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Abstract

Title: Network Approaches to Reconstruct and Analyse Team Collaborative Structures in
Open Science and Innovation

Modern science and innovation challenges require the integration of diverse perspec-
tives alongside specialised knowledge, prompting a shift towards interdisciplinary and col-
laborative team-based research. This transformation towards collective knowledge pro-
duction continues to uphold high-quality outputs and research impact, as evidenced by
frameworks like challenge-based innovation and crowd science. Understanding how larger
and more diverse teams collaborate, divide labour and coordinate tasks requires a mixed-
method approach, combining qualitative and quantitative data to capture their structural
properties. Yet, a lack of longitudinal and granular datasets has limited our understanding of
how collaborative structures evolve and influence team performance. In this thesis, I lever-
age network science methods to study collaborative structures in challenge-based, open
science and innovation contexts. First, I study citizen science teams addressing Sustainable
Development Goal challenges, identifying collaboration and engagement patterns through
surveys and digital traces from Slack communications. I demonstrate how these patterns
inform team performance, emphasising the importance of sustained engagement with indi-
viduals across diverse network locations. Second, I investigate the organisation dynamics
of 1,200+ unique teams participating in the iGEM interdisciplinary science and engineer-
ing competition across 12 years, analysing their division of labour and coordination using
self-reported attribution statements and digital traces from unstructured, collaboratively
edited, online wiki pages. I introduce a novel computational method for inferring task allo-
cation networks of teams at scale using Large Language Models, demonstrating its ability
to recover local and global network properties with high precision. I argue that network-
based indicators such as modularity and nestedness capture specialisation and coordination
within division of labour structures, and show that they significantly impact team perfor-
mance in the competition. Furthermore, I show that teams adapt their division of labour
over time, converging towards optimal structures mediated by their size, experience and
task complexity. Broadly, this thesis contributes to research on team science in open in-
novation and science ecosystems by introducing data- and network-driven approaches to
capture organisational structures, offering insights for researchers and practitioners into
team performance, engagement, and adaptation, thereby supporting the development of
strategies to foster innovation in collaborative research.

Keywords: Team Science, Network Science, Collaboration Networks, Task Allocation
Structures, Bipartite Networks, Challenge-based Innovation
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Résumé

Titre: Approches de Réseau pour Reconstruire et Analyser les Structures de Collaboration
d’Equipe dans la Science Ouverte et l’Innovation

Les défis modernes en matière de science et d’innovation exigent l’intégration de per-
spectives diverses parallèlement à des connaissances spécialisées, ce qui entraîne une évo-
lution vers une recherche interdisciplinaire et collaborative basée sur le travail d’équipe.
Cette transformation vers la production collective de connaissances continue à soutenir des
résultats de haute qualité et l’impact de la recherche, comme en témoignent des cadres tels
que l’innovation basée sur les défis et la science des foules. Pour comprendre comment des
équipes plus grandes et plus diversifiées collaborent, répartissent le travail et coordonnent
les tâches, il faut adopter une approche mixte, combinant des données qualitatives et quan-
titatives pour saisir leurs propriétés structurelles. Cependant, le manque d’ensembles de
données longitudinales et granulaires a limité notre compréhension de la manière dont les
structures de collaboration évoluent et influencent les performances de l’équipe. Dans cette
thèse, je m’appuie sur les méthodes de la science des réseaux pour étudier les structures de
collaboration dans des contextes d’innovation et de science ouverte basés sur des défis. Tout
d’abord, j’étudie les équipes de science citoyenne qui s’attaquent aux défis des Objectifs de
développement durable, en identifiant les modèles de collaboration et d’engagement par le
biais d’enquêtes et de traces numériques provenant des communications Slack. Je démontre
comment ces modèles influencent la performance de l’équipe, en soulignant l’importance
d’un engagement soutenu avec des individus à travers divers emplacements du réseau.
Deuxièmement, j’étudie la dynamique organisationnelle de plus de 1 200 équipes uniques
participant au concours interdisciplinaire de science et d’ingénierie iGEM sur 12 ans, en
analysant leur division du travail et leur coordination à l’aide de déclarations d’attribution
autodéclarées et de traces numériques provenant de pages wiki en ligne non structurées et
éditées en collaboration. J’introduis une nouvelle méthode informatique pour déduire les
réseaux de répartition des tâches des équipes à l’échelle à l’aide de grands modèles de lan-
gage, démontrant sa capacité à récupérer les propriétés locales et globales du réseau avec
une grande précision. Je soutiens que les indicateurs basés sur les réseaux, tels que la mod-
ularité et l’imbrication, rendent compte de la spécialisation et de la coordination au sein des
structures de division du travail, et je montre qu’ils ont un impact significatif sur les perfor-
mances de l’équipe lors de la compétition. En outre, je montre que les équipes adaptent leur
division du travail au fil du temps, convergeant vers des structures optimales en fonction de
leur taille, de leur expérience et de la complexité de la tâche. D’une manière générale, cette
thèse contribue à la recherche sur la science des équipes dans les écosystèmes d’innovation
ouverte et de science en introduisant des approches basées sur les données et les réseaux
pour saisir les structures organisationnelles, offrant aux chercheurs et aux praticiens un
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aperçu de la performance, de l’engagement et de l’adaptation des équipes, soutenant ainsi le
développement de stratégies visant à favoriser l’innovation dans la recherche collaborative.

Mots Cles: Science des équipes, Science des réseaux, Réseaux de collaboration, Struc-
tures de répartition des tâches, Réseaux bipartites, Innovation basée sur les défis
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Résumé Substantiel

Synthèse:

Le processusmoderne de la science et de l’innovation est complexe et nécessite l’intégration
d’une expertise et d’expériences à la fois spécialisées et interdisciplinaires. L’intérêt crois-
sant pour les paradigmes de la science ouverte, qui mettent l’accent sur la transparence et
la participation, démocratise le processus de production des connaissances scientifiques,
renforce la nécessité d’une action collective et encourage les approches collaboratives. La
science ouverte, collaborative et fondée sur le travail d’équipe pour résoudre les problèmes
sociétaux mondiaux bénéficie des diverses compétences de ses membres et de l’accès à des
données et à des ressources qui sont difficiles à obtenir. Toutefois, la coordination entre ces
parties prenantes internes et externes entraîne des coûts.

Pour favoriser une recherche plus collaborative et plus efficace, il faut mieux compren-
dre comment les équipes s’organisent pour résoudre des problèmes complexes. Ces con-
naissances peuvent ensuite être utilisées pour aider les facilitateurs à soutenir les équipes.
La science des réseaux est largement utilisée pour représenter et étudier l’organisation des
équipes et la manière dont leurs structures de collaboration sont associées à leurs résultats.
Cependant, l’identification des structures organisationnelles des équipes et leur modélisa-
tion en tant que réseaux nécessitent des données précises sur la manière dont les équipes
répartissent les tâches entre elles et sur la manière dont elles se coordonnent avec les par-
ties prenantes externes. La collecte et le traitement de ces données constituent un défi
majeur, nécessitant des méthodes qualitatives et quantitatives pour recueillir les données
des équipes de manière longitudinale et à grande échelle.

Les méthodes de la science des réseaux peuvent être mises à profit pour obtenir un
aperçu complet de l’organisation des équipes, de la diversité, de la collaboration et de
la manière dont ces structures sous-tendent les performances et l’apprentissage au fil du
temps. Ces connaissances peuvent ensuite être utilisées pour soutenir les équipes de sci-
ence ouverte et d’innovation dans leurs efforts de recherche scientifique. Ces stratégies de
facilitation, qui visent à surmonter les pièges de la communication et de la coordination
au sein de l’équipe et à produire une science percutante, nécessitent la création de boîtes
à outils numériques pour aider les praticiens à maintenir l’engagement et à identifier les
moments où des interventions et un soutien sont nécessaires.

Dans cette thèse, je compile mes recherches doctorales en intégrant les réseaux et les
ap- proches de la science des données pour étudier les structures de collaboration dans les
équipes. des données pour étudier les structures de collaboration dans la science ouverte
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et l’innovation basées sur le travail d’équipe. Afin de relever le défi de la conservation
des données, j’utilise une approche mixte - en collectant des données qualitatives à par-
tir d’enquêtes et de rapports personnels et des données quantitatives à partir de traces
numériques. Je présente des pipelines pour traiter ces données mixtes et les représenter
sous forme de réseaux. Pour étudier comment la structure de l’organisation de l’équipe
sous-tend la performance et l’apprentissage, je construis des mesures de réseau identifi-
ant les propriétés structurelles significatives et les associe aux résultats de l’équipe. Pour
montrer comment les inférences de réseau peuvent être employées pour faciliter les équipes
dans un contexte d’innovation ouverte, je construis un tableau de bord pour informer sur la
collaboration, l’engagement et discuter de la façon dont ils peuvent soutenir la conception
de l’intervention.

Contributions:

Les principales contributions de cette thèse sont les suivantes :

• Développer des pipelines de données pour collecter, traiter et conserver les collab-
orations d’équipes internes et externes à partir de traces numériques. Ces traces
numériques sont collectées à partir des structures de contribution des membres de
l’équipe travaillant en collaboration sur une ressource partagée (Wikis) et des mod-
èles de communication sur des plateformes en ligne partagées (telles que Slack).

• Développer des méthodologies pour traiter des données qualitatives non structurées
et autodéclarées (collectées à partir d’enquêtes, de wikis) provenant d’équipes, afin
d’identifier leur structure organisationnelle interne et les collaborations entre les
équipes - en utilisant des avancées récentes dans le traitement du langage et les grands
modèles de langage (LLM).

• L’utilisation de la science des réseaux pour élaborer desmesures permettant de décrire
les structures de collaboration des équipes dans les domaines de la science ouverte et
de l’innovation. la science ouverte et l’innovation. J’explore l’interaction entre la spé-
cialisation et la coor- dination dans l’organisation interne des équipes. dination dans
l’organisation interne des équipes et j’étudie comment les équipes s’appuient sur des
collaborations externes pour combler les lacunes techniques et favoriser l’innovation.
collaborations externes pour combler les lacunes techniques et favoriser l’innovation.

• Construire des tableaux de bord de visualisation qui présentent des données clés, des
observations et des résultats (en particulier sur leur diversité, leur collaboration et
leur engagement) afin d’aider les praticiens des communautés de science ouverte à
surveiller l’évolution de la science et de l’innovation. Les praticiens des communautés
scientifiques ouvertes peuvent ainsi surveiller et soutenir les équipes.

• Discuter de la manière dont ces méthodes de conservation et de traitement des col-
laborations inter- et intra-équipes peuvent être étendues à d’autres contextes scien-
tifiques et d’innovation et présenter les futurs champs d’application de la recherche.
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Contexte

Dans cette thèse, j’étudie la science ouverte et les équipes d’innovation dans les contextes
suivants.

L’Incubateur de Projets Scientifiques Citoyens Crowd4SDG

Crowd4SDG est un projet Horizon 2020 qui vise à former des équipes d’étudiants à con-
struire un projet de science urbaine qui s’attaque aux défis des Objectifs de Développement
Durable (ODD). Le projet vise à former des équipes d’étudiants à la construction d’un projet
scientifique urbain qui s’attaque aux défis des objectifs de développement durable (ODD).
Le projet y parvient en organisant un cycle annuel d’innovation en quatre étapes, appelé
GEAR (Gather, Evaluate, Accelerate and Refine). Les étudiants sont regroupés en équipes,
encadrés et dotés d’outils techniques et numériques pour conceptualiser et prototyper leur
projet de science citoyenne. À la fin de chaque étape, les équipes sont évaluées et sélection-
nées pour passer à l’étape suivante. Les équipes qui passent à l’étape finale sont invitées
à présenter leurs projets aux communautés de recherche, aux sponsors potentiels et aux
parties prenantes.

Le projet Crowd4SDG s’est déroulé sur trois cycles avec des objectifs multiples. Tout
d’abord, le cycle GEAR est un cadre de formation et de facilitation dont l’un des principaux
objectifs est d’évaluer la méthodologie et la manière dont le développement de nouvelles
boîtes à outils de science citoyenne et de stratégies de formation favorise la mise en œuvre
de projets innovants. Outre l’efficacité du cycle GEAR, il est essentiel de comprendre com-
ment les équipes restent engagées dans le programme et quels sont les facteurs prédictifs
de l’innovation au sein de l’écosystème d’innovation collaborative basé sur les défis. Cela
permet aux facilitateurs de reconfigurer leurs stratégies et d’offrir des perspectives d’avenir
pour la conception de cadres similaires. Pour ce faire, nous suivons et étudions les équipes
tout au long de leur progression dans le programme GEAR à l’aide d’une approche à multi-
ples facettes - y compris des enquêtes qualitatives, des communications sur des plateformes
web et des traces d’outils numériques.

L’écosystème d’Apprentissage Dasé sur le Défi iGEM

L’International Genetically Engineered Machines (iGEM) est un concours de sciences et
d’ingénierie dans le cadre duquel des équipes d’étudiants (hébergées dans des universités
ou des écoles secondaires) travaillent à la conception d’un projet de biologie synthétique.
Au cours du cycle du concours (qui se déroule pendant l’été et dont l’événement final a
lieu en novembre), les équipes doivent entreprendre plusieurs tâches dans le cadre de leur
projet, telles que la création de pièces de biologie synthétique, la documentation de leur
travail sur un cahier de laboratoire numérique, la collaboration avec d’autres équipes et
l’engagement auprès du public et de diverses parties prenantes.

La structure globale de l’iGEM, l’accent mis sur les principes de la science ouverte, la
rigueur scientifique et les données fines issues des traces numériques et d’une stratégie
d’évaluation formalisée pour les équipes en font un excellent banc d’essai pour étudier les
équipes, en mettant l’accent sur la manière dont les structures d’organisation des équipes
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sous-tendent leurs performances. Les équipes iGEM ayant participé au concours pen-
dant plusieurs éditions, le banc d’essai offre une perspective unique sur la manière dont
l’organisation des équipes évolue avec l’expérience en matière de science et d’innovation.

Ces études de cas offrent des perspectives contrastées sur les équipes scientifiques et d’innovation.
L’incubateur Crowd4SDG a des équipes plus petites (2-4 membres) qui sont principalement
auto-organisées. Les principaux objectifs de l’incubateur sont de faciliter l’apprentissage
et de soutenir les équipes dans la mise en place de projets scientifiques citoyens innovants.
Nous utilisons ces résultats pour comprendre les facettes des équipes qui réussissent, en
nous concentrant sur leur collaboration, leur composition et leursmodèles d’engagement, et
la structure cyclique de Crowd4SDGpermet d’intégrer les idées des équipes par l’intermédiaire
des organisateurs et des facilitateurs.

L’iGEM, quant à lui, est composé d’équipes plus importantes (en moyenne 15-18 mem-
bres) avec une hiérarchie d’équipe définie. Les équipes sont dirigées par des chercheurs
seniors (PI), mais la plupart des recherches sont menées par les étudiants. La structure du
concours iGEM, les résultats bien définis et le fait que les équipes participent à des éditions
successives, le banc d’essai permet d’explorer en profondeur la dynamique de l’évolution
de l’organisation des équipes avec l’expérience.

Organisation de la Thèse

La thèse est organisée en quatre chapitres et se termine par des remarques finales :

• Chapitre 1: Présente une introduction générale à la thèse, en particulier sur les pro-
cessus de production de connaissances scientifiques, l’émergence de pratiques col-
laboratives ouvertes dans la science, l’utilisation de réseaux pour modéliser ces col-
laborations et la facilitation de l’innovation dans des contextes de collaboration et de
science ouverte. Présente l’organisation de la thèse.

• Chapitre 2: Présente l’incubateur de science citoyenne Crowd4SDG et décrit les
méthodologies utilisées pour collecter les collaborations internes et externes des équip
-es participantes, par le biais d’enquêtes et de communications Slack. J’utilise les in-
teractions recueillies auprès des équipes participantes pour construire des indicateurs
de collaboration, de diversité et d’engagement, et je démontre comment ces indica-
teurs sous-tendent leurs performances et leurs résultats. Je construis un tableau de
bord de visualisation pour aider les praticiens de l’incubateur à suivre et à soutenir
les équipes de science citoyenne participantes.

• Chapitre 3: Présente les méthodes de collecte et de traitement des données des
équipes participant au concours de science et d’innovation iGEM. Je décris les pipelines
pour traiter les données quantitatives provenant des traces numériques et les données
qualitatives provenant des auto-rapports pour récupérer les réseaux de collaboration
inter- et intra-équipes.
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• Chapitre 4: Présente les méthodes de la science des réseaux pour étudier la struc-
ture organisationnelle interne des équipes iGEM au niveau global et au niveau des
tâches. Je me concentre sur la modularité et l’imbrication en tant qu’indicateurs de
la spécialisation et de la coordination dans les équipes et je démontre comment elles
prédisent le succès de l’équipe. J’exploite l’aspect longitudinal de la participation des
équipes pour comprendre comment elles apprennent avec l’expérience et comment
cet apprentissage se reflète dans l’organisation de leur équipe.
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Chapter 1

1.1 Scientific knowledge Production as a Process

In his seminal book, "Laboratory Life: The Social Construction of Scientific Facts" in 1979,
Bruno Latour (with Steve Woolgar) [noa, a] presents the discovery of scientific facts as a
social process, shaped through interactions, negotiations and routines. The laboratory is
presented as the epicenter of this process of discovery and is a highly social setting. Per-
forming activities like discussions, experiments and writing drive the process of knowledge
production.

Extending his research in [noa, b], Latour details these processes that transform scien-
tific knowledge into irrevocable fact. Building scientific facts requires networking across
people, resources and institutions - making science a highly collective endeavour shaped
by these interactions. Scientific knowledge is more often than not, a response to a collec-
tive social need. Although knowledge is produced through collective social processes at the
level of a laboratory - they also include negotiations with actors that drive the societal need,
whom also play an essential role in its acceptance and dissemination. Science, zoomed out,
is a dynamic process strongly embedded in social interactions between heterogeneous ac-
tors. The fusing of human and material actors into social and technical interactions makes
the scientific process dynamic and highly interconnected (referred to as the mangle, high-
lighting the complex intertwined nature of doing science [Pickering, 1996])

The particulars of the processes that shape scientific knowledge production change
by field. Each scientific discipline develop their own epistemic cultures, capturing the dis-
tinct facets that shape the knowledge production processes [Cetina, 1999]. A laboratory in
molecular biology is traditionally smaller, and composing members perform experiments
and work hands on with organic matter. By contrast, high energy physics inherently relies
on large scale collaborations (across countries, funders and stakeholders) to manage the
high costs of building and running complex machines. Knowledge produced are often indi-
rect, relying on computational simulations and statistical analysis. Collaboration, division
of labour and integrating knowledge from interdisciplinary backgrounds is foundational in
statistical physics, whereas molecular biology laboratories emphasize specialisation of re-
searchers in performing experiments. These contrasting cultures are also reflected through
a laboratory’s social organisation, with the former having bureaucratic and hierarchical
structures and the latter more decentralised.

The field of Science and Technology Studies has emerged from the need to understand
more about these complex interconnected processes that drive scientific knowledge pro-
duction. Despite the differences across fields, knowledge production processes have com-
mon underlying facets - that are a response to themodern and evolving scientific landscape.
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1.2 TheEvolution ofModern Science and InnovationPro-

cesses

The core contemporary challenges that we face together as a community are inherently
complex and interdisciplinary. Producing scientific output to tackle these societal chal-
lenges - like global warming or sustainable development - needs coordinated and collective
efforts from individuals from diverse backgrounds and experiences. This is reflected in the
shift of the scientific ecosystem towards a collaborative team-based organisation and the
evolution of more open forms of knowledge production.

1.2.1 Collaborative Knowledge Production in Science

Scientific research is increasingly team-based and collaborative [Wuchty et al., 2007]. Tra-
ditionally small-scaled research fields like mathematics have increased their size through
the number of authors per publication, whereas research in science and engineering do-
mains has seen a steady growth in the size of authors per publication over last decades
[Fortunato et al., 2018].

Increasing complexity at the field and task levels are a significant contributor for the
shift towards collaborative science. Complexity at the task level is underlined by the chal-
lenges in accomplishing distinct components within each task, coordination across these
components and their dynamic nature [Wood, 1986, Campbell, 1988]. The process of scien-
tific discovery inherently pushes boundaries and bridges gaps across disciplines, increasing
the task complexities across these dimensions. This emerges the need to integrate diverse
expertise and adopt effective organisation strategies to tackle this complexity and generate
scientific knowledge.

More and more scientific knowledge is produced every day. This exponential growth
presents challenges at the individual level. Producing novel ideas requires efficiently re-
combining existing knowledge, but the scale of knowledge production greatly transgresses
the cognitive capacities of an individual scientist [Jones, 2009]. This presents the need to
collaborate to maximise the knowledge base required in producing interdisciplinary and
innovative science.

Technical and economic needs also foster this shift towards collaborative research. Reusing
data, methods and high-cost technologies from prior works form a basis for scientific col-
laboration. Furthermore, the growing reliance of funding as support mechanisms for uni-
versities and the skewed nature of strategies to assign funds (biasing towards large universi-
ties and geographical hotspots) incentivises collaboration across institutional and economic
boundaries [Stephan, 2015, Adams et al., 2005].

Collaborative science also offers significant benefits for research impact. Despite the
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costs to coordination, team based science is associated with higher impact - measured
through citations [Larivière et al., 2015, Milojević, 2020]. This impact is realised through the
diversity in technical and material expertise and experiences that were efficiently recom-
bined to produce knowledge. Collaborative science is also significant to advance individ-
ual career trajectories - through access to resources and connections [Lamain et al., 2024,
Piezunka and Grohsjean, 2023], which still remains the key strategy for hiring in science.

This shift towards collaborative science has been significantly supercharged by the in-
creased geographic and digital connectivity across the globe. From Paul Erdos, adopting a
nomadic lifestyle - dedicated to mathematical collaboration and problem solving - to now
geographic mobility supported by funding institutions aiming to diversify their investment
in science and technology [Catalini, 2017, Adams, 2013, Bercovitz and Feldman, 2011] and
accelerated through transportation and technological advances. But the main transforma-
tion is driven by the development of the internet and online tools [Nielsen, 2012]. Digital
protocols - as simple as the email tomore complex frameworks for collaboration like Git and
version control - have significantly enabled the sharing and dissemination of data, knowl-
edge and widened the access to key resources.

Despite the benefits to collaboration, namely the distributing technical efforts and costs
- collaborative knowledge production in science is limited by institutional structures that
are hard to reform. Scientific knowledge produced collaboratively within a laboratory set-
ting rely on securing funding through grant proposals, being hosted within an academic
or R&D ecosystem, communicating science through peer-review and justifying scientific
investments, collaborations through reports and outreach initiatives. However, many mod-
ern societal issues are localised to specific contexts, require rapid prototyping and sharing
solutions, while fundraising to tackle these issues are significantly limited by the lack of
equitable support across the geographic and diverse knowledge bases. This shifting need
to generate scientific knowledge relying less on the typically rigid institutional structures,
have blossomed into new open science initiatives, emphasising on participation and sharing
of knowledge - supported by the transformative power of online digital tools.

1.2.2 Collaboration in Open Science and Innovation

Open science, as the name suggests, opens or unlocks the processes are performed in pro-
ducing scientific knowledge. The shift towards open science practices stem from the com-
plexities of tackling modern science and innovation challenges, the crisis of reproducing
existing scientific methodology and the need to have equitable access to resources and
knowledge around the world.

Open science in academic research aims to achieve this by emphasising on transparency
as a key foundational philosophy. Challenges to reproduce previously peer-reviewed and
accepted scientific fact are often attributed to a lack of openly available data and in using
questionable study design, analysis methodology and communication strategies [Ioannidis,
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2005, Baker, 2016, Molloy, 2011]. Making data, methods and protocols public and transpar-
ent, facilitates the validation and sharing of these resources indiscriminately, alleviating
some of the reservations in the acceptance and dissemination of scientific fact, while also
encouraging its reuse across disciplinary boundaries.

However, open science practices are traditionally not incentivized in research. This
rigidity arises from the additional costs that are incurred within the scientific knowledge
production process in making research open. Moving towards reproducible scientific re-
search requires time and retraining efforts in using computational tools and platforms (like
Git, data repositories like Zenodo, software etc.) and clear documentation strategies [Stod-
den et al., 2018]. Publishing peer-reviewed manuscripts and data through open access often
incurs disproportionate costs from journals, and until recently had minimal impact on re-
searchers’ career progress in academia. Despite these challenges, the significant value of
open practices in democratising science and knowledge production makes promoting this
culture a key challenge for the modern global scientific community [Nielsen, 2012, Nosek
et al., 2015].

Despite this push towards openness in academic research, the fundamental processes
that take place in producing knowledge are closed. In most cases, peer-reviewed knowl-
edge is publicly communicated while intermediate methods, outputs and results are privy
to members within the research team [Franzoni and Sauermann, 2014]. This along with
institutional challenges prevent public participation across different facets of the research
process. With the complexities of addressing global challenges requiring collective efforts
beyond the traditional boundaries of academic research, the open science movement has
led to crowd science initiatives.

Crowd science initiatives lean on the strength of the global public in accomplishing
several foundational and research tasks in producing knowledge [Poetz and Sauermann,
2024]. They contrast with scientific research in the communication of intermediate results
and facilitating more open participation [Franzoni and Sauermann, 2014]. Despite the het-
erogeneity in science training, crowd science has resulted in the production of novel and
innovative research output. Crowd initiatives such as the Polymath project [Cranshaw and
Kittur] have successfully used a forum-style collaborative platform to solve open problems
inmathematics. Wikipedia is a case study for collective curation of content, performing key
tasks such as information gathering, fact checking, citation and presentation with no mon-
etary reward [Puranam et al., 2014]. Platforms leveraging on the strength of the crowd for
data curation and annotation have produced comparable performances to experts and used
in research - such as the cases of Zooniverse [Cox et al., 2015] and AmazonMechanical Turk
[noa, c, Yetisgen-Yildiz et al., 2010]. Open source projects (OSS) on platforms like Github
lay the foundation for key computational and software advancements on the last decades.
OSS projects have their software code and architecture public, allowing for contributors to
provide their expertise through code or customise functionalities, which ultimately can be
integrated into the main project.
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At the smallest scales, crowd and citizen science initiatives call for participation and
action in tackling the Sustainable Development Goals (SDGs), which encompass the key
challenges we face together as a community [Haklay, 2018, Fritz et al., 2019, Fraisl et al.,
2020]. From small-group participatory research in monitoring acute medical conditions,
to initiatives that prototype solutions addressing global issues like the pandemic [Masselot
et al., 2022], crowd science initiatives harnessing the latent transformative power at indi-
vidual and collective scales and drives impact through efficiently integrating knowledge
and experiences.

Both crowd and open science strongly relies on collaboration and collective efforts to
organise the processes of knowledge production. The focus on reproducibility, accessibility,
using digital resources and auxiliary tasks such as coordinating with public, stakeholders
and science communication (beyond writing papers) increase its organisational complex-
ities. Efficient organisation of teams in open science is a key facet that underlies their
propensity in producing knowledge and impact.

1.2.3 Structure and Impact

The structure of a team reflects how they organise themselves in accomplishing their tasks.
Henry Mintzberg, in his book The Structuring of Organizations [Mintzberg, 1989], describes
this structure as a composite of interactions (or flows) between teammembers, correspond-
ing to authority, social communications and formal work relationships. These interactions
have been captured through surveys, identifying hierarchies, social communication and
division of labour structures. In collaborative knowledge production, the team organisa-
tional structure is influenced by several factors, such as composition, task complexity and
this structure offers insights on the novelty and impact of the produced output.

The scientific output is typically measured through units of publications. Increased
productivity is indicated by publishing more peer-reviewed articles, technical reports or
patents. However, measuring the quality and impact of a publication is a key field of re-
search in science and policy. The traditional measures of impact are derived from citations.
Innovative research recombines references across disciplinary boundaries [Uzzi et al., 2013]
and its impact is realised through future citations from research spanning diverse fields. Fu-
ture citations also indicate the reproducibility of data and methods. However, disambiguat-
ing the specific context of each citation in a publication (whether they rely on theoretical
advancements or methodological practices) is a challenge.

Impact has a different scope in crowd science initiatives. They integrate outcome-based
measures of impact (such as project feasibility) with process based measures like partici-
pation and learning [Jaeger et al.]. Hackathons and OSS project impact can be measured
through its (re)use by people and institutions (captured through stars, forks on GitHub
repositories). Polymath projectsmeasure output through themathematical problems solved
(and new questions that prompts). Open data curation platforms measure impact through
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the quality of the data and its propensity for reuse in science and research. Crowd sci-
ence project initiatives are often vessels to train students and the global public on research
methodology - and in addition to impact, learning and maintaining engagement is an out-
come that generates benefits that are realised over the long term.

This subsection presents a short overview of the interplay between team structure and
impact in open science and innovation.

Team Composition and Diversity

Team composition describes attributes of a team and its constituent members. These at-
tributes can be:

• Size: With most science research now team-based, larger teams help realise higher
citation impact [Milojević, 2020, Larivière et al., 2015]. Larger teams are more inter-
disciplinary and have a higher division of labour amongst their members [Haeussler
and Sauermann, 2020, Adams et al., 2005].

• Diversity: Increase in team size often corresponds to a higher diversity on geo-
graphic and technical backgrounds of members. Increased technical diversity has
an inverse ’U’ shaped relationship with impact in science and R&D [Yegros-Yegros
et al., 2015, Hoisl et al., 2017]. Despite the coordination costs to bridge people and in-
stitutions across geographic regions, increased diversity realises additional outcomes
in terms of access to resources and procurement of grants [Bercovitz and Feldman,
2011, Larivière et al., 2015]. Diversity in terms of experience also indicates a higher
rate of success and impact [Taylor and Greve, Klug and Bagrow, 2016].

• Team Assembly: Team Assembly describes the methodologies used to construct a
team and how team members assign themselves into tackling different tasks. Team
assembly takes size, diversity and task complexity into consideration, and informs
on teams organisational structure [Raveendran et al., 2022] and their project impact
[Guimerà et al., 2005, Twyman and Contractor, 2019]. Teams in open and crowd
science are often self-assembled, with digital communication tools leveraged to pro-
vide recommendations and spark interactionswith new(er) members based on project
needs.

Decisions on team assembly, size and diversity impact how teams organise their struc-
ture in performing different tasks in open science and innovation.

Specialisation and Integration

Teams play an optimisation game, balancing the benefits of specialisation in performing
particular tasks with the costs of coordination across these specialised groups. Increased
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specialisation, reflected by an extensive division of labour in teams, positively effects pro-
ductivity and supports the training of users into a narrow set of skills [Becker and Murphy,
1992]. This however inversely relates to coordination costs [Lawrence and Lorsch, 1967] -
and in complex task environments, the need for coordination across specialists is high and
require robust integration structures within the team division of labour [Kretschmer and
Puranam, 2008].

Specialisation and coordination structures inform on teams’ global organisational pat-
terns. Flat teams are often smaller in size and diversity, have higher coordination between
composing members, with decreased individual specialisation to tasks. But, flat teams ex-
plore more atypical solutions and realise higher innovation and impact [Xu et al., 2022].
Whereas higher specialisation increases the need for coordination across specialist groups,
reflecting a more modular and hierarchical structure. Hierarchies benefit from their ability
to converge to a stable organisational structure over time, allowing exploitation and rapid
prototyping of solutions [Koçak et al., 2023].

The interplay between specialisation and integration is also of importance in open inno-
vation settings. Successful OSS projects evolve into narrow organisation structures, where
a core set of contributors coordinate across overlapping subgroups, which provide specialist
input [Klug and Bagrow, 2016, Palazzi et al., 2019]. The significance of specialist contrib-
utors who remain at the periphery of the contribution structure cannot be understated.
Interactions from contributors at the periphery spark increased engagement and develop
new ideas in Polymath projects [Gargiulo et al., 2022].

With open science and innovation initiatives predominantly relying on integrating ex-
pertise from diverse actors in performing scientific and technical tasks, the emergence of
specialisation and coordination structures to produce output is a key research direction.

Internal and External Collaborative Processes

To produce novel and innovative research, in addition to integrating diverse expertise in-
ternally, teams collaborate with and access external inputs from other teams, institutions
and resources.

External collaboration allows teams in science access to knowledge, resources and op-
portunities (such as funding) which are otherwise hidden. This results in differences in the
organisation structure of teams, which need to harmonise to efficiently integrate external
input with their internal processes. Collaboration with external stakeholders suffer from
coordination challenges and misunderstandings, which are caused due to group diversity,
geographical dispersion, interconnected tasks, cultural barriers, competition or economic
gains [Walsh and Maloney, 2007]. However, these can be bridged using modern communi-
cation tools, as simple as the email or mobile phone calls. The impact realised by allowing
for specialised external input through collaboration often times exceed the costs, especially
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in tackling complex problems.

Crowd science opens for participation from diverse actors at different stages of the
knowledge generation process. By design, they foster collaboration as a fundamental strat-
egy to overcome challenges in realising impactful solutions for community-facing problems
and facilitating learning along the way.

The organisational structure of teams in open science and innovation settings underlie
their main outcome of producing impactful research. Modelling and studying this structure
is key to understanding the optimal practices and designing methodologies to implement
them in diverse settings. The next section presents networks and network science as a
mathematical and computational framework to represent team organisation and derive in-
ferences about their structure and how it associates with their outcomes.

1.3 Networks and Team Collaborations

Network science is a powerful tool to model interactions between diverse entities. The
organisation structure in scientific teams are captured through interactions - internal task
allocation between members and tasks which highlight the division of labour, coordination
- and external collaboration between teams and other heterogeneous actors.

This section discusses the use of networks in modelling interactions and the organisa-
tional structures of teams in open science and innovation. I present the key methodologies
from network science and social networks literature that are used to study these structures
and provide motivations for my specific focus on network approaches in this thesis.

1.3.1 Networks of Internal Organisation in Teams

The internal division of labour networks capture how teams allocate different tasks that
need to be performed in the knowledge production process, amongst their constituent
members. With interactions only occurring between teammembers and tasks, the resulting
network has two categories of vertices - with no interactions between vertices of the same
class. These are denoted as bipartite networks in network science literature.

Bipartite networks are alternatively represented as an incidence matrix, where the rows
correspond to all vertices of one category (users) and columns to that of the other (tasks),
with each cell indicating the strength (or frequency) of the interaction between them (1.1a).
Studies often use the adjacency matrices to describe the division of labour and team organ-
isation structures [Haeussler and Sauermann, 2020], but the definitions can be reframed in
bipartite network terminologies.
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Figure 1.1: Bipartite networks a) Interactions between team members (green) and tasks
(red). Bottom shows the incidence matrix of the bipartite network. b) Contribution struc-
ture of the django-money OSS project on Github. Green indicates the contributors and red
the files. Vertex size highlights the degree, showing the presence of core contributors. c)
Member (red) - Task (green) network with the tasks corresponding to the CREDIT cate-
gories.

Constructing the bipartite network of division of labour requires capturing the complete
task allocation structure in a team. In academic research, this task allocation structure is
declared by the authors of a manuscript in the Contribution section. To track academic
contributions consistently, several taxonomies have been designed describing the specific
roles that authors undertake in realising their research work. The CREDIT contributor
role taxonomy [noa, d], has 14 roles, where each role involves performing specific func-
tional tasks in producing scientific knowledge. Recent academic publications report their
contribution structure consistent with the CREDIT roles [Sauermann and Haeussler, 2017,
Larivière et al., 2020], a processed contribution statement can be represented as a bipartite
network - with interactions between authors and roles (1.1c).

Digital traces captured from online tools used in open science and innovation, provide
a tractable method to identify the contribution structure in teams. Here, interactions occur
between members and the components that they co-create. In OSS projects - these compo-
nents correspond to specific code or files (1.1b) [Lima et al., 2014, Palazzi et al., 2019]. In
Wikipedia, interactions are between editors and articles (or sections for a more fine-grained
view) [Yasseri et al., 2012, Klein et al., 2015, Keegan et al., 2012]. In forums, they are between
members and posts [Poquet et al., 2020, Gargiulo et al., 2022].

Bipartite networks of a teams’ internal organisation help identify several structural
properties, corresponding to their composition, diversity, specialisation and coordination.
Clustering bipartite networks helps identify modules (consisting of members and tasks)
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who work closely, indicating specialised task sub-groups. This modular organisation al-
lows to quantify the level of differentiation of members into tasks and understand the
structures of coordination - by looking at interactions across different modules [Guimerà
et al., 2007, Palazzi et al., 2019, Pasquaretta and Jeanson, 2018]. The modular structure
also allows to understand the diversity of a teams’ structure using member level attributes
such as their experience and background. This has been a base to explore how different
self-organisation strategies (assigning members to tasks) enable different organisational
structures and higher team performance, through simulations and rewiring interactions in
bipartite networks [Wax et al., 2017, Twyman andContractor, 2019, Raveendran et al., 2022].

Bipartite networks are also projected onto either vertex category to generate a unipar-
tite network. Two team members are connected in the unipartite network, if they work
together on the same task. And conversely, two tasks are connected if the same user con-
tributes to them both. The unipartite network on tasks provide a proxy of the interde-
pendences between them within a team project. These task interdependences have been
a focus to identify member roles (looking at how they are assigned to different tasks), the
hierarchies and the complexities of coordination Xu et al. [2022], Haeussler and Sauermann
[2020].

Both bipartite and unipartite networks are used to capture the structural properties of
internal collaboration and division of labour in teams.

1.3.2 Networks of Collaboration across Teams

Collaborative activities of teams are identified through interactions connecting them to
other teams and institutions. This external collaborations allows teams access to much
needed resources and technical expertise which are not available internally.

Collaboration networks in academic research are constructed using co-authorship data.
The institutional affiliations of authors of a paper are set to be the vertices and an inter-
action indicates a collaboration between researchers from two institutions. Collaborations
that bridge across disciplinary and geographic boundaries are more successful in produc-
ing innovative research, securing funding [Bercovitz and Feldman, 2011] and in overcoming
creative roadblocks [Lamain et al., 2024]. Beyond academic collaborations, crowd science
initiatives also encourage collaborations between teams and projects. The open-ended par-
ticipation strategies encourage involvement from diverse stakeholders who are otherwise
often decoupled from science and innovation processes, in developing a collective vision
[Senabre Hidalgo et al., 2021].

External collaborations connecting teams to diverse actors has been at the focus of iden-
tifying novel ideas and methods. Burt [Burt, 2004] uses a network science method to quan-
tify the gaps that a collaboration connects between two diverse actors, with wider the gap,
the more novel the recombination. Simpler proxies, such as the closing of triangles (a new
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Figure 1.2: Multilayer networks of Collaborations. (Left) External collaborations between
teams and (Right) Zoomed in version of the internal organisation between members (red)
and tasks (green)

interaction between two actors who already have an actor they mutually interacted with)
have shown to spark novelty and even commercial success in a case study of jazz recording
sessions [Vedres, 2017, 2021].

The internal division of labour and external collaboration networks of teams can be
leveraged together to gain a comprehensive view of organisation in science and knowl-
edge production. Lazega [Lazega et al.], proposed linking the inter-individual collabora-
tions with inter-organisational networks, allowing the identification of strategies used to
navigate local and global interdependences to gain a competitive advantage (focusing on
individual scientist careers). This is also true for teams, who need to integrate input from
external collaboration while balancing their internal division of labour, signifying the need
for a multi-level network approach to capture organisational complexities (figure 1.2).

1.3.3 Evolution of Structure over time

Collaborations change over time. Internal organisation of teams can be reconfigured, de-
pending on emerging needs, challenges or conflicts. These can also prompt teams to seek
out external support. Beyond the dynamic reconfiguration, teams learn to conserve op-
timal strategies and organisational routines with experience. These allow teams to spe-
cialise in different tasks and strengthen internal and external social ties - having pos-
itive effects on their productivity and impact [Becker, 2020, Puranam and Maciejovsky,
2020]. These routines and the evolution of the corresponding organisational structures can
be captured through networks, using snapshots of team collaboration networks [Borge-
Holthoefer et al., 2017] over time or modelling temporal networks [Paranjape et al., 2017]
to identify the emergence of repeating structural patterns.

– 12 –



Introduction

The main limitation to leveraging the strength of temporal network methods is the lack
of granular data. OSS projects, Wikipedia articles or forums collect digital traces of contri-
butions over time, which allow to identify emergent patterns longitudinally. However, in
science, only a snapshot of the author contributions is recovered at a given time. Surveys
can help capture snapshots of collaborations at different times of administering, but it is a
time and resource intensive process.

In summary, network science literature provides opportunities and methods to repre-
sent inter- and intra- team collaborative processes, and offers measures to identify key
structural properties that underlie impact in open science and innovation.

1.4 Facilitating Outcomes in Open Science and Innova-

tion

Collective knowledge production, especially in open science and innovation settings re-
quire team members to take up the mantle of multiple key responsibilities. Core members
of a research team perform roles such as fundraising, public engagement, promoting open

science in addition to making decisions on team organisation, collaboration, coordination
structures and undertaking technical project tasks [noa, d, Larivière et al., 2021]. Despite the
perceived benefits to collective and open sciencemethods, implementing them in practice is
a complex endeavour - mainly requiring specialised training for students and researchers
coming out of the scientific research ecosystem [Chesbrough, 2003, Borycz et al., 2023].
This is a foundational challenge to usher in the next wave of open participation and collab-
orative research to tackle real-world challenges

Open science and innovation initiatives are a vessel to aid in tackling this challenge.
Structured programs are designed where participants work towards building a science and
innovation project, are trained on various technical skills - where they, at the end, gain
first-hand experience about the knowledge production processes, particularly emphasising
on open practices. The focus on these dual outcomes - of learning by doing and producing
impact - requires support structures that ensure participating teams meet them.

Building effective support structures within collaborative open innovation settings re-
quires robust methodologies to monitor the teams’ collective processes, measure and eval-
uate their outcomes which them help design interventions that facilitate learning and pro-
ducing impact. This section discuses the motivations behind the strategies employed to
monitor and facilitate open science and innovation teams.
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1.4.1 Monitoring and Evaluation

Realising the outcomes in open science and innovation requires teams and collectives to
efficiently balance the challenges in organising their internal structure (balancing special-
isation and coordination), collaborate with external actors and resources and disseminate
the knowledge produced. Understanding better about how different collaboration struc-
tures enhance learning and impact is a key question that will foster designing strategies to
enhance open science and innovation activities.

Gaining a fine-grained view of how these teams organise and do science is a start. The
increased costs to collaboration have been overcome by the use of digital tools, which cap-
ture (through networks) how teams build their projects, share data and collaborate with
other teams [Nielsen, 2012]. Digital traces from these tools can be leveraged to capture
structured and fine grained team quantitative data. Using version control software (such
as Git while building software) and collaborative editing toolkits (such as forums, wikis,
online editors to document their project and progress) allow tracking the contributions of
team members in collectively building their project. Communication platforms like email,
Slack also allow to track collaborations between individuals, teams and other stakeholders,
allowing to measure external collaborations and engagement. Despite the scalability and
longitudinal nature of the collected data, digital trace data are approximate proxies for team
collaboration and engagement.

Surveys are a powerful instrument to collect qualitative data from teams. Surveys can be
structured, enabling teams to regularly report on their internal and external collaborations
[noa, e, Walsh and Lee, 2015], diversity [Van Der Vegt and Bunderson, 2005, Guzzo and
Dickson, 1996] and satisfaction levels [Spector, 1997]. Surveys can also be used to collect
unstructured data, allowing teams to self-report specifics about their methodology, attri-
butions and detailing potential roadblocks. These surveys are administered through public
digital tools or proprietary software, allowing to implement privacy preserving mecha-
nisms for sensitive data. However, surveying is a resource intensive task - requiring ad-
ditional time and manpower to validate and process collected data. Surveys are also chal-
lenging to scale to longitudinal settings and to larger teams or communities.

Team progress is usually measured by the impact their work has in cultivating new
research. Measures like citations (in science) and reuse (of code in open innovation) are
classic examples. Structured open science and innovation initiatives measure progress and
impact by evaluating team projects and their activities. This measure of project impact is
an amalgamation of project feasibility, novelty, development of open data and frameworks,
collaborations and engagement [Chesbrough, 2003, Chesbrough et al., 2017].

Engagement is a key predictor of performance and learning in collective settings [Cox
et al., 2015, Haklay, 2018]. Participant engagement is measured by their involvement with
their project and within the initiative, using proxies such as interacting with people, ma-
terials or responding to queries and surveys. Sustaining engagement facilitates individual
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and collective learning of skills and strategies used to tackle complex tasks. Tracking par-
ticipant engagement furthers the need for fine grained strategies to monitor and support
teams.

An ideal monitoring toolkit leverages both qualitative and quantitative data to gain a
comprehensive overview of a teams’ collective efforts, impact and engagement. This allows
practitioners to identify moments where progress is halted due to an emerging need, lack of
resources or poor collective organisation. Interventions can be designed to support teams
during these points and facilitate future learning and impact.

1.4.2 Challenges

Administering surveys at designed intervals and prompting teams to use open tools cap-
ture fine-grained and longitudinal collaboration and coordination structures internal and
external to teams in open innovation settings. Implementing this robust monitoring and
evaluation framework and leveraging a multi-faceted approach for data collection requires
significant effort costs. This necessitates a specialised set of organisers or practitioners who
track teams during their participation using digital tools and administer surveys.

In addition, identifying team collaboration, organisation, diversity and engagement
from both quali- and quantitative data sources requires data processing and pipelines us-
ing networks and data science methods to curate and build measures of team organisation
and outcomes. Furthermore, digital platforms need to be designed to disseminate key ob-
servations to practitioners, which aid them in identifying specific team needs that require
interventions and support.

1.5 Presentation of the Thesis

The modern science and innovation process is complex, requiring the integration of both
specialised and interdisciplinary experiences. The growing focus on open science paradigms,
which emphasise on transparency and participation, democratise the knowledge produc-
tion process, and furthers the need for collective approaches. Open, collaborative and team-
based science to tackle global societal problems benefit from the diverse skills of its mem-
bers and access to data and resources that are scarce to obtain. However, they incur costs
to coordinate across these internal and external stakeholders.

The underlying objective of fostering more collaborative and impactful research re-
quires understanding more about how teams organise to solve complex problems and how
can we support them in this process. Network science is widely used to represent and study
the collaborative structures in teams and how they associate with their outcomes. But,
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identifying team organisational structures requires fine-grained data of how teams allocate
tasks amongst themselves and how they coordinate with external stakeholders. Gathering
and processing this data is a key challenge, needing qualitative and quantitative methods
to curate data from teams longitudinally and in scale.

Leveraging network science methods, gives a comprehensive insight into team organi-
sational structures and how they underlie performance and learning over time. Facilitating
open science and innovation teams to overcome the pitfalls in communication and coordi-
nation to produce impactful science requires building digital toolkits to help practitioners
in sustaining engagement and identifying moments where interventions and support are
necessary.

In this thesis, I compile my doctoral research integrating networks and data science ap-
proaches to study collaborative structures in team-based open science and innovation. In
order to address the challenge of data curation, I use a mixed approach - collecting qualita-
tive data from surveys and self reports and quantitative data from digital traces. I present
pipelines to process this mixed data and represent them as networks. To study how team
organisation structure underlies performance and learning, I construct network measures
identifying the significant structural properties and associate themwith team outcomes. To
show how network inferences can be employed to facilitate teams in an open-innovation
setting, I build a dashboard to inform on collaboration, engagement and discuss how they
can support intervention design.

1.5.1 Contributions

The key contributions of this thesis are:

• Developing pipelines to collect, process and curate internal and external team col-
laborations from digital traces, using the contribution structures of team members
collaboratively working on a shared resource (Wikis) and communication patterns
on shared online platforms (Slack).

• Developing methodologies to process unstructured and self-reported qualitative data
to identify team collaborations and organisation structures - using recent advances
in language processing and Large Language Models (LLMs).

• Using network science to build measures to describe team collaborative structures in
open science and innovation. I explore the interplay between specialisation and coor-
dination in the internal organisation of teams and study how teams rely on external
collaborations to bridge technical gaps and foster innovation.

• Building visualisation dashboards presenting data and findings to support practition-
ers in open science communities to monitor and support teams.
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1.5.2 Contexts

In the thesis, I study open science and innovation teams in the following contexts.

The Crowd4SDG Citizen Science Project Incubator

Crowd4SDG is a citizen science project incubator program, with the key objective of facil-
itating student teams in designing novel and impactful citizen science projects addressing
the Sustainable Development Goals (SDGs). Participants in the program are selected and
formed into teams (based on their skills and backgrounds). They are provided with contex-
tual training on citizen science and in using digital resources to help them conceptualise
a citizen science project, which are then evaluated. Selected projects are passed onto the
next roundwhere they are given additional training and resources to build prototypes. Final
projects, after an additional round of evaluations and selection, are connected with funders
and stakeholders. With data collected from citizen science teams in real-time, this presents
a case study to understand how participant engagement and team collaborations associate
with performance and in designing toolkits to directly support the incubator framework.

The iGEM Challenge based Learning Ecosystem

International Genetically Engineered Machines (iGEM) is a science and engineering com-
petition where student teams (hosted at universities or high schools) work on designing a
synthetic biology project. Teams are expected to undertake several tasks such as creating
synthetic biology parts, documenting their work on a digital lab notebook, collaborating
with other teams and engaging with the public and diverse stakeholders. The global struc-
ture of iGEM, its emphasis on open science principles and the fine grained data curated
from from digital traces and a formalised evaluation strategy for teams make it an excellent
testbed to study how team organisation structures underlie performance and evolve with
experience in science and innovation.

1.5.3 Thesis Organisation

The thesis is organised into 3 further chapters, ending with some concluding remarks:

• Chapter 2: Presents the Crowd4SDG citizen science incubator and describes the
methodologies used to collect internal and external collaborations of participating
teams, through surveys and Slack communication. I use interactions collected from
participating teams to build indicators of collaboration, diversity and engagement,
and demonstrate how these indicators underlie their performance and outcomes. I
build a visualisation dashboard to aid practitioners in the incubator to monitor and
support participating citizen science teams.
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• Chapter 3: Presents data collection and processing methods from teams participat-
ing in the iGEM science and innovation competition. I describe the pipelines to pro-
cess quantitative data from digital traces and qualitative data from self-reports to
recover inter- and intra- team collaboration networks.

• Chapter 4: Presents network science methods to study the internal organisational
structure of iGEM teams at the global and task levels. I focus on modularity and nest-
edness as indicators of specialisation and coordination in teams and demonstrate how
they predict team success. I leverage the longitudinal aspect of team participation to
understand how they learn with experience and how this learning is reflected onto
their team organisation.
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Chapter 2

Monitoring Citizen Science Teams

using Digital Traces

Preface

Open Science and Innovation initiatives focus on training students and the general public
in collaborative knowledge production and facilitate them in tackling global societal prob-
lems. Organising initiatives with these dual targets necessitates building robust strategies
to monitor teams, understand how they interact with other actors and engage with differ-
ent facets of the initiative. This chapter explores how monitoring and evaluation strategies
can be implemented to curate qualitative and quantitative interaction data, informing on
collaboration, diversity and engagement of teams and how these inferences can be feedback
into designing interventions to support teams. I focus on the Crowd4SDG citizen science
incubator as the testbed for the study and analysis.

Crowd4SDG is a Horizon 2020 project that aims to train student teams in building a cit-
izen science project addressing the Sustainable Development Goal (SDG) challenges. The
project achieves this by organising a yearly innovation cycle with 4 stages - called GEAR
(Gather, Evaluate, Accelerate and Refine). Students are assembled into teams, coached and
are provided with technical and digital toolkits to conceptualise and prototype their citizen
science project. At the end of each stage, teams are evaluated and selected into the next
one. Teams that progress to the final stage are invited to present their projects to research
communities, prospective sponsors and stakeholders.

The Crowd4SDG project ran over the course of 3 cycles with multifaceted objectives.
Primarily, the GEAR cycle is a training and facilitation framework, a key objective is to
evaluate the methodology, and how developing new citizen science toolkits and training
strategies foster the building of innovative projects. In addition to the efficacy of the GEAR
cycle, it is key to understand how teams remain engaged with the program and what are
the predictors of innovation within the collaborative challenge-based innovation ecosys-
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tem. This allows facilitators to reconfigure their strategies and offer future perspectives on
designing similiar frameworks. We achieve this by monitoring and studying teams through
their progress within the GEAR framework using a multifaceted approach - including qual-
itative surveys and digital traces from web tools.

The chapter is split into three broad sections. In the first section, I present our work
in studying teams participating in the GEAR cycle framework. The second Evaluate phase
of GEAR is the stage where participants are grouped into teams and offered training over
the course of 5 weeks. The section presents the monitoring strategies leveraged during this
phase to study participating citizen science teams and we highlight how team composition,
collaboration and activity patterns are associated with their engagement within the frame-
work and the quality of their project. In the second section, I present our work building
statistical models associating collaboration dynamics and project performance - leveraging
data from the Evaluate phase of GEAR cycles 2 and 3 (which had the formalised monitor-
ing strategies, excluding the pilot GEAR cycle 1). Finally in the third section, I discuss the
needs of practitioners in organising the GEAR cycles and howwe design visualisation tools
to help them monitor participants on a regular basis.
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Monitoring Citizen Science Teams using Digital Traces

2.1 Collaboration and Performance of Citizen Science

ProjectsAddressing the SustainableDevelopmentGoals

Abstract

Measuring the progress towards the Sustainable Development Goals (SDGs) requires the
collection of relevant and reliable data. To do so, Citizen Science can provide an essential
source of non-traditional data for tracking progress towards the SDGs, as well as generate
social innovations that enable such progress. At its core, citizen science relies on participa-
tory processes involving the collaboration of stakeholders with diverse standpoints, skills,
and backgrounds. The ability to measure these participatory processes is therefore key
for the monitoring and evaluation of citizen science projects and to support the decisions
of their coordinators. Here, we show that the monitoring of social interaction networks
provides unique insights on the participatory processes and outcomes of citizen science
projects. We studied fourteen early-stage citizen science projects that participated in an in-
novation cycle focused on SDG 13, Climate Action, as part of the Crowd4SDG project. We
implemented a monitoring strategy to measure the collaborative profiles of citizen science
teams. This allowed us to generate dynamic interaction networks across complementary
dimensions, making visible both formal and informal interactions associated with the divi-
sion of labor, collaborations, advice seeking, and communication processes of the projects
during their development. Leveraging jury evaluation data, we showed that while team
composition and communication are associated with project quality, measures of collab-
oration and activity are associated with engagement quality. Overall, monitoring social
interaction dynamics helps build a more comprehensive picture of participatory processes,
which is of importance for guiding citizen science projects and for designing initiatives
leveraging citizen science to address the SDGs.
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Contributions and Publication

The work presented here was published in the journal Citizen Science: Theory and Practice

in 2023. The following section reports the contents of this article as is, reformatted to the
style of the thesis.

Masselot, C.*, Jeyaram, R.*, Tackx, R., Fernandez-Marqez, J.L., Grey, F. and San-
tolini, M. (2023) ‘Collaboration and Performance of Citizen Science Projects Ad-
dressing the Sustainable Development Goals’, Citizen Science: Theory and Prac-
tice, 8(1), p. 45.

I took lead on collection (with the help of Raphael Tackx and Camille Masselot) and
curation of the data, performing the analysis and visualisation. Credit to Marc Santolini for
conceptualising and supervising the study and to Camille Masselot and Marc Santolini for
writing the manuscript.

– 32 –



Monitoring Citizen Science Teams using Digital Traces

2.1.1 Introduction

The United Nations Sustainable Development Goals (SDGs) are a series of development tar-
gets designed to address the world’s most pressing societal, environmental, and economic
challenges by 2030. Measuring their progress requires the obtention of timely, relevant, re-
liable data across a multitude of stakeholders. By engaging in scientific activities, citizens
can foster the progress towards the resolution of the SDGs [Fritz et al., 2019], for example
by generating evidence to identify gaps in their monitoring [Franzoni et al., 2022], collect-
ing and analyzing data to support the decisions taken by local and national stakeholders
[Ballerini and Bergh, 2021, Fraisl et al., 2020], and accelerating the development of solutions
[Kokshagina, 2022, Masselot et al., 2022].

Compared with traditional scientific work, citizen science requires the definition of pro-
cesses of engagement and coordination, from simple data collection to co-design strate-
gies [Franzoni and Sauermann, 2014, Haklay, 2018, Senabre Hidalgo et al., 2021]. Frame-
works have recently been developed to assess the impact of citizen science projects towards
the SDGs [Parkinson et al., 2022], to understand modes of co-production for sustainability
[Chambers et al., 2021] and to evaluate success of online teams in terms of scientific con-
tribution and public engagement [Cox et al., 2015]. Yet those frameworks often apply to
large teams or to advanced projects, and organizers of initiatives such as Crowd4SDG [noa,
a] lack supporting evidence to guide their practice in forming and coordinating successful
citizen science projects at early stages. The evaluation of participatory processes such as
those involved in citizen science emphasizes measures of diversity, engagement, collabora-
tion, and learning [Jaeger et al., Schaefer et al., 2021]. The ability tomeasure these participa-
tory processes is therefore key for the monitoring and evaluation of citizen science projects.

Mixed methods involving digital traces and questionnaires are traditionally used in so-
cial studies describing collaborative activities, for example to understand how social net-
works shape individual performance in collaborative learning [Poquet et al., 2020], or to
describe how team interactions and community organization shape collective performance
within open research programs [Kokshagina, 2022, Masselot et al., 2022] or open source
communities [Gargiulo et al., 2022, Klein et al., 2015, Klug and Bagrow, 2016]. Comple-
menting digital traces, the collection of self-reported data yields qualitative insights across
perceived interactions [Deri et al., 2018]. However, building a comprehensive group-scale
network requires the engagement of a large proportion of the participants involved in the
self-report activity in order to accurately represent the social network, calling for specific
survey instruments that allow for collection of the social ties of a participant while min-
imizing survey burden. The recent availability of such survey instruments has rendered
collaborative network data collection easier and scalable, allowing researchers to capture
temporal organizational networks within groups of various sizes [Tackx et al., 2021].

In this study, we tackle the question of how participatory processes shape project per-
formance within early citizen science projects addressing the SDGs. To do so, we focused
on Crowd4SDG, a European project that guides young individuals from pitching an idea
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on a social platform to the design of prototypes of citizen science projects via a one-year
cycle of innovation. We developed and implemented a framework to monitor the activ-
ity and collaborations across 14 citizen science projects from the Crowd4SDG project. We
highlight how this framework generated complementary interaction networks informing
on the division of labor, collaborations, advice seeking, and communication processes of the
citizen science projects. Finally, we show the usefulness of these measures for monitoring
engagement and supporting the evaluation process and discuss how this framework could
be used in future programs

2.1.2 Methods

Description of the Gear Cycle

The Crowd4SDG project organizes three one-year cycles of innovation, aimed at coaching
teams of young social entrepreneurs through the steps of building a citizen science project.
Each project tackles a challenge related to Climate Action or involves crowdsourcing tools
that can generate data relevant for tracking progress towards the SDGs. The innovation
methodology used follows a “GEAR Methodology” to coach teams through the innovation
process required to develop new citizen science projects (Figure 2.1 a). Each GEAR cycle
includes several phases of online coaching and in-person support: Gather, Evaluate, Ac-
celerate and Refine. The Gather phase is promoted as a global crowdsourcing of ideas,
called the Open17 Challenge (Figure 2.1 b), on the social network Goodwall. Some partici-
pants entered the phase with their own team, others were assigned teammates by a teaming
algorithm (see Supplemental File 2: Teaming Algorithm for the parameters used in the al-
gorithm). At the start of the Evaluate phase, 30 to 50 participants are selected to enroll in
the Open17 weekly coaching during which they learn about developing and pitching their
citizen science project. The best teams then benefit from a Challenge-Based Innovation
Workshop (CBIW), which focuses on building a working prototype for the project, using
crowdsourcing tools developed by the Crowd4SDG consortium partners and other relevant
ones. Themost promising projects are invited to participate in the Geneva Trialogue, an op-
portunity to meet sponsors and potential partners amongst the international organizations
in Geneva. Each phase of the GEAR methodology filters projects based on their novelty,
relevance, feasibility, and appropriate use of crowdsourcing tools, and helps participants
advance towards practical deployment.

The citizen science projects developed in the three GEAR cycles of Crowd4SDG aim to
address the nexus between Climate Action (SDG 13) and several other key SDGs: Sustain-
able Cities (SDG 11 in 2020), Gender Equality (SDG 5 in 2021), and Peace, Justice and Strong
Institutions (SDG 16 in 2022).
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Figure 2.1: Description of the challenge. (a) Schematics of a GEAR cycle. (b) Visual for the
GEAR Cycle 2.

Description of the Team Projects

In this work, we study the “Evaluate” phase of the GEAR cycle 2, the coaching program
where teams ideate their project and engage in interactions with their peers and mentors.
This focus allowed us to gather data on a large enough sample of projects corresponding to
14 teams. We document in Table 1 the objectives of the projects, along with team size and
the final stage of the challenge they achieved.

Communication Data

A Slack workspace was used by the teams during the GEAR cycle as a means to communi-
cate with other teams and with the organizing team.

The data was extracted in JSON format using the export function available to the own-
ers/admins of the Slackworkspace. This allowed us to gather a data frame containing across
all public channels the messages (post contents), their time stamp, sender, and channel it
was sent in. The raw data was then processed to obtain mentions. A mention occurs when
a Slack user types in a message the Slack username of a target user prefixed by “@”. Each
recorded mention has information on the source (who wrote the message), target (who is
being mentioned), and the timestamp (when the message was sent). Slack also allows users
to broadcast messages by citing all users in a channel or a workspace by using specific com-
mands (@all, @here, @channel_name). These were not included as mentions in order to
focus on direct interactions only.

Survey Data

We used two types of surveys: those related to participant attributes (e.g., their background
or country of origin), and those related to participant interactions (e.g., who they collabo-
rated with or sought advice from).

The initial survey was related to attributes only and was disseminated using a Google
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Team Name Team size Project objectives Furthest stage achieved

WOMER 2 Assess the effect of climate change on women in indigenous communities in Colombia
Empower indigenous women via their engagement in citizen science Refine

DonateWater 4 Map the operating status of water handpumps in rural communities of Nigeria using
crowdsourcing techniques. Discuss changes in water access solutions Refine

Andapé Institute 3 Map the accessibility of sidewalks and their conditions in the urban environment in Brazil.
Design an ecological sidewalk from recycled materials Accelerate

Climate Gender Justice 2 Generate area-specific data related to climate change impact on sexual and reproductive health
and rights Accelerate

Water Warriors 3 Organize and classify emergencies and the responses adopted to solve them Accelerate
Women & Technology
Against Climate Change 3 Map women participation in climate change projects connected to technology Evaluate

SDesiGn 2 Increase gender equality in architecture and product designs that prioritize environment protection Evaluate
UpGet app - CitiCERN Project 2 Build a digital wallet to get eco-friendly rewards Evaluate

Eco Winners 3 Build Digital Platform where farmers in NIgeria - of which 70% are women, can rent farming tools
and equipments at low cost on a peer to peer basis Evaluate

Women 4 Sustainable World 2
Set up meteorological data collection kits that send alerts to users on their mobile phones on
favorable periods for the seed, make the treatments with fertilizers or pesticides, the type of seeds
adapted to the soil followed by an estimate

Evaluate

TEAM FOILED 3 Allow affected communities to crowdsource damages caused by floods and access help faster Evaluate
PAM 3 Map and classify climate disasters and give a peculiar attention to women’s voices Evaluate
Rights of Climate 2 Assess the link between Women Land Rights and their vulnerability to Climate change in Malawi Evaluate
Flood Rangers 2 Generate gender segregated data related to the impact of flood on men and women in Nigeria Evaluate

Table 2.1: Gear Cycle 2 project description

Form at registration to the Evaluate phase.

We then disseminated 4weekly surveys related to social interactions and activities using
the CoSo platform [Tackx et al., 2021] (Supplemental File 2: Figure S1). The CoSo platform
is designed to collect self-reported interaction data with a simple, reactive interface, and an
analysis-ready database. To document their interactions, the users could select target users
across all other participants and organizers. The interactions spanned prior ties in the first
survey (“Which of these people did you know personally before?”), and on a weekly basis
their advice-seeking behavior (“Who did you seek advice from last week?”) and collabora-
tions (“Who did you work with last week?”). To document their activity, they could select
across 26 activities encompassing routine activities within research teams inspired from
the CRediT contribution taxonomy, as well as specific questions regarding Crowd4SDG,
for example specific tool usage. Activities encompassed different levels of complexity in
their realization. They ranged from tasks that could be performed in a distributed fashion
such as preparing the final pitch and analyzing data, to tasks involving higher levels of col-
laboration such as brainstorming.

The surveys were advertised through Slack, and the organizing team dedicated 10 min-
utes for participants to fill them during weekly sessions, ensuring a high engagement: Ex-
cept for the team “Flood Rangers,” who answered only one CoSo survey before dropping
out from the program, at least one member of each team answered surveys each week
(Supplementary File 2: Table 1).

Team Features

To documentmeasures of participation, wemonitored features related to team composition,
communication, collaboration, and activity (features from Figure 2.7 are in italics below).
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For team composition, we built measures of size, diversity, education level, and prior
experience. Team size was assessed using the number of members of a team. Background
diversity was assessed by computing the background span — that is, the number of unique
academic backgrounds in the team as declared in the registration form. The education level
was computed by taking the average level of education in a team based on the response to
the question “What is your current or highest level of education,” to which we attributed
the following score based on the answer: 0 for secondary school, 1 for high school, 2 for
undergraduate, and 3 for graduate. Finally, prior experience was computed as the average
answer to the question, “Have you participated in data projects or contributed as citizen
scientist to data production before?” (yes = 1 and no = 0) within each team.

For communication, we leveraged the activity and interactions on Slack public channels.
The Slack activity was assessed as the total number of messages posted by team members.
For interactivity, we measure Slack interaction intra team as the number of mentions among
members of a team, and Slack interaction organizing team as the number of mentions be-
tween members of a team with the organizing team. We counted mentions regardless of
their directionality.

For collaborations, we focused on the number of collaborations within the teams, as
well as the centrality of the teams within the advice network. For the intra-team collabora-
tions (coso interaction intra-team), we summed for each team the weights of the intra-team
edges in the “work with” collaboration network. For the centrality in the advice network,
we computed the Burt constraint [Burt, 2004], a measure of social capital that takes low
values when a neighborhood is diverse (ties to separate neighborhoods), and higher values
when the neighborhood is constrained (dense ties to the same neighborhood). Advice diver-
sity was computed by taking the negative of Burt constraint, with higher values indicating
higher levels of diversity (more structural holes). This quantifies the ability of a team to
leverage diverse sources of information for advice seeking.

Finally, for the activity, we focused on measures of diversity and engagement of activi-
ties performed. For diversity, we computed the activity span as the proportion of activities
performed by a team among the 26 listed. For engagement, we considered the activity reg-
ularity by first computing the number of activities reported by a team each week, and then
computing the negative of the Gini index on the resulting vector. The Gini index ranges
from 0 (perfectly regular) to 1 (perfectly irregular). 1-Gini is higher if activities are regularly
conducted across weeks. Finally, we quantified for each team the survey engagement as the
proportion of survey responses per team across all CoSo surveys, a measure of engagement
to the study.

Team Performance Data

To quantify team performance, we used the scores that teams obtained in their assessment
by the jury and the Crowd4SDG organizing team (features from Figure 2.7 are in italics
below).
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Performancewas assessed through 4 team outcomemetrics (crowdsourcing component,
feasibility, relevance, novelty) as judged by a panel of experts selected by the Crowd4SDG
consortium, and by 4 process parameters (project documentation, members attendance,
commitment, and weekly evaluation) as assessed by the organizing team.

More precisely, crowdsourcing was assessed using the mean score attributed to the ques-
tion “Is there an effective crowdsourcing component?” (yes = 1 and no = 0). We measured
the feasibility, relevance, and novelty by computing the mean score attributed by the jury on
a scale from 0 to 5 to the questions “Feasibility: Is the project implementable with reason-
able time and effort from the team?,” “Novelty: Is the pitch based on a new idea or concept
or using existing concepts in a new context?,” and “Relevance: Is the solution proposed rel-
evant to the challenge or potentially impactful?”

In terms of process, all variables were integer values with scores ranging from 0 to 5
for deliverables and attendance, 0 and 1 for commitment. For weekly evaluation the score
was a continuous value ranging from 0 to 10 scoring the overall quality of their weekly
pitch sessions. Deliverables measured the total number of deliverables submitted and docu-
mented on the platform Innprogress (https://innprogresstest.unige.ch/) among the expected
ones. Attendance was estimated by the proportion of sessions attended by team members.
Commitment was scored 1 if teams were willing to continue their project after the end of
Evaluate, or 0 otherwise.

Network Construction

The SDG and background networks in Figure 2 are built using the co-occurrence of answers
in multiple choice questions across participants in the first survey. In these networks, two
nodes are linked if they are co-cited in an answer, and the weight of the link is the num-
ber of participants who reported this co-occurrence. The SDGs were declared in questions
related to past projects: “Have you contributed to projects on SDGs before,” and “Which of
the SDGs was the project addressing? Select all that apply.” The backgrounds were selected
across a multiple-choice question asking “What are your main fields of work or study? Se-
lect all that apply.”

The Slack mention network links a user A to a user B if they mention them, with a
weight corresponding to the number of times A has mentioned B. When aggregating at the
team level, intra-teammentions are encoded as self-loops with an edge weight given by the
sum of the intra-team links weights.

The CoSo networks are directly inferred from the surveys. In Figures 2.5 and 2.6, we
aggregated the networks over all timepoints collected, yielding weighted interaction net-
works where edge weights correspond to the number of times an interaction was reported.
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Figure 2.6 further aggregates the individual networks at the team level. In Figure 2.6 c, cen-
tralization is computed as the Gini coefficient of the degree distribution. More precisely, we
compute for each team its undirected, total degree (number of neighbors). We then com-
pute the Gini coefficient of the degrees. Its value ranges from 0 (all degrees equal) to 1 (one
team dominates the degree distribution), and indicates the degree to which interactions are
concentrated towards one “hub” node in the network. Network centrality measures were
computed using the igraph library in R. Network visualizations were produced with Gephi
0.9.7 with a force layout.

Statistical Analysis

Data were analyzed using the R software. The association between performance and team
features was assessed using Pearson’s correlations. The p value for the correlation is calcu-
lated by computing the t statistic (cor.test function in R), with the null hypothesis that the
correlation between the dependent and independent variable is 0. The level of significance
was set at p = 0.1

2.1.3 Results

In this study, we provide an analysis of teamwork and collaborations during the second
GEAR cycle of innovation from the Crowd4SDG project. The citizen science projects de-
veloped in this GEAR cycle aim to address the nexus between Climate Action (SDG 13) and
Gender Equality (SDG 5). To study the process of generation of citizen science projects in
this context, we focus on the “Evaluate” phase (see Methods), a coaching program in which
teams build their project and engage in interactions with their peers and mentors.

Cohort Description

The cohort was made up of a total of 38 participants covering 17 nationalities (Supple-
mental File 2: Figure S2). A total of 14 teams were formed with sizes varying from 1 to 4
members and showing diversity in terms of age and gender (Supplemental File 2: Figure
S3b). All teams comprised students, mostly at the university level (12 out of 14), with some
high school–level teams (2/14). Overall, 68% of participants were younger than 25 years
old, with an age range of 16 to 32 years old (Supplemental File 2: Figure S3a).

Some participants had prior experience with citizen science, with 26% (10/38) answering
positively to the question “Have you participated in data projects or contributed as citizen
scientist to data production before?” Moreover, the prior experience of participants with
SDGs covered most goals, with a primary focus on Climate Action and Gender Equality,
as expected from the topic of the GEAR cycle (Figure 2.2 a). Interestingly, the participants
(and the teams themselves) displayed a high level of interdisciplinarity, with backgrounds
spanning natural sciences, technology, and humanities (Figure 2.2 band S2).
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Figure 2.2: Description of the cohort. Co-occurrence networks across participants high-
lighting (a) their previous experience with Sustainable Development Goals and (b) their
main background or field of study. In these networks nodes are linked by the number of
times they are co-reported by a participant, and colors correspond to denser sub-networks
as determined by the modularity algorithm. Participants had prior experience with Climate
Action and Gender Equality, and came from interdisciplinary backgrounds.

Team Communication

During the Evaluate phase, teams used a Slack workspace to discuss with other team mem-
bers from their own or from another team, as well as with the organizing team. Since the
challenge was fully conducted online, this workspace was a central repository for commu-
nications at the cohort level. We analyzed the data from the public channels of the Slack
workspace to study the patterns of engagement of participants within and across teams, as
well as with organizers.

We first observed that the activity of the Slack workspace, measured by the number
of posts per week, closely follows the phases of the GEAR cycle, with low activity outside
of the phases (Figure 2.3 a). This might be because teams would work solely during the
program, or because they would synchronize on other communication channels outside of
these phases, such as Whatsapp, e-mails, or private Slack conversations (Supplemental File
2: Figure S4).

To examine the interaction dynamics between participants, we used a network ap-
proach. This allows for representation of the flow of information characterizing this phase,
in particular highlighting the interactions with the organization team. We computed the
number of mentions of a “target” participant B from a “source” participant A as an indica-
tion of a directed interaction from A to B. Mapping participants to their respective teams,
we derived a directed, weighted network indicating the interaction strength between and
within teams (Figure 2.3 b).
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Figure 2.3: Communication activity. a) Total number of posts on Slack per week. The
Evaluate phase is highlighted in blue, and the Accelerate phase, consisting of two periods,
is highlighted in red. (b) Mention network extracted from Slack during the Evaluate phase.
Nodes represent aggregated individuals at the team level. Teams are linked by weighted
edges quantifying the number of times an individual from one team mentions an individ-
ual from another team. Self-loops denote intra-team interactions. Grey color denotes the
organizing team, and the color denotes the stage achieved in the program: in order, Eval-
uate (yellow), Accelerate (green), Refine (blue). (c) Proportion of Slack mentions that are
from the organization team, towards the organization team, intra-team or inter-team.(d)
Number of mentions (sent or received) per team, following the color code from b.
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We observe a high centralization of interactions to the organizing team (Figure 2.3 c),
both in terms of incoming (teams reaching out to organizers) and outgoing links (organizers
reaching out to teams). While the workspace was also used for within-teams interactions,
there were very few inter-team interactions (Figure 2.3 c), confirming that the workspace
was mostly used as a means to interact with organizers.

Beyond the organizing team, we found that the two teams that were eventually selected
as finalists of the program, Donate Water Project and WOMER, had the highest network
centrality teams when considering their weighted degree (i.e., the total number of incoming
and outgoing mentions they partake in), suggesting that team level of engagement early in
the program is important for project success.

Team Activities

While Slack informs on participant engagement and their interactions with organizers, it
does not provide information on what activities teams perform, or what type of (informal
and formal) interactions occur. Such information can help guide coordinators in managing
citizen science communities. To gather deeper insights into team dynamics, we performed
weekly surveys on activities performed and on collaborations during the four weeks of the
Evaluate phase preceding the presentations to the jury.

The activities most performed were consistent with the purpose of the Evaluate phase:
coaching teams into generating a feasible, novel citizen science project. As such, the main
activity performed across the 4 weeks was the preparation of the final pitch (Figure 2.4
a). The early weeks were enriched in activities related to brainstorming and ideation, task
planning, team building and literature review, while later weeks showed activities related
to the preparation of documentation material and result interpretation. Moreover, it is
interesting to note a significant number of participants declared “Meeting with people af-
fected by the problem you are trying to solve” during the 4 weeks, a marker of engagement
with stakeholders. The number of activities and their regularity varied widely across teams
(Supplemental File 2: Figure S5), with an overall stronger push at the last week, suggesting
a deadline effect (Figure 2.4b).

Collaboration Dynamics

Beyond activities performed, the surveys enquired about formal (“who did youworkwith?”)
and informal (“who did you know before?” and “who did you seek advice from?”) interac-
tions (Figure 2.5 a,b,c). These surveys were aimed at investigating the collaborative dynam-
ics during the GEAR, its evolution in time, and eventual impact on team performance.

In the GEAR cycle, participants could join as a team, or as individuals. The latter were
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assigned to a team using a matching algorithm (see Supplemental File 2: Teaming Algo-
rithm). The existence of pre-formed teams is revealed in the “prior ties” network (Figure
2.5 a). Yet, beyond intra-team links, we found that several participants acted as bridges be-
tween teams in the prior ties network. This is probably because the Gather phase was able
to tap into already existing communities, in particular through the social platform Good-
wall.

Work collaborations occurred mostly within teams, as well as with organizers (Figure
2.4 b,d), while only few inter-team interactions were observed. However, advice seeking in-
teractions, in which participants report having asked for advice from another participant,
showed more inter-team interactions, with around 10% of them being inter-team ties (Fig-
ure 2.4 c,e). Moreover, while participants sought primarily advice within their own team in
the first week, they gradually increased their outreach to the organizers, eventually consti-
tuting 55% of interactions. In both networks, organizers occupied the most central position,
acting as bridges between teams.

Comparison of the Interaction Networks

The collected data allowed us to infer 4 interaction networks: communications from Slack
mentions, and prior ties, collaborations, and advice seeking from surveys. When aggre-
gated at the team level, these constitute a “multiplex” network, with the same nodes (the
teams) having different types of links. Here, we question whether these networks provide
similar or complementary information to inform on team behavior.

We show in Figure 2.6 a the networks at the team level. One can observe that the net-
works have similar densities (Figure 2.6 c), but different structures: The Slack mentions
network is much more centralized than the surveyed interaction networks (Figure 2.6 c),
indicating that Slack usage was mostly used to exchange with the organizing team who
acted as a strong hub. When aggregating the networks, one obtains a more comprehensive
interaction network (Figure 2.6 b), doubling the density of links compared with any single
network (Figure 2.6 c).

To further assess the topological similarity between the networks obtained, we com-
puted the Jaccard similarity between any pair of networks, that is, the ratio of the number
of links in common (intersection) to the total number of links present in both networks
(union). Completely dissimilar networks would have a Jaccard of J = 0, while identical
networks have J = 1. We find that the collaboration (“work with”) and advice seeking net-
works are the most similar (J = 0.74), while their similarity with the Slack mention network
is much smaller (J 0.2). Prior ties are predictive of collaboration and advice seeking (J =
0.2) but not of Slack mentions (J 0), which is probably due to the fact that most interactions
on Slack were with the organizer team. Finally, the networks show a similarity to the full,
aggregated networks ranging between J = 0.4–0.5, indicating that a network measured with
a single method encapsulates less than half of the information about formal and informal
social interactions.
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Figure 2.4: Activities during the Evaluate phase. (a) Total number of reports of an activ-
ity per week. We see a switch from brainstorming/ planning activities to the documentation
and preparation of the final presentation. (b) Total number of activities reported per team
per week.
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Figure 2.5: Collaboration activity. (a–c) Participant interaction networks constructed
from self-report data from CoSo, using prompts:(a) “Which of these people did you know
personally before?” (b) “Who did you work with last week?,” and (c) “Who did you seek
advice from last week?” The size of a node is proportional to the total number of interactions
of a node across the 3 networks. (d) Proportion of interactions in the collaboration network
that involve the organization team (red), or that are intra- (green) or inter- (blue) team, in
time. Error bars denote the standard error of the estimate given a number of interactions
observed, assuming a binomial statistics. (e) Same than d, for the advice seeking network.

Overall, we find that the collected interaction profiles from digital traces and from sur-
veys highlight different aspects of the social interactions, providing complementary in-
sights to inform community management.

Team Performance

Finally, we analyzed whether features of team composition, communication, teamwork and
collaboration were associated with team performance at the Evaluate phase. The perfor-
mance was measured using various features that can be grouped into two overarching cat-
egories: outcome, that is, the evaluation of the project itself; and process, that is, the as-
sessment of engagement within the program (see Methods and Supplemental File 2: Figure
S6a). Given the small number of teams from which we can compute an association with
performance (14 data points), we use a correlation analysis with a soft significance thresh-
old at p = 0.1. We present the results of this analysis in Figure 2.7, where we highlight that
the quality of the outcome is generally associated with team profiles and communication
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activity from Slack, while the level of engagement in the program (process) as judged by the
organizing team is associated with self-reported measures of collaborations and activity.

More precisely, for the team composition, we find that team size is associated with the
use of at least a tool in the Citizen Science Solution Kit (crowdsourcing), suggesting a need
for human power to set up a crowdsourcing infrastructure. The diversity of backgrounds in
the team is associated with the novelty of the project, supporting findings that interdisci-
plinarity begets innovative work [Singh et al., 2022]. Prior experience with citizen science
is important for the relevance and novelty of the project, indicating the importance of past
work in related areas to achieve well-defined, innovative projects in this short time span.
Similarly, we find that the average education level in a team is associated with the novelty,
feasibility, and relevance of the project.

In the case of communication activity, we find that the overall Slack activity (which is
very correlated with the number of interactions with the organizing team, see Supplemen-
tal File 2: Figure S6b) is associated with the relevance of the project, highlighting the role
of mentoring for helping teams craft a relevant project. Intra-team interactions from Slack
mentions are associated with relevance, novelty, and crowdsourcing aspects of the project,
as well as with the quality of deliverables. Interestingly, we find similar results when mea-
suring the intra-team collaborations with CoSo surveys, indicating that the digital traces
do capture relevant qualitative information about team interactions.

In contrast, we find that team engagement in activities and advice seeking is associ-
ated with the quality of the process, as judged by the organizing team, encompassing team
commitment, attendance, weekly evaluation, and their ability to produce qualitative deliv-
erables. Beyond engaging in diverse activities in a regular manner, survey engagement was
found to be a strong predictor of program engagement. Moreover, we note the importance
of the ability of teams to engage in advice seeking from diverse network neighborhoods,
as measured by (lower) Burt constraint [Burt, 2004] in the advice-seeking network. These
results may indicate that the organizing team, who was responsible for judging these crite-
ria, was particularly sensitive to the ability of teams to engage and collaborate throughout
the cycle, information that was not readily available to other experts.

2.1.4 Discussion

Processes of engagement and coordination are fundamental to citizen science projects [Schae-
fer et al., 2021, Jaeger et al.]. Here, we showcase a framework to measure indicators of par-
ticipation, contribution, and collaboration during the elaboration of citizen science projects.
We show that surveys of social interactions collected at several points in time provide in-
formation otherwise invisible from digital traces obtained from a Slack workspace that can
be leveraged by practitioners who guide citizen science projects at their early stage of de-
velopment.
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Figure 2.6: Comparison of the interaction networks. (a) Team-level networks for the
different interaction networks collected. (b) Corresponding aggregate network, where edge
weights are the sum over weights across the individual networks shown in a. (c) Network
density and centralization (see Methods) across the 4 considered networks. (d) Jaccard sim-
ilarity between the networks in a. The similarity measures the number of edges shared
between any two networks (intersection), divided by the total number of edges present in
both networks (union), and ranges from 0 (most dissimilar) to 1 (most similar).
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Figure 2.7: Association with performance. Correlations between performance assess-
ment (rows) and team features (columns). The correlation value is indicated when the
correlation is significant at the p = 0.1 level. Shaded areas correspond to sets of features
associated with metrics related to outcome (blue) or to process (green).
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Given the nature of the program, time could be set aside by the organizers for engaging
participants in surveys on a weekly basis, as part of the curriculum. As such, the engage-
ment with the survey instrument was particularly good, allowing to obtain a near-complete
coverage. In other contexts where regular meetups with participants would not be feasible,
the method could be adapted to incentivize participants to build and analyze their collab-
oration and stakeholder network and learn from it, for example by providing a dashboard
for visual feedback [Tackx et al., 2021].

Our framework is particularly suited to investigate measures related to teamwork. The
organizational literature shows that the effectiveness of traditional teams depends on their
composition, the collaboration of their members, the task allocation, and the activity level
[Hackman, 1987]. Here, we showed that we could monitor proxies for these features, and
that they were associated with the ability of teams to produce well-defined deliverables, an
indicator of team performance to a standardized task. Beyond small-scale teamwork, the
proposed framework can be interesting for quantifying contributionswithin larger projects.
This would allow fine-grain recognition of the different activities achieved, acting both as
an incentivization mechanism for monitoring, as well as a reward system for the (usually
volunteer) work done.

Beyond team dynamics of early-stage projects, leveraging social networks measure-
ments within citizen science programs offers opportunities to document and understand
the build-up of a community around a citizen science project, the engagement patterns of
participants, and the contribution to different tasks. This is particularly useful to facilitate
the coordination processes of potentially large communities [Kokshagina, 2022, Santolini,
2020], allowing the core team to react and assess whether certain individuals or sub-projects
would need help.

Yet this work has limitations. First, the case study could offer only a small sample size,
and more data will be needed in further studies to validate the associations with perfor-
mance. Moreover, during the Evaluate phase, the citizen science projects are at a very early
stage of ideation, which did not allow to investigate interactions between teams and citi-
zens. Future work could investigate more mature projects. Finally, the activities performed
have different levels of complexity, and do not require the same levels of engagement or
collaboration. To highlight these fine-grained aspects would require more qualitative in-
sights from participants, as well as an adaptative strategy to integrate these insights as new
(sub)tasks. Beyond the specificity of our project, such an adaptative co-design strategy to
account for the varied activities performed is also an important step to be conducted by
citizen science projects, as it renders visible the contribution structure and affordances of
engagement.
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2.1.5 Conclusion

One challenge that organizers of programs like Crowd4SDG face is to support with evidence
their decisions related to the formation of citizen science teams and their management, as
well as the directions they give to participants to maximize the relevance of the data they
generate, their ability to develop innovative solutions, and eventually their impact on the
problem they are addressing.

Here, we implemented a monitoring framework leveraging digital traces as well as self-
reports to gather compositional and social interaction data during the makeup of citizen
science projects. This approach complements traditional outcome-driven metrics in the
evaluation of science [Fortunato et al., 2018] by emphasizing the importance of the partici-
pation process [Jaeger et al., Schaefer et al., 2021]. We reconstructed amulti-layer social net-
work with interactions of various types, from informal social ties to formal collaborations.
We showed that these layers obtained from various means (passive digital traces and active
self-reports) cover multiple complementary facets of the interaction dynamics, informing
both on interactions with coordinators from the organizing team, as well as intra-team and
inter-team interactions. We showed that network centrality measures can be leveraged to
quantitatively assess the relative centralization within a given layer, informing on the re-
liance over a few central nodes. In particular, we found that the ability of a team to manage
their social capital by forming interactions across diverse neighborhoods in the network is
important for the success of their project, a finding in line with the literature on innovation
[Burt, 2004]. Furthermore, we showed that measures of team composition, intra-team col-
laborations, and communication with the organizers are associated with the quality of the
projects, in particular the relevance and novelty of their solutions to the SDGs. Measures
of engagement in activities and advice seeking are on their end associated with the elabo-
ration process, in particular the ability of teams to provide timely deliverables.

Overall, we introduced a framework to monitor the evolution of participatory processes
in citizen science projects. The obtained interaction networks reveal both formal and infor-
mal relational networks that underlie the collective learning and performing, making visible
structural patterns that are otherwise invisible to coordinating teams. Network measures
of centrality, peripherality, or diversity can then be leveraged to quantify the embedded-
ness (or lack thereof) of participants in the ecosystem, informing on concrete interventions
to improve engagement and project outcomes. Such insights can therefore prove useful
to support practitioners in the design and coordination of programs aiming at fostering
engagement, inclusion, and diversity in citizen science projects.
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Supplementary Information

Tables

Survey Data collection platform Respondents (% of total participants)

Evaluate registration Form Google Form 38 (100%)
Evaluate weekly 1 CoSo 26 (68%)
Evaluate weekly 2 CoSo 26 (68%)
Evaluate weekly 3 CoSo 20 (53%)
Evaluate weekly 4 CoSo 22 (58%)
Evaluate Final Form Google Form 22 (58%)

Table 2.2: List of surveys of the GEAR cycle 2

Methods

Teaming Algorithm Participants who joined as individuals were assigned to a novel
team using the teaming algorithm Edu2Com [Georgara et al., 2024]. Edu2Com is an heuris-
tic algorithm that generates team allocation based on a certain strategy , which were in this
case, competence, preference and personality of the participants. The participants were
asked to fill in a survey answering questions related to the competencies, skills and person-
ality and a preference survey, where they ranked the pitches of all the selected ideas from 1
to 5, based on how interesting they found the idea. These surveys were needed so that the
algorithm could propose possible options for team formations. Eight of the twenty pitches
were team pitches, and twelve were individual pitches. A majority favored fourteen of the
ideas. The Algorithm proposed six combinations of teams retaining the existing teams and
six combinations with a completely new proposal of teams. The team profiling algorithm
proposed six alternatives for team formations altering the weightage between competence,
personality and preferences. From the six alternatives provided, The final selected team
profiling was based on a weightage that had 10% match of their 1 competencies, 20% match
of their personalities and 70% of their preferred choices. This particular alternative was
chosen since it gave an ideal combination of teaming up individuals as a team along with
the pre-formed teams.
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Figures

Figure 2.8: Screenshots of the CoSo interface
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a b

Figure 2.9: Sankey diagrams of teams current or highest level of study (a) and disciplinary
backgrounds (b)
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a b

Figure 2.10: Gender (a) and age (b) distributions across teams
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Figure 2.11: Communication tools reported to be used by teams to communicate. Number
indicates number of answers across participants (total N=22 participants).
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Figure 2.12: Heatmap indicating the number of weeks each activity has been reported by
a given team, across 4 weeks. Activities and teams are ranked by row and column sums
respectively.
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a b

Figure 2.13: Correlation matrices of the features shown in Fig 7, for evaluations (a) and
team features (b). Numbers correspond to p-values of the correlations. We grayed out
cells with a p-value p>0.1. We find two groups of evaluations: outcomes (top left) and
processes (bottom right). For team features, we find that Slack activity is correlated with the
intra-team collaborations measured with CoSo, highlighting that digital traces can capture
qualitative insights on team work.
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2.2 StatisticalModel of the Association BetweenCollab-

oration Dynamics and Project Performance

Preface

The previous section describes the pipeline to collect and curate digital trace and survey
data from teams participating in the Crowd4SDG citizen science consortium. I describe
the network science measures used to capture collaboration, diversity and engagement of
teams and show their correlation with their evaluation scores in the GEAR cycle.

This section further investigates the association between collaboration dynamics and
project performance of citizen science teams in the Crowd4SDG consortium’s GEAR 2 and
GEAR 3 cycles, using self-reported data collected through surveys in the CoSo platform
and digital traces from Slack. The analysis reveals the importance of team engagement,
diversity in composition, activity span and effective collaboration strategies in determining
project outcomes. The findings also indicate compositional and structural aspects of the
Evaluate phase serve as early predictors of the teams’ eventual performance. Based on these
insights, it is recommended to foster robust team engagement, assemble diverse teams and
implement efficient collaboration strategies to enhance the success of future GEAR cycles
or similiar programs.
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Contributions

The contents of this section are derived from a technical report submitted to the European
Union as a part of the deliverables for the Crowd4SDG Horizon 2020 project. The report is
presented ’as is’ (with slight adaptations to maintain coherence with the previous sections
of this chapter) and reformatted to fit the style of the thesis. The full original report can be
found in the following citation:

Santolini, M., Masselot, C. and Jeyaram, R., ’Statistical model of the associ-
ation between collaboration dynamics and project performance’, Technical Re-
port, European Union’s Horizon 2020 research and innovation programme.

I performed the data collection, curation and analysis. Credit to Marc Santolini for
conceptualising the study, performing analysis, supervision andwriting of the report (along
with Camille Masselot).
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2.2.1 Introduction

A key deliverable of Crowd4SDG focuses on creating and monitoring new metrics and
statistical models of team engagement and collaboration, which contribute to the diverse
outcomes of citizen science projects within the Crowd4SDG consortium over its 3-year
duration. It has two primary objectives: 1) Develop standardised metrics and descriptors
for assessing the diversity, originality, effectiveness, sustainability/robustness, and adapta-
tion/appropriateness of solutions and insights obtained from citizen science projects; and
2) Implement these metrics and descriptors as tools for analysing digital records of cit-
izen science collaborations and their generated solutions and insights. As a result, this
supports Crowd4SDG’s specific objectives of enhancing citizen science skills, producing
high-quality scientific outcomes, and generating economic and social outputs relevant to
achieving SDGs through challenge-based citizen science events, particularly focusing on
climate change resilience.

In this report, we present a statistical modelling framework for identifying predictors
of performance and impact metrics for citizen science projects. Prior research has identi-
fied key characteristics of high-performing teams [Pentland, 2012], such as Team Energy
(interaction quantity and frequency), Team Engagement (closing conversation loops, as-
sessed using network clustering), and Team Exploration (seeking external interactions and
information). By analysing digital traces from the Slack workspace, demographic data, and
self-report surveys collected in GEAR 2 (Santolini 2022) and GEAR 3 (Santolini 2023a), we
extract various team organisational features related to these characteristics. We then utilise
social network analysis to investigate centrality measures in communication processes and
informal advice networks. Ultimately, we evaluate their association with the success and
quality of citizen science projects using regression analyses on the performance metrics
defined in our initial report on the epistemology of citizen science in (Jaeger 2021).

2.2.2 Methods

Communication Data

A Slack workspace was used by the teams during the GEAR cycle as a means to commu-
nicate with other teams and with the organising team. The data was extracted in JSON
format using the export function available to the owners/admins of the Slack workspace.
This allowed us to gather, across all public channels, a data frame containing the messages
(post contents) and information on each message’s timestamp, sender, and target channel.
The raw data was then processed to obtain mentions. A mention occurs when a Slack user
types in a message the Slack username of a target user prefixed by “@” (e.g. @John). Each
recorded mention has information on the source (who wrote the message), target (who is
being mentioned) and the timestamp (when the message was sent). Slack also allows users
to broadcast messages by citing all users in a channel or a workspace by using specific com-
mands (@all, @here, @channel_name). The messages containing these built-in commands
were not included as mentions in order to focus on direct interactions only.
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Using the available Slack data, we employed the number of posts and number of reac-
tions of a user as a marker of individual engagement, or team engagement when aggre-
gated over team members. Furthermore, for each GEAR cycle we built social interaction
networks where a user is linked to another user if he/she mentions him/her, with a weight
corresponding to the number of mentions. When aggregating at the team level, intra-team
mentions are encoded as self-loops, and the weights of the intra-team links are summed
to create a final team-level network on which to compute centralities such as weighted
degree. This allows to represent the flow of information characterising this phase, in par-
ticular highlighting the interactions with the organisation team.

CoSo Self-Reported Interaction Data

During GEAR cycles, we conducted two types of surveys: those related to participant at-
tributes (e.g. their background, country of origin, etc), and those related to participant
interactions (e.g. who they collaborated with, sought advice from, etc).

The initial survey was related to attributes only and was disseminated using a Google
Form at registration to the Evaluate phase. We then disseminated 4 weekly surveys related
to social interactions and activities using the CoSo platform [Tackx et al., 2021]. The CoSo
platform is designed to collect self-reported interaction data with a simple, reactive inter-
face, and an analysis-ready database (Santolini 2023b). To document their interactions, the
users select target users across all other participants and organisers. The interactions span
prior ties in the first survey (“Which of these people did you know personally before?”),
and on a weekly basis their advice seeking interactions (“Who did you seek advice from
last week?”) and work collaborations (“Who did you work with last week?”). To document
their activity, they could also select across 26 activities encompassing routine activities
within research teams inspired from the CRediT contribution taxonomy [noa, b], as well
as specific questions regarding Crowd4SDG, for example specific tool usage. Activities en-
compassed different levels of complexity in their realisation. They ranged from tasks that
could be performed in a distributed fashion such as preparing the final pitch and analysing
data, to tasks involving higher levels of collaboration such as brainstorming.

The surveys were advertised through Slack and the organising team dedicated 10 min-
utes for participants to fill them during weekly sessions, ensuring a high engagement (San-
tolini 2023a, p12).

CoSo networks were directly inferred from the surveys. For each GEAR, we aggregated
the networks over all time points collected, yielding weighted interaction networks where
edge weights correspond to the number of times an interaction was reported. When consid-
ering team-level network centrality measures, that is, measures that indicate how strategic
the position of the team is in the network of interactions, we further aggregated the indi-
vidual networks at the team level. Network centrality measures were computed using the
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igraph library in R [Csárdi and Nepusz, 2006].

Team Characteristics

The ability of teams to develop their project depends on compositional features such as who
is in the team, as well as how the team operates, such as their collaboration activity and
division of labour. Here we used the digital traces and survey data to derive and monitor
features related to team composition, communication, collaboration, and activity which we
detail below.

For team composition, we built measures of size, diversity, education level, and prior
experience with SDGs. Team size was assessed using the number of members of a team.
Background diversity was assessed by computing the background span, that is the num-
ber of unique academic backgrounds in the team as declared in the registration form. The
education level was computed by taking the average level of education in a team based on
the response to the question "What is your current or highest level of education" to which
we attributed the following score based on the answer: 0 for secondary school, 1 for high
school, 2 for undergraduate and 3 for graduate. Finally, prior experience with SDGs was
computed as the average answer to the question "Have you participated in data projects
or contributed as citizen scientist to data production before?" (yes = 1 and no = 0) within
each team. For communication, we leveraged the activity and interactions on Slack public
channels. The Slack activity was assessed as the total number of messages posted by team
members. For interactivity, we measure Slack interaction intra-team as the number of men-
tions among members of a team, and Slack interaction organising team as the number of
mentions between members of a team with the organising team. We counted mentions
regardless of their directionality.

In studying team collaborations, we looked at both the number of partnerships within
teams and the position of these teams in the broader network. The interactions span prior
ties (“Which of these people did you know personally before?”), their advice seeking in-
teractions (“Who did you seek advice from last week?”) and work collaborations (“Who
did you work with last week?”). We measured internal (intra-team) interactions by adding
up the connections within each team. To understand the team’s place in the interaction
network, we used a social capital indicator called Burt constraint [Burt, 2004]. The Burt
constraint measures how diverse a team’s network is, with lower values indicating a more
varied network and higher values showing a concentrated network with many connections
to the same group. It essentially gauges how connected a team is to other teams that are also
connected to its neighbours. A higher constraint means the team has fewer or more similar
(redundant) contacts. To assess network diversity, we took the negative of the Burt con-
straint, with higher values signifying greater diversity (more structural gaps). This helps
us quantify a team’s ability to access different sources of information for advice or collab-
orations.

Finally, for the activity, we focused on measures of diversity and engagement of activ-
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ities performed, as measured by CoSo (see previous section). For diversity, we computed
the activity span as the proportion of activities performed by a team among the 26 listed
activities. For engagement, we considered the activity regularity by first computing the
number of activities reported by a team each week, and then computing the negative of the
Gini coefficient on the resulting vector. The Gini index ranges from 0 (perfectly regular) to
12 (perfectly irregular). The (1 - Gini) value is higher if activities are regularly conducted
across weeks. Finally, we quantified for each team the survey engagement as the propor-
tion of survey responses per team across all CoSo surveys, a measure of engagement to the
study.

Team Performance Data

To quantify team performance, we used the scores that teams obtained in their assessment
by the jury and the Crowd4SDG organising team, which were co-constructed using the re-
sults from (Jaeger 2021, pp 32-33).

At the end of each phase, experts composing a jury scored each team from 0 to 5 on
the following criteria. We indicate the weight of each score between squared brackets. The
sum of these scores constitute the final jury score, with a maximum value of 50.

• Novelty: Is the pitch based on a new idea or concept or using existing concepts in a
new context? [10]

• Relevance: Is the solution proposed relevant to the challenge or potentially impactful?
[10]

• Feasibility: Is the project implementable with reasonable time and effort from the
team? [10]

• Crowdsourcing: Is there an effective crowdsourcing component? [10]

• Overall: Howwould you rate this team’s overall presentation skills during this pitch?
[10]

Between the Evaluate and Accelerate phases, additional criteria presented below were
used by the organisation team. We indicate the weight of each score between squared
brackets, summing to a maximum possible jury score of 40.

• Appropriateness of Methodology [5] (only for GEAR 2)

• Weekly Evaluation [10]

• Use of Toolkit [5]

• Data Collection and NSO [5]
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• Commitment [5] (only for GEAR 2)

• Attendance [5]

• Deliverables [5]

The final score accounted for 60% of the jury score and 40% of the organisation team
score:

Final Score = jury score ∗ (60/50) + organisation team score

More precisely, crowdsourcing was assessed using the mean score attributed by judges
to the question “Is there an effective crowdsourcing component?” (yes = 1 and no = 0). We
measured the feasibility, relevance, and novelty by computing the mean score attributed by
the jury on a scale from 0 to 5 to the questions “Feasibility: Is the project implementable
with reasonable time and effort from the team?”, “Novelty: Is the pitch based on a new idea
or concept or using existing concepts in a new context?”, and “Relevance: Is the solution
proposed relevant to the challenge or potentially impactful?”.

All variables were integer values with scores ranging from 0 to 5 for deliverables and
attendance, 0 and 1 for commitment. For weekly evaluation, the score was a continuous
value ranging from 0 to 10 scoring the overall quality of their weekly pitch sessions. Deliv-
erable score was measured by the total number of deliverables submitted and documented
on the platform Innprogress https://innprogresstest.unige.ch/) among the expected ones.
Attendance was estimated by the proportion of sessions attended by team members. Com-
mitment was scored 1 if teams were willing to continue their project after the end of the
Evaluate phase, or 0 otherwise.

LASSO regression and Statistical Model

Statistical and network analyses were conducted using the R software. We leveraged li-
braries glmnet [Friedman et al., 2010], MASS [Venables and Ripley, 2002] and jtools [Long,
2024] for statistical modelling, and igraph for network centralities. Associations between
team characteristics and performance measures were done as follows:

First, since the data originated from two different GEAR cycles, we considered the pos-
sible variation in overall values of both team features and performance by normalising the
data. To do so, the features were centred (mean of 0) and rescaled (variance of 1) within
eachGEAR cycle using the scale() function in R, and concatenated into an overall dataframe.

Then, each performance variable was defined as a dependent (outcome) variable, and
the data frame of team features was used as independent variables. Missing data was han-
dled by imputation using the means of the nonmissing values (by the makeX() function
of the glm package). We then conducted a LASSO (least absolute shrinkage and selection
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operator) regression [Tibshirani, 1996] in order to eliminate team features that are not sta-
tistically contributing to the outcome, and select only the relevant features. We note that
the LASSO regression has the desired characteristic that features that are not significantly
contributing to the outcome are eliminated, i.e. their weight in the linear regression is set to
be exactly 0, allowing for a strong filtering of weak signals. This differs from other methods,
such as Bayesian linear regression, where the weights would be weak but have a non-zero
value. Given the low number of data points, the LASSO therefore appeared as a relevant
tool for drastically reducing the feature space to a reasonable dimension for downstream
analysis. To select the shrinkage parameter (i.e. the strength of feature reduction), we first
conducted a 10-fold cross-validation to find the optimal penalty value that minimises the
Mean Squared Error of the regression to the outcome (by the cv.glmnet() function of the
glm package). A final model was run for this optimal penalty value on the whole dataset to
derive regression coefficients for all team features. Any feature with a coefficient equal to
0 was then discarded. A standard regression (by the lm() function) was then run using the
remaining features to obtain standardised regression coefficients, 95% confidence intervals
and p-values. Features with p-values less or equal to 10% were finally kept for the final
figures shown in this report.

Overall, we considered for each outcome the features that i) are selected during a cross-
validation step of the LASSO regression and ii) have less than 10% chance to be contributing
to the outcome in a randomised setting. This stringent selection process ensures a signifi-
cant reduction of the noise in the estimator considering the relatively small (N=26) number
of data points.

Pseudo-anonymization and ethical approval

The data collection tools and research questions received the ethical approval of the IN-
SERM committee attached to the University of Paris team (IRB00003888), in charge of col-
lecting the data. Participants gave their consent to the collection of data as they registered
to the Evaluate phase (see D4.5). Data was pseudo-anonymized by our team before the
analysis.

2.2.3 Results

We report the results of the statistical modelling of the association between collaboration
dynamics and project performance. Because of the low number of data points (N=26 teams),
we leverage a stringent analysis in order to i) combine both GEAR 2 and GEAR 3 (batch
correction) and ii) select relevant features (LASSO regression) for regression analysis (see
Methods). We consider two main outcomes: the team performance at the Evaluate phase,
and the advancement in the GEAR cycle. The former is directly related to the team charac-
teristics measured at the Evaluate phase, while the latter interrogates whether early mon-
itoring at the Evaluate phase informs on the ultimate stage achieved in the GEAR cycle
(the Accelerate or Refine stage). In addition, we explore several fine-grain performance
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measures that are aggregated to compute the Evaluate performance, such as the novelty,
relevance, or feasibility of the projects.

Performance at Evaluate phase

We first focus on the performance at the Evaluate phase, which accounts for 60% of the
jury score and 40% of the organisation team score (see Methods). Results of the LASSO
feature selection and linear regression method are shown in 2.14. Features are ordered by
decreasing significance (i.e. higher p-values), with all features having p<0.1.

Figure 2.14: Standardised regression coefficients for the team characteristics associated
with the Evaluate final score, selected through the LASSO regression (see Methods). Er-
ror bars denote 95% confidence intervals. Positive estimates denote a positive association
between the feature and the outcome. For network measures, we show in brackets the type
of network it is measured from. These consist of Slack network, or CoSo network: prior
ties (“Which of these people did you know personally before?”), advice seeking (“Who did
you seek advice from last week?”) and work collaborations (“Who did you work with last
week?”).

Firstly, our analysis reveals that a team’s engagement in the CoSo survey (mean an-
swers per week) is the most significant predictor. This finding suggests that, beyond its
data collection function, the engagement in the self-report survey serves as an indicator
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of the team’s dedication to participating in the program, and that these efforts impact the
quality of their project (jury score) and the engagement perceived by the organising team.
This is supported by the subsequent feature, the total number of activities performed dur-
ing the phase, which is positively linked to performance. Activities ranged from tasks that
could be performed in a distributed fashion such as preparing the final pitch and analysing
data, to tasks involving higher levels of collaboration such as brainstorming. Overall, these
two measures demonstrate that engagement in Evaluate activities influences performance
at the end of the phase.

We also discover that team composition plays a role in performance, with a positive cor-
relation between the number of team members (size) and the diversity of education levels
within the team (education Shannon index ). This implies that larger, more diverse teams
have a performance advantage.

Additionally, our findings show that a team’s position within the interaction network
is crucial. Teams that collaborate with a higher number of teams (degree of inter-team
collaboration), and have members who communicate more frequently (intra-team Slack in-
teractions) perform better.

In summary, these results indicate that both composition and structural features are im-
portant in determining the outcome at the Evaluate phase. However, these are aggregated
outcomes, and we will now shift our focus to specific fine-grained outcomes to delve deeper
into which features are crucial for their success.

Aspects of project quality

In the Crowd4SDG project, teams have to design and pitch early-stage citizen science
projects. As such, these projects must hold certain properties: they have to be relevant
for the topic of the GEAR cycle, feasible, innovative, and involve a crowdsourcing compo-
nent. We used the fine-grained data from the jury scores to compute relevant performance
variables and explore team features that underlie them. Results are shown in figure 2.15.
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Figure 2.15: Same as figure 2.14, for the outcomes shown in bold.

Various aspects of team composition were found to be important. First, higher edu-
cation levels (mean education) within teams correlated with more relevant, feasible, and
novel projects, emphasising the importance of advanced academic skills for developing in-
novative yet realistic projects. Second, team size played a role in crafting crowdsourcing
components, highlighting the benefits of a larger number of individuals to accomplish this
task. Third, the diversity of backgrounds in the team, indicative of interdisciplinarity, was
linked to novelty, a finding consistent with scientometrics research showing that inter-
disciplinarity fosters innovation (Singh 2022). Lastly, the average level of prior experience
with SDGs (ex ante SDG knowledge) was associated with project feasibility, suggesting that
participants draw on their SDG experience (possibly within the Goodwall platform, from
which the majority of participants originated) to refine their ideas into viable projects.

Finally, team interactions proved to be crucial for project relevance. Teams that sought
advice from a larger number of teams (Inter-team degree) and collaboratedwithin a focused,
tight network (low network diversity for “work with”) were more likely to achieve high rel-
evance scores. This reflects a balance between seeking advice (gathering information from
the network) and exploiting advice (collaborating with a more limited set of actors).

In summary, these findings demonstrate that team composition features (size, education
level, and diversity of backgrounds), internal communication (engagement on Slack), and
collaboration strategy (advice seeking and work interactions) are associated with distinct
aspects of project quality.
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Advancement in the GEAR cycle

Beyond the results from the Evaluate phase, we asked whether the obtained data at the
Evaluate phase, which encompasses the largest number of teams (comparedwith Accelerate
or Refine), could be used as an early predictor of the final stage achieved by teams during
the GEAR cycle.

Figure 2.16: Same as figure 2.14, for the final stage achieved in the GEAR cycle. For network
measures, we show in brackets the type of network it is measured from. These consist of
Slack network, or CoSo network: prior ties (“Which of these people did you know per-
sonally before?”), advice seeking (“Who did you seek advice from last week?”) and work
collaborations (“Who did you work with last week?”).

Figure 2.16 presents the results of feature selection and regression analysis for the stage
achieved. These findings are consistent with previous insights and can be summarised as
follows.

First, team activity in the Evaluate phase is associated with the final stage reached in
several ways: the number of messages shared on Slack (both within the team and overall)
and the number of self-reported work interactions within the team. In essence, hard work
plays a significant role in ultimate success.

Second, we find that several diversity measures are associated with success: the di-
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versity of backgrounds (background span), which suggests that team interdisciplinarity is
essential to address the global challenges at hand, and network diversity of prior ties, indi-
cating a broader reach within the informal network.

Lastly, advice-seeking behaviour is identified as important onmultiple levels. In fact, we
find that both local (inter-team degree, a measure of the number of immediate neighbours
of a node) and global (closeness centrality, a measure of how close a node is to all other
nodes in the network through shortest paths ) centrality in the advice-seeking network are
important, while maintaining strong connections with a focused, tightly knit neighbour-
hood (low network diversity).

In summary, these results demonstrate that compositional and structural aspects during
the Evaluate phase serve as early indicators of the teams’ eventual performance in theGEAR
cycle.

2.2.4 Discussion of the results

The GEAR cycle analysis provides valuable insights into the factors that contribute to
project performance and advancement in the context of citizen science. Specifically, as-
pects of team composition, internal communication, and collaboration strategy are crucial
determinants of success, highlighting the interplay between individual and collective fac-
tors.

Engagement in the CoSo survey and the number of activities performed during the
Evaluate phase significantly impact team performance, reflecting the importance of com-
mitment and dedication. This finding echoes the social psychological concept of group
cohesion, which is known to positively affect group performance [Carron et al., 1985].

Larger teams with diverse education levels and interdisciplinary backgrounds have a
performance advantage, consistent with theories that emphasise the benefits of interdis-
ciplinary collaboration for innovation (Singh, 2022). This resonates with research on the
benefits of diverse teams in science, which shows that heterogeneous groups can bring dif-
ferent perspectives and expertise to bear on complex problems (Page, 2007).

Internal communication through Slack proves critical for project relevance, novelty,
and crowdsourcing components, demonstrating that digital platforms can facilitate effec-
tive collaboration, especially during remote work scenarios. This aligns with prior studies
examining the role of digital tools in fostering collaborative research networks [Lazer et al.,
2009].

The study found that advanced academic skills, team size, and prior experience with
SDGs correlate with distinct aspects of project quality. Teams that sought advice from a
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larger number of teams and collaborated within a focused network achieved higher rel-
evance scores. This balance between information gathering and effective collaboration
aligns with Granovetter’s "strength of weak ties" theory [Granovetter, 1973], which posits
that weak ties provide access to novel information, while strong ties foster trust and col-
laboration. This balance is also consistent with Burt’s structural hole theory [Burt, 2004],
which suggests that individuals who bridge gaps in networks can access diverse informa-
tion and resources, leading to improved performance and innovation.

In summary, the GEAR cycle analysis offers valuable insights into the interplay between
individual and collective factors that contribute to project performance in citizen science
initiatives. These findings emphasise the importance of fostering interdisciplinary teams,
effective communication, and strategic collaboration, which are supported by existing so-
cial theories on networks and collaboration in science. This research provides a foundation
for further exploration into the dynamics of collaborative networks in citizen science and
the development of strategies to optimise project outcomes.

2.2.5 Conclusion and perspectives

WP4 aims to develop and monitor new metrics and develop statistical models of team
engagement and collaboration that contribute to the many-faceted outcomes of the CS
projects developed within the Crowd4SDG consortium. In this report, we presented a data-
driven approach to develop a statistical model of the association between collaboration
dynamics and project performance during GEAR cycles 2 and 3. We leveraged the CoSo
platform for collecting self-reported data on collaborations and task allocation structure of
participating teams, allowing us to measure characteristics of team composition, activity
and interaction dynamics.

In this report, we demonstrated how different data sources on teamwork, effort, com-
munication and collaborations inform on various measures of performance of their project.
Given the relatively small number of teams (N=26), we leveraged a LASSO regression anal-
ysis in order to perform feature selection. We then investigated the association between
collaboration dynamics and project performance in the context of the GEAR cycles, fo-
cusing on team performance at the Evaluate phase and advancement in the GEAR cycle.
Results show that team composition and structural features are equally important in deter-
mining the outcome at the Evaluate phase. Key factors include team engagement, activity
span, team size, diversity of education levels, and embeddedness in the interaction net-
work. Further analysis of fine-grained outcomes reveals that team composition features
(size, education level, and diversity of backgrounds), internal communication (engagement
on Slack), and collaboration strategy (advice seeking and work interactions) are associated
with different aspects of project quality.

We also examined whether data from the Evaluate phase can serve as an early predictor
of the final stage achieved by teams during the GEAR cycle. Findings indicate that com-
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positional and structural aspects at the Evaluate phase are indeed early predictors of the
eventual performance of teams. Specifically, team activity in the Evaluate phase, diversity
measures, and advice-seeking behaviour were found to be important for final success.

Overall, the study highlights the significance of team engagement, composition, and
collaboration strategy for project performance in the GEAR cycle. The self-reported and
surveyed data offer an opportunity to operationalise metrics and descriptors underlying
the quality and novelty of citizen science projects. Our contribution extends beyond the
Crowd4SDG project to the general evaluation of CS by informing project leaders, citizen
scientists, and decision makers on what can be assessed online to perform high-quality cit-
izen science based on the criteria provided in D4.2 and operationalised in this report.

In light of the findings presented in this report, we put forth the following recommen-
dations to enhance the success of future GEAR cycles or comparable programs. Coordina-
tors should prioritise cultivating robust team engagement, assembling teams with diverse
compositions, and implementing efficient collaboration strategies. It is advisable to moti-
vate participants to actively partake in activities and maintain frequent communication via
platforms like Slack, which has proven beneficial for idea generation and project refine-
ment. Forming teams with a diverse mix of education levels, backgrounds, and experiences
can foster innovation and improve project quality. Additionally, establishing a collabo-
rative atmosphere in which teams can access advice from an extensive network of peers
while sustaining strong connections with a select group of collaborators is essential. By
emphasising these aspects, coordinators can contribute to a more favourable environment
for achieving successful project outcomes in GEAR cycles or similar initiatives.
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2.3 VisualisationDashboards toMonitorCitizen Science

Teams

The goal of the previous sections is to identify the key predictors of co-designing an innova-
tive citizen science project within the Crowd4SDG incubator framework. Over the course
of the 3 GEAR cycles, we identify the importance of:

• Engagement: Response to surveys and activity on Slack are predictors of the final
score (in the Evaluate phase) in addition to the stage of progress within the GEAR
cycle. Interaction with the organising team is positively correlated with indicators of
project quality.

• Collaboration: Messages between team members on Slack are significant predictors
of their final performance, as well as project quality indicators like novelty and fea-
sibility. Having a local and focused network of work partners in addition to having
more diversity for seeking advice (with organisers and other teams) are predictors of
higher project relevance.

• Composition: Teams with diverse backgrounds and education levels correlate with
project quality (such as novelty) and are predictors of their advancement within the
GEAR framework

These observations highlight core perspectives that are important to be in consideration
while designing team-based innovation incubators. Organisers have to monitor and sup-
port teams to foster interdisciplinary collaboration amongst participants, but also maintain
team engagement to accelerate their process of learning and project design.

Monitoring teams engagement and collaborative activities also critical to organisers on
a day-day basis. The organising team within the GEAR cycles, in addition to structuring
the training program, offer technical and logistical support - connecting teams to informa-
tion, resources and personnel, and also help them troubleshoot their usage of digital tools
(Slack, CoSo etc.). With teams composed of members with interdisciplinary backgrounds
and based in different geographic regions (figure 2.8a and b), organisers play a vital role
within the various stages of the Crowd4SDG GEAR cycles.

An immediate need for the organisers to support their facilitation activities is to have a
streamlinedmethod tomonitor team activities and engagement. Each survey highlights col-
laborative activities across different dimensions (such as working together, sought advice),
between various entities (teams, organisers, resource owners) while their Slack activity in-
dicates their overall engagement, who teams are reaching out to, in addition to recording
their queries. The Crowd4SDG consortium spans 6 institutions across 4 European nations,
and having a platform to track responses to surveys, Slack activity and usage of program
toolkits aids the organisers to coordinate their facilitation actions.
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This gave birth to the need to build a dashboard to visualise team and participant en-
gagement and collaboration. I present the digital resources used to construct the dashboard
in the Methods section, showcase snapshots and discuss their utility to the organisers in
the forthcoming sections.

2.3.1 Methods

Survey Data

Participants and teams respond to surveys in different stages of the GEAR cycle.

• Gather : The first phase collects participants meta data - including their demographic
information (age, geographic location), educational background, email IDs and their
prior knowledge about SDG related topics and themes. Participants also pitch a citi-
zen science project idea and are selected into the next phase by judges.

• Evaluate: This phase groups participants into teams and provides them training across
5 weeks to co-design their project. The first survey in the evaluate phase asks about
prior relationships between team members - i.e who in the team they knew before.
This is followed by weekly surveys tracking the work and advice seeking relation-
ships between participants. The final survey queries their satisfaction with various
training and support aspects of the Evaluate phase.

• Accelerate: The surveys mimic the structure of the Evaluate phase, with the initial
survey (querying teams’ project details), 3 weekly surveys and the final satisfaction
survey.

• Refine: Teams in the final phase present their project live at the Geneva Trialogue in
front of organisers and stakeholders. There are no surveys administered at this stage.

The dashboard presents the replies to the surveys in the Evaluate phase (across GEAR
cycles 2 and 3), with this being the stage where participants require maximum support from
the organising team. Identifiers of participants are pseudo-anonymised using SHA hashing
functions (SHA256 from the digest library in R).

Slack Data

Teammessages on Slack are captured across different phases of the GEAR cycle. The previ-
ous sections detail the construction of collaboration networkswith Slackmessages (through
tagging a workspace member with the "@" symbol, replying to messages in a thread and
reacting to messages with an emoticon). The data from Slack is exported in a .json for-
mat by the administrators of the workspace. I used an R script to process the messages to
construct the following data frames.
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• Users: Details the identifiers of members on the workspace, including their names,
geographic location (timezone), their summary description and their email IDs.

• Channels: The Slack workspace consists of different channels. This identifies each
channel, its description, members and when they joined.

• Mentions: Lists messages where one or many workspace members were mentioned.
Includes the source, cited target members, the contents of the message and its times-
tamp.

• Reactions: Lists messages and the members who reacted to that message. Includes the
source, members who reacted, message contents, reaction type and the timestamps.

• Replies: Tracks message threads in the workspace. Due to a lack of texts in the reply
format - they are not presented on the dashboard.

Private messages between workspace members are not included in the Slack export
by default. All identifiers of users are pseudo-anonymised using SHA hashing functions
(SHA256 from the digest library in R).

Correspondence between Surveys and Slack

The hashed email IDs are used to match survey responses to the corresponding user in
Slack. Participants are identified across the different surveys through the same email ID
(they have to login to the CoSo platform using the same ID to respond to each survey).
However, participants do not necessarily use the same ID to register to Slack. Since the
size of the cohort is small, around 60 participants and organisers, I manually identified and
corrected the mismatches.

Once all users are correctly mapped between the surveys and Slack, it is possible to
identify individual teams and their composing members on both sources. In addition, cer-
tain Slack channels are specific to a team and these channels are identified and matched
manually.

Interaction Networks

Networks from the surveys correspond to each interaction question - "Who do you know
personally before?", "Whom did you work with?" and "Who did you seek advice from?".
Vertices are the responding participant and an edge indicates the corresponding interaction
between them. The networks have the participant meta data and their team as vertex at-
tributes and survey information (timestamp, programweek, GEAR stage) as edge attributes.

The networks on Slack (text mentions, emoticon reactions) have vertices matching to
each Slack user (matched to their survey identifier) and edge corresponding to the inter-
action type. The vertex attributes include their slack meta data and their team while edge
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attributes include the timestamp and the channel where the text appears.

The networks are saved as graphml files using the igraph library in R.

Building the Dashboard

The dashboard was built using flexdashboard library in R [ade, 2024]. The library helps
building interactive dashboards using R Markdown - with options to customise layouts,
use html components and construct interactive filtering elements.

Visualisations presented on the dashboard were designed using the ggplot2 and plotly

libraries in R. The library countrycode is used to map country names to a three letter code -
acceptable to plot onto a map on plotly. The igraph library is used to model networks and
their interactive plots are constructed using a custom function built atop the visNetwork

library in R.

2.3.2 Snapshots of the Dashboard

The final dashboard has four pages, each containing specific interactive visualisation ele-
ments.

Page 1: Registration

The registration page (figure 2.17) showcases the background information of participants -
their geographic location, their age distribution and their background diversity.

The objective behind the registration page is to set the base of the demographic and
educational diversity of the participants in the program.

Page 2: Survey Interactions

The survey interactions page (figure 2.18) showcases survey responses to the interaction
questions - "Who do you know personally before?", "Whom did you work with?" and "Who
did you seek advice from?".

The networks can be filtered by an individual team and explore the interactions between
its members and across other teams in the programme. The networks are structured to have
a forceAtlas layout - highlighting the core vertices from the periphery. The networks serve
as a visual aid to identify individuals and teams’ position within the network, showcase
local and global clusters.
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Figure 2.17: Page 1 of the dashboard. The panels on the left shows the nationalities (top,
filtered by GEAR cycle) and age distributions (bottom). The panel on the right shows the
distribution of academic background as a heatmap.

Figure 2.18: Interactions captured from surveys. Panels in each column plot an interactive
network for the respective survey question for GEAR cycles 2 and 3. Nodes in the network
are each individual participant and the network can be filtered by selecting a specific team
- highlighted by a unique color. The node size is determined by its degree. The width of an
edge indicates the number of mentions (or reactions) between the same pair of vertices.
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Figure 2.19: Interactions captured from Slack. The panels to the left show the network of
mentions and the ones on the right the network of reactions in the GEAR cycles 2 and 3.
Vertices correspond to an individual Slack user and the color highlights their team. The
vertex size is the degree. The width of an edge indicates the number of mentions (or reac-
tions) between the same pair of vertices.

Page 3: Slack Interactions

Figure 2.19 displays the slack interaction networks (mentions and reactions) of participants
in the GEAR cycles 2 and 3. Filtering networks by individuals and teams demonstrate the
centrality and connectedness in the interaction network - serving as a visual aid to identify
the key predictors of engagement and collaboration.

Page 4: Final Survey

Digital tools form a significant component in the training and facilitation framework in the
different stages of Crowd4SDG. The final surveys first capture the level of utility of each
resource by the participants. Teams need to be further incentivised to use citizen science
toolkits such as Goodwall and in-house tool InnProgress. While Slack, Zoom andWhatsapp
are used by participants significantly - specifically among virtual and hybrid teams. The
high usage on the Slack workspace further supports its utility as am ecosystem for teams
to share information and receive support from administrators.

The feedback on participants on different facets of the program is a visual indicator for
organisers to evaluate specific initiatives post-hoc.
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Figure 2.20: Participant responses to the digital platforms they used during the Evaluate
phase (left panel) and their feedback on different facets of the incubators’ training and
support structures (right panel). The dots indicate the average with standard error bars.

2.3.3 Discussion

The three key dimensions that predict novel and innovative citizen science projects within
the Crowd4SDG incubator framework are captured through the visualisation dashboard.
The composition diversity of teams are represented through participants’ age, geographical
and educational background. The collaboration within and between teams is represented
through the survey and Slack interaction networks. The interactive nature of the presented
visualisations effect the identification of global and local properties like clustering and cen-
trality with a simple overall view. Engagement of participants within the framework is
demonstrated through interactions between participants and the organisers and the usage
of participants and different digital toolkits.

The primary function of the dashboard is to showcase these predictors visually for or-
ganisers to identify and provide necessary support. Inactive teams (on Slack or not an-
swering surveys) are reached out to inquire about their specific needs. Peripheral users
and teams can be identified after each program week to better understand if they require
further collaboration or connect them with relevant resources. Feedback on tool usage and
program structure can be used to augment their administration in the following weeks.

Beyond its use case during the program, the dashboard provides feedback into co-
creating future challenge-based and citizen science incubator initiatives. From streamlining
surveys from GEAR 2 to 3 (by removing redundant questions, re-framing to suit monitor-
ing needs) to aiding the re-design of participant training activities, a platform supporting
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monitoring and evaluation strategies is a significant component.

Despite the interactive visualisations, the dashboard has its limitations. Newer data
from surveys and Slack are manually added and the Markdown code is re-run. Hosting
the dashboard online, with pipelines directly feeding new data makes the presentation dy-
namic. It is however a challenge to work with Slack data - as typically the export of com-
munication data is performed manually. Building automated solutions using the API from
Slack is workaround. Furthermore, the current dashboard does not include a filter by times-
tamps (specifically for Slack data), which is primarily due to a lack of sufficient interaction
data each week. Incentivising participants in using the workspace to voice their technical
and project-related concerns increases the collaboration and engagement patterns of teams.

In summary, the visualisation dashboard provides necessary visual aid for making ad-
and post-hoc decisions regarding organisation and facilitation. Building simple dashboards
(in this case using R markdown) requires minimal time and cost efforts, further advocating
for the usage of structured case by case visuals relevant to the corresponding context.
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2.4 Perspectives

Open science and innovation initiatives aim to train participants in collective knowledge
production processes and facilitate them towards building solutions and prototypes to ad-
dress global societal challenges. The Crowd4SDG incubator was designed in this spirit -
to support student teams to learn about and build citizen science projects addressing the
SDGs. The iterative nature of the project (across the 4 GEAR steps) allows selecting inno-
vative participant teams and helping them fine-tune their project and prototypes. This was
mainly facilitated through the monitoring and evaluation strategies that were implemented
across the different stages of the incubator.

Administering surveys at regular frequencies, collecting meta data about teams, their
interactions within the team and to other participants, and their satisfaction levels allowed
to gain a structured and customised view of teams across the programme. This was sig-
nificantly aided by the administrators who regularly communicated with teams gathered
survey responses used an in-house tool. While the latter was used to complywith dataman-
agement regulations, several open source surveying tools can be alternately used. However,
continuous prompting by the organisers is crucial to maintaining participant engagement,
even in small cohorts as Crowd4SDG.

Although participants and teams were encouraged to use Slack as way to communi-
cate with other participants, organisers and resource owners within the incubator, they
used other platforms such as Whatsapp or email (Fig 2.20 left). Despite this, Slack activity
informed on team engagement (with organisers), their collaboration with other participat-
ing teams and significantly associated with project quality indicators. Leveraging a mixed
method approach integrating both qualitative and quantitative data sources can be crucial
to capture varied dimensions of team collaborations in open science and innovation pro-
grams.

Network science measures, capturing engagement (survey responses, Slack activity and
communication with organisers), collaboration (centrality in work and advice interactions
from surveys, communication internal and external to teams on Slack) and diversity (back-
grounds, education) are significantly associated with dimensions of project success, quality
and their progress within the Crowd4SDG GEAR cycle. This is a key takeaway from this
study

The pipeline to collect and process data, presented through the visualisation dashboard
is an important aspect of the facilitation process. Organisers gain a rapid insight into par-
ticipant and team diversity, their interactions and the toolkits that they use through visual
aids (and network measures). This allows them to promptly identify potential blocking
points and provide personalised support.

Overall, the study offers several perspectives towards designing open innovation and
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crowd science incubators and more importantly recommendations for data collection, pro-
cessing, visualisation and in the use of network science to model and study team diversity,
engagement from different facets of team interactions. Despite the effort and time costs in
implementing a comprehensive monitoring and evaluation framework, the inferences from
this approach are crucial in designing interventions to foster success in future open science
and innovation initiatives.
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Preface

In the previous chapter, I presented methods to monitor and evaluate citizen science teams
in a collaborative open-innovation incubator ecosystem using structured surveys and traces
from digital tools like Slack. The monitoring strategies leveraged has in part, a lot to owe to
the methodology design of the Crowd4SDG incubator. Each stage of the innovation cycle
was carefully facilitated by organisers, allowing the administering of surveys and tracking
participants on the Slack workspace. Teams in various open-innovation settings, however
do not have this level of fine-grained monitoring efforts. Recovering network-based mea-
sures to represent collaborative structures in teams requires high human and resource costs
and is a challenge to scale up with increasing team size and participant cohorts.

However, a significant component of team-based science and innovation projects is
documentation. Researchers present their work by writing a scientific article, integrating
information with their collaborators. Publications include self-reported attributions [Lar-
ivière et al., 2020, Sauermann and Haeussler, 2017] and acknowledgement statements to
discern collaborations between authors and the tasks they performed. Digital traces from
how members collaboratively edit documents or code can help identify specific contribu-
tor roles and patterns in open-innovation settings, such as in Forums [Poquet et al., 2019,
2023], Wikipedia [Klein et al., 2015] and GitHub [Palazzi et al., 2019]. A combination of
self-reports and digital traces can offer a more comprehensive view of collaborative struc-
tures in teams - but the heterogeneity in reporting styles across different fields and contexts
make it a challenging endeavour.

In this chapter, I focus on teams participating in the iGEM science and engineering
competition and show how their self-reports on an online wiki page can be leveraged to
understand their a) collaborative editing structures, b) how they organise tasks amongst the
team members and c) how they collaborate with other teams. The chapter is divided into
three broad sections. The first section details the iGEM context and dataset and describes
the methods to clean and process digital traces frommembers co-editing the wiki while the
second section leverages the contents of the wiki to build a pipeline to recover inter- and
intra- team collaborations from unstructured text. I conclude by offering perspectives for
studying teams in open science and innovation contexts, using their self-reported data.

– 90 –



Network science and computational methods for processing collaboration networks from
digital lab notebooks

3.1 Team Collaboration Dynamics from Digital Traces

Abstract

This section presents the International Genetically Engineered Machines (iGEM) synthetic
biology competition as a resource to study team collaboration dynamics in science and in-
novation. Teams self-report their project and document their progress on an online wiki
website, which reveals organisational structures in over 2200 teams across 11 years. Cou-
pled with meta data of team composition, output and performance, this section aims to
showcase this fine-grained and longitudinal setting and discuss network science and com-
putational methods leveraged to identify team collaboration and organisational structures
in iGEM.

Contributions

The contents of this section are derived from the following pre-print and data resource.

Santolini, M., Blondel, L., Palmer, M. J., Ward, R. N., Jeyaram, R., Brink, K. R.,
Krishna, A. and Barabási, A.-L. (2023), ’IGEM: a model system for team science and
innovation’, arXiv

Blondel, L., Jeyaram, R., Krishna, A., and Santolini, M. (2024), ’iGEM: a model
system for team science and innovation’ [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.11072818
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3.1.1 The iGEM Synthetic Biology Competition

International Genetically Engineered Machines (iGEM) is a yearly science and engineering
competition that incentivises student teams to build projects integrating synthetic biology
with real-life challenges. At its heart, iGEM is a challenge-based learning initiative - stu-
dent teams are composed of interdisciplinary backgrounds, are expected to build synthetic
biology parts (also known as biobricks), providing safety and ethical considerations in ad-
dition to undertaking public outreach activities [Stemerding, 2015]. Over the course of the
iGEM competition cycle, participating students learn technical and experimental skills and
gain valuable experience in project co-creation and management.

A typical iGEM competition cycle is described in figure 3.1. Teams are formed and begin
funding acquisition and ideation early in the year. Members carry out essential tasks - like
performing experiments and outreach over the summer. Teams present their project in the
final jamboree (usually conducted in November), and prepare their slides, posters and their
wikis in the weeks before. This overall structure of an iGEM project mimics the processes
of academic research. To produce a publication, the Principal Investigator (PI) needs to se-
cure funding, identify technical profiles who can support performing the different research
tasks and finally communicate their findings in the form of a manuscript and/or technical
talks. PIs of iGEM teams, usually senior researchers, take the lead on sourcing funds, as-
sembling the team and providing supervision. The fundraising process is key for iGEM -
registration and jamboree participation costs are significant. Team assembly is guided by
iGEM and project requirements - teams usually are composed of experimental biologists,
modellers, computer scientists, engineers among others - with this distribution varying
across different competition tracks (figure 3.1a). PIs supervise teams and assist with project
conceptualisation, but student members usually take responsibility in performing experi-
ments, processing and analysing data and building biobricks. iGEM projects are heavily
linked with real-world problems, with participating teams undertaking significant public
engagement initiatives to craft their problem and solution. This makes iGEM an incubator
framework - which serves as a microcosm for science and innovation activities.

iGEM also emphasises on collaboration and open science philosophies. Biobricks de-
signed by teams are available on a public repository for reuse by other teams and teams
are motivated to share resources and provide technical help to their peers as a part of the
competition outcomes. These key dimensions of iGEM presents a unique framework to
study teams partaking in collaborative science and innovation. Despite participating teams
being a student-led, albeit with support from PIs, they produce high quality output. iGEM
projects have led to over 110 publications and the founding of 150 startups [Jainarayanan
et al., 2021] in the 20 years since its inception. This makes iGEM an interesting testbed to
study team collaborative structures in a more modern science and innovation setting.

However, studying collaborative structures suffer from the complexities in recovering
granular and longitudinal data from teams. iGEM as a science and innovation setting pa-
pers over this gap - with the competition requiring teams to maintain a comprehensive
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digital lab notebook (henceforth referred as theWiki) reporting their project, team and at-
tributions. The digital traces from the wiki co-edit structure paired with its contents offer
a comprehensive, zoomed in version of how teams organise and perform tasks in science.

This section focuses on the former - using computational and network science ap-
proaches to represent the co-edit structure from the wiki digital traces. The next parts
describe the particulars of data collection, the methods used to clean and process the digi-
tal traces and provide perspectives for extending to other contexts.

3.1.2 Data

The iGEM data presented in this and the following chapters include teams participating
between 2008-2018.

Team and Participant Metadata

Teams register to iGEM at the beginning of each competition year. During the registration,
teams provide information such as their name, affiliation, roster and are assigned a unique
identifier each year. The registration is later validated, and based on teams providing com-
plete information and their successful payment of fees - they are designated as Accepted
teams and allowed to participate in iGEM. A total of 2296 teams participated in iGEM be-
tween 2008 and 2018

The team roster specifies the roles of each composing member. They can be a Princi-
pal Investigator (PI - primary or secondary), advisor, instructor, student leader or a student
member. Each teammember has a unique iGEM identifier, which is consistent across years.
Teams are usually affiliated to the department of an academic institution, university, high
school or community laboratories. This institutional information is recorded during regis-
tration, along with their section (undergrad, overgrad or high school) and their geographic
location (figure 3.1b).

The teams’ project information is also crucial component of the registration. Teams
participate in one of many technical competition tracks, and are expected to declare this
along with a brief summary of their project. The competition tracks evolve each year, with
12 unique tracks in 2018 (figure 3.1c). Teams detail specific information about their projects
on their wiki pages.

The team and participant meta data are extracted from the public iGEM web page
(https://teams.igem.org/list).
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Figure 3.1: a) Competition Cycle in iGEM. b) Geographic Dispersion of iGEM Teams 2008-
2018. Each dot corresponds to a team, and the color of the dot represents the last year the
team participated in the competition. c) iGEM competition tracks and their evolution. All
figures taken from [Santolini et al., 2023]
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TeamWikis

Teams maintain an online wiki website, collaboratively edited by its members - where they
document the multitude of aspects of their iGEM project and associated activities. These
typically include:

• Team: Descriptions of the team roster, roles and their attributions - who performed
which tasks in the team.

• Project: Broad and specific description of the team project - including information
such as experimental design, models, technical results and a detailed lab notebook of
day-day activities.

• Parts: Specifications of the the synthetic biology parts, or Biobricks. Includes designs
of new parts, and details of composite parts.

• Human Practices: Outreach, education and public engagement activities that teams
undertook during the course of their iGEMproject. Collaborations between teams are
also reported.

• Safety: Details about the safety and ethical considerations of the teams’ project, in
accordance to the safety forms defined by iGEM.

• Other: Other miscellaneous information linked to how teams are evaluated - such as
digital materials and supporting documents.

Team wikis are created at the beginning of each competition year by the iGEM head-
quarters. They include template pages for each of the above categories which contain their
descriptions and brief instructions on what to include. Teams use this as a start to design
their wiki. Despite a consistent overall structure of the wiki template - teams can choose to
edit heterogeneously, as long as they report the necessary team and project information.

The team wikis are publicly accessible, through links provided on the iGEM website
(https://teams.igem.org/list). The full text of the team wiki is scraped by first identifying all
the pages in a team wiki and then extracting the complete text content from each of these
pages.

The digital traces of how team members co-edit their wikis were available through the
iGEMMediaWiki API - whichwas opened for access specifically to collect this data between
2008 and 2018. The digital traces detail the IDs of the contributing team member, the IDs of
the wiki page and section, the size (in bytes) and the nature (create, edit or delete) of each
action [Santolini et al., 2023].
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Figure 3.2: a) Snapshots from Team wikis. b) Criteria for Medals and Awards over the years
[Santolini et al., 2023].

Medals and Awards

The performance of teams is assessed through the medals they achieve and the awards they
win during each iGEM competition cycle.

Teams can win one of Gold, Silver, Bronze or no medals. This is determined by teams
accomplishing specific targets on the iGEM project evaluation checklist (figure 3.2b). The
medals are represented in an ordinal scale (0, 1, 2, 3) - for no medal, bronze, silver and gold
respectively.

Awards winners are determined through their exceptional performance during the final
jamboree - through their project quality and their presentation to the jury. Teams compete
against other teams in the same section - overgrad, undergrad or high school. There are two
broad award classes. Track specific awards are granted to teams with exceptional projects
in a given track. Based on jury scores, top teams are nominated as a finalist for the track,
of which, winners are selected. Teams are also awarded other special technical awards
- such as the best projects in education, entrepreneurship, human practices, model, new
part, composite part, presentation, wiki, sustainability and inclusivity.Furthermore, teams
are selected to be the best overall prize winner in each section.

Biobricks

Information about the synthetic biology parts (biobricks) that teams design as a part of their
iGEMproject is also documented on the iGEMwebsite (https://parts.igem.org/Catalog), and
collected by parsing its contents. This includes the unique identifier of each biobrick, the
author who logged its information on the website (their member ID), the team, year and
whether the part is a new or a composite. The entire collection of parts made by teams,
including their technical details such as sequence data, are reported. We identify 33,687
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Figure 3.3: Example of the Wiki page showing biobrick reuse (left) and the network of
biobrick reuse from 2008-2018, with colors indicating geographic regions of the teams that
designed the biobrick (right) There are a core set of biobricks, that teams often reuse -
indicated by vertex size and their central position in the network.

biobricks designed by iGEM teams between 2008 and 2018 .

Composite parts are engineered by integrating one or more pre-existing parts along
with additional synthetic biology elements. Teams are required to build composite parts as
a part of their iGEMproject to incentivize reuse of previously designed biobricks. We record
13,170 composite parts with 11,478 reusing atleast one part designed by an iGEM team. The
specific information about the composition of these parts are also logged. For these com-
posite parts, we extract the identifiers of the biobricks that are used in its construction -
creating a network of biobrick reuse, reporting 24,899 interactions between biobricks de-
signed by iGEM teams.

3.1.3 Methods

Scraping of iGEM Team and Wiki Pages

The scraping of websites from iGEM was done using a custom HTML parser, written in
Python [Blondel et al., 2024]. iGEM has several public websites with fixed structures -
which report the team roster, project details, team performance (medals, awards), biobricks
and teamwikis. The key data from each of these pages is extracted and stored into .csv files.

The full text of each team wiki is extracted using BoilerPy3, based on the Boilerpipe li-
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brary in python. The library allows several text Extractors - which are interfaces to recover
text from HTML content. The ArticleExtractor is typically used to identify sentences from
articles, but it fails to completely recover all text content from the wiki pages. We use the
KeepEverythingExtractor, which recovers all text content from a wiki page - including text
from buttons, menu bars and footers.

Once the text content of each page is extracted, they are saved into separate text files.
The code for the extractor was written on python by Leo Blondel [Blondel et al., 2024], and
executed for teamwikis from 2008-2018 after making minor changes. These reflect changes
on the iGEM website and URLs.

The scripts for accessing theMediaWiki API were also written in python by Leo Blondel
[Santolini et al., 2023].

Identifying Teams across Participation

Teams are assigned a unique ID each year. This makes identifying teams across years a
slightly challenging task. A majority of teams preserve their name across multiple partici-
pation. However, teams may change their names each year - despite them being led by the
same PIs and hosted in the same institution. Institutional information is documented as free
text, which makes is hard to compare consistently across years. Team names may change
slightly, like team EPF-Lausanne in 2012 to EPF_Lausanne in 2013, but may also change
significantly, like team Lanzhou in 2017 to team LZU-CHINA in 2018. This makes using a
consistent sub string matching cutoff to match names a complex challenge. We hence use
the unique member IDs and their inter-team mobility across years as a proxy to identify
name changes.

To match teams across years - we use the following identifying strategy. Using the
unique member IDs, we track the teams that a member is a part of across different years
in iGEM. If atleast 2 members move from one team to the same future team, and the teams
have different names, we record the instance. This gives a directed network where the
source vertex is an iGEM team and the target vertex is a future iGEM team, but with a dif-
ferent name.

We use this directed network to assign a newmatching ID, consistent across team name
changes. Teams are sorted by decreasing year, and for each team, its past versions are
identified using the directed network of team name changes. If the current team name is
present in the network, we identify all other vertices (teams) that are connected to the cur-
rent team - indicating prior name changes. All iGEM teams with any of these names are
now assigned a common matching ID. If a team is not present in the network, then all prior
teams that only have the same name as the current team are give the common matching ID.
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Figure 3.4: Collaboration network between teams participating in iGEM 2018. Teams are
coloured based on their geographic region and the size of the vertex corresponds to the
degree (number of collaborations that the team was involved in).
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Inter-team Collaborations

Teams report their outreach and collaborative activities on iGEM on their wiki. Collabora-
tion with other teams usually takes the form of socialising at a meetup, working together
on each others’ project, sharing resources and providing advice and support. The full text
of a team wiki can be leveraged to identify these inter-team collaborations.

Once the full text has been extracted using parsers from the BoilerPy3 library in python,
we remove html content and tags using the justext library in python and then tokenize text
into sentences using the English pickle tokenizer (’tokenizers/punkt/english.pickle’) from
the nltk library. For each sentence in the wiki text, we search for the mention of an iGEM
team name that participated that year. To account for slight variations in spelling, we use an
approximate fuzzy matching - using the partial_ratio function of the fuzzywuzzy library in
python. This allows for comparing substrings in each sentence with the name of an iGEM
team, keeping the Levenshtein distance cutoff at 0.9. We handle the edge case where a
tokenized sentences shorter than the team name, by using regular fuzzy matching (with
a cutoff of 0.7) instead of partial matching. The latter generates false positives by match-
ing team names to common page titles - like matching software teams (USTC_Software,
Michigan_Software, SYSU-Software etc.) to the recurring page title Software. This gives
a dataframe with the name of the source team, the names of teams mentioned on their wiki
and the sentence where the collaboration is reported.

The fuzzy matching method is susceptible to include "false positives" - where team
names are matched to text which do not describe a collaborative activity. We do filter-
ing to reduce the presence of these false positives. The first filtering step aims to remove
the influence of template pages. These pages are created by iGEM HQ as a part of the tem-
plate wiki, and sometimes remain an unedited part of their wiki (but not accessible publicly
due to them being unlinked to the main wiki pages). These template pages include contex-
tual information and links to past iGEM teams who are exceptional examples for reference.
These are falsely identified as collaborations during fuzzy matching. To filter these out, we
identify the number of times a sentence reports a collaboration to the same target team.
If a sentence is repeated multiple times (with a conservative cutoff at 40), we claim that
the only explanation for this high frequency is that they are from the template pages, and
are thus present in several team wikis (40 in this case). Collaborations reported by these
sentences are removed. To achieve a more precise filter - we use regular expressions. In
a template page, referencing another iGEM team always follow the same format: [Year][
][Team Name]. We build a regular expression to identify sentences which contain phrases
of this format. If that same sentence is repeated by over 10 teams that year, we exclude the
collaborations reported.

Another common false positive arises with the MIT open source license statements,
which are mismatched with the iGEM team MIT. We build a dictionary to identify com-
mon phrases used to identify open source licenses and remove sentences that include said
phrases. The dictionary of phrases include:
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Figure 3.5: Example of a Wiki Co-edit network. Vertices coloured green correspond to
the team members and red to the pages of the wiki. The network here shows a modular
organisation of the teams’ wiki editing process.

"Licensed under MIT", "Licensed under the MIT", "MIT License", "MIT license",
"COPYRIGHTOWNERORCONTRIBUTORSBE LIABLE", "PROVIDEDBYTHE
COPYRIGHT HOLDER", "(Custom Build)", "WITHOUT WARRANTY OF ANY
KIND", "Licensed MIT", "MIT/GPLv2 Lic", "MIT/GPL2", "Released under the
MIT", "Dual licensed under", "License: MIT", "MIT Press", "MIT_License", "LICENSE-
MIT", "MIT/BSD license", "MIT @license", "MIT Technology Review", "THIS
CODE IS PROVIDED ON AN *AS IS* BASIS" and "MIT (c)"

The final collaboration network has 15,423 interactions between teams from 2008-2018.
An example is presented in figure 3.4.
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Co-edit structures of TeamWikis

The digital traces from the MediaWiki API includes the IDs of the editor (who is a regis-
tered iGEM team member), the identifier of the wiki page, nature of the action (create, edit,
delete) and its size. Since all wiki pages are initially created as a template by iGEM HQ -
we discard those actions. The editing structure of the wiki is represented as interactions
between team members and wiki pages. An example is presented in figure 3.5.

3.1.4 Discussion and Perspectives

The section presents the data from the iGEM team-based science and innovation ecosystem
and presents the methods to construct a consistent dataset of teams, participant and project
meta data and most importantly, digital traces capturing intra- and inter-team interactions.

The co-edit structures from team wikis provide insights into how members organised
to communicate their project output in iGEM. However, editing the wiki is one task, with
team members performing several additional roles while developing their project. This
specific task allocation between team members is not captured by the wiki edit structures.
However, team wikis have an attribution page where they report on who in the team did
what task. This attribution statement is unstructured, requiring language processing tools
to identify the network of task allocation.

The fuzzy matching method to curate the inter-team collaborations also has its limits.
It only identifies a collaboration if the target team is reported in text using its exact iGEM
name or a slightly similiar variation. In the next section of this chapter, I present meth-
ods leveraging Large Language Models to recover both intra-team collaborations from the
attribution statements and the inter-team collaborations reported on team wikis.
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3.2 Team Collaboration Dynamics from Self-Reported

Data

Abstract

Science is a collaborative endeavor. Yet, unlike co-authorship, interactions within and
across teams are seldom reported in a structured way, making them hard to study at scale.
We show that Large Language Models (LLMs) can solve this problem, vastly improving the
efficiency and quality of network data collection. Our approach iteratively applies filtering
with few-shot learning, allowing us to identify and categorize different types of relation-
ships from text. We compare this approach to manual annotation and fuzzy matching using
a corpus of digital laboratory notebooks, examining inference quality at the level of edges
(recovering a single link), labels (recovering the relationship context) and at the whole-
network level (recovering local and global network properties). Large Language Models
perform impressively well at each of these tasks, with edge recall rate ranging from 0.8 for
the highly contextual case of recovering the task allocation structure of teams from their
unstructured attribution page to 0.9 for themore explicit case of retrieving the collaboration
with other teams from direct mentions, showing a 32% improvement over a fuzzy matching
approach. Beyond science, the flexibility of LLMs means that our approach can be extended
broadly through minor prompt revision.
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Contributions and Publication

The work presented here is published in the journal Applied Network Science in 2024. The
following section reports the contents of this article as is, reformatted to the thesis.

Jeyaram, R.*, Ward, R. and Santolini, M. (2024) ‘Large LanguageModels recover
scientific collaboration networks from text’, Applied Network Science, 2024

I took the lead on data curation, writing software code, performing the analysis and
visualisation and writing the manuscript. Credit to Robert Ward and Marc Santolini for
conceptualising and supervising the study. The manuscript was collaboratively reviewed
by the three authors.
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3.2.1 Introduction

A large amount of social network data is recorded in unstructured text: nodes are men-
tioned with non-standard labels, and the edges between them, which may constitute one or
more kinds of interaction, are describedwith idiosyncratic, contextually dependent phrases.
This makes it difficult to accurately reconstruct networks in an automated way. While man-
ual annotation can be performed for small datasets, this approach becomes prohibitively
costly at scale. In particular, leading scholars to either rely on low quality data, or to direct
attention elsewhere.

Research on scientific collaboration is a good example. Identifying who works with
whom, and what they contribute is essential for the allocation of resources and credit, as
well as for improving the organization of scientific work [Fortunato et al., 2018]. Existing
research focuses almost exclusively on co-authorship, in part because it can be easily ob-
served in an article’s metadata. However, sociologists have long described the invisible col-
lege that underlies research production: helpful scientists who share resources and advice
without being included as authors [De Solla Price and Beaver, 1966, Oettl, 2012]. These
informal collaborations are described in the acknowledgements that accompany tens-of-
millions of articles. They are accessible to researchers, but unused because they would
be prohibitively difficult to extract with existing methods. Similarly, the division of la-
bor amongst co-authors is central to the quality and reliability of their work. Journals are
increasingly adopting contribution statements to describe the division of labor. But only
a fraction of them are reported in a structured format, and even those that do typically
lack fine-grained descriptions of the tasks [Larivière et al., 2020, Sauermann and Haeus-
sler, 2017]. Other extensive qualitative approaches such as surveys [Walsh and Lee, 2015],
interviews and manual annotation (Lazega et al., 2008) or self-reported statements [Mas-
selot et al., 2023] have been used, and despite ensuring high quality in the curated data,
are severely limited by time, granularity and resource constraints. As a result, we have a
rather narrow and uncertain view of how scientific collaborations are formed, structured,
and affect knowledge production [Hall et al., 2018].

In this study, we focus on a context-rich, large-scale text dataset of wiki-based digital
laboratory notebooks from 2,000+ scientific teams participating in the international Genet-
ically Engineered Machines (iGEM) synthetic biology competition [Santolini et al., 2023].
In their wiki page, teams document their scientific project and outcomes, along with team
member attributions – who did what – and collaborations with other teams. Prior work
using the iGEM dataset reconstructs a proxy of the task allocation network from howmem-
bers of a team co-edit different sections of the wiki. However, moving beyond digital traces,
the rich textual information provides a more elaborated view on task allocation structure in
scientific teams. As such, obtaining these inter-team collaboration networks and intra-team
organizational structures across this large number of teams requires extracting specific in-
formation from heterogeneous and unstructured text.

To address these challenges in measurement, we present a semi-supervised approach
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leveraging on Large Language Models (LLMs). We evaluate the performance of using LLMs
on two network retrieval tasks from unstructured text of increasing difficulty. First, we
aim to identify the inter-team collaboration network, where direct interactions between
teams are encoded within the wiki text. In this task, we have some prior knowledge about
team names, and are interested in retrieving team collaborations along with the type of
interaction. Second, we identify the task contribution structure of iGEM teams from the
self-reported attribution statements of team members. Here, we retrieve a member-to-task
bipartite network where we have prior knowledge about team members, and are inferring
task allocation from contextual data. For both cases, we use a manual labeling test set to
evaluate the accuracy of LLMs in retrieving relationships and their contexts, and investi-
gate their ability to accurately reproduce local and global network properties. Beyond the
quantitative results, we aim to provide the reader with a guide on the good practices and
pitfalls we experienced with using LLMs for these information retrieval tasks.

The paper is organized into 4 further sections. We talk about recent approaches in using
LLMs in information retrieval and present some background for the iGEM competition and
dataset. We then describe in the Methods section the pipeline to curate and validate the
intra-team contribution structure and the inter-team collaboration network. Finally, we
present the results and discuss perspectives for future work in leveraging the iGEM dataset
and using LLMs for network reconstruction in computational social science research.

3.2.2 Related Work

Text data encodes relationships between heterogeneous entities. Recognizing these rela-
tions is crucial across various scientific disciplines, and has benefitted from the advent of
natural language processing and machine learning methods [Detroja et al., 2023, Pawar
et al., 2017]. For example, biologists might be interested in retrieving interactions between
proteins from the published literature to build a comprehensive protein interaction net-
work that can serve medical insights (Rolland et al., 2014). For this, researchers will have to
navigate the different ways these proteins can be referred to, and the different phrase struc-
tures that can evoke a similar relation. In the humanities, scholars might be interested in
retrieving character networks from fiction works to study narrative patterns across stories
(Labatut & Bost, 2020). In social sciences, the extraction of relationships from online data,
free text surveys or unstructured self-reports can recover multimodal social relationships
at scale [Deri et al., 2018] (Deri et al., 2018; Irfan et al., 2015).

Ensuring a high quality of information retrieval from text is challenging and requires
tedious manual annotation and validation with experts. The use of information coding soft-
ware, such as MAXQDA, has provided a strong support for the analysis of qualitative and
mixed data, such as surveys with both standardized and open-ended questions (Kuckartz
& Rädiker, 2021). Yet, with the increasing availability of large-scale digital text data collec-
tions, the complexity of extracting and annotating these relationships increases further. To
cope with scale, a popular method has been the use of Amazon’s Mechanical Turk (MTurk)
service. By leveraging non-expert crowd workers, the MTurk platform presents a low-cost
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and scalable method for text annotation tasks, showcasing significant correlations with
expert annotation [Snow et al., 2008]. However, recent studies have shown a significant
decrease in data quality and reliability, requiring additional response validity indicators
and data screening (Chmielewski & Kucker, 2020).

Against that background, Large Language Models (LLMs) present an opportunity for
assisting mixed methods research at scale [Karjus, 2023]. Leveraging their ability to under-
stand linguistic contexts and address low to medium complexity tasks, studies have quanti-
fied the efficacy of using LLMs for text annotation, and showed they improve over manual
curation using Amazon Mechanical Turk [Gilardi et al., 2023, Törnberg, 2023](Alizadeh et
al., 2023; Gilardi et al., 2023; Törnberg, 2023). By refining prompts using manually curated
validation data (Reiss, 2023), annotation tasks can be customized for each use case to yield
more relevant results. These encouraging findings have led to the development of open-
source tools such as GraphGPT [Shenoy, 2023] that extract heterogeneous information net-
works out of text data, paving the way for the application of LLMs in the context of network
reconstruction. Preliminary insights using the textbook example “Les Misérables” charac-
ter network reconstruction from Hugo’s eponym fictional work show a promising increase
in richness of information retrieval compared to the smaller manually obtained version, in-
cluding non-plot characters discussed by Hugo in tangential sections of the book [Karjus,
2023].

As such, LLMs are a promising tool for reconstructing social networks from unstruc-
tured text data. Focusing on the digital lab notebooks from teams participating in the iGEM
competition, we aim to address the gap in evaluating the efficacy in using them as an adap-
tive solution for curating social networks and present the framework as a low-effort, yet
reliable solution to address similarly structured tasks in the information and the social sci-
ences.

3.2.3 The iGEM Dataset

Launched in 2003, the iGEM competition has become a cornerstone in the Synthetic Biol-
ogy field, promoting an open, collaborative approach to solving real-world problems using
standardized DNA elements, or "BioBricks." It encourages a bottom-up, community-based
learning method, fostering dialogue and transparency around ethical and safety concerns.
From its inception with just 5 teams, iGEM has expanded globally, involving over 4,300 uni-
versity and high school teams from 40 countries. Annually, teams use BioBricks to create
synthetic biology solutions, culminating in a Jamboree where their projects are judged. The
competition emphasizes collaboration and high-quality documentation, with each team’s
wiki serving as a key evaluative tool.

The team wiki website serves as an extended scientific article that includes technical
specifications of the project, experimental and modeling methods, project results, and out-
reach practices the team members undertook. In addition to describing the content of the
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team project, the website contains context-rich information on the team members, their
background and contribution to the project, and the collaborations the team maintained
with other iGEM teams. This rich data source enables analysis of collaboration networks
and project outcomes, offering insights into the practice and impact of collaborative science
in interdisciplinary contexts [Santolini et al., 2023].

While wikis have an overall topical structure dictated by the needs of the competition
– i.e. they must showcase collaborations with other teams and describe the contributions
of team members–, the presentation of the content within each page varies significantly
across teams. With over 2,200 participating teams in 2008 to 2018 and an average 17 mem-
bers per team, manually curating and labeling individual contributions within teams and
collaborations across teams is a time and resource consuming process. Here we use LLMs
and specifically the GPT family of models to tackle this challenge and evaluate their per-
formance.

To reconstruct the team collaboration and task allocation networks, we first extract the
raw text from all teams public wiki pages. The text content of the pages was extracted
using the "KeepEverythingExtractor" option in the boilerpipe.extract library for processing
and removing boilerplate content after web scraping. This amounts to 106,207 pages from
2,265 teams over 11 years, from 2008 to 2018. The raw html and processed text of the wikis
is available in Zenodo, along with team metadata from the iGEM website [Blondel et al.,
2024].

3.2.4 Methods

Network Reconstruction Pipeline

We show in 3.6 an overview of the workflow to reconstruct the collaboration and task
allocation networks in iGEM teams using GPT models. The workflow is similar for both
the intra- and inter-team networks, with specific changes in the implementation.
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Figure 3.6: Overview of the pipeline to reconstruct social networks from text

Pipeline to extract the team contribution and inter-team collaboration structure from
the text data of wiki pages from iGEM teams. The text from the wiki page is processed and
passed to the language model along with the prompt. The output is a table with the dec-
orated relationships, i.e. the user identifier, the activity they performed and the matched
category for the contribution network and the team, target and the context of collaboration
for the inter-team collaboration network. Schematic networks are shown in the bottom left,
where circular blue nodes denote teams in the inter-team collaboration network, green pen-
tagons denote team members and yellow rectangles the categories of tasks they performed
in the intra-team contribution structure.

The first step is to process the text from the wiki pages into chunks. This is to primar-
ily remove pages that do not contain information about either inter-team collaborations or
about intra-team contributions. This step also ensures that input size limits (tokens) for the
GPT models are preserved.

The curation using the GPT models is split into two steps. The first step extracts all
relationships between entities present in the provided input text along with their described
context. The objective of this step is to maximize recall and to ensure that there are minimal
false negatives. The second step aims to match the extracted entities with their correspond-
ing identifiers. In the inter-team case - it is to match team names to their official team IDs
and the context of their collaboration to one of five standard collaboration categories in
iGEM - “Work”, “Material Transfer”, “Meetup”, “Advice” or “Other”. For the intra-team
case, it is to match team members to their member IDs and the tasks they undertook to a
standard list of tasks that teams are expected to perform during the iGEM competition. This
list is inspired by the CRediT Contributor Roles Taxonomy [Larivière et al., 2020], and con-
structed to encompass all tasks and deliverables that teams work on and are evaluated on
in iGEM. The categories are: “Design”, “Experiments”, “Documentation”, “Interlab”, “Mod-
eling”, “Analysis”, “Parts”, “Safety”, “Entrepreneurship”, “Hardware”, “Software”, “Human
Practices”, “Public Engagement”, “Collaboration”, “Fundraising”, “Creative Contributions”,
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“Administration”, “Material Supply”, “Supervision”, “Training” and “Other”. In this step, we
eliminate the false positives and increase the precision of the final curated network.

To evaluate the curated networks, we create a validation set by manually curating re-
lationships from teams and text chunks selected at random. For the inter-team case, we
also use fuzzy matching to construct an alternate reference set - although this approach
does not identify the contexts of inter-team collaborations. As a part of their iGEM project
in 2016, team Waterloo constructed a database of collaborations between teams in 2015 -
which we use as a further benchmark to evaluate the quality of the approach.

Specifications of the intra- and inter-team curation - such as the text processing, the
prompts used, constructing the validation sets and the implementation details using the
GPT models are detailed in the Supplementary Information.

Statistical Analysis

Standard errors for the precision and recall scores of the inter-team collaboration networks
in Fig 3.7.a are computed using the jackknife method over chunks. In the case of the intra-
team contribution networks, precision and recall are computed at the team level and we
show in Fig. 3.8a the average and standard error across the manually curated teams. The
confusion matrices between relationship contexts for the intra- and inter team networks in
Figures 3.7b and 3.8b are row normalised using Z-scores: each observation x is centred and
standardised using Z = (x µ)/ , where is the row average and its standard deviation.

We use the pROC library in R for computing the ROC curves and Area under the ROC
curve (AUC) of Fig. 3.7c.

Hierarchical clustering in Supplementary Fig. 3.2.7. is performed by computing the Eu-
clidean distances between predicted categories from the confusion matrix (i.e. the rows)
with the R dist function, and then using the “hclust” function in R.

All network analyses were performedwith the igraph library in R. The betweenness and
closeness centrality measures are unweighted and computed using their namesake func-
tions. The coreness of the network was computed using the “coreness” function and the
local clustering coefficient using the “transitivity” function setting the type argument to
be “local”. The network assortativity measures were computed for the categorical vertex
attributes region, country and section using the “assortativity_nominal” function in igraph.
The degree assortativity is computed using the “assortativity_degree” function. Standard
errors for the network properties are computed using the jackknife method by removing
one team from the network in each iteration, recomputing the corresponding network
property, and calculating the standard deviation across the obtained values. The degree
distributions of the intra-team bipartite networks are computed using the in-built func-
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tion degree_distribution from the igraph library with the “cumulative” option set to true.
To quantify nestedness, we compute the standardized NODFc nestedness metric based on
overlap and decreasing fill, described in [Song et al., 2017], using the maxnodf library in R
[Hoeppke and Simmons, 2021].

3.2.5 Results

Team Collaboration Networks

Accuracy of Inferred Relations

We first investigate the accuracy of GPT models and a fuzzy matching approach in re-
trieving the collaboration relations between iGEM teams. Our approach is described in
Methods. We manually curate 200 text chunks from the Collaboration wiki pages across
teams to extract the relationships present in the text. The same text chunks are then passed
through the GPT and fuzzy matching pipelines to retrieve predicted relationships. We com-
pare the performance of the GPT and fuzzy models against manually curated data in Fig.
3.7a. We focus on precision and recall, quantifying respectively the proportion of predicted
relations that are in the manually curated set, and the proportion of manually curated rela-
tions that are retrieved. We find that newer GPT models consistently increase in precision
and recall. Amongst the various models tested, gpt-4 has a higher recall while gpt-3.5-
turbo and gpt-4-1025-preview models have a comparable performance, with the former
being 10x cheaper. The turbo instruct models allow for inbuilt parallel request calls, but
their performance is a detrimental tradeoff for information extraction and curation tasks.
While precision flattens after GPT3.5-Turbo-16k, recall shows a significant improvement
with GPT4, with a recall of 0.91. Interestingly, while fuzzy matching does not yield too
many false positives – it has competing precision with GPT3.5 models–, it does not provide
a good coverage of manual edges, with a recall of 0.69, giving GPT4 a 32% improvement
over the fuzzy approach.

Inference of the Collaboration Context

Beyond edge retrieval, we evaluate the ability of the GPT models to infer the collabo-
ration context from the surrounding text. In the following we focus on gpt-3.5-turbo16k as
it has the higher performance-to-cost ratio. This harder problem, that the fuzzy approach
does not tackle, is evaluated by comparing the results to manual labeling. We show in Fig.
3.7b the comparison between the categories inferred with gpt-3.5-turbo-16k and the manu-
ally labeled ones. We find an overall accuracy of 0.26 – i.e. the predicted category matches
the manually labeled category 26% of the time. However, there is variation across cate-
gories. ‘Meetups’ are identified with a high accuracy of 0.65, while categories ‘Advice’ and
‘Material transfer’ have accuracies of 0.46 and 0.45 respectively, and are sometimes confused
with one another. On the other end of the spectrum, most of the relationships identified as
a ‘Work’ relationship by GPT are manually labeled as ‘Other’, leading to a poor accuracy
of 0.16 for this category. This may be due to a lot of non-work relationships still using
phrases like ‘we worked with’, ‘we collaborated with’ in their descriptions. Overall, these
results show that while there is some degree of confidence in extracting categories from
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Figure 3.7: Reconstruction of inter-team collaboration networks (a) Precision and recall of
GPT models and fuzzy matching approach against manually curated chunks. (b) Confu-
sion matrix showing the accuracy of category prediction for relationship contexts. The
color coding indicates row-standardized Z scores values. (c) Receiver Operating Curves
(ROC curves) for weighted interactions from 2015. Dashed line indicates a line of slope 1
and intercept 0. (d) Comparison between network assortativity values for reconstructed
and manually obtained 2015 inter-team network. (e) Correlations of network properties
between the 2015 reconstructed and manual network. In all plots, the error bars are com-
puted using the jackknife method

context, there is a strong variation between categories, with some being very accurate and
others very hard to predict. We note that this exercise depends on the taxonomy chosen
for the categorization, and the poor results in some categories might as well be seen as a
poor definition of the category itself. Supplementary Fig. 3.7 shows the confusion matrix
between categories for the other GPT models, indicating a similar pattern with the other
models.

Accuracy of the Reconstructed Network

While previous measures focus on the ability to infer an edge and its context, here
we investigate the ability of GPT models to infer accurate network properties in the re-
constructed network. To do so, we evaluate the gpt-3.5-turbo model and fuzzy approach
against a manually curated network of the significant inter-team collaborations in 2015,
extracted by the 2016 Waterloo iGEM team (see Supplementary Information). This curated
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network does not comprise all team mentions that can be retrieved from the pages, but
only the ones deemed significant by the curators. For both inference methods, the edges
are weighted by the number of unique text chunks where the corresponding collaboration
is reported. These weights can then be used to predict the occurrence of a significant edge
in the manually curated network. We show the resulting ROC curve in Fig. 3.7c, along with
corresponding Areas under the ROC curve (AUCs). We find that GPT outperforms fuzzy
matching with an AUC of 0.944 (edge recall of 0.90) compared to 0.906 (recall of 0.83) for
the fuzzy method. Finally, we investigate the extent to which the reconstructed networks,
though still somehow noisy at the edge level, recover some key network properties of the
manually reconstructed network. We show in Fig. 3.7d that GPT3.5 consistently improves
over fuzzy matching to recover assortativities of the team attributes. We finally investigate
if GPT can recover the relative importance of nodes in the network. For this we use Spear-
man correlation as a measure of the similarity of ranks under various network centrality
measures between the inferred networks and the manually curated one. We find larger
Spearman correlations across several local (clustering) and global (betweenness, closeness,
and coreness) centrality measures for GPT compared to fuzzy matching, showing the abil-
ity of the former to build a more accurate overall representation of the network. We note
poor results for clustering, which might be due to curation decisions – e.g. meetups be-
tween several teams can create large cliques that might not be considered significant by
the Waterloo team.

Team Contribution Structure

Accuracy of Inferred Relations

In this second part, we focus on the question of identifying the tasks that teammembers
have done in their project from the attribution page. Identifying the contribution structure
of a team is a more complex task as only the name of the member is encoded in the text,
while the category of the relationship they were involved in is inferred from the description
of their activities. We first compare the precision and recall scores for the task categories
retrieved using GPT models against the manually curated teams. Figure 3.8a shows a sig-
nificant performance improvement in using the newer gpt-4-turbo class of models, with
an edge-level recall across the manually labeled teams of 0.79, and a precision of 0.62. The
lower precision means that descriptive task contexts are often matched to both the manu-
ally assigned category (high recall), but also to other categories, decreasing the precision.

Task Level Accuracy

To investigate this mismatch, we compare the manual and GPT matching of the de-
scription of the individual members’ task attributions to the defined task categories. Figure
3.8b shows the confusion matrix between the predicted and manual labels. Overall, we find
an accuracy of 0.66, with variation between categories (see Supplementary Fig. 3.12 for
precision and recall values across categories). We observe higher accuracy for categories
with specific descriptions - such as being involved in interlab (accuracy=0.92), performing
human practices (0.80) or modeling work (0.79). However, categories with high similar-
ities in their descriptions are either misidentified, or identified to all similar alternatives,
especially amongst experiments, performing analyses, design or between supervision and
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Figure 3.8: Reconstruction of team contribution structure (a) Precision and recall of GPT
models against manually curated contribution networks. (b) Confusion matrix of inferred
category labels

training. The clustering of categories based on the similarity of their labeling profile in
the confusion matrix (Supplementary Fig. 3.2.7) identifies groups of strongly interrelated
tasks (e.g. supervision and training), corresponding to similar tasks when working within
an iGEM team. Information from these clusters could be used to increase the specificity
of each subcategory description and reduce their similarity, or merge similar categories to
improve the overall accuracy.

Accuracy of Inferred Network Properties

Finally, we go beyond the edge level to investigate the ability of GPT to reproduce key
properties of the team bipartite networks. First, we show in Figure 3.9a the degree distri-
butions for each layer in the inferred and manual networks. We find similar distributions,
with large Pearson correlations between (the log10 of the) degrees of r=0.76 (p<2e-16) for
users and r=0.85 (p<2e-16) for tasks. In addition to degree distributions, bipartite networks
are often characterized by a correlation between the degrees of the layers, leading to nested
structures that can be quantified with the NODFc value [Mariani et al., 2019]. We show in
Fig. 3.9b the predicted and observed values of nestedness, with a high Pearson correlation
of r=0.66 (p=1e-4). We find the presence of an outlier team with a high manually curated
NODFc and a low predicted one. Under inspection it is due to the specificity format of the
team page, involving images of team members rather than their name. Such outlier events
can be taken care of using preprocessing of high-confidence pages that can offer a good
inference, for example by evaluating the proportion of names of team members present in
the page.
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Figure 3.9: Recovering bipartite network properties. (a) Cumulative degree distributions
for the task categories and team members layers of the bipartite network, comparing man-
ually curated networks (grey) with gpt-4 inferred networks (green). (b) Nestedness values,
computed using NODFc [Song et al., 2017], are shown between the predicted and manual
networks. Dashed line indicates a line of slope 1 and intercept 0

3.2.6 Discussion

This study aimed at showcasing the use of GPT models to infer team collaboration net-
works from text, providing a quantified account of what had been scoped in previous work
[Karjus, 2023]. Overall, we found that the use of GPT models has clear benefits for extract-
ing such information at scale. In extracting direct relationships between teams encoded
within the text, it performs significantly better than a fuzzy approach, and can recover key
aspects of the network structure. For example, fuzzy matching fails in cases where teams
mention the names of members using their first name or nicknames, or in cases where
they describe teams by the names of the universities they are based in rather than their
team name. Similarly, the partial substring matching of the fuzzy approach has difficulty
disambiguating team names with similar acronyms, such as UCL and UCLA. GPT models
overcome these challenges through their larger inbuilt contexts which allows better dis-
ambiguation. Extracting the contexts of the relationships is another advantage that GPT
models have over fuzzy matching methods, which would require additional language pro-
cessing methods such as topic modeling to extend to other similar settings.

The similar performance between gpt-3.5-turbo and the more expensive gpt-4 class of
models, unlike the lower performance observed in the second, more complex task, sug-
gests a higher feasibility in reconstructing these direct relationships with simple few shot
prompts and minimal post-processing. We also note that further pre-processing of the
dataset aiming to provide higher quality text through filtering out pages with low abun-
dance of certain words (such as team names or team member names), would probably in-
crease the overall precision and recall, while decreasing the amount of data that can be
treated with the method.
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Matching the contexts of the relationships to a list of categories has certain caveats.
With the pipeline first extracting the relationship contexts and then performing the match-
ing, some information beyond the sentence describing the relationship is lost. Attempting
to perform both the extraction and the matching in a single step preserves most contex-
tual information from the text, but performs poorly in precision and recall, especially when
tested with the cheaper gpt-3.5 class of models. This could potentially be caused by an in-
dividual request now performing a more complex task, which current advances in model
complexity might resolve.

Evaluating the performance of reconstructing the indirect relationships of the intrateam
contribution structure shows promising initial results, with drastic improvements observed
with newer GPT models. This might reflect the task complexity that heavily relies on
context-awareness for the task allocation to team members. The similarity between the
properties of the manual and inferred networks – degree distributions and nestedness val-
ues – indicates that the inferred networks can be leveraged for future studies comparing
their structure across the large number of teams of the iGEM competition.

We also note that the process of manual curation is itself prone to inter-individual vari-
ation. Decisions on assigning a description to a specific category relies on personal judg-
ment, and quantifying this variation would require a more extensive investigation using
platforms like Mechanical Turk. As such, it is yet not clear whether GPT models already
outperforms human annotators or not in the context of this study. The high recall rates
and comparatively low precision have been interpreted as a larger richness of GPT models
[Karjus, 2023], capturing more peripheral relations than immediately catches the eye. Fu-
ture work could investigate whether this richness helps capture more subtle phenomena
that can be useful in downstream analyses.

Finally, the ability to extract and label relationships from text in bulk saves on human
effort, but does not eliminate it. There are several drawbacks in using proprietary LLMs -
including but not limited to reproducibility, sensitivity to temperature, prompt adjustment
and model updates. This creates the necessity to carefully evaluate model performance,
ideally with high quality manually annotated data [Ollion et al., 2023, 2024]( Reiss 2023). An
additional concern is working with surveys and other confidential data sources. A potential
workaround is by leveraging open source LLMs for network reconstruction. Open source
LLMs have shown to outperform crowd workers, but lag behind the GPT models in text
annotation (Alizadeh et al. 2023). However, this gap can potentially be reduced by fine-
tuning open source LLMs with contextual data to improve on performance. The approach
requires further human work in curating a training set, but allows customizability and
executing requests in-house. This is a potential extension of the study.
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3.2.7 Conclusion

We assessed the performance of using OpenAI’s GPT family of models in curating and
annotating team collaboration networks from unstructured text. We leveraged digital labo-
ratory notebooks from scientific teams participating in the iGEM competition to infer inter-
team collaborations and the team contribution structure from heterogeneous self-reported
data. We show that despite wide differences in page structures, the networks can be ex-
tracted with Large Language Models by using prompts that include minimally supervised
team-specific information (list of users, team names, and types of contributions), resulting
in structured graph data showing precision in par with manually curated data. We find that
recall rates consistently increase with each newmodel, indicating that future improvements
are expected with upcoming releases. We also showcase that LLMs can partially retrieve
contextual information to infer edge types, with future improvements possible with new
models and improved prompt design and category definition. This work has implications
for the study of division of labor in scientific teams that often relies on CREDIT contribution
reports [Xu et al., 2022], providing both a Method and a fine-grained dataset [Blondel et al.,
2024] for studying fine-grained task allocation structure. More generally, this study sug-
gests that LLMs can be a useful, scalable and efficient approach to network reconstruction
for assisting manual curation work in computational social science and digital humanities.
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Supplementary Information

Inter-Team Collaboration Networks

Text Processing

To reconstruct the inter-team collaboration network in a given year, we need to extract
mentions to iGEM teams from each team wiki. Since most content of the wiki pages is not
related to reporting collaborations between teams, we do an initial filter to remove pages
that do not contain potential collaborations to reduce the number of API requests. We first
keep the pages that contain the name of at least one other iGEM team participating that
year. The lookup for other team names is performed by fuzzy matching using the fuzzy-
wuzzy library in python. We used the partial_ratio function for substring matching, setting
the Levenshtein distance cutoff at 0.9. If a page contains formatting elements like in CSS or
Javascript, we remove it. This second step aims to remove pages whose contents are purely
stylistic. This reduces the number of pages from 106,207 to 20,459.

In order to ensure that each request to the GPT model is a small modular task and to
effect parallel execution, the text from these pages is split into overlapping chunks. Each
chunk is of size 500 tokens with an overlap of 30 tokens with the previous chunk. A to-
ken is the unit of text clustering in GPT models and is approximately 4 characters long
(https://platform.openai.com). This gives a total of 103,766 chunks, split into batches of 100
chunks each.

Curation with GPT

The entire process is split into an extraction and two matching steps as shown in Figure
3.6 of the main text.

Extraction The first step aims to extract teams from a chunk along with the context of
their interactionwith the team fromwhich the chunk originates. In order to ensure a higher
recall, the prompt instructs the GPT model to extract relationships between entities along
with their context, where an entity is loosely defined to be a team, a university, a lab or
similar. Teams that are matched to “Other” are eventually filtered out in post processing.
Each request includes the prompt and the text from the corresponding chunk. The output is
a table with the names of the source and target teams, and the context of their collaboration.

The prompt for the first extraction step is few-shot, providing contextual examples. The
relationships are instructed to be output as a list of lists. Here is the prompt used:

“Extrapolate as many relationships between teams as possible from the text
and provide a list of relationships. Teams may be affiliated with universities,
labs or colleges. If a relationship is found, provide ["TEAM 1", "LABEL", "TEAM
2"]. "TEAM 1" is the team who wrote the text. "LABEL" is a description of the
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relationship. "TEAM 2" is a team that has a relationship with TEAM 1.

example: We are team Greendale. We collaborated with team City College
on our project this year and mentored iGEM Harmon College. relationships:
[["Greendale", "collaborated", "City College"],["Greendale","mentored","Harmon
College"]]

example: We are team Mideastern. We received financial and material sup-
port from Addgene, and plasmids were generously gifted to us by the Baker
lab at Southwestern University. We co-organized a meetup with Branch West-
ern. We also participated in a survey run by Barkley. relationships: [["Mideast-
ern","support from","Addgene"], ["SouthwesternUniversity" ,"gifted","Mideastern"],
["Mideastern","co-organizedmeetup","BranchWestern"],["Mideastern","participated
in survey","Barkley"]]

If there are no relationships in the text, provide [ ].”

Matching The matching is performed in two steps. In the first matching step, the names
of the source and target teams are matched to the actual team names from iGEM. Team
names may vary by year, so the matching is done separately for each year. Each request
includes the prompt, the list of all teams participating in iGEM that year and the list of
names extracted in the previous step. Team names that don’t have a close match are in-
structed to be matched to “other”. We employ GPT for the matching task over conventional
approaches like fuzzy matching to overcome several instances where the latter could fail.
For example, a lot of teams report a collaboration by describing the name of the university
the target team is based in, instead of the teams’ iGEM identifier - like “Armed Forces Med-
ical College” instead of “AFCM-Egypt” and “Chung Cheng University” for “CCU-Taiwan”.
Matching using GPT handles these cases better and reduces the chances of teams with sim-
ilar names being matched with each other - like “UCL” to “UCLA”. After matching all the
names to their actual identifier, relationships where teams are matched to “other” are re-
moved.

The prompt for matching the team names is one-shot and provides an example and pre-
scribes the output to be a list of lists.

"Given a new list of names - find the closest match of each element in the new
list with the first list. Some names could be matched with abbreviations or
expansions - so please select the closest possible match. If there is no possible
goodmatch - please mention ’other’. Provide the output as a list of lists: [["team
name from the new list", "best matching from the first list"]]

example: list of teams: ‘Gifu’, ‘CCU_Taiwan’, ‘Peking_China’ list of names:
‘Team Gifu’, ‘Chung Cheng University’, ‘pectinase’ matches: [["Team Gifu",
"Gifu"],["Chung Cheng University", CCU_Taiwan"],["pectinase", "other"]]

Here is the new list of names: "
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Team names which exactly match the corresponding teams’ identifier are excluded to
reduce the number of requests. Since we use a comma to separate each name in the in-
put list, each comma contained within an input team name is replaced with a single space.
Team identifiers do not contain a comma by default.

In the second matching step, we use GPT to match the context of the filtered relation-
ships to a general collaboration category. Collaboration relationships between teams in
iGEM are usually a result of both teams working together, helping each others’ project,
providing/sharing resources or meeting and discussing in a social setting. Parsing several
descriptions of collaboration activities on teams’ wikis, we define a list of five categories:
“Work”, “Material Transfer”, “Meetup”, “Advice” or “Other” that encompass these relation-
ships.

The prompt is few-shot, with its overall structure similar to the previous matching step.
We also include short descriptions of each category we want the relationship to be matched
with. Here is the prompt used:

“Match each relationship name to the closest possible category listed below:

Provide each matching as [[RELATIONSHIP, MATCHING CATEGORY]]

The possible categories are:

"work": Teams worked together or collaborated on aspects of their projects
"material transfer": One team shared information, data, synthetic biology parts
or laboratory materials with the other. "advice": One team gave advice or
support to the other team concerning their project or about the competition.
"meetup": Teamsmet each other at a meetup or in a social setting and discussed
their project. "other": Contexts not fitting to the categories listed above.

example: "provided substrates to, participated in synthetic biology day with,
did pcr amplification for" Matching: [["provided substrates to", "material trans-
fer"], ["participated in synthetic biology day with","meetup"], ["did pcr amplifi-
cation for","work"]]

example: "provided thoughts and suggestions to"Matching: [["provided thoughts
and suggestions to","advice"]]

The following are the list of relationships to match: ”

Similarly to the previous matching step, commas within the context description are re-
placed with spaces. The final curated relationships are weighted based on the number of
unique chunks where a source-target pair is reported.

Evaluation
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Extraction with Fuzzy Matching We compare the relationships curated using the GPT
pipeline against the simpler fuzzy matching method. This method reports relationships be-
tween teams that are present in the text, but not their context. We use the same text chunks
from the selected pages, split into sentences. In each sentence, we search for the mention of
another iGEM team participating in the same year. Fuzzy matching is implemented using
the fuzzywuzzy library in python. We used the partial_ratio function for substring match-
ing, setting the Levenshtein distance cutoff at 0.9. For edge cases where the sentence is
smaller than the length of the team name we are comparing with, we use a regular fuzzy
matching with a cutoff of 0.7. This is because the partial ratio generates false positives in
these edge cases by matching teams to common title substrings, like the postfix Software
matching to all Software track teams (USTC-Software, Michigan_Software, XMU_Software
etc.). Each relationship is weighted by the number of unique text chunks where the same
pair of teams are observed.

Manual Curation of Text Chunks In order to evaluate the edge-level retrieval perfor-
mance of the GPTmodels and fuzzy approach, we construct a random sample of 200 chunks
containing text from the “Collaboration” wiki pages of teams, where the inter-team rela-
tionships are usually reported. These chunks were manually annotated by the authors to
identify the source, target teams along with the context of collaboration. This context is
then manually matched to one of the categories defined earlier - “Work”, “Material Trans-
fer”, “Advice”, “Meetup” or “Other”.

Manual curation of the 2015 inter-team collaboration network In 2016, the iGEM
team Waterloo 1 curated a database of team collaborations in 2015 as a part of their iGEM
project. This database was constructed using the content of the 2015 iGEM wiki pages
to manually select the significant collaborations between participating teams. To iden-
tify whether a collaboration is significant, the Waterloo team evaluated if the relation-
ship helped advance each team’s project. This database thus contains a subset of high-
confidence inter-team collaborations in 2015, serving as a benchmark to evaluate the qual-
ity of the GPT extraction pipeline.

Network Construction

Once all the relationships between teams are curated, we construct the inter-team col-
laboration networks for each competition year. Although the relationships mention the
source and target teams, determining the true direction of collaboration requires further
detailed specification in the prompt. For example, “We collaborated with team B. They
have given us several reagents for our experiments” determines a direction of collaboration
flowing from team B, but is often mislabeled by GPT as from team A. We hence construct
the network as undirected. Each edge is weighted by the number of text chunks where
the same pair of teams are reported to have a collaboration relationship. The networks are
constructed using the igraph library in R.

1https://2016.igem.org/Team:Waterloo/Integrated_Practices/Networks

– 121 –

https://2016.igem.org/Team:Waterloo/Integrated_Practices/Networks


Chapter 3

Intra-Team Contribution Structure

Text Processing

In their wiki page, teams report a description of each member of the team and of the
role and tasks they undertook during the course of the competition. Here is an excerpt of a
self reported attribution of a team member - “Leading the project, arranged team meetings,
user interviews and handled internal/external communication and was responsible for up-
dating team website and survey.” The text clearly outlines the specific tasks the person was
responsible for - namely team administration, maintaining the website, communication and
outreach activities. The aim is to reconstruct these member-to-tasks relationships, thus de-
scribing the teams’ contribution structure.

To reduce the number of GPT requests, we filter the dataset to only include wiki pages
that contain contribution statements and team member information. This filter is per-
formed based on the presence of specific keywords in the page title, such as "Attribution",
”Team", "Acknowledgement", "Member", "Contribution", "People" and "About Us". This dic-
tionary was constructed by the authors by parsing through the most frequently repeated
wiki page titles. This amounts to 8,184 pages across 2,173 teams.

Curation with GPT

Extraction The first step is to extract all the raw relationships between team members
and tasks from the text. The prompt specifies instructions to extract names of people and
the descriptions of the tasks they were involved in. This aims to parse the text completely
and curate all possible member-task relations. The filtering out of false positives, such as
people who helped the team, but aren’t in their official roster, or tasks that aren’t specific
for the competition is done in post-processing. The request to GPT includes the prompt
and the entire text content of the wiki page. Text is not chunked into smaller sizes as the
structure of the attribution wiki pages with titles and small paragraphs meant a higher like-
lihood of mislabelling relationships (see Supplementary Figure 3.10). The output is a table
with the name of the individual, the description of the activity and the identifier of the team.

The prompt is few-shot, instructing the output to be a list of lists.

“The following text describes the relationships between people and the activi-
ties they performed as a part of a synthetic biology team.
Extrapolate all these relationships, and if a relationship is found, provide ["MEM-
BER", "ACTIVITY"].
"MEMBER" is the name of the team member. "ACTIVITY" is the activity they
performed as described in the text.
If a member is involved in multiple activities, report each activity as a separate
relationship.
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example: Marcus North - project conceptualization, outreach. relationships:
[["Marcus North", "project conceptualization"],["Marcus North","outreach"]]
example: We are team Mideastern. Our team members Brad Hogg and Sophie
Devine performed wet lab experiments. Andrew Symonds was responsible for
collaborating with other iGEM teams. relationships: [["Brad Hogg","wet lab ex-
periments"],["SophieDevine","wet lab experiments"],["Andrew Symonds","collaborating
with other teams"]
Please make sure there is no additional text in the response other than the
relationships in the prescribed format.
The text: ”

Matching The matching is performed in two steps. First, we match each individual name
extracted in the previous step with the team’s roster from the competition website. All
names are processed to remove accents by translating into their closest ASCII representa-
tion. The prompt instructs the GPTmodel to match all names extracted in the previous step
with the closest match in the team’s corresponding roster list. The names that don’t have
a close match are assigned “other”.

The prompt used is a modified version from the matching team names in the inter-team
relationships.

“List 1 contains the names of members of a team. List 2 contains a list of names
which may or may not be a member of the team. Find the closest match of each
name in list 2 with list 1. If there is no possible good match - please mention
’other’. Provide the output as a list of lists: [["name from the list 2", "closest
match from list 1"]]
example: List 1: "’Andrew Scott’, ’Thomas Alves’, ’Min Jang’" List 2: "’Andrew’,
’Tommy Alves’, ’Charles Jang’, ’Sue Perkins’" matches: [["Andrew", "Andrew
Scott"],["Tommy Alves", Thomas Alves"],["Charles Jang", "Min Jang"], ["Sue
Perkins","other"]]
Please make sure there is no extra text or explanation before or after the for-
matted output. ”

Commas are replaced with spaces in member names.

In the second matching step, the description of each task is matched with a standard-
ized list of activities that teams are expected to undertake in iGEM. This list is inspired
by the CRediT Contributor Roles Taxonomy [Larivière et al., 2020], and constructed to en-
compass all tasks and deliverables that teams work on and are evaluated on in iGEM. The
prompt provides a short description of each category and is few-shots, providing examples
of matches. The set of unique tasks are batched into groups of 10 for each request, so as
to provide each GPT request a small enough matching task. It is specified that some task
descriptions could be matched with multiple categories and that descriptions not related to
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any category should be matched to “other”.

The description for each category is constructed by summarizing the text iGEMprovides
to participating teams on their template wiki pages. The template pages correspond to
the task-related categories described here, and contain a few paragraphs to hint at what
teams’ are expected to document when they perform the said tasks. Descriptions of other
categories like “Supervision”, “Training”, “Material Supply” were defined by the authors
using contextual information from iGEM.

“Each phrase describes activities performed as a part of a team participating in
the synthetic biology iGEM competition.
Given a list of phrases, match each phrase with the categories provided below.
Some phrases can be matched to multiple categories.
Provide the output as a list of lists - [["PHRASE", "MATCHING CATEGORY"]].
The possible categories, along with their description are:
Design: Conceptualising, doing background research and/or designing the teams’
project idea.
Experiments: Performed synthetic biology experiments in the wet laboratory
as a part of the teams’ project.
Documentation: Creating, managing and editing the teams’ wiki website, re-
port writing and scientific documentation
Interlab: Performed the interlab study.
Modeling: Performed mathematical models, computer simulations and/or used
engineering principles to model their project.
Analysis: Performed dry lab work, data curation, data analysis and/or bio in-
formatics as a part of the teams’ project.
Parts: Was responsible for creating, characterizing and documenting basic or
composite synthetic biology parts, also called biobricks.
Safety: Was responsible for addressing safety considerations of the teams’ project.
Entrepreneurship: Was involved with building a business case and/or commer-
cializing the teams’ project.
Hardware: Worked with or built hardware components for their teams’ project.
Software: Created computational tools and/or software as a part of their teams’
project.
Human Practices: Was responsible to understand the ethical, legal, economic
and social considerations of the teams’ project. Sometimes abbreviated as ’HP’.
Public Engagement: Established a public dialogue through outreach, educa-
tional tools and/or social media to discuss their project, science and synthetic
biology with people outside the lab.
Collaboration: Was responsible for collaborating with other teams participat-
ing in the iGEM competition.
Fundraising: Was responsible in fundraising and/or finding sponsors for the
teams’ project.
Creative Contributions: Making presentations, designing team logos and suits,
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creating art pieces, and producing promotional materials.
Administration: Was responsible for management, organization and coordinat-
ing the laboratory and/or activities of the teams’ project.
Material Supply: Providing laboratory space, equipment, supplies and provid-
ing technical materials or reagents.
Supervision: Provided advice, feedback, support, guidance, assistance or help
in various aspects of a teams’ project by being a Principal Investigator (PI), ad-
visor or instructor.
Training: Conducting educationalworkshops, courses and/or teaching lab tech-
niques.
Other: For descriptions that are not matched to any of the categories above.

example: ’"project conceptualization and working in the wetlab", "outreach"’
Matching: [["project conceptualization and working in the wetlab", "Design"],
["project conceptualization and working in the wetlab", "Experiments"], ["out-
reach","Public Outreach"]]
example: ’"flux balance analysis", "Advisor formodeling tasks"’Matching: [["flux
balance analysis","Experiments"],["Advisor for modeling tasks","Supervision"],
["Advisor for modeling tasks","Modeling"]]
example: ’"assisted the team on many technical concepts", "made drawn im-
ages on the wiki", "absolutely love food and sleep"’ Matching: [["assisted the
team on many technical concepts", "Supervision"],["made drawn images on the
wiki", "Documentation"], ["made drawn images on the wiki", "Creative Contri-
butions"],["absolutely love food and sleep", "other"]]
The following are the list of phrases: ”

Evaluation

Manual Curation of Text Chunks To evaluate the accuracy of the intra-team rela-
tionships curated using GPT, we construct a sample of teams whose member contribution
relationships were curated manually. We select 10 teams randomly from each year between
2015 and 2018, as the attribution pages were made compulsory on the wiki only since 2015.
Some teams from this sample do not describe their member attributions on their wiki and
are excluded. This leaves a total of 26 teams across 4 years. The manual curation process
mirrors the same steps as with GPT, wherein the description of each task is extracted as
defined in the wiki text and then matched with the list of categories.

Network Construction

We construct for each team a bipartite network of team members to tasks representing
the team contribution structure. Team members consist of all those present in the team’s
official roster, and the tasks consist in the category list from above. The bipartite networks
are constructed using the igraph library in R.
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GPT Model Parameters

Inter-Team Collaboration Networks We tested the pipeline for extraction of the col-
laboration networks with both the “completions” and “chatCompletion” endpoints from the
OpenAI API. The “completions” endpoint works with the older generation of GPT models,
currently grouped under the umbrella of GPT-3.5-turbo-instruct (completions-api). This
endpoint allows for a maximum of 20 parallel requests processed per call, not exceeding to-
ken rate limits. This inbuilt parallelisation greatly optimizes runtime, albeit at the expense
of poorer results. The newer GPT models, under the umbrella of GPT-3.5-turbo, GPT-4 and
GPT-4-preview work with the “chatCompletion” endpoint. They follow a similar structure
to using chatGPT, where each request allows the user to set a system state, and alternate
between user and model responses. This however does not allow inbuilt batch processing.
To improve on processing time, we use the multiprocessing library in python to create a
pool of workers to execute calls in parallel.

The model request allows to tune several parameters based on the type of task. A key
parameter is the temperature, which determines how deterministic or random/creative the
model output is. The temperature value ranges between 0 and 2, with a lower score indicat-
ing a more deterministic response. Lower temperatures have been used in annotation tasks
previously, showing higher performance, with a temperature of 0 in extracting and anno-
tating data from medical documents [Goel et al., 2023] and 0.2 in annotating Twitter posts
[Törnberg, 2023]. We observe a slightly better performance with a temperature of 0.3 for
both extraction and matching tasks. This could be attributed to the heterogeneity amongst
the text chunks in describing relationships. However, we acknowledge the caveat that the
best temperature value could change with upgrades to and across various GPT models.

Other parameters likemax_tokens allow setting a limit to the size of themodel response.
This is particularly useful in cases where the model generates a false output of maximum
length permissible, increasing the running cost. This is more prevalent with the older 3.5-
turbo-instruct models. In our case, we set a limit of 1,000 tokens to the output size per
request. The chatCompletion endpoint now allows for a JSON response mode - where all
output is formatted in JSON. This however still requires explicit specification in the prompt
that the output be in JSON along with providing the schema. In our case, we instruct each
prompt to output responses as a list of lists. This works well with both the endpoints, while
requiring slightly fewer tokens in both the input and the output. The accuracy of the output
being an actual list of lists varies based on the model. For example, in some cases the out-
put provides [[“teamA”, “teamB”]] [[“teamA”, “teamC”]] or [“teamA”, “teamB”] [“teamA”,
“teamC”] instead of a proper list of lists [[“teamA”, “teamB”], [“teamA”, “teamC”]]. Also,
in spite of explicitly instructing in the prompt to furnish the output with no additional
text - the model response often includes filler sentences such as “Here are the relationships
found in the text:”. To extract the relevant information from the model output, we use a
python regular expression to identify the structure of a list, namely starting and ending
with square braces with two elements enclosed within quotation marks and separated by
a comma. This solely extracts each ‘list’ irrespective of potential errors in the output format.
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For the twomatching steps, the output is formatted as a list of lists, similar to the extrac-
tion step. The temperature is again set at 0.3. We split the matching tasks into batches of
10 - to enable a small modular task for the model to complete. In matching the team names,
the prompt already includes the list of all teams participating that year - which averages
around 300 for the more recent years. We realized that providing a larger second list of raw
team names decreases the accuracy of the matching output while matching each raw name
as a separate request is expensive in terms of time and cost. The reasoning is similar for
matching each context with the predefined categories.

Sometimes, either with the multiprocessing approach or with runtime errors on the API
side, text chunks or matching requests may not be evaluated. These exceptions are caught
and retried.

The API requests using the Completions endpoint were executed between December
2023 and January 2024. The requests using the chatCompletions endpoint and the newer
GPT models were executed between March and April 2024.

TeamContribution Structure With the older GPT-3.5-turbo-instructmodels being archived
earlier this year, we observed a drop in performance in running API requests. Hence, we
extract the contribution structure with the models accessible through the chatComplete
endpoint. The calls are executed in parallel using the multiprocessing library in python.
These API calls were executed between March and April 2024.

The temperature for extraction is set at 0.3 and the output similarly specified to be a
list of lists. For matching the members names to the teams’ roster, each request handles
all raw names extracted from the wiki of that team. For matching the task description to
the categories, they are grouped into batches of 10, which are then processed in separate
requests.

Figures
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a b

Figure 3.10: a-b. Examples of team wiki pages for collaboration and attribution. b. We
showcase an example of why chunking attribution pages can result in misleading networks.
The chunk highlighted in green presents a case where the inference works properly, while
in the red chunk, the GPTmodel assigns the text included in the overlap to the next member
name.

Pr
ed

ict
ed

Manual

Figure 3.11: Confusion matrices like in Fig 3.7b, for the different models of Fig 3.7a.
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RecallPrecision

gpt-3.5-turbo-16k

gpt-4-0125-preview

gpt-4-turbo

Figure 3.12: Precision and recall values, as in Fig 3.8a, but for each category of Fig 3.8b.
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Team-level recall

Figure 3.13: Recall values, as in Fig 3.8a, for each team.
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Figure 3.14: Cluster dendrogram for the confusion matrix of Fig 3.8b.
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3.3 Perspectives

This chapter presents the iGEM synthetic biology competition as a testbed to study col-
laboration dynamics of teams in open science and innovation. I specifically focus on re-
constructing collaboration networks from both qualitative (digital traces) and quantitative
(self-reported text) data sources, addressing the challenge of a lack of fine-grained data to
study team collaboration structures.

Recent advancements in natural language processing, especially Large Language Mod-
els (LLMs) enables building data pipelines to rapidly process and curate key information
from unstructured text. We usedmodels fromOpenAI (GPT-3.5-Turbo, GPT4o) in this chap-
ter, however, they are still proprietary. The relative ease in constructing the pipeline and
high quality of the output is balanced by little knowledge about the inner workings of the
model and the considerably high costs to process requests (about 1200 USD to curate inter-
and intra- team collaborations in iGEM, with the total size of requests sent in order of <
1GB). In addition, working with sensitive data makes it a challenge to use these models
across different case settings. Using open source models is an alternative, but they require
additional effort (technical and computational resources) in fine-tuning them to function
on par with the proprietary state of the art models.

The method to curate collaborations from unstructured text has potential use cases to
study teams in science and innovation. The use of the CREDIT taxonomy to homogenise
attribution statements in publications is a recent advancement. There is a wealth of old(er)
articles whose attributions follow an unstructured format - which can be captured using
LLMs. Furthermore, collaborations between fields in science are identified through cita-
tions. The contexts of each citation in a research article - such as whether the citation
reinforces (or disputes) existing knowledge, whether they reuse methodology or whether
they link knowledge across fields - can be reasonably identified using LLMs. This adds to
the granularity in studying collaborations and knowledge integration in science.

In the next chapter, I use the networks curated from both the attribution statements and
the co-edit of the team wikis to study organisation structures at the team level and within
the task level.
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4.1 Introduction

Modern scientific and innovation challenges are inherently complex, requiring not only
specialized knowledge but also the integration of diverse perspectives and expertise across
disciplines. As the scale and scope of scientific problems have expanded, single-authored
publications have become insufficient to address these challenges, prompting a shift to-
wards more interdisciplinary, team-based research models [Wuchty et al., 2007]. The rise
of collaborative research signals a fundamental transformation in how scientific knowledge
is created, shared, and applied, as scientific progress becomes more reliant on collective
efforts. This shift highlights the need for coordinated efforts and expertise-sharing, and
it has introduced new opportunities for tackling increasingly complex questions. Impor-
tantly, this transition has not reduced research impact, signaling a transformation in how
scientific knowledge is produced and disseminated [Hagstrom, 1964, Larivière et al., 2015].

At the same time, this evolving landscape of knowledge production has led to the devel-
opment of new organizational frameworks that support innovation. Examples from differ-
ent domains, such as the open-source software movement and citizen science, demonstrate
how collective efforts can successfully produce high-quality outputs. Open-source projects,
in particular, have proven that large, distributed teams can generate complex, reliable soft-
ware through collective collaboration. Similarly, project-based and citizen science initia-
tives have been instrumental in addressing global challenges such as those outlined by the
United Nations’ Sustainable Development Goals [Franzoni and Sauermann, 2014, Masselot
et al., 2023, 2022].

However, managing such complexity presents its own set of challenges. Effective team
functioning relies on howwell tasks are divided amongmembers, how thesemembers work
together to accomplish each task and how seamlessly different member groups coordinate
to integrate their respective outputs. Complex tasks are often composed of interconnected
sub-tasks, requiring the formation of specialized sub-groups. While these sub-groups can
improve efficiency and focus, they introduce the challenge of information integration, as
members must align their contributions to produce a unified output. This balance between
specialization and integration is critical, as it affects both team dynamics and the overall
performance of knowledge production efforts [Lawrence and Lorsch, 1967].

Scientists have examined team specialization and integration through the framework of
task allocation structures, that represents which members are responsible for specific tasks.
In bibliometric studies, contribution statements from publications are used to identify the
roles of authors, typically utilizing standardized attribution taxonomies like CREDIT [Lar-
ivière et al., 2020, Haeussler and Sauermann, 2020]. Similarly, digital traces documenting
individual contributions are analyzed to understand the contribution structures of open
source software projects [Klug and Bagrow, 2016]. Alternatively, this structure in teams
has also been recovered qualitatively, through surveys [Walsh and Lee, 2015, Masselot et al.,
2023].
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The contribution structures represent the division of labour of how tasks are distributed
across team members. They inform on how specialist members are grouped and assigned
to core tasks while generalists integrate across these task groups. However, beyond the
static attributions, they do not reflect how coordination occurs within each task. The coor-
dination structure for each task differs based on the technical and social costs required to
accomplish it. Brainstorming in teams integrates several social, compositional and cogni-
tive factors [Paulus and Kenworthy, 2019] and often requires specialised practices to cap-
ture its conceptual and iterative nature. Experimental tasks however are often performed
methodologically, with member roles and its interdependencies defined in advance. How-
ever, identifying these interdependencies requires in-depth knowledge on a case by case
basis. Writing, in an interesting case-study of coordination and integration in performing
a key task in contemporary science. Latour [Latour et al.] emphasises the importance of
Inscription devices in science, which transform observable phenomena in analysable and
communicable knowledge. Writing a manuscript requires integrating contributions across
team members and coordinating with the designated authors in accomplishing the con-
struction of a coherent text. Although attribution statements only capture the members
who undertook this responsibility, modern collaborative writing tools can shed light on
the dynamic structures of coordination [Erkens et al., 2005, Sardo et al., 2023].

Bipartite networks are used to represent the the contribution and coordination struc-
tures in a team. The networks are constructed with two categories of vertices - team mem-
bers and the tasks they work on, with no edges between vertices of the same type. This
approach enables the analysis of structural properties at the individual, group and team
levels. Simple measures, such as the degree, task spread of a user indicates the level of
individual specialisation while correlations between user-task incidences reveal the inter-
dependencies of user activities within the task structure at the pairwise level [Haeussler
and Sauermann, 2020]. However, these measures fail to capture mesoscale structures -
such as sub-groups or modules and the interconnections between them. To identify these
mesoscale structures - bipartite networks are projected onto their user or task categories,
where users are connected by an edge if theywork on the same task. These projections have
been used to identify user and task modules [Xu et al., 2022], but they are highly sensitive
to the projection method used [Coscia and Rossi, 2019] and often require edge filtering in
dense networks. Projecting the bipartite division of labour networks on the tasks, where
tasks are linked if they are acted upon by a common user, gives the overall structure of task
interdependencies and complexity.

Exploring the internal division of labor and task complexity structures are essential to
understand how teams coordinate to produce high-quality output. There is growing evi-
dence that these structures influence team performance, with flatter team organisation of-
ten producing more innovative results [Xu et al., 2022], while smaller, more effective work
groups have been linked to higher efficiency in task completion [Klug and Bagrow, 2016].
An important question remains: how do these structures evolve over time, particularly as
teams gain experience and adjust their organizational patterns. While organizations and
teams learn by producing, retaining, and transferring knowledge [Argote, 2013], there is
a notable gap in the literature concerning longitudinal studies that track the evolution of
task and division of labor structures in teams.
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In this working paper, we leverage a longitudinal, large-scale dataset of synthetic biol-
ogy teams participating in the iGEM competition to address these gaps by 1) developing
granular, network-based indicators for division of labor structures in teams, 2) exploring
the relationship between division of labour at the global and task levels with team perfor-
mance, and 3) assessing how these organizational structures evolve with experience.

The paper is organised into 4 further sections. In the Background section, We describe
the motivations for using new measures of division of labour, strongly influenced from
bipartite network literature. We also substantiate the key hypothesis we test with its mo-
tivations. In the Methods section, we expand more on the dataset and tools used for its
processing and analysis. We present the Results and provide a Discussion of the findings.

4.2 Background

4.2.1 Division of Labour in Teams

Mintzberg [noa, a] defines the structure of an organisation to be the ways in which they di-
vide labour into tasks and how they achieve coordination amongst these tasks. In scientific
teams, the internal division of labour describes how different tasks that are expected to be
performed are allocated amongst the team members. The CREDIT taxonomy is a widely
used for describing task classes in scientific research [noa, b]. These categories range from
conceptual tasks (like ideation, study design), empirical tasks (analysis, data curation) to
other allied tasks like administration and supervision [Haeussler and Sauermann, 2020,
Larivière et al., 2020]. This taxonomy helps clarify the distinct yet interdependent roles
that contributors play in producing a peer-reviewed scientific publication.

Contribution statements highlight how these key tasks, which are essential for realizing
an academic manuscript, are distributed amongst the authors. This division of labor natu-
rally varies across fields, publications and teams. Last authors (who in most cases are senior
amongst the list of authors) are responsible for supervision and administrative tasks, while
being involved in different aspects of the study in a general capacity. Smaller teams have
multiple members designing the methodology, performing the investigation, analysing and
presenting the results. Larger teams however, have a core set of authors performing con-
ceptual tasks, but have subgroups focusing on design and investigation while others per-
forming analysis and building software tools. This division of labour relies on specialists
(or technicians) performing niche tasks, while generalists supervise and coordinate across
different activities. [Larivière et al., 2020, Xu et al., 2022, De Solla Price and Beaver, 1966].
In parallel, open source software projects also have a similar organisation. There is often
a rapid turnover in the contributors for an Open Source Software (OSS) project, although,
a core set of contributors offer overall support while the project is split into overlapping
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sub-groups led by specialists [Klug and Bagrow, 2016, Palazzi et al., 2019a].

This balance between specialisation and coordination is a key challenge in efficient di-
vision of labour in teams. Specialisation increases the the technical propensity of members
accomplishing tasks, but also increases the costs for coordination - especially when the
tasks are strongly interdependent. These coordination costs are reduced by generalists,
but they have the complex challenge of integrating information at the task level and co-
ordinating across team levels. Teams seek this balance to maximise their productivity and
performance payoffs [Kretschmer and Puranam, 2008].

4.2.2 Measuring Division of Labour

Bipartite networks have been used to model division of labour interactions in teams and
organisations. Contribution statements from bibliometric data are represented as a bipar-
tite network with edges between authors and tasks. Bipartite networks are a regular fixture
in ecological studies to represent plant-pollinator interactions and other food webs. Here
division of labour, more specifically, the allocation of mutualistic or antagonistic relation-
ships, speaks to the global stability of the natural system [Pasquaretta and Jeanson, 2018].
Contributions to open source software projects and answering on forums are also modelled
as bipartite interactions between contributor-code and user-post respectively [Palazzi et al.,
2019a, Poquet et al., 2023]. These networks help identify activity profiles of users and their
relative position within the community as a whole.

Network measures can be used to capture properties of the networks of division of
labour at different scales. At the individual scale, the ratio of generalists versus specialists in
performing different tasks and the propensity in which tasks are performed by a few versus
many users are captured through aggregate degrees [Haeussler and Sauermann, 2020] or
through information theoretic measures inspired by diversity and entropy [Blüthgen et al.,
2006]. Interdependencies (or similarity in activity) between users (and tasks) are measured
through pairwise correlations between rows and columns of the bipartite incidence matri-
ces.

At the network scale, two important properties that provide insights into the organ-
isation of division of labour structures are nestedness and modularity. Nestedness is a
characteristic property of mutualistic ecological networks which highlights a nested organ-
isation between generalists and specialists - wherein specialists significantly overlap their
incidences with vertices of a higher degree, cascading until the generalists of the system.
Nestedness is also a characteristic property of socio-economic networks, such as trade and
inter-organisational communication [Saavedra et al., 2009, Mariani et al., 2019]. The nested
organisation of generalists and specialists in networks of division of labour speak to the
overall structure of coordination. High nestedness suggests an organisation with hierarchy
- represented by the heterogeneity in interactions.
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Modularity in networks measures the propensity of vertices grouped being into clus-
ters (or modules) where intra-modular interactions are more prevalent than inter-modular.
Modularity in networks of division of labour, focuses on identifying sub-groups in a team,
which focus on performing specialised tasks, and how these sub-groups are linked. With a
great focus on specialisation in teams to maximise productivity and output while tackling
complex problems [Becker and Murphy, 1992, Jones, 2009], modularity is an intuitive mea-
sure to quantify specialisation at the network scale.

While nested and modular structures can coexist, they have an antagonistic relation-
ship: higher modularity often reduces nestedness and vice versa [Palazzi et al., 2018, For-
tuna et al., 2010]. Despite the advantages to a modular organisation, nested structures have
been studied in their role towards stability. Online social networks adapt from a more
modular to a more nested organisation over time [Borge-Holthoefer et al., 2017], which is
attributed to a development of consensus of opinion against that of competition over time
- mimicking the stability of mutualistic ecological systems.

However, this interplay between nested andmodular organisation ismediated by changes
at the mesoscale level - by the presence of repetitive motifs and the structure within each
module. This highlights the organisation of members performing the same task, whose
coordination structures differ when compared to the whole team. Open source projects
self-organise into a modular organisation. However, the structure within each module is
nested - indicating compartmentalisation in addition to emerging hierarchies between gen-
eralists and specialists in the team[Palazzi et al., 2019a,b].

Leveragingmeasures of division of labour at the individual (vertex), meso- (intra-modular)
and network scales provide a comprehensive insight into team organisation to tackle com-
plex and interconnected challenges. While aggregate measures at the vertex level like the
degree or pairwise correlations provide proxies for specialisation, they can indicate con-
trasting global structural organisation when computing nestedness or modularity 4.1. This
motivates the need for a set of composite measures to describe division of labour network
structures.

4.2.3 Recovering the Task Structure

While the bipartite networks of task allocation between users highlight the division of
labour in teams, they also provide indicators for the overall task interdependencies and
structure. Melvin Conway [Conway, 1968] hypothesised that the interactions between peo-
ple and sub-groups in a team are constrained by the inter-dependency structure across the
subsystems that these groups work on. The interdependence between tasks can be recov-
ered using the mutual incidence between users and tasks as a proxy. This helps identify
tasks that are statistically more likely to be performed by a common user, highlighting their
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Figure 4.1: Example of two bipartite networks, represented by incidence matrices, where
the aggregate measures (degree correlations between users and tasks) are the same. But
the matrix on the left has intermediate modularity while the matrix on the right has high
modularity.

dependence to each other in addition to helping identify clusters of broad task roles and
hierarchies [Xu et al., 2022].

This interdependence between tasks vary across fields. Taking the CREDIT taxonomy
[noa, b] example, different fields emphasise on specific categories. Software is not always
a significant component of biological research, while mathematical studies rarely focus on
data curation and analysis. These field level differences in the task structure conversely con-
strain the division of labour structures - biological research teams are traditionally smaller
and more specialised while high-energy physics is more interdisciplinary and distributed
amongst large teams [Cetina, 1999]. With the task structure constraining team organisa-
tion and division of labour, identifying these interdependencies offer insights for balancing
collaboration and coordination costs in complex research environments

4.2.4 Team Adaptation and Learning

Organisational learning has been studied extensively in the last decades, specifically look-
ing at how they increase their productivity and output with experience. Teams and organi-
sations learn by creating, retaining and disseminating knowledge [Argote, 2013]. Internally,
this learning is reflected through individual members by them specialising in performing
different tasks, and through routines embedded within the teams’ organisational processes
[Argote et al., 2021]. These routines are repetitive interaction and coordination patterns
that are enabled by specific organisational structures, and are key in teams accomplish-
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ing complex tasks consistently [Becker, 2020, Nelson and Winter, 2004, Kogut and Zander,
1992]. With dynamically evolving task ecosystems, developing routines ensures teams’ ca-
pacity to navigate uncertainty and change [Wiese and Burke, 2019].

Linking routines in teams with their evolving organisational structure is not straight-
forward. Routines can be reflected through social and tacit interaction patterns that are not
always captured through the teams’ division of labour. However, the significance of specific
interaction patterns and their role in supporting learning cannot be understated. Cluster-
ing of members to tasks impedes the spread of best practices across subgroups in a team,
but facilitates higher specialisation [Lazer and Friedman, 2007, Puranam and Maciejovsky,
2020]. Hierarchical structures adapt towards optimal organisational and coordination pat-
terns over time, but at the detriment of exploring novel solutions [Koçak et al., 2023], which
may penalise their efforts in competitive task environments.

Studying the evolution of team and task level organisational structures, in response
to experience and task complexities offer significant insights into team learning processes
supports the design of interventions to optimise team productivity. However, this remains
a complex challenge, mainly limited by a lack of fine-grained longitudinal data.

4.2.5 Objectives

In this working paper, we study the specialisation and coordination structures in scientific
teams from their networks of division of labour at the project and task levels, and highlight
how they underlie team performance and learning.

Interdisciplinary teams have a higher division of labour [Haeussler and Sauermann,
2020]. This is in response to having multiple interconnected sub-tasks which requires di-
versity in expertise. Teams aim to maximise their output by specialising on sub-tasks and
having optimal coordination structures. This results in a modular division of labour organ-
isation, with specialists in each module. However, the generalist team members coordinate
across modules, reflecting on the task complexities and interdependences.

Hypothesis 1: The division of labour in scientific teams, working in intercon-

nected task environments, have a highly modular organisation. These specialised

modules are coordinated by generalists, who overlap across modules, giving rise

to an intermediate nested structure at the global level.

Performing each task requires specialist team members to efficiently recombine their
knowledge, background and experiences in producing an innovative output. Technical
tasks, such as performing experiments or data analysis involves specialist members work-
ing as a flat sub-group, with generalists then coordinating with members from other inter-
connected tasks. Capturing the granular interactions of within each task group is complex,
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requiring specific domain knowledge on a case by case basis. However, tasks like docu-
mentation and writing, which are an essential component of the scientific research process
[Latour and Woolgar, 1986], can be tracked extensively by using traces from digital collab-
orative writing tools. At this task level, specialised contributions from team members are
integrated by generalists, presenting organisational structure with high nestedness

Hypothesis 2: The task level organisation in teams present structures with high

nestedness and intermediate modularity.

Division of labour structures have been studied with their link to performance - with
flat teams in science producing more innovative research [Xu et al., 2022] and an inverse-U
relationship between network connectivity and performance [Lazer and Friedman, 2007].
Successful teams organise their structure efficiently, balancing the interplay between spe-
cialisation and integration. Modularity and nested organisation are indicators of this inter-
play at the network level and capture structural properties beyond aggregated measures at
the vertex.

Hypothesis 3: Nestedness and modularity are stronger predictors of team per-

formance and productivity compared to aggregate network measures.

Teams retain members across successive participation. This allows teams to adapt and
change their network structure over time. Teams select into similar task interdependence
structures over time compared to other successful teams.

Hypothesis 4: Teams task allocation structures evolve into optimal network

structures over time, indicating teams search for optimal solutions, which are me-

diated by factors like size and prior experience.

4.3 Data

Since its inception in 2003, the iGEM (International Genetically EngineeredMachines) com-
petition incentivizes student teams to tackle real-world problems and explore the space of
synthetic biology by designing standardised DNA elements, also known as biobricks. Over
4000 university, high school and community lab teams from 40+ countries have partici-
pated in this challenge-based ecosystem for innovation, producing several interdisciplinary
publications and projects scaled up as startups [Jainarayanan et al., 2021]. But beyond co-
creating innovative synthetic biology projects, teams are expected to address the safety,
ethical considerations of their work, as well as to undertake outreach initiatives and dia-
logue with multiple stakeholders who would be influenced by their work. Each year, iGEM
culminates with the grand jamboree, where teams present their project and are evaluated
by juries on the different facets of the competition. Teams are awarded medals (gold, sil-
ver, bronze) based on them completing the checklist that iGEM participants are required
to fulfill - the more items completed, the higher the medal. Exceptional teams in different
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competition tracks are also awarded prizes based on the jury evaluations.

One of the key evaluation criterion is that teams extensively document their project,
its outcomes and their progress on an online wiki style website. This website, referred to
henceforth as the wiki, presents as a rare intersection between a scientific article and a
blog - detailing key technical aspects of a team project in addition to elaborating on their
outreach initiatives, their collaborative activities and member attributions. This richness
of data from team wikis presents a unique opportunity to study team-based collaborative
science and obtain insights on performance and impact [Santolini et al., 2023].

Wikis follow a general template - designed by iGEM at the beginning of the competi-
tion year to highlight the various project aspects that teams are expected to report on. The
wiki template contains pages, whose titles correspond to these different aspects - such as
Experiments, Parts, Human Practices. But teams can choose to report in a non-standardised
manner, as long as they fulfill the evaluation criterion for reporting their complete project.
As an example, teams can document their experiments in a single Project page or in several
pages, each highlighting a significant sub-part. Teamswikis also include anAttribution page
which reports who did what in the team - albeit heterogeneously. This makes manually an-
notating and curating information about team organisation from the wiki a challenging
task.

Beyond the attribution pages, the team wikis serve as a report of their iGEM project,
with regular lab notebook entries, specifics of their synthetic biology project and details of
their outreach initiatives. Writing this wiki is a collaborative task - with teams designating
editors who take point on populating the different pages. The digital traces of who edited
which page offer insights on how members of an iGEM team integrate information across
these different project aspects, in addition to the division of labour inferred from the attri-
butions.

The extensive iGEM dataset [Blondel et al., 2024], reports team meta information - such
as their roster, the track they participated in, their performance (medal, awards), the wiki
full text and digital traces of how team members co-edited their wiki. The wiki traces and
text are collected for teams participating in iGEM from 2008-2018. Reporting the attribu-
tions of teammembers and clearly highlighting the work done by them against the mentors
and collaborators became a bronze medal criterion in 2014. Teams after 2014 are expected
to report the attributions on the wiki, while it was optional for teams before.

We use iGEM teams as a testbed for collaboration and innovation in complex task en-
vironments, studying their division of labour and wiki contribution structures.
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Figure 4.2: a) Constructing the bipartite network of co-edits (members to pages) of the team
wikis b) Pipeline to construct the bipartite division of labour network from unstructured
wiki attribution pages. Large language models from the GPT family are used to curate the
interactions between users and the tasks they performed, matching users to their identifiers
and description of tasks to a standardised list of tasks performed by iGEM teams. [Jeyaram
et al., 2023] describes the pipeline and methods to evaluate its performance in more detail.
c) Example of the task structure of a team, identified by projecting the bipartite division of
labour network on the task layer.
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4.4 Methods

4.4.1 Team Division of Labour from Attribution Statements

Attribution statements from the team wiki report on the members of the team and what
tasks they worked on during the project. With these statements reported as free text, we
use Large Language Models (LLMs) to design a pipeline to extract the member-task rela-
tionships with high confidence [Jeyaram et al., 2023]. Figure 4.1.b describes the pipeline to
perform this process - which involves first extracting all person-activity relationships and
then matching each person to their iGEM member ID and each activity to a list of standard
tasks. These tasks are inspired from the CREDIT author-contribution roles frequently used
in bibliometric studies [Larivière et al., 2020]. Further details on the standard tasks and
their descriptions are documented in the supplementary information.

The resultingmember-task bipartite network are consistent across teams and accurately
represent division of labour structures from the self reported attribution statements. As a
simple sanity check to ensure the inferred networks are accurate - we compare the list of
team members reported in the attribution statements against the team roster. Teams where
atleast 70% of the roster are recaptured in the attributions are of relatively high confidence.

The attribution statements were made a compulsory part of iGEM team wikis in 2014
3.2b and were designated as a criterion to win a bronze medal (and thus required to win
silver and gold). Teams before 2014 still report their attributions, with the GPT pipeline
recovering 40% of teams having mentioned to atleast 3 members and 3 tasks in their attri-
bution statements. This ratio increases to 70% for teams after 2014. We specify the filters
used to in each analysis explicitly.

4.4.2 Task Structure and Similarity in Teams

The task structure n iGEM can be recovered from the member attribution statements. Pro-
jecting the bipartite member-task networks onto the task layer creates a network of tasks,
where two tasks are linked if they are performed by a common user. The projected net-
work provides a proxy for interdependences between tasks (if the same user performs two
distinct tasks, it is likely that these tasks have an inherent associations).

Weights of the task projected bipartite network highlight key information about the
strength of links between tasks. The traditional method of weighting projections uses the
number of mutual links to the same actor in the bipartite network. If task A and task B are
performed by three users - 1,2 and 3, the weight of the interaction between tasks A and B
in the projected network is 3. This weight is then normalised at the team level to enable
comparison across different task structures. A larger weight signifies a stronger interde-
pendence between tasks. An example is presented in figure 4.2c.
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The edges in a bipartite projection can also be weighted by other methods, contrasting
weights based on the inverse degrees of bipartite vertices [Newman, 2001] or by comput-
ing similiarity between two projected vertices by the likelihood that random walkers pass
through sequentially [Yildirim and Coscia, 2014, Coscia and Rossi, 2019]. Bipartite net-
works often result in a projection with high density and varying edge weights which often
do not identify key structural properties and are hard to analyse. Backboning [Neal, 2022],
is a method to extract the significant edges (or the backbone) of a projected bipartite net-
work. In this working paper, we use the classic bipartite projection to weight interactions
between tasks. Studying the other weighting regimes, the backbone and contrasting them
against the task structure are upcoming directions.

The bipartite network of each team provides a different task interdependence structure.
This structure changes based on the team project tracks - software teams use different toolk-
its and perform different significant tasks compared to an experimental team. To identify
the task environment for each track, we use the projected task networks of award-winning
teams. Multiple teams win awards every year, indicating their exceptional iGEM perfor-
mance in their track. We use the task projections of these successful teams as a reference
to compare the projections of other teams in each track.

We define a distance measure - which compares the task projection networks of each
team with that of the successful teams in the given iGEM competition year. The distance
between two projected networks is computed using:

• Euclidean Distance: Using the vectors of vertex strengths in the task projections.
A lower distance indicates closer similiarity between the two vectors. However, this
measure hides the interactions between vertices in computing the distance.

• Jensen-Shannon Divergence: Uses information theory measures to compare the
distance between two networks from their density matrices. Method detailed in
[De Domenico et al., 2015]. The lower the divergence, the more similiar the two
networks.

The average distance of a teams’ task structure is computed from its distances to the best
teams from the same track. A lower average distance indicates a structural interdependence
organisation closer to successful teams.

4.4.3 Organisation from the Wiki Co-edit Structure

Wikis are collaboratively edited by a subset of members from the corresponding iGEM
team. The typical wiki contains pages where teams document various components of their
project, like experiments, outreach activities, synthetic biology parts and presenting their
team. The bipartite network between team members and the wiki pages follows from the
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digital traces of the wiki, which identifies each member by their identifiers, the page they
edited, the timestamp and the size of each edit action.

Teams however have different ways to construct their wiki notebook. Some teams have
a small set of core editors, who take point on designing and constructing the entire wiki. Or
they have multiple editors documenting pages corresponding to the different iGEM tasks
and activities they performed. We use cutoffs - ratio between team size and the number
of editors - highlight the wiki editing structures. We select teams where atleast 20% of the
team have edited the wiki.

4.4.4 Measuring Division of Labour Structures

Bipartite network measures of division of labour capture the level of generalisation or spe-
cialisation in different scales and offer trends about the interdependencies between users
and tasks. We focus on modularity and nestedness as two key measures in this study.

Modularity

Modularity measures the organisation of nodes into groups in way that maximises inter-
actions within a group compared to across. In a bipartite network, the modularity can be
evaluated in twoways. The bipartitemodularity identifiesmodules of users and taskswhich
have more edges between them. We compute the bipartite modularity using the compute-

Modules function from the bipartite library in R. This outputs a module object highlighting
themodule of each node and themodularity of the network using the algorithm from [Beck-
ett, 2016].

Alternatively, a bipartite network can be projected onto the user or the task layer -
where an edge between users (or tasks) indicates them co-working on a common task (or
tasks having a common user doing them). Modularity can be computed on these projected
networks, identifying clusters of users (or tasks). The classic projection method involves
weighting each edge in the projected network to account for the number of tasks co-worked
by the two users (in case of projection on the users). We use this method to create projected
networks on the user level and the task level. The modularity is computed using a greedy
modularity maximisation method such as Cluster Louvain.

Nestedness

NODF is among the widely used measure to quantify nestedness in a bipartite system. In-
troduced in [Almeida-Neto et al., 2008], the NODF measure calculates the extent to which
rowswith lower degree overlap with the rows of a higher degree. A perfect nested structure
has high Node Overlap and an ordering with Decreasing Fill (NODF). The measure ranges
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between 0 and 100, with higher the score, the more nested the bipartite system. The mea-
sure, despite being among the most widely used, has its share of criticisms in quantifying
nestedness. NODF has shows to be positively correlated with matrix density and negatively
with size [Payrató-Borràs et al., 2020].

Other measures for nestedness capture the deviation of the observed incidence matrix
from a perfectly nested structure - usually falling under the umbrella of measures denoted
as nested temperature. These measures however suffer from a much stronger bias to size
and density [Payrató Borrás et al., 2020].

We use the nest.smdm function from the Bipartite library in R to make the computation.
The function allows computing of the NODFmeasure for a given bipartite incidence matrix
- but also at the modular level. The outputs of interest include the NODF measure for the
whole matrix and the NODF measure for nodes within the same modules in the network
(averaged over all modules). The modular organisation of the bipartite network is com-
puted using the bipartite modularity function computeModules, whose output is fed into
the nestedness computation to identify global and module specific nestedness measures.

Alternative Measures

Beyond indicators of specialisation and co-organisation into modules, measures like that
capture the representation of bipartite motifs offers information about meso-scale collabo-
rative structures [Paranjape et al., 2017]. This is a working extension to the current draft.

4.4.5 Outcomes

Team outcomes in iGEM are measured through their evaluation in the final jamboree.
Teams are awarded medals (gold, silver, bronze or none) based on them achieving spe-
cific targets on the iGEM checklist. These targets include designing new biobricks, reusing
existing biobricks, collaborating with other teams, documenting their progress on the wiki
and so on. Teams are also awarded with prizes, indicating exceptional projects for each
track.

Focusing on writing as a specific task that teams work on, we use the size of the wiki (in
bytes) as a proxy for outcome. Larger wikis are a predictor of team performance (medals
and awards) [Santolini et al., 2023] and explore how different network structures associate
with the wiki edit size as an outcome.
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Figure 4.3: Comparing Bipartite networks of division of labour (curated from attribution
statements using GPT) and organisation at the task level (co-editing the wiki) a) Cumulative
degree distribution of users in both division of labour and co-edit networks in iGEM 2017.
b) Example team incidence matrices. (top left) Team with high nestedness in their division
of labour network. (top right) Team with high modular structure in their division of labour
network. (bottom left) Team with a nested wiki co-edit structure. (bottom right) Team
with a modular wiki co-edit structure. Matrices plotted using the plotModuleWeb function
in the noa [2024] library in R. c) Scatter plot of nestedness (top) and modularity (bottom)
comparing teams’ division of labour network to their respective wiki co-edit network.

4.5 Results

4.5.1 Nestedness andModularity in Networks of Division of Labour

Figure 4.3 compares the bipartite division of labour networks and the co-edit structure of the
team wiki. The degree distribution, shown in figure 4.3a, indicates a long tailed structure
in the co-edit network, indicating the presence of generalist users who take up a majority
of the core responsibility in completing the wiki writing. The more flatter shape of the di-
vision of labour networks indicate a relative spread of different tasks across teammembers.
The organisation of these structures are reflected in figure 4.3c, with division of labour net-
works having a less nested and more modular than the co-edit structure in wiki editing.
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Figure 4.4: a) Linear model coefficients comparing the effects of nestedness, bipartite modu-
larity and mean correlation between activity-user incidence vectors in predicting the medal
achieved. The subset teams participated in iGEM since 2014 and have atleast 70% of the
team roster captured from the attribution statements. Teams also report atleast 10 users
and 10 tasks - filtering for large teams b) Linear model coefficients comparing the effects
of nestedness, bipartite modularity and mean correlation between activity-user incidence
vectors in predicting log editsize of the team wiki. The subset teams participated in iGEM
since 2014 and have atleast 70% of the team roster captured from the attribution statements.
Teams also report atleast 10 users and 10 tasks - filtering for large teams.

4.5.2 Division of Labour and Performance

Figure 4.4 estimates how nested and modular organisation in the division of labour net-
works associate with performance measures - a) the medal achieved by the team and b)
the size of the team wiki. Teams are filtered to ensure they have atleast 70% of the roster
recovered through GPT curation and mention atleast 10 users and tasks. Teams after 2014
are presented here (n = 816 teams). The linear models have the density, number of users,
number of tasks and the competition year as controls.

Figure 4.4a compares the linear model coefficients predicting the medal achieved by
iGEM teams. While neither nestedness nor modularity are significant in predicting the
medal achieved, their effect is visible when looking at the wiki size as an outcome (Figure
4.4b). The edit size is an indicator of productivity of the team and positively correlates with
the medal achieved (Correlation coefficient 0.38). Modularity is positively associated with
the wiki edit size while nestedness is negatively associated, highlighting the importance of
forming specialised subgroups tackling the distinct, yet interconnected tasks during iGEM.

For both outcomes, the aggregatemeasure comparing the similarity between tasks using
correlations between user incidences (higher correlation indicating tasks are performed by
the same set of users) is not a significant predictor for productivity or output.
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Figure 4.5: a) Linear model coefficients comparing the effects of nestedness, bipartite modu-
larity and mean correlation between activity-user incidence vectors in predicting the medal
achieved. At least 20% of the team roster are editors. Teams also report at least 10 editors
and 10 tasks - filtering for large teams. b) Linear model coefficients comparing the effects
of nestedness, bipartite modularity and mean correlation between activity-user incidence
vectors in predicting log edit size of the team wiki. At least 20% of the team roster are edi-
tors of the wiki. Teams also report atleast 10 editors and 10 tasks - filtering for large teams

4.5.3 Co-edit Structure and Performance

Figure 4.5 estimates the association between nested and modular organisation within a
task (here that of editing the wiki) and performance. Teams are filtered to ensure they
have atleast 20% of the roster editing the wiki and have atleast 10 editors and pages (n =
612 teams). The linear models have the density, number of users, number of tasks and the
competition year as controls.

Nestedness is strongly associated with a higher medal achieved as well as in creating a
larger wiki (log edit size). The nested organisation highlights a set of core editors who are
responsible to integrate information across the other specialised editors in the task. With
the selected teams here having atleast 10 editors, a modular structure is also positively
associated to the medal achieved, where each module takes point on editing specific wiki
pages (corresponding to technical tasks), who are then coordinated across modules and
tied together by the core editors. These core editors, in addition to integrating input from
different members, also perform specialised auxiliary tasks, such as website design - further
highlighting the significance of a nested organisation within the writing task.

In both figure 4.5 a and b., the aggregate measure comparing the similarity between
tasks using correlations is not significant in predicting performance.

4.5.4 Evolution of Task Structures

Figure 4.6 shows how the task interdependence structure evolves with multiple partici-
pation. The task structure of teams gets closer to that of successful teams in each iGEM
track. This decrease is not driven by teams that participated a few times and not again
(highlighted by each trace - indicating the maximum participation of the team - distance
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Figure 4.6: Mean distance of each teams’ task structure (constructed by projecting their
bipartite division of labour networks on the task layer), from that of the best teams for each
track that participated that year. The colour of each trace is grouped by the maximum num-
ber of times teams have participated in iGEM (with the inlay figure showing the aggregated
trend). The distance is computed using the Jensen-Shannon divergence between networks
(see methods).
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decreasing with experience). This indicates the presence of specific structural patterns that
teams evolve to organise their division of labour and task structure towards.

4.6 Discussion and Perspectives

This chapter presents preliminary results in studying the organisation structures of science
and innovation teams at the global level (using networks of division of labour) and at the
task level (focusing on the task of collaboratively editing the teamwiki). We present the use
of nestedness and modularity as network structural properties that capture specialisation
and coordination in teams.

Teams emphasise on a more modular organisation while dividing tasks amongst their
members, taking into advantage the benefits of specialisation. With interconnected yet dis-
tinct tasks, some members play generalist roles, who coordinate across different modules.
Modularity is significantly associated with team performance, providing evidence support-
ing modular organisation in addressing interdisciplinary challenges.

Collaboratively editing the wiki is a key task that iGEM teams undertake and are eval-
uated on. It is strongly linked to the other tasks within iGEM, as the wiki reports on the
outcomes across all distinct tasks. The co-edit structures of the wiki have a highly nested
organisation, highlighting the importance of core editors who coordinate the contributions
of other editors in the team. Large teams also organise their writing into modules - with
editors in each module contributing to documenting the outcomes of specific tasks - and
core editors coordinating across these modules.

Increased modularity at the team level and increased nestedness at the task level mirror
observations across different networks of division of labour. Open Source Software (OSS)
projects compartmentalise into modules, but with each module having a highly nested in-
ternal organisation Palazzi et al. [2019a] which signifies cooperation in mutualistic settings
Mariani et al. [2019], Alves et al. [2019].

Nestedness and modularity are significantly associated with team performance and are
more informative than aggregate measures such as degree and correlations. Both measures
are at the level of the network. At the meso-scale level, bipartite motifs have shown to
have facilitating or limiting effects in organisational structures Blau and McKinley [1979],
Paranjape et al. [2017]. Exploring the over/under representation of these motifs at the team
and task level organisation and associating them with performance is a working extension
of the study.

Comparing nestedness and modularity across teams with different dimensions is not a
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straightforward task. Structural properties are compared against NULL models to identify
the Z-scores of over and under-representation of nestedness [Payrató-Borràs et al., 2020,
Ulrich and J. Gotelli, 2007] or modularity [Pasquaretta and Jeanson, 2018, Fortuna et al.,
2010]. Studying how the normalised measures underlie team performance is a working di-
rection.

With repeated participation, teams evolve their task structure to be closer to the organ-
isation of successful teams in their field. This provides a base to study how the evolution of
task structure is reflected onto structural patterns at the team and task levels and identify
classes of teams who successfully rewire their organisation to increase performance and
impact.

Beyond the internal division of labour in iGEM teams, we curate the networks of col-
laborations between teams (with the context of their collaboration) and the networks of
biobrick reuse. This presents a unique opportunity to explore how teams’ external division
of labour influences how they organise internally. External collaboration is primarily ben-
eficial to gain access to knowledge and resources that are otherwise hidden. This allows
teams to delegate tasks externally, and reorient their internal organisation to balance the
increase in coordination costs.

iGEM changed its regulations in 2015 to incentivise teams to perform more outreach
initiatives and collaborate with other teams as a part of their project. This was enabled by
making collaboration as a category in the silver medal checklist from gold. This is reflected
in a sharp change in the collaboration network size and density prior to and after 2015
4.7. Using this regulation change as a shock, a future direction is to study how external
collaborations influenced teams’ internal organisation.

– 158 –



Evolving Structures of Division of Labour and Coordination in Interdisciplinary Teams

Figure 4.7: Inter-team collaboration networks in iGEM.
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Conclusion

Issues that require urgent action, like reaching the Sustainable Development Goal (SDG)
targets, affects the global public indiscriminately, yet its challenges are more pronounced
in settings that constantly suffer due to the disparity in resources and support. The founda-
tional goal of open science and innovation practices is to democratise the access to scientific
knowledge and participation in the processes that lead to its production, with the aim of
bridging this gap. This however has its obstacles. SDG challenges are interdisciplinary, of-
ten requiring expert knowledge across diverse fields to design solutions. Scientists in these
settings have to wear many hats - like seeking out funding and resources, coordinating in-
puts from domain experts, organise the scientific process amongst the participating team,
communicate knowledge at each step of the way - all in addition to producing rigourous
and impactful outputs. These obstacles block the entry of new interests, whether be it aca-
demic students or the general public, into addressing SDG goals, despite open innovation
encouraging participation.

The goal of practitioners is to overcome these obstacles through initiatives that train
participants in collective and open science. Events like hackathons, summer schools, incu-
bators train participants in tackling these challenges while producing scientific knowledge
with actionable impact. This is an ever changing landscape - with in depth knowledge
required on what enables collaborative knowledge production - to facilitate the next gen-
eration of scientists and the global public to participate in collective action.

Collaborative knowledge production, or doing science in teams, has been a focus of
research in organisation theory, team science and Science and Technology Studies (STS).
Research in these fields focus on understanding the benefits to diversity (background, ex-
periences), internal organisation, external collaboration in producing impact. Extending
key observations from these fields to study open science and innovation settings requires a
comprehensive understanding of team organisation processes, measure outcomes and un-
derstand how the two are associated with each other, helping practitioners in designing
initiatives that foster innovation over the short and long term.

This thesis attempts to move the needle ever so slightly in this direction. Positioned
at the interface of network science, computer science and inspired from team science and
organisation theory, my main contributions are:
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• Curating teammeta data, internal and external collaborations using amixed approach
of both quantitative (digital traces) and qualitative (self-reports) data sources. Devel-
oping a pipeline to recover team collaborations with contextual information from
unstructured text, using Large Language Models.

• Representing team collaborations as networks and building measures that capture
diversity, engagement, internal and external collaborations. Focusing specifically on
how teams organise their members to specialise on different tasks and how they co-
ordinate to integrate inputs across the team, through the lens of nested and modular
network structures. Studying how teams evolve their organisational structure with
experience and offering perspectives for future research on how internal organisation
of teams adapts with external collaboration.

• Presenting team observations through dashboards to support practitioners in provid-
ing facilitation in open science and innovation settings.

With new(er) complex challenges emerging globally with every passing second, the
need for collective action increases exponentially. I hope the work presented in this thesis
can be a valuable step in the ladder used to reach greater heights and enable collaborative
research in an open and democratic scientific community.
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