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Abstract xi

Mathematical modelling, observation and identification of epidemiological models with
reinfection

Abstract

The subject of this work is the mathematical modelling of infectious diseases with reinfections and the
analysis of the corresponding models. First, we introduce a general class of compartmental models count-
ing the number of reinfections, consisting of an infinite number of ordinary differential equations, and
study its well-posedness. The proposed class also allows for the modelling of heterogeneous transmission,
whose characteristics depend upon the number of past reinfections. In the homogeneous situation (where
the past reinfections do not affect disease transmission), the global behavior obeys a usual compartmental
model. Asymptotic results are established, and formulas giving the mean number of reinfections at the
endemic equilibrium are provided. Next, we investigate a two-stage reinfection model intended for the
modelling of diseases for which the subsequent reinfections behave differently from the primary infection.
We describe thoroughly the steady states of the model, which may contain up to three endemic equi-
libriums, and study the disease persistence. Employing Li and Muldowney theory, we prove asymptotic
convergence of every trajectory, in a particular case that may exhibit multiple endemic equilibriums.
Using semigroup theory, we then establish the well-posedness for a class of models structured both in
age and number of reinfections. The latter are constituted by an infinite number of partial differential
equations. This allows the computation of several interesting quantities at endemic equilibrium, such
as the average age in each compartment or the mean number of reinfections at each age. Finally, we
investigate some issues of Control theory, more precisely whether the use of additional reinfection data
may improve parameter and state estimation. To this end, we study identifiability and observability
of a SIS model, based on the measure of the number of infected and of primary infected, and propose
an asymptotic observer and an adaptive observer respectively for the state, and for the joint state and
parameter, estimation.

Keywords: compartmental models in epidemiology; reinfection; age structure; multistability; observa-
tion; identification; asymptotic observer; adaptative observer

Résumé

Le sujet de ce travail est la modélisation mathématique des maladies infectieuses avec réinfections et
I’analyse des modeles correspondants. Nous introduisons d’abord une classe générale de modeles compar-
timentaux comptant les réinfections, constitués d’un nombre infini d’équations différentielles ordinaires,
et nous étudions leur caractére bien posé. La classe proposée permet également de modéliser une trans-
mission hétérogene, dont les caractéristiques dépendent du nombre de réinfections antérieures. Dans le
cas homogene (ou les réinfections passées n’affectent pas la transmission de la maladie), le comportement
global obéit & un modeéle compartimental usuel. Des résultats asymptotiques sont établis et des formules
donnant le nombre moyen de réinfections a 1’équilibre endémique sont données. Nous étudions ensuite un
modele de réinfection a deux étages destiné a la modélisation de maladies pour lesquelles les réinfections
ultérieures se comportent différemment de 'infection primaire. Nous décrivons en détail les équilibres du
modele, qui peut contenir jusqu’a trois équilibres endémiques, et étudions la persistance de la maladie.
Gréace a la théorie de Li et Muldowney, nous prouvons la convergence asymptotique de chaque trajec-
toire dans un cas particulier qui peut présenter plusieurs équilibres endémiques. En utilisant la théorie
des semigroupes, nous établissons ensuite le caractére bien-posé d’une classe de modeles structurés a
la fois en 4ge et en nombre de réinfections. Ces derniers sont constitués d’un nombre infini d’équations
aux dérivées partielles. Ceci permet de calculer plusieurs quantités intéressantes a ’équilibre endémique,
telles que I’age moyen dans chaque compartiment ou le nombre moyen de réinfections a chaque dge. Nous
examinons enfin des questions de théorie du controle, plus précisément si ’utilisation de données supplé-
mentaires sur les réinfections peut améliorer I'estimation des paramétres et de I’état. A cette fin, nous
étudions 'identifiabilité et 'observabilité d’un modele SIS, basées sur la mesure du nombre d’infectés et
de primo-infectés, et proposons un observateur asymptotique et un observateur adaptatif respectivement
pour 'estimation de I’état, et pour I’estimation conjointe de I’état et des parametres.

Mots clés : modéles compartimentaux en épidémiologie; réinfection ; structuration en age; multista-
bilité ; observation ; identification ; observateur asymptotique ; observateur adaptatif

Laboratoire Jacques-Louis Lions
Sorbonne Université — Campus Pierre et Marie Curie — 4 place Jussieu — 75005 Paris — France
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Introduction

Mathematical epidemiology and compartmental models

For those of us living in Western society that has long since embraced hygienics ideas and
standards |103], we tend to forget how communicable diseases affect human societies, and to
what extent human life is built around this natural reality. The recent COVID-19 pandemic
has served as a reminder of the potential consequences of these diseases. Throughout history,
infectious diseases have indeed constantly influenced social relationships and humans societies,
and there are countless examples of historical events partially shaped by them. To cite a few,
the Antonine plague, which may have been caused by increasing urban concentration and trade
due to the economic growth during the Pax Romana, contributed to the end of the golden age of
the Roman Empire [36] in the second century. The Justinian plague in the sixth century, which
is credited as the earliest pandemic due to the pathogen yersinia pestis, halted the expansion of
the Byzantine Empire and significantly weakened the Sassanian army, ultimately leading to the
rise of Islam [104]. Another well-known example of plague caused by yersinia pestis is the Black
Death in the fourteenth century, whose spread followed the expansion of the Mongol Empire
(see Figure(l]). The plague killed roughly one third to one half of the total European population
between 1347 and 1351. The devastating effects of the Black Death had a significant impact
on the collective consciousness of the late Middle Ages and the Renaissance (see Figure .
Moreover, the resulting massive reduction of the workforce and the abundance of land changed
the power dynamics between landowners and the peasantry, which in response marked the decline
of feudalism in Western Europe and a renewal of serfdom in the Eastern counterpart [98].

Even in the present day, infectious diseases remain a serious challenge for humanity, with
millions of people dying of measles, malaria, tuberculosis, diarrhea, and other diseases that may
be treated with modern medicine [116]. Several of these diseases are indeed endemic in many parts
of the world [93], although they are considered eradicated or declining in developed countries.
This unequal burden between global north and south countries with regard to infectious diseases
accentuates the inequality and further hinders development efforts.

Despite the omnipresence of communicable diseases in human society, the progress in the
biological understanding of their transmission is relatively recent. For a long time, people thought
that disease came from invisible things called “bad air” or “miasma”. It wasn’t until the 19th
century that the germ theory of disease was developed and accepted by the scientific community,
highlighting the role of microorganisms as the cause of infectious disease |95]. Nowadays, the
transmission mechanism of most of infectious diseases is well-known, and can be classified into
three main classes, according to their mode of transmission. First, it may be transmitted directly
by viral agents, which is the case for influenza, measles, HIV/AIDS or SARS, or transmitted
by bacteria, for example in the case of tuberculosis, cholera, pneumonia, or meningitis. Finally,
the diseases may also be transmitted indirectly through vectors (usually insects), in the case of
dengue, chikungunya or malaria.
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Figure 1: Spread of the Black Death in Europe. Source : The Black Death, 1346-1353: The
Complete History, O.J. Benedictow, Boydell Press, 2004, [13].

Figure 2: The Triumph of Death, Pieter Bruegel the Elder, c. 1562.

The idea of applying mathematics to advance the understanding of disease transmission can
be traced back to the works of Daniel Bernoulli in 1760 on the benefits of inoculation against
smallpox . Compartmental models, which are now massively employed in mathematical
epidemiology, have been for their part introduced at the beginning of the 20th century through
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the works of W.0O. Kermack and A.G. McKendrick [68].

Generally speaking, a compartmental model simulates the interaction between individuals or
objects distributed across multiple classes, called compartments. Each compartment represents
then a group of entities (such as population, molecules, health status, capital, individuals...)
that are assumed to be homogeneous with respect to the processes being studied. Due to their
versatility, compartmental models are often used in many fields, such as pharmacology, ecology,
systems biology or economics. In mathematical epidemiology, they are employed for the mod-
elling of host and vector population, classified according to their health status with regard to
the disease. For instance, the well-known SIR model introduced by Kermack & McKendrick [68]
contains three compartments, which are

1. The compartment S, which includes individuals who are susceptible to the disease.
2. The compartment I, including infected individuals, able to transmit the disease.

3. The compartment R contains the populations removed from the spreading process, either
due to immunity acquired, quarantine, or death.

Schematically, the SIR model is illustrated by the flowchart in Figure [3]

S

¥
~
¥

R

Figure 3: Flowchart of the SIR model

When the demographic effects may be considered much slower than the epidemic dynamics,
these effects may be neglected and the SIR model is written as follows:

S =—pSI,
R=~I.

The model takes then the following assumption.
1. The total population N := S + I + R is constant.

2. BI is called the force of infection of the model and represents the number of contacts with
infectious hosts that susceptible makes per unit of time. As it is proportional to the number
of infected in the population, the transmission is said to respect the law of pseudo mass
action. If instead the force of infection is modelled by the density dependent term (3 %, the
transmission is said to obey the law of mass action. In the case where the total population
N is constant, it is easy to see with a normalization that both laws are equivalent.

3. =y represents the recruitment rate of recovered from the infected, which is equivalent to say
that y~! represents the average infectious period of the disease.

Although the SIR model is surprisingly simple, it captures already several major features of
an epidemic, which makes it a powerful tool for the modelling of disease transmission. Notably,
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the solution of the system gives a bell-shaped curve for the infected, which is typical in the
outbreak of a disease (see Flgure ' On the other hand, let us rewrite the equation of I as

I=(BS—y)I.

It is thus clear that, if the initial condition is such that S(0) < £, I will remain non-increasing
thus excluding the possibility of an outbreak. This fact is known in mathematical epidemiology
as the threshold phenomenon, that prevents the possibility of outbreaks if the population does
not contain enough susceptible. Alternatively, if we consider the population as almost entirely
susceptible initially and approximate S ~ 1, the threshold condition became

1<,
gl

which gives then a condition on the intrinsic parameters of the disease for its spreading in a
disease-free population. The quantity

called the basic reproduction number plays a major role. It is defined as “the average number of
secondary cases arising from an average primary case in an entirely susceptible population” [33].
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Figure 4: Weakly deaths from plague in Bombay from December 17, 1905 to July 21, 1906
(filled circles) compared to the approximate solution from Kermack and McKendrick’s model
(solid line). Source : Modeling Infectious Diseases in humans and animals, M. J. Keeling and P.
Rohani, 2008 [67].

Reinfection

Since the SIR model of Kermack and McKendrick, the field of mathematical epidemiology has
evolved considerably, incorporating increasingly complex factors such as quarantine, vaccine,
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spatial, hosts heterogeneity, variants, spatial dynamics or stochastic effects . One of these
factors is the phenomenon of reinfection.

Biologically speaking, for various diseases, reinfection refers to the ability of the host to be
infected multiple times by the pathogen during its lifetime. This is either due to the lack of
immune memory against specific diseases, or because the immunity granted is incomplete or
only lasts a certain amount of time, which concerns numerous viral diseases. In fact, it is more
reasonable to expect the immunity response to be generally imperfect, and in most situations
the presence of reinfections is the norm rather than the exception. However, this biological
reality is not always reflected in the field of mathematical epidemiology, which is often concerned
only with mathematical models assuming lifelong immunity . Indeed, the assumption of
permanent immunity of this class of model corresponds only to a limited set of diseases, for
instance measles and rubella [3].
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Figure 5: Weekly cumulative total of SARS-CoV-2 infection eligible for reinfection (within 90
days interval), weekly number of possible SARS-CoV-2 reinfection and primary infection (times
10) in all ages, England, January 2020 April 2021. Source: Disease severity during SARS-COV-2
reinfection: a nationwide study, A.A. Mensah et al., 2022, .

On the contrary, there are countless examples of diseases including reinfection. To cite a few,
tuberculosis is well-known to be able to reoccur in the infected’s later life, due to either
reactivation of the same strain of mycobacterium tuberculosis, i.e., relapse, or reinfection with a
new strain. Another sadly famous example is that of COVID-19, which is caused by the strain of
coronavirus SARS-CoV-2. The reinfection in this case may be jointly explained by the protection
offered by the immune system, which is only temporary, and the appearance of new variants of
the virus . In addition, a major class of diseases are those offering no protection to subsequent
infection. This is for example the case for several sexually transmitted diseases such as syphilis
or chlamydia, or for the influenza.

On the subject of modeling, the simplest compartmental model for disease with reinfections
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is the SIS model, which is given by the equations:

S = —BSI+~I,

I=pBSI—~I. @)

This model assumes that the infected became immediately susceptible, thus does not include an

RN

S

I

A 4

Figure 6: Flowchart of the SIS model

immune compartment. It is therefore adapted to the modelling of sexually transmitted diseases.

Another reinfection model that we are centrally interested in this thesis is the SEIRS model,
which can be defined by the following system of differential equations:

S =bN — BSIT + wR — uS,

E=BSI— (0 +up)E, )
[=0E—(y+p+v)l,

R=~I — (w+ p)R.

In this case, the system contains additional demographic coefficients b and u, which are respec-
tively the birth and death rates. The presence of demographic terms is motivated by the fact
that, for reinfection models, we are often interested in the behavior of the disease transmission
over a longer timeframe. Moreover, this model includes a period of incubation o~ for the in-
dividuals ezposed to the disease to become infectious, which is represented by the addition of a
compartment E. Furthermore, the recovered may lose their immunity and be recruited again
as susceptible with rate w, enabling reinfection. The SEIRS reinfection model is particularly
fitted for numerous infectious diseases such as influenza or COVID-19 [15], and will be further
investigated in Chapter [I}

In the last decades, the need for a more detailed understanding of the above-mentioned
diseases has driven the interest in studying numerous compartmental reinfection models [1 ||
51]. However, several points of interest remain to be explored. First, most of reinfected models
presented in the literature do not include information about the number of times the hosts have
been infected, which may be an interesting data to evaluate. Another closely related issue is the
reinfection related heterogeneity in the disease, and most of existing models do not account for
the fact that the behavior of the disease may change depending on how many times the hosts
have been reinfected. Finally, a third underexplored topic is the one of identification/observation
of the epidemiological models, i.e., the state/parameter estimation and whether these data are
even retrievable from measurements. This is crucial, for example, for the monitoring and control
of epidemics. From the perspective of control theory, this issue remains insufficiently considered
[56]. In this regard, one of our goals in this thesis is to investigate whether the use of reinfection
data (typically the breakdown of the prevalence or the incidence according to primary infections
and reinfections, see Figure |5)) can enrich the knowledge and improve the control of epidemics.
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Outline of the thesis and list of publications

Considering the above observations, in Chapter [l| we investigate an infinite reinfection model
that is endowed with a counting of the number of times the hosts have been infected, which can
be infinitely many. Moreover, the parameters of the model may vary according to the number of
reinfections, which accounts for reinfection induced heterogeneity. For the corresponding infinite
system of ordinary differential equations (ODEs), the well-posedness is proved in a Banach
space of sequences that describe the number of hosts according to their epidemiological status
(e.g. susceptible, exposed, infected, recovered) and the number of reinfections they already
went through. Moreover, the case where parameters are constant with regard to reinfection
number, i.e., no reinfection-induced heterogeneity, is investigated in detail. Considering the
basic reproduction number R of the model, the global stability of the disease-free and endemic
equilibriums is described for Ry < 1 and Ry > 1, respectively. In addition, thanks to the
description of the endemic equilibrium, we can also retrieve some valuable information, such as
the average number of reinfections in the population at the endemic state of the model. Finally,
we explore the model with geometric progression of the coefficients according to the number
of reinfections, and derive existence and uniqueness result on the endemic equilibrium of the
system.

In Chapter 2] we turn our attention to a class of reinfection models that distinguish primary
infection from the subsequent reinfections. This class of model takes the assumption that the
primary infection behaves in a significantly different way from the remaining reinfections, which is
a reasonable hypothesis. Concurrently with our research, this class of models has been employed
for the modelling of COVID-19 epidemics |18} [63]. Description of the equilibrium states of the
corresponding system is delivered in detail, and in particular, the system is shown to exhibit
simultaneously up to 2 and 3 endemic equilibriums in the case Ry < 1 and Ry > 1 respectively.
The result along with numerical simulations for the case Ry > 1 show the existence of a reinfection
threshold in certain configurations. The multistability of the system makes it difficult to analyze
the global asymptotic behavior in a classical Lyapunov theory framework. We apply instead the
geometrical approach of Li and Muldowney [75], better known in the control community as the
theory of k-contraction [117]. With this approach, we demonstrate the asymptotic convergence
toward equilibrium for a specific case of the general model, where the heterogeneity is made up
of partial immunity after the first infection that allows the emergence of multistability.

Continuing on the topic of reinfections counting, in Chapter |3| we add an age-structure on top
of the infinite system in Chapter[I} Indeed, this is motivated by the fact that epidemic dynamics
are highly dependent on the age structure of the host population, which influences for instance
the transmission or the severity of the disease. Similarly to Chapter [T} we prove the well-posed of
the corresponding infinite system of partial differential equations (PDEs) employing perturbed
semigroup theory [31 (96} |102] in a Banach space setting. Then, the attention is again given to
the simplest setting of the model, where all parameters are assumed to be non-varying, now with
regard both to the age and reinfection number. This allows us to once again derive global stability
properties for the disease-free and endemic steady states when Ry < 1 and Ry > 1 respectively.
In addition, the description of the endemic state enables the computation of supplementary
values of interest that characterizes the endemic equilibrium, such as the average age in each
compartment of the model or the mean number of reinfections according to the age of the hosts.

Finally, in Chapter [4 we turn to some control theory issues. More precisely, we explore
observation and identification issues for a compartmental SIS model with reinfection. From the
state-space representation of the model, we analyze the identifiability and observability of the
model with a fixed but unknown portion of the infected as measured output. We find out that
the model is identifiable/observable if in addition the same portion of primary infections is also
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measured. This motivates in the sequel the design of an observer for the SIS model measuring
both infections and primary infections. An asymptotic Luenberger-like observer is proposed,
after an appropriate change of coordinates that transforms the system into a Persidskii form
[88,{97]. The stability of the observer is derived using copositive Lyapunov functions or of Lur’e
form and involves the testing of linear matrix inequalities (LMIs). Last, an adaptive observer
is designed for the case where the parameters of the model are also unknown. The strategy to
its design is similar to the approach of Immersion & Invariance |9] and its stability is analyzed
under the framework of Input-to-Output stability.

Several findings in the thesis are the subject of scientific publications, either already published
or in progress.

1. The article |40, based on the contents of Chapter [I| and Chapter |3] is currently in prepa-
ration.

2. The article [42], based on the contents of Chapter [2] has been submitted for peer-review.

3. The contents of Chapter 4| have been the subject of several conference papers |41}, |43], 44].
An additional article [45] has been submitted for peer-review.



Chapter 1

An infinite SEIRS model tracking
the number of reinfections

1.1 Introduction

Compartmental models have witnessed a rich development in mathematical epidemiology since
their introduction by Kermack and McKendrik in 1927 [68]. In the last decades, driven by
the needs to understand several diseases such as tuberculosis, measles, pertussis or recently
Covid-19, increasing attention has been paid to the modelling and analysis of compartmental
models with reinfection, which generally consist of variants of the classical SIS, SIRS or SEIRS
models. To cite a few works, reinfection by multiple strains has been studied in [1} |4], deriving
among others threshold conditions for the invasion by a new strain or the disease persistence. In
[8], the authors analyze the relation between vaccination and reinfection using a SVIRS model,
exhibiting the possibility of bistability which complicates the prediction of the epidemics and the
efficiency of vaccination campaign. Similarly, driven by the need to understand the effectiveness of
vaccination, Gomes et al. [51] delivered a comprehensive analysis of SIRS models with vaccination
and imperfect immunity.

Completing the work in [51], a threshold condition for endemicity of reinfection models is
derived by Katriel [66], alongside attack rate and mean number of reinfections for models without
demography rates. At the end of the paper, the author made several modifications to the SIRS
model to obtain a remarkable model tracking the number of reinfections, which was then briefly
analyzed. Continuing in the same direction, a general SEIRS model counting reinfection is
investigated in this chapter. The novelty and at the same time the difficulty of this kind of
system lie in the infinite number of differential equations describing its dynamics. In this sense,
they are similar to Becker-Doring model |10}, 134} [71], which describes, for example, the coagulation
and fragmentation of droplets in a condensing vapor.

The chapter is organized as follows. In the Section[I.2] we briefly present the classical SEIRS
model for infectious diseases. Subsequently, we introduce the SEIRS model that tracks the
number of reinfections, which is described by a system of infinite number of ordinary differential
equations. Then, in Section[I.3] the general model is proved to be well-posed, under quite general
conditions. The well-posedness constitutes the main and most important result of the general
model. Afterward, the attention shifts to the study of two particular cases. In Section
we start looking into the most simple situation, where the coefficients are invariant regarding
the number of reinfections. In this case, the evolution of each class of hosts in its entirety,

13
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regardless of the number of reinfections, is determined by the classical SEIRS model of finite
dimension. Therefore, the coupling of the classical SEIRS system and the infinite-dimensional
system tracking reinfections present a triangular structure already noticed in [66], which renders
the analysis much easier and making it possible to obtain significant results such as the mean
number of reinfections at the asymptotic limit. Finally, in Section [I.5] the case where the
coefficients progress geometrically at each stage of reinfections is considered, and a threshold
condition is derived for the appearance of endemic equilibrium and a sufficient condition for its
uniqueness.

1.2 General SEIRS model tracking the number of reinfec-
tions

Usually, reinfection processes are represented in compartmental models by a transfer from the

recovered compartments to either the susceptible class, as in the SIS, SIRS, or SEIRS model

[67], or the infected class as in the SIRI model [94]. For example, consider a common SEIRS

(Susceptible-Exposed-Infected-Recovered-Susceptible) model for infectious diseases with demog-

raphy and disease induced mortality, which has been employed for modelling infectious diseases
with an incubation period, such as SARS-CoV-2 or Ebola [15] |83].

S:bN—ﬁI%+wR—M5,

: S

E:BIN —(c+p)E, (1.1)
[=0E—(y+p+v),

R=~I—(w+ )R,

where the quantity N is the total number of hosts in the system
N:=S+E+I1+R,

As illustrated in Figure the model assumes that the healthy subject in the susceptible
compartment S goes through an incubation phase in the exposed compartment E after the
contact with the disease and before becoming infectious and being transferred to the infected
class I. After recovery, the subject moves to the compartment R and acquires a non-permanent
immunity, whose loss may result in further infections. The infection is characterized by the term

wR

bN ssL oE I J
— 8 N E I R

l ns l nE i(;.:«l»y)[ l nR

Figure 1.1: Flowchart of system (1.1

B %I , which follows the principle of mass action law [57]. Moreover, the coefficients b and p are
respectively the natural birth and death rate, v the disease induced death rate, 5 represents the
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I are respectively latency and

infectious contact rate, w the loss of immunity, and o~ and 7~
infectious period.

It should be noted that classical reinfection models enable the hosts to be repeatedly infected.
For the SEIRS model introduced above, this is represented by the loop in Figure [I.I] and the
hosts are here assumed to repeat the same infection process. However, the disease dynamics can
also be considered with regard to the number of reinfections of the hosts. Indeed, it may be
interesting to investigate how the first, second, third, and so on infections behave, with possible
heterogeneity according to the number of reinfections. To study these questions, we introduce a
general compartmental reinfection model, with the ability of considering the infection history of
the hosts.

To make our approach clearer, let us consider a simpler version of the SEIRS model !

S:,U,N*BI%‘FMR*,LLS,

. S

E:BIN —(c+p)E, (1.2)
[ =0E—(y+pl,

R=~I - (w+ p)R.

which is obtained by dropping the disease-induced mortality v in (|1.1)) and fixing b = p in order
to have a constant population (as a matter of fact, one checks that for any trajectory of ([L.2),
onehas N=S+E+I1+R=uN—S—FE—1I—R)=0). After normalizing, the system (1.2)
is equivalent to )

S=pu—pSI+wR—puS,

E =BSI — (0 + p)E,

; (1) (1.3)

[ =oB—(y+ I,

R=~I — (w+ p)R.
As we are interested in a system modelling the reinfection structure of (|1.3)), a natural way to
proceed is to divide the compartments according to the number of reinfections. This results in
the following SEIRS ODE model with infinite equations tracking the number of reinfections.

S1=p—BS1 Y50 I — S,

Si=wRi1— B8 Y50 I — uSi, i>1,
Bi=B8Y o Ij— (0 +WE;, i1, (1.4)
I = 0B — (v + )L, i1,
R =~I; — (w+ p)Ri, iz 1,

It is quite relevant to generalize the model ([1.4)) with the introduction of coefficients depending
on the number of reinfections. This leads finally to the model:

Si=wi—1Ri—1 — S; 2ozt Bigly — pSi, i 21,
Ei = S’L Zj)l ﬁl,]I] - (Ui + :u)Ela =1, (1 5)
Ii = 0iE; — (vi + w1, 21
R =yl — (w; + @) Ry, izl

IWe come back to consider the model (I.1)) in Section



16 CHAPTER 1. SEIRS model counting reinfections

Here, Ry is defined by Ry = £ to simplify the writing of the equations. Similarly to the system
. the coefficient p is the natural birth and death rate and f3; ;, ¢, 7 > 1, are infectious contact
rates, depending both on the number of reinfections of the infectious 1nd1v1dual z and the infected
j. On the other hand, the constants w; represent loss of immunity, o, ' and Vi L are respectively
incubation and mfectious periods, which all depend on the number of reinfection ¢ in the general
model. Finally, notice that the normalized system admits a corresponding denormalized
system, which is

. S; .

Si=wi1Ri—1 — N doisa Bigly —wSi, =1,

: Si )

E; = N > is1 Bigly — (o0 + p) By, i>1, (1.6)
Ii = 0B — (v + w1, 121,
R; = I — (w; + )Ry, i>1,

where Ry = —N and
N(t) == (Si(t) + Ei(t) + Li(t) + Ri(1)),

is the total number of hosts in the system (1.6). The flowchart of (1.6) is shown in Figure|l.2| as
an illustration.

For the sake of simplicity, we ignored the supplementary death rate induced by the disease v
in the general model (1.5)-(1.6). However, in Section[1.4] the infinite model tracking reinfections
of the SEIRS system (|1.2)) with disease-induced mortality and varying total population will be
investigated. Before that, we now verify in the following section the well-posedness of the infinite

systems (1.5) and (1.6)) that we have obtained.
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Figure 1.2: Flowchart of system (1.6]
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1.3 Well-posedness of the general system

As the systems of ordinary differential equations and have an infinite number of
equations, the question of their well-posedness is non-trivial and will be investigated in the
present section. For the analysis, we consider the system in a Banach space setting. For this, we
define for all n € N the Banach spaces

n ._ gl 1 n ._ gl 1 n 1 1
X"i=0 x--- x4, XV =0y XX A, XUy =0 XXy, (1.7)
~ N——— —_—
n times n times n times

where, by definition, ¢! is the Banach space of summable sequences of, /1 C ¢ the subspace of
sequences with nonnegative values, and éi_ L C E}F for sequences with positive values. The space
X™ is endowed with the induced norm || - ||x» such that for any z := (x1,29,...,2,) € X",

lellxn =220 lwille
Let us begin the analysis with a definition of the solution of system ([1.5)).

Definition 1.3.1. Lets 0 < T < oo, and zg := (S0, Fi0,Li0, Rio)izo0 € Xi. We call solution
of (L) on [0,T) any function z : [0,T) — X1,t — x(t) := (Si(t), Ei(t), Li(t), Ri(t))iz1, such
that:

1. Bvery component (Si, B, I, R;) : [0,T) — R%, i > 1 is continuous and sup,e(o 7 [|#(t) || x1 <
0.

2. For allt €10,T),
t
Sl(t) = Si,O +/ (w,;lRifl(S) — SZ(S) Zj Bi,jlj(S) — MSZ(S)) dS, ) 2 1,
0

Ei(t) = Eio+ | (Si(s) X2, Bijli(s) — (oi + p)Ei(s) ) ds, =1,
. ) o

Ii(t) = I +/0 (0iEi(s) = (vi + w)1i(s)) ds, 121,

Rz(t) = Ri,O +[) (’}/iIi(S) - (wi + M)RZ(S)) ds, 1> 1.

Under this definition, the next result proves indeed that the system (1.5 is well-posed.
In addition, it suggests that the quantities S, E, I, R do not admit, in general, a closed form
expression governing their dynamics.

Theorem 1.3.1 (Existence and uniqueness). Suppose that ;1 > 0, and o;,7;,w; and B;; are
positive and uniformly bounded with regard to i,7 > 1. Then for any initial condition xq € Xj_
and any T € (0,400), there is a unique solution © = (S; Ey, I;, R;)i>1 of on [0,7T).
Moreover, let us denote

S::ZSZ" E::ZE% I::ZL—, R::ZRi, N=S+E+1+R,

i>1 i>1 i>1 i>1

then every component of the solution x and additionally S, E,I, R, N are continuously differen-
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tiable, and the following differential equations are satisfied.

S = u + szRz — Z ﬂiijin — /LS, E = Z Biijin — ZO}E

i>1 >l =1 i>1
jZZUz‘Ei—Z%Ii—ML RZZ%L‘—ZMR
i>1 i>1 i>1 i>1
N =pu(1—N).

Proof of Theorem

Existence. Let T be a positive real number, n € N* and denote y™ := (SP*, E*, I, R?" )1<i<n,
the unique continuously differentiable solution on [0,T) of the ODE:

S — B~ ST BTy S, SN0 = Sia, 1<i<n,

Bl =87 30 Bil} — (00 + p)EL, E0) = Eip, 1<i<n,

I} = 0, B}' — (vi + w17, I'(0) = Lip, 1<i<mn, (1.9)
R? :%-I-" — (wi + p)RY, RM0)=Rip, 1<i<n-—1,

Ry =yl — Ry, R;,(0) = Rn.o

Similarly to 7 woRy = p. The 4n dimensional differential system may be considered as
a truncation of obtained by setting w, = 0 hence allowing at most n reinfections.

Remark that the boundary of Ri" is characterized by elements y € Ri" such that at least one
component of y is zero. Then, from the equations , at the boundary of Ri" the derivatives
along trajectories of of the zero-valued components are always nonnegative, hence Ri” is a
positively invariant set for and y"(t) € R4 for all t € [0,T) if y"(0) € RY™.

Let us define

Sti=> 8¢, E":=)_E, I":=> I, R":=)» Rl
i=1 i=1 i=1 i=1
Nt =S"+E"+ 1"+ R".
Then, we sum up the 4n differential equations to obtain

= > SHO+EN () + 1) + BP (1) = p(1 = N"),
1<1<n

As N™(0) < N(0) = ||xo|| x4, from the last equation it is easy to see that N™(¢t) < max{||zo| x4,1}.
As all components of " (t) are nonnegative, one deduces that S, E*, I, R?", S™, E™ I™ R" are
upper bounded as well by ¢; := max{||z¢||x4,1}. We complete the solution y" € R4" with zero
to form the function z" = (S, E', I, R!");>1 taking values in X} with SP, EP, Il”7 R? =0 for

i > n+1. Then, by the fact that the coefficients (w;)i>1, (04)i>1, (Vi)i>1, (Bl’ )i,j>1 are umformly
bounded, there exists co € Ry upper bounding the coeflicients, therefore

A1) < cacr(1+¢1), n>=0, i=1,...,n, t>0, Ac{S E, IR}

As the derivatives are uniformly bounded, thus SP', E", I, RY are equicontinuous on [0,7).
Applying the Arzela-Ascoli theorem [21], we extract a subsequence of index nj such that for

all A e {S,E,I, R}, the sequence of function A}* converges uniformly to a continuous function
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A; :]0,00) = R on every compact of [0,00) when k — co. Given that N"(t) < ¢y, then for all
A€ {S,E, I, R} and ng, A™ is upper bounded by ¢;, which implies, taking A = I and passing to
the limit, that the series I = Zz>1 I;(t) is also upper bounded thus integrable on any compact
of [0, 00). Finally, after an integration of equations (|1.9)), for any ¢ and ¢ € [0, c0)

t
S () = 5,0) + / (Tt =2 Bl S,
0
B (1) = E(0) + [ (S0 (s Z@,ﬂ;“ — (i + 1) B (5))ds,
t

I (t) = 1,(0) + /0 (0B (s) = (vi + ) I (s))ds,

R (1) = Ri(0) + / (TP (5) — (wi + )R (5))ds.

Hence it is enough to consider the limit & — oo and the uniform convergence allows the in-
terchanging of limit and integral. Therefore, the functions S;, F;, I;, R; obtained are indeed a

solution of (|1.5]).

Uniqueness. Let z := (S;, E;, I;, R;)1<; and 2’ := (S,, E/, I/, R})1<; be two functions solutions
of (1.5)) sharing a same initial condition. Denote

yP =8-S, y’=E—E, y =L-1I, y':=R-R],
hence,
dly?|
- = s wiayty —sen(y?) D B (Sily = SiL) = ply?,
J
dlyf|
= =san(y® Zﬂu I; = Si1) = (oi + wy?l,
|yz| —sn( I) . E_( . )l I|
“a gnlY; ) 0iY; Yi T )Y |
dlyft
%=8gn(yf)%yz (wi + )1yl
Moreover,
D Big(Sily — SiTj) = Si Y Bijyj + v Zﬂu
J J
Hence,
d|924\_ Sy,,. R _ .1 R ) Ry IV _ 1) |o! ) E, Iy _ 1)y E
Y. g = s wiwly —wilyl| + ey - Dlv!| + oisen(uly]) — Dy
A€{S,E,I,R}

+(sgn(y) —sen(w?) > Bi i (Sily — ST)) — pllyl| + 1| + wl | + [yl
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< Sgn(yz )wl 1y7, 1 w1|yz | (|yz | + |yz ‘ + |y7, | + ‘yz |)
+(Sgn<yz ) Sgn yz S Zﬁhjyg +yz Zﬁl,j 7
< Sgn(yl )wl 1yz 1 wl|yz | (|yz | + |y2 ‘ + |yz | + ‘yz |)
+Hsgn(yFyd) — 1)lyf IZBu (sen(y”) — sen(y)S: Y By
J

Therefore,

n

dly}’| -
Yoo g < e (I P T D)+ D en(y) wialy — wilu)
=1

i=1 A€{S,B,I,R} i=1
n
+2> > Bi;Silyll.
i=1

By the fact that the coefficients (8; ;); j>1 are uniformly bounded with respect to ¢, j and that,
by definition sup,c(o 1y [|2()[|x+ < oo, there exists c3 € Ry such that 237, 5;8; ; < c3 for all
7 =2 0. Hence,

n n
dly'|
S T+ I+ L+ ) +ngnyzyf’il—1>%4'yﬁl'
i=1

i=1 Ae{S,E,I,R}

_Wnlyn| +w0|y0 ‘ +C3Z|y]

n

<(es—m) > (W1 + Wl |+l L + 1yl
=1

The equality 3=, |37 (0)| + |y (0)] + [y (0)] + [y(0)| = 0 leads to
<Z|yf|+|yf|+|yf|+lyﬁ>()< (cs —n / <Z|yl|+|yz |+|yz+|yﬁ|>d8
=1

Taking n to the limit n — oo and interchanging sum and integral (which is possible as > ;- | |y |+
lyZ| + |y!| + |yF| is upper bounded), we obtain

t
(Zyzmyz+|yz|+yz|)<><c3/0 SIS+ L+ ]+ ) | ds.

i>1 i>1
Finally the Gronwall’s lemma implies

SIS+ P+l + bl =o.
i1

and the uniqueness of the solution of (1.5). Finally, in order to prove the smoothness of the sums
S, E, I, R, the following Lemma is first required.

Lemma 1.3.2. With the hypothesis and notations of Theorem|1.3.1} the functions ¢; = Zj Biilj
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are well-defined and continuous on [0,T) for all i > 1.

Proof of Lemma[I.3.2 As the coefficients f; j, 0;, 7; are positive and uniformly bounded with
respect to 4, j and moreover the series of positive terms ) j I, > j E; are upper bounded by

[|(0)]| x4, hence the partial sums >37_, I; are uniformly bounded by a constant, leading to the
equicontinuity of the family of functions {Z?Zl Bi,jli}n>1, for any ¢ > 1. Then, by Arzela-Ascoli
theorem and the pointwise convergence of partial sums 2?21 Bi,;1, the convergence is uniform,
and the limit ¢; is a continuous function on any bounded interval. O

Smoothness. As the solution z is continuous, it is not difficult to see that the integrands in the
integral formulas (1.8) are continuous. Hence, any component S;, E;, I;, R; of x is continuously
derivable. Moreover, the differential equations of the partial sums are given by

Z S; = uN + Z wil; — Z Sidi — p Z Si,

1<i<n 2<i<n—1 1<i<n 1<i<n
> Ei= Y Sigi— Y (0i+pE;,

1<ign 1<ign 1<ign
E I = E ol — E (vi + 1)1,

1<i<n 1<i<n 1<i<n
E R; = E Yili — g (wi + )R

1<i<n 1<i<n 1<i<n

By a similar argument as before and an application of Dini’s Theorem [105], every partial sum
in the derivatives above converges uniformly. Hence, the derivatives of the partial sums also
converge uniformly. Thus, it is allowed to interchange derivation and summation, which proves
the final point of the theorem. Finally, the integrands in formulas are continuous. Then,
the solutions are continuously differentiable, and their derivatives are given by (L.5). O

To conclude the section, with a slight change in the integral formulas, we define the solution
of (1.6) similarly to Definition for the normalized system (1.5). Then, the wellposed-ness
of the normalized system (/1.5 implies the same for the non-normalized system (1.6]).

Theorem 1.3.3. Under the same hypotheses as in Theorem|1.5.1. Then for any initial condition
Ty € Xi and any T € (0, +00), there is a unique solution x = (S;, E;, I;, R;)i>1 € X% of (1.6)
on [0,T), whose components are continuously differentiable.

Proof. Assume that z := (S;, E;, I;, R;)i>1 is a nonnegative solution of on [0,T). Let us
prove first that the total number of hosts of is constant. By Dini’s Theorem, the partial
sum Z?ZI(SZ- + E; + I; + R;) converges uniformly to N when n — +oo (and consequently R,
to 0 also) on any compact subset [0,T — ] of [0,T'), for € > 0. Hence, the same convergence is
true for the partial sum

Z(Sz +E;+ 1 + Ri) = pu(N — Z(Sz +E,+ I+ R;)) —wpRy.

i=1 =1

Therefore, taking n — +o0, N is defined and is equal to 0 on [0,T —¢]. Taking € — 0, this proves
that any solution of (1.6]) has a constant total population N on [0,T). Dividing the system (|1.6))
by N, we retrieve the normalized system (|1.5) and Theorem implies the wellposed-ness of

[L9). O
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1.4 Underlying reinfection structure of a common SEIRS
model

This section studies an infinite model, slightly different from , with a birth rate b # p,
an additional disease-induced mortality rate v > 0 and coefficients §; j, 04,7, w; that do not
vary with respect to the number of reinfections. In subsection the infinite model with
the addition of disease related mortality v and a birth rate b # p is presented. An easier and
explicit proof of well-posedness for non-varying parameters, based on the existence of a closed
form expression for the dynamics of S, E, I, R, may be given, as we shall see in subsection [I.4.2]
In subsection results on the asymptotic behavior and stability of the steady states are
derived. In fact, the asymptotic behavior of the model can be well-described even with the
additional parameters v and b. Moreover, from the description of the steady state, we derive
the mean numbers of reinfection at the endemic equilibrium of the model in subsection [T.:44]
Finally, numerical simulations are computed in subsection [[.4.5] and to make the reading easier,
the proofs of several results of this section are reported in subsection [1.4.6

1.4.1 A SEIRS model counting reinfections with varying population

As already discussed in Section [[.2] the hosts in the SEIRS model are allowed to be infected
multiple times. Hence, the SEIRS model presents a hidden reinfection structure that we
intend to unravel in the present section. While maintaining the disease induced mortality and
keeping the coefficients invariant, we proceed by dividing the compartments in a similar fashion
as in Section [I.2] to obtain the following system tracking reinfection numbers.

) I _
Si =wR;_1 — ﬁSiN — S, 1> 1,

. I ‘
Li=0B—(y+pu+v)h, i>1
Ry =~I; — (w+ p)R;, i>1,

with, as in (T, Ro(t) = 2N (t), and

S:=> S, E=YE, I:=» I, R==» R, N:=S+E+I+R
i>1 i>1 i>1 i>1
Moreover, the system (|1.10]) is endowed with initial condition
(S:(0), E;(0), I;(0), Ri(0))ix1 = (Si,0, Ei0, Li0, Rio)iz1-

Since the system (|1.1)) concerns the total population at each health status irrespective of their
disease history, it can be considered as a macroscopic system. Therefore, by contrast, (1.10) is
considered as the microscopic system.

1.4.2 Well-posedness

Because system ([1.10]) differs slightly from (|1.5) due to supplementary deaths from the disease
and the varying total population, it is needed to check again the well-posedness. To this end,
we borrow the same spaces (|1.7]) and the definition of solution similar to Definition used
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in Section The solutions of are again assumed to be evolving in the space X*,
and the initial conditions (S0, Ei0, Li,0, Ri0)i>1 are included in Xi. In this setting, the next
result proves that the problem is still well-posed. In addition, the solution z(t) is proved to be
positive component-wise for all ¢ > 0 and, more interestingly, (S, E, I, R) constitutes, in fact, a
solution of the macroscopic system . Thus, in the simple case with constant coefficients, the
macroscopic quantities possess a closed form expression for their dynamics.

Theorem 1.4.1 (Existence and uniqueness). For all 2y € Xi and any T > 0, there exists a
unique function x : [0,t) — X4, t — (S;, Ej, I, R;)i>1 such that:

1. Every component (S;, E;, I;, R;) : [0,T) — R%,i > 1 is continuous and supepo, 7y 17(t) [ xa <
+00.

2. Forallt €]0,T), x is a solution of the integral equations

1(s)
N(s)

Si(t) = SZ(O) —|—/O (wRi_l(s) — 587,(8) — ,U,SZ‘(S))dS, > 1,

¢ I(s) .
Bit) = Bi(0)+ [ (B8:(5)L — (0 4 wEi(s))ds, i3 1,
/2 N(s) (1.11)
I;(t) = I,(0) —|—/0 (0E;i(s) — (n+v+v)I;(s))ds, i>1,

Ri®) = Si0)+ [ (G1(5) — (w+ wR()ds, 31

Moreover,

1. every component is continuously differentiable and x is the solution of the system of differ-

ential equations (1.10) for t € [0,T).

2. If
IElr + 11°0lr = > Bip + Tio > 0 (1.12)

i>1

is verified, then x(t) € X}, for allt > 0.
3. Forte[0,T), (S,E,I,R) is a solution of the macroscopic system (|L.1)).

The well-posedness of system can be proved, with some little adjustments, as in The-
orem in Section through a normalization. However, we will deliver an alternative
demonstration of Theorem with the construction of an explicit solution, on the basis that
the quantities S, F/, I, R of system will be proved to admit the closed form expression
governing their dynamics. Thus, the system presents a special triangular structure. The proof
is transferred to the subsection to make the reading less cumbersome.

1.4.3 Steady states, stability and asymptotic behavior

In this subsection, we examine the steady states and the asymptotic behavior of the system
(1.10). As in the preceding subsection the proofs of the results are reported to subsection
to facilitate the reading.
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Let us start by noticing that the total population of (1.10) may diverge or converge to zero.
To overcome these situations, let us study the evolution of the following normalized quantities :

5 Si(t) = Ei(t) - Li(t) 5 Ri(t) .
Si t) = ) i = ’ IZ t) = ) Ri t) = ) = 1a
(t) N (t) N (t) N (t) Noy
_ St - E(t) - It) R(t)
S(t) = E(t) = I(t) = R(t) = .
The normalized counterpart of system ((1.10]) is:
= SZ SZ o7 Q
P = N — N2N = CURZfl - (ﬂ - V)SZI - bSZ7
5, = Ei _ EiN:B_J—(U-i-b)E_'H-l/I_Ei,
N N2
N (1.13)
= NZ - N—EN:UEZ» —(y+b+v) + vl
R, R . - SR
;= ﬁ—ﬁNzyli—(w—i-b)Rri—VfRi,
and the counterpart of system is
- S S . 57, B LG
S = N_ﬁN:b_(ﬁ—u)SljtwR—bS,
=t BN 88T (o4 0B+,
N N2
; I (1.14)
;_ R . _ — N T 72
IﬁN N2N oE —(y+b+v)I +vI°,
- R R . - 5 Th
R= N—FN—'yI—(w-i-b)R—FVIRy
where wRy = b. Because the non-normalized system is already shown to be well-posed in

Theorem [T.41] it is easy to see that this implies in particular the well-posedness of the normalized
system (1.14]). Again, in order to simplify reading, the proofs of all the results present in this
section are transferred to subsection [.4.06]

Remark 1.4.2. The natural death rate p does not appear in the normalized systems (1.13)) and
(1.14).

For the normalized system (T.13)), it is natural to study the trajectories z := (S;, Ej, I;, Ri)i>1
of (1.13)) only in the invariant set

Mi={7e€ X} :|z]x: =1} (1.15)
Lemma 1.4.3. For every Ty € ', the solution T of (L.13)) is such that
lZ@)|lxe =1 forall t=0. (1.16)

Proof. The proof follows easily from the equation

S+E+I+R=b-bS+E+I+R).
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O

Within the invariant set I', the steady states of (1.13]), composed of disease-free and endemic
equilibriums, are described in the following proposition.

Theorem 1.4.4 (Steady states). System (1.13) admits a unique disease-free equilibrium (DFE)
PP = (51,0,0,0)i>1,

where 3§} is the Kronecker delta. Moreover, define the basic reproduction number

o B
Ro = _— 1.17
O ot by+v+b (117)
For Rog > 1, the system (1.13|) admits a unique endemic equilibrium (EE)
PP o (ol S Bl I 0l RE
where the coefficients v, SFE EEF TFP RFE € (0,1) are defined by
e (R R S B ©___ (Lisa)
Y (B-wIEEfbw+b—vIEETT T o b —vIBE gy by — BB
_ _ JEE
SEE — # EEE — P b , (1.18b)
(B—v)IFE + b c+b—vIFE (B—v)IFE 4+
_ b _ _ ~y b _
PP— —  — S JFE RFE _— _ - S, IFE. 1.18¢
Y (B-w)IFE +b Y w4 b—vIFE (B —v)IFE 4+ (1.18¢<)

and (SPE, EPE [FE REE) s the unique EE of system (1.14)) in the interior of {z € R4 :
|Z|lge = 1}, satisfying the equations

. 7EE TEE
et - (570 )0 25) )
bw+b—vIEE b o+b y+v+b

gee _ L EEE:’Y+V+b—VfEEjEE REE _ Y jEE
Sy’ G ’ w+b—vIEE

The proof of Theorem is given in subsection [[.4.6.2] The result characterizes the EE of
(1.13)) using the value IP¥ of the EE of system that has already been described in [80].
In the particular case where the disease-induced mortality is zero, there is an explicit expression
for the value of TP,

Corollary 1.4.5 (v =0). Assume v =0 and Ry > 1, then

8 o Yw
Ro=8g=————7 =¥ (Re-1),
0 T Y ¥bo+b o ﬁ(w+b)—7w( o= 1)

and IPF has an explicit expression :

(y+b)(oc+b)(w+b) —wyo

o _ Ro—11
ob(w + b)

- where ( =

) > 1.
Ro ¢

Remark 1.4.6. The coefficient ¢ is defined in the literature as the critical stability number [23)].
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Finally, the asymptotic behavior of system (|1.13)) is well-described, as shown in the following
Theorem.

Theorem 1.4.7 (Global stability). For any Zo € T (1.15)), let z(t) = (Si(t), Ei(t), L;i(t),Ri(t))i>1
be the solution of the system (L.14)) with initial condition £(0) = Zy. The following convergence
results hold:

1. if Ry < 1,

lim z(t) = zPFF,
t——+oo

and the disease-free equilibrium is globally asymptotically stable in T'.

2. if Ro > 1 and (1.12) holds,

lim z(t) = 2%,
t——+00
and the endemic equilibrium is globally asymptotically stable in {z € Xi : ||Z||xs =

1 and Zi>1(Ei + 1;) > 0}.

Theorem m shows that the asymptotic behavior of is qualitatively simple. In fact,
every non-trivial solution of the system is either converging to the unique DFE when
Ro < 1 or to the unique EE if Ry > 1 and the initial condition fulfills . In particular, this
implies the non-existence of EE for Ry < 1.

Remark 1.4.8. The proof of the convergence of the microscopic system (1.13|) relies on the
global stability result of the macroscopic system (L.1), as seen in [53] for Ro < 1 and [80] for
Ro > 1.

As a side note, the asymptotic convergence of the normalized system (1.14]) also enables a
complete description of the asymptotic behavior of N :

Theorem 1.4.9 (Asymptotic behavior of the total population). Let N(t) be the total number of
the population at time t of the system (1.1)) corresponding to a trajectory with initial conditions

fulfilling (L.12)), then
1. If b < pu, N(t) converges to 0 while t — +o0.

2. If b= p,
(a) If v =0, then N(t) = N(0) for allt > 0.
(b) If v >0,

i. N(t) converges to a positive limit if Ro < 1.
it. N(t) converges to 0 while t — oo if Ro > 1.

3. Ifb> p,

(a) Ifb—p > IFE then N(t) diverges to +o0,
(b) If Ro > 1 and b — pu < IF then N(t) converges to 0.

Remark 1.4.10. Again, the proof of the Theorem can be found in subsection . As TFF ¢
(0,1) and does not depend on p, the case is realized for example if b < p+ 1, and the case
is realized if b — PP < i < b.
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1.4.4 Mean numbers of reinfection

Thanks to Theorem [T.4.7] the system converges asymptotically towards a unique EE for Ry > 1
in the presence of the disease, which makes the epidemiological prediction easier for this model.
From the description of the EE presented in Theorem[I.4.4] it is moreover possible to obtain some
valuable insight about the final state of the epidemics according to the reinfection structure. This
kind of additional information may, for example, be used for parameters identification purpose
for epidemic modelling. The next theorem delivers such a result about the mean numbers of
reinfection in each category of the population.

Theorem 1.4.11 (Mean numbers of reinfection). Let Ry > 1, and «,, S, be defined as in
Theorem|(1.4.4). Then,

2121@ - 1)‘§z‘EE ay

Z‘>1 SEE = 1_041/, (119&)
Zi>1 EzEE 2121 IiEE Zi>1 Rl-EE 1—a,’
s (i = 1)SPE +i(EPP + IFP + RPF) 1 b—bay, —vIFE 1 o0
_ _ _ _ = _ - .19c
Zi)l(SiEE+E¢EE+IFE+RlEE) 1l-a,)? b—vIEE S,

To provide some insights, the equation gives an expression of mean numbers of re-
infections among the susceptible at the endemic equilibrium, and refers to the same
values but among the exposed, infected or recovered. Finally, gives the mean number of
reinfections in the total population at the same EE.

Proof. Assume Ro > 1, by Theorem the sequences (SFE);~1, (EFE) >y, (IFF);>1 and
(RFE),>, are geometric with ratio a, such that 0 < «,, < 1. Therefore, as |a,| < 1, we apply

2 .
the formula )7, io) ! = ﬁ to deduce:

Diz1 iSPE _ Zi>1iE¢EE e iIPr S iRF” 1
Zi}l SEE Zi>1 EFF Zi>1 IFE Zi>1 RFE 1—a,’
hence the formulas (|1.19a)) and (1.19b]). Moreover,

> i(SPE + EPF + IFP + RPF) = (SPP + EFF + IPP + RPP)D ial 't = NP ial ™!,
i>1 i>1 i>1

where we denote,

Ni =8+ E; + I, + R;,
and summing up (|1.13)), we obtain
N; = wR; 1 = bN; + vIN; —wR; — v,
Finally, at endemic equilibrium we have

NEE _ bwa{EEif leEE _ b — bay, iuf{;E
! b—vIEE b—uvIFE 7
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w(RPE — RFF) — vIFP

VEE _ :
N = b— vI[EE ) 122
Thus _—
_ _ _ _ b—boay, — vl 1
i(SEE « pEE | TEE | REEY _ vl
;z(l +EPP + IPP + RFP) o TEE T a
and because ;- SPE = GEE — S%, (1.19¢) is verified. O

In the simple case without disease-induced mortality (v = 0), we recall that there exists an
explicit expression for the value of T¥F and therefore also for the mean numbers of reinfections.

Proposition 1.4.12. Assume v =0 and Ry > 1, then:

2z (i _71)51EE __w(Re—1) (1.20a)
Yiz1 SFF Blw+b) —1wRo’
Zi)li‘?iEE _ Zi>1 Z{_ZEE _ 21212{?1EE = Blw +b) —qw (1.20b)
s EFP S 1P Yis1 BEP Blw+b) —wRo’
Dizi (i = DSFE +i(BFP + IFP + RFF)  Blw+b)(Ro — 1) (1.200)

>iz1 (SFE + EFF + IFP + RFP) (B(w +b) =7wRo)Ro”
Remark 1.4.13. The right-hand side of the equations above are positive thanks to Ry > 1.

Proof. Assuming that v = 0 and R > 1, by Corollary [[.4.5}

1 1 _ Blw+b) —w

l—ag 1— =5 (Ro— 1) - Blw+b) —1wRo’

hence,

Qo Yw(Ro — 1)

l—ag Blw+b) —ywRe’

We retrieve (1.20a) and (1.20b]) by Theorem |1.4.11} Moreover, due to (1.19¢) and v = 0:

_ _ _ _ 1 b — ba 1 1 1
(i — 1)85F 4 i(BEP + [FF 4 REF) — oo = —
i>1((z ) i + Z( i + 7 + (l ) (1 o aO)Q b 80 1— Qg R()’

hence (|1.20c)). O

1.4.5 Numerical simulations

With the aim of illustrating the previous results, numerical simulations of the underlying rein-
fection dynamics ([L.13)) are computed along the trajectories of the macroscopic system ([1.14]).
The parameter values are borrowed from [15]:
vl =14 days, o~ !=7 days,
wl=1year, b != /fl =76 years, [ =0.21 days_l7 and v = 0.
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Moreover, the initial condition is chosen as Iy = 1_1,0 = 10735, = S1,0 = 1 — Iy and the
simulations are computed with the solver ODEINT in Python.

Figure [1.3] shows a trajectory of and and its evolution in each compartment up
to the index n = 5. The graphs suggest that the convergence of the macroscopic components is
slower than the convergence of microscopic ones, although the time frames during which these
components begin and stop evolving are delayed as the numbers of reinfections progress. Notice
also that the figures highlight how the oscillations in macroscopic solution are, in fact, produced
by successive waves in the different compartments of the microscopic system.

For b = p and v = 0, the system is equivalent to (|1.10]) with N constant equals to 1.
An easy computation gives

S _ bof ~ 0.02
SEE  (BIPP +b)(y+b) (o +b)

This shows that, at the endemic equilibrium, only a tiny portion of susceptible hosts have never
been infected in their lifetime. Moreover, the Jacobian matrix for the system ([1.14]) describing
the evolution of the macroscopic components is

—BIPE — b 0 —BSEE w
BIFE —(oc+b) BSEE L EEE 0
0 o —(v+0) 0 ’
0 0 y —(w+10)

while all diagonal blocks of the block-triangular Jacobian matrix of the system (1.13]), corre-
sponding to the evolution of a finite number of microscopic modes, are expressed by

—BIPE — b 0 0 0
BIEE —(o +b) 0 0
0 o —(v+0) 0

0 0 v —(w+0)

The latter matrix is diagonal, its spectrum is real and numerically approximated to {—1.01,
—1.87,—26.08,—52.17}. On the other hand, the numerical computation of the spectrum of
the former matrix, which appears to be complex, gives {—1.28 x 1072, —68.62, —6.24 & 3.164}.
Hence, both matrices are Hurwitz, and the largest real part of the eigenvalues is associated to
the macroscopic evolution, as foreseen.

1.4.6 Proofs

We collect in this subsection the proofs of several results stated earlier in the chapter.

1.4.6.1 Proof of Theorem m
The proof of Theorem [[.4.1] requires the following Lemmas.

Lemma 1.4.14. For all T € (0,+00), there exists a continuously differentiable solution x =

(S, Ei, 1, R;)i>1 for the system (1.10) defined on [0, T) taking values in X . Moreover, (S,E,I, R)
is solution of (L1). Finally, if (1.12) is verified, S(t), E(t),1(t), R(t) > 0 and z(t) € X1 for

all t € (0, 7).

Lemma 1.4.15. Any continuous solution of the integral equations (1.11]) on [0,T') is continuously
differentiable.
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Figure 1.3: Trajectories of solutions of (1.13)) and (1.14))
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Lemma 1.4.16. If x = (S;, E;, I;, R;)i>1, ' = (S, El, I/, R});>1 are two continuously differen-

tiable solutions of (1.10) defined on [0,T), taking values in X% and fulfilling x(0) = 2/(0). Then

r=2a.

The construction of an explicit (continuously differentiable) solution is included in Lemma

414 Lemma and [[.4.16] guarantee the uniqueness of the solution. This implies in
particular z(t) € X}, when (1.12) is fulfilled.

Proof du Lemma

e By Picard-Lindel6f Theorem, there is a unique solution which is maximal for the system
evolving in Ri for any initial condition (S, Eo, I, Ro) € Ri. This solution is global, as it does
not blow up in finite time due to the inequality

—(n+v)N < N <bN, (1.21)

which implies,
0 < N(0)e~ )t < N (1) < N(0)e” < +o00  for all ¢ > 0.

Moreover, for N(0) > 0, one has N(t) > 0 for all t > 0. Let (s, e,,) be the unique continuously
differentiable solution on [0,7T), 0 < T < oo, of the system (1.1)) with the initial condition
(5(0), €(0),2(0),7(0)) € R such that :

5(0) = 1Siollir, €(0) = [[Eiollir, 2(0) = [[Liolln, 7(0)=|Riolln

and fulfilling ((1.12)). The equation can be rewritten in the matrix form :

s bfﬂi((?gfu b b b+w s
el sl —erm 0 o[
¢ 0 o (v +p+v) 0 ¢
T 0 0 v —(w+n)) \"

with
n(t) = s(t) +e(t) +o(t) +r(t).

An integration gives :

_ [tgx - t Ot ;
S(t) = 8(0)6 fo (ﬁn(T) +u)d + / (W’F(S) + bn(s))e \L (5,"(.,) +p)d ds,
0

e(t) = e(0)e~ (" 4 t Bu(r) 2 ==y g
/0 ") (1.22)

t
o(t) = 1(0)e~ OFrFVIE +/ ge(s)e FrtE=s) gg.
0
t
r(t) = r(0)e (It 4 / ()= =) g
0

For nonnegative initial conditions verifying either e(0) > 0 or +(0) > 0, it is easy to verify that the
integral formulas (1.22)) imply the existence of £ > 0 such that s, e, 1,7 are positive for t € (0, ¢).
On the other hand, let us assume that

ti=sup{t>0|s>0,e>0,:>0, r>0} < +o0.
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Then the same formulas indicate that
S(tl) > 0, e(tl) >0, Z(tl) > 0, T(tl) > 0,

which contradicts the definition of ¢; as the continuity of solution implies there exists €1 > 0
such that the same inequality remains true for ¢ < t; + ;. Hence, t; = +00 and

Yt > 0, s(t) >0, e(t)>0, t)>0, r(t)>0.

Remark moreover that from (1.21)) we deduce that N(t) < N(0)e® for all t > 0 and s, e, 1,7 are
always bounded.

e We construct now recursively the components (S;, E;, I;, R;), @ > 1 as solutions on [0, 00) of
the system :

Sz _<ﬁ% + M) 0 0 0 Sl wR;_1
E; | B —(oc+p) 0 0 E; 0
IZ B 0 o —(y+p+v) 0 I; + 0 (1.23)

For i+ = 1, thanks to wRy = bNN, the property
YVt >0, Si(t) >0, Ey(t)>0, ILi(t)>0, Ry(t)>D0.

can be verified with the same arguments employed for s, e,7,7. Now, assume that the property
is verified for ¢ — 1, integrating the equations above, we derive :

_ [tiaa(n) - t C[taa(n i
Si(t) = Si(0)e o BrcHmdr / PR ACE RN
0

t .
Ey(t) = E;(0)e” Tt 4 / ﬁZ(T)Me_(U-i-M)(t—T)dT,
0 n(T)

t
IL(t) = [1(0)6—('y+u+v)t +/ O.Ei(s)e—(’y+lt+l/)(t—s)ds7
0

t
R;(t) = Rl(o)e—(w+u)t+/ ’yIi(s)e_(‘”—’_“)(t_s)ds,
0

Assume the initial condition is nonnegative and verifies either e(0) > 0 or 2(0) > 0. As
1(t) > 0, R;—1(t) > 0 for t > 0, the integrals above imply again the existence of £ > 0 such that
SiyE;i, I;; R; > 0 on (0,e). Then, by a reasoning similar to the one employed for s,e, s, 7, the
integral formulas indicate that the components cannot be canceled for ¢ > 0, hence

Si(t) >0, E;i(t)>0, IL(t)>0, Ri(t)>0, Vt>0, i>1. (1.24)

e Let us denote

0< sn(t) = isi(t) <s(), 0<en(t) = iEi(t) <e(t),
! = (1.25)

0<im(t) = S L) <alt), 0<ra(t)i= S Rilt) < r(0),
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then (8, €n,tn, ) is solution of:

Sn _(B:L((tt) + ,u) 0 0 w Sn
| _ p ;ftt)) —(o+n) 0 0 €n
in 0 o —-(y+p+v) 0 tn (1.26)
I'n 0 0 gl —(w+p)) \n

+w(Ro—R, 0 0 0)7.

The sequences of functions (s,)n>1, (€n)n>1, (tn)n>1 and (r,)n>1 are non-decreasing and boun-
ded. Therefore, they converge pointwise on [0, 00) to the limits S, E, I, R.

Let us Verify then that (Sa Ea Ia R) = (57 €1, T)' By @ ) (‘én)n>1a (én)n>1a (in)ngla (".‘n)n>1
are uniformly bounded with respect to n on any compact of [0, c0), thus the families of functions
{sn,n € N*}, {e,,n € N*}, {1,,,n € N*}, {r,,n € N*} are equicontinuous. Then the Ascoli-
Arzela theorem states that we can extract subsequences of (sy,)n>1, (€n)n>1, (tn)n>1 and (7)n>1
that converge uniformly on any compact to the continuous functions S, F, I, R. Applying Dini’s
Theorem, the convergence of (sp)n>1, (€n)n>1, (tn)n>1, (Th)n>1 to S, E, I, R is uniform on any
compact of [0, 00), therefore, from the relations , it also implies the uniform convergence of
($n)n>1, (én)n>1s (in)n>1, (Fn)n>1 to the limits that we denote S, E, I, R. Interchanging the sum
and the derivatives, we deduce that (S, E, I, R) is also a solution of the same Cauchy problem
as (s,e,1,7), then, by uniqueness of the solution, they are indeed equal. O

Proof of Lemma[L.415 Let T € (0,00), and x = (S;, E;, I;, R;)i>1 be a continuous solution of

(1.10) on [0,T) and the sequence (sy, €n,n, n)n>1 defined as in (1.25). Then, for any n > 1,
(Sns€n,tn, rn) is solution of the differential equations:

$n —( % + 1) 0 0 w Sn
('én — ﬂ% 7(0’4’#) 0 O €n
in 0 o —(y+p+v) 0 n (1.27)
"'n 0 0 gl —(w+p)) \n

+w(Ry—R, 0 0 0)7.

As
sup[J(t)]lx2 < o,
te[0,T)

and Sy, en, iy, Ty < ||2]| x4, taking n — +00, Sp,e€n,2, and 1, converge to limits that we de-
note S, FE, I, R, moreover the uniform bound implies that the derivatives $,,én,in, 7, are also
uniformly bounded by , hence the equicontinuity of (s,,)n>1, (€n)n>1, (tn)n>1, (Th)n>1-

Applying once again the Ascoli-Arzela Theorem, the limits S, E, I, R are continuous, and
Dini’s theorem states that the convergence of s,, ey, t,, 7, is uniform on any compact subset
[0,T), thus the same for $,,¢é,, i, 7, by . As the previous derivatives are continuous,
the uniform convergence also implies that S ,E,f ,R are defined and continuous. Then, the
integrands in are continuous, hence every component of the solution z is continuously
differentiable. O

Proof of Lemma[L.4.16] The proof of Lemma [[.4.15] above implies in particular that any con-
tinuously differentiable solution = = (S;, E;, I;, R;)i>1 of is such that S := 2121 S,
E =3B, 1 :=73% 5, 1i R:= 3, R fulfil the system (L3), which admits a unique
solution. Once we retrieved the unique macroscopic solution (s, e,,7), (Si, By, Ri, I;)i>1, is de-
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rived uniquely as solution of system ([1.23)) for ¢ > 1. Therefore, we obtain the uniqueness of
continuously differentiable solution and Lemma [1.4.16 O

1.4.6.2 Proof of Theorem m

Let (S’i,OaEi,O,fi,mRi,O)i;l be a DFE of (1.13)). By definition of DFE, Eio0,Lio=0 for i > 1.
The uniqueness and value of the DFE follow then easily from the steady state equations

0= wRi,l,o — bgi,o, 0= —(0‘ + b)Ei70, 0= —(’)/ +b+ l/)ji)o, 0= —(w =+ b)Ri’o, 1> 1.

Concerning the characterization of the basic reproduction R of , notice that the system
is none other than an unfolded version of system with regard to the number of reinfections.
Therefore, both systems will share the same asymptotic behavior regarding the threshold Ry.
Let us compute then the Rq of using the next-generation matrix method [32} [35]. Let
y = (E,I), thus from the differential equations for y can be written as

j=F -V

_ (BSI _ (0 +b—vI)E
F_<0)7 V_<(’Y+b+V)IoEVIQ>'

Let F,V be the Jacobian of F, V at the DFE:
(0 B _(o+b 0
F_(o 0)’ V_<0 v+b+y>'

y-1 1 ('y—l—b—i—l/ 0 )

with

The inverse of V is

T (ot b)(y+b+v) o o+b

Hence, the next-generation matrix is

-1 1 Bo  B(o+b)
= e (0 )

By definition, R is then the spectral radius of the next-generation matrix, which is given by
(L.17). -

Assume now (SFF, EFF [FE REF);, is an EE for (L.13), it is then easy to see from The-
orem that (S®F, EFF IPF RFE) where SP¥ = Y. | SFF EFF = 5. EFF IPF =

K2

s I, REE = >z RFP is an EE for system (T.14)). For the EE of (1.14)), the steady state
equations

0=b— (8 —v)SEETEE 4 yREF _ pGFF,
0= BSEETFE (o 1 b)EFP 4 yIPPEPE,

_ _ - 1.28
0=0cEPY — (v + b4+ ) IPF + p(IFF)?, (1.28)
0=~IP% — (w4 b)RFE + yIFEREE,
imply the relations
HEE _ Y 7EE EEE:7+b+V_VjEEjEE
w+b—vIEE o ’ (1.29)

BSEETEE — (5 4 b — y[EE)EEE, b(1 — §EE) = (8 — v)SEETEE | ,REE,
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Summing up the four identities in (1.28)), we deduce that any solution of ([1.28) fulfills SEE 4
EFE  [FE 1 REF — 1, In addition, equations (I.29) can be rewritten as follows

REE _ A IPE —pp _ (Y Hb+v—vIPE)[PF
w+b—vIEE’ o ’
SEE70+b7V1:EE’y+b+V7VfEE
= - 3 ;
and
b(l_U+b—uI_EE'y+b+y—yI_EE):(5_V)U+b—yI_EE7+b+V—uI_EEjEE
o I5) B
. T 7EE
w+b—vIEFE
The last equality can be rewritten as
1:(ufEE+1)O'+b*l/fEE’Y+I/+b*VjEE71 w o (1.30)
b B bw+b—vIEE

Because SPF EFE TFE REE > (), the quantity 7PF has to be a solution of a 4th degree poly-
nomial equation taking value in (0, max{1, %t 2tb}) It is proved in [80] that, under the
condition Ry > 1, such a solution exists and is indeed unique in this interval. Finally, let
(SEE EEE [EE REE) be the unique EE of (1.14)), the endemic equilibrium equations of (1.13)
are _ N _

0=wREE — (B—v)SFFPIFY —bSPFE

0 = BSFEIEE — (¢ 4 b)BEF 4 y[PEEEF

_ _ - 1.31
0=0cEFY — (v 4+v+b)IFF 4 vIPETFE (1.31)
0=~IFF — (w+b)RFF + vIFFREE.
We rewrite the equations
PEE _ Y _ TEE E_‘EE:’Y+V+b_VI_EEI_EE
’ wH+b—vIBE ¢ o i
555 = L (yuppemypee - O b vIF by b PP LT
4 - B]_—EE 7 - 6 P _Z_'EE’
REE _ (,B—V)fEE+bSEE_ B=)IPE 4+ bo+b—vIPPy+v+b—vIPPw+b—vIFE REE
i—1 = w i = w 3 o v JEE "
Thus,
REE — w b 7 i TPEREE  (1.32)

(B=v)IEFE +bo+b—vIEEy+v+b—vIEE w4 b—vIEE

Notice, the relation above is still valid if we replace (R”¥, RFE) by either (I7F, IFE), (EEE EEE)
or (SFE SEE) Therefore, the coefficient

il B _ g _ 7 FEE
B—v)IEE+bo+b—vIFE v+ v+ b—vIFE w4+ b—vIEE

&, = y
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governs the progression of endemic equilibrium values between the i-th and ¢ — 1th stages of the
model, for i > 2. Denoting

Ié] o
o4+b—vIEE v 4+ b+ v —vIEE’

then

ol T JEE
(B—v)IEE fbw+b—vIEE"

and the first line of (1.18) is proved. Moreover, if R > 1, the solution 77 fulfills by definition

o, =

B—-)IFF +b>0, (0+40b)—vIFF¥ >0,

_ _ 1.33
(Y+v4+b) —vIiF¥ >0, (w+b) —vIFF >0. (1.33)
Hence, o, > 0. Moreover, multiplying al,%%

equation (1.30]) leads to

before adding «,, in both sides of the

b b—vIEE -
o (1+ ,“’*7”) — JEE.
vy w

In particular, a,, < 1. Hence, the series

n n

GEE _ GEE i—1 ~EE _ EE i—1
E 577 =51 E Q, E E;7" =E4 E Q,
i=1 i=1

i>1 i>1
n n
TEE _ TEE i—1 SEE _ pEE i—1
E "™ =15 E a, -, E Ry =Ry E a, -,
i=1 i>1 i=1 i>1

converge absolutely, and this allows to sum up ([1.31)) for ¢ > 1, from which we retrieve as expected
the equations (|1.28)), hence

i>1 i>1 i>1 i>1

Finally, consider (1.31)) with ¢ = 1 and the equality wR(;EE = u, we recover the expression for
(SIEE7 E]_EEa I]_EEa Rl ):

_ b _ JEE _
SEE — pre — _ PITT gpo (1.34a)

(B—v)IFE 4 b’ Y o4 b—uIBET
TEE _ g EE SEE _ Y TEE
I _fy+1/+b—1/fEEE1 , Ry _7w+b—1/fEEII . (1.34b)

It is easy to verify that (T.34)) is equivalent to the expression for (SF¥, EFF [FF REF) in (T.18).
Moreover, we can see that the value of EE of (|1.13]) is uniquely determined by the unique EE of
(1.14]), hence the uniqueness.

1.4.6.3 Proof of Corollary

In the case where Ry > 1 and v = 0, adding the first two equalities of (1.28]), initially
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computed in 23], we recover

gEE:1+EREE_L+bEEE:1_ (7+b)(g+b)(w+b)_w70_fEE:1—CfEE
b b ob(w +b) ’

As TP > 0 by assumption, replacing S¥F by the expression above, the second equation of (T.28)

leads to B
oc+bEEE 1

(1— cIPE) = GPF =

B IPE Ry
which is the same equation for T¥F as presented in the Corollary. Moreover,
w v TEE
o= ———"""R
07 BIEE L hw+b
¥ ob(w + b) w

(Ro—1)

= Bb(wtb)(Bo—(o+b)(7+b)) _
s A s S po+b)(w+b)(y+b) —oyww+b

5 ob(w +b) w

= b(w+b)(Bo—(o+b)(y+b))+b((0+b) (w+b) (v+b) —oyw) _
(UJrl;))l(erb)(’Yer)fa'yw : : (U + b) (UJ + b) ('Y + b) oW w + b

(Ro—1)

(e +b)(w+b)(y+b) — oyw) ob(w+b) w (Ro—1)
N b(w+ b)fo — boyw (+0)(w+b)(y+b) —ocrww+b °

- v _

BECEDEET A

we retrieved the identity for ag presented in the Corollary. Finally, let us verify that ¢ > 1. In
fact, developing the numerator above,

¢ = b(o +b)(w+b) +v(0 +b)(w+b) —wyos  blo+b)(w+ b) +vb(w + b) +yob
B ob(w +b) N ob(w +b)
b(o 4+ b)(w + b)
obw ) h

which concludes the proof of Corollary

1.4.6.4 Proof of Theorem m

The case Ry < 1.

e For the macroscopic system, it was proven in [53] that the DFE of (1.14) is globally asymp-
totically stable for Ry < 1.

e For the microscopic system, let us prove the asymptotic behavior of each component z; :=
(SZ,EZ,I“RZ) AS B N B
lim I(¢t) = lim E(t) = lim R(t) =0,

t—o0 t—o0 t—o0

and

L(t) < I(1), Bit) < E(t), Ri(t) < R(t),

forall 4 > 1 and ¢t > 0, thus

lim I;(t) = lim E; = tlim R, =0, forall i>1.
—00

t—o0 t—o00
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Additionally, for any € > 0, by definition there is a T. > 0 such that, for all ¢t > T,

t>T. = I(t)€(0,e), Ri(t)e€[0,e) i>1.

Let
—b+ve 0 0 0
A ef —(o+b) +ev 0 0
° 0 o —(b+7) +ev 0 ’
0 0 0 —(w+0b)+ev
then

i‘i+1 < Aeji+1 + (w£70u070)T7 (> 27 t = TS'

For sufficiently small €, the matrix A, is Metzler, and we may use the comparison result from
[26] to deduce that, for y solution of

y = Asy + (WE, Oa Oa 0)T7 y(TE) = 1_77:+1(T6)7 (135)

we have

Vt> T, Tipa(t) <y(t).
Moreover, for any e, the matrix A, is Hurwitz, then any solution y of (1.35) converges to
—weAZ1(1,0,0,0)T and therefore:

lim sup 7;(t) < limsupy(t) = —weA-*(1,0,0,0)T, > 2.

t——+o0 t——+oo

As e may be arbitrarily small, taking to the limits we deduce that

lim sup z;(¢) < 0.
t—+o0

Consequently -
lim S;(¢) =0, i>2.

t—o0

Finally, remark that the following inequality is verified for ¢ =1 and ¢ > 0:

&7 = Aoy +6(1,0,0,0)T,

hence
. _ o -1 T
lginﬁgxl(t) > —bA;(1,0,0,0)T,
but
—b
—bA;1(1,0,0,0)T = - b b b),0,0,0)T = (1,0,0,0)7,

and Sp is upper bounded by 1, thus tlim S1(t) = 1 and the result for Ry < 1.
— 00

The case Ry > 1.
e For the asymptotic behavior of the macroscopic system, the global stability of the unique

endemic equilibrium (SPE, EFE TEE REE) of ([14) in R4\ {(S,E,I,R) € R* : E+1 = 0} has
been proven in [80] using the same geometrical approach of Li and Muldowney [75].
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e For solutions starting in the set I'\ {Z € X1 : Z¢>1(Ei +1I;) = 0}, let us prove the asymptotic
convergence to the endemic equilibrium of (1.13)) recursively using the asymptotic result of the
macroscopic counterpart. For i = 1, we have

Sy =b— (B —v)IS; — bSy,
E:l = 51’_5*1 — (0 +b)E; f ufEi,_ (1.36)
L =cEy— (v+v+b +vil,
él =l — (w+b)Ry + +VIR;.
Let € be any positive number and T, > 0 such that
t>T. = I(t) — IPF € (—¢,¢).

For all t > T, let

—BIEP —e)+v(TFP 4+e)—b 0 0 0
B — BIPF +¢) —(o+b)+v (TP 4¢) 0 0
€ 0 o 7('y+u+b)+u(I_EE+e) 0 ’
0 0 ¥ —(wHb)+r(ITFE +e)

then,

(8 Bo L R) <B(50 Bi L R)T+( 0 0 0

For all ¢ > 0, the matrix B. is Metzler. Let Z; be a solution of system ((1.36)) and y be the
solution of
Y= By +5(1,0,0,07,  y(Tt) = 2:1(Tz). (1.38)

the comparison principle [26] gives,
vt >T., z1(t) < y(t),

where the vector inequality is interpreted component-wise. Moreover, by , for sufficiently
small € > 0 the matrix B, is Hurwitz and every solution y of converges to —bBZ1(1,0,0,0)T.
Therefore:

limsup 7 (t) < limsupy(t) = —bBy *(1,0,0,0)T.

t—+oo t—+oo

then, replacing € by —e, the same reasoning may be used to obtain :

lim inf 7, (t) > —bB; *(1,0,0,0)T.

t—+4o00
Hence finally:

liminf Z, (t) = limsupZ;(t) = lim #;(t) = —bBy *(1,0,0,0)T.

t——+o0 t— 400 t——+o0
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Thus Z;(t) converges to —bBal(l, 0,0,0)7, that is,

b

(B-1)IPE+b

__bBTEE
— oc+b—vIEE)((B—v)IEE+b
—bB;'(1,0,0,0)T = ( yarsz 1D

(o b—vTPP) (y1u+b—v1PP) (B—)TPP 4b)
boyBIFE
(0+b—vIEE)(y+v+b—vIEE) (w+b—vIFE)((B—v)IPE+b)

By the convergence is verified for ¢ = 1.

Assuming now that the convergence is true for ¢ > 1 and let us prove that it implies the same
for i + 1. Let ;411 (t) = (Siz1(t), Bix1(t), Liz1(t), Riz1(t)), € be any positive number and 7. > 0
such that

t>T. = I(t) — IFF € (—e,e), R; — RFF € (—¢,e).

Then, for all t > T,
Tir1(t) < BeZiga (t) + (W(RFP +€),0,0,0)T.
Similarly to case i = 1, we have:

limsup 7341 (t) < —bBy H(wR{F,0,0,0)T,

t—+oo
and
: : = _ —1 7EE T
ltlgigfxlﬂ(t)} bB;, * (wR;%,0,0,0)T.
Thus:

Uminf Zi11 (1) = limsup Ziy1 (1) = Mim _Zia(t) = —bBy ' (WR®,0,0,0)7

consequently Z;41(t) converges to —ngl(leEE, 0,0,0)T, which equals to
(v +b—vIF) (o +b—vIPF)(wtb—vIFF)
0By WREE,0,0,0)7 = K | MO T Db
oyBIFE
where
WREE
(0 +b—vIEE)(y+v+b—vIEE)(w+b— vIFE)(BIFE + b — p[EE)

P =

Finally, thanks to ([1.32)), the convergence is verified for ¢ + 1. Hence, the convergence is demon-
strated.

Global asymptotic stability properties. = We proved that the solutions of converge
component-wise to either the DFE or the EE depending on the value of Ry. As the solutions
are moreover bounded, evolving in the invariant set I', this implies the convergence in X*. In
this setting, the DFE (resp. EE) is moreover stable for Rg < 1 (resp. R > 1) thanks to the
stability result proved in |55, Theorem 3.3.2] for semigroups.

Indeed, let X be a complete metric space and T'(¢) : X — X be a C"-semigroup, r > 0. If
the semigroup 7'(t) is moreover asymptotically smooth, i.e., for any nonempty, closed, bounded
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set B C X such that T'(¢t)B C B, there is a compact set C' C B such that C attracts B. Then, in
particular, [55, Theorem 3.3.2] states that any compact invariant set J attracting points locally
is stable if and only if there is a bounded neighborhood W of J such that T'(t)W C W,t > 0,
and J attracts compact sets of W.

Taking X = TI', which is complete, the well-posedness of the system implies that
it generates a C°-semigroup T'(t). The asymptotic smoothness can be easily derived, as any
trajectory of is either attracted to the DFE or EE.

o For Ry < 1, it is sufficient to take I' as the positively invariant set corresponding to W in
the Theorem and the DFE as the invariant attracting set J. As the DFE attracts globally
in I, then it attracts a fortiori every compact subset of I'. Therefore, the DFE is stable for
Ro < 1.

o For Rog >1,{z € X} :||Z]|xs =1 and Zi;l(Ei + I;) > 0} is a suitable candidate for the
positively invariant set W, and as the EE attracts globally W, it is stable.

To conclude, the DFE (resp. EE) is globally asymptotically stable in I' for Rg < 1 (resp. in

{z e X{ :||zllxs =1and 3,5, (E; 4 I;) > 0} for Ro > 1).
1.4.6.5 Proof of Theorem m

e The assertions 1. and 2.(a) are evident due to

N(t) = (b— p)N(t) — vI(t).

e If b= p and Ry > 1, the Theorem establishes that I(t) converges to a positive limit 77,
Rewriting the differential equation in this case, we have

N = —viI(t) = —vI(t)N(t).
Thus, let € be a positive number, for sufficiently large t, N verifies
N < —v(IPE —)N(1).

It is then sufficient to take ¢ small enough to have I®% — & > 0 and 2.(b).ii.
e For the case 2.(b).i (i.e., b = p and Ry < 1), I converges exponentially to 0 by the proof of
Theorem [[.4.7] Hence, taking ¢ to the limit ¢ — +o0, there are ¢1, ¢z > 0 such that

—vere PN < N < 0,

applying then the logarithm, we obtain

d C1 d —
—log N > v——e
dat ® e dt '
thus c ‘
log N(t) = log N(0) + v—(e~®* — 1) > log N(0) — v—,
Co C2
and finally :

c

N(t) = N(0)e "= > 0.
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N(t) is therefore non-increasing and bounded from below by a positive quantity, and 2.(b).i is
proved.

eIfb> pand b— > IPF then for all € > 0 and ¢ > 0 large enough:
(b—u—u(fEE+5))N<N,

therefore, we obtain b — p — v(IFF + £) > 0 and 3.(a) for € sufficiently small.

e Finally, for the case b — u < I®F, we consider —¢ instead of € in the computation above to
derive 3.(b).

1.5 Coefficients with geometric progression

We consider in this section the system (|1.5)) with coefficients following the geometric progression
Bij = Bpspy, wi=wpg, 0i=0, %=1,

and S,0,v,w > 0, 0 < pgr,ps,pr < 1. In other words, there is a geometrical decrease in sus-
ceptibility in a proportion of pg, infectivity in a proportion of p; and an increase in immunity
in a proportion of pr at every infection. The quite natural assumption on the model, which
motivates the study, is that every reinfection strengthens the infected host’s immunity and hence
decreases its susceptibility and infectivity with regard to the disease, and slows down the im-
munity waning. Moreover, it is assumed that all these decays are exponential with respect to
the number of reinfections. Last, we assume here that the incubation rate o and the recovery
rate w do not depend upon the number of reinfections (but such hypotheses may be considered
if needed). This leads to the system :

Si = wply "Ri_y — BpsSiY o0l — pSi, =1,
E; = ﬁpgsisz]ilj — (0 +p)E;, iz 1,

. (1.40)
I; :O-E’L_(’Y'i_/l)]la i =1,
Ri = yI; — (wply + p) R, 121,
where we have the equality Ry = £. The macroscopic quantities are then solutions of the
differential system
S=p=BY 0sSi) pli+tw) ppRi—usS,
i j i
E=5Y psSi )y ml—(o+pE,
i ] (1.41)

[=0E—(y+pl,
Rzyl—prﬁ%Ri—uR.
i

The equations above show that there is apparently no closed form formula for the macroscopic
behavior. Therefore, the case where the coefficients follow the geometric progression is more
intricate for the analysis. However, we were able to derive a threshold for the appearance of
endemic equilibrium, which is the content of the subsection below.
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1.5.1 Equilibrium, basic reproduction number

Theorem 1.5.1. Define Ry := %UJmmps and § = 7+u Uj‘w e System (1.40) has a unique
disease-free equilibrium zP¥F = (61;,0,0, 0)i>1. When Ry < 1, there is no endemzc equilibrium.

The existence of endemic equilibrium is guaranteed for Rg > 1 and moreover its uniqueness for
5 \2
RO > (1_5) .

Proof. Existence.

System possesses only one DFE which is (6},0,0,0);>1. At any endemic equilibrium
(SFE EEE [EE REE),. | the derivatives cancel out, and the equilibrium point fulfills the equa-
tions below

OZWP% BPSSEEZF)IIEE SzEEv iz 1,

O—BpSSEEZ I — +u>EfE, i1, (1.42)

OZUEZEE—(7+M)IFE7 i>1,
0 =~yIFE — (wphy + u)REE, i>1.
Denoting IFF := > pLIEE then IFPF must be < 1 in order to be an equilibrium value that is

realistic. From the equations we deduce the relation

EE _ gl EE EE _ O EE EE _ »BPZSIEE EE EE __ Wplgl EE
R = ——— 1", I[7 = ——E;" B = ———8"", 5% = —— R,
wpR + H Yt p o+ p Bpg I + p
hence, for i > 2,

EE _ _ 7 o BokI®?  wpl !

: : RFE — o;RFE. (1.43)
VRO BB I + pwp + p

Furthermore, as Ry = £

wer BT (T ST el
Wi VJF#UJFHBpJIEE—i—uwa%-u

Define

0,155 H 7 DSl wpy )
7+MU+MﬁpJIEE+uwp§{+,u

Hence for all 7 > 1

)

REF — /Jq) (177, 177 = H+WP32RZ}EE _ p+ wpl H(I)i(IEE)
gl 7w
+ wp!
IEE ad i h RTYPrg, ([EE o(JEE
= S AIEE = L g 1) — a1,

i>1 7,>1
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with the expression of ®(z) defined by

M
d(z) =
(@) = Zv—&-ua—i—u

=“Zm z

7+uo+u

7 izl

)i(H M)(

ﬁ wpl L\t wpk
L wpR Y

II Bpsx

; Bpstru

1:[ wpiq,)

1 Bpsz +p i weR +

Let us fix z = 0, thus ®(0) = 0 by the previous formula. For z = 1, we have

)= S

1>1

qupRJruZ

>i<H <1y

7+ua+u

II ﬁps

1wa+u ﬁps+u
o  wpr  Bps )i

Y WpR
< Hwpntp

= 7+u0+uwa+uﬁps+u

PIYowprBps

7 wor (v +p)(o+ p)(wpr + p)(Bps + 1) — pryowprBps
< (wpr + w)p1oBps
S (v (o4 p)(wpr + 1) (Bps + )
< pwpr + p)oBps
S (v (o + p)(wpr + 1) (Bps + 1)

— pryowprBps

<1
— YowprBps

Additionally,

'(0) = 17ﬂ b 0 psB_ B - PIPS

o1 2
Y vtpo+p p y+tpo+p

Thus for Ry := %%ﬂpms > 1, ®(x) > z on the right of the point = 0. Therefore, by the
fact that ®(1) < 1, ®(x) has at least a fixed point in [0, 1], hence the existence of at least one

equilibrium for the system (1.40) in the case when Ry > 1.

Let us consider the case i—p;ps < 1. Let 6 be 0 := p; (=L

i —2_) such that

Yt+u U+u

_ K Bpsx l_1< )
; H(BPsx+N>E WPR+M ’

therefore

% . Bpst i _ 1 0Bpsx
dlz) < =) (=)t .
(@) VZ (Bpsw+u) Y Bpsx + p — 0Bpsa

i>1
Assuming then 0 < z < 1 and ®(z) = z. Divide the inequality by « on both sides

7 08ps 08ps
1<+-———2— hence (1-0 z <

-1,

however we have

08ps __ B
v ’Y+M’Y+M

prps —1=Ro— 1.
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Hence the previous inequality could not be fulfilled if Ry < 1. As a consequence, there is no
endemic equilibrium in this case.
Uniqueness.

e Bounding @’

Defining
(@) = 22
pla) =g

it is then easy to prove that, for all x > 0,

0<pz) < min{ﬁz,l}.
W

The function ¢ is positive, increasing, and concave.
On the other hand the function ® can be rewritten as

i fi-1 j i

o o v WPk ;
d = - _— —_— . 1.44
@=23 (7)) (Do [T (i) (1.44)

j=1 WPR T H j=1

For all @ > 0, denote ¢, : * — ¢(ax), thus for all 4 > 1, one has

L TTetio Z@Psx P e, Pl o) plpsa). (1)

and the derivation of ¢, led to

Py () =

Ba _a(@ha+p? , o b (14
(Bax +p@)? b (Bax + p)? bm_a( i | #h(@)-

In particular, while ¢ and its derivative are positive, if 0 < a < b, then for all x > 0 :

b
on () < 5@2(96)-

Thus, from (|1.45)) and the fact that pé < ps (because pg < 1):

d 7 } a 7 -
| [T eos2) | <lpsa)'™' Do), (2) < plpsa)'™ Z ps ¢ (@)
j=1 j=1

. i— —(i—1 d i —1i
Lip(psz) ¢ (x ) = @(%S(I))psps .

Then the derivative of (|1.44) is, for all x > 0

M “d : ups d o N i
Z<a+u’y+,u ) dx jI;[l@Ps(I) v da Z (U+N’Y+Mps<pp5(x))

z>1 i>1

The computations of the series and its derivative lead to
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Lemma 1.5.2. Assuming d¢(ps) € (0,1) with & defined as

=7 7 P (1.46)
o+ py+pps
For all x > 0,
d®(z) _ pps d ( 0pps (x) ) _ pps d ( 6Bpsw ) _ kps dBps i
dzx v dz \1—0py,(z) v dx \ (1 —=0)Bpsz+p v (1 =0)Bpsz + p)?
Remark that the upper bound above is exact for z = 0. Indeed,
88 p? o
2'(0) = Pos _ Bprps =: Ro.

gt o+ py+p

¢ Bounding ¢
Thanks to (|1.44) and the fact that ¢ is increasing, one has for all z > 0

1 o v Nt p ! "o dolpse)
d(z) < 2 )| <& )| =
. ’v;<a+m+upl> gl:[l(p(ps ) 7;<U+uv+upw(ps )> 71— 3"¢(psa)

(o
o+ py+p

Iz §'Bpsz '
== , where ¢’ :=
v (1=¢")Bpsz + p

pr = pso.

On the other side, we derive a lower bound for ® by retaining only the first term of the series.
The next lemma summarizes this result :

Lemma 1.5.3. For all x > 0,

p ' Bpse p §'Bpsx
EZEP5Y )< & .
Y BpsT + p (=) v (1—¢")Bpsz + p

Considering now the rational function below

M §'Bps

V@)= st

As well as ¢ studied previously, the function v is positive, increasing, and concave. Moreover,
the result of lemma [I.5.2] and [I.5.3] can be expressed as following :

P(z) < B(x) < P((1-d)z), @'(2) < ((1-6dz), x>0

1-¢
e Uniqueness of the fixed point
The following result below is required.

Lemma 1.5.4. Assume,

6/
Ro = @'(0) = i”s > 1

Let xFF be the unique positive value such that ¥(xFF) = xFF. Then,

Y((1—8)zFF) <1 = 3 2BF >0, ®(2FF) = 2FF. (1.47)
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Proof of Lemma[I.77 Indeed, at any point = € (0,2FF), one has z < ¢(x) < ®(z). Every fixed
point of the function ® belongs then to the interval (¥, +00). As 4 is concave, then for every
point x of this interval

1> ((1—8)2PF) > ¢/'(1 - 0)z) > &' (x) > 0.

The fixed point of @ is then unique (and belongs to (z¥F, 4+00)) if the condition (1.47)) is fulfilled
(One may also obtain another estimation using Lemma [1.5.3)). O

By definition, £¥¥ fulfills
p__9Bps  _ 4
v BpstPE + p

2EE — _H (515/)5 _ 1) .
Bps \ v

7

then,

and

Y (1= 0)BpsaPP + w2~ (1-0)(Ro— 1)+ 1)2 (1 0)*RZ+23(1 — )R + 0%

W (1=8)"F) = L ' Bpsp Ro Ro

the condition (1.47)) is thus equivalent to

Ro
(1 =6)Ro +9)

5 <1,

Therefore the uniqueness of the fixed point and consequently uniqueness of the endemic equilib-

2
rium are guaranteed for Ry > max {1, (1%6) } O
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Chapter 2

Distinguishing primary and
secondary infections: a two-stage
reinfection model

2.1 Introduction

This chapter is intended for the study of reinfection models where all reinfections occur along
identical characteristics, which are different from the characteristics of the primary infection.
The motivation for this study comes from the observation that, in most of the existing mod-
els for reinfection, the infection and reinfection processes are assumed to behave essentially the
same, and there is no comprehensive investigation into the possible consequences of heterogene-
ity between the primary infections and reinfections. This is because in the standard reinfection
models |15, 67], the infected often belong to the same compartment regardless of their history of
infections, and these types of models are usually not suitable for considering disease with differ-
ent reinfection behaviors. Nevertheless, several works have considered reinfection models with
partial immunity, which is a simple example of the kind of heterogeneity that we are concerned
about. Notably, a SIRI model with partial immunity has been thoroughly analyzed in [51]. It
is demonstrated therein, among other things, the existence of a threshold on the reinfection
parameter by which the system transits from low-infectivity to high-infectivity equilibrium. On
the other hand, a simple SIRI reinfection model with partial immunity and without demography
effects has been studied in [94], exhibiting bistability for Ry < 1.

To gain further insight into the effects of heterogeneity between infection and reinfection,
we introduce in this chapter a two-stage SEIRS model, illustrated by the flowchart in Figure
As in the standard SEIRS model, the classes of compartments S, F, I, R represent in this
case respectively the susceptible, exposed, infectious and recovered. The SEIRS models take the
assumption that there exists a latent period for hosts infected by the disease before becoming
infectious [15]. The specificity of the model that we have introduced is that it separates primary
infections from the subsequent infections. This is rendered through the subscripts 1 and r (as
‘remaining’). In terms of differential equations, we obtain the following system for the two-stage

49
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(81011 + Bradr )51

—D-S] -El

o By 74

I

P L L

R, —

b4
k4

.u' Rr ) "}"rIr IT ) G?'E?' E?, ?ﬁ],J'Il +.3r,r}-r)sr ST .u'
L e
we R,
Figure 2.1: Flowchart of the two-stage SEIRS model
SEIRS model: ]
S1=pu— (Bralh + Bl + p)Si,
Ey = (Biali + Bi,1.)S1 — (01 + ) En,
L =01E — (mi + i,
Ry =71 — (w1 + p)Ry,
1 =711 — (w1 +p)Ry 2.1)

Sr =wi Ry +w. Ry — (Bralh + Br Iy + 1),
By = (Braly + Brn L) Sy — (00 + ) B,

L, =0, Er — (v + )y,
Rr =71 — (Wr + U)RT7

where the parameter p is the constant natural birth rate, hence the model considers a constant
total population, which can be assumed to be equal to one. Next, 81 1, 51,r, Br,1, Brr are transmis-
sion rates, respectively for primary infections acquired from primary infected and from reinfected;
and for reinfections transmitted by primary infected and by reinfected. The parameters o1, 0,
are respectively the rates at which the primary and secondary exposed hosts become infective.
Moreover, 71,7, are rates of recovery and wy, w, represent the loss of immunity, depending again
on whether the infection is primary or secondary.

In the spirit of Chapter [T} the two-stage reinfection models are initially derived from the
study of the infinite reinfection models tracking the number of reinfection. In fact, the present
model can be considered as the macroscopic model corresponding to the general infinite model
, in the case where the epidemiological parameters differ only between the primary infection
and the reinfections. Therefore, we may expect to find in the same way results somehow similar
to the ones in Section [T.4] of Chapter [I] taking advantage again of the existence of a macroscopic
counterpart to the infinite model. For instance, the endemic equilibriums of the model and
the mean number of reinfections at equilibrium of the infinite model are again topics worth
investigating. However, these results depend strongly on the properties of the macroscopic two-
stage model, which will be explored in the present chapter.

It is noteworthy to mention that, concurrently with our study and driven by the need for
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more complex models during the COVID-19 pandemic, two-stage reinfection models have been
independently proposed in several papers of mathematical epidemiology. In fact, an age-specific
two-stage SEIRS model has been utilized for statistical inference of infection levels in Covid-
19 epidemics [18]. Moreover, in [63] Kaklamanos et al. investigated the backward bifurcations
and the different time scales regarding the dynamics of a two-stage SIRS model, which appears
to be very similar to our own albeit with a lower level of complexity. Furthermore, two-stage
models have also found their application for the modelling of animal infections, such as bovine
tuberculosis (BTB) or Aujesky’s disease (pseudorabies virus) in pigs |7, |54]. These considerations
underscore the significance of the two-stage model for diseases that permit reinfections.

In the present chapter, we are mainly interested in describing the steady states of the model,
how the parameters affect the reinfection and whether there is a reinfection threshold similar
to the one underlined by Gomes et al. [50]. In a second time, the persistence of the system is
analyzed in the mathematical framework developed in [49]. Persistence is a well-known topic in
mathematical biology [108)|112], and particularly in epidemiology, as it is concerned with the issue
of disease eradication [50, [82]. Furthermore, the persistence result may in some instances serve
as the initial step in establishing asymptotic behavior results, in case where the direct Lyapunov
method fails |74} [75]. Finally, the question of asymptotic behavior of the epidemiological models
is also studied. As we shall see, the two-stage models often exhibit multistability, and this makes
the analysis of asymptotic behavior a non-trivial problem.

The analysis begins in Section 2.2 with the description of the disease-free equilibrium and the
computation of the basic reproduction number of the model. Next, a comprehensive result on the
existence and number of endemic equilibriums is established in Section[2.3] In fact, a quite precise
description is provided that characterizes the number of endemic equilibriums, according to the
parameter values. It is shown that there may exist up to three distinct endemic equilibriums
when the basic reproduction number is larger than one, and up to two such equilibriums when it
is smaller or equal than one. The result and the simulations displayed later in the chapter allow
us to discuss the existence of a reinfection threshold for the two-stage model. In particular, we
argue that our findings shed some lights on the controversy that opposed Gomes et al. to Breban
and Blower [20] about the exact nature of the threshold. Disease persistence of the model is then
considered in Section [2:4] and an extensive set of numerical simulations of endemic equilibriums
and trajectories are computed in Section 2. for each possible situation. In Section [2.6] the
same analysis is repeated for a simpler two-stage SIS model of reduced complexity, for which one
checks that the same results persist in this most simplified reinfection model with two stages.
Finally, in Section we introduce and discuss a number of tools for the analysis of asymptotic
behavior within a multistable setting, and we deliver a result on the convergence to equilibrium
of compartmental models presenting partial immunity, which can be considered as a particular
case of the general two-stage model. The proof of this result is based on Li-Muldowney theory
[75].

2.2 Disease-free equilibrium and basic reproduction num-
ber Ry

We begin our investigation with an easy computation showing that the system admits a
unique disease-free equilibrium, i.e., an equilibrium in which £y = I} = E, = I,, = 0. The value
of the equilibrium is given by

E, :=(1,0,0,0,0,0,0,0).
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Additionally, we may characterize the basic reproduction number Ry by the threshold condition
for local stability of the DFE. Remarkably, from the expression below, Ry depends solely on
coefficients intervening in the primary infection.

Proposition 2.2.1. System (2.1)) admits the unique disease-free equilibrium (1,0,0,0,0,0,0,0).
Moreover, denoting

Ry = P11 (2.2)

S mtpor

the DFE is locally asymptotically stable for Ro < 1 and unstable when Rg > 1.

Proof. By definition, £y = I = E, = I, = 0 at disease-free equilibrium, which means that any
DFE Ej is of the form
Eo = (5Y,0,0,RY,5°%,0,0, RY).

Moreover, the remaining values SY, R?, S%, R} of the steady state fulfill the equations
w—pS; =0, —(w1+p)R; =0, wiR]+w.R—pS:=0, —(w,—+p)R;=0.

Hence, S = 1 and R} = S = RY = 0. The Jacobian of the system (2.1)) at the DFE is

—p 0 —B1,1 0 0 0 —Bir 0
0 —(o1+np) Bi1 0 0 0 Bir 0
0 o1 —(m+p 0 0 0 0 0
P 0 M —(w14+p) 0 0 0 0
’ 0 0 0 w1 — i 0 0 Wy
0 0 0 0 0 —(o,+p) 0 0
0 0 0 0 0 o, —(r + 1) 0
0 0 0 0 0 0 Yr —(wy + )

Let us compute the characteristic polynomial associated to the Jacobian matrix.

det(A — Als) =(—p = N)2(—wy — 11 = \)(=7 = 11 = A) (=07 — j1 = A)(—w1 — = A)

—(o1+p+A) Bi,1 ‘

x o1 —(y1+u+A)

The factorization shows that at least 6 eigenvalues counting multiplicity exhibited in the factor
above are negative, and the remaining two are the eigenvalues of the matrix

<_(Uf171+ . —(:il’jr u)) '

As the trace of this matrix is negative, it is necessary and sufficient that the determinant of this
matrix is positive to have two negative eigenvalues, assumption which is equivalent to

(o1 +p)(y1 + ) = Br1io1 >0& Re <1,

where R is defined in .

Additionally, one may verify, using the method of next generation matrix [35], that R is in-
deed the basic reproduction number of the model. The system has 4 infected compartments
FEy, I, E,, I, which will be alternatively denoted x1, x2, x3, x4 respectively for simplicity. On the
other hand, the remaining compartments Si, R1, S, R, are denoted respectively x5, z¢, T7, Zs.
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We write now the dynamics of z := (;)1<igs in the form

Here, F; is the rate of appearance of new infections in the compartment z; and V; = V,” — Vf,
where V;© (resp. V,7) is the rate of transition into by all others means (resp. out of) the
compartment ;. Denoting F(x) := (F;(z))1<ics and V(x) := (V;)1<igs, and the Jacobians of
F and V at the disease-free equilibrium are

0 Bi1 0 Bir
_ [ F 04 o 0o o o
DF(Ey) = (04X4 04X4> , where F = o 0 o o |
o 0 0 0
oi+p 0 0 0
(V0444 | o1 mtp 0 0
DV (Ep) = <J1 T > , where V = 0 0 S 0
0 0 —Or Yr 1
In addition,
(o1 +p)~t 0 0 0
y-1_ [olon+m) T n+m)™ (n+w) 0 0
0 0 (o +p) 1 0
0 0 UT(JT"‘N)il(%""M)il (’77‘"‘:“)71

The basic reproduction number of the model (2.1)) is then given by the spectral value of FV~1,

: : Bii1 o1
which is equal to e O

2.3 Endemic equilibriums

In this section, which forms the main part of the chapter, we investigate the endemic equi-
libriums of . First, in subsection the equilibrium equations are transformed into a
polynomial equation which is suitable for analysis. Moreover, we introduce the coeflicient a, as
the bifurcation parameter for the study of the polynomial. In subsection we state that
the polynomial equation may imply the possibility for the system to have multiple endemic
equilibriums. In this case, there exists a total ordering between these points. The main results
characterizing the number of endemic equilibriums are contained in subsections and
2.3.5|respectively for the case Ryp < 1, Rp = 1 and Rg > 1 (respectively in Theorems
2.3.9). Finally, in subsection we describe some particular situations where the uniqueness
of endemic equilibrium is guaranteed.

2.3.1 Preparation for the bifurcation analysis

Let (ST, Ef, I, Ry, Sk, Ef, I, RY) be an endemic equilibrium of system ([2.1]), then the following
equations hold.

0=p— (Bialy + By + p)ST,

0= (Brad] + B1,-1})ST — (01 + p)EY,
0=o01E] — (m1 +p)i7,
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0=1] — (w1 + 1R,

0=wR] +w. R — (B Iy + B+ 11)S;y,
0= (Br1ly + BT,TI:)S: —(or + R)E},

0=0, B — (v + 1)1,

0="17 = (wr + R R

In other words,

R = I, Er=2Fhp
Wy + /1“ Oy
Ef = MS* Sr = WI*RT +wr Ry ’
o + :u 67”,1]1 + ﬂr,rI: +u (2 3)
Ri=- " pp=" g '
1 — w1 + 1> 1 o1 1
I r
pr=ulithelig g 7
oL+ p By + By +

After elimination of ST, EY, R}, S}, Ef, R}, the remaining quantities I; and I are related by

oo Iz Prali + B I
ov+puy+p by + B I+
. Beadi +Brwly  or v wr [(wiwrtpum .
I’I" = * Il +I
ﬁr,lll +BT,TI:+MO.T+M’YT+MWT+/’L Wy W1 + 1Yy

(2.4)

All the coefficients being positive, any nonnegatlve nonzero solution (I7, I*) of ( . 2.4]) yields a
nonnegative nonzero equilibrium value (S§, EY, I, Ry, Sk, E*, I¥, RY) Such that 51 + BT+ 1T+

Ri+S;+E:+I+ R =1. The endemic equilibriums are therefore in one-to-one correspondence
with the nonnegative nonzero solutions of system (2.4)).

In order to solve this system of equations, we rewrite (2.4]) in the form:

I + B I} N B If + I

=A——_2r pr_ g, L T
Ly B+ T B I} + I + C,

(Dr Iy + I7),

with coefficients defined by

H g1 Bl,r M
= ) 1= 701: ’
o Y wr Br.1 B _wiwrtpm '
A, = , B = C, D,
Op + W Yr + Wy + 1 ﬁrr ﬁnr Wrwl'i',u’)’?‘

Clearly, all coefficients are positive, and A;, A, < 1. For simplicity, we denote in addition
=17, y:=1I,
and the equations above are equivalent to

z? + (bly - al)x —ay =0, y2 + (ar - brm)y - CTCUQ =0, (26)
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where the coefficients are

alel—Cl, bl:Bl>O7 61:A131>0,

C, 1 A, B, D, (2.7)
= 1— AT > 0, bT = m(A,(BT +Dr) —Br), Cp = 1_7147‘ > 0.

Qr

Notice that the signs of a; and b, are unknown in general, moreover
a1 >0Ryp>1, a1 <0 Ry<1, (28)

and in any case a1b; < ¢ is verified. Moreover, for any y > 0,

1
y=V(z):= B (brx —a, +/(byz — a,)? + 4crx2) , (2.9)
is the unique solution of the second equation (the other root is negative). On the other hand,
the expression of y given by the first identity in (2.6) must be

T —aq
=y, =_—r—. 2.10
Y () ﬂﬁcl b ( )

Notice that,
c
max{0,a;} < bfl <1.
1

Therefore, ¥,.(x) > 0 with z > 0 if and only if

ze(0,1)n (al,%), (2.11)

and in fact we proved the following result.

Lemma 2.3.1. The endemic equilibriums of system (2.1)) are in one-to-one correspondence with
the roots of the equation

for U1, U, given in (2.9)-(2.10).

The problem may be further transformed by isolating the square root in ¥;(x) and squaring
both sides of the equality, hence the equality above yields

25— — (ba — ) = v/ (byw — a)? + deya?, (2.12)
C1 — bll'
thus ,
R S _ _ 2 2
<2IC1 — bz (brCC a’")> (brx aT) +4c,x°,
that is . .
42 : )% — 43371(@,95 —a,) = 4c.2°.

C1 — bll‘ C1 — blli
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The following relation is therefore verified for any solution of (2.13]) fulfilling ([2.11)),

T — aq T —ay 2
x z —(byx —a =crz® > 0. 2.13
C1 — b1.13 < C1 — bll‘ ( " r)) " ( )
As z 7= > 0 in the interval given in (2.11)), the previous inequality implies
T—a T—a
brx —a, <z L <o ! ,
C1 — bl.’E C1 — ble

and the left-hand side of (2.12) is indeed positive for any solution of ([2.13)) in the interval (2.11).
Therefore, the problem is reduced to finding the solutions of polynomial equation (2.13]) instead

of (2.12). Last, we multiply by (a=bim)® 1 hoth sides of (2.13) to obtain a cubic polynomial

x
equation and deduce the next Lemma.

Lemma 2.3.2. The endemic equilibriums of system (2.1)) are in one-to-one correspondence with
the roots of the equation P(x) =0 in (0,1) N (a1, ), where

P(z) :=z(z —a1)® — (x — a1)(c1 — biz)(bpx — a,) — ¢.(c1 — bizx)*a.

Remark 2.3.3. One shows easily that

2
P(a1) = —crai(ci — brar)?, P(0) = —arcia., P (Cl> _a <Cl - al) > 0.

The values P(a1), P(0) are thus both positive iff a1 < 0, that is Ro < 1; and both negative iff
a1 > 0, that is Rg > 1.

For the subsequent analysis, we consider a, > 0 as a bifurcation parameter. In fact, writing
separately the terms depending on a, from the rest of the polynomial P gives

P(z) = 2P(z) + a,Q(x),
P(z):=(x —a1)® = b(x —ay)(c1 — b1z) — cp(c1 — bix)?,  Q(z) := (x — ay)(c1 — br).

As the roots of @) are well known, this decomposition helps to visualize the roots of P geometri-
cally and motivates the choice of taking a, as the bifurcation parameter. Indeed,

P(a1) = —c,(c1 — bray)? <0, P():(—a02>q (2.14a)
1> . (2.14b)

On the other hand, there is no prescribed sign for the two following quantities

P
P(0) = ai + arc1b, — ¢}, lim (f)

Tx—+00 I

=14 bby —c.b3. (2.14c)
In order to study the roots of P, it is necessary to recall the following result on cubic poly-
nomials, which can be found in [61].

Definition 2.3.1. For a given cubic polynomial ax® + bax® + cx + d in the variable =, the dis-
criminant is defined by b*c? — dac® — 4b3d — 27a%d* + 18abcd.
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The number of roots of a 3rd-degree polynomial depends upon its discriminant in the following
way : if the latter is positive, then the polynomial has 3 distinct real roots; if it is null, then the
polynomial has a real root which is double or triple; last, if it is negative, then it has a unique real
root, which is simple. For future use, we denote by A the discriminant of the cubic polynomial
P(x), considered as a function of the variable a,. It is easy to see that A is a polynomial
of degree up to 4 in the variable a...

Remark 2.3.4. Notice that the parameter a, is independent of the value of Rqg, which is ex-
pressed only as a function of the parameters intervening in the first stage of the infection dynamic
(see the formula that provides its value). Keeping the coefficients i, £1,1, 81001, r, Y1, Vrs
w1, wr fized and considering and , we see that a variation in B,1 and By, of the same
proportion amounts to modify a, in an inversely proportional way. Therefore, an increase in
the parameter a, can be interpreted as a decrease in the susceptibility to reinfections.

2.3.2 Number and ordering of the endemic equilibriums

Prior to the actual polynomial analysis, let us notice that P introduced in Lemma is of third
degree, which permits to state an interesting fact concerning the number of endemic equilibriums

of system ({2.1)).
Corollary 2.3.5. The number of endemic equilibriums of system (2.1)) is 0, 1, 2 or 3.

The actual number of equilibriums depends upon the values of the model parameters. Before

deciphering this dependence and showing in subsections [2.3.3] to that all four cases depicted
in Corollary are actually realizable, we state a last general result, related to ordering. As a
matter of fact, in the case of multiple equilibriums, the question of their possible ordering arises.
The following result solves completely this issue and establishes the existence of a total order
relation between all equilibrium points.
Theorem 2.3.6. Let (ST, ET,IT, R}, S5, EX ¥, RY) and (ST*, ET*, I, R{*, S**, EX*, I, R™*)
be two distinct endemic equilibriums of system . Assume ST is larger (resp. smaller) than
S7*. Then every remaining component of (S1, ET,IT, R}, S¥, EX, I, R) is smaller (resp. larger)
than its analogue in (ST*, ET*, I7*, Ry*, Si*, EX*, [, R¥™).

Proof. Assume that ST is smaller than S7*, let us check first that I7 is larger than I7*. Differ-
entiating first ¥,. from ([2.10)) :

W (z) = T —ay cl—blx—i—bl(x—al),
r C1 — blx (Cl — b1.’13)2 (2 15)
_ (xr —a1)(er —b1z) + (1 — bz + by(x — aq)) 20, Veel(a ﬂ) .
(c1 — byx)2 ’ by

Thus the endemic value I increases along with I;. We deduce that

I
Bz + fr1,p¥r(z) + 1

is a decreasing function in (aj, &). Therefore, thanks to (2.3) and S} < S7*, we conclude that

1

I;* < I7 and (also) I'* < I*. The inequalities for Ef, Ry, EX, R’ are easily deduced from (2.3)
using I'* < I¥. Tt remains to check S}. One has the following equality, derived from ([2.3])

g Trtp g ot g ortpywtp I
" /67',1];{ +ﬁr7rlr;k " /87‘,1[;( +ﬁr77‘1: Or " Or 57‘77‘ BTIik +I:
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with B, defined in ([2.5). Let us define then the function ¢ as

ortpy+p  Ve(x)
or  Brr Brx+ V. (z)

§(x) =

Its derivative is

or + 1y + p Vi (2)(Bra + W, (2)) — Vo (2)(Br + ¥ (2))

E’(x) = o Br,r (Brx I \IIT(ZL'))Q
R e V.(z)Byx — B, V() Oyt B, (V) (v)x — V,.(7))
B Or ﬂr,r (Brl' + \Ilr(x))Q B Or ﬁr,r (Brx + \I’T(I))Q '

Notice that, thanks to (2.15])

—aib
' (z) = U, 2 17 Mm; U, (z).
a2V (z) () +a (c1 — biz)? ()
We conclude that ¢'(z) > 0, Va € (a1, $), and as IT > I7*, then S} > S;*. O

2.3.3 The case Ry <1

We proceed now to the description of the endemic equilibriums in case where Ry < 1. Recall
that this is equivalent to a; < 0, see formula . In this case, the result below describes
comprehensively the steady states according to the parameters of the system. In particular,
it shows the possibility for the system to exhibit up to two endemic equilibriums, even if the
threshold condition for outbreaks is not reached.

Theorem 2.3.7. Assume Rg <1 (that is ay < 0). Then,
1. if a? + ayc1by — ¢ > 0, then system (2.1) admits no endemic equilibrium;

2. if a% + aic1b, — crc% < 0, then there exists at least a value at which A vanishes, and the
roots of A are necessarily positive. Moreover,

(a) if ar > 0 is smaller than the smallest zero of A, then system (2.1)) admits two endemic

equilibriums;
(b) if a, is equal to the smallest zero of A, then system (2.1) admits a unique endemic
equilibrium;

(c) if a, is larger the smallest zero of A, then system (2.1)) admits no endemic equilibrium.

Notice that the value a% + ajc1b, — crc% does not depend upon the bifurcation parameter
ar. To provide some insights, Theorem [2.3.7] states that, for Rg < 1 and a; < 0, the system
exhibits endemic equilibriums under the conditions a? + ajc1b, — ¢.c? < 0 and a,. less than or
equal to the smallest positive zero of A. Even though the first condition appears to be difficult
to interpret, the second condition indicates that the system produces endemic equilibriums only
in the interval between 0 and the smallest root of A. From the Remark this means that
endemic equilibriums appear when susceptibility to reinfections is sufficiently high.

Proof. For Ry < 1, notice first that a; < 0, and the endemic equilibriums are in one-to-one

correspondence with the zeros of P in (0, %) First, let us consider the zeroes of the polynomial

P. From (2.14a)), we deduce that P has a zero in (al, l%) and there can be no other zero in this
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interval, as P is of degree 1 or 2. If it exists, the second zero of P is then either in (—o0, a;) (and

necessarily P is convex) or in (2—1, +oo) (and necessarily P is concave). Moreover, the zero of P
located in (al, l%) may be either in (a1, 0) (in which case necessarily P(0) = a3 +ajc1b, —c,c3 >

0), in (0, %) (in which case P(0) < 0) or at 0 (in which case P(0) = 0).

Consider now these three cases separately. Notice that the derivative of zP(z) at x = 0 is
equal to P(0). Therefore,

o if P(0) = a2 + arc1b, — ¢.¢2 > 0, then zP(z) is strictly increasing at * = 0 and in
addition P(z) > 0 in (O, %) As Q(z) > 0 in this interval, one concludes that, for any

a, >0, P(z) =xP(z)+ a,Q(z) > 0 in (0, %), and there is no endemic equilibrium. This

demonstrates point [T in the case of a strict inequality.

o if P(0) = a? + aic1b, — c.¢3 = 0, 0 is a root of the polynomial P. Thus, due to (2.14al),
P(z) > 0in (O7 %) The same argument shows that, for any a, >0, P() > 0in (0, - ):
no endemic equilibrium exists. This, together with the previous point, fully demonstrates
case [Tl

o if P(0) = a?+aicib—c.c? < 0 (casel2)), consider first the situation where 14b,b; —c,b? # 0
and P is a 2nd-degree polynomial. In this case, P(x), P(z) are 3rd-degree polynomials

and, for some x* € (O7 %)’ one has

P(z) <0in (0,2%), P(z*)=0, P(z)>0in <x2)

Therefore, the 3rd-order polynomial xP(z) vanishes at x = 0 and x = z*, is negative in

(0, z*) and positive in (x*, i) As@>0in[0,2%] C (al, %), then we can already notice
that, for any sufficiently small positive value of a,, the polynomial P(z) = 2P(z) + a,Q(x)

admits two distinct roots in (0, z*).

Moreover, zP(x) > 0 at = a; < 0 and at x = {* thanks to (2.14a). The polynomial
xP(z) being of 3rd degree, it goes to infinity when ]}x| — +o0, with different signs when
x — 400 and  — —oo. Therefore, one of the two limits is negative, and the third (real)

zero of zP(x) is either in (—o0,ay), or in (l%, —|—oo). Let us study now these two cases in

more details.

o If 2 P(x) possesses a zero in (—o0, ay), then the latter is unique and xP(z) diverges to
—oo when z — —o0, while taking positive values in (%, 400 ). Recall in addition that

the polynomial @ is of degree 2, vanishes at = a; and is negative in (—oo, a1), so for
any positive value a,, P(x) = xP(z)+a,Q(z) has a unique zero in (—o0,ay). For a, >
0 close to zero, it is already described that P possesses two roots in (0,2*) C (0, §*).
When the parameter a, increases, the same situation holds, until the two roots located
in (0, 2*) collapse and disappear, as a,Q(z) (which is positive in ((0, Z—i))) became not
cancellable by the term xP(z). This happens when a, reaches a critical value a,

where a¥ is such that the associated polynomial P(x) admits a double root in the
interval (O, Z—i), that is A = 0 for a, = a}.
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Notice that a pair of zeros of P appears in (2—1, +oo) for large enough values of a,.

One has to wonder whether this happens for a value of a, smaller than a. For such a

value, P would have one root in (—o0, a;), two distinct roots in (0, %) and (at least)

one in (%, +oo). Such a configuration with 4 roots is impossible for a 3rd-degree

polynomial, and a} is thus the smallest a, > 0 for which A vanishes.

o On the contrary, if £ P(z) possesses a zero on (%’ +oo>, then 2 P(xz) diverges to —oco
when z — +00 and a similar argument applies to deduce that P has at least one zero
in (%’ +00). Therefore, P cannot have a third zero in (0, %) C (al, 2—1) Again, a
critical value o exists at which the corresponding A vanishes. For a, greater than a,
P has no root in (al, %) In parallel, a pair of zeros of P appears in (—o0, a1 ) for large
enough values of a,., but one shows with the same argument on the polynomial degree,
that this occurs only after the disappearance of the two roots in (0, %) Again, the

critical value a} is the smallest a, > 0 for which A = 0.

o Last, let us consider the degenerate case where P(0) = a? + ajc1b, — ¢.¢3 < 0, but
1+b,.b; — c,.b? = 0 and the degree of P is 1; The polynomial P is an increasing linear
function that cuts the z-axis at a point 2* € (0, {*). The function 2 P(z) is positive in
(—00,0) and (z*, +00), negative in (0, z*). Thus, for a, = 0, P admits a root at x =0
and z = z* € (0, Z—i) and no roots elsewhere as its degree 2 precludes the appearance
of new roots. Moreover, the polynomial @ is positive on (aq, Z—I) Therefore, for a,. > 0
close to 0, an increase in a, leads to the displacement of the first root of P to the
right and the second to the left. This goes on until the roots merge and disappear
at a critical value a}, beyond which no root exists in this interval. Again, these are

precisely the situations depicted in the cases and

Finally, let us prove that any root of A must be positive in this case. Assuming that

ar <0, as zP(z) cancels out at least once in [0, 1) C (a1, 3-), is positive at the extremities
of (a1, ) and moreover a,Q(z) is negative in (a1, §-) with its roots situated at both

extremities of the same interval, this implies that xP(z) + a,Q(x) is positive at x = ay
and r = %, and negative at = 0, thus it vanishes twice in (aq, %) Additionally, P has a
third root in (—00,a1) U (¢, +00). This means that P has always three real roots and A

does not cancel out when a, < 0 and a? + ajc1b, — ¢,.c3 < 0.

The previous considerations thus prove that when P(0) < 0, the behavior always obeys the
analysis provided by the three cases [24] to

This completes the proof of Theorem [2.3.7] O

2.3.4 The case Ry =1

For the intermediate case Ry = 1, that is a; = 0 (see (2.8)), it is again possible to have up to 2
endemic equilibriums.

Theorem 2.3.8. Assume Ro = 1. Then, there exists a value at which A vanishes, and the roots
of A are necessarily positive. Moreover,

if a, is smaller than the smallest zero of A, system (2.1) admits a unique endemic equilib-
rium.
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2. if 1+ byby — ¢,b2 <0,

(a) if a, is equal to or larger than the smallest zero of A, system (2.1)) admits no endemic
equilibrium.

3. if 14 byby — e b2 >0,

(a) if 3bic,. — b, = 0, system (2.1) admits no endemic equilibrium for a, equal to or larger
than this zero of A.

(b) if 3bic, — b < 0 system (2.1) admits at least a second zero of A. Furthermore,

i. if a, is between the smallest and the second-smallest zero of A, system (12.1))
admits two endemic equilibriums.

it. if a, is equal to the second-smallest zero of A, system (2.1) admits a unique
endemic equilibrium.

1. if a, is larger than the second-smallest zero of A, system (2.1)) admits no endemic
equilibrium.

Notice that, similarly to Theorem the value of the quantities 1+b,.by —crbf and 3bic,.—b,
do not depend upon the bifurcation parameter a,..

Proof. When Ry = 1, a3 = 0, and the endemic equilibriums are in one-to-one correspondence
with the zeros of P in (O, %)

The polynomial P has a zero in (0, 5—1) due to (2.14a)). Additionally, as P is of degree 1
or 2, there cannot be another zero in this interval. If it exists, the second zero of P is thus

either in (—o0,0) (and necessarily P is convex) or in (l%, +oo) (and necessarily P is concave).
Hence, xP(z) has a root at x = 0, another one in (0, ) and the last one is either in (—o0,0)
or (3, +00). Anyway, because Q(0) = Q(a1) = 0 the polynomial P has always a zero at z =0
when Ry = 1. The analysis further divides into two cases :

o If P is strictly concave (which is equivalent to % =1+ b0y — crb% < 0), the second
root of P is in (3!, +00), which leads 2 P(z) and thus P to diverge to —oo when z — +oo0.
As ’P(Z%) > 0, there is always a root in (%, +00) and consequently the polynomial P has
always three real roots for every value of a, > 0. Now, assume that a,, = 0, the third root
of P is in (0, %) and is equal to the root of P in the same interval. Recalling again that

c1

Q is positive in (0, E) and negative outside of it, then, as a,. is increasing, P increases in

(0, 3%) and thus the third root of P moves to the left and leaves the interval (0, ;) when

reaching x = 0. It happens when a, reaches the smallest positive root of A.

o If P is a linear function (i.e., 1 + b.b; — ¢,.b3 = 0), it is thus an increasing function as its
root is in (0, i) and that P(§+) > 0. P is then a convex function with roots at z = 0 and
in (0, l‘%) when a, = 0. As a, is increasing, the later root decreases and leaves the interval
(0, %) by forming a double root at z = 0 when a, reaches the first positive root of A.
Thus, endemic equilibrium of the system disappears when a, > a}.

o If P is strictly convex (i.e., 14b.b1 —c,.b7 > 0) the second root is in (—o0, 0), P(x) vanishes
now once respectively at z = 0, in (—o0, 0) and in (0, 3*) when a, = 0. The function 2P ()
is positive between the first zero and x = 0, negative between x = 0 and the third zero,
and again positive between the third zero and +oo. Moreover, an increase of a, > 0 leads
the function P to decrease in (—o0,a1) and increase in (a1, §-). Thus, the first root of P
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is displacing to the right and the third is decreasing as a, increases before merging and
vanish. As the two roots have opposite sign for a, = 0, this implies that one of them must
reach the third root z = 0 in order to merge and form a double root with each other.
This happens when a, reaches the smallest positive root a; of A. Therefore, we have three
different scenarios:

— If it is the positive root that reaches = 0 before becoming negative, then the system
loses its unique endemic equilibrium when a, > a;.

— It the two roots converge exactly at the point x = 0, then they also vanish at the same
point and, as previously, the system loses its endemic equilibrium when a, > a;.

— If it is the negative root that passes through x = 0 and becomes positive, then the
system gains a second endemic equilibrium before that the two come together and
then vanish when a, reaches the second positive root of A.

We may further determine which root is reaching zero at the first critical value a; by
computing the value of P”(0) when a, = a’.

— If P”(0) > 0, P has a double root at z = 0 and P is positive in a neighborhood of
x = 0, then thanks to lim, ,_. P(x) = —oo (due to the convexity of P), the third
root is in (—o0,0) and it is the initially positive root that is passing through zero.

— If P”(0) < 0, P has a double root at x = 0 and is negative in a neighborhood of
x = 0, by the same argument we have lim,_,; P(x) = 400 and then the third root
is positive. Hence, it is the initially negative root that is passing through zero.

— If P”(0) = 0, P has a triple root at x = 0, then both the positive and negative roots
are reaching zero together.

Let us compute P”(0) :

P' = P(z) + aP'(z) + a;Q'(x),
P =2P'(x) + aP"(2) + a; Q" (x),
P"(0) = 2P'(0) + a;Q"(0)
= 2(—20,1 —brcy — ar1b1b, + QCrblcl) — 2b1a:i = 2(—b7~61 + 2Crb161) — 2b1a;‘..

Thanks to the fact that 0 = P’(0) = P(0) + a>Q’(0), one has

P(0 2
ar=— (): i = —¢pC1.

" Q'(0) c1+aiby

Thus,
PN(O) = 2(36Tb161 - brcl) = 261 (3crb1 — br),

and which scenario occurs ultimately depends on the sign of 3¢.b; — b,

Finally, let us show that any root of A must be positive. Notice in any case that, for a
negative value of a,, a,Q(z) is negative in (0, §*) and its roots are located at the extremities
of the interval. On the other hand, as P(0) < 0, xP(z) is negative on the right side of
@ = 0 and positive on the left side of 2 = 0 and at © = £ (see (2.14a)). Hence, P is
negative on the right side of x = 0 and positive at x = ‘;—1, and P has at least two distinct
roots, one at the point x = 0 and the other one in (0, $*). Moreover, if P is of degree 3,

there must be a third root in the set (—o0,0) U (5—17 —|—oo$, as P >0 at z = 3 and on the
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right side of the point = 0. Therefore, the corresponding A of P cannot vanish for a
non-positive value of a,..

All cases being examined, this concludes the proof of Theorem [2.3.8] O

2.3.5 The case Ry > 1

In case where Ry > 1, the situation is different, and the system may have up to 3 endemic
equilibriums under specific conditions described below.

Theorem 2.3.9. Assume Rg > 1. Then,
1. if 1+ boby — b2 <0, then system ([2.1) admits a unique endemic equilibrium;

2. if 1+ boby — b3 > 0, then A vanishes at two, three, or four distinct values, which are
necessarily positive. Moreover,

(a) if A has two distinct zeroes, then system (2.1) admits a unique endemic equilibrium;

(b) if A has three distinct zeroes, then system (2.1) admits two endemic equilibriums at
the intermediate zero and otherwise a unique endemic equilibrium,;

(c¢) if A has four distinct zeroes, then system (2.1) admits two endemic equilibriums at
the two intermediate zeroes, three endemic equilibriums between the two intermediate
zeroes and otherwise a unique endemic equilibrium.

Notice that, here also, the value of 1+ b,.b; — ¢,.b? is independent of the bifurcation parameter
a,. We see that, for Ry > 1, the condition 14-b,.b; —crb% < 0 guarantees the uniqueness of endemic
equilibrium. If this condition is violated, additional steady states may arise as the number of
roots of A increases. However, the question of how to interpret biologically these conditions is
difficult to answer. Nonetheless, it can be observed that multiple endemic equilibriums typically
arise for values of a, between two intermediate roots of A, hence it represents a transition between
a mode with low susceptibility to reinfections to a higher one. To facilitate the visualization of
the phenomenon, one can refer to the simulation in figures and in subsection [2.5.5.2
below.

Particularly, the remark above and the corresponding numerical simulations show indeed
that in some situations there exists a swift transition from a low-infectivity endemic equilibrium
to a high-infectivity equilibrium as the susceptibility to reinfection increases. This suggests
the existence of a reinfection threshold, already underscored by Gomes et al. [51] for simpler
reinfection SIRI models. The fact that in the present system the transition may be, in some
instances, accompanied by a bifurcation sheds some additional light on the controversy that
opposes Gomes et al. to Breban and Blower [20], the latter arguing that the reinfection threshold
suggested in [51] does not exist as it is not a bifurcation point. However, the existence of a
reinfection threshold is not always guaranteed, as illustrated numerically by the simulation in
figure 2.9a] which does not include abrupt change between two modes.

The proof of the Theorem employs the same techniques as the proof of Theorem [2.3.7 in a
somewhat more involved manner.

Proof. When Ry > 1, then a; > 0, and the endemic equilibriums are in one-to-one correspon-

dence with the zeros of P in (al7 %)

As in the proof of Theorem [2.3.7] the polynomial P has a zero in (al, %), and due to ([2.14a))
and the fact that it is of degree 1 or 2, there can be no other zero in this interval. If the degree
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of P is 2, then the second zero of P is either in (—o0,a1) (and necessarily P is convex) or in
(%, —|—oo) (and necessarily P is concave).
Let us study the behavior of xP(x), and afterward of P(z) = 2 P(z) + a,Q(x).

P(z)
2

o If limy, 4 =14 b.b1 — crb% < 0, then P is concave, and its second zero is in

(%,+w>. The 3rd-degree polynomial xP(x) possesses one zero at x = 0 € (—00,a1),

one in (al, 2—1), and one in (%d—oo). Moreover, it converges to +o0o (resp. —oo) when
x — —oo (resp. +00). The polynomial @ being negative in each interval (—oo,a;) and
(%, —i—oo), positive in (al, 2—1) and null at a; and g—;, the polynomial P(x) thus possesses,
for any a, > 0, (at least) one zero in each of these three intervals. Applying Lemma [2.3.2
one deduces existence of a unique endemic equilibrium of the system .

o If limy 400 Pg) =14+0b.b; — crb% = 0. In this case, P is a polynomial of degree 1, which

is increasing due to (2.14a)). The 2nd-degree polynomial xP(x) then possesses two zeroes,

one at x =0 € (—o00,a;) and one in (ay, % , and is negative between the two roots, and

positive outside. Arguing as in the previous case, one deduces that P(x) possesses, for
any a, > 0, (at least) one zero in (al, %) This zero is indeed unique, as otherwise the

2nd-degree polynomial P(z) would have three zeroes. This, together with the previous
considerations, establishes the case [I] of the statement.

P(Qw) _

o If limy 1+ b.by — c.b? > 0 (case , then P is convex, and its second zero is

inside (—o00,a;): for some z* < a; and z** € (ay, %), one has

P(z) <0in (z*,2*), P(z")=P(z*)=0, P(z)>0in (z**, IC)1> ,
1
and similarly for xP(z) except at x = 0 where xP(x) = 0. Recall in addition that Q(z) > 0
in (al, Z—i) and Q(z) < 0in R\ {al, Z—ﬂ . Therefore, for a,, = 0 or a sufficiently small positive
value of a, > 0, P(z) = zP(x) + a,Q(x) possesses, similarly to zP(x), two zeroes in
(—00,a1), and exactly one in (ag, &= (recall P is a 3rd-degree polynomial). This situation

goes on while a, increases, until the two roots located in (—o0, aq) collapse and disappear,
at a point where A necessarily vanishes.

On the other hand, for sufficiently large values of a, > 0, we see that P(x) possesses
this time two zeroes in (%,—i—oo), as P(g+) > 0, limy 400 P(z) > 0 and Q(z) < 0 for
T > % Invoking again the fact that P cannot have more than 3 roots, one sees that this
occurs through the appearance of a double root of P as the parameter a, increases and
reaches a new zero of the equation A = 0, and afterward splits into two distinct zeroes
that subsequently persist for arbitrary large values of a, > 0 greater than this zero of A.

Moreover, the polynomial A being of degree 4, it may still have, on top of the two previous
real zeroes exhibit, up to two distinct zeroes.

o First, if there is no supplementary real zero of A, then from the observation above the

C1
b1
there exists a unique endemic equilibrium. This situation is covered by the case [2a]in
the statement.

polynomial P has always a unique zero in (al, ) for any a, > 0, and by Lemma|2.3.2
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o Second, assume two distinct real zeroes exist, these zeroes cannot be larger than the
second critical value exhibited. As they are also larger than the first one, they are
thus sandwiched between the two critical values, indicating the apparition of two
supplementary roots of P for any value of a, between these two zeroes of A (case
2c). Fixing x and varying a,, the quantity P(z) is an increasing function of a, when
z € (—00,a;1) and decreasing one when z € (g',+00). Thus P(z) is positive for
x € (—o0o,a1) and a, bigger than the smallest positive root of A and negative for
T € (l%’ +00) and a, smaller than the greatest root of A. Consequently, the two
supplementary roots of P may only appear in the interval (aq, %), which implies the
apparition of two supplementary endemic equilibriums. Moreover, in the degenerate
cases where a, is equal to one of these two roots (case[2b)), only a single supplementary
endemic equilibrium appears.

o Third, if a unique real zero exists, it is the degenerate case where the two roots of the
previous case are equal. In this case, two endemic equilibriums exist at this critical
point (case [2D]), and one otherwise (case [2a)).

To conclude, let us show that the roots of A must be positive in the present case. For
negative values of a,, due to Q(x) < 0 for z < a1, Q(a1) = 0, lim,,_ zP(x) < 0,
a1P(ay) < 0, then P(z) = zP(z) + a,.Q(x) is negative at x = ay, positive at £ = 0 and
lim, , o P = —oo. Thus P has always three real roots when, a, < 0 and A does not
vanish in this setting.

All cases are shown to enter one of the categories depicted in the statement. This completes the
proof of Theorem [2:3.9] O

Theorem [2.3.9] states necessary and sufficient conditions for the existence of three endemic
equilibriums points is 1 + byb, — ¢,.b2 > 0. The following proposition provides simpler necessary
conditions on a, for the existence of three endemic equilibriums.

Proposition 2.3.10. Assume that the system (2.1)) presents three endemic equilibriums, then

o 2a1by + 2c1¢, + 3 = 3arbic, — begt <ap < 3;—% + o5t — 3L,

o 3arbic, —arby —crer < ap <33+ 2br% — e — 2% —arby.
1

Proof. Let us apply Descartes’ rule of sign [29] to the polynomials Py := P(x 4+ a1) and Py :=

P(—z + E—i) in order to check respectively the maximal number of roots of P on the right of
x = ay and left of z = % Writing the previous polynomials in the expanded form Pj;(x) =

atx® + abx? + alx + af for i = {1,2}, the coefficients are given by :

a% = 1+b1brfcrb% >0
a% al(—ch% + brbl + ].) — bT(Cl — albl) — arbl + 2blcr(cl — albl)
a} = a.(c1 —aiby) — c.(c1 — a1b1)? — a1 (by(c1 — arby) — 2bicy(c1 — arby))

al = —ajcq(c1 —arb)? <0

a%:crb%—blbr—l<0

a3 = 2(3- — a1) +bibe (3 —a1) + -(=c.bf +boby + 1) —azby
a3 = P(2(a1 — 1) + bibe(ar — §1)) — arbi(ar — §) — (a1 — 2—1)2

aj = %(al—%)Q >0
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Then by Descartes’ rule of sign [29], the number of roots of P (counting multiplicity) on the
right of © = ay (respectively on the left of x = l%) is at most the number of sign changes in the
sequence of polynomial’s coefficients of Py (respectively P). As the three endemic equilibriums
state implies that 1 4 bib, — crb% > 0 and moreover that % > a1, the sign of first and last
coefficient of both sequences are known, we conclude then that a}, a3 < 0 and a3, a3 > 0 as a

necessary condition for the existence of three equilibriums. From al, a3 < 0 we deduce

b
%(1 +boby — cb2) + (2bye, — br)(Z—l —a1) <a, < %(3 +biby —ay L),
1 1 1 C1

and from a3, a3 >0

2
2a1b1¢, — arb, — cr(c1 — arhy) < ap < (— + bT)(g —ay) + %(1 + bpby — ¢,.b?)
b1 b1 by
and we conclude by expanding the previous inequalities. O

We deduce from Proposition [2.3.10] the following necessary conditions for the existence of
three endemic equilibriums, independent of a,.. This is essential, as this parameter characterizes
the relative increase in susceptibility of the individuals having recovered from an infection.

Corollary 2.3.11. Assume that the system (2.1)) presents three endemic equilibriums, then the
following inequalities are fulfilled

o atby +eie + P < % + b, 3t + arbicy,
o 3ai1bic, + % < 3% + b”% + arb, + cqcq,

e 3a1bic, + 2% < 3% + Zle%

b

2.3.6 Particular cases with unique endemic equilibrium for Ry > 1

In this subsection, we look at some cases that may come up naturally in practice. First, we
investigate the case 811 = Bi,r, Br1 = Bryr, that is, when the contact rates depend entirely
on the history of the susceptible in the transmission. Next, we check the case 811 = Br1,
B1r = Brr. Finally, the case 11 = 8, fir = Br1 = 9B, Brr = p?B, i.e., the contact rate
decreases geometrically w.r.t. the history of the infectious and infected in the transmission,
is considered. The results show that, for “well-balanced” contact rates, the system exhibits a
unique endemic equilibrium in the case where Rg > 1.

2.3.6.1 Reinfection induced change of susceptibility only

Proposition 2.3.12. Assume that Ro > 1 and f11 = Biy, Br1 = Brr. Then system (2.1
admits a unique endemic equilibrium. This remains true for small enough perturbations of every
parameter choice fulfilling the previous identities.

Proof. For 811 = By, Br1 = Brr, B1 = By =1, the following equality is verified

A.D,  A,D,

1— A4, 1—Ar:0'

14+bby—cbi=1+b.—c,=1—B, +

According to Theorem the system has a unique endemic equilibrium.
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Let us show now that this property remains true in a neighborhood of every set of parameters
verifying the assumption. As the 3rd degree leading coefficient of the polynomial P vanishes, P
is now the quadratic polynomial written below :

P(x) = (2b1c1¢, — apby — bpey — aybiby — 2a1)2” + (a3 +braycy +apbiar — ¢ ¢+ apcy)x — ajapcy.

As P(x) has a root in (a1, ), P(a1) < 0 and P(3) > 0, the position of the second root
is uniquely determined by the sign of the coefficient of the second degree monomial. If a, <
2[’101”_(’”1_“1}’1}’“2“1, the second root is on the left side of a1, and otherwise on the right side

bl
f lf CL», 2})1(’1(’7 —b C1— (llblb —20.1

o b and vanishes when there is equality. To conclude, we can
see that the discriminant A, which remains a quartic polynomial w.r.t. the parameter a,, has
a double root at a, = 2bierco=boer—arbibo=2a) and is strictly positive otherwise. Thanks to the
continuity of the roots w.r.t. to polynomlal parameters, A has still two imaginary roots if we
perturb the parameters, thus according to the Theorem [2.3.9] the endemic equilibrium is still
unique. O

2.3.6.2 Reinfection induced change of infectivity only

Proposition 2.3.13. Assume that Ry > 1 and 11 = Br1, Bir = Brr. Then system (2.1)
admits a unique endemic equilibrium. This remains true for small enough perturbations of every
parameter choice fulfilling the previous identities.

Proof. Let € be £ := gi:, we deduce that B; = € and B, = % Then,

A.D A.D
L+bib, —c bl =1+b€—¢,&=1-DB, - B =0.
R g g B =0
The rest of the proof is the same as in Proposition [2.3.12 O

2.3.6.3 Reinfection induced geometrical dependence of infectivity and susceptibil-
ity
Proposition 2.3.14. Assume that Rg > 1 and there is a $,p > 0 such that B11 = B, Pi1,r =

Bra1 = pB, Brr = p?B. Then system (2.1) admits a unique endemic equilibrium. This remains
true for small perturbation of the parameters.

Proof. If B1.1 = B, B1r = Br1 = pB, Brr = p*B, we have now By = p and B, = %. Thus,

A.D,  A.D,
-4 1-4,

L4+ bib, —cbi =1+bp—cp>=1—Bp+ B,p* =0.

We conclude in the same way as in Propositions [2.3.12] [2.3.13 O

2.4 Persistence analysis for Ry > 1

An interesting topic in epidemiological models is the question of disease persistence, i.e., if the
disease eventually dies out after a certain time. We saw that the two-stage SEIRS model presents
quite complicated dynamics, with possibly up to three endemic equilibriums and one disease-free
equilibrium. This situation of multistability makes global analysis of the system difficult and
motivates instead the interest to study persistence. For this purpose, we introduce the following
definitions from [49).
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Definition 2.4.1. Let X be a metric space with metric d, and ¢ be a continuous flow defined
on X. Let E be a closed subset of X with boundary OF and non-empty interior E nonempty.
Assume moreover that E is positively invariant under the flow ¢. Denoting ¢(x) as the flow
map, the flow ¢ is called uniformly persistent (regarding the set E) if there exists € > 0 such
that for all x € E

lim inf d(¢¢(z), OF) > «.

t—o0

Consider then the set X := Rﬁ_, and the invariant biologically feasible set 3 defined by:
Y :={(S,E1,1,R,SE-,I.,R,) e X|S1+E1+L+Ri+S-+E.-+I.,+ R. =1}. (2.16)
We denote moreover 9% as the boundary of the set ¥, and introduce finally the set
0% max = {(S1, E1, 1, R1, S, Er, I, R,) € X|E; =0, =0, E, = 0,1, = 0}, (2.17)

one shows easily that 0.y is invariant from the equations (2.1). Indeed, O ax is the maximal
invariant set in the boundary 0%, which will be proven later.

For the uniform persistence of the system in the invariant set ¥, we established the
following result, which is the contribution of the present section. In particular, this indicates
that the disease persists for the SEIRS system when Rg > 1. Moreover, the proportion of
the population bearing the disease is asymptotically bounded from below by a positive constant,
uniformly regardless of the initial conditions.

Theorem 2.4.1. System (2.1) is uniformly persistent in the interior > of & defined in ([2.16)) if
Ro > 1 and non-persistent if Ro < 1.

To prove the Theorem, additional definitions (from [49]) and lemmas are required.

Definition 2.4.2. A nonempty subset M C X is called an isolated set if there exists € > 0 such
that for any invariant set N contained entirely in {z : x € X,d(x, M) < €}, we have N C M.

Definition 2.4.3. The flow ¢ is point dissipative over a nonempty set M C X if there exists a
compact set N C X such that for any y € M, there exists t(y) > 0 such that for any t > t(y),

¢t(y) S N

Lemma 2.4.2. If the initial condition of system (2.1) fulfills E1(0)+ 1;(0) + E-(0) + I,.(0) > 0,
then Ey(t) > 0,1;(t) > 0, E.(t) >, I.(t) > 0 for any t > 0.

Proof. Let us begin by observing that every state g € {S1, E1, I1, R1, Sy, Er, I, R;-} of the system
fulfills the inequality ¢ > —ayg where a4 is a non-negative constant. Hence, if any state of
the system is positive at a time T > 0, the positivity is preserved for any ¢ > T thanks to
a straightforward application of Gronwall Lemma. Therefore, the Lemma is verified if the initial
state vector is positive element-wise, and it remains to check that the Lemma is still valid if the
vector of initial condition has some zero components.

If the initial condition fulfills S;(0) = 0, S is strictly positive and S;(t) for ¢ > 0. Thus, S;
is positive for any ¢ > 0 in any case. Adding I; to I,, we deduce from that

jl + jr > min(oy,0,)(E1 + Ey) — (max(y1,y) + @) (11 + 1).

Thus, the condition E4(0) + I:(0) + E,-(0) + 1,(0) > 0 implies either I1(0) + I,,(0) > 0 or
I,(0) + I,(0) = 0 and E;1(0) + E,-(0) > 0. In the second case, thanks to the inequality above, we
see that I + I, > 0 on the right side of t = 0. In any case, one deduces I;(t) + I,(t) > 0 for
t > 0. This and the fact that S;(t) > 0 for t > 0 force F; to be positive on the right side of t = 0
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in the hypothetical situation where F;(0) = 0. Therefore, E;(t) > 0 for any ¢ > 0 also. Finally,
the repeated application of the same reasoning leads successively to I;(¢) > 0, R1(¢) > 0, S,-(t) >
0, E,.(t) > 0,I.(t) > 0,R.(t) > 0 for t > 0 which completes the proof. O

Lemma 2.4.3. Assume that

lim F; =0, lim I; =0, lim F,. =0, lim I, =0,
t—o00 t—o00 t—o00 t—o00

then,
lim S =1, lim R, =0, lim S, =0, lim R, = 0.
t—o00 t—o0 t—o00 t—o0

Proof. For € > 0, there is T' > 0 such that for t > T
Ei(t) <e, I(t) < e, E.(t) <e, I.(t) <e.
Then, we have the following differential inequalities for ¢t > T :

= pS1— (Bra + Brr)e < S1 < p— pSt,
—(w1 + @) Ry < Ry < yie — (w1 + p) Ry,

—uSy < 8 < (1 + e — uSr,

_(wr + M)RT < Rr < Vr€ — (WT =+ M)Rra

which implies, for ¢t > T,
t t
Sy (T)e Ht=1) —|—/ [ —e(Bra+ Brr)]e M9 ds < 8y (t) < Si(T)e M1 4 / pe =9 ds,
T T

t
By(T)e=@+0=T) < /(1) < By (T)e—@tm(t=T) | / e @ (E=3) g
T
t

S,(T)e 0T < 8,(0) < S, (0T 4 [y gz s,
T

t
E (T)e”@rtmt=1) < B, (t) < B (T)e~ @rtm=1) 4 / ee=@rtmE=s) gg
T

As limy 4 oo f; e M=) ds = X\~ for X € R, the inequalities lead to

1—p~'e(Bra + o) < liminf S (£) < limsup S1(1) < 1,

t—o0

0 < liminf By (¢) < limsup By (t) < (w1 + p) " ye,
t—ro0 t—o0

0 < liminf S, (t) < limsup S, () < o+ e,

t—o00

0 < liminf E,(t) < limsup E,(t) < (w, + p) " 'y,e.

t—o0 t—oo

As the previous inequalities are valid for all ¢ > 0, taking e — 0 we obtain

lim S;(t) = Ltlinolo Eq(t) = O,tlirgo Sp(t) = O,tlgrolO E.(t)=0.

t—o00

This completes the proof. O
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Lemma 2.4.4. For Rqg > 1, no solution of system (2.1)) converges to the DFE except those
starting on the invariant set OXmax (2.17)).

Proof. Assume that the contrary is true, i.e., that for Ry > 1 there is a solution x converging
to the DFE and such that 2(0) ¢ 0¥4. (note that Lemma implies then z(t) ¢ 0¥ max for
any t > 0). Let L be L := F7 + %Ih the derivative L along trajectories of system (2.1) is

(o1 + p) (71 + )
o1

L= (Bl +Bi,1)S1 — 1.

Let €1 > 0 such that (1 —¢1)511 > (1 +u)% (again this is possible because Ry > 1). As the

solution x converges toward the DFE, there is a T' > 0 such that 1 —e; < S1(¢) <1 fort > T.
Thus for ¢t > T, we have the differential inequality :

; (o1 4 p) (71 + u)]

L > [(1—81),31)1— p Il >O7
1

and the quantity L(t) = E(t) + 241 (t) is strictly increasing for ¢ > T', which contradicts the

g
convergence to the DFE. Finally, the convergence towards the DFE in the invariant set 0%,

is self-evident, as the dynamics (2.1)) are reduced to the following system in the set 90X ,ax

Sy = p— pS,
Ry = —(w1 + 1) Ry,
S, = —uS,,

Rr = —(wr + )Ry,
whose solutions converge to the point (1,0,0,0). O

The previous lemmas and Theorem 4.3 in [49] allow us to derive that the system (2.1 is
uniformly persistent.

Proof of Theorem [2.].1] The non persistence is deduced from the fact that the DFE is locally
asymptotically stable when Rg < 1.

The uniform persistence follows from an application of Theorem 4.3 in [49]. More precisely,
let X be the space Ri and X, 0¥ ¢ defined as in and . We show that 90X hax 1S
the maximal invariant set in 0X. Indeed, taking xzg € 0¥ but xg ¢ 0Xmax, then Ey(0) + I1(0) +
E.(0) + I,,(0) > 0 and Lemma implies that ¢;(xo) € ¥ for t > 0, therefore we have proved
that 0¥ hax i the maximal invariant set in 9X.

Moreover, notice that the hypothesis (#) that ensures in the aforementioned theorem by
Freedman the nonexistence of cycle in 0¥ .  is fulfilled, as the maximal invariant set 0¥ ax is
closed and connected. Indeed, the (H) hypothesis requires that 0% ,ax is a closed invariant set
and there exists a cover { Ny }oca of 0¥ nax, where A is a nonempty index set, N, C OF, 0¥ nax C
UacaNo and N, (o € A) are pairwise disjoint closed invariant sets. Furthermore, it is assumed
that

o All N, are isolated invariant sets of the flow ¢.
e {Ny}aca is acyclic, that is, any finite subset of {N,}oca does not form a cycle (see [22]).

o Any compact subset of 9X contains, at most, finitely many sets of {N,}aca-
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As the set 0¥ ,.x is already closed and connected, we take simply the cover { N, }aeca = {08 max }
and the three points above can be verified. Furthermore, the system is naturally point-dissipative
over the invariant compact set ¥, thus Theorem 4.3 in [49] can be applied. According to this The-
orem and Lemmam uniform persistence of the system is equivalent to the non-existence of tra-
jectories starting in ¥ and approaching asymptotically the set 0% ,.x. Now, due to Lemma
the convergence towards the set 03« implies, in fact, the convergence towards the DFE, which
is indeed excluded when Rg > 1 due to Lemma O

2.5 Numerical simulations

In this section, we consider various sets of parameters and show that the corresponding numbers of
endemic equilibriums coincide with the ones predicted by Theorems[2.3.7},[2.3.8] and[2.3.9] In sub-
section [2.5.1] we investigate first whether, given a set of polynomial parameters ay, b1, c1, ar, by, ¢,
for simulations, a corresponding set of physical parameters f; j, 0;,w;, Vi, ,j € {1,7}, is guar-
anteed to exist. Subsection [2.5.2] presents the contents, the principles, and methodology of the
simulations. Next, the case Ry < 1, Rp = 1 and Ry > 1 are respectively considered for simu-
lations in subsections [2.5.9} [2.5.4] and 2.5.5] In particular, the simulations show that the most
significant scenarios with 3 endemic equilibriums for the case Ry > 1 and 2 endemic equilibriums
for the case Rg < 1 are indeed realized.

2.5.1 Correspondence between physical and polynomial P parameters

It is essential to check if the transformed problem , in the context which the previous
theorems are obtained and the simulations will be performed, has always at least one equivalent
in the original problem . The following results ensure that the existence is guaranteed under
certain necessary constraints.

Lemma 2.5.1. For any p > 0, let the function ®1 be defined by

P O — R7
C = (’Ylvalawlaﬁl,lﬁl,rv’YharawmBr,laﬂr,r) — (I)1<C) = (AlaBlachATyBraCTaDr)

where Q := R and Ay, By,Cy, Ay, By, Cy, D, are defined by the identities (2.5)). Then

o Im®y = Q" with, denoting (' := (A1, By,Ch1, Ay, B, Cr, D,.),

Q = {g’eRf : A1, A, <1 and D, < 1_‘411_‘4’“}.

Al Ar

o The map Y : Q' — Q defined by

q’f(CI)Z(% 01 W1 61,1 Bl,r Y Opr Wr ﬂr,l Br,r)7
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where for © := Drlf—;h 1fg ,

_ _ B _ M _ B
61,1 - Cla Bl,r - ,uclv /87“,7" - Cra B’r‘,l - /J“Crv
o1 Oi(1— A+ 4, A,
UJ1:M ) 0-1:/1' 1 ) wT:/J' T )
1-0O1 (1-01)(1-4) (1-01)(1-4,)
o 1 s _M1—<1—Ar>®% ) _M@%(l—An
T (1-4Apei-eih) T 1-4,0 = " A

is a right inverse of ®1, that is :
V¢ e, PodY(¢") ="
Lemma 2.5.2. Let Q) be defined as previously, and the function ®o be

q)g QY = R6
(I)Z(CI) = (al by ¢ ar b Cr) ’

where (ay,b1,c1,ap, by, cryd,) are defined by the identities (2.7)). Then

o Im Py = Q" with, denoting ¢" := (a1,b1,c1,ar, by, ;)

C1 C1
<1,

2
= — < )
by by 2—|—b7~—|—w/b%—|—4c,«}

Q”:{C”eQ’%RfoxRxRi Dap <

o The map @5 : Q" — Q' defined by
d5(¢") = (A1 B, Ci A. B, C. DT),
where
C1 C1

M=% Bi=b, i =%-
1 bla 1 1, 1 bl ay,

(b, + /b2 + 4c,
r = \/2( ) ) BT:%(be+ \/b%+4cr)7
1+ \/%(br+\/b3+4cr>

ar
1+ \/é(br + /b2 —|—4c,«)’

s a right inverse of ®o, that is :

A

C,

1
D, = \/Q(br + /02 + 4y,

VCN c Q//7¢2 ° Qg(c/l) — C//-

The theorem below is a direct consequence of the previous lemmas.

Proposition 2.5.3. Let 1 € R% and the functions ®1, 2, @Y, ®J be defined as in Lemmas
and|2.5.2. Then Im @5 0 &1 = Q" and Y o ®f is a right inverse of the function ®5 o Oy defined
on Q.
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In particular, for every ¢" := (a1,b1,c1,ar,brycp) € Q7 let

¢:= (’71 o w1 Bia B v or wr Bra Bm):‘bfofbg((”).

Then ¢ € Q and is related to "' by the identities (2.5)), (2.7)).

Proof of Lemma[2.5.1 Let us first show that Im ®; € Q. Let ¢ € Q, the fact that A1, A, < 11is
obvious from ([2.5)). For simplicity, for any = € R, we write

T
T+p

a_j:

The formulas (2.5) then simplify as

_ _ o w
A1 :01(17’71), Ar:JT’yer, DT: 51%
ks s
Then, considering the equality
p oY m 1=
T —
Wy 1- T Ur
and that
_ A o — A _ A
Y1 = _;:ga ’erfj ) (220)
g1 01 OrWp
we obtain
D, = <101~ A ovor = AT, (2.21)

(Dr Al Ar
as £ < 1 for any z € R, thus

o1 — Ay 0,00, — A, 1-A4,1-A,
D,
"STA, Aw S A4, A

which concludes Im ®; C €.

Let us now establish that Q" € Im @, by showing that ®7 : Q' — Q defined in the statement
is a right inverse of ®;. Let (' = (A1, B1,C1, Ay, B,,Cy, D;) € Q. Let us verify that ®{({’) is
an element of ) fulfilling the identities (2.5)). Let ® > 0 be such that

Ay A,

6:1—A11—AT

D,. (2.22)

Then © € (0, 1) due to the inequality D, < 1;?1 %. Now, using the identities|2.21 yields

AL A s - Ao, — A,
C1-A1-Awe Ay A,

- 5'1 - Al Al 5'7"@7” - Ar Ar ‘Dr - Ar Ar
A 1-4 A, o -A )\ Aw, 1-4,)°

We take each of the four factors in the previous equation equal to 01 <1 (that is possible

©
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because each factor is inferior to 1), which implies

0 =01 €(0,1), 71 =07(1—A;)+ A, €(07,1),

O — A = w,.(1 - A,)0%, sothat ©, = * € (4,,1),
1-(1-4,)01
and
5,0, = (@ — A,)O% + A Ar (1-1+(1-A4,)0%)0% +1-(1 A)@ﬂ
OrWy = r — A 4 e - — Ap 4 4 - - Ay 4,
1-(1-4,)01
that is :

Gr=1-(1-A4,)0i(1-07) € (0,1).

As the value of p is known, then also the values of wy, 01, w,, 0, thanks to the relation z = u%:

o1 A,
wl:/l‘il>07 Wr = 1 >O7
1-01 (1-01)(1-A4,)

011 - 4) + 4 011 —4) + 4
o1 = U T =W T )
1-0i(1—A)—A;  (1-01)(1—A4)

1—(1-A4,)01(1-01
— ( )1( ) _ 14 i

(1-A4)07(1-0%)  (1-A4,)0i(1-061)

Finally we deduce (see (2.20))

A 1—(1-A4,)01

oy 1—(1-A,)0%(1—01)

€ (0,1),

1

Aq @Z(I—Al)

=1—"—7=— € (0,1—-A4,)C(0,1),
" g1 O1(1- A1)+ A ( )01
1—(1—A,)01 Oi(1—A)
r = _— > O7 = _— > 0.
T aet nEETT
Last, identities (2.5)) imply that

[ By H B,
= = r = B, = ~ T T 4 r1 = BroBr = p—-.
P11 o B, = Pr1B1 re, Br., C. Br.1 = Br, re

We have shown that ®{({’) is an element of Q that fulfills the identities (2.5) for a given ' € .
Hence, @7 is, in fact, a right inverse of @1, as ®; 0 ®9(¢’) = ¢’. Moreover, ' € Im @4, and finally
Q' =TIm ®;. This concludes the proof of Lemma [2.5.1 O

Proof of Lemma[2.5.4 Let us show that Im ®» € Q. Let ¢’ € &, the fact that a; < §& < 11is
obvious from (2.7, and (2.7 also gives the equations

A
br = _Br 7TD7’7 r =
1o A4 ¢
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Denoting X := B,.,Y := %Dr, by (2.7) one has

- X+Y =b, Y=X+0b,
XY =¢, X(X +b)=c
We obtain the equation
X24+b0,X —¢ =0,

whose discriminant is positive. As X > 0, then it is the positive root of the quadratic equation,
thus :

1 A, 1
X :=B,= 5(—bTJm/b%Jrzlc,ﬂ), Y = T Drzi(br+\/b%+4cr). (2.23)
The second identity can be further rewritten as
1-A,1
D, = Y i(br+«/b§+4cr).

Due to A; = % and the inequality D, < %% from Lemma w one has

1
§(br + /b2 +4e,) < i—l -1,
1

so that :
1 b
Lt 5 (b + VB +der) < c—l,
1

and finally,
C1

2
— < ,
b1 2+ b, + /b2 + 4c,

which concludes that Im ®, C Q.

Conversely, let us show that ®J : Q” — Q' is a right inverse of ®; and that ®” € Im ®,. The
following equations for ®5 are deduced directly from (2.7))

A1:g>0, Blib1>0, Clicflfa1>0,
by by

We have also from (2.23) and ([2.7))

Qr

\/%(br + 4/ b% + 4Cr).

1 Ar 1
BTZQ(*br‘F\/m% 1—A DT:i(bT+ b72“+4c7“)’ Cr =

Now we take

A 1
= p= Lo v

then

\/%(br + /b2 + 4c;)
1+ \/%(br + /b2 +4cr).
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Therefore thanks to the definition of Q”, A; < 1 and obviously A, < 1. The same equation also
implies

1—A4,1
Dr = Tg(br + \/ b,’% +4Cr).

The following inequality is deduced from the definition of 2" (which has been already shown)

1 b1 b1 — C1 b1 1 — A1

S+ VR o) < L 1= L _

2( + " +de ) < C1 bl C1 Al
Thus D, < 1j4‘f1 1;‘;”, ®5(¢) € Q' and PF is a right inverse of @2, which concludes the proof of
Lemma [2.5.2) U

2.5.2 Guidelines of the simulations

The coefficient p in the simulations below is fixed beforehand as p = 71—5 years~! for each simu-
lation shown below. Then we proceed as follows for the simulations:

1. Choice of adequate values of the normalized parameters ay, b1, ¢y, b, ¢, deduction of the
physical parameters 1, 01,w1, 81,1, 81,7, Ve, 0, w, through Proposition [2.5.3]

2. Plot of the branches of curves that give the roots of P as a function of the last parameter a,..
The horizontal lines correspond to the values max 0, a; and % which define the extremities
of the interval, inside which lie the roots that correspond to endemic equilibriums (see
Lemma [2.3.2)).

3. Plots of P for several pertinent values of a, to illustrate situations described in Theorems
to This choice is done according to the previous plot.

4. Numerical computation of the spectrum of the Jacobian Jg at every equilibrium point of
the system as a function of function a.., each value of a, assesses corresponding value to the
two missing physical quantities 3, 1, By, and drawing of the bifurcation diagram showing
the stability or instability of equilibrium points. The spectrum is computed numerically in
MATLAB environment by applying the eigenvalue function “eigs” to the Jacobian.

5. Last, for a representative sampling of situations, numerical simulations and plot of trajec-
tories depending on the vicinity of the steady states, in order to illustrate and check their
local stability properties.

2.5.3 The case Ry < 1

When Ry < 1, Theorem applies. We study in this subsection two situations where case
and ] of Theorem 2.3.7 are fulfilled.

2.5.3.1 Theorem case |1l — 0 endemic equilibrium
Set
4y = —0.001, by = 0.81, ¢; = 0.004, b, = —10, ¢, =1,

Then
a% + a1c1b, — crcf =2,5 % 107° > 0,
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Bl,l 51,7‘ Br,l ﬁr,r w1 RO
6.15x 1073 | 498 x 1073 | 4.85 x 1072 | 4.80 x 1072 | 6.39 x 10~° | 0.83
Wy o1 Or 20! r
135 x107° [ 6.60 x 1076 | 342x 10~* [ 1.10 x 103 | 1.92 x 103

Table 2.1: Physical parameters for the example in Figure

and we are in the case [I] of Theorem [2.3.7 and the system has no endemic equilibrium.

Figure shows the roots of P as functions of a,.. The two critical values are shown with
red stars. Fig. shows the curve P(I;) corresponding to the value a, = 0.0100 marked in
Fig. [2:2a] by the blue circle.

%108 x107

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 -0.01 -0.005
a, I

.005 0.‘01 0.0‘15
(a) Roots of P depending on a, (b) Case|l{a, = 0.0100 - 0 EE

Figure 2.2: Hlustration of Theorem case

2.5.3.2 Theorem case [2| — 0, 1 or 2 endemic equilibriums

For the values:
a; = —0.001, b; = 0.81, ¢; = 0.0004, b, =15, ¢, = 15,

we have
a% + ajc1b, — crcf = —0.0003 < 0.

Thus it corresponds to the case [2] of Theorem [2:3.7 and examples with zero, one or two endemic
equilibriums will be exhibited. Figure shows the roots of P depending on a,. The critical
values and plotted values of a, are also respectively illustrated by red stars and blue circles.
Figures 2:3b] [2:3d}2:3T] are examples of numerical plots of P in cases with zero, one or two
endemic equilibriums. Next, the bifurcation diagram computed in Figure 2:4a] exhibits that, in
case where Ry < 1 and the system presents two endemic equilibriums, the greatest is locally stable
while the smallest is unstable. This is also illustrated in the trajectories computed in Figures[2.4b]
and which show that trajectories starting near the greatest steady state converge towards
the latter while trajectories starting near the second endemic equilibrium either converge slowly
towards the first endemic equilibrium or the disease-free equilibrium (shown in green).

Finally, Tables and expose physical parameters corresponding to each example cal-
culated using Proposition Notice that only the parameter a, is varying throughout the
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examples. Then, thanks to Lemma [2.5.2] only the intermediary parameter C, depends on a,,
and finally by Lemma only the physical parameters f,, and 3, are varying.

Flg Ay 57’,1 Br,r

[2.3b] | 0.0275 | 6.23 x 1072 | 6.62 x 10~
2.3d | 0.0551 | 3.12x 1072 | 3.31 x 10~°
2.3d] | 0.0826 | 2.08 x 102 | 2.21 x 10~
2.3¢[ | 0.1157 | 1.48 x 107 | 1.58 x 10~°
2.3f | 0.1736 [ 9.89 x 10~* | 1.05 x 10~?

Table 2.2: Physical parameters for examples in Figure

Fig. Values of I Maxespec(Jz) 1IUA)
2.3b| | (4.28,0.57) x 10~2 | (—3.65,0.92) x 10~°
2.3 2.91 x 1073 0

Table 2.3: Values of I7 and spectral abscissa of the Jacobian matrices at each equilibrium points

Bi1 Bi,r w1 Wy Ro
6.15x 1073 | 498 x 1073 | 4.13x 107° | 3.11 x 10~* | 0.83
o1 (o Y1 Tr
416 x 107° | 6.96 x 107 | 3.90 x 1073 | 5.80 x 10~*

Table 2.4: Physical parameters for examples in Figure
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Figure 2.4: Trajectories in the case |2[ of Theorem
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2.5.4 The case Ry =1
When Ry = 1, Theorem [2.3.8] applies. Case [2a] and [3D] of Theorem [2.3:8] are studied in this

subsection.

2.5.4.1 Theorem case — 0 or 1 endemic equilibrium
Let

a1 = 0,b; = 0.50,¢; = 0.001,b, = —30, ¢, = 10, (2.26)
Then
1+bby —c b2 =—16.5 <0,

and this corresponds to the case [2a] of Theorem allowing only the presence of one or zero
endemic equilibrium. The graph of the roots of P as functions of a, as well as critical and plotted
values of a, are shown in Figure Plots of P are shown in Figure in an example with
one endemic equilibrium and Figures and [2.5d] in examples without endemic equilibrium.
The physical parameters of the examples are shown in Table 2.7 2.5] and the numerical value
of the root in Table [2.6] The bifurcation diagram computed for this case shows that the
unique endemic equilibrium present in the case is stable, which is further demonstrated by
the trajectories simulated in Figures and

Fig. ar Br.1 Br,r

2.5b | 0.0050 | 3.49 x 10~ T | 1.15 x 102
2.5¢/ | 0.0100 | 1.74 x 10~ | 5.75 x 1073
2.5d[ | 0.0150 | 1.16 x 10~ ! | 3.83 x 10~ °

Table 2.5: Physical parameters for examples in Figure

Values of I
1.42 x 1077

Fig.
[2.5D)|

maXxespec(Jg) {%(A) }
—1.47 x 1076

Table 2.6: Value of I} and spectral abscissa of the Jacobian matrix at equilibrium point

51,1 51,r w1 Wy Ro
1.83x 1072 | 9.13x 1073 [ 6.98 x 1076 | 250 x 107° | 1

01 Opr Y1 Vr
706x107% [ 391 x107%]292%x 1073 | 2.01 x 1073

Table 2.7: Physical parameters for examples in Figure
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Figure 2.5: Polynomial illustrations of Theorem case



2.5. Numerical simulations

1.55

145

Iy

135}

3 10

x10°8

(a) Bifurcation diagram

x10*

L L L L )
0 0.5 1 15 2 25

x10°

(b) I trajectories - a, = 0.0050 - 1 EE

3.5

25

x10

——

0 05 1 15 2 25
x10°

(c) I, trajectories - a» = 0.0050 - 1 EE

Figure 2.6: Trajectories in the case [2af of Theorem
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2.5.4.2 Theorem [2.3.8| case — 0, 1 or 2 endemic equilibriums

Consider
a1 =0, by =0.50, ¢; =0.001, b, =30, ¢, = 10.
As

1+b1b, — b7 =135>0, 3bicic, — bpep = —0.015 < 0,

this case corresponds to the case of Theorem allowing the possibility of having up to
2 endemic equilibriums. Figure shows the critical values (in red star) and plotted values
(in blue circle) alongside the graph of roots of P depending on the parameter a,. Figure
27d show respectively examples of plots of the function P in case with zero, one
and two endemic equilibriums. Tables show the physical parameters of the examples
computed using Proposition As previously, only the physical parameter 3, ; and 3, , vary
throughout the simulations. In the case when Ry = 1 and the system presents two endemic
equilibriums, the bifurcation diagram [2.8a]shows that the greatest endemic equilibrium is locally
stable while the smallest is unstable. Figure 2.8d] illustrate that trajectories starting near
the unstable equilibrium either converge towards the stable endemic equilibrium or towards the
disease-free equilibrium.

Flg Ay ﬂr,l ﬂr,r

[2.7b[ [ 0.0033 | 2.35 x 1072 | 7.13 x 102
2.7¢ [ 0.0100 | 7.84 x 1073 | 2.38 x 102
[2.7d[ [ 0.0243 | 322 x 1073 | 9.78 x 1073
2.7¢[ | 0.0680 | 1.15 x 1073 | 3.50 x 103
2.7 1 0.0146 | 5.36 x 10~* | 1.63 x 1073

Table 2.8: Physical parameters for examples in Figure

Fig' Iik manEspec(JE){%(A)}
2.7b 1.87 x 1073 —3.65 x 107°
2.7¢ 1.85 x 1073 —3.65 x 107°
2.7d| | (1.79,0.59) x 1073 | (—3.65,1.21) x 107°

Table 2.9: Values of I and spectral abscissa of the Jacobian matrix at each equilibrium point

B1,1 Bir w1 Wy Ro
1.83x 1072 ] 9.13x 102 [ 3.60x 107" | 4.00x10°% | 1

g1 Oy ’Yl 77‘
362x107° [ 9.14x107%[9.05x10°3 | 891 x 1074

Table 2.10: Physical parameters for examples in Figure
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2.5.5 The case Ry >1

When Ry > 1, Theorem [2:3.9] applies. In this subsection, we consider two examples of the cases
[ and 2d of Theorem 2.3.9

2.5.5.1 Theorem case 1| — 1 endemic equilibrium
Set

a1 = 0.0009,b; = 1.5,¢; = 0.004,b, = 0.01, ¢, = 150.

Hence,
1+ bby — c.b? = —336,49 < 0,

which implies that this case corresponds to of Theorem and has a unique endemic
equilibrium. Figure illustrates the distribution of real roots of P, the critical values, and
the plotted values of a,. An example of the plot is presented in Figure and illustrates the
uniqueness of endemic equilibrium in this case. Finally, Figures to show that the
unique endemic equilibrium in the present case is locally stable.

Fig. | Values of I7 | maxecgpec(so) 1R(N)}
[2.9b] [ 2.56 x 1073 —3.65 x 10~°

Table 2.11: Value of I and spectral abscissa of the Jacobian matrix at the equilibrium point

B1,1 Bi,r Br1 Br Wy Ro
2.07x1072 ] 310x1072 [ 201 x1072 [ 1.64x 1073 [ 271 x 107° | 1.51
Wy 01 o Y1 Yr Qy
223 x 1077 272x107° [ 636 x 107% | 5.58 x 1073 [ 822 x 10~ * | 0.1

Table 2.12: Physical parameters for the example in Figure

%1078 %108

4 05F

-0.51

Roots of P
o
T T / T T T T
P(I})
S
s

0.2 0.4 0.6 08 1 1.2 1.4 -4 2 0 2 4 6 8
a, I %10

(a) Roots of P depending on a, (b) Case — ar =0.1-1EE

Figure 2.9: Polynomial illustrations of Theorem Case
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2.5.5.2 Theorem [2.3.9| case — 1, 2 or 3 endemic equilibriums

The coefficients in this example are:
a1 = 0.00025, b; = 0.81, ¢; = 0.0004, b, = 150, ¢, = 30.

As
1+ b,by — c,b7 = 102.82 > 0,

and that A > 0 has four distinct positives roots as shown in Figure this corresponds to the
case [2d of Theorem where the polynomial A has four distinct roots, thus exhibiting cases
with three endemic equilibriums. Figure shows the distribution of real roots of P depending
on the values of the parameter a,. The critical values of a, are indicated with red stars, and
the values taken for simulations are indicated with blue circles. Figures illustrate
some cases with one, two and three endemic equilibriums. In particular, the case with three
endemic equilibriums is exhibited by Figure 2.11¢| as announced in the Theorem [2:3.9] Tables
[2:13] 215 show values of physical parameters obtained according to Proposition 2.5.3] In the
case where Ry > 1 and the system presents three endemic equilibriums, the bifurcation diagram
and simulations of trajectories in Figures [2.12d] and [2.12¢] show that both the greatest
and smallest equilibrium are locally stable while the endemic equilibrium located in between is
unstable. Furthermore, the diagram in Figure depicts indeed a transitional phase during
which the system swiftly transitions from a high infection level to a low infection level when a,.
increases, thus exhibiting a reinfection threshold.

Flg Ay ﬁr,l /Br,r

[2.11b] | 0.0051 | 1.91 x 102 | 9.58 x 102
2.11¢ | 0.0321 | 3.01 x 1073 | 1.50 x 102
2.11d] | 0.0643 | 1.50 x 1073 | 7.53 x 10~ °
2.11e] [ 0.0658 | 1.47 x 1073 | 7.36 x 1073
2.111 [ 0.0912 | 1.06 x 102 | 5.31 x 10~°

Table 2.13: Physical parameters for the example in Figure

Fig. Value of I} Max ) espec(Je) LA }
2.11b) 4.91 x 1071 —3.65 x 107

2.11¢] 4.90 x 101 —3.65 x 107°

2.11d| (4.77,3.62) x 10~* —321x107°,0
2.11¢| | (4.73,4.12,3.29) x 10~% | (-2.21,0.73, -1.17) x 10~°
2.111] 2.80 x 10~* —3.65 x 1077

Table 2.14: Values of I{ and spectral abscissa of the Jacobian matrix at each equilibrium point

B1,1 Bir w1 Wy Ro
1.50x 1071 [ 1.21 x 1071 [ 3.99 x 10°° | 9.36 x 10~ * | 2.03

(o] Or Y1 Yr
3.99x107° [ 1.90x 1073 | 3.86 x 102 | 1.71 x 1073

Table 2.15: Physical parameters for the example in Figure m
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Numerical simulations
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2.6 Two-stage SIS model

In this section, we review a simple two-stage SIS reinfection model, which is,

Si=p— (B1,1h + By + 1) S,

I = (Biali + Bryl)S1 — (m + wi,
Sp=ml + I — (Beady + Brr Ly + 1) S,
I = (Brady + Brode) Sy — (e + )1,

(2.27)

The motivation for the study of this SIS model is to examine whether the findings presented
previously exhibiting complex behaviors of the steady states are still valid even in the most
simple SIS configuration. Its reduced dimension allows for the SIS system allows for the exami-
nation of the asymptotic behavior under the Li and Muldowney theory framework [75], which is
computationally difficult for the SEIRS model. The analysis is done in Section [2.7] below.

2.6.1 Equilibrium analysis

The invariant and biologically feasible set of the system is
Y :={(S1,11,5.1;,) eRLS1 + 1 + S, + I, = 1}. (2.28)

Again the system has a unique DFE (1,0,0,0), and a result similar to Proposition can be
deduced on local stability of the DFE.

Proposition 2.6.1. The system (2.27)) has a unique disease-free equilibrium

Ey = (1,0,0,0).
Moreover, denoting,
Rew Bt
Y1+

the DFE is locally asymptotically stable when Ro < 1 and unstable when Ry > 1.

Proof. As disease-free equilibrium Eq = (59,19, 52, I?), first I? = I? = 0 by definition and SY, S?
fulfill
p—pS) =0,  —pSY=0.

Hence, S = 1 and S? = 0. The Jacobian of system (2.27) at the DFE is

— i —B11 0 —Bi,r
A |0 Pa—ntp 0 B,
' 0 T —p Yr
0 0 0 —(y+p)

Expanding the first and third columns while computing the determinant, we can easily see that
w is an eigenvalue with multiplicity two and the remaining are eigenvalues of the matrix :

<51,1 —(m+w Bi,r )
0 _('Yr + /’6) ’
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which are the coefficients in the diagonal entries. Thus, we can conclude that the DFE is locally
asymptotically stable if 311 < v1 + p, i.e., if Rp <1 and unstable when Ry > 1. O

Each endemic equilibrium (S5, I7, S*, L) fulfills now the following relationships

YT

0=p— (Bial] + BrrLy + p)ST,

0= (B11If + B1r17)ST — (v + )T,
0=yI +v 17 — (Brady + Brody + 1)Sy,
0= (Bral; + BrrI})SE — (o + W)},

Thus,
o 0 «_ (Brali + B I7)ST
RCEY SN EE A T+ p
* _ Yy + ey I = (Bradi + Brrly) ST
" By 4 B AT Y+ '

Again, by elimination of ST, S}, we deduced that I7, I must fulfil the equations underneath

oM Brali + Bl
Y i p Bl + Bl
. . . e 11y + B L
=Dy gy i el
Tr +:u Tr Br,lll +Br,r1r +M

This could be written with a similar set of coeflicients as those introduced for the analysis of
SEIRS model.

I + B I B.If + I

Ir=A-—Lt -r —A,——r1 T
VT Yy B+ O v B I} + I + C,

(DA IT +I7).

where the coefficients are

A, L 5 B, o = M

= ) 1= ) 9

"+ B1,1 B1,1
Tr Br1 1% 71
A, = , =— C,= , D, = —.
Tt T B T B T

Thus, introducing the coefficients a1, b1, ¢, a,, b, ¢, defined in the same way as before, we can
see in a straightforward manner that the relationship

a1 >0&Rep>1, a1 <0&Ry<1,

and all the results on existence and number of endemic equilibriums of the SEIRS model still hold
in the SIS case. Moreover, in the SIS case, we can derive simple expression of these coefficients
depending on the parameters of the system :

(],1 — L(RO _ 1)7 bl _ /81,7" c 51,7‘ /’L

- ) 1= )
_|_
51,1 51,1 51,1 Y1 T M (2.29)
0 = tH b:_ﬁr,l_’_ﬂ e 1B
" ﬂr,r , " Br,r ,LL ’ " ,U' Br,r

As in Proposition of the previous SEIRS model, it is required to check if there is a
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specific set of physical parameters which corresponds to a given choice of a1, by, ¢1, ar, by, cp.

Proposition 2.6.2. Let p € R, let the function ® be defined by,

R*6 — RS
C = %(’71, ﬂl,lﬁl,rv ) Br,h Br,r) — (I)(C) = (alv blv C1, Qr, br; Cr)

where the parameters (a1, b1, c1, ar, b, ¢.) are defined by the equations (2.29)). Then
o Im® = Q' with, denoting ¢’ := (a1,b1,c1,ar,br, ¢,

b
Q {CER*G by, c1, ar, ¢ >0, a1<b <1, —17171) >0,

¢
oizabiza b,.)} .
C1 C1

o For a fived ' € ', the inverse image ®~1((’) is defined by

(bil(cl) = {%(71761,161,7‘37?”767“,1)ﬁ?“,'r‘) €Q: C f'UzlﬁZS }

b c _ r c _
Boant SeGert Srongow
2.30
b s B _Bah % B 230
ar H B oo 7

Proof. Positivity of b1, c¢1, ar, ¢ is easily derived and 33 < 1 from (2.29). From equations

£

B Bra—m—p . po_a opo_a Bir . Biim+p b (61 an)!
=a1, —— =, ;= —a1, — =Cl—— =01(——a1) -,
Mmtu o P Ttp b Py b I oo by
b b
Br’l—ﬂ—brzfl—l—brz(*l—l)_lCr, /7T+M:r-
Brr 1 1 1 Prr
The first equality shows that a1 <& o , the fifth equality implies the second and third condition
of ', and the equations (2 can be easﬂy deduced. O

This result shows that in the SIS model, the set of admissible parameters (a1, by, ¢1, ar, by, ¢y)
for polynomial analysis of endemic equilibrium has one additional constrain ¢, = blicl ”1701 —
b,). Then, even if previous theorems on the numbers of equilibrium are still techmcally correct
it is necessary to check again if each case described in these theorems may still realize under
this supplementary constraint. To this end, we rewrite the coefficients a,c of the polynomial
P = ax?+bx + c and d = 3b; ¢, — b, that intervene in Theorems [2.3.7] [2.3.8] [2.3.9] and eliminate
¢, to obtain:

a=1+4bb; —cb?=1+bby — (b—l—l)(b—l—b —1)82,
C1 C1

c=a}+brajcy —c ¢ = a2 +brajc; — (by —c1)(by — c1b, — 1),
by b1

d=3bic; — by = 3bi(7r = 1)( — by = 1) by
1 1
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It is easy to see that coefficients above may still be both positive or negative by tuning a;, by
and b,.

o For the case Ry < 1 (a7 < 0), the number of endemic equilibrium depends solely on c.
Then, for parameters besides a; fixed, ¢ can be both positive (when a; tends to infinity)
and negative (a; close to zero). Both cases enunciated in Theorem are then still
possible.

e For Ry =1 (a1 = 0), the situation depends on a and d. For each value of b,., a can be both
positive with b; close to zero and negative when b; is arbitrarily large.

o Last, when R > 1, (a3 > 0), the number of endemic equilibrium depends on the coefficient
a and the number of roots of A.The coefficient a can be tuned as in the case Rg = 1 to
obtain the desired sign and the existence of the case 3 endemic equilibriums, i.e., of a setting
where the polynomial A has 4 roots is verified numerically with the following parameters :

a1 =0.001, b =01, ¢ =1, b =3.

2.6.2 Persistence analysis for Ry > 1

For persistence analysis, the techniques developed in Section 2.4 for the SEIRS system can be
adapted for SIS system. Borrowing the same notations, we set instead X as X := Ri, the

invariant and biologically feasible set ¥ as in (2.28)) with boundary 9% and interior 3. We also
define the invariant set 0¥ .5 as

3Zmax = {(513117‘97'7]7') 6 E|Il - Oa[f" = 0}7

and the proof of it being the maximal invariant set in 93 will again be brought later on. The
SIS model version of the intermediary Lemmas [2.4.2] [2.4.3] 2.4.4] are

Lemma 2.6.3. If the initial condition fulfills I;(0) + I.(0) > 0, then I1(t) > 0,1.(t) > 0 for
each t > 0.

Proof. Again, let us begin by noticing that every state g € {S1,I1, Sy, I} of the system
fulfills the inequality ¢ > —a,g where a4 is a (non-negative) constant. Thus, as observed in
Lemma [2:4.2] the positivity of any state g is preserved for ¢ > T if it is positive at a time T and
the Lemma is verified if the initial state vector is positive element wise. Therefore, once again, it
remains to check the case where the initial state vector has some zero valued components. First,
if we have either S;(0) = 0 or S,.(0) = 0, then due to equations and I,(0) 4+ I,.(0) > 0,
the derivatives S1(0), ST(O) are strictly positive and therefore, thanks to the observation above,
Sy (t), Sp(t) > 0 for ¢ > 0. It remains to check the situations where I;(0) = 0 or .(0) = 0 to
prove the Lemma. As we have the inequality,

jl + jr 2 (61,111 + ﬁl,’!‘I’I‘)SI + (ﬁr,lll + ﬁr,rIr)Sr - (max {71777"} + M)(Il + Ir)7

we deduce that I1(t) + I.(t) > 0 for any ¢ > 0 as I;(0) + ,(0) > 0. This fact, and S1(¢) >
0,S,(t) > 0 for t > 0 imply that the derivatives I (t), I,.(t) are positive on the right side of ¢ = 0
in the hypothetical cases where I1(0) = 0 or I,.(0) = 0. Thus, in any case, we have I1(t), I.(t) > 0
for ¢ > 0, which concludes the proof. O

Lemma 2.6.4. Assume that lim;_, o I1 = 0,lim;_, I, = 0, then lim;_, o, S1 = 1,lim;_,, S, = 0.
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Proof. Assume that lim; o, I; = 0,lim; . I, = 0, then for each € > 0, there is T" > 0 such that
Li(t) <e,I.(t) < e for t > T. Therefore, the differential inequalities below are verified for ¢ > T':

w—pSt — (P11 + Pir)e < Sy < p— pSs,

7/1457" < Sr < (’Yl +’7r)5 — [LST

Which imply, for ¢t > T,

t t
Sy(T)e #t=T) 4 / [ —e(Bra + Bro))e " 9ds < Sy (t) < Sy (T)e P01 4 / pe =) g,
T T

t
S, (D) T < 8,(0) < S, (D) Tk [ ap)ee s,
T

As limy 4 oo f; e Mt=9)ds = =1, the inequalities imply

1—pte(Bra+ Bir) < litminf S1(t) < limsup Sq(¢) < 1,
—00

t—o0

0 < liminf S,.(t) < limsup S,.(t) < p~ (91 + Y )e.

t—o0 t—o00
Because the previous inequalities are valid for all € > 0, by taking € — 0, we obtain

lim S1(¢) = l,tlirgo Sy(t) =0.

t—o0

O

Lemma 2.6.5. For Rg > 1, no solution of system (2.27)) converges to the DFE except those
starting on the invariant set 0¥ax-

Proof. Assume that the contrary is true, i.e., for Ry > 1 there is a solution z converging to
the DFE and such that x(0) ¢ 0X,.x which is equivalent to I;(0) + I,.(0) > 0. According to
Lemma the solution cannot reach the invariant set 0X,ax in finite time, thus z(t) ¢ 0Xmax
for t > 0. Setting now &1 > 0 such that (1 —e1)51,1 > v1 + p (which is possible as Ry > 1), the
convergence of the solution implies that there is T > 0 such that 1 —e; < S1(t) < 1 for ¢t > T.
Thus, for ¢t > T, we have the following differential inequality

L>[1—e)Bii—m —plh >0,

which implies that I; moves exponentially away from zero asymptotically, which is absurd as
lim; _,o I1 = 0 because the solution is assumed to converge to the DFE.

Finally, the convergence towards the DFE on the invariant set 0% (invariance which can be
deduced easily from the equations of the system) is self-evident as system is reduced to the
following equations in the set 0% .«

Sy = p— S,
S, = — i S;.
O

Employing the Lemma [2.6.3] [2.6.4], [2.6.5] demonstrated above, the following Theorem, which
is the SIS version of Theorem [2.4.1] is now proved using the same arguments as in the proof of
the Theorem aforementioned.
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Theorem 2.6.6. System (2.27) is uniformly persistent in the interior ) of the set ¥ defined in
(2.28) if Ro > 1 and non-persistent if Ry < 1.

Proof. The non persistence is deduced from the fact that the DFE is locally asymptotically stable
when Ry < 1. Moreover, the uniform persistence follows from an application of Theorem 4.3 in
[49].

Thanks to the Lemma for the biological feasible and invariant region ¥ (2.28), the
maximal invariant set on the boundary 90X is the set 0¥ .x. As the set X .« is closed and
connected, we take simply, as in the proof of Theorem the cover {Ny}taca = {08 max}
and the three points of the (H) hypothesis of [49] are again verified. Furthermore, the system
is naturally point-dissipative over the invariant compact set ¥, thus Theorem 4.3 in [49] can
be applied. According to this Theorem and Lemma [2.6.3] uniform persistence of the system
is equivalent to the non-existence of trajectories starting in the interior ¥ and approaching
asymptotically the set 9¥,,2x. Now, due to Lemma the convergence towards the set 0¥ ax
implies, in fact, the convergence towards the DFE, which is indeed excluded when Ry > 1 due
to Lemma [2.6.5 O

2.7 Global analysis of reinfection models with partial im-
munity

2.7.1 Elements of multistability analysis and contraction theory

As shown in Section [2.6] the two-stage models exhibit multistability. In fact, the models present
up to 2 endemic equilibriums for Rg < 1, 3 endemic equilibriums for Ry > 1 alongside a disease-
free equilibrium which always exists. In this section, we intend to discuss the asymptotic behavior
of the two stage model.

For non-planar systems exhibiting multistability, the asymptotic behavior analysis is often
difficult. Nevertheless, several approaches have been proposed in the literature for multistability
analysis. First, the asymptotic convergence towards a steady state may be shown if the system
presents some monotonicity properties [107], and whether a system is monotone regarding a
particular cone can be easily tested. Nevertheless, it is often very difficult to find a priori a cone
leading to monotonicity [5], but one may refer to [70] for an algorithmic approach that has been
recently proposed on this issue.

Another way to deduce asymptotic convergence is to implement a generalization of Lya-
punov’s direct method to systems with multiple invariant sets |37]. The method requires finding
a Lyapunov-like function proving that the invariant sets are attracting, which is again difficult in
practice. Similarly, the theory of Input-to-State stability (ISS) has also been generalized to sys-
tems with multiple invariant sets 6], allowing the consideration of the stability of interconnected
systems with multistability. Indeed, an analysis of ISS property of cascade interconnections of
ISS subsystems is provided in [48]. However, it is not clear to what extent the generalized ISS
property can be conserved for more complex interconnections, such as the ones in .

Finally, it is also possible to analyze multistability through contraction theory [78]. In short,
for a non-linear system

i= f(z), (2.32)

where f: R™ — R" is a O function, contraction is a differential property on the corresponding
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variational equation

ox = dj;(;)éx, (2.33)

that implies the exponential convergence of any virtual displacement §z in the tangent space to
zero. This in turn implies the convergence of all trajectories with respect to one another, which
is a form of stability that is called incremental. In this case, every solution of converges
towards a unique equilibrium.

Recently, contraction theory has been generalized to include the contraction of k-dimensional
parallelotope in the tangent space [117], with the classical contraction property corresponding to
the case where k = 1. In fact, the motivation to study the generalized k-contraction comes from
the work of Li and Muldowney who proved that any solution of a 2-contracting system converges
towards an equilibrium, which is not necessarily unique [75]. For planar systems, the autonomous
convergence theorem demonstrated by Li and Muldowney can be considered as a generalization
of the well-known Bendixson-Dulac criterion |72]. This convergence result has been since applied
to several compartmental models presenting one unique endemic equilibrium. In these models,
the 2-contraction property is combined with a persistence result to guarantee the global stability
of the unique endemic equilibrium in the interior of the invariant biologically feasible set when
Ry > 1. As the 2-contraction property does not necessarily require the uniqueness of the steady
states, this offers also an interesting framework for the asymptotic behavior analysis of multistable
systems.

We present now a quick review of Li and Muldowney autonomous convergence result. Let
0x1(t), dza(t),...,0xk(t) € R™ be k time-varying vectors representing virtual displacements
which are solutions of (2.33). We may represent the k-dimensional parallelotope generated
by the vectors dx1(t), 0x2(t),. .., dzk(t) as an exterior product z(t) := /\Zigigk&fi(t) evolving in

R(%), where (%) is the binomial coefficient. With this definition, z(¢) is a solution of the k-th

compound equation below associated to (2.33)) (see e.g. |76, Section 2]).

~_ﬁ[k]

i=- (2)z, (2.34)

where, for any matrix A, we denote A*! as the k-th additive compound matriz of A. For an
introduction to exterior product and compound matrices, one refers to [76] and |91} |90]. With
these definitions, we introduce the convergence result proved by Li and Muldowney in [75] and
reformulated by Ballyk et al. [11] who relaxed the need for a unique equilibrium. The statement
of the following theorem is slightly adapted from [11, Theorem 6.2].

Theorem 2.7.1. Let k = 2, D be a simply connected open subset of R™ such that solutions of

equation (2.32) with x(0) = xo € D remain in D for all finite time. Let || - || be a norm on R(3)
and let Q be an (%) x (3) matriz-valued function on D such that ||Q™"| is bounded on D. If
there exist real numbers T, g > 0 such that for all solutions of (2.32) in D and ollt = T, any

solution z(t) of (2.34) satisfies
1Q(z(®)2(t)l| < [1Q(z(0))2(0)[le™*", (2.35)
then every solution of (2.32) in D bounded away from the boundary converges to an equilibrium.

In other words, if the origin of the 2-nd compound equation (2.34)) is exponentially asymp-
totically stable uniformly w.r.t. a state dependent norm ||Q(x)z|| for any trajectory of (2.32) in
the set D, then the w-limit set of any solution of (2.32)) in D not approaching its boundary is
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simple, i.e., is reduced to an equilibrium point.

To give a brief idea of the proof of Li and Muldowney’s result in [75], the condition
is first proved to be a Bendizson criterion [72] that precludes the existence of periodic solution
for system (2-32). Indeed, let D = R™ for simplicity, the quantity ||Q(z)z| gives a measure of
the volume of a k—parallelotope z in R™. Hence, the condition for k = 2 translates the
fact that the area of any surface in R™ shrinks exponentially under the flow of , and this
rules out periodic solutions. In order to obtain the convergence to an equilibrium, the criterion
is moreover demonstrated to be robust under C'! perturbations of the vector field f. The Pugh’s
closing Lemma [101] is finally invoked to deduce the non-existence of non-constant non-wandering
points, hence any non-wandering point is an equilibrium.

Practically, the Bendixson criterion is demonstrated through the use of Lyapunov-like

function. In fact, a carefully selected vector norm |- | on R() is employed as Lyapunov function
to prove the property (2.35). In this case, it is interesting to introduce the Lozinskii measure
w(E) of a matrix F with respect to the norm | - |, defined by

. |I+hE|-1
E)= lim ————
)=

which is used to estimate the rate of expansion —g in (2.35)). Indeed, it is possible to verify that
(see [86])

(2]
D J=(t)] < (jﬁ, <x<t>>) ()]

where D is the right-hand derivative. More generally, for V(x, z) := |Q(x)z|, where Q(-) is a
C' non-singular (g) X (g) matrix-valued function

df (2]

Di|Q(x(t)z(t)] < p (Qf(x(t))Ql(x(t)) +Q=() (r(t))Ql(x(t))> Qz(2))2(1)];

where )y is the directional derivative of the matrix @) in the direction of the vector field f. For
more details about Lozinskii measure, one may refer to [26].

Denoting B(x) = Qf()Q " (z) + Q(x) L™ ()@~ (x), if

sup u(B(z)) <0, (2.36)
xz€D
or more generally,
1 t
lim sup sup 7/ w(B(z(s,z9))ds < 0, (2.37)
t—oo xg€D 0

then the property (2.35)) is fulfilled. In fact, the conditions (2.36) and (2.37) are the original
Bendixson criterions proposed by Li and Muldowney |77, 75]. Insofar as they are used in the

proof of results in Section it is also worth noting that the Bendixson criterion can be
further relaxed, see for example |79, Theorem 2.4] or [80, Theorems 2.2, 2.3 and 2.4].

As epidemiological models are often considered in invariant and biologically feasible sets of
co-dimension 1 (generated by the fact that the total population is constant along the time),
a useful extension of the convergence result is available for differential equations evolving on
invariant manifolds [76].

Indeed, if the system possesses a simply connected invariant manifold T' := {z €
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R" |g(z) = 0}, where g : R" — R™ is C? and dim(g—g) = m, then there is a function N : R” — R™
[76] such that
99
% () (x) = Nw)ga),

and the convergence result of Li and Muldowney holds as well if we replace the 2-nd compound
equation (2.34) by the (m + 2)-th compound equation ([2.38) [76]:

[m+2]
Z= (% (z) —v(2)])z, (2.38)
where
v(z) = Tr(N(x)), (2.39)

is the trace of N(z). By the same arguments then as in [11, Theorem 6.2], we deduce a result
similar to Theorem [2.7.1] in the context of systems evolving in an invariant manifold.

Theorem 2.7.2. D be a simply connected open subset of T such that solutions of equation (2.32))

with £(0) = xg € D remain in D for all finite time. Let || - || be a norm on R(n%2) and let Q be
a (m12) X (m12) matriz-valued function on D such that ||Q™Y| is bounded on D. If there exist
reals T, g > 0 such that for all solutions of (2.32)) in D and allt > T, any solution z(t) of (2.34)

satisfies

1Q(=(®)2(t)l| < 1Q(=(0))2(0)[le™*", (2.40)
then every solution of (2.32) in D bounded away from the boundary converges to an equilibrium.

The interest of studying the associated compound instead of lies in the fact that
the (m + 2)-th additive compound matrix may be in some cases smaller in size than the 2-nd
additive compound matrix. This is essential because compound matrices explode rapidly in size
as the dimension n increases.

In addition, it is noteworthy that, if the same assumptions in Theorems and hold
in a compact invariant set ¥ instead, then |76, Theorem 6.1] states that any trajectory in X
converges to an equilibrium.

Coming back to contraction theory, the convergence criterion proposed is in fact the
definition of k-contraction, (see e.g. [120, Definition 1]), with £ = 2 in the context of Li and
Muldowney theory. To demonstrate the k-contraction, another interesting method which involves
the numerical testing of linear-matrix inequalities (LMIs) has been recently proposed [120]. In
fact, we may verify simply the contraction property with the following result, which is related to
the existence of a quadratic Lyapunov function V' (z) := 2Qz for proving the asymptotic stability

of (2.34).
Theorem 2.7.3. Let ¥ C R” be a forward invariant set of (2.32)) and suppose there exists a
")

real number n > 0 and a symmetric positive definite matriz Q € R )x () such that

-
Q (g‘i(w)[k]> + (ggJ:(x)[k]) Q=-nI, Vel

Then, the system (2.32)) is k-contractive on X.

Another criterion has also been proposed in [120] for k-contraction without the involvement
of compound matrix, which may increase rapidly in size for larger dimension n of the system
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, however it is not useful for the present case as n = 4 remains small. Additionally, the
notion of k-contraction was compared in [120] to the closely related property of p-dominance
[47]. Defining the inertia of a matrix P as In(P) = (p,0,n — p) in the case where P has p
negative eigenvalues, and n — p positive eigenvalues, then the property of p-dominance is defined
as follows.

Definition 2.7.1 (Forni and Sepulchre [47]). System is said to be p-dominant on ¥ C R"
if there exist real numbers p,e > 0 and a symmetric matric P € R™ ™ with inertia In(P) =
(p,0,n — p) such that

of of

g(x) + 2= () "P < —2uP — ¢l

P ox

The property is strict if € > 0.

Similarly to the property of k-contraction, the notion of p-dominance implies also, for a small
number p, that the system is asymptotically well-behaved.

Proposition 2.7.4 (Forni and Sepulchre [47]). For a strictly p-dominant system, every bounded
solution asymptotically converges to

1. a unique fized point if p = 0;
2. a fized point if p=1;

3. a simple attractor if p = 2, that is, a fized point, a set of fixed points and connecting arcs,
or a limit cycle.

Notice that the conditions above need to be solved for all € 3, which is a complex problem.
To overcome this difficulty, the LMIs for k-contraction and p-dominance can be first transformed
into tractable conditions by convex relaxation, as suggested in [47} [120].

2.7.2 SIR model with partial immunity and demography

We examine here the endemic equilibriums and asymptotic behavior of a SIRI model, which takes
the assumption that the primary infection leads to a partial immunity to subsequent reinfections.
This was initially studied in [51]. The asymptotic behavior and stability of the model without
demography has been analyzed in [94]. Taking a step further, we investigate the asymptotic
behavior and stability of the SIRI model including demography.

The SIRI model with demography introduced by [51] can be considered, in fact, as a particular
case of system (2.27)). To see this, let us begin by fixing the coefficients in (2.27) such that
Bia = Pir =B, Br1 = Brr = ¥B, 11 =¥ = . In this situation, the equations of the system
227) are

Sy =p— B + 1)1 — pSh,

I = B(L +1,)S1 — (v + )1,

ST = ’Y(Il + Ir) - wﬁ(ll + IT)ST - USra
jr = ¢B(Il + IT)ST - (’Y + N)IT'

Introducing then the state variables

(2.41)

I=L+1I, S:=5, R:=S5,
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we obtain with these definitions the SIRI system with partial immunity and demography [50].

S=p—BIS — us,
I=BIS+¢BIR— (y+ p)l, (2.42)
R =~I —yBIR — pR.

We describe in the following theorem the endemic equilibriums of the systems and ,
we apply Theorem [2.3.9] and Theorem [2.3.7] respectively to the case Rp > 1 and Ry < 1. For
Ro > 1, this implies the uniqueness of endemic equilibrium. On the other hand, the matter is
more intricate for Rg < 1.

Theorem 2.7.5. The systems (2.41]) and (2.42)) admit

1. a unique endemic equilibrium if Rg > 1,

2. no endemic equilibrium if Ro <1 and 8 < p.

Moroever, if Ro <1 and 8 > p, there exists a threshold such that the systems (2.41) and (2.42))
admit

1. no endemic equilibrium if ¢ < Y*,
2. a unique endemic equilibrium if ¢ = ™,
3. two endemic equilibrium if 1 > *.

Remark 2.7.6. For a disease ensuring partial immunity after infection, one has ¢ < 1. Con-
sequently, in such case, systems (2.41) and (2.42) do not exhibit endemic equilibriums when
Ro < 1.

Proof. As B11 = B1,r = B, Br1 = Brr =9¢B, 11 =7 =1, by formulas in (2.29), b1 =1 and

il J

L4+bby—cbi=1+b,—c, =1+~ —-1-L=0.
Iz 7

We conclude the uniqueness of endemic equilibrium for Rg > 1 by applying point [I] of Theo-

rem m This implies the same for system .

Let us demonstrate now the statement of the Theorem for system and the case Ry <
1. Clearly, from the Theorem [2.3.7] a sufficient condition for the non-existence of endemic
equilibrium is

c= a% +ajcib, — crc% > 0. (2.43)

Thanks to (2.29), the quantity ¢ can also be expressed in terms of epidemiological parameters

_ (BB —pe mBoy—m Y Y B
c=( ) 1

B oyt+u B oyt vytpp YHuytp
_HB=y—p, B=r—p B
B ACE A R
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As Ry < 1, thus 8 — v — p < 0 and the condition (2.43) is equivalent to

B—v—n p
p——F— VSV 7/ + i
B B=v—n
Bor=—mwp+y8 _B+ulB-v-p
B B=y—n
B—p B—p
ytrpu)—— < (Yt )/
(v+w) 5 (v mﬂ_v_u
Now, if 8 > pu, the last inequality above is the same as
B=r=r
B
which is always false. On the other hand, if < p then the same condition is now equivalent to
ﬁ—v—ugL
B

which is always verified. Finally, if 5 = u, the same condition is trivially verified. To sum up,
the condition (2.43)) is the same as
B < p.

Therefore, if § < p the system does not admit endemic equilibrium.

For the contrary case, Theorem [2.3.7] states that the smallest zero of A acts as a threshold on
a, through which the system passes from a two endemic equilibrium regime to a zero endemic
equilibrium regime. As a, = ﬂ; is inversely proportional to 1, this is equivalent to say that
there exists a threshold ¥* on v for the appearance of two endemic equilibriums.

Finally, let ¥» = 1 and denote I := I + I, R := S; + S,, then the system can be

reduced to the SIS system:

S =p—BIS — puS+~I,
[=BIS = (v+ pl.

It is easy to verify that this SIS system does not admit endemic equilibrium for Ry < 1. In
particular, this forces ¥* to be greater than 1.

We have shown that the system exhibits one endemic and one disease-free equilibrium
for Rg > 1, and up to 2 endemic equilibriums and one disease-free equilibrium for Ry < 1. In
addition, the endemic equilibriums of the two-stage SIS system are endowed with a total ordering
in the same way as in Theorem for the SEIRS system. Hence, Theorem still holds for
the reduced SIRI model (2.42)), as the multiple endemic equilibriums that may arise in system
cannot be confounded in the reduced model due to the ordering. O

We have shown that the system exhibits one endemic and one disease-free equilibrium
for Rg > 1, and up to 2 endemic equilibriums and one disease-free equilibrium for Ry < 1. In
addition, it is easy to see that the endemic equilibriums of the two-stage SIS system are endowed
with a total ordering in the same way as in Theorem [2.3.6] Therefore, the same Theorem [2.7.5
still holds for the reduced SIRI model as the multiple endemic equilibriums that may arise
in system cannot be confounded in the reduced model due to the ordering.

Subsequently, we turn our attention to the asymptotic convergence of the solutions. In the
final result of this subsection, we prove first that any trajectory converges to an equilibrium for
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the reduced system (2.42), assuming that Ry # 1. In particular, this implies the same for the
two-stage SIS system (2.41)).

Theorem 2.7.7. Assume Ro # 1, any solution x(t) of system (2.41)) (resp. system (2.42))) with
initial condition x(0) € {x € R4|S1 + 1 + S, + I, = 1} (resp. z(0) € {z e R3S+ I+ R=1})
converges to an equilibrium.

Notice that, due to the persistence result of Theorem[2:6.6] Theorem [2.7.7)implies in particular
that, for Ry > 1, the endemic equilibrium is globally asymptotically stable in the interior of the
respective biologically feasible and invariant sets of both systems and . In the
alternative case where Ry < 1, the result guarantees the convergence to an equilibrium of every
solution even in the case where multiple endemic equilibriums coexist.

Proof. For Rg # 1, let us show that any trajectory of (2.42]) converges to an equilibrium using the
Li and Muldowney theory summarized in Section The invariant and biologically feasible
set I' is defined in this case by I' = {z € R% |[g(x) = 0}, where g : R®* — R™, g(z) = S+I—|—°R— 1.
In the rest of the proof, we may consider only the trajectories evolving in the interior I" of T'.

This is justified as trajectories starting in I' either converge to the disease-free equilibrium if
I(0) = 0, or fulfill S(¢),I(t), R(t) > 0 for t > 0 thanks to the differential inequalities:

S>u(1-58), Iz2—-(v+wl, R>-uR,

and the fact that S(0) > 0 (resp. R(0) > 0) if S(0) = 0 (resp. R(0) = 0). In addition, notice
that

%(x)f(x) — (1= 8§ —1—R) = —pg(x),

thus the function v introduced in (2.39) of the Section above corresponds to the constant
—u and m = 1 for the system (2.42)). The associated 3-rd additive compound matrix of %(w)
associated to the equation is (see [90])

dr Bl
&= (% (2) + pl)z.
As
of =Bl —p —BS 0
Lwy=| B BS+eRm-v—p  wsT |, (2.44)
0 ¥ —YBR —YBI —p

3
is a 3 x 3 matrix, its 3-rd additive compound is simply its trace %[ - Tr(%). Therefore, the
compound equation (2.38) is reduced to :

2= [B(S+YR) —v = B(L+ ) —2ulz.
Moreover, '
BS+UR) ~ 7~ BI(L+4) = 2= 1 — 10 +9) ~ p.

Then, after integration of the compound equation, we obtain

I(t) — [ 1 I(s ds
A1) = Z(O)I((O))e SO 1) s
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As limy, 4 oo fg(ﬂ(l + Y)I(s) + p)ds = oo, thus lim;, o 2(t) = 0 exponentially, and the system

satisfies a Bendizson condition (see |75] or Section in . Therefore, Theorem m
holds with D = f‘, @ =T and any solution z(t) of either converges to an equilibrium or
approaches the boundary of . The later case is precluded for Ry > 1 due to uniform persistence.
On the other hand, for Ry < 1, it can be observed that the solutions may only approach the
component {z € R3|S + R = 1,I = 0} of the boundary. Indeed, we have S > 0if S is close
to 0 and the same for R if I > 0 and R close to 0. In addition, from the expression of the
Jacobian , the DFE is locally asymptotically stable, thus its basin of attraction is an open
subset of T [24]. As the DFE attracts {z € R3|S 4+ R = 1,1 = 0}, hence it also attracts a close
neighborhood of the latter and the solution converges to the DFE in this case. O

2.7.3 SEIR model with partial immunity and demography

We investigate now a more sophisticated two-stage reinfection model compared to (2.41]), with an
additional class F modelling the disease incubation period. Again, the model can be considered
as a special case of the general two-stage model. Indeed, setting

ﬁl,l = ﬂl,r = Ba ﬂr,l = ﬁr,r = ¢ﬂ7 01 =0,=0, M="7=7 W =Ww =400,
we obtain the following two-stage SEIS system:
St =p— (B + 1) + p)Si,

Ey=(B(I1 4+ 1)S1 — (0 + p)Ex,
I =0F; — (v + w1y,

. (2.45)
Sy =yl + 1) = (VB + L) + 1) Sy,
Er = 1/’5([1 + I?")ST - (0 + H)EW
I, =cE, — (v + w) .
Now, let us introduce the state variables
S:=5, E=FE+FEgr, I:=5L+1.,, R:=S5,.
This leads to a reduced SEIRE system with partial immunity and demography:
E=BSI+yBIR — (o + p)E,
= ST+ 4B (0 + ) (2.46)

I=0E—(v+p)l,
R=n~I —¢BIR — uR.

It can be checked straightforwardly that the results of Theorems [2.3.6 to [2.3.9] and Theorem
still hold for system (2.45)), albeit with A, = oj_ﬂ 'vlu and D, = 1 instead of the definition
T 2.5)

. Moreover in this case,

A -1 oy _ oty +p

oy+uo+y)+p?  oy+pulo+y+p)’
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the polynomial coefficients a1, b1, ¢1, a., by, ¢, are

_ Bo—(y+p)o+p) _ _op o
ay = p ) bl_la GG =—— )
Bly+p)(o+p) Y+po+p
g tploty+py o ov—(@ty+pp _ oy
T YBlo+yt ) ' plo+y+p) plo+v+p)

and the basic reproduction number is expressed by

__B @
oyt potp

Ro

Similarly to systems (2.41) and (2.42)), the endemic equilibrium is unique for Ry > 1 and the
description is more complicated for Ry < 1.

Theorem 2.7.8. The systems (2.45) and (2.46) admit
1. a unique endemic equilibrium if Rg > 1,

2. no endemic equilibrium if Rg < 1 and
(o 4+ p)(Bo = (v + p) (o + p) + 70?8 < 0. (2.47)

Moreover, if Ry < 1 and (2.47)) is not fulfilled, there exists a threshold ¥* > 1 and systems (2.45))
and ([2.46) admit

1. no endemic equilibrium if ¥ < ¥*,
2. a unique endemic equilibrium if ¢ = ¢,
3. two endemic equilibriums if ¥ > Y*.

Remark 2.7.9. Again, for disease ensuring partial immunity after infection, systems (2.45)) and
(2.46) cannot exhibit endemic equilibriums when Ro < 1 (see Remark[2.7.6).

Proof. The computation is mostly the same as in the proof of Theorem [2.7.5] for the case Ro > 1.
On the other hand, for Ry < 1, we prove first the statement for the system (2.45). The
quantity c in this setting is equal to

2 2
c=aj + aic1b, — cpc]

_y Bop—uly+p)(o+p) ”
"Bt o+ oy ) (‘“ e

Bo— (v +p)(o+p)
Bo

+y0—(0+v+mp

R S
T B —(v+mo+p)

For Ro < 1, o < (v + u)(o + p) and the condition ¢ > 0 is equivalent to

(o +~+ p)(Bo — (v + p)(o + p) +vo*p < Mo+ v+ p)(Bo — (v +p)o+ 1) + yo?f3
Bo b Bo — (v + p) (o + p) '

If o+~ +p)(Bo — (v + w)(o + u) + 023 > 0, the condition ¢ > 0 is the equivalent to

Bo— (v +p)(o+p)
Bo

21,
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which is always false. On the contrary, if u(c + v + p)(Bo — (v + u)(o + u)) +v028 < 0, the
same condition is equivalent to

po—(y+mlo+p
/80’ AN b

which is verified. To sum up, the condition ¢ > 0 is equivalent to

o+ +p)(Bo — (v + p)(o + p) +70°8 < 0.

Similarly to the proof of Theorem the existence of the threshold * is then deduced using
Theorem [2.3.7] Moreover, for ) = 1, we denote S := S1 4+ S,, [ := I + I, E := E1 + E,., then
the system ([2.45)) can be again reduced to the SEIS system below.

S =p—BSI—puS+nI,
E =B3SI— (0 + p)E,
I=0E—(y+p)l.

It is known that this system does not admit endemic equilibrium for Ry < 1 [39]. In particular,
this implies that ¢* > 1.

Notice finally that the result still holds for the reduced system , thanks to an adaptation
of Theorem [2.3.6] which gives an ordering of the equilibriums. O

Notice in addition that the equilibrium results above still hold for the reduced system 7
thanks to an adaptation of Theorem [2.3.6] which gives an ordering of the equilibriums.

We also present a persistence result, that will be needed for later, and whose proof can be
easily adapted from the one of Theorem [2.4.1]

Theorem 2.7.10. System (2.45)) is uniformly persistent in the interior of {x € RS |Sy + E1 +
L+ S, +E.+1., =1} if Rg > 1 and non-persistent if Ro < 1.

We have shown that systems and present again one unique endemic equilibrium
when Ry > 1 and up to two endemic equilibriums when Ry < 1. Excluding the critical case
Ro = 1, the next result shows that any solution of converges either to the disease-free
equilibrium or to an endemic equilibrium.

Theorem 2.7.11. Assume Ro # 1, any solution x(t) of (2.45) (resp. of (2.46)) with initial
condition z(0) € {z € RS |S1+E1+11+S,+E,+1, = 1} (resp. z(0) € {x € RY|S+E+I+R =1})
converges to an equilibrium.

Notice that, combined with the persistence result of Theorem [2.7.10] the unique endemic
equilibrium is again globally asymptotically stable in the interior of the invariant set when
Ro > 1.

The proof of Theorem [2.7.11] requires the following Lemma.

Lemma 2.7.12. Let x(t) = (S(t), E(t), I(t), R(t)) be any solution of (2.46) in the invariant set
{z e RL|S+ E+ 1+ R=1}. Then ultimately the following inequality is verified

v = YBR.
Proof of Lemma[2.7.12 The first inequality is deduced from the inequality

S>p—(B+ps.
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Notice that the derivative of R, solution of (2.46)), is non-positive on the set {x € Rf |y = ¥ 3R},
hence {x € R} |y > ¢8R} is an invariant set of (2.46)).

For trajectories such that 1(0) + E(0) = 0, it is easy to see that I(t) = 0 for t > 0 and R(t)
converges also to 0 in this case, hence v > ¢8R ultimately.

On the other hand, assume I(0) + E(0) > 0, then I(t), R(t) > 0 for ¢ > 0. This is because,
if 1(0) = 0, E(0) > 0 and I > 0 and I is positive in a positive neighborhood of zero. Thus, we
may assume with no loss of generality that 7(0) > 0. In this case, the differential inequalities

It)y>—(y+wI, R>-@WBI+pR,

and the fact that R(0) > 0 if R(0) = 0 imply that I(t), R(t) > 0 for t > 0 anyway. Therefore,
the fact that I(¢), R(t) > 0 for all ¢ > 0 implies R(t) < 0 if v < ¥BR(t) and again v > YR
ultimately. O

Proof of Theorem [2.7.11. In a similar fashion as in the proof of Theorem [2.7.7] for the SIR system
above, notice first that only trajectories evolving in the interior of I' := {x € Ri |S+E+I+R =1}
matter, as any solution in T" either fulfills S(¢), E(¢), I(t), R(t) > 0 for ¢ > 0 or converges to the
disease-free equilibrium when E(0) 4+ I(0) = 0. We apply again the geometrical approach of Li
and Muldowney [76]. The Jacobian matrix of is

~(BI+p) 0 85 0
a Bl —(oc+n) BS+YBR YBI
dx 0 o —(v+ ) 0
0 0 —YBR+y —(WBI+p)

and its 3-rd additive compound is defined by (see the Appendix of [90])

k1 0 —pI 0
df¥ | —wBR+~ ke BS+UBR BS
dx 0 g k‘3 0 ’

0 0 BI k4

where

ky=—-pl—0c—~v—3u, ke=-(1+¢)8I -0 -3y,
ks =—(1+¢)Bl —~v=3p, ki=—-0—vy—9Bl—3p.

Hence, the associated compound equation ([2.38) is in this case defined as

(3]
z= <df +,uI> z.
dx

A:=diag(R,I,E,S),

Let us introduce now

then .. .
At =diag(R™1, T, E7, 87 Y) and A A~ = diag(=, =, =, =),

where A stands for the directional derivative of the matrix A in the direction of the vector field
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f- One has in addition,

109
k1 0 YpIE 0
o [ —uBRE ke (BS+uBRIE BI
A AT = E
dx 0 oT ks 0
0 0 pIZ ky
Thus,
. ks 0 YpIE 0
_ afr (y—vBR)E ks (BS+vYBR)% BI
B: AfA +Adl‘ A +[J,I 0 0_% k?7 0 )
0 0 BIZ ks
where
R I
k5zﬁ—ﬁlfaf”y—2,u, k6:j7(1+w)ﬂ17(f*2u,
E S
k=g = (L+9)BI =y =2p, hs= 5 -

g~ 07— YBl -2
Thanks to Lemma [2.7.12] we may assume directly that v — ¥R > 0 in the sequel. Defining
y(t) := A(x(t))z(t), y is determined by the differential equation

1y = By.
Let us prove (2.35)) with Q(x) = A(z) and considering the L> norm on the vector space R?. For
a given matrix M = (M, j)1<i j<4 and denoting

L= Mg+ ) |Migl,
i

the Lozinskii measure uo associated to the L™ norm is defined by (see for example [91])

oo (M) = max {l;}.

We provide the following formulas, which are required for the computation of ;.
Z 81
S 2

70T

E I I
I E :
7 (v + ),

= =

s (2.48)
=15~ YBI — p.
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Let us compute now the value of /; for the matrix B.

llzgfﬂlfoffythrdzﬂlg
R S
b= ()BT — o~ 2+ (= BRI + (85 4 wsR) L + B
=2 (L )BTy~ 2t ol
eI,
=S o usr - prS
g

E R
Sz T(1+ =) —
=gt 51— ¥sIL+ 4)
Therefore, an easy adaptation of [80, Theorem 2.2] to the norm L makes it possible to say that
it is sufficient, for all 1 < ¢ < 4, to have g; such that, for any trajectory of (2.46) in a given
invariant set X2,

lim sup — / i( < g <0, (2.49)

t——+oo

in order to guarantee (2.40) and for the system (2.46) to satisfy a Bendixson condition in this
invariant set. For I, I3, l4, the property (2.49) is verified for any trajectory in the interior of T
For example, one has

1 — < — + — —
limsup /0 ll(S)dS N thm n / ( R Y — ,u)d

- tiiglm% <log(§((é))) +log(g((é)))> —y—p=—(v+p.

However, for I, the property is not always verified, as we shall see.

[ s)as = gt + gt 1) + tost )~ vt [ 106
liriligop /l2 dS——’(/JBltlgl_ﬁgof /0 I(s)ds.

For Ry > 1, the persistence result in Theorem [2.7.10] guarantees the existence of ¢ > 0 such that

1 t
lim inf f/ I(s)ds > e,
tJo

t——+o0

and the property (2.49) is indeed verified for any trajectory in the interior I of T. The uniform
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persistence gives also a compact absorbing subset (see e.g. |75] for a definition) K in f7 where
there exists ex > 0 such that S, E, I, R > ex and ||A7!|| is uniformly bounded in K. Therefore,
the result in [80, Theorem 2.4] adapted to the L* norm allows us to deduce that any trajectory
starting in the interior of I' converges to the unique endemic equilibrium when Ry > 1.

On the other hand, for Ry < 1, no persistence result is available, and we need to first examine
under which circumstances the solution of (2.46) may fulfill

1 7t
lim inf — / I(s)ds =0. (2.50)
0

t—+oo t

An integration of the equation for I in (2.46)) gives

t
0 = limsup 1[I(t) —1(0)] = o limsup — / E(s)ds — (v + p) lim 1nf I(s)ds.

t—+o00 t—+o00 t—+oo t Jq

Assume liminf;_, |, T fo s)ds = 0, the equation above implies limsup, ,, ., 7 fo (s)ds = 0.
As E(t) > 0, hence lim;_, 4o = 7 fo (s)ds is then defined and equal to zero. Integrating again

the same differential equation for I we obtain hmtﬁjLoo i fo s)ds = 0. Furthermore, the
differential inequality )
R <~I - R,

gives

1 t
0<y lim ,/[( )ds — p lim f/R
0

t—+4oo ¢ t—+oo ¢

As limy 400 T fo s)ds = 0 and R > 0, thus lim;_, o ?fo R(s)ds = 0. Finally, thanks to
S+ E+I+R=1,lim_1s % fot S(s)ds = 1. In this scenario, the solution must visit any
neighborhood containing points arbitrarily close to the disease-free equilibrium. Otherwise, there
would be & > 0 such that S(t) < 1 —e¢ for t > 0, which contradicts limy_ ;o } fg S(s)ds = 1.
Hence, for all € > 0, there must be a ¢ > 0 such that S(t) > 1 —e. As E(t),I(t), R(t) > 0 and
SHt)+E@)+I(t)+R(t) =1, then I(t), E(t), R(t) < €. As e can be made arbitrarily small, indeed
this is equivalent to saying that the solution visits any neighborhood of the DFE. Moreover, the
Jacobian matrix at the disease-free equilibrium

—u 0 —p 0
0 —(oc+mw) B 0
0 o —(y+mp) 0
0 0 v —p

is Hurwitz for Ry < 1. Indeed, —u is an eigenvalue of the matrix of algebraic multiplicity 2 and
the remaining eigenvalues are the same as those of the matrix

((0; ) —(76+ u)) .

As the 2x2 matrix has a negative trace and moreover its determinant (o+pu)(o+ u) ,80' is positive
when Ry < 1, this yields the local stability of the DFE. Therefore, if lim inf;_, , o h fo s)ds =0,
then the trajectory must converge to the disease-free equilibrium, as it is locally asymptotlcally
stable for Ry < 1. Inversely, if the solution converges to the DFE, naturally is verified.
Hence, the solutions verifying are those starting in I and in the basin of attraction of the
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DFE, which we refer to as A C R%.
For xy € T, we denote now z(t,20) = (S(t,x0), E(t,x0), I(t,z0), R(t, z0)) the solution of
(2.46) with initial condition xy. Notice then that

t s
lim inf1 I(s,x)ds = sup inf ! / I(r,z)dr,
t—+4oo t 0 t=0 52t S Jo
is lower semi-continuous with regard to the variable x. Moreover, I'\ A is closed and compact
(A is open as the basin of attraction of the locally asymptotically stable DFE [24]). Therefore,
there exists € > 0 such that
1 [ 1 [
inf liminff/ I(s,x9)ds = min liminff/ I(s,zg)ds > ¢.

zo€\A t—+oo T Jo zo€D\A t—+o00
Otherwise there exists zop € I' \ A such that liminf, 4 3 fot I(s,x09)ds = 0 and the solution
x(t,xo) converges to the DFE, which contradicts the definition of T"\ A.

Hence, the property is satisfied in T'\ A. However, it is not guaranteed that ||A~Y| is
bounded in I' \ A, and we have to show that there is an absorbing subset ¥ of I" \ A where the
inverse is defined and bounded.

Thanks to Lemma [2.7.12] an ultimate lower bound

. R
ltlglﬁg)fS(t) >eg = g >0

is already derived for any trajectory in I'. It remains to derive similar bounds for F,I and R.
Notice first that OT'; := {z € I'|E+1 = 0} is a compact subset of A. As A is open, for each point
of zp € OT'y, there exists e;, such that C,, := {z € RY||z — za|| < e, } C A. Thus, {C,}zcor,
constitutes a cover of dI'; by open subsets of A. From the compactness of 0';, we extract a
finite subcover from {C;}.car,, and this allows to deduce the existence of ey > 0 such that

min E+1>¢egig.
(S,E,I,R)eET\A

This lower bound and equations (2.46)) imply the differential inequality in the invariant set I'\ A:

I1>o0epir—(y+o+uwl.

Hence, any trajectory in '\ A fulfills ultimately

liminf I(t) > ey = — 2+,

t—+oo _'y—|—a—|—,u

Again from (2.46)), this implies that ultimately, the differential inequalities below are verified for
any solution in T'\ A.

lim inf E(t) > Beser — (0 + p)E, ltim_gnf R(t) > ver — pR.
— T 00

t—+oo
Thus, there exists also eg,er > 0 such that, for any trajectory in I' \ A, the inequalities

liminf E(t) > eg, liminf R(t) > eg,

t—+oo t——+o0

are verified. The compact '\ AN{(S,E,I,R) €T'|S > eg,E > eg,I > 1, R > €r} is then an
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absorbing subset of '\ A where ||A~!|| is uniformly bounded and the Bendixson criterion ([2.49))
is satisfied. An application of |76, Theorem 6.1] concludes that any trajectory in the invariant
set I'\ A converges to an equilibrium. This completes the proof of Theorem [2.7.11 O

2.7.4 Commentary on the general system

Unfortunately, the implementation of Li-Muldowney theory in the general case is more intricate,
and no convergence result has yet been discovered. In order to show the complication, let us
compute the 3-rd additive compound matrix of % for the general SIS system. Indeed, the system
has the following Jacobian matrix

(P + Bl + 1) —B1151 0 —B1,rS1
ﬁ@) _ Bialh + Bi Iy B11S1 =71 — 0 B1,751
Oz B 0 T Br,lsr 7(/87”,111 + ﬁr,rjr + ,LL) Tr — /BT,TST ’
0 ﬂr,lsr ﬂr,lIl + B’I",’I”I’I" /BT,’I"ST‘ — Yr

therefore its 3-additive compound matrix is

kl Yr — /BT,TST _51,7‘51 _Bl,rSI
af[B] ) = ﬂr,lll + /BT,TIT k2 0 0
Ox N _Br,lsr 71— 67‘,1‘97" k3 _ﬁl,lsl
0 0 ﬂl,lll + 61,7“17“ k4

where k1, ko, k3, k4 are defined by

k1= 8115 — (Bia+ Bra)h — (B + Brr) Iy — 71 — 3,
ke = 81,151 + BrsSr — P11 — B dr —y1 — vr — 34,
ks = BrrSr — (Bra + Bra) i — (Brr + Br) I — v — 314,
kqa = 1,151 + BrpSr — Braidi — Brody — v1 — v — 310

To simplify the problem, we introduce a matrix-valued function A(x) so that the matrix

(3]
AfA—1+Aﬁ A 4,
dx
is in the simplest possible form.
Defining first the transformation matrix
1 0 0 0 1 0 0 O
|0 1 0 0 -1 _|0 1 0 O
P=lg o1 1] " Tloo1 -1
0 0 0 1 0 00 1
then
3] kl Tr — ﬁ'r‘,TST _/81,7"51 0
8f —1 Br 111 + Br rIr k2 0 0
B:=P——(x)P; " = ' '
o2 (@) Py —Br15r 7 — Br1Sr ks il
0 0 Biphh + Biplr ks
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where

k5 = BT‘,TS’I” - ﬂr,lIl - BT‘,’I”IT‘ — Vr — 3#7
ke = 81151 + Br Sy — (B11 + Br)i — (B + Brp) Ly — 1 — e — 3.

In addition, we introduce

1 1 0 0
01 00
Pi=10 01 of
0 0 0 1
then
k7 0 —B1,r51 0
— T 1 +6r7’[r kS 0 0
€= PPyt = | Pt i 7
? 2 _57“,187" gt ks -N
0 0 Binli+ Bl ke
where

ky = 1,151 — Bil1 — Bl — 1 — 3,
k8 = 517151 + BT‘,’I‘S’F - (51,1 + ﬁr,l)ll - (61,7" + /BT,T)IT -7 —Vr— 3/-//

Furthermore, define

1 0 0 O
0 0 1 0
Psi=10 1 0 of
0 0 0 1
then
k7 —B1,rS1 0 0
__ -1 _ —Br15r ks M M
D=hCh =\ 5 1+ 6,1, 0 ks 0
0 Biili+ Byl 0 ks
Finally, with
I,
5 ? 0 0
= |0 & 00|
0 0 1 0
0 0 0 1
we derive the matrix
k7 —51,7~S1% 0 0
_ _BTAISTI*I k5 ’71I71 _’71I71
E=PDP;! = AMTL 3. S,
! 4 (57’,111 + ﬁr,r-[r)% 0 kg 0
0 (Brad + /Bl,rlr)%r 0 kg

The last transformation is intended to obtain non-diagonal coefficients which can be cancelled as
far as possible by diagonal’s ones, which is related to the computation of the Lozinskii measure

below. Define finally the matrix A as A := PyP3P, Py, it is easy to verify A;A™! = diag(% —
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e L 5:0,0). We derived finally the matrix
ks —ﬂ1,r51% 0 0
Il Il Il
L —1 _ 76r,lsrﬁ k9 ’715 7’71@
F=ddm + B+ ul= (Brady + Brplr) 3= 0 k1o o | 23D
0 (Bl + 51,rfr)% 0 k1o
where the diagonal entries are
I, S,
kg = 79 + 51,151 — Bl — B dr — 1 — 20,
L S,
k9 = -5+t /87“7" T /Br,lll - 57",7"17" - Tr = 2#7
L S,

kio = 1151 + BrpSr — (Biy + Bra) i — (Brr + Brp) Iy — 71 — v — 24,

which can be alternatively expressed by

I S,
kg = 7 Si'r - fu, T S1 =Bl = Bl — b,
I S, 1 11
kziii ris_rl_rlr_a
"= ST+I ﬂ,llrr Brali — Brr 7
LI Ir
klO = Tl + T 67“ 1 - (61,1 + /87",1)[1 - (51,7" + 57",7“)17“
1 T
To obtain 2-contraction, let us define a vector norm || - || such that the associated Lozinskii

measure p(Af A~ + E + pul) fulfills

t

1
limsup lim — [ w(A;A'(s) + E(s) + puI)ds < 0. (2.52)
0

t—+oo ToEX

Usually, the vector norms employed are the L' and L> norms, or a hybrid combination of both
types (for example the norm ||(z1, z2, 3, 24)|| := max{|x1| + |z4|, |z2], |z3]} is employed in [80]).
This is because the computation of Lozinskii measure associated with these norms is rather
easy, and can be typically expressed as a sum of diagonal entries and the absolute value of non-
diagonal entries. However, this method does not yield positive results for the present problem,
as the matrix defined in presents non-diagonal terms that cannot be compensated by
the diagonal’s ones, which is required in order to ensure . To see this, let us denote
F = (F; j)1<i,j<a and take for example the norm ||(z1, 2, 3, z4)|| := max{|z1]|, ||, |23] + |z4]}.
As described in [84] and similarly to [80], the associated Lozinskii measure of F' can be estimated
by p(F) < max{ly,ls,l3}, where

li == Fi1 + |F12| + max{|F 3|, |F1 4|},
lo :=Fy9 + |Fo1| + max{|F> 3|, |F2.4l|},
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The issue in the present attempt is the quantity I3, which is in fact equal to

L I I, Sy
L 7 Brr—+51 — (B + Bra)li — (B + Brp)Ir + BrpSe + (B L1 + Brpdy)—

Iy = 2
ST r I, L’

but the remaining positive terms above cannot be further compensated in order to have (2.52)).
Several similar attempts have been performed, leading to the same situation. Moreover, with
the attempt exposed previously, it can be seen that the failure of the application of Li and
Muldowney method comes from the complex structure of the recruitment rates (81,111 + 01, 1) S1
and (By111 + BrrIr)Sy, caused by the heterogeneities in the model, while the method were valid
for the simpler contact rate 8SI in .

We also tried to prove numerically 2-contraction and 1-dominance for the general system
by solving, after a convex relaxation, the LMIs conditions included in Theorem and
Definition 2.7.1] We employed the semidefinite programming solvers SeDuMi and SDPT3 in
MATLAB, which failed to deliver a solution to the problems. This suggests in particular that
we may not expect a state-independent quadratic Lyapunov function V(z) := zQz to prove the
2-contraction of the general system. On the other hand, the problem of finding state-dependent
quadratic storage function for k-contraction and p-dominance is difficult and constitutes a domain
of active research |47, [120].



Chapter 3

Joint age and reinfection
structured model and associated
mean values

3.1 Introduction

Following the infinite system of ODE tracking the number of reinfection in Chapter [I} we discuss
in this chapter a class of epidemiological models numbering the reinfection with additional age
dependency. In fact, it is often noticed that the characteristics of the actual diseases, for example
the severity or the rate of transmission, are highly dependent on the host population structure
(28, |81, [106]. Hence, a single disease may exhibit significant variations in the resulting epidemic
dynamics owing to the disparities in the age distribution of the population, which vary, for ex-
ample, from country to country. It is therefore often necessary to include age dependencies in the
epidemiological models in order to improve decision-making [18] or formulate recommendations
for targeted public health policies such as vaccination or quarantine |52} |114].

The age dependency is considered mathematically by so-called age-structured models. For
epidemiological models, this can be implemented with the ODE-based compartmental models
with discrete age groups |18} 119] or with a system of PDE assuming the age as a coordinate in a
continuous domain (for examples of age-structured epidemiological models, one can refer to [60]).
In the present chapter, we are moreover interested in the joint structure of age and reinfection.
Particularly, we noticed that the reinfection-structured microscopic ODE model presented in
Chapter [1] also admit a “hidden” structure, this time according to the age, in the same way as
the former is itself an “unfolding” according to the number of reinfections of macroscopic models.
Hence, we intend to investigate the underlying age structuration of reinfection models of Chapter
M

To this end, an age-structured SEIRS system with an infinite number of partial differential
equations taking also into account the number of reinfections is introduced and its well-posedness
deduced. The general framework within which this system will be handled is that of abstract
differential equation and semigroup theory [96]. The chapter is organized as follows. Section
introduces the age and reinfection structured model as an infinite system of evolution equations.
In Section well-posedness results, elaborated by Desch et al.|31] and adapted by Pugliese
and Tonetto [102], on a class of abstract Cauchy problems are recalled as a preliminary for the
well-posedness analysis of the model. These results are then employed in Section where the

117
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age and reinfection structured model is adapted into an abstract Cauchy problem setting and
proved to be well-posed. Finally, in Section the system, in its simplest setting with non-
varying parameters with regard to the age and reinfection number, is studied in detail. Similarly
to the infinite system studied in Section [I.4] of Chapter [T} the system in Section [3.5] can also
be considered can also be considered as revealing an underlying structure of the same SEIRS
model 7 now with regard to both the age and the reinfection number, with the additional
assumptions that the disease is non-lethal, and the total population is non-varying. We call
this model, which possesses two “microscopic dimensions”, a nanoscopic model. The asymptotic
stability of the disease-free and endemic steady states are studied, and the age-structure allows
the computation of supplementary interesting quantities on the endemic state of the SEIRS
model, namely the mean numbers of reinfection at each age and the average age values in each
compartment.

3.2 An infinite age-structured SEIRS reinfection model

As announced, we investigate in this chapter the joint age and reinfection structure in the context
of SEIRS models. Introducing the variables b;(t,a), b € {s,e, 1,7}, j > 1, which denote the age
density of hosts with health status b (which can be either s, e, 1, , respectively for ‘Susceptible’,
‘Exposed’, ‘Infected’; ‘Recovered’) that have been infected exactly j times (j — 1 times in the
case of variables s;, j > 1). The variables take two arguments (a,t), which are the age of the
hosts a and time ¢. With these definitions, the dynamics of b; can be captured by the following
model consisting of evolution equations, which is similar to the ODE model albeit with an
additional age structure.

% + % = —Ai(t,a)s1 — p(a)s,

8881; * 8822 =wji—1(a)ri-1 — Ai(t, a)s; — pla)s;, i>1,

%eti N geai = Ailt a)s; — (o(a) + p(a))e, i>1, (3.1)
% * % = ai(a)e; — (vi(a) + pu(a))u, i>1,

aa? + ?92 = vi(a)]; — (wila) + pla))ri, i>1,

where the forces of infection A; defined by

_ 2 fo+oo Bij(a,a’);(t, a")da’
- N (1) )

Ai(t,a) (3.2)

represent the rate at which susceptible hosts, of age a that have already been infected n — 1
times, acquire the infectious disease at time ¢, which follows the true mass-action law. The total
population of the system, denoted N (t), is defined by :

+oo
N(t) ::Z /0 [si(t,a)—l—ei(t,a)—l—zi(t,a)—&—ri(t,a) da. (3.3)

In the equations (3.1)), the left-hand side includes components of transport equations modelling
the aging process. On the right-hand side, the nonlinear terms \;S; represent the recruitment
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of the diseased. Moreover, u(a) is the age-dependent natural death rate, w;(a) is the loss rate of
immunity, o;(a)~! the age-dependent incubation period and finally 7;(a) the recovery rate.

In addition, denoting n(t,a) the proportion of the population of age a at time ¢ :

n(t,a) := Z si(t,a) + €;(t,a) +1(t,a) +ri(t,a),

%

the system is endowed with the boundary conditions

+oo
a(ﬂ%:A b(ayn(-, a)da,
5i+1(5,0) = €i(-,0) = 2;(-,0) = 74(-,0) =0, i>1,

(3.4)

reflecting the births generated by the population. On the other hand, we also define the initial
conditions at t = 0

81(07 ) = S?('), 61'(0, ) = 6?(')) Zi(oa ) = Z?(')? Ti(ov ) = 7”?('), i =1, (35)

for given functions s?,¢e9,49, 7Y € L% (0,+00). For simplicity, we denote p® := (s?,€?,49,79);>1.

IR R RN 19710 Y500 g
To ensure well-posedness, the coefficients of (3.1)) are considered with the following assumptions,
which are standard:

0o ,0 ,0 ,.0

o (H1) p measurable and there exist real numbers p—, gy > 0 such that 0 < p_ < p(a) < pgt
for a.e. a € [0, +00).

e (H2) b,w;,vi,0; € LT[0, +00) and there exists k > 0 such that 0 < w;(a),vi(a),0(a) <k
for a.e. a € [0, +00) and any i > 1.

e (H3) Foralli,j > 1, 8 ;(a,-) € LY and there exists 3 > 0 such that 0 < §; ;(a,a’) < 4
for all i, > 1, and a.e. a,a’ € [0, +00).

For the analysis, we will consider the state variables of as a sequence of elements of the form
(si,€4,2,7;),4 > 1 that can be rewritten more conveniently as p; := (p;1,Di2,Di,3,Pi4),% = 1. In
the sequel, we will use both notations. Each element belongs to a four components product of
L! Lebesgue space (L'(0,+00))* endowed with the norm

4 400
ol =3 / 1p1.5(a)da.
j=1"0

Therefore it is natural to consider the solution p := (p;);en of the system (3.1) as evolving in the
Banach space X befined below.

X = {p = (pi)ien : Vi = 1,p; € (Ll(O,—i—oo))4 and ||pl|x < oo}, (3.6)

where [|p|x := oy I|lpill- In addition, a partial ordering will also be required for the definition
of the positive solution to the system. Consider then the natural element-wise partial order
relation > on R*,

1 2

vzl 2?2 e RY, 2! > 2?  if and only if T; s

1<j<4
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The cartesian product induces an ordering on (L*(0, +00))*
Vf1, f2 € (LY0,+00))t,  f1 > fo ifand only if fi(a) > fo(a), for almost every a > 0,
which itself induces an order relationship on X :
V= (f)ien€X, VYg=(g)ien€X, f>g ifandonlyif f;>g, i>1.

Finally, we define the positive cone X, of X associated to the order relation defined previously

Xy = {p = (pi)ien€ X :p > OX}- (3.7)

Note that we chose to consider the solution as a sequence of 4 components Cartesian product of
Lebesgue integrable elements because it is more meaningful for the SEIRS model, but clearly an
equivalent way to consider the solution is to see it as a sequence of simple Lebesgue integrable
functions which is the setting of [102], hence the same techniques and results can be easily
transposed to the space X. A solution p : [0,tmax) — X of is said to be classical if
p € CH([0,tmax), X) and fulfills and the boundary conditions (3.4)-(3.5). Moreover, it is
positive if p(t) € X for all ¢ € [0, tmax)-

With the preceding definitions, it is possible to demonstrate that the age profile of the to-
tal population n(t,a) follows the McKendrick-Von Foerster equation [60] and is independently
defined.

Theorem 3.2.1. (Total population dynamics) Let p be a classical positive solution of . Then
the age density n : [0, tmax) — LY (0, 400) defined in is the unique classical solution of the
McKendrick-Von Foerster equation, i.e., n € C([0,tmax), L} (0,400)), n(t,-) € WH1(0,+00)
for 0 <t < tnax and n fulfills:

on(t,a) n on(t,a)
ot Oa

n(t,0) = /+OO bla)n(t,a)da, t >0, (3.8)

0
n(0,a) =n(a) =" > )ij(a), a>0.

i>11<5<4

= —p(a)n(t,a), t>0, a>0,

Proof of Theorem[3.2.1 Let 0 < T < tyax and consider the classical solution p in the interval
[0,7]. Thanks to the definition of X and the fact that p € C*([0,7], X), there exist uniform
bounds k1, ks > 0 such that

d

< -
Ip®)lx < ki 1

pt)|lx <ks for0<t<T. (3.9)

Let us denote

n(t,a) := Z Z pi,i(t, a).

1<i<l1<5<4

For any 0 < ¢ < T and for almost every a > 0, clearly |n;(t,a)| < k1 and n;(¢,a) converges
pointwise a.e. to n(t,a) = >, n;(t,a). Moreover, due to the uniform boundedness in ¢ € [0, T
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of [[p(t)||x, n(t,) € L1 (0,+00) and it is easy to see that

Ll

7%
ni(t,-) — n(t,) and p;(t,-)

—> 0 uniformly in t € [0, T].

Furthermore the uniform boundedness of || %p(t) |lx in (3.9) also implies that %ni(t, -) converges
uniformly with regard to ¢ and

9 1
Jim ity ) € 110, +99).

Hence for almost every a > 0,

0 0
z_li?oo Btm(t a) = 8tn(t a), forae. 0<t<T, a>0

Thanks to the uniform convergences above and n; € C*([0,T7], L% (0, 400)),
n € C*([0,T], L1 (0, +0)).

Summing now the equations (3.1)), we obtain
0 0
&ni(t’ a) = fa—m(t, a) — p(a)n;(t,a) —w;(a)pia(t,a), forae. 0<t<T, a>0.
a
Taking ¢ — 400, from the convergence results above yields

0 13}
n(t,a) = l_l:+moo " ni(t,a) = — 1£+moo 20" ni(t,a) — p(a)n(t,a), forae. 0<t<T, a>0.

9
ot
This also implies that lim;_, o 2n(t,-) € L*(0,+00), hence Zn(t,") = lim; o0 22ni(t, ")
almost everywhere and n(t,-) € W1(0, +00) for every 0 < t < T'. Finally,

%n(t a) = f%n(t, a) — u(a)n(t,a), forae. 0<t<T, a>0.
We conclude the proof by taking T" arbitrarily close to tyax. O

It is known that the solution of McKendrick-Von Foerster equation converges asymptotically
to an exponential distribution. In fact, the number of births B(t) := n(¢,0) at the instant ¢ can
be deduced as the solution to the Lotka’s renewal equation below.

/ ba—l—t da+/b B(t — a)da,

where 7(a) = e = Jo s ; is the survival probability at age a of the model and w is the maximal
attainable age for the individuals in the model. The first term of the equation above is interpreted
as the contribution to the birth rate of the initial population at time ¢ and the second term
represents the birth generated by newborns after the initial time 0. The asymptotic behavior
of this renewal equation is well understood and known in the literature as the Sharpe-Lotka
Theorem [115] or the Fundamental Theorem of Demography (e.g. [60, Proposition 1.9]). The
result states, for finite w > 0, that the asymptotic behavior is dominated by an exponential term

B(t) = qoe™* (1 + O(e™™)),
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where "
Jo e iG(t)dt m(a+1t)

© Jy ae=>ob(a)m(a)da’ Gl = /o blat ”W” (a)de,

and 7 is a positive real and \g is the unique real root of Lotka’s characteristic equation

/w e Mb(a)m(a)da = 1.
0

Moreover, notice that we can generalize the result [60, Proposition 1.9] with no particular dif-
ficulty to the case w = oo, which is assumed in the present model. Due to the Fundamental
Theorem, the age profile converges asymptotically to the exponential distribution (Proposition
1.11 [60]) :

)\Oa

lim e *!n(t,a) = goe %~ fo ”(S)ds, uniformly in a.

t—+oo

Introducing the net reproductive rate of the system as

+oo
R= /0 b(a)m(a)da.

In order to have a constant stable population, A\g must be equal to zero hence R = 1. In the
sequel, we take the simplifying assumption below that ensures that the total population has
already attained a stable constant distribution, with N(t) constant for ¢ > 0.

e (H4) R = 1 and the age profile of the population has already reached the stable age

distribution, that is n(0,a) = ke fo ”(s)ds, keRy.

Normalizing then the quantities s;, e;,2;, r; in (3.1) by N(¢), we may consider only the case where
N =1 and the system (3.1) is endowed with a linear force of infection \; defined by

+o0
Ai(t,a) = Z/o Bij(a,a')i(t,a")dd, (3.10)

instead of (3.2)). For a complete picture on the subject of Kermack-Mackendrick equation, the
reader is invited to consult [59, 60].

Remark 3.2.2. For non-constant total population N(t), it is still possible to consider the well-
posedness of (3.1)) by introducing the alternative normalization

Si (t, a)
n(t,a)’

et a) = it o)

Ei(t7a) = - n(t,a)’

ii(t, a) =

Fi(t, a) =

Similarly to the age-structured SIR model in [60], the resulting infinite system is asymptotically
autonomous for sufficiently regular solution, and the well-posedness of the limiting autonomous
system may be derived by the same semigroup techniques employed below. The
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3.3 Well-posedness results for a perturbed linear abstract
Cauchy problem

To verify the existence and uniqueness of solutions of (3.1]), the system may be considered as an
abstract differential equation of the form (see Section (3.4))

p'(t) = AT+ H(t))p(t) + (F () (p(t)),

where A is the generator of a Cy-semigroup and H, F' are nonlinear operators. In particular,
the multiplicative perturbation A(I+ H) of the linear operator A in the abstract equation takes
into account the non-trivial boundary conditions . We intend then to adapt the perturbed
semigroup theory results available in the literature [31} [L02] to the proof of well-posedness and
positiveness of the present system.

To this end, this section serves as an aside to introduce some definitions and results whose
proof can be found in the aforementioned papers. Let (X, - ||) be a Banach space with its
associated norm and A : D(A) — X be a linear operator with domain D(A) C X generating a
strongly continuous Co-semigroup e** such that, for some M > 1 and w € R, the following norm
inequality is fulfilled

et < Me*t, t>0.

The Favard class of A defined below is required for the analysis.
_ g Lieta, _
Fy=<{pe X :limsup-|e’p—p| < +o0;.
t—o+ t

It is easy to see that F4 is a Banach space endowed with the following norm

. L o ia

ple, = [l + limsup —[le""p — p].
t—o+ t

The domain D(A) of an operator A generating a Cp-semigroup e’ is the set of all elements
x € X such that the limit below exists :

1
lim (et —T)z.
t—+oo t

It is clear from the definition that D(A) C F4. Anecdotally, we have D(A) = Fy4 if X is reflexive
(see for instance [38]). On the other hand, let H : X — F4 and F : X — X be locally Lipschitz
continuous operators, i.e., for all R > 0, there exist Lgr, Kr > 0 such that

|H(p) — H(q)|rs < Lrllp—dll, [F(p) = F(9)| < Krllp -4l (3.11)

for all p,q € X such that ||p||,]l¢]| < R. Finally, we introduce, for R > 0, the projection
mTr: X - X

{7 <R
TRET 2 Rif ||z > R,

Izl

and the composite functions

Hpg(z) := H(wgr(z)) and Fgr(z) := F(nr(z)). (3.12)
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In this setting, the abstract Cauchy problem is proved to be well-posed in [102] which is an
adaptation of the results in [31].

Theorem 3.3.1. (Theorem 2.1 in [102]) Let A : D(A) — X be a linear operator with D(A) C X
which generates a Co-semigroup ¢!, H : X — Fa, F : X — X satisfy (3.11)) and p° € X.
Consider the abstract Cauchy problem

p'(t) = A(I+ H)p(t) + F(p(t)),
{p(o) o (3.13)

Then

1. For each p° € X, there ewists a unique mild solution of (3.13)), i.e., a continuous function
t — p(t) satisfying the integral equation

t t
p(t) = etp + A / e=IAH (p(s))ds + / IR (p(s))ds (3.14)
0 0
2. If [0,timax) s the maximal interval of existence of the solution, then tme, = +oo or
lim, ;- |lp(t)]| = +o0,

3. If H and F are continuously differentiable and p°+(H (0))p® € D(A), then p(t) is a classical

solution of (3.13), i.e., p(t)+ (H(t))p(t) € D(A) for eacht € [0, tmaq), p(t) is differentiable
and satisfies (3.13) for each 0 < t < tpaq.

Remark 3.3.2. Although not stated explicitly in both Theorem 1 [31] and Theorem 2.1 [102],
the classical solution p(t) is proved to be continuously differentiable in [31] and also explicitly
stated in Theorem 1 [30] which is an earlier report of the work presented in [31].

For p° € X, we denote in the rest of the paper p(t,p") the mild solution to the Cauchy
problem ([3.13]). The next result relates to the continuous dependency of the mild solution on
initial data.

Theorem 3.3.3. (Theorem 2.2 in [102]) Let p° € X and let (gn)nen be a sequence in X
converging to p°. Then for each t > 0 such that p(t,p®) exists, we have

: o 0
Jim p(t,gn) = p(t,p°)

and the convergence is uniform for t € [0,T], where T > 0 is such that p(T,p°) exists.

As the model describes an epidemiological process of positive quantities, we are specifically
interested in the existence and uniqueness of positive solutions. In the context of Banach spaces,
the natural framework for studying positivity is the Banach lattices, which is a Banach space
(X,]| - ||) endowed with an order relation < such that (X, <) is a lattice. For a given order
relation, we define the positive cone of X :

X+:{p€Xp>0}a

and we denote p > ¢ if and only if p — ¢ € X . In the rest of the chapter, we will only use the
natural order between L!(Q) functions, which implies

Xy ={feX: f(x) 20,ae. in Q}.
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Definition 3.3.1. A linear operator T on a Banach lattice X is called positive if Tp € X for
allpe X,.

Finally, we cite the following results on positive solutions which are required for the analysis

Lemma 3.3.4. (Lemma 5.3 in [102]) Let X be a Banach space, let « >0, R >0, and p° € X
and let Hr and Fg be defined as in (3.12)). A function t — p(t) satisfies the integral equation

t t
p(t) =ep° + A/ " Hp(p(s))ds +/ I ER(p(s))ds, ¢ =0, (3.15)
0 0

if and only if it satisfies the integral equation fort > 0

t
p(0) = A A [ () s
0 (3.16)

1t
+a/0 =)A= 1 o FR)(p(s))ds.

Theorem 3.3.5. (Theorem 3.2 in [102]) Let X be a Banach lattice and let A be the generator
of a positive Co-semigroup on X, i.e., etA X, C X, for allt > 0. Suppose that for each R > 0
there exists o > 0 such that

(L+aFR)X,; € X,

and

t
A/ e(t_s)(A_é)HR(u(s))ds € Xy for all ue C([0,T]; X),
0

where F' and H are locally Lipschitz continuous and Fr, Hr are defined as in (3.12)). Then, if
p’ e Xy, p(t,p°) € Xy for allt € [0, tmaz)-

Remark 3.3.6. As noticed in [102], Theoremm implies that for existence and uniqueness of
positive solution with pg € Xy, the operators F' and H need only to be defined on X .

3.4 Well-posedness of the age and reinfection structured
model

The well-posedness of the abstract Cauchy problem presented in the previous Section [3.3]enables
the well-posedness study of the age-structured SEIRS model , which will be covered in this
section. In subsection [3.4.1] we introduce some supplementary notations for the analysis and
formulate the model in the abstract framework developed in Section [3.3] Then the main results
of our analysis are exposed in subsection Finally, the proofs of the results can be found in

subsections B.4.3] and B.4.4

3.4.1 Adaptation to the abstract Cauchy problem setting

Consider now the same Banach space X and the positive cone X introduced in (3.6)) and (3.7,
we rewrite then the system (3.1)-(3.10) as an abstract differential equation of the form (3.13])
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evolving in X. First, a reformulation of the PDEs gives

Os; _ _0si +wi—1(a)ri—1 — p(a)s; —Z +005‘ (a,a’)e;(t,a")da's; i>1
ot - da i—1 i—1 1% A 0 %] g\b (2] ES)
Oe; 661 )
= oa — (04(a) + p(a))e; +Z/ Bij(a,a")u(t,a")da's;, i>1, 317)
(911‘ 821 .
&= St oila)es — (wla) + pla) i1
aa? = Z’” +yiti = (wia) + p(a))ri, i1
Let p := (s;,€i,1;,7i)ien be a solution of the system, we see that the equations above can be
written under the form 5
op
=Ap+ F
5 = AP+ F ),

where A and F' are respectively linear and non-linear operators to be defined.

The operator A assigns a unique element Ap € X defined below to each element p in the
domain D(A).

(4p)11(a) = = 2 (a) = pla)si (a),

(Ap)iala) = = 25(a) + winr(@)rioa(@) - pl@)sila), P> 1,
(4p)is(a) = = =t(a) = (i(a) + p(a) ei(a), i>1,
(Ap)isla) = —==(a) + oi(a)eila) = (@) + pla)u(a), i >1,
(Ap)iala) = —2E(a) + 7ila)i(a) = (wila) + pl@)ria), i >1,

In terms of (p;)sen, where p; € X, the operator can be rewritten in a more abstract way :
(Ap)iala) = =22 (@) + wir (@picra0) — pla)pia(a), i1,
(Ap);2(a) = “%@ (04(a) + p(a))pi 2(a), i1,

pl : . (3.18)
(Ap)ia(a) = =22(a) + oi(@)piz(a) — (:(a) + p(@)pisla), i1,
(Ap);a(a) = “H@+%<mxw (wi(a) + p(@))prala), i>1,

where wopo 4 = 0 is introduced with the aim of simplifying the expression. The domain of the
operator A is set as

D(A) := {p € XN (WHH0,00)N : Vi = 1,p;(0) = 04;3N € N,Vj > N,p; = 04}. (3.19)

This domain is obviously dense in X. We will show later that A is closable and replace A with
its closure A in the analysis of the well-posedness. Moreover, from the equations (3.17)), the
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non-linear operator F': X — X is defined by

+oo
(F(p))ia(a) = —Z ; Bij(a,a")j(a")da’Si(a), i>1,
“+00
(F(p))iz(a) =Y Biila,a' Vj(a')da' Si(a), i>1,

j=>170

(F(p)is=(F(p))ia=0, ix>1.

The nonzero components of F(p) can be alternatively written in terms of p; ;

+oo
(F(p))iala) = —Z ; Bijla,a’)pjz(a’)da’pis(a), i>1,
2
(F'(p))i2(a) = Z Bij(a,a")pjs(a’)da’piq(a), iz 1.

j>170

Finally, it remains to incorporate the boundary condition (3.4)) into the abstract Cauchy equation.
This is done by adding a multiplicative operator H taking account of the boundary condition
(3.4) in the same manner as in [31} [102]. Specifically, we introduce the operator H : X — X as

“+oo
D@ = ([ 6D () + i) + ) + i o),

(H(p))i,j(a) =0 otherwise.

The operator can be equivalently written as,

(H(p)1,1(a) = —</+OO ba)d Y pi,j(a')da’)W(a),

0 i>11<j<4

(H(p))ii(a) =0 otherwise.

The addition of the nonlinear operator H in the equation is justified as H solves the stationary
equation

(AH(p))(a) = 0.

Therefore, the evolution equation (3.1)) can be equivalently stated as the abstract Cauchy problem

(3.22)

p'(t) = A(T+ H)p(t) + F(p(t)),
p(0) = p°,

where I'is the identity matrix. In addition, the operator A is proven to be closable below, with the
closure denoted A. Then, from the definition of D(A) in (3.19), if the condition p+ H (p) € D(A)
is verified, we recover the boundary conditions relating to the births (3.4) as p+ H(p) € D(A) if
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and only if the components of p are in (W11(0, +00))* and p satisfies the boundary conditions

+oo
p1a(0) = / W)Y S posa’)da

121 1<5<4
pi;(0) =0 otherwise.
Furthermore, under the assumptions of Theorem P +H (p°) € D(A) implies p(t)+H (p(

t
D(A) for t € [0, #max). Thus, the boundary conditions , equivalent to the constraint p(
H(p(t)) € D(A), are satisfied for every t € [0, tmax)-

) €
) +

3.4.2 Main results

We announce now the main results demonstrated for the age-structured reinfection model, the
proof of which is given in the next section. The following Theorem is about the existence and
uniqueness of global solution of the infinite system of PDEs (3.1)-(3.10).

Theorem 3.4.1. (Well—posedness) Let p° := (p9)i>1 € X such that p°+ H(p°) € ), i.e., p°

is such that p) € (W1 1(0 +oo)) for alli > 1 and fulfills the boundary conditions (3.4 If Hl
- hold, the system (3.1] with boundary conditions and initial condztzons (13.5) has

a unique classical posztwe and global solution t — p(t) := (Si(t),Ei(t), I;(t), Ri(t))ien € X4, i.e.
pE Cl([oa +OO),X+)

Corollary 3.4.2. Under the same assumptions as in Theorem[3.].1], the classical solution t —
p(t) := (pi(t))iz1, where p;(t) € (L*(0,+00))*, is such that p;(t) € (WH1(0,+00))* for anyt > 0.

Proof of Corollary[3.4.9 This is easy to deduce from the equations and the fact that
Pt )eX O
+

As the system describes a reinfection process with reinfection number counting, it may be
interesting to check the behavior of the average number of reinfections in the population at a
time ¢. In this end, we introduce the quantity

—+oo
P(t):=> i / [sm(t a) + ei(t,a) +1(t,a) + ri(t, a)]d (3.24)
=1
We also introduce the Banach subspace X; of X :
00 +o00
X1 = p= (pi)iEN S )(7 Z’L(/ |p1+1 1 |da + Z/ |p” |da> < 400 s (325)
i=1 0

endowed with the norm

“+o0 +00 400
1Pl x, 12/ |p1,1(a)|da+2i</ Pi+1a( \d“"‘Z/ Ipi.j(a |da>
0 = \Jo

and define the operator A; as the closure of operator A (3.18)) restricted to the subset X;. Then
the following result indicates that the mean number of reinfections is defined for the system ({3.1])
if it is defined initially.
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Theorem 3.4.3. (Average number of reinfections) Let p° € X such that p° + H(p®) € D(Ay),
i.e., the initial data fulfil the boundary conditions (3.4) with finite average number of reinfections

P(0). If|[(HI)}{(H5) hold, there exists M' such that the average number of reinfections P(t)
defined in (3.24) fulfills P(t) < M’ for any t > 0.

Remark 3.4.4. In light of Theorem one may wonder whether the average number of
reinfections P(t) may still be defined with a less restrictive assumption, i.e., in the case where
P(0) is infinite initially, can we expect a regularization effect so that P(t) finite ultimately? We
present here a counter-example, in the case where the parameters are independent with regard to
the age. In this case, after integration, we obtain an SEIRS compartmental system of ODFEs:

Si =wRi_1 — BIS; — uS;, i>21,
Ii=0E; —(v+ I, i>1,

Ri=~I; — (w+ pR;, i>1,

(3.26)

where we denote wRy = p for simplicity. Notice that the sums S := >, S;, E = Y E;, I :=
> Li, R:=)", R; follow the classic SEIRS system with demography,

S =p+wR—pBIS—pusS,
E=pIS — (04 p)E,
= PIS (ot w) (3.27)

R=n~I —(w+ p)R.

For 2— > 1, this implies the existence of a GAS endemic equilibrium (STE EEE [EE REE),

tu
Taking now
6 (X))
C = ; = <Z 22> ’
i=1

and the initial condition (S;(0), E;(0), I;(0), R;(0)) = & (S¥E, EFE [FE REE), i > 1, such
that

n

P(O) = lim i(Si+1(0) + Ez(()) + IZ(O) + Rz(O))

n—-+o0o

= Jm <Z(2 —1)85;(0) + ZZ(EZ(O) + 1;(0) + Ri(o))>

n

n—-+oo
i=1
The initial condition implies also that system (3.27) is at equilibrium. In such case, the system

(13.26)) reduces to an infinite system of linear ODFEs with a triangular structure. Summing up the
equations and considering N; := S;1+1 + E; + I; + R;, we have

t
N; = —uN; + BIPE(S; — Sip1), Ni(t) = N;(0)e #t 4 BIEF / e M98, (s) — Siy1(s)]ds,
0
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n

P(t) = lim > iNi(t)
i=1

n n t n—1 t
= lim (e " iN;(0) 4+ BIFF / efﬂ(tfs)isi s)ds — / R | S;(s)ds
Hm( >oini0)+ a1y | was=3 (i — 1)S(s)ds]

=

n n—1 + t
= lim (e"” ZiNi(O) + BIFE Z/ e P98 (s)ds + ﬂIEE/ e_“(t_s)nSn(s)ds> .
i=1 =170

n—-+oo 0

Due to P(0) = Y | iN;(0) = 400, the first sum on the right-hand side diverges to +oo when
n — +00, and because the remaining terms are always positive, lim,_, yoo Y iN;(t) = +oo for
t > 0, which rules out regularization effect.

3.4.3 Well-posedness — Proof of Theorem m

The proof consists in transforming the system (3.1)) into the abstract Cauchy form (3.13)), which
is shown to be well-posed by application of results presented in Chapter [3.3}

For well-posedness of the corresponding abstract Cauchy problem, we first prove that the
associated linear homogeneous problem generates a Cy-semigroup of contraction.

Theorem 3.4.5. The linear operator A is closable in X, and A generates a positive, strongly
continuous semigroup of contractions.

Proof. The proof is similar to the proof of Theorem 4.1 in [102]. We begin by showing that A
is a densely defined dissipative operator and that the range R(A — A) is dense in X for every
A > 0. The fact that A is closable and A is dissipative follows then from [96, Theorem 4.5].

Moreover, the density of R(AI — A) and the fact that A is dissipative imply that R(\[— A) = X

as shown in |102]. Finally, by application of the Lumer-Phillips Theorem (|96, Theorem 4.3]), A
generates a Cy-semigroup of contractions.

In order to show the dissipativity, we introduce, for x € X, the subdifferential of the norm,

Olzll = {p € X*: (g, 2) = [lzll, ol = 1}, = #0,
Aol = {p € X* : [loll <1}

By definition, A is dissipative if and only if for every p € D(A) there is p* € 9||p|| such that
(Ap,p*) < 0, where the bracket is the usual duality product. As the case p = 0 is trivial, we
assume that p # 0. The dual space of X is

X* ={p=(pi)ien : i € (LOO(O»+OO))47$2£ [ill (Lo (0,400))r < F00},
and we have the following characterization of 9||p|| (see [100} [102]) :

wijla) =1, if a € Qf; = {s €[0,400) : pi;(s) > 0},
pedlpll = Vi>1,1<j<4,{pi;la)=-1, ifaeQ; ={s€l0,+00):p;;(s) <0},
—1< i a) <1, ifaeQ); ={se[0,+00):p;;(s) =0}
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Therefore choosing ¢ € 9|p|| such that ¢; j(a) =0 for a € QF ;, Vi > 1,1 < j < 4, we obtain,

(Ap.o fg[ / @ia [ (Ap)s s
::Oj / (Ap); 1da+/QzZ(Ap)i,gda—i—/(Zis(Ap)i,gda—k/Qh(Ap)iAda— /;1 (Ap)iida
1@;@M@—Agmmwh1;mmw4
= :oj {/f?il(Wil(a)pil’4(a) —pi,i'(a) — pla)pi(a))da — /mz (pi2'(a) + (0(a)
+ p(a))pi2(a))da + /Q+ (0i(a)pi2(a) — pis'(a) — (vi(a) + p(a))pis(a))da + /QL (vi(a)pizs(a)

—pia’(a) — (wila) + p(a))pia(a))da — / (wi—1(a)pi—1,4(a) — pia'(a) — pla)pia(a))da

+/7 (pi2(a) + (0i(a) +u(a))pi,2(a))da—/ (oi(a)pi2(a) = pis'(a) = (vi(a) + p(a))pis(a))da
Q

i,2

~ [ Cuaniala) i @) = (or(0) + pla)piata))da)

Notice that, as p € D(A), the sums are in fact finite and rearrangements are possible, then

Ve ii(/_ /m) pig'(@) + pla)pis(a da+2{/ wi—1(a)pi—1,4(a)da
_ /Qj_; cn(a)pi,z(a)cia+/Qj)3 (oi(a)pi2(a) —%’(a)pi,s(a))da+/m (vi(a)pis(a)

i,4

- wl@pia(@)da - [

Qi,l

wi—1(a)pi—1,4(a)da —l—/ oi(a)piz(a)da

Q;z

- [ t@mate) w(ama(@da [ Cutalniala) - wlama(a)dal
€ ,3

5;4

As remarked in the proof of Theorem 4.1 [102], thanks to p; ; € W11(0, +00), Qj'] is an at most
countable union of pairwise disjoint intervals :

Q:tj = U (a;{]—ha:{]%
n=1
with p; j(a%7) = 0 for a’;’ € R and lim, , o5 pij(a) = 0if all = 400 due to p; j € BVNL (0, +00)
(BY stands for functions of bounded variation). The same reasoning also applies to Q;; and
therefore
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Hence,
+oco 4
(o, Ap) = ZZ/ |Pz,g |da+2[/ wi—1(a)pi— 14( )dCL*/QJr Ui(a)pi,Q(a)da
+ [ @@zt = @pa@)ida+ /Q  Gul@pis(a) — wila)pia(a))da
+ [ otapa@ida- [ w@pos@da- [ @@ - @)

_ /4 (vi(a)piz(a) — wi(a)pi,4<a))da:|

Rearranging again, and as wopg 4 = 0, we have

(¢, Ap) = ii/ a)|pi,j(a Ida+Z[ / (a)pi2(a )da+/52i+3(0i(a)pi,2(a)

— i(@)pis(a))da + /

+
Q7

+ [ otapa@in- [ @@ -u@ns@ido— [ Gi@pis)

i,2

(i(a)pi.a(a) — wi(@)psaa))da + / wi(@)pia(a)da

+
ia

~ wr(@pealyda— | . i apia(a)da]
== ii/ a)lpi,;(a)|da + Z [(/Q . /szmi) oi(a)pi2(a)da

n ( [ -] )wa)p@«,s(a)da 4 < / - )wi<a>pi,4<a>da
Q;stL Q;ﬁsm& ot no;, ijpﬂ;rl,l
- / (a)
Q- .NQ

i+1,1
— </ )ai a)p;,2(a)da — (/ —/ )7i(a)pi73(a)da
Q7 ,n0f, ’s Q;,n0f, Q;,nQf,

21‘,2

+1,1 i,4 1+1 1

The last inequality is derived from the definition of Q;tj We thus proved that A is dissipative.
Moreover, it is obvious that D(A) C X thus A is closable with A also dissipative.

Let us now demonstrate the density of R(AI — A). For this, let A > 0, it is sufficient to show
that for every p € D(A) there exists ¢ € D(A) such that A\¢g — Aq = p. Let p € D(A) such that
p; =0 for i > N for a N > 0, we consider ¢ € D(A) such that ¢; =0 for i > N 4+ 1, ¢11 as the
solution of the ODE

{qma) — — (A + (@) q11(a) + p1.1(a),
q1,1(0) =0,
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that is,
q171(a) :/ e fs ()Hru(v-))drle(S)dS7
0

and we define recursively ¢; j, ¢t =1,2<j<4and 1 <i< N +1,1<j <4 as the solution of
the ODE

¢i1(a) = —(A+ p(a))gii(a) + wi—1(a)gi—1,4 + pi(a),

¢ o(a) = =(A+oi(a) + p(a))gi2(a) + pi j(a),

qi 3(a) = —(A +7i(a) + p(a))gi s(a) + oi(a)g 2(a) + pi j(a), (3.28)
¢ 4(a) = =(A+wia) + p(a))gia(a) +vi(a)g s(a) + pij(a),

qi’j(O) =0.

Indeed, in this case ¢ € D(A) and it is a solution of the equation A\¢ — Aq = p, therefore
D(A) € R(M — A) and the range is dense in X, which concludes the proof that A generates a
Co-semigroup of contractions. ~

To demonstrate the positivity of the semigroup e*4, let us take ¢ € D(A) N X, we apply
as in [102] the method of characteristics solving the linear PDE

q'(t) = Ag,
q(0) = ¢°,

we can check that q(t) = (¢;(-,t))ien € X4, then by density we have e/4¢? € X, for all
0

Remark 3.4.6. Let (zn)nen be a sequence in D(A) such that x, — x and Az, — f in X. It is
easy to check that x € D(A) with the domain defined as

D(A) := {p € X :p; € (WHH(0,400))*, pi(0) = 04, Vi > 1}.

In order to apply Theorem m it is necessary to have R(H) C F;. As the operator H is
a special case of the one defined in p.154 [102] with ¢ = 1 and ¢ = 1, this is easily verified by
adapting the proof of Proposition 4.2 in [102], thus

Proposition 3.4.7. H(p) € F; for allp € X.

It remains to check that the assumptions of Theorem [3:3.5] are also verified. As the second
assumption relates to the operator H, the proof is again similar to the proof of Lemma 4.3 in
[102] hence the following result holds.

Lemma 3.4.8. Let oo > 0. The operator U, defined in Wr = C([0,T],X) by

[Ugu(t) := A /O t A== F (u(s))ds

is positive, i.e., it takes positive functions into positive functions.
Finally, we check the remaining assumption

Lemma 3.4.9. For any R > 0, there exists o > 0 such that I+ aFg) X, C X;.
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Proof. For p € X, we set p := mg(p). By definition, we have p; < p;, Vi > 1. It is easy to see
that (I4+ aFg)p € X, if and only if, for every i € N

pi1+a(F(p))ix =0, pi2+a(F(p)iz =0

as we have always (F(p))i;2 = 0 for p € X4, it is only necessary to verify the first inequality.
(

2
Thanks to assumption (Hs)

aple/ /Bz,] pj3( ) pzl *O‘5+pllz/ pj3

i>1 i>1
> (1-aByR)pi.

We conclude the proof by taking a < ﬁ. O

We are now ready for the proof of well-posedness result in Theorem [3.:4.1] which is a direct
consequence of the following two theorems on well-posedness and global solution of the abstract

Cauchy problem ([3.13).
Theorem 3.4.10. If |(H1)H(H3)| hold, the Cauchy problem on X,

{p’(t) = A(p(t) + H(p(1))) + F(p(t)), (3.29)

where X, A, H and F have been defined above, has a unique mild solution in X for P’ € X,.
Moreover, if p° + H(p®) € D(A), then the solution is also classical.

Proof. The fact that H and F are locally Lipschitz and continuously differentiable on X is easy
to see, thus the result is an application of Theorem [3.3.1} Theorem [3.4.5]and Lemmas [3.4.8] [3.4.9]
(notice that Lemma can be adapted for operator Hp instead of H as stated in [102]). O

Theorem [3.4.10| gives existence and uniqueness of a local solution for ¢ € [0, tmax), tmax > 0.
The following result and the point [2] of Theorem [3.3.1] show that the local solution is in fact
global.

Theorem 3.4.11. Let ((H1)H(H3)| hold and p(t) = (pi(-,t))ien be a positive solution of (3.29))
defined on [0, tmax)- Then there emsts L > 0 such that ||p(t)|| < ||p(0)||eXt for each t € [0, tmax)-

Proof. Let us begin by assuming that p° € X, and p° + H(p°) € D(A). In this case, Theo-

rem |3.4.10| states that the solution p(t) to the Cauchy problem (3.29) is classical, i.e. p(:) €
Cl([O, tmax), X ). For p € X, let us introduce the bounded linear operator L on X :

Lp —Z Z / pij(a

1eN 1<j<4

Now notice that, for a positive solution p(t) € X of (3.29)), we have the equality ||p(¢)|| = Lp(t).
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Therefore, thanks to the continuously differentiable property of p(-) and the equations (3.17)),

Lol = & L) = L o)),
+oo
=>. > / apw t,a’)dd,
€N 1<j<4
= Z Z / pm (t,a") — p(a")pi;(t,a")dd’,
1eEN 1<j<4

As p; ;(t,-) € WH(0, +00), limgy 400 pi (£, a) = 0,

Tol=> 3 [p”to / u(aYpi (¢, )da! |,
1€EN 1<j<4
1(t,0) Z Z / a')pi ;(t,a")da’,
€N 1<j<4

+oo
- / [b(a) — (@) a)da < (6]l — p)pE)].

Hence, by Grénwall Lemma, [[p(¢)|| < |[p°|leIbllzee=1-)t for p° € Xy such that p° + H(p°) €
D(A).

For the general case, notice that the operator A(I + H) generates a Cy-semigroup (e.g., see
[31, Theorem A]), thus its domain D(A(I + H)) is dense in X, but D(A(I + H)) is exactly the
set of elements p° such that p® + H(p°) € D(A). Therefore, by density, the same estimate holds
also for p¥ € X. O

3.4.4 Mean number of reinfections — Proof of Theorems m

Proof of Theorem[3.].3 We proceed using an argument similar to that used in [102]. One may
check that the operator A defined in also satisfies Theorem in the space X,
endowed with the norm || - ||x, as the computation of dissipativity can be performed without
supplementary complications using as reference the computations done in Theorem [3.4.5 above
and Theorem 4.1 in [102]. Therefore, we define A; as the closure of A in X; and consider the
abstract Cauchy problem :

{ P(t) = A1(p(t) + Hi(p(t))) + Fi(p(t)), (3.30)

p(0) = p°,

where F} := F|x,ng and Hy := H|x,. Proposition Lemma, can be adapted
for the space X7 and Lipschitz continuity and continuous differentiability of H; with respect to
|- |F(a,) and Fy with respect to || - || x, are again easy to see, therefore the Cauchy problem
is well-posed on (X1),. Let then p® 4+ H(p") € D(A;) and consider the classical positive solution
p(t) € X; given by Theorem Introducing the linear bounded operator L; on Xj :

+oo +oo
Llp:ZZ</O pz+11 da+Z/ pz,] )

i=1
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Hence P(t) = L1(p(t)), and

L p(t) =4 1a(o(t) = La (1),

—+oo

400 o
= . 7'(/0 ot ~ Pi+1, 1 t a da"‘Z/ atpl,] )da),

(aapw(t a) + p(a)pi ;(t,a da+2/ Xi(t, a)pi(t,a)da

As p; j(t,) € W1, we have fo aapi)j(t,a)da = —p;,;(t,0) as usual. Notice that p; ;(t,0) =0
for (i,7) # (1,1), thus after some further computations,

jtp(t)—fi(/;“ ()p”tada+2/ phjta)d)

i=1

+z / it )psa (£ a)da < —pu_P(t) + B, N?.

Hence P(t) is bounded for p° + H(p°) € D(A;) by applying Grénwall Lemma. Moreover, as the
system is normalized, N = 1 and the Lemma also implies that
limsup P(t) < ﬂ—-’_,
L

t——+o0

which concludes the proof of Theorem [3.4.3] O

3.5 Underlying age and reinfection structure of a common
SEIRS model

We consider in this section the age and reinfection structured model in the simplest setting,
where the parameters are independent with respect to the age and the number of reinfection 4, j.
In subsection the simplified age and reinfection structured model is introduced. Similarly
to the SEIRS system counting reinfection presented in subsection of Chapter 1} we
show formally how the model in this case is linked to the classical SEIRS model. They
constitute then a "multi-scale" vision of the same object, with or without its age and reinfection
structures. of the age and reinfection structure hidden in the common SEIRS system. Then in
subsection the steady states of the system are exposed along with their asymptotic stability
properties. Finally, in subsection [3.5.3] several interesting quantities, such as the mean number
of reinfections at given age or the mean age in each compartment at endemic equilibrium of
the SEIRS system are given, in line with the mean numbers of reinfections presented in
subsection of Chapter
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3.5.1 An age-structured SEIRS model counting reinfection

As announced, we consider in the simplest setting with 3; ;(a,a’), 0s(a),vi(a),w;(a), u(a)
constant regarding both the age and reinfection variables a and ¢. We will underline in the
present subsection the relationship between the system , the common SEIRS system
and the reinfection structured SEIRS model studied in Chapter (1| (with the additional
assumptions that the disease-related mortality v is zero and the total number of hosts NV is
constant). Notice first that the assumption R = 1 in is here equivalent to

“+o0
b/ e Mida =bpy~t =1,
0

hence b = p. The equations (3.1)) subject to the present study can be written as

({981' 881 -

8t 8@ :wri_lfﬂjsifﬂsiv 1217
aei+8ei:ﬂ15i*(01‘+ﬂ)€i, i}l,

ot Oa (3.31)
812- 8%— .
a‘k%zgei*(’}/‘i’u)lia Z>17

8@? (?;;: =y — (W + p)ry, 121,

where I(t) :=>", f0+°° 1;(t,a)da and rg = 0. The model is endowed with the following boundary
conditions,

81(',0) = IUJN,
Si+1(',0) = 61'(',0) = ’Li(',O) = ’I“i(',O) = 0, ) > 1,

and the initial conditions

(3.32)

where
+oo
n(t,a) = s;(t,a) + e;(t,a) +1;(t,a) + ri(t,a), N(t):= Z/o n(t,a)da = 1.

It has been proved in Section [3.4] that the system is well-posed and admits a unique global
classical solution p = (s, e;,2,7i)i>1 € C1([0,+00), X) for every initial condition p° € X
fulfilling p° + H(p°) € D(A). Moreover, from the assumption |(H4), N(t) is constant and equal
to one for t > 0, as it represents a normalized quantity. Let us show now that the system
is, in fact, an “unfolding” of the SEIRS system according to both the age and the number
of reinfections. For ¢ > 1, we denote

+oo “+oo
Si(t) ::/ si(t,a)da, E;(t) ::/ e;(t,a)da,
(3‘!-00 ’ +oo (333)
I;(¢) ::/0 1 (t,a)da, R;(t) ::/0 ri(t, a)da.



138 CHAPTER 3. Joint age and reinfection structured model

Then an integration of (3.31]) with respect to the age a gives

/Jm(aSl(t a’) + %(t a’))da’ = —BI(t)Sy(t) — pSi(t)
0 ot da ’

/O+OO(8£(@ a’) + %(E a'))da’ = wi—1R;i—1(t) — BI(t)Si(t) — uSi(t), i>1,
/Oﬂo(a(,:t"(t,a’) + %(t, a'))da' = BI(t)Si(t) — (o; + pu)Ei(t), i>1,
[ Gty 4 G ia = 0B - -4 1) i>1,
|G+ S it =a1ie) - e+ i), i>1

Thanks to p € C1([0, +00), X;) and p(t,-) € (WH1(0,+00))N for any t > 0 (Corollary [3.4.2)),
therefore, as W11(0, +00) C BVNL(0, +00), any component of p converges to zero when a — oo
and the integrals on the left-hand side give

Foo 351 ’ 881 ’ ’ . . .
(5 (t,a") + == (t,a"))da’ = Si(t) + Eljrﬂ s1(t,a) — s51(t,0) = S1 — p,
0 a o0

ot Oa
too ; ; . .
/ (8;; (t,a') + %(t, a'))da' = S;(t) + Erf si(t,a) — s;(t,0) = 9,(¢t), > 1,
O a oo
/+Oo(aei(t a/)—l—%(t a))da' = Ei(t) + lim e;(t,a) — e;(t,0) = E4(t) i>1
O at b aa b - 1 a—)—‘,—(x) 1 b (2 b - 1 b = b
/m(a“(t ’)+%(t Nda' = I;(t) + lm 2;(t,a) —1(t,0) = I;(t) > 1
0 (% ,CL aa ?a a = K3 a_>+ooz7, 7a ’LZ I’ - +1 I’ 1 = ’
oo 87"7; ’ 872- / ’ . .
-t Zt — P, 3 . oy — . P> 1.
/0 ( T (t,a") + 50 (t,a"))da' = R;(t) + aginoo ri(t,a) —r;i(t,0) = R;(t), 1>1

Therefore microscopic quantities defined in (3.33)) form a continuously differentiable solution of
the ODEs:

Si=whR;_1 — BIS; — pS;, 121,
Eiz ISi— o+ Ei, 221,
o= PISi= (ot w) (3.34)
Ii=0E; — (v +p) i, i>1,
Ri:’}/IZ‘—(W+M)Ri7 7;21,
where Ry = 5 The solution is moreover endowed with the initial condition
+oo +oo
S;(0) :/ s9(a)da, E;(0) :/ e¥(a)da,
0 0 (3.35)

W= [ @i, mo = [ W

We recover then a special case of the infinite ODE system studied in the Section [I.4]of Chapter
As studied in the aforementioned Chapter, the C! regularity of the solution of (3.34) is sufficient
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so that the macroscopic quantities

i>1 i>1
(3.36)
I(t) == ZIZ(t)> R(t) == ZR%(t)v
i1 i1
form indeed a continuously differentiable solution of the SEIRS model:
S =pu—BIS — uS+wR,
E=pBIS —(c+pn)E,
=PI = (ot w) (3.37)
R=n~I— (w+ p)R,
endowed with the initial conditions
S(O):Zsi(0)7 E(O):ZEi(O)’
i>1 i>1
(3.38)
1(0) =) 1i(0), R(0)=7)  Ri0).
i>1 i>1

We have shown indeed that, integrating the solution of (3.31]) according to the age, yields the
solution of the reinfection structured SEIRS system which is a particular case of the
system studied in Chapter [1| with b = p and v = 0. Hence, the system is related
to the previous systems and studied in Chapter [1| by an additional age structura-
tion. In line with the macroscopic/microscopic scales introduced in Chapter [1|for the reinfection
structuration, the system can be then described as the nanoscopic SEIRS system.

Finally, it is worth pointing out that, if we reverse the order of summation and consider
instead the variables

+0o0 too
s(t,a) = Zsi(t, a), e(t,a):= Z ei(t,a),
o o (339

1(t,a) == Zzi(t,a), r(t,a) := Zri(t,a).

i=1 i=1
Then, by the same arguments as in the proof of Theorem it is easy to deduce that (s, e,1,7)
constitutes a solution of the evolution equation:

85%

5 9a = —pBIS — uS +wR,

ge %:BIS—(J-FM)E,

o B 7 '
% e C - (r+wl,

or Or

E-F%—'yl—(w—ku)]i
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with the boundary conditions

+o00
s(,0)=p Z / c(+,a)da,

ce{s,en,r} 0 (341)
6('3 O) =0, Z(-,O) =0, 7”(~,0) =0.

Notice then that from the existence and uniqueness of classical solution of , the
system is also well-posed and admits a unique global classical positive solution for any initial
condition in (W*1(0,+00))* and fulfilling (3.41). Finally, integrating s, e, ¢, with regard to the
age a on (0,+00), we retrieve a solution to the classical SEIRS model , which shares the
same initial condition after interchanging summation and integration thanks to Fubini’s
Theorem.

We summarize the results above in the next Theorem.

Theorem 3.5.1. Let p = (s;,€;,1,7i)i>1 be a classical solution of the nanoscopic system (3.31))-
(13.32), then:
1. (Si, B, Ii, R;)i>1 defined by (3.33) is a continuously differentiable solution of the reinfection-
structured microscopic system (3.34))-(3.35)).

2. (s,e,1,r) defined by (3.39) is a continuously differentiable solution of the age-structured

microscopic system (3.40])-(3.41)).

3. (S,E,I,R) defined by (3.36]) is a continuously differentiable solution of the macroscopic
system (3.37)-(3.38).

To visualize more easily the result, the relationship between the four SEIRS systems has been
represented schematically in Figure

3.5.2 Multi-scale picture of the equilibriums and associated stability
properties

In the present subsection, we turn our attention to the description of the steady states of
and (3.40), alongside the steady states of and (3.34) and their stability. As a reminder,
the asymptotic behavior of solutions of the systems (3.37)) and can be divided into two
situations, see Theorem [[.4.7}

1. If Ry < 1, both disease-free equilibriums of (3.37)) and (3.34)) are globally asymptotically
stable in their respective biologically feasible sets.

2. If Rg > 1, both endemic equilibriums of (3.37) and (3.34)) are globally asymptotically stable
in the interior of their respective biologically feasible sets.

The subsection begins with a description of the disease free equilibrium of and in
Theorems [3.5.2) and 3.5:3] As an illustration, the Figure [3:2]is given in order to expose clearly
the relation between the endemic states of the macroscopic, microscopic and nanoscopic systems.
Finally, the global asymptotic stability of the disease-free (for Ry < 1) and endemic equilibrium
(for Rg > 1 and in the presence of the disease) is described in Theorem m

For the description of the steady states, remark first that, as the corresponding macroscopic
system always admits a disease-free equilibrium and, if Ry > 1, a unique endemic equilib-
rium . Then, with this fact and Theorem in mind, at the disease-free (respectively
endemic) steady state of and (3.40), (S, E, I, R) must also be at the disease-free (respec-
tively endemic) equilibrium of .
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(S,E,I,R) € R4

S =p—pBIS — puS + wn,

I=o0E—(y+pl,
R=~I - (w+p)R.

Macroscopic system ((3.37))-(3.38))

(Si) Ei7 IlvRZ)Z21 € RNvRU — 5

S = wR;_1 — BLS; — pS;,
E; = BIS; — (0 + p)E;,
I = oE; — (v+ ),

Ri =~I; — (w+ p)R;.

Microscopic system ([3.34))-(3.35))

gj —BIS — puS + wh,
0~ BIS— (o +u)E,
%—UE—(WHL)I,
%Z’YI—(W+M)R

(Sis€i,00,7i)i>1 € X,r0 =0

851‘ 8Si - ) ) )
ot T g = Wri-1 BIs; — psi,
861- Bei - )

5 e = BIs; — (0 + pe,
% % — ge; _( S ) .
Bt T 9a  CET TR
Ori L O e~ (wt )
8t 8@ _PYZ /"L T’L'

Nanoscopic system (3.31])-(/3.32)

Figure 3.1: Multiscale representation of the SEIRS model
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Theorem 3.5.2 (Age profile of the disease-free equilibrium). The system (3.40) admits a unique
disease-free distribution at equilibrium qPFE = (sPFE PFE WDFE (DFE) " defined by

sPTE(a) = pe™, a >0,
ePFE =, JLPFE=¢, PFE=,
The system (3.31) admits a unique disease-free distribution at equilibrium pP¥'t = (sPTE ¢PFE
WPEE pPEEY, | defined by

sPFB(q) = e, 030,

DFE _ DFE _ DFE _ — .
Si+1 =0, €; =0, 1 =0, i :0, 221

Proof. At the disease-free state, (S,FE,I, R) defined in and (S;, B;, Ii, R;)i>1 defined
in are respectively equal to (1,0,0,0) and (6},0,0,0);>1 (recall that &} is the Kro-
necker delta). It is then easy to see that the disease-free equilibrium age profile pPr'F =
(sPFE oDFEZDFE .DFE). | fulfills the equations :

» "

dsp"" _ DFE DFE () —
da (a) = —psy “(a), sy 7(0)=p,
sPhE =0, ePFE=0, PP =0, +PFPE=0, ix>1.
Similarly, (sPFE ePFE W DFE DFEY f]fi]ls
dsPrP DFE DFE
(@) = —usP ), SPTE(0) =,
ePFPE =, JPFE=(o PFE=(g ;>1
An integration on sP¥# and sPFF gives then the result. O

We investigate now the endemic steady states of and . The endemic steady states
of the systems and have already been described in Theorem Let 2FF .=
(SPE EEE [FE REE),.| be the unique endemic equilibrium of , and (SEE EEE [EE
RFE) be the corresponding endemic equilibrium of the macroscopic system , the age profile

pPl = (sFP eFP W FE p BB, of at endemic equilibrium is a solution of the linear system
of ODEs:

dsf” EE EE 7EE EE

szri_l—ﬁsi ™" — sy, 121,

def” EE 7EE EE

Wzﬁsi % — (o +pe;™, i1,

d? EE EE

o 06 —(y+ph™, iz,

EE
%ZVZE‘E_(W"_M)T@EEv i1,

where 7 = 0. The associated boundary conditions are

S{EE(O) =M,
sth(0) = eFE(0) =4F5(0) =rfE(0) =0, i>1.

3 3
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(SEE EEE IEE REE) c R4
EE of the macroscopic system ([3.37))

B8 = (SzEEszEEaIzEEaRZEE)Z>1 € RN qEE = (SEEveEE7ZEEaTEE) € (L1(0,+OO))4
EE of the microscopic system (|3.34)) EE of the microscopic system ((3.40)
PP = (pFF)iz1 = (7P, el 7%, rPF)in1 € X

EE of the nanoscopic system ((3.31)

Figure 3.2: Multiscale representation of the endemic equilibrium of the SEIRS model for Rg > 1

Integrating the differential equations above gives then

Y

st (a) =/ wrEE (s)e=BI" mla=s)gg > 1
0

efE(a):/ ﬂIEES{EE(S)e—(oﬂ»)(a—s)ds’ i1,
o (3.42)
@ = [ oePPlee 0 ds, iz,

0

riP(a) = / N (s)emWrmle=s)gs i > 1.
0

Although the formulas is useful in the proof of asymptotic stability of p©¥, it is clear that
the exact expression of the components of the stable distribution increases rapidly in complexity
according to i due to the presence of integrals. Thus, an alternative expression of the endemic
equilibrium may be required. Denoting

—(BIFE + 1) 0 0 0

000 w
BIEE —(0+p) 0 0 000 0
C:: 5 D == )
0 o —(v+n) 0 0000 (3.43)
0 0 v —(w+ p) 000 0
v:=(1,0,0,0)T

the following theorem holds.
Theorem 3.5.3 (Age profile of the endemic equilibrium). Let Rg > 1,

1. the system (3.40) admits a unique endemic distribution at equilibrium q¥F := (sPF PP FE
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rEEY which is defined by
0" (a) = e,

2. the system (3.31)) admits a unique endemic distribution at equilibrium pPF = (pFF);>q,
which is defined by

PPP(a) = u(ul @ L) TeMEO TN @ L)y, 0> 1

7

where by convention uzl,u; denote the first and j-th vectors of the canonical basis of R?,
I; is the j x j identity matriz, and J; the j x j matriz with 1 on the sub-diagonal and 0

elsewhere.
Proof. Clearly, the endemic steady state of the evolution equations (3.40) (sP#, eFE FE EBE)
is a solution of the equation:
quE
= (C+ D)¢"F, ¢"F(0) = .
da
We retrieve then the expression for ¢®F after integration. On the other hand, ¢F¥ := (s¥F eFF,
PP rPE) is a solution of
dpt'? EE EE dp7 EE EE EE :
“aa Cpr”, p17(0) =, ﬁ =Cpjy1 +Dpi™, py7(0)=0, j>1. (3.44)
Let ® be the Kronecker product, the above equation is equivalent to
. pP? PP
| | =@Gea)+eD)| |,
i i
so that .
4 Mo
— o(1i®C)+(J;®D))a
Py 0
Hence the result. O

Now that both the disease-free and the endemic steady states of (3.31) have been described,
let us consider the asymptotic behavior of (3.31]) and (3.40). As expected, they correspond to

the solutions of systems (3.34]) and (3.37)).
Theorem 3.5.4 (Global stability result for (3.31)). Let the sets Y1 and Wi be defined as

Yi:={p=(si€ist,m)i>1 € X+ : |[pllx =1,p+ H(p) € D(A) and n(a) = pe™"*},

00 too
Wi = {p=(si,€i,0,7i)i>1 € Y1 : Z/ (ei(a) 4 2(a))da > 0},
i=1"0

where n(a) := Y, s;(a) + e;(a) +1;(a) + ri(a). For any initial condition p° € Y, we consider the
classical solution p of the system (3.31). Then, the following convergence results hold
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1. if Ry < 1,

lim [Ip(t) —p”"Fllx =0

t—+00 ’

and the disease-free steady state pPT'F is globally asymptotically stable in Y;.

2. if Ro > 1 and additionally p® € Wy C Y7,

lim ||p(t) — p"%||x =0,

t——+oo

and the endemic steady state pPF is globally asymptotically stable in W, C Y;.

Theorem 3.5.5 (Global stability result for (3.40)). Consider the product space Z := (L (0, 4+00))*
endowed with the norm || - ||z induced by || - ||p1. Let the sets Yo and W be

Yai={qg=(s,e,,r) € Z:q€ W' llallz =1, fulfills BAT) and (s +e+1+7)(a) = pe™},

+oo
Wy :={q=(s,e,1,r) €Ysy: /0 (e(a) +1(a))da > 0}.

For any initial condition ¢° € Ya, we consider the classical solution q of the system (3.40). Then,
the following convergence results hold

1. if Rg < 1,

lim |q(t) —¢"FF|z =0,

t—+o00

and the disease-free steady state ¢°F'F is globally asymptotically stable in Ys.

2. if Ro > 1 and additionally p° € W1 C Y7,

lim |q(t) — ¢"F||z =0,

t——+oo

and the endemic steady state ¢®F is globally asymptotically stable in Wy C Ys.

Proof of Theorem @ We prove only the convergence p — pPF for Ry > 1 and p° € Y
such that Y777 o (€%(a) +19(a))da > 0, as the proof of the other case is similar. Under
the assumption of the Theorem, it is proven that lim; ;o I(t) = I”F because the macroscopic

quantities defined in (3.36]) form a solution of the system (3.37)). Consider then the solutions of
(3-31)) along the characteristic curve s — (¢(s), a(s)) defined by

dt da
—=—=1, ie. = R.
= s , le. t(s)=al(s)+e cc€

Taking the derivative along the characteristic curve, we recover the system of ODEs (recall that
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ro = 0):

dsi(t(s), a(s))

D) i aria(0s),0() — (LG + m)si(i(s),a(s)), i > 1,
400N _ rr)su(t(s).als) — (o0 + meslt(s).als), P> 1,
Al ) _ e, (1(5).afs)) ~ (7 + ws(t(s). ). i>1,
A1) s (4(5),afs) — (@ + wr(e(s) a(s)), iz

With the initial conditions (3.32), an integration of the differential equations leads then to

si(s+c¢,8) = /5 wi_1ri1 (T + ¢, T)ef:(M(H'CH“)deT, i>1,
0

ei(s+¢s)= /S BI(T + ¢)si(1 + ¢, 7)el =) g7 121,
0

1(s+c¢,s) = /05 oei(1T+ ¢, 7)e0TWET dr 121,

ri(s+es) = /S i (T + ¢, 7)e@ T E=T) g7 1> 1
0

Then, for i« = 1, thanks to the dominated convergence theorem and the formulas (3.42), we
compute successively the limits when ¢ — +oo for all a > 0:

Jo BI(s+e)+p)ds Jo 17 mds _ pp o)

lim s1(t,a) = lim sij(a+c,a)= lm pe = e

t—+o0 c—r—+o00 c——+oo

t——+o0 c——+o0
BIEESFE(S)e(”ﬁ“)(“*S)dS =el'F(a)
0

lim eq(t,a) = lim / BI(s + c)s1(s+ ¢, s)elortmla=s) g
0

)

i —F ‘ (v+u)(a—s) o — ¢ BE (v+p)(a—s) o _ EE
t_1}+moozl(t,a)—cgrlloo ; oei(s+e¢, s)e ds-/0 oer " (s)e ds =17 (a),

lim ri(¢t,a) = lim yu1(s + ¢, s)e@tma=s) s — / Y EE (s)elwtmila=s)gs — rEE(g),

t——+oo c—+00 0 0

It is then easy to see, by performing an induction on 4 > 1, that for all ¢ > 1,

tilinoo si(t,a) = SiEE(a)a tilinoo ei(t,a) = ezEE(a)v
tilinoo Zi(tva) = ZZEE(CL)a tLHJPoo Ti(ta CL) = riEE(a)a

that is, each component of the solution ¢ — p(t) converges pointwise to the corresponding
component of p¥ as t — +o00. Moreover, the components are uniformly bounded by the stable
age distribution n(a) = pe™#® thanks to the assumption thus the dominated convergence
theorem implies that every component of p converge asymptotically in the L' space. Finally, as
p,pPF € X, and ||pPF| x,|p(t)]|x = 1 for all t > 0, it is easy to see that the componentwise
convergence implies the convergence with regard to the norm || - || x.

Hence, for Ry > 1, the endemic distribution p”F attracts any solution in the bounded
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positively invariant set W7 C Y;. Applying again the Theorem 3.3.2 [55] as in the proof of
in Chapter [1} the steady state pPF is moreover stable in Y;. Similarly, the steady state pP?f ¥ is
attracting the set Y7 for Ry < 1, thus it is stable in this case by the same argument. O

Proof of Theorem[3.5.5 The proof follows the same arguments as in Theorem [3.5.4} O

3.5.3 Mean number of reinfections and average age at the endemic
equilibrium

In the previous section, we demonstrated the asymptotic convergence of the age-structured rein-
fection model towards the endemic stable distribution p®¥ when the threshold condition
Ro > 1 is verified and the system contains disease. Similarly to the study of the reinfection
model with infinite ODEs completed in Chapter [1} the additional age structure of allows
us to obtain more information about the endemic steady state of the disease, such as the mean
number of reinfections according to the age of the hosts or the mean age in a given compartment
at the endemic stable distribution.

We begin the subsection with a computation of the mean age of the hosts in every com-
partment s,e, 2,7 of , which is the content of Theorem m Then, in Theorem m
the average age values are again computed, this time in each subcompartments (s;, e;,2;,7;) of
(3.31)). Finally, in Theorem we give an expression of the mean number of reinfections in
each subcompartments (s;, e;,1;,7;) and according to the age of the hosts.

Theorem 3.5.6 (Mean age of the hosts in the compartments of (3.40)). Let Ry > 1, the
matrices C, D and v be defined as in and g be the endemic steady state of system
3.40). Consider the average age values §¥F eFF jEE FEE n cach compartment s, e,1,r of
3.40) and denote TFF = (3P eEE PE FEEY ¢ RY. Then $PF is given by

+oo
iEE — diag(sEE’EEE,IEE,REE)fl/ aqEE(a)da,
0

and fulfills
P = pdiag(SPE, EFE IPE RFE)"1(C + D) 2w,

where we recall that (SEF EFE TEE REEY and ¢P¥ are respectively the endemic equilibria of

the systems (3.37) and (3.40)).

Proof. One has,
400 “+ o0
/ aq(a)da = p (/ ae(C+D)“da> v.
0 0

On the other hand, the matrix

—(BIPE 4+ p) 0 0 w
_ BIFE —(0+ p) 0 0
C+b= 0 o —(v+n) 0 ’
0 0 gl —(w+n)

is Hurwitz (hence invertible) as it is, in fact, the Jacobian matrix of the endemic equilibrium of
the SEIRS system (3.37)), which is proved to be globally asymptotically stable for Ry > 1 [73].
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Then, an integration by parts yields
+oo 400 +o0
/ ael@tPlagg = {a(C + D)_le(c'*'D)a} —(C+ D)™ / elC+Da gy
0 0 0

+oo
=—(C+ D)fl/ e(CtDlagyq,
0

Therefore,

+oo +00
| " @da = —u(c+ D) ( [ da> v = u(C+ D)2,
0 0

O

Similarly to the system (3.40)), the mean age of the hosts in every compartment s;, e;,2;,7; of
(3.31) can be computed with the following result.

Theorem 3.5.7 (Mean age of the hosts in the compartments of (3.31)). Let Ry > 1, the matrices
C, D and v be defined as in (3.43) and p"" = (p{¥)i>1 be the endemic steady state of system

3.31). Consider the average age values 3EF eFE 7EE FEE yn each compartment s;, e;,1;,m; of

3.31) fori > 1 and denote (ZEF);>1 := (SEF eEF iFE FEP),o1 € RN, then £FF is given by

“+o0o
szE = djag(SiEE,EiEE,IZ-EE,RiEE)_l/ apiEE(a) da,
0

and fulfills the relation:
PP = pdiag(SFP,EFP IPP REFY 1l @ 1)T((I; ® C) + (J; ® D)) (u} @ Iy)v,

where the vectors ul, ui are defined in Theorem .
Proof. Thanks to Theorem [3.5.3

+oo . “+o0 )
/ api’P(a)da = p(u} © Ly)T (/ ae((1i®c)+(‘]’i®D))“da> (u] @ Iy)v.
0 0

Moreover, (I; ® C) + (J; ® D) is Hurwitz as it is block triangular with C' as diagonal blocks, and
C' is Hurwitz. Then, applying again an integration by parts yields

+00 Foo
/ aelLEOIHIEDagy - (1,0 C) + (J; & D)),l/ ALEC)+(:@D))a g,
0 0

= (L, ®C)+ (J; @ D)2
Finally,
—+o00
/0 apPP(a)da = p(ul @ Ly)T((L; ® C) + (J; ® D)) *(u} @ Iy)o.
O

Last, we deliver a tractable expression below for the computation of the mean numbers
of reinfections according to the age in each compartment (s,e,?,7) of . For the system
, recall also that the age-independent mean numbers of reinfections in the compartments
(S, E,I,R) can be explicitly computed thanks to Theorem
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Theorem 3.5.8 (Mean numbers of reinfections at age a in each compartment of (3.40)). Let
Ro > 1, the matrices C, D and v be defined as in (3.43) and pPF = (pZEE)@l be the endemic
steady state of system (3.31)) and define the matriz-valued function N(s) by

N(s) = e=*(C + D) / o(C+D+Lu gy, (3.45)
0

Consider the mean numbers of remfectzons 5PE(a),ePE(a), EE(a),r E(a) f hosts at age a > 0

in each compartment s,e,1,7 of (3.40) and denote the vector ¥ (a) := (5¥F(a), e""(a),
P8(a),7PE(a)) € R*. Then EEE(a) is given by the relation

2P (a) = diag(s”"(a), " (a), P (a),r"F(a) 71 ) ipf"

i>1

and fulfills
P8 (a) = pdiag(sP¥(a), e (a),2F (a), r¥¥ (a)) ! / N(a — 7)De"Tvdr.
0
Remark 3.5.9. In the case where C + D + 14 is invertible, we have

N(s) =e *(C+ D)(C + D +1;) ! (elOTP)s _1y).

Proof of Theorem[3.5.8 For s € C\ spec(C), where spec(C) is the spectrum of the matrix C,
we apply first a Laplace transform to the differential equation (3.44) to obtain

pPE(s) = (sLy — O) ',
prE(s) = (sIy — C) 'DpFF(s), i>1.

We derive recursively
prP(s) = [(sL — C) DI 17 B(s), iz 1.
The summation gives
+00 too
~AEE I _C —1D i—1 B E _ i I _C 1D AE'E'
Zz = Y illsT — O) DR (s) = (- (s — O) D) 5FE(s)
i=1 =1

= (40 6T = O D) ) EF0) = (6T = O sl - € - D)) ()

d
— (dS(I4 + (sl —C — D)~ D)) PEE(s)
—(sIy — C — D) ?DpFE(s).
Introduce then the system of ODEs

& = (C+D)éy + DPE £(0) =0

&= (C+D)e—&, &(0)=0 (3.46)
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Applying again the Laplace transform to &, &o,
&i=(sIi—C—-D)"'Dpf®, & =—(sL-C—D)" '

Hence, A
o = —(sly — C — D) 2DpfE,

and the Laplace transform of & is equal to Zj:lo ipFE | so that & = j:lo ipFE.
Let us compute now the solution &1, &, of (3.46)). In matrix form, the equation is written as

(51) _ <C+D 04><4> (§1> n <DP£EE>
[P C+D -1;)\& Oux1 /-

L C+D 0454
M= (C+D —14>'

The formula in Theorem with ¢ = 1 gives

Define the matrix

p*(a) = pe“v,

then the method of variation of parameters yields

&a(a) = (04xs  Iy) < /O " M=) (DGCT”) dT> : (3.47)

O4x1

Ms

Moreover, the exponential e™* may be computed. Indeed, let us introduce the matrix valued

function N(s) defined by

(C+D)s 0
Ms __ (€ 4x4
e < N(s) 6_514)' (3.48)

The derivation gives
ieMs _(C€+D Ouxa) us
ds ~\C+D -1, ’

from which we deduce )
N(s) = (C + D)el“tP)s — N(s).

Therefore, as N(0) = 0, we recover the formula ([3.45)) after integration. Finally, substituting the
function N(s) and formula (3.48]) into ([3.47)) gives

&(a) = ,u/oa N(a —7)De“Tvdr.



Chapter 4

Observation and identification of
a SIS model measuring primary
infections

This chapter is based on the four publications that we co-authored [41} 43| |44} |45], written in
collaboration with Denis Efimov and Rosane Ushirobira from Inria Lille.

4.1 Introduction

Since their introduction by Kermack and McKendrik in 1927 [68], compartmental models have
been massively employed in mathematical epidemiology in order to study epidemic dynamics.
Usually, researchers are interested in the analysis and simulation of epidemic processes, but
practical prediction and analysis of epidemics also require reliable estimation of parameters of the
models. Nevertheless, it is imperative to consider the state estimation of epidemiological systems
for certain matters of significance, such as the surveillance and management of epidemics. Hence,
the inverse problem of estimating states (observation) and parameters (identification) remains
critical for understanding and supervising the dynamics of epidemics, and it is essential to ensure
first and foremost if that the obtained parameter and state estimates are meaningful, in other
terms, whether the epidemiological model employed is identifiable and observable [62].

Although identification and observation are well-studied issues in many fields, this is still
not the case in mathematical epidemiology, where only a small amount of literature is available.
Among them, most are only interested in the parameter identification of epidemic models, even
though state estimation is equally significant for understanding and monitoring epidemic pro-
cesses. Nevertheless, an interested reader may refer, for example, to [27, 92| for recent works
about observer design of generic epidemiological model, but also 2} |16] for observer design with
a particular set-based approach. The typical difficulty or feature of the estimation/identification
problems underlined with epidemiological models is their lack of observability/identifiability in
the vicinity of the equilibriums attracting the system behavior.

In the present chapter, we focus on the joint estimation of the state and parameters of a
Susceptible-Infected-Susceptible (SIS) epidemic model counting primary infections. The model
can be considered as a particular and simplified case of the infinite SEIRS model counting re-
infection in Chapter |1} Indeed, the SIS system contained in this chapter can be formally
obtained by considering the system with ¢ = w = oo. This simpler case is considered here

151
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as an introduction to identification and observation issues for the more general system .
These issues are treated taking as measurements a same, unknown, portion (denoted « in the
sequel) of the infected I and of the primary infected I;. The usual approach for estimating states
and parameters is based on the measurement of prevalence (the number of infected individuals)
or incidence (the number of newly infected cases), see |17, [L113]. However, in the case of an epi-
demic with reinfections, other data of interest may be available, such as the number of primary
infections. Our main interest here is to see if this additional measurement, a data rarely con-
sidered but available, may improve the observation and identification of epidemiological systems
with reinfections.

The chapter begins with the analysis of observability and identifiability of a simple SIS model
in Section [f.2] with incomplete measurements. In particular, we derive the algebraic observability
and identifiability under the condition that both a same portion of infections and primary infec-
tious are measured, and the lack of observability/identifiability when the latter measurement is
unavailable. This outcome motivates the subject of the chapter, which is to design an adaptive
observer able to deliver a reliable estimation of the states and parameters of the SIS model from
the measurements of infected and primary infected hosts.

In Section a class of non-linear asymptotic observers for the system is presented and the
stability is deduced using both copositive and Lur’e-type Lyapunov functions and linear matrix
inequalities (LMI). In Section we explore as a first step the adaptive estimation of the
SIS model with the simplifying assumption that the whole population of infected and primary
infections is measured. Then, the approach is adapted to the observation and identification of the
SIS system assuming that only an unknown portion of infected and primary infected is measured.

4.2 An observable and identifiable SIS model

Let us introduce the simple SIS model measuring infections and primary infections, which has
the following state-space representation:

S =p—BSI—pS+~I, I=pBST—(u+)1, (4.1a)
Si=p—BSiI—pSy, I =881~ (u+7), (4.1b)
y=oal, y =al;. (4.1¢c)

The four states S(t), I(t), S1(t), I1(t), t € Ry represent the number of susceptible, infected, never
infected susceptible and primary infected individuals, respectively. Moreover, the coefficients
1, 8,7 describe the natural mortality rate, the contact rate and the recovery rate. It is assumed
that the hosts are initially infection naive and included in the subcompartment S; of S, and are
transferred to the subcompartment I; of I after the first infection. The infection processes are
then repeated as the infected returns to the susceptible compartment S thanks to the recovery.
However, the reinfection takes place outside the compartments Sy, I; that include only disease-
naive hosts and first-time infections. In the mathematical epidemiology community, the first
stage (S,I) of the system is known as the classical SIS model with vital dynamics [58].
However, the system includes additional equations modelling the dynamics of primary
infections in a cascade connection to . This operation may be extended indefinitely to
obtain a SIS system modelling infinitely many reinfections, n € N, similarly to the system
studied in Chapter

Last, the outputs of the system y, y; describe respectively the measurements of a given portion
« of the infected I and of the primary infected I;. Hence, the model takes the assumption that
the proportion a corresponding to both the infected and primary infected individuals detected by
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the Public health system (e.g., the symptomatic cases), is identical. Additionally, it is assumed
in the remaining of the paper that the basic reproduction number

B

-7 4.2
pty (4.2)

Roi

is greater than 1 so that convergence to the (unique, positive) endemic equilibrium occurs for
every trajectory such that I(0) > 0.

Theorem 4.2.1. The set S :={(S,[,51,11) € [0,1]* : $1 <S<1, [ KI<1, S+T1=1}is
positively invariant, as well as its topological interior S.

Proof. The invariance of S is deduced from the fact that the derivative at 0 of each state variable
is nonnegative; and from the exploitation of the differential inequalities S — .51 = — (81 + p)(S —
S1) +yl 2 =(BI+ p)(S = S1), I =1 = BI(S = 51) = (p+ )T — 1) = —(p+7)I — 1) and
S+1=pu(l—S—1I). The corresponding result for S ensues by extending the arguments. [

Theorem 4.2.2. Assume that (S(0),1(0),S1(0),1;(0)) € [0,1]*, S(0) + I(0) =1, I(0) > 0 and
Ro > 1.
System (4.1) has a unique endemic equilibrium

BBy —p p )

EE —1 —1
¥ =Ry, 1 —Ry -, ,
0 0 "B—7" B=v v+up

which is globally asymptotically stable.

Proof. The proof of global stability of the endemic equilibrium (Ry',1 — Ry!) for equations
(4.1a]) is contained in [69]. The convergence of the states Si,I; of (4.1b) may be deduced by

taking advantage of the cascade connection (4.1b)) to (4.1a)) and employing the same arguments
as in the proof of convergence of (|1.14]) in Theorem with ¢ = 1. O

What is remarkable about the SIS system measuring infections and primary infections
is that it is both observable and identifiable when the trajectory is not at equilibrium. In fact,
the next theorem states that the original SIS system with only the states S, I and output y = ol
is neither identifiable nor observable in case where «, 3, are unknown (the mortality rate y can
be assumed to be available, since it can be easily estimated separately). However, the additional
states S1, I; and the output y; = al; render the system observable and identifiable.

Theorem 4.2.3. Assume that 3,7, are unknown, and only the measurement y is available
with §y # 0. Then system (4.1a) with states (S,I) is neither observable nor identifiable. On the
other hand, if y1 is also available, then system (4.1)) is both observable and identifiable.

Proof.

Measuring only y.  Consider first the use of the measurement y. Because S+ 1 =1,
the two formulas in (4.1a]) provide indeed the same equation, namely: I = (8 — (u + ) — BI)1.
Therefore,

y= B—(/Hrv)—éy y. (4.3)
( )

By differentiation one gets that
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and one may express the two quantities g and p 4+ 7, as

B 1d [y 1 d?
F__—Z2Z2)y=_Z22_( 4.4
_y B, _ y & ) d (|4
Boy=tuty="tu g)dt2(lny) =p+ o (lny) = — (In|—(ny)| ). (44b)

These two quantities are thus identifiable, but this is not sufficient to obtain each of the three
coefficients «, 8,7v. On the other hand, it is clear that nothing more may be learned when
measuring only y, which fulfills equation . Therefore, the system is not identifiable
over «,3,7. Also, notice that it is not possible to determine I = éy, otherwise a would be
identifiable, and all other parameters too. Thus the system is not observable.

e Measuring y and ;.

We include now the equations (4.1b]) and exploit the knowledge of the supplementary mea-
sured output y;. From the definition of y; and the second formula in (4.1b)) one deduces, putting
w := (357, that

i = (BS1)y — (n+ 7y = wy — (n+ )y, (4.5)
thus:
1 =y +wy — (1 + 7). (4.6)
On the other hand, due the first equation in (4.1b]) and replacing g by its value obtained from
(4.4a)) yields

d

Gmn|) = n)u. @)

wzﬁsl=ﬁ(M—BSII_M51):5ﬂ_iwy_uw:ﬂu+(;it (m

Inserting in (4.6]) the value of w extracted from (4.7)), we get

(hly)D - u) w) y+wy — (1 + 7)1,

d d
i1 = <5H+ (dt <1n

dt

and gathering the terms in w leads to the following equivalent form:

i1 = Buy + (y +y% <1n jt(lny)D - uy> w— (p+ 7)Y (4.8)

For clarity, let us write (4.5) and (4.8) under matrix form:

(—51 g+yd (ln|diyt(lny)|) —uy) (uz;v) - (yl —ylﬂuy>'

One deduces by partial inversion of the matrix that

U Y ’
. T (1| _
ety = i1 = Buy 5 +y[F (n|gny)]) - pl ) (4.9)

‘_yl Yy ‘
i §+y [ (n|E0ny)|) -4
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On the other hand, one has, by (4.4b)), an alternative expression of y + -, namely

pty=p5- d(lny)+jt(

jt(m y)D (4.10)

Achieving elimination of y 4 7 between and - 4.10]) yields

(1 Y
d d d By 9ty (1H|§(lny)\)—ﬂy’
5- stmn)+ 5 (] S m)]) = Ll -

'_yl Yy ‘
—i1 g+ yd (In|L(ny)|) — py

Now, one checks that the previous identity is indeed affine in . Factorizing all terms in (3, it
may be written

(fortlo

where the function ® depends upon the two outputs y and y; and their derivatives up to the
second one. In particular, ® does not contain any occurrence of the unknown coefficients «, 3, .
One deduces that 8 may be identified, thus also «,~ with the help of . Therefore, in these
conditions, system is identifiable.

Once these parameters have been identified, one has I = éy and § = 1 — I, while on the
other hand, I} = fyl and 51 = w where (see (4 ) w is given by

d . o
dt(lny)D —uy) Y1+ Yy — uyz) B=®(y, 9,9, y1,91,91),

_n d
1
) (dt(ny1)+u+v)

The system (4.1)) is thus observable. O

4.3 Asymptotic observer

In the last section, algebraic observability and algebraic identifiability were established for a
susceptible-infected-susceptible (SIS) model counting primary infections, based on the mea-
surement of the number of infected and of the number of primary infections. We take a step
further in this section, which is devoted to the observation of the SIS model, assuming that the
parameters are known. More precisely, we focus here on providing a class of non-linear observers
for the SIS state-space system , which is transformed in subsection by a change of
coordinates into a Persidskii system form [64} [65] |97], for which a class of observers is proposed.
The asymptotic convergence of the latter is established in subsection .3.2] under adequate as-
sumptions on the gain coefficients and using techniques inspired from [87, [88]. Finally, some
numerical simulations are provided in subsection

4.3.1 Non-linear observer for the SIS model

The present subsection is organized as follows: paragraph [£.3.1.1] provides first a useful state
estimation representation (system (4.11)), written in matrix form in (4.12))) obtained by a suitable
change of variables. This allows us to propose a class of observers for this system in paragraph
4.0 1.2
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4.3.1.1 Alternative state-space representation of the SIS model

For the observer design, we propose in this subsection a change of variables for (4.1)). Setting
s1 =1In(S1), e =In(I), 21 = S1 + I and z = S + I yields the following equations:

Z=p— uz, (4.11a)

i= Bz - Ble —1) = (B+p+7), (4.11b)
Zr=p—(p+y)z+(e —1)+7, (4.11c)
5= e — 1) — Bl 1) - B, (4.114)
y=ale' —1)+a, yo =az; —a(e® —1) — a, (4.11e)
Yys =1, Y4 = 2. (4.11f)

Notice that for convenience, we added two additional components y3 = ¢ = In(I) and y4 = z =
S + 1 =1 to the output vector y(t) := (y1(t),y2(t),y3(t),ys(t))T € R*, this is possible as « is
known in the present setting.

Introduce the following notations:

—u 0 0 0 0 0 0 L
, g0 0 0 _|-8 0 0 —(B+p+7)
doi=19 o —(u+v) 0f Av=1| vy 0]’ Bi= Ay ’
0 0 0 0 B 0 —u -3
00 0 0 a 0 0 o
00 a 0 0 —a 0 —a 0100
C=10 100 “=lo o of P=|o]| K‘<0001>’
1000 0 0 0 0
er(Cl) C
o) := | f+(&2) |, where(:= (C1>, fe(@) i =e(e®—=1), e==£, forallzeR.
f-(¢2) ?

Denoting z(t) := (2(t) o(t) z1(t) 31(15))T € R%, the system (4.11)) can be expressed under the
following matrix form:
&= Aoz + A1¢0(Kz) + B,

Yy = Cox + C’1¢(Ka:) + D.

The non-linear system obtained in the form of (4.12)) with the nonlinearities ¢ is known as a
Persidskii system [88,97].

(4.12)

4.3.1.2 A class of observer for the SIS model

We introduce now the proposed class of observers for system (4.11]), which is given in the formula
below, comprising two gain matrices L' := (L} ;)1<ij<a € R L2 := (L7 ) 1<ica1<<3 € RV,

b= Ao+ A16(KE) + B+ LMy — Cod — C1o(K) — D) + L2Cop(K (v — &), (4.13)
where

CQ =

o O =
o OO
o OO
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Notice that we added in (4.13) the error Co¢(K (z—2)), this is possible as ¢ is an accessible output
and the term Cay¢(K(x — &)) is indeed also accessible to the computation from the outputs of
@11).

With the previous definition, the observation error e := x — & behaves according to the
differential equation:

é¢=(Ag— L'Cole + (A — L'Ch)(o(Kz) — (K (x —€))) — L*Cap(Ke). (4.14)

Before proceeding to the convergence of the observer (4.13)), we rewrite the observer equations
in the natural state coordinates (S [ Sy 1I;). For this, let ¥ :[0,1] x (0,1] x [0,1] x (0,1] —
[0,1] x R_ x [0,1] x R_ be such that ¥((S I S1 I1)") =z = (2,1,21,51)". Then ¥~}(z) =

T . . ..
(z —e' e et oz - 651) , and its Jacobian matrix is

1 —¢ 0 0 1 -1 0 0
1 0 ¢ 0 0 10 1 0 O
P = 1o 0 0 e |T[o 0 0 s
0 0 1 —en 0o 0 1 =5
One then has .
S 1 -1 0 0
j —1 A 0 f O 0 A
. = D A \IJ X = A
g @ =00 0 0o & |T
I 0 0 1 =5
which after computations yields
S ,u—ﬁgf—ug—l—fyf ol I
I BSI — (u+)I —1/71 aly o1
x P A + DV (L (y — ~ | +L 0 . 4.15
4, j— 85T - uSi @Y (L (y i 0 ) (4.15)
i BT — (n+ ) $+1)

Under this form, the nonlinear nature of the observer is evident, due to the presence of the terms
In] and %

4.3.2 Observer convergence

Once the candidate observer is introduced, let us analyze now the stability of the origin e = 0
of . We first recall in paragraph the notion of stability that will be considered
here, namely of state-independent uniform output stability (SIuOS) [110]. Taking advantage
of the positivity of the original system, a natural attempt is to look for copositive Lyapunov
functions, see e.g. [85} [97]. This is done in paragraph [1.3.2.2] yielding a first sufficient condition
for asymptotic convergence of the observer (Theorem [4.3.2)). In preparation for the forthcoming
result, some sector estimates for the nonlinearities appearing in the system are provided in
paragraph [£:3.2.3] This allows us to give in paragraph [£:3.2.4] a second sufficient condition
for asymptotic convergence of the observer (Theorem @, based on the search for Lyapunov
function equal to a quadratic form plus some Lur’e integral terms.
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4.3.2.1 Stability notions

To analyze the stability of the equilibrium e = 0 of (4.14]), we consider the dynamics of the
coupled model (4.12)), (4.14) with state variable (z(t),e(t)), taking also e(t) as output of the
system. Inspired by [110, Definition 3.1], we introduce the following definitions.

Definition 4.3.1. A system

w(t) = f(x(t),  yt)=h(x(t)) (4.16)

with state x(t) € R™ and output y(t) € R (f : R — R™ and h : R™ — RP are continuously
differentiable functions) is called state-independent uniformly output stable (SIuOS) if there
exists a KCL—function n such that, denoting y(t,xzo) the output at the time t of the system with
initial state zo € R™, one has |y(t,zo)| < n(|h(zo)|,t), for any t = 0, any xo € R™.

The STuOS stability is related to the existence of a STuOS-Lyapunov function. To define the
latter, it is required to introduce the definition of classes of function K, Ko, and KL, which are
standard in the control theory community [110]:

Definition 4.3.2. The following definitions hold

1. A function ¥ : [0,400) — [0, +00) is of class K if it is strictly increasing, continuous and
satisfies ¥(0) = 0.

2. In addition, the function 1) € K is of class Koo if moreover limy_, 4 (x) = +00.

3. A function ¢ : [0,4+00)? — [0,+00) is KL if it is of class K on the first argument and
decreases to zero on the second argument.

Definition 4.3.3. For system (4.16), a smooth function Vi : R™ — Ry is called a SIuOS-
Lyapunov function if there exist aq, s € Koo and ag € K such that

ar(flyll) < Va(z) < aa(llyl), (4.17a)
VVi(x) f(x) < —as([yl), (4.17b)

for all x € R™ and y = h(z).

The following result, based on [110, Theorem 3.2], connects the SIuOS property of a system
to the existence of a STuOS-Lyapunov function.

Theorem 4.3.1. A forward complete system (4.16) is SIuOS iff it admits a SIuOS-Lyapunov

function.

Consequently, if the system is STuOS, the origin e = 0 of the system will be globally attracting
all the trajectories, and therefore Z satisfies the requirement for being an observer of . The STuOS
property and its conditions are formulated globally for all x € R™, and their local counterparts
(or ones defined on conic invariant sets) can be easily deduced under suitable restrictions on the
amplitudes of x and y.

4.3.2.2 Stability through copositive Lyapunov functions

The result stated below provides a first set of gain matrices ensuring SIuOS for the observer
@13).
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Theorem 4.3.2. Assume L}, <0 < Ly, and all other coefficients of the matrices L', L? zero.
Then system (4.12)), (4.14) is SIuOS with respect to the output e.

Proof. Let a candidate Lyapunov function be

Vi(e) = cler| + |ea| + dles| + |ea],
for ¢,d > 0 to be chosen afterward. Setting

5ff = fe(my) — fe(@), e==, (4.18)
we will evaluate the derivative of V; along the trajectory, in a point where e # 0. One has

Vi(e) =céysgn(ey) + éasgn(es) + déssgn(es) + éqsgn(ey)
= —cpler| + sgn(e2) (Ber — (B + oLy )5 f7) + dsgn(es) (—(u + v)es + 0 f1)
+sgn(es) (~pdft = BOfF — aLiy(es —011))
= — cpler| + sgn(ez)Ber — sgn(es)aly ges — d(p+7)les| — sgn(e2) (B + aLy )0 f?
— sgn(es) B8 f2 + dsgn(es)vd fL + sgn(es)(L) a0 f1 — pdft)
< — (e — Bler] — (A +7) + aLly) les] — (B + aLb Jsgn(zs — £2) (¢ — ¢
+ Ble™ — e"?| + Ly pasgn(zy — 24)(e™ — ™) + dyle™ — e
— psgn(xy — &g)(e” T — e7)
=~ (cp = B)lea| = (d(p +7) + aLiy) les| — alg|e™ — ™| + (aLj, + dy)|e™ — e
— ple™® — 7™ < 0.

Choosing ¢, d positive such that
cu—PB>0, dp+y)+aLll, >0, aLj,+dy<0,

V1 appears indeed as an appropriate Lyapunov function, which is moreover radially unbounded.
We thus conclude that (4.12)), (4.14]) is STuOS with respect to the output e. O

4.3.2.3 Sector estimates

As preparation for the search of Lyapunov functions with Lur’e terms, we provide first some
sector estimates on the nonlinearities. Notice first that the values of f. always have the sign of
their argument. Furthermore, the following result holds, which provides sector estimates for the
nonlinearities present in the dynamics of the observer.

Lemma 4.3.3. For any trajectory of system ([1.12)-(L.14), if there is ¢’ > 0 such that |le(t)|| < €
for allt > 0, then there exist 0 < a; < b;, i =1,...,9 such that
(bjez — (¢5(K(x 4 €)) — ¢;(Kx))) x (¢;(K(x +€)) — ¢;(Kz) — ajez) 2 0,
(bj+30;(Ke) — (0;(K(z +e)) — ¢;(Kx))) x (¢;(K(z +¢)) — ¢;(Kx) — aj430;(Ke)) 2 0,
(bjree2 — ¢j(Ke)) x (¢;(Ke) — ajige2) = 0,

forany 7 =1,2,3.
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One may also check with no specific difficulty that the above sector inequalities can be
rewritten in matrix format as

—ETA\E FA; Ay AH
T
v{ < ATFT —A1> vy =0, <A2 _A.QG) vy = 0, (4.19a)
_NTAsN MAs
T ( ATMT A3) vy = 0, (4.19b)

where vy, v9,v3 are defined by

vi(@,e) i= <¢(K(x+g§_¢(K$)), (4.19¢)
ol €) = <¢(K(x ;&){)e; ¢>(Kx)), vale) = <¢{(f;e)) , (4.194)

In addition, Aj = diag{/\gj,%)\gj,l,)\?,j} fOI“j = 1,2,37 G = diag{a4b4,a5b5,a6b6}, H =
%diag{a;; + by, a5 + bs, ag + b6}, and

(a1b1)1/2 0

1 /fay+b 0 0
_ 1/2 _Lfat+b
E 0 (a2b2) » F 2( 0  ag+by %+m»

0 (asbs)/?
arbr)/? 0
N = (78) (agbs)'/? M=1<a7+b7 0 0 )
0 (a9b9)1/2 ’ 2 0 a8+bg ag+bg

Let us finally demonstrate Lemma [1.3.3]

Proof of Lemma[.3.3 Since the basic reproduction number is assumed larger than 1, sys-
tem converges towards the endemic equilibrium, which is positive thanks to Theorem
Therefore, there exist er,e5, > 0 and T > 0 such that I(t) > e; and S1(t) > eg, for any t > T.
Assume also that [|e(t)|| < &’ for some &’ > 0 along the trajectory. Using the shorthand in (£.18),
we deduce the following inequalities for ¢ > T"

e First, 0~ fe] < 872 = 62— < e, 6500~ el < [84] = €% < o] and
leal < |6f2] = e % —e 4| < e In(esy)+e’ leq|, so that a1 = eln(en =€ p =1 gy = ellesi) ¢
b2 = 1, as = 1, b3 =e ln(esl)+e work.

o Second, ™D £ (eg)] < [6/2] = |e™ — ™| < |fy(ea)], €M7 fi(ea)| < |61 =
et — e8] < [fy(ea)l, |- (ea)] < I6£3] = [~ — e=4] < e~ 0E=+'|£_(ey)], and the choices
ag = eMEN= py =1 a5 =) by =1 a5 =1, bg = eiln(asl)“' are convenient.

e Finally e™E)~ ey < |fy(e2)] = |e® — e”2|e B2 eglemn(en+e’ | eln(esy) =€, <
|f+ eq)| = |e™t — el < [eglem ME)TE and ()7 ey < | f_(eq)] = o= — 6_“|€“ <

—In(es)+e gy, so that one may take a7 = e =" "p, = e n(en) e , ag = enlEs) =" b =

—In(es; )+e '7 ag = ln(esl) bg — e~ 1n(€51)+5

This completes the demonstration of Lemma @

O

4.3.2.4 Stability through quadratic Lyapunov functions with Lur’e terms

We consider now the STuOS stability of (4.12) (4.14]). For a positive linear system, the existence of
a copositive Lyapunov function is equivalent to the existence of a quadratic Lyapunov function
represented by a diagonal matrix [46]. For a nonlinear system like (4.14]), the search for a
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quadratic Lyapunov candidate function with Lur’e components seems a priori to be a more
powerful method [12} [118], which we will now investigate. Consider the quadratic Lyapunov
candidate function with Lur’e components (recall f., ¢ = £, are defined in paragraph [4.3.1.1))

Vae) = eTPe +2 (fyl [ r@as s [ e [ f-(z)dZ) ,

parameterized by P € R**4 P = PT, and the scalars 71, v2,v3 = 0.
We introduce the matrix

0

0

0

100
K, = 0 0 1],
0 01
and T := diag(v1,Y2,73). Assuming that P+ K[ T'K; > 0and P > 0, then V5 is positive definite
thanks to Finsler’s lemma [19]. Moreover, along the trajectories, the derivative of V, can be

expressed by

d
~V — T
7 2(e) = vTQu,

where v is defined by
e(t)
vo(t) = | d(Ka(t) — S(K (x(t) —e(t))) |
P(Ke(t))

and @ is a 10 x 10 symmetric matrix defined below.

(Ag — L'Co)TP + P(Ag — L'Cy)  P(A; —LCy) (Ao — L'Co)TKIT — PL2Cy
Q = (Al - LlCl)TP 0 (Al - Llcl)TKirF
K (Ag — L'Cy) — (L2Cy)TP  TK (A; — L'Cy) —TK L?Cy — (TK,L2Cy)T

Let us define
Ke

w=|o(K(z+e)) —o(Kx) |,
p(Ke)
then the matrix inequalities ([4.19)) imply the inequality wT Rw > 0, with R = RT € R®*8® defined
below :

—(ETALE + NTA3N) FA, MAs
R:= AlFT _(Al +A2) AQH
AsMT AoH —(A2G + A3)

The derivative of V5, along the trajectories then verifies Vg(e) < vTQu + wT Rw, where the last
term is equal to

K 0axz Oaxz) ' K 02x3 0O2x3
vT | O3xa I3 Osxs3 R | O3xa I3 0O3x3 |
O3x4 O3x3z I3 03x4 Ozx3z I3

We have demonstrated, in fact, the following result.

Theorem 4.3.4. Assume the gain matrices L', L? are such that there exists a symmetric matrix
P ¢ R*** and diagonal matrices I', A1, Ay, Az € R3*3 such that

P>0, P+K{TK; >0, A;,AyA3>0,
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and for a;, b;, i = 1,...,9 verifying the inequalities (4.19]), the matrix inequality

_KT(ETME + NTA;N)K  KTFA, KTMAs
Q+ MFTK —(Al —|—A2) AoH < 0.
AsMTK MoH  —(AsG + Ay)

is satisfied, then system (4.12)), (4.14) is locally STuOS-stable.

By locally we mean that the initial conditions are chosen such that the constraints I(t) > €y,
S1(t) > eg, and |le(t)|] < €’ are verified for all ¢ > 0. For the latter restriction on e, due to the
substantiated properties of V, it is enough to take 6’ > 0 such that ||e(0)|| < &’ implies |le(¢)|| < &’
for all t > 0 in such a case.

4.3.3 Numerical simulations

As an application of the previous results, we present some numerical simulations of the system
and the state observer . For predefined gain matrices L', L?, and values of €g,, 71, &’
which depend on the initial conditions, the LMIs of Theorem [4.3.4] are first verified using SDPT3
solvers and YALMIP in Matlab environment. Once the existence of P,T", A1, Ay, A3 is guaranteed
numerically, the observer is admissible for the chosen value of the gain, and we proceed then to
the numerical simulations of state observer dynamics. The simulations presented in the figures
correspond to parameter values set to y~! = 24 days, p~! = 60 days, o = 0.5 and
B =0.0972 days~!. The gain matrices are set to L' = %Cg and L? = % (01X3 C’g)T. Moreover,
to illustrate its efficiency, the trajectories of the observer (in red) are compared to the trajectories
(in green) in the case where the gain matrices L', L? are set to zero.

As seen in the figures, the convergence of the observer S, T to the true states S, I of the
system is almost instantaneous. This is expected, as the state I (hence S = 1 — I) is directly
accessible from the output. Moreover S’l, I converge asymptotically to the true state Sy, I as
expected.



4.3. Asymptotic observer 163

0.8 04r o - -
07 0.35 / S
I i ‘
06 [ — — i
! / 03y
I
0.5
5 | So025f
£ I £
Q 0.4 g.
O o
o o 0zf
0.3
015
02}/
0.1 otr
0 0.05
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
t (jours) t (jours)

Figure 4.1: Estimation S of the susceptible Figure 4.2: FEstimation I of the infected
hosts S hosts I

o7 0251
0.6 e without sain
02
05
/
7
01sf 7
g o4 8 4
T b !
Q Q
o a /
3 / g
o 03 e E— o
7 01
/ I
o2t/ .
I Y
[ 005}
/
01
0 0
o 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
1 (jours) t (jours)

Figure 4.3: Estimation S, of the never in- Figure 4.4: Estimation I, of the primary
fected hosts S infected hosts I;



164 CHAPTER 4. Observation and identification of a SIS model

4.4 Adaptive observer

In the present section, we turn our focus to the joint estimation of the state and parameters
of the SIS epidemic model counting primary infections . This was initially done in [44],
where we explored the adaptive estimation of the SIS model with 8 and -« unknown. However,
the method exposed requires an estimation of the output derivatives, which may be hardly
retrievable. To overcome this issue, we present here an alternative method for designing an
adaptive observer independent of output derivatives. In subsection f.4.1] we transform once
again the model into a suitable form for adaptive observer design and introduce some stability
notions from the literature, which are used in the analysis. Subsequently, the adaptive observers
and the related results are presented in subsections and for cases where the entire or
a portion of the infected and primary infected are measured, respectively.

4.4.1 Preliminaries

4.4.1.1 Change of coordinates

For the design of the adaptive observer, we introduce the change of variables:
z=8+1, s1=In(S1), y=al, y1 = al;.
Therefore, (4.1) may be rewritten in the equivalent form:

Z=p— pz,
S51=—p— ﬁy + pe™ ™,
@ (4.20)

2

yzﬁy—gy —y(p+7),
[0

U1 = —py1 — YY1 + e’ By,

and the states y,y; are measured. In the rest of the section, we consider that the mortality pu
is a known parameter, which is not a costly assumption as the population’s life expectancy is
often available. Moreover, as the total normalized population z is constant and equal to 1, the
dynamics of the state z can be disregarded.

4.4.1.2 Stability notions

For the stability analysis of non-linear observers, the theory of input-to-state stability (ISS) is a
popular framework. In particular, as our objective is to reduce some specific estimation errors
of the observer, we will introduce the closely related notions of input-to-output stability (IOS),
considering only the components of estimation errors that should be minimized as outputs. We
recall in the present subsection some definitions related to I0S stability and its characterization
by Lyapunov functions (see [110} [111]).

First, for a Lebesgue measurable function of time d : K — R, define the L7 -norm ||d||.c =
ess sup,ck|d(t)]. We further denote the space of functions d with ||d||cc < 400 as L (K). The
dimension m is omitted in the notation for simplicity. Consider then the system

o(t) = f(z(t),u(®), y(t) = h(x(t)), (4.21)

with state z(t) € R™, input u € Ly (R4 ) and output y(¢) € RP. The functions f : R" x R™ — R",
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h : R™ — RP are assumed to be continuously differentiable and the system (4.21]) is assumed to be
forward complete, i.e., for every initial condition z(0) and every input signal u, the corresponding
solution is defined for all ¢ > 0. We can now introduce the definition of IOS stability.

Definition 4.4.1. The system (4.21)) is called input-to-output stable (10S) if there exist func-
tions k € KL and A € Ko such that

()] < £(l2(0)], 8) + Alllulloo),

for allt >0, 2(0) € R™ and u € Loo(Ry).

Additionally, the following definitions and result provide a characterization of an I0S system
by a Lyapunov-like function.

Definition 4.4.2. A smooth function V : R™ — R, is called an 10S-Lyapunov function of
(4.21) if there exist functions ay, as € Koo, X € K and ag € KL, such that

ar(|h(z)]) < V(z) < az(lz]), VzeR"
and for oll x € R™ and u € R™ it holds:
Viz) 2 x(lu)) = VV(2)- f(z,u) < —a(V(z),|z]).

Definition 4.4.3. The system (4.21)) is uniformly bounded input bounded state stable (UBIBS)
if there exists o € K such that the following estimate holds for all z(0) € R™,u € Lo(R4) and
t>0:

|lz(8)] < o (max{[z(0)], [[ulloc}) -

Theorem 4.4.1 ([110]). Assume the system (4.21)) is UBIBS. The system is 10S if and only if
it admits an 10S-Lyapunov function.

4.4.2 Adaptive observation with complete measurements

We investigate in the present subsection the adaptive observation of (4.20) assuming that ad-
ditionally the parameter « is known, which is equivalent to saying that the total numbers of
infections and primary infections are known. Hence, a is assumed to be equal to 1, and the

equations of (4.20) are simplified:

$1=—p—By+pe
g =Byl —y) —y(p+), (4.22)
Y1 = —py1 — YY1 + e By.

As 1 is known and y and y; are outputs, our goal is to estimate the remaining state s; and coeffi-
cients 3, v. Our observer design strategy has two steps. First, we design an observer to estimate
the unmeasured state s; based on auxiliary dummy identification of the uncertain parameters in
paragraphs The stability of the observer is analyzed Second, assuming that s;
is properly reconstructed, the estimates of the parameters are derived in paragraph
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4.4.2.1 Observer for s;

We define the estimates 51, B, 4 of s1, 8,7 as follows:
51 = 5&1 + kélyla /3) = gé + k/@ hl(y), ﬁ/ = E’AY - k’AY ln(y)’ (423)

where ks, , k:B, ky > 0 are tuning parameters and &, 53, & are auxiliary variables whose
adaptive laws will be defined below in . The idea of mixing the states of the observer
and the observed system (5) in the parameter estimate is similar to the Immersion & Invariance
approach [9]. To clarify the method, we will first introduce the approximations ¢, ¢, which
imitate the dynamics of y, y;:

J=PBy(1—y) —y(u+49),

g1 = e By — (3 + .
If we consider the errors p; :=y — ¢ and p2 := y1 — §1, the dynamics are given by

pr =05y — 035% — 05y,
po = —05y1 + (€% — 1) By + €63y,

where 95 = p - B, 0z := v — 4 are parameter estimation errors. Thus, from the derivatives
of p1 and py we obtain terms depending on the errors 65, 05, e™ — e which should be put
into the adaptive law of &y, 3, ~ as negative feedbacks. This was implemented in [44] under the
assumption that the output derivatives g, 3; are estimated using differentiators and put directly
into the adaptive law. However, estimating derivatives may be unreliable in the noisy setting
with low sampling of measurements, and we propose instead to construct the estimates in the
form (4.23]) to remove the necessity of estimating g, 1. Therefore, if we define the dynamics of
€§17 5&7 and g’y as:
§p=—ks(B1—y) =4 — ),
& =ks(B(L—y) =5 —n), (4.24)
€, = —p— By + pe™* — ks, (e By — (§ + wy1).
the dynamics of the errors 0[;, 0z and 0;, := s1 — 51 become

93 = —ké[(l - y)% - 9@], (4.25&)
05 = ks[(1 —y)b5 — 05], (4.25b)
s, = p(e™* —e 1) — Yo, — ks, [By(e® — &™) + e yby — y105]. (4.25¢)

The stability of the errors is checked in the following paragraph.

4.4.2.2 10S stability through Lyapunov function

Consider first a weighted parameter error norm:

ks
Y
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We compute the derivative of V; along the trajectories of the system —,
Vi = —h5[1031(1 = ) — 5n(0)65(1 — y) + 105 — sen(6;)05] < 0.
Therefore, the observer has a non-increasing parameters error norm. Consider also,
Va = 05,1,
then

Vo = — ple™" — ™| — ysgn(6s,)0; — ks, sgn(6s,)[By (e — %) + e yb; — y165]
- /’L|6_51 - 6_§1| - k§1éy|651 - e§1‘ + (1 + k§1651) eﬁ Y+ k§1 \9&|yl (427)
— ple™ — e — kg, Byle™ — ¥ |+ (1 + ks, e ) Viy + ks, k‘ﬁkgl‘ﬁyr

NN

Clearly, under the additional assumption that 3 has a positive lower bound, V5 is an I0S-
Lyapunov function from the input V3 < V3(0) (measuring the errors of the initial parametric
guess) to the output 63, . Moreover, we notice that the subsystem — is a cooperative
system, i.e., the Jacobian has non-negative off-diagonal entries, it is then component-wise order-
preserving, and in particular the errors 5 0+ remains non-positive if the initial conditions 0 5 (0),
0+(0) are non-positive, i.e., B(0) = B, 4(0) > ~. In this case, § > 8 > 0, and the assumption
above is satisfied.

Finally, the UBIBS property of (4.22)-(4.25) may be easily derived from the global stability
property of the system in addition to the fact that V; is non-increasing, and V5 also has
a negative derivative outside a region containing 0, which size depends on V;(0).

Therefore, we proved the following result:

Theorem 4.4.2. For any ks, ks ks > 0 and B(O) > B, 4(0) > ~, the system (4.22) coupled
with the adaptive observer (4.23)), (4.24) is input-to-output stable with input V1(0) (measure of

the initial parametric estimation gap) and output 65, .

4.4.2.3 Estimating § and v from the measure of s;

For the previous observer, the simulations in Section below show excellent accuracy for
estimating s; at the disease outbreak. This leads us to construct a simple asymptotic estimator
of B, v assuming that s; is an additional accessible quantity (for implementation, s; will be
replaced by its estimated value §; from (4.23)).

v

ﬁ = g[; — kle’ ’3/ = fly - kxy ll’l(y), (428)

where £, £+ are auxiliary variables whose dynamics are defined b
B> SY y y Y

(4.29)

Consider now the errors
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whose dynamics can be written as follows:

Qﬂv = —k‘ByQB,
05 = —ks(05 — 05(1 —y)).

Taking now the candidate Lyapunov function

(4.30)

Vs i= 0] + bl ,
we obtain the estimate:

Vi < —(kjz — b)|0ly — bks 05,
taking b < k, this proves that the estimator (#.28), converges exponentially (the output
y is separated from zero approaching the endemic equilibrium).

Theorem 4.4.3. Let kj, ky > 0. The adaptive observer (4.28), (4.29) converges exponentially
to B,7.

In particular, if we take the imperfect estimation §; instead of s, the estimators are I0S-
stable with input 6;, and outputs 95 and 05. Then cascade connection of two IOS systems is
again I0S (see [109]).

Corollary 4.4.4. Let ks, kg, ky, kg, ky > 0. The cascade connection of systems (4.22)-(4.23)) -
(4.24)-(4.28)-(4.29) is input-to-output stable with input V1(0) and output 05,65, 05.

4.4.3 Adaptive observation with an unknown measured proportion

In this subsection, we examine the case where an unknown proportion « of infected and primary
infected is measured. Denoting a~! = (, we rewrite again the system (3.17) excluding the
dynamics of z.

§1=—p— BCy+ pe ",
=By — BCy* —y(p +), (4.31)

U1 = —pyr — Y + €7 By.
The additional unknown parameter o governing the outputs y, y; renders the estimation problem
more delicate and non-linearly parameterized. For the adaptive observer design, we will adapt

the same two-step strategy employed for the case with complete measurements in subsection
4.4.2)

4.4.3.1 Adaptive observer for s;

As previously, the main objective in this subsection is to derive an adaptive observer that, in
particular, delivers an accurate estimation of si.
We introduce the estimates 51,4, ( in the form:

S1=C +hay, =& —kylny, (=& —kslny, (4.32)

Additionally, in light of the inequality upper bounding V5 in (4.27)), it would be needed for

the proof of stability to have B> B for a B > 0. However, we could not recover an observer
with similar cooperative property governing the error dynamics due to the additional parameter
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to estimate. Thus, following [99], we will introduce a projection in the adaptive law instead, to
guarantee that the estimate  remains inside a specific interval (3, 3) with 3,3 > 0 determined
beforehand. The observer writes:

h=f(3,%¢ 81, u,m),

where € > 0, 1, is the condition ¢ indicator and f is a generic C* function. For instance, an
example of function f is given in paragraph [£.4.4] for simulation.

Due to the projection algorithm, B stays inside the admissible interval, and our goal is to
estimate s;. The signal f plays then an auxiliary role. Denoting now the errors

Osy :=s1— 81, Or=F—PF, 05=7-4, 0;=(-
then,
05 = ks(01 — Byb; — Cybr — 05),
O = ke (01 — Bybs — Cybs — 05), (4.34)
O3, = ple™* —e 1) — Byag — Cyby — ks, (e y01 + By(e™ — ') — y165).

4.4.3.2 10S stability through Lyapunov function

We introduce the quantity 9’5‘&" = 8 — B and the candidate Lyapunov function
V.= |9§1| + b|94/| + C|0<A|

Assume that § € (f, B). The derivative along trajectories is

Vo= —ple* —e ¥ = Bysen(6s,)0; — Cysen(0s,)01 — ks, sgn(6s,) (—y105 + By(e” — )
e yb) — blOs| + kysgn(05) (01 — Bybs — Cybr) — clfg| + kesen(0) (61 — Bybs — Cybr)
< —ple™ = emH = ka, Byle™ — €| + 10618y + Cylb| + ks, 03]y + Fs, € (01 ]y — ks |65
+bks (101](1 = Cy) + 16¢|By) — ckel6e|By + cke(1611(1 = Cy) + 165]y)
< —plem = e = ks, Byle™ — €| — ckgl0¢1By + [Cy + ks, ey + (ks + ckie) (1 — Cy))[61]
+(ksy 1 + ckey) 03] + (1+ bks) Byl0|
< —plem™ — e = Byks, e — 1| = (bhy — ks, y1 — chgy)|05] — (kg — 1 — bks) 6] By

Gy + ks, ™ty + (bks + ek) (1 = Cy)lO5™.



170 CHAPTER 4. Observation and identification of a SIS model

Thus V is an I0S-Lyapunov function with input 92“”‘ and outputs 03, 05, 95 if
bks > ks y1 + Ckéy, Cké > 1+ bk,
These inequalities are equivalent to

Cké —1 b ks, +Ck<*y'
ks k4

In order to guarantee that there exists indeed b such that the previous inequality is fulfilled, it
is necessary and sufficient to select ¢ sufficiently large to have

Cké(l — y) >1+ k§1y1~

This is possible because, for any trajectory, there exists €1 > 0O such that 1 —y =1 —al > &
since o < 1 and the derivative I of the SIS system is strictly negative while I is close to 1.
Moreover, the IOS stability is deduced from the IOS-Lyapunov property of V' and the fact that
Be (B, ). Therefore, the following result is proved:

Theorem 4.4.5. Let f be a C' function, k?gl,k,:/,kf > 0 and B,B(O) € (g,B) The system
(4.31)-(4.33) s input-to-output stable, with input H‘E‘ax and output 6, , 65, 95'

4.4.3.3 Estimating 5, v and « from the measure of s;

The simulations provided below in Section show that the observer (4.32))-(4.33)) offers again
good accuracy for estimating s; at the outbreak of the disease. Therefore, we explore once more
if a reliable estimation of the unknown parameters can be recovered assuming the state s; is
measured (again, for implementation, the estimate of s; given in (4.32)) should be used). We
introduce first the notation ¢ = g and rewrite (4.31)) as

§1= —p— Yy + pe”,

=By —vy* —y(u+n),

=e"By —yi(p+7)

The estimators are chosen in the form

¥=8 —kyy, V=& —kysi,

g = §s +sgn(e™ % —Dkz(s1 —Iny +Iny), (4.36)
and the auxiliary variables & ET &, 51[} are determined by the adaptive law:
& = ks[e By — i (p+ 7)),
€5 = ky(—p+ pe™ —y), (4.37)
& = sen(“2 — Dkglu(1 — ) + 51— S

Let the errors 93, 05, 9121 be
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The errors follow the differential equations :

; Y
b, =—kl—e 2|05,
B ,6’| Y1 B

é,vy = —kﬁ(ylﬁﬁ — eslyHB), (438)

91[) = —kd;y%

It is then not difficult to deduce that, under the condition that 1—e®* y% # 0, the estimation errors

converge exponentially to zero. Moreover, e*! y% converges to Ry 1 < 1, hence the asymptotic
convergence is guaranteed.

Theorem 4.4.6. Let kB’ k‘?’kdj > 0. The adaptive observer (4.36)-(4.37) provides estimates of
58,7, % with exponential convergence.

Similarly to the Corollary [£:4.4] the cascade connection is still IOS in the present case.

Corollary 4.4.7. Let f be a C' function, ks, ky ke, kg ks, ky >0 and 3,8(0) € (B,B). The
cascade connection of systems (4.31)-(4.32)-(4.33))-(4.36)-(4.37) is input-to-output stable with
input Gglax and output 05, , 95,, 05, 01;.

4.4.4 Numerical simulations

We give in the present subsection some numerical simulations of the observers presented in
subsection f.4.2 and E.4.3]

4.4.4.1 Tuning of the observers

For the parametrization of the observer (£.23)-(#.24)), the inequality regarding V5 in (4.27) sug-
gests taking ks, and k:/; relatively large and k4 small in order to improve the practical estimation

of 41 (notice that usually the positive terms e®* = 57 and y; = al; in the inequality converge
to relatively low values, in fact to %—V and o2 EZ;“ 7% due to the effects of reinfections). On
the other hand, the gains kj, k5 of the asymptotic estimator (4.28)-(4.30) will be set sufficiently
high to accelerate the convergence.

For the adaptive observer (4.32))-(4.33)), ks, is set again sufficiently great in order to have a

reliable estimate of s;. Moreover, the function f in (4.33) is defined as

f(Ba;% 67 §1) y7y1) = kl(ﬁA — K= ’S/ - Bgy) + k2(_(’3/ + :u)yl + eglgy% (439)
for some positive gains ky and k. This is motivated by the fact that we expect B to fulfill
B—p—4=PBly=0, " By—(F+my =0,

because the true coefficients 3, satisfy these equalities asymptotically. However, as stated in
Theorem [4.4.5] the IOS stability is conserved for any C'! function f. For example, we may choose
instead the function

fi = kB, (4.40)

which yields similar results numerically. The advantage of the function defined in (4.39)) over
(4.40) is to obtain an adaptive estimate 3 which does not converge to boundary values f, B.
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4.4.4.2 Case with o known

We consider in this subsection the simulation of the cascade connection of systems ——
(4.24)-(4.28)-(4.29) with the settings: p=! = 70 years, v = 127! days™!, 8 = 0.2 days~!,
ks, = kjﬁ = kﬁv = 100 days™!, ks = 10 days™!, k5 = 0.01 days~'. The result indicates that the
observer starts converging to an almost exact value of S; during the outbreak (Fig. before
losing its precision slowly. Nevertheless, this initial estimation is sufficient to obtain accurate
estimates ﬁv,ﬁ of 8, v (Figs. and . In Fig. at the end of the estimation interval,
when the system has approached the equilibrium, we can see the augmentation of the estimation
error and a kind of unstable behavior, which is related to the loss of the previously mentioned
identifiability close to the steady state.

0.8

0.6

\

0.2

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90
t (days) t (days)

Figure 4.5: Estimation of S7, o known Figure 4.6: Estimation of 8, a known

—
0.6 x

0.4
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Figure 4.7: Estimation of v, a known

4.4.4.3 Case with o unknown

The simulation of the cascade connection of systems (4.31))-(4.32)-(4.33)-(4.36)-(4.37)) is com-
puted with the same coefficients 3, 7, p as above, additionally we set aw = 0.8, kg, = kz[; = 100
days™', ky = kz = ky = 10 days™', ks = k1 = kz = 1 days™! and (B, B) = (0.01,2) days~!. For
better estimation of sy, fixing ks, and ks sufficiently large is necessary. Moreover, ks can take
theoretically arbitrarily large values. However, in this case, the estimation would have significant
noise. In the present settings, Fig. shows that, even for a large confidence interval of 3, the
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observer for unknown « exhibits the same behavior as above, delivering an accurate estimate of
s1 at the outbreak of the epidemics, however at a slower pace. This estimate is then sufficient
for deriving a rather precise estimation of the remaining parameters (figures 4.11).

0 10 20 30 40 50 60 70 80 90 100
t (days)

Figure 4.8: Estimation of S, o unknown
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Figure 4.10: Estimation of v, @ unknown
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Figure 4.11: Estimation of a, a unknown
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Mathematical modelling, observation and identification of epidemiological models with
reinfection

Abstract

The subject of this work is the mathematical modelling of infectious diseases with reinfections and the
analysis of the corresponding models. First, we introduce a general class of compartmental models count-
ing the number of reinfections, consisting of an infinite number of ordinary differential equations, and
study its well-posedness. The proposed class also allows for the modelling of heterogeneous transmission,
whose characteristics depend upon the number of past reinfections. In the homogeneous situation (where
the past reinfections do not affect disease transmission), the global behavior obeys a usual compartmental
model. Asymptotic results are established, and formulas giving the mean number of reinfections at the
endemic equilibrium are provided. Next, we investigate a two-stage reinfection model intended for the
modelling of diseases for which the subsequent reinfections behave differently from the primary infection.
We describe thoroughly the steady states of the model, which may contain up to three endemic equi-
libriums, and study the disease persistence. Employing Li and Muldowney theory, we prove asymptotic
convergence of every trajectory, in a particular case that may exhibit multiple endemic equilibriums.
Using semigroup theory, we then establish the well-posedness for a class of models structured both in
age and number of reinfections. The latter are constituted by an infinite number of partial differential
equations. This allows the computation of several interesting quantities at endemic equilibrium, such
as the average age in each compartment or the mean number of reinfections at each age. Finally, we
investigate some issues of Control theory, more precisely whether the use of additional reinfection data
may improve parameter and state estimation. To this end, we study identifiability and observability
of a SIS model, based on the measure of the number of infected and of primary infected, and propose
an asymptotic observer and an adaptive observer respectively for the state, and for the joint state and
parameter, estimation.

Keywords: compartmental models in epidemiology; reinfection; age structure; multistability; observa-
tion; identification; asymptotic observer; adaptative observer

Résumé

Le sujet de ce travail est la modélisation mathématique des maladies infectieuses avec réinfections et
I’analyse des modeles correspondants. Nous introduisons d’abord une classe générale de modéles compar-
timentaux comptant les réinfections, constitués d’un nombre infini d’équations différentielles ordinaires,
et nous étudions leur caractére bien posé. La classe proposée permet également de modéliser une trans-
mission hétérogene, dont les caractéristiques dépendent du nombre de réinfections antérieures. Dans le
cas homogene (ol les réinfections passées n’affectent pas la transmission de la maladie), le comportement
global obéit & un modeéle compartimental usuel. Des résultats asymptotiques sont établis et des formules
donnant le nombre moyen de réinfections a 1’équilibre endémique sont données. Nous étudions ensuite un
modele de réinfection a deux étages destiné a la modélisation de maladies pour lesquelles les réinfections
ultérieures se comportent différemment de 'infection primaire. Nous décrivons en détail les équilibres du
modele, qui peut contenir jusqu’a trois équilibres endémiques, et étudions la persistance de la maladie.
Grace a la théorie de Li et Muldowney, nous prouvons la convergence asymptotique de chaque trajec-
toire dans un cas particulier qui peut présenter plusieurs équilibres endémiques. En utilisant la théorie
des semigroupes, nous établissons ensuite le caractére bien-posé d’une classe de modeéles structurés a
la fois en age et en nombre de réinfections. Ces derniers sont constitués d’un nombre infini d’équations
aux dérivées partielles. Ceci permet de calculer plusieurs quantités intéressantes a ’équilibre endémique,
telles que I’dge moyen dans chaque compartiment ou le nombre moyen de réinfections a chaque age. Nous
examinons enfin des questions de théorie du controle, plus précisément si ’utilisation de données supplé-
mentaires sur les réinfections peut améliorer 'estimation des paramétres et de Détat. A cette fin, nous
étudions I'identifiabilité et 'observabilité d’un modele SIS, basées sur la mesure du nombre d’infectés et
de primo-infectés, et proposons un observateur asymptotique et un observateur adaptatif respectivement
pour 'estimation de 1’état, et pour I’estimation conjointe de I’état et des parametres.

Mots clés : modeles compartimentaux en épidémiologie ; réinfection ; structuration en age; multista-
bilité ; observation ; identification ; observateur asymptotique ; observateur adaptatif
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