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RÉSUMÉ EN FRANÇAIS

Nous interagissons de plus en plus avec des objets pilotés par des programmes. Souvent,
une erreur d’exécution d’un programme ne provoque pas de situation dangereuse. Un
plantage de téléphone peut être embêtant, mais est souvent sans conséquences graves.
Néanmoins, il existe des programmes gérant des tâches critiques, et les échecs de ceux-ci
peuvent avoir des conséquences graves. Les pays membres de l’Agence Spatiale Européenne
gardent en mémoire le vol 501 d’Ariane, le premier vol de la fusée Ariane 5. Celui-ci s’est
terminé prématurément après 30 secondes, lorsque le pilote automatique a guidé la fusée
hors de la trajectoire prévue, et celle-ci a été détruite par sécurité [25]. Cet événement est
la conséquence d’une erreur de programmation, et a été à la date du vol en 1995 « le bug
le plus cher de l’histoire ». Bien que les conséquences matérielles ont été grandes, il n’y eut
pas de victimes. En 2016, un programme de financement participatif automatisé (un smart
contract) s’exécutant sur la blockchain Ethereum s’est révélé vulnérable. Le rôle de ce
programme était de recevoir des cryptomonnaies d’utilisateurs, dans l’objectif de financer
des projets. Or, celui-ci présentait une faille de sécurité, et un utilisateur malicieux a réussi
à extraire une part importante de l’argent possédée par le programme [12]. Ce piratage
a pu avoir lieu, car les développeurs du programme avaient une mauvaise compréhension
du langage qu’ils utilisaient. Il y avait un écart entre le comportement attendu et le
comportement réel du programme. Le vol a été chiffré en dizaines de millions de dollars.

S’assurer d’avoir des programmes sûrs, et qui remplissent bien les fonctions qui leur
sont attribuées est naturellement un enjeu important. Dans cette thèse, nous allons nous
intéresser à la définition d’analyses statiques correctes pour langages de programmation.
Une analyse statique analyse du code sans l’exécuter. Elle peut garantir certaines pro-
priétés d’un programme, par exemple, montrer qu’il n’y a pas de division par zéro. Nous
souhaitons définir des analyses correctes, c’est-à-dire avec une preuve formelle, mathéma-
tique, que les analyses calculent effectivement les propriétés attendues.

Pour atteindre ces objectifs, notre approche est de partir d’une description formelle
d’un langage de programmation, et d’en dériver une interprétation abstraite. L’interpré-
tation abstraite [9] est une méthode de calcul d’approximations des comportements des
programmes, et d’en déduire des propriétés sur ces programmes. Nous avons choisi les Sé-
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mantiques Squelettiques comme cadre pour formaliser des langages de programmation, car
elles sont simples mais très expressives. Une sémantique squelettique est une description
partielle d’un langage. En complétant cette description, on peut obtenir une sémantique
du langage, c’est-à-dire une description mathématique de l’exécution des programmes de
ce langage. Notre objectif est d’obtenir une sémantique et une interprétation abstraite
à partir de la sémantique squelettique d’un langage, et de montrer que l’interprétation
abstraite est une bonne approximation de la sémantique du langage. Nous présentons ici
un résumé des différents chapitres de cette thèse.

Contexte Le Chapitre 1 présente différents formats sémantiques tel que les sémantiques
opérationnelles. Nous présentons aussi des sémantiques « mécanisées », c’est à dire repré-
sentable et manipulable par une machine. Nous introduisons l’interprétation abstraite,
une méthode pour calculer des approximations de sémantiques en temps fini. Nous en
arrivons à la conclusion qu’il est intéressant de générer des analyses statiques, sous forme
d’interprétation abstraite à partir de sémantiques mécanisées. En effet, cela nous permet
de générer une interprétation abstraite pour chaque langage dont on a une sémantique
mécanisée, et une preuve de correction de cette interprétation abstraite. Notre objectif
est de gagner en temps : l’interprétation abstraite est en partie générée, et de gagner en
sûreté car une preuve de correction est aussi produite.

Sémantique Squelettiques Le Chapitre 2 présente les sémantiques squelettiques : un
cadre sémantique pour formaliser des langages. Une sémantique squelettique est une des-
cription formelle et partielle d’un langage. Nous présentons la sémantique squelettique
d’un petit langage impératif que nous appelons While. De plus, nous montrons comment
l’on peut obtenir une sémantique pour un langage dont on a une sémantique squelettique :
nous l’appellerons ici sémantique concrète. Cette sémantique concrète décrit le comporte-
ment des programmes du langage. La définition de la sémantique est simplifiée et elle est
représentable par une machine.

Points de Programme Le Chapitre 3 est notre première contribution. Nous présentons
les « points de programme » : pour un programme donné, un point de programme permet
de désigner avec précision une sous partie du programme. Ce travail est très important,
car les points de programme sont indispensables pour faire des analyses de programme.
Dans ce chapitre, nous présentons notre méthode pour intégrer les points de programmes
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aux sémantiques obtenues à partir de sémantiques squelettiques. Nous montrons qu’il y a
une équivalence entre la sémantique sans, et avec, points de programmes.

L’Interprétation Abstraite Le Chapitre 4 est le cœur de cette thèse. Il montre com-
ment définir une interprétation abstraite d’un langage à partir de sa sémantique sque-
lettique. Pour cela, nous présentons une méthode inspirée de la définition de sémantique
concrète à partir d’une sémantique squelettique. La définition d’une interprétation abs-
traite est plus compliquée, car l’on doit y intégrer des concepts issus de la théorie de l’in-
terprétation abstraite, comme les unions et les comparaisons abstraites. De plus, on ajoute
des mécanismes pour s’assurer que l’interprétation abstraite termine. Enfin, le théorème
central de la thèse est présenté : étant donné la sémantique squelettique d’un langage, la
sémantique concrète obtenue par la méthode du Chapitre 2 est correctement approximée
par l’interprétation abstraite obtenue dans ce chapitre. Nous donnons un exemple d’in-
terprétation abstraite obtenue à partir de la sémantique squelettique de While et nous
montrons que celle-ci est correcte : elle approxime bien la sémantique de While.

Le λ-calcul et Analyse de Flot de Contrôle Le Chapitre 5 donne un nouvel exemple
de définition d’interprétation abstraite pour un autre langage, le λ-calcul, à partir de sa
sémantique squelettique. Avec la même recette, nous obtenons une analyse très différente
pour ce langage fonctionnel. Nous définissons cette fois une Analyse de Flot de Contrôle.
En effet, les langages fonctionnels comme le λ-calcul ont un flot de contrôle qui n’est
pas connu avant l’exécution du programme. Il existe des analyses pour en calculer une
approximation, et nous en définissons une en utilisant notre méthodologie.

Taiga Le Chapitre 6 présente notre générateur d’interpréteur abstrait exécutable. Taiga
est un programme OCaml qui à partir d’une sémantique squelettique peut générer un in-
terpréteur abstrait. Nous présentons l’implémentation de Taiga qui nous permet d’obtenir
des interpréteurs abstraits à partir de sémantiques squelettiques, et nous montrons com-
ment il peut être utilisé sur notre petit langage While. Il suffit de fournir des abstractions
pour certaines parties du langage, et Taiga est capable de générer un interpréteur abstrait
pouvant analyser de vrais programmes du langage.

Nous concluons cette thèse en discutant de ce qui a été accompli, ainsi que des travaux
à mener dans le futur. Nous réussissons à obtenir des interprétations abstraites correctes à
partir de descriptions sémantiques de langages. Nous avons testé notre approche sur deux
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CHAPITRE 0. RÉSUMÉ

petits langages et nous avons défini deux interprétations abstraites pour ces langages
différents : While, un langage impératif, et le λ-calcul, un langage fonctionnel. Les inter-
prétations abstraites sont très simples à obtenir, car pour une sémantique squelettique
donnée, il suffit de définir les abstractions à utiliser pour les parties les plus spécifiques au
langage. Nous prouvons simplement que les analyses obtenues sont correctes en prouvant
de petits lemmes sur les parties dépendantes du langage, et en utilisant le théorème de
correction de l’interprétation abstraite présenté au chapitre 4. Notre générateur d’inter-
préteur abstrait nous permet même d’obtenir un interpréteur abstrait exécutable pouvant
analyser de vrai programmes à partir d’une sémantique squelettique. Néanmoins, ils de-
meurent de nombreuses pistes d’améliorations. Nous n’avons pas prouvé la terminaison
de nos interpréteurs abstraits, qui est une propriété essentielle pour ces programmes. Nos
analyses manquent de précisions, car notre approche est indépendante du langage, et nous
discutons des pistes pour l’améliorer. Nous n’avons qu’une preuve papier de la correction
de nos interpréteurs, or nous souhaitons l’écrire en Coq.
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Chapter 1

CONTEXT

1.1 Introduction

1.1.1 Static Analyses and Their Correctness

Many objects we interact with everyday when paying, driving, cooking, and more, involve
some code and programs. Programs run many applications, some where the stakes are
low like the code running your high-tech coffee machine: a program selects the quantity
of beans to grind, and the quantity of water to pump. The worst that can happen in
case of a malfunction is to get terrible coffee. However, critical tasks have also been
delegated to software where the consequences of a malfunction can be very serious, and
dangerous. Some bugs are not life-threatening but are very costly, like the DAO attack [3],
where an attacker was able to steal millions of dollars in Ethereum currency. There was a
vulnerability in a program managing a crowdfunding platform on the Ethereum blockchain
that was exploited to withdraw money. Other bugs may have physical impacts, like the
crash of Ariane 5 that stemmed from an overflow error in the autopilot of the rocket that
led to the loss of the satellites that were on board. It was considered one of the most
expensive bugs in history at the time. Hence, ensuring that a program is indeed doing
what it is meant to do became paramount for code running critical applications.

To ensure that software satisfies a property P , many techniques have been developed
and are used nowadays. The most ubiquitous one is testing: programs are subject to
intensive testing to make sure that they work properly. However, tests can be tedious to
write and maintain, and they are not exhaustive: a specific bug not covered by tests may
never be detected. Tests may seem to be an easy solution but they require lots of work to
be useful: they should cover executions that are representative of what may happen in the
real world, and the expected result of a test must be correct and therefore written with the
utmost care, otherwise the test is useless. Tools have been developed using formal methods
to tackle some of the issues of tests. Formal methods is the set of every approach that
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Context

use mathematics to ensure that a program respects some properties. Interactive Theorem
Provers (ITP) like Coq [7] or Isabelle [47] can be used to prove that a program meets a
property P mathematically. Indeed, an ITP is a tool to write mathematical definitions,
lemmas and theorems, and proofs that are verified by the ITP. A property that can
be expressed and proved mathematically can be proved with a theorem prover, which
checks that the proof provided by the user is correct. However, writing proofs is tedious
with an ITP and hard to make it automatically. That is an issue Static Analyses try to
resolve. A Static Analysis can analyse programs automatically without executing them.
It is usually automated and therefore potentially scales on an extensive quantity of code.
An automated static analysis can be safe: if a program may go bad, the analysis will catch
it, but the analysis might not be able to conclude that every correct program is indeed
safe. Or, the analysis can be complete: every program that satisfies the desired property is
accepted by the analyser, but it might flag programs that do not meet P as safe. By Rice
Theorem, it is impossible to get safety and completeness for a non-trivial properties with
automatic analysis. With formal methods, static analyses can be proved mathematically
correct: we can mathematically prove that some analyses have the safety property for
instance. This should increase the confidence in these analyses. Abstract Interpretation is
a particular technique to define mathematically correct static analyses for languages, as
the analysis can be proved safe, and therefore will always reject all problematic programs.
However, the more expressive an analysis is (meaning it rejects few safe programs), the
harder it is to prove the analysis correct. The objective of this thesis is to derive correct
safe static analyses from a formal description of languages. We hope that we can reduce
the work necessary to design a static analysis by providing a language-agnostic method
to get a working, correct abstract interpreter.

1.1.2 Static Analyses from Machine Representable Semantics

Given a property P and a program, does the program meet the property? To express prop-
erty P and to prove that it holds, we need a mathematical definition of the behaviour
of the program. This mathematical definition is called the semantics of the program.
There are many types of semantics, but the goal is to generate a static analysis from
the semantics of the language. Hence, we needed to use mechanised semantics. We call
the mechanisation of an object a machine representation of this object. A mechanised
semantics is a machine representation of the semantics. Mechanised semantics can offer
interesting features, one example is to prove properties with an interactive prover. For
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instance, CompCert is a certified C compiler written in Coq, that transforms C programs
into assembly code. Given a valid C source program, it is mathematically proved in Coq
that the assembly code produced by CompCert has a behaviour that is valid according
to the semantics of the source program. To prove this theorem, a mechanisation of the
semantics of C and assembly has been written in Coq. The theorem of correctness of the
compilation has been written and proved in Coq. Similarly, Verasco, a verified C anal-
yser written in Coq performs static analyses using abstract interpretation. The abstract
interpretation is proved safe in Coq: the abstract interpretation is a safe approximation
of the semantics of C. These two works are major undertakings and it required many
experts and are therefore hard to reproduce. However, Verasco that it was possible to get
a correct abstract interpreter proved correct using mechanised semantics. The objective
of this thesis is to give a methodology to derive static analyses from a formal description
of a language, to get a safe, proven correct static analysis with as little pain as possible.
Our approach is to define the semantics of a language and its abstract interpretation from
the same object: a skeletal semantics [4]. Skeletal semantics is a framework for writing
machine representable semantics of languages.

1.2 Semantics of Programs

Our objective in this thesis is to make the development of static analysers, that ensure that
programs are safe, easier. To formally reason about programs, we need a mathematical
description of the behaviour of a program, this description is called semantics. This way, a
formally defined analysis of a language can be proved correct relative to the semantics of
the language. There are many types of semantic formats each one comes with its benefits
and drawbacks. We try to give an overview of some semantic formats, and give an intuition
of what they are good and bad for.

1.2.1 What is a Semantics?

When one writes code in some language, syntax is the set of rules of how to represent
a program: what characters to type to form an expression, a function etc... But what
meaning is given to the program? The programmer has an intuition of what its code should
do, as they may read the documentation of the language, study some code examples,
and make comparisons with other languages. However, all of these resources are usually
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expr ::= n ∈ lit
| x ∈ ident
| expr + expr
| expr <= expr

stmt ::= skip
| stmt ; stmt
| x := expr
| if expr then stmt else stmt
| while expr do stmt

Figure 1.1: Grammar of the While Language

imprecise: a documentation is written in natural language which is often ambiguous. Code
examples can be misinterpreted or hide subtleties and different languages can differ on
syntactically similar programs.

A semantics is a mathematical definition of the meaning of a program, removing all
ambiguities coming from the natural language. There are many semantic formats, and
choosing the relevant one depends on the context. A compiler developer may prefer an
intensional semantics: a semantics exposing the internal circuitry of the language. A
programmer may prefer extensional semantics, which only exposes externally observable
behaviours. There is not one semantic format that is better in the absolute: it is often
necessary to define several semantics for a given language because they have different
uses, for different audiences. A brief presentation of some semantic formats is given in
this chapter, along with an intuition of what they can be used for.

1.2.2 Operational Semantics

The first semantics we present are operational semantics. An operational semantics gives
meaning to programs by constructing trees from logical statements that describe the
executions of every construct of the language. There are several operational semantics
and we present the two most notorious ones: the Structural Operational Semantics, also
known as “small-step semantics”, and the Natural Semantics, also known as “big-step
semantics”.

We define a toy imperative language called “While” which will be used to illustrate
the different semantic formats. The grammar of While is given on Figure 1.1 and uses
four syntactic categories. Literals (lit) that we assume to be the set of relative integers.
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⇓e∈ P ((store× expr)× Z)
⇓s∈ P ((store× stmt)× store)

σ, n ⇓e n

σ(x) = n

σ, x ⇓e n

σ, e1 ⇓e n1 σ, e2 ⇓e n2

σ, e1 + e2 ⇓e n1 + n2

σ, e1 ⇓e n1 σ, e2 ⇓e n2 n1 ≤ n2

σ, e1 <= e2 ⇓e 1
σ, e1 ⇓e n1 σ, e2 ⇓e n2 n1 > n2

σ, e1 <= e2 ⇓e 0

σ, skip ⇓s σ

σ, s1 ⇓s σ′ σ′, s2 ⇓s σ′′

σ, s1 ; s2 ⇓s σ′′
σ, e ⇓e n

σ, x := e ⇓s σ[x← n]

σ, e ⇓e n n ̸= 0 σ, s1 ⇓s σ′

σ, if e then s1 else s2 ⇓s σ′
σ, e ⇓e n n = 0 σ, s2 ⇓s σ′

σ, if e then s1 else s2 ⇓s σ′

σ, e ⇓e n n = 0
σ, while e do c ⇓s σ

σ, e ⇓e n n ̸= 0 σ, c ⇓s σ′ σ′, while e do c ⇓s σ′′

σ, while e do c ⇓s σ′′

Figure 1.2: Inference Rules of the Natural Semantics of While

Identifiers (ident) that we assume to be a countable set of variables. Expressions (expr)
that are defined by a BNF grammar to be either a literal, an identifier, an addition of two
sub-expressions or a comparison of two sub-expressions. Statements (stmt) are defined
to be either a skip instruction, an assignment, a conditional branching or a while loop.
Moreover, we introduce a set of stores, which are partial functions from identifiers to
integers. We use the notation f : A ↪→ B for partial functions from A to B.

store ≡ ident ↪→ Z

1.2.3 Natural Semantics

A Natural Semantics is an operational semantics defined as an inductive relation from a
program and an appropriate context to the result of the evaluation of the program. It was
first defined by Kahn [19] in 1987 to specify a semantics for mini-ML, a small functional
language. The Natural Semantics of While is presented on Figure 1.2 as a set of inference
rules, each rule describes how a construct is computed. The relation ⇓e is the evaluation of
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expressions and maps a store and an expression to an integer. The relation ⇓s associates
a store and a statement to a new store. It is said big-step as it is an input-output relation.
We write σ, s ⇓s σ′ when there exists a valid derivation tree with this conclusion. We
call a derivation tree a combination of inference rules where the top parts of the tree
are all axioms: logical statements that do not depend on the relations ⇓e or ⇓s. Natural
Semantics are convenient because they have the structure of a recursive interpreter, and
thus can be helpful for developers to implement an interpreter for the language. They are
called "natural" because they describe the evaluation of each construct as one would say
in natural language. As an example, to compute an addition, the rule says that the left
and right operands must be evaluated, and the output is the sum of the results.

We present each inference rule of Figure 1.2, from left to right, top to bottom. We
start with the evaluation of expressions, which given a store and an expression map-to
an integer. The first rule is the evaluation of a constant. Note that we use different fonts
for the constant: n is syntax, and n is an integer and the result of the evaluation of
the constant. The evaluation of a variable is equal to the value it is bound to in the
store. The evaluation of an addition is the integer addition of the evaluation of both sub-
expressions. Here, + is syntax, and + is the mathematical operation. There are two rules
for the comparison of expressions: they all start by evaluating both sub-expressions. For
a comparison, if the left sub-expression is smaller than the right sub-expression, then the
condition is true, and 1 is returned: the truth value. Otherwise, it is 0 that is returned,
the false value. This concludes the evaluation of expressions, there remains the evaluation
of statements, which given a store and a statement, returns a new store. The evaluation
of a skip statement returns the store unchanged. The evaluation of a sequence is obtained
by evaluating the left statement and using the new store to evaluate the right statement
and get the result. There are two rules for if-statements: both start by evaluating the
expression, which represents a boolean. If the expression is true (the evaluation of the
expression is not 0), the first branch is evaluated, otherwise, the condition is false and
the second branch is evaluated. Finally, there are two rules to evaluate a loop, both start
with the evaluation of the expression. If the expression evaluates to false, then the same
store is returned as the body of the loop is never evaluated. Otherwise, the body of the
loop is evaluated one time and then re-evaluated with the new store.

We give a simple example with the program while x <= 0 do x := x + 1. We write
{x1 7→ v1, .., xn 7→ vn} for the partial function that maps xi to vi. Let σi = {x 7→ i}, we
show that σi, x := x + 1 ⇓s σi+1 and we show the evaluation of two expressions on
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σi(x) = i

σi, x ⇓e i σi, 1 ⇓e 1
σi, x + 1 ⇓e i + 1

σi, x := x + 1 ⇓s σi+1

σ(x) = 0
σ0, x ⇓e 0 σ0, 1 ⇓e 1 0 ≤ 0

σ0, x <= 0 ⇓e 1

σ1(x) = 1
σ1, x ⇓e 1 σ1, 0 ⇓e 0 1 > 0

σ1, x <= 0 ⇓e 0

Figure 1.3: Semantics of Fragments of a Program

Figure 1.3 as preliminary results, using the inference rules of Figure 1.2.

Using these results, the derivation of our program is:

...

σ0, x <= 0 ⇓e 1
...

σ0, x := x + 1 ⇓s σ1

...

σ1, x <= 0 ⇓e 0
σ1, while x <= 0 do x := x + 1 ⇓s σ1

σ0, while x <= 0 do x := x + 1 ⇓s σ1

When evaluating the while loop from store σ0, the condition x <= 0 is evaluated as true.
The body of the loop x := x + 1 is evaluated and gives a new store σ1: the value of
variable x has been incremented. The loop is then re-evaluated with the new store σ1, but
the condition is now false, thus σ1 is returned and is the final result of our program.

There are several drawbacks to natural semantics. They make it hard to reason about
non-terminating programs. The trees are defined by induction, and have finite height.
Therefore, a non-terminating program does not have a derivation. In particular, it is
impossible to find a store σ such that:

σ0, while 1 do skip ⇓s σ

One consequence is that it is not possible to reason about non-terminating programs with
big-step semantics defined by induction.
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→e∈ P ((store× expr)× (store× expr))
→s∈ P ((store× stmt)× ((store× stmt) ∪ store))

⟨σ, n⟩ →e ⟨σ, n⟩ ⟨σ, x⟩ →e ⟨σ, σ(x)⟩
⟨σ, e1⟩ →e ⟨σ, e1’⟩ binop ∈ {<=, +}
⟨σ, e1 binop e2⟩ →e ⟨σ, e1’ binop e2⟩

⟨σ, e2⟩ →e ⟨σ, e2’⟩ binop ∈ {<=, +}
⟨σ, n binop e2⟩ →e ⟨σ, n binop e2’⟩

n1 ≤ n2

⟨σ, n1 <= n2⟩ →e ⟨σ, 1⟩

n1 > n2

⟨σ, n1 <= n2⟩ →e ⟨σ, 0⟩ ⟨σ, n1 + n2⟩ →e ⟨σ, n1 + n2⟩

⟨σ, skip⟩ →s σ

⟨σ, s1⟩ →s ⟨σ′, s1’⟩
⟨σ, s1 ; s2⟩ →s ⟨σ′, s1’ ; s2⟩

⟨σ, s1⟩ →s σ′

⟨σ, s1 ; s2⟩ →s ⟨σ′, s2⟩

⟨σ, e⟩ →e e’
⟨σ, x := e⟩ →s ⟨σ′, x := e’⟩ ⟨σ, x := n⟩ →s σ[x← n]

⟨σ, e⟩ →e e’
⟨σ, if e then s1 else s2⟩ →s ⟨σ, if e’ then s1 else s2⟩

n ̸= 0
⟨σ, if n then s1 else s2⟩ →s ⟨σ, s1⟩ ⟨σ, if 0 then s1 else s2⟩ →s ⟨σ, s2⟩

⟨σ, while e do c⟩ →s ⟨σ, if e then (c ; while e do c) else skip⟩

Figure 1.4: Structural Operational Semantics of While
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1.2.4 Structural Operational Semantics

A Structural Operational Semantics (SOS) is an operational semantics where the logical
statements describe a transition system. A transition system is a relation → and a set
of states. It said that there is a transition between p and q when (p, q) ∈→. It was first
described by Plotkin [40] in 1981. A SOS gives meaning to a program by describing how
to evaluate its parts and operates on the syntax of the program: a transition modifies the
program. SOS are intensional as they describe the internal computations to get a result,
rather than an input-output relation. A Structural Operational Semantics is sometimes
called “small-step”. The small-step semantics of While is presented in Figure 1.4. It is
formally defined as two relations, one for expressions, →e, and one for statements, →s.
We call intermediate states a pair of a store and an expression, or a pair of a store and a
statement. The relation →e maps an intermediate state to a new intermediate state. The
relation→s maps an intermediate state to a new intermediate state or a store. Evaluating
a literal or a variable is done in one step of computation as the result is immediate.
Addition and comparison have similar rules. The first rule of both binary expressions
performs one step in the left operand, and the second rule reduces the right operand,
supposing the left operand is already an integer. We suppose that an expression can be
an integer n (which is different than n), therefore the grammar of expressions has slightly
changed compared to the definition given earlier. For comparisons, when both operands
are reduced to integers if the left operand is smaller than the second operand, the result
is the integer 1 (the truth value), and 0 otherwise (the false value). Addition is done when
both operands are reduced to integers and is the sum of both integers. Evaluating a skip
program is immediate as the result is the current store. Evaluating a sequence is done
by reducing the left statement. There are two transitions for assignments: the first rule
reduces the expression, and the second rule applies when the expression is an integer and
reduces to a new store where the variable is mapped to the integer. A step of computation
for an if-statement is a step of computation of the condition. If the condition is an integer,
then a step of computation is evaluating the first or second branch. We suppose that any
non-zero value is the truth value. A while loop is transformed in an equivalent conditional
branching.

Given a relation R ∈ P (S × S), R∗ is its reflexive and transitive closure. Let loop
= while x <= 1 do x := x + 1. Let σi = {x 7→ i}. One can show that (details on
Figure 1.5):

⟨σ0, loop⟩ →∗
s {x 7→ 2}
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⟨σ0, while x <= 1 do x := 1⟩ →s

⟨σ0, if x <= 1 then x := x + 1 ; while x <= 1 do x := x + 1 else skip⟩ →s

⟨σ0, if 0 <= 1 then x := x + 1 ; while x <= 1 do x := x + 1 else skip⟩ →s

⟨σ0, if 1 then x := x + 1 ; while x <= 1 do x := x + 1 else skip⟩ →s

⟨σ0, x := x + 1 ; while x <= 1 do x := x + 1⟩ →s

⟨σ0, x := 0 + 1 ; while x <= 1 do x := x + 1⟩ →s

⟨σ0, x := 1 ; while x <= 1 do x := x + 1⟩ →s

⟨σ1, while x <= 1 do x := x + 1⟩ →s · · · →s

⟨σ2, while x <= 1 do x := x + 1⟩ →s

⟨σ2, if x <= 1 then x := x + 1 ; while x <= 1 do x := x + 1 else skip⟩ →s

⟨σ2, if 2 <= 1 then x := x + 1 ; while x <= 1 do x := x + 1 else skip⟩ →s

⟨σ2, if 0 then x := x + 1 ; while x <= 1 do x := x + 1 else skip⟩ →s

⟨σ2, skip⟩ →s

σ2

Figure 1.5: The Small-Step Semantics of a Simple While Loop

One can reason about non-terminating program with a small-step semantics as it is
possible to have an infinite chain of intermediate states. Take the following example where
the condition of the loop is always true and the body of the loop does nothing.

⟨σ, while 1 do skip⟩ →s

⟨σ, if 1 then skip ; while 1 do skip else skip⟩ →s

⟨σ, skip ; while 1 do skip⟩ →s

⟨σ, while 1 do skip⟩

With this program, for any store σ, from the intermediate state ⟨σ, while 1 do skip⟩
the same state is reached. Here, it is easy to see that the program is non-terminating
because from any intermediate state, the same intermediate state is reached. However,
with program x := 0 ; while 1 do x := x + 1, from any store the program will never
terminate, and never with repeating intermediate states.

A SOS semantics has some drawbacks. First, a SOS derivation is flat and does not
follow the structure of the inductive term representing the program. Because a SOS deriva-
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tion is a sequence of rewritings of the term, proofs by induction must be done on the size
of the chain, which is less convenient. Moreover, in the While language, loops have to be
transformed in a conditional branching which is not natural. Moreover, in a SOS deriva-
tion, syntax and values are mixed. The term is progressively rewritten until the result is
obtained, but the distinction between syntax and semantics is unclear.

1.2.5 Control Flow Graph

A Control Flow Graph (CFG) is a representation of a program as a directed graph. A
graph is a set of nodes and a set of edges: an edge connects two nodes. A directed graph
is a graph where edges have a direction, they go from one node to another. A node in a
CFG is a pair of a program point and an atomic instruction. A program point is a unique
identifier, its purpose is to identify precisely a fragment of a program. Program points will
be explained in more depth later in this thesis. Here, they are used to uniquely identify
each node. We call P the set of program points. The edges between nodes give the control
flow of the program.

Definition 1 I is the set of atomic instructions. It contains assignments and tests, and
is formally defined as:

I = { x := e | x ∈ var ∧ e ∈ expr }∪{ e1 binop e2 | e1, e2 ∈ expr ∧ binop ∈ {+, <=} }

The Control Flow Graph of x := 0; while (x <= 1) do x := x + 1 is presented
on Figure 1.6a. Each node contains an atomic instruction and is labelled by a unique
program point (in bold). The node labelled 3 is special as it is the end of the program
and does not contain an atomic instruction. The start of the program is at program point
0, where the variable x is initialised. Then, the condition x <= 1 is tested. If it is true,
the next atomic instruction is the incrementation of x at program point 2, and then the
condition is tested again. If the condition is false, the program exits at program point 3.

Formally, the graph is a tuple (ppinit, S, A, ppout) where ppinit and ppout are the entry
and the exit program points respectively. The set of nodes S ∈ P (P× I) is a set of pairs of
program points and atomic instructions. The set of edges A ∈ P (P× P× {true, false, _})
contains the edges, and are labelled. An atomic instruction is either an assignment x :=
expr, or a test expr1 binop expr2 where binop is either a comparison or an addition. For
every program point pp, there is at most one atomic instruction i such that (pp, i) ∈ S.
Moreover, if node (pp, i) ∈ S, and i is a test, then (pp, i) has two successors: ppt and
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0: x := 0

1: x <= 1 3
false

2: x := x + 1

true

(a) Incrementation of x

0: x := 0

1: 1 3
false

2: skip

true

(b) Infinite loop

Figure 1.6: CFG of a While program

(pp, x := e) ∈ S σ, e ⇓e v σ′ = σ[x 7→ v] pp′ = succ(pp)
(pp, σ)→cfg (pp′, σ′)

Assignment

(pp, e1 binop e2) ∈ S σ, e1 binop e2 ⇓e v v ̸= 0 pp′ = succ-true(pp)
(pp, σ)→cfg (pp′, σ)

Test-True

(pp, e1 binop e2) ∈ S σ, e1 binop e2 ⇓e v v = 0 pp′ = succ-false(pp)
(pp, σ)→cfg (pp′, σ)

Test-False

Figure 1.7: Small-Step Semantics of Control Flow Graph

ppf such that (pp, ppt, true) ∈ A and (pp, ppf , false) ∈ A. We define the notations
succ-true(pp, i) ≡ ppt and succ-false(pp, i) ≡ ppf . If (pp, i) ∈ S and i is an assignment,
then pp has one successor written succ(pp, i) ≡ pp′ such that (pp, pp′, _) ∈ A.

We define a semantics for CFGs as a set of transitions. Let state = P× store. The
semantics →cfg∈ state × state is defined on Figure 1.7. Because we need a semantics
for expressions, we re-used the big-step semantics of expressions. There is one transition
for assignments, and two for tests, depending on the result of the expression in the test.
Because of the simplicity of atomic instructions, the semantics of CFG is very compact
and simple.

Definition 2 The set of reachable states for a given CFG (ppinit, S, A, ppout) is written
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J(ppinit, S, A, ppout)Kcfg and is defined as:

J(ppinit, S, A, ppout)Kcfg =
{

(pp, σ)
∣∣∣ (ppinit, { })→∗

cfg (pp, σ)
}

If prog is a statement, and (ppinit, S, A, ppout) its CFG, we write JprogKcfg ≡ J(ppinit, S, A, ppout)Kcfg.

We take back the example of Figure 1.6, where
prog ≡ x := 0 ; while x <= 1 do x := x + 1, and we re-use the notation where
σi = {x 7→ i}, the set of reachable states for prog is:

JprogKcfg = {(0, {}), (1, σ0), (1, σ1), (2, σ1), (2, σ2) (3, σ2)}

Similarly, the set of reachable states for a non-terminating program is well-defined.
Take prog ≡ x := 0 ; while 1 do skip. The set of reachable states is:

JprogKcfg = {(0, {}), (1, σ0), (2, σ0)}

Because program points 3 is unreachable, there are not reachable states with program
point 3.

Writing programs as CFG is not natural, using languages is almost always preferred.
However, due to its simplicity, yet powerful expressiveness, CFG are usually parts of the
compilation chain of a language compiler. Indeed, CFGs are suited to perform analysis,
optimisations and to be compiled to machine code. Moreover, almost every language can
be transformed into a CFG, making it a universal representation of programs.

1.2.6 Equivalence of the Semantics

The semantic formats seen so far serve different purposes. The natural semantics is easy
to write and read and can be used as a reference for an implementation as a recursive
interpreter. The small-step semantics can reason about non-terminating programs. The
CFG is often used as an intermediate representation in compilers. Because all these se-
mantics can be used for the same language, it is useful to make sure they are equivalent.
The semantics we have presented for the While language are all equivalent for terminating
programs.
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safe program

unsafe program Do not know

Ok

Figure 1.8: Output of a Safe Analysis

Theorem 1 Let prog ∈ stmt, and σ ∈ store and (ppinit, S, A, ppout) the CFG of prog.

⟨σ, prog⟩ →∗
s σ′ ⇐⇒ σ, prog ⇓s σ′ ⇐⇒ (ppinit, σ)→∗

cfg (ppout, σ′)

1.3 Semantics for Static Analyses

We have presented semantics used to describe the real behaviour of programs. However,
these semantics may not be computable or finite: the CFG semantics of the program
while 1 do x := x + 1 is infinite for instance. Some semantics have been designed to
analyse programs: the semantics must be computable and finite to be useful. In this thesis,
we will focus on Abstract Interpretation, a method to define correct over-approximation
of concrete semantics

A Static Analysis of a program is the computation of properties about the program
without executing it by some (at least partially) automated tool. Static Analyses can be
applied to solve many problems such as detecting some bugs (like division by zero, de-
reference of null pointers etc...). They can be used to prove that a program does what it
is meant to do, for example, that the implementation of a sorting algorithm does indeed
sort. Static analyses are usually designed to be fast as one objective of an automated tool
is to be able to verify large quantities of code.

In this thesis, we will focus on safe static analysis. A safe analysis tries to verify that a
property holds in a program and outputs Ok when the analysis was able to prove that the
property holds, or Do not know when the analysis was unable to determine if the property
holds. As presented on Figure 1.8, a static analysis may output that a safe program is
indeed safe, but if the analysis is not precise enough, it can fail to do so. An unsafe
program should systematically be rejected.
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1.3.1 A pinch of Order Theory

We present some fundamentals of order theory, that will be used to define abstract inter-
pretation in the next sections.

Definition 3 A partial order ≤∈ P (L× L) on a set L is a relation that is

• reflexive: ∀l ∈ L, a ≤ a

• transitive: ∀a, b, c ∈ L, a ≤ b ∧ b ≤ c =⇒ a ≤ c

• antisymmetric: ∀a, b ∈ L, a ≤ b ∧ b ≤ a =⇒ a = b

Definition 4 A partially ordered set (poset) is a pair (L,≤) of a set L and a partial
order ≤∈ P (L× L).

Definition 5 Let (L,≤) be a poset. We call an upper bound of a and b, elements of L,
an element c ∈ L such that a ≤ c and b ≤ c. Similarly, a lower bound of a and b is an
element c ∈ L such that c ≤ a and c ≤ b.

Definition 6 The least upper bound (lub) of a and b is the least element of L written
a∨ b such that a ≤ a∨ b and b ≤ a∨ b. Therefore, if c is an upper bound of a and b, then
a ∨ b ≤ c.

The greatest lower bound (glb) of a and b is the greatest element of L written a∧ b

such that a∧b ≤ a and a∧b ≤ b. Therefore, if c is a lower bound of a and b, then c ≤ a∧b.

Definition 7 Let (L,≤) be a poset. We call ⊥ ∈ L and ⊤ ∈ L the least and greatest
elements of the poset if ∀a ∈ L, ⊥ ≤ a ∧ a ≤ ⊤.

A poset does not necessarily contain a least or greatest element.

Definition 8 A lattice (L,≤,∧,∨,⊥,⊤) is a poset with a glb ∧ and a lub ∨ for every
pairs, a least element ⊥ ∈ L, and a greatest element ⊤ ∈ L.
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Figure 1.9: Abstract Interpretation: an Illustration

Lemma 1 Let (L,≤,∧,∨,⊥,⊤) be a lattice, and S a set. Then, (S → L,≤→,∧→,∨→,⊥→,⊤→)
where

x ≤→ y ⇐⇒ ∀s ∈ S, x(s) ≤ y(s)
x ∨→ y ⇐⇒ ∀s ∈ S, (x ∨→ y)(s) = x(s) ∨ y(s)
x ∧→ y ⇐⇒ ∀s ∈ S, (x ∧→ y)(s) = x(s) ∧ y(s)
∀s ∈ S, ⊥→(s) = ⊥
∀s ∈ S, ⊤→(s) = ⊤

is also a lattice, obtained by point-wise lifting.

1.3.2 Abstract Interpretation

Abstract interpretation [9] is a method of over-approximation of the semantics of pro-
grams. An abstract interpretation computes an over-approximation of the concrete exe-
cutions of a program. Figure 1.9 shows the three outcomes of an abstract interpretation.
The possible real executions of the program, in green, are complexes, possibly infinite, and
therefore not computable. An abstract interpretation computes an over-approximation of
the executions, in blue. This over-approximation is simpler, computable, and therefore
can be compared to the unsafe states. The latter ones are the states where the desired
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property is not verified. In the first example, the set of unsafe states does not intersect
the over-approximation. Therefore, one can conclude that the program cannot go in an
unsafe state. The examples on Figure 1.9b and Figure 1.9c show when the analysis cannot
conclude. In both examples, the over-approximation intersects the set of unsafe states.
However, in the second example, the program is safe and cannot go in a state where
the property is not verified, while in the third example the program can go bad. There-
fore, when the over-approximation intersects the set of unsafe states, the analysis cannot
conclude as the program may or may not go bad. An abstract interpretation covers all
executions of a program by abstracting the concrete domains. Formally, in our While lan-
guage, there are two domains: int and store. We call the concrete domains the definitions
of the domains for a concrete execution. We call the abstract domains the definitions of
the domains for an abstract interpretation.

Definition 9 The concrete domains of While are defined as:

int = Z

store = ident ↪→ Z

Definition 10 The abstract domain of a domain type is denoted with type♯.

Definition 11 The abstract domain of the int type of While is defined as:

int♯ = I

where I is the set of intervals.

I ≡ { [a; b] | a, b ∈ Z ∪ {+∞,−∞} , a ≤ b }

An interval [a; b] is a pair of two integers, or infinity, that represents the convex set of
integers {n | a ≤ n ≤ b }. Thus, an arbitrarily large set of integers can be represented
efficiently.

We call a concrete value an element of a concrete domain, and abstract value an element
of an abstract domain. An abstract interpretation requires comparisons, greatest lower
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bounds and least upper bound for all abstract domains. In abstract interpretation, we
call a greatest lower bound a meet and a least upper bound a join or an abstract union.
We write ⊑type, ⊔type and ⊓type for the comparison, the join and the meet for abstract
domain type♯. We drop the domain annotation when it is unambiguous. For each domain
type, (type♯,⊔type,⊑type,⊤type,⊥type) is a lattice.

Definition 12 The abstract comparison and abstract union for intervals are defined as:

[i1; i2] ⊑int [j1; j2] ⇐⇒ i1 ≥ j1 ∧ i2 ≤ j2

[i1; i2] ⊔int [j1; j2] = [min(i1, j1); max(i2, j2)]

The tuple (int♯,⊑int,⊔int, ∅, [−∞; +∞]) is a lattice, if we suppose ∅ is the empty interval.
The tuple (store♯,⊑store,⊔store,⊥store,⊤store) with store♯ = X → int♯ is obtained

by point-wise lifting of the lattice of integers is therefore also a lattice by Lemma 1.

Definition 13 A widening operator ∇type is an upper-bound operator with the property
that, given any sequence of abstract values x♯

i ∈ type♯, and by defining the sequence:

y♯
0 = x♯

0

y♯
n+1 = x♯

n+1∇typey
♯
n

then the sequence y♯ converges in finite time: ∃n0, ∀n ≥ n0, y♯
n = y♯

n0

The widening operator is paramount to ensure the termination of an abstract interpreta-
tion.

The concrete and abstract domains are linked by abstraction and concretisation func-
tions. They are used to pass from an abstract domain to a concrete domain, and from an
abstract domain to a concrete domain.

Definition 14 Let type by a domain. The abstraction function and concretisation func-
tion have type:

αtype : P (type)→ type♯

γtype : type♯ → P (type)
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αtype is the canonic name for an abstraction function and γtype is the canonic name for a
concretisation function. When it is not ambiguous, we will drop the domain annotation
and write α and γ.

The abstraction function, given a set of concrete values, should give an abstract value
that is an over-approximation of the set of concrete values. The concretisation function,
given an abstract value, should give the set of concrete values such that the abstract value
is a correct approximation of these values.

Definition 15

γint([i; j]) = {n | i ≤ n ≤ j }

γstore(σ♯) =
{

σ
∣∣∣ dom σ = dom σ♯ ∧ ∀x ∈ dom σ, σ(x) ∈ γint(σ♯(x))

}

Definition 16

αint(S) = [inf S; sup S]

αstore(Σ) =
x ∈

⋃
σ∈Σ

dom σ 7→
⊔

σ∈Σ
αint(σ(x))



We have defined concrete and abstract domains for the While language and functions
to go from an abstract domain to a concrete domain and from a concrete domain to
an abstract domain. There remains to define the abstract interpretation: that is how to
compute a correct approximation of the semantics of a While program using the abstract
domain we have defined.

1.3.3 Collecting Semantics

A Collecting Semantics defines the set of reachable stores at a given program point. We
can easily define it from a CFG. Let prog be a while statement and (ppinit, S, ppout) its
CFG. The collecting semantics is defined as:

collect(prog) =
{

(pp, σ)
∣∣∣ σ0 ∈ store ∧ (ppinit, σ0)→∗

cfg (pp, σ)
}
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⇓♯
e∈ P

(
(store♯ × expr)× int♯

)
⇓♯

s∈ P
(
(store♯ × stmt)× store♯

)

σ♯, n ⇓♯
e [n, n] σ♯, x ⇓♯

e σ♯(x)
σ♯, e1 ⇓♯

e i1 σ♯, e2 ⇓♯
e i2 i = i1 +I i2

σ♯, e1 + e2 ⇓♯
e i

σ♯, skip ⇓♯
s σ♯

σ♯, s1 ⇓♯
s σ′♯ σ′♯s2 ⇓♯

s σ′′♯

σ♯, s1 ; s2 ⇓♯
s σ′′♯

σ♯, e ⇓♯
e i

σ♯, x := e ⇓♯
s σ♯[x← i]

σ♯, e ⇓♯
e i 0 /∈ i σ♯, s1 ⇓♯

s σ′♯

σ♯, if e then s1 else s2 ⇓♯
s σ′♯

σ♯, e ⇓♯
e i i = [0, 0] σ♯, s2 ⇓♯

s σ′♯

σ♯, if e then s1 else s2 ⇓♯
s σ′♯

σ♯, e ⇓♯
e i 0 ∈ i n ∈ i, n ̸= 0 σ♯, s1 ⇓♯

s σ′♯ σ♯, s2 ⇓♯
s σ′′♯

σ♯, if e then s1 else s2 ⇓♯
s σ′♯ ⊔ σ′′♯

σ♯, e ⇓♯
e i 0 /∈ i σ♯, c ⇓♯

s σ′♯ σ′♯, while e do c ⇓♯
s σ′′♯

σ♯, while e do c ⇓♯
s σ′′♯

σ♯, e ⇓♯
e i i = [0, 0]

σ♯, while e do c ⇓♯
s σ♯

σ♯, e ⇓♯
e i 0 ∈ i n ∈ i, n ̸= 0 σ♯, c ⇓♯

s σ′♯ σ′♯, while e do c ⇓♯
s σ′′♯

σ♯, while e do c ⇓♯
s σ′′♯ ⊔ σ♯

Figure 1.10: Rules of Big-step Abstract Interpretation of While

1.3.4 Big-Step Abstract Interpretation

Abstract Interpretation was originally defined on structural operational semantics, then
for denotational semantics. Schmidt [44] introduced an abstract interpretation from a
big-step semantics for λ-calculus. We present a big-step abstract interpretation for While
on Figure 1.10 inspired by the method of Schmidt. It is similar to the big-step semantics
of While, but the result of an expression is an interval, and an abstract store is a partial
function from variables to intervals. Moreover, there are three rules for if-statement (there
are only two rules in the big-step semantics). Indeed, when the evaluation of the condition
returns an ambiguous result, both branches must be evaluated, and their results are joined.
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Similarly, for a while loop, when the evaluation of the condition gives a result that can
be interpreted as true and false, then the result is the abstract union of the current store
and the store obtained by evaluating the loop.

Schmidt proposes two mechanisms to prevent infinite computation. First, when there

is a repeating node of the form:

σ♯, s ⇓♯
s?

...

σ♯, s ⇓♯
s?

, then we have reached a fixpoint, and the result

is σ♯. However, an infinite computation may happen without a repeating node. Schmidt
forces repeating nodes but modifying the derivation tree such that it is not well-formed
according to the rules of Figure 1.10 but that is still a correct over-approximation of
the big-step semantics of While. Program points are added to statements to differentiate
syntactically identical statements but that are different parts of the program. When the
abstract interpretation of a fragment of the program depends on itself, the abstract store

on the recursive call is widened with the previous store. The derivation

σ′♯, spp ⇓♯
s?

...

σ♯, spp ⇓♯
s?

be-

comes

σ♯∇storeσ
′♯, spp ⇓♯

s?
...

σ♯, spp ⇓♯
s?

. By the property of the widening operator, it eventually forces

a repeating node and therefore ensures termination.

1.3.5 Abstract Interpretation from CFG

We present an abstract interpretation close to the one defined originally by Cousot and
Cousot [9]. Our starting point is the CFG of the While program of Figure 1.6a. The idea
is to define a set of equations from the CFG, each solution is an abstract store for each
program point. The equations of the While program are:

X♯
0 = ⊥store

X♯
1 = Jx := 0K♯

cfg(X♯
0) ⊔store Jx := x + 1K♯

cfg(X♯
2)

X♯
2 = Jx <= 1K♯

cfg(X♯
1)

X♯
3 = Jx > 1K♯

cfg(X♯
1)
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Each X♯
i is an abstract store. The abstract store X♯

0 corresponding to the entry point
of the program is always ⊥store as the store is undefined at this point. For other nodes
X♯

i , their equations are defined as functions of their predecessors. The equations derived
from the CFG are not dependent on the abstraction of integers, but not the semantics of
atomic instructions is:

JeK♯
cfg(σ♯) = i σ♯, e ⇓♯

e i

Jx := eK♯
cfg(σ♯) = σ♯[x← JeK♯

cfg(σ♯)]
Jx <= eK♯

cfg(σ♯) = σ♯[x← [−∞; sup ie] ⊓♯ ie] ie = JeK♯
cfg(σ♯)

Jx > eK♯
cfg(σ♯) = σ♯[x← [inf i2; +∞] ⊓♯ ie] ie = JeK♯

cfg(σ♯)

We re-use the big-step abstract interpretation of expressions to evaluate expressions not to
redefine the semantics of expressions. The semantics of an assignment give a new abstract
store where x maps-to the evaluation of the expression e. The semantics of tests is more
complex, thus we restrict the tests to be of form x <= e or x > e here. The semantics of
test x <= e with abstract store σ♯ is a new abstract store similar to σ♯ where the condition
x <= e holds, thus where x is bound-to the intersection of σ♯(x) and [−∞; supJeK♯

cfg(σ♯)].
The abstract interpretation of this program is the solution of the equations:

X♯
0 = ⊥store

X♯
1 = {x 7→ [0; 2]}

X♯
2 = {x 7→ [0; 2]}

X♯
3 = {x 7→ [2; 2]}

Each X♯
i is an abstract store that approximates concrete store at program points i in

the CFG. Supposing that the abstract semantics of expression is correct, it comes that

(pp, σ) ∈ collect(prog) =⇒ σ ∈ γstore(X♯
pp)

1.4 Machine Representable Semantics

The semantics that have been presented here were all pen-and-paper semantics. However,
the formalisation on paper is error-prone if not done carefully. To mitigate the issue, a
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type expr =
| Lit of int
| Var of string
| Plus of expr * expr
| Leq of expr * expr

type stmt =
| Skip
| Seq of stmt * stmt
| Assign of string * expr
| IfThenElse of expr * stmt * stmt
| While of expr * stmt

type store = (string * int) list

let rec eval_stmt (s: store) (c: stmt): store =
match c with
| While (e, c') ->

let n = eval_expr s e in
if n <> 0 then

let s' = eval_stmt s c' in
eval_stmt s' (While (e, c'))

else
s

· · ·
Figure 1.11: Code snippets of an OCaml interpreter for While

semantics can be written with the help of a computer that ensures some properties on the
semantics: for instance that there are no issues of “typechecking”. We call a Mechanised
Semantics a machine-representable semantics. This broad definition encompasses many
types of semantics. In this section, we try to present diverse methods currently used to
write mechanised semantics and show what are their limitations or benefits.

1.4.1 Interpreter in a Functional Language

We present the code of a recursive interpreter coded in a functional language that will
serve as our first mechanized semantics. We chose the OCaml language as it is well-suited
to write interpreters. A snippet of the code of the interpreter is presented on Figure 1.11.
First, there are two type definitions: expr and stmt that are Algebraic Data Types (ADT)
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defining expressions and statements. Their definitions are close to the grammar given
previously of the While language. Then, the store type is defined as an association list
between variables and integers. We chose this common definition to represent partial
functions. Two recursive functions are defined to evaluate expressions and statements:
eval_expr and eval_stmt. Only the start of eval_stmt is presented here and shows
the evaluation of a loop. The functions are very close to the big-step semantics seen
previously because both the interpreter and the big-step semantics are defined inductively.
To evaluate a while loop, the expression is evaluated. Then if the result is not zero, the
condition is true, we evaluate the body of the loop. It gives a new store, and the loop is
re-entered with the new store. If the condition is false, the current store is returned.

The main benefit of this mechanisation is that it can be executed and is easy to
write. However, programming languages are not designed to mechanise semantics and
make it hard to work with this representation. First, one would need to re-use the OCaml
parser to get a mechanised representation of the semantics to perform operations on it.
For instance, it is unclear how one would prove properties of the language with this
representation, especially because the OCaml abstract syntax tree is very large, thus
OCaml representation of our semantics is probably very complex. Also, the semantics of
OCaml is not formally defined, thus so is our mechanised semantics.

1.4.2 Coq

Coq [7] is a proof assistant that comes with a functional language, the ability to write
propositions, and a tactic language to write proofs that are verified by Coq. The language
of Coq is a functional language, it allows the definition of Algebraic Data Types, recursive
functions, definitions of relations and more. It is possible to define the small-step, or big-
step, semantics of previous sections. A fragment of a Coq definition of a big-step semantics
is presented on Figure 1.12. However, the semantics is defined as a relation, or Prop in
Coq, and there are no simple methods to extract an executable from a relation. Functions
are executable, but Coq must be able to determine that they are terminating. When
writing a recursive function, Coq must be able to guarantee that it ends. It is possible
to write an interpreter in Coq like the interpreter for While seen previously. However,
one must add guarantees that the interpretation function is terminating by specifying a
decreasing quantity at each recursive call. Therefore in Coq, one can define an interpreter,
and then state and prove properties about it. It can then be exported to OCaml code and
compiled to get an executable interpreter. The expressiveness of Coq allows the definitions
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Inductive expr : Type :=
| Lit: nat -> expr
| Ident: var -> expr
| Plus: expr -> expr -> expr
| Leq: expr -> expr -> expr.

Inductive stmt : Type :=
| Skip: stmt
| Seq: stmt -> stmt -> stmt
| Assign: var -> expr -> stmt
| IfThenElse

: expr -> stmt -> stmt -> stmt
| While: expr -> stmt -> stmt.

Inductive eval_stmt : store -> stmt -> store -> Prop :=
| eval_stmt_while_true :

forall (σ σ' σ'': store) (e: expr) (st: stmt) (n: nat),
eval_expr σ e n ->
n <> 0 ->
eval_stmt σ st σ' ->
eval_stmt σ' (While e st) σ'' ->
eval_stmt σ (While e st) σ''

| eval_stmt_while_false:
forall (σ: store) (e: expr) (st: stmt),

eval_expr σ e 0 ->
eval_stmt σ (While e st) σ

Figure 1.12: Big-step semantics in Coq
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of semantics in many formats, like big-step semantics, small-step semantics, denotational
semantics, and even co-inductive semantics. This complexity makes it hard to generically
extract an executable analyser from a Coq description of the language.

1.5 Mechanised Semantics of Languages

1.5.1 The K Framework

The K framework [42] provides tools to write mechanized semantics that are executable. A
mechanization in K consists of the definition of the syntax of the language, and rewriting
rules on that syntax. We present a mechanisation of the While language in K. The defi-
nition of the syntax of the language is done by specifying BNF grammar for expressions
and statements.

syntax Expr ::= Int | Id
| Expr "+" Expr
| Exp "<=" Expr

syntax Stmt ::= Id ":=" Expr ";"
| "if" Expr

"then" Stmt "else" Stmt
| "while" Expr "do" Stmt
| Stmt Stmt

Int and Id are primitive syntactic categories for integers and identifiers.
In K, the state of the computation is called a configuration. Here we give the start

configuration for our While language.

configuration <T>
<k> $PGM:Stmt </k>
<store> .Map </store>

</T>

A configuration is an XML-like value. The outer tag T is mandatory and contains the
whole configuration. The tag containing the program is often written k. The meta-variable
PGM stands for the initial program passed to the interpreter or compiler, and its type is
Stmt. The tag store contains a map ``.''. In K, . stands for empty. Thus .Map is the
empty map. A configuration is a pair of the current program and a store, similar to the
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states in SOS 1.2.4. The start configuration contains the program and the empty store,
represented as an empty map.

Finally, there remains to write rewriting rules to define the semantics of the While
language.

// Expr
rule <k> X:Id => I ...</k> <store>... X |-> I ...</store>
rule I1 + I2 => I1 +Int I2
rule I1 <= I2 => I1 <=Int I2

// Stmt
rule <k> X := I:Int; => . ...</k> <store>... X |-> (_ => I) ...</store>
rule S1:Stmt S2:Stmt => S1 ~> S2
rule if (I) then S else _ => S requires I =/=Int 0
rule if (I) then _ else S => S require I ==Int 0
rule while (E) S => if (E) {S while (E) S} else {}

There are three rules for expressions and five for statements. The => arrow specify
the rewriting. The left-hand side of the arrow matches what should be rewritten, and the
right-hand side in what it is rewritten. The arrow is local, a rewriting rule applies to a
configuration, but often only a small part of the actual configuration is modified. In the
first rewriting rule of expressions, only the tag k is modified. This rule means that the
content of the tag k, which is a variable, is replaced by I. Indeed, the store tag contains
the value ... X |-> I ... which is any store where X maps to I. The remaining rules of
the evaluation of expressions also make use of the locality of the arrow, only expressions
are rewritten, and the configuration is not explicitly mentioned.

K has been designed and used to formalise programming languages, like C, Java or
functional languages. The K framework is designed to mechanise semantics and thus
comes with a set of tools, like a compiler, an interpreter or a prover able to prove some
properties about the semantics by writing claims in the semantics and by discharging
the proofs to an SMT solver. However, the semantics using rewriting rules is close to the
small-step semantics and suffers from the same issues: in particular the values and terms
are mixed. Moreover, it is unclear how one would do fully automatic static analysis, like
abstract interpretation from rewriting rules as is done with K.
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1.5.2 Lem

Lem [31] is a semantic definition language. It was originally built as a pure subset of
OCaml. It supports recursive function definitions, recursive Algebraic Data Types, poly-
morphism, and a standard library. Moreover, there are added logical constructs, like
universal and existential quantification, inductive relations, lemmas, sets and more We
present a formalisation of our imperative language.

open import Pervasives
open import List

type expr =
| Lit of int
| Var of string
| Plus of expr * expr
| Leq of expr * expr

type stmt =
| Skip
| Seq of stmt * stmt
| Assign of string * expr
| IfThenElse of expr * stmt * stmt
| While of expr * stmt

type store = list (string * int)

let rec eval_expr (s: store) (e: expr): int =
match e with
| Lit n -> n
| Var x ->

match List.lookup x s with
| Nothing -> 0
| Just n -> n
end

| Plus e1 e2 ->
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let n1 = eval_expr s e1 in
let n2 = eval_expr s e2 in
n1 + n2

| Leq e1 e2 ->
let n1 = eval_expr s e1 in
let n2 = eval_expr s e2 in
if n1 <= n2 then 1 else 0

end

lemma expr_are_positive :
(forall s e. List.all (fun (_, n) -> n >= 0) s --> eval_expr s e >= 0)

let rec eval_stmt (s: store) (c: stmt): store =
match c with
| While (e, c') ->

let n = eval_expr s e in
if n <> 0 then

let s' = eval_stmt s c' in
eval_stmt s' (While (e, c'))

else
s

...
end

The Lem formalisation is very similar to the OCaml one. The most notable difference
is the possibility of writing logical formulae. A lemma is stated at the end of the Lem
formalisation that says if a store maps every variable to a non-negative integer, then the
evaluation on any expression returns a non-negative integer. Lem is not a proof assistant,
therefore the lemma can be stated but not proven in Lem. A Lem description can be
exported to multiple formats: Coq, HOL/Isabelle, OCaml and Latex. The Lem develop-
ers have emphasized generating idiomatic code for each target. To do that, they chose to
constrain the expressiveness of the Lem language. The objective is that for each targeted
format, to get a human-readable file where the structure of the Lem description is pre-
served (comments, definitions etc...) and that produces idiomatic code for that targeted
format.
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Lem supports many features: inductive definitions, relations, functions etc... Also, it
comes with native definitions of sets, integers and more. The language is therefore complex,
and the definition of a new back-end producing an analyser requires a lot more work.

1.6 The Objectives of this Thesis

In this thesis, our goal is to derive correct static analyses from formal descriptions of
languages. We see several advantages to this approach. First, it is language agnostic: once
we choose a language description framework, our approach aims to derive a static analyser
for any language description. Most of the work is done once, at the semantic framework
level. Second, it should make the definition of analyses easier. Indeed, we start with a
formal language description, from which the core infrastructure of the abstract analyser
can be automatically built. Then, the remaining work is to provide the abstractions specific
to the language that the analysis will use. Finally, we want a methodology that makes it
easy to prove the correctness of the analysis. As the core of the analyser is derived from
the description of the language, so should most of the proof of correctness.

To achieve these objectives, we use Skeletal Semantics [4] as our language description
framework. Skeletal semantics are a powerful method to write semantic descriptions of
languages. At its core, there is Skel, a small functional language, used to write skeletal
semantics: a formal description of a language. Skel is expressive, making it possible to
describe complex languages, like the work in progress JSkel [22], the skeletal semantics of
JavaScript. The simplicity of Skel makes the derivation of semantics from a skeletal se-
mantics easy. From the skeletal semantics of a language, one can already derive a big-step
semantics. One only needs to provide some small language- specific definitions to get it
working. By following a similar approach, we want to derive abstract interpretations from
skeletal semantics of languages. Abstract Interpretation is a powerful method to define
correct static analyses. Moreover, deriving a big-step semantics and an abstract inter-
pretation from the same object, a skeletal semantics, makes the proof that the abstract
interpretation is an over-approximation of the big-step semantics of the language easier.

The remainder of this document is structured as follows.

• Chapter 2 presents the Skeletal Semantics Framework: a method to formally de-
scribe a programming language semantics. We show how a big-step semantics for a
language can be obtained from its skeletal semantics, and we illustrate it with an
example on a small imperative language: While.
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• Chapter 3 shows our first contribution. We added support for program points to the
big-step semantics. Program points are essential to define abstract interpretations.

• Chapter 4 is the main contribution: a methodology to define abstract interpreters
from skeletal semantics. We give a step-by-step explanation to get an abstract in-
terpreter from the skeletal semantics of While. This method should work for almost
any skeletal semantics. We also prove the abstract interpreter is correct by only
proving small language-dependent lemmas.

• Chapter 5 is another example of deriving an abstract interpreter with the same
methodology, but for a small functional language: λ-calculus.

• Chapter 6 is an overview of the implementation of the abstract interpreter gen-
erator. This software generates executable abstract interpreters, by following the
methodology described in Chapter 4. We show how to it works by generating an
abstract interpreter for the While language.

We presented this work in the Express/SOS workshop [16], specifically the design
of an abstract interpreter for a toy imperative language from its skeletal semantic. We
also presented how to derive a CFA analyser for λ-calculus from its skeletal semantics at
JFLA [15].
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Chapter 2

SKELETAL SEMANTICS

Skeletal Semantics [4] is a proposition for machine-representable semantics. At its core
there is Skel [37], a semantic functional language to describe the behaviour of languages. A
Skeletal Semantics is a description of a language written in Skel. The Necro [37] ecosystem
is a set of libraries and tools to manipulate skeletal semantics. From a skeletal semantics,
the Necro Ocaml Generator generates an OCaml interpreter, Necro Coq generates a Coq
formalisation, Necro Debug generates a step-by-step debugger etc...

In this Chapter, we present the language Skel, and how to describe a small imperative
language called While by writing its skeletal semantics in Skel. Then, we define a natural
semantics of Skel, and we show how by meta-interpretation of Skel one can define a
big-step semantics for While.

2.1 The Skel language

Skel is a minimalist functional language, close to λ-calculus in Administrative Normal
Form, meaning each argument of a function call must be trivial. It supports Algebraic
Data Types, recursive definitions and higher-order. The grammar of Skel is presented on
Figure 2.1. Skel is defined in more depth in [38] and supports polymorphism. However,
our abstract interpretation does not support polymorphism, therefore we use a simply
type version of Skel, also defined in [38]. A trivial argument is a term. Trivial means
the evaluation, defined later in the Section, is immediate. A term can be a variable from
a countable set Var, a constructor applied to a term, a tuple or a function λp : τ →
S where p is a pattern that serves as parameter and S is the body of the function.
A skeleton describes a computation, which can be a term, an unary application, a let-
binding, a branching or a pattern matching. Branchings are a unique trait of Skel, they are
used as a non-deterministic choice between several options. Their use will be illustrated
later with examples. A pattern, used in let-binding, as parameter of functions, and in
pattern-matching, can be a variable, a wildcard, a constructor applied to a pattern or
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Term t ::= x ∈ Var | C t | (t, .., t) | λp : τ → S

Skeleton S ::= t | t t | let p = S in S | branch S or .. or S end
|match t with p→ S..p→ S end

Pattern p ::= x | _ | C(p) | (p, .., p)
Type τ ::= b | τ → τ | (τ, .., τ)

Type decl rτ ::= type b | type b = ”|” C1 τ1..”|” Cn τn

Term decl rt ::= val x : τ | val x : τ = t

Skeletal Semantics S ::= (rt|rτ )∗

Figure 2.1: Grammar of Skel and Skeletal Semantics

a tuple of patterns. A type can be a user-defined base type defined at top-level in a
skeletal semantics, an arrow type or a tuple type. A type declaration is a name and an
optional definition. A type declaration without a definition is said unspecified, and with a
definition specified. Leaving some types unspecified is convenient not to force a restrictive
definition. It is then possible to instantiate the unspecified types in different manners
depending on the semantics that is defined. The definition of a specified type is an ADT.
Similarly, there are term declarations with a name and a type and they can be specified or
unspecified. Unspecified terms are often used to define functions that manipulate values
with unspecified types, and therefore cannot be given a definition before the unspecified
types are themselves given a definition. A Skeletal Semantics is a list of type and term
declarations.

2.1.1 Skeletal Semantics of While

We present the Skeletal Semantics of While, a small imperative language, on Figure 2.2.
We call the language described by the skeletal semantics, here While, the object language,
to differentiate it from Skel. It starts with four declarations of unspecified types, meaning
that these types do not have a definition for now. The ident type is the type of identifier
for variables. The lit type is the type of literals in our programs. It is expected to be
some subset of relative integers, as Z or the set of 32-bit signed integers. One benefit of
having non-specified types is that their instantiations can be chosen depending on the
context. The store type denotes a data structure binding identifiers to integers. The int
type stands for integers.
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There are two specified types declarations. The expr ADT defines the expressions of
our language and contains four constructors. The Const constructor denotes the constants.
The Var constructor defines the variables of the While language, not to confuse with the
variables of Skel. The Plus constructor defines additions of two expr. The Leq constructor
is the comparison of two expr. Finally, the Rand constructor defines a random expression,
which denotes a random value within the bounds given as parameters. The stmt ADT
defines the different statements of our program. The Skip constructor is the program
that does nothing. The Assign constructor is the program that assigns the result of the
evaluation of an expression to an identifier. The Seq is the sequence of two statements.
The If constructor is the conditional branching, or "If Then Else" construct. Finally, the
While constructor is the loop.

There are eight non-specified terms, that are all functions. As expected, all these func-
tions have non-specified types as parameters or results. The litToInt function converts a
literal into an integer. The add function sums two integers, and lt compares two integers.
The rand function takes two literals and returns an integer that should be within the
bounds passed as arguments. The read and write terms are functions to access the value
bound to a variable in a store, and to add a new binding in a store respectively. Finally,
there are two functions isZero and isNotZero that take an integer as parameter and
return an empty tuple. We will detail their intended purpose later in this Section.

The most interesting part of the semantics are the two definitions of specified terms,
which are functions. We detail the eval_expr function. The first line is syntactic sugar
for

val eval_expr: (store, expr) -> int = λ (s, e): (store, expr) ->

eval_expr takes a tuple of a store and an expression as parameter and returns an integer.
A pattern-matching is used to treat each expression. If it is a constant, the literal is
converted to an integer using litToInt. If it is a variable, its value is fetched in the
store using read. If it is an addition, both sub-expressions are evaluated and the result
is returned using add. The comparison of expressions is similar. Finally, the evaluation of
a random expression is the result of the rand function. The eval_stmt function takes a
tuple of a store and a statement and returns a new store. The structure of the function
is similar to eval_expr and makes a case analysis of the statement. The interesting
cases are the last two, the conditional branching and the loop. To compute a conditional
branching, the expression is evaluated. Then, there is a branching with two branches.
The first branch corresponds to the case where the evaluation is true, considering that
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type ident
type lit
type store
type int

type expr =
| Const lit
| Var ident
| Plus (expr, expr)
| Leq(expr, expr)
| Rand (lit, lit)

type stmt =
| Skip
| Assign (ident, expr)
| Seq (stmt, stmt)
| If (expr, stmt, stmt)
| While (expr, stmt)

val litToInt : lit → int
val add : (int, int) → int
val lt: (int, int) → int
val rand : (lit, lit) → int
val read : (ident, store) → int
val write : (ident, store, int) → store
val isZero: int → ()
val isNotZero: int → ()

val eval_expr ((s, e): (store, expr)): int =
match e with
| Const i → litToInt i
| Var x → read (x, s)
| Plus (e1, e2) →

let v1 = eval_expr (s, e1) in
let v2 = eval_expr (s, e2) in
add (v1, v2)

| Leq (e1, e2) →
let v1 = eval_expr (s, e1) in
let v2 = eval_expr (s, e2) in
lt (v1, v2)

| Rand (i1, i2) → rand (i1, i2)
end

Figure 2.2: Skeletal Semantics of the While language
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val eval_stmt ((s, t): (store, stmt)): store =
match t with
| Skip → s
| Assign (x, e) →

let w = eval_expr (s, e) in
write (x, s, w)

| Seq (t1, t2) →
let s' = eval_stmt (s, t1) in
eval_stmt (s', t2)

| If (cond, true, false) →
let i = eval_expr (s, cond) in
branch

let () = isNotZero i in
eval_stmt (s, true)

or
let () = isZero i in
eval_stmt (s, false)

end
| While (cond, t') →

let i = eval_expr (s, cond) in
branch

let () = isNotZero i in
let s' = eval_stmt (s, t') in
eval_stmt (s', t)

or
let () = isZero i in s

end
end

Figure 2.2: Skeletal Semantics of the While language
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Γ ∈ TypeEnv = Var ↪→ Type

Γ(x) = τ

Γ ⊢ x : τ
Var

val x : τ [= t] ∈ S
Γ ⊢ x : τ

TermDef
Γ ⊢ t : τ C : (τ, τ ′)

Γ ⊢ C t : τ ′ Const

∀i, Γ ⊢ ti : τi

Γ ⊢ (t1, . . . , tn) : (τ1, . . . , τn)
Tuple

Γ + p 7→ τ ⊢ S : τ ′

Γ ⊢ (λp : τ → S) : τ → τ ′ Fun

Γ ⊢ S1 : τ . . . Γ ⊢ Sn : τ

Γ ⊢ (S1 . . . Sn) : τ
Branch

Γ ⊢ S : τ Γ + p 7→ τ ⊢ S ′ : τ ′

Γ ⊢ let p = S in S ′ : τ ′ LetIn

Γ ⊢ t0 : τ1 → τ2 Γ ⊢ t1 : τ1

Γ ⊢ (t0 t1) : τ2
App

Figure 2.3: Typing Rules of Skel

all non-zero integers denote the truth value. The branch is guarded by isNotZero i.
This function should act as a filter and be undefined on input 0. Therefore, the branch
cannot be taken if the condition is false. The second branch has a similar structure and
is taken when the condition is false. Finally, to evaluate a while loop, the expression is
first evaluated. If the condition is true, the body of the loop is evaluated and the loop
is re-entered. If the condition is false, the second branch is taken and outputs the store
unchanged. To obtain a semantics for While from its Skeletal Semantics, there remains
to instantiate the unspecified types and terms and provide an interpretation of Skel. By
meta-interpretation of Skel, one will be able to evaluate a While program.

2.1.2 Typing Rules of Skel

Skel is a strongly typed language, and the typing rules are given on Figure 2.3. Given two
sets F and G, F ↪→ G is the set of partial functions with domain F and co-domain G.
Γ is a typing environment, that maps variables to types. The notation C : (τ, τ ′) means
that constructor C expects a value of type τ and produces a value of type τ ′. S denotes
an arbitrary Skeletal Semantics. There is a distinction between variables defined by let
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Funs ∈ TypeEnv× Skeleton→

 Γ, (λp : τ → S)

∣∣∣∣∣∣∣∣∣
Γ ∈ TypeEnv
p ∈ Pattern
τ ∈ Type
S ∈ Skeleton


Funs(Γ, let p = S1 in S2) = Funs(Γ, S1) ∪ Funs(Γ + p 7→ τ, S2)

Funs(Γ, branch S1 . . . Sn end) =
n⋃

i=1
Funs(Γ, Si)

Funs(Γ, t0 t1 . . . tn) =
n⋃

i=0
Funs(Γ, ti)

Funs(Γ, λp : τ → S0) = {Γ, λp : τ → S0} ∪ Funs(Γ + p 7→ τ, S0)

Funs(Γ, (t1, . . . , tn)) =
n⋃

i=1
Funs(Γ, ti)

Funs(Γ, C t) = Funs(Γ, t)
Funs(Γ, x) = ∅

The set of abstractions in the Skeletal Semantics S

Funs(S) ≡
⋃

val x:τ=t∈S
Funs(∅, t)

Figure 2.4: Definition of Funs

bindings and variables defined in the Skeletal Semantics. This explains why there are
two rules to type variables. Var types variables defined by let binding. TermDef types
variables defined at top-level in the Skeletal Semantics.

A set Funs(S) is defined on Figure 2.4 that is the set of abstractions in the Skeletal
Semantics S.

2.2 A Big-Step Semantics for While

To get a semantics of While, we first need to define the values associated with each type.
Then an instantiation of the unspecified terms must be given. Finally, by combining this
with an interpretation of Skel, a big-step semantics of While is obtained.
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NC(τ1 → τ2) = { f |val f : τ1 → τ2[= t] ∈ S }
AC(τ1 → τ2) = { (Γ, p, S, E) | (Γ, λp : τ1 → τ2 · S) ∈ Funs(S) ∧ Γ ⊨ E ∧ Γ + p 7→ τ1 ⊢ S : τ2 }

Fun = NC(τ1 → τ2) ∪ AC(τ1 → τ2)

Figure 2.5: Named Closures and Anonymous Closures

⊢ v ∈ V (τ) C : (τ, τa)
⊢ C v ∈ V (τa)

Const
∀1 ≤ i ≤ n ⊢ vi ∈ V (τi)

⊢ (v1, . . . , vn) ∈ V (τ1 × · · · × τn)
Tuple

(Γ, p, S, E) ∈ AC(τ1 → τ2)
⊢ (Γ, p, S, E) ∈ V (τ1 → τ2)

Clos
f ∈ NC(τ1 → τ2)
⊢ f ∈ V (τ1 → τ2)

Def

dom Γ = dom E ∀x ∈ dom E, Γ ⊢ E(x) : Γ(x)
Γ ⊨ E

Env

Val =
⋃

τ∈Type
V (τ)

Env = Var ↪→ Val

Figure 2.6: Definition of Values

2.2.1 Definition of Values for While

For each type τ of Skel, a set of value V (τ) is defined. One could first provide instantiation
for the unspecified types, and values of specified types be generated by applying construc-
tors to values. However, this is a limitation as an unspecified type could not be defined
mutually recursively with a specified type for example. We define the interpretation of
types such that unspecified types can be defined relative to other types.

First, named closures NC(τ1 → τ2) and anonymous closures AC(τ1 → τ2) are defined
on Figure 2.5. A named closure of type τ1 → τ2 is a function name f with type τ1 → τ2

that is defined at top-level in the skeletal semantics. An anonymous closure is a tuple
of a typing environment Γ mapping variables to type, a pattern p, a skeleton S, and an
environment that maps variables to values, formally defined in the next paragraph.

The definitions of values for every type except unspecified ones are given in Figure 2.6.
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id ∈ V = {x, y, z...}
⊢ id ∈ V (ident)

Ident
l ∈ Z

⊢ l ∈ V (lit)
Lit

i ∈ Z
⊢ i ∈ V (int)

Int

∀x ∈ dom s, s(x) ∈ V (int)
⊢ s ∈ V (store)

Store

Figure 2.7: Instantiation of Values for Unspecified Types

JlitToIntK(n) = {n} JaddK(n1, n2) = {n1 + n2}
JltK(n1, n2) = (n1 < n2) ? {1} : {0} JrandK(n1, n2) = {n |n1 ≤ n ≤ n2 }

JisZeroK(n) = (n = 0) ? {()} : {} JisNotZeroK(n) = (n ̸= 0) ? {()} : {}
JreadK(x, s) = {s(x)} JwriteK(x, s, n) = {s[x← n]}

Figure 2.8: Instantiations of Unspecified Values for the While Language

The notation na(τ) means that τ is not an arrow type, and therefore not a function. The
rule Env defines a special value, called an environment that maps Skel variables to values
and is used to give meaning to free variables of a skeleton. We write Val the set of all
values of every types and Env the set of partial functions from skeletal variables to values.

The definitions of values given previously are language-agnostic. The benefits of the
Skeletal Semantics approach is that a lot of the work is done once and for all. We only
need to instantiate the values of unspecified types, as presented on Figure 2.7.

Finally, there remains to instantiate the non-specified values. The specification of an
unspecified value of type τ such that na(τ) is a set P (V (τ)): the specification can be
a set as it is often useful to model non-determinism. The specification of an unspecified
value of type τ1 → τ2 is a function of type V (τ1) → P (V (τ2)). The use of sets is here
also useful to model non-determinism: for given inputs there can be several outputs. The
instantiations of unspecified values for the While language are given on Figure 2.8. The
ternary (cond) ? exp1 : exp2 evaluates to exp1 if the condition cond is true, or exp2
otherwise. There remains to interpret the meta-language Skel to obtain a semantics for
our While language.
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2.2.2 The Big-Step Semantics of Skel

The big-step semantics of Skel is presented on Figure 2.9. There are four rules to evaluate
variables, as there are implicitly three types of variables. A variable defined by a let binding
evaluates to what it is bound to in the current environment (Var rule). A variable defined
in the Skeletal Semantics of the language that has arrow type returns a pair of the name of
the function (TermClos rule). A variable that is defined in the Skeletal Semantics, bound
to a specified term and which type is not an arrow is evaluated by using its definition in
the Skeletal Semantics (TermSpec). A variable that is defined in the Skeletal Semantics,
not bound to a term and which type is not an arrow returns non-deterministically a value
from the set defined at instantiation of the variable (TermUnspec rule). The evaluation
of a constructor is the application of the constructor to the evaluation of the term (Const
rule). The evaluation of a tuple is the tuple of the evaluation of terms (Tuple rule). The
evaluation of a function is a closure: a triplet of the pattern representing the parameter,
the code and the current environment to give meaning to free variables of the code (Clos
rule). Rule LetIn is usual for functional language. Rule Branch evaluates a branching
by non-deterministically returning the result of the evaluation of a branch. To evaluate an
application, we define another relation with three rules. Rule Rule Clos is the application
of a closure: a new binding is added in the environment where the pattern maps-to the
argument of the function (the formal definition of the extension of environment is given
later). Then, the body of the function is evaluated in this new environment. Rules Spec
and Unspec are the application of a named closure to an argument. In the Spec rule,
the function definition is fetched in the skeletal semantics, and is evaluated and applied to
the argument. In the Unspec rule, the instantiation is applied to the argument, and one
of the results is returned. Non-specified functions may be non-deterministic since their
instantiation may return a set.

Finally, the extension of environment rules is defined in Figure 2.10 as a set of rule. It
is defined as a relation between a triplet of an environment, a pattern, a value, to a new
environment. The relation is defined by induction on the pattern. When the pattern is a
wildcard, the relation maps the environment to the same environment (Asn-Wildcard
rule). When the pattern is a variable, the relation maps the environment to an identical
environment but with a new binding between the variable and the value (Asn-Var).
When the pattern is a constructor applied to a pattern, the value is expected to be the
same constructor applied to a value. The relation is defined recursively by removing the
constructors (Asn-Constr rule). When the pattern is a tuple pattern, the environments

54



Skeletal Semantics

⇓t∈ P ((Env×Term)×Val)
⇓S∈ P ((Env× Skeleton)×Val)
⇓app∈ P ((Fun×Val)×Val)

E(x) = v

E, x ⇓t v
Var

val f : τ1 → τ2[= t]
E, f ⇓t f

TermClos

val x : τ = t ∈ S na(τ) ∅, t ⇓t v

E, x ⇓t v
TermSpec

val x : τ ∈ S na(τ) v ∈ JxK
E, x ⇓t v

TermUnspec
E, t ⇓t v

E, (C t) ⇓t C v
Const

E, t1 ⇓t v1 .. E, tn ⇓t vn

E, (t1, .., tn) ⇓t (v1, .., vn)
Tuple

E, (λp : τ → S)Γ, λp · S) ∈ Funs(S) ⇓t (Γ, p, S, E)
Clos

E, S1 ⇓S v ⊢ E + p 7→ v ⇝ E ′ E ′, S2 ⇓S w

E, let p = S1 in S2 ⇓S w
LetIn

E, Si ⇓S v

E, (S1, .., Sn) ⇓S v
Branch

i ∈ {0, 1} , E, ti ⇓t vi v0 v1 ⇓app w

E, (t0 t1) ⇓S w
App

⊢ E + p 7→ v ⇝ E ′ E ′, S ⇓S w

(Γ, p, S, E) v ⇓app w
Clos

val f : τ1 → τ2 = t ∈ S ∅, t ⇓t v0 v0 v ⇓app w

f v ⇓app w
Spec

val f : τ1 → τ2 ∈ S w ∈ JfK(v)
f v ⇓app w

Unspec

Figure 2.9: Big-Step Semantics of Skel
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⊢ _ + _ 7→ _⇝ _ ∈ P ((Env×Pattern×Val)×Env)

⊢ E + _ 7→ v ⇝ E
Asn-Wildcard

⊢ E + x 7→ v ⇝ E + x 7→ v
Asn-Var

⊢ E + p 7→ v ⇝ E ′

⊢ E + C p 7→ C v ⇝ E ′ Asn-Constr

⊢ E + p1 7→ v1 ⇝ E2 . . . ⊢ En + pn 7→ vn ⇝ E ′

⊢ E + (p1, .., pn) 7→ (v1, .., vn)⇝ E ′ Asn-Tuple

Figure 2.10: Rule for Extension of Environments and Pattern Matching

are piped through each pair of corresponding patterns and values to obtain the new
environment (Asn-Tuple rule).

It is now possible to evaluate While programs by meta-interpretation of the language
Skel. We have instantiated the unspecified types and terms. To write While programs in
Skel, we need to express constants of type lit. Because it is an unspecified type, there
is no value that can be written in Skel. We add a few unspecified values to the skeletal
semantics that will be our constants.

val zero : lit
val one : lit
val two : lit

We suppose that JzeroK = {0} and so on for the other constants. Let E0 be a Skel
environment mapping variables to values and defined as:

E0 = {s 7→ σ0}

where σ0 is the while store mapping x to 0. Using the previously defined interpretation
rules of Skel, one can derive statements of the form:

E0, eval (s, While(Leq(x, two), Assign(x, P lus(x, one)))) ⇓S two

2.3 Related Work

Our work is part of a large research effort to define sound analyses and build correct
abstract interpreters from semantic descriptions of languages. At its core, our approach
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is the Abstract Interpretation [9, 10] of a semantic meta-language. Abstract Interpreta-
tion is a method designed by Cousot and Cousot to define sound static analyses from a
concrete semantics. In his Marktoberdorf lectures [8], Cousot describes a systematic way
to derive an abstract interpretation of an imperative language from a concrete seman-
tics and mathematically proved sound. We chose to define the Abstract Interpretation of
Skel, as it is designed to mechanise the semantics of languages. The benefit of analysing
a meta-language is that a large part of the work to define and prove the correctness of
the analysis is done once for every semantics mechanised with Skel. However, it is often
less precise than defining a language-specific abstract interpretation. Moreover, there have
been several papers describing methods to derive abstract interpretation from different
types of concrete semantics [9, 44, 32], we chose to derive abstract interpreters from a
big-step semantics of Skel.

Schmidt [44] shows how to define an abstract interpretation for λ-calculus from a
big-step semantics defined co-inductively. The abstract interpretation of Skel and its cor-
rectness proof follow the methods described in the paper. However, Skel has more complex
constructs than λ-calculus, especially branches. Moreover, the big-step of Skel is defined
inductively, thus reasoning about non-terminating programs is not possible. Also, to prove
the correctness of the abstract interpretation of Skel, we relate the big-step derivation tree
to the abstract derivation tree, similar to Schmidt, but a key difference is that our proof
is inductive when Schmidt’s proof is co-inductive.

Lim and Reps propose the TSL system [24]: a tool to define machine-code instruc-
tions set and abstract interpretations. The specification of an instruction set in TSL is
compiled into a Common Intermediate Representation (CIR). An abstract interpretation
is defined on the CIR, therefore an abstract interpreter is derivable from any instruction
set description. However, the TSL system is aimed at specifying and analysing machine
code, and not languages in general. Moreover, it is unclear how it would be possible to
define analyses on languages with more complex control-flow, like λ-calculus.

In the paper on Skeletal semantics, Bodin et al. [4] used skeletal semantics to define
concrete and abstract interpretation of a small imperative language, and to prove the
correctness of the abstract interpretation, relative to the concrete interpretation. Our
work is similar as the objective is identical: from a formal description of a language,
define a concrete and an abstract interpretation that are related by a correctness property.
However, there are also key differences between both works. Bodin et al. have defined a
pure abstract interpretation by a greatest fixpoint. As a consequence, the derivations may
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be infinite and therefore not computable. Our objective is to get a computable abstract
interpretation, and we use classical tools of abstract interpretation to achieve it. We
incrementally compute the correct abstraction of a program by adding a state to the
abstract interpretation, and therefore it is not pure, like the concrete interpretation of Skel,
but it carries a state. We provide a method to add widening to the abstract interpretation
to enforce convergence. Our abstract interpretation can be executed as an analyser, as
demonstrated by our implementation [41].

The idea of defining an abstract interpreter of a meta-language to define analyses
for languages has been explored, for example by Keidel, Poulsen and Erdweg [20]. They
use arrows [14] as meta-language to describe interpreters. The concrete and abstract in-
terpreters share code using the unified interface of arrows. By instantiating language-
dependent parts for the concrete interpretation and the abstract interpretation, they
obtain two interpreters that can be proven sound compositionally by proving that the
abstract language-dependent parts are sound approximation of the concrete language-
dependent parts, similar to Skel. However, we chose to use a dedicated meta-language,
Skel, as its library [37] makes defining interpreters for Skel convenient and one objective
is to use the NecroCoq tool [36] to generate mechanised proofs that our derived abstract
interpreters are correct.
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Chapter 3

PROGRAM POINTS

The objective of this thesis is to define abstract interpretations from skeletal semantics.
Program points are an essential component of analyses, therefore we propose a generic
method to add program points to interpretations of Skel in a systematic way. This method
is used to add program points to the big-step interpretation of Skel, and later to the
abstract interpretation of Skel.

3.1 Program Points in Skel

Given a program of the object language, the While language for example, that we call
prog, a program point is a reference to a sub-term of prog. A similar concept was briefly
introduced in Section 1.3.5 on Abstract Interpretation with CFG. The skeletal semantics
of While contains the type stmt, and is the type of statements, thus of While programs. A
While program in Skel is a value from the algebraic data-type stmt. Let prog ∈ V (stmt),
it can be represented as an Abstract Syntax Tree (AST). Then, a sub-term of prog can
be denoted by a path from the root of the AST to the sub-term in the tree.

Take program x := 0; while x ≤ 2 do x := x + 1, in Skel, it is represented as a

Figure 3.1: AST of a While Program in Skel
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value from V (stmt). The AST of the program is shown in Figure 3.1. The nodes of the
tree are constructors of specified types. The arcs from constructors to their children are
labelled with numbers. The list of numbers from the root of the program to a sub-term
is a program point. The integers of program points are underlined to differentiate them
from integers of the While language. The empty program point ϵ is a reference to the
root of the tree, thus to the entirety of the program. The program point 0 maps-to the
sub-term Assign(x, 0). Indeed, it is the value obtained when starting from the root of the
program and by taking the left-most child, labelled by 0. Similarly, the program point
1 · 1 maps-to the sub-term Assign(x, P lus(V ar(x), 1)).

Definition 17 The set of program points is the set of finite lists of natural integers. Given
a set S, we note S∗ a finite list of elements of S.

ppoint = N∗

We write i · pp for the program point where the first element of the list is i and the rest is
pp. Similarly, we write pp ·i for the program point where the beginning is the list pp and
the last element is i.

We write v@ pp to denote the sub-term of v at program point pp. The @ operator is
formally defined as:

v@ϵ = v

C(v0, .., vn−1)@i · pp = vi@ pp when 0 ≤ i ≤ n− 1

Our method to add program points to an interpretation of Skel is to parameterise
the interpretation by a main program, referred to as prog, of the object language. Then,
the "program values" can be replaced by program points that are references to sub-terms
of prog. A program value is a value that represents a program: for the While language,
any value of type stmt is a program value. Therefore, given a skeletal semantics S, some
specified types must be said to be program types. We write ProgTypes for the set of
program types: ADTs that describe programs. For the While language, a natural choice
for program types is ProgTypes = {stmt, expr}. Indeed, statements and expressions
are the programs of the While language. Now that we have defined the program types,
we present new definitions for values. Values with program types are now expected to
be program points that refer to the main program prog. The value prog must have a
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∀1 ≤ i ≤ n ⊢ vi ∈ V ppoint
prog (τi)

⊢ (v1, . . . , vn) ∈ V ppoint
prog (τ1 × · · · × τn)

Tuple

⊢ v ∈ V ppoint
prog (τ) C : (τ, τa) τa /∈ ProgTypes

⊢ C v ∈ V ppoint
prog (τa)

Const

τa ∈ ProgTypes pp ∈ ppoint prog@ pp ∈ V (τa)
⊢ pp ∈ V ppoint

prog (τa)
Const-ppoint

(Γ, λp : τ1 → S) ∈ Funs(S) Γ ⊨ E Γ + p 7→ τ1 ⊢ S : τ2

⊢ (p, S, E) ∈ V ppoint
prog (τ1 → τ2)

Clos

val f : τ1 → τ2 [= t] ∈ S
⊢ f ∈ V ppoint

prog (τ1 → τ2)
Def

dom Γ = dom E ∀x ∈ dom E, Γ ⊢ E(x) : Γ(x)
Γ ⊨ E

Env

ValPP =
⋃

τ∈Type
V ppoint

prog (τ)

EnvPP = Var ↪→ ValPP

Figure 3.2: Definition of Values with Program Points

program type: prog ∈ V (stmt). Thus, values with program points are defined relatively
to values without program points. The new definitions of values with program points are
presented on Figure 3.2. The relation ⊢ v ∈ V ppoint

prog (τ) is defined similarly to the one of
Section 2.2.1, but is now parameterised by the set ProgTypes, and by the main program
prog. A new rule Const-ppoint introduces program points as values. If τa is a specified
type and in the set of program types ProgTypes, then pp is a concrete value with the
condition that the sub-value of prog at pp of the main program has type τa. We write
ValPP the new set of values with program points.

Let prog ∈ V (stmt) be the program represented on Figure 3.1. Because prog@ϵ ∈
V (stmt), then ϵ ∈ V ppoint

prog (stmt). Also, prog@10 = Leq(V ar x, Const 3) ∈ V (expr),
therefore 10 ∈ V ppoint

prog (expr).
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unfold : P (Type)×Val× ppoint ↪→ ValPP

C : (τ0, .., τn−1) prog@ pp = C(v0, .., vn−1) vi ∈ V (τi)
v′

i = if τi ∈ ProgTypes then pp ·i else unfold(ProgTypes, prog, pp ·i)
unfold(ProgTypes, prog, pp) = (v′

0, .., v′
n−1)

Unfold

Figure 3.3: Definition of the Unfolding of Program Points

3.1.1 Pattern-matching of Program Points

The big-step interpretation of Skel requires small changes to work with program points,
and only the pattern-matching is impacted. Indeed, a program point pp matches a sub-
program of prog, noted prog@ pp of the form C(v0, .., vn−1), as program types are ADTs.
An ADT value may be matched with a pattern during the interpretation. To handle
pattern-matching, a program point can be unfolded, meaning that the children of the
program point are exhibited. Unfolding is formally defined on Figure 3.3. To unfold a
program point pp, its corresponding value prog@ pp is inspected and is expected to be
a constructor applied to values, the children. A child can be replaced by its correspond-
ing program point if it has a program type, or it can recursively unfolded otherwise.
For example, given prog of Figure 3.1, unfolding ϵ gives (0, 1). Indeed, prog@ϵ has the
form Seq(stmt0, stmt1) with (stmt0, stmt1) a tuple of statements that are the children
of prog@ϵ. Because stmt ∈ ProgTypes, the children are replaced by program points be-
cause they both have type stmt ∈ ProgTypes. On the other hand, unfolding 0 · 0 directly
returns x, as prog@0 · 0 = x ∈ V (ident) and identifiers have not program types.

This unfolding mechanism is added to pattern matching in the extension of environ-
ment presented in Figure 3.4. The extension of environments is now parameterised with
ProgTypes and prog. The rules are similar to the ones given on Figure 2.10 defined for
the big-step interpretation, but with a new rule: Asn-Unfold. To perform the pattern-
matching of pp with C p, the value prog@ pp must have constructor C at the root.
The parameters that have a program type are replaced by their program points and the
pattern-matching is performed recursively. Let prog be our running example presented
on Figure 3.1. Here is what happens when an environment E is extended with pattern
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⊢ _ + _ 7→ _⇝ _ ∈ P ((EnvPP×Pattern×ValPP)×EnvPP)

ProgTypes, prog ⊢ E + _ 7→ v ⇝ E
Asn-Wildcard

ProgTypes, prog ⊢ E + x 7→ v ⇝ (x, v) :: E
Asn-Var

ProgTypes, prog ⊢ E + p 7→ v ⇝ E ′

ProgTypes, prog ⊢ E + C p 7→ C v ⇝ E ′ Asn-Const

ProgTypes, prog ⊢ E + p1 7→ v1 ⇝ E2
. . . ProgTypes, prog ⊢ En + pn 7→ vn ⇝ E ′

ProgTypes, prog ⊢ E + (p1, .., pn) 7→ (v1, .., vn)⇝ E ′ Asn-Tuple

ProgTypes, prog ⊢ E + p 7→ unfold(ProgTypes, prog, pp)⇝ E ′

ProgTypes, prog ⊢ E + C p 7→ pp⇝ E ′ Asn-Unfold

Figure 3.4: Rule for Extension of Environments and Pattern Matching with Program
Points

Assign(_, _) and program point 1 · 1:

prog@1 · 1 = Assign(x, P lus(V ar(x), 1))
Assign : (ident× expr, stmt) ProgTypes, prog ⊢ E + (_, _) 7→ (x, 1 · 1 · 1)⇝ E

ProgTypes, prog ⊢ E + Assign(_, _) 7→ 1 · 1⇝ E

First, we see that prog@1 · 1 is Assign(x, P lus(V ar(x), 1)) and can be matched with pat-
tern Assign(_, _). The subterm x has type ident and is left as is. However Plus(V ar(x), 1)
has type expr ∈ ProgTypes. Therefore, it is replaced by its program point 1 · 1 · 1. Fi-
nally, the extension of environment is done recursively by matching pattern (_, _) with
(x, 1 · 1 · 1).

3.2 Big-Step Interpretation of Skel with Program Points

The big-step interpretation of Skel with program points is shown on Figure 3.5. It is almost
identical to the big-step interpretation of Skel presented in previous sections. However,
the evaluation of skeletons and applications are now parameterised by a main program
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⇓t∈ P ((EnvPP×Term)×ValPP)
⇓ProgTypes,prog

S ∈ P ((EnvPP× Skeleton)×ValPP)

E(x) = v

E, x ⇓t v
Var

val f : τ1 → τ2[= t]
E, f ⇓t f

TermClos

val x : τ = t ∈ S na(τ) ∅, t ⇓t v

E, x ⇓t v
TermSpec

val x : τ ∈ S v ∈ JxKppoint

E, x ⇓t v
TermUnspec

E, t ⇓t v

E, (C t) ⇓t C v
Const

E, t1 ⇓t v1 .. E, tn ⇓t vn

E, (t1, .., tn) ⇓t (v1, .., vn)
Tuple

E, (λp : τ → S) ⇓t (p, S, E)
Clos

E, S1 ⇓ProgTypes,prog
S v

ProgTypes, prog ⊢ E + p 7→ v ⇝ E ′ E ′, S2 ⇓ProgTypes,prog
S w

E, let p = S1 in S2 ⇓ProgTypes,prog
S w

LetIn

E, Si ⇓ProgTypes,prog
S v

E, (S1, .., Sn) ⇓ProgTypes,prog
S v

Branch
E, t ⇓t v f v ⇓ProgTypes,prog

app w

E, (f t) ⇓ProgTypes,prog
S w

App

ProgTypes, prog ⊢ E + p 7→ v ⇝ E ′ E ′, S ⇓ProgTypes,prog
S w

(p, S, E) v ⇓ProgTypes,prog
app w

Clos

val f : τ1 → τ2 = t ∈ S ∅, t ⇓t v0 v0 v ⇓ProgTypes,prog
app w

f v ⇓ProgTypes,prog
app w

Spec

val f : τ1 → τ2∈S w ∈ JfKppoint(v)
f v ⇓ProgTypes,prog

app w
Unspec

Figure 3.5: Big-Step Semantics of Skel with Program Points
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prog and a set of program types ProgTypes. The extension of environment in the LetIn
rule and the Clos rule is the one presented in Section 3.1.1. The instantiation of an
unspecified term for the interpretation with program points x is written JxKppoint.

Finally, to obtain a new big-step interpretation with program points, unspecified types
and terms must be provided. With the While language, neither the definitions of the types
nor the terms need to be modified. Thus, we use the definition presented on Figure 2.7
and on Figure 2.8.

Let prog be the program of Figure 3.1. Let E = {s 7→ {} , t 7→ ϵ}. Then one can derive
the following statement:

E, eval (s, t) ⇓ProgTypes,prog
S {x 7→ 2}

3.3 Correctness Theorem

Definition 18 To relate values with and without program points, we define the following
function γ, such that ∀τ, γτ ∈ V ppoint

prog (τ)→ V (τ). The function γ is parameterised by the
main program prog of type τ ∈ ProgTypes and satisfies the following constraints.

• γτ (pp) = prog@ pp and τ ∈ ProgTypes

• γτ1×..×τn((v1, . . . , vn)) = (γτ1(v1), .., γτn(vn))

• γτa(C v) = C γτ (v) with C : (τ, τa)

• Suppose Γ ⊨ E, and Γ ⊨ E ′

γenv(E ′) = E ⇐⇒ dom E ′ = dom E ∧ ∀x ∈ dom E ′, γΓ(x)(E ′(x)) = E(x)

• γτ1→τ2((p, S, E ′)) = (p, S, γenv(E ′))

• Suppose val f : τ1 → τ2 [= t] ∈ S and na(τ2), then
γτ (f) = f

Definition 19 Take f such that val f : τ1 → τ2 ∈ S and na(τ2):

γunspec(JfKppoint) = JfK ⇐⇒ ∀(v′, v) ∈ V ppoint
prog (τ1)× V (τ1) such that γτ1(v′) = v

γτ2(JfKppoint(v′)) = JfK(v)
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Theorem 2 Let γenv(E ′) = E, and suppose for all unspecified functions f , γunspec(JfKppoint) =
JfK, then:

E, S ⇓S v =⇒ ∃v′, E ′, S ⇓S v′ and γτ (v′) = v
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Chapter 4

ABSTRACT INTERPRETATION OF SKEL

4.1 Methodology

We define an abstract interpretation of Skel that is sound with respect to the big-step
semantics of Section 2.2.2. This abstract interpretation will serve as the foundation of a
methodology for building abstract interpreters for languages from their skeletal semantics.
In this methodology, the user provides several ingredients to generate such an abstract
interpreter.

• For each unspecified type, an abstract domain must be defined. It consists of the
definition of the abstract values of the type, a partial order, and an abstract union.
To prove the correctness of the analysis, a concretisation function for each unspec-
ified type is also required. From these definitions, the partial orders, the abstract
unions, and the concretisation functions are automatically derived for every other
types by our framework, without additional work required.

• A State of the Abstract Interpretation (AI-state in the following) is used to carry
persistent information during the abstract evaluation. Abstract Interpretation of
a language from its skeletal semantics is done by meta-interpretation of Skel, a
pure functional language. Thus, a natural interpretation of Skel would be stateless,
and without persistent information. However, in abstract interpretation, we want
to compute correct approximations incrementally for every program points of the
analysed program. Thus, we have added an AI-State for our interpretation of Skel.
It is carried during the computations and holds information that is incrementally
computed. For instance, in our While language, the AI-state records the current
approximation of the abstract stores for every program point, as is done in Sec-
tion 1.3.5 when defining an abstract interpretation of the While language from its
CFG semantics.
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• The AI-state may be modified at the start and end of a call to a specified function.
This is typically used for evaluation functions, such as eval_stmt, to update the
abstractions before and after executing a sub-program. Indeed, eval_stmt (and
most of recursive evaluation functions) is called recursively on sub-programs of the
analysed program. Therefore, the beginning and the end of such calls are relevant
locations to update the abstractions stored in the AI-state.

• An instantiation of the unspecified terms must be provided, based on the abstract
instantiations of types and of the AI-state.

Our framework provides an abstract meta-semantics of Skel that threads the AI-state
through the evaluation, including calls to unspecified terms. As the foundational correct-
ness property of the methodology, we prove that if the abstract instantiation of types and
terms provided by the user satisfies some correctness criteria, then the whole abstract
interpreter that is generated is also correct. The global correctness of the approach is
proven once and for all assuming the correctness of the instantiations of the non-specified
terms.

4.2 Definition of Abstract Values

For each type τ an abstract domain is defined and consist in a set of abstract values, a
partial order, an abstract union, a smallest, and a biggest element must be defined. The
abstract union must give an upper-bound, but we do not require that it is necessarily a
least upper-bound.

Definition 20 We call an abstract domain of type τ a tuple (V ♯(τ),⊑τ ,⊔τ ,⊥τ ,⊤τ ) where

• V ♯(τ) is a set of abstract values

• ⊑τ∈ P
(
V ♯(τ)× V ♯(τ)

)
is a partial order

• ⊔τ ∈ V ♯(τ) × V ♯(τ) → V ♯(τ) is an abstract union, which given two abstract values
returns an upper-bound (ideally the least upper bound)

• ⊥τ and ⊤τ are the least and greatest elements of V ♯(τ) respectively

Abstract values for every type except unspecified ones are shown on Figure 4.2. Each
type τ has a smallest and biggest element ⊥τ and ⊤τ respectively (rules Bottom and
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NC♯(τ1 → τ2) = { f |val f : τ1 → τ2[= t] ∈ S }
AC♯(τ1 → τ2) =

{
(Γ, p, S, E♯)

∣∣∣ (Γ, λp : τ1 → τ2 · S) ∈ Funs(S) ∧ Γ ⊨ E♯ ∧ Γ + p 7→ τ1 ⊢ S : τ2
}

Funs♯ = NC♯(τ1 → τ2) ∪ AC♯(τ1 → τ2)

Figure 4.1: Named Closures and Anonymous Closures

⊥τ ∈ V ♯(τ)
Bottom

⊤τ ∈ V ♯(τ)
Top

∀i ∈ {1..n} ∀j ∈ {1..m} vj
i ∈ V ♯(τi) ∧ vj

i ̸= ⊥τi
m ≥ 1{

(v1
1, .., v1

n), .., (vm
1 , .., vm

n )
}
∈ V ♯(τ1 × ..× τn)

Tuple

v♯ ∈ V ♯(τ) C : (τ, τa) τa /∈ ProgTypes v♯ ̸= ⊥τ

C v♯ ∈ V ♯(τa)
Alg

F1 ⊆ AC♯(τ1 → τ2) F2 ⊆ NC♯(τ1 → τ2) F1 ∪ F2 ̸= ∅
(F1, F2) ∈ V ♯(τ1 → τ2)

Clos

τa ∈ ProgTypes prog@ pp : τa

pp ∈ V ♯(τa)
PPoint

dom Γ = dom E♯ ∀x ∈ dom E♯ E♯(x) ∈ V ♯(Γ(x))
Γ ⊨ E♯ Env

Val♯ =
⋃

τ∈Type
V ♯(τ)

Env♯ = Var ↪→ Val♯

Figure 4.2: Abstract Values
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x ∈ X
x ∈ V ♯(ident)

Ident
l ∈ Z

l ∈ V ♯(lit)
Lit

n1, n2 ∈ Z ∪ {−∞, +∞} n1 ≤ n2

[n1; n2] ∈ V ♯(int)
Int

s ∈ V ♯(ident) ↪→ V ♯(int)
s ∈ V ♯(store)

Store

Figure 4.3: Abstract Values for Unspecified Types

Top). An abstract tuple can be a set of tuples of abstract values that are not a bottom
value (rule Tuple). We choose to have finite sets of tuples of abstract values as abstract
tuples because we want to keep some relations that we would lose by collapsing a set of
tuples into one abstract tuple. The next chapter will show a case where it is crucial to
have an expressive abstraction of tuples when presenting an analysis for λ-calculus. A
value of an algebraic datatype can be a constructor applied to an abstract value that is
not bottom (rule Alg). An abstract value with type τ1 → τ2 is a pair of two sets: a set of
named closures and a set of anonymous closures, and the union of the two sets should be
non-empty (rule Clos). The sets of anonymous and named closures are detailed in the
next paragraph. The rule PPoint defines program points as abstract values. The rule
Env of Figure 4.2 defines abstract environments. Abstract environments are not abstract
values but are defined mutually recursively to abstract values. An abstract environment
E♯ is defined relatively to a typing environment Γ, and is a partial function mapping
skeletal variables to abstract values with types consistent with the typing environment Γ.

The sets of abstract named and anonymous closures are defined on Figure 4.1. The
set of abstract named closures of type τ1 → τ2 is NC♯(τ1 → τ2). It is almost identical
to concrete named closures: a set of function names defined in the skeletal semantics S.
The set of anonymous closures of type τ1 → τ2 is AC♯(τ1 → τ2). An anonymous closure
is a quadruple (Γ, p, S, E♯) where Γ is the typing environment for free variables in S. The
pattern p contains the variables to be bound when calling the function. The body of the
function S is a skeleton that is the code of the function. E♯ is the abstract environment
mapping the free variables of S to abstract values. We recall that the relation Γ ⊨ E♯

means that Γ is consistent with the typing environment. Finally, the set Fun♯ is the union
of the sets of abstract and named closures.

These definitions of abstract values do not depend on a skeletal semantics. However,
to define the abstract values of a language, given its skeletal semantics, the definitions
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of the abstract values of the unspecified types must be provided. Such rules are given
on Figure 4.3 for the skeletal semantics of the While language. The benefit of specifying
values of unspecified types with induction rules is to be able to define them mutually
recursively with every other abstract values. One example is the definition of abstract
stores which depends on the definitions of abstract identifiers and abstract integers. It
could also depend on abstract values with types other than non-specified. We give a few
examples of abstract values below built from the two sets of rules of Figures 4.2 and 4.3.
When an abstract tuple is a singleton containing one tuple, brackets are dropped. Thus
we do not write Plus({V ar(x), Const(1)}) but Plus(V ar(x), Const(1)).

1 ∈ Z

1 ∈ V ♯(lit)
Lit

0, +∞ ∈ Z ∪ {−∞, +∞} 0 ≤ +∞
J0, +∞K ∈ V ♯(int)

Int

V ar : (ident, expr)
x ∈ X

x ∈ V ♯(ident)
Ident

V ar(x) ∈ V ♯(expr)
Const

Const : (lit, expr)
1 ∈ Z

1 ∈ V ♯(lit)
Lit

Const(1) ∈ V ♯(expr)
Const

· · ·

V ar(x) ∈ V ♯(expr)
Const

· · ·

Const(1) ∈ V ♯(expr)
(V ar(x), Const(1)) ∈ V ♯(expr× expr)

Tuple

Plus : (expr× expr, expr)
· · ·

V ar(x), Const(1) ∈ V ♯(expr× expr)
Tuple

Plus(V ar(x), Const(1)) ∈ V ♯(expr)
Const

Comparisons of Abstract Values We introduce a new notation to compare two sets
of comparable values.

Definition 21 Let (S,≤) be a poset. Let T1, T2 ∈ P (S). The relation ≤set is defined as

T1 ≤set T2 ⇐⇒ ∀s ∈ T1 ∃s′ ∈ T2 s ≤ s′
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⊑♯
τ∈ P

(
V ♯(τ)× V ♯(τ)

)

C : (τ : τa) v♯ ⊑♯
τ w♯

C v♯ ⊑♯
τa

C w♯ Alg
t♯
1 ⊑

tuple
set t♯

2

t♯
1 ⊑

♯
τ1×..×τn

t♯
2

Tuple

F1 ⊆ G1 F2 ⊑aclos
set G2

(F1, F2) ⊑♯
τ1→τ2 (G1, G2)

Arrow

Γ ⊨ E♯
1 ∧ Γ ⊨ E♯

2 ∧ ∀x ∈ dom E♯
1 E♯

1(x) ⊑♯
Γ(x) E♯

2(x)
E♯

1 ⊑
♯
Γ E♯

2
Env

v♯ ⊑♯
τ ⊤τ

Top

⊥τ ⊑♯
τ v♯ Bot

i ∈ {1..n} v♯
i ⊑τi

w♯
i

(v♯
1, .., v♯

n) ⊑tuple
τ1×..×τn

(w♯
1, .., w♯

n)

(Γ, p, S, E♯
1) ⊑aclos

τ1→τ2 (Γ, p, S, E♯
2) ⇐⇒ ∀x ∈ dom Γ♯ E♯

1(x) ⊑Γ(x) E♯
2(x)

Figure 4.4: Comparisons of Abstract Values

In other words, for every element s of T1, there exists an element s′ of T2 such that s is
smaller than s′.

Before defining the comparisons of abstract values, we defined two auxiliary compar-
ison functions: one for tuples of abstract values and one for anonymous closures. These
definitions will be used to define the comparisons of abstract values.

∀i ∈ {1..n} v♯
i ⊑τi

w♯
i

(v♯
1, .., v♯

n) ⊑tuple (w♯
1, .., w♯

n)

E♯
1 ⊑Γ E♯

2

(Γ, p, S, E♯
1) ⊑aclos (Γ, p, S, E♯

2)

Now that the sets of abstract values have been instantiated for each type, we explain
how they can be compared. The definitions of comparisons are similar to the definitions
of abstract values: for every type other than unspecified, the comparison is given. Given
a skeletal semantics, the comparisons must be provided for every unspecified type. The
comparisons are order relations (reflexive, transitive, antisymmetric) ⊑τ that satisfy the
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m1 ≤ n1 n2 ≤ m2

[n1; n2] ⊑int [m1; m2]
Int

dom s1 = dom s2 ∀x ∈ dom s1 s1(x) ⊑int s2(x)
s1 ⊑store s2

Store

Figure 4.5: Comparisons of Unspecified Types

conditions on Figure 4.4. Values from ADT are comparable only when they have the same
constructor, and comparing two abstract values with the same constructor is equivalent to
comparing their parameters (rule Alg). An abstract tuple t♯

1 is smaller than an abstract
tuple t♯

2 if each tuple of abstract values in t♯
1 is smaller than a tuple of abstract values in t♯

2

(rule Tuple). The definition of the comparison of abstract tuple is done with the auxiliary
comparison function of tuple of abstract values ⊑tuple

τ1→τ2 . Abstract functions are pairs of sets
of anonymous and named closures. An abstract function (F1, F2) is smaller than a second
one (G1, G2) when the named closures F1 are included in G1. Moreover, each anonymous
closures of F2 must be smaller than some anonymous closure in G2 (rule Arrow). The
comparison of anonymous closure is done using an auxiliary comparison function ⊑aclos

τ1→τ2

that compares two abstract closures. An anonymous closure is smaller than a second
one when it has the same typing environment, pattern and skeleton but the abstract
environment is smaller than the second anonymous closure. Abstract environments are
compared relatively to a typing environment Γ. An environment E♯

1 is smaller than a
second one E♯

2 when both are typed by the same typing environment Γ, and thus have the
same domain. Moreover, each skeletal variable x in the domain E♯

1 maps to a value that
is smaller than E♯

2(x). Finally, ⊤τ and ⊥τ are the greatest and least elements of V ♯(τ).
Given a skeletal semantics, the comparison of abstract values for unspecified types

must be provided. The comparisons of every types are defined mutually recursively. For the
While language, the comparisons are presented on Figure 4.5. The comparison of integers
is the comparison of intervals. The comparison of stores is the point-wise extension of the
comparison of integers. There are no rules for the comparisons of identifiers and literals
that have been defined. It does not mean that values of these types can never be compared
but that we have defined a flat lattice. Indeed, the definition in Figure 4.4 ensures that
for every type, top is the greatest element, and bottom is the least element.

One may wonder, what is the difference between [−∞; +∞] and ⊤int. By definition,
⊤int is the bigger value and by our definition of the abstract comparison, both values are
different. However, [−∞; +∞] is bigger than every other values and the concretisation of
both abstract values are equal. Hence, the only difference is that one is bigger than the
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other by convention. The same argument can be made for the empty set and ⊥int.
A few examples of comparisons of abstract values are presented below. As statements

and expressions are defined as ADT, two statements or two expressions can be compared
which is unusual for an abstract interpretation. Indeed, abstract domains are defined for
every types of the skeletal semantics, even for the program types: the types that define
the programs of the language.

Assign(x, Const(1)) ⊑Const Assign(x, Const(1))
Refl

Assign : (ident× expr, stmt)
x ⊑ident x

Refl
Const(1) ⊑ident ⊤

Top

(x, Const(1)) ⊑ident×expr (x,⊤)
Tuple

Assign(x, Const(1)) ⊑Const Assign(x,⊤)
Const

⊥lit ⊑lit 4
Bot

J0, 1K ⊆ J0, +∞K

J0, 1K ⊑int J0, +∞K
Int

{x 7→ ⊥lit, y 7→ J0, 1K} ⊑store {x 7→ 4, y 7→ J0, +∞K}
Store

Lemma 2 ⊑♯
ident, ⊑♯

lit, ⊑♯
int and ⊑♯

store are orders (reflexive, transitive, antisymmetric).
⊔♯

ident, ⊔♯
lit, ⊔♯

int and ⊔♯
store give upper bounds.

Abstract Unions of Abstract Values Abstract unions are defined by induction and
are presented on Figure 4.6. An abstract union for type τ is a total function that given
two abstract values of type τ , returns a new value of type τ bigger than both arguments.
The abstract union of two values of an ADT with the same constructor is the constructor
applied to the abstract union of the parameters (rule Alg). The abstract union of two
values of an ADT with different constructors is top (rule Alg-Top). The abstract union
of tuples is set union (rule Tuple). The abstract union of abstract functions is a pair of
sets (rule Arrow). The union for named closures is the set union of the sets of named
closures. The union for anonymous closure is a set where anonymous closures with the
same code are merged by the abstract union of their abstract environments. Therefore,
for a given anonymous function of the skeletal semantics, an abstract function contains
at most one abstract closure for this anonymous function. Supposing F2 and G2 are finite
sets of anonymous closures, then H2 as defined in rule Arrow is also finite. This ensures
that the set of anonymous closures during the interpretation is kept finite. There is a
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⊔♯
τ ∈ V ♯(τ)× V ♯(τ)→ V ♯(τ)

C : (τ1, τ2) v♯ = v♯
1 ⊔τ1 v♯

2

(C v♯
1) ⊔♯

τ2 (C v♯
2) = C v♯

Alg
C : (τ1, τ2) D : (τ ′

1, τ2) C ̸= D

(C v♯
1) ⊔♯

τ2 (D v♯
2) = ⊤τ2

Alg-Top

∀i ∈ {1, 2} v♯
i ̸= ⊤ ∧ v♯

i ̸= ⊥ v♯ = v♯
1 ∪ v♯

2

v♯
1 ⊔

♯
τ1×..×τn

v♯
2 = v♯

Tuple

H1 = F1 ∪G1

H2 =
 (Γ, p, S, E♯)

∣∣∣∣∣∣ E♯ =
♯⊔ {

E♯
i

∣∣∣ (Γ, p, S, E♯
i ) ∈ F2 ∪G2

} 
(F1, F2) ⊔♯

τ1→τ2 (G1, G2) = (H1, H2)
Arrow

∀i ∈ {1, 2} Γ ⊨ E♯
i E♯ =

{
x ∈ dom Γ 7→ E♯

1(x) ⊔♯
Γ(x) E♯

2(x)
}

E♯
1 ⊔

♯
Γ E♯

2 = E♯
Env

v♯ ⊔♯
τ ⊤τ = ⊤τ ⊔♯

τ v♯ = ⊤τ

Top
v♯ ⊔♯

τ ⊥τ = ⊥τ ⊔♯
τ v♯ = v♯ Bot

Figure 4.6: Abstract Union of Abstract Values
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[n1; n2] ⊔int [m1; m2] = [min(n1, m1); max(n2, m2)]
Int

{x1 7→ i1, .., xn 7→ in} ⊔store {x1 7→ j1, .., xn 7→ jn} = {x1 7→ i1 ⊔int j1, .., xn 7→ in ⊔int jn}
Store

Figure 4.7: Abstract Union of Values with Unspecified Types

finite number of named closures because a skeletal semantics is a finite set of type and
term definitions. Therefore, in an abstract interpretation, an abstract function is a finite
set of anonymous and named closures.

Abstract union rules for the unspecified types of While are given on Figure 4.7. The
abstract union of two intervals is a convex hull (rule Int). The abstract union of stores
is the point-wise extension of the abstract union of intervals (rule Store). The abstract
unions for ident and lit are not shown here, but are defined to get flat lattices.

A few examples of abstract unions are given below.

[0; 1] ⊔int [4; 5] = [0; 5]
Int

{x 7→ [0; 1], y 7→ [−∞; 0]} ⊔store {x 7→ [4; 5], y 7→ [−1; 0]} = {x 7→ [0; 5], y 7→ [−∞; 0]}
Store

Const : (lit, expr)
Const(1) ⊔expr Const(2) = Const(⊤lit)

Const

Lemma 3 If for every unspecified type τu, ⊑♯
τu

is an order and ⊔♯
τu

gives an upper bound,
then for all τ , ⊑♯

τ is an order and ⊔♯
τ gives an upper bound.

Proof 1 By induction on type τ . Full proof in Chapter A.

4.3 State of the Abstract Interpretation

The State of the Abstract Interpretation A (abbreviated in AI-state) contains information
collected throughout the abstract interpretation. It is dependent on the analysis and the
language and therefore must be provided, similarly to unspecified values. Skel is a pure
language, and when defining an abstract interpretation, it is convenient to use an AI-state
such that at every step of the analysis, it contains the current abstractions that have been
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domA1 ⊆ domA2 Pos ∈ {In, Out}
(pp, Pos) ∈ domA1 =⇒ A1(pp, Pos) ⊑♯

store A2(pp, Pos)
A1 ⊑♯ A2

Comparison

domA = domA1 ∪ domA2 Pos ∈ {In, Out}
(pp, Pos) ∈ domA1 ∪ domA2 =⇒ A(pp, Pos) = A1(pp, Pos) ⊔♯

store A2(pp, Pos)
A1 ⊔♯ A2 = A

Union

Figure 4.8: Comparison and Union for the AI-state of While

computed. When analysing a given program, the analyser may study the same sub-term
of the program several times in different contexts and the AI-state should maintain and
merge the different abstractions computed at this point of the analysis. Having a persistent
state is used in traditional abstract interpretation. For instance, in Section 1.3.5 about
abstract interpretation from CFG for the While language, an abstract store is computed
for every program point. We write AbstState the set of AI-states for a given skeletal
semantics. The AI-state of the While skeletal semantics is a mapping from program points
to abstract stores. We actually record two abstract stores per program point: one before
(In) and after (Out) the evaluation of the sub-term. The notation Pos stands for either
In or Out. We then define A as a mapping from program points and a Pos to abstract
stores.

Definition 22 We define the set of AI-states for the while language as:

AbstState ≡ (ppoint×{In, Out}) ↪→ V ♯(store)

When (pp, Pos) /∈ domA, we suppose A(pp, Pos) = ⊥store. The comparison and union of
AI-state for While are presented on Figure 4.8. The comparison of AI-state is the point-
wise extension of the comparison of stores. The abstract union is the point-wise extension
of the union of stores.

During the abstract interpretation, an AI-state can be modified when calling a specified
function, as it will be explained later. For this, update functions must be provided. There
can be up to two update functions per specified function, as the AI-state can be modified
before and after the call to the specified function. Suppose that f : τ1 → τ2, then the

77



Abstract Interpretation of Skel

update functions have type:

updatein
f : AbstState× V ♯(τ1)→ V ♯(τ1)

updateout
f : AbstState× V ♯(τ1)× V ♯(τ2)→ V ♯(τ2)

The update mechanism will be fully explained when defining the abstract interpretation
of Skel in Section 4.7.

4.4 Concretisation of Abstract Values

To ensure the correctness of the abstract analysis, the abstract domains are linked to the
concrete domains with concretisation functions. The same methodology used for compar-
isons and unions is used: the definitions of the concretisation functions for not unspecified
types are defined, and the definitions of the concretisation functions for non-specified types
must be provided for a given skeletal semantics. A concretisation function returns the set
of concrete values denoted by an abstract value. There is one concretisation function per
type. We assume they are provided for non-specified types, and show in this section how
to extend them to all types.

A concretisation function for type τ maps an AI-state and an abstract value in V ♯(τ)
to P (V ppoint(τ)), a set of concrete values. It takes the AI-state because we will see in
the abstract interpretation for λ-calculus that an abstraction may depend on global in-
formation stored in the AI-state. We also define a function of concretisation γΓ which
maps abstract environments to sets of concrete environments. Formally, a concretisation
function has type:

γτ : AbstState× V ♯(τ)→ P
(
V ppoint(τ)

)
The concretisation functions are shown on Figure 4.9. The concretisation of an abstract

tuple t♯ is the union of the concretisation of the tuples of abstract values in t♯. The
concretisation of a tuple of abstract values is the Cartesian product of concretisations
of each abstract value of the tuple. The concretisation of a constructor applied to an
abstract value C v♯ is the set of concrete values where C is applied to values in the
concretisation of v♯. The concretisation of a program point is a singleton containing this
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γτ0×..×τn−1(A, t♯) =
⋃

(v♯
0,..,v♯

n−1)∈t♯

γτ0(A, v♯
0)× ..× γτn−1(A, v♯

n−1)

γτ2(A, C v♯) =
{
C v | C : (τ1, τ2), v ∈ γτ2(A, v♯)

}
γτ (A, pp) = {pp}

γτ1→τ2(A, (F1, F2)) = F1 ∪
{

(Γ, p, S, E)
∣∣∣ (Γ, p, S, E♯) ∈ F2 ∧ E ∈ γΓ(A, E♯)

}
γΓ(A, E♯) =

{
E

∣∣∣ Γ ⊨ E ∧ Γ ⊨ E♯ ∧ ∀x ∈ dom Γ, E(x) ∈ γΓ(x)(A, E♯(x))
}

γ(A,⊥τ ) = ∅
γ(A,⊤τ ) = V ppoint(τ)

Figure 4.9: Concretisation Functions of Abstract Values

program point. The concretisation of an abstract function (F1, F2) is a set containing the
named closures F1, and concrete anonymous closures of the form (Γ, p, S, E) approximated
by an abstract closure (Γ, p, S, E♯) in F2. The concretisation of an abstract environment
E♯ is parameterised by a typing environment Γ. The concretisation of E♯ is the set of
concrete environments that are typed by Γ and are the point-wise concretisations of E♯.
The concretisation of top and bottom of type τ are the sets V ♯(τ) and ∅τ respectively.

Concretisation functions for unspecified types must be provided. In the case of While,
the concretisation function for ident and lit is immediate as they are flat lattices. The
concretisation function for an interval i is the set of integers it contains. The concretisation
of an abstract store σ♯ is the point-wise concretisation of integers.

Definition 23 The concretisations of unspecified types for the While skeletal semantics
are defined as:

γident(A, x) = {x}
γident(A, l) = {l}

γint(A, i) = {n |n ∈ i }

γstore(A, σ♯) =
{

σ
∣∣∣ dom σ = dom σ♯ ∧ ∀x ∈ dom σ, σ(x) ∈ γint(σ♯(x))

}
In this case, the concretisation functions do not depend on the state of the abstract
interpretation. An example of an analysis for another language where the concretisation
functions depend on the AI-state will be presented in the Section 5. Similarly to the
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Π ∈ CStacks = (Var×AbstState×Val♯)∗

ε ∈ Π
A ∈ AbstState val f : τ1 → τ2 = t ∈ S v ∈ V ♯(τ1) π ∈ Π

(f,A, v) :: π ∈ Π

Figure 4.10: Inductive Definition of Callstacks

comparison and union definitions, the concretisation for top and bottom values are already
defined for unspecified values. Another property that must be true to prove the correctness
of the analysis is the monotonicity of the concretisation functions.

Definition 24 A concretisation function γτ is monotonic if and only if for any v♯
1 ⊑♯

τ v♯
2

and A1 ⊑♯ A2. we have γτ (A1, v♯
1) ⊆ γτ (A2, v♯

2).

Lemma 4 γident, γlit, γint and γstore are monotonic.

We now relate these notions with two properties. For each of them, we show that if
the property is satisfied for the instantiation of unspecified types, then it holds for every
type.

Lemma 5 If for all unspecified types τ , γτ is monotonic, then for all τ , γτ is also mono-
tonic.

Proof 2 By induction on type τ . Full proof in Chapter A.

4.5 Callstack to Ensure Termination

The abstract interpretation maintains a callstack of specified function calls. It is used for
loop detection and to prevent infinite computations. The callstack is inspected at each
call to a specified function to detect identical nested calls and stops the computation, as
a fixpoint has been reached. Callstacks are ordered lists of frames. A frame is a tuple of
the name of the function, the AI-state, and the parameter of the function when it was
called.
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⊢ _ + _ 7→♯ _⇝ _ ∈ P
(
(Env♯ ×Pattern×Val♯)×Env♯

)

ProgTypes, prog ⊢ ξ + _ 7→♯ v ⇝ ξ
A-Asn-Wildcard

ProgTypes, prog ⊢ ξ + x 7→♯ v ⇝
{

E♯ + x 7→ v♯
∣∣∣ E♯ ∈ ξ

} A-Asn-Var

ProgTypes, prog ⊢ ξ + p 7→♯ v ⇝ ξ′

ProgTypes, prog ⊢ ξ + C p 7→♯ C v ⇝ ξ′ A-Asn-Constr

(v1, .., vn) ∈ t ProgTypes, prog ⊢ ξ + p1 7→♯ v1 ⇝ ξv1

.. ProgTypes, prog ⊢ ξ(v1,..,vn−1) + pn 7→♯ vn ⇝ ξ(v1,..,vn)

ProgTypes, prog ⊢ ξ + (p1, .., pn) 7→♯ t⇝
⋃

(v1,..,vn)∈t

ξ(v1,..,vn)
A-Asn-Tuple

prog@ pp = C (v′
1, .., v′

n)
C : (τ1 × ..× τn, τ) vj = if τj ∈ ProgTypes then pp ·j else v′

j

ProgTypes, prog ⊢ ξ + p 7→♯ {(v1, .., vn)}⇝ ξ′

ProgTypes, prog ⊢ ξ + C p 7→♯ pp⇝ ξ′ A-Asn-Unfold

Figure 4.11: Abstract Pattern Matching
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4.6 Extension of Environments

The extension of environments, or pattern matching, is presented on Figure 4.11. The
pattern matching is parameterised by ProgTypes, the set of program types, and the
analysed program prog. A set of environments ξ is matched with a pattern and an abstract
value. The rule A-Asn-Wildcard matches a wildcard pattern with an abstract value.
The set of abstract environments is unchanged. The rule A-Asn-Variable matches a
variable with an abstract value. Each abstract environment E♯ of ξ is extended with a
binding where the variable maps to the abstract value. The rule A-Asn-Constr matches
a constructor C applied to a pattern p with the constructor C applied to an abstract value
v♯. The extension of environments is done by matching the pattern p with the value v♯.
The rule A-Asn-Tuple matches a tuple of patterns (p1, .., pn) with a tuple t♯. An abstract
tuple is a set of tuple of abstract values. Not to lose too much precision, each abstract
environment is extended for each tuple of abstract values in the abstract tuple. A tuple
of abstract values (v♯

1, .., v♯
n) of t♯ is matched with the pattern (p1, .., pn) by successively

matching each v♯
i with pi. The rule A-Asn-Unfold matches a constructor C applied to a

pattern p with a program point. The program point must be unfolded, as seen in Chapter 3.
The sub-program at program point pp is expected to have the form C(v′♯

1 , .., v′♯
n )). The

tuple (v′♯
1 , .., v′♯

n ) is modified in (v♯
1, .., v♯

n) where v♯
i is replaced by its program point if its

type is in ProgTypes, otherwise it is equal to v′♯
i .

4.7 Abstract Interpretation of Skel

One ingredient is missing to get an abstract interpretation of the While language: the spec-
ifications of the unspecified terms. The instantiations of the unspecified terms are allowed
to modify the AI-state. It is not useful here, but it is used in the abstract interpretation
of λ-calculus, in the next section.

JlitToIntK♯(A, n) = A, [n; n]
JaddK♯(A, [n1; n2], [m1; m2]) = A, [n1 + m1; n2 + m2]

JreadK♯(A, x, s♯) = A, s♯(x)
JwriteK♯(A, x, s♯, [n1; n2]) = A, s♯[x 7→ [n1; n2]]

We recall that if x is an unspecified term of type τ , then JxKppoint is a set of concrete
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⇓t∈ P
(
(Env♯ ×Term)×Val♯

)
⇓♯

S∈ P
(
(CStacks×AbstState×Env♯ × Skeleton)× (Val♯ ×AbstState)

)
E♯(x) = v♯

E♯, x ⇓t v♯ Var
val f : τ1 → τ2[= t] ∈ S

E♯, f ⇓t ({f} , { })
TermClos

val x : τ = t ∈ S ∅, t ⇓t v♯ na(τ)
E♯, x ⇓t v♯ TermSpec

val x : τ ∈ S na(τ)
E♯, x ⇓t JxK♯ TermUnspec

E♯, t ⇓t v♯

E♯, C t ⇓t C v♯ Alg

∀i ∈ {1..n} E♯, ti ⇓t v♯
i

E♯, (t1, .., tn) ⇓t

{
(v♯

1, .., v♯
n)

} Tuple
(Γ, λp : τ · S) ∈ Funs(S)

π, E♯, λp : τ · S ⇓♯
S ({ } ,

{
(p, S, E♯)

}
)

Clos

∀i ∈ {1..n} π,A, E♯, Si ⇓♯
S v♯

i ,Ai

π,A, E♯, (S1..Sn) ⇓♯
S ⊔♯v♯

i ,⊔♯Ai

Branch

π,A, E♯, S1 ⇓♯
S v♯,A′ ProgTypes, prog ⊢

{
E♯

}
+ p 7→ v♯ ⇝

{
E♯

1, .., E♯
n

}
∀i ∈ {1..n} π,A′, E♯

i , S2 ⇓♯
S w♯

i ,Ai

π,A, E♯, let p = S1 in S2 ⇓♯
S ⊔♯w♯

i ,⊔♯Ai

LetIn

E♯, t0 ⇓t (F1, F2)
E♯, t1 ⇓t v♯ F1 ∪ F2 =

⋃
{fi} ∀i ∈ {1..n} π,A, fi v♯ ⇓app v♯

i ,Ai

π,A, E♯, t0 t1 ⇓♯
S ⊔iv

♯
i ,⊔iAi

App

Figure 4.12: Abstract Interpretation of Skeletons and Terms
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⇓app∈ P
(
(CStacks×AbstState× Fun♯ ×Val♯)× (Val♯ ×AbstState)

)

updatein
f ∈ (AbstState× V ♯(τ1))→ (AbstState× V ♯(τ1)) f : τ1 → τ2

updateout
f ∈ (AbstState× V ♯(τ1)× V ♯(τ2))→ (AbstState× V ♯(τ2)) f : τ1 → τ2

ProgTypes, prog ⊢
{
E♯

}
+ p 7→♯ v♯ ⇝

{
E♯

1, .., E♯
m

}
∀E♯

i ∈
{
E♯

1, .., E♯
m

}
π,A, E♯

i , S ⇓S w♯
i ,Ai

π,A, (p, S, E♯) v♯ ⇓app ⊔♯w♯
i ,⊔♯A′

i

Clos

val f : τ1 → τ2 = t ∈ S
∅, t ⇓t w♯ updatein

f (A, v♯) = A1, v′♯ (f,A1, v′♯) /∈ π

(f,A1, v′♯) :: π,A1, w♯ v′♯ ⇓app u♯,A2 updateout
f (A2, v′♯, u♯) = A3, u′♯

π,A, f v♯ ⇓app u′♯,A3
Spec

val f : τ1 → τ2 = t ∈ S updatein
f (A, v♯) = A1, v′♯ (f,A1, v′♯) ∈ π

π,A, f v♯ ⇓app ⊥,A1
Spec-Loop

val f : τ1 → τ2 ∈ S JfK♯(A, v♯) = w♯,A′

π,A, f v♯ ⇓app w♯,A′ Unspec

Figure 4.13: Abstract Interpretation: Application
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interpretations for x: JxKppoint ∈ P (V ppoint(τ))

Definition 25 Let x be an unspecified term of type τ , such that na(τ). We say that JxK♯

is a sound approximation of JxKppoint if and only if:

∀A, JxKppoint ⊆ γ(A, JxK♯)

Definition 26 Let f be an unspecified term of type τ1 → τ2. We say that JfK♯ is a sound
approximation of JfKppoint if and only if v ∈ V ppoint(τ1), v♯ ∈ V ♯(τ1), and for all AI-
state A, then

v ∈ γτ1(A, v♯)
JfK♯(A, v♯) = A′, w♯

 =⇒ JfKppoint(v) ⊆ γτ2(A′, w♯)

Lemma 6 The abstract instantiations of the unspecified terms for While are sound ap-
proximation of the concrete instantiations of the unspecified terms.

The abstract interpretation of skeletons is a relation and is defined on Figure 4.12.
The abstract interpretation of skeletons is similar to the big-step interpretation. The Var
rule evaluates a variable by fetching the corresponding value in the abstract environment.
The TermClos rule evaluates a variable that is a specified or unspecified term, with
arrow type whose definition is defined at top-level in the skeletal semantics. It returns
an abstract function, which is a set of closures containing only one. The TermSpec rule
evaluates a variable that is a specified term whose type is not an arrow, by evaluating
the definition of the specified term. The TermUnspec rule evaluates a variable that is
an unspecified term. The value returned is the definition provided for the given skeletal
semantics. The Alg rule evaluates a constructor applied to a term by returning the
constructor applied to the evaluation of the term. The Tuple rule evaluates a tuple by
evaluating each component of the tuple, and returns a singleton with a tuple of abstract
values. The Clos rule evaluates a closure by returning an abstract function: a singleton
containing an anonymous abstract closure.

The Branch rule evaluates all branches, and then the results and abstract states
are joined. The LetIn rule evaluates a let binding by first evaluating the skeleton to be
bound, it gives an abstract value. Then, the returned value is used with the pattern to
extend the current abstract environment. The extension of environment returns a set of
environments. The body of the let binding is evaluated in each environment. The result is
the abstract union of the obtained abstract values and the abstract union of the obtained
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AI-state. The App rule evaluates an application by evaluating both terms: the function
and its parameter. The evaluation of the function returns a set of anonymous and named
closures, the application of each closure to the parameter is evaluated by the ⇓app relation.

The ⇓app relation evaluates the application of an anonymous or named closure to an
abstract value. It is parameterised by two user-provided functions that are dependent
on the skeletal semantics: updatein and updateout. The update functions are used to
modify the AI-state before and after a call to a specified function to ensure invariant.
The Clos rule evaluates the application of an anonymous closure to an abstract value.
The abstract environment of the closure is extended with the parameter and the pattern
of the closure. With each of the obtained environments, the skeleton of the closure is
evaluated. The abstract values and AI-states obtained are joined and returned. Spec rule
evaluates the call to a specified function and maintains invariants. To evaluate a specified
function, its definition is fetched in the skeletal semantics and evaluated giving an abstract
value. Moreover, the parameter and AI-state are modified according to the input update
function, in order to maintain input invariants. The stack is inspected to ensure it is not
an identical nested call, which would lead to an infinite loop. Invariants depend on the
analysis and the AI-state, therefore, the update functions to maintain invariants before
and after a call must be provided. App rule evaluates all terms and passes a list of values
to the application relation, defined in Figure 4.13. Because the abstraction of a function
is a set of closures and named closures, the App-Set rule evaluates each one individually.
The Clos rule evaluates the body of the function S in all abstract environments returned
by the matching of the pattern against the argument.

The update functions must respect the following monotonicity constraints to ensure
soundness:

Definition 27 Let val f : τ1 → τ2 = t ∈ S. The update functions are said to be monotonic
if and only if:

updatein
f (A, arg♯) = args′♯,A′ =⇒ arg♯ ⊑♯

τ1 arg′♯ ∧ A ⊑♯ A′

updateout
f (A, arg♯, res♯) = res′♯,A′ =⇒ res♯ ⊑♯

τ2 res′♯ ∧ A ⊑♯ A′

The update functions of While must maintain the AI-state mapping program points
and input/output tags to abstract stores. The property that should be ensured for a value
analysis is that the AI-state contains a correct approximation of the stores before and after
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the evaluation of each sub-program of the analysed program.

updatein
eval_stmt(A, (s♯

i, pp)) = A[(pp, In) 7→ s♯], (s♯, pp) with s♯ = s♯
i ⊔♯ A(pp, In)

updateout
eval_stmt(A, (s♯

i, pp), s♯
o) = A[(pp, Out) 7→ s♯], (s♯, pp) with s♯ = s♯

o ⊔♯ A(pp, Out)

updatein
eval_stmt(A, (s♯

i, pp)) updates the input abstract store associated to program point
pp for a greater abstract store that contains s♯

i, and the call to eval_stmt is done with this
new abstract store. updateout

eval_stmt(A, (s♯
i, pp), s♯

o) makes a similar change to the AI-state
for the output store. The update functions for eval_expr do not change the argument,
the result, nor the AI-state.

updatein
eval_expr(A, (s♯, e)) = A, (s♯, e)

updateout
eval_expr(A, (s♯, e), i♯) = A, i♯

Lemma 7 The update functions for While previously defined are monotonic.

Example 1 Take prog ≡ x = 0; while (x < 3) x := x + 1; (prog is a value of the
ADT stmt, but we present it in a more readable syntax).

One can show that:

E0, eval_stmt (s, t) ⇓S {x 7→ 3}
ε,A0, E♯

0, eval_stmt (s, t) ⇓♯
S {x 7→ [0, +∞]} ,A

4.8 Correctness of the Abstract Interpretation

Our methodology aims to define mathematically correct abstract interpreters from Skele-
tal Semantics. In this section, we present a theorem stating that the abstract interpreter
of Skel computes a correct approximation of the big-step semantics of Skel. We can prove
the correctness of the abstract interpretation when specified functions do not return values
of inductive types. This is discussed in the Appendix A.2.

Theorem 3 Let S be a Skeletal Semantics with unspecified terms Te and unspecified types
Ty, and let E and E♯ be a concrete and abstract environment, respectively. Let A0 be an
AI-state. Suppose

• ∀x ∈ Te, JxK♯ is a sound approximation of JxKppoint.
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• ∀τ ∈ Ty, γτ is monotonic.

• updatein and updateout are monotonic.

• Specified functions do not return values of inductive types.

Then:
E ∈ γΓ(A0, E♯)

E, S ⇓S v

ε,A0, E♯, S ⇓♯
S v♯,A

 =⇒ v ∈ γ(A, v♯)

Proof 3 The proof is done by defining a relation between concrete and abstract values
v ∼A v♯ such that the AST of v and the AST of v♯ have the same shape and for every leaf
v′ of v with unspecified type τ , and its corresponding leaf v′♯ of v♯, then v′ ∈ γτ (A, v′♯).
The relation ∼ is defined by induction, and one can prove that v ∼A v♯ =⇒ v ∈ γ(A, v♯)
by induction on the derivation tree of v ∼A v♯.

Supposing that: E ∈ γΓ(A0, E♯) and E, S ⇓S v and ε,A0, E♯, S ⇓♯
S v♯,A, one can prove

by induction on the concrete derivation tree that v ∼A v♯, which implies the theorem.

Therefore, to prove the soundness of the analysis, it is sufficient to prove that the abstract
instantiation of terms are sound approximation of the concrete ones, and that the update
functions and concretisation functions are monotonic.

Let σ0 ∈ V ppoint(store) and σ♯
0 ∈ V ♯(store) be the concrete and abstract stores

with empty domains. ϵ is the program point of the root of the analysed program, prog.
Let E0 = {s 7→ σ0, t 7→ ϵ} and E♯

0 =
{
s 7→ σ♯

0, t 7→ ϵ
}

be a concrete and abstract Skel
environments. Let A0 be the empty mapping from program points and flow tags (In or
Out) to abstract stores.

Lemma 8
σ0 ∈ γstore(A0, σ♯

0)

Proof 4 By definition of γstore and because σ0 and σ♯
0 have an empty domain.

Lemma 9 Let Γ = {s 7→ store, t 7→ stmt}.

E0 ∈ γΓ(A, E♯
0)

Proof 5 E0 and E♯
0 have the same domain, E0(t) ∈ γ(A0, E♯

0(t)), and E0(s) ∈ γ(A0, E♯
0(s))

by Lemma 8. Therefore, the Lemma is true by definition of γΓ.
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The abstract interpreter computes an abstract closure that is a correct approximation
of the concrete closure returned by the big-step semantics.

Theorem 4

E0, eval_stmt (s, t) ⇓S σ

ε,A0, E♯
0, eval_stmt (s, t) ⇓♯

S σ♯,A
=⇒ σ ∈ γ(A, σ♯)

Proof 6 The proof uses Theorem 3. The concretisation functions are monotonic (Lemma 4
and Lemma 5). The abstract instantiations of the unspecified terms are sound approxi-
mations of the concrete instantiations of the unspecified terms (Lemma 6). The update
functions are monotonic (Lemma 7). Furthermore, E0 ∈ γΓ(A0, E♯

0) (Lemma 8). There-
fore, Theorem 3 applies, and by instantiating it with S = eval_stmt (s, t), we obtain the
desired result.

Example 2 Let prog ≡ x = 0; while (x < 3) x := x + 1;.
We have seen previously that:

E0, eval_stmt (s, t) ⇓S {x 7→ 3}
ε,A0, E♯

0, eval_stmt (s, t) ⇓♯
S {x 7→ [0, +∞]} ,A

By applying Theorem 4, it is true that:

{x 7→ 3} ∈ γ(A, {x 7→ [0,∞]})

One can notice that the abstract interpreter returns an imprecise result. The negation of
the condition after the While loop is not used to refine the abstract store. We plan to do
it as future work, and is discussed in Chapter 7.

We present another example that does not terminate.
Take prog ≡ x = 1; while (0 < x) x := x + 1; (the condition and the initialisation
of x have changed).

ε,A0, E♯
0, eval_stmt (s, t) ⇓♯

S {x 7→ [0, +∞]} ,A

In the abstract interpretation, the loop is exited and the abstraction for the start of the
loop has converged in the AI-state thanks to the Unspec-Loop rule of the abstract
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interpretation of Skel.
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Chapter 5

A CONTROL FLOW ANALYSIS FOR

λ-CALCULUS

Our skeleton-based methodology for designing program analyses has proven capable of
computing a simple value analysis for an imperative language. To show the versatility of
the approach, another type of analysis, viz. a Control Flow Analysis [34], (CFA) for the
simple λ-calculus is defined following the same methodology.

In higher-order languages, the control flow of a program cannot be obtained directly
from the program syntax alone. There are many Control Flow Analyses that have been
developed [28, 45] whose goal is to over-approximate the control flow of a given program.

In this Chapter, we show how to derive a CFA for λ-calculus from its skeletal semantics,
using the abstract interpretation of Skel defined in the previous section.

5.1 Simple λ-calculus and CFA

The λ-calculus uses two syntactic categories:

x ∈ var and t ∈ lterm ::= x | λx.t | t t

The set var contains variables. The lterm set contains the λ-terms that can either be a
variable x, a λ-abstraction (a function), or an application t1 t2 where t1 is the function
and t2 is the parameter.

To precisely refer to sub-terms of a λ-term program points are added to the analysed
λ-term. The program points presented here serve a similar purpose to what has been
shown for skeletal semantics. The idea is to add labels to a λ-term to precisely refer to
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clos = var× lterm× env
env = var ↪→ clos

⇓λ∈ P ((env× lterm)× clos)

σ, x ⇓λ σ(x)
Var

σ, λx.t ⇓λ (x, t, σ)
Lam

σ, t0 ⇓λ (x, t, σ′) σ, t1 ⇓λ v1 σ′′ = σ′ + x 7→ v1 σ′′, t ⇓λ v

σ, t0 t1 ⇓λ v
App

Figure 5.1: Semantics of λ-calculus with environments

sub-programs. Formally, adding program points to a λ-term is defined as:

JxKpp = xpp

Jλx.tKpp = (λx.JtKpp ·1)pp

Jt0 t1Kpp = (Jt0Kpp ·0 Jt1Kpp ·1)pp

Take the term (λx.x) (λx.x), the annotated version of this term is:

J(λx.x) (λx.x)Kϵ = ((λx.x01)0 (λx.x11)1)ϵ

We note ϵ the empty program point. The identity function λx.x appears twice in the
λ-term, but the program points make it possible to differentiate them.

The semantics of λ-calculus operates with environments that map variables to val-
ues. In the pure λ-calculus there is only one kind of value: closures. A closure is of the
form (x, t, σ) and represents a function where x is the variable to be bound, t the body
of the function and σ the environment mapping free variables of t to closures. The se-
mantics of λ-calculus with environments is formally defined on Figure 5.1. The Var rule
evaluates a variable by fetching its content in the environment. The Lam rule evaluates
a λ-abstraction by returning a closure with the variable to be bound, the code of the
λ-abstraction and the current environment. The App rule evaluates an application by re-
cursively evaluating the function and its parameter. The function evaluates to a closure,
a new environment is defined by extending the closure environment so that the variable
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{ } , (λx.x) ⇓λ (x, x, { }) { } , (λy.y) ⇓λ cy {x 7→ cy} , x ⇓λ cy

{ } , (λx.x) (λy.y) ⇓λ cy

App

Figure 5.2: Semantics of a Simple λ-calculus Program

maps-to the result of the evaluation of the parameter. The code in the closure is evalu-
ated with the new environment. An example of the evaluation of the term (λx.x) (λy.y)
is given on Figure 5.2. We set the notation cy ≡ (y, y, { }). The root of the tree is the
application of the identity to the identity from an empty environment. The function and
the argument are computed and both return the same closures up to renaming. Then, the
body of the function x is evaluated in a new environment where the variable x is bound
to cy.

We present 0-CFA for λ-calculus, a Control Flow Analysis that is context-insensitive.
The analysis should give an approximation of the functions that may be called at each
call-site. A call-site of a λ-term t is a sub-term of t which is an application, because these
are the locations where a call to a function may happen. A context insensitive analysis is
an analysis where the abstraction of the functions that may be called at a call-site only
depends on its location in the program (its program point) and not on the calling context.
Given a λ-term t, 0-CFA defines two maps, C and ρ, where C maps program points to
sets of λ-abstractions, and ρ maps variables to sets of λ-abstractions.

C : ppoint→ {λx.t |x ∈ var ∧ t ∈ lterm }

ρ : ident→ {λx.t |x ∈ var ∧ t ∈ lterm }

The set C(pp) contains the λ-abstractions the sub-term at program point pp may evaluate
to. The set ρ(x) contains the λ-abstractions that may be bound to variable x.

Definition 28 Let t be an annotated λ-term. C and ρ must respect the following equations
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for every sub-terms of t.

(C, ρ) ⊨ xpp ⇐⇒ ρ(x) ⊆ C(pp)
(C, ρ) ⊨ (λx.tpp ·1)pp ⇐⇒

{
(λx.tpp ·1)

}
⊆ C(pp)

(C, ρ) ⊨ (tpp ·0
0 tpp ·1

1 )pp ⇐⇒ (C, ρ) ⊨ tpp ·0
0

(C, ρ) ⊨ tpp ·1
1

∀(λx.tpp′) ∈ C(pp ·0), (C, ρ) ⊨ tpp′

C(pp ·1) ⊆ ρ(x) ∧ C(pp′) ⊆ C(pp)

• If t@ pp = xpp

All values the variable x can be bound to are possible results when evaluating the
sub-term at program point pp, explaining the equation ρ(x) ⊆ C(pp)

• If t@ pp = (λx.t)pp

It is clear that C(pp) must contain the λ-abstraction λx.t

• If t@ pp = (t0 t1)pp

The mappings C and ρ must be valid for t0 and t1. Every λ-abstraction in C(pp ·0)
is a potential function that may be called at call-site pp. In particular, if λx.tpp′ ∈
C(pp ·0), then C and ρ must be valid for t′. Moreover, x can be bound to any
value that may come up when evaluating the parameter t1, hence the equation
C(pp ·1) ⊆ ρ(x). Finally, the evaluation of t, the body of the function, is the result
of the application, and naturally C(pp′) ⊆ C(pp).

Take t ≡ (λf.(f (λx.x))ppx (f (λy.y))ppy) (λg.gppg), we did not put every program
point to keep the notation lightweight. The most precise result of a 0-CFA analysis is
presented in the table below. Because C and ρ have the same co-domain, we write C + ρ

the function with domain ppoint∪var such that it is equal to C on domain ppoint, and
ρ on domain var.

C + ρ

x {λy.y}
y {}
g {λx.x, λy.y}

ppx {λx.x, λy.y}
ppy {λx.x, λy.y}
ϵ {λx.x, λy.y}
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In this simple program, g can be bound to two λ-abstractions: λx.x or λy.y depending on
the calling context. Indeed, at call-site ppx, g is bound to λx.x and at call-site ppy, g is
bound to λy.y. A 0-CFA analysis does not take into account the calling context, therefore
all values that g can be bound to are mixed in the result of the analysis. The analysis
concludes that sub-terms at program points ppx and ppy can evaluate to {λx.x, λx.y}
and this imprecision is carried until C(ϵ).

5.2 Skeletal Semantics of λ-calculus

The syntax and semantics of the λ-calculus are similar to the syntax and semantics of Skel.
Indeed, Skel is essentially λ-calculus in ANF. Therefore, some terminologies are common
and ambiguous, like closures. To avoid confusion, the λ-calculus will be referred to as the
object language. We write l-closures and l-environments for closures and environments of
the λ-calculus and simply closures and environments for closures and environments of
Skel.

We propose a skeletal semantics to mechanise the semantics of λ-calculus with envi-
ronment:

type ident
type env
type clos
type lterm =

| Lam (ident, lterm)
| Var ident
| App (lterm, lterm)

val extEnv : (env, ident, clos) → env
val getEnv : (ident, env) → clos
val mkClos : (ident, lterm, env) → clos
val getClos : clos → (ident, lterm, env)

val eval ((s, l): (env, lterm)): clos =
match l with
| Lam (x, t) → mkClos (x, t, s)
| Var x → getEnv (x, s)
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| App (t1, t2) →
let v = eval (s, t1) in
let (x, t, s') = getClos v in
let w = eval (s, t2) in
let s'' = extEnv (s', x, w) in
eval (s'', t)

The skeletal semantics contains four types: the identifiers (the type of variables), l-
environments, l-closures and λ-terms. Only the type of λ-terms is specified. There are
four unspecified functions to: extend a l-environment by adding a new binding, get the
l-closure associated to an identifier in a l-environment, create a l-closure from a triple and
convert a l-closure to a triple. Finally, the specified eval function evaluates a λ-term in a
given l-environment.

We define a big-step semantics for λ-calculus as seen previously for the While language
in Section 2.2. We set the set of program types to be: ProgTypes ≡ {lterm}. First,
unspecified types and terms must be instantiated.

x ∈ X

⊢ x ∈ V ppoint
prog (ident)

Ident

σ = {x1 7→ v1, .., xn 7→ vn} ∀i ∈ {1..n} xi ∈ V ppoint(ident) ∧ vi ∈ V ppoint(clos)
⊢ σ ∈ V ppoint

prog (env)
Env

c ∈ V ppoint(ident)× V ppoint(lterm)× V ppoint(clos)
⊢ c ∈ V ppoint

prog (clos)
Clos

The set of identifiers is defined to be some countable set. A l-environment is a partial
function with a finite domain from identifiers to closures. A l-closure is a triple composed
of an identifier, a λ-term and a l-environment. The next step is to define the unspecified
terms.

JextEnvKppoint(σ, x, c) = σ + x 7→ c

JmkClosKppoint(x, t, σ) = (x, t, σ)
JgetEnvKppoint(x, σ) = σ(x)

JgetClosKppoint(x, t, σ) = (x, t, σ)
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The JextEnvKppoint function given a l-environment σ, a variable x and a closure c returns
a new environment similar to σ except that x maps to v. The JmkClosKppoint function
given a l-variable x, a λ-term t and a l-environment σ returns a closure (x, t, σ): in this
context, it is the identity function. The function JgetEnvKppoint, given a l-variable x and
a l-environment σ returns the value bound to x in σ. Finally, the function JgetClosKppoint

is the inverse function of JmkClosKppoint, thus it is the identity. By combining these in-
stantiations with the Big-step Semantics of Skel of Section 2.2.2, we obtain a Natural
Semantics for λ-calculus.

Example 3 Take prog ≡ App(Lam(x, V ar(x)), Lam(x, V ar(x))) where x is a skeletal
variable. Let E = {x 7→ x, s 7→ { }} where x is a variable of the λ-calculus. The term
prog is a representation in Skel of the program (λ x.x) (λ x.x). Then, one can show
that:

E, eval s prog ⇓S Clos(x, V ar(x), {})

The value Clos(x, V ar(x), {}) is the Skel representation of the closure (x, x, {}) of λ-
calculus. We have redefined the semantics of λ-calculus with environment from its skeletal
semantics.

5.3 A CFA for λ-calculus using Skeletal Semantics

A concrete semantics for the λ-calculus has been defined from its skeletal semantics. We
present a CFA analysis obtained using the abstract interpretation of Skel that is correct
with respect to the concrete semantics. First, we define the abstractions of our analysis
by instantiating the unspecified types and the AI-state. Our first abstraction is to define
the set of program types: ProgTypes = {lterm}. As a consequence, all λ-terms will be
replaced by program points in the abstract interpretation. Therefore, the abstractions of
λ-terms are relative to the program being analysed, which we call prog. The identifiers
are abstracted by a flat lattice, where X is a countable set.

x ∈ X

x ∈ V ♯(ident)
Ident

The analysis computes an abstraction of the l-closures each sub-term of the program
can evaluate to. An abstract l-closure c♯ is a set of program points, such that ∀ pp ∈
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c♯, prog@ pp = Lam(x, t): each program point in the abstract closure maps-to a λ-
abstraction in the analysed program. One consequence is that x is at program point pp ·0,
and t is at program point pp ·1.

c♯ ∈ P (ppoint) pp ∈ c♯ =⇒ prog@ pp = Lam(x, t)
c♯ ∈ V ♯(clos)

Clos

In our definition of abstract l-closures, each program point maps-to a λ-abstraction
Lam(x, t), but a concrete closure also contains a l-environment σ, that cannot be recon-
structed from an abstract closure. We choose to put the abstract l-environments in the
AI-state:

A : ppoint→ V ♯(env)

Therefore, for each pp ∈ c♯, where c♯ is an abstract closure, the associated abstract envi-
ronment is A(pp). The abstract environment A(pp) and all the λ-abstractions Lam(x, t)
such that ∃ pp ∈ c♯ prog@ pp = Lam(x, t) are abstractions of the closures that can be
obtained when evaluating the sub-term at program point pp.

An abstract environment is a partial function with a finite domain from identifiers to
abstract closures.

σ♯ =
{
x1 7→ c♯

1, .., xn 7→ c♯
n

}
∀i ∈ {1..n} xi ∈ V ♯(ident) ∧ c♯

i ∈ V ♯(clos)

σ♯ ∈ V ♯(env)
Env

The lattice for V ♯(ident) is the flat lattice. The lattice for V ♯(clos) is the set lattice.
V ♯(env) is the lattice obtained by point-wise extension of the V ♯(clos). We do not detail
the formal definitions of the abstract unions and abstract comparisons.

The concretisation functions of the unspecified types are defined as:

γenv(A, σ♯) =
{

σ ∈ V ppoint(env)
∣∣∣ dom σ = dom σ♯ ∧ ∀x ∈ dom σ, σ(x) ∈ γclos(A, σ♯(x))

}
γident(A, i) = {i} γident(A,⊥) = {} γident(A,⊤) = V ppoint(ident)

γclos(A, c♯) =
 (x, pp ·1, σ) ∈ V ppoint(clos)

∣∣∣∣∣∣ pp ∈ c♯ ∧
prog@ pp = Lam(x, _)
σ ∈ γenv(A,A(pp))


Lemma 10 The concretisation functions of the unspecified types are monotonic in both
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their arguments.

JextEnvK♯(A, σ♯, x, v♯) = A, σ♯ + x 7→ v♯

JgetEnvK♯(A, x, σ♯) = A, σ♯(x)
JmkClosK♯(A, x, pp ·1, σ♯) = A[pp← σ♯ ⊔♯ A(pp)], {pp}

JgetClosK♯(A, c♯) = A,
{

(x, pp ·1, σ♯)
∣∣∣ pp ∈ c♯ ∧ prog@ pp = Lam(x, _) ∧ A(pp) = σ♯

}
We instantiate the unspecified terms. The JextEnvK♯ and JgetEnvK♯ are identical to those
for the concrete interpretation. The JmkClosK♯ function is called when evaluating a λ-
abstraction Lam(x, pp ·1) in abstract environment σ♯. The AI-state is modified: the ab-
stract environment at program point pp in the AI-state must be bigger than σ♯, as it is an
abstraction of the environments used to evaluate the sub-term a program point pp. The
abstract l-closure returned is the singleton {pp}, because this program point maps-to the
λ-abstraction. The getClos function returns a set of triples from an abstract closure. For
each program point pp of the abstract closure, it corresponds to a λ-abstraction of the
main program: prog@ pp = Lam(x, t). The program point of t is pp ·1 and the associated
abstract environment is, by definition, A(pp).

Lemma 11 For all unspecified values x of λ-calculus, JxK♯ is a sound approximation of
JxKppoint.

It remains to define the update functions. The updatein
eval function updates the

AI-state such that the input l-environment is included in the abstract l-environment in
the AI-state corresponding to the program point of the λ-term. Therefore, when a call
eval (σ♯, pp) is performed, the update function ensures that the sub-term at program point
pp will be called on increasingly bigger abstract l-environment. Therefore, increasingly
bigger abstractions will be computed for the evaluation of this sub-term. The updateout

does nothing.

updatein
eval(A, (σ♯, ppt)) = A[ppt 7→ σ′♯], (σ′♯, ppt) with σ′♯ = A(ppt) ⊔♯ σ♯

updateout
eval(A, (σ♯, ppt), c♯) = A, c♯
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The abstract interpretation is guaranteed to terminate. There is a finite number of abstract
l-closures because there is a finite number of program points. There is a finite number of
variables for a given λ-term, thus there is a finite number of abstract l-environment and
of AI-states. The analysis will converge in a finite number of steps.

Lemma 12 The update functions are monotonic in both arguments, in the sense of def-
inition 27.

We show how to compute a CFA and prove that our analysis is correct. Let σ0 ∈
V ppoint(env) and σ♯

0 ∈ V ♯(env) be the concrete and abstract l-environments with empty
domains. Let E0 = {s 7→ σ0, t 7→ ϵ} and E♯

0 =
{
s 7→ σ♯

0, t 7→ ϵ
}

be a concrete and an
abstract Skel environments. LetA0 be the empty mapping from program points to abstract
l-environments.

Lemma 13
σ0 ∈ γenv(A0, σ♯

0)

Proof 7 By definition of γenv and because σ0 and σ♯
0 have an empty domain.

Lemma 14 Let Γ = {s 7→ env, t 7→ lterm}.

E0 ∈ γΓ(A, E♯
0)

Proof 8 E0 and E♯
0 have the same domain, E0(t) ∈ γ(A0, E♯

0(t)), and E0(s) ∈ γ(A0, E♯
0(s))

by Lemma 13. Therefore, the Lemma is true by definition of γΓ.

ϵ is the program point of the root of the analysed program, prog. The abstract in-
terpreter computes an abstract closure that is a correct approximation of the concrete
closure returned by the big-step semantics.

Theorem 5

E0, eval s t ⇓S (x, pp, σ)
ε,A0, E♯

0, eval s t ⇓♯
S c♯,A

=⇒ (x, pp, σ) ∈ γ(A, c♯)

Proof 9 The proof uses Theorem 3. The concretisation functions are monotonic (Lemma 10).
The abstract instantiations of the unspecified terms are sound approximations of the con-
crete instantiations of the unspecified terms (Lemma 11). The update functions are mono-
tonic (Lemma 12). Furthermore, E0 ∈ γΓ(A0, E♯

0) (Lemma 14). Therefore, Theorem 3
applies, and by instantiating it with S = eval s t, we obtain the desired result.
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5.4 Example

We set prog ≡ (λf.(f idx)ppx (f idy)ppy) (λg.gppg), the example of Section 5.1. Let
E♯

0 =
{
s 7→ σ♯

0, t 7→ ϵ
}

where σ♯
0 is the abstract environment with an empty domain. LetA0

be the empty AI-state. Then, one can show that: A0, E♯
0, eval (s, prog) ⇓♯

S

{
ppx, ppy

}
,A.

The result of the computation is an abstract closure
{
ppx, ppy

}
. As said previously, a

program point pp can be interpreted as an abstraction of the closure (x, t, σ), such that
prog@ pp = Lam(x, t) and σ ∈ γ(A,A(pp)).

Let E0 = {s 7→ σ0, t 7→ ϵ} where σ0 is the concrete environment with an empty domain.
Then one can show that E0, eval s t ⇓S (y, y, {}) and by applying Theorem 5, it is true
that:

(y, y, {}) ∈ γ(A,
{
ppx, ppy

}
)

Because the analysis is finite, one can also analyse non-terminating program. Take
prog ≡ (λx.x x) (λx.x x), a famous looping λ-term then on can derive the following
statement:

A0, E♯
0, eval (s, t) ⇓♯

S {}

We successfully define a Control Flow Analysis for λ-calculus using our methodology
of abstract interpretation using skeletal semantics. What is interesting about this analysis
is that the control flow of the program is computed on the fly to perform the analysis.
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Chapter 6

AN ABSTRACT INTERPRETER

GENERATOR

Taiga (The Abstract Interpreter GenerAtor) is a 3K line of code, OCaml program that
generates abstract interpreters from skeletal semantics. Given a skeletal semantics S, an
abstract interpreter is generated by providing definitions of the abstract domains for
the unspecified types, and instantiations for the unspecified terms. Taiga uses the Necro
library [37], a set of tools to parse, typecheck skeletal semantics, and more. The full code
of Taiga is available at [41].

Taiga uses OCaml modules: a module is a collection of definitions of type definitions
and expression definitions. A module type, or signature, is equivalent to a type but for
modules: it is a collection of type definitions and typed names of expressions. An example
is given on Figure 6.1. On the left column, a signature named EXAMPLE is defined. A type
t, without definition, is declared, along with a value named is_int of type t -> bool. In
the right column, the module Example with signature EXAMPLE must therefore provide a t
type and a function is_int of the same type, otherwise OCaml will raise a type-checking
error. A value v is also defined in the Example module. Outside the module, types and
values of a module can be accessed by prefixing the name of the module then the name of
the value or type, like Example.v. In this Chapter, we set the convention where module
names start with a capital letter, like Example, and signature names are capitalised, like
EXAMPLE.

Taiga makes extensive use of functors. A functor is an operator that given a module,
generates a new module: it can be interpreted as a function that maps a module to another
module. On Figure 6.2, a module Example is defined on the left-hand side, and a simple
functor F is defined on the right-hand side. The functor F takes a module with signature
EXAMPLE and returns a new module. The functor can be applied to a module with a correct
signature and returns a new module that contains the types and values defined by the
functor.
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module EXAMPLE = sig
type t

val is_int: t -> bool
end

module Example : EXAMPLE = struct
type t =

| Int of int
| Bool of bool

let is_int (v: t): bool =
match v with
| Int _ -> true
| _ -> false

let v = Int 3
end
let _ = assert_true (Example.is_int Example.v)

Figure 6.1: Example of an OCaml module with its signature

module Example = struct
type t =

| Int of int
| Bool of bool

let is_int (v: t): bool =
match v with
| Int _ -> true
| _ -> false

end

module F(Ex: EXAMPLE) = struct
type s =

| Some of Ex.t
| None

let is_int (v: s): bool =
match v with
| Some v' -> Ex.is_int v'
| None -> false

end

module NewModule = F(Example)

Figure 6.2: Example of an OCaml Functor
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UNSPEC

TYPES

INTERPRETER

Figure 6.3: Schematics of the Infrastructure of Taiga

6.1 Overview of the Infrastructure

The infrastructure of Taiga is presented of Figure 6.3. An OCaml module with signature
UNSPEC must be written by the user. A module with signature UNSPEC contains the defini-
tions of the abstract domains for unspecified types. Indeed, it contains the instantiations
of the unspecified types, along with their abstract comparisons and unions. The module
also contains the skeletal semantics and the definition of the state of the abstract interpre-
tation. Then, the BuildTypes:UNSPEC -> TYPES functor generates a module TYPES that
contains what was in the UNSPEC module, the type of abstract values, comparisons and
abstract unions for abstract values, mappings containing the definitions of the unspecified
terms, and the update functions. Then, the MakeInterpreter: TYPES -> INTERPRETER
functor generates an INTERPRETER module that contains the abstract interpreter of the
language.

To produce an abstract interpreter, the user writes an UNSPEC module. Then, the
BuildTypes functor generates a TYPES module. The TYPES module is incomplete at
this point because the unspecified terms and update functions are undefined. Once they
are added to the module by the user, the completed TYPES module is passed to the
MakeInterpreter functor that generates the abstract interpreter.

6.2 State Monad

The abstract interpreter generated by Taiga uses the state monad to facilitate the ma-
nipulation of the AI-state. We give a quick overview of the state monad. A monad is
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a type constructor, a generator and a binding operator. Let m be a type constructor,
return: 'a -> 'a m a generator and bind: 'a m -> ('a -> 'b m) -> 'b m a bind-
ing operator. The generator return wraps a value into the monad. Then, computations
can be sequenced with the binding operator. In OCaml, it is possible to define the no-
tation let* v = expr1 in expr2 for binding expr1 (fun v -> expr2) to get a more
natural syntax.

The state monad is used to write stateful computations in a functional way. In OCaml,
it can be defined as:

type ('s, 'a) m = ('s -> ('s * 'a))
let return v = (fun s -> (s, v))
let bind mv f = (fun s -> let (s', v') = mv s in f v' s')

let get () = (fun s -> (s, s))
let put s' = (fun _ -> (s', ()))

let ( let* ) = bind

A monadic value with type (state, t) m is a function which given a state, returns a new
state and a value. The value return v is the computation that does not modify the state
and returns the value v. The binding operator is used to sequence stateful computations.
We have added the get and put functions. They are used to retrieve the state and to
update the state of the monad respectively. Finally, in OCaml, we can define let-operator
to write more readable code with monads. Here let* is defined as the binding operator
and can be used to pipe computations involving the state monad.

let f (x: int): ('s, int) m = ...
let g (x: int): ('s, int) m = ...

let* n = f 0 in
g n

Here, the call f 0 returns a stateful computation. The let* operator is used to pipe the
result encapsulated in the state monad to the input of g. It is equivalent to writing:

bind (f 0) (fun n -> g n)
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6.3 The Unspecified Module

We show how to derive an abstract interpreter for the While language using Taiga. To
get a working abstract interpreter, one must define language-specific abstractions. This is
the role of the UNSPEC module. We start by defining a module called Unspec, where we
define the state of the abstract interpretation.

module Unspec = struct

type 'abst ai_state = { stores: ((string * 'abst) list) PPMap.t; prg:
'abst }↪→

let init_ai_state (prg: 'abst) =
{ stores = PPMap.add (Ppoint.epsilon) [] PPMap.empty; prg = prg }

...

The ai_state type is parameterised by the 'abst type variable that represents types of
abstract values. Because the type of abstract values is not defined at this point, we use a
type variable. The 'a PPMap.t type is a mapping from program points to values of type
'a. The ai_state is a record containing a field stores which is a mapping from program
points to abstract stores represented as an association list. This definition of the AI-state
is similar to the definition given in Chapter 4.

A program point is defined in a Taiga library as:

type flowpp =
| In
| Out

type ppoint =
| SubTerm of flowpp * int list

The ppoint type is a flow direction (In or Out) and a list of integers. The AI-state we
have defined is similar to the one defined on paper in Section 4.3. The list of integers maps
to a sub-term of the analysed program. The flow direction differentiates the store before
evaluating the sub-term, and the store obtained after the evaluation of the sub-term at
the program point.

The unspecified types are instantiated by defining a base_value type which is an
Algebraic Data Type. Each constructor of the ADT corresponds to an unspecified type.
To do an interval analysis for the While language, the definition can be:
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type 'abst base_value =
| Ident of string
| Lit of int
| Store of (string * Interv.t) list
| Int of Interv.t

An Indent is defined as a string. A Lit is defined as an integer. A Store is defined as
an association list. An Int is defined as an interval (we use an external library). The
base_value type is parameterised by a type variable 'abst which represents the type of
abstract values that is not defined yet. In our example, it is unused but sometimes we
want the base values to be defined mutually recursively with the whole set of abstract
values.

Printing functions, abstract comparisons and unions for unspecified types must be
provided. We only show the comparison functions, because the printing functions and the
abstract unions follow the same code structure.

(* Comparison functions*)

let rec lesser_base_value (lesser: 'abst -> 'abst -> bool) (bv1: 'abst
base_value) (bv2: 'abst base_value): bool =↪→

match (bv1, bv2) with
| (Int i1, Int i2) -> Interv.subset i1 i2
| (Store s1, Store s2) ->

lesser_store lesser s1 s2
| (Lit l1, Lit l2) -> l1 = l2
| _ -> bv1 = bv2

The lesser_base_value function is parameterised by a function lesser to compare ab-
stract values. The parameters bv1 and bv2 are the values to compare. The lesser_base_value
will only be called on values of the same Skel type, thus one can pattern match bv1 and
bv2 and suppose they are built using the same constructor of the base_value type. Com-
parison of two values of the int Skel type is set inclusion. Comparison of two values
of the store Skel type is done using an auxiliary function lesser_store which does a
point-wise extension of the comparison. The comparison of the literals is the comparison
for a flat lattice. The top and bottom values are not defined for the unspecified values at
this point, as it was done when defining the abstract values in Section 4.2.
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6.4 The Types Module

From the UNSPEC module, the BuildTypes functor produces a TYPES module. A TYPES
signature contains the UNSPEC signature, with the definitions of all abstract values, and
abstract environments. Moreover, it contains printing functions, comparisons, and unions
for abstract values. Finally, the BuildTypes functor generates default update functions,
and two empty mappings with the unspecified terms and the unspecified functions. The
user must manually complete these mappings to provide implementations for unspecified
terms and functions. The BuildTypes functor start by defining the abstract values:

module BuildTypes (Unspec: UNSPEC) = struct
module SMap = Util.SMap
include Unspec

(* Type of program points *)

type ppoint = Ppoint.t

(* Base values *)

type base_value = abst_value Unspec.base_value

(* Abstract values *)

and abst_value =
| Tuple of abst_value tuple set
| Fun of abst_function set
| Const of constructor * abst_value
| Base of base_value
| PPoint of ppoint
| Bot
| Top

(* The constructor for the different functions *)

and abst_function =
| SpecFun of int * abst_value list * string * abst_value
| UnspecFun of int * abst_value list * string
| Clos of pattern * env * skeleton
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(* The abstract environment, mapping skeletal variables to abstract

values *)↪→

and env = (string * abst_value) list

(* The state of the abstract interpretation *)

type ai_state = abst_value Unspec.ai_state

The SMap module defines a mapping type where the keys are strings. A mapping of type a
SMap.t is a mapping from string to values of type a. The ppoint type is the type presented
in the previous section. The types base_value, abst_value, abst_function, and env are
defined mutually recursively. The base_value type is the same as the one defined in the
Unspec module, except the type variable has been replaced with the abst_value type.
The abst_value type is the type of abstract values. An abstract value can be:

• An abstract tuple, a set of tuple of abstract values

• An abstract function, a set of closures

• An abstract algebraic value, a constructor applied to an abstract value

• A base value, a value of an unspecified type

• A program point

• The bottom or top value

The abst_function type defines the closures. A closure can be a named closure or an
anonymous closure. The env type defines the abstract environments: partial function from
variables of Skel to abstract values, here implemented as an association list. The ai_state
type is the type of the AI-states from the Unspec module parameterised by the type of
abstract values.

The BuildTypes functor defines default update functions:

(* Default update functions *)

let update_in (_: fun_name) (param: abst_value): (ai_state, abst_value
list) SM.t =↪→

SM.return params
let update_out (_: fun_name) (_: abst_value) (res: abst_value) =

SM.return res
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The default update functions do not modify the ai-state, the parameter or the result.
This is the first time the state monad appears. Rather than explicitly piping the AI-state
during the computations, the state monad is used to get more readable code. A value
of type (ai_state, abst_value) SM.t is a function taking an AI-state and returning a
new AI-state and an abstract value. We recall that the expression SM.return param is a
function that, given an AI-state ais, returns a pair (ais, param): the AI-state and the
parameter are not modified.

Finally, the BuildTypes functor defines empty mappings containing the specifications
of the unspecified terms

(* The mapping containing the unspecified functions *)

let unspec_funs: (abst_value list -> (ai_state, abst_value) SM.t) SMap.t
= SMap.empty↪→

(* The mapping containing the unspecified values *)

let unspec_vals: abst_value SMap.t = SMap.empty

The unspec_funs value maps function names to their specifications: functions that given a
parameter return new abstract value encapsulated in the state monad because unspecified
functions may modify the AI-state. The unspec_vals value maps unspecified term names
to their specifications: abstract values.

From the Unspec module that we have defined for or While language, we generate a
TYPES module using the functor.

module WhileTypes = BuildTypes(Unspec)

Let us see how to instantiate the unspecified terms, in particular unspecified functions for
our While language.

let read (v: abst_value): (ai_state, abst_value) SM.t =
match v with
| Tuple [[ Base (Ident x) ; Base (Store st) ]] ->

SM.return @@ List.assoc x st
| _ -> failwith "read: parameter has wrong type"

let unspec_funs = SMap.add "read" read unspec_funs
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Because values of skeletal semantics are deep embedded, a function takes an abstract
value, the parameter, and returns an abstract value encapsulated in the state monad, the
result. The read function expects a tuple of an identifier, which is a base type, and a
store which is also a base type. The value bound to the identifier is fetched in the store
and returned, encapsulated in the state monad.

Finally, the update functions must be instantiated. We present the update_in function
of the While language.

(* The updates functions *)

let update_in (fun_name: string) (v: abst_value): (ai_state, abst_value
list) SM.t =↪→

if fun_name = "eval_stmt" then
match v with
| Tuple [[ Base (Store (st)) ; PPoint(ppt) ]] ->

let* (ais: ai_state) = SM.get () in

let st_ppt = PPMap.find_default ppt [] ais.stores in
let* new_st = join_store (join_f widen_base_value) st_ppt st in

let new_ais = {ais with stores = (PPMap.add ppt new_st
ais.stores); } in↪→

let* () = SM.put new_ais in

SM.return @@ [[ Base (Store (new_st)) ; PPoint (ppt) ]]
| _ -> failwith "update_in: invalid values"

else
SM.return vl

It takes the name of the specified function and its parameter. If the function called is
eval_stmt, then the list of arguments is pattern matched and is expected to be a store
and a program point mapping to the sub-term of the program being evaluated. First, the
AI-state is retrieved using the SM.get function of the state monad. The store associated
with the program point is fetched in the global mapping of the AI-state. Then, a new
store is obtained by joining the abstract store given as argument of the eval_stmt and
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the store of the global mapping. This new store is put in the global mapping and the AI-
state is updated using the put function of the state monad. Finally, the new parameter
of the eval_stmt function is returned with the new store and is encapsulated in the state
monad. The update_out function is similar but modifies the output store of the function
rather than the store passed as parameter. This concludes the definition of the TYPES
module, and we can now derive an abstract interpreter in the next section.

Because of the deep embedding, writing the definitions of the unspecified values is
cumbersome and can be error-prone because of the loss of typechecking information.
All abstract values have type abst_value and therefore typing information of Skel type-
checker has been lost. One axis of improvement of the abstract interpreter generator would
be to generate a BuildTypes module from a skeletal semantics where each unspecified
type would be defined independently, rather than having one base_value type with one
constructor for each unspecified type. Moreover, typing information could be kept using
Generalised Algebraic Data-types, like Necrodebug [35] does. Necrodebug is a step-by-step
debugger for Skel written in OCaml. Similarly to Taiga, Necrodebug uses deep-embedding
to represent Skel values, but thanks to GADTs the typing information is not lost.

6.5 The Abstract Interpreter Generator

Now that the unspecified types and terms have been instantiated, it is time to analyse
programs. The user has nothing more to do other than provide the programs to analyse.
Taiga provides a functor that takes a TYPES module, like the one we have just defined for
the While language and produces a new module containing the abstract interpreter. The
abstract interpreter module contains many functions for pattern matching, unfolding, and
more. Here we present the functions of abstract interpretation of terms and skeletons. We
start with the function of evaluation of terms. The function takes an abstract environment,
a term and returns an abstract value.

(** Computes the abstract interpretation of a term

@param e the abstract environment

@param t the skeletal term to compute

@return the result of the abstract interpretation

*)

let rec abstract_interpretation_term (e: env) (t: term): abst_value =
match t with
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| TVar(TVLet(x, _)) -> assoc_env x e
| TVar(TVTerm(Unspec, _, tname, _, _)) -> SMap.find tname unspec_vals
| TVar(TVTerm(Spec, _, tname, _, nt)) ->

...
| TConstr(c, _, t) -> Const(c, abstract_interpretation_term e t)
| TTuple(tl) -> Tuple(Set.singleton (List.map

(abstract_interpretation_term e) tl))↪→

The term is pattern-matched, the first three cases correspond to when the term is a
variable. A variable is not evaluated in the same manner depending on how it was defined.
The first case is when the variable is defined by a let-binding. Then its content, stored
in the environment, is fetched with the assoc_env function. The second case is when the
variable is an unspecified term defined in the skeletal semantics. The value returned is
stored in the mapping of unspecified values unspec_vals, defined in the TYPES module.
The third case is when the variable is a specified term defined in the skeletal semantics,
the code is not shown here. The next case is when the term is a constructor applied to
a term. The evaluation is the constructor applied to the evaluation of the term. The last
case is the evaluation of a tuple term. A tuple term is a list of terms, representing a tuple
of terms. Each term is evaluated, and put into a singleton set, giving an abstract tuple.

Then comes the evaluation of skeletons. We only show the evaluation of branching.
The evaluation of skeletons takes as parameters: a callstack, an abstract environment,
and a skeleton. A branching skeleton is a list of skeletons, each one being one branch. To
evaluate a branching, each branch is evaluated, which gives one abstract value per branch.
All abstract values are then merged using the abstract union.

(** Computes the abstract interpretation of a term

@param e the abstract environment

@param t the skeletal term to compute

@return the result of the abstract interpretation

*)

let rec abstract_interpretation_term (e: env) (t: term): abst_value =
match t with
| TVar(TVLet(x, _)) -> assoc_env x e
| TVar(TVTerm(Unspec, _, tname, _, _)) -> SMap.find tname unspec_vals
| TVar(TVTerm(Spec, _, tname, _, nt)) ->

...
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| TConstr(c, _, t) -> Const(c, abstract_interpretation_term e t)
| TTuple(tl) -> Tuple(Set.singleton (List.map

(abstract_interpretation_term e) tl))↪→

To analyse a program, it must be written in the skeletal semantics. The terms zero,
one, and two are unspecified terms of type lit and are instantiated, as seen earlier, as
integers 0, 1, and 2 respectively.

(* x := 0; if (x = 0) { y := 1 } else { y := 2 } *)

val main2: stmt =
(Seq(Assign(x, Const zero),

If(Equal(Var x, Const zero),
Assign(y, Const one),
Assign(y, Const two))))

(* x := rand(0, 3); if (x = 0) { y := 1 } else { y := 2 } *)

val main3: stmt =
(Seq(Assign(x, Rand(zero, three)),

If(Equal(Var x, Const zero),
Assign(y, Const one),
Assign(y, Const two))))

The analysis returns the abstract value returned by the program and the AI-state,
which gives the abstract stores in input and output for each program points.

main1: [x: Int([0., 0.]), y: Int([1., 1.])]
11out: [x: Int([0., 0.]), y: Int([1., 1.])]
1out: [y: Int([1., 1.]), x: Int([0., 0.])]
0out: [x: Int([0., 0.])]
epsiout: [x: Int([0., 0.]), y: Int([1., 1.])]
11in: [x: Int([0., 0.])]
1in: [x: Int([0., 0.])]
0in: []
epsiin: []

main2: [y: Int([1., 2.]), x: Int([0., 3.])]
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12out: [x: Int([0., 3.]), y: Int([2., 2.])]
11out: [x: Int([0., 3.]), y: Int([1., 1.])]
1out: [x: Int([0., 3.]), y: Int([1., 2.])]
0out: [x: Int([0., 3.])]
epsiout: [y: Int([1., 2.]), x: Int([0., 3.])]
12in: [x: Int([0., 3.])]
11in: [x: Int([0., 3.])]
1in: [x: Int([0., 3.])]
0in: []
epsiin: []

The store returned by main1 is the abstract store {x 7→ [0; 0], y 7→ [1; 1]}, which is expected
to be a correct approximation of the result of the main1 program.

Because the update_in function uses the widening operator, the abstract interpreter
can analyse terminating and non-terminating loops. Provided that the instantiations of
unspecified terms are correct, the result of the analysis is correct by Theorem 3.

We presented a method to derive correct and working abstract interpreters from a
skeletal semantics and we successfully analysed programs. However, because of the deep
embedding, writing the definitions of the unspecified values is cumbersome and can be
error-prone because of the loss of typechecking information. All abstract values have
type abst_value and therefore typing information of Skel type-checker has been lost.
One axis of improvement of the abstract interpreter generator would be to generate a
BuildTypes module from a skeletal semantics where each unspecified type would be
defined independently, rather than having one base_value type with one constructor
for each unspecified type. Moreover, typing information could be kept using Generalised
Algebraic Data-types, like Necrodebug [35] does. Necrodebug is a step-by-step debugger
for Skel written in OCaml. Similar to Taiga, Necrodebug uses deep-embedding to represent
Skel values, but thanks to GADTs the typing information is not lost.
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Proving property about programs is important to guarantee that they are safe. However,
designing correct analysers for languages is difficult, hence we design a methodology to
get working analysers from formal descriptions of languages. Our goal is to build a usable
framework to design proven correct analyses, as Verasco [17] does, but without trying to
match their level of granularity.

The semantic description framework we chose is Skeletal Semantics [4]: it is expressive
enough to describe complex languages like JavaScript [22], and simple enough to easily
build tools, like our abstract interpreter generator. Moreover, there already has been work
to define big-step semantics [39, 4] of languages from their skeletal semantics, that we have
re-used. Indeed, our vision is that defining a semantics of a language and an analyser from
the same object should make the proof of correctness of the analyser easy to show.

Our first contribution is to add program point support to the big-step semantics of
Skel. The semantics is parameterised by the program of the object language. Sub-terms
of the program are then referenced by program points. Our method works not only for
the big-step interpretation but also for the abstract interpretation. It was pivotal to add
support for program points in the interpretations of Skel as they are ubiquitous in the
analysis of programs.

Then, we define the abstract interpretation of Skel. It covers all possible executions
of the big-step semantics, and we think it terminates if a small lemma about the update
functions holds. A theorem of correctness is also presented and proved, which says that
the abstract interpretation of Skel computes a correct over-approximation of the big-step
semantics of Skel, provided small lemmas on unspecified terms hold. We show how to
compute an interval analysis on While programs with some examples.

We also present how to compute a control flow analysis for λ-calulus to demonstrate
the versatility of the approach. We start with the definition of the skeletal semantics of
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λ-calulus. The unspecified types and terms are instantiated, the abstract comparisons and
unions are defined, along with the update functions. We get an abstract interpretation
that computes a CFA for λ-calculus. By using the theorem of correctness of the abstract
interpretation, we are able to prove that the derived abstract interpretation is indeed
computing a correct CFA.

Finally, we present Taiga, an abstract interpreter generator. Given a skeletal semantics,
and an abstract instantiation of unspecified types and terms, abstract unions and com-
parisons, Taiga generates an abstract interpreter capable of analysing languages. We test
it on the While language and λ-calculus, we are able to get working abstract interpreters.

Did we succeed in providing a recipe to generate correct analyses from formal descrip-
tions of languages? We propose a method to define abstract interpretation of languages
from their skeletal semantics. We give examples on how to do an interval analysis on the
While language, and a control flow analysis on λ-calculus. An abstract interpretation is
obtained only by defining the abstract domains for the unspecified types, making easy
the definition of analyses, supposing there is a skeletal semantics for the language. Our
vision is that a language should be formally defined to get correct concrete and abstract
interpreters and more. Thus, demanding a skeletal semantics for the language is a strong
requirement but it can be amortised: the Necro tools [36, 27, 35] make a skeletal semantics
interesting to generate a concrete interpreter, Coq code, LATEXcode etc... The analyses can
be guaranteed correct by proving small lemmas only on the language-specific parts, thus
minimising the effort. Taiga, an abstract interpreter generator is implemented and allows
the definition of abstract interpreters from their skeletal semantics by providing an im-
plementation of the abstract domains. Taiga has been tested on While and the λ-calculus
and successfully computes correct analyses.

However, some points can be greatly improved. The proof of termination of the abstract
interpretation must be written, it is an essential property of an abstract interpretation.
Then, the language-independent approach is a lot less precise than a language-specific
method. For instance, the conditions of if-statements and loops are not used to refine the
abstract states for the While language. The precision can also be improved by adding
support for relational abstract domains, which are abstractions that establish relations
between variables of a program, for instance, inequalities. Also, Taiga, the abstract in-
terpreter generator proves difficult to use, and therefore not usable on large languages.
Finally, to guarantee the correctness of the abstract interpretation, we should use a the-
orem prover, like Coq. Then, we could generate a proof of correctness of the abstract
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interpretation from a skeletal semantics, provided a proof of the language-dependent lem-
mas.

7.2 Future Work

7.2.1 Proof of Termination of the Abstract Interpretation

One key issue with our abstract interpretation is that we did not prove it terminates for
every skeleton. Indeed, given a skeleton S, and an abstract environment E♯, the skeleton
S should be interpreted in finite time. Thus, for any AI-state A, there should exist a v♯ ∈
V ♯(τ), an AI-state A′, and a finite derivation tree with conclusion ε,A, E♯, S ⇓♯

S v♯,A′.
Hence, we would be able to guarantee the termination of our abstract interpreter, and that
our abstract interpreter can analyse any program. To prove the termination, what can
be done is un-intuitively define the abstract interpretation of Skel by co-induction. This
is similar to what Schmidt does in [44]: we obtain potentially infinite abstract derivation
trees. Therefore, the abstract interpretation of any skeleton would be defined. We think we
can show that if the specifications of the update functions respect a convergence criteria,
which will be presented later, then the abstract derivation trees are indeed finite.

We think the convergence of the analysis can be ensured by two ingredients. The Spec-
Loop rule of the abstract interpretation (Figure 4.12) detects identical nested calls to a
specified function and stops the computation when a fixpoint has been detected. Second,
the updatein should ensure that a recursive function cannot call itself indefinitely. Thus,
it should force identical nested calls for non-terminating recursive functions. We think
the only condition for an abstract evaluation not to terminate is that there is an infinite
chain of nested calls to a specified function f : τ1 → τ2. An infinite chain of nested call
is when there is a sequence (v♯

n)n∈N ∈ V ♯(τ1) such that for every n ∈ N the evaluation of
f v♯

n induces a call f v♯
n+1, and all v♯

n are different. We think that if the derivation tree of
π,A, E♯, S ⇓♯

S v♯,A is infinite, then there is an infinite chain of nested calls for at least one
specified function. Hence, by contraposition, if there is a finite number of calls to every
specified function, then the derivation tree of π,A, E♯, S ⇓♯

S v♯,A is finite.
If we can prevent non-converging nested calls, then we should be able to prove that

the abstract derivation tree is finite. To do that, we think it is enough that the updatein

function respects a simple convergence criteria. Let S be a skeletal semantics. We say the
updatein function has the widening property with an increasing sequence of (Ai, v♯

i), the
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sequence xi+1 = updatein
f (xi) with x0 = (Ai, v♯

i) then the sequence xi converges in finite
time.

If the updatein function has the widening property, then there should not be an
infinite chain of nested calls to the same specified function. Suppose the derivation tree of
π,A, E♯, S ⇓♯

S v♯,A is infinite. Then there is a least one infinite chain of nested calls for a
specified function f . This infinite chain of nested calls is not caught by the Spec-Loop
rule of the abstract interpretation, meaning that the chain does not converge. But it is
impossible as updatein has the widening property by definition. By contradiction, the
derivation tree must be finite. Essentially, proving that the updatein has the widening
property is equivalent to showing in classical abstract interpretation that the widening
operator converges in finite time. This way, we hope we can prove that our analysis
terminates.

7.2.2 Adding Guards and Relational Analyses

To improve the precision of our analyses, we must add support for guards. Guards are
tests, like isZero x, that can be used to refine the abstractions. Suppose the following
Skel code is in the skeletal semantics of While, and we keep the abstractions of Chapter 4,
where integers are abstracted as intervals.

let x = rand(zero, one) in
branch

let () = isZero x in
return x

or
let () = isNotZero x in
return zero

end

In the first branch, x should be equal to zero, and so should be the returned value.
However, because x is returned, and the condition isZero x is not used to refine the
abstractions, the interval [0; 1] is returned. In the second branch, the returned value is
zero. Thus the analysis should be able to deduce that returning the value zero is correct.
However, because the conditions at the start of each branch are not used to improve the
abstractions, our abstract interpretation returns an over-approximation.

120



Conclusion and Future Work

One method to use guards is to define the opposite of the unspecified functions. Indeed,
when the result of the computation is known, what can be said about the inputs? If we
suppose that () = isZero [0; 1], then we can refine the input, it is interval [0; 0]. To
propagate this to the variable x, we can use indirections. Let us say that x maps to a
symbolic variable x̃. Then, we can maintain a symbolic table that maps symbolic variables
to values. This table can be modified by the opposite instantiations of the unspecified
functions. For instance, in the first branch of the example, we start in a table where x̃

is equal to interval [0; 1]. The opposite of function isZero written isZero, refines the
symbolic table given the parameter and the result of the function.

{
x̃ 7→ [0; 1]

}
⇒ isZero(x̃, ()) = x̃ 7→ x̃ ∩ [0; 0]⇒

{
x̃ 7→ [0; 0]

}
It also paves the way for relational abstract domains. A relational abstract domain

computes relations between variables. For the While language, a relational abstract do-
main can be the abstraction of stores as a set of inequalities between variables. One must
find a method to propagate the information that lt(x, y) = 1 to the abstract while store.
An easy solution would be to change the skeletal semantics of While such that lt takes
an abstract store as parameter and returns a new abstract store. Then, one could write
the opposite function of lt as:

s 7→ ⊤
x̃ 7→ ⊤
ỹ 7→ ⊤

⇒ lt((s, x̃, ỹ), 1) = s 7→ s ∪ {x̃ ≤ ỹ} ⇒


s 7→ {x̃ ≤ ỹ}

x̃ 7→ ⊤
ỹ 7→ ⊤


However, it implies modifying the skeletal semantics of the object language, which ideally
should not be necessary.

7.2.3 Real-world languages

The approach remains to be tested on real languages, but we see several issues before it
can be realistically done. We present the biggest issues we think must be tackled before
going forward.

First, as it was discussed in Chapter 6, the implementation is not easy to use yet. The
deep embedding makes the instantiations of the unspecified types and terms not as easy
as we would want. The instantiations of all unspecified types are put in a base_value
type, each unspecified type has its dedicated constructor which is impractical for the user.
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Also, Skel type information is lost with the deep embedding. Thus, when instantiating
the unspecified terms, for instance, the user may give a definition that should not be
accepted by the type checker of Skel, leading to errors. On small languages with a few
unspecified types and terms, like the While language, this is not an issue as the unspecified
types and terms instantiations are very simple. However, for larger languages with dozens
of unspecified types and terms, errors of instantiation will probably be too difficult to
debug. One solution would be to code a generator of skeletal semantics specific UNSPEC
type module. For instance, given the skeletal semantics of While, Taiga would generate
an UNSPEC_WHILE module that could look like this:

module type UNSPEC_WHILE = struct
type int
type lit
type store

val join_int: int -> int -> int
val join_lit: lit -> lit -> lit
val join_lit: store -> store -> store
...

end

Therefore, the user would define an UNSPEC_WHILE module rather than an UNSPEC. A
module of type UNSPEC_WHILE is easier to write as there is one OCaml type to define for
each unspecified type. Then, the functor BuildTypes would also be generated from the
skeletal semantics. For the While skeletal semantics, the BuildTypes functor would look
like:

module BuildTypesOfWhile (Unspec: UNSPEC_WHILE): TYPES = struct
type base_value =
| Int of Unspec.int
| Lit of Unspec.lit
| Store of Unspec.store

...
end
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A similar approach can be done for the unspecified term: by generating OCaml code we
think we can ease the instantiations of the unspecified terms.

Second, a skeletal semantics must be defined for the language to be analysed. There are
projects to write skeletal semantics for real-world languages, like JSkel [22], or PySkel [2].
Both projects do not cover all features of the language they describe. JSkel supports a large
part of JavaScript, except function calls. It is a 15K line of Skel project, therefore the scale
of the project is much bigger than the skeletal semantics we experimented on. PySkel is a
1.5K line of Skel project. This partial formalisation of Python has nevertheless support for
functions, classes, objects... Because of its size and large cover of Python functionalities,
it seems a good candidate to experiment on.

Third, our approach does not support polymorphism. JSkel and PySkel both make
extensive use of polymorphism.

Once these three issues are solved, the abstract interpretation of real-world language
may be at reach. Then, using the current or future implementation of JSkel and PySkel,
the approach could be tested on.

7.2.4 Formal Proof in Coq

To get a formally correct abstract interpreter, we should use an interactive theorem prover,
like Coq. There already exists a formalisation of Skel big-step semantics in Coq [36].
Moreover, NecroCoq can generate a Coq representation of any skeletal semantics.

To derive a verified abstract interpreter in Coq, we would first need to define the
abstract interpreter of Skel in Coq. It should most likely be close to the OCaml imple-
mentation, Taiga. However, in Coq, only well-defined functions that terminate can be
defined, and the proof of termination of the abstract interpretation would probably be
necessary. Then, the theorem of correctness between the big-step semantics of Skel and
the abstract interpreter of Skel must be proved correct in Coq. The proof is mainly an
induction on the derivation tree of the abstract interpretation. The infrastructures to let
the user specify the unspecified types and terms, the abstract comparisons and unions,
and the definition of the AI-state must then be added, similar to the Taiga ones. Finally,
the lemmas of correctness of the unspecified terms could be generated. The proofs are left
to the user. By composing these lemmas with the theorem of correctness we would obtain
a proven correct abstract interpreter for the language that can be executed, and complete
the objective of mechanically proven correct abstract interpreters.

Another way to address the issue of expressing computations that are non trivially ter-
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minating is to use Interaction Trees. Interaction trees [48] are a recent method to describe
possibly non-terminating computations in Coq. One major benefit is that a computation
described by an Interaction Tree can be extracted to working OCaml code. Also, the
approach has already been tested to relate two semantics: by proving the correctness of
a toy compiler for a minimal imperative language. However, we do not know how non-
determinism can be handled with interaction trees, and this issue must be addressed to
make our approach work with Interaction Tree.
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Appendix A

PROOF OF CORRECTNESS OF THE

ABSTRACT INTERPRETATION

Let S be a skeletal semantics, ProgTypes the set of program types, and prog a value of
a program type.

A.1 A Relation Between Concrete and Abstract Val-
ues

Let v ∈ V ppoint(τ), v♯ ∈ V ♯(τ) and A an AI-state. Both values form ASTs, and at the
leaves of these ASTs, some of them have unspecified types. We define the relation v ∼A v♯,
if v and v♯ have an AST of the same shape, and that a leaf in v of unspecified type τu is
in the concretisation of the corresponding leaf in v♯, in abstract state A.
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Definition 29 Let A be an AI-state of the abstract interpretation.

v ∼A v♯

C v ∼A C v♯
Alg

pp ∼A pp
PP

∃(v♯
1, . . . , v♯

n) ∈ t♯, ∀1 ≤ i ≤ n, vi ∼A v♯
i

(v1, . . . , vn) ∼A t♯
Tuple

f ∈ F ♯
2

f ∼A (F ♯
1 , F ♯

2)
NClos

∃(Γ, p, S, E♯) ∈ F ♯
1 , E ∼A E♯

(Γ, p, S, E) ∼A (F ♯
1 , F ♯

2)
Clos

v ∈ V ppoint(τ) τ unspecified v ∈ γ(A, v♯)
v ∼A v♯

Unspec

Γ ⊨ E Γ ⊨ E♯ ∀x ∈ dom E, E(x) ∼A E♯(x)
E ∼A E♯

Env

We write v ∼A v♯ when there exists a finite derivation with conclusion v ∼A v♯

Lemma 15 Let v ∈ V ppoint(τ) and v♯ ∈ V ♯(τ), and A an AI-state. We suppose that the
abstract instantiations of the unspecified terms are correct approximations of the concrete
instantiations of the unspecified terms. Then, it is true that:

v ∼A v♯ =⇒ v ∈ γ(A, v♯)

Proof 10 Suppose v ∈ V ppoint(τ), v♯ ∈ V ♯(τ), A is an AI-state. We proceed by induction
of the derivation tree of v ∼A v♯.
To prove the theorem, we proceed by induction on π

• The conclusion rule of the tree of v ∼A v♯ is Const. Therefore, there is a constructor
C such that v = C w, v♯ = C w♯, and w ∼A w♯. Using the induction hypothesis,
we get w ∈ γ(A, w♯). And, by the definition of γ, one can conclude that C w ∈
γ(A, C w♯).

• The conclusion rule of the tree of v ∼A v♯ is PP. Therefore, v = pp and v♯ = pp.
By definition of γ, pp ∈ γ(A, pp).
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• The conclusion rule of the tree of v ∼A v♯ is Tuple. Therefore, v = (v1, . . . , vn)
and v♯ = t♯ where t♯ is a set of tuple of abstract values. ∃(v♯

1, · · · , v♯
n) ∈ t♯, such that

∀1 ≤ i ≤ n, vi ∼A v♯
i . Using the induction hypothesis, we get ∀1 ≤ i ≤ n, vi ∈

γ(A, v♯
i). By the definition of γ, (v1, . . . , vn) ∈ γ(A, t♯)

• The conclusion rule of the tree of v ∼A v♯ is NClos. Therefore v = f and v♯ =
(F ♯

1 , F ♯
2) and f ∈ F ♯

2 . By definition of γ, it comes that f ∈ γ(A, v♯)

• The conclusion rule of the tree of v ∼A v♯ is Clos. Therefore v = (Γ, p, S, E) and
v♯ = (F ♯

1 , F ♯
2) such that ∃E♯, (Γ, p, S, E♯) ∈ F ♯

1 such that E ∼A E♯. By definition of
γ, it comes that (Γ, p, S, E) ∈ γ(A, v♯).

• The conclusion rule of the tree of v ∼A v♯ is Unspec. Because the abstract instan-
tiations of the unspecified terms are correct approximation of the concrete instanti-
ations, by definition v ∈ γ(A, v♯).

• The conclusion rule of the tree of v ∼A v♯ is Env. Therefore ∃Γ a typing environ-
ment such that Γ ⊨ E and Γ ⊨ E♯, and ∀x ∈ dom E, E ∼A E♯. Using the induction
hypothesis, ∀x ∈ dom E, E(x) ∈ γ(A, E♯(x)). By the definition of γ, it comes that
E ∈ γenv(A, E♯).

This concludes the proof.

Lemma 16 ∼ is monotonic in the abstract state and second argument:

v ∼A v♯

v♯ ⊑♯ v′♯

A ⊑♯ A′

 =⇒ v ∼A′ v′♯

Proof 11 By induction on the derivation tree of v ∼A v♯.

Lemma 17 Suppose A is an AI-state, and ProgTypes is the set of program types. Suppose
E ∼A E♯ and there are v ∈ V ppoint(τ) and v♯ ∈ V ♯(τ) such that v ∼A v♯, and ξ is a set of
abstract environments such that E♯ ∈ ξ

ProgTypes, prog ⊢ E + p 7→ v ⇝ E ′

ProgTypes, prog ⊢ ξ♯ + p 7→♯ v♯ ⇝
{
E♯

1, . . . , E♯
n

} =⇒ ∃1 ≤ i ≤ n, E ′ ∼A E♯
i

133



Proof of Correctness of the Abstract Interpretation

Proof 12 Suppose A, an AI-state, τ a type, v and v♯ such that v ∈ V ppoint(τ) and
v♯ ∈ V ♯(τ). Suppose E and E♯ a concrete environment and an abstract environment
respectively such that E ∼A E♯, and ξ is a set of abstract environments that contains E♯.

Suppose ProgTypes, prog ⊢ E + p 7→ v ⇝ E ′ and ProgTypes, prog ⊢ ξ + p 7→♯ v♯ ⇝{
E♯

1, . . . , E♯
n

}
.

We proceed by induction on the derivation tree of ProgTypes, prog ⊢ E +p 7→ v ⇝ E ′.

• The conclusion rule of the tree of ProgTypes, prog ⊢ E + p 7→ v ⇝ E ′ is Asn-
Wildcard. Therefore p = _ and E ′ = E. Then, the conclusion rule of ProgTypes, prog ⊢
ξ♯ + p 7→♯ v♯ ⇝

{
E♯

1, . . . , E♯
n

}
is A-Asn-Wildcard (it is the only rule that handles

wildcard). Therefore, it comes that ProgTypes, prog ⊢ ξ♯ + _ 7→♯ v♯ ⇝ ξ. It comes
that ξ =

{
E♯

1, . . . , E♯
n

}
, therefore E♯ ∈

{
E♯

1, . . . , E♯
n

}
and by definition, E ∼A E♯.

• The conclusion rule of the tree of ProgTypes, prog ⊢ E + p 7→ v ⇝ E ′ is Asn-
Var. Therefore, p = x and E ′ = E + p 7→ v. Then, the conclusion rule of
ProgTypes, prog ⊢ ξ + x 7→♯ v♯ ⇝

{
E♯

1, . . . , E♯
n

}
is A-Asn-Var (it is the only

rule that handles variables). Therefore, it comes that: ProgTypes, prog ⊢ ξ + x 7→♯

v♯ ⇝
{

E ′♯ + x 7→♯ v♯
∣∣∣ E ′♯ ∈ ξ

}
. Because E♯ ∈ ξ, then ∃E♯

i such that E♯ + x 7→♯

v♯ = E♯
i . By definition of E ∼A E♯, dom E = dom E♯. Therefore, dom E + x 7→ v =

dom E♯ + x 7→♯ v♯. Take y ∈ dom E + x 7→ v

– If y = x

Then E + x 7→ v(x) = v and E♯
i (x) = v♯. By hypothesis, v ∼A v♯ so E + x 7→

v(x) ∼A E♯
i (x)

– If y ̸= x

E + x 7→ v(y) = E(y), and E♯
i (y) = E♯(y). Because E ∼A E♯, it comes that

E(y) ∼A E♯(y)

This proves that E + x 7→ v ∼A E♯
i

• The conclusion rule of the tree of ProgTypes, prog ⊢ E + p 7→ v ⇝ E ′ is Asn-
Constr. Therefore, p = C p′, v = C v′ and ProgTypes, prog ⊢ E + p′ 7→ v′ ⇝ E ′.
Because v = C v′, by definition of ∼, v♯ = C v′♯. Then, only rule that applies to
ProgTypes, prog ⊢ ξ + p 7→♯ v♯ ⇝

{
E♯

1, . . . , E♯
n

}
is A-Asn-Constr. Thus it comes

that ProgTypes, prog ⊢ ξ + p′ 7→♯ v′♯ ⇝
{
E♯

1, . . . , E♯
n

}
. By definition of C v′ ∼A

C v′♯, it comes that v′ ∼A v′♯. Using the Induction Hypothesis, ∃E♯
i ∈

{
E♯

1, . . . , E♯
n

}
such that E ′ ∼A E♯

i .
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• The conclusion rule of the tree of ProgTypes, prog ⊢ E + p 7→ v ⇝ E ′ is Asn-
Tuple. Thus p = (p1, . . . , pm), and v = (v1, · · · , vm). Moreover, the conclusion in
the abstract must be A-Asn-Tuple. By the definition of ∼, it comes that v♯ = t♯

where t♯ is an abstract tuple, and ∃(v♯
1, . . . , v♯

m) ∈ t♯, such that ∀1 ≤ i ≤ m, vi ∼A v♯
i .

By the definition of A-Asn-Tuple, ∃ξv♯
1,...,v♯

m
such that:

ProgTypes, prog ⊢ E♯ + (p1, . . . , pm) 7→♯ (v♯
1, · · · , v♯

m)⇝ ξv♯
1,...,v♯

m
.

By induction on m, it comes that ∃E ′♯ ∈ ξv♯
1,...,v♯

m
such that E ′ ∼A E ′♯. And because

ξv♯
1,...,v♯

n
⊆ ⋃

(v♯
1,··· ,v♯

n)∈v♯ ξv♯
1,...v♯

n
, this concludes this case.

• The conclusion rule of the tree of ProgTypes, prog ⊢ E + p 7→ v ⇝ E ′ is Asn-
Unfold. Thus p = C p′, and v = pp. Moreover, ProgTypes, prog ⊢ E + p 7→
(v0, .., vn−1) ⇝ E ′ with prog@ pp = C (v′

0, .., v′
n−1), C : (τ0 × .. × τn−1, τ) and

vj = if τj ∈ ProgTypes then pp ·j else v′
j. Because v = pp and v ∼A v♯, then

v♯ = pp. The conclusion rule of the abstract extension of environment is therefore
A-Asn-Unfold with ProgTypes, prog ⊢ ξ + p 7→♯ (v♯

0, .., v♯
n−1) ⇝

{
E♯

1, . . . , E♯
n

}
with

v♯
j = if τj ∈ ProgTypes then pp ·j else v′

j. Because vj = v♯
j, using the induction

hypothesis, it comes that ∃E ′♯ ∈
{
E♯

1, . . . , E♯
n

}
such that E ′ ∼A E ′♯.

This concludes the induction and the proof.

A.2 Intermediate Abstract Interpretation

The issue with our abstract interpretation is that the Spec-Loop returns a locally wrong
result: ⊥. The rule is used to stop an infinite derivation, and to globally compute a
fixpoint.

π′,A, f v♯ ⇓♯
S ⊥

· · ·
Spec-Loop

π,A, f v♯ ⇓♯
S w♯

Spec

The abstract interpretation of f v♯ is obviously not ⊥ as shown in the rule Spec-Loop,
but w♯ of the Spec rule. This prevents us to do an induction of the derivation tree of the
natural semantics of Skel, because we will not be able to conclude on recursive call to a
specified function. We introduce a slightly modified abstract interpretation that is locally
correct and we prove that it is globally equivalent to our abstract interpretation.
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We suppose specified functions do not return values of inductive types. Take an ab-
stract derivation tree T ♯. When in T ♯, there is a derivation of the form:

π′,A, f v♯ ⇓♯
S ⊥

· · ·
Spec-Loop

π,A, f v♯ ⇓♯
S w♯

Spec

We replace it with:

π′,A, f v♯ ⇓♯
S w♯

· · ·
Spec-Loop

π,A, f v♯ ⇓♯
S w♯

Spec

Only ⊥ has been changed. Therefore we obtain a new derivation tree T ′♯ that is equivalent
to T ♯ because we have reached a fixpoint for the function f on input v♯. This change only
works when specified functions do not return values with inductive type. Indeed, suppose
the Spec-Loop rule returns a symbolic variable α that is traceable. Then the derivation
becomes:

π′,A, f v♯ ⇓♯
S α

· · ·
Spec-Loop

π,A, f v♯ ⇓♯
S ϕ(α)

Spec

The ϕ is some function of the symbolic variable, and we want a solution to the equation
α = ϕ(α). For non-inductive type, ϕ(α) is either of the form α⊔v♯ or the constant function
v♯. Either way, ϕ(⊥) is a solution to the equation. This explains why Spec-Loop return ⊥
and returns a correct result globally. If ϕ is more complex, this can happen with inductive
type, then we do not know how to solve the equation. We did not try to handle the abstract
interpretation with inductive type as it was unnecessary for the analyses we wanted to
derive. One solution could be to define an abstract interpretation that returns symbolic
variables and solve the equation at the end. If the equation are too hard, α = ⊤ would
give a correct result to the abstract interpretation.
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A.3 Correctness of the Abstract Interpretation of Terms

Lemma 18

Γ ⊨ E, Γ ⊨ E♯, Γ ⊢ t : τ

E, t ⇓t v, E♯, t ⇓♯
t v♯

E ∼A E♯

=⇒ v ∈ γ(A, v♯) ∧ v ∼A v♯

Proof 13 We do an induction on the derivation tree of E, t ⇓t v.

• The conclusion rule of E, t ⇓t v is Var.
Therefore, t = x, and v = E(x). Therefore, v♯ = E♯(x). Because E ∼A E♯, it comes
that E(x) ∼A E♯(x).

• The conclusion rule of E, t ⇓t v is TermClos.
Therefore, it comes that t = f , val f : τ1 → τ2 [= t0] with v = f . Moreover, it
comes that E♯, f ⇓♯

t ({} , {f}) and v♯ = ({} , {f}). Because f ∈ {f}, we conclude
that v ∼A v♯.

• The conclusion rule of E, t ⇓t v is TermUnspec.
Therefore, it comes that t = x, val x : τ ∈ S and v ∈ JxK. Moreover, v♯ = JxK♯

Because the abstract instantiations are sound over-approximation of concrete in-
stantiation, it comes that JxKppoint ∼A JxK♯ and v ∼A JxK♯.

• The conclusion rule of E, t ⇓t v is TermSpec.
Therefore, it comes that t = x and val x : τ = t0 ∈ S. Therefore, we have E, t0 ⇓t v

and E♯, t0 ⇓t v♯ with E ∼A E♯. Using the induction hypothesis, it comes that v ∼A v♯.

• The conclusion rule of E, t ⇓t v is Alg.
Therefore, t = C t0, and v = C v′, with E, C t0 ⇓t v′.
Moreover, E♯, t0 ⇓♯

t v′♯ with v♯ = C v′♯. Using the induction hypothesis, it comes that
v′ ∼A v′♯, and by the definition of ∼, we conclude that v ∼A v♯.

• The conclusion rule of E, t ⇓t v is Tuple.
Therefore, t = (t1, . . . , tn) and E, (t1, . . . , tn) ⇓t (v1, · · · , vn) such that E, ti ⇓t vi

Moreover, by the definition of E♯, (t1, . . . , tn) ⇓♯
t v♯, it comes that v♯ =

{
(v♯

1, . . . , v♯
n)

}
with E♯, ti ⇓♯

S v♯
i . By the induction hypothesis, it comes that ∀1 ≤ i ≤ n, vi ∼A v♯

i .
By definition of ∼, it comes that v ∼A v♯.
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• The conclusion rule of E, t ⇓t v is Clos.
Therefore, t = (λp · S) and v = (Γ, p, S, E).
Because E♯, (λp · S) ⇓♯

t (
{
(Γ, p, S, E♯)

}
, {}), it comes that v♯ =

{
(Γ, p, S, E♯)

}
. Be-

cause E ∼A E♯, we can conclude that (Γ, p, S, E) ∼A
{
(Γ, p, S, E♯)

}

This concludes the proof.

A.4 Correctness of the Abstract Interpretation

The ⇓app and ⇓♯
S are defined mutually recursively, thus we should do one induction to

prove they are correct. To make it simpler, we split the correctness of the ⇓app and ⇓♯
S

relations in two theorems.

Theorem 6 Soundness of the Abstract Interpretation of application
If A0 is an AI-State

v0 v1 ⇓app w

π,A0, v♯
0 v♯

1 ⇓app w♯,A
∀1 ≤ i ≤ 2, vi ∼A0 v♯

i

Specified functions do not return values of inductive types

=⇒ A0 ⊑♯ A
w ∼A w♯

Proof 14 Let T be the derivation tree of v0 v1 ⇓app w and T ♯ be the derivation tree of
π,A0, v♯

0 v♯
1 ⇓app w♯,A We proceed by induction on T .

• The conclusion rule of v0 v1 ⇓app w is Clos.
Therefore v0 = (Γ, p, S, E). Because v0 ∼A0 v♯

0, v♯
0 = (Γ, p, S, E♯) such that E ∼A0

E♯.
The Clos rule says that:

E ′ = E + p 7→ v1

T

E ′, S ⇓S w

(Γ, p, S, E) v1 ⇓app w

Moreover, because v♯
0 = (Γ, p, S, E♯), the conclusion rule of the abstract derivation
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is the rule Clos:

ProgTypes, prog ⊢
{
E♯

}
+ p 7→♯ v♯

1 ⇝
{
E♯

1, · · · , E♯
m

}

∀E♯
i ∈

{
E♯

1, · · · , E♯
m

} T ♯

π,A0, E♯
i , S ⇓S w♯

i ,Ai

π,A0, (p, S, E♯) v♯
1 ⇓app ⊔♯u♯

i,⊔♯Ai

Clos

With ⊔♯u♯
i = w♯ and A = ⊔♯Ai

Using Lemma 17, ∃1 ≤ i0 ≤ m, E ′ ∼A E♯
i0. Using the induction hypothesis, it is

true that w ∼Ai0
w♯

i0, and A0 ⊑ Ai0. By monotonicity of ∼, w ∼⊔iAi
⊔iu

♯
i, and by

the property of the abstract union, A0 ⊑ ⊔iAi = A

• The conclusion rule of v0 v1 ⇓app w is Unspec.

val f : τ1 → τ2 → τ ∈ S w ∈ JfK(v1)
f v1 ⇓app w

Unspec

Therefore, v0 = f . Because v0 ∼A v♯
0, then v♯

0 = f

val f : τ1 → τ2 ∈ S JfK♯(A0, v♯
1) = w♯,A

π,A0, f v♯
1 ⇓app w♯,A

Unspec

Because JfK♯ is a sound approximation of JfK, one can conclude that w ∼A′ w♯, and
A′ ⊑ A by definition

• The conclusion rule of v0 v1 ⇓app w is Spec.
Therefore, v0 = f .

val f : τ1 → τ2 = t ∈ S ∅, t ⇓t w w v1 ⇓app v

f v1 ⇓app v
Spec

Moreover, v0 ∼A v♯
0, thereby v♯

0 = (F1, F2) and f ∈ F2 The conclusion rule in the
abstract derivation tree is either Spec or Spec-Loop

– The conclusion rule in the abstract derivation tree is Spec
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By monotonicity of the update functions and by applying the Induction Hypoth-
esis, the property is true.

– The conclusion rule in the abstract derivation tree is Spec-Loop
By definition of the abstract tree T ♯, the result of π,A0, v♯

0 v♯
1 ⇓app w♯,A is

equal to the result of ε,A0, v♯
0 v♯

1 ⇓app w♯,A. Thus, we continue the induction
with this new derivation tree and we fallback on the Spec case.

Theorem 7 Soundness of the Abstract Interpretation of Skeletons
Let S be a Skeletal Semantics with unspecified terms Te and unspecified types Ty, and let
E and E♯ be a concrete and abstract environment, respectively. Suppose

• ∀x ∈ Te, JxK♯ is a sound approximation of JxKppoint.

• ∀τ ∈ Ty, γτ is monotonic.

• updatein and updateout are monotonic.

• Specified functions do not return values of inductive types

Then:
E ∈ γΓ(A0, E♯)

E, S ⇓S v

ε,A0, E♯, S ⇓♯
S v♯,A

 =⇒ v ∈ γ(A, v♯)

Proof 15 Proof by induction on the derivation tree of E, S ⇓S v

• The conclusion rule of E, S ⇓S v is Branch
Then S = (S1, · · · , Sn), therefore

E, Si ⇓S v

E, (S1, .., Sn) ⇓S v
Branch

Therefore, the conclusion rule of π,A0, E♯, S ⇓♯
S v♯,A is Branch:

π,A0, E♯, Si ⇓♯
S v♯

i ,Ai

π,A0, E♯, (S1 · · ·Sn) ⇓♯
S ⊔

♯
iv

♯
i ,⊔

♯
iAi

Branch

Using the Induction Hypothesis, vi ∼Ai
v♯

i , and by the monotonicity of ∼: vi ∼⊔♯
iAi

⊔♯
iv

♯
i
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• The conclusion rule of E, S ⇓S v is LetIn
Then S = let p = S1 in S2, therefore

E, S1 ⇓S v ⊢ E + p 7→ v ⇝ E ′ E ′, S2 ⇓S w

E, let p = S1 in S2 ⇓S w
LetIn

Therefore, the conclusion rule of π,A0, E♯, S ⇓♯
S v♯,A is LetIn:

π,A, E♯, S1 ⇓♯
S v♯,A′

ProgTypes, prog ⊢
{
E♯

}
+ p 7→ v♯ ⇝

{
E♯

1, · · · , E♯
n

}
π,A′, E♯

i , S2 ⇓♯
S w♯

i ,Ai

π,A, E♯, let p = S1 in S2 ⇓♯
S ⊔♯w♯

i ,⊔♯Ai

LetIn

Using Lemma 17, ∃1 ≤ i ≤ m, E ′ ∼Ai
Ei. Therefore, using the Induction Hypothe-

sis, v ∼Ai
w♯

i and by the monotonicity of ∼: v ∼⊔♯
iAi
⊔♯

iw
♯
i .
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