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RÉSUMÉ DE LA THÈSE EN FRANÇAIS

1 Introduction

Les réseaux de transmission optique subissent une évolution constante, car ils doivent s’adapter
aux nouveaux besoins des utilisateurs. En particulier, les capacités de transmission utilisant
des fibres optiques se sont largement développées depuis les premiers systèmes à modulation
d’intensité de l’impulsion optique et détection directe (IM/DD) à 10 Gbits/s par paire de fi-
bres, jusqu’aux tout derniers systèmes à multiplexage de longueur d’onde (WDM) à détection
cohérente. Très récemment, l’utilisation du multiplexage par division spatiale (SDM) avec des
fibres multi-cœurs ou multi-modes, a permis d’atteindre des records de transmission de, par
exemple, 1,4 Exabits/s · km [1] (Fig. 1).

Figure 1 – Évolution du produit bit-rate et distance de transmission sur des fibres optiques [1] CC⃝ .

Cependant, ces capacités seront encore insuffisantes au regard de l’avenir de la 6G et des
nouvelles technologies immersives, comme la réalité virtuelle, qui vont nécessiter une grande
bande passante et donc des capacités de transmission aussi élevées. Dans ce contexte, il est
essentiel de comprendre quelles sont les limites fondamentales à l’atteinte de la capacité maximale
dans les systèmes optiques actuels. Pour cela, nous devons nous retourner en 1948. Dans
cette année-là, Claude Shannon a énoncé, dans son célèbre travail “A Mathematical Theory of
Communication”, que la capacité maximale atteignable C sur un canal additif et blanc avec
bruit gaussien (AWGN) répond à l’expression suivante :

C = 2 ·B · log2(1 + SNR), (1)

où 2B est la bande passante du signal complexe et SNR est le rapport signal sur bruit SNR = Ps
Pn

où Ps et Pn représentent la puissance du signal et la puissance du bruit, respectivement.
Dans le contexte des fibres optiques, dans les systèmes actuels de transmission, les pertes de

la fibre sont compensées par des amplificateurs optiques et notamment dans la bande C (1530 nm

xix
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- 1565 nm), nous utilisons les amplificateurs à fibre dopée à l’erbium (EDFA). Ces amplificateurs
génèrent un bruit AWGN qui est dû au phénomène d’émission spontanée amplifiée (ASE). A
fortes puissances du signal Ps, le SNR n’est plus linéaire avec Ps, mais un facteur dépendant de
P 3
s s’additionne à la puissance de bruit gaussien PASE classique dû aux amplificateurs optiques,

c’est-à-dire Pn = PASE + PNLI , où PNLI = ηP 3
s et η dépend de la configuration du système.

Cette formulation devient d’un modèle appelé “Gaussian Noise (GN)”, où le terme additionnel
PNLI est considéré comme un bruit additif gaussien dû aux interférences non-linéaires (NLI).
Ce bruit est inhérent aux transmissions optiques, mais il est plus visible à fortes puissances
optiques. De ce fait, classiquement, le point d’opération optimal est choisi comme le point
auquel la capacité est maximale et le niveau de puissance correspondant est fixé pour maintenir
cette capacité maximale, comme c’est montré dans la Fig. 2.

Figure 2 – Dépendance de la capacité d’un système de transmission optique sur la puissance du signal optique
en bleu. La ligne noire pointillée représente la capacité de Shannon et la ligne rouge pointillée est la capacité
maximale du système fixée à la puissance optimale [2] CC⃝ .

2 Effets Non-linéaires dans les Fibres Optiques
Le bruit dû aux NLI est provoqué par la non-linéarité de la fibre. Ce phénomène désigne

le comportement non-linéaire de l’indice de réfraction ñ de la fibre lorsque la puissance optique
devient grande. En particulier, les effets non-linéaires de Kerr sont ceux dans lesquels la non-
linéarité est proportionnelle à l’intensité de l’impulsion optique,

ñ(ω, I) = n(ω) + n2I, (2)

où n(ω) est un terme linéaire, n2 est appelé coefficient d’indice non-linéaire et I représente
l’intensité de l’impulsion optique.

La dépendance de ñ avec I est à l’origine de différents effets non-linéaires, parmi lesquels les
plus importants sont :

• L’auto-modulation de phase (SPM)
• La modulation de phase croisée (XPM)
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• Le mélange à quatre ondes (FWM)
La SPM désigne le phénomène par lequel la réfraction non-linéaire affecte la phase du signal

due à sa propre intensité. Comme l’intensité de l’impulsion optique varie dans le temps lors de
la propagation, le déplacement de phase non-linéaire amorce ainsi un déplacement instantané de
la fréquence autour de la fréquence centrale qui reste inchangée. Si nous considérons seulement
la SPM, nous observons un élargissement symétrique du spectre du signal dû aux harmoniques
générées à cause de la NLI. D’autre part, avec la présence de la dispersion chromatique (CD) et
quand elle est positive, l’effet résultant est un rétrécissement de l’impulsion dans les domaines
temporel et spectral.

Le bruit d’ASE, dû aux amplificateurs optiques, et la SPM induisent un bruit de phase
non-linéaire,

ϕNL = γLeff

Nsp∑
i=1
|E +

i∑
k=1

nk|2, (3)

où γ est appelé coefficient non-linéaire de la fibre, Leff est appelé longueur effective du span, E
représente le champ électromagnétique, nk sont des variables aléatoires i.i.d. de type Gaussien
dues au bruit d’ASE, et Nsp est le nombre de spans de fibre à longueur uniforme. À titre
d’exemple, nous pouvons observer dans la Fig. 3 l’effet du bruit de phase non-linéaire sur une
transmission à 20 × 100 km de fibres monomodes standard (SSMF) avec des EDFA après chaque
span.

(a) Bruit d’ASE seulement. (b) Bruit de phase non-linéaire.

Figure 3 – Constellation 16QAM reçue à 32-GBaud et 1-dBm après 20 × 100 km de SSMF.

La XPM a le même principe que la SPM, sauf que le déplacement de phase du champ
électrique d’une impulsion est provoqué par une impulsion voisine. Quand ces impulsions ap-
partiennent au même canal, la XPM est appelée intra-XPM (IXPM). Au contraire de la SPM,
la XPM provoque un élargissement asymétrique du spectre avec un changement de la fréquence
centrale. Comme les différentes harmoniques générées à l’intérieur du spectre se déplacent à des
vitesses différentes, cela cause un “gigue de collision”.

Au contraire de la SPM et de la XPM, le FWM implique un échange d’énergie pour générer
une nouvelle composante fréquentielle à partir de trois harmoniques. Le FWM est plus sus-
ceptible de se produire dans les transmissions WDM et même à l’intérieur d’un même canal
(intra-FWM (IFWM)). Plus la CD est large, les impulsions optiques qui arrivent à différents
moments (en raison de la CD) peuvent s’interférer entre elles et causer du FWM.
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3 Équation Non-linéaire de Schrödinger

L’équation qui décrit la propagation du champ électromagnétique vectoriel E = [E1, E2] à
travers la fibre optique est connue sous le nom d’équation non-linéaire couplée (ou vectorielle) de
Schrödinger (CNLSE). Cette équation, dérivée des équations de Maxwell, est simplifiée comme
ceci, lorsqu’on considère que la biréfringence du matériau qui compose la fibre est linéaire :

∂E1
∂z

=
(
−α2 − β1

∂

∂t
− jβ2

2
∂2

∂t2

)
E1 + jγ

(
|E1|2 + 2

3 |E2|2
)
E1, (4)

∂E2
∂z

=
(
−α2 − β1

∂

∂t
− jβ2

2
∂2

∂t2

)
E2 + jγ

(
|E2|2 + 2

3 |E1|2
)
E2, (5)

où α, β1, β2 et γ représentent respectivement le coefficient d’atténuation de la fibre, la dispersion
modale de polarisation (PMD), la CD et le coefficient non-linéaire de la fibre.

Dans les fibres actuelles, la biréfringence peut changer assez rapidement, et donc la longueur
de battement 1 LB est beaucoup plus petite que la longueur non-linéaire 2 LNL. La CNLSE
devient l’équation de Manakov-PMD suivante :

∂E
∂z

=
(
−α2 − β1

∂

∂t
− jβ2

2
∂2

∂t2

)
E + j

8
9γ|E|

2E. (6)

4 Traitement Numérique des Signaux pour les Systèmes de Trans-
mission Optique Cohérente

En raison des différents effets linéaires et non-linéaires, ainsi que des imperfections des com-
posants optiques et électriques, comme le décalage de la fréquence du laser et celui de l’oscillateur
local, ainsi que le bruit de phase des lasers, dans les systèmes cohérents actuels, la compensation
de ces effets est effectuée électroniquement via des algorithmes de traitement numérique des
signaux (DSP). Concrètement, dans ce travail, nous avons considéré une chaîne d’algorithmes
DSP, comme illustré dans la Fig. 4.

Les algorithmes DSP ont comme tâche la récupération des signaux transmis avec le moins
d’erreurs possible. Il existe une grande variété d’algorithmes, l’un plus performant que l’autre,
mais ça peut entraîner une complexité d’implémentation et de calcul plus grande. Dans ce
travail, nous considérons une chaîne DSP standard qui performe une synchronisation et un re-
échantillonnage à deux fois la fréquence symbole, pour respecter le critère de Nyquist. Ensuite,
nous utilisons un filtre de mise en forme du type racine carrée de cosinus surélevé (RRC) juste
avant l’égalisation du canal. L’algorithme suivant correspond à un égaliseur adaptatif pour
récupérer les deux polarisations orthogonales, en plus que nous récupérons les signaux à la
fréquence symbole. Ce qui reste, c’est la compensation du décalage de la fréquence et le bruit
de phase des lasers.

1. La longueur de fibre dans laquelle les états de polarisation sur les axes orthogonaux sont retardés de 2π.
2. La longueur dans laquelle la non-linéarité de la fibre est significatif.
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Figure 4 – Chaîne d’algorithmes de traitement numérique des signaux utilisés dans le récepteur cohérent. BPD:
photodiodes balancées, ADC: convertisseur analogique-numérique.

Les récepteurs actuels utilisent comme égaliseur de canal des algorithmes pour compenser la
CD, car la PMD est compensée avec l’égaliseur adaptatif. La compensation de la NLI a mobilisé
un grand nombre de travaux de DSP, parce que la complexité calculatoire additionnelle est très
significative. Les chercheurs ont proposé une série d’algorithmes DSP pour compenser la NLI,
en essayant à réduire cette complexité afin que ces algorithmes puissent être implémentés en
hardware. L’algorithme de Digital Backpropagation (DBP) est vu comme la méthode la plus
performante pour compenser la NLI.

5 Algorithmes d’Égalisation Non-linéaire

5.1 Digital Backpropagation

La DBP est basée sur la méthode de Split-Step Fourier (SSFM). Cette méthode consiste à
numériquement rétro propager les signaux reçus en employant une compensation linéaire suivie
d’une compensation de la NLI par petits pas de fibre de longueur h, comme illustré dans la Fig.
5, où D̂ et N̂ représentent les opérateurs linéaires et non-linéaires, respectivement.

Figure 5 – Schéma illustrant la méthode de la DBP à L
h

steps par span. E(L, t) représente les signaux reçus à
la fin du segment de longueur L, h est la longueur du pas, et D̂ et N̂ représentent des opérateurs linéaires et
non-linéaires, respectivement. ξ est un paramètre à optimiser.

En effet, avec des longueurs infinitésimales de fibre, il est possible de considérer que les
effets linéaires et non-linéaires agissent indépendamment, ce qui n’est pas valable si on considère
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plusieurs kilomètres de fibre par exemple. Il est compréhensible, donc, que la précision de cette
méthode augmente avec la diminution du pas h. Néanmoins, réduire le pas h fait aussi augmenter
le nombre d’opérations nécessaires à effectuer, rendant la méthode très complexe en termes de
complexité calculatoire.

5.2 Séries de Volterra

Une autre méthode possible est basée sur les séries de Volterra (VNLE). La fibre optique,
en tant que système non-linéaire, peut être modélisée par des séries de Volterra. En prenant
le système à l’inverse, il est possible d’estimer l’entrée (les signaux originalement transmis) par
rapport à la sortie (les signaux reçus) avec un ordre du noyau de Volterra suffisant. De la même
que la DBP, la méthode est plus performante avec noyaux d’ordre plus élevé. Un ordre du noyau
entre 3 ou 5 est raisonnable. La Fig. 6 illustre la méthode de séries de Volterra avec noyaux
d’ordre 3.

(a) Implémentation en parallèle. (b) Bloc d’égalisation non-linéaire correspondant au step k.

Figure 6 – Schéma d’un égaliseur non linéaire basé sur les séries de Volterra avec des noyaux d’ordre 3. Ex et
Ey représentent les composantes de E, N est le nombre de spans, FFT est la transformée de Fourier rapide et
IFFT est la FFT inverse, Hk

CD représente la compensation de la CD cumulée sur k spans, ξ est un paramètre à
optimiser [3] ©2012, IEEE.

5.3 Compromis entre Performance et Complexité Calculatoire

Prenons l’exemple d’une transmission d’un signal à double polarisation DP-16QAM à 32-
GBaud sur 14 × 100 km de longueur de span, ce qui est raisonnablement la configuration d’un
système de transmission actuel à l’exception de la longueur de span uniforme. À ce stade, nous
nous intéressons à investiguer la performance de la DBP et du VNLE, ainsi que les performances
d’un égaliseur linéaire, c’est-à-dire la compensation de la CD seulement.

Nous investiguons les performances en termes de taux d’erreur binaire (BER). Les résultats
du BER sont montrés dans la Fig. 7a. Nous pouvons vérifier que la DBP est plus performante
tant qu’elle donne le meilleur taux d’erreur, encore en utilisant 1 step par span (StPS). Re-
marquons que nous utilisons la version asymétrique à 1 StPS et la version symétrique à ≥ 2
StPS, car ces derniers donnent une meilleure performance que les versions asymétriques. Mais la
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comparaison n’est pas juste si nous ne regardons pas la complexité calculatoire de ces égaliseurs.
Nous mesurons la complexité calculatoire en termes du nombre d’opérations mathématiques
nécessaires lors de l’égalisation, concrètement le nombre de multiplications réelles par symbole
traité (RMpS). De plus, nous mesurons le temps qui prend à traiter un symbole (processing
time). La complexité calculatoire, de notre exemple, est illustrée dans la Fig. 7b. Au-dessous
de chaque bar, il est indiqué le nombre de fois plus grand par rapport aux résultats d’égaliseur
linéaire (CDC). Ces résultats montrent que la DBP à 1 StPS et le VNLE ont, à peu près, la
même complexité, mais la DBP étant plus performante en termes de BER. Néanmoins, la DBP
et le VNLE sont trop gourmands en calcul et ça, c’est un problème pour être actuellement
implémenté au niveau hardware.
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(b) Complexité calculatoire (CC) en multiplications réelles par sym-
bole égalisé (RMpS) et temps de traitement.

Figure 7 – Performances du système en utilisant un égaliseur linéaire (CDC), des égaliseurs non-linéaires DBP et
VNLE avec ξ optimal pour une transmission DP-16QAM à 32-GBaud sur 14 × 100 km de SSMF.

Nous visons, à travers cette étude, à vérifier si des techniques simples basées sur des réseaux
de neurones artificiels (ANN ou NN) peuvent surmonter ces défis de complexité calculatoire en
permettant encore une réduction du BER significatif.

6 Égaliseurs Non-linéaires basés sur des Réseaux de Neurones
Artificiels

Les techniques basées sur l’apprentissage automatique (ML) pour l’égalisation du canal op-
tique exploitent le fait que nous pouvons avoir accès aux données avec une certaine facilité, que
ce soit des données simulées ou des données expérimentales. En effet, le succès du ML repose sur
l’utilisation des mégadonnées (big data en anglais) pour construire des modèles qui permettent
de représenter une fonction ou une transformation d’une entrée vers une sortie.

Les réseaux de neurones artificiels sont des techniques du ML construits à partir du concept
d’apprentissage profond (Deep Learning (DL) en anglais), dans lequel la représentation du mod-
èle se fait par couches, où chaque couche est dédiée à l’extraction des caractéristiques communes
à toutes les données d’entrées. Ces caractéristiques sont souvent abstraites dans les couches de
début et plus intuitives dans les couches de sortie.
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De manière générale, nous avons inclus le NN après la sortie du bloc de compensation de
phase, comme illustré dans la Fig 8.
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Figure 8 – Placement du réseau de neurones après le bloc de compensation de phase.

Dans notre travail, nous nous sommes focalisés sur les NN du type Perceptron Multicouche.

6.1 Perceptron Multicouche (MLP)

Les NN MLP sont les modèles les plus généraux et peuvent représenter n’importe quelle
fonction. Le MLP est illustré dans la Fig. 9.

Figure 9 – Architecture du NN Perceptron Multicouche (MLP).

En général, le but du réseau consiste à trouver la vraie valeur de y, c’est-à-dire ytrue en
ayant comme information x.

Le réseau MLP consiste en multiples couches, où chaque couche est composée d’un nombre
défini de neurones. Notamment, la première couche est la couche d’entrée et la dernière couche
est la couche de sortie. Les couches au milieu sont appelées couches cachées. Chaque neurone
reçoit toutes les entrées de la couche précédente. La valeur résultante est transmise vers tous
les neurones de la couche suivante. La Fig. 10 montre le modèle du neurone artificiel.

D’après ce modèle, la sortie de chaque neurone est une combinaison linéaire de ses entrées
plus un terme de biais, avec sa sortie transformée via une fonction d’activation non-linéaire ϕ :
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Figure 10 – Modèle d’un neurone artificiel.

uk = ωkx⊺ + bk, (7a)
yk = ϕ(uk), (7b)

où ωk = [ωk1, ωk2, ..., ωkm] est l’ensemble de poids ωkm pour chaque entrée xm, x = [x1, x2, . . . , xm]
représentent les m entrées, bk est le terme de biais, uk est une combinaison linéaire et yk est la
valeur de sortie du neurone.

Pour le réseau complet illustré en Fig. 9, le vecteur de sortie y est représenté comme ceci :

y = f(x; θ), (8)

où f représentent l’ensemble d’opérations linéaires et non-linéaires, et θ est l’ensemble de poids
W[l] et b[l] pour 1 ≤ l < L et appelé les paramètres du réseau MLP,

θ = W[1],b[1], ...,W[L−1],b[L−1]. (9)

6.2 Processus d’apprentissage

Comme le but du réseau MLP est de rapprocher y à ytrue, nous devons, lors de l’apprentissage,
mettre à jour les valeurs de θ de façon à ce que la différence entre y et ytrue diminue. Cette
différence instantanée est nommée Fonction de coût ou de pertes et est notée comme l(y,ytrue).
La mise à jour de θ est un problème d’optimisation, et donc, des algorithmes classiques comme
l’algorithme du gradient stochastique (SGD) et ses variantes (ADAM, Adagrad, RMSProp) sont
souvent utilisés. L’algorithme de SGD consiste à faire varier les valeurs de θ à partir du gradient
d’une valeur représentative de l(y,ytrue), donc l’espérance mathématique, notée comme L(θ),
par rapport à θ, c’est-à-dire :

θ ← θ − ε∇θL(θ), (10)

où ε est nommée taux d’apprentissage et ∇θ est le gradient de L(θ) par rapport à θ.
Les fonctions de coût considérées sont habituellement l’erreur quadratique, la valeur absolue,
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la fonction d’Huber, etc. Pour la fonction quadratique, il est classiquement utilisé l’erreur
quadratique moyenne (MSE), calculée comme ceci :

MSE(y, ŷ) = E(l(y,ytrue)) = 1
N

N∑
i=1

(yi − ytrue,i)2, (11)

où E représente l’espérance mathématique, et yi et ytrue,i sont respectivement les neurones i
pour 1 ≤ i ≤ N de la sortie y et du target ytrue.

6.3 Sélection des hyper-paramètres et Traitement des données

Le MLP est défini par le nombre de couches cachées, le nombre de neurones pour chaque
couche et les fonctions d’activation non-linéaires à la sortie de chaque couche. Ces paramètres
de réseau sont appelés hyper-paramètres. En plus, lors de l’apprentissage, d’autres paramètres
doivent aussi être définis, comme le taux d’apprentissage ε. Quand on utilise la SGD, l’optimisation
est souvent faite par groupes ou Batches de données, et quand tous les batches de données ont
été traités, nous parlons de l’achèvement d’un Epoch. Ces deux paramètres, la taille des batches
et le nombre d’epochs sont également des hyper-paramètres.

Le choix des hyper-paramètres peut être fait de manières différentes. Nous avons adopté une
stratégie basée sur la méthode de l’estimateur de Parzen à structure arborescente (TPE). Pour
ce faire, nous devons définir une fonction objective, que celle que nous souhaitons optimiser.
Nous identifions deux fonctions : le taux d’erreur binaire (ou symboles) et la fonction de coût
MSE.

Un autre point à considérer concerne le traitement des données à fournir au MLP. Comme
illustré dans la Fig. 8, l’entrée du réseau sont les symboles après le compensateur de phase
et la sortie correspond aux symboles égalisés. Comme l’objectif du réseau est d’obtenir les
symboles originalement transmis, les symboles transmis correspond au target. En ce qui suit,
nous considérons trois sets de données différents : l’une pour l’apprentissage du réseau, l’autre
pour la validation des résultats lors de l’apprentissage, et finalement une dernière pour des tests
finaux.

6.4 Résultats des égaliseurs basés sur NN

En prenant l’exemple précédent d’une transmission DP-16QAM à 32-GBaud sur 14 × 100
km de SSMF, nous avons trouvé les hyper-paramètres qui minimisent le taux d’erreur symbole
(SER) et le MSE, les deux métriques en utilisant les données de validation. Une fois l’architecture
des réseaux choisie, nous utilisions les réseaux entraînés dans une phase de test. Nous avons
calculé le taux d’erreur binaire (BER) pour chaque cas (SER optimisé et MSE optimisé). Le
MLP avec SER optimisé compte 92 neurones d’entrée, 560 neurones dans la première couche
cachée, et 2 neurones de sortie, tandis que le MLP avec MSE optimisé compte 76 neurones
d’entrée, 269 et 57 neurones respectivement dans la première et la deuxième couche cachée, et
2 neurones de sortie. Les résultats sont montrés dans la Fig. 11a. La complexité calculatoire
est également calculée comme le nombre de multiplications réelles nécessaires pour égaliser un
symbole (RMpS) et le temps de traitement. Ces deux dernières valeurs, RMpS et temps de
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traitement, sont montrées dans la Fig. 11b dans le cas du NN avec SER optimisé qui a la plus
petite taille parmi les deux.
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(b) Complexité calculatoire (CC) en multiplications réelles par sym-
bole égalisé (RMpS) et temps de traitement. MLP correspond à MLP
92|560|2 (SER optimisé).

Figure 11 – Performances du système en incluant le NN pour une transmission DP-16QAM sur 14 × 100 km de
SSMF. Plus violets : SER optimisé. Étoiles cyan : MSE optimisé.

Nous observons que les valeurs de BER sont moins bonnes que celles de la DBP et le VNLE.
En plus, un réseau avec hyper-paramètres choisis pour optimiser le SER donne de meilleurs
résultats (plus violets) que ceux d’un réseau avec hyper-paramètres choisis pour optimiser le
MSE (étoiles cyan). La complexité calculatoire, qui correspond au réseau avec SER optimisé,
montre aussi une quantité d’opérations supérieure à celle de la DBP et le VNLE mais avec
un moindre temps de traitement. Cela s’explique facilement en regardant le réseau comme
une succession de matrices, où les multiplications de lignes et de colonnes peuvent se faire en
parallèle.

Les diagrammes de constellation 16QAM des symboles égalisés sont montrés dans la Fig.
12. Noter que les symboles égalisés avec un MLP (MSE optimisé, deuxième ligne) prennent une
allure en forme de grille sur les lignes horizontales et verticales à -0.95, -0.32, +0.32, +0.95. Ce
phénomène, qui apparaît très légèrement dans les diagrammes de la première ligne avec SER
optimisé, est analysée dans la section suivante.

Nous avons vu, donc, que malgré une optimisation des paramètres du réseau, soit en utilisant
le SER ou le MSE comme métrique d’optimisation, le MLP n’est pas capable de compenser la
non-linéarité de la fibre aussi bien que la DBP ou le VNLE, au moins pour les systèmes de
transmission cohérents sur des longues distances de SSMF.

7 L’effet MMSE-scatterplot: constellation en forme de grille

Lorsque les réseaux neuronaux sont utilisés comme égaliseur non-linéaire avec un critère
de minimisation basé sur le MSE (MMSE) lors de l’apprentissage, nous avions observé que
les constellations subissent une déformation, en adoptant une forme de grille (dans les cas des
constellations QAM rectangulaires). Ce phénomène observé correspond bien à une égalisation
non-linéaire où la fonction de coût est basée sur le MSE, et pour cette raison, nous l’avons appelé
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(a) P/ch = 0-dBm (MLP-
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MSE).

(g) P/ch = 2-dBm (MLP-
MSE).

(h) P/ch = 3-dBm (MLP-
MSE).

Figure 12 – Diagrammes de constellation des signaux égalisés avec la MLP avec des hyper-paramètres qui opti-
misent le SER (première ligne), et qui optimisent le MSE (deuxième ligne).

l’effet “MMSE-scatterplot”. Nous l’observons notamment dans le cas où nous avons optimisé
les hyper-paramètres du réseau en tenant compte de la minimisation du MSE. Néanmoins, ce
phénomène apparaît également dans le premier cas, où nous optimisons les hyper-paramètres
en tenant compte de minimiser le SER (voir comment les points ont une certaine tendance
à se diffuser vers les lignes verticales et horizontales). En général, ce phénomène apparaîtra
sur tous les égaliseurs non-linéaires entraînés avec une fonction de coût basée sur le MSE. Ce
qui va changer d’un résultat à l’autre, c’est le niveau d’égalisation du réseau avant d’originer
une déformation de la constellation. Ce niveau d’égalisation va dépendre principalement de la
capacité du réseau, c’est-à-dire du nombre des paramètres, du taux d’apprentissage, du temps
d’entraînement, de la taille des données et de la représentativité des données.

Mais concrètement, en quoi l’effet MMSE-scatterplot est problématique pour la correcte
récupération de bits transmis ? Pour répondre à cette question, il faut savoir qu’actuellement,
les schémas de correction d’erreurs sont basés sur une décision dite “soft”, qui s’appuie sur
des probabilités d’avoir reçu le bit correct plutôt que de décider au préalable la valeur du bit
avant de le corriger. La première approche correspond au schéma de Soft-Decision Forward
Error Correction (SD-FEC) tant que la deuxième correspond au schéma de Hard-Decision FEC
(HD-FEC). Considérons maintenant la présence de ce phénomène de grille. Clairement, cette
allure correspond à une décision du type “Hard”, puisque les symboles égalisés ont déjà pris une
décision (soit les symboles réels prennent les valeurs -0.95, -0.32, +0.32 ou +0.95 dans l’exemple
précédent). Il n’est donc pas adapté aux schémas de SD-FEC qui est la méthode la plus optimale
aujourd’hui.

Dans cette étude-là, nous nous sommes focalisés sur la compréhension de ce phénomène et sur
le modèle mathématique qui explique l’apparition de ce phénomène. En plus, en prenant avan-
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tage de ce modèle, nous avons proposé une technique pour éviter l’apparition de ce phénomène
de grille.

7.1 Modèle mathématique du phénomène MMSE-scatterplot

Considérons le cas général du système de transmission illustré dans la Fig. 13 avec un bloc
d’égalisation par un réseau de neurones NN, où X est la séquence des symboles émis, R est la
séquence des symboles reçus, et Y est l’estimation de X par le réseau de neurones.

Figure 13 – Cas général d’un système de transmission avec égalisation du canal par un réseau de neurones NN.

Il a été démontré que la valeur estimée de X, sous le critère de minimisation du MSE =
E[|X − Y |2], est atteinte de façon optimale quand Y = E[X|R].

Considérons maintenant le cas d’un système de transmission sur un canal AWGN, comme
illustré dans la Fig. 14, où le bruit du canal AWGN est représenté par Z ∼ CN (0, σ2), σ2

est la variance du bruit, les signaux transmis sont représentés par X qui ont une probabilité
d’occurrence uniforme p(X) = 1

M , où M est la taille de l’alphabet χ, et R représente les signaux
reçus R = X + Z.

Figure 14 – Système de transmission sur canal AWGN avec égalisation du canal par un réseau de neurones NN.

La valeur optimale de Y , en utilisant Y = E[X|R] et p(R|X) = 1
πσ2 e

− |r−x|2

σ2 , entraîne :

y = Sχ(r;σ2) =
∑
x∈χ xe

− |r−x|2

σ2∑
x∈χ e

− |r−x|2
σ2

, (12)

où la fonction nommée Sχ(r;σ2) avec des paramètres d’entrée r et σ2, est appelée ici fonction
de Soft-Thresholding (STH).

L’utilisation directe de la fonction STH sur les signaux R donne des constellations avec une
distribution similaire à celle d’un réseau entraîné avec le critère de MMSE, comme il est montré
dans la Fig. 15.

Cela veut dire que le NN, quand il est appris en utilisant la fonction de coût MSE, est
équivalent à la fonction STH, qui introduit l’effet MMSE-scatterplot.
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(a) Signaux d’entrée R
(16-QAM).

(b) Signaux de sortie du
NN Y (16-QAM).

(c) Signaux de sortie de
STH Y (16-QAM).

(d) Signaux d’entrée R (8-
QAM).

(e) [Signaux de sortie du
NN Y (8-QAM).

(f) Signaux de sortie de
STH Y (8-QAM).

Figure 15 – Constellations d’entrée R, sortie du NN Y et sortie de la fonction STH pour des signaux 16-QAM
quadratrique et des signaux 8-QAM non rectangulaire ©2024, IEEE.

7.2 Technique de mitigation de l’effet MMSE-scatterplot

Nous avons proposé une technique pour empêcher l’apparition de l’effet MMSE-scatterplot,
en incluant la fonction de STH tout à la fin du réseau de neurones NN, comme illustré dans la
Fig. 16 dans le cas d’un canal AWGN.

Figure 16 – Système de transmission avec égaliseur basé sur le NN et en incluant la fonction STH à la fin.

En effet, nous savons que, sous le critère de MMSE, le NN converge vers l’effet MMSE-
scatterplot (constellation en forme de grille). Cependant, selon les paramètres d’entraînement
du réseau (taux d’apprentissage, taille des batches, nombre d’epochs, etc.), cette convergence
n’est pas immédiate, et par conséquent, le réseau est capable de faire de l’égalisation avant qu’il
ne converge vers l’effet MMSE-scatterplot. Nous proposons, donc, de dire au réseau de ne faire
que de l’égalisation pure, tant que l’effet MMSE-scatterplot sera fait par la fonction STH ajoutée
à la fin du réseau. Les signaux égalisés Yeq seront les signaux à la sortie du NN (ou à l’entrée
de la fonction STH). La fonction de coût est calculée avec Y et X à chaque itération. Cette
méthode peut entraîner une descente de gradient évanescente. Nous résoudrons cela en ajoutant
Yeq à Y , donnant comme valeur Y = Y +Yeq. Cet artifice est connu comme connexion résiduelle.

Même si le phénomène de MMSE-scatterplot est clairement distinctif, il vaut mieux calculer
une métrique qui nous permet de mesurer la réduction de la quantité d’information de X étant
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donné Y . Cette métrique est l’information Mutuelle (MI). En effet, plus le phénomène MMSE-
scatterplot est présent, plus nous perdons de l’information de X sachant Y , puisque les valeurs
de Y deviennent plus largement décorrélées de celles de X, et donc, en diminuant la MI.

7.3 Résultats de l’usage de la technique de mitigation proposée

Pour examiner les résultats de la méthode proposée, nous prenons le cas d’une transmission
DP-64QAM à 32-GBaud sur 14× 50 km de SSMF. Le schéma détaillé du système de transmission
pour ce test est illustré dans la Fig. 17.

Modulation RRC

Demodulation

Demodulation

Modulation

0100110...

0100110...

1001101...

1001101...

EDFA

LPFCDC/
DBPMIMOCPRNN

equal. CFOE RRC

x 14
spans

Lspan =
50 kmRRC

8 SpS

4 SpS1 SpS

preFEC-BER

PBC

Figure 17 – Système de transmission DP-64QAM à 32-Gbaud sur 14 × 50 km de SSMF ©2024, IEEE.

Les valeurs de BER (preFEC-BER) et de la MI sont calculées par des différents niveaux de
puissance des signaux. Les résultats sont montrés dans la Fig. 18. Noter que nous avons ajouté
les résultats de compensation linéaire classique par DSP (CDC), ceux du NN avec fonction de
coût MSE, notre proposition du NN + STH toujours avec la fonction de coût MSE, ceux du NN
avec la fonction de coût MSE-X, et ceux de la DBP à 1 StPS comme référence. La fonction de
coût MSE-X est une fonction dérivée de la minimisation de l’entropie conditionnelle de X étant
donné Y [4].

Nous observons que les résultats de la technique proposée NN + STH (en bleue pointillé
avec cercles) montrent une diminution du BER, comme le NN classique (en vert pointillé avec
losanges) et le MSE-X (en rouge pointillé avec triangles inversés), tout en empêchant une diminu-
tion de la MI, ce qui est fait aussi par la MSE-X, mais pas pour le NN classique, comme attendu.
Noter que la DBP est supérieure à toutes ces méthodes.

Nous affichons également les constellations à l’entrée du NN et à la sortie du NN + STH
pour vérifier si le MMSE-scatterplot a été bien limité. Les différents résultats sont montrés dans
la Fig. 19 pour quatre niveaux de puissance par canal différents.

Nous constatons que les constellations à la sortie du NN + STH ne sont pas affectées par
l’effet MMSE-scatterplot, ce qui est en accord avec la moindre diminution de la MI, montrée dans
la Fig. 18b. L’autre méthode MSE-X permet également de limiter l’effet MMSE-scatterplot.
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Figure 18 – Résultats de BER et de MI pour différents niveaux de puissance par canal P/ch ©2024, IEEE.

Signaux égalisés Y = f(R)
Entrée R NN (MSE) NN (MSE-X) NN+STH (MSE) DBP 1 StPS

(a)

(b)

(c)

(d)

Figure 19 – Constellations des signaux d’entrée R et des signaux égalisés Y = f(R). (a) P/ch = -4dBm, (b) P/ch
= -2dBm, (c) P/ch = 0dBm, (d) P/ch = 2dBm ©2024, IEEE.
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8 Conclusion et Perspectives

Cette étude se concentre sur l’évaluation des avantages des réseaux de neurones (NN) en
tant que techniques de compensation des impairments non-linéaires (NLI) dans les transmissions
optiques cohérentes à haut débit. Le modèle de NN choisi est le Perceptron Multicouche (MLP),
qui a la capacité théorique d’approximer n’importe quelle fonction non linéaire.

Dans ces travaux, nous avons considéré le scénario d’un seul canal, révélant une capacité de
compensation de la NLI plus limitée par rapport aux méthodes classiques de référence, telles
que la Digital Backpropagation (DBP) et l’égaliseur basé sur des séries de Volterra (VNLE),
mais avec un temps de traitement inférieur.

Nous avons également abordé un phénomène observé dans les diagrammes de constellation
lors de l’utilisation de NN entraînés avec la fonction de coût d’erreur quadratique moyenne
(MSE). Ce phénomène est particulièrement impactant pour les techniques avancées de correc-
tion d’erreur (SD-FEC). Nous avons nommé ce phénomène MMSE-scatterplot. Nous avons
expliqué le modèle mathématique de l’effet MMSE-scatterplot à l’aide de la fonction appelée
Soft-Thresholding (STH). En utilisant cette fonction STH à la fin du NN, nous pouvons obtenir
un signal égalisé sans ce phénomène de MMSE-scatterplot.

L’étude conclut que la question des avantages des NN comme égaliseur non linéaire reste
ouverte et nécessite l’implication de divers acteurs, notamment les fournisseurs du hardware
pour les communication optique. Bien que des avancées aient été réalisées, des recherches futures
devraient se concentrer sur l’intégration de techniques comme la Learned DBP (LDBP) dans
des configurations de transmission réelles, tout en garantissant la reproductibilité des méthodes
et leur implémentation hardware.
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Chapter 1

INTRODUCTION

1.1 Context and Motivation

During the last years, the traffic rate through the internet has greatly increased [5], [6]
(Fig. 1.1), with an estimated increment from 2019 to 2023 of 30% of estimated annual average
growth [7] in fixed and mobile networks. During the COVID-19 pandemic, the growth rate was
more pronounced, slightly decreasing in post-COVID times but still with positive growth rates.
Several factors have contributed to this trend, for instance, video devices for high definition
(HD), ultra HD, and 4K video-streaming, connected devices in industrial environments using
the Internet of Objects (IoT), mobile technologies 4G and 5G, and it is expected that this trend
will continue with the advent of the 6G in 2030 [8].

(a) Mobile traffic. (b) Fixed traffic.

Figure 1.1 – Broadband traffic between 2019 and 2022 [7].

This traffic increase has obliged network operators to upgrade their telecommunication in-
frastructures, including the backbone network, which is a critical part of a network operator’s
operation. Indeed, the backbone or back-haul network physically interconnects large metropoli-
tan areas 1 allowing the transport of vast amounts of data. The physical support of back-haul
transmission networks is the optical fiber due to its high bandwidth and low attenuation. These
characteristics made the optical fiber the best cost-effective solution against other technologies,
such as coaxial cable systems, which required more repeaters due to its highest attenuation, and
microwave systems that are limited in capacity [9].

1. Separated from a few kilometers to thousand kilometers as is the case of intercontinental distances.
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Chapter 1 – Introduction

Modern optical fibers widely used today in network operators are those made of silica, par-
ticularly the SSMF ITU-T G.652D. The SSMF was adopted due to its low attenuation, allowing
a transmission for longer distances and, therefore, less number of optical amplifiers. Since the
invention of modern optical fibers, several improvements are continuously being conducted, for
instance, using novel materials such as the newest hollow-core fiber with a core essentially made
of air [10] with low attenuation of ∼ 0.11 dB/km in 1550 nm. Still, the silica-based optical fibers
continue to prevail and might continue at least in the back-haul networks until the manufacturing
process of these novel optical fibers becomes economically affordable for telecom operators.

In addition to the evolution of optical fiber, electronic and optical components have also
evolved to permit the transmission of higher data rates over long distances. Indeed, the employed
technology for the optical transmission system has evolved from Intensity Modulation and Direct-
Detection (IM/DD) schemes with lower spectral efficiency and low data rates towards coherent
communications with high spectral efficiency and high data rates. IM/DD with dispersion-
managed systems was suitable for 10Gb/s data bit rate transmissions. To achieve higher data
bit rates, from 40Gb/s per channel up to 1.6 Tb/s per channel, it was necessary to use more
complex modulation formats and, hence, more complex receiver architectures. Notably, coherent
communications have enabled the use of two orthogonal polarizations transmitted simultaneously
using the same spectrum but also more efficient modulation schemes to encode more bits per
symbol [11], approaching the optimal Gaussian constellations [12]. In conjunction with optical
Erbium-Doped Fiber Amplifiers (EDFA), suitable for C-band (1530 nm - 1565 nm) and later L-
band (1565 nm - 1625 nm), to increase the transmission distance, and the Wavelength Division
Multiplexing (WDM) to send multiple channels using a single fiber, it has been possible to
increase the product capacity × distance. In recent years, other novel solutions have also been
proposed to continue increasing the channel capacity. For instance, the use of the other bands
of the optical spectrum [13], [14], namely O-band (1260 nm - 1360 nm), E-band (1360 nm
- 1460 nm), S-band (1460 nm - 1530 nm), and U-band (1625 nm - 1675 nm), more efficient
constellation shaping techniques such as the Probabilistic Constellation Shaping (PCS) and
Probabilistic Amplitude Shaping (PAS) [15], [16], and recently the used of digital sub-carriers
multiplexing schemes [17].

An ultimate barrier to reaching Shannon’s capacity is the optical fiber Nonlinear Impairments
(NLI), which are detrimental effects produced by a nonlinear behaviour of silica fibers when
high light intensity crosses the optical fiber, altering the refraction index of the optical fiber
material [18]. Particularly, the Kerr nonlinear effects produce that the refractive index changes
proportionally to light intensity levels. Indeed, the Kerr nonlinear effects could significantly limit
the transmission distances and the transmission capacity at high Optical Signal-to-Noise Ratio
(OSNR), as is needed for high order modulation formats [19], [20]. Several techniques based
on Digital Signal Processing (DSP) have been proposed to compensate for the Kerr nonlinear
effects [21]. For instance, techniques that are based on the propagation equation, namely the
Nonlinear Schrödinger Equation (NLSE), such as the Digital Backpropagation (DBP) [22]–
[24]. Other techniques with lower computational complexity have also been proposed, such
as the Volterra Nonlinear Equalizer (VNLE) [3], [25], and Perturbation based methods [26].
Nonetheless, applying these techniques embedded in an Application-Specific Integrated Circuit
(ASIC) has remained challenging due to the additional and prohibited complexity added to
the actual transceivers [27]. Decreasing the complexity of these methods often leads to lower
performance in real-world conditions, causing a loss of interest in practical implementations.
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1.2. Objectives and Methodology

Recently, with the gain in popularity of Machine Learning (ML) and Artificial Intelligence
(AI), novel techniques for NLI compensation have been proposed to achieve a significant gain
in performances with reduced complexity efficiently. Indeed, ML has proven to be very effective
in other fields, such as image recognition, computer vision, speech recognition, natural language
processing, and recently generative AI using large language models and many other applications
[28], [29].

In communication systems, the use of ML has been extensively studied. Indeed, such “data-
driven” techniques, which are capable of learning from an “input-output” relationship [30], have
demonstrated superior efficiency compared to traditional adaptive methods. In wireless sys-
tems, ML has found a lot of interest since more than two decades ago [31]–[33] and [34, &
references therein], so much so that the intensive research in this area is still very recent [35],
[36]. Similarly, in optical communications, ML also has attracted a lot of interest, particularly
in signal equalization due to the linear and nonlinear impairments. ML using NN has been
widely and extensively studied during the last years, proving to be useful and superior to the
classical techniques based on DSP. Indeed, NN are a general purpose ML technique capable of
solving complex problems. For instance, different types of NN, such as the Multilayer Percep-
tron (MLP) [37], [38], Convolutional Neural Networks (CNN) [39], Recurrent Neural Networks
(RNN) [40], [41], and CNN + RNN [42], have been tested in various numerical and experimental
scenarios. A comparison of different NN architectures in terms of statistical performance and
complexity was presented in [43]. In [44], an NN architecture was proposed for optical/electrical
nonlinearity compensation, while [45] proposed NN for digital pre-distortion at the transmitter
side. Additionally, several physics-based complex-values NN, such as the Learned DBP (LDBP),
were proposed in [46]–[48].

Responding to the necessity of still further investigations about the capabilities of NN in
NLI compensation in optical transport networks, Orange Labs, IMT Atlantique, and the École
Nationale d’Ingénieurs de Brest (ENIB) 2, associated with preparing a PhD thesis to investigate
this topic deeply.

1.2 Objectives and Methodology
This thesis aimed to investigate the use of NN for NLI compensation in long-haul and

high data bit rate coherent optical transmission systems. From an industrial point of view,
we focused our study on use cases that are typical in an existing deployed optical transport
network, i.e., a full DSP based receiver for channel equalization and carrier phase recovery,
using SSMF with typical span lengths of 100 km and multiple number of spans, using DP
configurations and a symbol mapping using Quadrature Amplitude Modulation (QAM) formats.
In punctual scenarios, we have lightened these configurations to investigate the factors that limit
the performance of NN, for instance, decreasing the span length or using Single Polarization (SP)
transmission scenarios.

The main steps carried out during the thesis are the following:
• Study of the NLI impact on the classical coherent optical system through a numerical

and experimental investigation. The numerical investigation was done via simulations of
2. Later, this collaboration, that has been done for several decades also with the École Nationale Supérieure

des Sciences Appliquées et de Technologie (ENSSAT) de Lannion, originated the foundation of the Lab’Optic, a
joint lab dedicated to optical communications research.
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the whole coherent optical system (dual polarization transmitter, dispersive and nonlinear
optical channel accounting for Chromatic Dispersion (CD), Polarization Mode Dispersion
(PMD) and NLI, and the DSP algorithms of the dual-polarization coherent receiver) us-
ing Python. Orange has a laboratory equipped with modern transmitters and coherent
receivers ideal for research and several spools of SSMF, which jointly have permitted us
to implement a point-to-point optical coherent link for our experiments. The laboratory
also has several equipments for metrology.

• Study and implementation of NN for NLI compensation using Pytorch, which is a ML
framework in Python. The NN coded in Pytorch are integrated as an additional DSP
algorithm into the DSP blocks. The NN are primarily trained and tested using numerical
data- for various scenarios. In a second stage, we used the experimental data for punctual
scenarios.

1.3 Contributions

Our principal contributions are listed below:

• Using NN, as nonlinear equalizers, provokes a transformation on the signal constellation,
adopting a grid shape in the case of rectangular QAM formats. As some authors also
indicated, we attributed this transformation to using the Mean Squared Error (MSE) loss
function during the NN training. Due to an extensive investigation and deep analysis, we
found the theoretical explanation of this previously mentioned grid shape effect in the sig-
nal constellations, that for a more general case, we named Minimum MSE (MMSE) driven
signal constellation scatterplot and abbreviated as “MMSE-scatterplot”. Our contribu-
tion relies on explicitly associating a mathematical expression derived from the MMSE
analysis in previous works with the MMSE-scatterplot effect. This equation is called the
Soft-Thresholding (STH) function. We showed that the signal constellation after the NN
training using the MMSE criterion and the signal constellation using the STH function
have the same characteristic distribution of symbols.

• Additionally, to avoid the MMSE-scatterplot emergence on the equalized symbols, we
propose including the STH function as a nonlinear activation function after the NN during
the training stage.

1.4 Workshops and Publications

Workshops

• A. Sotomayor, “Neural Networks applied to Nonlinearity mitigation in Long Haul Optical
Transmission Systems” in Seminaire ASMP, ENIB, 07 Oct. 2021.

• A. Sotomayor, “Neural Networks applied to Nonlinearity mitigation in Coherent Long
Haul Optical Transmission Systems” in Salon Optical Networks, Orange, 18 May 2022.

• A. Sotomayor, “Neural Networks applied to Nonlinearity mitigation in Coherent Long-Haul
Optical Transmission Systems” in Ambient Connectivity PhD students sharing sessions,
Orange, 18 November 2022.
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1.5. Thesis Outline

Journal Papers

• E. Pincemin, Y. Loussouarn, A. Sotomayor, et al., “End-to-End Interoperable 400-GbE
Optical Communications Through 2-km 400GBASE-FR4, 8 × 100-km 400G-OpenROADM
and 125-km 400-ZR Fiber Lines” in Journal of Lightwave Technology, vol. 41, no. 4, pp.
1250-1257, 15 Feb.15, 2023, doi: 10.1109/JLT.2022.3204731.

• A. Sotomayor, V. Choqueuse, E. Pincemin and M. Morvan, “MMSE-Driven Signal Con-
stellation Scatterplot Using Neural Networks-Based Nonlinear Equalizers” in Journal of
Lightwave Technology, doi: 10.1109/JLT.2024.3421927.

International Conferences

• E. Pincemin, Y. Loussouarn, A. Sotomayor, et al., “927-km End-to-End Interoperable 400-
GbEthernet Optical Communications through 2-km 400GBASE-FR4, 8x100-km 400G-
OpenROADM and 125-km 400-ZR Fiber Lines” in Optical Fiber Communication Confer-
ence (OFC) 2022, Technical Digest Series (Optica Publishing Group, 2022), paper Th4A.3.

• A. Sotomayor, E. Pincemin, V. Choqueuse, and M. Morvan, “Optimized Cost Function
of Multi-Layer Perceptron for Fibre Non-Linear Impairment Mitigation in Coherent 200-
Gbps DP-16QAM Transmission System” in Optica Advanced Photonics Congress 2022,
Technical Digest Series (Optica Publishing Group, 2022), paper JTu2A.41.

• A. Sotomayor, E. Pincemin, V. Choqueuse and M. Morvan, “A Comparison of Machine
Learning Techniques for Fiber Non-Linearity Compensation: Multilayer Perceptron vs.
Learned Digital BackPropagation” in 2023 23rd International Conference on Transpar-
ent Optical Networks (ICTON), Bucharest, Romania, 2023, pp. 1-4, doi: 10.1109/IC-
TON59386.2023.10207458.

1.5 Thesis Outline

The remainder of this thesis manuscript is organized as follows:

• In chapter 2, we present the fundamentals of optical communications with a particular
focus on coherent systems. We detail the characteristics of the three elements that com-
pose a coherent optical transmission system: a dual-polarization transmitter, the optical
channel, and the dual-polarization coherent receiver.

• In chapter 3, we focus on the DSP based techniques employed in standard optical transceivers
for channel equalization, adaptive equalization, frequency offset compensation, and car-
rier phase recovery. We described in detail each of these algorithms and their practical
implementations. We also show step-by-step the effects of these algorithms in data from
simulation scenarios as well as for data from the experimental setup.

• In chapter 4, we briefly introduce ML and specially NN, showing the reasons why NN
achieved a great success in many tasks. After that, we summarize the state of the art
of NN used as nonlinear equalizers in optical coherent systems. This part is followed by
our implementations and results of the MLP using the numerical and experimental setup
for different use cases. Here, we also show the MMSE-scatterplot effect and propose the
Huber loss function to avoid its appearance partially.
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• In chapter 5, we deeply analyze the MMSE-scatterplot effect from a theoretical point of
view, presenting its equivalent mathematical equation derived from the MMSE analysis.
Taking advantage of this equation, we also propose a novel technique to avoid its total
appearance. These results are compared against the MSE-X loss function recently proposed
in the literature.
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Chapter 2

FUNDAMENTAL OF OPTICAL
COMMUNICATIONS

Coherent communication has been pivotal in accelerating the growth of transmission capacity
and global Internet communications. This technology is also increasingly being utilized in optical
access networks. [49].

Various technologies have converged to enable the popularity of coherent systems. While
optical fiber was initially designed to permit large bandwidth transmissions, one of the limita-
tions was the optical and electrical components needed to efficiently transmit more information
within the same spectral bandwidth with the highest quality. The introduction of coherent
technology in optical communications in the first decade of the new millennium [11] has made
it possible. Coherent technology, jointly with powerful DSP techniques embedded in ultra-rapid
ASIC based on CMOS technology [50], coherent transmissions have gained great popularity,
especially in optical transport networks.

Fig. 2.1 illustrates a classical block diagram of an optical transmission system that uses
coherent technology. We distinguish the dual-polarization transmitter, multiple optical fiber
spans with full loss compensation using EDFA after each span, and the dual-polarization coher-
ent receiver.

Dual-Pol Coherent RXDual-Pol TX

Binary
Data

Polarization
and phase

diverse
90° hybrid

DSP

DAC +
Filtering

IQM

O/E ADC

O/E ADC

O/E ADC

O/E ADC

IQM

DAC +
Filtering

Laser
source

LO

x Nspans

EDFA

Optical
FiberBA

Figure 2.1 – Block Diagram of a Dual-Polarization coherent optical transmission system. DAC: digital-to-analog
converter, IQM: IQ modulator, BA: Booster Amplifier, EDFA: Erbium-doped Fiber Amplifier, LO: local oscillator,
O/E: Optical-to-Electrical, ADC: Analog-to-Digital Converter. Blue lines are electrical signals, and red lines are
optical signals.

This chapter details the structure of the classical optical transmission system. In Section 2.1,
we describe the dual-polarization transmitter. Section 2.2 is dedicated to the dual-polarization
coherent receiver. Then, in Section 2.3, we describe the optical channel. Section 2.4 presents the
Nonlinear Schrödinger equation (NLSE) that describes the optical signal propagation. Section
2.5 introduces the Split-Step Fourier method to solve the NLSE numerically. Lastly, Section 2.6
summarizes the chapter.
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Chapter 2 – Fundamental of Optical Communications

2.1 Dual-Polarization Transmitter

Coherent communications have enabled more Degrees of Freedom (DOF) to encode the infor-
mation on the Transmitter. Unlike the first technologies based on IM/DD, coherent technology
has made it possible to encode the binary information digits in both phase and amplitude in
the complex plane. The number of symbols in the complex plane defines how efficiently the
optical channel bandwidth is used by means of the number of transmitted bits per symbol.
Additionally, using two orthogonal polarization states for the carrier lightwave further enhances
spectral efficiency by transmitting twice the quantity of information. Indeed, by using two
In-Phase/Quadrature (IQ) modulators, the generated signals could be combined, doubling the
data rate. Fig. 2.2 illustrates the dual-polarization transmitter and its components: a source
of lightwave, the DP-IQ modulators, the binary data encoder or bits-to-symbols mapping, the
Digital-to-Analog Converters (DAC) and the filters for pulse shaping.

Binary
Data

Source

Data
Encoder

DAC

DAC

Data
Encoder

Laser
Source

RFDA

Y

X

PBC
BA

To Optical
Fiber

DP-IQ
Modulator

Q

I

I

Q

RFDA
DAC

DAC

Figure 2.2 – Dual-Polarization Transmitter. DAC: Digital-to-Analog Converter, RFDA: RF Driver Amplifier
(linear amplifier), PBC: Polarization Beam Combiner, BA: Booster Amplifier.

2.1.1 Laser Sources

The coherent light source is crucial for spectrally efficient coherent systems in optical net-
works. In optical communications, laser sources are typically based on semiconductors. A
laser, which stands for light amplification by stimulated emission of radiation, is a device that
emits coherent light with narrow linewidth due to a process of stimulated emission of radiation.
Depending on the cavity structure, the lasers could be of the type: Fabry–Pérot (FP) lasers,
Distributed Feedback Laser (DFB) lasers, or External Cavity Laser (ECL).

A FP laser consists of two highly reflective mirrors in which light is confined. After several
reflections, light in phase is constructively added. The frequencies at which this happens are
known as cavity modes. The wavelengths of the generated optical lightwave depend on the
distance of the mirrors, which is the principle of tunable lasers. FP lasers are very susceptible
to phase fluctuations, thus leading to laser phase noise.

As modern optical transceivers need to operate in a single frequency with narrow linewidth,
an alternative is using DFB lasers. A DFB laser contains a Bragg grating inside the cavity that
functions as a distributed mirror. The wavelength is selected by thermally changing the period
of the grating. One inconvenience of DFB lasers is that laser gain occurs in the same region
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2.1. Dual-Polarization Transmitter

of wavelength selection, the latter affecting the process of laser gain. Also, DFB lasers have a
broad linewidth of some MHz, which is not suitable for modern transceivers.

A tunable laser with narrower linewidth is the ECL, which separates the cavity laser from the
gain medium. In the gain medium, multiple modes are generated and passed to an etalon filter
with a very narrow profile to select the desired wavelength. Ultra-compact ECL are commonly
used due to their characteristics, e.g., a narrow linewidth of < 100 kHz [51].

The laser linewidth is a critical parameter for modern coherent systems based on phase
diversity. A broader spectrum of the laser beam leads to increased quantum fluctuations affecting
the phase of the optical field. In the classical coherent transceiver, DSP techniques for higher
modulation schemes typically require a narrow laser linewidth for optimal functioning [52].

The Laser Phase Noise (LPN) arises due to spontaneous emission into the semiconductor
lasers [53] and is modeled as a Wiener process [54]–[57]. In a discrete-time model:

ϕs[k] = ϕs[k − 1] + w[k], (2.1)

where ϕs[k] is the phase noise of the k-th symbol and w[k] is the source frequency noise assumed
to be stationary Gaussian [54] with zero mean and variance σ2 = 2π∆fTs, being ∆f the sum
linewidth of signal and Local Oscillator (LO) lasers and Ts is symbol duration [55], [56], [58].

2.1.2 Modulation Formats

The binary sequences 1 are mapped into signal waveforms that could be transmitted through
the channel. This process is called Digital Modulation. The signal waveforms could vary in
amplitude, phase, or frequency. This study focuses on amplitude and phase-based modulation
formats, namely Phase-Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM).
These two are the most commonly used formats in optical transport networks. PSK modulation
is based on the phase diversity, while QAM is based on the amplitude and phase diversity. The
signal waveforms are represented in the complex plane. The set of unique complex numbers
used to represent the binary information is known as the constellation alphabet [59].

The PSK modulated symbols are represented by two-dimensional vectors:

sm =
[
Acos

2π
M

(m− 1), Asin2π
M

(m− 1)
]
, m = 1, 2, ...,M, (2.2)

where A is the amplitude, and M is the order of the PSK modulation or the possible phases to
encode the information.

M-ary QAM results from combining two Pulse Amplitude Modulation (PAM) signals, M1-
PAM and M2-PAM, in quadrature, so that M = M1M2. The M-QAM modulated symbols are
represented as follows:

sm = [Am,s, Am,c] , ms = 1, 2, ...,M1, ms = 1, 2, ...,M2, (2.3)

where Am,s = (2ms − 1−M1)d1 and Am,c = (2mc − 1−M2)d2 are the signal amplitudes of the
quadrature components, where 2d1 and 2d2 are the distance between adjacent signal amplitudes
for each PAM constellations that conform the M-QAM [59].

1. In this work, we assume that binary information is already compressed (source encoding) and with redun-
dancy (channel encoder). Thus, the binary information sequences are code words [59].
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Chapter 2 – Fundamental of Optical Communications

For illustration purposes, Fig. 2.3 illustrates examples of PSK and QAM constellations.

(a) QPSK/4QAM. (b) 8PSK.

(c) 16QAM. (d) 64QAM.

Figure 2.3 – PSK and QAM constellations.

2.1.3 Digital Modulation

The main objective of digital modulation is to map the code words into signal waveforms.
The modulator encodes a sequence of b information bits using M = 2b distinct waveforms, one
for each of the possible sequences of b bits [59]. A digital modulator is also known as bit-to-
symbol encoder or mapper. In our study, we used two mapping schemes: Gray encoding and
Differential encoding.

Gray Encoding

This scheme is known as the optimal encoding and is based on the assumption that an error
is more likely to occur between neighboring symbols. The idea behind this is that neighboring
symbols must differ by the fewest number of bits. Gray encoding maps the code words into sym-
bols so that only one bit differs between neighbors in their corresponding code words. Therefore,
if there is a mistake in detection due to noise, the error associated will only affect one bit (at
least for high SNR) [59], [60]. For example, in a QPSK and 16QAM, Gray encoding maps the
code words as illustrated in Fig. 2.4.

In a PSK constellation composed of M symbols (M-PSK), the symbols are closer to each
other than in a QAM of M symbols (M-QAM) of the same order M for M > 4. As a result, the
probability of binary errors, referred to as Bit Error Rate (BER), is higher in M-PSK modulation
formats than in M-QAM for M > 4. To illustrate this point, we can estimate the probability of
error for different orders of PSK and QAM when varying the Signal-to-Noise Ratio (SNR) per
transmitted bit Eb/N0. The formulas used to calculate this error probability are indicated in
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(a) QPSK. (b) 16QAM.

Figure 2.4 – QPSK and 16QAM constellations using Gray encoding.

Appendix A. Fig. 2.5 depicts the BER with respect to Eb/N0 for the PSK and QAM modulation
formats of different orders in a Additive White Gaussian Noise (AWGN) channel using Gray
encoding.

Figure 2.5 – BER vs. Eb/N0 for PSK and QAM constellations in an AWGN channel with optimal source encoding.

Differential Encoding

At the receiver, typical DSP algorithms for carrier phase recovery are blind 2, resulting in
a phase ambiguity in case of phase shifts or cycle slips [62], [63]. There are at least two ways
to solve this issue: 1) by inserting periodic pilot symbols in the information data and 2) by
using differential encoding. The first method has shown good results in solving the ambiguity
problem with a lower BER penalty than the differential encoding [64]. Still, the required pilot
symbols could potentially decrease the useful data payload, which, in turn, reduces the spectral
efficiency. On the other hand, differential encoding solves the phase ambiguity problem with a
penalty in BER, which is minimal in high SNR [56].

2. Blind algorithms are those which rely on signal statistics, in contrast with data-aided algorithms which
work with training sequences [61].
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In this work, we have chosen the differential encoding approach. However, some studies have
shown the superiority of data-aided approaches, for instance, in [61], where it was performed a
comparison between blind equalizers and data-aided equalizers.

In differential encoding, the two Most Significant Bits (MSB) of the code word of b bits
represent one of the four quadrants of the complex plane and are differentially encoded, i.e.,
the phase difference of symbol i and symbol i − 1 encodes the information. Specifically, if the
two MSB used for symbol i are “00”, the quadrant of symbol i and symbol i − 1 is the same.
If the two MSB used for symbol i are “01”, the quadrant of symbol i is the next quadrant
counterclockwise. If the two MSB used for symbol i are “10”, the quadrant of symbol i is the
next quadrant clockwise. If the two MSB used for symbol i are “11”, the quadrant of symbol i is
the second next quadrant counterclockwise. The remaining bits represent the points within the
quadrant and are Gray encoded to minimize errors [62]. For example, in 16QAM, the differential
encoding technique is used to map the data, as shown in Fig. 2.6. The two MSB represent the
quadrant change, while the two Least Significant Bits (LSB) within the quadrants are Gray
encoded. Notice that in QPSK, the two bits of the symbols are deferentially encoded.

Figure 2.6 – 16QAM constellation with differential encoding [56] ©2009, IEEE.

2.1.4 Dual Polarization IQ Modulator

Higher-order modulation schemes use efficient modulators to encode as much information
as possible into a light wave. The Direct-Modulated Laser (DML) is typically used for short
distances and low data bit rates. A DML comprises the laser source and the modulator. The
output power is directly modulated by changing the pump current of the laser gain medium.
The DML is limited in extinction ratio, which is the current range in which the optical output
power is linear with the pump current. Another problem of the DML is the modulation chirp,
which denotes the time dependence of the transmitted frequency.

Other kind of modulators are those based on an external cavity to the laser source. An
Electro-Absorption Modulator (EAM) belongs to this category. An EAM is made by a semi-
conductor waveguide, in which an electric signal is applied perpendicular to the optical wave
direction via electrodes. The optical power is modulated by changes in the optical absorption
spectrum due to the current applied to the semiconductor waveguide. An EAM can also be
integrated with a DFB laser on the same chip.
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Both the DML and the EAM modulate the optical power. Phase modulators are needed
to achieve more efficient modulation schemes. Phase modulation is achieved with the use of
electro-optic crystals. A current applied to the electro-optic crystal changes the phase delay of
the propagating light.

An optical modulator that combines both amplitude and phase is the Mach-Zehnder Modu-
lators (MZM). The structure consists of two phase modulators, where each arm modulates half
of the light wave. A bias electrode is applied in one of the arms to shift the operating point to
the sinusoidal region of the power transfer function. This bias induces a 90◦ phase shift between
the two arms, which are combined at the output. An IQ modulator consists of two MZM-based
amplitude modulators. The modulated signals are then combined with a 90◦ phase difference to
form the complex field. A DP-IQ modulator consists of two IQ modulators whose outputs are
combined via a Polarization Beam Combiner (PBC) [52].

2.1.5 Pulse Shaping

The electrical pulse waveforms are generated using a set of DAC and pulse shapers to generate
the band-limited waveforms [60], reducing spectral occupancy for high spectral efficiency. In an
AWGN channel, it has been demonstrated that the Raised-Cosine (RC) is an optimal choice for
pulse shaping as the RC filter significantly reduces the Intersymbol Interference (ISI) [50] 3. The
RC filter is given by:

PRC(f) =


Ts , 0 ≤ |f | ≤ 1−ρ

2Ts

Ts
2

(
1 + cos

(
πTs
ρ

∣∣∣f | − 1−ρ
2Ts

)))
, 1−ρ

2Ts
≤ |f | ≤ 1+ρ

2Ts

0 , |f | > 1+ρ
2Ts

,

(2.4)

where ρ is the roll-off factor 0 < ρ ≤ 1, and Ts is the symbol period.
In practice, the RC filter response is shared between the transmitter and receiver using an

Root Raised-Cosine (RRC) filter on each side for maximum SNR [50]. The RRC filter frequency
response is the square root of PRC(f), resulting in the following impulse response [66]:

pRRC(t) = 4ρ
π
√
Ts

cos
(
(1 + ρ)π t

Ts

)
+ sin

(
(1−ρ)π t

Ts

)
4ρ t

Ts

1−
(
4ρ t

Ts

)2 , t ∈ R. (2.5)

In a discrete model, the pulse shaper p(t) in (2.5) is not realizable due to its anti-causal
nature and because it is infinite in time. Therefore, if we want to implement this filter using a
Finite Impulse Response (FIR) filter, it is necessary to make it causal and with finite size. For
instance, truncating the filter and shifting the half size of the filter, as follows:

p[k] = 4ρ
π
√
K

cos
(
(1 + ρ)π k−LK

K

)
+ (1−ρ)π

4ρ sinc
(
(1− ρ)k−LK

K

)
1−

(
4ρk−LK

K

)2 , k ∈ [0; 2LK], (2.6)

where the filter size is 2LK + 1, L is the half-size of the filter in taps per symbol, and K is the

3. For nonlinear channels, it has been shown that the RC filter is not optimal. However, in practice, it is still
largely used. In [65], other alternatives have been proposed that are more adapted to nonlinear optical channels.
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oversampling factor.
Let us represent the dual-polarization transmitted time-varying optical field as E(t) after

the pulse shaping p(t) as [55]:

E(t) =
[
E1(t)
E2(t)

]
=
√
Ptx

∑
n

xnp(t− nTs)ej(ωct+ϕs(t)), (2.7)

where Ptx is the average transmitted power, xn = [x1,n, x2,n]T are the n-th modulated symbols
in both polarization, T means the transpose operator, Ts is the symbol period, ωc = 2πfc is the
carrier frequency, and ϕs(t) is the laser phase noise.

The digitized transmitted signal E[k] takes the form:

E[k] =
[
E1[k]
E2[k]

]
=
√
Ptx

∑
n

xnp(kT − nTs)ej(ωckT+ϕs(kT )), (2.8)

where k is the discrete time index and T = Ts
K is the sampling period.

2.2 Dual-Polarization Coherent Receiver

In conjunction with the DP transmitter, the DP coherent receiver is the other key component
enabling efficient communications. A figure illustrating the coherent receiver is shown in Fig.
2.7 for a polarization p, where an identical one is used in parallel for the other polarization. The
incoming signal Er and the Continuous-Wave (CW) LO ELO are the input of a 90◦ Hybrid which
is a 2-input 4-output passive device that generates the four combinations between the complex
envelopes Er,p and ELO, for each polarization p. Four Balanced Photo-Detectors (BPD) convert
the optical signals into electrical ones containing the I and Q components of the Intermediate
Frequency (IF) signals.

90° Hybrid

+V

+V

90°

3 dB 3 dB

3 dB 3 dB

Figure 2.7 – Coherent Receiver with phase diversity using a 90◦ Hybrid.

The components I and Q are given by:
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rI,p(t) = R
√
PLO(t)Pr,p(t)cos(ϕr,p(t)− ϕLO(t)), (2.9)

rQ,p(t) = R
√
PLO(t)Pr,p(t)sin(ϕr,p(t)− ϕLO(t)), (2.10)

where R is the responsivity of the photodiode, PLO and Pr,p are the power of the LO and the
power of the incoming signal in polarization p, respectively. The cosine and sinus contain the
phase information of the incoming signal and the LO.

The DP receiver consists of two nested 90◦ Hybrid, one for each polarization, as shown in
Fig. 2.8.

90°
Hybrid

+V

+V

90°
Hybrid

+V

+V

Figure 2.8 – Dual Polarization coherent receiver using two nested 90◦ Hybrids.

The resulting electrical signals are converted to digital signals through four Analog-to-Digital
Converters (ADC) for further offline digital signal processing.

2.3 Optical Fibers
The principle of optical fibers is the total internal refraction of light inside the optical fiber

core during light propagation. This phenomenon occurs due to the difference in refraction index
between the core of the optical fiber and the cladding and the incident angle of light. The index
refraction is an intrinsic property of a material that determines how much of the incident light
is refracted by the medium [18].

Let n1 and n2 be the refractive index of the core and the cladding of a step-index optical fiber,
respectively. The refractive index difference, denoted by ∆, equals ∆ = n1−n2

n1
. A parameter V

determines the number of modes that propagate inside the fiber, which is defined as follows:
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V = k0a
√
n2

1 − n2
2, (2.11)

where k0 = 2π/λ is the wave number, λ is the wavelength of light, and a is the core radius. For
step-index fibers, single-mode propagation corresponds to V < 2.405.

2.3.1 Fiber Loss

When a signal travels through an optical fiber, the transmitted power P0 decreases over a
distance z. This decay can be described by P (z) = P0e

−αz, where α is the fiber loss coefficient
measured in decibels per kilometer (dB/km) and z is the distance in km [18].

The fiber loss coefficient is optical fiber material dependent, and it was characterized for
different types of fiber along the different frequency bands used in telecommunications. Fig. 2.9
shows the fiber loss coefficients characterized in telecommunications bands: O-band (1260 nm -
1360 nm), E-band (1360 nm - 1460 nm), S-band (1460 nm - 1530 nm), and U-band (1625 nm -
1675 nm).

Figure 2.9 – Fiber loss coefficient and wavelength dependence [60] ©2010, IEEE.

A typical SSMF reaches its minimum value of < 0.2 dB/km in around the C-band and
L-band.

Sometimes, it is useful to convert the fiber attenuation coefficient from (dB/km) to a linear
scale. Using the definition of the fiber loss, we can find the following relationship:

α(km−1) = Ln(10)
10 α(dB/km) ≈ 0.23 α(dB/km). (2.12)

2.3.2 Chromatic Dispersion

The CD is a phenomenon that occurs due to the dispersion characteristics of the optical
fiber. The refractive index n is actually frequency-dependent n(ω) and causes different spectral
components of the pulse to travel at different velocities c/n(ω) along the propagation. This
results in generating a pulse broadening [18].

The effects of dispersion are mathematically analyzed using the Taylor series expansion of
the mode-propagation constant β about the center frequency ω0 [18]:
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β(ω) = n(ω)ω
c

= β0 + β1(ω − ω0) + 1
2β2(ω − ω1)2 + ..., (2.13)

where βm = dmβ
dωm

∣∣
ω=ω0

for m=0,1,2,...
β1 is the inverse of the group velocity vg, and β2 [ps2/km] is the Group Velocity Disper-

sion (GVD) parameter and is responsible for pulse broadening. Commonly, a parameter D
[ps/(nm · km)] called CD coefficient is widely used to represent the CD and is given by:

D = dβ1
dλ

= dβ1
dω

dω

dλ
= −2πc

λ2 β2. (2.14)

An interesting property is that D depends on the fiber design. The wavelength for which D
is zero is represented as λD. For instance, λD for an SSMF is around 1.31 µm, while in 1.55 µm,
D is around 17 ps/(nm · km). A special fiber with λD null in 1.55 µm is the Dispersion Shifted
Fiber (DSF). The interest of an DSF is the absence of CD, but other undesired transmission
effects must be considered due to the zero CD in the C-band. [18], [67].

In the absence of nonlinear effects, the Frequency-Domain (FD) transfer function of the CD
for a distance z, represented by GCD(ω) is given by [68],

GCD(ω) = exp
(
−jDλ

2z

4πc ω
2
)
, (2.15)

where D is the CD parameter, λ is the central wavelength, z is the propagation distance, and ω
is the frequency component with respect to the central carrier frequency.

The sign of β2 defines two regimes: a normal-dispersion regime when β2 > 0 (or equivalently
D < 0) and an anomalous-dispersion regime when β2 < 0 (or equivalentlyD > 0). In the normal-
dispersion regime, the highest spectral components (or equivalently, lowest wavelengths) travel
slower than the lower frequencies (or equivalently, higher wavelengths), while the anomalous-
dispersion regime is the opposite.

2.3.3 Polarization Mode Dispersion

Single-mode fibers can support two degenerate modes that are polarized in two orthogonal
directions [18]. When a lightwave is launched in these two orthogonal polarizations, the two
components travel at different group velocities, provoking a delay between the two components,
resulting in a pulse broadening. This phenomenon is referred to as PMD. The PMD occurs in
optical fibers due to random birefringence caused by inherent imperfections in fiber manufac-
turing and stresses and vibrations from the external environment [55] that results in a mixing
of the two orthogonal polarization modes.

Another effect of optical fiber birefringence is the random rotation/transformation of the
States of Polarization (SOP) as the light propagates through the fiber. The SOP describes all
the surface of the Poincaré sphere after a fiber length called beat length. The beat length is
defined as [18]:

LB = 2π
|βx − βy|

= λ

B
, (2.16)
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where B = |nx − ny| is the modal birefringence, and nx and ny are the effective mode indices
of the two orthogonal polarization states. Fig. 2.10 illustrates the evolution of SOP when the
incident light is linearly polarized at 45◦ with respect to the slow and fast axis.

Figure 2.10 – Evolution of the state of polarization when the incident light is linearly polarized at 45◦ with respect
to the slow and fast axis [18] ©2001, 1995 by ACADEMIC PRESS.

The modal birefringence causes pulse distortion due to a propagation delay between the two
Principal States of Polarization (PSP). The PSP are two orthogonal polarization states at the
input and output of the fiber to which the pulse broadening is minimal. One PSP corresponds to
a minimum propagation time, and the other corresponds to a maximum propagation time [69].
In effect, the effective refractive index becomes different for each polarization state, resulting in
different velocities. The delay of arrival time of these polarization states is known as Differential
Group Delay (DGD) and results in a slow and fast axis. In areas of weak birefringence, the state
of polarization (SOP) changes with minimal DGD. Conversely, in areas of strong birefringence,
significant DGD is introduced, and the SOP is maintained over the beat length.

To model the PMD, the fiber span is divided into small sections with the first-order PMD 4

remaining constant in each section and with random rotations of the PSP between each section
[24]. This approach is valid if we only consider the first-order PMD and neglect higher orders.
Fig. 2.11 illustrates this modeling approach.

Figure 2.11 – Modeling of the PMD [24] ©2010, IEEE.

The rotation matrices Rk ∈ SU(2) after the section k, where SU(2) is a type of special
unitary matrix of degree 2, are the Jones representations of the Stokes vector of the Rotational
matrix 3× 3, and are in the form [71]:

4. First-order PMD refers to the DGD, i.e., considering small frequency ranges and therefore non-frequency
dependence of the DGD [70].
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SU(2) =
{[

a b
−b∗ a∗

]
: a, b ∈ C, |a|2 + |b|2 = 1

}
. (2.17)

The Stokes vectors, represented as s1, s2 and s3, lead to all possible SOP of light, which are
represented by the Poincaré sphere

In the more general case, Rk is a combination of three 2 × 2 matrices, one for each axis in
the Poincaré sphere, illustrated in Fig. 2.12.

R(1)
k (ϕ) =

[
e−jϕ/2 0

0 ejϕ/2

]
, R(2)

k (ψ) =
[

cosψ −jsinψ
−jsinψ cosψ

]
, R(3)

k (θ) =
[
cosθ −sinθ
sinθ cosθ

]
,

(2.18)

Figure 2.12 – Poincaré sphere.

where R(1)
k (ϕ) represents a birefringent matrix that randomly change the phase difference ϕ

between the slow and fast axis of the PSP [69], [72], R(2)
k (ψ) represents the ellipticity 2ψ variation

[24], and R(3)
k (θ) a rotation of the azimuth angle 2θ around the z-axis [24], [69].

The rotation matrices are not unique and can adopt different forms, according to considera-
tions of the polarization of the PSP, the angle rotations, correlations between adjacent sections,
or if the DGD is constant for all sections [73]:

• Considering a neglected phase difference between the slow and fast axis (ϕ = 0), the matrix
Rk(θ, ψ) can be simplified as [24]:

Rk(θ, ψ) =
[
cosθcosψ − jsinθsinψ −sinθcosψ + jcosθsinψ
sinθcosψ + jcosθsinψ cosθcosψ + jsinθsinψ

]
, (2.19)

where 2θ and 2ψ are the azimuth and ellipticity angles on the Poincaré sphere, respectively.
The angle θ is uniformly distributed over the range (−π/2, π/2) and ψ in (−π/4, π/4).
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• Considering only linear polarizations (2ψ = 0 or ±π) [73], [74] the matrix R becomes:

Rk(θ, ψ) =
[

cosθ e−jψsinθ
−ejψsinθ cosθ

]
. (2.20)

• From the previous case, considering ϕ = 0, the matrix R becomes real-valued [58], [75]:

Rk(θ) =
[

cosθ sinθ
−sinθ cosθ

]
. (2.21)

The transfer function of the PMD for a section k has the form [24], [58], [70], [73] :

HPMD(ω) = RkT(ω)RH
k , (2.22)

where T(ω) is a diagonal matrix accounting for the DGD in the form:

T(ω) =
[
e

jωτ
2 0

0 e
−jωτ

2 ,

]
(2.23)

and τ follows a Maxwellian distribution [24] with probability density function:

fT (τ) =

 8
π2∆τ

(
2τ
∆τ

)2
e−( 2τ

∆τ )2
/π ; τ ≥ 0,

0 ; τ < 0,
(2.24)

where ∆τ is the PMD and is the mean DGD (ps). For instance, for a PMD coefficient
δ = 0.05ps/

√
km, a section ∆z = 1km, and ∆τ = δ

√
∆z, the DGD follows the Maxwellian

distribution showed in Fig. 2.13:

Figure 2.13 – Maxwellian distribution of the DGD.

The maximum PMD value is ∼ 3.3 × PMD. An optical fiber link with a PMD of 12-ps can
generate maximum values of ∼36-ps. At 10-Gbps with IM/DD technology, the maximum PMD
is ∼12-ps, corresponding to a maximum allowable DGD of ∼36-ps.

Another effect of PMD is the temporal variation of PSP of a fiber link. This impairment is
a second-order effect of PMD.

2.3.4 Nonlinear Impairments

The intensity dependence of the optical fiber refractive index originates nonlinear refractions
[18], [21], [55]. This phenomenon is called the Kerr effect and is considered the principal source
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of nonlinear impairments in optical communications [76].
The Kerr effect induces both intra-channel and inter-channel nonlinearities [55], [60], as

shown in Fig. 2.14. In turn, the intra-channel and inter-channel nonlinear effects are divided
based on whether they are produced by signal-noise or signal-signal interactions.

Signal-noise interactions generate Nonlinear Phase Noise (NLPN), while signal-signal inter-
actions generate nonlinear effects due to interactions between frequency components produced
inside or outside the channel. Among the intrachannel nonlinearities due to signal-signal inter-
actions, we find the Self-Phase Modulation (SPM), the intrachannel Cross-Phase Modulation
(IXPM), and the intrachannel Four-Wave Mixing (IFWM). For interchannel nonlinear effects,
we can find the Cross-Phase Modulation (XPM), the Four Wave Mixing (FWM), and the Cross-
Polarization Modulation (XPolM) [18], [21], [60].

Figure 2.14 – Decomposition of Kerr Nonlinear effects [60]. NLPN: Nonlinear Phase Noise, SPM: Self-Phase
Modulation, XPM: Cross-Phase Modulation, FWM: Four-Wave Mixing, IXPM: Intrachannel XPM, IFWM: In-
trachannel FWM, XPolM: Cross-Polarization Modulation.

Self-Phase Modulation

This phenomenon occurs due to nonlinear refractions that affect a signal due to its own
intensity [18]. To reflect this intensity dependency, the refractive index is expressed as:

ñ(ω, I) = n(ω) + n2I, (2.25)

where n(ω) is a linear frequency-dependence term, I is the optical intensity inside the fiber given
by I = P

Aeff
, being P the optical power and Aeff the effective core area, and n2 is the nonlinear

index coefficient. The latter is related to a parameter called nonlinear coefficient γ in the form:

γ = n2ω0
cAeff

, (2.26)
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where ω0 is the carrier frequency, c is the speed of light in vacuum, and Aeff is known as
the effective core area. Typical values for a SSMF in λ = 1.55µm are n2 ≈ 2.7 · 10−20m2/W,
Aeff ≈ 80µm2, resulting in γ ≈ 1.4W−1 · km−1.

The phase shift of the signal, due to the SPM, changes according to:

ϕ = ñk0L = (n+ n2I)k0L, (2.27)

where k0 = 2π/λ is the wave number, L is the fiber length, and the SPM term is due to the
nonlinear phase-shift ϕNL = n2k0LI.

The SPM causes a spectral broadening of the optical pulse, yielding a symmetric spectrum
with new frequency components (multi-peaks). The nonlinear phase shift, which is proportional
to the optical pulse intensity, induces an instantaneous frequency shift from the central frequency
across the pulse. This effect is known as frequency chirp. However, the pulse shape and central
frequency remain unchanged, preserving the pulse velocity as well [18].

An important point to mention is the behavior of pulses when CD and SPM are combined.
In the anomalous dispersion regime (β2 < 0), it was shown that the combination of CD and
SPM leads to a pulse temporal compression [18], as the high frequencies created at the end of
the pulses are speeder than the low frequencies generated at the beginning of the pulses. In very
particular conditions, when there is a balance between the effects of SPM and CD, the pulses
propagate without any deformation both in the temporal and spectral domain. These very
particular pulses are named “Solitons”, a solitary wave propagating without any deformation
despite the CD.

SPM-induced Nonlinear Phase noise

In the presence of Amplified Spontaneous Emission (ASE) noise, and nor CD neither PMD,
the SPM results in NLPN. The phase shift due to the NLPN for a system of N uniformly spaced
identical amplifiers is given by [55]:

ϕNL = γLeff

N∑
i=1
|E +

i∑
k=1

nk|2, (2.28)

where γ is the nonlinearity coefficient, Leff = 1−e−αL

α is the effective length of each span, and nk
are i.i.d normal distributed random variables representing the ASE noise contribution for each
amplifier.

We can observe this effect in the received constellation. Due to the NLPN, the received com-
plex symbols with more amplitude experience more significant phase shifts than those with lower
amplitude. This results in received symbols adopting a spiral-shaped constellation, as shown
in Fig. 2.15b in the case of a 16QAM constellation. Fig. 2.15a shows the same constellation
considering only the accumulated ASE noise.

Cross-Phase Modulation

When two different wavelengths propagate through the same optical fiber, they can interfere
with each other. If two electromagnetic waves, E1 and E2, at frequencies ω1 and ω2, traverse
the same optical fiber, the nonlinear refraction n(ω1) depends on the intensity of both E1 and
E2, and vice versa. This phenomenon is known as XPM.
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(a) Only accumulated ASE noise. (b) SPM-induced NLPN.

Figure 2.15 – 16QAM received constellation after 20×100 km with full loss compensation using EDFA.

E2 has an effect on E1, resulting in a nonlinear phase rotation ϕNL1 similar to the one caused
by SPM. XPM is always accompanied by SPM, as demonstrated in (2.29) and (2.30).

ϕNL1 = n2k0,1L(I1 + 2I2), (2.29)
ϕNL2 = n2k0,2L(I2 + 2I1), (2.30)

where k0,1 and k0,2 are the wave number corresponding to E1 and E2, respectively, and I1 and
I2 are the optical intensity of E1 and E2. Also, E1 and E2 are assumed to be both linearly
polarized along the same axis. The first terms are due to SPM. Notice that the XPM does
not involve an energy exchange between the two waves and that the respective phase of the
interfering signal does not play any role in the XPM phenomenon.

When the interaction of two electromagnetic waves that originate nonlinear refraction is
produced inside the same channel, for instance, two neighboring pulses or spectral components,
this phenomenon is called IXPM.

On the other hand, when the XPM is originated due to a coupling between two polarization
components of the same optical wave, the phase shifts are given by:

ϕNL1 = n2k0L(I1 + 2
3I2), (2.31)

ϕNL2 = n2k0L(I2 + 2
3I1), (2.32)

where E1 and E2 are the two orthogonal polarizations of the same optical wave, k0 = 2π
λ , λ is

the central wavelength, and the factor 2
3 is characteristics of these kind of coupling.

In the presence of ASE noise, the XPM originates NLPN [55].
The XPM, like the SPM, is responsible for generating new frequency components within

the pulse spectrum, resulting in asymmetric spectral broadening, a change in the central fre-
quency (unlike SPM, which does not alter the pulse frequency), and modification of the pulse
velocity. XPM produces a timing jitter, named “collision jitter”, which is due to the frequency-
shifted spectral components of the pulse because of the temporal overlapping with neighboring
pulses[55], [77]. These spectral components travel at different velocities, producing the timing
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jitter. When the channel spacing is reduced, or the CD is lower, the walk-off between interfering
pulses is longer, and XPM becomes more critical. XPM can significantly limit WDM systems
using low-dispersion optical fibers, e.g. ITU-T G653 or G655 fibers[18], [21].

Four-Wave Mixing

Another phenomenon originated by nonlinear interactions is the FWM. This phenomenon
arises when three optical frequencies f1, f2 and f3 generates a new frequency f4 [78] in the form:

f4 = f1 + f2 − f3. (2.33)

Unlike the SPM and the XPM, the FWM involves a transfer of energy for the generation of
component f4. Interestingly, this process necessitates a phase matching to be carried out. The
phase matching condition refers to specific frequencies and refractive index that could rarely
occur [18]. However, when the spacing between the three frequencies reduces or when the CD
is low, the possibility of provoking à FWM increases. For this reason, this effect is particu-
larly sensitive in WDM transmissions [78]. Nevertheless, it could also happen in single-channel
transmissions when multiple pulses overlap each other (due to a temporal broadening coming
from the CD), leading to interference between three spectral components that are temporally
synchronous. This phenomenon, called IFWM [55], generates pulse amplitude fluctuations and
creation of “ghost” pulses in the “zeros” of the binary sequence.

FWM is less susceptible for large CD values, being an SSMF at 1.55µm more robust against
the FWM occurrence, but much more susceptible if multiple channels are closer to each other[79].

Cross-Polarization Modulation

Finally, another phenomenon that could affect the quality of a WDM transmission is the
XPolM. Specifically, because of the nonlinearity, the SOP of a DP optical field change degrading
the Degree of Polarization (DOP) of the signal [80]. If this phenomenon is not carefully managed,
the PMD compensators, which rely on slowly varying polarization changes, could fail, degrading
the overall transmission quality [81].

In the context of Kerr nonlinearity in long-haul coherent optical systems, the CD reduces
the impact of nonlinear impairments, particularly in the multi-channel or WDM transmission
system configuration [23], [24]. At 1550 nm, the CD is highly positive, generating that different
channels move at different velocities, decreasing the walk-off between two pulses of different
wavelengths or the time during which the two pulses are colliding. This results in a reduction
of the inter-channel nonlinearity [21]. For this reason, in multi-channel coherent systems, it is
preferable to compensate for the CD electronically at the receiver with DSP techniques than
periodically compensating the CD after each fiber span [68].

2.3.5 Optical Amplifiers

Due to the fiber loss, the signal amplitude needs to be regularly amplified. Current configu-
rations use EDFA in C and L bands, which have the lowest attenuation among the other bands
of the optical spectrum. These EDFA introduce an in-band white Gaussian noise that degrades
the signal, especially in higher-order modulation formats that are very sensitive to noise.
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The amplification process takes place by a process called Stimulated Emission, which refers to
a random multiplication factor of the incident signal photon. When an incident photon collides
with an Erbium ion, it emits a photon with the same coherent properties, and this process is
successively repeated, leading to signal amplification. At the same time, another process takes
place, which is called Spontaneous Emission. The latter refers to when an Erbium ion passes
from an excited state to a lower energy state, emitting a photon. The spontaneous emission
is random and is responsible for generating noise within the amplifier. The whole process,
stimulated emission and spontaneous emission, are summarized under the term ASE.

The ASE noise degrades the SNR and the quantity that quantifies this degradation is the
amplifier Noise Figure (NF) Fn = 2ηsp(G − 1)/G ≈ 2ηsp, where G is the gain and considering
G >> 1, and ηsp is the spontaneous emission noise factor [60], [82]. The typical NF in EDFA
ranges from 4dB to 6 dB.

The noise produced by ASE is additive and can be considered Gaussian. Therefore, it is an
AWGN source with power spectral density, per polarization, equals to:

NASE = (G− 1)hνηsp, (2.34)

where h = 6.626 · 10−34J.Hz−1 is the Plank constant and ν is the optical frequency.

2.4 Nonlinear Schrödinger Equation
The propagation of the optical signal through the optical fiber is described by the vectorial

NLSE [24], [73], [83]. This equation has the form:

∂E
∂z

=
[(
−α2 −

jβ2
2

∂2

∂t2

)
I− β1

∂

∂t

]
E + jγ

[
|E|2I− 1

3(EHσ3E)σ3

]
E, (2.35)

where
• E = [E1, E2]T is the Jones vector of the electromagnetic field,
• α is the attenuation coefficient,
• β2 accounts for the GVD,
• I is the 2 × 2 matrix identity.
• β1 is a 2 × 2 matrix that represents the PMD. For a section k, β1,k = Rk

(
τ
2 σ1

)
RH
k ,

where Rk are the rotation matrices per each axis defined in (2.18), τ is the DGD, and

σ1 =
[
1 0
0 −1

]
.

• γ is the nonlinear parameter,

• σ3 is the Pauli spin matrix
[
0 −j
j 0

]
.

We neglected the dispersion slope term β3, and we consider that α and β2 are constant over
the frequency band.

Equation (2.35) can be decomposed in two terms. The first term represents the linear part
of the equation and is represented by the linear operator D̂, and the second term represents the
nonlinear part and is represented by the nonlinear operator N̂, giving as a result:

25



Chapter 2 – Fundamental of Optical Communications

∂E
∂z

= (D̂ + N̂)E, (2.36a)

D̂ =
(
−α2 −

jβ2
2

∂2

∂t2

)
I− β1

∂

∂t
, (2.36b)

N̂ = jγ

[
|E|2I− 1

3(EHσ3E)σ3

]
. (2.36c)

Simplified versions of the NLSE are obtained under certain considerations:
• Assuming constant linear birefringence, the NLSE is reduced to a pair of equations with a

factor 2
3 due to the nonlinear coupling between the two polarizations, called coupled NLSE

(CNLSE) [72], [73], [83], [84].

∂E1
∂z

=
(
−α2 − β1

∂

∂t
− jβ2

2
∂2

∂t2

)
E1 + jγ

(
|E1|2 + 2

3 |E2|2
)
E1, (2.37)

∂E2
∂z

=
(
−α2 − β1

∂

∂t
− jβ2

2
∂2

∂t2

)
E2 + jγ

(
|E2|2 + 2

3 |E1|2
)
E2. (2.38)

• Considering the rapid changes in birefringence in a length scale much smaller than the
one of nonlinearity, the nonlinearity is averaged over all possible polarization states in the
Poincaré sphere. The CNLSE, thus, reduces to the Manakow-PMD equation [83], [85].

∂E
∂z

=
(
−α2 − β1

∂

∂t
− jβ2

2
∂2

∂t2

)
E + j

8
9γ|E|

2E. (2.39)

However, let us indicate that the original term was provided without the attenuation
coefficient α and with a term called nonlinear PMD, which is usually neglected.

• Also, it is common that the PMD be neglected; in that case, this is referred to as the
Manakov equation.

∂E
∂z

=
(
−α2 −

jβ2
2

∂2

∂t2

)
E + j

8
9γ|E|

2E. (2.40)

2.5 Split-Step Fourier Method

To solve the NLSE, an iterative method called the Split-Step Fourier Method (SSFM) is
commonly employed. This technique is based on the assumption that the dispersive and non-
linear effects act independently. When this is not true in reality, this approximation becomes
valid for small distances h for which the accumulated CD is low.[18].

Specifically, when setting D̂ = 0 and applying only the nonlinear operator N̂, and then
N̂ = 0 and applying only the linear operator D̂, we obtain [18], [24]:

E(z + h, t) ≈ exp(hD̂)exp(hN̂)E(z, t). (2.41)
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Fig. 2.16 illustrates the SSFM considering a step size h and span length L.

Figure 2.16 – Asymmetric SSFM.

Due to the temporal derivatives, it is easier to compute the linear part in the frequency
domain since ∂/∂t becomes jw when using the Fourier transform. Therefore, the linear operator
D̂ in frequency domain becomes:

D̂(ω) =
(
−α2 + jβ2ω

2

2

)
I− jωβ1. (2.42)

And the term exp(hD̂) simplifies to:

exp(h ˆD(ω)) = exp
[(
−α2 + jβ2ω

2

2

)
hI
]

exp(−jωhβ1), (2.43)

where the last term exp(−jωhβ1) = exp(−Rj ωτ2 σ1RH), where σ1 =
[
1 0
0 −1

]
. Since R is

invertible, i.e. R ·RH = RH ·R = I,

exp(−jωhβ1) = Rexp
(
−j ωτ2 σ1

)
RH (2.44)

The reader could notice that (2.44) is equivalent to (2.22).
Finally, the linear operator D̂(ω) becomes:

exp(hD̂(ω)) = R exp
[(
−α2 + jβ2ω

2

2

)
hI
]

exp
(
−j ωτ2 σ1

)
RH. (2.45)

On the other hand, the nonlinear operator N̂ is computed in the time domain. When using
the CNLSE, N̂ becomes:

N̂(Ej) = jγ

(
|Ej |2 + 2

3 |E3−j |2
)

; j = 1, 2. (2.46)

Similarly, when using the Manakov-PMD equation, N̂ has the form:

N̂ = j
8
9γ|E|

2. (2.47)
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The SSFM in (2.41) is known as the asymmetric version. The algorithm 1 details the
procedure.

Algorithm 1 Asymmetric Split-Step Fourier Method
1: z ← 0
2: while z ≤ Lspan − h do
3: Nonlinear Step:
4: E(z, t)← exp(hN̂(z)){E(z, t)}) ▷ Nonlinear operator
5: Linear Step:
6: Compute E(z, w)← F{E(z, t)} ▷ Fourier transform
7: E(z + h,w)← exp(hD̂(ω)){E(z, w)} ▷ Linear operator
8: E(z + h, t)← F−1{E(z + h,w)} ▷ Inverse Fourier Transform
9: Update z ← z + h

10: end while
11: Return E(z, t)

Since this version leads to less accuracy, it is commonly employed a symmetric version of the
SSFM that improves the precision. The symmetric version of the SSFM has the form:

E(z + h, t) ≈ exp
(
h

2 D̂
)

exp
(∫ z+h

z
N̂dz

)
exp

(
h

2 D̂
)

E(z, t), (2.48)

where the linear operator D̂ is applied for half the step size h/2, followed by the nonlinear
operator N̂ on the middle of the step (z+ h

2 ) for the complete step size h, and finally the linear
operator D̂ for the remaining half step size h/2.

Fig. 2.17 illustrates the symmetric SSFM for a step size h and span length L.

Figure 2.17 – Symmetric SSFM.

While the computation of D̂ in the frequency domain according to (2.45) is straightfor-
ward, the nonlinear operator N̂ necessitates operating an integral. To simplify this operation, a
common approach is to approximate the integral using the trapezoidal rule:

exp
(∫ z+h

z
N̂dz

)
= exp

(
h

2 (N̂(z + h) + N̂(z))
)
. (2.49)
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Nevertheless, the main concern is the necessity of prior knowledge in the middle of the
step of N̂(z + h). Therefore, to simulate the signal propagation using the symmetric SSFM is
usually employed an iterative method called iterative symmetric SSFM (IS-SSFM). The idea
is to initially set N̂(z + h) = N̂(z) and through an iterative process estimate N̂(z + h). The
algorithm 2 details this procedure.

Algorithm 2 Iterative Symmetric Split-Step Fourier Method
1: z ← 0
2: Niter ← 2 ▷ number of iterations per step
3: while z ≤ Lspan − h do
4: i← 1 ▷ Init iteration
5: N̂(z + h)← N̂(z) ▷ Initialize N̂(z + h). Used in line 13 when i=1
6: E(z0, t)← E(z, t) ▷ Save initial E to repeat at each iteration
7: while i ≤ Niter do
8: Linear Step:
9: Compute E(z, w)← F{E(z0, t)} ▷ Fourier Transform

10: E(z + h
2 , w)← exp(h2 D̂(ω)){E(z, w)} ▷ Linear operator

11: E(z + h
2 , t)← F−1{E(z + h

2 , w)} ▷ Inverse Fourier Transform
12: Nonlinear Step:
13: E(z + h

2 , t)← exp(h2 (N̂(z + h) + N̂(z))){E(z + h
2 , t)}) ▷ Nonlinear operator using

trapezoidal rule
14: Linear Step:
15: Compute E(z + h

2 , w)← F{E(z + h
2 , t)} ▷ Fourier Transform

16: E(z + h,w)← exp(h2 D̂(ω)){E(z + h
2 , w)} ▷ Linear operator

17: E(z + h, t)← F−1{E(z + h,w)} ▷ Inverse Fourier Transform
18: Update N̂(z + h) with E(z + h, t)
19: Update i← i+ 1
20: end while
21: Update z ← z + h
22: end while
23: Return E(z, t)

This method is computationally expensive, but the advantage is that we can increase the
step size h without losing accuracy [18]. On the other hand, if h is sufficiently small, the integral
could be replaced by simply h ˆN(z + h

2 ), assuming that N̂(z + h) ≈ N̂(z + h
2 ) ≈ N̂(z). This

version is called non-iterative symmetric SSFM (NS-SSFM), detailed in the algorithm 3.

Finally, to increase the accuracy of the asymmetric SSFM, we can use heff instead of h in
the nonlinear part [24], where heff takes into account the loss after h, and is given by:

heff = 1− exp(−αh)
α

. (2.50)
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Algorithm 3 Non-iterative Symmetric Split-Step Fourier Method
1: z ← 0
2: while z ≤ Lspan − h do
3: Linear Step:
4: Compute E(z, w)← F{E(z, t)} ▷ Fourier Transform
5: E(z + h

2 , w)← exp(h2 D̂(ω)){E(z, w)} ▷ Linear operator
6: E(z + h

2 , t)← F−1{E(z + h
2 , w)} ▷ Inverse Fourier Transform

7: Nonlinear Step:
8: E(z + h

2 , t)← exp(h(N̂(z + h
2 ))){E(z + h

2 , t)}) ▷ Nonlinear operator using trapezoidal
rule

9: Linear Step:
10: Compute E(z + h

2 , w)← F{E(z + h
2 , t)} ▷ Fourier Transform

11: E(z + h,w)← exp(h2 D̂(ω)){E(z + h
2 , w)} ▷ Linear operator

12: E(z + h, t)← F−1{E(z + h,w)} ▷ Inverse Fourier Transform
13: Update z ← z + h
14: end while
15: Return E(z, t)

2.6 Summary

This chapter has covered the basis of optical communication systems with a focus on coherent
technology that is suitable for long haul and high data bit rate optical transmissions. We have
presented the three classical blocks that compose an optical coherent link: the dual-polarization
transmitter, the optical channel, and the dual-polarization coherent receiver.

The dual-polarization transmitter must encode and transmit as much information as possible,
exploiting the states of the light wave (amplitude, phase, states of polarization). A laser source
with narrow linewidth, thus a lower laser phase noise, is required to achieve higher performances.
The binary information is encoded into two orthogonal components (in-phase and quadrature)
modulating in amplitude and in phase the optical signal. A dual-polarization IQ-modulator
permits to encode the information in two orthogonal polarization states in the same bandwidth
doubling the spectral efficiency.

On the other extreme, a dual-polarization coherent receiver permits the recovery of the phase
information of the optical signal using a local oscillator with similar characteristics to the laser
source, two 90◦ hybrid circuits, and four balanced photodetectors.

The transmission medium, composed of several optical fiber spans, induces several impair-
ments to the optical signal. Notably, the signal undergoes attenuation, chromatic dispersion
(CD), polarization mode dispersion (PMD), and nonlinear impairments (NLI). The attenuation
is compensated using optical amplifiers. The CD and PMD generate both pulse broadening
due to spectral components propagating at different velocities. In the case of PMD, the pulse
broadening is due to an arrival time delay due to the different propagation velocities of the two
orthogonal polarization states at the input of the fiber. The nonlinear impairments originate due
to nonlinear refraction because of high optical intensity. Among the different effects provoked by
nonlinear impairments, we have shown notably the nonlinear phase noise due to the interaction
with amplified spontaneous emission (ASE) noise, self-phase modulation (SPM), cross-phase
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modulation (XPM), and four-wave mixing (FWM) in intra and inter-channel configurations.
The equation that describes que signal propagation through the optical fiber is the Nonlinear

Schrödinger Equation (NLSE) and adopts different forms according to the assumptions of the
impairments affecting the signal. Since there is no direct solution for this equation in its more
complete form, it is generally solved using the Split-Step Fourier (SSFM) method. The SSFM
iteratively solves the NLSE by mathematically decoupling the fiber span in small sections when
we can consider that the CD, PMD, and NLI act independently of each other.

31





Chapter 3

NONLINEAR IMPAIRMENTS IN
COHERENT OPTICAL SYSTEMS:

NUMERICAL AND EXPERIMENTAL
INVESTIGATIONS

The previous chapter covered the classical coherent system, in which the dual-polarization
coherent receiver permits the recovery of the optical signal phase via the LO, the two 90◦ hybrid
circuits, and the four balanced photo-detectors. The next component of the coherent receiver
is a set of DSP algorithms implemented in modern transceivers to reconstruct the transmitted
signal and recover the transmitted bits fully.

In this chapter, we show the effects of fiber nonlinearity using numerical and experimental
setups. In Section 3.1, we describe in detail the set of DSP algorithms employed in signal equal-
ization using static and adaptive algorithms, as well as the algorithms for carrier phase recovery
and frequency offset compensation. Section 3.2 introduces two algorithms for nonlinearity com-
pensation commonly employed in the literature: the Digital Backpropagation (DBP) and the
Volterra Nonlinear Equalizer (VNLE). In Section 3.3, we present the experimental setup that
simulates a complete modern transceiver, and the multiple spans of SSMF permit us to study
the effects of optical fiber impairments, particularly uncompensated nonlinearity. We also em-
ploy the algorithms for nonlinearity compensation described in Section 3.2 in the experimental
testbed. Finally, Section 3.4 summarizes this chapter.

3.1 Digital Signal Processing and Numerical Investigations of
Nonlinear Effects

The numerical setup reproduces the Single Channel (SC) Dual-Polarization (DP) transmis-
sion system depicted in Fig. 2.1. Specifically, the DP transmitter, the optical channel, and
the DP coherent receiver were simulated using MATLAB first and Python lastly. The devel-
oped programs coded in MATLAB were helpful for understanding the signal propagation via the
SSFM implementation and the capabilities of a classical offline DSP. Later, we implemented and
optimized those programs using Python for at least two reasons: i) Python is an open-source
language with a large community of contributors that facilitates the programming task, and ii)
when we implemented NN, we used Tensorflow and PyTorch, which are two ML frameworks in
Python. Therefore, having all the tools used in the same environment seemed easier.

For the numerical setup, we consider an ECL emitting an optical carrier at the wavelength
λc=1552nm. We use an oversampling factor of 8 samples per symbol (SpS) to simulate the
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digital-to-analog conversion in forward propagation. To simulate the signal’s propagation, we
numerically solve the NLSE (or the Manakov-PMD equation) using the split-step Fourier method
(SSFM). We consider a 14 × 100km of SSMF with parameters: attenuation coefficient α =
0.2dB/km, CD coefficient D = 17ps/(nm · km), DGD = 0.05ps/

√
km, and nonlinear coefficient

γ = 1.4W−1 · km−1. Each span loss is fully compensated at the end of the span using EDFA
with NF = 4.5dB. The pulse shapers at the transmitter and received side are RRC filters with
roll-off factor ρ=0.1 and with filter length equal to 40 taps delayed the symbol duration Ts.
The ECL and the LO are considered identical with laser linewidth 100 kHz, and with a Carrier
Frequency Offset (CFO) equals 200 MHz.

To simulate the optical channel, we consider linear impairments such as fiber loss, CD and
PMD, as well as nonlinear effects like SPM, SPM-induced NLPN, and XPolM, all of these
resulting from NLI. We ignored the effects of IFWM since the phase matching condition for new
frequencies generation is rarely satisfied unless special considerations are made [18].

The choice of the SSFM version depends on the desired level of accuracy and the available
computational resources. We performed a non-exhaustive comparison of the SSFM versions.
Specifically, we compared the Iterative-Symmetric SSFM (IS-SSFM) using two iterations/step
and step-size h = 4 km, the Non-iterative-Symmetric SSFM (NS-SSFM) using the Coupled Non-
linear Schrödinger equation (CNLSE) and the Manakov-PMD approximation with step-size h =
1 km, and the asymmetric-SSFM also using the CNLSE and the Manakov-PMD approximation
with step-size h = 1 km. To make the comparison, we used the classical DSP receiver described
in Section 3.1, and we calculated the BER. The results are shown in Fig. 3.1.
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Figure 3.1 – Comparison of SSFM versions for a DP-16QAM 32 GBaud over 14x100 km of single-mode fiber.

We can observe very close results for all explored approaches. Nevertheless, the IS-SSFM
processes 25 steps per span (StPS) while the other methods process 100 StPS. Under these
configurations, the IS-SSFM 25 StPS, and two iterations per step, takes half of the time than
the NS-SSFM 100 StPS, but the same time that the asymmetric SSFM 100 StPS.

When using the same number of steps per span, the IS-SSFM is ×Niter more expensive in
computational resources than the NS-SSFM versions. For instance, the IS-SSFM, with only two
iterations per step, takes double the time than the NS-SSFM. Also, the asymmetric versions
take half the time compared to the symmetric versions. The difference between the CNLSE
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and the Manakov-PMD approximation is just one additional multiplication per symbol in the
nonlinear operator. Therefore, in our study, unless another indication, we used the asymmetric
SSFM approach to simulate the optical signal propagation.

Fig. 3.2 illustrates a typical set of DSP algorithms implemented in modern transceivers for
a single channel.
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Figure 3.2 – DSP algorithms used in the DP Coherent Receiver. BPD: balanced photodiodes, ADC: analog-to-
digital converter, RRC: root-raised cosine, FSE: Fractionally-spaced equalizer, MIMO: multiple-input-multiple-
output.

The DSP performs interpolation and timing recovery, anti-aliasing filtering (in our work, we
used a matched filter RRC), channel equalization, and adaptive equalization (2 × 2 Multiple-
Input-Multiple-Output (MIMO) FIR filters) to recover the complex data of both polarizations,
frequency offset estimation, carrier phase recovery, and decoding [74], [86].

We must mention that other possible configurations are proposed in the vast literature on
this matter. For instance, some authors indicate that the RRC matched filter is unnecessary
as long as the FIR filters for channel equalization or adaptive equalization play the role of a
matched filter [74], [86], [87]. More indeed, the adaptive equalizer could also compensate static
linear impairments such as the CD in addition to dynamic linear impairments [75].

The optimization of the DSP structure and the employed algorithms is out of the scope of the
present work. Despite that, the reader must consider that combining different algorithms could
significantly change the interpretation of determined results. Notably, the remaining nonlinear
effects compensation could also be partially performed by a carrier phase recovery algorithm.
We detailed more about this observation in chapter 4.

We assume that the ADCs work with an oversampling factor of at least 2 to respect the
Nyquist sampling theorem and prevent aliasing. Depending on this oversampling factor, it
may be necessary to perform resampling with prior retiming. A typical algorithm uses linear
interpolation functions and maximizes the squared modulus of the interpolated signal [88].

3.1.1 Channel Equalization

The goal of an equalizer is to recover the transmitted symbols. In the case of optical channel
equalizers, these could be divided into linear and nonlinear equalizers. A linear equalizer usually
performs only CD equalization since this is a static (time-invariant) impairment. On the other
hand, the PMD is a dynamic effect (time-variant), and commonly, traditional DSP separates
both tasks. Nonlinear equalizers are necessary when working in a nonlinear regime where these
effects disturb the signal phase significantly.
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A linear equalizer performing CD equalization is generally implemented in the FD via a
zero-forcing Frequency-Domain Equalizer (FDE). The zero-forcing FDE is performed by using
an all-band pass filter HCD(ω) equal to 1/GCD(ω),

HCD(ω) = exp
(
j
Dλ2z

4πc ω
2
)
. (3.1)

The FDE is performed using the Discrete Fourier Transform (DFT) and Inverse Discrete
Fourier Transform (IDFT) via Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform
(IFFT) algorithms, respectively. For real-time implementations, where the number of samples
is vast, the DFT and IDFT are sequentially processed in small blocks. The DFT corresponds
to a circular convolution in the time domain [89]. As we require linear convolutions, we can
employ the overlap-and-save or the overlap-add methods. In the overlap-and-save method, the
small blocks overlap previous M − 1 samples, while in the overlap-add method, each block is
appended with M −1 zeros. Afterward, the overlapped samples are discarded, and the sequence
reconstructed [90], [91].

In [68], it was proposed a Temporal-Domain (TD) approach based on the inverse Fourier
transform of the CD transfer function, given by:

hCD(t) =
√

c

jDλ2z
exp

(
jπc

Dλ2z
t2
)
. (3.2)

Similar to the RRC filter, the impulse response for the CD is infinite and non-causal. To
make it causal and finite, hCD(t) is truncated to N taps (N odd).

Let h = [a0, a1, · · · , aN−1] be the vector containing the N FIR filter taps ak. In [68], an
upper bound of N was derived and given by:

N = 2
⌊
|D|λ2z

2cT 2

⌋
+ 1, (3.3)

where T is the sampling period, and ⌊x⌋ states for the greatest integer less than or equal to x.
The coefficients ak are calculated as follows:

ak =

√
jcT 2

Dλ2z
exp

(
−jcπT

2

Dλ2z
k2
)
,−
⌊
N

2

⌋
≤ k ≤

⌊
N

2

⌋
. (3.4)

Alternatively, in [92] was also proposed a FIR filter based on the Least-Square (LS) of the
error between the ideal CD transfer function and the transfer function of the proposed FIR filter.
This method offers the advantage of achieving even better performance with fewer FIR taps.
The key lies in considering a limited bandwidth beyond the pulse shaper, effectively reducing
the required taps. The resulting FIR filter is calculated as follows:

h = (Q + ϵIN )−1d, (3.5)

where ϵ is a penalty factor ∼ 10−14, IN is a N × N Identity matrix, and Q is a Hermitian
Toeplitz matrix of N ×N and equals:
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Q(n,m) =


Ω2−Ω1

2π n = m,
e−j(−n+m)Ω1 −e−j(−n+m)Ω2

2jπ(−n+m) n ̸= m,
(3.6)

where ωT ∈ [Ω1,Ω2], and 0 ≤ n ≤ N − 1, 0 ≤ m ≤ N − 1.
On the other hand, d is given by:

d(n) = e
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2 ,

(3.7)
where K = Dλ2z

2πcT 2 .
In Fig. 3.3, we show the impulse response for the ideal FIR filters, the FIR of [68], and the

FIR of [92] for a single span of 100km corresponding to N = 55 taps according to (3.3).

(a) F−1{GCD(ω)}. (b) Savory et al. [68]. (c) Eghbali et al. [92].

Figure 3.3 – Impulse response of CD equalization FIR filters for an accumulated dispersion D = 1700ps/nm,
symbol rate Rs = 32GBaud, corresponding to N = 55 taps. The blue lines are for the real part and the red lines
are- for the imaginary part.

Performance Comparison

We compared the methods described in Section 3.1.1: FDE and Time-Domain Equalizer
(TDE): the FIR using the IFFT of the CD transfer function, the FIR filter in [68], and the FIR
filter in [92] with N = 3133 taps using (3.3). We calculated the BER obtained for different input
channel powers. The results are shown in Fig. 3.4.

In this example, we noticed similar results for all methods at the end of the DSP chain. In
[92], the authors stated that the LS-CD FIR filter performs better than the FIR filter of [68].
This statement could not be shown here, and the reason is the subsequent DSP algorithms,
especially the adaptive filters, that could compensate for the residual CD.

To validate the superiority of the LS-CD FIR filter of [92] over the FIR filter of [68], it is
helpful to change to a simplified scenario of a single polarization only accounting for the CD
and the NLI and the CD compensation and the carrier phase recovery. The simplified DSP is
shown in Fig. 3.5.

The BER using the FDE, the FIR using the IFFT of the CD transfer function, the FIR filter
in [68], and the FIR filter in [92], with N = 559 according to (3.3), are shown in Fig. 3.6.
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Figure 3.4 – BER vs. P/ch using different CD equalizers (FD and TD) for a DP-16QAM 32 Gbaud over 14x100
km of SSMF. N is the number of FIR filter taps.
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Figure 3.5 – Simplified DSP for a single polarization transmission and only accounting for the CD and the NLI.
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Figure 3.6 – BER vs. P/ch using different CD equalizers (FD and TD) for a SP-16QAM 32 Gbaud over 10x100
km of SSMF. N is the number of FIR filter taps.

Here, we show that using a FDE and the LS-CD FIR filter in [92] provide similar results,
and certainly, we observe that the FIR filter in [68] is slightly less performant.
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Computational Complexity Comparison

A common metric to measure the Computational Complexity (CC) of an equalizer is the
number of real multiplications per symbol (RMpS). This part shows the CC for the FDE and the
TDE. We assume that the amount of CD was previously estimated. Therefore, its estimation
does not take part in the calculations.

The FDE is based on the FFT and IFFT computation. In our Python implementations,
we implemented the pair FFT/IFFT using numpy, and to speed up the processing time, we
used the package pyFFTW. Both numpy and pyFFTW, are based on the Cooley-Tukey radix-2
algorithm [93] whose CC for an N-FFT block in RMpS is given by:

CCCooley−Tukey = 2NFFT log2NFFT . (3.8)

The CD-FDE requires one FFT to transform the TD to the FD, one complex multiplication
with the inverse CD transfer function for CD compensation, and one IFFT to transform the
signal to the TD, making a total number of RMpS given by:

CCFDE = 4(log2NFFT + 1)K, (3.9)

where K is the oversampling factor.
The overlap-save method permits efficient performance of the DFT/IDFT with a small over-

head due to the overlapping part. The CC in RMpS for a NFFT block length is given by:

CCFDE = 4NFFT (log2NFFT + 1)K
NFFT −NCD + 1 , (3.10)

where NCD is the overlapping part related to the CD impulse duration given by,

NCD =
⌈
τCDK

Ts

⌉
, (3.11)

being τCD the CD impulse duration and Ts the symbol interval. τCD is estimated through
τCD = c

f2
c
|Dacc|Beff , where c is the speed of light, fc is the carrier frequency, Dacc is the

accumulated dispersion, and Beff is the effective bandwidth. By considering the RRC pulse
shaper at the transmission, Beff ≈ (1 + ρ)Rs, where ρ is the RRC roll-off factor, and Rs is the
symbol rate. In this work, we did not implement this technique since we are working with an
offline DSP and we process the entire number of samples, so the real CC in an online DSP with
linear filtering at once could be slightly higher due to the overlapping required part [90].

On the other hand, the TDE, using an FIR filter composed of Ntaps, requires a total of
Ntaps complex multiplications per sample, corresponding to 4 real multiplications. Therefore
the number of RMpS is given by,

CCTDE = 4NtapsK. (3.12)

The choice between the FDE and TDE will depend on the FFT points NFFT for the FDE and
the number of taps Ntaps required to compensate the CD using the TDE. In general, the FDE
is less complex than the TDE [90]. For instance, consider the example case of an accumulated
CD of 17 × 14 × 100 ps/nm for a 32GBaud transmission at 1552 nm, an oversampling factor
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K = 2, and NFFT equals to 106 samples. The reader could verify that the FDE requires only
∼ 167 RMpS while the TDE with Ntaps=783 requires 6264 RMpS, i.e., the FDE is ∼ 37 times
faster than the TDE.

The interest of using a TDE is principally for short distances. Let us take only 2 × 10 km
of fiber of a transmission with the same characteristics as the previous example. In this case,
the FDE is independent of the accumulated dispersion leading to the same ∼ 167 RMpS, while
the TDE for an FIR filter of length 11 requires 88 RMpS.

3.1.2 Adaptive Equalization

The rotation of SOP and the PMD are time-variant effects that must be compensated dy-
namically. The idea is to estimate the Jones matrix of the channel, which is frequency-dependent
due to the PMD. Indeed, in contrast to the CD, which is a static effect, this matrix evolves in
time due to the rapid variation of the PSP [68]. Therefore, the method must be adaptive.

A classical blind technique uses a set of four FIR filters. Due to the arrangement of the four
FIR filters, it takes the form of a 2×2 MIMO filter [74], [75], which is illustrated in Fig. 3.7.

Figure 3.7 – 2×2 MIMO equalizer with Fractionally-Spaced Equalizer (FSE).

Notice that the input is oversampled, and subsequent algorithms process data at the symbol
rate. To undersample the signal at 1 sample/symbol, we used an Fractionally-Spaced Equalizer
(FSE) [75] along with the 2×2 MIMO filter.

The input at instant k are the two components r1,k and y2,k with an oversampling factor S
(sampling period T = Ts/S). The FIR filters hij of length N = 2L+1 are initialized with zeros.
Moreover, the central taps of h11 and h22 are set to one for faster convergence.

Each FIR filter is a tapped-delay filter where the delay T is the sampling period. The FIR
filter performs a linear combination followed by a decimation in a factor S (i.e., the output at
instant n, zij,n is at the symbol rate) [75], [94]. Fig. 3.8 illustrates the tapped-delay filter FSE.

The recovered symbols z1,n and z2,n are then used to update the coefficients of the FIR filters
hij . This update takes advantage of the knowledge of the constellations. For example, in the
case of QPSK, all the transmitted symbols have a constant modulus. Techniques such as the
Constant Modulus Algorithm (CMA) have proven to be efficient in such cases.
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Figure 3.8 – FSE performs by FIR hij .

Constant Modulus Algorithm

Initially proposed by [95], this adaptive algorithm is based on the MSE minimization criteria
of the signal error of both polarizations. Specifically, for a QPSK constellation with normalized
symbol amplitude R = 1 (see Fig. 3.9a), the objective is to minimize the MSE of the errors
ε1,n = R − |z1,n|2 and ε2,n = R − |z2,n|2. This minimization is usually achieved through a
stochastic gradient descent algorithm. More precisely, let us denote the MSE of the errors as
⟨ε2

1,n⟩ and ⟨ε2
2,n⟩, respectively. The FIR taps updating is performed using:

d⟨ε2
1,n⟩

dh11
= 0 ;

d⟨ε2
1,n⟩

dh12
= 0 ;

d⟨ε2
2,n⟩

dh21
= 0 ;

d⟨ε2
2,n⟩

dh22
= 0. (3.13)

Replacing the gradients with their instantaneous values results in the following:

h11 = h11 + µε1,nz1,ny∗
1,k, (3.14a)

h12 = h12 + µε1,nz1,ny∗
2,k, (3.14b)

h21 = h21 + µε2,nz2,ny∗
1,k, (3.14c)

h22 = h22 + µε2,nz2,ny∗
2,k, (3.14d)

where y∗
1,k and y∗

2,k are the complex conjugate of y1,k and y2,k, respectively, and µ is a conver-
gence parameter.

In the case of multilevel constellations, additional algorithms are needed to get better perfor-
mances. For instance, a decision-directed least mean squared (DD-LMS) [68], a recursive least
squares (RLS), and Radius-Directed Equalizer (RDE) [58]. In this study, we have chosen the
RDE, but similar results can also be obtained using the DD-LMS and the RLS [58].

Radius Directed Equalization

Since the CMA is adapted to a constant amplitude, a better approach consists of considering
multiple amplitudes (radii), which is more adapted to QAM signals. This approach is known as
RDE and could be seen as a generalization of the CMA. Fig. 3.9b shows the case of a 16QAM
constellation with three possible radii.
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(a) QPSK. (b) 16QAM.

Figure 3.9 – Radii employed in adaptive equalization using CMA/RDE.

Its implementation must consider the various possible radii of the constellation. Algorithm
4 illustrates the case of a 16QAM constellation.

Algorithm 4 RDE for 16QAM constellations
1: if |zl,n| < (R1 +R2)/2 then
2: R← R1
3: else
4: if |zl,n| < (R2 +R3)/2 then
5: R← R2
6: else
7: R← R3
8: end if
9: end if

For a normalize constellation (Es = 1) the radii for 16QAM and 64QAM are the following:

16QAM : R2
1 = 0.2, R2

2 = 1, R2
3 = 1.8,

64QAM : R2
1 = 1

21 , R
2
2 = 5

21 , R
2
3 = 9

21 , R
2
4 = 13

21 , R
2
5 = 17

21 , R
2
6 = 25

21 , R
2
7 = 29

21 , R
2
8 = 37

21 , R
2
9 = 49

21 .

The RDE requires properly initializing the FIR filter taps of the 2 × 2 MIMO equalizer to
avoid being trapped in a local minima. Commonly, the CMA is used as a prior algorithm to
initialize the FIR taps. For higher-order modulation formats, we can also employ intermediate
stages to achieve faster convergence and get better results. For instance, a 64QAM could achieve
faster convergence using an intermediate RDE for 16QAM after the CMA [96].

To compensate for the PMD and the SOP rotation, we used the 2 × 2 MIMO equalizer
combined with an FSE for optimal undersampling described in Section 3.1.2.

In Fig. 3.10, we show the MSE of the equalized output for a DP-QPSK, DP-16QAM, and
DP-64QAM, and Fig. 3.11 shows the equalized outputs at the steady state for each case.
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(a) DP-QPSK 64 GBaud, 30x100 km, P/ch = 3
dBm, CMA only (µ = 10−3).

(b) DP-16QAM 32 GBaud, 10x100 km, P/ch =
1 dBm, CMA (µ = 10−3) for taps initialization
followed by RDE (µ = 10−4).

(c) DP-64QAM 32 GBaud, 10x50 km, P/ch = -3
dBm, CMA (µ = 10−3) and intermediate RDE
(µ = 10−4) for taps initialization followed by
RDE (µ = 10−4).

Figure 3.10 – MSE calculated during MIMO equalization.

(a) DP-QPSK 64 GBaud, 30x100 km,
P/ch = 3 dBm.

(b) DP-16QAM 32 GBaud, 10x100 km,
P/ch = 1 dBm.

(c) DP-64QAM 32 GBaud, 10x50 km,
P/ch = -3 dBm.

Figure 3.11 – Equalized outputs (steady state). Blue points: X polarization, red points: Y polarization.
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3.1.3 Frequency Offset Compensation

The CFO occurs due to the frequency mismatch between the LO and the beam laser source.
This mismatch causes a rapid change in the signal phase proportional to the CFO ∆f . If
not correctly compensated, its detrimental effects could severely impact the performance of the
system. Modern transceivers typically have a ∆f ranging from approximately 50 to 200 MHz.

Let zp[n] denote the electrical signal of polarization p after channel equalization and PMD
compensation, assuming that nonlinear impairments are neglected. Therefore zp[n] can be rep-
resented as:

zp(n) = xp(n)ej2π(ϕ0,p+n∆fTs) + bp(n), (3.15)

where xp(n) ∈ C is the complex symbol n belonging to a symbol constellation C, ϕ0,p is a constant
phase, ∆f is the CFO, Ts is the symbol period and bp(n) is a residual noise.

In general, a simple CFO estimator works well with unmodulated signals. To wipe out the
modulation, it is enough to raise zp(n) to the M-th power, where M is the modulation order.

In the case of QPSK, two well-known methods are typically used. The first one consists of
finding the ∆f that maximizes the spectrum of zp(n)M , where M = 4 and n ∈ [1, N ] is the
index sample, being N the number of symbols of the observation window [74], [97].

zMp (n) = ej2πM(ϕ0,p+n∆fTs+bp”(n)), (3.16)

where bp”(n) is a non-Gaussian phase disturbance [97] and considering unitary amplitude for
the QPSK symbols.

Therefore, zMp (n) is a sinusoidal shifted M∆f accompanied by a phase noise. Observing a
peak in the spectrum allows for finding M∆f .

A second method is based on the phase difference of consecutive symbols. Fig. 3.12 depicts
the algorithm. The raise to the M-th power (M = 4) let only the phase difference between these
two consecutive symbols, which is 2πM∆fTs. Similar to the first method, an average over a
window observation is preferable for better results [98].

Figure 3.12 – Carrier frequency Offset estimation and compensation.

In the case of M-QAM (M>4), better results could be obtained using [99], which is suitable
for DP M-QAM signals. This technique is based on two steps: a coarse step using spectral
methods and a fine step around the estimated peak power obtained in the course step using a
gradient descent-based algorithm. For more details see [99] and [100, Section 3.4].

44



3.1. Digital Signal Processing and Numerical Investigations of Nonlinear Effects

Depending on the modulation format, we used the spectral method (adapted to QPSK) or
the two-step coarse and fine method for M-QAM (M>4). Fig. 3.13 illustrates the constellations
after the CFO compensation.

(a) DP-QPSK 64 GBaud, 30x100 km,
P/ch = 3 dBm.

(b) DP-16QAM 32 GBaud, 10x100
km, P/ch = 1 dBm.

(c) DP-64QAM 32 GBaud, 10x50 km,
P/ch = -3 dBm.

Figure 3.13 – CFO compensation. Blue points: X polarization, red points: Y polarization.

3.1.4 Carrier Phase Recovery

Due to the phase noise, the optical carrier phase can significantly vary, avoiding a correct
detection. An algorithm of Carrier Phase Estimation (CPE) addresses the carrier phase varia-
tion. Two methods are commonly utilized: 1) data-aided, based on periodic pilot symbols, and
2) blind algorithms that employ signal statistical properties. In this study, we employ blind
techniques, but we expect to modernize our DSP algorithms to be adapted to more robust
data-aided carrier phase recovery techniques.

For QPSK modulation, one of the most popular is the Viterbi-and-Viterbi algorithm de-
scribed in [101], [102] and illustrated in Fig. 3.14.

Figure 3.14 – Viterbi-and-Viterbi algorithm for carrier phase recovery.

Assuming the absence of other impairments, the process involves canceling out modulation
by raising the complex symbols to the power M = 4. Subsequently, the arguments representing
×4 the estimated phase noise are summed and averaged within a window of N symbols. The
resulting value is divided by 4 to obtain the estimated phase noise within that window. The
compensated phase is calculated by subtracting the recovered phase noise from the initial phase.
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Other algorithms have shown better performances for M-QAM signals (M>4), for instance,
the ones using a feed-forward step. One widely known algorithm is described in [56], illustrated
in Fig. 3.15.

Figure 3.15 – (Top) CPE feed-forward blind algorithm with B phase blocks [56]. (Bottom) inside the blocks.

This algorithm tests B-phase rotation candidates for the received symbol s(n). Each symbol
s(n) is rotated B angles, and the distance dn,b between the symbol rotated an angle b ∈ 1, B and
the nearest constellation point X̂n,b, is recorded. Then, in a window of 2N+1 symbols, where
N prior and N posterior symbols are assumed to alter the phase of the symbol in the middle,
the squared distance |dn,b|2 of the symbols that rotated the same angle b are summed. The
sum is denoted as qn,b in the figure. The angle b that minimizes qn,b among the B candidates
corresponds to the estimated phase rotation of the symbol s(n).

It must be noted that to handle the 4-fold ambiguity of these methods is necessary differential
encoding (if not pilot symbols used).

These algorithms are commonly susceptible to cycle slips [103]. Consequently, after recover-
ing the phase, one must correct the phase differences greater than ±π/4. An unwrap function
works well in most cases. To achieve better results, more performing techniques should be
considered.

Finally, the algorithms detailed in Section 3.1.4 are applied for each case. The resulting
constellations are shown in Fig. 3.16.
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(a) DP-QPSK 64 GBaud, 30x100 km,
P/ch = 3 dBm.

(b) DP-16QAM 32 GBaud, 10x100
km, P/ch = 1 dBm.

(c) DP-64QAM 32 GBaud, 10x50 km,
P/ch = -3 dBm.

Figure 3.16 – CPE. Blue points: X polarization, red points: Y polarization.

3.1.5 Nonlinear Effects for Different Transmission Configurations

The classical DSP described in previous sections permits to compensate for some of the
impairments that an optical signal experiences when going from the transmitter to the receiver.
These impairments are due to the optical fiber and imperfect components on the transmitter
and receiver sides. In this part, we want to show the NLI effects in different transmission
configurations. We consider three modulation formats: QPSK, 16QAM, and 64QAM, and
different data Baud rates for different spans of SSMF. The details of these scenarios are shown
in Table 3.1.
Table 3.1 – Transmission Configurations using QPSK, 16QAM and 64QAM modulation formats at different Baud
rates and for different fiber lenghts.

Symbol Rate
(GBaud)

Bit Rate
(Gbits/s)

Net Bit Rate
(Gbits/s)

Nspans Lspans (km)

DP-QPSK 64 256 200 30, 40, 50 100
128 512 400 25, 35, 45 100

DP-16QAM
32 256 200 10, 12, 14 100
64 512 400 8, 10, 12 100
128 1024 800 6, 8, 10 100

DP-64QAM 32 384 300 10, 12, 14 50
64 768 600 8, 10, 12 50

The baselines of our simulations are the performances in Back-to-Back (BtB), i.e., only
transmitter and receiver, measured using the BER per received OSNR varying only the noise
level. We calculate the BER per different levels of received OSNR as shown in Fig. 3.17. Fig.
3.17a corresponds to an ideal DP transmission with only AWGN, and Fig. 3.17b corresponds
to a scenario with CFO and LPN as well as the algorithms to compensate for them. The gap
between theoretical, using (A.13), (A.16) and (A.17), and simulated results at low SNR in Fig.
3.17b is the penalty when employing differential encoding.

The DP-16QAM at 128 GBaud performs almost the same as the DP-64QAM at 32 GBaud.
Nevertheless, the former carries a net bit rate of ∼ 800 Gbits/s, while the latter only ∼ 300
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(A.17).

Figure 3.17 – BER vs. OSNR (0.1 nm) for a BtB configuration.

Gbits/sec (considering an overhead of 21% for FEC and synchronization).
When considering the multiple spans of optical fiber (SSMF) and the classical DSP, we

obtain the results shown in Fig. 3.18.
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(a) DP-QPSK 64GBaud.
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(b) DP-QPSK 128GBaud.

Figure 3.18 – Performance BER vs. P/ch using the DSP depicted in Fig. 3.2.

These results show the performance degradation (BER) for higher optical launch powers,
which is also more detrimental for longer distances. Equivalently, the OSNR augmentation
provokes an adverse effect, contrary to what happens on the left side of all figures, where the
OSNR permits a BER improvement. Clearly, we can divide each curve into two regions: one
corresponding to a linear regime prevalence (left side) and a second one corresponding to a
nonlinear regime prevalence (right side).

In the nonlinear regime, uncompensated NLI prevail as they become significant. Standard
transceivers operate in the linear regime, close to the separation between the two regions, defined
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Figure 3.18 – Performance BER vs. P/ch using the DSP depicted in Fig. 3.2 (cont.).

by the optimal launch power, i.e., the launch power that minimizes the BER. As the OSNR con-
tinues increasing contrary to the BER degradation, another SNR-related metric is usually used
to measure the impact of the noise on the system performance. This metric is the Generalized
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OSNR (GSNR), formally defined in Appendix A.3.
In the next part, we introduce two techniques for nonlinearity compensation based on DSP.

Using some of the simulated scenarios presented in Table 3.1, we quantify the benefits and draw-
backs of these techniques regarding the BER improvement with respect to only linear equalizers
and the additional computational resources necessary to perform the nonlinear equalization.

3.2 Nonlinear Impairments Compensation Techniques

Among the several nonlinearity compensation techniques found in the literature, the most
popular ones are based on the inverse NLSE. In this work, we present two techniques commonly
used as benchmarks for comparison purposes: the Digital Backpropagation (DBP) and the
Volterra Nonlinear Equalizer (VNLE).

3.2.1 Digital Backpropagation

Consider the NLSE in (2.35). The inverse NLSE is given by

∂E
∂z

= (D̂−1 + N̂−1)E. (3.17)

This equation is equivalent to passing the optical signal E from the receiver to the transmitter
using fiber parameters with opposite sign [23], or equivalently:

∂E
∂z

= −(D̂ + ξN̂)E, (3.18)

where ξ is a nonlinear rotation parameter and represents a fraction 0 < ξ ≤ 1 of the amplitude,
which is uncertain due to the amplifier noise [24]. This parameter ξ needs to be optimized
empirically.

The DBP is numerically performed using the NLSE with opposite signs of the dispersion
and nonlinearity operators, and whose input is the received signal after L km of fiber E(L, t)
to retrieve the signal before the optical fiber E(0, t). As the NLSE, the DBP is solved using
the SSFM. Fig. 3.19 and 3.20 illustrate the symmetric and asymmetric versions of the DBP,
respectively. The reader could notice that it is exactly the SSFM in the reverse direction
(negative sign in linear and nonlinear operators) with the ξ factor in the nonlinear operator N̂.

Figure 3.19 – Asymmetric DBP.
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Figure 3.20 – Symmetric DBP.

The equation (3.18) could adopt multiple forms according to the NLSE employed version. In
the more general case, is required a complete knowledge of the optical fiber parameters, such as
the CD, the PMD, and the nonlinear coefficient γ. The PMD is a stochastic process commonly
unknown. Therefore, the DBP is usually realized, assuming that PMD could be processed in
subsequent stages. Even though a DBP addressing the PMD was also covered in several works,
for instance, in [104], [105], showing good results.

Fig. 3.21 shows the DBP for 1, 2, and 10 StPS and uses the symmetric and asymmetric
version with optimal nonlinear rotation parameter ξ.

(a) Optimal ξ using the DBP for different StPS for P/ch =
3dBm.

(b) BER vs. P/ch using the DBP at 1,2 and 10 StPS with
optimal ξ.

Figure 3.21 – BER as a function of the P/ch and the nonlinear rotation parameter ξ and using the CDC and the
DBP.

In general, the asymmetric DBP works better than the symmetric DBP at 1 StPS, while
increasing the number of steps per span results in similar results in both approaches. The
difference between using the CNLSE or the Manakov-PMD is minimal, and empirically, the
performances are the same if we optimize the parameter ξ. The results show a significant
improvement with respect to CDC only and even at 1 StPS, increasing the optimal power from
1 dBm to 3 dBm with a BER reduction from ∼ 10−3 to ∼ 10−4 in the optimal power.
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The approach followed in this work is the classical DBP. Nonetheless, during the last years,
several improvements have been made to optimize the DBP, particularly in reducing its com-
putational complexity. For instance, in [106], it was proposed using a logarithmic step size that
relies on an attenuation coefficient k that depends on each transmission scenario and optical
fiber parameters. This method has proved to improve performances with reduced complexity.
Also, in [107] was claimed that using the Wiener-Hammerstein model 1 and reducing in 50%
the number of considered spans, e.g., if transmission with 10 spans, only backpropagate the
signal for 5 spans, permit to get similar results than the conventional DBP with 50% complexity
reduction. In [108] was also proposed a Time-Domain (TD) DBP. The TD-DBP refers to the
linear operators because the nonlinear operators are always in TD.

3.2.2 Volterra Nonlinear Equalizer

The relationship between the Fourier transform of the output Y (ω) of a nonlinear system and
the Fourier transform of the input X(ω) could be expressed using a frequency domain Volterra
series expansion [109] as follows:

Y (ω) =
∞∑
n=1

∫
...

∫
Hn(ω1, ..., ωn−1, ω − ω1 − ...− ωn−1)

×X(ω1)...X(ωn−1)X(ω − ω1 − ...− ωn−1)dω1...dωn−1,

(3.19)

where Hn(ω1, ..., ωn−1) is the n-th frequency domain Volterra kernel.
The description of the nonlinear system is more accurate when using highest-order kernels,

but at the same time, the complexity of the model increases. Up to the third or fifth order is
commonly acceptable.

Consider the input optical field E(ω) = [Ex(ω), Ex(ω)]T that corresponds to X(ω) in (3.19).
The Fourier transform of the Manakov equation in (2.40) and considering only the first three
kernels 2 of (3.19) yield the solution [3]:

Ex/y(ω, z) = H1(ω, z)Ex/y(ω) +
∫ ∫

H3(ω1, ω2, ω − ω1 + ω2, z)

× [Ex(ω1)E∗
x(ω2) + Ey(ω1)E∗

y(ω2)]
× Ex/y(ω − ω1 + ω2)dω1dω2,

(3.20)

where the Volterra kernels are given by

H1(ω, z) = e− αz
2 e−j β2

2 ω
2z, (3.21)

H3(ω1, ω2, ω − ω1 + ω2, z) = −j8γ/94π2 H1(ω, z)× 1− e−(α+jβ2(ω1−ω)(ω1−ω2))z

α+ jβ2(ω1 − ω)(ω1 − ω2) .
(3.22)

1. Very similar to a symmetric DBP but with no necessarily a 50/50 step size division.
2. Only odd-order kernels since even-order kernels are zero due to the absence of even-order nonlinearities in

optical fibers.
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The linear and nonlinear impairments compensation using VNLE is achieved by the use of
inverse kernels of the pth-order Kp, which are operators that nullify the second through to the
pth-order Volterra kernels [110]. For an uncompensated transmission link consisting of N spans
of fiber with full compensation loss, these kernels (up to order 3) are given by

K1(ω) = H−1
1 (ω) = ejω

2β2NL/2, (3.23)

K3(ω1, ω2, ω − ω1 + ω2) ≈ j8γ/9
4π2 × Leff ×K1(ω)

N∑
k=1

ejkβ2L∆ω, (3.24)

where Leff is the effective span length, and ∆ω = (ω1 − ω)(ω1 − ω2).
Finally, the VNLE is built using (3.20) by replacing H1 by K1 and H3 by K3 and with input

the received signal Ex/y(ω, z) and output the equalized signal Êx/y(ω, 0) as follows [111]

Êx/y(ω, 0) = K1(ω)Ex/y(ω, z) +
∫ ∫

K3(ω1, ω2, ω − ω1 + ω2)

× [Ex(ω1, z)E∗
x(ω2, z) + Ey(ω1, z)E∗

y(ω2, z)]
× Ex/y(ω − ω1 + ω2, z)dω1dω2.

(3.25)

The first term in 3.25 corresponds to a linear compensation of the entire link, while the second
term is a nonlinear compensator span per span. Fig. 3.22a depicts a scheme that illustrates the
method. The CD is compensated in the frequency domain, and the NLI in the time domain.
The linear compensator for k spans is given by

(HCD)k = exp(1jβ2/2ω2kLspan), (3.26)

where Lspan is the span length.

(a) Realization in parallel. (b) Nonlinear equalizer corresponding to step k.

Figure 3.22 – Volterra series based nonlinear equalization scheme [3] ©2012, IEEE.

The VNLE has proven particularly useful for intrachannel nonlinearity [3]. Additionally, a
parallel realization of the linear and nonlinear operators enables a lower complexity, in contrast
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with the DBP, which is sequential.
Consider the use case DP-16QAM 32GBaud using 14x100 km of SSMF. Fig. 3.23a shows

the BER VNLE for different ξ getting the optimal ξopt = 0.6. Fig. 3.23b shows the BER for
different optical launch powers.

(a) Optimal ξ using the VNLE for P/ch = 3dBm. (b) BER vs. P/ch using the VNLE with optimal ξ.

Figure 3.23 – BER as a function of the P/ch and the nonlinear rotation parameter ξ using the CDC and the
VNLE.

3.2.3 Computational Complexity

The choice between the DBP and the VNLE must take into account not only the BER
improvement capabilities but also the amount of additional computational resources required
to perform the necessary operations. We focus our attention on only CD compensation and
nonlinear compensation since the other algorithms described in previous sections are common
in all cases.

The required RMpS for nonlinearity compensation using the DBP (using the Manakov-PMD
equation), considering Nstep StPS for a total of Nspan spans and an oversampling factor K, is
given by

RMpSDBP = NspanNstepK(4log2NFFT + 10.5), (3.27)

where 10.5 stands for 4 Real Multiplications (RM) corresponding to one complex multiplication
for the CD compensation and 6.5 RM correspond to 13 RM for both polarization accounting
for: 2 RM per squared magnitude for each polarization, 1 RM by −j8/9γh assuming previously
calculated for both polarization, and 1 complex multiplication (4 RM) for the nonlinear phase
rotation for each polarization. We assumed that the exponential function is implemented in a
lookup table [23].

Consider the VNLE for the dual-polarization case. The linear compensation stage is identical
to the FDE-CDC (3.9). For each of the Nspan nonlinear compensation branches, the linear com-
pensation per polarization accounts for 2 complex multiplication (8 RM) for CD compensation
of k spans and Nspans − k spans, 4log2NFFT RMpS for one pair IFFT/FFT, 2 RM per squared
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modulus, and 5 RM for nonlinear compensation accounting for the 2 polarization, thus 2.5 for
each polarization. For Nspans and considering the oversampling factor K, the CC in RMpS for
the nonlinear branches results:

CCnonlin = NspanK(4log2NFFT + 12.5). (3.28)

Therefore, the total CC for the entire VNLE is given by

CCV NLE = CCCDC−FDE + CCnonlin (3.29)
= 4(log2NFFT + 1)K +NspanK(4log2NFFT + 12.5). (3.30)

Let us take the example of DP-16QAM at 32 GBaud over 14 × 100 km of SSMF. The
computed CC of the FDE-CDC, the Asymmetric DBP (Manakov-PMD) at 1, 2, 3, and 10
StPS, and the VNLE are shown in Fig. 3.24. We also measured the processing time of each
method for the entire link for a total of 2 · 106 samples 3. The RMpS and the processing time
are normalized to 1 for the CDC, assuming that the CDC algorithm exactly corresponds to the
measured processing time. We also show the ratio with respect to the CDC for each method for
both RMpS and processing time.
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Figure 3.24 – Computational complexity (CC) in RMpS and processing time in Logarithmic scale.

We notice a good correlation between the estimated CC in RMpS and the measured pro-
cessing time. The differences are related to the additions, exponential functions, and other
operations performed by the processor that we did not take into account in our estimations.

This figure shows that the method with the lowest CC after the CDC is the DBP 1 StPS
and the VNLE. However, these methods are still ∼ ×15 more computationally expensive than
the CDC. We highlight that the CC of the DBP and the VNLE could both be optimized, as
proposed in some works, e.g., in [3], proposing working at the symbol rate reducing to the half
the VNLE CC, in [112], where the authors proposed cascade structures for complexity reduction,

3. Using the python package “time” in a desktop with an Intel Xeon 3.60 GHz 8-core processor and 32GB
RAM.
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or as in [107] that proposed to work in span per steps (a single step covering more than 1 span),
instead of steps per span.

3.3 Experimental Setup

The experimental setup of a SC-DP coherent transmission system is depicted in Fig. 3.25.
A DP transmitter generates data from an Arbitrary Waveform Generator (AWG) at 92 GSa/s.
In our setup, the AWG generates 16QAM symbols at a symbol rate of 32 GBaud, which are
generated through several Pseudo-Random Binary Sequences (PRBS) that were Gray encoded.
These symbols are band-limited by a pulse shaper RRC digital filter using a roll-off factor equal
to 0.2 and conveniently oversampled to achieve the sampling rate of the AWG, i.e., 92 GSa/s.
The four electrical signals XI, XQ, YI, and YQ, corresponding to the I and Q components of
polarizations X and Y, are amplified by linear RF drivers. The amplified RF signals feed the two
IQ modulators. An ECL at 1550.12 nm with ∼100 KHz linewidth feeds the modulators. The
modulated optical carriers, corresponding to the two polarizations, are then combined using a
PBC. The dual-polarization optical signal is conveniently amplified to reach the desired power
level. The Channel Under Test (CUT) at 1552 nm is multiplexed with a wavelengths comb
with the purpose of equalizing the optical line. A Waveshaper filter cancels each of the two side
channels to simulate a single-channel configuration.

Figure 3.25 – Experimental setup with the DP Transmitter, the optical fiber consisted of Nspans× 100 km spans of
SSMF, the DP receiver, and the Offline-DSP. AWG: Arbitrary Waveform Generator, ECL: External Cavity Laser,
PBC: Polarization Beam combiner, vOA: Variable Optical Attenuator, EDFA: Erbium-Doped Fiber Amplifier,
OSA: Optical Spectrum Analyzer, PC: Polarization Controller, PBS: Polarization Beam Splitter, LO: Local
Oscillator, BPD: Balanced Photo-Detectors, DSO: Digital Storage Oscilloscope.

The optical fiber link comprises several spans of SSMF with a span length of 100 km. After
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each span, the optical signal is amplified using EDFAs, with NF = ∼4.5 dB, to compensate for
the span loss entirely.

At the receiver side the CUT is filtered. The dual-polarization coherent receiver splits the
filtered signal into two orthogonal polarizations using a polarization beam splitter Polarization
Beam Splitter (PBS). A polarization controller Polarization Controller (PC) is added for eventu-
ally aligning the X and Y polarization of the signal on the PSPs of the PBC. A LO, with similar
parameters of the transmitter laser source, feeds the two 90◦ Hybrids that separate the I and
Q components of both polarizations X and Y. Subsequently, four BPD convert the optical sig-
nals into electrical signals containing the amplitude and phase information. The four electrical
signals are then sampled and digitized using ADC embedded in a Digital Storage Oscilloscope
(DSO) operating at 80 GSa/s. The signal is subsequently processed using an offline DSP.

In Fig. 3.26 and 3.27, we show some pictures of the experimental setup.

Figure 3.26 – (a) Filtered CUT at 1552 nm at the receiver observed in the OSA, (b) general view of the DP-TX
and DP-Coherent RX comprising the AWG which generates DP-16QAM modulated samples at 92 GSa/s, the
ECL with a low-noise EDFA, the DP-IQ Modulator, an optical switch to select the number of fiber spans and
the PC, (c) OSA showing the wavelengths combs multiplexed with the CUT with two aside channels off, (d)
DSO operating at 80 GSa/s to recover the XI, XQ, YI, and YQ components, (e) workstation with the Keysight
software and the MATLAB programs for offline DSP.

3.3.1 Optical Back-to-Back

We carried out optical BtB measurements to characterize the performances of our setup, in
particular, the required OSNR (ROSNR) to achieve a typical FEC threshold ∼ 1 × 10−2 for a
DP-16QAM.

The Offline-DSP underwent retiming and resampling to convert the sampling frequency from
80 GSa/s to 128 GSa/s, which is four times the original symbol rate of 32 GBaud. The data
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Figure 3.27 – (a) AWG at 92 GSa/s, DP-IQ modulator and DSO operating at 80 GSa/s, (b) Spools of 100-km of
SSMF and EDFA after each span.

was then filtered using an RRC digital filter with the same parameters as those used in the
transmitter. Subsequently, we separated the two polarizations using a 2×2 MIMO equalizer in
conjunction with an FSE to recover the signal at the symbol rate, and using sequentially the
CMA and RDE. This processing was followed by estimating the frequency offset and the carrier
phase. The results are shown in Fig. 3.28, where we added the theoretical BER using (A.13)
and (A.16) for the recovered OSNR values.
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Figure 3.28 – Back-to-Back DP-16QAM 32GBaud.
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3.3.2 Optical Fiber Transmission

In addition to the DSP algorithms conducted in the BtB scenario, the DSP must perform
channel equalization. Consider only CD compensation after the RRC filter and before the 2×2
MIMO equalizer.

Fig. 3.29 displays the signal constellations for X and Y polarizations and the power spectral
density (PSD) for the DP-16QAM signal that was transmitted over 5 × 100 km of SSMF, after
each DSP block.

(a) PSD after CDC, P/ch = -3.5dBm. (b) PSD after CDC, P/ch = 0.5dBm. (c) PSD after CDC, P/ch = 3.5dBm.

(d) MSE using the 2×2 MIMO eq.
(µ = 10−4), P/ch = -3.5dBm.

(e) MSE using the 2×2 MIMO eq.
(µ = 10−4), P/ch = 0.5dBm.

(f) MSE using the 2×2 MIMO eq.
(µ = 10−4), P/ch = 3.5dBm.

(g) IQ diagram after MIMO eq., P/ch
= -3.5dBm.

(h) IQ diagram after MIMO eq., P/ch
= 0.5dBm.

(i) IQ diagram after MIMO eq., P/ch
= 3.5dBm.

Figure 3.29 – DSP results of a DP-16QAM signal constellations after 5x100 km SSMF: X-Pol (blue), Y-Pol (red).
CDC: Chromatic dispersion Compensation, MSE: Mean Squared Error, MIMO: Multiple-Input-multiple-output,
CFOC: Carrier Frequency Offset Compensation, CPE: Carrier Phase Estimation.

To evaluate the overall performance of our system, we computed the BER after decoding
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(j) IQ diagram after CFOC, P/ch =
-3.5dBm.

(k) IQ diagram after CFOC, P/ch =
0.5dBm.

(l) IQ diagram after CFOC, P/ch =
3.5dBm.

(m) IQ diagram after CPE, P/ch =
-3.5dBm.

(n) IQ diagram after CPE, P/ch =
0.5dBm.

(o) IQ diagram after CPE, P/ch =
3.5dBm.

Figure 3.29 – DSP results of a DP-16QAM signal constellations after 5x100 km SSMF: X-Pol (blue), Y-Pol (red).
CDC: Chromatic dispersion Compensation, MSE: Mean Squared Error, MIMO: Multiple-Input-multiple-output,
CFOC: Carrier Frequency Offset Compensation, CPE: Carrier Phase Estimation (cont.).

the sequence of processed symbols. Fig. 3.30 displays the BER while varying the optical launch
power P/ch for DP-16QAM 32GBaud over a distance of 5x100 km of SSMF.
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Figure 3.30 – BER vs. P/ch of experimental DP-16QAM 32 GBaud signal over 5x100 km of SSMF.
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3.3.3 Nonlinearity Compensation

Proceeding similarly to in Section 3.2, we have performed nonlinearity compensation using
the DBP and the VNLE. Both techniques necessitate the optimization of a parameter that we
called ξ, which is the nonlinear rotation parameter.

The DBP necessitates specifying the number of steps per span (StPS). Since we aim at
reducing the complexity algorithms, we choose 1 and 2 StPS and 10 StPS only as reference. We
try both the symmetric and asymmetric DBP and choose the one that provides better results.
In particular, at 1 StPS, the asymmetric version works better, being the opposite for more than
1 StPS. Notice that similar observations were made in our numerical setup. The results are
shown in Fig. 3.31.
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Figure 3.31 – BER as a function of the P/ch and the nonlinear rotation parameter ξ using the CDC and the DBP.

We notice an increment in the optimal power, i.e. the optical launch power at which we
obtain the lowest BER, from 0.5 dBm with CDC to 1 dBm using DBP-1StPS and 1.5 dBm using
DBP-2StPS. Using a DBP-10StPS increments the optimal power to 2 dBm. The log(BER) also
decreases from -3.2 to -3.3 in the optimal power using DBP-1StPS and to -3.4 and -3.7 using
DBP-2StPS and DBP-10StPS, respectively.

Concerning the VNLE, its implementation also needs to set a parameter ξ. We selected a
P/ch = 2.5 dBm to find the optimal ξ. Using this optimal value, we calculated the BER for
different launch powers. Fig. 3.32 shows these results. In this case, the optimal power increases
up to 1 dBm with a log(BER) improvement from -3.2 to -3.4 in the optimal power.

Combining the results from the DBP and the VNLE (Fig. 3.33), we can observe that the
performance of the VNLE is very similar to that of a DBP 1 StPS. However, as we have seen
in Section 3.24, the DBP 1 StPS performs slightly fewer multiplications than the VNLE as well
as a lower processing time (without considering optimized versions).
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Figure 3.32 – BER as a function of the P/ch and the nonlinear rotation parameter ξ using the CDC and the
VNLE.
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Figure 3.33 – Results of experimental DP-16QAM 32 GBaud signal over 5x100 km of SSMF using the DBP and
the VNLE. Dash-dot lines: interpolation curves.

3.4 Summary

This chapter has covered the DSP embedded in modern transceivers. Through numerical
simulations, we have introduced several DSP algorithms for channel equalization, particularly
for Chromatic Dispersion (CD), and adaptive algorithms to address time-varying impairments
such as the Polarization Mode Dispersion (PMD) and laser phase noise. We have also presented
DSP algorithms for Carrier Frequency Offset (CFO) compensation and Carrier Phase Recovery
(CPR). Using a DP-16QAM at 32GBaud, over 14 × 100 km of SSMF, we have illustrated the
different steps to achieve signal reconstruction to recover the original transmitted bits.

For long transmission distances for higher OSNR values, we have seen that the Nonlinear
Impairments (NLI) lead to performance degradation, affecting the quality of the transmission.
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To tackle this issue, we have used the Digital Backpropagation (DBP) and the Volterra Nonlinear
Equalizer (VNLE). We have observed that these algorithms permit to effectively mitigate the
NLI, mainly a DBP with more than 2 Step per Span (StPS) and a VNLE with similar results
than a DBP at 1 StPS. However, both require a knowledge of the optical fiber parameters as
well as the span length and input channel power, which in reality is very challenging to know
with exactitude. Additionally, the Computational Complexity attributed to these methods is
still very high for real-time scenarios.

Using an experimental setup consisting of a DP-16QAM at 32GBaud over 5 × 100 km of
SSMF, we obtained the detrimental effects of NLI for high input power channel and that the
capabilities of the DBP and VNLE diminish when we do not have a total knowledge of the
optical link. Even so, in an the experimental setup we account with more information than in
a field trial or operative optical links.

Consequently, this study motivated us to study other alternatives for NLI compensation.
Specifically, Neural Networks are promising techniques, as many studies also suggest. The next
chapter is dedicated to the study of NN for NLI compensation in long-haul and high-data-bit-rate
coherent systems.
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Chapter 4

NEURAL NETWORKS BASED NONLINEAR
EQUALIZERS FOR OPTICAL

TRANSMISSION SYSTEMS

In this chapter, we investigate the utilization of NN for channel equalization in optical
transmission systems. Specifically, to compensate for NLI. Indeed, we have seen that classical
deterministic techniques such as the DBP and the VNLE permit to compensate for the dis-
persion and NLI jointly, but with a prohibited additional complexity that dissuades its ASIC
implementation. Also, in a real scenario, its efficiency is reduced and commonly not justified
for very small performance gains. Therefore, our objective here is to show how efficient and
relevant could be NN for optical channel equalization, considering a coherent system and over
long distances.

This chapter is composed as follows. In Section 4.1, we briefly introduce the fundamental
concepts of Machine Learning (ML), including the model selection, the model hyperparameters
tuning, and the learning process. Section 4.2 focuses on Neural Networks, where we present the
artificial neuron model and the Multilayer Perceptron Neural Network. Section 4.3 is dedicated
to NN based models employed in NLI compensation, where we present the state of the art,
followed by practical implementations of NN that we employ in the numerical and the exper-
imental setup. Section 4.4 ends the chapter by highlighting the observations and conclusions
made in our study.

4.1 Fundamentals of Machine Learning

Frequently, ML and Deep Learning (DL) are two terms used indifferently for the same
concept. However, these terms have different significance [29]. On the one hand, the ML
encompasses the abilities of a machine 1 to learn how to do some specific task by itself, based
on experiences[29]. The key terms here are by itself, making the difference with programmed
machines, and based on experiences, which was a novel manner of learning for machines [113].

The characteristic of self-learning by experience is possible due to a first step called the
Training phase, in which the algorithm creates a model using multiple examples that consist
of pairs of inputs and expected results or targets. An input is a composition of features that
represent the data. For instance, if the input is an image, the features are the pixels (in numerical
representation) that conform to the image. Once the ML algorithm has learned the association
input-target, we can use this model to classify or predict an outcome given input without giving

1. “Machine” according to the Merriam Webster dictionary: a mechanically, electrically, or electronically
operated device for performing a task.
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any additional instruction to the machine. This phase is called Testing or Evaluation [28].
Because the expected targets dictate the learning process, this learning approach is called

Supervised Learning. Examples of supervised learning are those that perform Classification and
Regression. In classification, the goal of the ML algorithm is to assign a category or class to
each input, generally expressed in probabilistic terms, while in regression, we aim to predict a
numerical value given some input. [28], [29].

In some problems, the targets are unknown. In those scenarios, an ML algorithm performs
Unsupervised learning because no targets address the training process. Examples of unsuper-
vised learning tasks are clustering [114], [115], which consists of grouping elements in clusters,
knowing only the features that compose the inputs. Another example is anomaly detection [116],
in which the goal is to efficiently identify the outliers that perturb data.

There are other learning algorithms, such as semi-supervised, in which a part of the dataset
is labeled, and the remaining part is not, and reinforcement learning, which is based on awards
and penalties received by an agent during the learning [29].

On the other hand, DL is a concept of learning in which a model could learn representations
of data using multiple levels of abstraction, making it possible to solve complex problems using
simpler representations. A teaching example is the image recognition problem, where an image
is decomposed into small pieces (pixels). The first level of representation is related to shared
characteristics, perhaps understandable to human eyes. A second level finds some patterns like
colors or shapes, a third level finds objects like faces or wheels, and a final level represents the
recognized object [117].

Finally, NN is a ML model that mimics the living being brain. For this reason, NN are also
known as Artificial NN. In this work, we use only the term NN for Artificial NN without any
ambiguity. We delve into the concept of NN in Section 4.2, but essentially, a NN is a composition
of neurons, also called units, in which each neuron performs a mathematical operation in their
inputs giving as a result an output that is sent to another neuron. The neurons are organized
in layers. A deep NN comprises multiple layers using the concept of Deep Learning.

4.1.1 Model Selection

An ML model is chosen to provide good results in an unseen dataset, known as a testing
dataset. Previously, the model is trained with several samples using a training dataset through
supervised or unsupervised learning. We typically calculate the error function between the
expected result, which is explicit in supervised learning and must be estimated in unsupervised
learning, and the prediction. A good model can give good predictions in both training and
testing datasets, an ability of the ML model called Generalization [29].

A good practice involves considering three different independent datasets for training, vali-
dation, and testing. The difference in concepts between validation and testing is minimal. Both
are unseen datasets not employed for training the ML algorithm, but validation is used for
predictions during the learning process, while testing is used out of the learning stage [29].

When the ML model performs well in the training dataset only, incapable of giving good
predictions in the validation dataset, we say it occurs Overfitting. On the contrary, Underfitting
occurs when the model cannot provide good results in the training dataset. We look for a
model that could perform well in both training and validation datasets, and the latter generally
will also provide good results in a testing dataset if training and validation are different and
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independent [28].
This desired situation necessitates choosing an adequate model with sufficient capacity to

perform the particular task correctly. Sometimes, the complexity of the model requires a more
extensive variety of datasets. In such cases, the Cross-Validation technique is beneficial. This
technique consists of splitting the whole available dataset into K folds or groups, where K − 1
folds are used for training and the remaining for validation. This process is repeated K times,
where at each time, a different fold is used for validation [28].

4.1.2 Learning Process

We have mentioned that a good model can generalize the results of the ML algorithm in
training, validation, and testing datasets. We will see that the error function is also used to
train the ML algorithm.

The learning process consists of adapting or optimizing the parameters of the ML model.
The learning process differs from the hyperparameters tunning, in which we defined a set of
hyperparameters to train the model. The parameters of the ML algorithm are a set of values
(specifically weights and bias of each unit or neuron) learned during the learning process.

The objective of the learning process consists of finding the set of parameters, symbolized as
θ, that permits obtaining an output as close as possible to the expected result or target. More
formally, let us represent the difference between the output and the target as a loss function
l(y,ytrue), where y is the output and ytrue is the target. To find the optimal θ, we define a
loss [35]:

L(θ) = E[l(y,ytrue)]. (4.1)

Common loss functions are listed in Table 4.1 [118]:

Table 4.1 – Loss functions.

Task Name l(y,ytrue)
Regression Square Loss (y− ytrue)2

Regression Absolute Loss |y− ytrue|

Regression Huber Loss

{1
2(y− ytrue)2 , if |y− ytrue| < δ

δ|y− ytrue| − 1
2δ

2 , otherwise
where δ > 0

Classification Sigmoid
Cross-Entropy Loss

−logp̃, where p̃ =
{
p , if y = 1
1− p , if y ̸= 1

p = σ(f(x)) = 1
1+e−f(x) ,

where σ is the sigmoid function

Classification Softmax
Cross-Entropy Loss −logP (y|x), where P (y|x) = efy(x)∑

k
efk(x)

The matter now becomes an optimization problem with an objective function minimizing
the loss L(θ). One common approach to this optimization problem is the Stochastic Gradient
Descent (SGD) and its variants. In this context, the SGD to find the optimal set θ that minimizes
the loss L(θ) is described by:
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θ ← θ − ε∇θL(θ), (4.2)

where ε is known as the Learning Rate and ∇θ is the gradient with respect to θ.
As the reader could confirm, there are no novel theoretical notions concerning previous

knowledge from optimization techniques based on SGD used in classical adaptive algorithms, as
the ones presented in 3.1.2. The key differences rely on the following. In the adaptive algorithms,
the updating is performed sample by sample with instantaneous derivatives of the error with
respect to the parameters that we want to optimize. In NN, the optimization is commonly
performed in a group of examples known as mini-batches. In NN, depending on the mini-batch
size, there are three types of Gradient Descent algorithms: i) Deterministic or Batch Gradient
Descent, for a mini-batch size equal to the entire dataset known as Batch, ii) Stochastic or Online
Gradient Descent, for a mini-batch size equal to one example, and iii) Mini-batch Stochastic
Gradient Descent, for a mini-batch greater than one but lower than the entire dataset. Due to
computational efficiency reasons, Batch Gradient Descent is rarely performed, mainly for large
datasets, and Online Gradient Descent could also take a lot of time. For these reasons, the
Mini-batch Stochastic Gradient descent is commonly utilized and very frequently simply called
Stochastic Gradient Descent. Also, frequently, a mini-batch is simply termed a Batch.

Alternatively, modern optimizers utilize SGD with some modifications, e.g., ADAM opti-
mization uses adaptive estimates of the first and second-order moments of the gradient [119].

Another difference of the objective function minimization in NN with respect to classical
adaptive algorithms is the notion of Backpropagation. Indeed, an NN performs a two-step
procedure: forward propagation and backward propagation or Backpropagation. On one hand,
the forward propagation aims to calculate the output value and the loss. On the other hand, the
Backpropagation aims to update the parameters θ using the gradient ∇θ. With this aim, the
forward and backpropagation act consecutively mini-batch per mini-batch. The NN completes
one Epoch when all the mini-batches complete this process

Finally, in NN, the optimization step is performed in a training dataset, in which the SGD
algorithm acts to find the optimal set θ. However, the ultimate goal of a NN is not to find
the optimal θ but to obtain an output y = f(θ,x) as closest as possible to the true y in
a new and unseen dataset (testing dataset). This is clearly different from classic adaptive
algorithms in which the optimal parameters are used to find the expected final outputs, i.e.,
no distinction between training or testing datasets. There is also a third dataset (Validation
dataset), commonly considered an intermediate dataset, which is used to test an unseen dataset
during the training. Still, it does not participate in the optimization step.

An ML algorithm is defined by a set of hyperparameters that controls the ML behavior
and that is used for the learning process but not learned from the ML algorithm. The type
of hyperparameters are vast, e.g., number of layers in deep NN, number of units or neurons in
a single layer, kernel size in a convolutional layer, number of hidden units in a recurrent NN,
number of trees of the random forest algorithm, etc. The learning rate, mini-batch size, and
number of epochs are also considered hyperparameters because they control the learning process
[29]. Finding the most suitable set of hyperparameters is not a trivial task and must not be
overestimated, especially in optical communications, where the accuracy is very high 2. A wrong

2. Most operational preFEC-BER thresholds ranging from ∼ 10−3 to ∼ 10−2 in current coherent transceivers
[120], i.e. accuracy ranging from 99% to 99.9%.
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choice of hyperparameters could also lead to poor generalization (overfitting).
The following section is dedicated to some techniques for hyperparameter selection.

4.1.3 Hyperparameters Tuning

There are several hyperparameter tuning approaches. Depending on the complexity of the
ML algorithm and the amount of hyperparameters to be optimized, we can opt for one of these:

• Grid Search
• Random Search
• Bayesian Optimization
• Tree-structured Parzen Estimators

Grid Search

This technique is based on an exhaustive search of hyperparameters by taking all the possible
combinations of hyperparameters in the search space. This technique is recommended for a small
search space because the time to compute all the combinations could explode if the search space
becomes too large.

Random Search

Instead of considering that all combinations have the same probability of occurrence on the
search space, we could assign pre-defined probabilities of occurrence to determined combinations.
In this way, only the most probable candidates in the search space will be tested. This technique
is called Random Search and could be seen as an improvement of the Grid Search.

Bayesian Optimization

The hyperparameters search could also be seen as an optimization problem [29]. In this
optimization problem, we aim to get the minimal target y, given a set of hyperparameters x
using the objective function p(y|x). This method is called Bayesian Optimization (BO). With
this method, the hyperparameters search is based on two principal components: a surrogate
model to model an objective function and an acquisition function to select the next set of
candidates. The surrogate model is usually modeled as a Gaussian process, and the acquisition
function is a function that measures the error with respect to the expected results.

Tree-structured Parzen Estimation

The Tree-structured Parzen Estimation (TPE) [121] is a variant of BO. Still, instead of
relying on a Gaussian process in the form p(y|x) as the BO does, the TPE estimates p(x|y)
using non-parametric densities. The TPE estimates p(x|y) using:

p(x|y) =
{
g(x) if y > y∗,
b(x) otherwise,

(4.3)

69



Chapter 4 – Neural Networks Based Nonlinear Equalizers for Optical Transmission Systems

where g(x) stands for good distribution of the hyperparameters x in which we obtain the best y
given a threshold y∗, and b(x) for bad distributions of the hyperparameters x in which we obtain
the remaining y. The next combination x results form argmaxxg(x)/b(x). The distribution g(x)
and b(x) are obtained using Parzen Estimators, also known as Kernel Density Estimators.

Whatever the hyperparameter tuning method is selected, we must perform a learning process
to obtain the accuracy metric. The next section describes the learning process in detail.

4.2 Neural Networks

In this section, we focus on deep artificial NN, i.e., NN built with multiple layers, where each
layer performs a specific task going from simpler to complex representations. We use the term
NN for deep artificial NN for simplicity.

The concept of NN comes from the human brain’s understanding. According to [122], “A
neural network is a massively parallel distributed processor made up of simple processing units,
which has a natural propensity for storing experiential knowledge and making it available for
use”. This processing units are called Neurons or Perceptrons. The idea behind this concept is
that each neuron processes a certain amount of information and sends it to another neuron, as
the actual brain does [28], [122].

4.2.1 Single Artificial Neuron Model

The type of processing a neuron completes is generally divided into a linear operation followed
by a nonlinear function, as most problems are not purely linear. Fig. 4.1 depicts the model of
an artificial neuron.

...

Inputs
Weights

Activation
Function Output

Bias

Adder

Neuron k

Figure 4.1 – Artificial neuron model.

Specifically, consider a neuron k, which receives information from m inputs. Each input is
weighted by a factor ωkm where k specifies the neuron number and m is the input number.
The significance behind each weighting factor is the characterization of the strength of each
input. The resulting m products are linearly combined. A bias bk is added to this weighted
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sum to adapt the value for the following activation function. This latter transforms the linear
combination using a nonlinear function. The outcome yk is the output of the neuron k [123].

The neuron model illustrated in Fig. 4.1 is equivalent to a row ωk and vector x⊺ multiplica-
tion plus a bias bk with a piece-wise nonlinear function ϕ at the end, as follows:

uk = ωkx⊺ + bk, (4.4a)
yk = ϕ(uk), (4.4b)

where ωk = [ωk1, ωk2, ..., ωkm] is the set of weights ωkm for each input xm, x = [x1, x2, . . . , xm]
is the set of m inputs, bk is a bias, uk is a linear combination and yk is the output.

The purpose of a nonlinear activation function is to assign more or less importance to this
output. Commonly utilized functions are the hyperbolic tangent (Tanh), the Rectified Linear
Unit (ReLU), and the Sigmoid. These familiar nonlinear functions are depicted in Fig. 4.2.

(a) Hyperbolic Tangent (Tanh). (b) Rectified Linear Unit (ReLU). (c) Sigmoid.

Figure 4.2 – Common nonlinear activation functions.

These nonlinear functions are defined as follows:

Tanh(u) = exp(u)− exp(−u)
exp(u) + exp(−u) , (4.5a)

ReLU(u) = max(0, u), (4.5b)

Sigmoid(u) = 1
1 + exp(−u) . (4.5c)

4.2.2 Multilayer Perceptron

An MLP is a kind of NN whose neurons are stacked in layers. An MLP is composed of
more than one layer. These layers are “dense” because their neurons are “fully connected” to
the neurons of the precedent and subsequent layers [29]. Therefore, they are also called Dense
Neural Networks or Fully Connected Neural Networks. Fig. 4.3 shows the MLP architecture
using four layers.

The first and final layers are called the Input and Output layers. The layers in the middle
are called Hidden layers because they are not visible from the outside of the MLP (consider the
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Figure 4.3 – Multiplayer Perceptron.

MLP as a “black-box”). Each circle represents a neuron that performs the operations illustrated
in Fig. 4.1.

In the following, we use the following notations:
• Superscript (i) denotes the i-th training sample.
• Superscript [l] denotes the l-th layer.
• m is the number of examples. This is not shown in Fig. 4.3.
• Ni is the input size. Ni = 3 in Fig. 4.3.
• No is the output size. No = 2 in Fig. 4.3.
• N

[l]
h is the number hidden units of the layer l. N [1]

h = 5, N [2]
h = 4 in Fig. 4.3.

• L is the number of layers. L = 4 in Fig. 4.3.
• a

[l]
k is the output of the k-th neuron in the l-th layer.

By convention, the neurons of the input layer take the training samples, i.e., a[0] = x, and
the output of each hidden unit, similarly to (4.4), is given by,

a
[l]
k = ϕ[l](ω[l]

k (a[l−1])⊺ + b
[l]
k ). (4.6)

The nonlinear activation function is assumed to be the same for all neurons in the same
layer. Although there are no specific restrictions on this, it is a common practice for simplicity.

A layer with identical activation functions for all neurons is equivalent to,

a[l] = ϕ[l](W[l](a[l−1])⊺ + b[l]), (4.7)

where a[l] is the vector outputs of layer l, ϕ[l] is the piece-wise nonlinear activation function,
W[l] is the n[l]

h × n
[l−1]
h weight matrix whose rows are the weight vectors corresponding to each

neuron, and b[l] is the bias vector of the l-th layer.
Consider now an MLP composed of L layers. The reader could verify that the final output

y is calculated through the following steps:
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a[0] = x, (4.8a)
a[1] = ϕ[1](W[1](a[0])⊺ + b[1]), (4.8b)
a[2] = ϕ[2](W[2](a[1])⊺ + b[2]), (4.8c)

...
a[L−1] = ϕ[L−1](W[L−1](a[L−2])⊺ + b[L−1]), (4.8d)

y = a[L−1]. (4.8e)

Or equivalently,

y = f(x; θ), (4.9)

where f represents the successive linear and nonlinear operations from the input layer to the
output layer, and θ is the set of all weight matrices W[l] and vector bias b[l] for 1 ≤ l < L, given
by:

θ = W[1],b[1], ...,W[L−1],b[L−1]. (4.10)

The set θ is the set of parameters of the MLP.

4.3 Nonlinear Equalizers using Neural Networks

Having covered the fundamentals of NN, in this section, we aim to utilize the NN as nonlinear
functions for channel equalization, particularly in nonlinear equalizers. Indeed, unlike the DSP-
based algorithms such as the DBP or the VNLE, NN does not rely on specific physical models
or parameters [124]. For this reason, models based on NN are also called non-parametric NN.
This section starts with a brief presentation of the state of the art in nonlinear equalizers using
NN for compensating fiber nonlinearity. Subsequently, we present our implementations using
the use cases described in Section 3.1.5.

4.3.1 State of the Art

The number of research works that have investigated the use of NN for fiber nonlinearity
compensation has continued growing in the last decade (with ∼ 14 published papers in 2014
and ∼ 313 in 2023), as shown in Fig. 4.4).

The early stage of these investigations was more focused on IM/DD and Orthogonal Fre-
quency Division Multiplexing (OFDM) systems. In [125], it was numerically proved that an
NN, in this work a single nonlinear layer, was able to perform similarly than a VNLE, and
even more, slightly better for high data bit rate scenarios. In [126], the authors completed the
study using an experimental setup. In [127], it was presented a classifier NN capable of handling
nonlinearities in an IM/DD experimental setup for short distances. An interesting study of pos-
sible pitfalls when using NN in optical communications is presented in [128], having as a study
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Figure 4.4 – Estimation of published papers on optical fiber nonlinearity compensation/mitigation using neural
networks. Source: Google Scholar *up to May 2024.

case the IM/DD system. Also, in [129], it was experimentally shown that an NN performing
classification can compensate for fiber nonlinearity in IM/DD systems in short distances.

Focusing on coherent optical transmission systems has been intensive research in this area
in recent years, as shown in Fig. 4.4. Some studies have dedicated their efforts to summarize
the recent advances in this topic, for instance, in [130], [131]. In this part, we present a general
review of the progress of this topic from 2018 up to now. Table 4.2 presents some of the most
relevant and impressive studies we could observe. We have chosen four criteria to distinguish
each other: SC or WDM channels, NN type, Regression or Classification tasks, and Simulation or
Experimental setups. We have also indicated the physical channel model considered in numerical
studies or even for the NN architecture building phase.

Table 4.2 – Summary of most relevant and impressive studies that covered fiber nonlinearity compensation using
neural networks in coherent communications.

Ref Author (et al.) Year NN Reg/Class SC/WDM Physical Eq. Sim/Exp
[37] Sidelnikov 2018 MLP Reg. Both NLSE Sim.
[132] Kamalov 2018 MLP Reg. Both Exp.
[44] Schadler 2019 MLP Reg. SC (BtB) Exp.
[45] Zhang 2019 MLP Reg. Both Exp.
[38] Catanese 2020 MLP Reg. SC CNLSE Sim.
[40] Deligiannidis 2020 LSTM Reg. Both Manakov Sim.
[124] Koike-Akino 2020 DNN-TEQ Class. WDM Sim.
[133] Nguyen 2021 MLP Reg. SC-PCS Exp.
[43] Freire 2021 MLP/Hybrids Reg. SC Manakov Both
[134] Kamiyama 2021 MLP Reg. SC Sim.
[135] Schadler 2021 MLP Class. SC Exp.
[39] Sidelnikov 2021 CNN Reg. Both CNLSE (WDM) Sim.
[136] Schadler 2021 biRNN Class. WDM Exp.
[137] Freire 2021 CNN + biLSTM Reg. SC Manakov Sim.
[138] Freire 2022 MLP, biLSTM Both SC Manakov Both
[139] Arguëllo 2022 MLP Reg. SC Manakov Both
[4] Diedolo 2022 MLP Reg. SC Exp.

[140] Li 2022 CNN Both Both Manakov Both
[141] Freire 2022 DCNN, biLSTM Reg. SC Manakov Both
[142] Ming 2022 biLSTM Reg. WDM Exp.
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We briefly describe these studies in the following, highlighting the essential findings and main
discoveries. We have grouped the studies in sections according to the NN type. Even so, some
of these works explored multiple kinds of NN for comparison purposes. In such cases, we have
indicated all the NN types in Table 4.2 (in the NN column) and also in the corp of the text.

Multilayer Perceptron

First NLI compensation techniques based on NN focus their attention on MLP since its
implementation is very straightforward. However, as the MLP acts as a black box, the choice of
hyperparameters was the first aspect that many works worried about. For instance, in [37], the
authors proposed an MLP, termed dynamic because the input collected some past symbols apart
from the Symbol of Interest (SOI) using delay blocks at the input. This approach was widely
adopted in posterior works as well. The hyperparameters optimization consisted of optimizing
the hyperparameters (specifically, the number of delay taps, the number of layers, and the
number of units per layer) one by one while keeping the others fixed. In this work, the MLP
showed to outperform a DBP 2 StPS in SC and WDM configurations using a DP-16QAM for
several spans of 100 km of SSMF. On the other hand, the optimal power is almost conserved,
contrary to the DBP case. The details of the DBP implementation were not provided, and we
believed that an optimized DBP could work significantly better.

In [132], it was experimentally demonstrated that an NN MLP could compensate for fiber
nonlinearity in transoceanic distances (∼ 11,017 km) in a live-traffic carrying cable. Using a
PCS 64QAM, a simple NN with two hidden layers and an input layer including supplementary
nonlinear features such as the IXPM and the IFWM triplets in the input layer, the NN was
capable of increasing the Achievable Information Rate (AIR) and the Q-factor in SC and WDM
systems.

In [45], the NN in [132] was optimized to provide good results with the lowest complexity,
which the latter was achieved by placing the MLP at the transmitter side. Also, the IXPM and
IFWM triplets, used in the training phase, are obtained using an averaging process of the ASE
noise and the interchannel nonlinearity in repeated sequences of training data.

In [44], the authors utilized the MLP to compensate for optical and electrical nonlinearities.
Using an experimental setup of a DP-16QAM 88 Gbaud and using pilot symbols for the adaptive
DSP algorithms, in a BtB scenario, the MLP showed a better performance than the VNLE. Also,
this work noticed that an MLP that jointly compensates for the I and Q components is slightly
worse than an MLP that processes I and Q independently. This last finding was not observed
in successive works, and most of them prefer to utilize NN to compensate for the I and Q
components jointly and, even more, both polarization at once.

In [38], the authors explored the case of DP-16QAM 32Gbaud in 4 × 100 km of SSMF. In
this study, the authors consider as target data the received data in a configuration setup with
the nonlinear coefficient set γ = 0. This choice differs from similar works in which the target is
the transmitted symbol. They also showed that using a numerical and experimental setup, an
MLP working at 1 SpS after the phase recovery algorithm works better than after the MIMO
equalizer.

An interesting study was done in [124] about using Turbo Equalizer based NN for nonlinearity
compensation. This novel approach replaces the BCJR equalizer, which performs nonlinear
equalization, by a deep NN, which, in addition to the binary information corresponding to the
QAM symbols, is fed with the Forward Error Correction (FEC) soft output to enhance accuracy.
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The results showed an improvement on the AIR with respect to linear equalization and classical
deep NN.

The combination of PCS and an MLP was also explored in [133], using DP-64QAM and
DP-256QAM. A short MLP with 24 input nodes, two hidden layers with ten units each and
with Tanh activation function, and an output linear layer with four units was employed in
these experiments. The performance gain was validated through the Mutual Information (MI),
observing that more robust shaping shows better performance gain than uniform and moderate
shaping.

In [43], the authors studied the MLP capabilities compared to other NN types. The trans-
mission scenario was a SC DP-16QAM 34.4 Gbaud over 9 × 50 of TWC fiber, which has a
reduced CD and a higher nonlinear coefficient than the SSMF. They showed that an optimized
MLP is adequate for limited available complexity, taking into account the limited performance
gains of an MLP with respect to the other tested NN. Also, an MLP with a different number of
hidden units per layer is more advantageous than with an equal number of units.

An interesting and innovative approach was presented in [134], which proposed adding ran-
dom phase noise (like the one produced in the transmitted laser and the LO) to the target
signal during the training phase. Indeed, the random phase noise could avoid the NN to learn
the deterministic phase noise generated by the NLI that is already challenging for the ASE
noise generated in the EDFA. Adding a random phase noise to the target permits the NN to
concentrate in deterministic NLI. The simulation results of an SC SP-16QAM 32Gbaud over
14 × 50 km of DSF show a good trade-off performance complexity using both real-valued and
complex-valued NN.

In [44], a classifier MLP was studied in a BtB configuration to handle optical and electrical
nonlinearities in high data baud rate systems, showing an improvement with respect to the
VNLE with still lower CC.

Recently, in [138], the authors highlighted some caveats and pitfalls when using NN based
nonlinear equalizers. Specifically, they employed an MLP and an bidirectional LSTM (biLSTM).
Important aspects were covered, such as the importance of uncorrelated training, validation,
and testing datasets or the use of large mini-batches during the training to account for a good
representativeness of the whole dataset. They also addressed the phenomenon observed in the
equalized signal constellations, which they called “jail window” pattern, which we extensively
covered in Chapter 5.

In [139], it has been demonstrated that a low-complexity NN using an MLP architecture
could be achieved using pruning and quantization techniques. The low-complexity NN was
implemented in hardware units and tested with numerical data, showing a significant reduction
in complexity without noticeable performance degradation.

In [4], the authors proposed a modified loss function based on the MSE called MSE-X,
capable of handling with the so-called “MMSE-scatterplot”, and experimentally tested using an
MLP. We delve further into this problem in chapter 5.

Convolutional Neural Networks

In [39], the authors proposed a deep CNN (DCNN). The proposed DCNN takes into account
SPM and XPM but not PMD or PSP rotation and was numerically tested in a WDM 11 ×
64 Gbaud DP-16QAM, 40 × 80 km SMF, processing an SC or five channels simultaneously.
The deep CNN consisted of linear layers based on FIR filters in cascade layer by layer, jointly
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optimized to compensate for the accumulated CD span by span, an approach very similar to
the one implemented into the VNLE. A customized nonlinear activation function based on
the nonlinear operator of the enhanced SSFM that considers neighboring samples, neighboring
spectral channels, and dual polarization. The DCNN performed better than the DBP at various
StPS with the same complexity. On the other hand, with the same performance, the DCNN is
much less complex than the DBP.

In [140], a CNN based on the perturbative analysis was used for NLI compensation and
tested in an experimental setup SC 120 Gb/s DP-64QAM and a numerical setup WDM 8x120
Gb/s, both over 5x75 km SSMF. The proposed method used a feature map of the received signal.
The results showed better performances than an MLP-based perturbative analysis method with
reduced CC.

In [141], the authors implemented a CNN and a biLSTM in an FPGA. Results showed Q
factor improvements of more than 1dB with numerical and experimental setups compared to
the CDC, while ×3 and ×2 more complexity using biLSTM and CNN, respectively. In this case,
the experimental setup consisted of a DP-16QAM 34Gbaud 17x70 km LEAF.

Recurrent Neural Networks

In [40] was explored an RNN of type Long Short-Term Memory (LTSM) and tested using
a DP-16QAM in C+O bands for several spans of 50 km. In SC, the LSTM showed similar
performances to the DBP 4 StPS. In WDM, the LSTM outperformed DBP 6 StPS. The LSTM
proved to be more efficient in WDM than in SC scenarios. Also, the LSTM was tolerant to
power variations and modifications of neighboring channel modulation formats. Finally, in the
computational complexity analysis, the LSTM seemed more efficient than the DBP for long
distances (> 1000 km).

Also, in [136], the authors proposed a bidirectional RNN (biRNN) capable of leading with
nonlinear ISI generated in high-speed data transmissions, for instance, in a DP-32QAM 92Gbaud
(800 Gb/s). The biRNN employed a final output dense layer to output m = 5 soft-bits. There-
fore, this biRNN performs a classification task and uses the binary cross-entropy loss function,
showing that this function is optimal as it maximizes the achievable information rate. Using a
data-aided approach with pilot symbols in the experimental setup, the authors demonstrated the
superior performance of the biRNN against a classical MLP in a WDM 5 × 96Gbaud DWDM
transmission over 6×100 km of G.654D fiber.

A modified biLSTM called co-LSTM for center-oriented LSTM was proposed in [142] and
tested in a WDM 10×64Gbaud 16QAM 20×80 km SSMF. The co-LSTM utilizes a mechanism
called “recyling mechanism”, which allows complexity reduction. The co-LSTM is at the end
of the DSP stack, working at 1 StPS. The training and testing datasets were small, with only
2 · 104 and 2 · 105 symbols and mini-batches of 60 symbols. The co-LSTM showed similar results
of a DBP 1 StPS but with ∼ less 70% of real multiplications per bit, which was notable.

Hybrid Neural Networks

Combining different NN architectures to handle the residual CD and the NLI has been
another methodology explored in several works. For instance, in [43], the authors employed a
CNN as a pre-processor to extract the most relevant features for subsequent processing using an
MLP or a biLSTM, indicating that these combinations show better performances than a deep
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CNN alone. The transmission scenario was a SC DP-16QAM 34.4 Gbaud over 9 × 50 of TWC
fiber. However, these combinations are hungry resources with a large number of parameters
required to achieve such good performances.

The Transfer Learning (TL) technique was also explored in [137] under various transmission
numerical setups. The objective was to demonstrate the capabilities of TL under changes in fiber
type, symbol rate, launch power, and modulation formats. The numerical setup consisted of a
DP-16QAM 34.4 Gbaud over 18×50 km of SSMF and 9×50 km of TWC. The authors employed
a CNN followed by a biLSTM. The main finding could be summarized as follows: 1) changes
in launch power and symbol rate necessitate a small number of epochs to be retrained with
a smaller quantity of training data, and 2) changes in modulation formats do not necessitate
retraining by TL as soon as the other parameters remain constant. Also, the TL proved to be
more effective when the scenario moves from the higher nonlinearity to the lower one.

4.3.2 Implementation and Tests using a Numerical Setup

In order to understand the capabilities of NN as nonlinear equalizers, we use the numerical
scenario presented in Section 3.1.5, i.e., including the impairments induced by the optical fiber
as CD, PMD, and NLI, but also the ones due to inherent imperfections of optical devices such
as the CFO and the LPN.

We started our investigation with an NN processing samples at one SpS after the Carrier
Phase Recovery (CPR) algorithm. The Fig. 4.5 depicts the DSP algorithm stack, including the
NN-based nonlinear equalizer.
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Figure 4.5 – DSP with NN nonlinear equalizer after the CPR algorithm.

The choice to place the NN after the CPR is motivated by the following reasons: i) The
CD and PMD for the entire link are assumed to be already compensated, reducing the channel
memory due to the ISI that provokes pulse overlapping. ii) The two polarizations are already
separated, permitting a lower complexity NN (similar to a single polarization case), iii) An
optimal downsampling based on the FSE algorithm has permitted to obtain samples at one SpS
also reducing the processing load for the NN, iv) The CFO and random phase fluctuations due
to the laser phase noise are already compensated, allowing a focus in deterministic nonlinear
phase noise.

However, there are also some drawbacks to this approach: i) no considerations about the
interplay between the CD, PMD and the NLI since they act together as described in Section 2.4,
ii) the algorithms such as the adaptive equalization, CFO estimation, and CPR are commonly
designed to work with compensated or neglected NLI, being not optimal when we account for
the NLI.
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In this first part, we prioritize the benefits of such a place for the NN (after the CPR) and
let the study of the position of NN for Section XX. Furthermore, an NN at the end of the DSP
chain, before decoding, could also be helpful for compensating all the residual impairments due
to non-sub-optimal DSP algorithms.

For the training and validation, we generated two different datasets using a pseudo-random
number of bit sequences for each polarization and dataset. The pseudo-random binary sequences
are generated using the Mersenne Twister generator [143] with a periodicity of 219937− 1 and is
the default generator in many programming tools, including Python and Matlab.

We focus our investigation on the simplest NN, the MLP, which theoretically could approx-
imate any nonlinear function provided that it has sufficient capacity and was adequately built
[123].

Data pre-processing for datasets building

In supervised learning, the training and validation datasets are constituted by an input X
and a target y 3. Depending on the NN position, X results from previous DSP techniques, and
y comes from the transmitted symbols. X is not directly the vector of complex symbols that we
denoted as a vector x, but a formatted representation of them. Specifically, the raw data from x
containing Nsymb complex symbols are first divided into its real and imaginary parts, giving as
a result a real-valued matrix of size (Nsymb, 2). At this part, the rows correspond to the Nsymb

symbols, and the features are the real and imaginary parts of these symbols, meaning that the
unique features that permit to characterize a symbol fully are their real and imaginary parts of
that symbol. As previous works show, in channels with memory (as the optical fiber), where a
symbol is perturbed by its neighboring symbols due to the interplay between the CD and the
NLI, we must consider the neighboring symbols as additional features for each symbol. Even if
the CD is digitally pre-compensated using DSP, we must consider the residual channel memory
due to this interplay. Thus, we accompanied each symbol by its N past and N future symbols,
separated into their real and imaginary parts, making a matrix of size (Nsymb − 2N, 2N + 1, 2).
When considering two polarizations, the matrix size becomes (Nsymb − 2N, 2N + 1, 4), where
the features of the second polarization are vertically stacked next to the features of the first
polarization. Therefore, the input X correspond to this matrix of size (Nsymb − 2N, 2N + 1, 4).
Similarly, the target y comes from the vector of complex transmitted symbols denoted by y.
Following the same reasoning as for the input, the target y has a size (Nsymb − 2N, 4).

In general, for a dual-polarization case, X has the size (Nsymb−2N, 2N+1, 2Polin) and y the
size (Nsymb − 2N, 2Polout), where Polin and Polout stand for 1 or 2 polarization considered at
the input. Clearly, when Polin = 1 then Polout = 1, but when considering two polarizations at
the input, we might be interested in obtaining only one polarization component (Polin = 2 and
Polout = 1) or the two polarizations components at the same time (Polin = 2 and Polout = 2).

Even more generally, we cannot limit ourselves to treating data at 1 sample per symbol but
with oversampled data. In this case, the input X size and the target y size become (Nsymb −
2N, 2N + 1, 2SinPolin) and (Nsymb − 2N, 2N + 1, 2SoutPolout), respectively, and where Sin and
Sout are the oversampling factor (samples per symbol) for the input and the target.

For training and validation datasets, the input X and target y are reshaped to a size
(NB, B, 2N + 1, 2SinPolin) and (NB, B, 2SinPolin), respectively, where NB is the number of

3. Conventionnaly, in machine learning, X and y are the denotations for the input and the target, respectively
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mini-batches and B is the mini-batch size.
Concerning the testing dataset, it is composed of 218 symbols independent from the training

and validation datasets.

Hyperparameters optimization and Training process

Following the format used in other studies, we represent the MLP as Ni|N1|fa|...|NL|fa|No,
where Ni signifies the number of neurons in the input layer, Nh denotes the number of neurons
in the hidden layer h (with 1 ≤ h ≤ L), L signifies the total number of hidden layers, and No

represents the number of neurons in the output layer. After each layer (linear part), we applied
a nonlinear activation function fa, except for the output layer.

The hyperparameters to be tuned are the number of neighboring symbols N , the number of
hidden layers L, the number of units per layer Nh (with 1 ≤ h ≤ L), and the learning rate ε
defined in (4.2). We fixed the nonlinear activation function hyperbolic tangent. In this work,
we used the Optuna [144] framework, available in Python, which utilizes the TPE algorithm.
For this technique, we must define an objective function, i.e., that set of hyperparameters will
be appropriate to maximize or minimize a metric. Notice that this is different from the Loss
minimization used during the training. We aimed to minimize the loss between the target and
the prediction during the training. The objective function in hyperparameter optimization aims
to optimize a metric that could be different from the loss, with the unique purpose of selecting
an optimal set of hyperparameters.

In this chapter, let us consider the objective function, error rate minimization. As an error
rate metric, we choose the Symbol Error Rate (SER) as we work directly with symbols, not bits.
The BER consideration will give proportional results.

Consider the case of a DP 16-QAM 32Gbaud over 14 × 100 km of SSMF. Also consider the
case of solving the Manakov equation (2.40) through the SSFM, i.e., without the PMD, which
is random, and additionally without the LPN, which is also random. The CFO is deterministic,
but normally, it is not a big challenge for the DSP and is commonly neglected. Therefore, we
consider, for training, the simplified DSP shown in Fig. 4.6.
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Figure 4.6 – DSP receiver used for Manakov-equation based model without CFO and LPN.

To find the optimal hyperparameters, let us choose a dataset corresponding to an input x
with launch power 3dBm, which is 1dB higher than the optimal power. We choose to work with
two polarizations in the input Sin = 2 and one polarization at the output Sout = 1.

The hyperparameter optimization was done using the following configuration:
• Number of taps N ∈ {5, .., 20}.
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• Number of layers L ∈ {1, 3}.
• Number of hidden units per layer Nh ∈ {50, 60, ..., 1500}.
• Learning rate ε ∈ {10−4, 5 · 10−4, 10−3}.

These options correspond to our available computational resources. Certainly, higher values
of hyperparameters could potentially lead to very complex NN that could lead to overfitting
problems and, more importantly, to impractical NN architectures that are hardly realizable in
real-time.

We ran up to 35 trials, finding that trial 34 provided the lowest SER. Further trials provided
similar SER values, showing that the TPE algorithm was at a standstill, so we stopped the
process. The results per trial are shown in Fig. 4.7.
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Figure 4.7 – SER per trial using the hyperparameter optimization framework Optuna in a DP-16QAM system
at 3 dBm over 14 × 100 km of SSMF. N represent memory taps, L is number of hidden layers, Nh is number of
hidden units in layer h, and lr for learning rate. The dashed red line is the level of SER without NN.

Fig. 4.8 shows the evolution of the MSE loss function per training epoch for the training and
validation datasets. In the same figure, we depict the SER calculated in the validation dataset,
which serves to stop the training when it reaches 200 epochs without SER improvement.

These results also illustrate the importance of a well-chosen set of hyperparameters, where
a bad choice could lead to very bad results, e.g., trial 8. Empirically, we observe that a single
layer with sufficient units performs better in terms of SER than an NN with multiple layers.

Tests and Results

We consider the Manakov-PMD equation (2.39) considering the CFO and the LPN for test-
ing. Thus, we consider the full DSP shown in Fig. 4.5 at the receiver. For each level of launch
power, we retrain the NN obtained with a P/ch = 3dBm for each launch power. The results are
shown in Fig. 4.9 together with the CDC, DBP, and VNLE results.

In Fig. 4.10, we plot the IQ constellation diagrams for P/ch = 0, 1, 2, and 3 dBm using only
CDC (first row) and with the MLP (second row).

In our study, we observe that an MLP is significantly less performant than the DBP or
the VNLE. The MLP is not even close in such an explored scenario. Certainly, other studies
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Figure 4.8 – MSE loss function in training (blue) and validation (red) datasets per epoch, and SER (green) in the
validation dataset.
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Figure 4.9 – BER vs. P/ch using the trained MLP at each P/ch for a DP-16QAM over 14 × 100km of SSMF and
comparison with the DBP and the VNLE.

have shown good performances, even comparable to the DBP ones. However, the reader must
consider that scenarios with shorter span lengths (< 100km) and for different fiber types with
higher nonlinearity and lower CD are more favorable to the use of NN. The reader could refer,
for instance, to [46, Fig. 7], where a numerical setup using Large Effective Area Fiber (LEAF)
shows better performances than a setup using the SSMF that shows even worse results than
ours.

Even though, in this investigation, we are focusing on long distances optical fiber using the
SSMF, with the objective to show the advantages and disadvantages of using NN, particularly
for nonlinear equalization.

We must also account for an additional metric, which is the CC of the MLP. The CC of the
algorithms was examined in terms of the number of real multiplications required to predict each
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(a) P/ch = 0-dBm (CDC). (b) P/ch = 1-dBm (CDC). (c) P/ch = 2-dBm (CDC). (d) P/ch = 3-dBm (CDC).

(e) P/ch = 0-dBm (MLP). (f) P/ch = 1-dBm (MLP). (g) P/ch = 2-dBm (MLP). (h) P/ch = 3-dBm (MLP).

Figure 4.10 – IQ constellation diagrams using only CDC (first row) and the MLP (second row).

symbol (RMpS). We neglected the addition operations (small with respect to RMpS) and the
operations associated with the nonlinear functions, assuming look-up table-based methods [43].
This CC is clearly related to the number of parameters. More formally, the CC of the MLP
measured in RMpS is defined as follows:

CCMLP = Ni ×N1 +
L−1∑
h=1

(Nh ×Nh+1) +NL ×No, (4.11)

where Ni is the number of units in the input layer, Nh is the number of units of the hidden
layer h, 1 ≤ h ≤ L, being L the number of hidden layers, and No is the number of units of the
output layer.

However, as the MLP is equivalent to successive matrix multiplications, current processors
could perform multiple tasks concurrently (threads) even if the number of multiplications is very
large. Matrix multiplications could be processed with simultaneous row-by-column multiplica-
tions using multiple threads per processing unit, significantly reducing the processing time.

This can be verified by observing the processing time per recovered symbol, estimated simi-
larly as in 3.2.3. Fig. 4.11 shows the CC in RMpS and the processing time for the MLP, where
we plot the corresponding ones again using the CDC, the DBP, and the VNLE for comparison
purposes. For the MLP, we added the CDC since, in our configuration, the CDC-FDE is still
employed.

In our study, even if the RMpS of the MLP is largely superior to the other methods, the MLP
shows a significant processing time reduction compared to the DBP and VNLE implementations,
as is expected due to the previous reasoning or multi-threading capacities of processors.

A clear disadvantage of the DBP and the VNLE against the MLP (or any data-aided channel
equalizer) is that both require a good knowledge of the optical link and the fiber parameters,
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Figure 4.11 – Computational complexity in RMpS and processing time in Logarithmic scale including the MLP.

which the MLP does not need.
In this section, we have highlighted the importance of finding a good set of hyperparameters

in order to provide good results using an error rate metric (BER, SER). This process involves two
steps executed for different sets of hyperparameters: i) a training model using a minimization loss
criterion with validation loss monitoring to avoid overfitting, and ii) in the validation dataset,
calculate the error rate metric per epoch to choose the model that fits better. This process
could be very time-consuming, particularly dependent on the number of sets of hyperparameters
(trials) to consider and the validation dataset size.

In practice, we only rely on the training/validation metric, i.e., the loss function, without
additional monitoring metrics. We repeated the hyperparameters optimization process using
only step (i) and selected the model that provides the lowest loss.

The hyperparameter optimization was done using the following configuration:

• Number of taps N ∈ {5, .., 20}.
• Number of layers L ∈ {1, 2}.
• Number of hidden units per layer Nh ∈ {50, ..., 1000}.
• Learning rate ∈ {10−4, 5 · 10−4, 10−3}.

The recovered lowest MSE loss per trial is shown in Fig. 4.12.
We chose trial 13, which consists of two hidden layers, opposite to the previous recovered set

of hyperparameters with one hidden layer when the objective metric was the SER. In the same
figure, we show the set of hyperparameters that gave the highest MSE (trial 11) and accounted
for one single hidden layer. In general, a single hidden layer shows a lower capability to provide
lower values of MSE loss, but that could also depend on the number of hidden units; e.g., trial
12 has two hidden layers but with a more significant number of units, resulting in a higher MSE
loss.

The MSE loss per epoch using the set of hyperparameters of trial 13 is shown in Fig. 4.13.
The training is stopped after 200 epochs of no MSE loss improvement in the validation dataset.

For each P/ch, we retrain the NN. The trained models are used in a testing dataset, and
we calculate the BER for each P/ch. The results are shown in Fig. 4.14 with the previously
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Figure 4.12 – MSE loss per trial using the hyperparameter optimization framework Optuna in a DP-16QAM
system at 2 dBm over 14 × 100 km of SSMF. N represent memory taps, L is number of hidden layers, Nh is
number of hidden units in layer h, and lr for learning rate.
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Figure 4.13 – MSE loss function in training (blue) and validation (red) datasets per epoch.

obtained results of the DBP, VNLE, and the MLP with optimized hyperparameters with SER
objective function.

The IQ constellation diagrams are shown in Fig. 4.15.
Interestingly, the IQ constellation diagrams present a deformation adopting a grid shape.

This observation was also noticed in a limited number of studies. The reasons why the constel-
lation diagrams of the equalized signal when using NN (MLP in this case) are intensely studied
in the following chapter.

The position of the NN was arbitrarily placed at the end of the DSP receiver before the
symbol detection. We began this section by specifying that this choice has some benefits and
drawbacks. In the next part, we further explore different alternatives of the position of the NN
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Figure 4.14 – BER vs. P/ch using the trained MLP at each P/ch for a DP-16QAM over 14 × 100km of SSMF.

(a) P/ch = 0-dBm (MLP). (b) P/ch = 1-dBm (MLP). (c) P/ch = 2-dBm (MLP). (d) P/ch = 3-dBm (MLP).

Figure 4.15 – IQ constellation diagrams using only CDC the MLP.

using the MLP.

4.3.3 Study of the position of the MLP

In this part, we explore two alternatives of the MLP position: i) immediately after the linear
compensation with a focus on nonlinear compensation and ii) immediately after channel filtering
and downsampling and comprising linear and nonlinear compensation jointly. Nevertheless, the
MLP is a static algorithm (without retraining). In our dual polarization setup, the MLP would
be incapable of handling time-varying impairments such as the laser phase noise and the SOP
rotation due to linear birefringence. Therefore, to test the effectiveness of the MLP regarding
its position in the DSP receiver, it is necessary to alleviate the setup, specifically neglecting the
laser phase noise and the SOP rotation.

To simplify the tests, we can consider a single polarization scenario, only affected by the CD
and NLI. These tests permitted us to observe and analyze the differences in the MLP position
in terms of BER and CC.

Fig. 4.16 shows the three possible scenarios of our single polarization setup.
The red dotted square represents the entire NN with static layers RRC and Norm. RRC is

the matched filter with the same parameters as in the transmitter. “Norm” is a normalization

86



4.3. Nonlinear Equalizers using Neural Networks

RRC
yk

t= Ts/2
(Rate 1/Ts)

CDCLPF
yk

RRCMLPCDC
yk b’my’n

Norm MLP

MLP RRC
y’nyk

Norm Decod.
x’’n

b’m
Norm Decod.

x’’n

Decod.
x’’ny’n b’m (A)

(B)

(C)

NN

NN

NN

in out

in out

in out

x’n

x’n

x’n

From 
optical 
fiber

Receiver

RRC
yk

t= Ts/2
(Rate 1/Ts)

CDCLPF
yk

RRCMLPCDC
yk b’my’n

Norm MLP

MLP RRC
y’nyk

Norm Decod.
x’’n

b’m
Norm Decod.

x’’n

Decod.
x’’ny’n b’m (A)

(B)

(C)

NN

NN

NN

in out

in out

in out

x’n

x’n

x’n

From 
optical 
fiber

Receiver

Figure 4.16 – Receiver configurations. A) MLP acting at 1sps with CD equalized signal, B) MLP acting at 2 sps
with CD equalized signal, C) MLP acting at 2 sps with non-equalized signal. sps: samples/symbol, RRC: Root
Raised Cosine, LPF: Low Pass Filter, CDC: Chromatic Dispersion Compensation ©2023, IEEE.

MLP 5x100 km 10x100 km
Ni N1 N2 No BER Ni N1 N2 No BER

A 12 529 – 2 2.50e-6 14 242 – 2 2.66e-3
B 11 312 689 4 5.00e-6 20 583 102 4 2.89e-3
C 42 170 509 4 2.75e-5 79 301 155 4 4.03e-3

Table 4.3 – MLP architectures for Nspan = 5 and Nspan = 10 of 100km SSMF. ni, nh(h = 1, 2), and no are the
number of neurons in the input, hidden, and output layers, respectively.

in phase and amplitude, taking the transmitted signal xn as a reference. We placed the MLP at
the last position of the stack of DSP blocks in scenario (A), letting the NN act for NLC. This
is usually the case in most of the related works [37], [139]. In scenarios (B) and (C), NN were
placed to process the signal at 2 SpS before the RRC filtering. This is also a natural choice
concerning the classical DBP. Specifically, in (B), we considered that CD is fully compensated,
while (C) treated the CD and NLI jointly. (A) and (B) tended to leverage the differences of
applying the MLP for NLC at 1 sps (A) and 2 sps (B) with only CD compensation (CDC). (C)
allowed comparing the benefits of the MLP for the CDC+NLC task. The three scenarios were
tested using an SC SP-16QAM at 32 Gbaud for 5x100km and 10x100km SMF with no inline
dispersion compensation and with an erbium-doped fiber amplifier (EDFA) to balance fiber span
loss. We determined the impact of accumulated noise on the NN performance by varying the
number of spans.

The number of layers and neurons per layer of the MLP were found using the TPE algo-
rithm via the Optuna framework combined with a K-Fold Cross Validation (K=3) for better
generalization. The classical “Tanh” was used as a nonlinear activation function. For the hy-
perparameters optimization, we chose a fixed launch power of 2.5dBm, which is ∼ 3dB above
the optimal power (minimal BER with only CDC), for all the MLP cases. Finally, we chose the
model with low CC but still low BER calculated in the validation dataset among 50 trials. The
details for those MLP are provided in Table 4.3, where Ni, Nh(h = 1, 2), and No are the number
of neurons in the input, hidden, and output layers, respectively.

As can be seen, the number of input units is more significant in (C) than in (A) and (B). This
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behavior was expected since CD equalization needs a large number of neighboring symbols M,
increasing the input size in (C). Additionally, (A) required a single hidden layer for the scenarios
with 5 and 10 spans, while (B) and (C), required both two hidden layers. This may be because
there was twice as much data treated in (B) and (C) (due to the processing at 2 sps of the MLP)
as in (A) (where the MLP operates at 1 sps).

We trained the MLP on 15 different datasets of 65536 symbols each (different bit generation
patterns). In the MLP cases, for each dataset, we built batches of shape (B,S, ns, 2), where B is
the batch size, S = 2N+1, ns is the number of samples per symbol, and 2 corresponds to the real
and imaginary parts of the complex sample, as we worked with a real-value MLP. The training
and validation datasets were composed of the first 80% and the remaining 20% of batches,
respectively. During the training, we randomly picked up batches of the training dataset. In
general, we trained models up to 2000 epochs and chose the model with the lowest BER on the
validation dataset. However, in some cases, we obtained the same BER in different epochs. For
these particular cases, we chose the model with the lowest Kurtosis [145], equivalent to choosing
a model that outputs a signal with Gaussian-like noise. The MLP training was done for every
launch power as it was noticed that MLP could not predict the channel transfer function (CTF)
for every launch power. Even though, for the linear part, it was enough to train the MLP around
the optimal power for predicting the CTF in the linear regime.

For testing, a Monte-Carlo simulation of 100 runs with different random patterns was carried
out at each run.

The results of the study in terms of BER are shown in Fig. 5.9a for (a) 5x100km and (b)
10x100km. Focusing on the results obtained using the MLP approaches, it can be seen in Fig.
5.9a(a) that methods (A), (B), and (C) all increased the optimal power by ∼2dB. However,
there are some observable differences between them: (A) allowed for slightly better performance
than (B) and (C) around the optimal power, at the expense of a degraded behavior in the
linear regime (low launch power). It can be noticed that this penalty in the linear regime
can not be observable in more complex scenarios when frequency offset, laser phase noise, and
polarization-dependant impairments are taken into account because NN could still mitigate the
residual impairments of these accurate setups. (B) and (C) looked very similar, with slightly
better results in (B). The MLP performances were between those of a 1 step/span (StPS) DBP
and 2StPS DBP. In the case of 10 spans, shown in Fig. 5.9a(b), the results of MLP were quite
different. Still, (A) and (B) achieved a BER improvement with respect to only CDC. On the
other hand, (C) became more challenging for the MLP, probably because there were too many
parameters that needed to be processed during the MLP optimization. The MLP results were,
in this case, no better than a 1StPS DBP. The insets in 5.9a(b) represent the IQ constellation
diagrams of the predicted signal in the optimal power.

The CC of the algorithms was examined in terms of the number of real multiplications
required to predict each symbol (RMpS), similar to other studies [37], [43], [146]. We neglected
here the addition operations (small with respect to RMpS) and the operations associated with the
nonlinear functions assuming look-up table-based methods [43] (because it does not contribute
to the CC).
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Figure 4.17 – Results BER vs. P/ch for scenarios (A),(B),(C),(D). CDC and a, 1StPS and 2StPS DBP results
were added as a reference. The insets represent the IQ constellations of the predicted signal in the optimal power
©2023, IEEE.

4.3.4 Implementation and Tests using the Experimental Setup

When training NN using data from an experimental setup, we must be careful about certain
but important details. The data waveforms generated by software that feed the IQ modulators
are commonly constituted by PRBS. This is because the PRBS reflects actual traffic with the
advantage that the sequence is completely known and reproducible [7].

The PRBS is produced using Linear Feedback Shift Register (LFSR) and XOR operations.
A PRBS of N-th order (hereafter PRBS-N) could be generated using LFSR with 2 or 4 inputs
for the XOR operation, which output is sent to the first bit [147]. The PRBS is obtained at the
end of the shift register when the process is repeated 2N − 1 times. A PRBS-N is characterized
by having consecutive N − 1 zeros and N ones and all the possible combinations of zeros and
ones [148]. Fig. illustrates the LFSR-2 (1 inputs) and the LFSR-4 (4 outputs) for PRBS-N
generation.

The corresponding 2 (or 4 bits) for the LFSR-2 (or LFSR-4) determines the PRBS order.
For instance, a PRBS-7 utilizes the bits l1 = 7 and l2 = 6 for the LFSR-2 and the bits m1 =
7,m2 = 6,m3 = 5,m4 = 4 for the LFSR-4. Similarly, the PRBS-15 utilizes the bits l1 = 15 and
l2 = 14 for the LFSR-2 and the bits m1 = 15,m2 = 14,m3 = 13,m4 = 11 for the LFSR-4 [147].

In the case of the LFSR-2, this is equivalent to the polynomials [128]:

PPRBS−7(x) = x7 + x6 + 1, (4.12)
PPRBS−15(x) = x15 + x14 + 1. (4.13)

In the context of NN, the PRBS is a deterministic data flow whose pattern generation
algorithm or periodicity could be easily retrieved by the NN given that we provide the NN
a dataset whose length is greater than the PRBS length [128]. For those reasons, one must
be cautious when using PRBS in the training phase. In our experiments, we could work with
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Figure 4.18 – Computational complexity for scenarios (A),(B),(C). Results with CDC and a 1StPS DBP and
2StPS DBP were added as a reference ©2023, IEEE.

PRBS-15 continuously transmitted by the AWG. Under this scenario, we adopt the following
strategy to avoid overfitting and overestimation of our results, following the recommendations
given in [128], [138]:

• A PRBS-15 (215−1 bits) generated by software corresponds to Ns ∼ 8191 16QAM symbols.
The AWG continuously sends the Ns symbols several times with a sampling frequency
equal to 92 GSa/s.

• At the receiver, the DSO working at 80 GSa/s, permit us to recover the transmitted sam-
ples. Using DSP, we retrieve the concatenated PRBSs synchronized with the transmitted

90



4.3. Nonlinear Equalizers using Neural Networks

Figure 4.19 – (a) LFSR-2 and (b) LFSR-4 used to generate PRBS-N [147] CC⃝ .

symbols.
• For training the NN, each PRBS is divided into 3 parts: training, validation, and testing.

Inside the PRBS, we are sure the 3 parts are uncorrelated. Since a third of a PRBS-15 is
∼ 2730 16QAM symbols, insufficient to train an NN, we increase the training dataset by
concatenating the first third of each PRBS. A similar procedure is used for the validation
and testing of the dataset. This procedure is illustrated in Fig. 4.20. To avoid that, the
NN always observes the same first third of the PRBS that constitute the Training dataset;
at each epoch, we randomly rotate the symbols inside each third (only in the Training
dataset) a multiple of π/2.

PRBS

Training
dataset

Validation
dataset

Testing
dataset

PRBS PRBS

Figure 4.20 – Followed approach to train an NN using a dataset containing PRBS. To avoid the NN always
observing the same first third of the PRBS that constitute the Training dataset, at each epoch, we randomly
rotate the symbols inside each third (only in the Training dataset) a multiple of π/2 (n, m, ..., l are randomly and
uniformly selected from {0,1,2,3}).

The results obtained using the experimental setup could not be fully validated, and we
believe the results necessitate a more extensive and exhaustive analysis in order to ensure that
the NN has not learned the PRBS pattern. The problem arose because we did not have access
to the transmitted data from the AWG 4 and instead we must rely on the cleanest back-to-back

4. The used version of the Keysight software, up to the submission of this manuscript, does not support the
functionality of recovering the transmitted data.
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processed data at highest OSNR to be considered as the transmitted data. This process helped
us to recover the results shown in Section 3.3.3 but is less evident in the case of NN.

Our doubts surge mainly because, under some architectures, the NN seemed to converge
perfectly to the target data in the training and validation datasets, surpassing the theoretical
result. This is clearly a bad sign of a common pattern learned by the NN instead of the nonlinear
channel transfer function.

In future works, we will be able to recover the transmitted data using an upgraded version
of the Keysight software and generate data using large PRBS, not limited to a 15th order.

4.4 Summary
In this chapter we have seen that the use of NN as NLI equalizer has proven to be useful

in numerical and experimental scenarios involving different type of fibers as well as different
modulation formats and data rates in single channel and multichannel scenarios. Indeed, studies
involving simple NN, such as the MLP up to more complex architectures combining different
types of NN and using customized layers and nonlinear activation functions, showed that NN
could retrieve more easily the nonlinear transfer function and, therefore, are good candidates
for NLI compensation.

Simple NN architectures, such as the MLP, are the obvious candidates for real-time imple-
mentations. Therefore, it is crucial to study their capacities in facing typical scenarios using
SSMF and longer spans. In this chapter, we have intended to cover this point of view. We
consider a practical scenario consisting of 14 × 100 km of SSMF and a 16-QAM modulation
format, which is very realistic for modern transceivers (putting aside the recent Probabilistic
Constellation shaping (PCS) technique) and a simple NN such as the MLP. In a numerical study,
we noticed that an optimized MLP (taking into account the architecture that gives the lowest
SER among other architectures) partially mitigates the NLI, being inferior in NLI compensation
capacity to the DBP and the VNLE but with the advantage of being faster (considering a pro-
cessing time metric) than the DBP (1 StPS) and the VNLE. Indeed, the accumulated ASE noise
produced by the EDFA, combined with the NLI, highly perturbs the symbol phase, making the
phase rotation almost random. We must highlight that we focus our study on a low-complexity
MLP with at most three hidden layers and not more than 2000 neurons per layer. It is possible
to obtain better results with a more significant number of parameters, as other works did (with a
risk of provoking overfitting). Still, we believe such architectures are not helpful as the purpose
of an NN is to operate in real-time, therefore with a limited number of parameters.

In conclusion, we believe the usage of the MLP in a real-time implementation is not advan-
tageous as is capacity is very limited, even in single channel, playing down the interest of adding
a NN block into the DSP chain if the gain is not appreciable.
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Chapter 5

MMSE-DRIVEN SIGNAL
CONSTELLATION SCATTERPLOT EFFECT

In the previous chapter, we highlighted a particular effect on signal constellation diagrams
when using NN based nonlinear equalizers in conjunction with the MSE loss function in the
learning process. This phenomenon has been observed particularly in QAM constellations, and
was referred to “jail window” pattern in [138] or “MSE-grid scatterplot” in [4], [44]. These terms
highlighted the rectangular nature of QAM constellations. This effect appears as a concentration
of the equalized symbols around the original constellation points with some scattered along the
straight lines between the neighboring points of the original constellation. This effect is called
here “MMSE-driven signal constellation scatterplot” (MMSE-scatterplot) because it appears
when using the minimum MSE (MMSE) criterion in the NN optimization. While the MMSE-
scatterplot has been noted in multiple works on NN using the MSE loss function [37], [44], [125],
[149]–[151], the focus on this phenomenon has gained more attention in recent works [4], [138],
[152].

The presence of the MMSE-scatterplot can have detrimental consequences on subsequent sig-
nal processing blocks, especially on Soft-Decision (SD)-FEC schemes [4], [138], which require reli-
able soft information 1. Furthermore, in the classical DSP coherent receiver, this soft-information
is provided by the demapper based on the equalized signal but also on the optical channel law
[153]. However, since this latter is usually unknown, an auxiliary memoryless AWGN channel is
commonly assumed [153], which even proves to be a good assumption in the nonlinear regime
[154]. Therefore, the role of the equalizer is to reconstruct the transmitted signal and provide
the necessary information to the demapper in the form of constellation with Gaussian-like noise.
The MMSE-scatterplot, however, completely disrupts the Gaussian-like properties expected by
the demapper.

Besides this, the MMSE scatterplot also affects the AIR estimations, such as the MI and
the Generalized Mutual Information (GMI), necessary for the BER after the FEC (postFEC-
BER) predictions [153], [155]. Indeed, the MI and GMI, are commonly estimated through
closed-form expressions using the auxiliary memoryless AWGN channel [155]–[157], proven to
be lower bounds of the MI/GMI of the true channel with memory[158]. The MMSE-scatterplot
effect induces a significant alteration in the equalized signal constellation, reducing the precision
of these closed-form expressions 2. Therefore, it is required that the noise distribution of the
equalized signal approximates a Gaussian.

Some techniques have been proposed to mitigate the MMSE-scatterplot effect. Particularly,

1. Soft: a continuous range of probabilities of belonging to a determined class or category. Hard: a real specific
value (e.g. 0 or 1 in binary codes)

2. A similar reasoning could be made for the Q-factor estimate, which is calculated using a Gaussian noise
assumption, being not valid when the MMSE-scatterplot appears.
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in [138] was proposed the monitoring of the MI’s lower bound (MI-LB) in a validation dataset,
stopping the training when the MI-LB reaches its maximum value (early stopping). Another
alternative, presented in [4], introduces a novel loss function called MSE-X, which combines the
MSE with a regularization term based on the AIR maximization. This term ensures that the
noise of the equalized signal follows a Gaussian distribution. However, this regularization term
requires a fine-tuning of its noise variance parameter, otherwise, the loss function might fail to
converge.

In this chapter we delve deeper into the MMSE-scatterplot effect, building upon previous
studies’ findings[4], [138], [152], [159] and proposing an alternative solution to prevent its occur-
rence.

The chapter is organized as follows: In Section 5.1 we describe the MMSE-scatterplot effect.
Section 5.2 explains the fundamental origin of this phenomenon and its equivalent mathematical
function. Section 5.3 presents the related works and describes the proposed technique to avoid
the MMSE-scatterplot effect. Section 5.4 details the numerical setup considered in this study,
and Section 5.5 presents the results. The chapter concludes by summarizing key findings and
suggesting future perspectives.

5.1 MMSE-Driven Signal Constellation Scatterplot

When employing an NN based nonlinear equalizer using the MSE loss function, it has been
observed in QAM modulated signals, a phenomenon termed “jail window pattern” in [138] and
“MSE-grid scatterplot” in [4]. These names were given due to the rectangular nature of QAM
constellations. To illustrate this phenomenon, let us consider the case of an AWGN channel and
a simple NN.

Let X be a discrete random variable that represents the sequence of transmitted symbols
with an alphabet X consisting of M discrete symbols, i.e. X = {x1, · · · , xM}, and let R be also
a discrete random variable that represents the sequence of received samples. An AWGN channel
has the form:

R = X + Z, (5.1)

where Z is a complex Gaussian-distributed random variable with zero mean and total variance
σ2, Z ∼ CN (0, σ2).

Consider an NN with parameters θ, with input R and output Y = f(R; θ), where f represents
the NN and Y is the estimate of the transmitted sequence X. An illustration of this setup is
shown in Fig. 5.1, where the equalized signal Y is the demapper input and QX|Y (·|y) is the
soft-information in the form of a posterior distribution that feeds the SD-FEC [4], [153].

X

Z

R Y
DemapperNN-Eq

f SD-FEC

Figure 5.1 – Classical transceiver model with an NN-based nonlinear equalizer (regressor) in an AWGN channel
represented by Z ©2024, IEEE.
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The objective of the NN is to bring Y closer to X. The MSE is commonly used to measure
the difference between Y and X, and can be expressed as [159], [160]:

MSE(X,Y ) = E[|X − Y |2], (5.2)

where E[.] is the expectation operator.
For simplicity, consider NNs using real number parameters. Therefore, the complex inputs

were separated into their I and Q components. Consequently, the outputs also corresponded to
the separated I and Q parts of the predicted complex symbols.

The chosen NN was the MLP because it is known that it could approximate any nonlinear
function[123], but as we will see later, there are not restrictions for the NN-based nonlinear
equalizer architecture. The MLP consists of an input layer, one or more hidden layers, and an
output layer. Each layer comprises multiple units or neurons. Following the format used in
other studies, we represent the MLP as Ni|N1|fa|...|NL|fa|No, where Ni signifies the number
of neurons in the input layer, Nh denotes the number of neurons in the hidden layer h (with
1 ≤ h ≤ L), L signifies the total number of hidden layers, and No represents the number of
neurons in the output layer. After each layer (linear part), we applied a nonlinear activation
function fa, except for the output layer. In the case of the regression task, the number of neurons
in the output layer is fixed to No = 2 (in the case of one polarization), as we aimed to recover
the real and imaginary parts of the equalized symbol. The NN architecture utilized in this study
for the AWGN channel is outlined in Table 5.1 with the specifications for the training.

Fig. 5.2a and 5.2c show R (NN input) for squared 16QAM and rectangular 8QAM, respec-
tively. The noise variance σ2 was set to achieve a received BER of 10−3. Meanwhile, Fig. 5.2b
and 5.2d show Y (NN output), that correspond to the observed phenomenon in rectangular con-
stellations. A similar experiment was done in [159], where a pure AWGN channel with only CD
was employed to show the MMSE-scatterplot emergence after some epochs using an NN-based
nonlinear equalizer.

This phenomenon, to the best of our knowledge, has primarily been attributed to rectangular
QAM constellations. However, this effect is not exclusive to QAM signals; a similar one also
appears in PSK constellations. For example, if we used an 8PSK signal (Fig. 5.2e), using a
similar NN as in the previous example, we found the outcome presented in 5.2f. For this con-
stellation, the NN output on the right adopts the geometric shape of an octagon, corresponding
to the eight points of the constellation in this case. Comparable results could be achieved with
any other PSK constellation.

Table 5.1 – NN architecture and training specifications used in Section 5.1 for an AWGN channel.

NN Activation Learning Training Loss
architecture function fa rate epochs function

2|30|fa|30|fa|2 Tanh 10−3 1000 MSE

In general, this phenomenon could be observed in any signal constellation with an equal
probability of occurrence for all the symbols. For instance, in the optimal 8QAM signal constel-
lation[59] (Fig. 5.2g), we can also note a distortion in the NN output constellation (5.2h). Once
again, it is observed that the NN induces a specific alteration of the constellation.

All the previously mentioned results share a common characteristic: the NN induces a con-
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(a) NN input R 16QAM. (b) NN output Y 16QAM.

(c) NN input R 8QAM. (d) NN output Y 8QAM.

(e) NN input R 8PSK. (f) NN output Y 8PSK.

(g) NN input R 8QAM (optimal). (h) NN output Y 8QAM (optimal).

Figure 5.2 – MMSE-scatterplot effect on signal constellations in an AWGN channel ©2024, IEEE.

centration of the symbols around the original constellation points, with some scattered along
straight lines connecting neighboring points of the original constellation. This effect is referred to
here as the “MMSE-Driven Signal Constellation Scatterplot” (MMSE-scatterplot). Notably, this
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phenomenon is consistently observed in experiments involving M-PSK (M = 4, 8, 16), M-QAM
(M = 4, 8, 16, 32, 64), and any signal constellation with a uniform probability of occurrence
for all the symbols. It is worth mentioning that this phenomenon is a direct consequence of the
choice of the MSE as a loss function.

In the subsequent section, we delve into the fundamental origin of the MMSE-scatterplot
effect by means of its equivalent mathematical expression.

5.2 Origin of the MMSE-scatterplot

The emergence of the MMSE-scatterplot effect when using the MSE loss function in NN-
based nonlinear equalizers necessitated further investigations. This section aims to establish
a relationship between the results obtained from the MMSE criterion and the characteristics
observed in the MMSE-scatterplot.

Is not worth mentioning that the MMSE-scatterplot only appears when using nonlinear
equalizers, i.e. general functions whose outputs are not linear with respect to their inputs,
with the MMSE criterion. Therefore, we focus our study on nonlinear equalizers and also we
restrain our study to Gaussian-like channels, which is the case of nonlinear channels that could
be considered as a Gaussian noise source [154].

5.2.1 MSE Loss Function

The optimization criterion when training an NN using the MSE loss function is to minimize
the MSE, referred to as the MMSE criterion. The rationale behind employing the MSE lies in its
functional properties, as discussed in [29]: i) MSE is a differentiable function, making it suitable
for gradient backpropagation during the optimization stage. ii) In the case of linear problems,
MSE is a convex function, ensuring convergence to the global minima. However, it is still widely
used in non-convex optimization problems, where acceptable local minima are achievable [28].

Moreover, a significant property is the relationship between the MSE and the conditional
Maximum Likelihood Estimation (MLE). The conditional MLE aims to find the optimal set
of parameters θ, maximizing the posterior probability to estimate X given R, PX|R(x|r), i.e.
θML = arg max

θ
PX|R(x|r). Assuming that PX|R(x|r) is Gaussian distributed, it has been

demonstrated that the conditional MLE and the MMSE criterion are equivalent [28], [29].

5.2.2 MMSE estimate

The optimal estimate of X, i.e. Y = X̂, under the MMSE criterion, was studied, for instance,
in [161]–[163] 3. It has been demonstrated that the MMSE is attained when Y is the mean of
the posterior probability PX|R(x|r), i.e.

Y = E[X|R]. (5.3)

In the scenario where x ∈ X , with PX(x) = 1
M uniform ∀x ∈ X and zero elsewhere, and

assuming Z ∼ CN (0, σ2), it has been shown in [164, Eq. 3.11],[163, Eq. 5] [161, Eq. 10.9] that
the optimal estimate of X is given by

3. In the context of MIMO detection, the MMSE estimate has been referred to as the optimal denoiser[163].
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Y = SX (R;σ2), (5.4)

where SX (R;σ2) is a Soft-Thresholding (STH) projector onto X . This expression is called here
STH function and for R = r is defined as follows:

SX (r;σ2) =
∑
x∈X xe− 1

σ2 |r−x|2∑
x∈X e− 1

σ2 |r−x|2
. (5.5)

In [160, Eq 6.24], the authors analyzed the case of the optimal equalizer using the MMSE
criteria. They considered no restrictions on the equalizer, i.e., not necessarily linear, and as-
sumed Gaussian noise and BPSK symbols. They found that the MSE minimization reduces the
equalizer function to

f(r;σ2) = tanh
( r
σ2

)
, (5.6)

which is equivalent to the equation (5.5) for x ∈ {−1,+1} [Eq. 3.14][164].
As the noise variance approaches zero (σ2 → 0), one can note that the STH function reduces

to the Hard-Thresholding function HX (r), defined by

HX (r) = lim
σ2→0

SX (r;σ2) = arg min
x∈X
|r − x|2. (5.7)

Note that this function corresponds to the optimal Hard Decision (HD) detector into the
signal constellation.

For illustrative purposes, the Soft and Hard-thresholding functions are depicted in Fig. 5.3
for the particular case of a PAM4 constellation. Observe that, for small values of the noise
variance σ2, most points will concentrate around x1, x2, x3 and x4, whereas for large values of
σ2, these points will spread more along the straight lines between neighboring symbols x1 − x2,
x2 − x3, and x3 − x4.

Consider the inputs R of the previous examples whose constellations are depicted in Fig.
5.2a, 5.2c, 5.2e and 5.2g. When using the STH function of (5.5) with a σ2 equals to the AWGN
variance, the outputs show the constellations depicted in Fig. 5.4 for each case. Upon simple
inspection, it is clear that these results exhibit the same distribution as those when using the
NN, shown in Fig. 5.2b, 5.2d, 5.2f, and 5.2h, and the MMSE criterion during the training.

Therefore, we can conclude that in an AWGN channel, a nonlinear equalizer, e.g. an NN,
with the objective of minimizing MSE (MMSE criterion) simplifies to the STH function in (5.5).

It must be mentioned that the use of such a function (5.5) was also investigated in [164],
but in the pursuit of a less complex NN that provides the optimal estimator for the transmitted
signal, specifically for PAM constellations.

5.3 Mitigation Techniques of the MMSE-scatterplot effect

This section describes in detail the related works concerning the MMSE-scatterplot effect
and presents another alternative to avoid its appearance.
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Figure 5.3 – Soft and Hard-thresholding functions for a PAM4 constellation with alphabet X = {x1, x2, x3, x4}
©2024, IEEE.

(a) 16QAM. (b) 8QAM.

(c) 8PSK. (d) 8QAM (optimal).

Figure 5.4 – Estimate of X using the STH function in (5.5), where R are the inputs in Fig. 5.2a, 5.2c, 5.2e and
5.2g ©2024, IEEE.
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5.3.1 Related works

In [138], the authors provided some insights about the MMSE-scatterplot effect, which they
called the “jail-window” pattern. They highlighted the fact that this phenomenon appears due
to the Euclidean distance minimization between the target and predicted symbols performed by
the NN when minimizing the MSE loss function. Additionally, they provided possible reasons
for its appearance from an ML perspective, e.g. the mismatch between the ultimate goal of the
NN-based equalizer (BER improvement) and the NN loss function (MSE), and the use of not
enough large mini-batch sizes. Other important observations were made on that paper. For
instance, the necessity of carefully training the NN, being aware to avoid overfitting at most,
and making the different datasets employed for training/validation/test highly uncorrelated.
In that work, it was also proposed the use of the L2 regularization technique to mitigate the
MMSE-scatterplot effect. However, it was pointed out that it could only partially mitigate the
MMSE-scatterplot effect and it still needed large mini-batch sizes.

Another study in [159], provides other solutions to mitigate the MMSE-scatterplot effect.
In particular, an early stopping routine based on the maximum AIR estimated in a validation
dataset. The AIR estimated in that work was the MI-LB. Indeed, monitoring the MI-LB on the
validation dataset is indicated as the best approach to selecting a model that avoids the MMSE-
scatterplot effect. However, a signal could still have a good AIR but not be fully equalized.
From our point of view, the NN could in effect, avoid the MMSE-scatterplot effect by selecting
the model with a good AIR, but not necessarily improving the BER, which is also the goal of
the equalizer.

Other authors in [4] also specifically investigated how to mitigate the MMSE-scatterplot
effect using a regularization term based on the a posteriori probability distribution QX|Y (x|y)
of the demapper, where X is the transmitted data and Y is the received data after equalization.
This function was called MSE-X and given by:

MSE-X(X, f(R)) = MSE(X, f(R))− 2σ2E[−logQY (f(R))], (5.8)

where Y = f(R), f represents the NN channel equalization, and σ2 is the noise power.
The MSE-X loss function requires to set a parameter σ2 related to the variance of the

equalized signal. We found that this parameter is difficult to set as the expected quality of the
equalized signal is unknown.

In this section, we propose an alternative approach to mitigate the MMSE-scatterplot effect,
by using the STH function as a nonlinear layer at the end of the NN.

5.3.2 Soft Thresholding-based Output Layer

We propose a new approach that involves adding the STH function (5.5) after the NN. Instead
of directly producing two real numbers as the predicted symbol, we introduce the STH function
as an additional nonlinear function immediately after the output layer. A similar “staircase”
function was proposed in [149], [165] as a nonlinear activation function to handle nonlinearities
in M-QAM systems. They showed that this function effectively minimizes the MSE with BER
improvements. However, when observing the MMSE-scatterplot in their results, is clear that
the AIR is very poor.
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In [164], this function was used as an optimal 4 NN. Indeed, the STH function can be used as
a single-layer NN with only a few neurons, with the minimal number of neurons being

√
M − 1

for a real-valued NN in squared M-QAM constellations. However, this ultra-short NN is not
useful as it does not perform any equalization.

We require an NN that can perform equalization, thereby increasing the AIR and decreasing
the BER by minimizing the MSE during the training stage. The key to adding the STH function
as a nonlinear layer after the NN is the following: on the one hand, the NN addresses the
equalization with MI and BER improvement. On the other hand, the STH function takes the
role of the MMSE-scatterplot. Indeed, the NN alone plays both roles. Why not separate both
roles if the MMSE-scatterplot expression is known?

The NN followed by the STH (NN + STH) architecture is illustrated in Fig. 5.5a. During
the training stage, the output Y is the outcome of the NN + STH and is used to calculate the
MSE(X,Y ). However, during the evaluation stage, the equalized signal, denoted as R2, is the
signal recovered before the STH function, and is free of the MMSE-scatterplot.

Flatten

NN-Reg

STH
equalized
signal

(a) NN + STH.

equalized
signal

Flatten

NN-Reg

STH

(b) NN + STH with residual connec-
tion.

Figure 5.5 – Proposed NN followed by the STH function. Flatten: reshapes input r into a vector of shape (B, :),
where B is the mini-batch size. Color blue indicates only training mode, red indicates only evaluation mode, and
purple indicates both training and evaluation modes ©2024, IEEE.

The STH-based layer relies on a parameter σ2, which must be appropriately set to generate
the MMSE-scatterplot. Since the gradient loss tends to become null for small σ2 due to this
“soft staircase” function, it becomes susceptible to block the gradient backpropagation. To tackle
this issue, we can employ a well-known technique, based on a residual connection[166]. Residual
connections were initially introduced to alleviate the vanishing gradient issue in deep NNs. In

4. Notice that the term “optimal” referred to the minimum MSE.
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this context, the vanishing gradient problem does not arise from a deep structure but rather
from the STH function. A residual connection facilitates gradient propagation through two
connections. A modified architecture, featuring a residual connection, is depicted in Fig. 5.5b.
More formally, let L be the loss, i.e., L = E[|R3 −X|2], then the variation of NN parameters θ
will occur through the gradient descent of L with respect to θ:

∂L
∂θ

= ∂L
∂r3

∂r3
∂θ

(5.9a)

= ∂L
∂r3

(
∂r2
∂θ

+ ∂y

∂θ

)
(5.9b)

= ∂L
∂r3

(
∂r2
∂θ

+ ∂y

∂r2

∂r2
∂θ

)
(5.9c)

= ∂L
∂r3

∂r2
∂θ

(
1 + ∂y

∂r2

)
. (5.9d)

In this manner, even if the gradient ∂y
∂r2

becomes zero, ∂L
∂θ can still propagate due to the

second connection. Notice that in the first architecture (Fig. 5.5a), ∂L
∂θ becomes zero when ∂y

∂r2
approaches zero.

The selection of σ2 using the residual connection was empirically approached in two different
ways:

• Calculating the value of σ2 for each batch by using the equalized signal before the STH
function along with the transmitted signal. This method requires feeding the NN with the
transmitted signal to calculate σ2.

• Treating σ2 as a learnable parameter of the NN.

In practice, we noticed that the first option did not provide the desired results, as the
calculated value of σ2 was too large to generate the required MMSE-scatterplot effect. Therefore,
we opted for the second option. However, during the training process, there comes a point where
the gradient is unable to backpropagate, due to the very small values of σ2, even with the residual
connection. This eventually stops the training. Nevertheless, this is not an issue as long as the
equalization has been performed.

Another alternative that we explored is the use of Kurtosis as a regularization term. Indeed,
Kurtosis tends to approach zero for Gaussian-distributed random variables[145], [167]. The
idea was to encourage the minimization of the Kurtosis during the training. In doing so, we
aimed to force the noise to be Gaussian-distributed, avoiding the MMSE-scatterplot appearance.
However, we decided not to use this approach because a Kurtosis value close to zero does not
necessarily indicate a Gaussian distribution. While it worked in some cases, it was not easily
applicable to other cases.

5.4 Description of the Numerical Setup

In this section, we describe the transmission setup under study, the datasets building, the
NN architecture, and the training/validation process.
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5.4.1 Transmission setup

To investigate the conditions leading to the MMSE-scatterplot effect, we initiated a numerical
study based on a dual-polarization transmission setup illustrated in Fig. 5.6. In this setup, the
transmitted symbols X are oversampled to 8 samples/symbol (SpS) to simulate the digital-to-
analog conversion. After pulse shaping using Root-Raised Cosine (RRC) filters, the combined
dual-polarization signal propagates through the optical channel. At the receiver, DSP techniques
are applied exclusively to address linear impairments. The resulting signal, denoted as R, is used
as the input for the NN represented by f . We denote the output of the NN as Y = f(R).

The optical channel consisted of 14 spans of standard single-mode fibers (SSMF) with a span
length of 50 km. After each span, an erbium-dopped-fiber amplifier (EDFA) fully compensates
for the fiber loss. To simulate the signal’s propagation, we numerically solved the Manakov-PMD
equation [24], [83] using the split-step Fourier method (SSFM) [18]. The Rx-DSP low-pass filters
the signal to the effective bandwidth. Subsequently, the signal undergoes an undersampling to
4 SpS for full CD compensation (CDC), or using the DBP [24], followed by an identical RRC
pulse shaping to mitigate inter-symbol interference. Subsequently, a polarization demultiplexing
technique based on a 2x2 Multiple-Input-Multiple-Output (MIMO) equalizer combined with a
Fractionally-Spaced Equalizer (FSE) and sequentially using the Constant Modulus Algorithm
(CMA) [74] and Radius-Directed Equalizer (RDE) [96], was applied to recover the signal at the
symbol rate (1 SpS) [75]. This processing was followed by an estimation of frequency offset [99]
and carrier phase [56]. The resulting output R, is still affected by the interplay between fiber
nonlinearity, CD, PMD, and amplified spontaneous-emission (ASE) noise originated by EDFAs.
Indeed, this setup allowed us to analyze the impact of significant accumulated fiber nonlinearity,
in the widely deployed SMF-28 fiber type. The specific simulation parameters are outlined in
Table 5.2.

Modulation RRC

Demodulation

Demodulation

Modulation

0100110...

0100110...

1001101...

1001101...

EDFA

LPFCDC/
DBPMIMOCPRNN

equal. CFOE RRC

x 14
spans

Lspan =
50 kmRRC

8 SpS

4 SpS1 SpS

preFEC-BER

PBC

Figure 5.6 – Dual-Polarization Transmission Setup. SpS: samples per symbol, RRC: root-raised cosine, PBC:
polarization beam combiner, EDFA: erbium-doped fiber amplifier, LPF: low pass filter, CDC: chromatic dispersion
compensation, DBP: digital backpropagation, MIMO: multiple-input multiple-output, CFOE: carrier frequency
offset estimation, CPR: carrier phase recovery ©2024, IEEE.
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Table 5.2 – Parameters of numerical simulation.

PARAMETER VALUE
System Dual-Polarization

Modulation 64QAM
Baud Rate 32 Gbaud
Wavelength 1552 nm

Laser linewidth 100 KHz
Frequency offset 200 MHz

Pulse shaper RRC
RRC roll-off 0.1
SpS (TX) 8
SpS (RX) 4

Nspans 14
Lspan 50 km

Fiber loss 0.2 dB/km
CD coeff. -21.7 ps2/km

PMD coeff. 0.05 ps/
√

km
Fiber nonlinear coeff. 1.4 W−1.km−1

GEDFA 10 dB
NFEDFA 4.5 dB

LPF cutoff freq. 20 GHz
SSFM resolution 1 km/step

5.4.2 Datasets

For the training and validation process, we used 14 different datasets. Each dataset was
generated with a different random pattern and contained 233,274 symbols, after the classical
DSP described in the precedent subsection. For each dataset, 50% of the data was used for
training, and the following 50% was used for validation. Then, similar to [138], we reshaped
each part in the form (B,S, 4), where B is the mini-batch size equal to 4096, S accounts for
N neighboring symbols of the input symbol (S = 2N + 1) and 4 for the real and imaginary
parts of each polarization. Under this configuration, the number of neurons of the input layer
Ni = 4S = 4(2N + 1). After this distribution, the training batches of each dataset were
concatenated producing a final training dataset in the form (NB, B, S, 4), where NB is the
number of batches. An identical procedure was done with the corresponding parts for the
validation dataset. Table 5.3 details the total number of batches and symbols used during the
training.

Table 5.3 – Number of batches and symbols used in training and validation.

Training Validation
Batches (NB) 392 392
Batchsize (B) 4096 4096

Batches NB/epoch 192 192

However, due to limitations in computational resources, we could not use the 392 batches.
Therefore, we randomly selected 192 batches from 392 batches at each epoch. For testing
purposes, we used a different unseen dataset consisting of 633,177 effective symbols.
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Table 5.4 – Architecture of the NN-based nonlinear equalizer.

NN architecture Activation function fa

86|646|fa|319|fa|365|fa|4 Tanh

5.4.3 NN hyperparameters and Training Process

In this study, we selected an MLP architecture with carefully adjusted hyperparameters to
get the lowest MSE values during training and to improve the BER as much as possible in the
validation dataset. We utilized the Optuna framework for hyperparameter optimization [144]
with 50 trials (candidates), setting the following ranges: the number of taps N should range
from 10 to 20 symbols, the number of hidden layers should range from 1 to 3, and the number
of hidden units should range from 15 to 1000.

We concur with the viewpoint outlined in [138] regarding the necessity for careful consider-
ation of several crucial factors during NN training. In particular, the following aspects should
be taken into account:

• Considering large enough datasets for highly accurate systems, as is the case of optical
transport networks.

• Employing distinct data generation patterns for training, validation, and testing datasets,
or using cross-fold validation. We opted for cross-fold validation using the 14 datasets.

• Utilizing large mini-batch sizes, with the mini-batch size being as large as possible to
ensure it is representative of the entire dataset.

During the training, at each epoch, the training mini-batches were shuffled. This approach
was adopted to prevent the NN from learning specific patterns (even if this was highly improb-
able due to the various datasets with different dataset generation patterns), ensuring a more
generalized model. The learning process involved the minimization of the loss function, through
an optimization step using Adam optimization, followed by the updating of NN parameters [29].
We found that a learning rate of 10−4 and a large minibatch B = 4096 yielded better BER
improvements.

We found the NN hyperparameters indicated in Table 5.4. The numbers in the NN architec-
ture indicate the neurons per layer, with the first and last numbers corresponding to the input
and output layers, respectively. The numbers in between are the hidden units and fa states for
the activation function which is the hyperbolic tangent.

5.5 Results

In this section, we have compared the performance of an NN trained with MSE, an NN
trained with MSE-X, an NN + STH trained with MSE, and a DBP at 1 step/span. The
validation dataset was utilized to monitor the performances during the learning process. Finally,
the testing dataset was used to calculate accuracy metrics on an unseen dataset.

We selected the model that provides the lowest MSE in the validation dataset for each case.
We monitored the MSE in the training and validation datasets and stopped the training process
if no MSE improvement was observed in the validation dataset or if we observed overfitting.
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Table 5.5 – Parameter σ2 utilized in NNs with MSE-X and NN+STH with MSE.

P/ch (dBm) -4 -2 0 2
σ2 (MSE-X) 0.0027 0.0027 0.0027 0.005

σ2 initial (STH) 0.025 0.025 0.025 0.03

The MSE-X loss function requires to set a parameter σ2 related to the variance of the
equalized signal. We found this parameter difficult to set as the expected quality of the equalized
signal is unknown. Despite that, guided by the details provided in [4], [168], we performed the
following steps:

• We fixed σ2 and we trained the NN for a period.
• When we observed a training stabilization or overfitting, we stopped the training and

calculated σ2 using a testing dataset.
• We updated σ2 with the recovered value (which corresponded to an equalized signal). The

final training of the NN was then performed using this adjusted σ2.

Table 5.5 provides the details of the parameters utilized for σ2 for both the MSE-X and the
STH function.

In all configurations, we chose the model that provided the lowest loss in the validation
dataset. For instance, for P/ch = 0 dBm, we obtained the curves illustrated in Fig. 5.7.
As we can observe in this example, the NN using MSE shows a gradual loss descent up to
eventually occurring overfitting. On the other hand, the NN with MSE-X shows lower training
losses compared to the MSE case. This is due to the entropy regularization term added to the
MSE, as explained in [4]. The NN + STH using MSE was early stopped owing to the blocking
backpropagation. For MSE-X as well as for NN + STH with MSE, the validation losses are
calculated using the MSE between the transmitted and equalized symbols.
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(b) NN using MSE-X.

Figure 5.7 – Curve of losses (average of training batches per epoch) for each equalizer for P/ch = 0 dBm ©2024,
IEEE.

In Fig. 5.8 we plot the input constellations denoted previously as R, followed by the equalized
signals Y = f(R) using the NN with MSE, the NN with MSE-X, and NN + STH with MSE.
Notice that both, the NN with MSE-X and NN + STH with MSE, avoid the MMSE-scatterplot.
The last column corresponds to the equalized signal using the DBP 1 step/span.
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Figure 5.7 – Curve of losses (average of training batches per epoch) for each equalizer for P/ch = 0 dBm (cont.)
©2024, IEEE.

Equalized signal Y = f(R)
Input R NN (MSE) NN (MSE-X) NN+STH (MSE) DBP 1 StPS
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(b)
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Figure 5.8 – Symbol constellation diagrams of the received signal (NN input) R and constellations of equalized
signal Y = f(R) for each NN-based equalizer and using a DBP 1 StPS. (a) P/ch = -4dBm, (b) P/ch = -2dBm,
(c) P/ch = 0dBm, (d) P/ch = 2dBm ©2024, IEEE.
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For each launch power and each equalizer, we calculated the BER and the MI-LB using
(B.5). The results are depicted in Fig. 5.9a and 5.9b.
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Figure 5.9 – Performances obtained for each equalizer ©2024, IEEE.

In terms of BER, all the NNs performed worse than the DBP 1 step/span. However, the
reader should take into account the performance-computational complexity trade-off between
the DBP and the NN. This comparison is out of the scope of the present work but the reader
could refer, for instance, to [43], [169]. The NN (MSE) is slightly better in the linear regime, at
P/ch = -4 and -2 dBm, than the NN (MSE-X) and the NN + STH (MSE), which both show
similar performances, with the NN+STH (MSE) slightly outperforming the NN (MSE-X). In
the linear regime, both methods hardly improve the CDC or even worsen it. This was not due
to the methods themselves but because training an NN in the linear regime is very challenging,
requiring a large amount of data and computational power.

Regarding the MI I(X;Y ), the NN (MSE) method results in a loss of soft information,
showing a very poor MI. On the other hand, all the tested NNs increased the MI, but the DBP
method was always superior.

5.6 Summary

In this study, our goal was to offer more insights about the MMSE-scatterplot phenomenon
that occurs when using nonlinear equalizers based on NNs.

Firstly, we explained the fundamental origin of the MMSE-scatterplot and presented its
equivalent mathematical expression, which is the Soft Thresholding (STH) function.

Secondly, we used the STH function as an alternative to avoid the MMSE-scatterplot. The
STH function is placed after the NN during the training. In the evaluation, the equalized signal,
free of the MMSE-scatterplot, is obtained before the STH function. A comparison between
the NN+STH (using MSE) and the NN (using MSE-X), showed slightly better BER using the
NN+STH (MSE) than using the NN (MSE-X) with similar MI. The NN+STH approach requires
initializing the parameter σ2 with sufficiently small values capable of generating the MMSE
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scatterplot. The MSE-X also requires setting a parameter σ2, however it must be carefully set
up. If is too small, the training loss could become negative.

Finally, other strategies could also be explored. For instance a kurtosis-based regularization
term, or different hyperparameters optimization strategies with different objectives, for instance,
the BER minimization or MI maximization, both requiring more in-depth justifications.
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CONCLUSION AND PERSPECTIVES

This study aimed to respond to the question about the real benefits of using Neural Networks
(NN) as Nonlinear Impairments (NLI) compensation techniques in typical scenarios of high
data bit rate and long haul coherent optical transmissions using the standard single mode fiber
(SSMF). We have chosen the NN model Multilayer Perceptron (MLP) as it is a general-purpose
NN that theoretically could approximate any nonlinear function. We performed the following
steps, covering each of them in one chapter as follows:

• In Chapter 2, we extensively studied the typical coherent transmission system in order to
understand the phenomenon of fiber nonlinearity in conjunction with Chromatic Dispersion
(CD) and Polarization Mode Dispersion (PMD). For numerical simulations using the split-
step Fourier method (SSFM), we must use the Manakov-PMD equation when considering
larger values of fiber birefringence.

• In Chapter 3, with the knowledge acquired in the previous step, we performed a numer-
ical simulation of different scenarios considering a single channel. We implemented some
Digital Signal Processing (DSP) algorithms to handle linear and adaptive equalization
as well as frequency offset compensation and carrier phase recovery. This step permit-
ted us to observe the performance degradation, specifically in terms of Bit Error Rate
(BER), when we account for the fiber nonlinearity (for a single channel, considering only
the self-phase modulation (SPM), nonlinear phase noise (NLPN), and cross-polarization
modulation (XPolM)). We also implemented the NLI compensation techniques: Digital
Backpropagation (DBP) and the Volterra Nonlinear Equalizer (VNLE). We observed and
compared the nonlinear mitigation performed by these two techniques.
We agree that a single channel is still a nonrealistic scenario as we do not transmit one
channel over an optical fiber but multiple channels. However, it was necessary to start
with this use case for methodology reasons. We believe we laid the groundwork for a
multichannel exploration by our study group in future works.
In the same chapter, we also started to use an experimental setup that reproduces an
optical coherent link, observing a similar degradation of the BER but a more limited NLI
compensation capacity when using the DBP and the VNLE.

• In Chapter 4, we used the MLP in our single-channel numerical scenario, observing a
limited gain performance (BER reduction) compared to the results using the DBP and
the VNLE. However, this limited NLI compensation capacity is accompanied by a lower
processing time. Unfortunately, we could not fully exploit the experimental setup to test
the capabilities of the MLP compared to the DBP and the VNLE ones. Indeed, as our
experimental setup relies on multiple PRBS-15 sent continuously, the datasets comprise
these concatenated PRBS-15. The NN is trained using these datasets, being highly sus-
ceptible to learning easily retrievable deterministic patterns if they are present instead of
the nonlinear channel transfer function. One must be extremely careful when presenting
the results using an experimental setup when the data comprises PRBS. Unfortunately,
we could not do more in-depth studies, but we let this pending work for future studies.
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• In Chapter 5, we faced a phenomenon observed in the constellation diagrams when using
NN trained with the Mean Squared Error (MSE) loss function. This phenomenon, which
we called MMSE-scatterplot, was analytically explained in this chapter by means of its
mathematical expression, which we called the Soft-Thresholding (STH) function. We
showed that if we add the STH function at the end of the NN, we can obtain the equalized
signal without the MMSE scatterplot.

From our point of view, the question about the benefits of using NN as nonlinear equalizers
is still open. To address this matter seriously, many actors must be openly involved, led by
optical communication product vendors, who know precisely the additional resources we can
assign to an NN. From an academic and operator perspective, we can only make assumptions.
Despite that, we could respond to some aspects related to NN, such as the MMSE-scatterplot
effect, which was fully covered in Chapter 5.

In our study, we also had the opportunity to explore the Learned Digital Backpropaga-
tion (LDBP) [170] in a single-channel scenario. Even if this method is not described in this
manuscript, we would like to highlight its relevance regarding its superior performance. Cer-
tainly, in one of our contributions [169], we compared the LDBP and the MLP, clearly observing
that the LDBP largely outperforms the MLP with optimal hyperparameters. Moreover, the
LDBP requires much less implementation effort than non-parametric NN, such as the MLP. The
reason is that the LDBP is built from the DBP, with a more intuitive knowledge of the number
of layers, neurons per layer, and nonlinear activation function. In that work, we also observed
that the computational complexity is not much higher than the MLP one. In the last years,
several works have been done to reduce the computational complexity of the LDBP [47], [87],
[171], [172].

The question about the position of the NN in the DSP chain was also partially covered in
our study [169] for the simplest case of single channel and one polarization, concluding that an
NN, such as the MLP, behaves very similarly whatever the position into the DSP chain is, as
long as the NN’s hyperparameters were optimized. In the case of the LDBP, its natural position
is one of the first blocs, as the CDC and the DBP. For complex scenarios, the position of the
LDBP could be challenging. Certainly, if we account for two polarizations and include frequency
offset and laser phase noise, that means that after the LDBP there will be at least three DSP
algorithms before we can recover the symbols that must be compared to the target symbols
(transmitted symbols) to calculate the loss and training the LDBP. It has been proposed some
alternatives in [146], [171], [173] but, in our opinion, the proposed methods could fail in avoiding
reproducibility because of the complexity of the methods. In an unpublished work, we proposed
a simple technique for training the LDBP using numerical data and evaluating the results using
experimental data, observing good results. The key relied on using the samples after a DBP, at
the largest number of steps per span, as the target for training the LDBP. The drawback is that
we necessitate a good knowledge of the actual transmission setup to be simulated.

In summary, we believe that future works could be dedicated to investigating how to employ a
technique such as the LDBP in real transmission setups, making sure that the proposed methods
are easily reproducible and more importantly, that the proposed methods could work be tested
online in hardware as the ultimate test. Another research axis is a full learnable DSP [174],
where techniques such as the LDBP could be easily integrated.
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Appendix A

QUALITY OF TRANSMISSION
ASSESSMENT METRICS

In communication systems, the SNR has traditionally been used as a measure of the Quality
of Transmission (QoT). In optical communication systems, it was also included a more specific
metric, the OSNR. Recently, it was proposed the used of a Generalized Signal-to-Noise Ratio
(GSNR) to account for the nonlinearity of the channel. These metrics are typically analyzed
together with the BER, perhaps the ultimate metric of a communication system. The BER is
sometimes replaced by the SER due to their close relationship. Therefore, we also introduced
these two concepts along with the mathematical formulas to estimate them. Finally, we discuss
the Q-factor, which is often used to measure the quality of a signal. Although it is typically
viewed as the BER in logarithmic scales.

A.1 Signal-to-Noise Ratio
The SNR can be defined in two ways depending on the entity being measured: symbols or

bits.
SNR per symbol, known as only SNR, is a ratio between the energy per symbol E and the

level of noise. On the other hand, SNRb measures the energy per bit Eb compared to the level of
noise [60]. The SNRb is also denoted as Eb/N0. When the noise follows a Gaussian distribution
with zero mean and variance N0

2 , the SNR per symbol and SNR per bit can be estimated using
the following equations:

SNR = E

N0
= P

N0Rs
, (A.1)

SNRb = SNR
log2(M) , (A.2)

where Rs denotes the symbol rate, and M is the constellation size.

A.2 Optical Signal to Noise Ratio
The OSNR is a measure of the energy of the optical signal in relation to the level of noise,

taking into account the bandwidth of the measured noise. More formally, the OSNR measured
in a reference bandwidth Bref is defined as follows:

OSNRBref
= P

2NASEBref
, (A.3)
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where P is the total average signal power summed over the two polarizations, NASE is the
spectral density of the ASE noise in one polarization, and the factor 2 accounts for the ASE
noise in both polarizations [60].

More indeed, from (A.1), (A.2) and (A.3), we can relate the OSNRBref
to the SNR and the

SNRb:

OSNRBref
= pRsSNR

2Bref
(A.4)

= p log2M Rs SNRb

2Bref
, (A.5)

where p equals 1 for single polarization and 2 for dual polarization.

A.3 Generalized Signal-to-Noise Ratio

The contribution of NLI on the performances of the transmission has been analytically
studied in the Gaussian Noise (GN) model. In [175] was verified that the NLI behave as a additive
Gaussian noise statistically independent of the ASE whose variance increase with distance and
signal power. Later, in [19] was defined a modified SNR to take into account the NLI, referred
as GSNR.

GSNR = PTX,ch
PASE + PNLI

, (A.6)

where PTx,ch is the per-channel power, PASE is the ASE noise, and PNLI is due to the NLI, and
could be estimated as:

PNLI =
(2

3

)3
Nsγ

2LeffP
3
Tx,ch

log(π2|β2|LeffN2
chR

2
s)

πβ2R3
s

Bn, (A.7)

whereNs is the number of spans, γ is the fiber nonlinearity coefficient, Leff = (1−exp(−2αLs))/(2α)
is the fiber effective length, Nch means number of channels (odd), α the fiber loss coefficient,
Ls the span length, Rs the baud rate assuming a rectangular spectrum per channel and spacing
∆f = Rs, β2[ps2/km] is the CD coefficient, and Bref is the reference noise bandwidth equals to
12.5 GHz (0.1 nm).

A.4 Symbol Error Rate

The SER measures the ratio of symbol errors to the total number of transferred symbols. It
is useful to have closed-form expressions for the SER from a statistical point of view, which we
can use later in this work.

Let us denote the received signal as r and given by:

r = sm + n, (A.8)

where sm is the transmitted signal that belongs to M discrete symbols, where 1 ≤ m ≤M . The
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additive noise n corrupts the transmitted signal sm. We assume that all M discrete symbols are
sent with equal probability Pm, i.e., Pm = 1

M .
The receiver takes a decision of the received signal r by means of a function g(r). To this

effect, the output space is divided into M decision regions denoted by D1, D2, ..., DM , where
sm ∈ Dm; ∀ 1 ≤ m ≤M .

The SER is defined as follows:

SER =
M∑
m=1

PmP [r /∈ Dm|sm], (A.9)

where P [r /∈ Dm|sm] means the probability that the decision taken by the receiver g(r) ̸= sm
given that sm was sent [59].

When n follows a zero-mean Gaussian distribution with variance N0
2 . We get the following

closed expression for the SER for PSK and QAM signals:

SERBPSK = Q
(√

2SNRb
)
, (A.10)

SERQPSK = 2Q
(√

2SNRb
) [

1− 1
2Q

(√
2SNRb

)]
, (A.11)

SERM−PSK ≈ 2Q
(√

2log2Msin2
(
π

M

)
SNRb

)
; M > 4, (A.12)

SERM−QAM ≈ 4
(

1− 1√
M

)
Q

√3log2M

M − 1 SNRb

 ; M > 4, k = log2 M even, (A.13)

where the Q function is defined as Q(x) = 1√
2π
∫∞
x e− t2

2 dt = 1
2erfc

(
x√
2

)
, erfc is the complemen-

tary error function, and SNRb is the SNR per bit.

A.5 Bit Error Rate

The BER is a metric that calculates the number of bit errors divided by the total number of
bits transferred. The specific encoding scheme used to translate bits to symbols affects the BER.
Therefore, to obtain closed-form expressions, it is necessary to consider the specific encoding
scheme in most cases. Assuming Gray encoding and that the noise follows a zero-mean Gaussian
distribution with variance N0

2 , we can derive the following closed-form expressions for the BER
for PSK and QAM signals:

BERBPSK = BERQPSK = Q
(√

2SNRb
)
, (A.14)

BERM−PSKGray ≈ SERM−PSK
log2M ; M > 4, (A.15)

BERM−QAMGray ≈ SERM−QAM
log2M ; M > 4, k = log2 M even, (A.16)
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In the case of Differential encoding, we can derive a closed-form expression for the QPSK as
follows [59]:

BERBPSK,diff = BERQPSK,diff = 2Q
(√

2SNRb
) (

1−Q
(√

2SNRb
))
. (A.17)

A.6 Q-Factor
Is a metric initially proposed for binary signals to facilitate the quality of signal measurement

in an operative system when BER can be hardly obtained. It results as a measure of the electrical
signal levels [176], [177] in an oscilloscope and is calculated as follows:

Q-factor = u1 − u0
σ1 + σ0

, (A.18)

where u1 and u0 represent mean voltage to get a level 1 and 0, respectively. Similarly, σ1 and
σ0 are the standard deviations of those distributions, as shown in Fig A.1.

Figure A.1 – Eye diagram for Q-factor computation in binary signals using (A.18), where u1,0 and σ1,0 are the
mean and standard deviations, respectively for level 1 and level 0 [177] ©2012, IEEE.

Assuming that the distributions of high and low levels are Gaussian, it is possible to calculate
the Q-factor from the BER and vice-versa [52] as follows:

Q-factor = 20log
[√

2erfc−1(2BER)
]

(dB). (A.19)

Although the derivation of this equation was for binary signals, it has extensively been used
for multilevel signals such as QAM. One of the main reasons for this is that the Q-factor provides
an easy way to express the performance of a system in comparison to the BER. For QPSK, it
was proposed an averaged Q-factor for each of the two BPSK constituting the QPSK [178]. An
interesting study about the Q-factor can be found in [179].

In this study, we use BER instead of Q-factor since the latter must be still generalized for
higher orders of constellations [180].

116



Appendix B

INFORMATION THEORY

In the early stage of the communication era, it was asked what could be the maximum
capacity of a transmission system in the presence of noise [12]. Since then, the efforts have been
focused on reaching the maximum theoretical capacity. To measure the capacity that could be
reliable transmit over a channel, it was developed a mathematical theory [12] that we summarized
here in this subsection. We also, present the two important concepts in communication systems
to quantify the reliable transmission capacity over a channel: the MI and GMI.

Let X be the transmitted data from an information source, belonging to a discrete alphabet
X and with probability mass function pX(x), and let Y be the received data with probability
density function fY (y) 1.

B.1 Entropy

The entropy of X measures the amount of information generated by the source [12] in bits
per symbol or bits per second. It is also interpreted as the amount of information (bits) needed
to describe X [183]. The entropy of X, H(X), is calculated as follows,

H(X) = E[−log2pX(x)]
= −

∑
x∈X

pX(x)log2pX(x)

≈ − 1
K

K∑
i=1

log2pX(xi),

(B.1)

where E is the real expectation and the third equation is the empirical expectation for K samples
from pX(x)[160].

The entropy of Y (differential entropy for the continuous case) is denoted as h(Y ) and is
calculated as follows,

h(Y ) = E[−log2fY (y)]

= −
∫
y∈Y

fY (y)log2fY (y)dy

≈ − 1
K

K∑
i=1

log2fY (yi).

(B.2)

1. Here we considered Y continuous, though it could be also considered discrete as in [181], [182] by means of
an ADC.
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Nevertheless, the meaning of the differential entropy is different from the entropy of the
discrete case, as it does not represent an amount of information to describe a random variable.
Indeed, the differential entropy could even be negative [12]. The meaning of the differential
entropy is related to the log-scale of the smaller set that contains most of the probability [183],
meaning a low entropy (more negative) a more confined set, and high entropies (less negative)
a more dispersed set.

B.2 Conditional Entropy

The conditional entropy of X knowing Y (also called equivocation), H(X|Y ), measures the
uncertainty of X by the knowledge of Y .

H(X|Y ) = E[−log2pX|Y (x|y)]

≈ − 1
K

K∑
i=1

log2pX|Y (xi|yi).
(B.3)

Similarly, the equivocation of Y given X is defined as,

h(Y |X) = E[−log2fY |X(y|x)]

≈ − 1
K

K∑
i=1

log2fY |X(yi|xi).
(B.4)

B.3 Mutual Information

The reduction in uncertainty of X due to the knowledge of Y is the MI, I(X;Y ) which is
defined as [12], [183], [184],

I(X;Y ) = log2

(
PX|Y (x|y)
PX(x)

)
(B.5)

= H(X)−H(X|Y ) (B.6)
= h(Y )− h(Y |X), (B.7)

where (B.5) is the ratio between the a posteriori probability to get the transmitted symbol
X = x given that we receive Y = y and the prior probability of X = x, (B.6) means the amount
of information sent less the uncertainty of this information regarding the received data, and
(B.7) is obtained because of the symmetry and means the amount of information received less
the uncertainty corresponding to the noise of the channel [12], [183].

In an AWGN channel, the MI could be estimated using the following expression [185]:
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I(X;Y ) ≈ m− 1
MNs

M∑
i=1

Ns∑
n=1

log2

M∑
j=1

exp
(
−|xi − xj |

2 + 2ℜ{(xi − xj)∗z[n]}
σ2
z

)
, (B.8)

where M is the constellation size, m = log2M is the number of bits per symbol, Ns is the total
number of symbols, and ℜ{·} means the real part.

The channel capacity is max I(X;Y ).
In an AWGN channel, this definition leads to the maximization of the SNR [12].
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Titre : Etude et Implémentation des Egaliseurs Non-linéaires utilisant des Réseaux de Neurones
Artificiels pour les Systèmes de Transmission Optique Cohérente.

Mot clés : systèmes cohérents, non-linéarité, égalisation non-linéaire, réseaux de neurones

Résumé : Dans les systèmes optiques cohé-
rents utilisant des schémas de modulation par
déplacement de phase, la non-linéarité de la fibre
constitue le principal obstacle à l’atteinte de la
capacité de Shannon. En pratique, la propaga-
tion non-linéaire dans la fibre introduit un bruit de
phase qui ne peut pas être complètement com-
pensé par des égaliseurs DSP linéaires. Pour
compenser ces non-linéarités, des égaliseurs
non-linéaires plus performants, basés sur la Digi-
tal Backpropagation ou sur les séries de Volterra,
sont souvent trop gourmands en calculs pour leur
déploiement en temps réel dans les récepteurs
actuels. Dans ce contexte, une alternative pro-
metteuse aux égaliseurs non linéaires classiques
réside dans l’utilisation des réseaux de neu-
rones artificiels lesquels, par rapport aux égali-
seurs non-linéaires, présentent l’avantage d’une
complexité calculatoire maîtrisée. En utilisant
des simulations numériques d’un DP-16QAM sur

14×100 km de fibre monomode standard, nous
avons montré que, pour de longues distances,
des réseaux de neurones simples potentielle-
ment implémentables dans un récepteur ne com-
pensent pas le bruit de phase non-linéaire aussi
efficacement que les techniques classiques. De
plus, ce travail montre que l’utilisation d’une
fonction de coût basée sur l’erreur quadratique
moyenne lors de l’entraînement introduit une dé-
formation non-linéaire du diagramme de constel-
lation en sortie de réseau. En particulier, pour les
constellations QAM quadratiques, cette déforma-
tion se traduit géométriquement sous la forme
d’une grille. Ce phénomène, que nous avons
nommé MMSE-scatterplot, peut affecter signifi-
cativement les traitements DSP ultérieurs de la
chaîne de réception. Après une analyse théo-
rique de ce phénomène, ce travail présente une
technique innovante pour atténuer cet effet et
améliorer les performances de la chaîne.

Title: Study and Implementation of Nonlinear Equalizers Using Artificial Neural Networks for Coher-
ent Optical Transmission Systems

Keywords: coherent systems, fiber nonlinearity, nonlinear equalization, neural networks

Abstract: The fiber nonlinearity is considered
the ultimate barrier to reaching the Shannon ca-
pacity, particularly relevant in coherent systems
that rely on phase shift modulation schemes. In
effect, the fiber nonlinearity introduces a nonlin-
ear phase noise making ineffective the DSP lin-
ear equalizers. To compensate for the fiber non-
linearity, DSP-based nonlinear equalizers, such
as the Digital Backpropagation or the Volterra
series nonlinear equalizer, are commonly con-
sidered computationally heavy solutions that do
not fit into the limited resources of current
transceivers. Under such a scenario, artificial
neural networks surge as an option to efficiently
perform nonlinear equalization with limited com-
putational complexity. Using numerical simula-
tions of a DP-16QAM over 14×100 km of stan-
dard single-mode fiber and considering a simple

neural network promising to be implemented in
a transceiver, we have shown that for long dis-
tances, simple neural networks potentially imple-
mentable in a transceiver do not compensate for
nonlinear phase noise as effectively as classical
DSP techniques. Even more, when using the
mean squared error cost function to train the neu-
ral network, it has been seen that the diagram
constellation exhibits a deformation that adopts
a grid shape in the case of quadratic QAM con-
stellations. This phenomenon, which we named
MMSE-scatterplot, potentially affects the subse-
quent DSP and has been deeply studied in this
work, elucidating the mathematical model equiv-
alent to the MMSE-scatterplot. Based on this
mathematical equation, we also have proposed
an innovative technique to mitigate this effect.
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