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Résumé

Les plateformes de collecte BGP actuelles font face à un problème fondamental de gestion des données
qui menace leur fonctionnement à long terme. Nous avons analysé, implémenté et évalué un nouveau
paradigme de collecte de données, optimisé pour BGP. Notre système permet d’améliorer la collecte des
données grâce à deux composantes : analyser la redondance dans les données BGP et utiliser cette dernière
pour optimiser l’échantillonnage des données BGP collectées. Une définition appropriée de la redondance
entre les routes BGP dépend de l’analyse effectuée. Nos contributions sont les suivantes : un sondage, des
mesures et des simulations pour démontrer les limitations des systèmes de collecte actuels ; un système et
des algorithmes génériques permettant d’évaluer et de supprimer la redondance dans les données BGP ;
ainsi que des analyses quantitatives des bénéfices de notre approche en termes de précision et de visibilité
pour diverses analyses de données BGP, telles que la détection des hijacks et la découverte de la topologie
de l’Internet. Enfin, nous avons implémenté un prototype de collecte de données BGP qui automatise
l’ajout de nouvelles sources de données. Le prototype est disponible à l’adresse https://bgproutes.io.

Résumé en anglais

BGP data collection platforms as currently architected face fundamental challenges that threaten their
long-term sustainability. We analyze, prototype, and evaluate a new optimization paradigm for BGP
collection. Our system scales data collection with two components: analyzing redundancy between BGP
updates and using it to optimize sampling of the incoming streams of BGP data. An appropriate definition
of redundancy across updates depends on the analysis objective. Our contributions include: a survey,
measurements, and simulations to demonstrate the limitations of current systems; a general framework
and algorithms to assess and remove redundancy in BGP observations; and quantitative analysis of the
benefit of our approach in terms of accuracy and coverage for several canonical BGP routing analyses such
as hijack detection and topology mapping. Finally, we implement and deploy a new BGP peering collection
system that automates peering expansion using our redundancy analytics, which provides a path forward
for more thorough evaluation of this approach. The prototype is available at https://bgproutes.io.
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Abstract

The expansion of the Internet enabled the emergence of various services. Nowadays,
any user connected to the Internet can access video content posted from another
country or communicate with other users located at the other end of the world almost
instantly. All these services are accessible from everywhere on the Internet thanks to
a protocol, BGP, which ensures the connectivity between all networks operating on
the Internet. While BGP operates smoothly most of the time, it can be disrupted by
various anomalies, ranging from simple outages to large-scale attacks. To ensure that
the Internet operates smoothly, it is necessary to monitor BGP.

Multiple BGP data collection platforms, public or commercial, enable analyzing BGP
data by collecting them from various networks operating on the Internet. However,
current platforms face multiple limitations, often conflicting. First, these platforms
collect data from a limited number of networks, reducing the visibility of the Internet
routing ecosystem. While a simple solution could be to increase the coverage of
these platforms, this approach combines with another limitation of these platforms,
the volume of collected data. Specifically, even with the current limited coverage,
the collected volume of data is prohibitive for users, which limits its practicability.
Therefore, there is an urgent need to reevaluate the way we are collecting BGP data.

To this end, we proposeGILL, a BGP data collection system that can collect data from an
order of magnitude more Internet networks. This system leverages a key observation
we made about BGP data: they often exhibit a high level of redundancy. GILL then
uses this redundancy to collect only the most useful data from a larger number of
networks. In this thesis, we detail GILL’s design, as well as the benefits brought by
such a technique to the scientific community, both in the short term and the long term.



Résumé

L’expansion de l’Internet a permis à de multiples services d’émerger. Aujourd’hui
n’importe quel utilisateur peut accéder à du contenu vidéo posté depuis un autre pays
ou échanger des messages avec d’autres utilisateurs à l’autre bout du globe en un clin
d’oeil. Tous ces différents services sont rendu accessible partout dans l’Internet grâce à
un protocole, BGP, qui assure la connectivité entre les différents acteurs de l’Internet.
Bien que BGP opère correctement la majeure partie du temps, son fonctionnement
peut être perturbé par diverse anomalies allant de la simple panne à l’attaque à grande
échelle. Afin de s’assurer du bon fonctionnement de l’Internet, il est nécessaire de
surveiller BGP.

Diverses plateformes de collecte de données BGP, publiques ou commerciales, permet-
tent une analyses des données BGP en les collectant depuis différents réseaux opérant
dans l’Internet. Cependant, les plateformes actuelles font face à plusieurs limitations,
souvent conflictuelles. Premièrement, ces plateformes collectent des données depuis
un nombre limité de réseaux, limitant la visibilité de l’écosystème de l’Internet. Bien
qu’une solution simple serait d’augmenter la couverture des plateformes, cette ap-
proche entre en conflit avec la seconde limitation de ces plateformes, le volume de
données collecté. En effet, même avec la couverture limitée qu’on les plateformes de
collecte à l’heure actuelle, le volume de données collecté limite leur bonne utilisation
par les utilisateurs. Ainsi, un besoin urgent de réévaluer notre manière de collecter les
données BGP se fait ressentir.

Dans cette optique, nous proposons GILL, un système de collecte de données BGP
qui permet de collecter des données depuis un ordre de magnitude supplémentaire de
réseaux de l’Internet. Ce système se base sur une observation clé faite sur les données
BGP: elle contiennent très souvent un niveau élevé de redondance. GILL exploite donc
cette redondance afin de ne collecter que les données les plus pertinente depuis un
nombre plus élevé de réseaux. Au cours de cette thèse nous détaillerons le design de
GILL, ainsi que les bénéfices qu’une telle stratégie de collecte des données peut apporter
à la communauté scientifique tant sur le court terme que sur le long terme.





Introduction

The Internet was originally designed as a network to facilitate communication between
researchers from American universities. In the late 20th century, the Internet started
gaining popularity among users worldwide, especially with the deployment of HTML
in 1991. Today, many services run on top of the Internet, including critical services
such as national defense or health information.

With nowadays billions of users accessing the Internet daily, most are aware of the risks
they are exposed to by using the Internet: DDoS attacks, phishing, or various other
scams. Therefore, typical end users have been incentivized to implement simple safety
measures, such as using strong passwords or discarding suspicious emails. When I meet
people and tell them my research works aim at improving the security in the Internet,
they often ask if I can hack Facebook accounts (in which case I answer no!). Even
those who are unfamiliar with computer sciences use the Internet daily for various
purposes, yet few truly understand how the Internet practically works. People use
the Internet to interact with various services or other individuals without knowing
how these connections are made. Most are unaware of the concept of routing, which
consists of finding the best route between two end points of a network. They thus
ignore the existence of the Border Gateway Protocol, cornerstone of the Internet [1].

With nowadays more than 75 000 networks operating in the Internet, routing is ensured
in an automatic fashion by a scalable protocol called the Border Gateway Protocol (BGP).
Despite being the glue between all the networks of the Internet, BGP is far from being
bulletproof. BGP was not initially designed with security in mind, as its widespread
adoption was unexpected. Consequently, anomalies disturbing the smooth operation
of the Internet regularly occur, reducing the quality of the user’s experience. In 2021,
we can cite a large-scale disruption of Instagram, Facebook, and WhatsApp services
resulting from a BGP misconfiguration [2]. Such events often make the headlines and
highlight the urgent need to improve and monitor the routing security on the Internet.

Monitoring the Internet has become a significant research field, leading to numerous
efforts made to understand and improve the Internet ecosystem. The importance
of monitoring the Internet routing ecosystem lead to the emergence of companies
dedicated to this task as their primary business. Monitoring the Internet involves



analyzing BGP routes, which are collected by BGP data collection platforms such as
RIPE RIS [3] or RouteViews [4]. These platforms collect data from different networks
worldwide, known as Vantage Points (VPs), and have been publishing this data since
2000. Despite their extensive use by both researchers and network operators, these
platforms exhibit multiple and sometimes conflicting limitations.

What are the limitations of the current BGP data collection platforms? BGP, by
design, inherently hides some information about the underlying topology, resulting in a
VP only having a partial view of the Internet routing ecosystem. Nowadays, public BGP
data collection platforms collect data from roughly 1% of the networks operating on
the Internet. However, this coverage is too low and leads to many routing information
being off the radar [5].

Why a low coverage is a problem? Many measurement analysis and monitoring
tools rely on the collected BGP data. Since each VP only provides a partial view of the
Internet routing ecosystem and the platforms cover only 1% of the networks operating
in the Internet hosting a VP, the collected data is incomplete. This can result in many
routing anomalies remaining off the radar, or the results of measurement analysis being
inaccurate. Attackers can thus cause data leaks, loss of connectivity, or cryptocurrency
hijacks among other undesired effects without being detected by monitoring systems.
In this thesis, we take a first step toward evaluating the gap in routing visibility induced
by low coverage of BGP data collection platforms using simulations. We demonstrate
that the current coverage of the BGP data collection platforms leads to missing many
BGP routing information.

Why has the coverage remained flat over the years? A straightforward solution
might be to increase the number of VPs. Although this would effectively improve the
coverage of the Internet ecosystem, it also poses technical challenges induced by the
high volume of data collected by these platforms. As a result of this limitation, the
coverage of the BGP data collection platforms has remained flat over the years, limiting
our visibility of the Internet routing ecosystem and the effectiveness of the analysis
relying on this data.

What are the current solutions? Several solutions have been proposed to enhance
our knowledge of the Internet topology. Researchers have attempted to determine in
which network of the Internet deploying a VP would maximize the tradeoff between
additional unique information and the volume of data collected [6, 7, 8]. Other re-
searchers have used active measurements as an additional source of data, alongside
the BGP data. However, none of these strategies are sustainable. In this thesis, we
demonstrate that every network on the Internet contributes a (sometimes small) piece
of unique data. Therefore gathering all possible BGP information requires collecting



data from all networks operating on the Internet. A drastic increase in the number of
networks collecting BGP routing data comes alongside a significant increase in the
volume of collected data. Similarly, using active measurement to supplement routing
data is impractical, as forwarding paths have been proven not to necessarily reflect
routing paths [9]. In addition most of the possible paths on the Internet are inactive,
since they are only used after a failure.

Therefore, we present the main contribution of this thesis, GILL, a BGP data collection
system that can cope with the data management challenges induced by a drastic
increase in the VP coverage. GILL leverages a key observation we made about the
BGP data: it often exhibits a high level of redundancy. GILL implements two carefully
selected definitions of redundancy, as we demonstrate that naive or specific definitions
of redundancy may lead to an ineffective sampling for many possible objectives. To
define the redundancy in BGP data, we propose two algorithms: BUS (BGP Update
Selector) and MVP (Most Valuable Vantage Points). BUS assesses the redundancies
at the update granularity, whileMVP assesses the redundancy at the VP granularity.
GILL then uses the computed redundancies to build filters that retain only the most
useful bits of data.

Outline. We divide this thesis in eight different chapters.

In §1, we introduce the process of routing on the Internet and present the different
characteristics of BGP. We then highlight the importance of monitoring and analyzing
BGP by presenting numerous analysis that rely on BGP data collected by public collec-
tion platforms. We finish this first chapter by detailing how BGP data is collected in
the Internet.

In §2, we present the current BGP data collection systems, their limitations, and the
underlying challenges of scaling them. We take a first step toward estimating the
visibility gap of current data collection platforms by using simulations in a controlled
environment. Additionally, we present the challenges users face when dealing with
BGP data by conducting a survey among authors of scientific papers published in
computer network conferences.

In §3, we propose a comprehensive analysis of the redundancy in the BGP data. We
start by illustrating, using a simple gadget, how BGP data can be redundant. We then
introduce three gradually stricter definitions of redundancy that enable us to highlight
the high level of redundancy present in BGP data. While these three definitions enable
us to quantify the redundancy in BGP data, none of them are used in any of our system’s
designs.



In §4, we explore the effectiveness of different redundancy definitions. We demonstrate
that naive definitions often fail to provide efficient sampling for various objectives.
Therefore, we present two main contributions of this thesis: two algorithms that
evaluate the redundancy at two different granularities, enabling efficient sampling
regardless of the user’s objective. BUS leverages a new metric, the reconstitution
power, to sample BGP data at the granularity of the BGP message. MVP evaluates and
compares the partial view of each VP by computing the impact of BGP routing events
on these partial views using topological features. This algorithm creates a set of the
least redundant VPs.

In §5, we describe the main contribution of this thesis, GILL, a system that improves the
BGP data collection by focusing only on the most useful bits of data. GILL relies on an
overshoot-and-discard collection strategy, meaning it collects data from as many VPs
as possible but discards the redundant portion of the data before storing it. GILL uses
the redundancy definitions provided in §4 to build filters that discriminate redundant
data from non-redundant data. We detail and motivate all the design choices of GILL.
Finally, we present the implementation of GILL, which is currently up and running.

In §6, we evaluate GILL’s sampling on various use cases. We start by benchmarking
GILL’s sampling against naive and specific baselines, illustrating GILL’s capability to
provide efficient sampling and avoid overfitting toward any specific objective. We
then present the long-term impact of GILL using controlled simulations. Next, we
describe the short-term impact of GILL’s sampling, showing how it can improve the
accuracy of common measurement studies. Finally, we present the impact of GILL’s
sampling onDFOH a system that samples BGP data usingGILL’s definitions and detects
forged-origin hijacks in the wild.

In §7, we present potential future works to improve BGP data storage and processing.

Finally, in §8, we conclude this thesis and provide potential guidelines to incentivize
network operators to establish a peering session with GILL.
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1
Background

In 1837 the first commercial system of wire communication using electrical signals, the
Cooke and Wheatstone System [10] was designed. The system operates simply: it uses
a domestic telegraph instrument that the owner connects to the city’s switchboard
office. When trying to contact a given destination, the instrument first reaches the
local switchboard office. The switchboard operator then manually forwards the traffic
to the local switchboard office of the destination. Finally, the switchboard operator
manually connects the intended destination. With this system, it was possible to send
around 30 words per minute.

Although nowadays communication networks exhibit significantly higher perfor-
mances, the underlying principle remains the same: end nodes interconnected by
network relays providing transit. The traffic transits node by node until it reaches
the final destination. The process of finding a path from one node to another is called
routing. At the early stage of communication networks, routing between nodes was per-
formed manually by a switchboard operator. With today tens of billions of connected
devices [11], manual routing is no longer feasible. Consequently, communication
networks rely on routing protocols to automatically find routes between nodes.

This chapter explores how connectivity is enabled at the Internet scale and the chal-
lenges related to Internet routing. We start in §1.1 by describing how routing protocols
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1.1 Routing in a network

practically work. We explain in §1.2 how routing is operated at the Internet scale. Next,
we examine in §1.3 the different challenges related to Internet routing. Finally, we
present in §1.4 how the Internet routing ecosystem is monitored.

1.1 Routing in a network

1

Orange S.A.

2 3

4 5

6

OVH SAS

21 22

23
24

RIPE NCC

11
12

13
14

31
32

33

34

35

SwissIX

Figure 1.1: Example of network topology, represented as a graph with nodes
and links. The network is divided into sub-networks, each one handled by a
single administrative entity.

A communication network is a set of nodes, called routers, connected via physical
wired links. Routing is a process that enables finding a path between each pair of nodes.
For instance, in Fig. 1.1, a possible path from 1 to 5 is 1 2 3 5 . To prevent
any single point of failure, network operators often add redundancy to their topology.
In Orange network 1 (Fig. 1.1) there is no possible failure on a link that will make any
node unreachable.

Topology redundancy not only provides resilience against failures but also offers
multiple choices of paths between each pair of nodes. Routing enables finding not only
one path between each pair of nodes but the best path. The best path definition may
depend on various criteria, such as the link capacity, latency, or routing policies. A
naive criterion may be the number of traversed links, in which case the best path from
1 to 5 is 1 4 5 .

Routing can be operated either statically or dynamically. Static routing involves man-
ually installing rules in the routers that enable directing the traffic on the best path.

1The network topologies are not representative of the reality.
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1.1 Routing in a network

Network operators from Orange (Fig. 1.1) may install the following rule in router 1
: "Forward the traffic destined to 5 to 4 ". While static routing can be implemented
on small-scale networks, it becomes quickly challenging for large-scale networks. Be-
yond this operational challenge, static routing may fail because of frequent topological
changes occurring within the network. If link 4 5 fails, 1 loses its connectivity
to 5 . Dynamic routing enables an automatic selection of the best paths, based on
the underlying topology. It is responsive to topological changes, i.e., the paths are
automatically updated according to the topological dynamics. If the link 4 5 fails,
dynamic routing will automatically install a rule in router 1 that forwards the traffic
destined to 5 to 2 — the new best path after the failure. Dynamic routing is effi-
cient for large-scale networks, prevents negative impacts of routing anomalies such as
forwarding loops or dead ends, and enables exploiting the network capacities.

Dynamic routing is implemented by routing protocols. A routing protocol is
a standardization of messages exchanged by routers, allowing a dynamic best-path
selection. The best paths are stored in a routing table, a structure that maps every
destination to the corresponding shortest path. There exist three main categories
of routing protocols: link-state, distance-vector, and path-vector. The common point
between all of these protocols is their reliance on shortest-path algorithms, such as the
Dijkstra [12] and the Bellman-Ford [13] algorithms.

Distance-vector protocols implement a distributed version of the Bellman-Ford al-
gorithm. Each node in the network advertises its distance to all other nodes to its
neighbors. Upon reception of a message, a router recomputes its best path and updates
its routing table, if a shortest distance is received. The main drawback of distance-vector
protocols is the convergence time, particularly in large networks, since each router
must send and transmit the distances of all other routers.

Link-state protocols enable routers to exchange information about their connectivity
until every router in the network is able to build a map of the topology. This map takes
the form of a directed graph where the nodes are the routers connected by physical links.
Each link is weighted according to any performance metric such as the link capacity or
the latency. Each router then applies the Dijkstra algorithm on the topology, using itself
as a source to compute the best path to every other router in the network. The most
well-known link-state protocols are OSPF [14] and IS-IS [15]. While the complexity of
the Dijkstra algorithm remains low O(|links|+ |nodes| log |nodes|), these protocols
still do not scale for networks with tens of thousands of nodes experiencing frequent
topological changes. They are only used to enable connectivity within a network, i.e.,
for intra-domain routing.

3



1.2 Routing a Internet Scale

Path-vector protocols rely on the principles of the Bellman-Ford algorithm, where each
router advertises its best path to all the destinations to its neighbors. The most famous
path-vector protocol is the Border Gateway Protocol (BGP) [1] and is the cornerstone
of the Internet.

1.2 Routing a Internet Scale

The Internet is a network of networks, where connectivity is enabled by inter-domain
routing protocol. The Internet topology is commonly represented as a graph where
nodes are Autonomous Systems (ASes), i.e., individual networks operated by a single
administrative entity and links are connections (physical or logical) between these
ASes. For instance, in Fig. 1.1, the AS-level topology graph is composed of four nodes
(Orange, RIPE NCC, SwissIX and OVH) and four links. The connectivity within each
of these nodes (AS) is operated by intra-domain routing protocol, while connectivity
with other nodes requires inter-domain protocol. Each AS in the Internet is identified
by a unique Autonomous System Number (ASN) and owns one or more prefixes, i.e.,
sets of contiguous IP addresses. Today, the Internet is composed of more than 75 000
ASes which globally announce more than one million prefixes [16]. Because of the size
of the Internet and the frequent topological changes, distance-vector, and link-state
routing protocols exhibit scalability problems.

The de facto protocol used in the Internet is the Border Gateway Protocol (BGP) [1],
categorized as a path-vector protocol. In BGP, an AS announces each prefix it owns
using a BGP message sent to its neighboring ASes. This announcement is subsequently
propagated AS by AS until every AS on the Internet has a route to reach the announced
prefix. Unlike intra-domain routing, inter-domain routing is used to enable connectivity
between networks that are not under the same administrative authority. Consequently,
the best path selection cannot rely on performance metrics such as latency. The Internet
is a business that exhibits a hierarchical pattern with a few ASes at the top (called
Tier1), where some ASes are paid by customer ASes to provide transit. BGP is thus
not only destination-based (prefixes) but also policy-based. The best path selection
predominantly relies on the routing policies and the economical relationships between
ASes.

Routing policies on the Internet. The Internet is a business where the best path
selection depends on the routing policies. These routing policies are defined by an AS
according to the economic relationships it maintains with neighboring ASes. There are
three main types of AS relationships [17, 18], defined as follows:

• Customer-to-Provider (c2p): a customer AS pays an upstream AS to forward
its traffic on the Internet.
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1.2 Routing a Internet Scale

• Peer-to-Peer (p2p): two ASes mutually agree to exchange traffic for free.

• Sibling-to-Sibling (s2s): two ASes that are owned by the same company agree
to exchange traffic for free.
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Figure 1.2: Example of an mini-Internet topology. The arrows represent c2p
relationships, while lines represent p2p relationships.

Fig. 1.2 represents an Internet topology of eight ASes. P2p relationships are represented
by a line, whereas c2p relationships are represented by an arrow. AS4 announces two
prefixes, p1 and p2 and AS6 announces p3 . The first criterion of best path selection is
thus not any performance metric, but rather the relationship with the AS you receive
the route from. Also, a route received from a neighbor is not blindly propagated to
other neighboring ASes. In Fig. 1.2, if AS7 receives a route to p1 from AS4, it will not
advertise this route to its neighbors with which it maintains a p2p relationship. In
fact, AS7 will pay to provide transit to an AS that is not one of its customers. Gao et
al. proposed in 2001 the Gao-Rexford model [19], a set of export policies that enable
consistent routing in the Internet by having only Valley-free paths:

• Routes learnt from providers or peers are only advertised to customers.

• Routes learnt from customers are preferred over routes learnt from peers. Routes
learnt from peers are preferred over routes learnt from providers.

To implement these rules, AS uses the local-pref, a numeric value that can be attached
to a route. Operators configure this value such that a route received from a customer is
attached a higher local-pref than a route received from a peer. If a BGP router receives
two different routes to the same prefix, it will select the route with the highest local-pref.
While these rules allow consistent export policies, they are not sufficient to enable the
best path selection upon the reception of a new route. AS6 will receive two distinct
routes to prefix p1 ; 4 2 6 and 4 1 3 6 which are both valley-free and
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received from a provider. Therefore, BGP needs other mechanisms to ensure the best
route selection for every prefix.

BGP route attributes. BGP is a protocol that runs on top of Transmission Control
Protocol (TCP). Upon the establishment of the TCP session between the routers of
the two neighboring ASes, they both send an Open message that enables exchanging
information about the AS running BGP, such as the ASN or the router capabilities.
Once the BGP session is established, the two routers start exchanging BGP routes using
BGP updates messages. For each prefix in the routing table (called Routing Information
Base or RIB in BGP), a BGP router sends its best route, using a BGP update. Upon
receiving a new route, a BGP router compares it to the route stored in the RIB and
replaces the older one if the new one is considered as better. Only the new best route
will be then announced to the neighboring ASes (with respect to the export policies).
To compare two routes, a BGP router relies on BGP attributes contained within a BGP
update (in case the local-prefs are identical). One of the main BGP attributes is the AS
path, the list of ASes that the route has traversed, identified by their ASN. The best
route to a given prefix is the one with the shortest AS path. The best route from AS6
to p1 is then 4 2 6 . There exist other attributes such as the BGP communities, a
set of couples of numeric values that give information on how an AS receiving this
route is supposed to process it or encode various information about the route. This
BGP attribute has been widely studied and enhances our understanding of the Internet
routing ecosystem [20, 21, 22, 23]. While there exist other BGP attributes, most of the
time they are omitted from the measurement analysis. Therefore, we will focus on the
AS path and the BGP communities.

Although the Internet operates (most of the time) smoothly, its routing ecosystem
remains pretty opaque and opens the opportunity for many measurement analysis.
These analysis are essential for enhancing our understanding of the routing ecosystem
and improving its reliability.

1.3 BGP challenges

BGP has been extensively studied over the last three decades. Many efforts have been
made to understand the Internet routing ecosystem and make it more reliable. Re-
searchers have focused on various aspects including analyzing the Internet topology,
examining the BGP convergence, measuring the impact of large-scale outages and miscon-
figurations on BGP routing, detecting and mitigating BGP routing attacks, or enhancing
our understanding of the BGP communities. Although the scope of BGP-related studies
is broad and cannot be exhaustively presented, we review some key studies in this area.
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1.3.1 Mapping the Internet Topology

A BGP router does not have the full visibility over the Internet topology. There are
two main reasons behind this limitation: (i) because of the routing policies, not all the
routes are propagated upon reception, (ii) BGP only sends the best route to each prefix,
limiting the visibility of backup links.

Measuring the gap in the visibility of AS topology. Over the decades, numerous
research works have been made to discover what we are missing from the AS topology.
For Instance, Roughan et al. used Expectation Maximization algorithms to estimate
the proportion of missing links [24]. Their measurements indicate that more than
60% of the p2p links are unobservable. Chang et al. used multiple less-studied data
sources to evaluate the proportion of missing links [25]. They used Internet Routing
Registries as well as traceroute data and found similar results than [24]. Muhlbauer et
al. [26] improved the model by removing the assumption that an AS in the topology is
an atomic structure. Numerous other efforts have been made to estimate the gap in
visibility in the Internet topology, e.g., [27, 28, 29, 30]. Despite using different strategies
to achieve the same goal, all these studies rely on external sources of data such as IXP
data or traceroute measurements. Donnet et al. published a comprehensive survey on
the different techniques that have been developed [31].

Inferring theAS relationships. The latest survey also considers another fundamental
measurement challenge: inferring the AS relationships. Gao’ pioneering work [32]
addressed this challenge by using a heuristic algorithm based on export policies and AS
degrees extracted from AS paths to infer the relationships implemented by each AS link
. Gao validated her results using internal data from a large Internet Service Provider
(ISP). Following Gao’s work, Subramanian et al. proposed a formalization of the AS
relationship inference problem [33]. Dimitropoulos et al. improved AS relationship
inferences by assuming that not all the paths observed on the Internet follow a valley-
free pattern [34]. They also improved the validation process by surveying 78 ISPs
to validate their accuracy, ending up with 94.5% of the links correctly inferred. In
addition to improving the AS relationship inference, Luckie et al. proposed a new
strategy for obtaining a more complete ground truth for validation [35]. Building
on Quoitin et al.’s finding that BGP communities can indicate AS relationships [36],
Luckie et al. used data from IRR to get information about BGP communities and
parsed the import- export policies to determine AS relationships. They were able to
validate 34.6% of their inference, by far the largest number of validated AS relationships.
AS relationship inference has been extensively explored with many efforts aimed at
solving this challenge (e.g., [37, 38, 39, 40, 41]). Having a better understanding of
the AS relationships is an important step toward a more transparent Internet routing
ecosystem and the results of these algorithms have been heavily used in other analysis.
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1.3.2 Analyzing BGP convergence

Because BGP is a path-vector protocol, it requires sending route updates to the neigh-
boring ASes, which then propagate to the entire Internet. This distributed version of
the Bellman-Ford algorithm has a drawback: the convergence time.

Measuring the convergence delays. Over the last two decades, numerous efforts
have been dedicated to understanding, measuring, and improving the inter-domain
convergence. Labovitz et al. studied the convergence time after an inter-domain failure
[42]. They found that, unlike intra-domain which converge in a few milliseconds,
inter-domain convergence can take up to ten minutes. Griffin et al. employed statistical
models to conduct experimental analysis on the BGP convergence time [43]. They
uncovered convergence issues and showed, using simple examples, that in some cases
BGP may not converge because of loops in BGP announcements [44]. There exist other
works focusing on studying BGP convergence after a failure (e.g., [45, 46]).

Improving BGP convergence. Several works have also focused on improving the BGP
convergence [47, 48]. For instance, Pei et al. infer the root cause of an inter-domain
failure to accelerate the convergence by selecting only the paths that are not impacted
by the failure [49]. Holterbach et al. proposed Swift, a system designed to improve the
convergence after an inter-domain failure [50]. They detect and use bursts of route
withdrawal to infer where the failure occurred in the topology and find alternative
paths that circumvent the failure. Additionally, they use programmable dataplane to
accelerate the process and make it more practical.

Studying the convergence of BGP is essential to improve the performance and the
reliability of the Internet.

1.3.3 Impact of large scale events on BGP routing.

Despite not targeting Internet routing directly, some large-scale events had a significant
impact on BGP.

Large-scale attacks on services. Large-scale events like worm attacks can signifi-
cantly impact BGP routing. In 2003, the SQL Slammer worm exploited a bug in MS SQL
servers [51]. Although this attack was not directly targeting routing infrastructures, a
significant spike in the number of BGP messages exchanged was noticed [52, 53]. This
increase was induced by a high number of AS links operating above the critical load
thresholds, causing routers to restart and repeatedly resend their entire RIB. This is
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not an isolated case of large-scale attack disrupting the BGP routing, we can also cite
the Code-Red attack in 2001 [54, 55] or the NIMDA attack in 2001 [56, 57].

Non-routing events. Other events not targeting specifically routing infrastructures
such as physical outages due to natural disasters can impact inter-domain routing. The
Great East Japan Earthquake and Tsunami in 2011 caused inter-domain discrepancies
[58] by breaking a significant number of physical links, resulting in BGP sessions being
shut down. Carisimo et al. conducted a longitudinal analysis of the Venezuelan Crisis
[59]. They studied the impact of the crisis on the BGP announcements, among other
effects. Researchers also studied the impact of other headline-making events on the
Internet [60, 61].

Large-scale misconfigurations. The Internet is a distributed system operating with-
out central authority. Each AS can administrate its network, and thus its inter-domain
routing policies without any global consensus. While inter-domain routing works
generally smoothly, occasional mistakes happen when network operators configure
their BGP routers. One noticeable event occurred in 2008 when Pakistan tried to block
YouTube inside their country but inadvertently misconfigured their network, causing
the traffic to many central destinations to be diverted and dropped, affecting to a large
portion of the Internet connectivity [62].

Studying these events and their impact on inter-domain routing is essential to enhance
our understanding of the routing ecosystem and prevent their recurrence in the future.

1.3.4 Decting and mitigating routing attacks

Despite being the cornerstone of the Internet, BGP was not designed with security in
mind: Internet routing remains vulnerable to BGP hijacks. A BGP hijack occurs when
an attacker creates a fake BGP announcement to divert a portion of the traffic from its
legitimate destination.

Detecting Multiple Origin ASes hijacks. In Fig. 1.3a, AS8 executes a BGP Multiple
Origin ASes hijack, one of the most common attacks that occurs regularly in the
Internet routing ecosystem [63]. This hijack consists of an AS announcing a prefix it
does own legitimately. This hijack propagates to the neighboring ASes and redirects
the traffic from ASes whose route to the attacker is preferred over the legitimate one
to the attacker. This type of hijack has fueled an entire research area, with numerous
efforts aimed at detecting and mitigating these attacks [64, 65, 66, 67, 68]. For instance
ARTEMIS is a system deployable by an AS and capable of detecting these hijacks and
proposing mitigation guidelines [69]. Similarly, by providing information about an
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Figure 1.3: Example of BGP vulnerability: the BGP prefix hijack.
AS’s prefixes, BGPalerter can send notifications to the network operator upon detection
of a MOAS hijack [70].

Measuring the impact of Multiple Origin ASes hijacks. Numerous measurement
analysis have been conducted to assess Internet vulnerability to MOAS hijacks. Apos-
tolaki et al. proved that attackers can intercept a fraction of the BitCoin traffic by using
BGP hijacks [71]. They demonstrated the feasibility of such attacks and showed that by
hijacking around 100 prefixes, an attacker can divert 50% of the BitCoin traffic. Testart
et al. tracked serial hijackers, i.e., ASes that regularly appear to be at the origin of a
BGP routing attack [72]. They built a classifier that identified 900 ASes from the IPv4
routing table with suspicious behaviors such as misconfigurations or benign hijacks.
Cho et al. used machine learning to classify BGP hijacks into different categories [73].
All these works contribute to enhance the scientific community’s understanding of the
impact of BGP MOAS hijacks.

To enable a BGP router to drop a fake route induced by a MOAS hijack, a new feature
was proposed and plugged into most of the BGP implementations: RPKI [74].

Preventing Multiple Origin ASes hijacks with RPKI. Resource Public Key Infras-
tructure (RPKI) is an extension of BGP that enables detecting BGP routes where the
origin AS and the prefix do not match [74]. It operates as a cryptographically-based
database where ASes can register the prefixes they own using their public key. A router
that deploys RPKI validation uses this database to identify and discard illegitimate
routes. Numerous analysis have been conducted to measure RPKI database coverage
and route filtering deployment based on RPKI [75, 76, 77, 78]. Li et al. developed a
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tool, RoVista, which measures in real-time the proportion of invalid routes filtered by
ASes [79]. The state-of-the-art techniques usually involved a controlled prefix illegiti-
mately announced followed by HTTP requests to determine which ASes ingested the
illegitimate route. Li et al. used the IP-ID field of the IP header as well as IP spoofing to
measure the connectivity toward RPKI invalid prefixes.

Detecting Forged-Origin hijacks. While a full deployment of RPKI may enable
avoiding MOAS hijacks, BGP remains vulnerable to Forged-Origin hijacks. To execute
such an attack, the hijacker announces a prefix it does not own but prepends the
legitimate origin of the prefix, rendering the fake route undetectable by RPKI validation.
In Fig. 1.3b, AS8 hijacks p3 and prepends AS6 to the AS path. This attack is actively
used by hijackers and made the headlines several times [80, 81]. These hijacks often
induce a new fake link between the attacker and its victim, as we can see in Fig. 1.3b.
However, inferring the legitimacy of an AS link is challenging given our incomplete
knowledge of the AS topology and the regular appearance of numerous new legitimate
AS links. Holterbach et al. developed DFOH, a system designed to detect forged-origin
hijacks [82]. DFOH extracts topological features from the AS topology to estimate the
extent to which the new link breaks the hierarchical structure of the Internet. DFOH
also uses features extracted from PeeringDB [83], a database populated by network
operators about their connectivity. In peeringDB, operators can register their presence
in Internet Exchange Points (IXP) which serve as facilities where ASes can connect to
other participants without requiring a direct physical connection to them. Leveraging
these features, DFOH trains a Machine Learning model and achieves a 95% detection
accuracy.

1.3.5 Studying BGP communities

While not directly used in the best path selection process, BGP communities are
valuable sources of information about the routing ecosystem. They are used to tag
routes, influence the route selection process, or enforce some routing behaviors.

Uncovering the use of BGP communities. Several works have tried to uncover the
role of BGP communities and give a better understanding of their use. Quoitin et al.
demonstrated that communities can be used for traffic engineering purposes, i.e., to
influence routing decisions [84]. For instance, a community may indicate the provider
to prepend its AS, resulting in a less attractive route. They also demonstrated that a
community can be used to tag a route, for instance indicating that the route has been
received on a p2p link.

Classifying BGP communities. Several efforts have been made to classify the
communities according to their use. Donnet et al. [23] proposed a classification of
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BGP communities comprising three categories: Inbound, used upon reception of a new
route; Outbound, used to influence route propagation; and Blackhole, used by an ISP
to block packets. Krenc et al. [20] went one step further and designed a probabilistic
algorithm capable of classifying BGP communities into two categories (i) information
communities, used to tag a route; and (ii) action communities, used to influence the
routing decisions. They leveraged a clustering strategy as well as a new metric the
on-path:off-path ratio to achieve a classification accuracy of 96.5%.

All these studies enhance our understanding of the Internet routing ecosystem. Despite
their wide range of focuses, all BGP-based studies use the same data source: the BGP
routing data collected by BGP Vantage Points.

1.4 BGP Vantage Points in a nutshell

To conduct BGP-related studies, researchers need authentic BGP data that reflects the
real Internet routing. Most of them are using the BGP data collected from BGP Vantage
Points (VPs). A VP is a router within an AS that agrees to export its routes to a BGP
route collector. BGP route collectors are deployed by BGP data collection platforms
among which RIPE Routing Information Service (RIS) [3] and RouteViews (RV) [4] are
the most widely used.
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VP2

Collector 1

Collector 2

Collection Platform
Public 
Database

BGP routes

BGP routes

User downloads the data

Figure 1.4: Example of BGP data collection system. VPs export their BGP route
to BGP collectors.

Fig. 1.4 describes a BGP data collection system. In this example, two ASes host a VP,
AS2 and AS6, meaning that one router within each of these ASes maintains a peering
session with a BGP collector. A BGP route collector is a router or a server hosted by
a collection platform running a BGP daemon, such as FRR1 for RV. Each BGP route
collector can have one or more sessions with different VPs. The data collected from all

1FRRouting, routing daemon
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the collectors is then gathered into a public database, which the users can leverage for
measurement analysis or anomaly detection for instance.

Usually, BGP data collection platforms provide two types of information: the raw
BGP updates or RIB dumps. Raw updates correspond to all the collected BGP routes,
while RIB dumps correspond to periodic snapshots of the RIB from each VPs. For
instance, RIS provides a RIB dump every 8 hours. Both types of data are stored using
the Multi-Threaded Routing Toolkit (MRT) format [85] and can be parsed using tools
such as BGPstream [86] or MRT# [87].

1.4.1 BGP data collection platforms

In §1.3, we showed that researchers actively use BGP routing data from RIS and RV to
conduct measurement analysis. Aside from RIS and RV, there exist other public BGP
data collection platforms.

Public BGP data collection platforms. The two most well-known public BGP
data collection platforms are RIPE RIS and RV. RIS was started in 1999 and focused
on collecting BGP data from European ISPs. Over time, RIS increased its coverage
and now has approximately 1500 VPs across the world [88]. They also proposed
solutions for remote peering, enabling VPs to establish a peering session with the route
collector without being directly connected, or having a presence in the same IXP.
Similarly, RV is a project started in 2001 by the University of Oregon. Originally, it
collected data from US ISPs but akin to RIS, it has today around 1000 VPs worldwide
[89]. These two platforms are the most popular for two main reasons: (i) they are
the most well-maintained, and (ii) they are both supported by common BGP data
collection software, such as BGPstream [86]. There exist other BGP route collection
platforms. For instance, Packet Clearing House (PCH) is sometimes used by researchers
(e.g., [90, 91, 92, 93, 94]), but has not gained much traction partially due to its lack
of compatibility with BGPstream. BGPwatch [95] operates 15 VPs and reports the
potential routing attacks on their website. However, the collected BGP updates are
not accessible in an MRT database. Finally, Isolario [96] used to collect data from VPs
worldwide, but is not maintained anymore.

Despite being public platforms, they also are extensively used to fuel commercial BGP
anomaly detection tools [97, 98].

Commercial monitoring tools. Several monitoring tools rely on BGP data to monitor
some prefixes of the Internet. All these commercial tools use private BGP VPs, but some
of them also use BGP data from RIS and RV. Kentik Network Observatory Platform
[97] and ThousandEyes BGP monitoring platform [99, 100], although not disclosing
their number of VPs publicly, said that they are using both public and private BGP
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feeds. Radar by Qrator [101] uses 850 VPs and provides monitoring to ISPs. The system
is able to detect routing incidents such as route leaks, hijacks or propagation of RPKI
invalid prefixes. PacketVis [102] is a monitoring platform peering with ≈ 2000 peers,
primarily sourced from RIS and RV. They enable the detection of hijacks, detection
of peer change, and prefix monitoring for their clients. Finally, bgp.tools [103] is a
system that collects data from ≈ 1000 private VPs. They provide monitoring for all
the prefixes of the client AS and are able to detect MOAS hijacks, failures, and routing
policy violations.

1.4.2 BGP Vantage Point characteristics

BGPVPs are a valuable source of information tomeasure the Internet routing ecosystem.
While a VP may provide important information, it suffers from the native limitation of
BGP: it only has a partial view over BGP events.
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Figure 1.5: Combining local views can help map AS topology. Gray links are
not visible from routes collected by VPs ( ).

BGP VPs have a partial view of the Internet. Since a VP is a BGP router that
exports only its best route for each prefix to the route collector, each VP only has a
local view of the routing ecosystem. We illustrate this using Fig. 1.5 which represents
a small AS topology with six ASes and where the routing policies are configured to
follow the Gao-Rexford model [19]. The dotted lines represent a p2p relationship, while
the arrows represent a c2p relationship. Let’s suppose a simple model where every
AS announces one prefix and operates one BGP router. In Fig. 1.5a, the VP deployed
in AS1 sees all the c2p links, but only one out of the three p2p links. Because of the
routing policies, no route using links 3 4 , or 5 6 is exported to AS1. Let now
suppose that the VP is deployed in AS5 (Fig. 1.5b). This VP sees all the p2p links but
misses two out of the four c2p links because, although there exists a valley-free path
using these links, none of them is the best path, they are thus not exported. To uncover
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more routing information, researchers usually combine the different VPs. For instance,
combining the partial views of AS1 and AS5 enables observing all the AS links in the
topology. However, while the partial views of distinct VPs may differ, they often exhibit
some redundancies. For instance on Fig. 1.5c, combining the partial view of AS1 and
AS2 does not enable to see any additional AS link.

Strategies to improve visibility of VPs. Two possible ways have been studied
to address the visibility limitation of the BGP VPs: (i) enabling add-path [104] for
route collectors and (ii) enabling BGP Monitoring Protocol (BMP) [105] for route
collectors [106]. Add-path is a BGP router capability negotiated during the BGP session
establishment. This feature enables a BGP router to send not only its best route but
its n best routes to the neighboring ASes. Enabling this feature on route collectors
may increase the VP visibility over the Internet routing. Similarly, BMP provides
additional information about the received routes. It consists of regular dumps of the
routes received by all the peers, rather than only the best one. Although these two
features enable discovering more information about the Internet routing ecosystem,
they only allow to see the routes filtered by the best path selection process, not those
missing because of the configured routing policies. In addition, a VP will only collect
the best route of each of its peers (since its peers may not configure add-path or BMP),
rather than all the possible routes, limiting the visibility over backup links.

Most of the BGP-related studies may be impacted by the gap in visibility due to the
limited coverage of the actual BGP collector infrastructures. There is a real need today
to study what are the challenges of the current BGP collector infrastructure and their
limitation and reevaluate the way we collect BGP routing data.
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2
Internet routing measurement ecosystem

Although BGP data collection platforms being extensively leveraged to conduct a wide
range of measurement studies about the Internet routing ecosystem, they face two
conflicting realities that limit their effectiveness. (i) the current systems’ visibility over
BGP ecosystem is too low, resulting in a significant portion of the routing events being
off the radar, therefore requiring a drastic expansion to overcome this problem; (ii)
the volume of collected data poses an operational challenge to further expand these
platforms. These limitations result in a less representative view of the real Internet,
thereby impacting the results of many of the measurement studies.

In this chapter, we start in §2.1 by illustrating the limited visibility of the current RIS
and RV infrastructures and demonstrating its impact on three popular measurement
studies. Next, in §2.2, we identify an operational obstacle to the expansion of BGP
data collection platforms, the volume of collected data. Finally, we present in §2.3 the
challenges of scaling these platforms for both their operators and researchers.

2.1 The limited visibility of the BGP routing ecosystem

In the previous chapter, we explained why each BGP VP only has a local view of the
Internet topology. Although combining multiple VPs enables discovering significantly
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more topology, some portions of the Internet can only be observed locally, necessitating
the deployment of a VP in these regions for analysis. However, the percentage of ASes
hosting a VP remains low, even with the continuous expansion of platforms like RIS
and RV.
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Figure 2.1: Development of RIPE RIS and RouteViews data collection infras-
tructures.

2.1.1 RIS and RV topology coverage is low

Over the years, RIS and RV have deployed a substantial number of VPs across numerous
ASes worldwide. Fig. 2.1a, presents the evolution of the number of ASes hosting at least
one VP for both BGP collection platforms. In ten years, RIS doubled its net coverage, i.e.,
the number of ASes where a VP is deployed, increasing from 333 ASes in 2013 to 817
in 2023. Similarly, RV expanded its net coverage from 147 ASes in 2013 to 335 in 2023.
Although this represents significant improvements in Internet topology net coverage,
the expansion of these platforms does not overtake the growth of the Internet topology.
In 2013, there were 45k ASes operating in the routing system, a number that increased
to 75k by 2023 [16]. Consequently, the proportion of ASes hosting at least one VP
has remained flat over time. As illustrated in Fig. 2.1b, the VP coverage — defined as
the proportion of ASes hosting at least one VP — has never exceeded 2% (RIS and RV
combined) over the two decades of these platforms’ existence. Even when considering
solely the transit ASes, i.e., the ASes that have at least one customer, the VP coverage
remains low at 5.9% in 2023. This limited VP coverage leaves significant portions of
the routing ecosystem off the radar, providing opportunities for attackers to evade
detection by monitoring systems.

2.1.2 Attackers can escape from route collectors

BGP monitoring platforms rely on BGP data collected by the BGP data collection
platforms. Given the current low VP coverage, many routing attacks may evade
detection by VPs and consequently remain undetected bymonitoring tools. For instance,
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in Fig. 1.3a, the MOAS hijack intended by AS8 cannot be detected without a VP either
in AS4 or AS7, even though the attacker does not attempt to evade BGP collectors.
Milolidakis et al. demonstrated the feasibility of routing attacks without detection by
BGP collectors [5]. The first step for the attacker is to identify the dangerous monitors,
i.e., the VPs likely to detect the attack. They determine these VPs based on the proximity
of a VP to the victim compared to its proximity to the attacker. Once the attacker
identifies which AS hosting a VP is susceptible to detecting the hijack, they manipulate
the AS path to exploit a BGP feature, the loop detection. Upon receiving a new route, a
BGP router checks for loops in the AS path, i.e., it verifies if its ASN is already present
in the AS path, in which case the route is dropped. By prepending the ASN of the
dangerous monitors, an attacker can ensure that the route never propagates to a route
collector. Additionally, according to [5], the attacker can use AS-path prepending to
make the route less attractive, thereby reducing the likelihood of its propagation to a
dangerous monitor. They also demonstrate that hijackers can perform effective attacks
even if the VP coverage was four times higher.

The feasibility of this type of attack underscores the urgent need for a drastic increase
in VP coverage. We demonstrate how expanding the BGP data collection platforms
would improve the accuracy and coverage of scientific and operational analysis of
Internet infrastructure.

2.1.3 Estimating the gap of visibility in the Internet routing

Measuring the gap of visibility is currently not a feasible task due to the lack of ground
truth. While we cannot know how much additional information we might observe
from VPs not peering with the public collection platforms, we estimate this gap using
controlled simulations. We use C-BGP [107] to simulate "mini" Internets where each
AS runs one BGP router and announces one or more prefixes.

Experiment settings. We run our simulations of AS topologies with 6k nodes (or 1k
depending on the objective). Although scaling our simulations to match the size of the
Internet is impractical, we note that, to the best of our knowledge, they are larger than
simulations conducted in previous studies [26, 50, 108]. We assume that every AS in
our simulation operates a single BGP router and we ensure that the number of prefixes
announced by the ASes follows the distribution observed in the real Internet. We run
our simulations on AS topologies generated using two different techniques.

Pruned known AS topology: We derive the AS topology from CAIDA’s AS relationship
dataset from October 2023 [109]. To reduce computational cost (in terms of hardware
resources), we prune the topology by iteratively removing the leaf nodes and their
corresponding connections until the topology has the required size (6k or 1k nodes
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2.1 The limited visibility of the BGP routing ecosystem

depending on the objective). We configured the routing policies to follow the Gao-
Rexford model [19]. We run our simulations on one topology built using this process,
as it does not induce any random behavior.

Artificial topologies: We use the hyperbolic graph generator [110] to build an AS topol-
ogy whose parameters match those observed in the real Internet. We set the average
node degree to 6.1, as observed in [109] and we use a power law with exponent 2.1 (as
in [110]) for the degree distribution. The Tier1 ASes, i.e., ASes at the top of the Internet
topology with no provider, are the three ASes with the largest node degree and are
fully meshed. ASes connected to Tier1 are one level below in the Internet hierarchy,
known as Tier2. ASes connected to a Tier2 but not a Tier1 are Tier3, and so forth. The
AS relationships are defined as follows: two ASes have a p2p relationship if they are
on the same level and a c2p relationship otherwise. We configure the routing policies
to follow the Gao-Rexford model [19]. We run our simulations on ten topologies built
using this process, using a different random seed for each.

Studied objectives. We leverage the generated topologies to evaluate the impact of VP
coverage on our ability to conduct three canonical measurement studies: forged-origin
hijack detection, link failure localization, and AS topology mapping.

I Forged-origin hijack detection: For every possible victim in our scenario, we simulate
one Type-1 and one Type-2 hijack. A Type-X hijack denotes a forged-origin hijack
where the attacker appears at position X in the AS path. The attackers are randomly
selected and hijack one of their victim’s prefixes.

II Link failure localization: For each run of our simulation, we create 1k random link
failures and measure how well they can be localized using data from a given set of VPs.
We localize the failures using the algorithm proposed by Feldmann et al. [111] which
leverages the collected AS paths. We consider failures on p2p and c2p links separately,
since routing policies typically reduce the propagation of p2p links, rendering them
harder to observe. As the localization algorithm is computationally expensive, we use
a topology of 1k ASes, instead of the 6k for the other objectives.

III AS topology mapping: We measure the proportion of AS links that can be observed
with a given set of VPs. We collect the AS paths observed from these VPs and extract
all the AS links. Similarly to objective II , we evaluate c2p and p2p links separately.

Simulation of VP deployment. These simulations aim at demonstrating the impact
of the VP coverage on our ability to perform the three measurement analysis described
above. We simulate the VP coverage by using data from a limited proportion of ASes,
ranging from 0.5% to 100%. We iteratively select new ASes (randomly) until we use
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Figure 2.2: Our simulations show that the current RIS and RV coverage (1.1%,
the red area) induces a significant impairment to important operational analy-
ses. We suggest a 25-100x higher coverage (green area).
data from all the ASes. We then present in Fig. 2.2 how well we achieve an objective
according to the percentage of ASes selected in our set of VPs.

Simulation results. Fig. 2.2 shows the percentage of detected hijacks (top), localized
failures (middle), and observed AS links (bottom) as a function of the VP coverage, i.e.,
the percentage of ASes hosting a VP. The results of the simulations with the pruned
topology are indicated with a star whereas the results from the ten artificial topologies
are shown in the boxes. The red area on the graphs represents actual RIS and RV
(combined) VP coverage. The results enable us to make two key observations.

Key observation #1: The simulations effectively illustrate the gap in the visibility in-
duced by a VP coverage of 1%. We observed that, with the current RIS and RV coverage,
we are not capable of performing accurately in any of the three objectives.
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2.1 The limited visibility of the BGP routing ecosystem

I Forged-origin hijack detection: With a VP coverage of 1%, we fail to detect 24% of
the Type-1 hijacks (in the median case) when considering the artificial topologies,
i.e., 24% of the Type-1 hijacks are invisible from every VP among the selected 1%.
This number is 16% when considering the pruned topology. Unsurprisingly, Type-2
hijacks are even less visible (32% of undetected hijacks in the median case for the
artificial topologies), since the AS path is longer resulting in a less attractive route
that propagates less. The implication is that forged-origin hijack detection systems
[69, 82] miss a significant fraction of the hijacks, even when using all RIS and RV
VPs. Given the prevalent use of these platforms for hijack detection, their lack of
coverage leaves significant attack surfaces open [5].

II Failure localization:With the current VP coverage of RIS and RV, only 10% (median)
of the failures on p2p links can be accurately localized when considering either the
artificial or pruned topologies. 20% of the failures on c2p links cannot be localized, a
significant difference with p2p links, since p2p links are more challenging to observe
than c2p links.

III AS topology mapping: With 1% of the ASes hosting a VP, our simulations show
that we are able to observe only 16% of the p2p links in the median case considering
the artificial topologies. With the pruned topology, we observe even fewer p2p links,
amounting to 12%. Similarly to failure localization, p2p links are significantly more
challenging to observe since the routing policies reduce their propagation.

Key observation #2: Our simulations suggest that the VP coverage should grow by at
least 25x to achieve the three objectives reasonably well. According to our simulations,
with a VP coverage of 50%, we may miss only 4% of the forged-origin hijacks, six times
less compared to the actual VP coverage. We may be able to accurately localize 95% of
the failures on p2p links (9 times more than today) and observe 90% of the p2p links (8
times more than today).

We tried to confirm these results with real but private data. We contacted a private
BGP data provider, bgp.tools [103]. We compared the set of AS links observed by this
provider with the set of AS links observed by RIS and RV in September 2023. We
found that bgp.tools saw 192k AS links that none of the RIS and RV VPs observed, and
conversely, RIS and RV VPs observed 401k links that bgp.tools did not observe. Other
private data collection systems, e.g., that companies support, have reported visibility
not seen in the public systems [112]. These significant differences in visibility across
VPs provide compelling motivation to increase the VP coverage of public BGP route
collector platforms.
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2.2 The increasing volume of collected data

Themain non-technical challenge that prevents BGP data collection platform expansion
is the volume of collected data. We propose a measurement analysis demonstrating
the substantial surge in the volume of collected data by the 1537 VPs from RIS and the
1130 VPs from RV.
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Figure 2.3: Increase of the volume of collected BGP data over time.

The volume of data collected per VP increased. As discussed in the previous
section, in the last two decades the Internet has experienced substantial growth. The
number of ASes participating in the Internet went from 16k in 2003 to 75k in 2023 [16].
Similarly, the number of announced prefixes increased significantly, going from 120k
in 2003 to more than 1M in 2023 [16]. This expansion of the Internet routing ecosystem
induced a significant increase in the volume of data collected per VP. Elmokashfi et
Al. demonstrated that the growth in the number of collected updates per VP follows
the growth of the Internet [113]. We demonstrate this by selecting all the VPs that
have existed since 2001 and that remain active today. We downloaded all the collected
BGP updates from these VPs since 2001. To reduce the computational expense of this
analysis, we focused on one hour per day, randomly selected (the same for every VPs).
We present the results of this analysis in Fig. 2.3a. The X-axis represents the time and
the Y-axis represents the number of BGP updates collected per hour by one VP. We can
clearly observe that the volume of data collected per VP has continuously increased
over the years, reaching 26k updates collected per hour per VP (median case) in 2023.

The volume of data collected by RIS and RV increased in a quadratical fash-
ion. The compound effect of both a (approximately) linear increase in the number
of deployed VPs and the linear increase in the volume of data collected per VP is a
quadratic increase in the volume of collected data by RIS and RV. We demonstrate this
by collecting all the BGP updates from all RIS and RV data since 2001. Similarly to the
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results of Fig. 2.3a, we restrict our analysis to only one hour of data (randomly selected)
per day to manage computational expenses. We present the results of this experiment
on Fig. 2.3b, where the X-axis represents the time and the Y-axis represents the number
of collected BGP updates per hour by all the VPs. As expected, we observe a quadratic
increase in the volume of collected data, going from 561k in 2003 to 184M in 2023. This
number of BGP updates represents approximately 1TB of data collected per day by the
RIS and RV infrastructures, encompassing both RIBs and raw BGP updates (before any
lossless compression strategy).

The increase in the volume of data has been a prohibitive factor for using the BGP data
by the users, but is also a challenge for the collection platform operators to maintain.

2.3 The challenge of scaling BGP data collection platforms

Putting aside the non-technical challenges of a radical increase in the VP coverage, we
focus first on the technical challenges, for both data providers and users.

2.3.1 Challenges for data providers

Cultivating more VPs generates more data as each of them exports BGP updates and
leads, as we shown in §2.2 to a quadratic increase of the collected volume of data. RIPE
RIS operators have expressed some concerns about the volume of data they collect
[114]. Consequently, they had to revise their peering policies, by accepting only new
VPs upon request. However, even without chasing themselves for interesting VPs, they
are currently working on strategies to focus only on the most useful new BGP VPs
[115] and have adopted a selective peering strategy for almost three years now. This
selective peering strategy is also used by bgp.tools [103], which uses the number of
newly discovered AS links to evaluate the relevance of a new BGP VP. The volume of
data has been so important that RIS started to question its data retention principles
[116]. The BGP data takes around 800TB of disk space for RIS, with 80% accounting
for the last 5 years. They proposed different strategies to cope with the storage and
distribution costs, such as using cold storage for rarely accessed data, or limiting the
data collection rate for non-authenticated users.

2.3.2 Challenges for users

Although several tools can speed up data processing [86, 87, 117], many measurement
studies and monitoring tools use only a subset of the available data collected by RIS
and RV. They either use a subset of the VPs or reduce the timespan of their analysis.
While authors of these studies do not typically explain why they sample, their choice
suggests they believe the data volume is not worth trying to manage. We confirm this
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explanation with a survey we conducted on authors of eleven research papers. We do
not cite any of them, as we ensured them to preserve their anonymity.

We classified eleven BGP-based studies, selected from top computer network and
system conferences (SIGCOMM, NSDI, S&P, USENIX Sec, NDSS, and IMC) based on
their BGP data sampling strategy. We selected only recent analysis, (2017 for the oldest)
that are focused on different objectives. For instance, we did not select two different
analysis aiming at studying RPKI deployment. Additionally, papers involved in any of
the use cases studied in the evaluation (§6) are omitted. Nine papers used all routes
collected from a subset of the available VPs. These papers are classified in category C1.
Six papers limited the duration of their experiences, which corresponds to category
C2. Note that the categories can overlap. We emailed the authors for all these studies
and asked them whether the volume of BGP data was a limiting factor in their studies,
how and why they sampled BGP data sources, their understanding of the impact of the
sampling on the quality of their results, and if they would expand their sample given
more resources or time. We did not receive any response for three of the eleven papers.
Thus, we eventually collected feedback from seven respondents in C1 and five in C2.

Detailed answers. Table 1 lists the questions we asked the participants of our survey
along with their detailed answers. We color the answers based on our interpretation of
whether the responses reflect some concerns about the volume of the BGP data (green)
or not (red). Neutral answers are colored in blue.

Key observations. We interpret the results of the survey and make two key observa-
tions.

Key observation #1: The volume of BGP data to process is often a limiting factor. In
fact, seven (of eight) respondents found the BGP data expensive to process. For three
respondents in C1, processing time motivated them to use only a subset of the VPs;
three respondents in C2 considered the processing time when choosing a measurement
interval. Even a respondent who used a Spark cluster found it prohibitively time-
consuming to process the BGP data.

Key observation #2: Users often sacrifice the quality of the results to facilitate the data
processing. In fact, six respondents in C1 acknowledged that using more VPs would
improve the quality of their analysis. The last respondent was not sure, given the
potential redundancy in the data sources (which he did not analyze). Two of the six
believed it would not significantly change the conclusion of their studies (e.g., one
said that it could help to pinpoint corner cases). However, six of the seven authors in
C1 affirmed that they would have used more VPs given additional resources and time.
Similarly, all five respondents in C2 said that extending the duration of their study
would improve the quality of their results. One respondent thought the gain would not
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Collection strategy Questions asked Collected answers

C1: All routes and
subset of VPs
(seven papers)

Why did you use a subset of the VPs ?
To speed up data processing (x2)
For disk space and time efficiency (x1)
I thought the rest would be similar (x1)
I did not manage to use them all (x2)

How did you select your VPs ?

I took them randomly (x2)
I do not remember (x2)
It was arbitrary: my script partially failed (x1)
I took geographically distant BGP collectors (x1)
I did not manage to use VPs from one data provider (x1)

Do you think more VPs would improve
the quality of your results?

Yes (x4)
Results would be similar, but it can help to find corner cases (x1)
Yes, but not significantly (x1)
I am not sure (x1)

Would you have used more VPs
if you could?

Yes (x4)
Yes, I’d love to (x1)
Definitely (x1)
I am not sure, but I don’t think so (x1)

C2: Limited duration
of experiment
(five papers)

Was the processing time a factor
that you considered when you decided
on the duration of your measurement study?

Yes (x3)

Do you think extending the duration
of your measurement study would
improve the quality of your results?

Yes (x2)
Yes, especially for rare events (x1)
Potentially (x1)
Yes, but not significantly (x1)

Would have extended the duration
of your measurement study
if you had more resources?

Yes (x2)
Yes, but it depends on the time remaining before the deadline (x1)
I think so, but also if I had more time before the deadline (x1)

All eight papers

Do you find the data from RIS and
RouteViews expensive to process
in terms of computational resources?

Yes (x1)
Yes, CPU and storage (x2)
Yes, the storage cost and the download cost are very large (x1)
CPU is the main issue (x1)
RIS data takes a lot of time to download,

especially when we need data for multiple days (x1)
Not the worst, but we definitely need a resourceful server

if we want to catch some deadline (x1)
We did that in a server so that was not a huge issue (x1)
No (x1)

Is there any additional challenge
that you encountered when processing
the BGP data from RIS and RouteViews?

Our team used Spark clusters and Python but it was too slow (x1)
We had to download the data from all VPs

as there is no optimal solution for selecting them,
the storage overhead and time overhead were very high (x1)

It’ll be helpful to make processing faster
less resource-consuming (x1)

Too many duplicate announcements make processing harder (x1)
Variable sizes of update files exacerbate scheduling parallelization (x1)
RIS took a lot longer than RouteViews (x1)
We had issues when collecting updates in real-time (x1)
We had to deal with bugs in BGPdump (x1)
Broken data feeds and data cleanup is also an issue

that we need to take care of (x1)

Table 1: Details of the questions asked to the participant and their answers.
be significant; another said it could help detect rare routing events. All respondents
in C2 would have extended the duration of their observation window given more
time and resources. The uncomfortable truth is that we do not know exactly what
they are missing, which is why we used simulations and experiments to corroborate
that important analyses lose accuracy and/or coverage when using heavily sampled
topologies.

Common BGP data sampling schemes. Among the seven respondents who took the
data from a subset of the VPs, one picked geographically distant VPs. While intuitive,
this strategy fails to optimize for some metrics (e.g., AS link coverage, see §6). Another
respondent unintentionally removed some VPs (leaving an arbitrarily selected set in
the study) and two did not remember how they selected their VPs. All the remaining
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respondent selected their VPs arbitrarily. We show in the benchmark (§6) that sampling
data in an unoptimized fashion, i.e., arbitrarily or with simple metrics leads to poor
performance for most of the use cases.

Ethics of our survey. The participants of the survey freely participated. We contacted
them by email to ask them whether they would agree to participate. We stated the
purpose of the survey and notified them we might publish the results anonymously.
Following is the exact wording we used when soliciting participants.

"I would like to knowwhether you would be willing to answer a quick survey about why you
selected these VPs and the impact that you think this selection made on your measurement
study. Answering this survey will help us to better understand how researchers proceed
when selecting BGP vantage points, why they often do not take them all, and what is
the impact of the vantage points selection on the results of the measurement studies. The
survey includes a few questions that I will send you by email if you agree to answer them.
It should take less than 5 minutes to answer it. We might publish the results of our survey.
If we do that, we will either do it in a manner that would not allow identification of your
personal identity or we will ask your permission."

These different responses highlight the urgent need to improve the BGP data sampling
strategies. One characteristic of the collected BGP data is its prominent redundant
aspect. While combining the view of multiple VPs often enables discovering new
information about the Internet routing ecosystem, the partial views of two VPs almost
always exhibit a considerable rate of redundancy.
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3
Redundancy in BGP data

Due to the prohibitive volume of BGP data to process, users resort to often arbitrarily
sampling the data. Although sampling BGP data can lead to a loss of visibility over
Internet routing ecosystem, there is an opportunity to minimize information loss while
significantly reducing the volume of data to process: leveraging BGP data redundancy.
The Internet hierarchical structure, where a few ASes provide transit for a large portion
of the Internet, concentrates the connectivity toward these ASes. As a result, VPs have
a good view of the core of the Internet, leading to substantial redundancies in their
partial views.

In this chapter, we start in §3.1 by illustrating through an example how can BGP data
be redundant. Then we propose in §3.2 a characterization of the redundancies in the
BGP data.

3.1 Illustrating BGP data redundancies

In this section, we illustrate BGP data redundancies using a simple example. Fig. 3.1
depicts a small Internet topology with eight ASes. Arrows represent a c2p relationship
while lines represent a p2p relationship. Routing policies are configured according to
the Gao-Rexford model. AS4 announces two prefixes p1 and p2 and AS6 announces
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Figure 3.1: Example of possible redundancy among BGP data.
p3 . In this scenario, two VPs are deployed, one in AS2 and one in AS6. Both VPs export
all their best routes to RIS and RV. We consider a BGP event where the link 4 2
fails.

Since the best path from AS6 and AS2 to p1 and p2 uses link 4 2 , the failure on
this link will trigger new announcements with an alternative AS path that circumvents
the failure. On the right of Fig. 3.1, we show the BGP updates collected by VP1 and
VP2 . Both VPs receive two new routes: one for p1 and another for p2 . Unsurprisingly,
we can observe strong data redundancies, at two different levels.

Redundancy between updates: As p1 and p2 are announced by the same AS and are
not influenced by traffic engineering decisions, they follow the same path propagation.
Consequently, both VP1 and VP2 receive two BGP updates with the same AS path,
one for each of the two prefixes. These two BGP updates are received at the same time
and are triggered by the same event, indicating a high level of redundancy.

Redundancy between VPs: VP1 and VP2 provide a very similar view of the Internet
topology. The path toward p1 and p2 received by VP1 is included in the path received
by VP2 . In addition, since VP1 and VP2 are close in the topology, they receive these
two paths at roughly the same time. All these similarities highlight the high level of
redundancy between these two VPs.

While this section only aims at providing an intuition on how BGP data can be redun-
dant, we now present a rigorous measurement analysis to characterize redundancies
in the BGP data.

3.2 Exploring BGP data redundancies

We now present a comprehensive analysis of redundancy in the BGP data. As there is
no consensus on how redundancy must be defined, we propose three gradually stricter
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definitions of redundancy between updates. We also use these definitions to define
redundancy between VPs.

We denote as u(vp, t, p, L, Lw, C, Cw) a BGP update collected by VP vp at time t for
prefix p. L corresponds to the set of AS links in the AS path of the BGP update, while
Lw represents the set of AS links implicitly withdrawn by the new AS path, i.e., the set
of links that were part of the previous AS path for prefix p, but not part of the new one.
Similarly, C is the set of communities announced by u andCw is the set of communities
implicitly withdrawn for prefix p. Observe that Lw = Cw = ∅ if there was no previous
update for p observed by vp or if the new update for p is the same as the new one (except
for the timestamp). Considering two BGP updates u1(vp1, t1, p1, L1, L1w, C1, C1w)
and u2(vp2, t2, p2, L2, L2w, C2, C2w), we propose the following definition of redun-
dancy:

Definition 1 (prefix based). Update u1 is redundant with update u2 if the two following
conditions hold:

• |t1− t2| < 100s

• p1 = p2

The first condition uses a 100-second slack when comparing the two timestamps to
accommodate typical BGP convergence time [42]. The second condition checks if the
two updates involve the same prefixes. This definition is useful for listing all prefixes
routed on the Internet. By eliminating BGP updates with the same prefixes, one is
capable of reducing the volume of collected data without missing any prefix.

Definition 2 (prefix and AS-path based). Update u1 is redundant with update u2 if the
three following conditions hold:

• |t1− t2| < 100s

• p1 = p2

• L1 \ L1w ⊂ L2 \ L2w

This definition introduces a third condition that checks whether the set of new links in
the AS path observed by vp1 is included in the set of new links in the AS path observed
by vp2. This definition is valuable for AS-level topology-related measurements. For
example, whenmapping the Internet topology, reducing duplicated links helpsminimize
the number of processed updates without missing any AS links. Having more diverse
AS paths may also be useful for inferring the AS relationships.

Definition 3 (prefix, AS-path and community based). Update u1 is redundant with
update u2 if the four following conditions hold:
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• |t1− t2| < 100s

• p1 = p2

• L1 \ L1w ⊂ L2 \ L2w
• C1 \ C1w ⊂ C2 \ C2w

This final definition adds a fourth condition involving BGP communities, checking
whether the set of new BGP communities announced by the update received by vp1
is included in the set of new BGP communities observed by the update collected by
vp2. This definition is particularly useful for detecting new BGP communities, as it
enables the collection of a wide range of BGP communities while keeping the number
of collected updates manageable. Note that both Def. 2 and Def. 3 are asymmetric, as
for two sets X and Y , X ⊂ Y ≠⇒ Y ⊂ X .

Despite their simplicity, these definitions enable us to provide a comprehensive analysis
of the redundancy in BGP data. It is important to note that these definitions are not
used in the design of any of our systems. To evaluate the BGP data redundancy, we
collect all BGP updates from RIS and RV during the first two hours of September 2023
and apply our three definitions to the collected data.

The vast majority of the collected updates are redundant with another collected
update. For each BGP update collected by RIS and RV, we evaluate the proportion of
redundant updates, according to our three definitions. We find that 97% of the updates
are redundant with at least one update collected by another VP, according to Def. 1.
Unsurprisingly this number decreases with stricter definitions but remains high: 77%
with Def. 2 and 70% with Def. 3.

A significant portion of the VPs are redundant with another VP. We use our
update-wise redundancy definition to quantify redundancy between RIS and RV VPs.
We define vp1 as redundant with vp2 if at least 90% of vp1’s updates are redundant
with one or more updates from vp2. We randomly select 100 VPs from RIS and RV and
present the proportion of redundant updates for each pair. To reduce potential biases
induced by a VP selection, we run this experiment 30 times with different sets of VPs
and present the median results (in terms of the proportion of redundant updates). We
show in Fig. 3.2 the results of this experiment for the three gradually stricter definitions.

Fig. 3.2 represents three heatmaps, each corresponding to one redundancy definition.
In these heatmaps, a cell indicates the redundancy level between the VP in the X-axis
and the VP in the Y-axis. The cells are colored in red if the proportion of redundant
updates is above 90%. Note that heatmaps are not symmetric due to the asymmetric
characteristic of Def. 2 and Def. 3.
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Figure 3.2: Redundancy among 100 randomRIS and RV VPs for three gradually
stricter redundancy definitions.
With Def. 1, 70% of the VPs are redundant with at least one other VP. Unsurprisingly,
this number decreases with stricter definitions. With Def. 2 (resp. Def. 3), 26% (resp.
22%) of the VPs are redundant with another one. Some VPs do not export a full feed,
meaning that they are not sending a route for all the prefixes on the Internet. The
results of this experiment remain consistent when considering only full feeders.

This analysis highlights the high level of redundancy in the BGP data. This redundancy
presents an opportunity for sampling BGP data without losing information about the
Internet routing ecosystem. Although these three definitions enable us to illustrate the
redundancy among BGP data, none are used in the design of any of our systems. Instead,
our sampling algorithms rely on data-driven strategies that prevent overfitting to any
specific objective. This feature enables our sampling to remain efficient, regardless of
what the user wants to do with the data.
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4
Sampling strategies

The redundancy in the BGP data offers an opportunity for sampling, enabling a signifi-
cant reduction of the data to process, without losing valuable information. In §3.2, we
explored the redundancy in BGP data using three simple definitions. Although these
definitions effectively demonstrate the high level of redundancy in BGP data, they are
too simplistic to provide a general sampling methodology that works regardless of the
user’s objective. Generally, optimizing our algorithms based on a specific definition of
redundancy results in overfitting.

We explore this risk of overfitting by designing three definition-based specific baselines,
each optimized for one of the three redundancy definitions presented in §3.1.
Definition-based Specific baseline: A definition-based specific baseline minimizes the
redundancy among the BGP updates collected by a set of VPs according to a given
definition of redundancy. More precisely, it selects VPs by greedily adding the non-
selected VP that less increases the redundancy among the BGP updates collected by
the selected VPs, according to the redundancy definition it optimizes.
Unsurprisingly, using these baselines instead of a random selection of VPs significantly
lowers the number of VPs that are redundant with at least one other. With Def. 1, this
number is 37, almost twice as less as with a random selection. This number decreases
with stricter definitions, 20 with Def. 2 and 15 with Def. 3. While this approach
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effectively reduces the redundancy according to a given definition, we show in the
evaluation (§6) that it performs poorly for other objectives.

Although they do not overfit, naive or arbitrary sampling fails to work for a various
and large range of objectives. When selecting dissimilar VPs to sample BGP data, a
common strategy is to select VPs geographically distant or distant in terms of AS hops.
Intuitively, VPs positioned at different locations on the Internet topology may observe
different events, and thus provide more diverse information compared to VPs that are
close within the Internet topology. We experimentally show that this strategy fails for
a simple and common objective: mapping the Internet topology.

We collect the first RIB dump from all VPs on December 1, 2023, and construct the AS
topology of each partial view by leveraging the AS paths extracted from the RIB. For
each pair of VPs, we compute the proportion of links observed by only one of the two
VPs, referred to as the proportion of unique links. We present in Fig. 4.1 the proportion
of unique links as a function of the distance between the two VPs (in terms of AS hops).
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Figure 4.1: Proportion of unique AS links seen by a pair of VPs as a function
of the distance between two VPs.

Unsurprisingly, the higher the distance between the VPs, the higher the proportion of
unique observed links. However, while this tends to be true most of the time, it does
not generalize. For instance, in the median case, two VPs deployed in the same AS
have 12% of unique observed links. Additionally, in 47% of the cases, two VPs distant
by four hops have a higher proportion of unique observed AS links than the median
for two neighboring VPs. Using a metric such as geographic diversity [118] also yields
poor results, as we show in the evaluation (§6).

Sampling BGP data based on specific definitions inevitably leads to undesirable overfit-
ting effects. Sampling BGP data based on generic, but naive definitions of redundancy
leads to poor performances for some popular objectives. Therefore, it is crucial to
design efficient definitions of redundancy that perform well regardless of the objective.
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4.1 Sampling at the update granularity

We identified two levels of redundancies: redundancy between updates and redundancy
between VPs. In this chapter, we present one efficient definition for each type. We start
by proposing BUS (BGP Update Selector), an algorithm that evaluates the redundancy
between updates (§4.1), based on a new metric that we designed called reconstitution
power. Then, we present MVP (Most Valuable VP), an algorithm that defines the
redundancy between VPs, based on the impact of carefully selected events on the
partial view of each VP.

4.1 Sampling at the update granularity

To reduce the number of updates to process while minimizing information loss, a
simple technique is to retain only one route among those that share the exact same
BGP attributes, but with a different prefix. This strategy seems quite efficient since
it reduces the number of BGP updates to process by ≈ 85% (i.e., 6 times less data to
process). However, this strategy exhibits two main drawbacks. First, it does not exploit
the redundancies between the VPs, which are quite common as illustrated in Fig. 3.2.
Second, it can be only applied to past updates and not to future updates, as there is
no guarantee that two prefixes sharing the same attributes at a given time will also
share the same attributes in the future. Therefore, we need to rely on a definition that
addresses both these points.

In this section, we present an algorithm, BUS, that leverages a new metric to evaluate
the redundancy between updates: the reconstitution power. This methodology is data-
driven, leveraging past updates to determine the redundancy of future updates, as we
observed that updates redundant at a given time are likely to remain redundant a short
time after (see §4.1.1). Our metric enables identifying which updates can be discarded
while minimizing information loss. BUS’s update selection process involves three steps:
(i) grouping the correlated updates, i.e., updates that are induced by the same BGP event,
(ii) applying our new metric, the reconstitution power to identify which updates can be
discarded, and (iii) exploiting the per-prefix redundancy to further reduce the number
of retained BGP updates. We provide a summary of all notations used in this section at
the end of the chapter, see Table 4.

4.1.1 Finding correlated updates

Any BGP event occurring on the Internet typically triggers new BGP route updates.
For instance, a failure on an AS link will generate new announcements with AS paths
that circumvent the failure. Similarly, a hijack will trigger the appearance and the
propagation of route updates with the hijacked BGP prefix, and a routing policy change
will trigger new announcements such that the subsequent paths accommodate the
new policies. These new route updates will propagate and likely reach multiple VPs.
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4.1 Sampling at the update granularity

For instance, in Fig. 3.1, the failure on link 4 2 triggers route updates with a path
circumventing the failure, and these announcements are collected by two distinct
VPs. Therefore, updates triggered by the same events are likely to carry redundant
information (similar AS paths on Fig. 3.1). While it is challenging to precisely identify
which updates are triggered by the same events, these updates share two key similarities:
(i) they all carry information about the same prefix and (ii) they are seen roughly at
the same time (accommodating path exploration and convergence delays).

To capture the correlations between BGP updates, BUS builds correlation groups, which
group the updates likely triggered by the same BGP event. A correlation group com-
prises all the updates that pertain to the same prefix and are observed roughly at
the same time. Essentially, a time-correlated group of updates means that when one
element of this group is observed, the others are likely to be observed after a short
time. We now provide a formal definition of a correlation group.

Correlation group definition A correlation group is a set of updates where each
update is represented by three information: the VP that collects the update, its AS
path, and its communities. We denote an update collected by VP vp at time t with
prefix p, AS path A, and BGP communities C as u(t, p, vp,A,C). We denote its
representation within a correlation group (vp,A,C) as r(u) = (vp,A,C). Given
two updates u1(t1, p1, vp1, A1, C1) and u2(t2, p2, vp2, A2, C2), their representation
r(u1) = (vp1, A1, C1) and r(u2) = (vp2, A2, C2) are included in the same correlation
group if u1 and u2 satisfy the following two conditions:

• |t1 − t2| < 100s

• p1 = p2

We choose a 100-second window to accommodate typical BGP convergence times
[42]. If updates {u0, . . . , un} are grouped into the same correlation group G, then G =
{r(u0), . . . , r(un)}. Observe that in practice a correlation group contains significantly
more than two updates, as an event can be seen globally, i.e., by nearly all the VPs (e.g.,
a new AS operating on the Internet). Using data from RIS and RV, the average size of a
correlation group is 27. Since not all possible updates are triggered by a single BGP
event, there are typically multiple correlation groups for each prefix. Distinct BGP
events are likely to trigger different updates, resulting in distinct correlation groups.

Correlation group construction. To build correlation groups that accurately reflect
the correlations between updates received by VPs, BUS uses two days of data collected
from all the VPs. BUS then extracts all updates and groups them into the corresponding
correlation groups. A significant proportion of the events that trigger BGP updates are
recurrent, and correlations between past updates are likely to reappear in the future.
For instance, routing changes due to traffic engineering occur regularly. In practice (i.e.,
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4.1 Sampling at the update granularity

using RIS and RV data), 96% of the updates that appear at a given time also appear with
the exact same attributes (excluding the timestamp) during the following 24 hours. This
recurrence leads to duplicate correlation groups, as similar events may generate similar
correlated updates. Therefore, if two correlation groups are composed of the exact
same update representations, BUS merges them into the same correlation group and
increases the correlation group weight of this group, denoted as w(G) for a correlation
group G. More formally, two correlation groups G1 and G2 are merged into the same
correlation group if they are equal, i.e., if the set of the update’s representations that
compose them are equal. Intuitively, the higher the correlation group weight of a group,
the more correlated the updates within that group.

Correlation group construction time. BUS builds correlation groups using two days
of BGP data collected from all the available VPs. The construction time must be long
enough to ensure that correlation groups accurately represent the actual correlations
between updates received by VPs. We experimentally show that two days is the
optimal tradeoff between stability and computational expense. We tested values for this
parameter ranging from one to ten, using ten different update periods to avoid biases
induced by sampling BGP data over a short timeframe. We find that after two days,
the ranking of correlation groups (in terms of correlation group weights) had a 94%
probability of being the same as if we used another training period of the same length.
This probability is 81% when using only one day of data, and 95.8% when using ten
days. Increasing the construction time after two days results in marginal performance
improvements, while significantly increasing the computational expenses.

Example of correlation group construction. We use the example depicted in
Fig. 4.2 to illustrate how BUS builds the correlation groups. This example involves an
eight-ASes Internet topology, where routing policies are configured according to the
Gao-Rexford model. An arrow indicates a c2p relationship while a line represents a
p2p relationship. Two VPs are deployed, one in AS2 ( VP1 ) and one in AS6 ( VP2 ), both
of which export all their routes to route collectors. We consider four routing events,
separated in time:

Event #1: The link 2 4 fails at time T1.

Event #2: The link 2 4 is restored at time T2.

Event #3: The links 2 4 and 2 6 fail at time T3.

Event #4: The links 2 4 and 2 6 are restored at time T4.

For all n in {1, . . . , 3}, we have Tn+1 −Tn > 100s. To simplify this example, we focus
only on p1 and omit the BGP community, as it does not change the correlation group
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Figure 4.2: Example of how BUS builds correlation groups. We consider four
BGP events occurring at distinct timestamps.
construction. The four events trigger eight different updates that we denote as ui with
i ∈ {1, . . . , 8}:

u1: seen at time T1 by VP VP1 for prefix p1 with AS path 2 1 4

u2: seen at time T1 by VP VP2 for prefix p1 with AS path 6 2 1 4

u3: seen at time T2 by VP VP1 for prefix p1 with AS path 2 4

u4: seen at time T2 by VP VP2 for prefix p1 with AS path 6 2 4

u5: seen at time T3 by VP VP1 for prefix p1 with AS path 2 1 4

u6: seen at time T3 by VP VP2 for prefix p1 with AS path 6 3 1 4

u7: seen at time T4 by VP VP1 for prefix p1 with AS path 2 4
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4.1 Sampling at the update granularity

u8: seen at time T4 by VP VP2 for prefix p1 with AS path 6 2 4

We show how BUS groups these updates in correlation groups, such that they are
representative of the real correlations between updates.

Upon T1: The link 2 4 fails. The primary path (i.e., the best path) from AS2 to p1
uses the failed link. AS2 switches its best route to the alternative route 2 1 4 ,
which circumvents the failure. This new route then propagates to AS2 neighboring
ASes, including AS6 which adopts this new route. As a result, two updates are thus
collected, u1 and u2. Both these updates share the same prefix and are assumed to be
collected roughly at the same time since AS2 and AS6 are neighbors. Therefore, u1
and u2 thus satisfy the requirements to be grouped into the same correlation group.
BUS creates a correlation group G1, in which it adds both r(u1) and r(u2). Recall that
r(u) stands for the representation of u in a correlation group. We have G1 = {( VP1 ,
2 1 4 ), ( VP2 , 6 2 1 4 )} (as we omit BGP communities for the sake of
simplicity) and w(G1) = 1.

Upon T2: The link 2 4 is restored. Since a better path now exists from AS2 to p1
compared to the actual one ( 2 1 4 ), AS2 switches its path to the new best one,
2 4 . This new path propagates to AS2 neighboring ASes, including AS6 which
adopt this route. As a result, two updates are collected, u3 and u4. Both these updates
share the same prefix and are assumed to be collected roughly at the same time since
AS2 and AS6 are neighbors. u3 and u4 satisfy the requirements to be grouped into the
same correlation group. BUS creates a new group G2 in which it adds both r(u3) and
r(u4). We then have G2 = {( VP1 , 2 4 ), ( VP2 , 6 2 4 )}. Since G2 is not
equal to any of the existing groups, BUS does not merge it, and we have w(G2) = 1.

Upon T3: Two links fail, 2 4 and 2 6 . Similarly to the failure upon T1, the actual
path fromAS2 to p1 uses a failed link, promptingAS2 to switch its path to the one going
through AS1. However, this new path is not propagated to AS6, since the link 2 6
also failed. Consequently, AS6 uses a backup path going through AS3: 6 3 1 4 .
Two updates are collected, u5 and u6. Both these updates share the same prefix and are
assumed to be seen roughly at the same time. BUS creates a new correlation groupG3 in
which it adds both r(u5) and r(u6). Thus, we haveG3 = {( VP1 , 2 1 4 ), ( VP2 ,
6 3 1 4 )}. Despite having r(u5) ∈ G1, G1 is not equal to G3. Consequently,
BUS does not merge G1 and G3, which results in w(G3) = 1.

Upon T4: Both links 2 4 and 2 6 are restored. With now all the links being
restored, AS2 and AS6 can both use their primary best paths to reach prefix p1 . Two
updates are collected, u7 andu8. These updates can be grouped into the same correlation
group, as they share the same prefix and are assumed to be received roughly at the same
time. BUS creates a new correlation group, G4, in which it adds both r(u7) and r(u8).
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4.1 Sampling at the update granularity

This results in G4 = {( VP1 , 2 4 ), ( VP2 , 6 2 4 )}. In this scenario, we have
r(u3) = r(u7) and r(u4) = r(u8), which implies that G2 = G4. Consequently, BUS
can merge G4 into G2, which results in w(G2) = 2.

After the four events, BUS built three distinct correlation groups that capture the
correlation between updates. We now explain how BUS uses these correlations to
identify redundant updates using a new metric the reconstitution power.

4.1.2 Indentifying redundant updates

BUS identifies redundant updates using the constructed correlation groups (§4.1.1) and
an update reconstitution algorithm that relies on a new metric that we designed called
the reconstitution power.

Reconstitution power intuition: Given a set of BGP updates β, if it is possible to identi-
cally reconstitute β from one of its subsets α, then α contains the updates that carry
the most valuable information, while β \ α contains redundant updates. An update is
identically reconstituted if it is possible, using our reconstitution algorithm, to retrieve
the VP it was collected from, the AS path, the community, the prefix,and the timestamp
with a slack of 100 seconds (to accommodate convergence delays [42]).

The reconstitution power of a subset α of β corresponds to the proportion of updates
in β that can be identically reconstituted from α. BUS’s objective is to find a subset of
updates α that maximizes the reconstitution power and discards the updates in β \ α.
BUS evaluates the reconstitution power of a set of updates using our reconstitution
algorithm, which relies on the constructed correlation groups.

Reconstitution algorithm formalization. We denote as Corr(p, u) the list of
correlation groups for prefix p that include the representation r(u) of update u. Recall
that the representation of an update u(t, p, vp,A,C) is (vp,A,C), where vp is the
VP that collects u, A is its AS path and C is the set of associated BGP communities.
We denote as maxweight(G, t, p) the function that takes as input a set G of correlation
groups, returns the update representations included in the correlation group in G with
the highest correlation weight, and builds the corresponding updates by adding prefix
p and time t to all the update representations. In case multiple correlation groups have
the same highest correlation weight, maxweight(G, t, p) selects one of them randomly.
We denote U(p, u, t) the set of updates reconstituted from update u with prefix p
received at time t.

U(p, u, t) = maxweight(Corr(p, u), t, p)
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4.1 Sampling at the update granularity

Basically, BUS reconstitutes an update u by searching for the correlation group where
r(u) appears and that has the highest correlation weight. For each update representa-
tion in this group, BUS builds updates by adding the prefix of u and the time at which
it is observed to each of them. We consider that two updates u1(t1, p1, vp1, A1, C1)
and u2(t2, p2, vp2, A2, C2) to be identical if:

• |t1 − t2| < 100 seconds,
• p1 = p2,
• vp1 = vp2,
• A1 = A2, and
• C1 = C2

Consider a set of updates β and a subset of it α, and assume that t(u) is the timestamp
of an update u. The reconstitution power denoted as RP , indicates how well BUS can
reconstruct β from the updates included in α. We define RP as follows:

RP (β, α) =

∣∣∣∣∣
(⋃

u∈α
U(p, u, t(u))

)⋂
β

∣∣∣∣∣ / |β|
⋃

u∈α U(p, u, t(u)) is the set of updates that are reconstituted from α. Observe that this
set can include updates not present in β, which we refer to as false positives. Incorrectly
reconstituted updates occur when two updates u1 and u2 have the same prefix, VP, AS
path, and community values but are received at time t1 and t2 (with |t1 − t2| >100s)
and are correlated with distinct sets of updates, resulting in u1 and u2 being placed in
two distinct correlation groups. Consequently, reconstituting updates from u1 might
result in incorrectly reconstituting updates that appear with u2 but with timestamp t1,
leading to false positives. Although false positives often occur, they only account for a
negligible portion of the updates that could be reconstituted but are not in β (4.6%).
Therefore, the false positives are ignored when computing the reconstitution power
(operator

⋂
), which focuses only on updates in β that are correctly reconstituted (i.e.,

true positives).

BUS builds the set α of non-redundant updates by greedily adding to α the updates in
β \ α that best improves the reconstitution power, i.e., those that maximize RP (β, α).
Observe that BUS adds to α either all updates received by a VP or none at all. We
show later in §5.2 that discarding redundant updates by matching them on prefix, VP,
AS path, and communities leads to overfitting, and performs poorly for filtering future
redundant updates, i.e., updates not seen in the training set. However, filtering on
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4.1 Sampling at the update granularity

prefix and VP provides the best tradeoff between discarding future redundant updates
and retaining future non-redundant updates.

Reconstitution algorithm explanation with example. We use the example from
Fig. 4.2 and the correlation groups built in §4.1.1 to illustrate the reconstitution algo-
rithm. Similarly to §4.1.1, we focus on prefix p1 and omit the BGP communities.

Recall that the four events occurring in the scenario depicted in Fig. 4.2 induced eight
updates {u1, ..., u8}. The set of initial updates β thus contains these eight updates. BUS
starts by computing, for each update u in β, the set of updates reconstituted from u (de-
noted as U ). To illustrate this process, let’s consider u1 as an example. r(u1) is included
in two correlation groups, G1 and G3. Therefore, we have Corr( p1 , u1) = {G1, G3}.
Since we have w(G1) = w(G3), the function maxweight(Corr( p1 , u1), T1, p1 ) se-
lects one of them randomly; suppose it selects G3 in our case. Finally, BUS uses the
maxweight function to reconstitute updates by using the update representations con-
tained in G3 and adding p1 and T1 to them. Thus, we have:
U( p1 , u1, T1) = {(T1, p1 , VP1 , 2 1 4 ), (T1, p1 , VP2 , 6 3 1 4 )}

BUS computes the set of reconstituted updates for all updates in β, which results in:

U( p1 , u1, T1) = {(T1, p1 , VP1 , 2 1 4 ), (T1, p1 , VP2 , 6 3 1 4 )}
U( p1 , u2, T1) = {(T1, p1 , VP1 , 2 1 4 ), (T1, p1 , VP2 , 6 2 1 4 )}
U( p1 , u3, T2) = {(T2, p1 , VP1 , 2 4 ), (T2, p1 , VP2 , 6 2 4 )}
U( p1 , u4, T2) = {(T2, p1 , VP1 , 2 4 ), (T2, p1 , VP2 , 6 2 4 )}
U( p1 , u5, T3) = {(T3, p1 , VP1 , 2 1 4 ), (T3, p1 , VP2 , 6 3 1 4 )}
U( p1 , u6, T3) = {(T3, p1 , VP1 , 2 1 4 ), (T3, p1 , VP2 , 6 3 1 4 )}
U( p1 , u7, T4) = {(T4, p1 , VP1 , 2 4 ), (T4, p1 , VP2 , 6 2 4 )}
U( p1 , u8, T4) = {(T4, p1 , VP1 , 2 4 ), (T4, p1 , VP2 , 6 2 4 )}

At the first iteration, BUS determines which update to add in α. Since it selects either
all or none of the updates collected by the same VP, BUSwill either add {u1, u3, u5, u7}
or {u2, u4, u6, u8} in α. The updates collected by VP1 enable reconstituting seven out
of the eight updates, while the updates collected by VP2 enable reconstituting all the
updates from β since we have:

u2 (in G1) leads to the reconstitution of u1 (also in G1)
u4 (in G2) leads to the reconstitution of u3 (also in G2)
u6 (in G3) leads to the reconstitution of u5 (also in G3)
u8 (in G2) leads to the reconstitution of u7 (also in G2)

Observe that β cannot be entirely reconstituted if α contains the four updates collected
by VP1 . In fact, u1 and u5 have identical attribute values but appear correlated with
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4.1 Sampling at the update granularity

different updates throughout time (u1 is correlated with u2 and u5 is correlated with
u6). Consequently, either u2 or u6 cannot be reconstituted. Besides, one update is
inevitably incorrectly reconstituted. Either u1 leads to reconstituting the following
update:

Time T1; VP: VP1 ; Prefix: pp1 ; AS path: 6 3 1 4

which is not in β, or u5 leads to reconstituting the following update (which is also not
it β):

Time T3; VP: VP1 ; Prefix: p1 ; AS path: 6 2 1 4

Therefore, BUS adds four updates u2, u4, u6, u8 to α, resulting in RP (β, α) = 1.0.
However, in practice, it is challenging to find a set α of updates that achieve a reconsti-
tution power of 1 while removing most of the redundant updates. We experimentally
found that, based on RIS and RV data, the optimal threshold is 0.94, meaning that BUS
stops when it finds a set α such that RP (β, α) >= 0.94.

Reconstitution algorithm parameters. The main parameter of the reconstitution
algorithm is the reconstitution power threshold at which BUS should stop adding new
updates in α. Determining the optimal value for this parameter is not straightforward.
On one hand, if |α|/|β| is close to one (i.e., if the proportion of retained updates is
close to one), the reconstitution power is close to one (i.e., the optimum), resulting
in many redundant updates being retained. On the other hand, if |α|/|β| is close to
zero, the reconstitution power is low, which leads to many non-redundant updates
being discarded. We experimentally find the best tradeoff between discarding as many
redundant updates as possible and retaining as many non-redundant updates as possible.
This tradeoff is illustrated in Fig. 4.3.
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Figure 4.3: Reconstitution power of alpha as a function of the size of β \ α.
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We collect all updates from RIS and RV from Sept. 1, 2023 to Sept. 2, 2023 and add
all these updates in β. We use two days of data to align with the correlation group
construction time from §4.1.1. We then plot the evolution of the reconstitution power as
a function of the proportion of retained updates (i.e., |α|/|β|). As expected, the first
loop of our algorithm significantly improves the reconstitution power of α, going from
0 to 0.43. As depicted in Fig. 4.3, once the reconstitution power reaches 0.94, adding
new updates in α does not significantly improve it. Consequently, we choose 0.94 as
the default value for the reconstitution power threshold. Note that this value can be
adjusted to accommodate higher or lower processing and storage capacities. In practice,
with the default parameter, we have |α|/|β| ≈ 0.16, meaning that the reconstitution
algorithm enables to reconstitute 94% of the updates in β from ≈ 16% of them. BUS
classifies 16% of the updates as non-redundant and the remaining 84% as redundant.

We now refine our definition of per-update redundancy to enable BUS exploiting the
per-prefix redundancies and thus further reduce the set of the retained updates α.

4.1.3 Identifying redundancies across prefixes

In the introduction of this section, we described a possible strategy for sampling non-
redundant updates, which consists of selecting only one update among those that
share the same BGP attributes, but have different prefixes. This approach cannot be
blindly applied, since it only allows for discarding non-redundant updates that appear
in the past. However, BUS built per-prefix sets of non-redundant updates that capture
consistent redundancies across time, which enables it to apply a prefix-wise redundancy
reduction. Distinct prefixes can be subject to similar route updates and thus carry
highly redundant information. If these redundancies are consistent enough, the set α
of non-redundant updates is identical (aside from the prefix) for multiple prefixes. We
then adapt BUS to exploit the redundancy between the prefixes.

BUS Prefix-wide reduction description. Intuitively, prefixes announced by the
same AS are likely to carry redundant information. Consequently, for two updates u1
with prefix p1 seen at time t1 and u2 with prefix p2 seen at time t2 announced by the
same AS, we will likely have U(p1, u1, t1) = U(p2, u2, t2). We denote α(p) the set of
updates in α with prefix p. BUS applies its prefix-wide redundancy reduction to a set
P = {p1, ..., pn} of distinct prefixes only if α(p1) = ... = α(pn), with prefix excluded
from the equality. We denote as VP(P ) the set of VPs that collected at least one update
in
⋃

p∈P α(p). BUS’s prefix-wide redundancy reduction consists of separating, for each
prefix p in P , α(p) into sets of updates α(p, vp1), ..., α(p, vpm) where α(p, vp) is the
set of updates in α that have prefix p and that are collected by vp. BUS then builds a
new set of non-redundant updates, denoted as α′, by iteratively adding sets of updates
α(p, vp) until α′ contains at least one update collected by each VP in VP(P ). The set
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α′ is built greedily by adding at each step the set α(p, vp) for which there is no update
in α′ with prefix p and no update collected by vp. In case there is no such set α(p, vp),
BUS selects one for which there is no update in α′ collected by VP vp. When there are
multiple sets α(p, vp) that match the conditions, BUS selects one randomly. Finally, we
get a new set of non-redundant updates α′ where per-prefix redundancies are pruned,
which results in |α′| < |α|.

BUS Prefix-wide reduction illustration (with example). We illustrate how BUS’s
prefix-wide redundancy reduction works using the scenario depicted in Fig. 4.2. We
now assume that, similarly to the scenario in Fig. 3.1, AS4 announces two prefixes
p1 and p2 . Since p1 and p2 share the same paths and experience routing changes
similarly, the sets of updates with p1 and p2 added in α are the same. Therefore we
have:

α( p1 ) = {(T1, p1 , VP2 , 6 2 1 4 ), (T2, p1 , VP2 , 6 2 4 ),

(T3, p1 , VP2 , 6 3 1 4 ), (T4, p1 , VP2 , 6 2 4 )}

and

α( p2 ) = {(T1, p2 , VP2 , 6 2 1 4 ), (T2, p2 , VP2 , 6 2 4 ),

(T3, p2 , VP2 , 6 3 1 4 ), (T4, p2 , VP2 , 6 2 4 )}

p1 and p2 satisfy the requirements to be grouped into the same set of redundant
prefixes, since we have α( p1 ) = α( p2 ), with the prefix excluded from the equality.
Consequently, we have P = { p1 , p2 } and VP(P ) = { VP2 }. We then separate the
sets of updates α(p) into sets α(p, vp). Since there is only one VP in VP(P ), we have
α( p1 , VP2 ) = α( p1 ) and α( p2 , VP2 ) = α( p2 ).

First, BUS initializes the new set of non-redundant updates α′ with an empty set. At
the first step, BUS adds either α( p1 , VP2 ) or α( p2 , VP2 ), randomly selected—suppose
α( p1 , VP2 ) here. Since there is now at least one update collected by all the VPs in
VP(P ), BUS stops adding new updates in α′. Consequently, it classifies all the updates
in α( p2 , VP2 ) as redundant. In practice with data collected from RIS and RV, we have
|α′|/|β| = 0.06, meaning that BUS classifies 94% of the updates in β as redundant, and
retains only the remaining 6%.

We proposed a new methodology to define the redundancy between updates, we now
propose a methodology to evaluate the redundancies between VPs.

4.2 Sampling at the Vantage Point granularity

To select dissimilar VPs, a straightforward strategy is to select distant VPs. We showed
at the beginning of this chapter that this strategy fails since the distance between two
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VPs does not necessarily align with the redundancy of their partial views. Another
strategy is to select VPs in different countries, as proposed by RIPE [115]. However, we
demonstrate later in the evaluation that this strategy leads to poor performances for
many common objectives, such as topology mapping. These two strategies perform
poorly because they are not data-driven, meaning that they do not account for the real
Internet routing dynamics.

In this section, we present,MVP, an algorithm that assesses the redundancy between
VPs, in a pairwise fashion. Similarly to BUS, this methodology is data-driven and
leverages the impact of BGP events on the partial view of each VPs. We start in §4.2.1
by describing our methodology to select an unbiased set of BGP events. Next, we
leverage in §4.2.2 topological features to characterize how the VPs experience the
selected BGP events. Then, we introduce in §4.2.3 the pairwise redundancy score
between VPs. Finally, we explain in §4.2.4 how MVP builds a set of dissimilar VPs. We
provide a summary of all the notations used in this section at the end of the chapter,
see Table 5.

4.2.1 Selecting unbiased set of BGP events

MVP selects a large, unbiased set of BGP events to gauge pairwise redundancy between
VPs. First, it carefully selects three types of non-global events: path changes, outages,
and origin changes. MVP avoids global events since all VPs tend to see them, rendering
them less discriminating. Second, it stratifies its sample of events across space and
time to avoid bias.

Selecting local and partially visible BGP events. To assess redundancies between
VPs,MVP focuses on BGP events that trigger topological changes:

New links: MVP focuses on events that trigger the appearance of a new AS link in the
AS-level topology. For instance, a backup link used after an outage can lead to a new
link appearing in the topology.

Inter-domain outages:MVP focuses on events that discard one AS link from the AS-level
topology. For instance, a physical disruption on an inter-domain link can trigger such
an event.

Origin changes: MVP focuses on events that change the AS at the origin of a prefix.
These events can be either legitimate (e.g., multiple ASes owned by the same company
doing traffic engineering) or not (e.g., MOAS hijack).

Our methodology aims at finding unique pieces of data. Since global events (i.e., seen
by the majority of the VPs) do not enable the discrimination of the partial views of
each VPs,MVP focuses on partially visible BGP events. An event is a candidate to be
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added to our event set only if it is seen by less than 50% of the VPs. We tested other
values ranging from 1% to 90% for this parameter and found that 50% was the one that
enabled to find the most interesting events (i.e., that enable discriminating the VPs
based on their redundancies with the highest consistency).

Avoiding biases across time. MVP selects events that occurred within one month.
To avoid time biases, it selects only non-overlapping events (i.e., the time range of an
event is not included in the time range of another event), such that two events are not
tied to each other. This ensures that MVP does not overfit toward a specific period of
time, and works well regardless of when the events occur.

Avoiding biases across location. From a candidate set of BGP events,MVP builds
the final set of events E by selecting 2250 non-overlapping events. We select 750 new
links, 750 inter-domain outages, and 750 origin changes. We experimentally found that
the pair-wise redundancy scores (described in §4.2.3) do not change when selecting
more events, but are less stable when selecting fewer events. Therefore, selecting 750
of each event type provides the best tradeoff between computational expenses and
redundancy stability. MVP infers the start and the end of these events by processing
the data from all the VPs.

ID Name # of ASes Avg.degree Description
1 Stub 63310 3 ASes without customer

2 Transit-1 10845 27 Transit ASes with a customer
cone size lower than the average

3 Transit-2 704 267 Transit ASes /∈ Transit-1
4 HyperGiant 15 1078 Top 15 as defined in [119]
5 Tier1 19 1817 Tier1 in the CAIDA dataset [109]

Table 2: MVP classifies all ASes in five categories, according to their character-
istics.

Inspired by previous approaches to mitigate the risk of over-sampling core or stub
ASes [118, 120],MVP classifies ASes into five categories, as presented in Table 2. These
categories are the same as those used in [120], except for the transits that we choose
to separate into two categories. The first, denoted as Transit-1, is composed of all
transit ASes (i.e., ASes that have at least one customer) that have a degree lower than
the average over all transit ASes, while ASes with a degree higher than the average
are classified in the other category, denoted as Transit-2. This separation enables
considering large and small transits separately, as they exhibit significant differences
in their topological characteristics (highly vs slightly connected). If an AS satisfies the
requirements for multiple categories,MVP assigns it with the highest ID.

46



4.2 Sampling at the Vantage Point granularity

To ensure that every scenario is represented in the set of selected events E ,MVP selects
an equal number of events for every pair of AS categories. The AS pair for a new link
or an AS-link outage corresponds to the ASes at both ends of the link, and for an origin
change it corresponds to the previous and the new origin. Having an over-represented
event scenario leads to overfitting toward that scenario, as demonstrated in [82]. Since
more events are observed in the core of the Internet, having a random sampling leads
to good performances when inferring redundancies at the core of the Internet, but
poor performances when inferring redundancies at the edge. The results of the event
selection are presented in Fig. 4.4.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Stub
Transit-1

Transit-2

Hypergiant
Tier-one

Stub

Transit-1

Transit-2

Hypergiant

Tier-one

0.07 0.07 0.07 0.07 0.07

0.07 0.07 0.07 0.07 0.07

0.07 0.07 0.07 0.07 0.07

0.07 0.07 0.07 0.07 0.07

0.07 0.07 0.07 0.07 0.07

(a) Balanced selection.

Stub
Transit-1

Transit-2

Hypergiant
Tier-one

Stub

Transit-1

Transit-2

Hypergiant

Tier-one

0.01 0.07 0.15 0.01 0.02

0.07 0.03 0.12 0.02 0.05

0.15 0.12 0.11 0.05 0.26

0.01 0.02 0.05 0.00 0.03

0.02 0.05 0.26 0.03 0.08
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Figure 4.4: MVP selects events using a balanced selection scheme that reduces
bias. The x- and y-axes are the five categories of ASes (see Table 2).

Fig. 4.4 shows the results of both a balanced (Fig. 4.4a) and random (Fig. 4.4b) selection
of BGP events for each of the 15 pairs of AS categories (the matrices are symmetric)
and for 2250 events selected in Sept. 2023. Unsurprisingly, the random sampling selects
significantly more events in the core of the Internet (category Transit-2 — Tier-one).
69% of the selected events involve a Tier-one AS, compared to only 11% for events
involving HyperGiants. However, MVP’s event sampling strategy selects the same
number of events in each of the 15 categories, preventingMVP from overfitting toward
any specific category of event. For each of the 15 categories, ourMVP selects 50 new
links, 50 outages, and 50 origin changes, yielding 15∗3∗50 = 2250 events (|E| = 2250)
used in the next step.

We now show how MVP uses these BGP events to quantify the observation of the VPs.
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4.2.2 Characterizing how VPs observe BGP events

There exist multiple ways to evaluate the similarities between two graphs [121]. One
suchmetric is the graph edit distance, which computes theminimal number of operations
needed to transform the first graph it into the second. An operation is either adding
a node, removing a node, adding an edge, or removing an edge. Despite efficiently
embedding graph similarities, this strategy and other state-of-the-art methods for
comparing graphs exhibit two main issues. First, they do not account for routing
dynamics, as there are many routing changes every minute on the Internet. Second,
these solutions have high complexity, meaning they do not scale well on graphs with
tens of thousands of nodes. Therefore, we rely on graph features to evaluate the impact
of the selected BGP events on the partial view of each VP.

We consider the set of VPs V that includes all VPs from RIS and RV. To compute the
partial view of VP v, MVP computes the RIB of VP v at time t using its last RIB dump
before t and subsequent updates until t. MVP uses this RIB to construct and maintain
the directed weighted graph Gv (t) = (Nv(t), Ev(t)) from the AS paths of the best
routes observed by v at time t, with Nv(t) the set of nodes and Ev(t) ∈ Nv(t) ∗Nv(t)
the set of AS links. The edges are directed because two identical paths in opposite
directions should not appear as redundant. Each edge in Ev(t) has a weight in Z+

which is the number of routes in the RIB that include this edge in their AS path.

MVP considers the four main BGP attributes. MVP evaluates the impact of each
event on the topological features [122, 123, 124] computed on graph Gv(t) for all VPs.
The combination of these topological features prevents overfitting as the graphs on
which they are computed embed information about the four main attributes contained
within a BGP (time, prefix, AS path and, community). More concretely, the graphs
Gv(t) embed information about (i) the time as the graph is built until a given time,
(ii) the AS path as it is used to build the AS graph, (iii) the prefixes, which are used
to weight every edge on the graph, and (iv) the community values, which strongly
correlate with the AS path. We confirm this correlation by downloading the first RIBs of
Sept. 2023 for all VPs and analyzing the correlation between the AS path and the set of
BGP communities. We find that two identical AS paths share the exact same set of BGP
communities in 93% of the cases. MVP thus does not embed more information about
BGP communities in Gv(t) because many of them encode local traffic engineering
decisions [23] that could lead to overfitting. We validate this design choice in the
evaluation (§6).

MVP uses 15 diverse topological features. Topological features have been exten-
sively used in other works to capture routing dynamics [82, 125, 126]. MVP computes
topological features extracted from the literature that we listed in Table 3. These fea-
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Type Categorie Name Weighted Index

N
od

e-
ba

se
d

Centrality Metrics Closeness centrality ✓ 0
Harmonic centrality ✓ 1

Neighborhood Richness Average neighbor degree ✓ 2
Eccentricity ✓ 3

Topological Pattern Number of Triangles × 4
Clustering ✓ 5

Pa
ir
-

ba
se
d Closeness Metrics

Jaccard × 6
Adamic Adar × 7

Preferential attachment × 8

Table 3: Node-based and pair-based features.
tures are either node-based or pair-based. MVP computes node-based features for the
two ASes involved in each event and computes the pair-based for the AS pair. MVP uses
six node-based features that we classify into three categories. The first one quantifies
how central and connected a node is; the second quantifies how connected are the
neighboring nodes; and the third quantifies the topological patterns that include the
node. We classify the three pair-based features into a single category that measures
how close two nodes are based on their neighboring nodes. Five features rely on edge
weights. We omit other topological features, such as eigenvector centrality, as they are
redundant with the selected ones.

MVP computes the impact of each event on the features of each VP. Consider an
event e ∈ E that involves two ASes eAS1 and eAS2, starts at time es, and ends at time
ee. Let v be a VP ∈ V . MVP computes feature values depending on the feature type.
We denote Fn (resp. Fp) as the set of node-based (resp. pair-based) features and show
howMVP computes the value of these two types of features for event e and VP v.

Node-based features: Consider feature fi ∈ Fn and fi(x,Gv(t)) its value for node x
on graph Gv(t), with i the feature index in Table 3. MVP computes the following
12-dimensional feature vector.

Tnode_based(v, e) = [f0(eAS1, Gv(es))− f0(eAS1, Gv(ee)),

f0(eAS2, Gv(es))− f0(eAS2, Gv(ee)),

. . . , f5(eAS1, Gv(es))− f5(eAS1, Gv(ee)),

f5(eAS2, Gv(es))− f5(eAS2, Gv(ee))]

Pair-based features: Consider feature fi ∈ Fp and fi(x1, x2, Gv(t)) its value for the
node pair (x1, x2) on the graph Gv(t), with i the feature index in Table 3. MVP
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computes the following 3-dimensional feature vector.

Tpair_based(v, e) = [f6(eAS1, eAS2, Gv(es))− f6(eAS1, eAS2, Gv(ee)),

. . . , f8(eAS1, eAS2, Gv(es))− f8(eAS1, eAS2, Gv(ee))]

The final feature vector is T (v, e), a 15-dimensional vector that concatenates (⊕) the
node- and pair-based features.

T (v, e) = Tnode_based(v, e)⊕ Tpair_based(v, e)

MVP now leverages these vectors for all the VPs in order to compute a pairwise
redundancy score for each pair of VPs.

4.2.3 Computing a pairwise redundancy score

AsMVP formalizes and quantifies how VPs experience BGP events, it can now leverage
this information to compute a pairwise redundancy score between each pair of VPs.
More precisely, for each event e in E ,MVP computes the Euclidean distance between
each pair of VPs in an n-dimensional space, where n is the number of features used to
characterize how VPs observe e (15 in our case). Intuitively, redundant VPs are likely
to experience BGP events similarly, and thus to have similar feature values, resulting
in them being close in the n-dimensional space. Consequently, the Euclidean distance
in the topological feature space between two redundant VPs is likely to be low. MVP
computes the Euclidean distance for every pair of VPs and over all selected BGP events.

We now explain in detail the three steps used byMVP to compute pairwise redundancy
scores. First MVP normalizes the feature vector to uniformize the impact of each
feature. Next, it computes the Euclidean distance between VPs. Finally,MVP computes
the average Euclidean distances across all selected events.

Step 1: Normalize feature vectors. We selected a wide range of features that aim at
capturing different aspects of the topological changes induced by routing dynamics.
Consequently, all features must have the same impact on the redundancy scores.
However, not all the features have the same scale. For instance, the average value for
the average neighbor degree (f2) is 49.7, while the average value for the clustering (f5)
is 0.03, meaning that the average neighbor degree has more impact when computing
the Euclidean distance. Therefore, MVP relies on data normalization to prevent the
redundancy score from overfitting toward some topological features. Multiple works
focusing on BGP have already applied normalization to various features extracted from
BGP dataset, especially when the objective is detecting BGP anomalies [72, 127, 128,
129]. There exist three most popular normalization strategies:
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• Min-Max scaler [130] transforms the features to fit into a specific range while
maintaining the same distribution. For each pointX in the dataset,Xnormalized =
(X −Xmin)/(Xmax −Xmin) where Xmax is the highest value in the original
dataset and Xmin is the lowest.

• Z-score scaler [131] assumes a Gaussian distribution of the points and transforms
each point X in the dataset such that the mean of the normalized dataset is
0 and the standard deviation is 1. For each point X in the original dataset,
Xnormalized = (X − υ)/σ where υ is the mean of the original dataset and σ its
standard deviation.

• Log scaler [132] converts all the points of the original dataset into a logarith-
mic scale. This normalization is useful when dealing with data points that
span multiple orders of magnitude. For each point X in the original dataset,
Xnormalized = log(X).

Although there exist other normalization techniques, we only presented the most
popular ones. Since we cannot assume any specific distribution type for the topological
feature values and we want each feature to fit into the same range, we choose to apply
a Min-Max scaler. MVP normalizes the data for each event e in E using the matrix
M(e) which includes the feature vectors for all VPs in V (one per line), computed on
event e.

M(e) =

 T (v0, e)
...

T (v|V |, e)


MVP then normalizes (operation ▽) each matrix M(e) column-wise using the Min-
Max scaler, transforming every column such that every value is between 0 and 1. In
matrix▽(M(e)), all features are in the same range, enabling a fair comparison between
different features.

Step 2: Compute Euclidean distance between VPs. MVP uses the normalized matrix
▽(M(e)) to compute the Euclidean distance between every pair of VPs and for each
event e in E (operator ⋄). We denote ▽(M(e))x the x-th row of the matrix ▽(M(e))
and ▽(M(e))x,i its value at index i (i.e., the i-th column). ▽(M(e))x,i thus denote the
value of feature fi of VP x for event e. We define the Euclidean distance between the
n-th VP vn and them-th VP vm for event e as follows:

⋄(vn, vm, e) =

√√√√ 15∑
i=0

(▽(M(e))n,i − ▽(M(e))m,i)2
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MVP now leverages these Euclidean distances and aggregates them to compute the
pairwise redundancy scores across all events.

Step 3: Compute the average distance over all selected events. The pairwise
redundancy score R(vn, vm) between two VPs vn and vm relates to the normalized
average Euclidean distance between them across the 2250 events in E , computed as:

R(vn, vm) = 1−
∐

((
∑
e∈E

⋄(vn, vm, e)) ∗ 1

|E|
)

The operator
∐

applies a Min-Max scaler to the computed value, such that all the
redundancy scores are between 0 and 1. The max and the min in

∐
corresponds to the

highest and the lowest possible value forR(vn, vm) for every possible (vn, vm) ∈ V ∗V .
A redundancy score of 0 does not mean that the pair of VPs is not redundant at all, but
that this pair exhibits the lowest rate of redundancy among all possible pairs of VPs.
Conversely, a value of 1 means that the two VPs are the most redundant VPs.

We defined the pairwise redundancy scores between two VPs, we show now howMVP
leverages these redundancy scores to build the set of least redundant VPs.

4.2.4 Computing a set of dissimilar VPs

MVP builds a set of the least redundant VPs by leveraging both the redundancies
between VPs and the volume of collected data. MVP considers the volume of data
generated by every VP to prioritize those that provide richer information within fewer
updates. MVP initializes the set of least redundant VPs S by adding the most common
VP from V , i.e., the VP that minimizes its average distance to other VPs. More precisely,
MVP initializes S with the VP having the lowest average distance AD(v), defined as
follows:

AD(v) =
1

|V | − 1
∗ (

∑
v′∈V \v

R(v, v′))

This design choice enables the redundant part of the BGP data (e.g., c2p links that are
observed by most of the VPs) to be visible with the first selected VP. Thus, it is easier
to add VPs that see less but unique information about the Internet routing ecosystem.
Then, MVP greedily adds the VP that balances maximal Euclidean distance to VPs
already selected (i.e., in S) and minimal additional volume that the VP brings. More
formally, at each iteration, MVP builds a candidate set of VPs K that contains the
non-selected VPs exhibiting the lowest maximum redundancy score. The maximum
redundancy score, denoted as P measures the maximum redundancy between a VP v
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and the set of VPs S and is defined as follow:

P (S, v) = max(R(v, v′), ∀v′ ∈ V )

MVP adds to K the γ = 10% of the non-selected VPs that exhibit the lowest maximum
redundancy score. It then adds to set S the VP in candidate set K that collects the
lowest volume of data compared to the other VPs in K. This enablesMVP to select VPs
that achieve a good balance between volume of collected data, and unique information
added. We estimate the volume of data collected by the VPs by counting the number of
BGP updates that they received during a 365-day period. We reduce the computational
expense of this analysis by selecting (randomly) only one hour of data every day. The
γ parameter allows tuning redundancy and volume knobs: a low γ prioritizes low
redundancy while a higher γ prioritizes low resulting data volume. We found that γ =
10% performs well in practical scenarios (we tested a range from 1% to 50%).
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Figure 4.5: Evolution of the minimal "maximal redundancy" between non-
selected VPs and selected VPs.

MVP stops adding new VPs in S when the minimal maximal redundancy score reach
1, meaning that it is impossible to add a non-selected VP that is not heavily redundant
with at least one VP in S. We define the minimal maximal redundancy scoreMMR as
follow:

MMR = min(P (S, v),∀v ∈ V \ S)

In practice with RIS and RV data,MMR reaches 1 when |S| = 178.

In this chapter, we presented two algorithms, BUS and MVP, that evaluate the re-
dundancy in BGP data in a general fashion. BUS evaluates the redundancies at the
granularity of the BGP update, whileMVP evaluates the redundancies at the granularity
of the VP. We now present GILL, a system that filter the redundant BGP data using an
overshoot-and-discard collection strategy.
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Notation Name Description

u(t, p, vp,A,C) BGP update

BGP update represented by the time t at which
it is received, the prefix p it carries, the VP vp
that collects it, the associated AS path A and
the associated communities C .

r(u)
BGP update represen-
tation

Representation of a BGP update u within a
correlation group. The correlation groups
are built per prefix across time, thus r(u) =
(vp,A,C).

w(G)
Correlation group
weight

Function that associate a correlation group G
to its correlation group weight. The weight is
given by the number of times the same set of
updates appear correlated in time.

β Initial set of updates Original set of BGP updates, prior any redun-
dancy reduction.

α Set of retained up-
dates

Set of updates after redundancy reduction,
also refered as set of non-redundant updates.

Corr(p, u)
List of correlation
groups

Lists the correlation groups for prefix p and
that include thre representation r(u) of up-
date u.

maxweight(G, t, p)
Selected correlation
group

Function taking as input a set G of correlation
groups and builds updates by adding time t
and prefix p to the update representations in
the group in G with the highest weight.

U(p, u, t)
Reconstituted up-
dates

Set pf reconstituted updates from update u
oberved at time t with prefix p.

RP (β, α) Reconstitution Power
Computes the reconstitution power of a sub-
set α of β. The reconstitution power ignores
incorrectly reconstituted updates.

α′ Reduced subset of up-
dates

Subset of β where the redundancies between
prefixes have been pruned.

Table 4: Summary of all notations used to define the redundancies between
updates. For more formal details refer to §4.1.
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Notation Name Description

E Set of BGP events
Set of selected BGP events. The events are
selected using a balanced sampling to prevent
overfitting.

Gv(t) VP partial view
Graph computed using the RIB at time t from
VP v. The AS topology is build using the col-
lected AS paths.

fi(x,Gv(t))
Topological feature
value

Corresponds to the value of the feature at
index i on Table 3, computed of graph Gv(t)
using AS x as a source.

T (v, e) Feature vector

Vector obtained by computing the impact of
event e on the partial view of VP vp. The
values in the vector are stored accoring to the
index of the features.

M(e) Event matrix Matrix computed on event e, where each line
is the feature vector of one VP.

▽
Column-wise normal-
ization

Operation that normalize an event matrix
column-wise, using a Min-Max scaler. The
objective is to put all the features on the same
scale, enabling a fair comparison.

⋄(vn, vm, e) Euclidean distance

Operation that compute the euclidean dis-
tance between the feature vectors of VPs vn
and vm for event e. Euclidean distances are
computed in a 15-dimensional space.

R(vn, vm)
Pairwise redundancy
score

Computes the pairwise redundancy score be-
tween VPs vn and vm.

AD(v) Average Distance Computes the average redundancy score be-
tween VP v and all other VPs.

P (S, v)
Maximum redun-
dancy score

Returns the maximal value among all redun-
dancy scores between VP v and all VPs in S.

MMR
Minimal Maximal re-
dundancy score

Returns the minimal value among all maximal
redundancy scores of the VPs that are not
selected in the set S of least redundant VPs.

Table 5: Summary of all notations used to define the redundancies between VP.
For more formal details refer to §4.2.
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GILL: identifying redundancy in BGP data

Current data collection and monitoring platforms leverage a limited number of VPs.
Excluding commercial platforms where the number of VPs is confidential ([97, 100]),
data collection systems peer with ≈ 2k VPs, yielding a VP coverage of less than 2%.
However, as demonstrated earlier in §2, a low VP coverage leads to significant visibility
gaps for many objectives. Our simulations suggested that reducing this gap requires
an increase in VP coverage of at least an order of magnitude. Unfortunately, the
prohibitive volume of collected data hinders the deployment of new VPs. The reality is
that no existing system today can accommodate a substantial increase in VP coverage.
Indeed, current systems are constrained by the inherent nature of BGP data. The main
contribution of this thesis is GILL, a new BGP data collection system that can collect
data from an order of magnitude more VPs compared to the current systems, while
effectively managing data volume constraints.

Current BGP data collection platforms collect all the data from a limited number of VPs.
GILL shifts this data collection paradigm by using an overshoot-and-discard strategy,
which involves collecting data from as many VPs as possible and then discarding the
redundant data prior to storing it. GILL relies on the redundancy definitions presented
in §4, therefore enabling most of the measurement studies to perform effectively. In
this chapter, we describe the design and implementation of GILL.
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We start in §5.1 by describing the overshoot-and-discard approach, explaining why it
can be applied to BGP data, and outlining its benefits. In §5.2, we explain how GILL
builds and maintains filters that enable discarding redundant BGP data while retaining
the most useful information. Finally, we present in §5.3 the implementation of GILL,
which prototype currently works with original peers as well as data from RIS and
RV. This thesis focuses on the operational challenge induced by a drastic increase in
VP coverage. We provide later some possible ideas on how to incentivize network
operators to peer with GILL.

5.1 An overshoot-and-discard approach for BGP data

The overshoot-and-discard approach for BGP data consists of two steps: (i) collecting
BGP routing data from as many VPs as possible and (ii) discard the redundant portion
before any further processing. As this new strategy implies a shift in the BGP data
collection paradigm, we acknowledge that some concerns may arise from the scientific
community. However overshoot-and-discard collection strategies have already been
considered and adopted in other research areas.

High-Throughput Screening: High-Throughput Screening (HTS) [133] facilitates faster
analysis of biological components. This approach has gained popularity and become
the standard method for drug discovery in the pharmaceutical industry [134]. This tech-
nique uses dedicated hardware and algorithms to process more than 100k compounds
daily by focusing only on the most meaningful portion of the data and discarding the
remaining data before further analysis.

Astronomic analysis:Astronomic sensors collect high volumes of data, which researchers
often cannot afford to process. To manage these issues, they reduce the volume of data
to process by eliminating the high proportion of noise in the data. Researchers have
developed algorithms that focus only on the most meaningful piece of the data. These
strategies can rely on signal processing methods such as wavelets [135] or Fourier
Transforms [136] to separate noise from the valuable piece of the collected data.

Remote Sensing: Remotely sensed data consists of images taken by aerial sensors, col-
lected and stored in databases. This data can be used for various objectives; mapping
road networks, analyzing forests, studying oceans, and so on. Because of their high
volume, users often cannot afford to process all the images collected by the sensors
and thus rely on algorithms that extract the most relevant images. For instance, spe-
cific algorithms enable focusing on the road images, enhancing performances when
mapping road networks [137].

Large Hadron Collider: The Large Hadron Collider (LHC) is the world’s largest parti-
cle collider, built by the European Organization for Nuclear Research. The collider
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generates millions of collisions just to observe a few interesting ones, e.g., the Higgs
boson [138]. To focus only on the most relevant collisions, researchers rely on fast
online algorithms and custom hardware to discard 99.994% of the likely less interesting
collisions [139].

As illustrated by these examples, an overshoot-and-discard approach can be applied
to datasets where most of the signals are either redundant or considered noise. Since
BGP fits in this category (as presented in §3), we illustrate how this new data collection
strategy can be applied in the context of BGP routing data and explore its benefits. We
then introduce GILL, a BGP data collection system that implements the overshoot-and-
discard strategy.

5.1.1 Overshooting and discarding BGP data

The data collected by the BGP collection platforms such as RIS and RV exhibits a
high level of redundancy, making it an ideal candidate for an overshoot-and-discard
collection strategy. We illustrate using an example how this data collection strategy
can be beneficial in the context of BGP.
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Figure 5.1: Collection of updates with the current approach. The collected
updates do not enable to observe the failure in both direction nor to detect the
hijack intended by AS8.

Overshoot-and-discard strategy with an example. Using the scenario depicted in
Fig. 5.1, we illustrate the current approach for collecting BGP data and its limitations.
We consider an eight-AS topology where the routing policies are configured according
to the Gao-Rexford policies. AS4 announces two prefixes, p1 and p2 , while AS6
announces p3 . We consider a deployment of two VPs, VP1 located in AS2 and VP2
located in AS6. Both these VPs export their best routes to a route collector. We consider
two distinct events occurring roughly at the same time: (i) an outage on link 2 4 and
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(ii) a MOAS hijack on p3 , intended by AS8. These two events trigger the propagation
of four BGP updates:

Update seen by VP1 , with prefix p1 and AS path 2 1 4 ,

Update seen by VP1 , with prefix p2 and AS path 2 1 4 ,

Update seen by VP2 , with prefix p1 and AS path 6 2 1 4 , and

Update seen by VP2 , with prefix p2 and AS path 6 2 1 4

There are three main issues with the four collected updates. (i), there is a high level
of redundancy in the set of updates collected by the two VPs. Indeed, the AS paths
of the two routes observed by VP1 are included in the AS paths observed by VP2 .
Additionally, the BGP attributes announced with p1 and p2 are the same. (ii), the
collected updates enable to observe the failure in only one direction, as all the collected
paths circumvent the failure going from AS4 to AS2, but none of them circumvent the
failure going from AS2 to AS4. Observing the failure in only one direction prevents
failure localization algorithms [111] from producing accurate inferences. (iii), none of
the VPs observe the hijacked route, as it does not propagate over AS5 and AS7, due to
routing policies and best path selection. Therefore, the collected updates do not enable
hijack detection systems such as ARTEMIS [69] to detect the hijack. Redundancy in
the set of collected updates increases the volume of data, while not providing any
additional relevant information about the routing system.

We now illustrate the benefits of the overshoot-and-discard strategy in the context of
BGP data. We consider the same AS topology, routing policies configuration, prefixes
announced, and BGP events as used in the scenario depicted in Fig. 5.1. The first step
of this data collection strategy is to overshoot the BGP data, meaning that we collect
data from as many VPs as possible. We thus assume a deployment of four VPs, VP1
in AS2, VP2 in AS6, VP3 in AS4, and VP4 in AS5. The scenario is depicted in Fig. 5.2.
The two additional VPs collect four new BGP updates:

Update seen by VP3 , with prefix p3 and AS path 4 1 2 6 ,

Update seen by VP4 , with prefix p1 and AS path 5 2 1 4 ,

Update seen by VP4 , with prefix p2 and AS path 5 2 1 4 , and

Update seen by VP4 , with prefix p3 and AS path 5 7

With eight collected updates, we can now observe the failure in both directions (thanks
to the update collected by VP3 ) and detect the hijack (thanks to the update collected
by VP4 for p3 ). While these new updates provide valuable information, they also
increase the volume of collected data. Therefore, we now apply the discard step by
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Figure 5.2: Collection of updates with the overshoot and discard approach.
The updates collected by the additional VPs enable to observe the failure in
both directions and to detect the hijack. The retained routes after applying the
filters also enable to achieve both objectives.
deploying filters on the route collectors that drop the redundant updates. We configure
the following filters:

From VP1 , drop all updates for p1 and p2 .

From VP2 , drop all updates for p2 .

From VP4 , drop all updates for p1 and p2 .

With these filters deployed on the route collectors, only three updates are retained.
Because the deployed filters aim at discarding only redundant updates, the retained
updates still contain all the valuable information. Despite collecting fewer updates
compared to the actual BGP data collection strategy, we can still observe the failure in
both directions and detect the hijack.

Given the high redundancy in data collected by BGP collection platforms, a significant
portion of the data can be discarded before any further processing or storage process,
while minimizing information loss. We now introduce the main contribution of this
thesis: GILL, a system that implements this overshoot-and-discard strategy to collect
only the most valuable BGP data. We present the key design choices of GILL, which
we will evaluate in the next chapter (§6).
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5.1.2 GILL’s design choices

In the example depicted in Fig. 5.2, we purposively placed the two additional VPs and
optimized filters to detect the two routing events and discard updates with similar
attributes. For example, the four updates that VP1 and VP2 collect for p1 and p2 have
similar AS paths; GILL retains only one of them. In practice, deciding which updates
to discard and which updates to retain is challenging. There is no ground truth about
which routing events will appear where, how they will propagate, and what users want
to do with the data.

The problem of strategically placing new VPs has been extensively studied over the
last two decades. These different works suggest deploying a few but strategically
positioned VPs, which corresponds to RIS’s current VP deployment strategy [115]. For
example, Roughan et al. [24] used an Expectation Maximization algorithm to estimate
the number of VPs that should be deployed. They found that 700 VPs strategically
placed may be capable of observing 99% of the AS links. Gregori et al. [8] used a new
metric, the c2p distance, to identify the ASes likely to provide the most unique partial
view over the BGP routes. Cittadini et al. [7] demonstrated the marginal utility of
adding new VPs in the core of the Internet. Finally, Zhang et al. [6] highlighted the
impact of the VP deployment on three different measurement studies: AS topology
mapping, Hijack detection, and AS relationship inferences.

In this thesis, we do not address the challenge of placing new VPs, as it has been
extensively studied in previous research. Moreover, the overshoot-and-discard col-
lection strategy does not require a few strategically selected VPs, but a significant
increase in the VP coverage. GILL then implements algorithms to reduce the volume
of collected data by discarding the redundant data. Thus, for any newly deployed VP,
GILL’s algorithms enable our system to retain only the unique piece of information
collected by this VP.

GILL leverages a key property of the redundancy in BGP data highlighted in §4.1.1: "A
significant proportion of the events that trigger BGP updates are recurrent, and correlations
between past updates are likely to reappear in the future.". GILL identifies redundancies
in past BGP data and builds filters that enable filtering future redundant updates. While
discarding data inevitably results in information loss, GILL’s filters aim at retaining
the most useful updates (regardless of the user’s objective) and discarding redundant
updates, thereby mitigating the impact of sampling data on the numerous studies
conducted using BGP data. To achieve this, GILL samples past updates based on their
redundancy and builds filters that enable discriminating the non-redundant updates
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from the redundant ones. GILL uses two key ingredients to minimize information loss
and enable effectively conducting many objectives.

Key ingredient #1: Support for a flexible definition of redundancy. We demon-
strated that naive or specific definitions of redundancy inevitably fail for one or more
objectives GILL uses the update redundancy definition provided in §4.1 to determine
which updates should be kept and which can be discarded. It uses the same parameters
as BUS to classify updates as redundant or non-redundant (i.e., updates in α′). As
illustrated in Fig. 5.2, filtering redundant updates significantly reduces the volume of
collected data while minimizing information loss. However, even with the retained
updates, some measurement studies cannot be conducted accurately. For instance,
AS4’s operator wants to determine whether all the ASes in the routing system handle
all its prefixes in the same way, this objective is unachievable with the collected updates.
In fact, because of the deployed filters, no VP in the topology retains updates for both
p1 and p2 . To ensure fairness for all possible objectives, GILL retains all the data from
a subset of the VPs, which we call anchor VPs. This means that although these anchor
VPs collect redundant updates, GILL will not configure any filters on them.

We demonstrated in §3.2 that redundancy can also occur between VPs. Therefore, GILL
relies on a per-VP redundancy definition to select only the least redundant VPs, striking
the best balance between additional data volume (as no filters are configured for these
VPs) and redundancy elimination.

Key ingredient #2: Retain all updates from a few valuable VPs. Some studies
require data for all prefixes even if redundant, which is the case for the previous example
where AS4 wants to know how the rest of the Internet handles its prefixes. Therefore
we modify the example depicted in Fig. 5.2, where GILL now retains all updates from
VP2 , by removing all filters configured on VP2 . With these new filters, GILL collects
the same number of updates as the current BGP data collection strategy (four), but the
collected updates enable more useful inferences. Specifically, the three objectives are
achievable: (i) observing the failure in both directions, (ii) detecting the hijack, and
(iii) determining if other ASes in the routing system handle p1 and p2 similarly. In
practice, it is challenging to know from which VPs we should retain all updates, as we
show in §4.2 that selecting VPs naively often results in selecting redundant VPs. GILL
relies on the per-VP redundancy definition that we presented in §4.2, using the same
parameters asMVP to find which VPs should retain all collected updates.

We explained how GILL selects the updates to retain. We now show how it leverages
these updates to build filters that enable retaining only non-redundant updates while
discarding redundant updates. Additionally, we show how the filters are updated over
time to accommodate changes in the routing dynamics.
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5.2 Filtering redundant updates

Filtering is a process available in most of the BGP implementations, used for various
purposes, such as filtering attacks [140], controlling IP spoofing packets [141], imple-
menting routing policies [142], or filtering BGP updates that carry a prefix larger than
/25 (which is not allowed in BGP). There also exist tools that generate filters to discard
suspicious announcements, i.e., those that do not conform to the data stored in the IRR
[143, 144]. Filter implementations often allow the deployment of filters that match the
prefix, the sender IP, or various BGP attributes. For instance, filters can match a subset
of the AS path to prevent the propagation of some links on the Internet, which can be
useful to mitigate Forged-Origin hijacks. However, it is challenging to determine which
attributes GILL’s filter should match the BGP updates on to reduce the redundancy.
On one hand, filtering on all attributes may overfit to filter future redundant updates
(i.e., that have not been seen in the training data). On the other hand, filtering on a few
attributes may retain redundant updates.

We start by describing in §5.2.1 how GILL generates filters that balance retaining future
non-redundant updates and filtering future redundant updates. We then present in
§5.2.2 the stability of the generated filters and the frequency at which GILL should
update them.

5.2.1 GILL’s filter generation

GILL builds filters that aim at discarding redundant updates that are not collected by an
anchor VPwhile retaining all others. GILL employs an accept everything default filtering
policy. This approach ensures to retain updates containing new pieces of information,
i.e., never seen in the past Additionally, updates collected by newly deployed VPs are
retained until the filters are recomputed. There are three different types of filters, listed
below in decreasing order of priority:

1. Retain all updates from anchor VPs

2. Discard updates that match the update filters

3. Accept everything

The first filter ensures that all data from the anchor VPs is retained, allowing any
objectives that require complete data, even if redundant, to be achievable. The sec-
ond filter discards all redundant updates, while the last enables to retain all updates
containing new unique pieces of information. In this section, we focus on the second
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filters (called update filters), discussing how they are generated and determining their
optimal granularity.

Filter generation process. GILL leverages the updates classified as redundant by
BUS (i.e., β \α′) to build filters that discard redundant updates. Essentially, GILL builds
filters that discard any combination of attributes that appear in at least one update
classified as redundant, depending on the filter granularity.

Me now formalize the filter generation process. We denote as u(t, vp, p, A,C) the
update u received at time t, from VP vp with prefix p, AS path A, and communities
C . We denote as attr(u, g) the function that associates an update u to the set of
attributes considered by granularity g. As an example, using the scenario of Fig. 4.2,
attr(u1, (vp, p)) = ( VP1 , p1 ). Note that the timestamp is excluded from the attr
function since matching the timestamp might result in future redundant updates being
retained. We denote BF (attr) the function that takes as input a set of attributes
and builds the corresponding filters. BF builds a filter that matches all attributes
considered in attr. Therefore, for a given granularity g, GILL builds the set of filters
F(g) as follow:

F(g) =
⋃

u∈β\α′

BF (attr(u, g))

where operator
⋃

performs the union of the generated filters and removes any du-
plicates. Duplicate filters occur when attr(u1, g) = attr(u2, g) for two distinct up-
dates u1 and u2. For example in the scenario depicted in Fig. 4.2, attr(u1, (vp, p)) =
attr(u3, (vp, p)).

To illustrate how GILL builds the filters, we use the example depicted in Fig. 5.2.
Similarly to §4.1, we simplify the example by not considering the community values,
as it does not fundamentally change the filter generation process. We consider the
granularity g = (vp, p), meaning that the generated filters match the receiving VP
and the prefix, to align with the example of Fig. 5.2. As illustrated, eight updates are
collected:

u1: observed by VP VP1 for prefix p1 with AS path 2 1 4

u2: observed by VP VP1 for prefix p2 with AS path 2 1 4

u3: observed by VP VP2 for prefix p1 with AS path 6 2 1 4

u4: observed by VP VP2 for prefix p2 with AS path 6 2 1 4

u5: observed by VP VP3 for prefix p3 with AS path 4 1 2 6

u6: observed by VP VP4 for prefix p1 with AS path 5 2 1 4

u7: observed by VP VP4 for prefix p2 with AS path 5 2 1 4
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u8: observed by VP VP4 for prefix p3 with AS path 5 8

We suppose that α′ is composed of {u3, u5, u8} since the remaining updates are highly
redundant with updates in α′. Therefore, we build for every update in β \ α′ their
attributes with granularity g = (vp, p):

attr(u1, g) = ( VP1 , p1 )

attr(u2, g) = ( VP1 , p2 )

attr(u4, g) = ( VP2 , p2 )

attr(u6, g) = ( VP4 , p1 )

attr(u7, g) = ( VP4 , p2 )

Finally, when computing F(g), we have:

• From VP1 , discard p1 ,
• From VP1 , discard p2 ,
• From VP2 , discard p2 ,
• From VP4 , discard p1 , and
• From VP4 , discard p2

Which enables collecting only non-redundant updates. However, in practice, it is not
straightforward to select the granularity at which GILL should build the filters, as it
significantly impacts the redundancy of the collected updates.

Filter generation granularity. Due to the "accept everything" default policy, the
granularity of the update filters significantly impacts the quality of retained updates.
Filtering on fewer attributes (e.g., only on the collecting VP) results in many non-
redundant updates being discarded, but enables to effectively filter future redundant
updates. Conversely, filters matching all attributes (i.e., collecting VP, prefix, AS path,
and communities) enable retaining most of the future non-redundant updates but
perform poorly in discarding future redundant updates. Since these updates are likely
to appear with new attributes not seen in the training set, GILL cannot build filters
that match these new attributes.

In practice (i.e., with RIS and RV data), updates classified as redundant by BUS at time
t1 are often similar to updates classified as redundant at time t2 with t1 < t2. GILL
generates coarse-grained filters that match the prefix and the receiving VP. Such filters
match on an entire space of similar (and often redundant) updates which are either
all discarded or all retained. We experimentally find that this granularity provides the
best tradeoff between retaining non-redundant updates and filtering future redundant
updates. We compared three versions of GILL, GILL -pfx, GILL -pfx-asp, and GILL
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-pfx-asp-com. All these three versions filter based on the receiving VP, as the filters are
deployed directly on the VP.

GILL -pfx: This version of GILL builds filters that match the receiving VP and the prefix
(i.e., g = (vp, p)). With this granularity, an update received by a given VP is filtered
only if its prefix matches one of the filters deployed on this VP. This represents the
coarser granularity for the generated filters, as all the updates for a prefix not filtered
are retained, regardless of the other attributes.

GILL -pfx-asp: This version of GILL builds filters that match the receiving VP, the
prefix, and the AS path (i.e., g = (vp, p, asp)). All these three attributes must match
exactly, meaning that an update is discarded only if all three attributes are identical to
one of the generated filters. This version of the filters has an intermediate granularity
since it allows different community values.

GILL -pfx-asp-com: This version of GILL builds filters that match the receiving VP, the
prefix, the AS path, and the community values (i.e., g = (vp, p, asp, comm)). Similarly
to GILL -pfx-asp, an update is discarded only if all four evaluated attributes match
exactly one of the deployed filters. This version of the filters is the most fine-grained
since it requires an exact match on all main attributes of a BGP update.

We utilize a typical training-testing pipeline to evaluate both the proportion of re-
dundant updates that the generated filters effectively discard and the proportion of
non-redundant updates that the filters effectively retain.

Proportion of redundant updates discarded: We start this experiment by computing the
set α′ of non-redundant updates computed by BUS on RIS and RV data collected from
December 1 2023 to December 2, 2023. We then separate the set of redundant updates
β \ α′ into two different sets r1 and r2. r1 corresponds to the training set, i.e., the set
of updates that GILL will use to build the filters, while r2 corresponds to future updates
and will be used to evaluate the ability of the generated filters to discard redundant
future updates. For this experiment, we use |r1| = 0.8∗|β \α′| and |r2| = 0.2∗|β \α′|.
We tested with other values and obtained similar results. Next, we compute, for each
different filter granularity, the proportion of updates in r2 that match at least one of
the filters built using the updates in r1. We perform this experiment 10 times with
different time periods to compute β \ α′, in order to avoid biases induced by update
sampling.

In Fig. 5.3, we can see, very unsurprisingly, that the finer-grained the filter generation,
the fewer future redundant updates in r2 filtered. In the median case, for GILL -pfx
(i.e., g = (vp, p)), 87% of the updates in r2 are matched by at least one filter. This
number decreases with a finer granularity, 43% for GILL -pfx-asp, and 0% for GILL
-pfx-asp-comm. The latter number indicates that none of the filters match any future
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Figure 5.3: Proportion of redundant updates that are discarded by at least
one of the generated filters. We present the result for gradually finer-grained
filters.
redundant updates. Since these filters match all possible criteria and future updates, by
definition, differ from the past updates by at least one attribute, there is no surprise
that none of the updates in r2 are matched by any fine-grained filter. Therefore, we
observe that coarse-grain filters have significantly better performances compared to
other granularities. We now conduct the same experiment to determine, for each
granularity, the proportion of non-redundant updates that are matched by at least one
generated filter and thus discarded.

Proportion of non-redundant updates discarded: When selecting which update to add in
α′, GILL either adds all or none of the updates collected by a VP for a given prefix.
This design choice is essential to ensure proper discrimination between redundant
and non-redundant updates, especially for fine and intermediate granularities. In fact,
since the updates are added in α′ per prefix, if one update for prefix p collected by VP
vp is added in α′ while another is added in β \ α′, it creates ambiguity in handling
future updates with prefix p and VP vp, especially for fine-grained filters. As a result,
no update in α′ can be matched by any of the filters built using updates in β \ α′, as at
least one attribute differs for any possible granularity, by construction. Therefore, the
proportion of retained future non-redundant updates is 1, for every possible granularity.

According to these results, we parameter GILL to generate filters that match the re-
ceiving VP and the prefix, as this granularity exhibits the best performance in filtering
future redundant updates and all the filter granularities perform similarly when retain-
ing future non-redundant updates. Another important reason for this design choice is
to maintain the accuracy of the Routing Information Base (RIB) entries. When filtering
the updates based not only on these two criteria but also on other BGP attributes, an
entry for a given prefix p at a time t in the RIB might be outdated because the latest
update for this prefix may have been filtered, but not the previous one.
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Let’s use the example of Fig. 5.2 to illustrate this. Suppose we have a fine-grained filter
on VP2 for p1 that matches on AS path 6 2 4 . The results depicted in the figure
remain the same, and we will collect three updates. Suppose now the link 2 4 is
restored. VP2 will receive a new update for p1 , with AS path 6 2 4 . However
this update will be filtered and thus the last entry in VP2 ’s RIB for p1 will not reflect
the actual routing state for p1 .

For these two main reasons, we choose to haveGILL=GILL -pfx to generate the coarse-
grained filters that match the receiving VP and the prefix. This approach ensures better
performance in filtering redundant updates and maintains the consistency of the RIBs.

5.2.2 Keeping filters up-to-date

The routing dynamics evolve over time, altering the correlations between updates trig-
gered by BGP events. For instance, two ASes renegotiating their economic relationship
are likely to change their routing policies, resulting in BGP updates being announced
with new AS paths. Additionally, new ASes operating in the Internet routing ecosystem
may also trigger new BGP updates, as these ASes are likely to announce new prefixes,
with a new path never seen before. The deployment of a new VP also brings new unique
pieces of information along with redundant data. Due to GILL’s accept everything
default filtering policy, new pieces of redundant information that regularly appear on
the Internet may generate a significant amount of new redundant updates that are not
matched by any of the GILL’s generated filters, resulting in a high volume of redundant
data being retained. Therefore, GILL needs to regularly update the generated filters, as
well as the selected anchor VPs to address these evolving dynamics.

In this section, we experimentally determine the optimal frequency at which GILL
should recompute the generated filters. Two types of filters among those deployed by
GILL requires regular updates. (i) The generated update filters need to be recomputed
to accommodate changes in Internet routing dynamics. (ii), the set of anchor VPs must
be regularly updated due to the constant evolution of the Internet routing ecosystem.
We infer how often GILL needs to recompute its filters, from experimental analysis.

Updating the generated update filters. We evaluate how accurate GILL’s redundant
update inference remains over time. Specifically, we compute the proportion of filtered
updates, according to the time period between the filter generation and the filtering
process. We build GILL’s filters using data from RIS and RV, ranging from September 1,
2023 to September 2, 2023. We measure their ability to discard redundant updates in a
testing set of updates collected d days after the filter generation, with d ranging from 1
to 128. The testing sets of updates are collected over two-hour periods and we present
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the results for 30 different periods to avoid biases induced by time sampling. We show
the results of this experiment in Fig. 5.4.
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Figure 5.4: Ability of the generated filters to discard redundant updates over
time. The proportion of discarded updates starts to significantly decrease after
16 days.

Unsurprisingly, the higher the value of d, the lower the proportion of matched (i.e.,
discarded) redundant updates. Because the routing dynamics evolve over time, the pro-
portion of future redundant updates that none of the filters match increases, resulting
in a high volume of redundant data being retained. One day after the filter generation,
the proportion of discarded updates is, in the median case, 0.92 which aligns with the
practical result found in §4.1.3, where we had |α′|/|β| ≈ 0.06. This number remains
stable until d = 16, where the proportion of discarded updates is 84%. Beyond 16
days, this number significantly drops, reaching 64% after 32 days in the median case.
Therefore, we calibrate GILL to recompute the update filters every 16 days, as this
appears to be the threshold after which the proportion of discarded redundant updates
significantly drops.

We now experimentally show how often GILL should update its list of least redundant
VPs, known as the anchor VPs.

Updating the anchor VPs. The evolution of routing dynamics and the deployment
of new VPs impact the quality of GILL’s anchor VPs selection. We evaluate how
often GILL should update the selected anchor VPs. Directly comparing the similarities
between two sets of VPs may introduce bias in the results for two main reasons. First,
since the anchor VPs are selected in a greedy fashion, a slight change in the redundancy
scores can significantly alter the ordering of the VPs, even though the new order is
still relevant and different least redundant VPs are selected. Second, newly deployed
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VPs can alter the ordering of the selected anchor VPs, as a newly deployed VP may
be included in the set, shifting the order of the remaining VPs. Therefore, we prefer
to compare the evolution of the pairwise redundancy scores, as this information is
indicative of the redundancies between the VPs, and their evolutions.

We compute the pairwise redundancy scores on events collected in September 2023
using MVP, and compare their evolution with the redundancy scores computed m
months before. Since all pairwise redundancy scores are comprised between 0 and 1,
we define the evolution of the pairwise redundancy score as the difference between
the value on September 2023 and the value computed m months before. To avoid
bias induced by newly deployed VPs, we only consider pairs of VPs that existed 66
months ago, the largest possible value for m. We present the result of this analysis for
m ranging from 6 to 66 (=5.5 years) in Fig. 5.5.
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Figure 5.5: Evolution of the redundancy scores between two runs of MVP. After
one year, the evolution of the pairwise redundancy scores starts to significantly
increase.

Unsurprisingly, the higher the value ofm, the greater the pairwise redundancy score
evolution. As routing dynamics evolve over time, the partial view of each VP changes,
capturing different portions of the Internet. For example, if an AS hosting a VP changes
its economic relationship with one of its peers, this VP will see new routes which alters
its partial view, due to the routing policies being updated subsequently. However, these
changes are not significant whenm < 12, as we observe that the pairwise redundancy
score evolutions remain low, below 0.1. We find that the redundancy scores change by
less than 5% between two runs of MVP spaced by 12 months or less. After one year,
the evolutions start to significantly increase, going from 0.07 after one year, to 0.13
after two years, almost doubling. The differences can be as high as 0.32 in the median
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case when m = 66. We calibrate GILL to recompute the set of anchor VPs every year,
as it appears to be the best tradeoff between stability and computational expense.

Observe that GILL’s operators can temporarily override these default parameters to
accommodate bursts of newly deployed VPs, e.g., when the platform is bootstrapped
with another BGP data collection platform like RIS LIVE or RV BMP Live. In this section,
we explained how GILL works fundamentally. We now present the implementation of
all GILL’s components. A prototype of this platform is currently up and running at
https://bgproutes.io.

5.3 System implementation

In this section, we describe the implementation of GILL. A prototype of GILL is
currently running at https://bgproutes.io and collects real BGP data from several peers.
To provide a head start in visibility, we bootstrapped GILL with RIS and RV peering
sessions, allowing it to collect data from≈ 2500 peers. The system comprises three main
components: a custom BGP daemon optimized to collect BGP data, an orchestrator
that manages all required tasks (e.g., setting up new peers or recomputing the filters),
and a web interface that provides diverse tools such as looking glasses and a form that
enables operators to set up a peering session with GILL.

We start in §5.3.1 by providing an overview of the system, its components, and how
they interact with each other. Next, we present the implementation details of our
custom BGP daemon used to collect data from GILL’s peering sessions (§5.3.2). Then,
we introduce in §5.3.3 the orchestrator and all its features. In §5.3.4, we describe the
web interface, the available tools, as well as the peering session establishment process
automation. We then explain in §5.3.5 how we used the data from RIS and RV to
bootstrap GILL. Finally, in §5.3.6, we conduct a performance evaluation of the system,
demonstrating GILL’s ability to scale up to tens of thousands of VPs.

5.3.1 Overview of the system

Custom BGP daemon. GILL operates within a container-based system, where each
BGP daemon runs in a separate Docker container [145]. The overall system architecture
is depicted in Fig. 5.6. Each BGP daemon in the Docker cluster acts as a BGP route
collector, maintaining a peering session with one VP. All the BGP daemons share the
same Docker network, enabling an automatic attribution of the IP addresses when new
peering sessions are configured. Since the BGP collectors use remote peering sessions
with VPs, they need access to the public Internet. This is facilitated by a MASQUERADE
forwarding rule configured on the host server, enabling any of the services running
on the docker network to access the public Internet. Each BGP daemon collects BGP
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Figure 5.6: GILL’s system workflow. Public components are depicted in blue,
while internal components are depicted in gray.
data from one VP and writes the data in two separate databases, using MRT format
[85]. The first database is the public database where the retained updates (i.e., those
that have not been filtered) are dumped. The second is the offline database, where all
updates are dumped, whether they match the filters or not. The offline database is not
accessible to users and is used exclusively by the orchestrator to recompute the filters.

A task orchestrator. The orchestrator runs directly on the host server (i.e., outside
of Docker containers), managing various critical tasks. It is responsible for running
the filter recomputation process, pushing the new results in the filter engine of each
corresponding BGP daemon, and publishing the new filters on the web interface. The
orchestrator uses the offline database to recompute the filters, subsequently discarding
the database once the process is completed. The data in the offline database is stored
for 30 days when recomputing the anchor VPs, and for two days when recomputing
the filters. Additionally, the orchestrator is in charge of setting up a new BGP collector
(i.e., BGP daemon) when a new VP is added using the web interface.

A web interface. An operator willing to contribute to GILL by sharing its routes
can fill out a form and after a brief security check detailed in §5.3.4, the orchestrator
automatically initiates the creation of a new BGP collector. The web interface publishes
various information, such as the list of peers contributing to GILL, their status, the
volume of data collected, and the filters currently applied to each specific peer. Addi-
tionally, the web interface provides a looking-glass service that enables users to see the
current state of the RIB for any active VP in real-time.
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We now give the implementation details of all the three system components, starting
with the custom BGP daemon.

5.3.2 GILL’s custom BGP daemon

Current BGP data collection platforms use existing BGP daemon to collect data from
their peers. For each route collector, they dedicate either one server, on which they
run software routers (e.g., FRRouting for RV) or a hardware router. Platform opera-
tors configure multiple sessions on route collectors, one for each VP. The collected
updates and the RIBs (i.e., a snapshot of the routes), are dumped at regular intervals,
in MRT format. For instance, RV dumps BGP updates every 15 minutes and RIBs
every two hours. However, these solutions are not optimized for data collection, par-
ticularly to implement an overshoot-and-discard collection strategy. As they build a
human-readable RIB, routers (softawre or hardware) transform each collected update
into an intermediate data structure. While this step helps operators debug received
routes, this process is resource-consuming and unnecessary in the context of BGP data
collection. Moreover, although these solutions often implement the filtering process
with route-maps, they cannot scale to hundreds of thousands of different filters, even
at a coarse granularity. We demonstrated this by trying to deploy n filters on a FR-
Routing router running on a 24 cores Intel(R) Xeon(R) W-2265 CPU 3.50GHz CPU for
n ∈ {1, 10, 100, 1000, 10000, 100000} and report the maximum number of filters that
the router can handle. We configured filters that matched only the prefix contained
in the BGP updates. The highest value for n where the router did not crash is 1000.
However, because GILL builds filters that aim at discarding 95% of the data, GILL may
push hundreds of thousands of filters for each VP. For all these reasons, we decided
to build our own custom BGP daemon, optimized for data collection, removing all
non-essential features.

The custom BGP daemon requires significant processing performances when parsing
the received BGP updates, filtering them, and writing them on the disk. Consequently,
we implemented it using C language, as compiled programs exhibit better processing
performance. A comparison with an implementation made in Python showed that the
Python implementation was ≈ three times slower, due to less optimized operations on
byte arrays. Our BGP daemon comprises two main engines: one collection engine and
one filtering engine. The workflow of the custom BGP daemon is illustrated in Fig. 5.7.

Data collection engine. The data collection engine is responsible for collecting the
BGP updates from a VP, maintaining the BGP session, and opening new dump files.
Upon launch, it starts by reading a configuration file containing information about
GILL and the peer (i.e., VP): GILL’s ASN, GILL’s public IP, peer’s ASN, and peer’s public
IP. Using this information, it creates a socket and initiates a TCP connection with the
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Figure 5.7: Workflow of the custom BGP daemon. The two main components
are a collection engine and a filtering engine.
peer, on port 179 (the default BGP port). If the connection is not successful, the daemon
starts a recurrent background task that attempts a TCP connection every 60 seconds
until the TCP session is established.

Once the TCP connection is successful, the BGP daemon starts the BGP session by
sending an OPEN message to the peer, containing information about GILL, such as
the ASN (read from the configuration file). Upon receiving back an OPEN message
from the peer, the daemon checks the consistency of the information sent with the
information read from the configuration file (i.e., the IP address or the ASN). If all the
checked information matches, the BGP session is established upon receiving the first
KEEPALIVE message.

Once the BGP session is established, our BGP daemon runs two different tasks. The
first task aims at maintaining the BGP session. An essential information sent in the
OPEN message is the hold timer, which defines the time before a router disconnects
the BGP session if no BGP messages are received. Since our BGP daemon does not
send or forward any routes, the peer will not receive any messages. Therefore, the
daemon runs a background task in charge of sending a KEEPALIVE message every
"hold timer"/3 seconds, as suggested in the BGP RFC [1]. This process ensures the BGP
session is maintained. Conversely, if no message is received from the BGP daemon
peer before the hold timer expires, it disconnects the TCP connection.

The second task run by the collection engine upon establishment of the BGP session is
the recurrent reopening of the dump file. We dump the updates received by a given BGP
daemon in a folder whose name corresponds to the ASN and the public IP of the peer.
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However, dumping all updates in the same file might cause sub-optimal processing
issues. For instance, if a user wants to restrict their analysis to a specific time period,
they would still need to process the entire file. Consequently, similar to what RIS and
RV do, we separate the dumps into different files, grouping the updates that appear
in the same time range. Our BGP daemon opens a new dump file every five minutes.
Observer that this default parameter can be overridden.

Data filtering engine. The data filtering engine is responsible for loading the filters,
filtering the updates, dumping them into the database, and maintaining the RIB. Every
24 hours, the BGP daemon scans for changes in the filters. The computed filters are
sent to the Docker container by the orchestrator in the form of a file, where each line
corresponds to a prefix that must be filtered. If any changes in the filters are detected,
the BGP daemon withdraws the current filters and loads the new ones using a radix tree.
This data structure significantly reduces the complexity of searching for an element,
requiring at most n bit-to-bit comparisons, where n is the bit length of the longest
element stored in the tree, which is 128 bits at maximum in our case. During the process
of loading the filters, all received updates are temporarily queued and processed once
the new filters are loaded. This ensures that no updates are lost during the filter update
process.

When the BGP daemon receives updates, it discards the ones that match any of the
filters, i.e., those for which the prefix is loaded in the radix tree. The retained updates
are dumped into the current dump file in MRT format. It also updates the RIB to
maintain the up-to-date state for each prefix. The RIB is a hash table where the key
is a prefix, and the associated value is the binary version of the corresponding BGP
attributes (i.e., the raw attributes carried in the update, in binary format).

The orchestrator requires all the BGP data to recompute the filters, including filtered
updates. When the filters need to be updated, the orchestrator sends a specific signal
to each BGP daemon. Upon reception of such a signal, the BGP daemon dumps all the
received BGP updates (even if they match the filters) to temporary files in the offline
database. Observe that the updates that do not match any of the filters continue to be
dumped into the public database. For both the public and the offline databases, the
data is dumped on a shared directory, implemented by Docker volumes. This setup
facilitates file exchange between the docker container hosting the BGP daemon and the
host server without additional processing from the daemon. The data from all the BGP
daemons is gathered into a directory that represents either the public or the offline
database.
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To interact with the daemon, other components of the system use a custom remote
shell that enables sending commands to the BGP daemon. The remote shell is also
included in the Docker container of each BGP daemon.

Custom remote shell. The custom remote shell is responsible for sending commands
to the BGP daemon for various purposes such as restarting the daemon, retrieving the
RIB, or activating the dump in the offline database. It connects to the BGP daemon using
a dedicated socket and sends the commands input by the user. An option also enables
one to write the command to execute directly on the command line. The commands are
processed by the BGP daemon and the responses are sent to the remote shell through
the same socket. This feature enables the web interface to implement looking glasses
by accessing the RIB in real-time.

5.3.3 GILL’s orchestrator

GILL’s orchestrator manages multiple tasks: setting up a new BGP collector (i.e.,
BGP daemon) upon receiving new peering requests from the website, recomputing
correlations between updates, updating the anchor VPs, and generating the filters. To
communicate with the BGP daemons, the orchestrator uses two different processes. It
either sends a signal to the daemon by using the custom remote shell or transfers files
using the docker volume which facilitates sharing files between the BGP collectors and
the server hosting the docker environment. The orchestrator is implemented in Python,
as it does not require high processing performances. All implemented algorithms
effectively scale with their computation frequency.

Setting up new BGP collectors. Establishing a peering session between a VP and a
BGP collection platform is often a very time-consuming process. Discussions with BGP
collection platform operators confirmed that this process typically involves exchanges
of information using mail and requires human processing. To overcome this limitation,
GILL proposes an automated peering session establishment process. Using the web
interface, the operators willing to contribute to GILL can register their ASN and public
IP to automatically configure a BGP collector on GILL’s side. The orchestrator then per-
forms two actions: verifying the authenticity of the VP and setting up the BGP collector.
Given that anyone, including potential malicious actors, can attempt to configure a
BGP collector (e.g., to pollute the collected data), the orchestrator implements a security
check. The operator registering the new VP has to send a mail (with empty content) to
the address peering@bgproutes.io. In order to ensure the legitimacy of the email sender,
the orchestrator retrieves registered AS’s email address from PeeringDB [83] and only
validates the VP’s authenticity if the received email originates from this address. This
process ensures that the operator configuring the BGP collector legitimately operates
the registered AS. Once the security check is satisfied, the operator uses the information
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gathered from the form to create a new BGP collector configuration file, activate a new
Docker container, and start the BGP daemon using the appropriate configuration.

Redundant update computation. The filters deployed in each BGP collector depend
on two pieces of information: the redundant updates and the anchor VPs. To recompute
the redundant updates, the orchestrator uses the remote shell to send the following
signal to each BGP collector: "dump all received BGP updates in the offline database,
even if they match any filter for the next 48 hours". The orchestrator requests for 48h
of data as we demonstrated in §4.1.1 that capturing consistent correlations between
updates requires two days of data. The data in the offline database is separated per
prefix and per VP, i.e., every BGP collector dumps the data for each prefix in a different
file, as the correlation groups are built per prefix. This per-prefix organization of the
data enables a simpler parallelization of the process, saving a consequent amount of
time. With our server equipped with 24 cores Intel(R) Xeon(R) W-2265 CPU 3.50GHz
and 64GB of RAM, this process takes ≈ 16 hours when using data from all RIS and
RV VPs. After collecting the data in the offline database, the orchestrator runs BUS to
classify the redundant updates. It runs the correlation group construction (§4.1.1) and
the reconstitution power algorithm (§4.1.2) in parallel for each prefix. Exploiting the
prefix-wide redundancies (§4.1.3) is not feasible in parallel. However, as this process is
not time-consuming, performing it sequentially does involve any performance issue.
The orchestrator then updates the latest set of redundant updates with the new one.

Anchor VPs computation. The orchestrator initiates the anchor VPs computation
process by sending the following signal to each BGP collector: "Dump all received BGP
updates to the offline database, whether they match a filter or not for the next 30 days".
The orchestrator requests 30 days of data as this time frame is required by MVP to
find events and assess the pairwise redundancy between VPs. Unlike the redundant
update computation, the orchestrator does not separate the files in the database per
prefix, as the events are not computed on a per-prefix basis. The orchestrator then runs
MVP to (i) find a balanced set of BGP events, (ii) computes the topological features,
(iii) computes the pairwise redundancy scores, and (iv) generates the set of anchor VPs.
Using our server, this process takes ≈ 22 hours when using data from all RIS and RV
VPs. This computation time scales with the yearly update rate of the anchor VPs. The
orchestrator then updates the current set of anchor VPs with the new one.

Filters recomputation. Upon computing redundant updates or new anchor VPs, the
orchestrator initiates GILL’s process of filter computation, as described in §5.2. Once
the filters are computed, the orchestrator writes the corresponding filters in the shared
directory of each BGP collector. Since the BGP daemons scan for changes in the filters,
after a maximum of 24 hours, the updated filters are pushed. Finally, the orchestrator
publishes the updated filters on the web interface. This allows any operator wondering
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why a given prefix does not appear in the collected updates or in the looking glass to
determine whether the cause is the prefix being filtered or route propagation issues.

5.3.4 GILL’s web interface

GILL’s system includes a web interface that enables the user to interact directly with
the platform. The website is accessible at https://bgproutes.io and provides different
tools. First, it provides the list of GILL’s peers (i.e., the VPs) with all related information.
Second, it provides a looking-glass tool, available for every active VP. Third, it provides
an HTTP database where the users can download any update files from any available
VP. Fourth, it provides a form where the operators willing to contribute to GILL can
register new VPs. Finally, it provides a tool that enables users to build their own set
of anchor VPs on which they can force some characteristics (for instance forcing the
presence of one or more VPs). The website is designed for responsiveness using HTML,
CSS, JavScript, and Jinja2 to ensure a responsive website. The web server runs using
the Flask python application, served with a Nginx web proxy.

VP list and information. The first component of our website displays the list of
all VPs at the /peers endpoint. The list of peers comprises five pieces of information:
the AS name extracted from the as2org CAIDA dataset [146], the ASN, the peer IP, the
date at which the VP was added, and the date at which it was removed. Each entry in
the list is clickable, redirecting to another page where the user can get more specific
information about the peer. This new page provides statistics about the peer, such as
the time at which the BGP session has been established, the time at which the latest
keepalive has been received, the number of received updates, the number of received
prefixes, the number of filtered prefixes, the current size of the RIB, and the list of
prefixes that are filtered on this VP. All this information is refreshed every 60 seconds
to provide near-real-time statistics.

Looking glass. GILL’s web interface provides a looking-glass tool for every active
VP, accessible via the looking glass tab. This tool provides users a list of all peers with
similar information as the list of peers available at the /peer endpoint. However, when
a user clicks on a given peer, it opens a new page displaying all the prefixes and their
corresponding BGP attributes currently stored in that peer’s RIB. As a web browser
may not be capable of displaying the typical 1M entries stored in a RIB, by default a
page only displays 100 entries and the user can navigate through additional pages to
see other entries. When a user queries the looking glass for a given VP, the web server
uses the custom remote shell of the corresponding BGP daemon to get the RIB, in JSON
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format. If a peer becomes unavailable e.g., if the VP is rebooting, the looking glass for
this peer is temporarily disabled.

Public database. GILL’s web interface provides an HTTP server that publishes the
directory containing all the BGP update dump files This enables the users to download
any file, from any available VP. The database is available in the database tab and is
served using a ruby HTTP server. The path to a given file is of the following form:
http://bgproutes.io:5050/peerASN_peerIP/year/month/day/timestamp.mrt.bz2 This
setup provides an easy and efficient way for users to access and retrieve BGP update
files as needed.

New peer registration form. As mentioned in §5.3.3, GILL implements an automated
process for configuring new BGP collectors, in order to limit human processing. On
the website, an operator can access a form (on the new_peer tab), where he can register
the ASN and the public IP of the router that will share routes with GILL. After filling
out the form, the public peering information of GILL is presented to the operator, such
as GILL’s ASN and public IP. After the security check described in §5.3.3, the operator
can configure the BGP session on the register router (which then becomes a VP) and
after a maximum of 60 seconds, the new VP appears on the list of GILL’s peers.

Anchor VPs customization. As presented in §2.3.2, users often resort to sample BGP
data in an arbitrary fashion, resulting in suboptimal performances for many objectives.
GILL addresses this issue by providing the list of anchor VPs through the web interface.
This list enables any user who wants to sample the BGP data by selecting a subset of
the VPs to use a set of least redundant VPs. However, some users might have some
specific needs that require customizing the set of VPs. A user with higher processing
power may also want to process data from more VPs than the ones used as anchor VPs.
Therefore GILL’s web interface proposes a tool to build a custom set of VPs, where
any user can enter the number of required VPs, the maximum data processing budget
he has (in terms of data volume), or include some VPs. This tool is available on the
custom_anchor tab.

5.3.5 GILL’s bootstrapping with RIS and RV data

GILL has the potential to significantly improve the state-of-the-art in BGP data collec-
tion platforms. However, this can only be achieved if it attracts a substantially larger
number of VPs—an order of magnitude more than current platforms like RIS and RV.
To enhance the attractiveness of peering with GILL, we bootstrap it using data from
RIS and RV peering sessions. Specifically, we mirror all the peering sessions from RIS
and RV (≈ 2500 combined) and integrate them into GILL. This bootstrap enables a
head start of visibility for GILL, making it already the public collection platform with
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the highest number of (mirrored) peers! Since RIS and RV do not provide the same
live-stream data tools, we developed two different proxies to leverage their respective
peering sessions.

Leveraging RIS peering sessions. RIS provides data in real-time through its live-
stream data tool [147], which operates using a websocket. Users can connect to the
websocket and subscribe to one or more feeds. RIS live provides a separate feed for
each of their 23 active route collectors. Upon subscribing, users receive each single
collected BGP message (including the keepalive messages) in a JSON format. This
format includes multiple information, such as the ASN and the public IP of the sending
VP, the timestamp, and all the main BGP attributes. It also informs users of the status
of any VP, by sending a peer-disconnected message every minute for each disconnected
VP. This live-stream data tool is extensively used for real-time BGP anomaly detection.
For instance, it is used in ARTEMIS [69], a tool that enables detecting BGP hijacks in
real time.

This live-stream data tool provides feeds only at a per-collector granularity. However,
GILL aims at filtering and providing data at a per-VP granularity. Additionally, we want
the different types of peers (original or mirrored) to be transparent to the orchestrator
and the filter recomputation process. Therefore, we built a proxy that takes the live
data as input and feeds BGP daemons (as described in §5.3.2). The mirroring system
for RIS peers uses three main components: a BGP daemon orchestrator, a proxy, and a
cluster of BGP daemons. The architecture of the RIS peering session mirroring system
is described in Fig. 5.8.

Live-stream data proxy: The proxy is responsible for establishing the connection with
the websocket and retrieving the data stream. Once the stream starts, the proxy
forwards the received messages to the corresponding BGP daemon. Over time, some
new VPs may be added. Therefore, when the proxy receives a mirrored update for a
VP that has no corresponding BGP daemon, it requests the BGP daemon orchestrator
to set up a new BGP daemon. The messages for this new peer are temporarily queued
until the proxy can connect to the new BGP daemon. While it has at least one message
queued, the proxy attempts to connect to all the BGP daemons with at least one queued
message every 10 seconds. Note that this parameter can be overridden. There are no
synchronization issues since the timestamp at which the update was received is included
in the message sent by the websocket. The BGP daemon thus uses this timestamp
instead of the actual timestamp at which it receives the update. To parallelize the
process of gathering live-stream data, we run one proxy for each of the 23 active route
collectors deployed by RIS, each running on a different process and CPU.
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Figure 5.8: Workflow of the RIS peering sessions mirroring. The system com-
prises three components: a live-stream data proxy, a BGP daemon orchestrator,
and a cluster of BGP daemons.
BGP daemon orchestrator: The BGP daemon orchestrator is responsible for setting up
BGP daemons upon detecting a new VP by the proxy. This component runs as a
separate process. When it receives a signal from any of the proxies, it retrieves the
information relative to the new VP (ASN and public IP) and sets up a corresponding
BGP daemon. The signal received from the proxy consists of the creation of a file in
a shared directory. The file is created by the proxy and its name corresponds to the
ASN and the public IP of the new VP. The BGP daemon orchestrator regularly scans
the shared directory and creates a new BGP daemon when it detects the creation of a
new file. Only one BGP daemon orchestrator is needed for all proxies, as the addition
of new VPs does not occur frequently, thus not requiring specific performances.

BGP daemon cluster: The BGP daemons deployed by the BGP daemon orchestrator
need to provide the same output as those deployed by GILL’s system orchestrator.
However, using a proxy to mirror data from RIS peers can lead to desynchronization of
the timestamps due to forwarding delays. Additionally, queuing data received from a
new peer can also cause synchronization issues. To address this issue, we developed a
modified version of the former BGP daemon. Instead of receiving BGPmessages directly,
this daemon processes altered BGP messages, where the four first bytes correspond
to the original timestamp, and the remaining bytes are used to store the original BGP
message. This process allows us to embed the original timestamp of the BGP update
into the message, removing the risk of timestamp desynchronization. This is feasible
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since the original timestamp at which the BGP message is received by the RIS collector
is contained in the JSON messages sent by the websocket.

Leveraging RV peering sessions. Unlike RIS, RV does not provide a websocket for a
live stream of BGP updates. For each of their 43 collectors, they provide a live BMP
[105] feed. However, at the time this thesis is written, no tool can effectively parse and
collect this data. For instance, while BGPStream provides support for RV BMP live
data, it quickly becomes desynchronized, with one second of data received roughly
every three seconds. Therefore, we cannot rely directly on the BMP feeds. To leverage
RV peering sessions, we build a pseudo-real-time proxy to feed the BGP daemons.

Instead of relying directly on a live stream data feed, our RV proxy implements a
scheduler that collects the latest update dump file (in MRT format) published by RV
in their database every 15 minutes. The proxy starts by downloading the update
file and extracting the timestamp, the VP’s ASN and public IP, and the raw update
from each MRT entry. It then builds a custom BGP update with the four first bytes
being the timestamp (as explained for RIS peering sessions above) and sends it to the
corresponding BGP daemon. Similarly to the RIS proxy, if the BGP daemon is not
up, the updates are queued until the BGP daemon orchestrator sets up the required
container. Although we need to wait 15 minutes to get the data, this is the best we can
do for now, despite this process not being real-time. Note that there is one such proxy
for each of the 43 collectors maintained by RV.

5.3.6 GILL system’s performances

We now evaluate GILL’s system implementation to ensure that it can scale to tens of
thousands of VPs without requiring significant investments in hardware infrastructure.
The critical point of GILL’s system is the custom BGP daemon. We evaluate the
capability of the collection and filtering engines to cope with the volume of data
induced by a drastic increase in the number of VPs.

Experiment setup. We evaluate the maximum data rate that our BGP daemon can
handle by configuring a set of X BGP daemons (with X ∈ {100, 1000, 10000}). For
each running BGP daemon, we configured a fake peer that establishes a BGP session
with the BGP daemon and sends a stream of BGP updates. The fake peers send bursts of
BGP updates that match the data rate observed from RIS and RV dumps: it either sends
updates at a frequency of 28K updates per hour (the average observed from RIS and
RV sessions) or 241K updates per hour (the 99th observed percentile). We present the
results of our BGP daemon’s performances without filters and with filters that discard
94% of the updates, to align with the data reduction proposed by GILL’s filters. The
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Number of peers 100 1000 10000

With filters (i.e., GILL)

Update load
(per hour)

Average (28K upd/h) 0% 0% 0%

99th percentile (241K upd/h) 0% 0% high

Without filters

Update load
(per hour)

Average (28K upd/h) 0% 0% 39%

99th percentile (241K upd/h) 0% 32% high

Table 6: Proportion of updates lost by our BGP daemons as a function of the
update frequency when using only one CPU. A green cell means daemons
cope with the update frequency (no updates are lost) whereas a red cell means
daemons drop at least one update. When the number of lost updates cannot be
precisely computed because the load is too high, we just label it as high and
color it in red.
benchmark is run on a single 3.20 GHz Apple M1 Pro CPU with 16GB of RAM. Table 6
presents the percentage of updates lost across the different considered scenarios.

Benchmark results. We find that a single CPU successfully handles (i.e., losing no
updates) up to 10k BGP daemons with the average update frequency and up to 1k
daemons with a high update frequency (99th percentile) when using filters. Thus, we
expect GILL to support tens of thousands of BGP sessions (even during peak times) on
a server with many CPUs. While one might assume that applying filters would be a
time-consuming process, potentially lowering the performance of the BGP daemon,
our observations reveal the opposite. We observe that our BGP daemons can process
more updates when using filters, as the most time-consuming task of our daemon is
writing on the disk, which is significantly reduced when applying the filters.

We evaluated the software performances of GILL and show its ability to cope with tens
of thousands VPs. We now evaluate the performances of GILL’s sampling, demonstrat-
ing its ability to perform effectively for a wide range of objectives.
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6
Performance evaluation and impact

In the previous chapter, we analyzed the performance of GILL’s system implementation.
In this chapter, we evaluate the performances of GILL’s sampling on various objectives.
Specifically, we analyze how effectively the updates retained by GILL’s filters enable
conducting some popular measurement analysis. This includes evaluating both the
short-term and the long-term impact of GILL. Given that GILL has not yet gained
traction, evaluating the long-term impact of GILL with real data is impossible, as we
cannot precisely determine what we are missing from non-deployed VPs. Therefore,
we rely on simulations to compareGILL’s implementation of the overshoot-and-discard
strategy against the current BGP data collection strategy on scenarios with different
VP coverages.

We start this chapter by benchmarking GILL’s sampling in §6.1, comparing it against
the state-of-the-art for BGP data sampling strategies across five common objectives. We
then demonstrate in §6.2 the long-term impact of GILL’s sampling on three objectives,
illustrating the benefits of using GILL compared to the current BGP data collection
strategy once GILL gains traction. Next, in §6.3, we highlight the benefits of using
GILL for sampling BGP data through two measurement studies. More precisely, we
reproduce the experiments conducted in two papers extracted from the literature where
authors sample BGP data and show that data sampled by GILL yields better results,
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induced by an improved visibility over the Internet routes. Finally, we present the
benefits of GILL on DFOH [82], a forged-origin hijack detection system that relies on
GILL’s anchor VPs to sample BGP data.

6.1 Benchmarking GILL’s sampling

In this section, we evaluate the two main key requirements of GILL’s sampling: provid-
ing an effective sampling and avoiding overfitting toward any definition of redundancy.
We demonstrate that GILL’s sampling improves the trade-off between data volume
and inferred information compared to both current BGP data sampling schemes and
sampling strategies optimized for specific objectives. We use five different use cases to
evaluate the inferred information.

We start by presenting in §6.1.1 the experiment setup used to benchmark GILL’s
sampling. Next, we compare GILL’s sampling against the state-of-the-art strategy for
BGP data sampling in §6.1.2. This experiment also allows us to evaluate the soundness
of the two main key ingredients of GILL’s sampling: the selection of redundant updates
and the use of anchor VPs. Finally, we demonstrate in §6.1.3 that GILL does not overfit
toward any definition of redundancy.

6.1.1 Experiment setup

We start by presenting the use cases on which we evaluate GILL’s sampling. We then
present how we compare GILL against other baselines.

Describing the five use cases. We selected five use cases to evaluate GILL’s sampling,
extracted from the literature. We carefully picked these use cases such that each BGP
attribute is required for at least one of them, ensuring that GILL does not overfit toward
a given attribute. For instance, the time is required to detect transient events (use case
I ); the prefix is required to detect Multiple Origin ASes (MOAS) hijacks (use case II );
the AS path is required to map the Internet topology (use case III ); and the community
values are required to detect action communities (use case IV ) and unchanged-path
updates (use case V ). For each of these use cases, we process updates and RIBs collected
by all RIS and RV VPs during 30 one-hour periods selected in Nov. 2023. We select one-
hour periods to reduce the computational expense of these analysis, but we mitigate
the bias induced by time sampling by selecting 30 non-overlapping periods. We used
these 30 one-hour periods to extract all observed events corresponding to each five
use cases. We now detail, for each use case, how we select the events on which we
evaluate GILL’s sampling:

I Transient paths detection: We define a Transient path as a BGP route that appears in
the RIB of a VP for less than 100 seconds. These routes are often attributed to path
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exploration [148], which typically occurs after a failure. When the primary path is
unavailable, an AS experiencing an inter-domain outage is likely to receive new routes
toward the affected prefixes from its other neighbors. Because a significant amount of
routes are potentially received, the router hosting the VP may not receive the new best
route immediately after the failure. Consequently, routes installed in the RIB by the
router are likely to be replaced quickly after, resulting in routes being installed in the
RIB for a short timeframe. Transient paths can also occur when a router hosting a VP
reboots, generating a similar phenomenon as for an inter-domain failure. Detecting
transient paths can be useful for mapping hidden portions of the AS-level topology
since transient paths often consist of backup paths that are typically not exported to
route collectors. Additionally, transient paths can help researchers to better understand
the dynamic inter-domain traffic engineering implemented by large content providers
to balance the load received by their infrastructure [84, 149, 150].

To extract all the transient paths from the 30 one-hour periods, we start by building for
each VP the RIB state at the beginning of each selected one-hour period. We build the
RIB state for a given period by collecting the last RIB dump before the beginning of the
period and completing it with the subsequent updates. We then process each one-hour
period by updating the RIB with the corresponding updates. Each time a RIB entry is
withdrawn by a new update (implicitly or not), we add the previous route in the set
of transient paths if it has been present in the RIB for less than 100 seconds (We use
100 seconds to accommodate typical BGP convergence delays [42]). A transient path is
identified by the timestamp at which the route was collected, the prefix of the route,
and its origin AS. We do not use the entire AS path since redundant VPs might observe
the same transient path (i.e., induced by the same BGP dynamic), but with different AS
paths. We end up selecting 859K events over the 30 one-hour periods.

II MOAS hijack detection: Multiple Origin ASes (MOAS) hijack is a BGP event (legit-
imate or not) where two or more distinct ASes announce the exact same prefix. As
a result, other ASes in the routing system will choose between one of the different
available routes and some of them will likely select the illegitimate one (when the
MOAS is malicious). When legitimate, MOAS can be due to prefixes associated to
IXPs, multihomed ASes [151], or multinational companies owning multiple ASes and
changing their prefix affectations [152]. When illegitimate, MOAS hijacks are used
to divert the traffic from its legitimate destination [62, 153, 154]. This can be used to
either analyze the hijacked traffic or blackhole it, disrupting the connectivity toward
the hijacked prefix. For this use case, we only focus on illegitimate hijacks and use the
methodology proposed by [68] to eliminate the large portion of false positives raised
by the public hijack detection platforms.
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To extract all the MOAS hijacks that occurred within the 30 one-hour periods, we start
by building a prefix to AS mapping using the CAIDA pfx2as dataset [155] from Nov.
2023. Then, for each one-hour period, we process every single update by checking the
consistency between the prefix/origin AS pair announced in the update and the one
present in the CAIDA dataset. If the announced prefix is not in the CAIDA dataset, we
do consider it as legitimate. If there is an inconsistency, we add the prefix/origin AS pair
extracted from the update to the set of potential MOAS hijacks. An event is identified
by the timestamp of the underlying update, its prefix, and the presumed illegitimate
origin AS. To remove false positives from the set of potential MOAS hijacks, we apply
the four filters described in [68] on each event. First, we eliminate all the events that
match a valid RPKI record [156], using the RPKI database from NTT [157]. Second, we
eliminate all events that match at least one entry from the IRR database [158]. Third,
we apply the topology filter proposed by [65], which aims at removing events where
the victim AS of the MOAS hijack is the provider of the attacker, as it is likely to be a
legitimate behavior. Finally, we applied time filtering, as most of the illegitimate MOAS
events are short-lived. We use the same settings as [68]. After applying all these filters,
we end up with 1587 events when combining the 30 one-hour periods.

III AS topology mapping: Mapping the AS topology has been an extensively studied
topic over the last two decades. This use case is often achieved by extracting AS links
from collected AS paths. Additionally, some techniques leverage active measurement
coupled with an IP-to-ASN mapping to provide additional AS links that cannot be
observed from the BGP VPs [27, 28, 29, 30]. Effectively mapping the topology requires
collecting as many diverse AS paths as possible, as it increases the likelihood of ob-
serving new links. Path diversity is also crucial for other AS topology mapping-related
measurement studies, such as inferring AS relationships [35] or predicting AS paths
[159, 160]. Some studies about mapping topology or inferring AS relationships focus
only on stable paths [35], i.e., paths that appear regularly on large timeframes in the
RIBs. However, for this use case, we choose to focus on both stable and transient paths,
as transient paths can offer valuable information about the backup links in the Internet
topology.

To extract both stable and transient links, we start by building the RIB states at the be-
ginning of each one-hour period used for the benchmark, using the same methodology
as for use case I . We then extract all the AS links from the collected AS paths, which
we add to the set of observed AS links. To process transient paths, we use the updates
collected during the one-hour period and add all the observed AS links to the set of
AS links. We repeat this process for each of the 30 one-hour periods. We also handle
AS paths with AS aggregation by de-aggregating the AS paths into all the possible
combinations of AS paths. After processing the 30 one-hour periods, we focus on the
687K observed AS links.
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IV Action communities detection: BGP communities have been extensively studied over
the years, with many efforts aiming at better understanding their purpose and, more
generally, providing a better understanding of the Internet routing ecosystem. Krenc et
al. [20] provide a methodology to classify communities into two categories: information
communities and action communities. They rely on a clustering algorithm, as well as a
newmetric, the on-path:off-path ratio, to classify the communities. This metric measures
the ratio between the number of updates where a given community asn:comm appears
and asn appears in the AS path of this update, versus the number of updates where
asn:comm appears but asn does not appear in the AS path. Since action communities aim
at influencing path selection, they are more likely to appear off-path, unlike information
communities that are used to tag a route. Therefore, we focus on action communities,
as they are more challenging to observe.

We extract the action communities from the updates collected during the 30 one-hour
periods. Krenc et al. [20] provide a dictionary of inferred BGP communities with more
than 60k entries, where each community value is associated with its classification.
For each collected update, we parse the set of associated community values and add a
community only if it is present in the dictionary and classified as an action community.
Consequently, we focus on the 8683 action communities observed during the 30 one-
hour periods.

V Unchanged-path updates detection: A lot of noise often occurs on the Internet [161]
and pollutes BGP data. This noise can be attributed to many events, such as persistent
session restarts either from the BGP collector [162] or from other ASes in the topology
[163]. Another definition of noise can be the proportion of duplicated announcements
[164], i.e., receiving a BGP update for a prefix where all BGP attributes exactly match
the one stored in the RIB for the same prefix. For this use case, we focus on another
definition of noise, the unchanged-path updates [22], where a router receives an update
for which only the set of associated BGP communities change. This new update, while
different from the one stored in the RIB, does not signal any forwarding change. Recall
that, if we choose to focus on this definition of noise, there exist many more.

To extract all unchanged-path updates, we start by building the RIBS for all 30 one-hour
periods and for all VPs, using the same methodology as described for use case I . We
then process every single update received during the 30 one-hour periods and compare
them to the corresponding entry in the RIB. If the AS path is the same but the set of BGP
communities has changed, we add this update to the set of considered unchanged-path
updates. An unchanged-path update in this set is identified by its timestamp, prefix,

88



6.1 Benchmarking GILL’s sampling

and origin AS. Consequently, we focus on the 263k unchanged-path updates collected
from the 30 one-hour periods.

Comparing the different baselines. We benchmark GILL’s sampling to demonstrate
its effectiveness in improving the tradeoff between data volume and the information
inferred across the five use cases described above. Specifically, we compare GILL’s
sampling against four naive baselines and eight specific baselines optimized for a given
definition of redundancy. We start the comparison by computing GILL’s filters in Oct.
2023. For each 30 one-hour period, we filter the collected updates and consider only the
ones that are retained to infer the collected information. We then compute the volume
of retained data, i.e., the number of retained updates. Then, we parameter every other
baseline to collect the exact same volume of data as GILL, and use the retained data
to infer the collected information. Next, we present, for each use case, the proportion
of events or AS links that we can detect using the data retained by each baseline. If a
baseline b has a score of 90% for use case III , it means that using the data sampled by b,
we are able to map 90% of the AS-level topology (i.e., we observe 90% of the AS links).
With the default parameters, GILL’s sampling retains 6.7% of the updates collected
during the 30 one-hour periods. Therefore, we configure the other baselines to retain
the same proportion of updates, enabling a fair comparison between all the baselines,
such that any performance gap can be confidently attributed to GILL.

6.1.2 GILL performs better than current techniques

In this section, we compare GILL’s sampling against four naive baselines, which repre-
sent the state-of-the-art for BGP data sampling strategies. Additionally, we compare
GILL against two modified versions of itself, in order to validate the two key design
choices of GILL’s sampling strategy. We start this section by describing the naive
baselines.

Naive baseline description. We compareGILL’s sampling against four naive baselines
that sample BGP data either at the update or the VP granularity: Rnd.-Upd., Rnd.-VP.,
AS-Dist., and Unbiased.

Rnd.-Upd.: This baseline relies on an overshoot-and-discard strategy by generating
filters that are applied to VPs. Instead of generating filters based on the reconstitution
power or by selecting anchor VPs akin toGILL, using reconstitution power, this baseline
generates filters randomly. Filters are iteratively built by randomly selecting a VP and
a prefix (using a uniform distribution) and adding it to the set of randomly generated
filters. We stop adding new filters in the set when the selected filters enable collecting
the same number of updates as GILL. This baseline is used to highlight the effectiveness
of GILL’s filter generation pipeline.
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Rnd.-VP: This baseline samples BGP data by selecting a subset of the VPs. It generates
a set of VP by iteratively adding a random VP until the set of selected VP collects the
same number of BGP updates as GILL. According to our survey, this is the most widely
used strategy to sample BGP data. This baseline is designed to compare the relevance
of sampling BGP data at the update granularity against sampling at the VP granularity.

AS-Dist.: This baseline samples BGP data by selecting a subset of the VPs, but based
on their AS distance, unlike Rnd.-VP where the VPs are selected randomly. In §3, we
demonstrated that, despite being intuitive, the AS distance is not an effective metric for
assessing redundancies between VPs. We use the AS-Dist. baseline to experimentally
illustrate that this strategy may fail for multiple objectives. To implement this baseline,
we start by computing the AS distance between all pairs of existing VPs. We initialize
the set of VP with a random VP and then iteratively add the VP that maximizes the
average AS distance from the already selected VPs. We stop adding new VPs when
the number of updates collected by the selected VPs matches the number of updates
retained byGILL. This baseline aims at illustrating the limitations of using naive metrics
to assess the redundancy between VPs.

Unbiased:This baseline samples BGP data by selecting a subset of the VPs thatminimizes
the bias. In §3, we argue that selecting VPs based on their geographical positions or
topological properties (i.e., position in the AS-level topology) may fail for a wide range
of objectives. In [118], Sermpezis et al. defined the bias in a set of BGP VPs using
various metrics such as the customer cone size of the AS hosting the VP or the country
in which the AS is registered. We implement this baseline by using this definition of
bias and build a set of VPs that minimizes the bias, thereby maximizing the diversity
of the route collectors. We initialize a set of VPs containing all available VPs and
iteratively remove the VP that most increases the overall bias (as defined in [118]) of the
set. We stop removing VPs when the set of VPs collects the same number of updates as
GILL. Similarly to AS-Dist., this baseline aims at illustrating the limitations of using
naive metrics to assess the redundancy between VPs.

GILL modified baseline description. Additionally, we compare GILL’s sampling
against two modified versions of GILL, GILL-upd. and GILL-vp. This comparison
enables us to evaluate the soundness of the two key design choices of GILL, namely
" Support for a flexible definition of redundancy" and "Retain all updates from a few
valuable VPs".

GILL-upd.: This baseline consists of GILL’s generated filters, but incorporates only the
first key ingredient. Specifically, it computes the set of redundant updates, but without
selecting any anchor VPs. Consequently, this baseline is likely to retain all the data
from none of the available VPs. We adjusted GILL’s default parameters to ensure that
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the number of updates retained by GILL-upd. matches the number of updates retained
by GILL. This adjustment ensures a fair comparison between the baselines.

GILL-vp: This baseline consists of GILL’s generated filters, but incorporates only the
second key ingredient. Specifically, it computes a set of anchor VP using the computed
redundancy scores but does not apply any filters to any VP. We adjust GILL’s default
parameter, ensuring that the number of updates collected by the extended set of selected
anchor VPs matches the number of updates retained by GILL. This adjustment ensures
a fair comparison between the baselines.

Sampling Scheme GILL
GILL-simplified Naive

GILL-upd GILL-vp Rnd. Upd. Curr. AS-Dist. Unbiased

U
se

ca
se
s

Trans. path detection (I ) 96% 65% 75% 83% 75% 95% 89%

MOAS detection (II ) 95% 95% 45% 33% 35% 59% 46%

Topo mapping (III ) 90% 93% 61% 72% 41% 67% 38%

Action Coms. detection (IV ) 91% 95% 49% 79% 48% 41% 42%

Unchanged-path Upd. detection (V ) 87% 60% 80% 76% 74% 43% 61%

Table 7: GILL’s sampling outperforms all naive baselines, for all use cases. The
color means that GILL performs better ( ), worse ( ), or similarly ( ) than
the baseline.

Table 7 presents the results of this benchmark, detailing the performances for all
baselines across all five objectives. Each cell contains a number representing the
proportion of events (or links) related to the use case on the x-axis that can be observed
using the sampling strategy implemented by the baseline on the y-axis. The color of
a cell is green if GILL outperforms the baseline in the y-axis for the use case in the
x-axis, red if the baseline performs better than GILL, and yellow if the baseline and
GILL perform similarly (±5%). The cells in GILL’s column are colored in gray, as it
serves as a reference to compare against other baselines. From these results, we can
infer the two following takeaways:

Takeaway #1: GILL outperforms all naive baselines across all possible objectives and
sometimes significantly. GILL detects +62%, +60%, +36%, and +49% MOAS hijacks (use
case II ) compared to Rnd.-Upd., Rnd.-VPs, AS-Dist. and Unbiased, respectively. The only
scenario where a naive baseline performs similarly to GILL is when we use the AS-Dist.
baseline to detect Transient paths. These results highlight the suboptimality of the
current BGP data sampling strategies and demonstrate the ability of GILL’s sampling
to focus only on the most valuable portion of the data.
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Takeaway #2: The two key ingredients of GILL are relevant. GILL-upd., which imple-
ments the first key ingredient, outperforms GILL-vp for use cases II , III , and IV , as it
collects more diverse BGP attributes. Conversely, GILL-vp outperforms GILL-upd. for
use cases that require all prefixes but not a high link visibility, namely I and V . GILL-vp
performs better in this case because it retains all prefixes, even if redundant. Unlike
its modified versions, GILL performs effectively for every use case, highlighting the
relevance of combining the two key ingredients.

6.1.3 GILL does not overfit

In this section, we compare GILL’s sampling against specific baselines. We show that,
unlike these baselines, GILL does not overfit toward any use case nor any definition
of redundancy. We start by describing the different baselines used to evaluate GILL’s
sampling.

Use-case-based specifics description. These baselines sample BGP data at the update
granularity. For each of the five use cases described in §6.1.1, we build a use-case-based
specific baseline that collects only the updates that enable effectively conducting the
corresponding use case. We greedily add to the set of processed updates the one that
enables the more information inference. For instance, if we consider use case III , we
iteratively add the update with the AS path that enables discovering the most AS
links not observed in previously processed AS paths. If we obtain a set of updates
that enables detecting 100% of the events (or links) but contains fewer updates than
those retained by GILL, we randomly add updates until the volumes match. These five
baselines aim at striking the best tradeoff between the volume of collected data and
the inferred information according to a given objective.

Definition-based specifics. These baselines sample BGP data by selecting a subset of
the VPs. We build three definition-based specific baselines, each optimized for one of the
three definitions presented in §3.2. We greedily build a set of VPs whose collective set of
collected updates minimizes the redundancy according to one of the three per-update
redundancy definitions. We iteratively add the VP that least increases the overall
redundancy in the set of collected updates. We stop adding new VPs when the number
of collected updates matches the number of updates retained by GILL, ensuring a fair
comparison between the baselines.

Table 8 presents the results of the second part of the benchmark, formatted similarly
to Table 7. The number in a cell represents how effectively a baseline performs for a
given objective and the colors follow the same conventions as for Table 7. For ease of
understanding, we also includeGILL’s sampling results, even though they are presented
in Table 7. From these results, we can infer the two following takeaways:
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Sampling Scheme GILL
Definition-based specifics Use-case-based specifics

Def. 1 Def. 2 Def. 3 I II III IV V
U
se

ca
se
s

Trans. path detection (I ) 96% 76% 98% 82% 100% 83% 79% 82% 83%

MOAS detection (II ) 95% 47% 48% 40% 36% 100% 32% 33% 32%

Topo mapping (III ) 90% 43% 49% 33% 72% 72% 100% 72% 64%

Action Coms. detection (IV ) 91% 46% 45% 44% 78% 77% 85% 100% 73%

Unchanged-path Upd. detection (V ) 87% 63% 63% 90% 76% 76% 71% 76% 100%

Table 8: Unlike the Use-case-based specifics baselines, GILL’s sampling avoids
overfitting. The color means that GILL performs better ( ), worse ( ), or
similarly ( ) than the baseline.
Takeaway #1: The definition-based specific baselines perform poorly in almost all
possible scenarios. There are only two scenarios where a definition-based specific
performs similarly toGILL. The baseline optimized for Def. 2 performs well in detecting
transient paths, as it maximizes path diversity. The baseline optimized for Def. 3
performs well in detecting unchanged-path updates, as it includes the community
values in its definition. In all other scenarios, GILL performs significantly better. For
instance,GILL detects +45%, +46%, and +47% action communities (use case V ) compared
to the specific optimized for Def. 1, 2, and 3, respectively. These results demonstrate
the soundness of GILL’s filter generation and highlight that specific definitions of
redundancy often fail when applied to practical use cases.

Takeaway #2: GILL’s sampling generalizes effectively, whereas use-case-based specific
sampling strategies tend to overfit. A use-case-based specific baseline performs effec-
tively for the use case it is optimized for (100% of the objective is achievable for every
use case), but performs poorly for other objectives. Consequently, GILL’s sampling
strategy outperforms every use-case-based specific baselines for the use cases they do
not optimize. For instance, the use-case-based specific optimized for use case III enables
observing +10% AS links compared to GILL, but GILL enables observing +18%, +18%,
+18%, and +26% AS links compared to use-case-based specific optimized for use case I ,
II , IV , and V respectively. These results highlight the robustness of GILL’s sampling
algorithm, as it does not overfit toward any use case. They also demonstrate that
overfitting toward a given use case results in poor performances for other use cases.

6.2 Long-term impact of GILL’s sampling

The long-term impact of GILL will only become visible when it has thousands of
sessions with VPs. Since it is challenging to know what is actually missed from VPs
that are not deployed, we instead rely on controlled simulations to evaluate GILL
in scenarios with a larger VP coverage. We generate a pruned known AS topology
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and ten artificial topologies using the methodology described in §2.1.3, based on the
C-BGP simulator [107]. We restrict our simulations to 1k-AS topologies, to reduce the
computational resource requirements.

Use cases. We evaluate the long-term impact of GILL using the three use cases
presented in §2.1.3, namely Topology mapping, Failure localization, and Forged-Origin
Hijack detection. For both topology mapping and failure localization, we focus on the
p2p links, as they are the most challenging to observe. For the forged-origin hijack
detection use case, we focus on type-1 hijacks, as they are the most commonly used
by attackers [82]. For each of these use cases, we generated events using the same
methodology as described in §2.1.3.

Baselines. We compare GILL’s sampling against two baselines that both represent
possible BGP data collection strategies, the current approach, and the best approach.

Current (Curr.): This baseline consists of building a subset of the deployed VPs whose
number of collected updates matches the one collected by GILL. This ensures a fair
comparison with GILL, as both baselines collect the same volume of data. We select the
VPs randomly, as it appears to be the common behavior when selecting VPs, according
to our survey (§2.3.2).

Best: This baseline represents the ideal scenario, where we collect all the data from all
available VPs, even with a high VP coverage. We then use all the available data to infer
information for the three use cases. Consequently, this baseline does not enable a fair
comparison with GILL, as it collects significantly more data. However, it provides an
upper bound of the possible performances that a system like GILL can achieve.

Simulation settings. We tested different VP coverages (i.e., the proportion of ASes
in the routing system hosting at least one VP) ranging from 2% to 50%. We choose 2%
as the lower bound as it corresponds to the rounded-up VP coverage observed from
RIS and RV infrastructures. Since GILL is data-driven, it requires past BGP updates
to evaluate the correlation between updates triggered by BGP events. Therefore, we
simulate 500 link failures (distinct from those used for the failure localization use case)
and feed GILL with the induced updates, collected by every deployed VP (depending on
the VP coverage of the corresponding scenario). The failures are generated by randomly
selecting a link in the topology (with a uniform distribution). Each generated failure is
separated by more than 100 seconds in time, as it is the time threshold implemented by
GILL to build correlation groups, ensuring that each failure is a distinct event.

Simulation results Unlike §6.1 where we focused on a set of events observed in
the RIS and RV data, we now have the ground truth. For each sampling scheme, we
compute the proportion of events (or AS links) that each baseline detects among all
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Coverage 2% 10% 25% 50%

Data Collection Scheme GILL Curr. Best GILL Curr. Best GILL Curr. Best GILL Curr. Best

Upd. retained / Anchor VPs 18.0% / 17.0% 100% 7.9% / 3.3% 100% 5.4% / 1.3% 100% 4.7% / 0.9% 100%
U
se

ca
se
s Topology Mapping 14% 4% 20% 33% 7% 50% 42% 7% 69% 61% 16% 85%

Failure Localization 29% 11% 37% 61% 14% 81% 60% 25% 80% 80% 18% 92%

Hijack detection 58% 53% 73% 73% 54% 87% 77% 59% 92% 82% 74% 96%

Table 9: Performance of GILL, Rnd.-VPs and best-case on a simulated mini
Internet where the proportion of ASes deploying a VP ranges from 1% to 50%.
GILL leverages high coverage but the two other baselines do not.
the triggered events (or existing AS links). In Table 9, for each baseline and each VP
deployment scenario, we present the percentage of detected events (or observed links).
For GILL, we also present the percentage of retained updates and the percentage of
selected anchor VPs, according to each VP deployment scenario. Note that Table 9
shows median results obtained on the artificial topologies. We observed that results with
the pruned known AS topology are similar. We observe the following three takeaways:

Takeway #1: GILL’s sampling algorithms are responsive to the VP coverage, effectively
coping with a higher VP coverage by discarding more (redundant) data. GILL retains
18% of the updates when coverage is 2%, and 7.9%, 5.4%, and 4.7%, when coverage
is 10%, 20%, and 50%, respectively. Similarly, GILL selects 17% of the VPs as anchor
VPs when coverage is 2%, and 3.3%, 1.3%, and 0.9% when coverage is 10%, 20%, and
50%, respectively. This behavior is expected, as a higher coverage leads to a higher
proportion of redundant updates. Consequently, we expectGILL to be able to effectively
scale with a VP deployment that increases by an order of magnitude more VP.

Takeaway #2: GILL ’s overshoot-and-discard data collection scheme is efficient. While
the best baseline outperforms GILL, it also collects many more updates. With 50%
VP coverage, GILL localizes 80% of p2p links against 92% with best. However, GILL
collects ≈ 21x fewer updates than best. When coverage is high (e.g., 50%), the number
of updates processed by GILL is comparable to best, but with a 2% coverage. Assuming
this observation holds in the real Internet, GILL would collect a similar number of
updates as RIS and RV today, while peering with 50% of the ≈75k ASes, which would
triple the number of p2p links observed, double the number of localized failures, and
reduce the proportion of undetected hijacks by 33%.

Takeaway #3: GILL outperforms the current baseline for all use cases. Even with 50%
coverage, only 16% of p2p links are detected (against 61% for GILL) when processing
the same number of updates as GILL. The forged-origin hijack use case is the most
challenging for GILL, as all prefixes owned by an AS are subject to identical updates in
our simulations (thus GILL discards many of these updates) while only one prefix is
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hijacked. Nevertheless, GILL consistently outperforms current for this use case. For
example, GILL detects +18% of hijacks with a 25% coverage.

6.3 Immediate benefits of GILL’s sampling

The long-term benefits of GILL will only be visible if it gains traction. However, in this
section, we demonstrate that GILL’s sampling can improve the accuracy and coverage
of two measurement studies. Both these studies sample the data in an unoptimized
fashion. The first study, the AS relationship inference, samples data by selecting an
arbitrary subset of the VPs. The second study, the characterization of international
routing detours, uses a limited time frame of measurement. We demonstrate that, for
both of these studies, sampling the data with GILL yields better performances, and can
change the conclusion of the analysis. Unlike §6.2, the ground truth is now unknown.

6.3.1 GILL improves AS relationship inference

There exist various methodologies and algorithms to infer the economic relationships
between ASes. For this analysis, we focus on the methodology proposed in [35], as
the datasets, input data, results, methodology, and source code are publicly available
[109]. We compare the number of inferred AS relationships obtained by the algorithm
using the original dataset against the same algorithm but using a dataset sampled using
GILL (ensuring that both datasets have the same volume). We also show, for each data
sampling strategy, the accuracy of the inferences.

Experiment setup. We replicate the methodology proposed in [35] but use GILL to
sample the input data. CAIDA has provided the results of this algorithm’s inferences
every month since 1999. This algorithm takes as input a set of AS paths extracted from
one RIB of the first five days of each month. In 2023, it collected data from 648 VPs
selected arbitrarily among RIS and RV VPs. CAIDA’s website also provides the set of
AS paths used to make the inference each month, allowing us to know the volume of
data used as input. Therefore, we calibrate GILL’s settings to collect the same volume
of data as the one used by CAIDA each month of the year 2023. Each month, we collect
one RIB of the first five days from all the available VPs and then apply GILL’s filters,
ensuring that both the original dataset and the dataset built by GILL have the same
volume. This process ensures a fair comparison between the dataset sampled by GILL
and the original dataset, such that any performance gap can be confidently attributed
toGILL. We then run the algorithm provided by CAIDA on both the original andGILL’s
datasets, and compare the number of AS relationships that each dataset enables to
infer. Additionally, we compare the True Positive Rate (TPR) of each inference. The
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TPR corresponds to the percentage of AS relationships that appear in the ground truth
and are correctly inferred. We detail how we build this ground truth.

Ground truth construction. The ground truth of AS relationships used for validation
is available on the CAIDA website [109]. However, it was updated for the last time in
2013 and since relationships between ASes may be renegotiated, this dataset is likely
to contain some outdated validations. Therefore, we build an updated ground truth
using the same methodology as described in [35]. It uses two strategies to gather a set
of AS relationships, along with a survey conducted among operators, which we did not
replicate. The first strategy involves collecting IRR records from every registered AS
and parsing the import and export sections. For two ASes AS1 and AS2, if AS1 imports
ANY from AS2 and AS2 exports ANY to AS1, then AS1 and AS2 have a c2p relationship.
The second strategy also leverages IRR records but parses the remark sections. Some
ASes describe the different information communities that they are using and document
their purposes. Some community values indicate the type of AS relationship between
the AS that sets the community and the AS from which the route is received. For
instance, Orange sets the community 5511:999 to any route received by a customer.
We parse this information for each AS that has an IRR record (when possible) and
collect the first RIB of Jan. 2023 from all available VPs. We then combine these two
information to extract the RIB entries where one such BGP community appears and
use it to retrieve the relationship between the AS that tagged the community and the
previous AS in the AS path. These two strategies enable us to gather 58580 distinct
AS relationships in our ground truth. We then use this ground truth to evaluate the
accuracy of [35] using both the original dataset and the dataset sampled by GILL.
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Figure 6.1: Results of the AS relationships inference evaluation. The results in
red corresponds to the results of the original dataset while the results in blue
corresponds to the results of GILL. GILL enables to infer +16% AS relationships
in the median case, while yielding the same inference accuracy.
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Experiment results. Fig. 6.1 presents the results of the inferences using both the
original dataset and GILL, from Jan. 2023 to Dec. 2023. The graph at the top presents
the TPR (in %) of the inferences, while the graph at the bottom presents the number of
inferred AS relationships using both strategies. The bottom graph indicates that GILL’s
sampling enables to consistently observe ≈ 89k (≈ 17%) additional AS relationships
compared to the original dataset while missing fewer than 8k (≈ 1.5%) of the inferred
relationships. Overall, GILL enables to infer consistently≈ 16%more AS relationships
compared to the original dataset. When comparing the accuracy of both inferences, we
can see that using either the original dataset or GILL has no impact on the TPR. The
TPR consistently remains ≈ 97%, regardless of the dataset used or the month at which
the inference is made. Therefore, we can conclude that GILL’s sampling improves the
AS relationship inference and can significantly impact current studies when applied to
data collected by RIS and RV.

Impact on AS cone size computation. ASrank [165] is an algorithm that ranks
the ASes operating on the Internet by comparing their Customer Cone Size (CCS).
The CCS is a metric that computes the number of ASes that a given AS can reach
using only provider-to-customer links, i.e., those that belong to its customer cone. The
customer cone of an ASX is composed of ASX ’s customers as well as ASX ’s customers’
customers and so on. This metric leverages both AS paths and inferred AS relationships
to determine which AS can be reached using only p2c links. An AS path is used to
compute the CCS of an ASX only if the AS path is observed (i.e., collected) by a peer or
a provider of ASX, mitigating the effects of partial transit relationships between ASes.
The algorithm adds to the customer cone of ASX the ASes that appear after ASX in the
AS path if they have either a c2p relationship with ASX or a c2p relationship with an
AS in ASX ’s customer cone. Consequently, the CCS is sensitive to both the inferred AS
relationships and the diversity of the AS paths used.

We show that GILL’s sampling, by processing more diverse AS paths, prevents flawed
inferences in the ASrank dataset. We found that the CCS of 1067 changed when using
the original dataset or GILL’s sampling. We manually investigated a few cases of
substantial changes and found that the inferences made using GILL are more accurate.
For instance, AS132337 has an incorrect CCS of 1 in the original dataset (confirmed
by AS132337 itself) and a correct CSS of 18k when using GILL. We observe this incon-
sistency as GILL selects as an anchor VP the only available VP that collects AS paths
with AS132337 as a transit AS. Similarly, AS24645 is the route server of Balcan-IX and
has an incorrect CSS of 16 in the original ASrank dataset, which is corrected to one
when using GILL. These results indicate that GILL enables more accurate inferences of
CCSs because it collects more diverse AS paths.
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Similarly to the results presented in §6.1, we demonstrated in this section that using
GILL to sample BGP data often improves the results of inference algorithms.

6.3.2 GILL improves Routing Detour characterization

We evaluate the impact of GILL’s sampling on a study that focuses on characterizing
International routing detours [166]. International detours occur when two ASes in
the same country are reachable through an AS in another country, potentially leading
to extra forwarding delays. We demonstrate that by using fewer updates retained by
GILL’s sampling, we can extend the duration of the study to identify more detours
without processing more data.

Experiment setup. We compare the data collection strategy used in the original
paper, which involves collecting all available data during a limited timeframe, against
sampling data with GILL over a longer timeframe. The original paper used all the RIBs
collected from all VPs during one month (Jan. 2016). We calibrate GILL’s sampling to
either retain 50% of the data while using all the RIBS for two months or retain 25% of
the data while using 4 months of data. Consequently, the number of processed RIB
entries remains the same across all three scenarios (≈ 61B), ensuring a fair comparison.
To ensure that any performance gap can be confidently attributed to GILL, we also
compare the original approach with a random baseline, where we randomly select a
subset of the VPs but use data over a longer timeframe. We ensure that the number of
processed RIB entries matches the one processed by GILL and the original approach.
The random baseline is tested with 30 different random seeds, and we present the
results for the median case. We reproduce the original methodology (using publicly
available code) on May 2023 and run both GILL’s sampling and the random baseline
from May 2023 until either June 2023 (when using two months of data) or Aug. 2023
(when using four months of data).

GILL’s sampling enables detecting +51% more routing detours. We present the
results of the experiment in Table 10. We observe that using a subset of the data
sampled with GILL over a longer time frame yields more detected routing detours.
Using the original data collection strategy described in [166], we detect 174k routing
detours, while using GILL on two months of data enables the detection of 250k routing
detours. When using GILL on four months of data (but filtering more RIB entries),
we detect even more routing detours, totaling 263k, which corresponds to a +51%
improvement in event detection. One might assume that this performance gap is due
to the collection strategy of collecting less over a longer time frame. However, when
using this strategy with a naive data sampling strategy, the original dataset yields better
results. Specifically, when collecting data over four months, the random baseline detects
171k routing detours in the median case, -2% less compared to the original dataset.
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Experiment Duration # of processed Updates # of Detours

Original paper 1 Month ≈61B 174k

Random baseline
2 Months ≈61B 165k (median)

4 Months ≈61B 171k (median)

GILL’s sampling
2 Months ≈61B 250K

4 Months ≈61B 263k

Table 10: Using the same number of processed updates, using GILL with less
retained data on a longer time frame enables detecting more routing detours
than using all VPs but on a shorter time frame.
Consequently, we can confidently assert that GILL’s sampling enables improving the
detection of international routing detours.

GILL’s sampling improves the characterization of routing detours. In [166],
the authors present a methodology to rank countries and the ASes according to the
number of routing detours they experience. We replicate this methodology with
the experiment setup described above and show that using GILL’s sampling leads to
different conclusions compared to when using the original data collection methodology.
We find significant differences in the country and AS rankings, including the two
following notable cases:
Case I: Using GILL’s sampling (with two months of data), we discover 33k (+68%)
additional detours traversing the US and 22k (+37%) traversing Russia compared to
when using the original settings. These additional detours rank the US as the #1 country
with the highest number of routing detours and Russia as #2, whereas with the original
settings, Russia is ranked #1 and the US #2.
Case II: Using GILL’s sampling (with two months of data) enables detecting 720 (+83%)
additional routing detours involving AS262503 compared to when using the original
settings. This changes rankings: AS262503 becomes #1 vs. #7 with the original settings.
Since our rankings are based on the highest number of routing detours compared to
[166], we can confidently assert thatGILL improves the characterization of international
routing detours.

6.4 GILL is used by existing systems

In this section, we present the impact of GILL’s sampling on DFOH [82], a system that
detects forged-origin hijacks in the wild. Detecting these forged-origin hijacks requires
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processing power, so DFOH must sample BGP data. Since forged-origin hijacks consist
of per-prefix attacks, a system aiming at detecting them needs a complete view of the
prefixes. Consequently, DFOH uses GILL’s anchor VPs to sample the data.

We start in §6.4.1 by providing an overview of DFOH, another project I contributed
to during my Ph.D. Next, we demonstrate in §6.4.2 the impact of GILL’s sampling on
DFOH’s detection of forged-origin hijacks.

6.4.1 DFOH’s workflow

Forged-origin hijacks remain a threat to the Internet even considering a complete
deployment of RPKI [74], as the attacker prepends the legitimate origin of the hijacked
prefix. This type of attack frequently makes the headlines [80, 81], highlighting the
urgent need for a system that detects them. DFOH is a system that detects forged-origin
hijacks in the wild. It raises alerts for the entire set of ASes operating on the Internet
using only public data as input.

Lack of defenses against forged-origin hijacks. Currently, there exist no mecha-
nism to detect or mitigate forged-origin hijacks in the wild. The two most common
methods to mitigate routing attacks are RPKI validation and route filtering. However,
none of these two mechanisms are effective in the case of forged-origin hijacks. In fact,
as RPKI validation checks the mapping between the announced prefix and the origin
AS, it does not enable to filter forged-origin updates.

The second defense mechanism is route filtering, which is encouraged by MANRS [167]
to prevent an AS from propagating incorrect routing information. However, in practice,
these filters are often missing, inaccurate, or controllable by an attacker. In April 2020, a
misconfiguration made by ROSTELECOM resulted in this AS hijacking several prefixes,
impacting Akamai and Amazon [168]. It appears that missing filters from Rascom and
Cogent led to the propagation of these incorrect announces to a large portion of the
Internet. When filters are configured, they often rely on data collected from the IRR
[158] to infer the peering information between ASes. Unfortunately, IRRs are known to
contain inaccurate information [169, 170, 171]. Controllable filters can occur because
data pushed to IRR is often not verified [172]. Specifically, an attacker can pollute
the AS-set, an object that specifies to which ASes traffic should be routed. Since filter
generation tools use these objects, this can lead to the deployment of illegitimate filters.
This is supposedly what happened in 2022 when AS209243 successfully hijacked some
Amazon prefixes after adding Amazon’s AS in its own AS-set [173].

Current reactive defenses against forged-origin hijacks are narrowly focused on the
AS that deploys it. ARTEMIS [69] is a system that monitors prefixes owned by the
deploying AS, detecting forged-origin hijacks (among other anomalies) in real time.
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The system relies on a key mechanism that classifies new AS links as legitimate when
observed in both directions and reports the new links as suspicious otherwise. ARTEMIS
therefore exhibits two main limitations. First, it only detects hijacks for the prefixes
owned by the AS deploying it, meaning that it cannot detect forged-origin hijacks in
the wild. Second, because of the lack of visibility over the routing ecosystem, only a
small portion of the AS links are observed in both directions, meaning that relying
solely on this feature may result in many false positives (i.e., legitimate links inferred
as malicious). This requires more human processing and reduces the value of such
alarms. Therefore, DFOH relies on other mechanisms to detect forged-origin hijacks
in the wild. DFOH’s workflow is illustrated in Fig. 6.2.
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Figure 6.2: DFOH’s forged-origin hijack inference pipeline.

Zooming on new AS links. DFOH processes public BGP feeds from RIS and RV (both
live and offline) to retrieve AS links that appear for the first time in the last 300 days, to
align with parameters found in [69]. DFOH focuses on these new links because forged-
origin hijacks are likely to trigger a fake new AS link between the attacker and its
victim, as explained in §1.3.4. Conducting a forged-origin hijack without creating a new
link (e.g., by prepending an existing path from the attacker to the victim, but violating
routing policies) substantially limits the attack surface [82]. However, triggering an
alarm whenever a new AS link is detected may result in numerous false alarms being
raised, as there are 323 new AS links on average every day (in 2022). Most of the new
AS links that are observed are legitimate, resulting from new peering agreements or
newly observed backup paths.

DFOH needs to implement a strategy to distinguish fake links from legitimate ones.
Unfortunately, as demonstrated in [82], link prediction algorithms such as SEAL [174]
performs poorly when applied to the AS-level graph. These algorithms are ineffective
because they are generic while detecting malicious routing behaviors requires specific
characteristics. Additionally, since the AS-level graph has a hierarchical structure,
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generic algorithms are not trained on graphs exhibiting specific structures. There-
fore, DFOH uses its own pipeline to detect forged-origin hijacks, starting with the
computation of different features carefully selected for the case of BGP.

Feature computation. DFOHmust implement features that satisfy the following four
requirements: (i) the system must be fast (i.e., near real-time), (ii) it must be accurate,
both in detecting malicious behaviors and avoiding false alarms, (iii) it must be robust
against missing and polluted data, and (iv) it must be efficient in every possible attack
scenarios. Therefore, DFOH uses a set of carefully selected features that are classified
into the following four categories:

Topological features: These features are the same as those used in §4.2.2 byMVP, which
aim at characterizing the topological patterns of a graph. DFOH computes the impact of
new AS links on the AS-level topology structure by computing the differences induced
by these new AS links on the computed features. A legitimate new AS link is unlikely
to disrupt the hierarchical structure of the Internet, while a fake new AS link, because
it does not correspond to the typical routing policies, is likely to impact this structure.
For each selected topological feature (see Table 3), DFOH computes the difference
induced by the new AS link on the feature. For each AS involved in the new link,
DFOH computes the topological features without the new AS link and with the new
AS links and then computes the difference between these two values. These features
are effective for attack scenarios where an AS with low connectivity hijacks a highly
connected AS.

Peering features: These features leverage the peering properties of the two ASes in-
volved in the new AS link, using data gathered from PeeringDB [83] and BGPview
[175]. For instance, if the two ASes have a presence in the same IXP or facility, they are
more likely to legitimately peer. Similarly, these features also evaluate the geographical
characteristics, relying on the intuition that two ASes in the same country are more
likely to appear connected in BGP. Obviously, while these characteristics are intuitive,
they are not necessarily true; a simple counter-example is remote peering [176, 177].
Fortunately, other feature categories compensate this limitation. This feature category
comprises five features computed for each end of the new AS link and described in
Table 11:

All these features are computed on the neighbors of the two involved ASes, as an
attacker can modify its own peeringDB records to fool the classifier. For each feature,
DFOH builds a vector where each component corresponds to one possible element,
according to the feature ID in Table 11. On September 19, 2022, for features 1 and 5,
the vectors have 271 dimensions, each representing one of the 271 countries found in
peeringDB. Similarly, for feature 2, the vectors have 944 (number of IXPs) dimensions,
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Index Description

1 The countries where ASX ’s neighbors are registered

2 The IXPs to which ASX ’s neighbors are connected to

3 The facilities to which ASX ’s neighbors are present

4 The cities of the facilities to which ASX ’s neighbors are present

5 The countries of the facilities to which ASX ’s neighbors are present

Table 11: List of peering features used by DFOH along with their description.
We consider features computation for ASX.
whereas for feature 3 they have 3558 (number of facilities) dimensions, and for feature
4 they have 1482 (number of cities) dimensions. The value of each component of the
vector computed for ASX corresponds to the number of ASX ’s neighbors that have
a presence in the corresponding country/IXP/facility/city. For each new link, DFOH
computes these five vectors for both ASes at each end of the link, one corresponding
to each feature presented in Table 11. It then compares them by computing the cosine
distance between the two vectors computed for both ASes involved in the new link.

AS path features: This feature category uses not only the new link but the entire AS
path where the new link appeared. It evaluates how consistent the paths are with
typical routing policies. Intuitively, since paths on the Internet are supposed to follow
a valley-free pattern, the degrees and the CCS of the ASes in an AS path should follow
a similar pattern. However, not all paths on the Internet are valley-free [35], and
checking whether a path is valley-free or not (in terms of degree or CCS) might result
in inaccurate inferences. Therefore, DFOH trains a classifier that takes a sequence
of AS degrees or CCS as an input and returns the probability of this sequence being
legitimate. This classifier is trained using both legitimate and illegitimate AS paths.
Legitimate paths are actual paths observed in the routing tables, while malicious paths
are legitimate paths to which we prepended an additional AS, which corresponds to
the victim. We ensure that the link created by the malicious AS path does not exist in
the BGP data. The legitimate and malicious synthetic paths are carefully selected, as
highlighted later in this workflow description. The final output of these features is a
probability (between 0 and 1) of the sequence of AS degree or CCS to be legitimate.

Bidirectionality feature: Similarly to ARTEMIS, DFOH relies on the bidirectionality
feature, as a link seen in both directions is likely to be legitimate. To compute this
feature, DFOH uses both BGP data to gather AS links and data extracted from IRR.
Leveraging IRR data does not enable any adversarial input since the attacker can only
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pollute its own IRR records, i.e., the direction from attacker to victim. Therefore DFOH
uses a binary value (0 or 1) to indicate whether the link has been seen in both directions.

Hijack inference. DFOH aggregates all the features described above into vectors,
which are used to train a classifier following a supervised training approach used in
state-of-the-art link prediction [178, 179]. From the AS-level graph, DFOH samples
60k existent (legitimate) and non-existent (malicious) links that will be used to train a
random forest. DFOH uses a grid-search process to estimate the best parameters using
25% of the training dataset, while the remaining 75% is used for the training. Note that
the sampled links are different from those selected for the AS-path features.

As DFOH must work regardless of the attack scenario, every possible scenario of new
links (legitimate or not) must be represented in the training set. We demonstrated
in [82] that a randomly sampled set of links leads to high performances in scenarios
where a stub AS hijacks another stub AS but performs poorly for other attack scenarios.
Therefore, DFOH first classifies all ASes operating on the Internet into categories by
clustering them based on their AS degree and Customer Cone Sizes. It then selects
existent and non-existent links, ensuring their distribution matches the distribution of
the AS links observed on the Internet, according to their AS categories (computed with
the clustering algorithm).

Since the AS path features require an AS path, for each sampled non-existent link, we
select an existing AS path where the origin (which will correspond to the attacker) is
one end of the sampled link and prepend the other end, which will be the victim. For
existent links, we randomly select one AS path where the existent link appears. DFOH
then uses all these samples to build a classifier that achieves a 90.9% TPR and a 1.9%
FPR. These results mean that hijacked links are classified as malicious in 90.9% of the
cases and legitimate links are classified as malicious in only 1.9% of the cases.

6.4.2 Impact of GILL’s sampling on DFOH

The computation of some features and the training if the classifier are computationally
expensive and DFOH needs to provide hijack detection in real-time. Therefore, DFOH
samples data using the anchor VPs computed by GILL, as it requires visibility over all
existing prefixes. In this section, we demonstrate the impact of GILL on the detected
forged-origin hijacks.

Experiment settings. We developed two modified versions of DFOH by changing
the data sampling strategy. DFOHR uses the same volume as the original version of
DFOH but selects the VPs randomly. DFOHALL uses all the available data and serves
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as an approximation of the ground truth (as incorrect inferences are still possible). We
limited our analysis to Sept. 2023, as DFOHALL is computationally expensive.

Experiment results. In Sept. 2023, DFOHALL infers 1708 new links as suspicious
using all available data from RIS and RV. In this paragraph, we define the proportion of
cases considered suspicious by DFOHALL that are detected by the evaluated baseline
as the TPR. We refer to the proportion of cases considered suspicious by a baseline,
but not by DFOHALL as FPR. A false positive can occur when a link is considered as
new by either DFOH or DFOHR, but not by DFOHALL, since DFOHALL has a better
view over Internet links. The original version of DFOH (which uses GILL anchor VPs)
outperforms DFOHR for both TPR and FPR. DFOH has a TPR of 94.1%, meaning that it
detects 94.1% of the suspicious cases, whileDFOHR exhibits a TPR of only 71.5%. DFOH
has a FPR of 14.4%, against 60.1% for DFOHR. These results highlight the positive
impact of sampling data using GILL when trying to detect forged-origin hijacks.

In this chapter, we demonstrated the effectiveness of GILL’s sampling. We show that
it outperforms the state-of-the-art in BGP data sampling and that it does not overfit
toward any possible objective. We also highlighted both the immediate and long-
term benefits of GILL’s sampling on well-known measurement studies. Finally, we
demonstrated the impact of GILL on DFOH, a system that detects forged-origin hijacks
in the wild.
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7
Future works

The main focus of this thesis was GILL, a system that improves BGP data collection,
which helps both users and BGP data collection platform operators cope with the high
volume of data. Complementary approaches exist, aiming at improving the way BGP
data is stored and providing tools that facilitate BGP data processing. In this section,
we describe two potential follow-up works, focusing on improving BGP data storage
and BGP data processing.

In section §7.1, we illustrate the limitations of the current BGP data storage format and
propose a new database scheme that enables users to efficiently retrieve precise pieces
of the data. In section §7.2, we introduce a new project, Text2BGP, which leverages
Large Language Models (LLMs) to provide an interface to the users that facilitates the
most common BGP data analysis.

7.1 Improving the collected BGP data format

Currently, public BGP data collection platforms such as RIS and RV store the data
using the Multi-Threaded Toolkit (MRT [85]) format. This generic data storage format
enables storing routing data related to multiple protocols, including BGP, OSPF, ISIS, or
RIP. To parse this data, the community has developed multiple tools aimed at improving
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the processing of routing data archives [86, 117, 180, 181, 182]. However, in this section,
we show that this format is suboptimal and does not leverage BGP characteristics to
reduce the volume of stored data.

Current format. The MRT format has been extensively used to store BGP data for
now more than two decades. It consists of a per-line format, where each line contains
one unit of routing information. Each MRT entry has a header with three main pieces
of information: the timestamp at which the entry was dumped, the entry type/subtype,
and the length of the entry payload. Although extended to other routing protocols, we
focus here only on the BGP type. There are two main subtypes of MRT files used to
store BGP data: one for the RIB and one for the raw BGP updates.

When storing a RIB, each MRT entry represents one RIB entry, meaning there is one
entry per prefix in the MRT file. As the BGP RIBS are often dumped per collector, data
collected from multiple VPs might be stored in the same MRT file. Therefore, each RIB
dump file contains a mapping between all the VPs and a unique ID. In such a mapping,
a VP is represented by the ASN deploying it and the IP address of the router hosting
the VP. This mapping must be stored at the beginning of the MRT file. Consequently,
each RIB entry contains not only the prefix and the BGP attributes but also an ID
corresponding to the VP associated with the RIB entry.

When storing raw BGP updates, the format is significantly simpler. Each entry contains
the following information: the ASN and the IP of the VP from which the update has
been received, the local ASN and IP of the route collector, the address family (IPv4
or IPv6), and the entire BGP update, dumped exactly as it was received. Unlike RIB
dumps, the update format does not use any mapping between the peer (VP) and an ID.

Limitation of MRT format. Despite its extensive use, this format exhibits three main
limitations, which increase the volume of the dumped files and reduce the practicability
for users. The first limitation, though not fundamental, is the per-collector dumps
instead of the per-VP dumps. Focusing on a single VPs requires downloading the entire
per-collector dump, and searching for the VP within the dump file since there is no
easy way to retrieve the information related to a single given VP.

Second, since MRT is a generic format capable of storing information related to multiple
protocols, it is not optimized specifically for BGP. The high redundancy in the BGP
data presents an opportunity for optimizing the format. As demonstrated in §4.1.1,
BGP updates are often recurrent. Therefore, implementing a mapping between BGP
attributes and an ID, and storing only the ID in the MRT entry each time an update
appears could significantly reduce the volume of the files. Additionally, since many
prefixes share the exact same attributes, there is another opportunity to save space in
the dumps by grouping these similar prefixes.
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Third, MRT consists of a per-line storage format. However, users are often interested in
a specific portion of the data. For example, an operator may want to monitor only the
prefixes belonging to its AS. Retrieving data about specific prefixes requires processing
the entire file, as MRT does not implement a way to focus only on a subset of any
attributes. Answering the question "What was the AS path of prefix p at time t on VP
v?" requires processing the entire last RIB dump file before time t to find prefix p on
VP v and then processing every single update until time t. We find that this process
takes on average 50 seconds using BGPstream on RIS and RV data. We tested this 100
times each time varying the VP, prefix, and time randomly to mitigate the bias induced
by the differences in the size of the MRT files. Therefore, we can confidently assert
that per-line storage does not optimize such search query in the case of BGP data.

New data storage strategy: per-column storage. We explore a per-column data
storage scheme for BGP data. To conduct this experiment, we rely on generic per-
column storage databases: PostgreSQL [183]. Note that while there exist other per-
column databases, we choose PostgreSQL due to its extensive documentation. For each
VP, we define two types of tables, the RIB tables and the update table.

Since RIB dumps occur every two hours for RV and eight hours for RIS, we need to have
multiple RIB tables, one for each distinct dump. Each RIB table contains three columns,
one for the prefix, one for the AS path, and one for the BGP communities. Note that
no information about the time or the VP is stored, as this information is embedded
in the table name. While we choose to store only the two main BGP attributes, this
table scheme can be adapted to include other attributes, such as the large communities,
without fundamentally changing how the database works in practice.

All the BGP updates received from a given VP are stored in the same table, as BGP
updates do not consist of regular snapshots. Each row in the table represents one BGP
update. To retrieve the timestamp at which the update has been received, an additional
column corresponding to the timestamp is included. Similar to the RIB tables, no
information about the VP that received the route is stored, as it is embedded in the
table name.

This new storage implements per-column storage that enables users to efficiently
retrieve all entries matching a given property (e.g., prefix or AS path). If an operator
wants to get all updates received for one of its prefixes, a single lookup on the prefix
column enables focusing only on the corresponding rows. With this new database
scheme, answering the question "What was the AS path of prefix p at time t on VP
v?" requires 0.095 seconds on average using the same parameters as described above,
yielding a significant improvement over the current state of the art for BGP data storage.
Despite being more efficient at answering specific queries quickly, this database scheme

109



7.1 Improving the collected BGP data format

does not leverage BGP properties to optimize the volume of data stored. Therefore,
we propose a further improvement of the database scheme, optimizing both queries
performance and volume of data stored for the case of BGP.
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Figure 7.1: Optimized database scheme. The proposed tables enable fast search
queries, while optimizing the data volume for the case of BGP. This figure
represents the tables used for one single VP.

Fine-tuning storage for BGP data. In this paragraph, we enhance the previously
described database scheme to optimize both search queries and data volume. We
propose general optimizations applicable to both RIB and update tables, as well as
specific optimizations for each table type.Fig. 7.1 presents the proposed database scheme
used for a single VP.

General optimization: As explained in §3, some BGP attributes appear regularly in BGP
data. Therefore, we rely on mapping tables where each BGP attribute is associated
with a unique ID. For instance, in Fig. 7.1, there is a table (red) that associates every
observed AS path with a unique ID. Similarly, each set of BGP community (blue table)
is associated with a unique ID. Since an ID is stored in four bytes and both AS path
and BGP communities often require more than four bytes to be stored, storing only the
ID of the BGP attributes significantly optimizes the volume of data stored. Although a
search query implements now an additional level of indirection, comparing an ID is
faster than comparing strings (e.g., AS path or community values). Consequently, this
indirection does not significantly increase the time required to answer a search query.
Note that we represented only the AS paths and the community values as they are the
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most useful attributes. However, this database scheme can be extended to include more
attributes.

Optimization for Update tables: As described in §3, prefixes announced by the same AS
are likely to share the exact same BGP attributes [184]. Therefore, instead of having
duplicated lines for each of these prefixes, we implement a column "Pfx. grp" that
stores a list of prefixes. Additionally, since these groups of prefixes are likely to appear
recurrently, we store only an ID that corresponds to the set of prefixes. This mapping is
stored in a table that associates a set of prefixes to a unique ID (yellow table on Fig. 7.1).

Figure 7.2: Average number of identical RIB entries according to the time
between the two dumps.

Optimization for RIB tables: RV stores a RIB dump every two hours. However, a signif-
icant portion of the entries is likely to be identical between two consecutive dumps.
We confirm this intuition by collecting the first RIBs from route-views3 of March 2024.
We then collect all other RIBs in March 2024 and measure the proportion of entries
that are identical (using a per-prefix comparison) to the first RIB. Fig. 7.2 presents the
average number of identical entries between two RIB dumps (y-axis) according to the
time between these two dumps (x-axis). We can observe that even after one month, the
percentage of identical entries remains high on average (≈87%). Therefore, we store
only one RIB at the beginning of each month and then store only the difference between
the subsequent RIB dumps and the first one. We chose one month as a threshold as we
experimentally observed that the number of identical entries significantly decreased
after 30 days.

The proposed database scheme optimizes both the search queries and the data storage.
In March 2024, all the MRT files with Bzip2 compression combined (i.e., both RIB
and updates) accounted for 37GB for collector route-views3. Our database scheme
accounted for 38GB of data without any other compression and enables significantly
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faster search queries. Similar work exists, such as BGP2GO, a tool that archives all the
MRT files from RouteViews [161]

7.2 Enhancing BGP data processing.

To process BGP data, users often rely on BGP data collection software such as BG-
Pstream [86] or BGPkit [117]. While these tools facilitate data collection, users still
need to generate the code required to conduct their specific analysis. Although some
studies require very specific information, most require more generic information that
is common to multiple measurement studies. However, there is no straightforward way
for users to retrieve this data, resulting in researchers often writing the same portion
of code multiple times. Therefore, a tool that automates BGP data analysis could help
researchers to save time and resources.

Opportunity with LLM. Large Language Models are Machine Learning tools that
can process Natural Language (NL) to answer questions [185], generate images [186],
or generate code [187]. There also exist other use cases where LLM can be applied,
including network-related fields [188, 189, 190]. However, current LLMs cannot use
BGP data collected from RIS and RV to answer routing-related questions. For example,
the most popular LLM, chatGPT [185], returns the following answers upon asking
BGP-related question: "I’m sorry, but I don’t have access to real-time or historical records
of network routing information". Therefore, we propose fine-tuning LLM to access BGP
data and answer recurrent BGP routing questions, saving time for both researchers
and network operators.

Gathering a set of recurrent questions. Identifying the most recurrent BGP-related
questions asked by both network operators and researchers is challenging as there
exists no dataset containing this information. Therefore, we developed a tool to extract
all the BGP-related questions from both research papers and network operators’ blog
posts. This tool works in two steps:
Step #1: Our tool implements a scrapper that extracts text from top conferences in
computer networks (SIGCOMM, NSDI, and IMC) and popular network operators’ public
mailing lists (NANOG). When extracting information from the conference papers, our
tool retrieves all materials associated with the papers, such as the abstract and the URL
of the PDF. It then pulls the PDF and extracts the text from it. Currently, our tool does
not enable processing images or tables inside the PDFs. For the mailing lists, our tool
extracts only the main body of each email, as any other information (e.g., the email
address of the sender or the date on which the email has been sent) is not useful for
extracting BGP-related questions. This work does not raise any ethical issues, as we
only use data publicly available and we do not disclose any personal information about
the authors (e.g., name of email addresses).
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Step #2:Our tool uses LLMs (specifically chatGPT, as we found it to be the most efficient)
to extract all the BGP-related questions from the text gathered in step #1. The questions
are extracted by asking the following prompt to the LLM: "Given the following text,
extract all questions related to BGP data. If there is no such question in the text, return an
empty answer". We manually validated this approach by checking 5% of the extracted
text and found that the LLM has a TPR of 88% and a FPR of 5%. The TPR corresponds to
the proportion of texts where both we and the LLM found a BGP-related question. The
FPR corresponds to the proportion of texts where we manually found a BGP-related
question but the LLM did not. At this point, our tool identified 117 different BGP-related
questions.

After this step, we manually grouped questions with similar keywords, as they require
similar data processing. For instance, the question "What is the list of the transit ASes"
and "Give me ten transit ASes" are grouped together. After this manual investigation,
we consolidated the questions into 56 distinct ones. These questions are now used to
fine-tune the LLM. We will now detail our plan to train an LLM that enables automatic
processing of BGP data.

Code generation with LLM. There exist various strategies to enable an LLM to
automatically analyze data it does not have access to. For instance, some researchers
proposed RestGPT, a tool [191] that leverages LLM to transform Natural Language (NL)
into API requests and execute these requests. For instance, this tool allows a user to
ask "play the next song" using NL, and the tool transforms it into an API request that
will play the next song. Other strategies involve transforming NL into SQL queries
[192], executing them, and retrieving the results.

Unfortunately, the first strategy overfits toward the capabilities enabled by the API,
resulting in poor performances for future analysis that users may want to conduct but
are not supported by the API. The second strategy, on the contrary, is too general and
can handle only very simple questions. For example, a user asking What are the ten
transit ASes with the largest transit degree cannot be answered with a simple SQL query.
Therefore, we rely on code generation to provide a good tradeoff between practicality
and the ability to answer future requests.

Generating code to answer any of the 56 BGP-related questions identified in the previous
section is a challenging task, as some questions require very specific portions of code.
For example, pulling data from the database is not straightforward for the LLM, as it
requires knowing the exact database scheme and how each component interacts with
each other. Therefore, we rely on function specifications that are added to the LLM
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prompt. Instead of generating code for very specific tasks (e.g., database lookup), the
LLM can directly use the functions described in the specification.

Answering questions from users. While the 56 extracted BGP-related questions
are representative of the most recurrent questions asked by researchers and network
operators, there can be multiple different formulations of the same question. For each
of the 56 questions, we asked chatGPT to provide 20 different formulations, which
we manually validated. We then fine-tune the LLM (GPT 3.5 in our case) with the
56*20 questions and their corresponding ground truth code. The ground truth consists
of manually generated code (using the functions described in the specification) that
answers each of the 56 BGP-related questions.

While we already designed the pipeline, we still need to implement and test it. In
addition, this strategy can be improved by enhancing the prompt given to the LLM.
For instance, by giving some ground truth examples to the LLM, we hope that it will
maximize the correctness of the answers. We also plan to survey network operators
to know precisely which questions they are likely to ask to the model, and use these
questions as a testing set. We are also working on systematic strategies to improve the
function specification given as input.

While this work is still preliminary, we believe there is potential for LLM to automate
and facilitate BGP data processing.
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8
Conclusion

In this thesis, we demonstrated the lack of visibility of current BGP data collection
platforms and illustrated how this visibility gap can negatively impact common mea-
surement studies. A naive solution would be to increase the VP coverage; however
impossible since both BGP data collection platforms and users already face data manage-
ment problems, even with the current (low) VP coverage. We identified the opportunity
of leveraging the high level of redundancy in the BGP data to reduce the volume of
data to process while minimizing the information loss.

The main contribution of this thesis is GILL, a system that uses two carefully selected
definitions of redundancy to build a set of filters that retain only the most useful
portion of the data and provide effective sampling regardless of the user’s objective.
GILL relies on two algorithms to evaluate the redundancy in a general fashion: (i),
BUS, an algorithm that uses a new metric, the reconstitution power, to classify the BGP
updates as redundant or non-redundant and (ii), MVP, an algorithm that evaluates
and compare the VPs by computing the impact induced by BGP events on the partial
view of each VP. The final result of this work is a new BGP data collection platform
implementing GILL’s BGP data sampling strategy, which is currently up and running.
This platform retains and publishes only the most useful BGP data from multiple ASes
on the Internet. GILL’s system is bootstrapped with all peering sessions from RIS and
RV, providing a head start of visibility. The redundancy evaluation algorithms BUS
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andMVP are presented in §4.1 and§4.2, while the GILL system and implementation
are presented in §5. In this thesis, we made the following five contributions:

• We estimated the gap of visibility induced by the current low VP coverage using
simulations on a mini Internet. We evaluated our ability to effectively conduct
three different measurement studies with the current VP coverage.

• We provided a comprehensive analysis of redundancy in the BGP data, using
three gradually stricter definitions of redundancy.

• We demonstrated the importance of finding a general definition of redundancy
that enables effective sampling regardless of the user’s objective. We then pro-
vided two definitions of redundancy, one that evaluates the redundancy at the
update granularity and the other at the VP granularity.

• We proposed GILL a system that implements an overshoot-and-discard strategy
to retain only the most useful information from the BGP data. We implemented
and published a BGP data collection platform that uses GILL’s algorithms.

• We extensively evaluated our system, the quality of the sampling, and the sound-
ness of the key design choices. We reproduced well-known studies, demonstrat-
ing that GILL’s sampling improve their accuracy.

In this thesis, we tackled the technical challenges induced by a drastic expansion of
the BGP data collection platforms. As explained in §6.2, GILL will only be efficient if it
gains traction, which requires motivating operators to establish a peering session with
GILL. While this challenge could be the subject of an entirely new contribution, we
provide here two possible incentives:

Custom services that improve visibility . In return for peering, GILL could let the
network operator configure forwarding rules such that GILL forwards some updates
to the operator’s network prior to discarding them. Forwarding rules would typically
enable operators to have high visibility of their prefixes. If GILL had 100% coverage of
VPs, operators could make hijack detection systems such as ARTEMIS [69] bulletproof
for their prefixes.

Collective action. Recent community-driven routing security initiatives such as
MANRS [167] or VIPzone [193] could encourage participants to contribute BGP data to
public BGP data collection platforms. The FCC’s recent notice of proposed regulation
[194] to require disclosure of BGP security strategies could lend further motivation to
share BGP data.

We hope that GILL will gain traction, as having a more complete view of the Internet
routing ecosystem can improve the accuracy of BGP measurement and expand the
horizons of our understanding of the Internet routing ecosystem.
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I) Introduction

Internet est un système complexe opéré par différentes entités administratives appelées
Système Autonomes (ou AS en anglais). Les différents AS participent au routage,
c'est-à-dire au processus consistant à trouver le meilleur chemin d’un point à l’autre de
l’Internet. Le protocole chargé d’assurer le routage dans l’Internet est BGP (Border
Gateway Protocol). Bien que ce système fonctionne sans problèmes majeurs la majorité
du temps, il arrive que certains événements inopinés perturbent son bon
fonctionnement. Par exemple, une panne physique sur un lien connectant deux AS
perturbe la connectivité, puisque tous les chemins empruntant ce lien sont désormais
indisponibles et BGP doit en trouver un autre. Un attaquant peut également décider de
manipuler BGP de sorte à détourner le trafic de sa destination légitime. Il est
indispensable pour les opérateurs réseau de parvenir à détecter et résoudre ces
anomalies sous peine de perdre leur connectivité vers un portion de l’Internet, résultant
d’une insatisfaction de la part de leurs clients et d’une dégradation de leur réputation.
Pour ce faire, les opérateurs utilisent des outils de contrôle du routage dans l’Internet.
Ces outils se basent sur les données de routage BGP, collectés et mis à disposition par
des plateformes de collecte publique, comme RIPE Routing Information Service (RIS)
ou RouteViews (RV). Cependant, ces plateformes font face aujourd’hui à différents
problèmes qui limitent leur efficacité d’utilisation par les opérateurs et les chercheurs.

II) Description du problème

Les plateformes de collecte de données BGP collectent des données depuis des
Vantage Points (VP). Un VP est un routeur au sein d’un AS qui accepte d’envoyer ses
meilleures routes vers un collecteur de route. Les données collectées depuis l’ensemble
des VPs sont ensuite concentrées dans une base de données, que les utilisateurs
peuvent utiliser afin d’effectuer diverses analyses de mesure. Cependant les
plateformes de collecte font face aujourd’hui à deux limitations, dont les conséquences
sont conflictuelles.



Les données collectées sont incomplètes. Les données BGP collectées par les
plateformes sont vastement utilisées pour diverses analyses de mesure, ou pour
effectuer de la détection d’attaques. Malheureusement, parce que BGP est un protocole
de routage qui n’envoie que sa meilleure route vers chaque possible destination, chaque
VP n’a pas une vue globale de ce qu’il se passe dans l’Internet. Les plateformes de
collecte de données BGP récupèrent les données depuis moins de 2% des AS opérant
dans l’Internet. Ainsi, ces plateformes n’ont pas un couverture complète, elles manquent
donc inévitablement certains évènements.

La première contribution de cette thèse consiste à estimer les trous de visibilité de ces
plateformes. Cependant, puisqu’il est impossible de précisément savoir ce que l’on
manque depuis des VPs qui ne sont pas déployés, nous avons choisi d’estimer cet écart
entre les dynamiques réelles de routage dans l’Internet et ce que l’on peut observer
depuis les données collectées à l’aide de simulations réalistes. Nous avons simulé
plusieurs écosystèmes de routage de l’Internet dans lesquels nous avons généré divers
évènements. Nous avons ensuite étudié si ces évènements étaient correctement
observables par un ensemble de VP dont la couverture correspond à la couverture
actuelle des plateformes de collecte.

La figure ci-dessus présente les résultats de ces expériences. La zone en rouge
correspond à la couverture des plateformes de collectes actuelles (<2%). Selon, nos
simulation, nous ne détectons actuellement que 16% des liens inter-AS dits
“peer-to-peer” qui existent dans l’Internet, seulement 12% des pannes sur les liens



“peer-to-peer” peuvent être précisément localisées, et 30% des attaques de routage de
type “BGP hijack” restent indétectables. Nous pouvons donc en conclure qu’il est
primordial d’augmenter drastiquement la couverture de ces plateformes de collecte.
Le volume de données collectées empêche le déploiement de nouveaux VPs.
Puisque l’Internet est un système en constante évolution, les données de routage
collectées augmentent drastiquement au cours du temps. Le nombre de VPs à
augmenté au fil des années, mais l’Internet s’élargissant également, la proportion d’AS
déployant un VP est restée la même. De la même manière, la quantité de données
collectées par chaque VP a également augmenté. Ces deux phénomènes combinés
résultent en une augmentation quadratique du volume de données collecté par les
plateformes de collecte. comme on peut le voir sur la figure ci-dessous.

Le volume de données collecté à tant augmenté au cours des vingt dernières années,
qu’il correspond maintenant à un TéraOctet de données brutes collectées chaque jour.
Ce volume toujours croissant empêche une augmentation drastique de la couverture
des VPs, et donc de découvrir de nouvelles informations à propos du routage dans
l’Internet.
Résoudre le problème de visibilité dans l’Internet est un problème complexe.
Augmenter la visibilité des routes BGP dans l’Internet nécessite d’augmenter le nombre
de VPs depuis lesquels les données sont collectées. Cependant, même avec la faible
couverture d’aujourd’hui, le volume de données est ingérable, demandant aux
opérateurs des plateformes de collecte de refuser les nouvelles demandes d’ajout de
VPs, empêchant ainsi l’expansion de ces plateformes. Il est donc nécessaire, afin
d’améliorer la sécurité dans l'Internet, de trouver de nouvelles stratégies pour pallier au
manque de visibilité.

III) Description de la solution

Au cours de cette thèse, le doctorant a développé GILL, un système de collecte
permettant de supporter jusqu’à 20 fois plus de VPs que les systèmes de collecte
actuels. La solution proposée utilise une observation clé: les données BGP sont très
redondantes. GILL utilise cette propriété pour identifier quelles proportions des données
sont redondantes et peuvent être supprimées sans perte d’information. Le système
utilise donc une approche dite “overshoot-and-discard”. Ce nouveau paradigme consiste



à collecter des données depuis un maximum de VPs, puis de supprimer la portion des
données qui aura été considérée comme la moins utile.

La stratégie employée permet donc le déploiement de nouveaux VPs, sans pour autant
augmenter le volume de données à gérer. Comme dit plus haut, cette approche se base
sur une propriété importante des données BGP: sa grande redondance.

Les données BGP sont très redondantes. Il est difficile de définir précisément ce
qu’est la redondance dans les données BGP, puisque chaque utilisateur peut avoir un
objectif très différent de celui de son homologue. Lors de cette thèse, nous avons
proposé une série de trois définitions simples de plus en plus strictes permettant de
montrer l’importante redondance entre les BGP updates, c’est-à-dire les messages BGP
permettant aux AS d’échanger leurs routes. Ces définitions, bien que simplistes
permettent d’illustrer le haut taux de redondance dans les données BGP. Les résultats
sont présentés sur la figure ci-dessous, ou la couleur d’une case correspond au taux de
redondance entre le VP dans l’axe des X et le VP dans l’axe des Y.

Avec la première définition, 97% des BGP updates collectés sont redondants avec au
moins un autre. Ce nombre décroit à 70% avec la seconde définition et à 67% avec la
dernière. Selon la première définition, 71% des VP ont au moins 90% de leurs updates
qui sont redondants avec ceux d’un autre VP. Ce nombre décroît avec une définition
plus stricte, 37% avec la seconde et 28% avec la dernière. Ces chiffres illustrent
l’importante quantité de redondance dans les données BGP et la possibilité pour notre
algorithme de les exploiter.



GILL élimine les BGP updates redondants. GILL est un système implémentant une
stratégie de collecte différente de celle employée aujourd’hui. Les plateformes actuelles
collectent toutes les données depuis peu de VPs. GILL quant à lui collecte un
sous-ensemble des données depuis davantage de VPs. GILL est donc développé pour
éliminer la redondance dans les données BGP. Malheureusement, nous avons montré
lors de cette thèse qu’éliminer la redondance en se basant sur une définition simpliste
donne de mauvaises performances pour de nombreuses applications pratiques. Nous
nous basons donc sur une nouvelle métrique que nous avons développée et appelée la
capacité de reconstitution, dont voici l’intuition: s’il est possible de reconstituer un
ensemble de BGP updates depuis un de ses sous ensemble, cela signifie que le sous
ensemble contient les données les plus utiles et les données retirées sont les plus
redondantes.
Gill se base sur une autre propriété. Les redondances observées à un instant données
ont des chances très grandes d’être également observées dans le futur. Ainsi, GILL
calcule l’ensemble de données non redondantes à un instant donné, construit des filtres
permettant de les discriminer des données redondantes et déploie ces filtres sur les
VPs. La figure ci-dessous présente les résultats de la capacité de reconstitution de
GILL, l’axe des X correspond à la proportion de routes qui n’ont pas été supprimée et
l’axe des Y correspond à la proportion des routes originales qui ont pu être reconstituées
sur base de celles qui ont été conservées.

Dans la pratique, GILL est en mesure de filtrer 94% des données, tout en limitant la
perte d’information. Ces résultats démontrent l’efficacité de cette définition de la
redondance dans les données BGP. Nous avons également réalisé une implémentation
de GILL, dont les performances sont affichées dans le tableau ci-dessous.



Ce tableau montre la proportion de messages BGP perdus par notre implémentation, en
fonction de la charge reçue. Nous pouvons clairement voir que quelle que soit la charge
de données reçue, GILL (avec filtres déployés) est en mesure de gérer au minimum 100
sessions BGP sur un simple serveur, et jusqu’à 10000 lorsque la charge est moyenne
avec les filtres déployés.

IV) Evaluation

Lorsque GILL supprime des données, même redondantes, il est impossible de n'essuyer
aucune perte d’information. Nous avons donc évalué la perte d’information liée à
l'échantillonnage de GILL en utilisant divers objectifs pratiques, extraits de la littérature.
Nous avons comparé l’approche actuelle des plateformes de collecte et notre approche
en utilisant des simulations. Nous comparons l’information obtenue en collectant toutes
les données depuis 2% des réseaux qui opèrent dans l’Internet (couverture actuelle) et
l’information obtenue en collectant un sous ensemble de données (5%) depuis 50% des
AS, en nous assurant que le volume de données collecté par les deux stratégies était le
même. Nous présentons les résultats pour trois analyses de mesures:
Détection des liens inter-AS: cet objectif consiste à observer autant de liens inter-AS
que possible. Cela permet d’améliorer notre connaissance de la topologie de l’Internet
ainsi que de son routage en général. Avec l’approche actuelle, nous sommes en mesure
de détecter 20% des liens inter-AS, contre 63% avec GILL, soit plus de trois fois plus.
Localisation des pannes inter-AS: cet objectif consiste à localiser précisément les
pannes inter-AS. Ces pannes peuvent être liées à des pannes physiques, ou des
erreurs de configuration. Avec l’approche actuelle, 37% des pannes peuvent être
localisées précisément, contre 80% avec GILL.
Détection des attaques de routage: cet objectif consiste à détecter autant d’attaques
de routage que possible. Dans notre cas, nous nous focalisons sur un type spécifique
d’attaque: les Forged-Origin Hijacks. Avec l’approche actuelle, 72% de ces attaques
sont détectées, contre 83% avec GILL
Les résultats de ces analyses sont montrés dans le tableau ci-dessous.

Nous pouvons en conclure que la stratégie employée par GILL permet d’améliorer les
résultats de nombreuses analyses qui peuvent être faites sur les données BGP.

Nous avons également comparé GILL aux autres stratégies actuelles de collecte des
données BGP. Nous assurons que notre comparaison soit juste en utilisant un volume
de données qui soit exactement le même pour toutes les stratégies et mesurons la
proportion d'événements détectables avec les données collectées par chacune de ces
stratégies.



Random Updates: Cette stratégie consiste à utiliser une stratégie
“overshoot-and-discard” aux données collectées. Cependant, contrairement à GILL ou
les données sont filtrées sur base leur redondance, les filtres sont générés ici de
manière aléatoire.
Random VPs: Cette stratégie consiste à collecter les données depuis un
sous-ensemble des VPs disponibles, sélectionné de manière aléatoire.
AS-Distance: Cette stratégie consiste à ne collecter des données que depuis un
sous-ensemble des VPs disponibles, en les sélectionnant sur base de leur distance. Les
VPs qui sont loins dans la topologie de l’Internet ont plus de chances d’être sélectionnés
ensemble.
Unbiased: Cette stratégie consiste à ne collecter des données que depuis un
sous-ensemble des VPs disponibles, en les sélectionnant sur base de leurs
caractéristiques (taille du réseau, place dans la topologie,...)

Ces différentes stratégies de collecte des données sont comparées sur cinq différents
cas d’usage classiques des données BGP, que nous avons extrait de la littérature
(papiers de recherche, blog post sur mailing list d’opérateurs réseaux,...).
Détection de chemins transitoires: Les chemins transitoires sont des routes BGP
visibles pendant moins de cinq minutes, ce qui correspond au délai typique de
convergence BGP, et peuvent être attribués, par exemple, à l'exploration de chemins.
Nous nous concentrons sur tous les événements de chemins transitoires détectés au
cours des 30 heures, soit un total de 859 000 événements.
Détection des attaques de type MOAS: Les préfixes MOAS sont annoncés par
plusieurs AS distincts, en raison d'actions légitimes ou malveillantes. Nous utilisons la
méthodologie de pour éliminer les faux positifs. Nous nous concentrons sur les 1587
événements MOAS observés au cours des 30 heures.
Création de la carte de l’Internet: Cela est utile, par exemple, pour déduire les
politiques BGP ou les chemins AS. Pour chaque VP, nous traitons le premier dump RIB
de septembre 2023 ainsi que les mises à jour collectées pendant les 30 périodes d'une
heure. Nous nous concentrons sur les 687 000 liens AS distincts observés.
Détection des communautés d’action: Les communautés d'action sont associées aux
actions d'ingénierie du trafic et sont les plus difficiles à observer. Nous considérons les
8683 communautés d'action fournies dans et observées au cours des 30 heures.
Détection des chemins inchangés: Les mises à jour BGP de chemins inchangés sont
des annonces qui signalent uniquement un changement dans les valeurs de
communautés, mais pas dans le chemin d’AS. Nous considérons les 263 000 mises à
jour de chemins inchangés observées au cours des 30 heures.
Les résultats sont présentés dans le tableau ci-dessous:



Nous calculons pour GILL et chaque méthode de référence la proportion d'événements
qu'ils détectent ou de liens qu'ils observent, et rapportons les résultats dans le Tableau
2. Par exemple, dire que GILL détecte 95% des événements MOAS signifie que les
échantillons de données de GILL permettent de détecter 95% des 1587 événements
MOAS utilisés dans le benchmark. La cellule d'une méthode de référence est colorée en
vert lorsque GILL surpasse cette méthode, en rouge si la méthode est meilleure, et en
jaune si les deux obtiennent des performances similaires (±5%). Nous veillons à ce que
les méthodes de référence traitent le même nombre de mises à jour que GILL, soit 6,7
% des mises à jour de RIS et RV. GILL surpasse chaque méthode de référence naïve
pour chaque cas d'utilisation, et parfois de manière significative, par exemple, GILL
détecte +62 %, +60 %, +36 % et +49 % de détournements MOAS (cas d'utilisation II)
par rapport à Rnd.-Upd., Rnd.-VPs, Dist.-based et Unbiased, respectivement.

V) Conclusion

Dans cette thèse, nous avons démontré le manque de visibilité des plateformes
actuelles de collecte de données BGP et illustré comment ce déficit de visibilité peut
avoir un impact négatif sur les études de mesure courantes. Une solution naïve serait
d'augmenter la couverture des VP ; cependant, cela est impossible, car les plateformes
de collecte de données BGP et les utilisateurs font déjà face à des problèmes de gestion
des données, même avec la couverture (faible) actuelle des VP. Nous avons identifié
l'opportunité de tirer parti du haut niveau de redondance dans les données BGP pour
réduire le volume de données à traiter tout en minimisant la perte d'information.
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