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Abstract

A recent theory suggests recasting common-payoff POSGs into non-observable problems through
the introduction of an appropriate statistic. Doing so offers additional levers to search for optimal
behaviors. Showing that Bellman’s optimality principle applies in the non-observable game allows
applying powerful algorithms designed for fully observable games (e.g., heuristic search value it-
eration). The algorithms, taking advantage of the discovered levers (e.g., breaking problems into
subproblems; allowing knowledge generalization between subproblems), offer theoretical conver-
gence guarantees and empirically competitive results. Still, while this approach has succeeded in
subclasses of 2-player zero-sum partially observable stochastic games (zs-P0SG), how to apply
it in the general case still remains an open question. Besides, recasting the original problem in
a non-observable one introduces decision problems at every time step whose time and memory
complexities become prohibitive for large games.

In the first contribution of this manuscript, we address the first concern and propose for the
first time an HSVI-like solver that provably converges to an e-optimal solution of any zs-P0OSG in
finite time. This opens the door to a novel family of promising approaches complementing those
relying on linear programming or iterative methods.

In a second contribution of this manuscript, we take a look at games involving n players
but assuming (i) that they all share the same payoff function and (ii) a hierarchical knowledge
structure (i.e., each agent knows what their subordinate knows, and so forth). We show that a
specialization of point-based value iteration efficiently takes advantage of particular levers offered
by this subclass. This work paves the way to multiple extensions of the proposed hierarchical
structure while maintaining the scalability of point-based algorithms.

In the final contribution of this manuscript, we present a related, although adjacent, contri-
bution to min-max optimization problems with mild continuity properties.

Keywords: Computational game theory, zero-sum games, partial observability, dynamic pro-
gramming, heuristic search, min-max optimization, games with common payoff, hierarchical
information sharing.

Résumé

Une théorie récente suggére de reformuler les POSG & gain commun en des problémes non observ-
ables via l'introduction d’une statistique suffisante appropriée, ce qui offre des leviers supplé-
mentaires pour rechercher des plans optimaux. Montrer que le principe d’optimalité de Bellman
s’applique sur le jeu non-observable permet ’application d’algorithmes efficaces congus pour
les jeux complétement observables (tels que heuristic search value iteration). Les algorithmes
exploitant les leviers découverts (par exemple la division des problémes en sous-problémes; la
généralisation des connaissances entre les sous-problémes) offrent une garantie de convergence
théorique et des résultats compétitifs sur le plan empirique. Cependant, bien que cette approche
ait réussi dans des sous-classes de jeux stochastiques partiellement observables & somme nulle et &
deux joueurs (zs-P0SG), comment l'appliquer dans le cas général reste une question ouverte. De
plus, reformuler le probléme original en un probléme non-observable introduit des problémes de
décision & chaque étape, dont les complexités temporelle et mémorielle deviennent prohibitives
pour les jeux de grande envergure.

Dans la premiére contribution de ce manuscrit, nous abordons la premiére préoccupation et
proposons pour la premiére fois un solveur de type heuristic search value iteration dont nous dé-
montrons qu’il converge vers une solution e-optimale en temps fini pour n’importe quel zs-POSG.
Cela ouvre la voie a une nouvelle famille d’approches prometteuses et complémentaires a celles
reposant sur la programmation linéaire ou les méthodes itératives.
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Dans une deuxiéme contribution de ce manuscrit, nous examinons des jeux impliquant n
joueurs et en supposant (i) qu’ils partagent tous la méme fonction de récompense et (ii) que les
joueurs sont organisés selon une structure de connaissance hiérarchique (c.-a-d. chaque agent
sait ce que son subordonné sait, et ainsi de suite). Nous montrons qu'une spécialisation du
schéma algorithmique point-based value iteration tire efficacement parti des leviers offerts par
cette sous-classe. Ce travail ouvre la voie & de multiples extensions de la structure hiérarchique
proposée tout en conservant le passage a I’échelle du schéma algorithmique proposé.

Dans la dernier contribution de ce manuscrit, nous présentons une contribution connexe, bien
qu’annexe, aux problémes d’optimisation min-max avec des propriétés de continuité faibles.

Mots-clés: Théorie des jeux computationnelle, jeux & somme nulle, observabilité partielle, pro-
grammation dynamique, recherche heuristique, optimisation min-max, jeux a récompense com-
mune, partage d’information hiérarchique.

v
Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



Contents

List of Tables xiii

List of Algorithms

List of Theorems XV
Chapter 1
General Introduction 1
1.1 Game Theory . . . . . . . . . e 1
1.2 Computational Aspects in Game Theory . . . . . . . .. ... ... ... ..... 3
1.2.1 Methodologies to Tackle zs-POSGs . . . . . . . . . . . ... ... ..... 4
1.2.2  Efficient Algorithms for Structured Games . . . . . . . .. ... ... ... )
1.3 Formalisms for Imperfect Information Games . . . . . .. ... ... ... ... .. )
1.3.1 Extensive Form Games . . . . . . . . . . ... 6
1.3.2 Partially Observable Stochastic Games . . . . . . . . ... ... ...... 6
1.3.3  Why Do We Care About POSGS? . . . . . . . . . .. ... ... ...... 6
1.3.3.1  Different Game Descriptions Offer Complementary Benefits . . . 7
1.4 Tackling zs-P0SGs through Dynamic Programming . . . . . . ... ... .. ... 8
1.4.1 The Challenges with Dynamic Programming for Imperfect Information
Games . . . .. 8
1.5 Research Outline and Contributions . . . . . . .. .. ... ... .. ... .... 9
1.5.1 Planning in zs-POSGs . . . . . . . . . . ... 9
1.5.2  Planning in Common-Payoff POSGs under Hierarchical Information Sharing 9
1.5.3 General Reward Model . . . . . . .. .. ... 9
Chapter 2
Background
2.1  Overview on Various Subclasses of POSGs . . . . . . . .. .. .. ... ... .... 10
2.1.1 Zoo of Behavior Descriptions . . . . . .. . ... ... ... 11
2.1.2 One-shot Games . . . . . . . .. . . ... 12
2.1.2.1 Nash Equilibria: Definition and Existence Theorem . . .. . .. 12
2.1.2.2  Zero-Sum Normal-Form Games . . . . . . .. ... ... ..... 14
2.1.2.3 Minimax Theorem . . . . . . .. ... ... ... .. .. 15
2.1.2.4 Bayesian Games . . . . . . ... 15

vi
Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



2.1.3  Dynamic Games . . . . . . . . ... 17

2.1.3.1  Overview on Evaluation Criteria . . . . . . ... ... ... ... 17

2.1.3.2 Markov Decision Processes . . . . . ... ... ... ... .. .. 17

Strategies and optimization criteria . . . . . . ... ... 18

Infinite-horizon setting . . . . . . . . .. ... Lo 19

2.1.3.3 Partially Observable Markov Decision Processes . . . .. .. .. 19

Strategies and Optimization Criterion . . . . . .. ... ... ... 20

Infinite-Horizon Setting . . . . . . . . . .. ... ... .. 21

2.1.3.4 Stochastic Games . . . .. .. ... 21

Optimization Criterion . . . . . . . . . . .. .. .. ... .. .... 22

Stationary Strategies for Infinite-Horizon zs-SGs . . . . . . . . . .. 22

2.1.3.5 Partially Observable Stochastic Games . . . . . ... ... ... 23

2.1.3.6  Zero-Sum One-Sided Partially Observable Stochastic Games . . 25

2.2 Solving Algorithms in Game Theory . . . . . . .. ... ... .. ... ...... 26

2.2.1 Regret Minimization . . . . . . . . .. . oL L 26

2.2.1.1 Regret Minimization for zs-EFGs . . . . . . . . . ... ... ... 26

2.2.2  Mathematical programming . . . . . . . . ... ..o oL 27
2.2.2.1  (Mixed-Integer) Linear Programming for Normal-Form and Bayesian

Games . ... 27

2.2.2.2  Linear Programming for zs-EFGs . . . . . . . ... ... ... .. 29

2.2.2.3 Double Oracle Algorithmic Scheme . . . . . . .. ... ... ... 30

2.2.3  Approaches Based on Bellman’s Optimality Principle . . . . . . . . . ... 30

2.2.3.1 Single-Player Fully Observable Games: MDPs . . . . . . . .. .. 30

Finite-horizon MDPs . . . . . . . . . . . ... .. 31

Infinite-Horizon Case . . . . . . . . . . . ... ... .. ... ..., 32

2.2.3.2 Two-player Zero-sum Stochastic Games . . . . .. ... .. ... 33

2.2.3.3 Introducing Partial Observability: POMDPs . . . . . . . . . . . .. 34

A Sufficient Statistic . . . . . . .. ... Lo 34

Exhibiting Continuity Properties of the Optimal Value Function . . 35

2.2.3.4  General Algorithmic Scheme: Summary of Specifications . . . . 37

2235 POSGS . . . v v 37

Continuous-state Markov games (including continuous-state MDPs) . 38

Occupancy Markov Games . . . . . . . . . . .. ... ... ..... 39

cp-POSGs . . . . . . . 40

zs-POSGS . . . . . . . . 40

Chapter 3
Solving zs-P0SGs Through Dynamic Programming

3.1 Theoretical Contributions . . . . . . . . . .. . ... . ... 43
3.1.1 Properties of zs-oMGs . . . . . . . . . ... 43
3.1.1.1 “Subgames” and their properties . . . . .. ... ... ... ... 43

Back to Mixed Strategies. . . . . . . .. ... L. 44

vii

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



Von Neumann’s Minimax Theorem for Subgames . . . . . . .. ..
3.1.1.2  Bellman’s Optimality Principle; a Recursive Expression of V* . .
Concavity and Convexity Results . . . . . ... ... .. ... ...
Continuity Properties of the Transition Functions . . . . . . . . ..
3.1.2 Towards Solving zs-oMGs . . . . . . . . . ...
3.1.2.1 Bounding value functions . . . . . . .. ... ...
3.1.2.2  Action Selection and Backup Operators . . . . . ... ... ...
3.1.2.3  Imitialization . . . . .. ... L oo
3.1.2.4 Retrieving a NES . . . . . . . ...
3.1.3  HSVI for zs-POSGS . . . . . . o v v ittt i
3.1.3.1  Algorithm . . . . . . . ...
Setting p . . . . . o
3.1.3.2  Finite-Time Convergence . . . . . . . . ... ... .. ......
3.2 Experiments . . . . . ...
321 Setup . .. ..
3.22 Results . . ..
3.2.2.1 Comparison with the state of theart . . . . . .. ... ... ...
3.2.2.2 Bounding Graphs . . . . . ... ... ... ...
3.2.2.3 Exploitability Graphs . . . . . ... ... 0oL
3.3 Related work . . . . ..
3.3.1  Wiggers et al.’s Work on Exploiting the Convex-Concavity of the Optimal
Value Function . . . . . . .. ...
3.3.1.1 Deriving zs-S0SGs from zs-POSGs . . . . . . . .. .. .. ....
3.3.1.2 Random and Informed (Search). . . .. .. ... ... ......
3.3.2  Solving zero-sum One-Sided Partially Observable Stochastic Games . . . .
3.3.3 Comparison with Limited-Lookahead Continual Resolving . . . . . . . ..
3.3.3.1 Continual Resolving . . . . . . . . ... ... ... ..
3.3.3.2 Limited Lookahead . . . . . . . . .. ... .. ... .. ... ...

3.3.3.3 Limited Lookahead Continual Resolving as a General Scheme?
3.4 Work in Progress . . . . . . . ..
341 Pruning Vi, . . . . ...
3.4.2  Occupancy-state Decomposition . . . . . . .. .. ... ... L.
3.4.2.1 Block Decomposition of Occupancy States. . . . . . .. ... ..
3.4.2.2 Finding Blocks . . . . . . ..o
3.4.2.3 eClose Block Decomposition . . . . .. ... ... .. ... ...
3.4.24 Bellman’sequation . . . . . . . . . ... ... ...
3.4.2.5 Block Decomposition for More Than Two Players. . . . . . . ..
3.4.2.6 Conclusion . . . . . .. . ...

3.5 DIScussion . . . . . ...

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés

46

viii



Chapter 4

N-Player Common-Payoff Games Under Hierarchical-Information Sharing

4.1 Background . . . . ..o 87
4.1.1  cp-POSGS . . . . . . 87
4.1.2 Limitations of Single-Player Reformulations . . . . . ... ... ... ... 88

4.2 Hierarchical Information Sharing . . . . .. ... .. ... ... ... ... ... 88
4.2.1 From Single-Stage to Extensive-Form Games . . . . ... ... ... ... 88
4.2.2  Optimally Solving G&~ As G&= . . . . . .. ... ... ... ... 89

4.3 Near-Optimally Solving his-cp-POSGS . . . . . . . . . . . .. ... 92

4.4 Experiments . . . . . . . ... e 93

Multi-player Tiger . . . . . . . . .. ..o 93
Multi-player Recycling Robot . . . . . . . . . ... ... ... .. 93
Multi-player Broadcast Channel . . . . . . . . ... ... ... ... 94
Multi-player Grid3x3 . . . . . . .. ..o 94
4.4.1 Average Backup Time for Increasingly Many Players . . . .. .. ... .. 94
4.4.2  Average Backup Time for Increasing Horizons . . . . . . . .. ... .. .. 95
4.4.3 Against State-Of-The-Art Solvers . . . . . . . ... .. ... ... ... .. 96

4.5 Conclusion . . . . . . . . 98

4.6 Future Work . . . . . oL 99
4.6.1 Compression . . . . ... 99
4.6.2 Hierarchical Organizations . . . . . . . . . .. .. ... ... ... ... 100

Chapter 5
min-max Optimization in Non-Linear-Payoff Zero-Sum Games

5.1 Introduction . . . . . . . . . L 101

5.2 Related work . . . . ... 102

5.3 Background . . . ... 103
5.3.1 Games and solution concepts . . . . . . . ... ... ... ... 103
5.3.2  Deterministic Optimimistic Optimization (DO0) . . . . .. .. . ... ... 104

5.4  Finite-time convergent DOO for simplex spaces . . . . . . . . . . . . .. ... ... 105
5.4.1 Modifying the stopping criterion . . . . . . . .. ... oL 105
5.4.2 DOO for simplex spaces . . . . . . . . ... 106

Subdivision process . . . . . . ... .. 106

5.5 min-max a-Holder Optimization . . . . . . ... .. ... ... ... ... ..., 107
5.5.1 Complexity analysis . . . . . .. . ... 108
5.5.2  Games with dependent feasibleset . . . . . .. ... ... ... L. 109

5.6 Experiments . . . . . . .. 110
5.6.1 Choosing the e-distribution . . . . . . . .. .. ... 111
5.6.2 Validating the approach . . . . . . .. .. .. ... 0 oL 111
5.6.3 Comparison with the state of theart . . . . . . .. ... ... ... ... .. 112

Bilinear Games and Gradient Descent Ascent . . . . . . ... ... 112
Games with dependent feasible sets . . . . . . ... ... ... ... 113
ix

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



5.7 Conclusion . . . . . . . . 113

5.8 Future Work . . . . .o 113

5.8.1 BiD00 and Games With Dependent Feasible Sets . . . . . . . ... .. .. 114

5.8.2 BiS00 to Solve Some General-Sum Stackelberg Games . . . . . .. . ... 114
Chapter 6

Conclusion and Perspectives

6.1 Conclusion. . . . . . . ... L 115
6.1.1 Planning in zs-P0SGs through zs-oMGs . . . . . . . . . ... ... .. ... 115
6.1.2 cp-P0SGs under hierarchical information-sharing . . . . . ... ... ... 116
6.1.3 Tackling Games with Weaker Hypotheses . . . . . ... ... ... . ... 116

6.2 Perspectives . . . . . . L 116
6.2.1 Planning in zs-POSGS . . . . . . . . . .o 116

6.2.1.1 Improving Operators . . . . . . . . . . . ... ... ... ... 116
Pruning . . . . . .. 117

Double Oracle . . . . . . . ... . 117

Exhibiting Common Knowledge in Occupancy States . . . . . . .. 117
Inititializations . . . . . . . ... oL 117

Getting Rid of Lipschitz Approximations . . . . . . . .. ... ... 117

6.2.1.2  Scaling-up Approximation Functions . . . . . . . ... ... ... 118

6.2.2 cp-P0SGs under Hierarchical Information-Sharing . . . . . . ... ... .. 118
6.2.2.1 Towards Sequential Synchronization for cp-P0OSGs . . . . . . . . 118

6.2.3 Games With Mild Continuity Properties . . . . . . . ... ... ... ... 119
6.2.3.1  Application of the Approach to Real-Life Problems . . . . . . . . 119

6.2.3.2  General-Sum Stackelberg Games . . . . .. ... 119

Appendix A

Appendix
A.1 Synthetic Tables . . . . . . . .. 120
A.2 Strategy Conversion . . . . . . . ... 122
Some Properties of Realization Weights . . . . . . . .. ... ... 123
From wh to B, .« o o 124
Bibliography
X

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



List of Figures

1.1 Dynamic influence diagram representing the evolution of a zs-P0OSG . . . . . . . . 3

2.1 A Venn diagram representing the inclusion relations between several formalisms

introduced in the background section. . . . . .. ... Lo oL 11
2.2 Matching pennies game . . . . . . . ... 13
2.3 POMDP influence diagram . . . . . . . . . ... 20

2.4 Simplified tree representation of the sequentialized Matching Pennies game. Irrel-
evant actions, noted =, allow merging edges with the same action for (i) player 2
at t = 0, and (ii) player 1 at ¢ = 1. Notes: (a) Due to irrelevant actions, this game
can be seen as an extensive form game, despite players acting simultaneously. (b)
Players only know about their past action history (in this observation-free game). 25

3.1 Representation of the strategy recursively induced by some 1§. At each time step

7, one must (i) sample a next tuple/node w! from current distribution 1, (ii)
apply DR B1[wl], and (iii) make 1! [w!] the new current distribution (unless

reaching a leaf). . . . . . . ... 56
3.2 Competitive Tiger (H = 2,3) (1,1): (left) Evolution of (in dotted lines) the

upper- and lower-bound values, and (in solid lines) the security levels of the

returned strategies for HSVI as a function of time (s). (right) Exploitability

(= SL'%) as a function of time (s) for Random, Informed, CFR, CFR+, and HSVI. . 70
3.3 Recycling Robots (H =2,3,4) (1,1,10): (left) Evolution of (in dotted lines)

the upper- and lower-bound values, and (in solid lines) the security levels of the

returned strategies for HSVI as a function of time (s). (right) Exploitability

(= SL'%) as a function of time (s) for Random, Informed, CFR, CFR+, and HSVI. . 71
3.4 Recycling Robots (H = 5,6) (once,none): (left) Evolution of (in dotted lines)

the upper- and lower-bound values, and (in solid lines) the security levels of the

returned strategies for HSVI as a function of time (s). . . . . .. ... ... ... 72
3.5 Adversarial Tiger (H =2,3,4) (1,1,10): (left) Evolution of (in dotted lines)

the upper- and lower-bound values, and (in solid lines) the security levels of the

returned strategies for HSVI as a function of time (s). (right) Exploitability

(= SL'%) as a function of time (s) for Random, Informed, CFR, CFR+, and HSVI. . 73
3.6 Mabc (H =2,3,4) (1,1,10): (left) Evolution of (in dotted lines) the upper-

and lower-bound values, and (in solid lines) the security levels of the returned

strategies for HSVI as a function of time (s). (right) Exploitability (= SL'%) as

a function of time (s) for Random, Informed, CFR, CFR+, and HSVI. . .. ... .. 74
3.7 Matching Pennies (H =4,5,6) (1,1,1): (left) Evolution of (in dotted lines)

the upper- and lower-bound values, and (in solid lines) the security levels of the

returned strategies for HSVI as a function of time (s). (right) Exploitability

(= SL'%) as a function of time (s) for Random, Informed, CFR, CFR+, and HSVI. . 75
3.8 An example of a bloc-diagonal matrix . . . . . ... ... ... ... 80
3.9 Ilustration of an occupancy state as a graph. Probabilities on the right are not
normalized. . . . . . ... 83
3.10 Example of Gomory-Hu Tree. . . . . . . . . ... ... 83
xi

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



4.1

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1

5.2
5.3

5.6

5.7

The search space for a single-stage game using player-based decomposition, illus-
trated as an AND/OR tree. OR nodes (triangle) represent alternative ways to

solve G&7. AND nodes (circle) represent subproblem alternatives to be solved. . . 89
Average backup time as a function of planning horizons for Tiger. . . . . . . . .. 96
Average backup time as a function of planning horizons for Recycling. . . . . . . 96
Average backup time as a function of planning horizons for MABC. . . . . . . . .. 97
Average backup time as a function of planning horizons for Grid3x3. . . . . . .. 97
Anytime values for Tiger and H =30. . . . . . . . ... ... ... ... .... 98
Anytime values for Recycling and H =30. . . . . ... ... ... ... ... ... 98
Anytime values for Multi-agent broadcast channel and H =30. . . .. ... ... 99
Anytime values for Grid3x3 and H =30. . . . . . . .. ... ... ... ... ... 99

Representation of DOQ’s execution to minimize = — sin(z) on [0, 27]. The interval
is covered with cells (i.e., here, intervals) of different sizes where the function sin
is lower-bounded by "Lipschitz cones", themselves lower-bounded by a constant.

The cones, along with their constant lower bounds, form the triangular shapes. . 105
Mlustration of the subdividing process . . . . . . . . . ... ... ... ..., 107
Number of hypercubes kept when optimizing over the n-dimensional simplex (here,
n = 3) as a function of DO0’s number of iterations (N). . . . . ... ... .. ... 107
GDA applied to the problem max, min, x - y'. Red points correspond to points
visited by the GDA algorithm. . . . . . . . . . ... .. ... .. ... ... ... . 112
Upper and lower bounds as a function of the iteration number for the optimization
problem in Expression 5.26. . . . . . ... .00 113
xii

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



List of Tables

2.1 Vocabulary and notations used to describe players’ behaviors. . . . . . . . .. .. 11
2.2 Payoff functions for the Sheriff’s dilemma game for both types of the person. . . 16
2.3 Summary of specified procedures in the HSVI algorithmic scheme, for the different
classes of games considered up tonow. . . . . .. ... 37
3.1 Number of states/actions/observations for each benchmark problem . . . . . . . . 67

3.2 Comparison of different solvers on various benchmark problems. Reported val-
ues are the running times until the algorithm’s error gap (based on bounds for
HSVI) is lower than 1%, or, if the timeout limit is reached, the security-level gap
percentages (100 % if gap = H - (Rmax — Rmin))- Notes: (1) Horizons with a
star exponent (H™*) are those for which the security-level computations ran out
of time so that, for HSVI, we give the gap between the pessimistic bounds. (2)
Even though Random and Informed contain randomness, we ran them only once,
getting fairly representative results. . . . . . . ... oL 69

4.1 Snapshot of empirical results, cf. Section 4.4. For each game(n) and algorithm,
we report average time (in seconds) per backup and the best value for horizon
H = 30. oot means time limit of 30 minutes (except for Tiger, for which 1h was

given to all algorithms) has been exceeded and '~ is not applicable. . . . . . . . . 100

A.1 Known properties of various functions appearing in this work . . . . . .. .. .. 120

A.2 Various notations used in thiswork . . . . . ... ... ... L. 120

A.3 Various abbreviations used in this work . . . . . .. .. ... 000 122
xiii

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



List of Algorithms

2.1 Regret matching for zs-NFGs (Hart et al. 2000) . . . . . ... ... ... ... ... 27
2.2 Double oracle for zs-NFGs . . . . . . . . . . ... 31
2.3 Dynamic Programming for (finite-horizon) MDPs. . . . . . . . . .. ... ... ... 31
2.4 HSVI for (finite-horizon) MDPs . . . . . . . . . ... .. ... ... 32
2.5 Value Iteration (synchronous version) for (infinite-horizon) MDPs . . . . . . . . .. 32
2.6 HSVI for (infinite-horizon) MDPS . . . . . . . . . . . . . .. 33
2.7 Generic HSVI for (infinite-horizon) problems . . . . . . . ... ... ... ... ... 37
3.1 HSVI(by, [€, p]) [here returning a tuple wp containing a solution strategy for player 1] 60
3.2 Find Connected Subgraphs (Hopcroft et al. 1973) . . . ... ... ... ... ... 82
4.1 PBVI for cp-oMGs under HIS. . . . . . . . . . . . . e 92
5.1 DOO . . . L e 105
9.2 BiDOO . . . . . o e 108
A1 Extracting 8§, from wl . . . . ... 124
xiv

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



List of Theorems

2.1.1 Definition (One-shot Game (0SG)) . . . . . . . . . v i 12
2.1.2 Example (One-Shot Game) . . . . . . . . .. ... 12
2.1.3 Definition (Security Levels) . . . . . . . . .. .. Lo 12
2.1.4 Example (Matching pennies) . . . . . . . . ... o 13
2.1.5 Theorem (Extension to Mixed Strategies (Nash 1950)) . . . . .. ... ... ... 13
2.1.6 Definition (Vocabulary for the description of players’ decision making) . . . . . . 13
2.1.7Remark . . . .. 13
218 Remark . . ..o 14
2.1.9 Definition (Zero-Sum NFG (von Neumann 1928)) . . . . . . .. .. ... ... ... 14
2.1.10 Example (Matching pennies as an NFG) . . . . . . . . . . ... ... ... .... 14
2.1.11 Theorem (Minimax theorem (von Neumann 1928)) . . . . ... ... ... ... 15
2.1.12 Example (Application to matching pennies) . . . . . . . . ... ... ... ... 15
2.1.13 Definition (Bayesian Games (Harsanyi 1968)) . . . . ... ... ... ... ... 15
2.1.14 Definition (Vocabulary for the Description of Players’ Decision Making) . . . . . 16
2.1.15 Example (Sheriff’s dilemma) . . . . . . .. ... Lo 16
2.1.16 Proposition (Concavity w.r.t. marginal distributions (Harsanyi 1968)) . . . . . . 16
2.1.17 Definition . . . . . oL 17
2.1.18 Definition (Vocabulary for the Description of Players’ Decision Making) . . . . . 18
2.1.19 Definition . . . . . . oL 19
2.1.20 Definition (Action-observation histories) . . . . . . ... ... ... ... .. .. 19
2.1.21 Example (Rocksample (Smith et al. 2005)) . . . . . ... .. ... ... ... .. 20
2.1.22 Definition (Vocabulary for the description of players’ decision making) . . . . . 20
2.1.23 Definition (Two-Player Stochastic Game (Shapley 1953)) . . . . . ... ... .. 21
2.1.24 Definition (Vocabulary for the Description of Players’ Decision Making) . . . . . 21
2.1.25 Definition (POSGS) . . . . .« v v v v i i 23
2.1.26 Example (Matching Pennies as a zs-POSG) . . . . . . . . . . . ... 24
2.1.27 Example (Scotland Yard) . . . . . .. ... 26
2.2.1 Proposition (LP to solve zs-NFGs (Shoham et al. 2008)) . . . .. ... ... ... 27
2.2.2 Remark (General-sum Bimatrix Game) . . . . . . . ... ... L0 28
2.2.3 Remark (Common-Payoff Normal-Form Games) . . . . .. ... ... ... ..., 28
2.2.4 Proposition (Linear Program for a zs-BG (Harsanyi 1968)) . . . . . . .. .. ... 29
2.2.5 Remark (Mixed Strategies and Behavioral strategies) . . . . . .. ... ... ... 29
2.2.6 Remark . . . . ... 33
2.2.7 Definition (Belief States) . . . . . . . . . Lo 34
2.2.8 Theorem (Sufficiency of Belief States (Garcia et al. 2008)) . . . . ... ... ... 34
229 Corollary . . . . L 34
2.2.10 Lemma (Structure in the Value Function for Finite-Horizon b-MDPs (Smallwood
etal., 1973)) . . . . . 35
2.2.11 Theorem (Structure in the Value Function for Infinite-Horizon b-MDPs (Sondik
1971)) o 35
2.2.12 Remark . . . . .o 35
2.2.13 Proposition . . . . . . . . e e 36
2214 Remark . . . . oL 36
2.2.15 Theorem (Convergence of HSVI (Smith 2007)) . . . . . . .. .. ... ... ... 37
XV

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



2.2.16 Remark (Tools to Improve Efficiency) . . . . . . ... ... ... ... .. ..., 37

2.2.17 Proposition (Adapted from Dibangoye et al. 2016, Thm. 1) . . . . . .. . .. .. 38
2.2.18 Definition (Occupancy Markov Games (oMGS)) . . . . . . . . .. ... ... ... 39
3.1.1 Definition (Value of Strategy Profile) . . . . . .. .. ... ... ... ... .... 43

3.1.2 Proposition (Value Functions V;(o,,3,.y_;) are not Linear in Individual Behav-
ioral Strategies) . . . . . . ... 43
313 Lemma ..o 45
3.1.4 Corollary (Equivalence between behavioral and mixed strategies) . . . ... ... 45
3.1.5 Theorem (Minimax theorem) . . . . . .. .. ... ... ... .. ... ..., 45
3.1.6 Theorem (Bellman optimality equation) . . . . . ... ... ... .. ... .... 46
3.1.7 Theorem (Concavity and convexity (CC) of V* (Wiggers et al. 2016a, Thm. 2)) . 47
3.1.8 Lemma (Linearity of T}, (Wiggers et al. 2016a, Lemma 4.2.3)) . . . . . . . .. .. 48
3.1.9 Lemma (Independance properties of T} (Wiggers et al. 2016a)) . . . . . ... .. 48
3.1.10 Lemma (Lipschitz continuity of T) . . . . . . ... ... . oL 49
3111 Lemma . . . . . oL 50
3.1.12 Theorem (Lipschitz-Continuity of V*) . . . .. . ... ... ... ... ... 50
3.1.13 Theorem (Upper-bouding V*) . . . . .. .. .. ... ... .. ... 51
3114 Lemma . . . . Lo 52
3115 Lemma . . ... 53
3.1.16 Proposition . . . . . . . .. 53
3117 Lemma . . o o o Lo e 55
3.1.18 Corollary . . . . . . o o 56
3.1.19 Remark (Interpretation of M) . . . . . . . . . . . .. 56
3.1.20 Remark (Outcomes of this game) . . . . .. .. ... ... ... ... .. .... 56
3.1.21 Proposition . . . . . . .. o7
3.1.22 Corollary (update) . . . . . . . . .. L 58
3.1.23 Theorem (Retrieving a NES for the zs-POSG) . . . . . . . . . . . .. ... .... 59
3.1.24 Proposition . . . . . . . . e 60
3.1.25 Lemma . . . . o Lo 62
3.1.26 Lemma (Monotonic evolution of upper and lower approximations W) . . . . . . 62
3.1.27 Lemma . . . Lo Lo 63
3128 Lemma . . . . oL e 63
3.1.29 Theorem (Finite-time convergence) . . . . . . . . .. ... ... .. ... .... 65
3.1.30 Proposition . . . . . ... 66
3.4.1 Theorem (Proof in Theorem 3.4.1) . . . . .. .. . ... ... ... ... ..., 7
3.4.2 Definition . . . . .. L 80
3.4.3 Remark (Block Decomposition for Bayesian Games) . . . . ... ... ... ... 80
3.4.4 Lemma (Reduction of Occupancy States) . . . . . ... ... ... ... ..... 80
345Lemma ... 81
3.4.6 Definition (min k-cut problem) . . . . . . .. .. Lo 82
34 7TExample . . ... L e e e 82
348 Theorem . . . . . . .o 84
4.1.1 Lemma (Dibangoye et al. (2018)) . . . . . . . . .. ... 87
4.1.2 Assumption . . . . ... 88
4.13Remark . ..o L 88
4.1.4 Assumption . . . . .. 88
4.2.1 Definition . . . . . ... 89
4.22Theorem . . . . . . . Lo 89
43 1Theorem . . . . . . .. 92
5.3.1 Definition (Two-player Zero-Sum Game) . . . . . .. .. ... .. ... ... ... 103
5.3.2 Example ((Daskalakis 2022)) . . . . . .. ... 103
5.3.3 Definition (a-Hélder condition) . . . . .. .. .. ... Lo 104
xvi

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



5.3.4 Assumption (Valid cell (Assumption 4 in (Munos 2011))) . . . . . . ... ... .. 104

5.3.5 Assumption . . . ... L 104
5.3.6 Remark . . . . .. 104
5.4.1 Proposition (Upper and lower bounds) . . . . . .. ... .. ... ... ...... 106
5.4.2 Theorem (adapted from (Munos 2011)) . . . . . . . . ... ... .. ... .. .. 106
54.3Remark . . . .. e 106
5.4.4 Theorem (Intersection between the probability n—1-simplex and an n-dimensional
hypercube) . . . . . 106
5.5. 1 Lemma . . . Lo e e 107
5.5.2 Remark (Pruning the Inner Process) . . . . ... ... ... ... .. ... ..., 108
5.5.3 Theorem (Complexity upper-bound) . . . . . .. ... ... ... .. ... ..., 109
h.5. 4 Theorem . . . . o L L e 109
5.6.1 Lemma . . . . . ... e 110
xvii

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



(zeneral Introduction

Contents
1.1 Game Theory . . . . . . ¢« o i i i i i e e e e e e e e e et e e e 1
1.2 Computational Aspects in Game Theory ... .............
1.2.1 Methodologies to Tackle zs-POSGS . . . . . . . . . . o v v v v v v .. 4
1.2.2  Efficient Algorithms for Structured Games . . . . . . . . ... ... ... 5
1.3 Formalisms for Imperfect Information Games . ... ......... 5
1.3.1 Extensive Form Games . . . ... ... ... ... ... .. 6
1.3.2 Partially Observable Stochastic Games . . . . . . ... ... ... .... 6
1.3.3  Why Do We Care About POSGs? . . . . . . . . . ... ... ..... 6
1.4 Tackling zs-P0SGs through Dynamic Programming . ... ... ... 8
1.4.1 The Challenges with Dynamic Programming for Imperfect Information
Games . . . .. e 8
1.5 Research Outline and Contributions . . . ... ... ... ....... 9
1.5.1 Planning in zs-POSGs . . . . . . . . . .. ..o 9
1.5.2  Planning in Common-Payoff POSGs under Hierarchical Information Sharing 9
1.5.3  General Reward Model . . . . . . ... ... .. L L 9

The introduction chapter of this manuscript firstly lays down general concepts and key chal-
lenges in game theory. Secondly, we circumscribe the topics of interest of this manuscript, mainly
addressing the problem of optimally planning in imperfect information games through dynamic
programming. We then discuss the similarities and differences between two common frameworks
for such games (P0SGs and EFGs). Finally, we focus on the first one and detail the challenges
that have prevented the application of dynamic programming to optimally planning in zero-sum
P0SGs, along with the levers this algorithmic scheme might offer.

1.1 Game Theory

Game theory is a branch of mathematics that studies the strategic interactions between any
number of players. It is commonly acknowledged (Schwalbe et al. 2001) that the first formal
definitions published on the topic of game theory can be attributed to Ernst Zermelo, showing
in 1913 that, in chess, one side can either force a win or a draw. A few years later, Emile
Borel introduced crucial questions about optimally playing in competitive games, pointing out
the importance of finding strategies that maximize the expected reward against any possible
opponent (Borel 1921), which will later be linked to von Neumann’s minimax theorem (von
Neumann 1928). Thanks to the communications of Emile Borel to the French Academy of
Science, the importance that game theory might have in economics, military and psychology was
already known in the early 1920s.

Game theory has been largely studied ever since, offering crucial frameworks (Kuhn et al.
1953; Bernstein et al. 2002), interesting results and practical solutions for a wide variety of fields.
From entertainment (Campbell et al. 2002; Silver et al. 2018; Vinyals et al. 2019) to economics

1
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1.1. Game Theory

(Gibbons 1992), through security (Horak 2019; Manshaei et al. 2013), physics (Hauert et al. 2005;
Brunner et al. 2013), engineering (Tang et al. 2016) and communications (Han et al. 2012), game
theory holds substantial practical or potential influence on our daily life. Interestingly, game
theory has also proven useful in enhancing the understanding of the climate system through
the design of specific games (Meadows et al. 2016) and/or illustrating the interdependence of
biophysical flows in a context of climate crisis (Boissier et al. 2023).

Generally speaking, players are modeled by a possibly infinite set of actions. Those actions
impact the game by both influencing the outcome players receive and making the state of the
game evolve. The expected outcome of the game depending on all players’ actions make it non-
trivial to define optimal behaviors. In particular, players must take into account their immediate
outcome, the game possibly evolving into a state with negative expected payoff and the other
players’ behaviors. The main problem is thereby to (i) design a pertinent solution concept and
(ii) be able to compute it through solving optimization problems.

The solution concept of Nash equilibria was introduced in 1950 by John Nash and tackles
point (i) mentioned above. It consists in a strategy profile (i.e., a tuple containing a strategy
for each player) from which no player has incentive in unilaterally deviating. Nash equilibria
are stable points in players’ search to maximize their expected outcome, provided that they act
rationally. In other words, given a Nash equilibrium, no player has incentive in unilaterally
continuing her search.

The ability to efficiently find Nash equilibria is, for its part, a major stake. Several classes of
games admit algorithms solving nontrivial real-life games (Cohen-Solal 2020; Buffet et al. 2020;
Horék et al. 2019a; Zang et al. 2023; Chadés et al. 2012; Van der Pol et al. 2016). Some others,
however, remain challenging and are subject to extensive recent work (Sokota et al. 2023; Perolat
et al. 2022; Lanctot et al. 2017; Brown et al. 2020; Ling et al. 2021; Lépez et al. 2022)2. The
difficulty of the search highly depends on, at least, (i) the number of players (Porter et al. 2008,
Figure 11) and/or their cooperation degree, (ii) the game’s payoff function’s continuity properties
(Fiez et al. 2021, Table 1) and (iii) the state of the game being perfectly known to players or
not (high-level topic discussed by Burch (2018)). Negative complexity results show for example
that computing Nash equilibria for general-sum normal-form games is already in PPAD-complete
(Goldberg et al. 2006; Daskalakis et al. 2009), even for two-players (Chen et al. 2009), while
normal-form games are among the simplest ones considered in game theory.

When considering games that are no longer convex-concave w.r.t. players’ strategies, deciding
wether a function f : [0,1]¢ — [—1,1] has an e-approximate “minimax strategy” is already
NP-hard (Daskalakis et al. 2021). Finally, games modeling uncertainty are especially hard to
tackle while being at the center of daily life practical problems. Uncertainty implies that players
are unaware of the precise state of the game, and do not observe each other’s actions, making
the search for a Nash equilibrium even harder.

Partially observable stochastic games (P0SGs) (Hansen et al. 2004) is a generic n-player frame-
work for dynamic games with imperfect information. Players partially observe the current state
of the game through noisy (and possibly partial) observations. Even though sequences of actions
and observations of all players are sufficient to infer a probability distribution over the possible
states of the game, this knowledge remains unknown to players that, in general, do not know
their opponents’ actions and observations. Each time players take actions, they are rewarded
depending on the current state of the game. An influence diagram representing such games is
given in Figure 1.1. When there are two players whose reward functions are opposite?, the game
is called a zero-sum POSG. Specific time complexity results were established for POSGs and depend
on how much players are cooperating or competing. While common-payoff P0SGs (cp-P0SGs) are
NEXP-hard (Bernstein et al. 2002), competition adds complexity as deciding whether a strategy
with positive expected reward in a POSG with 2k (k > 2) players exists has been shown to be
NEXP"_complete (Goldsmith et al. 2007). Two-player zero-sum P0OSGs can be solved by linear

2Interestingly, a significant part of recent work>focuses on explicitly or implicitly transforming the games with
imperfect information into games with perfect information and retrieving from it “good” strategies for the original
game.

3or am I biased?

4We discard the zero-sum case with more than two players.
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Figure 1.1: Dynamic influence diagram representing the evolution of a zs-P0SG

programs (obtained by flattening time) that run in linear time and space with respect to the size
of the game tree (Koller et al. 1994). Unfortunately, the size of the game tree is exponential with
respect to the players’ numbers of actions and observations.

While planning in POSGs might be a challenging computational task in general, many real-life
applications possess structure which can be exploited by algorithms to find solutions empirically
way faster than generic algorithms. Exhibiting tractable subclasses of POSGs led to various
applications of game theory to real life (Becker et al. 2004; Dibangoye et al. 2012; Nair et al.
2005; Dibangoye et al. 2014b; Nayyar et al. 2010; Horék et al. 2017; Horédk et al. 2019b; Hadfield-
Menell et al. 2016).

1.2 Computational Aspects in Game Theory

The study of game theory raises at least two orthogonal problems. Firstly, it involves the chal-
lenge of mathematically modeling real-life situations with various types of interactions between
players and the game. Consequently, it must appropriately be defined what is considered as a
“solution” (e.g., Nash equilibria, trembling-hand Nash equilibria, Stackelberg equilibria, corre-
lated equilibria). Even when a pertinent solution concept is identified, there might exist multiple
behaviors verifying the conditions of the solution concept, but with different values for each
player. Selecting one particular behavior is a non-trivial problem (Harsanyi et al. 1988).

Secondly, researchers have shown increasing interest in the problem of efficiently computing
solutions for well-established models and solution concepts. This manuscript focuses on the
latter problem, aiming at finding a Nash equilibrium of any given zs-P0SG through a dynamic
programming approach.
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1.2.1 Methodologies to Tackle zs-P0SGs

Multiple methodologies to tackle zs-P0SGs have been introduced throughout the years. The ones
mentioned in this paragraph will be presented in more detail thereafter. Of particular interest
for this manuscript are linear programming, regret minimization and dynamic programming.
Linear programming directly searches for Nash equilibria as distribution probabilities over pure
strategies (decision trees mapping each reachable sequence of actions and observations to an
action), while regret minimization and dynamic programming perform local computations for
different parts of their game tree®, and then extract a Nash equilibrium based on the resulting
computations after a given time budget.

Regret minimization computes regrets at each decision point in the game tree (and thus
traverses the whole game tree at each iteration) while dynamic programming implements a
divide and conquer strategy by breaking problems into subproblems and backwardly updating
the knowledge for each problem for all time steps. Linear programming, as it searches for a
global solution by optimizing all its parameters at the same time, did not initially offer as many
levers as regret minimization or dynamic programming to improve the original scheme. The two
latter approaches performing local updates of knowledge highly benefited from smartly deciding
which local computations to make and/or approximating the local solutions (Moravéik et al.
2017; Vojtéch Kovaiik et al. 2022b; Smith et al. 2005; Horék et al. 2023; Johanson et al. 2012).
Recently, double-oracle approaches to solve linear programs (besides efficiently finding Nash
equilibria whose supports contain few pure strategies) nuanced this observation by offering very
interesting levers (e.g., approximating best responses (McAleer et al. 2021; Lanctot et al. 2017),
novel constructions of restricted games (McAleer et al. 2021)).

Linear Programming Linear programming first appeared in game theory as a solving algo-
rithm for two-player zero-sum normal-form games. Such games are among the simplest ones in
game theory and allow for an efficient polynomial-time computation of a Nash equilibrium. It
was later generalized to many other general settings, including (i) imperfect information about
the game (Koller et al. 1996; Harsanyi 1968), (ii) any number of players sharing the same payoff
function (Aras et al. 2010), (iii) two-player general-sum games (Lemke et al. 1964). Regarding
imperfect information games, a technical discovery introduced by Koller et al. (1996) offered a
more concise representation of strategies as realization weights, and the resulting linear program
has exponentially lower complexity than the original one. Overall, linear programming clearly
has benefits regarding its relative simplicity to implement, the computation of an ezact solution
and the possibility to iteratively construct the whole program (BogSansky et al. 2014; McAleer
et al. 2021; Lanctot et al. 2017). On the downsides, very large games still remain a challenge as
their respective complete® linear programs do not even fit in memory (Bowling et al. 2015).

Regret Minimization The concept of regret minimization finds roots in the single-agent set-
ting and belongs to the set of schemes learning by performing self plays and asymptotically
converging towards a solution.

The regret matching algorithm (Hart et al. 2000) tackles normal-form games and implements
this scheme by specifying regret computation rules and strategy update procedures. Given an
action a, the regrets are defined for all other actions k as the cumulative difference between
rewards that would have been obtained by playing k instead of a in the past. In the case of zero-
sum games, it holds that, if both players use a regret matching minimizer, the average strategy
converges towards a Nash equilibrium (Hart et al. 2000). Overall, regret matching has been a
building block for planning in zero-sum games. In particular, the state-of-the-art algorithm called
counterfactual regret minimization (Zinkevich et al. 2007) builds upon this regret rule to tackle
two-player zero-sum games with imperfect information, and has been at the core of many recent
works (Moravéik et al. 2017; Brown et al. 2018), yielding impressive results. The algorithm’s

5Both algorithms operate on different notions of game tree.

5Double oracle-based methods iteratively construct the linear program, but their convergence guarantee relies
on the worst-case scenario of constructing the whole linear program. Besides, double oracle-based methods
typically depend on best-response computations, which is known to be intractable for large-size games.
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iterations having linear time complexity in the size of the game tree provides an algorithm
running even for relatively large games. One of the drawbacks that recent work (Brown et al.
2020) attempted to tackle is not taking advantage of underlying structure that most real-life
games possess. Indeed, despite decision points being linked to each other through continuity
properties, CFR considers them independently.

Dynamic Programming Dynamic programming is another orthogonal approach that recur-
sively divides difficult problems into easier subproblems. It is required that problems can be
divided (for example, those containing multiple time steps at which a player must take actions)
and have the property ensuring that a solution to a problem can be found using the solutions
of subproblems. The latter property is known as optimal substructure” and not all problems
satisfy it®. The “definition” of dynamic programming is very general and actually encompasses a
wide variety of approaches. Of particular interest for this thesis are (i) Hansen et al.’s iterative
pruning of dominated strategies for general POSGs, and (ii) the re-solving scheme (Burch et al.
2014), which we will discuss in further details in Section 3.3. A more detailed presentation of
dynamic programming and its potential advantages compared to the two previous approaches is
given later in this introduction, in Section 1.4.

1.2.2 Efficient Algorithms for Structured Games

As mentioned earlier, planning in POSGs in general is often a computationally particularly hard
task. Still, real-life scenarios often exhibit structure. Multiple structures have been identified
as of particular interest—e.g., dynamics independence (Becker et al. 2004; Dibangoye et al.
2012), weak-separability (Nair et al. 2005; Dibangoye et al. 2014b), delayed information-sharing
(Nayyar et al. 2010), one-sidedness (Horéak et al. 2017; Horak et al. 2019b; Hadfield-Menell et al.
2016; Malik et al. 2018; Xie et al. 2020). Adapting all three algorithms described above to take
advantage of these structures allows solving the problems empirically way faster. Exhibiting
tractable subclasses of POSGs relevant for real-life applications is a very fruitful line of research
in computational game theory.

1.3 Formalisms for Imperfect Information Games

Partially observable stochastic games (P0SGs) and extensive-form games (EFGs) are two different
formalisms modeling stochastic games with imperfect information. A wide variety of games
fit this description so that a formalism convenient to describe a game might misfit some others.
Modeling games as POSGs often naturally follows from describing the evolution of a game through
generic rules (e.g., “the probability that a player observes the true position of her opponent in a
n x k grid is p and a false position with probability 1 —p”). On the other hand, one can define a
game in extensive form through “unfolding” a POSG or by describing a game through enumerating
all the possible evolutions of the game. For some games (e.g., Kuhn’s poker (Vojtéch Kovaiik
et al. 2022a, Example 2.2)) which contain multiple rules specific to some evolutions of the game,
EFGs appear more adapted. On the contrary, games with intrinsic structure (e.g., meeting in a
grid) are often more efficiently described by POSGs. It is noteworthy that linear programming and
regret minimization were historically introduced for EFGs while dynamic programming approaches
for games with imperfect information were developed for P0SGs (Hansen et al. 2004; Horék et al.
2017).

The next two sections provide further details for EFGs and POSGs that will permit discussing
further their respective advantages and drawbacks.

"https://en.wikipedia.org/wiki/Optimal_substructure
8For example, computing a'® for @ € R with as few multiplications as possible does not satisfy this property.
Indeed, the subproblem a® admits the minimal expression (a?)® requiring 3 multiplications while it would be more

efficient to compute it as (a*)? to store the value of a® and compute a® as (a*)?.
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1.8. Formalisms for Imperfect Information Games

1.3.1 Extensive Form Games

We assume that players have perfect recall of what they previously saw and did in the game.
EFGs are a very generic and widely used representation of sequential games. In their most general
definition, they are able to model a large part of real-life scenarios. For example, the literature
tackling the challenging task of optimally planning in poker games efficiently describes them
through EFGs.

An EFG can naturally be derived from the description of a game through a finite tree of
its possible evolutions, in which nature is considered as a player and its strategy encodes the
possible stochasticity of the game. Nature acts by randomly taking actions according to a fixed
probability distribution for each of “its” nodes of the tree. A zero-sum extensive form game is
defined by:

e a rooted tree;
e a payoff value for each leaf of the tree;

e a partition of non-terminal nodes, one set per player including nature, to indicate for each
node which player acts;

e probability distributions of nature’s behavior;
e for each player, a partition of her acting nodes which groups them in information sets.

At each node of the game tree, exactly one player acts, which dictates the evolution of the game
to a child node. A node thus corresponds to sequence of actions for all players. The formalism
captures imperfect information by specifying what players know when playing. Whenever a
player has to take an action, she is in one specific information set that groups together nodes
that the player can not distinguish at execution time, and hence, must play the same actions at
all those nodes.

1.3.2 Partially Observable Stochastic Games

The POSG framework extends both (i) single-player Markov decision processes with imperfect
information by considering any number of agents rather than one, and (ii) stochastic games by
introducing imperfect information. A POSG describes the interaction between any number of
players and an environment, whose current state is hidden. The game is divided in multiple time
steps, at which all players act, making the system evolve stochastically. The new state of the
game is still hidden to players, but they receive partial and noisy observations, with probabilities
that depend on players’ actions and the state reached. Upon taking actions, players also receive
reward, that classically depend on the current state of the game and on players’ actions. A
sequence of actions and observations of a player is called a private history. The imperfect
information aspect of the game implies that players are unable to tell (i) what the current state
of the game is and (ii) what their opponents’ current history of actions and observations is.

We below try to highlight the conceptual differences between EFGs and P0OSGs, along with
their respective advantages.

1.3.3 Why Do We Care About P0SGs?

The last two sections introduced two different frameworks, namely POSGs and EFGs, which appear
rather close in terms of expressivity, while they adopt two different and complementary view-
points. Mainly, a POSG description of a game can be viewed as a representation of its rules while
the same game can be described by a EFG by enumerating the possible evolutions of the game,
i.e., “unrolling” the POSG (Vojtéch Kovaiik et al. 2022a). Both describe games with stochastic
dynamics and imperfectly informed players that take actions and obtain returns. Besides, infor-
mation sets appear similar to local histories. The discussion below discusses to what extent their
apparent technical differences (e.g., rewards being obtained at the end of the game v.s. each
time players act; players acting simultaneously or not) are not fundamental.
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1.8. Formalisms for Imperfect Information Games

Firstly, both notions of actions are the same. Also, nodes in EFGs are characterized by an
environment state and the players’ knowledge about the game. Informations sets gathering
indistinguishable nodes from a player’s point of view consequently correspond to histories of
actions and observations in POSGs.

Secondly, players act simultaneously in a POSG, but one after another in a EFG. Turning a
serialized game into a simultaneous one is the simpler case, since it only involves adding fictitious
noop actions. Conversely, one can buffer, while maintaining them hidden, the actions made by
players until everyone has played, and only then make the nature move.

Finally, rewards are typically obtained at each time step in a POSG while only at the end in an
EFG. Again, one can simply aggregate the rewards obtained alongside a trajectory in a POSG game
tree to form the unique reward given at the end in an EFG description of the POSG. Conversely,
null fictitious rewards can be given to players at each time step.

As a matter of fact, Vojtéch Kovaiik et al. (2022) proved that timeable? EFGs with perfect
recall are equivalent to factored observation stochastic games (FOSGs), and conversely. FOSGs
slighly modify POSGs by allowing the game to provide players with public observations (i.e., all
players know (i) their opponent’s observations, (ii) that their opponent also knows it and (iii)
that they know that the other player knows it etc...). The observation space is thus factorized
as Z = ZP x ZPrv_ Doing so renders some structure in the game explicit.

P0SGs and EFGs thus do not differ in terms of expressivity, so that we will now investigate
their differences for practical uses. More specifically, the following section discusses to what
extent POSGs might be easier to work with for games with underlying structure that allow very
compact representations.

1.3.3.1 Different Game Descriptions Offer Complementary Benefits

The underlying structure in the game (e.g., publicly available information, additional observabil-
ity assumptions) is kept implicit in its EFG description, while being key to a significant part of
recent search algorithms (Brown et al. 2020; Schmid et al. 2021; Morav¢ik et al. 2017; Dibangoye
et al. 2014b). Retrieving the underlying structure of a game described by a perfect-recall and
timeable EFG might be possible, so that points mentioned below are to be understood as a char-
acterization of the convenience of a framework, not as a description of its theoretical properties.

Overall, POSGs tend to factorize information by describing games through rules, whereas EFGs
often duplicate it as pieces of information are often used to define multiple different parts of their
game tree.

While, in EFGs, the nature’s behavior can be completely different for two different nodes, the
dynamics of any POSG is represented by probability matrices. In contrast with EFGs, nature in
P0SGs will behave according to the same transition matrices for any joint history h or h. In some
real-world applications (Dibangoye et al. 2016), two different histories h and h often induce the
same normalized distribution over hidden states. This means that the probability the game has
to be in any hidden state s is the same, given h or h. Then, acting optimally starting from A
on is exactly the same as acting optimally starting from % on. Consequently, both histories can
be considered as equivalent and thus can be merged into a single one. The ability to thereby
take advantage of real-world structure is key to a state-of-the-art algorithm tackling common-
payoff POSGs introduced by Dibangoye et al. (2016). The procedure used to analyze possible
compressions is completely game-independent.

Interestingly, POSGs also allow lossy compression of “nearly” equivalent histories (Dibangoye
et al. 2014a) while bounding the loss. On the contrary, lossy abstractions typically used to
reduce the dimensionality of EFGs are game-dependent and are made by hand (Brown et al.
2018) (though automated procedures for games with enough structure exist (Gilpin et al. 2007)).

9A EFG is timeable if there is a function from the set of nodes to the set of possible time (let us say, N) which
ensures that any node will have a greater image than any one of any of its parents.
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1.4 Tackling zs-P0SGs through Dynamic Programming

Section 1.2 introduced three state-of-the-art approaches to tackle zs-P0SGs or subclasses. Ap-
plying dynamic programming to the general case of zs-P0SGs still remains an open question,
and we below investigate the benefits this approach could bring to this difficult task along with
the main issues that have been preventing from doing so.

While infinite-horizon partially observable Markov decision processes (POMDPs) (Astrom 1965)
are undecidable (Madani 2010) and finite-horizon ones are PSPACE-complete (Papadimitriou et al.
1987), algorithms finding approximate solutions in reasonable time were discovered throughout
the years (Williams 1992; Smith et al. 2005; Pineau et al. 2003; Kurniawati et al. 2008; Spaan
et al. 2005). POMDPs have thus been widely used to represent many real-life problems.

One of the main techniques to tackle those problems relies on recasting the POMDP into an
equivalent fully observable MDP and applying Bellman’s optimality principle to iteratively con-
struct approximations (e.g., lower-bounding envelopes of hyperplanes and upper-bounding con-
vex hulls) of the optimal value function (Pineau et al. 2003; Smith et al. 2005). This was
later generalized to decentralized partially observable Markov decision processes through the
introduction of a central planner reasoning upon occupancy states that summarize players’ past
strategies (Oliehoek et al. 2013; Dibangoye et al. 2013a). The ability to generalize values from
visited subproblems to unvisited ones, efficient initializations of approximations through close
relaxations, pruning techniques, knowledge compression, and point-based backups instead of full
exhaustive ones were among the main ingredients to solve classical benchmarks from the litera-
ture (Dibangoye et al. 2013a). Recently, those approaches were generalized to tackle zero-sum
stochastic games with one-sided observability (Horak et al. 2017) or public observability (Horak
et al. 2019b) and solve real-life security problems efficiently.

1.4.1 The Challenges with Dynamic Programming for Imperfect Information
Games

Generalizing Shapley’s dynamic programming!'® approach for zero-sum stochastic games (Shap-
ley 1953) to zero-sum partially observable stochastic games still remains an open question. In
particular, one needs to properly characterize what a subproblem is in such games. From one
player’s point of view, subproblems are defined by her previous private strategy. Unfortunately,
private strategies are not enough to infer the game’s probability to be in each of its possible
states, while this information is necessary to act optimally.

One possibility is for each player to make assumptions on how other players reason and to
maintain a belief over 1. the current state of the game, and 2. the other players’ internal states
(e.g., ADOHs or beliefs). This may induce recursively defined beliefs, as in Interactive POMDPs
(Gmytrasiewicz et al. 2005) or similar approaches (MacDermed 2013; Vojtéch Kovaiik et al.
2022a). Such a convoluted reasoning requires making some assumptions (e.g., on how other
players make decisions and on the depth of the recursion). Also, it is not clear how to derive a
principled method to compute a Nash equilibrium in this setting.

Instead, one could draw from the existing literature (Dibangoye et al. 2016) and define sub-
problems by the knowledge of both players’ past strategies. Unfortunately, it raises an important
question for zs-P0SGs: how are such subproblems related to the original zs-P0SG as they rely
on information not available to players during execution?

Furthermore, the dynamic programming scheme mentioned above (which uses a sufficient
statistic and approximates the optimal value function) offers a key lever: the capability to gener-
alize knowledge between subgames, relying on continuity properties of the optimal value function.
Unfortunately, while Wiggers et al. (2016) showed convex-concave properties of the optimal value
function for some dimensions of a natural statistics used before for Dec-POMDPs (i.e., occupancy
states), they failed to derive approximations generalizing throughout the whole occupancy-state
space, which is required by algorithmic schemes such as HSVI. A statistic offering both (i) con-
ciseness and (ii) strong continuity properties has not been discovered yet for zs-P0SGs.

0Shapley applied to zero-sum stochastic games similar principles to the ones used by Bellman to tackle Markov
decision processes.
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1.5. Research Outline and Contributions

The main goal of this manuscript is to provide a positive answer to the issues mentioned above
that arise when trying to generalize Shapley’s dynamic programming approach for zs-SGs to
zs-P0SGs. Besides, our work on this subject inspired us for two other connected but independent
contributions, which we present in other chapters.

1.5 Research Outline and Contributions

The contributions of this thesis are organized through essentially three parts. The first one
tackles the problem of optimally planning in zs-P0SGs, implementing a heuristic search value
iteration scheme. The second one addresses the scalability issues in general common-payoff POSGs
by exhibiting a relevant subclass for real-life applications. Finally, the third one studies one-shot
games for which we relax continuity properties of payoff functions.

1.5.1 Planning in zs-P0SGs

Chapter 3 shows that previous work on solving subclasses of zs-P0SGs through the introduction
of a non-observable game can be generalized to the whole class of zs-P0SGs as well. This
essentially requires (i) showing that the problem of computing a Nash equilibrium in the non-
observable game possesses optimal substructure (i.e., Bellman’s optimality principle applies), (ii)
discovering continuity properties in the non-observable game, and (iii) very carefully studying
the translation of a Nash equilibrium of the non-observable game into a Nash equilibrium of the
original game. This contribution led to a workshop article in MSDM 2023 as part of the AAMAS 2023
conference (Aurélien Delage et al. 2023b), and to a publication to the journal Dynamic Games
and Applications (Aurélien Delage et al. 2023).

1.5.2 Planning in Common-Payoff P0SGs under Hierarchical Information Shar-
ing

Chapter 4 studies n-player common-payoff POSGs assuming a linear hierarchy in players’ knowl-
edge about the game. Every player knows what her subordinate knows and so forth. It results in
a complexity drop for Bellman’s backup operators, which allows adapting the PBVI algorithm to
show empirically improved results compared to state-of-the-art approaches. This work has been
published as a preprint (Peralez et al. 2024).

1.5.3 General Reward Model

Chapter 5 considers reward models with weak continuity properties with respect to players’
strategies. We show that one can extend a state-of-the-art algorithm for single-variable opti-
mization of Lipschitz functions to tackle two-player games whose payoff functions possess weak
continuity properties and for which the players’ set of actions can depend on the other’s behavior.
Our findings led to a workshop article in GAIW 2023 as part of the AAMAS 2023 conference, and
an article at the ICTAI 2023 conference (Aurélien Delage et al. 2023a) (Best paper).
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Some elements of this background (e.g., the approach used to introduce readers to (partially
observable) Markov decision processes, zero-sum (stochastic) games, their solution concepts and
discussions about performance criteria) are inspired by Garcia et al.’s (2008) textbook. The fol-
lowing background section introducing game-theoretical concepts and (zero-sum) stochastic games
of the book is itself inspired by Haurie et al.’s (2012) textbook.

Game theory allows modeling very general interactive situations, so that there exists a wide
range of formalisms. They all come with different assumptions, which translate into various
difficulties in the search for optimal ways to act. Restricting ourselves to 2-player zero-sum
games, we below provide elementary models, definitions, and properties relevant to understand
both our contributions to optimally planning in zs-P0SGs and the corresponding related work.
Whenever pertinent, we provide some results for general-sum games. Besides, several definitions
are given for any number n of players'!. This chapter is organized in two sections. The first one
provides definitions for various types of games along with elementary results. These results will
be helpful for understanding the next section, which addresses the resolution of the games.

2.1 Overview on Various Subclasses of P0OSGs

After having detailed the vocabulary characterizing players’ ways to act in games that we will use
throughout this section, we present different formalisms for games. A classification highlighting
the inclusion relations between them is given in Figure 2.1, depending on (i) how many decision
points are involved, (ii) players having perfect or imperfect information, and (iii) the number
of players (here one or two). For example, Bayesian games (BGs) generalize normal-form games
(NFGs) by introducing about the state of the game, and stochastic games (SGs) generalize NFGs by
allowing the game to be divided into multiple time steps while NFGs only contain one. Gathering
both generalization axes gives partially observable stochastic games (POSGs). Similarly, partially
observable Markov decision processes (POMDPs) generalize Markov decision processes (MDPs) by
introducing uncertainty regarding the current state of the system.

HYWe are especially interested in n = 2, but made the editorial choice to stick to the usual definitions.
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2.1. Overview on Various Subclasses of POSGs
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Figure 2.1: A Venn diagram representing the inclusion relations between several formalisms introduced in the background
section.

Table 2.1: Vocabulary and notations used to describe players’ behaviors.

One-shot games

notation definition note
action of i a’ ale A
pure strategy of i mt nle Al
mixed strategy of i ut ute A(AY)
pure decision rule of ¢ d’ d el - A ©': i’s set of decision points
(behavioral) decision rule of i 3 B0 - A(AY) ©': 4’s set of decision points
Dynamic games
action of i a’ ale A
decision rule of ¢ Bt Bi: O —> AA") '
pure strategy of i O H—1 Mo : VO — A° U0}: set of decision points
mixed strategy of i K JT= M. 4 M.y set of mixed strategies
behavioral strategy of i By Brw = (Bf,....,B,) t<tjusualyt=0t¢=H—1

2.1.1 Zoo of Behavior Descriptions

The next subsections introduce various game settings, each of them coming with its specific
vocabulary'? commonly used to describe player strategies. Brief presentations of concepts below
are complemented with formal definitions appearing later in the chapter and are summarized in
Table 2.1.

Regarding games involving only one time step, we shall distinguish between actions a and
strategies. Actions (also named pure strategies) are used to refer to elementary interactions a
player has with its environment. Strategies, on the contrary, encompass procedures that can
be used by players to select actions. For example, commonly used strategies are probability
distributions over actions; and playing according to a strategy means for example rolling a dice
and playing an action according to the result. The latter type of strategy will be referred to as
a mized strategy.

Games involving several time steps lead to more complex and more varied descriptions for
possible player behaviors. These descriptions typically rely on decision rules 3, which are, for
each time step 7, mappings from all possible reachable decision points to probability distributions
over the finite set of actions. Collections of decision rules for multiple time steps 7 to 7 (7 < 7/)
are referred to as behavioral strategies B,.... Pure strategies my..» are behavioral strategies always
starting at time step 0, and for which each conditional probability distribution is deterministic
(i.e., is an action). Pure strategies can be viewed as a decision tree. Probability distributions
over the set of all possible pure strategies are called mized strategies. Discussing the equivalence
between behavioral and mixed strategies, as well as their respective benefices, is deferred to

12Note that, sometimes, we modify the classical vocabulary to remain consistent.
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2.1. Overview on Various Subclasses of POSGs

Section 2.2.2.2 (page 29), once sufficient background has been provided.

The term profile will be used to refer to tuples of strategies for all players in the game. Also,
if 4 denotes a player, —i corresponds to all her opponents. For example, if there are n players,
a""is the tuple (a!,...,a""',a’"1 ... a™). Finally, tuples are often summarized as a single bold

variable, e.g., a refers to the action profile (a, ..., a").

2.1.2 One-shot Games

Consider a scenario in which n players compete within an environment that rewards them based
on their behavior. Such situations can be formalized as one-shot games.

Definition 2.1.1 (One-shot Game (0SG)). A one-shot game is defined by a tuple {n, X A, f1,..., fa,
where:

e n is the number of players,
e for any player i, A is her set of actions (which can be continuous),
o for any player i, fi: X, A" — R is her payoff function.

A tuple (a',...,a") € x; A" is called an action profile.

One-shot games can be placed in the Venn diagram at the same place as NFGs, as they only
generalize the latter ones by allowing continuous sets of actions, which is not an axis represented
in the diagram.

Example 2.1.2 (One-Shot Game). To illustrate this formalism, let us consider the game (Mad-
sen 2013) in which two players pick a real number in [0, 1], which is their payoff, unless both
players chose 1. In the latter case, both players’ payoff is 0. This game can be described by an

086 G ¥ (2,[0,1],[0,1], f1, fo), where ¥(z,y), fi(z,y) = = - liay<1y and fo(z,y) =y - Ligy<y-

Since the formalized game stops after its unique time step, player ¢ searches for an action that
maximizes f;, with no extra considerations for the game evolving in some possibly unpleasant
states. Still, f; depends on the other players’ actions, so that ¢ must take into account other
players’ behaviors. This raises the issue of defining a proper solution concept.

To free herself from the dependence on her opponents’ strategies, a player could, at least
when the game satisfies mild properties, (de Wolf 1999) search for the strategy that has the
higher value, whatever her opponents do.

Definition 2.1.3 (Security Levels). Let G = (n, X; A", f1,..., fn) be an 08G, such that sets A’
are compact and payoff functions f* are continuous. Player i’s security level for G is:

max min f;(a',...,a%, ..., a"). (2.1)
ate A a™t
Any action a' € arg max,ic 4; min, - filal,... a%, ..., a") is a security strategy.

Still, in general, all players playing according to a security strategy yields suboptimal be-
haviors. Instead, Nash introduced in 1950 one possible solution concept at the center of many
studies in game theory, namely Nash equilibria.

2.1.2.1 Nash Equilibria: Definition and Existence Theorem

In essence, a Nash equilibrium strategy profile (NES) is an action'® profile, known to all of the
participants, in which unilateral deviations are not beneficial to any of the players. Such actions
are fixed point in the reasoning “but what if my opponent plays A? Then I would change my
action; then my opponent would switch to B ...”. These equilibria are key to understanding the
dynamics of decision making in strategic interactions.

3We use “action” here instead of “strategy”, but depending on the context, Nash equilibria are also often
described by strategies (see Theorem 2.1.5 and definition 2.1.6).
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2.1. Overview on Various Subclasses of POSGs

Player Y
Head Tail
Head | (1,-1) | (—1,1)
Tail | (—1,1) | (1,-1)

Player X

Figure 2.2: Matching pennies game

Formally, for any one-shot game G, a Nash equilibrium strategy profile of GG in pure strategies

is an action profile a* = (a'*,...,a™*) such that:

Vi, Yat, fi(ab*, ..., dl, ..., a™*) < fi(a*). (2.2)
For any player i, the problem of computing max: f;(a',...,a’,...,a™*) given her opponent’s
actions a™* is called computing a best response to a”*. A Nash equilibrium strategy profile

thus corresponds to an action profile in which each action of player i is a best response to her
opponent’s strategy. Still, such stable points do not necessarily exist in general, as illustrated
in the matching pennies game (Example 2.1.4). One can also verify that the one-shot game
introduced in Example 2.1.2 does not admit any Nash equilibrium.

Example 2.1.4 (Matching pennies). Matching pennies is a well-known zero-sum one-shot game
(mn = 2,A' = A% = {Head, Tail}, fo = —f1) in which each player has a penny and secretly
chooses one side (head or tail). Then, both penny’s sides are revealed, and player 1 wins (payoff
+1) if both chosen sides match, and loses (payoff —1) if not. The game matriz for this game,
which defines f1, is given in Figure 2.2.

One can check using Figure 2.2 that, in any cell, one player has incentive to change her
action. For example, if players play (Head, Tail) (payoff —1 for player 1), then 1 would change
to play Tail and receive +1 payoff. Similar observations hold for all other action profiles.

However, Nash’s theorem (1950) shows that such an equilibrium always exists (but may
not be unique) if sets A" are finite, at the cost of considering “randomized actions”, i.e., mixed
strategies.

Theorem 2.1.5 (Extension to Mixed Strategies (Nash 1950)). If Vi € {1,...,n}, A is finite,
then the one-shot game G' = (n, X'_| A(AY), (f1,..., fa)), where

o A(AY) denotes the set of distributions over A, and

o Ve X1y A(AY), fi(n) = Ea~plfi(a)],
always admits at least one Nash equilibrium.

Definition 2.1.6 (Vocabulary for the description of players’ decision making). Given a one-shot
game G, elements ' of A(A") are called mixed strategies and strategies providing a probability
1 (i.e., a vertex of the simplex A(AY)) to an action are called pure strategies, or equivalently
actions, depending on the context (referring to a vertex of A(A?) or an element of A?).

Remark 2.1.7. In the game G', element p' € A(A") are called actions. Still, we refer to them
as mized strategies, taking the viewpoint of the game G in which i’ corresponds to procedures
“roll a dice to pick the action”. Unless explicitly forbidding the use of mized strategies, games G’
extended to mized strategies are often assimilated to the original game G.

Also, games G’ introduced in Theorem 2.1.5 are normal-form games, which we define later
in Section 2.1.2.2.

For example, the only'? Nash equilibrium strategy profile for the matching pennies game is
to play Head or Tail with equal probability 0.5, for both players.

If sets A’ of a one-shot game are infinite, the game is called an infinite game (Maitra et al.
1970) and without additional assumptions (Sion 1958) on (i) the convexity of the action space

1 This game only admits a unique Nash equilibrium strategy profile.
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2.1. Overview on Various Subclasses of POSGs

and (ii) the convex-concavity of functions f;, Nash Equilibria do not necessarily exist (Daskalakis
2022).

It is noteworthy that Theorem 2.1.5 does not come with a uniqueness result. Besides, Nash
equilibria are only defined with respect to player’s deviations from it but nothing is known about
their respective value.

As a matter of fact, in general (i.e., for games involving any number of players and not
common-payoff (fi = -+ = f,) or zero-sum (n = 2 and f; + fo = 0)), there typically exist
multiple Nash equilibria with different values and selecting one is a non-trivial problem, subject
to research (e.g., Harsanyi et al. (1988) propose a criterion based on payoff dominance and risk
dominance to select a Nash equilibrium). A game is said to be solvable if all Nash equilibria are
interchangeable, meaning that players can adopt strategies from different Nash equilibria while
ensuring that the resulting strategy profile remains a Nash equilibrium strategy profile. There
exist, however, games for which players can search for an individual Nash equilibrium on their
own, in which case players do not need to agree beforehand on one specific equilibrium.

Remark 2.1.8. An idea to search for a Nash equilibrium strategy profile would be to make a
player i best-respond to a given (pure) strategy of players —i, update i’s strategy, then make
another player j best respond to the best response, and so on. The resulting algorithmic scheme
is called best-response dynamics'® (Amiet et al. 2021) and stops whenever the algorithm runs
out of time budget or whenever no player changes her pure strategy by responding to the others’
one. In that case, the strategy profile is necessarily a Nash equilibrium. In the common-payoff
setting, and assuming a sufficient time budget, the algorithm is guaranteed to converge to a Nash
equilibrium, but not necessarily to the one with highest value.

In the following, we will focus on games that involve only two players and have the property
that the gain of one player equals the loss of the other player, expressed mathematically as
fi = —fa. Such games are known as zero-sum games. Both players having exactly opposite
interests will highly simplify the search for Nash equilibrium strategy profiles as, under certain
continuity properties for the payoff function, the game will be solvable.

2.1.2.2 Zero-Sum Normal-Form Games

Zero-sum normal-form games are zero-sum one-shot games with only two players and finite sets
of actions. They are among the main building blocks of game theory, often used to provide
baselines or complexity results by turning complex, and possibly dynamic, games into their
equivalent normal form.

Definition 2.1.9 (Zero-Sum NFG (von Neumann 1928)). A zero-sum normal-form game'® is

defined by a tuple (A', A%, M) where
o Al and A? are finite sets of respective cardinal p and m,
o MeM,nR).
The payoff associated to an action profile (a},a?), where (i,j) € {1,...,p} x {1,...,n}, is M, ;.

Note that a normal-form game (A', A%, M) is a two-player one-shot game in which f! is
induced by M, f» = —f1 and Vi, A’ is finite, so that Theorem 2.1.5 applies. In coherence with
Definition 2.1.6, in a normal-form game, we call mixed strategy for player 1 (resp. player 2) an
element p! of A(A') (vesp. u? of A(A?)) and the value of a mixed strategy profile (u!, u?) is
MI,T M - ,U,2.

Example 2.1.10 (Matching pennies as an NFG). The matching pennies game can be described
by an NFG ({Head, Tail},{Head, Tail}, M), where M is the matriz given in Figure 2.2.

5For cp-P0OSGs (to be defined later), the implementation of this algorithmic scheme is called JESP (Nair et al.
2003).

16We voluntarily restrict the number of players and make the zero-sum hypothesis in this definition for sim-
plicity, even though general normal-form games are defined for any number of players and for general-sum.
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2.1. Overview on Various Subclasses of POSGs

2.1.2.3 Minimax Theorem

In zs-NFGs, the well-known minimax theorem (von Neumann 1928) provides a very useful char-
acterization of Nash equilibria.

Theorem 2.1.11 (Minimax theorem (von Neumann 1928)). Let (A, A2, M) be an NFG. Then,

. 1.T 2 . 1, T 2
max min M - = min max M- p”. 2.3
HLEA(AL) p2eA(A?) : a H2EA(A?) pleA(AL) s a (23)

Besides,
o for any ' € arg Max, 1A (A1) NN 2eA(42) pbT M2, and
o for any p? € arg Min2c A (42) MAX 1A (AL) ph T M- 2,

the pair (u', u?) is a Nash equilibrium strategy profile.

Note that Theorem 2.1.11 implies that any zs-NFG is solvable, that finding an individual Nash
equilibrium strategy is reduced to a bi-level optimization problem, and that all Nash equilibria
have the same value.

Best Responses and Security Levels in Zero-Sum Normal-Form Games There
always exist deterministic best responses in any zs-NFG, which can be found through simple
enumeration over the player’s actions. It also follows from Theorem 2.1.11 that security levels
characterize Nash equilibria, as any security strategy is an individual Nash equilibrium strategy
profile.

Example 2.1.12 (Application to matching pennies). For player 1, playing Head with probability
p # 0.5 straightforwardly leads to 2 best-responding by (i) Tail if p > 0.5 and Head if p < 0.5,
with negative expected payoff. However, if p = 0.5, every mized strategy of 2 has a null expected
outcome. The mized strateqy mazimizing 1’s security level (which is also her'” Nash equilibrium
value) is thus playing Head or Tail with probability 0.5. Similar reasoning shows that 2 must
also play Head or Tail with probability 0.5, with a null expected outcome. Consequently, playing
uniformly at random for both players is both (i) their unique security strategy and (ii) the unique
Nash equilibrium strategy profile of this game.

Before presenting dynamic games, we first define Bayesian games, which introduce imperfect
information.
2.1.2.4 Bayesian Games

When trying to tackle games with imperfect information such as POSGs, studying Bayesian games
is an important step as they generalize normal-form games by introducing uncertainty about the
state of the game. At the start of the game, all players are given a type, randomly chosen over a
finite set of types, according to a predefined probability distribution p over players’ type profiles.
The payoff function depends on all players’ types. Despite the other players’ types remaining
unknown to each other, the probability distribution used by nature to sample players’ types is
known to all.

Definition 2.1.13 (Bayesian Games (Harsanyi 1968)). A Bayesian game is a tuple
<n7 XiAiv Xieiapa f17 ey fn>7
where:

e 1 is the number of players,

e Vie{l,...,n}, A" isi’s set of actions (|A| < ®);

7This game only admits one unique Nash equilibrium.
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2.1. Overview on Various Subclasses of POSGs

Table 2.2: Payoff functions for the Sheriff’s dilemma game for both types of the person.

Opponent Opponent
Shoot  Don't Shoot Don't
e Shoot | (0,0) (2,-2) .o Shoot | (=3,-1) | (—1,-2)
Sherift 5 e 2, =1 [ (=1, 1) Sherift 5 (=2, =1) [ (0,0)
(a) Criminal type (b) Citizen type

e Vi e {l1,...,n}, © isi’s set of possible types (|O < o), and the type profiles @ are
def i
elements of © = x;0";

e pe A(O) is the probability distribution over players’ type profiles;
o Vie{l,...,n}, fi : A x © = R is i’s payoff function.

Players’ behaviors can only vary depending on their own experienced type since their oppo-
nents’ types remain unknown. As a consequence, players’ decisions rules typically only take as
input their own types 6°.

Definition 2.1.14 (Vocabulary for the Description of Players’ Decision Making). In such a
game, a decision rule for i is a mapping B' : ©° — A(A) and the value for i of a decision rule
proﬁle ,3 = (ﬂl)l 18 EGNB,QNP [fi(a, 0)]

Example 2.1.15 (Sheriff’s dilemma). The sheriff’s dilemma is a game in which an armed sheriff
faces an armed person. This person can be a criminal or a citizen, with respective probability
p € [0,1] and 1 — p. Both the sheriff and the person have the choice of whether to shoot or not.
Clearly, depending on the person’s type, unknown to the sheriff, both players’ payoff for shooting
or not differs. The payoff functions for both types of the person are given in Table 2.2. While
the sheriff only has a unique type, making the task easier for the person, the sheriff has to reason
upon the expected payoff of her actions, depending on the probabilities over the person’s type.

Interestingly, von Neumann’s minimax theorem still holds, and the optimal value function
p — V*(p) of a zero-sum Bayesian game exhibits structure. The proposition below shows the
concavity (resp. convexity) of V* in the space of player 1 (resp. 2) marginal distributions that
are derived from distributions p over type profiles.

Proposition 2.1.16 (Concavity w.r.t. marginal distributions (Harsanyi 1968)). Let
B = 2, i AL xi 0%, fi—fi)

be a zero-sum Bayesian game. There exists an infinite collection (aﬂg)ﬁzeA(Ag) such that Y32,

Qg2 € RO isa mapping and

minmax E¢,1 ,2y.53 9~ a',a?,0)| = min Pr(0! | p)ag: (6! 2.4
1inma (at.a2)~B.0~p [ J1( )] Qeéﬂ (0" | p)ag(0") (2.4)
= 1'%1211<p1,04/32>, (25)

where p' : 01 — 3o p(61,6?).

For a given 2, the component of vector agz attached to type 6! is the value of 1’s best
response to 42 when 1’s type is #'. The concavity holds due to the fact that each component of
age can be computed independently.
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2.1. Overview on Various Subclasses of POSGs

2.1.3 Dynamic Games

In most real-life scenarios, games involve players at multiple time steps at which they must act,
influencing the game’s future. To capture such situations, game theory allows for considering
dynamic games. They can consist in repeated games, such as playing matching pennies again
and again; but also in games whose state (possibly stochastically) evolves with respect to players’
actions. We are especially interested in the latter ones. The following sections first details fully
and partially observable systems with only one player and then moves on to the multi-player
case.

2.1.3.1 Overview on Evaluation Criteria

For now, the considered games involved only one time step, and the players have been searching
for Nash equilibrium strategy profiles based on given strategy evaluation functions. However, in
the context of dynamic games, the decisions made for all time steps in the game influence the
total payoff. While the evaluation function for each state and time step of the game is part of
the model, it is critical to also properly define one for the entire game, encompassing multiple
(and possibly infinitely many) time steps. Below, we briefly introduce well-known criteria for
games, while maintaining a high-level discussion.

In cases where the game stops after H < oo time steps, the expected finite sum of rewards is
a natural and widely used criterion. It is referred to as the finite criterion. The sum of rewards
can be discounted using a discount factor v € [0, 1]. For the sake of genericity, we always consider
the finite criterion to be discounted, including the case v = 1.

Furthermore, in certain real-life applications, players, having a finite lifetime, may be willing
to accept a slight reduction in the expected sum of rewards if it also decreases the variance of the
expectation. The risk-sensitive criteria (Markovitz 1959; Geibel 2001) are possible formalisms
relevant to such situations.

When considering games played for infinitely many time steps, a discount factor v < 1 is often
given, to define the probability 1-v that the game stops after each interaction. Conceptually, it
reflects players being less confident about rewards obtained far away in the future. Besides, it
ensures that the expected sum of discounted rewards (i.e., step t’s expected reward is multiplied
by 7!) remains finite under any possible behavior of players, which is of great technical help.
The corresponding criterion is known as the discounted criterion.

Finally, when the horizon is infinite and whenever it makes no sense to prefer short-term
rewards over long-term ones (e.g., the effective horizon for optimization (which has to be finite
in practice) is long compared to the decicions frequency), the average criterion is preferred to
the discounted criterion. It evaluates the average reward obtained along trajectories.

2.1.3.2 Markov Decision Processes

Markov decision processes (MDPs) are among the simplest formalisms for single-player games.
They describe dynamic systems that start at an initial state sg, evolving according to dynamics
induced by a transition function 7" until a time horizon H. At each time step ¢ € {0,..., H — 1},
the player performs actions and receives rewards based on the current state, the action taken
and the resulting next state.

Definition 2.1.17. An MDP is defined by a tuple (S, A, T,r,~v, H,sy) where:
o S is the set of possible states for the system (|S| < +);
o A is the set of actions (]A| < 4+00);

e T(s,a,s’), the transition function, gives the probability that the system moves from state s
to s’ upon taking action a (with ¥s,a,,, T(s,a,s’) =1);

e 7 is a reward function S x A xS — R that associates an immediate payoff to each possible
transition (s, a,s');
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2.1. Overview on Various Subclasses of POSGs

e v €[0,1] is a discount factor;
e H e Nu {0} is the time horizon;
e 3o is the initial state.

In the following, we rather use 7 : S x A R such that ¥(s,a),7(s,a) = 3, T(s,a,8)r(s,a,s)
and abuse notation to confound 7 and r. Besides, we discard the case where H = o0 and v = 1,
assuming that either H < o0 or v < 1.

Strategies and optimization criteria We begin by stating the description of players’ be-
havior of interest for this section.

Definition 2.1.18 (Vocabulary for the Description of Players’ Decision Making). In coherence
with the terminology introduced in Section 2.1.1, in the case where H is finite, a pure strategy
To:H—1 i an MDP is a collection of mappings (7)o, -1}, for all time steps, taking as input
any'® state for the specific time step and yielding an action a € A.

We assume that the player aims at maximizing the finite criterion E [Zt o V'St Ar) | so, (m)t].

The maximum exists as the set (A%)# of all pure strategies is finite. This defines an optimal
pure strategy of the player and the optimal value V*(sg) for this criterion. Considering mixed
strategies or behavioral strategies would not yield higher expected value (Puterman 2014).

Bellman’s optimality equations Similarly to the optimal value for sy at time step 0, we
define the optimal value at any time step t for any state s as:

Tt:H—1

‘/t*(s) d_6f max E Z ’7 ST7A )|St = SaTrt:Hll .

Assume that, at time step H — 1, some state s was reached. Then, clearly, the player maximizes
her expected reward by playing any action 7};_;(s) S argmax,c 4 (s, a).

Now, let us consider that some state s was reached at time step H — 2. Knowing the optimal
action 7};_,(s’) for each reachable state s’ at time step H — 1, the player can find the best
trade-off, in expectancy, between maximizing the immediate reward and the value for time step
H — 1. More formally, the best way to act for the player at time step H — 2 in state s is to play

Trr_o(5) € argmax [ r(s,a) + 72 T(s,a,s)Vi_1(s)

a

where Vi, (s') € maxr(s',a) = r(s', 7l_,(s")).
a

We are starting to observe a nesting of the optimization problem of computing the best way
to act for any time step ¢, which requires the most rewarding behavior for any reachable state
at time step ¢ + 1, which is obtained through an optimizing process knowing the most rewarding
behavior for any reachable state at time step ¢ + 2, and so on.

In fact, Bellman’s optimality principle mathematically expresses this observation:

H-1
Vt, Vs, max E[ Z Y r(Sr, Ar) | S, mep—1] = max | 7(s, a) —i—’yZT(s,a, SHVEL(S) |, (2.6)
Tt:H—1 — a o

where V% (s") S maXr, |, E[Zf tfrl'y (t+1)r(ST,AT) | s,m+1.17—1]. Note that computing

1 (s") corresponds to a “subproblem” and solving all “subproblems” allows solving the original
problem, i.e., computing maxy, ,_, E[Zf:_tl Y (Sy, Ar) | s Tea—1]-

8Note that only reachable states are important, but some algorithms (e.g., backward induction) can not
determine in advance the relevant states, while some others (e.g., HSVI) take advantage of this observation to
reduce the size of built strategies.
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Infinite-horizon setting In the case where H is infinite, we consider the discounted criterion
E[> 20 v!7(St, At) | To.00, So] for the process starting in so. Defining an optimal strategy is not
as straightforward as for the finite criterion since there exist infinitely many pure strategies mg.q.

Bellman’s operator Fortunately, the optimal value function V* is the unique fixed point
of the y-contracting Bellman operator H taking as input a value function V' and yielding the
value function H (V') defined as:

Vse S, H(V)(s) = mgxr(s, a) + 72T(s, a,s"V(s). (2.7)

S
It follows (Garcia et al. 2010) that a pure decision rule d* : S — A obtained through greedy
selection upon V*, i.e.,

def

Vs,d*(s) € max |r(s,a) +72T(s,a,s’)V*(s’) ,

is optimal. Its value E Y27~ (St Ay) | d*,s0] is as good as the value of any pure strategy
To.00. Intuitively, this result might not appear completely surprising. For any state s reached at
any time step t, there still exist infinitely many other time steps; therefore, there is no reason to
play differently than if the same state were reached at another time step ¢’. One can consequently
consider only stationary strategies, each corresponding to a unique pure decision rule.

Still, MDPs assume that the state of the game is always known to the player, limiting the use
of this formalism when it comes to real-life situations.

2.1.3.3 Partially Observable Markov Decision Processes

We now consider that, at any time step, the current state of the game is unknown to the player,
which only receives noisy observations informing her about the system’s possible states. This
leads to defining partially observable Markov decision processes (POMDPs), in which the player
must in general take into account her uncertainty about the system state to act optimally for
the specified criterion.

Definition 2.1.19. A POMDP is defined by a tuple (M, Z,0,by) where:
o M=(S AT,r H,~) are like in Definition 2.1.17;
e Z is the set of observations (|Z| < 4+00);

e O is the observation function and is such that for all z,s', O(z,a,s") is the probability of
receiving z when a is taken in some state, and the resulting state is s';

e by € A(S) is the initial belief over possible initial states.
Again, we discard the case H = o0 and v = 1.

In a POMDP, the player does not observe the true state s € S of the system. However, upon
taking actions at each time step, she randomly receives an observation z € Z from it. Probabilities
to receive each observation depend on the last action and the state reached. Figure 2.3 provides
an influence diagram describing the interactions of a player within a POMDP. Note that decisions
(i.e., actions) can depend on previous actions made and observations received.

Definition 2.1.20 (Action-observation histories). Sequences of actions and observations of
lengtht > 0, 6, < (a0, 21,...,at-1,2t) € O (fort =0, Oy o &), are called action-observation
histories (40H). The set of all histories is noted © © U0y, If H < 0, O is finite.

Knowing the system’s dynamics (by, 7' and O) and her action-observation history, the player
is able to infer a probability distribution over the possible current states of the system. The
rewards depending on the system’s state and the player’s action, reasoning upon this distribution
is mandatory to ensure optimality in general. For this reason, optimal strategies are history-
dependent, providing the best actions to make in each reachable history.
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Figure 2.3: POMDP influence diagram

Example 2.1.21 (Rocksample (Smith et al. 2005)). A classical benchmark used to test solving
algorithms for POMDPs involves a rover exploring a planet. The rover’s task is to collect valuable
rocks, but it has imperfect knowledge about the value of each rock in the area. FEach rock has
a different scientific value, and the reward the rover receives for collecting a rock consequently
depends on its value. Since sampling rocks costs energy, the rover is equipped with a sensor so
that it can perform a Check; action to receive a noisy observation (the farther the rock, the
noisier the observation) about the value of rock i. Finally, knowing a probability distribution by
of rocks value and after receiving any sequence of noisy observations about rocks value, the robot
can infer a probability distribution about the value of all (the belief about non-sampled rocks is
the one from by) rocks.

Strategies and Optimization Criterion Here, we focus on the discounted finite criterion
for finite-horizon games, and then move on to the discounted criterion for infinite-horizon games.
The analysis for other criteria can be found in Garcia et al.’s (2008) textbook.

Definition 2.1.22 (Vocabulary for the description of players’ decision making). In the case where
a finite horizon H € N is given, a pure strategy mo.g_1 of the player is a collection (Wt)te{o,...,H—l}
of mappings providing actions to make in each reachable history (Vt,m; : O, — A).

The player aims at maximizing the finite criterion E [Zt o Vr(Se Ar) | bo, (Trt)te{ow,H,l}].

The maximum exists as the set of pure strategies is finite so that the optimal strategies and
the optimal value V;*(6p) for this criterion are correctly defined. As for MDPs, considering mixed
strategies or behavioral strategies would not yield higher expected value (Astrbm 1965).

Bellman’s Optimality Principle Similarly to MDPs, Bellman’s optimality principle links
the optimal value functions for each time step of a POMDP, considering the finite criterion. A
significant difference, however, is that, in POMDPs, the player does not observe the current state of
the game. As a consequence, she must, in general, remember everything she previously saw since
any information in her AOH might be necessary to act optimally. Therefore, Bellman’s optimality
principle rather applies to the computation of optimal values of histories. The value of a history
0, is Vi*(6y) Lot maxy, , , E [ZT:t VTt (St Ar) | Oy, 7rt:H_1]. Bellman’s optimality principle leads
to showing that the computation of V;*(6;) is linked to the optimal values V;* | (6;41) of reachable
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histories 0¢41, i.e.,

Vt, VO, Vi (0r) = max E[r(Si, Ar) | 61, Ar = ai] + 7 D Pr(zera | ar, 00) V1 (0 @ a, 2111)),
Z¢+1

(2.8)

where @ denotes concatenation.

Infinite-Horizon Setting If the POMDP has infinite horizon, the number of pure strategies is
infinite so that the discounted criterion does not straightforwardly admit a maximum. Besides,
working with AOHs is difficult, especially since their number grows exponentially w.r.t. the time
step. Instead, Section 2.2.3.3 will show that one can replace AOHs with a sufficient and Markovian
statistic regarding optimal planning, namely belief states. The evolution of the latter statistic
will describe a Markov decision process with a continuous state space (the set of all possible belief
states) and an infinite horizon. This will unveil multiple new levers compared to working with
AOHs (e.g., the existence of stationary optimal policies and convexity properties of the optimal
value function in the belief-state space).

We now leave the single-player setting to consider more players interacting within a stochastic
environment, starting with the perfect information case.

2.1.3.4 Stochastic Games

In essence, stochastic games resemble Markov decision processes, with the difference that they
involve an arbitrary number of players that take actions simultaneously. Additionally, each
player has her own reward function. In the following, we focus on stochastic games with only
two players.

Definition 2.1.23 (Two-Player Stochastic Game (Shapley 1953)). A two-player stochastic game
is a tuple (S, A = A x A%, T,r,v,s0), where:

e S is a finite set of states;

o Vi, A’ isi’s finite set of actions;

T :8 x (x;A") x S is the transition function, giving the probability T(s,a',a?,s’) to reach
the state s, starting from s if players play a* and a?;

o Vi, 7 : S x (x;A%) — R is i’s reward function;

v € [0,1] is a discount factor;

H e N u {0} is the time horizon;
e 5o the initial state of the game.

Again, we discard the case H = o0 and v = 1. Note that the actions of both players influence
the dynamics of the game. Moreover, as in one-shot games, the rewards received by players
depend on the others’ actions. Consequently, to act optimally, ¢ must take into account —i’s
behavior, as for one-shot games, but also a trade off between the immediate reward for some
actions and the game evolving in various possible (next) states.

In the following, we will assume that the game is zero-sum. Hence we note r a unique
reward function, assuming that, by default, 1 tries to maximize its expected return and 2 tries
to minimize it.

Definition 2.1.24 (Vocabulary for the Description of Players’ Decision Making). In this def-
inition, we assume that H < oo. A behavioral strategy for ¢ is a collection of mappings
Bl S (ﬁf)te{o,...,H—l}; each taking as input any state of the game at any time step and
yielding an element of A(A").
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Optimization Criterion If a finite horizon H is given, we assume that players’ behavioral
strategies are evaluated through the finite criterion E [Zt o V(S Ay | 50755:H—17ﬁ(2):H—1]'

Kuhn (1950) showed that this game can be turned into an equivalent normal-form game. In
this NFG, players’ “actions” are pure strategies () ;;_;), mapping any pair (s,t) to an action
a' € A" (for t = 0, only the pair (sg,0) is relevant). Therefore, a Nash equilibrium strategy
profile in mixed strategies g = (', u?) exists as solution of the NFG. u! and u? are probability
distributions over pure strategies, i.e., can be viewed as distributions over a finite number of
decision trees. To execute yu’, player i randomly samples a pure strategy (according to p’) and
follows the decision tree until the end. Furthermore, while not mandatory, the mixed strategy
profile g can be turned (relying on our assumption that games have perfect recall) into a behav-
ioral strategy profile, which is also a Nash equilibrium strategy profile that achieves the minimax
value.

Bellman’s optimality principle The optimal value of any state s; at time step ¢ is

H-1
Vi*(s) ¥ max min E [Z V(S Ar) | Staﬁtl:H—laBt%H—ll‘

BtH 1BtH1 =t

Bellman’s optimality principle applies, i.e.,

H-1

v8157Vt < H - ]- max min E Z ’Y ST7A ) | Sthtl:Hflvﬁt%Hfl (29)
Blr—1Bir—1 =t

= max min E[r(Ss, Ay) | pt, 12, st (2.10)

HEEA(AL) p2eA(A2)

H-1
+7 max  min ZPT(S/ | sty 01t 117 )E [ Z y V(S AL | 52+1:H—175752+1;H—1>3/] ,

t+1:H—1Pt4+1:H—1 g r=t+1

(2.11)

or, by definition (V* being the optimal value function),

= max min E[r(S;, A LoZ s + Pr(s’ | se, ul, i)V ().
preA(AY) pZeA(A?) (St Ae) [ ae, e 51) 7; (" | sts g s ) Vi ()

(2.12)

As in MDPs, the problem of computing V;* ; (s) for reachable states s’ corresponds to a subproblem.
Similarly, we define a subgame by (i) a state s, (ii) a time step (here, ¢t + 1), and (iii) the
problem of finding a NES for the criterion E [Zf;t}rl AT (S AL | Btl+1:H—1vﬁtz+1:H—1> s
Interestingly, it can be shown that Bellman’s optimality principle applies to the computation
of Nash equilibrium strategy profiles, i.e., knowing Nash equilibrium strategy profiles for all
subgames at ¢ + 1, one can construct a Nash equilibrium strategy profile for the game starting
at time step t. In other words, the problem of computing a Nash equilibrium strategy profile in
a stochastic game with finite horizon has optimal substructure.

Stationary Strategies for Infinite-Horizon zs-SGs Again, when it comes to infinite-
horizon games, we assume that v < 1.

It was shown (Shapley 1953) that (i) min-max is equal to max-min in stationary strategies
S — A(AY) (hence there exists a Nash equilibrium strategy profile in stationary strategies), and
that (ii) the minimax value in stationary strategies is as good as any Nash equilibrium behavioral
strategy profile.

One of the main ingredients to prove the previous statements is, again, Bellman’s optimality
principle applied to any subgame, i.e.,

Vs, Vt, r(Sy, Ay | s, B, B2 2.13
s, ﬁlsrgaA(Al),BQSHAAQ 27 ) 18,80 (2.13)
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_ in E['r(S, A | gl 12 2.14
I Ll [v'7(Se, Ae) | w7, 17] (2.14)
00]
+ max min Pr(s’ | so, ut, p?)E Tl (S A 132§,
751;8—>A(A1)ﬂ2:8—>A(A2)§ (s' | s0, 1", 11?) T_va (S-, A7) | B, 8

(2.15)

or, by definition of the optimal value function,
© max  min  E[r(S;, A¢) | s, pt, 4] +72Pr(3’ | s0, b, p2)V*(s'). (2.16)

pleA(AL) u2eA(A?) >
The resulting operator is y-contracting and is known as Shapley’s operator and its unique fixed
point is the optimal value function V*.

The existence of optimal stationary strategies is particularly relevant in practice as it highly
decreases the dimensionality of the search space. For example, approximating a stochastic game
with time-dependent strategies by an e-close game with finite horizon and turning it into a
normal-form game could yield a very large LP, that would be intractable in practice. Typical
cases in which it would not are games with a small number of reachable states starting from an
initial sg. In such specific settings, a dynamic programming algorithm solving a finite-horizon
approximation might find a solution more quickly than value iteration applied to the infinite-
horizon game.

We shall now present partially observable stochastic games that combine both imperfect
information and a multiplicity of players.

2.1.3.5 Partially Observable Stochastic Games

Here, we first give basic definitions about P0SGs'’, including the solution concept we will work
with.

The POSG formalism can be obtained by extending the SG one, through adding partial observ-
ability (similarly to our introduction of POMDPs as extensions of MDPs). Mainly, an observation
function O : Z x A x § — [0, 1] would be defined. Still, for conciseness (and since it is slightly
more general), the original definition of POSG (Hansen et al. 2004) merges the transition and
observation functions into a state transition and observation function P : Ax S x Z xS — [0, 1].

Definition 2.1.25 (P0SGs). A P0SG is defined by a tuple (n,S, x" | A*, x™ | Z' P,r, H,v,by),
where

e n is the number of players;
e S is a finite set of states;

A is (player) i’s finite set of actions and we denote A = x;A;

Z' is i’s finite set of observations and we denote Z = x;Z*;

V(a,z) e Ax Z, PZ(s'|s) is the probability of transiting to state s', receiving observations
z when actions a are performed in state s°°;

e Vi, ' :S x A — R is the reward function for player i;
e H € N is a temporal horizon;
e v € [0,1] is a discount factor; and

e by is the initial belief state, i.e., a probability distribution over states at t = 0.

19Tn the literature, one can also encounter the partially observable Markov game (POMG) terminology (Liu et al.
2022; Kozuno et al. 2021).

20Note that if we had defined a POSG with functions 7' and O it would hold that V(s,a, z,s’), PZ(s'|s) =
T(s,a,s')-O(z,a,s).
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Note that, in this definition, the case H = o0 is forbidden, contrary to before, where H = o0
and v < 1 was allowed. This is due to Chapter 3 studying the case H < o0, because any
discounted (v < 1) infinite-horizon POSG can be approximated e-closely by a finite-horizon one.
For more details on this specific point, see Section 3.1.3.2, Proposition 3.1.30.

If n = 1, the game is a POMDP. If n > 1 and Vi, j € {1,...,n}2, r* = v/, then the game is called
a common-payoff partially observable stochastic game (cp-POSG), or equivalently a decentralized
partially observable Markov decision process (Dec-POMDP). Finally, if n = 2 and 7! = —r2, the
game is called a zero-sum partially observable stochastic game (zs-P0OSG), and, as usual, we denote

TET'I.

We recall the following concepts and definitions?!:

) is a length-7 action-observation history (AOH) for i. We denote ©%

0. = (ap, 2y, ...,ak_, 2%

the set of all AQHs for player i at horizon 7 such that any AQH 6 is in ufi_ol@i.

Bi is a (behavioral) decision rule (DR) at T for i, i.e., a mapping from private AOHs in ©% to
distributions over private actions. BL(6%, a') is the probability to pick a® when facing 6.

B, = (BL,...,B%) is a behavioral strategy for i from time step 7 to 7/ (included).
When considering both players, the last 3 concepts become:

0, =(0L,02) (e ® = Ul ,'@,), a joint A0H at T,

TV T

B, ={(BL B2 (e B= Ul 'B,), a decision rule profile, and
B =B, B2, a behavioral strategy profile.

Example 2.1.26 (Matching Pennies as a zs-P0SG). Without loss of generality, we here for-
malize the matching pennies game, introduced in Example 2.1.4, as a zs-POSG (as illustrated in
Figure 2.4). For pedagogical purposes, we artificially see it as a “sequential-move” POSG by making
player 1 pick her action att = 0, and player 2 att = 1, hence the tuple (S, A*, A%, Z', Z2 P,r, H,~,bo)
where:

o S = {s;,sn, St}, where s; is the initial state, and sy, and s; represent a memory of 1’s last
mowve: respectively "head" or "tail”;

o Al = A% = {ay,, as} for playing "head" (ay,) or "tail" (a;);

Zl = 22 = {z,} a trivial “none” observation;

o PZ(s'|s) =T(s,a,s")-O(a,s, z), using the next two definitions:

— T is deterministic and such that (- is used to denote "for all")
x T(, (an,+),sn) = 1.0,
x T(-, (at,),s) = 1.0;

— O is deterministic and always returns 1.0 for the only possible observation “z,”;
e 1 is such that

- T(sia *y ) = O;

H=2;
o v=1;

e by is such that by(s;) = 1.

21'We also recall that an influence diagram of a two-player POSG was given in Figure 1.1
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+1 -1 -1 +1

Figure 2.4: Simplified tree representation of the sequentialized Matching Pennies game. Irrelevant actions, noted x*, allow
merging edges with the same action for (i) player 2 at ¢t = 0, and (ii) player 1 at ¢ = 1. Notes: (a) Due to irrelevant actions,
this game can be seen as an extensive form game, despite players acting simultaneously. (b) Players only know about their
past action history (in this observation-free game).

In this game, only the action of player 1 at t = 0 and the action of player 2 att = 1 are
relevant. Besides, 1’s action being hidden to 2, everything happens as if the two important actions
(player 2 at t = 1 and player 1 at t = 0) were simultaneous (hence the equivalence with the usual
NFG).

Nash Equilibria for zero-sum P0SGs

Since the game has finite horizon, we consider the finite criterion. Therefore, player 1 (respec-
tively 2) wants to maximize (resp. minimize) the expected return, or value, of behavioral strategy
profile By.;7_1, defined as the discounted sum of future rewards, i.e.,

H-1

Vo(Bo.g—1) = E Z V(S Ar) | Bowr—1 | -
t=0

This leads to the solution concept of Nash equilibrium strategy (NES). In such a game, all NESs

have the same Nash-equilibrium value (NEV), Vg & Vo(Ba2, 1, B3%, ).

An interesting question here is whether the problem of computing a Nash equilibrium strategy
profile possesses an optimal substructure (i.e., can one construct a Nash equilibrium strategy
profile By.;_, based on some Nash equilibrium strategy profiles of “subproblems”, where the
notion of “subproblem” is to be defined). For the zs-SG subclass, a subproblem consisted in
subgames rooted at states, which makes sense as players have perfect information. Thus, any
subgame can be experimented by players at execution phase (provided that the state has non-
zero probability to be reached). But what is a subproblem in zs-P0SGs that can indeed be
experimented by players at execution time? For example, players’ past strategies (as used as a
root of subproblems in HSVI-like approaches for cp-P0SGs) would never be known to a player
at execution time since she does not know her opponent’s past strategy. Then, can one define
subproblems that are unrelated to “real” situations and still retrieve a valid Nash equilibrium
strategy profile?

A positive answer to the previous concern was given for subclasses of zs-P0SGs, e.g., zero-sum
one-sided partially observable stochastic games (zs-0S-P0SG) which we introduce below.

2.1.3.6 Zero-Sum One-Sided Partially Observable Stochastic Games

A zero-sum one-sided partially observable stochastic game (Sorin 2003; Horék et al. 2017)
(zs-08-POSG) is a zs-POSG in which player 2’s observations reveal the state of the game and
1’s history. While such an assumption might appear to strongly lower the generality of zero-
sum P0SGs, it is actually relevant for many practical settings. The cases in which one player
is perfectly aware of the state of the game while the other one has imperfect information are
particularly present in security problems, as illustrated by the well-known Scotland Yard game.
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2.2. Solving Algorithms in Game Theory

Example 2.1.27 (Scotland Yard). In this pursuit-evasion game, a criminal tries to escape
the police by moving in a graph representing London’s streets. The locations of the patrolling
policemen are known to the criminal, providing her full information about the current state of
the game while her location remains unknown to the police.

The structure in the observation function in a zs-0S-POSG translates into structure for play-
ers’ optimal strategies and, thus, optimal value function. As the criminal is aware of the current
state of the game and the policemen’s belief about her location while playing, her strategies
can depend on such concise information instead of reasoning upon every reachable history as in
zs-P0SGs.

We now move on to the (non-exhaustive) presentation of approaches to solve (i.e., find a
Nash equilibrium with highest value of) the games introduced during this section.

2.2 Solving Algorithms in Game Theory

In this section, we come back to three approaches mentioned in the introduction to optimally solve
subclasses of POSGs: regret minimization, mathematical programming and Bellman’s optimality
principle-based approaches. FEach section starts by detailing the algorithmic scheme for the
simpler case (e.g., NFGs or MDPs), then moves on to discussing the generalization of the scheme
to zs-P0SGs, and finally discusses the levers unveiled by each approach.

2.2.1 Regret Minimization

Regret minimization is a general algorithmic scheme that allows learning in games through self-
play (see Section 3.3.3 for a high-level discussion). We below focus on the regret-matching rule
(Blackwell 1956; Abernethy et al. 2011; Farina et al. 2021) that specifies the regrets compu-
tation and the update of the mixed strategy after each self-play iteration. Given a zs-NFG2?,
Algorithm 2.1 is a pseudo-code implementation of the regret minimization principle using regret
matching. The algorithm simulates a repetition of the zs-NFG over time. At each time step ¢,
players sample an action a; from a strategy profile u,, where p is a randomly initialized mixed
strategy profile, and strategies p, for ¢ > 0 are computed using the procedure described below.
At time step t, players alternatively study the impact of replacing action a! by another action
@ each time a! was played in the past (7 < t). The regret for this change is computed as the
difference between the sum of rewards for time step 7 € {0, ...,¢t — 1} with and without replace-
ment. This process is done for all alternatives @’ and the probability to pick @’ for player i (i.e.,
pi(at)) is updated by giving proportionally more weight to the actions whose computed regrets
were positive (Line 7). The resulting algorithm converges almost surely towards a correlated
equilibrium of the game (Hart et al. 2000). For the specific case of two-player zero-sum games,
the algorithm converges towards a Nash equilibrium.

2.2.1.1 Regret Minimization for zs-EFGs

Later, Zinkevich et al. generalized this result in 2007 to dynamic games with imperfect infor-
mation by applying a regret-matching update rule at each information state. Multiple changes
were needed to adapt the regret matching scheme to the imperfect information setting and we
refer for example to the very pedagogical article of Neller et al. (2013) for further details. The
resulting regret-matching rule is based on a special type of regret, namely counterfactual regret,
introduced by Zinkevich et al. in 2007. The resulting algorithm asymptotically converges towards
a Nash equilibrium, with an error bound for the regret of player i in O(|I;| - /| A¢|/v/T), where
T is the number of trials, I; is the number of information sets of player i in the game and | A’
is the larger set of actions of player ¢ (in the inclusion sense, with respect to every set of actions
available to player i for all of her possible information sets in the game). Interestingly, this bound
is linear in ¢’s number of information sets.

22 Again, we assume that the game is zero-sum, even though Hart et al.’s procedure was more general, dealing
with NV player NFGs, and converging towards a coarse correlated equilibrium.
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Algorithm 2.1: Regret matching for zs-NFGs (Hart et al. 2000)

Input : Game matrix (M; ;); j; players’ action set A! and A
Input : « an hyperparameter (see Hart et al. (2000) for domain and interpretation of
«); N the number of self plays
1 Initialize py € A(AY) x A(A?) randomly
2 for t€{0,...,N — 1} do
Sample a; ~ p,
for each player i do
for each action k (k # a}) of player i do
Rifal, k) — 1307 1 oy - (wi((ar, k) — wi(a,)) /+ regret of player i
for changing a; to action k */
7 pi 1 (k) < 21 max{0, R'(a},k)} /* probability of playing k at next
round is proportional to regret if positive x/

8 B Hia(a)) <1 - Zk;&ag pi 1 (k)

o Gk W

9 return py

When considering a zs-EFG derived from a zs-P0SG, the number of information sets for
player i and for planning horizon H is Y17 (| AY[|Z2%])t = O([|.AY||27]#1). Such exponential
complexity becomes prohibitive when H grows and represents the main bottleneck of running
counterfactual regret minimization for large EFGs. Note that the complexity of one iteration
over the whole game tree (i.e., visiting all information sets) is roughly the same as computing a
best-response given a strategy of the opponent. The latter optimization problem is known to be
intractable in practice for some games (Johanson et al. 2011).

Tackling this prohibitive complexity was studied (e.g., by Lanctot et al. (2009) using sampling
methods) and is one possible lever offered by the counterfactuel regret minimization scheme.
Other levers (e.g., depth-limited subgame solving) are detailed in Section 3.3.3.

Overall, this scheme has been a building block for solving zero-sum imperfect information
games since its discovery. Many approaches building on top of this simple algorithmic scheme
were designed since (again, see Section 3.3.3 for further details).

2.2.2 Mathematical programming

Under linearity assumptions on players’ payoff function with respect to their mixed strategies,
a Nash equilibrium strategy profile can be computed in polynomial time in various settings.
Throughout this section, we will discuss the computation of a Nash equilibrium through math-
ematical programming for various types of games, from normal-form games to dynamic games,
possibly with imperfect information. We assume that games are zero-sum, but, when relevant,
we present at a high level linear programs solving the general-sum version of the considered type
of game.

2.2.2.1 (Mixed-Integer) Linear Programming for Normal-Form and Bayesian Games

Let G = (A', A%, M) be a zs-NFG. As often in game theory, the zero-sum setting eases the
search for optimal solutions of the game. In this case, the simple linear program given in Propo-
sition 2.2.1 computes an exact Nash equilibrium strategy profile of the game G. It derives from
von Neumann’s minimax theorem, replacing the min (resp. max) operator over a finite number
of pure strategies for player 2 (resp. 1) by a set of constraints, one per pure strategy. Nash
equilibria being interchangeable offers the possibility to search for individual Nash equilibrium
strategies for each player independently. The latter are given for player 1 (resp. 2) by solutions
of the primal (resp. dual) linear program.

Proposition 2.2.1 (LP to solve zs-NFGs (Shoham et al. 2008)). Let (A', A%, M) be a zs-NFG.
Then, V* = max 1ca (A1) Mily2ea(42) pub T M- 1% is also the value of the (primal) linear program
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max V (2.17a)
V,ut
s.t. Z pra)M(at,a®)>V  Va®e A% (2.17b)
aleAl
plaH=0, Vale A, and (2.17¢)
Diut(ah)=1, (2.17d)
al
whose dual is
min V (2.18a)
V,u?
s.t. > p(@®)M(a',a®)< V' Va' e A, (2.18b)
a?eA?
p2(a®) =0 Va?e A%, and (2.18¢)

D nP(a?)=1. (2.18d)

* 2,*) *

Besides, any mived strategy profile (u'*, where pb* is a solution of the primal linear
program and p>* a solution of the dual is a Nash equilibrium strategy profile.

As a by-product, this also provides a complexity result: finding a NES in a zs-NFG has, at
worst, polynomial time and linear space complexity w.r.t. players’ set of action sizes.
Looking back at Example 2.1.4, the generic linear program of Proposition 2.2.1 is

max Vv (2.19a
V' =(pn.pt)

st.  pp-l+p-—1=2V, (2.19b
ph—1l4+p 1=V, (2.19¢
pr+pe=1. (2.19d

Remark 2.2.2 (General-sum Bimatrix Game). The Lemke-Howson algorithm (Lemke et al.
1964) permits computing a Nash Equilibrium strategy profile of a 2-player “general-sum” normal-
form game (i.e., with two matrices M' and M?, player 1 (resp. player 2) aiming at mazimizing
the payoff functions derived from M?' (resp. M?)). The algorithm’s worst case is to visit ex-
ponentially many vertices, and consequently may take exponential time before finding a Nash
equilibrium.

Remark 2.2.3 (Common-Payoff Normal-Form Games). Let (n, x; A%, x;M*) be an n-player NFG
(direct extension of Definition 2.1.9) where, ¥i,j € {1,...,n}%, M* = M7 and Vi, M’ € x;R4'.
The problem of finding a Nash equilibrium strategy profile with the highest value is a single-
criterion optimization problem, and there exists at least one solution in pure strategqy profiles
(i.e., action profiles) (Oliehoek et al. 2008). Then, searching for a Nash equilibrium strategy
profile with the highest value, i.e., a global optimum, amounts to a linear search over all elements
of any of the matriz M°.

While zero-sum Bayesian games appear harder to solve than normal-form games as they in-
troduce uncertainty regarding other players’ types, Proposition 2.1.16 presents a piecewise linear
and convex/concave property of the optimal value function w.r.t. some marginal distribution.
This property also allows 1 to search for an optimal strategy by reasoning independently upon
the possible types of her opponent, while the latter best responds with deterministic strategies.
Since there is a finite number of deterministic strategies, solving a zero-sum Bayesian game can
be turned into solving a linear program (and its dual) and the complexity of solving zero-sum
Bayesian games is also polynomial.
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2.2. Solving Algorithms in Game Theory

Proposition 2.2.4 (Linear Program for a zs-BG (Harsanyi 1968)). For any Bayesian game
(AL, A%, 01,02 p,u), the Nash equilibrium value ming: maxs Eqglu(a)] is also the optimal
value of the linear program

min Pr(0* | p)Vy 2.20a
(V91)91,B2; (0" [ p)Vy (2.20a)
5.6 Y Pr(a® | 82,6%)Pr(6% | 0", p)u(a’,a®)=Vp, V0" € ©', Va' € A', (2.20Db)
02 a2
> Pr(a® | 0%, 8%) = 1,V0%e 02 (2.20c)
a2

In the linear program (2.20), variables
e (32 is a family of probability distributions (632)92, one for each possible type 6?; and
e 1, each correspond to the value obtained if 2 plays (2, assuming that 1 experienced 6.

Constraint (2.20b) represents 1 best responding (with a provably optimal pure action) to 32,
knowing 6, while (2.20c) ensures that for any type 62, 632 is a valid probability distribution over
A2,

2.2.2.2 Linear Programming for zs-EFGs

Moving on to dynamic games with imperfect information, we remind the reader that a player’s
behavioral strategy is a collection of mappings providing, for each time step, a probability dis-
tribution over the player’s actions for each of her information sets in the EFG. Unfortunately, the
finite criterion is not linear with respect to players’ behavioral strategies (as EFGs and POSGs are
very close, we refer to the same result proven for POSGs in Proposition 3.1.2 (page 43)). Interest-
ingly however, the finite criterion is linear with respect to players’ mixed strategies. This allows
turning the extensive-form game into a normal-form game (the EFG’s pure strategies serving as
actions in the NFG) and applying the linear programs presented in Proposition 2.2.1. There is
no loss in considering behavioral strategies or mixed strategies, as Kuhn et al. showed in 1953
that assuming perfect recall and timeability of EFGs (our default assumption) leads to mixed
strategies being equivalent to behavioral ones.

Remark 2.2.5 (Mixed Strategies and Behavioral strategies). Behavioral and mized strategies
are equivalent, but both concepts offer complementary benefices, as illustrated by the ability to
construct an NFG to solve the zs-EFG using mized strategies. Behavioral strategies, for their
part, are, for example, more suited to (and easier to manipulate for) approaches performing local
computations for intermediate decision points in the game, as behavioral strategies are defined as
sequences of decision rules.

However, the size of the resulting normal-form game is exponential with respect to the size
of the game tree (Koller et al. 1996), so that such a transformation is intractable in practice.
Indeed, the number of pure strategies for player ¢ in an EFG derived from a POSG (see (Vojtéch
Kovaiik et al. 2022a) for a detailed presentation of the conversion) is?3

1245 1

AT Z 2T = | ) TR (2.21)

Later on, in 1996, Koller et al. introduced another equivalent strategy concept, namely realization
weights, and proved the equivalence between solving the previous normal-form game and an LP
whose variables are vectors of realization weights, i.e., a realization plan. Realization weights
for player ¢ correspond to every possible probability for a sequence of actions she picked in
information sets, assuming that the corresponding information sets are reached. They discard
redundancy contained in mixed strategies. The number of parameters needed to represent the

. H—1 [ i
ZNote: in EFGs, the number of pure strategies is seen as \Aﬂzt:o Atz ”t, but as noted by Koller et al., the
resulting normal-form game would suffer from redundant rows.
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2.2. Solving Algorithms in Game Theory

space of realization weights is linear in the number of information sets of a player, which, in a
POSG is:

H-1
2 (AT 127 = oA 127177, (2.22)
t=0

It is noteworthy that the dimension needed to represent the space of realization weights is expo-
nentially lower than the dimension of distributions over pure strategies (i.e., mixed strategies).
Overall, the LP using realization weights, namely the sequence-form linear program (SFLP), has
linear size (in sparse form) with respect to the size of the game tree.

2.2.2.3 Double Oracle Algorithmic Scheme

Linear programs using mixed strategies or even SFLPs can be prohibitively big, for example
when they are obtained by flattening time in a large zs-EFG (e.g., poker, (Bowling et al. 2015,
Figure 2)). For such programs, we might want to design an anytime algorithm to be able to
retrieve decent strategies in reasonable time without having to wait for the exact convergence.
Even though the LP solvers are anytime once the problem is constructed, the LP itself might not
even fit in memory (Bowling et al. 2015, Figure 2). Thereby, designing an anytime algorithm
based on linear programming (McMahan et al. 2003) has been a major advance to tackle real-
world games, especially when the approach was applied to SFLPs (Bosansky et al. 2014).

In essence, the algorithmic scheme starts by solving a restricted program (either in normal-
form or in sequence form) with only one row and column (corresponding to players only having
one possible pure strategy/realization plan) and keeps adding rows and columns (i.e., possible
pure strategies/realization plans) until the sets of rows and columns stabilize (which occurs in
particular if the unrestricted game is reached). Rows and columns are selected according to some
heuristic which typically relies on computing best responses. A pseudo-code for the double-oracle
algorithm is given in Algorithm 2.2 (but, for simplicity, is only given for linear programs using
mixed strategies). Empirically (Bosansky et al. 2014, Table 5), this approach often computes
an exact Nash equilibrium strategy profile way before having constructed the complete linear
program. The algorithm provably computed a Nash equilibrium strategy profile whenever the
best responses of players already appear in their support set of pure strategies/realization plans
(i.e., rows or columns). The efficiency of double-oracle algorithms essentially comes from their
ability to focus on the empirically small fractions of rows/columns needed to construct a Nash
equilibrium strategy profile, discarding the irrelevant ones.

Still, this approach requires being able to compute multiple best responses, which might be
intractable for very large games (Johanson et al. 2011). Recent developments include (i) new
heuristics to populate rows and columns (including approximation of best-response computations
by training oracles (Lanctot et al. 2017; McAleer et al. 2021)), (ii) different constructions of
restricted games (McAleer et al. 2021), and (iii) replacing linear programming with other solving
methods (e.g., regret minimization) (McAleer et al. 2021; Lanctot et al. 2017).

2.2.3 Approaches Based on Bellman’s Optimality Principle

Dynamic programming applied to the search for Nash equilibria in POSGs gave rise to various
approaches (Hansen et al. 2004; Burch et al. 2014; Horak et al. 2017; Horak et al. 2019b).
Related work section in Chapter 3 (p. 70) presents some of these complementary approaches. We
particularly focus below on one particular scheme, namely heuristic search value iteration (HSVI),
as it is the most relevant to the understanding of our contributions. The following presents the
application of this algorithmic scheme to MDPs before moving on to more complicated settings,
introducing (i) another (adversarial) player, (ii) partial observability, or (iii) both.

2.2.3.1 Single-Player Fully Observable Games: MDPs

In this section, we come back to MDPs to detail the dynamic programming solving algorithm
resulting of an iterative application of Bellman’s operator. Next, we introduce the heuristic
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2.2. Solving Algorithms in Game Theory

Algorithm 2.2: Double oracle for zs-NFGs
Data: G a zs-NFG
G is a game initialized with 0 actions for 1 and 2

7, w2 « two initial pure strategies for 1 and 2

.Al <« {71'1}, .A2 <« {71'2} /* initialize 1 and 2 set of available pure actions */

N N

G« Game(G,Al,AQ) /* construct a game G by adding the sets Al and A2 of pure actions to
the set of pure actions for 1 and 2 in G */

do
pt* — Primal LPSolution(G)
p2* — Dual LPSolution(G)

(710 waluey) < bestResponse(p'*)
2,*)

© 0 I o O«

(720" waluey) < best Response(p
10 | A AV U {xhtr}

1 | AZ— A2 0 {r2)

12 G — Game(G, A', A?)

13 while wvalue; # values

14 return {ul*, p?*)

search value iteration scheme (HSVI), based on dynamic programming and on a heuristic selection
of nodes in the game tree to update.

Finite-horizon MDPs In the case of a finite horizon MDP, Bellman’s optimality principle leads to
recursively computing V¥, the base case being the exact computation of Vj;_; : s — max, (s, a).
Still, such an algorithm would compute multiple times the optimal value of the same nodes, as
a certain state s at time step t € {1,..., H — 1} could be reached through multiple different
paths sq,...,s;—1. Instead, a dynamic programming approach, given in Algorithm 2.3, keeping
in memory the optimal values of future time steps, provides a more time-efficient algorithm.

Algorithm 2.3: Dynamic Programming for (finite-horizon) MDPs
Input : H € N*
Vs e S, VH(S) —0
t—H-—1
while ¢t > 0 do

for se S do

L Vi(s) « maxqr(s,a) +v2 4 T(s,a,s)Vig1(s)
t—t—1

[ BV R R

(=]

BN

return (Vi.)ieqo,... -1}

In a significant number of real-life applications, the initial state of the system is known to
the player. Focusing on one specific initial configuration sg is of great computational help, as
it allows focusing on the branches of the tree contributing the most to the optimal value at
sp. For example, if a state s; at depth 1 is not reachable under any action starting from sy,
studying s; is completely irrelevant. Various algorithms take advantage of this observation to
implement efficient algorithms providing reasonably good strategies in way less time than value
iteration. Heuristic search value iteration (Smith et al. 2005) is one of them (initially introduced
for infinite-horizon POMDPs), and is given in Algorithm 2.4. A key difference between HSVI and
dynamic programming is that HSVI’s goal is to compute e-optimal solutions, where € > 0 is an
input. It allows HSVI to leverage the knowledge of the initial state so by (i) elegantly focusing
on the next state s;+1 that contributes the most to the uncertainty at current state s;, and (ii)
guiding search optimistically. The price to pay, however, is the maintenance of upper-bound
approximations, in addition to classical lower-bound approximations.
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Algorithm 2.4: HSVI for (finite-horizon) MDPs

Input : HeN, e>0

Input : sy a state
1 Fct Solve
2 vt € {0,..., H — 1}, Initialize V; : S — R with optimistic value
3 vVt e {0,...,H — 1}, Initialize V, : S — R with pessimistic value
4 Vs, V(s) < 0 and Vs, Vg (s) < 0
5
6

while V(sg) — V(so) = € do
L Explore (s, 0)

7 | return (V). -1

8 Fct Explore(s),t)

9 if Vi(sf) —V,(sf) = eyt then

10 Update (s,t)

11 a* «— argmax, r(s,a) + v >, T(s,a,s)Vii1(s)
| | st e agmax, T(s,0% ) Vit (5) = Vo ()]
13 Explore (s*,t +1)

14 Update (s,t)

15 return

16 Fct Update (s,t)
17 | Vy(s) « max,r(s,a) + v,
18 | Vy(s) < max,r(s,a) +72]

s/

Algorithm 2.5: Value Iteration (synchronous version) for (infinite-horizon) MDPs

Input :ecRT¥
Initialize Vj : S — R with any values
n<«0
do
for se€ S do
Vosi1(s) < max,r(s,a) + 720 T(s,a,s)Vy(s)
L n—n+1l

[ I U

BN

while ||[V,,41 — Vp|leo = €
return V

o]

More formally, given a state s;, the most promising action a* is

a* € arg maxr(s,a) + ZT(S, a,s)\Vip1(s),
s/

a

where V1 is the upper-bound approximation at time step ¢ + 1. A next state s} +1 contributing
the most to the uncertainty at state s; for action a*, defined as

s* € argmax T(s,a*,s") [Vira(s) = Vi (s)], (2.23)
S/
is selected. Overall, HSVI performs trajectories in the game tree. The action and next state
selections described above essentially define the forward phase, while the backward phase mainly
involves updating the upper-bound and lower-bound values of each encountered state through
Bellman’s equation.

Infinite-Horizon Case Moving on to the infinite-horizon setting, we again assume that strate-
gies are evaluated through the discounted criterion. As mentioned in Section 2.1.3.2, stationary
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2.2. Solving Algorithms in Game Theory

Algorithm 2.6: HSVI for (infinite-horizon) MDPs
Input : sp a state

1 Fct Solve

2 Initialize V : S — R with optimistic value
3 Initialize V' : S — R with pessimistic value
4 | while V(sg) — V(so) = e do

5 L Explore (sg,0)

6 | return V.
7 Fct Explore(s,t)
8 if V(s) —V(s) = eyt then
Update (s,t)
10 a* — argmax, (s,a) + v >, T(s,a,s)V(s)
11 s* «— argmaxy T(s,a*, s') [V (s') — V(5')]
12 Explore (s*,t+1)
13 Update (s,t)
14 return

15 Fct Update (s,t)
16 V(s) « maxqr(s,a) +v >, T(s,a,s)
17 | V(s) < max,7(s,a) + 72, T(s,a,5")

(s')
(s')

7
Vv

strategies are sufficient for this criterion and we consequently limit ourselves to searching for an
optimal one among them.

The Bellman operator is y-contracting so that, after applying it &k times, |V — Vi_1]o < €
implies that [Vi — V*[o < 25 € (Russell et al. 2010). Since there always exists a k ensuring
Ve — Vi—1|oo < €, Algorithm 2.5 always terminates, which implies that an ¢-approximation of
V* can be obtained in finite time, where ¢ = %e. A similar argument proves that trajectories
performed by HSVI (Algorithm 2.6) have a finite maximal depth ¢4, (Smith et al. 2005).

Remark 2.2.6. v being strictly inferior to 1 implies that rewards are more and more negligible,
so that the sum of rewards obtained from time step K onward does not contribute more than €
to the total sum, for a sufficiently large K. It follows that there exists a finite-horizon MDP that
closely approzimates the infinite-horizon one. The corresponding horizon Heyp can be computed
analytically and solving the resulting MDP ensures an error with respect to the original optimal
value less than yers . Rm“ffff”“'”, where Ropas max; o 7(s,a) and Ryn ! ming o r(s,a). In
practice, both formulations (the infinite-horizon and the finite one) can be relevant, depending,
for example, on the games’ dynamics and the solving algorithm scheme.

2.2.3.2 Two-player Zero-sum Stochastic Games

Section 2.1.3.4 stated that Bellman’s optimality equations hold for finite- and infinite-horizon
zs-S8Gs. Still, as for MDPs and POMDPs, dynamic programming algorithms (Algorithm 2.3 and
Algorithm 2.5, switching the Bellman’s operator for Shapley’s one) relying on applying Shapley’s
operator n times become intractable for games of reasonable size (Buffet et al. 2020). This is
partly due to Shapley’s operator having polynomial-time complexity (since it is essentially solving
an NFG). For large games, repeating many times this operator becomes prohibitive. HSVI mitigates
this burden by reducing the total number of computations of Shapley’s operator, leveraging the
search for e-optimal solutions instead of optimal ones and knowledge of the initial state.

Upper and lower bounds required for the HSVI scheme can be defined by tabular functions, as
for MDPs. The main adaptation required lies in the selection of the next state to study. In MDPs,
deciding which next state to study involves the computation of an optimistic action a for the
(single) player, and the selection of the next state that contributes the most to the uncertainty,
given a. But what does it mean to optimistically play for both players in a zs-SG? Assuming
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that the game is in state s and 1 (resp. 2) picks @' (resp. 72) relatively to the upper bound
(resp. lower bound):

7' (s) € arg max “92% mh(s) - [Z (s, ) +T(s, - V()| - 72(s) (2.24)
nl(s) m(s o
72(s) € arg mi 1(s) - o T(s,-,-,s\V(s)| -7 2.25
ngmn}z(piw (s) Zr(s, o)+ T (s, 8V ()| - 7=(s), (2.25)
w2(s) T8 s
one can exhibit one of the nodes contributing the most to the uncertainty:
s* € argmax 7 (s) - [T(s,-,-s)V(s") = V()] -2(s). (2.26)

S/

This strategy profile and node selection is provably relevant as the resulting HSVI algorithm
converges in finite time to an e-NES of the zs-SGs.

2.2.3.3 Introducing Partial Observability: POMDPs

Contrary to MDPs, value functions of a POMDP can no longer be defined on the states of the system
as it is not known to the player anymore. We will here detail a transformation, turning the
POMDP problem into an “equivalent” continuous-state MDP, in which states are a summary of the
complete list of data known to the player, for any time step.

A Sufficient Statistic Smallwood et al. showed in 1973 that, under three criteria, a statistic
can be sufficient to optimally plan in POMDPs. It is required that the statistic (i) is Markovian, (ii)
correctly (compared to the estimation obtained with knowledge of all data) estimates immediate
rewards and (iii) correctly estimates the probability for the next observation. Here, correctly
refers to equality in comparison with knowledge of all data. Under those three conditions,
solving the Markov decision process defined by the evolution of the statistic allows retrieving an
optimal strategy for the original POMDP. In POMDPs, a sufficient statistic commonly used is the
probability distribution over the hidden states of the system, namely the belief state.

Definition 2.2.7 (Belief States). Given any action-observation history 0y and an initial belief
by, we define the statistic called belief state induced by 0, as an element of A(S) such that:

Vs, bg,(s) & Pr(s | bo, ;). (2.27)

Belief states satisfy Smallwood et al.’s assumptions for sufficient statistics for optimally plan-
ning in POMDPs.

Theorem 2.2.8 (Sufficiency of Belief States (Garcia et al. 2008)). Belief states are sufficient
statistics for optimally planning in POMDPs, i.e., it holds that:

o (by): is Markovian, and we note T the transition function computing bry1 = 7(by, a, 2);
noting by, the belief state obtained for some history 0y, it also holds that:

o by, estimates correctly the immediate reward, compared to complete data known to the

player: E[r(S,A) | bg,] = E[r(S,A) | 0¢]; and

e probability of next observation z for action a is Y, >, O(z,a,8)T(s,a, s )bg,(s), which is
equal to Pr(z | by, ).

Corollary 2.2.9. Let M = (S, A, Z,T,0,r,H,~,by) be a POMDP and let M' = (B, A, T, p, H,~,bg)
be an MDP, where:

e BY Uflzo{bgt}gt < A(S) is the set of beliefs induced by histories 0, reachable for all time
steps t;
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o T: A(S)xAxA(S) — R gives the probability to reach a next belief; Vby, Vb1, T(b, a,byy1) =
>, Pr(z | b, a)57(bt’a’z) (where & is the Kronecker symbol);

br41

e p:ba— Y b(s)r(s,a) is the reward model; and
o A H by and ~y are as in the POMDP.

It holds that M and M’ are equivalent regarding optimal planning (i.e., an optimal solution
7 B — A of M’ can be translated into an optimal solution 7* : © — A of M, and conversely).
The MDP is referred to as the belief MDP (b-MDP) derived from the POMDP.

If the planning horizon H is finite, only a finite number of beliefs are reachable. The state
space of the b-MDP is thus finite; and the hypotheses to apply the dynamic programming scheme,
given in Algorithm 2.3, are met. Still, the number of reachable beliefs can be large for reasonable
size problems so that it remains inefficient, in general.

If the planning horizon H is infinite, we typically apply Algorithm 2.6. As for MDPs, an
important difference with the finite criterion lies in the stationarity of optimal strategies, which
implies that values functions for all time steps are equal. The number of reachable beliefs is,
however, infinite. Value functions with generalization properties are consequently required, but
are also welcome, as they allow knowledge transfer between beliefs.

Exhibiting Continuity Properties of the Optimal Value Function Turning a POMDP into
a belief MDP is lossless regarding e-close optimal planning, but it also permits leveraging some
structure present in the POMDP. For example, the reward function p is linear in the belief-state
space A(S), which induces continuity properties of the optimal value function.

Lemma 2.2.10 (Structure in the Value Function for Finite-Horizon b-MDPs (Smallwood et al.,
1973)). The optimal value function of a finite-horizon belief MDP is piecewise-linear and convex in
the belief state space as there exists a finite collection of vectors for each time step®* ay : S — R
such that:

VE, Wby € A(S), Vi*(b) = max [by - au] - (2.28)
(077

Theorem 2.2.11 (Structure in the Value Function for Infinite-Horizon b-MDPs (Sondik 1971)).
The optimal value function of a belief MDP is convex in the belief-state space and can be approxi-
mated arbitrarily closely by a PWLC function.

Remark 2.2.12. In cases where an infinite-horizon POMDP is approzimated using a finite-horizon
one (Remark 2.2.6), an e-PWLC approzimation of the convex optimal value function of the POMDP
can be obtained by applying H.r; times Bellman’s operator.

Clearly, the convexity property of the optimal value function is of particular interest. It allows
fairly good value generalization from visited beliefs to unvisited ones (compared to approxima-
tions of Lipschitz-continuous optimal value functions (Fehr et al. 2018)). In other words, visiting
only certain branches of the game tree provides a “reasonable”?® estimation of the value of any
node. On the contrary, the algorithms presented up to now were “tabular”, and consequently did
not offer generalization properties. Below, we consider finite-horizon b-MDPs and present (i) an it-
erative construction of the representation of optimal value functions as envelopes of hyperplanes,
and (ii) an HSVI scheme that leverages the structure exhibited above in Lemma 2.2.10.

21Usually, algorithmic schemes computing the a-vectors also compute a strategy whose value is at worst b - o
as a by-product. Algorithms either store the strategies using book-keeping or leave the strategy extraction as
another step to do after convergence.

25«Reasonable” is to be understood empirically. The number of branches required to get an e-close approxima-
tion of the optimal value of all nodes depends on both the problem and e.
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Iterative Construction of Optimal Value Functions Lemma 2.2.10 showed that op-
timal value functions of finite-horizon b-MDPs can be viewed as envelopes of hyperplanes. We
present below an iterative construction of such hyperplanes, yielding an exact representation of
optimal value functions in the whole space A(S), for all time steps.

The construction starts from the last time step and is based on the following proposition.

Proposition 2.2.13. Let I't11 be a set of a-vectors, such that Vo, ¥b, a-b < V% ,(b). Then one
can construct

I, “a:S —>Rs.t, (2.29)
VseS, a(s) =r(s,a) + > T(s,a,3)0(z,a,5)0,:(3) | Va € A,Y(,z)zez € (Trs1) 1?1}

Besides, it holds that b — maxg, [b- ar] lower bounds V;* in the whole space A(S).

At time step H — 1, only the immediate reward is left to be optimized, so that one can easily
compute a finite number of hyperplanes representing V7;_; exactly. An iterative application of
Proposition 2.2.13 starting from time step H — 1 until reaching time step 0 defines a dynamic
programming scheme that is exact, but constructs a very large set of a-vectors in general, even
when using pruning techniques. Indeed, it follows from Equation (2.29) that the number of
created vectors at time step ¢ is |Ty| = |A| - [Typ1[12].

The previous result can be alternatively interpreted by reasoning upon all possible strategies.
By induction, assume that each vector a, . € I't41 is associated to a strategy Wffl: 11 Whose
value in any belief by is at worst g . - bi1. Strategies my.y—1 can be created by selecting (i)
one action a € A to make at time step ¢t and a collection (ﬂ'?fl: 17_1)-ez of strategies to follow
from ¢+ 1 on, after observing each possible z. There are |.A]- |Ft+1||z| possible strategies m. 1,
each corresponding to one particular vector o and whose value is, at worst, b; - o, for any belief
bt.

This iterative construction exactly computes the optimal value functions in the whole space
A(S). On the contrary, HSVI (i) has access to the initial belief by and (ii) only searches for an e-
close approximation at bg. In particular, HSVI does not require exact computation of the optimal
value functions in the whole space A(S), but only good enough approximations of “relevant”
beliefs for bg.

Heuristic Search Value Iteration The following presents new upper and lower bounds
to replace the tabular ones in the HSVI scheme given in Algorithm 2.4.

The optimal value functions (V;*);eqo,....r—1} being convex, at each time step ¢, a finite number
of upper-bounding points allows constructing a convex hull that upper bounds V;*. New points
are added by simply computing an upper-bounding value for each belief b; encountered during
trajectories, by applying Bellman’s operator on V4 1:

Vi(by) = max p(b,a) + ZPr(z | by, a)Vip1(7(bg,a,2)) | - (2.30)

Remark 2.2.14. In practice, however, computing the convex hull given a finite set of upper-
bounding points is intractable as it involves solving LPs. Instead, we prefer upper-bounding tech-
niques that are less precise, but way faster to compute, such as the sawtooth approximation
(Hauskrecht 2000; Smith 2007).

The construction of lower-bound approximations of optimal value functions is similar to the
iterative construction presented in the previous paragraph. The key difference is that, at any

belief b; encountered during a trajectory, HSVI only adds one vector ay € arg max,,.r, bt - at,
where I'; is the set of a-vectors constructed in Proposition 2.2.13.

We significantly modified HSVI’s upper and lower bounds, so that it is not straightforward
that the resulting version still possesses the convergence properties of the tabular one. Smith
(2007) showed in his Ph.D. that it is the case, and even proposed criteria to decide whether some
approximations are guaranteed not to break the convergence properties.
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2.2. Solving Algorithms in Game Theory

Theorem 2.2.15 (Convergence of HSVI (Smith 2007)). The finite-time convergence of “tabular”
HSVI (Algorithm 2.6) to an e-optimum is maintained with the aforementioned upper and lower
bounds.

Remark 2.2.16 (Tools to Improve Efficiency). Many tools improve the empirical efficiency of
HSVI (e.g., smart initialization of lower and upper bounds, pruning, anytime versions), but we did
not present them to maintain a concise discussion. The interested reader can find more details
i Smith’s Ph.D. dissertation.

2.2.3.4 General Algorithmic Scheme: Summary of Specifications

Since several versions of the HSVI scheme were mentioned up to now (for MDPs, POMDPs and
zs-8Gs), Algorithm 2.7 provides a general implementation, while Table 2.3 specializes the relevant
functions depending on the class of games considered. This table could be completed, but is not
for the sake of simplicity, by adding columns for cp-P0SGs (Dibangoye et al. 2016), his-P0SGs
(Chapter 4), zs-P0SGs and subclasses (Horak et al. 2017; Horak et al. 2019b).

Algorithm 2.7: Generic HSVI for (infinite-horizon) problems

Input : sy a state
1 Fct Solve
2 Initialize V : S — R with optimistic value
3 Initialize V : S — R with pessimistic value
4 while V(sg) — V(sg) = € do
5 L Explore (s¢,0)

return (V,V)

Fct Explore(s,t)
if V(s) —V(s) = ey~ then
Update (s,t)

(=]

®

10 a* « Greedy(V,V,s) // to be specified

11 s* < SelectMostUncertain(V,V,s,a*) // to be specified
12 Explore (s*)

13 Update (s,t)

14 return

15 Fct Update (s)
16 Update V // to be specified
17 | Update V. // to be specified

Table 2.3: Summary of specified procedures in the HSVI algorithmic scheme, for the different classes of games considered
up to now.

Function MDP b-MDP zs-SG

“state” public state belief public state
“action” ae A ae A (1, 7?) e A(AY) x A(A?)
Greedy Equation (2.6) (page 18) Equation (2.6) (page 18) Equation (2.24) (page 34)
SelectMostUncertain Equation (2.23) (page 32)  Equation (2.23) (page 32) Equation (2.26) (page 34)
Update V' Bellman(V) Equation (2.30) (page 36) Shapley(V)
Update V. Bellman(V) Proposition 2.2.13 (page 36) Shapley(V)

2.2.3.5 PO0SGs

Solving zero-sum or common-payoff partially observable stochastic games through sufficient
statistic was subject to recent extensive study (Dibangoye et al. 2016; Horék et al. 2017; Horak
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et al. 2019b; Brown et al. 2020; Sokota et al. 2023; Vojtéch Kovarik et al. 2022b). As we shall
see in the following, the interests are threefold. Firstly, it enables (after having proven that Bell-
man’s optimality principle holds) tools from the fully observable settings to apply. Secondly, it
allows taking advantage of continuity properties of the optimal value function in the continuous
state space. Finally, lossy or lossless compression of the state to reduce its dimensionality highly
improves the solving algorithms’ scalability with respect to (i) players’ numbers of actions and
observations and (ii) the planning horizon.

Continuous-state Markov games (including continuous-state MDPs) As often in assump-
tions for multi-player planning under partial observability (Wiggers et al. 2016a; Dibangoye et al.
2016), let us formally define an occupancy state (08) og, | as the probability distribution over
joint AOHs 6, given partial behavioral strategy profile B.,_;. This statistic exhibits the usual
Markov and sufficiency properties:

Proposition 2.2.17 (Adapted from Dibangoye et al. 2016, Thm. 1). Let G be a P0SG. In G,
08,.,_,, together with B., is a sufficient statistic to compute:

1. the next 08, T'(og,,._,,B;) S og,,., and
2. the expected reward at T for any player:
Viv ri(o—ﬂozf_pBT) = E [ri(STv AT) ‘ 160:7'—1 6_)/67'] ) (231)
where @ denotes a concatenation.

Proof. Let us first derive a recursive way of computing og, _ O, Pa, Dz 1)

08, (07,ar,2:11) = Pr(0r,ar, 241 | By.r) (2.32)

= Y Pr(6-,ar, 204157 5741 | Bor) (2.33)
Ml

= Z Pr(zr41,8741 | 07,07, 57, Bo.r ) Pr(ar | 07, 57, Bo.r ) Pr(sr | 02, Bo..)Pr(6: | Bo.r)
o (2.34)

= ) Pr(zri1,s741 | ar,s7) Priar | 07, 8;) Pris: | 07, B0,) Pr(67 | Bor1).  (2:35)
L _pErg s —B(6-.a-) —b(s-16,) gy, (07)

(where b(s | 8;) is the belief over states obtained by a usual HMM filtering process)

Z Pal " (s741157)B(07, ar)b(s; | 0-)og,,._,(07). (2.36)

ST,S1+1

and B, without explicitly using B,.,_; or earlier occu-

08,,, can thus be computed from og |

pancy states.
Then, let us compute player i’s expected reward at 7 given B.,:

E[r'(Sr, AL, A2) | Bo.,] (2.37)
= > 1(sr,ar)Pr(sy,a- | By.,) (2.38)
= Z Z (sr,ar)Pr(s;,ar,0; | Bo.r) (2.39)
Sr,ar O,
=, Z ($7,a:)Pr(sy,ar | 07, Bo.. ) Pr(6; | By.,) (2.40)
= Z Z (sr;ar Pr(aT | eTaﬁO 7‘) PT(ST | 97’»:30 ) Pr(0- |:30:7-2 (2.41)
S Or B.(6..ar) b(s-16) oB0r 1 (07)
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=, Z (sr,a7)B.(0-,a;)b(s: | 0;)0g, _ (6;). (2.42)

Sr,ar 0,

Player i’s expected reward at 7 can thus be computed from og __ and B, without explicitly
using 3., or earlier occupancy states. O

From now on, we will write o as short for g, the 08 associated with some prefix strategy
proﬁle /30:7'—1'

Occupancy Markov Games We can then derive, from a POSG, the game induced by the
Markov process of occupancy-states.

Definition 2.2.18 (Occupancy Markov Games (oMGs)). An occupancy Markov game (oMG)*® is
defined by the tuple {n,O% B, T,r, H,v), where:

e n is the number of players;

o 07(= UL OF) is the set of 0Ss induced by the POSG;

e 3 is the set of decision rule profiles of the POSG;

e T is the deterministic transition function as defined in Equation (2.32);

e Vi, 1t is the reward function of player i as defined in Equation (2.42); and

e H and vy are as in the POSG.
Note that by is not in the tuple but serves to define T and r* for all players 1.

The following discussion discards the case n = 1 that corresponds to a POMDP, which is rather
different as the occupancy state (i.e., the belief state (Definition 2.2.7)) is known to the player
at execution phase. On the contrary, players in a POSG do not observe the occupancy state at
execution phase as it depends on their opponent’s strategies, which remains unknown in general.
Consequently, to ensure the equivalence between the original POSG and the derived oMG, we follow
similar path to Oliehoek (2013) and define the Markov process induced by occupancy states as
a non-observable problem.

In both common-payoff and zero-sum cases, the game being deterministic implies that there
exists a solution that can be executed in open-loop, i.e., that consists in a sequence of decision
rule profiles. Consequently, any Nash equilibrium strategy profile of the derived oMG can be
translated into a Nash equilibrium strategy profile of the original zero-sum or common-payoff
POSG. But this equivalence comes at a price: solving a non-observable zero-sum or common-payoff
Markov game is non-standard and we do not know yet if Bellman’s optimality principle applies
to such game. In particular, both following questions are worth answering;:

e Does Bellman’s optimality principle apply to the computation of optimal value functions?

e Does Bellman’s optimality principle apply to the computation of Nash equilibrium strategy
profiles?

Despite occupancy states not being accessible to players during execution phase, let us define
a subgame by

e a time step 7€ {0,..., H — 1};
e an occupancy state o;;

e the objective of finding a Nash equilibrium strategy profile 8.5 _; for the criterion

ZV (St Ar) | o7, Brim—1

Answers to the previous questions for cp-P0SGs exist in the literature (Dibangoye et al. 2016),
while Chapter 3 of this Ph. D.provides positive answers for the zs-P0SG case.

2We use (i) “Markov game” instead of “stochastic game” because the dynamics are not stochastic, and (ii)
“partially observable stochastic game” to stick with the literature.
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cp-P0SGs The value of a common-payoff occupancy Markov game is

max --- max E [r(St, A¢) | Bo.rr—1] - (2.43)

1
ﬁO:Hfl 0:H—1

The problem is a nesting of only max operators. Bellman’s optimality principle “easily”
applies to the computation of the NEV of the game. Besides, the concatenation of the arg max
for each time step is an optimal solution, so that Bellman’s optimality principle also applies to
the computation of a NES with the highest value. At any time step, it holds that:

V* (UT) = I%aXT(JTa BT) + nyT*—i-l(T(O—Ta 167—))7 (244)

T

and a NES with highest value for the subgame rooted at o, can be obtained:

H-1
/Bj <—BBiJrlz € arg max E [2 ’ytiTT(Sta At) | 077137:] ’ (245)
T t=1
where:
B% € argmaxE [r(o-, 8;) + V1 (T(o-,8,))] and (2.46)
B-
H-1
Bri1; € argmaxE [ D AT Te(S, A | T(Ur,ﬁ:%ﬁﬂrl:] : (2.47)
T+1: t=7+1

Note that 87 . is to be obtained applying again Bellman’s optimality principle, until reaching
T=H.

zs-P0SGs The value of a zero-sum occupancy Markov game is

max min E [r(S, Ar) | Bo.r_1] - (2.48)

1 2
BO:Hfl BO:Hfl

The optimization process incorporates both max operators and min operators. As a conse-
quence, its is not straightforward to understand whether Bellman’s optimality principle applies
to the computation of the NEV. Even though we give in Chapter 3 a positive answer to the latter
question, the concatenation of solutions at each time step has no reason to be a Nash equilibrium
strategy profile for the whole game. In other words, a classic dynamic programming algorithm
would not be able to compute a solution of the zs-P0SG, in general. In the matching pennies game
for example, 1’s unique Nash equilibrium strategy is to play head or tail with equal probability
0.5 at time step 0 and any strategy thereafter. But then, any strategy (including deterministic
ones) of player 2 is a NES for the subgame reached at t = 1. Consequently, concatenating strategy
for 2 at time steps 0 (at time step 0, 2’s strategies are irrelevant) and 1 can yield arbitrarily bad
strategies 33.; for 2.

What If We Assume Full Observability? If the zs-oMG is considered to be fully observ-
able, then the answers to the applicability or not of Bellman’s optimality principle to compute
NEV and NESs differ. The game resembles a deterministic zs-SG (but with infinite state space,
and infinite action space), so that Bellman’s optimality principle might apply both for the com-
putation of the NEV and Nash equilibrium strategy profiles. But this comes at a price: the ability
to retrieve a solution to the zs-P0SG is unclear. Let us assume only for the discussion below that
the occupancy state is publicly available to players. Nash equilibrium strategy profiles for the
matching pennies game satisfy for time step O:

B3(bo) = 0.58,, + 0.50,,,  and (2.49)
B3 (bo) =, (2.50)
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and for time step 1:

Bi(x) =+  and (2.51)

81(0.585, + 0.585,) = * (2.52)
Bi(pds, + (1 —p)os,) =ar  ifp<0.5, (2.53)
Bi(pds, + (1 —p)ds,) =an  if p>0.5. (2.54)

In particular, as in the previous paragraph, player 2 at time step 1 can play anything if player
1’s strategy at time step 0 is uniformly random. Then, it is non trivial to retrieve a solution to
the original zs-P0SG.

41
Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



3

Solving zs-P0SGs Through Dynamic
Programming

Contents

3.1 Theoretical Contributions . . . .. ... ... ... ... 43
3.1.1 Properties of zs-0MGS . . . . . . . ... 43
3.1.2 Towards Solving zs-oMGs . . . . . . . . .. ... 50
3.1.3 HSVI for zs-POSGS . . . « v v v v v it e e e e e e e e e 59
3.2 Experiments . .. . . . . . . e e e e e e e e e e e 66
321 Setup . ... e 67
3.22 Results . . . ... 67
3.3 Related work . . . . . . . . o i i e e e e e 70

3.3.1 Wiggers et al.’s Work on Exploiting the Convex-Concavity of the Opti-
mal Value Function . . . . ... ... ... o 70
3.3.2  Solving zero-sum One-Sided Partially Observable Stochastic Games . . 74
3.3.3 Comparison with Limited-Lookahead Continual Resolving . . . . . . .. 76
3.4 Work in Progress . . . . . . . @ i i i i i ittt ittt e e 77
341 Pruning Vo . . o oo e 7
3.4.2  Occupancy-state Decomposition . . . . . . ... ... ... ... .... 79
3.5 Discussion . . . . v v i e e e e e e e e e e e e e e 85

We now present the contribution of the manuscript dealing with the computation of an e-
Nash equilibrium strategy profile for any zero-sum partially observable stochastic game, through
a dynamic programming approach. In the first section (Section 3.1), we start with general
results on zero-sum occupancy Markov games that suggest a potential applicability of Bellman’s
optimality principle to solve them. Then, we build on these results to design necessary tools
(e.g., approximation functions, backup and update operators) that permit the implementation
of an HSVI scheme (Section 3.1.2). Finally, the resulting algorithm is described; its convergence
properties are discussed (Section 3.1.3); and experimental validations are presented (Section 3.2).

Note: To help the reader, Appendiz A.1 provides three synthetic tables: Table A.1 (p. 120)
to sum up various theoretical properties (assuming a finite temporal horizon), Table A.1 (p. 120)
and Table A.2 (p. 122) to respectively sum up the notation and the abbreviations used in this
chapter.

Also, for convenience, we may replace in the following:

o subscript “r: H — 17 with “1 .7,
e any function f(x) linear in vector & with either f(-)-x or ' f(-),
e a full tuple with its few elements of interest, and

e an element (a "field") x of a specific tuple t by x[t].
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3.1 Theoretical Contributions

3.1.1 Properties of zs-oMGs

This first section of the theoretical contributions provides mandatory results for the understand-
ing of our solving algorithm. We study oMGs induced by the occupancy-state Markov process
(Section 2.2.3.5). These games are shown to exhibit interesting properties, especially regard-
ing the ability to apply dynamic programming (Theorems 3.1.5 and 3.1.6). Finally, technical
continuity results for the transition functions of the Markov process are given (Lemmas 3.1.8
to 3.1.10).

3.1.1.1 “Subgames” and their properties

Until stated otherwise (i.e., until Section 3.1.1.1), the discussion below considers general-sum
oMGs with any number of players. Let us recall that an oMG was defined in Definition 2.2.18
(page 39) and that the state of the game o, is hidden to players. Let us recall that oMGs and
their attached notion of subgames were defined in Definition 2.2.18 definition 2.2.18) and that
the state of the game o, is hidden to players.

Despite the 08 at 7 > 0 not being accessible to any player, let us recall that we defined (defi-
nition 2.2.18) a subgame at o, to be the restriction to reachable (i.e., with non-zero probability)
individual histories, starting from time step 7 under this particular occupancy state, meaning
that we are seeking strategies /6’; 1 and ,83: 1. 0 tells us which AOHs each player could be
facing with non-zero probability, and are thus relevant for planning. We can then define the
value function in any 0S o, for any strategy profile B.._;.

Definition 3.1.1 (Value of Strategy Profile). The value of any strategy profile B..p_; for any
occupancy-state o, is defined as

H—
VT(O—TvﬁT:H 1 d:ef Z St7At)’JT7/87'H 1] (31)

However, it is not clear here if a Nash equilibrium for the previous criterion can be easily
characterized as a minmax value as in Theorem 2.1.11. Indeed, the previous criterion involving
behavioral strategies, it is not bilinear in players’ strategies and thus does not define a normal-
form game.

Proposition 3.1.2 (Value Functions V;(o;,3,.y_;) are not Linear in Individual Behavioral
Strategies). There exists a zs-P0SG such that, for some time step 7, (BL., B2) > Vi(or, B 1)
1s not linear with respect to either Bi:H_l or BZ:H—l'

Proof. Let us consider the following (finite-horizon, deterministic) non-observable MDP (modeled
as a POMDP):

SE{—2,-1,0,+1,+2}, bo(0) =1, (always start in s = 0)
AE(~1 +1} (moves = add or subtract 1)

T(s, ) E min{+2, max{—2,s + a}}, (+1 or —1 move in S)
L fnone}, O(none) €1, (no observation)

(Is] = 2 : success!)

{ if s {—2, +2}

otherwise,
vE1, H=2
In this game, a single player moves either to the left or to the right at each time step along

a finite 1D line, aiming to reach one of the two extremities.
Let us then consider two particular behavioral strategies:

Vo, BT(A=+1/0) =1 (always +1), and
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Vo, B (A=-1]0) =1 (always —1).

These two strategies are optimal, with an expected return of +1, because, at t = H = 2, 8T
reaches +2 w.p. 1, and 8~ reaches —2 w.p. 1:

V(BT)=V(B")=+L
Let us now consider their linear combination g & %5+ + %B‘:

Vo, BH(A = —1]9) = 0.5,
Vo, BE(A = +1|6) = 0.5.

Here, the probability to reach s = —2 or s = +2 at the last time step is much lower, and gives
the value of that strategy:

V(ﬁi) = Pr(sy = +2|ﬁi) + Pr(sg = —2|Bi)
= Pr(ag = +1]ﬂi) - Pr(a; = +1|ﬁi)
+ Pr(ap = —Hﬂi) - Pr(a; = —1]ﬁi)
=0.5-0.5+0.5-0.5=0.5.
0.25 0.25

This confirms that, in a POMDP, the value is not linear in the space of behavioral strategies.
As a consequence, in a zs-P0SG, the value is not (bi)linear in the spaces of behavioral strategies
of both players. ]

The proof of the minimax theorem only applies to games whose payoff functions exhibit bilin-
earity w.r.t. players’ strategies. As a consequence, the previous proposition exhibits a potential
barrier to the relevance of the aforementioned subgames. Indeed, establishing the unicity of
subgames’ value (i.e., showing that max — min equals min — max with behavioral strategies) can
reasonably be expected to be key to approaches combining dynamic programming and heuris-
tic search to solve zs-P0SGs. When considering dynamic games, bilinearity of payoff functions
typically holds w.r.t. mixed strategies. Yet, the concept of mixed strategies “rooted” at some
subgames defined in particular by a distribution probability over players’ history profiles does
not exist, to the best of our knowledge.

The following fills that gap by extending (i) the definition of mixed strategies to mixed strate-
gies “compatible” with an associated occupancy state o, and (ii) Kuhn’s equivalence theorem
between mixed strategies and behavioral ones.

Back to Mixed Strategies We now generalize mixed strategies as a mathematical tool to
handle subgames of a zs-oMG as normal-form games, and give some preliminary results.

First, for a given o, and 7 < 7/, let Ho.7 1|0,y denote a mixed strategy profile that is defined
over 0 : 7/ — 1, and induces o, at time 7. We will also write that this strategy is compatible with
Or.

From now on, we consider that either 7/ = 7 or 7/ = H.

To complete a given mixed prefiz strategy Ho:r—1|o, ). the solver should provide each player
with a different suffiz strategy to execute for each 6% it could be facing. We now detail how to
build an equivalent set of mixed full strategies for 7. Each of the pure prefiz strategies 7r6:771 used
in ”6:771|af> (belonging to a set denoted H62771|07>) can be extended by appending a different
pure suffiz strategy 773: g1 at each of its leaf nodes, which leads to a large set of pure strategies
T ;1 (mé..—1). Then, let MS:H_1‘0T> be the set of mixed full strategies MBZH—1|0'7-> obtained by

considering the distributions over U”3:7—1€H6;T_1|0T> I14. 1 (6.1 ) that verify, Vg,
Z M%):H—1|UT>(7T6:H71) = H627—1‘0'7->(7T6:T71)' (32)
71'6:H71€

HZ“):Hfl(Tr(i):Tfl)

Note that, even though Mé: H-1]o, is bound to a particular prefix mixed strategy, this arbitrary

choice is not limiting for the following discussion.
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Lemma 3.1.3. The set Mé:H_1|UT> 18 convex.

Proof. Let “6:H—1\07> and I/(i):H—l\oT> be two mixed strategies in MS:H_HUT>7 1.e., which are both
full and compatible with occupancy state o, at time step 7, and let « € [0,1]. Then, for any

)
T0:r—1s

Z [a : ME;H—1|UT>(778:H71) +(1—a)- V(i):H—l\oT>(7T(Z'):H71)]

7.1 €06 g1 (1)

=a Z Mé;H71\g,>(7T(i):H—1) +(1-0a) Z Vé:H71|aT>(7T€):H—1)

71'6:H71€H6:H71(7T6:7__1) 7rZ’):H—lEI_[’L():H—l(7r6:7'—1)

(because both mixed strategies are compatible with o, (eq. 3.2, p. 44):)

=a- M6;7_1|0T>(773:T—1) +(1=a)- #6;T_1\g,>(7T6:T—1)

= MEIT—1|07>(7T6!T—1)'

Eq. 3.2 thus also applies to a'u6:H71|0T>+ (1—a) '”é:H—1|aT>’ proving that it belongs to MS:H71|UT>
and, as a consequence, that this set is convex.

O
Corollary 3.1.4 (Equivalence between behavioral and mixed strategies). The set Mé: H-1]o) 18
equivalent to the set of behavioral strategies ﬁ(i):HfllaTV and is thus sufficient to search for a Nash
equilibrium strategy profile in o,.

Proof. The equivalence with the set of behavioral strategies simply relies on the fact that all
mixed strategies over 7 : H — 1 can be independently generated at each action-observation
history 6§.,_;. O

While only future rewards are relevant when making a decision at 7, reasoning with mixed
strategies defined from ¢ = 0 will be convenient because V;(o,-, ) is linear in ,u(i): Ho1lo, ) which
allows coming back to a standard normal-form game and applying known results.

In the remainder, we simply denote u' (without index) the mixed strategies in MS: Hollony
set which we now denote M|’UT>. Also, since we shall work with local game Q*(o,,3,), let us

define M|i 8l the set of i’s mixed strategies compatible with occupancy states reachable given
01,07
o, and 2 (with either j = i or j = —i). Then, M‘ia 8y S M‘i 83y c M‘Zg N (inclusion relying on
P or,57 T

the perfect recall hypothesis and the latter sets being less constrained in their definition). As a
consequence, if maximizing some function f over i’s mixed strategies compatible with a given
o

max flor,puty...) = . max flor,puty...) = . max flor,u'y..0).
weM, peME iy WEM 5

Von Neumann’s Minimax Theorem for Subgames From now on, we focus on zero-sum
games (with only two players).

Using the previous results, one can show that von Neumann’s minimax theorem applies in
any subgame, allowing to swap max and min operators.

Theorem 3.1.5 (Minimax theorem). The subgame defined in Eq. (3.1) admits a unique NEV

def . 1 2 . 1 2
VT*(UT) = Ill'laX 121111’1 V:F(O-T?BT:HflﬂﬁT:Hfl) = 1211111 Ill'laX V;'(O-T’BT:HflﬂﬂT:Hfl)' (33)
/BTZH—l /BTZH—l T:H—1 /BTZH—l

Proof. For any occupancy state o,

maxmin V (o7, 8,.) = maxmin V (o7, p..) (Kuhn’s theorem (generalized)) (3.4)

/37': ﬂT: /1‘71': Iu’?':
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= min max V(or, pr) (von Neumann’s theorem) (3.5)
HT: /’IIT:

= min max V(or, Br). (again Kuhn’s theorem (generalized))  (3.6)
BT: 67‘:

O

3.1.1.2 Bellman’s Optimality Principle; a Recursive Expression of V*

In this occupancy Markov game, the state of the game is unknown to players (i.e., no player
has access to o,). Therefore, zs-oMGs are different from zs-SGs and the usual result stating
Bellman’s optimality equations for zs-SGs might not be straighforwardly applicable. Still, we
now show that it does hold, which justifies reasoning on subgames despite the non-observability
as the value of a subgame is related to the value of its nested subgames.

Theorem 3.1.6 (Bellman optimality equation). V*(o,) satisfies the following functional equa-
tion:

V7 (or) = maxmin [7(or,8;) + AV (T (0, B,))] -

Proof. Focusing, without loss of generality, on player 1, we have (complementary explanations
follow for numbered lines in particular):

H}jal,X I%IQI] [T(Uﬂ 71'7 63) +7 T*+1(T(UT7 71'7 /872'))]

(V¥ 1(T(o-, BE, B%)) being the Nash equilibrium value of normal-form game V; 1(T' (o7, 8L, 82), !, 1?):)

T

_ : 1 2 : 1 2 1 2
= Hgix Hé‘I%n 7"(0'7—, 57., BT) + v #1611,\1}27}_{757_> y2e$|2:_lﬂ‘r> VT+1(T(O'7—7 677 67)7 By p )
= max min max min [T(O—T7 71'762) + 7VT+1(T(U_T7ﬂ71—7/372—)7:u’17:u/2)]

1 2 1 1 2 2
Br B7 wleM, g  uPeMi g

(using the equivalence between maximin and minimax values for the (constrained normal-form)
game at 7 + 1, the last two max and min operators can be swapped:)

Cmpxminmin max (o B 63 + A Veen(T(or B 62,0 )]
Br B2 wPeMR 5 weMi g

(merging both mins (and with explanations thereafter):)

=mgx min o max  [r(om, L B2 (2)) + Va1 (T(or, By, B2 (u2), 'y )] (3.7)
T sy P M 1 2 (u2))

(since ignoring the opponent’s decision rule does not influence the expected return:)

= max min max [T(UT7671-7/83(M2)) + ’YVT—i-l(T(O-Ta6&7&2(”2))7#‘17,“2)]
B} NQEM‘QJT> NIEML BLy

(using again the minimax theorem’s equivalence between maximin and minimax on an appropri-

ate game:)

“max  max  min [r(o, B B2(1)) + Y Vet (T(0r BL B2()), i 12)] (3.8)
Or wleM, oy, w*Mig.)

(merging both maxes (and with explanations thereafter):)

= maX min [T(UTaﬁql-(/j’l)763(u2)) + ’YVT+1(T(UT76&(”1)7/872-(/12))7”17“2)] (39)
,uleM‘laT> u2€M|20_r>
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(again with the equivalence property discussed before the lemma:)

= max min Vy(o,,pt,p?)
,u,eM‘ Y 2e M2

lor

. 1 2
= lmax len VT(UT7ﬁT:H717IBT2H71)
ﬂT:H71|cr7—> BTZH*HUT>

= V‘r* (or).
More precisely, line 3.7 (and, similarly, line 3.9) is obtained by observing that

. minimizing over both (i) 32 and (ii) p? constrained by o and 3, is equivalent to minimizing
over p? constrained by o, and 3!; and

e in the reminder of the formula, decision rule 52 at time 7 can be retrieved as a function of
p? (noted B2(u?)).
Also, line 3.8 results from the observation that, while M} P and M, \207> allow to actually make

decisions over different time intervals, we are here minimizing over p? while maximizing over p!
a function that is linear in both input spaces. This amounts to solving some 2-player zero-sum
normal-form game, hence the applicability of von Neumann’s minimax theorem.

The above derivation tells us that the maximin value (the best outcome player 1 can guarantee
whatever player 2’s strategy) in the one-time-step game is thus the Nash equilibrium value (NEV)
for the complete subgame from 7 onwards. O

Concavity and Convexity Results Theorems 3.1.5 and 3.1.6 together imply that the fol-
lowing Theorem 3.1.7, originally stated in a game with public strategies by Wiggers et al. (2016),
also holds in our setting where strategies remain private.

As a preliminary step, an occupancy state o, can be decomposed into a marginal term o;"
and a conditional term oy (Wiggers et al. 2016a), where

1

o oM (01) = Yo 0. (01, 602) is the probability of 1 facing A under o, and

YT

oS (621601) = ﬁ is the probability of 2 facing 62 under o, given that 1 faces 01,

so that o, (6L,62) = o7 1(91) : 05’1(93|0$). (Symmetric definitions apply by swapping players 1

T T

and 2.) In addition, let us denote T\, (o, 3,) and T (0., 3,) the marginal and conditional terms
associated to T'(o,, 3,).
Now, if 1 faces AOH 61, knows 2’s future strategy B2 i, and has access to o2 (62]61) for

any 62, then she faces a POMDP whose optimal value we denote 1/[ o1 ](Hi). This leads to
[2 clge 7 which contains one component per ACH 61,
Or »PrH-1
2

and writing the value of 1’s best response against 53: ;1 under o, as o7 1 Ve ) But
T TH—l

defining the best-response value vector v

then, because 2 also knows o, she can in fact pick /83: 77—, to minimize this value, so that we get
the following theorem.

Theorem 3.1.7 (Concavity and convexity (CC) of V¥ (Wiggers et al. 2016a, Thm. 2)). For any
7e€{0..H—1}, V* is (i) concave w.r.t. of"" for a fived oS*, and (i) convez w.r.t. oi™* for a
fized o%%. More precisely,

V*(o;) = min o™ .02 ., , = max |o™? vl ., , where
2 [U'r 7ﬁ7—;H71] [U"’ ’ T:Hfl]

1
T:H—1 T:H—1

2 1y def 2 2
V[O'qc—’l, 72-:H—1](97) = 5?12},{1 E { Z ’Y StaA A ) |/BTH l?ﬁTZH—1}7 and
(3.10)
Ve g1 1(67) ot ﬁgiinl 01 ~0%2 (62) {Z V(S AfL A7) |5$:H1,53:H1}. (3.11)
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Proof. We start from Theorem 3.1.5:

V¥(o7) = min max [Vr(or, Bru 1, Br1)]

ﬂrH I’BTH 1

_ 2 cl
= min maX[{ZW r(Si, AL, AD) | 0L, Bl 1. Brp 1. 0% Ha

'87' 1’87'H1

then, observing that 1’s best response to 32. can be computed for each AOH 6} independently, we
can swap the max operator and part of the expectation one (E) as follows:27

'BT:Hfl T:H—1

= gnin Ee}_wo_:_n,l {;nax Ep2 [Z A TTr(Sy, A, AZ) | Bl 17/83:H—1]}

~~
best-response of 1 to 2, under 0}

and, recognizing the components of vector v/ and writing the expectation over AOHs 6!,

(CESRNCERE.
as a scalar product:

m,1

— ; 2
e, [”T o, ZHJ] |
T:H—1 T

O

In practice, however, such convexity/concavity properties alone only allow upper-bounding
V* for finitely many conditional terms 07", thus not for the whole occupancy space, as required
to enable DP and HS in our game.

To address this limitation, we propose to seck a continuity property in the conditional di-
mension (w.r.t. aﬁ’l), which requires to first study continuity properties of transition functions.

Continuity Properties of the Transition Functions

Lemma 3.1.8 (Linearity of T}, (Wiggers et al. 2016a, Lemma 4.2.3)). T. (0., 3.) is linear in

Or, 7—z andﬁz
Proof.
T (00, 8,0 0, 21) (3.12)
= Z T(UT,,BT)((Hi,al,zl),(93,&2,22))
02,a2,22
-y g zp 6101, 821061,
s',02,a2,22
= L% at) D] B2(02.a2) Y PR (s|s)b(s]6L,6%)o, (6L, 62). (3.13)
02 a2 s,8',22

O

Lemma 3.1.9 (Independance properties of T} (Wiggers et al. 2016a)). T (o, 3,) is independent
of B and o™

Proof.

T(o-,B8,)((z,a',21), (6%, 0% 2°))
S a2 2 T(0r, B) (0}, al, 21), (62,02, 22))

T (o7, B-)((07, 0%, 2%)|(07, 0" 2)) =

ZTNote that this property is well known in Bayesian games, where AOHs correspond to types, cf. Harsanyi 1968,
Th. 1, p. 321.
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2

1
5”%(0# al)ﬁzwi a2) Zs,sl le’:;

BLOL, al) Yo o B2(02,02) ), o 2 P25 (8']5)b(s[0L, 02)o- (61, 62)
B2(62,a%) Y, P2y 7% (s')s)b(s]6L, 62)0- (61, 62)

,a2 TVUT TUT

(/])b(s[6L, 62)o (62, 62)

Mo B202,07) X,y 2 P (51505103, 02)r, (601, 02)

B2(02,0%) X, o P27 (55)b(s10L, 02) o221 (62]61) 01 (61)

al,a? T

S BAO2.a2) S, o PAT(5']5)b(s|0L, 02) 051 (82]01)0 (1)

al,a? O

v

2

(8262, a) 33, o P25 (/)s)b(s10, 02) (62102) ) o' (01)
(S B2(02,02) X, 2 P27 (1)b(s16L, 82)0 (B2161) ) o (61)
B2(02,0%) X, o P27 (515)b(s|0L, 02)0% (62]62)
S B02,02) X, 2 PE (]5)b(sl6L, B2)0 (B2]61)

O

Lemma 3.1.10 (Lipschitz continuity of T'). At depth 7, T(o,,3,) is linear in 8L, B2, and o,

where B, = {BL, B2). It is more precisely 1-Lipschitz-continuous (1-LC) in o, (in 1-norm), i.e.,

for any o, ol

1T (07, 8;) = T(o7,B:)l1 < 1-lo7 — o- 1.

Proof. Let o be an occupancy state at time 7 and 3, be a decision rule. Then, as seen in the

proof of Proposition 2.2.17, the next occupancy state ¢/ = T(o,3,) satisfies, for any s and

(0,a,z):

o'(8,a,2) < Pr(8,a, z|o, 5L, 52)

= BH(0",a")B2(0%,a%) | Y, Pi(s]s)b(s]0) | o(6).

s’,seS

The probability b(s|@) depending only on the model (transition function and initial belief), the
next occupancy state o’ thus evolves linearly w.r.t. (i) private decision rules B! and 32, and (ii)
the occupancy state o.

1-Lipschitz-continuity holds because each component of vector o is distributed over multiple
components of ¢’. Indeed, let us view two occupancy states as vectors x,y € R", and their
corresponding next states under 3. as Ma and My, where M € R™*™ is the corresponding
transition matrix (i.e., which turns o into o’ < T'(o,,3,)). Then,

3

1
-

Mz — Myl = M; (i — i)

<.
Il

Jut

—

i (i — vi)l (convexity of |-|)

N
NgE!
0= 5
=

<
I
—
~
Il
—

I
=

<
Il
—_
S
Il
—

M j|z; — yi (Vi,j, M;; > 0)

Il
NgE

M; jlzi — i (M is a transition matrix)

S
Il

_
<
Il

_

{

def

= lz =yl
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3.1.2 Towards Solving zs-oMGs

This section aims at providing the second tool for DP and HS with continuous state spaces, i.e.,
bounding approximators of optimal value functions which will allow generalization across the
occupancy space. Their update and selection operators are written as linear programs, and they
turn out to come with solution strategies.

3.1.2.1 Bounding value functions

So far, several issues prevented from applying the HSVI scheme to zs-P0OSGs, starting with the
continuous spaces of

1. occupancy states (zs-oMG states) and
2. decision rules (zs-oMG actions).

One can address (1) by introducing upper- and lower- bounding functions V(o) and V(o)
of V¥(o;). The following starts with a lemma that allows proving a key Lipschitz-continuity
property of V*.

Lemma 3.1.11. At depth 7, V:(0,,3,.) is linear w.r.t. o.

Note: This result in fact applies to any reward function of a general-sum POSG with any
number of agents (here N ), e.g., to a cp-P0OSG.

Proof. This property trivially holds for 7 = H — 1 because

Vi-1(on-1,Bp_1.) = 7(0m-1,8p-1)

= (Z Pr(s,a|9)0H1(9)> r(s,a)
s,a ]

- (Z b<s|0>ﬂf<ae>oH1<9>) (s )
s,a ]

Z 5|0)or—1(0) <ZBT(G|B)T(Saa)) :

5,0

Now, let us assume that the property holds for 7+ 1€ {1.. H — 1}. Then,

Vy(0r,B,.) Z(Zb (516)8,(al0)0+(8) ) (s, @) + WVrs1 (T(or,B,), By

s,a

= 1 0(s10)0+(8) (3 B (alO)r(s. @) ) + Vrss (T(0r,B,), Brin)
s,0 a

As
e T(0;,8,) is linear in o, (Lemma 3.1.10) and
. T+1(UT+1,,BT+1:) is linear in 0,41 (induction hypothesis),

their composition, Vr41(T'(o+, B,), Br41.), is also linear in o, and so is V;(o, B;.). O

Theorem 3.1.12 (Lipschitz-Continuity of V*). Let h, £ 1= 7 — = (or h, —Tify =
1). Then V*(o;) is A--Lipschitz continuous in o, at any depth 7e€{0..H — 1} where A\ =
%h’ﬂ' (Tmax - Tmin)-
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Proof. At depth 7, the value of any behavioral strategy (.. is bounded, independently of o, by

def def
VI S B rmax,  where rpax = maxr(s,a), and

s,a
y/min ef hrPmin, where rmin & min r(s,a).
s,a
Thus, Vj_ being a linear function defined over a probability simplex (O7) (cf. Section 3.1.2.1)
and bounded by [V V™maxX] we can apply Hordk’s PhD thesis’ Lemma 3.5 (p. 33) (Hordk
2019) to establish that it is also A-LC, i.e.,

Vs,.(0) = V3, (o) < Arllo = o[l1 (Vo,0"),
Vmax VTmin
—2 .

with A-
Considering now optimal solutions, this means that, at depth 7 and for any (o,0’) € OZ:

T

V(o) = V7 (o) = moxminVo(o, ., £7.) — maxmin V2 (", B, )

/BTZ T: T: T:

< maxmin [V, (o', L, 82) + Arllo — o'|11] — maxmin V, (o', B2, 52)

sL. B ' s B2

= A |lo— |1
Symmetrically,

V(o) = V(o) =2 =Arllo = o'|lu,

T T

hence the expected result:

V(o) = V7 (o) < Arllo = o'||s.

T

O

Combining the Lipschitz continuity of V* and Theorem 3.1.7, we can derive bounding func-
tions V and V_, for each time step. These approximators allow generalizing knowledge from a
finite number of subgames to any subgame.

Theorem 3.1.13 (Upper-bouding V*). Let J be a set of tuples, each defined by (i) a conditional
occupancy state o= and (ii) a vector 2.

Vor, V¥(or) < V.(o;) def ) min [O’:.n’l -ﬁz + Arllor — UT’lf}ﬁ’lHl] ,
(677 (V2,82 00eT -

-2

where U2 component-wise upper-bounds v for some (2.

[67",82]
Proof. To find a form that could be appropriate for an upper-bound approximation of V*, let

us consider an 0S o, and a single tuple (¢, /> >, and define (; L pmolgel . Then,

LY
V*(or) <K V*() + Aellor = G lh (LC, ¢f. Theorem 3.1.12)
=V*oash) + Arllor — Gl
<om™l. 1/[256,1 g2t Allor — o™ aet|;. (Cvx, cf. Theorem 3.1.7)

Notes:
o 1 does not appear in the resulting upper bound, thus will not need to be specified.

e Forr=H-1, urc g2 is a simple function of r, 6'70-’1, /32, and the dynamics of the system,
as described by Wiggers et al. (2016), Eq. (9).
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From this, we can deduce the following appropriate forms of upper and (symmetrically) lower
bound function approximations for V*:

V(o) = min [o7h - 72 + Ar||or — o159 ], and (3.14)
(67! (V2.2 ))eT -
Voo = max  [o7pd— Aoy — 02502 ], (3.15)

RNy

which are respectively concave in o7 1 and convex in o7 ’2, and which both exploit the Lipschitz
continuity. O

Yet, this yields (generally non-convex) Lipschitz-continuous functions whose max-min opti-
mization would be intractable, so that the issue (2) of continuous decision rules remains unsolved.
Also, we do not know how to retrieve valid solution strategies. In particular, and as illustrated in
Example 2.1.26 (example 2.1.26), simply concatenating decision rules backwards from 7 = H — 1
to 0 would not guarantee globally-consistent solutions, and could result in exploitable strategies.

But then, combining Theorems 3.1.6 and 3.1.7 leads to introducing a novel value function
(denoted WTI*) through writing, for any 0S o :

T+1’BT+1 ‘H— 1]:|

J

: 19
V¥(o,) = n%%x53:2282 [T(O‘T,,B )+ o v,

~—

def.
=W (or,B8L)

Assuming that player 2 can only respond with one of finitely many stored strategies, the
concavity and Ar-Lipschitz-continuity of W* allow upper-bounding it with ﬁnitely many tuples

= (G, B2,(V%,1,B2,.)) stored in sets Z., and where U2 | upper-bounds y[ el g T To
T+17 T+1:

prove this result, we start with two lemmas, that respectively aim at:
1. describing W* as a lower envelope of linear functions w.r.t. 41; and
2. showing the Lipschitz-continuity of vectors v w.r.t. conditional terms of occupancy states.

Lemma 3.1.14. Considering that vectors v> are null vectors, we have, for allT € {0.. H—

(05" .6%.]
1}:

W—z}’*(UTaﬁ}-) = 9 min >ﬁ71- : [T(O"HWB ) +’YT1 (UTa 75 ) Tl(O'T,B )ﬁ7-+1]:|.

2 2
T?</BT+1:’V[TCI (07—,572-),63_+1:]

Proof. Considering that vectors v2 _,
[ H 761—[]

W7}7*(UT>/371—) = HBHQH Qj(%:ﬁi,ﬁz) = HBHQH [T(Uﬂﬁq—) + 'YVT*-&-l(T(UTa/BT))]

T T

are null vectors, we have, for all 7€ {0.. H — 1}:

(Line below exploits Theorem 3.1.7 (p. 47) and T)'’s independence from 3! (Lemma 3.1.9).)

_ : : 1
= H;gn T(Uq-,ﬁ-r) + 7<,BT+1, [2 min [T (0'7-,,6 ) T (gﬁﬁT)ggﬂz]]

T (o7 .83).82 1.1

mln I:T(UTHBT) + ’mi(UT7IB’T) ’ V[ZTcl 0-7'76 ) T+1 ]:|

Tl(o 82,82 4.

5T7<BT+1 )

(Line below exploits 7 and T.’s linearity in 8! (Lemma 3.1.8).)

. T . 6) 32

mln '817 ’ [T(Uh'?ﬁ ) v 1( » " ) ( ) ]]

ﬁr»<ﬁ7—+1 ) 1 B > | -
Z ¢ (or ﬁq—) 7—+1]
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Lemma 3.1.15. Let us consider 7 € {0..H — 1}, 0L, and 82.. Then v? ., ](Hi) is A\r-LC in

) [077,62,
C,
oS (Job).

Equivalently, we will also write that v?

. . 1 . . .
oS 42 ] is \r-LC in oy in vector-wise I-norm, i.e.,
T M7

2 Arflost — 527

2
”’ oot g2~ Voot a2l

where (i) the absolute value of a vector is obtained by taking the absolute value of each compo-
nent; and (ii) the vector-wise 1-norm of a matriz is a vector made of the 1-norm of each of its
component vectors.

Proof. For any 61, o% ! and /2. induce a POMDP for player 1 from 7 on, where (i) the state at any
te{r..H -1} corresponds to a pair (s,62), and (ii) the initial belief is derived from & (-|6}).
The belief state at ¢ thus gives:

boy (5,07) = Pr(s,0716}) = Pr(s|67,6;) - Pr(6716}).
—_——— ——

bosor(s)  apl(ez10])

So,

e the value function of any behavioral strategy (1. is linear at ¢ in b9t1, thus (in particular)
in G101y,
in oy (+|6;); and

e the optimal value function is LC at t also in betl (with the same depth-dependent upper-
bounding Lipschitz constant )\; as in the proof of Theorem 3.1.12),%® thus (in particular)
. c,1 1
in o, (+6;).

Using ¢t = 7, the optimal value function is /2 6L), which is thus A-LC in %' (-|81). O

[05’1753:]<

Proposition 3.1.16. Let Z, be a set of tuples w = (G-, 32,{V%, 1, B2,1.)), where vectors U2_,
are upper bounding particular vectors 1/3Jrl (details are given in the proof). Then,

WT(UT,ﬂ}_) = min _ [7'(‘777 71-,@2-) + ’YTT}l(O-7—7 72-> '772-+1
<5T,5.,2-7<U72.+176.,2-+1;>>GIT
vl Tlos, B, 62) — Th (o, 8L, BATE (G, 62)1] (3.16)

upper-bounds W™ over the whole space O x BL. Similarly, lower bounds W_ of W2* can be
defined.

Proof. Note that, since Vj; =0, 7 = H — 1 is a particular case which can be simply re-written:

. T
W (o, BL) = négnﬂi cr(or, -, B2).
To find a form that could be appropriate for an upper bound approximation of W ’1, let us

now consider an 0S o, and a single tuple (G-, B Tl (60.32),2 > Then,
T ‘r+1

Wl*(o,, B (3.17
— i [r(07. B,) + 1V} (T(0,.,)] (3.18)
r(or, BL, B2) + VI (T(0r, BL, B2)32,1)  (for any B2 in T) (3.19)
(where Vfg YT (o, 8L ﬂ2)|ﬂ7+1 ) is the value of 1’s best response to 572—+1: if in T(o,, 8L, 52))
= (0w Br, B2) + 2Tl B0, B0) Yo gy 32, (3.20)

28The proof process is similar. The only difference lies in the space at hand, but without any impact on the
resulting formulas.
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3.1. Theoretical Contributions

(Wiggers et al. 2016a, Lemma 3)

< (07 B B + AT (0, B B2) - (Vs et g o+ Aew1 - T2 (021 B2) = T2, B2 )

T+1 ]

(Lemma 3.1.15: A;11-LC of V[Tl( 21.82),82, ), ])

T > > el 5
= B |10 B+ AT (o B (Vg oty o PAe - ITH 05 B2 — TG, B2 |

(3.22)
(Linearity in 31)
3.23
= B |rlor, s B2+ AT B2 V2 e (3.24)
(JT 75 ) 7—+1]
Ve - T (o7, 2) = T <aT, L BTN, B (3.25)
(Alternative writing)
(3.26)

From this, we can deduce the following appropriate forms (i) of upper-bounding approxima-
tion for W2* and (ii) (symmetrically) of lower-bounding approximation for W2*

. T
WT(UT7/871') = 1 L1 _ 671' ! [ (077 762) +/7T1 (077 757—) : 7—+1
(67,8272 1 )eTr

# Vet T (or s B2) = T, BTEGE B |, and

ET(U‘M /872—) = max ﬁqQ—T : [T(UT) /B ) + ’YT2 (077 1871—7 ) : 271—+1

~c,2
(G7°,BLvs €L,

—VArs1 - T (or B ) = T (0r, 81, )T2(2% 8D .

where 72 41 and vl 41 respectively upper- and lower-bound the actual vectors associated to the
players’ future strategies (resp. of 2 and 1).
Again, 7 = H — 1 is a particular case where only the reward term is preserved. O

As explained in the next two sections, W, will be easier to deal with compared to V ;, allowing
1 to seek for decision rules optimistically, and providing valid solution strategies for 2 for the
subgame at T, i.e., ignoring consistency with higher-level subgames.

3.1.2.2 Action Selection and Backup Operators

We now describe the decision rule selection for 1 using W, to optimistically guide a trajectory
in occupancy space, and how to update W by providing backup operators.

First, note that linearities in 8! within Eq. (3.16) allow writing W, (o, %) = min, 7 ,Bi—r .
M(U ")y Where BL and M(U ") (for each w) are column vectors of dimension |© x A!|. M7 is

thus a @] x A'| x |Z;| matrix. But then, the optimization problem maxg min, 7 @T : M((’Tw)

corresponds to the search for a Nash equilibrium strategy profile in a zero-sum Bayesian game
(Definition 2.1.13). In this Bayesian game, player 1 has one type per history 61, and 2 has a
single type.

The following lemma details the payoff matrix M(U ) of this Bayesian game and formulates
(according to Proposition 2.2.4, proposition 2.2.4) the search for Nash equilibrium strategies as
an LP and its dual (Corollary 3.1.18).
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Lemma 3.1.17. Using now a distribution 12 over tuples w = <0’—r , 32 777-+1> € IT, the corre-
sponding upper-bounding value for “profile” {BL,1)2) when in o, can be written as an expectancy:

1T

B MO—T'¢>

where M°~ is an |OL x AY| x \fi\ matric.

Proof. From the right-hand side term in Equation (3.22), the upper-bounding value associated
to o, B and a tuple <O'7— , B2 ,*T+1> € Il can be written:

T . ~ - ~
B [ rors s B2 4 AT (0r, o, 80) - (PRartdes - ITH 024, 32) — THGE B ) |-

Using now a distribution 2 over tuples w = <5$’1,BZ,EE+1> € fi, the corresponding upper-
bounding value for “profile” (AL,12) when in o, can be written as an expectancy:

Y, B [r(or s B2w]) + AT (o B2 - (72 [w]

weW ,

A - T2 05, B2]) = THE5 Twl, B2[wD1 ) | - w2 (w)
(where z[w] denotes the field x of tuple w)
=B My,

where M7~ is an |OL x AY| x ]fi] matrix. O

For implementation purposes, using Eqs. (2.42) and (3.13) (to develop respectively r(-,-,-)

and T} (-,-,-)), we can derive the expression of a component, i.e., the upper-bounding value if

a' is applied in 6! while w is chosen:

Mo1,at) (3.27)
= r(or, -, BHw]) + 2Ty (or, - B2lw])- (3.28)
(Palw) + Arir - ITE 02T, B2lw)) = T2 (G5 [, B2w]) ) (3.29)

= Z 07(97)6(3]07)53[ I(a 2|92 (s,a) +'YZ Z ﬂ2 2|92 Z Pg(s'[s)b(s|6-)0-(6-)

5,02 ,a2 21 | 62,02 5,8 ,22

(3.30)
(P L), a' =) + A - T2 (02, B2w]) — T2 [w], B2[wD)ll1 (0} a",2Y))  (3.31)
=Zaf<ef>2ﬂ3[w]<a2rei>-(st\em(s,a)ﬂE >, PE(19)b(s16,) | - (Pi[w] (0} o', 2

62 s,8',22

(3.32)

v [T 05T, B2lw)) = T2 60 ), B2lw]) 1 (62, o z))) (3:33)

[hen, solving maxg W (o, B1) can be rewritten as solving a zero-sum game where pure
T
strategies are:

e for player 1, the choice of not 1, but |©}| actions (among |.A'|) and,
e for player 2, the choice of 1 element of fi.

With our upper bound, maxg: W, (or,BL) can thus be solved as a LP.
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Corollary 3.1.18. For any given o and any set T, of tuples w = (G, %P2 1, B2 1.0,
maxgi W, (o, BL) is equivalent to the LP and dual LP:

T

LPW  (0;) max v s.t. (i) YweZ,, véﬁiT-M(‘ffw) and
Bz ’

(i) voleol, SBLalll) =1,
al

(3.34)
DLPW ,(0,) : 11;1212111 s.t. (i) V(0L al), ’I)ZM&E}7G1)7.)-L/J3. and
(i) S g2 (w) = 1.
weZ,

Remark 3.1.19 (Interpretation of M?7). The content of this matriz can be interpreted by noting
that, a given w containing a behavioral strategy BE:H_l and an 08 5., a pair {w,0L) induces a
POMDP for player 1 whose state space is made of pairs (s,0?), and whose initial belief b, depends
on &, and 0L. Solving this POMDP amounts to finding a best response of player 1 to BE:H—l' In this

or

setting, an element M((91 ) ) is an upper-bound of the optimal (POMDP) Q-value when player 1
performs a' while facing by (Q%pupp(br,at)).

As can be noted, M°"’s columns corresponding to O-probability histories 61 in o7 1 are

empty (full of zeros), so that the corresponding decision rules (for these histories) are not rele-
vant and can be set arbitrarily. The actual implementation thus ignores these histories, whose
corresponding decision rules also do not need to be stored.

Remark 3.1.20 (Outcomes of this game). Since W, upper-bounds WTl’*, solving this LP provides
1 with an optimistically selected immediate decision rule 3. For 2, ¢?2 is a probability distribution
over tuples containing strategies 3> @ﬁerl:H_l, thus recursively induces a strategy, as illustrated
by Fig. 3.1, which can be turned into a behavioral strategy ﬁE:Hfl (more details in Appendiz A.2),
and whose value is at worst (from 2’s viewpoint) the LP’s value, i.e., against 1’s best response
to it. These strategies are of particular interest as the ones obtained at oy will later be used to
obtain “safe” solution strategy profiles.

RN b

1/3 2/3

B

(B 5.

B, D)

Figure 3.1: Representation of the strategy recursively induced by some wé. At each time step 7, one must (i) sample a next
tuple/node wl from current distribution !, (ii) apply pr B1[wl], and (iii) make 9! [w!] the new current distribution
(unless reaching a leaf).

Then, the following properties allow performing backups, i.e., filling up the set Z,_; with

new tuples w containing, in particular, vectors ﬁz.
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Proposition 3.1.21. For each ¢? obtained as the solution of the aforementioned (dual) LP in o,

and each 6L, the value V[ el W](Qi) is upper-bounded by a value V2(0L) that depends on vectors
U2 .4 in the support of Y2. In particular, if 61 € supp(or" ’1), we have:
1
—2 1y def Or . 2
V‘r(e‘r) - U}-,m(ei) 5{16% M((G},al) ) (=

Proof. For a newly derived 2, as 1/[ =3 ](91) is the value of 1’s best action (e A') if (i) 1

observes 62 while in 6% and (ii) 2 plays ¢T, we have:

[2 el wg](G ) & V[*c 1 W](Gl) (optimal POMDP value function)

_ t—1 1 c,1 2
—Hé’ixE Zv Ry | BL.607, 05", ]

= maxE RT+’7H113'XE[ Z 7t (T+1R |ﬁT—i—la<071-7a1121>70-7c"-i1-11¢3+1] a 7'9# 70-17 72']

T+1: t=7+1

= maxE [ R, + V' .1, (07,0',2") | a', 07,007, 3] (3.35)

al [o7 1:¥7 1]

_ 2 2 1 el 2 2 111
= max Z Pr(w, 62,2, a* | a', 0}, 0%, 2 (7“(07-,&7-)+’7V[ el o []](GT,a,z)>

Or+1¥r41

(where 0’7_+1 = Cl(of_’l,ﬁz [w]) (Lemma 3.1.9, p. 48))

—max 3 Pr(wd) Pr(626r.op))- Pria’|[u).62)- Pr(z' 6. ax)
al H_/ RN ~ . ~ _

w,02,a2,21
11,1
( (0:,a) +71/[ el 2w ]](OT,a JZ )) (3.36)
_ 2 elip2ipl 2 2192\ . 11,1
_I%?X;¢T(w>92207 (97|97);/87[w](a ‘97) (07’70’ +7;Pr z |07‘?a) [‘77+17 E-H[ ]](97_,(1 )2 2
(3.37)
then, as v/? is Ar+1-LC in (any) o T+1 (Lemma 3.1.15),

[o0hy 2, [w]]

gné?xxm 200192\9 252 1(a®(62) - (r(GT,a)—I—’yZPr(zl\GT,a)

w Zl

(5541 [w] 92 [w]

"

[

N (L LD 5 WY PCr N ]||1<91,a1,zl>> (3.38)

< max Y ¥2(w) Y 09! (62]6)) 252 1(a?6?) - (r(GT,a)—I—’yZPr(zl\BT,a)
ay - e — —_——

62 pat
[ S i = ek >]> (3.39)
30 S 020) X 8 ( S0,
w 62 a?

N

"1 (gb(%)w> Pl et =) + A lov)y — 55 [w] [ (6 o' 2 >]>

~"

= max Y2 (w) Y02 (6216) 3 82[uw] (a?162) <2b §0:)r(s,a) + 7 ( b(s16,)PZ(/]s)

w 02

o7
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A

[P aalw) 0}t 2+ A (TR0, B2 ) — TG ], B2 (01, o z>]> (3.40)

(recognizing Equation (3.33))

1 2
= oL o0 2 MGran,) v

Corollary 3.1.22 (update). Let us assume that
e a transition o,_1 — o, has been performed through playing {8} 1,3 ,), and
e solving DLPW (o) provides both
— a tree strategy sz (as the main solution of the DLP), and
— a vector V2 = M&gl ) -2 (as a by-product).
Then,

1. T, «— I,_1 U {<0’7_ 1 B2, T2, 42))} is a wvalid update operator in the sense that it
preserves W, ’s upper-bounding property, and

2. similarly, Jr — J7 U {09!, (@2, 2} is a valid update operator for V.

3.1.2.3 Initialization

To initialize the bounds W, and V, for any time step, we begin by generating a trajectory in a
forward phase. At each time step, a uniform decision rule is picked for both players to derive a
sequence of occupancy states og,...,05_1. Then, during a backward phase, for each time step
T=H—1,...,1, we create a tuple wr_1 jnit = <O'T 1 B2, (P2, 42)), where

1 . . .
° ‘7?—1 is the conditional term associated to o,_1;

° 63_1 is a uniform decision rule;
o 2 is
— a degenerate distribution over the only next tuple w41 if 7 < H — 1 (which induces

a concatenation of uniform decision rules for all future time steps), and
— undefined if 7 = H — 1;

and
o 72(0)) = ripae - (H — 1) for any history 61 that player 1 could face.

Tuples wr_1nit are added to sets Z,_1. For any time step 7 > 0, we similarly create tuples
<a§’1, (P2,92)) and add them to sets J,. The lower bounds are initialized symmetrically.

We now show that occupancy states can also be prescriptive, allowing one to retrieve an
e-NES for the subgame at occupancy state o, once the bounds are within € from each other, in
particular at 7 = 0.
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3.1.2.4 Retrieving a NES

As already mentioned, vectors ﬁ% upper bound the value of their associated tree strategies. This
allows determining when and how to extract an e-optimal solution strategy for any of the players,
as detailed now.

Theorem 3.1.23 (Retrieving a NES for the zs-P0SG). If sets Jo and J, are such that Vo(oo) —
Viy(oo) < ¢, then argmax,, Ty v3 and arg ming = Uy respectively provide strategies 1§ and 3
that form an e-NES of the zs-P0SG.

Proof. First, let us notice that, at 7 = 0, the occupancy-state space is reduced to a singleton,
{oo = (1)}, because of the single (empty) joint AOH. The value vectors v are thus one-dimensional,
and here considered as scalar numbers.

Let us assume that sets Jo and J, o are such that

Vo(oo) — V(o) <,

and let w* = <08’1, g, 1/15’*>> and w* = <a[c)’1<ﬁ(’§, wg’*>> be the tuples returned by arg max,,¢ 7 v3
and arg ming 7z 7§, Then, noting that ¢ = (1),

1
14 12
[og " ™1

2 1
[05% 5]

Thus, ¥} and 1§ are two strategies whose security levels (values against best-responding oppo-
nents) are e-close, and thus form an e-NES of the zs-POSG. O

Note: This result can be generalized to any o, at later time steps, but this generalization is
not used in practice.

Distributions 1/}% are stored and can be executed as is. Appendix A.2 still presents a conversion
process to retrieve a behavioral strategy 5(2); g—1 from a distribution ¢8 over tuples w € Zy. Next,
we see how to design a practical HSVI-based algorithm that provably returns sets Jo and J, 0
satisfying Theorem 3.1.23 after finitely many iterations.

3.1.3 HSVI for zs-P0OSGs

This section details our adaptation of the general HSVI scheme for e-optimally solving zs-P0SGs,
and presents a theoretical finite-time convergence property.

3.1.3.1 Algorithm
HSVI for zs-P0SGs is described in Algorithm 3.1. As vanilla HSVI, it relies on

1. generating trajectories while acting optimistically (lines 10+11), i.e., player 1 (resp. 2)
acting “greedily” w.r.t. W, (resp. W), and

2. locally updating the upper and lower bounds (lines 17-+18).

Both phases rely on solving the same games described by LP (3.34). At 7 = H —1, line 14 selects
DRs by solving an exact game. line 15.

A key difference with Smith et al.’s (2005) HSVI algorithm lies in the criterion for stopping
trajectories. The branching factor for zs-oMGs being infinite, we make use of V*’s Lipschitz-
continuity to implement the same adaptations as Hordk et al. (2017) used for zs-0S-P0SGs.
The Lipschitz-continuity allows controlling the variations of the value function within small
balls of radius p around a previously visited occupancy state. A finite number of such balls
is sufficient to cover the whole space. Then, Theorem 3.1.29 (below) ensures e-optimality in
finite time if stopping trajectories when V,(0,) — V. (0;) < thr(7), with the threshold function
thr(T) £ Y Te—D0 4 20\, iy Hify<1,and 0 < p < 0 =1.

€ .
7”max_"’minx)(I_I“"l)[—l lf 'y
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Algorithm 3.1: HSVI(by, [€, p]) [here returning a tuple wg containing a solution strategy
for player 1|

Input : og a state
1 Fct Solve(by ~ og)
2 foreach 7€ 0.. H — 1 do
3 L Initialize V., V., W,, & W

while [V(o0) — V(o) > thr(0)] do
L Explore(og,0,—,—)

6 return arg maX,,,ey g%
7 Fct Explore(o,, 7,0,-1,3,_1)
8 if [max/B; W.(or,BL) — ming: W, (o7, B2) > thr(r)| then
9 if < H —1 then
10 Br — LPW ,(0)
11 éi — LW _(0)
12 Explore (T(JT,Bi,ﬁi), T+ 1,0, <Bi,ﬁz>)
13 else (r=H —1)
=1
14 (By. B2) < NES (r(0, B, 7))
15 T —Tru {<0§’1,§z, —}
16 | I2 20 {0 B, )
17 Update(WTfla<O-T7 O _ 17/82 >)
18 B Update(W,_y,{o7, 7—17/87—1>)

19 Fct Update(W,_1, {0, 511,63_1»
20 (D2, %) « DLPW (ch,)

21 IT 1‘_17 IU{<UT P 17<V77¢2>>}
22 ¥77—<—;77U{<0"r 7<V77¢72—>>}

Setting p As can be observed, this threshold function should always return positive values,
which requires a small enough (but > 0, as p will later correspond to radius of balls for | - |1).
For a given problem, the maximum possible value pyax depends on the Lipschitz constants at
each time step, which themselves depend on the initial upper and lower bounds of the optimal
value function.

Proposition 3.1.24. Bounding Ay by \* = %ﬁ ["max — Tmin| When v < 1, and noting that

-
thr(t) =~y Te — 2p)\0077
-

- ify<1 (3.41)

1
(=e— ip(rmax —rmin) 2H +1—7)7 ify=1),

one can ensure posz’tim’ty (and inferiority to v~ "€) of the threshold at any T € 1..H — 1 by
enforcing 0 < p < 2)\306 (or 0 < p < (rmx—rm?z)(HH)H ify=1).

Proof. Let us first consider the case v < 1.
We have (for 7€ {1..H — 1}):

thr(t) =~ e — Z 202y~

_ ’}/776— QpAOOZ,}/fz
=1
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=7 Te—20A" (v R4 4977
— A Te— 2pAP A (’YO byl gy 77(771))

- w 17 —1

=y T€*2ﬂ>\ Y ﬁ
-7 _1

=7 Te— 2px\°077.

-y

Then, let us derive the following implications:

007_T —1 —T
0 < thr(r) <= 2pA q— <7e
-
1 1—-~v _.
< p< _—
P=oxo—r_1"
1 1—7v
< .
TP e €
To ensure positivity of the threshold for any 7 > 1, one thus just needs to set p as a positive
value smaller than %/\;Qe.

Let us now consider the case vy = 1.
We have (for 7€ {1,...,H — 1}):

WV
™
|
gl
=
=
|
)
|
=
g
o
"
|
<
£,
g

=e— ép(rmax — Tmin) [(2H + 1)7 — 72]
=€— %p(rmax — Tmin) [2H + 1 —7)7].
Then, let us derive the following equivalent inequalities:
0 <thr(rt) <= p(rmax — T™min) 2H + 1 — 7)7 < 2¢

(holds when 7 =0 and 7 = H + 1)

2€
(Pmax — "min)(2H + 1 — 7)1

= p<

(when 7€ {0..H + 1}).

2e
(Tmax—Tmin) 2H+1—7)T

T=H+ % To ensure positivity of the threshold for any 7 € {1.. H — 1}, one thus just needs to

set p as a positive value smaller than (Tmax_rmgij) GESE O

The function f : 7 —

reaches its minimum (for 7 € (0,H + 1)) when

Setting p € (0, pmax) means making a trade-off between generating many trajectories (small
p) and long ones (large p).
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3.1.3.2 Finite-Time Convergence

Proving the finite-time convergence of HSVI to an error-bounded solution requires some prelimi-
nary lemmas.

Lemma 3.1.25. Let (0g,...,0:+1) be a full trajectory generated by HSVI and (3. the behavioral
DR profile that induced the last transition, i.e., 0,11 = T(0-,3,). Then, after updating W, and
W, we have that W (0., L) — W (0, B2) < ythr(T + 1).

Proof. By definition,

Wiior ) = min B (r(og B2 + 4T h(or, -, )
<&T7 ) 72—v<§3—+1’¢3+1:>>
ez.

NP AT o5, 82) — TG B )

Therefore, after the update (3% and B! being added to their respective bags (fi and Z2) along
with vectors 72 and v},,),

: [T(UT, '752) + rVTl (077 "52) '§72'+1:| ) and

Wr(o-,Br) < B!
> B2 [r(or, B, ) +yT2 (0, BL, ) - iy ]

W (0'7—,,82)

Then,

We(or, BY) =W, (07, 87) [WerT (0r.8,) " T+1]
— [rlor BT + T2 (07, 8,) - v

| from Proposition 3.1.21

= {ng}me(T(aﬁﬁT)) - négnWm(T(anﬂT))]

z

< Athr(t +1) (Holds at the end of any trajectory.)

O

Lemma 3.1.26 (Monotonic evolution of upper and lower approximations W). Let KW, and
KW.__ be the approzimations after an update at o, with behavioral DR <Bi,§i> (respectively asso-

ciated to vectors 72 and v}, ). Let also KO+DW_ and KMTDW _ be the same approzimations
after n other updates (in various 0Ss). Then,

H}SXK(TH-HWT(UT,B}.) < I%Z%XKWT(UT,B},) <Wi(0r,8.) and

W
min KW (0r,82) = min KW (o7, 67) > W (0r, 57).

Proof. Starting from the definition,

max KW, (0., 3!) = max min Br - [T(U . 52)
gl T e e e e LT

f,l.U{<U-Cr’l7§3:<772—+17w72-+1:>>}

AT 82 (P + Al T3 82) ~ TG 320 |

. 1 2
Smax min _ B [T(UT, - B2)
BT <5,$, 7/672'7<ﬁﬂ2'+17w72'+11>>617'

AT 8- (P 4 A T30 32) ~ TG D)) |
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= I%E}XWT(O'W Bql—)

— —1
- WT (UTv /37)
Then, this upper bound approximation can only be refined, so that, for any n € N,

val, K"OW.(o,,8]) < KW.(o-, B),
thus, max K(”H)WT(UT,BT) < rrézlxx KW (os, B1).

T

The expected result thus holds for W, and symmetrically for W_. O

Lemma 3.1.27. After updating, in order, W, and V., we have

KV (o;) < nglmx KW, (o, ﬁi)

After updating, in order, W_ and V., we have

KKT(UT) = HBIIQH KWT(O”IW 572')

Proof. After updating Ti, the algorithm computes (Algorithm 3.1, line 20) a new solution @3 of
the dual LP (at ol) and the associated vector 72, so that

rrg}xKW( ,Br) = ot -2,

This vector will feed J, along with o, so that

KV, (0o;) <o™' .72

As a consequence,

KV.(o;) < max KW, (o,,8)).

T

The symmetric property holds for KV and KW _, which concludes the proof. O
Lemma 3.1.28. The function o — maxg: W(o-, BL) is (3 + \)n-Lipschitz-continuous

Proof. Let BL* e arg maxgi W (o,,B}) and let us denote by w an element of arg min,, BL*. M2,
By definition,

rr}jaXW( " Bh (3.42)

<r%‘o}xr(0;, L B2 [w]) + AT (o7, BE B2 [w]) - 724 [w] (3.43)

+YArs1 - [T (07, By, BEw]) = T(or, By, Bilw]) T2 (65", B2 w ])H] (3.44)
1o

T

(ris A Y (Foae — min)/2-Lipschitz, and T2 is 1-Lipschitz)

< macr(o7, B, B2[w]) + 7T (0, B B2 1w"]) - s [w] + (1 4+ A (3.45)
F i | T(or, 8L B2lw)) = Th(or, B B2[w) T e, B2w]) | (3.46)
1o

T

(adding and subtracting the same quantity)

<ch}x7’(0raﬁiaﬁ3[w])+’YT$L(UT7 B2 [w*]) - PR [w*] + (14 Ay (3.47)

T
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+ YAt - [T (o7, B7, B2 w]) — T%(Unﬁi,ﬁZ[ ])Tl(flvﬁ?[w])\h (3.48)
_HT(UWB}-?BZ[IU]) _Tr}z(aﬁﬁ}-vﬁz[ ]) c( z[w])H ] (3'49)
+ VA1 - [T(or, 87, B7w]) = T (oy, B, B2w]) T2 (65", B7[w]) Hl] (3.50)
ﬁ_/
1 O'T
(reordering)
= w7, B B20) + T o782 B200)) - 72 ] (3.51)
+ Y Art1 - [IT (o, 87, B2 [w]) — T (o7, Br, B2 Lw)) T, (621, B2 [w]) 1] (3.52)
+(1+A)n (3.53)
+VAri1 - | [T (o7, B Bilw]) — Tr(or, By, B2[w]) T (65, B2[w]) | (3.54)
\—v,—_-/
1o,
— || T(o7. 87, B2 [w]) — Tﬁl(anﬁi,ﬁg[w])Tg((}?l,BZ[M])Hl] (3.55)
(recognizing W, (o, 81) and upper-bounding it by max g Wi(or,BY))
< I%ax [maxWT(JT, 62)] + (14N (3.56)
: | B
YArs1 - [HT(a;,ﬁi,ﬁZ[w]) — Ty (0, B, B2w) T} (65, B2 [w])lh (3.57)
—T(o-. Bz, BZ[w]) — Ty, (or, 7, 2w T2 (57", B2 [w])1] (3.58)
(3.59)

But then,
(I 81, B2Lw)) = T (o, B, B2 T2 (35
—|T(or, 8L, B2[w]) — T (o, B, B2

B[]l (3.60)
w)T. (57", B2[w])[h) | (3.61)
< |T(o7, B2, B[w]) — T(o-, B}, B7[w]) (3.62)
— ooy, B, B2 [w])TH (G5, B2 [w]) + T (or, By, B2 [w) T2 (65", B7w]) (3.63)
< |T(or, 81, B3 [w]) = T(o, 81, B2 [w]) (3.64)
+ | Ty (or, 81, B2 [w])TH G0, B2 [w]) — T (o7, Br, B2 [w]) TH (G2, B2 [w]) (3.65)
But T and T™! are 1-Lipschitz with respect to o, meaning that

<+ [Th(os, 81 B THES, B2lw)) — T (o, B B2w))TE (52, B2[w]) (3.66)
=0+ Y, D) [T, B B2 Lw]) (02 TG, B2} (62, | 61,) (3.67)
971'+1 972'+1
— T (o, AL, B210]) 0k ) THES, B2w)) (02,1 | 011) (3.68)
=0+ 3 2 || Th(or, B B2w))(0k0) = Tl BE, B2w]) (01,0) | TH@S, B2w]) (021 | 031)]
07410714
(3.69)
AP [ Th(or, B2, B2[]) (0140) = Th (o), B2, B2[w]) (0F,0) | |- THEEL, B2} (62, | 61)
et (3.70)
=0+ 3 | [Th(or, B BT} (0141) — Th(or, L B2Twl) (02,0) | | D) TH(eT, B2[w]) (62, | 63.1)
971—+1 93+1
he! 3
(3.71)
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< 27 (3.72)

As a consequence, maxgi Wi(a’ﬂ A1) < maxg W}.(O’T, BL +n(3+N) O

Theorem 3.1.29 (Finite-time convergence). HSVI (Algorithm 3.1) terminates in finite time with
an e-approzimation of Vi (oo) that statisfies Theorem 3.1.23.

Proof. We will prove by induction from 7 = H to 0, that the algorithm stops expanding 0Ss at
depth 7 after finitely many iterations (/trajectories).

First, by definition of horizon H, no 0S oy is ever expanded. The property thus holds at
T=H.

Let us now assume that the property holds at depth 7 4+ 1 after N1 iterations. By contra-
diction, let us assume that the algorithm generates infinitely many trajectories of length 7 + 1.
As a consequence, because O x B, is compact, after some time the algorithm will have visited
{(o+,83,), then, some iterations later, (o, B, ), such that ||o, — .||y < p/(3 + A). Let us also
denote the corresponding terminal 0Ss (because trajectories beyond iteration N,y; do not go

!

further) .1 = T(o,,B;) and o, ,, = T(o.,8,). Now, we show that the second trajectory
should not have happened, i.e., maxg W(o,,BL) — minge W (o, 52) < thr(r).
Combining the previous lemmas,
H};}XWT(O';, Bh < I%E}XWT(JT,@) + Arp (Lemma 3.1.28)

T

= WT(UT’ Bi) + Arp.
Symmetrically, we also have

r%gnﬂf(rf;,ﬁf) > W, (0r,52) — Arep.

Hence,
(L Al : ) T 1 2
HE%XW(O-T’BT) - Hélznw’r(o-ﬂBT) < ( T(O-Taﬁr) + )‘Tp) - (E’T(O_T7BT) - )‘Tp)
= WT(O-Tu Bql—) - ET(U‘MBZ)) + 2Arp
< Athr(t +1) +2X0p (Lemma 3.1.25)

T+1
=7 (7(”1)6 -] 20>\T+1_wl> +2Mp
i=1

T+1
=7 Te— Z 2pA i1y T+ 200p
i=1

-
= 7_7-6 - 2 QPAT—]JY_J + 2A;p
=0

=~""¢ —W— Z 2p)\T_j77j + 2P = thr(r).
j=1

Therefore, a; should not have been expanded. This shows that the algorithm will generate only
a finite number of trajectories of length .
Finally, note that whenever maxg Wo(oo, 85) — min g W (o0, 82) < thr(0), it also holds

after an update that V(og) — V (00) < thr(0), which concludes the proof. O

The finite time complexity suffers from the same combinatorial explosion as for cp-P0SGs,
and is even worse as we have to handle “infinitely branching” trees of possible futures. More
precisely, the bound on the number of iterations depends on the number of balls of radius p
required to cover occupancy simplexes at each depth.

Also, the following proposition allows solving infinite horizon problems as well (when v < 1)
by bounding the length of HSVI’s trajectories using the boundedness of V —V and the exponential
growth of thr(r).
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Proposition 3.1.30. Let p be a real number satisfying the assumptions of Proposition 3.1.24.

_kam
When v < 1, the length of trajectories is upper bounded by Tiax o [log7 M], where A® is
— 2

def

a depth-independent Lipschitz constant and W =
nitializations.

HV(O) — V)|, is the mazimum width between

Proof. Since W is the largest possible width, any trajectory stops in the worst case at depth 7
such that

thr(rt) < W
e o Tl gy from Eq. (3.41
v Te—2p T < (from Eq. (3.41))
_T 1
v Te—2pA\F 7 — 200\ —— < W
1—7 1—v
2pA%° 2pA%°
7—T<E_P> w2
1—7_} 1—7
>0
_ 2pA®
77'< W 1—y
Y 2p\0
G—ﬁ

W — 222
I—
exp(—71In(y)) < exp (ln <2/7>\°°)>
e 20A°
1=y

W — 2227
17
—7In(y) <In <2p>\£)

1—y
€ — 2pA*
1=

7'111("}/) > ln <m>

w27
2pA%
- < log <€— =) )
Y 2p\P :
W 2°

O

Before moving on to the experiments, let us first briefly summarize this section’s key take-
aways. First, we showed the relevance of our notion of “subgames”’ in zs-oMGs as both (an
extension of) the minimax theorem and Bellman’s optimality principle apply (Theorems 3.1.5
and 3.1.6). Next, we proved continuity properties of transition functions and value functions
that allowed designing bounding functions W, and W_ (Proposition 3.1.16). Finally, we showed
that, using the latter approximations, selection and backup operators can be written as linear
programs (Corollary 3.1.18). Altogether, those ingredients enabled applying of the HSVI scheme.

3.2 Experiments

Two main bottlenecks inhibit HSVI’s scalability. Firstly, each trajectory generates new tuples
w which are added to the bags defining approximators W, and W_. Each trajectory made
consequently adds one constraint to each of the LPs, which become intractable as the number of
trajectories grows. Secondly, contrarily to cp-oMGs, the occupancy states are not sparse, because
decision rule profiles in zs-P0SGs are stochastic in general. The dimension of occupancy states
quickly grows w.r.t. the horizon and computing them becomes prohibitive, not to mention that
it also implies that decision rule profiles live in high-dimensional spaces. Sections 3.4.1 and 3.4.2
discuss complementary levers that could reduce the burden of both bottlenecks.

Experiments presented in this section aim at validating the proposed approach and comparing
its behavior to the behavior of some reference algorithms.
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3.2.1 Setup
Benchmark Problems

Five benchmark problems were used. Adversarial Tiger and Competitive Tiger were introduced
by Wiggers (2015). Multi-Agent Broadcast Channel (MABC) and Recycling Robots are well-known
2-player cp-P0OSG benchmark problems (c¢f. http://masplan.org) and were adapted to our com-
petitive setting by making player 2 minimize (rather than maximize) the objective function. The
fifth benchmark is the adaptation of the well-known Matching Pennies game detailed in Exam-
ple 2.1.26, with a small difference in that r(sp,-,ap) = +2 instead of +1; this change breaks
the symmetry in the optimal strategy, so that HSVI can not find the NES by "chance" by trying
uniform strategies.

We only consider finite horizons H and v = 1. Table 3.1 gives the cardinal of the state,
action and observation sets for each of these problems.

Table 3.1: Number of states/actions/observations for each benchmark problem

| S Al A2 Ol 0?
Competitive Tiger | 2 4 4 3 3
Adversarial Tiger | 2
Recycling Robots | 4
Mabc 4
Matching Pennies | 3

NN W W
N DN W N
=N NN
=N NN

Algorithms

For conciseness, Algorithm 3.1 is here denoted HSVI, and compared against

e Random search and Informed search (Wiggers 2015) (both using Wiggers’s implementation

(unlicensed and unreleased))7

e SFLP (Koller et al. 1996), and
e CFR+ (Tammelin 2014)

(the last two using open_spiel (Lanctot et al. 2019) (Apache license)).

All algorithms (but SFLP, which is exact) used a target error ¢ = 1% of the initial gap
H - (rmax — Tmin)- HSVI ran with A; = (H — 7) * ("max — "min), and p the middle of its feasible
interval. HSVI’s criterion to stop trajectories at a time step 7 € {l,...,H — 2} (Line 8 of
Algorithm 3.1) was changed to stop trajectories whenever V,(0,)—V _(0;) < thr(7) to reduce the
number of LPs being solved. We also use FB-HSVI’s LPE lossless compression of probabilistically
equivalent action-observation histories in occupancy states, so as to reduce their dimensionality
(Dibangoye et al. 2016). Experiments ran on an Ubuntu machine with i7-10810U 1.10 GHz Intel
processor and 16 GB available RAM, and the code is available under MIT license at https:
//gitlab.com/aureliendelagel/hsviforzsposgs.

Random and Informed only ran once, providing fairly representative results.

3.2.2 Results

Performance Measures A common performance measure in 2-player zero-sum games is the
exploitability of a strategy BY., i.e., the difference between the strategy’s security level (the value
of —i’s best response to ((.) and the Nash equilibrium value Vj*(o9):

exploitability(8Y.) = |[V*(o0) — Ug"’l Vi ]
[UO Vﬁo;]
= |V*(o0) — V'

o5 i
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3.2. FExperiments

noting that og is a degenerate distribution over a single element, the pair of empty action-
observation histories. In our setting, it will be convenient to look at the (average) exploitability

of a strategy profile {B}., B3.):

(V*(UO) —v! c,2 g1 ) + (V2 el g21 V*(UO))
exploitability(ﬁé;a ﬁg:) = o050 9 o]
2 1
I AR N
5 .

This quantity is a more concise statistic than both individual exploitabilities, and can be obtained
by solving two POMDPs (fixing one player’s strategy or the other) without requiring to know the
actual NEV, V*(oy).

This exploitability can also be defined as half of the gap between security levels (SL-gap). To
analyze the convergence of algorithms with respect to the initial gap, we will look at the SL-gap
percentage, 1.€e.,

2 1
Vlogt 53]~ Vo280
H. (Rmax - Rmin)
2 - exploitability(85., 82
H- (Rmax - Rmin)

SL-gap percentage(S3g., 82) =

3.2.2.1 Comparison with the state of the art

Table 3.2 gives the convergence time of Wiggers’s two heuristic algorithms, CFR, CFR+, SFLP,
and HSVI on the benchmark problems with various horizons, or the SL-gap percentage when
reaching a 1h time limit. Executions not returning any result (i.e., for Random, Informed, CFR
and CFR+, not performing a single iteration) are noted out-of-time [0OT|.

This table first shows that HSVI always outperforms the heuristic baseline provided by Wig-
gers’s algorithms, thus proving the interest of an HSVI scheme. However, HSVI is outperformed
by SFLP, CFR and CFR+, unless they run out of time. As can be noted, HSVI is able to keep
improving even when the horizon grows thanks to the LPE compression, taking advantage of un-
derlying structure in some games (e.g., Recycling Robots, a problem with transition+observation
independence (TOI), when scaling to larger horizons).

We now study the dynamic behavior of the algorithms at hand by providing and analyzing
the bounds and exploitability graphs for the same benchmarks.

3.2.2.2 Bounding Graphs

Left-side graphs in Figures 3.2 to 3.7 (pages 70 to 75) show how the computed upper- and lower-
bounding values V(0g) and V(op) (respectively the dotted dark and light green curves) evolve
as a function of computation time (always given in seconds). The solid dark and light green

- 1 2 - 2 1
curves show the security levels - and Vicoswd] of the current returned strategies 1§ and .

Note that, when best-response computations to obtain security levels are expensive (e.g., for
the competitive tiger problem, with H = 4), they are performed either periodically (e.g., every
10 iterations) or only once, at the end. In the captions, we indicate the (arbitrary) frequency
of the POMDP evaluations. For example, (1,1, once) means that, for the first two horizons, the
POMDP evaluations were done after each iteration, and, for the last one, only once (at the end).

Overall, we observe consistent curves with (i) security levels in-between bounds and around
the NEV, and (ii) bounds converging monotonically. Note that HSVI stops when the gap between
bounds is small enough, while the gap between SLs (a more relevant criterion used by Informed,
Random and CFR, but whose computation can be time-consuming) can be much smaller. As a
matter of fact, one can notice that strategies 1§ returned at each iteration by HSVI are often
better (in terms of security level) than their pessimistic lower- or upper-bounding guarantees

1 —2
E[Um/f(l)] and V[Uo,wg]'
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Table 3.2: Comparison of different solvers on various benchmark problems. Reported values are the running times until the
algorithm’s error gap (based on bounds for HSVI) is lower than 1%, or, if the timeout limit is reached, the security-level
gap percentages (100 % if gap = H - (Rmax — Rmin)). Notes: (1) Horizons with a star exponent (H*) are those for which
the security-level computations ran out of time so that, for HSVI, we give the gap between the pessimistic bounds. (2)
Even though Random and Informed contain randomness, we ran them only once, getting fairly representative results.

Domain H Wiggers HSVI SFLP CFR CFR+

Random Informed

2 2.6 % 83% 6 1s 18s 2s
Competitive Tiger 3 7.0% 6.1% 38% 48s 57m 14m
4 12.1% 7.7% 48% 14 m J[oor] [ooT]
5* [ooT| [ooT] 53.3% [ooT] [ooT] [ooT]
2 3.4% 51% 5 1s 10 s 1s
Recycling Robot 3 9.2% 152% 4m 1s 10m 1m
4 14.1% 19.6 % 49% 13 s 25% 24 m
5 [ooT] [ooT] 10.7 % [oo1]  [ooT] [ooT]
6* [ooT| [ooT] 45.5 % [ooT] [ooT] [ooT]
2 1s 3.7% 1s 1s 1s 1s
Adversarial Tiger 3 1.5% 44% 2m 1s 13s 8s
4 2.9% 5.6 % 26% 8s 15m 4 m
2 45 s 18.8% 8s 3s 2 m 1s
MABC 3 4.2 % 92% 27s 1s 15m 10s
4 18.1% 36.3 % 4.4% 3s 1.9% 4m
4 2 m 46.7% 5 1s 1m 1s
Matching Pennies 5 9m 458% 1m 1s 7m 58
6 2.2% 446% 8 m 2s 35m 17 s

3.2.2.3 Exploitability Graphs

Right-side graphs in Figures 3.2 to 3.7 show the exploitability of the returned strategy profile
as a function of computation time for HSVI, Random, Informed, CFR and CFR+ for the different
benchmarks considered. A limit precision of 10~7 (chosen empirically, according to the LP solver’s
precision) was applied to HSVI’s exploitability.

As can be observed, Random and Informed tend to produce reasonable strategies quickly,
but struggle to improve them so as to converge towards an e-NES with ¢ ~ 0. In contrast, our
algorithm keeps improving as computation time increases. The exploitation graphs support the
observed behavior in Table 3.2 that HSVI converges in reasonable time compared to Wiggers’s
algorithms. However, the graphs also show that CFR and CFR+ essentially outperform HSVI when
the problems are difficult enough (i.e., when the temporal horizon grows) but the traversal of
the whole tree still remains tractable (thus allowing CFR and CFR+ to perform iterations). An
interesting observation is that, on small enough problems, HSVI achieves very low exploitabilities
earlier than CFR and CFR+.

Finally, HSVI’s exploitability graph shares strong similarities with those of Bosansky et al.’s
double-oracle algorithms (Bosansky et al. 2014, Fig. 8 and 11). This can be understood as HSVI
iteratively building two sets of strategies, one per player, until they are sufficient to support NES
profiles, so that the average exploitability is almost zero. But note that Bosansky et al. construct
LPs using pure strategies (deterministic best responses), while HSVI’s strategies are stochastic.

Having empirically studied the behavior of HSVI compared to other basic offline solvers, we
now provide insight about the connections between HSVI and continual (thus online) resolving
methods.
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Figure 3.2: Competitive Tiger (H = 2,3) (1,1): (left) Evolution of (in dotted lines) the upper- and lower-bound values,
and (in solid lines) the security levels of the returned strategies for HSVI as a function of time (s). (right) Exploitability
(= SLE%) a5 a function of time (s) for Random, Informed, CFR, CFR+, and HSVI.

3.3 Related work

As already pointed out in the introduction and used in our experiments, one can solve a zs-P0SG
by turning it into a zero-sum EFG and then using a solving algorithm such as SFLP (Koller et al.
1996; Stengel 1996) or CFR (Zinkevich et al. 2007). In the following, we present and discuss in
more details related work that seem closer to our contribution. We start with Wiggers et al.
(2016)’s work. Then, we move on to HSVI-like schemes for zs-0S-P0SGs. Finally, approaches
based on continual resolving (Burch et al. 2014) are presented.

3.3.1 Wiggers et al.’s Work on Exploiting the Convex-Concavity of the Op-
timal Value Function

In this subsection, we come back to Wiggers et al. (2016)’s work, which we built on, to design
an HSVI-like scheme for solving zs-P0OSGs.
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Figure 3.3: Recycling Robots (H = 2,3,4) (1,1,10): (left) Evolution of (in dotted lines) the upper- and lower-bound

values, and (in solid lines) the security levels of the returned strategies for HSVI as a function of time (s). (right) Ex-
ploitability (= SL_%) as a function of time (s) for Random, Informed, CFR, CFR+, and HSVI.

3.3.1.1 Deriving zs-S08Gs from zs-P0SGs

Our approach for solving zs-P0SGs by deriving cp-oMGs is inspired by Dibangoye et al. (2016)’s
introduction of cp-oMGs. On the contrary, Wiggers et al. (2016) follow Oliehoek (2013)’s approach
that define non-observable Markov decision processes from cp-oMGs. Wiggers et al. (2016) thus in-
troduced plan-time zero-sum non-observable stochastic games (zs-N0SGs) derived from zs-P0OSGs,
defined as a tuple (I, S, A, A2, 0,T,0,R, bo>, where:

o [ = {1,2} is the set of players;

e S is the set of augmented states sy, each corresponding to a joint AOH 6y;

o A! and A? are the decision rules sets as in zs-oMGs;
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Figure 3.4: Recycling Robots (H = 5,6) (once,none): (left) Evolution of (in dotted lines) the upper- and lower-bound
values, and (in solid lines) the security levels of the returned strategies for HSVI as a function of time (s).

O is the set of public observations (set to { NULL});

e T is the transition function between states s¢ and Syy1;

O is the observation function that specifies that observation NULL is received with prob-
ability 1;

e R the reward function : R: S x A! x A% - R; and
e by is the initial belief (by € A(S)).

zs-oMGs having no observations is equivalent to plan-time NOSGs only working with a single
trivial NU LL observation. The main difference between plan-time NOSGs and zs-oMGs lies in the
state space. The “augmented states” of plan-time NOSGs, i.e., tuples of joint histories (s, 6;) are
very different from occupancy states.?’

This game is then viewed as a zero-sum shared observation stochastic game (zs-S0SG) with
public actions, Wiggers et al. arguing in their Lemma 4 that, assuming that players are rational,
their decision rules can be considered as public. In a thorough and pedagogical discussion
regarding public actions, described as the “non-correspondance problem”, Sokota et al. show the
flaws of such a reasoning (Sokota et al. 2023).3

3.3.1.2 Random and Informed (Search)

Building on top of the convex-concave properties, Wiggers introduced Random Search, which
alternates between two depth-first searches (one for each player). Each search performs a tra-
jectory through a tree whose vertices correspond to decision rules S and nodes to conditional

2Note that the same distinction between two possible transformations exists for cp-P0SGs that are translated
either in occupancy MDPs or in non-observable MDPs (Dibangoye et al., 2016).
30Tn the cp-POSG setting, assuming that decision rules are public is valid because agents collaborate.
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Figure 3.5: Adversarial Tiger (H = 2,3,4) (1,1,10): (left) Evolution of (in dotted lines) the upper- and lower-bound
values, and (in solid lines) the security levels of the returned strategies for HSVI as a function of time (s). (right) Ex-
ploitability (= SL‘%) as a function of time (s) for Random, Informed, CFR, CFR+, and HSVI.

occupancy states o', The algorithm essentially performs exploration by randomly generating
strategies for player —i which are evaluated by (costly) computations of security-level vectors

I/[_' i =41 as solutions of POMDPs. Random Search stops whenever its time budget is over or the

Or 5Pr:

gap V2 ., 0y — vl ., (measuring the distance to the NEV) at the root node is lower than a
[‘70’ ’50;] [0'0’ 750;]

fixed error € (thus returning the e-NES) (8¢, 82.).

Informed differs from Random in its decision rule generation procedure, by introducing a
heuristic to guide trajectories. Instead of using random sampling, the algorithm selects the most
promising decision rule for player ¢ against the decision rules stored in —¢’s exploration tree.

In comparison, our HSVI-like algorithmic scheme leverages upper- and lower-bounding approx-
imators, from which it generates trajectories induced by decision rule profiles that are optimistic
for both players. As a by-product, solution strategies are constructed. Overall, even though
high-level similarities exist between HSVI and Random (and Informed) Search, major differences
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Figure 3.6: Mabc (H = 2,3,4) (1,1,10): (left) Evolution of (in dotted lines) the upper- and lower-bound values, and (in

solid lines) the security levels of the returned strategies for HSVI as a function of time (s). (right) Exploitability (= SL'%)
as a function of time (s) for Random, Informed, CFR, CFR+, and HSVI.

distinguish both algorithmic schemes.

3.3.2 Solving zero-sum One-Sided Partially Observable Stochastic Games

For their part, Horak et al. (2017) addressed zs-0S-P0SGs (a subclass of zs-P0SGs in which player
2 sees her opponent’s actions and observations, as well as the state of the game (Section 2.1.3.6)),
succeeding in designing an algorithm that provably converges to an e-NES of any zs-0S-P0SG in
finite time. Similarly to us, their work is inspired by techniques developed to solve POMDPs (Smith
et al., 2005) and later cp-P0SGs (Dibangoye et al., 2016), relying on a statistic (a belief-state)
that induces a Markov game. The resulting value function (V*) exhibits continuity properties
that allow deriving bounding approximations. Then, greedy selection and update operators are
defined and included in an HSVI-like scheme.

We work in a similar direction for general zs-P0SGs. As the state space, the strategy space
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Figure 3.7: Matching Pennies (H = 4,5,6) (1,1,1): (left) Evolution of (in dotted lines) the upper- and lower-bound val-
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and the observability assumptions (e.g., one player having perfect information about the current
state of the game, including its opponent’s past actions and observations) are different from their
counterparts in zs-0S-P0SGs, building bounding approximators for zs-P0SGs relies on several
technical novelties. A parallel can be made with cp-P0SGs with one-sided information sharing
(Xie et al. 2020), whose observability hypotheses for one agent resulted in significant differences
in the HSVI-like solving scheme w.r.t. HSVI for general cp-P0OSGs.

Furthermore, an important distinction to make with Horak et al.’s work (2023) is about
extracting a strategy to execute. The safety issues mentioned in background of this manuscript
(Section 2.2.3.5) prevent from trivially computing a Nash equilibrium strategy profile using
the knowledge of optimal value functions in zs-0S-P0SGs. While we showed that guaranteed
strategies are intrinsically built (and can then be extracted at the end of the planning phase) when
updating bounding approximations in our approach, Hordk et al. rely on a continual re-solving
method (Moravéik et al., 2017) (see also Section 3.3.3) that is run online after e-convergence of
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HSVI bounds

3.3.3 Comparison with Limited-Lookahead Continual Resolving

First of all, let us recall that HSVI, as SFLP and CFR are offline algorithms. On the contrary,
continual resolving and limited-lookahead continual resolving are online search algorithms, i.e.,
are meant to make good decisions at each time step, based on the current knowledge about the
state of the game.

Limited-lookahead continual resolving (LLCR) schemes, such as DeepStack (Moravcik et al.
2017), Libratus (Brown et al. 2018), ReBeL (Brown et al. 2020) and Player of Games (Schmid
et al. 2021), introduce limited-lookahead techniques to the continual resolving scheme (Burch
et al. 2014), itself built on top of CFR. LLCR approaches perform well by exploiting a temporal
decomposition in subgames, which are specified through knowledge about both players’ past
strategies. Our approach thus shares similarities with these works.

Yet, as we will see in the next sections, a closer look at continual resolving and LLCR demon-
strates how fundamentally different they are.

3.3.3.1 Continual Resolving

(Continual) Resolving techniques have been the first ingredient to adapt CFR to online settings.
They assume that, at some time step 7 of an actual trajectory, a Nash equilibrium strategy
profile is being followed by both players (which induces the subgame at hand), and the objective
is to incrementally complete it while preserving global consistency (aka safety) of the whole
strategy, i.e., not making choices that could encourage the opponent to deviate in the past,
before 7. This is achieved by introducing, in a preliminary stage of the subgame, constraints,
called gadgets, that represent possible deviations and their values, but increase the size of the
game tree so that it is practically intractable (Moravéik et al. 2017). For its part, HSVI solves
similar subgames (offline), but at prefix strategy profiles that are not necessarily part of a Nash
equilibrium, and ensuring only local consistency, ¢.e., only considering the subgame. HSVI, due
to its backpropagation process, ensures the local consistency of each subgame, in particular at
7 = 0, which induces a global consistency.

As a comparison with classical (single-agent, deterministic) search, Continual Resolving can
be seen as calling Anytime A* (Hansen et al. 2007) during an online resolution process, but with
constraints to avoid safety issues, while HSVI can be seen as using LRTA* (Korf 1990), which also
works by optimistically generating trajectories until convergence.

Note that neither Resolving nor HSVI require knowing the opponent’s actual strategy (which
is not public). For Resolving, any opponent prefix strategy of a NES is appropriate to verify that
the opponent has no incentive to deviate from a Nash equilibrium strategy. For HSVI, we have
shown that reasoning on subgames assuming that the opponent’s strategy is known still allows
solving a zs-P0SG. In practice, both algorithms reason not on actual prefix strategy profiles, but
on different statistics. In Resolving, these statistics need to represent complete prefix strategy
profiles (given the current public information), so that decisions are anticipated for player i even
in AOHs (infostates) not reachable given player —i’s strategy. This leads to using ranges (Vojtéch
Kovarik et al. 2019), i.e., vectors that give, for each player, her contribution to the probability
of any history she could face at time step 7. In contrast, HSVI’s occupancy state, which is not
necessarily related to a Nash equilibrium strategy in any manner, leads to ignoring unreachable
AOHs, which helps to reduce the size of the decision-making (sub)problem.

3.3.3.2 Limited Lookahead

Continual Resolving alone solves complete subgames, thus larger problems at early stages of the
game than at the end, which is not appropriate in an online setting. To address this issue through
limiting the lookahead of subgames, one needs to estimate the value of the leaves of any truncated
subgame. This is achieved through learning offline, for each player ¢, deep networks that, given
the current public belief state, map each AOH to its value under some Nash equilibrium strategy
profile. Note that the target function is not unique (Vojtéch Kovaiik et al. 2019, Proposition A.1),
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since each NES profile maps to different value vectors. Still, according to Vojtéch Kovaiik et al.
(2019), this does not seem to cause problems in practice.

In contrast, the individual value functions HSVI considers (the "v" functions) are uniquely
defined since they correspond to the best responses to given (not necessarily Nash equilibrium)
strategies of the opponent.

3.3.3.3 Limited Lookahead Continual Resolving as a General Scheme?

The previous subsections highlight to what extent HSVI and LLCR are fundamentally different, in
particular because they are not on the same algorithmic level. LLCR should be seen as a general
scheme in which the subgame solver used, namely CFR, could be replaced by other "basic" offline
algorithms such as HSVI or SFLP. But we leave further investigation on this topic for future work.

3.4 Work in Progress

Next, we provide work in progress that might offer new levers to improve the scalability of
update and backup operators through (i) pruning unnecessary tuples w that create redondant
constraints in our LPs (Corollary 3.1.18, corollary 3.1.18) (Section 3.4.1) and (ii) compressing
occupancy states by exhibiting block-diagonal structure (Section 3.4.2).

3.4.1 Pruning V.,

Algorithms for POMDPs and cp-POSGs that rely on approximations of V* tend to generate an
important amount of elements (e.g., vectors, points) that define the approximations. It is often
beneficial to prune those that are no longer relevant. This section consequently discusses pruning
techniques for cp-oMGs. We start with the following key theorem that allows reusing usual POMDP
max-planes pruning techniques in our setting (reverting them to handle min-planes upper bound
approximations) to prune approximations of V*. Next, we present the difficulties encountered
when trying to prune approximations of W*.

Pruning approximations of V* built using upper envelopes of hyperplanes (e.g., when solving
POMDPs) typically involves identifying hyperplanes of the envelope that do not contribute to
the approximation, i.e., that are dominated (e.g., by the envelope, or by another hyperplane
(Smith 2007)) in any point of the state space.

Theorem 3.4.1 (Proof in Theorem 3.4.1). Let P be a min-planes pruning operator (inverse
of max-planes pruning for POMDPs), and v? . If P correctly identifies 7> as non-

09! 09",

dominated (or resp. dominated) under fized 0'76—71, then U is non-dominated (or resp. domi-
nated) in OF.

2
[0—271 7‘]

Proof. We will demonstrate that:

e if P shows that a vector 12 (associated to o) is dominated under fized ¢&' by a min-planes
upper bound relying only on other vectors 2, then this vector is dominated in the whole
space O7;

~ 1 el 1. o
e clse, the vector 12 is useful at least around &, = (£7°7, 07 "), where & is the domination

point returned by P.

Note: The following is simply showing that, if the linear part (of the approximator) is dominated
by a min-planes approximation for a given conditional term o7, then the Lipschitz generalization
in the space of conditional terms is also dominated since A is constant.

Given a matrix M = (m;;), let |M]|; denote the column vector whose ith component is

S ———
. : . 1 el .
|/m;.|l1. Here, such matrices will correspond to conditional terms, |07 — &7 |1 denoting the

vector whose component for AOH 6L is [|oS!(-]62) — 621 (-|81)||1 (where ¢S (-|61) may also be
C

denoted o&'(6L) for brevity).
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. 1y - . 1. 1
Let us assume that the vector v2 (associated to o7") is dominated under o7, i.e., V&,

0
— -
(€T 2+ A ozt =gt 1) > min (€))7 (72 + Aoz’ — o511 |

We will show that, V&, = (&1, €51,

(€T 02 + A€ = 02Tl = min [T - (22 + A fleet - 501

VT7UT

ok

Let & be an occupancy state. First, remark that 3(72, 6$’1> such that

0
—

e _— >
€T (24 A o — o) = (€T - (72 4 Aot — 55T,

For the sake of clarity, let us introduce the following functions (where x, y, and z will denote
conditional terms for player 1):

defZﬁ"” 07) - (v (62) + Arlly(07) — 2(67)]1)
= g(y) + A& T ly = s, (3.73)

and
defngl 01) - (V2 (0L) + A ||2(01) — 2(61)h)

= h(Z) + AT e = a1

Let us assume that g(y) = h(y), and show that g = h. First,

9(x) = 9y) + (€D - o — gl
> h(y) + A€ - flo =yl
= h(z) + A (€T (ly = 2l + o = ylh)
> h(z) + A€ (ly = 2l + (e = 2l = T2 = wlh)1) (3.74)

Now, V6L, it [|e(62) — 2(61) 1 — [|=(62) — y(6)[1 > 0, then

ly(©7) = 2011+ [l2(67) — 2011 = 112(67) — »(E)11)]

= |y ——=T1 + [|2(6L) — 2(81) |1 — |[z(@L—g (oD,

= [|=(6}) — 2(01) 1, (3.75)
else,

ly(03) — 20Dl + |(l2(67) — 2011 — |12(67) — w(67)]11)] (3.76)

= 2[|ly(67) — 2(61) |l — [l=(6}) — 2(67)|1h

> [|(67) — 2(61) |1 (3.77)

Finally, coming back to (Equation (3.74)):

g(@) = h(z) + A€ (ly =2l + 1w = 2l — 2= yl)1)
> h(2) + A (E™HT - |z(0)) — 2(61)]; (from (Equation (3.75)-+Equation (3.77)))
> h(zx).
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With z = fT Ly =0y Vand 2 = &f-’l, this gives:

Z&ml (01 (7 (02) + Aelloz! (07) — €21 (67) 1) (3.78)

Zf"“ 07)(7(07) + Ar |62 (07) — €21 (07) ). (3.79)

This shows that ©2 is dominated for every (&7, ¢51), where both €™ and ¢&' are arbitrary.
Therefore, one can prune a vector v2 using P applied in the space where ool is fixed.

As a consequence, some properties of P are preserved in its extension to zsPOSGs:

e If P correctly identifies 2 as non-dominated at oS!, then <V3,af-’1> is non-dominated in
o7.
That is, if P does not induce false negatives, neither does its extension to zsPOSGs.

e If P correctly identifies 2 as dominated at o<, then (#2,6%") is dominated in OF.
That is, if P does not induce false positives, neither does its extension to zsPOSGs.

O

The last theorem permits to prune upper- and lower-bound approximations of V*. Still, it
is not clear how approximators W, and W_ can be pruned as they involve multiplicative terms
between the occupancy state o, and decision rules 3. Therefore, knowing whether tuples w are
dominated throughout the whole space O, x Bl is not an easy task. However, this question could
be investigated further by considering relaxed pruning criteria (i.e., that may prune elements
that are not dominated everywhere; see for example Smith’s PhD thesis for detailed discussion
regarding pruning approaches) that can empirically be efficient.

3.4.2 Occupancy-state Decomposition

Note: The following is written for cp-oMGs involving only two players for simplicity (e.g. decision
rules are deterministic, ... ) but also applies for zs-P0SGs. The extension to more players is left
for future work. As discussed later (Section 3.4.2.5), we do not expect major differences with the
proposed approach.

Solving P0OSGs through oMGs suffers from the main bottleneck of Bellman’s selection and
update operators’ time and memory complexity. Subclasses characterized by additional observ-
ability assumptions were identified as they exhibit structure allowing to drop the previously
mentioned complexity (e.g., delayed information-sharing (Nayyar et al. 2010), one-sidedness
(Horéak et al. 2017; Horak et al. 2019b; Hadfield-Menell et al. 2016; Malik et al. 2018; Xie et al.
2020)). We thus investigate to what extent occupancy states might reveal common knowledge
(i.e., something that player 1 knows, player 2 knows that player 1 knows, player 1 knows that
player 2 knows that she knows, and so on), and how one can take advantage of it to reduce the
complexity of greedily selecting decision rules.

The POSG formalism does not explicitly distinguish between private observations that contain
public information and those that do not, but adding a public observation variable should be
possible. Players’ observations would be pairs (zpup, Zpriv), Where zp,, is common to all. As
a consequence, occupancy states at time step ¢t would naturally be decomposable in blocks,
one for each possible sequence of public observations received before t. An analysis of the POSG’s
dynamics suffices to exhibit such kind of structural public knowledge and define public observation
variables. In poker for instance, the cards drawn during the flop are given to players as private
observations in its classical POSG formulation, while being public knowledge. Such situations
are of great computational help as they allow branching over public information and drop the
complexity of greedy-selection operators. Conversely, a decomposable occupancy state implies
that each player knows which block everyone is in, which corresponds to common knowledge.

It is noteworthy that there exist cases for which a preliminary analysis of the games’ dynamics
would not necessarily reveal some common knowledge. This is partly due to the possibility
of common knowledge being generated by specific sequences of players’ actions (i.e., such a
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Figure 3.8: An example of a bloc-diagonal matrix

phenomenon would arise along specific trajectories in the game tree). Revealing this contertual
structure in an occupancy state reduces the complexity of finding the most optimistic decision
rule for this occupancy state as decision rules can be computed independently for each common-
knowledge block.

Let us consider that, for some reason, an occupancy state oy is diagonal, or block diagonal.
Assume that player 1 observes individual history O1* while

e the only individual history for player 2 for which o, (65, 62) > 0 is 02* and
e the only individual history for player 1 for which o, (61, 03’*) >0 is O0%.

It follows that 1 knows that 2 must have observed 03’*, player 2 knows that 1 observed 0L* and
that 1 knows that she knows, and so on. Still, the latter example only involves one individual
history for each player, while the concept of common knowledge is more general.

Definition 3.4.2. Let o; be an occupancy state. A pair of subsets (8,8%) < ©! x ©2 is said to
be common knowledge if and only if:

Vol e 81, ¥0% € ©%,04(0) > 0 — 6% € @?, and (3.80)
Vo2 e 8%,v0' € ©',64(0) >0 = ' e’ (3.81)

For example, games with only public observations (and public actions) lead to occupancy
states with common knowledge, where sets 8% are singletons. Figure 3.8 illustrates an occupancy
state for a two-player cp-BG such that there exist partitions (81, ... ,B,lc) and (82,..., Bi) with
the property that, for any i in {1,...,k}, (8},87) is common knowledge.

177

Remark 3.4.3 (Block Decomposition for Bayesian Games). The current presentation takes the
viewpoint of zs-oMGs and consequently focuses on occupancy-state decomposition to improve the
scalability of planning in zs-oMGs. Still, the theory developed here is relevant for Bayesian games,
as types correspond to private histories, and probability distributions p to occupancy states.

In the following, we start by formally describing block-diagonal occupancy states. Then,
Section 3.4.2.2 provides an algorithm to decompose, if possible, an occupancy state and its
time complexity is studied. Section 3.4.2.3 tackles the interesting question of approximating an
occupancy state with one that can be decomposed, while guaranteeing that the loss in Bellman’s
equation solutions is no more than a given e. Finally, Section 3.4.2.4 investigates the impact of
block-diagonal occupancy states on Bellman’s optimality equations.

3.4.2.1 Block Decomposition of Occupancy States

We start with a lemma proving the sufficiency of a collection of independent statistics to sum-
marize a block-diagonal occupancy state.

Lemma 3.4.4 (Reduction of Occupancy States). Let oy be an occupancy state. Then, without
loss of information, o, can be represented by a matrizx M = (P(6},6? | 0r))g1 62cot xo2- If this
matriz is block-diagonal, i.e., M = Diag(B,...,B,) with ¢ < min{|©}|,|0%|}, then oy carries
the same information as a mixture of occupancy states with lower dimensionalities.
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3.4. Work in Progress

Proof. Let us define the function By : O x ©2 — [0, 1] such that By (6L,0%) = P(6L,02 | o,) if
(6},62) belongs to block By, in M, and 0 otherwise. Besides, we denote, Vk, supp(By,) the set of
pairs (0}, 6?) belonging to the block By, within o;.

Reusing the notations of the lemma,V(6},67) € O] x ©2,

q
P(0;,607 | ov) = > Bi(6},67), (3.82)
k=1
q 1 p2
o~ Bi(6;,0
- Z By (6},62) (6, 67) . (3.83)
k=1 esupp (ng) [Z(é},ég)esupp(nq) Bk(et ) et )]
noting Nk d:ef 2(91 92)€Supp(Bk) Bk 9t s Ht)
q
(01,0
— Z ZR\Vt Yt ) t) (384)
"
o Z NE - Otk etaet) (3'85)

Therefore, (g, 0 x)k, which describes a distribution over ¢ occupancy states, carries the same
information as o;. O

Lemma 3.4.4 would also hold if we “decompose” the matrix row by row (or column by column),
retrieving usual marginal and conditional terms. What is of particular interest with block-
diagonal matrices is that each decision-rule profile can be decomposed in ¢ independent “partial
decision-rule profiles”. Besides, the dimensionality of spaces of interest (occupancy states oy
and partial decision rules) are highly reduced.

Lemma 3.4.5. Let o, be an occupancy state at time step t. For any k in {1,...,q}, let us
define By : (0F,07) € supp(Bi) — Bik(0F,07) a “partial decision rule” (i.e., prescribing actions
to players only for the histories in block By). Then, o1 = T(0t,{Bt1,-..,Ptq)) carries the
same information as (nt,k,Tk(ot,k,/Bt’k))k, where TF is a transition function.

Proof. The proof below uses the fact that decision rules in a cp-P0OSG can be considered de-
terministic (Oliehoek et al., 2008). The extension of the proof to stochastic ones would follow
similar derivations.

Let A! and 62 be histories for player 1 and 2 at time step t. For any étlﬂ,éfﬂ (noting
0111 = 0, ®{ays, 2,41}), it holds that

P11 | ovr1) = Z Lig,—6,) - 01(01) - By(01,ar) - P(Z141 | 0, a4) (3.86)

0;

=20 20 Liomay o 0uk(00) - Bey(0ran) - P(Zi4 | 0,a)  (3.87)
k 6.esupp(By)

defz Z Lio,—6,) " Mk T* (011, Be) (O141)- (3.88)
k Oiesupp(By)

O

Note that, if an occupancy state o; is block-diagonal, then the occupancy state o,11 =
T(o-,3,) reached for any decision rule profile 3, has, at least, as many blocks as o.

3.4.2.2 Finding Blocks

We here study how to find blocks and the computational cost of doing so. This complexity must

be less than exponential to hope for an overall gain for the optimistic decision rule selection.
Let 0y be an occupancy state at time step ¢t € {0,..., H — 1} and G,, = (0} U ©? E) be an

undirected graph, where a tuple (6}, 6?) belongs to the set E of edges if and only if o¢(6}, 62) > 0.
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3.4. Work in Progress

Note that G, is bi-partite as nodes in ©} are only connected to nodes in ©7. Then, finding a
block decomposition of an occupancy state oy is equivalent to finding all connected subgraphs in
the corresponding graph G, .

Algorithm 3.2 (Hopcroft et al., 1973) finds connected subgraphs in a graph G, (for example,
by performing a best-first search).

Algorithm 3.2: Find Connected Subgraphs (Hopcroft et al. 1973)
Data: Graph G,, = (0} U ©? E)
Result: List of unconnected subgraphs

1 visited «— empty set

2 subgraphs < empty list

3 foreach ¢, € ©} U ©7 do

4 if 0; is not in visited then

subgraph < empty set

DFS (0¢, subgraph)

subgraphs.append(subgraph)

N o o

eturn subgraphs

9 Function DFS (0, subgraph):

10 visited.add(6;)

11 subgraph.add(6;)

12 foreach 6, such that (6;,6,) is an edge in G do
13 L if 0, is not in visited then

oo
-

14 L DFS (0;, subgraph)

The time complexity of Algorithm 3.2 is O(|V| + |E|), where |V| = |©}] + |©?|, and |E| is,
at most, |0}] - |©7|. In a cp-POSG, |O}] = (JAY] - |Z])t, and ©F = (|.A?] - | 22|)".

3.4.2.3 ¢-Close Block Decomposition

Whenever exact block decomposition is impossible, or if it creates a block almost as large as the
occupancy state itself, it may be interesting to search for a lossy approximation of the occupancy
state by a decomposable one. Tools from graph theory might help us to do so.

Definition 3.4.6 (min k-cut problem). Given an undirected graph G = (V,E) and a weight
function w : E — N, the minimal k-cut problem is to find a partition F' = (Ci,...,Ck) of V
into disjoint sets (C;)ieq1,... k) sSuch that the loss Skl Z;?:Z-H Zvle()ivzecj W(ey,—vy) 15 minimal,
where €y, 5y, 15 the edge between vertices vi and vy.

Gomory-Hu trees (Gomory et al. 1961) represent minimal cuts in G for all pairs of vertices.
A k-cut whose value is at most (2 —2/k) times the minimum value of the min k-cut problem, can
be found by iteratively selecting pairs with minimal value in the representation. This procedure
should be applicable to our graphs G = (©! U ©% p). Even though Gomory-Hu trees allow
computing a block decomposition that can be at most twice worse than an optimal one, its
computation is easier than other methods and runs in polynomial time for a fixed k. The

following example illustrates the procedure of e-block decomposition using Gomory Hu trees, for
k=2.

Example 3.4.7. Let us consider an occupancy state oy:

a 0 b O
0 « €1 ,8
c e d 0 |’
0 v 0 9
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3.4. Work in Progress

Figure 3.9: Illustration of an occupancy state as a graph. Probabilities on the right are not normalized.

0.15 0.25
—_— —_— 04
0.239 min- cut
0.2
03 07

Figure 3.10: Example of Gomory-Hu Tree.

where €1 and ez are small positive numbers. Figure 3.9 (left) illustrates the graph G = (©! U
©2%, E) derived from the occupancy state.

Discarding edges with weight €1 and €3, normalizing, and re-organizing the order of individual
histories (see Figure 3.9 (right)), oy can be re-written:

a
Cc

b
1 d 0

1—(€1+62) 0 o 5
vy 9

Figure 3.10 shows the Gomory-Hu tree for the following occupancy state (where constants
a,b,c,d, o, B,7,8 are specified):

0.2 0 0.05 0

0 0.149 0.001 0.05
0.039 0.001 0.159 O

0 0.1 0 0.2

M =

_ Performing a min k — cut on the pair (03,03) of vertices yields a block diagonal decomposition
M such that |M — M|; < 0.02.

Dibangoye et al. (2014) proposed elegant tools to bound the error made when computing
Bellman’s equations with respect to an approximation of occupancy states, as a function of the
total variation between the approximation and the original distribution. We now investigate the
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3.4. Work in Progress

impact of block decomposition in Bellman’s optimality equation and the time (and memory)
complexity of greedy selection operators.

3.4.2.4 Bellman’s equation

As a reminder, Bellman’s equation for a cp-oMG is

Vi¥(or) = rr}gxr(at, B) + Vi1 (T (o1, Br)), (3.89)

which can be rewritten (Dibangoye et al. 2016) using a-vectors o € RI®t! as:
= max{0y, ). (3.90)
(03
We recall that, in Bellman’s classical equation, every decision rule profile is enumerated,
whereas decomposition allows enumerating decision rules independently for each block.

Theorem 3.4.8. Let oy be a block-diagonal occupancy state whose blocks are noted (B, ..., By).
For any player i, let supp'(By,) be the set of individual histories of player i within block By,. The
complexity of computing Bellman’s equation is reduced from TL;|A*|Iil to 3, T, |A?|lsvrr" (Br)l.

Proof. Using Lemma 3.4.5,

Vi¥(or) = max [Z MRE[R(St, At) | o1k, Bkl + 7 max Vet (T (0 Be) i1 5t+1:)] . (3.91)
t L t+1:
Note that o441 is an element of Oy11 as it is normalized (similarly to o), giving sense to
Vt+1(Tk(at7k, Bt)s Bi+1:k). Besides, Bi41. can be decomposed in (Byi1:1, ..., Br+1:,4) as each his-
tory at t + 1 extends an history belonging to only one block of o;. Then,

Vi (o) = mﬁztxxg M |:T‘(0't7k, Be) + 75131?;},{16 Vt+1(Tk(Ut,k7 Bt), 5t+1:,k)] (3.92)

= <Bt,§l~?-i,,)ét,q>{zk: Mk [T(Ut,kv Bex) + ’Ythrl(Tk(at,k, ﬁtk))]} (3.93)

= Zklﬂk [%3?{7“(01:, k, Bek) + Vi (T (o1 ks ﬁf))] (3.94)

= (Mot k)ks (%)) (3.95)

where V&, ay : supp(By) — R and aj € argmax,,, (nr0¢k, Qk)- O

Note that, if the matrix is diagonal, the greedy selection’s complexity becomes exponential
instead of double exponential.

Theorem 3.4.8 also incites algorithms such as HSVI to branch over possible blocks. Similarly
to HSVI for POMDPs, only the next occupancy state T(Jtyk,ﬁt’]Q contributing the most to the
uncertainty on the value of o; would be studied next by an HSVI for cp-P0SGs leveraging block
decomposition.

3.4.2.5 Block Decomposition for More Than Two Players

In the case where more than two players are involved in the game, our approach for finding block
decomposition (e-closely or not) does not apply directly. Indeed, occupancy states are no longer
matrices but tensors and the derived graphs would typically be hypergraphs, whose hyperedges
gather tuples (6L,...,07) for which o (6L, ...,6™) > 0. Still, there exist algorithmic approaches
to tackle min k-cut problems for hypergraphs (Fox et al. 2023), which shall satisfy our needs.
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8.5. Discussion

3.4.2.6 Conclusion

This section presented an algorithmic tool to exhibit block-diagonal structure within occupancy
states. The main purpose is to reduce the prohibitive time complexity of (i) Bellman’s equa-
tion in cp-0MGs and (ii) occupancy states computations in large games. We showed that any
occupancy state carries the same information as a mixture over smaller occupancy states and
proved that using the latter ones reduces the complexity of Bellman’s equations. Besides, block
decomposition of occupancy states allows branching over blocks and only studying most relevant
ones in trajectories of HSVI-like schemes, which also decreases the difficulty of maintaining es-
timates of occupancy states. Inspired by tools for approximately compressing occupancy states
(Dibangoye et al. 2014a), we also discussed the topic of of e-block decompositions.

Multiple interesting questions are raised by our findings. Finding efficient tools for e-close
approximation is certainly one of them, but studying the case with more than two players as well.
Relative homogeneity within exhibited blocks would also be appreciated, as the complexity of
Bellman’s operator depends on the size of the largest block(s). Finally, experiments on classical
benchmarks or real-life applications shall be made to validate the empirical gain of the approach
on some problems.

3.5 Discussion

This chapter addressed the problem of e-optimally solving zs-P0SGs. In contrast to SFLP or
CFR, we provide the necessary foundational building blocks to apply dynamic programming (in
tandem with heuristic search) to solve zs-P0SGs. We introduce Bellman optimality equations and
uniform-continuity properties of the optimal value function. Next, we exhibit rules for updating
value functions while preserving uniform continuity and the ability to extract globally-consistent
solutions. Finally, we describe the first effective DP algorithm for zs-P0SGs, with finite-time
convergence to an e-optimal solution. Experiments support our theoretical findings.

We believe our approach complements existing ones, e.g., SFLP and CFR, in two dimensions.
First, it breaks the original zs-P0OSG into nested subgames. Second, it generalizes values from
visited subgames to unvisited ones. Our performances are as good as or better than those from
SFLP and CFR for small-dimensional subgames (e.g., with TOI structure). Unfortunately, the
advantage of breaking the original problem into subgames and exploiting uniform continuity
properties often fails to fully manifest in the overall computational time.

Despite some similarities, our (offline) approach is fundamentally different from (online)
continual resolving approaches. The latter could even possibly be adapted to use other offline
methods than CFR-based ones, including HSVI.

We hope that this approach will lay the foundation for further work in the area of both
exact and approximate DP solutions for zs-P0SGs. In the short term, we shall investigate and
implement pruning methods (Section 3.4.1) and compression techniques (Section 3.4.2). In the
long term, we shall investigate (deep) reinforcement learning for zs-P0SGs, similarly to a recent
approach for cp-P0SGs (Bono et al. 2019). Of particular interest for (deep) reinforcement learning
is the trade-off between the update-rule accuracy and the computational efficiency when facing
high-dimensional subgames, hence providing competitive solvers.
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Optimally planning in cp-P0SGs is a computationally difficult task in general, due to the
intractable game tree, whose size grows double exponentially with respect to the planning hori-
zon. This difficulty also comes from the non interchangeability of Nash equilibria, contrary to
zs-P0SGs: Players can not unilaterally compute their optimal behavior and must instead coor-
dinate.

Solving schemes split between local and global ones, each coming with strengths and weak-
nesses. Local methods trade global optima, or e-approximations thereof, for weaker solution
concepts, e.g., Nash equilibria that may not be globally optimal (Nair et al. 2003), or any arbi-
trary feasible solution. While local ones share core ideas with global ones, their primary focus
is on solving relaxations of the original problem (e.g., independent planners reason in isolation,
policy gradients target first-order solutions of non-convex functions) (Tan 1998; Peshkin et al.
2001; Bono et al. 2018). Of particular attention, local methods using deep neural networks can
apply effectively to virtually any non-critical application, e.g., online services, logistics, or board
games (Lowe et al. 2017; Foerster et al. 2018; Rashid et al. 2018).

In the contrary, solving cp-P0SGs through cp-oMGs and HSVI-like algorithmic schemes (Diban-
goye et al. 2016) offers theoretical guarantees which are key for high-stake applications (e.g.,
search and rescue, security, healthcare). The cost is, however, that players’ decision variables
are entangled together in decision rule profiles at each time step.

Many real-life applications possess structure which can be exploited by algorithms, including
those with theoretical guarantees, to find solutions empirically way faster than generic algorithms.
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4.1. Background

Multiple structures have been identified as of particular interest—e.g., dynamics independence
(Becker et al. 2004; Dibangoye et al. 2012), weak-separability (Nair et al. 2005; Dibangoye et
al. 2014b), delayed information-sharing (Nayyar et al. 2010), one-sidedness (Horak et al. 2017;
Horéak et al. 2019b; Hadfield-Menell et al. 2016; Malik et al. 2018; Xie et al. 2020).

After reminding the reader of necessary background, we take a closer look at one particular
structure, assuming that players are organized through some hierarchy. Players’ knowledge about
the game follow an inclusion relation, i.e., player 1 only knows her individual history, player 2
knows what 1 knows, plus her own individual history, and so on, as detailed next.

4.1 Background

This background section comes back on the use of cp-oMGs for optimal planning in cp-P0SGs. It
presents the limitations in terms of scalability that the rest of the chapter will overcome through
the exploitation of hierarchical information-sharing.

4.1.1 cp-P0SGs

Let us recall that cp-POSGs are particular cases of POSGs but, contrary to zs-P0SGs, it is sufficient
to consider deterministic behavioral strategies (Oliehoek et al. 2008). In cp-P0SGs, computing
the optimal value function

H-1
V¥iop— Bmax Z Y YE[r(St, At) | Brem—1] (4.1)
T:H—1 =t

is sufficient to retrieve a Nash equilibrium strategy profile with highest value. At each time step
7, the optimal value of an occupancy state o, is also V*(0;) = maxg_Q¥(or,3,), where

Qf(0r, B;) = E[r(Se. A0) | 07] + 9V (T (07, B,))- (4.2)

Computing V* (o) is equivalent to solving a common-payoff game G, = (n, x;BL, 0, Q¥ (0, ).
In this game, private histories 8% correspond to types of player i whose probabilities are derived
from the occupancy state o, and where the common-payoff function Q* (o, -) maps decision rule
profiles 3, to values Q%(o,,3,).

In the following, for any history profile 8, hidden state s and any behavioral strategy profile
Bi.r_1, We note

'BtH ! .S, Ot'—> E{Z ’}/ ST;A ) ’ Svgtvlgt:H—l}'

Interestingly, Q* exhibits strong contlnulty properties that allow reducing the complexity of
solving G,

Lemma 4.1.1 (Dibangoye et al. (2018)). For every time step T, the optimal value function
QE: O x B; — R is piecewise-linear and conver over occupancy states and decision rule pro-

files. In other words, there exists a finite collection Qr < {qET“: |B,11. € Bri1:} of action-value

functions qET“: under behavioral strategy profile 3, .4., such that: for occupancy state o and

decision rule profile B,

Q*(U’m B- ) = maXg.eQ, E(s 0-,a)~Pr{: |JT,ﬁ }{QT(Sa 0:,a)}, (43)

where qET-H (3 97’70’) - 7'(8 a’) + FYE(S ,2)~p(:|s, a){at e ( /7 (GT,Z,CL))},

with boundary condition oy (-) = g (-) = 0.

Lemma 4.1.1 allows us to optimally solve the common-payoff Bayesian games G, by taking
the best among solutions of single-stage subgames Go = (n, x;BL, Qq. (57,-)) induced by action-

value function ¢, € Q-, where Q3. (o-, 3, )< E, 07.)~Pr{|or B, 1{4-(s,07,a)}. In particular, the
problem of maximizing B, — Qg (07,8,), which is equivalent to a common-payoff Bayesian
game, will play a crucial role in disentangling decision variables.

From now on, we will make the following hierarchical information-sharing assumption.
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4.2. Hierarchical Information Sharing

Assumption 4.1.2. Planning horizon H is finite.

Remark 4.1.3. Regarding infinite-horizon problems, the infinite-horizon solutions are e-close
to H-horizon optimal solutions, where H = [log. (1 —~)e/c|, for discount factor v € [0,1) and
scalar € > 0.

Assumption 4.1.4. Every player i has instantaneous and cost-free access to their subordinate
actions and observations at every time step T—i.e., (al_y,zL) © 2. Player 1’s actions and
observations are public to all other players (i.e., is at the bottom of the hierarchy); and player n

sees all actions and observations of other players (i.e., is at the top of the hierarchy).

We refer to cp-P0SGs with hierarchical information-sharing as his-cp-P0SGs.

4.1.2 Limitations of Single-Player Reformulations

The methodology suggesting to solve an his-cp-P0SG through the derived his-cp-oMG applies,
but the curse of dimensionality restricts its scalability in the face of games with many players.
To better understand this, notice that the complexity of optimally solving a his-cp-oMG using
point-based algorithmic schemes (e.g., HSVI or PBVI) depends on two operators: the point-based
backup operator, which optimally solves single-stage games G, and the estimation operator
that maintains occupancy states. In either case, the HIS assumption is not leveraged. State-
of-the-art approaches to solving G~ perform either brute-force or implicit enumeration and
evaluation of double-exponentially many decision-rule profiles (Olichoek et al.; Dibangoye et
al.; Dibangoye et al.; Dibangoye et al., 2010; 2009; 2013; 2016). This provides an intuitive
explanation for the negative complexity results: optimally solving G& is NP-hard, and finding
e-approximations remains hard (Tsitsiklis, 1984). The estimation operator also suffers from
the curse of dimensionality. Indeed, the number of decision variables of all players involved
grows exponentially with time and team size. The following sections aim at leveraging the
HIS assumption, whereas a more concise description of occupancy states (e.g., through lossless
compression techniques) is left for future work.

4.2 Hierarchical Information Sharing

This section leverages the HIS assumption to reduce the time complexity of solving Bayesian
games G&7 .

4.2.1 From Single-Stage to Extensive-Form Games

The application of Bellman’s optimality principle to cp-P0SGs typically introduces a temporal
decomposition that allows computing a solution of G, recursively. The recursion at time step 7
involves solving games G&~. Here, we complement this by introducing a player-based decomposi-
tion for the computation of each game GZ7.. Let us consider a perfect-information game (Shoham
et al. 2008) (cf. Figure 4.1) starting with player 1 at the bottom of the hierarchy that chooses

action al according to its total available information ¢! = (o,601). The game then randomly

lands on total available information ¢? = (¢!, al,62), for which player 2, the next player in the

T T
reversed order of the hierarchy, chooses action a2. The process continues until the game ran-
domly lands on total available information ¢” = (¢»~1,a”~!,6%). Player n chooses an action a”

) T
and receives expected rewards R(¢", a”) o Espr(|cr,an}{¢r (5,07, a7)} upon taking action a in
information state ¢'. Note that the expectancy is well-defined as 67 contains histories of players
1 to n — 1 and is consequently equal to a joint history 6.
More formally, the game can be described by a perfect-information extensive form game?! in
which nodes for player i correspond to total information ¢¢. The probability T'(c¢,at,*1) that
the game moves a node ¢’ to another one &1 = (&, @, 6i+1Y is Pr{#i+t|o,, 0L, ... 0} 555 o

ToYT 9i+1'
T

3Information sets are reduced to single nodes.
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4.2. Hierarchical Information Sharing

at al

A a a | A a o |
Figure 4.1: The search space for a single-stage game using player-based decomposition, illustrated as an AND/OR tree.

OR nodes (triangle) represent alternative ways to solve C:'g:. AND nodes (circle) represent subproblem alternatives to be
solved.

Definition 4.2.1. The common-payoff perfect-information extensive-form game w.r.t. G?: s a
def

tuple G& = (n, %, U AL, T, R where:
e n is the number of players;
o X = Ul Y, is the set of nodes ¢ for all players i, induced by o ;

for any player i, A® is as in the cp-POSG and corresponds here to her set of actions>?;

transition function T: ¥ x (UM AY) x ¥ — [0,1] specifies the probability of a successor
node;

reward function R: X" x (U A") — R specifies the common payoff received upon taking
an action in a leaf.

4.2.2 Optimally Solving G As G

Optimally solving a common-payoff perfect-information extensive-form game aims at finding the
action-value functions ﬁ:”’* mapping nodes and actions to optimal values. Unlike the original
single-stage game G, the perfect information extensive form game G& makes the HIS structure
explicit. Every time a player acts, she is perfectly informed about all the histories that have
previously occurred—i.e., all histories of its subordinates. Hence, the total information nodes
include the actions of subordinate players of the current player, along with the histories of its
subordinates. Nonetheless, both games yield the same solution.

Theorem 4.2.2. Any optimal solution for G¥. is also an optimal solution for G& . Besides, the
optimal action-value functions 'y;:n’* of G are the solution of the Bellman optimality equations:
for any i, ¢¢, and a’,

Fo¥ (¢t al) = E§i+1~T(~\ci,afr){II}%¥ EFLE (L ity
ar

with boundary condition v3"*: (¢, a™) — R(¢", a™). Also, greedy decision rule B2* for any player
i at 0% is:

BL*(0L) € arg max,; Ae*(GE al),
where 6 = (o7, 07, B 1H(07771)).

Proof. The proof proceeds in two steps. First, we show that the original game G%. can alterna-
tively be solved sequentially, by breaking G& down into smaller subgames

qr qr qr
(G 3 GO G i,

32Gimilarly to cp-oMGs, and given that we are trying to solve a cp-oMG, we assume that any action a’ € A° is
valid for player i, for any node ¢;.
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4.2. Hierarchical Information Sharing

one subgame per player. To this end, recall the goal of optimally solving G&, i.e., finding a
decision rule profile which yields the highest performance index, V,_(o;) o maxg_ Qg (0r,8;).
The expansion of decision rule profile 3, as an n-tuple of private decision rules (3%, 32,...,8%)
allows to rewrite the objective of G& as follows, V,_(o,) = maxg: maxgz ... maxge Qq, (0r, Br).
Let Q) (or,): Bl maxgi+in Qq, (or,3,) be a sequential action-value function. Then, it
follows that

Vor(om) =g e Qu omB)

- %%x {né%x. ..r%%x QqT(O'T,ﬂT)] ,

max Qq. (0r,BY).

b=

I

Interestingly, for every player i € {1,2,...,n— 1}, the action-value functions ka (o7, BLY) satisfy
the following recursion

, y
a- (07, B7") = maxmax...max Qg (07, 6,),
T T T

= max [max...max Qg (or,8,)|,

ST s
_ i+1 1:i4+1
- H&%)l( Qz,_ (07'7/67—Z )7
-

with boundary condition Qp _(o-,8;) £ Qq, (07,B,). For any arbitrary player i € {2,3,...,n},
define game G ] Gy AL QF (0, BY1 1)) to be the subgame upon the selected decision

or, Byt ar
rules AL~ starting in game G, with boundary condition Gg: & £ a, Al éT (or,-)). Conse-
quently, optimally solving the original game G& can be performed by optimally solving smaller
subgames <Gg:,®, G cy G?,:, ﬁ}_:n—1>7 one subgame per player, recursvively.

UT7B71—7 ’
Next, we shall prove that the best decision rule in any arbitrary sequential-move subgame
Gf: gli-1 depends on the current occupancy state o along with previously selected decision rules

,6?"_1, only through the corresponding nodes <% 4 (or,aki=t Bl:i) of the perfect information

extensive form game G&7. In other words, instead of selecting actions for all private histories of
player i in sync, one can choose the best action for each private history independently without
compromising optimality. The proof of this statement proceeds by induction from player n to
player 1. At player n, the greedy decision rule Bf satisfies the following;:

B::L € arg max/gg Qg,r (O-Ta ﬂ‘r)a
€ arg maXB;L Qq.r (JTv /67')7

€ argmaxgn Es0.a)Pr((o,,8,1{¢-(s,0,a)}.
Expanding over private histories of player n, we have that
677'1(0?) € argmaxgn E(s,@,a)~Pr{-|a,—,9¢,ﬁT}{%’(Sa 0, CL)}

Leveraging information available to player n as provided by the HIS assumption, we know that
the knowledge of private history 67 implies the knowledge of histories of all other players 8171,
hence the joint history 6., i.e.,

/@?rZ (077}) € argmax,n Es~Pr{-|0'7—,97—,,37} {QT(S7 0, a)}

In addition, the knowledge of 81"~ together with the decision rules BX"~1 of subordinates,
makes it possible to access node ¢" & (o, 81", BE"~1(91"1)) such that:

Br(07) € argmax,y, 72 (c2, a2),
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4.2. Hierarchical Information Sharing

where 771 (¢, a7) = Egoprijen,an}iBr(s,0,a)}, which proves the statement holds at player n.

Define function o : ¢ — maxa» 77 (¢, al!) at player n. Notice that the value of the sequential-

move subgame Gﬁ T T gl can be rewritten as follows:

ZL:I(O'T7 ,6,1;”71) = I%%X QZ‘T (0'7_’ /67-) (44)
= Eonopr(fo, prn-1y imax 7 (¢, ap)} (4.5)
= Eg$~Pr{~|aTaﬁql-m_l}{a:}(g?)}‘ (46)

Suppose the statement holds for any player ¢ > 1, with greedy decision rule B;(G’T) €
argmax,: 7;(S7,az). Define function of: ¢ — max, 77(s7,a;) at player i. Also, the value

of the sequential-move subgame GZT gri-1 can be rewritten by expanding over the sequential-

move nodes ¢! = (g, L%, gLi-t(9Li-1)) e,

2:1(0775;%1) = Egimpr{.wﬂgy—l}{@i(gi)}‘ (4.7)

We are now ready to prove the statement also holds at player ¢ — 1. For player i — 1, decision
rule Bi7! satisfies the following expression:

Qi—1 i— 1:4—1
/3;- € arg maxﬁi—l QZT 1(UT7 BT ‘ )7

€ arg maxgi—1 Ec};~Pr{-|JT,ﬂ}_Zi_1}{0/7:'(91")}'

Similarly to player n, the knowledge of Oi:i_l together with the decision rules ﬂlzi_? of subordi-

nates, makes it possible to access node ¢i~! o, oL~ B3l=2(9L=2)) such that:
B0 e argmax i i (6 al ),
where 41 (i1, i) Eeiprffcit i 1}{a (s2)}, which proves the statement holds at player

1 i—1

17 — 1. Define function ai’ ¥ i—1

> MAaxi-1 it ai71) at player i — 1. Consequently, the

value of the sequentlal move subgame G | o can be rewritten by expanding over the sequential-

move nodes ¢! & (o, 01), i.e.,

Vo, (07) = Baprp oy for (s}

The value of a cooperative game being unique, we know the optimal solution for G¥7 is also
an optimal solution for G&.. In demonstrating this statement, we also exhibited Bellman’s
optimality equations, prov1d1ng the solution of the perfect-information extensive-form game G2,
i.e., at any player i, node ¢, and action at,

(el

PYT (§T7 7') - E Z+1 (-|<i,g} {ma.X’Y

with boundary condition v7"*: (¢7,a?) — R(s™,a™). This ends the proof. O

Theorem 4.2.2 introduces Bellman optimality equations that enable us to find a greedy joint
decision at single-stage subgame G& by solving the corresponding extensive-form game G& . It
proceeds in two phases. From player n at the top of the hierarchy to player 1 at the bottom, a
backward pass computes optimal action-values 7" (%, a’) for each player i, each node %, and
each action a’. Then, from player 1 at the bottom of the hierarchy to player n at the top, a
forward pass selects a greedy decision rule independently for each player i, and each node ¢t. This
backward induction algorithm requires a time complexity linear in the number of players, nodes,
and actions O(n|2||A*|) instead of double exponential O(|O*|[4*") where ©* £ arg maxg: |07
with ©7 being the set of reachable histories of player i in o, and A* © arg max 4i | A?|. A careful
reader would notice that the linearity of ¢, over occupancy states and joint decision rules is key
in demonstrating Theorem 4.2.2.
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4.8. Near-Optimally Solving his-cp-P0SGs

4.3 Near-Optimally Solving his-cp-P0SGs

This section adapts the point-based value-iteration (PBVI) algorithm (Pineau et al., 2003) to
compute an e-optimal strategy profile for cp-P0SGs under HIS starting at initial state distribution
o9 for planning horizon H. We chose the PBVI algorithm because it leverages the linear functions
q- involved in the optimal value function. Besides, it is guaranteed to find near-optimal solutions
asymptotically. Notice that some algorithmic schemes such as HSVI might benefit our findings.
HSVI’s classical lower bound can be adequately modified to increase the efficiency of update
computations, but technical challenges need to be addressed regarding the upper bound, which
involves non-linearities (either using convex hulls or sawtooth approximations).

This section presents a pseudocode for the point-based value iteration algorithm to solve
common-payoff partially observable stochastic games with hierarchical information sharing near-
optimally.

Algorithm 4.1: PBVI for cp-oMGs under HIS.

1 function PBVI() Initialize @8: and V.
2 while V. has not converged do

3 improve(V., OF)

4 L OF. «— expand(OF)

5 function Improve(Of, Qo)

6 forr=/7—11t0 0do

7 for s, € O7 do

8 L V, <« V; U {backup(s:, Vr+1)}

PBVI, cf. Algorithm 4.1, has two main parts for solving a cp-oMG under HIS. First, it bounds
the size of the value function at each stage 7 of the game by representing the value only at a finite,
reachable occupancy subset (7);‘ . Next, it optimizes the value function represented as a collection
V, at each stage 7 using point-based backup, i.e., at any stage 7, V; = {backup(o,, Vr+1): 0; €
@CT’ }, where backups are executed in no particular order, i.e.,

backup(or, Vr11) = arg max QqBTH; (0r,8,).
P B eB ol ey,

This representation always lower bounds the optimal value function. Fach iteration of PBVI
traverses occupancy-state subsets bottom up. This iterative process repeats until convergence or
until a budget, e.g., CPU time, memory, or number of iterations, has been exhausted. The algo-
rithm adds supplemental points into occupancy subsets to improve the value functions further.
It selects candidate points using a portfolio of exploration strategies, including random explo-
rations and greedy w.r.t. underlying (PO)MDP value functions. For every stage 7, the algorithm
adds only candidate points beyond a certain distance from the occupancy subset (7);‘_ to create a
new occupancy-state set @g 11

For any arbitrary occupancy-state set (7)6’:, PBVI produces a value vg(op). The error between
vo(00) and v (ag) is bounded. The bound depends on how OF, samples the entire occupancy-
state space; with denser sampling, the estimate vg(og) converges to v§(op). The remainder of
this section states and proves PBVI’s approximation error.

Define the density 5@8 to be the maximum distance from any legal occupancy state to sets

Ao . _ def . } , -
Og.. More precisely, 5(96’» = MaX e H—1] MaXgeO7 Wiy Go |oc — o'||;. Define a positive scalar

T'maz Such that |r(-, ')Hoo< Tmaz-
Theorem 4.3.1. For any occupancy subsets (7)8:, the error of the PBVI algorithm is bounded by

1+ HyHH — (H + 1)7H
(1 =) ‘

Ug(O'()) — Uo(O'()) < 2Tmax6(§g:
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Proof. The proof is a direct adaptation of Pineau et al. (2003)’s one by approximating the error
of a finite-horizon problem instead of an infinite-horizon one. O

It is worth noticing that whenever H goes to infinity, our bound meets that from Pineau
et al. (2003) for infinite-horizon partially observable Markov decision processes.

4.4 Experiments

This section presents the outcomes of our experiments, which were carried out to juxtapose our
findings with the leading-edge theory employed in global methods, encompassing the utilization
of the PBVI algorithm as a standard algorithmic scheme. Our analysis involves three variants of
the PBVI algorithm, namely PBVI¢™*™ PBVI™P and hPBVI, each employing distinct methods
of performing point-based backups. PBVI®"*™ relies on brute-force enumeration of joint decision
rules. At the same time, PBVI™# utilizes mixed-integer linear programs (MILPs) for implicit
enumeration, following the state-of-art approach for general cp-P0SGs (Dibangoye et al., 2016).
We used ILOG CPLEX Optimization Studio to solve the MILPs. Finally, hPBVI incorporates our
findings to facilitate point-based backups under hierarchical information sharing. Global methods
are not designed to scale up with the number of players. To present a comprehensive view, we
have also compared our results against local policy- and value-based methods, i.e., asynchronous
actor-critic (A2C) (Konda et al. 1999) and independent Q-learning (IQL) (Tan 1998), respectively.
The experiments were executed on an Ubuntu machine with 32 GB of available RAM and a
2.5 GHz processor, utilizing only one core, with a time limit of 30 minutes (except Tiger, for
which all algorithms were given 1 hour).

We have comprehensively assessed various algorithms using several two-player benchmarks
sourced from academic literature, available at https://masplan.org. These benchmarks encom-
pass Multi-Agent Broadcast Channel (MABC), Recycling Robots (recycling), Meeting in a Grid
(Grid3x3), and Decentralized Tiger (tiger). To enable a comparison of multiple players, we have
also introduced the multi-player variants of these benchmarks.

Multi-player Tiger The single-player tiger problem was first introduced by Kaelbling et al.
(1998) and was later generalized to a two-player version by Nair et al. (2003). This game describes
a scenario where players face two closed doors, one of which conceals a treasure while the other
hides a dangerous tiger. Neither player knows which door leads to the treasure and which one
leads to the tiger, but they can receive partial and noisy information about the tiger’s location
by listening. At any given time, each player can choose to open either the left or right door,
which will either reveal the treasure or the tiger, and reset the game. To gain more information
about the tiger’s location, players can listen to hear the tiger on the left or right side, but with
uncertain accuracy. We have extended this problem to an m-player version by incorporating
hierarchical information-sharing and modifying the transition, observation, and reward models,
while ensuring that the original two-player problem can still be recovered.

In our n player version of the tiger problem, only the reward function is not straightforwardly
adapted. Listening costs —1, as in the original problem. Now, the penalty for opening the wrong
door is set to —100/n,,, where n,, is the number of players opening the bad door (doing so, we
retrieve the original problem for n = 2), and the reward for opening the good door is 10 for each
player opening the good door.

Multi-player Recycling Robot The recycling robot task was first introduced by Sutton et
al. (1998) as a single-player problem. Later on, Amato et al. (2012) generalized it to a two-player
version. The multi-player formulation requires robots to work together to recycle soda cans. In
this problem, both robots have a battery level, which can be either high or low. They have to
choose between collecting small or big cans and recharging their own battery level. Collecting
small or big cans can decrease the robot’s battery level, with a higher probability when collecting
the big waste. When a robot’s battery is completely exhausted, it needs to be picked up and
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placed onto a recharging spot, which results in a negative reward. The coordination problem
arises since robots cannot pick up a big can independently.

In our n-player version of the problem, transition and observation functions are straightfor-
wardly adapted as the classical problem with two players (and consequently, so are the problems
we generated for more than two players) is transition- and history-independent. Picking up small
cans rewards the same for each agent as in the two-player version. A reward of +5 multiplied by
the number of players is given if and only if all players try to pick up a big can, while a penalty
—10 is given if not all agents synchronize to carry the big can.

Multi-player Broadcast Channel Ooi et al. (1996) introduced a scenario in which a unique
channel is shared by n players, who aim at transmitting packets. The time is discretized, and
only one packet can be transmitted at each time step. If two or more players attempt to send a
packet at the same time, the transmission fails due to a collision. Hansen et al. (2004) extended
this problem to a partially observable one, focusing on two players (Hansen et al., 2004). We
used similar adaptations to define a partially observable version of the original n-player broadcast
channel.

Multi-player Grid3x3 This problem was first introduced by Amato et al. (2009). It involves
two players who want to meet each other as soon as possible on a two-dimensional grid. Each
player has five possible actions: moving north, south, west, east, or staying in place. To simu-
late an uncertain environment, each player’s action has a fixed probability of being successful.
Additionally, each player can only sense their own location and has no knowledge of the other
player’s location. To adapt the problem for multiple players, we placed n players on the grid,
each with the same actions and perceptions as described above. The reward has been redefined
as the largest number of players minus one present at one of the two meeting points. This way,
the original problem can be retrieved for two players.

We conducted three sets of experiments to assess our findings:

1. To assess the exponential drop in time complexity of backups with respect to an increasing
number of players, we measure the average time required to perform a single backup, cf.
Section 4.4.1 — Average Backup Time for Increasingly Many Players.

2. To assess the exponential drop in time complexity of backups with respect to increasing
horizons, we measure the average time required to perform a single backup, cf. Section
4.4.2 — Average Backup Time for Increasing Horizon.

3. To assess the empirical interest of our findings with respect to the state-of-the-art approach
to solve general cp-P0OSGs, c¢f. Section 4.4.3, we compare anytime performances of hPBVI
against state-of-the-art solvers — Against State-Of-The-Art Solvers.

The average time of backups is computed by:

e performing one complete iteration of PBVI with only one occupancy state per time step;
and

e considering that (especially for this specific iteration) expansion costs are negligible.

A timeout is set to 1800 seconds for all problems, except Tiger, for which algorithms are given
1 hour.

4.4.1 Average Backup Time for Increasingly Many Players

This section investigates the average computation time required to perform a single backup for
increasing number of players, cf. Figures 4.2a to 4.2d The experiments show that, on all tested
benchmarks, hPBVI exhibits a reduction in computation time compared to the other variants.
Moreover, hPBVI can handle a larger number of agents (up to 9 for Tiger, and Recycling) com-
pared to the other variants, which are limited to a maximum of 5 agents. This time-complexity
reduction in hPBVI is the result of our findings providing the ability to fully exploit the hierar-
chical information-sharing structure.
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(a) ABT for the tiger problem and different numbers of players.
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(b) ABT for the recycling problem and different numbers of players.
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(d) ABT for the grid3x3 problem and different numbers of players.

4.4.2 Average Backup Time for Increasing Horizons

This section studies similar data to the previous one, investigating the average computational
time required to perform a single backup for increasing horizons, cf. Figures 4.3 to 4.6. The
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experiments show once again that, on all tested benchmarks, hPBVI exhibits an exponential drop
in time complexity compared to the other variants. However, all three variants of the PBVI
algorithm exhibit an increase in time complexity with respect to the planning horizon. This
increase in time complexity is expected since, as time goes, the size of collections (V;), also
increases.
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Figure 4.3: Average backup time as a function of planning horizons for Tiger.
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Figure 4.4: Average backup time as a function of planning horizons for Recycling.

4.4.3 Against State-Of-The-Art Solvers

In this section, we compare our PBVI algorithm variants with two local algorithms, namely
A2C and IQL, which are state-of-the-art and can handle a large number of players, as shown in
Figures 4.7 to 4.10. However, these algorithms prioritize scalability over optimality and may
get stuck in local optima. Our experiments demonstrate that hPBVI consistently outperforms all
competitors in nearly all tested benchmarks in terms of convergence time and the value of the
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Figure 4.6: Average backup time as a function of planning horizons for Grid3x3.

solution found within an hour. In some weakly-coupled domains, A2C and IQL find near-optimal
solutions close to those found by hPBVI.

Our study aimed to assess the reduction in complexity achieved by point-based backups and
its effect on solving larger multi-player games. Our findings show that hPBVI performs point-
based backups significantly faster than other methods, which enables it to scale up to larger
teams, as illustrated in Table 4.1. Specifically, hPBVI was able to perform point-based backups
for up to 8 players in about 138.28 seconds in recycling(8) at H = 30, while PBVI®""™ ran
out of time for 4 players, and PBVI™P for 6 players. Additionally, hPBVI converges faster than
PBVI®™" and PBVI™P in 2- to 3-player domains. For example, hPBVI can converge in under 1
second in grid3x3(2) at H = 30, while PBVI™ takes about 1329.33 seconds, not to mention
PBVI®™™  Qur results in Table 4.1 demonstrate that hPBVI can scale up to larger teams of
players where neither PBVI™# nor PBVI®™" can.

Local methods A2C and IQL do scale up to larger teams as expected. Surprisingly, they per-
form very well on certain domains with weakly coupled players, as shown in mabc(6), grid3x3(3)
and tiger(6), cf. Table 4.1, for which either A2C or IQL outperforms hPBVI. Figures 4.7 to 4.10
report anytime performances in Section 4.4. Although this observation goes beyond our original
goal, it provides encouraging insights when comparing local against global methods over teams
of medium sizes. Nonetheless, we caution readers against drawing general conclusions from this
observation, as different local methods may yield different local optima and convergence rates.
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Figure 4.7: Anytime values for Tiger and H = 30.
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Figure 4.8: Anytime values for Recycling and H = 30.

4.5 Conclusion

This chapter presented a point-based value iteration algorithm for near-optimally solving cp-POSGs.
We exploited a hierarchical information-sharing structure, a dominant management style in our
society for corporations, governments, criminal enterprises, armies. Under this assumption, we
showed that point-based backup operations can be solved as perfect-information extensive-form
games without compromising optimality. Doing so results in an exponential complexity drop,
allowing global methods to scale up to larger teams of players. In contrast, the state-of-the-art
global approaches quickly ran out of time. Another important empirical finding is that our ap-
proach scales to all medium-sized tested domains while providing equal or better performances
than state-of-the-art local methods.

Traditionally, global methods have been considered ineffective in games that involve medium
to large-sized teams of players. For instance, state-of-the-art cp-P0SG solvers such as FB-HSVI
were only designed for two players (Oliehoek et al.; Dibangoye et al.; Dibangoye et al.; Dibangoye
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Figure 4.9: Anytime values for Multi-agent broadcast channel and H = 30.
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Figure 4.10: Anytime values for Grid3x3 and H = 30.

et al., 2010; 2009; 2013; 2016). However, we have presented a contribution that puts forth several
propositions for developing global methods that possess the scalability of local methods while
maintaining global guarantees. In applications where the stakes are high and critical, such as
search and rescue, security, and healthcare, scalable global methods with more reliable solutions
than those from local methods are essential.

Next, we discuss two lines of future work, one enabling to take further advantage of specific
structure in problems through compression, while the other involves the study of more general
hierarchical information-sharing structures compared to the linear one we considered so far.

4.6 Future Work

4.6.1 Compression

An important tool that helps planning algorithms such as HSVI or PBVI to scale up in general
cp-PO0SGs is the ability to compress equivalent individual histories maintained in the support of
occupancy states (Dibangoye et al. 2016). Still, players’ individual histories in his-cp-P0SGs
carry different information and are actually richer than in cp-P0SGs. It is not absolutely clear
how this affects existing compression techniques (e.g., LPE or TPE (Dibangoye et al. 2016)). We
believe that an analysis of the perfect-information extensive form game introduced for sequential
Bellman backup operators would exhibit equivalent nodes, in the sense that computations made
in their whole subgames are the same. Even more importantly, since nodes are associated to
individual histories, one might be able to compress the occupancy state associated to the game
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Table 4.1: Snapshot of empirical results, cf. Section 4.4. For each game(n) and algorithm, we report average time (in
seconds) per backup and the best value for horizon H = 30. oot means time limit of 30 minutes (except for Tiger, for which

1h was given to all algorithms) has been exceeded and - is not applicable.
hPBVI PBVI™iP PBVICU™ A2C IQL

ABT (s) V (bo) ABT (s) V(bo) ABT (s) V(bo) V(bo) V(bo)
tiger(2) 0.18 103.70 1.63 91.80 00T 95.73 - 80.15
tiger(3) 1.05 262.50 141.72  218.81 ooT 167.15 —  255.99
tiger(4) 6.28 393.75 00T 00T 20770 - 218.96
tiger(6) 912.63  65.61 00T 00T 201.02 - -129.51
recycling(2) 0.02 93.73 0.77 93.73 0.06 93.73 93.34 - 93.01
recycling(3) 0.047 252.83 19.28 252.83 143.59 247.80 142.00 — 129.57
recycling(4) 0.19 310.07 1157.31 283.05 ooT 181.25 — 153.03
recycling(6) 1.91 459.78 00T 00T 186.11 - 197.93
recycling(8) 138.28 600.00 00T 00T - 12619 —  244.02
mabc(2) 0.08 27.42 0.22 27.42 0.08 27.42 - 27.20 - 27.27
mabc(3) 0.93 27.61 2.14 27.61 1.63 27.61 - 2712 — 27.20
mabc(4) 11.44 27.87 58.15 27.77 ooT - 2712 - 27.27
mabc(6) 1800 23.19 00T 00T = 27.03 - 27.21
grid3x3(2) 0.61 24.44 1329.33 24.33 ooT = 22.93 - 24.35
grid3x3(3)  65.43  28.16 00T 00T - 2792 - 28.16

tree and consequently reduce its dimensionality.

The game tree analysis would start at player n at the top of the hierarchy. For any of her
nodes (corresponding to the leaves of the game tree), she knows a probability distribution over
the hidden states of the game as she is aware of all her subordinates’ individual histories. Then,
leaves that induce same probability distribution shall be equivalent, in the sense that any best
response of player n to any of her subordinates’ actions in one of the node is also a best response
for the other equivalent node. Recursively, player ¢ can merge two nodes if (up to a specific
ordering over nodes’ children) (i) outgoing edges have same probability and (ii) each child of a
node is equivalent to a child of the other node, in the sense of ¢ — 1’s analysis of equivalent nodes.

4.6.2 Hierarchical Organizations

It appears rather intuitive to imagine other hierarchical information-sharing organizations in
lieu of the linear hierarchy we exhibited. There could be more than one player at each level
of the hierarchy, each knowing what a subset of all players in the subordinate levels of the
hierarchy knows. We call tree-shaped information-sharing such assumption. Still, it does not
appear obvious to determine whether there is anything smarter to do than simply considering a
centralized selection of decision rule profiles for each level of the hierarchy, which again entangles
players’ decision variables for each level.

Let us, therefore, allow ourselves to leverage additional structure in a tree-shaped hierarchical
information-sharing cp-P0SG. One possible path to follow could be to assume that evaluations
of players’ behaviors only depend on the behavior of their superiors, the strategies of their
subordinates being fixed. In other words, evaluations of behaviors can be independently per-
formed within siblings. Significant structure in the cp-P0SG’s dynamics must exist to ensure
such independence. In fact, the state, observation and reward variables of a player must not be
affected by her siblings choice of actions. At high-level, the structure just described resembles
the network-distributed one and it might be possible to transfer some of the results from the
ND-POMDP literature to our case.

Finally, a very interesting question lies in the possibility to transfer our findings to the zero-
sum case. Doing so would generalize Hordk et al.’s (2017) work by only assuming that the
most-informed player knows her opponent’s history, but not the true state of the game. It is,
however, an open question to determine whether the complexity of Bellman’s operators can be
reduced as in the common-payoff setting.
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min-max Optimization in
Non-Linear-Payoff Zero-Sum Games
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This chapter focuses on zero-sum games with only two players, that only involve one time
step, and for which von Neumann’s minimax theorem typically does not apply.

5.1 Introduction

There is a growing interest in min-max problems from various communities. Generative Ad-
versarial Networks (Sanjabi et al. 2018; Oliehoek et al. 2017), fair statistical inference (Sattigeri
et al. 2018; Jagielski et al. 2019), robust decision-making (Chow et al. 2015), and general re-
source allocation (Du et al. 2017) witness its importance for machine learning. While it has
been known for a long time that formulating real-life problems as games is relevant to economics
(Friedman 1998), physical phenomena (Brunner et al. 2013) are also interestingly linked to such
an optimization problem. Basically, any situation in which two entities are trying to optimize
opposite performance criteria by interacting with a common system might be seen through a
game-theoretic perspective.

The players’ actions having heterogeneous influences on the system, min - max optimization
is a problem whose hypotheses and, thus, difficulty substantially vary depending on the context.

101
Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2024ISAL0062/these.pdf
© [A. Delage], [2024], INSA Lyon, tous droits réservés



5.2. Related work

As emphasized in the literature (Daskalakis 2022), applications of game theory to deep learn-
ing require modeling more and more complex interactions, making the usual convex-concavity
or even differentiability assumptions unfortunately too restrictive. This chapter thus provides a
first answer to tackle such problems, only requiring mild a-Ho6lder continuity properties.

Moving on to a formal problem definition, for any given continuous function f: X x ) — R
(where X ¢ R™ and ) < RP are compact), the general min-max problem is to compute at least
one pair (x*,y*) such that

x* € argmin max f(x,y), (5.1)
T Yy

y* € argmax f(x*,y). (5.2)
y

The simplest case, introduced by von Neumann (1928), assumes that (i) X and ) are respec-
tively the unit simplices of R™ and RP, and (ii) f is bilinear. Then, min-max equals max - min,
the problem corresponds to finding a Nash Equilibrium of a 2-player 0-sum normal-form game,
and is solved by a simple linear program in polynomial time (Shoham et al. 2008). While
min - max and max-min are still equal when replacing (i) and (ii) by (iii) X and ) convex and
(iv) f convex-concave (Sion 1958), such equality and simplicity of resolution does not hold in
the general case.

Relaxing assumptions (iii) and (iv) on f leads to various concerns. If f is either not convex
or not concave, Nash Equilibria do not necessarily exist (Daskalakis 2022). Even if they do, the
computational cost of finding one might be very high, as deciding whether a Nash Equilibrium
exists when the game is not convex-concave is NP-Hard in general (Daskalakis et al. 2021).

Relaxing assumptions leads to instabilities and divergent behaviors of gradient-based ap-
proaches. To tackle this problem, we build on a global optimizing algorithm for functions with
weak continuity assumptions, namely deterministic optimistic optimization (D00) (Munos 2011),
to e-optimally solve the min — max problem in finite time for functions with only mild a-Hdlder
continuity properties. This allows to deal with a larger class of games, starting with the ones
including entropy measures in the payoff function (Daskalakis 2022, Figure 1-b) (Asarin et al.
2015; Brandsen et al. 2022).

After detailing related work in Section 5.2, and providing some technical background re-
garding game theory and DOO in Section 5.3, Section 5.4 introduces two adaptations of DOO in
order to provide a finite-time convergent algorithm whenever the variables live in simplices. Sec-
tion 5.5 then derives an algorithm to e-optimally solve the min-max problem, and this algorithm
is experimentally studied in Section 5.6.

5.2 Related work

Assuming only differentiability (but not that a Nash equilibrium necessarily exists), the most
common approach to solve the min- max problem is to alternate between gradient ascents and
descents to respectively comply with max and min’s will. The resulting algorithm is known as
Gradient Descent Ascent (GDA). However, this can fail (Goktas et al. 2022), even for some simple
zero-sum bilinear games (Mescheder et al. 2018).

For this reason, under continuous differentiability assumption, a first-order Nash equilibrium
(FNE) solution concept was defined through the first-order Taylor approximation of the function,
and the existence of at least one FNE is guaranteed for twice-differentiable functions (Nouiehed
et al. 2019). Recent work introduced modifications to the GDA algorithm (Sanjabi et al. 2018;
Nouiehed et al. 2019; Goktas et al. 2022) to provide algorithms asymptotically converging towards
an FNE in a number of gradient evaluations going from O(e~2) to O(e~%) (Rafique et al. 2018)
through O(¢~%) (Jin et al. 2019; Lin et al. 2020), depending on the assumptions made on f. As
a matter of fact, computing e-FNEs has been shown to be in ExpTime with respect to either
1/e, the smoothness of the game, or its dimensionality (Daskalakis et al. 2021).

The intensive study of gradient-based approaches is partly due to its utility for deep learning.
Thus, min - max problems without, at least, differentiability assumptions were not studied even
though they naturally appear (Daskalakis 2022, Figure 1-b) (Asarin et al. 2015; Brandsen et
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5.8. Background

al. 2022). Since we are interested in games with poor continuity properties, we focus on the
min - max solution concept, which is well-defined and exists.

Encouragingly, the min-max problem always admits a solution (by f’s continuity) and the
optima of a “local” min - max version of the problem (Jin et al. 2019), i.e., where players can only
deviate within a ball of radius § from their strategy, are strongly linked to the stable limit point
of GDA (Jin et al. 2019). Besides, the min — max computation makes sense as it corresponds to
finding security levels for player min by searching for the most rewarding strategy that she can
announce to player max, and the resulting problem is called a zero-sum Stackelberg competition.

Busoniu et al. (2014) consider a slightly more general case in which players perform sequences
of actions. They show that, from this setting, one can derive a min-max algorithm to solve
the min - max optimization problem for Lipschitz-continuous functions w.r.t. a semi norm [, by
iteratively constructing a tree representation of possible sequences of actions for players 1 and
2. Interestingly, min-max optimization problems involving only one time step can be tackled
through seeing the game as a sequential one, in which players’ decisions (min playing before
max) consist in making a dichotomy of their search space. While we share similar ideas, our
contribution follows a different line of research, focusing on game-theoretical applications, thus
providing the adaptation for simplex strategy spaces, games with dependent feasible sets, and
drawing connections with recent questions in the game theory literature. We furthermore expect
that, while different, both algorithmic schemes yield complementary levers. For example, we
leverage the a-Holder properties to guide search in a subdivision tree. On the other hand,
pruning criteria in «a-g-like algorithms might be more powerful than the pruning criterion we
evoked in Remark 5.5.2.

5.3 Background

First, we start by providing some necessary background about game theory and insights about
the relevance of the a-Holder condition in games.

5.3.1 Games and solution concepts

Definition 5.3.1 (Two-player Zero-Sum Game). In this whole chapter, by default, games con-
sidered are zero-sum two-player one-shot games (2, AY, A%, f, —f> (as defined in Definition 2.1.1,
page 12), in which f is continuous but not necessarily differentiable. We recall that the game is in
normal form® if (i) A and A? are respectively the unit simplex S,, of RP' and the unit simplex
Sy, of RP2, and (i) f : x,y — @' - M -y, is derived from a matriz M belonging to Mp, p,.

A simple, yet interesting, example consists in a zero-sum normal-form game (S3, Sy, M) in
which player 1 (resp. 2) also wants to minimize (resp. maximize) the entropy of her mixed
strategy, while not degrading too much their expected payoff.

Example 5.3.2 ((Daskalakis 2022)). Consider the classical matching pennies game given by the
payoff matriz M

- (2 8 o

and the bilinear payoff function ' - M -y. The payoff function of the modified matching pennies
game in which player 1 is rewarded for a high entropy strategy but 2 is penalized for a high entropy
strategy is formally given by

fl@,y)=x" - M-y +zlog(z1) + z2log(x2) + y1 log(y1) + y2 log(ya).

In this zero-sum game, no Nash equilibrium exists, and the payoff function is neither convexr nor
concave. Still, the payoff function is a-Hélder for any o €]0, 1].

33 Actually, the games correspond to normal-form games extended to mixed strategies, as in in Theorem 2.1.5.
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5.8. Background

Definition 5.3.3 (a-Holder condition). For any norm | - |, a function f : X — R satisfies the
a-Hélder condition with respect to | - | if and only if there exists o €]0,1] and C € R such that
V(x, &) € X7, |f(z) - f(Z)] < Clz — 2| (5.4)

As mentioned in the introduction, Nash Equilibrium points (i.e., joint strategies which
no player has incentive in unilaterally deviating from) do not necessarily exist, in which case
max-min > min-max, even in a local sense (Jin et al. 2019). Players thus can not agree on a
joint strategy, and might want to search for the individual strategy that has the greatest value
against any strategy of their opponent, i.e., (for player 1) compute argmin, max, f(x,y).

Since we tackle games with poor continuity properties of the payoff function, we only assume
that f is a-Holder??.

5.3.2 Deterministic Optimimistic Optimization (D00)

We below present the D00 algorithm introduced by Munos (2011) to tackle single-variable opti-
mization problems for functions with mild Lipschitz properties.

Let f : X — R be a A-Lipschitz function with respect to any semi-metric [ (i.e., V(x,x’) €
X2 f(x) — f(x')| < M(z,2')) defined over X = R™. Given any semi-metric I, a cell (compact
subset) & and point & in S, f’s Lipschitz continuity with respect to [ allows optimistically
bounding, i.e., lower bounding, its value within S by f(&) — ADiam(S), where Diam(S) =
maXy zes (€, 2"). The smaller the diameter of the cell, the closer the optimistic bound is to the
values of f in it.

If & is bounded, DOO e-optimally solves mingey f(x) for a given error € > 0 by creating a
non-uniform covering of the domain with a finite number of cells where the variations of the
function are controlled. Let us assume that X is such that (i) there is an analytic way to create a
first covering with cells, and (ii) each cell can again be covered with children cells. The algorithm
(given in Algorithm 5.1) starts with the first covering of X' (line 2), and computes the optimistic
bound in every cell (line 3). Then, each iteration consists in

1. selecting the most promising cell S;+ according to the optimistic bound (line 6),
2. covering it (line 7) with subsets (S;);jez*,
3. finding a representative element x; of any cell S; (line 8)

4. computing the optimistic bound of each new cell (line 9).

The final returned value is the encountered point with the lowest value. Figure 5.1 gives an
illustration of an execution of DOO.

If the cells are “well-formed” (following Assumption 5.3.4 below) and their diameter decreases
w.r.t their depth in the tree (following Assumption 5.3.5), the approximation error shrinks with
the radius around the most promising area as the algorithm iterates. Thus, the difference r(n)
between the smallest value of f and DOO’s returned value after performing n coverings of cells
with children cells can be bounded (Munos 2011).

Assumption 5.3.4 (Valid cell (Assumption 4 in (Munos 2011))). There exists v € RT* such
that, for any cell S < X, there exists x € S such that Bi(x,vDiam(S)) < S, where Bi(x, p) =
{y e X|l(x,y) < p} denotes the ball of radius p centered in x for the semi-metric [.

Assumption 5.3.5. There exists a decreasing sequence 6(h) such that, for any depth h = 0, for
any cell Sp; of depth h in the tree, Diam(Sh ;) < 6(h).

Remark 5.3.6. Fortunately, for any given norm || - |, (i) an a-Holder function with constant C
is exactly a C-Lipschitz function with respect to the semi-metric || - |*, and (ii) balls By.j« (, p)
are valid cells. We are now able to adapt Munos’ work to tackle min-max problems for a-Holder
functions, using simple balls BH.”a(', ).

The next two sections respectively show how D00 can be (i) applied to the special case of
optimization over a simplex and (ii) adapted to solve a min-max problem.

34For the sake of simplicity, we only expose the results for a-Holder functions, even though Munos (Munos
2011) presents the result for Lipschitz functions with respect to any semi metric ! (not just || - |¥).
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5.4. Finite-time convergent D00 for simplex spaces

Algorithm 5.1: DOO

1 Fet D00([X = R; 2 f(x)],n)

input : f:R — R a-Holder func. with constant C'
Initialize Z and (S;)iez s.t. X S UierS;

Vi e Z, compute f(x;) — Cpf

/* p; : diameter of S; ;
x; : representative element of S;. */
time «— 0
while time < n do
i* — argmin, 7 f(@;) — Cpf
Cover S;+ by Ujez*Sj (2 Si*)
VjeI* xj — Repr(S;)
/* Repr(S;) : point € S; n X. */
9 T — [Z\{i*}] v Z*

10 time «— time + 1

11 return (arg & ming, f(x;))

W N

®w N & U

1.00 A1

0.75 1

0.50 1

0.25 1

0.00

—0.25 A

—0.50 A

—0.75 A

—1.00 A

Figure 5.1: Representation of D00’s execution to minimize  — sin(z) on [0,27]. The interval is covered with cells (i.e.,
here, intervals) of different sizes where the function sin is lower-bounded by "Lipschitz cones", themselves lower-bounded
by a constant. The cones, along with their constant lower bounds, form the triangular shapes.

5.4 Finite-time convergent D00 for simplex spaces

In this section, we come back to vanilla minimization (rather than min-max optimization) and
provide two modifications to the original DOO algorithm in order to match usual requirements of
game theory. First, we require our algorithm to converge in finite time to an e-optimum instead
of bounding the regret for a given time budget. This leads to introducing a pessimistic bound
which will also be useful later as a pruning criterion. Secondly, we show that DOO can be used
when the search space is a simplex by applying iterative simplex discretization methods.

5.4.1 Modifying the stopping criterion

The initial analysis of DO0’s complexity bounds its error with respect to a given budget n. We
change viewpoint to show that, for any € > 0, one can derive a stopping criterion that is reached
in finite time. To do so, we introduce upper and lower bounds of the optimal value, which will
monotonically shrink as the algorithm iterates. The algorithm returns whenever the difference
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5.4. Finite-time convergent D00 for simplex spaces

between the maximum value of the upper bound and the maximum value of the lower bound is
smaller than e.

Proposition 5.4.1 (Upper and lower bounds). Let f be an «-Holder function and C be an
a-Holder constant of f. Let (By.,(xi,pi))i be a set of cells partitioning f’s domain. Then,
mingex f(x) is upper- and lower-bounded respectively by ming, f(x;) and ming, [f(x;) — Cpf].

Proof. The proof is direct. O

A straightforward adaptation of Munos’ regret-bounding proof leads to the following conver-
gence theorem.

Theorem 5.4.2 (adapted from (Munos 2011)). Let € > 0 be a given error. Let (B, (zi, pi))i be

the set of cells covering f’s domain, updated as the algorithm iterates. The quantity | min; [ f(x;) — Cp§

min; [f(x;)]| decreases throughout the optimization process and is smaller than € after a finite
number of iterations.

Remark 5.4.3. One could derive a precise complexity bound, but at the cost of introducing
function-dependent topological constants whose computation is, in general, even harder than the
optimization problem. Instead, Theorem 5.5.8 (Section 5.5.1) will provide an upper bound of the
complezity, based on the worst-case scenario of optimizing a constant function.

Note that (i) min; f(z;) — Cp$ and min; f(x;) have no reason to be attained in the same cell;
and (ii) Theorem 5.4.2 leads to simply modifying line 5 of Algorithm 5.1 to stop whenever the
gap between bounds is less than €. The parameter n in Algorithm 5.1 is thus replaced by e.

5.4.2 DOO for simplex spaces

Subdivision process We now detail how to subdivide the n-dimensional unit simplex Sy (1)
using smaller and smaller hypercubes as the process iterates.

Even though simplex decomposition techniques are not new (Edelsbrunner et al. 1999; Paulav-
i¢ius et al. 2014), we introduce a new simple subdivision process that is well suited to the use
of DOO. The process starts with the n-dimensional hypercube (i.e., the closed ball B, (0, 1) =
{x € R" ||| — 0]|sc < 1} centered in 0 with a radius 1), and will decompose it through smaller
hypercubes. Note that hypercubes are cells that cover [0, 1]" whereas their intersection with the
unit simplex are cells covering the n — 1-simplex. The following theorem shows how to determine
whether a hypercube intersects the simplex or not, and how to compute a referent point, on
which the function will be evaluated. All the created hypercubes can again be covered with
2™ hypercubes, and so on, which allows creating an iterative covering of the unit simplex with
smaller and smaller hypercubes.

Theorem 5.4.4 (Intersection between the probability n — 1-simplex and an n-dimensional hy-
percube). Let n € N*\{1}. Let H be an n-dimensional cube (i.e., a closed ball for ||-||o) of radius
n whose center is called m. Then, H and Sp(1) z'ntersect (ie., (H n S,(1)) # &) if and only
if I(xi,z5) € H? such that Yp_ aF < 1 and Y} _ lx > 1, and an intersection point (called
referent point) can be computed.

Proof. Let us consider the diagonal from the lowest point (x;,f = (m! —n,...,m" —n)) to the
highest point (zi,r = (m' +n,...,m" + 7)) of H and apply the Intermediate Value Theorem.
There is no intersection point if and only if Zk ing > 1or Zk wp < 1. Else, the intersection

Zk—l 'Lnj
2nn

n
k

Ex _1<:>Z[mf+t Lsup — znf)]zl

k=1

k
_ DY R - L= Ty
Zk m?up - mfnf n: 277

S

point is & = @jn ¢ + t(Tsup — Tiny), Where t = . Indeed,
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5.5, min-max a-Hdélder Optimization

2D simplex illustration. In blue : x+y=1
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Figure 5.2: Illustration of the subdividing process
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Figure 5.3: Number of hypercubes kept when optimizing over the n-dimensional simplex (here, n = 3) as a function of D00’s
number of iterations (N).

Figure 5.2 illustrates the iterative subdivision of the 2-dimensional unit simplex by 2-dimensional
hypercubes (i.e., squares). Let us point out that the subdivision operation is here concentrated
around the optimum: (0,1). Squares with a red cross do not intersect with the n — 1-simplex
and are pruned, while the other ones do and are therefore kept. The unit-simplex being of
dimensionality n — 1 and the hypercubes of dimensionality n, as illustrated by Figure 5.3, we
conjecture that lim, . #H(N) = N -2"~! where #H(N) denotes the number of hypercubes
kept after N iterations.

5.5 min-max a-Holder Optimization

In this section, we come back to the min - max problem to provide a global optimization algorithm
that converges in finite time to an e-optimal solution.
To do so, one can first notice the a-Hélder continuity of the “outer” function  — maxy f(x,y).
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5.5, min-max a-Hdélder Optimization

Lemma 5.5.1. Let f be a a-Hdlder function and let C' be one of its a-Holder constants. The
function & — maxy f(x,y) is a-Hélder and C is one of its a-Hélder constants.

Proof. Let

def

g(®) = max f(z,y).
y

Then, for any x and @, assuming wlog that g(x) > g(a’),

9(@) — g(a) = max f(z,y) — max f(z',y)
< max (f(2',y) + Cl(z,y) - (&, 9)|") - max f(z',y)
= max (f(',y)) + Clle - 2'|* — max f(z'.y)
=C|z — 2|~
A similar result holds for g(z’) > g(x), concluding the proof. O

With this property, we solve our min-max optimization problem by using two nested D00
processes, i.€.,

e an outer €j-optimal D00 minimizing the function « — max, f(x,y), using the solution of
e an inner eg-optimal D00 maximizing the function y — f(x,y) for fixed x

(see Algorithm 5.2). Munos’ proof can be adapted to this case to show that the final error is
€ = €1 + €.

Algorithm 5.2: BiD0O

1 Fct BiD0O(|A! x A2 5> R; z,y — f(m,y)],el,ez,C))
input : f:A' x A? - R an a-Hélder function
2 <13mina Umin> «— D00(

[.Al —R;x— —getMin(

DOO([.A2 —R;y— —f(w,y)],GQ,C)

)],61,(3’)

/* getMin(-,-) here returns its second argument, %.e., the minimum of the inner DOO

computation. */

3 return {Zyin, Umin)

Remark 5.5.2 (Pruning the Inner Process). Using a pessimistic bound for the outer process
1s not only useful to provide a finite-time convergent algorithm, but also helps to prune some
wrrelevant parts of the search space. The current pessimistic bound of the outer D00 is passed to
the inner DOO when called, so that it stops whenever the value of x is necessarily higher than the
pessimistic bound of the inner process (process not shown in Algorithm 5.2).

5.5.1 Complexity analysis

Let us now upper bound the number of iterations it takes for BiD0O0 to converge by analyzing
it in the worst case, i.e., optimizing a constant function. Let us assume that BiDOO is called
to solve f : S, x S, — {a} with a € R, but is given an (overestimating) a-Hélder constant
C > 0. In this case, BiDOO0 iteratively covers up the simplex with an increasingly thin uniform
grid, and the exact number of iterations it takes before reaching a stopping criterion € can be
found analytically.
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5.5, min-max a-Hdélder Optimization

Theorem 5.5.3 (Complexity upper-bound). For any zero-sum game {Sy, Sy, f), BiDOO returns
an e-optimum (x*,y*) in less than

logy(Co/e) | [loma(co/)
D@ x| Y @)
=0 1=0

subdivision processes, where C' is any «-Hdolder constant of f given to BiDO0.

Proof. BiD0O0 subdivides the search space. For a given €, and a given overestimating a-Holder
constant C, the minimum diameter of the cells to ensure e-convergence is ¢/C*. With hypercubes,
the radius of the cells is divided by 2 at each subdividing process, so that a depth of log,(¢/C)
in DOQ'’s tree is required. Now, each evaluation of a node in BiD0O0Q’s outer tree has, at worst, the
same complexity as a complete 2P-ary tree of depth log,(e/C?). The outer tree after convergence
being, at worst, a 2"-ary tree of depth logy(e/C%), the complexity result holds. The worst case
is obtained when f is constant. O

5.5.2 Games with dependent feasible set

In this section, we look at games with dependent feasible sets, formally given by the computation
of

i : 5.5
0 P e ) )

for some F. Such games received a growing interest recently, especially in the form of Fisher
market problems (Fisher 1892), formulated as a game with dependent feasible set in (Goktas
et al. 2021). Assuming that f is a-Holder in the whole space A' x A2, the following provides a
sufficient hypothesis on F' to ensure BiD00’s convergence on such a game.

Theorem 5.5.4. Let H be the Haussdorf distance for compact sets of B(A?), defined by:

H:B(A*)? - R*
(A, B) — max{sup inf ||a — b|«, sup inf |a — b|«}.
beB beB acA

Let B(A?) denote the Borelian algebra of A?. If, Vo € A', F(x) is a bounded, closed and
convex (i.e., compact convex) element of B(A?) and F is \-Lipschitz continuous for the Haussdorf
distance, then BiD00 converges towards a CeX - (1 + %)-optimum n finite time.

Proof. Let f : A' x A2 — R be a-Holder, and C be a Hélder constant of f. Assume that
F : A — B(A?) is A\-Lipschitz-continuous for the Haussdorf distance. Let z € A! and € > 0.
We aim at bounding the variations of z — maxycp(,) f(¥,y) within a ball of radius € around z,

formally given by SupieBH,Hm(x,e)‘ma‘xyEF(x) f(x7 y) — MaXyep(z) f(i@ y)’
A first observation is that, Vi € B (w, ),

Vye F(Z), f(@,y) < f(z,y) + Cllz — 2||%,
since f is a-Hélder in the whole space A! x A?, so that

ma Z,yY) < ma z,y)] + C|lx — Z||%.
yepé)f( y) yep(?i)[f( y)]+C 1%

Then, for any & € By, (7, ¢€), let us define I by

1Y - ) 5.6
|yg?(§)f(ﬂ%y) yrengé)f(w,y)l (5.6)

Let y* € argmax,cp(,) f(2,y) and §* € argmax,cp(z) f(7,y) (Whose existence is given by f’s
continuity on a compact set).
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5.6. FExperiments

Assuming without loss of generality that f(z,y*) > f(z,7*), we have

|ﬂ=f@wﬂ—£%%ﬂ%w (5.7)
< f(@,y™) = fo, Tpe (y™)), (5.8)

where Ilpz)(y) € argmingep(z [y* — Bllo, which exists as a minimum as we are dealing with
compact sets of R”. Now,

ly* — T pe) (y™) o < S;](D) ly — T pe) (y) o (5.9)
yeF(x
< H(F(x), F(¥)). (5.10)
Thus,
f(@,y*) = f(o,Up@ (y*)) < CH(F (), F(%))” (5.11)
< Oz — &2 (5.12)

and, finally, |I| < CAllz — 2|5, < CAe® so that Vi € By, (v, €),

mx f(2.9) — max £(5.9)| < OVl = 313 + CAlle —

yeF () yeF' ()
< Cle (1 + 6) .

€

This defines the upper bound of a cell B”,Hoo(a:, €) so that DOQ applies to the computation of the
outer function g : x — maxycp(y) f(7,y). O]

5.6 Experiments

The following aims at studying the behavior of BiD0O (i) relatively to its hyperparameters (Sec-
tions 5.6.1 and 5.6.2) and (ii) for games with dependent feasible set (Section 5.6.3). All ex-
periments ran on an Ubuntu machine with i7-10810U 1.10 GHz Intel processor, 16 GB available
RAM.

When considering normal-form games, the exact min- max value is given by the resolution of
a linear program using Cplex®, and the a-Holder constants of the inner and the outer processes
are obtained using the following lemma.

Lemma 5.6.1. f : & — maxyx' - M -y is Y, max;|m;|-Lipschitz and, Y, the function
y—ax' -M-yis 2. max; [my j|-Lipschitz when .,y are elements of the unit simplex of R™.

Proof. First, we show that Va,y — x| - M -y is Zj max; |m; j|-Lipschitz.

2" M-oy—a' M-y

Sup - (5.13)
Y,5€Sn (1) ly — 9l
T M- (y—1
~ s (y —9)| (5.14)
Y,5€Sn (1) ly — 9o
(M) . . — -
— sup | Z]( )J (Nyj y])| (515)
Y, 95 (1) ly — ¥l
< 25 [(@M);lly; — gl 5.16)
Y,5€Sn (1) ly — 9o
max; =051 > [(xM);
,9€5n (1) ly =i
35Cplex 12.1 https://www.ibm.com/fr-fr/analytics/cplex-optimizer
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(a) BiD0OO’s convergence time (average and standard (b) BiD00’s observed error (average and standard
error) as a function of ¢ for 3 different distributions. error) as a function of € for 3 different distributions.

sup Z Z xi|m;

y,9e5.(1) 5

(5.18)

< sup Zm'ax\mi,j]in (5.19)
y,gesn(l) 5 " i
= Zmax |m; ;| since x € Sp(1). (5.20)
B (2
J

Now, we show that @ — maxy @' - M -y is >, max; [m; j|-Lipschitz. For all (z, &), assuming

maxy ' M-y> maxy &' - M -y, and writing y* for an element of arg max,, x' - M-y,

|lmaxa' - M-y —max&' - M -y (5.21)
Yy Yy

<z M- -y* -z M- -y* (5.22)

—(x—&) - M- y* (5.23)

< 1M - y*)illz — Foo (5.24)

< (Vlmax|mi) e — &l since y e Su(1), (5.25)
y J

| maxy @ -M-y—maxy &' -M-y|
lz—&0

so that sup, ; < D max; [m . O

5.6.1 Choosing the e-distribution

A question is whether one should choose €1 = ¢5 = %e or another distribution, such as ¢; = %e or
€9 = %e. To partially study this, Figures 5.4a and 5.4b respectively provide BiD00s computation
time and actual error when solving the min - max problem for randomly generated 3 x 3 matrices
taken in [0,1]3*3. Results are randomized over 30 matrices. We observe that (i) with the
50/50 distribution, BiD0O0 appears to converge faster, but (ii) with the 25/75 distribution, BiD0O
provides a lower error in average. While the error results appear very intuitive, the timing ones
are a bit more surprising. One could expect the 25/75 distribution BiDOO to be faster than the
50/50 one as it is less demanding with the inner process, which is called exponentially more often
than the outer one. Still, as the number of iterations required to provably reach an error smaller
than a given € = €1 + €3 is exponential w.r.t €, the 25/75 distribution BiDOO may require way
more time for the outer DOO to converge. This might, as a whole, take more time. In all the
following experiments, we pick €] = es.

5.6.2 Validating the approach

We consider 100 randomly generated matrices M € [0,1]3*3. Figures 5.5a and 5.5b respectively
give the computation time as a function of the error imposed to the algorithm and the error
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Figure 5.6: GDA applied to the problem max; miny x - yT. Red points correspond to points visited by the GDA algorithm.

compared to the exact value.

Several things are to be noted on this figure. Firstly, we observe consistency, i.e., BiD0O0’s
error with respect to the exact value always being lower than the error € imposed to BiD0O.
Secondly, and as predicted by Section 5.5.1, the time taken by the algorithm to converge appears
exponential with respect to e. Interestingly, BiD0OO returns a value that is guaranteed to be e-close
to the optimum, but which is actually around €/10-close to the exact value.

Looking back at Theorem 5.5.3, we compared a uniform search iteratively building a small
enough uniform grid to BiD00 using the same set of 100 randomly-generated 3 x 3 matrices, for
e = 0.15. It takes the uniform search in average 7.8s (std. error 0.9s) to end, whereas BiD00
converges on average in 2.4s (std. error 0.2s).

5.6.3 Comparison with the state of the art

Bilinear Games and Gradient Descent Ascent It is known (Zhang et al. 2020) that
“vanilla” GDA (i.e., with constant step size) can fail even for the bilinear game ' - I,, - y, where
z,y € R, and I, is the n-dimensional identity matrix. An illustration of GDA’s behavior is given
in Figure 5.6. As the game is bilinear, it is a fortiori a-Holder, and BiD0OO provably solves the
min - max problem.
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5.7. Conclusion
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Figure 5.7: Upper and lower bounds as a function of the iteration number for the optimization problem in Expression 5.26.

Games with dependent feasible sets The difficulties with running a gradient-based algo-
rithm to solve general min-max problems can be illustrated (Goktas et al. 2022) through the
computation of

min  max 2z +y+ 1. (5.26)
we[—1,1] ye[-1,1],
1—(z+y)=0

In such a game, GDA converges to (0, 1), which is not a solution of the min - max problem, whereas
BiD0OO0 does converge to an e-optimum as illustrated in Figure 5.7, provided the subdivision process
is modified to satisfy the constraint y € [—1,1], and 1 — (x + y) = 0. This result is expected as
this example satisfies the assumptions of Section 5.5.2.

Interestingly, Figure 5.7 shows a pessimistic bound within € of the optimum way earlier than
the optimistic bound. This behavior is frequent with approaches which guarantee e-optimality
using optimistic and pessimistic bounds; proving optimality (i.e., lowering the optimistic bound e-
closely to the optimum) is harder than heuristically finding near-optimal points. This is coherent
with the observation made in Section 5.6.2 that DOO often returns values closer to the optimum
compared to the imposed error.

5.7 Conclusion

In this chapter, we proposed an algorithmic scheme, BiD0O, for the min - max optimization prob-
lem of a-Holder functions, leading to a finite-time convergent algorithm to an e-global optimum.
The mild a-Holder assumption prevents from relying on differentiability for optimization, and
we instead built on the D00 approach for single-variable optimization problem under Lipschitz-
continuity assumptions with respect to any semi metric. Our approach offers some robustness,
as we proved its convergence to a e-global optimum for games with dependent feasible sets, un-
der Lipschitz-continuity properties of the dependence. On the downside, the time complexity
of BiD0O is exponential with respect to both (i) the dimension of the game and (ii) 1/e, which
limits its scalability.

The relative simplicity of the algorithmic scheme allows considering several lines of future
work, some being discussed below.

5.8 Future Work

Two main future lines of research are presented below. One approaches practical experimentation
for real-life problems while the other digs deeper into theoretical concerns to study other types
of games with weak continuity properties.
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5.8. Future Work

5.8.1 BiD00 and Games With Dependent Feasible Sets

Section 5.5.2 discussed to what extent the BiD0O algorithm solving max — min optimization
problems can be applied to games with dependent feasible sets. These games are not uncommon
and, for instance, arise in well-known Fisher market problems (Goktas et al. 2021). Implementing
such problems and conducting a comparative analysis of BiD0O0 against current state-of-the-art
methods is a short-term objective.

5.8.2 BiS00 to Solve Some General-Sum Stackelberg Games

Without particular hypotheses on players’ payoff functions, Stackelberg games can be extremely
difficult to solve. For example, the function to maximize u' — f(7!, 72*) given that 7%* €
argmax, > f2(r!, 72) is discontinuous in general and each discontinuity can be reduced to a single
point (Bressan et al. 2019). It was however shown that some differentiability assumptions forbid
discontinuities with null Lebesgue measure (Bressan et al. 2019), but player 1 is only allowed a
1-dimensional bounded strategy space. We conjecture that an extension of BiD0O relying on the
S00 algorithm designed to maximize single-variable Lipschitz functions with unknown smooth-
ness would solve general-sum Stackelberg games, under Bressan et al.’s hypotheses. Extending
Bressan et al.’s result to the multi-dimensional case would be of great interest, but currently
seems to require powerful differential geometry tools.
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Conclusion and Perspectives
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6.1 Conclusion

Optimally planning in partially observable stochastic games is a computationally difficult task
in general. Multiple research axes exist to improve the empirical performances of e-optimal
algorithms. Of particular interest for this manuscript is the introduction of statistics summarizing
players’ past behaviors and equivalent games induced by the latter statistics.

For some subclasses of POSGs (e.g., zs-SGs, MDPs, POMDPs and cp-P0SGs), the induced games
involve optimization processes that link solutions of subproblems through simple concatena-
tions, i.e., allow Bellman’s optimality principle to apply to the computation of Nash equilibrium
strategy profiles. Approaches tackling subclasses of zs-P0SGs (e.g., 0S-P0SGs, PO-P0SGs) also in-
troduced such statistics (Horak et al. 2017; Horék et al. 2019b) and games, but linking solutions
of subproblems was an open question. Instead, they relied on continual re-solving techniques
to ensure retrieving Nash equilibrium strategy profiles for the original game. A novel interpre-
tation of Bellman’s optimality principle to optimally planning in zs-oMGs appears worthwhile,
as, contrary to before, (i) the game is not fully observable and (ii) the optimization problem
prevents from constructing solutions to problems using solutions of subproblems through simple
concatenations.

Besides, a downside of this methodology is that it creates a prohibitive bottleneck by entan-
gling exponentially many decision variables in Bellman’s optimality equations, whose computa-
tion is needed to perform point-based backup routines used by heuristic search (or point-based)
value iteration algorithmic schemes.

6.1.1 Planning in zs-P0SGs through zs-oMGs

The first contribution of this manuscript contributes a dynamic line of research involving oMGs,
aiming at optimally planning in P0SGs. We have demonstrated that, building upon zs-oMGs
(e.g., after showing that Bellman’s optimality principle applies in such games), one can design
an HSVI-like algorithm converging in finite time to an e-NES of any zs-P0SG. Doing so allows
leveraging structure that zs-POSGs possess compared to zs-EFGs (e.g., the possibility to perform
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6.2. Perspectives

lossy or lossless compression). It also unveils complementary levers (e.g., breaking problems
into subproblems, enabling knowledge generalization between subproblems, and guiding search
based on relaxations) in addition to those already exhibited by state-of-the-art approaches, e.g.,
regret minimization and linear programming. Finally, our findings include shading a new light
on Bellman’s optimality principle for zs-oMGs, continuity properties of classical performance-
evaluating functions, along with transformations of the usual Bellman operators to enable efficient
subgame solving. We believe that the latter point is interesting, as tackling zs-P0SGs through
the introduction of sufficient statistics or dynamic programming recently received particular
attention (Brown et al. 2020; Sokota et al. 2023; Vojtéch Kovafik et al. 2022b; Horak 2019) and
appears to be a promising research line.

6.1.2 cp-P0SGs under hierarchical information-sharing

In a second contribution, we exhibit and study a subclass of cp-P0SGs that permits addressing
the entanglement of players’ decision variables, consequently reducing the complexity of point-
based backups. Players are assumed to be organized in a linear hierarchy. Their knowledge
about the game follows an inclusion relation, i.e., player n only knows her private history, player
n — 1 knows what n knows, and so on. While such organization is more general than those
considered before (e.g., considering a hierarchy of n players instead of only two, not assuming that
1 knows the state of the game), we have demonstrated that an adaptation of the PBVI algorithmic
scheme offers both theoretical error-bounding properties and convincing empirical results (e.g.,
e-optimally solving some cp-P0SG benchmark problems with up to 10 players, whereas state-of-
the-art solvers rely on weaker solution concepts that do not guarantee optimality). Overall, our
work opens the door to real-life applications for which (i) optimality guarantees are essential,
and (ii) more players are involved than what was previously considered.

6.1.3 Tackling Games with Weaker Hypotheses

Finally, we studied one-shot games in which (i) players have continuous (but compact) sets of
actions, and (ii) payoff functions only satisfy mild continuity properties to partly account for the
wide variety of real-life situations. Motivated by the emergence of machine learning problems
that prevent from relying on differentiability or convex-concavity, we assumed a-Hoélder continu-
ity properties. We presented a simple algorithm, based on Deterministic Optimistic Optimization
(DOO), that relies on an outer minimization using the solutions of an inner maximization. We
believe that our results open the way to tackle other types of games for which the lack of continu-
ity properties prevents the application of most other approaches (e.g., general-sum Stackelberg
competitions).

6.2 Perspectives

Throughout the three years of the Ph.D. program, several ideas came to our minds. Some involve
short-term natural extensions or improvements of our proposed algorithmic schemes, while others
require long-term theoretical and practical developments.

6.2.1 Planning in zs-P0SGs

Below, we present possible future works to improve our proposed HSVI-like algorithm for solving
zs-P0SGs. We begin with natural improvements (some were already mentioned in the conclusion
of Chapter 3 (Section 3.5)) of key operators and then move on to the longer-term perspective of
using neural networks to approximate the optimal value functions of zs-oMGs.

6.2.1.1 Improving Operators

As further discussed below, important areas of improvement lie in (i) the efficiency of the selection
and update operators used in the HSVI scheme (e.g., through double-oracle schemes, pruning,
block decomposition of occupancy states) and (ii) the tightness of bounding approximators (e.g.,
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using smart initializations, or approximations relying on stronger continuity properties). Re-
garding (i), we remind the reader that the selection operator used in our HSVI-like algorithm
(Equation (3.34)) involves solving LPs whose size grows linearly with the number of iterations.

Pruning Pruning is a key ingredient for the convincing results of some algorithmic schemes
for POMDPs (e.g., HSVI, PBVI, incremental pruning (Cassandra et al. 1997)) and has been the
subject of significant research to study different types of pruning strategies (including different
criteria, pruning test frequencies). Empirically, it highly helps reduce the size of bounding
approximations (e.g., the set of hyperplanes for the lower bound, and the set of points for the
upper bound). While we provide a pruning scheme for bounding approximations V, and V
(Section 3.4.1), pruning the key bounding approximations W, and W_ is still an open question,
as it would involve solving time-consuming quadratic optimization problems. We believe our
algorithm could benefit from adapting relaxed pruning criteria (Smith et al. 2005) that would
be less precise but also less time-consuming,.

Double Oracle Double-oracle schemes (see Section 2.2.2.3) for solving zs-P0SGs (BoSansky
et al. 2014; McAleer et al. 2021; Lanctot et al. 2017) are beneficial whenever there exists a Nash
equilibrium with a small number of pure strategies in its support.

The benefits of using double-oracle schemes is highly problem-dependent and we do not yet
have enough insight to grasp the overall efficiency improvements the method could bring in our
specific case.

Note that both pruning techniques and double-oracle ones aim, but in a complementary
manner, at reducing the burden of selection and update Bellman operators, by only considering
relevant rows and columns in LPs.

Exhibiting Common Knowledge in Occupancy States Section 3.4.2 detailed a proce-
dure exhibiting common knowledge at planning time through block-diagonal decomposition of
occupancy states. It allows branching over common-knowledge blocks by considering them inde-
pendently. Whenever an exact decomposition is possible, it greatly reduces the time complexity
of Bellman’s operators (e.g., LPs Equation (3.34)). We further believe that it would be worth-
while to study decomposition techniques that, with a bounded loss, transform an occupancy
state in a block-diagonal one. Still, all decompositions with bounded loss are not equivalent.
In fact, a decomposition that minimizes the size of the largest block would have higher impact
on Bellman’s operator than a decomposition isolating blocks of small size while leaving a large
block.

Inititializations Heuristic search value iteration schemes are known to empirically benefit
from smart initializations (Smith et al. 2005; Hordk et al. 2017; Buffet et al. 2020) of bounding
functions, which are usually obtained by solving relaxations of the original problem (e.g., giving
full observability to a player, assigning a strategy to a player, assuming that player 2 aims at
maximizing the expected sum of rewards instead of minimizing it). Relaxations judiciously guide
the search towards interesting parts of the occupancy state. Solving the relaxed games permits
constructing upper and lower bounds of the optimal value function of the original zs-P0OSG
(e.g., one can construct an upper bound using the solution of the MDP in which 1 is given full
observability, while 2’s strategy is fixed). Ideally, the relaxation shall be as close as possible
to the original problem while having significantly lower time complexity to ensure that solving
relaxations requires negligible time compared to the total solving time.

Getting Rid of Lipschitz Approximations Finally, Fehr et al. emphasized in 2018 (though
on particular POMDPs, not for zs-P0SGs) that Lipschitz approximations might be rather loose,
especially when using theoretical global Lipschitz constants that often are too large. We believe
that one might be able to replace the Lipschitz generalization over conditional occupancy states
by relying on the concavity of the optimal value function with respect to the marginal distribution
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of player 1 and the convexity with respect to the marginal distribution of player 2. Still, it remains
an open question how to design adequate approximation functions and efficient update operators.

6.2.1.2 Scaling-up Approximation Functions

The introduction of neural networks pre-trained on abstractions/relaxations of the original prob-
lem highly contributed to the success of solving algorithms based on continual re-solving for
variants of poker (Morav¢ik et al. 2017; Brown et al. 2018). The neural network was incorpo-
rated in the algorithmic scheme to approximate the value of the nodes of a zs-EFG beyond a
certain depth. Still, the continual re-solving scheme is fundamentally different from our pro-
posed HSVI-like algorithm, which relies on occupancy Markov games. Recently, Vojtéch Kovarik
et al. (2022) used neural networks to approximate the optimal value of occupancy states. In-
cluding such more scalable approximators might help improving the empirical performances of
HSVI schemes for zs-POSGs and subclasses (e.g., zero-sum one-sided POSGs, zero-sum P0SGs with
public observations). It, however, remains unknown how to retrieve a solution strategy based
on the computed optimal value function and whether re-solving schemes (or other techniques)
would be necessary to do so.

Still, this involves open questions. Vojtéch Kovarik et al. (2022) for example point out
negative continuity properties of the resulting approximation, while exploiting continuity is key in
HSVI-like approaches. Besides, the neural network’s architecture might add additional constraints
to the greedy selection operator, while its scalability is at the core of HSVI-like algorithms.
Overall, in our humble opinion, the latter algorithmic scheme might not be as well suited as
those relying on regret computations (or even double-oracle (Lanctot et al. 2017)) for the use of
neural network approximations.

Still, recent work may prove us wrong, as Yan et al. (2023) appear to soundly incorporate
neural networks to model players’ perception of their environment (though not for optimal value
function approximations and under one-sided observability assumptions), while maintaining ef-
ficient backup and update operators in an HSVI-like algorithm.

6.2.2 cp-P0SGs under Hierarchical Information-Sharing

Below, we discuss possible extensions of the hierarchical information-sharing structure detailed
in the second contribution of this manuscript, and present possible future works inspired by the
lessons gained from our contributions to e-optimally planning in his-cp-P0SGs.

6.2.2.1 Towards Sequential Synchronization for cp-P0SGs

It can be observed, from our contribution for cp-P0SGs under hierarchical information-sharing,
that sequential decision making allows reducing the complexity of Bellman’s operator, which is
the main bottleneck in HSVI-like algorithms for optimally planning in cp-P0SGs. In our case, we
leveraged the hierarchical information-sharing hypothesis by applying Bellman’s optimality prin-
ciple to the computation of Bellman’s operator through agent-based decomposition, in reversed
order of the hierarchy. Without any modification, Bellman’s operator involves enumerating all
decision rule profiles at each time step, which becomes intractable when the number of players
grows. Introducing a certain form of sequential decision making to enable efficient computation
of Bellman’s operator for general cp-P0SGs, while maintaining finite-time convergence properties
is of particular interest. It would, for example, scale-up HSVI-like schemes for cp-oMGs even if
each performed trajectory is less informative. This is still an open problem for general cp-P0OSGs.

Koops et al. (2023) recently introduced one possible solution through iterative construction
of the tree of behavioral decision rule profiles. More specifically, the proposed algorithm, called
RS-MAA*, incrementally expands new actions and observations for each agent sequentially, con-
sidering their possible private histories. Partial strategies specifying actions only for subsets
of all possible histories are consequently constructed. Overall, the approach avoids the major
burden of costly expansions of decision rule profiles in classical MAA* and scales up much better,
even outperforming Dibangoye et al.’s state-of-the-art HSVI scheme on some problems. Part of
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the algorithm’s efficiency lies in the action selection being informed by tight, yet cheap to com-
pute, heuristic techniques (whose details are omitted here, as not entirely linked to the current
discussion).

6.2.3 Games With Mild Continuity Properties

The third contribution of this manuscript, which addresses min-max optimization problems for
functions with mild a-Holder properties, might also serve as a building block for open research
questions.

6.2.3.1 Application of the Approach to Real-Life Problems

The robustness of our proposed approach to games with dependent feasible sets invites experi-
mentations to assess the efficiency of our approach for Fisher-market problems, for example. The
latter are economical models introduced by Fisher (1892) to study strategical interaction between
n buyers, each with its own budget, and each wanting to acquire products among m available
products, according to their own preferences. Fisher-market problems constrain players’ buying
strategy by requiring that the union of all players’ buying demands exactly corresponds to the
set of available products. Goktas et al. (2021) leverage the differentiability of the dependence
to design an e-closely solving scheme with O(1/€?) time complexity. We believe that Fisher’s
constraint model can be generalized to allow for more complex dependence interactions between
players, yielding possibly non-differentiable dependence functions. In that case, BiDOO might
offer a solving scheme with theoretical guarantees.

6.2.3.2 General-Sum Stackelberg Games

Tackling general-sum Stackelberg games with mild assumption on players’ payoff functions is
both of particular interest for real-life applications and particularly challenging. Even though
Bressan et al. (2019) showed interesting results on the structure of the leader’s optimizing func-
tion (especially that discontinuities are not reduced to single points), a BiS00 extension of our
proposed approach would only converge if the follower perfectly optimizes her best response to
any strategy of the leader. This is unrealistic for numerical solving schemes. Unfortunately, a
near-optimal behavior of the follower can be catastrophic for the leader, as small deviations of
the leader’s strategy compared to the optimum can arbitrarily deteriorate the leader’s payoff, if
the leader plays her optimal strategy that assume the optimality of the leader’s behavior. The
optimization problem from the leader’s viewpoint shall be rethinked to make the leader’s strategy
robust to small deviations around the optimum in the follower’s behavior.
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A

Appendix

A.1 Synthetic Tables

For convenience, we provide three synthetic tables: Table A.1 to sum up various theoretical
properties that are stated in this chapter (assuming a finite temporal horizon), Table A.1 and
Table A.2 to respectively sum up the notations and abbreviations used.

More precisely, Table A.1 indicates, for various functions f and variables z, properties that
f is known to exhibit with respect to x. We denote by

- a function with no known (or used) property (see also comment below);

N/A a non-applicable case;

Lin a linear function;

LC a Lipschitz-continuous function;

Cv (resp. Cc) a convex (resp. concave) function;

PWLCv (resp. PWLCec) a piecewise linear and convex (resp. concave) function;
A the function being independent of the variable;

—-P the negation of some property P (i.e.,, P is known not to hold).

Note also that, as o, = ootom ’1, the linearity or Lipschitz-continuity properties of any function

w.r.t. o, extends to both ¢&! and o™ Reciprocally, related negative results extend from &'
or o' to o.. In these three columns, we just indicate results that cannot be derived from one
of the two other columns.

Table A.1: Known properties of various functions appearing in this work

m,1 c,1 1 —i

Or Or or ﬁj— 57— '
T((TT7 /87—) Lin (prop. 2.2.17, p.38) - - Lin (prop. 2.2.17, p.38) LiN (prop. 2.2.17, p.38)
Tfn(a.,-, 3.) Lin (lem. 3.1.8, p. 48) - - Lin (em. 318, p.a8) Lin (lem. 3.1.8, p. 48)
T!(or,B;) - AL (lem. 3.1.9, p.48) - AL (tem. 3.1.9, p.48) -
Vv (or) LC (sec. 3121, p.51) PWLCU (¢hm. 3.1.7, p.a7) - N/A N/A
W:’*(UT, BL)  LC (trom Q¥ Lo) - - —Lin (from Q* —Lin) N/A

2 .

l/[oﬁ‘l.ﬂz:] N/A N/A LC (em. 3.1.15, p.53) N/A -

Table A.2: Various notations used in this work

f

—i s opponent. Thus: —1 = 2, and —2 = 1.

Histories and occupancy states

0L = (ah, 24, ... a1, 2L) (€ © = U101 is a length-T action-observation history
(AOH) for 1.
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6,

O'T(HT) Lef

o (62)
a7 (67710%) ©

b(sl6,)

or =

Bl
w' (6L, at)

rw' (¢, |0%)
0.1

o7
I’LOIT’|U7—>

8,
/BT:T’

Wr* (o, BL)

T

2
Yoot 82,

= (0L,02) (€ © = U'@,) is a joint AOH at 7.

Occupancy state (0S) o, (€ O7 = UIL1O7, where 07 = A(©),)), i.e.,, proba-
bility distribution over joint AOHs 6, (typically for some applied B.,_;).

' Marginal term of o, from player i’s point of view (07" € A(OL)).

' Conditional term of o, from i’s point of view (05" : ©F — A(O7)).
£ Belief state, i.e.,, probability distribution over states given a joint AOH
S x ©; — R). Can be computed by an HMM filtering process.

Full occupancy state o (€ A(S x ©.)), i.e.,, Pr(s,0;) for the current B.._;,
and thus verifies 0,(0;) = > ..g0-(5,0-). Is used in the implementation to
simplify computations (e.g.,, of 4 and 41 through b).

(b(s|67) :

def

Decision rules and strategies

' A pure strategy for i is a mapping i, from private histories in ©% (Vt € {0..7})
to single private actions in A’ By default, 7! < é 1

A mized strategy pé. for i is a probability distribution over pure strategies. It is
used by first sampling one of the pure strategies (at t = 0), and then executing

it until ¢t = 7.

oef (7 < 7') is a mixed strategy compatible with some 0S o, i.e.,, that could induce

this 0S at 7 (assuming an appropriate complementary Ho. i,‘g >)

j def

= A (behavioral) decision rule (DR) at time 7 for i is a mapping . from pri-
vate AOHs in O to distributions over private actions. We denote S (6%,a’) the
probability to pick a* when facing 6..

L., L)) is a behavioral strategy for i from time step 7 to 7/ (included).

o [i- 050 (at\ao,zl,al, .., 2Y) is the realization weight (RW) of sequence
ao,zl,al, o ad (=00 a T) under strategy 3.

. 750 (ai|6%,al,...,z}) is the RW of a suffiz sequence ¢! _, = ak,..., al,
“conditioned” on a prefiz sequence/A0H 6%,

def

' is a pure strategy profile.
' is a mized strategy profile.

o (1 < 7') is a mixed strategy profile compatible with some 0S o, i.e.,, that could

induce this 0S at .

def
= (81,B2) (e B
oo BL_, ﬁEZT,> is a behavioral strategy profile.

= ut 0 Bt) is a decision rule profile.

Rewards and value functions

def
= max, q7(s,a)
def

Maximum possible reward.
ming q T(s a) Minimum possible reward.

EX AR, | 0, B, Value of B,.;;_; in 0S 0.
where R; is the random var. for the reward at t.

def

maxg ming: V- (o7, B;.) Optimal value function

r(orB,) + Vi (T(or,B,)) Opt. (joint) action-value fct.

optg-iQ3(or, B), Opt. (individual) action-value fct.
where opt = max if ¢ = 1, min otherwise.

Vector of values (one component per AQH 1) for 1’s best response to 32, assum-

ing o&'. This solution of a POMDP allows computing V;* (see Theorem 3.1.7).

Approximations

U pper bound approximation of V*(c,); relies on data set Z,_ 1.
' Lower bound approximation of V*(O'T) relies on data set Z_;.
Upper bound approximation of W, (O’T, BL); relies on data set Z,.

Lower bound approximation of W (o, B2); relies on data set Z, .
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72 & Vector (with one component per AOH 6}) used in V; and W,_; (if 7 > 1).
Miscellaneous

wy < Denotes a triplet <0i’i1, B 1,72, eI, (or a triplet in Z).

T—1
< Distribution over triplets wr11 € Zr4+1 (inducing a recursively defined strategy
from 7 to H — 1). Often denotes the strategy it induces.

27 < The transpose of a (usually column) vector  of R™.
c[y] € Denotes field ¢ of object/tuple y.
supp(d) &' Support of distribution d, i.e.,, set of its non-zero probability elements.

Table A.3: Various abbreviations used in this work

zs-P0SG (Hansen et al. 2004) = zero-sum Partially Observable Stochastic Game

def
zs-oMG = zero-sum Occupancy Markov Game

DP & Dynamic Programming

HS © Heuristic Search
HSVI (Smith et al. 2005) = Heuristic Search Value Iteration
Dec-POMDP (Bernstein et al. 2002) « Decentralized POMDP
EFG (Kuhn 1950) &' Extensive Form Game
SFLP (Koller et al. 1996) = Sequence Form Linear Program
CFR (Zinkevich et al. 2007) % Counterfactual Regret Minimization
NEV &' Nash Equilibrium Value

def

NES = Nash Equilibrium Strategy

def

AOH = Action-Observation History (for player i: 6%)
DR < Decision Rule (for player i: %)

A.2 Strategy Conversion

Here, we come back on the strategy conversion from tree-shaped strategies 1/)6: to behavioral
strategies ), evoked in Remark 3.1.20 (Chapter 3, remark 3.1.20).

Let us recall that we use the term “strategy” to refer to any procedure that permits players
to take decisions at each time step based on the evolution of the game. Pure, mixed, behavioral
strategies match this definition, so as tree strategies (Corollary 3.1.22), which can be executed

by
1. executing the decision rule attached to the current node n, then

2. sampling a new node n’ according to the distribution over children nodes attached to the
current node n, and

3. switching to that node (n < n') before repeating/iterating.

Realization weights ((Koller et al. 1994), to be defined later) do not suit the definition, but
a behavioral strategy can straightforwardly be derived from them. Conversely, any strategy
induces unique realization weights.

Any behavioral strategy can easily be re-written as a tree one with a tree restricted to a single
branch. We will here see (in the finite horizon setting) how to derive from a tree strategy ¥}
a unique (since only reachable histories are considered) equivalent behavioral strategy ﬁéz using
realization weights in intermediate steps. To that end, we first define these realization weights
in the case of a behavioral strategy (rather than for a mixed strategy as done by Koller et al.)
and present some useful properties before briefly describing the conversion process detailed in
Algorithm A.1.
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Some Properties of Realization Weights Let us denote rw'(a}, 2¢,a}, ..., al) the realiza-
ion wei of sequence a}, z¢,a’, ..., a’ under strate ., defined as
t ght (RW) of seq 0+ 21,01, - - -, a7 under strategy [, defined
T
P00 i i iy def TP A i
rw'(ag, 21,01, ..,0%) = HBOZ(at]aO,zl,al,...,zt) (A1)
=Tw (a07zl’a17 . "aT—l) ’ BOZ(G’T| Qg 21,015 - - - 727)' (A2)
—_—
0%

This definition already leads to useful results such as:

rw (97 15 2— 1’27—7657—)

i (gl 19l) = A3
Po(azl67) = rw’(@ifl, 1771) 7 (43)
and
qui_’ Twi(eiflaai—fl) =rw (97' 15 Qr— 1 26 ’T|0T 1, Ar_1,% l) (A4)
i}
= erl(al 1,a :— 1) ( |0T 1, a 17Z~zr) (A5)
= er —10a 7— 1 Z’T’ T) (A6)

We now extend Koller et al.’s definition by introducing conditional realization weights, where
the realization weight of a suffiz sequence is “conditioned” on a prefir sequence:

-

rw'(al, ..., T]ao,..., zr =eH (allad, ... 25 d, ... 2)) (A.7)
suﬁ;:c:eq prefix seq. t=r

= B ah, ) Pl ). (A8)

As can be noted, this definition only requires the knowledge of a partial strategy (%, rather than
a complete strategy ..

Let 7/ > 7+ 1, and rw'[w] denote the realization weights of some element w at 7+ 1. Let 1%
be a probability distribution 12 over elements w. We already stated that 1% defines a strategy,
but what are the corresponding realization weights? We have that:

rwli](ah, .o ablah, . 2h) = Y k() rwfwl(ag,y, . alag, . 2h). (A9)
w
Indeed,
. . . . . T . . .
rw[i](al, ;... aklab, ... 2t ) = H [vil(a)ab, ... 25 a6k, ... 2)) (A.10)

(where 3{.[¢%] is the behavioral strategy induced by rw[t?])

.
= Hprﬁéw](a;yag,...,z;,a;,...,zg) (A.11)
:Z 1_[]37“5Z (ablab, ..., 25 al, ..., 2) (A.12)
w t=r1
=Z H w](ak|ab, ..., 25k, ..., 2} (A.13)
= 21#;(10) crw[w](ak g, ... akab, 2t ). (A.14)
w
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Algorithm A.1: Extracting 56: from wé

1 Fct Extract (w))
/* Step 1., keeping only rw(fj.;_,) for all 6}, _, */

2 (rw(%:Hfl))%H < RecGetRWMix (0, w)
/* Step 2. */
fort=H—-2,...,0do
forall 6 ,,ai do
2 — 2 st Bi(-]0h,, al, ) is defined
L rw<0(1):t7 aﬂl&) - Zai}l Tw(%:n a%? Z§+17 ai+1|_)

o vl oA W

/* Step 3. */
fort=H —-1,...,0do
forall 6 ,,al do

’ B0}, — "ttt

Twi(ef‘):tfpaifﬂ

10 | return 3,

11 Fct RecGetRWMix (t,w = (B, %))
12 | for w' s.t. ¥i(w') >0 do
13 L rwCat[w'] — RecGetRWCat (¢, w')

14 | forall (af,...,aly ;) do ' '

15 rwMiz[w](ai, ..., ay_4lag, ... z) ' A

16 — 2w Vi) - rwCat[w'|(ayq, .- aly_qlah, - - 2i41)
17 return rwMiz|w]

18 Fct RecGetRWCat (t,w = (B!, 1!))
19 if t=H — 1 then

20 forall (a,...,a% ;) do
21 L rwCat[w](ab,_,|ab, ..., 25 1) < Bi(aly_|a, ..., 2% )
22 else
23 rwMiz[w] < RecGetRWMix (¢, w)
24 forall (ag,...,a%_y) do '
25 rwCat[w](at, ..., ay_qlag, ..., 2) <
L Biailab, ...,z - rwMiz[w](al, ... ay_4lab, ..., z.1)
26 | return rwCat[w]

From wé to Bé: Using the above results, function Extract in Algorithm A.1 derives a behav-
ioral strategy [3i. equivalent to the recursive strategy induced by some tuple w in 3 steps as
follows:

1. From w} to rw(0). 1, a%_1) (V(0h. 1, a%_1)) — These (classical) realization weights
are obtained by recursively going through the directed acyclic graph describing the recursive
strategy, computing full length (conditional) realization weights rw(6;.;_1,a%_4165.) (for
t = H — 1 down to 0).

When in a leaf node, at depth H — 1, the initialization is given by Equation (A.7) when

T=7=H-1:
H-1
rwi(a%fl‘a%)?"wzilfl) < Bl(a“aév?%)
t=H—-1
= B'(ajr 4 lab, -, 2l ).

Then, in the backward phase, we can compute full length realization weights rw(@i CLH-1) a%fl ‘%;t)
with increasingly longer suffixes (thus shorter prefixes) using (i) Equation (A.14) (in func-
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tion RecGetRWMix, line 25) to “mix” several strategies using the distribution v attached
to the current w, and (ii) Equation (A.8), with 7/ = H — 1, (in function RecGetRWCat,
line 16) to concatenate the behavioral decision rule 8} attached to the current w in front
of the strategy induced by the distribution 1} also attached to w. Note: Memoization can
here be used to avoid repeating the same computations.

2. Retrieving (classical) realization weights rw(6}.,, at|—) (Vt) — We can now compute
realization weights rw(6},, ai|—) for all t's using Equation (A.6) (line 6).

3. Retrieving behavioral decision rules 3 — Applying Equation (A.3) (line 9) then
provides the expected behavioral decision rules.

In practice, lossless compressions are used to reduce the dimensionality of the occupancy state
(cf. Section 3.2.1), which are currently lost in the current implementation of the conversion.
Ideally, one would like to preserve compressions whenever possible or at least retrieve them
afterwards, and possibly identify further compressions in the solution strategy.
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