player when activating it)

enter Entering a planet or big object (see Table D.4)

teleport
Entering a planet using teleportation (location is the ar-
rival location)

vessel
Annoted when entering the seed in which the Vessel re-
sides.

solanum Annoted when solanum is on screen for the first time

coordinates
Annoted when coordinates are displayed on screen for
the first time

ash twin
Annoted when entering the Ash Twin project for the first
time

Figure D.2: Other annotation keys and their significations

Location
classes Contains

Giant’s Deep Giant’s Deep, Orbital Probe Cannon
Ash Twin Ash Twin, Sun station
Ember Twin Ember Twin
Timber Hearth Timber Hearth, Attlerock
Quantum Moon Quantum Moon

Brittle Hollow
Brittle Hollow, Hollow’s Lantern, White Hole, White Hole
Station

Dark Bramble Dark Bramble

Other
Interloper, Sun, Space, Deep Space Satellite, Outer
Space Nomai Satellite1

Figure D.3: Classification of locations for location trajectories of Outer Wilds trajectory
analysis
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D Precisions about Outer Wilds annotations

Locations to
enter When to note it (whichever comes first)

Giant’s Deep Going through the clouds
Orbital Probe
Cannon

Parking the ship / enter one of the modules

Ash Twin
Going through the visible atmosphere / parking the ship
on the sand

Sun Station Going inside it
Ember Twin Ship touches the ground / Entering the middle hole
Timber Hearth Ship touches the ground
Attlerock Ship touches the planet
Quantum Moon Going through the clouds
Brittle Hollow Ship touches the ground / Moving below the crust
Hollow’s
Lantern

Ship touches the ground

White Hole Teleportation only

Brittle Hollow
Brittle Hollow, Hollow’s Lantern, White Hole, White Hole
Station

Dark Bramble Ship touches the main seed / Entering the seed
Interloper Ship touches the ground
Other Not noted

Figure D.4: Moments of enter annotations
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