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Abstract

We obtain quenched limiting hitting distributions in the compound Poisson class for a certain family of

random dynamical systems using a probabilistic block-approximation for the quenched hit-counting

function up to annealed-Kac-normalized time. We consider general random targets with well-defined

return statistics and systems with both quenched and annealed polynomial decay of correlations. The

theory is made operational due to a result that allows certain hitting statistics to be recovered from

the said return statistics, which are computable. Our examples include a class of random piecewise

expanding one-dimensional systems, casting new light on the well-known deterministic dichotomy

between periodic and aperiodic points, their usual extremal index formula EI “ 1 ´ 1{JT ppζ q, and

recovering the geometric case for general Bernoulli-driven systems, but distinct behavior otherwise.

Future and on-going investigations aim to produce and accommodate examples of bonafide non-

uniformly expanding random systems and targets approaching their neutral points.

Keywords: hitting statistics, compound Poisson distributions, random dynamical systems





Resumo

Obtemos distribuições limite do tempo de entrada quenched como sendo Poisson compostas para

uma certa família de sistemas dinâmicos aleatórios usando uma aproximação probabilística em blocos

para a função contagem de entradas quenched até o tempo normalizado segundo Kac-annealed.

Consideramos alvos aleatórios gerais com estatísticas de retorno bem definidas e sistemas com decai-

mento polomial de correlações, tanto quenched quanto annealed. A teoria faz-se aplicável devido

a um resultado que permite certas estatísticas de entrada serem recuperadas a partir das referidas

estatísticas de retorno, que podem ser calculadas. Nossos exemplos incluem uma classe de sistemas

unidimensionais expansores por partes, lançando nova luz na conhecida dicotomia determinística entre

pontos periódicos e aperiódicos, suas fórmulas de indice extremal EI “ 1 ´ 1{JT ppζ q e recuperando

o caso geométrico para sistemas dirigidos-por- Bernoulli gerais, bem como revelando comportamento

distinto caso contrário. Investigações futuras e em andamento visam produzir e acomodar exemplos de

sistemas aleatórios não uniformemente expansores com alvos se aproximando dos seus pontos neutros.

Palavras-chave: estatísticas de entrada, distribuições de Poisson compostas, sistemas dinâmicos

aleatórios





Résumé

Nous obtenons des distributions d’entrée limites quenched dans la classe composée de Poisson pour

une certaine famille de systèmes dynamiques aléatoires en utilisant une approximation probabiliste

par bloc pour la fonction de comptage d’entrée quenched jusqu’au temps normalisé annealed-Kac.

Nous considérons des cibles aléatoires générales avec des statistiques de retour bien définies et des

systèmes avec une d´ecroissance polynomiale des corrélations à la fois quenched et annealed. La

théorie est rendue opérationnelle grâce à un résultat qui permet de récupérer certaines statistiques

d’entrée à partir desdites statistiques de retour, qui sont calculables. Nos exemples incluent une classe

de systèmes unidimensionnels à expansion aléatoire par morceaux, jetant un nouvel éclairage sur

la dichotomie déterministe bien connue entre les points périodiques et apériodiques, leur formule

d’indice extrême habituelle EI “ 1 ´ 1{JT ppζ q, et récupérer le cas géométrique pour les systèmes

généraux pilotés par Bernoulli, mais comportement distinct dans le cas contraire. Les enquêtes futures

et en cours visent à produire et à prendre en compte des exemples de véritables systèmes aléatoires à

expansion non uniforme et de cibles s’approchant de leurs points neutres.

Mots clés: statistiques d’entrée, statistiques de Poisson composée, perturbations aléatoires de

systèmes dynamiques
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Notation

.
Ně0 “ t0,1,2, . . .u
Ně1 “ t1,2,3, . . .u
BX is the Borel σ -algebra associated to a topological space X

PpXq is the set of Borelian probability measures on a topological space X

PT pXq is the set of T -invariant of Borelian probability measures on a topological space X

dM is the native metric of a metric space M

Brpx,rq Ă M, x P M, r ą 0, M metric space, is the open ball around x with radius r w.r.t to dM

xiii





Chapter 1

Introduction

The field of hitting (or entry) time statistics has a long history in the area of dynamical systems. Given

a measurable system T : M Ñ M preserving a probability µ and given a family of sets Un shrinking

to the so-called target set, one studies the statistics of how long it takes for points in M to hit Un as

compared to the normalized time t{µpUnq. Then one goes after the asymptotics of these statistics as

the sets shrink. Mathematically, one considers

lim
nÑ8

µ

ˆ

rUn
ě t

µpUnq

˙

, with

rU pxq “ mintn ě 1 : T nx P Uu px P Mq.

A related problem is that of return time statistics, which pursues the same type of statistical

characterization of the time needed for future visits to occur, but conditioning on starting on Un:

lim
nÑ8

µ

ˆ

rUn
ě t

µpUnq
ˇ

ˇ

ˇ
Un

˙

.

Limiting hitting and entry times statistics are intimately connected. They harmonize in a specific

way that indicates their coincidence occurs precisely when both are exponentially distributed (see,

e.g., [51]).

Another related problem is that of recurrence times, which considers the statistics of the time

needed for points in the state space to return to shrinking neighborhoods of themselves.

Hitting, return and recurrence times can be considered quantitative refinements to classical

theorems such as Poincaré recurrence theorem and Kac’s theorem.

The first contributions in this direction were by [31], [75] and [54], considering (higher order)

return times of, respectively, the Gauss map, Markov chains and Axiom A systems. They find that

limiting first return times are exponentially distributed when the target consists of a generic point.

The number of returns to these shrinking sets then has Poisson distribution. In a nutshell, these are

consequences of decorrelation and the fact that generic points are aperiodic.

Not much later, [27] addressed uniformly expanding maps of the interval and [49] paved the

way for the study of hitting time statistics for general measurable systems (symbolic ones included)

equipped with a generating partition an a probability with certain mixing features. Again these results

are in the exponential distribution domain.

1



2 Introduction

The literature in this field then grew rapidly, with generalizations in many directions: non-generic

(periodic) singleton targets, general targets, random systems, non-uniformly hyperbolic systems,

partially hyperbolic systems, zero-entropy systems and more.

Hitting and return statistics for general measurable systems with a partition and a sufficiently

mixing equilibrium state are well reasonably well understood, see, e.g. [4] and [48] for general targets.

These, however, use Un as cylinder sets, which carry more structure than usual metric balls. When in

metric spaces and working with certain systems (e.g., with non-uniformly hyperbolic), the problem

can be more subtle when Un’s (or Uρ ’s with ρ Ñ 0) are taken to be balls of shrinking radii (around

some set).

A major break-through in the study of return time statistics for non-uniformly hyperbolic maps

was [55], where a set of conditions implying exponential statistics for return times to cylinders or balls

around generic points was given. Applications to interval maps with intermittent points were provided.

Also, a useful result to deal with non-uniformly hyperbolic systems was [21], which showed that the

return time statistics for a map coincide with those of the associated first return map. Chapter 3.1

covers some of these topics, in the perspective we discuss next.

When one considers targets made of a periodic (non generic) point, the picture changes, due to the

local recurrence the dynamics produces around the target. This is going to produce clusters of visits

and return times will not be exponentially distributed anymore: the new effect will create return time

statistics with a point mass on the origin. The adequate approach is to consider hitting statistics up

to normalized time. Instead of a Poisson process, a compound Poisson process then appears, which

usually is of Polya-Aeppli type. This is sometimes referred to as ‘dichotomy’ in the literature. General

targets can produce more intricate behavior but still in the compound Poisson class. Chapter 3.1

covers these topics.

The techniques applied to differentiable systems in order to address hitting statistics to balls

around general targets are of varied nature. One relies on the relationship between hitting time

statistics and extreme values (see e.g. [39]), leveraging on the previously available theory of stationary

stochastic processes and the machinery of point processes (see e.g. [34]). Another one adapts the

spectral method introduced by [60] (see e.g. [8] and [11]). Finally, techniques based on probabilistic

approximation methods were also used (see e.g. [53]). Chapter 3.1 covers these techniques.

The theory was also brought to the realm of random dynamical systems. The picture is still pretty

much incomplete, however. Let us now focus on the quenched situation, meaning that a statistical

result is stated for almost all realizations of the noise. In the context, random subshifts were treated

in [52] and [30], while random piecewise expanding maps of the interval were treated using point

processes in [36] and using the spectral method in [8].

In the quenched approach to hitting statistics, time normalization can either occur in quenched

manner (with division by a noise-dependent probability of the random shrinking set) or in an annealed

manner (with division by an averaged probability of the random shrinking set). The second approach

([52], [36]) is appealing from an applied perspective, representing the fact that an experimentalist

is not informed about the noise path (not even in its entire past) and deterministically decides how

long to watch his experiment. But the first approach ([30] and [8]) is also theoretically appealing and

works with milder hypotheses on the system producing the noise.



3

This thesis presents contributions to the theory of quenched hitting statistics of random dynamical

systems based on a probabilistic block-approximation approach, generalizing the deterministic theory

developed in [53] after the approach introduced in [25]. The main result, theorem 4.1.4, concludes that

the limiting behavior is described by a compound Poisson distribution. Results are in collaboration

with Nicolai Haydn and Sandro Vaienti.

The strategy goes like this. We use a probabilistic approximation (theorem 4.3.1) where the

quenched hit-counting function up to annealed-Kac-normalized time is split into equally time-sized

blocks which are mimicked by an independency of random variables distributed just like each of them.

The said approximation goes for any given noise realization ω and ω-dependent leading terms and

errors appear. Both of them are tamed by a lemmata which ultimately resorts to a Borel-Cantelli

argument in order to show that they converge to the desired quantities almost surely (see section 4.4),

thus establishing the quenched result we are after.

The aforementioned Borel-Cantelli argument produces, after convergence, some statistical quan-

tities that reveal the hitting behavior of the dynamics to the target, the so-called λℓ’s (see equation

(4.2)). It turns out that these essential quantities are not easily calculated or even shown to exist. To

make our theory operational, we show that λℓ’s can be explicitly written in terms of the so-called αℓ’s,

another set of statistical quantities that reveal the return behavior of the dynamics to the target set (see

equation (4.7)). Within the theory, the latter quantities are assumed to exist, while in the examples one

tries to calculate them.

In view of the current state of the comparable literature for random dynamical systems, reviewed

in chapter 3.2, important advantages can be identified in our approach.

First, it handles general random target sets, the only requirement being that they present well-

defined return statistics αℓ’s, which allow us to represent the intensity and multiplicity distribution of

the limiting compound Poisson distributions very explicitly, given in terms of the dynamics and the

target.

Second, our approach relies on polynomial decay of correlations, indicating its potential to cover

non-uniformly expanding maps with parabolic fixed points and targets moving randomly so as to

possibly approach the parabolic locus (provided that they do so slowly/unlikely enough). That

is currently a work in progress. Here, the examples we will provide are certain one-dimensional

piecewise expanding systems. Alternative techniques based on spectral theory and Lasota-Yorke

inequalities by design will not cover polynomial decay of correlations (not directly, at least).

Third, our assumptions on the quasi-invariant family of measures do not consider their absolute

continuity with respect to the Lebesgue measure. Regularity assumed is in a dimensional sense.

A drawback of our approach is that results are just along sufficiently fast shrinking neighborhoods

of the target set. In other words, the results are about subsequential convergence (though many

subsequences qualify) instead of plain convergence.

Let us note that some of the above topics are intimately connected: annealed decay of correla-

tions, annealed normalization of time, the Borel-Cantelli argument and the need for (deterministic)

subsequences.

The thesis is organized as follows. In chapter 2, prerequisites in probability theory are collected

for the convenience of the reader. This chapter in mainly oriented to present the parallelism between



4 Introduction

hitting time statistics and extreme value theory (in its presentation with point processes) in the iid

case. The reader can skip this chapter and consult it only upon need.

Chapter 3 reviews the literature addressing compound Poissonian extreme value and hitting

statistics, both in deterministic and random cases, using techniques different from the aforementioned

probabilistic block-approximation, namely: point processes, spectral methods and the Chen-Stein

method. Section 3.1.1 relies on the notation introduced in section 2.2.2. We do not draw direct

point-by-point comparisons with the approach we will develop, but we present enough of a review to

enable the reader to undertake an informed appraisal of what we will present in chapter 4. The review

of the deterministic theory in section 3.1 is not only to complete an overview of the literature, but also

to prepare the ground for the random theory in section 3.2.

The specialist reader might skip directly to chapter 4 and 5, where the aforementioned contributions

of this thesis are presented. We start the chapter redefining the basic objects of random dynamical

systems previously introduced in section 3.2, so that chapter 4 can stand independently. To avoid a

sizeable redundancy, however, we go directly to the random theory, without reviewing the deterministic

counterpart preceding it, found in [53].



Chapter 2

Prerequisites

This chapter introduces the probabilistic foundations required by the following two chapters. It

initially covers Poisson-type processes, aiming towards a comprehensive understanding of compound

Poisson point processes. Finally, it covers extreme value theory and hitting time statistics in the iid

case.

2.1 Poisson-type processes

In this section, we introduce many definitions related to Poisson-type processes.

We start with the less general version to convey intuition.

Section 2.1.1 considers Poisson processes on the positive real line. Definition 2.1.8 introduces

Poisson processes with real intensities and its properties are discussed; whereas definition 2.1.10

generalizes the latter into Poisson processes with measure intensities having no atoms.

Section 2.1.2 considers compound Poisson processes, again on the positive real line. Definition

2.1.12 introduces compound Poisson processes with real intensities (and independent multiplicity

kernels); whereas definition 2.1.13 generalizes the former into compound Poisson processes with

measure intensities having no atoms (and independent multiplicity kernels).

Then we generalize considerably.

In section 2.1.3, definition 2.1.17 introduces Poisson point processes with general measure

intensities on general spaces. This concept encompasses all of those in section 2.1.1 and it is claimed

to be non-void.

In section 2.1.4, definition 2.1.21 introduces compound Poisson point processes with general

measure intensities and general multiplicity kernels on general spaces.

2.1.1 Poisson distribution and process

Here we follow [47]. The basic pieces to be considered are the following distributions.

Definition 2.1.1. The Poisson distribution with intensity γ P Rą0 is the probability measure on

Ně0, denoted Poiγ , given by the following probability mass function

Poiγptnuq “ γne´γ

n!
pn ě 0q.

5



6 Prerequisites

Mean and variance of Poiγ are both γ .

Definition 2.1.2. The exponential distribution with intensity γ P Rą0 is the probability measure on

Rě0, denoted Expγ , given by the following probability density function (with respect to Lebesgue

measure)

PDFExpγ pxq “

$

&

%

γe´γx, for x ě 0

0, otherwise
.

Mean and variance of Expγ are, respectively, 1{γ and 1{γ2.

Definition 2.1.3. The binomial distribution with n P Ně0 trials and success probability p P p0,1q
is the probability measure on Ně0, denoted Binn,p, given by the following probability mass function

Binn,pptkuq “
ˆ

n

k

˙

pkp1 ´ pqn´k pk P Ně0q.

This distribution gives the probability that, in an independent coin-tossing experiment with success

probability p, among the first n trials, k successes occur. Its mean and variance are, respectively, np

and npp1 ´ pq.

Definition 2.1.4. The geometric distribution with success probability p P p0,1q is the probability

measure on Ně1, denoted Geop, given by the following probability mass function

Geopptnuq “ p1 ´ pqn´1 p pn P Ně1q

This distribution gives the probability that, in an independent coin-tossing experiment with success

probability p, the first occurrence of success requires n trials. Its mean and variance are, respectively,

1{p and p1 ´ pq{p2.

Theorem 2.1.5 (Poisson’s theorem for distributions). If pn “ γ{n (so that the sequence of probabilities

Binn,pn
all have mean γ), then

Binn,pn
ptkuq nÑ8ÝÝÝÑ Poiγptkuq pk P Ně0q.

The motivation for the previous distributions and their relationship will be given next.

Definition 2.1.6. A triplet of stochastic processes
`

pXiqiPNě1
,pSnqnPNě1

,pNtqtPRě0

˘

on probability

space pΩ,F ,Pq is said to comprise an inter arrival times - arrival epochs - counting (IAC) process,

if separately they verify, respectively,

1.i. Xi is Rą0-valued (i P Ně1)

2.i. Sn is Rą0-valued (n P Ně1)

2.ii. DΩ˚ P F ,PpΩ˚q “ 1, @ω P Ω˚ : n ă n1 ñ Snpωq ă Sn1pωq
3.i. Nt is Ně0-valued (t P Rą0)

3.ii. DΩ˚ P F ,PpΩ˚q “ 1,@ω P Ω˚ :

3.ii.a. N0pωq “ 0,

3.ii.b. t P Rě0 ÞÑ Ntpωq P Ně0 is left-continuous with finitely many discontinuities on bounded

subsets of Rě0,
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3.ii.c. t ď t 1 ñ Ntpωq ď Nt1pωq,

3.ii.d. On the discontinuities referred to in (b), the right-limits minus respective left-limits always

equal 1,

and together they verify

a. Snpωq “ řn
i“1 Xipωq (n P Ně1,ω P Ωq, i.e.,

a. Xipωq “ Sipωq ´ Si´1pωq (i P Ně1, with S0 :” 0)

b. Snpωq “ inftt P Rą0 : Ntpωq “ nu (n ě Ně1,ω P Ω), i.e.,

b. Ntpωq “ suptn P Ně1 : Snpωq ď tu (t P Rą0,ω P Ω).

b. In particular, tSn ď tu “ tNt ě nu.

The last two conditions say that there are consistency relationships between the entries of the

triplet in such a way that knowing any of them is enough to recover the remaining two. In particular,

once the (joint) distribution of one of them is identified (or assigned), those of the remaining ones

follow. If one wants to assign (joint) distributions to the entries of an IAC process, doing it directly to

pXiqiPNě1
is clearly the easier path (e.g., this might be an iid sequence, while the other entries of the

triplet can not).

To aid one’s intuition, notice that IAC processes can model any phenomena of (non-overlapping)

unitary-arrivals in continuous-time (or even discrete-time if Xi’s are supported on Ně1), such as buses

arriving at a stop, lightning bolts hitting planet Earth and calls reaching a call center (or even world

cup trophies won by a country). So Xi measures how long one should wait for the i-th arrival after the

(i ´ 1)-th one has occurred, i.e., the i-th inter-arrival time; Sn measures when the n-th arrival occurs;

and Nt counts how many arrivals have occurred in the interval r0, ts.
Of course, these different phenomena will be modeled by different IAC processes. A special one

is the following.

Definition 2.1.7. A Poisson IAC process with intensity γ P Rą0 is an IAC process verifying one of

the following equivalent condition:

1. pXiqiPNě1
is iid with Xi˚P “ Expγ (i P Ně1).

2. pSnqnPNně1
satisfies

PDFpS1,...,Snq˚Pps1, . . . ,snq “

$

&

%

γne´γsn , if 0 ď s1 ď . . . ď sn

0, otherwise
(n P Nně1).

3. pNtqtPRtě0
has independent and stationary increments, and Nt ˚P “ Poiγt (t P Rě0).

Definition 2.1.8. A Poisson process with intensity γ PRą0 is a stochastic process pNtqtPRą0
verifying

condition (3) of definition 2.1.6 and condition (3) of definition 2.1.7, i.e., it is the counting process of

a Poisson IAC process with intensity γ P Rą0.

One of the main reasons why Poisson (IAC) processes are special is simply the memoryless

property of exponentially distributed random variables, i.e., of their inter-arrival times.

A Rą0(Ně1)-valued random variable X on pΩ,F ,Pq is said to be memoryless when

PpX ą t ` t 1 | X ą tq “ PpX ą t 1q, @t, t 1 P Rě0 p@t, t 1 P Ně0q,
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or, equivalently,

PpX ą t ` t 1q “ PpX ą t 1qPpX ą tq, @t, t 1 P Rě0 p@t, t 1 P Ně0q,

which is the case if, and only if,

Da P Rą0 : PpX ą tq “ at , @t P Rě0 p@t P Ně0q,

with, actually, a P p0,1q, since when t Ñ 8 the LHS evaluates to 0. In this case a “ e´γ for some

γ P Rą0 and the equivalence becomes

Dγ P Rą0 : PpX ą tq “ e´γt , @t P Rě0 p@t P Ně0q.

In the continuous-time case, differentiating on both sides leads to the following equivalent equation

PDFX˚Pptq “ ´γe´γt , @t P Rě0.

It means that, in the continuous case, the memoryless random variables are exactly the exponentially

distributed ones.

In the discrete-time case, the aforementioned condition, after manipulating some sums, is equiva-

lent to

PMFX˚Pptq “ pe´γqt´1p1 ´ e´γq, @t P Ně1

It means that, in the discrete case, the memoryless random variables are exactly the geometrically

distributed ones.

This relationship is associated to the connection between Poisson processes and Bernoulli pro-

cesses — as if the latter is the discrete version of the former. This will be discussed later in this

section.

For now, we review other memoryless-related properties of Poisson processes. Notice that these

properties should actually be used to prove the equivalence in definition 2.1.7.

The interpretation of the memoryless property should be clear: if a call center worker waited time

t and no call arrived, then the probability that he will have to wait for an additional t 1 (at least) before

a call arrives coincides with the probability that, from the very beginning, he would have waited

for t 1 (at least) for a call a to arrive. In particular, the time t the worker spent waiting buys him no

knowledge. He knows how much more he will have to wait just as much as he knew at the beginning

of the experiment, or just as much as a newcomer coming to his table would know.

It is opportune to consolidate the interpretation of a Poisson distributed random variable N and a

Poisson process pNtqtPRě0
. A random variable N having Poisson distribution with intensity γ models

the number of arrivals occurring in a unitary time interval in which the expected number of arrivals is

γ and inter-arrival times are exponential (i.e. memoryless). A Poisson process pNtqtPRě0
with intensity

γ models how the previous situation evolves in time, namely, the number of arrivals occurring in the

time interval r0, ts (t P Rě0) when the expected number of arrivals in a unitary time interval is γ and

inter-arrival times are exponential.
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A consequence of the memoryless property is that if pNtqtPRě0
is a Poisson process with intensity

γ , then, for any t ą 0, defining the random variable Z “ SinftnPNě1:Snątu ´ t, representative of the

length of the interval from t until the first arrival after t, it holds that PDFZ˚Ppzq “ 1 ´ e´γz (z P Rą0),

Z K pSiqsuptnPNě1:Snďtu
i“1 and Z K pNτqτPp0,ts.

Moreover, conditioning on events tNt “ nu, it turns out that one has essentially no knowledge

about when the associated arrivals of period r0, ts happened, these being uniformly distributed on the

region where they are supported:

PpS1 ď s | Nt “ 1q “

$

&

%

s{t, if 0 ă s ď t

0, otherwise
, i.e., PDFS1˚P|Nt

ps | 1q “

$

&

%

1{t, if 0 ă s ď t

0, otherwise

and more generally

PDFpS1,...,Snq˚P|Nt
ps1, . . . ,sn | nq “

$

&

%

n!{tn, if 0 ă s1 ă . . . ă sn ď t

0, otherwise
,

like the order statistics of n independent random variables that are uniformly distributed on p0, tq.

Now we reconsider discrete approximations to Poisson processes.

Definition 2.1.9. A Bernoulli process with success probability p P p0,1q is a t0,1u-valued stochastic

process pYjq jPNě1
on pΩ,F ,Pq which is iid and such that PpYj “ 1q “ p and PpYj “ 0q “ 1 ´ p

( j P Ně0).

We interpret that Yj “ Y
p
j “ 1 indicates an arrival occurred at time j. This implies that the

associated counting process N
p
t “ řt

j“1Y
p
j (t P Ně0) is such that N

p
t ˚P “ Bint,p (t P Ně0) and the

associated inter-arrival times process pX
p
i qiPNě1

is iid and such that X
p
i ˚P “ Geop (i P Ně1). Naturally,

an IAC can be induced from them. We then want to consider associated rescaled-in-time and rescaled-

in-success-probability IAC’s (a k-indexed family of them): N
pkq
t :“ řtt2 ju

j“1 Y
γ2´ j

j (k P Ně0, t P Rě0).

Under this rescaling, the arrival rate is kept constant, i.e., EPpN
pkq
1 q “ MeanpBin2k,γ2´k q “ γ (k P Ně0)

and, in fact,

N
pkq
t ˚Pptnuq kÑ8ÝÝÝÑ Ñt ˚P̃ptnuq, pn P Ně0, t P Ně0q,

where pÑtqtPRě0
in pΩ̃,F̃ , P̃q is a Poisson process with intensity γ . This result is known as Poisson’s

theorem for processes.

Finally, we consider Poisson processes with measure intensities (a.k.a., possibly inhomogeneous

intensities) instead of real intensities (a.k.a. homogeneous).

Definition 2.1.10. A Poisson process with intensity γ P MRadpRě0q (without atoms) is a stochastic

process pNtqtPRě0
verifying condition (3) of definition 2.1.6, having independent (but not anymore

stationary) increments and satisfying

pNt1 ´ Ntq˚P “ Poiγppt,t1sq pt, t 1 P Rě0, t ă t 1q.

Here is a subtlety. Despite the above counting process having independent increments, in general,

its associated inter-arrival process is no longer independent (nor identically distributed, obviously).
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Namely, conditioning on the value of the counting process at a certain time will not change the

statistics of how larger it is going to be at a certain time afterward; however, it will change the statistics

of the following inter-arrival time:

PpX2 ą t|X1q “ PpNX1`t ´ NX1
“ 0q “ PoiγppX1,X1`tsqpt0uq “ e´γppX1,X1`tsq.

When in the above γ “ rLeb, the integral on the RHS is always rpt 1 ´ tq, so increments are again

stationary and Nt ˚P “ Poirt (t P Rě0). Therefore a Poisson process with measure intensity rLeb is

simply a Poisson process with real intensity r.

The above definition would still be meaningful for γ P MRadpRě0q admitting atoms away from

0. However, this would break condition (3.i.d) of definition 2.1.6. For pedagogic reasons, we do not

relax this condition now. In definition 2.1.17, it will be relaxed to handle γ P MRadpRě0q in general.

We will note later that the definitions of this section are non-void — in the more general context

of section 2.1.3, definition 2.1.17.

2.1.2 Compound Poisson distribution and process

A limitation of modeling using random variables with Poisson distributions (or Poisson processes) is

that they can not accommodate batch arrivals. Picture the situation where a call center is taking orders

for a burger shop. When an order arrives, how many burgers are demanded is of interest. The total

demand in a unitary time interval will be modeled with a random variable having a compound Poisson

distribution. A compound Poisson process will model how the previous situation evolves in time.

Definition 2.1.11. The compound Poisson distribution with intensity γ P Rą0 and multiplicity

distribution pλℓqℓPNě1
P PpNě1q,

ř8
ℓ“1 ℓλℓ ă 8, denoted CPDγ,pλℓqℓ , is the distribution of a random

variable M : pΩ,F ,Pq Ñ Ně0 given by

Mpωq “
Npωq
ÿ

j“1

Q jpωq,

where N is a Ně0-valued random variable on pΩ,F ,Pq having Poisson distribution with intensity γ

and pQ jq jPN jě1
is a sequence of Ně1-valued random variables on pΩ,F ,Pq which are iid, independent

of N and whose entries have distribution PpQ j “ ℓq “ λℓ ( j, ℓ P Ně1).

Its probability mass function is given indirectly by

CPDγ,pλℓqℓptkuq “
k
ÿ

n“1

PpN “ nqPpRn “ kq “
k
ÿ

n“1

γne´γ

n!
PpRn “ kq pk P Ně0q, (2.1)

where Rn “ řn
j“1 Q j.

Mean and variance of CPDγ,pλℓqℓ are, respectively, γ
ř8

ℓ“1 ℓλℓ PRą0 and γ
ř8

ℓ“1 ℓ
2λℓ PRą0 Yt8u.

Definition 2.1.12. A compound Poisson process with intensity γ P Rą0 and multiplicity distribu-

tion pλℓqℓPNě1
P PpNě1q,

ř8
ℓ“1 ℓλℓ ă 8, is an Ně0-valued stochastic process pMtqtPRě0

on pΩ,F ,Pq
that:
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i. DΩ˚ P F ,PpΩ˚q “ 1,@ω P Ω˚ :

aaa. M0pωq “ 0,

aab. t P Rě0 ÞÑ Mtpωq P Ně0 is left-continuous with finitely many discontinuities on bounded

subsets of Rě0,

aac. t ď t 1 ñ Mtpωq ď Mt1pωq,

aad. On the discontinuities referred to in (b), the right-limits minus respective left-limits are

always in Ně1,

ii. has independent and stationary increments, and

iii. Mt ˚P “ CPDγt,pλℓqℓ (t P Rě0).

If λ1 “ 1 (and the remaining λℓ’s are 0), a compound Poisson process (distribution) with real

intensity γ and multiplicity distribution pλℓqℓ reduces to a Poisson process (distribution) with real

intensity λ .

Finally, we consider compound Poisson processes with measure intensities instead of real intensi-

ties.

Definition 2.1.13. A compound Poisson process with intensity γ PMRadpRě0q (without atoms) and

multiplicity distribution pλℓqℓPNě1
P PpNě1q,

ř8
ℓ“1 ℓλℓ ă 8, is an Ně0-valued stochastic process

pMtqtěRě0
on pΩ,F ,Pq that:

i. as definition 2.1.12,

ii. has independent increments, and

iii. pMt1 ´ Mtq˚P “ CPDγppt,t1sq,pλℓqℓ (t, t 1 P Rě0, t ă t 1).

Once again, when in the above γ “ rLeb, the integral on the RHS is always rpt 1 ´ tq, so increments

are again stationary and Nt ˚P “ CPDrt,pλℓqℓ (t P Rě0). Therefore a compound Poisson process with

measure intensity rLeb and multiplicity distribution pλℓqℓ is simply a compound Poisson process with

real intensity r and multiplicity distribution pλℓqℓ.
Moreover, if λ1 “ 1 (and the remaining λℓ’s are 0), a compound Poisson process (distribution)

with measure intensity λ as above and multiplicity distribution pλℓqℓ reduces to a Poisson process

(distribution) with measure intensity λ .

One could possibly consider generalizations of compound Poisson processes in which not only the

intensity γ , but also the multiplicity distribution pλℓqℓ, varies in a prescribed way along the positive

real line (this, however, would break the independence between multiplicities and the number of

arrivals) — e.g., back to the burger shop illustration, it might be that both propensity of call/order

arrivals, but also their associated demand profile, varied with time. More about this in definition

2.1.21.

Also, as noted at the end of section 2.1.1, technical extensions concerning γ’s atomicity are going

to be handled later. See definition 2.1.21.

2.1.3 Poisson point process

In this section, we take Poisson processes to a more abstract level in which intensity of random arrivals

over time will be understood as intensity of points (or, more precisely, unitary point-masses) occurring
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randomly over space. When the space is the positive real line, we are back to the section of Poisson

processes. Overall, [76] and [66] are the main references in this section.

Let E be a locally compact complete separable metric space (thus Hausdorff with a countable

basis) with its Borel σ -algebra BE .

Let MRadpEq be given the vague topology, i.e., the smallest topology making continuous the

following family of evaluation maps tTf : m P MRadpEq ÞÑ mp f q P r0,8s | f P C`
c pEqu. This is a

complete separable metric space (see [79] section 2.3.3). The associated convergence is denoted

mn
vÝÑ m.

Let MRadpEq be the σ -algebra

M RadpEq “ σptTF : m P MRadpEq ÞÑ mpFq P R | F P BEuq.

It coincides with the Borel σ -algebra associated to the vague topology, BMRadpEq (see [76] pg. 141).

Define (see [76] sec. 3.1, [79] def. 2.3.2 and [66] def. 2.4, def. 2.1, prop 6.2, prop. 6.3, cor. 6.5)

MRad
p pEq
“
␣

m “ řκ
i“1 δxi

: pxiqκ
i“1 Ă E,κ P Ně0 Y t8u,mpKq ă 8,@K Ă E compact

(

“
␣

m “ řκ
i“1 δxi

: pxiqκ
i“1 Ă E,κ P Ně0 Y t8u, with no accumulation points

(

Ă MRadpEq,

where the sequences pxiqκ
i“1 above might have repetitions. This set is closed and hence measurable (see

[76] pg. 140 and prop. 3.14). Therefore MRad
p pEq, as a subset, inherits the structure from MRadpEq.

The inherited topology is its vague topology and makes it a complete separable metric space (see

[76] prop. 3.17). The inherited σ -algebra concides with the analogous definition of M Rad
p pEq and

BMRad
p pEq.

Define
MRad

sp pEq “
␣

m P MRad
p pEq : mptxuq ď 1,@x P E

(

“
␣

m “ ř8
i“1 δxi

P MRad
p pEq : pxiqiPNě1

Ă E disjoint
(

,

as a subset of MRad
p pEq. This subset will not be qualified topologically, but it is important to note that

it is a measurable subset of MRad
p pEq (see [66] prop. 6.7).

Definition 2.1.14. A random measure is a random variable

Z : pΩ,F ,Pq Ñ pMRadpEq,M RadpEqq.

From now on we consider only the following special case of random measures.

Definition 2.1.15. A point process is a random variable

Z : pΩ,F ,Pq Ñ pMRad
p pEq,M Rad

p pEqq.

Such a function is measurable if, and only if, Zp¨qpFq : Ω Ñ Ně0 Y t8u is measurable @F P BE (see

[76] prop. 3.1).



2.1 Poisson-type processes 13

Definition 2.1.16. A simple point process is a point process

Z : pΩ,F ,Pq Ñ pMRad
p pEq,M Rad

p pEqq

so that PpZ P MRad
sp pEqq “ 1.

Two simple point processes N and N1 on pΩ,F ,Pq have a common distribution if the probabilities

that their realizations avoid a set are coincident, for every set in a suitable family: if Pptω : NpωqpFq “
0uq “Pptω : N1pωqpFq “ 0uq @F Ă E,F P R (a ring generating BE ), then N˚P“ N1

˚P (see [76] prop.

3.23 and [58] thm. 3.3). From here on, Pptω : NpωqpFq “ kuq will be denoted simply PpNpFq “ kq.

A sequence of point processes pZnqnPNě1
on pΩ,F ,Pq is said to converge in distribution to another

point process Z0 on pΩ,F ,Pq, denoted Zn
dÝÑ Z0, if Zn˚P

vÝÑ Z0˚P.

Convergence in distribution of point processes can be subtle to verify. Beyond portmanteau-type

theorems, one can consider Kallenberg’s criteria, which are sufficient conditions for a sequence of

point processes to converge simple point processes with enough regularity (see [58] thm. 4.3 or [34]

thm. 2.1 for a neat presentation).

Now we start considering Poisson point processes.

Definition 2.1.17. A Poisson point process with intensity γ P MRadpEq (with or without atoms) is a

point process

N : pΩ,F ,Pq Ñ pMRad
p pEq,M Rad

p pEqq

satisfying:

i. @k P Ně1,@F1, . . . ,Fk P BE mutually disjoint:

`

ω P Ω ÞÑ NpωqpFiq P Ně0 Y t8u
˘k

i“1
forms an independency

ii. @F P BE ,@n P Ně0:

PpNpFq “ nq “

$

&

%

γpFqne´γpFq

n!
, if γpFq ă 8

0 , if γpFq “ 8
.

It follows from the previous definition that γpFq “ 8 ñ PpNpFq “ 8q “ 1.

It can be shown that definition 2.1.17 is nonempty and that any two Poisson point processes with

the same intensity will have the same distributions (see [76] prop. 3.6(i) and [66] prop. 3.2 and section

3.2).

Also, it can be shown that Poisson point processes are simple if, and only if, the associated

measure intensities have no atoms (see [66] prop 6.9). Among them, we call homogeneous those

having Lebesgue measure or volume measure (in case E is given a Riemannian manifold structure)

intensities.

When E “ r0,8q, there is a natural identification between I) simple point processes and II)

counting processes introduced in section 2.1.1, definition 2.1.6: points in a realization of a simple

point process are in correspondence with discontinuity points in a realization of a counting process.

Likewise, I) Poisson point processes with measure intensities having no atoms are identified with II)
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Poisson (counting) processes with measure intensities having no atoms, introduced in section 2.1.1,

definition 2.1.10.

In our applications, E will be either Rd , for some d P Ně1, or some tangent space or bundle. These

will be equipped, respectively, with Lebesgue and volume measures (induced from a Riemannian

structure), which might be taken as intensities.

2.1.4 Compound Poisson point process

We noticed that, when E “ r0,8q, there is a natural identification between I) Poisson point processes

with measure intensities having no atoms and II) Poisson (counting) processes with measure intensities

having no atoms. The latter could be adapted to handle batch arrivals, and so can the former. Batches

will be reinterpreted in terms of (integer) weights independently assigned to points, or even abstract

quantities independently attached to them.

The first step in this abstract construction is the following.

Definition 2.1.18. Consider a mark space pH,BHq which is a locally compact complete separable

metric space with its Borel σ -algebra BH . A H-marked point process over a point process

Z : pΩ,F ,Pq Ñ pMRad
p pEq,M Rad

p pEqq

is an enlarged point process

X : pΩ,F ,Pq Ñ pMRad
p pE ˆ Hq,M Rad

p pE ˆ Hqq

so that π1 ˝ X “ Z.

Definition 2.1.19. (See [81] def. 2.10) Consider an H-marked point process X over Z as in definition

2.1.18. It is called an H-marked point process with kernel Kpe,dhq, namely

K : E ˆBH Ñ r0,1s satisfying Kpe, ¨q P PRadpHq,@e P E

pe,Gq ÞÑ Kpe,Gq Kp¨,Gq measurable, @G P BH

if — after having fixed a representation Zpωq “ řκpωq
n“1 δZnpωq, with random variables κ : Ω Ñ

Ně0 Y t8u and Zn : Ω Ñ E (n P Ně1) — X has the structure

Xpωq “
κpωq
ÿ

n“1

δpZnpωq,Wnpωqq

for some sequence of random variables Wn : Ω Ñ H (n P Ně1) satisfying that @n P Ně1,@G1, . . . ,Gn P
BH :

P

´

W1 P G1, . . . ,Wn P Gn

ˇ

ˇ

ˇ
κ ě n,Z “ pZ1, . . . ,Zn, . . .q

¯

pe1, . . . ,en, . . .q “
n
ź

i“1

Kpei,Giq.

The above definition uses the representation of Z into Zn’s in an innocuous way because if

a different representation is chosen there is no distributional implication, due to the fact that the
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probabilities of marks are independent after conditioning on the entire realization of the base point

process. Similarly, the specific choice of Wn’s, as long as the distributional equation is satisfied, is

also innocuous in the same sense.

A special subcase of the previous definition is that in which the marks are completely independent

of Z, i.e., Kpe, ¨q @e“ λ p¨q — the latter being the space-independent distribution of marks.

Definition 2.1.20. An H-marked point process X with kernel Kpe,dhq (as in definition 2.1.19) over an

Poisson point process Z with measure intensity γpdeq (as in definition 2.1.17) is called an H-marked

Poisson point process with intensity γpdeq and kernel Kpe,dhq.

For example, in the above definition, we can set E “ r0,8q and H “ Rd to define a random walk

in random times through Rd , where particles start from the origin and move at the instants drawn in

E “ r0,8q by the associated translation vector drawn in Rd .

It can be shown that an H-marked Poisson point process X : pΩ,F ,Pq Ñ pMppE ˆ Hq,MppE ˆ
Hqq with intensity γpdeq and kernel Kpe,dhq is actually a Poisson point process X : pΩ,F ,Pq Ñ
pMppE ˆ Hq,MppE ˆ Hqq with intensity Kpe,dhqγpdeq (see [81] thm. 2.12).

Definition 2.1.21. Consider X , an Ně1-marked Poisson point process with intensity γpdeq and kernel

Kpe,dhq, as in definition 2.1.20.

After representing it as in definition 2.1.19,

Xpωq “
κpωq
ÿ

i“1

δpZnpωq,Wnpωqq,

it induces the following (non-simple) point process

Mpωq “
κpωq
ÿ

j“1

WnpωqδZnpωq

which is referred to as a compound Poisson point process with intensity γpdeq and multiplicity

kernel Kpe,dhq.

Changes in representation are again distributionally innocuous. Here the notation is slightly

misleading, because, since the mark-space is Ně1, then Kpe,dhq P PpNě1q,@e P E. When the

multiplicity kernel is space-independent, we have simply Kpe,dhq @e“ pλℓqℓPNě1
P PpNě1q, for some

pλℓqℓPNě1
P PpNě1q. In this case, we write just suppress the word “kernel” from the terminology.

The same stacking idea used in definition 2.1.21 could be applied to H “ Rě0, but the random

variable M introduced therein would not anymore be a point process.

Once more, when E “ r0,8q, there is a natural identification between

I) compound Poisson point processes with measure intensity γ having no atoms and multiplicity pλℓqℓ
(as in above), and

II) compound Poisson processes with measure intensity γ having no atoms and multiplicity pλℓqℓ (as

in definition 2.1.13).

Moreover, a compound Poisson point process with measure intensity γ and multiplicity for pλℓqℓ,
where λ1 “ 1, reduces to a Poisson point process with measure intensity γ .
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2.1.5 Lifted compound Poisson point process

Definition 2.1.22. Consider pE,E q and pH,H q two locally compact complete separable metric

spaces with their Borel σ -algebra. An H-lifted compound Poisson process on the state space E

relative to tGα P BH , bounded : α P Au with intensity α P A ÞÑ γα P MRadpEq and multiplicity

kernel α P A ÞÑ Kαpe,dhq is a point process

X : pΩ,F ,Pq Ñ pMRad
p pE ˆ Hq,M Rad

p pE ˆ Hqq
ω ÞÑ řκpωq

n“1 δpAnpωq,Bnpωqq

so that, for every α P A, denoting

Xα :“ X |EˆGα :pΩ,F ,PqÑ pMRad
p pE ˆ Hq,M Rad

p pE ˆ Hqq
ω ÞÑřκpωq

n“1 δpAnpωq,Bnpωqq✶EˆGα pAnpωq,Bnpωqq
,

it holds that π1 ˝Xα is a compound Poisson point process with intensity γαpdeq and multiplicity kernel

Kαpe,dhq.

Remark 1. Do not confuse the above with the stacking procedure of definition 2.1.21 which used

an Ně1-marked Poisson point process to assign weights to the points of an underlying Poisson point

process and thereby create a compound Poisson point process. The said Ně1-marked process and its

induced compound Poisson point process have essentially the same information (exactly, if the Poisson

point process is simple). The Xα ’s that were specified in definition 2.1.22 have more information

than the compound Poisson point processes they project to, as if every mass-unit in such compound

Poisson point process is assigned a value in H.

To interpret the object of the last definition, consider that a seismograph can only detect earthquakes

with Richter magnitudes larger than 8. They might come in batches. We want to register not only

how many come in each batch, but also how severe is each of these. The last attribute is in the H

space. If we collapse this information, we recover the usual compound Poisson point process, say in

the state space E “ r0,8q, representing time. What if the seismograph can be tuned to detect smaller

earthquakes? This is exactly changing G. For example, we could consider tGα “ rα,8q : α P Rą0u,

and G would first be G8 and then be G7. As α diminishes, (after projecting) one can see how the

statistics given by the associated α-compound Poisson point processes change, i.e. how intensities and

multiplicity kernels change. In our example, we expect intensities to increase as α decreases. Notice

also that the H space can be richer, recording more information than simply the Ritcher magnitude of

an earthquake.

Notice that in a compound Poisson point process, the unit masses that are stacked over a point

(representing multiplicity) are indistinguishable and thus are not even ordered. If however, we could

somehow distinguish them as to produce an order, we could see such a process as lifted into the space

H “ Ně1 space, where the new coordinate registers precisely the order. In general, all the information

available to distinguish masses can be registered in a new lifted coordinate, i.e., in principle, one could

enrich the lifting more and more. On the other hand, any H-lift of the original process can be used to

distinguish and order its unit masses.
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2.2 Extreme value theory and hitting time statistics (iid case)

2.2.1 Extreme value theory

Let pXiqiPNě0
be a sequence of iid R-valued random variables on pΩ,F ,Pq. Denote by FX0

pxq “
PpX0 ď xq the cumulative distribution function (cdf) of X0. Also, denote Mn “ maxtX0, . . . ,Xn´1u
(n ě 1), another R-valued stochastic process on pΩ,F ,Pq.

Extreme value theory wants to study the statistics of large realizations of the process, which can be

understood from many perspectives. Let’s start with the classical one and then look at some relevant

equivalent perspectives.

We say that a cdf G : R Ñ R is non-degenerate if its associated measure G P MRadpRq is not the

Dirac measure of a point.

Definition 2.2.1. Let G be a non-degenerate cdf.

The (possibly empty) maximum domain of attraction of G is the set MDApGq comprised

of iid R-valued stochastic processes pXiqiPNě0
on pΩ,F ,Pq for which there exists panqnPNě0

Ă
Rą0,pbnqnPNě0

Ă R:
´

Mn´bn

an

¯

˚
P

vÝÑ
nÑ8

G, or, equivalently,

@x P contpGq : PpMn ď anx ` bnq ÝÑ
nÑ8

Gpxq.
(2.2)

Denote MDA “ tG non-degenerate cdf : MDApGq ‰ Hu.

Remark 2. If
`

pXiqiPNě0
,panqnPNě0

,pbnqnPNě0
,G

˘

satisfy equation 2.2, there can still be another
`

pXiqiPNě0
,pãnqnPNě0

,pb̃nqnPNě0
, G̃

˘

satisfying it, but they will relate like (see [79] lem. 1.2.7)

ãn

an

Ñ
nÑ8

A P Rą0,
b̃n ´ bn

an

Ñ
nÑ8

B P R, G̃pxq “ GpAx ` Bq. (2.3)

Definition 2.2.2. The set of max-stable distributions is

MS “
"

G non-degenerate cdf

ˇ

ˇ

ˇ

Dα : Rě0 Ñ Rą0,β : Rě0 Ñ Rě0 so that
Gpαptqx ` β ptqqt “ Gpxq,@t P Rą0,x P R

*

.

Consider G P MS. If pXiqiNě0
is an R-valued stochastic process which is independent and whose

entries are distributed like G, then Mn is distributed like Gn (n P Ně0) and the condition above says

that pXiqiPNě0
P MDApGq using an :“ αpnq and bn :“ β pnq (n P Ně0).

Next is the main theorem characterizing the objects referred to in this section (see [80] thm. 1 and

[79] prop 1.3.2, thm. 1.3.4 and rmk. 1.3.6).

Theorem 2.2.3. [Fisher–Tippett–Gnedenko] The sets MDA and MS coincide. Moreover, if pXiqiPNě0

a sequence of iid R-valued random variables on pΩ,F ,Pq, panqnPNně0
Ă Rą0, pbnqnPNně0

Ă Rě0 and

G non-degenerate cdf satisfies

@x P contpGq : PpMn ď anx ` bnq ÝÑ
nÑ8

Gpxq,



18 Prerequisites

then G is a generalized extreme value (GEV) cdf

Gpxq “ Gξ ,σ ,µpxq :“

$

&

%

e´r0_p1`ξ x´µ
σ qs´1{ξ

, if ξ ‰ 0

e´e´
x´µ

σ
, if ξ “ 0

px P Rq,

for some ξ ,µ P R, σ P Rą0, with

i) [light/exponential tail case] ξ “ 0 if, and only if, the associated GEV cdf is the cdf of the

Gumbel distribution

Λσ ,µpxq “ e´e´
x´µ

σ px P Rq

ii) [heavy/polynomial tail case] ξ ą 0 if, and only if, the associated GEV cdf is the cdf of the

Fréchet distribution

Φ1{ξ ,σ ,µpxq “

$

&

%

e´p x´µ
σ q´1{ξ

, if x ą 0

0 , if x ď 0
px P Rq

iii) [upper bounded tail case] ξ ă 0 if, and only if, the associated GEV cdf is the cdf of the Weibull

distribution

Ψ1{ξ ,σ ,µpxq “

$

&

%

e´p´ x´µ
σ q´1{ξ

, if x ă 0

1 , if x ě 0
px P Rq.

In particular, the set MDA “ MS is exactly the space of GEV cdfs (or, specifically Gumbel, Fréchet

and Weibull cdfs), which is closed under the modification introduced in equation 2.3: Gξ ,σ ,µpAx`Bq “
Gξ ,σ{A,pB´µq{Apxq. Using this type of procedure one can always reduce the limit to standard type, i.e., to

Gξ ,1,0.

The mean and variance of Gξ ,σ ,µ are

MeanGξ ,σ ,µ
“

$

’

’

&

’

’

%

µ ` σ ¨ pΓp1 ´ ξ q ´ 1q{ξ , if ξ ‰ 0,ξ ă 1

µ ` σ ¨ γ , if ξ “ 0

8 , if ξ ě 1

and

VarGξ ,σ ,µ
“

$

’

’

&

’

’

%

σ2 ¨ pΓp1 ´ 2ξ q ´ Γp1 ´ ξ q2q{ξ 2, if ξ ‰ 0,ξ ă 1{2

σ2 ¨ π2{6 , if ξ “ 0

8 , if ξ ě 1{2

,

where γ is the Euler–Mascheroni constant.

In the previous theorem, we can pack anx ` bn into a single number un. But we might also want

to consider similar asymptotics when un has not such a linear structure on x, or is even a standalone

sequence, independent of x. In this direction, the following proposition is useful.

Proposition 2.2.4. Let τ P Rą0 and punqnPNě0
Ă R. Then

nPpX0 ą unq “ np1 ´ FX0
punqq ÝÑ

nÑ8
τ ô PpMn ď unq ÝÑ

nÑ8
e´τ . (2.4)
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The proof of the implication (ñ) in the previous proposition is simple:

PpMn ď unq “ p1 ´PpX0 ą unqqn „
´

1 ´ τ

n

¯n

Ñ e´τ .

It is often possible to adjust some punqnPNě0
to each τ , defining some

u : Ně0 ˆRą0 Ñ R

pn,τq ÞÑ unpτq

which guarantees the balancing condition on the LHS of equation 2.4 and is continuous, strictly

decreasing in τ , strictly increasing in n to esssupX0 (for any τ). For example, when X0˚P has no

atoms, FX0
has range r0,1s and admits the generalized inverse F´1˚

X0
, allowing one to define

unpτq :“ F´1˚
X0

p1 ´ τ{nq, for n ě τ; unpτq :“ 0, for n ă τ.

We can interpret the balancing condition on the LHS of equation 2.4 as saying that punpτqqnPNě0

grows in a pace so that the expected number of times that pXiqn´1
i“0 exceeds unpτq approaches τ .

The RHS of equation 2.4 and the conclusions of theorem 2.2.3 seem related. But notice that the

former is not included in the latter: PpMn ď unpτqq Ñ e´τ , but τ P Rą0, unpτq is (generally) not of

the form anτ ` bn and e´τ is not in DMA “ MS.

To see one instance of this connection, the following proposition is worthwhile.

Proposition 2.2.5. Let pXiqiPNě0
be a sequence of iid R-valued random variables on pΩ,F ,Pq whose

entries have standard normal distribution.

Then PpMn ď anx ` bnq ÝÑ
nÑ8

G0,1,0pxq “ e´e´x px P Rq, where

an “ p2lnnq´1{2 and bn “ p2lnnq1{2 ´ 1{2p2lnnq´1{2pln lnn ` ln4πq.

This conclusion is definitely in the realm of theorem 2.2.3. The proof develops some calculations

which we omit, but its structure involves noticing that

1 ´ FN p0,1qpuq
PDFN p0,1qpuq{u

ÝÑ
uÑ8

Q P Rą0,

and setting τ :“ e´x with the accompanying unpτq defined implicitly as (notice that FN p0,1q is invert-

ible)

1 ´ FN p0,1qpunpτqq “ τ

n
“ e´x

n
,

which implies that np1 ´ FN p0,1qpunqq @n“ τ , so, by design, the LHS of equation 2.4 in proposition 2.2.4

is verified. Moreover, the limit we started with implies that

unpτq “ an ¨ ´ lnτ ` bn ` opanq “ anx ` bn ` opanq. (2.5)
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Therefore one can apply proposition 2.2.4 to conclude, as desired, that

PpMn ď unpτqq ÝÑ
nÑ8

e´τ “ e´e´x

“ PpMn ď anx ` bn ` opanqq ÝÑ
nÑ8

limnPpMn ď anx ` bnq.

On the other side of this connection, we have no indication that panx ` bnqn in theorem 2.2.3 has

to satisfy the balancing condition on the LHS of equation 2.4. The following proposition elucidates

what is going on (see [79] lem. 1.4.2).

Proposition 2.2.6. Let pXiqiPNě0
be a sequence of iid R-valued random variables on pΩ,F ,Pq,

panqnPNně0
Ă Rą0, pbnqnPNně0

Ă Rě0 and G non-degenerate cdf. Then

@x P contpGq : PpMn ď anx ` bnq ÝÑ
nÑ8

Gpxq (i.e., equation 2.2)

ô @x P contpGq : np1 ´PpX0 ą anx ` bnqq ÝÑ
nÑ8

´ lnGpxq.

Applying proposition 2.2.6 to the standard Gumbel case, the limit on the RHS of the con-

clusion is ´ lnGpxq “ ´ lnpe´e´xq “ e´x. If we denote unpxq :“ anx ` bn, the limit rewrites as

np1 ´ FX0
punpxqqq Ñ e´x. Thus, the sequence panx ` bnqn in theorem 2.2.3 really does not satisfy the

balancing condition on the LHS of equation 2.4. Also, if we denote τ :“ e´x, the limit rewrites as

np1 ´ FX0
pan ¨ ´ lnτ ` bnqq Ñ τ , which provides us a normalizing sequence unpτq :“ an ¨ ´ lnτ ` bn,

in the sense of the LHS of equation 2.4. Similar observations can be made in the Fréchet and Weibull

cases.

Summarizing: The discussion from proposition 2.2.5 until here was to shed light on how the

condition

PpMn ď anx ` bnq ÝÑ
nÑ8

Gpxq,@x P contpGq

in theorem 2.2.3 relate to

nPpX0 ą unpτqq ÝÑ
nÑ8

e´τ ô PpMn ď unpτqq ÝÑ
nÑ8

e´τ ,τ P Rą0

in proposition 2.2.4. In a pedestrian way: given sequences an,bn and G verifying the first condition,

one arranges the parametric sequence unpτq :“ an ¨G´1pe´τq`bn (τ P Rą0) which verifies the second

condition. The converse is nonexistent, in the sense that the second condition has less information (no

way to recover G from it).

From another angle, the first condition might be thought to be finer in the sense of giving a richer

asymptotic description, whereas the second might be thought to be finer in the sense of giving an

asymptotic description based on less structure.

The best one can do to complete the picture impaired by the ‘nonexistent converse’ is to consider

that proposition 2.2.6 is an equivalence and that it has a counterpart in terms of the alternative

balancing condition, as in 2.2.4. More clearly and conveniently, these equivalences are presented in

parallelism, respectively, in theorem 2.2.7 (items 1 and 2) and theorem 2.2.8 (items 1 and 2). The

reader is invited to read the two items of these two theorems right away.

The next theorem, theorem 2.2.7, describes the phenomena introduced in theorem 2.2.3 also in

terms of tails and point processes (see [80] thm. 2, [79] thm. 1.4.1, [22] thm. 2.4).
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Theorem 2.2.7 (Pickands, Balkema, de Haan, Resnick). Let pXiqiPNě0
be a sequence of iid R-valued

random variables on pΩ,F ,Pq. Let ξ P R. Let x˚ “ supsupppX0˚Pq and x˚ “ infsupppX0˚Pq. Then

items 1, 2, 2’ and 3 below are equivalent.

1. DpanqnPNně0
Ă Rą0, pbnqnPNně0

Ă Rě0, @x P RX contpGξ ,1,0q:

PpMn ď anx ` bnq ÝÑ
nÑ8

Gξ ,1,0pxq.

2. DpanqnPNně0
Ă Rą0, pbnqnPNně0

Ă Rě0, @x P RX contpGξ ,1,0q:

nPpX0 ą anx ` bnq ÝÑ
nÑ8

´ lnGξ ,1,0pxq.

2’. Dσ : p0,8q Ñ p0,8q, @x P RX contpGξ ,1,0q:

P

ˆ

X0 ´ t

σptq ą x

ˇ

ˇ

ˇ
X0 ą t

˙

“ 1 ´ FX0
pt ` σptqxq

1 ´ FX0
ptq ÝÑ

tÕx˚
´ lnGξ ,1,0pxq,

or, equivalently,

lim
tÕx˚

sup
0ăxăx˚´t

ˇ

ˇ

ˇ
PpX ´ t ď x | X0 ą tq ´

“

1 ´
`

´ lnGξ ,σptq,0pxq
˘‰

ˇ

ˇ

ˇ
“ 0.

In 2’, x˚ is finite if, and only if, ξ ă 0. In 1 and 2’, the normalizing objects harmonize as

σptq “ α
´

1
1´FX0

ptq

¯

(recall that a : Ně0 Ñ Rą0 lifts to α : Rě0 Ñ Rą0, see definition 2.2.2 and

theorem 2.2.3).

3. DpanqnPNně0
Ă Rą0, pbnqnPNně0

Ă Rě0:

Ñ
p2q
n :“

n´1
ÿ

i“0

δ´ i
n
,

Xi´bn
an

¯

dÝÑ
nÑ8

Ñp2q,

where Ñp2q is a Poisson point process on r0,1qˆpx˚,x
˚q with intensity measure γ given by γ ppt1, t2s ˆ px,x˚qq

“ pt2 ´ t1q ¨ ´ lnGξ ,1,0pxq.

In item 2 and the first part of item 2’ of the previous theorem, tail mass is being evaluated, so the

limit is the tail mass of a distribution, known as generalized Pareto distribution (GPD), whose cdf is

Pξ ,σ ,µpxq “ 1 ´ p´ lnGξ ,σ ,µpxqq “

$

&

%

1 ´
“

0 _ p1 ` ξ x´µ
σ q

‰´1{ξ
, if ξ ‰ 0

1 ´ e´ x´µ
σ , if ξ “ 0

.

This family covers the following subfamilies:

i) when ξ “ 0, P0,σ ,0 is the cdf of an exponential distribution with intensity 1{σ ,

ii) when ξ ą 0, Pξ ,σ ,σ{ξ is the cdf of a Pareto distribution with scale parameter σ{ξ and shape

parameter 1{ξ ,

iii) when ξ “ ´1, Ṕ 1,σ ,0 is the cdf of a uniform distribution on r0,σ s.
The third characterization in theorem 2.2.7 interests us the most, so we look at a proof sketch.
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To consider (3 ñ 1), notice simply that

P

ˆ

Mn ´ bn

an

ď x

˙

“ P

´

Ñ
p2q
n

`

r0,1s ˆ px,x˚q
˘

“ 0
¯

Ñ P

´

Ñp2q
`

r0,1s ˆ px,x˚q
˘

“ 0
¯

“ e´γpr0,1sˆpx,x˚qq “ elnGξ ,1,0pxq “ Gξ ,1,0pxq,

as desired.

Now we consider (1 ñ 3) (see [26] sec. 7.3.1). Let A “ r0,1s ˆ px,x˚q. Then the probability that

each of the points
´

i
n
, Xi´bn

an

¯

(i “ 0, . . . ,n ´ 1) is in A is worked out as follows:

PpMn ď anx ` bnq Ñ Gξ ,1,0pxq ô PpX0 ď anx ` bnqn Ñ Gξ ,1,0pxq

ô n lnPpX0 ď anx ` bnq Ñ lnGξ ,1,0pxq ô n lnp1 ´PpX0 ą anx ` bnqq nÝÑ lnGξ ,1,0pxq,

whereas,

lnp1 ´PpX0 ą anx ` bnqq “ ´PpX0 ą anx ` bnq ` onÑ8pPpX0 ą anx ` bnqq,

so

nPpX0 ą anx ` bnq ´ nonÑ8pPpX0 ą anx ` bnqq nÝÑ ´ lnGξ ,1,0pxq

ñ nPpX0 ą anx ` bnq
„

1 ´ onÑ8pPpX0 ą anx ` bnqq
PpX0 ą anx ` bnq



nÝÑ ´ lnGξ ,1,0pxq

ñ nPpX0 ą anx ` bnq nÝÑ ´ lnGξ ,1,0pxq.

On the other hand, since the Xi’s are independent,

pÑ
p2q
n pAqq˚P “ Bin

ˆ

n,P

ˆ

X0 ´ bn

an

ą x

˙˙

,

whose mean is nP

´

X0´bn

an
ą x

¯

nÝÑ ´ lnGξ ,1,0pxq, so, using theorem 2.1.5, one finds that

pÑ
p2q
n pAqq˚P

vÝÑ Poi´ lnGξ ,1,0pxq.

Finally, because the first component of
řn´1

i“0 δ´ i
n
,

Xi´bn
an

¯ is evenly spread in the line (and not random

at all), we conclude that, when A “ pt1, t2s ˆ px,x˚q with t1, t2 P r0,1s, t1 ă t2:

pÑ
p2q
n pAqq˚P

vÝÑ Poipt2´t1q ¨ ´lnGξ ,1,0pxq,

fulfilling, as desired, condition (ii) in definition 2.1.17. The remaining conditions are left for the

reader.

On an intuitive level, the point process Ñ
p2q
n spreads homogeneously over the unit-time-interval and,

independently, stacks on top of it, over the (n-normalized) severity axis, the associated (n-normalized)

realizations of the process. As n grows, a given (n-normalized) realization, say i “ 7, stacks-over

closer to t “ 0. But, at the same time, the larger the n, the more realizations (i.e., the more i’s) get to
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be concentrated on top of the unit-time-interval: how many of them will be stacking-over close to

a certain time t is just as many as there are close to time t “ 0. In the limit, we get a point process

Ñp2q in the time ˆ (normalized) severity space that realizes countably many points which, vaguely

speaking, seem to have independent coordinates, being them uniformly distributed in time, whereas,

in the severity space, iid according to some distribution (the same on each time fiber). To put this

vague description into perspective, we discuss more precisely the behavior of the limit, say, when

ξ ě 0 and x˚ “ ´8.

If the limit point process Ñp2q is projected into the time coordinate, we do not even get a random

measure in the sense of definition 2.1.14, because almost surely there are infinitely many points in the

compact set r0,1s, since realizations in the product space themselves already have infinitely many

points. Notice that the mass randomly assigned to a set of the type pt1, t2s ˆ px˚,x
˚q in expectation

equals pt2 ´ t1q ¨ ´ lnGξ ,1,0px˚q “ 8. However, if only the x-final-tail of the limit point process

is projected into the time coordinate, then we get a Poisson point process Ñp1,xq with intensity

rpxqLebr0,1s, where rpxq “ ´ lnGξ ,1,0pxq. So, according to definition 2.1.22, Ñp2q is an px˚,x
˚q-lifted

(vacuously compound) Poisson point process on the state space r0,1s relative to tpx,x˚q : x P px˚,x
˚qu

with intensity x ÞÑ ´ lnGξ ,1,0pxqLebr0,1s (and multiplicity pλℓqℓPNě1
where λ1 “ 1).

Now that we know a suitable way to look at the limit process, we could take a step back and

use it to look at the Ñ
p2q
n ’s. But everything would be similar, with, however, the terms approaching

´ lnGξ ,1,0 appearing — in which case the calculation carried out before suffices to aid one intuition.

The review of the classical independent theory is complete. Until the end of this section, we

address some related concepts which turn out to be useful to equip the reader for the next section.

The Poisson point process Ñp1,xq introduced above (on r0,1s with intensity ´ lnGξ ,1,0pxqLebr0,1s)

can be characterized as the distributional limit of the following sequence of point processes on r0,1s:

Ñ
p1,xq
n :“

n´1
ÿ

i“0

δ i
n
✶px,x˚qppXi´bnq{anq,

for reasons similar to those of the previous discussion.

Since this one is a homogeneous Poisson point process, we can interpret that its associated

inter-arrival times are exponentially distributed with intensity ´ lnGξ ,1,0pxq.

One can define inter-arrival times associated with the Ñ
p1,xq
n ’s as given by

˜IA
n,p1,xq
j :“ 1

n
inf

!

i ě 0 : #
!

i1 P r0, is :
Xi1 ´bn

an
ą x

)

“ j

)

´ 1
n

inf
!

i ě 0 : #
!

i1 P r0, is :
Xi1 ´bn

an
ą x

)

“ j ´ 1
) p j ě 1q,

and each p ˜IA
n,p1,xq
j q jPNě1

will be iid with underlying distribution converging vaguely to one of the

previous paragraph, when n Ñ 8.

The analysis developed in theorem 2.2.7 has a counterpart with respect to the alternative normal-

ization introduced in proposition 2.2.4. We highlight what interests us the most.

Theorem 2.2.8 (Adapted Pickands, Balkema, de Haan, Resnick). Let pXiqiPNě0
be a sequence of iid

R-valued random variables on pΩ,F ,Pq. Then items 1, 2 and 3 below are equivalent.
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1. Du : pn,τq P Ně0 ˆRą0 ÞÑ unpτq P R continuous and strictly decreasing (increasing) in τ (in

n) satisfying:

PpMn ď unpτqq ÝÑ
nÑ8

e´τ ,@τ P Rą0,

2. Du : pn,τq P Ně0 ˆRą0 ÞÑ unpτq P R continuous and strictly decreasing (increasing) in τ (in

n) satisfying: (see proposition 2.2.4),

nPpX0 ą unpτqq ÝÑ
nÑ8

τ ,@τ P Rą0.

3. Du : pn,τq P Ně0 ˆRą0 ÞÑ unpτq P R continuous and strictly decreasing (increasing) in τ (in

n) satisfying:

N
p2q
n :“

n´1
ÿ

i“0

δp i
n
,u´1

n pXiqq
dÝÑ

nÑ8
Np2q, (2.6)

where Np2q is a Poisson point process on r0,1s ˆRą0 with intensity measure γ “ Lebr0,1s ˆ LebRą0
.

Similarly, if the τ-initial-tail of Np2q is projected into the time coordinate, we get Np1,τq a Poisson

point process on r0,1s with intensity rpτqLebr0,1s, where rpτq “ τ . Alternatively, Np2q is an p0,8q-

lifted (vacuously compound) Poisson point process on the state space r0,1s relative to tr0,τq : τ PRą0u
with intensity τ ÞÑ τLebr0,1s (and multiplicity pλℓqℓPNě1

where λ1 “ 1).

Once again, Np1,τq can be characterized as the distributional limit of

N
p1,τq
n :“

n´1
ÿ

i“0

δ i
n
✶

u
´1
n pXiqăτ , (2.7)

a point process on r0,1s.
Analogous comments can be made regarding inter-arrival times. Those of Np1,τq are exponential

with intensity τ , and those of N
p1,τq
n converge to the former when n Ñ 8.

2.2.2 Hitting statistics

Our last topic in this review is hitting statistics, which are very much related to extreme value theory.

We still consider pXiqiPNě0
a sequence of iid R-valued random variables on pΩ,F ,Pq. Consider

that X0˚P is fully supported and has no atoms. Let Γ P BR be the so-called target set, small in the

sense that pX0˚PqpΓq “ 0 and denote Γρ “ BρpΓq. Let U P BR (in practice, we will make it some

neighborhood of Γ).

Let us define some working objects.

Definition 2.2.9. The first hitting time1 of pXiqiě0 into U is the function

r1
U “ rU : Ω Ñ Ně1 Y t8u

ω ÞÑ infti P Ně1 : Xipωq P Uu .

1One could consider return time statistics, studying rU |X0PU . But in the iid case this adds nothing deep, since knowing

that the starting condition of the process is in some set is irrelevant to what happens later.
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The associated higher-order hitting times are given, for ℓ ě 2, by the function

rℓU : Ω Ñ Něℓ Y t8u
ω ÞÑ infti ą rℓ´1

U : Xipωq P Uu .

Definition 2.2.10. The hit counting function of pXiqiě0, for L ě 1 are given by

ZL
˚U : Ω Ñ Ně0

ω ÞÑ
L
ÿ

i“1

✶U ˝ Xipωq ,

ZL
U : Ω Ñ Ně0

ω ÞÑ
L´1
ÿ

i“0

✶U ˝ Xipωq .

These objects are related, for example, in the sense that tZL
˚U ě ℓu “ trℓU ď Lu, tZL

˚U “ ℓu “
trℓU ď L ă rℓ`1

U u.

In the previous section, we were interested in controlling the maximum or large values of the

process, as given, respectively, by, say, items one and two of theorem 2.2.7 or 2.2.8. Now the extreme

event of interest is the process hitting the target or shrinking vicinities of it. How small we consider

these vicinities and/or how long we watch the process evolve is something to adjust. This adjustment

is done with a balanced normalization in the spirit proposition 2.2.4 or theorem 2.2.8 (rather than the

linear alternative of theorem 2.2.7), but this can be accomplished fine-tuning I) the space component,

II) the time component, or III) both.

Using functions

ρ˚ : Ně1 ˆRą0 Ñ Rą0

pm,τq ÞÑ ρ˚
mpτq ,

L˚ : Ně1 ˆRą0 Ñ Ně1

pm,τq ÞÑ L˚
mpτq

one would like to harmonize how fast radii around the target shrink and how long the time we watch

the process in order to obtain that asymptotically

L˚
mpτqPpX0 P Γρ˚

m pτqq
mÝÑ τ , @τ P Rą0, (2.8)

or even exactly

L˚
mpτqPpX0 P Γρ˚

m pτqq
@m” τ , @τ P Rą0

ô L˚
mpτq @m” τ

PpX0PΓ
ρ˚

m pτq
q , @τ P Rą0

ô L˚
mpτq @m”

Z

τ
PpX0PΓ

ρ˚
m pτq

q

^

, @τ P Rą0.

(2.9)

The second condition is apparently more demanding, but actually, i) conditions that guarantee

solutions to equation (2.8) exist usually guarantee that solutions to equation (2.9) also exist, and

ii) solutions to equation (2.8) which are not exactly solutions to equation (2.9) will not modify the

asymptotic statistical statements we will be after. We chose to build this section based on the exact

version in equation (2.9). In future sections, if the asymptotic version is used instead, one can easily

adapt the concepts we will present in the following.

Now let’s look at the different normalization approaches.

I) Space-normalization
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One may meet the balancing condition given in equation (2.9) by solving for ρ˚ and so adjusting

the speed at which space-radii shrink while observation time grows in the plain manner, like L˚
mpτq “ m.

Presenting an explicit solution to ρ˚
mpτq given L˚

mpτq “ m is not immediate, but also not important

at this point. So we keep looking at equation (2.9) implicitly. Actually, to make a connection with

extreme value theory, ρ˚
mpτq is not solved directly, but in terms of ρ˚

mpτq “ g´1pumpτqq, where

a)

g : r0,8q Ñ r0,8s (2.10)

is a continuous function that is strictly decreasing near 0, where it attains a global maximum.

b)

u : Ně1 ˆRą0 Ñ R

pm,τq ÞÑ umpτq (2.11)

is a continuous function which is strictly decreasing in τ , strictly increasing in m to gp0q (for any τ).

c)

mPpX0 P Γg´1pumpτqqq
@m” τ , @τ P Rą0,

2 (2.12)

where Γg´1pumpτqq “ BpΓ,g´1pumpτqqq “ tϕ ą umpτqu. Put differently, one can introduce the process

Yi “ ϕ ˝ Xi “ g ˝ dpXi,Γq, so a visit very close of Γ translates to a very high ϕ observation, and the

above condition rewrites in the usual extreme value theory form as

mPpY0 ą umpτqq @m” τ, @τ P Rą0.
3 (2.13)

The problem of finding a solution is then moved from fine-tuning ρ˚
mpτq to fine-tuning umpτq.

Here we could write an “explicit” solution as

umpτq “ F´1˚
Y0

p1 ´ τ{mq pτ P p0,1sq

where F´1˚
Y0

is the generalized inverse of the cumulative distribution function of Y0, provided that, say,

Y0˚P is fully supported and has no atoms.

As a consequence of such choice, not only equation (2.9) is verified, but also the following

asymptotics:

Ppr1
Γ

g´1pumpτqq
ą mq “ PpZm

˚Γ
g´1pumpτqq

ă 1q “ PpZm
˚Γ

g´1pumpτqq
“ 0q

“ PpX1 R Γg´1pumpτqqq ¨ . . . ¨PpXm R Γg´1pumpτqqq

“ r1 ´PpX0 P Γg´1pumpτqqqsm mÝÑ e´τ ,

2The asymptotic counterpart of equation (2.12) reads as

mPpX0 P Γg´1pumpτqqq
m
ÝÑ τ , @τ P Rą0 p2.121q.

3The asymptotic counterpart of equation (2.13) reads as

mPpY0 ą umpτqq
m
ÝÑ τ , @τ P Rą0 p2.131q.
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and, similarly,

PpMm ď umpτqq “ PpZm
Γ

g´1pumpτqq
“ 0q

“ PpX0 R Γg´1pumpτqqq ¨PpX1 R Γg´1pumpτqqq ¨ . . . ¨PpXm´1 R Γg´1pumpτqqq

“ r1 ´PpX0 P Γg´1pumpτqqqsm mÝÑ e´τ .

The space-normalization defined above induces the following point processes, called rare event

point processes (REPP).

Definition 2.2.11. The two-dimensional REPP with space-normalization associated to the system

ppXiqiě0,P,Γq wrt pg,uq satisfying (a-c) (see equations (2.10-2.12)) is the sequence of point processes

N
p2,Iq
m “ 4

n´1
ÿ

i“0

δp i
m
,u´1

m pYiqq on r0,1s ˆ p0,8q.

We consider also the following variation with the same nomenclature

N2,I
m “

8
ÿ

i“0

δp i
m
,u´1

m pXiqq on r0,8q ˆ p0,8q.

Definition 2.2.12. The one-dimensional REPP with space-normalization associated to the system

ppXiqiě0,P,Γq wrt pg,uq satisfying (a-c) (see equations (2.10-2.12)) at scale τ P Rą0 is the sequence

of point processes

N
p1,I,τq
m :“ 5

n´1
ÿ

i“0

δ i
m
✶

u
´1
m pYiqăτ “

n´1
ÿ

i“0

δ i
m
✶XiPΓ

g´1pumpτqq
on r0,1s.

We consider also the following variation with the same nomenclature

N1,I,τ
m :“

8
ÿ

i“0

δ i
m
✶XiPΓ

g´1pumpτqq
on r0,8q.

It is immediate that N
1,I,τ
m coincides with the projection of N

2,I
m

ˇ

ˇ

ˇ

r0,8qˆp0,τq
into the first coordi-

nate. In particular, by the continuous mapping theorem, if a distributional limit is found for N
2,I
m ,

say N
2,I
8 , then π1˚

„

N
2,I
8

ˇ

ˇ

ˇ

r0,8qˆp0,τq



is the distributional limit of N
1,I,τ
m . Similarly for N

p1,I,τq
m and

N
p2,Iq
m

ˇ

ˇ

ˇ

r0,1sˆp0,τq
.

II) Time-normalization

On the other hand, one may meet the balancing condition given in equation (2.9) by solving for

L˚ and so adjusting the time during which the process is observed while space-radii shrinks in a plain

manner, like ρ Ñ 0.

4Coincides with N
p2q
m , introduced in equation (2.6), but with the old Xi substituted by the new Yi.

5Coincides with N
p1,τq
m , introduced in equation (2.7), but with the old Xi substituted by the new Yi.
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Abusing notation, it turns out that equation (2.9) is fulfilled with

L˚
ρpτq :“

Z

τ

PpX0 P Γρq

^

, ρ˚ :“ ρ

or, adhering to the notation presented in the subsequential terms used before, given a sequence ρm Œ 0

as m Ñ 8, it turns out that equation (2.9) is fulfilled with

L˚
mpτq :“

Z

τ

PpX0 P Γρm
q

^

,ρ˚
mpτq :“ ρm.

As a consequence, not only equation (2.9) is verified, but also the following asymptotics:

Ppr1
Γρm

ą
Z

τ

PpX0 P Γρm
q

^

q “ PpZ

Y

τ
PpX0PΓρm q

]

˚Γρm
ă 1q “ PpZ

Y

τ
PpX0PΓρm q

]

˚Γρm
“ 0q

“ PpX1 R Γρm
q ¨ . . . ¨PpXY

τ
PpX0PΓρm q

] R Γρm
q

“ r1 ´PpX0 P Γρm
qs
Y

τ
PpX0PΓρm q

]

mÝÑ e´τ , @τ P Rą0,

and, similarly,

PpZ

Y

τ
PpX0PΓρm q

]

Γρm
“ 0q “ PpX0 R Γρm

q ¨PpX1 R Γρm
q ¨ . . . ¨PpXY

τ
PpX0PΓρm q

]

´1
R Γρm

q

“ r1 ´PpX0 P Γρm
qs
Y

τ
PpX0PΓρm q

]

mÝÑ e´τ , @τ P Rą0.

These limits would occur similarly if considering ρ Ñ 0 instead of the subsequence ρm Œ 0.

The time-normalization defined above induces the following REPPs.

Definition 2.2.13. The one-dimensional REPP with time-normalization associated to the system

ppXiqiě0,P,Γq wrt pρmqmě1 Œ 0 at scale τ P Rą0 is the sequence of point processes

N
p1,II,τq
m :“

tτ{PpX0PΓρm qu´1
ÿ

i“0

δ i

tτ{PpX0PΓρm qu
✶XiPΓρm

on r0,1s.

We consider also the following variation with the same nomenclature

N1,II,τ
m :“

8
ÿ

i“0

δ i

tτ{PpX0PΓρm qu
✶XiPΓρm

on r0,8q.

III) Space-time normalization

Using the notation from the first two cases, one can also set

ρ˚
mpτq “ g´1pumpτqq
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where (a-c) are satisfied, together with

L˚
mpτq “

[

τ

PpX0 P Γg´1pumpτqqq

_

.

This will recover case (I) where the general shrinking radii ρm happen to be the very special one

ρmpτq :“ ρ˚
mpτq “ g´1pumpτqq, therefore equation 2.9 is immediately verified. Also, the following

asymptotics occur

P

˜

Z

Y

τ{P
ˆ

X0PΓ
g´1pumpτqq

˙
]

Γ
g´1pumpτqq

“ 0

¸

„
´

1 ´ τ

n

¯

Y

τ
τ{n

]

„
´

1 ´ τ

n

¯n
mÝÑ e´τ .

The space-time-normalization above induces the following REPPs.

Definition 2.2.14. The one-dimensional REPP with space-time-normalization associated to the

system ppXiqiě0,P,Γq wrt pg,uq satisfying (a-c) (see equations (2.10-2.12)) at scale τ P Rą0 is the

sequence of point processes

Ñ
p1,III,τq
m :“

Y

τ{P
ˆ

X0PΓ
g´1pumpτqq

˙
]

´1
ÿ

i“0

δ i
Z

τ{P

ˆ

X0PΓ
g´1pumpτqq

˙^

✶XiPΓ
g´1pumpτqq

on r0,1s.

We consider also the following variation with the same nomenclature

Ñ1,III,τ
m :“

8
ÿ

i“0

δ i
Z

τ{P

ˆ

X0PΓ
g´1pumpτqq

˙^

✶XiPΓ
g´1pumpτqq

on r0,8q.

What we discussed in (I-III) is the standard paradigm in the study of hitting statistics. In principle,

one could consider how the normalization used in theorem 2.2.7 would manifest in the present matter.

As an exercise to connect as many dots as possible and clear out the picture, this is left to the footnote6.

Now we inquire about higher-order statistics. For one of those suitably chosen normalization

schemes ρ˚
mpτq and L˚

mpτq, we want to evaluate

lim
m

PpZ
L˚

m pτq
˚Γ

ρ˚
m pτq

ă nq “ lim
m

Pprn
Γ

ρ˚
m pτq

ą L˚
mpτqq,

6For the space-normalization. Let pamqmPNě0
Ă Rą0,pbmqmPNě0

Ă R and ξ P R be such that

mPpX0 P Γg´1pamx`bmqq
m
ÝÑ ´ lnGξ ,1,0pxq, @x P contpGξ ,1,0q.

Then, with ρ˚
m pxq :“ g´1pamx ` bmq and L˚

mpxq :“ m, similar calculations lead us

PprΓ
g´1pamx`bmq

ą mq
m
ÝÑ Gξ ,1,0pxq, @x P contpGξ ,1,0q.

For the time-normalization counterpart. Notice that we already had a linear normalization of time in (I). What we can

then expect is some different normalization which reveals a more refined limit. This would be possible provided that one

finds some s : pm,xq P Ně1 ˆR ÞÑ smpxq P Rą0 and ξ P R so that, taking L˚
mpxq :“ smpxq and ρ˚

m pxq :“ ρm, one has

PprΓρm
ą smpxqq “ p1 ´PpX0 P Γρm

qqsmpxq m
ÝÑ Gξ ,1,0pxq, @x P contpGξ ,1,0q.
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which boils down to the evaluation of

lim
m

PpZ
L˚

m pτq
Γ

ρ˚
m pτq

“ nq.

This is not as easy to calculate directly as the first-order case we evaluated before. But adopting

the space-normalization approach wrt pg,uq, with ρ˚
mpτq “ g´1pumpτqq and L˚

mpτq “ m, the condition

given in equation (2.13) allows us to apply theorem 2.2.8, whose third item will assist us:

P

´

Ñ
p2,Iq
m pr0,1s ˆ p0,τqq “ n

¯

mÝÑ P

´

Ñp2,Iqpr0,1s ˆ p0,τqq “ n

¯

ñ P

´

N
p1,I,τq
m pr0,1sq “ n

¯

mÝÑ Poiτptnuq ñ P

´

Zm
Γ

g´1pumpτqq
“ n

¯

mÝÑ Poiτptnuq.

Although we do not present further justification, it is then natural to expect that, for the time-

normalization approach wrt pρmq Œ 0,

P

´

N
p1,II,τq
m pr0,1sq “ n

¯

mÝÑ Poiτptnuq ñ P

˜

Z

Y

τ
PpX0PΓρm q

]

Γρm
“ n

¸

mÝÑ Poiτptnuq,

whereas, for the space-time-normalization,

P

´

N
p1,III,τq
m pr0,1sq “ n

¯

mÝÑ Poiτptnuq ñ P

¨

˝Z

Z

τ
PpX0PΓ

g´1pumpτqq
q

^

Γ
g´1pumpτqq

“ n

˛

‚

mÝÑ Poiτptnuq.



Chapter 3

State of the art: Compound Poisson

distributions for dynamical systems

3.1 Deterministic systems

In this section, we review briefly some takeaways of the extreme value theory and hitting statistics for

stochastic processes arising from deterministic dynamical systems, with a special bias toward results

in the compound Poisson class. Since this literature can become very intricate, we do not intend to

be exhaustive or even to cover many details right now, but to present some representative results and

concepts in this literature.

In the context of dynamically defined processes, stationarity is kept while independence is lost.

However, weaker versions of independence are still available, usually depending on the type of decay

of correlations presented by the dynamical system.

An important takeaway is that the Poisson statistics that appeared in sections 2.2.1 and 2.2.21 are

consequences of independence. When independence is not present, different limiting behaviors might

occur, provided that this dependence produces clusters of visits to regions of interest2. If this is not

the case, we again observe Poisson statistics. On the other hand, if that is the case (e.g. when such

a region consists of a periodic point), we have a mixture of two behaviors: i) eventually the orbit

visits the region of interest and then repeated visits occur due to the clustering effect produced by the

local dynamics around that locus; ii) eventually the orbit escapes the local dynamics and undergoes

an excursion around the rest of the phase space, mostly driven by weak independence of the system,

so that after an exponential time (i) re-occurs. In the asymptotic limit, this description results in a

compound Poisson distribution, where the number of Poissonian events is related to (ii), and their

associated multiplicity distribution is related to (i).

For the rest of this section, we consider the following general setup.

Let M be a compact metric space equipped with its Borel σ -algebra BM and T : M Ñ M be

a measurable transformation which leaves invariant µ P PpMq, an atomless and fully supported

probability. Let Γ P BM be a target set, small in the sense that µpΓq “ 0 and denote Γρ “ BρpΓq. Let

U P BM (in practice, we will make it some neighborhood of Γ).

1Recall that e´τ “ Poiτ pt0uq and e´t “ Poitpt0uq.
2Namely, a target set or the set of points maximizing an observable.
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We induce the dynamically defined stochastic process

Xi :“ T i : pM,BM,µq Ñ pM,BMq pi ě 0q.

Consider that there exists pg,uq satisfying the conditions given in equations (2.10-2.12), to be used

when we pursue space or space-time normalization. Then we define ϕp¨q “ g ˝ dp¨,Γq and the

associated observed stochastic process

Yi :“ ϕ ˝ Xi “ ϕ ˝ T i : pM,BM,µq Ñ pR,BRq pi ě 0q.

Here we will use mutatis mutandis the definitions presented in section 2.2.2. Note that µpZL
U “

nq “ µpZL
˚U “ nq, by invariance.

Let us introduce the most basic object one comes across in this context.

Definition 3.1.1. The extremal index of pT,µ,Γq is a number α P r0,1s satisfying one of the following

conditions:

I)

lim
mÑ8

µpMm ď umpτqq “ e´ατ , @τ ą 0;

II)

lim
ρÑ0

µpr1
Γρ

ą tt{µpΓρ quq “ e´αt , @τ ą 0;

III)

lim
mÑ8

µpr1
Γ

g´1pumpτqq
ą
X

t{µpΓ
g´1pumpτqqq

\

q “ e´αt , @τ ą 0.

The pair pg,uq being used in items (I) and (III) above is anyone satisfying the conditions given in

equations (2.10), (2.11), (2.12), either in exact version or its m-asymptotic counterpart. Implicitly, it is

considered unimportant the specific choice of such pg,uq among the eligible ones. Moreover, it is also

implicitly considered that (I), (II), and (III) are equivalent. We do not pursue such characterizations at

this level of generality. See [39] and [69] for results in this direction.

On an intuitive level, the extremal index identifies how much clustering is produced by the system

near the target, or how much clustering of extreme values is produced by the system: if α “ 1 there

is no clustering effect (as in the independent case), if α “ 0 the clustering effect is huge. Put in

another way, α measures the proportion of points in the germ around the target that leave a cluster

of recurrence to the same germ right after the first dynamical iteration (i.e., they are the last extreme

observation in their cluster), thus breaking free from the local behavior and initiating an excursion.

3.1.1 Point processes

The approach we are going to review in this section follows from that introduced by [67], [57] and

[73] for stationary stochastic processes, using variants of the conditions known as Dpuq and D1puq,

which were improved and adapted to the realm of dynamically defined processes, as to pursue, both in

the absence and presence of clustering, the description of rare event point processes (REPPs).

The REPPs considered in this section always involve space-normalization (i.e., of type I or III

presented in section 2.2.2) but, instead of the balancing condition given by equations (2.12) and (2.13),

one adopts the slightly more general m-asymptotic counterpart.
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We use [34] as a reference point to discuss this section while bringing results from other papers.

In [34] they prove the convergence of one-dimensional, two-dimensional and what they call multi-

dimensional REPPs.

Since two-dimensional REPPs already carry (more than) enough information to make a transparent

connection with the compound Poisson processes we are after, we will not delve into more informed

REPPs, such as their multi-dimensional REPPs. We mention briefly that, as compared to two-

dimensional REPPs, their second component does not simply register the rarity of an instance (as

measured in terms of the u´1
m pYiq’s) but it actually registers where exactly (near a target point) such

instance landed, in terms of associated tangent space. A similar attitude can be found in [74].

We start with one-dimensional REPPs.

In [41] and [12], a periodic-aperiodic dichotomy for N
1,I,τ
m was established, under the conditions

of singleton targets, one-dimensional expanding maps, and regular invariant measures which are

absolutely continuous with respect to Lebesgue. In the periodic case, with a p-periodic point ζ

comprising the target, it was shown that N
1,I,τ
m converges to a compound Poisson point process on

r0,8q with intensity ατ Leb and multiplicity λℓ “ αp1 ´ αqℓ´1 (ℓ ě 1q, where α “ 1 ´ 1{JT ppζ q. In

the aperiodic case, it is shown that N
1,I,τ
m converges to a Poisson point process on r0,8q with intensity

τ Leb, which corresponds/extends the previous case as if α was 1.

Notice that whenever N
1,I,τ
m converges to a compound Poisson process on r0,8q with intensity

rpτq “ ατ Leb and multiplicity pλℓpτqqℓPNě1
, it follows that

µpMm ď umpτqq “ µpN1,I,τ
m pr0,1sq “ 0q mÝÑ e´rpτq “ e´aτ ,

meaning that α is the extremal index of the associated system. Similar observations hold for N
1,II,τ
m

and N
1,III,τ
m . Under the same assumption, there is still no general relationship between the extremal

index α and the multiplicity distribution pλℓpτqqℓPNě1
, even if pλℓpτqqℓPNě1

@τą0“ pλℓqℓPNě1
. However,

in most cases, especially when targets do not overlap with the parabolic locus of non-uniformly

hyperbolic maps, a relationship holds: α “
`
ř

ℓě1 ℓλℓ

˘´1
, i.e., the extremal index is the inverse of the

mean multiplicity (also known as mean cluster size). This relationship can fail to hold even when the

α ą 0 and
ř

ℓě1 ℓλℓ ă 8, as we discuss at the end of this section. Before this discussion, the reader

need not to be preoccupied and might consider that the expected relationship holds.

By the previous results from [41] and [12], one has that limits of N
2,II
m are expected to be p0,8q-

lifted compound Poisson processes on the state space r0,8q relative to tp0,τq : τ PRą0u with intensity

τ P Rą0 ÞÑ ατ Leb and multiplicity τ P Rą0 ÞÑ λℓ “ αp1 ´ αqℓ´1 (ℓ ě 1q, where α “ 1 ´ 1{JT ppζ q
when ζ is p-periodic and α “ 1 otherwise. This is indeed the case, as we will see in the next result,

theorem 3.1.2, which provides a finer description of these limits.

Theorem 3.1.2. [[34], thm 4.3] Let M be a compact Riemannian manifold with Lebesgue measure,

Leb, and let pT,µ,Γq be a system as introduced in section 3.1 which is given a normalization pg,uq
satisfying the conditions given in equations (2.10), (2.11) and (2.12’). Consider that µ is absolutely

continuous with respect to Leb with

lim
εÑ0

µpBεpxqq
LebpBεpxqq “ dµ

d Leb
pxq (@x P M). (3.1)
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Consider Γ “ tζ u, where ζ is a hyperbolic repelling point in whose orbit T is continuous.

Assume that decay of correlation is rich enough in the sense that:

A) There exists a Banach space C1 of real-valued measurable functions defined on M, containing

✶B, for all B P BM and if pBnqně0 Ă BM is such that there exists a uniform bound for the number of

connected components of all Bn’s, then there exists C ą 0 such that }✶Bn
}C1

ď C (n ě 0);

B) For all φ P C1,ψ P L1pµq and n ě 1, one has:

Corµpφ ,ψ,nq “ 1

}φ}C1
}ψ}L1pµq

ˇ

ˇ

ˇ

ˇ

ż

M

φpψ ˝ T nqdµ ´
ż

M

φdµ

ż

M

ψdµ

ˇ

ˇ

ˇ

ˇ

ď cn,

with
ř

ně1 cn ă 8.

Then:

I) If ζ is aperiodic, then N
2,I
m

dÝÑ N
2,I
8,aper, where the latter is a simple point process on r0,8q ˆ

p0,8q given by

N2,I
8,aper “

8
ÿ

i, j“1

δpTi, j,Ui, jq,

where Ti, j “ ř j

l“1 T̄i,l , pT̄i, jqi, j a matrix of iid random variables distributed like Exp1 and pUi, jqi, j is

another matrix of iid random variables distributed like Ui, j „ Unifpi ´ 1,1s and so that pT̄i, jqi, j K
pUi, jqi, j.

II) If ζ is p-periodic and DT p
ζ pvq “ ϑv P Tζ M (|ϑ | ą 1, @v P Tζ M), then N

2,I
m

dÝÑ N
2,II
8,per, where

the latter is a simple point process on r0,8q ˆ p0,8q given by

N2,II
8,per “

8
ÿ

i, j“1

8
ÿ

l“0

δpTi, j,ϑ l dimpMqUi, jq
,

where Ti, j “ ř j

l“1 T̄i,l , pT̄i, jqi, j a matrix of iid random variables distributed like Expα , α “ 1 ´
ϑ ´dimpMq, and pUi, jqi, j is another matrix of iid random variables distributed like Ui, j „ Unifpi ´ 1,1s
and so that pT̄i, jqi, j K pUi, jqi, j.

As a consequence:

i) If ζ is aperiodic, then N
1,I
m

dÝÑ N
1,I
8,aper, where the latter is a Poisson point process on r0,8q with

intensity 1Leb.

ii) If ζ is p-periodic and DT p
ζ pvq “ ϑv P Tζ M (|ϑ | ą 1, @v P Tζ M), then N

1,II
m

dÝÑ N
1,II
8,per, where

the latter is a compound Poisson process on r0,8q with intensity τα Leb and multiplicity λℓ “
αp1 ´ αqℓ´1 (ℓ ě 1q (recall definition 2.1.21), where α “ 1 ´ 1{ϑ .
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Figure 3.1 Left: Simulation of the limiting process in I). Right: Simulation of the limiting process in

II) with dimpMq “ 1 and ϑ “ 3{2. Source [34]: Freitas, Freitas, Magalhães (2020) (Figure 1).

Intuitively, N
2,I
8,aper splits the plane r0,8q ˆ p0,8q into horizontal stripes of unit size in each

of which countably many points realize, with their first coordinates having exponential increments,

thereby like a Poisson point process with intensity 1, and their second coordinate, independently,

drawn uniformly in the interval prescribing such stripe. On the other hand, N
2,I
8,per has a similar

interpretation, but each point realized as before has countably many “children” pilling above it, i.e.,

points whose first coordinate coincides with that of its “father” and whose second coordinate scale

that of its “father” by successive powers of ϑ dimpMq.

Right now we are more interested in the main statements and how their objects fit together. But it

is worthwhile to consider a rough outline of the proof strategy adopted in [34]:

i) Show that rich enough decay of correlations implies that pXiqiě0 satisfies conditions, Д˚
q puq

and Д1
qpuq, where q controls the size of clusters and in the aperiodic case takes value 0, while in the

p-periodic case is taken to be a certain multiple of p.

These conditions, which change slightly throughout the literature, are dynamical versions of the

aforementioned Dpuq and D1puq. The first one has to do with mixing and is used to show that the

occurrence of escapes in a certain cluster is nearly independent from that of next cluster. The second

condition is more delicate to check and relates to the short recurrence properties of small vicinities of

the target, allowing one to access what time scale makes clusters coherent and what is the importance

of those points that escape the cluster.

ii) The conditions obtained in (i) are used in an abstract theorem (their theorem 3.3) which aids an

application of Kallenberg’s criterion, leading to the desired convergence3.

At the end of this section, after reviewing some advances in the literature, we look not at actual

proofs but at new objects, concepts and formulas that are relevant to this approach. In particular, we

address what are clusters and their sizes, which were referred to above but not yet clearly stated.

In [34], they still adapt the technique behind the proof of theorem 3.1.2 to handle situations not

covered by the theorem but still in the realm of their techniques. In particular, incorporating ideas

from [12] (props. 3.4 and 3.5), they obtain the convergence of two-dimensional REPPs when ζ is

a (a)periodic discontinuity point for a piecewise expanding map of the interval (Rychlik map) with

Lebesgue measure. In this exact situation, [12] proved the convergence of one-dimensional REPPs (of

the type N
1,III,τ
m ) to compound Poisson distributions whose multiplicity distribution could be different

3Notice that simplicity, needed for the application of Kallenberg’s criterion, holds for two-dimensional REPPs, but not

one-dimensional ones.
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from geometric, depending on the combinatorics the ζ . These different distributions are explicitly

presented in [12].

In [42], under similar hypotheses to those of theorem 3.1.2, but not restricted to invariant measures

absolutely continuous with respect to Lebesgue, and admitting equilibrium states µφ associated

to a Holder potential φ of finite topological pressure whose density with respect to the associated

conformal measure ηφ still satisfies a regularity condition similar to that of equation 3.1 (with Leb

substituted by ηφ ), authors have shown, again for singleton targets, that

µpMm ď umpτqq mÝÑ e´ατ ,

where:

α “ 1 ´ eSpφpζ q´pPpφq if ζ is p-periodic; 1, otherwise.

We notice that REPPs and compound Poisson statistics were not evaluated in [42]. However, they are

available in [12], with similar explicit formulas, for one-dimensional REPPs (of the type N
1,III,τ
m ) of

(dis)continuous (a)periodic targets for the aforementioned Rychlik maps (see [12] prop 3.2 and 3.5).

In the uniformly hyperbolic case with contracting directions, the items (II) and (ii) of theorem 3.1.2

will not apply. However, for linear Anosov automorphisms of the 2-torus equipped with Lebesgue

measure, the periodic-aperiodic dichotomy for one-dimensional REPPs (of the type N
1,III,τ
m ) was

shown in [24]. Their strategy was also based on conditions of the type Д˚
q puq and Д1

qpuq, but since

Kallenberg’s criterion is not available at the one-dimensional level, the approach introduced in [41]

was applied. They also point out that limits are dependent on the chosen metric, and, for Euclidean and

maximum metrics, explicit formulas are given for the limiting intensity and multiplicity distribution.

Again everything depends on the expansion in the unstable direction and the period p, but it is for

the maximum metric that we ‘usual’ formulas are recovered: α “ 1 ´ 1{|γ|p and λℓ “ αp1 ´ αql´1.

Interestingly, the λℓ’s that appear with the Euclidean metric do not form a geometric distribution.

Theorem 3.1.2 also finds applications with non-uniformly expanding maps with indifferent fixed

points such as the Manneville-Pommeau or Liverani-Saussol-Vaienti (LSV) maps, provided that ζ is

not itself an indifferent fixed point and avoids the countable set of dynamic discontinuities. These

applications rely on the fact that their first return maps are uniformly expanding.

To account for ζ the indifferent fixed point of an LSV map, Tβ , with β P p0,
?

5 ´ 2q, preserving

the absolutely continuous probability µβ , [44] first notes that taking umpτq’s in usual way,

mµβ pX0 ą umpτqq mÝÑ τ , or, simply, mµβ pr0,g´1pumpτqqqq mÝÑ τ,

implies a degenerate the extreme value law µβ pMm ď umpτqq mÝÑ 1 p@τ ą 0q, which means that the

extremal index α is 0, or, on the other hand, that the umpτq’s grow too fast. To find non-degenerate

asymptotics they fix the thresholds requiring that

mµβ

´

“

Tβ ,Ð
´1rg´1pumpτqqs,g´1pumpτqq

˘

¯

mÝÑ τ,
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where Tβ ,Ð is the left-branch of Tβ . Under the new scaling, they find that µβ pMm ď umpτqq mÝÑ e´τ .

The time-normalization counterpart suggested from their solution seems to be

L˚
mpτq “

Y

τ{µβ

´

“

Tβ ,Ð
´1rg´1pumpτqqs,g´1pumpτqq

˘

¯]

instead of L˚
mpτq “

X

τ{µβ pr0,g´1pumpτqqq
\

. Curiously, REPPs under the new scaling still present degener-

ate limits.

When it comes to more general target sets, not limited to singletons, one naturally expects general

compound Poisson statistics, precisely because more complicated recurring behavior around the

target set can be cooked up. This can be seen most simply in the case of finite targets with pieces of

orbits, as evaluated in [13] for one-dimensional REPPs of the type N
p1,III,τq
m . In this direction, see also

[56]. More complicated targets, such as countable sets (see [14]), manifolds (see [33] and [23]), and

fractal sets (see [37], [38] and [71]), were studied from the perspective of extreme value laws, but not

establishing limits for the associated REPPs.

Still using point processes, a more abstract approach to such general target sets was developed

in [43], where authors, inspired by ideas in [19], enriched their point processes as much as possible

(much more than the aforementioned multidimensional REPPs). This allows them to obtain functional

limit theorems for heavy-tailed functions g around general targets that do not overlap the parabolic

locus of non-uniformly hyperbolic maps. Another outcome ([43] thm 4.1) is the convergence of their

enriched point processes, valid for g’s as general as those presented in section 3.1. Their τ-projection

into the first coordinate recovers compound Poissonian limits for one-dimension REPPs, whose

parameters, however, are not easy to present explicitly for general targets — but are expected to

comply with those of [53], whose multiplicity distribution is given by an asymptotic expression (in

terms of the T , µ and Γ) denoted by λℓ (ℓ ě 1) and assumed to exist. Check equation (4.2) to see how

the quantities pλℓqℓ appear in the random case according to the approach of chapter 4.

On the other hand, we note that the main hypothesis of theorem 4.1 in [43] is the existence of the

so-called pilling process, which is a more abstract (or enriched) counterpart to the assumption of the

existence of λℓ’s in [53].

We close this section following [3] and [2] to discuss the relationship between the extremal index

and the mean cluster size, once a compound Poisson point process is found to be the limit of a

one-dimensional REPP. We take the opportunity to clear out some concepts previously invoked in a

vague way and introduce some formulas that are relevant to the aforementioned literature but also

relevant for comparisons with the alternative approaches discussed in the next sections.

Consider a parameter q P Ně0. It will represent the maximum waiting time allowed between

consecutive hits to be considered part of the same cluster.

Let us introduce a couple of working sets.

For n ě 2, let

Dn´1
q pUq “ tx P M : x P U,τ1

U pxq ď q,τ2
U pxq ´ τ1

U pxq ď q, . . . ,τn´1
U pxq ´ τn´2

U pxq ď qu

be the set of points in U whose q-forward-cluster has at least n entries, and

Qn´1
q pUq “ tx P M : x P Dn´1

q ,τn
U pxq ´ τn´1

U pxq ą qu
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be the set of points in U whose q-forward-cluster has exactly n entries. These definitions are naturally

complemented for n “ 1 with

D0
qpUq “ U, Q0

qpUq “ tx P M : x P U,τ1
U pxq ą qu,

which extend the previous interpretations to n “ 1.

Let also

D8
q pUq “

č

ně0

Dn
qpUq

be the set of points in U followed by infinitely many visits to itself, all of which at most q units of

time apart from its adjacent visits.

Moreover, for n ě 1, let

Hn
q pUq “

␣

x P M : x R U,τ1
U pxq “ q,T qpxq P Qn´1

q pUq
(

be the set of points in M which, after exactly q units of time (from iterates 0 to q ´ 1) failing to hit U ,

start a q-cluster that has exactly n entries. To complement this definition with n “ 0, we put

H0
q pUq “ tx P M : x R U,τ1

U pxq “ qu,

which is the set of points in M which, after exactly q units of time (from iterates 0 to q ´ 1) failing

to hit U , start a cluster (of any maximum waiting time and size). Note that Hn
q pUq Ă H0

q pUq, for all

n ě 1.

The following theorems present the basic relationships among the objects above.

Theorem 3.1.3. [[3] thm 2.1] Consider n ě 1 and µ fully supported. Then

µpQn´1
q pUqq ´ µpQn

qpUqq
µpQ0

qpUqq “
µpHn

q pUqq
µpH0

q pUqq .

Denote the coinciding quantity in theorem 3.1.3 by λU
q pnq. It represents the finite-time q-cluster

size distribution. Finite time is in the sense that U is a frozen neighborhood of Γ.

Theorem 3.1.4. [[3] thm 2.3] If µpD8
q pUqq “ 0 (which holds when µ is ergodic and fully supported),

then
ÿ

ně1

nλU
q pnq “

µpD0
qpUqq

µpQ0
qpUqq .

The quantity
µpQ0

qpUqq

µpD0
qpUqq

represents the finite-time q-extremal index, since it registers the portion of

points in U that terminate their q-clusters, thereby scaping from it. Denote
µpQ0

qpUqq

µpD0
qpUqq

“: αU
q . Therefore

ř

ně1

nλU
q pnq “ 1{αU

q .

We pass U :“ Um,τ “ Γg´1pumpτqq to the objects previously defined and, to make their notation

lighter, we substitute “Um,τ” by simply “m,τ”.

The following theorem provides general conditions for one-dimensional REPPs to converge and

explains how the finite-time objects relate to the quantities of the limit.
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Theorem 3.1.5. [[3] thm 2.5, [41], [35]] Consider a system pT,µ,Γ,g,uq and q P Ně0 so that pXiqiě0

satisfies conditions Дqpuq˚ and Д1
qpuq˚. Assume that αm,τ

q
mÝÑ αq (@τ ą 0) and that, for each n ě 1,

λ m,τ
q pnq mÝÑ λqpnq (@τ ą 0).

Then, for all τ ą 0, N
1,I,τ
m converges in distribution as m Ñ 8 to a compound Poisson process on

r0,8q with intensity αqτ Leb and multiplicity pλqpnqqně1.

Adopting the hypotheses of the theorem except for the latter convergence, one still concludes that

αq is the extremal index of the system (see [40] and [42]).

Here we will not discuss further what Дqpuq˚ and Д1
qpuq˚ are. It suffices to recall remark (i) after

theorem 3.1.2 and be aware that there is appropriate q verifying them in all the systems discussed in

this subsection. Similar thing can be said about the remaining hypotheses. We say that q is eligible

for the system if Дqpuq˚ and Д1
qpuq˚ are satisfied. If q is eligible, any q1 ě q will also be, so we

naturally search for the minimal eligible one, to be denoted by q‹. It is a subtle matter to find the q‹ of

a system pT,µ,Γ,g,uq, but some candidates standout, in special because, when Γ “ tζ u, they recover

the period of ζ (zero) if ζ is periodic (aperiodic):

a) (see [2])

q1
‹ “ inf

τą0
liminf
mÑ8

p1pUm,τq if finite, otherwise q1
‹ “ 0,

where

p1pUq “ inf
!

k ě 1

ˇ

ˇ

ˇ
µ
`

tx P M : x P U,T kx P Uu
˘

ą 0
)

;

b) (see [13])

q2
‹ “ inf

τą0
inf

#

k ě 0 : lim
mÑ8

inf
xPQ0

kpm,τq
rQ0

kpm,τqpxq “ 8
+

.

Also notice that, since the limit in the conclusion is actually independent of q, so any eligible q

produces the same αq ” α and pλqpnqqně1 ” pλ pnqqně1. The said coincidence is not necessarily true

for finite-time objects with an m,τ superscript, but for the previous reasons the choice of eligible q

has no profound consequences, so in the following discussion we fix q “ q‹ and omit q’s from the

notation, leaving a star instead.

The point we want to make is that the conclusions of theorems 3.1.4 and 3.1.5 tell us that

1{α
@τ“ lim

m
1{αm,τ

‹ “ lim
m

ÿ

ně1

nλ m,τ
‹ pnq (3.2)

always hold. So the missing piece to guarantee that the extremal index is the inverse of the mean

cluster size is the first equality in the following

lim
m

ÿ

ně1

nλ m,τ
‹ pnq @τ“ ?

ÿ

ně1

nλ‹pnq “
ÿ

ně1

nλ pnq.

In [3] authors present an example within the hypotheses of theorems 3.1.3, 3.1.4 and 3.1.5 where

the previous equality
@τ“ ? does not hold, actually fails regardless of τ , despite being α ą 0 and

ř

ně1 nλ pnq ă 8. It is obtained with a Liverani-Saussol-Vaienti map of the kind discussed in [44]
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and a target made of the indifferent fixed point and an aperiodic point (it could be another periodic

point as well). The authors discuss how such failure can be interpreted as an escape of mass.

Therefore their example produces a situation where the extremal index is not the inverse of the

mean cluster size, whereas the finite-time counterpart of this relation holds, as described by theorem

3.1.4 and equation (3.2).

In [2] section 4.2.1, the authors evaluate related questions. They recall that in the previous example

the finite-time relation holds for the finite-time mean cluster size given by as in theorem 3.1.3, i.e.,

1{αm,τ
q “

ÿ

ně1

nλ m,τ
q pnq “

ÿ

ně1

n
µpHn

q pm,τqq
µpH0

q pm,τqq ,

where in the events Hn
q pm,τq and H0

q pm,τq the first occasion that Um,τ is visited is the beginning of a

q-cluster. As we have seen, the last equation holds in great generality.

However, they show that the latter equation would not hold if, instead, one used, respectively, the

events Q0
qpUm,τq and Um,τ , in which the first occasion that Um,τ is visited might not necessarily be the

beginning of a q-cluster. Modulo this difference, the following fractions have similar content

λ 1m,τ
q pnq :“

µpQ0
qpUm,τqq

µpUm,τq , λ m,τ
q pnq “

µpHn
q pm,τqq

µpH0
q pm,τqq .

The expected value of the former quantity,

ÿ

ně1

nλ 1m,τ
q pnq “

ÿ

ně1

n
µpQ0

qpUm,τqq
µpUm,τq (3.3)

is called the finite-time mean sojourn size and, thus, in general, its inverse does not coincide with

the finite-time extremal index αm,τ
q . However, in the geometric case, things coincide: finite-time and

asymptotic-time statistics, mean cluster size and mean sojourn size.

3.1.2 Spectral methods

The spectral approach to the study of first-hitting time and extreme value laws in the deterministic

case was introduced in [60]. It was based on Lasota-Yorke inequalities and the classic perturbative

theorems developed in [61] and [62]. These inequalities occur only in the realm of uniformly

expanding/hyperbolic systems, with exponential decay of correlations.

In [36], authors considered expanding Lasota-Yorke maps to show conditions of the type Д and

establish convergence of two-dimensional REPPs with compound Poisson statistics (see section 3.1.1).

Despite the similarity in the starting assumptions, the approach of [36] is fundamentally different from

that of [60] and much closer to that described in section 3.1.1. Since [36] handles random dynamical

systems, we discuss it in section 3.2.1.

To discuss the spectral approach to the extremal index in the deterministic case, we will basically

follow [60].

Let M be improved into a compact Riemannian manifold with Lebesgue measure. Let pB,} ¨ }q
be a Banach space of R-valued functions ϕ on M embedded into a space of distributions acting on a
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suitable class of functions under integration against ϕ Leb. In particular, we want to have 1 P B. The

dual of B is also embedded into a space distributions acting on a suitable (possibly different) class of

functions. In particular, Leb P B˚ and, actually PpMq Ă B˚.

Moreover, assume that if h in the class of functions on which elements of B can act, then so is

h ˝ T and let L0 be the Perron-Frobenius transfer operator given by

L0 : B Ñ B

ϕ ÞÑ L0ϕ : h ÞÑ L0ϕphq :“ ϕph ˝ T q.

It follows that ν0 :“ Leb satisfies L0
˚ν0 “ ν0. The invariant measures µ that might appear from

this approach are absolutely continuous with respect to ν0. So the target Γ P BM is actually taken small

so that ν0pΓq “ 0 and, in particular, it would follow that µpΓ0q. Consider the family of pΓρqρPr0,ρ0q.

The system pT,pB,} ¨ }q,Γq is assumed to satisfy the following conditions.

1) For all ϕ P B, it holds that ✶Γρ ϕ,✶MzΓρ
ϕ P B

2) The operators Lρ : pB,} ¨ }q Ñ pB,} ¨ }q given by Lρpϕq “ L0p✶MzΓρ
ϕq satisfy:

2.1) L0 has a spectral gap with leading eigenvalue 1, i.e.,

L0 “ ϕ0 b ν0 ` Q0,

L0ϕ0 “ ϕ0,L
˚
0 ν0 “ ν0,Q0pϕ0q “ 0,Q˚

0 pν0q “ 0,ν0p1q “ 1,ν0pϕ0q “ 1

where ϕ0 b ν0 : ϕ ÞÑ ϕ0ν0pϕq characterizes the spectral projection in the subspace spanned by ϕ0,

and σpQ0q ă 1.

2.2) pLρqρPr0,ρ0q satisfies uniform Lasota-Yorke inequalities, i.e., Dγ P p0,1q, D ą 0 and a norm

(or semi-norm) | ¨ |w ď } ¨ } on B so that

@ρ P r0,ρ0q,@ϕ P B,@n P Ně0 : |Ln
ρϕ|w ď D|ϕ|w,

@ρ P r0,ρ0q,@ϕ P B,@n P Ně0 : }Ln
ρϕ} ď Dγn}ϕ} ` D|ϕ|w.

2.3) pLρqρPr0,ρ0q comprises a triple norm perturbation of L0, i.e.

@ρ P r0,ρ0q : |||Lρ ´L0||| ď πρ ,

where |||R||| :“ sup}ϕ}ď1 |Rϕ|w, for any linear operator R : B Ñ B, and πρ is a r0,8q-valued semi-

continuous function so that limρÑ0 πρ “ 0.

3) Denoting, for ρ P r0,ρ0q,

Aρ :“ }ν0p✶Γρ ¨q}opppB,}¨}q,pC,|¨|qq “ }ν0 ˝Lρ}opppB,}¨}q,pC,|¨|qq,

Bρ :“ }✶Γρ ϕ0} ě }L0p✶Γρ ϕ0q} and

∆ρ :“ ν0 ˝ pL0 ´Lρqpϕ0q

it holds that

lim
ρÑ0

Aρ “ 0 and AρBρ ď const |∆ρ | p@ρ P r0,ρ0qq.
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Following, [61] and [59], items (2.1-2.3) imply that

i)

@ρ P r0,8q : σrespLρq Ă tz P C : |z| ď γu

ii)

λ ´1
ρ Lρ “ ϕρ b νρ ` Qρ pλ0 “ 1q,

Lρϕρ “ λρϕρ ,L
˚
ρνρ “ λρνρ ,Qρpϕρq “ 0,Q˚

ρpνρq “ 0,νρpϕ0q “ 1,νρpϕρq “ 1

where ϕρ b νρ : ϕ ÞÑ ϕρνρpϕq characterizes the spectral projection in the subspace spanned by ϕρ ,

and σpQρq ă λρ (and σpQρq ď γ)

In particular,
ř

ně0 supρPr0,ρ0q }Qn
ρ}ρ ă 8.

iii)

DC ą 0,@ρ P r0,ρ0q : }ϕρ} ď C.

Following [62] corollary 2, items (i-iii) and (3) guarantee that: @ρ P r0,ρ0q,@N ě 1 one has

1 ´ λρ

∆ρ
“ λ0 ´ λρ

∆ρ
“
`

αN,ρ `ONÑ8pp1 ´ γ 1qNq
˘

p1 `OρÑ0pNAρqq (3.4)

where constants associated to both O’s independent of ρ and N, γ 1 ą 0 is a lower bound on the spectral

gap of the Lρ ’s, and

αN,ρ “ 1 ´
N´1
ÿ

q“0

λ
´q
ρ βq,ρ , (3.5)

with

βq,ρ “ ν0 ˝ pL0 ´Lρq ˝Lq
ρ ˝ pL0 ´Lρqpϕ0q

∆ρ
“

µ0ptx P M : x P Γρ ,τ
1
Γρ

pxq “ q ` 1uq
µ0pΓρq (3.6)

where µ0p¨q :“ ν0pϕ0p¨qq P PT pMq, and the latter equality in equation (3.6) holds when µ0pΓρq ą 0

(@ρ P p0,ρ0q), which is an additional hypothesis assumed until the end of this section.

Notice that equation (3.6) points in the direction of a derivative-type result, that would refine a

continuity result, if we had one. But λρ appears in the RHS of equation (3.6) as well, so continuity

has to be known upfront we we want to take the ρ Ñ 0 limit:

ν0 ˝ pL0 ´Lρqpϕρq “ pL˚
0 ν0qpϕρq ´ ν0pLρϕρq “ pλ0ν0qpϕρq ´ ν0pλρϕρq “ λ0 ´ λρ ,

where we have used the normalization ν0pϕρq “ 1, so, applying assumptions limρÑ0 Aρ (see (3)) and

}ϕρ} ď C (see (iii)), it follows that limρÑ0 λρ “ λ0 “ 1.

The equation (3.6) also encodes why the spectral approach appears in the study of hitting statistics,

but in the following, we will present a clearer version of this motivation. Notice also the similitude

between fraction appearing in the sojourn size given in equation (3.3) and the RHS in equation

(3.6): both consider the portion of points which are initially in certain neighborhood of Γ but break a

q-cluster of visits, with the former considering points returning at any later moments ą q, while the

latter considering points returning exactly at time q ` 1.



3.1 Deterministic systems 43

Now that the perturbation results and their conclusions, equations (3.4-3.6), are clearly stated, it is

time to see why they naturally appear in the study of hitting times: for any n ě 0,

ż

tr1
Γρ

ěnu
ϕdν0 “

ż

M

n´1
ź

i“0

✶MzΓρ
˝ T iϕdν0 “

ż

M

L
n
0

˜

n´1
ź

i“0

✶MzΓρ
˝ T iϕ

¸

dν0

“
ż

M

L
n
ρpϕqdν0 “

ż

M

λ n
ρ νρpϕqϕρdν0 `

ż

M

λ n
ρ Qn

ρϕdν0.

So, passing ϕ “ ϕ0 (notice that passing ϕ “ 1 is also interesting) while using νρpϕ0q “ 1 (by design)

and ν0pϕρq Ñ 1 as ρ Ñ 0 (by [62], lemma 6.1), gives

ˇ

ˇ

ˇ
µ0pr1

Γρ
ě nq ´ λ n

ρ

ˇ

ˇ

ˇ
ď λ n

ρ γn}ϕ0}. (3.7)

Taking ρ Ñ 0 in equation (3.4) gives

lim
ρÑ0

1 ´ λρ

µ0pΓρq
@N“ 1 ´

N´1
ÿ

q“0

βq `ONÑ8pp1 ´ γ 1qNq,

provided that D limρÑ0 βq,ρ “: βq, which we assume until the end of this section, and using the

previously justified continuity of λρ ’s. The latter equation, being true for every N, allows us to take

the limit N Ñ 8 to arrive at

lim
ρÑ0

1 ´ λρ

µ0pΓρq “ α :“ 1 ´
8
ÿ

q“0

βq

ñ λρ “ 1 ´ αµ0pΓρq ` oρÑ0pµ0pΓρqq “ e´αµ0pΓρ q`oρÑ0pµ0pΓρ qq. (3.8)

To conclude we look at the time-normalized hitting time:

(3.8) ñ λ

Y

t
µ0pΓρ q

]

ρ “ e
´αµ0pΓρ q

Y

t
µ0pΓρ q

]

`oρÑ0ptq ρÑ0ÝÝÝÑ e´αt

(3.7) ñ
ˇ

ˇ

ˇ

ˇ

ˇ

µ0pr1
Γρ

ą tt{µ0pΓρ quq ´ λ

Y

t
µ0pΓρ q

]

`1

ρ

ˇ

ˇ

ˇ

ˇ

ˇ

ď λ

Y

t
µ0pΓρ q

]

`1

ρ γ

Y

t
µ0pΓρ q

]

`1}ϕ0}.

implying that

lim
ρÑ0

µ0pr1
Γρ

ą tt{µ0pΓρ quq “ e´αt .

Therefore the system pT,µ0,Γq has extremal index α , with

α “ 1 ´
8
ÿ

q“0

βq, with βq “ lim
ρÑ0

µ0ptx P M : x P Γρ ,τ
1
Γρ

pxq “ q ` 1uq
µ0pΓρq .

On the extremal value side, given a space-normalization pg,uq as in equations (2.10-2.12), one has

µ0pMm ď umpτqq “ µ0pr1
Γ

g´1pumpτqq
ě mq ñ |µ0pMm ď umpτqq ´ λ m

g´1pumpτqq|
mÝÑ 0,
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while

λ m
g´1pumpτqq “ e

´αmµ0pΓ
g´1pumpτqqq`momÑ0pµ0pΓ

g´1pumpτqqqq mÝÑ e´ατ ,

so that

µ0pMm ď umpτqq mÝÑ e´ατ .

Error terms are explicitly presented in the previous approach (in concrete situations, the terms γ

and γ 1 can be derived from the expansion factor), but they also discuss sharp bounds.

Applications include Rychlik piecewise expanding maps of the interval and higher-dimensional

expanding maps, with quite general targets. When the targets are singletons, the results presented

in the previous section are recovered. The baker’s map was studied with this technique in [11]. It

is naturally expected that the approach extends to general equilibrium states. Let us recall that this

approach is by design restricted to uniformly hyperbolic situations.

The reader will have noted that the higher-order hitting statistics and compound Poisson distribu-

tions were not addressed in the previous paper. Only very recently, in [8], this problem was addressed

for random dynamical systems, we will discuss it more carefully in section 3.2.2. To conclude this

section we follow [8] (section 2) to review briefly what their approach looks like in the deterministic

situation.

Under the normalization

m “
[

τ

µ0pΓg´1pumpτqqq

_

,

their objective is to evaluate

lim
mÑ8

µ0pZm
Γ

g´1pumpτqq
“ nq,

but this will be approached indirectly: instead of evaluating the distribution of Zm
Γ

g´1pumpτqq
, one

considers the characteristic function (Fourier transform) of such random variable and studies its

pointwise convergence when ρ Ñ 0. Usually, one identifies such limit as the characteristic function of

a random variable Z with a known distribution and then concludes that Zm
Γ

g´1pumpτqq

dÑ
wrt µ0

Z as m Ñ 8,

using Levy continuity theorem. However, in [8], the approach to the limit will be indirect, as we will

see later.

The calculation starts as follows. For ρ P r0,ρ0q, s P R and L ě 1, one has

µ0

´

e
isZL

Γρ

¯

“
ż

M

e
isZL

Γρ ϕ0dν0 “
ż

M

L
L
0

´

e
isZL

Γρ ϕ0

¯

dν0 “
ż

M

L
L
ρ ,spϕ0qdν0, (3.9)

where Lρ,spϕq :“ L0peis✶Γρ ϕq and so LL
ρ,spϕq “ LL

0

´

e
isZL

Γρ ϕ
¯

.

Then the spectral perturbation theory developed before is, for each s P R, applied to pLρ,sqρPr0,ρ0q,

noticing that L0,s “ L0, as to get

λ ´1
ρ ,s Lρ ,s “ ϕρ,s b νρ,s ` Qρ,s

Lρ,sϕρ,s“λρ,sϕρ,s,L
˚
ρ,sνρ,s“λρ,sνρ,s,Qρ,spϕρ,sq“0,Q˚

ρ,spνρ,sq“0,νρ,spϕ0,sq“1,νρ,spϕρ,sq“1,
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in particular, ϕ0,s “ ϕ0, ν0,s “ ν0 and λ0,s “ λ0, and, ultimately,

lim
ρÑ0

λ0 ´ λρ,s

∆ρ,s
“ αpsq :“ 1 ´

8
ÿ

q“0

βqpsq,

where, considering that µpΓρq ą 0,

∆ρ,s “ p1 ´ eisqµpΓρq,

βqpsq “ lim
ρÑ0

ν0 ˝ pL0 ´Lρ,sq ˝Lq
ρ,s ˝ pL0 ´Lρ,sqpϕ0q

p1 ´ eisqµpΓρq

“ lim
ρÑ0

p1 ´ eisq

ż

Γρ XT ´pq`1qΓρ

e
isZ

q
˚Γρ ϕ0dν0

µ0pΓρq

“ lim
ρÑ0

p1 ´ eisq
q
ÿ

n“0

eins
µ0ptx P M,x P Γρ ,T

q`1x P Γρ ,Z
q
˚Γρ

pxq “ nuq
µ0pΓρq

“: p1 ´ eisq
q
ÿ

n“0

eins lim
ρÑ0

κn
q pρ,sq,

provided that the limits above exist. In particular, it can be shown that

lim
ρÑ0

1 ´ λρ,s

∆ρ,s
“ αpsq :“ 1 ´ p1 ´ eisq

8
ÿ

q“0

q
ÿ

n“0

eins lim
ρÑ0

κn
q pρ,sq, (3.10)

where the latter double sum is shown to be finite.

Now we pass to the subsequence of radii pρmqmě1 Œ 0 given by the space-normalization pg,uq,

namely, ρmpτq “ g´1pumpτqq pm ě 1q.

The last centered equation then implies that

@s P R : λg´1pumpτqq,s „mÑ8 1 ´ αpsq∆g´1pumpτqq,s (3.11)

“ 1 ´ αpsqp1 ´ eisqµ0pΓg´1pumpτqqq „mÑ8 1 ´ αpsqp1 ´ eisq τ

m

ñ λ m
g´1pumpτqq,s „mÑ8

”

1 ´ αpsqp1 ´ eisqµ0pΓg´1pumpτqqq
ım

„mÑ8 e´αpsqp1´eisq

And equation (3.9) becomes

µ0

´

e
isZm

Γ
g´1pumpτqq

¯

“
ż

M

L
m
g´1pumpτqq,spϕ0qdν0 (3.12)

“
ż

M

λ m
g´1pumpτqq,sνg´1pumpτqq,spϕ0qϕg´1pumpτqq,sdν0

`
ż

M

λ m
g´1pumpτqq,sQ

m
g´1pumpτqq,sϕ0dν0

ñ
ˇ

ˇ

ˇ

ˇ

µ0

´

e
isZm

Γ
g´1pumpτqq

¯

´ λ m
g´1pumpτqq,s

ˇ

ˇ

ˇ

ˇ

ď λ m
g´1pumpτqq,sγ

m
s }ϕ0}.
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ñ µ0

´

e
isZm

Γ
g´1pumpτqq

¯

mÑ8ÝÝÝÑ e´p1´eisqαpsqτ p@s P R,@τ P Rą0q (3.13)

Since the RHS is continuous at 0, it is the characteristic function of a certain random variable

Z. Also, since the sequence of random variables in the LHS is Ně0-valued, so is the RHS (by the

Portmanteau theorem). Finally, Z is infinitely divisible, because e´αpsqp1´eisqτ “ pe´αpsqp1´eisqτ{NqN .

These conditions, due to a result by Feller, imply that Z has a compound Poisson distribution.

Moreover, Levy’s inversion formula can be applied to get that the mass probability function of

compound Poissonian variable Z at k P Ně0, thereby leading to the characterization we were initially

after:

lim
mÑ8

µ0pZm
Γ

g´1pumpτqq
“ nq “ lim

T Ñ8

1

2T

ż T

´T

e´isne´αpsqp1´eisqτds.

On the other hand, the underlying limiting Z, defined on an abstract probability space pΩ,F ,Pq,

being compound Poissonian, can be written as Zpωq “ řNpωq
i“0 Xipωq, where N „ Poiγ (γ P Rą0),

PpXi “ ℓq “ λℓ (i ě 1, ℓ ě 1) and pXiqiě1 an independent family, also independent from N. In [8], they

point out that γ “ t{řℓě1 ℓλℓ (see their equation (3.38)), while presenting the characteristic function

of X1 (see their equation 2.18):

EpeisX1q “ αpsqpeis ´ 1q
αp0q ` 1

Therefore, one could apply Levy’s inversion formula once again to recover the multiplicity distribution:

λℓ “ lim
T Ñ8

ż T

´T

e´isℓ

ˆ

αpsqpeis ´ 1q
αp0q ` 1

˙

ds.

3.1.3 Probabilistic approximation with Chen-Stein method

The Chen-Stein method, see [18] and [84], provides a way to compare a given distribution and a given

compound Poisson distribution, according to their total variation distance.

In [48], authors use this technique to study hitting statistics of a broad class of measurable maps T

on a measurable space M with an intrinsic countable measurable partition C1 and φ -mixing invariant

measure µ , i.e. either

i) Left φ -mixing:

Dφ : Ně1ÑR, lim
kÑ8

φpkq “ 0,@m,m1 ě 1,@UPσ

˜

m´1
ł

i“0

T ´iC1

¸

,@V Pσ

˜

ď

ně1

n´1
ł

i“0

T ´iC1

¸

|µpU X T ´m´m1
V q ´ µpUqµpV q| ď µpUqφpm1q,

or

ii) Right φ -mixing:

Dφ : Ně1ÑR, lim
kÑ8

φpkq “ 0,@m,m1 ě 1,@UPσ

˜

m´1
ł

i“0

T ´iC1

¸

,@V Pσ

˜

ď

ně1

n´1
ł

i“0

T ´iC1

¸

|µpU X T ´m´m1
V q ´ µpUqµpV q| ď µpV qφpm1q,
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or both.

If instead of the previous two inequalities one considered

|µpU X T ´m´m1
V q ´ µpUqµpV q| ď µpUqµpV qψpm1q,

it would be defining the so-called ψ-mixing condition, which is a particular case of φ -mixing. The

decay function φ is assumed summable.

For the sake of completeness, let us say that when the inequality

|µpU X T ´m´m1
V q ´ µpUqµpV q| ď αpm1q,

occurs instead of the previous one, the α-mixing condition is defined.

The theory works for both left and right φ -mixing systems, invertible or not. We concentrate the

exposition on the left φ -mixing non-invertible case.

They consider very general target sets, presented in terms of cylinders. Namely, they consider

a nested sequence of sets Um P σ
´

Žm´1
i“0 T ´iC1

¯

(m ě 1) so that, with Γ :“ Ş

mě1Um, it holds that

µpΓq “ 0. Notice that the previous framework includes the case where one starts with a measurable µ-

negligible target Γ and considers Um :“ CmpΓq, where, for X Ă M, CmpXq :“ Ť

ξ PCm,ξ XX ξ . Moreover,

it is assumed that they shrink in size fast enough so that: Dpakqkě1 Œ 0,@k ě 1,Dmpkq ě k,@m ě mpkq :

m
ÿ

i“k

µpCipUmqq ď ak. (3.14)

If Um “ CmpΓq, then CipUmq “ Ui and the previous condition basically reduces to
ř8

i“k µpUiq kÑ8ÝÝÝÑ 0.

Then Chen-Stein method is used to estimate the total variation distance between the distribution

of Z
tτ{µpUmqu
m :“ řtτ{µpUmqu´1

i“0 ✶Um
˝ T i under µ and a compound Poisson distribution ηL,m with intensity

τpřℓě1 ℓλℓpL,mqq´1 and multiplicity distribution

λ m,L
ℓ :“

ℓ´1Eµp✶ři`K
j“i´K ✶Um ˝T j“ℓ

|✶Um
˝ T i “ 1q

ÿ

ℓě1

ℓ´1Eµp✶ři`K
j“i´K ✶Um ˝T j“ℓ

|✶Um
˝ T i “ 1q

pℓ ě 1q,

where the RHS is independent of i, with i taken larger than L.

The key to guarantee that the distributions of Z
tτ{µpUmqu
m under µ converge under the limit limmÑ8

is to show that the λℓpL,mq also converge under the double-limit limLÑ8 limmÑ8.

In order to do so, they assume that

DαℓpL,mq :“ lim
LÑ8

lim
mÑ8

µpZL
m “ ℓ,✶Um

“ 1q
µpUmq and

8
ÿ

ℓ“1

ℓ2αℓ ă 8.

Then one shows that these conditions guarantee the desired limits in the parameters of ηL,m,

defining a compound Poisson distribution η with intensity τpřℓě1 ℓλℓq´1 and multiplicity distribution

pλℓqℓě1. This approach was inspired in [53] and therefore also similar to the one developed in chapter

4 (see equation 4.4 and hypothesis (H9)).
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It turns out that

}pZ
tτ{µpUmqu
m q˚µ ´ η}TV

@L
ď }pZ

tτ{µpUmqu
m q˚µ ´ ηL,m}TV ` }ηL,m ´ η}TV ,

can be controlled after the m-limit (followed by the L-limit): the second term is controlled with the

αℓ’s and the first is controlled with Chen-Stein, as to produce a bounding term with essentially two

parts: a component accounting for long-range interactions (which is further bounded using φ -mixing

and φ -summability), and a component accounting for short-range interactions (further bounded using

φ -mixing, φ -summability, and the approximation condition in equation (3.14)).

3.2 Random systems

Consider M a complete separable metric space, and Ω, the so-called driving space, a complete

separable metric space equipped with a measurably-invertible ergodic system pθ ,Pq.

Consider maps Tω : M Ñ M (ω P Ω) which combine to make the a measurable skew product

S : Ω ˆ M Ñ Ω ˆ M, pω,xq ÞÑ pθω,Tωxq. As usual, for higher-order iterates we denote Snpω,xq “
pθ nω,T n

ω pxqq where T n
ω “ Tθ n´1ω ˝ ¨ ¨ ¨ ˝ Tθω ˝ Tω pn ě 1q.

Denote

P
PpΩ ˆ Mq “ tµ̂ P PpΩ ˆ Mq : µ̂,πΩ˚µ̂ “ Pu,

P
P
S pΩ ˆ Mq “ tµ̂ P PpΩ ˆ Mq : S˚µ̂ “ µ̂,πΩ˚µ̂ “ Pu,

and

P
pPqpMq “

#

µ : ω P Ω
P-a.s.ÞÑ µω P PpMq so that:

ω P Ω
P-a.s.ÞÑ µωpEωq P r0,1s is pBΩ,Br0,1sq-measurable, @E P BΩ ˆBM

+

,

P
pPq
TΩ

pMq “

$

’

&

’

%

µ : ω P Ω
P-a.s.ÞÑ µω P PpMq so that:

ω P Ω
P-a.s.ÞÑ µωpEωq P r0,1s is pBΩ,Br0,1sq-measurable, @E P BΩ ˆBM

T n
ω ˚µω “ µθ nω , @n ě 0, P-a.s.

,

/

.

/

-

.

Notation. Elements in the latter two sets are will written as µ “ pµωqωPPΩ. We will use the notational

device PP to identify a family of objects which is defined P-a.s.

A family of measures pµωqωPPΩ satisfying “T n
ω ˚µω “ µθ nω , @n ě 0, P-a.s.” is called a covariant

family.

For the next paragraph, we refer to [28] (prop. 3.3) and [5] (sec. 1.4). For E P BΩ ˆBM , for any

ω P Ω, its ω-section, tx P M : pω,xq P Eu, is denoted by Eω or Epωq.

Using Rohklin disintegration theorem for µ̂ P PPpΩ ˆ Mq with respect to the partition P “
trωs :“ tωu ˆ M | ω P Ωu of Ω ˆ M, we have that there exists pµωqω so that:

i) @E P BΩ ˆBM: µ̂pEq “
ż

Ω

µωpEωqdPpωq, ii)

PPpΩ ˆ Mq ãÑ PpPqpMq
PP

S pΩ ˆ Mq ãÑ P
pPq
TΩ

pMq
µ̂ ÞÑ pµωqωPPΩ

.
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Conversely,

PpPqpMq ãÑ PPpΩ ˆ Mq
P

pPq
TΩ

pMq ãÑ PP
S pΩ ˆ Mq

pµωqωPPΩ ÞÑ µ̂ “ dµωdPpωq, i.e., µ̂pEq “
ş

Ω
µωpEωqdPpωq p@E P BΩ ˆBMq

.

Now, consider a given µ̂ “ dµωdPpωq P PP
S pΩ ˆ Mq, with the associated pµωqωPPΩ P P

pPq
TΩ

pMq.

Define the marginal measure µ̌ “ πM˚µ̂ “
ş

Ω
µω dPpωq P PpMq. As a implying assumption, in this

section we will consider that every measure appearing is atomless and fully supported.

Finally, consider Γ P BΩ ˆ BM so that, P-a.s, Γpωq is small in the sense that µωpΓpωqq “ 0.

The set Γ is the so-called random target. Denote Γρpωq “ BρpΓpωqq (ρ ą 0) and the corresponding

ω-collection by Γρ .

The objects considered above comprise what we call a ‘targeted random dynamical system’, or

simply ‘system’, to be denoted by the tuple pθ ,P,Tω ,µω ,Γq.

Generally speaking, random dynamical systems are amenable to the so-called annealed or

quenched results. Annealed ones are averaged in terms of the ω-noise and they rely on the probabili-

ties µ̂ P PpΩ ˆ Mq or µ̌ P PpMq. Notice that the said average and the measures used will wipe out

any dependence on a certain ω . On the other hand, quenched results are valid for (P-generic) fixed

ω-realizations and they rely on the probabilities µω P PpMq.

Let’s define some working objects. Let U P BΩ ˆ BM be a set whose ω-sections Upωq Ă M

have positive µω -measure, P-a.s.. Denoting the latter full P-measure set by Ω
1, notice that Ω

2 “
Ş

nPZ θ ´n
Ω

1 still has full P-measure. So we can consider that µθ nωpUpθ nωqq ą 0, for all n P Z, P-a.s..

Definition 3.2.1. The first hitting time of pθ ,P,Tω ,µω ,Uq is the family of functions

r
ω,1
U : M Ñ Ně1 Y t8u

x ÞÑ infti P Ně1 : T i
ωpxq P Upθ iωqu .

The associated higher-order hitting times are given, for ℓ ě 2, by the family of functions

r
ω,ℓ
U : M Ñ Něℓ Y t8u

x ÞÑ r
ω,ℓ
U pxq “ r

ω,ℓ´1
U pxq ` rω 1

U pT
r

ω,ℓ´1
U

ω pxqq
,

where ω 1 “ θ r
ω,ℓ´1
U pxqω .

Definition 3.2.2. The hit counting function of pθ ,P,Tω ,µω ,Uq, for L ě 1 is given by the family of

functions
Z

ω,L
˚U :MÑNě0

x ÞÑ
L
ÿ

i“1

✶Upθ iωq ˝ T i
ωpxq ,

Z
ω,L
U :MÑNě0

x ÞÑ
L´1
ÿ

i“0

✶Upθ iωq ˝ T i
ωpxq .

These objects are related, for example, in the sense that tZ
ω,L
˚U ě ℓu “ tr

ω,ℓ
U ď Lu, tZ

ω,L
˚U “ ℓu “

tr
ω,ℓ
U ď L ă r

ω,ℓ`1
U u.

In the next sections, where we review the literature addressing the random case, the so-called

random subshifts of finite type (sometimes considered with countable alphabets, though) will appear
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often. For the convenience of the reader, we will introduce them next. A special feature of these

systems is that the concept of periodicity appears much more naturally than for general random

systems. They do not fit perfectly in the setup presented above, which is just right for the theory to be

developed later in the thesis. However, the adjustments needed are tiny ones.

Let σ be the left shift on M “ Ně1
Ně0 , a complete separable metric space under dpx,yq “

2´mintně0:xn‰ynu. Let Ω be a complete separable metric space with a measurably-invertible ergodic

system pθ ,Pq. Let b : Ω Ñ Ně1 be measurable with EPplogbq ă 8. Let, for each ω P Ω, Apωq be a

bpωq ˆ bpθωq t0,1u-valued matrix with at least one 1 in each column and row and whose entries are

ω-measurable. Consider the ω-family of closed sets in M

Mω “
␣

x “ px0,x1, . . .q : xi P r1, . . . ,bpθ iωqs XNě1,Axi,xi`1
pθ iωq “ 1,@i ě 0

(

Ă M.

Let
σω : Mω Ñ Mθω

x ÞÑ σpxq,

with the associated skew map acting on E “ tpω,xq P Ω ˆ M : x P Mωu Ă Ω ˆ M as

S : E Ñ E

pω,xq ÞÑ pθω,σωpxqq.

Let µ̌ P PP
S pEq, pµωqωPPΩ be the associated disintegration with µω P PpMωq a.s., and µ̌ “

ş

Ω
µωdPpωq. We will consider that every measure appearing is atomless and fully supported.

For these random subshifts, we say that ζ P Mω is p-periodic (for ω) precisely when it is p-periodic

for σ .

Notice that it can be that not only σω ” σ but also b and A are constant functions on Ω (in

which case one could diminish M to t1, . . . ,buNě0). In particular, it would be Mω identically M and

σω : Mω Ñ Mθω identically σ : M Ñ M. Still, µ̂ could be chosen so that the measures pµωqωPPΩ vary.

In this case, measures would be the only place in the system where randomness intervenes. See [20]

for an example of this kind, the so-called random Markov shifts.

Let C1 “ trss : s P Ně1u be the set of 1-cylinders rss “ tx P M : x0 “ su and, for n P Ně1 Y
t8u, Cn “ Žn´1

j“0 σ´ jC1 be the set of n-cylinders rs0, . . . ,sn´1s “ tx P M : x0 “ s0, . . .xn´1 “ sn´1u
(s0, . . . ,sn´1 P Ně1). The Cm’s comprise a partition of M and, for m ě 1, we denote by Cmpxq the

element in Cm containing x P M. Let C˚ be the σ -algebra generated by
Ť

jě1C j. It is assumed that C˚

generates BM and that C8 is comprised of singletons. Notice that the objects in this paragraphs are

all deterministic on the entire symbolic space M (and might be restricted to Mω ’s when needed).

The targets that will be considered for these systems are given by a (deterministic) nested sequence

of sets Um P σ
´

Žm´1
i“0 σ´iC1

¯

4 (m ě 1). The target will be considered small either in the annealed

sense that µ̌pΓq “ 0, where Γ :“ Ş

mě1Um, or in quenched sense that esssupω µωpUmq Œ 0 as m Ñ 8.

Another possibility is to consider singleton targets Γ “ tζ u and take Um “ Cmpζ q, which already

carries a notion of smallness.

4The σ in the left stands for the σ -algebra generated by a given family of sets. The σ in the right stands for the shift

map.



3.2 Random systems 51

3.2.1 Point processes

Before we consider the literature studying hitting statistics using point processes, let us review some

early contributions to related statistical properties for random dynamical systems. In [77], authors

established, under an annealed time scaling, a quenched exponential law for first return time to

cylinders about non-periodic (typical) points of random subshifts of finite type with super-polynomial

decay of correlations, both quenched (for pµωqωPPΩ) and annealed (for µ̌). In a similar context, [78]

studied quenched extremal indexes associated with p-periodic points ζ , which were found to be a.s.

α “ lim
mÑ8

µ̌pCmpζ qzCm`ppζ qq
µ̌pCmpζ qq ,

provided that the limit exists.

A couple of references treat the random case using conditions of the type D or Д. Firstly, in [12],

authors studied an additive noise absolutely continuous with respect to Lebesgue perturbing the action

of a single map, in such a way that the system presents annealed polynomial decay of correlations.

For a deterministic singleton target at an arbitrary point ζ , a deterministic function ϕp¨q “ g ˝ dp¨,ζ q,

g as in equation (2.10), with the dynamically observed stochastic process defined on the product space

as Yipω,xq “ ϕpT i
ωpxqq under µ̂ and adopting the annealed time scaling mµ̂pϕ ą umpτqq Ñ τ , they

prove that the extremal value is 1 and that a REPP of the type N
1,III,τ
m converges to a Poisson process

with intensity τ Leb.

Later, using conditions of the type Д, quenched extremal indexes and one-dimensional REPPs

were studied, respectively, in [45] and [36]. Since they adopt a similar setup, we chose the latter for a

brief discussion.

In [36], authors consider a system pθ ,P,Tω ,µω ,Γq as in section 3.2, with θ a finite full shift, P an

ergodic measure and ω ÞÑ Tω :“ Tπ0pωq, where the latter maps are the so-called Lasota-Yorke maps.

These maps are piecewise expanding maps of r0,1s with finitely many branches and bounded second

derivatives. Expansion, number of branches, and second derivatives are all bounded uniformly in

pΩ, r0,1sq. Moreover, they satisfy a uniform covering condition and a uniform regularization, for test

functions inside a uniform cone. These properties imply they can be equipped with a quasi-invariant

family of pµωqωPPΩ given by µω “ hω Leb, with Lωphωq “ hθω and L˚
ω Leb “ Leb, P-a.s., where

Lω is the transfer operator associated to Tω acting on BV . This family satisfies a quenched uniform

exponential decay of correlations of the form

DK ą 0,Dι P p0,1q, for P-a.s.,@n ě 0,@g P BV,@h P L1pLebq :

ˇ

ˇ

ˇ

ˇ

ż

r0,1s
g ¨ ph ˝ Tωqdµω ´

ż

r0,1s
gdµω ¨

ż

r0,1s
hdµθ nω

ˇ

ˇ

ˇ

ˇ

ď Kιn}g}BV }h}L1pLebq.

In [30], however, authors point out that the above condition follows contingent on pθ ,Pq exhibiting

at least polynomial decay of correlations.

Moreover, the target Γ is taken to be a deterministic singleton tζ u. The normalization pg,uq is

taken with i) g satisfying the condition given equation (2.10) and ϕ :“ g ˝ dp¨,Γq, ii) u is given by

umpτq “ inftu P R : µ̌pϕ ď uq ě 1 ´ τ{mu pτ ą 0q,
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which implies

m´1
ÿ

j“0

µωpϕ ˝ T
j

ω ą umpτqq “
m´1
ÿ

j“0

µθ jωpϕ ą umpτqq mÝÑ τ, P-a.s. pτ ą 0q.

They consider target points that are generic for the Lebesgue measure and conclude that one-

dimensional REPPs of the type N
1,III,τ
m converge to a Poisson point process with intensity τ Leb, whose

associated extremal index is therefore α “ 1.

All the previous references in this section adopted an annealed space/time-normalization and rely

on, at least, polynomial mixing/decay of correlations of annealed type or in the driving pθ ,Pq. In [30],

authors modify this situation by simultaneously adopting a quenched normalization and relying on

a merely ergodic driving pθ ,Pq, with mixing/decay conditions put only on the fiber maps Tω ’s in a

quenched form.

They consider random subshifts of finite type with target sets pUmqmě1 small in the quenched sense.

A certain condition on the family pUmqmě1 is assumed and implies that it can not be Um “ Cmpζ q for

ζ a periodic point. They also assume that

i) Dβ0,β1 : Ně0 Ñ R, for P-a.e.ω P Ω,@0 ď j ď m ď k :

µωpUm X σ´ jUmq ď µωpUmqβ0p jq, µωpUm X σ´kUmq ď µωpUmqβ1pmq,

and

ii) DD : Ω Ñ Rą0 P Ť

pPp0,1s LppPq and α : Ně1 Ñ Rą0 decreasing to 0,@A,B Ă M measurable,

@m ě 1,@m1 ě 1:

|µωpA X σ´m´m1
Bq ´ µωpAqµθ m`m1

ωpBq| ď Dpωqαpm1q,

or

ii’) Dα̃ : Ně1 Ñ Rą0 decreasing to 0,@A,B Ă M measurable, @m ě 1,@m1 ě 1:

|µωpA X σ´m´m1
Bq ´ µωpAqµθ m`m1

ωpBq| ď µωpAqα̃pm1q.

They consider the one-dimensional REPP

Nω
m pxq :“

8
ÿ

i“1

δři
j“1 µ

θ jω
pAmq✶Um

˝ σ ipxq,

which can be considered a quenched generalization of N
1,II,1
m (recall definition 2.2.13) — notice

that i
t1{µpUqu , or iµpUq, is substituted by

ři
j“1 µθ jωpUq. With this definition in mind, the following

quenched result is found

Nω
m ˚µω

vÝÑ N, P-a.s.,

where N is a Poisson process on r0,8q with intensity Leb. Since the limiting point process is simple,

their proof strategy resorts to Kallenberg criteria.
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3.2.2 Spectral methods

The spectral approach presented in section 3.1.2 was generalized to random dynamical systems in

the quenched sense. Theory in this context was developed for general potentials. Quenched extremal

indexes were studied in [10] and quenched hitting statistics were studied in [8]. We follow mostly [8]

in this exposition.

Let M be a compact Riemannian manifold with Lebesgue measure and let pθ ,P,Tω ,µω ,Γq be a

random system as in section 3.2. In this section, P is assumed ergodic.

Consider a random potential φ0 : Ω ˆ M
P-a.s.Ñ R which is measurable. For n ě 1, let φ

pnq
0 :

Ω ˆ M
P-a.s.Ñ R be given by pω,xq ÞÑ řn´1

j“0 φ0 ˝ S jpω,xq, where the full P-measure set can be taken the

same for all n.

Let pBω ,} ¨ }Bω qωPPΩ be a family of Banach spaces and pB˚
ω ,} ¨ }B˚

ω
qωPPΩ be the associated family

of dual spaces. Let B “ ś

ωPPΩ
Bω be the space of P-a.s. defined measurable maps from Ω to

Ů

ωPPΩ
Bω whose image at ω belongs to Bω and, similarly, B˚ “ ś

ωPPΩ
B˚

ω . Assume that the Bω ’s

are formed by C-valued functions ϕ on M and the B˚
ω ’s contain PpMq. Moreover, assume that, for all

n ě 0, eφn P B, i.e., eφnpω,¨q P Bω , P-a.s..

Assume that pBω ,} ¨ }Bω qωPPΩ accommodates the action of the Ruelle-Perron-Frobenius (RPF)

operator

Lω,0 : Bω Ñ Bθω

ϕ ÞÑ Lω,0ϕ : M Ñ R

x ÞÑ
ÿ

yPpTω q´1ptxuq

ϕpyqeφ0pyq

P-a.s.. In particular,

Ln
ω,0 : Bω Ñ Bθ nω

ϕ ÞÑ Ln
ω,0ϕ : M Ñ R

x ÞÑ
ÿ

yPpT n
ω q´1ptxuq

ϕpyqeφ
pnq
0 pyq,

for all n ě 0, and P-a.e.ω P Ω. These maps are lifted to the bundles as

L0 : B Ñ B

ϕ ÞÑ L0ϕ : Ω Ñ Bω

ω ÞÑ pL0ϕqω “ Lθ ´1ω,0ϕθ ´1ω

Ln
0 : B Ñ B

ϕ ÞÑ L0ϕ : Ω Ñ Bω

ω ÞÑ pL0ϕqω “ Lθ ´nω,0ϕθ ´nω

.

Moreover, it is assumed that, for every ϕ P B, the map pω,xq P Ω ˆ M
P-a.s.ÞÑ pL0ϕqωpxq P R is measur-

able.
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Notice that in the spectral approach one does not start with a given µ̂ “ dµωdP P PP
S pΩ ˆ Mq and

the associated pµωqωPPΩ P P
pPq
TΩ

pMq. One considers that there exists

ϕ0 : Ω ˆ M
P-a.s.Ñ p0,8q, ν0 “ tνω,0uωPPΩ P P

pPqpMq

and

λ0 : Ω
P-a.s.Ñ Rzt0u in L1pPq

so that

Lω,0pϕω,0q “ λω,0ϕθω,0, L
˚
ω,0pνθω,0q “ λω,0νθω,0.

They induce µ0 “ pµω,0qωPPΩ P P
pPq
TΩ

pMq, where µω,0p¨q :“ νωpϕω,0p¨qq.

The target being considered is Γ P BΩ ˆ BM so that, P-a.s, Γpωq is small in the sense that

νω,0pΓpωqq “ 0. Moreover, consider g : Ω ˆ r0,8q P-a.s.Ñ r0,8q so that, for every ω a.s., gpω, ¨q is

continuous, strictly decreasing near 0, where they attain a maximum. The normalization considers

that given any a random scale

τ : Ω
P-a.s.Ñ Rą0 in L8pPq

(we will not be varying this one, to make notation lighter), there exists

1. a random sequence of thresholds

um : Ω
P-a.s.Ñ R in L8pPq pm ě 1q

with umpωq Õ gωp0q, as m Ñ 8, P-a.s.,

2. a constant W ă 8 and a random sequence of margins

ξm : Ω
P-a.s.Ñ R in L8pPq pm ě 1q

with limmÑ8 ξω,m “ 0, P-a.s. and |ξω,m| ď W for all m ě 1 and P-a.s.

so that

mµω,0pB
g

´1
ω pumpωqqpΓpωqqq “ tω ` ξω,m.

Notice that radii and scales are random and quenched. Notice also that ξω,m mediates between the

exact scaling and the asymptotic one. These conditions make the normalization applied in this theory

very general, at least from the quenched randomization point of view.

Instead of the perturbations designed to study quenched extremal index in [10], namely

Lω,m : Bω Ñ Bθω

ϕ ÞÑ Lω,0p✶MzB
g

´1
ω pumpωqq

pΓpωqqϕq pm ě 1q,

to study hitting statistics with the aid of characteristic functions, following [8], one actually introduces

the following family of perturbations

Lω,m,s : Bω Ñ Bθω

ϕ ÞÑ Lω,0pe
is✶B

g
´1
ω pumpωqq

pΓpωqq

ϕq
ps P R,m ě 1q.
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LL
ω,m,s : Bω Ñ Bθω

ϕ ÞÑ Lω,0peisZ̃L
ω,mϕq

ps P R,m ě 1,L ě 1q,

where Z̃L
ω,mpxq “ řL´1

j“0 ✶B
g

´1

θ jω
pumpθ jωqq

pΓpθ jωqq ˝ T
j

ωpxq.

We omit details from this point on. The argument follows the structure of that in section 3.1.2, but

adapting for the fact that the unperturbed eigenvalue is not anymore 1 and that randomization should

be accounted for: in terms of section 3.1.2, quenched versions of conditions (1), (i-iii) and (3) are

adopted. Notice that the quenched version (iii) implies quenched exponential decay of correlations for

suitable classes of observables.

Based on these conditions, quenched first-order approximations of the perturbed eigenvalues

pλω,m,sqmě1 are employed. These approximations are based on a quenched perturbative result devel-

oped in [10] (theorem 2.1.2). This result is a randomization of [60], however, reading their theorem

2.1.2, one will notice that [10] also adopt hypotheses (1), (i-iii) and (3), whereas, as we have seen in

section 3.1.2, [60] adopts (1), (2.1) (included in ii), (2.2), (2.3) and (3), and then argues that (2.1-2.3)

implies (i-iii), due to the stability theory developed in [61] and [59].

However, when dealing with applications, both [8] (lemma 4.6) and [10] (2.5.10) use a version of

“(2.1-2.3) implies (i-iii)”. The quenched version of this implication is due to [29], which randomizes

[61]. In this context, one deals with cocycles of operators rather than compositions of a single operator,

and many concepts have to be suitably adapted. This translation can be found in a systematic way

in the semi-invertible multiplicative ergodic theory literature (see [46] and [50]): e.g., eigenvalues

become Lyapunov exponents, eigenspaces become Oseledets spaces, quasi-compactness has to be

suitably adapted (see [85]), and so on.

Based on systems satisfying the assumptions reviewed so far and adapting the logic used to

get equation (3.13) out of equations (3.11) and (3.12), [8] concludes that for each s P Rzt0u and

P-a.e.ω P Ω.

lim
mÑ8

µω,0peisZ̃m
ω,mq “ lim

mÑ8

λ m
ω,m,s

λ m
ω,0

“ exp

ˆ

´pi ´ eisq
ż

Ω

αωpsqτωdPpωq
˙

,

where

αωpsq “ lim
mÑ8

λω,0 ´ λω,m,s

∆ω,mpsq “ lim
mÑ8

λω,0 ´ λω,m,s

λω,0p1 ´ eisqµω,0pΓ
g

´1
ω pumpωqqq

, (3.15)

for which there exist more explicit formulas similar to those in equation 3.10 (see [8] equation 3.28).

It is interesting to notice that the limit is of an annealed type despite the very general quenched

approach and the driving merely ergodic. The second equality in equation (3.15) is stated in [8]

theorem 3.14, whose proof refers to [11] theorem 2.4.5, where, very succinctly, one can notice that
λω,m,s

λω,0
can be expressed in a way as to involve iterates of ω under θ and

λ m
ω,m,s

λ m
ω,0

will sum over these

terms, in which case a non-standard ergodic theorem can be applied.

Again they argue that the pointwise limit of the characteristic function found in equation (3.15)

is discrete and infinitely divisible, therefore the limiting random variable is compound Poisson

distributed. Its distribution can be expressed using Levy’s inversion formula, giving

lim
mÑ8

µω,0pZ̃m
ω,m “ nq “ lim

T Ñ8

1

2T

ż T

´T

e´isk exp

ˆ

´p1 ´ eisq
ż

Ω

αωpsqτωdPpωq
˙

.
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Once again, as in section 3.1.2, one could derive expressions for the intensity and cluster size

distribution of the underlying compound Poissonian limit, using associated characteristic functions

(see their equation (3.36) and proposition 3.18).

As it comes to applications, [8] considers certain systems that draw among at most countably

many piecewise expanding maps of the interval with finite-many branches. The drawing procedure is

driven by P ergodic, but explicit calculations are carried out for Bernoulli measures. Limit behaviors

can either be standard Poisson processes, compound Poisson processes with geometric multiplicity, or

compound Poisson processes with non-geometric multiplicity.

3.2.3 Probabilistic approximation

In this section, we briefly comment [52]. They study random subshifts of finite type with ψ-quenched

and α-annealed mixing to get, under annealed time-scaling, compound Poissonian hitting statistics to

targets at p-periodic points ζ .

The mixing assumptions spell as follows

i) Dψ : Ně1 Ñ R, limkÑ8 ψpkq “ 0,@m,m1 ě 1,@U P Cm,@V P C˚, for P-a.e.ω P Ω:

|µωpU X σ´m´m1
V q ´ µωpAqµθ m`m1

ωpV q ď ψpm1qµωpAqµθ m`m1
ωpV q.

ii) Dα : Ně1 Ñ R, limkÑ8 ψpkq “ 0,@m,m1 ě 1,@U P Cm,@V P C˚:

|µ̌pU X σ´m´m1
V q ´ µ̌pAqµ̌pV q ď αpm1q.

Moreover, they assume additional conditions to guarantee that cylinders are small enough. Then,

using an ad hoc approximation method (which again, as in section 3.1.3, is bounded with short and

long-range components), and denoting

Z
t τ

µ̌pCmpζ qq
u

m :“
t τ

µ̌pCmpζ qq
u

ÿ

i“1

✶Cmpζ q ˝ σ i

they conclude that

pZ
t τ

µ̌pCmpζ qq
u

m q˚µω
vÝÑ CPDτp1´ϑq,pGeo1´ϑ pℓqqℓě1,

where

ϑ “ lim
mÑ8

µ̌pCm`ppζ qq
µ̌pCmpζ qq ,

provided that the limit exists. In this case, the quenched extremal index would be written as

α “ 1 ´ lim
mÑ8

µ̌pCm`ppζ qq
µ̌pCmpζ qq “ lim

mÑ8

µ̌pCmpζ qzCm`ppζ qq
µ̌pCmpζ qq .



Chapter 4

Compound Poisson distributions for

random dynamical systems: a

probabilistic block-approximation

approach

4.1 Assumptions and main results

4.1.1 General setup

Consider M a complete separable metric space, and Ω, the so-called driving space, a complete

separable metric space equipped with a measurably-invertible ergodic system pθ ,Pq.

Consider maps Tω : M Ñ M (ω P Ω) which combine to make the a measurable skew product

S : Ω ˆ M Ñ Ω ˆ M, pω,xq ÞÑ pθω,Tωxq. As usual, for higher-order iterates we denote Snpω,xq “
pθ nω,T n

ω pxqq where T n
ω “ Tθ n´1ω ˝ ¨ ¨ ¨ ˝ Tθω ˝ Tω pn ě 1q.

Denote

P
PpΩ ˆ Mq “ tµ̂ P PpΩ ˆ Mq : µ̂,πΩ˚µ̂ “ Pu,

P
P
S pΩ ˆ Mq “ tµ̂ P PpΩ ˆ Mq : S˚µ̂ “ µ̂,πΩ˚µ̂ “ Pu,

and

P
pPqpMq “

#

µ : ω P Ω
P-a.s.ÞÑ µω P PpMq so that:

ω P Ω
P-a.s.ÞÑ µωpEωq P r0,1s is pBΩ,Br0,1sq-measurable, @E P BΩ ˆBM

+

,

P
pPq
TΩ

pMq “

$

’

&

’

%

µ : ω P Ω
P-a.s.ÞÑ µω P PpMq so that:

ω P Ω
P-a.s.ÞÑ µωpEωq P r0,1s is pBΩ,Br0,1sq-measurable, @E P BΩ ˆBM

T n
ω ˚µω “ µθ nω , @n ě 0, P-a.s.

,

/

.

/

-

.

Notation. Elements in the latter two sets will be written as µ “ pµωqω , where the outer ‘ω’ subscript

(instead of ‘ω P Ω’) is to identify that the given family if defined P-a.s.. The underlying full measure
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subset Ω0 can be assumed to be forward and backward θ -invariant (otherwise we substitute it by
Ş

nPZ θ n
Ω0).

A family of measures pµωqω satisfying “T n
ω ˚µω “ µθ nω , @n ě 0, P-a.s.” is called a covariant

family.

For the next paragraph, we refer to [28] (prop. 3.3) and [5] (sec. 1.4). For E P BΩ ˆBM , for any

ω P Ω, its ω-section, tx P M : pω,xq P Eu, is denoted by Eω or Epωq.

Using Rohklin disintegration theorem for µ̂ P PPpΩ ˆ Mq with respect to the partition P “
trωs :“ tωu ˆ M | ω P Ωu of Ω ˆ M, we have that there exists pµωqω so that:

i) @E P BΩ ˆBM: µ̂pEq “
ż

Ω

µωpEωqdPpωq, ii)

PPpΩ ˆ Mq ãÑ PpPqpMq
PP

S pΩ ˆ Mq ãÑ P
pPq
TΩ

pMq
µ̂ ÞÑ pµωqω

.

Conversely,

PpPqpMq ãÑ PPpΩ ˆ Mq
P

pPq
TΩ

pMq ãÑ PP
S pΩ ˆ Mq

pµωqω ÞÑ µ̂ “ dµωdPpωq, i.e., µ̂pEq “
ş

Ω
µωpEωqdPpωq p@E P BΩ ˆBMq

.

Now, consider a given µ̂ “ dµωdPpωq P PP
S pΩ ˆ Mq, with the associated pµωqω P P

pPq
TΩ

pMq.

Define the marginal measure µ̌ “ πM˚µ̂ “
ş

Ω
µω dPpωq P PpMq.

Finally, consider Γ P BΩ ˆ BM so that, P-a.s, Γpωq is compact and small in the sense that

µωpΓpωqq “ 0. The set Γ is the so-called random target. Denote Γρpωq “ BρpΓpωqq (ρ ą 0) and the

corresponding ω-collection by Γρ .

The objects considered above comprise what we call a ‘targeted random dynamical system’, or

simply ‘system’, to be denoted by the tuple pθ ,P,Tω ,µω ,Γq.

Let’s define some working objects. Let U P BΩ ˆBM be a set whose ω-sections Upωq Ă M have

positive µω -measure, P-a.s.. We again can consider that the said underlying set full measure subset is

θ -invariant, so we can consider that µθ nωpUpθ nωqq ą 0, for all n P Z, P-a.s..

Definition 4.1.1. The first hitting time of pθ ,P,Tω ,µω ,Uq is the family of functions

r
ω,1
U : M Ñ Ně1 Y t8u

x ÞÑ infti P Ně1 : T i
ωpxq P Upθ iωqu .

The associated higher-order hitting times are given, for ℓ ě 2, by the family of functions

r
ω,ℓ
U : M Ñ Něℓ Y t8u

x ÞÑ r
ω,ℓ
U pxq “ r

ω,ℓ´1
U pxq ` rω 1

U pT
r

ω,ℓ´1
U

ω pxqq
,

where ω 1 “ θ r
ω,ℓ´1
U pxqω .
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Definition 4.1.2. The hit counting function of pθ ,P,Tω ,µω ,Uq, for L ě 1 is given by the family of

functions
Z

ω,L
˚U :MÑNě0

x ÞÑ
L
ÿ

i“1

✶Upθ iωq ˝ T i
ωpxq ,

Z
ω,L
U :MÑNě0

x ÞÑ
L´1
ÿ

i“0

✶Upθ iωq ˝ T i
ωpxq .

These objects are related, for example, in the sense that tZ
ω,L
˚U ě ℓu “ tr

ω,ℓ
U ď Lu, tZ

ω,L
˚U “ ℓu “

tr
ω,ℓ
U ď L ă r

ω,ℓ`1
U u. When U “ Γρ , we write I

ω,ρ
i “ ✶Γρ pθ iωq ˝ T i

ω .

4.1.2 Working setup

Notation. A R-valued function defined on the product space, f pω,xq, is often rewritten with the

random seed in the sup/subscript, like f ωpxq or fωpxq, which can be seen as an Ω-family of functions

defined on M. And vice versa. When integrating a function, we may simply omit the dummy variable

of integration, even if it is a sup/subscript. We leave it for the reader to infer what variables and

parameters are being integrated and were omitted. Some examples:

i) µ̂p f q “
ş

ΩˆM
f pω,xqdµ̂pω,xq “

ş

ΩˆM
fωpxqdµ̂pω,xq “

ş

Ω
µωp fωqdPpωq, with µωp fωq “

ş

M
fωpxqdµωpxq “

ş

M
f pω,xqdµωpxq;

ii) µ̂pZL
Γρ

q “
ş

ΩˆM
Z

ω,L
Γρ

pxqdµ̂pω,xq “
ş

Ω
µωpZ

ω,L
Γρ

qdPpωq, with µωpZ
ω,L
Γρ

q “
ş

M
Z

ω,L
Γρ

pxqdµωpxq.

If the aforementioned f is t0,1u-valued we identify it with the set F “ f ´1pt1uq, since f “ ✶F ,

whereas its partials fω are identified with the ω-sections of F , denoted Fω , since fω “ ✶Fω . And vice

versa. So, instead of i), we could write i’) µ̂pFq “
ş

ΩˆM
✶Fpω,xqdµ̂pω,xq “

ş

ΩˆM
✶Fω pxqdµ̂pω,xq “

ş

M
µωpFωqdPpωq, with µωpFωq “

ş

M
✶Fω pxqdµωpxq “

ş

M
✶Fpω,xqdµωpxq.

Notation. We write lim
LÑ8

lim
ρÑ0

apL,ρq for the coinciding value of lim
LÑ8

lim
ρÑ0

apL,ρq and lim
LÑ8

lim
ρÑ0

apL,ρq,

when they do exist and coincide. We also denote
`
apLq :“ lim

ρÑ0
apL,ρq and

´
apLq :“ lim

ρÑ0

apL,ρq

whenever theses are finite quantities.

Notation. Consider non-negative sequences apnq and bpnq (n ě 0). we will write apnq Àn bpnq to

mean that there exists a quantity C, independent of n, so that apnq ď Cbpnq p@n ě 0q.

When the functions a and b have more than one argument, it is necessary to indicate which of

them are controlled uniformly: for example, with apn,mq and bpn,mq (n,m ě 1),

- apn,mq Àn bpn,mq means that there exists quantities Cm (m ě 0), independent of n, so that

apn,mq ď Cmbpn,mq p@n,m ě 0q;

- apn,mq Àn,m bpn,mq means that there exists a quantity C, independent of n and m, so that

apn,mq ď Cbpn,mq p@n,m ě 0q.

In the context where some of the arguments are taken to the limit, we implicitly consider that these

are the ones being controlled uniformly and we omit the associated subscript from the À symbol.

We also employ the usual big-O and little-o notation.

Let’s start introducing a couple of new objects: those with a λ will be associated with hitting

statistics, and those with an α will be associated with return statistics. Whenever the following limits

exist (and the appropriate ones coincide), denote, for ℓ ě 1 and ω P Ω:
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I)

λ ω
ℓ “ lim

LÑ8
lim
ρÑ0

λ ω
ℓ pL,ρq

where

λ ω
ℓ pL,ρq “ µωpZ

ω,L
Γρ

“ ℓ|Zω,L
Γρ

ą 0q “
µωpZ

ω,L
Γρ

“ ℓq
µωpZ

ω,L
Γρ

ą 0q
. (4.1)

II) 1

λℓ “ lim
LÑ8

lim
ρÑ0

λℓpL,ρq

where

λℓpL,ρq “ µ̂pZL
Γρ

“ ℓ|ZL
Γρ

ą 0q “
µ̂pZL

Γρ
“ ℓq

µ̂pZL
Γρ

ą 0q (4.2)

“

ż

Ω

µωpZ
ω,L
Γρ

“ ℓqdPpωq
ż

Ω

µωpZ
ω,L
Γρ

ą 0qdPpωq
“
ż

Ω

λ ω
ℓ pL,ρq

µωpZ
ω,L
Γρ

ą 0q
ş

Ω
µωpZ

ω,L
Γρ

ą 0qdPpωq
dPpωq.

III)

α̂ω
ℓ “ lim

LÑ8
lim
ρÑ0

α̂ω
ℓ pL,ρq2

where

α̂ω
ℓ pL,ρq “ µωpZ

ω,L
Γρ

ě ℓ|Iω,ρ
0 “ 1q “

µωpZ
ω,L
Γρ

ě ℓ, I
ω,ρ
0 “ 1q

µωpΓρpωqq (4.3)

IV)

αω
ℓ “ lim

LÑ8
lim
ρÑ0

αω
ℓ pL,ρq

where

αω
ℓ pL,ρq “ µωpZ

ω,L
Γρ

“ ℓ|Iω,ρ
0 “ 1q “

µωpZ
ω,L
Γρ

“ ℓ, I
ω,ρ
0 “ 1q

µωpΓρpωqq . (4.4)

Since tZ
ω,L
Γρ

ě ℓu Ą tZ
ω,L
Γρ

ě ℓ` 1u and tZ
ω,L
Γρ

ě ℓuztZ
ω,L
Γρ

ě ℓ` 1u “ tZ
ω,L
Γρ

“ ℓu, then

α̂ω
ℓ pL,ρq ´ α̂ω

ℓ`1pL,ρq “ αω
ℓ pL,ρq. (4.5)

which entails that the existence of α̂ω
ℓ ’s implies that of the αω

ℓ ’s with αω
ℓ “ α̂ω

ℓ ´ α̂ω
ℓ`1, because:

lim
LÑ8

lim
ρÑ0

α̂ω
ℓ pL,ρq ´ lim

LÑ8
lim
ρÑ0

α̂ω
ℓ`1pL,ρq ď lim

LÑ8
lim
ρÑ0

αω
ℓ pL,ρq

lim
LÑ8

lim
ρÑ0

αω
ℓ pL,ρq ď lim

LÑ8
lim
ρÑ0

α̂ω
ℓ pL,ρq ´ lim

LÑ8
lim
ρÑ0

α̂ω
ℓ`1pL,ρq.

1A comparison between pλℓqℓě1 and pλqpnqqně1 defined in theorem 3.1.3 is worthwhile.
2Notice that, by L-monotonicity, the outer limits always exist provided that the inner ones do.
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V)

α̂ℓ “ lim
LÑ8

lim
ρÑ0

α̂ℓpL,ρq3,

where

α̂ℓpL,ρq “ µ̂pZL
Γρ

ě ℓ|Iρ
0 “ 1q “

µ̂pZL
Γρ

ě ℓ, I
ρ
0 “ 1q

µ̂pΓρq (4.6)

“

ż

Ω

µωpZ
ω,L
Γρ

ě ℓ, I
ω,ρ
0 “ 1qdPpωq

ż

Ω

µωpΓρpωqqdPpωq
“
ż

Ω

α̂ω
ℓ pL,ρq µωpΓρpωqq

ş

Ω
µωpΓρpωqqdPpωqdPpωq.

VI)

αℓ “ lim
LÑ8

lim
ρÑ0

αℓpL,ρq

where

αℓpL,ρq “ µ̂pZL
Γρ

“ ℓ|Iρ
0 “ 1q “

µ̂pZL
Γρ

“ ℓ, I
ρ
0 “ 1q

µ̂pΓρq (4.7)

“

ż

Ω

µωpZ
ω,L
Γρ

“ ℓ, I
ω,ρ
0 “ 1qdPpωq

ż

Ω

µωpΓρpωqqdPpωq
“
ż

Ω

αω
ℓ pL,ρq µωpΓρpωqq

ş

Ω
µωpΓρpωqqdPpωqdPpωq.

Since tZL
Γρ

ě ℓu Ą tZL
Γρ

ě ℓ` 1u and tZL
Γρ

ě ℓuztZL
Γρ

ě ℓ` 1u “ tZL
Γρ

“ ℓu, then

α̂ℓpL,ρq ´ α̂ℓ`1pL,ρq “ αℓpL,ρq. (4.8)

which entails that the existence of α̂ℓ’s implies that of the αℓ’s with αℓ “ α̂ℓ ´ α̂ℓ`1, because:

lim
LÑ8

lim
ρÑ0

α̂ℓpL,ρq ´ lim
LÑ8

lim
ρÑ0

α̂ℓ`1pL,ρq ď lim
LÑ8

lim
ρÑ0

αℓpL,ρq

lim
LÑ8

lim
ρÑ0

αℓpL,ρq ď lim
LÑ8

lim
ρÑ0

α̂ℓpL,ρq ´ lim
LÑ8

lim
ρÑ0

α̂ℓ`1pL,ρq.

Now we upgrade the general setup of section 4.1.1. To optimize for generality, we present in

abstract terms the conditions which are required from the systems we will work with. In concrete

examples, these conditions need to be verified, but one should keep in mind that they are conceived to

accommodate non-uniformly expanding behavior and random targets that do not overlap very badly

with the regions where uniformity breaks.

On top of the features prescribed to the objects in our system throughout section 4.1.1, we will

consider the following hypotheses.

H1 (Ambient). Let M be a compact Riemannian manifold and Ω a compact metric space.

H2 (Invertibility features).

3See footnote 2.
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2.1 (Degree). @ω P Ω,@n ě 1, @x P M : #pT n
ω q´1ptxuq ă 8 with

sup
ně0

#pT n
ω q´1ptxuq ď 8 p@ω,xq, sup

ωPΩ

#pT n
ω q´1ptxuq ď 8 p@n,xq, sup

xPM

#pT n
ω q´1ptxuq ă 8 p@ω,nq.

2.2 (Covering). DR ą 0,N ě 1,@ω P Ω,@n ě 1,Dpy
ω,n
k qkPKω,n

Ă M with #Kω,n ă 8 so that pBRpy
ω,n
k qqkPKω,n

has at most N overlaps.

Terminology suggests that pBRpy
ω,n
k qqkPKω,n

covers M entirely, but a small defect is allowed, in the

sense of (H2.5) below.

2.3 (Inverse branches). @ω P Ω,@n ě 1,@k P Kω,n,

IB
ω,n
k “ tϕ : BRpy

ω,n
k q Ñ M diffeomorphic onto its image with T n

ω ˝ ϕ “ idu

is non-empty, finite4 and so that ϕ,ψ P IB
ω,n
k ,ϕ ‰ ψ ñ ϕpdompϕqq X ψpdompψqq “ H. In partic-

ular, the set IBpT n
ω q “ Ť

kPKω,n
IB

ω,n
k is finite and so that ϕ,ψ P IBpT n

ω q,dompϕq X dompψq “ H ñ
ϕpdompϕqq X ψpdompψqq “ H.

The following item is a consequence of the previous ones, but we list it here for convenience.

2.4 (Cylinders). @ω P Ω,@n ě 1, Cω
n “ tξ “ ϕpdompϕqq : ϕ P IBpT n

ω qu is finite and has at most N

overlaps.

2.5 (Large covering). For P-a.e. ω P Ω, @n ě 1, µω

´

MzŤξ PCω
n

ξ
¯

“ 0.

2.6 (Non-degenerancy). Dι ą 0 so that

ess inf
ωPΩ

inf
ně1

inf
kPKω,n

µθ nωpBRpy
ω,n
k qq ą ι .

Next, we consider that the aforementioned (plain) cylinders are refined enough as to split and

distinguish regions with different hyperbolic behavior.

H3 (Hyperbolicity and cylinders). Plain cylinders split into acceptable (and unacceptable) cylinders,

whereas acceptable cylinders subsplit into good (and bad) cylinders.

Namely: @ω P Ω,@n ě 1 : Cn
ω “

`
Cω

n \
´

Cω
n ,

`
Cω

n “
``
Cω

n \
`´
Cω

n , making measurable

˚
Cn pω,xq “

$

&

%

1,x P Ť

ξ P
˚

Cω
n

ξ ,

0, otherwise
p˚ P t`,´,``,`´uq.

Notation. For ˚ P t`,´,``,`´u, write
˚

IB pT n
ω q“tϕ P IBpT n

ω q : ξ “ ϕpdompϕqq P
˚

Cω
n u.

This splitting distinguishes hyperbolic behavior in the sense of satisfying:

3.1 (Weak hyperbolicity on plain cylinders). @n ě 1 :

1 ď inf
ωPΩ

inf
ξ PCω

n

inf
vPTxM
}v}“1

|DT n
ω pxqv| ď sup

ωPΩ

sup
ξ PCω

n

sup
xPξ

sup
vPTxM
}v}“1

|DT n
ω pxqv| ď 8.

4Cardinalities behave as in (H2.1).
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3.2 (Bounded derivatives on acceptable cylinders). @n ě 1:

sup
ωPΩ

sup
ξ PCω

n

sup
xPξ

sup
vPTxM
}v}“1

|DT n
ω pxqv| “: an ă 8.

3.3 (Distortion on good cylinders). Dd ě 0,DC ą 1, @n ě 1: (denoting ξ “ ϕpdompϕqq)

esssup
ωPΩ

sup

ϕP
``
IBpT n

ω q

sup
x,yPξ

Jϕpxq
Jϕpyq ď Cnd,

where

Jϕpxq “
dϕ˚

“

µθ nω |dompϕq

‰

dµω |ϕpdompϕqq
pxq “

dϕ˚

“

µθ nω |T n
ω ξ

‰

dµω |ξ
pxq.

3.4 (Backward contraction on good cylinders). Dκ ą 1,DD ą 1,@n ě 1: (denoting ξ “ ϕpdompϕqq)

esssup
ωPΩ

sup

ϕP
``
IB pT n

ω q

sup
zPdompϕq

sup
vPTzM
}v}“1

|Dϕpzqv| ď Dn´κ , i.e., Dnκ ď ess inf
ωPΩ

inf

ϕP
``
IB pT n

ω q

inf
xPξ

inf
vPTxM
}v}“1

|DT n
ω pxqv|,

and, in particular,

esssup
ωPΩ

sup

ϕP
``
IBpT n

ω q

diampξ q ď Dn´κ .

H4 (Target position).

4.1 (Uniform inclusion in adequate set). @L ě 1,DρseppLq ą 0,@ρ ď ρseppLq,@ω P Ω:

@1 ď L1 ď L,@0 ď j ď L1 ´ 1 : pT
j

ωq´1
Γ3{2ρpθ jωq Ă

`
C

ω
L1´1.

4.2 (Quenched separation from non-good set). It holds that5

lim
LÑ8

lim
ρÑ0

8
ÿ

n“L

t1{µ̂pΓρ qu
ÿ

i“0

µθ iω

ˆ

Γpθ iωq X
„

`´
C

θ iω
n Y

´
C

θ iω
n

˙

“ 0, P-a.s..

H5 (Lipschitz regularities).

5.1 (Map). supxPM LippT¨pxq : Ω Ñ Mq ă 8.

5.2 (Driving). Lippθq ă 8.

5.3 (Target). LippΓ : Ω Ñ PpMqq ă 8,where PpMq “ tA Ă M,A compact, A ‰ Hu is equipped

with the Hausdorff distance dHpA,Bq “ supxPA infyPB dpx,yq _ supyPB infXPA dpx,yq, which makes it a

compact metric space.

5It is expected that this condition can be substituted by an averaged counterpart

lim
LÑ8

lim
ρÑ0

8
ÿ

n“L

µ̂

ˆ

”`´
CnY

´
Cn

ı

X Γρ

˙

µ̂pΓρ q
“ 0.

.
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H6 (Measure regularity).

6.1 (Ball regular). D0 ă d0 ď d1 ă 8,DC0,C1 ą 0,Dρdim ď 1,@ρ ď ρdim, for P-a.e. ω P Ω:

C1ρd1 ď µωpΓρpωqq ď C0ρd0 .

6.2 (Annulus regular). Dη ě β ą 0,DE ą 0,Dρdim ď 1,@ρ ď ρdim,@r P p0,ρ{2q, for P-a.e. ω P Ω:

µωpΓρ`rpωqzΓρ´rpωqq
µωpΓρpωqq ď E

rη

ρβ
.

H7 (Decay of correlations). Dp ą 1 so that

7.1 (Quenched). For P-a.e. ω P Ω, @G P LipdM
pM,Rq,@H P L8pM,Rq,@n ě 1:

ˇ

ˇ

ˇ

ˇ

ż

M

G ¨ pH ˝ T n
ω qdµω ´ µωpGqµθ nωpHq

ˇ

ˇ

ˇ

ˇ

À n´p}G}LipdM
}H}8.

7.2 (Annealed). @G P LipdΩˆM
pΩ ˆ M,Rq,@H P L8pΩ ˆ M,Rq,@n ě 1:

ˇ

ˇ

ˇ

ˇ

ż

ΩˆM

G ¨ pH ˝ Snqdµ̂ ´ µ̂pGqµ̂pHq
ˇ

ˇ

ˇ

ˇ

À n´p}G}LipdΩˆM
}H}8.

H8 (Hitting regular).

Dpλℓqℓě1,
ÿ8

ℓ“1
λℓ “ 1,

ÿ8

ℓ“1
ℓ3λℓ ă 8.

H9 (Return regular).

Dpαℓqℓě1,α1 ą 0,

8
ÿ

ℓ“1

αℓ “ 1,

8
ÿ

ℓ“1

ℓ2αℓ ă 8.

We call α1 the extremal index.

H9’ (Pre return regular). It holds that

Dpα̂ℓqℓě1, α̂1 ´ α̂2 ą 0,

8
ÿ

ℓ“1

ℓα̂ℓ ă 8.

Using the final implication of item VI), it is immediate that (H9’) ñ (H9), because α1 “ α̂1 ´ α̂2 ą
0,
ř8

ℓ“1 αℓ “ α̂1 “ 1, and
ř8

ℓ“1 ℓ
2αℓ ď 2

ř8
ℓ“1 ℓα̂ℓ ă 8.

Moreover, for technical conditions, we assume that the quantities appearing in the previous

hypotheses harmonize so that the following constraints hold. Mostly, they hold when (polynomial)

decay is sufficiently fast.

H10 (Parametric constraints). It holds that

10.1. d0pp´ 1q ą
2
´

β`d1
η _1

¯

`d1

d0{d1
,

10.2. d0

d`1
p ą 2

´

β`d1

η _ 1
¯

` d1,

10.3. d ă κd0 ´ 1.
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4.1.3 Main results

The first result to be presented, theorem 4.1.3, valid in the general setup of section 4.1.1, expresses

hitting statistics (λℓ’s) in terms of return statistics (αℓ’s).

Theorem 4.1.3. Let pθ ,P,Tω ,µω ,Γq be a system as described in section 4.1.1, with pθ ,Pq only

assumed invariant.

Then

(H9’) ñ λℓ “ αℓ ´ αℓ`1

α1

pℓ ě 1q and (H8).

The essential part6 of this theorem is to conclude the equality, which will be proven in section 4.2.

It implies that α1 “ př8
ℓ“1 ℓλℓq´1.

Although important on its own, it actually plays an auxiliary role within the paper, serving the

following two purposes (the essential one being the second):

1) Technical: help the proof of our main result, theorem 4.1.4, via its use in the proof of lemma

4.4.1. Notice that this lemma can be restated assuming (H8) and not invoking αℓ’s at all, but relying

only on λℓ’s. However, we still use αℓ’s (and theorem 4.1.3) in the proof of the said lemma. We

believe one could bypass this intricacy and write a spin-off version of lemma 4.4.1 with an associated

proof reformulation where αℓ’s and theorem 4.1.3 do not play any role. The consequence would be an

associated spin-off version of theorem 4.1.4 written completely free of αℓ’s and relying solely on λℓ’s.

2) Examples: to handle examples, one will always need theorem 4.1.3 to compute the λℓ’s

appearing in theorem 4.1.4 (or its hypothetical spin-off). This is because return statistics are generally

much easier to compute than hitting statistics, so, whenever facing a concrete example, we calculate

the αℓ’s to obtain the λℓ’s.

Let us now formulate our main result. It says that the targeted random dynamical systems being

considered have quenched limit entry distributions in the compound Poisson class.

Theorem 4.1.4. Let pθ ,P,Tω ,µω ,Γq be a system satisfying hypotheses (H1)-(H7),(H9’) (so (H8), by

theorem 4.1.3) with the parametric constraints (H10.1)-(H10.3).

Then: @t ą 0,@n ě 0,@pρmqmě1 Œ 0 with
ř

mě1 ρm
q ă 8 (for some 0 ă q ă qpd0,d1,η ,β ,pq7)

one has

µωpZ
ω,tt{µ̂pΓρm qu
Γρm

“ nq P-a.s.ÝÑ
mÑ8

CPDtα1,pλℓqℓptnuq, (4.9)

where CPDs,pλℓqℓ is the compound Poisson distribution with intensity s and multiplicity distribution

pλℓqℓ (see definition 2.1.118).

Remark 3. If the system has exponential asymptotics in (H7) and (H3.4), the previous conclusion is

still true, but, actually, with fewer parametric conditions being required: instead of (H10.1)-(H10.3),

only κd0 ą 1 is needed.

6(H8) follows from the previous equality and (H9) because
ř8

ℓ“1 λℓ “
ř8

ℓ“1 αℓ´αℓ`1

α1
“ 1 and

ř8
ℓ“1 ℓ

3λℓ “

pα1q´1
ř8

ℓ“1 ℓ
3pαℓ ´ αℓ`1q “ pα1q´1

`

α1 `
ř8

ℓ“2 ℓ
3αℓ ´

ř8
ℓ“2pℓ´ 1q3αℓ

˘

“ pα1q´1
`

α1 `
ř8

ℓ“2p3ℓ2 ´ 3ℓ` 1qαℓ

˘

ď

pα1q´1
`

1 `
ř8

ℓ“1 7ℓ2αℓ

˘

ă 8.
7A quantity to be introduced in lemma 4.4.2.
8Please note that chapters are independent. So despite the notational coincidence, the probability space in definition

2.1.11 is an abstract one, not the same as the random driving of the random dynamical system.
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The rest of the thesis is organized into two parts:

I) Theory: Until section 4.5 we work to prove theorem 4.1.4, accomplishing the required auxiliary

results, among which we highlight theorem 4.1.3, theorem 4.3.1, and lemmas 4.4.1, 4.4.2 and 4.4.3.

Let us briefly recall the point of these auxiliary results and provide a blueprint of the proof.

Theorem 4.1.3 calculates hitting statistics in terms of return statistics. Its role was already

discussed above.

Theorem 4.3.1 provides the skeleton of the proof of theorem 4.1.4, describing the asymptotics we

are after with a leading term and an error. The leading term appears from spliting the ω-quenched

hit-counting function into equally time-sized blocks and mimicking them with an independency of

random variables distributed just like each of them9. The errors have a structure, basically being

divided into two parts10. The first one (comprised of terms R1 and R̃1) accounts for long-range effects

and will be controlled using weak hyperbolicity features (H3.1,H3.2), the target uniform inclusion in

the adequate set (H4.1), the annulus regularity (H6.2) and quenched decay (H7.1). The second one

(comprised of terms R2 and R3) accounts for short-range interactions and will be controlled using the

structure of the covering system (H2), distortion (H3.3), strong hyperbolicity features (H3.4) and ball

regularity (H6.1). Notice no annealed decay was used yet.

After proceeding as above, R1 and R̃1 turn out to be ω-uniformly bounded, due to the ω-uniform

constants throughout the hypotheses. But R2 and R3 turn out to still be bounded with ω-dependence.

The leading term is also ω-dependent.

Lemmas 4.4.1, 4.4.2 and 4.4.3 will used in the proof of theorem 4.1.4 to tame the above-mentioned

ω-dependent leading and error terms under the limit, in an almost sure manner, allowing for a quenched

limit theorem: the error will go to zero and the leading term to a compound Poisson. Lemma 4.4.2

does a certain variance control and its proof uses the annealed decay of correlation (H7.2). This is the

only place where annealed decay is used. Lemma 4.4.3 is ultimately the artifact allowing the almost

sure result. It applies the Chebychev inequality, with variance coming from lemma 4.4.2, followed by

the Borel-Cantelli lemma, in such a way as to show that a certain sequence of variables converges a.s.

to its average, whose asymptotics come from lemma 4.4.1.

II) Examples: We consider certain random piecewise expanding one-dimensional systems, casting

new light on the well-known deterministic dichotomy between periodic and aperiodic points, their

typical extremal index formula EI “ 1 ´ 1{JT ppζ q, and recovering the geometric case for general

Bernoulli-driven systems, but distinct behavior otherwise.

4.2 Proof of theorem 4.1.3

Remark 4. Before discussing the proof, to aid one’s intuition on the result itself (but not directly on

the proof strategy to be pursued) it is useful to consider that the algebraic relationship in the conclusion

of theorem 4.1.3 also appears from a Markov chain of the form below

9A comparison with the roles played by conditions Д
1˚
q puq in section 3.1.1 is worthwhile. See item (i) after theorem

3.1.2.
10A comparison with how the errors in the probabilistic approximation sections 3.1.3 and 3.2.3 are controlled is

worthwhile.
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where the qi’s represent the stationary mass distribution of the chain. By letting α̃ℓ :“ qℓ{
ř

jě1 q j

(ℓ ě 1), it is possible to verify that λ̃ℓ “ α̃ℓ´α̃ℓ`1

α1
.

One can interpret that each non-zero state s refers to the space of points in a germ of the target

set which undergo s visits (present included) to the same germ before escaping from it (i.e., escaping

from its local recurrence behavior), while the state zero represents points outside the germ (and its

local recurrence behavior). The fact that the transition probabilities on the top and the left are 1 and 0

can be thought of as an acceleration of the system. In this case, λ̃ℓ’s can be understood as cluster size

statistics and the α̃ℓ are sometimes called sojourn statistics.

Let us note that theorem 4.1.3 generalizes theorem 2 from [53]. The proof is very similar but

presented here for the convenience of the reader and to fix some inaccuracies found in the latter.

In the scope of this section, let arbitrarily chosen ℓ P Ně1 and γ P Ną1 be fixed. These will be

used in the forthcoming proof of theorem 4.1.3 and lemma 4.2.1.

Lemma 4.2.1. It holds that

I) @η ą 0,DL2pηq,@L1 ą L ě L2pηq,Dρ2pη ,L,L1q,@ρ ď ρ2pη ,L,L1q:

µ̂
´

ZL1´L
Γρ

˝ SL ą 0, I
ρ
0 “ 1

¯

ď ηµ̂pΓρq.

II) @η ą 0,DL2pηq,@L1,L so that L1 ´ L ě L2pηq, Dρ2pη ,L,L1q ą 0,@ρ ď ρ2pη ,L,L1q:

µ̂
´

ZL
Γρ

ą 0, I
ρ
L1 “ 1

¯

ď ηµ̂pΓρq.

Proof. Manipulating the definitions of α̂ℓ’s, the associated limits and the finiteness of the series in the

hypothesis, it can be shown that: @ε ą 0

i) Dk0pεq ě 1 so that
ř8

k“k0pεq kα̂k ď ε.

ii) DL0pεq ě r2k0pεq _ 2ℓs pε´1qγ ,@L ě L0pεq, Dρ0pε,Lq ą 0, @ρ ď ρ0pε,Lq one has

a) @H P rL,2Lγ s :
ř8

k“k0pεq kα̂kpH,ρq ď 2ε ,

ˇ

ˇ

ˇ

řk0pεq
k“1 α̂k ´řk0pεq

k“1 α̂kpH,ρq
ˇ

ˇ

ˇ
ď 2ε .

b) @q P r1,2k0pεq _ 2ℓs,@H P rL,2Lγ s : |α̂q ´ α̂qpH,ρq| ď ε, |αq ´ αqpH,ρq| ď ε .

iii) DL1pεq ě L0pεq,@L1 ą L ě L1pεq, Dρ1pε,L,L1q P
´

0,
ŹL1

H“L ρ0pε,Hq
¯

, @ρ ď ρ1pε,L,L1q one

has
ř8

k“1 |α̂kpL1,ρq ´ α̂kpL,ρq| ď 6ε .

To justify i) use that
ř8

k“1 kα̂k ă 8.
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To justify ii.a) start noticing that @ε ą 0,DL0pεq,@L ě L0pεq :

0 ď α̂k´
˘
α̂kpHq ď ε

k0pεq p@k P r1,k0pεqs,@H P rL,2Lγ sq,

ñ 0 ď
k0pεq
ÿ

k“1

α̂k ´
k0pεq
ÿ

k“1

˘
α̂kpHq ď ε p@H P rL,2Lγ sq,

because α̂k “ limL

˘
α̂kpLq occurs monotonically increasing in L.

Then consider that @ε ą 0,@L ě 0,Dρ0pε,Lq,@ρ ď ρ0pε,Lq:

´
α̂kpHq ´ ε

k0pεq2p2Lγq2
ď α̂kpH,ρq ď

`
α̂kpHq ` ε

k0pεq2p2Lγq2

p@k P r1,k0pεq2p2Lγq2s,@H P rL,2Lγ sq

implying
k0pεq
ÿ

k“1

´
α̂kpHq ´ ε ď

k0pεq
ÿ

k“1

α̂kpH,ρq ď
k0pεq
ÿ

k“1

`
α̂kpHq ` ε p@H P rL,2Lγ sq,

and
8
ÿ

k“k0pεq

kα̂kpH,ρq “
H
ÿ

k“k0pεq

kα̂kpH,ρqď
H
ÿ

k“k0pεq

k
`
α̂kpHq `

H
ÿ

k“k0pεq

k
ε

k0pεq2p2Lγq2

ď
8
ÿ

k“k0pεq

kα̂k ` p2Lγq2 ε

k0pεq2p2Lγq2

ď ε ` ε “ 2ε p@H P rL,2Lγ sq.

Finally, combining the conditions and conclusions of the two previous paragraphs: @ε ą 0,DL0pεq,@L ě
L0pεq,Dρ0pε,Lq ą 0,@ρ ď ρ0pε,Lq,@H P rL,2Lγ s:

8
ÿ

k“k0pεq

kα̂kpH,ρq ď 2ε and

k0pεq
ÿ

k“1

α̂k ´ 2ε ď
k0pεq
ÿ

k“1

α̂kpH,ρq ď
k0pεq
ÿ

k“1

α̂k ` 2ε,

as desired.

To justify ii.b) one can adapt the argument used above to show the second inequality in ii.a).

Finally, to justify iii) start noticing that @ε ą 0,DL1pεq ě L0pεq,@L1 ą L ě L1pεq:

ˇ

ˇ

ˇ

ˇ

˚
α̂kpL1q´

˙
α̂kpLq

ˇ

ˇ

ˇ

ˇ

ď ε

4k0pεq p@˚,˙ P t`,´uq,

and therefore @ε ą 0,DL1pεq ě L0pεq,@L1 ą L ě L1pεq,Dρ1pε,L,L1q P
´

0,
ŹL1

H“L ρ0pε,Hq
¯

, @ρ ď
ρ1pε,L,L1q,@k P r1,k0pεqs:

´
α̂kpL1q ´ ε

4k0pεq ď α̂kpL1,ρq ď
`
α̂kpL1q ` ε

4k0pεq p@k P r1,k0pεqsq
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´
α̂kpLq ´ ε

4k0pεq ď α̂kpL,ρq ď
`
α̂kpLq ` ε

4k0pεq p@k P r1,k0pεqsq

so that ´ ε

k0pεq ď α̂kpL1,ρq ´ α̂kpL,ρq ď ε

k0pεq p@k P r1,k0pεqsq

ñ
k0pεq
ÿ

k“1

|α̂kpL1,ρq ´ α̂kpL,ρq| ď ε,

and, since the quantifiers were subordinated to those of (ii), we actually get that

ř8
k“1 |α̂kpL1,ρq ´ α̂kpL,ρq| ď řk0pεq

k“1 |α̂kpL1,ρq ´ α̂kpL,ρq| `ř8
k“k0pεq |α̂kpL1,ρq ´ α̂kpL,ρq|

ď ε `ř8
k“k0pεq kα̂kpL1,ρq `ř8

k“k0pεq kα̂kpL1,ρq
ď ε ` 2ε ` 2ε ď 6ε ,

as desired

Now we prove I).

Let L2pηq :“ L1pη{6q and ρ2pη ,L,L1q :“ ρ1pη{6,L,L1q. Consider L1 ą L ě L2pηq and ρ ď
ρ2pη ,L,L1q. Then

µ̂
´

ZL1´L
Γρ

˝ SL ą 0, I
ρ
0 “ 1

¯

“
ż

Ω

8
ÿ

k“1

µω

´

Z
θ Lω,L1´L
Γρ

˝ T L
ω ą 0, I

ω,ρ
0 “ 1,Z

ω,L1

Γρ
“ k

¯

dPpωq

ď
ż

Ω

8
ÿ

k“1

µω

´

Γρpωq X
”

tZ
ω,L1

Γρ
ě kuztZ

ω,L
Γρ

ě ku
ı¯

dPpωq

“
8
ÿ

k“1

„
ż

Ω

µωpΓρpωqqα̂ω
k pL1,ρqdPpωq ´

ż

Ω

µωpΓρpωqqα̂ω
k pL,ρqdPpωq



“
8
ÿ

k“1

α̂kpL1,ρqµ̂pΓρq ´ α̂kpL,ρqµ̂pΓρq ď 6η{6µ̂pΓρq “ ηµ̂pΓρq, by (iii).

This concludes the proof of I).

Now we prove II).

Again let L2pηq :“ L1pη{6q and ρ2pη ,L,L1q :“ ρ1pη{6,L,L1q. Consider L1,L so that L1 ´ L ě
L2pηq and ρ ď ρ2pη ,L,L1q. Then

µ̂
´

ZL
Γρ

ą 0,I
ρ
L1 “ 1

¯

ď
ż

Ω

L´1
ÿ

i“0

µω

`

I
ω,ρ
i “1,I

ω,ρ
L1 “1

˘

dPpωq“
ż

Ω

L´1
ÿ

i“0

µω

`

I
ω,ρ
0 “1, I

ω,ρ
L1´i

“1
˘

dPpωq

“
ż

Ω

Eµω

˜

I
ω,ρ
0

L1
ÿ

i“L1´L`1

I
ω,ρ
i

¸

dPpωq “
ż

Ω

Eµω

´

I
ω,ρ
0

”

Z
ω,L1`1
Γρ

´ Z
ω,L1´L`1
Γρ

ı¯

dPpωq

“
ż

Ω

8
ÿ

k“0

k

”

µω

´

Z
ω,L1`1
Γρ

“ k, I
ω,ρ
0 “ 1

¯

´ µω

´

Z
ω,L1´L`1
Γρ

“ k, I
ω,ρ
0 “ 1

¯ı

dPpωq
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“
ż

Ω

8
ÿ

k“0

k
“

αω
k pL1 ` 1,ρqµωpΓρpωqq ´ αω

k pL1 ´ L ` 1,ρqµωpΓρpωqq
‰

dPpωq,

but
ř8

k“1 kαω
k pT,ρq “ ř8

k“1 krα̂ω
k pT,ρq ´ α̂ω

k`1pT,ρqs “ ř8
k“1 α̂ω

k pT,ρq, so

“
ż

Ω

”
8
ÿ

k“0

α̂ω
k pL1 ` 1,ρq ´ α̂ω

k pL1 ´ L ` 1,ρq
ı

µωpΓρpωqqdPpωq

“
8
ÿ

k“0

“

α̂kpL1 ` 1,ρq ´ α̂kpL1 ´ L ` 1,ρq
‰

µ̂pΓρq ď 6η{6µ̂pΓρq “ ηµ̂pΓρq, by (iii).

This concludes the proof of II). ■

Proof of theorem 4.1.3. Let ε P p0,α1{26q and consider a function ηpεq to be chosen in due time.

Set L3pεq be large so that L ě L3pεq ñ Lγ´1 ě pk0pεq`1qε´1 and Lγ ´L ą L ě 2 rpL1pεq _ L2pηpεqqq ` 1s,
where k0pεq is that found in the proof of 4.2.1 item i), L1pεq found in item iii) of the same proof and

again L2pηq “ L1pη{6q.

we adopt the notation in the statement and proof of the previous lemma

Set ρ3pε,Lq to

min

"

ρ1pε,L,Lγq,ρ1pε,Lγ ´ L,Lγq, min
iPrL,2Lγ ´L´1s

"

ρ2pηpεq,L,2Lγ ´ iq,ρ2pηpεq,L{2,2Lγ ´ iq
ρ2pηpεq,L{2, iq,ρ2pηpεq, i ´ L{2 ` 1, iq

**

.

Consider L ě L3pεq and ρ ď ρ3pε,Lq. We evaluate the numerator that appears when expanding

λℓ.

µ̂
´

Z2Lγ

Γρ
“ ℓ

¯

“
ż

Ω

ℓ´1
2Lγ ´1
ÿ

i“0

Eµω

ˆ

✶!
Z

ω,2Lγ

Γρ
“ℓ

)I
ω,ρ
i

˙

dPpωq

ñ
ˇ

ˇ

ˇ

ˇ

ˇ

µ̂
´

Z2Lγ

Γρ
“ ℓ

¯

´ ℓ´1
2Lγ ´L´1
ÿ

i“L

ż

Ω

µω

´

Z
ω,2Lγ

Γρ
“ ℓ, I

ω,ρ
i “ 1

¯

dPpωq
ˇ

ˇ

ˇ

ˇ

ˇ

ď ℓ´12Lµ̂pΓρq. (4.10)

We establish some notation. When i P rL,2Lγ ´ L ´ 1s and k P r0, ℓ´ 1s, write:

D
L,Lγ

ω,i “
"

ÿ2Lγ ´1

u“i`L
Iω,ρ
u ą 0, I

ω,ρ
i “ 1

*

;

F
L{2

ω,i “
"

ÿL{2´1

u“0
Iω,ρ
u ą 0, I

ω,ρ
i “ 1

*

;

R
i,L
ω,ℓ,k “

!

ÿi´1

u“0
Iω,ρ
u “ k,

ÿi`L´1

u“i
Iω,ρ
u “ ℓ´ k, I

ω,ρ
i “ 1

)

;

R
i,L
ω,ℓ,kp jq “ R

i,L
ω,ℓ,k X

!

I
ω,ρ
j “ 1, Iω,ρ

a “ 0 @a P r0, jq
)

, for j P r0, is;

S
i,L
ω,ℓ,kp jq “ R

i,L
ω,ℓ,k X

!

I
ω,ρ
j “ 1, I

ω,ρ
b “ 0 @b P p j, iq

)

, for j P r0, i ´ 1s.
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To update the estimate in equation (4.10), we will apply many approximation steps, to be identified

with uppercase roman letters and justified only at the very end.

A) For i P rL,2Lγ ´ L ´ 1s:
ˇ

ˇ

ˇ

ż

Ω

µω

´

Z
ω,2Lγ

Γρ
“ ℓ, I

ω,ρ
i “ 1

¯

dPpωq ´
ż

Ω

µω

´

Z
ω,i`L
Γρ

“ ℓ, I
ω,ρ
i “ 1

¯

dPpωq
ˇ

ˇ

ˇ
ď ηpεqµ̂pΓρq

Combining equation (4.10) with approximation (A), while observing that second integrand above

equals µωpŤℓ´1
k“0 R

i,L
ω,ℓ,kq, gives

ˇ

ˇ

ˇ

ˇ

ˇ

µ̂
´

Z2Lγ

Γρ
“ ℓ

¯

´ ℓ´1
2Lγ ´L´1
ÿ

i“L

ℓ´1
ÿ

k“0

ż

Ω

µωpR
i,L
ω,ℓ,kqdPpωq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ℓ´1r2L ` p2Lγ ´ 2Lqηpεqsµ̂pΓρq. (4.11)

B) For i P rL,2Lγ ´ L ´ 1s, k P r0, ℓ´ 1s:
ˇ

ˇ

ˇ

ˇ

ż

Ω

µωpR
i,L
ω,ℓ,0qdPpωq ´

ż

Ω

µωpR
i,L
ω,ℓ,kqdPpωq

ˇ

ˇ

ˇ

ˇ

ď 3ηpεqµ̂pΓρq.

C) For i P rL,2Lγ ´ L ´ 1s:
ˇ

ˇ

ˇ

ˇ

ż

Ω

µω

´

R
i,L
ω,ℓ,0

¯

dPpωq ´
ż

Ω

µω

´

R
L,L
ω,ℓ,0

¯

dPpωq
ˇ

ˇ

ˇ

ˇ

ď ηpεqµ̂pΓρq.

Combining equation (4.11) with approximations (B) and (C), gives

ˇ

ˇ

ˇ

ˇ

µ̂
´

Z2Lγ

Γρ
“ ℓ

¯

´ p2Lγ ´ 2Lq
ż

Ω

µω

´

R
L,L
ω,ℓ,0

¯

dPpωq
ˇ

ˇ

ˇ

ˇ

ď r2L ` 5p2Lγ ´ 2Lqηpεqsµ̂pΓρq. (4.12)

Now we look to the other side of the equality we are trying to prove.

Notice that

αℓpL,ρq ´ αℓ`1pL,ρq “ µ̂pΓρq´1

ż

Ω

»

–

µω

´

ř2L´1
u“L I

ω,ρ
u “ ℓ, I

ω,ρ
L “ 1

¯

´µω

´

ř2L´1
u“L I

ω,ρ
u “ ℓ` 1, I

ω,ρ
L “ 1

¯

fi

fldPpωq

“ µ̂pΓρq´1

«

řk0pεq
k“0

ş

Ω
µωpR

L,L
ω,ℓ`k,kq ´ µωpR

L,L
ω,ℓ`k`1,kqdPpωq

`ř8pLq
k“k0pεq`1

ş

Ω
µωpR

L,L
ω,ℓ`k,kq ´ µωpR

L,L
ω,ℓ`k`1,kqdPpωq

ff

(4.13)

p˙q“ µ̂pΓρq´1

»

–

řk0pεq
k“0

ş

Ω
µωpR

L,L
ω,ℓ`k,kq ´

´

µωpR
L,L
ω,ℓ`k`1,k`1q `O

`

ηpεqµ̂pΓρq
˘

¯

dPpωq
`ř8pLq

k“k0pεq`1

ş

Ω
µωpR

L,L
ω,ℓ`k,kq ´ µωpR

L,L
ω,ℓ`k`1,kqdPpωq

fi

fl

ñ
ˇ

ˇ

ˇ

ˇ

pαℓpL,ρq ´ αℓ`1pL,ρqqµ̂pΓρq ´
ż

Ω

µω

´

R
L,L
ω,ℓ,0

¯

dPpωq
ˇ

ˇ

ˇ

ˇ
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ď 2k0pεqO
`

ηpεqµ̂pΓρq
˘

` 2

8pLq
ÿ

k“k0pεq`1

ż

Ω

µωpR
L,L
ω,ℓ`k,kq ` µωpR

L,L
ω,ℓ`k`1,kqdPpωq,

p˚q
ď 2k0pεqO

`

ηpεqµ̂pΓρq
˘

` 7pk0pεq ` ℓqα̂k0pεq`ℓp2L,ρqµ̂pΓρq (4.14)

where steps p˙q and p˚q are justified, respectively, with the following two approximations.

D) For i P rL,2Lγ ´ L ´ 1s, k P r1, ℓ´ 1s (for other k’s, zeroes pop up):

ˇ

ˇ

ˇ

ˇ

ż

Ω

µω

´

R
i,L
ω,ℓ,k´1

¯

dPpωq ´
ż

Ω

µω

´

R
i,L
ω,ℓ,k

¯

dPpωq
ˇ

ˇ

ˇ

ˇ

ď 3ηpεqµ̂pΓρq.

E)
8pLq
ÿ

k“k0pεq`1

ż

Ω

µωpR
L,L
ω,ℓ`k,kqdPpωq ď pk0pεq ` ℓqα̂k0pεq`ℓp2L,ρqµ̂pΓρq.

Now choose ηpεq “ ε{pk0pεq ` 1q. Combining equations (4.12) & (4.14), using (ii.a) from the

proof of lemma 4.2.1, and factoring Lγ out (notice L1´γ ď ε), gives:

ˇ

ˇ

ˇ
µ̂
´

Z2Lγ

Γρ
“ ℓ

¯

´ 2Lγ
`

αℓpL,ρq ´ αℓ`1pL,ρq
˘

µ̂pΓρq
ˇ

ˇ

ˇ
ď 84Lγεµ̂pΓρq. (4.15)

We can finally evaluate the denominator which appears when expanding λℓ.

µ̂
´

Z2Lγ

Γρ
ą 0

¯

“
k0pεq`1
ÿ

h“1

”

µ̂
´

Z2Lγ

Γρ
“ h

¯ı

` µ̂
´

Z2Lγ

Γρ
ě k0pεq ` 2

¯

“
k0pεq`1
ÿ

h“1

„
ż

Ω

h´1Eµω

ˆ

✶!
Z

ω,2Lγ

Γρ
“h

)Z
ω,2Lγ

Γρ

˙

dPpωq


` α̂k0pεq`2p2Lγ ,ρqµ̂pΓρq

“
2Lγ ´1
ÿ

i“0

k0pεq`1
ÿ

h“1

«

h´1
h´1
ÿ

k“0

ż

Ω

µω

´

R
i,2Lγ ´i
ω,h,k

¯

dPpωq
ff

`Opεµ̂pΓρqq, (4.16)

where the last line applied (ii.a) from the proof of lemma 4.2.1.

Then we consider the following approximation.

F) For h P r1,k0pεq ` 1s, i P rL,2Lγ ´ L ´ 1s, k P r0,h ´ 1s:
ˇ

ˇ

ˇ

ˇ

ż

Ω

µω

´

R
i,2Lγ ´i
ω,h,k

¯

dPpωq ´
ż

Ω

µω

´

R
i,L
ω,h,k

¯

dPpωq
ˇ

ˇ

ˇ

ˇ

ď ηpεqµ̂pΓρq.

Starting from equation (4.16), splitting the i-sum into middle (i P rL,2Lγ ´ L ´ 1s) plus tail terms

and applying (F,B,C,B) to the middle ones, gives

µ̂
´

Z2Lγ

Γρ
ą 0

¯

“ p2Lγ ´ 2Lq

»

–

k0pεq`1
ÿ

h“1

ˆ
ż

Ω

µω

´

R
L,L
ω,h,h´1

¯

dPpωq
˙

`Opεµ̂pΓρqq

fi

fl

`O

´

4Lpk0pεq ` 1qε´1εµ̂pΓρq
¯

`Opεµ̂pΓρqq
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ñ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µ̂
´

Z2Lγ

Γρ
ą 0

¯

´ 2Lγ
k0pεq`1
ÿ

h“1

ż

Ω

µω

´

R
L,L
ω,h,h´1

¯

dPpωq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 3Lγ
Opεµ̂pΓρqq `Op4L ¨ Lγ´1εµ̂pΓρqq `Opεµ̂pΓρqq ` 4L

k0pεq`1
ÿ

h“1

ż

Ω

µω

´

R
L,L
ω,h,h´1

¯

dPpωq

ď 8Lγ
Opεµ̂pΓρqq ` 4L

k0pεq`1
ÿ

h“1

ż

Ω

µω

´

R
L,L
ω,h,h´1

¯

dPpωq,

where it was used that pk0pεq ` 1qε´1 ď Lγ´1.

To take care of the summations on both sides of the previous inequality we observe that, when

ℓ “ 1 is given to the “αℓpL,ρq side of” equation (4.13), one gets

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

α1pL,ρqµ̂pΓρq ´
k0pεq`1
ÿ

h“1

ż

Ω

µωpR
L,L
ω,h,h´1qdPpωq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
8pLq
ÿ

h“k0pεq`1

ż

Ω

µωpR
L,L
ω,1`h,hqdPpωq

ď pk0pεq ` 1qα̂k0pεq`1p2L,ρqµ̂pΓρq ď 2εµ̂pΓρq,

where (E) and (ii.a) from the proof of lemma 4.2.1 are applied.

Therefore
ˇ

ˇ

ˇ
µ̂
´

Z2Lγ

Γρ
ą 0

¯

´ 2Lγα1pL,ρqµ̂pΓρq
ˇ

ˇ

ˇ

ď 8Lγ
Opεµ̂pΓρqq ` 4L

`

α1pL,ρqε´1εµ̂pΓρq ` 2εµ̂pΓρq
˘

` 4Lγεµ̂pΓρq

ď 20Lγ
Opεµ̂pΓρqq ` 4α1pL,ρqLLγ´1εµ̂pΓρq ď 12 ¨ 2Lγ

Opεµ̂pΓρqq. (4.17)

Since α1pL,ρq is ε-close to α1 and ε P p0,α1{26q, the previous equation sets µ̂
´

Z2Lγ

Γρ
ą 0

¯

far from

zero, so we can really work with µ̂pZ2Lγ

Γρ
ą 0q as a denominator.
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Combining the estimates given in equations (4.15) and (4.17) gives:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µ̂
´

Z2Lγ

Γρ
“ ℓ

¯

µ̂
´

Z2Lγ

Γρ
ą 0

¯ ´ αℓ ´ αℓ`1

α1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µ̂
´

Z2Lγ

Γρ
“ ℓ

¯

´ αℓpL,ρq´αℓ`1pL,ρq
α1pL,ρq µ̂

´

Z2Lγ

Γρ
ą 0

¯

µ̂
´

Z2Lγ

Γρ
ą 0

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

αℓpL,ρq ´ αℓ`1pL,ρq
α1pL,ρq ´ αℓ ´ αℓ`1

α1

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
µ̂
´

Z2Lγ

Γρ
“ℓ

¯

´2Lγ µ̂pΓρqpαℓpL,ρq´αℓ`1pL,ρqq
ˇ

ˇ

ˇ
`
ˇ

ˇ

ˇ
2Lγ µ̂pΓρqpαℓpL,ρq´αℓ`1pL,ρqq´ αℓpL,ρq´αℓ`1pL,ρq

α1pL,ρq µ̂
´

Z2Lγ

Γρ
ą0

¯ˇ

ˇ

ˇ

µ̂
´

Z2Lγ

Γρ
ą 0

¯

`
ˇ

ˇ

ˇ

ˇ

αℓpL,ρq ´ αℓ`1pL,ρq
α1pL,ρq ´ αℓ ´ αℓ`1

α1

ˇ

ˇ

ˇ

ˇ

(4.15)
ď

(4.17)

42 ¨ 2Lγεµ̂pΓρq ` αℓpL,ρq´αℓ`1pL,ρq
α1pL,ρq 12 ¨ 2Lγεµ̂pΓρq

µ̂
´

Z2Lγ

Γρ
ą 0

¯ `
ˇ

ˇ

ˇ

ˇ

αℓpL,ρq ´ αℓ`1pL,ρq
α1pL,ρq ´ αℓ ´ αℓ`1

α1

ˇ

ˇ

ˇ

ˇ

ď 42ε

ˆ

1

α1

` Opεq
pα1 ´Opεqq2

˙

` αℓpL,ρq ´ αℓ`1pL,ρq
α1pL,ρq 12ε

ˆ

1

α1

` Opεq
pα1 ´Opεqq2

˙

`
ˇ

ˇ

ˇ

ˇ

αℓpL,ρq ´ αℓ`1pL,ρq
α1pL,ρq ´ αℓ ´ αℓ`1

α1

ˇ

ˇ

ˇ

ˇ

(4.18)

where the last inequality applied the control

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2Lγ µ̂pΓρq
µ̂
´

Z2Lγ

Γρ
ą 0

¯ ´ 1

α1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
˜

sup
zěα1´Opεq

z´2

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µ̂
´

Z2Lγ

Γρ
ą 0

¯

2Lγ µ̂pΓρq ´ α1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Opεq
pα1 ´Opεqq2

,

which is due to equation (4.17).

Passing limεÑ0 limLÑ8 limρÑ0 over equation (4.18), we observe the RHS going to zero and we

find that

lim
LÑ8

lim
ρÑ0

µ̂
´

Z2Lγ

Γρ
“ ℓ

¯

µ̂
´

Z2Lγ

Γρ
ą 0

¯ “ αl ´ αl`1

α1

.

Alternating between limsup’s and liminf’s lets us reach the desired conclusion.

Now we prove each of the approximations used above. Many of them rely on initial inclusions

which are indicated and whose justification is left to the reader.

Proof of A) One can check that

!

Z
ω,i`L
Γρ

“ ℓ, I
ω,ρ
i “ 1

)

X pD
L,Lγ

ω,i qc Ă
!

Z
ω,2Lγ

Γρ
“ ℓ, I

ω,ρ
i “ 1

)

Ă
!

Z
ω,i`L
Γρ

“ ℓ, I
ω,ρ
i “ 1

)

Y D
L,Lγ

ω,i ,
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which gives an inequality that, after integration, can bound the LHS of A) by
ş

Ω
µωpD

L,Lγ

ω,i qdPpωq.

Then we calculate

ż

Ω

µωpD
L,Lγ

ω,i qdPpωq “
ż

Ω

µω

´

Z
θ Lω,2Lγ ´i´L
Γρ

˝ T L
ω ą 0, I

ω,ρ
0 “ 1

¯

dPpωq,

but 2Lγ ´ i ą L ô 2Lγ ´ L ´ 1 ě i, L ě L3pεq ě L2pηpεqq and ρ ď ρ3pε,Lq ď ρ2pηpεq,L,2Lγ ´ iq,

so (I, lemma 4.2.1) applies, implying that the last integral is bounded above by ηpεqµ̂pΓρq. ˝

Proof of B) One can check that

R
i,L
ω,l,0 X pD

L{2,Lγ

ω,i Y F
L{2

ω,i qc Ă
i
ď

j“i´L{2`1

pT
i´ j

ω q´1R
i,L

θ i´ jω,l,k
p jq Ă R

i,L
ω,l,0 Y pD

L{2,Lγ

ω,i Y F
L{2

ω,i q.

Then we calculate

ż

Ω

µω

´

F
L{2

ω,i

¯

dPpωq “
ż

Ω

µω

´

Z
ω,L{2

Γρ
ą 0, I

ω,ρ
i “ 1

¯

dPpωq ď ηpεqµ̂pΓρq,

where the inequality follows from an application of (II, lemma 4.2.1), since i ´ L{2 ě L ´ L{2 “ L{2 ě
L2pηpεqq and ρ ď ρ3pε,Lq ď ρ2pηpεq,L{2, iq.

And also

ż

Ω

µω

´

D
L{2,Lγ

ω,i

¯

dPpωq “
ż

Ω

µω

´

Z
θ L{2ω,2Lγ ´i´L{2

Γρ
˝ T

L{2
ω ą 0, I

ω,ρ
0 “ 1

¯

dPpωq ď ηpεqµ̂pΓρq,

where the inequality follows from an application of (I, lemma 4.2.1): 2Lγ ´ i ą L{2 ô 2Lγ ´ L{2 ´1 ě i,

L{2 ě L2pηpεqq and ρ ď ρ3pε,Lq ď ρ2pηpεq,L{2,2Lγ ´ iq.

The consequence is the approximation

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ω

µω

´

R
i,L
ω,l,0

¯

dPpωq ´
ż

Ω

µω

¨

˝

i
ğ

j“i´L{2`1

pT
i´ j

ω q´1R
i,L

θ i´ jω,l,k
p jq

˛

‚dPpωq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2ηpεqµ̂pΓρq.

However,

ż

Ω

µω

¨

˝

i
ğ

j“i´L{2`1

pT
i´ j

ω q´1R
i,L

θ i´ jω,l,k
p jq

˛

‚dPpωq “
ż

Ω

µω

¨

˝

i
ğ

j“i´L{2`1

R
i,L
ω,l,kp jq

˛

‚dPpωq

ď
ż

Ω

µω

´

R
i,L
ω,l,k

¯

dPpωq ď
ż

Ω

µω

¨

˝

i
ğ

j“i´L{2`1

R
i,L
ω,l,kp jq

˛

‚dPpωq ` ηpεqµ̂pΓρq,

where the last inequality follows from the inclusion

R
i,L
ω,l,k Ă

i
ď

j“i´L{2`1

R
i,L
ω,l,kp jq Y F

i´ L
2

ω,i
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and the estimate

ż

Ω

µω

´

F
i´L{2

ω,i

¯

dPpωq “
ż

Ω

µω

´

Z
ω,i´L{2`1

Γρ
ą 0, I

ω,ρ
i “ 1

¯

dPpωq ď ηpεqµ̂pΓρq,

with the inequality following from another application of (II, lemma 4.2.1): i ´ pi ´ L{2 ` 1q “
L{2 ´ 1 ě L2pηpεqq and ρ ď ρ3pε,Lq ď ρ2pηpεq, i ´ L{2 ` 1, iq.

The conclusion follows from aforementioned approximation and the previous control. ˝

Proof of C) One can check that

R
i,L
ω,l,0 Ă pT i´L

ω q´1R
L,L

θ i´Lω,l,0
, pT i´L

ω q´1R
L,L

θ i´Lω,l,0
zR

i,L
ω,l,0 Ă F

i´L{2
ω,i ,

which gives an inequality that, after integration, can bound the LHS of the expression we need to

control by
ş

Ω
µωpF

i´L{2
ω,i qdPpωq ď ηpεqµ̂pΓρq, where the later estimate is identical to that obtained

at the end of the proof of B). ˝

Proof of D) One can check that

R
i,L
ω,l,k´1 X pD

L{2,Lγ

ω,i Y F
L{2

ω,i qc Ă
i´1
ğ

j“i´L{2`1

pT
i´ j

ω q´1S
i,L

θ i´ jω,l,k
p jq Ă R

i,L
ω,l,k´1 Y pD

L{2,Lγ

ω,i Y F
L{2

ω,i q. (4.19)

The corrective sets F
L{2

ω,i and D
L{2,Lγ

ω,i are treated again as in the proof of B), implying that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ω

µω

´

R
i,L
ω,l,k´1

¯

dPpωq ´
ż

Ω

µω

¨

˝

i´1
ğ

j“i´L{2

pT
i´ j

ω q´1S
i,L

θ i´ jω,l,k
p jq

˛

‚dPpωq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2ηpεqµ̂pΓρq. (4.20)

However,

ż

Ω

µω

¨

˝

i´1
ğ

j“i´L{2`1

pT
i´ j

ω q´1S
i,L

θ i´ jω,l,k
p jq

˛

‚dPpωq “
ż

Ω

µω

¨

˝

i´1
ğ

j“i´L{2`1

S
i,L
ω,l,kp jq

˛

‚dPpωq

ď
ż

Ω

µω

´

R
i,L
ω,l,k

¯

dPpωq ď
ż

Ω

µω

¨

˝

i
ğ

j“i´L{2`1

S
i,L
ω,l,kp jq

˛

‚dPpωq ` ηpεqµ̂pΓρq,

where the last inequality follows from the inclusion

R
i,L
ω,l,k Ă

i
ğ

j“i´L{2`1

S
i,L
ω,l,kp jq Y F

i´ L
2

ω,i ,

and the respective estimate of the corrective set using (II, lemma 4.2.1), precisely as in the end of the

proof of B). ˝
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Proof of E) One can check that

L
ď

j“1

8pLq
ď

k“k0pεq

pT
j

ωq´1R
L,L

θ jω,l`k,k
pL ´ jq Ă pT L

ω q´1
!

Z
θ Lω,2L
Γρ

ě k0pεq ` ℓ, I
θ Lω,ρ
0 “ 1

)

.

Therefore, integrating, manipulating and using invariance over and over:

ż

Ω

µω

¨

˝

L
ď

j“1

8pLq
ď

k“k0pεq

pT
j

ωq´1R
L,L

θ jω,l`k,k
pL ´ jq

˛

‚dPpωq “
8pLq
ÿ

k“k0pεq

ż

Ω

µω

´

R
L,L
ω,l`k,k

¯

dPpωq

ď
ż

Ω

µω

´

Z
ω,2L
Γρ

ě k0pεq ` ℓ, I
ω,ρ
0 “ 1

¯

dPpωq

“ α̂k0pεq`ℓp2L,ρqµ̂pΓρq ď pk0pεq ` ℓqα̂k0pεq`ℓp2L,ρqµ̂pΓρq.

˝

Proof of F) One can check that

R
i,L
ω,h,k X pD

L,Lγ

ω,i qc Ă R
i,2Lγ ´i
ω,h,k Ă R

i,L
ω,h,k Y D

L,Lγ

ω,i .

It remains to reapply the justification used in the proof of (A) to get that
ş

Ω
µωpD

L,Lγ

ω,i qdPpωq ď ηpεqµ̂pΓρq. ˝
. ■

4.3 An abstract approximation theorem

The following theorem approximates the probability distribution of an arbitrary sum of binary variables

in terms of the distribution of a suitable sum of independent random variables. More precisely, to

build the ‘suitable’ independent random variables, one splits the first sum into smaller block-sums,

and each of them is distributionally mimicked by a new random variable, with the collection of new

ones being taken to be independent.

Theorem 4.3.1. Consider n ě 0, L ě n, N P Ně3 large enough so that L ď t N
3

u, and pXiqN´1
i“0 arbitrary

t0,1u-valued random variables on pX ,X ,Qq. Denote N1
L :“ N

L
P Ně3

11 and pZL
j qN1

L´1

j“0 given by

ZL
j :“ řp j`1qL´1

i“ jL Xi
12.

11 Although L need not divide N, we pretend this is the case, for simplification purposes, i.e. to neglect possible remainder

terms associated with the fractional part — which should not play a role in the asymptotics (of either the error and leading

terms).
12 This is the first instance in the text where the letter L is used to measure block-size, where L is fixed. Before, L was

iteration-time and eventually sent to infinity, as in definitions (I-VI) of section 4.1.2. However, through the text, these use

cases merge, in the sense that the block of size L iterates the maps L times: much before the L-limit we are inclined to see L

as a fixed block-size, much closer to the L-limit we are inclined to see it as growing iteration-time. It is implicit that every

time this merger occurs we will eventually want to take the L-limit. There is a special situation where this is not the case, to

be seen in lemma 4.4.2 and lemma 4.4.3 item (3), where we will be equally interested in L “ 1 and L Ñ 8.
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Let pZ̃L
j qN1

L´1

j“0 be an independency of Ně0-valued random variables on pX ,X ,Qq13 satisfying

Z̃L
j „ ZL

j ( j “ 0, . . . ,N1
L ´ 1) and pZ̃L

j qN1
L´1

j“0 K pZL
j qN1

L´1

j“0 .

Denote W̃ L
a,b :“ řb

j“a Z̃L
j (0 ď a ď b ď N1

L ´ 1) and W̃ L :“ W̃ L
0,N1

L´1
. Similarly notation with „’s

erased is adopted, in which case W L coincides with W :“ řN´1
i“0 Xi.

Then:

ˇ

ˇQpW “ nq ´QpW̃ L “ nq
ˇ

ˇ À
`

R̃
1pN,Lq `R

1pN,L,∆q `R
2pN,L,∆q `R

3pN,L,∆q
˘

,

where

R̃
1pN,L,∆q “

N1
L´1
ÿ

j“0

max
qPr0,ns

ˇ

ˇ

ˇ
QpZL

j ě 1qQpW L
j`∆,N1

L´1 “ qq ´QpZL
j ě 1,W L

j`∆,N1
L´1 “ qq

ˇ

ˇ

ˇ
,

R
1pN,L,∆q“

N1
L´1
ÿ

j“0

max
qPr1,ns

q
ÿ

u“1

ˇ

ˇ

ˇ
Q

´

ZL
j “u,W L

j`∆,N1
L´1“q´u

¯

´Q

´

ZL
j “u

¯

Q

´

W L
j`∆,N1

L´1“q´u

¯ˇ

ˇ

ˇ
,

R
2pN,L,∆q “

N1
L´1
ÿ

j“0

Q
`

ZL
j ě 1,W L

j`1, j`∆´1 ě 1
˘

and

R
3pN,L,∆q “

N
ÿ

i“0

i
ÿ

q“0_pi´∆Lq

QpXi “ 1qQpXq “ 1q,

with the convention that, for b ą a, W L
b,a ” 0 and QpW L

b,a ě 1q “ 0.

Proof. Notice that by using a telescopic sum and the given independence, one has

ˇ

ˇQpW “ nq ´QpW̃ L “ nq
ˇ

ˇ ď
N1

L´1
ÿ

j“0

ˇ

ˇ

ˇ
QpW̃ L

0, j´1 `W L
j,N1

L´1 “ nq ´QpW̃ L
0, j `W L

j`1,N1
L´1 “ nq

ˇ

ˇ

ˇ

ď
N1

L´1
ÿ

j“0

n
ÿ

l“0

QpW̃ L
0, j´1 “ lq

ˇ

ˇ

ˇ
QpW L

j,N1
L´1 “ n ´ lq ´QpZ̃L

j `W L
j`1,N1

L´1 “ n ´ lq
ˇ

ˇ

ˇ
.

We now estimate
ˇ

ˇ

ˇ
QpW L

j,N1
L´1 “ qq ´QpZ̃L

j `W L
j`1,N1

L´1 “ qq
ˇ

ˇ

ˇ

ď
q
ÿ

u“0

ˇ

ˇ

ˇ
QpZL

j “ u,W L
j`1,N1

L´1 “ q ´ uq ´QpZ̃L
j “ u,W L

j`1,N1
L´1 “ q ´ uq

ˇ

ˇ

ˇ

“
q
ÿ

u“0

ˇ

ˇ

ˇ
QpZL

j “ u,W L
j`1,N1

L´1 “ q ´ uq ´QpZL
j “ uqQpW L

j`1,N1
L´1 “ q ´ uq

ˇ

ˇ

ˇ
“:

q
ÿ

u“0

|R jpq,uq|.

13For the statement of the theorem, it seems unimportant that the domain of the mimicking random variables is that

of the original ones, but this is used in the proof. Of course, pX ,X ,Qq then has to be a rich enough space in order to

accommodate the existence of such mimicking random variables. This will not be an issue in our application.
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We single out u “ 0 from the previous sum,

|R jpq,0q| “
ˇ

ˇ

ˇ
QpZL

j “ 0,W L
j`1,N1

L´1 “ qq ´QpZL
j “ 0qQpW L

j`1,N1
L´1 “ qq

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

´

QpW L
j`1,N1

L´1 “ qq ´QpZL
j ě 1,W L

j`1,N1
L´1 “ qq

¯

´
´

QpW L
j`1,N1

L´1 “ qq ´QpZL
j ě 1qQpW L

j`1,N1
L´1 “ qq

¯ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ
QpZL

j ě 1qQpW L
j`1,N1

L´1 “ qq ´QpZL
j ě 1,W L

j`1,N1
L´1 “ qq

ˇ

ˇ

ˇ
.

It follows that

ˇ

ˇQpW “ nq ´QpW̃ L “ nq
ˇ

ˇ ď
N1

L´1
ÿ

j“0

n
ÿ

q“0

q
ÿ

u“0

|R jpq,uq|

ď n

N1
L´1
ÿ

j“0

max
qPr0,ns

ˇ

ˇ

ˇ
QpZL

j ě 1qQpW L
j`1,N1

L´1 “ qq ´QpZL
j ě 1,W L

j`1,N1
L´1 “ qq

ˇ

ˇ

ˇ
`

N1
L´1
ÿ

j“0

n
ÿ

q“0

q
ÿ

u“1

|R jpq,uq|

À
N1

L´1
ÿ

j“0

max
qPr0,ns

ˇ

ˇ

ˇ
QpZL

j ě 1qQpW L
j`1,N1

L´1 “ qq ´QpZL
j ě 1,W L

j`1,N1
L´1 “ qq

ˇ

ˇ

ˇ
`

N1
L´1
ÿ

j“0

n
ÿ

q“0

q
ÿ

u“1

|R jpq,uq|.

The first summation will be kept on hold. We deal with the second one now, which will be split

into three terms, as follows.

For u “ 1, . . . ,q, we expand |R jpq,uq| using the triangular inequality, where we include interme-

diate terms using the time gap ∆, to get the following three components

|R jpq,uq| ď
ˇ

ˇ

ˇ
QpZL

j “ u,W L
j`1,N1

L´1 “ q ´ uq ´QpZL
j “ u,W L

j`∆,N1
L´1 “ q ´ uq

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ
QpZL

j “ u,W L
j`∆,N1

L´1 “ q ´ uq ´QpZL
j “ uqQpW L

j`∆,N1
L´1 “ q ´ uq

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ
QpZL

j “ uqQpW L
j`∆,N1

L´1 “ q ´ uq ´QpZL
j “ uqQpW L

j`1,N1
L´1 “ q ´ uq

ˇ

ˇ

ˇ
,

where the entries in the RHS are denoted, respectively, by |R2
jpq,uq|, |R1

jpq,uq| and |R3
jpq,uq| (note

the unusual order).

Then the following three terms bound the later triple sum.

First:
N1

L´1
ÿ

j“0

n
ÿ

q“0

q
ÿ

u“1

|R1
jpq,uq| À

N1
L´1
ÿ

j“0

max
qPr1,ns

q
ÿ

u“1

|R1
jpq,uq| “ R

1pN,L,∆q.

Second:
N1

L´1
ÿ

j“0

n
ÿ

q“0

q
ÿ

u“1

|R2
jpq,uq| À

N1
L´1
ÿ

j“0

max
qPr1,ns

q
ÿ

u“1

|R2
jpq,uq|

À
N1

L´1
ÿ

j“0

QpZL
j ě 1,W L

j`1, j`∆´1 ě 1q “ R
2pN,L,∆q,

where the step used that

Au :“ tZL
j “ u,W L

j`1,N1
L´1 “ q ´ uu,Bu :“ tZL

j “ u,W L
j`∆,N1

L´1 “ q ´ uu
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ñ AuzBu,BuzAu Ă tZL
j “ u,W L

j`1, j`∆´1 ě 1u

ñ
q
ÿ

u“1

|R2
jpq,uq| “

q
ÿ

u“1

|QpAuq ´QpBuq| ď
q
ÿ

u“1

QpZL
j “ u,W L

j`1, j`∆´1 ě 1q

ď QpZL
j ě 1,W L

j`1, j`∆´1 ě 1q.

Third:
N1

L´1
ÿ

j“0

n
ÿ

q“0

q
ÿ

u“1

|R3
jpq,uq| À

N1
L´1
ÿ

j“0

max
qPr1,ns

q
ÿ

u“1

|R3
jpq,uq|

À
N1

L´1
ÿ

j“0

p j`1qL´1
ÿ

l“ jL

p j`∆`1qL´1
ÿ

i“p j`1qL

QpXi“1qQpXl“1q “
N`∆L`L
ÿ

i“0

i´L
ÿ

l“0_pi´L´∆Lq

QpXl“1qQpXi“1q

ď
N
ÿ

i“0

i
ÿ

l“0_pi´∆Lq

QpXl “ 1qQpXi “ 1q “ R
3pN,L,∆q,

where the second À step used the following: (with q1 “ q ´ u)

QpW L
j`1,N1

L´1
“q1q “ QpZL

j`1ě1,W L
j`1,N1

L´1
“q1q`QpZL

j`1“0,W L
j`1,N1

L´1
“q1q

QpZL
j`1 “ 0,W L

j`1,N1
L´1

“ q1q “ QpZL
j`1 “ 0,W L

j`2,N1
L´1

“ q1q
“ QpW L

j`2,N1
L´1

“ q1q ´QpZL
j`1 ě 1,W L

j`2,N1
L´1

“ q1q

ñ
|QpW L

j`1,N1
L´1 “ q1q

´QpW L
j`2,N1

L´1 “ q1q| “
|QpZL

j`1 ě 1,W L
j`1,N1

L´1 “ q1q
´QpZL

j`1 ě 1,W L
j`2,N1

L´1 “ q1q|

but, with A :“ tZL
j`1 ě 1,W L

j`1,N1
L´1

“ q1u and B :“ tZL
j`1 ě 1,W L

j`2,N1
L´1

“ q1u, one has AzB,BzA Ă
tZL

j`1 ě 1u, implying

|QpW L
j`1,N1

L´1 “ q1q ´QpW L
j`2,N1

L´1 “ q1q| ď QpZL
j`1 ě 1q

ñ |QpW L
j`l,N1

L´1 “ q1q ´QpW L
j`l`1,N1

L´1 “ q1q| ď QpZL
j`l ě 1q ď

p j`l`1qL´1
ÿ

i“p j`lqL

QpXi “ 1q

ñ |QpW L
j`1,N1

L´1 “ q1q ´QpW L
j`∆,N1

L´1 “ q1q| ď
∆´1
ÿ

l“1

QpZL
j`l ě 1q ď

p j`∆qL´1
ÿ

i“p j`1qL

QpXi “ 1q

ñ
q
ÿ

u“1

|R3
jpq,uq| ď

q
ÿ

u“1

QpZL
j “ uq

p j`∆qL´1
ÿ

i“p j`1qL

QpXi “ 1q

ď
p j`1qL´1

ÿ

l“ jL

p j`∆qL´1
ÿ

i“p j`1qL

QpXl “ 1qQpXi “ 1q.
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Now we should deal with the summation we left on hold, coming from the singled-out term with

u “ 0, namely,

N1
L´1
ÿ

j“0

max
qPr0,ns

ˇ

ˇ

ˇ
QpZL

j ě 1qQpW L
j`1,N1

L´1 “ qq ´QpZL
j ě 1,W L

j`1,N1
L´1 “ qq

ˇ

ˇ

ˇ
.

Using an analogous triangular inequality trick, by adding two mixed terms that have a gap ∆,

we expand the previous absolute value into three parts. These three parts are named, in analogy to

the previous terms, by R̃1pN,L,∆q, R̃2pN,L,∆q and R̃3pN,L,∆q. The exact same procedures applied

above to bound R2 and R3 reapply and it follows that R̃2pN,L,∆q ď R2pN,L,∆q and R̃3pN,L,∆q ď
R3pN,L,∆q. So we are just left with an extra term given by

R̃
1pN,L,∆q “

N1
L´1
ÿ

j“0

max
qPr0,ns

ˇ

ˇ

ˇ
QpZL

j ě 1qQpW L
j`∆,N1

L´1 “ qq ´QpZL
j ě 1,W L

j`∆,N1
L´1 “ qq

ˇ

ˇ

ˇ
,

as desired. ■

4.4 Borel-Cantelli type lemmata

The objective of this section is its final lemma 4.4.3, which will be used in the proof of theorem

4.1.4. This lemma and its proof strategy was inspired in [77] (lemma 9). To implement the said

proof, we need to rely on the ad-hoc lemmas 4.4.1 and 4.4.2. Lemmas 4.4.1 and 4.4.2 are essentially

independent, although lemma 4.4.1 uses return statistics in its hypothesis and relies on theorem 4.1.3

in its proof. We believe that the dependencies in the last sentence might not be intrinsic and could be

untied.

Lemma 4.4.1. Let pθ ,P,Tω ,µω ,Γq be a system satisfying hypothesis (H9’) (so (H8), by theorem

4.1.3) . Then:

lim
LÑ8

lim
ρÑ0

µ̂pZL
Γρ

ě 1q
Lµ̂pΓρq “ př8

ℓ“1 ℓλℓq´1 “ α1 (4.21)

and

lim
LÑ8

lim
ρÑ0

µ̂pZL
Γρ

“ nq
Lµ̂pΓρq “ př8

ℓ“1 ℓλℓq´1λn “ α1λn pn ě 1q (4.22)

Proof. Using (H9’) (for the following items (i.b-ii)) and (H8) (items (i.a,iii-iv)), it holds that: @ε ą 0

i) Dℓ0pεq ě 1 so that

a)
ř8

ℓ“ℓ0pεq ℓ
3λℓ ď ε,

b) @L ě 1:
8
ř

ℓ“ℓ0pεq

ℓ
`
α̂ ℓpLq ď

8
ř

ℓ“ℓ0pεq

ℓα̂ℓ ď ε.

ii) @L ě 1,Dρ1pε,Lq,@ρ ď ρ1pε,Lq:

´
α̂ℓpLq ´ ε{pL2q ď α̂ℓpL,ρq ď

`
α̂ℓpLq ` ε{pL2q p@ℓ “ 1, . . . ,Lq
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ñ
L
ÿ

ℓ“ℓ0pεq

ℓα̂ℓpL,ρq ď
L
ÿ

ℓ“ℓ0pεq

ℓ

ˆ

`
α̂ℓpLq ` ε{pL2q

˙

ď 2ε by (i).

iii) @L ě 1,Dρ3pε,Lq,@ρ ď ρ3pε,Lq:

´

λ ℓpLq ´ ε{pℓ0pεqq2 ď λℓpL,ρq ď
`

λ ℓpLq ` ε{pℓ0pεqq2 p@ℓ “ 1, . . . , ℓ0pεqq.

iv) DL0pεq ą ℓ0pεq,@L ě L0pεq:

|λℓ´
´

λ ℓpLq| ď ε{pℓ0pεqq2, |λℓ´
`

λ ℓpLq| ď ε{pℓ0pεqq2 p@ℓ “ 1, . . . , ℓ0pεqq

ñ |
`

λ ℓpLq´
´

λ ℓpLq| ď 2ε{pℓ0pεqq2 p@ℓ “ 1, . . . , ℓ0pεqq.

v) (due to items (iv-v)) DL0pεq,@L ě L0pεq,Dρ3pε,Lq,@ρ ď ρ3pε,Lq:

|λℓpL,ρq´
˚

λ ℓpLq| ď 3ε{pℓ0pεqq2 p@ℓ “ 1, . . . , ℓ0pεq,@˚ P t´,`uq

ñ |λℓpL,ρq ´ λℓ| ď 4ε{pℓ0pεqq2 p@ℓ “ 1, . . . , ℓ0pεq,@˚ P t´,`uq

ñ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ℓ0pεq
ÿ

ℓ“1

pℓ´ 1qλℓpL,ρq ´
ℓ0pεq
ÿ

ℓ“1

pℓ´ 1qλℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ℓ0pεq
ÿ

ℓ“1

ℓ0pεq4ε{pℓ0pεqq2 ď 4ε.

Now, considering any ε ă 1{5
ř8

ℓ“1 ℓλℓ, L ě L0pεq and ρ ď ρ1pε,Lq ^ ρ2pεq ^ ρ3pε,Lq, we evalu-

ate the quantity of interest, µ̂pZL
Γρ

ě 1q{Lµ̂pΓρq, starting with its numerator:

µ̂pZL
Γρ

ě 1q “
ż

Ω

µωpZ
ω,L
Γρ

ě 1qdPpωq “
ż

Ω

µω

˜

L´1
ď

j“0

pT
j

ωq´1
Γρpθ jωq

¸

dPpωq

p‹q“
ż

Ω

L´1
ÿ

j“0

µωppT
j

ωq´1
Γρpθ jωqqdPpωq ´

ż

Ω

L´1
ÿ

ℓ“0

ℓµωpZ
ω,L
Γρ

“ ℓ` 1qdPpωq

“ Lµ̂pΓρq ´
ż

Ω

˜

L´1
ÿ

ℓ“0

ℓλ ω
ℓ`1pL,ρq

¸

µωpZ
ω,L
Γρ

ą 0qdPpωq

“ Lµ̂pΓρq ´
ż

Ω

¨

˝

ℓ0pεq´1
ÿ

ℓ“0

ℓλ ω
ℓ`1pL,ρq

˛

‚µωpZ
ω,L
Γρ

ą 0qdPpωq

´
ż

Ω

¨

˝

8
ÿ

ℓ“ℓ0pεq

ℓλ ω
ℓ`1pL,ρq

˛

‚µωpZ
ω,L
Γρ

ą 0qdPpωq

“ Lµ̂pΓρq ´
ℓ0pεq´1
ÿ

ℓ“0

ℓµ̂pZL
Γρ

“ ℓ` 1q ´
ż

Ω

¨

˝

8
ÿ

ℓ“ℓ0pεq

ℓλ ω
ℓ`1pL,ρq

˛

‚µωpZ
ω,L
Γρ

ą 0qdPpωq
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“ Lµ̂pΓρq ´

¨

˝

ℓ0pεq
ÿ

ℓ“1

pℓ´ 1qλℓpL,ρq

˛

‚µ̂pZL
Γρ

ą 0q

´
ż

Ω

¨

˝

8
ÿ

ℓ“ℓ0pεq`1

pℓ´ 1qλ ω
ℓ pL,ρq

˛

‚µωpZ
ω,L
Γρ

ą 0qdPpωq

where p‹q applied a typical Venn diagram argument using overcounting and correction.

Then we consider the following two estimates.

First, we have that:

ℓ0pεq
ÿ

ℓ“1

pℓ´ 1qλℓpL,ρq
(v)
ď

ℓ0pεq
ÿ

ℓ“1

pℓ´ 1qλℓ ` 4ε ď
8
ÿ

ℓ“1

pℓ´ 1qλℓ ` 5ε and

ℓ0pεq
ÿ

ℓ“1

pℓ´ 1qλℓpL,ρq
(v)
ě

ℓ0pεq
ÿ

ℓ“1

pℓ´ 1qλℓ ´ 4ε “
8
ÿ

ℓ“1

pℓ´ 1qλℓ ´
8
ÿ

ℓ“ℓ0pεq`1

pℓ´ 1qλℓ ´ 4ε

(i.a)
ě

8
ÿ

ℓ“1

pℓ´ 1qλℓ ´ 5ε.

Second, with υω
Γρ

pxq “ inft j ě 0 : T
j

ω P Γρpθ jωqu, we have that:

0 ď
ż

Ω

¨

˝

8
ÿ

ℓ“ℓ0pεq`1

pℓ´ 1qλ ω
ℓ pL,ρq

˛

‚µωpZ
ω,L
Γρ

ą 0qdPpωq ď
L
ÿ

ℓ“ℓ0pεq`1

ℓµ̂pZL
Γρ

“ ℓq

“
L
ÿ

ℓ“ℓ0pεq`1

ℓ

L´1
ÿ

j“0

µ̂pZL
Γρ

“ ℓ,υΓρ “ jq ď
L
ÿ

ℓ“ℓ0pεq`1

ℓ

L´1
ÿ

j“0

µ̂pZ
L´ j
Γρ

˝ S j “ ℓ,pS jq´1
Γρq

“
L
ÿ

ℓ“ℓ0pεq`1

ℓ

L´1
ÿ

j“0

αℓpL ´ j,ρqµ̂pΓρq “

¨

˝

L´1
ÿ

j“0

L
ÿ

ℓ“ℓ0pεq`1

ℓαℓpL ´ j,ρq

˛

‚µ̂pΓρq

ď

»

–

L´1
ÿ

j“0

¨

˝

L
ÿ

ℓ“ℓ0pεq`1

α̂ℓpL ´ j,ρq

˛

‚` ℓ0pεqα̂ℓ0pεqpL ´ j,ρq ´ Lα̂L`1pL ´ j,ρq

fi

fl µ̂pΓρq

ď

»

–

L´1
ÿ

j“0

L
ÿ

ℓ“ℓ0pεq`1

ℓα̂ℓpL ´ j,ρq

fi

fl µ̂pΓρq
(ii)
ď 2εLµ̂pΓρq
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Combining what we got so far, it follows that:

µ̂pZL
Γρ

ě 1q
Lµ̂pΓρq ď

Lµ̂pΓρq ´
`
ř8

ℓ“1pℓ´ 1qλℓ ´ 5ε
˘

µ̂pZL
Γρ

ě 1q
Lµ̂pΓρq

“ 1 ´
˜

8
ÿ

ℓ“1

ℓλℓ ´ 1 ´ 5ε

¸

µ̂pZL
Γρ

ě 1q
Lµ̂pΓρq

ñ
µ̂pZL

Γρ
ě 1q

Lµ̂pΓρq ď 1
ř8

ℓ“1 ℓλℓ ´ 5ε

and

µ̂pZL
Γρ

ě 1q
Lµ̂pΓρq ě

Lµ̂pΓρq ´
`
ř8

ℓ“1pℓ´ 1qλℓ ` 5ε
˘

µ̂pZL
Γρ

ě 1q ´ 2εLµ̂pΓρq
Lµ̂pΓρq

“ 1 ´
˜

8
ÿ

ℓ“1

ℓλℓ ´ 1 ` 5ε

¸

µ̂pZL
Γρ

ě 1q
Lµ̂pΓρq ´ 2ε

ñ
µ̂pZL

Γρ
ě 1q

Lµ̂pΓρq ě 1 ´ 2ε
ř8

ℓ“1 ℓλℓ ` 5ε

Considering the final two inequalities and passing limεÑ0 limLÑ8 limρÑ0 we observe that

lim
LÑ8

lim
ρÑ0

µ̂pZL
Γρ

ě 1q
Lµ̂pΓρq “ př8

k“1 kλkq´1 “ α1

Alternating between limsup’s and liminf’s lets us reach the first desired conclusion.

Finally, to take care of the second desired conclusion, it suffices to note that

µ̂pZL
Γρ

“ nq
Lµ̂pΓρq “

µ̂pZL
Γρ

ě 1q
Lµ̂pΓρq

µ̂pZL
Γρ

“ nq
µ̂pZL

Γρ
ą 0q ,

then take the appropriate limits and apply the first conclusion we have just proved (to obtain α1),

together with the definition of λn. ■

Lemma 4.4.2. Let pθ ,P,Tω ,µω ,Γq be a system satisfying hypotheses (H1), (H3.1), (H4.1), (H5),

(H6.1), (H6.2), (H7.1) and (H7.2) with the parametric constraint (H10.1).

Then: @t ą 0,@n ě 1, @L ě 114, DρvarpLq ą 0, @ρ ď ρvarpLq small enough so that Nρ :“ t t
µ̂pΓρ q u ě 3

and N1
ρ ,L :“ Nρ

L
P Ně3

15, one has:

varPpWL,n
ρ q ď Ct,L ¨ ρq, @q P

`

0,qpd0,d1,η ,β ,pq
˘

,

14See footnote 12.
15See footnote 11.



4.4 Borel-Cantelli type lemmata 85

where16

W
L,n
ρ pωq :“

N1
ρ,L´1
ÿ

j“0

µωpZ
ω,ρ,L
j “ nq,Zω,ρ,L

j :“
p j`1qL´1

ÿ

l“ jL

I
ω,ρ
l , I

ω,ρ
l :“ ✶Γρ pθ lωq ˝ T l

ω

and qpd0,d1,η ,β ,pq is a positive quantity to be presented in the proof (which can be written explicitly).

Proof. Let t,n and L be as in the statement. Fix α P p0,1q. Set ρvarpLq ď ρseppLq ^ ρdim small enough

so that Nρ
α ă N1

ρ,L. Consider ρ ď ρvarpLq as in the statement.

For a given j P r0,N1
ρ,L ´ 1s, write ω 1 “ θ jLω and notice that

EPpWL,n
ρ q “

N1
ρ,L´1
ÿ

j“0

EP

´

µωpZ
ω,ρ,L
j “ nq

¯

“
N1

ρ,L´1
ÿ

j“0

EP

´

µωpřp j`1qL´1

l“ jL ✶Γρ pθ lωq ˝ T l
ω “ nq

¯

“
N1

ρ,L´1
ÿ

j“0

EP

´

µωpřL´1
i“0 ✶Γρ pθ iω 1q ˝ T i

ω 1 ˝ T
jL

ω “nq
¯

“
N1

ρ,L´1
ÿ

j“0

EP

´

µω 1přL´1
i“0 ✶Γρ pθ iω 1q ˝ T i

ω 1“nq
¯

“
N1

ρ,L´1
ÿ

j“0

EP

´

µωpřL´1
i“0 ✶Γρ pθ iωq ˝ T i

ω “ nq
¯

“
N1

ρ,L´1
ÿ

j“0

EPpµωpZ
ω,ρ,L
0 “ nqq

“
N1

ρ,L´1
ÿ

j“0

µ̂pZ
ρ,L
0 “ nq “ N1

ρ,Lµ̂pZ
ρ,L
0 “ nq.

Now fix ∆ :“ Nρ
α ă N1

ρ,L. Then:

EPppWL,n
ρ q2q “

N1
ρ,L´1
ÿ

i, j“0

ż

Ω

µωpZ
ω,ρ,L
i “ nqµωpZ

ω,ρ,L
j “ nqdPpωq

“ 2

N1
ρ,L´1
ÿ

i“0

pi`∆q^pN1
ρ,L´1q

ÿ

j“i

ż

Ω

µωpZ
ω,ρ,L
i “ nqµωpZ

ω,ρ,L
j “ nqdPpωq

` 2

N1
ρ,L´1
ÿ

i“0

N1
ρ,L´1
ÿ

j“pi`∆q^pN1
ρ,L´1q`1

ż

Ω

µωpZ
ω,ρ,L
i “ nqµωpZ

ω,ρ ,L
j “ nqdPpωq

“: pIq ` pIIq.

Immediately we get that

µωpZ
ω,ρ,L
j “ nq ď µωpZ

ω,ρ,L
j ě 1q ď

p j`1qL´1
ÿ

l“ jL

µθ lωpΓρpθ lωqq
(H6.2)

À Lρd0

ñ pIq À Lρd0∆EPpWL,k
ρ q “ ∆ρd0Nρ µ̂pZ

ρ,L
0 “ nq.

Most of the remaining work is to control component pIIq.

16The notation Z
ω,ρ,L
j is in parallel to that of ZL

j in theorem 4.3.1. They, on purpose, resemble that Z
ω,L
Γρ

introduced in

definition 4.1.2.
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Fix ω P Ω and, for a given i P r0,N1
ρ,L ´ 1s, write ω 1 “ θ iLω . Moreover, consider r P p0,ρ{2q,

v P r0,L ´ 1s and denote by

Uv,ω 1 “ Γρpθ vω 1q,
´
Uv,r,ω 1“ BrpUv,ω 1

cqc,
`
Uv,r,ω 1“ BrpUv,ω 1q, (4.23)

respectively, the ρ-sized target with seed ω 1 v-steps ahead; its diminishment by radius r; and its

enlargment by radius r. They relate as
´
Uv,r,ω 1Ă Uv,ω 1 Ă

`
Uv,r,ω 1 .

Moreover, dynamical counterparts of those in equation (4.23) are denote by

tZ
ω 1,ρ,L
0 “ nu “ Uω 1 “

ğ

0ďv1ă...ăvnďL´1

¨

˚

˚

˝

n
č

l“1

pT
vl

ω 1q´1Uvl ,ω 1 X
č

vPr0,L´1s
ztvl :l“1,...,nu

pT v
ω 1q´1Uv,ω 1

c

˛

‹

‹

‚

,

´
U r,ω 1 “

ğ

0ďv1ă...ăvnďL´1

¨

˚

˚

˝

n
č

l“1

pT
vl

ω 1q´1
´
Uvl ,ω 1 X

č

vPr0,L´1s
ztvl :l“1,...,nu

pT v
ω 1q´1

`
Uv,ω 1

c

˛

‹

‹

‚

,

`
U r,ω 1 “

ğ

0ďv1ă...ăvnďL´1

¨

˚

˚

˝

n
č

l“1

pT
vl

ω 1q´1
`
Uvl ,ω 1 X

č

vPr0,L´1s
ztvl :l“1,...,nu

pT v
ω 1q´1

´
Uv,ω 1

c

˛

‹

‹

‚

,

describing

- the locus of points which hit the ρ-sized target exactly k times during the time interval r0,L´1s
when given the random seed ω 1;

- the diminishment of the first by radius r, in the sense that hits are considered in a r-stringent

way (at least r-inside the ρ-sized target) and non-hits are considered in a r-stringent way (at

least r-away from the ρ-sized target);

- the enlargment of the first by radius r, in the sense that hits are considered in a r-permissive

way (at most r-away from the ρ-sized target) and non-hits are considered in a r-permissive way

(at most r-inside the ρ-sized target).

They relate as
´
U r,ω 1Ă Uω 1 Ă

`
U r,ω 1 .

Finally, define

´
φ ω 1

r pxq“

$

’

’

’

’

&

’

’

’

’

%

1,x P
´
U r,ω 1

0,x P Uω 1
c

dMpx,Uω1
cq

dMpx,Uω1
cq`dMpx,

´
U r,ω1 q

, x P Uω 1
cz

´
U r,ω 1

`
φ ω 1

r pxq“

$

’

’

’

’

&

’

’

’

’

%

1,x P Uω 1

0,x P
`
Ur,ω 1

c

dMpx,
`
U r,ω1

cq

dMpx,
`
U r,ω1

cq`dMpx,Uω1 q
, x P

`
Ur,ω 1zUω 1

.

They relate as
´
φ ω 1

r ď ✶Uω1 ď
`
φ ω 1

r .
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Using that LipdM

`

dMpx,
`
Ur,ω 1q

˘

,LipdM

`

dMpx,Uω 1q
˘

ď 1, it can be checked that

LipdM
p

`
φω 1

r q ď 6diampMq
´

minxPMrdMpx,
`
Ur,ω 1q ` dMpx,Uω 1qs

¯2
ď 6diampMq

dmin

`

Uω 1 ,
`
Ur,ω 1

c
˘2
,

where dmin

`

Uω 1 ,
`
Ur,ω 1

c
˘

:“ inftdMpx,yq : x P Uω 1 ,y P
`
Ur,ω 1

cu.

Notice that for a point x P Uω 1 to be minimally-displaced in such a way as to reach
`
Ur,ω 1

c,

either: a) some of the hits in its finite-orbit is consequently-displaced to an extent which now makes

it at least r-away from associated ρ-sized target, or b) some of the non-hits in its finite-orbit is

consequently-displaced to an extent which now makes it at least r-inside the associated ρ-sized

target. In either case, the associated image point of x has to be consequently-displaced by distance

at least r. When the said image point being consequently-displaced happens to be the last one

in the orbit of x, i.e., its L ´ 1 iterate, by the expanding feature of the system (H3.1) and since

Uω 1 Ă ŤL´1
j“0 pT

j

ω 1q´1
Γ3{2ρpθ jω 1q (H4.1)Ă

`
C

ω 1

L´1, this is when x would have to be displaced the least: no

more than r{aL´1 (use (H4.1) and (H3.2)). Therefore r{aL´1 ď dmin

`

Uω 1 ,
`
Ur,ω 1

c
˘

, and so

LipdM
p

`
φ ω 1

r q ď 6diampMqaL´1
2{r2

}
`
φ ω 1

r }LipdM
“ }

`
φ ω 1

r }8 _ LipdM
p

`
φ ω 1

r q “ 1 _ LipdM
p

`
φ ω 1

r q “ LipdM
p

`
φ ω 1

r q ď 6diampMqaL´1
2{r2

where the last equality follows from ρ sufficiently small.

Now we start looking at pIIq directly:

ˇ

ˇ

ˇ

ˇ

ż

Ω

µωpZ
ω,ρ,L
j “ nqµωpZ

ω,ρ,L
i “ nqdPpωq ´

ż

Ω

µωpZ
ω,ρ,L
j “ nqµω 1p

`
φ ω 1

r qdPpωq
ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

ż

Ω

µωpZ
ω,ρ,L
j “ nqµω 1p✶Uω1 qdPpωq ´

ż

Ω

µωpZ
ω,ρ,L
j “ nqµω 1p

`
φ ω 1

r qdPpωq
ˇ

ˇ

ˇ

ˇ

À
ż

Ω

µθ jωpZ
θ jω,ρ,L
0 “ nqL

rη

ρβ
dPpωq “ L

rη

ρβ
µ̂pZ

ρ,L
0 “ nq,

where the last inequality is because

µω 1p
`
φ ω 1

r q ď µω 1p
`
U r,ω 1 z

´
U r,ω 1q ď

L´1
ÿ

v“0

µθ vωp
`
Uv,r,ω 1 z

´
Uv,r,ω 1q

(H6.2)

À L
rη

ρβ
.

The approximating term that appeared above is transformed as follows:

ˇ

ˇ

ˇ

ˇ

ż

Ω

µωpZ
ω,ρ,L
j “ nqµω 1p

`
φ ω 1

r qdPpωq ´
ż

Ω

µω 1p✶
tZ

ω1 ,ρ,L
j´i “nu

`
φ ω 1

r qdPpωq
ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

ż

Ω

µω 1pZ
ω 1,ρ ,L
j´i “ nqµω 1p

`
φ ω 1

r qdPpωq ´
ż

Ω

µω 1p✶
tZ

θp j´iqLω1 ,ρ,L
0 ˝T

p j´iqL

ω1 “nu

`
φ ω 1

r qdPpωq
ˇ

ˇ

ˇ

ˇ

“
ż

Ω

ˇ

ˇ

ˇ

ˇ

µθ p j´iqLω 1pZ
θ p j´iqLω 1,ρ,L
0 “ nqµω 1p

`
φ ω 1

r q ´ µω 1p✶
tZ

θp j´iqLω1 ,ρ,L
0 “nu

˝ T
p j´iqL

ω 1

`
φ ω 1

r q
ˇ

ˇ

ˇ

ˇ

dPpωq



88

Compound Poisson distributions for random dynamical systems: a probabilistic block-approximation

approach

pH7.1q
À

ż

Ω

pp j ´ iqLq´p}
`
φ ω 1

r }LipdM
1dPpωq À 17 pp j ´ iqLq´p aL´1

2

r2
.

Whereas the new approximating term which appeared above is transformed as follows:

ż

Ω

µω 1p✶
tZ

ω1 ,ρ,L
j´i “nu

`
φ ω 1

r qdPpωq “
ż

Ω

µωp✶
tZ

ω,ρ,L
j´i “nu

`
φ ω

r qdPpωq

“
ż

ΩˆM

✶
tZ

ρ,L
j´i“nu

`
φ rdµ̂ “

ż

ΩˆM

✶
tZ

ρ,L
0 “nu

˝ Sp j´iqL
`
φ rdµ̂ (4.24)

and
ˇ

ˇ

ˇ

ˇ

ż

ΩˆM

✶
tZ

ρ,L
0 “nu

˝ Sp j´iqL
`
φ rdµ̂ ´

ż

ΩˆM

✶
tZ

ρ,L
0 “nu

dµ̂ ¨
ż

ΩˆM

`
φ rdµ̂

ˇ

ˇ

ˇ

ˇ

pH7.2q
À pp j ´ iqLq´p}

`
φ r}LipdΩˆM

À pp j ´ iqLq´p aL´1
2

r2
,

where, recalling that
`
φ ω

r “
`
φ ω

r pn,L,ρq, we have used that

LipdΩˆM
p

`
φ rq “ sup

pω1,x1q‰pω2,x2q

|
`
φ ω1

r px1q´
`
φ ω2

r px2q|
dΩpω1,ω2q _ dMpx1,x2q

ď sup
x1

sup
ω1‰ω2

|
`
φ ω1

r px1q´
`
φ ω2

r px1q|
dΩpω1,ω2q ` sup

ω2

sup
x1‰x2

|
`
φ ω2

r px1q´
`
φ ω2

r px2q|
dMpx1,x2q

ď 18 aL´1
2

r2
` sup

x

sup
ω1‰ω2

|
`
φ ω1

r pxq´
`
φ ω2

r pxq|
dΩpω1,ω2q

p‹q
ď aL´1

2

r2
` pαLβ ` γqaL´1

2

r2
À αLaL´1

2

r2
,

with p‹q following from ω ÞÑ
`
φ ω

r pxq being a locally Lipschitz function whose associated local Lipschitz

constants are bounded by
pαLβ`γqaL´1

2

r2 , where α “ Lippθq_1, β “ LippΓq_1, γ “ supxPM LippT¨pxq :

Ω Ñ Mq. This is verified in the following paragraph.

Fix x P M and consider ω P Ω. In case x P intpUωq (or intp
`
Ur,ω

cq), there is uxpωq ą 0 so that

ω̃ P Buxpωqpωq implies x P intUω̃ (or int
`
Ur,ω̃

c), so the function of interest is locally constant. In

case x P intp
`
Ur,ω

czUωq, it boils down to understand how the linear interpolation within
`
φ r varies

with ω̃ P Bu1
xpωqpωq, where u1

xpωq is that for which ω̃ P Bu1
xpωqpωq implies x P intp

`
Ur,ω̃

czUω̃q. For this

purpose, we first evaluate the Lipschitz constant of ω̃ P Bu1
xpωqpωq ÞÑ dpx,Uω̃q and ω̃ P Bu1

xpωqpωq ÞÑ
dpx,

`
Ur,ω̃

cq:

17Notice that }
`
φω 1

r }LipdM
À aL´1

2{r2 a.s. is enough to justify the above inequality. However, our hypotheses imply this is

true for every ω . This might seem an excess, but later in the proof we will need the inequality for every ω . See the next

footnote.

18Here one needs }
`
φω 1

r }LipdM
ď aL1

2{r2 for every ω . See the previous footnote.
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i)

|dpx,Uωq ´ dpx,Uω̃q| ď dHpUω ,Uω̃q

ď

¨

˝

psupω LippT ´1
ω : PpMq Ñ PpMqq _ 1qL ¨ pLippΓq _ 1q ¨ pLippθq _ 1qL

` sup
APPpMq

LippT¨
´1A : Ω Ñ PpMqq

˛

‚dΩpω, ω̃q

ď pαLβ ` γqdΩpω, ω̃q.

since

Lip
´

č

:PpMqˆPpMqÑPpMq
¯

ď1,

Lip
´

ď

:PpMqˆPpMqÑPpMq
¯

ď1,

Lip
`

Bρ :PpMqÑPpMq
˘

ď 1,

supω Lip
`

T ´1
ω : PpMq Ñ PpMq

˘

ď 1{ inf
ωPΩ

inf
ξ PCω

1

CoLippTω |ξ : ξ Ñ Mq ď 1

and

sup
APPpMq

Lip
`

T¨
´1A:ΩÑPpMq

˘

ď
sup
xPM

LippT¨pxq : Ω Ñ Mq

inf
ωPΩ

inf
ξ PCω

1

CoLippTω |ξ : ξ Ñ Mqďsup
xPM

LippT¨pxq:ΩÑMq,

where CoLippTq “ infx‰y
dpT x,Tyq

dpx,yq .

ii) Similarly,

|dpx,
`
Ur,ω

cq ´ dpx,
`
Ur,ω̃

cq| ď pαLβ ` γqdΩpω, ω̃q,

since also LippBr:PpMqÑPpMqq ď 1.

To conclude justifying p‹q, one repeats the calculations for the Lipschitz constant of a quotient

and applies (i) and (ii) to get that

LipdΩ

¨

˝

dMpx,
`
Ur,ω 1

cq

dMpx,
`
Ur,ω 1

cq ` dMpx,Uω 1q

˛

‚ ď 4diampMqpαLβ ` γq

dminp
`
Ur,ω 1

c,Uω 1q2
dΩpω, ω̃q

À pαLβ ` γqaL´1
2

r2
dΩpω, ω̃q.

Finally, we notice that

ˇ

ˇ

ˇ

ˇ

µ̂pZ
ρ,L
0 “nqµ̂p

`
φ rq´µ̂pZ

ρ,L
0 “nq2

ˇ

ˇ

ˇ

ˇ

ďµ̂pZ
ρ,L
0 “nq

ż

Ω

µωp
`
φ ω

r ´✶Uω qdPpωq
(H6.2)

À L
rη

ρβ
µ̂pZ

ρ,L
0 “nq.

Combining the previous four steps, we arrive at

ˇ

ˇ

ˇ

ˇ

ż

Ω

µωpZ
ω,ρ,L
j “ nqµωpZ

ω,ρ,L
i “ nqdPpωq ´ µ̂pZ

ρ,L
0 “ nq2

ˇ

ˇ

ˇ

ˇ

À L
rη

ρβ
µ̂pZ

ρ,L
0 “ nq ` pp j ´ iqLq´p αLaL´1

2

r2
,
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which implies

pIIqÀ
N1

ρ,L´1
ÿ

i“0

N1
ρ,L´1
ÿ

j“pi`∆q^pN1
ρ,L´1q`1

ˆ

µ̂pZ
ρ,L
0 “ nq2 ` L

rη

ρβ
µ̂pZ

ρ,L
0 “ nq ` pp j ´ iqLq´p αLaL´1

2

r2

˙

ÀN1
ρ,LpN1

ρ,L ´ ∆q
ˆ

µ̂pZ
ρ,L
0 “ nq2 ` L

rη

ρβ
µ̂pZ

ρ,L
0 “ nq

˙

` N1
ρ,L

αLaL´1
2

r2
p∆Lq´p`1.

Then we can conclude the following about the variance:

varPpWL,n
ρ q “ EPppWL,n

ρ q2q ´ pEPpWL,n
ρ qq2

À ∆ρd0Nρ µ̂pZ
ρ,L
0 “ nq

` N1
ρ,LpN1

ρ,L´∆q
ˆ

µ̂pZ
ρ ,L
0 “nq2`L

rη

ρβ
µ̂pZ

ρ,L
0 “nq

˙

`N1
ρ,L

αLaL´1
2

r2
p∆Lq´p`1

´ N1
ρ,L

2
µ̂pZ

ρ,L
0 “ nq2.

À ∆ρd0Nρ µ̂pZ
ρ,L
0 “ nq ` N1

ρ,L
2
L

rη

ρβ
µ̂pZ

ρ,L
0 “ nq ` N1

ρ ,L

αLaL´1
2

r2
p∆Lq´p`1

p‹q
À Nρ

αLρd0 ` Nρ
rη

ρβ
` αLaL´1

2L´p NρNρ
αp´p`1q

r2

p‹‹q
À tα

µ̂pΓρqα
Lρd0 ` t

µ̂pΓρqρwη´β ` αLaL´1
2L´p t

µ̂pΓρq
tαp´p`1q

µ̂pΓρqαp´p`1q
ρ´2w

(H6.1)

À Lρd0´αd1 ` ρwη´β´d1 ` αLaL´1
2L´pραd0pp´1q´2w´d1

p‹‹‹q
À ρd0´αd1 ` ρwη´β´d1 ` ραd0pp´1q´2w´d1 ,

where p‹q uses N1
ρ,Lµ̂pZ

ρ,L
0 “ nq ď NρL´1µ̂pZ

ρ,L
0 ě 1q ď NρL´1Lµ̂pΓρq À t and t is incorporated into

the À sign; p‹‹q uses the choice r :“ ρw for a given w ą 1; and p‹ ‹ ‹q incorporates L dependent

quantities on À. Notice that t and L dependent constants being incorporated inside À is associated to

the use of a constant Ct,L in the statement.

Finally, we need to choose pα,wq P p0,1q ˆ p1,8q so that

$

’

’

&

’

’

%

d0 ą αd1

wη ą β ` d1

αd0pp´ 1q ą 2w ` d1

i.e.

$

’

’

&

’

’

%

α ă d0

d1
^ 1 “ d0

d1

w ą β`d1

η _ 1

w ă αd0pp´1q´d1

2

,

which admits a solution if, and only if,

β ` d1

η
_ 1 “

d0

d1
d0pp´ 1q ´ d1

2
ô d0pp´ 1q ą

2
´

β`d1

η _ 1
¯

` d1

d0{d1

.

This is guaranteed by the parametric constraint (H10.1), so there exists some solution pα˚,w˚q
to the system. Actually, the space of solutions forms a triangle and one can select pα˚,w˚q as its

incenter, a function of d0,d1,η ,β and p, whereas the strictly positive margin this choice opens in the

inequalities of the original system is denoted by qpd0,d1,η ,β ,pq. With such a choice, we obtain that

varPpWL,n
ρ q ď Ct,L ¨ ρqpd0,d1,η ,β ,pq ď Ct,L ¨ ρq ,@q P p0,qpd0,d1,η ,β ,pqq .
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■

Lemma 4.4.3. Let pθ ,P,Tω ,µω ,Γq be a system satisfying the hypotheses (H3.1), (H4.1), (H6.1),

(H6.2), (H7.1), (H7.2) and (H9’) with the parametric constraint (H10.1).

Then: @t ą 0,@n ě 1,@pρmqmě1 Œ 0 with
ř

mě1 ρm
q ă 8 (for some 0 ă q ă qpd0,d1,η ,β ,pq),

denoting Nρ :“ t t
µ̂pΓρ q u and N1

ρ,L “ Nρ

L
19, one has:

1)

lim
LÑ8

lim
mÑ8

N1
ρm ,L´1
ÿ

j“0

µωpZ
ω,ρm,L
j “ nq “ tα1λn, P-a.s.

2)

lim
LÑ8

lim
mÑ8

N1
ρm ,L´1
ÿ

j“0

µωpZ
ω,ρm,L
j ě 1q “ tα1, P-a.s.

3)20

lim
mÑ8

Nρm ´1
ÿ

j“0

µθ jωpΓρm
pθ jωqq “ t, P-a.s.,

Proof. Let t,n and pρmqmě1 be as in the statement. Consider L ě 1 and m large enough so that

ρm ď ρvarpLq, Nρm
ě 3 and N1

ρm,L
ě 3. Denote also W

L,n
ρ pωq “ řN1

ρ,L´1

j“0 µωpZ
ω,ρ,L
j “ nq.

Using Chebycheff’s inequality combined with lemma 4.4.2, we get that

P

´ˇ

ˇ

ˇ
W

L,n
ρ ´EPpWL,n

ρ q
ˇ

ˇ

ˇ
ą a

¯

ď varPpWL,n
ρ q

a2
ď Ct,L

a2
ρq,

and therefore, since
ř

mě1 ρm
q ă 8, Borel-Cantelli lemma let us conclude that

lim
mÑ8

ˇ

ˇ

ˇ
W

L,n
ρm

´EPpWL,n
ρm

q
ˇ

ˇ

ˇ
“ 0, P-a.s.

On the other hand,

EPpWL,n
ρm

q “ 1

L

t

µ̂pΓρm
q µ̂pZ

ρm,L
0 “ nq “ t

µ̂pZL
Γρm

ě 1q
Lµ̂pΓρm

q
µ̂pZL

Γρm
“ nq

µ̂pZL
Γρm

ě 1q ,

so, by lemma 4.4.1, the definition of λn, we have that

lim
LÑ8

lim
mÑ8

EPpWL,n
ρm

q “ tα1λn

and therefore, combining the previous two centered limits, conclusion (1) follows:

lim
LÑ8

lim
mÑ8

W
L,n
ρm

“ tα1λn, P-a.s.

19See footnote 11.
20See footnote 12.
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For (2), it suffices to repeat the argument noticing that the new expectation will be driven by

t
µ̂pZL

Γρm
ě1q

Lµ̂pΓρm q , whose double limit is tα1.

For (3), it suffices to fix L “ 1 and n “ 1 in the above argument, and after the Borel-Cantelli step,

notice that

EPpW1,1
ρm

q “ t
µ̂pΓρm

q
µ̂pΓρm

q
mÑ8Ñ t.

■

4.5 Proof of theorem 4.1.4

4.5.1 Applying the abstract approximation theorem

Let t ą 0, n ě 1 (n “ 0 is the leftover case) and ω P Ω be any. Actually, at finitely many instances of

the argument, we will restrict ω to be taken in a set of full measure. To be seen in due time.

Fix, once and for all, pρmqmě1 Œ 0 fast enough so that
ř

mě1pρmqq ă 8, for some 0 ă q ă
qpd0,d1,η ,β ,pq. For example, ρm “ m´2{q is adapted to q (but not q{2) while ρm “ e´m is adapted to

any positive q.

Fix L ě n. We will not choose it as a function of other variables, i.e., it will consist of a new free

variable.

Define Nm :“
X

t
µ̂pΓρm q

\

. Let v P p0,d0q and set ∆m :“ ρm
´v. we will consider m large enough

(depending on L) so that Nm ě 3, ∆m ě 2, ρm ď ρvarpLq, L ď t Nm

3
u and ∆m ă N1

m,L. Lastly, define

N1
m,L :“ Nm

L
P Ně3

21.

We want to study

µωpZ
ω,Nm

Γρm
“ nq “ µωpřNm´1

i“0 I
ω,m
i “ nq “ µω

˜

N1
m,L´1
ř

j“0

p j`1qL´1
ř

i“ jL

I
ω,m
i

¸

,

where I
ω,m
i “ ✶Γρm pθ iωq ˝ T i

ω .

To harmonize with the notation of theorem 4.3.1, we write

I
ω,m
i “: X

ω,m
i : pM,BM,µωq Ñ t0,1u pi P r0,Nm ´ 1s XNě0q and

řp j`1qL´1
i“ jL I

ω,m
i “ řp j`1qL´1

i“ jL X
ω,m
i “: Z

ω,m,L
j : pM,BM,µωq Ñ Ně0 p j P r0,N1

m,L ´ 1s XNě0q.

Then one can plug in the variables here to those of the theorem 4.3.1, namely

N:“Nm,pX ,X ,Qq:“pM,BM,µωq,Xi:“X
ω,m
i ,L:“L,∆:“∆m,N

1
L:“N1

m,L,Z
L
j :“Z

ω,m,L
j ,

to obtain that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µω

´

Z
ω,Nm

Γρm
“ n

¯

´ µω

¨

˝

N1
m,L´1
ÿ

j“0

Z̃
ω,m,L
j “ n

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4
`

R̃
1
ω,mpNm,Lq `R

1
ω,mpNm,L,∆mq `R

2
ω,mpNm,L,∆mq `R

3
ω,mpNm,Lq

˘

,

21See footnote 11.
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where objects being invoked are presented in theorem 4.3.1.

For the next sections, sections 4.5.2 to 4.5.7, it is enough to consider ω restricted to a P-full

measure set.

4.5.2 Estimating the error R1

Recall that

R
1
ω,mpNm,L,∆mq “

N1
m,L´1
ÿ

j“0

max
qPr1,ns

q
ÿ

u“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µω

¨

˝Z
ω,m,L
j “u,

N1
m,L´1
ÿ

k“ j`∆m

Z
ω,m,L
k “q´u

˛

‚´µω

´

Z
ω,m,L
j “u

¯

µω

¨

˝

N1
m,L´1
ÿ

k“ j`∆m

Z
ω,m,L
k “q´u

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Recycling the construction and notation used in the proof of lemma 4.4.2 to control the term pIIq:

for a given j P r0,N1
m,L ´ 1s, writing ω 1 “ θ jLω and considering r P p0,ρm{2q, v P r0,L ´ 1s, we once

again have the objects: Uv,ω 1 ,
´
Uv,r,ω 1 ,

`
Uv,r,ω 1 ,Uω 1 ,

´
U r,ω 1 ,

`
U r,ω 1 ,

´
φ ω 1

r and
`
φ ω 1

r . Then:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µω

¨

˝Z
ω,m,L
j “u,

N1
m,L´1
ÿ

k“ j`∆m

Z
ω,m,L
k “q´u

˛

‚´µω

´

Z
ω,m,L
j “u

¯

µω

¨

˝

N1
m,L´1
ÿ

k“ j`∆m

Z
ω,m,L
k “q´u

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

ˇ

µω

¨

˝

p j`1qL´1
ÿ

i“ jL

I
ω,m
i “ u,

Nm´1
ÿ

i“p j`∆mqL

I
ω,m
i “ q ´ u

˛

‚

´µω

¨

˝

p j`1qL´1
ÿ

i“ jL

I
ω,m
i “ u

˛

‚µω

¨

˝

Nm´1
ÿ

i“p j`∆mqL

I
ω,m
i “ q ´ u

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

ˇ

µω 1

¨

˝

L´1
ÿ

i“0

I
ω 1,m
i “ u,

pNm´1q´ jL
ÿ

i“∆mL

I
ω 1,m
i “ q ´ u

˛

‚

´µω 1

˜

L´1
ÿ

i“0

I
ω 1,m
i “ u

¸

µθ ∆mLω 1

¨

˝

pNm´1q´p j`∆mqL
ÿ

i“0

I
θ ∆mLω 1,m
i “ q ´ u

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

.

“
ˇ

ˇ

ˇ
µω 1

´

✶Uω1✶tV
ω,m,L,∆m
j “q´uu

˝ T
∆mL

ω 1

¯

´ µω 1

`

✶Uω1

˘

µθ ∆mLω 1

´

✶
tV

ω,m,L,∆m
j “q´uu

¯ˇ

ˇ

ˇ

where we used that V
ω,m,L,∆m

j :“ řpNm´1q´p j`∆mqL

i“0 I
θ ∆mLω 1,m
i , and thus

řpNm´1q´ jL

i“∆mL I
ω 1,m
i “ V

ω,m,L,∆m

j ˝
T

∆mL
ω 1 ,

ď
ˇ

ˇ

ˇ

ˇ

µω 1

ˆ

˘
φ ω 1

r ✶
tV

ω,m,L,∆m
j “q´uu

˝ T
∆mL

ω 1

˙

´ µω 1

`

✶Uω1

˘

µθ ∆mLω 1

´

✶
tV

ω,m,L,∆m
j “q´uu

¯

ˇ

ˇ

ˇ

ˇ

,
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where
˘
φ ω 1

r means that either
`
φ ω 1

r or
´
φ ω 1

r will make the inequality true,

ď
ˇ

ˇ

ˇ

ˇ

µω 1

´ ˘
φ ω 1

r ✶
tV

ω,m,L,∆m
j “q´uu

˝ T
∆mL

ω 1

¯

´ µω 1

´˘
φ ω 1

r

¯

µθ ∆mLω 1

´

✶
tV

ω,m,L,∆m
j “q´uu

¯

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

„

µω 1

´˘
φ ω 1

r

¯

´ µω 1

`

✶Uω1

˘



µθ ∆mLω 1

´

✶
tV

ω,m,L,∆m
j “q´uu

¯

ˇ

ˇ

ˇ

ˇ

“: pAq ` pBq.

Now notice that

pAq À p∆mLq´p
›

›

˘
φ ω 1

r

›

›

LipdM

1 À p∆mLq´paL´1
2{r2,

where the first estimate used (H7.1) while the later used (H3.1), (H4.1) and (H3.2), as in the quenched

argument in the proof of lemma 4.4.222.

Moreover,

pBq ď µθ ∆mLω 1

´

V
ω,m,L,∆m

j “q´u

¯

µω 1p
`
U r,ω 1 z

´
U r,ω 1q

(H6.2)

À µθ ∆mLω 1

´

V
ω,m,L,∆m

j “q´u

¯

L
rη

ρm
β
.

Therefore

R
1
ω,mpNm,L,∆mq À

N1
m,L´1
ÿ

j“0

max
qPr1,ns

q
ÿ

u“1

„

p∆mLq´p aL´1
2

r2
` µθ ∆mLω 1

´

V
ω,m,L,∆m

j “q´u

¯

L
rη

ρm
β



ď
N1

m,L´1
ÿ

j“0

L
ÿ

u“1

p∆mLq´p aL´1
2

r2
` L

rη

ρm
β

N1
m,L´1
ÿ

j“0

max
qPr1,Nms

µθ ∆mLω 1

´

V
ω,m,L,∆m

j P r0,qs
¯

À Nmp∆mLq´p aL´1
2

r2
` Nm

rη

ρm
β

ď Nmp∆mLq´p aL´1
2

r2
` LNm

rη

ρm
β
,

where V
ω,m,L,∆m

j takes values between 0 and Nm ´ p j ` ∆mqL ď Nm.

4.5.3 Estimating the error R̃1

This section is going to follow the lines of the previous one, with minor modifications.

Recall that

R̃
1
ω,mpNm,L,∆mq “

N1
m,L´1
ÿ

j“0

max
qPr0,ns

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µω

¨

˝Z
ω,m,L
j ě1,

N1
m,L´1
ÿ

k“ j`∆m

Z
ω,m,L
k “q

˛

‚´µω

´

Z
ω,m,L
j ě1

¯

µω

¨

˝

N1
m,L´1
ÿ

k“ j`∆m

Z
ω,m,L
k “q

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

For a given j P r0,N1
m,L ´ 1s, writing ω 1 “ θ jL and considering r P pρm{2q, v P r0,Ls, recalling

the objects introduced in the proof of lemma 4.4.2, we reuse Uv,ω 1 ,
´
Uv,r,ω 1 and

`
Uv,r,ω 1 , whereas

Uω 1 ,
´
U r,ω 1 and

`
U r,ω 1 are modified by including a union

ŤL
n“1 before the original definitions therein (in

22In the present passage, the a.s. validity of }
`
φω 1

r }LipdM
ď aL´1

2{r2 would be enough, but, after recalling the argument of

lemma 4.4.2 we see that it actually holds for every ω . The validity for every ω was important back then, but not here.
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particular, tZ
ω 1,ρm,L
0 ě 1u “ Uω 1), while

´
φ ω 1

r and
`
φ ω 1

r are kept the same (but considering the previous

modification).

Following the same steps and notation from the previous section, we get that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µω

¨

˝Z
ω,m,L
j ě1,

N1
m,L´1
ÿ

k“ j`∆m

Z
ω,m,L
k “q

˛

‚´µω

´

Z
ω,m,L
j ě1

¯

µω

¨

˝

N1
m,L´1
ÿ

k“ j`∆m

Z
ω,m,L
k “q

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ

ˇ

ˇ

µω 1

´ ˘
φ ω 1

r ✶
tV

ω,m,L,∆m
j “qu

˝ T
∆mL

ω 1

¯

´ µω 1

´˘
φ ω 1

r

¯

µθ ∆mLω 1

´

✶
tV

ω,m,L,∆m
j “qu

¯

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

„

µω 1

´˘
φ ω 1

r

¯

´ µω 1

`

✶Uω1

˘



µθ ∆mLω 1

´

✶
tV

ω,m,L,∆m
j “qu

¯

ˇ

ˇ

ˇ

ˇ

“: pAq ` pBq.

As before,

pAq À p∆mLq´p
›

›

˘
φ ω 1

r

›

›

LipdM

1 À p∆mLq´paL´1
2{r2.

For the first inequality we use (H7.1). For the second, we adapt the previous reasoning as follows.

Intuitively, the Lipschitz constant of, say, the modified function
´
φ ω 1

r is bounded by the inverse of

d
`´
Ur,ω 1 ,U c

ω 1

˘

. For a point to x P U c
ω 1 , with no hits, to be minimally displaced to

´
Ur,ω 1 , among x itself

being displaced or the consequently-displaced points in its orbit, a) at least one r-stringent hit has to

be created while b) the other instances should turned into r-stringent non-hits (if they are not already).

The situation where this would occur with minimal displacement is one where (b) starts already

fulfilled and only (a) has to be accomplished by displacing x in such that its L ´ 1 iterate changes from

a non-hit to a r-stringent hit. This can be made with a minimum displacement of r{aL´1, where again

we use (H3.1), (H3.2) and (H4.1).

Moreover,

pBq ď µθ ∆mLω 1

´

V
ω,m,L,∆m

j “ q

¯

µω 1p
`
U r,ω 1 z

´
U r,ω 1q

(H6.2)

À µθ ∆mLω 1

´

V
ω,m,L,∆m

j “ q

¯

L2 rη

ρm
β
.

Therefore

R̃
1
ω,mpNm,L,∆mq À

N1
m,L´1
ÿ

j“0

max
qPr0,ns

„

p∆mLq´p aL´1
2

r2
` µθ ∆mLω 1

´

V
ω,m,L,∆m

j “ q

¯

L2 rη

ρm
β



ď
N1

m,L´1
ÿ

j“0

p∆mLq´p aL´1
2

r2
` L2 rη

ρm
β

N1
m,L´1
ÿ

j“0

max
qPr0,Nms

µθ ∆mLω 1

´

V
ω,m,L,∆m

j P r0,qs
¯

À N1
m,Lp∆mLq´p aL´1

2

r2
` LNm

rη

ρm
β

ď Nmp∆mLq´p aL´1
2

r2
` LNm

rη

ρm
β
,

where V
ω,m,L,∆m

j takes values between 0 and Nm ´ p j ` 1qL ď Nm.
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4.5.4 Estimating the error R2

To start

R
2
ω,mpNm,L,∆mq “

N1
m,L´1
ÿ

j“0

µωpZ
ω,m,L
j ě 1,

j`∆m´1
ÿ

k“ j`1

Z
ω,m,L
k ě 1q

ď
N1

m,L´1
ÿ

j“0

j`∆m´1
ÿ

k“ j`1

µωpZ
ω,m,L
j ě 1,Z

ω,m,L
k ě 1q

where we reverse the double sum and single out the k “ j ` 1 terms

“
N1

m,L`∆m´2
ÿ

k“1

pk´2q^pN1
m,L´1q

ÿ

j“pk´∆m`1q_0

µωpZ
ω,m,L
j ě 1,Z

ω,m,L
k ě 1q `

N1
m,L
ÿ

k“1

µωpZ
ω,m,L
k´1 ě 1,Z

ω,m,L
k ě 1q

“: pIq ` pIIq

To estimate pIq we notice that:

pIq ď
N1

m,L`∆m´2
ÿ

k“1

pk´2q^pN1
m,L´1q

ÿ

j“pk´∆m`1q_0

p j`1qL´1
ÿ

i“ jL

pk`1qL´1
ÿ

l“kL

µω

`

pT i
ωq´1

Γρm
pθ iωq X pT l

ωq´1
Γρm

pθ lωq
˘

pl ą iq

ď
N1

m,L`∆m´2
ÿ

k“1

pk´2q^pN1
m,L´1q

ÿ

j“pk´∆m`1q_0

p j`1qL´1
ÿ

i“ jL

pk`1qL´1
ÿ

l“kL

µω 1

ˆ

Γρm
pω 1q X pT l´i

ω 1 q´1
Γρm

pθ l´iω 1q X
``
C

ω 1

l´i

˙

`
N1

m,L`∆m´2
ÿ

k“1

pk´2q^pN1
m,L´1q

ÿ

j“pk´∆m`1q_0

p j`1qL´1
ÿ

i“ jL

pk`1qL´1
ÿ

l“kL

µω 1

ˆ

Γρm
pω 1q X pT l´i

ω 1 q´1
Γρm

pθ l´iω 1q X
„

`´
C

ω 1

l´iY
´
C

ω 1

l´i

˙

“:pIgoodq ` pIbadq

where ω 1 :“ θ iω .

To estimate pIgoodq we begin evaluating the following:

µω 1

ˆ

``
C

ω 1

l´i X Γρm
pω 1q X pT l´i

ω 1 q´1
Γρm

pθ l´iω 1q
˙

ď
ÿ

ξ “ϕpdompϕqqP
``
C ω1

l´i:

ξ XΓρm pω 1q‰H

µω 1 |ξ
´

ξ X pT l´i
ω 1 q´1

Γρm
pθ l´iω 1q

¯

µω 1 |ξ pξ q µω 1pξ q,

where, from (H3.3), ϕ P IBpT l´i
ω 1 q implies µω 1 |ϕpdompϕqq “ Jϕ

´1
“

ϕ˚pµθ l´iω 1 |dompϕqq
‰

, and so

ď
ÿ

ξ as above

“

Jϕ
´1
“

ϕ˚pµθ l´iω 1 |dompϕqq
‰‰

´

ϕpdompϕqq X pT l´i
ω 1 q´1

Γρm
pθ l´iω 1q

¯

“

Jϕ
´1
“

ϕ˚pµθ l´iω 1 |dompϕqq
‰‰

pϕpdompϕqqq
µω 1pξ q
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ď
ÿ

ξ as above

supxPξ Jϕ
´1pxq

infxPξ Jϕ
´1pxq

µθ l´iω 1 |dompϕq

´

dompϕq X ϕ´1pT l´i
ω 1 q´1

Γρm
pθ l´iω 1q

¯

µθ l´iω 1 |dompϕqpdompϕqq µω 1pξ q

(H3.3)

À
(H2.6)

pl ´ iqdι´1µθ lωpΓρm
pθ lωqq

ÿ

ξ as above

µω 1pξ q
(H2.2)

ď pl ´ iqdι´1µθ lωpΓρm
pθ lωqqN µω 1

¨

˝

ď

ξ as above

ξ

˛

‚

(H3.4)
ď pl ´ iqdι´1µθ lωpΓρm

pθ lωqqN µω 1

`

BDpl´iq´κ pΓρm
pω 1qq

˘

(H6.1)
ď pl ´ iqdι´1µθ lωpΓρm

pθ lωqqNC0pρm ` Dpl ´ iq´κqd0 À µθ lωpΓρm
pθ lωqqpl ´ iqd

“

ρm
d0`pl´iq´κd0

‰

.

Then

pIgoodqď
N1

m,L`∆m´2
ÿ

k“1

pk´2q^pN1
m,L´1q

ÿ

j“pk´∆m`1q_0

p j`1qL´1
ÿ

i“ jL

pk`1qL´1
ÿ

l“kL

µθ lωpΓρm
pθ lωqqpl ´ iqd

“

ρm
d0`pl´iq´κd0

‰

“
N1

m,L`∆m´2
ÿ

k“1

pk´2q^pN1
m,L´1q

ÿ

j“pk´∆m`1q_0

pk`1qL´1
ÿ

l“kL

¨

˝µθ lωpΓρm
pθ lωqq

p j`1qL´1
ÿ

i“ jL

pl ´ iqd
“

ρm
d0`pl´iq´κd0

‰

˛

‚

where, for each l fixed, as i runs, we have l ´ i P rkL ´ jL ´ L ` 1,kL ´ jL ` L ´ 1s, so

ď
N1

m,L`∆m´2
ÿ

k“1

pk´2q^pN1
m,L´1q

ÿ

j“pk´∆m`1q_0

pk`1qL´1
ÿ

l“kL

¨

˝µθ lωpΓρm
pθ lωqq

kL´ jL`L´1
ÿ

s“kL´ jL´L`1

sd
“

ρm
d0`s´κd0

‰

˛

‚

“
N1

m,L`∆m´2
ÿ

k“1

pk´2q^pN1
m,L´1q

ÿ

j“pk´∆m`1q_0

»

–

¨

˝

pk`1qL´1
ÿ

l“kL

µθ lωpΓρm
pθ lωqq

˛

‚

¨

˝

kL´ jL`L´1
ÿ

s“kL´ jL´L`1

sd
“

ρm
d0`s´κd0

‰

˛

‚

fi

fl

ď
N1

m,L`∆m´2
ÿ

k“1

¨

˝

pk`1qL´1
ÿ

l“kL

µθ lωpΓρm
pθ lωqq

˛

‚

¨

˝

pk´2q^pN1
m,L´1q

ÿ

j“pk´∆m`1q_0

kL´ jL`L´1
ÿ

s“kL´ jL´L`1

sd
“

ρm
d0`s´κd0

‰

˛

‚

where s P rL ` 1,3∆mLs23, so

À
N1

m,L`∆m´2
ÿ

k“1

¨

˝

pk`1qL´1
ÿ

l“kL

µθ lωpΓρm
pθ lωqq

˛

‚

˜

3∆mL
ÿ

u“L`1

ud
“

u´κd0`ρm
d0
‰

¸

À
N1

m,L`∆m´2
ÿ

k“1

¨

˝

pk`1qL´1
ÿ

l“kL

µθ lωpΓρm
pθ lωqq

˛

‚

`

Ld´κd0`1 ` p∆mLqd`1ρm
d0
˘

,

where for the first term in the square bracket we have used that, for α ą 1,
ř8

n“m n´α À m´α`1

together with d´ κd0 ă ´1, which is guaranteed by (H10.3), whereas for the second we have used

that ud is increasing and the summation interval is bounded above by 3∆mL.

we will leave pIbadq to the end.

23The interval where s ranges basically has length 2L and it is translated by L when j moves one unit, therefore the

original and the new interval overlap by half, so eventual repetitions are more than compensated by a factor of two.
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For pIIq, we consider L1 ă L and proceed as follows

N1
m,L
ÿ

k“1

µωpZ
ω,m,L
k´1 ě 1,Z

ω,m,L
k ě 1q

“
N1

m,L
ÿ

k“1

µω

¨

˝

kL´1
ÿ

i“pk´1qL

I
ω,m
i ě 1,

kL`L1´1
ÿ

l“kL

I
ω,m
l `

pk`1qL´1
ÿ

l“kL`L1

I
ω,m
l ě 1

˛

‚

ď
N1

m,L
ÿ

k“1

µω

¨

˝

kL´1
ÿ

i“pk´1qL

I
ω,m
i ě 1,

kL`L1´1
ÿ

l“kL

I
ω,m
l ě 1

˛

‚` µω

¨

˝

kL´1
ÿ

i“pk´1qL

I
ω,m
i ě 1,

pk`1qL´1
ÿ

l“kL`L1

I
ω,m
l ě 1

˛

‚

and, denoting ω 1 “ θ iω ,

ď
N1

m,L
ÿ

k“1

kL`L1´1
ÿ

l“kL

µθ lω

`

Γρm
pθ lωq

˘

`
N1

m,L`∆m´2
ÿ

k“1

kL´1
ÿ

i“pk´1qL

pk`1qL´1
ÿ

l“kL`L1

µω 1

ˆ

Γρm
pω 1q X pT l´i

ω 1 q´1
Γρm

pθ l´iω 1q X
``
C

ω 1

l´i

˙

`
N1

m,L
ÿ

k“1

kL´1
ÿ

i“pk´1qL

pk`1qL´1
ÿ

l“kL`L1

µω 1

ˆ

Γρm
pω 1q X pT l´i

ω 1 q´1
Γρm

pθ l´iω 1q X
„

`´
C

ω 1

l´iY
´
C

ω 1

l´i

˙

“:pIIrestq ` pIIgoodq ` pIIbadq.

The term pIIrestq will not be improved, whereas the term pIIgoodq is approached just like pIgoodq, as

follows:

pIIgoodq À
N1

m,L
ÿ

k“1

pk`1qL´1
ÿ

l“kL`L1

¨

˝µθ lωpΓρm
pθ lωqq

kL´1
ÿ

i“pk´1qL

pl ´ iqd
“

ρm
d0 ` pl ´ iq´κd0

‰

˛

‚

where, for each l fixed, as i runs, we have l ´ i P rL1 ` 1,2L ´ 1s, so

ď
N1

m,L
ÿ

k“1

¨

˝

pk`1qL´1
ÿ

l“kL`L1

µθ lωpΓρm
pθ lωqq

˛

‚

˜

2L´1
ÿ

u“L1`1

ud
“

ρm
d0 ` u´κd0

‰

¸

À
N1

m,L
ÿ

k“1

¨

˝

pk`1qL´1
ÿ

l“kL

µθ lωpΓρm
pθ lωqq

˛

‚

´

L1d´κd0`1 ` Ld`1ρm
d0

¯

.
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Now we combine pIbadq and pIIbadq and their domain of summation24 to see that

pIbadq ` pIIbadqÀ
Nm´1
ÿ

i“0

i`∆mL
ÿ

l“i`L`L1

µθ iω

ˆ

”`´
C

θ iω
l´i Y

´
C

θ iω
l´i

ı

X Γρm
pθ iωq

˙

“
Nm´1
ÿ

i“0

∆mL
ÿ

s“L`L1

µθ iω

ˆ

”`´
C

θ iω
s Y

´
C

θ iω
s

ı

X Γρm
pθ iωq

˙

ď
∆mL
ÿ

s“L1

Nm´1
ÿ

i“0

µθ iω

ˆ

”`´
C

θ iω
s Y

´
C

θ iω
s

ı

X Γρm
pθ iωq

˙

.

Combining the bounds of pIgoodq and pIIgoodq, we conclude that

R2
ω,mpNm,L,∆mqÀ

5Nm´1
ÿ

l“0

µθ lωpΓρm
pθ lωqq

´

L1d´κd0`1 ` p∆mLqd`1ρm
d0

¯

`
N1

m,L
ÿ

k“1

kL`L1´1
ÿ

l“kL

µθ lω

`

Γρm
pθ lωq

˘

`
∆mL
ÿ

s“L1

Nm´1
ÿ

i“0

µθ iω

ˆ

”`´
C

θ iω
s Y

´
C

θ iω
s

ı

XΓρm
pθ iωq

˙

.

4.5.5 Estimating the error R3

Here we use (H6.1) to see that

R
3
ω,mpNm,L,∆mq “

Nm´1
ÿ

i“0

i
ÿ

ℓ“0_pi´∆mLq

µθ iωpΓρm
pθ iωqqµθ ℓωpΓρm

pθ ℓωqqq

À ∆mL ρm
d0

Nm´1
ÿ

i“0

µθ iωpΓρm
pθ iωqq,

which, noticing that ∆mL ď p∆mLqd`1, reveals to be bounded above by R2
ω,mpNm,L,∆mq.

4.5.6 Controlling the total error

Put r “ ρm
w (w ą 1) and L1 “ Lα (0 ă α ă 1). Then

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µω

´

Z
ω,Nm

Γρm
“ n

¯

´ µω

¨

˝

N1
m,L´1
ÿ

j“0

Z̃
ω,m,L
j “ n

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À aL´1
2ρm

pv´2w´d1 ` Lρm
wη´β´d1

`
5Nm´1
ÿ

l“0

µθ lωpΓρm
pθ lωqq

´

L1d´κd0`1 ` Ld`1ρm
d0´vpd`1q

¯

`
N1

m,L
ÿ

k“1

kL`L1´1
ÿ

l“kL

µθ lω

`

Γρm
pθ lωq

˘

`
∆mL
ÿ

s“L1

Nm´1
ÿ

i“0

µθ iω

ˆ

”`´
C

θ iω
s Y

´
C

θ iω
s

ı

X Γρm
pθ iωq

˙

,

where in the first line of the RHS accounts for both R1 and R̃1.

24Notice that the initial L1-strip of the first component of the original summation has already been singled out inside

pIIrestq.
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Until this point, parameters v (accompanying ∆m, see section 4.5), w (accompanying r), and α

(accompanying L1), which are local to the proof, were not fine-tuned.

In the last equation, we need the exponents accompanying ρ to be strictly positive. In particular,

we need

w ą β ` d1

η
_ 1, pv ´ 2w ´ d1 ą 0 and d0 ´ vpd` 1q ą 0.

The space of solutions pw,vq P p1,8qˆp0,d0q to those inequalities is non-empty if p ą
2
´

β`d1
η _1

¯

`d1

d0{pd`1q ,

which is guaranteed by (H10.2).

We will take double limits of the type limLÑ8 limmÑ8 on the RHS. Initially, taking the limmÑ8,

we use that, by lemma 4.4.3,

lim
mÑ8

5Nm´1
ÿ

l“0

µθ lωpΓρm
pθ lωqq “ 5t, P-a.s.

and, by similar arguments25,

lim
mÑ8

N1
m,L
ÿ

k“1

kL`L1´1
ÿ

l“kL

µθ lω

`

Γρm
pθ lωq

˘

“ tLα´1, P-a.s..

Finally, using hypothesis (H4.2) and noticing that d´ κd0 ` 1 ă 0 (by (H10.3)) and α ´ 1 ă 0

(by design), we conclude that the RHS under the double limit limLÑ8 limmÑ8 goes to 0. The same

thing occurs if we adopt the double limits limLÑ8 limmÑ8, limLÑ8 limmÑ8 and limLÑ8 limmÑ8.

Therefore

lim
LÑ8

lim
mÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µω

´

Z
ω,Nm

Γρm
“ n

¯

´ µω

¨

˝

N1
m,L´1
ÿ

j“0

Z̃
ω,m,L
j “ n

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0, P-a.s..

4.5.7 Convergence of the leading term to the compound Poisson distribution

It remains to show that µω

´

řN1
m,L´1

j“0 Z̃
ω,m,L
j “ n

¯

to CPDtα1,pλℓqℓptnuq.

Due to the independence and distributional properties of the Z̃
ω,m,L
j ’s (see theorem 4.3.1):

µω

¨

˝

N1
m,L´1
ÿ

j“0

Z̃
ω,m,L
j “ n

˛

‚

“
n
ÿ

l“1

ÿ

0ď j1ă...ă jlďN1
m,L´1

¨

˚

˚

˚

˝

ź

jPr0,N1
m,L´1s

zt ji:i“1,...,lu

µωpZ
ω,m,L
j “ 0q ¨

ÿ

pn1,...,nlqPNl
ě1

n1`...`nl“n

l
ź

i“1

µωpZ
ω,m,L
ji

“ niq

˛

‹

‹

‹

‚

25Adapting the argument of lemma 4.4.3 item (III) to the new term, we see that the new P-expectation is tLα´1, but the

variance lemma used therein, lemma 4.4.2, would need to be adapted as well, what we omitted.
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p‹q“ p1 ` op1qq
N1

m,L´1
ź

j“0

µωpZ
ω,m,L
j “ 0q

n
ÿ

l“1

1

l!

ÿ

jiPr0,N1
m,L´1s

i“1,...,l

ÿ

pn1,...,nlqPNl
ě1

n1`...`nl“n

l
ź

i“1

µωpZ
ω,m,L
ji

“ niq

p‹‹q“ p1 ` op1qq
N1

m,L´1
ź

j“0

µωpZ
ω,m,L
j “ 0q

n
ÿ

l“1

1

l!

ÿ

pn1,...,nlqPNl
ě1

n1`...`nl“n

l
ź

i“1

¨

˝

N1
m,L´1
ÿ

j“0

µωpZ
ω,m,L
j “ niq

˛

‚,

where i) op1q refers to a function gpω,m,Lq so that limLÑ8 limmÑ8 |gpω,m,Lq| “ 0, P-a.s.; ii)

equality p‹q included 1{l! to account for ji’s not being anymore increasing and used that the error

terms that come from different ji’s being equal are small, as one can see in the case when two ji agree;

and iii) equality p‹‹q uses that a product of sums distributes as a sum of products.

We then notice that, by lemma 4.4.3,

lim
LÑ8

lim
mÑ8

N1
ρm ,L´1
ÿ

j“0

µωpZ
ω,ρm,L
j “ niq “ tα1λni

, P-a.s.

and

lim
LÑ8

lim
mÑ8

N1
m,L´1
ź

j“0

µωpZ
ω,m,L
j “ 0q “ lim

LÑ8
lim

mÑ8
exp

¨

˝

N1
m,L´1
ÿ

j“0

ln
´

1 ´ µωpZ
ω,m,L
j ě 1q

¯

˛

‚

“ lim
LÑ8

lim
mÑ8

exp

¨

˝

N1
m,L´1
ÿ

j“0

´µωpZ
ω,m,L
j ě 1q ` op1q

˛

‚“ e´tα1 , P-a.s..

Therefore

lim
LÑ8

lim
mÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µω

¨

˝

N1
m,L´1
ÿ

j“0

Z̃
ω,m,L
j “ n

˛

‚´ e´tα1

n
ÿ

l“1

ptα1ql

l!

ÿ

pn1,...,nlqPNl
ě1

n1`...`nl“n

l
ź

i“1

λni

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0, P-a.s.

ô lim
LÑ8

lim
mÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µω

¨

˝

N1
m,L´1
ÿ

j“0

Z̃
ω,m,L
j “ n

˛

‚´ CPDtα1,pλℓqℓptnuq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0, P-a.s.,

where the equivalence is because the former term is precisely the density of such a compound Poisson

distribution (see equation (2.1)).

As a consequence,

ˇ

ˇ

ˇ
µωpZ

ω,Nm

Γρm
“ nq ´ CPDtα1,pλℓqℓptnuq

ˇ

ˇ

ˇ

@Lěn
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µωpZ
ω,Nm

Γρm
“ nq ´ µω

¨

˝

N1
m,L´1
ÿ

j“0

Z̃
ω,m,L
j “ n

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µω

¨

˝

N1
m,L´1
ÿ

j“0

Z̃
ω,m,L
j “ n

˛

‚´ CPDtα1,pλℓqℓptnuq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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ñ lim
mÑ8

ˇ

ˇ

ˇ
µωpZ

ω,Nm

Γρm
“ nq ´ CPDtα1,pλℓqℓptnuq

ˇ

ˇ

ˇ

ď lim
LÑ8

lim
mÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µωpZ
ω,Nm

Γρm
“ nq ´ µω

¨

˝

N1
m,L´1
ÿ

j“0

Z̃
ω,m,L
j “ n

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` lim
LÑ8

lim
mÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µω

¨

˝

N1
m,L´1
ÿ

j“0

Z̃
ω,m,L
j “ n

˛

‚´ CPDtα1,pλℓqℓptnuq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0, P-a.s.

We then conclude that lim
mÑ8

ˇ

ˇ

ˇ
µωpZ

ω,Nm

Γρm
“ nq ´ CPDtα1,pλℓqℓptnuq

ˇ

ˇ

ˇ
“ 0, P-a.s., as desired.



Chapter 5

Application: random piecewise expanding

one-dimensional systems

We consider a class of random piecewise expanding one-dimensional systems pθ ,P,Tω ,µω ,Γq pre-

scribed by the following conditions. Elements in this class immediately comprise a system as in the

general setup of section 4.1.1 and will check that they also comprise a system as in the working setup

of section 4.1.2 (i.e., satisfying hypotheses (H1-H10)).

C1. Consider finitely many maps of the unit interval (or circle), Tv : M Ñ M, for v P t0, . . . ,u ´ 1u.

For ease of exposition, say that u “ 2. They carry a family of open intervals Av “ pζv,iqIv

i“1 (Iv ă 8)

so that MzŤIv

i“1 ζv,i is finite and Tv|ζv,i
is surjective and C2-differentiable with

1 ă dmin ď inft|Tv
1pxq| : x P ζv,i,v “ 1, . . . , Iv, i “ 0, . . . ,u ´ 1u,

supt|Tv
2pxq| : x P ζv,i,v “ 1, . . . , Iv, i “ 0, . . . ,u ´ 1u ď cmax ă 8.

For n ě 1, let Aω
n “ Žn´1

j“0pT
j

ωq´1Aπ jpωq. For n “ 0, we adopt the convention Aω
0 “ tp0,1qu

(@ω P Ω). Write Aω
n “ Ť

ζ PAω
n

ζ (co-finite) and, for x P Aω
n , denote by Aω

n pxq the element of Aω
n

containing x. In particular, x P Aω
n implies that x is a point of differentiability for T n

ω .

C2. Let Ω “ t0,1uZ. Set Tω :“ Tπ0pωq, where π jpωq “ ω j p j P Zq. Consider θ : Ω Ñ Ω to be the

bilateral shift map.

C3. Consider P P Pθ pΩq an equilibrium state associated to a Lipschitz potential. Usual instances are

Bernoulli and Markov measures.

C4. Consider Γpωq “ txpωqu (ω P Ω), where x : Ω Ñ M is a random variable taking values either x0

or x1 (possibly coincident) in the form xpωq “ xπ0pωq, with tx0,x1u Ă Ş

ωPΩ

Ş8
l“1A

ω
l

1 (which needs

to be a non-empty set).

1The intersection
Ş8

l“1A
ω
l is a co-countable set (@ω P Ω).
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Figure 5.1 A representation of xpωq “ xπ0pωq

Moreover, for each ω P Ω, with the minimal period

mpωq :“ mintm ě 1 : T
mpωq

ω xpωq “ xpθ mpωqωqu P Ně1 Y t8u,

one defines the number of finite-periods occurring along the ω fiber (Kpωq P Ně0 Y t8u) and the

associated sequence of such periods (pm jpωqqKpωq´1

j“0 Ă Ně1), using the conventions m´1pωq :” 0

and maxH :“ 0, letting

Kpωq :“ max

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

k ě 1 :

m0pωq :“ mpωq P Ně1

m1pωq :“ mpθ m0pωqωq P Ně1

m2pωq :“ mpθ m1pωq`m0pωqωq P Ně1

. . .

mk´1pωq :“ mpθ mk´2pωq`...`m0pωqωqP Ně1

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

P Ně0 Y t8u.

In particular, writing M jpωq :“ ř j´1
k“0 mkpωq for 1 ď j ď Kpωq (with M0pωq :” 0), one has:

xpωq T
m0pωq

ωÞÝÝÝÝÝÑ xpθ M1pωqωq
T

m1pωq

θ M1pωqωÞÝÝÝÝÝÝÑ xpθ M2pωqωq
T

m2pωq

θ M2pωqωÞÝÝÝÝÝÝÑ xpθ M3pωqωq . . . .

We conclude (C4) assuming that the target satisfies the dynamical condition that

suptm jpωq : ω P Ω, j “ 0, . . . ,Kpωq ´ 1u “: MΓ ă 8,

where the convention maxH :“ 0 is adopted.

C5. Consider that there exists r ą 0, K,Q ą 1 and β P p0,1s so that µω “ hω Leb forms a quasi-

invariant family satisfying: i) pω,xq ÞÑ hωpxq is measurable, ii) K´1 ď hω |Brpxpωqq ď K a.s., and

iii) hω |Brpxpωqq P Holβ pMq with Hβ phω |Brpxpωqqq a.s.. See remark 8.

The following result says that theorem 4.1.4 applies to systems in the class (C1-C5) and, in

particular, they have quenched limit entry distributions in the compound Poisson class with the needed

statistical quantities presented explicitly.
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Theorem 5.0.1. Let pθ ,P,Tω ,µω ,Γq be a system satisfying conditions (C1-C5). Then the hypotheses

of theorem 4.1.4 are satisfied with

αℓ “

ż

Ω

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

hωpxpωqq
ż

Ω

hωpxpωqqdPpωq

„

´

JT
Mℓ´1pωq

ω pxpωqq
¯´1

´
´

JT
Mℓpωq

ω pxpωqq
¯´1



, if ℓ ď Kpωq

hωpxpωqq
ż

Ω

hωpxpωqqdPpωq

„

´

JT
Mℓ´1pωq

ω pxpωqq
¯´1



, if ℓ “ Kpωq ` 1

0 , if ℓ ě Kpωq ` 2

dPpωq.

The quantities αℓ comply with (H9) and theorem 4.1.3, allowing for λℓ “ pαℓ ´ αℓ`1q{α1 to hold.

In particular: @t ą 0,@n ě 0,@pρmqmě1 Œ 0 with
ř

mě1 ρm
q ă 8 (for some 0 ă q ă 1) one has

µωpZ
ω,tt{µ̂pΓρm qu
Γρm

“ nq P-a.s.ÝÑ
mÑ8

CPDtα1,pλℓqℓptnuq.

We will prove the theorem after a few remarks on relevant subclasses within (C1-C5) and examples.

Remark 5. When the maps Tv are piecewise expanding linear maps, they preserve Lebesgue and

conditions (C1)-(C3),(C5) are immediately satisfied.

To illustrate condition (C4), or, better said, condition MΓ ă 8, we can look at deterministic targets

xpωq ” x. Two noticeable cases occur:

i) Pure periodic points x: when there is some m˚ “ m˚pxq ě 1 so that x is (minimally) fixed by

any concatenations of m˚ maps in pTvqu´1
v“0 . In this case, mpωq ” m˚,Kpωq ” 8,m jpωq ” m˚

and MΓ “ m˚.

It is convenient to represent these types of examples with diagrams (that can neglect topological

information), where the deterministic target x is highlighted with a green ball, each arrow

indicates how each map Tv acts, blue cycles indicate cycles that avoid the target, purple paths

indicate paths between the blue cycles and the target and yellow cycles indicate cycles that

include the target (but are not obtained composing blue cycles with purple paths).

Figure 5.2 (a) Pure one-periodic. Figure 5.3 (b) Pure two-periodic.

Considering remark 5, we can easily present explicit examples of systems complying with cases

(a) and (b) above. In both examples, xpωq ” 1{2 and all maps preserve Lebesgue. Constructions

of this kind are possible for any m˚ ě 1 and u ě 1.
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Figure 5.4 (a) A pure one-

periodic system.2
Figure 5.5 (b) A pure two-

periodic system.

ii) Pure aperiodic points x: when x is not fixed by any finite concatenation of maps in pTvqu´1
v“0 . In

this case, mpωq ” 8,Kpωq ” 0 and MΓ “ 0.

Here are some compatible diagrams in this case:

Explicit examples realizing these structures (or exhibiting these sorts of behaviors) can be tricky

to construct3, especially when the diagram is infinite and one has to control the behavior of

2More precisely, take two piecewise expanding linear maps Tv (v “ 0,1) of the unit interval, with three surjective

branches: T0 fixes the midpoint 1{2 in its center branch, with slope 2, whereas its left branch maps 0 to 1 and its right

branch maps 1 to 0; T1 is just the same, but having slope 3 in the fixed midpoint. Let xpωq ” 1{2. This choice satisfies the

inclusion in (C4), because regardless of the random seed ω and order of iteration l, the midpoint is always a differentiable

fixed point right in the middle of the center branch of T l
ω . Condition MΓ ă 8 is verified as in (i) with m˚ “ 1.

3We are not claiming that every (possible) diagram compatible with (ii) can be realized by examples in the class (C1-C5).
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infinitely many iterates of the system4. Notice, however, that, once the maps are fixed, the set

of pure aperiodic x’s is generic, because it is given by

Mz
ď

pě1

ď

pv0,...,vp´1qPt0,...,u´1up

FixpTvp´1
˝ . . .˝ Tv0

q,

which is co-countable.

For a finite diagram such as the last one in the first column, we can consider the following

explicit example:

Figure 5.6 A pure aperiodic system.

iii) Hybrid. This is the general case. They can combine the behavior in (i) and (ii) while still

verifying MΓ ă 8. Here are some possible diagrams in this case:

4In this direction, beta maps with irrational translation and rational (random) targets were studied in [8]. They do not

fit exactly in the class (C1-C5) because they do not have subjective branches. However, they can be dealt with here by

considering their action on S1 rather than on r0,1s. See remark 7.
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For a finite diagram such as the last one, we can consider the following explicit example:

Figure 5.7 A hybrid system.

iv) Non-examples. Here are some diagrams which do not satisfy MΓ ă 8.
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Notice that whenever a purple path occurs arbitrarily large periods can be formed. But this can

occur without purple paths as well, as in the first diagram. Moreover, this can occur both with

infinite diagrams (the first two) and with finite diagrams (the last two).

Remark 6. It is not being claimed that systems as in (iv) are not covered by the theory in chapter 4. It

is just being said that systems as in (iv) are not treated with the techniques used in this section (to

calculate underlying αℓ’s).

Proof of theorem 5.0.1. It is enough to check that conditions (C1)-(C5) imply the hypotheses (H1-H7,

H9-H10) of section 4.

(H1). Immediate, since M “ r0,1s and Ω “ t0,1uZ.

(H2). (H2.1) holds because the finitely many branches are injective and MzŤIv

i“1 ζv,i is finite.

(H2.2) holds with R :“ 1{2, N :“ 1, and py
ω,n
k qkPKω,n

assigned the singleton 1{2 (@ω,n), in which case,

for all ω and n, the family of balls is the single one B1{2p1{2q “ p0,1q, that leaves only two points

uncovered, and trivially has at most 1 overlaps. (H2.3) holds because every power T n
ω also satisfies the

property in the second sentence of (C1). (H2.5) holds because MzŤIv

i“1 ζv,i and the measures have no

singleton (see (H6.1) below). Finally, (H2.6) holds with ι :“ K´1 (that of (C5)), because one always

has µθ nωpBRpy
ω,n
k qq ě K´1.

This choices imply that Cω
n “ Aω

n and Cω
n “ Aω

n .

(H3). (H3.1) is immediate and we let
`
Cω

n :“ Cω
n and

``
C ω

n :“ Cω
n . Then (H3.2) holds immediately,

whereas (H3.3) holds with d :“ 0 and C :“ K4e
cmax

dmin
dmin´1 , because of the usual distortion control based

on the second derivative bounded as in (C1) (see, e.g., [70], section 3.3): for any ω P Ω,n ě 1,ϕ P
`
IB

pT n
ω q and x,y P ξ “ ϕpdompϕqq:

K´2DT n
ω “K´2 dϕ˚ Leb

d Leb
ď

dϕ˚

“

µθ nω |dompϕq

‰

dµω |ϕpdompϕqq
ďK2 dϕ˚ Leb

d Leb
“K2DT n

ω ñJϕpxq
JϕpyqďK4 DT n

ω pxq
DT n

ω pyq

but

ln
DT n

ω pxq
DT n

ω pyq “
n´1
ÿ

i“0

ln
DTθ iωpT i

ωxq
DTθ iωpT i

ωyq “
n´1
ÿ

i“0

ln

ˆ

DTθ iωpT i
ωxq ´ DTθ iωpT i

ωyq
DTθ iωpT i

ωyq ` 1

˙
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lnp1`xqăx
ă

n´1
ÿ

i“0

DTθ iωpT i
ωxq ´ DTθ iωpT i

ωyq
DTθ iωpT i

ωyq ď cmax

n´1
ÿ

i“0

|T i
ωx ´ T i

ωy|

ď cmax

n´1
ÿ

i“0

dmin
´pn´iq|T n

ω pxq ´ T n
ω pyq| ď cmax

1

1 ´ dmin
´1

. (5.1)

On the other hand, (H3.4) follows with D :“ 1 and κ ą 1 arbitrary since

dmin
n ď DT n

ω pxq ď dmax
n, @ω P Ω,n ě 1,x P A

ω
n

then

dmax
´n ď Dϕpzq ď dmin

´n À n´κ , @κ ą 1,ω P Ω,n ě 1,ϕ P IBpT n
ω q,z P dompϕq.

(H4). (H4.2) is immediate because
´
C

ω
n ,

`´
C

ω
n “ H. On the other hand, (H4.1) follows from the

finitely many maps in (C1), the dependence of Tω simply on the first coordinate of ω as in (C2) and

the inclusion in (C4).

(H5). Holds immediately because maps Tω and the target Γpωq depend only on the first coordinate

of ω , thus their Lipschitz constant is 0. Also, Lippθq ă 8 is immediate.

(H6). (H6.1) holds with d0,d1 :“ 1, C0 :“ K and C1 :“ K´1. (H6.2) holds with η ,β :“ 1 and

E “ 2K2.

(H7). Items (H7.1) and (H7.2) hold with any p ą 1. This is because a) (C3) implies that pθ ,Pq
satisfies exponential decay of the type described in (H7), with test functions in LippΩq and L8pΩq
(see [17]) and b) (C5) considers quenched ACIPs, whose quenched decay is exponential of the type

described in (H7), with test functions in LippMq and L8pMq (see [32] page 1130 and equation (19)5).

(H10). Since p arbitrarily large is available, simply κd0 ą 1 has to be checked. But once d0 “ 1

and κ arbitrarily large was possible, the desired parametric constraint is immediately satisfied.

(H9). We start calculating αℓ’s. Consider ℓ ě 1 and ω P Ω (eventually taken in a set of full

measure).

Consider

L ě Mℓ^Kpωqpωq. (5.2)

Then take ρ0pω,Lq “ ρ0pπ0pωq, . . . ,πLpωqq small enough so that ρ ď ρ0pω,Lq implies

T i
ωBρpxpωqq X Bρpxpθ iωqq “ H, @i P r1,LsztMkpωq : k P r1,Kpωqsu, (5.3)

which can be guaranteed noticing that

a) returns occur precisely in the instants tMkpωq : k P r1,Kpωqsu and not in between (by minimal-

ity),

5From here one has that BV is the good Banach space and that decay appears in terms of BV against L8 (constants

are uniform). In particular, for any Lipschitz function, we can apply this result to get decay of type the Lip against L8,

as we need. Related comments can be found in the second paragraph of remark 9. Moreover, noticing that the cone of

continuous functions is preserved (see, e.g., [1] page 5), that the eigenfunctions hω P BV upgrade to Holder ones, showing

that condition (C5) is adequate. Related comments can be found in remark 8.
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b) T i
ω is continuous on xpωq (@i ě 1), a.s., because, by (C4), one has

xpωq P tx0,x1u Ă
8
č

l“1

A
ω
l Ă A

ω
i , a.s.

Because of the previous constraint, one could have started with L’s of the form L “ MqL^Kpωqpωq,

qL ě ℓ (so still satisfying equation (5.2)), in the sense that other choices of L are superfluous from

the viewpoint of the quantity we will study, Z
ω,L
˚Γρ

. Then one could restrict ρ0pω,Lq further so that

ρ ď ρ0pω,Lq implies:

T

M
k´k1

ˆ

θ
M

k1 pωq
ω

˙

hkkkkkikkkkkj

Mkpωq´Mk1 pωq

θ
M

k1 pωq
ω

Bρpxpθ Mk1 pωqωqq Ă Aθ Mkpωqω
MqL^Kpωqpωq´Mkpωq

´

xpθ Mkpωqωq
¯

, @k1,k P r0,qL ^Kpωqs,k1 ď k,

(5.4)

which can be guaranteed noticing that

a) T
Mk´k1

´

θ
M

k1 pωq
ω
¯

θ
M

k1 pωq
ω

xpθ Mk1 pωqωq “ xpθ
Mk´k1

´

θ
M

k1 pωq
ω
¯

θ Mk1 pωqωq “ xpθ Mkpωqωq, with the later in

tx0,x1u
pC4q
Ă Ş8

l“1A
θ Mkpωqω
l Ă Aθ Mkpωqω

MqL^Kpωqpωq´Mkpωq,

b) T
Mk´k1

´

θ
M

k1 pωq
ω
¯

θ
M

k1 pωq
ω

is continuous at xpθ Mk1 pωqωq, because, again by (C4), one has xpθ Mk1 pωqωq P
Aθ

M
k1 pωq

ω

Mk´k1

´

θ
M

k1 pωq
ω
¯.

The point with condition (5.4) is to say that, ρ is so small that, starting from any pre-intermediary

time Mk1pωq and going to any post-intermediary step Mkpωq, the initial ρ-sized ball grows under

iteration up to time Mkpωq but still fitting inside a partition domain (thus an injectivity domain) of the

map evolving from time Mkpωq until the end, MqL^Kpωq. In particular, the image balls won’t break

injectivity (or wrap around). Most importantly, it is implied that for any z P Bρpxpωqq:

´

I
ω,ρ
0 pzq, Iω,ρ

M1pωqpzq, . . . , Iω,ρ
MqL^Kpωqpωqpzq

¯

is a binary sequence starting with a batch of 1’s followed by a (possibly degenerate) batch of 0’s (e.g.

11100, 1111 or 11000).

Then, for ω , L and ρ as above, one has:

α̂ω
ℓ pL,ρqµωpΓρpωqq “ µωpZ

ω,L
˚Γρ

ě ℓ´ 1, I
ω,ρ
0 “ 1q

(5.3)“ µω

¨

˝

ÿ

jPtMkpωq:kPr1,qL^Kpωqsu

I
ω,ρ
j ě ℓ´ 1, I

ω,ρ
0 “ 1

˛

‚

(5.4)“

$

&

%

µω

´

I
ω,ρ
0 “ 1, I

ω,ρ
M1pωq “ 1, . . . , I

ω,ρ
Mℓ´1pωq “ 1

¯

, if ℓ´ 1 ď Kpωq
0 , otherwise



112 Application: random piecewise expanding one-dimensional systems

(5.4)“

$

&

%

µω

´

I
ω,ρ
Mℓ´1pωq “ 1

¯

, if ℓ´ 1 ď Kpωq
0 , otherwise

,

so that

αω
ℓ pL,ρq µωpΓρpωqq

µ̂pΓρq
(4.5)“

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

µω

´

pT
Mℓ´1pωq

ω q´1
Γρpθ Mℓ´1pωqωq

¯

µ̂pΓρq ´
µω

´

pT
Mℓpωq

ω q´1
Γρpθ Mℓpωqωq

¯

µ̂pΓρq , if ℓ ď Kpωq,

µω

´

pT
Mℓ´1pωq

ω q´1
Γρpθ Mℓ´1pωqωq

¯

µ̂pΓρq , if ℓ “ Kpωq ` 1,

0 , if ℓ ě Kpωq ` 2.

Notice that

µω

´

pT
Mℓ´1pωq

ω q´1
Γρpθ Mℓ´1pωqωq

¯

µ̂pΓρq “
Leb

´

hω✶pT
Mℓpωq

ω q´1Γρ pθ Mℓpωqωq

¯

ş

Ω
Lebphω✶Γρ pωqqdPpωq

“
rhωpxpωqq `OpεqsLeb

´

pT
Mℓpωq

ω q´1Bρpxpθ Mℓpωqωqq
¯

ş

Ω
rhωpxpωqq `OpεqsLebpBρpxpωqqqdPpωq

“
rhωpxpωqq `Opεqs

”

`

JT
Mℓpωq

ω pxpωqq
˘´1 `Opεq

ı

Leb
`

Bρpxpθ Mℓpωqωqq
˘

ş

Ω
rhωpxpωqq `OpεqsLebpBρpxpωqqqdPpωq

“ hωpxpωqq `Opεq
ş

Ω
hωpxpωqq `OpεqdPpωq

”

`

JT
Mℓpωq

ω pxpωqq
˘´1 `Opεq

ı

(5.5)

where, given ε ą 0 (for ω and L chosen as above), we’ve considered ρ ď ρ1pω,εq ă r (see (C5)),

with ρ1pω,εq small enough so that for any ρ ď ρ1pω,εq:

hωpzq “ hωpxpωqq `Opεq, @z P Bρpxpωqq

and
`

JT
Mℓpωq

ω pzq
˘´1 “

`

JT
Mℓpωq

ω pxpωqq
˘´1 `Opεq, @z P Bρpxpωqq.

We can write

ρ1pω,εq “
`

ε{Hβ phω |Brpxpωqqq
˘1{β ^

´

ε{Hβ

´

rJT
Mℓpωq

ω s´1|Brpxpωqq

¯¯1{β

^ 1.

We can use (C1) (finitely many maps and uniformly bounded second derivatives), (C4) (uniformly

bounded finite-periods) and (C5) (uniform Holder constants for the densities) to pass to controls that

are uniform on ω and then integrate: for any ε ą 0, L ě L˚ :“ ℓMΓ and

ρ ď ρ˚pL,εq :“ min
pv0,...,vLq

P t0,1uL`1

ρ1pv0, . . . ,vLq ^ ess inf
ω

ρ1pω,εq P p0,1s,
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one has

αℓpL,ρq “
ż

Ω

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

hωpxpωqq `Opεq
ż

Ω

hωpxpωqq `OpεqdPpωq

„

´

JT
Mℓ´1pωq

ω pxpωqq
¯´1

`Opεq ´
´

JT
Mℓpωq

ω pxpωqq
¯´1

´Opεq


, if ℓ ď Kpωq

hωpxpωqq `Opεq
ż

Ω

hωpxpωqq `OpεqdPpωq

„

´

JT
Mℓ´1pωq

ω pxpωqq
¯´1

`Opεq


, if ℓ “ Kpωq ` 1

0 , if ℓ ě Kpωq ` 2

dPpωq,

then taking iterated limits of the type limε limL limρ one finds that

αℓ “

ż

Ω

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

hωpxpωqq
ż

Ω

hωpxpωqqdPpωq

„

´

JT
Mℓ´1pωq

ω pxpωqq
¯´1

´
´

JT
Mℓpωq

ω pxpωqq
¯´1



, if ℓ ď Kpωq

hωpxpωqq
ż

Ω

hωpxpωqqdPpωq

„

´

JT
Mℓ´1pωq

ω pxpωqq
¯´1



, if ℓ “ Kpωq ` 1

0 , if ℓ ě Kpωq ` 2

dPpωq.

(5.6)

The following diagram helps one to visualize how the integrand in equation (5.6), with the factor
hω pxpωqq

ş

Ω
hω pxpωqqdPpωq

suppressed, changes

a) for ω’s with varying amount of periodicity (read the different lines),

b) as ℓ grows (read the different columns).

ℓ “ 1 ℓ “ 2 ℓ “ 3

Kpωq “ 8:

˜

1 ´ 1{JT
m0pωq

ω pxpωqq,
1 ´ 1{JT

m1pωq

θ m0pωqω
pxpωqq

JT
m0pωq

ω pxpωqq
,

1 ´ 1{JT
m2pωq

θ m0pωq`m1pωqω
pxpωqq

JT
m0pωq

ω pxpωqqJT
m1pωq

θ m0pωqω
pxpωqq

, . . .

¸

Kpωq “ 0 : p 1 , 0 , 0 , 0̄. . .q

Kpωq “ 1:

˜

1 ´ 1{JT
m0pωq

ω pxpωqq, 1

JT
m0pωq

ω pxpωqq
, 0 , 0̄. . .

¸

Kpωq “ 2:

˜

1 ´ 1{JT
m0pωq

ω pxpωqq,
1 ´ 1{JT

m1pωq

θ m0pωqω
pxpωqq

JT
m0pωq

ω pxpωqq
, 1

JT
m0pωq

ω pxpωqqJT
m1pωq

θ m0pωqω
pxpωqq

, 0̄. . .

¸

.

(5.7)

Having found that αℓ’s exist and have explicit representation, it remains to check that α1 ą 0 and
ř8

ℓ“1 ℓ
2αℓ ă 8.

It holds that α1 ą 0 because the quantity found in the first column of diagram (5.7) is bounded

below by 1 ´ 1{dmin ą 0.

Moreover, considering the integrand of equation (5.6), we see that αℓ is at most p1{dminqℓ´1,

therefore
8
ÿ

ℓ“1

ℓ2α̂ℓ ď
8
ÿ

ℓ“1

ℓ2p1{dminqℓ´1 ă 8,

since dmin ą 1.
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This concludes that conditions (C1)-(C4) imply the hypotheses of theorem 4.1.4 and that the

associated αℓ’s satisfy (H9) and the hypotheses of theorem 4.1.3.

Let us finally notice that in this case, where d0,d1,η ,β “ 1 and p “ 8 (i.e., can be taken arbitrarily

large), qpd0,d1,η ,β ,pq, reduces to 1. This is because the system of inequalities appearing at end of

proof of lemma 4.4.2 reduces to only two (1 ą α and w ą 2 for pα,wq P p0,1q ˆ p1,8q) which admit

a solution that opens a margin of (at least) 1 in both equations. ■

Remark 7. As it comes to M “ r0,1s, the use of surjective branches in (C1) was to facilitate as

much as possible the presentation of covers and cylinders in (H2) below. But these can be still

presented without surjective branches. For example, one could present them for the beta maps

T0pxq “ 1{2 ` 2x (mod 1) and T1pxq “ 1{2 ` 3x (mod 1). On the other hand, to have the type of decay

against Lipschitz test functions we will be after in (H7), the interval maps ought to have subjective

branches (otherwise the good functional space becomes bounded variation instead of Lipschitz), which

is not the case of the previous beta maps. In this situation, one has to resort to seeing these beta maps as

acting smoothly in M “ S1, and cylinders will not anymore mark regions of continuity/differentiability,

but will still mark injective regions, so to speak.

Remark 8. Condition (C5) was included to make transparent what is really used in the argument

above. But one should be aware that conditions (C1-C3) suffice to conclude that densities are a.s.

bounded away from 0 and 8 and a.s. admit a uniform Holder constant (on the entire manifold M).

See [77] Example 21. This is stronger than (C5), which then can, technically, be omitted from the list

of conditions.

Remark 9. Some points have to be carefully evaluated in case one wants to generalize (C5) in such

a way as to accommodate general quenched equilibrium states where µω “ hωνω where hω is an

eigenvector for the RPF operator in a suitable Banach space B (i.e., Lωhω “ λωhθω ) and νω P PpMq
is a conformal measure (i.e., L˚

ωνθω “ λωνω ). In this direction, useful existential results with decay

of correlations are found, for example, in [63] [16], [65], [64], [72], [15], [7] [6], [9], [10], [82] and

[83].

The first thing to notice is that the hypotheses of theorem 4.1.4 don’t touch on which suitable

Banach space B is used to reveal a spectral. Even if B is taken to be the BV space and decay appears

in terms of BV against L1, one can still recover what is required in terms of Lipschitz against L8.

Despite decay being fine, and nowhere else in the hypotheses of theorem 4.1.4 properties of functional

spaces and the associated density appearing to intervene, the reader will notice that we’ve just used

knowledge of this kind to get αℓ’s and guarantee (H9) in the above application.

In particular, we used that hω is continuous at xpωq, around which (in a vicinity of uniform

size) hω is a continuous function with uniform moduli of continuity (in our case, uniform Holder

constant). For example, when BV is the good Banach space and hω P BV, it should still be required

that hω is continuous on xpωq (actually, in the qualified way we just described). This is not a cost-less

requirement: BV functions are continuous Lebesgue-a.e., but when one wants compound limiting

behavior, the target points generally aren’t generic (or Lebesgue-generic) points — as in the periodic

target case. So even mere continuity can not be guaranteed for free (not to say the qualified type of

continuity we used).
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Moreover, when νω ” Leb, we have used that LebpBρpxqq @xPM“ Crυ to do cancellations and get to

equation (5.5). In general, one needs that: Dρ˚ ą 0, ω a.s., @ρ ď ρ˚, @k ě 0

νθ kωpBρpxpθ kωqqq{νωpBρpxpωqqq “ 1

or at least: ω a.s., @k ě 0

lim
ρÑ0

νθ kωpBρpxpθ kωqqq{νωpBρpxpωqqq “ 1,

with uniform-on-pω,kq control on how the function approaches 1 as ρ shrinks to 0. Even if

limρÑ0
logνω pBρ pxqq

logr
“ Cω for νω -a.e x P M (ω a.s.) and even if Cω ” C a.s., it is not enough —

because, once again, points x of interest aren’t usually typical ones, but of periodic type. This is

emphasized in contrast to hypothesis (H6.1), where dimensions were controlled roughly, utilizing

a pair of inequalities. However, if one wants to assess the existence of the αℓ’s and calculate them

following the previous approach, exact dimensional control is needed. The needed fine dimensional

control on quenched conformal measures is not available in the literature (except when νω ” Leb).

It is also needed that the potential φ : Ω ˆ M Ñ R is so that esssupω Hβ pφωq ă 8.

Provided that all the conditions needed to mimic the argument developed in the above proof are

met, the associated αℓ’s will read as in equation (5.6) but with
śMℓpωq´1

j“0 λ ´1
θ iω

e
řMℓpωq´1

j“0 φ
θ jω

˝T
j

ω pxpωqq

instead of
´

JT
Mℓpωq

ω pxpωqq
¯´1

.

End of remark.

Now we concentrate on analyzing the these conclusions of theorem 5.0.1 refine (or how αℓ’s in

equation (5.6) simplify) when additional conditions are considered.

Corollary 5.0.2. Consider the assumptions of theorem 5.0.1 and assume further that Kpωq “ 0 a.s..

Then

αℓ “

$

&

%

1, if ℓ “ 1

0, if ℓ ě 2
, (5.8)

and CPD in the limit theorem boils down to a standard Poisson.

Proof. Immediate. ■

Corollary 5.0.3. Consider the assumptions of theorem 5.0.1 and assume further that P is Bernoulli,

Kpωq “ 8 a.s. and

hωpxpωqq K
´

JT
m jpωq

θ M jpωqω
pxpθ M jpωqωqq

¯

j
.6

Then

αℓ “ pD ´ 1qD´ℓ, with D´1 :“
ż

Ω

rJT
m0pωq

ω xpωqs´1dPpωq,

and the CPD in the limit theorem boils down to a Polya-Aeppli (or geometric) one.

6This occurs when, for example, when hω ” 1 a.s., or much more generally, when hω depends only on the past entries

of ω (see, e.g., [68] prop. 1.2.3 and [65] prop. 3.3.2).
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Proof. Notice that Kpωq “ 8 a.s. and the independence of hωpxpωqq from the rest implies

αℓ “
ż

Ω

ℓ´2
ź

j“0

”

JT
m jpωq

θ Mjpωqω
pxpθ M jpωqωqq

ı´1

dPpωq ´
ż

Ω

ℓ´1
ź

j“0

”

JT
m jpωq

θ Mjpωqω
pxpθ M jpωqωqq

ı´1

dPpωq,

then, after we make the point in I) that
´

ω ÞÑ JT
m jpωq

θ Mjpωqω
pxpθ M jpωqωqq

¯

j
is independent under P, we

will find that

αℓ “
ℓ´2
ź

j“0

ż

Ω

”

JT
m jpωq

θ Mjpωqω
pxpθ M jpωqωqq

ı´1

dPpωq ´
ℓ´1
ź

j“0

ż

Ω

”

JT
m jpωq

θ Mjpωqω
pxpθ M jpωqωqq

ı´1

dPpωq,

which, we will argue in II), equals

αℓ “
ℓ´2
ź

j“0

ż

Ω

”

JT
m0pωq

ω xpωq
ı´1

dPpωq ´
ℓ´1
ź

j“0

ż

Ω

”

JT
m0pωq

ω xpωq
ı´1

dPpωq “ pD ´ 1qD´ℓ,

where D´1 :“
ş

Ω
rJT

m0pωq
ω xpωqs´1dPpωq, as desired.

Let us make the points that are missing.

I) Notice first that

Ppm0pωq “ i0,m1pωq “ i1q “ Ppm0pωq “ i0,m0pθ i0ωq “ i1q “ Pp✶Peri0
pΓq✶θ ´i0 Peri1

pΓqq

“ Pp✶Peri0
pΓqqPp✶θ ´i0 Peri1

pΓqq “ Ppm0pωq “ i0qPpm0pωq “ i1q,

where the first equality in the second line is because pπ jq’s are independent under P and the in-

dicator functions can be expressed in terms of disjoint blocks of pπ jq’s, namely π0, . . . ,πi0´1 and

πi0 , . . . ,πi0`i1´1. On the other hand

Ppm1pωq “ i1q “
ÿ

i0

Ppm0pωq “ i0,m1pωq “ i1q

“
ÿ

i0

Ppm0pωq “ i0qPpm0pωq “ i1q “ Ppm0pωq “ i1q.

So combining the two previous chains of equality, we find that m0 and m1 are independent, i.e.,

m0 K m1.

Once again, since pπ jq j is an independency under P, whenever two random variables X and Y can

be expressed as X “ φ ˝ pπ0, . . . ,πi0´1q and Y “ ψ ˝ pπi0 , . . . ,πi0`i1´1q, then X K Y . Similarly for π

instead of π . This is the case for pJT
i0

¨ pxp¨qq,✶m0p¨q“i0q K pJT
i1

θ i0 ¨
px ˝ θ i0p¨qq,✶m1p¨q“i1q.
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Therefore

P

´!

ω :
“

JT
m0pωq

ω pxpωqq
‰´1 “ a,

“

JT
m1pωq

θ m0pωqω
pxpθ m0pωqωqq

‰´1 “ b

)¯

“
ÿ

i0

ÿ

i1

P

´!

ω :
“

JT i0
ω pxpωqq

‰´1 “ a,
“

JT
i1

θ i0 ω
pxpθ i0ωqq

‰´1 “ b,m0pωq “ i0,m0pθ i0ωq “ i1

)¯

“
ÿ

i0

ÿ

i1

”

P

´!

ω :
“

JT i0
ω pxpωqq

‰´1 “ a,m0pωq “ i0

)¯

P

´!

ω :
“

JT
i1

θ i0 ω
pxpθ i0ωqq

‰´1 “ b,m0pθ i0ωq “ i1

)¯ı

“
«

ÿ

i0

P

´!

ω :
“

JT i0
ω pxpωqq

‰´1 “ a,m0pωq “ i0

)¯

ff«

ÿ

i1

P

´!

ω :
“

JT i1
ω pxpωqq

‰´1 “ b,m0pωq “ i1

)¯

ff

“ P

´!

ω :
“

JT
m0pωq

ω pxpωqq
‰´1 “ a

)¯

P

´!

ω :
“

JT
m0pωq

ω pxpωqq
‰´1 “ b

)¯

.

On the other hand

P

´!

ω :
“

JT
m1pωq

θ m0pωqω
pxpθ m0pωqωqq

‰´1 “ b

)¯

“
ÿ

a

P

´!

ω :
“

JT
m0pωq

ω pxpωqq
‰´1 “ a,

“

JT
m1pωq

θ m0pωqω
pxpθ m0pωqωqq

‰´1 “ b

)¯

“
ÿ

a

P

´!

ω :
“

JT
m0pωq

ω pxpωqq
‰´1 “ a

)¯

P

´!

ω :
“

JT
m0pωq

ω pxpωqq
‰´1 “ b

)¯

“ P

´!

ω :
“

JT
m0pωq

ω pxpωqq
‰´1 “ b

)¯

.

So combining the two previous chains of equality, we find that

JT
m0p¨q

¨ pxp¨qq K JT
m1p¨q

θ m0p¨q¨
pxpθ m0p¨q¨qq,

as desired.

II) Notice that

ż

Ω

“

JT
m1pωq

θ m0pωqω
xpθ m0pωqωq

‰´1
dPpωq “

ÿ

b

bP

´!

ω : JT
m1pωq

θ m0pωqω
xpθ m0pωqωq

‰´1 “ b

)¯

“
ÿ

b

bP

´!

ω :
“

JT
m0pωq

ω pxpωqq
‰´1 “ b

)¯

“
ż

Ω

“

JT
m0pωq

ω xpωq
‰´1

dPpωq,

where we have used the last equality in I). ■





Chapter 6

Future research

The theory developed in this thesis has an inclination to cover non-uniformly expanding behavior with

possibly unbounded derivatives, in the sense of hypotheses (H3.1), (H7) and (H4.2), but the examples

in section 5 were uniformly expanding ones.

On-going research efforts are then directed to produce and accommodate examples of bonafide

non-uniformly expanding random systems with associated targets which randomly approach their

neutral points (unlikely and slowly).

Another relevant extension of the theory is to get rid of the subsequence need, ρm Œ 0 as m Ñ 8,

entailed by lemma 4.4.3, and to upgrade theorem 4.1.4 to work under the plain limit ρ Ñ 0. This is

undergoing investigation by Jiakang Wang and Nicolai Haydn.

Investigation can consider targets that contain indifferent points (or approaching them likely and/or

fastly), in which case special time-normalization has to be considered.

Other research directions include adapting the theory to maps with Jacobians in Rě0, maps with

infinitely many branches and applications drawing infinitely many maps.

Finally, it could also be interesting to explore how this approach adapts to handle quenched

time-normalization. Ideally, assuming an ergodic driving would be enough, but a reformulation of the

strategy to control almost surely the ω-dependent errors and leading term would probably be needed.
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Statistique de Poisson composée pour les systèmes dynamiques aléatoires 

 

Résumé en français 

Nous obtenons des distributions d’entrée limites quenched dans la classe composée de Poisson pour une 

certaine famille de systèmes dynamiques aléatoires en utilisant une approximation probabiliste par bloc pour la 

fonction de comptage d’entrée quenched jusqu’au temps normalisé annealed-Kac. Nous considérons des cibles 

aléatoires générales avec des statistiques de retour bien définies et des systèmes avec une d’ecroissance 
polynomiale des corrélations à la fois quenched et annealed. La théorie est rendue opérationnelle grâce à un 

résultat qui permet de récupérer certaines statistiques d’entrée à partir desdites statistiques de retour, qui sont 
calculables. Nos exemples incluent une classe de systèmes unidimensionnels à expansion aléatoire par 

morceaux, jetant un nouvel éclairage sur la dichotomie déterministe bien connue entre les points périodiques et 

apériodiques, leur formule d’indice extrême habituelle EI = 1 – JTp(z), et récupérer le cas géométrique pour les 

systèmes généraux pilotés par Bernoulli, mais comportement distinct dans le cas contraire. Les enquêtes 

futures et en cours visent à produire et à prendre en compte des exemples de véritables systèmes aléatoires à 

expansion non uniforme et de cibles s’approchant de leurs points neutres. 

 

Mot clés : Systèmes Dynamiques, Perturbations aléatoires, Statistiques de  Poisson composée. 

  
 
 
 
 

Compound Poisson distributions for random dynamical systems 

Résumé en anglais 

We obtain quenched limiting hitting distributions in the compound Poisson class for a certain family of random 

dynamical systems using a probabilistic block-approximation for the quenched hit-counting function up to 

annealed-Kac-normalized time. We consider general random targets with well-defined return statistics and 

systems with both quenched and annealed polynomial decay of correlations. The theory is made operational 

due to a result that allows certain hitting statistics to be recovered from the said return statistics, which are 

computable. Our examples include a class of random piecewise expanding one-dimensional systems, casting 

new light on the well-known deterministic dichotomy between periodic and aperiodic points, their usual 

extremal index formula EI = 1 – JTp(z), and recovering the geometric case for general Bernoulli-driven 

systems, but distinct behavior otherwise. Future and on-going investigations aim to produce and accommodate 

examples of bonafide non- uniformly expanding random systems and targets approaching their neutral points. 

 

Keywords : Dynamical systems, Random perturbations, Compound Poisson statistics. 
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