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Abstract xi

Mathematical modelling, observation and identification of epidemiological models with
reinfection

Abstract
The subject of this work is the mathematical modelling of infectious diseases with reinfections and the
analysis of the corresponding models. First, we introduce a general class of compartmental models count-
ing the number of reinfections, consisting of an infinite number of ordinary differential equations, and
study its well-posedness. The proposed class also allows for the modelling of heterogeneous transmission,
whose characteristics depend upon the number of past reinfections. In the homogeneous situation (where
the past reinfections do not affect disease transmission), the global behavior obeys a usual compartmental
model. Asymptotic results are established, and formulas giving the mean number of reinfections at the
endemic equilibrium are provided. Next, we investigate a two-stage reinfection model intended for the
modelling of diseases for which the subsequent reinfections behave differently from the primary infection.
We describe thoroughly the steady states of the model, which may contain up to three endemic equi-
libriums, and study the disease persistence. Employing Li and Muldowney theory, we prove asymptotic
convergence of every trajectory, in a particular case that may exhibit multiple endemic equilibriums.
Using semigroup theory, we then establish the well-posedness for a class of models structured both in
age and number of reinfections. The latter are constituted by an infinite number of partial differential
equations. This allows the computation of several interesting quantities at endemic equilibrium, such
as the average age in each compartment or the mean number of reinfections at each age. Finally, we
investigate some issues of Control theory, more precisely whether the use of additional reinfection data
may improve parameter and state estimation. To this end, we study identifiability and observability
of a SIS model, based on the measure of the number of infected and of primary infected, and propose
an asymptotic observer and an adaptive observer respectively for the state, and for the joint state and
parameter, estimation.

Keywords: compartmental models in epidemiology; reinfection; age structure; multistability; observa-
tion; identification; asymptotic observer; adaptative observer

Résumé
Le sujet de ce travail est la modélisation mathématique des maladies infectieuses avec réinfections et
l’analyse des modèles correspondants. Nous introduisons d’abord une classe générale de modèles compar-
timentaux comptant les réinfections, constitués d’un nombre infini d’équations différentielles ordinaires,
et nous étudions leur caractère bien posé. La classe proposée permet également de modéliser une trans-
mission hétérogène, dont les caractéristiques dépendent du nombre de réinfections antérieures. Dans le
cas homogène (où les réinfections passées n’affectent pas la transmission de la maladie), le comportement
global obéit à un modèle compartimental usuel. Des résultats asymptotiques sont établis et des formules
donnant le nombre moyen de réinfections à l’équilibre endémique sont données. Nous étudions ensuite un
modèle de réinfection à deux étages destiné à la modélisation de maladies pour lesquelles les réinfections
ultérieures se comportent différemment de l’infection primaire. Nous décrivons en détail les équilibres du
modèle, qui peut contenir jusqu’à trois équilibres endémiques, et étudions la persistance de la maladie.
Grâce à la théorie de Li et Muldowney, nous prouvons la convergence asymptotique de chaque trajec-
toire dans un cas particulier qui peut présenter plusieurs équilibres endémiques. En utilisant la théorie
des semigroupes, nous établissons ensuite le caractère bien-posé d’une classe de modèles structurés à
la fois en âge et en nombre de réinfections. Ces derniers sont constitués d’un nombre infini d’équations
aux dérivées partielles. Ceci permet de calculer plusieurs quantités intéressantes à l’équilibre endémique,
telles que l’âge moyen dans chaque compartiment ou le nombre moyen de réinfections à chaque âge. Nous
examinons enfin des questions de théorie du contrôle, plus précisément si l’utilisation de données supplé-
mentaires sur les réinfections peut améliorer l’estimation des paramètres et de l’état. À cette fin, nous
étudions l’identifiabilité et l’observabilité d’un modèle SIS, basées sur la mesure du nombre d’infectés et
de primo-infectés, et proposons un observateur asymptotique et un observateur adaptatif respectivement
pour l’estimation de l’état, et pour l’estimation conjointe de l’état et des paramètres.

Mots clés : modèles compartimentaux en épidémiologie ; réinfection ; structuration en âge ; multista-
bilité ; observation ; identification ; observateur asymptotique ; observateur adaptatif

Laboratoire Jacques-Louis Lions
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Introduction

Mathematical epidemiology and compartmental models
For those of us living in Western society that has long since embraced hygienics ideas and
standards [103], we tend to forget how communicable diseases affect human societies, and to
what extent human life is built around this natural reality. The recent COVID-19 pandemic
has served as a reminder of the potential consequences of these diseases. Throughout history,
infectious diseases have indeed constantly influenced social relationships and humans societies,
and there are countless examples of historical events partially shaped by them. To cite a few,
the Antonine plague, which may have been caused by increasing urban concentration and trade
due to the economic growth during the Pax Romana, contributed to the end of the golden age of
the Roman Empire [36] in the second century. The Justinian plague in the sixth century, which
is credited as the earliest pandemic due to the pathogen yersinia pestis, halted the expansion of
the Byzantine Empire and significantly weakened the Sassanian army, ultimately leading to the
rise of Islam [104]. Another well-known example of plague caused by yersinia pestis is the Black
Death in the fourteenth century, whose spread followed the expansion of the Mongol Empire
(see Figure 1). The plague killed roughly one third to one half of the total European population
between 1347 and 1351. The devastating effects of the Black Death had a significant impact
on the collective consciousness of the late Middle Ages and the Renaissance (see Figure 2).
Moreover, the resulting massive reduction of the workforce and the abundance of land changed
the power dynamics between landowners and the peasantry, which in response marked the decline
of feudalism in Western Europe and a renewal of serfdom in the Eastern counterpart [98].

Even in the present day, infectious diseases remain a serious challenge for humanity, with
millions of people dying of measles, malaria, tuberculosis, diarrhea, and other diseases that may
be treated with modern medicine [116]. Several of these diseases are indeed endemic in many parts
of the world [93], although they are considered eradicated or declining in developed countries.
This unequal burden between global north and south countries with regard to infectious diseases
accentuates the inequality and further hinders development efforts.

Despite the omnipresence of communicable diseases in human society, the progress in the
biological understanding of their transmission is relatively recent. For a long time, people thought
that disease came from invisible things called “bad air” or “miasma”. It wasn’t until the 19th
century that the germ theory of disease was developed and accepted by the scientific community,
highlighting the role of microorganisms as the cause of infectious disease [95]. Nowadays, the
transmission mechanism of most of infectious diseases is well-known, and can be classified into
three main classes, according to their mode of transmission. First, it may be transmitted directly
by viral agents, which is the case for influenza, measles, HIV/AIDS or SARS, or transmitted
by bacteria, for example in the case of tuberculosis, cholera, pneumonia, or meningitis. Finally,
the diseases may also be transmitted indirectly through vectors (usually insects), in the case of
dengue, chikungunya or malaria.

5
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Figure 1: Spread of the Black Death in Europe. Source : The Black Death, 1346-1353: The
Complete History, O.J. Benedictow, Boydell Press, 2004, [13].

Figure 2: The Triumph of Death, Pieter Bruegel the Elder, c. 1562.

The idea of applying mathematics to advance the understanding of disease transmission can
be traced back to the works of Daniel Bernoulli in 1760 on the benefits of inoculation against
smallpox [14]. Compartmental models, which are now massively employed in mathematical
epidemiology, have been for their part introduced at the beginning of the 20th century through
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the works of W.O. Kermack and A.G. McKendrick [68].
Generally speaking, a compartmental model simulates the interaction between individuals or

objects distributed across multiple classes, called compartments. Each compartment represents
then a group of entities (such as population, molecules, health status, capital, individuals. . . )
that are assumed to be homogeneous with respect to the processes being studied. Due to their
versatility, compartmental models are often used in many fields, such as pharmacology, ecology,
systems biology or economics. In mathematical epidemiology, they are employed for the mod-
elling of host and vector population, classified according to their health status with regard to
the disease. For instance, the well-known SIR model introduced by Kermack & McKendrick [68]
contains three compartments, which are

1. The compartment S, which includes individuals who are susceptible to the disease.

2. The compartment I, including infected individuals, able to transmit the disease.

3. The compartment R contains the populations removed from the spreading process, either
due to immunity acquired, quarantine, or death.

Schematically, the SIR model is illustrated by the flowchart in Figure 3.

Figure 3: Flowchart of the SIR model

When the demographic effects may be considered much slower than the epidemic dynamics,
these effects may be neglected and the SIR model is written as follows:

Ṡ = −βSI,
İ = βSI − γI,

Ṙ = γI.

(1)

The model takes then the following assumption.

1. The total population N := S + I +R is constant.

2. βI is called the force of infection of the model and represents the number of contacts with
infectious hosts that susceptible makes per unit of time. As it is proportional to the number
of infected in the population, the transmission is said to respect the law of pseudo mass
action. If instead the force of infection is modelled by the density dependent term β I

N , the
transmission is said to obey the law of mass action. In the case where the total population
N is constant, it is easy to see with a normalization that both laws are equivalent.

3. γ represents the recruitment rate of recovered from the infected, which is equivalent to say
that γ−1 represents the average infectious period of the disease.

Although the SIR model is surprisingly simple, it captures already several major features of
an epidemic, which makes it a powerful tool for the modelling of disease transmission. Notably,
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the solution of the system (1) gives a bell-shaped curve for the infected, which is typical in the
outbreak of a disease (see Figure 4). On the other hand, let us rewrite the equation of İ as

İ = (βS − γ)I.

It is thus clear that, if the initial condition is such that S(0) < β
γ , I will remain non-increasing

thus excluding the possibility of an outbreak. This fact is known in mathematical epidemiology
as the threshold phenomenon, that prevents the possibility of outbreaks if the population does
not contain enough susceptible. Alternatively, if we consider the population as almost entirely
susceptible initially and approximate S ≈ 1, the threshold condition became

1 < β

γ
,

which gives then a condition on the intrinsic parameters of the disease for its spreading in a
disease-free population. The quantity

R0 := β

γ
,

called the basic reproduction number plays a major role. It is defined as “the average number of
secondary cases arising from an average primary case in an entirely susceptible population” [33].

Figure 4: Weakly deaths from plague in Bombay from December 17, 1905 to July 21, 1906
(filled circles) compared to the approximate solution from Kermack and McKendrick’s model
(solid line). Source : Modeling Infectious Diseases in humans and animals, M. J. Keeling and P.
Rohani, 2008 [67].

Reinfection
Since the SIR model of Kermack and McKendrick, the field of mathematical epidemiology has
evolved considerably, incorporating increasingly complex factors such as quarantine, vaccine,
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spatial, hosts heterogeneity, variants, spatial dynamics or stochastic effects [83]. One of these
factors is the phenomenon of reinfection.

Biologically speaking, for various diseases, reinfection refers to the ability of the host to be
infected multiple times by the pathogen during its lifetime. This is either due to the lack of
immune memory against specific diseases, or because the immunity granted is incomplete or
only lasts a certain amount of time, which concerns numerous viral diseases. In fact, it is more
reasonable to expect the immunity response to be generally imperfect, and in most situations
the presence of reinfections is the norm rather than the exception. However, this biological
reality is not always reflected in the field of mathematical epidemiology, which is often concerned
only with mathematical models assuming lifelong immunity [51]. Indeed, the assumption of
permanent immunity of this class of model corresponds only to a limited set of diseases, for
instance measles and rubella [3].

Figure 5: Weekly cumulative total of SARS-CoV-2 infection eligible for reinfection (within 90
days interval), weekly number of possible SARS-CoV-2 reinfection and primary infection (times
10) in all ages, England, January 2020 April 2021. Source: Disease severity during SARS-COV-2
reinfection: a nationwide study, A.A. Mensah et al., 2022, [89].

On the contrary, there are countless examples of diseases including reinfection. To cite a few,
tuberculosis [50] is well-known to be able to reoccur in the infected’s later life, due to either
reactivation of the same strain of mycobacterium tuberculosis, i.e., relapse, or reinfection with a
new strain. Another sadly famous example is that of COVID-19, which is caused by the strain of
coronavirus SARS-CoV-2. The reinfection in this case may be jointly explained by the protection
offered by the immune system, which is only temporary, and the appearance of new variants of
the virus [25]. In addition, a major class of diseases are those offering no protection to subsequent
infection. This is for example the case for several sexually transmitted diseases such as syphilis
or chlamydia, or for the influenza.

On the subject of modeling, the simplest compartmental model for disease with reinfections
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is the SIS model, which is given by the equations:

Ṡ = −βSI + γI,

İ = βSI − γI.
(2)

This model assumes that the infected became immediately susceptible, thus does not include an

Figure 6: Flowchart of the SIS model

immune compartment. It is therefore adapted to the modelling of sexually transmitted diseases.
Another reinfection model that we are centrally interested in this thesis is the SEIRS model,

which can be defined by the following system of differential equations:

Ṡ = bN − βSI + ωR− µS,

Ė = βSI − (σ + µ)E,
İ = σE − (γ + µ+ ν)I,
Ṙ = γI − (ω + µ)R.

(3)

In this case, the system contains additional demographic coefficients b and µ, which are respec-
tively the birth and death rates. The presence of demographic terms is motivated by the fact
that, for reinfection models, we are often interested in the behavior of the disease transmission
over a longer timeframe. Moreover, this model includes a period of incubation σ−1 for the in-
dividuals exposed to the disease to become infectious, which is represented by the addition of a
compartment E. Furthermore, the recovered may lose their immunity and be recruited again
as susceptible with rate ω, enabling reinfection. The SEIRS reinfection model is particularly
fitted for numerous infectious diseases such as influenza or COVID-19 [15], and will be further
investigated in Chapter 1.

In the last decades, the need for a more detailed understanding of the above-mentioned
diseases has driven the interest in studying numerous compartmental reinfection models [1, 8,
51]. However, several points of interest remain to be explored. First, most of reinfected models
presented in the literature do not include information about the number of times the hosts have
been infected, which may be an interesting data to evaluate. Another closely related issue is the
reinfection related heterogeneity in the disease, and most of existing models do not account for
the fact that the behavior of the disease may change depending on how many times the hosts
have been reinfected. Finally, a third underexplored topic is the one of identification/observation
of the epidemiological models, i.e., the state/parameter estimation and whether these data are
even retrievable from measurements. This is crucial, for example, for the monitoring and control
of epidemics. From the perspective of control theory, this issue remains insufficiently considered
[56]. In this regard, one of our goals in this thesis is to investigate whether the use of reinfection
data (typically the breakdown of the prevalence or the incidence according to primary infections
and reinfections, see Figure 5) can enrich the knowledge and improve the control of epidemics.
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Outline of the thesis and list of publications
Considering the above observations, in Chapter 1 we investigate an infinite reinfection model
that is endowed with a counting of the number of times the hosts have been infected, which can
be infinitely many. Moreover, the parameters of the model may vary according to the number of
reinfections, which accounts for reinfection induced heterogeneity. For the corresponding infinite
system of ordinary differential equations (ODEs), the well-posedness is proved in a Banach
space of sequences that describe the number of hosts according to their epidemiological status
(e.g. susceptible, exposed, infected, recovered) and the number of reinfections they already
went through. Moreover, the case where parameters are constant with regard to reinfection
number, i.e., no reinfection-induced heterogeneity, is investigated in detail. Considering the
basic reproduction number R0 of the model, the global stability of the disease-free and endemic
equilibriums is described for R0 < 1 and R0 > 1, respectively. In addition, thanks to the
description of the endemic equilibrium, we can also retrieve some valuable information, such as
the average number of reinfections in the population at the endemic state of the model. Finally,
we explore the model with geometric progression of the coefficients according to the number
of reinfections, and derive existence and uniqueness result on the endemic equilibrium of the
system.

In Chapter 2, we turn our attention to a class of reinfection models that distinguish primary
infection from the subsequent reinfections. This class of model takes the assumption that the
primary infection behaves in a significantly different way from the remaining reinfections, which is
a reasonable hypothesis. Concurrently with our research, this class of models has been employed
for the modelling of COVID-19 epidemics [18, 63]. Description of the equilibrium states of the
corresponding system is delivered in detail, and in particular, the system is shown to exhibit
simultaneously up to 2 and 3 endemic equilibriums in the case R0 < 1 and R0 > 1 respectively.
The result along with numerical simulations for the case R0 > 1 show the existence of a reinfection
threshold in certain configurations. The multistability of the system makes it difficult to analyze
the global asymptotic behavior in a classical Lyapunov theory framework. We apply instead the
geometrical approach of Li and Muldowney [75], better known in the control community as the
theory of k-contraction [117]. With this approach, we demonstrate the asymptotic convergence
toward equilibrium for a specific case of the general model, where the heterogeneity is made up
of partial immunity after the first infection that allows the emergence of multistability.

Continuing on the topic of reinfections counting, in Chapter 3 we add an age-structure on top
of the infinite system in Chapter 1. Indeed, this is motivated by the fact that epidemic dynamics
are highly dependent on the age structure of the host population, which influences for instance
the transmission or the severity of the disease. Similarly to Chapter 1, we prove the well-posed of
the corresponding infinite system of partial differential equations (PDEs) employing perturbed
semigroup theory [31, 96, 102] in a Banach space setting. Then, the attention is again given to
the simplest setting of the model, where all parameters are assumed to be non-varying, now with
regard both to the age and reinfection number. This allows us to once again derive global stability
properties for the disease-free and endemic steady states when R0 < 1 and R0 > 1 respectively.
In addition, the description of the endemic state enables the computation of supplementary
values of interest that characterizes the endemic equilibrium, such as the average age in each
compartment of the model or the mean number of reinfections according to the age of the hosts.

Finally, in Chapter 4, we turn to some control theory issues. More precisely, we explore
observation and identification issues for a compartmental SIS model with reinfection. From the
state-space representation of the model, we analyze the identifiability and observability of the
model with a fixed but unknown portion of the infected as measured output. We find out that
the model is identifiable/observable if in addition the same portion of primary infections is also
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measured. This motivates in the sequel the design of an observer for the SIS model measuring
both infections and primary infections. An asymptotic Luenberger-like observer is proposed,
after an appropriate change of coordinates that transforms the system into a Persidskii form
[88, 97]. The stability of the observer is derived using copositive Lyapunov functions or of Lur’e
form and involves the testing of linear matrix inequalities (LMIs). Last, an adaptive observer
is designed for the case where the parameters of the model are also unknown. The strategy to
its design is similar to the approach of Immersion & Invariance [9] and its stability is analyzed
under the framework of Input-to-Output stability.

Several findings in the thesis are the subject of scientific publications, either already published
or in progress.

1. The article [40], based on the contents of Chapter 1 and Chapter 3, is currently in prepa-
ration.

2. The article [42], based on the contents of Chapter 2, has been submitted for peer-review.

3. The contents of Chapter 4 have been the subject of several conference papers [41, 43, 44].
An additional article [45] has been submitted for peer-review.



Chapter 1

An infinite SEIRS model tracking
the number of reinfections

1.1 Introduction

Compartmental models have witnessed a rich development in mathematical epidemiology since
their introduction by Kermack and McKendrik in 1927 [68]. In the last decades, driven by
the needs to understand several diseases such as tuberculosis, measles, pertussis or recently
Covid-19, increasing attention has been paid to the modelling and analysis of compartmental
models with reinfection, which generally consist of variants of the classical SIS, SIRS or SEIRS
models. To cite a few works, reinfection by multiple strains has been studied in [1, 4], deriving
among others threshold conditions for the invasion by a new strain or the disease persistence. In
[8], the authors analyze the relation between vaccination and reinfection using a SVIRS model,
exhibiting the possibility of bistability which complicates the prediction of the epidemics and the
efficiency of vaccination campaign. Similarly, driven by the need to understand the effectiveness of
vaccination, Gomes et al. [51] delivered a comprehensive analysis of SIRS models with vaccination
and imperfect immunity.

Completing the work in [51], a threshold condition for endemicity of reinfection models is
derived by Katriel [66], alongside attack rate and mean number of reinfections for models without
demography rates. At the end of the paper, the author made several modifications to the SIRS
model to obtain a remarkable model tracking the number of reinfections, which was then briefly
analyzed. Continuing in the same direction, a general SEIRS model counting reinfection is
investigated in this chapter. The novelty and at the same time the difficulty of this kind of
system lie in the infinite number of differential equations describing its dynamics. In this sense,
they are similar to Becker-Döring model [10, 34, 71], which describes, for example, the coagulation
and fragmentation of droplets in a condensing vapor.

The chapter is organized as follows. In the Section 1.2, we briefly present the classical SEIRS
model for infectious diseases. Subsequently, we introduce the SEIRS model that tracks the
number of reinfections, which is described by a system of infinite number of ordinary differential
equations. Then, in Section 1.3, the general model is proved to be well-posed, under quite general
conditions. The well-posedness constitutes the main and most important result of the general
model. Afterward, the attention shifts to the study of two particular cases. In Section 1.4,
we start looking into the most simple situation, where the coefficients are invariant regarding
the number of reinfections. In this case, the evolution of each class of hosts in its entirety,
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regardless of the number of reinfections, is determined by the classical SEIRS model of finite
dimension. Therefore, the coupling of the classical SEIRS system and the infinite-dimensional
system tracking reinfections present a triangular structure already noticed in [66], which renders
the analysis much easier and making it possible to obtain significant results such as the mean
number of reinfections at the asymptotic limit. Finally, in Section 1.5, the case where the
coefficients progress geometrically at each stage of reinfections is considered, and a threshold
condition is derived for the appearance of endemic equilibrium and a sufficient condition for its
uniqueness.

1.2 General SEIRS model tracking the number of reinfec-
tions

Usually, reinfection processes are represented in compartmental models by a transfer from the
recovered compartments to either the susceptible class, as in the SIS, SIRS, or SEIRS model
[67], or the infected class as in the SIRI model [94]. For example, consider a common SEIRS
(Susceptible-Exposed-Infected-Recovered-Susceptible) model for infectious diseases with demog-
raphy and disease induced mortality, which has been employed for modelling infectious diseases
with an incubation period, such as SARS-CoV-2 or Ebola [15, 83].

Ṡ = bN − βI
S

N
+ ωR− µS,

Ė = βI
S

N
− (σ + µ)E,

İ = σE − (γ + µ+ ν)I,
Ṙ = γI − (ω + µ)R,

(1.1)

where the quantity N is the total number of hosts in the system

N := S + E + I +R,

As illustrated in Figure 1.1, the model assumes that the healthy subject in the susceptible
compartment S goes through an incubation phase in the exposed compartment E after the
contact with the disease and before becoming infectious and being transferred to the infected
class I. After recovery, the subject moves to the compartment R and acquires a non-permanent
immunity, whose loss may result in further infections. The infection is characterized by the term

Figure 1.1: Flowchart of system (1.1)

β S
N I, which follows the principle of mass action law [57]. Moreover, the coefficients b and µ are

respectively the natural birth and death rate, ν the disease induced death rate, β represents the
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infectious contact rate, ω the loss of immunity, and σ−1 and γ−1 are respectively latency and
infectious period.

It should be noted that classical reinfection models enable the hosts to be repeatedly infected.
For the SEIRS model introduced above, this is represented by the loop in Figure 1.1, and the
hosts are here assumed to repeat the same infection process. However, the disease dynamics can
also be considered with regard to the number of reinfections of the hosts. Indeed, it may be
interesting to investigate how the first, second, third, and so on infections behave, with possible
heterogeneity according to the number of reinfections. To study these questions, we introduce a
general compartmental reinfection model, with the ability of considering the infection history of
the hosts.

To make our approach clearer, let us consider a simpler version of the SEIRS model 1

Ṡ = µN − βI
S

N
+ ωR− µS,

Ė = βI
S

N
− (σ + µ)E,

İ = σE − (γ + µ)I,
Ṙ = γI − (ω + µ)R.

(1.2)

which is obtained by dropping the disease-induced mortality ν in (1.1) and fixing b = µ in order
to have a constant population (as a matter of fact, one checks that for any trajectory of (1.2),
one has Ṅ = Ṡ + Ė + İ + Ṙ = µ(N − S −E − I −R) ≡ 0). After normalizing, the system (1.2)
is equivalent to

Ṡ = µ− βSI + ωR− µS,

Ė = βSI − (σ + µ)E,
İ = σE − (γ + µ)I,
Ṙ = γI − (ω + µ)R.

(1.3)

As we are interested in a system modelling the reinfection structure of (1.3), a natural way to
proceed is to divide the compartments according to the number of reinfections. This results in
the following SEIRS ODE model with infinite equations tracking the number of reinfections.

Ṡ1 = µ− βS1
∑
j⩾1 Ij − µS1,

Ṡi = ωRi−1 − βSi
∑
j⩾1 Ij − µSi, i > 1,

Ėi = βSi
∑
j⩾1 Ij − (σ + µ)Ei, i ⩾ 1,

İi = σEi − (γ + µ)Ii, i ⩾ 1,
Ṙi = γIi − (ω + µ)Ri, i ⩾ 1,

(1.4)

It is quite relevant to generalize the model (1.4) with the introduction of coefficients depending
on the number of reinfections. This leads finally to the model:

Ṡi = ωi−1Ri−1 − Si
∑
j⩾1 βi,jIj − µSi, i ⩾ 1,

Ėi = Si
∑
j⩾1 βi,jIj − (σi + µ)Ei, i ⩾ 1,

İi = σiEi − (γi + µ)Ii, i ⩾ 1,
Ṙi = γiIi − (ωi + µ)Ri, i ⩾ 1.

(1.5)

1We come back to consider the model (1.1) in Section 1.4.
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Here, R0 is defined by R0 ≡ µ
ω0

to simplify the writing of the equations. Similarly to the system
(1.3), the coefficient µ is the natural birth and death rate and βi,j , i, j ⩾ 1, are infectious contact
rates, depending both on the number of reinfections of the infectious individual i and the infected
j. On the other hand, the constants ωi represent loss of immunity, σ−1

i and γ−1
i are respectively

incubation and infectious periods, which all depend on the number of reinfection i in the general
model. Finally, notice that the normalized system (1.5) admits a corresponding denormalized
system, which is

Ṡi = ωi−1Ri−1 − Si
N

∑
j⩾1 βi,jIj − µSi, i ⩾ 1,

Ėi = Si
N

∑
j⩾1 βi,jIj − (σi + µ)Ei, i ⩾ 1,

İi = σiEi − (γi + µ)Ii, i ⩾ 1,
Ṙi = γiIi − (ωi + µ)Ri, i ⩾ 1,

(1.6)

where R0 ≡ µN
ω0

, and
N(t) :=

∑
i⩾1

(Si(t) + Ei(t) + Ii(t) +Ri(t)),

is the total number of hosts in the system (1.6). The flowchart of (1.6) is shown in Figure 1.2 as
an illustration.

For the sake of simplicity, we ignored the supplementary death rate induced by the disease ν
in the general model (1.5)-(1.6). However, in Section 1.4, the infinite model tracking reinfections
of the SEIRS system (1.2) with disease-induced mortality and varying total population will be
investigated. Before that, we now verify in the following section the well-posedness of the infinite
systems (1.5) and (1.6) that we have obtained.

Figure 1.2: Flowchart of system (1.6)
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1.3 Well-posedness of the general system

As the systems of ordinary differential equations (1.5) and (1.6) have an infinite number of
equations, the question of their well-posedness is non-trivial and will be investigated in the
present section. For the analysis, we consider the system in a Banach space setting. For this, we
define for all n ∈ N the Banach spaces

Xn := ℓ1 × · · · × ℓ1︸ ︷︷ ︸
n times

, Xn
+ := ℓ1

+ × · · · × ℓ1
+︸ ︷︷ ︸

n times

, Xn
++ := ℓ1

++ × · · · × ℓ1
++︸ ︷︷ ︸

n times

, (1.7)

where, by definition, ℓ1 is the Banach space of summable sequences of, ℓ1
+ ⊂ ℓ1 the subspace of

sequences with nonnegative values, and ℓ1
++ ⊂ ℓ1

+ for sequences with positive values. The space
Xn is endowed with the induced norm ∥ · ∥Xn such that for any x := (x1, x2, . . . , xn) ∈ Xn,
∥x∥Xn =

∑n
i=1 ∥xi∥ℓ1 .

Let us begin the analysis with a definition of the solution of system (1.5).

Definition 1.3.1. Lets 0 < T ⩽ ∞, and x0 := (Si,0, Ei,0, Ii,0, Ri,0)i⩾0 ∈ X4
+. We call solution

of (1.5) on [0, T ) any function x : [0, T ) → X4
+, t 7→ x(t) := (Si(t), Ei(t), Ii(t), Ri(t))i⩾1, such

that:

1. Every component (Si, Ei, Ii, Ri) : [0, T ) → R4
+, i ⩾ 1 is continuous and supt∈[0,T ) ∥x(t)∥X4 <

∞.

2. For all t ∈ [0, T ),

Si(t) = Si,0 +
∫ t

0

(
ωi−1Ri−1(s) − Si(s)

∑
j βi,jIj(s) − µSi(s)

)
ds, i ⩾ 1,

Ei(t) = Ei,0 +
∫ t

0

(
Si(s)

∑
j βi,jIj(s) − (σi + µ)Ei(s)

)
ds, i ⩾ 1,

Ii(t) = Ii,0 +
∫ t

0
(σiEi(s) − (γi + µ)Ii(s)) ds, i ⩾ 1,

Ri(t) = Ri,0 +
∫ t

0
(γiIi(s) − (ωi + µ)Ri(s)) ds, i ⩾ 1.

(1.8)

Under this definition, the next result proves indeed that the system (1.5) is well-posed.
In addition, it suggests that the quantities S,E, I,R do not admit, in general, a closed form
expression governing their dynamics.

Theorem 1.3.1 (Existence and uniqueness). Suppose that µ > 0, and σi, γi, ωi and βi,j are
positive and uniformly bounded with regard to i, j ⩾ 1. Then for any initial condition x0 ∈ X4

+
and any T ∈ (0,+∞), there is a unique solution x = (Si, Ei, Ii, Ri)i⩾1 of (1.5) on [0, T ).
Moreover, let us denote

S :=
∑
i⩾1

Si, E :=
∑
i⩾1

Ei, I :=
∑
i⩾1

Ii, R :=
∑
i⩾1

Ri, N = S + E + I +R,

then every component of the solution x and additionally S,E, I,R,N are continuously differen-
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tiable, and the following differential equations are satisfied.

Ṡ = µ+
∑
i⩾1

ωiRi −
∑
i,j⩾1

βi,jSiIj − µS, Ė =
∑
i,j⩾1

βi,jSiIj −
∑
i⩾1

σiEi − µE,

İ =
∑
i⩾1

σiEi −
∑
i⩾1

γiIi − µI, Ṙ =
∑
i⩾1

γiIi −
∑
i⩾1

ωiRi − µR,

Ṅ = µ(1 −N).

Proof of Theorem 1.3.1.

Existence. Let T be a positive real number, n ∈ N∗ and denote yn := (Sni , Eni , Ini , Rni )1⩽i⩽n,
the unique continuously differentiable solution on [0, T ) of the ODE:

Ṡni = ωi−1R
n
i−1 − Sni

∑n
j=1 βi,jI

n
j − µSni , Sni (0) = Si,0, 1 ⩽ i ⩽ n,

Ėni = Sni
∑n
j=1 βi,jI

n
j − (σi + µ)Eni , Eni (0) = Ei,0, 1 ⩽ i ⩽ n,

İni = σiE
n
i − (γi + µ)Ini , Ini (0) = Ii,0, 1 ⩽ i ⩽ n,

Ṙni = γiI
n
i − (ωi + µ)Rni , Rni (0) = Ri,0, 1 ⩽ i ⩽ n− 1,

Ṙnn = γnI
n
n − µRnn, Rnn(0) = Rn,0.

(1.9)

Similarly to (1.5), ω0R
n
0 ≡ µ. The 4n dimensional differential system (1.9) may be considered as

a truncation of (1.5) obtained by setting ωn = 0 hence allowing at most n reinfections.
Remark that the boundary of R4n

+ is characterized by elements y ∈ R4n
+ such that at least one

component of y is zero. Then, from the equations (1.9), at the boundary of R4n
+ the derivatives

along trajectories of (1.9) of the zero-valued components are always nonnegative, hence R4n
+ is a

positively invariant set for (1.9) and yn(t) ∈ R4n
+ for all t ∈ [0, T ) if yn(0) ∈ R4n

+ .
Let us define

Sn :=
n∑
i=1

Sni , En :=
n∑
i=1

Eni , In :=
n∑
i=1

Ini , Rn :=
n∑
i=1

Rni ,

Nn := Sn + En + In +Rn.

Then, we sum up the 4n differential equations to obtain

Ṅn =
∑

1⩽1⩽n
Ṡni (t) + Ėni (t) + İni (t) + Ṙni (t) = µ(1 −Nn),

AsNn(0) ⩽ N(0) = ∥x0∥X4 , from the last equation it is easy to see thatNn(t) ⩽ max{∥x0∥X4 , 1}.
As all components of yn(t) are nonnegative, one deduces that Sni , Eni , Ini , Rni , Sn, En, In, Rn are
upper bounded as well by c1 := max{∥x0∥X4 , 1}. We complete the solution yn ∈ R4n

+ with zero
to form the function xn = (Sni , Eni , Ini , Rni )i⩾1 taking values in X4

+ with Sni , E
n
i , I

n
i , R

n
i ≡ 0 for

i ⩾ n+1. Then, by the fact that the coefficients (ωi)i⩾1, (σi)i⩾1, (γi)i⩾1, (βi,j)i,j⩾1 are uniformly
bounded, there exists c2 ∈ R+ upper bounding the coefficients, therefore

|Ȧni (t)| ⩽ c2c1(1 + c1), n ⩾ 0, i = 1, . . . , n, t ⩾ 0, A ∈ {S,E, I,R}.

As the derivatives are uniformly bounded, thus Sni , E
n
i , I

n
i , R

n
i are equicontinuous on [0, T ).

Applying the Arzelà-Ascoli theorem [21], we extract a subsequence of index nk such that for
all A ∈ {S,E, I,R}, the sequence of function Ank

i converges uniformly to a continuous function
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Ai : [0,∞) → R+ on every compact of [0,∞) when k → ∞. Given that Nn(t) ⩽ c1, then for all
A ∈ {S,E, I,R} and nk, Ank is upper bounded by c1, which implies, taking A = I and passing to
the limit, that the series I =

∑
i⩾1 Ii(t) is also upper bounded, thus integrable on any compact

of [0,∞). Finally, after an integration of equations (1.9), for any i and t ∈ [0,∞)

Snk
i (t) = Si(0) +

∫ t

0
(ωi−1R

nk
i−1 − Snk

i

∑
j

βi,jI
nk
j − µSnk

i )ds,

Enk
i (t) = Ei(0) +

∫ t

0
(Snk
i (s)

∑
j

βi,jI
nk
j (s) − (σi + µ)Enk

i (s))ds,

Ink
i (t) = Ii(0) +

∫ t

0
(σiEnk

i (s) − (γi + µ)Ink
i (s))ds,

Rnk
i (t) = Ri(0) +

∫ t

0
(γiInk

i (s) − (ωi + µ)Rnk
i (s))ds.

Hence it is enough to consider the limit k → ∞ and the uniform convergence allows the in-
terchanging of limit and integral. Therefore, the functions Si, Ei, Ii, Ri obtained are indeed a
solution of (1.5).

Uniqueness. Let x := (Si, Ei, Ii, Ri)1⩽i and x′ := (S′
i, E

′
i, I

′
i, R

′
i)1⩽i be two functions solutions

of (1.5) sharing a same initial condition. Denote

ySi := Si − S′
i, yEi := Ei − E′

i, yIi := Ii − I ′
i, yRi := Ri −R′

i,

hence,

d|ySi |
dt

= sgn(ySi )ωi−1y
R
i−1 − sgn(ySi )

∑
j

βi,j(SiIj − S′
iI

′
j) − µ|ySi |,

d|yEi |
dt

= sgn(yEi )
∑
j

βi,j(SiIj − S′
iI

′
j) − (σi + µ)|yEi |,

d|yIi |
dt

= sgn(yIi )σiyEi − (γi + µ)|yIi |,

d|yRi |
dt

= sgn(yRi ) γiyIi − (ωi + µ)|yRi |.

Moreover, ∑
j

βi,j(SiIj − S′
iI

′
j) = Si

∑
j

βi,jy
I
j + ySi

∑
j

βi,jI
′
j .

Hence,∑
A∈{S,E,I,R}

d|yAi |
dt

= sgn(ySi )ωi−1y
R
i−1 − ωi|yRi | + γi(sgn(yRi yIi ) − 1)|yIi | + σi(sgn(yEi yIi ) − 1)|yEi |

+(sgn(yEi ) − sgn(ySi ))
∑
j

βi,j(SiIj − S′
iI

′
j) − µ(|ySi | + |yEi | + |yIi | + |yRi |)
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⩽ sgn(ySi )ωi−1y
R
i−1 − ωi|yRi | − µ(|ySi | + |yEi | + |yIi | + |yRi |)

+(sgn(yEi ) − sgn(ySi ))(Si
∑
j

βi,jy
I
j + ySi

∑
j

βi,jI
′
j)

⩽ sgn(ySi )ωi−1y
R
i−1 − ωi|yRi | − µ(|ySi | + |yEi | + |yIi | + |yRi |)

+(sgn(yEi ySi ) − 1)|ySi |
∑
j

βi,jI
′
j + (sgn(yEi ) − sgn(ySi ))Si

∑
j

βi,jy
I
j .

Therefore,
n∑
i=1

∑
A∈{S,E,I,R}

d|yAi |
dt

⩽ −µ
n∑
i=1

(|ySi | + |yEi | + |yIi | + |yRi |) +
n∑
i=1

(sgn(ySi )ωi−1y
R
i−1 − ωi|yRi |)

+2
n∑
i=1

∑
j

βi,jSi|yIj |.

By the fact that the coefficients (βi,j)i,j⩾1 are uniformly bounded with respect to i, j and that,
by definition supt∈[0,T ) ∥x(t)∥X4 < ∞, there exists c3 ∈ R+ such that 2

∑
i Siβi,j < c3 for all

j ⩾ 0. Hence,
n∑
i=1

∑
A∈{S,E,I,R}

d|yAi |
dt

⩽ −µ
n∑
i=1

(|ySi | + |yEi | + |yIi | + |yRi |) +
n∑
i=1

sgn(ySi yRi−1 − 1)ωi−1|yRi−1|

− ωn|yRn | + ω0|yR0 | + c3

n∑
j=1

|yIj |

⩽ (c3 − µ)
n∑
i=1

(|ySi | + |yEi | + |yIi | + |yRi |).

The equality
∑
i⩾1 |ySi (0)| + |yEi (0)| + |yIi (0)| + |yRi (0)| = 0 leads to

( n∑
i=1

|ySi | + |yEi | + |yIi | + |yRi |
)

(t) ⩽ (c3 − µ)
∫ t

0

(
n∑
i=1

|ySi | + |yEi | + |yIi | + |yRi |

)
ds.

Taking n to the limit n → ∞ and interchanging sum and integral (which is possible as
∑
i⩾1 |ySi |+

|yEi | + |yIi | + |yRi | is upper bounded), we obtain

(∑
i⩾1

|ySi | + |yEi | + |yIi | + |yRi |
)

(t) ⩽ c3

∫ t

0

∑
i⩾1

|ySi | + |yEi | + |yIi | + |yRi |

 ds.

Finally the Gronwall’s lemma implies∑
i⩾1

|ySi | + |yEi | + |yIi | + |yRi | ≡ 0.

and the uniqueness of the solution of (1.5). Finally, in order to prove the smoothness of the sums
S,E, I,R, the following Lemma is first required.

Lemma 1.3.2. With the hypothesis and notations of Theorem 1.3.1, the functions ϕi :=
∑
j βi,jIj
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are well-defined and continuous on [0, T ) for all i ⩾ 1.

Proof of Lemma 1.3.2. As the coefficients βi,j , σi, γi are positive and uniformly bounded with
respect to i, j and moreover the series of positive terms

∑
j Ij ,

∑
j Ej are upper bounded by

∥x(0)∥X4 , hence the partial sums
∑n
j=1 İj are uniformly bounded by a constant, leading to the

equicontinuity of the family of functions {
∑n
j=1 βi,jIj}n⩾1, for any i ⩾ 1. Then, by Arzelà-Ascoli

theorem and the pointwise convergence of partial sums
∑n
j=1 βi,jIj , the convergence is uniform,

and the limit ϕi is a continuous function on any bounded interval.

Smoothness. As the solution x is continuous, it is not difficult to see that the integrands in the
integral formulas (1.8) are continuous. Hence, any component Si, Ei, Ii, Ri of x is continuously
derivable. Moreover, the differential equations of the partial sums are given by∑

1⩽i⩽n
Ṡi = µN +

∑
2⩽i⩽n−1

ωiRi −
∑

1⩽i⩽n
Siϕi − µ

∑
1⩽i⩽n

Si,∑
1⩽i⩽n

Ėi =
∑

1⩽i⩽n
Siϕi −

∑
1⩽i⩽n

(σi + µ)Ei,∑
1⩽i⩽n

İi =
∑

1⩽i⩽n
σiEi −

∑
1⩽i⩽n

(γi + µ)Ii,∑
1⩽i⩽n

Ṙi =
∑

1⩽i⩽n
γiIi −

∑
1⩽i⩽n

(ωi + µ)Ri.

By a similar argument as before and an application of Dini’s Theorem [105], every partial sum
in the derivatives above converges uniformly. Hence, the derivatives of the partial sums also
converge uniformly. Thus, it is allowed to interchange derivation and summation, which proves
the final point of the theorem. Finally, the integrands in formulas (1.8) are continuous. Then,
the solutions are continuously differentiable, and their derivatives are given by (1.5).

To conclude the section, with a slight change in the integral formulas, we define the solution
of (1.6) similarly to Definition 1.3.1 for the normalized system (1.5). Then, the wellposed-ness
of the normalized system (1.5) implies the same for the non-normalized system (1.6).

Theorem 1.3.3. Under the same hypotheses as in Theorem 1.3.1. Then for any initial condition
x0 ∈ X4

+ and any T ∈ (0,+∞), there is a unique solution x = (Si, Ei, Ii, Ri)i⩾1 ∈ X4
+ of (1.6)

on [0, T ), whose components are continuously differentiable.

Proof. Assume that x := (Si, Ei, Ii, Ri)i⩾1 is a nonnegative solution of (1.6) on [0, T ). Let us
prove first that the total number of hosts of (1.6) is constant. By Dini’s Theorem, the partial
sum

∑n
i=1(Si + Ei + Ii + Ri) converges uniformly to N when n → +∞ (and consequently Rn

to 0 also) on any compact subset [0, T − ε] of [0, T ), for ε > 0. Hence, the same convergence is
true for the partial sum

n∑
i=1

(Ṡi + Ėi + İi + Ṙi) = µ(N −
n∑
i=1

(Si + Ei + Ii +Ri)) − ωnRn.

Therefore, taking n → +∞, Ṅ is defined and is equal to 0 on [0, T −ε]. Taking ε → 0, this proves
that any solution of (1.6) has a constant total population N on [0, T ). Dividing the system (1.6)
by N , we retrieve the normalized system (1.5) and Theorem 1.3.1 implies the wellposed-ness of
(1.6).
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1.4 Underlying reinfection structure of a common SEIRS
model

This section studies an infinite model, slightly different from (1.6), with a birth rate b ̸= µ,
an additional disease-induced mortality rate ν > 0 and coefficients βi,j , σi, γi, ωi that do not
vary with respect to the number of reinfections. In subsection 1.4.1 the infinite model with
the addition of disease related mortality ν and a birth rate b ̸= µ is presented. An easier and
explicit proof of well-posedness for non-varying parameters, based on the existence of a closed
form expression for the dynamics of S,E, I,R, may be given, as we shall see in subsection 1.4.2.
In subsection 1.4.3 results on the asymptotic behavior and stability of the steady states are
derived. In fact, the asymptotic behavior of the model can be well-described even with the
additional parameters ν and b. Moreover, from the description of the steady state, we derive
the mean numbers of reinfection at the endemic equilibrium of the model in subsection 1.4.4.
Finally, numerical simulations are computed in subsection 1.4.5 and to make the reading easier,
the proofs of several results of this section are reported in subsection 1.4.6.

1.4.1 A SEIRS model counting reinfections with varying population
As already discussed in Section 1.2, the hosts in the SEIRS model are allowed to be infected
multiple times. Hence, the SEIRS model (1.2) presents a hidden reinfection structure that we
intend to unravel in the present section. While maintaining the disease induced mortality and
keeping the coefficients invariant, we proceed by dividing the compartments in a similar fashion
as in Section 1.2 to obtain the following system tracking reinfection numbers.

Ṡi = ωRi−1 − βSi
I

N
− µSi, i ⩾ 1,

Ėi = βSi
I

N
− (σ + µ)Ei, i ⩾ 1,

İi = σEi − (γ + µ+ ν)Ii, i ⩾ 1,
Ṙi = γIi − (ω + µ)Ri, i ⩾ 1,

(1.10)

with, as in (1.5), R0(t) = b
ωN(t), and

S :=
∑
i⩾1

Si, E :=
∑
i⩾1

Ei, I :=
∑
i⩾1

Ii, R :=
∑
i⩾1

Ri, N := S + E + I +R.

Moreover, the system (1.10) is endowed with initial condition

(Si(0), Ei(0), Ii(0), Ri(0))i⩾1 = (Si,0, Ei,0, Ii,0, Ri,0)i⩾1.

Since the system (1.1) concerns the total population at each health status irrespective of their
disease history, it can be considered as a macroscopic system. Therefore, by contrast, (1.10) is
considered as the microscopic system.

1.4.2 Well-posedness
Because system (1.10) differs slightly from (1.5) due to supplementary deaths from the disease
and the varying total population, it is needed to check again the well-posedness. To this end,
we borrow the same spaces (1.7) and the definition of solution similar to Definition 1.3.1 used
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in Section 1.3. The solutions of (1.10) are again assumed to be evolving in the space X4,
and the initial conditions (Si,0, Ei,0, Ii,0, Ri,0)i⩾1 are included in X4

+. In this setting, the next
result proves that the problem is still well-posed. In addition, the solution x(t) is proved to be
positive component-wise for all t > 0 and, more interestingly, (S,E, I,R) constitutes, in fact, a
solution of the macroscopic system (1.5). Thus, in the simple case with constant coefficients, the
macroscopic quantities possess a closed form expression for their dynamics.

Theorem 1.4.1 (Existence and uniqueness). For all x0 ∈ X4
+ and any T > 0, there exists a

unique function x : [0, t) → X4
+, t 7→ (Si, Ei, Ii, Ri)i⩾1 such that:

1. Every component (Si, Ei, Ii, Ri) : [0, T ) → R4
+, i ⩾ 1 is continuous and supt∈[0,T ) ∥x(t)∥X4 <

+∞.

2. For all t ∈ [0, T ), x is a solution of the integral equations

Si(t) = Si(0) +
∫ t

0
(ωRi−1(s) − βSi(s)

I(s)
N(s) − µSi(s))ds, i ⩾ 1,

Ei(t) = Ei(0) +
∫ t

0
(βSi(s)

I(s)
N(s) − (σ + µ)Ei(s))ds, i ⩾ 1,

Ii(t) = Ii(0) +
∫ t

0
(σEi(s) − (µ+ γ + ν)Ii(s))ds, i ⩾ 1,

Ri(t) = Si(0) +
∫ t

0
(γIi(s) − (ω + µ)Ri(s))ds, i ⩾ 1.

(1.11)

Moreover,

1. every component is continuously differentiable and x is the solution of the system of differ-
ential equations (1.10) for t ∈ [0, T ).

2. If
∥E0∥ℓ1 + ∥I0∥ℓ1 =

∑
i⩾1

Ei,0 + Ii,0 > 0 (1.12)

is verified, then x(t) ∈ X4
++ for all t > 0.

3. For t ∈ [0, T ), (S,E, I,R) is a solution of the macroscopic system (1.1).

The well-posedness of system (1.10) can be proved, with some little adjustments, as in The-
orem 1.3.3 in Section 1.3 through a normalization. However, we will deliver an alternative
demonstration of Theorem 1.4.1 with the construction of an explicit solution, on the basis that
the quantities S,E, I,R of system (1.10) will be proved to admit the closed form expression (1.2)
governing their dynamics. Thus, the system presents a special triangular structure. The proof
is transferred to the subsection 1.4.6.1 to make the reading less cumbersome.

1.4.3 Steady states, stability and asymptotic behavior
In this subsection, we examine the steady states and the asymptotic behavior of the system
(1.10). As in the preceding subsection 1.4.2 the proofs of the results are reported to subsection
1.4.6 to facilitate the reading.
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Let us start by noticing that the total population of (1.10) may diverge or converge to zero.
To overcome these situations, let us study the evolution of the following normalized quantities :

S̄i(t) = Si(t)
N(t) , Ēi(t) = Ei(t)

N(t) , Īi(t) = Ii(t)
N(t) , R̄i(t) = Ri(t)

N(t) , i ⩾ 1,

S̄(t) = S(t)
N(t) , Ē(t) = E(t)

N(t) , Ī(t) = I(t)
N(t) , R̄(t) = R(t)

N(t) .

The normalized counterpart of system (1.10) is:

˙̄Si = Ṡi
N

− Si
N2 Ṅ = ωR̄i−1 − (β − ν)S̄iĪ − bS̄i,

˙̄Ei = Ėi
N

− Ei
N2 Ṅ = βS̄iĪ − (σ + b)Ēi + νĪĒi,

˙̄Ii = İi
N

− Ii
N2 Ṅ = σĒi − (γ + b+ ν)Īi + νĪĪi,

˙̄Ri = Ṙi
N

− Ri
N2 Ṅ = γĪi − (ω + b)R̄i + νĪR̄i,

(1.13)

and the counterpart of system (1.1) is

˙̄S = Ṡ

N
− S

N2 Ṅ = b− (β − ν)S̄Ī + ωR̄− bS̄,

˙̄E = Ė

N
− E

N2 Ṅ = βS̄Ī − (σ + b)Ē + νĪĒ,

˙̄I = İ

N
− I

N2 Ṅ = σĒ − (γ + b+ ν)Ī + νĪ2,

˙̄R = Ṙ

N
− R

N2 Ṅ = γĪ − (ω + b)R̄+ νĪR̄,

(1.14)

where ωR̄0 = b. Because the non-normalized system is already shown to be well-posed in
Theorem 1.4.1, it is easy to see that this implies in particular the well-posedness of the normalized
system (1.14). Again, in order to simplify reading, the proofs of all the results present in this
section are transferred to subsection 1.4.6.

Remark 1.4.2. The natural death rate µ does not appear in the normalized systems (1.13) and
(1.14).

For the normalized system (1.13), it is natural to study the trajectories x̄ := (S̄i, Ēi, Īi, R̄i)i⩾1
of (1.13) only in the invariant set

Γ := {x̄ ∈ X4
+ : ∥x̄∥X4 = 1}. (1.15)

Lemma 1.4.3. For every x̄0 ∈ Γ, the solution x̄ of (1.13) is such that

∥x̄(t)∥X4 = 1 for all t ⩾ 0. (1.16)

Proof. The proof follows easily from the equation

˙̄S + ˙̄E + ˙̄I + ˙̄R = b− b(S̄ + Ē + Ī + R̄).
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Within the invariant set Γ, the steady states of (1.13), composed of disease-free and endemic
equilibriums, are described in the following proposition.

Theorem 1.4.4 (Steady states). System (1.13) admits a unique disease-free equilibrium (DFE)

x̄DFE := (δ1
i , 0, 0, 0)i⩾1,

where δ1
i is the Kronecker delta. Moreover, define the basic reproduction number

R0 := σ

σ + b

β

γ + ν + b
. (1.17)

For R0 > 1, the system (1.13) admits a unique endemic equilibrium (EE)

x̄EE := (αi−1
ν S̄EE1 , αi−1

ν ĒEE1 , αi−1
ν ĪEE1 , αi−1

ν R̄EE1 )i⩾1,

where the coefficients αν , S̄EE1 , ĒEE1 , ĪEE1 , R̄EE1 ∈ (0, 1) are defined by

αν := ω

(β − ν)ĪEE + b

γ

ω + b− νĪEE
Sν ĪEE , Sν := β

σ + b− νĪEE
σ

γ + b+ ν − νĪEE
, (1.18a)

S̄EE1 = b

(β − ν)ĪEE + b
, ĒEE1 = βĪEE

σ + b− νĪEE
b

(β − ν)ĪEE + b
, (1.18b)

ĪEE1 = b

(β − ν)ĪEE + b
Sν ĪEE , R̄EE1 = γ

ω + b− νĪEE
b

(β − ν)ĪEE + b
Sν ĪEE , (1.18c)

and (S̄EE , ĒEE , ĪEE , R̄EE) is the unique EE of system (1.14) in the interior of {x̄ ∈ R4
+ :

∥x̄∥R4 = 1}, satisfying the equations

R0

(
1 + γ

b

ω

ω + b− νĪEE

)
=
(
β − ν

b
ĪEE + 1

)(
1 − νĪEE

σ + b

)(
1 − νĪEE

γ + ν + b

)
,

S̄EE = 1
Sν
, ĒEE = γ + ν + b− νĪEE

σ
ĪEE , R̄EE = γ

ω + b− νĪEE
ĪEE .

The proof of Theorem 1.4.4 is given in subsection 1.4.6.2. The result characterizes the EE of
(1.13) using the value ĪEE of the EE of system (1.14) that has already been described in [80].
In the particular case where the disease-induced mortality is zero, there is an explicit expression
for the value of ĪEE .

Corollary 1.4.5 (ν = 0). Assume ν = 0 and R0 > 1, then

R0 = S0 = β

γ + b

σ

σ + b
, α0 = γω

β(ω + b) − γω
(R0 − 1),

and ĪEE has an explicit expression :

ĪEE = R0 − 1
R0

1
ζ
, where ζ = (γ + b)(σ + b)(ω + b) − ωγσ

σb(ω + b) > 1.

Remark 1.4.6. The coefficient ζ is defined in the literature as the critical stability number [23].
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Finally, the asymptotic behavior of system (1.13) is well-described, as shown in the following
Theorem.

Theorem 1.4.7 (Global stability). For any x̄0 ∈ Γ (1.15), let x̄(t) = (S̄i(t), Ēi(t), Īi(t),R̄i(t))i⩾1
be the solution of the system (1.14) with initial condition x̄(0) = x̄0. The following convergence
results hold:

1. if R0 < 1,

lim
t→+∞

x̄(t) = x̄DFE ,

and the disease-free equilibrium is globally asymptotically stable in Γ.

2. if R0 > 1 and (1.12) holds,

lim
t→+∞

x̄(t) = x̄EE ,

and the endemic equilibrium is globally asymptotically stable in {x̄ ∈ X4
+ : ∥x̄∥X4 =

1 and
∑
i⩾1(Ēi + Īi) > 0}.

Theorem 1.4.7 shows that the asymptotic behavior of (1.10) is qualitatively simple. In fact,
every non-trivial solution of the system (1.10) is either converging to the unique DFE when
R0 < 1 or to the unique EE if R0 > 1 and the initial condition fulfills (1.12). In particular, this
implies the non-existence of EE for R0 < 1.

Remark 1.4.8. The proof of the convergence of the microscopic system (1.13) relies on the
global stability result of the macroscopic system (1.1), as seen in [53] for R0 < 1 and [80] for
R0 > 1.

As a side note, the asymptotic convergence of the normalized system (1.14) also enables a
complete description of the asymptotic behavior of N :

Theorem 1.4.9 (Asymptotic behavior of the total population). Let N(t) be the total number of
the population at time t of the system (1.1) corresponding to a trajectory with initial conditions
fulfilling (1.12), then

1. If b < µ, N(t) converges to 0 while t → +∞.

2. If b = µ,

(a) If ν = 0, then N(t) = N(0) for all t ⩾ 0.
(b) If ν > 0,

i. N(t) converges to a positive limit if R0 < 1.
ii. N(t) converges to 0 while t → ∞ if R0 > 1.

3. If b > µ,

(a) If b− µ > ĪEE, then N(t) diverges to +∞,
(b) If R0 > 1 and b− µ < ĪEE, then N(t) converges to 0.

Remark 1.4.10. Again, the proof of the Theorem can be found in subsection 1.4.6.4. As ĪEE ∈
(0, 1) and does not depend on µ, the case (3a) is realized for example if b < µ+ 1, and the case
(3b) is realized if b− ĪEE < µ < b.

-
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1.4.4 Mean numbers of reinfection

Thanks to Theorem 1.4.7, the system converges asymptotically towards a unique EE for R0 > 1
in the presence of the disease, which makes the epidemiological prediction easier for this model.
From the description of the EE presented in Theorem 1.4.4, it is moreover possible to obtain some
valuable insight about the final state of the epidemics according to the reinfection structure. This
kind of additional information may, for example, be used for parameters identification purpose
for epidemic modelling. The next theorem delivers such a result about the mean numbers of
reinfection in each category of the population.

Theorem 1.4.11 (Mean numbers of reinfection). Let R0 > 1, and αν , Sν be defined as in
Theorem 1.4.4. Then, ∑

i⩾1(i− 1)S̄EEi∑
i⩾1 S̄

EE
i

= αν
1 − αν

, (1.19a)∑
i⩾1 iĒ

EE
i∑

i⩾1 Ē
EE
i

=
∑
i⩾1 iĪ

EE
i∑

i⩾1 Ī
EE
i

=
∑
i⩾1 iR̄

EE
i∑

i⩾1 R̄
EE
i

= 1
1 − αν

, (1.19b)∑
i⩾1((i− 1)S̄EEi + i(ĒEEi + ĪEEi + R̄EEi )∑

i⩾1(S̄EEi + ĒEEi + ĪEEi + R̄EEi )
= 1

(1 − αν)2
b− bαν − νĪEE1

b− νĪEE
− 1

Sν
. (1.19c)

To provide some insights, the equation (1.19a) gives an expression of mean numbers of re-
infections among the susceptible at the endemic equilibrium, and (1.19b) refers to the same
values but among the exposed, infected or recovered. Finally, (1.19c) gives the mean number of
reinfections in the total population at the same EE.

Proof. Assume R0 > 1, by Theorem 1.4.4, the sequences (S̄EEi )i⩾1, (ĒEEi )i⩾1, (ĪEEi )i⩾1 and
(R̄EEi )i⩾1 are geometric with ratio αν such that 0 < αν < 1. Therefore, as |αν | < 1, we apply
the formula

∑
i⩾1 iα

i−1
ν = 1

(1−αν )2 to deduce:∑
i⩾1 iS̄

EE
i∑

i⩾1 S̄
EE
i

=
∑
i⩾1 iĒ

EE
i∑

i⩾1 Ē
EE
i

=
∑
i⩾1 iĪ

EE
i∑

i⩾1 Ī
EE
i

=
∑
i⩾1 iR̄

EE
i∑

i⩾1 R̄
EE
i

= 1
1 − αν

,

hence the formulas (1.19a) and (1.19b). Moreover,∑
i⩾1

i(S̄EEi + ĒEEi + ĪEEi + R̄EEi ) = (S̄EE1 + ĒEE1 + ĪEE1 + R̄EE1 )
∑
i⩾1

iαi−1
ν = N̄EE

1
∑
i⩾1

iαi−1
ν ,

where we denote,
N̄i := S̄i + Ēi + Īi + R̄i,

and summing up (1.13), we obtain

˙̄Ni = ωR̄i−1 − bN̄i + νĪN̄i − ωR̄i − νĪi.

Finally, at endemic equilibrium we have

N̄EE
1 = b− ωR̄EE1 − νĪEE1

b− νĪEE
= b− bαν − νĪEE1

b− νĪEE
,
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N̄EE
i =

ω(R̄EEi−1 − R̄EEi ) − νĪEEi
b− νĪEE

, i ⩾ 2.

Thus ∑
i⩾1

i(S̄EEi + ĒEEi + ĪEEi + R̄EEi ) = b− bαν − νĪEE1
b− νĪEE

1
(1 − αν)2 ,

and because
∑
i⩾1 S̄

EE
i = S̄EE = 1

Sν
, (1.19c) is verified.

In the simple case without disease-induced mortality (ν = 0), we recall that there exists an
explicit expression for the value of ĪEE and therefore also for the mean numbers of reinfections.

Proposition 1.4.12. Assume ν = 0 and R0 > 1, then:∑
i⩾1(i− 1)S̄EEi∑

i⩾1 S̄
EE
i

= γω(R0 − 1)
β(ω + b) − γωR0

, (1.20a)∑
i⩾1 iĒ

EE
i∑

i⩾1 Ē
EE
i

=
∑
i⩾1 iĪ

EE
i∑

i⩾1 Ī
EE
i

=
∑
i⩾1 iR̄

EE
i∑

i⩾1 R̄
EE
i

= β(ω + b) − γω

β(ω + b) − γωR0
, (1.20b)∑

i⩾1((i− 1)S̄EEi + i(ĒEEi + ĪEEi + R̄EEi )∑
i⩾1(S̄EEi + ĒEEi + ĪEEi + R̄EEi )

= β(ω + b)(R0 − 1)
(β(ω + b) − γωR0)R0

. (1.20c)

Remark 1.4.13. The right-hand side of the equations above are positive thanks to R0 > 1.

Proof. Assuming that ν = 0 and R0 > 1, by Corollary 1.4.5:

1
1 − α0

= 1
1 − γω

β(ω+b)−γω (R0 − 1) = β(ω + b) − γω

β(ω + b) − γωR0
,

hence,

α0

1 − α0
= γω(R0 − 1)
β(ω + b) − γωR0

.

We retrieve (1.20a) and (1.20b) by Theorem 1.4.11. Moreover, due to (1.19c) and ν = 0:∑
i⩾1

((i− 1)S̄EEi + i(ĒEEi + ĪEEi + R̄EEi ) = 1
(1 − α0)2

b− bα0

b
− 1

S0
= 1

1 − α0
− 1

R0
,

hence (1.20c).

1.4.5 Numerical simulations
With the aim of illustrating the previous results, numerical simulations of the underlying rein-
fection dynamics (1.13) are computed along the trajectories of the macroscopic system (1.14).
The parameter values are borrowed from [15]:

γ−1 = 14 days, σ−1 = 7 days,
ω−1 = 1 year, b−1 = µ−1 = 76 years, β = 0.21 days−1, and ν = 0.
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Moreover, the initial condition is chosen as Ī0 = Ī1,0 = 10−3, S0 = S1,0 = 1 − I0 and the
simulations are computed with the solver ODEINT in Python.

Figure 1.3 shows a trajectory of (1.13) and (1.14) and its evolution in each compartment up
to the index n = 5. The graphs suggest that the convergence of the macroscopic components is
slower than the convergence of microscopic ones, although the time frames during which these
components begin and stop evolving are delayed as the numbers of reinfections progress. Notice
also that the figures highlight how the oscillations in macroscopic solution are, in fact, produced
by successive waves in the different compartments of the microscopic system.

For b = µ and ν = 0, the system (1.13) is equivalent to (1.10) with N constant equals to 1.
An easy computation gives

S̄EE1
S̄EE

= bσβ

(βĪEE + b)(γ + b)(σ + b)
≃ 0.02.

This shows that, at the endemic equilibrium, only a tiny portion of susceptible hosts have never
been infected in their lifetime. Moreover, the Jacobian matrix for the system (1.14) describing
the evolution of the macroscopic components is

−βĪEE − b 0 −βS̄EE ω
βĪEE −(σ + b) βS̄EE + ĒEE 0

0 σ −(γ + b) 0
0 0 γ −(ω + b)

 ,

while all diagonal blocks of the block-triangular Jacobian matrix of the system (1.13), corre-
sponding to the evolution of a finite number of microscopic modes, are expressed by

−βĪEE − b 0 0 0
βĪEE −(σ + b) 0 0

0 σ −(γ + b) 0
0 0 γ −(ω + b)

 .

The latter matrix is diagonal, its spectrum is real and numerically approximated to {−1.01,
−1.87,−26.08,−52.17}. On the other hand, the numerical computation of the spectrum of
the former matrix, which appears to be complex, gives {−1.28 × 10−2,−68.62,−6.24 ± 3.16i}.
Hence, both matrices are Hurwitz, and the largest real part of the eigenvalues is associated to
the macroscopic evolution, as foreseen.

1.4.6 Proofs
We collect in this subsection the proofs of several results stated earlier in the chapter.

1.4.6.1 Proof of Theorem 1.4.1

The proof of Theorem 1.4.1 requires the following Lemmas.
Lemma 1.4.14. For all T ∈ (0,+∞), there exists a continuously differentiable solution x =
(Si, Ei, Ii, Ri)i⩾1 for the system (1.10) defined on [0, T ) taking values in X4

+. Moreover, (S,E, I,R)
is solution of (1.1). Finally, if (1.12) is verified, S(t), E(t), I(t), R(t) > 0 and x(t) ∈ X4

++ for
all t ∈ (0, T ).
Lemma 1.4.15. Any continuous solution of the integral equations (1.11) on [0, T ) is continuously
differentiable.
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(a) Susceptible compartments (b) Exposed compartments

(c) Infected compartments (d) Recovered compartments

Figure 1.3: Trajectories of solutions of (1.13) and (1.14)
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Lemma 1.4.16. If x = (Si, Ei, Ii, Ri)i⩾1, x′ = (S′
i, E

′
i, I

′
i, R

′
i)i⩾1 are two continuously differen-

tiable solutions of (1.10) defined on [0, T ), taking values in X4
+ and fulfilling x(0) = x′(0). Then

x = x′.

The construction of an explicit (continuously differentiable) solution is included in Lemma
1.4.14. Lemma 1.4.15 and 1.4.16 guarantee the uniqueness of the solution. This implies in
particular x(t) ∈ X4

++ when (1.12) is fulfilled.

Proof du Lemma 1.4.14.
• By Picard-Lindelöf Theorem, there is a unique solution which is maximal for the system (1.1)
evolving in R4

+ for any initial condition (S0, E0, I0, R0) ∈ R4
+. This solution is global, as it does

not blow up in finite time due to the inequality

−(µ+ ν)N ⩽ Ṅ ⩽ bN, (1.21)

which implies,
0 ⩽ N(0)e−(µ+ν)t ⩽ N(t) ⩽ N(0)ebt < +∞ for all t ⩾ 0.

Moreover, for N(0) > 0, one has N(t) > 0 for all t > 0. Let (s, e, ı, r) be the unique continuously
differentiable solution on [0, T ), 0 < T ⩽ ∞, of the system (1.1) with the initial condition
(s(0), e(0), ı(0), r(0)) ∈ R4

+ such that :

s(0) = ∥Si,0∥l1 , e(0) = ∥Ei,0∥l1 , ı(0) = ∥Ii,0∥l1 , r(0) = ∥Ri,0∥l1

and fulfilling (1.12). The equation can be rewritten in the matrix form :
ṡ
ė
ı̇
ṙ

 =


b− β ı(t)

n(t) − µ b b b+ ω

β ı(t)
n(t) −(σ + µ) 0 0
0 σ −(γ + µ+ ν) 0
0 0 γ −(ω + µ)



s
e
ı
r

 ,

with
n(t) = s(t) + e(t) + ı(t) + r(t).

An integration gives :

s(t) = s(0)e−
∫ t

0
(β ı(τ)

n(τ) +µ)dτ +
∫ t

0
(ωr(s) + bn(s))e−

∫ t

s
(β ı(τ)

n(τ) +µ)dτ
ds,

e(t) = e(0)e−(σ+µ)t +
∫ t

0
βı(τ) s(τ)

n(τ)e
−(σ+µ)(t−τ)dτ,

ı(t) = ı(0)e−(γ+µ+ν)t +
∫ t

0
σe(s)e−(γ+µ+ν)(t−s)ds,

r(t) = r(0)e−(ω+µ)t +
∫ t

0
γı(s)e−(ω+µ)(t−s)ds.

(1.22)

For nonnegative initial conditions verifying either e(0) > 0 or ı(0) > 0, it is easy to verify that the
integral formulas (1.22) imply the existence of ε > 0 such that s, e, ı, r are positive for t ∈ (0, ε).
On the other hand, let us assume that

t1 = sup{t > 0 | s > 0, e > 0, ı > 0, r > 0} < +∞.
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Then the same formulas indicate that

s(t1) > 0, e(t1) > 0, ı(t1) > 0, r(t1) > 0,

which contradicts the definition of t1 as the continuity of solution implies there exists ε1 > 0
such that the same inequality remains true for t < t1 + ε1. Hence, t1 = +∞ and

∀t > 0, s(t) > 0, e(t) > 0, ı(t) > 0, r(t) > 0.

Remark moreover that from (1.21) we deduce that N(t) ⩽ N(0)ebt for all t ⩾ 0 and s, e, ı, r are
always bounded.

• We construct now recursively the components (Si, Ei, Ii, Ri), i ⩾ 1 as solutions on [0,∞) of
the system :

Ṡi
Ėi
İi
Ṙi

 =


−(β ı

n + µ) 0 0 0
β ı
n −(σ + µ) 0 0

0 σ −(γ + µ+ ν) 0
0 0 γ −(ω + µ)



Si
Ei
Ii
Ri

+


ωRi−1

0
0
0

 (1.23)

For i = 1, thanks to ωR0 = bN , the property

∀t > 0, S1(t) > 0, E1(t) > 0, I1(t) > 0, R1(t) > 0.

can be verified with the same arguments employed for s, e, ı, r. Now, assume that the property
is verified for i− 1, integrating the equations above, we derive :

Si(t) = Si(0)e−
∫ t

0
(β ı(τ)

n(τ) +µ)dτ +
∫ t

0
ωRi−1e

−
∫ t

s
(β ı(τ)

n(τ) +µ)dτ
ds,

Ei(t) = Ei(0)e−(σ+µ)t +
∫ t

0
βı(τ)Si(τ)

n(τ) e
−(σ+µ)(t−τ)dτ,

I1(t) = I1(0)e−(γ+µ+ν)t +
∫ t

0
σEi(s)e−(γ+µ+ν)(t−s)ds,

Ri(t) = R1(0)e−(ω+µ)t +
∫ t

0
γIi(s)e−(ω+µ)(t−s)ds.

Assume the initial condition is nonnegative and verifies either e(0) > 0 or ı(0) > 0. As
ı(t) > 0, Ri−1(t) > 0 for t > 0, the integrals above imply again the existence of ε > 0 such that
Si, Ei, Ii, Ri > 0 on (0, ε). Then, by a reasoning similar to the one employed for s, e, ı, r, the
integral formulas indicate that the components cannot be canceled for t > 0, hence

Si(t) > 0, Ei(t) > 0, Ii(t) > 0, Ri(t) > 0, ∀t > 0, i ⩾ 1. (1.24)

• Let us denote

0 ⩽ sn(t) :=
n∑
i=1

Si(t) ⩽ s(t), 0 ⩽ en(t) :=
n∑
i=1

Ei(t) ⩽ e(t),

0 ⩽ ın(t) :=
n∑
i=1

Ii(t) ⩽ ı(t), 0 ⩽ rn(t) :=
n∑
i=1

Ri(t) ⩽ r(t),
(1.25)
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then (sn, en, ın, rn) is solution of:
ṡn
ėn
ı̇n
ṙn

 =


−(β ı(t)

n(t) + µ) 0 0 ω

β ı(t)
n(t) −(σ + µ) 0 0
0 σ −(γ + µ+ ν) 0
0 0 γ −(ω + µ)



sn
en
ın
rn


+ ω

(
R0 −Rn 0 0 0

)⊺
.

(1.26)

The sequences of functions (sn)n⩾1, (en)n⩾1, (ın)n⩾1 and (rn)n⩾1 are non-decreasing and boun-
ded. Therefore, they converge pointwise on [0,∞) to the limits S,E, I,R.

Let us verify then that (S,E, I,R) = (s, e, ı, r). By (1.26), (ṡn)n⩾1, (ėn)n⩾1, (ı̇n)n⩾1, (ṙn)n⩾1
are uniformly bounded with respect to n on any compact of [0,∞), thus the families of functions
{sn, n ∈ N∗}, {en, n ∈ N∗}, {ın, n ∈ N∗}, {rn, n ∈ N∗} are equicontinuous. Then the Ascoli-
Arzelà theorem states that we can extract subsequences of (sn)n⩾1, (en)n⩾1, (ın)n⩾1 and (rn)n⩾1
that converge uniformly on any compact to the continuous functions S,E, I,R. Applying Dini’s
Theorem, the convergence of (sn)n⩾1, (en)n⩾1, (ın)n⩾1, (rn)n⩾1 to S,E, I,R is uniform on any
compact of [0,∞), therefore, from the relations (1.26), it also implies the uniform convergence of
(ṡn)n⩾1, (ėn)n⩾1, (ı̇n)n⩾1, (ṙn)n⩾1 to the limits that we denote Ṡ, Ė, İ, Ṙ. Interchanging the sum
and the derivatives, we deduce that (S,E, I,R) is also a solution of the same Cauchy problem
as (s, e, ı, r), then, by uniqueness of the solution, they are indeed equal.

Proof of Lemma 1.4.15. Let T ∈ (0,∞), and x = (Si, Ei, Ii, Ri)i⩾1 be a continuous solution of
(1.10) on [0, T ) and the sequence (sn, en, ın, rn)n⩾1 defined as in (1.25). Then, for any n ⩾ 1,
(sn, en, ın, rn) is solution of the differential equations:

ṡn
ėn
ı̇n
ṙn

 =


−(β I(t)

N(t) + µ) 0 0 ω

β I(t)
N(t) −(σ + µ) 0 0
0 σ −(γ + µ+ ν) 0
0 0 γ −(ω + µ)



sn
en
ın
rn


+ ω

(
R0 −Rn 0 0 0

)⊺
.

(1.27)

As
sup

t∈[0,T )
∥x(t)∥X4 < ∞,

and sn, en, ın, rn ⩽ ∥x∥X4 , taking n → +∞, sn, en, ın and rn converge to limits that we de-
note S,E, I,R, moreover the uniform bound implies that the derivatives ṡn, ėn, ı̇n, ṙn are also
uniformly bounded by (1.27), hence the equicontinuity of (sn)n⩾1, (en)n⩾1, (ın)n⩾1, (rn)n⩾1.

Applying once again the Ascoli-Arzelà Theorem, the limits S,E, I,R are continuous, and
Dini’s theorem states that the convergence of sn, en, ın, rn is uniform on any compact subset
[0, T ), thus the same for ṡn, ėn, ı̇n, ṙn by (1.27). As the previous derivatives are continuous,
the uniform convergence also implies that Ṡ, Ė, İ, Ṙ are defined and continuous. Then, the
integrands in (1.11) are continuous, hence every component of the solution x is continuously
differentiable.

Proof of Lemma 1.4.16. The proof of Lemma 1.4.15 above implies in particular that any con-
tinuously differentiable solution x = (Si, Ei, Ii, Ri)i⩾1 of (1.10) is such that S :=

∑
i⩾1 Si,

E :=
∑
i⩾1 Ei, I :=

∑
i⩾1 Ii, R :=

∑
i⩾1 Ri fulfil the system (1.1), which admits a unique

solution. Once we retrieved the unique macroscopic solution (s, e, ı, r), (Si, Ei, Ri, Ii)i⩾1, is de-
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rived uniquely as solution of system (1.23) for i ⩾ 1. Therefore, we obtain the uniqueness of
continuously differentiable solution and Lemma 1.4.16.

1.4.6.2 Proof of Theorem 1.4.4

Let (S̄i,0, Ēi,0, Īi,0, R̄i,0)i⩾1 be a DFE of (1.13). By definition of DFE, Ei,0, Ii,0 = 0 for i ⩾ 1.
The uniqueness and value of the DFE follow then easily from the steady state equations

0 = ωR̄i−1,0 − bS̄i,0, 0 = −(σ + b)Ēi,0, 0 = −(γ + b+ ν)Īi,0, 0 = −(ω + b)R̄i,0, i ⩾ 1.

Concerning the characterization of the basic reproduction R0 of (1.13), notice that the system
is none other than an unfolded version of system (1.14) with regard to the number of reinfections.
Therefore, both systems will share the same asymptotic behavior regarding the threshold R0.
Let us compute then the R0 of (1.14) using the next-generation matrix method [32, 35]. Let
y = (Ē, Ī), thus from (1.14) the differential equations for y can be written as

ẏ = F − V

with
F =

(
βS̄Ī

0

)
, V =

(
(σ + b− νĪ)Ē

(γ + b+ ν)Ī − σĒ − νĪ2

)
.

Let F, V be the Jacobian of F , V at the DFE:

F =
(

0 β
0 0

)
, V =

(
σ + b 0
−σ γ + b+ ν

)
.

The inverse of V is
V −1 = 1

(σ + b)(γ + b+ ν)

(
γ + b+ ν 0

σ σ + b

)
.

Hence, the next-generation matrix is

FV −1 = 1
(σ + b)(γ + ν + b)

(
βσ β(σ + b)
0 0

)
.

By definition, R0 is then the spectral radius of the next-generation matrix, which is given by
(1.17).

Assume now (S̄EEi , ĒEEi , ĪEEi , R̄EEi )i⩾1 is an EE for (1.13), it is then easy to see from The-
orem 1.4.1 that (S̄EE , ĒEE , ĪEE , R̄EE), where S̄EE =

∑
i⩾1 S̄

EE
i , ĒEE =

∑
i⩾1 Ē

EE
i , ĪEE =∑

i⩾1 Ī
EE
i , R̄EE =

∑
i⩾1 R̄

EE
i , is an EE for system (1.14). For the EE of (1.14), the steady state

equations
0 = b− (β − ν)S̄EE ĪEE + ωR̄EE − bS̄EE ,

0 = βS̄EE ĪEE − (σ + b)ĒEE + νĪEEĒEE ,

0 = σĒEE − (γ + b+ ν)ĪEE + ν(ĪEE)2,

0 = γĪEE − (ω + b)R̄EE + νĪEER̄EE ,

(1.28)

imply the relations

R̄EE = γ

ω + b− νĪEE
ĪEE , ĒEE = γ + b+ ν − νĪEE

σ
ĪEE ,

βS̄EE ĪEE = (σ + b− νĪEE)ĒEE , b(1 − S̄EE) = (β − ν)S̄EE ĪEE + ωR̄EE .

(1.29)
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Summing up the four identities in (1.28), we deduce that any solution of (1.28) fulfills S̄EE +
ĒEE + ĪEE + R̄EE = 1. In addition, equations (1.29) can be rewritten as follows

R̄EE = γĪEE

ω + b− νĪEE
, ĒEE = (γ + b+ ν − νĪEE)ĪEE

σ
,

S̄EE = σ + b− νĪEE

σ

γ + b+ ν − νĪEE

β
,

and

b(1 − σ + b− νĪEE

σ

γ + b+ ν − νĪEE

β
) = (β − ν)σ + b− νĪEE

σ

γ + b+ ν − νĪEE

β
ĪEE

− ω
γ

ω + b− νĪEE
ĪEE .

The last equality can be rewritten as

1 = (β − ν

b
ĪEE + 1)σ + b− νĪEE

σ

γ + ν + b− νĪEE

β
− γ

b

ω

ω + b− νĪEE
. (1.30)

Because S̄EE , ĒEE , ĪEE , R̄EE > 0, the quantity ĪEE has to be a solution of a 4th degree poly-
nomial equation taking value in (0,max{1, ω+b

ν , σ+b
ν }). It is proved in [80] that, under the

condition R0 > 1, such a solution exists and is indeed unique in this interval. Finally, let
(S̄EE , ĒEE , ĪEE , R̄EE) be the unique EE of (1.14), the endemic equilibrium equations of (1.13)
are

0 = ωR̄EEi−1 − (β − ν)S̄EEi ĪEE − bS̄EEi

0 = βS̄EEi ĪEE − (σ + b)ĒEEi + νĪEEĒEEi

0 = σĒEEi − (γ + ν + b)ĪEEi + νĪEE ĪEEi

0 = γĪEEi − (ω + b)R̄EEi + νĪEER̄EEi .

(1.31)

We rewrite the equations

R̄EEi = γ

ω + b− νĪEE
ĪEEi , ĒEEi = γ + ν + b− νĪEE

σ
ĪEEi ,

S̄EEi = 1
βĪEE

(σ + b− νĪEE)ĒEEi = σ + b− νĪEE

β

γ + ν + b− νĪEE

σ

ĪEEi
ĪEE

,

R̄EEi−1 = (β − ν)ĪEE + b

ω
S̄EEi = (β − ν)ĪEE + b

ω

σ + b− νĪEE

β

γ + ν + b− νĪEE

σ

ω + b− νĪEE

γ

R̄EEi
ĪEE

.

Thus,

R̄EEi = ω

(β − ν)ĪEE + b

β

σ + b− νĪEE
σ

γ + ν + b− νĪEE
γ

ω + b− νĪEE
ĪEER̄EEi−1. (1.32)

Notice, the relation above is still valid if we replace (R̄EEi , R̄EEi−1) by either (ĪEEi , ĪEEi−1), (ĒEEi−1, Ē
EE
i−1)

or (S̄EEi , S̄EEi−1). Therefore, the coefficient

αν = ω

(β − ν)ĪEE + b

β

σ + b− νĪEE
σ

γ + ν + b− νĪEE
γ

ω + b− νĪEE
ĪEE ,
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governs the progression of endemic equilibrium values between the i-th and i− 1th stages of the
model, for i ⩾ 2. Denoting

Sν := β

σ + b− νĪEE
σ

γ + b+ ν − νĪEE
,

then
αν = ω

(β − ν)ĪEE + b

γ

ω + b− νĪEE
Sν Ī

EE ,

and the first line of (1.18) is proved. Moreover, if R0 > 1, the solution ĪEE fulfills by definition

(β − ν)ĪEE + b > 0, (σ + b) − νĪEE > 0,
(γ + ν + b) − νĪEE > 0, (ω + b) − νĪEE > 0.

(1.33)

Hence, αν > 0. Moreover, multiplying αν
b
γ
ω+b−νĪEE

ω before adding αν in both sides of the
equation (1.30) leads to

αν(1 + b

γ

ω + b− νĪEE

ω
) = ĪEE .

In particular, αν < 1. Hence, the series
n∑
i=1

S̄EEi = S̄EE1
∑
i⩾1

αi−1
ν ,

n∑
i=1

ĒEEi = ĒEE1
∑
i⩾1

αi−1
ν ,

n∑
i=1

ĪEEi = ĪEE1
∑
i⩾1

αi−1
ν ,

n∑
i=1

R̄EEi = R̄EE1
∑
i⩾1

αi−1
ν ,

converge absolutely, and this allows to sum up (1.31) for i ⩾ 1, from which we retrieve as expected
the equations (1.28), hence

S̄EE =
∑
i⩾1

S̄EEi , ĒEE =
∑
i⩾1

ĒEEi , ĪEE =
∑
i⩾1

ĪEEi , R̄EE =
∑
i⩾1

R̄EEi .

Finally, consider (1.31) with i = 1 and the equality ωR̄EE0 = µ, we recover the expression for
(SEE1 , EEE1 , IEE1 , REE1 ):

S̄EE1 = b

(β − ν)ĪEE + b
, ĒEE1 = βĪEE

σ + b− νĪEE
S̄EE1 , (1.34a)

ĪEE1 = σ

γ + ν + b− νĪEE
ĒEE1 , R̄EE1 = γ

ω + b− νĪEE
ĪEE1 . (1.34b)

It is easy to verify that (1.34) is equivalent to the expression for (S̄EE1 , ĒEE1 , ĪEE1 , R̄EE1 ) in (1.18).
Moreover, we can see that the value of EE of (1.13) is uniquely determined by the unique EE of
(1.14), hence the uniqueness.

1.4.6.3 Proof of Corollary 1.4.5

In the case where R0 > 1 and ν = 0, adding the first two equalities of (1.28), initially
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computed in [23], we recover

S̄EE = 1 + ω

b
R̄EE − σ + b

b
ĒEE = 1 − (γ + b)(σ + b)(ω + b) − ωγσ

σb(ω + b) ĪEE = 1 − ζĪEE .

As ĪEE > 0 by assumption, replacing S̄EE by the expression above, the second equation of (1.28)
leads to

(1 − ζĪEE) = S̄EE = σ + b

β

ĒEE

ĪEE
= 1

R0
,

which is the same equation for ĪEE as presented in the Corollary. Moreover,

α0 = ω

βĪEE + b

γ

ω + b
R0Ī

EE

= γ
b(ω+b)(βσ−(σ+b)(γ+b))
(σ+b)(ω+b)(γ+b)−σγω + b

σb(ω + b)
(σ + b)(ω + b)(γ + b) − σγω

ω

ω + b
(R0 − 1)

= γ
b(ω+b)(βσ−(σ+b)(γ+b))+b((σ+b)(ω+b)(γ+b)−σγω)

(σ+b)(ω+b)(γ+b)−σγω

σb(ω + b)
(σ + b)(ω + b)(γ + b) − σγω

ω

ω + b
(R0 − 1)

= γ((σ + b)(ω + b)(γ + b) − σγω)
b(ω + b)βσ − bσγω

σb(ω + b)
(σ + b)(ω + b)(γ + b) − σγω

ω

ω + b
(R0 − 1)

= γω

β(ω + b) − γω
(R0 − 1),

we retrieved the identity for α0 presented in the Corollary. Finally, let us verify that ζ > 1. In
fact, developing the numerator above,

ζ = b(σ + b)(ω + b) + γ(σ + b)(ω + b) − ωγσ

σb(ω + b) = b(σ + b)(ω + b) + γb(ω + b) + γσb

σb(ω + b)

>
b(σ + b)(ω + b)
σb(ω + b) > 1,

which concludes the proof of Corollary 1.4.5.

1.4.6.4 Proof of Theorem 1.4.7

The case R0 < 1.
• For the macroscopic system, it was proven in [53] that the DFE of (1.14) is globally asymp-
totically stable for R0 < 1.
• For the microscopic system, let us prove the asymptotic behavior of each component x̄i :=
(S̄i, Ēi, Īi, R̄i). As

lim
t→∞

Ī(t) = lim
t→∞

Ē(t) = lim
t→∞

R̄(t) = 0,

and
Īi(t) ⩽ Ī(t), Ēi(t) ⩽ Ē(t), R̄i(t) ⩽ R̄(t),

for all i ⩾ 1 and t ⩾ 0, thus

lim
t→∞

Īi(t) = lim
t→∞

Ēi = lim
t→∞

R̄i = 0, for all i ⩾ 1.
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Additionally, for any ε > 0, by definition there is a Tε > 0 such that, for all t ⩾ Tε,

t ⩾ Tε ⇒ Ī(t) ∈ [0, ε), R̄i(t) ∈ [0, ε) i ⩾ 1.

Let

Aε :=


−b+ νε 0 0 0
εβ −(σ + b) + εν 0 0
0 σ −(b+ γ) + εν 0
0 0 γ −(ω + b) + εν

 ,

then

˙̄xi+1 ⩽ Aεx̄i+1 + (ωε, 0, 0, 0)⊺, i ⩾ 2, t ⩾ Tε.

For sufficiently small ε, the matrix Aε is Metzler, and we may use the comparison result from
[26] to deduce that, for y solution of

ẏ = Aεy + (ωε, 0, 0, 0)⊺, y(Tε) = x̄i+1(Tε), (1.35)

we have
∀t ⩾ Tε, x̄i+1(t) ⩽ y(t).

Moreover, for any ε, the matrix Aε is Hurwitz, then any solution y of (1.35) converges to
−ωϵA−1

ε (1, 0, 0, 0)⊺ and therefore:

lim sup
t→+∞

x̄i(t) ⩽ lim sup
t→+∞

y(t) = −ωεA−1
ε (1, 0, 0, 0)⊺, i ⩾ 2.

As ε may be arbitrarily small, taking to the limits we deduce that

lim sup
t→+∞

x̄i(t) ⩽ 0.

Consequently
lim
t→∞

S̄i(t) = 0, i ⩾ 2.

Finally, remark that the following inequality is verified for i = 1 and t ⩾ 0:

˙̄x1 ⩾ A0x̄1 + b(1, 0, 0, 0)⊺,

hence
lim inf
t→+∞

x̄1(t) ⩾ −bA−1
0 (1, 0, 0, 0)⊺,

but

−bA−1
0 (1, 0, 0, 0)⊺ = −b

b(σ + b)(b+ γ)(ω + b) (−(σ + b)(γ + b)(ω + b), 0, 0, 0)⊺ = (1, 0, 0, 0)⊺,

and S1 is upper bounded by 1, thus lim
t→∞

S̄1(t) = 1 and the result for R0 < 1.

The case R0 > 1.
• For the asymptotic behavior of the macroscopic system, the global stability of the unique
endemic equilibrium (S̄EE , ĒEE , ĪEE , R̄EE) of (1.14) in R4

+ \{(S̄, Ē, Ī, R̄) ∈ R4 : E+ I = 0} has
been proven in [80] using the same geometrical approach of Li and Muldowney [75].
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• For solutions starting in the set Γ \ {x̄ ∈ X4
+ :
∑
i⩾1(Ēi + Īi) = 0}, let us prove the asymptotic

convergence to the endemic equilibrium of (1.13) recursively using the asymptotic result of the
macroscopic counterpart. For i = 1, we have

˙̄S1 = b− (β − ν)ĪS̄1 − bS̄1,

˙̄E1 = βĪS̄1 − (σ + b)Ē1 + νĪĒ1,

˙̄I1 = σĒ1 − (γ + ν + b)Ī1 + νĪĪ1,

˙̄R1 = γĪ1 − (ω + b)R̄1 + +νĪR̄1.

(1.36)

Let ε be any positive number and Tε > 0 such that

t ⩾ Tε ⇒ Ī(t) − ĪEE ∈ (−ε, ε).

For all t ⩾ Tε, let

Bε :=

−β(ĪEE−ε)+ν(ĪEE+ε)−b 0 0 0
β(ĪEE+ε) −(σ+b)+ν(ĪEE+ε) 0 0

0 σ −(γ+ν+b)+ν(ĪEE+ε) 0
0 0 γ −(ω+b)+ν(ĪEE+ε)

,
then, (

˙̄S1
˙̄E1

˙̄I1
˙̄R1

)⊺
⩽ Bε

(
S̄1 Ē1 Ī1 R̄1

)⊺ +
(
b 0 0 0

)⊺
.

For all ε > 0, the matrix Bε is Metzler. Let x̄1 be a solution of system (1.36) and y be the
solution of

ẏ = Bεy + b(1, 0, 0, 0)⊺, y(Tε) = x̄1(Tε). (1.38)

the comparison principle [26] gives,

∀t ⩾ Tε, x̄1(t) ⩽ y(t),

where the vector inequality is interpreted component-wise. Moreover, by (1.33), for sufficiently
small ε > 0 the matrixBε is Hurwitz and every solution y of (1.38) converges to −bB−1

ε (1, 0, 0, 0)⊺.
Therefore:

lim sup
t→+∞

x̄1(t) ⩽ lim sup
t→+∞

y(t) = −bB−1
0 (1, 0, 0, 0)⊺.

then, replacing ε by −ε, the same reasoning may be used to obtain :

lim inf
t→+∞

x̄1(t) ⩾ −bB−1
0 (1, 0, 0, 0)⊺.

Hence finally:

lim inf
t→+∞

x̄1(t) = lim sup
t→+∞

x̄1(t) = lim
t→+∞

x̄1(t) = −bB−1
0 (1, 0, 0, 0)⊺.
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Thus x̄1(t) converges to −bB−1
0 (1, 0, 0, 0)⊺, that is,

−bB−1
0 (1, 0, 0, 0)⊺ =


b

(β−ν)ĪEE+b
bβĪEE

(σ+b−νĪEE)((β−ν)ĪEE+b)
bβĪEEσ

(σ+b−νĪEE)(γ+ν+b−νĪEE)((β−ν)ĪEE+b)
bσγβĪEE

(σ+b−νĪEE)(γ+ν+b−νĪEE)(ω+b−νĪEE)((β−ν)ĪEE+b)

 .

By (1.34) the convergence is verified for i = 1.
Assuming now that the convergence is true for i ⩾ 1 and let us prove that it implies the same

for i+ 1. Let x̄i+1(t) = (S̄i+1(t), Ēi+1(t), Īi+1(t), R̄i+1(t)), ε be any positive number and Tε > 0
such that

t ⩾ Tε ⇒ Ī(t) − ĪEE ∈ (−ε, ε), R̄i − R̄EEi ∈ (−ε, ε).

Then, for all t ⩾ Tε,

˙̄xi+1(t) ⩽ Bεx̄i+1(t) + (ω(R̄EEi + ϵ), 0, 0, 0)⊺.

Similarly to case i = 1, we have:

lim sup
t→+∞

x̄i+1(t) ⩽ −bB−1
0 (ωR̄EEi , 0, 0, 0)⊺,

and
lim inf
t→+∞

x̄i+1(t) ⩾ −bB−1
0 (ωR̄EEi , 0, 0, 0)⊺.

Thus:
lim inf
t→+∞

x̄i+1(t) = lim sup
t→+∞

x̄i+1(t) = lim
t→+∞

x̄i+1(t) = −bB−1
0 (ωR̄EEi , 0, 0, 0)⊺

consequently x̄i+1(t) converges to −bB−1
0 (ωR̄EEi , 0, 0, 0)⊺, which equals to

−bB−1
0 (ωR̄EEi , 0, 0, 0)⊺ = Ki

 (γ+ν+b−νĪEE)(σ+b−νĪEE)(ω+b−νĪEE)
βĪEE(γ+ν+b−νĪEE)(ω+b−νĪEE)

βĪEEσ(ω+b−νĪEE)
σγβĪEE

,
where

Ki = ωR̄EEi
(σ + b− νĪEE)(γ + ν + b− νĪEE)(ω + b− νĪEE)(βĪEE + b− νĪEE)

.

Finally, thanks to (1.32), the convergence is verified for i+ 1. Hence, the convergence is demon-
strated.

Global asymptotic stability properties. We proved that the solutions of (1.10) converge
component-wise to either the DFE or the EE depending on the value of R0. As the solutions
are moreover bounded, evolving in the invariant set Γ, this implies the convergence in X4. In
this setting, the DFE (resp. EE) is moreover stable for R0 < 1 (resp. R0 > 1) thanks to the
stability result proved in [55, Theorem 3.3.2] for semigroups.

Indeed, let X be a complete metric space and T (t) : X → X be a Cr-semigroup, r ⩾ 0. If
the semigroup T (t) is moreover asymptotically smooth, i.e., for any nonempty, closed, bounded
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set B ⊂ X such that T (t)B ⊂ B, there is a compact set C ⊂ B such that C attracts B. Then, in
particular, [55, Theorem 3.3.2] states that any compact invariant set J attracting points locally
is stable if and only if there is a bounded neighborhood W of J such that T (t)W ⊂ W, t ⩾ 0,
and J attracts compact sets of W .

Taking X = Γ, which is complete, the well-posedness of the system (1.10) implies that
it generates a C0-semigroup T (t). The asymptotic smoothness can be easily derived, as any
trajectory of (1.10) is either attracted to the DFE or EE.

• For R0 < 1, it is sufficient to take Γ as the positively invariant set corresponding to W in
the Theorem and the DFE as the invariant attracting set J . As the DFE attracts globally
in Γ, then it attracts a fortiori every compact subset of Γ. Therefore, the DFE is stable for
R0 < 1.

• For R0 > 1, {x̄ ∈ X4
+ : ∥x̄∥X4 = 1 and

∑
i⩾1(Ēi + Īi) > 0} is a suitable candidate for the

positively invariant set W , and as the EE attracts globally W , it is stable.

To conclude, the DFE (resp. EE) is globally asymptotically stable in Γ for R0 < 1 (resp. in
{x̄ ∈ X4

+ : ∥x̄∥X4 = 1 and
∑
i⩾1(Ēi + Īi) > 0} for R0 > 1).

1.4.6.5 Proof of Theorem 1.4.9

• The assertions 1. and 2.(a) are evident due to

Ṅ(t) = (b− µ)N(t) − νI(t).

• If b = µ and R0 > 1, the Theorem 1.4.7 establishes that Ī(t) converges to a positive limit ĪEE .
Rewriting the differential equation in this case, we have

Ṅ = −νI(t) = −νĪ(t)N(t).

Thus, let ε be a positive number, for sufficiently large t, Ṅ verifies

Ṅ ⩽ −ν(ĪEE − ε)N(t).

It is then sufficient to take ε small enough to have ĪEE − ε > 0 and 2.(b).ii.
• For the case 2.(b).i (i.e., b = µ and R0 < 1), Ī converges exponentially to 0 by the proof of
Theorem 1.4.7. Hence, taking t to the limit t → +∞, there are c1, c2 > 0 such that

−νc1e
−c2tN ⩽ Ṅ ⩽ 0,

applying then the logarithm, we obtain

d

dt
logN ⩾ ν

c1

c2

d

dt
e−c2t,

thus
logN(t) ⩾ logN(0) + ν

c1

c2
(e−c2t − 1) ⩾ logN(0) − ν

c1

c2
,

and finally :
N(t) ⩾ N(0)e−ν c1

c2 > 0.
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N(t) is therefore non-increasing and bounded from below by a positive quantity, and 2.(b).i is
proved.
• If b > µ and b− µ > ĪEE , then for all ε > 0 and t > 0 large enough:(

b− µ− ν(ĪEE + ε)
)
N ⩽ Ṅ ,

therefore, we obtain b− µ− ν(ĪEE + ε) > 0 and 3.(a) for ε sufficiently small.
• Finally, for the case b − µ < ĪEE , we consider −ε instead of ε in the computation above to
derive 3.(b).

1.5 Coefficients with geometric progression

We consider in this section the system (1.5) with coefficients following the geometric progression

βi,j = βρiSρ
j
I , ωi = ωρiR, σi = σ, γi = γ,

and β, σ, γ, ω > 0, 0 ⩽ ρR, ρS , ρI ⩽ 1. In other words, there is a geometrical decrease in sus-
ceptibility in a proportion of ρS , infectivity in a proportion of ρI and an increase in immunity
in a proportion of ρR at every infection. The quite natural assumption on the model, which
motivates the study, is that every reinfection strengthens the infected host’s immunity and hence
decreases its susceptibility and infectivity with regard to the disease, and slows down the im-
munity waning. Moreover, it is assumed that all these decays are exponential with respect to
the number of reinfections. Last, we assume here that the incubation rate σ and the recovery
rate ω do not depend upon the number of reinfections (but such hypotheses may be considered
if needed). This leads to the system :

Ṡi = ωρi−1
R Ri−1 − βρiSSi

∑
jρ
j
IIj − µSi, i ⩾ 1,

Ėi = βρiSSi
∑
jρ
j
IIj − (σ + µ)Ei, i ⩾ 1,

İi = σEi − (γ + µ)Ii, i ⩾ 1,
Ṙi = γIi − (ωρiR + µ)Ri, i ⩾ 1,

(1.40)

where we have the equality R0 = µ
ω . The macroscopic quantities are then solutions of the

differential system
Ṡ = µ− β

∑
i

ρiSSi
∑
j

ρjIIj + ω
∑
i

ρiRRi − µS,

Ė = β
∑
i

ρiSSi
∑
j

ρjIIj − (σ + µ)E,

İ = σE − (γ + µ)I,

Ṙ = γI − ω
∑
i

ρiRRi − µR.

(1.41)

The equations above show that there is apparently no closed form formula for the macroscopic
behavior. Therefore, the case where the coefficients follow the geometric progression is more
intricate for the analysis. However, we were able to derive a threshold for the appearance of
endemic equilibrium, which is the content of the subsection 1.5.1 below.
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1.5.1 Equilibrium, basic reproduction number

Theorem 1.5.1. Define R0 := β
γ+µ

σ
σ+µρIρS and δ := β

γ+µ
σ

σ+µ
ρI

ρS
. System (1.40) has a unique

disease-free equilibrium xDFE := (δ1i, 0, 0, 0)i⩾1. When R0 < 1, there is no endemic equilibrium.
The existence of endemic equilibrium is guaranteed for R0 > 1 and moreover its uniqueness for
R0 > ( δ

1−δ )2.

Proof. Existence.

System (1.40) possesses only one DFE which is (δ1
i , 0, 0, 0)i⩾1. At any endemic equilibrium

(SEEi , EEEi , IEEi , REEi )i⩾1, the derivatives cancel out, and the equilibrium point fulfills the equa-
tions below

0 = ωρi−1
R REEi−1 − βρiSS

EE
i

∑
j

ρjII
EE
j − µSEEi , i ⩾ 1,

0 = βρiSS
EE
i

∑
j

ρjII
EE
j − (σ + µ)EEEi , i ⩾ 1,

0 = σEEEi − (γ + µ)IEEi , i ⩾ 1,
0 = γIEEi − (ωρiR + µ)REEi , i ⩾ 1.

(1.42)

Denoting IEE :=
∑
i ρ
i
II
EE
i , then IEE must be < 1 in order to be an equilibrium value that is

realistic. From the equations (1.42) we deduce the relation

REEi = γ

ωρiR + µ
IEEi , IEEi = σ

γ + µ
EEEi , EEEi = βρiSI

EE

σ + µ
SEEi , SEEi = ωρi−1

R

βρiSI
EE + µ

REEi−1,

hence, for i ⩾ 2,

REEi = γ

γ + µ

σ

σ + µ

βρjSI
EE

βρjSI
EE + µ

ωρj−1
R

ωρjR + µ
REEi−1 = αiR

EE
i−1. (1.43)

Furthermore, as R0 = µ
ω ,

REEi = µ

ω

i∏
j=1

(
γ

γ + µ

σ

σ + µ

βρjSI
EE

βρjSI
EE + µ

ωρj−1
R

ωρjR + µ

)
, i ⩾ 1.

Define

Φi(IEE) :=
i∏

j=1

(
γ

γ + µ

σ

σ + µ

βρjSI
EE

βρjSI
EE + µ

ωρj−1
R

ωρjR + µ

)
.

Hence for all i ⩾ 1,

REEi = µ

ω
Φi(IEE), IEEi = µ+ ωρiR

γ
REEi = µ+ ωρiR

γ

µ

ω
Φi(IEE),

IEE =
∑
i⩾1

ρiII
EE
i = µ

ω

∑
i⩾1

ρiI
µ+ ωρiR

γ
Φi(IEE) := Φ(IEE),
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with the expression of Φ(x) defined by

Φ(x) = µ

ω

∑
i⩾1

( γ

γ + µ

σ

σ + µ
)iρiI(

i∏
j=1

βρjSx

βρjSx+ µ
)(

i∏
j=1

ωρj−1
R

ωρjR + µ
)µ+ ωρiR

γ

= µ

γ

∑
i⩾1

ρiI(
γ

γ + µ

σ

σ + µ
)i(

i∏
j=1

βρjSx

βρjSx+ µ
)(
i−1∏
j=1

ωρjR
ωρjR + µ

).

Let us fix x = 0, thus Φ(0) = 0 by the previous formula. For x = 1, we have

Φ(1) =
∑
i⩾1

µ

γ
ρiI(

γ

γ + µ

σ

σ + µ
)i(

i−1∏
j=1

ωρjR
ωρjR + µ

)(
i∏

j=1

βρjS
βρjS + µ

)

⩽
µ

γ

ωρR + µ

ωρR

∑
i⩾1

(ρI
γ

γ + µ

σ

σ + µ

ωρR
ωρR + µ

βρS
βρS + µ

)i

⩽
µ

γ

ωρR + µ

ωρR

ρIγσωρRβρS
(γ + µ)(σ + µ)(ωρR + µ)(βρS + µ) − ρIγσωρRβρS

⩽
µ(ωρR + µ)ρIσβρS

(γ + µ)(σ + µ)(ωρR + µ)(βρS + µ) − ρIγσωρRβρS

⩽
µ(ωρR + µ)σβρS

(γ + µ)(σ + µ)(ωρR + µ)(βρS + µ) − γσωρRβρS
< 1.

Additionally,

Φ′(0) = a1
ρSβ

µ
= µ

γ
ρI

γ

γ + µ

σ

σ + µ

ρSβ

µ
= β

γ + µ

σ

σ + µ
ρIρS .

Thus for R0 := β
γ+µ

σ
σ+µρIρS > 1, Φ(x) > x on the right of the point x = 0. Therefore, by the

fact that Φ(1) < 1, Φ(x) has at least a fixed point in [0, 1], hence the existence of at least one
equilibrium for the system (1.40) in the case when R0 > 1.

Let us consider the case β
γ+µ

σ
σ+µρIρS < 1. Let θ be θ := ρI( γ

γ+µ
σ

σ+µ ) such that

Φ(x) = µ

γ

∑
i⩾1

θi
i∏

j=1

(
βρjSx

βρjSx+ µ

)
i−1∏
j=1

(
ωρjR

ωρjR + µ

)
,

therefore

Φ(x) ⩽ µ

γ

∑
i⩾1

θi( βρSx

βρSx+ µ
)i ⩽ µ

γ

θβρSx

βρSx+ µ− θβρSx
.

Assuming then 0 < x < 1 and Φ(x) = x. Divide the inequality by x on both sides

1 ⩽
µ

γ

θβρS
(1 − θ)βρSx+ µ

, hence (1 − θ)βρSx ⩽ µ(θβρS
γ

− 1),

however we have
θβρS
γ

− 1 = β

γ + µ

γ

γ + µ
ρIρS − 1 = R0 − 1.
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Hence the previous inequality could not be fulfilled if R0 < 1. As a consequence, there is no
endemic equilibrium in this case.

Uniqueness.

• Bounding Φ′

Defining
φ(x) := βx

βx+ µ
,

it is then easy to prove that, for all x > 0,

0 < φ(x) < min
{
β

µ
x, 1
}
.

The function φ is positive, increasing, and concave.
On the other hand the function Φ can be rewritten as

Φ(x) = µ

γ

∑
i⩾1

(
σ

σ + µ

γ

γ + µ
ρI

)ii−1∏
j=1

ωρjR
ωρjR + µ

 i∏
j=1

φ(ρjSx)

 . (1.44)

For all a > 0, denote φa : x → φ(ax), thus for all i ⩾ 1, one has

d

dx

 i∏
j=1

φ(ρjSx)

 =
i∑

j=1
φ(ρSx) . . . φ(ρj−1

S x)φ′
ρj

S

(x)φ(ρj−1
S x) . . . φ(ρiSx). (1.45)

and the derivation of ϕa led to

φ′
a(x) = βaµ

(βax+ µ)2 = a

b

(βbx+ µ)2

(βax+ µ)2φ
′
b(x) = b

a

(
1 + µ

βbx

1 + µ
βax

)2

φ′
b(x).

In particular, while φ and its derivative are positive, if 0 < a ⩽ b, then for all x ⩾ 0 :

φ′
a(x) ⩽ b

a
φ′
b(x).

Thus, from (1.45) and the fact that ρjS ⩽ ρS (because ρS ⩽ 1):

d

dx

 i∏
j=1

φ(ρjSx)

 ⩽ φ(ρSx)i−1
i∑

j=1
φ′
ρj

S

(x) ⩽ φ(ρSx)i−1
i∑

j=1
ρ1−j
S φ′

ρS
(x)

⩽ iφ(ρSx)i−1φ′
ρS

(x)ρ−(i−1)
S = d

dx
(φiρS

(x))ρSρ−i
S .

Then the derivative of (1.44) is, for all x > 0

dΦ(x)
dx

<
µ

γ

∑
i⩾1

(
σ

σ + µ

γ

γ + µ
ρI

)i
d

dx

 i∏
j=1

φρj
S
(x)

 ⩽
µρS
γ

d

dx

∑
i⩾1

(
σ

σ + µ

γ

γ + µ

ρI
ρS
φρS

(x)
)i .

The computations of the series and its derivative lead to
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Lemma 1.5.2. Assuming δφ(ρS) ∈ (0, 1) with δ defined as

δ := σ

σ + µ

γ

γ + µ

ρI
ρS
. (1.46)

For all x > 0,

dΦ(x)
dx

<
µρS
γ

d

dx

(
δφρS

(x)
1 − δφρS

(x)

)
= µρS

γ

d

dx

(
δβρSx

(1 − δ)βρSx+ µ

)
= µρS

γ

δβρSµ

((1 − δ)βρSx+ µ)2 .

Remark that the upper bound above is exact for x = 0. Indeed,

Φ′(0) = δβρ2
S

γ
= σ

σ + µ

µ

γ + µ
βρIρS =: R0.

• Bounding Φ
Thanks to (1.44) and the fact that φ is increasing, one has for all x > 0

Φ(x) < µ

γ

∑
i⩾1

(
σ

σ + µ

γ

γ + µ
ρI

)i i∏
j=1

φ(ρjSx)

 ⩽
µ

γ

∑
i⩾1

(
σ

σ + µ

γ

γ + µ
ρIφ(ρSx)

)i
= µ

γ

δ′φ(ρSx)
1 − δ′φ(ρSx)

= µ

γ

δ′βρSx

(1 − δ′)βρSx+ µ
, where δ′ := σ

σ + µ

γ

γ + µ
ρI = ρSδ.

On the other side, we derive a lower bound for Φ by retaining only the first term of the series.
The next lemma summarizes this result :

Lemma 1.5.3. For all x > 0,

µ

γ

δ′βρSx

βρSx+ µ
< Φ(x) < µ

γ

δ′βρSx

(1 − δ′)βρSx+ µ
.

Considering now the rational function below

ψ(x) := µ

γ

δ′βρSx

βρSx+ µ
.

As well as φ studied previously, the function ψ is positive, increasing, and concave. Moreover,
the result of lemma 1.5.2 and 1.5.3 can be expressed as following :

ψ(x) < Φ(x) < 1
1 − δ′ψ((1 − δ′)x), Φ′(x) < ψ′((1 − δ)x), x > 0.

• Uniqueness of the fixed point
The following result below is required.

Lemma 1.5.4. Assume,

R0 = Φ′(0) = δ′βρS
γ

> 1.

Let xEE be the unique positive value such that ψ(xEE) = xEE. Then,

ψ′((1 − δ)xEE) ⩽ 1 ⇒ ∃! xEE > 0, Φ(xEE) = xEE . (1.47)
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Proof of Lemma 1.47. Indeed, at any point x ∈ (0, xEE), one has x < ψ(x) < Φ(x). Every fixed
point of the function Φ belongs then to the interval (xEE ,+∞). As ψ is concave, then for every
point x of this interval

1 ⩾ ψ′((1 − δ)xEE) > ψ′((1 − δ)x) > Φ′(x) > 0.

The fixed point of Φ is then unique (and belongs to (xEE ,+∞)) if the condition (1.47) is fulfilled
(One may also obtain another estimation using Lemma 1.5.3).

By definition, xEE fulfills
µ

γ

δ′βρS
βρSxEE + µ

= 1,

then,
xEE = µ

βρS

(
δ′βρS
γ

− 1
)
.

and

ψ′((1−δ)xEE) = µ

γ

δ′βρSµ

((1 − δ)βρSxEE + µ)2 = R0

((1 − δ)(R0 − 1) + 1)2 = R0

(1 − δ)2R2
0 + 2δ(1 − δ)R0 + δ2 .

the condition (1.47) is thus equivalent to

R0

((1 − δ)R0 + δ)2 < 1,

Therefore the uniqueness of the fixed point and consequently uniqueness of the endemic equilib-
rium are guaranteed for R0 > max

{
1,
(

δ
1−δ

)2
}

.
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Chapter 2

Distinguishing primary and
secondary infections: a two-stage
reinfection model

2.1 Introduction

This chapter is intended for the study of reinfection models where all reinfections occur along
identical characteristics, which are different from the characteristics of the primary infection.
The motivation for this study comes from the observation that, in most of the existing mod-
els for reinfection, the infection and reinfection processes are assumed to behave essentially the
same, and there is no comprehensive investigation into the possible consequences of heterogene-
ity between the primary infections and reinfections. This is because in the standard reinfection
models [15, 67], the infected often belong to the same compartment regardless of their history of
infections, and these types of models are usually not suitable for considering disease with differ-
ent reinfection behaviors. Nevertheless, several works have considered reinfection models with
partial immunity, which is a simple example of the kind of heterogeneity that we are concerned
about. Notably, a SIRI model with partial immunity has been thoroughly analyzed in [51]. It
is demonstrated therein, among other things, the existence of a threshold on the reinfection
parameter by which the system transits from low-infectivity to high-infectivity equilibrium. On
the other hand, a simple SIRI reinfection model with partial immunity and without demography
effects has been studied in [94], exhibiting bistability for R0 < 1.

To gain further insight into the effects of heterogeneity between infection and reinfection,
we introduce in this chapter a two-stage SEIRS model, illustrated by the flowchart in Figure
2.1. As in the standard SEIRS model, the classes of compartments S, E, I, R represent in this
case respectively the susceptible, exposed, infectious and recovered. The SEIRS models take the
assumption that there exists a latent period for hosts infected by the disease before becoming
infectious [15]. The specificity of the model that we have introduced is that it separates primary
infections from the subsequent infections. This is rendered through the subscripts 1 and r (as
‘remaining’). In terms of differential equations, we obtain the following system for the two-stage

49
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Figure 2.1: Flowchart of the two-stage SEIRS model

SEIRS model:
Ṡ1 = µ− (β1,1I1 + β1,rIr + µ)S1,

Ė1 = (β1,1I1 + β1,rIr)S1 − (σ1 + µ)E1,

İ1 = σ1E1 − (γ1 + µ)I1,

Ṙ1 = γ1I1 − (ω1 + µ)R1,

Ṡr = ω1R1 + ωrRr − (βr,1I1 + βr,rIr + µ)Sr,
Ėr = (βr,1I1 + βr,rIr)Sr − (σr + µ)Er,
İr = σrEr − (γr + µ)Ir,
Ṙr = γrIr − (ωr + µ)Rr,

(2.1)

where the parameter µ is the constant natural birth rate, hence the model considers a constant
total population, which can be assumed to be equal to one. Next, β1,1, β1,r, βr,1, βr,r are transmis-
sion rates, respectively for primary infections acquired from primary infected and from reinfected;
and for reinfections transmitted by primary infected and by reinfected. The parameters σ1, σr
are respectively the rates at which the primary and secondary exposed hosts become infective.
Moreover, γ1, γr are rates of recovery and ω1, ωr represent the loss of immunity, depending again
on whether the infection is primary or secondary.

In the spirit of Chapter 1, the two-stage reinfection models are initially derived from the
study of the infinite reinfection models tracking the number of reinfection. In fact, the present
model can be considered as the macroscopic model corresponding to the general infinite model
(1.5), in the case where the epidemiological parameters differ only between the primary infection
and the reinfections. Therefore, we may expect to find in the same way results somehow similar
to the ones in Section 1.4 of Chapter 1, taking advantage again of the existence of a macroscopic
counterpart to the infinite model. For instance, the endemic equilibriums of the model and
the mean number of reinfections at equilibrium of the infinite model are again topics worth
investigating. However, these results depend strongly on the properties of the macroscopic two-
stage model, which will be explored in the present chapter.

It is noteworthy to mention that, concurrently with our study and driven by the need for
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more complex models during the COVID-19 pandemic, two-stage reinfection models have been
independently proposed in several papers of mathematical epidemiology. In fact, an age-specific
two-stage SEIRS model has been utilized for statistical inference of infection levels in Covid-
19 epidemics [18]. Moreover, in [63] Kaklamanos et al. investigated the backward bifurcations
and the different time scales regarding the dynamics of a two-stage SIRS model, which appears
to be very similar to our own albeit with a lower level of complexity. Furthermore, two-stage
models have also found their application for the modelling of animal infections, such as bovine
tuberculosis (BTB) or Aujesky’s disease (pseudorabies virus) in pigs [7, 54]. These considerations
underscore the significance of the two-stage model for diseases that permit reinfections.

In the present chapter, we are mainly interested in describing the steady states of the model,
how the parameters affect the reinfection and whether there is a reinfection threshold similar
to the one underlined by Gomes et al. [50]. In a second time, the persistence of the system is
analyzed in the mathematical framework developed in [49]. Persistence is a well-known topic in
mathematical biology [108, 112], and particularly in epidemiology, as it is concerned with the issue
of disease eradication [50, 82]. Furthermore, the persistence result may in some instances serve
as the initial step in establishing asymptotic behavior results, in case where the direct Lyapunov
method fails [74, 75]. Finally, the question of asymptotic behavior of the epidemiological models
is also studied. As we shall see, the two-stage models often exhibit multistability, and this makes
the analysis of asymptotic behavior a non-trivial problem.

The analysis begins in Section 2.2 with the description of the disease-free equilibrium and the
computation of the basic reproduction number of the model. Next, a comprehensive result on the
existence and number of endemic equilibriums is established in Section 2.3. In fact, a quite precise
description is provided that characterizes the number of endemic equilibriums, according to the
parameter values. It is shown that there may exist up to three distinct endemic equilibriums
when the basic reproduction number is larger than one, and up to two such equilibriums when it
is smaller or equal than one. The result and the simulations displayed later in the chapter allow
us to discuss the existence of a reinfection threshold for the two-stage model. In particular, we
argue that our findings shed some lights on the controversy that opposed Gomes et al. to Breban
and Blower [20] about the exact nature of the threshold. Disease persistence of the model is then
considered in Section 2.4, and an extensive set of numerical simulations of endemic equilibriums
and trajectories are computed in Section 2.5 for each possible situation. In Section 2.6, the
same analysis is repeated for a simpler two-stage SIS model of reduced complexity, for which one
checks that the same results persist in this most simplified reinfection model with two stages.
Finally, in Section 2.7, we introduce and discuss a number of tools for the analysis of asymptotic
behavior within a multistable setting, and we deliver a result on the convergence to equilibrium
of compartmental models presenting partial immunity, which can be considered as a particular
case of the general two-stage model. The proof of this result is based on Li-Muldowney theory
[75].

2.2 Disease-free equilibrium and basic reproduction num-
ber R0

We begin our investigation with an easy computation showing that the system (2.1) admits a
unique disease-free equilibrium, i.e., an equilibrium in which E1 = I1 = Er = Ir = 0. The value
of the equilibrium is given by

E0 := (1, 0, 0, 0, 0, 0, 0, 0).
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Additionally, we may characterize the basic reproduction number R0 by the threshold condition
for local stability of the DFE. Remarkably, from the expression below, R0 depends solely on
coefficients intervening in the primary infection.

Proposition 2.2.1. System (2.1) admits the unique disease-free equilibrium (1, 0, 0, 0, 0, 0, 0, 0).
Moreover, denoting

R0 := β1,1

γ1 + µ

σ1

σ1 + µ
, (2.2)

the DFE is locally asymptotically stable for R0 < 1 and unstable when R0 > 1.

Proof. By definition, E1 = I1 = Er = Ir = 0 at disease-free equilibrium, which means that any
DFE E0 is of the form

E0 = (S0
1 , 0, 0, R0

1, S
0
r , 0, 0, R0

1).

Moreover, the remaining values S0
1 , R

0
1, S

0
r , R

0
1 of the steady state fulfill the equations

µ− µS∗
1 = 0, −(ω1 + µ)R∗

1 = 0, ω1R
∗
1 + ωrR

∗
r − µS∗

r = 0, −(ωr + µ)R∗
r = 0.

Hence, S0
1 = 1 and R0

1 = S0
r = R0

1 = 0. The Jacobian of the system (2.1) at the DFE is

A :=



−µ 0 −β1,1 0 0 0 −β1,r 0
0 −(σ1 + µ) β1,1 0 0 0 β1,r 0
0 σ1 −(γ1 + µ) 0 0 0 0 0
0 0 γ1 −(ω1 + µ) 0 0 0 0
0 0 0 ω1 −µ 0 0 ωr
0 0 0 0 0 −(σr + µ) 0 0
0 0 0 0 0 σr −(γr + µ) 0
0 0 0 0 0 0 γr −(ωr + µ)


.

Let us compute the characteristic polynomial associated to the Jacobian matrix.

det(A− λI8) =(−µ− λ)2(−ωr − µ− λ)(−γr − µ− λ)(−σr − µ− λ)(−ω1 − µ− λ)

×
∣∣∣∣−(σ1 + µ+ λ) β1,1

σ1 −(γ1 + µ+ λ)

∣∣∣∣ .
The factorization shows that at least 6 eigenvalues counting multiplicity exhibited in the factor
above are negative, and the remaining two are the eigenvalues of the matrix(

−(σ1 + µ) β1,1
σ1 −(γ1 + µ)

)
.

As the trace of this matrix is negative, it is necessary and sufficient that the determinant of this
matrix is positive to have two negative eigenvalues, assumption which is equivalent to

(σ1 + µ)(γ1 + µ) − β1,1σ1 > 0 ⇔ R0 < 1,

where R0 is defined in (2.2).
Additionally, one may verify, using the method of next generation matrix [35], that R0 is in-

deed the basic reproduction number of the model. The system (2.1) has 4 infected compartments
E1, I1, Er, Ir, which will be alternatively denoted x1, x2, x3, x4 respectively for simplicity. On the
other hand, the remaining compartments S1, R1, Sr, Rr are denoted respectively x5, x6, x7, x8.
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We write now the dynamics of x := (xi)1⩽i⩽8 in the form

ẋi = Fi(x) − Vi(x).

Here, Fi is the rate of appearance of new infections in the compartment xi and Vi = V −
i − V +

i ,
where V +

i (resp. V −
i ) is the rate of transition into by all others means (resp. out of) the

compartment xi. Denoting F (x) := (Fi(x))1⩽i⩽8 and V (x) := (Vi)1⩽i⩽8, and the Jacobians of
F and V at the disease-free equilibrium are

DF (E0) =
(

F 04×4
04×4 04×4

)
, where F =


0 β1,1 0 β1,r
0 0 0 0
0 0 0 0
0 0 0 0

 ,

DV (E0) =
(
V 04×4
J1 J2

)
, where V =


σ1 + µ 0 0 0
−σ1 γ1 + µ 0 0

0 0 σr + µ 0
0 0 −σr γr + µ

 .

In addition,

V−1 =


(σ1 + µ)−1 0 0 0

σ1(σ1 + µ)−1(γ1 + µ)−1 (γ1 + µ)−1 0 0
0 0 (σr + µ)−1 0
0 0 σr(σr + µ)−1(γr + µ)−1 (γr + µ)−1

 .

The basic reproduction number of the model (2.1) is then given by the spectral value of FV−1,
which is equal to β1,1

γ1+µ
σ1

σ1+µ .

2.3 Endemic equilibriums
In this section, which forms the main part of the chapter, we investigate the endemic equi-
libriums of (2.1). First, in subsection 2.3.1 the equilibrium equations are transformed into a
polynomial equation which is suitable for analysis. Moreover, we introduce the coefficient ar as
the bifurcation parameter for the study of the polynomial. In subsection 2.3.2, we state that
the polynomial equation may imply the possibility for the system (2.1) to have multiple endemic
equilibriums. In this case, there exists a total ordering between these points. The main results
characterizing the number of endemic equilibriums are contained in subsections 2.3.3, 2.3.4 and
2.3.5 respectively for the case R0 < 1, R0 = 1 and R0 > 1 (respectively in Theorems 2.3.7, 2.3.8,
2.3.9). Finally, in subsection 2.3.6 we describe some particular situations where the uniqueness
of endemic equilibrium is guaranteed.

2.3.1 Preparation for the bifurcation analysis
Let (S∗

1 , E
∗
1 , I

∗
1 , R

∗
1, S

∗
r , E

∗
r , I

∗
r , R

∗
r) be an endemic equilibrium of system (2.1), then the following

equations hold.

0 = µ− (β1,1I
∗
1 + β1,rI

∗
r + µ)S∗

1 ,

0 = (β1,1I
∗
1 + β1,rI

∗
r )S∗

1 − (σ1 + µ)E∗
1 ,

0 = σ1E
∗
1 − (γ1 + µ)I∗

1 ,
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0 = γ1I
∗
1 − (ω1 + µ)R∗

1,

0 = ω1R
∗
1 + ωrR

∗
r − (βr,1I∗

1 + βr,rI
∗
r + µ)S∗

r ,

0 = (βr,1I∗
1 + βr,rI

∗
r )S∗

r − (σr + µ)E∗
r ,

0 = σrE
∗
r − (γr + µ)I∗

r ,

0 = γrI
∗
r − (ωr + µ)R∗

r .

In other words,
R∗
r = γr

ωr + µ
I∗
r , E∗

r = γr + µ

σr
I∗
r ,

E∗
r = βr,1I

∗
1 + βr,rI

∗
r

σr + µ
S∗
r , S∗

r = ω1R
∗
1 + ωrR

∗
r

βr,1I∗
1 + βr,rI∗

r + µ
,

R∗
1 = γ1

ω1 + µ
I∗

1 , E∗
1 = γ1 + µ

σ1
I∗

1 ,

E∗
1 = β1,1I

∗
1 + β1,rI

∗
r

σ1 + µ
S∗

1 , S∗
1 = µ

β1,1I∗
1 + β1,rI∗

r + µ
,

(2.3)

After elimination of S∗
1 , E

∗
1 , R

∗
1, S

∗
r , E

∗
r , R

∗
r , the remaining quantities I∗

1 and I∗
r are related by

I∗
1 = σ1

σ1 + µ

µ

γ1 + µ

β1,1I
∗
1 + β1,rI

∗
r

β1,1I∗
1 + β1,rI∗

r + µ
,

I∗
r = βr,1I

∗
1 + βr,rI

∗
r

βr,1I∗
1 + βr,rI∗

r + µ

σr
σr + µ

γr
γr + µ

ωr
ωr + µ

(
ω1

ωr

ωr + µ

ω1 + µ

γ1

γr
I∗

1 + I∗
r

)
.

(2.4)

All the coefficients being positive, any nonnegative nonzero solution (I∗
1 , I

∗
r ) of (2.4) yields a

nonnegative nonzero equilibrium value (S∗
1 , E

∗
1 , I

∗
1 , R

∗
1, S

∗
r , E

∗
r , I

∗
r , R

∗
r) such that S∗

1 + E∗
1 + I∗

1 +
R∗

1 +S∗
r +E∗

r +I∗
r +R∗

r = 1. The endemic equilibriums are therefore in one-to-one correspondence
with the nonnegative nonzero solutions of system (2.4).

In order to solve this system of equations, we rewrite (2.4) in the form:

I∗
1 = A1

I∗
1 +B1I

∗
r

I∗
1 +B1I∗

r + C1
, I∗

r = Ar
BrI

∗
1 + I∗

r

BrI∗
1 + I∗

r + Cr
(DrI

∗
1 + I∗

r ),

with coefficients defined by

A1 = µ

γ1 + µ

σ1

σ1 + µ
, B1 = β1,r

β1,1
, C1 = µ

β1,1
,

Ar = σr
σr + µ

γr
γr + µ

ωr
ωr + µ

, Br = βr,1
βr,r

, Cr = µ

βr,r
, Dr = ω1

ωr

ωr + µ

ω1 + µ

γ1

γr
.

(2.5)

Clearly, all coefficients are positive, and A1, Ar < 1. For simplicity, we denote in addition

x := I∗
1 , y := I∗

r ,

and the equations above are equivalent to

x2 + (b1y − a1)x− c1y = 0, y2 + (ar − brx)y − crx
2 = 0, (2.6)
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where the coefficients are

a1 = A1 − C1, b1 = B1 > 0, c1 = A1B1 > 0,

ar = Cr
1 −Ar

> 0, br = 1
1 −Ar

(Ar(Br +Dr) −Br), cr = ArBrDr

1 −Ar
> 0.

(2.7)

Notice that the signs of a1 and br are unknown in general, moreover

a1 > 0 ⇔ R0 > 1, a1 < 0 ⇔ R0 < 1, (2.8)

and in any case a1b1 < c1 is verified. Moreover, for any y > 0,

y = Ψ1(x) := 1
2

(
brx− ar +

√
(brx− ar)2 + 4crx2

)
, (2.9)

is the unique solution of the second equation (the other root is negative). On the other hand,
the expression of y given by the first identity in (2.6) must be

y = Ψr(x) := x
x− a1

c1 − b1x
. (2.10)

Notice that,
max{0, a1} < c1

b1
< 1.

Therefore, Ψr(x) > 0 with x > 0 if and only if

x ∈ (0, 1) ∩ (a1,
c1

b1
), (2.11)

and in fact we proved the following result.

Lemma 2.3.1. The endemic equilibriums of system (2.1) are in one-to-one correspondence with
the roots of the equation

Ψ1(x) = Ψr(x), x ∈ (0, 1) ∩ (a1,
c1

b1
),

for Ψ1,Ψr given in (2.9)-(2.10).

The problem may be further transformed by isolating the square root in Ψ1(x) and squaring
both sides of the equality, hence the equality above yields

2x x− a1

c1 − b1x
− (brx− ar) =

√
(brx− ar)2 + 4crx2, (2.12)

thus (
2x x− a1

c1 − b1x
− (brx− ar)

)2
= (brx− ar)2 + 4crx2,

that is
4x2( x− a1

c1 − b1x
)2 − 4x x− a1

c1 − b1x
(brx− ar) = 4crx2.
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The following relation is therefore verified for any solution of (2.13) fulfilling (2.11),

x
x− a1

c1 − b1x

(
x
x− a1

c1 − b1x
− (brx− ar)

)
= crx

2 > 0. (2.13)

As x x−a1
c1−b1x

> 0 in the interval given in (2.11), the previous inequality implies

brx− ar < x
x− a1

c1 − b1x
< 2x x− a1

c1 − b1x
,

and the left-hand side of (2.12) is indeed positive for any solution of (2.13) in the interval (2.11).
Therefore, the problem is reduced to finding the solutions of polynomial equation (2.13) instead
of (2.12). Last, we multiply by (c1−b1x)2

x on both sides of (2.13) to obtain a cubic polynomial
equation and deduce the next Lemma.

Lemma 2.3.2. The endemic equilibriums of system (2.1) are in one-to-one correspondence with
the roots of the equation P(x) = 0 in (0, 1) ∩ (a1,

c1
b1

), where

P(x) := x(x− a1)2 − (x− a1)(c1 − b1x)(brx− ar) − cr(c1 − b1x)2x.

Remark 2.3.3. One shows easily that

P(a1) = −cra1(c1 − b1a1)2, P(0) = −a1c1ar, P
(
c1

b1

)
= c1

b1

(
c1

b1
− a1

)2
> 0.

The values P(a1),P(0) are thus both positive iff a1 < 0, that is R0 < 1; and both negative iff
a1 > 0, that is R0 > 1.

For the subsequent analysis, we consider ar > 0 as a bifurcation parameter. In fact, writing
separately the terms depending on ar from the rest of the polynomial P gives

P(x) = xP (x) + arQ(x),
P (x) := (x− a1)2 − br(x− a1)(c1 − b1x) − cr(c1 − b1x)2, Q(x) := (x− a1)(c1 − b1x).

As the roots of Q are well known, this decomposition helps to visualize the roots of P geometri-
cally and motivates the choice of taking ar as the bifurcation parameter. Indeed,

P (a1) = −cr(c1 − b1a1)2 < 0, P

(
c1

b1

)
=
(
c1

b1
− a1

)2
> 0, (2.14a)

Q(a1) = Q

(
c1

b1

)
= 0, Q > 0 on

(
a1,

c1

b1

)
. (2.14b)

On the other hand, there is no prescribed sign for the two following quantities

P (0) = a2
1 + a1c1br − crc

2
1, lim

x→+∞

P (x)
x2 = 1 + brb1 − crb

2
1. (2.14c)

In order to study the roots of P, it is necessary to recall the following result on cubic poly-
nomials, which can be found in [61].

Definition 2.3.1. For a given cubic polynomial ax3 + bx2 + cx+ d in the variable x, the dis-
criminant is defined by b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.
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The number of roots of a 3rd-degree polynomial depends upon its discriminant in the following
way : if the latter is positive, then the polynomial has 3 distinct real roots; if it is null, then the
polynomial has a real root which is double or triple; last, if it is negative, then it has a unique real
root, which is simple. For future use, we denote by ∆ the discriminant of the cubic polynomial
P(x), considered as a function of the variable ar. It is easy to see that ∆ is a polynomial
of degree up to 4 in the variable ar.

Remark 2.3.4. Notice that the parameter ar is independent of the value of R0, which is ex-
pressed only as a function of the parameters intervening in the first stage of the infection dynamic
(see the formula (2.2) that provides its value). Keeping the coefficients µ, β1,1, β1,r, σ1, σr, γ1, γr,
ω1, ωr fixed and considering (2.5) and (2.7), we see that a variation in βr,1 and βr,r of the same
proportion amounts to modify ar in an inversely proportional way. Therefore, an increase in
the parameter ar can be interpreted as a decrease in the susceptibility to reinfections.

2.3.2 Number and ordering of the endemic equilibriums
Prior to the actual polynomial analysis, let us notice that P introduced in Lemma 2.3.2 is of third
degree, which permits to state an interesting fact concerning the number of endemic equilibriums
of system (2.1).

Corollary 2.3.5. The number of endemic equilibriums of system (2.1) is 0, 1, 2 or 3.

The actual number of equilibriums depends upon the values of the model parameters. Before
deciphering this dependence and showing in subsections 2.3.3 to 2.3.5 that all four cases depicted
in Corollary 2.3.5 are actually realizable, we state a last general result, related to ordering. As a
matter of fact, in the case of multiple equilibriums, the question of their possible ordering arises.
The following result solves completely this issue and establishes the existence of a total order
relation between all equilibrium points.

Theorem 2.3.6. Let (S∗
1 , E

∗
1 , I

∗
1 , R

∗
1, S

∗
r , E

∗
r , I

∗
r , R

∗
r) and (S∗∗

1 , E∗∗
1 , I∗∗

1 , R∗∗
1 , S∗∗

r , E
∗∗
r , I

∗∗
r , R∗∗

r )
be two distinct endemic equilibriums of system (2.1). Assume S∗

1 is larger (resp. smaller) than
S∗∗

1 . Then every remaining component of (S∗
1 , E

∗
1 , I

∗
1 , R

∗
1, S

∗
r , E

∗
r , I

∗
r , R

∗
r) is smaller (resp. larger)

than its analogue in (S∗∗
1 , E∗∗

1 , I∗∗
1 , R∗∗

1 , S∗∗
r , E

∗∗
r , I

∗∗
r , R∗∗

r ).

Proof. Assume that S∗
1 is smaller than S∗∗

1 , let us check first that I∗
1 is larger than I∗∗

1 . Differ-
entiating first Ψr from (2.10) :

Ψ′
r(x) = x− a1

c1 − b1x
+ x

c1 − b1x+ b1(x− a1)
(c1 − b1x)2 ,

= (x− a1)(c1 − b1x) + x(c1 − b1x+ b1(x− a1))
(c1 − b1x)2 > 0, ∀x ∈ (a1,

c1

b1
).

(2.15)

Thus the endemic value I∗
r increases along with I∗

1 . We deduce that

µ

β1,1x+ β1,rΨr(x) + µ

is a decreasing function in (a1,
c1
b1

). Therefore, thanks to (2.3) and S∗
1 ⩽ S∗∗

1 , we conclude that
I∗∗

1 ⩽ I∗
1 and (also) I∗∗

r ⩽ I∗
r . The inequalities for E∗

1 , R
∗
1, E

∗
r , R

∗
r are easily deduced from (2.3)

using I∗∗
r ⩽ I∗

r . It remains to check S∗
r . One has the following equality, derived from (2.3)

S∗
r = σr + µ

βr,1I∗
1 + βr,rI∗

r

E∗
r = σr + µ

βr,1I∗
1 + βr,rI∗

r

γr + µ

σr
I∗
r = σr + µ

σr

γr + µ

βr,r

I∗
r

BrI∗
1 + I∗

r
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with Br defined in (2.5). Let us define then the function ξ as

ξ(x) := σr + µ

σr

γr + µ

βr,r

Ψr(x)
Brx+ Ψr(x) .

Its derivative is

ξ′(x) = σr + µ

σr

γr + µ

βr,r

Ψ′
r(x)(Brx+ Ψr(x)) − Ψr(x)(Br + Ψ′

r(x))
(Brx+ Ψr(x))2

= σr + µ

σr

γr + µ

βr,r

Ψ′
r(x)Brx−BrΨr(x)
(Brx+ Ψr(x))2 = σr + µ

σr

γr + µ

βr,r

Br(Ψ′
r(x)x− Ψr(x))

(Brx+ Ψr(x))2 .

Notice that, thanks to (2.15)

xΨ′
r(x) = Ψr(x) + x2 c1 − a1b1

(c1 − b1x)2 > Ψr(x).

We conclude that ξ′(x) > 0, ∀x ∈ (a1,
c1
b1 ), and as I∗

1 ⩾ I∗∗
1 , then S∗

r ⩾ S∗∗
r .

2.3.3 The case R0 < 1
We proceed now to the description of the endemic equilibriums in case where R0 < 1. Recall
that this is equivalent to a1 < 0, see formula (2.8). In this case, the result below describes
comprehensively the steady states according to the parameters of the system. In particular,
it shows the possibility for the system to exhibit up to two endemic equilibriums, even if the
threshold condition for outbreaks is not reached.

Theorem 2.3.7. Assume R0 < 1 (that is a1 < 0). Then,

1. if a2
1 + a1c1br − crc

2
1 ⩾ 0, then system (2.1) admits no endemic equilibrium;

2. if a2
1 + a1c1br − crc

2
1 < 0, then there exists at least a value at which ∆ vanishes, and the

roots of ∆ are necessarily positive. Moreover,

(a) if ar > 0 is smaller than the smallest zero of ∆, then system (2.1) admits two endemic
equilibriums;

(b) if ar is equal to the smallest zero of ∆, then system (2.1) admits a unique endemic
equilibrium;

(c) if ar is larger the smallest zero of ∆, then system (2.1) admits no endemic equilibrium.

Notice that the value a2
1 + a1c1br − crc

2
1 does not depend upon the bifurcation parameter

ar. To provide some insights, Theorem 2.3.7 states that, for R0 < 1 and a1 < 0, the system
exhibits endemic equilibriums under the conditions a2

1 + a1c1br − crc
2
1 < 0 and ar less than or

equal to the smallest positive zero of ∆. Even though the first condition appears to be difficult
to interpret, the second condition indicates that the system produces endemic equilibriums only
in the interval between 0 and the smallest root of ∆. From the Remark 2.3.4, this means that
endemic equilibriums appear when susceptibility to reinfections is sufficiently high.

Proof. For R0 < 1, notice first that a1 < 0, and the endemic equilibriums are in one-to-one
correspondence with the zeros of P in

(
0, c1

b1

)
. First, let us consider the zeroes of the polynomial

P . From (2.14a), we deduce that P has a zero in
(
a1,

c1
b1

)
and there can be no other zero in this
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interval, as P is of degree 1 or 2. If it exists, the second zero of P is then either in (−∞, a1) (and
necessarily P is convex) or in

(
c1
b1
,+∞

)
(and necessarily P is concave). Moreover, the zero of P

located in
(
a1,

c1
b1

)
may be either in (a1, 0) (in which case necessarily P (0) = a2

1 +a1c1br−crc2
1 >

0), in
(

0, c1
b1

)
(in which case P (0) < 0) or at 0 (in which case P (0) = 0).

Consider now these three cases separately. Notice that the derivative of xP (x) at x = 0 is
equal to P (0). Therefore,

• if P (0) = a2
1 + a1c1br − crc

2
1 > 0, then xP (x) is strictly increasing at x = 0 and in

addition P (x) > 0 in
(

0, c1
b1

)
. As Q(x) > 0 in this interval, one concludes that, for any

ar > 0, P(x) = xP (x) + arQ(x) > 0 in
(

0, c1
b1

)
, and there is no endemic equilibrium. This

demonstrates point 1 in the case of a strict inequality.

• if P (0) = a2
1 + a1c1br − crc

2
1 = 0, 0 is a root of the polynomial P . Thus, due to (2.14a),

P (x) > 0 in
(

0, c1
b1

)
. The same argument shows that, for any ar > 0, P(x) > 0 in

(
0, c1

b1

)
:

no endemic equilibrium exists. This, together with the previous point, fully demonstrates
case 1.

• if P (0) = a2
1+a1c1br−crc2

1 < 0 (case 2), consider first the situation where 1+brb1−crb2
1 ̸= 0

and P is a 2nd-degree polynomial. In this case, xP (x), P(x) are 3rd-degree polynomials
and, for some x∗ ∈

(
0, c1

b1

)
, one has

P (x) < 0 in (0, x∗), P (x∗) = 0, P (x) > 0 in
(
x∗,

c1

b1

)
.

Therefore, the 3rd-order polynomial xP (x) vanishes at x = 0 and x = x∗, is negative in
(0, x∗) and positive in

(
x∗, c1

b1

)
. As Q > 0 in [0, x∗] ⊂

(
a1,

c1
b1

)
, then we can already notice

that, for any sufficiently small positive value of ar, the polynomial P(x) = xP (x) +arQ(x)
admits two distinct roots in (0, x∗).
Moreover, xP (x) > 0 at x = a1 < 0 and at x = c1

b1
thanks to (2.14a). The polynomial

xP (x) being of 3rd degree, it goes to infinity when |x| → +∞, with different signs when
x → +∞ and x → −∞. Therefore, one of the two limits is negative, and the third (real)
zero of xP (x) is either in (−∞, a1), or in

(
c1
b1
,+∞

)
. Let us study now these two cases in

more details.

◦ If xP (x) possesses a zero in (−∞, a1), then the latter is unique and xP (x) diverges to
−∞ when x → −∞, while taking positive values in

(
c1
b1
,+∞

)
. Recall in addition that

the polynomial Q is of degree 2, vanishes at x = a1 and is negative in (−∞, a1), so for
any positive value ar, P(x) = xP (x)+arQ(x) has a unique zero in (−∞, a1). For ar >
0 close to zero, it is already described that P possesses two roots in (0, x∗) ⊂ (0, c1

b1
).

When the parameter ar increases, the same situation holds, until the two roots located
in (0, x∗) collapse and disappear, as arQ(x) (which is positive in ((0, c1

b1
))) became not

cancellable by the term xP (x). This happens when ar reaches a critical value a∗
r ,

where a∗
r is such that the associated polynomial P(x) admits a double root in the

interval
(

0, c1
b1

)
, that is ∆ = 0 for ar = a∗

r .



60 CHAPTER 2. Two-stage reinfection model

Notice that a pair of zeros of P appears in
(
c1
b1
,+∞

)
for large enough values of ar.

One has to wonder whether this happens for a value of ar smaller than a∗
r . For such a

value, P would have one root in (−∞, a1), two distinct roots in
(

0, c1
b1

)
and (at least)

one in
(
c1
b1
,+∞

)
. Such a configuration with 4 roots is impossible for a 3rd-degree

polynomial, and a∗
r is thus the smallest ar > 0 for which ∆ vanishes.

◦ On the contrary, if xP (x) possesses a zero on
(
c1
b1
,+∞

)
, then xP (x) diverges to −∞

when x → +∞ and a similar argument applies to deduce that P has at least one zero
in ( c1

b1
,+∞). Therefore, P cannot have a third zero in

(
0, c1

b1

)
⊂
(
a1,

c1
b1

)
. Again, a

critical value a∗
r exists at which the corresponding ∆ vanishes. For ar greater than a∗

r ,
P has no root in

(
a1,

c1
b1

)
. In parallel, a pair of zeros of P appears in (−∞, a1) for large

enough values of ar, but one shows with the same argument on the polynomial degree,
that this occurs only after the disappearance of the two roots in

(
0, c1

b1

)
. Again, the

critical value a∗
r is the smallest ar > 0 for which ∆ = 0.

◦ Last, let us consider the degenerate case where P (0) = a2
1 + a1c1br − crc

2
1 < 0, but

1 + brb1 − crb
2
1 = 0 and the degree of P is 1; The polynomial P is an increasing linear

function that cuts the x-axis at a point x∗ ∈ (0, c1
b1

). The function xP (x) is positive in
(−∞, 0) and (x∗,+∞), negative in (0, x∗). Thus, for ar = 0, P admits a root at x = 0
and x = x∗ ∈ (0, c1

b1
) and no roots elsewhere as its degree 2 precludes the appearance

of new roots. Moreover, the polynomial Q is positive on (a1,
c1
b1

). Therefore, for ar > 0
close to 0, an increase in ar leads to the displacement of the first root of P to the
right and the second to the left. This goes on until the roots merge and disappear
at a critical value a∗

r , beyond which no root exists in this interval. Again, these are
precisely the situations depicted in the cases 2a, 2b and 2c.

Finally, let us prove that any root of ∆ must be positive in this case. Assuming that
ar < 0, as xP (x) cancels out at least once in [0, c1

b1
) ⊂ (a1,

c1
b1

), is positive at the extremities
of (a1,

c1
b1

) and moreover arQ(x) is negative in (a1,
c1
b1

) with its roots situated at both
extremities of the same interval, this implies that xP (x) + arQ(x) is positive at x = a1
and x = c1

b1
, and negative at x = 0, thus it vanishes twice in (a1,

c1
b1

). Additionally, P has a
third root in (−∞, a1) ∪ ( c1

b1
,+∞). This means that P has always three real roots and ∆

does not cancel out when ar < 0 and a2
1 + a1c1br − crc

2
1 < 0.

The previous considerations thus prove that when P (0) < 0, the behavior always obeys the
analysis provided by the three cases 2a to 2c.

This completes the proof of Theorem 2.3.7.

2.3.4 The case R0 = 1
For the intermediate case R0 = 1, that is a1 = 0 (see (2.8)), it is again possible to have up to 2
endemic equilibriums.

Theorem 2.3.8. Assume R0 = 1. Then, there exists a value at which ∆ vanishes, and the roots
of ∆ are necessarily positive. Moreover,

1. if ar is smaller than the smallest zero of ∆, system (2.1) admits a unique endemic equilib-
rium.
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2. if 1 + brb1 − crb
2
1 ⩽ 0,

(a) if ar is equal to or larger than the smallest zero of ∆, system (2.1) admits no endemic
equilibrium.

3. if 1 + brb1 − crb
2
1 > 0,

(a) if 3b1cr − br ⩾ 0, system (2.1) admits no endemic equilibrium for ar equal to or larger
than this zero of ∆.

(b) if 3b1cr − br < 0 system (2.1) admits at least a second zero of ∆. Furthermore,
i. if ar is between the smallest and the second-smallest zero of ∆, system (2.1)

admits two endemic equilibriums.
ii. if ar is equal to the second-smallest zero of ∆, system (2.1) admits a unique

endemic equilibrium.
iii. if ar is larger than the second-smallest zero of ∆, system (2.1) admits no endemic

equilibrium.

Notice that, similarly to Theorem 2.3.7, the value of the quantities 1+brb1−crb2
1 and 3b1cr−br

do not depend upon the bifurcation parameter ar.

Proof. When R0 = 1, a1 = 0, and the endemic equilibriums are in one-to-one correspondence
with the zeros of P in

(
0, c1

b1

)
.

The polynomial P has a zero in
(

0, c1
b1

)
due to (2.14a). Additionally, as P is of degree 1

or 2, there cannot be another zero in this interval. If it exists, the second zero of P is thus
either in (−∞, 0) (and necessarily P is convex) or in

(
c1
b1
,+∞

)
(and necessarily P is concave).

Hence, xP (x) has a root at x = 0, another one in (0, c1
b1

) and the last one is either in (−∞, 0)
or ( c1

b1
,+∞). Anyway, because Q(0) = Q(a1) = 0 the polynomial P has always a zero at x = 0

when R0 = 1. The analysis further divides into two cases :

• If P is strictly concave (which is equivalent to P (x)
x2 = 1 + brb1 − crb

2
1 < 0), the second

root of P is in ( c1
b1
,+∞), which leads xP (x) and thus P to diverge to −∞ when x → +∞.

As P( c1
b1

) > 0, there is always a root in ( c1
b1
,+∞) and consequently the polynomial P has

always three real roots for every value of ar ⩾ 0. Now, assume that ar = 0, the third root
of P is in (0, c1

b1
) and is equal to the root of P in the same interval. Recalling again that

Q is positive in (0, c1
b1

) and negative outside of it, then, as ar is increasing, P increases in
(0, c1

b1
) and thus the third root of P moves to the left and leaves the interval (0, c1

b1
) when

reaching x = 0. It happens when ar reaches the smallest positive root of ∆.

• If P is a linear function (i.e., 1 + brb1 − crb
2
1 = 0), it is thus an increasing function as its

root is in (0, c1
b1

) and that P ( c1
b1

) > 0. P is then a convex function with roots at x = 0 and
in (0, c1

b1
) when ar = 0. As ar is increasing, the later root decreases and leaves the interval

(0, c1
b1

) by forming a double root at x = 0 when ar reaches the first positive root of ∆.
Thus, endemic equilibrium of the system disappears when ar ⩾ a∗

r .

• If P is strictly convex (i.e., 1+brb1 −crb
2
1 > 0) the second root is in (−∞, 0), P(x) vanishes

now once respectively at x = 0, in (−∞, 0) and in (0, c1
b1

) when ar = 0. The function xP (x)
is positive between the first zero and x = 0, negative between x = 0 and the third zero,
and again positive between the third zero and +∞. Moreover, an increase of ar > 0 leads
the function P to decrease in (−∞, a1) and increase in (a1,

c1
b1

). Thus, the first root of P
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is displacing to the right and the third is decreasing as ar increases before merging and
vanish. As the two roots have opposite sign for ar = 0, this implies that one of them must
reach the third root x = 0 in order to merge and form a double root with each other.
This happens when ar reaches the smallest positive root a∗

r of ∆. Therefore, we have three
different scenarios:

– If it is the positive root that reaches x = 0 before becoming negative, then the system
loses its unique endemic equilibrium when ar > a∗

r .
– It the two roots converge exactly at the point x = 0, then they also vanish at the same

point and, as previously, the system loses its endemic equilibrium when ar > a∗
r .

– If it is the negative root that passes through x = 0 and becomes positive, then the
system gains a second endemic equilibrium before that the two come together and
then vanish when ar reaches the second positive root of ∆.

We may further determine which root is reaching zero at the first critical value a∗
r by

computing the value of P ′′(0) when ar = a∗
r .

– If P ′′(0) > 0, P has a double root at x = 0 and P is positive in a neighborhood of
x = 0, then thanks to limx→−∞ P(x) = −∞ (due to the convexity of P ), the third
root is in (−∞, 0) and it is the initially positive root that is passing through zero.

– If P ′′(0) < 0, P has a double root at x = 0 and is negative in a neighborhood of
x = 0, by the same argument we have limx→+∞ P(x) = +∞ and then the third root
is positive. Hence, it is the initially negative root that is passing through zero.

– If P ′′(0) = 0, P has a triple root at x = 0, then both the positive and negative roots
are reaching zero together.

Let us compute P ′′(0) :

P ′ = P (x) + xP ′(x) + a∗
rQ

′(x),
P ′′ = 2P ′(x) + xP ′′(x) + a∗

rQ
′′(x),

P ′′(0) = 2P ′(0) + a∗
rQ

′′(0)
= 2(−2a1 − brc1 − a1b1br + 2crb1c1) − 2b1a

∗
r = 2(−brc1 + 2crb1c1) − 2b1a

∗
r .

Thanks to the fact that 0 = P ′(0) = P (0) + a∗
rQ

′(0), one has

a∗
r = − P (0)

Q′(0) = −crc2
1

c1 + a1b1
= −crc1.

Thus,
P ′′(0) = 2(3crb1c1 − brc1) = 2c1(3crb1 − br),

and which scenario occurs ultimately depends on the sign of 3crb1 − br.
Finally, let us show that any root of ∆ must be positive. Notice in any case that, for a
negative value of ar, arQ(x) is negative in (0, c1

b1
) and its roots are located at the extremities

of the interval. On the other hand, as P (0) < 0, xP (x) is negative on the right side of
x = 0 and positive on the left side of x = 0 and at x = c1

b1
(see (2.14a)). Hence, P is

negative on the right side of x = 0 and positive at x = c1
b1

, and P has at least two distinct
roots, one at the point x = 0 and the other one in (0, c1

b1
). Moreover, if P is of degree 3,

there must be a third root in the set (−∞, 0) ∪ ( c1
b1
,+∞), as P > 0 at x = c1

b1
and on the
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right side of the point x = 0. Therefore, the corresponding ∆ of P cannot vanish for a
non-positive value of ar.

All cases being examined, this concludes the proof of Theorem 2.3.8.

2.3.5 The case R0 > 1
In case where R0 > 1, the situation is different, and the system may have up to 3 endemic
equilibriums under specific conditions described below.

Theorem 2.3.9. Assume R0 > 1. Then,

1. if 1 + brb1 − crb
2
1 ⩽ 0, then system (2.1) admits a unique endemic equilibrium;

2. if 1 + brb1 − crb
2
1 > 0, then ∆ vanishes at two, three, or four distinct values, which are

necessarily positive. Moreover,

(a) if ∆ has two distinct zeroes, then system (2.1) admits a unique endemic equilibrium;
(b) if ∆ has three distinct zeroes, then system (2.1) admits two endemic equilibriums at

the intermediate zero and otherwise a unique endemic equilibrium;
(c) if ∆ has four distinct zeroes, then system (2.1) admits two endemic equilibriums at

the two intermediate zeroes, three endemic equilibriums between the two intermediate
zeroes and otherwise a unique endemic equilibrium.

Notice that, here also, the value of 1+brb1 −crb
2
1 is independent of the bifurcation parameter

ar. We see that, for R0 > 1, the condition 1+brb1−crb2
1 ⩽ 0 guarantees the uniqueness of endemic

equilibrium. If this condition is violated, additional steady states may arise as the number of
roots of ∆ increases. However, the question of how to interpret biologically these conditions is
difficult to answer. Nonetheless, it can be observed that multiple endemic equilibriums typically
arise for values of ar between two intermediate roots of ∆, hence it represents a transition between
a mode with low susceptibility to reinfections to a higher one. To facilitate the visualization of
the phenomenon, one can refer to the simulation in figures 2.11a and 2.12a in subsection 2.5.5.2
below.

Particularly, the remark above and the corresponding numerical simulations show indeed
that in some situations there exists a swift transition from a low-infectivity endemic equilibrium
to a high-infectivity equilibrium as the susceptibility to reinfection increases. This suggests
the existence of a reinfection threshold, already underscored by Gomes et al. [51] for simpler
reinfection SIRI models. The fact that in the present system the transition may be, in some
instances, accompanied by a bifurcation sheds some additional light on the controversy that
opposes Gomes et al. to Breban and Blower [20], the latter arguing that the reinfection threshold
suggested in [51] does not exist as it is not a bifurcation point. However, the existence of a
reinfection threshold is not always guaranteed, as illustrated numerically by the simulation in
figure 2.9a, which does not include abrupt change between two modes.

The proof of the Theorem employs the same techniques as the proof of Theorem 2.3.7, in a
somewhat more involved manner.

Proof. When R0 > 1, then a1 > 0, and the endemic equilibriums are in one-to-one correspon-
dence with the zeros of P in

(
a1,

c1
b1

)
.

As in the proof of Theorem 2.3.7, the polynomial P has a zero in
(
a1,

c1
b1

)
, and due to (2.14a)

and the fact that it is of degree 1 or 2, there can be no other zero in this interval. If the degree
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of P is 2, then the second zero of P is either in (−∞, a1) (and necessarily P is convex) or in(
c1
b1
,+∞

)
(and necessarily P is concave).

Let us study the behavior of xP (x), and afterward of P(x) = xP (x) + arQ(x).

• If limx→+∞
P (x)
x2 = 1 + brb1 − crb

2
1 < 0, then P is concave, and its second zero is in(

c1
b1
,+∞

)
. The 3rd-degree polynomial xP (x) possesses one zero at x = 0 ∈ (−∞, a1),

one in
(
a1,

c1
b1

)
, and one in

(
c1
b1
,+∞

)
. Moreover, it converges to +∞ (resp. −∞) when

x → −∞ (resp. +∞). The polynomial Q being negative in each interval (−∞, a1) and(
c1
b1
,+∞

)
, positive in

(
a1,

c1
b1

)
and null at a1 and c1

b1
, the polynomial P(x) thus possesses,

for any ar > 0, (at least) one zero in each of these three intervals. Applying Lemma 2.3.2,
one deduces existence of a unique endemic equilibrium of the system (2.1).

• If limx→+∞
P (x)
x2 = 1 + brb1 − crb

2
1 = 0. In this case, P is a polynomial of degree 1, which

is increasing due to (2.14a). The 2nd-degree polynomial xP (x) then possesses two zeroes,
one at x = 0 ∈ (−∞, a1) and one in

(
a1,

c1
b1

)
, and is negative between the two roots, and

positive outside. Arguing as in the previous case, one deduces that P(x) possesses, for
any ar > 0, (at least) one zero in

(
a1,

c1
b1

)
. This zero is indeed unique, as otherwise the

2nd-degree polynomial P(x) would have three zeroes. This, together with the previous
considerations, establishes the case 1 of the statement.

• If limx→+∞
P (x)
x2 = 1 + brb1 − crb

2
1 > 0 (case 2), then P is convex, and its second zero is

inside (−∞, a1): for some x∗ < a1 and x∗∗ ∈
(
a1,

c1
b1

)
, one has

P (x) < 0 in (x∗, x∗∗), P (x∗) = P (x∗∗) = 0, P (x) > 0 in
(
x∗∗,

c1

b1

)
,

and similarly for xP (x) except at x = 0 where xP (x) = 0. Recall in addition that Q(x) > 0
in
(
a1,

c1
b1

)
and Q(x) < 0 in R\

[
a1,

c1
b1

]
. Therefore, for ar = 0 or a sufficiently small positive

value of ar > 0, P(x) = xP (x) + arQ(x) possesses, similarly to xP (x), two zeroes in
(−∞, a1), and exactly one in

(
a1,

c1
b1

)
(recall P is a 3rd-degree polynomial). This situation

goes on while ar increases, until the two roots located in (−∞, a1) collapse and disappear,
at a point where ∆ necessarily vanishes.
On the other hand, for sufficiently large values of ar > 0, we see that P(x) possesses
this time two zeroes in

(
c1
b1
,+∞

)
, as P( c1

b1
) > 0, limx→+∞ P(x) > 0 and Q(x) < 0 for

x > c1
b1

. Invoking again the fact that P cannot have more than 3 roots, one sees that this
occurs through the appearance of a double root of P as the parameter ar increases and
reaches a new zero of the equation ∆ = 0, and afterward splits into two distinct zeroes
that subsequently persist for arbitrary large values of ar > 0 greater than this zero of ∆.
Moreover, the polynomial ∆ being of degree 4, it may still have, on top of the two previous
real zeroes exhibit, up to two distinct zeroes.

◦ First, if there is no supplementary real zero of ∆, then from the observation above the
polynomial P has always a unique zero in

(
a1,

c1
b1

)
for any ar > 0, and by Lemma 2.3.2

there exists a unique endemic equilibrium. This situation is covered by the case 2a in
the statement.
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◦ Second, assume two distinct real zeroes exist, these zeroes cannot be larger than the
second critical value exhibited. As they are also larger than the first one, they are
thus sandwiched between the two critical values, indicating the apparition of two
supplementary roots of P for any value of ar between these two zeroes of ∆ (case
2c). Fixing x and varying ar, the quantity P(x) is an increasing function of ar when
x ∈ (−∞, a1) and decreasing one when x ∈ ( c1

b1
,+∞). Thus P(x) is positive for

x ∈ (−∞, a1) and ar bigger than the smallest positive root of ∆ and negative for
x ∈ ( c1

b1
,+∞) and ar smaller than the greatest root of ∆. Consequently, the two

supplementary roots of P may only appear in the interval (a1,
c1
b1

), which implies the
apparition of two supplementary endemic equilibriums. Moreover, in the degenerate
cases where ar is equal to one of these two roots (case 2b), only a single supplementary
endemic equilibrium appears.

◦ Third, if a unique real zero exists, it is the degenerate case where the two roots of the
previous case are equal. In this case, two endemic equilibriums exist at this critical
point (case 2b), and one otherwise (case 2a).

To conclude, let us show that the roots of ∆ must be positive in the present case. For
negative values of ar, due to Q(x) < 0 for x < a1, Q(a1) = 0, limx→−∞ xP (x) < 0,
a1P (a1) < 0, then P(x) = xP (x) + arQ(x) is negative at x = a1, positive at x = 0 and
limx→−∞ P = −∞. Thus P has always three real roots when, ar < 0 and ∆ does not
vanish in this setting.

All cases are shown to enter one of the categories depicted in the statement. This completes the
proof of Theorem 2.3.9.

Theorem 2.3.9 states necessary and sufficient conditions for the existence of three endemic
equilibriums points is 1 + b1br − crb

2
1 > 0. The following proposition provides simpler necessary

conditions on ar for the existence of three endemic equilibriums.

Proposition 2.3.10. Assume that the system (2.1) presents three endemic equilibriums, then

• 2a1br + 2c1cr + a1
b1

− 3a1b1cr − br
c1
b1
< ar < 3 c1

b2
1

+ br
c1
b1

− a1
b1

,

• 3a1b1cr − a1br − crc1 < ar < 3 c1
b2

1
+ 2br c1

b1
− c1cr − 2a1

b1
− a1br.

Proof. Let us apply Descartes’ rule of sign [29] to the polynomials P1 := P(x + a1) and P2 :=
P(−x + c1

b1
) in order to check respectively the maximal number of roots of P on the right of

x = a1 and left of x = c1
b1

. Writing the previous polynomials in the expanded form Pi(x) =
ai1x

3 + ai2x
2 + ai3x+ ai4 for i = {1, 2}, the coefficients are given by :
a1

1 = 1 + b1br − crb
2
1 > 0

a1
2 = a1(−crb2

1 + brb1 + 1) − br(c1 − a1b1) − arb1 + 2b1cr(c1 − a1b1)
a1

3 = ar(c1 − a1b1) − cr(c1 − a1b1)2 − a1(br(c1 − a1b1) − 2b1cr(c1 − a1b1))
a1

4 = −a1cr(c1 − a1b1)2 < 0
a2

1 = crb
2
1 − b1br − 1 < 0

a2
2 = 2( c1

b1
− a1) + b1br( c1

b1
− a1) + c1

b1
(−crb2

1 + brb1 + 1) − arb1

a2
3 = c1

b1
(2(a1 − c1

b1
) + b1br(a1 − c1

b1 )) − arb1(a1 − c1
b1

) − (a1 − c1
b1

)2

a2
4 = c1

b1
(a1 − c1

b1
)2 > 0



66 CHAPTER 2. Two-stage reinfection model

Then by Descartes’ rule of sign [29], the number of roots of P (counting multiplicity) on the
right of x = a1 (respectively on the left of x = c1

b1
) is at most the number of sign changes in the

sequence of polynomial’s coefficients of P1 (respectively P2). As the three endemic equilibriums
state implies that 1 + b1br − crb

2
1 > 0 and moreover that c1

b1
> a1, the sign of first and last

coefficient of both sequences are known, we conclude then that a1
2, a

2
3 < 0 and a1

3, a
2
2 > 0 as a

necessary condition for the existence of three equilibriums. From a1
2, a

2
3 < 0 we deduce

a1

b1
(1 + brb1 − crb

2
1) + (2b1cr − br)(

c1

b1
− a1) < ar <

c1

b2
1

(3 + b1br − a1
b1

c1
),

and from a1
3, a

2
2 > 0

2a1b1cr − a1br − cr(c1 − a1b1) < ar < ( 2
b1

+ br)(
c1

b1
− a1) + c1

b2
1

(1 + brb1 − crb
2
1)

and we conclude by expanding the previous inequalities.

We deduce from Proposition 2.3.10 the following necessary conditions for the existence of
three endemic equilibriums, independent of ar. This is essential, as this parameter characterizes
the relative increase in susceptibility of the individuals having recovered from an infection.

Corollary 2.3.11. Assume that the system (2.1) presents three endemic equilibriums, then the
following inequalities are fulfilled

• a1br + c1cr + a1
b1
< c1

b2
1

+ br
c1
b1

+ a1b1cr,

• 3a1b1cr + a1
b1
< 3 c1

b2
1

+ br
c1
b1

+ a1br + crc1,

• 3a1b1cr + 2a1
b1
< 3 c1

b2
1

+ 2br c1
b1

.

2.3.6 Particular cases with unique endemic equilibrium for R0 > 1
In this subsection, we look at some cases that may come up naturally in practice. First, we
investigate the case β1,1 = β1,r, βr,1 = βr,r, that is, when the contact rates depend entirely
on the history of the susceptible in the transmission. Next, we check the case β1,1 = βr,1,
β1,r = βr,r. Finally, the case β1,1 = β, β1,r = βr,1 = ρβ, βr,r = ρ2β, i.e., the contact rate
decreases geometrically w.r.t. the history of the infectious and infected in the transmission,
is considered. The results show that, for “well-balanced” contact rates, the system exhibits a
unique endemic equilibrium in the case where R0 > 1.

2.3.6.1 Reinfection induced change of susceptibility only

Proposition 2.3.12. Assume that R0 > 1 and β1,1 = β1,r, βr,1 = βr,r. Then system (2.1)
admits a unique endemic equilibrium. This remains true for small enough perturbations of every
parameter choice fulfilling the previous identities.

Proof. For β1,1 = β1,r, βr,1 = βr,r, B1 = Br = 1, the following equality is verified

1 + brb1 − crb
2
1 = 1 + br − cr = 1 −Br + ArDr

1 −Ar
− ArDr

1 −Ar
= 0.

According to Theorem 2.3.9, the system has a unique endemic equilibrium.
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Let us show now that this property remains true in a neighborhood of every set of parameters
verifying the assumption. As the 3rd degree leading coefficient of the polynomial P vanishes, P
is now the quadratic polynomial written below :

P(x) = (2b1c1cr − arb1 − brc1 − a1b1br − 2a1)x2 + (a2
1 + bra1c1 + arb1a1 − crc

2
1 + arc1)x− a1arc1.

As P(x) has a root in (a1,
c1
b1

), P(a1) < 0 and P( c1
b1

) > 0, the position of the second root
is uniquely determined by the sign of the coefficient of the second degree monomial. If ar <
2b1c1cr−brc1−a1b1br−2a1

b1
, the second root is on the left side of a1, and otherwise on the right side

of c1
b1

if ar > 2b1c1cr−brc1−a1b1br−2a1
b1

and vanishes when there is equality. To conclude, we can
see that the discriminant ∆, which remains a quartic polynomial w.r.t. the parameter ar, has
a double root at ar = 2b1c1cr−brc1−a1b1br−2a1

b1
and is strictly positive otherwise. Thanks to the

continuity of the roots w.r.t. to polynomial parameters, ∆ has still two imaginary roots if we
perturb the parameters, thus according to the Theorem 2.3.9 the endemic equilibrium is still
unique.

2.3.6.2 Reinfection induced change of infectivity only

Proposition 2.3.13. Assume that R0 > 1 and β1,1 = βr,1, β1,r = βr,r. Then system (2.1)
admits a unique endemic equilibrium. This remains true for small enough perturbations of every
parameter choice fulfilling the previous identities.

Proof. Let ξ be ξ := β1,r

β1,1
, we deduce that B1 = ξ and Br = 1

ξ . Then,

1 + b1br − crb
2
1 = 1 + brξ − crξ

2 = 1 −Brξ + ArDr

1 −Ar
ξ − ArDr

1 −Ar
Brξ

2 = 0.

The rest of the proof is the same as in Proposition 2.3.12.

2.3.6.3 Reinfection induced geometrical dependence of infectivity and susceptibil-
ity

Proposition 2.3.14. Assume that R0 > 1 and there is a β, ρ > 0 such that β1,1 = β, β1,r =
βr,1 = ρβ, βr,r = ρ2β. Then system (2.1) admits a unique endemic equilibrium. This remains
true for small perturbation of the parameters.

Proof. If β1,1 = β, β1,r = βr,1 = ρβ, βr,r = ρ2β, we have now B1 = ρ and Br = 1
ρ . Thus,

1 + b1br − crb
2
1 = 1 + brρ− crρ

2 = 1 −Brρ+ ArDr

1 −Ar
ρ− ArDr

1 −Ar
Brρ

2 = 0.

We conclude in the same way as in Propositions 2.3.12, 2.3.13.

2.4 Persistence analysis for R0 > 1
An interesting topic in epidemiological models is the question of disease persistence, i.e., if the
disease eventually dies out after a certain time. We saw that the two-stage SEIRS model presents
quite complicated dynamics, with possibly up to three endemic equilibriums and one disease-free
equilibrium. This situation of multistability makes global analysis of the system difficult and
motivates instead the interest to study persistence. For this purpose, we introduce the following
definitions from [49].
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Definition 2.4.1. Let X be a metric space with metric d, and ϕ be a continuous flow defined
on X. Let E be a closed subset of X with boundary ∂E and non-empty interior E̊ nonempty.
Assume moreover that E is positively invariant under the flow ϕ. Denoting ϕt(x) as the flow
map, the flow ϕ is called uniformly persistent (regarding the set E) if there exists ε > 0 such
that for all x ∈ E̊

lim inf
t→∞

d(ϕt(x), ∂E) > ε.

Consider then the set X := R8
+, and the invariant biologically feasible set Σ defined by:

Σ := {(S1, E1, I1, R1, Sr, Er, Ir, Rr) ∈ X|S1 + E1 + I1 +R1 + Sr + Er + Ir +Rr = 1}. (2.16)

We denote moreover ∂Σ as the boundary of the set Σ, and introduce finally the set

∂Σmax := {(S1, E1, I1, R1, Sr, Er, Ir, Rr) ∈ Σ|E1 = 0, I1 = 0, Er = 0, Ir = 0}, (2.17)

one shows easily that ∂Σmax is invariant from the equations (2.1). Indeed, ∂Σmax is the maximal
invariant set in the boundary ∂Σ, which will be proven later.

For the uniform persistence of the system (2.1) in the invariant set Σ, we established the
following result, which is the contribution of the present section. In particular, this indicates
that the disease persists for the SEIRS system (2.1) when R0 > 1. Moreover, the proportion of
the population bearing the disease is asymptotically bounded from below by a positive constant,
uniformly regardless of the initial conditions.

Theorem 2.4.1. System (2.1) is uniformly persistent in the interior Σ̊ of Σ defined in (2.16) if
R0 > 1 and non-persistent if R0 < 1.

To prove the Theorem, additional definitions (from [49]) and lemmas are required.

Definition 2.4.2. A nonempty subset M ⊂ X is called an isolated set if there exists ε > 0 such
that for any invariant set N contained entirely in {x : x ∈ X, d(x,M) ⩽ ε}, we have N ⊂ M .

Definition 2.4.3. The flow ϕ is point dissipative over a nonempty set M ⊂ X if there exists a
compact set N ⊂ X such that for any y ∈ M , there exists t(y) > 0 such that for any t ⩾ t(y),
ϕt(y) ∈ N̊ .

Lemma 2.4.2. If the initial condition of system (2.1) fulfills E1(0) + I1(0) +Er(0) + Ir(0) > 0,
then E1(t) > 0, I1(t) > 0, Er(t) >, Ir(t) > 0 for any t > 0.

Proof. Let us begin by observing that every state g ∈ {S1, E1, I1, R1, Sr, Er, Ir, Rr} of the system
(2.1) fulfills the inequality ġ ⩾ −agg where ag is a non-negative constant. Hence, if any state of
the system (2.1) is positive at a time T ⩾ 0, the positivity is preserved for any t > T thanks to
a straightforward application of Grönwall Lemma. Therefore, the Lemma is verified if the initial
state vector is positive element-wise, and it remains to check that the Lemma is still valid if the
vector of initial condition has some zero components.

If the initial condition fulfills S1(0) = 0, Ṡ1 is strictly positive and S1(t) for t > 0. Thus, S1
is positive for any t > 0 in any case. Adding İ1 to İr, we deduce from (2.1) that

İ1 + İr > min(σ1, σr)(E1 + Er) − (max(γ1, γr) + µ)(I1 + Ir).

Thus, the condition E1(0) + I1(0) + Er(0) + Ir(0) > 0 implies either I1(0) + Ir(0) > 0 or
I1(0) + Ir(0) = 0 and E1(0) +Er(0) > 0. In the second case, thanks to the inequality above, we
see that İ1 + İr > 0 on the right side of t = 0. In any case, one deduces I1(t) + Ir(t) > 0 for
t > 0. This and the fact that S1(t) > 0 for t > 0 force Ė1 to be positive on the right side of t = 0
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in the hypothetical situation where E1(0) = 0. Therefore, E1(t) > 0 for any t > 0 also. Finally,
the repeated application of the same reasoning leads successively to I1(t) > 0, R1(t) > 0, Sr(t) >
0, Er(t) > 0, Ir(t) > 0, Rr(t) > 0 for t > 0 which completes the proof.

Lemma 2.4.3. Assume that

lim
t→∞

E1 = 0, lim
t→∞

I1 = 0, lim
t→∞

Er = 0, lim
t→∞

Ir = 0,

then,
lim
t→∞

S1 = 1, lim
t→∞

Rr = 0, lim
t→∞

Sr = 0, lim
t→∞

Rr = 0.

Proof. For ε > 0, there is T > 0 such that for t > T

E1(t) < ε, I1(t) < ε, Er(t) < ε, Ir(t) < ε.

Then, we have the following differential inequalities for t > T :

µ− µS1 − (β1,1 + β1,r)ε ⩽ Ṡ1 ⩽ µ− µS1,

−(ω1 + µ)R1 ⩽ Ṙ1 ⩽ γ1ε− (ω1 + µ)R1,

−µSr ⩽ Ṡr ⩽ (γ1 + γr)ε− µSr,

−(ωr + µ)Rr ⩽ Ṙr ⩽ γrε− (ωr + µ)Rr,

which implies, for t > T ,

S1(T )e−µ(t−T ) +
∫ t

T

[µ− ε(β1,1 + β1,r)]e−µ(t−s)ds ⩽ S1(t) ⩽ S1(T )e−µ(t−T ) +
∫ t

T

µe−µ(t−s)ds,

E1(T )e−(ω1+µ)(t−T ) ⩽ E1(t) ⩽ E1(T )e−(ω1+µ)(t−T ) +
∫ t

T

γ1εe
−(ω1+µ)(t−s)ds,

Sr(T )e−µ(t−T ) ⩽ Sr(t) ⩽ Sr(T )e−µ(t−T ) +
∫ t

T

(γ1 + γr)εe−µ(t−s)ds,

Er(T )e−(ωr+µ)(t−T ) ⩽ Er(t) ⩽ Er(T )e−(ωr+µ)(t−T ) +
∫ t

T

γrεe
−(ωr+µ)(t−s)ds,

As limt→+∞
∫ t
T
e−λ(t−s)ds = λ−1 for λ ∈ R, the inequalities lead to

1 − µ−1ε(β1,1 + β1,r) ⩽ lim inf
t→∞

S1(t) ⩽ lim sup
t→∞

S1(t) ⩽ 1,

0 ⩽ lim inf
t→∞

E1(t) ⩽ lim sup
t→∞

E1(t) ⩽ (ω1 + µ)−1γ1ε,

0 ⩽ lim inf
t→∞

Sr(t) ⩽ lim sup
t→∞

Sr(t) ⩽ µ−1(γ1 + γr)ε,

0 ⩽ lim inf
t→∞

Er(t) ⩽ lim sup
t→∞

Er(t) ⩽ (ωr + µ)−1γrε.

As the previous inequalities are valid for all ε > 0, taking ε → 0 we obtain

lim
t→∞

S1(t) = 1, lim
t→∞

E1(t) = 0, lim
t→∞

Sr(t) = 0, lim
t→∞

Er(t) = 0.

This completes the proof.
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Lemma 2.4.4. For R0 > 1, no solution of system (2.1) converges to the DFE except those
starting on the invariant set ∂Σmax (2.17).

Proof. Assume that the contrary is true, i.e., that for R0 > 1 there is a solution x converging
to the DFE and such that x(0) /∈ ∂Σmax (note that Lemma 2.4.2 implies then x(t) /∈ ∂Σmax for
any t > 0). Let L be L := E1 + σ1+µ

σ1
I1, the derivative L̇ along trajectories of system (2.1) is

L̇ = (β1,1I1 + β1,rIr)S1 − (σ1 + µ)(γ1 + µ)
σ1

I1.

Let ε1 > 0 such that (1 − ε1)β1,1 > (γ1 +µ)σ1+µ
σ1

(again this is possible because R0 > 1). As the
solution x converges toward the DFE, there is a T > 0 such that 1 − ε1 < S1(t) < 1 for t > T .
Thus for t > T , we have the differential inequality :

L̇ > [(1 − ε1)β1,1 − (σ1 + µ)(γ1 + µ)
σ1

]I1 > 0,

and the quantity L(t) = E1(t) + σ1+µ
σ1

I1(t) is strictly increasing for t > T , which contradicts the
convergence to the DFE. Finally, the convergence towards the DFE in the invariant set ∂Σmax
is self-evident, as the dynamics (2.1) are reduced to the following system in the set ∂Σmax

Ṡ1 = µ− µS1,

Ṙ1 = −(ω1 + µ)R1,

Ṡr = −µSr,
Ṙr = −(ωr + µ)Rr,

whose solutions converge to the point (1, 0, 0, 0).

The previous lemmas and Theorem 4.3 in [49] allow us to derive that the system (2.1) is
uniformly persistent.

Proof of Theorem 2.4.1. The non persistence is deduced from the fact that the DFE is locally
asymptotically stable when R0 < 1.

The uniform persistence follows from an application of Theorem 4.3 in [49]. More precisely,
let X be the space R8

+ and Σ, ∂Σmax defined as in (2.16) and (2.17). We show that ∂Σmax is
the maximal invariant set in ∂Σ. Indeed, taking x0 ∈ ∂Σ but x0 /∈ ∂Σmax, then E1(0) + I1(0) +
Er(0) + Ir(0) > 0 and Lemma 2.4.2 implies that ϕt(x0) ∈ Σ̊ for t > 0, therefore we have proved
that ∂Σmax is the maximal invariant set in ∂Σ.

Moreover, notice that the hypothesis (H) that ensures in the aforementioned theorem by
Freedman the nonexistence of cycle in ∂Σmax is fulfilled, as the maximal invariant set ∂Σmax is
closed and connected. Indeed, the (H) hypothesis requires that ∂Σmax is a closed invariant set
and there exists a cover {Nα}α∈A of ∂Σmax, where A is a nonempty index set, Nα ⊂ ∂E, ∂Σmax ⊂
∪α∈ANα and Nα(α ∈ A) are pairwise disjoint closed invariant sets. Furthermore, it is assumed
that

• All Nα are isolated invariant sets of the flow ϕ.

• {Nα}α∈A is acyclic, that is, any finite subset of {Nα}α∈A does not form a cycle (see [22]).

• Any compact subset of ∂Σ contains, at most, finitely many sets of {Nα}α∈A.
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As the set ∂Σmax is already closed and connected, we take simply the cover {Nα}α∈A = {∂Σmax}
and the three points above can be verified. Furthermore, the system is naturally point-dissipative
over the invariant compact set Σ, thus Theorem 4.3 in [49] can be applied. According to this The-
orem and Lemma 2.4.2, uniform persistence of the system is equivalent to the non-existence of tra-
jectories starting in Σ̊ and approaching asymptotically the set ∂Σmax. Now, due to Lemma 2.4.3,
the convergence towards the set ∂Σmax implies, in fact, the convergence towards the DFE, which
is indeed excluded when R0 > 1 due to Lemma 2.4.4.

2.5 Numerical simulations

In this section, we consider various sets of parameters and show that the corresponding numbers of
endemic equilibriums coincide with the ones predicted by Theorems 2.3.7, 2.3.8, and 2.3.9. In sub-
section 2.5.1 we investigate first whether, given a set of polynomial parameters a1, b1, c1, ar, br, cr
for simulations, a corresponding set of physical parameters βi,j , σi, ωi, γi, i, j ∈ {1, r}, is guar-
anteed to exist. Subsection 2.5.2 presents the contents, the principles, and methodology of the
simulations. Next, the case R0 < 1, R0 = 1 and R0 > 1 are respectively considered for simu-
lations in subsections 2.5.3, 2.5.4 and 2.5.5. In particular, the simulations show that the most
significant scenarios with 3 endemic equilibriums for the case R0 > 1 and 2 endemic equilibriums
for the case R0 < 1 are indeed realized.

2.5.1 Correspondence between physical and polynomial P parameters

It is essential to check if the transformed problem (2.3.2), in the context which the previous
theorems are obtained and the simulations will be performed, has always at least one equivalent
in the original problem (2.4). The following results ensure that the existence is guaranteed under
certain necessary constraints.

Lemma 2.5.1. For any µ > 0, let the function Φ1 be defined by{
Φ1 : Ω → R7

ζ = (γ1, σ1, ω1, β1,1β1,r, γr, σr, ωr, βr,1, βr,r) 7→ Φ1(ζ) = (A1, B1, C1, Ar, Br, Cr, Dr)

where Ω := R∗10
+ and A1, B1, C1, Ar, Br, Cr, Dr are defined by the identities (2.5). Then

• Im Φ1 = Ω′ with, denoting ζ ′ := (A1, B1, C1, Ar, Br, Cr, Dr),

Ω′ :=
{
ζ ′ ∈ R∗7

+ : A1, Ar < 1 and Dr <
1 −A1

A1

1 −Ar
Ar

}
.

• The map Φg1 : Ω′ → Ω defined by

Φg1(ζ ′) =
(
γ1 σ1 ω1 β1,1 β1,r γr σr ωr βr,1 βr,r

)
,
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where for Θ := Dr
A1

1−A1
Ar

1−Ar
,

β1,1 = µ

C1
, β1,r = µ

B1

C1
, βr,r = µ

Cr
, βr,1 = µ

Br
Cr
,

ω1 = µ
Θ 1

4

1 − Θ 1
4
, σ1 = µ

Θ 1
4 (1 −A1) +A1

(1 − Θ 1
4 )(1 −A1)

, ωr = µ
Ar

(1 − Θ 1
4 )(1 −Ar)

,

σr = µ

(1 −Ar)Θ
1
4 (1 − Θ 1

4 )
− µ, γr = µ

1 − (1 −Ar)Θ
1
4

(1 −Ar)Θ
1
2

, γ1 = µ
Θ 1

4 (1 −A1)
A1

,

is a right inverse of Φ1, that is :

∀ζ ′ ∈ Ω′, Φ1 ◦ Φg1(ζ ′) = ζ ′.

Lemma 2.5.2. Let Ω′ be defined as previously, and the function Φ2 be{
Φ2 : Ω′ → R6

Φ2(ζ ′) =
(
a1 b1 c1 ar br cr

)
,

where (a1, b1, c1, ar, br, cr, dr) are defined by the identities (2.7). Then

• Im Φ2 = Ω′′ with, denoting ζ ′′ := (a1, b1, c1, ar, br, cr)

Ω′′ :=
{
ζ ′′ ∈ Ω′ → R × R∗3

+ × R × R∗
+ : a1 <

c1

b1
< 1, c1

b1
<

2
2 + br +

√
b2
r + 4cr

}
.

• The map Φg2 : Ω′′ → Ω′ defined by

Φg2(ζ ′′) =
(
A1 B1 C1 Ar Br Cr Dr

)
,

where

A1 = c1

b1
, B1 = b1, C1 = c1

b1
− a1,

Ar =

√
1
2 (br +

√
b2
r + 4cr)

1 +
√

1
2 (br +

√
b2
r + 4cr)

, Br = 1
2(−br +

√
b2
r + 4cr),

Cr = ar

1 +
√

1
2 (br +

√
b2
r + 4cr)

, Dr =
√

1
2(br +

√
b2
r + 4cr),

is a right inverse of Φ2, that is :

∀ζ ′′ ∈ Ω′′,Φ2 ◦ Φg2(ζ ′′) = ζ ′′.

The theorem below is a direct consequence of the previous lemmas.

Proposition 2.5.3. Let µ ∈ R∗
+ and the functions Φ1,Φ2,Φg1,Φ

g
2 be defined as in Lemmas 2.5.1

and 2.5.2. Then Im Φ2 ◦ Φ1 = Ω′′ and Φg1 ◦ Φg2 is a right inverse of the function Φ2 ◦ Φ1 defined
on Ω′′.
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In particular, for every ζ ′′ := (a1, b1, c1, ar, br, cr) ∈ Ω′′, let

ζ :=
(
γ1 σ1 ω1 β1,1 β1,r γr σr ωr βr,1 βr,r

)
= Φg1 ◦ Φg2(ζ ′′).

Then ζ ∈ Ω and is related to ζ ′′ by the identities (2.5), (2.7).

Proof of Lemma 2.5.1. Let us first show that Im Φ1 ∈ Ω′. Let ζ ∈ Ω, the fact that A1, Ar < 1 is
obvious from (2.5). For simplicity, for any x ∈ R+ we write

x̄ = x

x+ µ
.

The formulas (2.5) then simplify as

A1 = σ̄1(1 − γ̄1), Ar = σ̄rγ̄rω̄r, Dr = ω̄1

ω̄r

γ1

γr
.

Then, considering the equality
Dr = ω̄1

ω̄r

γ1

1 − γ̄1

1 − γ̄r
γr

,

and that

γ̄1 = 1 − A1

σ̄1
= σ̄1 −A1

σ̄1
, γ̄r = Ar

σ̄rω̄r
, (2.20)

we obtain

Dr = ω̄1

ω̄r

σ̄1 −A1

A1

σ̄rω̄r −Ar
Ar

, (2.21)

as x̄ < 1 for any x ∈ R+, thus

Dr <
σ̄1 −A1

A1

σ̄rω̄r −Ar
Arω̄r

<
1 −A1

A1

1 −Ar
Ar

,

which concludes Im Φ1 ⊂ Ω′.

Let us now establish that Ω′ ∈ Im Φ1, by showing that Φg1 : Ω′ → Ω defined in the statement
is a right inverse of Φ1. Let ζ ′ = (A1, B1, C1, Ar, Br, Cr, Dr) ∈ Ω′. Let us verify that Φg1(ζ ′) is
an element of Ω fulfilling the identities (2.5). Let Θ > 0 be such that

Θ = A1

1 −A1

Ar
1 −Ar

Dr. (2.22)

Then Θ ∈ (0, 1) due to the inequality Dr <
1−A1
A1

1−Ar

Ar
. Now, using the identities 2.21, 2.22 yields

Θ = A1

1 −A1

Ar
1 −Ar

ω̄1

ω̄r

σ̄1 −A1

A1

σ̄rω̄r −Ar
Ar

= ω̄1

(
σ̄1 −A1

A1

A1

1 −A1

)(
σ̄rω̄r −Ar

Ar

Ar
ω̄r −Ar

)(
ω̄r −Ar
Arω̄r

Ar
1 −Ar

)
.

We take each of the four factors in the previous equation equal to Θ 1
4 < 1 (that is possible
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because each factor is inferior to 1), which implies

ω̄1 = Θ 1
4 ∈ (0, 1), σ̄1 = Θ 1

4 (1 −A1) +A1 ∈ (Θ 1
4 , 1),

ω̄r −Ar = ω̄r(1 −Ar)Θ
1
4 , so that ω̄r = Ar

1 − (1 −Ar)Θ
1
4

∈ (Ar, 1),

and

σ̄rω̄r = (ω̄r −Ar)Θ
1
4 +Ar = Ar

1 − (1 −Ar)Θ
1
4

[
(1 − 1 + (1 −Ar)Θ

1
4 )Θ 1

4 + 1 − (1 −Ar)Θ
1
4

]
,

that is :

σ̄r = 1 − (1 −Ar)Θ
1
4 (1 − Θ 1

4 ) ∈ (0, 1).

As the value of µ is known, then also the values of ω1, σ1, ωr, σr thanks to the relation x = µ x̄
1−x̄ :

ω1 = µ
Θ 1

4

1 − Θ 1
4
> 0, ωr = µ

Ar

(1 − Θ 1
4 )(1 −Ar)

> 0,

σ1 = µ
Θ 1

4 (1 −A1) +A1

1 − Θ 1
4 (1 −A1) −A1

= µ
Θ 1

4 (1 −A1) +A1

(1 − Θ 1
4 )(1 −A1)

> 0,

σr = µ
1 − (1 −Ar)Θ

1
4 (1 − Θ 1

4 )
(1 −Ar)Θ

1
4 (1 − Θ 1

4 )
= µ

(1 −Ar)Θ
1
4 (1 − Θ 1

4 )
− µ > 0.

Finally we deduce (see (2.20))

γ̄r = Ar
σ̄rω̄r

= 1 − (1 −Ar)Θ
1
4

1 − (1 −Ar)Θ
1
4 (1 − Θ 1

4 )
∈ (0, 1),

γ̄1 = 1 − A1

σ̄1
= Θ 1

4 (1 −A1)
Θ 1

4 (1 −A1) +A1
∈ (0, 1 −A1) ⊂ (0, 1),

γr = µ
1 − (1 −Ar)Θ

1
4

(1 −Ar)Θ
1
2

> 0, γ1 = µ
Θ 1

4 (1 −A1)
A1

> 0.

Last, identities (2.5) imply that

β1,1 = µ

C1
, β1,r = β1,1B1 = µ

B1

C1
, βr,r = µ

Cr
, βr,1 = βr,rBr = µ

Br
Cr
.

We have shown that Φg1(ζ ′) is an element of Ω that fulfills the identities (2.5) for a given ζ ′ ∈ Ω′.
Hence, Φg1 is, in fact, a right inverse of Φ1, as Φ1 ◦Φg1(ζ ′) = ζ ′. Moreover, Ω′ ∈ Im Φ1, and finally
Ω′ = Im Φ1. This concludes the proof of Lemma 2.5.1.

Proof of Lemma 2.5.2. Let us show that Im Φ2 ∈ Ω′′. Let ζ ′ ∈ Ω′, the fact that a1 <
c1
b1
< 1 is

obvious from (2.7), and (2.7) also gives the equations

br = −Br + Ar
1 −Ar

Dr, cr = Ar
1 −Ar

DrBr.
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Denoting X := Br, Y := Ar

1−Ar
Dr, by (2.7) one has{

−X + Y = br

XY = cr
⇔

{
Y = X + br

X(X + br) = cr
.

We obtain the equation
X2 + brX − cr = 0,

whose discriminant is positive. As X > 0, then it is the positive root of the quadratic equation,
thus :

X := Br = 1
2(−br +

√
b2
r + 4cr), Y := Ar

1 −Ar
Dr = 1

2(br +
√
b2
r + 4cr). (2.23)

The second identity can be further rewritten as

Dr = 1 −Ar
Ar

1
2(br +

√
b2
r + 4cr).

Due to A1 = c1
b1

and the inequality Dr <
1−Ar

Ar

1−A1
A1

from Lemma 2.5.1, one has

1
2(br +

√
b2
r + 4cr) <

b1

c1
− 1,

so that :

1 + 1
2(br +

√
b2
r + 4cr) <

b1

c1
,

and finally,
c1

b1
<

2
2 + br +

√
b2
r + 4cr

,

which concludes that Im Φ2 ⊂ Ω′′.

Conversely, let us show that Φg2 : Ω′′ → Ω′ is a right inverse of Φ2 and that Φ′′ ∈ Im Φ2. The
following equations for Φg2 are deduced directly from (2.7)

A1 = c1

b1
> 0, B1 = b1 > 0, C1 = c1

b1
− a1 > 0,

We have also from (2.23) and (2.7)

Br = 1
2(−br +

√
b2
r + 4cr),

Ar
1 −Ar

Dr = 1
2(br +

√
b2
r + 4cr), Cr = ar√

1
2 (br +

√
b2
r + 4cr)

.

Now we take
Ar

1 −Ar
= Dr :=

√
1
2(br +

√
b2
r + 4cr),

then

Ar =

√
1
2 (br +

√
b2
r + 4cr)

1 +
√

1
2 (br +

√
b2
r + 4cr)

.
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Therefore thanks to the definition of Ω′′, A1 < 1 and obviously Ar < 1. The same equation also
implies

Dr = 1 −Ar
Ar

1
2(br +

√
b2
r + 4cr).

The following inequality is deduced from the definition of Ω′′ (which has been already shown)

1
2(br +

√
b2
r + 4cr) <

b1

c1
− 1 = b1 − c1

b1

b1

c1
= 1 −A1

A1
.

Thus Dr <
1−A1
A1

1−Ar

Ar
, Φg2(ζ) ∈ Ω′ and Φg2 is a right inverse of Φ2, which concludes the proof of

Lemma 2.5.2.

2.5.2 Guidelines of the simulations
The coefficient µ in the simulations below is fixed beforehand as µ = 1

75 years−1 for each simu-
lation shown below. Then we proceed as follows for the simulations:

1. Choice of adequate values of the normalized parameters a1, b1, c1, br, cr, deduction of the
physical parameters γ1, σ1, ω1, β1,1, β1,r, γr, σr, ωr through Proposition 2.5.3.

2. Plot of the branches of curves that give the roots of P as a function of the last parameter ar.
The horizontal lines correspond to the values max 0, a1 and c1

b1
which define the extremities

of the interval, inside which lie the roots that correspond to endemic equilibriums (see
Lemma 2.3.2).

3. Plots of P for several pertinent values of ar to illustrate situations described in Theorems
2.3.7 to 2.3.9. This choice is done according to the previous plot.

4. Numerical computation of the spectrum of the Jacobian JE at every equilibrium point of
the system as a function of function ar, each value of ar assesses corresponding value to the
two missing physical quantities βr,1, βr,r, and drawing of the bifurcation diagram showing
the stability or instability of equilibrium points. The spectrum is computed numerically in
MATLAB environment by applying the eigenvalue function “eigs” to the Jacobian.

5. Last, for a representative sampling of situations, numerical simulations and plot of trajec-
tories depending on the vicinity of the steady states, in order to illustrate and check their
local stability properties.

2.5.3 The case R0 < 1
When R0 < 1, Theorem 2.3.7 applies. We study in this subsection two situations where case 1
and 2 of Theorem 2.3.7 are fulfilled.

2.5.3.1 Theorem 2.3.7, case 1 — 0 endemic equilibrium

Set

a1 = −0.001, b1 = 0.81, c1 = 0.004, br = −10, cr = 1,

Then
a2

1 + a1c1br − crc
2
1 = 2, 5 × 10−5 > 0,
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β1,1 β1,r βr,1 βr,r ω1 R0
6.15 × 10−3 4.98 × 10−3 4.85 × 10−2 4.80 × 10−3 6.39 × 10−6 0.83

ωr σ1 σr γ1 γr
1.35 × 10−5 6.60 × 10−6 3.42 × 10−4 1.10 × 10−3 1.92 × 10−3

Table 2.1: Physical parameters for the example in Figure 2.2

and we are in the case 1 of Theorem 2.3.7 and the system has no endemic equilibrium.
Figure 2.2a shows the roots of P as functions of ar. The two critical values are shown with

red stars. Fig. 2.2b shows the curve P(I∗
1 ) corresponding to the value ar = 0.0100 marked in

Fig. 2.2a by the blue circle.
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Figure 2.2: Illustration of Theorem 2.3.7 case 1

2.5.3.2 Theorem 2.3.7 case 2 — 0, 1 or 2 endemic equilibriums

For the values:

a1 = −0.001, b1 = 0.81, c1 = 0.0004, br = 15, cr = 15,

we have
a2

1 + a1c1br − crc
2
1 = −0.0003 < 0.

Thus it corresponds to the case 2 of Theorem 2.3.7 and examples with zero, one or two endemic
equilibriums will be exhibited. Figure 2.3a shows the roots of P depending on ar. The critical
values and plotted values of ar are also respectively illustrated by red stars and blue circles.
Figures 2.3b, 2.3c, 2.3d-2.3f are examples of numerical plots of P in cases with zero, one or two
endemic equilibriums. Next, the bifurcation diagram computed in Figure 2.4a exhibits that, in
case where R0 < 1 and the system presents two endemic equilibriums, the greatest is locally stable
while the smallest is unstable. This is also illustrated in the trajectories computed in Figures 2.4b
and 2.4c which show that trajectories starting near the greatest steady state converge towards
the latter while trajectories starting near the second endemic equilibrium either converge slowly
towards the first endemic equilibrium or the disease-free equilibrium (shown in green).

Finally, Tables 2.2 and 2.4 expose physical parameters corresponding to each example cal-
culated using Proposition 2.5.3. Notice that only the parameter ar is varying throughout the
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examples. Then, thanks to Lemma 2.5.2, only the intermediary parameter Cr depends on ar,
and finally by Lemma 2.5.1 only the physical parameters βr,r and βr,1 are varying.

Fig. ar βr,1 βr,r
2.3b 0.0275 6.23 × 10−3 6.62 × 10−3

2.3c 0.0551 3.12 × 10−3 3.31 × 10−3

2.3d 0.0826 2.08 × 10−3 2.21 × 10−3

2.3e 0.1157 1.48 × 10−3 1.58 × 10−3

2.3f 0.1736 9.89 × 10−4 1.05 × 10−3

Table 2.2: Physical parameters for examples in Figure 2.3

Fig. Values of I∗
1 maxλ∈spec(JE){ℜ(λ)}

2.3b (4.28, 0.57) × 10−3 (−3.65, 0.92) × 10−5

2.3c 2.91 × 10−3 0

Table 2.3: Values of I∗
1 and spectral abscissa of the Jacobian matrices at each equilibrium points

β1,1 β1,r ω1 ωr R0
6.15 × 10−3 4.98 × 10−3 4.13 × 10−5 3.11 × 10−4 0.83

σ1 σr γ1 γr
4.16 × 10−5 6.96 × 10−4 3.90 × 10−3 5.80 × 10−4

Table 2.4: Physical parameters for examples in Figure 2.3
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Figure 2.3: Illustration of Theorem 2.3.7 case 2
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2.5.4 The case R0 = 1
When R0 = 1, Theorem 2.3.8 applies. Case 2a and 3b of Theorem 2.3.8 are studied in this
subsection.

2.5.4.1 Theorem 2.3.8 case 2a — 0 or 1 endemic equilibrium

Let

a1 = 0, b1 = 0.50, c1 = 0.001, br = −30, cr = 10, (2.26)

Then
1 + brb1 − crb

2
1 = −16.5 < 0,

and this corresponds to the case 2a of Theorem 2.3.8 allowing only the presence of one or zero
endemic equilibrium. The graph of the roots of P as functions of ar as well as critical and plotted
values of ar are shown in Figure 2.5a. Plots of P are shown in Figure 2.5b in an example with
one endemic equilibrium and Figures 2.5c and 2.5d in examples without endemic equilibrium.
The physical parameters of the examples are shown in Table 2.7, 2.5 and the numerical value
of the root in Table 2.6. The bifurcation diagram 2.6a computed for this case shows that the
unique endemic equilibrium present in the case 2a is stable, which is further demonstrated by
the trajectories simulated in Figures 2.6b and 2.6c.

Fig. ar βr,1 βr,r
2.5b 0.0050 3.49 × 10−1 1.15 × 10−2

2.5c 0.0100 1.74 × 10−1 5.75 × 10−3

2.5d 0.0150 1.16 × 10−1 3.83 × 10−3

Table 2.5: Physical parameters for examples in Figure 2.5

Fig. Values of I∗
1 maxλ∈spec(JE){ℜ(λ)}

2.5b 1.42 × 10−4 −1.47 × 10−6

Table 2.6: Value of I∗
1 and spectral abscissa of the Jacobian matrix at equilibrium point

β1,1 β1,r ω1 ωr R0
1.83 × 10−2 9.13 × 10−3 6.98 × 10−6 2.50 × 10−5 1

σ1 σr γ1 γr
7.06 × 10−6 3.91 × 10−4 2.92 × 10−3 2.01 × 10−3

Table 2.7: Physical parameters for examples in Figure 2.5
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Figure 2.5: Polynomial illustrations of Theorem 2.3.8 case 2a
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Figure 2.6: Trajectories in the case 2a of Theorem 2.3.8
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2.5.4.2 Theorem 2.3.8 case 3b — 0, 1 or 2 endemic equilibriums

Consider

a1 = 0, b1 = 0.50, c1 = 0.001, br = 30, cr = 10.

As

1 + b1br − crb
2
1 = 13.5 > 0, 3b1c1cr − brc1 = −0.015 < 0,

this case corresponds to the case 3b of Theorem 2.3.8 allowing the possibility of having up to
2 endemic equilibriums. Figure 2.7a shows the critical values (in red star) and plotted values
(in blue circle) alongside the graph of roots of P depending on the parameter ar. Figure 2.7b-
2.7c, 2.7d, 2.7e-2.7f show respectively examples of plots of the function P in case with zero, one
and two endemic equilibriums. Tables 2.8, 2.10 show the physical parameters of the examples
computed using Proposition 2.5.3. As previously, only the physical parameter βr,1 and βr,r vary
throughout the simulations. In the case when R0 = 1 and the system presents two endemic
equilibriums, the bifurcation diagram 2.8a shows that the greatest endemic equilibrium is locally
stable while the smallest is unstable. Figure 2.8d, 2.8e illustrate that trajectories starting near
the unstable equilibrium either converge towards the stable endemic equilibrium or towards the
disease-free equilibrium.

Fig. ar βr,1 βr,r
2.7b 0.0033 2.35 × 10−2 7.13 × 10−2

2.7c 0.0100 7.84 × 10−3 2.38 × 10−2

2.7d 0.0243 3.22 × 10−3 9.78 × 10−3

2.7e 0.0680 1.15 × 10−3 3.50 × 10−3

2.7f 0.0146 5.36 × 10−4 1.63 × 10−3

Table 2.8: Physical parameters for examples in Figure 2.7

Fig. I∗
1 maxλ∈spec(JE){ℜ(λ)}

2.7b 1.87 × 10−3 −3.65 × 10−5

2.7c 1.85 × 10−3 −3.65 × 10−5

2.7d (1.79, 0.59) × 10−3 (−3.65, 1.21) × 10−5

Table 2.9: Values of I∗
1 and spectral abscissa of the Jacobian matrix at each equilibrium point

β1,1 β1,r ω1 ωr R0
1.83 × 10−2 9.13 × 10−3 3.60 × 10−5 4.00 × 10−4 1

σ1 σr γ1 γr
3.62 × 10−5 9.14 × 10−4 9.05 × 10−3 8.91 × 10−4

Table 2.10: Physical parameters for examples in Figure 2.7
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Figure 2.7: Polynomial illustrations of Theorem 2.3.8 case 3b
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Figure 2.8: Trajectories in the case 3b of Theorem 2.3.8



2.5. Numerical simulations 87

2.5.5 The case R0 > 1
When R0 > 1, Theorem 2.3.9 applies. In this subsection, we consider two examples of the cases
1 and 2c of Theorem 2.3.9.

2.5.5.1 Theorem 2.3.9 case 1 — 1 endemic equilibrium

Set

a1 = 0.0009, b1 = 1.5, c1 = 0.004, br = 0.01, cr = 150.

Hence,
1 + brb1 − crb

2
1 = −336, 49 < 0,

which implies that this case corresponds to (1) of Theorem 2.3.9 and has a unique endemic
equilibrium. Figure 2.9a illustrates the distribution of real roots of P, the critical values, and
the plotted values of ar. An example of the plot is presented in Figure 2.9b and illustrates the
uniqueness of endemic equilibrium in this case. Finally, Figures 2.10a to 2.10c show that the
unique endemic equilibrium in the present case is locally stable.

Fig. Values of I∗
1 maxλ∈spec(JE){ℜ(λ)}

2.9b 2.56 × 10−3 −3.65 × 10−5

Table 2.11: Value of I∗
1 and spectral abscissa of the Jacobian matrix at the equilibrium point

β1,1 β1,r βr,1 βr,r ω1 R0
2.07 × 10−2 3.10 × 10−2 2.01 × 10−2 1.64 × 10−3 2.71 × 10−5 1.51

ωr σ1 σr γ1 γr ar
2.23 × 10−4 2.72 × 10−5 6.36 × 10−4 5.58 × 10−3 8.22 × 10−4 0.1

Table 2.12: Physical parameters for the example in Figure 2.9
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Figure 2.9: Polynomial illustrations of Theorem 2.3.9 case 1
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Figure 2.10: Trajectories in the case 1 of Theorem 2.3.9
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2.5.5.2 Theorem 2.3.9 case 2 — 1, 2 or 3 endemic equilibriums

The coefficients in this example are:

a1 = 0.00025, b1 = 0.81, c1 = 0.0004, br = 150, cr = 30.

As
1 + brb1 − crb

2
1 = 102.82 > 0,

and that ∆ > 0 has four distinct positives roots as shown in Figure 2.11a, this corresponds to the
case 2c of Theorem 2.3.9 where the polynomial ∆ has four distinct roots, thus exhibiting cases
with three endemic equilibriums. Figure 2.11a shows the distribution of real roots of P depending
on the values of the parameter ar. The critical values of ar are indicated with red stars, and
the values taken for simulations are indicated with blue circles. Figures 2.11b-2.11f illustrate
some cases with one, two and three endemic equilibriums. In particular, the case with three
endemic equilibriums is exhibited by Figure 2.11e as announced in the Theorem 2.3.9. Tables
2.13, 2.15 show values of physical parameters obtained according to Proposition 2.5.3. In the
case where R0 > 1 and the system presents three endemic equilibriums, the bifurcation diagram
2.12a and simulations of trajectories in Figures 2.12d and 2.12e show that both the greatest
and smallest equilibrium are locally stable while the endemic equilibrium located in between is
unstable. Furthermore, the diagram in Figure 2.12a depicts indeed a transitional phase during
which the system swiftly transitions from a high infection level to a low infection level when ar
increases, thus exhibiting a reinfection threshold.

Fig. ar βr,1 βr,r
2.11b 0.0051 1.91 × 10−2 9.58 × 10−2

2.11c 0.0321 3.01 × 10−3 1.50 × 10−2

2.11d 0.0643 1.50 × 10−3 7.53 × 10−3

2.11e 0.0658 1.47 × 10−3 7.36 × 10−3

2.11f 0.0912 1.06 × 10−3 5.31 × 10−3

Table 2.13: Physical parameters for the example in Figure 2.11

Fig. Value of I∗
1 maxλ∈spec(JE){ℜ(λ)}

2.11b 4.91 × 10−4 −3.65 × 10−5

2.11c 4.90 × 10−4 −3.65 × 10−5

2.11d (4.77, 3.62) × 10−4 −3.21 × 10−5, 0
2.11e (4.73, 4.12, 3.29) × 10−4 (−2.21, 0.73,−1.17) × 10−5

2.11f 2.80 × 10−4 −3.65 × 10−5

Table 2.14: Values of I∗
1 and spectral abscissa of the Jacobian matrix at each equilibrium point

β1,1 β1,r ω1 ωr R0
1.50 × 10−1 1.21 × 10−1 3.99 × 10−5 9.36 × 10−4 2.03

σ1 σr γ1 γr
3.99 × 10−5 1.90 × 10−3 3.86 × 10−2 1.71 × 10−3

Table 2.15: Physical parameters for the example in Figure 2.11
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Figure 2.11: Polynomial Illustrations of Theorem 2.3.9 case 2
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Figure 2.12: Trajectories in the case 2 of Theorem 2.3.9
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2.6 Two-stage SIS model
In this section, we review a simple two-stage SIS reinfection model, which is,

Ṡ1 = µ− (β1,1I1 + β1,rIr + µ)S1,

İ1 = (β1,1I1 + β1,rIr)S1 − (γ1 + µ)I1,

Ṡr = γ1I1 + γrIr − (βr,1I1 + βr,rIr + µ)Sr,
İr = (βr,1I1 + βr,rIr)Sr − (γr + µ)Ir.

(2.27)

The motivation for the study of this SIS model is to examine whether the findings presented
previously exhibiting complex behaviors of the steady states are still valid even in the most
simple SIS configuration. Its reduced dimension allows for the SIS system allows for the exami-
nation of the asymptotic behavior under the Li and Muldowney theory framework [75], which is
computationally difficult for the SEIRS model. The analysis is done in Section 2.7 below.

2.6.1 Equilibrium analysis
The invariant and biologically feasible set of the system is

Σ := {(S1, I1, Sr, Ir) ∈ R4
+|S1 + I1 + Sr + Ir = 1}. (2.28)

Again the system has a unique DFE (1, 0, 0, 0), and a result similar to Proposition 2.2.1 can be
deduced on local stability of the DFE.

Proposition 2.6.1. The system (2.27) has a unique disease-free equilibrium

E0 = (1, 0, 0, 0).

Moreover, denoting,

R0 := β1,1

γ1 + µ
,

the DFE is locally asymptotically stable when R0 < 1 and unstable when R0 > 1.

Proof. As disease-free equilibrium E0 = (S0
1 , I

0
1 , S

0
r , I

0
r ), first I0

1 = I0
r = 0 by definition and S0

1 , S
0
r

fulfill
µ− µS0

1 = 0, −µS0
r = 0.

Hence, S0
1 = 1 and S0

r = 0. The Jacobian of system (2.27) at the DFE is

A :=


−µ −β1,1 0 −β1,r
0 β1,1 − (γ1 + µ) 0 β1,r
0 γ1 −µ γr
0 0 0 −(γr + µ)

 .

Expanding the first and third columns while computing the determinant, we can easily see that
µ is an eigenvalue with multiplicity two and the remaining are eigenvalues of the matrix :(

β1,1 − (γ1 + µ) β1,r
0 −(γr + µ)

)
,
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which are the coefficients in the diagonal entries. Thus, we can conclude that the DFE is locally
asymptotically stable if β1,1 < γ1 + µ, i.e., if R0 < 1 and unstable when R0 > 1.

Each endemic equilibrium (S∗
1 , I

∗
1 , S

∗
r , I

∗
r ) fulfills now the following relationships

0 = µ− (β1,1I
∗
1 + β1,rI

∗
r + µ)S∗

1 ,

0 = (β1,1I
∗
1 + β1,rI

∗
r )S∗

1 − (γ1 + µ)I∗
1 ,

0 = γ1I
∗
1 + γrI

∗
r − (βr,1I∗

1 + βr,rI
∗
r + µ)S∗

r ,

0 = (βr,1I∗
1 + βr,rI

∗
r )S∗

r − (γr + µ)I∗
r ,

Thus,
S∗

1 = µ

β1,1I∗
1 + β1,rI∗

r + µ
, I∗

1 = (β1,1I
∗
1 + β1,rI

∗
r )S∗

1
γ1 + µ

,

S∗
r = γ1I

∗
1 + γrI

∗
r

βr,1I∗
1 + βr,rI∗

r + µ
, I∗

r = (βr,1I∗
1 + βr,rI

∗
r )S∗

r

γr + µ
.

Again, by elimination of S∗
1 , S

∗
r , we deduced that I∗

1 , I
∗
r must fulfil the equations underneath

I∗
1 = µ

γ1 + µ

β1,1I
∗
1 + β1,rI

∗
r

β1,1I∗
1 + β1,rI∗

r + µ
,

I∗
r = γr

γr + µ
(γ1

γr
I∗

1 + I∗
r ) βr,1I

∗
1 + βr,rI

∗
r

βr,1I∗
1 + βr,rI∗

r + µ
.

This could be written with a similar set of coefficients as those introduced for the analysis of
SEIRS model.

I∗
1 = A1

I∗
1 +B1I

∗
r

I∗
1 +B1I∗

r + C1
, I∗

r = Ar
BrI

∗
1 + I∗

r

BrI∗
1 + I∗

r + Cr
(DrI

∗
1 + I∗

r ).

where the coefficients are

A1 = µ

γ1 + µ
, B1 = β1,r

β1,1
, C1 = µ

β1,1
,

Ar = γr
γr + µ

, Br = βr,1
βr,r

, Cr = µ

βr,r
, Dr = γ1

γr
.

Thus, introducing the coefficients a1, b1, cr, ar, br, cr defined in the same way as before, we can
see in a straightforward manner that the relationship

a1 > 0 ⇔ R0 > 1, a1 < 0 ⇔ R0 < 1,

and all the results on existence and number of endemic equilibriums of the SEIRS model still hold
in the SIS case. Moreover, in the SIS case, we can derive simple expression of these coefficients
depending on the parameters of the system :

a1 = µ

β1,1
(R0 − 1), b1 = β1,r

β1,1
, c1 = β1,r

β1,1

µ

γ1 + µ
,

ar = γr + µ

βr,r
, br = −βr,1

βr,r
+ γ1

µ
, cr = γ1

µ

βr,1
βr,r

.

(2.29)

As in Proposition 2.5.3 of the previous SEIRS model, it is required to check if there is a
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specific set of physical parameters which corresponds to a given choice of a1, b1, c1, ar, br, cr.

Proposition 2.6.2. Let µ ∈ R∗
+, let the function Φ be defined by,{

Φ : R∗6
+ → R6

ζ = 1
µ (γ1, β1,1β1,r, γr, βr,1, βr,r) 7→ Φ(ζ) = (a1, b1, c1, ar, br, cr)

where the parameters (a1, b1, c1, ar, br, cr) are defined by the equations (2.29). Then

• Im Φ = Ω′ with, denoting ζ ′ := (a1, b1, c1, ar, br, cr),

Ω′ :=
{
ζ ′ ∈ R∗6

+ : b1, c1, ar, cr > 0, a1 <
c1

b1
< 1, b1

c1
− 1 − br > 0,

cr = b1 − c1

c1
(b1 − c1

c1
− br)

}
.

• For a fixed ζ ′ ∈ Ω′, the inverse image Φ−1(ζ ′) is defined by

Φ−1(ζ ′) = { 1
µ

(γ1, β1,1β1,r, γr, βr,1, βr,r) ∈ Ω : ζ fulfils (2.30)}

γ1

µ
= b1

c1
− 1, β1,1

µ
= (c1

b1
− a1)−1,

β1,r

µ
= b1(c1

b1
− a1)−1,

βr,r >
µ

ar
,

βr,1
µ

= βr,r
µ

(b1

c1
− 1)−1cr,

γr
µ

= ar
βr,r
µ

− 1.
(2.30)

Proof. Positivity of b1, c1, ar, cr is easily derived and c1
b1

< 1 from (2.29). From equations
(2.29),

µ

γ1 + µ

β1,1 − γ1 − µ

β1,1
= a1,

µ

γ1 + µ
= c1

b1
,

µ

β1,1
= c1

b1
−a1,

β1,r

µ
= c1

β1,1

µ

γ1 + µ

µ
= b1(c1

b1
−a1)−1,

βr,1
βr,r

= γ1

µ
− br = b1

c1
− 1 − br = (b1

c1
− 1)−1cr,

γr + µ

βr,r
= ar.

The first equality shows that a1 <
c1
b1

, the fifth equality implies the second and third condition
of Ω′, and the equations (2.30) can be easily deduced.

This result shows that in the SIS model, the set of admissible parameters (a1, b1, c1, ar, br, cr)
for polynomial analysis of endemic equilibrium has one additional constrain cr = b1−c1

c1
( b1−c1

c1
−

br). Then, even if previous theorems on the numbers of equilibrium are still technically correct,
it is necessary to check again if each case described in these theorems may still realize under
this supplementary constraint. To this end, we rewrite the coefficients a, c of the polynomial
P = ax2 + bx+ c and d = 3b1cr − br that intervene in Theorems 2.3.7, 2.3.8, 2.3.9 and eliminate
cr to obtain:

a = 1 + brb1 − crb
2
1 = 1 + brb1 − (b1

c1
− 1)(b1

c1
− br − 1)b2

1,

c = a2
1 + bra1c1 − crc

2
1 = a2

1 + bra1c1 − (b1 − c1)(b1 − c1br − c1),

d = 3b1cr − br = 3b1(b1

c1
− 1)(b1

c1
− br − 1) − br.
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It is easy to see that coefficients above may still be both positive or negative by tuning a1, b1
and br.

• For the case R0 < 1 (a1 < 0), the number of endemic equilibrium depends solely on c.
Then, for parameters besides a1 fixed, c can be both positive (when a1 tends to infinity)
and negative (a1 close to zero). Both cases enunciated in Theorem 2.3.7 are then still
possible.

• For R0 = 1 (a1 = 0), the situation depends on a and d. For each value of br, a can be both
positive with b1 close to zero and negative when b1 is arbitrarily large.

• Last, when R0 > 1, (a1 > 0), the number of endemic equilibrium depends on the coefficient
a and the number of roots of ∆.The coefficient a can be tuned as in the case R0 = 1 to
obtain the desired sign and the existence of the case 3 endemic equilibriums, i.e., of a setting
where the polynomial ∆ has 4 roots is verified numerically with the following parameters :

a1 = 0.001, b1 = 0.1, c1 = 1, br = 3.

2.6.2 Persistence analysis for R0 > 1
For persistence analysis, the techniques developed in Section 2.4 for the SEIRS system can be
adapted for SIS system. Borrowing the same notations, we set instead X as X := R4

+, the
invariant and biologically feasible set Σ as in (2.28) with boundary ∂Σ and interior Σ̊. We also
define the invariant set ∂Σmax as

∂Σmax := {(S1, I1, Sr, Ir) ∈ Σ|I1 = 0, Ir = 0},

and the proof of it being the maximal invariant set in ∂Σ will again be brought later on. The
SIS model version of the intermediary Lemmas 2.4.2, 2.4.3, 2.4.4 are

Lemma 2.6.3. If the initial condition fulfills I1(0) + Ir(0) > 0, then I1(t) > 0, Ir(t) > 0 for
each t > 0.

Proof. Again, let us begin by noticing that every state g ∈ {S1, I1, Sr, Ir} of the system (2.27)
fulfills the inequality ġ ⩾ −agg where ag is a (non-negative) constant. Thus, as observed in
Lemma 2.4.2, the positivity of any state g is preserved for t > T if it is positive at a time T and
the Lemma is verified if the initial state vector is positive element wise. Therefore, once again, it
remains to check the case where the initial state vector has some zero valued components. First,
if we have either S1(0) = 0 or Sr(0) = 0, then due to equations (2.27) and I1(0) + Ir(0) > 0,
the derivatives Ṡ1(0), Ṡr(0) are strictly positive and therefore, thanks to the observation above,
S1(t), Sr(t) > 0 for t > 0. It remains to check the situations where I1(0) = 0 or Ir(0) = 0 to
prove the Lemma. As we have the inequality,

İ1 + İr ⩾ (β1,1I1 + β1,rIr)S1 + (βr,1I1 + βr,rIr)Sr − (max {γ1, γr} + µ)(I1 + Ir),

we deduce that I1(t) + Ir(t) > 0 for any t ⩾ 0 as I1(0) + Ir(0) > 0. This fact, and S1(t) >
0, Sr(t) > 0 for t > 0 imply that the derivatives İ1(t), İr(t) are positive on the right side of t = 0
in the hypothetical cases where I1(0) = 0 or Ir(0) = 0. Thus, in any case, we have I1(t), Ir(t) > 0
for t > 0, which concludes the proof.

Lemma 2.6.4. Assume that limt→∞ I1 = 0, limt→∞ Ir = 0, then limt→∞ S1 = 1, limt→∞ Sr = 0.
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Proof. Assume that limt→∞ I1 = 0, limt→∞ Ir = 0, then for each ε > 0, there is T > 0 such that
I1(t) < ε, Ir(t) < ε for t > T . Therefore, the differential inequalities below are verified for t > T :

µ− µS1 − (β1,1 + β1,r)ε ⩽ Ṡ1 ⩽ µ− µS1,

−µSr ⩽ Ṡr ⩽ (γ1 + γr)ε− µSr.

Which imply, for t > T ,

S1(T )e−µ(t−T ) +
∫ t

T

[µ− ε(β1,1 + β1,r)]e−µ(t−s)ds ⩽ S1(t) ⩽ S1(T )e−µ(t−T ) +
∫ t

T

µe−µ(t−s)ds,

Sr(T )e−µ(t−T ) ⩽ Sr(t) ⩽ Sr(T )e−µ(t−T ) +
∫ t

T

(γ1 + γr)εe−µ(t−s)ds,

As limt→+∞
∫ t
T
e−µ(t−s)ds = µ−1, the inequalities imply

1 − µ−1ε(β1,1 + β1,r) ⩽ lim inf
t→∞

S1(t) ⩽ lim sup
t→∞

S1(t) ⩽ 1,

0 ⩽ lim inf
t→∞

Sr(t) ⩽ lim sup
t→∞

Sr(t) ⩽ µ−1(γ1 + γr)ε.

Because the previous inequalities are valid for all ε > 0, by taking ε → 0, we obtain

lim
t→∞

S1(t) = 1, lim
t→∞

Sr(t) = 0.

Lemma 2.6.5. For R0 > 1, no solution of system (2.27) converges to the DFE except those
starting on the invariant set ∂Σmax.
Proof. Assume that the contrary is true, i.e., for R0 > 1 there is a solution x converging to
the DFE and such that x(0) /∈ ∂Σmax which is equivalent to I1(0) + Ir(0) > 0. According to
Lemma 2.6.3 the solution cannot reach the invariant set ∂Σmax in finite time, thus x(t) /∈ ∂Σmax
for t ⩾ 0. Setting now ε1 > 0 such that (1 − ε1)β1,1 > γ1 + µ (which is possible as R0 > 1), the
convergence of the solution implies that there is T > 0 such that 1 − ε1 < S1(t) < 1 for t > T .
Thus, for t > T , we have the following differential inequality

İ1 > [(1 − ε1)β1,1 − γ1 − µ]I1 > 0,

which implies that I1 moves exponentially away from zero asymptotically, which is absurd as
limt→∞ I1 = 0 because the solution is assumed to converge to the DFE.

Finally, the convergence towards the DFE on the invariant set ∂Σ (invariance which can be
deduced easily from the equations of the system) is self-evident as system 2.27 is reduced to the
following equations in the set ∂Σmax

Ṡ1 = µ− µS1,

Ṡr = −µSr.

Employing the Lemma 2.6.3, 2.6.4, 2.6.5 demonstrated above, the following Theorem, which
is the SIS version of Theorem 2.4.1 is now proved using the same arguments as in the proof of
the Theorem aforementioned.
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Theorem 2.6.6. System (2.27) is uniformly persistent in the interior Σ̊ of the set Σ defined in
(2.28) if R0 > 1 and non-persistent if R0 < 1.

Proof. The non persistence is deduced from the fact that the DFE is locally asymptotically stable
when R0 < 1. Moreover, the uniform persistence follows from an application of Theorem 4.3 in
[49].

Thanks to the Lemma 2.6.3, for the biological feasible and invariant region Σ (2.28), the
maximal invariant set on the boundary ∂Σ is the set ∂Σmax. As the set ∂Σmax is closed and
connected, we take simply, as in the proof of Theorem 2.4.1, the cover {Nα}α∈A = {∂Σmax}
and the three points of the (H) hypothesis of [49] are again verified. Furthermore, the system
is naturally point-dissipative over the invariant compact set Σ, thus Theorem 4.3 in [49] can
be applied. According to this Theorem and Lemma 2.6.3, uniform persistence of the system
is equivalent to the non-existence of trajectories starting in the interior Σ̊ and approaching
asymptotically the set ∂Σmax. Now, due to Lemma 2.6.4, the convergence towards the set ∂Σmax
implies, in fact, the convergence towards the DFE, which is indeed excluded when R0 > 1 due
to Lemma 2.6.5.

2.7 Global analysis of reinfection models with partial im-
munity

2.7.1 Elements of multistability analysis and contraction theory
As shown in Section 2.6, the two-stage models exhibit multistability. In fact, the models present
up to 2 endemic equilibriums for R0 < 1, 3 endemic equilibriums for R0 > 1 alongside a disease-
free equilibrium which always exists. In this section, we intend to discuss the asymptotic behavior
of the two stage model.

For non-planar systems exhibiting multistability, the asymptotic behavior analysis is often
difficult. Nevertheless, several approaches have been proposed in the literature for multistability
analysis. First, the asymptotic convergence towards a steady state may be shown if the system
presents some monotonicity properties [107], and whether a system is monotone regarding a
particular cone can be easily tested. Nevertheless, it is often very difficult to find a priori a cone
leading to monotonicity [5], but one may refer to [70] for an algorithmic approach that has been
recently proposed on this issue.

Another way to deduce asymptotic convergence is to implement a generalization of Lya-
punov’s direct method to systems with multiple invariant sets [37]. The method requires finding
a Lyapunov-like function proving that the invariant sets are attracting, which is again difficult in
practice. Similarly, the theory of Input-to-State stability (ISS) has also been generalized to sys-
tems with multiple invariant sets [6], allowing the consideration of the stability of interconnected
systems with multistability. Indeed, an analysis of ISS property of cascade interconnections of
ISS subsystems is provided in [48]. However, it is not clear to what extent the generalized ISS
property can be conserved for more complex interconnections, such as the ones in (2.27).

Finally, it is also possible to analyze multistability through contraction theory [78]. In short,
for a non-linear system

ẋ = f(x), (2.32)

where f : Rn → Rn is a C1 function, contraction is a differential property on the corresponding
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variational equation

˙δx = df(x)
dx

δx, (2.33)

that implies the exponential convergence of any virtual displacement δx in the tangent space to
zero. This in turn implies the convergence of all trajectories with respect to one another, which
is a form of stability that is called incremental. In this case, every solution of (2.32) converges
towards a unique equilibrium.

Recently, contraction theory has been generalized to include the contraction of k-dimensional
parallelotope in the tangent space [117], with the classical contraction property corresponding to
the case where k = 1. In fact, the motivation to study the generalized k-contraction comes from
the work of Li and Muldowney who proved that any solution of a 2-contracting system converges
towards an equilibrium, which is not necessarily unique [75]. For planar systems, the autonomous
convergence theorem demonstrated by Li and Muldowney can be considered as a generalization
of the well-known Bendixson-Dulac criterion [72]. This convergence result has been since applied
to several compartmental models presenting one unique endemic equilibrium. In these models,
the 2-contraction property is combined with a persistence result to guarantee the global stability
of the unique endemic equilibrium in the interior of the invariant biologically feasible set when
R0 > 1. As the 2-contraction property does not necessarily require the uniqueness of the steady
states, this offers also an interesting framework for the asymptotic behavior analysis of multistable
systems.

We present now a quick review of Li and Muldowney autonomous convergence result. Let
δx1(t), δx2(t), . . . , δxk(t) ∈ Rn be k time-varying vectors representing virtual displacements
which are solutions of (2.33). We may represent the k-dimensional parallelotope generated
by the vectors δx1(t), δx2(t), . . . , δxk(t) as an exterior product z(t) := ∧i1⩽i⩽kδxi(t) evolving in
R(n

k), where
(
n
k

)
is the binomial coefficient. With this definition, z(t) is a solution of the k-th

compound equation below associated to (2.33) (see e.g. [76, Section 2]).

ż = df

dx

[k]
(x)z, (2.34)

where, for any matrix A, we denote A[k] as the k-th additive compound matrix of A. For an
introduction to exterior product and compound matrices, one refers to [76] and [91, 90]. With
these definitions, we introduce the convergence result proved by Li and Muldowney in [75] and
reformulated by Ballyk et al. [11] who relaxed the need for a unique equilibrium. The statement
of the following theorem is slightly adapted from [11, Theorem 6.2].

Theorem 2.7.1. Let k = 2, D be a simply connected open subset of Rn such that solutions of
equation (2.32) with x(0) = x0 ∈ D remain in D for all finite time. Let ∥ · ∥ be a norm on R(n

2)
and let Q be an

(
n
2
)

×
(
n
2
)

matrix-valued function on D such that ∥Q−1∥ is bounded on D. If
there exist real numbers T, g > 0 such that for all solutions of (2.32) in D and all t ⩾ T , any
solution z(t) of (2.34) satisfies

∥Q(x(t))z(t)∥ ⩽ ∥Q(x(0))z(0)∥e−gt, (2.35)

then every solution of (2.32) in D bounded away from the boundary converges to an equilibrium.

In other words, if the origin of the 2-nd compound equation (2.34) is exponentially asymp-
totically stable uniformly w.r.t. a state dependent norm ∥Q(x)z∥ for any trajectory of (2.32) in
the set D, then the ω-limit set of any solution of (2.32) in D not approaching its boundary is
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simple, i.e., is reduced to an equilibrium point.
To give a brief idea of the proof of Li and Muldowney’s result in [75], the condition (2.35)

is first proved to be a Bendixson criterion [72] that precludes the existence of periodic solution
for system (2.32). Indeed, let D = Rn for simplicity, the quantity ∥Q(x)z∥ gives a measure of
the volume of a k−parallelotope z in Rn. Hence, the condition (2.35) for k = 2 translates the
fact that the area of any surface in Rn shrinks exponentially under the flow of (2.32), and this
rules out periodic solutions. In order to obtain the convergence to an equilibrium, the criterion
is moreover demonstrated to be robust under C1 perturbations of the vector field f . The Pugh’s
closing Lemma [101] is finally invoked to deduce the non-existence of non-constant non-wandering
points, hence any non-wandering point is an equilibrium.

Practically, the Bendixson criterion (2.35) is demonstrated through the use of Lyapunov-like
function. In fact, a carefully selected vector norm | · | on R(n

2) is employed as Lyapunov function
to prove the property (2.35). In this case, it is interesting to introduce the Lozinskii measure
µ(E) of a matrix E with respect to the norm | · |, defined by

µ(E) = lim
h→0+

|I + hE| − 1
h

,

which is used to estimate the rate of expansion −g in (2.35). Indeed, it is possible to verify that
(see [86])

D+|z(t)| ⩽ µ

(
df

dx

[2]
(x(t))

)
|z(t)|,

where D+ is the right-hand derivative. More generally, for V (x, z) := |Q(x)z|, where Q(·) is a
C1 non-singular

(
n
2
)

×
(
n
2
)

matrix-valued function

D+|Q(x(t))z(t)| ⩽ µ

(
Qf (x(t))Q−1(x(t)) +Q(x(t)) df

dx

[2]
(x(t))Q−1(x(t))

)
|Q(x(t))z(t)|,

where Qf is the directional derivative of the matrix Q in the direction of the vector field f . For
more details about Lozinskii measure, one may refer to [26].

Denoting B(x) := Qf (x)Q−1(x) +Q(x) dfdx
[2](x)Q−1(x), if

sup
x∈D

µ(B(x)) < 0, (2.36)

or more generally,

lim sup
t→∞

sup
x0∈D

1
t

∫ t

0
µ(B(x(s, x0))ds < 0, (2.37)

then the property (2.35) is fulfilled. In fact, the conditions (2.36) and (2.37) are the original
Bendixson criterions proposed by Li and Muldowney [77, 75]. Insofar as they are used in the
proof of results in Section 2.7, it is also worth noting that the Bendixson criterion (2.37) can be
further relaxed, see for example [79, Theorem 2.4] or [80, Theorems 2.2, 2.3 and 2.4].

As epidemiological models are often considered in invariant and biologically feasible sets of
co-dimension 1 (generated by the fact that the total population is constant along the time),
a useful extension of the convergence result is available for differential equations evolving on
invariant manifolds [76].

Indeed, if the system (2.32) possesses a simply connected invariant manifold Γ := {x ∈
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Rn+|g(x) = 0}, where g : Rn → Rm is C2 and dim( dgdx ) = m, then there is a function N : Rn → Rm
[76] such that

∂g

∂x
(x)f(x) = N(x)g(x),

and the convergence result of Li and Muldowney holds as well if we replace the 2-nd compound
equation (2.34) by the (m+ 2)-th compound equation (2.38) [76]:

ż = ( df
dx

[m+2]
(x) − ν(x)I)z, (2.38)

where

ν(x) := Tr(N(x)), (2.39)

is the trace of N(x). By the same arguments then as in [11, Theorem 6.2], we deduce a result
similar to Theorem 2.7.1 in the context of systems evolving in an invariant manifold.

Theorem 2.7.2. D be a simply connected open subset of Γ such that solutions of equation (2.32)
with x(0) = x0 ∈ D remain in D for all finite time. Let ∥ · ∥ be a norm on R( n

m+2) and let Q be
a
(

n
m+2

)
×
(

n
m+2

)
matrix-valued function on D such that ∥Q−1∥ is bounded on D. If there exist

reals T, g > 0 such that for all solutions of (2.32) in D and all t ⩾ T , any solution z(t) of (2.34)
satisfies

∥Q(x(t))z(t)∥ ⩽ ∥Q(x(0))z(0)∥e−gt, (2.40)

then every solution of (2.32) in D bounded away from the boundary converges to an equilibrium.

The interest of studying the associated compound (2.38) instead of (2.34) lies in the fact that
the (m + 2)-th additive compound matrix may be in some cases smaller in size than the 2-nd
additive compound matrix. This is essential because compound matrices explode rapidly in size
as the dimension n increases.

In addition, it is noteworthy that, if the same assumptions in Theorems 2.7.1 and 2.7.2 hold
in a compact invariant set Σ instead, then [76, Theorem 6.1] states that any trajectory in Σ
converges to an equilibrium.

Coming back to contraction theory, the convergence criterion (2.35) proposed is in fact the
definition of k-contraction, (see e.g. [120, Definition 1]), with k = 2 in the context of Li and
Muldowney theory. To demonstrate the k-contraction, another interesting method which involves
the numerical testing of linear-matrix inequalities (LMIs) has been recently proposed [120]. In
fact, we may verify simply the contraction property with the following result, which is related to
the existence of a quadratic Lyapunov function V (z) := zQz for proving the asymptotic stability
of (2.34).

Theorem 2.7.3. Let Σ ⊂ Rn be a forward invariant set of (2.32) and suppose there exists a
real number η > 0 and a symmetric positive definite matrix Q ∈ R(n

k)×(n
k) such that

Q

(
∂f

∂x
(x)[k]

)
+
(
∂f

∂x
(x)[k]

)⊤

Q ⪯ −ηI, ∀x ∈ Σ.

Then, the system (2.32) is k-contractive on Σ.

Another criterion has also been proposed in [120] for k-contraction without the involvement
of compound matrix, which may increase rapidly in size for larger dimension n of the system



2.7. Global analysis of reinfection models with partial immunity 101

(2.32), however it is not useful for the present case as n = 4 remains small. Additionally, the
notion of k-contraction was compared in [120] to the closely related property of p-dominance
[47]. Defining the inertia of a matrix P as In(P ) = (p, 0, n − p) in the case where P has p
negative eigenvalues, and n− p positive eigenvalues, then the property of p-dominance is defined
as follows.

Definition 2.7.1 (Forni and Sepulchre [47]). System (2.32) is said to be p-dominant on Σ ⊂ Rn
if there exist real numbers µ, ε ⩾ 0 and a symmetric matrix P ∈ Rn×n with inertia In(P ) =
(p, 0, n− p) such that

P
∂f

∂x
(x) + ∂f

∂x
(x)⊤P ≺ −2µP − εI.

The property is strict if ε > 0.

Similarly to the property of k-contraction, the notion of p-dominance implies also, for a small
number p, that the system is asymptotically well-behaved.

Proposition 2.7.4 (Forni and Sepulchre [47]). For a strictly p-dominant system, every bounded
solution asymptotically converges to

1. a unique fixed point if p = 0;

2. a fixed point if p = 1;

3. a simple attractor if p = 2, that is, a fixed point, a set of fixed points and connecting arcs,
or a limit cycle.

Notice that the conditions above need to be solved for all x ∈ Σ, which is a complex problem.
To overcome this difficulty, the LMIs for k-contraction and p-dominance can be first transformed
into tractable conditions by convex relaxation, as suggested in [47, 120].

2.7.2 SIR model with partial immunity and demography
We examine here the endemic equilibriums and asymptotic behavior of a SIRI model, which takes
the assumption that the primary infection leads to a partial immunity to subsequent reinfections.
This was initially studied in [51]. The asymptotic behavior and stability of the model without
demography has been analyzed in [94]. Taking a step further, we investigate the asymptotic
behavior and stability of the SIRI model including demography.

The SIRI model with demography introduced by [51] can be considered, in fact, as a particular
case of system (2.27). To see this, let us begin by fixing the coefficients in (2.27) such that
β1,1 = β1,r = β, βr,1 = βr,r = ψβ, γ1 = γr = γ. In this situation, the equations of the system
(2.27) are

Ṡ1 = µ− β(I1 + Ir)S1 − µS1,

İ1 = β(I1 + Ir)S1 − (γ + µ)I1,

Ṡr = γ(I1 + Ir) − ψβ(I1 + Ir)Sr − µSr,

İr = ψβ(I1 + Ir)Sr − (γ + µ)Ir.

(2.41)

Introducing then the state variables

I := I1 + Ir, S := S1, R := Sr,
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we obtain with these definitions the SIRI system with partial immunity and demography [50].

Ṡ = µ− βIS − µS,

İ = βIS + ψβIR− (γ + µ)I,
Ṙ = γI − ψβIR− µR.

(2.42)

We describe in the following theorem the endemic equilibriums of the systems (2.41) and (2.42),
we apply Theorem 2.3.9 and Theorem 2.3.7 respectively to the case R0 > 1 and R0 < 1. For
R0 > 1, this implies the uniqueness of endemic equilibrium. On the other hand, the matter is
more intricate for R0 < 1.

Theorem 2.7.5. The systems (2.41) and (2.42) admit

1. a unique endemic equilibrium if R0 > 1,

2. no endemic equilibrium if R0 < 1 and β ⩽ µ.

Moroever, if R0 < 1 and β > µ, there exists a threshold such that the systems (2.41) and (2.42)
admit

1. no endemic equilibrium if ψ < ψ∗,

2. a unique endemic equilibrium if ψ = ψ∗,

3. two endemic equilibrium if ψ > ψ∗.

Remark 2.7.6. For a disease ensuring partial immunity after infection, one has ψ < 1. Con-
sequently, in such case, systems (2.41) and (2.42) do not exhibit endemic equilibriums when
R0 < 1.

Proof. As β1,1 = β1,r = β, βr,1 = βr,r = ψβ, γ1 = γr = γ, by formulas in (2.29), b1 = 1 and

1 + brb1 − crb
2
1 = 1 + br − cr = 1 + γ

µ
− 1 − γ

µ
= 0.

We conclude the uniqueness of endemic equilibrium for R0 > 1 by applying point 1 of Theo-
rem 2.3.9. This implies the same for system (2.42).

Let us demonstrate now the statement of the Theorem for system (2.41) and the case R0 ⩽
1. Clearly, from the Theorem 2.3.7, a sufficient condition for the non-existence of endemic
equilibrium is

c = a2
1 + a1c1br − crc

2
1 ⩾ 0. (2.43)

Thanks to (2.29), the quantity c can also be expressed in terms of epidemiological parameters

c = (µ
β

β − γ − µ

γ + µ
)2 + µ

β

β − γ − µ

γ + µ

µ

γ + µ
(γ
µ

− 1) − γ

γ + µ

µ

γ + µ

= µ

β

β − γ − µ

(γ + µ)2 (µβ − γ − µ

β
+ γ − µ− γ

β

β − γ − µ
).
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As R0 < 1, thus β − γ − µ < 0 and the condition (2.43) is equivalent to

µ
β − γ − µ

β
+ γ ⩽ γ

β

β − γ − µ
+ µ,

(β − γ − µ)µ+ γβ

β
⩽
γβ + µ(β − γ − µ)

β − γ − µ
,

(γ + µ)β − µ

β
⩽ (γ + µ) β − µ

β − γ − µ
.

Now, if β > µ, the last inequality above is the same as

β − γ − µ

β
⩾ 1,

which is always false. On the other hand, if β < µ then the same condition is now equivalent to

β − γ − µ

β
⩽ 1,

which is always verified. Finally, if β = µ, the same condition is trivially verified. To sum up,
the condition (2.43) is the same as

β ⩽ µ.

Therefore, if β ⩽ µ the system does not admit endemic equilibrium.
For the contrary case, Theorem 2.3.7 states that the smallest zero of ∆ acts as a threshold on

ar through which the system passes from a two endemic equilibrium regime to a zero endemic
equilibrium regime. As ar = γ+µ

ψβ is inversely proportional to ψ, this is equivalent to say that
there exists a threshold ψ∗ on ψ for the appearance of two endemic equilibriums.

Finally, let ψ = 1 and denote I := I1 + Ir, R := S1 + Sr, then the system (2.41) can be
reduced to the SIS system:

Ṡ = µ− βIS − µS + γI,

İ = βIS − (γ + µ)I.

It is easy to verify that this SIS system does not admit endemic equilibrium for R0 < 1. In
particular, this forces ψ∗ to be greater than 1.

We have shown that the system (2.41) exhibits one endemic and one disease-free equilibrium
for R0 > 1, and up to 2 endemic equilibriums and one disease-free equilibrium for R0 < 1. In
addition, the endemic equilibriums of the two-stage SIS system are endowed with a total ordering
in the same way as in Theorem 2.3.6 for the SEIRS system. Hence, Theorem 2.7.5 still holds for
the reduced SIRI model (2.42), as the multiple endemic equilibriums that may arise in system
(2.41) cannot be confounded in the reduced model (2.42) due to the ordering.

We have shown that the system (2.41) exhibits one endemic and one disease-free equilibrium
for R0 > 1, and up to 2 endemic equilibriums and one disease-free equilibrium for R0 < 1. In
addition, it is easy to see that the endemic equilibriums of the two-stage SIS system are endowed
with a total ordering in the same way as in Theorem 2.3.6. Therefore, the same Theorem 2.7.5
still holds for the reduced SIRI model (2.42) as the multiple endemic equilibriums that may arise
in system (2.41) cannot be confounded in the reduced model (2.42) due to the ordering.

Subsequently, we turn our attention to the asymptotic convergence of the solutions. In the
final result of this subsection, we prove first that any trajectory converges to an equilibrium for
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the reduced system (2.42), assuming that R0 ̸= 1. In particular, this implies the same for the
two-stage SIS system (2.41).

Theorem 2.7.7. Assume R0 ̸= 1, any solution x(t) of system (2.41) (resp. system (2.42)) with
initial condition x(0) ∈ {x ∈ R4

+|S1 + I1 + Sr + Ir = 1} (resp. x(0) ∈ {x ∈ R3
+|S + I +R = 1})

converges to an equilibrium.

Notice that, due to the persistence result of Theorem 2.6.6, Theorem 2.7.7 implies in particular
that, for R0 > 1, the endemic equilibrium is globally asymptotically stable in the interior of the
respective biologically feasible and invariant sets of both systems (2.42) and (2.41). In the
alternative case where R0 < 1, the result guarantees the convergence to an equilibrium of every
solution even in the case where multiple endemic equilibriums coexist.

Proof. For R0 ̸= 1, let us show that any trajectory of (2.42) converges to an equilibrium using the
Li and Muldowney theory summarized in Section 2.7.1. The invariant and biologically feasible
set Γ is defined in this case by Γ = {x ∈ R3

+|g(x) = 0}, where g : R3 → Rm, g(x) = S+I+R−1.
In the rest of the proof, we may consider only the trajectories evolving in the interior Γ̊ of Γ.
This is justified as trajectories starting in Γ either converge to the disease-free equilibrium if
I(0) = 0, or fulfill S(t), I(t), R(t) > 0 for t > 0 thanks to the differential inequalities:

Ṡ ⩾ µ(1 − S), İ ⩾ −(γ + µ)I, Ṙ ⩾ −µR,

and the fact that Ṡ(0) > 0 (resp. Ṙ(0) > 0) if S(0) = 0 (resp. R(0) = 0). In addition, notice
that

∂g

∂x
(x)f(x) = µ(1 − S − I −R) = −µg(x),

thus the function ν introduced in (2.39) of the Section 2.7.1 above corresponds to the constant
−µ and m = 1 for the system (2.42). The associated 3-rd additive compound matrix of df

dx (x)
associated to the equation is (see [90])

ż = ( df
dx

[3]
(x) + µI)z.

As

∂f

∂x
(x) =

−βI − µ −βS 0
βI β(S + ψR) − γ − µ ψβI
0 γ − ψβR −ψβI − µ

 , (2.44)

is a 3 × 3 matrix, its 3-rd additive compound is simply its trace df
dx

[3] = Tr( dfdx ). Therefore, the
compound equation (2.38) is reduced to :

ż = [β(S + ψR) − γ − β(1 + ψ)I − 2µ]z.

Moreover,

β(S + ψR) − γ − βI(1 + ψ) − 2µ = İ

I
− βI(1 + ψ) − µ.

Then, after integration of the compound equation, we obtain

z(t) = z(0) I(t)
I(0)e

−
∫ t

0
(β(1+ψ)I(s)+µ)ds

.
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As limt→+∞
∫ t

0 (β(1 + ψ)I(s) + µ)ds = ∞, thus limt→+∞ z(t) = 0 exponentially, and the system
(2.42) satisfies a Bendixson condition (see [75] or Section 2.7.1) in Γ̊. Therefore, Theorem 2.7.2
holds with D = Γ̊, Q = I and any solution x(t) of (2.42) either converges to an equilibrium or
approaches the boundary of Γ̊. The later case is precluded for R0 > 1 due to uniform persistence.
On the other hand, for R0 < 1, it can be observed that the solutions may only approach the
component {x ∈ R3

+|S + R = 1, I = 0} of the boundary. Indeed, we have Ṡ > 0 if S is close
to 0 and the same for Ṙ if I > 0 and R close to 0. In addition, from the expression of the
Jacobian (2.44), the DFE is locally asymptotically stable, thus its basin of attraction is an open
subset of Γ [24]. As the DFE attracts {x ∈ R3

+|S + R = 1, I = 0}, hence it also attracts a close
neighborhood of the latter and the solution converges to the DFE in this case.

2.7.3 SEIR model with partial immunity and demography

We investigate now a more sophisticated two-stage reinfection model compared to (2.41), with an
additional class E modelling the disease incubation period. Again, the model can be considered
as a special case of the general two-stage model. Indeed, setting

β1,1 = β1,r = β, βr,1 = βr,r = ψβ, σ1 = σr = σ, γ1 = γr = γ, ω1 = ωr = +∞,

we obtain the following two-stage SEIS system:

Ṡ1 = µ− (β(I1 + Ir) + µ)S1,

Ė1 = (β(I1 + Ir)S1 − (σ + µ)E1,

İ1 = σE1 − (γ + µ)I1,

Ṡr = γ(I1 + Ir) − (ψβ(I1 + Ir) + µ)Sr,
Ėr = ψβ(I1 + Ir)Sr − (σ + µ)Er,
İr = σEr − (γ + µ)Ir.

(2.45)

Now, let us introduce the state variables

S := S1, E := E1 + ER, I := I1 + Ir, R := Sr.

This leads to a reduced SEIRE system with partial immunity and demography:

Ṡ = µ− βSI − µS,

Ė = βSI + ψβIR− (σ + µ)E,
İ = σE − (γ + µ)I,
Ṙ = γI − ψβIR− µR.

(2.46)

It can be checked straightforwardly that the results of Theorems 2.3.6 to 2.3.9 and Theorem
2.4.1 still hold for system (2.45), albeit with Ar = σ

σ+µ
γ

γ+µ and Dr = 1 instead of the definition
in (2.5). Moreover in this case,

1 −Ar = 1 − σγ

σγ + µ(σ + γ) + µ2 = µ(σ + γ + µ)
σγ + µ(σ + γ + µ) ,
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the polynomial coefficients a1, b1, c1, ar, br, cr are

a1 = µ
βσ − (γ + µ)(σ + µ)
β(γ + µ)(σ + µ) , b1 = 1, c1 = µ

γ + µ

σ

σ + µ
,

ar = σγ + µ(σ + γ + µ)
ψβ(σ + γ + µ) , br = σγ − (σ + γ + µ)µ

µ(σ + γ + µ) , cr = σγ

µ(σ + γ + µ) ,

and the basic reproduction number is expressed by

R0 = β

γ + µ

σ

σ + µ
.

Similarly to systems (2.41) and (2.42), the endemic equilibrium is unique for R0 > 1 and the
description is more complicated for R0 < 1.

Theorem 2.7.8. The systems (2.45) and (2.46) admit

1. a unique endemic equilibrium if R0 > 1,

2. no endemic equilibrium if R0 < 1 and

µ(σ + γ + µ)(βσ − (γ + µ)(σ + µ)) + γσ2β ⩽ 0. (2.47)

Moreover, if R0 < 1 and (2.47) is not fulfilled, there exists a threshold ψ∗ > 1 and systems (2.45)
and (2.46) admit

1. no endemic equilibrium if ψ < ψ∗,

2. a unique endemic equilibrium if ψ = ψ∗,

3. two endemic equilibriums if ψ > ψ∗.

Remark 2.7.9. Again, for disease ensuring partial immunity after infection, systems (2.45) and
(2.46) cannot exhibit endemic equilibriums when R0 < 1 (see Remark 2.7.6).

Proof. The computation is mostly the same as in the proof of Theorem 2.7.5 for the case R0 > 1.
On the other hand, for R0 ⩽ 1, we prove first the statement for the system (2.45). The

quantity c in this setting is equal to

c =a2
1 + a1c1br − crc

2
1

=σ βσµ− µ(γ + µ)(σ + µ)
β(γ + µ)2(σ + µ)2(σ + γ + µ)

(
µ(σ + γ + µ)βσ − (γ + µ)(σ + µ)

βσ
+ γσ − (σ + γ + µ)µ

− γσ
βσ

βσ − (γ + µ)(σ + µ)

)
.

For R0 < 1, βσ < (γ + µ)(σ + µ) and the condition c ⩾ 0 is equivalent to

µ(σ + γ + µ)(βσ − (γ + µ)(σ + µ)) + γσ2β

βσ
⩽
µ(σ + γ + µ)(βσ − (γ + µ)(σ + µ)) + γσ2β

βσ − (γ + µ)(σ + µ) .

If µ(σ + γ + µ)(βσ − (γ + µ)(σ + µ)) + γσ2β > 0, the condition c ⩾ 0 is the equivalent to

βσ − (γ + µ)(σ + µ)
βσ

⩾ 1,
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which is always false. On the contrary, if µ(σ + γ + µ)(βσ − (γ + µ)(σ + µ)) + γσ2β ⩽ 0, the
same condition is equivalent to

βσ − (γ + µ)(σ + µ)
βσ

⩽ 1,

which is verified. To sum up, the condition c ⩾ 0 is equivalent to

µ(σ + γ + µ)(βσ − (γ + µ)(σ + µ)) + γσ2β ⩽ 0.

Similarly to the proof of Theorem 2.7.5, the existence of the threshold ψ∗ is then deduced using
Theorem 2.3.7. Moreover, for ψ = 1, we denote S := S1 + Sr, I := I1 + Ir, E := E1 + Er, then
the system (2.45) can be again reduced to the SEIS system below.

Ṡ = µ− βSI − µS + γI,

Ė = βSI − (σ + µ)E,
İ = σE − (γ + µ)I.

It is known that this system does not admit endemic equilibrium for R0 < 1 [39]. In particular,
this implies that ψ∗ > 1.

Notice finally that the result still holds for the reduced system (2.46), thanks to an adaptation
of Theorem 2.3.6 which gives an ordering of the equilibriums.

Notice in addition that the equilibrium results above still hold for the reduced system (2.46),
thanks to an adaptation of Theorem 2.3.6 which gives an ordering of the equilibriums.

We also present a persistence result, that will be needed for later, and whose proof can be
easily adapted from the one of Theorem 2.4.1.

Theorem 2.7.10. System (2.45) is uniformly persistent in the interior of {x ∈ R6
+|S1 + E1 +

I1 + Sr + Er + Ir = 1} if R0 > 1 and non-persistent if R0 < 1.

We have shown that systems (2.45) and (2.46) present again one unique endemic equilibrium
when R0 > 1 and up to two endemic equilibriums when R0 < 1. Excluding the critical case
R0 = 1, the next result shows that any solution of (2.46) converges either to the disease-free
equilibrium or to an endemic equilibrium.

Theorem 2.7.11. Assume R0 ̸= 1, any solution x(t) of (2.45) (resp. of (2.46)) with initial
condition x(0) ∈ {x ∈ R6

+|S1+E1+I1+Sr+Er+Ir = 1} (resp. x(0) ∈ {x ∈ R4
+|S+E+I+R = 1})

converges to an equilibrium.

Notice that, combined with the persistence result of Theorem 2.7.10, the unique endemic
equilibrium is again globally asymptotically stable in the interior of the invariant set when
R0 > 1.

The proof of Theorem 2.7.11 requires the following Lemma.

Lemma 2.7.12. Let x(t) = (S(t), E(t), I(t), R(t)) be any solution of (2.46) in the invariant set
{x ∈ R4

+|S + E + I +R = 1}. Then ultimately the following inequality is verified

γ ⩾ ψβR.

Proof of Lemma 2.7.12. The first inequality is deduced from the inequality

Ṡ ⩾ µ− (β + µ)S.
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Notice that the derivative of R, solution of (2.46), is non-positive on the set {x ∈ R+
4 |γ = ψβR},

hence {x ∈ R+
4 |γ ⩾ ψβR} is an invariant set of (2.46).

For trajectories such that I(0) + E(0) = 0, it is easy to see that I(t) = 0 for t ⩾ 0 and R(t)
converges also to 0 in this case, hence γ ⩾ ψβR ultimately.

On the other hand, assume I(0) + E(0) > 0, then I(t), R(t) > 0 for t > 0. This is because,
if I(0) = 0, E(0) > 0 and İ > 0 and I is positive in a positive neighborhood of zero. Thus, we
may assume with no loss of generality that I(0) > 0. In this case, the differential inequalities

İ(t) ⩾ −(γ + µ)I, Ṙ ⩾ −(ψβI + µ)R,

and the fact that Ṙ(0) > 0 if R(0) = 0 imply that I(t), R(t) > 0 for t > 0 anyway. Therefore,
the fact that I(t), R(t) > 0 for all t > 0 implies Ṙ(t) < 0 if γ ⩽ ψβR(t) and again γ ⩾ ψβR
ultimately.

Proof of Theorem 2.7.11. In a similar fashion as in the proof of Theorem 2.7.7 for the SIR system
above, notice first that only trajectories evolving in the interior of Γ := {x ∈ R4

+|S+E+I+R = 1}
matter, as any solution in Γ either fulfills S(t), E(t), I(t), R(t) > 0 for t > 0 or converges to the
disease-free equilibrium when E(0) + I(0) = 0. We apply again the geometrical approach of Li
and Muldowney [76]. The Jacobian matrix of (2.46) is

df

dx
=


−(βI + µ) 0 −βS 0

βI −(σ + µ) βS + ψβR ψβI
0 σ −(γ + µ) 0
0 0 −ψβR+ γ −(ψβI + µ)

 .

and its 3-rd additive compound is defined by (see the Appendix of [90])

df

dx

[3]
=


k1 0 −ψβI 0

−ψβR+ γ k2 βS + ψβR βS
0 σ k3 0
0 0 βI k4

 ,

where

k1 = −βI − σ − γ − 3µ, k2 = −(1 + ψ)βI − σ − 3µ,
k3 = −(1 + ψ)βI − γ − 3µ, k4 = −σ − γ − ψβI − 3µ.

Hence, the associated compound equation (2.38) is in this case defined as

ż =
(
df

dx

[3]
+ µI

)
z.

Let us introduce now
A := diag(R, I,E, S),

then
A−1 = diag(R−1, I−1, E−1, S−1) and AfA

−1 = diag( Ṙ
R
,
İ

I
,
Ė

E
,
Ṡ

S
),

where Af stands for the directional derivative of the matrix A in the direction of the vector field
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f . One has in addition,

A
df

dx

[3]
A−1 =


k1 0 ψβI RE 0

(γ − ψβR) IR k2 (βS + ψβR) IE βI
0 σEI k3 0
0 0 βI SE k4

 .

Thus,

B := AfA
−1 +A

df

dx

[3]
A−1 + µI =


k5 0 ψβI RE 0

(γ − ψβR) IR k6 (βS + ψβR) IE βI
0 σEI k7 0
0 0 βI SE k8

 ,

where

k5 = Ṙ

R
− βI − σ − γ − 2µ, k6 = İ

I
− (1 + ψ)βI − σ − 2µ,

k7 = Ė

E
− (1 + ψ)βI − γ − 2µ, k8 = Ṡ

S
− σ − γ − ψβI − 2µ.

Thanks to Lemma 2.7.12, we may assume directly that γ − ψβR ⩾ 0 in the sequel. Defining
y(t) := A(x(t))z(t), y is determined by the differential equation

ẏ = By.

Let us prove (2.35) with Q(x) = A(x) and considering the L∞ norm on the vector space R4. For
a given matrix M = (Mi,j)1⩽i,j⩽4 and denoting

li := Mi,i +
∑
j ̸=i

|Mi,j |,

the Lozinskii measure µ∞ associated to the L∞ norm is defined by (see for example [91])

µ∞(M) = max
1⩽i⩽4

{li}.

We provide the following formulas, which are required for the computation of li.

Ṡ

S
= µS−1 − βI − µ,

Ė

E
= βS

I

E
+ ψβ

I

E
R− (σ + µ),

İ

I
= σ

E

I
− (γ + µ), Ṙ

R
= γ

I

R
− ψβI − µ.

(2.48)
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Let us compute now the value of li for the matrix B.

l1 = Ṙ

R
− βI − σ − γ − 2µ+ ψβI

R

E

= Ė

E
+ Ṙ

R
− βI(1 + I

E
) − γ − µ,

l2 = İ

I
− (1 + ψ)βI − σ − 2µ+ (γ − ψβR) I

R
+ (βS + ψβR) I

E
+ βI

= Ė

E
+ İ

I
+ Ṙ

R
− ψβI,

l3 = Ė

E
− (1 + ψ)βI − γ − 2µ+ σ

E

I

= Ė

E
− (1 + ψ)βI − µ,

l4 = Ṡ

S
− σ − γ − ψβI − 2µ+ βI

S

E

= Ṡ

S
+ Ė

E
− γ − ψβI(1 + R

E
) − µ.

Therefore, an easy adaptation of [80, Theorem 2.2] to the norm L∞ makes it possible to say that
it is sufficient, for all 1 ⩽ i ⩽ 4, to have ḡi such that, for any trajectory of (2.46) in a given
invariant set Σ,

lim sup
t→+∞

1
t

∫ t

0
li(s)ds ⩽ ḡi < 0, (2.49)

in order to guarantee (2.40) and for the system (2.46) to satisfy a Bendixson condition in this
invariant set. For l1, l3, l4, the property (2.49) is verified for any trajectory in the interior of Γ.
For example, one has

lim sup
t→+∞

1
t

∫ t

0
l1(s)ds ⩽ lim

t→+∞

1
t

∫ t

0
( Ė
E

+ Ṙ

R
− γ − µ)ds

= lim
t→+∞

1
t

(
log(E(t)

E(0)) + log(R(t)
R(0))

)
− γ − µ = −(γ + µ).

However, for l2, the property is not always verified, as we shall see.

1
t

∫ t

0
l2(s)ds = 1

t
[log(E(t)

E(0)) + log( I(t)
I(0)) + log(R(t)

R(0))] − ψβ
1
t

∫ t

0
I(s)ds,

lim sup
t→+∞

1
t

∫ t

0
l2(s)ds = −ψβ lim inf

t→+∞

1
t

∫ t

0
I(s)ds.

For R0 > 1, the persistence result in Theorem 2.7.10 guarantees the existence of ε > 0 such that

lim inf
t→+∞

1
t

∫ t

0
I(s)ds > ε,

and the property (2.49) is indeed verified for any trajectory in the interior Γ̊ of Γ. The uniform
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persistence gives also a compact absorbing subset (see e.g. [75] for a definition) K in Γ̊, where
there exists εK > 0 such that S,E, I,R ⩾ εK and ∥A−1∥ is uniformly bounded in K. Therefore,
the result in [80, Theorem 2.4] adapted to the L∞ norm allows us to deduce that any trajectory
starting in the interior of Γ converges to the unique endemic equilibrium when R0 > 1.

On the other hand, for R0 < 1, no persistence result is available, and we need to first examine
under which circumstances the solution of (2.46) may fulfill

lim inf
t→+∞

1
t

∫ t

0
I(s)ds = 0. (2.50)

An integration of the equation for İ in (2.46) gives

0 = lim sup
t→+∞

1
t
[I(t) − I(0)] = σ lim sup

t→+∞

1
t

∫ t

0
E(s)ds− (γ + µ) lim inf

t→+∞

1
t

∫ t

0
I(s)ds.

Assume lim inft→+∞
1
t

∫ t
0 I(s)ds = 0, the equation above implies lim supt→+∞

1
t

∫ t
0 E(s)ds = 0.

As E(t) ⩾ 0, hence limt→+∞
1
t

∫ t
0 E(s)ds is then defined and equal to zero. Integrating again

the same differential equation for İ, we obtain limt→+∞
1
t

∫ t
0 I(s)ds = 0. Furthermore, the

differential inequality
Ṙ ⩽ γI − µR,

gives

0 ⩽ γ lim
t→+∞

1
t

∫ t

0
I(s)ds− µ lim

t→+∞

1
t

∫ t

0
R(s)ds.

As limt→+∞
1
t

∫ t
0 I(s)ds = 0 and R ⩾ 0, thus limt→+∞

1
t

∫ t
0 R(s)ds = 0. Finally, thanks to

S + E + I + R = 1, limt→+∞
1
t

∫ t
0 S(s)ds = 1. In this scenario, the solution must visit any

neighborhood containing points arbitrarily close to the disease-free equilibrium. Otherwise, there
would be ε > 0 such that S(t) < 1 − ε for t ⩾ 0, which contradicts limt→+∞

1
t

∫ t
0 S(s)ds = 1.

Hence, for all ε > 0, there must be a t ⩾ 0 such that S(t) ⩾ 1 − ε. As E(t), I(t), R(t) ⩾ 0 and
S(t)+E(t)+I(t)+R(t) = 1, then I(t), E(t), R(t) ⩽ ε. As ε can be made arbitrarily small, indeed
this is equivalent to saying that the solution visits any neighborhood of the DFE. Moreover, the
Jacobian matrix at the disease-free equilibrium

−µ 0 −β 0
0 −(σ + µ) β 0
0 σ −(γ + µ) 0
0 0 γ −µ


is Hurwitz for R0 < 1. Indeed, −µ is an eigenvalue of the matrix of algebraic multiplicity 2 and
the remaining eigenvalues are the same as those of the matrix(

−(σ + µ) β
σ −(γ + µ)

)
.

As the 2×2 matrix has a negative trace and moreover its determinant (σ+µ)(σ+µ)−βσ is positive
when R0 < 1, this yields the local stability of the DFE. Therefore, if lim inft→+∞

1
t

∫ t
0 I(s)ds = 0,

then the trajectory must converge to the disease-free equilibrium, as it is locally asymptotically
stable for R0 < 1. Inversely, if the solution converges to the DFE, naturally (2.50) is verified.
Hence, the solutions verifying (2.50) are those starting in Γ and in the basin of attraction of the
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DFE, which we refer to as Λ ⊂ R4.
For x0 ∈ Γ̊, we denote now x(t, x0) = (S(t, x0), E(t, x0), I(t, x0), R(t, x0)) the solution of

(2.46) with initial condition x0. Notice then that

lim inf
t→+∞

1
t

∫ t

0
I(s, x)ds = sup

t⩾0
inf
s⩾t

1
s

∫ s

0
I(τ, x)dτ,

is lower semi-continuous with regard to the variable x. Moreover, Γ \ Λ is closed and compact
(Λ is open as the basin of attraction of the locally asymptotically stable DFE [24]). Therefore,
there exists ε > 0 such that

inf
x0∈Γ\Λ

lim inf
t→+∞

1
t

∫ t

0
I(s, x0)ds = min

x0∈Γ\Λ
lim inf
t→+∞

1
t

∫ t

0
I(s, x0)ds > ε.

Otherwise there exists x0 ∈ Γ \ Λ such that lim inft→+∞
1
t

∫ t
0 I(s, x0)ds = 0 and the solution

x(t, x0) converges to the DFE, which contradicts the definition of Γ \ Λ.
Hence, the property (2.49) is satisfied in Γ \ Λ. However, it is not guaranteed that ∥A−1∥ is

bounded in Γ \ Λ, and we have to show that there is an absorbing subset Σ of Γ \ Λ where the
inverse is defined and bounded.

Thanks to Lemma 2.7.12, an ultimate lower bound

lim inf
t→+∞

S(t) ⩾ εS := µ

β + µ
> 0

is already derived for any trajectory in Γ. It remains to derive similar bounds for E, I and R.
Notice first that ∂Γ1 := {x ∈ Γ|E+I = 0} is a compact subset of Λ. As Λ is open, for each point
of xΛ ∈ ∂Γ1, there exists εxΛ such that CxΛ := {x ∈ R4|∥x− xΛ∥ < εxΛ} ⊂ Λ. Thus, {Cx}x∈∂Γ1

constitutes a cover of ∂Γ1 by open subsets of Λ. From the compactness of ∂Γ1, we extract a
finite subcover from {Cx}x∈∂Γ1 , and this allows to deduce the existence of εE+I > 0 such that

min
(S,E,I,R)∈Γ\Λ

E + I ⩾ εE+I .

This lower bound and equations (2.46) imply the differential inequality in the invariant set Γ\Λ:

İ ⩾ σεE+I − (γ + σ + µ)I.

Hence, any trajectory in Γ \ Λ fulfills ultimately

lim inf
t→+∞

I(t) ⩾ εI := σεE+I

γ + σ + µ
> 0.

Again from (2.46), this implies that ultimately, the differential inequalities below are verified for
any solution in Γ \ Λ.

lim inf
t→+∞

Ė(t) ⩾ βεSεI − (σ + µ)E, lim inf
t→+∞

Ṙ(t) ⩾ γεI − µR.

Thus, there exists also εE , εR > 0 such that, for any trajectory in Γ \ Λ, the inequalities

lim inf
t→+∞

E(t) ⩾ εE , lim inf
t→+∞

R(t) ⩾ εR,

are verified. The compact Γ \ Λ ∩ {(S,E, I,R) ∈ Γ|S ⩾ εS , E ⩾ εE , I ⩾ εI , R ⩾ εR} is then an
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absorbing subset of Γ \ Λ where ∥A−1∥ is uniformly bounded and the Bendixson criterion (2.49)
is satisfied. An application of [76, Theorem 6.1] concludes that any trajectory in the invariant
set Γ \ Λ converges to an equilibrium. This completes the proof of Theorem 2.7.11.

2.7.4 Commentary on the general system
Unfortunately, the implementation of Li-Muldowney theory in the general case is more intricate,
and no convergence result has yet been discovered. In order to show the complication, let us
compute the 3-rd additive compound matrix of df

dx for the general SIS system. Indeed, the system
(2.27) has the following Jacobian matrix

∂f

∂x
(x) =


−(β1,1I1 + β1,rIr + µ) −β1,1S1 0 −β1,rS1

β1,1I1 + β1,rIr β1,1S1 − γ1 − µ 0 β1,rS1
0 γ1 − βr,1Sr −(βr,1I1 + βr,rIr + µ) γr − βr,rSr
0 βr,1Sr βr,1I1 + βr,rIr βr,rSr − γr

 ,

therefore its 3-additive compound matrix is

∂f [3]

∂x
(x) =


k1 γr − βr,rSr −β1,rS1 −β1,rS1

βr,1I1 + βr,rIr k2 0 0
−βr,1Sr γ1 − βr,1Sr k3 −β1,1S1

0 0 β1,1I1 + β1,rIr k4

 ,

where k1, k2, k3, k4 are defined by

k1 = β1,1S1 − (β1,1 + βr,1)I1 − (β1,r + βr,r)Ir − γ1 − 3µ,
k2 = β1,1S1 + βr,rSr − β1,1I1 − β1,rIr − γ1 − γr − 3µ,
k3 = βr,rSr − (β1,1 + βr,1)I1 − (β1,r + βr,r)Ir − γr − 3µ,
k4 = β1,1S1 + βr,rSr − βr,1I1 − βr,rIr − γ1 − γr − 3µ.

To simplify the problem, we introduce a matrix-valued function A(x) so that the matrix

AfA
−1 +A

df

dx

[3]
A−1 + µI,

is in the simplest possible form.
Defining first the transformation matrix

P1 :=


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 , P−1
1 =


1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

 ,

then

B := P1
∂f [3]

∂x
(x)P−1

1 =


k1 γr − βr,rSr −β1,rS1 0

βr,1I1 + βr,rIr k2 0 0
−βr,1Sr γ1 − βr,1Sr k5 −γ1

0 0 β1,1I1 + β1,rIr k6

 ,
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where

k5 = βr,rSr − βr,1I1 − βr,rIr − γr − 3µ,
k6 = β1,1S1 + βr,rSr − (β1,1 + βr,1)I1 − (β1,r + βr,r)Ir − γ1 − γr − 3µ.

In addition, we introduce

P2 :=


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

then

C := P2BP
−1
2 =


k7 0 −β1,rS1 0

βr,1I1 + βr,rIr k8 0 0
−βr,1Sr γ1 k5 −γ1

0 0 β1,1I1 + β1,rIr k6

 ,

where

k7 = β1,1S1 − β1,1I1 − β1,rIr − γ1 − 3µ,
k8 = β1,1S1 + βr,rSr − (β1,1 + βr,1)I1 − (β1,r + βr,r)Ir − γ1 − γr − 3µ.

Furthermore, define

P3 :=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

then

D := P3CP
−1
3 =


k7 −β1,rS1 0 0

−βr,1Sr k5 γ1 −γ1
βr,1I1 + βr,rIr 0 k8 0

0 β1,1I1 + β1,rIr 0 k8

 .

Finally, with

P4 =


Ir

Sr
0 0 0

0 I1
Sr

0 0
0 0 1 0
0 0 0 1

 ,

we derive the matrix

E = P4DP
−1
4 =


k7 −β1,rS1

Ir

I1
0 0

−βr,1Sr I1
Ir

k5 γ1
I1
Sr

−γ1
I1
Sr

(βr,1I1 + βr,rIr)Sr

Ir
0 k8 0

0 (β1,1I1 + β1,rIr)Sr

I1
0 k8

 .

The last transformation is intended to obtain non-diagonal coefficients which can be cancelled as
far as possible by diagonal’s ones, which is related to the computation of the Lozinskii measure
below. Define finally the matrix A as A := P4P3P2P1, it is easy to verify AfA

−1 = diag( İr

Ir
−
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Ṡr

Sr
, İ1
I1

− Ṡr

Sr
, 0, 0). We derived finally the matrix

F := AfA
−1 + E + µI =


k8 −β1,rS1

Ir

I1
0 0

−βr,1Sr I1
Ir

k9 γ1
I1
Sr

−γ1
I1
Sr

(βr,1I1 + βr,rIr)Sr

Ir
0 k10 0

0 (β1,1I1 + β1,rIr)Sr

I1
0 k10

 , (2.51)

where the diagonal entries are

k8 = İr
Ir

− Ṡr
Sr

+ β1,1S1 − β1,1I1 − β1,rIr − γ1 − 2µ,

k9 = İ1

I1
− Ṡr
Sr

+ βr,rSr − βr,1I1 − βr,rIr − γr − 2µ,

k10 = β1,1S1 + βr,rSr − (β1,1 + βr,1)I1 − (β1,r + βr,r)Ir − γ1 − γr − 2µ,

which can be alternatively expressed by

k8 = İr
Ir

− Ṡr
Sr

+ İ1

I1
− β1,r

Ir
I1
S1 − β1,1I1 − β1,rIr − µ,

k9 = İ1

I1
− Ṡr
Sr

+ İr
Ir

− βr,1
I1

Ir
Sr − βr,1I1 − βr,rIr − µ,

k10 = İ1

I1
+ İr
Ir

− β1,r
Ir
I1
S1 − βr,1

I1

Ir
Sr − (β1,1 + βr,1)I1 − (β1,r + βr,r)Ir.

To obtain 2-contraction, let us define a vector norm ∥ · ∥ such that the associated Lozinskii
measure µ(AfA−1 + E + µI) fulfills

lim sup
t→+∞

lim
x0∈Σ

1
t

∫ t

0
µ(AfA−1(s) + E(s) + µI)ds < 0. (2.52)

Usually, the vector norms employed are the L1 and L∞ norms, or a hybrid combination of both
types (for example the norm ∥(x1, x2, x3, x4)∥ := max{|x1| + |x4|, |x2|, |x3|} is employed in [80]).
This is because the computation of Lozinskii measure associated with these norms is rather
easy, and can be typically expressed as a sum of diagonal entries and the absolute value of non-
diagonal entries. However, this method does not yield positive results for the present problem,
as the matrix defined in (2.51) presents non-diagonal terms that cannot be compensated by
the diagonal’s ones, which is required in order to ensure (2.52). To see this, let us denote
F = (Fi,j)1⩽i,j⩽4 and take for example the norm ∥(x1, x2, x3, x4)∥ := max{|x1|, |x2|, |x3| + |x4|}.
As described in [84] and similarly to [80], the associated Lozinskii measure of F can be estimated
by µ(F ) ⩽ max{l1, l2, l3}, where

l1 := F1,1 + |F1,2| + max{|F1,3|, |F1,4|},
l2 := F2,2 + |F2,1| + max{|F2,3|, |F2,4|},

l3 := max{F3,3 + |F4,3|, F4,4 + |F3,4|} + |F3,1| + |F3,2| + |F4,1| + |F4,2|.
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The issue in the present attempt is the quantity l3, which is in fact equal to

l3 = İ1

I1
+ İr
Ir

− β1,r
Ir
I1
S1 − (β1,1 + βr,1)I1 − (β1,r + βr,r)Ir + βr,rSr + (β1,1I1 + β1,rIr)

Sr
I1
,

but the remaining positive terms above cannot be further compensated in order to have (2.52).
Several similar attempts have been performed, leading to the same situation. Moreover, with
the attempt exposed previously, it can be seen that the failure of the application of Li and
Muldowney method comes from the complex structure of the recruitment rates (β1,1I1+β1,rIr)S1
and (βr,1I1 + βr,rIr)Sr, caused by the heterogeneities in the model, while the method were valid
for the simpler contact rate βSI in (2.42).

We also tried to prove numerically 2-contraction and 1-dominance for the general system
(2.27) by solving, after a convex relaxation, the LMIs conditions included in Theorem 2.7.3 and
Definition 2.7.1. We employed the semidefinite programming solvers SeDuMi and SDPT3 in
MATLAB, which failed to deliver a solution to the problems. This suggests in particular that
we may not expect a state-independent quadratic Lyapunov function V (z) := zQz to prove the
2-contraction of the general system. On the other hand, the problem of finding state-dependent
quadratic storage function for k-contraction and p-dominance is difficult and constitutes a domain
of active research [47, 120].



Chapter 3

Joint age and reinfection
structured model and associated
mean values

3.1 Introduction
Following the infinite system of ODE tracking the number of reinfection in Chapter 1, we discuss
in this chapter a class of epidemiological models numbering the reinfection with additional age
dependency. In fact, it is often noticed that the characteristics of the actual diseases, for example
the severity or the rate of transmission, are highly dependent on the host population structure
[28, 81, 106]. Hence, a single disease may exhibit significant variations in the resulting epidemic
dynamics owing to the disparities in the age distribution of the population, which vary, for ex-
ample, from country to country. It is therefore often necessary to include age dependencies in the
epidemiological models in order to improve decision-making [18] or formulate recommendations
for targeted public health policies such as vaccination or quarantine [52, 114].

The age dependency is considered mathematically by so-called age-structured models. For
epidemiological models, this can be implemented with the ODE-based compartmental models
with discrete age groups [18, 119] or with a system of PDE assuming the age as a coordinate in a
continuous domain (for examples of age-structured epidemiological models, one can refer to [60]).
In the present chapter, we are moreover interested in the joint structure of age and reinfection.
Particularly, we noticed that the reinfection-structured microscopic ODE model presented in
Chapter 1 also admit a “hidden” structure, this time according to the age, in the same way as
the former is itself an “unfolding” according to the number of reinfections of macroscopic models.
Hence, we intend to investigate the underlying age structuration of reinfection models of Chapter
1.

To this end, an age-structured SEIRS system with an infinite number of partial differential
equations taking also into account the number of reinfections is introduced and its well-posedness
deduced. The general framework within which this system will be handled is that of abstract
differential equation and semigroup theory [96]. The chapter is organized as follows. Section 3.2
introduces the age and reinfection structured model as an infinite system of evolution equations.
In Section 3.3 well-posedness results, elaborated by Desch et al.[31] and adapted by Pugliese
and Tonetto [102], on a class of abstract Cauchy problems are recalled as a preliminary for the
well-posedness analysis of the model. These results are then employed in Section 3.4 where the

117
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age and reinfection structured model is adapted into an abstract Cauchy problem setting and
proved to be well-posed. Finally, in Section 3.5 the system, in its simplest setting with non-
varying parameters with regard to the age and reinfection number, is studied in detail. Similarly
to the infinite system studied in Section 1.4 of Chapter 1, the system in Section 3.5 can also
be considered can also be considered as revealing an underlying structure of the same SEIRS
model (1.1), now with regard to both the age and the reinfection number, with the additional
assumptions that the disease is non-lethal, and the total population is non-varying. We call
this model, which possesses two “microscopic dimensions”, a nanoscopic model. The asymptotic
stability of the disease-free and endemic steady states are studied, and the age-structure allows
the computation of supplementary interesting quantities on the endemic state of the SEIRS
model, namely the mean numbers of reinfection at each age and the average age values in each
compartment.

3.2 An infinite age-structured SEIRS reinfection model
As announced, we investigate in this chapter the joint age and reinfection structure in the context
of SEIRS models. Introducing the variables bj(t, a), b ∈ {s, e, ı, r}, j ⩾ 1, which denote the age
density of hosts with health status b (which can be either s, e, ı, r, respectively for ‘Susceptible’,
‘Exposed’, ‘Infected’, ‘Recovered’) that have been infected exactly j times (j − 1 times in the
case of variables sj , j ⩾ 1). The variables take two arguments (a, t), which are the age of the
hosts a and time t. With these definitions, the dynamics of bj can be captured by the following
model consisting of evolution equations, which is similar to the ODE model (1.5) albeit with an
additional age structure.

∂s1

∂t
+ ∂s1

∂a
= −λ1(t, a)s1 − µ(a)s1,

∂si
∂t

+ ∂si
∂a

= ωi−1(a)ri−1 − λi(t, a)si − µ(a)si, i > 1,

∂ei
∂t

+ ∂ei
∂a

= λi(t, a)si − (σi(a) + µ(a))ei, i ⩾ 1,

∂ıi
∂t

+ ∂ıi
∂a

= σi(a)ei − (γi(a) + µ(a))ıi, i ⩾ 1,

∂ri
∂t

+ ∂ri
∂a

= γi(a)Ii − (ωi(a) + µ(a))ri, i ⩾ 1,

(3.1)

where the forces of infection λi defined by

λi(t, a) =
∑
j

∫ +∞
0 βi,j(a, a′)ıj(t, a′)da′

N(t) , (3.2)

represent the rate at which susceptible hosts, of age a that have already been infected n − 1
times, acquire the infectious disease at time t, which follows the true mass-action law. The total
population of the system, denoted N(t), is defined by :

N(t) :=
∑
i

∫ +∞

0

[
si(t, a) + ei(t, a) + ıi(t, a) + ri(t, a)

]
da. (3.3)

In the equations (3.1), the left-hand side includes components of transport equations modelling
the aging process. On the right-hand side, the nonlinear terms λiSi represent the recruitment
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of the diseased. Moreover, µ(a) is the age-dependent natural death rate, ωi(a) is the loss rate of
immunity, σi(a)−1 the age-dependent incubation period and finally γi(a) the recovery rate.

In addition, denoting n(t, a) the proportion of the population of age a at time t :

n(t, a) :=
∑
i

si(t, a) + ei(t, a) + ıi(t, a) + ri(t, a),

the system is endowed with the boundary conditions

s1(·, 0) =
∫ +∞

0
b(a)n(·, a)da,

si+1(·, 0) = ei(·, 0) = ıi(·, 0) = ri(·, 0) = 0, i ⩾ 1,
(3.4)

reflecting the births generated by the population. On the other hand, we also define the initial
conditions at t = 0

si(0, ·) = s0
i (·), ei(0, ·) = e0

i (·), ıi(0, ·) = ı0i (·), ri(0, ·) = r0
i (·), i ⩾ 1, (3.5)

for given functions s0
i , e

0
i , ı

0
i , r

0
i ∈ L1

+(0,+∞). For simplicity, we denote p0 := (s0
i , e

0
i , ı

0
i , r

0
i )i⩾1.

To ensure well-posedness, the coefficients of (3.1) are considered with the following assumptions,
which are standard:

• (H1) µ measurable and there exist real numbers µ−, µ+ > 0 such that 0 < µ− ⩽ µ(a) ⩽ µ+
for a.e. a ∈ [0,+∞).

• (H2) b, ωi, γi, σi ∈ L∞
+ [0,+∞) and there exists k > 0 such that 0 ⩽ ωi(a), γi(a), σ(a) ⩽ k

for a.e. a ∈ [0,+∞) and any i ⩾ 1.

• (H3) For all i, j ⩾ 1, βi,j(a, ·) ∈ L∞
+ and there exists β+ > 0 such that 0 ⩽ βi,j(a, a′) ⩽ β+

for all i, j ⩾ 1, and a.e. a, a′ ∈ [0,+∞).

For the analysis, we will consider the state variables of (3.1) as a sequence of elements of the form
(si, ei, ıi, ri), i ⩾ 1 that can be rewritten more conveniently as pi := (pi,1, pi,2, pi,3, pi,4), i ⩾ 1. In
the sequel, we will use both notations. Each element belongs to a four components product of
L1 Lebesgue space (L1(0,+∞))4 endowed with the norm

∥pi∥ :=
4∑
j=1

∫ +∞

0
|pi,j(a)|da.

Therefore it is natural to consider the solution p := (pi)i∈N of the system (3.1) as evolving in the
Banach space X befined below.

X :=
{
p = (pi)i∈N : ∀i ⩾ 1, pi ∈ (L1(0,+∞))4 and ∥p∥X < ∞

}
, (3.6)

where ∥p∥X :=
∑
i∈N ∥pi∥. In addition, a partial ordering will also be required for the definition

of the positive solution to the system. Consider then the natural element-wise partial order
relation ⩾ on R4,

∀x1, x2 ∈ R4, x1 ⩾ x2 if and only if x1
j ⩾ x2

j , 1 ⩽ j ⩽ 4.
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The cartesian product induces an ordering on (L1(0,+∞))4

∀f1, f2 ∈ (L1(0,+∞))4, f1 ⩾ f2 if and only if f1(a) ⩾ f2(a), for almost every a > 0,

which itself induces an order relationship on X :

∀f = (fi)i∈N ∈ X, ∀g = (gi)i∈N ∈ X, f ⩾ g if and only if fi ⩾ gi, i ⩾ 1.

Finally, we define the positive cone X+ of X associated to the order relation defined previously

X+ :=
{
p = (pi)i∈N ∈ X : p ⩾ 0X

}
. (3.7)

Note that we chose to consider the solution as a sequence of 4 components Cartesian product of
Lebesgue integrable elements because it is more meaningful for the SEIRS model, but clearly an
equivalent way to consider the solution is to see it as a sequence of simple Lebesgue integrable
functions which is the setting of [102], hence the same techniques and results can be easily
transposed to the space X. A solution p : [0, tmax) → X of (3.1) is said to be classical if
p ∈ C1([0, tmax), X) and fulfills (3.1) and the boundary conditions (3.4)-(3.5). Moreover, it is
positive if p(t) ∈ X+ for all t ∈ [0, tmax).

With the preceding definitions, it is possible to demonstrate that the age profile of the to-
tal population n(t, a) follows the McKendrick-Von Foerster equation [60] and is independently
defined.

Theorem 3.2.1. (Total population dynamics) Let p be a classical positive solution of (3.1). Then
the age density n : [0, tmax) → L1

+(0,+∞) defined in (3.2) is the unique classical solution of the
McKendrick-Von Foerster equation, i.e., n ∈ C1([0, tmax), L1

+(0,+∞)), n(t, ·) ∈ W 1,1(0,+∞)
for 0 ⩽ t < tmax and n fulfills:

∂n(t, a)
∂t

+ ∂n(t, a)
∂a

= −µ(a)n(t, a), t > 0, a > 0,

n(t, 0) =
∫ +∞

0
b(a)n(t, a)da, t > 0,

n(0, a) = n0(a) =
∑
i⩾1

∑
1⩽j⩽4

(p0)i,j(a), a > 0.

(3.8)

Proof of Theorem 3.2.1. Let 0 < T < tmax and consider the classical solution p in the interval
[0, T ]. Thanks to the definition of X and the fact that p ∈ C1([0, T ], X), there exist uniform
bounds k1, k2 > 0 such that

∥p(t)∥X ⩽ k1, ∥ d
dt
p(t)∥X ⩽ k2 for 0 ⩽ t ⩽ T. (3.9)

Let us denote
nl(t, a) :=

∑
1⩽i⩽l

∑
1⩽j⩽4

pi,j(t, a).

For any 0 ⩽ t ⩽ T and for almost every a > 0, clearly |nl(t, a)| ⩽ k1 and nl(t, a) converges
pointwise a.e. to n(t, a) =

∑
i⩾1 ni(t, a). Moreover, due to the uniform boundedness in t ∈ [0, T ]
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of ∥p(t)∥X , n(t, ·) ∈ L1
+(0,+∞) and it is easy to see that

ni(t, ·)
L1

−→ n(t, ·) and pi(t, ·)
(L1)4

−→ 0 uniformly in t ∈ [0, T ].

Furthermore the uniform boundedness of ∥ d
dtp(t)∥X in (3.9) also implies that ∂

∂tni(t, ·) converges
uniformly with regard to t and

lim
i→+∞

∂

∂t
ni(t, ·) ∈ L1(0,+∞).

Hence for almost every a > 0,

lim
i→+∞

∂

∂t
ni(t, a) = ∂

∂t
n(t, a), for a.e. 0 ⩽ t ⩽ T, a > 0.

Thanks to the uniform convergences above and ni ∈ C1([0, T ], L1
+(0,+∞)),

n ∈ C1([0, T ], L1
+(0,+∞)).

Summing now the equations (3.1), we obtain

∂

∂t
ni(t, a) = − ∂

∂a
ni(t, a) − µ(a)ni(t, a) − ωi(a)pi,4(t, a), for a.e. 0 ⩽ t ⩽ T, a > 0.

Taking i → +∞, from the convergence results above yields

∂

∂t
n(t, a) = lim

i→+∞

∂

∂t
ni(t, a) = − lim

i→+∞

∂

∂a
ni(t, a) − µ(a)n(t, a), for a.e. 0 ⩽ t ⩽ T, a > 0.

This also implies that limi→+∞
∂
∂ani(t, ·) ∈ L1(0,+∞), hence ∂

∂an(t, ·) = limi→+∞
∂
∂ani(t, ·)

almost everywhere and n(t, ·) ∈ W 1,1(0,+∞) for every 0 ⩽ t ⩽ T . Finally,

∂

∂t
n(t, a) = − ∂

∂a
n(t, a) − µ(a)n(t, a), for a.e. 0 < t < T, a > 0.

We conclude the proof by taking T arbitrarily close to tmax.

It is known that the solution of McKendrick-Von Foerster equation converges asymptotically
to an exponential distribution. In fact, the number of births B(t) := n(t, 0) at the instant t can
be deduced as the solution to the Lotka’s renewal equation below.

B(t) =
∫ ω

0
b(a+ t)π(a+ t)

π(a) n0(a)da+
∫ t

0
b(a)π(a)B(t− a)da,

where π(a) = e
−
∫ a

0
µ(s)ds is the survival probability at age a of the model and ω is the maximal

attainable age for the individuals in the model. The first term of the equation above is interpreted
as the contribution to the birth rate of the initial population at time t and the second term
represents the birth generated by newborns after the initial time 0. The asymptotic behavior
of this renewal equation is well understood and known in the literature as the Sharpe-Lotka
Theorem [115] or the Fundamental Theorem of Demography (e.g. [60, Proposition 1.9]). The
result states, for finite ω > 0, that the asymptotic behavior is dominated by an exponential term

B(t) = q0e
λ0t(1 +O(e−ηt)),
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where
q0 :=

∫ ω
0 e−λ0tG(t)dt∫ ω

0 ae−λ0ab(a)π(a)da
, G(t) :=

∫ ω

0
b(a+ t)π(a+ t)

π(a) n0(a)da,

and η is a positive real and λ0 is the unique real root of Lotka’s characteristic equation∫ ω

0
e−λ0b(a)π(a)da = 1.

Moreover, notice that we can generalize the result [60, Proposition 1.9] with no particular dif-
ficulty to the case ω = ∞, which is assumed in the present model. Due to the Fundamental
Theorem, the age profile converges asymptotically to the exponential distribution (Proposition
1.11 [60]) :

lim
t→+∞

e−λ0tn(t, a) = q0e
−λ0ae

−
∫ a

0
µ(s)ds

, uniformly in a.

Introducing the net reproductive rate of the system as

R =
∫ +∞

0
b(a)π(a)da.

In order to have a constant stable population, λ0 must be equal to zero hence R = 1. In the
sequel, we take the simplifying assumption below that ensures that the total population has
already attained a stable constant distribution, with N(t) constant for t > 0.

• (H4) R = 1 and the age profile of the population has already reached the stable age
distribution, that is n(0, a) = ke

−
∫ a

0
µ(s)ds, k ∈ R+.

Normalizing then the quantities si, ei, ıi, ri in (3.1) by N(t), we may consider only the case where
N ≡ 1 and the system (3.1) is endowed with a linear force of infection λi defined by

λi(t, a) :=
∑
j

∫ +∞

0
βi,j(a, a′)ıj(t, a′)da′, (3.10)

instead of (3.2). For a complete picture on the subject of Kermack-Mackendrick equation, the
reader is invited to consult [59, 60].

Remark 3.2.2. For non-constant total population N(t), it is still possible to consider the well-
posedness of (3.1) by introducing the alternative normalization

s̄i(t, a) := Si(t, a)
n(t, a) , ēi(t, a) := ei(t, a)

n(t, a) , ı̄i(t, a) := ıi(t, a)
n(t, a) , r̄i(t, a) := ri(t, a)

n(t, a) .

Similarly to the age-structured SIR model in [60], the resulting infinite system is asymptotically
autonomous for sufficiently regular solution, and the well-posedness of the limiting autonomous
system may be derived by the same semigroup techniques employed below. The
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3.3 Well-posedness results for a perturbed linear abstract
Cauchy problem

To verify the existence and uniqueness of solutions of (3.1), the system may be considered as an
abstract differential equation of the form (see Section 3.4) :

p′(t) = A(I +H(t))p(t) + (F (t))(p(t)),

where A is the generator of a C0-semigroup and H, F are nonlinear operators. In particular,
the multiplicative perturbation A(I +H) of the linear operator A in the abstract equation takes
into account the non-trivial boundary conditions (3.4). We intend then to adapt the perturbed
semigroup theory results available in the literature [31, 102] to the proof of well-posedness and
positiveness of the present system.

To this end, this section serves as an aside to introduce some definitions and results whose
proof can be found in the aforementioned papers. Let (X, ∥ · ∥) be a Banach space with its
associated norm and A : D(A) → X be a linear operator with domain D(A) ⊂ X generating a
strongly continuous C0-semigroup etA such that, for some M ⩾ 1 and ω ∈ R, the following norm
inequality is fulfilled

∥etA∥ ⩽Meωt, t ⩾ 0.

The Favard class of A defined below is required for the analysis.

FA =
{
p ∈ X : lim sup

t→0+

1
t
∥etAp− p∥ < +∞

}
.

It is easy to see that FA is a Banach space endowed with the following norm

|p|FA
:= ∥p∥ + lim sup

t→0+

1
t
∥etAp− p∥.

The domain D(A) of an operator A generating a C0-semigroup etA is the set of all elements
x ∈ X such that the limit below exists :

lim
t→+∞

1
t
(etA − I)x.

It is clear from the definition that D(A) ⊂ FA. Anecdotally, we have D(A) = FA if X is reflexive
(see for instance [38]). On the other hand, let H : X → FA and F : X → X be locally Lipschitz
continuous operators, i.e., for all R > 0, there exist LR, KR > 0 such that

|H(p) −H(q)|FA
⩽ LR∥p− q∥, ∥F (p) − F (q)∥ ⩽ KR∥p− q∥, (3.11)

for all p, q ∈ X such that ∥p∥, ∥q∥ ⩽ R. Finally, we introduce, for R > 0, the projection
πR : X → X

πR(x) =
{
x if ∥x∥ ⩽ R,
x

∥x∥R if ∥x∥ > R,

and the composite functions

HR(x) := H(πR(x)) and FR(x) := F (πR(x)). (3.12)
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In this setting, the abstract Cauchy problem is proved to be well-posed in [102] which is an
adaptation of the results in [31].

Theorem 3.3.1. (Theorem 2.1 in [102]) Let A : D(A) → X be a linear operator with D(A) ⊂ X
which generates a C0-semigroup etA, H : X → FA, F : X → X satisfy (3.11) and p0 ∈ X.
Consider the abstract Cauchy problem{

p′(t) = A(I +H)p(t) + F (p(t)),
p(0) = p0,

(3.13)

Then

1. For each p0 ∈ X, there exists a unique mild solution of (3.13), i.e., a continuous function
t → p(t) satisfying the integral equation

p(t) = etAp0 +A

∫ t

0
e(t−s)AH(p(s))ds+

∫ t

0
e(t−s)AF (p(s))ds (3.14)

2. If [0, tmax) is the maximal interval of existence of the solution, then tmax = +∞ or
limt→t−max

∥p(t)∥ = +∞,

3. If H and F are continuously differentiable and p0+(H(0))p0 ∈ D(A), then p(t) is a classical
solution of (3.13), i.e., p(t)+(H(t))p(t) ∈ D(A) for each t ∈ [0, tmax), p(t) is differentiable
and satisfies (3.13) for each 0 ⩽ t < tmax.

Remark 3.3.2. Although not stated explicitly in both Theorem 1 [31] and Theorem 2.1 [102],
the classical solution p(t) is proved to be continuously differentiable in [31] and also explicitly
stated in Theorem 1 [30] which is an earlier report of the work presented in [31].

For p0 ∈ X, we denote in the rest of the paper p(t, p0) the mild solution to the Cauchy
problem (3.13). The next result relates to the continuous dependency of the mild solution on
initial data.

Theorem 3.3.3. (Theorem 2.2 in [102]) Let p0 ∈ X and let (qn)n∈N be a sequence in X
converging to p0. Then for each t > 0 such that p(t, p0) exists, we have

lim
n→∞

p(t, qn) = p(t, p0)

and the convergence is uniform for t ∈ [0, T ], where T > 0 is such that p(T, p0) exists.

As the model describes an epidemiological process of positive quantities, we are specifically
interested in the existence and uniqueness of positive solutions. In the context of Banach spaces,
the natural framework for studying positivity is the Banach lattices, which is a Banach space
(X, ∥ · ∥) endowed with an order relation ⩽ such that (X,⩽) is a lattice. For a given order
relation, we define the positive cone of X :

X+ = {p ∈ X : p ⩾ 0},

and we denote p ⩾ q if and only if p − q ∈ X+. In the rest of the chapter, we will only use the
natural order between L1(Ω) functions, which implies

X+ = {f ∈ X : f(x) ⩾ 0, a.e. in Ω}.
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Definition 3.3.1. A linear operator T on a Banach lattice X is called positive if Tp ∈ X+ for
all p ∈ X+.

Finally, we cite the following results on positive solutions which are required for the analysis

Lemma 3.3.4. (Lemma 3.3 in [102]) Let X be a Banach space, let α > 0, R > 0, and p0 ∈ X
and let HR and FR be defined as in (3.12). A function t → p(t) satisfies the integral equation

p(t) = etAp0 +A

∫ t

0
e(t−s)AHR(p(s))ds+

∫ t

0
e(t−s)AFR(p(s))ds, t ⩾ 0, (3.15)

if and only if it satisfies the integral equation for t ⩾ 0

p(t) = et(A−I/α)p0 +A

∫ t

0
e(t−s)(A−I/α)HR(p(s))ds

+ 1
α

∫ t

0
e(t−s)(A−I/α)(I + αFR)(p(s))ds.

(3.16)

Theorem 3.3.5. (Theorem 3.2 in [102]) Let X be a Banach lattice and let A be the generator
of a positive C0-semigroup on X, i.e., etAX+ ⊂ X+ for all t ⩾ 0. Suppose that for each R > 0
there exists α > 0 such that

(I + αFR)X+ ⊂ X+

and
A

∫ t

0
e(t−s)(A− I

α )HR(u(s))ds ∈ X+ for all u ∈ C([0, T ];X+),

where F and H are locally Lipschitz continuous and FR, HR are defined as in (3.12). Then, if
p0 ∈ X+, p(t, p0) ∈ X+ for all t ∈ [0, tmax).

Remark 3.3.6. As noticed in [102], Theorem 3.3.5 implies that for existence and uniqueness of
positive solution with p0 ∈ X+, the operators F and H need only to be defined on X+.

3.4 Well-posedness of the age and reinfection structured
model

The well-posedness of the abstract Cauchy problem presented in the previous Section 3.3 enables
the well-posedness study of the age-structured SEIRS model (3.1), which will be covered in this
section. In subsection 3.4.1, we introduce some supplementary notations for the analysis and
formulate the model in the abstract framework developed in Section 3.3. Then the main results
of our analysis are exposed in subsection 3.4.2. Finally, the proofs of the results can be found in
subsections 3.4.3 and 3.4.4.

3.4.1 Adaptation to the abstract Cauchy problem setting

Consider now the same Banach space X and the positive cone X+ introduced in (3.6) and (3.7),
we rewrite then the system (3.1)-(3.10) as an abstract differential equation of the form (3.13)
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evolving in X. First, a reformulation of the PDEs gives

∂si
∂t

= −∂si
∂a

+ ωi−1(a)ri−1 − µ(a)si −
∑
i

∫ +∞

0
βi,j(a, a′)ıj(t, a′)da′si, i ⩾ 1,

∂ei
∂t

= −∂ei
∂a

− (σi(a) + µ(a))ei +
∑
i

∫ +∞

0
βi,j(a, a′)ıj(t, a′)da′si, i ⩾ 1,

∂ıi
∂t

= −∂ıi
∂a

+ σi(a)ei − (γi(a) + µ(a))ıi, i ⩾ 1,

∂ri
∂t

= −∂ri
∂a

+ γiıi − (ωi(a) + µ(a))ri, i ⩾ 1.

(3.17)

Let p := (si, ei, ıi, ri)i∈N be a solution of the system, we see that the equations above can be
written under the form

∂p

∂t
= Ap+ F (p),

where A and F are respectively linear and non-linear operators to be defined.

The operator A assigns a unique element Ap ∈ X defined below to each element p in the
domain D(A).

(Ap)1,1(a) = − s1

da
(a) − µ(a)s1(a),

(Ap)i,1(a) = − si
da

(a) + ωi−1(a)ri−1(a) − µ(a)si(a), i > 1,

(Ap)i,2(a) = − ei
da

(a) − (σi(a) + µ(a))ei(a), i ⩾ 1,

(Ap)i,3(a) = − ıi
da

(a) + σi(a)ei(a) − (γi(a) + µ(a))ıi(a), i ⩾ 1,

(Ap)i,4(a) = − ri
da

(a) + γi(a)ıi(a) − (ωi(a) + µ(a))ri(a), i ⩾ 1,

In terms of (pi)i∈N, where pi ∈ X, the operator can be rewritten in a more abstract way :

(Ap)i,1(a) = −pi,1
da

(a) + ωi−1(a)pi−1,4(a) − µ(a)pi,1(a), i ⩾ 1,

(Ap)i,2(a) = −pi,2
da

(a) − (σi(a) + µ(a))pi,2(a), i ⩾ 1,

(Ap)i,3(a) = −pi,3
da

(a) + σi(a)pi,2(a) − (γi(a) + µ(a))pi,3(a), i ⩾ 1,

(Ap)i,4(a) = −pi,4
da

(a) + γi(a)pi,3(a) − (ωi(a) + µ(a))pi,4(a), i ⩾ 1,

(3.18)

where ω0p0,4 ≡ 0 is introduced with the aim of simplifying the expression. The domain of the
operator A is set as

D(A) :=
{
p ∈ X ∩ (W 1,1(0,∞))N : ∀i ⩾ 1, pi(0) = 04; ∃N ∈ N,∀j > N, pj ≡ 04

}
. (3.19)

This domain is obviously dense in X. We will show later that A is closable and replace A with
its closure Ā in the analysis of the well-posedness. Moreover, from the equations (3.17), the



3.4. Well-posedness of the age and reinfection structured model 127

non-linear operator F : X → X is defined by

(F (p))i,1(a) = −
∑
j⩾1

∫ +∞

0
βi,j(a, a′)ıj(a′)da′Si(a), i ⩾ 1,

(F (p))i,2(a) =
∑
j⩾1

∫ +∞

0
βi,j(a, a′)ıj(a′)da′Si(a), i ⩾ 1,

(F (p))i,3 ≡ (F (p))i,4 ≡ 0, i ⩾ 1.

The nonzero components of F (p) can be alternatively written in terms of pi,j

(F (p))i,1(a) = −
∑
j⩾1

∫ +∞

0
βi,j(a, a′)pj,3(a′)da′pi,1(a), i ⩾ 1,

(F (p))i,2(a) =
∑
j⩾1

∫ +∞

0
βi,j(a, a′)pj,3(a′)da′pi,1(a), i ⩾ 1.

Finally, it remains to incorporate the boundary condition (3.4) into the abstract Cauchy equation.
This is done by adding a multiplicative operator H taking account of the boundary condition
(3.4) in the same manner as in [31, 102]. Specifically, we introduce the operator H : X → X as

(H(p))1,1(a) = −
(∫ +∞

0
b(a′)[

∑
i

si(a′) + ei(a′) + ıi(a′) + ri(a′)]da′
)
π(a),

(H(p))i,j(a) ≡ 0 otherwise.

The operator can be equivalently written as,

(H(p))1,1(a) = −
(∫ +∞

0
b(a′)

∑
i⩾1

∑
1⩽j⩽4

pi,j(a′)da′
)
π(a),

(H(p))i,1(a) ≡ 0 otherwise.

The addition of the nonlinear operator H in the equation is justified as H solves the stationary
equation

(AH(p))(a) = 0.

Therefore, the evolution equation (3.1) can be equivalently stated as the abstract Cauchy problem{
p′(t) = A(I +H)p(t) + F (p(t)),
p(0) = p0,

(3.22)

where I is the identity matrix. In addition, the operator A is proven to be closable below, with the
closure denoted Ā. Then, from the definition of D(A) in (3.19), if the condition p+H(p) ∈ D(Ā)
is verified, we recover the boundary conditions relating to the births (3.4) as p+H(p) ∈ D(Ā) if
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and only if the components of p are in (W 1,1(0,+∞))4 and p satisfies the boundary conditions

p1,1(0) =
∫ +∞

0
b(a′)

∑
i⩾1

∑
1⩽j⩽4

pi,j(a′)da′,

pi,j(0) = 0 otherwise.

Furthermore, under the assumptions of Theorem 3.3.1, p0+H(p0) ∈ D(Ā) implies p(t)+H(p(t)) ∈
D(Ā) for t ∈ [0, tmax). Thus, the boundary conditions (3.4), equivalent to the constraint p(t) +
H(p(t)) ∈ D(Ā), are satisfied for every t ∈ [0, tmax).

3.4.2 Main results
We announce now the main results demonstrated for the age-structured reinfection model, the
proof of which is given in the next section. The following Theorem is about the existence and
uniqueness of global solution of the infinite system of PDEs (3.1)-(3.10).

Theorem 3.4.1. (Well-posedness) Let p0 := (p0
i )i⩾1 ∈ X+ such that p0 +H(p0) ∈ D(Ā), i.e., p0

is such that p0
i ∈ (W 1,1(0,+∞))4 for all i ⩾ 1 and fulfills the boundary conditions (3.4). If (H1)-

(H3) hold, the system (3.1)-(3.10) with boundary conditions (3.4) and initial conditions (3.5) has
a unique classical positive and global solution t → p(t) := (Si(t), Ei(t), Ii(t), Ri(t))i∈N ∈ X+, i.e.
p ∈ C1([0,+∞), X+).

Corollary 3.4.2. Under the same assumptions as in Theorem 3.4.1, the classical solution t →
p(t) := (pi(t))i⩾1, where pi(t) ∈ (L1(0,+∞))4, is such that pi(t) ∈ (W 1,1(0,+∞))4 for any t > 0.

Proof of Corollary 3.4.2. This is easy to deduce from the equations (3.1) and the fact that
∂p
∂t (t, ·) ∈ X+.

As the system describes a reinfection process with reinfection number counting, it may be
interesting to check the behavior of the average number of reinfections in the population at a
time t. In this end, we introduce the quantity

P (t) :=
∑
i⩾1

i

∫ +∞

0

[
si+1(t, a) + ei(t, a) + ıi(t, a) + ri(t, a)

]
da. (3.24)

We also introduce the Banach subspace X1 of X :

X1 :=

p = (pi)i∈N ∈ X,

+∞∑
i=1

i

(∫ +∞

0
|pi+1,1(a)|da+

4∑
j=2

∫ +∞

0
|pi,j(a)|da

)
< +∞

 , (3.25)

endowed with the norm

∥p∥X1 :=
∫ +∞

0
|p1,1(a)|da+

+∞∑
i=1

i

(∫ +∞

0
|pi+1,1(a)|da+

4∑
j=2

∫ +∞

0
|pi,j(a)|da

)
,

and define the operator A1 as the closure of operator A (3.18) restricted to the subset X1. Then
the following result indicates that the mean number of reinfections is defined for the system (3.1)
if it is defined initially.
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Theorem 3.4.3. (Average number of reinfections) Let p0 ∈ X+ such that p0 +H(p0) ∈ D(A1),
i.e., the initial data fulfil the boundary conditions (3.4) with finite average number of reinfections
P (0). If (H1)-(H5) hold, there exists M ′ such that the average number of reinfections P (t)
defined in (3.24) fulfills P (t) ⩽M ′ for any t ⩾ 0.

Remark 3.4.4. In light of Theorem 3.4.3, one may wonder whether the average number of
reinfections P (t) may still be defined with a less restrictive assumption, i.e., in the case where
P (0) is infinite initially, can we expect a regularization effect so that P (t) finite ultimately? We
present here a counter-example, in the case where the parameters are independent with regard to
the age. In this case, after integration, we obtain an SEIRS compartmental system of ODEs:

Ṡi = ωRi−1 − βISi − µSi, i ⩾ 1,
Ėi = βISi − (σ + µ)Ei, i ⩾ 1,
İi = σEi − (γ + µ)Ii, i ⩾ 1,
Ṙi = γIi − (ω + µ)Ri, i ⩾ 1,

(3.26)

where we denote ωR0 = µ for simplicity. Notice that the sums S :=
∑
i Si, E :=

∑
iEi, I :=∑

i Ii, R :=
∑
iRi follow the classic SEIRS system with demography,

Ṡ = µ+ ωR− βIS − µS,

Ė = βIS − (σ + µ)E,
İ = σE − (γ + µ)I,
Ṙ = γI − (ω + µ)R.

(3.27)

For β
γ+µ > 1, this implies the existence of a GAS endemic equilibrium (SEE , EEE , IEE , REE).

Taking now

c := 6
π2 =

(+∞∑
i=1

1
i2

)−1

,

and the initial condition (Si(0), Ei(0), Ii(0), Ri(0)) = c
i2 (SEE , EEE , IEE , REE), i ⩾ 1, such

that

P (0) = lim
n→+∞

n∑
i=1

i(Si+1(0) + Ei(0) + Ii(0) +Ri(0))

= lim
n→+∞

(
n∑
i=1

(i− 1)Si(0) +
n∑
i=1

i(Ei(0) + Ii(0) +Ri(0))
)

= lim
n→+∞

c(SEE + EEE + IEE +REE)
n∑
i=1

i−1 − SEE = +∞.

The initial condition implies also that system (3.27) is at equilibrium. In such case, the system
(3.26) reduces to an infinite system of linear ODEs with a triangular structure. Summing up the
equations and considering Ni := Si+1 + Ei + Ii +Ri, we have

Ṅi = −µNi + βIEE(Si − Si+1), Ni(t) = Ni(0)e−µt + βIEE
∫ t

0
e−µ(t−s)[Si(s) − Si+1(s)]ds,
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P (t) = lim
n→+∞

n∑
i=1

iNi(t)

= lim
n→+∞

(
e−µt

n∑
i=1

iNi(0) + βIEE [
n∑
i=1

∫ t

0
e−µ(t−s)iSi(s)ds−

n−1∑
i=1

∫ t

0
e−µ(t−s)(i− 1)Si(s)ds]

)

= lim
n→+∞

(
e−µt

n∑
i=1

iNi(0) + βIEE
n−1∑
i=1

∫ t

0
e−µ(t−s)Si(s)ds+ βIEE

∫ t

0
e−µ(t−s)nSn(s)ds

)
.

Due to P (0) =
∑n
i=1 iNi(0) = +∞, the first sum on the right-hand side diverges to +∞ when

n → +∞, and because the remaining terms are always positive, limn→+∞
∑n
i=1 iNi(t) = +∞ for

t ⩾ 0, which rules out regularization effect.

3.4.3 Well-posedness — Proof of Theorem 3.4.1

The proof consists in transforming the system (3.1) into the abstract Cauchy form (3.13), which
is shown to be well-posed by application of results presented in Chapter 3.3.

For well-posedness of the corresponding abstract Cauchy problem, we first prove that the
associated linear homogeneous problem generates a C0-semigroup of contraction.

Theorem 3.4.5. The linear operator A is closable in X, and Ā generates a positive, strongly
continuous semigroup of contractions.

Proof. The proof is similar to the proof of Theorem 4.1 in [102]. We begin by showing that A
is a densely defined dissipative operator and that the range R(λI − A) is dense in X for every
λ > 0. The fact that A is closable and Ā is dissipative follows then from [96, Theorem 4.5].
Moreover, the density of R(λI −A) and the fact that A is dissipative imply that R(λI − Ā) = X
as shown in [102]. Finally, by application of the Lumer-Phillips Theorem ([96, Theorem 4.3]), Ā
generates a C0-semigroup of contractions.

In order to show the dissipativity, we introduce, for x ∈ X, the subdifferential of the norm,

∂∥x∥ = {φ ∈ X∗ : ⟨φ, x⟩ = ∥x∥, ∥φ∥ = 1}, x ̸= 0,
∂∥0∥ = {φ ∈ X∗ : ∥φ∥ ⩽ 1}.

By definition, A is dissipative if and only if for every p ∈ D(A) there is p∗ ∈ ∂∥p∥ such that
⟨Ap, p∗⟩ ⩽ 0, where the bracket is the usual duality product. As the case p = 0 is trivial, we
assume that p ̸= 0. The dual space of X is

X∗ = {φ = (φi)i∈N : φi ∈ (L∞(0,+∞))4, sup
i∈N

∥φi∥(L∞(0,+∞))4 < +∞},

and we have the following characterization of ∂∥p∥ (see [100, 102]) :

φ ∈ ∂∥p∥ ⇐⇒ ∀i ⩾ 1, 1 ⩽ j ⩽ 4,


φi,j(a) = 1, if a ∈ Ω+

i,j = {s ∈ [0,+∞) : pi,j(s) > 0},
φi,j(a) = −1, if a ∈ Ω−

i,j = {s ∈ [0,+∞) : pi,j(s) < 0},
−1 ⩽ φi,j(a) ⩽ 1, if a ∈ Ω0

i,j = {s ∈ [0,+∞) : pi,j(s) = 0}.
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Therefore choosing φ ∈ ∂∥p∥ such that φi,j(a) = 0 for a ∈ Ω0
i,j , ∀i ⩾ 1, 1 ⩽ j ⩽ 4, we obtain,

⟨Ap, φ⟩ =
+∞∑
i=1

4∑
j=1

[∫
Ω+

i,j

(Ap)i,j(a)da−
∫

Ω−
i,j

(Ap)i,j(a)da
]

=
+∞∑
i=1

[∫
Ω+

i,1

(Ap)i,1da+
∫

Ω+
i,2

(Ap)i,2da+
∫

Ω+
i,3

(Ap)i,3da+
∫

Ω+
i,4

(Ap)i,4da−
∫

Ω−
i,1

(Ap)i,1da

−
∫

Ω−
i,2

(Ap)i,2da−
∫

Ω−
i,3

(Ap)i,3da−
∫

Ω−
i,4

(Ap)i,4da
]

=
+∞∑
i=1

[∫
Ω+

i,1

(ωi−1(a)pi−1,4(a) − pi,1
′(a) − µ(a)pi,1(a))da−

∫
Ω+

i,2

(pi,2′(a) + (σi(a)

+ µ(a))pi,2(a))da+
∫

Ω+
i,3

(σi(a)pi,2(a) − pi,3
′(a) − (γi(a) + µ(a))pi,3(a))da+

∫
Ω+

i,4

(γi(a)pi,3(a)

− pi,4
′(a) − (ωi(a) + µ(a))pi,4(a))da−

∫
Ω−

i,1

(ωi−1(a)pi−1,4(a) − pi,1
′(a) − µ(a)pi,1(a))da

+
∫

Ω−
i,2

(pi,2′(a) + (σi(a) + µ(a))pi,2(a))da−
∫

Ω−
i,3

(σi(a)pi,2(a) − pi,3
′(a) − (γi(a) + µ(a))pi,3(a))da

−
∫

Ω−
i,4

(γi(a)pi,3(a) − pi,4
′(a) − (ωi(a) + µ(a))pi,4(a))da

]
.

Notice that, as p ∈ D(A), the sums are in fact finite and rearrangements are possible, then

⟨Ap, φ⟩ =
+∞∑
i=1

4∑
j=1

(∫
Ω−

i,j

−
∫

Ω+
i,j

)
(pi,j ′(a) + µ(a)pi,j(a))da+

+∞∑
i=1

[∫
Ω+

i,1

ωi−1(a)pi−1,4(a)da

−
∫

Ω+
i,2

σi(a)pi,2(a)da+
∫

Ω+
i,3

(σi(a)pi,2(a) − γi(a)pi,3(a))da+
∫

Ω+
i,4

(γi(a)pi,3(a)

− ωi(a)pi,4(a))da−
∫

Ω−
i,1

ωi−1(a)pi−1,4(a)da+
∫

Ω−
i,2

σi(a)pi,2(a)da

−
∫

Ω−
i,3

(σi(a)pi,2(a) − γi(a)pi,3(a))da−
∫

Ω−
i,4

(γi(a)pi,3(a) − ωi(a)pi,4(a))da
]
.

As remarked in the proof of Theorem 4.1 [102], thanks to pi,j ∈ W 1,1(0,+∞), Ω+
i,j is an at most

countable union of pairwise disjoint intervals :

Ω+
i,j =

+∞⋃
n=1

(ai,jn−1, a
i,j
n ),

with pi,j(ai,jn ) = 0 for ai,jn ∈ R and lima→ai,j
n
pi,j(a) = 0 if ai,jn = +∞ due to pi,j ∈ BV∩L1(0,+∞)

(BV stands for functions of bounded variation). The same reasoning also applies to Ω−
i,j and

therefore ∫
Ω+

i,j

p′
i,j(a)da =

∫
Ω−

i,j

p′
i,j(a)da = 0.
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Hence,

⟨φ,Ap⟩ = −
+∞∑
i=1

4∑
j=1

∫ +∞

0
µ(a)|pi,j(a)|da+

+∞∑
i=1

[∫
Ω+

i,1

ωi−1(a)pi−1,4(a)da−
∫

Ω+
i,2

σi(a)pi,2(a)da

+
∫

Ω+
i,3

(σi(a)pi,2(a) − γi(a)pi,3(a))da+
∫

Ω+
i,4

(γi(a)pi,3(a) − ωi(a)pi,4(a))da

+
∫

Ω−
i,2

σi(a)pi,2(a)da−
∫

Ω−
i,1

ωi−1(a)pi−1,4(a)da−
∫

Ω−
i,3

(σi(a)pi,2(a) − γi(a)pi,3(a))da

−
∫

Ω−
i,4

(γi(a)pi,3(a) − ωi(a)pi,4(a))da
]

Rearranging again, and as ω0p0,4 ≡ 0, we have

⟨φ,Ap⟩ = −
+∞∑
i=1

4∑
j=1

∫ +∞

0
µ(a)|pi,j(a)|da+

+∞∑
i=1

[
−
∫

Ω+
i,2

σi(a)pi,2(a)da+
∫

Ω+
i,3

(σi(a)pi,2(a)

− γi(a)pi,3(a))da+
∫

Ω+
i,4

(γi(a)pi,3(a) − ωi(a)pi,4(a))da+
∫

Ω+
i+1,1

ωi(a)pi,4(a)da

+
∫

Ω−
i,2

σi(a)pi,2(a)da−
∫

Ω−
i,3

(σi(a)pi,2(a) − γi(a)pi,3(a))da−
∫

Ω−
i,4

(γi(a)pi,3(a)

− ωi(a)pi,4(a))da−
∫

Ω−
i+1,1

ωi(a)pi,4(a)da
]

= −
+∞∑
i=1

4∑
j=1

∫ +∞

0
µ(a)|pi,j(a)|da+

+∞∑
i=1

[(∫
Ω+

i,3∩Ω−
i,2

−
∫

Ω+
i,2∩Ω−

i,3

)
σi(a)pi,2(a)da

+
(∫

Ω−
i,3∩Ω+

i,4

−
∫

Ω+
i,3∩Ω−

i,4

)
γi(a)pi,3(a)da+

(∫
Ω+

i+1,1∩Ω−
i,4

−
∫

Ω+
i,4∩Ω−

i+1,1

)
ωi(a)pi,4(a)da

−
(∫

Ω−
i,3∩Ω+

i,2

−
∫

Ω−
i,2∩Ω+

i,3

)
σi(a)pi,2(a)da−

(∫
Ω−

i,4∩Ω+
i,3

−
∫

Ω−
i,3∩Ω+

i,4

)
γi(a)pi,3(a)da

−
(∫

Ω−
i+1,1∩Ω+

i,4

−
∫

Ω−
i,4∩Ω+

i+1,1

)
ωi(a)pi,4(a)da

]
⩽ 0.

The last inequality is derived from the definition of Ω±
i,j . We thus proved that A is dissipative.

Moreover, it is obvious that D(A) ⊂ X thus A is closable with Ā also dissipative.

Let us now demonstrate the density of R(λI −A). For this, let λ > 0, it is sufficient to show
that for every p ∈ D(A) there exists q ∈ D(A) such that λq − Aq = p. Let p ∈ D(A) such that
pi ≡ 0 for i > N for a N > 0, we consider q ∈ D(A) such that qi ≡ 0 for i > N + 1, q1,1 as the
solution of the ODE {

q′
1,1(a) = −(λ+ µ(a))q1,1(a) + p1,1(a),
q1,1(0) = 0,
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that is,

q1,1(a) =
∫ a

0
e

−
∫ a

s
(λ+µ(τ))dτ

p1,1(s)ds,

and we define recursively qi,j , i = 1, 2 ⩽ j ⩽ 4 and 1 < i ⩽ N + 1, 1 ⩽ j ⩽ 4 as the solution of
the ODE 

q′
i,1(a) = −(λ+ µ(a))qi,1(a) + ωi−1(a)qi−1,4 + pi,j(a),
q′
i,2(a) = −(λ+ σi(a) + µ(a))qi,2(a) + pi,j(a),
q′
i,3(a) = −(λ+ γi(a) + µ(a))qi,3(a) + σi(a)qi,2(a) + pi,j(a),
q′
i,4(a) = −(λ+ ωi(a) + µ(a))qi,4(a) + γi(a)qi,3(a) + pi,j(a),
qi,j(0) = 0.

(3.28)

Indeed, in this case q ∈ D(A) and it is a solution of the equation λq − Aq = p, therefore
D(A) ⊂ R(λI − A) and the range is dense in X, which concludes the proof that Ā generates a
C0-semigroup of contractions.

To demonstrate the positivity of the semigroup etĀ, let us take q0 ∈ D(A) ∩ X+, we apply
as in [102] the method of characteristics solving the linear PDE{

q′(t) = Aq,

q(0) = q0,

we can check that q(t) ≡ (qi(·, t))i∈N ∈ X+, then by density we have etĀq0 ∈ X+ for all
q0 ∈ X+.

Remark 3.4.6. Let (xn)n∈N be a sequence in D(A) such that xn → x and Axn → f in X. It is
easy to check that x ∈ D(Ā) with the domain defined as

D(Ā) :=
{
p ∈ X : pi ∈ (W 1,1(0,+∞))4, pi(0) = 04,∀i ⩾ 1

}
.

In order to apply Theorem 3.3.1, it is necessary to have R(H) ⊂ FĀ. As the operator H is
a special case of the one defined in p.154 [102] with ψ ≡ 1 and ζ = 1, this is easily verified by
adapting the proof of Proposition 4.2 in [102], thus

Proposition 3.4.7. H(p) ∈ FĀ for all p ∈ X.

It remains to check that the assumptions of Theorem 3.3.5 are also verified. As the second
assumption relates to the operator H, the proof is again similar to the proof of Lemma 4.3 in
[102] hence the following result holds.

Lemma 3.4.8. Let α > 0. The operator Uα defined in WT = C([0, T ], X) by

[Uαu](t) := Ā

∫ t

0
e(Ā− 1

α )(t−s)H(u(s))ds

is positive, i.e., it takes positive functions into positive functions.

Finally, we check the remaining assumption

Lemma 3.4.9. For any R > 0, there exists α > 0 such that (I + αFR)X+ ⊂ X+.
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Proof. For p ∈ X+, we set p̄ := πR(p). By definition, we have p̄i ⩽ pi, ∀i ⩾ 1. It is easy to see
that (I + αFR)p ∈ X+ if and only if, for every i ∈ N

pi,1 + α(F (p̄))i,1 ⩾ 0, pi,2 + α(F (p̄))i,2 ⩾ 0

as we have always (F (p̄))i,2 ⩾ 0 for p̄ ∈ X+, it is only necessary to verify the first inequality.
Thanks to assumption (H3)

pi,1 − αp̄i,1
∑
j⩾1

∫ +∞

0
βi,j(·, a)p̄j,3(a)da ⩾ pi,1 − αβ+pi,1

∑
j⩾1

∫ +∞

0
p̄j,3(a)da

⩾ (1 − αβ+R)pi,1.

We conclude the proof by taking α ⩽ 1
β+R

.

We are now ready for the proof of well-posedness result in Theorem 3.4.1, which is a direct
consequence of the following two theorems on well-posedness and global solution of the abstract
Cauchy problem (3.13).

Theorem 3.4.10. If (H1)-(H3) hold, the Cauchy problem on X,{
p′(t) = Ā(p(t) +H(p(t))) + F (p(t)),
p(0) = p0,

(3.29)

where X, Ā,H and F have been defined above, has a unique mild solution in X+ for p0 ∈ X+.
Moreover, if p0 +H(p0) ∈ D(Ā), then the solution is also classical.

Proof. The fact that H and F are locally Lipschitz and continuously differentiable on X+ is easy
to see, thus the result is an application of Theorem 3.3.1, Theorem 3.4.5 and Lemmas 3.4.8, 3.4.9
(notice that Lemma 3.4.8 can be adapted for operator HR instead of H as stated in [102]).

Theorem 3.4.10 gives existence and uniqueness of a local solution for t ∈ [0, tmax), tmax > 0.
The following result and the point 2 of Theorem 3.3.1 show that the local solution is in fact
global.

Theorem 3.4.11. Let (H1)-(H3) hold and p(t) = (pi(·, t))i∈N be a positive solution of (3.29)
defined on [0, tmax). Then there exists L > 0 such that ∥p(t)∥ ⩽ ∥p(0)∥eLt for each t ∈ [0, tmax).

Proof. Let us begin by assuming that p0 ∈ X+ and p0 + H(p0) ∈ D(Ā). In this case, Theo-
rem 3.4.10 states that the solution p(t) to the Cauchy problem (3.29) is classical, i.e. p(·) ∈
C1([0, tmax), X). For p ∈ X, let us introduce the bounded linear operator L on X :

Lp :=
∑
i∈N

∑
1⩽j⩽4

∫ +∞

0
pi,j(a′)da′.

Now notice that, for a positive solution p(t) ∈ X+ of (3.29), we have the equality ∥p(t)∥ = Lp(t).



3.4. Well-posedness of the age and reinfection structured model 135

Therefore, thanks to the continuously differentiable property of p(·) and the equations (3.17),

d

dt
∥p(t)∥ = d

dt
L(p(t)) = L( d

dt
p(t)),

=
∑
i∈N

∑
1⩽j⩽4

∫ +∞

0

∂

∂t
pi,j(t, a′)da′,

=
∑
i∈N

∑
1⩽j⩽4

∫ +∞

0
− ∂

∂a
pi,j(t, a′) − µ(a′)pi,j(t, a′)da′,

As pi,j(t, ·) ∈ W 1,1(0,+∞), lima→+∞ pi,j(t, a) = 0,

d

dt
∥p(t)∥ =

∑
i∈N

∑
1⩽j⩽4

[
pi,j(t, 0) −

∫ +∞

0
µ(a′)pi,j(t, a′)da′

]
,

= p1
1(t, 0) −

∑
i∈N

∑
1⩽j⩽4

∫ +∞

0
µ(a′)pi,j(t, a′)da′,

=
∫ +∞

0
[b(a) − µ(a)]n(·, a)da ⩽ (∥b∥L∞ − µ−)∥p(t)∥.

Hence, by Grönwall Lemma, ∥p(t)∥ ⩽ ∥p0∥e(∥b∥L∞ −µ−)t for p0 ∈ X+ such that p0 + H(p0) ∈
D(Ā).

For the general case, notice that the operator Ā(I + H) generates a C0-semigroup (e.g., see
[31, Theorem A]), thus its domain D(Ā(I + H)) is dense in X, but D(Ā(I + H)) is exactly the
set of elements p0 such that p0 +H(p0) ∈ D(Ā). Therefore, by density, the same estimate holds
also for p0 ∈ X+.

3.4.4 Mean number of reinfections — Proof of Theorems 3.4.3
Proof of Theorem 3.4.3. We proceed using an argument similar to that used in [102]. One may
check that the operator A defined in (3.18) also satisfies Theorem 3.4.5 in the space X1 (3.25)
endowed with the norm ∥ · ∥X1 as the computation of dissipativity can be performed without
supplementary complications using as reference the computations done in Theorem 3.4.5 above
and Theorem 4.1 in [102]. Therefore, we define A1 as the closure of A in X1 and consider the
abstract Cauchy problem :{

p′(t) = A1(p(t) +H1(p(t))) + F1(p(t)),
p(0) = p0,

(3.30)

where F1 := F |X1∩E and H1 := H|X1 . Proposition 3.4.7, Lemma 3.4.8, 3.4.9 can be adapted
for the space X1 and Lipschitz continuity and continuous differentiability of H1 with respect to
| · |F (A1) and F1 with respect to ∥ ·∥X1 are again easy to see, therefore the Cauchy problem (3.30)
is well-posed on (X1)+. Let then p0 +H(p0) ∈ D(A1) and consider the classical positive solution
p(t) ∈ X1 given by Theorem 3.3.1. Introducing the linear bounded operator L1 on X1 :

L1p :=
+∞∑
i=1

i

(∫ +∞

0
pi+1,1(a)da+

4∑
j=2

∫ +∞

0
pi,j(a)da

)
.
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Hence P (t) = L1(p(t)), and

d

dt
P (t) = d

dt
L1(p(t)) = L1( d

dt
p(t)),

=
+∞∑
i=1

i

(∫ +∞

0

∂

∂t
pi+1,1(t, a)da+

4∑
j=2

∫ +∞

0

∂

∂t
pi,j(t, a)da

)
,

= −
+∞∑
i=1

i

4∑
j=1

∫ +∞

0
( ∂
∂a
pi,j(t, a) + µ(a)pi,j(t, a))da+

+∞∑
i=1

∫ +∞

0
λi(t, a)pi,1(t, a)da

+
+∞∑
j=1

∫ +∞

0
( ∂
∂a
p1,j(t, a) + µ(a)p1,j(t, a))da.

As pi,j(t, ·) ∈ W 1,1, we have
∫ +∞

0
∂
∂api,j(t, a)da = −pi,j(t, 0) as usual. Notice that pi,j(t, 0) = 0

for (i, j) ̸= (1, 1), thus after some further computations,

d

dt
P (t) = −

+∞∑
i=1

i

(∫ +∞

0
µ(a)pi,j(t, a)da+

4∑
j=2

∫ +∞

0
µ(a)pi,j(t, a)da

)

+
+∞∑
i=1

∫ +∞

0
λi(t, a)pi,1(t, a)da ⩽ −µ−P (t) + β+N

2.

Hence P (t) is bounded for p0 +H(p0) ∈ D(A1) by applying Grönwall Lemma. Moreover, as the
system is normalized, N = 1 and the Lemma also implies that

lim sup
t→+∞

P (t) ⩽ β+

µ−
,

which concludes the proof of Theorem 3.4.3.

3.5 Underlying age and reinfection structure of a common
SEIRS model

We consider in this section the age and reinfection structured model (3.1) in the simplest setting,
where the parameters are independent with respect to the age and the number of reinfection i, j.
In subsection 3.5.1, the simplified age and reinfection structured model is introduced. Similarly
to the SEIRS system counting reinfection (1.10) presented in subsection 1.4.1 of Chapter 1, we
show formally how the model (3.1) in this case is linked to the classical SEIRS model. They
constitute then a "multi-scale" vision of the same object, with or without its age and reinfection
structures. of the age and reinfection structure hidden in the common SEIRS system. Then in
subsection 3.5.2 the steady states of the system are exposed along with their asymptotic stability
properties. Finally, in subsection 3.5.3 several interesting quantities, such as the mean number
of reinfections at given age or the mean age in each compartment at endemic equilibrium of
the SEIRS system (3.1) are given, in line with the mean numbers of reinfections presented in
subsection 1.4.4 of Chapter 1.
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3.5.1 An age-structured SEIRS model counting reinfection

As announced, we consider (3.1) in the simplest setting with βi,j(a, a′), σi(a), γi(a), ωi(a), µ(a)
constant regarding both the age and reinfection variables a and i. We will underline in the
present subsection the relationship between the system (3.1), the common SEIRS system (1.2)
and the reinfection structured SEIRS model (1.10) studied in Chapter 1 (with the additional
assumptions that the disease-related mortality ν is zero and the total number of hosts N is
constant). Notice first that the assumption R = 1 in (H4) is here equivalent to

b

∫ +∞

0
e−µada = bµ−1 = 1,

hence b = µ. The equations (3.1) subject to the present study can be written as

∂si
∂t

+ ∂si
∂a

= ωri−1 − βIsi − µsi, i ⩾ 1,

∂ei
∂t

+ ∂ei
∂a

= βIsi − (σi + µ)ei, i ⩾ 1,

∂ıi
∂t

+ ∂ıi
∂a

= σei − (γ + µ)ıi, i ⩾ 1,

∂ri
∂t

+ ∂ri
∂a

= γıi − (ω + µ)ri, i ⩾ 1,

(3.31)

where I(t) :=
∑
i

∫ +∞
0 ıi(t, a)da and r0 ≡ 0. The model is endowed with the following boundary

conditions,
s1(·, 0) = µN,

si+1(·, 0) = ei(·, 0) = ıi(·, 0) = ri(·, 0) = 0, i ⩾ 1,
(3.32)

and the initial conditions

si(0, ·) = s0
i (·), ei(0, ·) = e0

i (·), ıi(0, ·) = ı0i (·), ri(0, ·) = r0
i (·), i ⩾ 1,

where

n(t, a) := si(t, a) + ei(t, a) + ıi(t, a) + ri(t, a), N(t) :=
∑
i

∫ +∞

0
n(t, a)da = 1.

It has been proved in Section 3.4 that the system is well-posed and admits a unique global
classical solution p = (si, ei, ıi, ri)i⩾1 ∈ C1([0,+∞), X+) for every initial condition p0 ∈ X+
fulfilling p0 + H(p0) ∈ D(Ā). Moreover, from the assumption (H4), N(t) is constant and equal
to one for t ⩾ 0, as it represents a normalized quantity. Let us show now that the system (3.31)
is, in fact, an “unfolding” of the SEIRS system (1.3) according to both the age and the number
of reinfections. For i ⩾ 1, we denote

Si(t) :=
∫ +∞

0
si(t, a)da, Ei(t) :=

∫ +∞

0
ei(t, a)da,

Ii(t) :=
∫ +∞

0
ıi(t, a)da, Ri(t) :=

∫ +∞

0
ri(t, a)da.

(3.33)
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Then an integration of (3.31) with respect to the age a gives∫ +∞

0
(∂s1

∂t
(t, a′) + ∂s1

∂a
(t, a′))da′ = −βI(t)S1(t) − µS1(t),∫ +∞

0
(∂si
∂t

(t, a′) + ∂si
∂a′ (t, a′))da′ = ωi−1Ri−1(t) − βI(t)Si(t) − µSi(t), i > 1,∫ +∞

0
(∂ei
∂t

(t, a′) + ∂ei
∂a

(t, a′))da′ = βI(t)Si(t) − (σi + µ)Ei(t), i ⩾ 1,∫ +∞

0
(∂ıi
∂t

(t, a′) + ∂ıi
∂a

(t, a′))da′ = σEi(t) − (γ + µ)Ii(t), i ⩾ 1,∫ +∞

0
(∂ri
∂t

(t, a′) + ∂ri
∂a

(t, a′))da′ = γIi(t) − (ω + µ)Ri(t), i ⩾ 1.

Thanks to p ∈ C1([0,+∞), X+) and p(t, ·) ∈ (W 1,1(0,+∞))N for any t > 0 (Corollary 3.4.2),
therefore, as W 1,1(0,+∞) ⊂ BV ∩L1(0,+∞), any component of p converges to zero when a → ∞
and the integrals on the left-hand side give∫ +∞

0
(∂s1

∂t
(t, a′) + ∂s1

∂a
(t, a′))da′ = Ṡ1(t) + lim

a→+∞
s1(t, a) − s1(t, 0) = Ṡ1 − µ,∫ +∞

0
(∂si
∂t

(t, a′) + ∂si
∂a′ (t, a′))da′ = Ṡi(t) + lim

a→+∞
si(t, a) − si(t, 0) = Ṡi(t), i > 1,∫ +∞

0
(∂ei
∂t

(t, a′) + ∂ei
∂a

(t, a′))da′ = Ėi(t) + lim
a→+∞

ei(t, a) − ei(t, 0) = Ėi(t), i ⩾ 1,∫ +∞

0
(∂ıi
∂t

(t, a′) + ∂ıi
∂a

(t, a′))da′ = İi(t) + lim
a→+∞

ıi(t, a) − ıi(t, 0) = İi(t), i ⩾ 1,∫ +∞

0
(∂ri
∂t

(t, a′) + ∂ri
∂a

(t, a′))da′ = Ṙi(t) + lim
a→+∞

ri(t, a) − ri(t, 0) = Ṙi(t), i ⩾ 1.

Therefore microscopic quantities defined in (3.33) form a continuously differentiable solution of
the ODEs:

Ṡi = ωRi−1 − βISi − µSi, i ⩾ 1,
Ėi = βISi − (σ + µ)Ei, i ⩾ 1,
İi = σEi − (γ + µ)Ii, i ⩾ 1,
Ṙi = γIi − (ω + µ)Ri, i ⩾ 1,

(3.34)

where R0 ≡ µ
ω . The solution is moreover endowed with the initial condition

Si(0) =
∫ +∞

0
s0
i (a)da, Ei(0) =

∫ +∞

0
e0
i (a)da,

Ii(0) =
∫ +∞

0
ı0i (a)da, Ri(0) =

∫ +∞

0
r0
i (a)da.

(3.35)

We recover then a special case of the infinite ODE system studied in the Section 1.4 of Chapter 1.
As studied in the aforementioned Chapter, the C1 regularity of the solution of (3.34) is sufficient
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so that the macroscopic quantities

S(t) :=
∑
i⩾1

Si(t), E(t) :=
∑
i⩾1

Ei(t),

I(t) :=
∑
i⩾1

Ii(t), R(t) :=
∑
i⩾1

Ri(t),
(3.36)

form indeed a continuously differentiable solution of the SEIRS model:

Ṡ = µ− βIS − µS + ωR,

Ė = βIS − (σ + µ)E,
İ = σE − (γ + µ)I,
Ṙ = γI − (ω + µ)R,

(3.37)

endowed with the initial conditions

S(0) =
∑
i⩾1

Si(0), E(0) =
∑
i⩾1

Ei(0),

I(0) =
∑
i⩾1

Ii(0), R(0) =
∑
i⩾1

Ri(0).
(3.38)

We have shown indeed that, integrating the solution of (3.31) according to the age, yields the
solution of the reinfection structured SEIRS system (3.34), which is a particular case of the
system (1.10) studied in Chapter 1 with b = µ and ν = 0. Hence, the system (3.31) is related
to the previous systems (3.34) and (3.37) studied in Chapter 1 by an additional age structura-
tion. In line with the macroscopic/microscopic scales introduced in Chapter 1 for the reinfection
structuration, the system (3.31) can be then described as the nanoscopic SEIRS system.

Finally, it is worth pointing out that, if we reverse the order of summation and consider
instead the variables

s(t, a) :=
+∞∑
i=1

si(t, a), e(t, a) :=
+∞∑
i=1

ei(t, a),

ı(t, a) :=
+∞∑
i=1

ıi(t, a), r(t, a) :=
+∞∑
i=1

ri(t, a).
(3.39)

Then, by the same arguments as in the proof of Theorem 3.2.1, it is easy to deduce that (s, e, ı, r)
constitutes a solution of the evolution equation:

∂s

∂t
+ ∂s

∂a
= −βIS − µS + ωR,

∂e

∂t
+ ∂e

∂a
= βIS − (σ + µ)E,

∂ı

∂t
+ ∂ı

∂a
= σE − (γ + µ)I,

∂r

∂t
+ ∂r

∂a
= γI − (ω + µ)R,

(3.40)
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with the boundary conditions

s(·, 0) = µ
∑

c∈{s,e,ı,r}

∫ +∞

0
c(·, a)da,

e(·, 0) = 0, ı(·, 0) = 0, r(·, 0) = 0.
(3.41)

Notice then that from the existence and uniqueness of classical solution of (3.31), the (3.40)
system is also well-posed and admits a unique global classical positive solution for any initial
condition in (W 1,1(0,+∞))4 and fulfilling (3.41). Finally, integrating s, e, ı, r with regard to the
age a on (0,+∞), we retrieve a solution to the classical SEIRS model (3.37), which shares the
same initial condition (3.38) after interchanging summation and integration thanks to Fubini’s
Theorem.

We summarize the results above in the next Theorem.
Theorem 3.5.1. Let p = (si, ei, ıi, ri)i⩾1 be a classical solution of the nanoscopic system (3.31)-
(3.32), then:

1. (Si, Ei, Ii, Ri)i⩾1 defined by (3.33) is a continuously differentiable solution of the reinfection-
structured microscopic system (3.34)-(3.35).

2. (s, e, ı, r) defined by (3.39) is a continuously differentiable solution of the age-structured
microscopic system (3.40)-(3.41).

3. (S,E, I,R) defined by (3.36) is a continuously differentiable solution of the macroscopic
system (3.37)-(3.38).

To visualize more easily the result, the relationship between the four SEIRS systems has been
represented schematically in Figure 3.1.

3.5.2 Multi-scale picture of the equilibriums and associated stability
properties

In the present subsection, we turn our attention to the description of the steady states of (3.31)
and (3.40), alongside the steady states of (3.37) and (3.34) and their stability. As a reminder,
the asymptotic behavior of solutions of the systems (3.37) and (3.34) can be divided into two
situations, see Theorem 1.4.7:

1. If R0 < 1, both disease-free equilibriums of (3.37) and (3.34) are globally asymptotically
stable in their respective biologically feasible sets.

2. If R0 > 1, both endemic equilibriums of (3.37) and (3.34) are globally asymptotically stable
in the interior of their respective biologically feasible sets.

The subsection begins with a description of the disease free equilibrium of (3.31) and (3.40) in
Theorems 3.5.2 and 3.5.3. As an illustration, the Figure 3.2 is given in order to expose clearly
the relation between the endemic states of the macroscopic, microscopic and nanoscopic systems.
Finally, the global asymptotic stability of the disease-free (for R0 < 1) and endemic equilibrium
(for R0 > 1 and in the presence of the disease) is described in Theorem 3.5.4.

For the description of the steady states, remark first that, as the corresponding macroscopic
system (3.37) always admits a disease-free equilibrium and, if R0 > 1, a unique endemic equilib-
rium [73, 80]. Then, with this fact and Theorem 3.5.1 in mind, at the disease-free (respectively
endemic) steady state of (3.31) and (3.40), (S,E, I,R) must also be at the disease-free (respec-
tively endemic) equilibrium of (3.37).
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(Si, Ei, Ii, Ri)i⩾1 ∈ RN, R0 = µ
ω

Ṡi = ωRi−1 − βISi − µSi,

Ėi = βISi − (σ + µ)Ei,
İi = σEi − (γ + µ)Ii,
Ṙi = γIi − (ω + µ)Ri.

Microscopic system (3.34)-(3.35)

(s, e, ı, r) ∈ (L1(0,+∞))4

∂s

∂t
+ ∂s

∂a
= −βIS − µS + ωR,

∂e

∂t
+ ∂e

∂a
= βIS − (σ + µ)E,

∂ı

∂t
+ ∂ı

∂a
= σE − (γ + µ)I,

∂r

∂t
+ ∂r

∂a
= γI − (ω + µ)R.

Microscopic system (3.40)-(3.41)

(si, ei, ıi, ri)i⩾1 ∈ X, r0 ≡ 0

∂si
∂t

+ ∂si
∂a

= ωri−1 − βIsi − µsi,

∂ei
∂t

+ ∂ei
∂a

= βIsi − (σi + µ)ei,

∂ıi
∂t

+ ∂ıi
∂a

= σei − (γ + µ)ıi,

∂ri
∂t

+ ∂ri
∂a

= γıi − (ω + µ)ri.

Nanoscopic system (3.31)-(3.32)

(S,E, I,R) ∈ R4

Ṡ = µ− βIS − µS + ωR,

Ė = βIS − (σ + µ)E,
İ = σE − (γ + µ)I,
Ṙ = γI − (ω + µ)R.

Macroscopic system (3.37)-(3.38)

reinfectio
n structure age structure

age structure
reinfectio

n structure

Figure 3.1: Multiscale representation of the SEIRS model
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Theorem 3.5.2 (Age profile of the disease-free equilibrium). The system (3.40) admits a unique
disease-free distribution at equilibrium qDFE = (sDFE , eDFE , ıDFE , rDFE), defined by

sDFE(a) = µe−µa, a ⩾ 0,
eDFE ≡ 0, ıDFE ≡ 0, rDFE ≡ 0.

The system (3.31) admits a unique disease-free distribution at equilibrium pDFE = (sDFEi , eDFEi ,
ıDFEi , rDFEi )i⩾1, defined by

sDFE1 (a) = µe−µa, a ⩾ 0,
sDFEi+1 ≡ 0, eDFEi ≡ 0, ıDFEi ≡ 0, rDFEi ≡ 0, i ⩾ 1.

Proof. At the disease-free state, (S,E, I,R) defined in (3.36) and (Si, Ei, Ii, Ri)i⩾1 defined
in (3.33) are respectively equal to (1, 0, 0, 0) and (δ1

i , 0, 0, 0)i⩾1 (recall that δ1
i is the Kro-

necker delta). It is then easy to see that the disease-free equilibrium age profile pDFE :=
(sDFEi , eDFEi , ıDFEi , rDFEi )i⩾1 fulfills the equations :

dsDFE1
da

(a) = −µsDFE1 (a), sDFE1 (0) = µ,

sDFEi+1 ≡ 0, eDFEi ≡ 0, ıDFEi ≡ 0, rDFEi ≡ 0, i ⩾ 1.

Similarly, (sDFE , eDFE , ıDFE , rDFE) fulfills

dsDFE

da
(a) = −µsDFE(a), sDFE(0) = µ,

eDFE ≡ 0, ıDFE ≡ 0, rDFE ≡ 0, i ⩾ 1.

An integration on sDFE1 and sDFE gives then the result.

We investigate now the endemic steady states of (3.31) and (3.40). The endemic steady states
of the systems (3.37) and (3.34) have already been described in Theorem 1.4.4. Let xEE :=
(SEEi , EEEi , IEEi , REEi )i⩾1 be the unique endemic equilibrium of (3.34), and (SEE , EEE , IEE ,
REE) be the corresponding endemic equilibrium of the macroscopic system (3.37), the age profile
pEE := (sEEi , eEEi , ıEEi , rEEi )i⩾1 of (3.31) at endemic equilibrium is a solution of the linear system
of ODEs:

dsEEi
da

= ωrEEi−1 − βsEEi IEE − µsEEi , i ⩾ 1,

deEEi
da

= βsEEi IEE − (σ + µ)eEEi , i ⩾ 1,

dıEEi
da

= σeEEi − (γ + µ)ıEEi , i ⩾ 1,

drEEi
da

= γıEEi − (ω + µ)rEEi , i ⩾ 1,

where rEE0 ≡ 0. The associated boundary conditions are

sEE1 (0) = µ,

sEEi+1(0) = eEEi (0) = ıEEi (0) = rEEi (0) = 0, i ⩾ 1.
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xEE = (SEEi , EEEi , IEEi , REEi )i⩾1 ∈ RN

EE of the microscopic system (3.34)
qEE = (sEE , eEE , ıEE , rEE) ∈ (L1(0,+∞))4

EE of the microscopic system (3.40)

pEE = (pEEi )i⩾1 = (sEEi , eEEi , ıEEi , rEEi )i⩾1 ∈ X
EE of the nanoscopic system (3.31)

(SEE , EEE , IEE , REE) ∈ R4

EE of the macroscopic system (3.37)

Figure 3.2: Multiscale representation of the endemic equilibrium of the SEIRS model for R0 > 1

Integrating the differential equations above gives then

sEEi (a) =
∫ a

0
ωrEEi−1(s)e−(βIEE+µ)(a−s)ds, i ⩾ 1,

eEEi (a) =
∫ a

0
βIEEsEEi (s)e−(σ+µ)(a−s)ds, i ⩾ 1,

ıEEi (a) =
∫ a

0
σeEEi (s)e−(γ+µ)(a−s)ds, i ⩾ 1,

rEEi (a) =
∫ a

0
γıEEi (s)e−(ω+µ)(a−s)ds, i ⩾ 1.

(3.42)

Although the formulas (3.42) is useful in the proof of asymptotic stability of pEE , it is clear that
the exact expression of the components of the stable distribution increases rapidly in complexity
according to i due to the presence of integrals. Thus, an alternative expression of the endemic
equilibrium may be required. Denoting

C :=


−(βIEE + µ) 0 0 0

βIEE −(σ + µ) 0 0
0 σ −(γ + µ) 0
0 0 γ −(ω + µ)

 , D :=


0 0 0 ω
0 0 0 0
0 0 0 0
0 0 0 0

 ,

v := (1, 0, 0, 0)⊺

(3.43)

the following theorem holds.

Theorem 3.5.3 (Age profile of the endemic equilibrium). Let R0 > 1,

1. the system (3.40) admits a unique endemic distribution at equilibrium qEE := (sEE , eEE , ıEE ,



144 CHAPTER 3. Joint age and reinfection structured model

rEE), which is defined by
qEE(a) = µe(C+D)av,

2. the system (3.31) admits a unique endemic distribution at equilibrium pEE := (pEEi )i⩾1,
which is defined by

pEEi (a) = µ(uii ⊗ I4)⊺e((Ii⊗C)+(Ji⊗D))a(ui1 ⊗ I4)v, i ⩾ 1,

where by convention ui1, u
i
j denote the first and j-th vectors of the canonical basis of Ri,

Ij is the j × j identity matrix, and Jj the j × j matrix with 1 on the sub-diagonal and 0
elsewhere.

Proof. Clearly, the endemic steady state of the evolution equations (3.40) (sEE , eEE , ıEE , rEE)
is a solution of the equation:

dqEE

da
= (C +D)qEE , qEE(0) = µv.

We retrieve then the expression for qEE after integration. On the other hand, qEE := (sEE , eEE ,
ıEE , rEE) is a solution of

dpEE1
da

= CpEE1 , pEE1 (0) = µv,
dpEEj+1

da
= CpEEj+1 +DpEEj , pEEj (0) = 0, j ⩾ 1. (3.44)

Let ⊗ be the Kronecker product, the above equation is equivalent to

d

da

p
EE
1
...

pEEj

 = ((Ij ⊗ C) + (Jj ⊗D))

p
EE
1
...

pEEj

 ,

so that p
EE
1
...

pEEj

 = e((Ij⊗C)+(Jj⊗D))a

µv...
0

 .

Hence the result.

Now that both the disease-free and the endemic steady states of (3.31) have been described,
let us consider the asymptotic behavior of (3.31) and (3.40). As expected, they correspond to
the solutions of systems (3.34) and (3.37).

Theorem 3.5.4 (Global stability result for (3.31)). Let the sets Y1 and W1 be defined as

Y1 := {p = (si, ei, ıi, ri)i⩾1 ∈ X+ : ∥p∥X = 1, p+H(p) ∈ D(Ā) and n(a) = µe−µa},

W1 := {p = (si, ei, ıi, ri)i⩾1 ∈ Y1 :
+∞∑
i=1

∫ +∞

0
(ei(a) + ıi(a))da > 0},

where n(a) :=
∑
i si(a) + ei(a) + ıi(a) + ri(a). For any initial condition p0 ∈ Y1, we consider the

classical solution p of the system (3.31). Then, the following convergence results hold
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1. if R0 < 1,

lim
t→+∞

∥p(t) − pDFE∥X = 0,

and the disease-free steady state pDFE is globally asymptotically stable in Y1.

2. if R0 > 1 and additionally p0 ∈ W1 ⊂ Y1,

lim
t→+∞

∥p(t) − pEE∥X = 0,

and the endemic steady state pEE is globally asymptotically stable in W1 ⊂ Y1.

Theorem 3.5.5 (Global stability result for (3.40)). Consider the product space Z := (L1
+(0,+∞))4

endowed with the norm ∥ · ∥Z induced by ∥ · ∥L1 . Let the sets Y2 and W2 be

Y2 := {q = (s, e, ı, r) ∈ Z : q ∈ (W 1,1)4, ∥q∥Z = 1, fulfills (3.41) and (s+ e+ ı+ r) (a) = µe−µa},

W2 := {q = (s, e, ı, r) ∈ Y2 :
∫ +∞

0
(e(a) + ı(a))da > 0}.

For any initial condition q0 ∈ Y2, we consider the classical solution q of the system (3.40). Then,
the following convergence results hold

1. if R0 < 1,

lim
t→+∞

∥q(t) − qDFE∥Z = 0,

and the disease-free steady state qDFE is globally asymptotically stable in Y2.

2. if R0 > 1 and additionally p0 ∈ W1 ⊂ Y1,

lim
t→+∞

∥q(t) − qEE∥Z = 0,

and the endemic steady state qEE is globally asymptotically stable in W2 ⊂ Y2.

Proof of Theorem 3.5.4. We prove only the convergence p → pEE for R0 > 1 and p0 ∈ Y1
such that

∑+∞
i=1

∫ +∞
0 (e0

i (a) + ı0i (a))da > 0, as the proof of the other case is similar. Under
the assumption of the Theorem, it is proven that limt→+∞ I(t) = IEE because the macroscopic
quantities defined in (3.36) form a solution of the system (3.37). Consider then the solutions of
(3.31) along the characteristic curve s → (t(s), a(s)) defined by

dt

ds
= da

ds
= 1, i.e. t(s) = a(s) + c, c ∈ R.

Taking the derivative along the characteristic curve, we recover the system of ODEs (recall that
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r0 ≡ 0):

dsi(t(s), a(s))
ds

= ωi−1ri−1(t(s), a(s)) − (βI(t(s)) + µ)si(t(s), a(s)), i ⩾ 1,

dei(t(s), a(s))
ds

= βI(t(s))si(t(s), a(s)) − (σi + µ)ei(t(s), a(s)), i ⩾ 1,

dıi(t(s), a(s))
ds

= σei(t(s), a(s)) − (γ + µ)ıi(t(s), a(s)), i ⩾ 1,

dri(t(s), a(s))
ds

= γıi(t(s), a(s)) − (ω + µ)ri(t(s), a(s)), i ⩾ 1.

With the initial conditions (3.32), an integration of the differential equations leads then to

si(s+ c, s) =
∫ s

0
ωi−1ri−1(τ + c, τ)e

∫ τ

s
(βI(τ+c)+µ)dτ

dτ, i ⩾ 1,

ei(s+ c, s) =
∫ s

0
βI(τ + c)si(τ + c, τ)e(σi+µ)(s−τ)dτ, i ⩾ 1,

ıi(s+ c, s) =
∫ s

0
σei(τ + c, τ)e(γ+µ)(s−τ)dτ, i ⩾ 1,

ri(s+ c, s) =
∫ s

0
γıi(τ + c, τ)e(ω+µ)(s−τ)dτ, i ⩾ 1.

Then, for i = 1, thanks to the dominated convergence theorem and the formulas (3.42), we
compute successively the limits when t → +∞ for all a ⩾ 0:

lim
t→+∞

s1(t, a) = lim
c→+∞

s1(a+ c, a) = lim
c→+∞

µe
−
∫ a

0
(βI(s+c)+µ)ds = µe

−
∫ a

0
(βIEE+µ)ds = sEE1 (a),

lim
t→+∞

e1(t, a) = lim
c→+∞

∫ a

0
βI(s+ c)s1(s+ c, s)e(σ1+µ)(a−s)ds

=
∫ a

0
βIEEsEE1 (s)e(σ1+µ)(a−s)ds = eEE1 (a),

lim
t→+∞

ı1(t, a) = lim
c→+∞

∫ a

0
σe1(s+ c, s)e(γ+µ)(a−s)ds =

∫ a

0
σeEE1 (s)e(γ+µ)(a−s)ds = ıEE1 (a),

lim
t→+∞

r1(t, a) = lim
c→+∞

∫ a

0
γı1(s+ c, s)e(ω+µ)(a−s)ds =

∫ a

0
γıEE1 (s)e(ω+µ)(a−s)ds = rEE1 (a).

It is then easy to see, by performing an induction on i ⩾ 1, that for all i ⩾ 1,

lim
t→+∞

si(t, a) = sEEi (a), lim
t→+∞

ei(t, a) = eEEi (a),

lim
t→+∞

ıi(t, a) = ıEEi (a), lim
t→+∞

ri(t, a) = rEEi (a),

that is, each component of the solution t → p(t) converges pointwise to the corresponding
component of pEE as t → +∞. Moreover, the components are uniformly bounded by the stable
age distribution n(a) = µe−µa thanks to the assumption (H4), thus the dominated convergence
theorem implies that every component of p converge asymptotically in the L1 space. Finally, as
p, pEE ∈ X+ and ∥pEE∥X , ∥p(t)∥X = 1 for all t ⩾ 0, it is easy to see that the componentwise
convergence implies the convergence with regard to the norm ∥ · ∥X .

Hence, for R0 > 1, the endemic distribution pEE attracts any solution in the bounded
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positively invariant set W1 ⊂ Y1. Applying again the Theorem 3.3.2 [55] as in the proof of 1.4.7
in Chapter 1, the steady state pEE is moreover stable in Y1. Similarly, the steady state pDFE is
attracting the set Y1 for R0 < 1, thus it is stable in this case by the same argument.

Proof of Theorem 3.5.5. The proof follows the same arguments as in Theorem 3.5.4.

3.5.3 Mean number of reinfections and average age at the endemic
equilibrium

In the previous section, we demonstrated the asymptotic convergence of the age-structured rein-
fection model (3.31) towards the endemic stable distribution pEE when the threshold condition
R0 > 1 is verified and the system contains disease. Similarly to the study of the reinfection
model with infinite ODEs completed in Chapter 1, the additional age structure of (3.31) allows
us to obtain more information about the endemic steady state of the disease, such as the mean
number of reinfections according to the age of the hosts or the mean age in a given compartment
at the endemic stable distribution.

We begin the subsection with a computation of the mean age of the hosts in every com-
partment s, e, ı, r of (3.40), which is the content of Theorem 3.5.6. Then, in Theorem 3.5.7,
the average age values are again computed, this time in each subcompartments (si, ei, ıi, ri) of
(3.31). Finally, in Theorem 3.5.8, we give an expression of the mean number of reinfections in
each subcompartments (si, ei, ıi, ri) and according to the age of the hosts.

Theorem 3.5.6 (Mean age of the hosts in the compartments of (3.40)). Let R0 > 1, the
matrices C, D and v be defined as in (3.43) and qEE be the endemic steady state of system
(3.40). Consider the average age values s̃EE , ẽEE , ı̃EE , r̃EE in each compartment s, e, ı, r of
(3.40) and denote x̃EE := (s̃EE , ẽEE , ı̃EE , r̃EE) ∈ R4. Then x̃EE is given by

x̃EE = diag(SEE , EEE , IEE , REE)−1
∫ +∞

0
aqEE(a)da,

and fulfills
x̃EE = µdiag(SEE , EEE , IEE , REE)−1(C +D)−2v,

where we recall that (SEE , EEE , IEE , REE) and qEE are respectively the endemic equilibria of
the systems (3.37) and (3.40).

Proof. One has, ∫ +∞

0
aqEE(a)da = µ

(∫ +∞

0
ae(C+D)ada

)
v.

On the other hand, the matrix

C +D =


−(βIEE + µ) 0 0 ω

βIEE −(σ + µ) 0 0
0 σ −(γ + µ) 0
0 0 γ −(ω + µ)

 ,

is Hurwitz (hence invertible) as it is, in fact, the Jacobian matrix of the endemic equilibrium of
the SEIRS system (3.37), which is proved to be globally asymptotically stable for R0 > 1 [73].
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Then, an integration by parts yields∫ +∞

0
ae(C+D)ada =

[
a(C +D)−1e(C+D)a

]+∞

0
− (C +D)−1

∫ +∞

0
e(C+D)ada

= −(C +D)−1
∫ +∞

0
e(C+D)ada.

Therefore, ∫ +∞

0
aqEE(a)da = −µ(C +D)−1

(∫ +∞

0
e(C+D)a da

)
v = µ(C +D)−2v.

Similarly to the system (3.40), the mean age of the hosts in every compartment si, ei, ıi, ri of
(3.31) can be computed with the following result.

Theorem 3.5.7 (Mean age of the hosts in the compartments of (3.31)). Let R0 > 1, the matrices
C, D and v be defined as in (3.43) and pEE = (pEEi )i⩾1 be the endemic steady state of system
(3.31). Consider the average age values s̃EEi , ẽEEi , ı̃EEi , r̃EEi in each compartment si, ei, ıi, ri of
(3.31) for i ⩾ 1 and denote (x̃EEi )i⩾1 := (s̃EEi , ẽEEi , ı̃EEi , r̃EEi )i⩾1 ∈ RN, then x̃EEi is given by

x̃EEi = diag(SEEi , EEEi , IEEi , REEi )−1
∫ +∞

0
apEEi (a) da,

and fulfills the relation:

x̃EEi = µdiag(SEEi , EEEi , IEEi , REEi )−1(uii ⊗ I4)⊺((Ii ⊗ C) + (Ji ⊗D))−2(ui1 ⊗ I4)v,

where the vectors uii, ui1 are defined in Theorem 3.5.3.

Proof. Thanks to Theorem 3.5.3,∫ +∞

0
apEEi (a)da = µ(uii ⊗ I4)⊺

(∫ +∞

0
ae((Ii⊗C)+(Ji⊗D))ada

)
(ui1 ⊗ I4)v.

Moreover, (Ii ⊗C) + (Ji ⊗D) is Hurwitz as it is block triangular with C as diagonal blocks, and
C is Hurwitz. Then, applying again an integration by parts yields∫ +∞

0
ae((Ii⊗C)+(Ji⊗D))ada = −((Ii ⊗ C) + (Ji ⊗D))−1

∫ +∞

0
e((Ii⊗C)+(Ji⊗D))ada

= ((Ii ⊗ C) + (Ji ⊗D))−2
.

Finally, ∫ +∞

0
apEEi (a)da = µ(uii ⊗ I4)⊺((Ii ⊗ C) + (Ji ⊗D))−2(ui1 ⊗ I4)v.

Last, we deliver a tractable expression below for the computation of the mean numbers
of reinfections according to the age in each compartment (s, e, ı, r) of (3.40). For the system
(3.37), recall also that the age-independent mean numbers of reinfections in the compartments
(S,E, I,R) can be explicitly computed thanks to Theorem 1.4.11.
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Theorem 3.5.8 (Mean numbers of reinfections at age a in each compartment of (3.40)). Let
R0 > 1, the matrices C, D and v be defined as in (3.43) and pEE = (pEEi )i⩾1 be the endemic
steady state of system (3.31) and define the matrix-valued function N(s) by

N(s) = e−s(C +D)
∫ s

0
e(C+D+I4)udu. (3.45)

Consider the mean numbers of reinfections s̄EE(a), ēEE(a), ı̄EE(a), r̄EE(a) of hosts at age a > 0
in each compartment s, e, ı, r of (3.40) and denote the vector x̄EE(a) := (s̄EE(a), ēEE(a),
ı̄EE(a), r̄EE(a)) ∈ R4. Then x̄EE(a) is given by the relation

x̄EE(a) := diag(sEE(a), eEE(a), ıEE(a), rEE(a))−1
∑
i⩾1

ipEEi (a),

and fulfills

x̄EE(a) = µdiag(sEE(a), eEE(a), ıEE(a), rEE(a))−1
∫ a

0
N(a− τ)DeCτvdτ.

Remark 3.5.9. In the case where C +D + I4 is invertible, we have

N(s) = e−s(C +D)(C +D + I4)−1(e(C+D+I4)s − I4).

Proof of Theorem 3.5.8. For s ∈ C \ spec(C), where spec(C) is the spectrum of the matrix C,
we apply first a Laplace transform to the differential equation (3.44) to obtain

p̂EE1 (s) = (sI4 − C)−1µv,

p̂EEi+1(s) = (sI4 − C)−1Dp̂EEi (s), i ⩾ 1.

We derive recursively

p̂EEi (s) = [(sI4 − C)−1D]i−1p̂EE1 (s), i ⩾ 1.

The summation gives

+∞∑
i=1

ip̂EEi =
+∞∑
i=1

i[(sI4 − C)−1D]i−1p̂EE1 (s) =
(
d

ds

+∞∑
i=1

((sI4 − C)−1D)i
)
p̂EE1 (s)

=
(
d

ds
(I4 − (sI4 − C)−1D)−1

)
p̂EE1 (s) =

(
d

ds
((sI4 − C)−1(sI4 − C −D))−1

)
p̂EE1 (s)

=
(
d

ds
(I4 + (sI4 − C −D)−1D)

)
p̂EE1 (s)

= −(sI4 − C −D)−2Dp̂EE1 (s).

Introduce then the system of ODEs

ξ̇1 = (C +D)ξ1 +DxEE1 , ξ1(0) = 0,
ξ̇2 = (C +D)ξ2 − ξ1, ξ2(0) = 0.

(3.46)
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Applying again the Laplace transform to ξ1, ξ2,

ξ̂1 = (sI4 − C −D)−1Dp̂EE1 , ξ̂2 = −(sI4 − C −D)−1ξ̂1.

Hence,
ξ̂2 = −(sI4 − C −D)−2Dp̂EE1 ,

and the Laplace transform of ξ2 is equal to
∑+∞
i=1 ip̂

EE
i , so that ξ2 =

∑+∞
i=1 ip

EE
i .

Let us compute now the solution ξ1, ξ2 of (3.46). In matrix form, the equation is written as(
ξ̇1
ξ̇2

)
=
(
C +D 04×4
C +D −I4

)(
ξ1
ξ2

)
+
(
DpEE1
04×1

)
.

Define the matrix
M :=

(
C +D 04×4
C +D −I4

)
.

The formula in Theorem 3.5.3 with i = 1 gives

pEE1 (a) = µeCav,

then the method of variation of parameters yields

ξ2(a) = µ
(
04×4 I4

)(∫ a

0
eM(a−τ)

(
DeCτv
04×1

)
dτ

)
. (3.47)

Moreover, the exponential eMs may be computed. Indeed, let us introduce the matrix valued
function N(s) defined by

eMs =
(
e(C+D)s 04×4
N(s) e−sI4

)
. (3.48)

The derivation gives
d

ds
eMs =

(
C +D 04×4
C +D −I4

)
eMs,

from which we deduce
Ṅ(s) = (C +D)e(C+D)s −N(s).

Therefore, as N(0) = 0, we recover the formula (3.45) after integration. Finally, substituting the
function N(s) and formula (3.48) into (3.47) gives

ξ2(a) = µ

∫ a

0
N(a− τ)DeCτvdτ.



Chapter 4

Observation and identification of
a SIS model measuring primary
infections

This chapter is based on the four publications that we co-authored [41, 43, 44, 45], written in
collaboration with Denis Efimov and Rosane Ushirobira from Inria Lille.

4.1 Introduction
Since their introduction by Kermack and McKendrik in 1927 [68], compartmental models have
been massively employed in mathematical epidemiology in order to study epidemic dynamics.
Usually, researchers are interested in the analysis and simulation of epidemic processes, but
practical prediction and analysis of epidemics also require reliable estimation of parameters of the
models. Nevertheless, it is imperative to consider the state estimation of epidemiological systems
for certain matters of significance, such as the surveillance and management of epidemics. Hence,
the inverse problem of estimating states (observation) and parameters (identification) remains
critical for understanding and supervising the dynamics of epidemics, and it is essential to ensure
first and foremost if that the obtained parameter and state estimates are meaningful, in other
terms, whether the epidemiological model employed is identifiable and observable [62].

Although identification and observation are well-studied issues in many fields, this is still
not the case in mathematical epidemiology, where only a small amount of literature is available.
Among them, most are only interested in the parameter identification of epidemic models, even
though state estimation is equally significant for understanding and monitoring epidemic pro-
cesses. Nevertheless, an interested reader may refer, for example, to [27, 92] for recent works
about observer design of generic epidemiological model, but also [2, 16] for observer design with
a particular set-based approach. The typical difficulty or feature of the estimation/identification
problems underlined with epidemiological models is their lack of observability/identifiability in
the vicinity of the equilibriums attracting the system behavior.

In the present chapter, we focus on the joint estimation of the state and parameters of a
Susceptible-Infected-Susceptible (SIS) epidemic model counting primary infections. The model
can be considered as a particular and simplified case of the infinite SEIRS model counting re-
infection (1.10) in Chapter 1. Indeed, the SIS system contained in this chapter can be formally
obtained by considering the system (1.10) with σ = ω = ∞. This simpler case is considered here
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as an introduction to identification and observation issues for the more general system (1.10).
These issues are treated taking as measurements a same, unknown, portion (denoted α in the
sequel) of the infected I and of the primary infected I1. The usual approach for estimating states
and parameters is based on the measurement of prevalence (the number of infected individuals)
or incidence (the number of newly infected cases), see [17, 113]. However, in the case of an epi-
demic with reinfections, other data of interest may be available, such as the number of primary
infections. Our main interest here is to see if this additional measurement, a data rarely con-
sidered but available, may improve the observation and identification of epidemiological systems
with reinfections.

The chapter begins with the analysis of observability and identifiability of a simple SIS model
in Section 4.2 with incomplete measurements. In particular, we derive the algebraic observability
and identifiability under the condition that both a same portion of infections and primary infec-
tious are measured, and the lack of observability/identifiability when the latter measurement is
unavailable. This outcome motivates the subject of the chapter, which is to design an adaptive
observer able to deliver a reliable estimation of the states and parameters of the SIS model from
the measurements of infected and primary infected hosts.

In Section 4.3, a class of non-linear asymptotic observers for the system is presented and the
stability is deduced using both copositive and Lur’e-type Lyapunov functions and linear matrix
inequalities (LMI). In Section 4.4, we explore as a first step the adaptive estimation of the
SIS model with the simplifying assumption that the whole population of infected and primary
infections is measured. Then, the approach is adapted to the observation and identification of the
SIS system assuming that only an unknown portion of infected and primary infected is measured.

4.2 An observable and identifiable SIS model
Let us introduce the simple SIS model measuring infections and primary infections, which has
the following state-space representation:

Ṡ = µ− βSI − µS + γI, İ = βSI − (µ+ γ)I, (4.1a)
Ṡ1 = µ− βS1I − µS1, İ1 = βS1I − (µ+ γ)I1, (4.1b)

y = αI, y1 = αI1. (4.1c)

The four states S(t), I(t), S1(t), I1(t), t ∈ R+ represent the number of susceptible, infected, never
infected susceptible and primary infected individuals, respectively. Moreover, the coefficients
µ, β, γ describe the natural mortality rate, the contact rate and the recovery rate. It is assumed
that the hosts are initially infection naive and included in the subcompartment S1 of S, and are
transferred to the subcompartment I1 of I after the first infection. The infection processes are
then repeated as the infected returns to the susceptible compartment S thanks to the recovery.
However, the reinfection takes place outside the compartments S1, I1 that include only disease-
naive hosts and first-time infections. In the mathematical epidemiology community, the first
stage (S, I) of the system (4.1) is known as the classical SIS model with vital dynamics [58].
However, the system (4.1) includes additional equations (4.1b) modelling the dynamics of primary
infections in a cascade connection to (4.1a). This operation may be extended indefinitely to
obtain a SIS system modelling infinitely many reinfections, n ∈ N, similarly to the system
studied in Chapter 1.

Last, the outputs of the system y, y1 describe respectively the measurements of a given portion
α of the infected I and of the primary infected I1. Hence, the model takes the assumption that
the proportion α corresponding to both the infected and primary infected individuals detected by
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the Public health system (e.g., the symptomatic cases), is identical. Additionally, it is assumed
in the remaining of the paper that the basic reproduction number

R0 := β

µ+ γ
, (4.2)

is greater than 1 so that convergence to the (unique, positive) endemic equilibrium occurs for
every trajectory such that I(0) > 0.

Theorem 4.2.1. The set S := {(S, I, S1, I1) ∈ [0, 1]4 : S1 ⩽ S ⩽ 1, I1 ⩽ I ⩽ 1, S + I = 1} is
positively invariant, as well as its topological interior S̊.

Proof. The invariance of S is deduced from the fact that the derivative at 0 of each state variable
is nonnegative; and from the exploitation of the differential inequalities Ṡ− Ṡ1 = −(βI +µ)(S−
S1) + γI ⩾ −(βI + µ)(S − S1), İ − İ1 = βI(S − S1) − (µ + γ)(I − I1) ⩾ −(µ + γ)(I − I1) and
Ṡ + İ = µ(1 − S − I). The corresponding result for S̊ ensues by extending the arguments.

Theorem 4.2.2. Assume that (S(0), I(0), S1(0), I1(0)) ∈ [0, 1]4, S(0) + I(0) = 1, I(0) > 0 and

R0 > 1.

System (4.1) has a unique endemic equilibrium

xEE := (R−1
0 , 1 − R−1

0 ,
µ

β − γ
,
β − γ − µ

β − γ

µ

γ + µ
),

which is globally asymptotically stable.

Proof. The proof of global stability of the endemic equilibrium (R−1
0 , 1 − R−1

0 ) for equations
(4.1a) is contained in [69]. The convergence of the states S1, I1 of (4.1b) may be deduced by
taking advantage of the cascade connection (4.1b) to (4.1a) and employing the same arguments
as in the proof of convergence of (1.14) in Theorem 1.4.7 with i = 1.

What is remarkable about the SIS system (4.1) measuring infections and primary infections
is that it is both observable and identifiable when the trajectory is not at equilibrium. In fact,
the next theorem states that the original SIS system with only the states S, I and output y = αI
is neither identifiable nor observable in case where α, β, γ are unknown (the mortality rate µ can
be assumed to be available, since it can be easily estimated separately). However, the additional
states S1, I1 and the output y1 = αI1 render the system observable and identifiable.

Theorem 4.2.3. Assume that β, γ, α are unknown, and only the measurement y is available
with ẏ ̸= 0. Then system (4.1a) with states (S, I) is neither observable nor identifiable. On the
other hand, if y1 is also available, then system (4.1) is both observable and identifiable.

Proof.
Measuring only y. Consider first the use of the measurement y. Because S + I ≡ 1,

the two formulas in (4.1a) provide indeed the same equation, namely: İ = (β − (µ+ γ) − βI)I.
Therefore,

ẏ =
(
β − (µ+ γ) − β

α
y

)
y. (4.3)

By differentiation one gets that
d

dt

(
ẏ

y

)
= −β

α
ẏ,
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and one may express the two quantities β
α and µ+ γ, as

β

α
= −1

ẏ

d

dt

(
ẏ

y

)
= −1

ẏ

d2

dt2
(ln y), (4.4a)

β − γ = ẏ

y
+ µ+ β

α
y = ẏ

y
+ µ− y

ẏ

d2

dt2
(ln y) = µ+ d

dt
(ln y) − d

dt

(
ln
∣∣∣∣ ddt (ln y)

∣∣∣∣) . (4.4b)

These two quantities are thus identifiable, but this is not sufficient to obtain each of the three
coefficients α, β, γ. On the other hand, it is clear that nothing more may be learned when
measuring only y, which fulfills equation (4.3). Therefore, the system (4.1a) is not identifiable
over α, β, γ. Also, notice that it is not possible to determine I = 1

αy, otherwise α would be
identifiable, and all other parameters too. Thus the system is not observable.

• Measuring y and y1.

We include now the equations (4.1b) and exploit the knowledge of the supplementary mea-
sured output y1. From the definition of y1 and the second formula in (4.1b) one deduces, putting
w := βS1, that

ẏ1 = (βS1)y − (µ+ γ)y1 = wy − (µ+ γ)y1, (4.5)

thus:
ÿ1 = ẇy + wẏ − (µ+ γ)ẏ1. (4.6)

On the other hand, due the first equation in (4.1b) and replacing β
α by its value obtained from

(4.4a) yields

ẇ = βṠ1 = β(µ− βS1I − µS1) = βµ− β

α
wy − µw = βµ+

(
d

dt

(
ln
∣∣∣∣ ddt (ln y)

∣∣∣∣)− µ

)
w. (4.7)

Inserting in (4.6) the value of ẇ extracted from (4.7), we get

ÿ1 =
(
βµ+

(
d

dt

(
ln
∣∣∣∣ ddt (ln y)

∣∣∣∣)− µ

)
w

)
y + wẏ − (µ+ γ)ẏ1,

and gathering the terms in w leads to the following equivalent form:

ÿ1 = βµy +
(
ẏ + y

d

dt

(
ln
∣∣∣∣ ddt (ln y)

∣∣∣∣)− µy

)
w − (µ+ γ)ẏ1. (4.8)

For clarity, let us write (4.5) and (4.8) under matrix form:(
−y1 y
−ẏ1 ẏ + y ddt

(
ln
∣∣ d
dt (ln y)

∣∣)− µy

)(
µ+ γ
w

)
=
(

ẏ1
ÿ1 − βµy

)
.

One deduces by partial inversion of the matrix that

µ+ γ =

∣∣∣∣ ẏ1 y
ÿ1 − βµy ẏ + y

[
d
dt

(
ln
∣∣ d
dt (ln y)

∣∣)− µ
]∣∣∣∣∣∣∣∣−y1 y

−ẏ1 ẏ + y
[
d
dt

(
ln
∣∣ d
dt (ln y)

∣∣)− µ
]∣∣∣∣ . (4.9)
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On the other hand, one has, by (4.4b), an alternative expression of µ+ γ, namely

µ+ γ = β − d

dt
(ln y) + d

dt

(
ln
∣∣∣∣ ddt (ln y)

∣∣∣∣) . (4.10)

Achieving elimination of µ+ γ between (4.9) and (4.10) yields

β − d

dt
(ln y) + d

dt

(
ln
∣∣∣∣ ddt (ln y)

∣∣∣∣) =

∣∣∣∣ ẏ1 y
ÿ1 − βµy ẏ + y ddt

(
ln
∣∣ d
dt (ln y)

∣∣)− µy

∣∣∣∣∣∣∣∣−y1 y
−ẏ1 ẏ + y ddt

(
ln
∣∣ d
dt (ln y)

∣∣)− µy

∣∣∣∣ .

Now, one checks that the previous identity is indeed affine in β. Factorizing all terms in β, it
may be written(

−
(
ẏ + y

d

dt

(
ln
∣∣∣∣ ddt (ln y)

∣∣∣∣)− µy

)
y1 + yẏ1 − µy2

)
β = Φ(y, ẏ, ÿ, y1, ẏ1, ÿ1),

where the function Φ depends upon the two outputs y and y1 and their derivatives up to the
second one. In particular, Φ does not contain any occurrence of the unknown coefficients α, β, γ.
One deduces that β may be identified, thus also α, γ with the help of (4.4). Therefore, in these
conditions, system (4.1) is identifiable.

Once these parameters have been identified, one has I = 1
αy and S = 1 − I, while on the

other hand, I1 = 1
αy1 and S1 = 1

βw, where (see (4.5)) w is given by

w = y1

y

(
d

dt
(ln y1) + µ+ γ

)
.

The system (4.1) is thus observable.

4.3 Asymptotic observer
In the last section, algebraic observability and algebraic identifiability were established for a
susceptible-infected-susceptible (SIS) model (4.1) counting primary infections, based on the mea-
surement of the number of infected and of the number of primary infections. We take a step
further in this section, which is devoted to the observation of the SIS model, assuming that the
parameters are known. More precisely, we focus here on providing a class of non-linear observers
for the SIS state-space system (4.1), which is transformed in subsection 4.3.1 by a change of
coordinates into a Persidskii system form [64, 65, 97], for which a class of observers is proposed.
The asymptotic convergence of the latter is established in subsection 4.3.2 under adequate as-
sumptions on the gain coefficients and using techniques inspired from [87, 88]. Finally, some
numerical simulations are provided in subsection 4.3.3.

4.3.1 Non-linear observer for the SIS model
The present subsection is organized as follows: paragraph 4.3.1.1 provides first a useful state
estimation representation (system (4.11), written in matrix form in (4.12)) obtained by a suitable
change of variables. This allows us to propose a class of observers for this system in paragraph
4.3.1.2.
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4.3.1.1 Alternative state-space representation of the SIS model

For the observer design, we propose in this subsection a change of variables for (4.1). Setting
s1 = ln(S1), ı = ln(I), z1 = S1 + I1 and z = S + I yields the following equations:

ż = µ− µz, (4.11a)
ı̇ = βz − β(eı − 1) − (β + µ+ γ), (4.11b)

ż1 = µ− (µ+ γ)z1 + γ(es1 − 1) + γ, (4.11c)
ṡ1 = µ(e−s1 − 1) − β(eı − 1) − β, (4.11d)

y1 = α(eı − 1) + α, y2 = αz1 − α(es1 − 1) − α, (4.11e)
y3 = ı, y4 = z. (4.11f)

Notice that for convenience, we added two additional components y3 = ı = ln(I) and y4 = z =
S + I = 1 to the output vector y(t) := (y1(t), y2(t), y3(t), y4(t))⊺ ∈ R4, this is possible as α is
known in the present setting.

Introduce the following notations:

A0 :=


−µ 0 0 0
β 0 0 0
0 0 −(µ+ γ) 0
0 0 0 0

 , A1 :=


0 0 0

−β 0 0
0 γ 0

−β 0 −µ

 , B :=


µ

−(β + µ+ γ)
µ+ γ
−β

 ,

C0 :=


0 0 0 0
0 0 α 0
0 1 0 0
1 0 0 0

 , C1 :=


α 0 0
0 −α 0
0 0 0
0 0 0

 , D :=


α

−α
0
0

 , K :=
(

0 1 0 0
0 0 0 1

)
,

ϕ(ζ) :=

f+(ζ1)
f+(ζ2)
f−(ζ2)

 , where ζ :=
(
ζ1
ζ2

)
, fϵ(x) := ϵ(eϵx − 1), ϵ = ±, for all x ∈ R.

Denoting x(t) :=
(
z(t) ı(t) z1(t) s1(t)

)⊤ ∈ R4, the system (4.11) can be expressed under the
following matrix form:

ẋ = A0x+A1ϕ(Kx) +B,

y = C0x+ C1ϕ(Kx) +D.
(4.12)

The non-linear system obtained in the form of (4.12) with the nonlinearities ϕ is known as a
Persidskii system [88, 97].

4.3.1.2 A class of observer for the SIS model

We introduce now the proposed class of observers for system (4.11), which is given in the formula
below, comprising two gain matrices L1 := (L1

i,j)1⩽i,j⩽4 ∈ R4×4, L2 := (L2
i,j)1⩽i⩽4,1⩽j⩽3 ∈ R4×3.

˙̂x = A0x̂+A1ϕ(Kx̂) +B + L1(y − C0x̂− C1ϕ(Kx̂) −D) + L2C2ϕ(K(x− x̂)), (4.13)

where

C2 :=

1 0 0
0 0 0
0 0 0

 .
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Notice that we added in (4.13) the error C2ϕ(K(x−x̂)), this is possible as ı is an accessible output
and the term C2ϕ(K(x − x̂)) is indeed also accessible to the computation from the outputs of
(4.11).

With the previous definition, the observation error e := x − x̂ behaves according to the
differential equation:

ė = (A0 − L1C0)e+ (A1 − L1C1)(ϕ(Kx) − ϕ(K(x− e))) − L2C2ϕ(Ke). (4.14)

Before proceeding to the convergence of the observer (4.13), we rewrite the observer equations
in the natural state coordinates

(
Ŝ Î Ŝ1 Î1

)
. For this, let Ψ : [0, 1] × (0, 1] × [0, 1] × (0, 1] →

[0, 1] × R− × [0, 1] × R− be such that Ψ(
(
S I S1 I1

)⊺) = x =
(
z, ı, z1, s1

)⊺. Then Ψ−1(x) =(
z − eı eı es1 z1 − es1

)⊺, and its Jacobian matrix is

D(x)Ψ−1 =


1 −eı 0 0
0 eı 0 0
0 0 0 es1

0 0 1 −es1

 =


1 −I 0 0
0 I 0 0
0 0 0 S1
0 0 1 −S1

 .

One then has 
˙̂
S
˙̂
I
˙̂
S1
˙̂
I1

 = D(x̂)Ψ−1. ˙̂x =


1 −Î 0 0
0 Î 0 0
0 0 0 Ŝ1
0 0 1 −Ŝ1

 ˙̂x,

which after computations yields
˙̂
S
˙̂
I
˙̂
S1
˙̂
I1

 =


µ− βŜÎ − µŜ + γÎ

βŜÎ − (µ+ γ)Î
µ− βŜ1Î − µŜ1
βŜ1Î − (µ+ γ)Î1

+ D(x̂)Ψ−1(L1(y −


αÎ

αÎ1
ln Î
Ŝ + Î)

+ L2

 I
Î

− 1
0
0

). (4.15)

Under this form, the nonlinear nature of the observer is evident, due to the presence of the terms
ln Î and I−Î

Î
.

4.3.2 Observer convergence

Once the candidate observer is introduced, let us analyze now the stability of the origin e = 0
of (4.14). We first recall in paragraph 4.3.2.1 the notion of stability that will be considered
here, namely of state-independent uniform output stability (SIuOS) [110]. Taking advantage
of the positivity of the original system, a natural attempt is to look for copositive Lyapunov
functions, see e.g. [85, 97]. This is done in paragraph 4.3.2.2, yielding a first sufficient condition
for asymptotic convergence of the observer (Theorem 4.3.2). In preparation for the forthcoming
result, some sector estimates for the nonlinearities appearing in the system are provided in
paragraph 4.3.2.3. This allows us to give in paragraph 4.3.2.4 a second sufficient condition
for asymptotic convergence of the observer (Theorem 4.3.4), based on the search for Lyapunov
function equal to a quadratic form plus some Lur’e integral terms.
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4.3.2.1 Stability notions

To analyze the stability of the equilibrium e = 0 of (4.14), we consider the dynamics of the
coupled model (4.12), (4.14) with state variable (x(t), e(t)), taking also e(t) as output of the
system. Inspired by [110, Definition 3.1], we introduce the following definitions.

Definition 4.3.1. A system

ẋ(t) = f(x(t)), y(t) = h(x(t)) (4.16)

with state x(t) ∈ Rn and output y(t) ∈ Rp (f : Rn → Rn and h : Rn → Rp are continuously
differentiable functions) is called state-independent uniformly output stable (SIuOS) if there
exists a KL−function η such that, denoting y(t, x0) the output at the time t of the system with
initial state x0 ∈ Rn, one has |y(t, x0)| ⩽ η(|h(x0)|, t), for any t ⩾ 0, any x0 ∈ Rn.

The SIuOS stability is related to the existence of a SIuOS-Lyapunov function. To define the
latter, it is required to introduce the definition of classes of function K, K∞, and KL, which are
standard in the control theory community [110]:

Definition 4.3.2. The following definitions hold

1. A function ψ : [0,+∞) → [0,+∞) is of class K if it is strictly increasing, continuous and
satisfies ψ(0) = 0.

2. In addition, the function ψ ∈ K is of class K∞ if moreover limt→+∞ ψ(x) = +∞.

3. A function ψ : [0,+∞)2 → [0,+∞) is KL if it is of class K on the first argument and
decreases to zero on the second argument.

Definition 4.3.3. For system (4.16), a smooth function V1 : Rn → R+ is called a SIuOS-
Lyapunov function if there exist α1, α2 ∈ K∞ and α3 ∈ K such that

α1(∥y∥) ⩽ V1(x) ⩽ α2(∥y∥), (4.17a)
∇V1(x)f(x) ⩽ −α3(∥y∥), (4.17b)

for all x ∈ Rn and y = h(x).

The following result, based on [110, Theorem 3.2], connects the SIuOS property of a system
to the existence of a SIuOS-Lyapunov function.

Theorem 4.3.1. A forward complete system (4.16) is SIuOS iff it admits a SIuOS-Lyapunov
function.

Consequently, if the system is SIuOS, the origin e = 0 of the system will be globally attracting
all the trajectories, and therefore x̂ satisfies the requirement for being an observer of x. The SIuOS
property and its conditions are formulated globally for all x ∈ Rn, and their local counterparts
(or ones defined on conic invariant sets) can be easily deduced under suitable restrictions on the
amplitudes of x and y.

4.3.2.2 Stability through copositive Lyapunov functions

The result stated below provides a first set of gain matrices ensuring SIuOS for the observer
(4.13).
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Theorem 4.3.2. Assume L1
4,2 < 0 < L1

2,1 and all other coefficients of the matrices L1, L2 zero.
Then system (4.12), (4.14) is SIuOS with respect to the output e.

Proof. Let a candidate Lyapunov function be

V1(e) = c|e1| + |e2| + d|e3| + |e4|,

for c, d > 0 to be chosen afterward. Setting

δf iϵ := fϵ(xi) − fϵ(x̂i), ϵ = ±, (4.18)

we will evaluate the derivative of V1 along the trajectory, in a point where e ̸= 0. One has

V̇1(e) =cė1sgn(e1) + ė2sgn(e2) + dė3sgn(e3) + ė4sgn(e4)
= − cµ|e1| + sgn(e2)

(
βe1 − (β + αL1

2,1)δf2
+
)

+ dsgn(e3)
(
−(µ+ γ)e3 + γδf4

+
)

+ sgn(e4)
(
−µδf4

− − βδf2
+ − αL1

4,2(e3 − δf4
+)
)

= − cµ|e1| + sgn(e2)βe1 − sgn(e4)αL1
4,2e3 − d(µ+ γ)|e3| − sgn(e2)(β + αL1

2,1)δf2
+

− sgn(e4)βδf2
+ + dsgn(e3)γδf4

+ + sgn(e4)(L1
4,2αδf

4
+ − µδf4

−)
⩽ − (cµ− β)|e1| −

(
d(µ+ γ) + αL1

4,2
)

|e3| − (β + αL1
2,1)sgn(x2 − x̂2)(ex2 − ex̂2)

+ β|ex2 − ex̂2 | + L1
4,2αsgn(x4 − x̂4)(ex4 − ex̂4) + dγ|ex4 − ex̂4 |

− µsgn(x4 − x̂4)(e−x̂4 − e−x4)
= − (cµ− β)|e1| −

(
d(µ+ γ) + αL1

4,2
)

|e3| − αL1
2,1|ex2 − ex̂2 | + (αL1

4,2 + dγ)|ex4 − ex̂4 |
− µ|e−x̂4 − e−x4 | < 0.

Choosing c, d positive such that

cµ− β > 0, d(µ+ γ) + αL1
4,2 > 0, αL1

4,2 + dγ ⩽ 0,

V1 appears indeed as an appropriate Lyapunov function, which is moreover radially unbounded.
We thus conclude that (4.12), (4.14) is SIuOS with respect to the output e.

4.3.2.3 Sector estimates

As preparation for the search of Lyapunov functions with Lur’e terms, we provide first some
sector estimates on the nonlinearities. Notice first that the values of fε always have the sign of
their argument. Furthermore, the following result holds, which provides sector estimates for the
nonlinearities present in the dynamics of the observer.

Lemma 4.3.3. For any trajectory of system (4.12)-(4.14), if there is ε′ > 0 such that ∥e(t)∥ < ε′

for all t ⩾ 0, then there exist 0 ⩽ ai ⩽ bi, i = 1, . . . , 9 such that

(bje2 − (ϕj(K(x+ e)) − ϕj(Kx))) × (ϕj(K(x+ e)) − ϕj(Kx) − aje2) ⩾ 0,
(bj+3ϕj(Ke) − (ϕj(K(x+ e)) − ϕj(Kx))) × (ϕj(K(x+ e)) − ϕj(Kx) − aj+3ϕj(Ke)) ⩾ 0,

(bj+6e2 − ϕj(Ke)) × (ϕj(Ke) − aj+6e2) ⩾ 0,

for any j = 1, 2, 3.
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One may also check with no specific difficulty that the above sector inequalities can be
rewritten in matrix format as

v⊺1

(
−E⊺Λ1E FΛ1

Λ⊺
1F

⊺ −Λ1

)
v1 ⩾ 0, v⊺2

(
−Λ2 Λ2H
Λ2H −Λ2G

)
v2 ⩾ 0, (4.19a)

v⊺3

(
−N⊺Λ3N MΛ3

Λ⊺
3M

⊺ −Λ3

)
v3 ⩾ 0, (4.19b)

where v1, v2, v3 are defined by

v1(x, e) :=
(

Ke
ϕ(K(x+ e)) − ϕ(Kx)

)
, (4.19c)

v2(x, e) :=
(
ϕ(K(x+ e)) − ϕ(Kx)

ϕ(Ke)

)
, v3(e) :=

(
Ke

ϕ(Ke)

)
. (4.19d)

In addition, Λj := diag{λ3j−2, λ3j−1, λ3j} for j = 1, 2, 3, G := diag{a4b4, a5b5, a6b6}, H :=
1
2 diag{a4 + b4, a5 + b5, a6 + b6}, and

E =

(a1b1)1/2 0
0 (a2b2)1/2

0 (a3b3)1/2

 , F = 1
2

(
a1 + b1 0 0

0 a2 + b2 a3 + b3

)
,

N =

(a7b7)1/2 0
0 (a8b8)1/2

0 (a9b9)1/2

 , M = 1
2

(
a7 + b7 0 0

0 a8 + b8 a9 + b9

)
.

Let us finally demonstrate Lemma 4.3.3.

Proof of Lemma 4.3.3. Since the basic reproduction number (4.2) is assumed larger than 1, sys-
tem (4.1) converges towards the endemic equilibrium, which is positive thanks to Theorem 4.2.2.
Therefore, there exist εI , εS1 > 0 and T ⩾ 0 such that I(t) > εI and S1(t) > εS1 for any t ⩾ T .
Assume also that ∥e(t)∥ < ε′ for some ε′ > 0 along the trajectory. Using the shorthand in (4.18),
we deduce the following inequalities for t > T :

• First, eln(εI )−ε′ |e2| ⩽ |δf2
+| = |ex2 −ex̂2 | ⩽ |e2|, eln(εS1 )−ε′ |e4| ⩽ |δf4

+| = |ex4 −ex̂4 | ⩽ |e4| and
|e4| ⩽ |δf4

−| = |e−x̂4 − e−x4 | ⩽ e− ln(εS1 )+ε′ |e4|, so that a1 = eln(εI )−ε′ , b1 = 1, a2 = eln(εS1 )−ε′ ,
b2 = 1, a3 = 1, b3 = e− ln(εS1 )+ε′ work.

• Second, eln(εI )−ε′ |f+(e2)| ⩽ |δf2
+| = |ex2 − ex̂2 | ⩽ |f+(e2)|, eln(εS1 )−ε′ |f+(e4)| ⩽ |δf4

+| =
|ex4 − ex̂4 | ⩽ |f+(e4)|, |f−(e4)| ⩽ |δf4

−| = |e−x̂4 − e−x4 | ⩽ e− ln(εS1 )+ε′ |f−(e4)|, and the choices
a4 = eln(εI )−ε′ , b4 = 1, a5 = eln(εS1 )−ε′ , b5 = 1, a6 = 1, b6 = e− ln(εS1 )+ε′ are convenient.

• Finally eln(εI )−ε′ |e2| ⩽ |f+(e2)| = |ex2 − ex̂2 |e−x̂2 ⩽ |e2|e− ln(εI )+ε′ , eln(εS1 )−ε′ |e4| ⩽
|f+(e4)| = |ex4 − ex̂4 |e−x̂4 ⩽ |e4|e− ln(εS1 )+ε′ and eln(εS1 )−ε′ |e4| ⩽ |f−(e4)| = |e−x̂4 − e−x4 |ex̂4 ⩽
e− ln(εS1 )+ε′ |e4|, so that one may take a7 = eln(εI )−ε′ , b7 = e− ln(εI )+ε′ , a8 = eln(εS1 )−ε′ , b8 =
e− ln(εS1 )+ε′ , a9 = eln(εS1 )−ε′ , b9 = e− ln(εS1 )+ε′ .
This completes the demonstration of Lemma 4.3.3.

4.3.2.4 Stability through quadratic Lyapunov functions with Lur’e terms

We consider now the SIuOS stability of (4.12) (4.14). For a positive linear system, the existence of
a copositive Lyapunov function is equivalent to the existence of a quadratic Lyapunov function
represented by a diagonal matrix [46]. For a nonlinear system like (4.14), the search for a
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quadratic Lyapunov candidate function with Lur’e components seems a priori to be a more
powerful method [12, 118], which we will now investigate. Consider the quadratic Lyapunov
candidate function with Lur’e components (recall fϵ, ϵ = ±, are defined in paragraph 4.3.1.1)

V2(e) = e⊺Pe+ 2
(
γ1

∫ e2

0
f+(z)dz + γ2

∫ e4

0
f+(z)dz + γ3

∫ e4

0
f−(z)dz

)
,

parameterized by P ∈ R4×4, P = P ⊺, and the scalars γ1, γ2, γ3 ⩾ 0.
We introduce the matrix

K1 :=

0 1 0 0
0 0 0 1
0 0 0 1

 ,

and Γ := diag(γ1, γ2, γ3). Assuming that P +K⊤
1 ΓK1 > 0 and P ⩾ 0, then V2 is positive definite

thanks to Finsler’s lemma [19]. Moreover, along the trajectories, the derivative of V2 can be
expressed by

d

dt
V2(e) = v⊺Qv,

where v is defined by

v(t) :=

 e(t)
ϕ(Kx(t)) − ϕ(K(x(t) − e(t)))

ϕ(Ke(t))

 ,

and Q is a 10 × 10 symmetric matrix defined below.

Q :=

(A0 − L1C0)⊺P + P (A0 − L1C0) P (A1 − LC1) (A0 − L1C0)⊺K⊺
1 Γ − PL2C2

(A1 − L1C1)⊺P 0 (A1 − L1C1)⊺K⊺
1 Γ

ΓK1(A0 − L1C0) − (L2C2)⊺P ΓK1(A1 − L1C1) −ΓK1L
2C2 − (ΓK1L

2C2)⊺

 .

Let us define

w =

 Ke
ϕ(K(x+ e)) − ϕ(Kx)

ϕ(Ke)

 ,

then the matrix inequalities (4.19) imply the inequality w⊺Rw ⩾ 0, with R = R⊺ ∈ R8×8 defined
below :

R :=

−(E⊺Λ1E +N⊺Λ3N) FΛ1 MΛ3
Λ1F

⊺ −(Λ1 + Λ2) Λ2H
Λ3M

⊺ Λ2H −(Λ2G+ Λ3)

 .

The derivative of V2 along the trajectories then verifies V̇2(e) ⩽ v⊺Qv + w⊺Rw, where the last
term is equal to

v⊺

 K 02×3 02×3
03×4 I3 03×3
03×4 03×3 I3

⊺

R

 K 02×3 02×3
03×4 I3 03×3
03×4 03×3 I3

 v.

We have demonstrated, in fact, the following result.

Theorem 4.3.4. Assume the gain matrices L1, L2 are such that there exists a symmetric matrix
P ∈ R4×4 and diagonal matrices Γ,Λ1,Λ2,Λ3 ∈ R3×3 such that

P ⩾ 0, P +K⊤
1 ΓK1 > 0, Λ1,Λ2,Λ3 ⩾ 0,
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and for ai, bi, i = 1, ..., 9 verifying the inequalities (4.19), the matrix inequality

Q+

−K⊺(E⊺Λ1E +N⊺Λ3N)K K⊺FΛ1 K⊺MΛ3
Λ1F

⊺K −(Λ1 + Λ2) Λ2H
Λ3M

⊺K Λ2H −(Λ2G+ Λ3)

 < 0.

is satisfied, then system (4.12), (4.14) is locally SIuOS-stable.

By locally we mean that the initial conditions are chosen such that the constraints I(t) > εI ,
S1(t) > εS1 and ∥e(t)∥ < ε′ are verified for all t ⩾ 0. For the latter restriction on e, due to the
substantiated properties of V, it is enough to take δ′ > 0 such that ∥e(0)∥ < δ′ implies ∥e(t)∥ < ε′

for all t ⩾ 0 in such a case.

4.3.3 Numerical simulations
As an application of the previous results, we present some numerical simulations of the system
(4.1) and the state observer (4.15). For predefined gain matrices L1, L2, and values of εS1 , εI , ε

′

which depend on the initial conditions, the LMIs of Theorem 4.3.4 are first verified using SDPT3
solvers and YALMIP in Matlab environment. Once the existence of P,Γ,Λ1,Λ2,Λ3 is guaranteed
numerically, the observer is admissible for the chosen value of the gain, and we proceed then to
the numerical simulations of state observer dynamics. The simulations presented in the figures
4.1-4.4 correspond to parameter values set to γ−1 = 24 days, µ−1 = 60 days, α = 0.5 and
β = 0.0972 days−1. The gain matrices are set to L1 = 1

2C
⊺
0 and L2 = 1

2
(
01×3 C2

)⊺. Moreover,
to illustrate its efficiency, the trajectories of the observer (in red) are compared to the trajectories
(in green) in the case where the gain matrices L1, L2 are set to zero.

As seen in the figures, the convergence of the observer Ŝ, Î to the true states S, I of the
system is almost instantaneous. This is expected, as the state I (hence S = 1 − I) is directly
accessible from the output. Moreover Ŝ1, Î1 converge asymptotically to the true state S1, I1 as
expected.
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Figure 4.1: Estimation Ŝ of the susceptible
hosts S

Figure 4.2: Estimation Î of the infected
hosts I

Figure 4.3: Estimation Ŝ1 of the never in-
fected hosts S1

Figure 4.4: Estimation Î1 of the primary
infected hosts I1
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4.4 Adaptive observer
In the present section, we turn our focus to the joint estimation of the state and parameters
of the SIS epidemic model counting primary infections (4.1). This was initially done in [44],
where we explored the adaptive estimation of the SIS model with β and γ unknown. However,
the method exposed requires an estimation of the output derivatives, which may be hardly
retrievable. To overcome this issue, we present here an alternative method for designing an
adaptive observer independent of output derivatives. In subsection 4.4.1 we transform once
again the model into a suitable form for adaptive observer design and introduce some stability
notions from the literature, which are used in the analysis. Subsequently, the adaptive observers
and the related results are presented in subsections 4.4.2 and 4.4.3 for cases where the entire or
a portion of the infected and primary infected are measured, respectively.

4.4.1 Preliminaries

4.4.1.1 Change of coordinates

For the design of the adaptive observer, we introduce the change of variables:

z = S + I, s1 = ln(S1), y = αI, y1 = αI1.

Therefore, (4.1) may be rewritten in the equivalent form:

ż = µ− µz,

ṡ1 = −µ− β

α
y + µe−s1 ,

ẏ = βy − β

α
y2 − y(µ+ γ),

ẏ1 = −µy1 − γy1 + es1βy,

(4.20)

and the states y, y1 are measured. In the rest of the section, we consider that the mortality µ
is a known parameter, which is not a costly assumption as the population’s life expectancy is
often available. Moreover, as the total normalized population z is constant and equal to 1, the
dynamics of the state z can be disregarded.

4.4.1.2 Stability notions

For the stability analysis of non-linear observers, the theory of input-to-state stability (ISS) is a
popular framework. In particular, as our objective is to reduce some specific estimation errors
of the observer, we will introduce the closely related notions of input-to-output stability (IOS),
considering only the components of estimation errors that should be minimized as outputs. We
recall in the present subsection some definitions related to IOS stability and its characterization
by Lyapunov functions (see [110, 111]).

First, for a Lebesgue measurable function of time d : K → R, define the Lm∞-norm ∥d∥∞ =
ess supt∈K|d(t)|. We further denote the space of functions d with ∥d∥∞ < +∞ as L∞(K). The
dimension m is omitted in the notation for simplicity. Consider then the system

ẋ(t) = f(x(t), u(t)), y(t) = h(x(t)), (4.21)

with state x(t) ∈ Rn, input u ∈ L∞(R+) and output y(t) ∈ Rp. The functions f : Rn×Rm → Rn,
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h : Rn → Rp are assumed to be continuously differentiable and the system (4.21) is assumed to be
forward complete, i.e., for every initial condition x(0) and every input signal u, the corresponding
solution is defined for all t ⩾ 0. We can now introduce the definition of IOS stability.

Definition 4.4.1. The system (4.21) is called input-to-output stable (IOS) if there exist func-
tions κ ∈ KL and λ ∈ K∞ such that

|y(t)| ⩽ κ(|x(0)|, t) + λ(∥u∥∞),

for all t ⩾ 0, x(0) ∈ Rn and u ∈ L∞(R+).

Additionally, the following definitions and result provide a characterization of an IOS system
by a Lyapunov-like function.

Definition 4.4.2. A smooth function V : Rn → R+ is called an IOS-Lyapunov function of
(4.21) if there exist functions α1, α2 ∈ K∞, χ ∈ K and α3 ∈ KL, such that

α1(|h(x)|) ⩽ V (x) ⩽ α2(|x|), ∀x ∈ Rn

and for all x ∈ Rn and u ∈ Rm it holds:

V (x) ⩾ χ(|u|) =⇒ ∇V (x) · f(x, u) < −α(V (x), |x|).

Definition 4.4.3. The system (4.21) is uniformly bounded input bounded state stable (UBIBS)
if there exists σ ∈ K such that the following estimate holds for all x(0) ∈ Rn, u ∈ L∞(R+) and
t ⩾ 0:

|x(t)| ⩽ σ (max{|x(0)|, ∥u∥∞}) .

Theorem 4.4.1 ([110]). Assume the system (4.21) is UBIBS. The system is IOS if and only if
it admits an IOS-Lyapunov function.

4.4.2 Adaptive observation with complete measurements

We investigate in the present subsection the adaptive observation of (4.20) assuming that ad-
ditionally the parameter α is known, which is equivalent to saying that the total numbers of
infections and primary infections are known. Hence, α is assumed to be equal to 1, and the
equations of (4.20) are simplified:

ṡ1 = −µ− βy + µe−s1 ,

ẏ = βy(1 − y) − y(µ+ γ),
ẏ1 = −µy1 − γy1 + es1βy.

(4.22)

As µ is known and y and y1 are outputs, our goal is to estimate the remaining state s1 and coeffi-
cients β, γ. Our observer design strategy has two steps. First, we design an observer to estimate
the unmeasured state s1 based on auxiliary dummy identification of the uncertain parameters in
paragraphs 4.4.2.1. The stability of the observer is analyzed 4.4.2.2. Second, assuming that s1
is properly reconstructed, the estimates of the parameters are derived in paragraph 4.4.2.3.
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4.4.2.1 Observer for s1

We define the estimates ŝ1, β̂, γ̂ of s1, β, γ as follows:

ŝ1 = ξŝ1 + kŝ1y1, β̂ = ξβ̂ + kβ̂ ln(y), γ̂ = ξγ̂ − kγ̂ ln(y), (4.23)

where kŝ1 , kβ̂ , kγ̂ > 0 are tuning parameters and ξŝ1 , ξβ̂ , ξγ̂ are auxiliary variables whose
adaptive laws will be defined below in (4.24). The idea of mixing the states of the observer
and the observed system (5) in the parameter estimate is similar to the Immersion & Invariance
approach [9]. To clarify the method, we will first introduce the approximations ŷ, ŷ1, which
imitate the dynamics of y, y1:

˙̂y = β̂y(1 − y) − y(µ+ γ̂),
˙̂y1 = eŝ1 β̂y − (γ̂ + µ)y1.

If we consider the errors ρ1 := y − ŷ and ρ2 := y1 − ŷ1, the dynamics are given by

ρ̇1 = θβ̂y − θβ̂y
2 − θγ̂y,

ρ̇2 = −θγ̂y1 + (es1 − eŝ1)β̂y + es1θβ̂y,

where θβ̂ := β − β̂, θγ̂ := γ − γ̂ are parameter estimation errors. Thus, from the derivatives
of ρ1 and ρ2 we obtain terms depending on the errors θβ̂ , θγ̂ , es1 − eŝ1 which should be put
into the adaptive law of ŝ1, β̂, γ as negative feedbacks. This was implemented in [44] under the
assumption that the output derivatives ẏ, ẏ1 are estimated using differentiators and put directly
into the adaptive law. However, estimating derivatives may be unreliable in the noisy setting
with low sampling of measurements, and we propose instead to construct the estimates in the
form (4.23) to remove the necessity of estimating ẏ, ẏ1. Therefore, if we define the dynamics of
ξŝ1 , ξβ̂ , and ξγ̂ as:

ξ̇β̂ = −kβ̂(β̂(1 − y) − γ̂ − µ),

ξ̇γ̂ = kγ̂(β̂(1 − y) − γ̂ − µ),
ξ̇ŝ1 = −µ− β̂y + µe−ŝ1 − kŝ1(eŝ1 β̂y − (γ̂ + µ)y1).

(4.24)

the dynamics of the errors θβ̂ , θγ̂ and θŝ1 := s1 − ŝ1 become

θ̇β̂ = −kβ̂ [(1 − y)θβ̂ − θγ̂ ], (4.25a)
θ̇γ̂ = kγ̂ [(1 − y)θβ̂ − θγ̂ ], (4.25b)

θ̇ŝ1 = µ(e−s1 − e−ŝ1) − yθβ̂ − kŝ1 [β̂y(es1 − eŝ1) + es1yθβ̂ − y1θγ̂ ]. (4.25c)

The stability of the errors is checked in the following paragraph.

4.4.2.2 IOS stability through Lyapunov function

Consider first a weighted parameter error norm:

V1 := |θβ̂ | +
kβ̂
kγ̂

|θγ̂ |. (4.26)
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We compute the derivative of V1 along the trajectories of the system (3.17)-(4.24),

V̇1 = −kβ̂ [|θβ̂ |(1 − y) − sgn(θγ̂)θβ̂(1 − y) + |θγ̂ | − sgn(θβ̂)θγ̂ ] ⩽ 0.

Therefore, the observer has a non-increasing parameters error norm. Consider also,

V2 := |θŝ1 |,

then

V̇2 = − µ|e−s1 − e−ŝ1 | − ysgn(θŝ1)θβ̂ − kŝ1sgn(θŝ1)[β̂y(es1 − eŝ1) + es1yθβ̂ − y1θγ̂ ]

⩽ − µ|e−s1 − e−ŝ1 | − kŝ1 β̂y|es1 − eŝ1 | + (1 + kŝ1e
s1)|θβ̂ |y + kŝ1 |θγ̂ |y1

⩽ − µ|e−s1 − e−ŝ1 | − kŝ1 β̂y|es1 − eŝ1 | + (1 + kŝ1e
s1)V1y + kŝ1kγ̂k

−1
β̂
V1y1.

(4.27)

Clearly, under the additional assumption that β̂ has a positive lower bound, V2 is an IOS-
Lyapunov function from the input V1 ⩽ V1(0) (measuring the errors of the initial parametric
guess) to the output θŝ1 . Moreover, we notice that the subsystem (4.25a)-(4.25b) is a cooperative
system, i.e., the Jacobian has non-negative off-diagonal entries, it is then component-wise order-
preserving, and in particular the errors θβ̂ , θγ̂ remains non-positive if the initial conditions θβ̂(0),
θγ̂(0) are non-positive, i.e., β̂(0) ⩾ β, γ̂(0) ⩾ γ. In this case, β̂ ⩾ β > 0, and the assumption
above is satisfied.

Finally, the UBIBS property of (4.22)-(4.25) may be easily derived from the global stability
property of the system (3.17) in addition to the fact that V1 is non-increasing, and V2 also has
a negative derivative outside a region containing 0, which size depends on V1(0).

Therefore, we proved the following result:

Theorem 4.4.2. For any kŝ1 , kβ̂ , kγ̂ > 0 and β̂(0) > β, γ̂(0) > γ, the system (4.22) coupled
with the adaptive observer (4.23), (4.24) is input-to-output stable with input V1(0) (measure of
the initial parametric estimation gap) and output θŝ1 .

4.4.2.3 Estimating β and γ from the measure of s1

For the previous observer, the simulations in Section 4.4.4 below show excellent accuracy for
estimating s1 at the disease outbreak. This leads us to construct a simple asymptotic estimator
of β, γ assuming that s1 is an additional accessible quantity (for implementation, s1 will be
replaced by its estimated value ŝ1 from (4.23)).

β̌ = ξβ̌ − kβ̌s1, γ̌ = ξγ̌ − kγ̌ ln(y), (4.28)

where ξβ̌ , ξγ̌ are auxiliary variables whose dynamics are defined by

ξ̇β̌ = kβ̌(µ(e−s1 − 1) − β̌y),

ξ̇γ̌ = kγ̌(β̌(1 − y) − γ̌ − µ).
(4.29)

Consider now the errors
θβ̌ = β − β̌, θγ̌ = γ − γ̌,
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whose dynamics can be written as follows:

θ̇β̌ = −kβ̌yθβ̌ ,

θ̇γ̌ = −kγ̌(θγ̌ − θβ̌(1 − y)).
(4.30)

Taking now the candidate Lyapunov function

V3 := |θβ̌ | + b|θγ̌ |,

we obtain the estimate:

V̇3 ⩽ −(kβ̌ − b)|θβ̌ |y − bkγ̌ |θγ̌ |,

taking b < kβ̌ , this proves that the estimator (4.28), (4.29) converges exponentially (the output
y is separated from zero approaching the endemic equilibrium).

Theorem 4.4.3. Let kβ̌ , kγ̌ > 0. The adaptive observer (4.28), (4.29) converges exponentially
to β, γ.

In particular, if we take the imperfect estimation ŝ1 instead of s1, the estimators are IOS-
stable with input θŝ1 and outputs θβ̌ and θγ̌ . Then cascade connection of two IOS systems is
again IOS (see [109]).

Corollary 4.4.4. Let kŝ1 , kβ̂ , kγ̂ , kβ̌ , kγ̌ > 0. The cascade connection of systems (4.22)-(4.23)-
(4.24)-(4.28)-(4.29) is input-to-output stable with input V1(0) and output θŝ1 , θβ̌ , θγ̌ .

4.4.3 Adaptive observation with an unknown measured proportion
In this subsection, we examine the case where an unknown proportion α of infected and primary
infected is measured. Denoting α−1 = ζ, we rewrite again the system (3.17) excluding the
dynamics of z.

ṡ1 = −µ− βζy + µe−s1 ,

ẏ = βy − βζy2 − y(µ+ γ),
ẏ1 = −µy1 − γy1 + es1βy.

(4.31)

The additional unknown parameter α governing the outputs y, y1 renders the estimation problem
more delicate and non-linearly parameterized. For the adaptive observer design, we will adapt
the same two-step strategy employed for the case with complete measurements in subsection
4.4.2.

4.4.3.1 Adaptive observer for s1

As previously, the main objective in this subsection is to derive an adaptive observer that, in
particular, delivers an accurate estimation of s1.

We introduce the estimates ŝ1, γ̂, ζ̂ in the form:

ŝ1 = ξŝ1 + kŝ1y1, γ̂ = ξγ̂ − kγ̂ ln y, ζ̂ = ξ3 − kζ̂ ln y. (4.32)

Additionally, in light of the inequality upper bounding V̇2 in (4.27), it would be needed for
the proof of stability to have β̂ > β for a β > 0. However, we could not recover an observer
with similar cooperative property governing the error dynamics due to the additional parameter
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to estimate. Thus, following [99], we will introduce a projection in the adaptive law instead, to
guarantee that the estimate β̂ remains inside a specific interval (β, β) with β, β > 0 determined
beforehand. The observer writes:

ξ̇γ̂ = kγ̂(β̂ − µ− γ̂ − β̂ζ̂y),
ξ̇ζ̂ = kζ̂(β̂ − µ− γ̂ − β̂ζ̂y),

ξ̇ŝ1 = µe−ŝ1 − β̂ζ̂y − µ− kŝ1(eŝ1 β̂y − (γ̂ + µ)y1),

˙̂
β = −

(
1 − ε− (β − β̂)

ε
1h⩽01β̂⩾β−ε −

ε− (β̂ − β)
ε

1h⩾01β̂⩽β+ε

)
h,

h = f(β̂, γ̂, ζ̂, ŝ1, y, y1),

(4.33)

where ε > 0, 1c is the condition c indicator and f is a generic C1 function. For instance, an
example of function f is given in paragraph 4.4.4 for simulation.

Due to the projection algorithm, β̂ stays inside the admissible interval, and our goal is to
estimate s1. The signal f plays then an auxiliary role. Denoting now the errors

θŝ1 := s1 − ŝ1, θ1 := β − β̂, θγ̂ := γ − γ̂, θζ̂ = ζ − ζ̂,

then,

θ̇γ̂ = kγ̂(θ1 − β̂yθζ̂ − ζyθ1 − θγ̂),

θ̇ζ̂ = kζ̂(θ1 − β̂yθζ̂ − ζyθ1 − θγ̂),

θ̇ŝ1 = µ(e−s1 − e−ŝ1) − β̂yθζ̂ − ζyθ1 − kŝ1(es1yθ1 + β̂y(es1 − eŝ1) − y1θγ̂).

(4.34)

4.4.3.2 IOS stability through Lyapunov function

We introduce the quantity θmax
β̂

= β − β and the candidate Lyapunov function

V := |θŝ1 | + b|θγ̂ | + c|θζ̂ |.

Assume that β ∈ (β, β). The derivative along trajectories is

V̇ = −µ|e−s1 − e−ŝ1 | − β̂ysgn(θŝ1)θζ̂ − ζysgn(θŝ1)θ1 − kŝ1sgn(θŝ1)(−y1θγ̂ + β̂y(es1 − eŝ1)

+es1yθ1) − b|θγ̂ | + kγ̂sgn(θγ̂)(θ1 − β̂yθζ̂ − ζyθ1) − c|θζ̂ | + kζ̂sgn(θζ̂)(θ1 − β̂yθζ̂ − ζyθ1)

⩽ −µ|e−s1 − e−ŝ1 | − kŝ1 β̂y|es1 − eŝ1 | + |θζ̂ |β̂y + ζy|θ1| + kŝ1 |θγ̂ |y1 + kŝ1e
s1 |θ1|y − bkγ̂ |θγ̂ |

+bkγ̂(|θ1|(1 − ζy) + |θζ̂ |β̂y) − ckζ̂ |θζ̂ |β̂y + ckζ̂(|θ1|(1 − ζy) + |θγ̂ |y)

⩽ −µ|e−s1 − e−ŝ1 | − kŝ1 β̂y|es1 − eŝ1 | − ckζ̂ |θζ̂ |β̂y + [ζy + kŝ1e
s1y + (bkγ̂ + ckζ̂)(1 − ζy)]|θ1|

+(kŝ1y1 + ckζ̂y)|θγ̂ | + (1 + bkγ̂)β̂y|θζ̂ |

⩽ −µ|e−s1 − e−ŝ1 | − β̂ykŝ1 |es1 − eŝ1 | − (bkγ̂ − kŝ1y1 − ckζ̂y)|θγ̂ | − (ckζ̂ − 1 − bkγ̂)|θζ̂ |β̂y
+[ζy + kŝ1e

s1y + (bkγ̂ + ckζ̂)(1 − ζy)]θmax
β̂

.
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Thus V is an IOS-Lyapunov function with input θmax
β̂

and outputs θŝ1 , θγ̂ , θζ̂ if

bkγ̂ > kŝ1y1 + ckζ̂y, ckζ̂ > 1 + bkγ̂ ,

These inequalities are equivalent to

ckζ̂ − 1
kγ̂

> b >
kŝ1y1 + ckζ̂y

kγ̂
.

In order to guarantee that there exists indeed b such that the previous inequality is fulfilled, it
is necessary and sufficient to select c sufficiently large to have

ckζ̂(1 − y) > 1 + kŝ1y1.

This is possible because, for any trajectory, there exists ε1 > 0 such that 1 − y = 1 − αI > ε1
since α < 1 and the derivative İ of the SIS system (4.1a) is strictly negative while I is close to 1.
Moreover, the IOS stability is deduced from the IOS-Lyapunov property of V and the fact that
β̂ ∈ (β, β). Therefore, the following result is proved:

Theorem 4.4.5. Let f be a C1 function, kŝ1 , kγ̂ , kζ̂ > 0 and β, β̂(0) ∈ (β, β). The system
(4.31)-(4.33) is input-to-output stable, with input θmax

β̂
and output θŝ1 , θγ̂ , θζ̂ .

4.4.3.3 Estimating β, γ and α from the measure of s1

The simulations provided below in Section 4.4.4 show that the observer (4.32)-(4.33) offers again
good accuracy for estimating s1 at the outbreak of the disease. Therefore, we explore once more
if a reliable estimation of the unknown parameters can be recovered assuming the state s1 is
measured (again, for implementation, the estimate of s1 given in (4.32) should be used). We
introduce first the notation ψ = β

α and rewrite (4.31) as

ṡ1 = −µ− ψy + µe−s1 ,

ẏ = βy − ψy2 − y(µ+ γ),
ẏ1 = es1βy − y1(µ+ γ).

The estimators are chosen in the form

γ̌ = ξγ̌ − kγ̌y1, ψ̌ = ξψ̌ − kψ̌s1,

β̌ = ξβ̌ + sgn(es1
y

y1
− 1)kβ̌(s1 − ln y + ln y1),

(4.36)

and the auxiliary variables ξβ̌ , ξγ̌ , ξψ̌ are determined by the adaptive law:

ξ̇γ̌ = kγ̌ [es1 β̌y − y1(µ+ γ̌)],
ξ̇ψ̌ = kψ̌(−µ+ µe−s1 − ψ̌y),

ξ̇β̌ = sgn(e
s1y

y1
− 1)kβ̌ [µ(1 − e−s1) + β̌(1 − es1y

y1
)].

(4.37)

Let the errors θβ̌ , θγ̌ , θψ̌ be

θβ̌ := β − β̌, θγ̌ = γ − γ̌, θψ̌ = ψ − ψ̌.
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The errors follow the differential equations :

θ̇β̌ = −kβ̌ |1 − es1
y

y1
|θβ̌ ,

θ̇γ̌ = −kγ̌(y1θγ̌ − es1yθβ̌),
θ̇ψ̌ = −kψ̌yθψ̌.

(4.38)

It is then not difficult to deduce that, under the condition that 1−es1 y
y1

̸= 0, the estimation errors
converge exponentially to zero. Moreover, es1 y

y1
converges to R−1

0 < 1, hence the asymptotic
convergence is guaranteed.

Theorem 4.4.6. Let kβ̌ , kγ̌ , kψ̌ > 0. The adaptive observer (4.36)-(4.37) provides estimates of
β, γ, ψ with exponential convergence.

Similarly to the Corollary 4.4.4, the cascade connection is still IOS in the present case.

Corollary 4.4.7. Let f be a C1 function, kŝ1 , kγ̂ , kζ̂ , kβ̌ , kγ̌ , kψ̌ > 0 and β, β̂(0) ∈ (β, β). The
cascade connection of systems (4.31)-(4.32)-(4.33)-(4.36)-(4.37) is input-to-output stable with
input θmax

β̂
and output θŝ1 , θβ̌ , θγ̌ , θψ̌.

4.4.4 Numerical simulations
We give in the present subsection some numerical simulations of the observers presented in
subsection 4.4.2 and 4.4.3.

4.4.4.1 Tuning of the observers

For the parametrization of the observer (4.23)-(4.24), the inequality regarding V̇2 in (4.27) sug-
gests taking kŝ1 and kβ̂ relatively large and kγ̂ small in order to improve the practical estimation
of ŝ1 (notice that usually the positive terms es1 = S1 and y1 = αI1 in the inequality converge
to relatively low values, in fact to µ

β−γ and αβ−γ−µ
β−γ

µ
γ+µ due to the effects of reinfections). On

the other hand, the gains kβ̌ , kγ̌ of the asymptotic estimator (4.28)-(4.30) will be set sufficiently
high to accelerate the convergence.

For the adaptive observer (4.32)-(4.33), kŝ1 is set again sufficiently great in order to have a
reliable estimate of s1. Moreover, the function f in (4.33) is defined as

f(β̂, γ̂, ζ̂, ŝ1, y, y1) = k1(β̂ − µ− γ̂ − β̂ζ̂y) + k2(−(γ̂ + µ)y1 + eŝ1 β̂y), (4.39)

for some positive gains k1 and k2. This is motivated by the fact that we expect β̂ to fulfill

β̂ − µ− γ̂ − β̂ζ̂y = 0, eŝ1 β̂y − (γ̂ + µ)y1 = 0,

because the true coefficients β, γ satisfy these equalities asymptotically. However, as stated in
Theorem 4.4.5, the IOS stability is conserved for any C1 function f . For example, we may choose
instead the function

f1 = k1β̂, (4.40)

which yields similar results numerically. The advantage of the function defined in (4.39) over
(4.40) is to obtain an adaptive estimate β̂ which does not converge to boundary values β, β.
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4.4.4.2 Case with α known

We consider in this subsection the simulation of the cascade connection of systems (4.22)-(4.23)-
(4.24)-(4.28)-(4.29) with the settings: µ−1 = 70 years, γ = 12−1 days−1, β = 0.2 days−1,
kŝ1 = kβ̂ = kβ̌ = 100 days−1, kγ̌ = 10 days−1, kγ̂ = 0.01 days−1. The result indicates that the
observer starts converging to an almost exact value of S1 during the outbreak (Fig. 4.5) before
losing its precision slowly. Nevertheless, this initial estimation is sufficient to obtain accurate
estimates β̌, γ̌ of β, γ (Figs. 4.6 and 4.7). In Fig. 4.6, at the end of the estimation interval,
when the system has approached the equilibrium, we can see the augmentation of the estimation
error and a kind of unstable behavior, which is related to the loss of the previously mentioned
identifiability close to the steady state.

0 10 20 30 40 50 60 70 80 90 100

t (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.5: Estimation of S1, α known
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Figure 4.6: Estimation of β, α known
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Figure 4.7: Estimation of γ, α known

4.4.4.3 Case with α unknown

The simulation of the cascade connection of systems (4.31)-(4.32)-(4.33)-(4.36)-(4.37) is com-
puted with the same coefficients β, γ, µ as above, additionally we set α = 0.8, kŝ1 = kψ̌ = 100
days−1, kγ̂ = kβ̌ = kγ̌ = 10 days−1, kζ̂ = k1 = k2 = 1 days−1 and (β, β) = (0.01, 2) days−1. For
better estimation of s1, fixing kŝ1 and kγ̂ sufficiently large is necessary. Moreover, kβ̌ can take
theoretically arbitrarily large values. However, in this case, the estimation would have significant
noise. In the present settings, Fig. 4.8 shows that, even for a large confidence interval of β, the
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observer for unknown α exhibits the same behavior as above, delivering an accurate estimate of
s1 at the outbreak of the epidemics, however at a slower pace. This estimate is then sufficient
for deriving a rather precise estimation of the remaining parameters (figures 4.9-4.11).
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Figure 4.8: Estimation of S1, α unknown
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Figure 4.9: Estimation of β, α unknown
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Figure 4.10: Estimation of γ, α unknown
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174 CHAPTER 4. Observation and identification of a SIS model



Bibliography

[1] L. J. Abu-Raddad and N. M. Ferguson. “Characterizing the symmetric equilibrium of
multi-strain host-pathogen systems in the presence of cross immunity.” In: Journal of
Mathematical Biology 50 (5 May 2005).

[2] A. Alanwar, M. U. B. Niazi, and K. H. Johansson. “Data-driven Set-based Estimation
of Polynomial Systems with Application to SIR Epidemics”. In: 2022 European Control
Conference (ECC). 2022, pp. 888–893.

[3] R. Anderson and R. May. Infectious Diseases of Humans: Dynamics and Control. Infec-
tious Diseases of Humans: Dynamics and Control. OUP Oxford, 1991.

[4] V. Andreasen, J. Lin, and S. A. Levin. “The dynamics of cocirculating influenza strains
conferring partial cross-immunity”. In: Journal of Mathematical Biology 35 (7 Aug. 1997).

[5] D. Angeli. “A Tutorial on Chemical Reaction Network Dynamics”. In: European Journal
of Control 15.3 (2009), pp. 398–406.

[6] D. Angeli and D. Efimov. “Characterizations of Input-to-State Stability for Systems With
Multiple Invariant Sets”. In: IEEE Transactions on Automatic Control 60.12 (2015),
pp. 3242–3256.

[7] R. Anguelov, S. M. Garba, and S. Usaini. “Backward bifurcation analysis of epidemiolog-
ical model with partial immunity”. In: Computers & Mathematics with Applications 68.9
(2014). BIOMATH 2013, pp. 931–940.

[8] J. Arino, C. C. McCluskey, and P. van den Driessche. “Global Results for an Epidemic
Model with Vaccination that Exhibits Backward Bifurcation”. In: SIAM Journal on Ap-
plied Mathematics 64 (1 Jan. 2003).

[9] A. Astolfi and R. Ortega. “Immersion and invariance: a new tool for stabilization and
adaptive control of nonlinear systems”. In: IEEE Transactions on Automatic Control
48.4 (2003), pp. 590–606.

[10] J. M. Ball, J. Carr, and O. Penrose. “The Becker-Döring cluster equations: Basic properties
and asymptotic behaviour of solutions”. In: Communications in Mathematical Physics 104
(4 Dec. 1986).

[11] M. M. Ballyk, C. C. McCluskey, and G. S. K. Wolkowicz. “Global analysis of competition
for perfectly substitutable resources with linear response”. In: Journal of Mathematical
Biology 51.4 (2005), pp. 458–490.

[12] E. A. Barbashin. “On construction of Lyapunov functions for nonlinear systems”. In: Proc.
1st IFAC World Congress. Moscow, 1961, pp. 742–751.

[13] O. Benedictow. The Black Death, 1346-1353: The Complete History. Boydell Press, 2004.

175



176 Bibliography

[14] D. BERNOULLI. “Essai d’une nouvelle analyse de la mortalite causee par la petite verole,
et des avantages de l’inoculation pour la prevenir”. In: Histoire de l’Acad., Roy. Sci.(Paris)
avec Mem (1760), pp. 1–45.

[15] O. N. Bjørnstad, K. Shea, M. Krzywinski, and N. Altman. “The SEIRS model for infec-
tious disease dynamics”. In: Nature Methods 17 (6 June 2020).

[16] P.-A. Bliman and B. D’Avila Barros. “Interval Observers for SIR Epidemic Models Subject
to Uncertain Seasonality”. In: Positive Systems : Theory and Applications (POSTA 2016)
Rome, Italy, September 14-16, 2016. Springer International Publishing, 2017, pp. 31–39.

[17] P.-A. Bliman, D. Efimov, and R. Ushirobira. “A class of nonlinear adaptive observers for
SIR epidemic model”. In: 2018 European Control Conference (ECC). 2018, pp. 1–6.

[18] O. Boldea, A. Alipoor, S. Pei, J. Shaman, and G. Rozhnova. “Age-specific transmission
dynamics of SARS-CoV-2 during the first 2 years of the pandemic”. In: PNAS Nexus 3.2
(Jan. 2024).

[19] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in
system and control theory. SIAM, 1994.

[20] R. Breban and S. Blower. “The reinfection threshold does not exist”. In: Journal of The-
oretical Biology 235.2 (2005), pp. 151–152.

[21] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Ed. by
S. V. Gmbh. 2010.

[22] G. Butler and P. Waltman. “Persistence in dynamical systems”. In: Journal of Differential
Equations 63.2 (1986), pp. 255–263.

[23] Y. Cheng and X. Yang. “On the global stability of SEIRS models in epidemiology”. In:
The Canadian applied mathematics quarterly 20 (2 2012), pp. 115–133.

[24] H.-D. Chiang, M. Hirsch, and F. Wu. “Stability regions of nonlinear autonomous dynam-
ical systems”. In: IEEE Transactions on Automatic Control 33.1 (1988), pp. 16–27.

[25] C. Cohen and J. Pulliam. “COVID-19 infection, reinfection, and the transition to en-
demicity”. In: The Lancet 401.10379 (2023), pp. 798–800.

[26] W. Coppel. Stability and Asymptotic Behavior of Differential Equations. Heath mathe-
matical monographs. Heath, 1965.

[27] N. Cunniffe, F. Hamelin, A. Iggidr, A. Rapaport, and G. Sallet. Identifiability and Observ-
ability in Epidemiological Models: A Primer. SpringerBriefs on PDEs and Data Science.
Springer Nature Singapore, 2024.

[28] N. G. Davies et al. “Age-dependent effects in the transmission and control of COVID-19
epidemics”. In: Nature Medicine (2020), pp. 1–7.

[29] R. Descartes. The Geometry of Rene Descartes: With a facsimile of the first edition.
Courier Corporation, 2012.

[30] W. Desch, W. Schappacher, and K. P. Zhang. Semilinear evolution equations. Tech. rep.
International Centre for Theoretical Physics, 1985.

[31] W. Desch, W. Schappacher, and K. P. Zhang. “Semilinear evolution equations”. In: Hous-
ton Journal of Mathematics 15.4 (1989), pp. 527–552.

[32] O. Diekmann, H. J. Heesterbeek, and J. A. Metz. “On the definition and the computation
of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous
populations”. In: Journal of Mathematical Biology 28 (4 June 1990).



Bibliography 177

[33] O. Diekmann and J. Heesterbeek. “Mathematical Epidemiology of Infectious Diseases:
Model Building, Analysis and Interpretation”. In: Wiley Series in Mathematical and Com-
putational Biology, Chichester, Wiley (Jan. 2000).

[34] M. Doumic, K. Fellner, M. Mezache, and H. Rezaei. “A bi-monomeric, nonlinear Becker-
Döring-type system to capture oscillatory aggregation kinetics in prion dynamics”. In:
Journal of Theoretical Biology 480 (Nov. 2019).

[35] P. van den Driessche and J. Watmough. “Reproduction numbers and sub-threshold en-
demic equilibria for compartmental models of disease transmission”. In: Mathematical
Biosciences 180 (1-2 Nov. 2002).

[36] R. P. Duncan-Jones. “The impact of the Antonine plague”. In: Journal of Roman Archae-
ology 9 (1996), pp. 108–136.

[37] D. Efimov. “Global Lyapunov Analysis of Multistable Nonlinear Systems”. In: SIAM
Journal on Control and Optimization 50.5 (2012), pp. 3132–3154.

[38] K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations.
Springer-Verlag, 2000.

[39] M. Fan, M. Y. Li, and K. Wang. “Global stability of an SEIS epidemic model with
recruitment and a varying total population size”. In: Mathematical Biosciences 170.2
(2001), pp. 199–208.

[40] M. Fang and P.-A. Bliman. “Age-structured epidemiological model counting reinfections:
Unraveling the hidden age and reinfection structure of reinfection models”. In preparation.
2024.

[41] M. Fang and P.-A. Bliman. “Modelling, Analysis, Observability and Identifiability of Epi-
demic Dynamics with Reinfections”. In: 2022 European Control Conference (ECC). 2022,
pp. 278–283.

[42] M. Fang and P.-A. Bliman. “Multistability, persistence and global analysis of epidemio-
logical models with secondary infections”. Submitted for peer-review. 2024.

[43] M. Fang, P.-A. Bliman, D. Efimov, and R. Ushirobira. “A class of nonlinear state observers
for an SIS system counting primo-infections”. In: 61st IEEE Conference on Decision and
Control. Cancún, Mexico, Dec. 2022.

[44] M. Fang, P.-A. Bliman, D. Efimov, and R. Ushirobira. “Nonlinear Adaptive Observers for
an SIS System Counting Primo-infections”. In: IFAC-PapersOnLine 56.2 (2023). 22nd
IFAC World Congress, pp. 9727–9732.

[45] M. Fang, P.-A. Bliman, D. Efimov, and R. Ushirobira. “Nonlinear adaptive observers
for an SIS system with measurements of primary infections”. Submitted for peer-review.
2024.

[46] L. Farina and S. Rinaldi. Positive linear systems: theory and applications. Ed. by J. W.
bibinitperiod Sons. Vol. Vol. 50. 2000.

[47] F. Forni and R. Sepulchre. “Differential Dissipativity Theory for Dominance Analysis”.
In: IEEE Transactions on Automatic Control 64.6 (2019), pp. 2340–2351.

[48] P. Forni and D. Angeli. “Input-to-state stability for cascade systems with multiple invari-
ant sets”. In: Systems & Control Letters 98 (2016), pp. 97–110.

[49] H. I. Freedman, S. Ruan, and M. Tang. “Uniform persistence and flows near a closed
positively invariant set”. In: Journal of Dynamics and Differential Equations 6 (1994),
pp. 583–600.



178 Bibliography

[50] M. C. Gomes, A. Margheri, and C. Rebelo. “Stability and persistence in a compartment
model of pulmonary tuberculosis”. In: Nonlinear Analysis: Theory, Methods & Applica-
tions 48.4 (2002), pp. 617–636.

[51] M. G. M. Gomes, L. J. White, and G. F. Medley. “Infection, reinfection, and vaccina-
tion under suboptimal immune protection: epidemiological perspectives”. In: Journal of
Theoretical Biology 228 (4 June 2004).

[52] J. A. Gondim and L. Machado. “Optimal quarantine strategies for the COVID-19 pan-
demic in a population with a discrete age structure”. In: Chaos, Solitons & Fractals 140
(2020), p. 110166.

[53] D. Greenhalgh. “Hopf bifurcation in epidemic models with a latent period and nonper-
manent immunity”. In: Mathematical and Computer Modelling 25 (2 Jan. 1997).

[54] D. Greenhalgh, O. Diekmann, and M. C. de Jong. “Subcritical endemic steady states in
mathematical models for animal infections with incomplete immunity”. In: Mathematical
Biosciences 165.1 (2000), pp. 1–25.

[55] J. Hale. “Asymptotic behavior of dissipative system”. In: Mathematical Surveys and
Monographs 25 (1988).

[56] F. Hamelin, A. Iggidr, A. Rapaport, G. Sallet, and M. Souza. “About the identifiability
and observability of the SIR epidemic model with quarantine”. In: IFAC-PapersOnLine
56.2 (2023). 22nd IFAC World Congress, pp. 4025–4030.

[57] J. Heesterbeek. “The law of mass-action in epidemiology: A historical perspective”. In:
Ecological Paradigms Lost (Jan. 2005).

[58] H. W. Hethcote. “Three Basic Epidemiological Models”. In: Applied Mathematical Ecology.
Ed. by S. A. Levin, T. G. Hallam, and L. J. Gross. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1989, pp. 119–144.

[59] M. Iannelli and F. Milner. The Basic Approach to Age-Structured Population Dynamics:
Models, Methods and Numerics. Lecture Notes on Mathematical Modelling in the Life
Sciences. Springer Netherlands, 2017.

[60] H. Inaba. Age-structured population dynamics in demography and epidemiology. Springer,
2017.

[61] R. Irving. Integers, Polynomials, and Rings: A Course in Algebra. Undergraduate Texts
in Mathematics. Springer New York, 2003.

[62] J. A. Jacquez and P. Greif. “Numerical parameter identifiability and estimability: Inte-
grating identifiability, estimability, and optimal sampling design”. In: Mathematical Bio-
sciences 77.1-2 (1985), pp. 201–227.

[63] P. Kaklamanos, A. Pugliese, M. Sensi, and S. Sottile. “A Geometric Analysis of the SIRS
Model with Secondary Infections”. In: SIAM Journal on Applied Mathematics 84.2 (2024),
pp. 661–686.

[64] E. Kaszkurewicz and A. Bhaya. Matrix diagonal stability in systems and computation.
Springer Science & Business Media, 2012.

[65] E. Kaszkurewicz and L. Hsu. “Stability of nonlinear systems: a structural approach”. In:
Automatica 15.5 (1979), pp. 609–614.

[66] G. Katriel. “Epidemics with partial immunity to reinfection”. In: Mathematical Bio-
sciences 228 (2 Dec. 2010).



Bibliography 179

[67] M. J. Keeling and P. Rohani. Modeling Infectious Diseases in Humans and Animals.
Princeton University Press, 2008.

[68] W. O. Kermack and A. G. McKendrick. “A contribution to the mathematical theory of
epidemics”. In: Proceedings of the Royal Society of London. Series A, Containing Papers
of a Mathematical and Physical Character 115 (772 Aug. 1927).

[69] A. Korobeinikov and G. Wake. “Lyapunov functions and global stability for SIR, SIRS,
and SIS epidemiological models”. In: Applied Mathematics Letters 15.8 (2002), pp. 955–
960.

[70] D. Kousoulidis and F. Forni. “An Optimization Approach to Verifying and Synthesizing
K-cooperative Systems”. In: IFAC-PapersOnLine 53.2 (2020). 21st IFAC World Congress,
pp. 4635–4642.

[71] P. Laurençot and S. Mischler. “From the Becker-Döring to the Lifshitz-Slyozov-Wagner
Equations”. In: Journal of Statistical Physics 106 (5/6 2002).

[72] M. Li and J. Muldowney. “On Bendixson’s Criterion”. In: Journal of Differential Equa-
tions 106.1 (1993), pp. 27–39.

[73] M. Li, J. Muldowney, and P. Driessche. “Global stability of SEIRS models in epidemiol-
ogy”. In: The Canadian Applied Mathematics Quarterly 7 (Jan. 1999).

[74] M. Y. Li, J. R. Graef, L. Wang, and J. Karsai. “Global dynamics of a SEIR model with
varying total population size”. In: Mathematical Biosciences 160.2 (1999), pp. 191–213.

[75] M. Y. Li and J. S. Muldowney. “A Geometric Approach to Global-Stability Problems”.
In: SIAM Journal on Mathematical Analysis 27 (4 July 1996).

[76] M. Y. Li and J. S. Muldowney. “Dynamics of Differential Equations on Invariant Mani-
folds”. In: Journal of Differential Equations 168.2 (2000), pp. 295–320.

[77] M. Y. Li and J. S. Muldowney. “On R.A. Smith’s Autonomous Convergence Theorem”.
In: Rocky Mountain Journal of Mathematics 25.1 (1995), pp. 365–378.

[78] W. Lohmiller and J.-J. E. Slotine. “On Contraction Analysis for Non-linear Systems”. In:
Automatica 34.6 (1998), pp. 683–696.

[79] G. Lu and Z. Lu. “Geometric approach to global asymptotic stability for the SEIRS models
in epidemiology”. In: Nonlinear Analysis: Real World Applications 36 (2017), pp. 20–43.

[80] G. Lu and Z. Lu. “Global asymptotic stability for the SEIRS models with varying total
population size”. In: Mathematical Biosciences 296 (Feb. 2018).

[81] P. Manfredi and J. R. Williams. “Realistic population dynamics in epidemiological models:
the impact of population decline on the dynamics of childhood infectious diseases: Measles
in Italy as an example”. In: Mathematical Biosciences 192.2 (2004), pp. 153–175.

[82] A. Margheri and C. Rebelo. “Some examples of persistence in epidemiological models”.
In: Journal of mathematical biology 46.6 (2003), p. 564.

[83] M. Martcheva. An Introduction to Mathematical Epidemiology. Texts in Applied Mathe-
matics. Springer US, 2015.

[84] R. H. Martin. “Logarithmic norms and projections applied to linear differential systems”.
In: Journal of Mathematical Analysis and Applications 45.2 (1974), pp. 432–454.

[85] O. Mason and R. Shorten. “On linear copositive Lyapunov functions and the stability
of switched positive linear systems”. In: IEEE Transactions on Automatic Control 52.7
(2007), pp. 1346–1349.



180 Bibliography

[86] C. C. McCluskey. “A strategy for constructing Lyapunov functions for non-autonomous
linear differential equations”. In: Linear Algebra and its Applications 409 (2005). Special
Issue in honor of Pauline van den Driessche, pp. 100–110.

[87] W. Mei, D. Efimov, and R. Ushirobira. “On input-to-output stability and robust synchro-
nization of generalized Persidskii systems”. In: IEEE Transactions on Automatic Control
(2021).

[88] W. Mei, D. Efimov, R. Ushirobira, and A. Aleksandrov. “On convergence conditions for
generalized Persidskii systems”. In: International Journal of Robust and Nonlinear Control
(2021).

[89] A. A. Mensah et al. “Disease severity during SARS-COV-2 reinfection: a nationwide
study”. In: Journal of Infection 84.4 (2022), pp. 542–550.

[90] J. S. Muldowney. “Compound matrices and applications”. In: Universidad de los Andes,
Bogotá, Colombia (1998).

[91] J. S. Muldowney. “Compound matrices and ordinary differential equations”. In: The Rocky
Mountain Journal of Mathematics (1990), pp. 857–872.

[92] M. U. B. Niazi and K. H. Johansson. “Observer Design for the State Estimation of Epi-
demic Processes”. In: 2022 IEEE 61st Conference on Decision and Control (CDC) (2022),
pp. 4325–4332.

[93] W. H. Organization. Global tuberculosis report 2023. World Health Organization, 2023.
[94] R. Pagliara, B. Dey, and N. E. Leonard. “Bistability and Resurgent Epidemics in Rein-

fection Models”. In: IEEE Control Systems Letters 2 (2018), pp. 290–295.
[95] L. Pasteur. “De l’extension de la théorie des germes à l’étiologie de quelques maladies

communes”. In: Recueil de Médecine Vétérinaire 57.1 (1880), pp. 642–654.
[96] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equa-

tions. Springer New York, 1983.
[97] S. K. Persidskii. “Concerning problem of absolute stability”. In: Automation and Remote

Control (1969), pp. 5–11.
[98] M. E. Peters. “Government finance and imposition of serfdom after the Black Death”. In:

European Review of Economic History 27.2 (Sept. 2022), pp. 149–173.
[99] J.-B. Pomet and L. Praly. “Adaptive nonlinear regulation: estimation from the Lyapunov

equation”. In: IEEE Transactions on Automatic Control 37.6 (1992), pp. 729–740.
[100] G. D. Prato. Applications croissantes et équations d’evolutions dans les espaces de Banach.

Institutiones mathematicae. New York, 1976.
[101] C. C. Pugh. “The Closing Lemma”. In: American Journal of Mathematics 89.4 (1967),

pp. 956–1009.
[102] A. Pugliese and L. Tonetto. “Well-posedness of an infinite system of partial differential

equations modelling parasitic infection in an age-structured host”. In: Journal of Mathe-
matical Analysis and Applications 284.1 (2003), pp. 144–164.

[103] G. Rosen. A History of Public Health. MD monographs on medical history. MD Publica-
tions, 1958.

[104] W. Rosen. Justinian’s flea: The First Great Plague and the end of the Roman Empire.
Penguin, 2007.

[105] W. Rudin. Principles of mathematical analysis. Vol. 3. McGraw-hill New York, 1964.



Bibliography 181

[106] L. Simonsen, M. J. Clarke, L. B. Schonberger, N. H. Arden, N. J. Cox, and K. Fukuda.
“Pandemic versus Epidemic Influenza Mortality: A Pattern of Changing Age Distribu-
tion”. In: The Journal of Infectious Diseases 178.1 (July 1998), pp. 53–60.

[107] H. L. Smith. Monotone Dynamical Systems: An Introduction to the Theory of Competitive
and Cooperative Systems. American Mathematical Society. Vol. 41. Mathematical Surveys
And Monographs. 1995.

[108] H. L. Smith and H. R. Thieme. Dynamical Systems and Population Persistence. Graduate
studies in mathematics. American Mathematical Society, 2011.

[109] E. D. Sontag. “Input to State Stability: Basic Concepts and Results”. In: Nonlinear and
Optimal Control Theory: Lectures given at the C.I.M.E. Summer School held in Cetraro,
Italy June 19–29, 2004. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 163–220.

[110] E. D. Sontag and Y. Wang. “Lyapunov Characterizations of Input to Output Stability”.
In: SIAM Journal on Control and Optimization 39.1 (2000), pp. 226–249.

[111] E. D. Sontag and Y. Wang. “Notions of input to output stability”. In: Systems & Control
Letters 38.4 (1999), pp. 235–248.

[112] H. R. Thieme. “Uniform persistence and permanence for non-autonomous semiflows in
population biology”. In: Mathematical Biosciences 166.2 (2000), pp. 173–201.

[113] R. Ushirobira, D. Efimov, and P.-A. Bliman. “Estimating the infection rate of a SIR
epidemic model via differential elimination”. In: 2019 18th European Control Conference
(ECC). 2019, pp. 1170–1175.

[114] O. Watson, G. Barnsley, J. Turner, A. Hogan, P. Winskill, and A. Ghani. “Global impact
of the first year of COVID-19 vaccination: a mathematical modelling study”. In: The
Lancet Infectious Diseases 22 (June 2022).

[115] G. F. Webb. “A semigroup proof of the Sharpe-Lotka theorem”. In: Infinite-Dimensional
Systems. Ed. by F. Kappel and W. Schappacher. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1984, pp. 254–268.

[116] World Health Organization. The top 10 causes of death. https://www.who.int/news-
room/fact- sheets/detail/the- top- 10- causes- of- death. Accessed: 2024-09-03.
2024.

[117] C. Wu, I. Kanevskiy, and M. Margaliot. “k-contraction: Theory and applications”. In:
Automatica 136 (2022), p. 110048.

[118] V. A. Yakubovich. “Method of matrix unequalities in theory of nonlinear control systems
stability. I. Forced oscillations absolute stability”. In: Avtomat. i Telemekh. 25 (1964),
pp. 1017–1029.

[119] L. Zhou, Y. Wang, Y. Xiao, and M. Y. Li. “Global dynamics of a discrete age-structured
SIR epidemic model with applications to measles vaccination strategies”. In: Mathematical
Biosciences 308 (2019), pp. 27–37.

[120] S. Zoboli, A. Cecilia, U. Serres, D. Astolfi, and V. Andrieu. “LMI Conditions for k −
contraction Analysis: A Step Towards Design”. In: 2023 62nd IEEE Conference on Deci-
sion and Control (CDC). 2023, pp. 1903–1910.

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death


182 Bibliography





Mathematical modelling, observation and identification of epidemiological models with
reinfection

Abstract
The subject of this work is the mathematical modelling of infectious diseases with reinfections and the
analysis of the corresponding models. First, we introduce a general class of compartmental models count-
ing the number of reinfections, consisting of an infinite number of ordinary differential equations, and
study its well-posedness. The proposed class also allows for the modelling of heterogeneous transmission,
whose characteristics depend upon the number of past reinfections. In the homogeneous situation (where
the past reinfections do not affect disease transmission), the global behavior obeys a usual compartmental
model. Asymptotic results are established, and formulas giving the mean number of reinfections at the
endemic equilibrium are provided. Next, we investigate a two-stage reinfection model intended for the
modelling of diseases for which the subsequent reinfections behave differently from the primary infection.
We describe thoroughly the steady states of the model, which may contain up to three endemic equi-
libriums, and study the disease persistence. Employing Li and Muldowney theory, we prove asymptotic
convergence of every trajectory, in a particular case that may exhibit multiple endemic equilibriums.
Using semigroup theory, we then establish the well-posedness for a class of models structured both in
age and number of reinfections. The latter are constituted by an infinite number of partial differential
equations. This allows the computation of several interesting quantities at endemic equilibrium, such
as the average age in each compartment or the mean number of reinfections at each age. Finally, we
investigate some issues of Control theory, more precisely whether the use of additional reinfection data
may improve parameter and state estimation. To this end, we study identifiability and observability
of a SIS model, based on the measure of the number of infected and of primary infected, and propose
an asymptotic observer and an adaptive observer respectively for the state, and for the joint state and
parameter, estimation.

Keywords: compartmental models in epidemiology; reinfection; age structure; multistability; observa-
tion; identification; asymptotic observer; adaptative observer

Résumé
Le sujet de ce travail est la modélisation mathématique des maladies infectieuses avec réinfections et
l’analyse des modèles correspondants. Nous introduisons d’abord une classe générale de modèles compar-
timentaux comptant les réinfections, constitués d’un nombre infini d’équations différentielles ordinaires,
et nous étudions leur caractère bien posé. La classe proposée permet également de modéliser une trans-
mission hétérogène, dont les caractéristiques dépendent du nombre de réinfections antérieures. Dans le
cas homogène (où les réinfections passées n’affectent pas la transmission de la maladie), le comportement
global obéit à un modèle compartimental usuel. Des résultats asymptotiques sont établis et des formules
donnant le nombre moyen de réinfections à l’équilibre endémique sont données. Nous étudions ensuite un
modèle de réinfection à deux étages destiné à la modélisation de maladies pour lesquelles les réinfections
ultérieures se comportent différemment de l’infection primaire. Nous décrivons en détail les équilibres du
modèle, qui peut contenir jusqu’à trois équilibres endémiques, et étudions la persistance de la maladie.
Grâce à la théorie de Li et Muldowney, nous prouvons la convergence asymptotique de chaque trajec-
toire dans un cas particulier qui peut présenter plusieurs équilibres endémiques. En utilisant la théorie
des semigroupes, nous établissons ensuite le caractère bien-posé d’une classe de modèles structurés à
la fois en âge et en nombre de réinfections. Ces derniers sont constitués d’un nombre infini d’équations
aux dérivées partielles. Ceci permet de calculer plusieurs quantités intéressantes à l’équilibre endémique,
telles que l’âge moyen dans chaque compartiment ou le nombre moyen de réinfections à chaque âge. Nous
examinons enfin des questions de théorie du contrôle, plus précisément si l’utilisation de données supplé-
mentaires sur les réinfections peut améliorer l’estimation des paramètres et de l’état. À cette fin, nous
étudions l’identifiabilité et l’observabilité d’un modèle SIS, basées sur la mesure du nombre d’infectés et
de primo-infectés, et proposons un observateur asymptotique et un observateur adaptatif respectivement
pour l’estimation de l’état, et pour l’estimation conjointe de l’état et des paramètres.

Mots clés : modèles compartimentaux en épidémiologie ; réinfection ; structuration en âge ; multista-
bilité ; observation ; identification ; observateur asymptotique ; observateur adaptatif
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