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Abstract

We obtain quenched limiting hitting distributions in the compound Poisson class for a certain family of
random dynamical systems using a probabilistic block-approximation for the quenched hit-counting
function up to annealed-Kac-normalized time. We consider general random targets with well-defined
return statistics and systems with both quenched and annealed polynomial decay of correlations. The
theory is made operational due to a result that allows certain hitting statistics to be recovered from
the said return statistics, which are computable. Our examples include a class of random piecewise
expanding one-dimensional systems, casting new light on the well-known deterministic dichotomy
between periodic and aperiodic points, their usual extremal index formula EI = 1 —1/JT?({), and
recovering the geometric case for general Bernoulli-driven systems, but distinct behavior otherwise.
Future and on-going investigations aim to produce and accommodate examples of bonafide non-
uniformly expanding random systems and targets approaching their neutral points.

Keywords: hitting statistics, compound Poisson distributions, random dynamical systems






Resumo

Obtemos distribuicdes limite do tempo de entrada quenched como sendo Poisson compostas para
uma certa familia de sistemas dindmicos aleatérios usando uma aproximacao probabilistica em blocos
para a funcdo contagem de entradas quenched até o tempo normalizado segundo Kac-annealed.
Consideramos alvos aleatérios gerais com estatisticas de retorno bem definidas e sistemas com decai-
mento polomial de correlagdes, tanto quenched quanto annealed. A teoria faz-se aplicavel devido
a um resultado que permite certas estatisticas de entrada serem recuperadas a partir das referidas
estatisticas de retorno, que podem ser calculadas. Nossos exemplos incluem uma classe de sistemas
unidimensionais expansores por partes, langando nova luz na conhecida dicotomia deterministica entre
pontos periddicos e aperiddicos, suas férmulas de indice extremal EI = 1 — 1/JT?({) e recuperando
0 caso geométrico para sistemas dirigidos-por- Bernoulli gerais, bem como revelando comportamento
distinto caso contrario. Investigacdes futuras e em andamento visam produzir e acomodar exemplos de

sistemas aleatérios ndo uniformemente expansores com alvos se aproximando dos seus pontos neutros.

Palavras-chave: estatisticas de entrada, distribui¢cdes de Poisson compostas, sistemas dinAmicos

aleatoérios






Résumé

Nous obtenons des distributions d’entrée limites quenched dans la classe composée de Poisson pour
une certaine famille de systemes dynamiques aléatoires en utilisant une approximation probabiliste
par bloc pour la fonction de comptage d’entrée quenched jusqu’au temps normalisé annealed-Kac.
Nous considérons des cibles aléatoires générales avec des statistiques de retour bien définies et des
systemes avec une decroissance polynomiale des corrélations a la fois quenched et annealed. La
théorie est rendue opérationnelle grace a un résultat qui permet de récupérer certaines statistiques
d’entrée a partir desdites statistiques de retour, qui sont calculables. Nos exemples incluent une classe
de systemes unidimensionnels a expansion aléatoire par morceaux, jetant un nouvel éclairage sur
la dichotomie déterministe bien connue entre les points périodiques et apériodiques, leur formule
d’indice extréme habituelle EI = 1 — 1/JT?({), et récupérer le cas géométrique pour les systemes
généraux pilotés par Bernoulli, mais comportement distinct dans le cas contraire. Les enquétes futures
et en cours visent a produire et a prendre en compte des exemples de véritables systemes aléatoires a
expansion non uniforme et de cibles s’approchant de leurs points neutres.

Mots clés: statistiques d’entrée, statistiques de Poisson composée, perturbations aléatoires de
systémes dynamiques
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Notation

N>o={0,1,2,...}

N> ={1,2,3,...}

Py 1is the Borel o-algebra associated to a topological space X

P(X) is the set of Borelian probability measures on a topological space X

Pr(X) is the set of T-invariant of Borelian probability measures on a topological space X

dy is the native metric of a metric space M

B,(x,r) © M, x€ M, r > 0, M metric space, is the open ball around x with radius r w.r.t to dj

xiii






Chapter 1

Introduction

The field of hitting (or entry) time statistics has a long history in the area of dynamical systems. Given
a measurable system T : M — M preserving a probability ¢ and given a family of sets U,, shrinking
to the so-called target set, one studies the statistics of how long it takes for points in M to hit U, as
compared to the normalized time ¢/ (U,). Then one goes after the asymptotics of these statistics as
the sets shrink. Mathematically, one considers

t
li > ——— |, with
Jimw (> gy )
ry(x) =min{n > 1:T"xe U} (xe M).

A related problem is that of return time statistics, which pursues the same type of statistical
characterization of the time needed for future visits to occur, but conditioning on starting on U,;:

. t
rz]gl;ou (rUn = m ‘ Un) .

Limiting hitting and entry times statistics are intimately connected. They harmonize in a specific
way that indicates their coincidence occurs precisely when both are exponentially distributed (see,
e.g., [51]).

Another related problem is that of recurrence times, which considers the statistics of the time
needed for points in the state space to return to shrinking neighborhoods of themselves.

Hitting, return and recurrence times can be considered quantitative refinements to classical
theorems such as Poincaré recurrence theorem and Kac’s theorem.

The first contributions in this direction were by [31], [75] and [54], considering (higher order)
return times of, respectively, the Gauss map, Markov chains and Axiom A systems. They find that
limiting first return times are exponentially distributed when the target consists of a generic point.
The number of returns to these shrinking sets then has Poisson distribution. In a nutshell, these are
consequences of decorrelation and the fact that generic points are aperiodic.

Not much later, [27] addressed uniformly expanding maps of the interval and [49] paved the
way for the study of hitting time statistics for general measurable systems (symbolic ones included)
equipped with a generating partition an a probability with certain mixing features. Again these results

are in the exponential distribution domain.
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The literature in this field then grew rapidly, with generalizations in many directions: non-generic
(periodic) singleton targets, general targets, random systems, non-uniformly hyperbolic systems,
partially hyperbolic systems, zero-entropy systems and more.

Hitting and return statistics for general measurable systems with a partition and a sufficiently
mixing equilibrium state are well reasonably well understood, see, e.g. [4] and [48] for general targets.
These, however, use U, as cylinder sets, which carry more structure than usual metric balls. When in
metric spaces and working with certain systems (e.g., with non-uniformly hyperbolic), the problem
can be more subtle when U,’s (or U,’s with p — 0) are taken to be balls of shrinking radii (around
some set).

A major break-through in the study of return time statistics for non-uniformly hyperbolic maps
was [55], where a set of conditions implying exponential statistics for return times to cylinders or balls
around generic points was given. Applications to interval maps with intermittent points were provided.
Also, a useful result to deal with non-uniformly hyperbolic systems was [21], which showed that the
return time statistics for a map coincide with those of the associated first return map. Chapter 3.1
covers some of these topics, in the perspective we discuss next.

When one considers targets made of a periodic (non generic) point, the picture changes, due to the
local recurrence the dynamics produces around the target. This is going to produce clusters of visits
and return times will not be exponentially distributed anymore: the new effect will create return time
statistics with a point mass on the origin. The adequate approach is to consider hitting statistics up
to normalized time. Instead of a Poisson process, a compound Poisson process then appears, which
usually is of Polya-Aeppli type. This is sometimes referred to as ‘dichotomy’ in the literature. General
targets can produce more intricate behavior but still in the compound Poisson class. Chapter 3.1
covers these topics.

The techniques applied to differentiable systems in order to address hitting statistics to balls
around general targets are of varied nature. One relies on the relationship between hitting time
statistics and extreme values (see e.g. [39]), leveraging on the previously available theory of stationary
stochastic processes and the machinery of point processes (see e.g. [34]). Another one adapts the
spectral method introduced by [60] (see e.g. [8] and [11]). Finally, techniques based on probabilistic
approximation methods were also used (see e.g. [53]). Chapter 3.1 covers these techniques.

The theory was also brought to the realm of random dynamical systems. The picture is still pretty
much incomplete, however. Let us now focus on the quenched situation, meaning that a statistical
result is stated for almost all realizations of the noise. In the context, random subshifts were treated
in [52] and [30], while random piecewise expanding maps of the interval were treated using point
processes in [36] and using the spectral method in [8].

In the quenched approach to hitting statistics, time normalization can either occur in quenched
manner (with division by a noise-dependent probability of the random shrinking set) or in an annealed
manner (with division by an averaged probability of the random shrinking set). The second approach
([52], [36]) is appealing from an applied perspective, representing the fact that an experimentalist
is not informed about the noise path (not even in its entire past) and deterministically decides how
long to watch his experiment. But the first approach ([30] and [8]) is also theoretically appealing and
works with milder hypotheses on the system producing the noise.



This thesis presents contributions to the theory of quenched hitting statistics of random dynamical
systems based on a probabilistic block-approximation approach, generalizing the deterministic theory
developed in [53] after the approach introduced in [25]. The main result, theorem 4.1.4, concludes that
the limiting behavior is described by a compound Poisson distribution. Results are in collaboration
with Nicolai Haydn and Sandro Vaienti.

The strategy goes like this. We use a probabilistic approximation (theorem 4.3.1) where the
quenched hit-counting function up to annealed-Kac-normalized time is split into equally time-sized
blocks which are mimicked by an independency of random variables distributed just like each of them.
The said approximation goes for any given noise realization ® and w-dependent leading terms and
errors appear. Both of them are tamed by a lemmata which ultimately resorts to a Borel-Cantelli
argument in order to show that they converge to the desired quantities almost surely (see section 4.4),
thus establishing the quenched result we are after.

The aforementioned Borel-Cantelli argument produces, after convergence, some statistical quan-
tities that reveal the hitting behavior of the dynamics to the target, the so-called A;’s (see equation
(4.2)). It turns out that these essential quantities are not easily calculated or even shown to exist. To
make our theory operational, we show that A,’s can be explicitly written in terms of the so-called oy’s,
another set of statistical quantities that reveal the return behavior of the dynamics to the target set (see
equation (4.7)). Within the theory, the latter quantities are assumed to exist, while in the examples one
tries to calculate them.

In view of the current state of the comparable literature for random dynamical systems, reviewed
in chapter 3.2, important advantages can be identified in our approach.

First, it handles general random target sets, the only requirement being that they present well-
defined return statistics ¢¢’s, which allow us to represent the intensity and multiplicity distribution of
the limiting compound Poisson distributions very explicitly, given in terms of the dynamics and the

target.

Second, our approach relies on polynomial decay of correlations, indicating its potential to cover
non-uniformly expanding maps with parabolic fixed points and targets moving randomly so as to
possibly approach the parabolic locus (provided that they do so slowly/unlikely enough). That
is currently a work in progress. Here, the examples we will provide are certain one-dimensional
piecewise expanding systems. Alternative techniques based on spectral theory and Lasota-Yorke
inequalities by design will not cover polynomial decay of correlations (not directly, at least).

Third, our assumptions on the quasi-invariant family of measures do not consider their absolute
continuity with respect to the Lebesgue measure. Regularity assumed is in a dimensional sense.

A drawback of our approach is that results are just along sufficiently fast shrinking neighborhoods
of the target set. In other words, the results are about subsequential convergence (though many
subsequences qualify) instead of plain convergence.

Let us note that some of the above topics are intimately connected: annealed decay of correla-
tions, annealed normalization of time, the Borel-Cantelli argument and the need for (deterministic)
subsequences.

The thesis is organized as follows. In chapter 2, prerequisites in probability theory are collected
for the convenience of the reader. This chapter in mainly oriented to present the parallelism between
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hitting time statistics and extreme value theory (in its presentation with point processes) in the iid
case. The reader can skip this chapter and consult it only upon need.

Chapter 3 reviews the literature addressing compound Poissonian extreme value and hitting
statistics, both in deterministic and random cases, using techniques different from the aforementioned
probabilistic block-approximation, namely: point processes, spectral methods and the Chen-Stein
method. Section 3.1.1 relies on the notation introduced in section 2.2.2. We do not draw direct
point-by-point comparisons with the approach we will develop, but we present enough of a review to
enable the reader to undertake an informed appraisal of what we will present in chapter 4. The review
of the deterministic theory in section 3.1 is not only to complete an overview of the literature, but also
to prepare the ground for the random theory in section 3.2.

The specialist reader might skip directly to chapter 4 and 5, where the aforementioned contributions
of this thesis are presented. We start the chapter redefining the basic objects of random dynamical
systems previously introduced in section 3.2, so that chapter 4 can stand independently. To avoid a
sizeable redundancy, however, we go directly to the random theory, without reviewing the deterministic
counterpart preceding it, found in [53].



Chapter 2

Prerequisites

This chapter introduces the probabilistic foundations required by the following two chapters. It
initially covers Poisson-type processes, aiming towards a comprehensive understanding of compound
Poisson point processes. Finally, it covers extreme value theory and hitting time statistics in the iid

case.

2.1 Poisson-type processes

In this section, we introduce many definitions related to Poisson-type processes.

We start with the less general version to convey intuition.

Section 2.1.1 considers Poisson processes on the positive real line. Definition 2.1.8 introduces
Poisson processes with real intensities and its properties are discussed; whereas definition 2.1.10
generalizes the latter into Poisson processes with measure intensities having no atoms.

Section 2.1.2 considers compound Poisson processes, again on the positive real line. Definition
2.1.12 introduces compound Poisson processes with real intensities (and independent multiplicity
kernels); whereas definition 2.1.13 generalizes the former into compound Poisson processes with
measure intensities having no atoms (and independent multiplicity kernels).

Then we generalize considerably.

In section 2.1.3, definition 2.1.17 introduces Poisson point processes with general measure
intensities on general spaces. This concept encompasses all of those in section 2.1.1 and it is claimed
to be non-void.

In section 2.1.4, definition 2.1.21 introduces compound Poisson point processes with general
measure intensities and general multiplicity kernels on general spaces.

2.1.1 Poisson distribution and process

Here we follow [47]. The basic pieces to be considered are the following distributions.

Definition 2.1.1. The Poisson distribution with intensity y € R is the probability measure on
N>, denoted Poiy, given by the following probability mass function

Poiy((n}) = T4 (0> 0).
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Mean and variance of Poiy are both 7.

Definition 2.1.2. The exponential distribution with intensity ¥ € R is the probability measure on
R0, denoted Expy, given by the following probability density function (with respect to Lebesgue
measure)

ye ¥, forx =0
PDFExpy(x) = .
0, otherwise

Mean and variance of Exp, are, respectively, 1/y and 1/ Y.

Definition 2.1.3. The binomial distribution with n € N trials and success probability p € (0, 1)
is the probability measure on N>, denoted Bin, p, given by the following probability mass function

Binp({41) = ()01 (ke T,

This distribution gives the probability that, in an independent coin-tossing experiment with success
probability p, among the first # trials, k successes occur. Its mean and variance are, respectively, np

and np(1 — p).

Definition 2.1.4. The geometric distribution with success probability p € (0,1) is the probability
measure on N>, denoted Geo,, given by the following probability mass function

Geop({n}) = (1—p)""'p (ne Nx1)

This distribution gives the probability that, in an independent coin-tossing experiment with success
probability p, the first occurrence of success requires n trials. Its mean and variance are, respectively,

1/pand (1—p)/p.

Theorem 2.1.5 (Poisson’s theorem for distributions). If p, = ¥/n (so that the sequence of probabilities

Bin, p, all have mean ), then

n—0o0

Birnp, (k) =% Poiy({k}) (k € Nao).

The motivation for the previous distributions and their relationship will be given next.

Definition 2.1.6. A triplet of stochastic processes ((X,‘),-eNz1 s (Sn)neNs, 5 (Nl)tERzo) on probability
space (Q,.%,P) is said to comprise an inter arrival times - arrival epochs - counting (IAC) process,
if separately they verify, respectively,
1.i. X; is R-g-valued (i € N> )
2.1. S, is Rop-valued (n € N3 )
ii. 3Q, € Z,P(Qy) = LV eQ, :n<n' = S,(0) < Sy (o)
3.i. N, is Nxp-valued (f € R~ q)
iil. 3Q, € F,P(Qy) = ,Vo € Qy :
a. N()((D) =0,
b. 1 € R>¢ — N;(w) € N3 is left-continuous with finitely many discontinuities on bounded
subsets of R,
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c.1<1'=Ni(o) < Nv(0),
d. On the discontinuities referred to in (b), the right-limits minus respective left-limits always
equal 1,
and together they verify
a. Sp(w) =37 Xi(w) (neNsj,we Q),ie.,
Xi(®) = Si(w) — Si—i1(®) (i € N>y, with Sp := 0)
b. Sy(w) =inf{teR-p: N(w) =n} (n >Nz, 0 e Q), ie.,
N, (@) =sup{neNs;:S,(0) <t} teR-g, 0 Q).
In particular, {S, <t} = {N, > n}.

The last two conditions say that there are consistency relationships between the entries of the
triplet in such a way that knowing any of them is enough to recover the remaining two. In particular,
once the (joint) distribution of one of them is identified (or assigned), those of the remaining ones
follow. If one wants to assign (joint) distributions to the entries of an IAC process, doing it directly to
(Xi)ien., is clearly the easier path (e.g., this might be an iid sequence, while the other entries of the
triplet can not).

To aid one’s intuition, notice that IAC processes can model any phenomena of (non-overlapping)
unitary-arrivals in continuous-time (or even discrete-time if X;’s are supported on N 1), such as buses
arriving at a stop, lightning bolts hitting planet Earth and calls reaching a call center (or even world
cup trophies won by a country). So X; measures how long one should wait for the i-th arrival after the
(i — 1)-th one has occurred, i.e., the i-th inter-arrival time; S,, measures when the n-th arrival occurs;
and N; counts how many arrivals have occurred in the interval [0,z].

Of course, these different phenomena will be modeled by different IAC processes. A special one
is the following.

Definition 2.1.7. A Poisson IAC process with intensity y € R is an IAC process verifying one of
the following equivalent condition:

L. (X;)ien, is iid with X;, P = Expy (i€ Nxp).

2. (Sn)nen, o, satisfies

Ye P if0<s; <...<s,
PDF(S],...,S,,)*IP’(sl""7sn) = ) (I’leNn>1).
0, otherwise

3. (N,),E]R,;O has independent and stationary increments, and N; [P = Poiy, (t € Rx).

Definition 2.1.8. A Poisson process with intensity y € R- is a stochastic process (V; )rer_, verifying
condition (3) of definition 2.1.6 and condition (3) of definition 2.1.7, i.e., it is the counting process of
a Poisson IAC process with intensity ¥ € R~ .

One of the main reasons why Poisson (IAC) processes are special is simply the memoryless
property of exponentially distributed random variables, i.e., of their inter-arrival times.
A R~ o(Nx)-valued random variable X on (Q,.%,P) is said to be memoryless when

PX>t+t | X >1t)=P(X >1), Vt,{' € Ry (V1,1 € N>o),
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or, equivalently,
P(X >t+t)=P(X >t )P(X >1t), Vt,t' € Rsq (Vt,' € N5o),
which is the case if, and only if,
JaeR-o:P(X >1)=d, Vt € Ry (Vt € Nxy),

with, actually, a € (0, 1), since when t — oo the LHS evaluates to 0. In this case a = ¢~ for some
v e R and the equivalence becomes

JyeRg:P(X >1t)=e 7, Ve Ry (VI € Nxy).

In the continuous-time case, differentiating on both sides leads to the following equivalent equation
PDFx,p(t) = —ye ", Vi € Rxy.

It means that, in the continuous case, the memoryless random variables are exactly the exponentially
distributed ones.

In the discrete-time case, the aforementioned condition, after manipulating some sums, is equiva-
lent to
PMFy,p(t) = (e )" ' (1—e"), Vte N,

It means that, in the discrete case, the memoryless random variables are exactly the geometrically
distributed ones.

This relationship is associated to the connection between Poisson processes and Bernoulli pro-
cesses — as if the latter is the discrete version of the former. This will be discussed later in this
section.

For now, we review other memoryless-related properties of Poisson processes. Notice that these
properties should actually be used to prove the equivalence in definition 2.1.7.

The interpretation of the memoryless property should be clear: if a call center worker waited time
¢ and no call arrived, then the probability that he will have to wait for an additional ¢’ (at least) before
a call arrives coincides with the probability that, from the very beginning, he would have waited
for ¢’ (at least) for a call a to arrive. In particular, the time ¢ the worker spent waiting buys him no
knowledge. He knows how much more he will have to wait just as much as he knew at the beginning
of the experiment, or just as much as a newcomer coming to his table would know.

It is opportune to consolidate the interpretation of a Poisson distributed random variable N and a
Poisson process (N;)/er.,- A random variable N having Poisson distribution with intensity y models
the number of arrivals occurring in a unitary time interval in which the expected number of arrivals is
y and inter-arrival times are exponential (i.e. memoryless). A Poisson process (V; );cr., With intensity
¥ models how the previous situation evolves in time, namely, the number of arrivals occurring in the
time interval [0,7] (r € R>() when the expected number of arrivals in a unitary time interval is ¥ and
inter-arrival times are exponential.
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A consequence of the memoryless property is that if (N;),cr., is a Poisson process with intensity
¥, then, for any ¢ > 0, defining the random variable Z = S;p¢(,en. 5,51} — I, representative of the
length of the interval from ¢ until the first arrival after ¢, it holds that PDFz p(z) = 1 —e™ ¥ (z€ R>o),
ZL1(S )Sup{neN>1 S < and Z 1 (Ne)ze(0.]-

Moreover, conditioning on events {N; = n}, it turns out that one has essentially no knowledge
about when the associated arrivals of period [0,7] happened, these being uniformly distributed on the

region where they are supported:

s/t,if0<s<t . 1/t,if0<s<t
]P)(Sl SS‘NIZI): . ,l.e.,PDFSl*MNt(S‘ 1): .
0, otherwise 0, otherwise

and more generally

n /i if0<s;<...<s, <t
PDF(SI-,---aSn)*MN/ (Sl, o9 8n ‘ I’l) = . 5
0, otherwise

like the order statistics of n independent random variables that are uniformly distributed on (0,7).
Now we reconsider discrete approximations to Poisson processes.

Definition 2.1.9. A Bernoulli process with success probability p € (0, 1) is a {0, 1}-valued stochastic
process (¥;)jen., on (Q,.#,P) which is iid and such that P(Y; = 1) = pand P(Y; =0) =1 —p
(j € Nxo).

We interpret that ¥; = Yjp = 1 indicates an arrival occurred at time j. This implies that the
associated counting process N/ = th lYp (t € N3p) is such that N,p*IP> Bin, , (t € Nxo) and the
associated inter-arrival times process (Xip ) ieNs, 18 1id and such that Xip P = Geop, (i€ Nx1). Naturally,
an IAC can be induced from them. We then want to consider associated rescaled-in-time and rescaled-
in-success-probability IAC’s (a k-indexed family of them): N,(k) = Zlm Y 2 (ke Nxg,t € Ryp).
Under this rescaling, the arrival rate is kept constant, i.e., Ep (Nl(k)) = Mean(Bmzk?yH) =7y (ke Nxo)
and, in fact,

® P({n}) =% RyuB({n}), (n€ Nxo,1 € Nao),

where (N;),er., in (Q,.%,P) is a Poisson process with intensity . This result is known as Poisson’s
theorem for processes.

Finally, we consider Poisson processes with measure intensities (a.k.a., possibly inhomogeneous
intensities) instead of real intensities (a.k.a. homogeneous).

Definition 2.1.10. A Poisson process with intensity y € M?%(R-,) (without atoms) is a stochastic
process (N;)er., verifying condition (3) of definition 2.1.6, having independent (but not anymore

stationary) increments and satisfying
(Nﬂ —Nz)*P = POiV((tJ’]) (t,l/ eRog, 1 < t,).

Here is a subtlety. Despite the above counting process having independent increments, in general,
its associated inter-arrival process is no longer independent (nor identically distributed, obviously).
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Namely, conditioning on the value of the counting process at a certain time will not change the
statistics of how larger it is going to be at a certain time afterward; however, it will change the statistics
of the following inter-arrival time:

P(X, > 1[X;) = P(Ny, 1+ — Nx, = 0) = Poiy(x, x, 1. ({0}) = e 7(K1:X1+]),

When in the above y = rLeb, the integral on the RHS is always r(' —t), so increments are again
stationary and N, [P = Poi,; (t € R>). Therefore a Poisson process with measure intensity rLeb is
simply a Poisson process with real intensity r.

The above definition would still be meaningful for y € MR (R~ ) admitting atoms away from
0. However, this would break condition (3.i.d) of definition 2.1.6. For pedagogic reasons, we do not
relax this condition now. In definition 2.1.17, it will be relaxed to handle y € MR4(R~) in general.

We will note later that the definitions of this section are non-void — in the more general context
of section 2.1.3, definition 2.1.17.

2.1.2 Compound Poisson distribution and process

A limitation of modeling using random variables with Poisson distributions (or Poisson processes) is
that they can not accommodate batch arrivals. Picture the situation where a call center is taking orders
for a burger shop. When an order arrives, how many burgers are demanded is of interest. The total
demand in a unitary time interval will be modeled with a random variable having a compound Poisson
distribution. A compound Poisson process will model how the previous situation evolves in time.

Definition 2.1.11. The compound Poisson distribution with intensity 7 € R-( and multiplicity
distribution (A/)sen., € P(Nx1), D2, £As < 0, denoted CPDy, 3y, is the distribution of a random
variable M : (Q, #,P) — N3 given by

N(w)
M(w) =}, 0;(w),
j=1

where N is a N> -valued random variable on (Q,.%#,P) having Poisson distribution with intensity y
and (Q) jen,-, is a sequence of N -valued random variables on (€, %, P) which are iid, independent
of N and whose entries have distribution P(Q; = £) = A; (j,£ € Nx1).

Its probability mass function is given indirectly by

k k
CPDy 3, ({k}) = > P(N =n)P(R, = k) = )

n=1 n=1

W;YIP(R,, — k) (ke Nso), @2.1)

n
where R, = Z;:l Q.
Mean and variance of CPDy, (), are, respectively, yzzozl fAs e R and 722021 Pl eRogu {0}

Definition 2.1.12. A compound Poisson process with intensity y € R- ¢ and multiplicity distribu-
tion (A¢)sen., € P(Nx1), 32 €Ay < o0, is an Ng-valued stochastic process (M) R, on (Q,.7,P)
that:
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i.3Q, e Z,P(Qy) = L,V € Qy :
a. M()(C()) =0,
b. t € Ryo — M;(®) € N3 is left-continuous with finitely many discontinuities on bounded
subsets of R,
c.t<t' = M(0) <M (o),
d. On the discontinuities referred to in (b), the right-limits minus respective left-limits are
always in N3,
ii. has independent and stationary increments, and
iii. M; P = CPDy, (5,), (t € Rxo).

If A; = 1 (and the remaining A,’s are 0), a compound Poisson process (distribution) with real
intensity ¥ and multiplicity distribution (A¢), reduces to a Poisson process (distribution) with real
intensity A.

Finally, we consider compound Poisson processes with measure intensities instead of real intensi-
ties.

Definition 2.1.13. A compound Poisson process with intensity y e M*%(R~) (without atoms) and
multiplicity distribution (A/)sn., € P(Nx1), > €Ay < o0, is an Nxg-valued stochastic process
(M;)i=Rr, on (Q,.7,P) that:

1. as definition 2.1.12,

ii. has independent increments, and

ii. (M,/ —M[)*IP) = CPD},((t’,/])7(;L[)é (l‘,l‘, eR>o,t < t,).

Once again, when in the above y = rLeb, the integral on the RHS is always r(z’ — 1), so increments
are again stationary and N, [P = CPD,; ;) (t € R>o). Therefore a compound Poisson process with
measure intensity rLeb and multiplicity distribution (A;), is simply a compound Poisson process with
real intensity r and multiplicity distribution (A;).

Moreover, if A; = 1 (and the remaining A,’s are 0), a compound Poisson process (distribution)
with measure intensity A as above and multiplicity distribution (A,), reduces to a Poisson process
(distribution) with measure intensity A.

One could possibly consider generalizations of compound Poisson processes in which not only the
intensity 7, but also the multiplicity distribution (A,), varies in a prescribed way along the positive
real line (this, however, would break the independence between multiplicities and the number of
arrivals) — e.g., back to the burger shop illustration, it might be that both propensity of call/order
arrivals, but also their associated demand profile, varied with time. More about this in definition
2.1.21.

Also, as noted at the end of section 2.1.1, technical extensions concerning y’s atomicity are going
to be handled later. See definition 2.1.21.

2.1.3 Poisson point process

In this section, we take Poisson processes to a more abstract level in which intensity of random arrivals
over time will be understood as intensity of points (or, more precisely, unitary point-masses) occurring
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randomly over space. When the space is the positive real line, we are back to the section of Poisson
processes. Overall, [76] and [66] are the main references in this section.

Let E be a locally compact complete separable metric space (thus Hausdorff with a countable
basis) with its Borel c-algebra %g.

Let MR (E) be given the vague topology, i.e., the smallest topology making continuous the
following family of evaluation maps {7y : m € MR (E) — m(f) € [0,00] | f € CF(E)}. Thisis a
complete separable metric space (see [79] section 2.3.3). The associated convergence is denoted

v
m, — m.

Let MR (E) be the c-algebra
MR = 6({Tp - me MFA(E) s m(F) € R | F € Bg)).

It coincides with the Borel o-algebra associated to the vague topology, & gy (see [76] pg. 141).
Define (see [76] sec. 3.1, [79] def. 2.3.2 and [66] def. 2.4, def. 2.1, prop 6.2, prop. 6.3, cor. 6.5)

MGH(E
— {m=
{m=

K:
c MRed(E )_

\_/

: (%), € E,k € Nxgu {o0},m(K) < 0,VK < E compact}
.1 (X)), € E,k € Nxg U {c0}, with no accumulation points}

i

where the sequences (x;)X_; above might have repetitions. This set is closed and hence measurable (see
[76] pg. 140 and prop. 3.14). Therefore Mﬁad (E), as a subset, inherits the structure from MR (E).
The inherited topology is its vague topology and makes it a complete separable metric space (see
[76] prop. 3.17). The inherited c-algebra concides with the analogous definition of .Z If“d (E) and
‘%Mf,f“d(E) .

Define
MR (E) = {me MEY(E) :m({x}) <1,vxe E}

={m=37,8, e MRE): (x)en., < E disjoint},

as a subset of /\/lllf“d (E). This subset will not be qualified topologically, but it is important to note that
it is a measurable subset of ./\/lllf“d (E) (see [66] prop. 6.7).

Definition 2.1.14. A random measure is a random variable
Z:(Q,F,P) — (MRYE) 4™ (E)).
From now on we consider only the following special case of random measures.
Definition 2.1.15. A point process is a random variable
Z:(Q,7,P)— (Mgad(E),//lfad(E)).

Such a function is measurable if, and only if, Z(-)(F) : @ — N3 u {o0} is measurable VF € % (see
[76] prop. 3.1).
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Definition 2.1.16. A simple point process is a point process
Z:(Q,7,P) — (My(E), 4, (E))
so that P(Z e MR(E)) = 1.

Two simple point processes N and N’ on (,.%,P) have a common distribution if the probabilities
that their realizations avoid a set are coincident, for every set in a suitable family: if P({ow : N(®)(F) =
0}) =P({w:N'(w)(F)=0}) VF Cc E,F € # (aring generating %), then NP = N’ [P (see [76] prop.
3.23 and [58] thm. 3.3). From here on, P({w : N(®)(F) = k}) will be denoted simply P(N(F) = k).

A sequence of point processes (Z,),en., on (Q,.%,P) is said to converge in distribution to another
point process Zy on (Q,.#,P), denoted Z, 4, Zo, if Z, P = Zy, P.

Convergence in distribution of point processes can be subtle to verify. Beyond portmanteau-type
theorems, one can consider Kallenberg’s criteria, which are sufficient conditions for a sequence of
point processes to converge simple point processes with enough regularity (see [58] thm. 4.3 or [34]
thm. 2.1 for a neat presentation).

Now we start considering Poisson point processes.

Definition 2.1.17. A Poisson point process with intensity y e M?¢(E) (with or without atoms) is a
point process
N:(Q,.7,P) - (M“(E), .4, (E))

satisfying:
i. Yke N3 |, VF,. .., F, € g mutually disjoint:

(weQ— N(o)(F)eNsou {o@})i{:1 forms an independency

ii. VF € <@E,Vl’l € N;oi

It follows from the previous definition that y(F) = oo = P(N(F) = o0) = 1.

It can be shown that definition 2.1.17 is nonempty and that any two Poisson point processes with
the same intensity will have the same distributions (see [76] prop. 3.6(i) and [66] prop. 3.2 and section
3.2).

Also, it can be shown that Poisson point processes are simple if, and only if, the associated
measure intensities have no atoms (see [66] prop 6.9). Among them, we call homogeneous those
having Lebesgue measure or volume measure (in case E is given a Riemannian manifold structure)
intensities.

When E = [0,0), there is a natural identification between I) simple point processes and II)
counting processes introduced in section 2.1.1, definition 2.1.6: points in a realization of a simple
point process are in correspondence with discontinuity points in a realization of a counting process.
Likewise, I) Poisson point processes with measure intensities having no atoms are identified with II)
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Poisson (counting) processes with measure intensities having no atoms, introduced in section 2.1.1,
definition 2.1.10.

In our applications, E will be either R?, for some d € N>, or some tangent space or bundle. These
will be equipped, respectively, with Lebesgue and volume measures (induced from a Riemannian
structure), which might be taken as intensities.

2.1.4 Compound Poisson point process

We noticed that, when E = [0, 0), there is a natural identification between I) Poisson point processes
with measure intensities having no atoms and II) Poisson (counting) processes with measure intensities
having no atoms. The latter could be adapted to handle batch arrivals, and so can the former. Batches
will be reinterpreted in terms of (integer) weights independently assigned to points, or even abstract
quantities independently attached to them.

The first step in this abstract construction is the following.

Definition 2.1.18. Consider a mark space (H, %y ) which is a locally compact complete separable
metric space with its Borel c-algebra Zy. A H-marked point process over a point process

Z:(Q,7,P) - (M (E), 4" (E))
is an enlarged point process
X:(Q,.7 P) > (MIUE xH), #{“E x H))

sothat ;o X = Z.

Definition 2.1.19. (See [81] def. 2.10) Consider an H-marked point process X over Z as in definition
2.1.18. Tt is called an H-marked point process with kernel K (e, dh), namely

K: Ex%y — [0,1] satisfying K(e,-)e PR (H),YeecE
(e,G) +— K(e,G) K(-,G) measurable, VG € By

if — after having fixed a representation Z(®) = Z:Lal)) 07,(0)» With random variables k : Q —
Nsou{w}and Z, : Q — E (ne€ N5|) — X has the structure

k(o)
X(@) = Y, 8z, (@) W(@)
n=1
for some sequence of random variables W), : Q — H (n € N3 ) satisfying that Vn e N> 1,VGy,...,G, €

%Hi

n
IP’(Wl €Gy,.... WG, | k>n2Z— (zl,...,z,,,...))(el,...,e,,,...) [ [k (e, G-
i=1
The above definition uses the representation of Z into Z,’s in an innocuous way because if
a different representation is chosen there is no distributional implication, due to the fact that the



2.1 Poisson-type processes 15

probabilities of marks are independent after conditioning on the entire realization of the base point
process. Similarly, the specific choice of W,’s, as long as the distributional equation is satisfied, is
also innocuous in the same sense.

A special subcase of the previous definition is that in which the marks are completely independent
of Z,ie., K(e,-) “2 (-) — the latter being the space-independent distribution of marks.

Definition 2.1.20. An H-marked point process X with kernel K (e,dh) (as in definition 2.1.19) over an
Poisson point process Z with measure intensity y(de) (as in definition 2.1.17) is called an H-marked
Poisson point process with intensity y(de) and kernel K (e,dh).

For example, in the above definition, we can set E = [0,00) and H = R to define a random walk
in random times through R?, where particles start from the origin and move at the instants drawn in
E = [0,00) by the associated translation vector drawn in RY,

It can be shown that an H-marked Poisson point process X : (Q,.%#,P) — (M,(E x H), #,(E x
H)) with intensity y(de) and kernel K (e,dh) is actually a Poisson point process X : (Q,.#,P) —
(M,(E xH), #,(E x H)) with intensity K (e,dh)y(de) (see [81] thm. 2.12).

Definition 2.1.21. Consider X, an N -marked Poisson point process with intensity y(de) and kernel
K(e,dh), as in definition 2.1.20.
After representing it as in definition 2.1.19,

Kk(®)

X(w) = Z 0(2, ()W, (@)

i=1
it induces the following (non-simple) point process

k(o)

M(®) = ) Wu(©)8,(0)
=

which is referred to as a compound Poisson point process with intensity y(de) and multiplicity
kernel K (e,dh).

Changes in representation are again distributionally innocuous. Here the notation is slightly
misleading, because, since the mark-space is N, then K(e,dh) € P(N>;),Ve € E. When the
multiplicity kernel is space-independent, we have simply K (e,dh) b (A¢)tens, € P(Nxy), for some
(A¢)tens, € P(Nx1). In this case, we write just suppress the word “kernel” from the terminology.

The same stacking idea used in definition 2.1.21 could be applied to H = R, but the random
variable M introduced therein would not anymore be a point process.

Once more, when E = [0,00), there is a natural identification between
I) compound Poisson point processes with measure intensity ¥ having no atoms and multiplicity (A;),

(as in above), and
IT) compound Poisson processes with measure intensity ¥ having no atoms and multiplicity (A;), (as
in definition 2.1.13).

Moreover, a compound Poisson point process with measure intensity y and multiplicity for (A¢)y,
where A; = 1, reduces to a Poisson point process with measure intensity 7.
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2.1.5 Lifted compound Poisson point process

Definition 2.1.22. Consider (E,&’) and (H,.7) two locally compact complete separable metric
spaces with their Borel o-algebra. An H-lifted compound Poisson process on the state space £
relative to {G, € %y, bounded : a € A} with intensity o € A — 7y, € M?(E) and multiplicity
kernel o € A — Ky(e,dh) is a point process

X: (7P — (MRUEXH), #8ExH))
K(w

o — SR 8(4,(0),B4(0))

so that, for every a € A, denoting

Xa 3:X‘E><Ga ;(Q,,@,P)—» (Mﬁad(E XH)ajlplzead(E XH))
© =YY 8ia,(0) () L% Go (An( @), By())

9

it holds that 7 o Xy, is a compound Poisson point process with intensity ¥, (de) and multiplicity kernel
Ky (e,dh).

Remark 1. Do not confuse the above with the stacking procedure of definition 2.1.21 which used
an N> -marked Poisson point process to assign weights to the points of an underlying Poisson point
process and thereby create a compound Poisson point process. The said N -marked process and its
induced compound Poisson point process have essentially the same information (exactly, if the Poisson
point process is simple). The X, s that were specified in definition 2.1.22 have more information
than the compound Poisson point processes they project to, as if every mass-unit in such compound
Poisson point process is assigned a value in H.

To interpret the object of the last definition, consider that a seismograph can only detect earthquakes
with Richter magnitudes larger than 8. They might come in batches. We want to register not only
how many come in each batch, but also how severe is each of these. The last attribute is in the H
space. If we collapse this information, we recover the usual compound Poisson point process, say in
the state space E = [0, 00), representing time. What if the seismograph can be tuned to detect smaller
earthquakes? This is exactly changing G. For example, we could consider {Gy = [, 0) : &t € R~}
and G would first be Gg and then be G;. As o diminishes, (after projecting) one can see how the
statistics given by the associated a-compound Poisson point processes change, i.e. how intensities and
multiplicity kernels change. In our example, we expect intensities to increase as & decreases. Notice
also that the H space can be richer, recording more information than simply the Ritcher magnitude of
an earthquake.

Notice that in a compound Poisson point process, the unit masses that are stacked over a point
(representing multiplicity) are indistinguishable and thus are not even ordered. If however, we could
somehow distinguish them as to produce an order, we could see such a process as lifted into the space
H = N space, where the new coordinate registers precisely the order. In general, all the information
available to distinguish masses can be registered in a new lifted coordinate, i.e., in principle, one could
enrich the lifting more and more. On the other hand, any H-lift of the original process can be used to
distinguish and order its unit masses.
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2.2 Extreme value theory and hitting time statistics (iid case)

2.2.1 Extreme value theory

Let (Xi)ien., be a sequence of iid R-valued random variables on (Q,.7,IP). Denote by Fx,(x) =
P(Xp < x) the cumulative distribution function (cdf) of Xy. Also, denote M,, = max{Xy,...,X,—1}
(n = 1), another R-valued stochastic process on (Q, .7, P).

Extreme value theory wants to study the statistics of large realizations of the process, which can be
understood from many perspectives. Let’s start with the classical one and then look at some relevant
equivalent perspectives.

We say that a cdf G : R — R is non-degenerate if its associated measure G € M&%(R) is not the
Dirac measure of a point.

Definition 2.2.1. Let G be a non-degenerate cdf.

The (possibly empty) maximum domain of attraction of G is the set MDA(G) comprised
of iid R-valued stochastic processes (X;)ien., on (Q,.7,P) for which there exists (an)pen.,
R-o, (bn)n€N>0 cR:

Mn_bn _V) 1
( o ) . P e G, or, equivalently,

(2.2)
Vx € cont(G) : P(M, < apx+b,) — G(x).

n—o0

Denote MDA = {G non-degenerate cdf : MDA(G) # }.

Remark 2. If ((Xi) ieN=o» (@n)neNg» (Dn)neNsy, G) satisfy equation 2.2, there can still be another
((Xi)ieN=ys (@n)neNs s (Bn)nens,, G) satisfying it, but they will relate like (see [79] lem. 1.2.7)
dn b, —b, ~
I, AeRy, — BeR, G(x) = G(Ax + B). (2.3)

a, n—® ay n— 00

Definition 2.2.2. The set of max-stable distributions is

MS = {G non-degenerate cdf 30 Rp = Ro, i Rog = Rop s0 that} .

G(au(t)x+ B(r)) = G(x),¥t € Rog,x R

Consider G € MS. If (X;);n., is an R-valued stochastic process which is independent and whose
entries are distributed like G, then M, is distributed like G" (n € N>() and the condition above says
that (X;)ien., € MDA(G) using a, := a(n) and by, := B(n) (n € Nxo).

Next is the main theorem characterizing the objects referred to in this section (see [80] thm. 1 and
[79] prop 1.3.2, thm. 1.3.4 and rmk. 1.3.6).

Theorem 2.2.3. [Fisher—Tippett—Gnedenko] The sets MDA and MS coincide. Moreover, if (X;) ieNs
a sequence of iid R-valued random variables on (Q,.7 ,IP), (an)neN,=y © R>0, (bn)nen,=o © Rz and
G non-degenerate cdf satisfies

Vx € cont(G) : P(M, < apx+b,) — G(x),

n—00
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then G is a generalized extreme value (GEV) cdf

o~lovaregh] if&#0
G(x) = Gé,qu (x) = x—p ' ()CE R),

e ¢ ° LifE=0

for some E,u € R, 0 € Reg, with

i) [light/exponential tail case] & = 0 if, and only if, the associated GEV cdf is the cdf of the

Gumbel distribution »

Aspu(x)=e* ° (xeR)

ii) [heavy/polynomial tail case] & > 0 if, and only if, the associated GEV cdf is the cdf of the
Fréchet distribution

x—p\—V/E
e_( Gﬂ) ,ifx>0

0 Lifx<0

Dy 5 (x) = (xeR)

iii) [upper bounded tail case] & < 0 if, and only if, the associated GEV cdf is the cdf of the Weibull
distribution

x—p— V&
e (55 ,ifx<0

1 ,ifx=0

lPl/g’c,#(x) = (xeR).

In particular, the set MDA = MS is exactly the space of GEV cdfs (or, specifically Gumbel, Fréchet
and Weibull cdfs), which is closed under the modification introduced in equation 2.3: Gg 5, (Ax+B) =
G o/a,(B-)/a (x). Using this type of procedure one can always reduce the limit to standard type, i.e., to
Gé 71 70.

The mean and variance of G¢ 5 ,, are

u+o-(L(1-&)—1)/E,ifE #0,&E < 1
Meancg‘w ={U+0-y ,ifE=0 and

o0 JifE>1

62 (T(1-28) ~T(1 - £))/EL I & #0,€ < 1/2
Varg, ., = 6*-12/6 LifE=0
0 JfE=1/2
where 7 is the Euler—Mascheroni constant.

In the previous theorem, we can pack a,x + b, into a single number u,. But we might also want
to consider similar asymptotics when u, has not such a linear structure on x, or is even a standalone
sequence, independent of x. In this direction, the following proposition is useful.

Proposition 2.2.4. Let 7€ R.g and (u)nen.,  R. Then

nP(Xo > uy) = n(l —Fx,(up)) — 7 < P(M, <u,) —> e *. (2.4

n—00 n—0o0
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The proof of the implication (=) in the previous proposition is simple:

P(My < ) = (1= P(Xo > )" ~ (1- %) et

It is often possible to adjust some (u,),en., to each 7, defining some

u: NygxRyo — R
(n,7) = un(7)

which guarantees the balancing condition on the LHS of equation 2.4 and is continuous, strictly
decreasing in 7, strictly increasing in n to esssupXp (for any 7). For example, when X, [P has no
atoms, Fy, has range [0, 1] and admits the generalized inverse FX_Ol*, allowing one to define

u(7) = FX_OI*(I —T/n), forn = 7, u,(7) := 0, forn < 7.

We can interpret the balancing condition on the LHS of equation 2.4 as saying that (1,(7))en.,

n—1

grows in a pace so that the expected number of times that (X;)!_, exceeds u,(7) approaches 7.

The RHS of equation 2.4 and the conclusions of theorem 2.2.3 seem related. But notice that the
former is not included in the latter: P(M,, < u, (7)) — e 7, but 7 € R-, u,(7) is (generally) not of
the form a, T + b,, and e~ 7 is not in DMA = MS.

To see one instance of this connection, the following proposition is worthwhile.

Proposition 2.2.5. Let (X;)ien., be a sequence of iid R-valued random variables on (Q,.7 ,IP) whose

entries have standard normal distribution.

Then P(M,, < anpx +b,) — Go10(x) =e™¢ " (xeR), where
n—ao
an = (2Inn)~" and b, = (21nn)"* —12(2Inn) ~*(Inlnn + In4x).

This conclusion is definitely in the realm of theorem 2.2.3. The proof develops some calculations
which we omit, but its structure involves noticing that

1= Fpro,1)(u)
- SNODV R
PDFyr 0,1y () /u  u—o0 Qe R-o,

and setting 7 := e~ with the accompanying u,(7) defined implicitly as (notice that Fy( ) is invert-
ible)

1= Fr(o,1) (ua (7)) = =T

which implies that n(1 — Fy 1) () ™, 50, by design, the LHS of equation 2.4 in proposition 2.2.4
is verified. Moreover, the limit we started with implies that

un(t) =a,-—Int+b,+o(a,) = ayx+b, +o(ay,). 2.5
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Therefore one can apply proposition 2.2.4 to conclude, as desired, that

P(M, < u,(7)) — e F=e"
=PM, <ayx+b,+o(ay)) - lim, P(M,, < apx+b,).

On the other side of this connection, we have no indication that (a,x + b,), in theorem 2.2.3 has
to satisfy the balancing condition on the LHS of equation 2.4. The following proposition elucidates
what is going on (see [79] lem. 1.4.2).

Proposition 2.2.6. Let (X;)icn., be a sequence of iid R-valued random variables on (Q,.7 ,P),
(@n)neN,=0 © Ro0, (bn)neN,=y © Rxo and G non-degenerate cdf. Then

Vx € cont(G) : P(M, < ayx+by,) - G(x) (i.e., equation 2.2)
< Vxecont(G): n(l —P(Xo > ayx+by)) - —InG(x).

Applying proposition 2.2.6 to the standard Gumbel case, the limit on the RHS of the con-
clusion is —InG(x) = —In(e™¢ ") = e¢~*. If we denote u,(x) := a,x + b,, the limit rewrites as
n(1— Fx,(un(x))) — e~*. Thus, the sequence (a,x + b, ), in theorem 2.2.3 really does not satisfy the
balancing condition on the LHS of equation 2.4. Also, if we denote 7 := e~ %, the limit rewrites as
n(1—Fx,(a,-—Int+b,)) — 7, which provides us a normalizing sequence u,(7) := a,-—InT+ b,,
in the sense of the LHS of equation 2.4. Similar observations can be made in the Fréchet and Weibull
cases.

Summarizing: The discussion from proposition 2.2.5 until here was to shed light on how the
condition

P(M, < apx+b,) — G(x),Vx € cont(G)

n—oo

in theorem 2.2.3 relate to

nP(Xo > u,(7)) — e F = P(M, < uy(1)) — e F,1eR-

in proposition 2.2.4. In a pedestrian way: given sequences a,, b, and G verifying the first condition,
one arranges the parametric sequence u,(7) := a, -G~ '(e™%) + b, (T € R~) which verifies the second
condition. The converse is nonexistent, in the sense that the second condition has less information (no
way to recover G from it).

From another angle, the first condition might be thought to be finer in the sense of giving a richer
asymptotic description, whereas the second might be thought to be finer in the sense of giving an
asymptotic description based on less structure.

The best one can do to complete the picture impaired by the ‘nonexistent converse’ is to consider
that proposition 2.2.6 is an equivalence and that it has a counterpart in terms of the alternative
balancing condition, as in 2.2.4. More clearly and conveniently, these equivalences are presented in
parallelism, respectively, in theorem 2.2.7 (items 1 and 2) and theorem 2.2.8 (items 1 and 2). The
reader is invited to read the two items of these two theorems right away.

The next theorem, theorem 2.2.7, describes the phenomena introduced in theorem 2.2.3 also in
terms of tails and point processes (see [80] thm. 2, [79] thm. 1.4.1, [22] thm. 2.4).
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Theorem 2.2.7 (Pickands, Balkema, de Haan, Resnick). Let (X;)ien., be a sequence of iid R-valued
random variables on (Q, % ,P). Let & € R. Let x* = supsupp(Xo4P) and x,. = infsupp(Xo,P). Then

items 1, 2, 2" and 3 below are equivalent.

1. 3(an)neN,=0 © R0, (bn)neN,=o © Rxo0, Vx € R cont(Ge 1 )-

]P)(Mn < anx+b,,) n—) Gé7170(.X).

—00

2. 3(@n)neN,no S R0, (Bn)nen oo € R0, VxeR N cont(Gg’l‘O):

nP(Xy > apx + by) — —lnGg,Lo(x)-
2’. 30 :(0,00) — (0,00), Vx € R cont(Ge ; o)-

Xo—t 1 —Fx,(t t
P22 >x‘X0>t = (1 +0(1)x) — —1InGg | o(x),
o(t) 1 —Fx, () 1,/x% ,,

or, equivalently,

lim  sup
1,/%* )< x<x®—t

P(X —1 <x|Xo>1)—[1— (=G g(0(x))] ‘ ~ 0.

In 2°, x* is finite if, and only if, £ < 0. In I and 2’, the normalizing objects harmonize as

ot)=a (ﬁXo(’)) (recall that a : N>y — R lifts to & : Rsg — R, see definition 2.2.2 and

theorem 2.2.3).

3‘ H(GH)VZENng() - IR>0) (bn)neN,,>0 - RZO:

n'an n—0o0

n—1
v . 25(,- o) 4, jO,
i=0

where N is a Poisson point process on [0, 1) x (x,,x*) with intensity measure y given by y((t1,t2] x (x,x*))
= (fa—1t1) —InGg ; o(x).

In item 2 and the first part of item 2’ of the previous theorem, tail mass is being evaluated, so the
limit is the tail mass of a distribution, known as generalized Pareto distribution (GPD), whose cdf is

x— =i .
1-[0v(1+&5H)] ".if&+#0
P u(x) =1—(=InGe 5 ,(x)) = . ° :
5,6,,[1. 56“’ l—e_ O_H ’1f§ :O

This family covers the following subfamilies:
i) when & = 0, Py 0 is the cdf of an exponential distribution with intensity 1/,

ii) when & > 0, P 5 5 /¢ is the cdf of a Pareto distribution with scale parameter /& and shape
parameter 1/&,

iii) when § = —1, P_ ¢ ¢ is the cdf of a uniform distribution on [0, 5].

The third characterization in theorem 2.2.7 interests us the most, so we look at a proof sketch.
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To consider (3 = 1), notice simply that

P (M"_bn <x> = ]P’(N,EZ)([O, 1] x (x,x*)) = O)

Ay

,P(N®? #)) = ) = o YUOIIx (™)) _ InGeio(x) —
? ? - - - - .1 I
]P’(N ([0,1] x (x,x™)) 0) e e"vel Ge 10(x)

as desired.

Now we consider (1 = 3) (see [26] sec. 7.3.1). Let A = [0, 1] x (x,x*). Then the probability that
each of the points < L X’%’"

n n

) (i=0,...,n—1)isin A is worked out as follows:
P(M, < anx+by) = Gz 1 o(x) < P(Xo < apx +bn)" — G 0(x)
< nInP(Xp < apx+by) > InGe 1 o(x) < nln(1 —=P(Xo > apx+by)) = InGe 1 o(x),
whereas,
In(1—P(Xo > anx+by,)) = —P(Xo > apx +by) + 0p—o0 (P(Xo > apx + b)),

o)
nP(Xo > anx +by) — nop—on (P(Xo > ayx+by)) 4 —In G§7170(x)

On—oo(P(Xo > anx+by))
P(Xo > anx + by)

= nP(Xy > apx+ by,) [1 - } 5 —lnGéJ’O(x)

= nP(Xo > ayx+by,) > —InGg 1 0(x).

On the other hand, since the X;’s are independent,

(N (4))4P = Bin <n,IF’ (XO —bn x>> ,

an

whose mean is nlP (@ > x) % —In Ge 1,0(x), 0, using theorem 2.1.5, one finds that

(N,§2) (A) P Poi_ynG, , o(x)-

Finally, because the first component of Z?:_ol o ( i Xi—ho is evenly spread in the line (and not random

n’ a

at all), we conclude that, when A = (t1,1,] x (x,x™) with 71,1, € [0,1],1; < tp:
< (2 :
(9" (D)W = Poi 1) —inGg (0

fulfilling, as desired, condition (ii) in definition 2.1.17. The remaining conditions are left for the
reader.

On an intuitive level, the point process ]V,Sz) spreads homogeneously over the unit-time-interval and,
independently, stacks on top of it, over the (n-normalized) severity axis, the associated (n-normalized)
realizations of the process. As n grows, a given (n-normalized) realization, say i = 7, stacks-over
closer to r = . But, at the same time, the larger the n, the more realizations (i.e., the more i’s) get to
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be concentrated on top of the unit-time-interval: how many of them will be stacking-over close to
a certain time # is just as many as there are close to time ¢ = 0. In the limit, we get a point process
N® in the time x (normalized) severity space that realizes countably many points which, vaguely
speaking, seem to have independent coordinates, being them uniformly distributed in time, whereas,
in the severity space, iid according to some distribution (the same on each time fiber). To put this
vague description into perspective, we discuss more precisely the behavior of the limit, say, when
& >0andx, = —c0.

If the limit point process N is projected into the time coordinate, we do not even get a random
measure in the sense of definition 2.1.14, because almost surely there are infinitely many points in the
compact set [0, 1], since realizations in the product space themselves already have infinitely many
points. Notice that the mass randomly assigned to a set of the type (¢,%] % (x4,x*) in expectation
equals (f, —1) - —InGe ; o(x«) = 0. However, if only the x-final-tail of the limit point process
is projected into the time coordinate, then we get a Poisson point process N (19 with intensity
r(x)Lebyg 1], where r(x) = —InGg ; (x). So, according to definition 2.1.22, N @) is an (x,,x*)-lifted
(vacuously compound) Poisson point process on the state space [0, 1] relative to {(x,x*) : x € (xy,x*)}
with intensity x — —InGg ; o(x)Lebyo 17 (and multiplicity (A¢)sen., where 4; = 1).

Now that we know a suitable way to look at the limit process, we could take a step back and
use it to look at the N,Ez) ’s. But everything would be similar, with, however, the terms approaching
—InGg ; o appearing — in which case the calculation carried out before suffices to aid one intuition.

The review of the classical independent theory is complete. Until the end of this section, we
address some related concepts which turn out to be useful to equip the reader for the next section.

The Poisson point process N*) introduced above (on [0, 1] with intensity —InGg ; o(x)Lebyo 17)
can be characterized as the distributional limit of the following sequence of point processes on [0, 1]:

n—1
00 = 8,1y (050,
i=0

for reasons similar to those of the previous discussion.

Since this one is a homogeneous Poisson point process, we can interpret that its associated

inter-arrival times are exponentially distributed with intensity —InGg ; o(x).

One can define inter-arrival times associated with the Nn(l’x) ’s as given by

~n Xy —b
1A’

U Linpli=0:#{ie[0,1]: > =j}
Xy —by

—Linfli>0:#{i"e[0,i]: o X =j—1}

(j=1),

n

and each (1:4;%’(1’)()) jeNns, Will be iid with underlying distribution converging vaguely to one of the
previous paragraph, when n — o0.

The analysis developed in theorem 2.2.7 has a counterpart with respect to the alternative normal-
ization introduced in proposition 2.2.4. We highlight what interests us the most.

Theorem 2.2.8 (Adapted Pickands, Balkema, de Haan, Resnick). Let (X;)ien., be a sequence of iid
R-valued random variables on (Q,.7 ,P). Then items 1, 2 and 3 below are equivalent.
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1. 3u: (n,7) € N5g x R — u,(7) € R continuous and strictly decreasing (increasing) in T (in
n) satisfying:
P(M, < u, (1)) — e * V1 Ry,

n—00
2. Ju: (n,7) € N5g x Rog — u,(7) € R continuous and strictly decreasing (increasing) in T (in
n) satisfying: (see proposition 2.2.4),
nP(Xo > u,(7)) — 7,V7€R2).
n—oo0

3. Ju: (n,7) € Nyg x Rog — u,(7) € R continuous and strictly decreasing (increasing) in T (in
n) satisfying:

n—1
2)._ _ 4, NO
N}’l = 2()5(:”14’1—1()([)) o N( 5 (2.6)

where N is a Poisson point process on [0,1] x R~ with intensity measure y = Lebyg, 1] % Lebr_,.

Similarly, if the T-initial-tail of N¥ is projected into the time coordinate, we get N("¥) a Poisson
point process on [0, 1] with intensity r(7)Leb[o i}, where r(7) = 7. Alternatively, N ) is an (0,00)-
lifted (vacuously compound) Poisson point process on the state space [0, 1] relative to {[0,7) : T€ R~}
with intensity T — tLeb|o ;) (and multiplicity (A¢)en., where 4; = 1).

Once again, N(1'®) can be characterized as the distributional limit of

n—1
17 .
N = Y81 ) 2.7)
i=0

a point process on [0, 1].
Analogous comments can be made regarding inter-arrival times. Those of N(:?) are exponential
with intensity 7, and those of N,El’r) converge to the former when n — 0.

2.2.2 Hitting statistics

Our last topic in this review is hitting statistics, which are very much related to extreme value theory.

We still consider (X;)ien., a sequence of iid R-valued random variables on (Q,.7,P). Consider
that Xy, [P is fully supported and has no atoms. Let I € #R be the so-called target set, small in the
sense that (Xo,P)(I") = 0 and denote I', = B, (I"). Let U € % (in practice, we will make it some
neighborhood of I').

Let us define some working objects.

Definition 2.2.9. The first hitting time' of (X;)i>0 into U is the function

rh=r: Q@ — Nyju{w}

® +— inf{ieNs:X;(0)eU}

!One could consider return time statistics, studying ry| X,eu- But in the iid case this adds nothing deep, since knowing
that the starting condition of the process is in some set is irrelevant to what happens later.
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The associated higher-order hitting times are given, for £ > 2, by the function

o Q — Nypu{o)
o — inf{i>r " Xi(0)eU}

Definition 2.2.10. The hit counting function of (X;);>o, for L > 1 are given by

ZiU : Q — Ny Z(L] i Q — Ny
L L—1
o — ZILU OX,'((D) ’ o — Z 1y OXi((D)
i=1 i=0

These objects are related, for example, in the sense that {ZL, > ¢} = {r}, < L}, {ZL, = ¢} =
{ri, <L <rj}.

In the previous section, we were interested in controlling the maximum or large values of the
process, as given, respectively, by, say, items one and two of theorem 2.2.7 or 2.2.8. Now the extreme
event of interest is the process hitting the target or shrinking vicinities of it. How small we consider
these vicinities and/or how long we watch the process evolve is something to adjust. This adjustment
is done with a balanced normalization in the spirit proposition 2.2.4 or theorem 2.2.8 (rather than the
linear alternative of theorem 2.2.7), but this can be accomplished fine-tuning I) the space component,
II) the time component, or III) both.

Using functions

p*: Ny xRsp — Rso L*: Ny xRso — Ny
(m, 7) = pal(7) (m,7) = Ly(7)

one would like to harmonize how fast radii around the target shrink and how long the time we watch
the process in order to obtain that asymptotically

Ly (1)P(Xp € Ty (1)) = T, VT € R, (2.8)
or even exactly
Ly(0PXoeTh) Z7  ,¥Te Ry
Ym
v

The second condition is apparently more demanding, but actually, i) conditions that guarantee
solutions to equation (2.8) exist usually guarantee that solutions to equation (2.9) also exist, and
ii) solutions to equation (2.8) which are not exactly solutions to equation (2.9) will not modify the
asymptotic statistical statements we will be after. We chose to build this section based on the exact
version in equation (2.9). In future sections, if the asymptotic version is used instead, one can easily
adapt the concepts we will present in the following.

Now let’s look at the different normalization approaches.

I) Space-normalization
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One may meet the balancing condition given in equation (2.9) by solving for p* and so adjusting
the speed at which space-radii shrink while observation time grows in the plain manner, like L} (7) = m.
Presenting an explicit solution to p,%(7) given L (T) = m is not immediate, but also not important
at this point. So we keep looking at equation (2.9) implicitly. Actually, to make a connection with
extreme value theory, p(7) is not solved directly, but in terms of p*(7) = g~ ! (u,,(7)), where
a)
g:[0,00) — [0,00] (2.10)

is a continuous function that is strictly decreasing near 0, where it attains a global maximum.
b)
u: Ngl X R>0 — R

X — @1

is a continuous function which is strictly decreasing in 7, strictly increasing in m to g(0) (for any 7).
9
Vm 2
mP(X() € Fgfl(um(r))) =1,V7€ ]R>(), (2.12)
where I'y—1(,,(r)) = B(T, g (un(7))) = {@ > u,(7)}. Put differently, one can introduce the process
Yi=@oX; =god(X;,I'), so a visit very close of I translates to a very high ¢ observation, and the
above condition rewrites in the usual extreme value theory form as

mP(Yy > u(7)) b4 7, VT e Rp.3 (2.13)

The problem of finding a solution is then moved from fine-tuning p;’(7) to fine-tuning u, (7).
Here we could write an “explicit” solution as

um(7) = Fy, (1 —1/m) (7€ (0,1])

where Fy | 1* s the generalized inverse of the cumulative distribution function of ¥y, provided that, say,
Yy, [P is fully supported and has no atoms.

As a consequence of such choice, not only equation (2.9) is verified, but also the following
asymptotics:

1 _ m _ m _
]P)(rrg_](um(f)) = m) - P( *Fg_l(um(‘f)) < 1) P(Z*Fg_l(um(f)) 0)

=PX1 € Tgm104,(0)) - PXm & Tgm1(4,,(2))
= [1=P(Xo € Ty )]" =€

2The asymptotic counterpart of equation (2.12) reads as

mP(Xo € Ty1(,, (z))) = T YT € R (2.12)).

3The asymptotic counterpart of equation (2.13) reads as

mP(Yy > (1)) 2> 7, V7€ Rag (2.13").
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and, similarly,

P(M,, < up(7)) = P(Zf"_l =0)
()
=P(Xo ¢ Tg104,00)) " PX1 € Tg1u(0))) -+ P(Xon—1 & Ugm1(4,(2))

m. —t

= [1 —IP)(X() € Fgfl(um(r)))]m — e

The space-normalization defined above induces the following point processes, called rare event

point processes (REPP).

Definition 2.2.11. The two-dimensional REPP with space-normalization associated to the system
((Xi)i=0,P,T") wrt (g,u) satistying (a-c) (see equations (2.10-2.12)) is the sequence of point processes

—4 Z 81 4ty 00 [0,1] % (0,00).

m ’

We consider also the following variation with the same nomenclature

N2 = 25 us (%)) On [0,00) x (0,00).
Definition 2.2.12. The one-dimensional REPP with space-normalization associated to the system
((Xi)i=0,P,T") wrt (g,u) satisfying (a-c) (see equations (2.10-2.12)) at scale T € R~ is the sequence
of point processes

n—I1

l[ ’L') 5 . .
Z 6 ]]_”m z <7 Z 6% ]]_Xiergfl(um(r)) on [0, 1]
i=0

We consider also the following variation with the same nomenclature

Nllr 261]1)(61"71( (1)) on [0,@)

It is immediate that Ny"* coincides with the projection of N 10,00 (0,5 into the first coordi-
,00)x (0,7

nate. In particular, by the continuous mapping theorem, if a distributional limit is found for N,
say Ngd], then 7w, {Nég[‘[o is the distributional limit of N,,lq’l’r. Similarly for N,g 1) and

)% (0,7)
(2.1) ‘
N, .
" [0,1]%(0,7)

II) Time-normalization

On the other hand, one may meet the balancing condition given in equation (2.9) by solving for
L* and so adjusting the time during which the process is observed while space-radii shrinks in a plain

manner, like p — 0.

4Coincides with N2, introduced in equation (2.6), but with the old X; substituted by the new Y;.
SCoincides with N,(,,l ’T), introduced in equation (2.7), but with the old X; substituted by the new Y;.
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Abusing notation, it turns out that equation (2.9) is fulfilled with

or, adhering to the notation presented in the subsequential terms used before, given a sequence p,, \, 0
as m — a0, it turns out that equation (2.9) is fulfilled with

" L T *oN L
L,(7):= LP(XOGFPM)J Pm(T) = Pum-

As a consequence, not only equation (2.9) is verified, but also the following asymptotics:

1 T _ {7P<X05rpm>J _ [h(x&r%ﬂ _
P(rp,, > [P %o eTo) J) =P(Zr,, <) =PZ; " =0)

_P(Xl¢rpm)""'P(X{ ¢1p,)

=[1-PXoeTp,)] [ ] 2, o vre R0,

and, similarly,

P(zliixﬂerw 0)=PXo ¢ Tp,) P(X1 ¢Tp,) ...- IP’(X[ ¢0p,)

;J 1
Jl:D(XOEFPm )

=[1-P(Xp e Fpm)] {“”(Xoerrpm)J 2 e, VT e Rayp.
These limits would occur similarly if considering p — 0 instead of the subsequence p;, \, 0.

The time-normalization defined above induces the following REPPs.

Definition 2.2.13. The one-dimensional REPP with time-normalization associated to the system
((Xi)i=0,P,T) wrt (pm)m=1 "\ 0 at scale T € R~ is the sequence of point processes

|7/B(XgeTpm)|—1

(171171-) .
N, = o i 1x. on [0,1].
: ;) e

We consider also the following variation with the same nomenclature

Nl . Z S i ]lXiel"p,,, on [0,0).

[7B(XoeTpm)] (Xoel"pm>

III) Space-time normalization

Using the notation from the first two cases, one can also set

p(7) =g (1 (7))
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where (a-c) are satisfied, together with

T
IP)(XQ € Fg—l (um(‘t))>

L,(7) =

This will recover case (I) where the general shrinking radii p,, happen to be the very special one
pm(T) := pi(t) = g (um(7)), therefore equation 2.9 is immediately verified. Also, the following
asymptotics occur

P ZlT/P(XOEFg—I(Um(T)))J =0 ~ (1 —T)HnJ ~ (1 _E)n Sl

—e
Lo um(e)) n n
The space-time-normalization above induces the following REPPs.

Definition 2.2.14. The one-dimensional REPP with space-time-normalization associated to the
system ((X;);=0,P,I") wrt (g,u) satisfying (a-c) (see equations (2.10-2.12)) at scale T € R~ is the
sequence of point processes

lT/P(Xoerg—‘(umu)))J_l
~(l,111,‘L') L 5

m L

: Lxer, on [0,1].
i=0 {T/P(Xoerg,l(um“)))J X =1 () ’

We consider also the following variation with the same nomenclature

o0
SLILT .
NyE =36 ; Ixer,

on [0,00).
i=0 W(Xoergfuum(r»)J

1 (um (7))

What we discussed in (I-III) is the standard paradigm in the study of hitting statistics. In principle,
one could consider how the normalization used in theorem 2.2.7 would manifest in the present matter.
As an exercise to connect as many dots as possible and clear out the picture, this is left to the footnote®.

Now we inquire about higher-order statistics. For one of those suitably chosen normalization
schemes p,%(7) and L} (1), we want to evaluate

EmP(ZE® < n) = imP(L . > LE(7))
m *rp,ﬁ(r) m FP*<T) m ’

m

SFor the space-normalization. Let (@m)meNso © R0, (bm)mens, © R and & € R be such that
mP(Xy € Fg_l(amerbm)) LN —lnGéﬁLO(x), Vxe conl(G,g,l’O)‘
Then, with p* (x) := g~ (@x + bp) and L¥ (x) := m, similar calculations lead us

P(rr

e (amstbm) m) = GE,LO(X)’ Vxe CO”I(G@,LO)'

For the time-normalization counterpart. Notice that we already had a linear normalization of time in (I). What we can
then expect is some different normalization which reveals a more refined limit. This would be possible provided that one
finds some s : (m,x) € N5 x R — s5,,,(x) € R5¢ and & € R so that, taking L (x) := sy, (x) and p,%(x) := py,, one has

P(rr,, >sm(x)) =(1-P(Xp € Ip, ) 2 Ge 1 0(x), Vx € cont(Ge 1 o)-
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which boils down to the evaluation of

limIP’(Zlé’t(T) =n).

F’);lz< (7)

This is not as easy to calculate directly as the first-order case we evaluated before. But adopting
the space-normalization approach wrt (g, u), with p*(7) = g~'(u,,(7)) and L¥ (7) = m, the condition

given in equation (2.13) allows us to apply theorem 2.2.8, whose third item will assist us:

P (Nﬁ”([o, 1] (0, 7)) = n) " p (N<2J>([o, 1] (0,7)) = n)

=P (1\1,97’”)([0, 1) = n) ™, Poig({n}) = P (Zﬁ—uu,,,(m - n) ™, Poig({n}).

Although we do not present further justification, it is then natural to expect that, for the time-
normalization approach wrt (p,,) \, 0,

B (N1)(0.1]) = ) ™ Pic( ) = B (zLHJ _ ) . Poic ({n}).

whereas, for the space-time-normalization,

P (Ni9([0,1]) = n) % Poic({n}) = F A=) ) v

g~ Hum (7))



Chapter 3

State of the art: Compound Poisson
distributions for dynamical systems

3.1 Deterministic systems

In this section, we review briefly some takeaways of the extreme value theory and hitting statistics for
stochastic processes arising from deterministic dynamical systems, with a special bias toward results
in the compound Poisson class. Since this literature can become very intricate, we do not intend to
be exhaustive or even to cover many details right now, but to present some representative results and
concepts in this literature.

In the context of dynamically defined processes, stationarity is kept while independence is lost.
However, weaker versions of independence are still available, usually depending on the type of decay
of correlations presented by the dynamical system.

An important takeaway is that the Poisson statistics that appeared in sections 2.2.1 and 2.2.2' are
consequences of independence. When independence is not present, different limiting behaviors might
occur, provided that this dependence produces clusters of visits to regions of interest”. If this is not
the case, we again observe Poisson statistics. On the other hand, if that is the case (e.g. when such
a region consists of a periodic point), we have a mixture of two behaviors: i) eventually the orbit
visits the region of interest and then repeated visits occur due to the clustering effect produced by the
local dynamics around that locus; ii) eventually the orbit escapes the local dynamics and undergoes
an excursion around the rest of the phase space, mostly driven by weak independence of the system,
so that after an exponential time (i) re-occurs. In the asymptotic limit, this description results in a
compound Poisson distribution, where the number of Poissonian events is related to (ii), and their
associated multiplicity distribution is related to ().

For the rest of this section, we consider the following general setup.

Let M be a compact metric space equipped with its Borel c-algebra %y, and T : M — M be
a measurable transformation which leaves invariant u € P(M), an atomless and fully supported
probability. Let I" € %), be a target set, small in the sense that (1 (I") = 0 and denote I'y, = B, (I"). Let
U € Ay (in practice, we will make it some neighborhood of T').

IRecall that e~ = Poiz({0}) and e~ = Poi, ({0}).
2Namely, a target set or the set of points maximizing an observable.
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We induce the dynamically defined stochastic process
Xp:=T": (M, By, ) — (M, By) (i>0).

Consider that there exists (g,u) satisfying the conditions given in equations (2.10-2.12), to be used
when we pursue space or space-time normalization. Then we define ¢@(-) = god(-,I') and the
associated observed stochastic process

Yi=@oX;=@oT : (M, By,u) — (R,Bg) (i = 0).

Here we will use mutatis mutandis the definitions presented in section 2.2.2. Note that ,u(ZlL] =
n) = u(ZL, = n), by invariance.
Let us introduce the most basic object one comes across in this context.

Definition 3.1.1. The extremal index of (7, u,I") is a number « € [0, 1] satisfying one of the following

conditions:
D
”}i_rgou(Mm Sup(t)) =€ *, V1 >0
1D
lim i (1, > [/u(ro)]) = e, ¥7>0;
11D)

: 1 __—at
n}L{I&)u(rrg_l(Llprl(T)) - [t/“(rgil(“m(f)))J) =e ’ vr > 0

The pair (g, u) being used in items (I) and (IIT) above is anyone satisfying the conditions given in
equations (2.10), (2.11), (2.12), either in exact version or its m-asymptotic counterpart. Implicitly, it is
considered unimportant the specific choice of such (g, u) among the eligible ones. Moreover, it is also
implicitly considered that (I), (II), and (III) are equivalent. We do not pursue such characterizations at
this level of generality. See [39] and [69] for results in this direction.

On an intuitive level, the extremal index identifies how much clustering is produced by the system
near the target, or how much clustering of extreme values is produced by the system: if o = 1 there
is no clustering effect (as in the independent case), if & = O the clustering effect is huge. Put in
another way, o measures the proportion of points in the germ around the target that leave a cluster
of recurrence to the same germ right after the first dynamical iteration (i.e., they are the last extreme
observation in their cluster), thus breaking free from the local behavior and initiating an excursion.

3.1.1 Point processes

The approach we are going to review in this section follows from that introduced by [67], [57] and
[73] for stationary stochastic processes, using variants of the conditions known as D(u) and D’ (u),
which were improved and adapted to the realm of dynamically defined processes, as to pursue, both in
the absence and presence of clustering, the description of rare event point processes (REPPs).

The REPPs considered in this section always involve space-normalization (i.e., of type I or III
presented in section 2.2.2) but, instead of the balancing condition given by equations (2.12) and (2.13),

one adopts the slightly more general m-asymptotic counterpart.
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We use [34] as a reference point to discuss this section while bringing results from other papers.
In [34] they prove the convergence of one-dimensional, two-dimensional and what they call multi-
dimensional REPPs.

Since two-dimensional REPPs already carry (more than) enough information to make a transparent
connection with the compound Poisson processes we are after, we will not delve into more informed
REPPs, such as their multi-dimensional REPPs. We mention briefly that, as compared to two-
dimensional REPPs, their second component does not simply register the rarity of an instance (as
measured in terms of the ;' (¥;)’s) but it actually registers where exactly (near a target point) such
instance landed, in terms of associated tangent space. A similar attitude can be found in [74].

We start with one-dimensional REPPs.

In [41] and [12], a periodic-aperiodic dichotomy for anjl"r was established, under the conditions
of singleton targets, one-dimensional expanding maps, and regular invariant measures which are
absolutely continuous with respect to Lebesgue. In the periodic case, with a p-periodic point {
comprising the target, it was shown that an{” converges to a compound Poisson point process on
[0,00) with intensity ot Leb and multiplicity Ay = a(1 — &)~ (¢ = 1), where o« = 1 — 1/JT?({). In
the aperiodic case, it is shown that NyET converges to a Poisson point process on [0, c0) with intensity
T Leb, which corresponds/extends the previous case as if o was 1.

Notice that whenever Njy"*° converges to a compound Poisson process on [0,00) with intensity
r(7) = ot Leb and multiplicity (A¢(7))sen.,, it follows that

B(M < (7)) = (N, 7([0,1]) = 0) 2 &7 = 7,

meaning that ¢ is the extremal index of the associated system. Similar observations hold for NyT
and N,;"""%. Under the same assumption, there is still no general relationship between the extremal
index o and the multiplicity distribution (4(7))sen.,, even if (A(7))rens, V0 (A¢)¢en.,. However,
in most cases, especially when targets do not overlap with the parabolic locus of non-uniformly
hyperbolic maps, a relationship holds: o = (Z =1 E?Lg) 71, i.e., the extremal index is the inverse of the
mean multiplicity (also known as mean cluster size). This relationship can fail to hold even when the
o>0and )’ =1 Ay < 0, as we discuss at the end of this section. Before this discussion, the reader
need not to be preoccupied and might consider that the expected relationship holds.

By the previous results from [41] and [12], one has that limits of N,%{” are expected to be (0, 0)-
lifted compound Poisson processes on the state space [0, 00) relative to {(0,7) : T € R~} with intensity
7€ R+ atLeb and multiplicity T € Rog+— Ay = a(1 — )~ (¢ > 1), where a = 1 — 1/JT?({)
when § is p-periodic and o = 1 otherwise. This is indeed the case, as we will see in the next result,
theorem 3.1.2, which provides a finer description of these limits.

Theorem 3.1.2. [[34], thm 4.3] Let M be a compact Riemannian manifold with Lebesgue measure,
Leb, and let (T, u,T') be a system as introduced in section 3.1 which is given a normalization (g,u)
satisfying the conditions given in equations (2.10), (2.11) and (2.12°). Consider that U is absolutely
continuous with respect to Leb with

L ABe) _ du
e—0Leb(Be(x))  dLeb

(x) (Yxe M). (3.1
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Consider T = {{}, where  is a hyperbolic repelling point in whose orbit T is continuous.

Assume that decay of correlation is rich enough in the sense that:

A) There exists a Banach space Cy of real-valued measurable functions defined on M, containing
1, for all B€ By and if (By)n=0 € PBu is such that there exists a uniform bound for the number of

connected components of all B,’s, then there exists C > 0 such that |1p,|c, <C (n = 0);

B) Forall ¢ € Cy,we L' () and n > 1, one has:

Cory (0, v, _
ul@:yn) = um\cluwuy

(yoT")du— f ¢duf wdu‘ < cn,
with 5, cp < 0.
Then:

D) If € is aperiodic, then Ny, 20 4, N2 aper» Where the latter is a simple point process on [0,00) x
(0,00) given by

0

2.1
N aper = Z 5(T,-,,-.,U,-$j)7
i,j=1

where T; ; = Zz \ T, (Ti))ij @ matrix of iid random variables distributed like Exp, and (Uj ;); ; is
another matrix of iid random variables distributed like U; j ~ Unif(i — 1,1] and so that (T; j); j L

(Ui j)ij-

1) If € is p-periodic and DT? ¢ (v) = Ove TeM (|0] > 1, Vv € Ty M), then NE 4, Nfolf,er, where
the latter is a simple point process on [0,00) x (0,00) given by

where T; ; = Zl Tii, (T;j)ij a matrix of iid random variables distributed like Exp,, o0 = 1—
9= dmM) gng (Ui})i,j is another matrix of iid random variables distributed like U; j ~ Unif(i —1,1]
and so that (Ti,j)Lj 1 (Ui7j)i7./‘

Asa consequence.

i) If € is aperiodic, then Ny, L, N aper» Where the latter is a Poisson point process on [0, 00) with
intensity 1Leb.

it) If € is p-periodic and DT?¢(v) = 9ve TeM (|§| > 1, Vv e Ty M), then N d N;olll,er, where
the latter is a compound Poisson process on [0,00) with intensity TaLeb and multiplicity Ay =
a(l—a) =1 (€= 1) (recall definition 2.1.21), where ot = 1 —1/9.
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s s 8% % " oot sy o F

Figure 3.1 Left: Simulation of the limiting process in I). Right: Simulation of the limiting process in
IT) with dim(M) = 1 and © = 3/2. Source [34]: Freitas, Freitas, Magalhdes (2020) (Figure 1).

Intuitively, Né;{aper splits the plane [0,00) x (0,00) into horizontal stripes of unit size in each
of which countably many points realize, with their first coordinates having exponential increments,
thereby like a Poisson point process with intensity 1, and their second coordinate, independently,
drawn uniformly in the interval prescribing such stripe. On the other hand, Né{per has a similar
interpretation, but each point realized as before has countably many “children” pilling above it, i.e.,
points whose first coordinate coincides with that of its “father” and whose second coordinate scale
that of its “father” by successive powers of Pdim(M)

Right now we are more interested in the main statements and how their objects fit together. But it
is worthwhile to consider a rough outline of the proof strategy adopted in [34]:

i) Show that rich enough decay of correlations implies that (X;)i>o satisfies conditions, /17 (u)
and ZL;(M), where ¢ controls the size of clusters and in the aperiodic case takes value 0, while in the
p-periodic case is taken to be a certain multiple of p.

These conditions, which change slightly throughout the literature, are dynamical versions of the
aforementioned D(u) and D' (u). The first one has to do with mixing and is used to show that the
occurrence of escapes in a certain cluster is nearly independent from that of next cluster. The second
condition is more delicate to check and relates to the short recurrence properties of small vicinities of
the target, allowing one to access what time scale makes clusters coherent and what is the importance
of those points that escape the cluster.

i1) The conditions obtained in (i) are used in an abstract theorem (their theorem 3.3) which aids an
application of Kallenberg’s criterion, leading to the desired convergence>.

At the end of this section, after reviewing some advances in the literature, we look not at actual
proofs but at new objects, concepts and formulas that are relevant to this approach. In particular, we
address what are clusters and their sizes, which were referred to above but not yet clearly stated.

In [34], they still adapt the technique behind the proof of theorem 3.1.2 to handle situations not
covered by the theorem but still in the realm of their techniques. In particular, incorporating ideas
from [12] (props. 3.4 and 3.5), they obtain the convergence of two-dimensional REPPs when ( is
a (a)periodic discontinuity point for a piecewise expanding map of the interval (Rychlik map) with
Lebesgue measure. In this exact situation, [12] proved the convergence of one-dimensional REPPs (of

the type N,},’I”’T) to compound Poisson distributions whose multiplicity distribution could be different

3Notice that simplicity, needed for the application of Kallenberg’s criterion, holds for two-dimensional REPPs, but not
one-dimensional ones.
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from geometric, depending on the combinatorics the {. These different distributions are explicitly
presented in [12].

In [42], under similar hypotheses to those of theorem 3.1.2, but not restricted to invariant measures
absolutely continuous with respect to Lebesgue, and admitting equilibrium states g associated
to a Holder potential ¢ of finite topological pressure whose density with respect to the associated
conformal measure 1)y still satisfies a regularity condition similar to that of equation 3.1 (with Leb
substituted by 7)), authors have shown, again for singleton targets, that

UMy < (1)) = 7,

where:
o =1—¢59(6)=rP(0) if { is p-periodic; 1, otherwise.

We notice that REPPs and compound Poisson statistics were not evaluated in [42]. However, they are
available in [12], with similar explicit formulas, for one-dimensional REPPs (of the type N,},"HI’T) of
(dis)continuous (a)periodic targets for the aforementioned Rychlik maps (see [12] prop 3.2 and 3.5).

In the uniformly hyperbolic case with contracting directions, the items (II) and (ii) of theorem 3.1.2
will not apply. However, for linear Anosov automorphisms of the 2-torus equipped with Lebesgue
measure, the periodic-aperiodic dichotomy for one-dimensional REPPs (of the type N,i,’m’f) was
shown in [24]. Their strategy was also based on conditions of the type /17 (u) and /I; (u), but since
Kallenberg’s criterion is not available at the one-dimensional level, the approach introduced in [41]
was applied. They also point out that limits are dependent on the chosen metric, and, for Euclidean and
maximum metrics, explicit formulas are given for the limiting intensity and multiplicity distribution.
Again everything depends on the expansion in the unstable direction and the period p, but it is for
the maximum metric that we ‘usual’ formulas are recovered: & = 1 —1/|y|? and A, = (1 — &)~
Interestingly, the A,’s that appear with the Euclidean metric do not form a geometric distribution.

Theorem 3.1.2 also finds applications with non-uniformly expanding maps with indifferent fixed
points such as the Manneville-Pommeau or Liverani-Saussol-Vaienti (LSV) maps, provided that { is
not itself an indifferent fixed point and avoids the countable set of dynamic discontinuities. These
applications rely on the fact that their first return maps are uniformly expanding.

To account for ¢ the indifferent fixed point of an LSV map, Tg, with 8 € (0, /5 —2), preserving
the absolutely continuous probability g, [44] first notes that taking u,,(7)’s in usual way,

mitg (Xo > un(7)) = 7, or, simply, mitg ([0, (in(7)))) = 7,

implies a degenerate the extreme value law tig(M,, < u,(7)) > 1 (V7 > 0), which means that the
extremal index o is 0, or, on the other hand, that the u,,(7)’s grow too fast. To find non-degenerate
asymptotics they fix the thresholds requiring that

ity ([T ' [g™" Gen()) 1.8~ (7)) ) 2> 7.
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m

where Tg . is the left-branch of 7. Under the new scaling, they find that ug(M,, < u(7)) — e~
The time-normalization counterpart suggested from their solution seems to be

Li(t) = [r/uﬁ ([Tﬁ,;'[g-l(umm)],g—](um<r))))J

instead of L} () = | %/us([0.6~' (un(2))) |. Curiously, REPPs under the new scaling still present degener-
ate limits.

When it comes to more general target sets, not limited to singletons, one naturally expects general
compound Poisson statistics, precisely because more complicated recurring behavior around the
target set can be cooked up. This can be seen most simply in the case of finite targets with pieces of
orbits, as evaluated in [13] for one-dimensional REPPs of the type N,$11 M) 1 this direction, see also
[56]. More complicated targets, such as countable sets (see [14]), manifolds (see [33] and [23]), and
fractal sets (see [37], [38] and [71]), were studied from the perspective of extreme value laws, but not
establishing limits for the associated REPPs.

Still using point processes, a more abstract approach to such general target sets was developed
in [43], where authors, inspired by ideas in [19], enriched their point processes as much as possible
(much more than the aforementioned multidimensional REPPs). This allows them to obtain functional
limit theorems for heavy-tailed functions g around general targets that do not overlap the parabolic
locus of non-uniformly hyperbolic maps. Another outcome ([43] thm 4.1) is the convergence of their
enriched point processes, valid for g’s as general as those presented in section 3.1. Their T-projection
into the first coordinate recovers compound Poissonian limits for one-dimension REPPs, whose
parameters, however, are not easy to present explicitly for general targets — but are expected to
comply with those of [53], whose multiplicity distribution is given by an asymptotic expression (in
terms of the 7, u and I') denoted by Ay (¢ > 1) and assumed to exist. Check equation (4.2) to see how
the quantities (A;), appear in the random case according to the approach of chapter 4.

On the other hand, we note that the main hypothesis of theorem 4.1 in [43] is the existence of the
so-called pilling process, which is a more abstract (or enriched) counterpart to the assumption of the
existence of A;’s in [53].

We close this section following [3] and [2] to discuss the relationship between the extremal index
and the mean cluster size, once a compound Poisson point process is found to be the limit of a
one-dimensional REPP. We take the opportunity to clear out some concepts previously invoked in a
vague way and introduce some formulas that are relevant to the aforementioned literature but also
relevant for comparisons with the alternative approaches discussed in the next sections.

Consider a parameter g € N>q. It will represent the maximum waiting time allowed between
consecutive hits to be considered part of the same cluster.

Let us introduce a couple of working sets.

Forn =2, let

Dgfl(U) ={xeM:xeU,t)(x) <q, ()~ (x) <q..., 7 (x) — 1 2 (x) < ¢}

be the set of points in U whose g-forward-cluster has at least n entries, and

QZ’I(U) = {xeM:xeDg’l,r,’}(x) — 7 (x) > ¢}
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be the set of points in U whose g-forward-cluster has exactly n entries. These definitions are naturally
complemented for n = 1 with

DY) =U, QYU)={xeM:xeU.th(x)>q},

which extend the previous interpretations to n = 1.
Let also
DF(U) = (D)
n=0
be the set of points in U followed by infinitely many visits to itself, all of which at most g units of
time apart from its adjacent visits.
Moreover, forn > 1, let

H}(U)={xeM:x¢ U,1(x) = q,T(x) e Q)" (U)}

be the set of points in M which, after exactly g units of time (from iterates O to g — 1) failing to hit U,
start a g-cluster that has exactly » entries. To complement this definition with n = 0, we put

HC?(U) ={xeM:x¢U,t5(x)=q},

which is the set of points in M which, after exactly ¢ units of time (from iterates O to ¢ — 1) failing
to hit U, start a cluster (of any maximum waiting time and size). Note that Hy (U) = Hl? (U), for all
n=1.

The following theorems present the basic relationships among the objects above.

Theorem 3.1.3. [[3] thm 2.1] Consider n = 1 and 1 fully supported. Then

10y (V) —(QgU)  p(H;(U))
1(Q9(U)) u(HY(U))

Denote the coinciding quantity in theorem 3.1.3 by )Léj (n). It represents the finite-time g-cluster
size distribution. Finite time is in the sense that U is a frozen neighborhood of I".

Theorem 3.1.4. [[3] thm 2.3] If u(D°(U)) = O (which holds when . is ergodic and fully supported),
then

DU
S8 () = HOAO).
= n(ey(U))
(%)) N . . . . .
The quantity MGA@G) represents the finite-time g-extremal index, since it registers the portion of
q
0
points in U that terminate their g-clusters, thereby scaping from it. Denote Z Egggggi =: ch . Therefore
q

Y nAY(n)=1/af.
n=1
We pass U := Upr = I'g—1,,, (1)) to the objects previously defined and, to make their notation

lighter, we substitute “U,, ;” by simply “m, 7.
The following theorem provides general conditions for one-dimensional REPPs to converge and

explains how the finite-time objects relate to the quantities of the limit.
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Theorem 3.1.5. [[3] thm 2.5, [41], [35]] Consider a system (T,u,T’,g,u) and q € N> so that (X;)i>0
satisfies conditions [l,(u)* and JI;(u)*. Assume that o)"" > &, (VT > 0) and that, for eachn > 1,
g7 (n) > Aq(n) (VT > 0).

Then, for all T > 0, NET converges in distribution as m — o0 to a compound Poisson process on
[0, 00) with intensity ot;TLeb and multiplicity (Ay(n))p=1.

Adopting the hypotheses of the theorem except for the latter convergence, one still concludes that
o, is the extremal index of the system (see [40] and [42]).

Here we will not discuss further what J,(u)* and JI; (u)* are. It suffices to recall remark (i) after
theorem 3.1.2 and be aware that there is appropriate g verifying them in all the systems discussed in
this subsection. Similar thing can be said about the remaining hypotheses. We say that ¢ is eligible
for the system if J1;(u)* and [T, (u)* are satisfied. If g is eligible, any ¢’ > ¢ will also be, so we
naturally search for the minimal eligible one, to be denoted by g.. It is a subtle matter to find the g, of
asystem (7T, u,I", g, u), but some candidates standout, in special because, when I" = {{}, they recover
the period of { (zero) if { is periodic (aperiodic):

a) (see [2])
¢, = inf liminf p’ (U, ;) if finite, otherwise ¢/, = 0,
>0 m—0 '
where
P'(U) =inf{k> 1 ‘ p({xeM:xeU,T'xeU}) >0};
b) (see [13])

q. = g{)lnf{k >0: r}glgoerlgrgm) rQ0(m,z)(¥) = oo} :

Also notice that, since the limit in the conclusion is actually independent of g, so any eligible ¢
produces the same ¢, = ¢ and (A4(n))n>1 = (A(n))n>1. The said coincidence is not necessarily true
for finite-time objects with an m, T superscript, but for the previous reasons the choice of eligible g
has no profound consequences, so in the following discussion we fix ¢ = g, and omit ¢’s from the
notation, leaving a star instead.

The point we want to make is that the conclusions of theorems 3.1.4 and 3.1.5 tell us that

1/o T im 1/a™* = lim 2 nA" (n) (3.2)
m m

n=>1

always hold. So the missing piece to guarantee that the extremal index is the inverse of the mean
cluster size is the first equality in the following

lim % nA"* (n) Z 3 ndu(n) = > nA(n).

n=1 n=1 nzl1

In [3] authors present an example within the hypotheses of theorems 3.1.3, 3.1.4 and 3.1.5 where
the previous equality 7 does not hold, actually fails regardless of 7, despite being o > 0 and
Y114 (n) < oo. It is obtained with a Liverani-Saussol-Vaienti map of the kind discussed in [44]
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and a target made of the indifferent fixed point and an aperiodic point (it could be another periodic
point as well). The authors discuss how such failure can be interpreted as an escape of mass.
Therefore their example produces a situation where the extremal index is not the inverse of the
mean cluster size, whereas the finite-time counterpart of this relation holds, as described by theorem
3.1.4 and equation (3.2).
In [2] section 4.2.1, the authors evaluate related questions. They recall that in the previous example
the finite-time relation holds for the finite-time mean cluster size given by as in theorem 3.1.3, i.e.,

/o = Z nl;"’f(n) = Z niu(H;(m’T»

q 0 ’

where in the events Hy (m, ) and Hf]) (m, 7) the first occasion that U, ; is visited is the beginning of a
g-cluster. As we have seen, the last equation holds in great generality.

However, they show that the latter equation would not hold if, instead, one used, respectively, the
events Qg(Um,T) and U, ¢, in which the first occasion that U, ¢ is visited might not necessarily be the
beginning of a g-cluster. Modulo this difference, the following fractions have similar content

1(OY(Unr))

W (Hg (m, 7))
U(Un,z) '

W) o= (A )

, Ay (n) =
The expected value of the former quantity,

T #(Q9(Unye))

is called the finite-time mean sojourn size and, thus, in general, its inverse does not coincide with
the finite-time extremal index a;"". However, in the geometric case, things coincide: finite-time and
asymptotic-time statistics, mean cluster size and mean sojourn size.

3.1.2 Spectral methods

The spectral approach to the study of first-hitting time and extreme value laws in the deterministic
case was introduced in [60]. It was based on Lasota-Yorke inequalities and the classic perturbative
theorems developed in [61] and [62]. These inequalities occur only in the realm of uniformly
expanding/hyperbolic systems, with exponential decay of correlations.

In [36], authors considered expanding Lasota-Yorke maps to show conditions of the type /I and
establish convergence of two-dimensional REPPs with compound Poisson statistics (see section 3.1.1).
Despite the similarity in the starting assumptions, the approach of [36] is fundamentally different from
that of [60] and much closer to that described in section 3.1.1. Since [36] handles random dynamical
systems, we discuss it in section 3.2.1.

To discuss the spectral approach to the extremal index in the deterministic case, we will basically
follow [60].

Let M be improved into a compact Riemannian manifold with Lebesgue measure. Let (B, || - |)
be a Banach space of R-valued functions ¢ on M embedded into a space of distributions acting on a
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suitable class of functions under integration against ¢ Leb. In particular, we want to have 1 € B. The
dual of B is also embedded into a space distributions acting on a suitable (possibly different) class of
functions. In particular, Leb € B* and, actually P(M) < B*.

Moreover, assume that if / in the class of functions on which elements of 3 can act, then so is
hoT and let Ly be the Perron-Frobenius transfer operator given by

Ly: B — B
¢ — Log: h — Lop(h):=¢@(hoT).

It follows that vy := Leb satisfies £o* vy = Vy. The invariant measures y that might appear from
this approach are absolutely continuous with respect to vy. So the target I" € 9, is actually taken small
so that vo(I') = 0 and, in particular, it would follow that u(I'g). Consider the family of (I'y) e[0,py)-
The system (7, (B, | -||),T") is assumed to satisfy the following conditions.

1) For all ¢ € B, it holds that 1, @, Lynr, ¢ € B

2) The operators Ly : (B, |- ||) — (B, | -||) given by Ly(¢) = Lo(Lynr, @) satisfy:

2.1) Lo has a spectral gap with leading eigenvalue 1, i.e.,

Lo = @o® Vo + Qo,

Lo®o = o, Ly Vo = Vo, Qo(P0) = 0,05 (vo) = 0,vo(1) = 1,vo(go) = 1

where @y ® Vo : @ — @yVo(¢) characterizes the spectral projection in the subspace spanned by ¢y,
and 0(Qy) < 1.
2.2) (Lp)pe[o,po) Satisfies uniform Lasota-Yorke inequalities, i.e., 3y € (0,1), D > 0 and a norm

(or semi-norm) |- |,, < | - || on B so that
Vp €[0,p0), Y € B,Yne Nz : [Lypl, < D|@ly,
Vp €[0,p0),Vp € B,¥neNxo - [L50| < DY'[ @[ + Do)
2.3) (£p) pefo,py) cOmprises a triple norm perturbation of Ly, i.e.
Vp €10, p0) : [[1£p = Lolll < 7p,

where [[|R||[ := sup| <1 |R@Qlw, for any linear operator R : B — B, and 7, is a [0,00)-valued semi-
continuous function so that lim, o 7, = 0.
3) Denoting, for p € [0, po),

Ap = [Vo(Lr, )llop((. -1 = Voo Lpllop((s,1-1).(C.l-1)»

By :=|1r, o] = | Lo(Lr,¢o)| and
Ap = Voo (Lo—Lp)(¢o)

it holds that
lir%Ap =0and A,B, < const|A,| (Vp €[0,p0)).
p—)
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Following, [61] and [59], items (2.1-2.3) imply that
i)
Vp €[0,90) : Ores(Lp) = {z€C: |z < 7}
ii)
Ao 'Ly =@p@Vp+0Qp (Ao =1),

Lo@p = )vp(Ppaczvp =2pVp,0p(®p) = OvQZ(Vp) =0,vp(p0) = 1,vp(p) =1
where @p ® V) : ¢ — @,V (@) characterizes the spectral projection in the subspace spanned by ¢,
and 6(Qp) <Ay (and 6(Qp) <)

In particular, 3}, - SUppeo.p) 19 p < -
iii)
AC>0,¥p € [0,p0) : [@p || < C.

Following [62] corollary 2, items (i-iii) and (3) guarantee that: Vp € [0,p¢), VN = 1 one has

1;% N AOA_AP = (a,p + O (1= 7)) (1 + Opo(NA ) (3.4)
P P

where constants associated to both O’s independent of p and N, ¥ > 0 is a lower bound on the spectral
gap of the £,’s, and

N—1
avp =1- > A "By, (3.5)
q=0
with
Voo (Lo—Lp)oLho(Lo—Ly)(gy) Ho({xeM:xeTy 1 (x) =q+1})

_ - 3.6
Ba.p A, Ho(Ty) (3.6)

where o (+) := vo(@o(-)) € Pr(M), and the latter equality in equation (3.6) holds when py(I"y) > 0
(Vp € (0,p0)), which is an additional hypothesis assumed until the end of this section.

Notice that equation (3.6) points in the direction of a derivative-type result, that would refine a
continuity result, if we had one. But 4, appears in the RHS of equation (3.6) as well, so continuity
has to be known upfront we we want to take the p — 0 limit:

Voo (Lo—Lp)(@p) = (L5V0)(@p) —Vo(LpPp) = (Vo) (@p) —Vo(ApPp) = Ao — Ay,

where we have used the normalization vo((pp) = 1, so, applying assumptions lim,_,oA, (see (3)) and
| oo < C (see (iii)), it follows that lim,_,gA, = A9 = 1.

The equation (3.6) also encodes why the spectral approach appears in the study of hitting statistics,
but in the following, we will present a clearer version of this motivation. Notice also the similitude
between fraction appearing in the sojourn size given in equation (3.3) and the RHS in equation
(3.6): both consider the portion of points which are initially in certain neighborhood of I" but break a
g-cluster of visits, with the former considering points returning at any later moments > ¢, while the
latter considering points returning exactly at time g + 1.
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Now that the perturbation results and their conclusions, equations (3.4-3.6), are clearly stated, it is
time to see why they naturally appear in the study of hitting times: for any n > 0,

n—1
J‘ (Pdvo J‘ H:H.M\r OT (pdvo _f EO (H :H‘M\F OT (P) dV()
{rt, =n} M
J Ly (@)dvo = f Agvp(@ (ppdvo+f 5O PdVy.

So, passing ¢ = @ (notice that passing ¢ = 1 is also interesting) while using v, (@) = 1 (by design)
and vo(@p) — 1 as p — 0 (by [62], lemma 6.1), gives

ok, = m) =43 < 427" |l 37

Taking p — 0 in equation (3.4) gives

giouo(lftp = Z By+ Onoon(1=7)Y),

provided that 3limy_o B, =: By, which we assume until the end of this section, and using the
previously justified continuity of A,’s. The latter equation, being true for every N, allows us to take
the limit N — oo to arrive at

1—24,
lim
p—0 tio(I'p) Z &
= Ay = 1—ato(Tp) +0po(to(Tp)) = e~ ®H0(Tp)+0p—o(to(Tp)) (3.8)

To conclude we look at the time-normalized hitting time:

(38):> A’plﬂ{)(’rp)J — efallﬂ(rp)[mJ+0pq0(t) pg’o e*(xl‘

— L _|4+1 — L _|4+1 t 1
3.7 = IJO(rll"p > [’/I»to(l"p)J) _;L;LMO(FP)J < lpl”‘)(r”)J '}/LIO(FP)J+ H(POH
implying that
lim o (17, > [/uor)]) = e
Therefore the system (7', to,I") has extremal index @, with

Ho({xe M :xeTp, 7 (x) = q+1})
po(Tp)

o0
oa=1-— , with B, = li

On the extremal value side, given a space-normalization (g, u) as in equations (2.10-2.12), one has

Ho (Mo < (7)) = o (7} m) = oM < (%)) — A1 )] 0,

"o ey =
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while

m _mompo(T— o9y ) +mom—so(Bo(Ty—1(, o)) 7 —at
A (e = € =1 (um () ) 2, gmat

so that
Ho(M < um (7)) = €~

Error terms are explicitly presented in the previous approach (in concrete situations, the terms y
and Y can be derived from the expansion factor), but they also discuss sharp bounds.

Applications include Rychlik piecewise expanding maps of the interval and higher-dimensional
expanding maps, with quite general targets. When the targets are singletons, the results presented
in the previous section are recovered. The baker’s map was studied with this technique in [11]. It
is naturally expected that the approach extends to general equilibrium states. Let us recall that this
approach is by design restricted to uniformly hyperbolic situations.

The reader will have noted that the higher-order hitting statistics and compound Poisson distribu-
tions were not addressed in the previous paper. Only very recently, in [8], this problem was addressed
for random dynamical systems, we will discuss it more carefully in section 3.2.2. To conclude this
section we follow [8] (section 2) to review briefly what their approach looks like in the deterministic
situation.

Under the normalization

T
m=|————~1>
{HO(Fgl(um(r)))‘

their objective is to evaluate

li 7" =
A, HO(ZE 0 =)
but this will be approached indirectly: instead of evaluating the distribution of Z[" one

. ) . . . g lm()”
considers the characteristic function (Fourier transform) of such random variable and studies its

pointwise convergence when p — 0. Usually, one identifies such limit as the characteristic function of

. . R d
arandom variable Z with a known distribution and then concludes that Z{" - Zasm — o0,
g~ Hum(z)) wrt Ug

using Levy continuity theorem. However, in [8], the approach to the limit will be indirect, as we will
see later.

The calculation starts as follows. For p € [0,p), s € R and L > 1, one has
" (eisz%p> _ f 7, Godvo = J cL (eisz%p (P0> dvy = f L5 (@0)dVo, (3.9)
M M M

where ['p.,s((P) = L‘O(eisjlrp @) and so Elﬁp((P) _ ﬁé (eiszrp ¢).

Then the spectral perturbation theory developed before is, for each s € R, applied to (Lp s) pefo,py)»
noticing that Lo s = Lo, as to get

lp_s1 Los=Qps®@Vps+0ps

ﬁp,s(ppgzlp,s(l)pga E;’;,svpg:lp,svp,s; Qp7s((Pp,s):07 Q;’S(Vpﬁ)zoy Vp,s((PO,s):L Vp,s((Pp,s)zlu
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in particular, @y ; = @o, Vo s = Vo and A9y = Ay, and, ultimately,

lim 20 = _ ofs):=1— i B,(s),
q=0

p—0 Ap,s
where, considering that u(I'y) > 0,

Aps = (1—€)u(ly),

Y00 (Lo = L£p.) 0L 0 (Lo = Lp.) ()

s) = 1 i
Pls) = Jim, (1= ") (T)
eistkl-p PodVo
. Jr, AT+
_ li 1— is P P
plir%)( ¢ ) .MO(FP)
= lim(1—¢") Z e
p—0 =0 to(Tp)
q
_ (l_eiS)Zeinsgii)%Kg(p,S),
n=0

provided that the limits above exist. In particular, it can be shown that

. l_a‘va is RN ins 1: n
A%T—a(s).—l—(l—e )Z;)’;)e g%xq(p,s), (3.10)

where the latter double sum is shown to be finite.

Now we pass to the subsequence of radii (p,;)m=1 \, 0 given by the space-normalization (g, u),
namely, py() = g (un (1)) (m > 1).

The last centered equation then implies that

VseR: )Lg—l(um(f)),x ~m—oo 1 — a(s)Ag—'(um(r)),s (311)

i i T
— 1= () (1= ) 0Ty 7))~ 1= ) (1 =€) -

m

= A’g_](um(‘r)),s ~m—0o0 [1 — a(S)(l — eis)lu“o(r‘gfl(um(r)))] ~ oo e*a(s)(lfelx)

And equation (3.9) becomes

S 1 (o) L 2
,LL()(e 1 o ): L 0 (0)Yo (3.12)

= JM A (2.5 Vi ()5 (90) Py (2,50 VO
! JM A un(2)5 %1 () s 0T VO

< A&’:il(um(f)),s’y;nH(poH *

isz?g—‘o« () M
= |Ho{e ") T A (U (1)
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= 1o (e”zf" ! <um<r>>> 220, o= (1=e2()T (ys e R, V1 e Rag) (3.13)

Since the RHS is continuous at 0, it is the characteristic function of a certain random variable

Z. Also, since the sequence of random variables in the LHS is N> (-valued, so is the RHS (by the

Portmanteau theorem). Finally, Z is infinitely divisible, because e~ () (1=¢")7 — (o=a(s)(1=¢")7/N\N

These conditions, due to a result by Feller, imply that Z has a compound Poisson distribution.

Moreover, Levy’s inversion formula can be applied to get that the mass probability function of

compound Poissonian variable Z at k € N5, thereby leading to the characterization we were initially
after:

1 r ; is
i m _ — Tim —isn ,—a(s)(1—e”)t
A H(ZE ) =) = M 57 f_T ¢ ds.

On the other hand, the underlying limiting Z, defined on an abstract probability space (Q,.#,P),
being compound Poissonian, can be written as Z(®) = Zflz(g) ) Xi(w), where N ~ Poiy (y € R~),
P(X;=/)=As(i=1,£>1)and (X;);>; an independent family, also independent from N. In [8], they
point out that y =/, £, (see their equation (3.38)), while presenting the characteristic function

of X; (see their equation 2.18): _
o(s)(e*—1)
(0)

Therefore, one could apply Levy’s inversion formula once again to recover the multiplicity distribution:

T is
o _ise [ 0U(s)(e” — 1)
M—Th_r)rgo _Te ( a(0) +1)ds.

E(eX1) = +1

3.1.3 Probabilistic approximation with Chen-Stein method

The Chen-Stein method, see [18] and [84], provides a way to compare a given distribution and a given
compound Poisson distribution, according to their total variation distance.

In [48], authors use this technique to study hitting statistics of a broad class of measurable maps T
on a measurable space M with an intrinsic countable measurable partition C; and ¢-mixing invariant
measure U, i.e. either

1) Left ¢-mixing:

m—1 n—1
. : _ / —i —i
3¢ 1Nz =R, lim ¢(k) = 0,Ym,m' > 1,¥Ueo (\/T c1> \Veo (U \/T cl)

i=0 n=1i=0

(U AT V) = p(U)p (V)] < p(U)(m'),

or

ii) Right ¢-mixing:

m—1 n—1
. . _ / —i —i
3¢ 1Nz =R, lim ¢(k) = 0,Ym,m' > 1,¥Ueo (\_/OT C1> \VVeo (U \/T c1>

n=1i=0

BU AT V)~ p(U)R(V)] < (V)9 ('),
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or both.

If instead of the previous two inequalities one considered

(U AT V) = (U (V)| < w0 (V) y(m'),

it would be defining the so-called y-mixing condition, which is a particular case of ¢-mixing. The
decay function ¢ is assumed summable.

For the sake of completeness, let us say that when the inequality
(U AT "V) = u(U)u(V)| < a(m'),

occurs instead of the previous one, the -mixing condition is defined.

The theory works for both left and right ¢-mixing systems, invertible or not. We concentrate the
exposition on the left ¢-mixing non-invertible case.

They consider very general target sets, presented in terms of cylinders. Namely, they consider
a nested sequence of sets U, € & <\/§"=_01 T *"C1> (m = 1) so that, with I" := ﬂmZI U,,, it holds that
1 (T") = 0. Notice that the previous framework includes the case where one starts with a measurable p-
negligible target I" and considers Uy, := Cy(I'), where, for X = M, C,u(X) := Uecc, £ x §- Moreover,
it is assumed that they shrink in size fast enough so that: I(ay)k=1 \\ 0,Vk = 1,3m(k) = k,Ym = m(k) :

D H(CiUn)) < a (3.14)

If U, = Cu(T), then C;(U,,) = U; and the previous condition basically reduces to .-, pt(U;) =20,
Then Chen-Stein method is used to estimate the total variation distance between the distribution

of Z,l,f/ wml ZW ‘S(U’”)J_l 1y, o T’ under p and a compound Poisson distribution 7y, with intensity

=

T(3y=1 CA¢(L,m))~" and multiplicity distribution

-1 ]
)./m7L P g E'u'(ﬂzljtlffl( ]lUmOTj:eHlUm © Tl - 1)

¢ _ i
DT Eu(Lyiek g iyl 0T = 1)

=1 I

(£=1),

where the RHS is independent of i, with i taken larger than L.

The key to guarantee that the distributions of Z,kf/ (o]

under [ converge under the limit lim,_, 4
is to show that the A¢(L,m) also converge under the double-limit limy, o, lim,;— .

In order to do so, they assume that

o0
and Zfzag < 0.
=1

Then one shows that these conditions guarantee the desired limits in the parameters of 7z,
defining a compound Poisson distribution 17 with intensity (3., ¢A,) ' and multiplicity distribution
(A¢)¢=1. This approach was inspired in [53] and therefore also similar to the one developed in chapter
4 (see equation 4.4 and hypothesis (H9)).
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It turns out that

T m VL T m
1@ =y < VPOt = Memllrv + 1M — 12w,

can be controlled after the m-limit (followed by the L-limit): the second term is controlled with the
a,’s and the first is controlled with Chen-Stein, as to produce a bounding term with essentially two
parts: a component accounting for long-range interactions (which is further bounded using ¢-mixing
and ¢-summability), and a component accounting for short-range interactions (further bounded using
¢-mixing, ¢-summability, and the approximation condition in equation (3.14)).

3.2 Random systems

Consider M a complete separable metric space, and €, the so-called driving space, a complete
separable metric space equipped with a measurably-invertible ergodic system (6, P).

Consider maps T, : M — M (@ € Q) which combine to make the a measurable skew product
S:QxM—->QxM, (0,x) — (0w,Tyx). As usual, for higher-order iterates we denote S"(w,x) =
(0"w,T;(x)) where Ty = Tgn—1y0---0Tgpo Ty (n=1).

Denote
PH(QxM) = {aeP(QxM): 7.0 =P},
PE(QXM) ={eP(QxM):Sl =0,mq.0 =P},
and
. P&s‘ .
pP®) (M) = P H:weQ Ue € P(M) so that: ?
WeQ = Up(Ep) € [0,1] is (Ba, P|o,1])-measurable, VE € HBqo x By

® L:oeQ™ e P(M) so that:
Pr, M) =1 ©e Q" uy(Ey) €0,1] is (Ba, P|o,1])-measurable, VE € B x By
Ty Mo = Horw, Vn =0, P-ass.

Notation. Elements in the latter two sets are will written as L = (L) @epq. We will use the notational
device ep to identify a family of objects which is defined P-a.s.

A family of measures (Ue)pep0 satisfying “Ty, ey = Hore, Yn = 0, P-a.s.” is called a covariant
family.

For the next paragraph, we refer to [28] (prop. 3.3) and [5] (sec. 1.4). For E € Bq x By, for any
o € Q, its w-section, {x € M : (w,x) € E}, is denoted by E,, or E(®).

Using Rohklin disintegration theorem for ft € P¥(Q x M) with respect to the partition &2 =
{[o] :={w} x M | ® € Q} of Q x M, we have that there exists (L) SO that:

Pr@xM) — PO(M)
i) VE € B x By (L(E) = f to(Eo)dP(0), i) PEQxM) — Py (M)
Q

(1 = (,ua))a)e]pg
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Conversely,

PEM) — PHQxM)
PRI(M) < PE(QxM) .
(Ho)oera = fi = dledP(0),ie., R(E) =, lo(Ew)dP(0) (VE € Bao x Bu)

Now, consider a given Il = dg,dP(®) € P§(Q x M), with the associated (L) pep0 € P}z) (M).
Define the marginal measure fi = Ty, fI = §, o dP(®) € P(M). As a implying assumption, in this
section we will consider that every measure appearing is atomless and fully supported.

Finally, consider I' € Bg x %y so that, P-a.s, I'(®) is small in the sense that u,(I'(®)) = 0.
The set I is the so-called random target. Denote I'y (@) = B, (I'(w)) (p > 0) and the corresponding
o-collection by I',.

The objects considered above comprise what we call a ‘targeted random dynamical system’, or
simply ‘system’, to be denoted by the tuple (6,P, Ty, Ue,T).

Generally speaking, random dynamical systems are amenable to the so-called annealed or
quenched results. Annealed ones are averaged in terms of the @-noise and they rely on the probabili-
ties fl e P(Q x M) or [t € P(M). Notice that the said average and the measures used will wipe out
any dependence on a certain @. On the other hand, quenched results are valid for (P-generic) fixed
o-realizations and they rely on the probabilities g, € P(M).

Let’s define some working objects. Let U € ZBq x By be a set whose w-sections U(®w) € M
have positive [,-measure, P-a.s.. Denoting the latter full P-measure set by €', notice that Q" =
(Nyez 0 "€ still has full P-measure. So we can consider that tgn, (U (0"®)) > 0, for all n € Z, P-a.s..

Definition 3.2.1. The first hitting time of (6,P, Ty, 1y, U) is the family of functions

rz',”l: M — Nsju{oo}
x > inf{ieNs;:T)(x)eU(0'w)}

The associated higher-order hitting times are given, for ¢ > 2, by the family of functions

rlaj)’Z : M — Ny,u{o}
w,/—1

x rla]”é(x):rl(j)’z_l(x)—i-r{‘}/(Tar,U (x))

o,l—1

where @ = 0" W,

Definition 3.2.2. The hit counting function of (6,P, Ty, l1y,U), for L > 1 is given by the family of

functions
Z5FM—Nxg Z2MM—N2
L _ L—1 .
x'_’Z ﬂU(G"a))OTaL)(X) ’ XHZ ILU(G"a))OT(i)(x)
i=1 i=0

These objects are related, for example, in the sense that {Z:f’l’]L >/} = {rla]”g <L}, {Zi)l’]L =/} =
{rw’é <L< r,‘})7g+l}.
In the next sections, where we review the literature addressing the random case, the so-called

random subshifts of finite type (sometimes considered with countable alphabets, though) will appear
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often. For the convenience of the reader, we will introduce them next. A special feature of these
systems is that the concept of periodicity appears much more naturally than for general random
systems. They do not fit perfectly in the setup presented above, which is just right for the theory to be
developed later in the thesis. However, the adjustments needed are tiny ones.

Let ¢ be the left shift on M = N>1N>°, a complete separable metric space under d(x,y) =
2~ min{n=01%y} 1 et O be a complete separable metric space with a measurably-invertible ergodic
system (6,P). Let b : Q — N be measurable with Ep(logd) < co. Let, for each € Q, A(w) be a
b(w) x b(6w) {0, 1}-valued matrix with at least one 1 in each column and row and whose entries are
w-measurable. Consider the @-family of closed sets in M

My = {x=(x0,x1,...) i x; € [1,...,b(0'®0)] "\ N>, Ay, x,,, (0'@) = 1,Vi > 0} = M.

Xit1

Let
Ga) . Ma) — MG(J)

x — o),

with the associated skew map acting on € = {(@,x) e Q XM : xe My} < Q x M as

S: & — &
(w,x) — (00,04(x)).

Let fi € P£(E), (Ho)wesa be the associated disintegration with e, € P(Mg) a.s., and I =
SQ UepdP (). We will consider that every measure appearing is atomless and fully supported.

For these random subshifts, we say that § € M, is p-periodic (for @) precisely when it is p-periodic
for o.

Notice that it can be that not only 6, = o but also b and A are constant functions on Q (in
which case one could diminish M to {1,...,b}>0). In particular, it would be M, identically M and
Ow : My — My, identically o : M — M. Still, i could be chosen so that the measures (g )pe,Q Vary.
In this case, measures would be the only place in the system where randomness intervenes. See [20]
for an example of this kind, the so-called random Markov shifts.

Let C; = {[s] : s € N>} be the set of 1-cylinders [s] = {x € M : xo = s} and, for n € N3 U
{oo}, C, = \/;f;(l) 07/Cy be the set of n-cylinders [sg,...,s,_1] = {x€M :x0 = 50,...Xp_1 = Sn_1}
(50,---,Sn—1 € Nx1). The C,,’s comprise a partition of M and, for m > 1, we denote by C,(x) the
element in C,, containing x € M. Let C,. be the o-algebra generated by | J j=1Cj- Itis assumed that C,
generates %)y and that Cy, is comprised of singletons. Notice that the objects in this paragraphs are
all deterministic on the entire symbolic space M (and might be restricted to My’s when needed).

The targets that will be considered for these systems are given by a (deterministic) nested sequence
of sets U, € 0 (\/:":_01 o~iC)* (m>=1). The target will be considered small either in the annealed
sense that [i(I") = 0, where I" := (), | U, or in quenched sense that esssup, e (Uy,) \, 0 as m — .
Another possibility is to consider singleton targets I' = {{} and take U,, = C,,({), which already
carries a notion of smallness.

4The o in the left stands for the G-algebra generated by a given family of sets. The & in the right stands for the shift
map.
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3.2.1 Point processes

Before we consider the literature studying hitting statistics using point processes, let us review some
early contributions to related statistical properties for random dynamical systems. In [77], authors
established, under an annealed time scaling, a quenched exponential law for first return time to
cylinders about non-periodic (typical) points of random subshifts of finite type with super-polynomial
decay of correlations, both quenched (for (i) wep0) and annealed (for f1). In a similar context, [78]

studied quenched extremal indexes associated with p-periodic points §, which were found to be a.s.

(G (8)\Contp(E))
fCn(8))

o= lim
m—0o0

provided that the limit exists.

A couple of references treat the random case using conditions of the type D or . Firstly, in [12],
authors studied an additive noise absolutely continuous with respect to Lebesgue perturbing the action
of a single map, in such a way that the system presents annealed polynomial decay of correlations.
For a deterministic singleton target at an arbitrary point {, a deterministic function ¢(-) = god(-, ),
g as in equation (2.10), with the dynamically observed stochastic process defined on the product space
as Y;(®,x) = @(T}(x)) under fi and adopting the annealed time scaling m{(¢ > u, (7)) — 7, they
prove that the extremal value is 1 and that a REPP of the type N converges to a Poisson process
with intensity 7 Leb.

Later, using conditions of the type /I, quenched extremal indexes and one-dimensional REPPs
were studied, respectively, in [45] and [36]. Since they adopt a similar setup, we chose the latter for a
brief discussion.

In [36], authors consider a system (0,P, T, e, I') as in section 3.2, with 6 a finite full shift, P an
ergodic measure and @ — Tj, := Ty (), Where the latter maps are the so-called Lasota-Yorke maps.
These maps are piecewise expanding maps of [0, 1] with finitely many branches and bounded second
derivatives. Expansion, number of branches, and second derivatives are all bounded uniformly in
(Q,[0,1]). Moreover, they satisfy a uniform covering condition and a uniform regularization, for test
functions inside a uniform cone. These properties imply they can be equipped with a quasi-invariant
family of (Ue)we,@ given by Uy = heLeb, with Ly (he) = hee and L, Leb = Leb, P-a.s., where
L 1is the transfer operator associated to T, acting on BV. This family satisfies a quenched uniform
exponential decay of correlations of the form

3K > 0,31 € (0,1), for P-a.s..¥n > 0,Yg € BV,Yhe L' (Leb) :

\ f g (hoTo)dio - f ¢dito j hdtgro| < K" g]sv 11 Leo)-
[0.,1] [0,1] [0,1]

In [30], however, authors point out that the above condition follows contingent on (6, P) exhibiting
at least polynomial decay of correlations.

Moreover, the target I is taken to be a deterministic singleton {{}. The normalization (g,u) is
taken with i) g satisfying the condition given equation (2.10) and ¢ := god(-,I"), ii) u is given by

up(7) =inf{lueR: (¢ <u)>1-—1/m} (1 >0),
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which implies

m—1 m—1
D to(@oTh > un(1)) = D Heio(@ > un(t)) > T, P-as. (1> 0).
j=0 Jj=0

They consider target points that are generic for the Lebesgue measure and conclude that one-
dimensional REPPs of the type N converge to a Poisson point process with intensity 7 Leb, whose

associated extremal index is therefore o = 1.

All the previous references in this section adopted an annealed space/time-normalization and rely
on, at least, polynomial mixing/decay of correlations of annealed type or in the driving (6,P). In [30],
authors modify this situation by simultaneously adopting a quenched normalization and relying on
a merely ergodic driving (6, P), with mixing/decay conditions put only on the fiber maps Ty,’s in a

quenched form.

They consider random subshifts of finite type with target sets (Uy,)>1 small in the quenched sense.
A certain condition on the family (U,,),;>1 is assumed and implies that it can not be U, = C,,({) for

{ a periodic point. They also assume that

i) 3Bo,B1 : Nxg — R, for P-ae.we QV0O< j <m<k:
Mo (Un 0 G_ij) < Uo(Un)Bo(j)s Mo (Un 0 G_kUm) < Uo(Un)Bi(m),

and

i)ID: Q> Rop€ Upe(o.,l] L?(P) and a : N5 — R~ decreasing to 0, VA, B € M measurable,
Vm > 1,Ym' > 1:

Ho(A N 67" B) — o (A)lgns o (B)| < D(@)a(m),

or

ii’) & : N5 — R+ decreasing to 0,YA,B © M measurable, Vm > 1,Vm' > 1:
Mo (A 6" B) — 1 (A) g o(B)| < o (4) ().

They consider the one-dimensional REPP
(D .
N2 (x) := Z; 62521 iy (A) LU © o' (x),
1=

which can be considered a quenched generalization of Ny (recall definition 2.2.13) — notice
that m, or in(U), is substituted by Z;’:l Ugie(U). With this definition in mind, the following
quenched result is found

N? Uo - N, P-as.,

where N is a Poisson process on [0, c0) with intensity Leb. Since the limiting point process is simple,

their proof strategy resorts to Kallenberg criteria.
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3.2.2 Spectral methods

The spectral approach presented in section 3.1.2 was generalized to random dynamical systems in
the quenched sense. Theory in this context was developed for general potentials. Quenched extremal
indexes were studied in [10] and quenched hitting statistics were studied in [8]. We follow mostly [8]

in this exposition.

Let M be a compact Riemannian manifold with Lebesgue measure and let (6,P, Ty, y,I") be a
random system as in section 3.2. In this section, IP is assumed ergodic.

Consider a random potential ¢ : Q x M A% R which is measurable. For n =1, let (j)én) :
Qx M™% Rbe given by (m,x) — Z;:é ¢ oS/ (w,x), where the full P-measure set can be taken the

same for all n.

Let (B, || - |5,) oz be a family of Banach spaces and (Bg, | - [ 5% ) oc- be the associated family
of dual spaces. Let B = Hmepg B be the space of P-a.s. defined measurable maps from Q to
Uwepg B, whose image at @ belongs to B, and, similarly, B* = Hwepg B;,. Assume that the By,’s
are formed by C-valued functions ¢ on M and the B;;’s contain P(M). Moreover, assume that, for all
n=0,e"eB,ie., (@) c B, P-as..

Assume that (B, | - |8, ) wepso accommodates the action of the Ruelle-Perron-Frobenius (RPF)

operator
£a).,03 By — Bow
o — Lyop : M — R

P-a.s.. In particular,

EZ),O Ba) — Bena)
¢ = Loy @ M — R .
Coe Y e,

ye(Ta) ="' ({x})

for all n = 0, and P-a.e.w € Q. These maps are lifted to the bundles as

Lyo: B — B

Qo — Loo Q — By
® = (Lo@)e= Lo-160Po-10
Ly: B — B
o — Lyo Q — By

® — (Lo@)o=Ly1p0Por0

Moreover, it is assumed that, for ever € B, the map (w,x) e Q x M Eags. Lo®)e(x) € R is measur-
yo P ¢

able.
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Notice that in the spectral approach one does not start with a given i = d,dP € PE(Q x M) and

the associated (Uep)pep0 € 73%1? (M). One considers that there exists

Qp: Qx M s (0,00), Vo = {Vo.0}oen € PP (M)

and
Ao : QB R\{0} in L (P)
so that
L6.0(90,0) = 2009000 Lu0(Veoo) = 2o.0Vew0-

They induce iy = (Uw,0)wepQ € Pg) (M), where L 0(+) := Vo (Poo(:)).

The target being considered is I' € Bq x By so that, P-a.s, ['(®) is small in the sense that

Voo(I'(w)) = 0. Moreover, consider g :  x [0, 0) Fas [0,00) so that, for every o a.s., g(®,-) is

continuous, strictly decreasing near 0, where they attain a maximum. The normalization considers

that given any a random scale
1: Q"5 Rogin L?(P)
(we will not be varying this one, to make notation lighter), there exists

1. arandom sequence of thresholds
Uy QS Rin L°(P) (m> 1)

with uy, (@) / g0(0), as m — oo, P-a.s.,

2. aconstant W < oo and a random sequence of margins
En: Q5 Rin L°(P) (m > 1)

with lim,, 0 o m = 0, P-a.s. and [ | < W for all m > 1 and P-as.

so that
m‘uw’o (Bg(;l (“m(m)) (F(w))) = tw + éw’m'

Notice that radii and scales are random and quenched. Notice also that &, ,, mediates between the
exact scaling and the asymptotic one. These conditions make the normalization applied in this theory
very general, at least from the quenched randomization point of view.

Instead of the perturbations designed to study quenched extremal index in [10], namely

Lw,m3 By — Bow
o — Ew,o(ﬂM\Bg_]

o (um(®))

> 1),
(M) P) (m>1)

to study hitting statistics with the aid of characteristic functions, following [8], one actually introduces

the following family of perturbations

[fa)7m7s : By — Bow

iS]lB 1 (TM(w
(p —> EU)O(e 8w (”m(w))



3.2 Random systems 55

L .
‘Ca),m,s . Bw - Be(ﬂ)
isZk

(seRm=1,L>1),
¢ = Loo(e™omg)

= L—1 i
where Zg, ,,(x) = 3570 LB 1 iy T(O70) © To(x).
) m ®

We omit details from this point on. The argument follows the structure of that in section 3.1.2, but
adapting for the fact that the unperturbed eigenvalue is not anymore 1 and that randomization should
be accounted for: in terms of section 3.1.2, quenched versions of conditions (1), (i-iii) and (3) are
adopted. Notice that the quenched version (iii) implies quenched exponential decay of correlations for
suitable classes of observables.

Based on these conditions, quenched first-order approximations of the perturbed eigenvalues
(Awm,s)m=1 are employed. These approximations are based on a quenched perturbative result devel-
oped in [10] (theorem 2.1.2). This result is a randomization of [60], however, reading their theorem
2.1.2, one will notice that [10] also adopt hypotheses (1), (i-iii) and (3), whereas, as we have seen in
section 3.1.2, [60] adopts (1), (2.1) (included in ii), (2.2), (2.3) and (3), and then argues that (2.1-2.3)
implies (i-iii), due to the stability theory developed in [61] and [59].

However, when dealing with applications, both [8] (lemma 4.6) and [10] (2.5.10) use a version of
“(2.1-2.3) implies (i-iii)”. The quenched version of this implication is due to [29], which randomizes
[61]. In this context, one deals with cocycles of operators rather than compositions of a single operator,
and many concepts have to be suitably adapted. This translation can be found in a systematic way
in the semi-invertible multiplicative ergodic theory literature (see [46] and [50]): e.g., eigenvalues
become Lyapunov exponents, eigenspaces become Oseledets spaces, quasi-compactness has to be
suitably adapted (see [85]), and so on.

Based on systems satisfying the assumptions reviewed so far and adapting the logic used to
get equation (3.13) out of equations (3.11) and (3.12), [8] concludes that for each s € R\{0} and
P-a.e.me Q.

s 7m lmm s P
i, ool %0) = lim " = exp (1) [ o))
where Y Y Y Iy
O (s) = lim ,0 — Mo,m,s — lim c.o.,O_ ,m,s , (315)
o) T s % Aol — ) oo (T -t r o)

for which there exist more explicit formulas similar to those in equation 3.10 (see [8] equation 3.28).

It is interesting to notice that the limit is of an annealed type despite the very general quenched
approach and the driving merely ergodic. The second equality in equation (3.15) is stated in [8]
theorem 3.14, whose proof refers to [11] theorem 2.4.5, where, very succinctly, one can notice that

l m
W,m,s ,m,s

. . . A .
T, can be expressed in a way as to involve iterates of @ under 6 and —%** will sum over these
@, ®,0

terms, in which case a non-standard ergodic theorem can be applied.

Again they argue that the pointwise limit of the characteristic function found in equation (3.15)
is discrete and infinitely divisible, therefore the limiting random variable is compound Poisson
distributed. Its distribution can be expressed using Levy’s inversion formula, giving

. 1 (r . _
i o o(Zg,, =) = Jim oL f_Te_”kexp (—(1 o) L ocw(s)ra,d]P’(a))> .
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Once again, as in section 3.1.2, one could derive expressions for the intensity and cluster size
distribution of the underlying compound Poissonian limit, using associated characteristic functions
(see their equation (3.36) and proposition 3.18).

As it comes to applications, [8] considers certain systems that draw among at most countably
many piecewise expanding maps of the interval with finite-many branches. The drawing procedure is
driven by PP ergodic, but explicit calculations are carried out for Bernoulli measures. Limit behaviors
can either be standard Poisson processes, compound Poisson processes with geometric multiplicity, or
compound Poisson processes with non-geometric multiplicity.

3.2.3 Probabilistic approximation

In this section, we briefly comment [52]. They study random subshifts of finite type with y-quenched
and a-annealed mixing to get, under annealed time-scaling, compound Poissonian hitting statistics to
targets at p-periodic points {.

The mixing assumptions spell as follows

i) 3y : Noy - R, limy o (k) = 0,Vm,m' = 1,YU € C,,,VV € Cy, for P-a.e.0 € Q:

o (U A 0™ ™V) = i (A) tgnnt (V) < W) o (A) s o (V).
i) 300 : Noj — R, limy,o W(k) = 0,Ym,m’ = 1,YU € Gy, ¥V € Cy:
(U A o™""V) = [(A)I(V) < a(m).

Moreover, they assume additional conditions to guarantee that cylinders are small enough. Then,
using an ad hoc approximation method (which again, as in section 3.1.3, is bounded with short and

long-range components), and denoting

Zraan) . _ I¢, () ©0"

they conclude that
Zlrea! ", CPD
(Zun JiHo = CPDz(1-5),(Geor s(0))r1,

where

Y T(< A (<) BN T(<A [ \eM(3)
=i 1 BCu(©)

e (Ca(Q))  moe



Chapter 4

Compound Poisson distributions for
random dynamical systems: a
probabilistic block-approximation
approach

4.1 Assumptions and main results

4.1.1 General setup

Consider M a complete separable metric space, and €, the so-called driving space, a complete
separable metric space equipped with a measurably-invertible ergodic system (6, P).

Consider maps T, : M — M (@ € Q) which combine to make the a measurable skew product
S:QxM—->QxM, (0,x) — (0w,Tyx). As usual, for higher-order iterates we denote S"(w,x) =
(0"w,T;(x)) where Ty = Tgn—1y0---0Tgpo Ty (n=1).

Denote
PP(Q XM) = {na € P(Q X M) : ‘a,ﬂg*‘a = P}a
PS(Qx M) ={QeP(QxM): St = 1, o, fi = P},
and
. ]P:j.)& .
pP®) (M) = P H:weQ Ue € P(M) so that: ?
weQ =" Up(Ep) € [0,1] is (Ba, P|o,1))-measurable, VE € Bo x By

® u:weQ Fras. Ue € P(M) so that:
Pr, M) =4 pet® Ho(Ew) € [0,1] is (Ba, B|o,1))-measurable, VE € Bqo x By
Tptlo = Hore, Vn =0, P-ass.

Notation. Elements in the latter two sets will be written as 4 = (g ), Where the outer ‘@’ subscript
(instead of ‘@ € Q’) is to identify that the given family if defined P-a.s.. The underlying full measure
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subset Qg can be assumed to be forward and backward 8-invariant (otherwise we substitute it by
(Nnez 0"0)-

A family of measures (U ) satisfying “Tj. o = Hore, Vn = 0, P-a.s.” is called a covariant
family.

For the next paragraph, we refer to [28] (prop. 3.3) and [5] (sec. 1.4). For E € Bq x By, for any
o € Q, its w-section, {x€ M : (w,x) € E}, is denoted by E,, or E(®).

Using Rohklin disintegration theorem for ft € P¥(Q x M) with respect to the partition &2 =
{[o] :={w} xM | @ € Q} of Q x M, we have that there exists (U ) so that:

PP@QxM) — PE(M)
i) VE € Bo x Bu: LE) = f Ho(Eo)dP(0), i) PE@QxM) < PL(M) .
Q N

= (Ho)o
Conversely,
PEM) — PHQxM)
POM) — PEQxM) .
(Mo)o — [A=duedP(o),ie., (E)={,lo(Ew)dP(0) (VE € Bo x PBu)

Now, consider a given Il = diudP(®) € PL(Q x M), with the associated (U)o € Pg) (M).
Define the marginal measure I = My, [l = §, i dP(@) € P(M).

Finally, consider I' € g x Sy so that, P-a.s, I'(®) is compact and small in the sense that
Ho(T'(w)) = 0. The set I is the so-called random target. Denote I'y (@) = B, (I'(w)) (p > 0) and the
corresponding @-collection by I'.

The objects considered above comprise what we call a ‘targeted random dynamical system’, or
simply ‘system’, to be denoted by the tuple (6,P, Ty, Uy, ).

Let’s define some working objects. Let U € B x Py be a set whose w-sections U (@) = M have
positive [,-measure, P-a.s.. We again can consider that the said underlying set full measure subset is
f-invariant, so we can consider that g, (U (0" ®)) > 0, for all n € Z, P-as..

Definition 4.1.1. The first hitting time of (6,P, Ty, 1y, U) is the family of functions

r[c]o,l: M — Nsju{oo}

x > inf{ieNs;:T)(x) eU(0'w)}
The associated higher-order hitting times are given, for ¢ > 2, by the family of functions

r{‘,”g : M — Nyyu{w}

x o W) =T W+ (T ()

o,(—1
where @' = 0'v. W,



4.1 Assumptions and main results 59

Definition 4.1.2. The hit counting function of (6,P, Ty, ly,U), for L > 1 is given by the family of

functions . ;
Zyy :M—Nxg Z7":M—Nx
L

-1
x'_’ZILU(G"a))OTal)(x) ’ xr—>2 ly(gio) 0 Tp(x)
i=1 i=0

These objects are related, for example, in the sense that {Z%} > ¢} = {r{j”é <L), {(Z9F =1y =
(o' <L< rla]”éJrl }. When U =Ty, we write [ = Ir,(0iw) © T.

4.1.2 Working setup

Notation. A R-valued function defined on the product space, f(®,x), is often rewritten with the
random seed in the sup/subscript, like f®(x) or f(x), which can be seen as an Q-family of functions
defined on M. And vice versa. When integrating a function, we may simply omit the dummy variable
of integration, even if it is a sup/subscript. We leave it for the reader to infer what variables and
parameters are being integrated and were omitted. Some examples:

DAl = Swﬂw NAR(@,%) = S,y fo(W)AR(,3) = To Holfo)dP(0), With Ho(fo) =
SMfa) d.uw SM f(@,x)d ey (x);

ih) A(2E) sgxM L (1)1 (0,2) = §g Ho(Z21)dP(0), with 1o(Z21) = §, 285 (x)dpo ().

If the aforementloned fis {0, 1}-valued we 1dent1fy it with the set F = f~!({1}), since f = 1,
whereas its partials f;, are identified with the o-sections of F, denoted Fy, since f, = 1f,. And vice
versa. So, instead of i), we could write i’) L (F ngM 1rp(w,x)di(w,x) =5, ., 1r, (x)dit(®,x) =
$31 Ho(Fo )dP(0), with Lo (Fo) = §,, 1, (x )d.uw = §yr 1r (@, x)d o (x).

Notation. We write lim lima(L, p) for the coinciding value of hm lim a(L p)and lim lima(L,p),
—>OOp_)0 —00 p—0 L—>OOp_>O

when they do exist and coincide. We also denote a(L) = lirr%) a(L,p) and a(L) := lima(L,p)
whenever theses are finite quantities.
Notation. Consider non-negative sequences a(n) and b(n) (n = 0). we will write a(n) <, b(n) to
mean that there exists a quantity C, independent of n, so that a(n) < Cb(n) (Yn = 0).

When the functions a and b have more than one argument, it is necessary to indicate which of
them are controlled uniformly: for example, with a(n,m) and b(n,m) (n,m > 1),

- a(n,m) <, b(n,m) means that there exists quantities C,, (m > 0), independent of n, so that
a(n,m) < Cyb(n,m) (Vn,m = 0);

- a(n,m) <, b(n,m) means that there exists a quantity C, independent of n and m, so that
a(n,m) < Cb(n,m) (VYn,m = 0)

In the context where some of the arguments are taken to the limit, we implicitly consider that these
are the ones being controlled uniformly and we omit the associated subscript from the << symbol.
We also employ the usual big-O and little-o notation.

Let’s start introducing a couple of new objects: those with a A will be associated with hitting
statistics, and those with an o will be associated with return statistics. Whenever the following limits
exist (and the appropriate ones coincide), denote, for £ > 1 and w € Q:
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D
w __ 13 qin ) O
A —LILHQO,%M (L,p)
where
Ho(Z0)" = 0)
AL(L,p) = e(Z8F =0 28F >0y = ——2  — 4.1)
¢*(L,p) = Ho(Zr, | T, ) lJm(Z?p’L>0)
m !
L_’OOpHO
where
M(L,p) = p(ZEk =0zk >0) Az, =0 (4.2)
(L, p) = U4, T ,EL(Z%p>0) .
J .ua)(ZI(B’L = f)dP((J)) i} (Zw’L > 0)
_Ja P . (0] T
- ol = J P e o) !
Jguw(zrp’ > 0)dP(w) oMo\‘r,
111)
A0 Tin AO 2
o = théo,l%) . (L,p)
where y - oo IJw(Z;Op’L > &Igm =1)
V)
o __ 13 Jim O
o —Lh_)ngogaé (L,p)
where ) . o #w(zlg:;L _ &Ig)-,p =1)
Since {Z07" > £} {70 = £+ 1} and {Z" > P\Z2" = €41} = {70 = £}, then
&;D(Lap) - &/ﬁl(lﬂp) = (X/,w(L>p)- 4.5)

which entails that the existence of &/’s implies that of the a;”’s with a° = &° — &’, |, because:

lim lim &®(L,p) — lim Tim &2, (L,p) < lim lim o®(L
Lgrolop%az( P) Lingopgnlo%l( P) LE&,)%‘})“Z( P)

Jim lim a’(L,p) < lim Tim &(L,p) _I}LII;O’%)dﬁl(L7P)'

'A comparison between (A¢);= and (A4(1)),>1 defined in theorem 3.1.3 is worthwhile.
2Notice that, by L-monotonicity, the outer limits always exist provided that the inner ones do.
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V)
= lim lim&(L,p)?,
L—>oopH0
where Ry, )
f(zEk =010 =1
A _ n(7L P _ —
OC(((L7P) - ”(er = g’IO - 1) - pﬁ(Fp) (46)
J Ho(Z2F > 0,1°° = 1)dP(w)
f Lo (Tp(@))dP(o) Q Solto(Tp (0))dP()
Q
Vi)
= lim lim oy (L,p)
L_’COpHO
where Y )
f(zk =0,10 =1
— (7L — 1P — 1) =
(X((L,p) - u(ZFp - g’IO - 1) - pﬁ(rp) (47)
| oz = .1® = 1yap(o)
f Lo (Cp(@))dP(m) Q So o (Tp(@))dP(w)
Q
Since {Zlép >/(} > {Zlép >(+1} and {Zlép > E}\{ZLP >0+1} = {Zlép = (}, then
&E(Lap)idf-‘rl(l‘ap) = (Xg(L,p)- (4.8)

which entails that the existence of &,’s implies that of the ¢’s with oy = & — 61, because:

lim lim oy (L,p) — hm hm OC/H(L p) < lim lim a(L,p)

Laoop_)o L—0 L~>O(DP_>0

hm lim Oc@(L p) < hm hm Oc@(L p)— hm lim 641 (L,p).

Now we upgrade the general setup of section 4.1.1. To optimize for generality, we present in
abstract terms the conditions which are required from the systems we will work with. In concrete
examples, these conditions need to be verified, but one should keep in mind that they are conceived to
accommodate non-uniformly expanding behavior and random targets that do not overlap very badly
with the regions where uniformity breaks.

On top of the features prescribed to the objects in our system throughout section 4.1.1, we will
consider the following hypotheses.

H1 (Ambient). Let M be a compact Riemannian manifold and Q a compact metric space.

H2 (Invertibility features).

3See footnote 2.
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2.1 (Degree). Yo € Q,Vn > 1,Yxe M : #(T2) ' ({x}) < oo with

sup#(75) ™! ({x}) < o0 (Yoo,x), sup#(75) ™ ({x}) < 0 (Vn,x), igﬁlz#(TJ})*l({x}) <o (Vo,n).

n=0 weQ
2.2 (Covering). IR>0,N > 1,YVoeQ,Vn=>1, H(y,?’")ke,(w‘n < M with #K, , < 00 so that (Bg (y,?’"))kekw‘n
has at most A/ overlaps.

Terminology suggests that (Bg (y,?’n))keKW covers M entirely, but a small defect is allowed, in the
sense of (H2.5) below.

2.3 (Inverse branches). Yo € Q,Vn > 1,Vk € Ky p,
IB;" = {¢: Bg(y."") — M diffeomorphic onto its image with Tjj o ¢ = id}

is non-empty, finite* and so that @, y € IB;”", ¢ # y = ¢(dom(@)) N y(dom(y)) = . In partic-
ular, the set IB(7g) = Ujex, IB”" is finite and so that @, y € IB(T),dom(¢) N dom(y) = & =
¢(dom(¢@)) N y(dom(y)) = .

The following item is a consequence of the previous ones, but we list it here for convenience.

2.4 (Cylinders). Yo € Q,Vn > 1, C? = {£ = ¢(dom(¢)) : ¢ € IB(T2)} is finite and has at most N/
overlaps.

2.5 (Large covering). For P-a.e. € Q, Vn > 1, Uy (M\ Ugecw é) =0.

2.6 (Non-degenerancy). 1t > 0 so that

infinf inf pgno(Br(yy™")) > 1.
exsigtint ol woralBe)
Next, we consider that the aforementioned (plain) cylinders are refined enough as to split and
distinguish regions with different hyperbolic behavior.

H3 (Hyperbolicity and cylinders). Plain cylinders split into acceptable (and unacceptable) cylinders,
whereas acceptable cylinders subsplit into good (and bad) cylinders.

+ -+ 4+ 4=
Namely: Vo € Q,Vn>1:C}, =C? L C?, CP=C? L C?, making measurable

* l,xeuéeézoé,

Cn ((D,X) = (*E{+,—,++,+—}).

0, otherwise
ES *
Notation. For = € {+,—,++,+—}, write IB (T2)={¢ € IB(T}) : £ = ¢(dom(¢)) eC®}.
This splitting distinguishes hyperbolic behavior in the sense of satisfying:

3.1 (Weak hyperbolicity on plain cylinders). Vn > 1:

1 < inf inf inf |DTj(x)v| < sup sup sup sup |[DT,(x)v| < oo.
WEQECY \‘)‘GHT)JVll WeQECCY xek veT,M
Vi= Ivli=1

4Cardinalities behave as in (H2.1).
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3.2 (Bounded derivatives on acceptable cylinders). Vn

sup sup sup sup |DTp(x)v| =:a, < ©

WEQEeCY xe& veTtM
Ivi=1
3.3 (Distortion on good cylinders). 30 > 0,3C > 1, Vn = 1: (denoting & = ¢(dom(@)))

~—

(x
Jo(y)

G&'

<Cn®,

esssup sup sup
weQ ++ VE
peIB(15) :

_a9s [Horolrze ] ().

where
_ d oy [.ue"w‘dom((p)]
dlle|¢

Jo(x) =
? dlo|g(dom(p))
3.4 (Backward contraction on good cylinders). 3x > 1,3D > 1,Vn > 1: (denoting & = ¢@(dom(@)))

<essinf inf inf inf |DT}(x)v|,
XE VETM

Q ++ I3
9eIB(T5)  ~ |v|=1

esssup  sup sup sup |Do(z)v| < Dn~ ¥, ie., Dn*
WeQ ++ . zedom(p)velM
9 1B (T3) Iv|=1

and, in particular,
sup diam(&) < Dn™ k.

++
e IB(T})

esssup

M (Target position).
4.1 (Uniform inclusion in adequate set). VL > 1,3psep(L) > 0,Vp < psep(L),V € Q

VISL <SLYO<j<L —1:(T})~ rg/zp(ea))ccy]

4.2 (Quenched separation from non-good set). It holds that’

Hoic < (6'®) N {c uele D:O,P—a.s..

B5 (Lipschitz regularities).

5.1 Map). sup,,,Lip(T.(x) : Q — M)

5.2 (Driving). Lip(60) < oo.
5.3 (Target). Lip(T': Q — Z(M)) < co,where (M) = {A < M,A compact, A # (&} is equipped
with the Hausdorff distance dp (A, B) = sup,¢4 infyepd(x,y) v sup,cpinfxea d(x,y), which makes it a

compact metric space.
STt is expected that this condition can be substituted by an averaged counterpart
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H6 (Measure regularity).
6.1 (Ball regular). 30 < dy < d; < 00,3Cy,Cy > 0,3pgim < 1,Yp < Pdim, for P-a.e. 0 € Q:
C1p™ < po(Tp(0)) < Cop®.
6.2 (Annulus regular). 3n > B > 0,3E > 0,3pgim < 1,Yp < pdim, V7 € (0,p/2), for P-a.e. w € Q:

,ua)(Ferr(w)\FP*r(w)) < Eﬂ

Ho(Dp (@) pP

H7 (Decay of correlations). dp > 1 so that

7.1 (Quenched). For P-ae. € Q, VG e Lip, (M,R),VH € L*(M,R),Vn > 1:

| 6 o b~ 10 G ool < 771Gl

7.2 (Annealed). VG € Lip,,  (QxM,R),YH e L*(Q xM,R),Vn > I:

. 6 (tosan - pG)atH)| < w16l , 11

HB (Hitting regular).
o0 o0
3@6)621,ZHM = 1,22216314 < 0.

H9 (Return regular).
e @] a0
A(ay)e=1,01 > 0, Z oy = I,Zﬁzag < 0.
(=1 =1

We call ¢ the extremal index.

H9’ (Pre return regular). It holds that

e¢]
@)1, 00 — 0y > 0, L6y < 0.
(=1
Using the final implication of item VT), it is immediate that (H9’) = (H9), because o) = & — 0 >
0, 2 p=01=1,and Y2, oy <237 Ly < 0.
Moreover, for technical conditions, we assume that the quantities appearing in the previous
hypotheses harmonize so that the following constraints hold. Mostly, they hold when (polynomial)
decay is sufficiently fast.

H10 (Parametric constraints). It holds that

2(‘3;”’1 v1>+d1

10.1. do(p—1) > T,

102 2p>2 (B v 1) +ay,

10.3. 0 < kdp — 1.
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4.1.3 Main results

The first result to be presented, theorem 4.1.3, valid in the general setup of section 4.1.1, expresses
hitting statistics (A¢’s) in terms of return statistics (0¢’s).

Theorem 4.1.3. Let (0,P, Ty, Uy, I") be a system as described in section 4.1.1, with (0,P) only
assumed invariant.

Then

(H9') = Ay = W_T‘lx“l (6> 1) and (HS).

The essential part® of this theorem is to conclude the equality, which will be proven in section 4.2.
It implies that a; = (3,2, £A,) L.

Although important on its own, it actually plays an auxiliary role within the paper, serving the
following two purposes (the essential one being the second):

1) Technical: help the proof of our main result, theorem 4.1.4, via its use in the proof of lemma
4.4.1. Notice that this lemma can be restated assuming (H8) and not invoking o,’s at all, but relying
only on A;’s. However, we still use o ’s (and theorem 4.1.3) in the proof of the said lemma. We
believe one could bypass this intricacy and write a spin-off version of lemma 4.4.1 with an associated
proof reformulation where o;’s and theorem 4.1.3 do not play any role. The consequence would be an
associated spin-off version of theorem 4.1.4 written completely free of ¢ ’s and relying solely on A,’s.

2) Examples: to handle examples, one will always need theorem 4.1.3 to compute the A;’s
appearing in theorem 4.1.4 (or its hypothetical spin-off). This is because return statistics are generally
much easier to compute than hitting statistics, so, whenever facing a concrete example, we calculate
the of’s to obtain the A;’s.

Let us now formulate our main result. It says that the targeted random dynamical systems being
considered have quenched limit entry distributions in the compound Poisson class.

Theorem 4.1.4. Let (0,P, Ty, e, D) be a system satisfying hypotheses (H1)-(H7),(H9’) (so (HS), by
theorem 4.1.3) with the parametric constraints (H10.1)-(H10.3).
Then: Vt > 0,Yn = 0,Y(0m)m=1 \ O with 3, pm? < o0 (for some 0 < g < q(do,dr,m,B,p)")

one has

/(T y, -a.s.
Ho (2T — ) 245 €Dy, o) (1)), (4.9)

where CPDy (3, is the compound Poisson distribution with intensity s and multiplicity distribution
(Ao)¢ (see definition 2.1.118).

Remark 3. If the system has exponential asymptotics in (H7) and (H3.4), the previous conclusion is
still true, but, actually, with fewer parametric conditions being required: instead of (H10.1)-(H10.3),
only xdp > 1 is needed.

(H8) follows from the previous equality and (H9) because >~ A = E‘ﬁ%l_w“ =1and 32,0P% =
() 'Y Bl —apgr) = (an) 7 (on + 272, o — Y720 —1)30y) = (o)~ (ou + 372,32 =30+ 1)oy) <
(o)™ (14272, 7 ay) < oo.

7A quantity to be introduced in lemma 4.4.2.

8Please note that chapters are independent. So despite the notational coincidence, the probability space in definition
2.1.11 is an abstract one, not the same as the random driving of the random dynamical system.
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The rest of the thesis is organized into two parts:

I) Theory: Until section 4.5 we work to prove theorem 4.1.4, accomplishing the required auxiliary
results, among which we highlight theorem 4.1.3, theorem 4.3.1, and lemmas 4.4.1, 4.4.2 and 4.4.3.
Let us briefly recall the point of these auxiliary results and provide a blueprint of the proof.

Theorem 4.1.3 calculates hitting statistics in terms of return statistics. Its role was already
discussed above.

Theorem 4.3.1 provides the skeleton of the proof of theorem 4.1.4, describing the asymptotics we
are after with a leading term and an error. The leading term appears from spliting the w-quenched
hit-counting function into equally time-sized blocks and mimicking them with an independency of
random variables distributed just like each of them®. The errors have a structure, basically being
divided into two parts'’. The first one (comprised of terms R' and R') accounts for long-range effects
and will be controlled using weak hyperbolicity features (H3.1,H3.2), the target uniform inclusion in
the adequate set (H4.1), the annulus regularity (H6.2) and quenched decay (H7.1). The second one
(comprised of terms R? and R?) accounts for short-range interactions and will be controlled using the
structure of the covering system (H2), distortion (H3.3), strong hyperbolicity features (H3.4) and ball
regularity (H6.1). Notice no annealed decay was used yet.

After proceeding as above, R and R! turn out to be w-uniformly bounded, due to the @-uniform
constants throughout the hypotheses. But R? and R> turn out to still be bounded with ®-dependence.
The leading term is also w-dependent.

Lemmas 4.4.1, 4.4.2 and 4.4.3 will used in the proof of theorem 4.1.4 to tame the above-mentioned
w-dependent leading and error terms under the limit, in an almost sure manner, allowing for a quenched
limit theorem: the error will go to zero and the leading term to a compound Poisson. Lemma 4.4.2
does a certain variance control and its proof uses the annealed decay of correlation (H7.2). This is the
only place where annealed decay is used. Lemma 4.4.3 is ultimately the artifact allowing the almost
sure result. It applies the Chebychev inequality, with variance coming from lemma 4.4.2, followed by
the Borel-Cantelli lemma, in such a way as to show that a certain sequence of variables converges a.s.
to its average, whose asymptotics come from lemma 4.4.1.

1) Examples: We consider certain random piecewise expanding one-dimensional systems, casting
new light on the well-known deterministic dichotomy between periodic and aperiodic points, their
typical extremal index formula EI = 1 — 1/JT?({), and recovering the geometric case for general
Bernoulli-driven systems, but distinct behavior otherwise.

4.2 Proof of theorem 4.1.3

Remark 4. Before discussing the proof, to aid one’s intuition on the result itself (but not directly on
the proof strategy to be pursued) it is useful to consider that the algebraic relationship in the conclusion
of theorem 4.1.3 also appears from a Markov chain of the form below

9A comparison with the roles played by conditions ,Z[:{* (u) in section 3.1.1 is worthwhile. See item (i) after theorem
3.1.2.

10A comparison with how the errors in the probabilistic approximation sections 3.1.3 and 3.2.3 are controlled is
worthwhile.
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AN ale
Q(; @% @q'i @‘}; @q.s

N

where the g;’s represent the stationary mass distribution of the chain. By letting & := g¢/>. i=14j
Oy— 0y |

o .
One can interpret that each non-zero state s refers to the space of points in a germ of the target

(¢ = 1), it is possible to verify that A=

set which undergo s visits (present included) to the same germ before escaping from it (i.e., escaping
from its local recurrence behavior), while the state zero represents points outside the germ (and its
local recurrence behavior). The fact that the transition probabilities on the top and the left are 1 and O
can be thought of as an acceleration of the system. In this case, A¢’s can be understood as cluster size
statistics and the ¢, are sometimes called sojourn statistics.

Let us note that theorem 4.1.3 generalizes theorem 2 from [53]. The proof is very similar but
presented here for the convenience of the reader and to fix some inaccuracies found in the latter.

In the scope of this section, let arbitrarily chosen ¢ € N> and Y€ N+ be fixed. These will be
used in the forthcoming proof of theorem 4.1.3 and lemma 4.2.1.

Lemma 4.2.1. It holds that
1)¥n > 0,3L(n),VL' > L > L»(n),3p2(n,L,L'),¥p < p2(n,L,L’):

i (ZE oSt > 0.0 = 1) < npTy).
I1)vn > 0,3Ly(n),YL',L so that L' — L > L»(n), 3p2(n,L,L") > 0,Yp < p2(n,L,L):
Q (z%p > 0,17, = 1) <na(T,).

Proof. Manipulating the definitions of &;’s, the associated limits and the finiteness of the series in the
hypothesis, it can be shown that: Ve > 0

i) Fko(e) = 1sothat 33,7, o kby <e.

i) 3Lo(e) = [2ko(€) v 2¢] (e~ 1Y, VL = Lo(¢), Ipo(&,L) > 0, Vp < po(€,L) one has

ko(E)

a) VH € [L.2L7]: S o kO (H, p) < 2, fy — Yot ak(H,p)] <2e.

b) Vge[1,2ko(e) v 20],VH € [L,2LY] : |&, — 6, (H,p)| < €,|0y — oy (H,p)| < €.

ko(E)
k=1

iii) 3Ly (€) = Lo(e),VL' > L > Ly(e), Ipi(e,L,.L') € (o,AgszO(e,H)>, Vp < pi(e,L,L') one
has ZZ):l ‘&k(l‘/7p) - &k(l‘vl))‘ < 6¢.

To justify i) use that > 07 | k& < 0.
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To justify ii.a) start noticing that Ve > 0,3L¢(€),VL = Lo(€) :

+
0 < G Qu(H) < —— (Vke [1,ko(€)],VH € [L,2L7]),
ko(e)
ko(€) ko(e i
0< )] oy Z o(H) < e (VH € [L,2L"]),
k=1 k=1

+
because 0y = limy, &;(L) occurs monotonically increasing in L.

Then consider that Ve > 0,VL > 0,3po(g,L),Vp < po(€,L):

G(H) — —— & < (H,p) <Gu(H) + ——
W™ koleparrye S BRI SO T e Ly
(Vk e [1,ko(€)*(2LY)?],VH € [L,2L"])
implying
k()(S) k()({:‘) k()(S) +
M ow(H)—e< > &(H,p)< Y, ou(H)+e (YH € [L,2L"])
k=1 k=1 k=1
and Y Y u
e} + €
Z kak(H7p)_ Z k(xk(l—lap)< Z kak(H)+ Z kk( ) (ZLY)
k=ko(e) k=ko(e) k=ko(e) k=ko(€)
o0

€
2() Bl ko(€)*(2L7)?
<e+e=2¢e (VH e [L,2L"]).

Finally, combining the conditions and conclusions of the two previous paragraphs: Ve > 0,3Ly(€),VL >
Lo(€),3po(e,L) > 0,Yp < po(€,L),VH € [L,2L7]:

0 ko(€) ko(€) ko(e
> koy(H,p)<2eand ) d—2e< > G(H,p)< ), 0 +2e,
k=ko(e) k=1 k=1 k=1

as desired.
To justify ii.b) one can adapt the argument used above to show the second inequality in ii.a).
Finally, to justify iii) start noticing that Ve > 0,3L; (&) = Ly(¢),VL' > L > L;(¢):

€
4k0(8)

sw

ou(L) (v, % € {+,-}),

CIE
and therefore Ve > 0,3L,(€) > Lo(e),VL' > L > L;(¢),3pi(e,L, L) € (O,AZ:LpO(e,H)>, Vp <
pi1(g,L,L"),Yk e [1,ko(€)]:

€
4k0(8)

&k(y) — < (L, p) ggck([/) + To(€) (Vke[1,ko(€)])
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(L) ~ gy < B(Lp) <L)+ 5 (ke [Lko(e)
so that — ko‘;) <o(L',p)—ou(L,p) < koie) (Vke [1,ko(e)])

= Z |&k(l‘,7p) - &k(L>p)| SE
and, since the quantifiers were subordinated to those of (ii), we actually get that

S 16 p) = du(Lop)| < ST (6(Lp) = du(Lop)| + X ey [0k (L) — G4(L, )|
SE+ Z:k=ko(8 key(L',p) + Zzozko(s) ky (L', p)
< €e+2e+2e<6g,

as desired
Now we prove I).

Let Lr(n) := L1(n/6) and p>(n,L,L") := p;(n/6,L,L"). Consider L' > L > L,(n) and p <
p2(n,L,L"). Then
i (zﬁp—LosL > 0,10 = 1)

0
- L > o (zﬁ:‘“ LoTk> 0,10 = 1,z{i’p;L = k) dP(o)
k=1

< [ S ho (Tl [ 1228 = (222 > 1)) (o)

Q=1

18

Ugum@p(w))nf’ P)aP(©) - [ polTy@ <L,p>dﬂ»<w>]

k

(L', p)A(Tp) — 0 (L, p)A(Tp) < 61/61(Tp) = M (Tp), by ().

Ms

k

I
_

This concludes the proof of I).
Now we prove II).

Again let Ly(n) := L;(n/6) and p2(n,L,L") := p1(n/6,L,L"). Consider L',L so that L' — L >
Lr(n) and p < pa(N,L,L"). Then

n(zr >01”,_1 fzﬂw PP =1,17P=1) dP(w fzﬂw (I9P=1,177F =1) dP(o)

v
f E#m<“”’ 3 1?7”) dP() = f By, (150|720 =224 ) aP(o)

i=L'—L+1

szuw wL+1_kI,p )uw<wL L 0P )]dP(w)

k=0
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LZ O0(L +1,0)Ho(Tp () — 0 (L — L+ 1,p)o(Tp (@) dP(w),
k=0

but Zi‘ilka,?’(ﬂp Zk 1 k[62(T,p) — &/?JrﬂTaP)] = Zliil al(T,p), so

- | [Sarw e 1o -apw L 1.p)|puCo @) )
k=0

= [l + 1.p) — (! — L+ 1,p)] A(T,) < 6160 (Tp) = MiL(Tp). by (.
k=0

This concludes the proof of II). |

Proof of theorem 4.1.3. Let € € (0,01 /26) and consider a function 1(€) to be chosen in due time.

Set L3(&) be large so that L > L3 (€) = LY~ = (ko(€) +1)e 'and LY —L> L > 2[(L,(¢) v L(n(€))) + 1],
where ko(€) is that found in the proof of 4.2.1 item i), L; (¢) found in item iii) of the same proof and
again L(1) = L1(n/6).

we adopt the notation in the statement and proof of the previous lemma

Set p3(¢g,L) to

. . L2LY — i), JL/2,2LY —i
m“‘{Pl<8’L’”>7P1<8’”‘L’”>z-eu;?%£1 1 { YRS N Wil w )}}

Consider L > L3 (¢) and p < p3(€g,L). We evaluate the numerator that appears when expanding
Ag.

2L7—1
a (2 = f ) Euw( g .‘°=P>dnm<w>

N < 2]] s ! a)2L7 wp _
= | 2 uw — 17" = 1) dP(0)
< 2LA(T,). (4.10)

We establish some notation. When i € [L,2LY — L — 1] and k € [0,£ — 1], write:
LaLY _ 207~ ,p ,p .
Dyt = {Zu 1+LI” >0,"" =1¢;

L/2 L2=1 ,p .
L i—1 0,p _ i+L-1 0,0 _ .0 __ .
L DN AR ) A U B A
Rit () = iy n {179 = 1122 =0 ¥ae[0,)) | for j € [0,i];

Styia () = Riyyy 0107 = 1L17? =0 b (ji) ] for je [0,i~1].
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To update the estimate in equation (4.10), we will apply many approximation steps, to be identified
with uppercase roman letters and justified only at the very end.

A)Forie [L,2LY —L—1]:

[ o (222" = 012 = 1) aB(@) ~ | o (2 = 1% = 1) aP(@)| < n(e)AT,)

Combining equation (4.10) with approximation (A), while observing that second integrand above
equals L Uk on k) gives

2L7L 10—-1

B(A =) Y Y | el @

<O'2L+ (2LY —2L)n(e)]a(Tp)-
B)Forie[L,2LY—L—1],ke[0,4—1]:

(4.11)

|| no®t )P0~ [ alkazw) < sn(ea(r,)

C)Forie [L,2LY—L—1]:

He Mo dP(@) — | Mo (Rgio)dP(@)] <n(e)a(T)).
o [t (8550) )| <

Combining equation (4.11) with approximations (B) and (C), gives

Q (sz _z) —(2L7’—2L)Luw< MO) dP( )‘

< [2L+5(2LY —2L)n (&) ] (T,).

(4.12)

Now we look to the other side of the equality we are trying to prove
Notice that

o (S35 157 =027 < 1)
a(L,p) — a1 (L,p) = (T ”J dP(
E( p) /—i—l( p) I'L( P) o 'uu) (ZZL 1 £+1 I ®,p 1) ( )

LL

+ 22 ko(s)+1SQ“w w€+kk) Ho (R 4 ii14)dP (@)

:ﬂ(l"p)_ll SQ”“’ wf+kk) Ho(R w€+k+lk)dp(w) ] (4.13)

© gyt | ZE0 Sa bR ) = (uw< 1) O (M(OA(T,)) ) dB(@)

+Zk ko (e +1Sgﬂw wf+kk) Ho(R wf+k+lk)d1p)(w)

> [(e(t.p) - aeer L))~ [ o (RS (@)
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< 2ko(£)O (n(e)A(T,)) +2 2 f Ho(RES ) + Ho(RES 1 )dP(),
k= k()

2 2k0(£)0 (MER(T,)) +7(ko(e) + D e) (2L PIA(T) (4.14)

where steps () and (3k) are justified, respectively, with the following two approximations.
D) Forie [L,2LY —L—1], k€ [1,£— 1] (for other k’s, zeroes pop up):

[ o (R ) @) | o (R, ) apto) < 3n(@racry).

E)

f Ho(RSE JAP(@) < (kol€) + 0) ey (2L )T ).
k=ko(€)+1

Now choose 1n(€) = €/(ko(€) + 1). Combining equations (4.12) & (4.14), using (ii.a) from the
proof of lemma 4.2.1, and factoring L” out (notice L' =7 < ¢), gives:

1 (72 = 0) =207 (ou(L,p) — 01 (L)) ATy | < B4LTE(T). @.15)
We can finally evaluate the denominator which appears when expanding A,.

ko(e)+1

o -0) =S o ) (2 i)

h=1

k()(£)+l ,
= 3| (12 ) (@) + bt )R
P

h=1
2LY—1ko( £)+1

=2 2 [ IZJuw (i) dP(o)

i=0

+0(ef(Ip)), (4.16)

where the last line applied (ii.a) from the proof of lemma 4.2.1.
Then we consider the following approximation.
F)For he [1,ko(e)+ 1], i€ [L,2LY —L—1], ke [0,h—1]:

| o (R a20)~ [ (R apto)] < niepary).

Starting from equation (4.16), splitting the i-sum into middle (i € [L,2LY — L — 1]) plus tail terms
and applying (F,B,C,B) to the middle ones, gives

k0(8)+1

p(Z>0)=eLr-2n)| Y (Luw(legfhﬁ1)d1@(m)>+o(g,:¢<rp>)

h=1

10 (4L(k0(e) + l)e“eﬂ(l“p)> +0(ef(Lp))
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k()(&‘ +1

,ﬁ,( zZ2E > 0) 2L Z JQ/J%D ﬁ)th 1 d]P’(a))

ko(e
<3LYO(efi(T,)) + OAL-L e (T,)) + O(ef(Tp)) + 4L 2 f”w gﬁhhq)d]?(a))

ko(e)+1
<8LYO(e(T,)) +4L Z J“w St ) AP(©),

where it was used that (ko(g) +1)e~! < L7~

To take care of the summations on both sides of the previous inequality we observe that, when
¢ =11is given to the “oy (L, p) side of” equation (4.13), one gets

ou (L, Z Jﬂw ﬁ)th 1dP(w): Z j“w a)1+hh dP(w)

< (ko(€) + 1) ey 41 (2L.P)A(Ty) < 2e1(Tp),

where (E) and (ii.a) from the proof of lemma 4.2.1 are applied.

Therefore

1 (ZE > 0) 2L (L,p)A(T )|

<8LTO(efi(Tp)) +4L(ar (L, p)e~"efu(Ty) +2e(Tp)) +4L (L)

<20LYO(efi(Tp)) +4a (L, p)LLY 'efi(T,) < 12-2LY0O(et(T,)). 4.17)

Since o (L,p) is e-close to o and € € (0, &t /26), the previous equation sets fi (Z%ﬁy > 0) far from

: ~ Y .
zero, so we can really work with ,u(leaﬁ > 0) as a denominator.
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Combining the estimates given in equations (4.15) and (4.17) gives:

o (7207 _
‘L(ZFP _€> 0 — Oy

o (2L a
il (er > 0) 1
~ 2LY _oy(Lp)—oy 1 (Lp) A 2LY
_|H (er B E) I (pr - O) o (L,p) — 01 (L,p) O —
h o (L,p) 07|

i (7Y >0)

i (2 =0) =2L7R(Tp ) (@(L,p) ~ s (L.p))| +

2LIR(Tp) (@ (L,p) — 0t (L, p)) — 20 LP) g (72070

<
o (7L
i (er > 0)

o (L,p) — 01 (L,p) O — Qs

o (L,p) o
¢ 42-2L7ep(Tp) + W(L’pozl_(zg)l E212- 2L (T) ou(L,p) —aus1(L,p) O — O
“.17) i (zgsy > 0) a1 (L, p) o
1 O(e) > o (L,p) — 041 (L, p) < 1 O(e) >
<42 —+ + e —+——0
(051 (on —O(¢))? ai(L,p) o (on—0(g))?

ou(L,p) — o1 (L,p) O — Oy
o (L,p) (o}

(4.18)

where the last inequality applied the control

a(z3 >0
Z_z) (#>0) | o@
(e)

P 2AT,) S (= 0(e)?

zzo—0

LT, 1| _ (
o (7oL ol
Q (er > 0)
which is due to equation (4.17).
Passing limg_o lim/_,o, lim,_,o over equation (4.18), we observe the RHS going to zero and we

find that
77#1(2%1“7:@ oy — o
lim Tim P — AT
L—w0 p—0 ﬁ (le—f;y > O) o

Alternating between limsup’s and liminf’s lets us reach the desired conclusion.
Now we prove each of the approximations used above. Many of them rely on initial inclusions
which are indicated and whose justification is left to the reader.

Proof of A) One can check that

w,i+L 0.p L.LY 2L 0p
{zoit =P =1} o Gy = {727 = 01 =1}

,i

c {fop’”L = K,Il.w’p = 1} U phL

[OR )
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which gives an inequality that, after integration, can bound the LHS of A) by {,, to (Dﬁ)’ﬁy)dﬁ”((o).

Then we calculate

|, ol yap(0) - j po (2802 E o TE > 0,109 = 1) dB(o),

but2LY —i>L<2LY—L—1>i,L>L3(e) = Ly(n(e)) and p < p3(e,L) < p2(n(€),L,2LY —i),
so (I, lemma 4.2.1) applies, 1mplymg that the last integral is bounded above by 17( JA(Tp). a

Proof of B) One can check that

i
i,L L/2.LY L/2 i—j\—1 pi,L . i,L L/2,LY L/2
le,l,O a <Dw/,i Y Fa),/i )C = U (TCi) J) Rlei—.iw717k(]) = Rlco,l,O Y (Da)/,i Y Fw,/i )
Jj=i—L/2+1

Then we calculate
J M( L/2> AP(©) = f u@( pr/z >0,1%° = 1) dP(w) <n(e)a(Ty),

where the inequality follows from an application of (I, lemma 4.2.1), since i —L2 > L—L/2 =L/ >
Ly(n(g)) and p < p3(€,L) < p2(n(€),4/2,i).
And also

y L/2 Y_i— i}
J, 0 (L) P(@) = | o (78,702 H20 7% 0,172 = 1) db(0) < mie)A (),

where the inequality follows from an application of (I, lemma 4.2.1): 2LY —i > Lh < 2LY — L — 1 > |,
L= Ly(n(e)) and p < p3(e,L) < p2(n(€),5/2,2L7 —i).

The consequence is the approximation
f Ho (olO ( >_J Ho |_| (T(i) ]> Ret !m,l,k(j) d]P)(w) <277(8)[1(1—‘13)'
Q j=i—L/2+1
However,
[ro| L @y R ) |dp@) = | o L R Jaro)
Q j=i—L/2+1 ’ Q j

gLMD(mk)dIP’() Luw L] R G) |dB() +n(e)

j=i—L/2+1

=
’.—_J\
NS

where the last inequality follows from the inclusion

i

L . i—L

Rla)lkc U Rwlk(J)UFsz
Jj=i—L/2+1
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and the estimate
J .Ua)( Fi- L/2> dP(0) = f ﬂw( ZOi=L/2+1 0711_(079 — 1) dP(@) < 1 (e)(T,),

with the inequality following from another application of (I, lemma 4.2.1): i— (i —L/2+1) =
L/2— 12 Ly(n(e)) and p < ps(e,L) < pa(n(e),i— L2+ 1,0).

The conclusion follows from aforementioned approximation and the previous control. O

Proof of C) One can check that

l L2

i,L ji—[\—1pL,L i—L
lei’shOC(T‘i’ ) Ry (Tl ) 0' La)lO\RwZO a)z )

6—Lw,l,00 \'0
which gives an inequality that, after integration, can bound the LHS of the expression we need to
control by §, pe(F, F- L/ )dP(w) < n(e)f(Iy), where the later estimate is identical to that obtained
at the end of the proof of B). O

Proof of D) One can check that

i—1
L L2LY L L/2\¢ i—j\ 1 il 2L L2
Rla)lk 1N (Dco/,i uFco,/i ) < |_| (To ') ISlgifijk( )Cszk v (Dw/,i U F, /) 4.19)
j=i—L/2+1

L/2 LY

The corrective sets F; L/ * and D, are treated again as in the proof of B), implying that

i—1

f Ho (Roy 1 dIP’( )— L““’ L] (7o) 7' Sg s,k l) |[dP(@)] <20(£)A(T,). (4.20)

j=i—L/2
However,

i—1 i—1

Lum L] @) S 00 () | dP(@) = Luw L] S50 |ap)

j=i—L/2+1 j=i—L/2+1

< Lum( k) dP(@) < Luw |_| Soax(i) |dP(@) +n(e)(T,),

j=i—L/2+1
where the last inequality follows from the inclusion
i

i,L i,L i 2
Ry || SerxDVFss
j=i—L/2+1

and the respective estimate of the corrective set using (II, lemma 4.2.1), precisely as in the end of the
proof of B). O
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Proof of E) One can check that

L o(L)

_ . - 0Lo, oL
U U @R =) (Th) 1{erw,zL>k()+€, P 1}.
J=1k=ko(e)

Therefore, integrating, manipulating and using invariance over and over:

L oo(L) (L) »
f Ho U U (Tw)_lRBIwHkk(L_j) dP(w) = 2 J Heo (RC(,’H,(’,{) dP(w)
Q ]:1/(:/{0(8) k:ko(f;‘) Q

< f o (227> ko(e) +£.1° = 1) dP(0)
Q

= O (e)+¢ (2L, p) 1(Tp) < (ko(€) +£) Oty e) 10 (2L, p)A(Tp ).

Proof of F) One can check that

RiL

LL'\c _ pi2L7—i
ok Dgi ) =R c R

w,i w,h.k

kuD

w,h

It remains to reapply the justification used in the proof of (A) to get that

v A~
fa ko (D )dP(@) < 0 (e)A(Tp). O
|

4.3 An abstract approximation theorem

The following theorem approximates the probability distribution of an arbitrary sum of binary variables
in terms of the distribution of a suitable sum of independent random variables. More precisely, to
build the ‘suitable’ independent random variables, one splits the first sum into smaller block-sums,
and each of them is distributionally mimicked by a new random variable, with the collection of new
ones being taken to be independent.

Theorem 4.3.1. Considern >0, L > n, N € N3 large enough so thatL |3, and (X, )fv 0 arbitrary

{0,1}-valued random variables on (X, % ,Q). Denote N| := ¥ € Nx3'! and (ZL) Lo glven by
+1)L—1
Zh =y X,

1T Although L need not divide N, we pretend this is the case, for simplification purposes, i.e. to neglect possible remainder
terms associated with the fractional part — which should not play a role in the asymptotics (of either the error and leading
terms).

12 This is the first instance in the text where the letter L is used to measure block-size, where L is fixed. Before, L was
iteration-time and eventually sent to infinity, as in definitions (I-VI) of section 4.1.2. However, through the text, these use
cases merge, in the sense that the block of size L iterates the maps L times: much before the L-limit we are inclined to see L
as a fixed block-size, much closer to the L-limit we are inclined to see it as growing iteration-time. It is implicit that every
time this merger occurs we will eventually want to take the L-limit. There is a special situation where this is not the case, to
be seen in lemma 4.4.2 and lemma 4.4.3 item (3), where we will be equally interested in L = 1 and L — 0.
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Let (ZJL)IJViEI be an independency of Nso-valued random variables on (X,X, Q)" satisfying

Zh~ 7k (= 1) and (ZL)NL NV

Denote WL = Z] aZj Li<a<b< N] —1) and Wk .= WO N1 Similarly notation with ~’s
erased is adopted, in which case WL coincides with W = Zﬁvzol X;.

Then:

QW =n)—Q(W" =n)| < (R"(N,L) + R'(N,L,A) + R*(N,L,A) + R*(N,L,A)),

where
NI -1
51
R (NaLvA) = 2 qren[(e)l)r(z] Q(Zf = I)Q(W]'L+A,N£—] = q) _Q(ZJL = 17WjL+A.,N£—1 = q)”
Jj=0 ’
NL—l
L L
R (N L A ql'en?.i Z ‘Q( j+AN/_1_q M) Q(Z]: )Q(Wj—i-A,Ni—l:q_”) 3
=0
Nj—1
2N, LA) = > Q(ZE =1, Wh i =1) and
j=0
N i
SNLA) =Y Y QX =1)Q(X, = 1),
i=0g=0v (i—AL)

with the convention that, for b > a, Wlfu =0and Q(W,fu >1)=0.

Proof. Notice that by using a telescopic sum and the given independence, one has

N —1

QW =n) —Q(W* =n) Z ’@ Wo; 1+W N—1="1)— @(W()L,j+WJL+1N/—1 :")’
j=0

n

L
< Z ZQ(WOL,JH =1) ‘Q(WﬁNi—1 =n—1) —Q(ZL+W+1N/ 1= n—l)‘.
Jj=01=0

‘We now estimate
‘Q(WJ%Ni—l =)= QZf + Wiy 1 = ‘1)’

q
L L L

Z’ Wisiw-1=4q—u) = QU7 =u Wiy, =q—u)‘

u=0
q q

L L

Z ‘ =u W+1N’ 1= =q—u) _Q(Zj = “)Q(Wj-s-l,Ni—l = q_“)’ =: Z |Rj(%“)"
u=0 u=0

I3For the statement of the theorem, it seems unimportant that the domain of the mimicking random variables is that
of the original ones, but this is used in the proof. Of course, (X, 2 ,Q) then has to be a rich enough space in order to
accommodate the existence of such mimicking random variables. This will not be an issue in our application.



4.3 An abstract approximation theorem 79

We single out # = 0 from the previous sum,
Ri(@.0) = |QZF=0.Wh - =)~ QZ = 0QW,, = 4)|
= ‘ (Q(W]'LJrl,Nifl =q) _@( =1 W]L+1N'71 = Q))
— QWA g = )~ QZE = QWS i =) |

‘@(ZJL‘ = I)Q(WJ'LH,N[ﬂ =q) *Q(ZJL' = I’WJ'LJrLNl*l - Q)‘

It follows that

N—1 g
QW = n)—Q( ZZZIR (q.u
j=0 g=0u=0
Nj—1 N -1 ,
s " 2 qun(E)lﬁ Z' = I)Q(W]'L+1,Ni_1 :‘])_Q<ZJL' = 17WjL+1,N£—1 =4q ‘ Z 2 Z R j(q,u
N’—l Nij—lo,j 0: 1
S Z;) ;gl[g";] Q(zj > I)Q(WJ'LJrl,Niq =q)—Q(Z; > 1’WJ'L+1,N£—1 = Q)} + ZE) Z;)Z]l R j(q,u)l.
j=0 9% =0 g=0u=

The first summation will be kept on hold. We deal with the second one now, which will be split

into three terms, as follows.

Foru=1,...,q, we expand |R ;(¢,u)| using the triangular inequality, where we include interme-
diate terms using the time gap A, to get the following three components

|Rj(q7u)| < ‘@(Zfl:uawj'l‘_i_l’]vi_l :q_u)_(@( =u W+AN/—1 q—u)‘
‘Q(ZJL = u’Wﬁi-A,Ni—l =q—u)— Q(Z]L = M>Q(Wj+A,N£—1 =q— u)‘

‘Q(ZJL - ”)Q(WJ'LJFA,Ni—l =q—u)- @(ZJL' = “)Q(W,'L+1,N£—1 =q—u)|,

where the entries in the RHS are denoted, respectively, by ]R%(q, u)l, |R} (q,u)| and \Ri (q,u)| (note

the unusual order).

Then the following three terms bound the later triple sum.

First:
Nj—1 , N, —1 q
YD IRNgwl s > max Y [Ri(qu)| =R'(N,L,A).
=0 g=0u=1 o €l o
Second:
NL—] n NL_] q
> ZZ\R2 g.u)| < Z max D IR (g,u)]
Jj=0 g=0u=1 [1,n]u:1
Nj—1
ZQZ Wit jramt = 1) = RA(N,L,A),

where the step used that

A, = {Z’,‘ = u,W]L+17N£_1 =q—u},B,:= {ZJL = u,WJL+A7N£_1 =q—u}
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:Au\BuaBu\Au = {ZL u W+1 J+A—1 = = 1}

4 q
= Y[R qu)| = Z|@(Au)—@(3u)y<2@(z — U, W e = 1)
u=1 —

Third:
NL I n Ni 1 q
ZZZIRW, \<Zm?XZIR3q7 u)]
=0 g=0u=1 —o ¢€l1n]
N;—1(j+1)L—1(j+A+1)L—1 N+AL+L i—L
< D > Qx=nQx=1)= ), > Qx=1)QXx=1)
j=0 I=jL  i=(j+1)L i=0  1=0v (i—L—AL)

i
2 2 QX = DQX; = 1) = R*(N,L,A),
i=01=0v (i—AL)

where the second < step used the following: (with ¢’ = g —u)

Q(W]L+17Nr_1=6]/) = Q ]+1>1 W+1N’ 1=4')+Q(Zj,, =0, W+1N’ 1=4")
@( 1= =0 WJ+1N’ 1 CI’) Q( j+1 = =0 WJ+2N’ 1 q,)

@(WJLH N—1= =q)-Qzk,, > 17W]'L—i-27N1£—1 =4q')
|Q(WJ'L+1,Ni—1 =q) Q(Zf,, =1 W/+1NL 1=4)

_Q(W]'LJrZ,Nifl = q’)| —@( j+1 Z =1 W]+2N’71 = q/)|

but, with A := {J+1/ J+1N’ ,=¢'}and B:= {j+1/ J+2N’ , =q'}, one has A\B,B\A
{Z%,, = 1}, implying

|@(Wj+11v'_1 q/)—Q(WjLJrz,Ng—l q) < Q(ZJ+1 1)

(jH+I+1)L—1
= QW JHLN -1 = =q) _Q(Wﬁi—l+l,N£—l =4q')| < Q(ZJL'H >1) < Z QX =1)
i=(j+DL
A—1 (J+A)L—-1

’Q( JHILNI—1 = =q) _Q(WJI;A,Nifl =4)| < Z Q(Zﬁ_l >1)< Z QXi=1)

=1 i=(j+1)L

q q (j+A)L—1
=Y R} quw)| < Y QZF=u) > QX =1
u=1 u=1 i=(j+1)L

(j+1)L—1(j+A)L-1
< D)D) QX =1X=1).

I=jL i=(j+1)L
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Now we should deal with the summation we left on hold, coming from the singled-out term with
u = 0, namely,

Nj—1

) elon]

j=09¢

Q(Z]L = 1)Q(W]'L+1,NL’71 = Q) _Q(Z]L = laWjLH’NLul = Q) .

Using an analogous triangular inequality trick, by adding two mixed terms that have a gap A,
we expand the previous absolute value into three parts. These three parts are named, in analogy to
the previous terms, by R'(N,L,A), R*(N,L,A) and R*(N,L,A). The exact same procedures applied
above to bound R? and R? reapply and it follows that R?(N,L,A) < R*(N,L,A) and R*(N,L,A) <
R3(N,L,A). So we are just left with an extra term given by

Ni—1
1 L L L L
R (N,L,A) = Z;) qref%gﬁ] Q(Zj = 1)@(Wj+A,NIﬁ71 =q) —Q(Zj = 1aWj+A,Ni—1 =q)|,
j=
as desired. [ |

4.4 Borel-Cantelli type lemmata

The objective of this section is its final lemma 4.4.3, which will be used in the proof of theorem
4.1.4. This lemma and its proof strategy was inspired in [77] (lemma 9). To implement the said
proof, we need to rely on the ad-hoc lemmas 4.4.1 and 4.4.2. Lemmas 4.4.1 and 4.4.2 are essentially
independent, although lemma 4.4.1 uses return statistics in its hypothesis and relies on theorem 4.1.3
in its proof. We believe that the dependencies in the last sentence might not be intrinsic and could be
untied.

Lemma 4.4.1. Let (6,P, Ty, Uw,I") be a system satisfying hypothesis (H9’) (so (H8), by theorem

4.1.3). Then:
__hEzE =y
LangoiljnBW = ( E:IEAZ) = 0 (421)
and (2L )
A(Zg =n
lim Tim——f " = (Y% 0A) " Ay = 02y (n > 1) 4.22)

L-w, o LA(Tp)

Proof. Using (H9’) (for the following items (i.b-ii)) and (H8) (items (i.a,iii-iv)), it holds that: Ve > 0

i) 34y(€) = 1 so that

Q) Y2 M <&,
o0 + 0
b VL=1: S laL)< S oy <e.
f:&)(s) 5250(8)

ii) VL > 173p1(8aL)7vP < P (87L):

d(L) — e/(12) < Gy(L,p) <Gu(L) +€/(12) (VO =1,....L)
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L L n
= > toy(Lp)< )] K(&g(L)+8/(L2)><2sby(i).
{=Lo(€) l=ly(¢)

iii) VL > 1,3ps(e,L),Vp < p3(¢,L):

2e(L) — &/ (to(£))> < A(L.p) <Ac(L)+&/(£o(E))? (V2

Il
—_
\'?%
(=]
—
™
~—
~—

iv) 3Lo(e) > fo(e), YL > Lo(e):
Ao 2e(L)] < €/(6o(€)), 1A= Ae(L)] < €/(bo(€))? (V0 = 1., bo(e))
= | (D)= Ae(L)] < 28/ (Co(€))? (VO =1,... bo(e)).
v) (due to items (iv-v)) ILo (), VL > Lo(€), Ip(e,L),¥p < p3(e,L):

24(L.p)— Ze(L)] < 3e/(o(e))” (V0 = 1,....lo(e), ¥k € (. +))

= [M(L,p) — M| <4de/(ly(€))* (V0=1,...,0(€),Vk € {—,+})

NG 4(e) b(e)
= | D (L=DA(L,p) = > (E— 1) < ) Lo(e)de/(Lo(€))* < 4
(=1 (=1 (=1

Now, considering any € < 1/5>.,° | €Ay, L > Lo(€) and p < pi1(&,L) A p2(€) A p3(€,L), we evalu-
ate the quantity of interest, ,LL(ZLP 2 1) /LR (), starting with its numerator:

L—1 ) ‘
Bk, = 1) = | ol = DiP(o) - LM(U(TJ))_]T;)(G’@)) dP(w)

j=0
IEHQ (1) ™'Tp(6/w))dP(w JZeuw “’L—€+1)d]P’( o)
Q

(=0

L—1

— LA(T,) fg (Z 08, (L p)) Ha(Z2F > 0)dP(o)
lo(e)—1

( m@ﬂl@,m)uw(z;’f > 0)dP()

( D emlu,m)uw(zf:’,f > 0)dP(o)

£=Lo(e)

—LATp)— Y] CA(ZE = 0+1)— fg( D mgm(L,p))uw(z;‘:L>o>dP<w>
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lo(e)
—LA(T,) - (Z<41W<L,p>>a<zﬁ,>o>

(=1

- f ( > wl)z;’(L,p))uw( Z2h > 0)dP(w)
VA

,0(£)+1

where () applied a typical Venn diagram argument using overcounting and correction.
Then we consider the following two estimates.

First, we have that:

bo(e) W) b(e) 0

S (=1Ae(L,p) < Y (£—1)A+4€ < Y (£~ 1)As + 5 and

=1 =1 /=1
@0(8) (V) fo(s) o0 o0
DIE=DA(L,p) = (=D —4e =) ({-=DAh— > (£=1)A—
(=1 (=1 =1 l=ly(e)+1

VE
18

(0= 1)A -

[y
n

Second, with 1)19:) (x) =inf{j >0: T} e I'»(6/®)}, we have that:

00 L
o< | (X €-0A%p) |uolzit > 0ar@) < Y tacz, -0
Q \ y=ty(e)+1 I=lo(e)+1
L L—1 L L—1 L ) )
S S -t —is Y YA es =) Ty
I=lo(e)+1 j=0 t=ly(e)+1 j=0

L L—1
- Z éZagL Jsp)fL (Z Z ﬁaeL Jp)u( p)

(=lo(e)+1  j=0 J=0t=ty(e

L—1 L
< [ ( > &e(Lj,p))Mo(s)&zo(e)(Lj,p)L&LH(LJ,p)] f(Tp)
(=ly(e)+1

L—1 L .
A . N (ii) .
< [Z > fOﬂe(LJ,p)] f(Tp) < 2eLQ(Ty)

j=0 (=l (8)-’1— 1
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Combining what we got so far, it follows that:

B, =1 LA) -~ (X2 (- DA —Se) p(z, = 1)
LaT,) LA(T,)
X pzg =1)
= 1—(25@—1—%) Lngrp)
La(Ty) Y A —5e
and
pze, =1 LA, — (N (E— DA+ Se) fZp, > 1)~ 2eLA(T)
LA(Tp) L(Ty)
< f(zE =1)
= 1—<;1€Ag—1+58>mzrp)_2g
.a(Z%p?l) 1-2¢

= ——— Z o 5 =
Li(Ty) S bA+5¢
Considering the final two inequalities and passing limg_,olimz o mp_,o we observe that

_ a(ZE =1
1imlimM

_ (v -1 _
L—op—0 L(Tp) = Qe kA “

Alternating between limsup’s and liminf’s lets us reach the first desired conclusion.

Finally, to take care of the second desired conclusion, it suffices to note that

fzk =n)  R(zE > 1) pzk =)
LA(T,)  LA(T,) Az, >0)

then take the appropriate limits and apply the first conclusion we have just proved (to obtain a;),
together with the definition of A,,. [ |

Lemma 4.4.2. Let (0,P,Ty, Uy, L") be a system satisfying hypotheses (HI), (H3.1), (H4.1), (HS),
(H6.1), (H6.2), (H7.1) and (H7.2) with the parametric constraint (H10.1).

Then: ¥t >0,Yn>1, VL= 1'%, 3pyar(L) > 0, Vp < pyar(L) small enough so that N := lﬂ(lt"p)J =3

N
and Ny, ; := F € Nx3!°, one has:

VaTP(Qn57n) < Cl.,L 'pq’ VC]G (an(d07d17n7ﬁ7p>)7

14gee footnote 12.
155ee footnote 11.
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where'®

(j+1)L—1

L L P 70,
Z Ho(Z wp ”)vzwp = Z Izwpalzw'p = ]ll“p(elw)oTcé
I=jL

and q(do,d,,m,B,p) is a positive quantity to be presented in the proof (which can be written explicitly).
Proof. Lett,n and L be as in the statement. Fix ¢t € (0,1). Set pyar(L) < Psep(L) A Paim small enough

so that Ny* < Ny, ;. Consider p < pyar(L) as in the statement.
For a given j € [0,Ny ; — 1], write @’ = 6/L® and notice that

N’;‘L—l N;/).L 1

EP(QBlL)ﬁ): Z Ep <.uw( ke ”)) = Z Ep (.uw(ZIJHL lﬂrp(elw)OTé,zn)>
j=0 j=0
N -1 |
= 2 Be (Ho(SHQ Ty 0 Ty oTa"=n) = Z e (1o (520 L, @iy 0 Toy=n))
Jj=0 =0

p -1 N/L 1
= > Ee (oS Iy (o) 0 Th = 1)) = Z P (o (Z0P" = n))
Jj=0 Jj=0

p,L
L p.L N op.L
= > u(Zé’ =n) =N,  A(Z0" =n).
=0

Now fix A:= Np* <N ;. Then:

Ny, —1
Ee(@L"?) = ) Luw@ P = )it (ZOPE = n)dP (o)

i,j=0
N} —1(i+A) A (N) —1)

-2% X [ o2 = oz = ma()
N/SL N/S‘L_l

,p,L o,L
+ 2 )] > Juw(Zf"” = n) e (Z{"" = n)dP()
i=0 j=(i+A) AN}, —1)+17 2
= () + (D).

Immediately we get that

. . (j+1)L-1 (H62)

w.p, w,p,

Ho(Z7P" =n) Spo(ZPP 2 1)< Y peo(Tp(0'w) < Lp®
I=jL

= (I) < Lp ABp(25*) = Ap™N, (25" = n).

Most of the remaining work is to control component (I7).

16The notation Z;‘)’p s in parallel to that of Zj-‘ in theorem 4.3.1. They, on purpose, resemble that ZIEL’L introduced in
definition 4.1.2.
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Fix @ € Q and, for a given i € [0,N}, ; — 1], write @’ = 6" ®. Moreover, consider r € (0,p/2),
ve [0,L— 1] and denote by

— N
Uv,co’ ZFP(GVCO/), Uv,r,w’:Br(Uv,a)’c)La Uv,r,a)’:Br(Uv,co’)a (4'23)

respectively, the p-sized target with seed @’ v-steps ahead; its diminishment by radius r; and its
— +
enlargment by radius r. They relate as U, .oy © U, oy Uy, rqr-

Moreover, dynamical counterparts of those in equation (4.23) are denote by

~ s

{Zg)’p’LG} = Uy = |_| (I Uy ﬂ (T2) "' Uyo

0y <..<v,<L—1 | I=1 ve[0,L—1]
\{V[Zl=1.,...7n}

— n -
bo = L (@ e 0 ) @ e

0<yi<..<w,<L—1 | I=1 ve[0,L—1]

\{V]Zl=1,...,n}

+ - + - c
U = || NTH " Uhw o [ Ta) Vs

0<vi<..<wu,<L—1 | I=1 ve[0,L—1]

describing

- the locus of points which hit the p-sized target exactly k times during the time interval [0,L — 1]
when given the random seed @’;

- the diminishment of the first by radius r, in the sense that hits are considered in a r-stringent
way (at least r-inside the p-sized target) and non-hits are considered in a r-stringent way (at
least r-away from the p-sized target);

- the enlargment of the first by radius r, in the sense that hits are considered in a r-permissive
way (at most r-away from the p-sized target) and non-hits are considered in a r-permissive way
(at most r-inside the p-sized target).

— +
They relate as U,y © Uy U0 -

Finally, define

17xeuiga)’ l,xeuw/
PN c T 0.xe Zj_[ ¢
¢;0 (x)= 0,x €Uy ¢? (x)= X ro'
+
dy (x,U ¢ y dwy (x, ¢ +
M,( o ) - ,XE Z,[w,C\ Z/[r,a)’ +M(x]/1r,w/ ) X GZ/{r,w’\uw’
dM(x,uw/L)‘FdM(X,Unw/) dM(x,Z/{,;wfﬂ)‘FdM (X,Z/{w/)

— +
They relate as ¢ f’/ < ly, <9 f’/.
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+
Using that Lip,,, (dM (x,z,{w,/)) ,Lip,,, (dM (x,uw/)) < 1, it can be checked that

) + 6diam(M 6diam(M
Lipgy, (67 < fam (M) < o
(minng[dM(X,L{r@/) +dM(xyua)’)]> Amin (uw’,ur,w’c)

where d,;;, (Z/lw/,zjr{nw/") = inf{dpy (x,y) : x €U,y ezjlm,/c}.

Notice that for a point x € U, to be minimally-displaced in such a way as to reach &,’w/c,
either: a) some of the hits in its finite-orbit is consequently-displaced to an extent which now makes
it at least r-away from associated p-sized target, or b) some of the non-hits in its finite-orbit is
consequently-displaced to an extent which now makes it at least r-inside the associated p-sized
target. In either case, the associated image point of x has to be consequently-displaced by distance
at least ». When the said image point being consequently-displaced happens to be the last one
in the orbit of x, i.e., its L — 1 iterate, by the expanding feature of the system (H3.1) and since

. H4.1
Uy < UL ! T] 11y 120 (07 @ " ( c ) C“’ |» this is when x would have to be displaced the least: no

more than r/ay_; (use (H4.1) and (H3.2)). Therefore r/a;—1 < dyin (L{w/,z,{m/"), and so

M)aL_lz/rz
o) = Lip,, (6¢') < 6diam(M)a,_?/r

+ /
Lip,, (¢) < 6diam

+ +
107 Lipa, = H¢“’Hoolede(¢ ) = 1vLip,, (¢f

"e‘+/\

where the last equality follows from p sufficiently small.

Now we start looking at (/7) directly:

olZ, 7P = ) 1o (2P = n)dP(w) — fﬂw( z; Pt — )uwf@f")dP(w)‘

=] (22" = it (14, ) (@)~ [ ol = >uw/($ﬁ°’>dw<w>\

J n/\
< [ ool 0t = w5 de() < L a2 = ),

where the last inequality is because

+ L-1 i _ (H62) 1
Moy ((I) ) Uy (Ur [l \Ur a)’ Z .u(-)Va)(Uv,r,a)/ \ Uv,r,a)’) < piﬁ
v=0

The approximating term that appeared above is transformed as follows:

+
Ugum<z§"“=n>uwf o) [ o1, 02)aE(0)
- zP 69 )dP
Q.ua)/( j—i ),LLw/ /.Lw/ e(J w/.p,LOT(j—i)L:n} ¢r ) (a))
(=D)L i L T o
= | oo (2P = a8 = s (1 s 0T 62| dP(@)
: _
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(H7.1) N o e par—1?
S | G016 I, 10B(@) < 1 (=) S

Whereas the new approximating term which appeared above is transformed as follows:

+ +
| o 02)dP(@) = | ol gese_,, 6210 ()

—J Lt _ }$rdn :J Lpe_ }oSU—")L $,dﬂ (4.24)
QxM =i QxM o ="
and
1 s<f—f>Lq+> dfl 1 djl $dA
QxM {ZS‘L:n}O s QxM {ngL:n} H QxM s
H12) o Cp@r1?
< (=000, < (G-DD) 450,
+ +
where, recalling that¢ ® = ¢ ®(n,L,p), we have used that
: 02 (1)~ 02 (x2)
Lip,, ,(¢,) = sup 3 ! dr
(@1,x1)#(w2,52) (01, ) v dy(xi,x2)
60 (1)~ 0%(x) 02 (x1)~ 0%(x)
< sup sup —+ . + sup sup —= L
X| O F dg(wlaab) W) X1F#X2 dM(xl>x2)
+ +
2 o] Y
<18 aL—21 +sup sup 07 (x)— 9 (x)]
r X O Fwm do(wy, )
(%) aLzlz + (OCLﬁ +;}’)CIL712 < OCLaLflz’
r r r?

+
with (%) following from @ — ¢ ©(x) being a locally Lipschitz function whose associated local Lipschitz
L 2
constants are bounded by %, where oo = Lip(0) v 1, B =Lip(I') v 1, ¥ = sup,¢p, Lip(T’ (x) :
Q — M). This is verified in the following paragraph.
+
Fix x € M and consider @ € Q. In case x € int(Uy) (or int(,.,)), there is u,(®) > 0 so that
+
® € B, (»)(®) implies x € intUg (or int {f,5°), so the function of interest is locally constant. In
+ +

case x € int(Uy,» \Ue), it boils down to understand how the linear interpolation within ¢, varies

+
with @ € B, () (@), where u;(®) is that for which @ € B, () (@) implies x € int(¢/,"\Ug). For this
purpose, we first evaluate the Lipschitz constant of @ € B,y () (@) — d(x,Up) and @ € B,y (o) (@) —

+
d(x,Z/[r@C)l

+
7Notice that H(Pﬁol ILip i < ap_1%/r* as. is enough to justify the above inequality. However, our hypotheses imply this is
true for every . This might seem an excess, but later in the proof we will need the inequality for every @. See the next
footnote.

+ U
18Here one needs [|¢@ ILip, < ar,?/r? for every m. See the previous footnote.
am
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1)

|d(x,Uo) —d(x,Us)| < dy(Uo,Us)
(supy, Lip(T,, '+ 2 (M) — 2(M)) v 1)" - (Lip(I) v 1) - (Lip(6) v 1)"

+ sup Lip(T7'A:Q— 2(M)) do(0, )
Ae P (M)

< (o' +y)da(0,®).

N

since
Lip ((N):2(M)x 2 (M)~ 2(M)) <1,
Lip (|J:2(M)x 2 ()—2(M)) <1,
Lip (By: 2 (M)—2(M)) < 1,
sup, Lip (T, ' : (M) — 2(M)) < 1/C§)r61£€i€ncflmcOLip(Ta,|é ESM) <1
and
supLip(T (x) : @ — M)
Jup Lip (T AQ-2 (M) <~ Colip(Tale € = ) = P Lip(T ():0—M),

weQ EeC?

where CoLip(T) = infyz, dgiT(jccij)y)'

ii) Similarly,
+ +
’d<x7unwc) _d(xvu"ﬂ)c)’ < (aLﬁ + }’)dg((l), (D)7
since also Lip(B,: Z(M)—Z(M)) < 1.

To conclude justifying (), one repeats the calculations for the Lipschitz constant of a quotient
and applies (i) and (ii) to get that

+
d o€ 4diam(M) (ot
Lipg, [ ) BRI RS
dM(xaur,a)’c) + dM(xauw’) dinin(z/{r,w’c,u(é)’)z
< (a BJF;’)GLA do(0,®).

,
Finally, we notice that

H6.2) N

+ +
B(Zg =m0~ u(Z5 " =n)’ <ﬂ(Z§’L=n)Luw(¢$"—Jluw)dIP’(w) S Logh(@t=n).

Combining the previous four steps, we arrive at

f Ho(ZPE = m)po(ZPF = n)dP(0) — A(Z0" = n)?
Q
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which implies

Ny -1 Ny -1 " olay 2
i 7L ~ 7L . . — —
=Y, (@ LA (- )
20 = (A AN —1) 1 P
/ / N op,L 2 N p.L , ofap 42 ptl
<N, (N ) (28" =n)? + p7u(Zo' = n)) + N, T Ay,

Then we can conclude the following about the variance:

varp(25") = Ep((W,")%) — (Ep(Wp"))°
< ApPN,(ZE" =n)
/ ' ~ Pl n P L , otap_i? —ptl
+ Np Ny 1 —A) [ A(Z5"=n)*+ pTg.U(Zo =n) +Np,LT(AL)
25 p.L
— Np RS =), o
A~ opL 20 1 o1 arap—i _
< Ap®NpU(Z5™ =n) + N}y, Lp—ﬁu(zg :”)JFN[),LT(AL) p+1
(*) i NN, *(=p+1)
d L 27 —ptVpVp
< N,%Lp +Np g +atari’L P —
(x) e t ta(7p+l)
S AindO‘i‘,\ian_B‘i'aLaLflzL_p _ _ p—2w
a(Tp)” a(Tp) f(Tp) “(rp)oc(—pﬂ)
<H21)Lpdo ad | pwn—B=di | glg, 2P p@do(p—1)=2w—d;
(%)

g pdo—adl_l_pwn—ﬁ—dl +pad0(p—l)—2w—d1’

where (%) uses NALﬂ(Zg’L —n) SN,L'(Z8* = 1) <N,L 'L{(T'y) <t and ¢ is incorporated into
the < sign; (**) uses the choice r := p" for a given w > 1; and (x » *) incorporates L dependent
quantities on <. Notice that r and L dependent constants being incorporated inside < is associated to
the use of a constant C; ; in the statement.

Finally, we need to choose (a,w) € (0,1) x (1,00) so that

d0>06d1 OC<ZO/\1

dl
wn > B +d ie. {w> ﬁ;dl vl ’

O‘dO(P—l)>2w+d1 W<w

which admits a solution if, and only if,
+d
prd 1 PLdo(p—1) —di o 1)>2(ﬁnlv1>+d1
= - _

n 2 ol do/d:

This is guaranteed by the parametric constraint (H10.1), so there exists some solution (0, ws )
to the system. Actually, the space of solutions forms a triangle and one can select (., wy) as its
incenter, a function of dy,d;, 1, and p, whereas the strictly positive margin this choice opens in the
inequalities of the original system is denoted by ¢(dy,d;,n, B,p). With such a choice, we obtain that

VarP(QnILJJZ) < Cst ' pq(doadhn’l}’p) < Ct,L ' Pq ,Vq € (07Q(d07d1 ) nal}?p)) .
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Lemma 4.4.3. Let (0,P, Ty, Uw,I') be a system satisfying the hypotheses (H3.1), (H4.1), (H6.1),
(H6.2), (H7.1), (H7.2) and (H9’) with the parametric constraint (H10.1).
Then: ¥t > 0,Yn > 1 V(pm)m>1 N Owith Y~ pm? < 00 (for some 0 < g < q(do,d1,M,B,p)),

denoting Np 1= [ﬂ(rp)J and N}, | = No19 one has:

1
1)
Ny 1
. - a)pm Y = )
Llir{}onlgréo Z Lo (Z =n) =ty A, P-as.
2)
a)pm . :
ngglomlgr;o Z Uo(Z > 1) =tay, P-as.
3)20
Npp—1
mh_l}gc Z;) Hoiw(Tp, (6'®)) =1, P-as.,
j

Proof. Let t,n and (p,)m=1 be as in the statement. Consider L > 1 and m large enough so that
-1
Pm < Pyar(L), Np, =3 and N, ; > 3. Denote also W5 (@) = 22 Nos= o (Z; Z0Pt — p).
Using Chebycheft’s inequality combined with lemma 4.4.2, we get that

L.n
varp(20, C
a>< P p ) t.L a.

a? s a2

P (|20 — Ep(205")| >

and therefore, since Zmz 1 Pm < o0, Borel-Cantelli lemma let us conclude that

. L.n N L.n _ _
Tim. ‘ﬂnpm Ep(25™)| =0, P-as.
On the other hand,
L.n 1 t A me ﬂ( %Pm 2 1) lj(zlépm = n)
Ep(mpm) = — = .LL(Z() o= ) == ~ ~ L 9
La(Ty,) Li(Ip,,) f(zg, =>1)

s0, by lemma 4.4.1, the definition of A,,, we have that

lim lim EP(QUP ) =tail,

L—0 00

and therefore, combining the previous two centered limits, conclusion (1) follows:

lim lim QII =toyA,, P-as.

L—00 00

19ee footnote 11.
208ee footnote 12.



Compound Poisson distributions for random dynamical systems: a probabilistic block-approximation
92 approach

For (2), it suffices to repeat the argument noticing that the new expectation will be driven by
a(zk =1
M, whose double limit is 7o .

For (3), it suffices to fix L = 1 and n = 1 in the above argument, and after the Borel-Cantelli step,

notice that

4.5 Proof of theorem 4.1.4

4.5.1 Applying the abstract approximation theorem

Letr > 0,n > 1 (n = 0 is the leftover case) and @ € Q be any. Actually, at finitely many instances of
the argument, we will restrict @ to be taken in a set of full measure. To be seen in due time.

Fix, once and for all, (p)m=1 "\, O fast enough so that > -, (pn.)? < oo, for some 0 < g <
q(do,d1,m,B,p). For example, p,, = m~?/4 is adapted to g (but not ¢/2) while p,, = e~ is adapted to
any positive q.

Fix L = n. We will not choose it as a function of other variables, i.e., it will consist of a new free
variable.

Define N, := [mj Let v e (0,dy) and set A, := p,,~". we will consider m large enough
(depending on L) so that N,, = 3, Ay, = 2, py < Pyar(L), L < [%J and A, <N, ;. Lastly, define
N, o= eNx3?! |

We want to study
o,N, Np—1 70 Nt =1 (74 DE=1 0]
AVm m— yn m
He (Zl"p,,, - n) = /Jw( im0 L= ”) = Ho 2 Z I; )

Where Il'a)7m = ]]_Fpm (Olw) © T(L‘
To harmonize with the notation of theorem 4.3.1, we write

[P = X" (M, By, le) — {0,1} (i€ [0,N,, — 1] " Nx) and

1

Zz(]J;Ll o Zl]jll, X = Zme (M, %y, ho) — No (j € [0,N,, — 1] nNxo).

l

Then one can plug in the variables here to those of the theorem 4.3.1, namely
N:=Ny, (X, 2 Q):=(M, By, u®) Xi=X"" , L:=L,A:=Ap, N} :=N}, |, ZF: =2}

to obtain that
N —1

79 N 5@,m,L
=n|— Z: =n
.Uw< T ) Ue E |
j=0

<4 (Rip (N, L) + Ry (N, L, Ap) + Ry (Niws L, A) + Rigy (N, L))

21gee footnote 11.
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where objects being invoked are presented in theorem 4.3.1.

For the next sections, sections 4.5.2 to 4.5.7, it is enough to consider @ restricted to a P-full
measure set.

4.5.2 Estimating the error R!

Recall that
1
Rw,m(Nm,L,Am) =
A’r’n.Li1 q mL —1 Nr/n,Lil
Z max Z Lo a)mL Z Zme g—u “w( a)mL u),LLa) Z Z;:Lm,L:q_u
j=0 qE[lJl]u:] k J+Am k=j+An

Recycling the construction and notation used in the proof of lemma 4.4.2 to control the term (1):
for a given j € [0,N;, ; — 1], writing ®" = 6/"@ and considering r € (0,p,,/2), v € [0,L — 1], we once

. . — + — + o +
again have the objects: U, o/, Uy, 0/, Uy o', Ueo! s Ur s Uror s @2 and ¢ 2. Then:

mL -1 mL —1

Lo Z;o,m,L Z Zme_q u ,uco< me—u)uw Z ZcomL .
k ]+Am k= ]+Am
(j+1)L—1 Np—1
= |Uo Z Ilwm:M, 2 Ilwqu—u
i=jL i=(j+Am)
(j+1)L—1 Nyp—1
—Ue Z Il.w’m =U |Up Z Il.w"m =q—Uu ‘
i=jL i=(j+An)L
L—1 (Nm—1)—jL
_ “w’ Z[lﬂ)ym:u7 Z Ila)7m—q—u
i=0 i=A,L
L—1 (Nm—1)—(j+Am)L .
— ey (lew’m=u> UgamL gy Ilem O =qg—u ‘
i=0 i=0

AL
B “W (1%' Lyomean_q_y 0T ) ~ ot (L) Bgoter (1{Vf"’”‘L’Am=q—u}> ’

omLA, . oNa—1)—(j+An)L ;6L 0" m (Np—1)—jL ;0'.;m __ y,0,m,LA,
where we used that V; =10 I sand thus 2% 7 LT =V, o

T(ﬁmL’

A
< Hw, ((p 1 meAm qiu} o T(J)/ L) — Hw/ (]lua)/) ‘LLQAme/ (1{‘/]-(0’)""11‘&" :(I7u}> )
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+ + -
where ¢ © means that either ¢ ©" or ¢ ¢ will make the inequality true,

N

( ¢ o’ meAm g} o Ta?/mL) — Uy <$'(f),>.u'9Ame, <1{ij,:71,L.Am :q_u}> ‘
i

+ |:Nw’ (¢ ) e (:H-u /):| HgamL gy (]‘{V]f‘)‘m‘L‘Am =q—u}) ‘

=: (A)+(B).

Now notice that N
(4) < AnL) P9 |, 1% (Bl a7
dy

where the first estimate used (H7.1) while the later used (H3.1), (H4.1) and (H3.2), as in the quenched

argument in the proof of lemma 4.4.2%2.
Moreover,
- (H6.2) n
(B) < Heantar (VJw b ) Ugy (ur o’ \Z/Ir a)’ < HoamL gy (V/Q7m’L7A"l=q—u> Lpriﬁ .
m
Therefore
Ny —1 q o
R%um(NmaLaAm) < max Z [(A L) (ij’m"L’A’":q_u> L}
7 j=0 geltnl u=1 mﬁ
';7'L_ L mL -1
AnL)~ max Ly <V@’m’L’A’” e [0, )
g Zl(m Z del1Nn] -UBALa) j [0,4]
2 n 2 n
—parL—1 r _nar—1 r
p p _
Ny (AmL) o2t Ny, o < Ny (ApL) ot LN, 5

where Vw mLAn takes values between 0 and Ny — (j+ Am)L < Ny,

4.5.3 Estimating the error R !

This section is going to follow the lines of the previous one, with minor modifications.

Recall that
ﬁ}o,m(NmyLa An) =

N —1 N —1 N, —1
®,m,L w,m,L w,m,L w,m,L
max |Ho zZpM=1, Z zZ " =q —Hw<Zj " 21)11@ Z zZ""=q
j=o a€l0nl k=j+0m k=j+Am

For a given j € [0,N,, ; — 1], writing @' = 67" and considering r € (p,,/2), v € [0,L], recalling

— +
the objects introduced in the proof of lemma 4.4.2, we reuse U, o ,U, v and U, q, Whereas

- +
U, Ur,er and U,y are modified by including a union Ui;l before the original definitions therein (in

+ /
22In the present passage, the a.s. validity of ¢ HL,-de < ar_12/r* would be enough, but, after recalling the argument of
lemma 4.4.2 we see that it actually holds for every w. The validity for every @ was important back then, but not here.
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@' pm,L

N +
particular, {Z; > 1} =Ug), while @ and ¢ @ are kept the same (but considering the previous

modification).

Following the same steps and notation from the previous section, we get that

N, —1 N, —1
e Z;_o,mL Z Za)mL_q Hw( me>1>.Uw Z ZcomL
k J+Am k=j+Am

< Yoy ( ¢ ]l meA,,, 2 o Ta?,mL> — Uy (%?l>u6Ame/ (:H.{Vim.m.L‘Am =q}> ‘
+
{wa <¢ ) Moy ( /)] Hosnt (ﬂ{Vj(D""’L'Am =q}) ‘

—: (A) + (B).

As before,
+ _
(4) < (AnL) 07 |y, 1S (ML) Par—i®/r.
M
For the first inequality we use (H7.1). For the second, we adapt the previous reasoning as follows.

Intuitively, the Lipschitz constant of, say, the modified function (I; ;"/ is bounded by the inverse of

(M o U ) For a point to x € U, with no hits, to be minimally displaced to Z,_ﬂva,/, among x itself
being displaced or the consequently-displaced points in its orbit, a) at least one r-stringent hit has to
be created while b) the other instances should turned into r-stringent non-hits (if they are not already).
The situation where this would occur with minimal displacement is one where (b) starts already
fulfilled and only (a) has to be accomplished by displacing x in such that its L — 1 iterate changes from
a non-hit to a r-stringent hit. This can be made with a minimum displacement of r/a;_;, where again
we use (H3.1), (H3.2) and (H4.1).

Moreover,

LA, + - (H6.2) LA, r
(B) < AUGAW’L(O’ (vja) B = q) Hey (Z/[r,a)’ \Z/[r,a)') g HGAmLa)’ <VJCO " q) sz B
m

Therefore

. n
RL (N L. An) Z ma | (Anl)” (VF‘”’"“'" - q) R
, i—o 10 ! PP

NI/IIL 1

N
+ L max Lot (V.w’m’L’A'" e o, )
pm Z;) qE[O Nm] .uGA L J [ CI]

;AL

2 n 2 n
—p -] +LNm;—B < Nu(AnL) PP L LN, rﬁ,

m r? Pm

SNy (AnL)

where Vw LA takes values between 0 and N, — (jJ+1L<N,

me
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4.5.4 Estimating the error R>

To start
Ny —1 J+A,—1
R%Um Nm,L A Z ua) a)mL 17 Z ZZ)J?%L > 1)
k=j+1

Nr/nAL_ljJrAm*l
w,m,L w,m,L
< DY we@Pt =120 =)
=0 k=j+1

where we reverse the double sum and single out the k = j+ 1 terms

Ny A =2 (k=2)A(N;, . —1) N,
= Z Z Hw(zl?.’m’L?] zPmh > +2Nw me 1721?7m7L>1)
k=1 j=(k—Ap+1)v0
=: (I)+ (II)

To estimate (I) we notice that:

Noy o+ 8 =2 (k=2) A(Ny, 1 =1) (j+1)L—1 (k+1)L—1
< Y YN Y e ((T) T, (8'0) ()T, (6')) (1> 1)
k=1 j=(k—=An+1)v0 i=jL [=kL
Nop HAm—=2 (k=2) ANy . —1) (j+1)L—1 (k+1)L—1 .
<N YN Y s (Ta@)n @) e ) CY,
k=1 j=(k—An+1)v0 i=jL  I=kL
Npyp 8 =2 (k=2) A(Ny, 1 = 1) (j+1)L—1 (k+1)L—1 L -
YN Y Y s (Ta@)n @) e o e et

k=1 j=(k—dpt1)v0  i=jL  I=kL
::(Igood) + (Ibad)

N——

where @' = 6'.

To estimate (/y004) We begin evaluating the following:
++ i ]
s ( ¥4I (@) 0 (1) D (60 )

orle (&0 (1) 'Tp, (6" @)
< X o s ) por(®)

£=g(dom(p))e C¥';:
EATp, () £D

where, from (H3.3), ¢ € IB(T(f)Ti) implies te | p(dom(g)) =Jo ' [+ (Hoi—igy ldom(g)) ] and so

< Z [7o ™ [ @« (Hgi-ier laom(p)) ]] (‘P(dom(q)))m(T(f,Ti)’ll“pm(GI*iw’))

& as above [J(Pil [q)* ('uel_'ﬂ)/ |d0m((p))]] (q)(dom(q)))) Ho (é)
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sup,.g Jo ! (x) Moo ldom( )(dom((P)ﬂ(Pfl(TlT")fll"p (Gl’ia)’))
< ) MPetde b (€)
& as above ianEé'](P_l(x) Hoi- ’60’|d0m (dom(<p))
(H3.3) (H2.2)
< - T (00) Y 1ar(©)' S (=1 e (T, (BN | | &
#H2.6) & as above & as above
(H3.4) N
< (=11 g (Tp, (0" @) )N ey (Bp—iy—«(Tp, (@)
(H6.1)
< (1= 0 g1 (T, (0 0)NColp + DI~ 1)) < g1 (Tp, (8')) (1 — 1P [0+ (1) 4.
Then

Ny p+Bm=2(k=2) A(Ny, 1 =1) (j+1)L—1 (k+1)L—1

(Tooot)< ) Z Yo D Heo(T, (/@)1 =) [pu®+(1-i) T ]

k=1 j=(k—Ap+1)v0 i=jL I=kL

Ny 8 =2 (k=2) AN}, 1= 1) (k+1)L—1 (j+1)L—1
= ] > D eo(Tp,(0'@) > (1=i)® [pu®+(1—i) 7F]
k=1 j=(k—An+1)v0 =KL i=jL

where, for each [ fixed, as i runs, we have [ —i€ [kL— jL— L+ 1,kL— jL+L— 1], so

Nop g FHAm =2 (k=2) A(Ny 1 —1) (k+1)L—1 kL—jL+L—1

SIS SR SR PN I D SR

k=1 j=(k—An+1)v0 [=kL s=kL—jL—L+1
Ny, F A =2 (k=2) AN, —1) (k+1)L—1 kL—jL+L—1
= Z Z Z Heio(Tp, (6'®)) Z S [om ™ +s7]

k=1  j=(k—Au+1)v0 I=kL s=kL—jL—L+1

Ny +8n=2 [ (k+1)L—1 (k=2)A(Np, 1 =1) kL—jL+L—1

< Z Z Koy (Tp,, (6' @) Z Z s° [ o450}
k=1 I=kL j=(k—Ay+1)v0 s=kL—jL—L+1
where s € [L+1,3A,,L]%

Ny H =2 [ (k+1)L—1

3A,L
< Z Z Moty 1—‘p )) < Z u’ [”Kd0+pr11d0]>

k=1 I=kL u=L+1

N,,n,LJ"Am_z (k-‘r])L—l

DY Y. Heo(Tp, (8'@)) | (L7 + (AL p,®),
k=1 I=kL

where for the first term in the square bracket we have used that, for o > 1, Z n=% < met!

nm

together with 0 — kdy < —1, which is guaranteed by (H10.3), whereas for the second we have used
that «° is increasing and the summation interval is bounded above by 3A,,L.
we will leave (Ih,q) to the end.

23The interval where s ranges basically has length 2L and it is translated by L when j moves one unit, therefore the
original and the new interval overlap by half, so eventual repetitions are more than compensated by a factor of two
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For (I1), we consider L' < L and proceed as follows

1VI:1L
a)mL a)m,L
Z.ua) = 7 k 21)

N1 kL—1 kL+L’ 1 (k+1)L—1
=D bo | X =L I Y
k=1 i:(kfl)L I=kL I=kL+L'
N1 kL—1 KL+L —1 kL—1 (k+l )L—1
,m w,m a),m ,m
5 I SIVEE I Y] RV B STy
k=1 i=(k—1)L I=kL i=(k—1)L 1 KL+L

and, denoting @' = '@

Nop kAL —1

<D g (Tp, (0'0))

k=1 [=kL
NoptAm=2 gr—1 (k+1)L—1

Zine _i ++
+ Z Z > Ha <Fpm ') " (T ) 'Tp, (6" 0') Cf”_,->
=(k—1)L I=kL+L’
mL kL—1 (k+1)L 1

. . +— — !
+ Z Z Z Hey (Fpm A (T(f,/_l)_lrpm(el_lw,) N [Czwiu C?z})

k=1i=(k—1)L I=kL+L'
=:(Ilest) + (IIgood) + (I1paq)-

The term (/1yes;) Will not be improved, whereas the term (/1y004) is approached just like (Zgo0d), as

follows:
Nip (k+1)L—1 kL—1
(Igo0d) < Z D | bero@p, (0'@) DT (1=0) [pm® + (1= i) 5]
k=1 I=kL+L' i=(k—1)L

where, for each [ fixed, as i runs, we have [ —i € [L' + 1,2L— 1], so

N/:1,L (k+1)L—1 2L—1
gz Z Loio(Tp, (6'@)) ( Z u® [pmdo—i—u"d"])

k=1 I=kL+L’ u=L"+1

Noo [ (k+1)L—1

S Y Heo@p0'w) | (L7 L0, b)),
k=1

I=kL
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Now we combine (Ipaq) and (Il,q) and their domain of summation®* to see that

Np—1 i+A,L _ .
(Ibad) + (Ihyaa) < Z Z Heie ([ ued ]ml“pm(e’w)>

tOl i+L+L’
-1 A,L

—Z 3 ue,ﬂ)([ c“’]mr,, (9(0))

i=0 s=L+L'
AuL Ny—1

<> D Moo ([Cewucew]ﬂrpm(ew)>
=1/ i=0

Combining the bounds of (Igood) and (I/ge0d), We conclude that

5]Vm_1
R (oL &) 2 ot (T (6'0) (L2 o AL+ p, ™)

mLkL+LI—1 ApL Nyp—1 ) '
+Z Z Uyl g szn 9 (D Z Z Hoicy <[ Cflw] mrpm(ela))>.
k=1 [=kL s=L" i=0

4.5.5 Estimating the error R>
Here we use (H6.1) to see that

Ny—1 i

RomWNmLdn) = 3 D1 Hoo(Lp,(6'0)gra(Tp,(6')))
i=0 (= Ov( —ApuL)
Np—1

< AL pmdo Z “eiw(rpm(eiw))’
i=0

which, noticing that A,,L < (A,,L)**!, reveals to be bounded above by R, ,, (N, L, Ap).

4.5.6 Controlling the total error
Putr=p,"” (w>1)and L' = L* (0 < ot < 1). Then

—1

L
a) N a) m, L
=n)— E
‘Llw ( Pm ) 'Llw

< aL_IZPmpv—Zw—dl +mewn—[5—d1

5Np—1
+ Z Mot (Ip (6'w)) <L/D—Kdo+1+Lb+lpmd0—v(a+1))

msz+L, 1 A LN _1
T g e DO 2y gy ([erooere]ornem)
k= [=kL s=L" i=0

where in the first line of the RHS accounts for both R! and R!.

24Notice that the initial L'-strip of the first component of the original summation has already been singled out inside
(1 Irest)~
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Until this point, parameters v (accompanying A,,, see section 4.5), w (accompanying r), and &
(accompanying L), which are local to the proof, were not fine-tuned.

In the last equation, we need the exponents accompanying p to be strictly positive. In particular,

>/3+d1
n

we need

vI1,pv—2w—d; >0anddy—v(d+1)>0.

B+d,
. vl)-i—dl

do/(0+1) )

The space of solutions (w,v) € (1,00) x (0,dp) to those inequalities is non-empty if p >
which is guaranteed by (H10.2).
We will take double limits of the type limz o lim,,,_,o, on the RHS. Initially, taking the 1imy— o0,

we use that, by lemma 4.4.3,

5N, —1
. / . 3
lim IZO Hoio (T, (0'@)) = 5¢, P-as.
and, by similar arguments?>,
N kLA+L —1
: [ _qs70—1 D
”}%;; I_Zk]L Lot (Tp, (6'@)) = tL* !, P-as..

Finally, using hypothesis (H4.2) and noticing that 9 — xkdp + 1 < 0 (by (H10.3)) and ¢ —1 < 0
(by design), we conclude that the RHS under the double limit lim; _,  lim,,_,, goes to 0. The same

thing occurs if we adopt the double limits lim; , limy,— o0, limz o lim

moo and lim;,  lim, ..

Therefore
N'l;uL -1

. — (/)’Nm o "‘(J).,m.,L _ _
Lll_{gmh_% Uep (erm = n) — Ug ;) Z =n || =0,P-as..
4.5.7 Convergence of the leading term to the compound Poisson distribution

It remains to show that L, (Zﬁéil Z;”m’L = n) to CPD, 4, (2,),({n}).

Due to the independence and distributional properties of the Z;”m’L’s (see theorem 4.3.1):
N, -1
bo | 3 207~
j=0

[
=> 2 [[ sz =0 > [[He@Zi™ =n)

[=10</1<..<ji<N;, —1 | je[ON, —1] (n1,....n)eNL | i=1
\{jiii=1,...,l} ny+...4+n=n

25 Adapting the argument of lemma 4.4.3 item (IIT) to the new term, we see that the new P-expectation is /L%~ !, but the
variance lemma used therein, lemma 4.4.2, would need to be adapted as well, what we omitted.
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11L -1

1+0 1_[ me O)Zl' Z H“U) me—ni)

= =1 jie[OMnL_l](nl """ nl)EN>ll !
i=1,..., l n+...+n=n

1

le

I
1+0 1_[ a)mL Zl' Z H Z “w a)mL ni) 7
Jj=

j=0 =17 (ny,.m)eNy | =1
ny+...+nj=n

where i) o(1) refers to a function g(®,m,L) so that lim;_, lim,, o |g(®,m,L)| = 0, P-a.s.; ii)
equality () included 1/I! to account for j;’s not being anymore increasing and used that the error
terms that come from different j;’s being equal are small, as one can see in the case when two j; agree;
and iii) equality (x) uses that a product of sums distributes as a sum of products.

We then notice that, by lemma 4.4.3,

N 1
. _— a)pm N — 3
nggon}f;c Z u® =n;) =104 Ay, P-as.
and
NllnL Ime 1
a)mL _ _ a)mL
Jim Jim [ oz =0) = fim Fmexp | 3, (1 -no(z"" > 1))
Npyp—1
lim lim zomt > 1) | = e, P-as..
Lirgomlir;oexp Z —Uo(Z >1)+o(l) | =e '™, P-as
Therefore
. n l
Lll)ngo lim (U Z Z]‘.”""’LG _’O‘lz Z Hln =0, P-ass.
m—a0 j=0 I=1 (n1,...,n)eNL | i=
ny+...+n=n
Ny =1
< lim lim |Ue Z Zme n | =CPD,y, 1,),({n})| =0, P-as.,
L—00 ;o0

where the equivalence is because the former term is precisely the density of such a compound Poisson
distribution (see equation (2.1)).

As a consequence,

N, —1
Ivm 7Nm =, ,L
‘uw( w = ) CPDIOQ M ({I’l})’ nuw(Zlg;m :n)_.ua) ch_t)m =n
j=0
]VI/)LL_]
4 9 7L
+ o | Y, ZP™ =n | = CPDyg, 3, ({n})
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approach

Ed m [Jw(zl(-u*l;m ) CPDtOCI l[ ({I’l})

m—0o0

We then conclude that hm Uo(Z7

lim lim |ug (ZIE‘LN =n)— Uy Z zomt —

L—oom—0

N1

lim lim |ug Z Z;-O’m’L=n —CPDyq, (2,),({n})

L—00m—00

j=0

0, P-a.s.

=n)— CPD,al’(M[({n})‘ =0, P-a.s., as desired.



Chapter 5

Application: random piecewise expanding
one-dimensional systems

We consider a class of random piecewise expanding one-dimensional systems (0,P, T, iy, I") pre-
scribed by the following conditions. Elements in this class immediately comprise a system as in the
general setup of section 4.1.1 and will check that they also comprise a system as in the working setup
of section 4.1.2 (i.e., satisfying hypotheses (H1-H10)).

Cl. Consider finitely many maps of the unit interval (or circle), T, : M — M, for ve {0,...,u—1}.
For ease of exposition, say that u = 2. They carry a family of open intervals A, = (Cv,i)llll Iy <)
so that M\ Uf";l Gy, is finite and T, |, is surjective and C 2_differentiable with

1 < dpin < inf{|T,/(x)|:x€&;,v=1,....L,i=0,...,u—1},
sup{|T," (x)| :xe Giv=1,....0L,i=0,...,u—1} < cmx < 0.

Forn > 1, let A? = \/Zf;(l)(T({,')*lAm(w). For n = 0, we adopt the convention A = {(0,1)}
(Vo € Q). Write AP = (Jreqo € (co-finite) and, for x € AP, denote by AP(x) the element of A}
containing x. In particular, x € A? implies that x is a point of differentiability for 7).

C2. Let Q = {0,1}%. Set T,y := Ty (e, Where 7j(@) = ®; (j € Z). Consider 6 : Q — Q to be the
bilateral shift map.

(3. Consider P € Py(Q) an equilibrium state associated to a Lipschitz potential. Usual instances are

Bernoulli and Markov measures.

(4. Consider I'(w) = {x(w)} (w € Q), where x : Q — M is a random variable taking values either xp
or x; (possibly coincident) in the form x(®) = xz (), With {x0,x1} < (Nyea (/21 AP ' (which needs
to be a non-empty set).

The intersection ﬂfi] A;" is a co-countable set (Vo € Q).
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Ae T

) 1

ot

Figure 5.1 A representation of x(®) = xz ()

Moreover, for each w € Q, with the minimal period
m(®) = min{m > 1: To"“x(w) = x(6™@ @)} € Nx, U {0},

one defines the number of finite-periods occurring along the ® fiber (K(®) € N>o U {o0}) and the

associated sequence of such periods ((m j(a)))f:((g)_l < N3), using the conventions m_;(®) :=0

and max J := 0, letting

( mo(®) := m(o) €Nz |
my () := m(6™(@) @) € Ny
K(®):=max{ k=>1: my(w):=m(6™(@)+m(®)g) eNs; peNyyu{w}.

mk71<w> = m(emkfz((l))-‘r».."rmo((l))a))e N}]

In particular, writing M;(®) := Zi;é mi(w) for 1 < j < K(w) (with My(o) := 0), one has:

mo () m () ma ()
x(w) ,Tw—> x(eMl(a))w) M Do x(eMz(w)w) 'w)x(eM3(w)w) o

We conclude (C4) assuming that the target satisfies the dynamical condition that
sup{mj(w): weQ,j=0,...,K(w)— 1} =: Mp < o0,

where the convention max ¢ := 0 is adopted.

C5. Consider that there exists » > 0, K,Q > 1 and f € (0, 1] so that u, = hyLeb forms a quasi-
invariant family satisfying: i) (@,x) — he(x) is measurable, i) K~! < ho g, (x()) < K a.s., and
i) o, (x(w)) € Holg (M) with Hg (|, (x(w))) @.s.. See remark 8.

The following result says that theorem 4.1.4 applies to systems in the class (C1-CS5) and, in
particular, they have quenched limit entry distributions in the compound Poisson class with the needed
statistical quantities presented explicitly.
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Theorem 5.0.1. Let (6,P, Ty, lw,I") be a system satisfying conditions (C1-C5). Then the hypotheses
of theorem 4.1.4 are satisfied with

he(x(®)) Mi—i (@) -1 Vo), _q oo
J P )[(JT (x (w))) (JTw ( (w))) ] if ¢ < K(o)

hulsl@) (7o) | = K(o)+1 AP(O)
o ,lo(x(@))dP(w)

0 Jift =2 K(o)+2

oy

The quantities oy comply with (H9) and theorem 4.1.3, allowing for Ay = (oy — &ty1)/ 04 to hold.
In particular: ¥t > 0,Yn = 0,Y(0p)m=1 "\, O with >, -, pu? < o0 (for some 0 < q < 1) one has

/Ty, a.s.
Nw(zl? [#/8(Tp,)] _ n) P-as. CPD, g, (3,7, ({})-

Pm m— 00

We will prove the theorem after a few remarks on relevant subclasses within (C1-C5) and examples.

Remark 5. When the maps T, are piecewise expanding linear maps, they preserve Lebesgue and
conditions (C1)-(C3),(C5) are immediately satisfied.

To illustrate condition (C4), or, better said, condition M < 00, we can look at deterministic targets
x(w) = x. Two noticeable cases occur:

i) Pure periodic points x: when there is some m, = m,(x) > 1 so that x is (minimally) fixed by
any concatenations of m, maps in (7;)"_;. In this case, m(®) = m, K (@) = 00,m;(®) = m,
and Mt = m,,.

It is convenient to represent these types of examples with diagrams (that can neglect topological
information), where the deterministic target x is highlighted with a green ball, each arrow
indicates how each map T, acts, blue cycles indicate cycles that avoid the target, purple paths
indicate paths between the blue cycles and the target and yellow cycles indicate cycles that
include the target (but are not obtained composing blue cycles with purple paths).

% CeO ShOds
T

Figure 5.2 (a) Pure one-periodic. Figure 5.3 (b) Pure two-periodic.

Considering remark 5, we can easily present explicit examples of systems complying with cases
(a) and (b) above. In both examples, x(@) = 1/2 and all maps preserve Lebesgue. Constructions
of this kind are possible for any m, > 1 and u > 1.
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X=4l,

X=41Q

Figure 54 (a) A pure one- Figure 5.5 (b) A pure two-
periodic system.? periodic system.

u—1
v—o- In

ii) Pure aperiodic points x: when x is not fixed by any finite concatenation of maps in (7;)
this case, m(®) = 0, K(®) =0 and Mp = 0.

Here are some compatible diagrams in this case:

!:.
Te 1 17
[ ] :r..""
© o
T T T ? nt
-.fef';ﬁo —t e . '{!.F_’.""“‘
%
Ta T4 TQ Ta T‘ T‘
(@) o f"l. s ., ’;‘;".0 lo .
j\.’ \) \) \‘J\J \}
To To To To To

Explicit examples realizing these structures (or exhibiting these sorts of behaviors) can be tricky
to construct®, especially when the diagram is infinite and one has to control the behavior of

2More precisely, take two piecewise expanding linear maps T, (v = 0,1) of the unit interval, with three surjective
branches: Ty fixes the midpoint 1/2 in its center branch, with slope 2, whereas its left branch maps 0 to 1 and its right
branch maps 1 to 0; 77 is just the same, but having slope 3 in the fixed midpoint. Let x(®) = 1/2. This choice satisfies the
inclusion in (C4), because regardless of the random seed @ and order of iteration /, the midpoint is always a differentiable

fixed point right in the middle of the center branch of T(f,. Condition M1 < o0 is verified as in (i) with my = 1.
3We are not claiming that every (possible) diagram compatible with (ii) can be realized by examples in the class (C1-C5)
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infinitely many iterates of the system*. Notice, however, that, once the maps are fixed, the set
of pure aperiodic x’s is generic, because it is given by

m\ | U Fix(T,, 0.

le (V07"'7V1771)6{07'"7”71}”

..oTy,),

which is co-countable.

For a finite diagram such as the last one in the first column, we can consider the following
explicit example:

Figure 5.6 A pure aperiodic system.

iii) Hybrid. This is the general case. They can combine the behavior in (i) and (ii) while still
verifying Mr < co. Here are some possible diagrams in this case:

“In this direction, beta maps with irrational translation and rational (random) targets were studied in [8]. They do not
fit exactly in the class (C1-C5) because they do not have subjective branches. However, they can be dealt with here by
considering their action on S! rather than on [0, 1]. See remark 7.
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For a finite diagram such as the last one, we can consider the following explicit example:

X

Figure 5.7 A hybrid system.

iv) Non-examples. Here are some diagrams which do not satisfy Mr < co.
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T C .‘C:-—\b\ T(, @
AT
To

Notice that whenever a purple path occurs arbitrarily large periods can be formed. But this can
occur without purple paths as well, as in the first diagram. Moreover, this can occur both with
infinite diagrams (the first two) and with finite diagrams (the last two).

Remark 6. It is not being claimed that systems as in (iv) are not covered by the theory in chapter 4. It
is just being said that systems as in (iv) are not treated with the techniques used in this section (to
calculate underlying o’s).

Proof of theorem 5.0.1. 1t is enough to check that conditions (C1)-(C5) imply the hypotheses (H1-H7,
H9-H10) of section 4.

(H1). Immediate, since M = [0, 1] and Q = {0, 1}%.

(H2). (H2.1) holds because the finitely many branches are injective and M\ Ull.;l g is finite.
(H2.2) holds with R :=1/2, N := 1, and (y,?’n) keKo, assigned the singleton 1/2 (Y@, n), in which case,
for all @ and n, the family of balls is the single one By >(1/2) = (0, 1), that leaves only two points
uncovered, and trivially has at most 1 overlaps. (H2.3) holds because every power 7}, also satisfies the
property in the second sentence of (C1). (H2.5) holds because M\ Uf;l ¢, and the measures have no
singleton (see (H6.1) below). Finally, (H2.6) holds with 1 := K—! (that of (C5)), because one always
has fne(Br(y ™)) = K.

This choices imply that C = A? and C® = AY.

(H3). (H3.1) is immediate and we let E‘ﬁ’ :=C? and Jg,‘f := C?. Then (H3.2) holds immediately,
whereas (H3.3) holds with 0 :=0and C := K4ec“‘“‘dr;llinﬁ, because of the usual distortion control based

J’_
on the second derivative bounded as in (C1) (see, e.g., [70], section 3.3): forany w € Q,n > 1, ¢ €IB
(T;) and x,y € & = @(dom(g)):

=K72 dq)* Leb < d(P* [.u(-)"a) |dom((p)] <Kz dq)* Leb

Jo(x) <K4DT£ (x)
dLeb d,ua, | ¢ (dom(9)) dLeb

K *DT"
@ Jo(y) ~ DTA(y)

=K’DT!'=

but

—1 . 1 . .
DI N DloolTo) K7, (PTealli)—DloalTiy) , )

DTg(y) DT (T5yy) DT (Ty)

i=0
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In(1+x)<x "21 DTyi(Tix) — DTy (Thy)

< -
DTG"w(Tc{)y)

n—1

< Cmax Z ’Tc{)x_ T(f)y’
i=0

i=0

n—1 1

< Cmax Z dmini(nii) |T£(x) - Tcﬁ()’)\ < Crax
i=0

— - (5.1
1 _dmin !

On the other hand, (H3.4) follows with D := 1 and k > 1 arbitrary since
dmin" < DT (x) < dmay”, VO € Qn > 1,xe AD

then
dmax "< DQ(2) <dmin "<n VK> 1,0 Q,n> 1,0 €1B(T)),z € dom(o).

— +7
(H4). (H4.2) is immediate because C?, C? = ¢J. On the other hand, (H4.1) follows from the
finitely many maps in (C1), the dependence of T, simply on the first coordinate of @ as in (C2) and
the inclusion in (C4).

(H5). Holds immediately because maps T, and the target I'(@) depend only on the first coordinate
of @, thus their Lipschitz constant is 0. Also, Lip(0) < o is immediate.

(H6). (H6.1) holds with dy,d; := 1, Cp := K and C; := K~'. (H6.2) holds with n,B:=1and
E =2K>.

(H7). Items (H7.1) and (H7.2) hold with any p > 1. This is because a) (C3) implies that (6,P)
satisfies exponential decay of the type described in (H7), with test functions in Lip(Q) and L*(Q)
(see [17]) and b) (C5) considers quenched ACIPs, whose quenched decay is exponential of the type
described in (H7), with test functions in Lip(M) and L® (M) (see [32] page 1130 and equation (19)°).

(H10). Since p arbitrarily large is available, simply xdp > 1 has to be checked. But once dy = 1
and k arbitrarily large was possible, the desired parametric constraint is immediately satisfied.

(H9). We start calculating ’s. Consider ¢ > 1 and o € Q (eventually taken in a set of full
measure).

Consider
L= My, k(o) (®). (5.2)

Then take po(®,L) = po(mo(®), ..., m (®)) small enough so that p < po(w,L) implies

TLBy (x()) N By (x(8'w)) = &, Vie [1,L)\{My(0) : ke [1,K(0)]}, (5.3)

which can be guaranteed noticing that

a) returns occur precisely in the instants {M(®) : k € [1,K(w)]} and not in between (by minimal-
ity),

SFrom here one has that BV is the good Banach space and that decay appears in terms of BV against L (constants
are uniform). In particular, for any Lipschitz function, we can apply this result to get decay of type the Lip against L™,
as we need. Related comments can be found in the second paragraph of remark 9. Moreover, noticing that the cone of
continuous functions is preserved (see, e.g., [1] page 5), that the eigenfunctions kg € BV upgrade to Holder ones, showing
that condition (C5) is adequate. Related comments can be found in remark 8.
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b) T/ is continuous on x(®) (Vi > 1), a.s., because, by (C4), one has

©¢]
2(@) € {xo,x1} = [ AP < AP, as.

=1

Because of the previous constraint, one could have started with L’s of the form L = M, , k(@) (),
qL = ¢ (so still satisfying equation (5.2)), in the sense that other choices of L are superfluous from
the viewpoint of the quantity we will study, Zflll’;. Then one could restrict po(®, L) further so that

p < po(w, L) implies:
My (eMk/ @) w)

(@) My (@) (@)
w)— (@ , [0}
TR M) By (x(0M©)0)) AL ) (x(eMk<“’>w)),Vk’,ke[o,qLAK(w)],k'gk,

oM (@) g g1 K (0 (5.4)
which can be guaranteed noticing that
M, (6" @ My (0)
a) TeMkk ) (:,Sw >x(9Mk’(“’)a)) — x(@M G oM (@) i) — x(6Mc(®) @), with the later in

(€C4) oo L eMi(@) g OML(®) ¢
{xo,x1} = 21 A CAM,,LAKm)(w)*Mk(w)’

by T ¥ (6" o)

(@) is continuous at x(6M (®) @), because, again by (C4), one has x(6M¢(®) @) e

eMk/ (0) )
Wy (60 )

The point with condition (5.4) is to say that, p is so small that, starting from any pre-intermediary
time My (@) and going to any post-intermediary step My (@), the initial p-sized ball grows under
iteration up to time My (®) but still fitting inside a partition domain (thus an injectivity domain) of the
map evolving from time M; (@) until the end, M, , g ()- In particular, the image balls won’t break
injectivity (or wrap around). Most importantly, it is implied that for any z € B, (x(®)):

(12 @R @Iy ()

q

is a binary sequence starting with a batch of 1’s followed by a (possibly degenerate) batch of 0’s (e.g.
11100, 1111 or 11000).

Then, for @, L and p as above, one has:

6 (L. p)o(Tp (@) = Ho(Z(r; > 117" = 1)

5.3) ) )
= 1y D PP =0-1,177 =1
Jje{My(w):ke[1,q A K (w)]}
w.p _ w,p — ,p — 1
(54) | Ho (10 =Llyiwy =Ly (@) = 1) if L1 < K(o)

0 , otherwise
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s {uw (108 @y = 1) if 0~ 1 <K(0)

0 , otherwise

)

so that

Lif £ < K (o),

,if £ = K(w) +1,

0 Lif €= K(0) +2.

Notice that

) (GM/ l(w)a))) B Leb (hwH(T{fﬁ(w))—]l"p(GM/(“’)w))
a(T,) foLeb(lolr, (o))dP(0)

 [ho(x(0)) + O(e)]Leb (7)1 By (x(6"(*)0)))
Jalho(x(@)) + ()]Leb(Bp<x<w>>> P(@)

 [ho(x(@)) + 0@)]| (T8 (x(0)) ™ + O(e) | Leb (B (x(6" @ )
- Sg [ho(x(w)) + <e>]Leb<Bp< x(w)))d < >
_ he(x(@))+O(e) Mi(0) 1
[ ho () + O(e)dP(w) 073" (@)™ - 0te)| (5.5)

where, given € > 0 (for @ and L chosen as above), we’ve considered p < p;(w,€) < r (see (C5)),
with p; (@, €) small enough so that for any p < p;(, €):

ho(2) = ho(x(@)) + O(), Vz € B (x(@))

and
T (2)) " = UTS ) (x(0))) T + O(e), Vz € By (x(w)).

We can write

1 , _ Yp
p1(w,€) = (¢/Hp(hols,(x(w))) A (S/HB ([JT(ﬁd[(w)] 1|B,(x(co)))> Al

We can use (C1) (finitely many maps and uniformly bounded second derivatives), (C4) (uniformly
bounded finite-periods) and (C5) (uniform Holder constants for the densities) to pass to controls that
are uniform on @ and then integrate: for any € > 0, L > L, := /M and

p <p«(L,e):= min p;(vo,...,vL) /\eSSwiIlfpl((J),S) € (0,1],

V0,--+5sVL
e {0,1}1+!
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one has

ou(L.p) =

£) [(JTK"’I(w)(x(w)D_I+(9(8)] ifl=K(@)+1 dP(@),
0 Lif £ K(0) +2

then taking iterated limits of the type lim, limy, lim, one finds that

-1 -1
he(x(®) [(JTM‘ I(CU)( (a)))) _ (JTgf("’)(x(a)))) ]’ifg <K(o)
| hw<x<w>> (@)
-1
o = ho (x()) [(]TM‘ 1@ (w))) ] ifl=K(w)+1 dP().
o Qhw(JC(w)) )
0 Lif €= K (o) +2
(5.6)
The following diagram helps one to visualize how the integrand in equation (5.6), with the factor
he
% suppressed, changes

a) for @’s with varying amount of periodicity (read the different lines),

b) as ¢ grows (read the different columns).

/=1 /=2 /=73
1= 1T (x(@) 11T, ) (x(0))
IO (@) I o) (@)

1= 1075 (x(w)),
9™m0(®) g

1 , 0 , 0 ,.9)

(
K(0) = 1(11/JTm° ) (x(w), —>Ll 0 0)

JTmo(w)( (o))
1—-1 /JTO’",JO((‘;’?w(x(w)) 1 0 ) .

1= 175" (x(w)),

goee

I (x(w) T (x(0)I T (x())
5.7
Having found that oy ’s exist and have explicit representation, it remains to check that a;; > 0 and
S oy < 0.
It holds that ¢; > 0 because the quantity found in the first column of diagram (5.7) is bounded
below by 1 —1/dyin > 0.
Moreover, considering the integrand of equation (5.6), we see that o is at most (1/dpin) ",

0 e}
D0 < Y (Vi) ™! < o0,
(=1

(=1

therefore

since dpiy, > 1.
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This concludes that conditions (C1)-(C4) imply the hypotheses of theorem 4.1.4 and that the
associated o ’s satisfy (H9) and the hypotheses of theorem 4.1.3.

Let us finally notice that in this case, where dy,d;,n,8 = 1 and p = oo (i.e., can be taken arbitrarily
large), g(do,d1,n,B,p), reduces to 1. This is because the system of inequalities appearing at end of
proof of lemma 4.4.2 reduces to only two (1 > o and w > 2 for (o,w) € (0,1) x (1,00)) which admit
a solution that opens a margin of (at least) 1 in both equations. |

Remark 7. As it comes to M = [0, 1], the use of surjective branches in (C1) was to facilitate as
much as possible the presentation of covers and cylinders in (H2) below. But these can be still
presented without surjective branches. For example, one could present them for the beta maps
To(x) = 1/2+2x (mod 1) and 71 (x) = 1/2+ 3x (mod 1). On the other hand, to have the type of decay
against Lipschitz test functions we will be after in (H7), the interval maps ought to have subjective
branches (otherwise the good functional space becomes bounded variation instead of Lipschitz), which
is not the case of the previous beta maps. In this situation, one has to resort to seeing these beta maps as
acting smoothly in M = S', and cylinders will not anymore mark regions of continuity/differentiability,
but will still mark injective regions, so to speak.

Remark 8. Condition (C5) was included to make transparent what is really used in the argument
above. But one should be aware that conditions (C1-C3) suffice to conclude that densities are a.s.
bounded away from 0 and oo and a.s. admit a uniform Holder constant (on the entire manifold M).
See [77] Example 21. This is stronger than (CS5), which then can, technically, be omitted from the list
of conditions.

Remark 9. Some points have to be carefully evaluated in case one wants to generalize (C5) in such
a way as to accommodate general quenched equilibrium states where g, = hyVy, Where Ay, is an
eigenvector for the RPF operator in a suitable Banach space Z (i.e., Lyhy = Awhye) and vV, € P(M)
is a conformal measure (i.e., £} Vgy = AwVe). In this direction, useful existential results with decay
of correlations are found, for example, in [63] [16], [65], [64], [72], [15], [7] [6], [9], [10], [82] and
[83].

The first thing to notice is that the hypotheses of theorem 4.1.4 don’t touch on which suitable
Banach space 4 is used to reveal a spectral. Even if Z is taken to be the BV space and decay appears
in terms of BV against L', one can still recover what is required in terms of Lipschitz against L.
Despite decay being fine, and nowhere else in the hypotheses of theorem 4.1.4 properties of functional
spaces and the associated density appearing to intervene, the reader will notice that we’ve just used
knowledge of this kind to get o’s and guarantee (H9) in the above application.

In particular, we used that A is continuous at x(®), around which (in a vicinity of uniform
size) hg is a continuous function with uniform moduli of continuity (in our case, uniform Holder
constant). For example, when BV is the good Banach space and A, € BV, it should still be required
that &, is continuous on x(®) (actually, in the qualified way we just described). This is not a cost-less
requirement: BV functions are continuous Lebesgue-a.e., but when one wants compound limiting
behavior, the target points generally aren’t generic (or Lebesgue-generic) points — as in the periodic
target case. So even mere continuity can not be guaranteed for free (not to say the qualified type of

continuity we used).



115

Moreover, when v, = Leb, we have used that Leb(B, (x)) "M €1 1o do cancellations and get to

equation (5.5). In general, one needs that: 3p, > 0, @ a.s., Vp < py, Yk =0

Voo (Bp (x(6°®))) /var (Bp (x(®))) = 1

or at least: @ a.s., Vk >0
gigbvekw(Bp (x(6*®)))/Ver (B (x(®))) = 1,

with uniform-on-(®, k) control on how the function approaches 1 as p shrinks to 0. Even if
log Vi (Bp (x))
logr

because, once again, points x of interest aren’t usually typical ones, but of periodic type. This is

limp_,o = Cy for vy-a.e xe M (0 a.s.) and even if C, = C a.s., it is not enough —
emphasized in contrast to hypothesis (H6.1), where dimensions were controlled roughly, utilizing
a pair of inequalities. However, if one wants to assess the existence of the a,’s and calculate them
following the previous approach, exact dimensional control is needed. The needed fine dimensional
control on quenched conformal measures is not available in the literature (except when v, = Leb).

It is also needed that the potential ¢ : Q x M — R is so that esssup,, Hg(¢p) < 0.

Provided that all the conditions needed to mimic the argument developed in the above proof are
met, the associated o’s will read as in equation (5.6) but with Hﬁﬁgw)fl QLG; Clo ezgf}m_l 9970°To ((@))

instead of (JT%“’) (x(a)))>
End of remark.

Now we concentrate on analyzing the these conclusions of theorem 5.0.1 refine (or how o’s in
equation (5.6) simplify) when additional conditions are considered.

Corollary 5.0.2. Consider the assumptions of theorem 5.0.1 and assume further that K(®) = 0 a.s..
Then

Lifl=1
o = , (5.8)
0,if (=2

and CPD in the limit theorem boils down to a standard Poisson.
Proof. Immediate. ]

Corollary 5.0.3. Consider the assumptions of theorem 5.0.1 and assume further that P is Bernoulli,
K(®) = o a.s. and
ho(x(@)) L (JTm’(w) (x(eM-f<w>w))) 6

M; .
0 /(w)w j

Then

o = (D— 1D~ with D~ = f T ®) ()] dP(w),
Q

and the CPD in the limit theorem boils down to a Polya-Aeppli (or geometric) one.

This occurs when, for example, when Ag = 1 a.s., or much more generally, when /¢, depends only on the past entries
of w (see, e.g., [68] prop. 1.2.3 and [65] prop. 3.3.2).
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Proof. Notice that K(®) = o0 a.s. and the independence of i, (x(®)) from the rest implies
=2 (@) (@) -1
= [ TT[mte) oo @on] " az(@) - [ H me 60 @0)]|  dP(o),
j=0

then, after we make the point in I) that (0) — JT M((mz (x(6Mi(@) 0)))) _is independent under P, we
j
will find that

o - H f e e op] dr(@) -] |, [ @] dp(o)

j=0

which, we will argue in II), equals

o= [ @] e[ [ 1 o] " aete) = 0- 10
K odal? jodal " |

where D™ := | T2 @) x ()] dP(®), as desired.
Let us make the points that are missing.

I) Notice first that
P(mo(®) = ig,mi (@) = i1) = P(mo(®) = ig,mo(6°®) = it) = P(Lper, (r) Lo-iv per, (1))

= P(Lper, (1)) P(Lg=io per, (r)) = P(mo(@) = io)P(mo(®) = i1),

where the first equality in the second line is because (7;)’s are independent under [P and the in-
dicator functions can be expressed in terms of disjoint blocks of (7;)’s, namely 7, ..., T;,—1 and
Ty - - - s Wig+i;—1. On the other hand

P(m (@) = i) ZIP’ mo(®) = ip,m1 (@) = iy)

= Z]P)(mo((l)) = io)P(mo(CO) = i]) = ]P’(I’I’l()(a)) = i]).

So combining the two previous chains of equality, we find that mg and m; are independent, i.e.,
my il nmi.

Once again, since (7;); is an independency under IP, whenever two random variables X and Y can
be expressed as X = ¢ o (mp, ..., Ty—1) and ¥ = yo (m,...,Ty+i,—1), then X L Y. Similarly for 7

instead of 7. This is the case for (JT (x(-)), Lo ()=o) - (JTelﬁ0 (x009(-)), Ly (=1, )-
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Therefore

P({o: 175" (o) =a, [T (6™ @0))] " = b))
:ZZP({w:[JT;;)(x(w))]*‘:a,[JTelo (x(6°w))] ™" —bmg(a)) io,mo(60 @) = })

- ZZ [P ({(o [T (x(0)] " = a,mo(@) = io} P <{a): [JTé}Ow(x(G’”a)))]_ = b,my(6"°®) = il})]

—P ({w [T @) (x())] " = b}) .

So combining the two previous chains of equality, we find that
T (x(4)) LITg'?) (60,

as desired.
II) Notice that

| gl e @ )] ap@) = Sop ({o 1) (o @w)] ! < b))

b

—ZbIP’ ({ [T (x())] " =b}) =L V4" x(w)] " dP(a),

where we have used the last equality in I). |






Chapter 6

Future research

The theory developed in this thesis has an inclination to cover non-uniformly expanding behavior with
possibly unbounded derivatives, in the sense of hypotheses (H3.1), (H7) and (H4.2), but the examples
in section 5 were uniformly expanding ones.

On-going research efforts are then directed to produce and accommodate examples of bonafide
non-uniformly expanding random systems with associated targets which randomly approach their
neutral points (unlikely and slowly).

Another relevant extension of the theory is to get rid of the subsequence need, p,, \, 0 as m — 00,
entailed by lemma 4.4.3, and to upgrade theorem 4.1.4 to work under the plain limit p — 0. This is
undergoing investigation by Jiakang Wang and Nicolai Haydn.

Investigation can consider targets that contain indifferent points (or approaching them likely and/or
fastly), in which case special time-normalization has to be considered.

Other research directions include adapting the theory to maps with Jacobians in R, maps with
infinitely many branches and applications drawing infinitely many maps.

Finally, it could also be interesting to explore how this approach adapts to handle quenched
time-normalization. Ideally, assuming an ergodic driving would be enough, but a reformulation of the
strategy to control almost surely the w-dependent errors and leading term would probably be needed.
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Statistique de Poisson composée pour les systemes dynamiques aléatoires

Résumé en frangais

Nous obtenons des distributions d’entrée limites quenched dans la classe composée de Poisson pour une
certaine famille de systémes dynamiques aléatoires en utilisant une approximation probabiliste par bloc pour la
fonction de comptage d’entrée quenched jusqu’au temps normalisé annealed-Kac. Nous considérons des cibles
aléatoires générales avec des statistiques de retour bien définies et des systémes avec une d’ecroissance
polynomiale des corrélations a la fois quenched et annealed. La théorie est rendue opérationnelle grace a un
résultat qui permet de récupérer certaines statistiques d’entrée a partir desdites statistiques de retour, qui sont
calculables. Nos exemples incluent une classe de systemes unidimensionnels a expansion aléatoire par
morceaux, jetant un nouvel éclairage sur la dichotomie déterministe bien connue entre les points périodiques et
apériodiques, leur formule d’indice extréme habituelle EI = 1 — JTP(z), et récupérer le cas géométrique pour les
systemes généraux pilotés par Bernoulli, mais comportement distinct dans le cas contraire. Les enquétes
futures et en cours visent a produire et a prendre en compte des exemples de véritables systemes aléatoires a
expansion non uniforme et de cibles s’approchant de leurs points neutres.

Mot clés : Systemes Dynamiques, Perturbations aléatoires, Statistiques de Poisson composée.

Compound Poisson distributions for random dynamical systems

Résumé en anglais

We obtain quenched limiting hitting distributions in the compound Poisson class for a certain family of random
dynamical systems using a probabilistic block-approximation for the quenched hit-counting function up to
annealed-Kac-normalized time. We consider general random targets with well-defined return statistics and
systems with both quenched and annealed polynomial decay of correlations. The theory is made operational
due to a result that allows certain hitting statistics to be recovered from the said return statistics, which are
computable. Our examples include a class of random piecewise expanding one-dimensional systems, casting
new light on the well-known deterministic dichotomy between periodic and aperiodic points, their usual
extremal index formula EI = 1 — JTP(z), and recovering the geometric case for general Bernoulli-driven
systems, but distinct behavior otherwise. Future and on-going investigations aim to produce and accommodate
examples of bonafide non- uniformly expanding random systems and targets approaching their neutral points.

Keywords : Dynamical systems, Random perturbations, Compound Poisson statistics.
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