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à donner le meilleur de moi-même. Ton amour et ton dévouement m’inspirent chaque jour à
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de thèse. Avant même le premier jour, tu m’écoutais parler du sujet, tu m’as accompagné
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Introduction

Contexte Général

L’inférence bayésienne a posteriori est une méthodologie générale qui, une fois la
valeur d’une observation Y donnée, permet de découvrir les valeurs probables prises par
une quantité inconnue d’intérêt X (appelée label) liée à Y , décrite par la distribution de
probabilité a posteriori (X|Y ). Cette méthodologie peut être appliquée lorsque le prati-
cien est capable (i) de spécifier (ou d’assumer un modèle pour) la distribution conjointe
du couple de variables (X, Y ) et (ii) de calculer, ou d’estimer via l’échantillonnage de
Monte Carlo, la distribution de probabilité a posteriori.

Une distribution de probabilité conjointe sur (X, Y ) peut en effet être factorisée en
(Y |X) multiplié par (X). Par conséquent, en pratique, spécifier la distribution de prob-
abilité conjointe peut se faire en spécifiant deux distributions distinctes : (i) un modèle
d’observation qui est une distribution conditionnelle sur (Y |X) et (ii) une distribution a
priori sur (X). Faire des hypothèses pertinentes sur ces deux distributions de probabilité
par rapport au problème à traiter est effectivement une exigence majeure pour obtenir
des informations pertinentes dans l’inférence et est un sujet largement couvert dans la
littérature. Cependant, le problème de l’obtention de telles distributions n’est pas celui
que nous traitons.

Dans cette thèse, nous supposons plutôt que nous disposons d’une distribution a
priori pertinente et d’un modèle d’observation précis, mais que ce dernier possède une
fonction de densité de probabilité (PDF) qui n’est pas calculable, rendant les PDF
jointes et a posteriori inutilisables en pratique. Nous supposons plutôt que le modèle
d’observation est partiellement connu via un jeu de données composé de couples enreg-
istrés, tels que les (xi, yi) qui le composent sont effectivement liés par la distribution con-
ditionnelle correspondante. Notre objectif est donc d’exploiter cet ensemble de données
et de construire un modèle qui capture la dépendance entre les deux variables aléatoires
et, en fin de compte, permette d’approximativer la distribution a posteriori d’intérêt.

Cette formulation générale inclut les tâches usuelles d’apprentissage statistique de
classification et de régression, qui ont suscité un intérêt croissant à l’ère du big data
et avec le développement des méthodes d’apprentissage (profond). Cette formulation
propose également une méthodologie alternative aux méthodes ABC, dans le contexte
du problème de l’inférence basée sur la simulation, qui est devenue populaire récemment
dans de nombreux domaines scientifiques car elle permet de confronter des mesures du
monde réel à des modèles in vitro ou in silico conçus comme des modèles de simulation.

La formulation bayésienne du problème, qui décrit les valeurs probables de X as-
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socié à une observation Y en utilisant la distribution de probabilité a posteriori, permet
de prendre en compte de manière directe l’incertitude aléatoire. Cependant, lorsqu’on
utilise un modèle pour la distribution de probabilité a posteriori inconnue en utilisant un
ensemble de données qui résume le modèle d’observation indisponible, il est également
souhaitable de prendre en compte l’incertitude épistémique de modélisation, qui est l’un
des problèmes considérés dans cette thèse. Cette thèse comprend plusieurs contribu-
tions méthodologiques qui, ensemble, peuvent aider à comparer différentes approches
d’approximation a posteriori sous l’angle de l’échantillonnage de Monte Carlo et de la
quantification de l’incertitude.

Contenu du document

Chapitre 1/

Dans le chapitre 1, nous proposons une visite guidée depuis les méthodes d’inférence
bayésienne classiques jusqu’à l’apprentissage statistique d’une distribution a posteriori,
qui sert d’introduction générale aux problèmes considérés dans cette thèse. Nous ex-
pliquons d’abord que l’inférence bayésienne a posteriori, avec des hypothèses appro-
priées sur les distributions de probabilité a priori et du modèle d’observation, per-
met l’étude des processus réels. Cela se fait cependant au prix de plusieurs difficultés
méthodologiques et computationnelles, telles que l’estimation des quantités statistiques
d’intérêt à l’aide de l’échantillonnage de Monte Carlo.

Nous considérons ensuite le cas où nous disposons d’un modèle d’observation per-
tinent, mais dont la PDF n’est pas calculable, et cette distribution de probabilité est
seulement connue via des observations collectées en un jeu de données. Cette situation
se produit, par exemple, lorsque le modèle d’observation est défini comme un simulateur
ou lorsque le modèle d’observation n’est plus disponible. Dans ce cas, la vraisemblance
et la PDF a posteriori deviennent des fonctions inutilisables en l’état.

Nous en arrivons alors au sujet de cette thèse. Nous expliquons que l’approche
d’apprentissage statistique, qui consiste à utiliser des couples produits par le modèle
d’observation pour obtenir une estimation de l’a posteriori, fournit effectivement une
solution méthodologique possible. Enfin, nous présentons les différents défis associés
à l’apprentissage statistique d’une distribution a posteriori, dont certains sont abordés
dans cette thèse.

Chapitre 2/

Dans le chapitre 2, nous nous concentrons sur la méthode d’estimation de la dis-
tribution a posteriori en utilisant l’approximation du likelihood-to-evidence-ratio. Nous
pouvons comprendre cette méthode comme une approximation paramétrique d’une dis-
tribution d’intérêt—dans notre cas, la distribution a posteriori—en utilisant un modèle
non normalisé spécifique basé sur un classifieur et une distribution instrumentale—dans
notre cas, la distribution a priori.

Dans ce travail, nous nous concentrons sur le problème de l’échantillonnage à partir
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de l’approximation correspondante. Le point précis de notre contribution consiste à ex-
ploiter la structure sous-jacente afin d’obtenir différentes procédures d’échantillonnage
de la distribution de probabilité correspondante qui soient faciles à mettre en œuvre.
Nous proposons d’effectuer un échantillonnage approximatif d’une distribution cible en
utilisant une distribution instrumentale avec les techniques classiques d’échantillonnage
de Monte Carlo basées sur le rapport de PDF, mais où ce rapport est remplacé par une
approximation basée sur un classifieur (voir section 2.1). Cette méthode d’échantillonnage
approximatif peut alors être comprise comme un échantillonnage exact, mais où la dis-
tribution échantillonnée est une approximation non normalisée basée sur un classifieur
et une distribution instrumentale. L’intérêt de notre méthodologie est au moins dou-
ble: l’algorithme d’échantillonnage résultant est sans paramètre et peut être appliqué
dans le contexte où la distribution a priori (instrumentale) possède elle aussi une PDF
incalculable.

Enfin, nous développons davantage sur la connexion entre notre approche d’échantillonnage
approximatif et les modèles à énergie (voir section 2.2). Nous proposons enfin une autre
application de la méthodologie du classifieur qui approxime un rapport de PDF, dans le
contexte de la modélisation générative. En effet, nous proposons un moyen efficace et
pratique de pallier la contrainte de bijectivité des flots normalisants (voir section 2.3).

Chapitre 3/

Dans le chapitre 3, nous abordons le problème de la quantification de l’incertitude
(UQ), qui est une préoccupation cruciale lorsque la quantité de données disponibles est
limitée. Ce sujet est largement couvert dans la littérature historique et récente. Dans ce
contexte, les défis actuels visent à adapter la quantification bayésienne de l’incertitude
à des réseaux de neurones profonds à grande échelle.

Dans ce travail, à proprement parler, nous ne proposons pas de nouvelle méthode
pour quantifier l’incertitude. Nous effectuons plutôt une comparaison entre les ap-
proches de modélisation générative et discriminative dans le cadre de la quantifica-
tion bayésienne de l’incertitude. En analysant la distribution prédictive a posteriori
(PPD), nous expliquons que, bien que leurs constructions soient très similaires, dans les
modèles génératifs et discriminatifs, les objets interagissent de manières très différentes,
entrâınant des différences structurelles entre les deux approches. Plus particulièrement,
nous analysons le rôle d’une distribution a priori, qui est explicite dans le cas génératif
et implicite dans le cas discriminatif; nous analysons cette différence et fournissons des
informations sur pourquoi les modèles discriminatifs souffrent de déséquilibres dans les
ensembles de données. Nous analysons également le rôle des observations dans l’inférence
globale : il est double, lié à la fois aux incertitudes aléatoires et épistémiques dans le cas
de la modélisation générative, alors qu’il est uniquement lié à l’incertitude épistémique
dans la modélisation discriminative. Nous tirons parti de cette conclusion pour expli-
quer la différence intrinsèque entre la PPD dans les deux cas, pour laquelle nous pro-
posons un schéma général d’échantillonnage de Gibbs, et l’incompatibilité structurelle
de l’approche discriminative avec la tâche d’apprentissage semi-supervisé.
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Chapter 4/

Dans le chapitre 4, nous abordons le problème de l’approximation variationnelle flex-
ible en utilisant un modèle avec une PDF calculable. Ce problème s’étend naturellement
des chapitres précédents, car les modélisations génératives et discriminatives nécessitent
toutes deux des PDF tractables des modèles sous-jacents. Avoir une PDF explicite et
tractable est (i) avantageux sur le plan computationnel, car cela permet l’utilisation
de diverses techniques de Monte Carlo, et (ii) une exigence pour une quantification
bayésienne de l’incertitude (UQ) exacte.

Nous commençons par examiner les méthodes conventionnelles de construction de
distributions de probabilité paramétriques, en nous concentrant sur les mécanismes qui
produisent des PDF tractables (voir section 4.1). Nous passons également en revue
brièvement le sujet de la reparamétrisation des gradients, car c’est un problème perti-
nent dans le contexte de ce travail (voir section 4.2). Ensuite, dans la section 4.3, nous
introduisons Discretely Indexed Flows (DIF), un nouveau modèle paramétrique qui étend
les modèles de mélange de gaussiennes. Dans ce modèle, nous remplaçons les poids de
mélange constants par une fonction de réseau de neurones, plus précisément un classi-
fieur, pour améliorer la flexibilité et l’expressivité dans les problèmes d’approximation
variationnelle. Les DIF offrent plusieurs avantages : (i) une évaluation rapide et ex-
acte de la PDF, (ii) un schéma d’échantillonnage simple, et (iii) une approche de
reparamétrisation des gradients qui le rend adapté à divers types de problèmes d’approximation
variationnelle. Enfin, nous expliquons comment appliquer cette construction à l’inférence
variationnelle, à l’estimation de densité et à l’estimation de densité conditionnelle.

La trame narrative

Comme nous venons de le voir, les différents chapitres de cette thèse (et leurs con-
tributions sous forme d’articles correspondants - voir la section suivante) sont présentés
de manière relativement indépendante les uns des autres. À première vue, ils peuvent
sembler aborder des problèmes spécifiques et sans rapport, mais en essence, ils sont liés
par un fil conducteur commun. En particulier, en synthétisant et en reliant les argu-
ments et conclusions de chaque chapitre, nous obtenons un récit cohérent qui fournit
des perspectives interconnectées et met en évidence les thèmes récurrents.

Nous explicitons maintenant ce récit sous la forme des trois phrases suivantes, qui
établissent en effet des liens entre les différents chapitres, et nous développons brièvement
ces phrases afin de clarifier le fil conducteur commun.

• “La méthode du likelihood-to-evidence-ratio...”

L’approximation de la PDF a posteriori utilisant le likelihood-to-evidence-ratio
est un outil très utile. Il a récemment suscité un grand intérêt, car il permet de
transformer un problème de l’estimation de densité conditionnelle en un problème
de classification binaire. Dans la première contribution de cette thèse, nous avons
abordé le problème de l’échantillonnage à partir de l’approximation a posteriori
correspondante en utilisant les algorithmes d’échantillonnage basés sur le rapport
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habituel.

“...correspond à une modélisation avec PDF non-normalisée...”

Cependant, cette approximation est intrinsèquement un modèle à énergie, et en
tant que tel, PDF n’est disponible que sous une forme non normalisée. Bien que la
constante de normalisation intraitable associée soit indépendante du label d’intérêt
dans l’inférence a posteriori, elle dépend des paramètres du modèle.

“...et n’est pas directement compatible avec la tâche de quantification
d’incertitude.”

La quantification de l’incertitude épistémique est devenue un sujet prévalent dans
l’apprentissage statistique moderne, particulièrement à l’ère de l’apprentissage ma-
chine (profond). Les méthodes bayésiennes pour la quantification d’incertitude
considèrent les paramètres comme des variables aléatoires et se concentrent sur
l’échantillonnage à partir de la distribution PPD. Pour certains modèles non nor-
malisés, la manière appropriée de réaliser l’UQ épistémique reste floue et peut
constituer un sujet de recherche futur.

Cela nous conduit à considérer spécifiquement des constructions qui sont effec-
tivement compatibles avec la tâche de l’UQ épistémique. Cela introduit donc le
Chapitre 3, dans lequel nous comparons les modèles génératifs et discriminatifs,
qui sont en effet compatibles avec ce problème.

• “Les constructions génératives et discriminantes...”

Les modèles génératifs et discriminatifs exploitent tous deux une distribution de
probabilité conditionnelle paramétrée, mais diffèrent dans leur construction. La
première modélisation paramètrise la distribution des observations conditionnalle-
ment étiquettes, tandis que le second fait le contraire. Cette différence entrâıne
de nombreuses conséquences intéressantes;

“...permettent la quantification de l’incertitude épistémique,...”

Sous une hypothèse cruciale mentionnée ci-après, les approches génératives et
discriminantes permettent toutes deux d’échantillonner suivant la PPD. En effet,
d’une part, les modèles discriminatifs offrent une approche directe pour échantillonner
la PPD et pour réaliser une inférence prenant en compte l’incertitude. D’autre
part, bien que l’approche de modélisation générative, comme la modélisation basée
sur le likelihood-to-evidence-ratio, fournisse une approximation non normalisée de
la PDF a posteriori, nous expliquons comment il est tout de même possible de
réaliser une quantification épistémique de l’incertitude via la PPD. Dans ce con-
texte, nous avons réalisé, dans la deuxième contribution de cette thèse, une com-
paraison approfondie des approches génératives et discriminatives à travers une
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analyse de la PPD, et avons conclu sur le comportement des deux approches dans
le cadre de l’apprentissage semi-supervisé et des jeux de données déséquilibrés.
Nous avons également proposé une méthode pratique pour réaliser une inférence
tenant compte de l’incertitude pour les modèles génératifs via l’échantillonnage de
la PPD.

“...à condition que ces constructions utilisent un modèle a PDF tractable.”

L’hypothèse qui permet la quantification l’incertitude épistémique pour les ap-
proches génératives et discriminatives est celle d’un modèle paramétrique condi-
tionnel bénéficiant d’une fonction PDF normalisée et tractable. Plus précisément,
cette hypothèse produit un problème d’inférence qui permet l’échantillonnage de
la PPD. Cela nous conduit donc du Chapitre 3, où nous abordons le problème de
l’UQ épistémique avec les approches discriminatives et génératives, au Chapitre
4, qui traite du problème de la construction de modèles paramétriques avec des
PDF tractables. Cela nous mène directement à la question suivante :

• “Comment construire un modèle paramétrique (possiblement condi-
tionnel) qui bénéficie d’une PDF calculabe ?”

Cette question est précisément le sujet abordé dans le Chapitre 4. Un modèle avec
une PDF tractable est en effet un outil puissant dans l’apprentissage statistique
paramétrique, car il peut être utilisé pour l’estimation de densité, l’estimation de
densité conditionnelle dans la modélisation générative et discriminative d’une PDF
a posteriori, l’inférence variationnelle, et l’échantillonnage approximatif à partir
d’une distribution connue par des échantillons enregistrés. Cependant, les modèles
de distributions de probabilité flexibles avec des PDF tractables sont quelque peu
limitées aux méthodes usuelles de (i) changement de variables avec des flots nor-
malisants, et (ii) modèles de variables latentes discrètes tels que les mélanges.
Dans la troisième contribution de cette thèse, nous proposons une nouvelle con-
struction qui combine effectivement ces deux mécanismes, et bénéficie d’une flex-
ibilité variationnelle accrue (en utilisant des fonctions de réseaux de neurones)
tout en conservant une évaluation exacte de la PDF simple. Cette construction
peut facilement être transformée en modèles conditionnels pour la modélisation
générative et discriminative d’une approximation d’une PDF a posteriori.

Contributions

Cette thèse est basée sur les articles de journaux suivants. Nous décrivons la corre-
spondance entre les articles et les sections de cette thèse dans la table suivante 1.

• “Binary Classification Based Monte Carlo Simulation”, Elouan ARGOUARC’H,
François DESBOUVRIES; publié dans IEEE Signal Processing Letters, vol. 31,
pp. 1449-1453, 2024, doi: 10.1109/LSP.2024.3396403.

https://ieeexplore.ieee.org/document/10517652
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Introduction

General Context

Bayesian Posterior inference is a general methodology that, once given the value of
an observation Y , enables the unraveling of the probable values taken by an unknown
quantity of interest X related to Y , encapsulated in the posterior probability distribution
(X|Y ). This methodology can be applied when the practitioner is able to (i) specify
(or assume a model for) the joint distribution of the pair of variables (X, Y ) and (ii)
compute, or estimate via Monte Carlo sampling, the posterior probability distribution.

A joint probability distribution over (X, Y ) can indeed be factorized as (Y |X) times
(X). Therefore, in practice, specifying the joint probability distribution can be fulfilled
by specifying two distinct distributions: (i) an observation model which is a conditional
distribution over (Y |X) and (ii) a prior which is a distribution over (X). Making
relevant assumptions about these two probability distributions in regard to the problem
at hand is indeed a main requirement for obtaining relevant information in the inference
and is a widely covered topic in the literature. However, the problem of eliciting such
distributions is not the problem that we aim to tackle.

In this thesis, we instead suppose that we are given a relevant prior distribution
and an accurate observation model, but the latter has an intractable probability den-
sity function (PDF), making both the joint and the posterior PDFs unavailable. We
instead suppose that the observation model is partially known via a dataset composed
of recorded couples, which are indeed related by the corresponding conditional distribu-
tion. Our goal is therefore to leverage this dataset and build a model that captures the
dependency between the two random variables (RVs) and ultimately approximates the
unavailable posterior distribution of interest.

This general formulation includes the statistical learning tasks of classification and
regression, which have gained increasing interest in the big-data era and with the de-
velopment of (deep) machine-learning methods. This formulation also proposes an al-
ternative methodology to Approximate Bayesian Computation methods, in the context
of Simulation Based Inference, which has recently become popular in many scientific
fields, since they enable to confront real world measurements to intrinsic in vitro or in
silico observations models designed as simulation models.

The bayesian formulation of the problem, which describes probable values X given an
observed Y using the posterior probability distribution, provides with a straightforward
accounting of the aleatoric uncertainty. However, when using a model for the unknown
posterior probability distribution using a dataset which summarizes the unavailable
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observation model, it is also desirable to account for the epistemic modeling uncertainty,
which is one of the problems considered in this thesis. This thesis comprises several
methodological contributions which, together, can help comparing different posterior
approximation approaches under the scope of Monte-Carlo sampling and uncertainty
quantification (UQ).

Contents of this thesis

Chapter 1/

In chapter 1, we propose a guided tour from classical Bayesian inference to posterior
statistical learning, which serves as a general introduction to the problems considered
in this thesis. We first explain that Bayesian posterior inference, with appropriate
assumptions of prior and observation model probability distributions, enables the study
of real-world processes. This comes, however, at the cost of several methodological and
computational shortcomings, such as that of estimating statistical quantities of interest
using Monte Carlo sampling.

We then consider the case where we dispose of a given relevant observation model
but which has an intractable PDF and is instead only known via recorded observations.
This situation occurs, for instance, when the observation model is defined as a simulator
or when the observation model is no longer available. In this case, both the likelihood
and the posterior PDF become unavailable functions.

We then come to the topic of this thesis. We explain that the statistical learning
approach, which consists in using recorded samples from the observation model to obtain
an estimate of the posterior, indeed provides a solution to this shortcoming. We finally
present different challenges associated with statistical learning of a posterior distribution,
some of which are tackled in this thesis.

Chapter 2/

In chapter 2, we focus on the method for estimating the unavailable posterior using
the likelihood-to-evidence ratio approximation. We can understand this method as a
parametric approximation of a distribution of interest—in our case, the posterior—using
a specific unnormalized model based on a classifier ratio and an instrumental distribu-
tion—in our case, the prior.

In this work, we focus on the problem of sampling from the corresponding approxima-
tion of the posterior distribution. The score point of our contribution is to leverage the
underlying structure in order to obtain different easy-to-carry-out sampling procedures
from the corresponding probability distribution. We propose to perform approximate
sampling from a target distribution using an instrumental distribution with the classical
ratio-based Monte Carlo sampling techniques, but where the PDF ratio is replaced by
a classifier-ratio approximation (see section 2.1). This method of approximate sampling
can then be understood as exact sampling from an unnormalized classifier-ratio based
approximation. The interest of our methodology is at least twofold: the resulting sam-
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pling algorithm is parameter-free and can be applied in the context where the prior
distribution has an intractable PDF.

Additionally, we elaborate on the connection between our approximate sampling
approach and energy-based modeling (see section 2.2). We finally propose another
application of the classifier-ratio methodology in the context of generative modeling
with an efficient and practical way to cope with the bijectivity constraint of Normalizing
Flows (see section 2.3).

Chapter 3/

In chapter 3, we aim to tackle the problem of UQ, which is a crucial concern when
the amount of available data is limited. This topic is widely covered in both historical
and recent literature. In this context, current challenges aim to scale Bayesian UQ to
large-scale deep-neural networks.

In this work, properly speaking, we do not propose a novel method for quantifying
the uncertainty. We instead carry out a comparison between the generative and dis-
criminative modeling approaches under the scope of Bayesian UQ. By analyzing the
posterior predictive distribution (PPD), we explain that, even though their construc-
tions are very similar, in generative and discriminative models, the objects interact in
very distinct ways, leading to structural differences between the two approaches. Most
notably, we analyze the role of a prior distribution, which is explicit in the generative
case and implicit in the discriminative case; we analyze this difference and provide in-
sights into why discriminative models suffer from imbalanced datasets. We also analyze
the role of observations in the global inference: it is dual, both related to aleatoric
and epistemic uncertainties in the case of generative modeling, while only related to
epistemic one in discriminative modeling. We leverage this conclusion to explain the
intrinsic difference between the PPD in both cases, for which we propose a general Gibbs
sampling scheme, and the structural incompatibility of the discriminative approach with
the task of semi-supervised learning.

Chapter 4/

In this chapter, we address the problem of flexible variational approximation using a
model with a tractable PDF. This problem naturally extends from the previous chapter,
as both generative and discriminative modeling require tractable PDFs of the underlying
models. Having an explicit and tractable PDF is (i) computationally convenient as it
enables the use of various Monte Carlo techniques, and (ii) a requirement for exact
Bayesian UQ.

We begin by reviewing conventional methods for constructing parametric probabil-
ity distributions, focusing on mechanisms that yield tractable PDFs (see section 4.1).
We also briefly review the topic of reparameterization of gradients since it is a relevant
problem in the context of this work (see section 4.2). Next, in section 4.3, we intro-
duce Discretely Indexed Flows (DIF), a novel parametric model that extends Gaussian
Mixture Models. In this model, we replace constant mixture weights with a classifying
neural network function to enhance flexibility and expressiveness in variational approx-
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imation problems. DIF offers several advantages: (i) rapid and exact PDF evaluation,
(ii) a straightforward sampling scheme, and (iii) a gradient reparameterization approach
that renders it suitable for various types of variational approximation problems. Finally,
we explain how to apply this construction to variational inference, density estimation,
and conditional density estimation.

The narrative of this thesis

As we have just seen, the different chapters of this thesis (and their corresponding
article contributions, see next section) are presented rather independently of one an-
other. At first glance, they might seem to tackle unrelated and specific problems, but
in essence, they are linked by a common thread. In particular, by synthesizing and
bridging arguments and conclusions from each chapter, we obtain a cohesive narrative,
which provides interconnected insights and highlights the overlapping themes.

We now explicit this narrative in the form of the three following sentences, which
indeed establish connections between the different chapters, and we briefly elaborate on
these sentences in order to clarify the common narrative.

• “The likelihood to evidence ratio...”

The likelihood-to-evidence ratio is a very useful tool for approximating an unavail-
able posterior PDF. It has gained interest in recent years as it enables turning the
problem of conditional density estimation into a problem of binary classification.
In the first contribution of this thesis, we have tackled the problem of sampling
from the corresponding posterior approximation by using the usual ratio-based
sampling algorithms;

“...corresponds to an underlying unnormalized model...”

However, the likelihood-to-evidence ratio approximation is inherently an energy-
based model, and as such, its PDF is only available in an unnormalized form.
While its associated intractable normalizing constant is independent of the label
variable of interest in the posterior inference, it does depend on the model param-
eters;

“...and is not compatible with the task of epistemic uncertainty quan-
tification.”

Epistemic UQ has become a prevalent topic in modern statistical learning, es-
pecially in the (deep) machine learning era. Bayesian methods for epistemic UQ
consider parameters as RVs and focus on sampling from the PPD. For some un-
normalized models, particularly likelihood-to-evidence ratio-based models, the ap-
propriate way to perform epistemic UQ remains unclear and can be a topic for
future work. This leads us to specifically consider constructions that are indeed
compatible with the task of epistemic UQ. This therefore introduces Chapter 3,
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in which we compare the generative and discriminative models, that are indeed
compatible with this problem.

• “Generative and discriminative models...”

Generative and discriminative models both leverage a parameterized conditional
probability distribution but differ in their construction: the former parameterizes
the distribution of observations given labels, while the latter does the opposite.
This difference has many interesting consequences;

“...indeed enable epistemic uncertainty quantification,...”

Under a crucial assumption mentioned hereafter, both generative and discrimi-
native approaches enable sampling from the PPD. Indeed, on the one hand, dis-
criminative models provide a straightforward approach for sampling from the PPD
and performing uncertainty-aware inference. On the other hand, although the gen-
erative modeling approach, like likelihood-to-evidence ratio modeling, provides an
unnormalized approximation of the posterior PDF, we explain how it is still pos-
sible to perform epistemic UQ via the PPD. In this context, we conducted, in
the second contribution of this thesis, a thorough comparison of generative and
discriminative approaches through an analysis of the PPD, and concluded on the
behavior of both approaches under the scope of semi-supervised learning and un-
balanced datasets. We also provided a practical way to perform uncertainty-aware
inference for generative models;

“...under the condition that both approaches use a parametric model
with tractable and normalized PDF.”

The assumption that enables epistemic UQ for both generative and discrimina-
tive approaches is that of a conditional parametric model which benefits from a
normalized and tractable PDF. More precisely, this assumption yields a tractable
inference problem, and enables sampling from the PPD. This therefore leads us
from Chapter 3, in which we tackle the problem of epistemic UQ with discrim-
inative and generative approaches, to Chapter 4, which tackles the problem of
constructing parametric models with tractable PDFs. This directly leads us to
the next question:

• “How do we build a (possibly conditional) parametric model which ben-
efits from straightforward PDF evaluation ?”

This question is precisely the topic covered in Chapter 4. A model with a tractable
PDF is indeed a powerful tool in parametric statistical learning, as it can be used
for density estimation, conditional density estimation in generative and discrimina-
tive modeling of a posterior PDF, variational inference, and approximate sampling
from a distribution known by recorded samples. However, flexible probability dis-
tributions with tractable PDFs are somewhat limited to the usual methods of (i)
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change of variables with normalizing flows, and (ii) discrete latent variable mod-
els with mixture models. In the third contribution of this thesis, we propose a
new construction which indeed combines these two mechanisms, and benefits from
increased variational flexibility (using NN functions) and retain straightforward
exact PDF evaluation. This construction can easily be turned into conditional
models for generative and discriminative modeling of a posterior approximation
in this initial context.

Contributions

This thesis is based on the following journal papers, the correspondance between
papers and thesis sections is displayed in table 2.

Chapter 2 “Binary Classification based Monte Carlo
sampling”

Section 2.1

Chapter 3 “Generative vs. Discriminative Bayesian
Posterior learning”

-

Chapter 4 “Discretely Indexed Flows” Section 4.3

Table 2: Correspondance between papers and sections

• “Binary Classification Based Monte Carlo Simulation”, Elouan ARGOUARC’H,
François DESBOUVRIES; published in IEEE Signal Processing Letters, vol. 31,
pp. 1449-1453, 2024, doi: 10.1109/LSP.2024.3396403.

https://ieeexplore.ieee.org/document/10517652;

• “Generative vs. Discriminative Bayesian Posterior learning”, Elouan ARGOUARC’H,
François DESBOUVRIES, Eric BARAT, Eiji KAWASAKI; submitted to Bayesian
Analysis. Available on ArXiv:stat/2406.09172. - https://arxiv.org/abs/2406.09172;

• “Discretely Indexed Flows”, Elouan ARGOUARC’H, François DESBOUVRIES,
Eric BARAT, Eiji KAWASAKI, Thomas DAUTREMER; working paper. Avail-
able on ArXiv:stat/2204.01361. - https://arxiv.org/abs/2204.01361.

In addition to these three articles, preliminary versions of the work were also pub-
lished in a national signal and image processing conference. They are related to this
thesis, respectively parts of chapter 4 and chapter 3.

• “Flots stochastiques discrets” Elouan ARGOUARC’H, François DESBOU-
VRIES, Eric BARAT, Eiji KAWASAKI, Thomas DAUTREMER; Actes du 28ème
colloque GRETSI, Nancy, France, September 2022.

https://www.gretsi.fr/data/colloque/pdf/2022 argouarch1049.pdf;

https://ieeexplore.ieee.org/document/10517652
https://arxiv.org/abs/2406.09172
https://arxiv.org/abs/2204.01361
https://www.gretsi.fr/data/colloque/pdf/2022_argouarch1049.pdf
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• “Apprentissage Bayésien Semi-supervisé par modélisation générative”, Elouan
ARGOUARC’H, François DESBOUVRIES, Eric BARAT, Eiji KAWASAKI,
Thomas DAUTREMER; Actes du 29ème colloque GRETSI,Grenoble, France,
September 2023.

https://www.gretsi.fr/data/colloque/pdf/2023 argouarch1365.pdf.
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Chapter 1

From Bayesian Inference to Posterior
Statistical Learning

In this introductory chapter, we propose a guided tour from classical Bayesian in-
ference to posterior statistical learning. We indeed aim to explain how considering
increasingly intricate models can render the usual likelihood-based posterior inference
methods unfeasible, and how an appropriate use of learning techniques enables us to
bypass such shortcomings. This establishes the context of this thesis, and enables us to
raise a number of questions which will be addressed in the following chapters.

Consider a scientific problem where we dispose of recorded observations, and the goal
is to study the underlying phenomenon by interpreting some underlying causes or prop-
erties, or by predicting future outcomes of the same phenomenon. This general problem
can be tackled with the framework of Bayesian posterior inference (114)(4) which we
now describe. We represent the unknown phenomenon of interest using a probabilistic
model based on two random variables (RVs). More precisely, we associate the observed
RV Y to a hidden interpretable RV of interest X, which we assume (i) is distributed
according to PX and (ii) is related to Y via an observation model PY |X . Observing the
value of Y , say y, indeed carries information about X, which is encapsulated in the
distribution PX|Y=y and with a probability density function1 (PDF) given by the Bayes
formula (3):

pX|Y=y(x) =
pX(x)pY |X=x(y)∫
pX(x)pY |X=x(y)dx

. (1.1)

PX|Y=y is the a posteriori (or posterior) distribution and is the result of Bayesian up-
dating: the a priori (or prior) knowledge about X described by PX is updated with the
observation that Y takes the value y via the likelihood2 pY |X=x(y).

If the model is accurate enough, so that it reasonably describes the natural phe-
nomenon of interest, then the posterior distribution can indeed provide valuable insights
about the probable values of X given Y = y, and thus to interpret the probable causes

1Throughout this thesis, the PDF should be understood with respect to the appropriate measure,
depending on the nature (continuous, discrete, or mixed continuous-discrete) of the underlying variables.

2In the formula for the posterior PDF, the variable of interest is x, and so even though the likelihood
is the PDF of a distribution over Y evaluated at the observed value y, it is indeed to be understood as
a function of x.

1
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of the underlying physical phenomenon. We now illustrate this point with a personally
made-up (and possibly unrealistic) example.

Example: Say we observe a tree at some geographical location and we wish to un-
derstand how such a big (or tiny) tree came to grow in this specific area. The observed
RV is Y =

{
size, location

}
and takes value y =

{
3m× 1.5m,Palaiseau− France

}
.

For this problem, a relevant cause might be the specie and age of the tree. So we chose
to consider the RV X =

{
specie, age

}
where specie can be a Categorical variable which

takes values among the list of known tree species, and age can be a continuous positive
variable. Consider the distribution PX which can describe prior information such as:
“Oak is more common than Birch”, “an Eucalyptus usually lives between 150 and 700
years”, “a 200 year old tree is more likely to be a marple tree than a cherry tree”, and
“the average lifespan of a tree is around 350 years”. On the other hand, we assume an
observation model PY |X which indeed relates Y to X with information such as: “Spruce
thrives more in northern areas”, “Sequoias are more likely to reach heights beyond 80
meters than pines”, and “the size of a tree increases with age”. Then, by examining
the posterior probability distribution, we might, for example, conclude that, under these
probabilistic assumptions, it is more likely that the observed tree is a mature Hazelnut
tree rather than a young Linden tree.

1.1 Monte Carlo Integration

In turn, studying the properties of the posterior distribution can, most of the time,
be expressed as a problem of computing (or approximating - and possibly minimizing)
an expectation of the form:

EX∼PX|Y =y
[f(X)]. (1.2)

where f is a measurable function. Computing this integral enables us to extract mean-
ingful information about the RV X, once is observed that Y = y. For instance, let A
be a set, then with f(x) = 1A(x), this expectation becomes Pr(X ∈ A|Y = y). This
procedure therefore enables us to discover the probable regions (∼ values) for the RV
X, given the observation of the random process of interest. Another example is the case
where f(x) = x, then this expectation becomes E[X|Y = y] and corresponds to the
average value of X given Y = y. Finally, the posterior distribution enables to obtain
pointwise Bayes predictors by minimizing the expectation of a well-designed loss func-
tion l (80): x∗ = arg minxEX∼PX|Y =y

[l(X, x)]; which indeed corresponds to minimizing
an expectation of the same form as in (1.2).

Hence, we consider the goal of computing an expectation computed with respect to
the posterior, as in (1.2), with a given function f . This expectation is written as, using
the Law of the unconscious statistician:

EX∼PX|Y =y
[f(X)] =

∫
f(x)pX|Y=y(x)dx. (1.3)

Unfortunately, for an arbitrary function f , this integral does not admit an analytical
closed form expression such that no feasible computation can yield a numerical value. So
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it cannot be computed exactly, and this shortcoming instead calls for an approximation
of the integral.

The problem of approximating an integral does not only occur when tackling Bayesian
posterior inference, and is a more general problem which is widely studied; see e.g.
(78)(51). The possible methods to provide such an approximation include the Riemann
summation methods as well as many other schemes which consist in approximating the
integral as a weighted sum of the integrand evaluated at a finite set of points. We
refer to such methods as standard numerical integration methods as opposed to Monte
Carlo integration, and we refer to the book (25) for a complete overview of these meth-
ods. However, these standard numerical integration methods are not best suited for
approximating (1.2) as, firstly, they fail to provide an accurate approximation when the
integral is computed on (i) an infinite and/or (ii) a multidimensional set. Indeed, to
reach a given precision of the estimate, the number of required integrand evaluations
grows exponentially with the dimension. Secondly, and perhaps more critically, the
standard numerical integration methods cannot even be applied in this context since
the integrand function cannot be exactly evaluated, and we now explain this precise
point.

In equation (1.3), the integrand is a product of two functions: the first factor is the
measurable function f(x), and the second is the posterior PDF pX|Y=y(x). It turns out
that standard numerical methods cannot be applied in this setting since this integrand
can only be evaluated up to a constant as the second factor, which is given by expres-
sion (3.1), cannot be evaluated. Indeed, on the one hand, if the likelihood and prior
are conjugate (41) (see also (17) and (23) for relevant references), then the posterior
distribution can be expressed as some known distribution which belongs to the same
family as the prior, and as such its PDF can be expressed and computed exactly. How-
ever, conjugacy usually occurs when a practitioner specifically selects the likelihood and
prior to be conjugate for one another for computational convenience; this case rarely
corresponds to a practical application where one or both can be arbitrary probability
distributions. Indeed, for an arbitrary choice of PY |X , (i) a known conjugate prior is not
guaranteed to exist (as is the case with a logistic model for instance - though it is always
the case for exponential family distributions (30)) and (ii) the distribution PX does not
necessarily correspond to one such conjugate prior. As a consequence, in general, only
the numerator of the posterior PDF pX(x)pY |X(x|y) can be evaluated, while its constant
denominator

∫
pX(x)pY |X(y|x)dx is itself an intractable integral. So, we can write the

posterior PDF as:

pX|Y=y(x) =
p̃X|Y=y(x)

C
, (1.4)

where only p̃X|Y=y(x) can be evaluated and C =
∫
p̃X|Y=y(x)dx is the intractable nor-

malizing constant.

Monte Carlo integration refers to a set of numerical methods for approximating
integrals which allows us to bypass the shortcoming that the integrand is intractable
in general. Indeed, it provides an approximation of (1.2) that is not based on a linear
combination of the integrand but which is instead based on random number generation.
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The principle of this approximation is as follows:

EPX|Y =y
[f(X)] ≈ 1

N

N∑
i=1

f(Xi); where X1, ..., XN
iid∼ PX|Y=y. (1.5)

The weak (resp. strong) law of large numbers states that the right-hand side of (1.5)
converges in probability (resp. almost surely) to the true value of the expectation.
Moreover, the central limit theorem implies that, with a probability close to 0.95:

|EPX|Y =y
[f(X)]− 1

N

N∑
i=1

f(Xi)| ≤
1.96σX√

N
(1.6)

where σ2
X = Var[Xi]. This means that the Monte Carlo integration principle yields an

approximation of the expectation with absolute error bounded, with high probability, by
O( 1√

N
) and so the convergence rate of this method is

√
N regardless of the dimension.

1.2 Sampling from the posterior

With Monte Carlo integration, the problem of approximating an integral has thus
become a problem of sampling, and our ability to obtain an approximation of (1.2) is
directly related to our ability to draw independent samples from the posterior distribu-
tion.

As we have mentioned before, the posterior distribution can be expressed as some
known probability distribution only in specific cases, such as when the prior and the
likelihood are conjugate, in which case it belongs to the same family as the prior dis-
tribution. If this family of distributions benefits from a specific sampling procedure
(52)(28), then the posterior distribution inherits from this computational advantage.
In the general case, the posterior distribution is only described via its PDF (up to an
unknown constant) given by the Bayes formula (3.1), which raises the general question
of sampling from this unnormalized PDFs.

We now briefly review the historical methods for Monte Carlo sampling which enable
us to approximate an expectation (1.2) (in this section, and unless stated otherwise,
the distribution of interest is not necessarily a posterior of the form PX|Y but is more
generally a distribution over X which we denote by P).

1.2.1 Accept-Reject Sampling

Accept-reject sampling, or rejection-sampling, is a technique to sample from a distri-
bution of interest, which is known via its PDF. It can be traced back to paper (128) and
has rapidly become a cornerstone of random sampling (27) (see e.g.(92) with a chapter
dedicated to a recent, complete and thorough review of the technique) and has led to
the development of several ensuing methods such as, most notably, (70). The seminal
technique of rejection sampling is simple and elegant (43): its principle is to propose a
sample from a suitable proposition distribution and draw a binary RV which indicates
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whether to accept the proposed sample or to reject it (hence the name Accept-Reject
sampling). More precisely, consider an instrumental distribution Q which dominates
the distribution of interest P : for any set A, P(A) > 0 implies Q(A) > 0. As a conse-

quence, if p(x) > 0 then q(x) > 0 which subsequently implies that c∗
∆
= supx∈R

p(x)
q(x)
≥ 1.

Consider (i) c ≥ c∗, (ii) X a random proposed sample distributed according to the

easy-to-sample proposal Q and (iii) k a Bernoulli RV with probability p(X)
cq(X)

. The score
point of rejection sampling is that, given k = 1, X is exactly distributed according to
P which we can easily see as its PDF reads:

q(x)Pr(k = 1|x)

Pr(k = 1)
=

q(x) p(x)
cq(x)∫

q(x) p(x)
cq(x)

dx
= p(x). (1.7)

The rejection sampling algorithm can therefore be applied when one can compute the
PDF of the target distribution as well as that of the proposal instrumental distribution.
However, this technique can easily be adapted to the case where p and/or q are each
known up to a constant (which is not necessarily common), as is explained in (100).
The acceptance probability is Pr(k = 1) = 1

c
. So the lower the value of c, the more

likely it is that a proposed sample will get accepted: the efficiency of the rejection sam-
pling approach is dictated by (i) the ability of a practitioner to elicit a suitable proposal
distribution which is close to the target distribution, yielding a small value of c∗ and
(ii) the ability to find a low value of c ≥ c∗. With that regard, one can use different
proposal distributions (perhaps from the same parameterized family) during the sam-
pling procedure and, with some precautions, still obtain independent samples as in (12).
In the special case of a log-concave target PDF, it is possible to use a piecewise linear
proposal distribution, which we can refine during the accept-reject sampling procedure,
yielding an adaptative rejection sampling procedure (54).

1.2.2 Markov chain Monte Carlo

Markov chain Monte Carlo (see (7) for a review) is a set of techniques for sampling
from a target distribution by simulating a Markov chain which admits that distribution
as its limiting invariant distribution. MCMC techniques therefore take interest in de-
signing a Markov transition kernel M which is easy-to-sample from and which leaves
the target distribution P invariant:

P(dx) =

∫
M(x′, dx)P(dx′). (1.8)

Simulating the Markov chain with transition kernel M therefore provides correlated
samples that are asymptotically distributed according to P . A sufficient condition for
M to leave P invariant is that M is reversible with respect to P (126):

M(x′, dx)P(dx′) =M(x, dx′)P(dx). (1.9)

Indeed, one can easily check that this condition, which is also referred to as detailed
balance or time reversibility, satisfies (1.8). For example, if P is a multivariate distri-
bution, then sampling from the probability distribution of one variable conditionally on
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the values of the others is indeed a reversible Markov transition kernel. This principle
yields the Gibbs Sampling algorithm (50)(48), which consists in, sequentially or in a ran-
dom order, sampling some or all the conditional distributions. Note finally that, even
though Gibbs sampling is a technique which is suited for sampling from multivariate
distributions, its principle can be of interest for sampling from univariate distributions:
one can utilize the Gibbs sampling procedure to an arbitrary joint distribution which
admits P as one of its marginals. A most notable application of this principle is that of
Slice-Sampling (24)(99), which can easily be understood as Gibbs sampling applied to an

augmented (with a uniform RV) distribution, whose PDF reads p(x, u) = p(x)
1[0,p(x)](u)

p(x)
.

The Metropolis-Hastings (MH) algorithm (93)(59), perhaps the most famous MCMC
algorithm, is another very convenient approach to construct a transition kernel which
satisfies the detailed balance property. The idea of the MH algorithm is to propose
a candidate x∗ according to some Markov kernel Q (not necessarily P-invariant or P-
reversible) and either accept the proposed point (in which case it becomes the next state
of the Markov chain) or reject it (in which case the chain remains at the current point
xt) according to a Bernoulli distribution with acceptance probability αMH(x∗, xt) =

min(1, p(x
∗)q(xt|x∗)

p(xt)q(x∗|xt) ). It happens that the resulting two-step transition indeed forms a

Markov transition kernel which is reversible with respect to P (see (18) for a compre-
hensive review of the MH acceptance). The interest of this MH scheme is that one can
use any transition kernel. For instance, kernels can be informed by the geometry of P us-
ing the gradient of the log-PDF to drive the chain towards regions of high mass, which is
the idea of Metropolis-Adjusted Langevin (57)(116)(115) and Hamiltonian Monte Carlo
(35)(98)(63). Finally, observe that the MH scheme is not the only way to construct a
reversible Markov kernel, as alternative acceptance probabilities also ensure reversibility
(2)(83)(79), such as Barker’s acceptance.

1.2.3 Importance Sampling

Importance sampling is a Monte Carlo integration technique which can be used to
approximate integrals such as (1.2) and which can be traced back to the late 1940’s
(68),(55) and the early 1950’s (67),(91),(58). This technique is based on the simple
rewriting of the expectation of interest as:

EX∼P
[
f(X)

]
= EZ∼Q

[
f(Z)

p(Z)

q(Z)

]
; (1.10)

where Q is an instrumental distribution called the importance distribution. Since we
have rewritten the expectation computed with respect to P as an expectation computed
with respect to Q, one can obtain a Monte Carlo approximation of the expectation by
sampling from the importance distribution as:

EX∼P
[
f(X)

]
≈ 1

N

N∑
i=1

f(Zi)
p(Zi)

q(Zi)
,where Z1, ..., ZN

iid∼ Q. (1.11)

This technique is, of course, of particular interest when we cannot sample from P
directly, in which case we cannot even construct the vanilla Monte Carlo estimate
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1
N

∑N
i=1 f(X(i)), where X(1), ..., X(N) iid∼ P . When we are interested in finding an im-

portance distribution, or even reusing the same set of samples from that importance
distribution, in order to approximate expectations (1.2) for a broad spectrum of func-
tions f , then it is of interest to consider an importance distribution which is as close as
possible to P , see (11)(32). But we now see that this technique can also be of interest
in the case where we are able to obtain samples from P but the corresponding vanilla
estimator is a poor approximation for a fixed number of samples and for a given function
f . Indeed, importance sampling can be understood as a variance reduction technique
since an appropriate choice of importance distribution enables us to obtain a Monte
Carlo estimate of low variance. To understand this, let us examine the variance of the
importance sampling estimate (1.11) with importance distribution Q for a real-valued
function f which reads:

1

N

(
EZ∼Q

[(
f(Z)

p(Z)

q(Z)

)
2

]
−EX∼P

[
f(X)

]
2

)
. (1.12)

We see that an appropriate choice of importance distribution Q∗ with PDF q∗(x) =
|f(x)|p(x)∫
|f(x)|p(x)dx yields an estimate of minimal variance (which even reaches 0 when f > 0).

Even if Q∗ is not an easy-to-sample-from distribution which can be used in practice
as importance distribution, this tells us that the regions where it is most important to
obtain samples from (hence the term importance distribution) are not those where only
p(x) is large, but rather those where |f(x)|p(x) is large.

When the probability distribution P and/or the importance distribution Q have
PDFs which are known up to constants, say p̃ and q̃ (as is the case in (1.2) where the
expectation is computed with respect to (3.1)), one can resort to self-normalized impor-
tance sampling estimation (53)(8). This estimation method is based on the rewriting of
the expectation of interest as:

EX∼P
[
f(X)

]
=
EZ∼Q

[
f(Z) p̃(Z)

q̃(Z)

]
EZ∼Q

[
p̃(Z)
q̃(Z)

] ; (1.13)

We can build an estimate of this expectation by estimating both the numerator and
denominator with the importance sampling principle with the same set of samples

Z1, ..., ZM
iid∼ Q (i.e. with the same samples from the same importance distribution,

though it can also be done using different importance distributions for the numerator
and the denominator, see (77) for an application of this idea). This yields:

EX∼P
[
f(X)

]
≈

N∑
i=1

ω̃i∑N
j=1 ω̃i

f(Zi),where ω̃i =
p̃(Zi)

q̃(Zi)
; (1.14)

which, unlike the unnormalized importance sampling estimate (1.11), is biased but
is nonetheless asymptotically unbiased. Moreover, an inspection of the variance of
this estimate yields an optimal importance distribution, which PDF reads q∗(x) =
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|f(x)−EX∼P [f(X)]|p(x)∫
|f(x)−EX∼P [f(X)]|p(x)dx

. Unlike in the first case, where the optimal importance distri-

bution was only inconvenient to use since it could not be sampled from easily, the
self-normalized optimal importance distribution cannot be used in practice since it in-
volves the unknown value of the expectation that we are trying to approximate in the
first place. The properties of this estimate, both asymptotic (61)(113)(82) and non-
asymptotic (1)(16), have been thoroughly studied and are well understood.

Importance sampling can also be understood as an implicit sampling mechanism.
Indeed, the importance sampling estimate (1.14) can be understood as an exact expec-
tation computed with respect to a discrete measure in the form of a weighted sum of
Dirac-δ functions:

N∑
i=1

ωiδZi
(dx),where ωi =

ω̃i∑N
j=1 ω̃i

and Z1, ..., ZN
iid∼ Q; (1.15)

from which one can easily obtain samples via a resampling procedure:

Zj where j ∼ Categorical(ω1, ..., ωN). (1.16)

This is the principle of Rubin’s Sampling-Importance Resampling (117)(122). Repeat-
ing this sampling procedure produces samples which are correlated and approximately
distributed according to P , and of course, since we are resampling (with replacement)
amongst a finite set of samples, we can obtain several replicas of the same sample from
the importance distribution. The score point of sampling-importance-resampling is that
the produced samples become iid samples from P as the number of proposed samples
N increases to infinity (9, chapter 9).

1.2.4 Variational Inference

Variational Inference (VI) (66) (see (5) for a gentle introduction) methods consist
in approximating P with an instrumental distribution Q∗ obtained via minimizing a
discrepancy measure DVI over a family of distributions F :

Q∗ = arg min
Q∈F

DVI(P ,Q). (1.17)

If F represents a set comprised of easy-to-sample-from distributions, then Q∗ can easily
provide samples that are approximately distributed under P . Therefore, VI turns a
problem of sampling from a distribution known via its PDF into a problem of discrep-
ancy minimization, usually over a parameterized family of distributions (hence the term
variational inference). When applied to a posterior distribution, VI enables to per-
form approximate Bayesian posterior inference (hence the name variational inference)
(44), which finds applications, for instance, in the learning of implicit generative models
(see e.g. (72)). In the more general unconditional setting, this method is, by abuse of
language, still referred to as VI.

Once the variational distribution is obtained via optimization, Q∗ can be used as an
approximation of the target distribution P ; alternatively, Q∗ can be used as an optimized
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instrumental distribution in a classical Monte Carlo sampling setting, in order to com-
pensate for the discrepancy. For instance, (10) proposes an Expectation-Maximization
(26) algorithm with closed-form updates to sequentially adjust the importance distribu-
tion. Recent advances in gradient-based optimization (71), the development of flexible
(neural network) based generative models such as Normalizing Flows (111)(102), to-
gether with, if necessary, a reparameterization of gradients (40)(132), as an alternative
to the previous log-trick (130), have enabled practitioners to construct and sample from
variational approximations of complex distributions. Current challenges in VI (29) in-
clude (i) eliciting an appropriate discrepancy measure DVI (81)(129)(47), (ii) a suitable
generative modeling technique to constitute F (73)(13) which (iii) can be sampled from
via a reparametrizable scheme (125)(97)(135)(108)(22).

1.3 From Bayesian Inference to Statistical Learning

Let us now go back to the general principles of Bayesian posterior inference. The
score point is to provide a relevant modeling of a natural phenomenon (be it physical,
biological, economical, environmental, behavioral...), say P0. Due to its complexity,
scientists often resort to adopting a hypothesis of causality: there are causes to the
observed phenomenon. This leads the practitioner to introduce some variable X which
aims to describe such causes, and his/her goal becomes the study of the probable causes,
given observations y, via an appropriate conditional distribution PX|Y=y.

The Bayesian posterior framework indeed enables us to construct such a distribution,
by building a probabilistic model with a two-step procedure. We first seek exogenous
prior information about the causes, which we transcribe into a prior distribution as-
sociated to RV X (112). We then specify an observation model PY |X : a conditional
distribution which represents the assumed relationship from causes to observations. In
turn, once we record observations Y = y from P0, we retrieve the probable values x of X,
or equivalently, the probable models PY |X=x for P0. Finally this methodology enables
either (i) to understand (or at least to interpret) the probable causes or properties of
P0 under the scope of the considered model with an interpretable X; or (ii) to predict
future outcomes, say Y ′, of the same unknown phenomenon by examining the predictive
distribution with PDF pY ′|Y=y(y

′) =
∫
pY ′|X=x(y

′)pX|Y=y(x)dx.
As we have mentioned in the previous section, the ability to extract meaningful in-

formation via Bayesian inference depends on computational considerations. However,
the relevance of the underlying inference problem is also related to the considered prob-
abilistic modeling and we now discuss this point. Assuming the observation model
(alongside the prior distribution) amounts to defining a set of probability distributions

S =
{
PY |X , X ∼ PX

}
indexed by the values of X. Two different cases then arise: (i)

if P0 ∈ S, or equivalently if there exists a value x0 such that PY |X=x0 corresponds to
the distribution P0, we say that the observation model is well specified; (ii) otherwise,
if such a value of x0 does not exist and P0 ̸∈ S, we say that it is misspecified. Well-, or
mis-, specification is a result of the choice of the observation model and is often deter-
mined by our exogenous knowledge of the underlying random process. For instance, if
we know for certain that P0 is a Gaussian distribution with unknown mean and vari-
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ance parameters, then, on the one hand, modeling P0 with a Gaussian distribution
PY |X = N (µ, σ2) where X = {µ, σ2} is a well-specified setting, while modeling P0 with
a Laplace distribution PY |X = L(µ, b) where X = {µ, b} is a misspecificed setting.

Under an assumption of identifiability (x1 ̸= x2 implies PY |X=x1 ̸= PY |X=x2) and mild
regularity conditions, as the number of independent observations from P0 increases, the
posterior distribution converges to a point mass Dirac distribution (see (49, chapter 4))
at:

x∗ = arg min
x

DKL(P0||PY |X=x); (1.18)

where DKL(P||Q) = EX∼P
[
log(p(X))− log(q(X))

]
is the Kullback-Leibler divergence

(76)(75). Moreover, the posterior is also asymptotically normal, centered at x∗ and
with covariance matrix (nI(x))−1|x=x∗ where I is the Fisher Information matrix (42)
about model PY |X . Of course, in the well-specified case, x∗ corresponds to x0, which is
the value that frequentists consider as the true unknown value of interest. So, as the
number of observations increases, Bayesian inference (credible intervals) is consistent
with the frequentist approach (confidence intervals) in the well-specified case. However,
in real-world applications, one might expect most, if not all, Bayesian problems to be
misspecified. Indeed, since P0 is only available via its recorded observations and is
otherwise never precisely known (otherwise we would not need to study this process via
Bayesian inference in the first place), we can never ensure that we select a model such
that S includes P0, nor can we confirm that P0 indeed belongs to a given S. As George
Box states it in (6):

”All models are wrong.”

Nonetheless, even though it is inevitably stained with some inaccuracy, making a relevant
assumption about the relationship between Y , and a considered hidden X using an
appropriate observation model PY |X , remains a crucial aspect of Bayesian posterior
inference. Through studies and experiments, scientists and practitioners can improve
their understanding of the underlying phenomena and physical mechanisms, and can
therefore in turn enrich the physical models use for inference and thus reduce the effect
of misspecification. However, precise representations of intricate phenomena is often
reliant on evermore complex models which can lead to further limitations in the context
of Bayesian posterior inference. Indeed, in many scientific applications (famous examples
include population fluctuation (84)(127) and compartmental modeling in epidemiology
(69)), we may have strong arguments in favor of a specific observation model PY |X for
its otherwise scientific relevance, but in such cases the risk of more and more precise
modeling is that the corresponding distribution does not necessarily provide a tractable
PDF any longer. This setting is referred to as likelihood-free and this is the context
considered throughout the rest of this thesis.

In the rest of this section, we first explicit the case where the observation model
is defined as a generative model (∼ a simulator - see section 1.3.1), and present the
gold standard methods of ABC in this context (see section 1.3.2). We then explicit the
situations where (i) the observation model is with an intractable PDF and moreover (ii)
ABC is unfeasible; which finally leads us to presenting the posterior learning problem
(see section 1.3.3).
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1.3.1 Observation model as a simulator with intractable PDF

In Bayesian inference, as soon as we depart from simple observation models PY |X ,
we often face the major drawback that the corresponding PDF py|x(y) is intractable,
costly to evaluate or accurately approximate, or too noisy to efficiently work with
(131)(38)(104).

Before adressing the general setting of this thesis where the observing model is only
available via a recorded dataset (see section 1.3.3), let us first focus on the specific
setting where the observation model is a generating process. This means that it is de-
fined as, and perhaps only available via, a sampling procedure which takes as input x
and outputs a value y via a succession of operations: deterministic or stochastic math-
ematical computations, numerical or computer-based operations, practical or thought
experiments conducted by an operator, or even a recorded random process from nature.
In this case, more often than not, the observation model has an intractable PDF. We
sometimes describe as implicit such distributions, which indeed can be sampled from,
but the corresponding PDF is not available in closed-form.

A most notable example is when the observation model is a simulator which in-
volves a call to a (pseudo-) random number generator. Indeed, if a computer sim-
ulator involves drawing (one or several) latent RVs, then its PDF is computed by
marginalizing out the latent variables pY |X=x(y) =

∫
pY,Z|X=x(y, z)dz. In general, for

complex simulation procedures, this expression cannot be expressed in closed form nor
can it be estimated accurately either. In particular, if, for example, the simulation
process involves a non-invertible function, say y = h(z), then the likelihood function
pY |X=x(y) =

∫
δh(z)(y)pZ|X=x(z)dz cannot be evaluated as the integral cannot be com-

puted using the change of variables technique.

The case where this PDF is intractable also occurs when PY |X is a real-world experi-
ment: a measurement from some intrinsic random process from nature, be it a practical
experiment or a thought experiment, where X represents the experimental design and
Y the measured or recorded output. Generally speaking, such a real-world process can
usually not be described, or at least not accurately enough, in terms of a tractable prob-
ability distribution because of our ignorance or limited understanding of the underlying
generation mechanism.

This difficulty heavily hinders our ability to perform efficient Bayesian posterior
inference, as in this case, the posterior probability distribution has a PDF pX|Y=y(x)
that cannot be evaluated, not even up to its normalizing constant. Indeed, as we have
mentioned in the corresponding section, Bayesian inference relies on evaluation of the
posterior PDF which itself involves evaluating the likelihood function via equation (3.1).
This setting is often considered in the literature and is referred to as a Likelihood-free
setting (31)(118)(34)(38)(87) which naturally arises in many different fields such as (56)
in econometrics, (124)(90) in molecular genetics, (110) in epidemiology, (106) protein
evolution.
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1.3.2 Approximate Bayesian Computation methods

In the setting where the observation model is available via its sampling mechanism
but has unavailable PDF (as mentionned in the previous section), historical methods
include Approximate Bayesian Computation (ABC) techniques (see article (88) and
book (120) for a review of challenges and advances), and, for context, we briefly present
the seminal approach of rejection-ABC in this section.

ABC methods have came a long way and can be traced back to the paper (118) in
which what would later become the seminal rejection-ABC method (124) is rather used
as an intuitive explanation on how the prior distribution and the likelihood (the PDF
associated with the observation model) interact to produce the posterior distribution.
Consider the following algorithm 1.

Algorithm 1 Rejection ABC

Require: observed y, ϵ > 0, kernel K
while No value is accepted do

propose x′ ∼ PX
simulate y′ ∼ PY |X=x′

if u ∼ U[0,1] ≤ Kϵ(y
′, y) then

Accept x′

end if
end while

In this algorithm Kϵ(., .) is a kernel function with bandwidth ϵ and measures the
discrepancy between y and y′. Examples of such kernel functions include the Gaussian
kernel where Kϵ(y, y

′) = N (y − y′; 0, ϵI). Therefore, the closer y′ is to y, the higher the
probability that x′ is accepted. The accepted samples are drawn from a distribution
PABCϵ with PDF :

pABCϵ (x′) =

∫
Kϵ(y

′, y)pY |X=x′(y
′)pX(x′)dy′; (1.19)

and the score point of ABC is that, if limϵ→0Kϵ(y
′, y) = δy(y

′) then:

lim
ϵ→0
PABCϵ = PX|Y=y. (1.20)

So for small values of ϵ, the rejection ABC indeed provides samples which are approxi-
mately distributed under the posterior distribution PX|Y=y without requiring to evaluate
the intractable PDF of the observation model. The pitfall of this ABC algorithm is that,
the smaller the value of ϵ, the smaller the probability that a proposed y′ is close to y,
within the probable range controlled by ϵ, and thus that x′ is accepted. This effect is am-
plified when the dimension of the observation y increases (the intrinsic dimension and the
number of observations). Several refinements were proposed to increase the acceptance
rate of this ABC scheme which include most notably: (i) the use of summary statistics
(39), facilitating dealing with high dimensional data more conveniently, and (ii) the
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coupling of ABC with more refined Monte Carlo sampling schemes such as MCMC (89),
Gibbs sampling (20), SMC (121), resulting in an improved exploration of the X-space.
While concurrent approaches based on statistical learning of the unavailable posterior
enabled by recent advances in machine-learning are becoming increasingly popular, as
discussed in the following section, ABC methods have been thoroughly studied and ap-
plied successfully in many scientific problems; they are still considered by practitioners
as a gold standard in many practical likelihood-free settings.

1.3.3 Statistical learning of a model for the posterior

We now describe two settings where ABC is no longer a viable option for sampling
from the unknown posterior distribution in a likelihood-free setting.

On the one hand, it is possible that the observation model used to be available
via its generation mechanism, but is currently no longer accessible. This happens for
example when the experimental setting has changed and that the conditions which
previously enabled conducting the experiment (simulation) are no longer met. ABC
methods cannot be applied since we can no longer simulate y′ from the observation
model for a given proposed input x′. However, it is possible that previous recording

indeed provided D =
{

(xi, yi), yi ∼ PY |X=xi

}
. This situation corresponds to the most

common setting which we encounter in classical classification and regression tasks where
we dispose of a finite dataset which was generated beforehand via an unknown data
generation process.

On the other hand, it is possible that the observation model remains available via
its sampling mechanism, so that obtaining a simulated y for a given x is feasible, but
the process is resource-intensive. In this case, ABC methods might not be a viable
approach either since it can be prohibitively costly to compensate for poor exploration
of the x-space (which yields low acceptance rates in rejection-ABC). However, it might
still be feasible to proceed to fewer (as compared to ABC) calls to the observation model
via its generating process, and acquire a dataset set of recorded observations D.

So in both cases, ABC methods are unfeasible but we can nonetheless dispose of a
dataset D. In these situations, statistical learning of the unknown posterior can indeed
be an alternative to unfeasible ABC methods. It consists in obtaining an approximation
of the unavailable posterior PDF using parametric learning:

pX|Y=y(x) ≈ pθ(x|y); (1.21)

where θ is inferred on the dataset D. Then in turn, such an approximation may
be used in place of the unavailable posterior distribution in expectations of the form
EPX|Y =y

[f(X)] ≈ EPθ(X|Y=y)[f(X)], by sampling the corresponding model:

EPX|Y =y
[f(X)] ≈ 1

M

M∑
i=1

f(xi), where xi ∼ Pθ(X|Y = y). (1.22)

The principles of approximate Bayesian inference using posterior learning, as opposed
to the classical likelihood-based inference, is summarized in Figure 1.1 below.
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Figure 1.1: Visual summary of posterior learning-based inference versus classical
likelihood-based inference

• If the observation model has a tractable PDF, we can indeed compute the like-
lihood of the observations, which were drawn from P0. In turn, we can combine
the likelihood and the prior to compute the posterior PDF interest, at least up to
a constant, as mentioned in previous section 1.1. This corresponds to the usual
Bayesian methodology which was recalled in the beginning of this thesis (Northeast
part of the picture, red dashed lines).

• However, as we have mentionned, we consider an observation with intractable
PDF, making this inference method unfeasible. In that case we can make do of a
DGP PY |X which is assumed to mimic the unknown process P0, and from which
one can draw y ∼ PY |X=x for a given input x and thus obtain a dataset comprised
of such couples (x, y). This dataset D enables us to build a parameterized model
Pθ(x|y) which finally mimics the unknown posterior (Southeast part of the picture,
green dashed lines).

1.4 Challenges in Statistical Learning

The previous figure 1.1 presents an illustrative summary of the posterior learning
alternative to the classical Bayesian inference approach based on likelihood evaluation.
This figure however remains incomplete and lacunar, and raises several questions. There
are indeed several aspects of the procedure which cannot be detailed in such an illus-
tration.
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A main question that naturally arises is that of the parametric modeling used. In the
illustrative figure, we have used the notation pθ(x|y), with subscript θ, which implicitly
states that the posterior approximation is directly computed via a parametric conditional
PDF model. However, this is not necessarily the case and we can indeed approximate
the unknown posterior using different modeling approaches.

We first recall that the unavailable posterior PDF is obtained by Bayes formula (3.1)
and can be summarized as prior times likelihood divided by the evidence:

pX|Y=y(x)︸ ︷︷ ︸
posterior

=

prior︷ ︸︸ ︷
pX(x)

likelihood︷ ︸︸ ︷
pY |X=x(y)∫

pX(x)pY |X=x(y)dx︸ ︷︷ ︸
evidence

. (1.23)

On the one hand, we can suppose that the prior PDF pX(x) is available for evaluation
(this point is discussed in the next 1.4.1). On the other hand, since we have assumed
an elaborate observation model (possibly defined as a simulator) with an intractable
PDF, the likelihood pY |X=x(y) cannot be computed. As a consequence, the posterior
probability distribution is intractable too, since (i) its numerator involves the unavailable
likelihood, and (ii) the evidence at the denominator, which corresponds to the numerator
integrated with respect to x, is (doubly) intractable (even if the numerator were indeed
tractable, the integral would still not necessarily admit a closed form expression).

So equation (1.23) provides the expression for the target PDF of interest, which
is indeed a combination of several factors, with some of them being unavailable for
evaluation. We therefore have a choice: we can either approximate the posterior PDF
directly as a whole, or we can approximate only its unavailable components. This yields
several distinct modeling approaches, which we now describe.

A first possible approach consists in using a parametric model for this posterior PDF.
This approach is sometimes referred to as posterior, or discriminative (D) modeling and
is based on the equation:

pX|Y=y(x)
D
≈ pθ(x|y) (1.24)

where pθ is the PDF associated with a probability distribution over X conditioned on
the value of RV Y . Examples of this method include the usual methods for classification
and regression.

Example: In classification tasks, we often approximate the probability of classes c =
1, ..., C using a model of the form Prθ(X = c|Y = y) = πc,θ(y) where [π1,θ(y), ..., πC,θ(y)] =
Softmax(fθ(y)), and where fθ(y), which can be a linear function (in which case we talk
about logistic classification (33)) or an NN-based function (107), outputs C values. The
parameters θ are often adjusted according to the binary-cross entropy criterion computed
using the dataset D, which amounts to maximizing the likelihood of D under the model
Pθ(X|Y ) = Categorical(π1,θ(Y ), ..., πC,θ(Y )). Such a classification model is indeed a dis-
criminative construction since the parametric model directly computes the probabilities
(∼ PDF) of X given observation Y .

Example: In regression tasks, we often approximate the relationship between X and
Y using a homoskedastic model of the form: X = fθ(Y ) + σϵ, where fθ is a linear,
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polynomial, or NN-based function, and ϵσ ∼ N (0, σ2I) is a random noise (σ may be
known or estimated as a parameter). The parameters θ (and possibly σ) are often ad-
justed according to the mean squared-error criterion computed using the dataset D, which
amounts to maximizing the likelihood of D under the model Pθ(X|Y ) = N (fθ(Y ), σ2I).
Such a regression model is indeed a discriminative construction since the parametric
model directly computes the PDF (via the mean and covariance) of X given observation
Y .

However, in essence, the posterior PDF has became unavailable mainly because the
likelihood function is intractable. So, it is possible to approximate the PDF of the
observation model, which yields the following equation:

pX|Y=y(x) =
pX(x)pY |X=x(y)∫
pX(x)pY |X=x(y)dx

G
≈ pX(x)pθ(y|x)∫

pX(x)pθ(y|x)dx
, (1.25)

where pθ is the PDF associated with a distribution over Y conditioned on the value of
RV X. This approach corresponds to likelihood or generative (G) modeling.

The discriminative and generative approaches have in common that they both lever-
age a model of similar structure, which is a conditional probability distribution. How-
ever, the former uses this model to compute directly X given Y (see (1.24)) while the
latter does the opposite and computes instead Y given X and deduces the corresponding
posterior approximation via Bayes formula with the given prior (see (1.25)). In this the-
sis, more precisely in chapter 3, we propose a comparative study of these two modeling
approaches under the scope of epistemic uncertainty quantification.

Finally, in the posterior formula (1.23), as we have mentioned, both the likelihood
and the evidence are unavailable, and one can alternatively approximate the Likelihood-
To-Evidence Ratio (LTER). This approach is therefore based on the approximation of
the unavailable posterior as follows:

pX|Y=y(x) =
pY |X=x(y)

pY (y)
pX(x)

LTER
≈ ρθ(x, y)pX(x) (1.26)

where ρθ is a positive function parameterized by θ. Such an approximation can indeed be
obtained using a classifier-based PDF ratio approximation (see (60)(36)(95)(96)), which
is a popular tool in the statistical and machine learning literature (133)(62)(123)(109)(19).
Chapter 2 of this thesis is centered around this approximation method, and it will there-
fore provide, in its preamble, more details about this learning technique. More precisely,
the topic of chapter 2 is related to the task of sampling from such an approximation of
the posterior PDF.

In this summarizing figure, we have also eluded the question of the optimization
procedure which indeed enables, from (i) a chosen modeling approach (as we have just
described) and (ii) a recorded dataset D, to obtain a suitable model.

A pointwise model is often obtained by a learning procedure which minimizes a loss
function l:

θ∗ = arg min
θ
l(θ,D). (1.27)

In practice, a (possibly approximate) solution to this problem is obtained by reaching
a (local) minimum via a gradient-based method. Two notable loss functions are (i) the
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negative log-likelihood function l(θ,D) = log(p(D|θ)), in which case θ∗ is the Maximum
Likelihood Estimate (MLE) and (ii) the negative log-posterior l(θ,D) = log(p(θ|D)) =
log(p(D|θ))+log(π(θ)), where the addition of a prior knowledge over θ with π(θ) can be
used in practice to induce a regularizing behavior, and yields the maximum a posteriori
(MAP) estimate.

On the one hand, for generative and discriminative models, since we are using a
conditional probability distribution model (be it over Y given X in the generative case
or the opposite in the discriminative case), a tractable PDF of the model is indeed
a requirement for computing either the likelihood p(D|θ) or the posterior p(θ|D). It
is therefore a relevant problem, in order to use either MLE or MAP training criteria,
to consider a parametric model with a tractable PDF. This problem is precisely the
topic of chapter 4. In this chapter, we propose a new parametric modeling technique
of univariate and conditional distributions such that the corresponding model benefits
from straightforward, exact, and fast PDF evaluation.

On the other hand, the LTER approximation of the posterior corresponds to a specific
unnormalized (energy-based) model where maximum likelihood is inconvenient since it
requires estimating, at each step of a gradient based procedure, the (gradient of) the
normalizing constant, which indeed depends on model parameters. In chapter 2, we
discuss this precise point, and the learning procedure, i.e. the training of a LTER
approximation of the posterior, is presented as an alternative to MLE or MAP which
does not require estimating the gradient of the normalizing constant and that instead
is defined as a binary classification problem.

In many situations, it is possible that a unique pointwise parameter estimate θ∗ does
not yield a satisfactory approximating model, even if the loss function is well chosen.
This is notably the case in situations where the learning setting can induce an overfitting
behavior on the dataset and/or when the considered model is not able to represent
the target distribution (this problem also corresponds to a form of misspecification).
Bayesian learning proposes an alternative to pointwise estimation methods by instead
considering the parameter θ as a RV with prior distribution (as in MAP estimation)
and aim marginalizing out this RV in order to compute (or at least to sample from)
the posterior predictive distribution (PPD) p(x|y,D) =

∫
p(x, θ|y,D)dθ. In chapter 3 of

this thesis, we explain how to use the PPD in generative and discriminative approaches,
and compare the two modeling techniques under the scope of Bayesian learning. In this
work, we understand that in order to apply Bayesian learning to either a generative or
discriminative model, it is necessary that the corresponding model indeed benefits from
a tractable PDF, which further reinforces the importance of chapter 4, where we treat
the problem of building a model with a tractable PDF.

At this point, a natural question which arises is that of understanding how different
sources of information interact in the inference problem, or, possibly, if they are even
taken into account, depending on the modeling choice that we just discussed.

1.4.1 Leveraging prior information in the posterior model

In the previous figure 1.1, the prior distribution is displayed as being related to the
posterior approximation. However, in practice, this relationship remains to be precised,
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and it is of particular interest to understand how the prior information is involved in
the different learning and modeling approaches.

The prior probability distribution describes prior information about the RV of in-
terest X. As we have mentioned before, it is denominated as such since it describes the
distribution of that RV before having observed that Y = y. The prior probability distri-
bution is the result of prior information provided by external sources, transcribed into
a prior probability distribution (112) which is sometimes referred to as prior elicitation
(14)(94). Obtaining relevant prior information and a relevant prior probability distri-
bution is a scientific or statistical task of its own, which is the topic of several thorough
studies (65). We suppose that this prior probability distribution was obtained via an
involved procedure of (i) seeking relevant prior information from exogenous sources (for
example, from scientific experts), followed by (ii) a transcription procedure to transform
this information into a prior distribution. As such, we would ideally not want to discard
such information, and we seek a modeling and a learning procedure that indeed accounts
for prior information PX .

It is possible that this prior distribution has a direct impact on the corresponding in
the sense that the prior distribution keeps its place in the parameterizing of posterior
approximation (see equations (1.25) and (1.26)). Or alternatively, the prior can play an
indirect role via the dataset in the case of a discriminative construction, which is one of
the points mentioned in the next section and a particular element of interest in chapter
3 of this thesis.

1.4.2 Dataset Acquisition or Augmentation

In figure 1.1, another element which is indeed not detailed, but nonetheless of utmost
importance, is that of obtaining the dataset D.

As we have mentioned earlier in section 1.3.3, we suppose that we can dispose of
a dataset D =

{
(xi, yi)

}
i=1,...,|D| composed of observed couples yi ∼ PY |X=xi which are

each generated by a known input xi via the observation model of interest. In turn, these
couples enable to compensate for the fact that the observation model has an intractable
PDF via modeling procedure of the posterior PDF. Indeed, these samples are drawn
from (and they provide an empirical approximation of) a joint distribution PDX,Y with
PDF:

pDX,Y (x, y) = pDX(x)pY |X(y|x); (1.28)

where pDX is the PDF associated with a given probability distribution which indeed
produced the sample values of x1, ..., x|D|.

Naturally, a main question that arises in statistical modeling is that of constructing
the dataset D appropriately. In most cases, the more recorded couples in the dataset,
the better the model represents the true unknown distribution and the more precise the
approximate posterior inference. However, in practice, we might have access to a limited
budget, and we instead seek to construct the dataset appropriately. So, while in many
cases the goal is to best leverage a given dataset at hand, both tasks of (i) constituting a
dataset by selecting the distribution PDX and (ii) selecting potentially informative couples
to include in the dataset can also be part of the inference and modeling procedure.
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Concerning the first point, we stress here that the distribution PDX does not neces-
sarily coincide with the prior PX (used to define the posterior distribution of interest in
equation (3.1)). This has interesting consequences for the specific discriminative mod-
eling approach (101), which is a point discussed in chapter 3 (see section 3.3.4). In
statistical and machine learning, the question of selecting this distribution also has no-
table connections with topics related to out-of-distribution detection (134), label shift
(46), and imbalanced dataset (74).

The second task is mainly covered in the active learning literature (21) and we
now distinguish two cases. On the one hand, in some cases, as we mentioned earlier,
the observation model is defined via a generative procedure which remains available
throughout the learning and inference process, and as such, it is possible to produce
observed y ∼ PY |X=x for a given input x. An operator can therefore acquire new
couples (x, y) with which to augment the dataset. Therefore, a natural question that
arises is that of determining a relevant (optimal in some sense) value x∗ according
to an acquisition rule (as in (85)), or designing an appropriate proposal probability
distribution from which to draw an x (as in (103)(86)) such that, once associated to a
produced y, it constitute a highly informative couple in the learning problem at hand.
This problem constitutes a particular case of Bayesian experimental design methods
(15)(64)(105) where, again, the PDF of the observation is unavailable to compute an
acquisition criteria. Though a consensus has not yet been reached as to which sequential
learning scheme seems to be the best, it is clear from empirical studies that sequential
methods based on motivated acquisition rules produce efficient estimation of model
parameters, leading to improved inference usually while reducing the number of calls to
the simulation mechanism of the observation model (37)(36)(119).

On the other hand, however, in many learning settings, the dataset is built in reverse
via a labeling procedure, which we describe. The y-values are samples drawn from
PDY (dy) =

∫
PY |X(dy|x)PDX(dx) but without having recorded the value of an associated

xi. Then, an oracle (in many cases a human operator, a scientific expert, or an otherwise
computationally intensive operation) is called upon to associate to y its corresponding
value of x. In this case, the question of suitably creating the dataset D usually involves
selecting a value y among a set of unlabeled observations, usually referred to as a pool,
for which to call upon the oracle (45) to obtain the corresponding x, such that once
this couple is used to augment the dataset, the resulting modeling becomes increasingly
accurate.

1.4.3 Inference from multiple observations acting as unlabeled
dataset

Thus far, we have motivated the interest of modeling the unknown posterior for
predicting the value of a RV X given that we observe the value of Y = y from a random
process of interest P0. However, this situation corresponds to a specific formulation of
the inference problem, and, in practice we might instead dispose of multiple observations,
and this multiplicity can have different meanings which we now explain.

Firstly, it is possible that we wish to make predictions for different couples of RVs
(Xi, Yi). More precisely, we might observe the values of a set of RVs {Yi ∼ Pi} where
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all Pi are random processes of interest, which we believe can efficiently be described via
the same observation model PY |X but for different underlying RVs Xi. In the context of
an implicit observation model, we therefore might leverage a common model to predict
all the RVs Xi given all the observations Yi = yi.

Secondly, it is possible that we dispose of similar observations Yi = yi, each from
a random process Pi which, we indeed believe, as before, can be efficiently modeled
using a same observation model PY |X , but that the random process is not of particular
interest in the scientific problem, such that we do not consider the goal of inferring an
associated underlying RV Xi.

Thirdly, it is possible that we dispose of recorded values Yi = yi from the observation
model without having explicitly recorded its corresponding input value xi.

In all these three settings, even though the values xi associated with an observed
Yi = yi are not necessarily of interest, it turns out that all these observations can bring
information in the modeling problem. Indeed, the observations are either produced by
random phenomena, which we assumed could be accurately represented by the obser-
vation model, or by the observation model itself. So, in addition to the dataset D,
the corresponding parametric model, which accounts for the intractable PDF of the
observation model, should indeed be in coherence with these observations, which can
indeed be understood as unlabeled observations. In these settings, we thus obtain a
semi-supervised learning problem.

Lastly, it is possible that, from a given random process of interest, say P0, we observe
the value of several iid RVs Y0,1 = y0,1, ..., Y0,N0 = y0,N0 ; and studying the random process
of interest amounts to inferring the value of a RV of interest X0 which can be related to
the iid RVs Y0,1, ..., Y0,N0 via the observation model.

These questions are topics of interest covered in the chapter 3 of this thesis where
we notably compare the ability of generative and discriminative modeling approaches
to infer from multiple observations in these different cases.

1.5 Conclusion

We now summarize the discussion of this chapter, which explains the different rea-
sons and situations which lead practitioners to progressively turn a Bayesian inference
problem into a problem of statistical learning nature.

We first recalled the principles of Bayesian posterior inference. This methodology
enables to interpret and understand phenomena of nature by studying the underlying
probable causes. By selecting a variable of interest X which can be related to an
observation Y , and by specifying a joint distribution over this couple of RVs, we can
retrieve the probable causes with the posterior distribution.

We explained how to proceed with inference in practice, by covering the usual Monte-
Carlo estimation methods. By reviewing the most common algorithms for sampling from
a distribution, we emphasized the central role played by the (posterior) PDF.

We also interpreted Bayesian inference as a way to obtain a probabilistic model
of a phenomenon of interest using an observation model. We stressed the importance
of an accurate observation model and discussed its possible misspecification. In many
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scientific fields, advances through research, studies, and experiments are leading practi-
tioners to consider ever more accurate and intricate representations of nature, and pave
the way to increasingly complex models. However, when using such models for Bayesian
inference, we can face the major drawback that the corresponding observation model no
longer benefits from a tractable PDF, making usual posterior inference unfeasible since
the posterior PDF then suffers from the same intractability.

This finally led us to statistical learning, which is a way to cope with this shortcom-
ing as it indeed enables performing approximate posterior inference in the case where
the observation model has an intractable PDF (and thus the posterior too). Since the
classical methods for statistical learning usually require a dataset to obtain such an ap-
proximation, learning-based approximate Bayesian inference is particularly well-suited
(and has already been successfully applied) in the case where the observation model is
defined as a simulator. Finally, using a generic figure which summarizes the statistical
learning methodology as an alternative to usual Bayesian inference, we identified several
challenges, some of which are going to be discussed in detail in the following chapters
of this thesis.
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Chapter 2

Likelihood-to-evidence ratio posterior
sampling

As we have mentioned in the introduction of this thesis, a possible approach to
obtain a parametric approximation of the unknown posterior of interest is the method
of approximating the likelihood-to-evidence ratio (LTER). This method was proposed
in (55) and it has become a prevalent method for likelihood-free inference (18)(28)(56).
The starting point of this principle is that the unknown posterior PDF can be rewritten
as:

pX|Y=y(x) =
pY |X=x(y)pX(x)

pY (y)pX(x)
pX(x); (2.1)

where, we recall, pY (y) =
∫
pY |X=x(y)pX(x)dx is the evidence. So, we see that the first

factor, which after simplification of the prior PDF is nothing but the LTER, can also be
seen as a ratio between two joint PDFs: the numerator pY |X=x(y)pX(x) is the PDF of
the joint distribution PX,Y while in the denominator pY (y)pX(x) the product of marginal
and can be seen as the PDF of PX ⊗ PY . As is well known and well established in the
literature (6)(52), one can leverage a classifier which is designed to distinguish samples
from the two probability distributions by approximating an underlying class posterior
in an implicit binary mixture context to obtain an approximation of the probability
density function (PDF) ratio. Let us denote rθ(x, y) such a classifier; the corresponding
approximation of the unknown posterior reads:

pX|Y=y(x) ≈ rθ(x, y)

1− rθ(x, y)
pX(x). (2.2)

In this approximation, rθ ∈ [0, 1] is a probability, which is the output of a binary
classification function parameterized by θ. This function is obtained by adjusting the
parameters according to the Binary Cross-Entropy criterion:

LBCE(θ) = −EPX,Y

[
log(rθ(X, Y ))

]
−EPY ⊗PX

[
log(1− rθ(X, Y ))

]
; (2.3)

where both expectations can be estimated using, respectively, the dataset D and a
shuffled version of D.

In this context, the scope of this contribution is related to the question of sam-
pling from the distribution associated with this approximation. Indeed, equation (2.2)
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provides an (approximately normalized) model for the posterior PDF, which can be
computed up to a normalizing constant. Therefore, any MCMC scheme can be applied
to sample from the underlying probability distribution as proposed in (28). However,
designing an efficient MCMC scheme requires fine-tuning the transition kernel in order
to avoid slow mixing of the Markov chain. With that regard, we instead propose to
leverage the structure of the LTER approximation of the posterior PDF (2.2) which
we explain is compatible with the three specific MC sampling algorithms of Accept-
Reject (AR), Independent-Metropolis-Hastings (IMH) and Importance Sampling (IS)
with Sampling Importance Resampling (SIR).

The scope of our work is therefore centered around the problem of sampling from
a distribution Pθ which is a ratio-based approximation of a distribution of interest P
(in this context, the posterior distribution PX|Y=y). Our approach turns this problem
around: we propose to perform approximate sampling from P using classical ratio-
involved Monte Carlo (MC) sampling techniques of AR, IMH and IS where the unknown
PDF ratio is instead replaced by an approximation based on a classifier trained to
distinguish from a given instrumental distribution (in this context, the prior distribution
PX).

2.1 Binary Classification based Monte Carlo sam-

pling

AR, IMH or IS MC algorithms all involve computing ratios of two PDFs p1 and p0.
On the other hand, classifiers discriminate samples produced by a binary mixture and
can be used to approximate the ratio of corresponding PDFs. We therefore establish
a bridge between simulation and classification, which enables us to propose PDF-free
versions of ratio-based simulation algorithms, where the ratio is replaced by a surrogate
function computed via a classifier. Our modified samplers are based on very different
hypotheses: the knowledge of functions p1 and p0 is relaxed (- they may be totally
unknown), and is counterbalanced by the availability of a classification function, which
can be obtained from a labeled dataset. From a probabilistic modeling perspective, our
procedure involves a structured energy based model (EBM) which can easily be trained
and is structurally compatible with the classical samplers.

2.1.1 Introduction

If a and b are two positive numbers,

r =
a

a+ b
∈ (0, 1)⇔ r

1− r
=
a

b
> 0. (2.4)

This equivalence has interesting consequences in Bayesian classification, machine learn-
ing and stochastic simulation. Indeed, if a and b are probabilities of two classes in a
binary mixture context for a given sample, then ratio a

a+b
is the posterior probability

which provides with the class probabilities for a given sample, and can be approximated
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by a parametric classifier rθ trained to distinguish between the two probability distribu-
tions. On the other hand, positive ratios a

b
play a key role in AR, IMH or IS techniques.

Equation (2.4) relates r to such positive ratios, and tells us that ratio a
b

can be computed
exactly from r, or, in practice, approximately from rθ, without necessarily knowing a
nor b. This observation enables us to propose approximate versions of these algorithms
which rely on weaker hypotheses.

Let λ, 1− λ ∈ (0, 1) be the prior probabilities of two categories k = 1, 0, distributed
resp. ∼ p1 and p0. Binary classification distinguishes samples from mixture λp1 + (1−
λ)p0 by identifying the PDF which generated them. The appropriate way to classify
relies on the posterior probability: x is a sample ∼ p1 rather than ∼ p0 with probability

Pr(k = 1|x, λ, p0, p1) =
λp1(x)

λp1(x) + (1− λ)p0(x)
. (2.5)

Indeed, as is well known (see e.g. (22, Chap. 11)), assigning a sample to the label with
highest posterior probability is the optimal decision rule in the sense that it minimizes
the probability of misclassification.

To compute this posterior probability, one needs to evaluate the PDFs p1, p0 and
know the prior probability λ but they are often unknown, leaving (2.5) intractable. If

however we dispose of a set D = {(x(ki)i , ki)}N0+N1
i=1 of labelled observations, we can make

use of a parametric classifier. So let us assume that we have at our disposal a classifier
function rθ, parameterized by θ which mimics the unknown posterior PDF:

rθ(x) ≈ N1p1(x)

N1p1(x) +N0p0(x)
. (2.6)

Our approach is based on the observation that (2.6) is equivalent to

N0

N1

rθ(x)

1− rθ(x)
≈ p1(x)

p0(x)
, (2.7)

which implies that (typically neural network (NN)-based) classifiers can also be used for
approximating PDF ratios.

Equation (2.7) has already been observed, and exploited in contexts where estimat-
ing a ratio of PDFs is relevant. First, classifiers are at the core of adversarial training
techniques in which divergence measures involving a ratio are replaced by an approxi-
mation based on a classifier (42). This enables learning implicit generative models (i.e.,
with intractable PDFs) (23) (14). Moreover, classifier-based PDF ratio approximation
has been applied to estimation of such metrics as Mutual Information (5). Finally,
classifiers based ratios have been applied successfully in statistical hypothesis testing
procedures (25), which heavily rely on likelihood-ratio tests.

If p0 is an instrumental distribution with a tractable PDF, then (2.7) can be easily
be turned into an approximation of target PDF p1. So classifiers can be used for density
estimation, conditional density estimation, or LTER estimation, making them especially
relevant in a likelihood-free inference setting (18)(28)(56).

However, the question of sampling from the corresponding model remains open,
and this is precisely the point we discuss in this chapter. We realize that PDF ratios
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also play a key role in such simulation techniques as the AR or Markov Chain Monte
Carlo (MCMC) methods, in which samples from instrumental p0 are transformed into
samples from the target p1 via a sampling mechanism which involves the ratio of the
two densities. This establishes a connection between classification and MC sampling,
and will enable us to relax the assumption of tractable PDF p0, p1 of these sampling
algorithms, at the price of approximate sampling. Our approach is therefore completely
PDF-free, and as such is especially relevant when the target distribution is unknown
or with intractable, noisy, or costly to evaluate PDF (see (40) for a review of MC
techniques in this setting, and (48) for a review of likelihood-free Approximate Bayesian
Computation techniques); and/or when the instrumental p0 is defined by a generative
model with implicit PDF (36)(23)(50). The rest of this section is organized as follows.
In §2.1.2 we recall classical ratio-based stochastic simulation algorithms, i.e. the AR,
IMH and IS techniques. In §2.1.3 we show that classifiers computed via the Binary
Cross Entropy (BCE) criterion indeed provide with an approximation of the posterior
(2.5). Finally in §2.1.4 we propose classification based sampling methods, illustrate our
method via simulations1, and revisit it under the perspective of probabilistic modeling.

2.1.2 Classical ratio-based sampling algorithms

Stochastic simulation includes a variety of techniques, see e.g. (2)(20). In this section
we focus on AR, IMH and IS which share in common that they all compute a ratio of
PDFs.

AR

AR Sampling (46, chap. 2) (40, chap. 3) is a simulation algorithm that yields samples
distributed according to a target distribution p via samples from a proposal distribution
q, which are accepted or rejected as valid samples from p via some acceptance probability.
More precisely, let the support of p be inside that of q. This means that there exists a
constant C ≥ 1 such that for all x ∈ Rd, p(x) ≤ Cq(x). Let X ∼ q, and let k a Bernoulli

random variable with parameter αAR(X) = p(X)
Cq(X)

. AR sampling is based on the fact

that X|k = 1 is distributed according to p. Note that Pr(k = 1) = 1
C

, so the lower the
value of C, the higher the acceptance rate.

In order to use the algorithm in practice, we thus need to be able to evaluate PDF
p, and build q such that one can sample easily from q and there exists C such that
p(x) ≤ Cq(x) for all x, we can compute one such value of C, and C is as small as
possible. Note finally that the algorithm can easily be adapted to the cases where p
and/or q are known up to a (non necessarily common) constant, see e.g. (43, Th. 4.5).

As we shall now see, AR sampling is indeed nothing but a binary classification
procedure (see also (10, §6) for an application of this principle).

Starting from the target PDF p(x), we find an easy-to-sample distribution Q and
constant C > 1 such that Cq(x) envelopes p(x). Since Cq(x)− p(x) is non negative, we
write Cq(x) as p(x) plus a positive remainder which, up to a constant, is also a PDF;

1Code available at github.com/ElouanARGOUARCH/Binary-Classification-Based-Monte-Carlo-
Simulation

https://github.com/ElouanARGOUARCH/Binary-Classification-Based-Monte-Carlo-Simulation
https://github.com/ElouanARGOUARCH/Binary-Classification-Based-Monte-Carlo-Simulation
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Figure 2.1: Enveloping target PDF builds an implicit mixture.

so enveloping p(x) with Cq(x) is nothing but building the implicit binary mixture PDF
(see also fig. 2.1 below)

q(x)︸︷︷︸
proposal

=
1

C
p(x)︸︷︷︸
target

+ (1− 1

C
)
q(x)− 1

C
p(x)

1− 1
C︸ ︷︷ ︸

remainder

(2.8)

with a priori probabilities 1
C

and 1 − 1
C

. The first component of the mixture is the
target PDF p, and the second one is the PDF of the rejected samples. The score
point of AR consists in drawing samples from q without needing to sample from its two
implicit mixture components (see the r.h.s. of (2.8)). Accepting (or rejecting) a sample
depending on the ratio probability

αAR(x) =
p(x)

Cq(x)
=

1
C
p(x)

1
C
p(x) + (1− 1

C
)
q(x)− 1

C
p(x)

1− 1
C

(2.9)

then amounts to classifying the samples with the posterior PDF (compare (2.9) to (2.5)).

IMH

MCMC algorithms build a Markov chain whose invariant distribution is the tar-
get distribution p; so simulating the chain yields samples asymptotically distributed ∼
p. The Metropolis-Hastings (MH) algorithm (46) (12) is a particular MCMC method
in which the transition is a two-step procedure: given a current state xt, we pro-
pose x∗ from q(.|xt), and then we compute the acceptance probability αMH(x∗, xt) =

min(1, p(x
∗)q(xt|x∗)

p(xt)q(x∗|xt) ). x
∗ is accepted as the new state xt+1 with probability αMH(x∗, xt); if

x∗ is rejected then the chain remains in the current state xt. In practice, q(.|.) plays a
crucial role in the performance of the MH algorithm: if not well-tuned, it can lead to a
poor exploration of the target distribution.

The IMH algorithm is a simplified version of MH which considers an independent
transition. The new point x∗ is hence proposed independently of the current state xt,
according to an independent proposal q(.). In this case, the acceptance probability

reduces to αIMH(x∗, xt) = min(1, p(x
∗)q(xt)

p(xt)q(x∗)
).
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IS

Many problems involve computing the expectation of some function f with respect
to PDF p: Ep

[
f(x)

]
=
∫
f(x)p(x)dx. In practice the integral can be intractable, so we

may need to resort to MC approximations. IS is a technique for reducing the variance
of such MC estimates which can be traced back to the 1950’s (35) (39) (27, §5.4).

The crude MC estimate reads 1
N

∑N
i=1 f(xi), xi

iid∼ p. However, on the one hand it
is generally difficult to sample directly from p, and on the other hand it can yield a
poor estimate when the regions where p is large do not coincide with those where f is

large. Rewriting Ep
[
f(x)

]
= Eq

[
p(x)f(x)
q(x)

]
, for some importance distribution q, leads to

the IS estimate 1
N

∑N
i=1

p(xi)
q(xi)

f(xi), xi
iid.∼ q. One can easily show that the PDF which

minimizes the variance is, up to a constant, |f(x)|p(x). Even if this optimal importance
distribution cannot be used in practice, this tells us that the regions of importance are
not those where p is large, but rather those where |f |p is large. Note that the IS estimate
can be computed only if p and q are known exactly, or known up to a common constant;
if this is not the case one can resort to self-normalized IS (21).

Besides being a variance reduction technique, IS can also be seen as a two step
sampling procedure for producing samples (approximately) drawn from p, out of samples
originally drawn from q. The technique is known as Rubin’s SIR mechanism (15) (19)
(49) (7, §9.2): Let {xi}Ni=1 be iid samples from q(x) and let {x̃i}Mi=1 be M iid samples

from
∑N

i=1
p(xi)/q(xi)∑N
i=1 p(xi)/q(xi)

δxi(dx) (in other words, we draw samples from q, weight each

proportionally to wu(xi) = p(xi)
q(xi)

, and resample iid points from this random discrete

distribution). Then {x̃i}Mi=1 become iid. samples from p if N →∞.

2.1.3 Parametric classifier by minimizing the BCE

From now on we consider the setting where λ, p1 and p0 are unknown, and we only
have the set D of labeled samples from p0 and p1 (resp. with labels k = 0, 1), see
§2.1.1. In this context, for classification purposes we should build a parametric function
rθ(x) that approximates the posterior PDF. The aim of this section is to show that
minimizing a BCE loss indeed yields such a suitable approximation. To see this, first
recall the definition of the BCE criterion:

LBCE(θ) = −
N1∑
i=1

log(rθ(x
(1)
i ))−

N0∑
i=1

log(1− rθ(x(0)i )), (2.10)

where rθ(x)
∆
= Prθ(k = 1|x) is the probability under model θ that the label associated to

an observation x is 1. Let h(x, k) be the joint distribution over observations and labels:

h(x, k) =
Nk

N1 +N0︸ ︷︷ ︸
h(k)

pk(x)︸ ︷︷ ︸
h(x|k)

, x ∈ Rd, k = 0, 1. (2.11)

Using rθ(x), we can build another joint distribution hθ(x, k) = h(x)rθ(x)k(1− rθ(x))1−k,
where h(x) is the x-marginal in (3.3). The BCE is then, up to additive and multiplicative
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constants, nothing but an approximation of

DKL(h(x, k)||hθ(x, k)) = Eh(x,k)[log(h(k|x))]−Eh(k,x)
[
log(Prθ(k|x))

]
, (2.12)

where only the last term depends on θ. We indeed retrieve the BCE with the MC
approximation:

Eh(k,x)[log(Prθ(k|x))]
(3.3)
=

∑
k=0,1

Nk

N1 +N0

E[log(Prθ(k|x)]

≈ 1

N1 +N0

(

N1∑
i=1

log(rθ(x
(1)
i )) +

N0∑
i=1

log(1− rθ(x(0)i ))).

So arg minθDKL

(
h(x, k)||hθ(x, k)

)
≈ arg minθ LBCE(θ).

The interest of this interpretation is that, as is well known, a DKL equals zero when
the two distributions are equal almost surely. So, if rθ represented any arbitrary function,
minimizing DKL

(
h(x, k)||hθ(x, k)

)
would ensure that rθ(x)k(1 − rθ(x))1−k = h(k|x) for

all x ∈ Rd and k = 1, 0, ie that the classifier reaches the target posterior PDF. Of
course, in practice, minimizing the BCE does not ensure that this DKL reaches zero.
First, we only dispose of a finite number of labeled observations and minimizing an
MC approximation of the DKL does not minimize the DKL itself. Next, the parametric
family does not contain h(k|x) in general, in which case we can only ever reach a positive
minimum of the DKL. Lastly, standard optimization techniques would only guarantee
convergence to a positive local minimum of the DKL. Therefore in practice, minimizing
the BCE loss only yields an approximates the unknown posterior.

2.1.4 Using a binary classifier for (approximate) Sampling

We now come to the heart of this section. If p1 is a PDF of interest in an MC
sampling setting, and p0 a suitable easy-to-sample instrumental distribution - be it the
proposal in AR, the independent kernel in IMH, or the importance distribution in IS;
then the three sampling algorithms involve the PDF ratio p1(x)/p0(x), which is unknown
when at least one PDF is intractable. As explained in section 2.1.3, a parametric binary
classifier trained from a set D of labeled observations computes an approximation of the
unknown posterior distribution. However, remember that (2.6) is equivalent to (2.7); we
thus see that classifiers can also be used for approximating PDF ratios of interest, which
enables us to propose approximate versions of the sampling algorithms based on this
classifier-ratio approximation, and thus to relax the requirement of tractable PDF, but
at the cost of approximate sampling. Of course, the closer p0 is to p1, the more efficient
the sampling algorithms; however, here p0 is supposed to be given and our problem is
not to adjust p0 from a given p1, but rather leverage D in the case where p0, p1 are fixed
but unknown PDFs.

Assumptions.

p1 is the distribution of interest and p0 a fixed instrumental distribution from which
we can propose samples. Ratio p1(x)/p0(x) is unknown, but we dispose of the labeled
datasetD, and assume that we can train a binary classification model rθ which minimizes
(2.10).
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Figure 2.2: Summary of the classifier-based sampling approach

Classifier-based sampling algorithms

A key ingredient for running the algorithms of §2.1.2, is the ratio p1(x)/p0(x) which
appears in αAR(x), αIMH(x, xt) and in wu(x), so following the idea expressed in (2.7), we
can however make use of a classifier for approximating the unavailable ratio by making
the following substitutions:

αAR(x)← 1

C̃

rθ(x)

1− rθ(x)
where C̃ = max

y∈D

rθ(y)

1− rθ(y)
; (2.13)

αIMH(x, xt)← min

(
1,
rθ(x)(1− rθ(xt))
(1− rθ(x))rθ(xt)

)
; (2.14)

wu(x)← rθ(x)

1− rθ(x)
. (2.15)

Our procedure is summarized by fig. 2.2: we first train rθ from labeled samples from p1
and p0; we next use ratio rθ(x)/(1− rθ(x)) as a surrogate of p1(x)/p0(x), which enables
us to use the AR, IMH or IS procedure, and thus to transform samples from p0 into
(approximate) samples from p1 via a stochastic operation. A main advantage of our
approach is that a distribution which is only defined by its sampling procedure and has
implicit PDF can be used as instrumental p0. Indeed our approach does not require
evaluating the PDF p0 neither during the training of the classifier, nor in the proposed
sampling procedures.

Illustrating examples

We illustrate our approach (see fig. 2.3) on reference 2D examples in order to il-
lustrate the mechanism of (i) obtaining an approximate of the PDF ratio from samples
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Figure 2.3: Density ratio (middle-right) via classification of samples from p1 (left) and p0
(middle-left) - approximate samples from p1 (right) obtained via a ratio based algorithm:
AR (top), IMH (middle), IS (bottom)

using a feed-forward NN (4) with 3 hidden layers, 32 hidden units per layers and SiLU
activation function that outputs logit(rθ(x)) trained according to the BCE criterion;
and (ii) sampling from the target distribution via that PDF ratio using the AR, IMH or
IS samplers. The instrumental p0 was set to be a Gaussian with mean and covariance
estimated from the samples from p1 (even though it can be computed, PDF p0 was not
used during the procedure).

Probabilistic modeling

So far, we have presented our work as a technique to perform approximate MC
sampling; let us now revisit it under the scope of probabilistic modeling. If we rewrite
p1 as p1(x) = p0(x)(p1(x)/p0(x))∫

p0(z)(p1(z)/p0(z))dz
, then using (2.7) amounts to building an approximation

pθ of p1:

pθ(x) =
p0(x)(rθ(x)/(1− rθ(x)))∫
p0(z)(rθ(z)/(1− rθ(z)))dz

. (2.16)

Our procedure consists in applying the AR, IMH or IS samplers to pθ with proposal
p0 (at least up to the approximation of constant C in the AR case, see (2.13)). This
construction corresponds to a specific energy-based model (60)(9)(31) with an energy



42 CHAPTER 2. LIKELIHOOD-TO-EVIDENCE RATIO POSTERIOR SAMPLING

function given by:

Eθ(x) = − log(p0(x))− logit(rθ(x)). (2.17)

Model pθ inherits the advantages of this energy structure: (i) it can be trained without
evaluating the gradient of the numerator of (2.16) nor of the intractable normalizing
constant; (ii) it is structurally compatible with the AR, IMH or IS samplers as sam-
pling from pθ with instrumental p0 is equivalent to applying the approximate sampling
presented in Section 2.1.4. In Fig. 2.4, we display such an approximation of the dis-
tribution of an image. logit(rθ(x)) defined via an NN function with 3 hidden layers of
size 512 (SiLU activation function), trained according to the BCE criterion, produces a
ratio based energy model able to capture details of the target distribution. Samples can
effortlessly be obtained via any of the three samplers, with target pθ and instrumental
p0. Note that computing the unormalized PDF in (2.16) (displayed in the middle-right
in Fig. 2.4) indeed requires evaluating PDF p0 but, again, it is not required for sampling.

Figure 2.4: Classifier based energy model: unormalized PDF (middle-right) and samples
(right); obtained from samples (middle-left) from a grayscale image (left) 2D distribu-
tion.

2.1.5 Conclusion

The classical AR, IMH and IS samplers require that both the target p1 and the easy-
to-sample instrumental p0 are known functions. In practice however, both functions may
be either unknown (for p1) or untractable (for p0). We observed that these samplers
use p1 and p0 only via their ratio p1

p0
which, in turn, can be approximated by a classifier.

We thus showed that one can still approximately sample from p1 using AR, IMH or
IS in the situation where we can not evaluate the functions p1 and/or p0, provided
that we dispose of a classifier function, which can be obtained from a set of labeled
samples from both distributions. The advantages or our approach are twofold: (i) it is
completely PDF-free as compared to standard approaches (neither p1 nor p0 needs to
be known explicitly); (ii) training reduces to a parametric classification task. From a
probabilistic modeling perspective, our approximate samplers coincide with the original
ones when applied to some specific energy based approximation of target p1 which,
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thanks to its specific structure, can both be trained easily via standard classification,
and is structurally compatible with the AR, IMH or IS sampling techniques.

2.2 Application of the method to the posterior

In the context of the LTER, we can easily apply the proposed methodology to sample
from the corresponding approximation of the posterior PDF. Indeed, a simple rewriting
of equation (2.2) yields:

pX|Y=y(x)

pX(x)
=
pY |X=x(y)

pY (y)
≈ rθ(x, y)

1− rθ(x, y)
. (2.18)

So the LTER approximation is also an approximation of the posterior-to-prior ratio. So
we can perform approximate sampling from the posterior distribution, so P corresponds
to PX|Y=y with using the prior as instrumental distribution, so Q is PX so long as the
prior is easy-to-sample-from (and, as mentioned, not necessarily with tractable PDF).

So we now suppose that (i) the prior distribution PX is easy-to-sample from, and
(ii) that, using D, we are able to obtain an approximate of the posterior-to-prior PDF
based on a classifier rθ. Following the idea expressed in the section 2.1, we now explicit
the classifier-ratio based approximate sampling from the posterior PDF using the AR
approach, while the other algorithms are detailed in the appendix of this thesis, section
A.3.

Algorithm 2 Classifer based Accept-Reject sampling from the posterior

Require: observed y, D, prior PX , classifier rθ
Compute C̃ = maxxi∈D

rθ(xi,y)
1−rθ(xi,y)

while not enough samples are accepted do
Propose x′ ∼ PX
Update C̃ = max(C̃, rθ(x

′,y)
1−rθ(x′,y)

)

if u ∼ U[0,1] ≤ 1

C̃

rθ(x,y)
1−rθ(x,y)

then

Accept x′

end if
end while

2.3 Connection with energy-based modeling

In the end of the section 2.1, we connected our work to Energy-based modeling and
we now elaborate on this connection. Energy-based modeling (1) is a set technique for
approximating a target distribution P using a parameterized probability distribution.
The specificity of this estimation technique is that the underlying parameterized proba-
bility distribution is not constructed as a generative model but instead, inspired by the
principle of Boltzmann distribution in statistical physics, defines the log-probability as
the inverse of an energy function (hence the term Energy-based model). On the one



44 CHAPTER 2. LIKELIHOOD-TO-EVIDENCE RATIO POSTERIOR SAMPLING

hand, (deep-) generative models are usually defined by, and parameterized via, their
sequential sampling procedure. As such, these models can be expressed as directed
graphical models which define a built-in, easy-to-carry step-wise sampling procedure,
and the goal of parameter estimation in this context is to adjust the sampling steps so
that the underlying probability distribution Pθ best matches P . However, as we will
see in Chapter 4 of this thesis, which is dedicated to this topic, a generative model does
not necessarily admit a closed form expression for its PDF, which also raises practical
issues. On the other hand, an EBM is not defined via a sampling procedure but is
instead parameterized via its unnormalized PDF directly. Thus, an EBM constructs a
parameterized probability distribution Pθ via a PDF of the form:

pθ(x) =
p̃θ(x)∫
p̃θ(x)dx

. (2.19)

The advantage of such a construction is that one can easily use flexible NNs functions
for parameterizing the probability distribution, making it suitable for different learning
tasks such as generative modeling (17) or classification (24). This probability distribu-
tion is parameterized by θ via the unnormalized PDF p̃θ(x) ≥ 0 which can be implicitly
defined via a function Eθ(x) which we refer to as energy function (this is detailed in
section 2.3.2). Suppose, for instance, that we dispose of a dataset D = {xi ∼ P} and
that we wish to obtain a suitable model θ by maximum likelihood estimation. In order
to place our contribution in this specific context, we briefly go over the principle of using
EBM, but the literature concerning EBMs is vast and applied in many settings (see,
most notably, (41) in the context of image generation, (60) in the context of anomaly
detection, (54) in the context of source separation in signal processing, and (53) in the
context of scene graph generation).

2.3.1 The issue of the unknown normalizing constant for Max-
imum Likelihood Estimation

The PDF (2.19) indeed sums to 1 but, for any input x, can only be computed up
to its (normalizing) constant denominator since the integral Zθ =

∫
p̃θ(x)dx does not

admit a closed-form expression in general. This normalizing value, sometimes referred
to as the partition function, is a constant with respect to x but it indeed depends on θ
and so its intractability poses a real challenge when trying to adjust the parameters of
the model. First, for arbitrary p̃θ(x), no closed-form expression for the value θ which
maximizes the (log-) likelihood p(D|θ) is available, and so in practice, we rather resort
to adjusting θ via a gradient-based optimization. The gradient of the log-likelihood of
D reads:

∇θ log(p(D|θ)) =

|D|∑
i=1

∇θ log(p̃θ(xi))− |D|∇θ log(Zθ). (2.20)

This expression for the gradient allows us to understand the effect of a step in a gradient
ascent of the log-likelihood as a combination of two actions: (i) increasing the probability
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mass p̃θ(x) in the specific regions of space where the samples from D lie (the first term),
while (ii) globally reducing the probability mass in the support of Pθ.

However, this expression for the gradient is again unavailable because of the in-
tractable gradient of the log-normalizing constant. It can nonetheless be approximated
with MC (59) as:

∇θ log(Zθ)|θ=θt = EX∼Pθt

[
∇θ log(p̃θ(X))|θ=θt

]
(2.21)

≈ 1

M

M∑
i=1

∇θ log(p̃θ(x
(t)
j ))|θ=θt , where x

(t)
1 , ..., x

(t)
M

iid∼ Pθt , (2.22)

which yields a gradient update that can again be interpreted as a combination of two
actions. The gradient reads in this case:

∇θ log(p(D|θ))|θ=θt ≈ ∇θ

|D|∑
i=1

log(p̃θ(xi))|θ=θt −
|D|
M

M∑
j=1

∇θ log(p̃θ(x
(t)
j ))|θ=θt . (2.23)

On the one hand, the first term yields an increase in the probability mass in the regions
where lie the observations D. On the other hand, the second term yields a decrease of
the probability mass in the region where lie the samples of the current model Pθt . There-
fore, an efficient and accurate sampling of the model is required during the maximum
likelihood training procedure. Of course, since the PDF pθ(x) can be evaluated up to a
constant for any value of θ, one can sample from the underlying distribution using an
MCMC method (possibly even gradient informed). In practice, using the data D from
the target distribution as the starting point of a few steps of MCMC transition kernel
yields the efficient contrastive divergence training algorithm for (30) (see also (29) for a
practical guide), which was studied and improved upon in subsequent work such as (57)
(58) (44). In this context, other sampling methods such as IS (38) and SMC sampling
(8) have also recently been applied in an attempt to improve the training of an EBM.

2.3.2 Appropriate parameterization of the unnormalized PDF
via an Energy function

In order to obtain an EBM which is practical to use and to train, the first step is to
parameterize the unnormalized PDF accordingly. We usually parameterize p̃θ(x) using
a positive function Eθ(x), which is referred to as Energy function:

p̃θ(x)
∆
= exp(−Eθ(x)). (2.24)

Of course, MCMC methods enable sampling from Pθ via the unnormalized PDF (or
possible via its gradient), but an appropriate choice of the energy function may enable
a convenient sampling scheme. This question has, both historically (32) and recently
(37)(3), motivated the development of sampler-induced EBM and we now revisit the
Binary-Classification Monte Carlo sampling methodology in this context.
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The example of Restricted Boltzmann Machines (RBM)

We first illustrate how an appropriate choice of energy function can induce a conve-
nient sampling scheme with the example of the Restricted Boltzmann Machine (RBM)
in the context of binary data x ∈

{
0, 1
}
d. RBMs, which were introduced in (47) (see

(61) and the references therein for a thorough review), are EBMs where the energy
function reads:

Eθ(x) = −(aTx+

p∑
j=1

log(1 + e(Wjx+bj))); (2.25)

and where parameter θ comprises W ∈ Rp×d, a ∈ Rd, b ∈ Rp. RBM can be understood
as a particular instance of Boltzmann Machines (32) with a specific structure which
induces a computational convenience that enables sampling from the underlying dis-
tribution easily via a Gibbs scheme. Indeed, this specific expression for Eθ(x) can be
obtained as the energy function associated with the x-marginal distribution of a joint
EBM with energy function:

Eθ(x, z) = −zTWx− xTa− zT b, with z ∈ {0, 1}p. (2.26)

It follows that this specific choice of energy function produces an EBM where pθ(x, z), pθ(x)
and pθ(z) are all only available up to a normalizing constant and cannot be expressed in
closed form as some distribution which we can easily sample from. However, it is very
convenient that both conditional distributions pθ(x|z) and pθ(z|x) can be written as a
product of independent univariate Bernoulli distributions:

pθ(x|z) =
d∏
i=1

pθ(xj|z) where Pr(xi = 1|z) = sigmoid(Wi, z + ai); (2.27)

pθ(z|x) =

p∏
j=1

pθ(zj|x) where Pr(zj = 1|x) = sigmoid(xTW ,j + bj) (2.28)

where Wi, ,W ,j are respectively the i-th row and j-th column of W . Indeed, the fact that
these two conditional distributions are available in closed form enables us to use a Gibb
sampling MCMC scheme. Therefore, by sequentially sampling the two conditionals, we
obtain samples from the joint distribution pθ(x, z) and hence the x values produced are
samples from the marginal distribution of interest pθ(x).

An instrumental-distribution based energy function

With that regard, the methodology presented in the section “Binary classifier based
Monte Carlo sampling” is also relevant in the context of EBM. Indeed, as mentioned
in section 2.1.4, the methodology we proposed to perform approximate sampling from
the distribution of interest P1 can also be understood as applying the AR, IMH, or IS
sampling principle to obtain samples from Pθ an EBM approximation of P1. This model
has PDF which, up to a normalizing constant, reads:

p̃θ(x) =
rθ(x)

1− rθ(x)
q(x); (2.29)
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so this underlying probability distribution corresponds to an EBM with the energy
function Eθ(x) = −logit(rθ(x)) − log(q(x)). The energy Eθ(x) and consequently the
unnormalized PDF (related to the energy function via (2.24)) can be evaluated so long
as q(x), the PDF associated to the instrumental distributionQ, can be computed up to a
constant. However, we will explain hereafter that this is not required in the methodology
we propose, neither for maximum likelihood estimation of θ, nor for sampling from the
corresponding distribution.

The advantage of the specific structure of this energy function is that it enables us to
draw samples from the underlying probability distribution with the algorithms of AR,
IMH and IS using the instrumental distribution Q. Indeed, because the unnormalized
PDF is, up to a constant, the product of an instrumental PDF q(x) and rθ(x)/(1 −
rθ(x)), the approximation of the ratio pθ(x)/q(x), does not involve neither q(x) nor the
normalizing constant Zθ. The consequence of this is twofold: firstly, the PDF ratio can
be evaluated exactly as rθ(x)/(1− rθ(x)), thus enabling us to apply the classical ratio-
based MC sampling methods. Second, as mentioned in the section 2.1, this methodology
therefore enables the use of an instrumental distribution which is an implicit generative
model since the sampling steps do not involve PDF q(x).

A training algorithm exempt of normalizing constant estimation

Similar EBM constructions were proposed in the literature. Most notably, the
Learned-Accept-Reject Sampling (LARS) methodology (3)(51) has notable connections
with our approach. It consists in parameterizing an acceptance probability associated
with a truncated rejection sampling approach. LARS has been successfully applied
in the context of generative modeling as a way to enrich the base distribution (often
called prior distribution in this context) in the contexts of Variational AutoEncoders
(36) and of Normalizing Flows (NF) (45). However, as we have mentioned before,
for a gradient based maximum likelihood estimation, it is required to account for the
fact that the model is unnormalized, and though the normalizing constant can be es-
timated effortlessly in a differentiable way (with respect to model parameters) in the
LARS methodology, it does not circumvent the potential shortcomings associated with
a noisy or poor approximation of the log-likelihood. Alternative approaches for estimat-
ing the parameters of an EBM which indeed circumvent the problem of the unknown
normalizing constant have been proposed in the literature. On the one hand, one can
most notably refer to the principle of score-matching (34)(33) which, as an alternative
to maximum-likelihood estimation, proceeds by fitting the gradient of the log-PDF (re-
ferred to as Score function) to the gradient of the unknown PDF via minimizing a square
distance between the two functions. On the other hand, (26) proposes to estimate the
parameters of an arbitrary EBM by discriminating between components within an im-
plicit mixture distribution. In our approach, the classification procedure is not used to
estimate the parameters of an arbitrary EBM but is instead used to construct a spe-
cific unnormalized model, and the training procedure reduces to training that classifier
to distinguish between the samples from the target distribution and the samples from
the instrumental distribution. This approach is therefore free of any estimation of the
corresponding normalizing constant.
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2.4 A simple, ratio-based, relaxation of bijectivity

constraint of NFs

In this section, we consider an alternative problem which is more closely related to
the context of Chapter 4 and, more precisely, with the task of generative modeling with
NFs. In this context, we propose an easy solution to identify and discard samples that
are located in artifact bridges when the target distribution has disjoint elements of mass.

NFs are a popular class of generative models with tractable PDF which have been
successful applied in many applications, and have also been used as a tool to build
elaborate and efficient MC methods. A complete description is presented in this thesis
(see section Chapter 4) but we already briefly describe its principle. An NF applies
a change of variable Tθ to a base instrumental distribution Q, and parameters θ are
estimated such that the resulting probability distribution Pθ is close to target P known
either via recorded samples or via its PDF.

In this section, we refer to as disjoint a distribution P for which the set Sϵ
∆
={

x ∈ Rd|p(x) ≥ ϵ
}

is disjoint for small values of ϵ. As an example, a mixture of Gaus-
sian distributions is mutimodal but it can also be disjoint if the mixture components
have small variance and are not located close to one another. On the one hand, when
the change of variable Tθ is parameterized via a flexible NN function and (ii) the base
distribution is non-disjoint, the corresponding NF is known to produce an accurate
approximation of non-disjoint target distributions. On the other hand, if the base dis-
tribution is non-disjoint, the corresponding NF, being a continuous transformation of
the base distribution, will therefore struggle to efficiently approximate a disjoint distri-
bution. The Normalizing-flow will hence either not be disjoint or only be disjoint for
values ϵ

′ ≫ ϵ, and therefore have significant probability mass in regions where the target
distribution has little to no probability mass. We refer to these regions as bridges as they
connect the different regions of mass. If the NF Pθ is an appropriate estimation of the
target distribution P then using it as an instrumental distribution would yield efficient
sampling in an MC setting. However, in the context of a disjoint target distribution,
an NF can correspond to an accurate estimation in the regions of high probability mass
Sϵ in the sense that they appropriately capture the distribution in these regions; but
be inaccurate in some regions of low probability mass because of bridges where the NF
model has high probability mass. We can therefore summarize this by saying that an
NF is approximately proportional to the target distribution in Sϵ for a small value of ϵ.

Previous approaches have been proposed to tackle this issue and remove or prevent
the occurrence of bridges in NFs (16)(13)(11)(51) and in Chapter 4 of this thesis, we
propose the novel construction of Discretely Indexed Flows, a parametric probability
distribution which does not suffer from the same structural limitation in the context of
disjoint distributions. In the context of NFs, we now propose a simple, yet surprisingly
efficient method to remove bridges from an NF model and, more precisely, discard the
samples from the model which are located on these bridges. This approach is once again
based on the PDF ratio p(x)/pθ(x), where pθ is the PDF associated with the NF model.
First, the value of this PDF ratio can, in this context, indicate whether or not a sample
x ∈ Rd is located on a bridge. On the one hand, if the PDF ratio takes a high value
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Figure 2.5: Non-disjoint NF (PDF (Middle) and samples (Right)) approximating a
disjoint target distribution (Left).

Figure 2.6: Samples from an NF which are located on a bridge can be identified using the
PDF ratio (Left) and can be discarded using the proposed resampling strategy (Right).

for a given x, then it means that x is located in a region where p(x) ≥ ϵ hence not on
a bridge. On the other hand, if the ratio is small, this means that x is likely located
in a region where p(x) is small and pθ(x) is not smaller than p(x), which comprises the
bridges. So by evaluating the PDF ratio for the samples x ∼ Pθ, the smaller the ratio is,
the more likely it is that this sample is on a bridge of the NF, which allows us to identify
such regions. Second, we can also easily discard the samples that are in fact located
on a bridge with a simple accept-reject step with probability α(x) = min(1, p(x)

pθ(x)
). This

therefore yields a two-step sampling procedure that would only be exact in the case
where pθ(x) and p(x) are proportional in the support of P (which is nothing but Sϵ for
ϵ = 0). Since in the case of a trained NF, pθ(x) is approximately proportional in Sϵ for
small ϵ, this procedure is motivated.

NFs are a versatile tool: (i) they can approximate a probability distribution via its
PDF (in the context of VI) or from its samples (in the contexts of Generative modeling
and DE) and (ii) they provide with tractable PDF and with a straightforward sampling
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procedure. As a consequence, if the target distribution is available via its PDF, then the
PDF ratio is available which enable to use the proposed technique to remove the bridges
from the NFs. Moreover, if the target distribution is available via samples drawn from
it, then one can sample from the NF model and obtain an approximation of the PDF
ratio using a classifier rθ which can be obtained via the minimizing the BCE.

2.5 Conclusion

A PDF ratio is a versatile tool in statistical methods. It enables us to compute
statistical distances between probability distributions and thus estimate (and minimize)
discrepancies between two distributions. In the context of sampling, the PDF ratio is
an importance weight which can be used to turn samples from one distribution into
samples from another via a stochastic procedure. This principle yields the algorithms
of AR, IS, or IMH.

A PDF ratio can be computed if both PDFs in the numerator and denominator
can be evaluated (perhaps up to a common constant). However, the value of the PDF
ratio can also be obtained from the posterior probability in a binary mixture context.
This establishes a connection between PDF ratio evaluation and classification. As a
consequence, a possible approach to approximating a ratio is to obtain a classifying
parametric model which is trained to distinguish samples from the distribution of the
numerator from that of the denominator. This can be achieved, for example, using the
BCE criterion computed from recorded samples. In the context of approximate posterior
inference, this approach yields the LTER approximation. By using a classifier ratio and
the corresponding instrumental distribution, we can build an approximation of a target
distribution.

A natural question that arises in this context is that of sampling from the corre-
sponding model, and this topic is the main focus of this chapter. We proposed the
”Binary Classification Monte Carlo Sampling” methodology, in which we turned this
problem around. We applied the usual sampling algorithms using an instrumental dis-
tribution, but where the PDF ratio was replaced by a classifier-based approximation.
This yields straightforward and parameter-free sampling schemes, where neither PDFs
must be evaluated. As such, the instrumental distribution can be implicit and only
requires being sampled from.

We further elaborated on the corresponding model. They are implicit unnormalized
energy-based models where the specific choice of energy function provides a straight-
forward training procedure that circumvents the approximation of the (gradient of the)
normalizing constant and is instead a binary classification task. This specific energy
function is also structurally compatible with the ratio-based sampling algorithms, yield-
ing the aforementioned sampling procedures of approximate AR, IS, or IMH.

We finally considered classifier ratio in the alternative context of generative modeling,
where we proposed to use a classifier ratio for refining NF models. Indeed, NFs are built
as a change of variables and preserve the topology of the base distribution. In the case of
disjoint distribution, artifact bridges remain to connect the different modes. The PDF
ratio can be used to identify and discard the samples from these bridges. This proposed



2.6. PERSPECTIVES AND FUTURE WORK 51

method can establish a methodological connection between this chapter and ”Discretely
Indexed Flows”, which proposes a model that can be considered an extension to NFs
that does not suffer from this topological constraint.

2.6 Perspectives and future work

2.6.1 Bayesian Uncertainty quantification for ratio-based mod-
els

Uncertainty quantification is a topic of utmost importance in recent machine learn-
ing methods and applications but is not often considered in the context of EBMs. While
most methods for uncertainty quantification revolve around bagging and model averag-
ing, Bayesian methods are particularly interesting since studying the posterior predictive
distribution enables to unravel differences with regard to the behavior of different mod-
els (which is precisely the score point of Chapter 3). When it comes to unnormalized
and univariate energy-based models, the PDF of the PPD, which reads:

p(x|x1, ..., x|D|) =

∫
p̃θ(x)

Zθ
p(θ|D)dθ; (2.30)

is not easy to use in practice. Indeed, even though this distribution can be sampled
from, at least in theory, in a two-step procedure with drawing θ ∼ p(θ|D) and then
x ∼ p(x|θ) = p̃θ(x)/Zθ; it turns out that the first step can not be conducted easily.
As a matter of fact, the PDF p(θ|D) ∝ p(D|θ)π(θ) cannot be computed because of the
normalizing constant Zθ which indeed depends on θ. We recall that a similar issue arises
when considering the maximum likelihood parameter estimation problem. So it remains
unclear how to compute, approximate or sample from this integral.

As discussed in this chapter, a key advantage of using an approximation based on a
ratio and an instrumental distribution is the ability to implement an alternative training
procedure. This method avoids the challenge of approximating the normalizing constant,
which is a significant burden in maximum likelihood estimation for EBMs. Instead, the
training process becomes a binary classification task, distinguishing between samples
from the target distribution and samples from the instrumental distribution, labeled as
k = 0 and k = 1, respectively. In Chapter 3, we compare different modeling approaches
using the Bayesian PPD). Our methodology is as follows: (i) drawing a graph to show
the dependencies between all random variables and deducing a factorization of the joint
distribution, (ii) obtaining an expression for the PPD and explaining practical sampling
from this distribution; and (iii) analyzing distributions of interest to understand various
behaviors in the corresponding inference problem. However, applying this methodology
to classifier-ratio based modeling approach presents challenges. Specifically, the first
step is not straightforward difficult to draw a Bayesian graph that includes all variables
(observations, labels, binary labels, parameters). Therefore, we have not yet analyzed
this modeling technique within the Bayesian uncertainty quantification, PPD-based,
framework.

Future work could include comparing this classifier-ratio based approach with gen-
erative and discriminative modeling techniques, particularly in the context of posterior
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learning with the LTER approximation. This comparison could provide insights into
the performance of this method in scenarios such as semi-supervised learning, dataset
imbalance, and other relevant properties.

2.6.2 Binary Classification based Monte Carlo Sampling: tar-
get PDF and implicit instrumental ?

As we have explained, the approximate sampling approaches are completely PDF-
free once we dispose of a classifier rθ. Usually, a classifier rθ which suitably distinguishes
between two probability distributions is obtained via the BCE criterion computed via
recorded samples from these two distributions, and the minimization is conducted over
the parameters of an otherwise arbitrary function rθ ∈ [0, 1]. This function can be
obtained by parameterizing:

rθ(x) = sigmoid(fθ(x)); (2.31)

where fθ(x) ∈ R is an arbitrary function, usually an NN function.
However, usually in the context of MC sampling, the goal is to sample from a distri-

bution which is known via its PDF, perhaps up to a constant. In this specific setting, if
the instrumental distribution also has a tractable PDF (perhaps also up to a constant),
then the PDF ratio can be computed up to a constant and the usual MC sampling
algorithms can be applied. Conversely, it is possible that the instrumental distribution
is a suitable candidate for instrumental distribution in the sense that it is selected (or
constructed) to be close to the target distribution and easy to sample from, but has an
implicit PDF. This situation occurs, for example, when the instrumental distribution
is a directed graph which can be sampled from via its latent variables but its PDF is
unavailable since one cannot explicitly marginalize the latent variables in the joint PDF.
In this setting, the PDF ratio is therefore unavailable, and the classifier-ratio method-
ology for MC sampling would also prove relevant. We briefly discuss this problem and
provide with

We now suppose that we dispose of the target PDF, which in general, is available up
to an unknown normalizing constant C such that p(x) = p̃(x)

C
. We also suppose that Q

is a suitable easy-to-sample-from instrumental distribution but with untractable PDF
q(x). In this case, the classifying posterior probability can be written (in the case of
equally probable a priori classes) as:

Pr(k = 1|x) =
p(x)

p(x) + q(x)
=

p̃(x)

p̃(x) + Cq(x)
. (2.32)

In order not to discard the information about target distribution which is contained in
p(x), one can parameterize an approximation of (2.32) as:

rθ(x) =
p̃(x)

p̃(x) + exp(−fθ(x))
; (2.33)

which is to be opposed to (2.31). This parameterization can easily be motivated: (2.32) is
unavailable only because the second term of the denominator, which is a an unnormalized
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PDF, is untractable. Instead of approximating the whole posterior probability but rather
only the unknown term using a similar construction as an EBM.

By doing so, we retrieve a methodology which is closely related to Noise-Constrastive
Estimation of an unnormalized model (26), with a similar procedure and a similar
training objective. However, the underlying goal is not the same: in the noise-contrastive
approach, the classifier-ratio is a tool for estimating an unnormalized (energy-based)
model; in our case the approximation of the ratio is obtained via a classifying function
which is defined using an unnormalized model.

This procedure obtains the classifier-ratio approximation via the BCE criterion and
can thus currently only be applied in the case where we already dispose of recorded
samples from the target distribution. However, in usual signal processing and parameter
estimation tasks, the goal of MC techniques is often to circumvent the unavailability
of samples and/or of a straightforward sampling procedure, usually using an algorithm
which is based on the PDF of the target distribution. Therefore, it would be of particular
interest to find a way to obtain a classifier-ratio approximation method which does not
rely on the BCE criterion (2.10) since it is computed using samples from the target
distribution. This question is however, still open and postponed to future work.
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Chapter 3

Generative vs. discriminative Bayesian
Posterior learning

Learning a parametric model from a given dataset indeed enables us to capture intrin-
sic dependencies between random variables via a parametric conditional probability dis-
tribution and, in turn, predict the value of a label variable given the observed variables.
In this context, an approach for uncertainty quantification is that of Bayesian statistical
learning, where model parameters are treated as random variables and marginalized
out. This results in an uncertainty-aware inference via the so-called posterior predictive
distribution.

When tackling classification and regression problems, this distribution is, most of
the time, explicited under a specific construction described as discriminative. However,
the discriminative method is not the only way to approximate a posterior probabil-
ity distribution using a conditional model, and indeed generative modeling is another
possible approach. These two constructions differ in their parameterization: the for-
mer parameterizes a distribution over label given observation, while the latter does the
opposite. It happens that this difference in construction has many interesting conse-
quences with regard to the posterior predictive distribution and the model behavior in
the corresponding inference problem.

In this work, we thus undertake a comparative analysis of generative vs. discrimina-
tive approaches under the lens of uncertainty quantification via the posterior predictive
distribution. Our objective is to compare the ability of both approaches to leverage
information from various sources. We assess the role of a prior distribution, explicit in
the generative case and implicit in the discriminative case, leading to a discussion on the
sensitivity of discriminative models to imbalanced datasets. We next thoroughly exam-
ine the role played by the observed variables in the inference, and discuss whether each
approach is compatible (or not) with semi-supervised learning. We also provide practi-
cal insights and examine how the modeling choice impacts sampling from the posterior
predictive distribution. With regard to this, we propose a general sampling scheme en-
abling supervised learning for both approaches, as well as semi-supervised learning when
compatible with the considered modeling approach. Throughout this chapter, we illus-
trate our arguments and conclusions using the example of affine regression and validate
our comparative analysis through classification simulations using neural network-based
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models1.

3.1 Introduction

The statistical learning tasks of classification and regression (85)(39) are paramount
in many scientific fields and have gained increasing interest in the big-data and machine
learning era. Elaborate methods and tools (5)(9) enable to leverage flexible parametric
models in order to capture intrinsic dependencies between related variables and, in turn,
predict the value of a variable of interest given the observed values of the others. Many
statistical learning methods, both historical (1)(6)(61) and recent (62)(53)(62), can be
understood as building an approximate of the conditional probability distribution of a
variable of interest (which we refer to as label) given the value of an observed variable.
This is usually achieved by considering a parameterized model and adjusting the pa-
rameters by minimizing a loss function computed on a dataset comprised of recorded
couples of observations and labels.

However, when predicting a label of interest from an observation using a parametric
model, committing to a unique value can lead to high imprecision as there are two
sources of uncertainty that one needs to account for (19)(48)(44). The aleatoric source
of uncertainty results from the stochastic nature of the Data Generating Process (DGP)
which, as we assume, generates the observation from the label. Moreover, when the DGP
is unknown (or at least with an untractable probability density function (PDF)), using
an approximate parametric model induces additional uncertainty about the predicted
label, which is referred to as epistemic (42)(84). This source of uncertainty includes the
possible mismatch between the target and the considered modeling parametric family
(which is sometimes referred to as model mispecification), as well as the uncertainty
about the model parameters resulting from their inference from a finite dataset.

This leads us to the concept of uncertainty quantification (UQ), which aims at com-
puting or estimating confidence or credible intervals associated with a prediction. This
problem has become of utmost importance in recent years (in particular for applications
where providing a measure of confidence is critical), but remains challenging, especially
when using neural network (NN)-based models (28)(43). Different methods for UQ have
been proposed, including ensemble methods (20), Jackknife/bootstrap methods (23)(2),
Laplace approximation methods (77) or Bayesian modeling methods (32)(47). Among
them, Bayesian modeling methods have perhaps emerged as the most promising ones
(32). They consist of treating the model parameters as random, and these variables are
marginalized out to obtain the predicted law of the label given the observation as well
as the dataset. This yields the so-called posterior predictive distribution (PPD) which,
from now on, is the distribution of interest.

Bayesian methods for UQ are now prevalent in many applications and provide a
unified framework for many well established techniques which somehow can be related
to the task of sampling from the PPD. However, in the literature, the PPD is most often
derived with regards to a specific construction that corresponds to a discriminative mod-

1We provide all reproducible code and experiments in the Github repository at
github.com/ElouanARGOUARCH/Generative Discriminative Uncertainty Quantification.

https://github.com/ElouanARGOUARCH/Generative_Discriminative_Uncertainty_Quantification
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eling technique. In this discriminative context, the PPD is easy to use as sampling from
the corresponding distribution reduces to (i) sampling parameters from their posterior
distribution and (ii) evaluating or sampling from the corresponding model. In practice,
Bayesian modeling techniques focus on facilitating the first step, which can be particu-
larly challenging. They include building conjugate models for which, by construction,
the model parameter posterior distribution is easy to sample from, see e.g. (75)(37). In
the case of more elaborate NN-based models (in which case we often refer to Bayesian
neural networks (BNN) (59)(63)), prior conjugacy can be leveraged to some extent in
methods such as Bayesian last layer (25), but the PPD can no longer be sampled from
straightforwardly. Fortunately, Bayesian methods still enable sampling from this distri-
bution (63), be it via MCMC methods (12)(87)(46) or variational inference (35)(29)(80).
Finally, methods related to posterior Bootstrap sampling (65)(58)(27)(64)(26) indeed
provide theoretically grounded non-parametric approximate sampling from the posterior
distribution over model parameters.

However, parametric posterior learning can be addressed using two main approaches.
On the one hand, the prevalent discriminative modeling consists in parameterizing a
distribution over the label given the observation, see e.g. (51)(50)(36). On the other
hand, generative modeling also indirectly enables to approximate a posterior distribution
using a conditional model, via a parameterized distribution over the observed variable
given the label, see (76)(71)(72)(60) for some applications. In many learning tasks, the
observation is a high-dimensional random variable (RV) when compared to the usually
low-dimensional label. Therefore, discriminative models are much more convenient to
work with as compared to generative models, as the latter involve modeling a high-
dimensional conditional distribution.

Recently, new developments in generative probabilistic modeling (33)(70)(81) now
enable to capture intrinsic distributions, and have paved the way towards a renewed in-
terest in the generative modeling approach (69)(45)(90). Some properties and behaviors
of both models have previously been compared (see e.g. (66)(83)(62, §9.4)(24)(57)(89)).
Yet a comparative analysis of both modeling approaches under the lens of UQ has not
been conducted, even though the generative approach induces a different structure of
the PPD, which yields different behaviors of the corresponding model in the inference
problem. Finally, our aim is to compare the generative and discriminative approaches
under the scope of Bayesian UQ via the PPD, and in particular we address the ability
of both approaches to leverage information from various sources.

This chapter is organized as follows. In section 3.2 we first provide a precise de-
scription of both generative and discriminative constructions. Next in section 3.3, by
analyzing the PPD, we explain the different behaviors of the two modeling approaches
in an epistemic uncertainty-aware inference. More specifically, in section 3.3.4, we focus
our attention on the role of a specific distribution, which can be understood as a prior
distribution associated with the PPD, and analyze the ability of each approach to infer
using prior information. By doing so, we give clues as to why discriminative models
can suffer from imbalanced datasets while generative ones do not, and we confirm this
analysis via both illustrative and quantitative simulations. In order to sample from the
PPD, especially in the generative case, we provide in section 3.3.5 a general sampling
algorithm which is based on a Gibbs scheme and which can easily be applied to both
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approaches. Finally, in section 3.4, we specifically discuss the dependency of model
parameters to observations, and conclude on the compatibility of each approach with
the task of semi-supervised learning, which aims at inferring the model parameters from
both labeled and unlabeled datasets. We propose to leverage the corresponding Gibbs
sampling scheme to perform Bayesian semi-supervised learning in the generative case.
We finally perform simulations in the context of image classification in order to illustrate
the arguments in different learning scenarios.

3.2 Supervised learning: Context and objective

Let (X, Y ) be a couple of rv related via a DGP PY |X which describes the probability
distribution of Y given X. The task of prediction consists in retrieving information
about an unknown x0 which (is assumed to have) generated an observed y0 via the
DGP: y0 ∼ PY |X(Y |X = x0). In this chapter, we use the specific nomenclature of a
classification problem and we denote Y as observation (from the DGP) and, X as the
corresponding label (though it is not necessarily categorical). The Bayes formula tells
us that, once the value y0 is observed, the information about x0 is encapsulated in the
posterior distribution PX|Y with PDF given by:

pX|Y (x0|y0) =
pY |X(y0|x0)πX0(x0)

pY0(y0)
,where pY0(y0) =

∫
pY |X(y0|x)πX0(x)dx, (3.1)

where pY |X(.|.) is the conditional PDF associated with the DGP and πX0(.) is the PDF
associated with the distribution which describes our prior knowledge about x0 (we de-
note prior distributions with letter Π and their PDFs with π). This posterior distribution
can be used to obtain pointwise Bayes predictors by minimizing the expectation of a
well-designed loss function l (52): x∗0 = arg minx0 EX|Y=y0

[
l(X, x0)

]
; but in essence, the

posterior distribution describes our inability to commit to a singular value of x0. This
source of uncertainty is induced by the random nature of the DGP and is referred to as
aleatoric.

If both of these PDFs can be evaluated, then (3.1) can be computed at least up to
the constant denominator pY0(y0) =

∫
pY |X(y0|x)πX0(x)dx. In many situations however,

the PDF associated with the DGP is intractable and consequently (3.1) cannot be
evaluated, not even up to a constant. This situation occurs either when (i) we only
dispose of a dataset D (defined in the next paragraph) generated from and the DGP
(and so its PDF) is otherwise simply unknown; or (ii) when the DGP is only available via
its stochastic simulation procedure which enables obtaining (and augmentin (22)(56)) a
dataset D but its PDF is implicit (15); historical approaches in this setting include the
Approximate Bayesian Computation (ABC) methods (16). We consider the first setting
and suppose that we dispose of D generated from the DGP but that we no longer have
access to the random sampling mechanism of the DGP making ABC unfeasible. A
possible approach to cope with this shortcoming is to resort to an approximation of the
intractable posterior using a conditional probability distribution Pθ where parameter θ

is inferred using observed couples D ∆
= {(xi, yi)|xi ∼ PDX , yi ∼ PY |X(Y |X = xi)}|D|i=1. We

denote PDX the probability distribution which effectively generated the values in dataset
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D but we stress here that this probability distribution is not necessarily the same as
the prior distribution ΠX0 (this particular point and its consequences are discussed in
details in section 3.3.4). This general formulation includes the usual tasks of statistical
parametric learning: we talk about regression (resp. classification) when X is continuous
(resp. categorical).

Since a unique parameter estimate of θ (such as Maximum Likelihood Estimates
(MLE) or Maximum A Posteriori (MAP) estimates) can be stained with high imprecision
if D is not representative enough of the DGP, we rather consider θ to be a hidden rv,
assume a prior knowledge described by distribution ΠΘ, and approximate (3.1) with the
ppd (31):

p(x0|y0,D) =

∫
p(x0, θ|y0,D)dθ. (3.2)

This PDF indeed accounts for the epistemic uncertainty which is the uncertainty about
the unknown parameter θ (induced by the finite number of recorded samples in D)
propagated to x0 predicted by this model. The ppd (3.2) is computed by integrating
out θ in the joint PDF:

p(x0, θ|y0,D) = p(x0|y0, θ)p(θ|y0,D), (3.3)

and so p(x0|y0,D) = Eθ[p(x0|y0, θ)|y0,D] which explains the denomination: it is the
average of (posterior) predictions p(x0|y0, θ) over probable models under the posterior
p(θ|y0,D). Ultimately, computing the posterior PDF (3.2), or sampling from the dis-
tribution if exact computation of the expectation by integration is unfeasible, would
enable identifying the probable (aleatoric) values of x0 that might have generated y0 via
the DGP, while accounting for the modeling (epistemic) uncertainty.

Illustrating running example

Throughout this chapter, we propose to illustrate arguments and conclusions on the
continued example of affine regression. Though it serves as an illustrative example,
this specific application to affine modeling is, in itself, relevant since affine relationship
between variables of interest are most frequent in many science fields and are in many
cases, the first considered dependency hypothesis. Let (X, Y ) ∈ R × R be two real-
valued rv (assumed to be) related via an unknown DGP. For illustration purposes, we
consider a toy setting where the DGP is of the form:

Y = α1X + α0 + σY |Xϵ ⇐⇒ pY |X(y|x) = N (y;α1x+ α0, σ
2
Y |X). (3.4)

We dispose of recorded data D produced by the DGP, and where the distribution of
the x values is PDX . The prior knowledge on x0 is given by the distribution πX0(x0) =
N (x0;µX0 , σ

2
X0

). We chose the prior and the DGP to be conjugated such that the
posterior distribution reads:

pX|Y (x0|y0) = N (x0; (
α2
1

σ2
Y |X

+
1

σ2
X0

)−1(
α1(y0 − α0)

σ2
Y |X

+
µX0

σ2
X0

), (
α2
1

σ2
Y |X

+
1

σ2
X0

)−1); (3.5)

and so this posterior distribution can be used to assess the quality of the inference when
comparing the ppd p(x0|y0,D) to it; but we otherwise suppose the DGP unavailable.
An example of this setting is illustrated in figure 3.1.



64
CHAPTER 3. GENERATIVE VS. DISCRIMINATIVE BAYESIAN POSTERIOR

LEARNING

Figure 3.1: Supervised learning setting

3.2.1 Generative versus Discriminative modeling

In the previous section we explained the general principle of modeling the posterior
PDF (3.1), and we emphasized on the role of the ppd (3.2), which accounts for the
epistemic modeling uncertainty. However, we have not explained precisely yet how the
modeling is carried out. In fact, using a parametric conditional probability distribution
Pθ, we can either model the unknown DGP with Pθ(Y |X) and deduce the corresponding
posterior via the Bayes formula, or model the posterior directly with Pθ(X|Y ). In the
literature, the first approach is classically referred to as Generative (since it models the
data generating process), while the second one is called Discriminative (since it makes
sense in particular in the classification setting, where the model directly computes the
label probabilities which enable to discriminate samples via their respective classes).
The first approach is called generative modeling but in the (deep) Machine Learning
literature, generative modeling (8) can also refer to the task building a parametric
probability distribution which is generative in the sense that it can be sampled from
easily and is designed to resemble a probability which produced recorded data. In this
chapter and unless stated otherwise, generative modeling refers to the approach which
consists in building an approximate of the posterior distribution of interest (3.1) via
modeling the unknown likelihood. These two approaches differ in their philosophy: the
first one models only what is unknown, i.e. the generative process, while the second
one directly models the function of interest, i.e. the posterior PDF. Figure 3.2 provides
with an illustration of the difference between the two approaches.
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Figure 3.2: Illustration of the difference between generative and discriminative modeling
approaches (right)

These approaches yield two different equations:

p(x0|y0, θ)
G
=

pθ(y0|x0)πX0(x0)∫
pθ(y0|x)πX0(x)dx

(3.6)

p(x0|y0, θ)
D
= pθ(x0|y0), (3.7)

in which superscripts G and D respectively stand for generative and discriminative; this
notation will be used throughout the rest of this chapter. In both equations, pθ, be it
pθ(y0|x0) in the generative case or pθ(x0|y0) in the discriminative case, is the conditional
PDF associated with Pθ, and is what is effectively computed with model associated with
parameter θ.

Figure 3.3 displays a graphical representation of both models and explains how the
modeling choice affects the dependence between all the rv. We build upon these two
figures by writing the full joint PDF of all rv. This comparison of graphical models

y0

x0

y1 y|D|

x1
x|D|

θ

. . .

. . .

y0

y0

x0

y1 y|D|

x1
x|D|

θ

. . .

. . .

y0

Figure 3.3: Graphical models compared: Generative (left) versus Discriminative (right).
The grey (resp. white) nodes are observed (resp. latent) variables.
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allow us to deduce the joint distribution of all the rv of interest:

p(x0, y0, θ,D)
G
= πΘ(θ)πX0(x0)pθ(y0|x0)

∏
(xi,yi)∈D

pDX(xi)pθ(yi|xi), (3.8)

p(x0, y0, θ,D)
D
= πΘ(θ)pY0(y0)pθ(x0|y0)

∏
(xi,yi)∈D

pDY (yi)pθ(xi|yi). (3.9)

The difference between generative and discriminative modeling has already been estab-
lished in the literature. In the context of classification, (66) compares the Naive Bayes
Classifier (which is a generative model) and logistic regression (which is discrimina-
tive) in term of (asymptotic) classification error and conclude in favor of the generative
approach when working with a small amount of training data.

Illustrative running example

We now illustrate the difference between both modeling approaches by performing
homoskedastic affine regression with unknown variance Gaussian Noise where model
parameters are the coefficients of the affine transform as well as the variance of the
unknown noise so θ = {β1, β0, σ2}. Both the DGP (3.4) and the posterior (3.5) be-
long to the considered parametric family of conditional probability, so both modeling
approaches correspond to a well-specified inference problem. We first describe the gen-

erative approach y0
G
= β1x0 +β0 +σϵ, ϵ ∼ N (0, 1) ⇐⇒ pθ(y0|x0)

G
= N (y0; β1x0 +β0, σ

2).
Once again, thanks to the conjugacy of the prior πX0(x0) and the previous pθ(y0|x0),
the posterior PDF p(x0|y0, θ) admits a closed-form expression:

p(x0|y0, θ)
G
= N (x0; (

β2
1

σ2
+

1

σ2
X0

)−1(
β1(y0 − β0)

σ2
+
µX0

σ2
X0

), (
β2
1

σ2
+

1

σ2
X0

)−1). (3.10)

We now describe the discriminative modeling approach with the same parameterized
Pθ:

x0
D
= β1y0 + β0 + σϵ, ϵ ∼ N (0, 1) ⇐⇒ pθ(x0|y0)

D
= N (x0; β1y0 + β0, σ

2). (3.11)

3.2.2 Handling multiple observations

The bayesian philosophy behind equation (3.1) is to assume (i) prior knowledge on
x0 (before observation) in the form of a prior ΠX0 and (ii) an observation model. This
observation model is assumed to produce y0 from x0 but it might not necessarily be true
in practice. In this case, we say that the observation model is mispecified w.r.t. the
observation. In our case, we considered the observation model to be the DGP PY |X ,
so (3.1) is a well specified Bayesian setting. Then, after observing (one or) several

observations: y0,1, ..., y0,N0

iid∼ PY |X(Y |X = x0). We deduce the posterior PDF:

pX|Y0,1,...,Y0,N0
(x0|y0,1, ..., y0,N0) =

πX0(x0)
∏N0

n=1 pY |X(y0,n|x0)∫
πX0(x0)

∏N0

n=1 pY |X(yn|x0)dy1...dyN0

. (3.12)
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We often describe this equation as a form of Bayesian updating: we update the prior
knowledge with the observations. In section 3.3.4, we will discuss the role of the prior
ΠX0 with regard to both modeling approaches; but in this section, we first specifically
examine whether or not each approach enables to easily handle multiple observations in
the inference of x0.

Equations (3.6) and (3.7) explain how we can predict the value of x0 from a unique
observed value of y0 using model θ for respectively the generative and the discriminative
approach. In this case, both approaches enable computation of the posterior p(x0|y0, θ)
as both equations are tractable (at least up to a constant). By contrast, when we
observe not only a single observation but rather a collection of observations from the
DGP which originate from the same unknown value of interest, as in (3.12), then the
generative approach enables us to handle this situation with a tractable equivalent of
(3.6), while the discriminative one does not.

Indeed, under a generative modeling, we can easily rewrite equation (3.6) as:

p(x0|y0,1, ..., y0,N0 , θ)
G
=
πX0(x0)

∏N0

n=1 pθ(y0,n|x0)
p(y0,1, ..., y0,N0|θ)

; (3.13)

and this formula can be computed up to its constant denominator (w.r.t. x0). On the
other hand, with a discriminative modeling, equation (3.7) becomes:

p(x0|y0,1, ..., y0,N0 , θ)
D
=

∏N0

n=1 pYn(y0,n)pθ(x0|y0,n)

p(x0|θ)N0−1pY1,...,YN0
(y0,1, ..., y0,N0)

. (3.14)

However, factor p(x0|θ)
D
=
∫
pθ(x0|y)pY0(y)dy is always intractable since pY0(y) given by

(3.1) is defined implicitely by the unknown DGP. Therefore, (3.14) cannot be evaluated,
not even up to a constant, when N0 > 1. Finally, only the generative approach allows to
conveniently deal with multiple observations. In order to carry on with the comparison
of both approaches, we only consider the case of a unique observation y0, but, concerning
the generative modeling, all the equations still hold with multiple observations.

3.3 Supervised Epistemic Uncertainty via the ppd

We now discuss how the epistemic uncertainty is accounted for in each approach,
be it generative or discriminative. To that end we analyze how the modeling choice
impacts the ppd and more precisely how it can be sampled from. We proceed in three
steps: first we analyze the model posterior distribution p(θ|y0,D) (see §3.3.1), we then

deduce the joint distribution p(x0, θ|y0,D)
(3.3)
= p(x0|y0, θ)p(θ|y0,D) (see §3.3.2) and we

finally come to its (other) marginal of interest, i.e. the ppd (3.2) (see §3.3.3).
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3.3.1 model posterior: p(θ|y0,D) or p(θ|D)?

In this section we look at the posterior distribution over model θ given the observation
y0 and the recorded dataset D. Using Bayes rule, it can be written as:

p(θ|y0,D) =
p(y0|θ,��@@D)

p(y0|D)
p(θ|D), where p(θ|D) ∝ πΘ(θ)

∏
(xi,yi)∈D

p(xi, yi|θ). (3.15)

It is important to note here that in the previous equation we can cancel out D since for
any variables involved in figure 3.3, we have p(.|., θ,D) = p(.|., θ). By glancing at these
two equations, we can already see that the probable values of θ under this posterior
correspond to models for which the elements of D, the couples (xi, yi), are likely. In
this section, we discuss the impact of y0 on this distribution and conclude on whether
or not this observation carries information for inference of θ depending on the modeling
approach. To that hand, we start by leveraging equations (3.8) and (3.9) to deduce:

p(y0|D)
G
=
∫
p(y0|θ)p(θ|D)dθ where p(y0|θ)

G
=
∫
pθ(y0|x)πX0(x)dx, (3.16)

p(y0|θ)
D
= p(y0|D)

D
= pY0(y0). (3.17)

On the one hand, with a generative approach, p(y0|θ) indeed depends on θ, so y0
indeed carries information for inferring θ since the two rv are not independent. We can
moreover analyze how the information is carried by y0 to a posteriori models. Probable
generative models θ under posterior p(θ|y0,D) produce, with high probability, the value
y0 for unknown values x distributed under the prior ΠX0 . The posterior distribution
of models θ therefore effectively depends on y0. We finally conclude that the role of
y0 in the ppd inference is twofold: (i) in conjonction to the prior ΠX0 it indeed carries
information to probable (epistemic) models θ and (ii) it carries information to probable
(aleatoric) x0 values via posterior models θ.

On the other hand, under a discriminative approach, factors p(y0|θ) and p(y0|D)
reduce to pY0(y0) (see (3.17)) so θ and y0 are independent rv and finally the posterior over
θ reduces to p(θ|D). Let us analyze why observation y0 does not carry any information to
a posteriori models. The information carried by y0 to a discriminative model θ is that it
should produce, with high probability, unknown values x for y0. However, this is nothing
but saying that pθ(.|Y = y0) is a probability distribution, which we already know by
construction of a discriminative model using Pθ a conditional probability distribution.
So, by contrast with the generative approach, in the discriminative approach, the role
of y0 is solely aleatoric, i.e. to infer x0 via probable discriminative models which do not
depend on y0.

3.3.2 Joint PDF

We now derive the joint PDF p(x0, θ|y0,D) given by equation (3.3) for both genera-
tive and discriminative modeling approaches. In the generative case (3.6), as explained

before, the first factor in the joint PDF is p(x0|y0, θ)
G
= pθ(y0|x0)πX0(x0)/p(y0|θ). In

general, this expression can only be computed up to a normalizing constant since



3.3. SUPERVISED EPISTEMIC UNCERTAINTY VIA THE PPD 69

p(y0|θ) =
∫
pθ(y0|x)πX0(x)dx might be intractable. However, this denominator is a

constant w.r.t. x0 but it indeed depends on θ so it must not be treated as a constant in
the joint PDF; so, with regard to the joint PDF, the first factor cannot be computed.
Moreover, the second factor is p(θ|y0,D) ∝ p(y0|θ)p(θ|D), and as we have explained
before in the previous section 3.3.1 indeed depends on y0. For the same reason, p(y0|θ)
is intractablethe second factor in the joint PDF cannot be computed, not even up to a
constant, either. Conveniently, both factors are intractable because of the same factor
p(y0|θ) which appears in the denominator of the first and in the numerator of the second.
So, even though none of the two factors can be computed individually, the intractable
terms cancel out by multiplication and the joint PDF can be computed up to a constant
(w.r.t. both x0 and θ) as:

p(x0, θ|y0,D)
G
=
πX0(x0)pθ(y0|x0)

p(y0|θ)
p(θ|D)p(y0|θ)
p(y0|D)

G∝ πX0(x0)pθ(y0|x0)p(θ|D) (3.18)

where p(θ|D)
G∝ πΘ(θ)

∏
(xi,yi)∈D

pθ(yi|xi). (3.19)

In the discriminative setting, the first factor in the joint PDF (3.3) reads p(x0|y0, θ) =
pθ(x0|y0) (see again equation (3.7)). This quantity is directly computed in a normalized
way by model Pθ. Moreover, as we pointed out in the previous section 3.3.1, the second
factor reduces to p(θ|D) which can be computed up to a constant. So, unlike in the
generative case, both factors can be computed and the joint PDF therefore reads:

p(x0, θ|y0,D)
D
= pθ(x0|y0)p(θ|D) (3.20)

where p(θ|D)
D∝ πΘ(θ)

∏
(xi,yi)∈D

pθ(xi|yi). (3.21)

So in both modeling cases, the joint PDF can be computed (at least up to a constant).

3.3.3 The ppd

Recall that the ppd (3.2) is obtained by marginalizing out the rv θ in the joint
distribution (3.3). The consequence is twofold: first its PDF is obtained by integrating
the joint PDF w.r.t. variable θ; and second, sampling from the joint distribution provides
x0 samples which are distributed under the ppd. In this section, we discuss the first
point.

By integrating (3.18) and (3.20) w.r.t. θ, we obtain expressions for the ppd (3.2) in
both cases:

p(x0|y0,D)
G∝ πX0(x0)

∫
pθ(y0|x0)p(θ|D)dθ (3.22)

p(x0|y0,D)
D
=

∫
pθ(x0|y0)p(θ|D)dθ (3.23)

In practice, these two equations can only be used when exact computation of the integral
is feasible. Nonetheless, they remain relevant as we can analyze them both to grasp a
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difference between the two approaches which provides another interpretation of the ppd.
The first formula, in the generative case, corresponds to Bayesian inference using the
prior and the marginal likelihood p(y0|x0,D) =

∫
pθ(y0|x0)p(θ|D)dθ; while the second

formula, in the discriminative case, corresponds to an averaging of posterior predictions.
So, in both cases, the ppd is an averaging of the quantity pθ (which is what is effectively
computed with model θ) w.r.t. p(θ|D). This is to be contrasted with the original
definition of the ppd, defined as the average of predictions w.r.t. p(θ|y0,D). These two
definitions only coincide in the discriminative case since the model computes directly
the prediction (see (3.7)) and the posterior distribution p(θ|y0,D) reduces to p(θ|D)
(see section 3.3.1). As a consequence, this means that

∫
p(x0|y0, θ)p(θ|D)dθ is an exact

construction of the ppd only in the discriminative case.

3.3.4 Explicit or Implicit prior

A main difference between the two approaches lies in the role of the marginal over
x0 in the joint PDF p(x0, y0|D). This distribution is of particular interest as it can be
considered as a prior p(x0|D) in the ppd p(x0|y0,D) which is the object of interest in
both modeling approach:

p(x0|y0,D) ∝ p(x0|D)p(y0|x0,D). (3.24)

We can again leverage both equations (3.8) and (3.9) to deduce:

p(x0|D)
G
= p(x0|θ)

G
= πX0(x0); (3.25)

p(x0|D)
D
=

∫
p(x0|θ)p(θ|D)dθ where p(x0|θ)

D
=

∫
pθ(x0|y)pY0(y)dy. (3.26)

These two equations allow us to understand that the marginal over x0 does not play
the same role in the generative and discriminative cases. While in the former setting
this immutable marginal distribution describes prior knowledge and does not depend
on D (see equation (3.25)); in the latter setting, this marginal distribution is the result
of an intricate interaction between the dataset D, the prior distribution ΠX0 and the
DGP PY |X . On the one hand, in the generative approach, it corresponds to the prior
ΠX0 which can be specified according to the problem at hand and, in itself, may provide
significant information about the value of interest x0. In practice, this prior distribution
can also play a role of regularization and may as well be understood as a safeguard since
it can effectively constrain the prediction to a specific region of the space (88)(82)(74)
but more importantly, the prior distribution is often the result of an elicitation effort
(78, Chapter 3) which consists in of (i) obtaining prior information and (ii) transcribing
this knowledge into a probability distribution. On the other hand with a discriminative
approach, this marginal has a very different role. The relevance of equation (3.26) first
lies in the fact that it highlights the systematic intractablity of PDF p(x0|D). Indeed,
it can never be computed (even if exact integration was feasible) since it ultimately
involves computing the PDF pY |X in pY0(y) =

∫
pY |X(y|x)πX0(x)dx, which is unknown

by assumption. This intractability does not pose any practical issue since the compu-
tation of the p(x0|D) (3.26) is not required for computing the joint PDF (3.20) (and
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consequently not for computing the PDF of (or sampling from) the ppd). But this also
means that the discriminative construction does not allow us to leverage any informa-
tion encapsulated in, or any practical property induced by, a prior distribution during
the inference. We now rewrite the expression of equation (3.26) as:

p(x0|D)
D
=

∫ ∫ ∫
pθ(x0|y)p(θ|D)pY |X(y|x)πX0(x)dxdydθ

D
=

∫
p(x0|y,D)pY0(y)dy.

(3.27)
So, this distribution has a PDF p(x0|D) which indeed depends on (i) D via the

unknown θ and is indirectly related to (ii) the prior ΠX0 and (iii) the DGP PY |X via
PY0 . As a consequence, this distribution will attribute high probability mass to the x
values which have high probability under p(x0|y,D) for some value y ∼ PY0 . As such,
an implicit density estimation mechanism x1, ..., x|D| of D shifts the distribution p(x0|D)
away from ΠX0 and towards the regions of high probability under PDX . This implicit
density estimation mechanism appears clearly in the limiting case where the aleatoric
uncertainty increases since we observe that PDF p(x0|D) becomes p(x0|x1, ..., x|D|). Con-
versely, when the aleatoric uncertainty decreases, this PDF is, under assumptions of
identifibility and invertibility, πX0(x0). We will illustrate this effect in both contexts of
regression (using the running example) and classification. As a consequence, the ppd
in the discriminative approach indeed does not provide an approximation of (3.1) with
prior ΠX0 . It instead provides an approximation of:

pDX(x0)pY |X(y0|x0)∫
pDX(x)pY |X(y0|x)dx

. (3.28)

Consequently, a mismatch between the prior ΠX0 and the distribution PDX , which ef-
fectively generated the xi values in D, will result in a mismatch between the target
posterior (3.1) and the ppd (3.2). Subsequently, only the regions of space which are
well represented by the xi values in dataset D will have high probability mass under
the marginal p(x0|D), and hence, under the ppd p(x0|y0,D). Though this argument re-
lates D to the posterior p(x0|y0,D) (via the distribution p(x0|D)), we consider that this
argument is not related to epistemic uncertainty as (i) the effect does not vanish when
the number of recorded observation, i.e. the size of D increases; and (ii) the same effect
can be observed when considering p(x0|y0, θ∗) where θ∗ is a unique parameter (such as
MLE or MAP) estimate.
Finally, in the discriminative case, it is of particular interest to study the distribution
p(x0|D) as it corresponds to the average prediction over observations y0 since:

p(x0|D)
D
= Ey0∼PY0

[
p(x0|y0,D)

]
. (3.29)

This, together with the probability mass of p(x0|D) which favors the regions of x values
in D, tells us that a discriminative model will favor the regions which are well repre-
sented in the dataset. In a classification task, the dominant labels will be predicted
more often than the others, thus explaining that discriminative models indeed suffer
from imbalanced dataset. We further emphasize this precise point using the illustra-
tive running example, a classification example provided in supplementary materials (see
section 3.3.4), as well as in quantitative simulations in section 3.5.
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Illustrative running example

We now leverage the affine regression example to illustrate the effects of the implicit
prior on the ppd in the discriminative modeling approach. We first display an empirical
approximation of the distribution p(x0|D). To that end, using equation (3.27), we
obtain samples from this distribution via the two step sampling procedure y ∼ PY0 and
x0 ∼ p(x0|y,D) (the second sampling step is detailed in the next paragraph 3.3.5). Of
course in practice, the first sampling step cannot be conducted as sampling from pY0(y) =∫
pY |X(y|x)πX0(x)dx requires sampling from the DGP which we recall is unknown by

hypothesis, but in our example, we do resort to this sampling procedure for illustration
purposes.

Figure 3.4: Empirical estimate of p(x0|D) in the discriminative setting: samples are
obtained via y ∼ PY0 (top) followed by x0 ∼ p(x0|y,D) (bottom). This distribution
corresponds to a trade-off between ΠX0 and PDX (right)

In figure 3.4, an empirical estimate of p(x0|D) is obtained via the described two-step
sampling procedure (upper-left and lower-left) and is plotted against the prior ΠX0 and
PDX . We see that, in the discriminative setting, p(x0|D) (which we recall acts as a prior
in (3.24)) indeed corresponds to a trade-off between the two distributions and is shifted
towards PDX via an implicit density estimation mechanism from the x-values in D. In
this example, we can also visualize how the DGP affects the balance between ΠX0 and
PDX which we now illustrate in the next figure 3.5.

Figure 3.5: Varying degrees of aleatoric uncertainty in the DGP yield the distribution
p(x0|D) to shift between ΠX0 and PDX .

In this figure, on the one hand, we see that for lower values of σX|Y (the noise
standard deviation in the DGP (3.4)) the distribution p(x0|D) gets closer to ΠX0 ; while,
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on the other hand, this distribution gets closer to PDX for larger values of σ2
X|Y . This

example seems to hint that when the DGP is stained with high (resp. low) aleatoric
uncertainty, the distribution p(x0|D) leans more towards PDX (resp. ΠX0). In section
3.3.4, we provide another example of classification and observe a similar effect.

As we have mentionned before, it therefore follows that the ppd in the discriminative
case provides an approximation of (3.28), which leads to a visible mismatch between
the ppd and the true (unknown) posterior when the prior ΠX0 and PDX are different
probability distributions, which we now illustrate. To that end, we compare this PDF
to an histogram of samples from the ppd p(x0|y0,D) with large D to remove the effect
of epistemic uncertainty and we observe that they perfectly match. Conversely, when
ΠX0 and PDX are the same distribution, then the ppd indeed approximates the true ppd.
This is illustrated in figure 3.6.

Figure 3.6: The marginal over x0 is inferred on D: a mismatch between the prior ΠX0

and PDX results in a misled approximation (first line). A discriminative approach is
accurate in the case where these two distributions match (second line)

We now illustrate a more problematic issue related to the same mechanism. Because
the dataset shifts the distribution p(x0|D), which acts as a prior in the ppd, towards
PDX via an implicit density estimation mechanism of PDX with p(x0|D) the ppd will only
assign high probability to the regions of space to which are assigned high probability
under p(x0|D). As a consequence, in the case of affine modeling is that we are not able
to predict accurately outside of the support induced by D as the ppd attributes little
to no mass to the true value of x0. A discriminative affine model cannot extrapolate
to regions outside of the support of D and this conclusion argues, for once, in disfavor
of a discriminative approach since an affine model, amongst all models, is expected to
extrapolate well. Conversely, as a result of the explicit prior, the generative approach
does not suffer from the same shortcoming and we observe that the affine generative
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model indeed produces a ppd which assigns high probability to the true value of x0 and
approximates the true unknown posterior. This is illustrated in figure 3.7.

Figure 3.7: Illustration of inaccurate discriminative prediction when outside of the sup-
port of D

Classification example

In the previous example of regression, we illustrated how a discriminative modeling
approach builds an implicit prior via a density estimation mechanism, resulting in a
poor approximation in the case of a mismatch between PDX and the desired prior ΠX0 .
We also illustrated how, in a discriminative model, the dataset D, the prior ΠX0 and
the DGP interact to yield p(x0|D) which, via an implicit density estimation mechanism,
is a trade-off between ΠX0 and PDX . We now also illustrate this specific effect on a
classification problem where X is a Categorical variable taking value c = 1, ..., C.

Figure 3.8: Con-
tour plot of the
DGP used in the
classification exam-
ple

We consider a 2-dimensional example with C = 3 where the
DGP reads: pY |X=c(y) = N (y;rY |X[Re(ωc),Im(ωc)]T ,I2) with ω = e2iπ/3.
In this DGP, the aleatoric uncertainty can be controlled via the
value of rY |X which describes the distance of each Gaussian class to
the origin (r stands for radius). Indeed, the further the different
classes are from each other, the easier it is to accurately classify a
sample y ∼ PY0 to its according unknown label. The goal of this
section is to illustrate the effect of the roles of distributions PDX
and ΠX0 in the discriminative approach. We therefore select the
two distributions PDX to be different from one another: Pr(X =
c) = (4 − c)/6 for X ∼ ΠX0 versus Pr(X = c) = c/6 for X ∼ PDX
for labels c = 1, 2, 3. The distribution PDX defines the frequencies
of classes, and together with the DGP can produce a toy dataset
D which is illustrated in the next figure 3.9.

As a discriminative model, we use a multinomial Logistic clas-
sifier with class probability that read:

Prθ(X = c|Y ) =
exp(βTc Y + βc,0)∑C
c=1 exp(βTc Y + βc,0)

, (3.30)

where θ =
{
β1, β1,0, ..., βC , βC,0

}
with βc, βc,0 ∈ R2 × R. Similarly to the regression

running example, we will display an empirical estimate of distribution p(x0|D) (3.26)



3.3. SUPERVISED EPISTEMIC UNCERTAINTY VIA THE PPD 75

Figure 3.9: Dataset D with class distribution PDX

obtained by the sampling procedure: y ∼ PY0 (via the unknown DGP which we use only
for illustrative purposes), θ ∼ p(θ|D) and x0 ∼ Categorical(Prθ(X = 1|Y ),Prθ(X =
2|Y ),Prθ(X = 3|Y )) given by equation (3.30).

A prior distribution over parameters Πθ which would be conjugate to this logistic
model would lead to a posterior p(θ|D) available in closed form, but unfortunately,
such a conjugate prior does not exists amongst the usual probability distributions. We
therefore use a simple Gaussian prior over parameter θ and resort to sampling from the
ppd using a Metropolis-Hastings MCMC algorithm, though a Gibbs sampling scheme
is also available in this setting (41). In the next figure, we display empirical estimates
of p(x0|D) against ΠX0 and PDX . This figure once again illustrates that the distribution

Figure 3.10: Varying degrees of aleatoric uncertainty in the DGP yield the distribution
p(x0|D) to shift between ΠX0 and PDX .

p(x0|D) (which we recall acts as a prior in the ppd (3.24)) corresponds to a trade-off
between ΠX0 and PDX . With a very similar interpretation to that of figure 3.5, this figure
also seems to hint that the dynamic of the DGP dictates the trade-off between the two
distributions: high (resp. low) aleatoric uncertainty shifts p(x0|D) more towards PDX
(resp. ΠX0).
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3.3.5 Gibbs sampling from the ppd

We now come to sampling from the ppd. Samples from the ppd can be obtained
in two distinct ways. If exact computation of expectation w.r.t. p(θ|D) is feasible,
then (3.22) and (3.23) give tractable expressions (possibly up to a constant) for the
ppd. However, the integrals in these equations admit closed form expressions only in
specific cases when using conjugate models, and exact integration is, more often than
not, unfeasible making the posterior PDF intractable. So in practice, we rather resort
to sampling via the joint distribution since, as we explained before, sampling from the
joint distribution (3.3) produce samples x0 that are distributed according to the ppd
(3.2).

With that regard, in both modeling cases, the joint PDF, (3.18) and (3.20), can
be computed (at least up to a constant), and so we can sample from the joint distri-
bution via the PDF. More conveniently, the discriminative approach yields a specific
factorization of its joint PDF (3.20) which enables a sequential sampling procedure with
θ ∼ p(θ|D) and x0 ∼ pθ(x0|y0). It is therefore motivated to construct models for which
the posterior probability distribution of parameters is available in closed form, which
can be achieved using conjugacy. By contrast, the generative approach does not induce
the same factorization and does not benefit from the same convenient sequential sam-
pling scheme. In this section, we propose a general scheme for sampling from the ppd
which can be applied to both modeling approach.

We now propose a scheme that enables to sample from the joint distribution (3.3),
and therefore from its x0 marginal which is nothing but the ppd (3.2). This sampling
scheme is based on the notorious Gibbs sampling (11)(30) which is an MCMC algorithm
(79) that applies specifically to a joint distribution p(u, v) with a Markov transition
qt(u

(t+1), v(t+1)|u(t), v(t)) = p(u(t+1)|v(t+1))p(v(t+1)|u(t)). This transition leaves the joint
distribution p(u, v) invariant since the Gibbs algorithm can be seen as a succession of
two steps of Metropolis Hastings (13) transition where the acceptance probability is
1. We apply the principle of Gibbs sampling to the joint distribution p(x0, θ|y0,D) in
the generative (resp. discriminative) setting. First, conditionally on the current model
θ(t−1), x0 is distributed according to the posterior for that model. So the first step of the
Markov transition is to draw x

(t)
0 from equation (3.6) (resp. (3.7)) with θ(t−1). Then,

conditionally on the current value of x
(t)
0 , θ is distributed according to p(θ|x(t)0 , y0,D)

and so the second step of the markov transition consists in sampling θ(t) ∼ p(θ|D(t)
+ )

with the analogous of (3.19) (resp. (3.21)) where D(t)
+ = D∪{(x(t)0 , y0)}. We summarize

this Gibbs sampler in algorithm 3 (for the moment readers should disregard the red
parts of the algorithm, as they are related to the semi-supervised learning task covered
in section 3.4).

Though this algorithm is written in a similar fashion in both modeling approaches,
the conclusions with regard to the different behaviours of the two modeling approaches
presented in the previous sections still hold as they are the result of a structural difference
between the generative and discriminative approach. This algorithm will be especially
useful in the semi-supervised setting, which we describe in the next section 3.4.

In the case of multiple observations y0,1, ..., y0,N0 as in section 3.2.2, the previous
algorithm can be effortlessly adjusted in the generative case (recall that the discrimina-
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tive case is not compatible with multiple observations, see section 3.2.2). Indeed in this

setting, at time t, we first sample x
(t)
0 according to (3.13) for current model θ(t−1); and

then the dataset D is augmented into D(t)
+ = D

⋃N0

i=1{(x
(t)
0 , y0,i)}.

Illustrative running example

We now come back to the continued example of affine modeling to provide an example
of the Gibbs algorithm mechanism. We assume prior knowledge over parameter θ in the
form of πΘ(θ) = N (β;µβ,Σβ)IΓ(σ2;λ, η) where µβ ∈ R2 and Σβ ∈ R2×2 is a covariance
matrix, IΓ is the PDF associated with an inverse gamma distribution and λ, η > 0 are
respectively the shape and scale parameters of the corresponding gamma distribution.
Unfortunately, the posterior p(θ|D) does not admit a closed form expression; but, at
least, this choice of conjugate priors allows for both conditionals to be tractable. We
first explicit these two conditionals PDF in the generative (resp. discriminative) setting:

p(β|σ2,D)
G
= N (β; (

XTX

σ2
+ Σ−1β )−1(

XTY

σ2
+ Σβµβ), (

XTX

σ2
+ Σ−1β )−1), (3.31)

where X
G
=

 x1, 1...
x|D|, 1

 ,Y G
=

 y1...
y|D|

 ;

p(σ2|β,D)
G
= IΓ(σ2;λ+

|D|
2
, η +

|D|∑
i=1

(yi − β1xi − β0)2

2
). (3.32)

p(β|σ2,D)
D
= N (β; (

YTY

σ2
+ Σ−1β )−1(

YTX

σ2
+ Σβµβ), (

YTY

σ2
+ Σ−1β )−1), (3.33)

where Y
D
=

 y1, 1...
y|D|, 1

 ,X D
=

 x1...
x|D|

 ;

p(σ2|β,D)
D
= IΓ(σ2;λ+

|D|
2
, η +

|D|∑
i=1

(xi − β1yi − β0)2

2
). (3.34)

So in both modeling cases, the posterior distribution p(θ|D) can be sampled from
using a Gibbs scheme by sequentially sampling these two conditionnals. Then, from a
Gibbs sampling of affine models, we can almost effortlessly obtain samples from the ppd
by including the additional step of sampling x0 from p(x0|y0, θ) for the current model
parameters within the Gibbs sequential Markovian transition. Again, in supplementary
material, we summarize this Gibbs sampler in the specific case of affine homoskedastic
modelling, see algorithm 4 (readers should disegard the steps in red for now, as they are
related to semi-supervised learning which we now discuss).
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3.4 Bayesian Semi-Supervised learning

In this section, we now build upon the equations, arguments and conclusions pre-
sented in the previous sections to tackle the problem of semi-supervised learning. As
we have mentionned before, supervised learning techniques use the observed variables
and their corresponding labels to build a model which capture the dependency between
two rv and which can be used to make predictions about the label conditionally on
the value of observed rv. Conversely, unsupervised learning (40)(38) take interest in
learning pattern in a data distribution without considering the notion of associated
labels. Structure can be represented by data clusters obtained by K-means (55)(54),
graph-based clustering methods such as spectral clustering (67) or Louvain method (7),
or via maximum-likelihood in a mixture probability distribution model (18). In the
beginning of this chapter, we explained that the Generative approach for modeling the
unknown posterior, should not be confused with the tasks and techniques of Generative
modeling. These techniques can also be considered as unsupervised learning as they
enable to capture the structure from univariate data such that the corresponding prob-
abilistic model can be sampled from easily in order to obtain observations which are
approximately distributed according to the dataset distribution. Most popular methods
include Variational AutoEncoders (49), Generative Adversarial Networks (33), Normal-
izing Flows (70) and Diffusion models (81) but this is beyond that we consider in this
chapter. Semi-supervised learning does however lie within our scope as it aims to obtain
a conditional model to predict label from observations, but the goal is to infer the model
from both a labeled dataset and unlabeled observations. In this section we now build
upon the previous arguments and discuss the compatibility of both learning approach
with this learning task.

3.4.1 The learning task

In section 3.2 and onward, we presented the general task of learning a model for the
posterior (3.1) using a set of labeled observations D, and how to predict about an x0
given a corresponding observation y0 with the ppd, which we now refer to as a supervised
learning task. However, in many statistical learning settings, we also dispose of unlabeled
observations. They corresponds to values ỹj, which we know (or assume) are produced
by the DGP, but for an unknown values x̃j for which we assume prior knowledge ΠX̃j

:

Y = {ỹj|∃x̃j ∼ ΠX̃j
, ỹj ∼ PY |X(Y |X = x̃j)}|Y|j=1. When the observations in D and

Y cover different regions of the observation space, and/or when Y has a significant
amount of elements, then the unlabeled observations Y may contain significant or non-
negligible information (68). In this context, a semi-supervised learning task aims at
inferring a model from both labeled and unlabeled observations. This question has risen
in importance in importance where we dispose of a lot of unlabeled observations, but
where the labelling tasks is expensive (as it is the case when the labelling needs to be
conducted by a human operator).
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Figure 3.11: Affine semi-supervised regression setting

The ppd (3.2) then becomes:

p(x0|y0,D,Y) =

∫
Θ

p(x0|y0, θ)p(θ|y0,D,Y)dθ, (3.35)

and we aim to compute this PDF, or sample this distribution if exact computation of
the integral is not feasible. This formulation is more general than the one described in
section 3.2 and it reduces to supervised learning in the case where Y = ∅.

Throughout this section, we will carry on using the continued example of affine
modeling to illustrate the arguments and conclusions. To that end, we suppose that,
in addition to D, we also dispose of unlabeled observations ỹj produced from the DGP
(3.4) via an unknown label x̃j for which we suppose prior knowledge in the form of a
prior ΠX̃ which is supposed to be the same for all j = 1, ..., |Y| and which we consider
to be Gaussian πX̃(x̃j) = N (x̃j;µX̃ , σ

2
X̃

). The semi-supervised setting is illustrated in
figure 3.11.

3.4.2 Both modeling confronted to the semi-supervised learn-
ing task

We now confront the two modeling approaches to the specific problem of semi-
supervised learning by analysing the model posterior which reads:

p(θ|y0,D,Y) = p(θ|D)
p(y0|θ)p(Y|θ)
p(y0,Y|D)

. (3.36)

We first explain that the discriminative approach does not allow for Bayesian semi-
supervised learning. To see this, recall the conclusion of section 3.3.1: when we do not
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know x0, the posterior over θ does not depend on y0 and so this observation does not
carry any information to the discriminative models. Therefore, the same applies for
the elements of Y : since we do not know the label x̃j, the unlabeled observation does
not bring any information on θ as the posterior over models does not depend on ỹj.
Finally, the model posterior (3.36) reduces to p(θ|D), (3.35) reduces to (3.23) and all
the other equations in section concerning the discriminative modeling approach remain
unchanged.

Conversely, the generative approach indeed allows for semi-supervised learning. In
section 3.3.1, we explained that, even though we do not know the value of x0, the
posterior distribution over models still depends on the observation y0 indirectly through
the prior ΠX0 . With a similar argument, we understand that the unlabeled data Y
indeed carry information on model θ. We write: p(Y|θ) G

=
∏|Y|

j=1

∫
pθ(ỹj|x̃j)πX̃j

(x̃j)dx̃j.

So, even though we do not know the label x̃j, probable generative models θ under (3.36)
produce, with high probability, the value of ỹj for some unknown label distributed under
the prior ΠX̃j

. In a classification setting, this term can indeed be computed as a tractable

finite sum (4)(45), but in general, this term is only available in integral form making

the joint PDF p(x0, θ|y0,D,Y)
G∝ πX0(x0)pθ(y0|x0)p(θ|D)p(Y|θ), intractable, not even

up to a constant. This raises the question of sampling from the ppd since its PDF is
intractable. In the next section, we propose to use a variation of the Gibbs algorithm
presented in section 3.3.5, and which allows us to sample from this ppd.

3.4.3 A Gibbs sampling algorithm for semi-supervised learning

In this section we extend the previous Gibbs sampling algorithm presented in sec-
tion 3.3.5 for sampling from the ppd (3.35) in the case of generative semi-supervised
learning. To that end, we apply the Gibbs mechanism of sequentially sampling the
conditional distributions in the joint distribution p(x0, x̃1, ..., x̃|Y|, θ|y0,D,Y). Firstly,
conditionally on the current value of θ(t−1), the labels x0, x̃1, ..., x̃|Y| are independent
and each distributed according to its own posterior distribution. So the first step of
the Gibbs Markovian transition is to sample x

(t)
0 ∼ p(x0|y0, θ(t−1)) with equation (3.6)

(as in section 3.3.5) and x̃
(t)
j ∼ p(x̃j|ỹj, θ(t−1)). Secondly, conditionally on the cur-

rent label values x
(t)
0 , x̃

(t)
1 , ..., x̃

(t)
|Y|, the model parameters are distributed according to

p(θ|D, x(t)0 , y0, x̃
(t)
1 , ỹ1, ..., x̃

(t)
|Y|, ỹ|Y|). So the second step of the Gibbs Markovian transi-

tion is to sample θ(t) ∼ p(θ|D(t)
+ ) analogous of equation (3.19) where D(t)

+ = D∪(x
(t)
0 , y0)∪

{(x̃(t)j , ỹj)}
|Y|
j=1. We summarize this Gibbs mechanism in algorithm 3 and we highlight in

red the steps which are effectively responsible for semi-supervised learning.

In the case of semi-supervised learning setting, this Gibbs algorithm is all the more
crucial. Indeed, while in the supervised context the Gibbs approach was only an alter-
native option to sampling from the joint distribution with a PDF (3.18) which could
be computed up to a constant; in the case of semi-supervised learning however, it is
possible that this joint PDF cannot be evaluated, not even up to a constant and the
Gibbs approach is therefore very convenient for sampling the corresponding ppd.

We have written the Gibbs algorithm with Y included in the inference to perform
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Algorithm 3 Gibbs sampling from p(x0|y0,D,Y) in the generative (resp. discrimina-
tive) setting

Require: y0,D,Y , number of steps T
θ(0) ∼ p(θ|D)
for t = 1 to T do
x
(t)
0 ∼ p(x0|y0, θ(t−1)) with (3.6) (resp. (3.7)

for all ỹj ∈ Y do

sample x̃
(t)
j ∼ p(x̃j|ỹj, θ(t−1)) =

p
θ(t−1) (ỹj |x̃j)πX̃j

(x̃j)

p(ỹj |θ(t−1))

end for
set D(t)

+ = D∪(x
(t)
0 , y0)∪{(x̃

(t)
j , ỹj)}

|Y|
j=1 and θ(t) ∼ p(θ|D(t)

+ ) with (3.19) (resp. (3.21))
end for
return x

(T )
0

semi-supervised learning for both modeling approach but of course, as we have men-
tionned before, the semi-supervised ppd (3.35) reduces to the supervised ppd (3.2) in
the discriminative setting, so this Gibbs algorithm, even though it involves Y , is not able
to leverage any information from the unlabeled observations in this modeling approach.
We therefore would like to stress that the semi-supervised learning is not enabled by
the Gibbs procedure itself but rather by using a generative modeling instead of a dis-
criminative one which induces different conditional dependency between all the rv. We
proposed the Gibbs algorithm as a way to sample the joint distributions p(x0, θ|y0,D,Y)
in the case of generative modeling (with possibly D = ∅ in the supervised setting) which
is particularly convenient to use because of the conditional independence (w.r.t. θ) of
labels x0, x̃1, ..., x̃|Y|. However, this Gibbs scheme it is only a possible approach for
sampling from the corresponding ppd which effectively depends on Y .

We now come back to the continued example of affine modeling and use it to il-
lustrate the practical use of the Gibbs sampling algorithm which we use to illustrate,
respectively, the compatibility and incompatibility between the generative and discrimi-
native approaches and the semi-supervised learning. In algorithm SM3.1 we first explicit
how to build upon the supervised Gibbs sampling algorithm applied to the supervised
ppd presented in section 3.3.5 to obtain a Gibbs scheme in order to sample from the
semi-supervised ppd.

In this case, the generative and discriminative approach yield two different equations
for the posterior p(x̃j|ỹj, θ):

p(x̃j|ỹj, β, σ2)
G
= N (x̃j; (

1

σ2
+

1

σ2
X̃

)−1(
β1(ỹj − β0)

σ2
+
µX̃
σ2
X̃

), (
1

σ2
+

1

σ2
X̃

)−1), (3.37)

p(x̃j|ỹj, β, σ2)
D
= N (x̃j; β1ỹj + β0, σ

2). (3.38)

The Gibbs sampling procedure for semi-supervised learning of affine homoskedastic is
summarized in algorithm 4. Again, the steps highlighted in red are indeed responsible
for leveraging information from the unlabeled observations.

We will now illustrate whether or not the modeling approach enables leveraging in-
formation in Y to contribute in reducing the epistemic uncertainty. We first provide
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Algorithm 4 Gibbs sampling from p(x0|y0,D,Y) using a generative (resp. discrimina-
tive) homoskedastic affine model

Require: y0,D, Y , number of steps T

σ2(0) ∼ IΓ(σ2;λ, η)

β(0) ∼ p(β|σ2(0),D) with (3.31)
for t = 1 to T do
x
(t)
0 ∼ p(x0|y0, β(t−1), σ2(t−1)) with (3.10) (resp. (3.11)

for all ỹj ∈ Y do

x̃
(t)
j ∼ p(x̃j|ỹj, β(t−1), σ2(t−1)) with (3.37) (resp. (3.38))

end for
set D(t)

+ = D ∪ (x
(t)
0 , y0)∪{(x̃

(t)
j , ỹj)}

|Y|
j=1, σ

2(t) ∼ p(σ2|β(t−1),D(t)
+ ) with (3.32) (resp.

(3.34))

β(t) ∼ p(β|σ2(t),D(t)
+ ) with (3.31)(resp. (3.33))

end for
return x

(T )
0

Figure 3.12: Samples from the supervised and semi-supervised Gibbs algorithm in affine
discriminative modeling

empirical evidence that the discriminative approach is unable to leverage information
in unlabeled observations to reduce the epistemic uncertainty. To that end, we consider
a setting where D contains few points leading to high epistemic uncertainty to be re-
duced; and we apply the previous Gibbs sampling algorithm SM3.1 in the discriminative
case with and without unlabeled observations Y and visually observe that the resulting
samples seem to follow the same distribution. This empirical illustration is presented
in figure 3.12. We further perform a Kolmogorov-Smirnov statistical test where the
null hypothesis is H0 : the samples obtained from the supervised and semi-supervised
Gibbs sampling algorithm are from the same (unknown) distribution. This test works
from two sets of iid samples; but the samples from the Gibbs sampling algorithm are
correlated samples so we first extract (almost) uncorrelated samples sub-sampling the
Markov chain at every each integrated auto-correlation time steps. The Kolmogorov-
Smirnov test yields a p-value of 0.566 and we cannot reject the null hypothesis with
low error probability; which indicates that the data i.e. the two sets of de-correlated
samples is consistent with the null hypothesis i.e. that they originate from the same
underlying probability distribution.
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Conversely, in the generative modeling approach, we go back to the setting presented
in the previous figure 3.11, and we compare the supervised and semi-supervised ppds,
from which we obtain samples via the corresponding Gibbs sampling algorithm 4 with
and without Y . The results are presented in the next figure 3.13a. We compare the
empirical distributions (built an histogram of the samples) and we visually observe
that the semi-supervised ppd provides with a better of the true unknown posterior
than the supervised ppd. To go further than a visual interpretation, we compare the
calibration curves of the both ppds. The calibration curve allows to assess the quality
of an approximation and is computed from the PDF of the target posterior, in our
case the true unknown posterior and from samples from the approximating distribution,
in our case the (supervised or semi-supervised) ppds. It is built by computing, for
values α ∈ [0, 1], the α-highest density region of the target distribution using the PDF
and computing the proportion of samples which land in that region. We can therefore
conclude that the unlabeled observation were taken into account during the inference
and indeed contributed to reducing the epistemic uncertainty.

(a) Unlabeled observations Y indeed contribute to reducing
the generative epistemic uncertainty.

(b) Calibration curves of su-
pervised and semi-supervised
ppds.

Figure 3.13: Semi-supervised generative affine modeling

3.4.4 Parallel inference

In this section we propose to re-discuss the problems of supervised and semi-supervised
learning by considering them as solving two (or several) posterior inferences at the same

time. To that end, we now denote X = {x̃j|ỹj ∼ PY |X(Y |X = x̃j}|Y|j=1 the set of un-
known labels associated with the unlabeled observations. On the one hand, X are not
necessarily label values of interest in the initial problem (that of inferring x0 via y0), it
is nonetheless an unknown rv related to Y via the same unknown DGP and can be asso-
ciated with an inference problem (again, possibly irrelevant in the context of the initial
problem). On the other hand, both x0 and X can be values of interest. Indeed, in many
learning instances, we dispose of a training dataset (the set D) to infer the probable
models; and given another set of observations (the so-called testing dataset), our aim
is to predict for each of them the associated label (which is different from one observa-
tion to another, as opposed to section 3.2.2, where one common label produced several
observations). In this case, all the observations in the testing dataset play an epistemic
role in the generative case. More precisely, the observations of the testing dataset act
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as unlabeled observations resulting in an underlying semi-supervised learning setting.
This is illustrated via quantitative simulations in the next section 3.5.

In this context, since we are trying to infer x0 from y0 and X from Y via proba-
ble models θ using the same observations D, the two inferences should not be treated
as independent problems in both modeling approaches. However, a main difference be-
tween the two modeling approaches can be understood when considering two (or several)
inference problems at once.

In the discriminative setting, we have p(x0,X|y0,Y ,D)
D
= p(x0|y0,D)p(X|Y ,D) so

the inference of x0 (resp X ) does not depend on Y (resp y0). As such, each infer-
ence problem can be solved via sampling from its corresponding ppd. Conversely,
in the generative setting, all the observations y0,Y act as unlabelled observations in
both inferences and the two problems should not be treated independently as all the
unlabeled observations contribute to reducing the epistemic uncertainty. As a result,

p(x0,X|y0,Y ,D)
G

̸= p(x0|y0,D)p(X|Y ,D) and both inference can not be solved by sam-
pling from each corresponding ppd, and this modelling approach instead calls for a
sampling from the joint distribution. Finally, note that the previous semi-supervised al-
gorithm, which we proposed as a way to obtain samples from the posterior p(x0|y0,D,Y)
was constructed by applying the Gibbs sequential sampling mechanism to the joint dis-
tribution p(x0,X , θ|y0,Y ,D) and as such, produced desired samples from p(x0|y0,D,Y)
but also, as a byproduct, samples from p(X|Y ,D, y0), effectively solving both inference
problems at once. Again of course, since the Gibbs is only a tool for solving the infer-
ence problem, the underlying structure of dependency between rv is preserved. So in the
discriminative case these distributions respectively reduce to p(x0|y0,D) and p(X|Y ,D).

3.5 Simulations

Throughout the chapter, we leveraged the example of affine homoskedastic modeling
in the case of univariate regression to illustrate the arguments. As we mentionned
before, this illustrating example can be relevant to some readers as modeling affine
dependencies is a frequent problem in many scientific fields. We also used this example
as it enables, with appropriate choice of priors, to use a straightforward Gibbs sampler in
both generative and discriminative modeling approaches. However, considering models
which enable such convenient sampling procedures with closed form p(θ|D) (or all its
conditionals in a Gibbs scheme) indeed heavily restricts the choice of model Pθ. In
this section we now consider conditional models Pθ defined using NN functions with
tractable PDF, but for which we are not able to elicit a prior Πθ over parameters θ
such that the posterior distribution p(θ|D) admits a closed form expression, and we
resort to approximate sampling from that posterior using Stochastic Gradient Langevin
Dynamics (86).

In this section, we tackle the problem of classification in which X is hence a Categori-
cal rv. We evaluate generative and discriminative models both defined via NN functions
(we describe the specific structure hereafter) and with a similar number of parameters.
We proceed to assess the classification accuracy of a generative versus discriminative
model for θ ∼ p(θ|D, y0) via Gibbs sampling. We consider three different scenarios
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which we now describe.

Following the idea described in section 3.4.4, we now consider two distincts sets: the
training dataset D = {(xi, yi)}Ni=1, and a testing dataset {(x0,j, y0,j)}Mj=1. All the labels
x0,j are distributed according to ΠX0 , and in the following we address three scenarios,
which differ in the size of the testing set, and the possible discrepancy between ΠX0 and
PDX .

Scenario 1: Identical priors and sizes. We first consider the scenario where the
label distribution from the training dataset coincides with the prior. So PDX = ΠX0 ,
and as such, couples (xi, yi) (which belong to training dataset D) and (x0,j, y0,j) (which
belong to the testing dataset) have the same distributions. This corresponds to the
most frequent situation in practice and we use this setting as a baseline. We consider
the dataset D and the set {y0,j} of unlabeled observations to be of the same size, i.e.
N = M .

Figure 3.14: Different
prior distributions in sce-
nario 2.

Scenario 2: Imbalanced dataset (different pri-
ors, same sizes). We then consider the scenario where
PDX ̸= ΠX0 , so couples (xi, yi) and (x0,j, y0,j) do not have
the same distributions (and indeed are quite different - see
figure 3.14). We still set N = M .

Scenario 3: Few labeled samples (same priors,
different sizes). We finally consider the scenario where
PDX = ΠX0 , but N ≪ M , so we dispose of a few labeled
observations in D, and of a large amount of observed val-
ues y0,j for which we want to infer the corresponding label
x0,j. In this setting, the low number of observations in D
will hinder the prediction accuracy of both models, but as
we have explained before, the large amount of unlabeled
observations act as an unlabeled dataset in the generative
case.

We consider both the classification datasets of MNIST and of FashionMNIST, for
which we reduce the dimension of observations via a Principal Component Analysis
(73) in order to keep 95% of explained variation. We compare a discriminative model
which is a fully connected NN with 4 hidden-layers of 256 units to a generative model
which is built using a combination of invertible conditional Normalizing Flows layers
(21) and stochastic ones (3). We sample from the joint distribution via Gibbs sampling
with T = 10 steps. The results are provided in the next table 3.1 and for each dataset
and scenario, we consider 10 independent runs and we display the average classification
accuracy as well as the standard deviation.

We now analyze the results of this experiment. Comparing the results for the first
scenario tells us that the generative modeling can indeed reach similar classification
accuracy to its discriminative counterpart. This scenario can be used as a baseline
experiment for the two following scenarios. In the second scenario, the distribution of
labels in the dataset, PDX , is different from ΠX0 , leading to a situation of imbalanced
dataset. In this situation, we notice that the discriminative model indeed suffers in
term of accuracy as it favors the dominant classes of the dataset. As we have explained,
the generative approach does not suffer from such dataset imbalance, or at least not
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Dataset MNIST FashionMNIST
Model. Disc. Gen. Disc. Gen.

Scenario 1 0.9628± 0.0014 0.9749± 0.0145 0.8767± 0.0009 0.8652± 0.0094
Scenario 2 0.9520± 0.0007 0.9774± 0.0213 0.7000± 0.0057 0.8482± 0.0172
Scenario 3 0.9349± 0.0018 0.9690± 0.0237 0.7618± 0.0008 0.8365± 0.0187

Table 3.1: Classification accuracy in percentages of Discriminative and Generative mod-
eling approaches

as much, which is confirmed in this experiment. This experiment is coherent with the
conclusions of the discussion in section 3.3.4. Finally, in the third scenario, the lower
number of labeled observation in D hinders, as expected, the classification accuracy of
the discriminative model as compared to its generative counterpart, as the latter indeed
leverages the unlabeled observations in the inference of probable models, which indeed
contributes to reduce the modeling epistemic uncertainty, as discussed in section 3.4.2.

3.6 Conclusion

Throughout this chapter, we discussed Bayesian epistemic UQ in posterior learning
tasks using generative and discriminative models. We thus analyzed the PPD and drew
several conclusions.

On the one hand, discriminative models are an easy-to-use tool since they can be
parameterized easily and directly approximate the posterior. Moreover, if they can be
sampled from easily, then one can use a straightforward two-step procedure for sampling
from the PPD, which indeed enables quantifying the epistemic uncertainty. However,
by nature discriminative models do not take into account the information contained in
the prior distribution, which is replaced by an implicit prior inferred on the dataset.
As a result, they suffer from imbalanced datasets. Finally they cannot be conveniently
used in the context of inferring from multiple observations, and they cannot leverage
information from unlabeled data.

On the other hand, generative models are perhaps less convenient to use as they
usually require a more sophisticated structure and require an additional inference step,
in addition to the prior distribution, to sample from the corresponding posterior. Yet, by
construction, they do enable to leverage information from all available sources, making
them an appealing tool, in particular in a semi-supervised context. In practice, the
two-step procedure for sampling from the PPD is no longer available; but our general
purpose Gibbs sampling based algorithm indeed enables to sample from this distribution
of interest while taking into account prior knowledge, multiple observations and both
labeled and unlabeled datasets.
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3.7 Perspectives for future work

In this work, we have tackled epistemic uncertainty quantification using the Bayesian
principles and compared generative and discriminative methods under the scope of the
PPD. In this context, we have assumed that the observations are produced from the la-
bels by a DPG. We considered the case where the DPG has an untractable PDF, making
the PDF of the corresponding distribution of labels of interest given the observations
also untractable. As we have mentioned, this situation arises in at least two cases: (i)
when the DGP is simply unknown, or (ii) when the DGP is available via its sampling
procedure but its PDF is implicit. In this work, we have not specifically considered the
second setting, as, unless for illustration purposes, we have not resorted to sampling
from the DGP.

Generative versus discriminative active learning and PPD-based
acquisition ?

However, in many situations, especially when it comes to likelihood-free (simulation-
based) inference settings, the DGP can indeed be used via its simulation procedure
and remains available for a practitioner to sample observations from given (or perhaps
specifically chosen) labels. In this case, it follows that: (i) ABC methods are theoretically
feasible; and (ii) it is possible to specifically choose labels in order to augment the dataset
and reduce the epistemic uncertainty (72). We now consider the second point.

Many different acquisition rules for selecting the next label with which to augment
the dataset have been proposed, see namely (22)(56)(36). However, a criterion which
is motivated by, and based on, the PPD in an uncertainty-aware inference has not yet
been proposed. In this regard, several aspects might be topics for future work.

A relevant goal would first be that of obtaining a relevant acquisition criterion,
which would instead be centered around the PPD, the same objective considered in
the Bayesian posterior learning setting. A first idea could be to consider the following
expected information gain criterion:

x∗ ∈ arg max
x
Ey∼PY |X=x

[
DKL

(
p(x0|y0,D)||p(x0|y0,D ∪

{
x, y
})]

. (3.39)

This criterion can be interpreted as identifying a value x∗ that causes the most significant
change in the PPD (in the sense of the Kullback Leibler divergence) upon incorporating
in the inference the new couple

{
x∗, y

}
where y is the average observation produced by x∗

via the DGP. In practice, however, this criterion is difficult to compute or approximate.
Therefore, it would be particularly interesting to explore the feasibility of obtaining a
suitable approximation of this objective function, or at least a suitable approximation of
its gradient with respect to x, thus allowing for an approximate solution using gradient
ascent.

- Can we elicit a PPD-based acquisition criterion which can indeed be computed and
optimized in practice in an active learning setting?

- More generally, can further differences between generative and discriminative mod-
eling methods be witnessed when considering the active learning setting?
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Sequential inference in active learning setting

The task of augmenting the dataset during the inference is often referred to as active
learning in the literature. In this context, we obtain a sequential problem where (i)
we wish to estimate labels and/or model parameters using the current dataset, say Dt,
and (ii) we then use the current estimation (and some acquisition rule) to obtain a
new input for the DGP, which produces a couple with which to augment the dataset
into Dt+1. In this context, Bayesian posterior learning (step (i)) becomes a sequential
problem of sampling from the sequence of PPDs

{
p(x0|y0,Dt)

}
t=1,... or equivalently{

p(x0θ|y0,Dt)
}
t=1,.... In this context, it would indeed be interesting to consider using

Sequential Monte Carlo (SMC) algorithms. SMC samplers (see (10) and (14) for relevant
references) leverage the principles of invariant Markov transition as in MCMC techniques
(we denote Mt such a Pt-invariant Markov kernel); and the principle of importance-
weighting and resampling as in Sampling Importance Resampling. The combination
of these two actions allows to rejuvenate and re-use the promising particles with high
importance weights and discard the others in order to inductively construct empirical
approximations of the target distributions (34). We very briefly describe the principle
of Sequential Monte Carlo samplers.

Suppose at time t − 1, I dispose of the weighted particle-based empirical approx-
imation of the probability measure Pt−1(dx) ≈

∑N
i=1w

(i)
t−1δX(i)

t−1
(dx). The underlying

principle of SMC sampling is based on the equation:

Pt(dx) =
pt(x)

pt−1(x)
Pt−1(dx) ∝ p̃t(x)

p̃t−1(x)
Pt−1(dx); (3.40)

which indeed relates two consecutive measures via the ratio (up to a constant) of PDF.
This equation, together with considering Mt a Pt-invariant Markov kernel, enables us
to rewrite:

Pt(dx) ∝
∫

p̃t(x
′)

p̃t−1(x′)
Pt−1(dx′)Mt(x

′, dx). (3.41)

Finally, one can obtain a weighted particle-based approximation of the measure at time
t, Pt(dx) ≈

∑N
i=1w

(i)
t δX(i)

t
(dx) by plugging in this expression the previous empirical ap-

proximation of the measure and by sampling the corresponding expression. This reduces
to (i) resampling according to the weights, (ii) propagating the particles according to
Mt and (iii) reweighting the particles:

X
(i)
t ∼Mt(X

(A
(i)
t )

t−1 , .)(ii) where A
(i)
t ∼ Categorical(w

(0)
t−1, ..., w

(N)
t−1)(i) (3.42)

w
(i)
t =

p̃t(X
(i)
t )/p̃t−1(X

(i)
t )∑N

j=1 p̃t(X
(j)
t )/p̃t−1(X

(j)
t )

(iii). (3.43)

In this procedure, it is not necessary to proceed to resampling at each step, in which
case the steps read:

X
(i)
t ∼Mt(X

(i)
t−1, .) and w

(i)
t =

w
(i)
t−1p̃t(X

(i)
t )/p̃t−1(X

(i)
t )∑N

j=1w
(j)
t−1p̃t(X

(j)
t )/p̃t−1(X

(j)
t )

; (3.44)
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but the resampling step, though it increases the variance locally at a given step t, is
shown to help prevent degenerating importance weights. It is also possible to rearrange
the steps and proceed in the order of (i) propagating, (ii) reweighting, and (iii) resam-
pling, as in (17), but in this case the particles are instead propagated according to a
Pt−1-invariant Markov transition kernel

By using such a sequential approach, we could re-use the current samples from the
PPD p(x0|y0,Dt−1) (or from the joint p(x0, θ|y0,Dt−1)) to obtain new samples once the
dataset is augmented into Dt.

- Could such SMC samplers, or perhaps more sophisticated variants, be applied in
this context of sampling from the posterior predictive in combination with the Gibbs
sampling scheme that we proposed for generative or discriminative PPD sampling?

- In particular, could such sequential algorithms withstand a high number of param-
eters, especially in NN-based models ?

Bibliography

[1] Alexander C Aitken. On least squares and linear combination of observations.
Proceedings of the Royal Society of Edinburgh, 55:42–48, 1936.

[2] Ahmed Alaa and Mihaela Van Der Schaar. Discriminative jackknife: Quantifying
uncertainty in deep learning via higher-order influence functions. In International
Conference on Machine Learning, pages 165–174. PMLR, 2020.

[3] Elouan Argouarc’h, François Desbouvries, Eric Barat, Eiji Kawasaki, and Thomas
Dautremer. Discretely Indexed Flows, 2022.

[4] Andrei Atanov, Alexandra Volokhova, Arsenii Ashukha, Ivan Sosnovik, and Dmitry
Vetrov. Semi-conditional normalizing flows for semi-supervised learning. arXiv
preprint arXiv:1905.00505, 2019.

[5] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jef-
frey Mark Siskind. Automatic differentiation in machine learning: a survey. Journal
of machine learning research, 18(153):1–43, 2018.

[6] Joseph Berkson. Application of the logistic function to bio-assay. Journal of the
American statistical association, 39(227):357–365, 1944.

[7] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. Fast unfolding of communities in large networks. Journal of statistical me-
chanics: theory and experiment, 2008(10):P10008, 2008.

[8] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G Willcocks. Deep genera-
tive modelling: A comparative review of vaes, gans, normalizing flows, energy-based
and autoregressive models. IEEE transactions on pattern analysis and machine in-
telligence, 2021.



90
CHAPTER 3. GENERATIVE VS. DISCRIMINATIVE BAYESIAN POSTERIOR

LEARNING
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Chapter 4

Modeling a tractable PDF with DIF

The probability density function (PDF) plays a central role in statistics. It enables
the computation of key quantities such as probabilities and moments of a given random
variable (RV). In many hypothesis testing methods, the PDF is crucial for determining
the likelihood of observed data under the null hypothesis, thus enabling us to conclude
on the relevance of this hypothesis. Additionally, the PDF is fundamental to many
learning tasks, facilitating parameter estimation through maximum likelihood or max-
imum a posteriori methods. More generally, PDFs are often involved in computing,
estimating, or minimizing discrepancies between probability distributions. Finally, as
we have explained in Chapter 2, PDFs are often used when it comes to sampling from
the corresponding probability distribution with methods such as accept-reject, impor-
tance sampling, Markov chain Monte Carlo or Variational Inference (VI); and conversely,
many MC estimation tasks aim at sampling from a distribution which is known via its
unnormalized PDF.

In chapter 3, we highlighted the importance of epistemic uncertainty quantification
and proceeded to a comparison of generative and discriminative modeling methods in
Bayesian uncertainty-aware inference. These two modeling methods share a common
trait: they use a parametric conditional model. In this work, we explained that both
these modeling techniques are indeed compatible with the task of sampling from PPD
if the corresponding model benefits from tractable PDF. However, in this context, a
parametric probability distribution model must be appropriately constructed for fast
and exact PDF evaluation, which is now the precise focus of this chapter.

This chapter is centered around the work on Discretely Indexed Flows (DIF) which
corresponds to section 4.3. However, we first provide more insight into the context of
this work. In section 4.1, we review existing generative modeling methods, sometimes
referred to as density estimation in the literature, although the underlying model does
not necessarily benefit from density evaluation. As we have mentioned in the previ-
ous chapter, generative modeling can refer to several notions. In Chapter 3, generative
modeling referred to the task of approximating a posterior distribution via a parame-
terization of the conditional distribution over observations given labels. In the context
of this chapter, generative modeling refers to the task of fitting and sampling from a
probability distribution that closely resembles the one that produced some recorded
data.
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The main goal of DIF is to propose a generative modeling construction which indeed
benefits from a tractable PDF, thus enabling density estimation. Therefore, we first
review the usual methods for generative modeling and we particularly of emphasize the
mechanisms that enable a model to benefit from a tractable PDF. Moreover, in the
section covering DIFs, we contrast the problem of density estimation with the problem
of VI. Therefore, for context, we introduce the related problem of gradient reparam-
eterization in section 4.2 and describe the usual methods for estimating gradients of
expectations computed with respect to parameterized probability distributions.

We then reach the culmination of this chapter in section 4.3, where we introduce
and motivate DIF, a methodology for constructing parametric probability distributions
that benefit from (i) fast and exact evaluation of their density function, (ii) improved
flexibility in variational estimation problems using neural-network (NN) functions, and
(iii) the ability to be easily turned into a conditional model, and thus to be used in a
generative or discriminative posterior modeling in the context of the previous chapter.

4.1 Generative modeling and tractable PDF

In this section, we briefly review existing methods for generative modeling. They
take interest in building a probability distribution that is, by construction, easy to

sample from and which we can fit to recorded observations x1, ..., xN
iid∼ P . In this

context, we specifically focus on the mechanisms for building parametric probability
distributions which benefit from tractable PDF, as we will leverage these mechanisms
when introducing the DIF construction.

4.1.1 Latent variable models

A latent variable model (LVM) is a probabilistic model in which a RV of interest
(referred to as observed) has a probability distribution which is related to one (or several)
unobserved, latent RV via a conditional probability distribution. More precisely, we
denote Z a hidden RV distributed according to P(Z) and we denote X an observed RV
related to Z via a conditional probability distribution P(X|Z). The distribution over
RV X can therefore be described as a directed graph and can be sampled from using
the sequential sampling procedure: z ∼ P(Z) and x ∼ P(X|Z = z). We provide the
corresponding directed graph:

X Z
Z ∼ P(Z)

X ∼ P(X|Z)
(4.1)

As a result, on the one hand, the joint PDF of the two RVs can be written as p(x, z) =
p(z)p(x|z) and on the other hand, the PDF of the distribution over the observed variable
is the x-marginal in this joint PDF.

In practice, LVMs can be used for generative modeling by considering a joint PDF
pθ,LVM(x, z) parameterized by θ and that we aim at adjusting θ so that the corresponding
model fits the recorded x1, ..., xN . A possible approach, which we consider for illustration
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purposes, is that of Maximum-Likelihood Estimation (MLE), where we want to obtain
a value θ∗ which reads:

θ∗ ∈ arg max
θ∈Θ

N∑
i=1

log
(
pθ,LVM(xi)

)
︸ ︷︷ ︸

f(θ)

. (4.2)

However in general, the PDF of interest pθ,LVM(x) =
∫
pθ,LVM(x, z)dz can not be evalu-

ated since the integral does not admit a closed form expression which raises the question
of solving the MLE problem. In this context, we start off by explaining the princi-
ples of MLE for LVMs in section 4.1.1 and illustrate the application of this principle
to Variational AutoEncoder (VAE) in section 4.1.1 using the Evidence Lower BOund
(ELBO) as a Minorize-Maximize (MM) scheme. We then come to LVMs with a tractable
PDF with mixture models in section 4.1.1 and present the corresponding Expectation-
Maximization (EM) algorithm.

MLE for LVMs using MM, ELBO and EM

In this section, we denote f(θ) the function to be optimized, see (4.2). When con-
sidering LVMs, two cases arise. On the one hand, in general, the function f(θ) to be
optimized is intractable, in which case the ELBO principle leverages the latent variable
structure to obtain an alternative yet coherent optimization objective. On the other
hand, when using specific LVM constructions, the function f(θ) can indeed be tractable
(as is the case when the latent RV is categorical, see section 4.1.1) and can be optimized
using standard (possibly gradient-based) methods. In this case, the EM algorithm can
nonetheless be applied to produce efficient parameter updates, leading to an overall
efficient optimization algorithm.

The EM algorithm (24) as well as variational EM with the ELBO function (50)(18)
can both be understood as specific applications of the MM (43)(82) algorithm approach,
which leverages (i) the latent structure of the underlying model and (ii) Jensen’s inequal-
ity to construct an optimization surrogate function. We now start off by describing the
MM principle.

The MM approach builds a series of surrogate functions gt(θ) in a two-step sequential
procedure. From the current value θ(t), we first obtain a function gt(θ) which satisfies
the two conditions:

gt(θ) ≤ f(θ) (4.3)

gt(θ
(t)) = f(θ(t)). (4.4)

Then, from the current surrogate function gt, we will deduce a point θ(t+1) which in-
creases the value of the surrogate:

gt(θ
(t+1)) ≥ gt(θ

(t)). (4.5)

By doing so, we ensure that the values {f(θ)}t increase to a local maximum of f since:

f(θ(t+1))
(4.3)

≥ gt(θ
(t+1))

(4.5)

≥ gt(θ
(t))

(4.4)
= f(θ(t)).
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This last step can be conducted by explicit maximization of the surrogate function, or
by a Gradient Ascent (GA) step (this is discussed in the next sections).

We now apply the principle of MM to LVMs in order to obtain the ELBO objective.
To this end, we will construct such a surrogate for each of the functions log(pθ,LVM(xi))

and deduce a surrogate for f(θ) =
∑M

i=1 log(pθ,LVM(xi)) as the sum of the individual
surrogates. Therefore, let us consider Li(Z) an arbitrary distribution over the latent
variable Z, and let us denote li(z) its PDF. This enables us to rewrite log(pθ,LVM(xi))
as follows:

log
(
pθ,LVM(xi)

)
=

∫
log

(
pθ,LVM(xi, z)

li(z)

)
li(z)dz +DKL

(
li(z)||pθ,LVM(z|xi)

)
. (4.6)

Since the Kullback-Leibler Divergence (DKL) is always positive, we have that log(pθ(xi)) ≥∫
log(pθ(xi,z)

li(z)
)li(z)dz with equality if and only if li(z) = pθ(z|xi) almost surely (in which

case the DKL is zero). On the one hand, if we sum over values x1, ..., xM , we obtain the
ELBO, which reads:

ELBO(θ, l1, ..., lM) =
M∑
i=1

EZ∼Li

[
log

(
pθ(xi, Z)

li(Z)

)]
; (4.7)

which, as its name suggests, is, by construction, a lower bound for the likelihood, and
the closer li(z) is to pθ(z|xi), the tighter this bound is (see (72) for a discussion).

The EM algorithm builds upon the principle of the ELBO to obtain an exact MM
scheme for maximizing the function of interest f(θ), where the ELBO is used as an op-
timization surrogate function. Indeed, from the ELBO (4.7), if the posterior probability
distribution is tractable, one can obtain an MM scheme by setting li(z) to be the current
posterior distribution Pθ(t)(Z|xi) which yields a surrogate which reads:

gt(θ) =
M∑
i=1

EZ∼P
θ(t)

(Z|xi)

[
log

(
pθ(xi, Z)

pθ(t)(Z|xi)

)]
; (4.8)

and which satisfies, by construction, the two conditions of the MM principle (4.3) and
(4.4). This first step of constructing gt(θ) from the current value of θ is classically re-
ferred to as the E -step since it involves an expectation over the current latent variable
posterior distribution (hence the denomination Expectation-Maximization). It now re-
mains to find a point θ(t+1) such that gt(θ

(t+1)) ≥ gt(θ
(t)). This can be achieved by GA

on the function gt(θ) or by explicit maximization with θ(t+1) ∈ arg maxθ∈Θ gt(θ). This
step is classically referred to as the M -step since we aim to increase the surrogate and
ideally maximize it (hence the denomination Expectation-Maximization). In the next
section covering mixture models, we will obtain an update of parameter θ explicitly by
solving ∇θgt(θ)|θ=θ(t) = 0. In this section, we specifically examine the case where the
M-step is performed via GA:

θ(t+1) = θ(t) + ηt∇θgt(θ)|θ=θ(t) , (4.9)

for sufficiently small values of ηt, this parameter update on θ verifies the third condition
of the MM algorithm. We now explain that this procedure is indeed equivalent to
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performing GA on f(θ) since the value of the gradient ∇θgt(θ)|θ=θ(t) is the same as
∇θf(θ)|θ=θ(t) . It is indeed clear from the MM construction that the function h : θ −→
gt(θ)− f(θ) is negative (see (4.3)) and is 0 for θ = θ(t) (see (4.4)). So the point θ(t) is a
maximum of h and ∇θh(θ)|θ=θ(t) = 0, which finally yields:

∇θgt(θ)|θ=θ(t) −∇θf(θ)|θ=θ(t) = 0. (4.10)

Even though the gradient based EM is equivalent to performing the standard GA of
f , this gradient based EM algorithm can nonetheless be relevant in cases where either
f(θ) or its gradient can not be computed while the gradient of gt(θ) can be computed.
In the context of mixture models, we will illustrate how the ELBO surrogate admits
closed-form M-step updates. The EM algorithm is a very efficient and well-studied
(87)(10) parameter estimation technique which has become a very popular tool to solve
variational density estimation (VDE) tasks (64) and which has been applied in a wide
range of contexts such as signal processing (23) and image reconstruction (31). In
particular, when applied to the GMM which are multimodal by nature, they are often
used for fast and accurate unsupervised clustering (17).

However, the EM algorithm that we have just presented, be it with explicit surrogate
maximization or via gradient updates, (and for which we will describe its application to
mixture models in section 4.3.10), requires (i) computing the posterior PDF of latent
variables pθ(t)(Z|xi) and (ii) computing expectation with respect to this posterior distri-
bution, see (4.8). However, when these two conditions are not fulfilled, one can resort to
the variational expectation maximization of the ELBO. This principle is used in VAEs,
which is described in the next section 4.1.1.

VAE

A VAE (50) is a specific LVM where (i) the latent variable is distributed according
to a parameter-free distribution, such as a standard normal, and (ii), given Z, X is
distributed according to a conditional distribution parameterized by θ, for example,
pθ(x|z) = N (µθ(Z), σ2

θ(Z)) where µθ(Z) and σ2
θ(Z) are the output of a NN function

parameterized by θ. The corresponding PDF reads:

pθ,VAE(x) =

∫
pθ(x|z)q(z)dz. (4.11)

For arbitrary functions µθ and σθ, this PDF does not admit a closed form expression
which calls for the ELBO (4.7). However, in this setting, the exact EM algorithm is not
applicable since the posterior PDF pθ(z|x) cannot be expressed in closed form and can
only be evaluated up to a normalizing constant. Therefore, in the seminal paper, the
author considers the ELBO optimization objective in which the distributions li(Z) are
defined via a variational approximation of the posterior probability distribution, which

also uses NN functions (say parameterized by ϕ) µϕ and σ2
ϕ such that li(z)

∆
= pϕ(z|xi) =

N (z;µϕ(xi), σ
2
ϕ(xi)). The ELBO then becomes:

ELBO(θ, ϕ) =
M∑
i=1

EZ∼Pϕ(Z|X=xi)

[
log

(
pθ(xi, Z)

pϕ(Z|xi)

)]
. (4.12)
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An unbiased Monte-Carlo estimate of the gradient of this expression with respect to
both parameters θ and ϕ (12) is then computed using the reparameterization gradient
method (86) or the reparameterization trick (53). There are many further constructions
of LVMs which extend the principle of VAEs, such as deep and stacked variational
autoencoding layers (81), hierarchical VAEs (85), or continuously indexed NFs (20).

Mixture Model

As we have mentioned before, the PDF associated with a LVM pθ,LVM(x) cannot be
computed in general because the integral

∫
pθ,LVM(x, z)dz does not admit a closed-form

expression. However, if the latent RV is discrete with finite values, then the integral
indeed becomes a finite sum and is tractable. A possible approach to constructing a
probability distribution with tractable PDF is therefore to consider a categorical la-
tent variable, which we now denote R, that takes values r = 1, ..., K with probability

πk
∆
= Pr(R = k). The PDF associated with RV R is therefore a probability mass function

which reads
∑K

k=1 πkδr,k, where δ.,. is the delta Kronecker. Let us denote Pk the distribu-
tion of the observed RV X given R = k. The corresponding construction can be viewed
as considering K + 1 RVs: Xk ∼ Pk for k = 1, ..., K and R ∼ Categorical{π1, ..., πK};
and defining the RV X =

∑K
k=1XkδR,k = XR. Then this RV is said to be distributed

according to the mixture of distributions P1, ...,PK with weights π1, ..., πK . The PDF
associated with the corresponding model finally reads:

pMixture(x) =
K∑
k=1

πkpk(x). (4.13)

To summarize, a mixture model is a probability distribution obtained using two prin-
ciples. As we explained, the first principle is that of a discrete finite latent variable,
which ensures tractability during integration of the latent RV, and the second is that
the latent variable has a distribution which is parameterized independently of the value
of X to scalar values πk. In the rest of this chapter, we will reach the DIF construc-
tion, which also leverages the principle of a discrete finite latent variable, but where the
parameterization of the distribution associated with the categorical RV indeed depends
on the value of X (see sections 4.1.3 and 4.3).

We now consider the previous mixture model and see how the EM algorithm for MLE
is applied. We therefore consider a mixture of distributions Pk, each parameterized
by λk, and the mixture weights πk. The parameters of the corresponding model are
θ =

[
π1, ..., πK , λ1, ..., λK

]
. We first explicit the E-step in which we compute, from the

current parameter value θ(t), the surrogate function gt(θ). The posterior probability
that the latent variable R takes the value k for observation xi, Prθ(t)(R = k|X = xi),

and which we denote as v
(t)
k (xi), reads:

v
(t)
k (xi)

∆
= Prθ(t)(R = k|X = xi) =

π
(t)
k pk(xi;λ

(t)
k )∑K

l=1 π
(t)
l pl(xi;λ

(t)
l )

. (4.14)

Since the latent variable is categorical (i.e. discrete with finite values), the expectations
computed with respect to the posterior distributions are expressed as a finite sum, which
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enables us to deduce (and compute) the surrogate function:

gt(θ) =
M∑
i=1

K∑
k=1

v
(t)
k (xi) log

(
πkpk(xi;λk)

v
(t)
k (xi)

)
. (4.15)

So in the case of such mixture models, the E-step can be conducted explicitly.
We now come to the M-step, which consists in updating the parameters by increasing

the surrogate computed in the previous E-step. In general, LVMs do not admit explicit
maxima, but in that case, as we mentioned, it is only required that we increase the
surrogate (possibly via a gradient-based method). However, in the specific case of
mixture models, it turns out that we can maximize the mixture weights explicitly, so
we now first derive the update for the mixture weights. First, we see in equation (4.15)
that the parameters πk are maximized independently of λl, l = 1, ..., since the partial
derivative of gt with respect to π does not depend on the value of λl. At first glance, we
might similarly conclude that πk is maximized independently of the other values πl, l =
1, ..., K but remember that π1, ..., πK are the probabilities of the categorical distribution
of the latent variable R so they must sum to 1. We therefore first maximize equation
(4.15) with respect to weight parameter πk under the constraint that

∑K
l=1 πl = 1 (or

equivalently that the function πk −→
(∑K

l=1 πl

)
− 1 is 0). To that end, we use the

Lagrangian function with multiplier γ:

L(πk, γ) = log(πk)

(
M∑
i=1

v
(t)
k (xi)

)
+ γ

(
K∑
l=1

πl − 1

)
; (4.16)

and we aim to find the stationary points of L, i.e. to solve for π
(t+1)
k , γ∗ in∇L(π

(t+1)
k , γ∗) =

0. This leads a system of two equations, and its solution for π
(t+1)
k reads:

π
(t+1)
k =

∑M
i=1 v

(t)
k (xi)∑K

l=1

∑M
i=1 v

(t)
l (xi)

. (4.17)

We now consider maximizing the surrogate function with respect to the parameter λk.
We see again in equation (4.15) that the parameter λk is maximized independently of πl
and other parameters λl, l = 1, ..., K since again the partial derivative (or gradient if λk
is multidimensional) does not depend on neither πl nor λl. The function to maximize
therefore reads:

L(λk) =
M∑
i=1

K∑
k=1

v
(t)
k (xi) log

(
pk(xi;λk)

)
. (4.18)

We therefore seek λ∗k which maximize this function by solving ∇L(λ∗k) = 0. Unlike for
the mixture weights, a closed form update for the parameters of the distributions Pk is
not necessarily available. Nonetheless, many different probability distributions indeed
admit closed form updates, such as Gaussian (24) or Poisson (11) distributions in which
case the EM algorithm is straightforward. We now consider the case of a Gaussian
distribution so pk(x;λk) = N (x;µk,Σk) where λk =

{
µk,ΣK

}
and µk is the mean

vector and Σk is a covariance (symmetric positive-definite) matrix. The corresponding
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mixture model is therefore a Gaussian Mixture Model (GMM). We recall that N is a
notation used to describe the PDF associated with a Gaussian distribution:

N (x;µ,Σ) =
1√

(2π)d det (Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (4.19)

The function to maximize with respect to µk and Σk (after removing constant terms)
therefore reads:

L(µk,Σk) =
M∑
i=1

v
(t)
k (xi)

2

(
log
(
det(Σ−1k )

)
−
(
xi − µk

)
TΣ−1k

(
xi − µk

))
. (4.20)

Instead of computing the partial derivative of L with respect to Σk, we instead compute

the partial derivative of L′(µk,Σ
−1
k )

∆
= L(µk,Σk) with respect to Σ−1k since ultimately

∇L′(µ(t+1)
k ,Σ

(t+1)
k

−1
) = 0 ⇐⇒ L(µ

(t+1)
k ,Σ

(t+1)
k ) = 0. One can compute the derivative

with respect to Σ−1k with matrix derivatives identities, and use the properties arising

from Σk being a covariance matrix to solve for µ∗k,Σ
∗
k in ∇L′(µ(t+1)

k ,Σ
(t+1)
k

−1
) = 0. This

yields a system of equation and leads to the solution of the parameter update for mean
and covariance matrix during the M-step in a GMM:

µ
(t+1)
k =

∑M
i=1 v

(t)
k (xi)xi∑M

i=1 v
(t)
k (xi)

(4.21)

Σ
(t+1)
k =

∑M
i=1 v

(t)
k (xi)

(
xi−µ

(t+1)
k

)(
xi−µ

(t+1)
k

)
T∑M

i=1 v
(t)
k (xi)

(4.22)

So, in the specific case of GMM, the EM algorithm can be conducted explicitly. Indeed,
since it is a mixture model, it follows that (i) the E-step is straightforward as it is
nothing but computing expectation with respect to a categorical distribution, and (ii)
the mixture weights admit closed-form updates in the M-step. Moreover, since the
mixture distributions are Gaussian, the parameters of the corresponding distribution
can also be updated in closed form during the M-step.

4.1.2 Push-forward models

As we have explained in the previous section, LVMs indeed define an underlying
directed graph in which the transition between a latent variable and a visible variable
is defined via a parameterized probability distribution. In that regard, a concurrent
approach to obtaining a parameterized probability distribution is also to consider a
latent variable with some random probability distribution and relate it to an observed
RV via a deterministic function, referred to as a push-forward function in this context.
We now briefly describe the example of Generative Adversarial Networks (GANs), which
are precisely built using this construction, and then we come to Normalizing Flows (NFs)
which are also built using the push-forward principle but benefit from tractable PDF
with the mechanism of change of variable, which we also describe.
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GAN

GAN (37) are a class of parametric probability distribution in which a RV of in-
terest is built as Tθ(Z) where Z is a random “noise” variable distributed according to
some, usually parameter-free, distribution P(Z), and Tθ is an arbitrary NN function
parameterized by θ.

X Z
Z ∼ P(Z)

X = Tθ(Z)
(4.23)

It is therefore easy to draw the corresponding RV by first sampling the noise value Z
and passing it through Tθ. However, the PDF of the corresponding distribution Pθ,GAN

reads:

pθ,GAN(x) =

∫
δTθ(x)(z)q(z)dz, (4.24)

and, for an arbitrary function Tθ, is intractable in general as the integral cannot be
computed in closed form. This therefore raises the question of fitting such a model
to recorded data, as standard MLE is unfeasible without explicit access to the PDF.
The solution proposed in the seminal paper (37) is adversarial training. The concept
of adversarial training leverages a classifier rϕ, which aims to distinguish between the
recorded samples x1, ..., xM and samples from Pθ,GAN. Intuitively, the goal is to adjust
θ such that the samples from the model are indistinguishable from the distribution that
produced the recorded data, in which case the two distributions are close to being the
same. More formally, the considered optimization objective is:

L(θ, ϕ) = −
M∑
i=1

log(rϕ(xi))−
N∑
i=1

log(1− rϕ(Tθ(zi)), where z1, ...zN ∼ P(Z). (4.25)

This expression is minimized with respect to ϕ and, for fixed θ corresponds to the
usual Binary Cross Entropy criterion to build a classifier which distinguishes between
recorded samples and samples from the corresponding GAN model; and this expression
is maximized with respect to θ for fixed ϕ such that the corresponding model produces
samples that can fool the classifier. The convergence of adversarial training has been
thoroughly studied (40)(2)(60). Generative adversarial networks have constituted a ma-
jor advance in generative modeling as, with leveraging deep NN functions for Tθ and rϕ,
the corresponding model is able to produce highly accurate variational approximations
of complex and high-dimensional probability distributions. GAN has made an impact in
the specific context of generating natural images, and its mechanism and the principle
of adversarial training have since been built upon to propose more elaborate models
that indeed produce high-resolution and highly realistic images (47)(48).

NF

As we have seen in the previous section, parametric probability distributions can be
defined as a push-forward transformation of a given base distribution. However, such
models do not benefit from a tractable density function in general, and for estimating
the model parameters, practitioners must then resort to more involved training proce-
dures, such as adversarial training. Nonetheless, in the case where the push-forward
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transformation is a change of variable, the density function indeed becomes tractable,
which is the principle upon which the NF modeling technique, which we now describe,
is based.

NFs are a class of parameterized probabilistic models which can be related to the
principle of inverse transform sampling, which we first briefly explain. Let X be a P-
distributed continuous real-valued RV (we consider the multivariate case hereafter). We
denote P the Cumulative Distribution Function (CDF): P (x) = Pr(X ≤ x). It then
follows that the RV P (X) is distributed uniformly on [0, 1]. To see this, we suppose
for simplicity that the restriction of P in the support of P has inverse P−1 (if it is not
the case, one can use similar arguments with using the generalized inverse distribution
function (46)). In this case, Pr(P (X) ≤ x) = Pr(X ≤ P−1(x)) = P (P−1(x)) = x;
which is nothing but the CDF of a uniform RV on [0, 1]. Similarly, let U ∼ U [0, 1] be a
uniformly distributed RV. It follows, with a similar argument, that P−1(U) is distributed
according to P . Indeed: Pr(P−1(U) ≤ x) = Pr(U ≤ P (x)) = P (x). We can therefore
deduce a two-step procedure for sampling from P using the inverse CDF P−1: we first
sample uniformly u ∼ U [0, 1] and we then compute x = P−1(u), which is hence a sample
from P .

The previous argument can easily be adapted in the case where P is a multivariate
distribution, say of dimension d, by considering the function P : Rd → R

d which reads:

P (x)1 = Pr(X1 ≤ x1) and (4.26)

P (x)i = Pr(Xi ≤ xi|X1 = x1, ..., Xi−1 = xi−1) for i = 2, ..., d; (4.27)

(with slightly abusing notations, we also refer to this function as CDF in the rest of
this chapter). Indeed, it then follows that (i) if X ∼ P , then P (X) ∼ U[0,1]d , (ii) this
function is invertible and (iii) if U ∼ U[0,1]d , then P−1(U) ∼ P . We refer to (67) and the
references therein (notably (44)(9)) for a more in-depth treatment of this fact.

Under mild conditions, this function is also differentiable, so it is a change of vari-
ables. As a consequence, for any distribution of interest P , there exists a change of
variables that transforms it into a given base distribution, be it a product of indepen-
dent uniform distributions or a isotropic multivariate normal distribution. an NF defines
a probability distribution Pθ,NF which is parameterized by θ, via a change of variables Tθ
which is applied to a base reference distribution Q (usually chosen as a standard normal
distribution) and parameters θ are adjusted such that Tθ approximates the correspond-
ing change of variable. We describe how one can use NFs for generative modeling and
VI in detail in section 4.3.3.

For now we emphasize that the corresponding probability distribution benefits from
tractable density via the change of variables formula:

pθ,NF(x) = qθ(Tθ(x))| det JTθ(x)|. (4.28)

Therefore, specific push-forward models which use a change of variables to transform a
RV distributed according to a base distribution indeed benefit from a tractable PDF,
and this construction precisely corresponds to NFs.
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Figure 4.1: In the DIF construction, the constant mixture weights are replaced by a
function

4.1.3 From Mixture Models Towards Discretely Indexed Flows

In the previous sections, we have explained the principle of mixture models and how
one can build a tractable PDF with a linear combination of tractable PDFs. We then
illustrated this principle with the GMM, which is considered by most practitioners as a
very efficient tool for solving density estimation problems thanks to the potency of the
EM optimization algorithm, which, as we have explained, admits closed form updates.
Moreover, the GMM is a universal approximation tool for density functions (13) (71).
However, the flexibility of a GMM, i.e., its ability to capture details and obtain fine
approximations of a given distribution, is only related to its number of components;
the higher the number of components, the higher the capacity of the GMM to closely
approximate any density function. In this context, and in an attempt to induce further
flexibility in a mixture model while retaining the benefit of a tractable PDF, we propose
the construction of DIF. The idea of DIF is to increase the flexibility of mixture models
with a fixed number of components by replacing the mixture weights πk ∈ [0, 1] by a
flexible function πk(x).

More precisely, let us go back to the probability distribution which corresponds to the
mixture of distributions Pk with weights π1, ..., πK . We aim to extend this mixture model
into a more general construction where the mixture weights depend on the observed
variable X. Our goal is to write a PDF of the form:

pMixture(x) =
K∑
k=1

πkpk(x) =⇒ pDIF(x) =
K∑
k=1

πk(x)pk(x). (4.29)

The objective of the DIF construction is illustrated in figure 4.1.
In section 4.3, we cover in detail the DIF modeling technique and its construction

is presented as an extension of NFs. Yet, to complement the understanding of this
methodology, we first relate DIF to mixture models with regard to equation 4.29. The
goal of this section is to unravel sufficient conditions on the functions πk(x) for which
this equation indeed corresponds to a valid PDF. We point out that the construction of a
DIF involves both the principles of a discrete latent variable (hence the term Discretely)
and a change of variables from some base distribution (hence the term Flow).



108 CHAPTER 4. MODELING A TRACTABLE PDF WITH DIF

The two properties for pDIF(x) to be a valid PDF are that the function is non-negative
everywhere and that its integral is 1. So we aim at fulfilling the two requirements:∑K

k=1 πk(x)pk(x) ≥ 0,∀x ∈ Rd; (4.30)∫ ∑K
k=1 πk(x)pk(x)dx = 1. (4.31)

First, since pk(x) is a PDF, it is itself non-negative, and therefore a sufficient condition
on the function πk such that (4.30) is satisfied is that πk(x) ≥ 0 for all k = 1, ..., K and
for all x ∈ Rd. We now discuss the second condition, and to that end, we will again
use the CDF and the principle of inverse CDF transform sampling to find a sufficient
condition on functions πk such that (4.31) is satisfied. Using Pk the CDF of Pk and the
change of variable u = Pk(x), we rewrite the left-hand side of (4.31) as:∫ ∑K

k=1 πk(x)pk(x)dx =
∫
[0,1]d

∑K
k=1 πk(P

−1
k (u))du. (4.32)

We can deduce a sufficient condition about functions πk to satisfy (4.31): we see that
if
∑K

k=1 πk(P
−1
k (u)) = 1 for all value u ∈ [0, 1], then this integral indeed reduces to∫

[0,1]d
du = 1. We have hence identified two sufficient conditions on the functions πk

such that the induced model is indeed a valid probability distribution:∑K
k=1 πk(P

−1
k (u)) = 1 and πk(x) ≥ 0, for x ∈ Rd. (4.33)

Up to this point, it is perhaps still unclear how to construct functions πk such that these

two requirements are satisfied. The final step is to rewrite αk(u)
∆
= πk(P

−1
k (u)) ⇐⇒

πk(x) = αk(Pk(x)), and rewrite the two previous sufficient conditions on πk in terms of
functions αk:∑K

k=1 αk(u) = 1 and αk(u) ≥ 0 for all u ∈ [0, 1]d and k = 1, ..., K; (4.34)

We see that the condition is that functions αk(u) predict a vector of probabilities, hence,
it defines a categorical probability distribution, and the value αk(u) can therefore be
interpreted as the probability that the uniform RV U is transformed into P−1k (U) given
that U takes the value u. So the random categorical latent variable R takes the value
k = 1, ..., K with probability:

Pr(R = k|U = u) = αk(u) = Pr(X = P−1k (U)|U = u). (4.35)

The construction of the DIF therefore corresponds to an LVM with two latent variables:
U distributed Uniformly and R a categorical RV with probabilities that depend on the
value of U via functions α1(U), ..., αK(U).

R

X U
U ∼ U [0, 1]

R ∼ Categorical [α1(U), ..., αK(U)]

X = P−1R (U)

(4.36)
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We have considered the inverse CDF transform P−1k of Pk which, as we explained
before, is a change of variables between Pk and the uniform distribution U[0,1]d . But
again, we can instead consider a change of variables between Pk and any base distribution
Q with tractable density by defining T−1k = Q ◦ P−1k where Q is the CDF of Q. In this

case, we define wk(z)
∆
= πk(T

−1
k (z)) = πk(P

−1
k (Q(z)) = αk(Q(z)); and the two conditions

on functions αk translate to conditions on functions wk:∑K
k=1wk(z) = 1 and wk(z) ≥ 0, for all z ∈ Rd and k = 1, ..., K; (4.37)∑K

k=1wk(z) = 1, for all z ∈ Rd. (4.38)

R

X Z
Z ∼ Q
R ∼ Categorical [w1(Z), ..., wK(Z)]

X = T−1R (U)

(4.39)

We finally see that conditions on functions wk are that they define a vector of categorical
probability for all values z ∈ Rd and wk(z) can be considered as the output of a classifier
function. We can also rewrite the density of the corresponding model as pDIF(x) =∑K

k=1wk(Tk(x))pk(x). Again, similarly to the principle of NF, we can rewrite the density
associated with pk(x) in terms of q, the PDF associated with Q, using the change of
variables formula for densities, as pk(x) = q(Tk(x))| det JTk(x)|. Finally, the density of
the corresponding DIF model reads:

pDIF(x) =
K∑
k=1

wk(Tk(x))q(Tk(x))| det JTk(x)|. (4.40)

So finally, we can summarize the principle of the DIF mechanism. We considered a
mixture model where the mixture weights are replaced by a classifier function which
computes the categorical probabilities for a standardized version of the variable of in-
terest. Now that we have understood the principle of the DIF construction, it is easy
to use this principle in order to obtain a parameterized probability distribution with a
tractable PDF by selecting (i) a base distribution Q with tractable density, (ii) classi-
fication functions wk (i.e. one that computes a categorical vector of probability), and
(iii) K changes of variables Tk.

By construction, the DIF extends mixture models, but they can also be seen as an
extension of NF in which the deterministic mapping is replaced by a discrete stochastic
one. Mixtures of NF have already been proposed in the literature and have been mildly
successfully applied in some contexts. In our work, we do not focus on this aspect but
rather investigate whether or not we can leverage the flexibility induced by the mixture
weights πk(x) (or equivalently wk(z)). To that end, we consider a DIF with a standard

normal base distribution Q = N (µ = 0d,Σ = Id), with T−1k (z) = µk + Σ
1/2
k z, and with

functions wk(z) defined via an NN classifier function. The corresponding DIF therefore
has a PDF which reads:

pDIF(x) =
K∑
k=1

wk(Σ
−1/2
k x− µk)N (x;µk,Σk); (4.41)
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which is effectively an extension of a GMM where the constant mixture weights are
replaced by a function of X.

4.2 Reparameterization gradient

Most models presented in the previous section are indeed generative models in the
sense that they describe a sampling procedure, which can usually be straightforward.
As such, they can be used to estimate expectations with MC as:

EXθ∼Pθ

[
gθ(Xθ)

] MC
≈ =

1

M

M∑
i=1

gθ(x
(i)
θ ), where x

(1)
θ , ..., x

(M)
θ

iid∼ Pθ. (4.42)

However, an auxiliary problem that occurs in many instances of statistical modeling, is
that of computing (or estimating) the gradient of the quantity EXθ∼Pθ

[
gθ(Xθ)

]
. In this

section, we specifically denote Xθ ∈ Rd with subscript θ to stress that it indeed depends
on the parameter θ as a Pθ distributed RV. As we have explained several times thus
far, such expectations rarely admit closed-form expression, which calls for Monte-Carlo
estimation using iid samples drawn from Pθ. However, the samples indirectly depend on
parameter θ ∈ Rn, the parameters of the probability distribution with respect to which
we compute the expectation. Therefore, computing an estimate of:

∇θ

(
EXθ∼Pθ

[
gθ(Xθ)

])
|θ=θt ; (4.43)

is not straightforward (36)(74)(84) (see (77) for a survey). Eliciting a parametric family
Pθ such that this gradient is easy to estimate (see, for instance, (55)(61)); or finding an
appropriate estimation method for a given model ((38) for mixtures, (65) for Gaussian
distributions) is of crucial importance. We consider gθ a measurable function which we
want to compute the expectation of under Pθ, and is also denoted with the subscript θ
since it may as well depend on θ. It is the case, for example, in a VI context when we
want to minimize DKL(Pθ||P) via Gradient Descent (GD), in which case the function

reads gθ(.) = log
(
pθ(.)
p(.)

)
. We suppose in this section that the function gθ is differentiable

with respect to its argument and with respect to parameters θ as well, so that the
gradient is well defined. We first come to the realization that this problem reduces to
computing a gradient of the form:

∇θ

(
EXθ∼Pθ

[
f(Xθ)

])
|θ=θt , (4.44)

where f does not depend on θ. Indeed, under mild conditions which enable permuting
integral and gradient, (4.43) becomes:

∇θ

(
EXθ∼Pθ

[
gθ(Xθ)

])
|θ=θt =

EZθt
∼qθt

[
∇θgθ(Zθt)|θ=θt

]
+∇θ

(
EXθ∼Pθ

[
gθt(Xθ)

])
|θ=θt . (4.45)
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In this expression, the first term can be computed easily so long as gθ can be differ-
entiated with respect to θ (which we suppose is the case). Hence, all the burden of
computing (4.43) is computing the second term which, if we set f = gθt , is nothing but
(4.44) and the goal of this section is to explain how one can estimate such a gradient.

A first approach is to use the principle of importance sampling to rewrite the ex-
pectation computed with respect to Pθ into an expectation computed with respect to a
probability distribution Q which does not depend on θ:

EXθ∼Pθ

[
f(Xθ)

]
= EZ∼Q

[
f(Z)

pθ(Z)

q(Z)

]
. (4.46)

Then, computing the gradient of (4.44) reduces to computing the gradient of the previ-
ous expression (4.46), which, since the probability distribution with respect to which the
expectation is computed no longer depends on θ, can easily be done with permutation
of the gradient and expectation:

∇θEXθ∼Pθ

[
f(Xθ)

]
|θ=θt = EZ∼Q

[
f(Z)

q(Z)
∇θpθ(Z)|θ=θt

]
. (4.47)

It is straightforward to build a MC estimate of this gradient using iid. samples z1, ..., zM
from the importance distribution Q as:

∇θEXθ∼Pθ

[
f(Xθ)

]
|θ=θt ≈

1

M

M∑
i=1

f(zi)

q(zi)
∇θpθ(zi)|θ=θt . (4.48)

In importance sampling, the variance of the estimate is determined not only by the
discrepancy between the distribution of interest and the importance distribution but
also by the variations of f . In the case of using the importance sampling principle
as a mean to estimate the gradient, it is still unclear how to appropriately select the
importance distribution (i) to improve the corresponding estimate for fixed t and (ii) in a
sequential scheme as t increases, as is the case in a gradient-based optimization scheme.
This question might be the topic of future work. However, a most notable particular
case is the log-trick, also named the reinforce gradient method since it was popularized
in a reinforcement learning policy adjustment setting (86), corresponds to using Pθt
as an importance distribution. With the fact that

∇θpθ(.)|θ=θt

pθt (.)
= ∇θ log(pθ(.))|θ=θt , the

expression for the gradient then becomes:

∇θ

(
EXθ∼Pθ

[
f(Xθ)

])
|θ=θt = EXθt

∼Pθt

[
f(Xθt)∇θ log

(
pθ(Xθt)

)
|θ=θt

]
;

which, once again, can easily be estimated with Monte-Carlo using iid. samples drawn
from the Pθt . This approach is therefore very simple to implement in a sequential op-
timization scheme, as it simply requires drawing samples from the current model and
can always be used as long as the PDF pθ(.) can be evaluated and differentiated. It can
even be applied to discrete probability distributions as opposed to the reparameteriza-
tion trick, which is not necessarily compatible with all probability distributions, as we
will see in the next section. However, several works, such as (66) seem to conclude that



112 CHAPTER 4. MODELING A TRACTABLE PDF WITH DIF

the reinforce log-trick produces high variance estimates, especially when compared to
the reparameterization trick (88), but examples in (33) show that this is not always the
case.

In the previous section, we built an estimate of the gradient of the expectation
of interest (4.44) by first rewriting it into an expectation computed with respect to a
distribution that does not depend on parameters θ and we were able to do so via the
importance sampling principle. This can also be achieved by using a change of variable,
which is the principle behind the reparameterization trick (50)(53): consider a bivariate
function T (.; .) such that RV T (Xθ; θ) is distributed from a distribution which does not
depend on θ. T is therefore often called a standardization function. We denote ϵ that
RV and Q the probability distribution according to which it is distributed. For instance,
if T (.; θ) is the CDF of Pθ, then ϵ is a uniform RV ϵ ∼ U

[
0, 1
]
d which indeed does not

depend on θ. If T is invertible and differentiable with respect to its first argument so
that it defines a valid change of variables and is differentiable with respect to θ (which
then forces T−1 to be as well); then, we can rewrite (4.44) using the change of variables
technique for integrals with Xθ = T−1(ϵ; θ):

EXθ∼Pθ

[
f(Xθ)

]
= Eϵ∼Q

[
f(T−1(ϵ; θ))

]
. (4.49)

Then, since the expectation is computed with respect to a distribution which no longer
depends on θ, one can compute its gradient easily with permutation of gradient and
expectation:

∇θ

(
EXθ∼Pθ

[
f(Xθ)

])
|θ=θt = Eϵ∼Q

[
∇xf(x)|x=T−1(ϵ;θt)∇θT

−1(ϵ; θ)|θ=θt
]
. (4.50)

Note that (4.50) holds regardless of the function T . By hypothesis, we can easily com-
pute the gradient of f with respect to z, therefore, computing (4.43) reduces to com-
puting the gradient of a sample Xθ with respect to θ, and an estimate of the gradient
can be computed with MC as:

1

M

M∑
i=1

∇xf(x)|x=T−1(ϵi;θt)∇θT
−1(ϵi; θ)|θ=θt where ϵ1, ..., ϵM ∼ Q (4.51)

Therefore, the standard approach for applying a reparameterization trick consists of a
two-step procedure. First, one needs to exhibit T (.; .) (with adequate differentiability
and invertibility) such that ϵ = T (Xθ; θ) does not depend on θ. Second, one needs
to invert T (.; θ) and compute its gradient. However, in some cases, a standardization
function T exists and can be computed, but can not be inverted in an analytical form.
This is the case, for instance, with gamma distributions, where numerical methods exist
to compute the CDF, but its inverse can not be computed. In this context, (32) proposes
to rewrite the gradient as:

∇θT
−1(ϵ; θ)|θ=θt = −

(
∇zT (z; θt)|z=T−1(ϵ;θt)

)
−1∇θT (T−1(ϵ; θt); θ)|θ=θt ; (4.52)

which then enables to rewrite 4.50 as:

∇θ

(
EXθ∼Pθ

[
f(Xθ)

])
|θ=θt =

−EXθt
∼Pθt

[
∇xf(x)|x=Xθt

(
∇xT (x; θt)|x=Xθt

)
−1∇θT (Xθt ; θ)|θ=θt

]
. (4.53)
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This expression can therefore easily be estimated by MC with using samples from Pθt
and does not require explicit computation of T−1. More recently, other alternative
gradients estimation methods have been proposed: namely (45)(76)(3) which propose
generalization of the reparameterization trick. More specifically, other works (see (28) for
reference) have successfully proposed reparamerization gradient estimation of rejection-
sampling scheme (62), MCMC sampling (83) and slice sampling (89).

Finally, in this context of gradient estimation, the culmination of this chapter with
the DIF construction does provide an easy reparameterization gradient, even though
its sampling procedure is non-differentiable as it involves a categorical (discrete) RV. In
the bulk of this chapter, we present the corresponding gradient estimate in the specific
context of gradient-based parameter adjustment for VI as a specific Rao-Blackwellization
(RB) procedure.

4.3 Discretely Indexed Flows

In this section we propose DIF as a new tool for solving variational estimation
problems. Roughly speaking, DIF are built as an extension of NFs, in which the deter-
ministic transport becomes stochastic, and more precisely discretely indexed. Due to
the discrete nature of the underlying additional latent variable, DIF inherit the good
computational behavior of NF: they benefit from both a tractable density as well as a
straightforward sampling scheme, and can thus be used for the dual problems of VI and
of VDE. On the other hand, DIF can also be understood as an extension of mixture
density models, in which the constant mixture weights are replaced by flexible functions.
As a consequence, DIF are better suited for capturing distributions with discontinuities,
sharp edges and fine details, which is a main advantage of this construction. Finally
we propose a methodology for constructiong DIF in practice, and see that DIF can be
sequentially cascaded, and cascaded with NF.

4.3.1 Introduction

Many scientific tasks take interest in decision making with respect to some random
process. In this context, evaluating the PDF and/or obtaining random samples from
the process can help the decision making by computing statistical quantities of interest.
For example computing confidence intervals may help to conclude on the existence or
absence of some underlying effect. Historical methods include posterior inference with
MCMC (79) (19) or Approximate Bayesian Computation in the likelihood-free setting
(5).

The task of probabilistic modeling provides with a concurrent approach: by using an
approximating distribution (sometimes referred to as a surrogate) with either or both a
tractable density and an explicit sampling mechanism, we can estimate relevant statis-
tics. This includes the non-parametric approach of Kernel Density Estimation (69).
Variational probabilistic modeling consists in building a surrogate probability distribu-
tion by solving an optimization problem among some parametric family of distributions
(41) (8) (24). Recent advances in automatic differentiation (4) (70) (1) and optimiza-
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tion (49) have paved the way to using NNs functions in probabilistic modeling (50) (37)
(80). Note however that concurrent approaches can perform density estimation (39)
with leveraging NN functions which approximate a density ratio but without explicitly
constructing a probability distribution.

NFs (54) (67) are a versatile tool for probabilistic modeling as they allow for both
generation of random samples with an explicit sampling mechanism, and density esti-
mation with exact PDF evaluation. Therefore NF are at the crossroad between VI (73)
(52), VDE (26) (68) and Generative modeling (51). These three problems are especially
relevant in the field of machine learning which explain the popularity of NF amongst
machine learning practitionners. Moreover, part of their attractiveness results from the
fact that NF define deterministic invertible transformations which can effortlessly be
layered to produce deep and flexible families of surrogates, making them competitive on
a performance standpoint.

In this work, we build DIF as an extension of NF, and we therefore provide another
method in order to build surrogate probability distributions. DIF no longer rely on
a deterministic mapping but rather leverage a stochastic transformation, all the while
remaining in the same sweet spot as NF: they allow for both exact PDF evaluation and
straightforward sampling. On the other hand, DIF can also be seen as an extension of
mixture density models, in which the constant mixture weights become flexible functions.
As a result, DIF enable to capture distributions with finer details than regular mixture
models.

The rest of this section is organised as follows. In section 4.3.2 we present the two dual
problems of VI, on the one hand, and VDE, on the other hand. Both are probabilistic
modeling problems, in which we build a surrogate Pθ of the true probability distribution
P ; in the first case, we use the PDF p associated to P , and in the second case observed
samples from P . In section 4.3.3, we recall the principles of NF, explain how they can
be used for VI and VDE, and revisit them as latent variables models.

In section 4.3.5 we extend NF to DIF; roughly speaking, the deterministic transport
is replaced by a (discrete) stochastic one, therefore DIF are LVMs too, but the original
latent space is augmented by an additional discrete variable. From a computational
point of view, DIF retain the good behaviour of NF; indeed, the discrete nature of the
additional variable enables for explicit density evaluation as well as a closed form formula
for the reverse transition kernel between the latent and observed spaces. We next see that
similarly to NF, DIF can be used efficiently either for the VI or for the VDE problems;
as far as VI is concerned, our work builds upon the previous Transport Monte Carlo
(TMC) approach (29), but we argue in favor of a more coherent optimization objective
than that used in the TMC approach.

Finally in section 4.3.8 we propose a methodology for constructing DIF in practice.
Namely we propose a convenient parameterization of the DIF stochastic transport. Un-
der this parameterization, DIF can be considered as an extension of a GMM, the benefits
of which are illustrated via simulations on complex two-dimensional distributions as well
as compared to elaborate NFs in the context of learning a distribution over images 1.
We finally see that DIF can be combined together (or with NF as well), and that they

1We provide all reproducible code and experiments in the Github repository at
github.com/ElouanARGOUARCH/Discretely-Indexed-Flows.

https://github.com/ElouanARGOUARCH/Discretely-Indexed-Flows


4.3. DISCRETELY INDEXED FLOWS 115

can be used for conditional density estimation.

4.3.2 Two dual probabilistic modeling problems

In this section we propose a parallel discussion of the VI and VDE problems, which
are the two modeling problems addressed by the DIF methodology.

Variational Inference

Suppose that we dispose of p(x), in a possibly unnormalized form, but we do not
have a simple procedure for sampling from the distribution P . This is usually the
case when considering a posterior distribution, the PDF of which is proportional to the
product of the prior and of the likelihood, but the normalizing constant (the evidence) is
unavailable. VI aims at providing samples that are approximately distributed according
to P , by considering a variational distribution defined as:

P⋆θ = arg min
Pθ

D(VI)
(
Pθ,P

)
,

where D(VI) is some discrepancy measure and Pθ belongs to some family of distributions
which is straightforward to sample from. Since P⋆θ is close to P , samples from P⋆θ are
approximately distributed according to P.

Note moreover that if the PDF p⋆θ is available, one can use P⋆θ as an importance
distribution for targeting P . Furthermore, one can use Rubin’s sampling importance-
resampling mechanism (22) (34) (78) (14, §9.2) to produce asymptotically independent
and identically distributed (iid) samples from P .

We consider D(VI) to be the Kullback-Leibler Divergence (56) (DKL), be it either the
forward one DKL(P||Pθ) or the reverse one DKL(Pθ||P ). We also consider a paramet-
ric family

{
Pθ|θ ∈ Θ

}
. However for arbitrary P , neither DKL(P||Pθ) nor DKL(Pθ||P )

admits a closed form expression, which calls for a Monte Carlo (MC) approximation.
Since we can only sample from Pθ, the discrepancy measure D(VI) must be the reverse
DKL, and an MC approximation can be computed as:

DKL(Pθ||P ) = EPθ

(
log

(
pθ(X)

p(X)

))
≈ 1

M

M∑
i=1

xi∼Pθ

log

(
pθ(xi)

p(xi)

)
. (4.54)

Minimizing this MC estimate with respect to model parameters θ via GD requires
that p is differentiable (which is assumed throughout this work), and also that pθ is
chosen to be differentiable with respect to θ. However computing gradients can still be
challenging because the samples xi ∼ Pθ indeed depend on model parameter θ. One
way to compute the gradients is to use a reparameterization trick, that is, to use an
invertible differentiable standardization function S(.; θ) such that RV S(X; θ) = ϵ, does
not depend on θ. Then re-writing xi as xi = S−1

(
ϵi; θ
)

enables computing the gradients
of (4.54) with respect to θ.
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Variational Density Estimation

Suppose that we dispose of samples x1, ..., xM ∼ P but we cannot evaluate the
PDF p(x). This occurs for example when we have only recorded observations from
an otherwise unknown real-world stochastic process. Among other techniques, we can
perform VDE to obtain an estimation of p(x) by considering a variational distribution
defined as:

P⋆θ = arg min
Pθ

D(VDE)
(
Pθ,P

)
,

where D(VDE) is some discrepancy measure and Pθ belongs to some family of distributions
with tractable PDF. Since P⋆θ is close to P , the PDF p⋆θ is an estimate of the unknown
density function p.

Note moreover that if P⋆θ is easy to sample from, then samples from P⋆θ are approx-
imately distributed according to P .

Once again, we will consider D(VDE) to be aDKL and the parametric family
{
Pθ|θ ∈ Θ

}
.

Minimizing an MC approximation of the reverse DKL, as in (4.54), is not possible here.
Indeed in this case, the PDF p is evaluated at samples points xi ∼ Pθ, which depend
on θ; hence we need to account for the terms p(xi) in the optimization, which is not
possible since function p(.) is unknown. This calls for the use of the forward DKL, and
an MC approximation using the samples from P can be computed as :

DKL(P||Pθ) = EX∼P

(
log

(
p(X)

pθ(X)

))
≈ 1

M

M∑
i=1
xi∼P

log

(
p(xi)

pθ(xi)

)
.

Though this MC estimate of the DKL cannot be computed since p is not available, note
that xi and p(xi) do not depend on θ, and can thus be ignored in the minimization
process. As a consequence minimizing this MC approximation of the DKL reduces to
maximizing the log-likelihood of the data under model Pθ. Finally, minimizing the MC
approximation of DKL(P||Pθ) can be conducted via GD, which only requires that pθ
is differentiable (here, unlike in section 4.3.2 the samples do not depend on θ, so the
gradients can be computed directly).

4.3.3 Normalizing Flows

In this section we propose a brief presentation of NF, which have been first introduced
in (73) (see also (54) (67) for thorough reviews of the topic). We explain how to use NF
for the two problems of VI and VDE.

Change of variables, sampling mechanism and density evaluation

The underlying idea of NF is that of a bijective change of variables. Let U and V
be two RVs related via:

V = f−1(U) (4.55)

for some C1-diffeomorphism f , that is, an invertible mapping such that both f and
its inverse f−1 are differentiable and with continuous derivatives. Let qU and qV be
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respectively the PDF of U and V . As is well known, (4.55) induces:

qV (x) = qU
(
f(x)

)∣∣det Jf (x)
∣∣, (4.56)

where Jf is the Jacobian matrix. This change of variables formula for densities in fact
defines the PDF qV via a functional transform F of qU and of the mapping f :

qV = F
(
qU ; f

)
(4.57)

These formulas are potentially useful for sampling (4.55) and for density evaluation
(4.56). However, at this point it is interesting to observe that they do not involve the
same assumptions on qU and f :

1. If f−1 is available without tears, and if qU is easy to sample from, then (4.55) can be
used as a straightforward sampling mechanism: if u ∼ qU then v = f−1(u) ∼ qV ,
in other words we first sample u from qU and then map u to v via f−1;

2. On the other hand, evaluating qV via (4.56) requires that PDF qU can be evaluated
at any point and that we can compute the Jacobian determinant easily.

Application to the variational problems

Let us now see how to apply (4.55) and (4.56) to the variational problems identified
in section 4.3.2. Given a Q distributed RV Z (usually chosen as a fixed standard
Gaussian distribution N

(
0, Id

)
- as discussed in section 4.3.3 - where d is the dimension

of the problem), both problems consist in designing a change of variables T such that

the distribution of X̃ = T−1(Z), which we denote as Pθ, is close to target P (in the
sense of the appropriate DKL). In the general case and for both problems of VDE and
VI, the optimization problem will not have a solution for arbitrary T . Therefore, we
consider T ∈

{
Tθ|θ ∈ Θ

}
, with the condition that T is differentiable with respect to

model parameters θ, in order to solve the optimization using GD (see (25) (26) (68)
(52) (51) (59) (30) for examples of such parametrization).

The fact that mapping T is a C1-diffeomorphism has interesting consequences. First,

mapping T indeed provides two couples of rv:
[
X̃ = T−1θ (Z), Z

]
(see the second row of

figure 4.2), but also
[
X, Z̃ = Tθ(X)

]
(see first row), in which X ∼ P and Qθ denotes

the distribution of Z̃. Then, if Q and P respectively admit PDF q and p, the PDF pθ

x− obs. z − lat.

P
Tθ(X)=Z̃−−−−−→ Qθ

Pθ
X̃=T−1

θ (Z)
←−−−−−− Q

Figure 4.2: Forward & Backward mappings between observed and latent spaces
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and qθ associated with Pθ and Qθ are defined via the same functional transform (4.57):

pθ = F
(
q;Tθ

)
(4.58)

qθ = F
(
p;T−1θ

)
(4.59)

Moreover, by applying the simple change of variables z = Tθ(x), we have the following
two equalities:

DKL

(
Pθ||P

)
= DKL

(
Q||Qθ

)
, (4.60)

DKL

(
P||Pθ

)
= DKL

(
Qθ||Q

)
. (4.61)

These two equalities explain that, since observed and latent distributions are related
via a deterministic invertible mapping, minimizing a forward (resp. reverse) DKL in the

latent space (that of Z̃ and Z) mechanically minimizes a reverse (resp. forward) DKL

in the observed space (that of X and X̃), and vice-versa. These remarks will be useful
in later sections.

Why Normalizing? Why Flow?

• With an argument similar to the inverse CDF technique for sampling (67, §2.2), for
any distribution P with compact support, we can (at least theoretically) construct
a transport T between P and a standard Normal distribution (whence the term
Normalizing Flows). For that reason, it is routinely assumed to setQ as a standard
parameter-free Normal distribution (which is assumed from now on); and using
an NF for modeling P reduces to approximating a combination of two CDF.

• In order to ensure sufficient flexibility in T , we leverage the property that C1-
diffeomorphisms are closed under composition. If we define for example T = T1◦T2,
where T1, T2 are C1-diffeomorphisms, then T is also a C1-diffeomorphism and its
Jacobian determinant can be computed using the chain rule formula:

| det JTθ(x)| = | det JT1(x)| × | det JT2
(
T1(x)

)
|,

which implies F
(
.;T
)

= F
(
F
(
.;T2

)
;T1

)
. Hence, it is easy to construct T as a

composition of simple transformations {Tc}c=1,...,C . The distribution Q sequen-
tially gets morphed into Pθ by a Flow of transformations, whence the term Nor-
malizing Flows.

VI with NF

Let us consider the VI setting described in section 4.3.2. Minimizing an MC approx-
imation of the reverse DKL leads to the following optimization problem:

min
θ∈Θ

M∑
i=1

xi∼Pθ

log

(
pθ(xi)

p(xi)

)
. (4.62)
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Figure 4.3: Example of VI using a multi-step NF

In order for this objective to be differentiated with respect to θ we may try to apply a
reparametrization trick. Equation (4.60) hints at a solution for such a reparameteriza-
tion: since xi = T−1(zi), where zi ∼ Q does not depend on θ (because we have assumed
that Q is parameter-free) and T is differentiable with respect to model parameters θ.
Hence by construction, NF provides with a straightforward differentiable reparametriza-
tion trick x = T−1(z). By applying this change of variable, (4.62) becomes:

min
θ∈Θ

M∑
i=1
zi∼Q

log

(
pθ
(
T−1(zi)

)
p
(
T−1(zi)

) ) = min
θ∈Θ

M∑
i=1
zi∼Q

log

(
q(zi)

qθ(zi)

)

= max
θ∈Θ

M∑
i=1
zi∼Q

log
(
qθ(zi)

) (4.59)
= max

θ∈Θ

M∑
i=1
zi∼Q

log

(
p
(
T−1(zi)

)∣∣∣det JT−1
θ

(zi)
∣∣∣). (4.63)

The resulting optimization problem can be solved using GA as this expression is dif-
ferentiable with respect to θ, and Q was purposely chosen to be easy to sample from.
Let θ⋆ maximize (4.63); it remains to sample the corresponding model P∗θ to produce
samples that are approximately distributed according to P .

Figure 4.3 presents an example of an NF used for VI on a 2-dimensional S-Curve
problem. The left most column shows the observed-x space while the right most column
corresponds to the latent-z space. The model is defined as a composition of 4 Real-NVP
coupling layers (26), the middle columns present the intermediate distributions between
each transformation. We can therefore visualise how a standard Gaussian distribution
Q (green) is sequentially morphed into the model distribution Pθ (blue) that resembles
the target P (red). As expected, Qθ (yellow) resembles Q. The first row shows a color-
mapping of the target density p function getting morphed via T . The last two rows
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are both representations of Pθ but the first shows drawn samples while the later is a
color-mapping of the density function pθ which is a result of q getting morphed via T−1.

DE with NF

Figure 4.4: Example of Density Estimation and Sampling using a multi-step NF

Consider now the VDE setting described in section 4.3.2, the MLE problem (which
we recall is equivalent to minimizing an MC approximation of the forward DKL) reads:

max
θ∈Θ

M∑
i=1
xi∼P

log
(
pθ(xi)

) (4.58)
= max

θ∈Θ

M∑
i=1
xi∼P

(
q
(
Tθ(x)

)∣∣det JTθ(x)
∣∣) (4.64)

For this optimization objective to be differentiable, it is only necessary that the density
function q is also differentiable, which is the case since Q is a standard Normal distribu-
tion. Then, the maximization can be solved using GA. Let θ⋆ maximize equation (4.64);
then model PDF p∗θ(x) is an approximation of the target PDF p and hence solves the
VDE problem. Note moreover that we can produce new samples that are approximately
distributed from P by sampling the corresponding model P∗θ .

Figure 4.4 presents an example of an NF used for VDE on the same target distri-
bution as in figure 4.3. The flow model is also defined as a composition of 4 Real NVP
layers. The only difference with Figure 4.3 is that the target distribution is available
via its samples and therefore the first row shows the samples of P being transformed
via T , the interpretation of this figure is otherwise the same.

Topological limitations

Observe however that, by essence, NF are not well suited to approximate multimodal
distributions with disjoints supports: since T−1 continuously reshapes the Normal dis-
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tribution Q into Pθ, the model will struggle to efficiently split the mass into several
modes. We illustrate this in figure 4.5 where we try using a multi-step NF to approach
a distribution with two disjoint moon elements. In this context, we see that there re-
mains an artefact connection between the two elements of mass; hence the resulting
NF distribution is not one with disjoint supports. This topological limitation is one
drawback of NF models which DIF circumvent, see section 4.3.10 below.

Figure 4.5: Topological limitation of an NF; it struggles to approach distribution with
disjoint support

4.3.4 From Normalizing Flows to Discretely Indexed Flows

As we now see, NF can be considered as LVMs, which suggests the extension to DIF
which will be addressed in section 4.3.5.

Flows as LVMs

NF target a distribution P by constructing a distribution Pθ associated with a RV
X̃ = T−1θ (Z). The RV Z is a proxy latent variable distributed according to Q, and we
adjust T so that Pθ is as close as possible of P . Pθ is therefore the marginal distribution
of interest, out of a couple of RVs (X̃, Z) with joint density ←−πθ

(
x|z
)
q(z). It can thus be

considered as an LVM: we are given a prior q (the distribution of the latent variable Z),

and we move from z to x via the conditional distribution x ∼
←−
Πθ

(
.|z
)
. Of course, since

Z and X̃ = T−1θ (Z) are related via a deterministic mapping, the associated conditional
density function ←−πθ

(
x|z
)

reads:

←−πθ
(
x|z
)

= δT−1
θ (z)(x). (4.65)
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Beyond Normalizing Flows

One way of increasing expressiveness is to consider an LVM in which the determin-
istic mapping (4.65) used in NF is replaced by a stochastic transport described by a

transition kernel
←−
Πθ, be it a PDF or a probability mass function. In either case, due

to the latent variable structure, sampling from Pθ is (almost) as easy as in the deter-
ministic case: we start off by sampling the latent distribution z ∼ Q, and next we

sample from the conditional distribution x ∼
←−
Πθ

(
.|z
)
. Therefore, as long as the prior

and likelihood are both easy to sample from, the model can be sampled from effortlessly.

The density associated with Pθ is given by:

pθ(x) = EZ∼Q

[←−πθ(x|Z)]
This density is not necessarily tractable as the expectation does not always admit

a closed form expression, at least if the conditional distribution is continuous. If how-
ever←−πθ

(
x|z
)

is discrete and has finite support, then the integral becomes a tractable sum.

As a consequence, note that for continuous LVMs, we might not be able to use ex-
plicit evaluation of the density function pθ in order to optimize the model. For example,
if pθ is untractable, we cannot perform direct MLE of model parameters and we have
to rely on more sophisticated optimization procedures. For instance (50) presents the
VAE, which is a continuous LVM that leverages a variational EM optimization scheme.

However, for the task of VDE, it is desirable that we use a model Pθ s.t. PDF pθ
exists and can be computed exactly. Therefore, we will explore DIF which is a class of
LVMs that builds upon the principle of invertible mappings used in NF and includes
stochasticity in a discrete form to ensure tractable density.

4.3.5 The DIF construction

In this section we introduce DIF as one possible stochastic extension of NF. More
precisely, we build DIF as an LVM where the deterministic mapping between z and x is
replaced by a discrete stochastic distribution. We then apply DIF for both the VI and
VDE problems.

DIF as a discrete LVM

We define a DIF model via some prior distribution Q and the likelihood:

←−πθ
(
x|z
)

=
K∑
k=1

wk(z)δT−1
k (z)(x), (4.66)

where, though we drop the subscript notation {wk, Tk}k=1,...,K , are specified functions
parameterized by θ (see section 4.3.8 to understand how such functions can be param-
eterized). With words: for a given value of z, z is transformed into x = T−1k (z) via
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mapping Tk with probability wk(z). The function wk(z) therefore represents the condi-
tional probability Pr

(
x = T−1k (z)|z

)
and must sum to 1:

∑K
k=1wk(z) = 1, ∀z ∈ Rd.

DIF in fact is an auxiliary LVM where we leverage a categorical latent variable U
to create a stochastic transport instead of a deterministic one. The latent RV U takes
discrete values 1 to K which indicate what mapping is applied to z. The resulting RV
X̃ can be written as :

X̃ = T−1R (Z) where Z ∼ Q and R ∼ Categorical
(
w1(Z), ..., wK(Z)

)
. (4.67)

Hence, sampling from this model remains straightforward as the stochastic transport of

prior samples z ∼ Q can be conducted with sampling
←−
Πθ(.|Z = z) using (4.67). DIF is

therefore a viable parametric model candidate for VI (see section 4.3.6 below).

R

X Z

With this choice for
←−
Πθ and with the additional constraint that each Tk for k =

1, ..., K is a C1-diffeomorphism, one can show (see appendix A.4) that the marginal
PDF pθ reads

pθ(x) =
K∑
k=1

wk
(
Tk(x)

)
q
(
Tk(x)

)∣∣det JTk(x)
∣∣. (4.68)

Once again, this PDF is therefore defined as a functional transform of the prior PDF q
and of functions {wk, Tk}k=1,...,K , which we denote similarly as

pθ = F
(
q;
←−
Πθ

)
. (4.69)

Since (4.68) can be computed in closed-form, DIF can be used to tackle VDE (see section
4.3.7 below).

At this point, let us observe that DIF can be seen as an extension of two different
classes of models:

• For K = 1, the stochastic transform becomes deterministic, and indeed the DIF
reduces to an NF;

• A DIF with K > 1 components but with constant functions wk is nothing but a
mixture model, since in this case the categorical latent variable U does not depend
on z. This point of view will prove of particular interest in section 4.3.8.

It is also important to note that extending a deterministic transport to a discrete stochas-
tic transport has two main advantages. The first one is that the prior mass can be sent
to different regions which enables to effectively split the prior mass. Second, this enables
to use a function
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Back and forth between observed and latent space

Recall that for NF the transport was deterministic and invertible, so we were able
to go back and forth between observed and latent spaces by applying either T or T−1

(see section 4.3.3).
In the case of DIF, for a given value z, x is one of the values

{
T−11 (z), ..., T−1K (z)

}
with associated probabilities

{
w1(z), ..., wK(z)

}
; and similarly, for a given x, z must

be one of the values
{
T1(x), ..., TK(x)

}
with associated probabilities

{
v1(x), ..., vK(x)

}
.

Indeed one can show (see appendix A.4) that the forward transport
−→
Πθ reads:

−→πθ
(
z|x
)

=
K∑
k=1

vk(x)δTk(x)(z),

vk(x) =
wk
(
Tk(x)

)
q
(
Tk(x)

)∣∣det JTk(x)
∣∣∑K

j=1wj
(
Tj(x)

)
q
(
Tj(x)

)∣∣∣det JTj(x)
∣∣∣ . (4.70)

We now define the RV Z̃ (and denote Qθ its probability distribution):

Z̃ = TR(X) where X ∼ P and R ∼ Categorical
(
v1(X), ..., vK(X)

)
. (4.71)

So using DIF is almost as convenient as using NF: even though the transportation
←−
Πθ

from z to x is stochastic,
−→
Πθ remains of the same (discrete) nature. The interest of this

result is twofold:

• If we dispose of x ∼ P , we can easily obtain a sample from Qθ by applying (4.71).

R

X Z

Therefore, since we can sample easily from both the likelihood (backward transport
←−
Πθ) and the posterior (forward transport

−→
Πθ), we can go back and forth between

observed and latent spaces just like in NF. The following diagram summarizes the
discussion, and should be compared to figure 4.2.

x− obs. z − lat.

P
−→
Πθ(.|X)∼Z̃−−−−−−→ Qθ

Pθ
X̃∼
←−
Πθ(.|Z)←−−−−−− Q

Figure 4.6: Forward & Backward transitions between obs. and lat. spaces
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• One can show easily that

qθ = F
(
p;
−→
Πθ

)
. (4.72)

Similarly to NF, both model densities pθ and qθ can thus be written as the result
of the same functional transform (compare (4.69) to (4.72), (4.69) to (4.58) and
(4.72) to (4.59)). Moreover, if we dispose of the PDF p associated with P , we can
compute qθ explicitly.

Note that F(qθ;
←−
Πθ) ̸= p, which we can relate to the fact that the backward transporta-

tion in the (X, Z̃) joint distribution is not
←−
Πθ. Instead, for purpose of later arguments,

let us denote
←−
Πθ
′ the backward transport such that P = F(qθ;

←−
Πθ
′) and hence:

p(x)−→πθ(z|x) =←−πθ ′(x|z)qθ(z).

Related work and comparison to the TMC approach

In this section we briefly recall some alternate extensions of NF which have been
introduced previously. In section 4.3.5 we particularly focus on the TMC approach,
which is closely related to our work; this section will be of particular interest in section
4.3.6, where we will further extend the comparison between the two approaches under
the scope of the VI problem.

There have been several prior works which attempted at constructing extensions of
NF by using non-deterministic transformations.

Continuously Indexed Flows (CIF) consider a hierarchical LVM with a continuous
indexing latent variable. CIF have been applied to both VI in (16) and generative
modeling settings (20). However, due to the continuous nature of the augmenting rv,
CIF do not admit a tractable density.

Augmented Normalizing Flows (ANF) (42) augment the observation with a contin-
uous RV and use a deterministic NF in order to learn the joint density. ANF produce
an augmented likelihood which does not allow for exact density evaluation. Both CIF
and ANF are classes of models which include the VAE (50) and, due to their intractable
density, cannot be trained via direct likelihood maximization. Instead, just like VAE,
the training consists in maximizing the likelihood via a variational EM scheme. SurVAE
(63) aims at providing a unified framework for building complex generative models with
the use of surjective and stochastic transformations (of which CIF, ANF and DIF are
instances). Perhaps more closely related to DIF, (27) considers a piecewise invertible
flow-type transformation which also corresponds to using a discrete indexing variable,
but where the induced partitioning is hard. This approach allows for a tractable density
and does not require summing over the discrete indexing variable since only one of the
component is non-negative for any observation.

In particular, our work can be connected to the previous TMC approach (29). As
we shall see in this section, though DIF and TMC use similar stochastic constructions,
we will argue in favor of DIF which can be applied to both problems of VI and VDE,
while TMC is only suited for the VI setting. Moreover, specifically in a VI setting, the
TMC approach considers a particular optimization objective. In section 4.3.6 we will
continue the comparison between DIF and TMC in order to discuss the motivation of
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this optimization objective, and finally in section 4.3.6 we will propose a more coherent
optimization objective which can be applied to both DIF and TMC.

The TMC approach is closely related to the methodology proposed by DIF in the
sense that it considers a stochastic transport of the same nature as DIF. The defini-
tion of the model is however done in a different order as compared to DIF. Indeed,
in the TMC approach, the starting point is the target PDF p(x) to which we apply a
forward stochastic transport of the form −→πθ(z|x) =

∑K
k=1 vk(x)δTk(x)(z). We therefore

obtain a joint distribution (X, Z̃) with marginal qθ(z) given by (4.72). From this joint
distribution, we can computed the associated backward transport:

←−πθ
(
x|z
)

=
K∑
k=1

wk(z)δT−1
k (z)(x),

wk(z) =
vk
(
T−1k (z)

)
p
(
T−1k (z)

)∣∣∣det JT−1
k

(z)
∣∣∣∑K

j=1 vj

(
T−1j (z)

)
p
(
T−1j (z)

)∣∣∣det JT−1
j

(z)
∣∣∣ . (4.73)

Finally, the model distribution in the observed space is defined as Pθ which corresponds

to Q transported via the the backward transport
←−
Πθ. Note again that the forward

transportation in (X̃, Z) is not
−→
Πθ and we instead denote

−→
Πθ
′.

x− obs. z − lat.

P
−→
Πθ(.|X)∼Z̃

⇆
X∼
←−
Πθ(.|Z̃)

Qθ

Pθ
X̃∼
←−
Πθ(.|Z)
⇆

−→
Πθ

′(.|X̃)∼Z
Q

x− obs. z − lat.

P
−→
Πθ(.|X)∼Z̃

⇆
X∼
←−
Πθ

′(.|Z̃)
Qθ

Pθ
X̃∼
←−
Πθ(.|Z)
⇆

−→
Πθ(.|X̃)∼Z

Q

Figure 4.7: TMC approach (left) compared to DIF (right) - parameterized transports
are indicated in red

To summarize, the TMC approach considers a forward transport
−→
Πθ between P and

Qθ, then computes its backward transport
←−
Πθ which is finally applied to Q in order to

obtain the model Pθ. DIF and TMC are in fact defined in reverse order compared to

one another since in the DIF approach, we consider a backward transport
←−
Πθ between

Q and Pθ, and we consequently deduce the forward transportation
−→
Πθ which can then

be applied to P in order to obtain Qθ. As a consequence, though the expressions for
pθ(x), qθ(z),←−πθ(x|z) and −→πθ(z|x) look similar and are obtained via similar computations,
in the TMC approach we set vk and compute wk while in the DIF approach we set wk
and compute vk.

In section 4.3.6 we will discuss the pros and cons of each approach under the scope
of the VI problem, but at this point let us already notice that TMC cannot be applied
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to a density estimation setting. Indeed, with this choice of parameterization, wk given
in (4.73) is computed from vk but also depends on the density p which is not available
in the density estimation setting. On the other hand, in the DIF approach, functions wk
are parameterized directly and do not depend on PDF p. Consequently, we can compute
directly wk and pθ(x), which enables sampling and density evaluation in both settings
of VI and VDE. Finally, we can already argue in favor of DIF since it provides with a
more versatile tool for tackling both variational problems.

4.3.6 Application of DIF to VI

So far, we have presented the general principles of DIF and explained that it consists
in a natural extension of NF. In particular, even though the transformation is now
stochastic, DIF defines a model PDF pθ which remains computable, and also provides
the ability to go back and forth between observed and latent spaces.

In this section we discuss the use of a DIF for tackling a VI problem and we therefore
consider the setting described in 4.3.2. As we have mentionned in the previous section
4.3.5, DIF and TMC are closely related. However, TMC considers a particular opti-
mization objective function. In section 4.3.6 and 4.3.6 we further compare TMC to DIF
in order to discuss the relevance of this optimization objective, and finally in section
4.3.6 we argue in favor of a more motivated optimization objective.

Computational aspects

With the same notations introduced before, TMC builds a model Pθ for P by solving
the optimization problem:

max
θ∈Θ

M∑
i=1
zi∼Q

log
(
qθ(zi)

)
, (4.74)

which corresponds to minimizing an MC approximation of DKL

(
Q||Qθ

)
.

However, the optimization problem (4.74) seems strange at first sight, because the
standard approach for VI would indeed prescribe minimizing a discrepancy between Pθ
and P (see (4.54)). But minimizing an MC approximation of DKL

(
Pθ||P

)
would yield

the optimization objective:

min
θ∈Θ

M∑
i=1

xi∼Pθ

log

(
pθ(xi)

p(xi)

)
. (4.75)

Since the samples xi ∼ Pθ depend on model parameters θ, we should apply a reparam-
eterization trick, that is, write xi as xi = T−1(ϵi; θ) in which ϵi ∼ ϵ and rv ϵ does not
depend on θ. In the case of NF (see section 4.3.3), the deterministic mapping automat-
ically induced a differentiable reparameterization trick xi = T−1(zi). Here by contrast,
since sampling from Pθ involves sampling from an auxiliary categorical latent variable,
finding an invertible change of variable which is differentiable with respect to θ is likely
not to be possible. Therefore, the minimization problem (4.75) cannot be conducted via
GD.
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By contrast, the objective function in (4.74) is easy to maximize: sampling from Q
is straightforward by design, and this objective is differentiable with respect to θ and
can therefore be maximized via GA. This computational argument argues in favor of the
optimization objective in the TMC approach, but on the other hand, one can wonder
whether minimizing a discrepancy in the latent space induces similar counterparts in
the observed space, see section 4.3.6 below.

Variational aspects

Unfortunately, by contrast with NF, the two equalities between DKL (4.60) and
(4.61) no longer hold when we work with a DIF or a TMC model. Therefore it is not so
obvious that minimizing a DKL in the latent space, that is between Q and Qθ, produces
a good approximation of P with Pθ. Nonetheless, we can justify to some extent the use
of this optimization objective in TMC. Indeed, we notice that the forward DKL in the
latent space is an upper bound of the reverse DKL in the observed space:

DKL

(
Q||Qθ

)
= DKL

(
Pθ||P

)
+EX∼Pθ

[
DKL

(←−
Πθ(.|X)||

←−
Πθ
′(.|X)

)]
≥ DKL

(
Pθ||P

)
.

Note moreover that we have similarly DKL

(
Qθ||Q

)
≥ DKL

(
P||Pθ

)
. Therefore, the TMC

approach minimizes (an MC approximation of) an upper bound of the usual optimization
objective (4.54) defined in the VI setting.

Since DKL are positive, it follows that if a DKL between Qθ and Q (forward or re-
verse) reaches zero via optimization, both forward and reverse DKL between Pθ and P
reach zero. However, forcing a DKL in the latent space to zero means that the prior

PDF q belongs to
{
qθ|θ ∈ Θ

}
, or equivalently that there exists

←−
Πθ and q such that

F
(
q;
←−
Πθ

)
= p (see (4.69)), which is unlikely to be the case for arbitrary distributions P .

Moreover, standard optimization techniques such as GD only guarantee convergence to
a local extremum of the objective function. So in practice we have to deal with positive
DKL in the latent space as we may only reach a local minimum of a positive function.
There is furthermore no evidence that a local minimum of DKL in the latent space is
also a local minimum of DKL in the observed space. Finally we cannot conclude with
certainty that a decent approximation of Q with Qθ (in the DKL sense) produces a good
model Pθ and we would preferably want to obtain a minimum of DKL in the observed
space.

In the case of the DIF, since the model is defined the other way round as compared
to TMC, the majorization obtained for TMC becomes a minorization:

DKL

(
Pθ||P

)
= DKL

(
Q||Qθ

)
+EZ∼Q

[
DKL

(−→
Πθ(.|Z)||

−→
Πθ
′(.|Z)

)]
≥ DKL

(
Q||Qθ

)
.

Therefore, in the case of DIF, minimizing a latent DKL would only minimize a lower
bound of the observed DKL which we should minimize in the VI setting. This consider-
ation would argue against DIF if we were not able to minimize directly the DKL in the
observed space. Fortunately, as we now see, it is indeed possible in both the DIF and
TMC cases to minimize directly an MC approximation of the DKL(Pθ||P).
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Rao-Blackwellizing the DKL estimate

From sections 4.3.6 and 4.3.6, we see that it would be desirable to minimize a dis-
crepancy measure in the observed space. Could we write an estimate of DKL(Pθ||P)
for which we are able to compute the gradients with respect to model parameters θ ?
Such a case would be ideal, since we could perform GD while ensuring that the model
converges toward a local minimum of the discrepancy measure in the observed space.

It happens that the following estimator :

DKL

(
Pθ||P

)
≈ 1

M

M∑
i=1
zi∼Q

K∑
k=1

wk(zi) log

(
pθ
(
T−1k (zi)

)
p
(
T−1k (zi)

) ) (4.76)

is one possible solution since, by contrast with (4.75), this DKL estimate is differentiable
with respect to model parameters. As we now see, this estimate indeed comes as the
result of an RB procedure (15) (34) (75). Let J be the rv

J = log

pθ
(
X̃
)

p
(
X̃
)
 (4.67)

= log

(
pθ
(
T−1R (Z)

)
p
(
T−1R (Z)

) ),
where Z ∼ Q and R ∼ Categorical

(
w1(Z), ..., wK(Z)

)
. It is clear that

DKL(Pθ||P) = E(J),

where the expectation is taken with respect to the joint distribution of
(
Z,R

)
. On the

one hand, sampling
{

(zi, ri)
}
i=1,...,M from this joint distribution yields the crude MC

estimate in (4.75). On the other hand, RB is based on the observation that E(J) =

E

(
E
(
J |Z

))
(7). Since we can compute the inner expectation:

E
(
J |Z

)
=

K∑
k=1

wk(Z) log

(
pθ
(
T−1k (Z)

)
p
(
T−1k (Z)

) ),
only the outer one calls for an MC approximation, so we only need to sample zi ∼ Q.
This leads to the estimator DKL(Pθ||P) ≈ 1

M

∑M
i=1E

(
J |Z = zi

)
, which is nothing but

(4.76).

The interest of using this RB estimate is twofold. First, as is well knownVar
(
E
(
J |Z

))
=

Var(J)−E
(
Var

(
J |Z

))
, so (4.76) has lower variance than the estimator in (4.75). Next,

and more importantly in our context, we are no longer reliant on a reparameterization of
the Categorical RV U , so the estimate is now differentiable. Indeed, before resorting to
an MC approximation, we have computed whatever could be computed, namely E

(
J |Z

)
(where the expectation is taken with respect to U). Therefore the estimate does not
involve sampling from U since this RV has been explicitly marginalized out.
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4.3.7 Application of DIF for VDE

As we have seen already, DIF are designed such that they can also be used for VDE,
since the backward transport and density pθ do not depend on p (remember that p is
not available in a density estimation setting, see section 4.3.2). In this section we now
explain precisely how DIF can be used for the VDE problem.

The MLE approach

As we now see, the issues that were identified when using DIF for VI no longer occur
when tackling the problem of VDE with a DIF model. To see this, suppose that we
dispose of samples xi ∼ P . Since pθ can be written in closed form, the MLE problem
reads

max
θ∈θ

M∑
i=1
xi∼P

log
(
pθ(xi)

) (4.68)
= max

θ∈θ

M∑
i=1
xi∼P

log

(
K∑
k=1

wk
(
Tk(xi)

)
q
(
Tk(xi)

)∣∣det JTk(xi)
∣∣). (4.77)

By contrast with (4.75), xi are sampled from P , and not from Pθ, so do not depend on θ.
As a result, we see from the right hand side of (4.77) that this objective is differentiable
with respect to θ.

A Generalized EM (GEM) procedure

Let us turn to computational optimization aspects. Of course, the objective function
in (4.77) can be directly optimized with GD in an Automatic Differentiation framework
like Pytorch or Tensorflow. However, let us observe that this function involves the
logarithm of a sum, which leads to entangled gradients. As a consequence, gradients
computation could be slowed down.

In this section we propose an alternative optimization procedure, based on a MM
(43)(82) approach, the principle of which is as follows. Instead of optimizing directly a
function f(θ), we sequentially build a series of surrogate functions

{
gθ1(θ), gθ2(θ), · · ·

}
which locally minorate f and for which gθt(θt) = f(θt). From this series of functions, one
can sequentially deduce a series of parameters

{
θ1, θ2, ...

}
such that gθt(θt+1) ≥ gθt(θt).

So

f(θt+1) ≥ gθt(θt+1) ≥ gθt(θt) = f(θt),

which finally ensures that f(θt) converges to a local maximum of f(θ). Moreover, if
both f(θ) are gθt(θ) are differentiable functions, then the gradients evaluated at θ = θt
must be equal. To see this, let us consider the function θ 7→ f(θ)−gθt(θ); in the vicinity
of θt, this function is non-negative, differentiable and is zero for θ = θt. Hence θt is a
local minimum and its gradient is zero:

∇θf(θ)|θ=θt = ∇θgθt(θ)|θ=θt . (4.78)

We now apply this technique to the above optimization problem. We obtain the
surrogate function gθt(θ) for the likelihood function in (4.77) (we omit variables xi in
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the left hand side of (4.79) since the samples are fixed); details are given in appendix
A.5:

gθt(θ) =
M∑
i=1

K∑
k=1

v
(θt)
k (xi) log

(
h
(θ)
k (xi)

v
(θt)
k (xi)

)
, (4.79)

h
(θ)
k (xi) = w

(θ)
k

(
T

(θ)
k (xi)

)
q
(
T

(θ)
k (xi)

)∣∣∣det J
T

(θ)
k

(xi)
∣∣∣.

If we perform GA with respect to θ , we obtain a GEM scheme (87), which ensures
that the model converges toward a local maximum in (4.77). Finally observe that our
surrogate function no longer involves a log-sum but rather a sum-log, which detangles
the computation of its gradients.

4.3.8 Using DIF in practice

In this section we first explain how one can parameterize the functions Tk and wk to
produce an efficient DIF model. We then propose an overall view of the DIF mechanism,
as a stochastic transport transforming Q into the resulting distribution Pθ. We then
revisit DIF as an extension of mixture density models but where the constant weights are
replaced by an arbitrary function of z; we illustrate this effect on complex distributions,
and see that DIF enable to capture sharp edges and finer details as compared to a
standard GMM. We also see that complex DIF can be constructed as the succession of
simpler building blocs: in the same spirit as NF, we propose an approach for cascading
DIF layers. Finally we discuss the use of DIF in the specific setting of conditional density
estimation, and see that one could easily turn a DIF into a conditional density model.

Example of DIF parameterization

As we have explained before, using DIF requires solving an optimization problem
(be it for the VI or VDE problems), in which the multidimensional parameter θ gathers
those of the probability functions wk, as well as of the invertible mappings Tk. Even
though this optimization is performed with respect to the parameters altogether, wk
and Tk still play a different role and must be specified accordingly.

The functions wk(.) are straightforward to parameterize, since the only constraints
are that these functions are differentiable, non negative, and sum to 1 for any given
input vector z. This can be achieved by defining w1(z), ..., wK(z) as the output of
a K-label classifier architecture with input z by computing the unnormalized weights
w̃1(z), ..., w̃K(z) and applying a softmax normalization. This ensures that the weights
sum to one and form a valid vector of categorical probabilities. More precisely, we can
for instance consider the architecture of a multi-Layer percepetron, which is an NN
function with L hidden layers, each layer l = 1, ..., L having nl hidden units:

h1 = σ(W0z + b0);

hl+1 = σ(Wlhl + bl) for l = 1, ..., L− 1;[
w̃1(z), ..., w̃K(z)

]
T = WLhL + bL;[

w1(z), ..., wK(z)
]
T = Softmax

([
w̃1(z), ..., w̃K(z)

]
T
)
,
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where Wl ∈ Rnl+1×nl and bl ∈ Rnl+1 for l = 0, ..., L (with n0 = d and nL+1 = K) are
the weights parameters, and where σ(.) is some chosen element-wise activation function
(for example the sigmoid function).

When selecting the parametric functions Tk, we actually dispose of a wide range of
possibilities. Depending on the problem, the only constraint is that the functions must
be changes of variables, and that T−1k (for VI) or the Jacobian determinant (for VDE)
can be computed easily. We may consider simple location-scale mappings like in GMM,
or we may borrow from the NF literature such as in (25) (26) (68) (52) (51) (30) (59).
In section 4.3.10 we propose a construction which reduces the burden of parameterizing
the mappings Tk. Moreover, if we consider weights wk defined via a flexible parametric
function (as in section 4.3.8), we do not require flexible invertible mappings Tk to produce
a flexible DIF. Therefore we only consider here a simple location-scale transformation

T−1k (z) = mk + sk ⊙ z, (4.80)

where mk ∈ Rd (a translation vector, whence the term location) and sk ∈ R∗+d (a scale
vector) are the parameters be optimized, and⊙ is the element wise vector product. Since
sk is strictly positive, Tk is invertible and we can easily obtain the inverse mapping as
well as the Jacobian determinant with:

Tk(x) = s−1k ⊙ (x−mk) and
∣∣det JTk(x)

∣∣ =
d∏
j=1

(
s
(j)
k

)
−1,

where s−1k is the vector of element-wise inverses of sk. Note moreover that, in order
to easily ensure that sk remains positive throughout a gradient based optimization, we
parameterize and optimize log(sk).

Generalizing standard GMM

Under this parameterization, and due to the discrete latent structure of DIF, we in
fact obtain a model which can be compared to a GMM. Indeed, if Q is a multivariate
Normal distribution, then we have:

q
(
Tk(x)

)∣∣det JTk(x)
∣∣ = N

(
x;mk, Dk

)
,

with Dk the diagonal matrix with values are the squared elements of sk. Hence, the
corresponding model density (4.68) reads:

pθ(x) =
K∑
k=1

wk
(
s−1k ⊙ (x−mk)

)
N
(
x;mk, Dk

)
, (4.81)

and can be interpreted as the density associated with a mixture of Gaussian distri-
butions with diagonal covariance matrices, in which the constant mixture weights are
replaced by functions of x which read wk

(
s−1k ⊙ (x−mk)

)
. Note that, while in a stan-

dard GMM the constant mixture weights sum to 1, it is not necessarily the case with
DIF. Indeed, though we have that

∑K
k=1wk(z) = 1 for any z ∈ R

d, this does not
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imply that
∑K

k=1wk
(
s−1k ⊙ (x−mk)

)
is 1. This sum is equal to 1 in two particular

cases. First, when all the mappings are the same, i.e. when m1 = m2 = ... = mK and
s1 = s2 = ... = sK , in which case the model reduces to a unique Gaussian distribution.
Second, when the functions wk are constant, in which case we retrieve a standard GMM.

A main advantage of such a parameterization is that the parameters mk and sk can
be interpreted as the means and standard variation vectors of the different Gaussian
components while the functions wk are responsible for weighting and modulating each
component. Here the Gaussian components are isotropic since, along each dimension j,
the latent variable z has its element z(j) scaled by s

(j)
k . We could also have considered

a full covariance matrix transformation in order to obtain an analogous model of a full
covariance matrix GMM by replacing (4.80) by a transformation of the type T−1k (z) =
mk + Skz where Sk is a square root of an invertible covariance matrix. However, this
leads to the burden of parameterizing Sk in a way which ensures that, throughout a
gradient based optimization, STk Sk remains an invertible matrix.

In the next section 4.3.8, we illustrate the DIF mechanism, and we explain that
making the mixture weights dependent on the variable x increases the flexibility of the
underlying model as compared to the standard (constant weight) GMM.

An overall view: the DIF de- and re-constructs Q into Pθ

We now illustrate via a one-dimensional example how a DIF transforms the prior
distribution Q into a complex probability distribution Pθ with density given by (4.68)
(see figure 4.8a), and in particular explain the roles of weights {wk}k=1,...,K and of map-
pings {Tk}k=1,...,K . The discussion in this section is of course independent of the problem
tackled (VI or VDE) and of the associated optimization.

First, the left hand side of figure 4.8b displays the weight functions wk(z). Since
they are positive and sum to 1 (for any z), we have q(z) =

∑K
k=1wk(z)q(z); so functions

wk(z) induce a soft partitioning of the latent space, and indeed split the prior mass into
several parts, see the right hand side of figure 4.8b (or equivalently the first row of figure
4.8c). These figures indeed provide a way of visualizing the joint distribution (Z,R):
the values of z can be read on the x-axis, and the values of U = 1, ..., K are the different
colors in the right hand side of figure 4.8b (or the different sub-figures in figure 4.8c).

Next, given U = k, a prior sample z is transported via mapping Tk with x = T−1k (z).
So on the whole, the C1-diffeomorphisms T−1k send the elements of mass in possibly
different regions of the observed space, and continuously reshape them (see second row
of figure 4.8c).

Finally all these parts are recombined into the final probability distribution Pθ, see
figure 4.8d.

It is interesting to note that a DIF is particularly well suited for capturing multi-
modality and this is illustrated by the presented example. Indeed, two phenomenons
add up: like in mixture models, the elements of mass are dispatched into several regions
of space; but these elements themselves can be turned multimodal, since the prior q is
reshaped by a function wk(z). For instance in figure 4.8, a distribution with 5 modes
was captured with only K = 4 components.
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(a) A DIF transforms the prior PDF Q (green) into the final PDF Pθ (blue)

(b) Partitioning of the latent space with functions wk(z)

(c) Elements of prior mass transported with mappings T−1k

(d) Recombination

Figure 4.8: DIF mechanism for decomposing / recomposing Q into Pθ
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4.3.9 Experiments

We conducted two experiments with the considered DIF model with the parameter-
ization proposed before. First, throughout a quantitative study, we show that the DIF
outperforms NF models on estimating the density associated with the 2-dimensional dis-
tribution associated with a greyscale image. This result provides empirical evidence that
the proposed architecture is able to efficiently represent distributions with fine details
and sharp edges in a low dimensional setting. Second, we used the DIF architecture
to approximate the MNIST handwritten digit database (57) distribution in order to
challenge the DIF model on a higher dimensional estimation problem.

Comparing DIF to NF architectures for capturing details in 2-dimensional
portrait images

We first illustrate the strength of the DIF model on a 2-dimensional VDE prob-
lem, and provide empirical evidence that such a DIF architecture is better suited for
representing distributions with fine details and sharp edges than NF or GMM models.

Let us first describe the experimental setting: we consider a greyscale (portrait of
Euler) image as a 2-dimensional simple function which can thus also be seen as the
PDF associated to a mixture of uniform distributions. We can easily obtain samples
from this distribution by first sampling a (categorical) pixel location with probability
proportional to the pixel intensity values, and then sampling a point uniformly on that
pixel. With this procedure, we can obtain a set of samples from the underlying 2-
dimensional distribution of an image.

Figure 4.9: A gray scale image of Euler (left) and samples from its underlying 2-
dimensional distribution (right)

Using a parametric family, we can then perform VDE from the set of samples, and
we here compare the performance of different parametric models in order to obtain a
variational approximation of the probability distribution. We show that a DIF architec-
ture outperforms NF architectures of Real-NVP (RNVP)(26) as well as Neural Spline
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Flow (NSF)(30) (which has perhaps become the state of the art) on the task of VDE.
More precisely, with less trainable parameters, we are able to reach higher log-likelihood
scores with a DIF than with the two NF architectures. Moreover, as a baseline refer-
ence we also include the result of VDE using a GMM with full covariance matrix trained
with the EM algorithm (24), though it has fewer parameters than the other architec-
tures. The next table displays the log-likelihood scores of DIF, RNVP, NSF and GMM
computed on 20 independent runs:

Architecture DIF RNVP NSF GMM

Parameters 39925 85780 79560 343

Log-Likelihood 0.221± 1.6e− 3 0.133± 1.1e− 2 0.182± 3.9e− 3 0.150± 2.2e− 3

Table 4.1: Number of parameters and log-likelihood of different architectures for esti-
mating the density of a 2-dimensional portrait of Euler distribution.

Figure 4.10: Estimated densities respectively from DIF, RNVP, NSF and GMM

For each model, we display an estimated density in figure 4.10, and we observe that
the visual results are coherent with the log-likelihood scores; indeed the DIF produces
a density function which most closely resembles the original image.

From this example we see that leveraging flexible probability functions wk(z) as
those proposed in section 4.3.8 enables a DIF to reach distributions with sharp edges,
and even close to discontinuous PDF. By contrast, we see that NFs and full covariance
matrix GMM fail at efficiently capturing the finer details of the distribution.

MNIST

We then tested the proposed model on the higher dimensional problem of learning
the distribution of the MNIST handwritten digit database. Here, unlike in the previous
section, the 28x28 greyscale images of digit are not treated as individual 2-dimensional
distributions, but as a sample from a distribution of dimension 784. The samples are the
flatten images with its pixel intensities taking integer values between 0 and 255. Hence,
in order to artificially make the distribution continuous, we added a uniform noise to
the samples to obtain values in

[
0, 256

]
. Finally, we rescaled the samples between 0

and 1 by dividing throughout by 256 and we transformed the data by applying a logit
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transformation of the form x→ logit(λ+ (1− 2λ)x) where λ = 1e− 6 (see (26) §4.1 for
more details).

In this MNIST experiment, we started off by using the proposed DIF architecture
to learn this distribution. With our proposed parameterization, we obtained a log-
likelihood score computed on a test set of the MNIST distribution of −1343.06± 0.426.
It turns out that this was not a significant improvement when compared to a simple
Gaussian model with estimated mean and covariance where the test log-likelihood score
is −1366.22. This result is somehow expected since, with a location-scale transport,
the different dimensions of a latent sample vector are modified independently from one
another. Hence this transformation does not capture correlation between dimensions
(i.e. the pixels).

Then, in order to solve this correlation problem, we replaced the simple location-scale
with an Autoregressive transformation (35),(68) which aims at capturing the correlation
between the pixels by transforming each dimension via a mapping which depends on
the other dimensions as well. With this DIF parameterization (which was actually
constructed as a cascade of a location-scale DIF with a Masked-Autoregressive NF - see
section 4.3.10) we obtained comparable performances to an NF with approximately the
same number of parameters, which is presented in the next table:

Architecture DIF Masked Autoregressive NF
Parameters 3189428 3357760
Train Log-Likelihood −1220.65± 1.29 −1217.53± 1.18
Test Log-Likelihood −1264.72± 1.78 −1271.12± 1.97

Table 4.2: Number of parameters and log-likelihood scores computed on a test set of a
DIF with Autoregressive mapping versus a Masked Autoregressive NF

From this toy experiment, we can already conclude that the DIF with simple location
scale transformation on its own is not capable to fully capture the correlation with the
pixels with only the flexible weights wk(z). Indeed, it does not significantly outperforms
a simple Gaussian model with estimated mean and covariance. On the other hand,
if we select a flexible mapping Tk which is better suited to transform the dimensions
dependently from one another, we are able to reach a log-likelihood score comparable
to that of an NF.

Indeed, with the same number of parameters, the DIF (slightly) outperforms the
NF. Finally, this experiment may indicate that the DIF is less susceptible to overfitting
on the training samples than the NF. Indeed, we obtained a higher training loss but a
better score on a test set.

GMM are compatible and relevant initial structures for training DIF

So far, we have presented DIF as a non-deterministic extension of deterministic NF.
However, as already mentioned in section 4.3.5, due to their discrete latent structure,
DIF can be connected to mixture models as well. More precisely, in section 4.3.8, we ex-
plained that with considering a convenient and practical parameterization, we obtained
a model which can be seen as an extension of GMM where the mixture weights are not
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necessarily constant values but can instead be represented by a K-label classification
function. The purpose of this section is to explain that, in the VDE setting and with
considering a location-scale parameterization as proposed in section 4.3.8, we can use
a relevant GMM (which can be obtained via EM) as an initialization point for DIF
training. This enables to speed up the DIF training procedure, as well as making it
more numerically stable.

First, note that if the functions wk take constant values, then the corresponding
distribution is a GMM. Conversely, we can ensure that a K-label classifier function
predicts constant values. This can be achieved effortlessly by simply setting to zero WL

(the weights of the last hidden layer which computes wk), and setting bL to the desired
values.

Moreover, in the specific VDE setting, a drawback of DIF as compared to GMM
is that we no longer dispose of an efficient optimization procedure. More precisely,
when the weights are constant, the maximum of (4.79) can be computed in closed-form,
which yields the well-known EM procedure for GMM (24). DIF no longer benefit from
the same advantage, since neither the log-likelihood function (4.66) nor the surrogate
function (4.79) admit closed form maxima, and we therefore can only resort to gradient-
based optimisation procedures.

However, we can force a DIF to represent a given GMM and therefore we can use
a specific GMM as an initialization for a DIF. We propose the idea of initializing a
DIF with a GMM obtained via EM: first, train a GMM model with the EM algorithm,
then set a DIF to that GMM (as explained before, by initializing the location and scale
parameters as well as the probability functions wk accordingly) and maximize the log-
likelihood with a gradient based algorithm. This 2-step procedure is summarized in
figure 4.11 in which we considered the same experimental setting as in section 4.3.9 on
Gauss and Laplace portraits.

4.3.10 Cascading DIF

We now see that, in same spirit as NF, we can cascade simple DIF together in order
to produce expressive models.

Methodology

Remember from section 4.3.3 that NF can be constructed as a composition of succes-
sive transforms. As we now see, it is also possible to cascade DIF themselves: stacking
two (or more) DIF produces a DIF, so DIF can be used as elementary building blocks
for defining elaborate models and transforms. To see this, consider the following cascade

of two DIF
←−
Πθ

[0] and
←−
Πθ

[1]:

x z1 z

P
−→
Πθ

[0](x)−−−−→ Q[0]
θ

−→
Πθ

[1](z1)−−−−−→ Qθ

Pθ
←−
Πθ

[0](z1)←−−−−− P [1]
θ

←−
Πθ

[1](z)←−−−− Q
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Figure 4.11: A DIF (right) can approach the distribution associated to an image (left)
from samples (middle-left) - with being initialized to a GMM obtained via EM (middle-
right)

It is easy to see that the equivalent backward transportation is given by:

←−πθ [0,1](x|z) =

K1∑
k1=1

K0∑
k0=1

wk0,k1(z)δT−1
k0,k1

(z)(x), (4.82)

Tk0,k1(x) = T
[1]
k1

(
T

[0]
k0

(x)
)
, (4.83)

wk0,k1(z) = w
[0]
k0

(
T

[1]
k1

−1
(z)
)
w

[1]
k1

(z). (4.84)

Comparing (4.82) with (4.66), we see that
←−
Πθ

[0,1] is indeed a DIF with K1 × K0 com-
ponents; the probability mass is split into K1 ×K0 components, but by using only the
equivalent of K1 +K0 parameters.

This construction generalizes the discussion in section 4.3.3 (which corresponds to
the case K0 = K1 = 1), and includes as particular cases the cascading of DIF with
NF (K0 = 1 or K1 = 1). Moreover, we see from (4.83) and (4.84) that apart from an
increased number of components (which are correlated since they share a smaller set
of parameters), cascading DIF potentially enables to create elaborate mappings from
simple ones.

In particular, cascading a DIF (K1 > 1) with simple mappings T
[1]
k1

(such as location-
scale) with an NF (K0 = 1) in which mapping T is a flexible change of variables (such
as (25) (26) (68) (52) (51) (30)(59)) produces a new DIF with K1 components, but with
more flexible mappings than those used in the initial DIF. Of course, the discussion in
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Figure 4.12: Breaking the topological barrier using a DIF within an NF

this section can be extended to more than two DIF as the principles apply recursively.
Finally, cascading DIF induces a particular expression of the DKL to be minimized (both
for the VI and the VDE problems), see appendix A.6 for details.

Breaking topological limitation of NF

Remember from section 4.3.8 that the prior probability mass is split into several com-
ponents, enabling DIF to express multimodal PDF and/or PDF with disjoint support.
So DIF can be used for breaking the topological limitation evoked in section 4.3.3.

Let us illustrate this via the following example. In figure 4.12 we display how a
Gaussian prior can be transformed simply into a PDF with disjoint support. This is
achieved by a DIF which was built as a cascade, as explained in section 4.3.10. More
precisely, the only difference with figure 4.5 is that a DIF was included in the flow steps
(in between the 2nd and the 3rd). This DIF element was purposely chosen to be simple
with K = 2 components: its only role is to separate the mass into two elements; the
flexibility of the whole transform is otherwise guaranteed by the NF steps with complex
deterministic mappings. The interpretation of the figure is otherwise the same.

4.3.11 Conditional Density Estimation using DIF

Up to now we have focused on the problem of modeling an unconditional probability
distribution, be it for the VI or the VDE problems. However, for approximate inference
purposes in the settings of classification, regression and in the likelihood-free inference
(58), modeling a conditional PDF p(x|ω), where ω is some covariate rv, is also a relevant
problem. It happens that NF can easily be turned into Conditional Density models; as
we now see, DIF can also be used for the same purpose. In this section we will briefly
explain the principles of CDE using NF, and see how the discussion can be extended to
DIF.



4.4. CONCLUSION 141

Recall that an NF is given by a change of variables T with input z; therefore in
order to obtain a conditional NF, the mapping T must be a function of the covariate
ω, such that for fixed ω, T (.;ω) is a C1-diffeomorphism. This corresponds to defining
a conditional transport π(x|z, ω) = δT−1(z;ω)(x), so the resulting conditional PDF reads
pθ(x|ω) = q

(
T (x;ω)

)
| det JT (.;ω)(x)|. In practice, since the mapping T is classically

parameterized by an NN, this can be achieved for instance by augmenting the input of
the NN with the covariate ω (see for example (68, §3.4)).

Now if we relax the hypothesis of an invertible deterministic transport and consider a
discrete conditional stochastic transport of the form π(x|z, ω) =

∑K
k=1wk(z;ω)δT−1

k (z;ω)(x),

then we obtain a conditional DIF model with PDF:

pθ(x|ω) =
K∑
k=1

wk

(
Tk
(
x;ω

)
;ω
)
q
(
Tk
(
x;ω

))∣∣∣∣det JTk(.;ω)(x)

∣∣∣∣
Therefore, in order to use a DIF as a CDE model, we simply transform Tk and wk (for
k = 1, ..., K) into functions of the covariate ω. For fixed ω, the associated transform is a
DIF as defined above, and as such benefits from straightforward sampling and evaluation
of the PDF (see section 4.3.5).

Let us propose a parameterization of conditional DIF in the spirit of section 4.3.8.
First, the probability functions described in 4.3.8 can effortlessly be turned into con-
ditional partitioning functions of the latent space z which depend on ω, denoted as
wk(z;ω). Indeed, by augmenting the input z with the covariate ω, the output of the

NN is now the vectors of categorical probabilities
[
w1

(
z;ω
)
, ..., wK

(
z;ω
)]

. Next C1-

diffeomorphisms T1, ..., TK can be turned into functions of the covariate ω by simply
turning the locations and scales into functions of ω. We can use an approach similar to
that used in Mixture Density Networks (MDN) (6), where an NN function predicts the
location mk(ω) and log-scales log

(
sk(ω)

)
for k = 1, ..., K.

Let us finally consider the optimization objective involved in the CDE problem (in-
dependently of the structure used for the surrogate pθ(x|ω), be it a DIF, an NF, an MDN
or another model). We assume that we dispose of samples

(
ωi, xi

)
for i = 1, ...,M , such

that ωi ∼ pω(ω) (the prior PDF of RV ω) and xi ∼ p(x|ωi), but the conditional PDF
p(x|ω) cannot be evaluated. We will build the conditional surrogate pθ(x|ω) of p(x|ω)
by minimizing the following DKL:

arg min
Pθ

DKL

(
pω(ω)p(x|ω)||pω(ω)pθ(x|ω)

)
= arg max

Pθ

Epω(ω)p(x|ω)

[
log
(
pθ(x|ω)

)]
.

In the end, by using an MC approximation of this expectation based on the samples at
hand, the DKL minimization reduces to maximizing the conditional likelihood:

arg max
Pθ

M∑
i=1

log
(
pθ(xi|ωi)

)
.

4.4 Conclusion

In this work, we have explored DIF as a methodology to construct parametric surro-
gates in order to tackle the VI or VDE problems. As an extension of NF, DIF produce
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high flexibility while remaining convenient to use as they are well suited for sampling
and density estimation; moreover they do not suffer from the NF topological limitation
when targeting PDF with disjoint support. On the other hand, DIF also extend mixture
density models, and leverage flexible partitioning functions in order to capture detailed
and edged distributions.

4.5 Perspectives and future work

4.5.1 Universal approximation with DIF ?

The DIF methodology introduces a new way to parameterize probability distribu-
tions using flexible NN functions, and we have described several advantages of this
construction. Its main appeal is that this model benefits from a tractable PDF, making
it an appealing tool for many tasks.

On the one hand, as we have mentioned in this chapter (with relevant references),
GMMs are universal approximation tools for density functions. This means that if we
increase the number of components, we can, at least in theory, reach arbitrary approxi-
mation precision. However, the more components are considered, the more numerically
intensive the parameter estimation (possibly via the EM algorithm), the sampling from
the corresponding model, and the PDF evaluation are. So in practice, we instead limit
the number of components, and this precisely motivated the construction of DIF, where
the aim is to induce further flexibility for a fixed number of components by replacing the
constant mixture weights by a flexible, possibly NN-based, function. On the other hand,
some NN functions are also universal approximation tools (see, for example, (21), where
the authors consider increasing width and sigmoid activation functions). DIF, as an
extension of mixture models, also inherits the same universal approximation property.
However, an interesting perspective for future work would be to determine if, for a fixed
number of components and by instead leveraging an arbitrary flexible NN partitioning
function instead of the constant mixture weights, the corresponding DIF construction
also provides a universal approximation of distributions.

4.5.2 Towards continous LVMs with tractable PDFs

LVMs such as VAEs, NFs and GANs have become popular tools in the machine
learning community. They have yielded significant improvements compared to tradi-
tional methods, and paved the way for further developments in generative modeling
techniques. They have established the potency of LVMs couples with NN and, notably,
they have led to the development and popularization of several continuous LVMs such as
the aforementioned continuously indexed flows (20). Among the prominent approaches
are diffusion models and continuous normalizing flows. Diffusion models typically utilize
stochastic differential equations to define a diffusion process that gradually transforms
simple initial distributions into complex target distributions. In contrast, continuous
normalizing flows employ ordinary differential equations to construct invertible trans-
formations of probability densities. Due to the continuous nature of the latent variable,
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both models lack a PDF in closed form. Nonetheless, the resulting PDFs can be ap-
proximated using sophisticated solvers for differential equations. Currently, using such
solvers for PDF approximation remains costly and inefficient in practice. However, this
realization opens up the possibility of fast and accurate PDF evaluation in (deep) LVMs
with continuous latent variables in the future.
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Conclusion

Dans le paysage technologique en rapide évolution d’aujourd’hui, l’apprentissage au-
tomatique et l’apprentissage statistique jouent des rôles essentiels dans la transforma-
tion des industries et des services, et dans la redéfinition des expériences quotidiennes.
Ces méthodes utilisent des modèles sophistiqués et permettent d’apprendre à partir des
données enregistrées pour faire des prédictions. Facilitée par les améliorations de la
puissance de calcul et des modèles mathématiques, l’apprentissage automatique stimule
les innovations dans divers secteurs, de la santé et des finances au marketing et au diver-
tissement. À l’ère des mégadonnées et de la nouvelle capacité de calcul, les algorithmes
d’apprentissage automatique peuvent découvrir des insights et des tendances que les
méthodes statistiques traditionnelles pourraient négliger. Cette capacité à traiter ef-
ficacement d’immenses quantités de données ouvre la voie à une révolution dans des
domaines tels que la médecine personnalisée, les systèmes de recommandation et les
véhicules autonomes.

De plus, les techniques d’apprentissage automatique telles que le deep learning ont
considérablement amélioré les performances de tâches comme la reconnaissance d’images
et de la parole, le traitement du langage naturel, et même les jeux vidéo. Ces avancées
soulignent le potentiel de l’apprentissage automatique pour créer des systèmes plus intel-
ligents capables de s’adapter et de s’améliorer au fil du temps. Alors que nous naviguons
dans cette ère de transformation, il devient de plus en plus crucial de comprendre les
principes et les applications de l’apprentissage automatique et de l’apprentissage statis-
tique. Ces technologies ne conduisent pas seulement à l’innovation et à l’efficacité, mais
soulèvent également des questions éthiques et sociétales importantes concernant la con-
fidentialité, les biais et la transparence. Par conséquent, une approche équilibrée de
leur développement et de leur déploiement est essentielle pour exploiter pleinement leur
potentiel tout en abordant ces défis potentiels.

Les méthodes d’apprentissage automatique probabiliste, en tant qu’extension des
principes bayésiens, offrent un puissant paradigme pour développer des modèles qui
sont non seulement prédictifs mais aussi intrinsèquement interprétables. En adop-
tant la perspective probabiliste, ces modèles fournissent des insights sur les proces-
sus générateurs de données sous-jacents et nous permettent de saisir les nuances des
phénomènes du monde réel dans les tâches de classification et de régression. La synthèse
de modèles probabilistes avec des algorithmes d’apprentissage automatique a conduit au
développement de techniques innovantes qui repoussent les limites de ce qui est possible
dans la recherche basée sur les données. Contrairement aux approches traditionnelles
qui fournissent des résultats déterministes, les méthodes probabilistes attribuent des
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probabilités aux résultats, offrant une compréhension plus riche de l’incertitude et de
la variabilité des données. Cela permet une prise de décision plus nuancée, une gestion
robuste des données incomplètes, et la capacité de quantifier et de gérer les risques de
manière efficace, ce qui les rend particulièrement précieuses dans les applications où
prendre des décisions éclairées est crucial. Cependant, elles présentent leurs propres
défis, tels que l’évolutivité, la sélection des modèles et, bien sûr, le coût computationnel.

L’inférence bayésienne, avec son cadre robuste pour la mise à jour des croyances à
la lumière de nouvelles preuves, s’est avérée être un pilier fondamental du raisonnement
probabiliste. En utilisant les méthodes bayésiennes, il est possible d’appliquer les ob-
servations du monde réel à des modèles scientifiques pertinents, d’incorporer des con-
naissances antérieures, de quantifier l’incertitude aléatoire, et de prendre des décisions
éclairées même dans des environnements complexes et incertains. Les mises en œuvre
pratiques de l’inférence bayésienne dans divers domaines, de la traitement du langage
naturel à l’ingénierie biomédicale, soulignent sa polyvalence et son efficacité. Dans
des domaines tels que la génétique, les sciences de l’environnement et la médecine, les
méthodes bayésiennes permettent aux chercheurs de prendre des décisions éclairées face
à l’incertitude et de prédire les résultats futurs avec une plus grande confiance. Dans
les contextes de prise de décision, de la finance aux politiques publiques, l’inférence
bayésienne soutient une évaluation robuste des risques et une planification stratégique
en affinant continuellement les prévisions au fur et à mesure que de nouvelles informa-
tions deviennent disponibles. Malgré ses défis computationnels, notamment dans les
espaces de haute dimension, les avancées dans les algorithmes et la puissance de calcul,
telles que les méthodes de Monte Carlo par châıne de Markov et l’Inference Variation-
nelle, ont rendu l’inférence bayésienne plus tractable et efficace. En conséquence, les
méthodes bayésiennes continuent de stimuler l’innovation, soulignant leur importance
durable et leur potentiel pour des percées futures tant dans la découverte scientifique
que dans la prise de décision pratique.

Les principes de l’inférence bayésienne postérieure peuvent donc être utilisés pour
étudier, interpréter, analyser et modéliser des phénomènes réels inconnus à partir des
observations dont nous disposons. Cela peut être réalisé en sélectionnant une variable
explicative appropriée, en obtenant des informations antérieures sur cette quantité et en
choisissant un modèle d’observation. Cependant, lorsqu’on considère des modèles scien-
tifiques élaborés, nous sommes souvent confrontés à un problème d’inférence bayésienne
postérieure difficile à résoudre. Cela se produit lorsque la relation entre la variable
observée et la variable explicative est décrite par un modèle d’observation dont la dis-
tribution sous-jacente ne bénéficie pas d’une fonction de densité de probabilité (PDF)
tractable (appelée cadre sans vraisemblance), comme lorsqu’elle est conçue via un modèle
de simulation implicite, rendant également la PDF postérieure inaccessible à l’évaluation.
Il est toutefois possible que nous disposions d’observations enregistrées à partir du
modèle d’observation, auquel cas nous pouvons recourir à une inférence postérieure
approximative en utilisant des méthodes d’apprentissage statistique.

L’objectif de cette thèse est de combiner les techniques d’apprentissage automatique
et d’inférence bayésienne pour réaliser une inférence basée sur un modèle approximatif
d’une distribution postérieure d’intérêt. Notre but est d’apprendre un modèle statis-
tique pour une distribution postérieure inconnue à partir d’un ensemble d’observations
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générées par le modèle d’observation correspondant, dont la vraisemblance est incalcu-
lable. Cela trouve une application directe dans le cadre de l’inférence sans vraisemblance,
mais fournit également une formulation probabiliste des tâches habituelles d’apprentissage
statistique en classification et régression.

Comme expliqué dans le chapitre 1 de cette thèse, ce problème général soulève
plusieurs questions secondaires, telles que la comparaison de différentes techniques de
modélisation, l’échantillonnage à partir d’approximations postérieures, la quantification
de l’incertitude épistémique, la modélisation générative etl’estimation de densité. Dans
les chapitres suivants, nous avons présenté trois contributions qui répondent à certaines
de ces questions. Chaque contribution peut être considérée indépendamment des autres,
et nous avons fourni des détails concernant leurs contextes respectifs et les travaux con-
nexes. Cependant, dans chaque chapitre, nous avons également cherché à relier chaque
contribution au thème général de cette thèse. Ainsi, considérées ensemble, elles con-
stituent un récit qui a été décrit dans la section d’introduction de ce document.

Pour résumer brièvement le travail de cette thèse et compléter les conclusions des
chapitres individuels, nous nous référons maintenant à ce fil narratif introductif et nous
décrivons maintenant les conclusions associées.

• “Le likelihood-to-evidence ratio (LTER) peut être échantillonné en util-
isant les algorithmes d’échantillonnage usuels basés sur les ratio de PDF
...”

Dans le chapitre 2 de cette thèse, nous avons proposé la méthodologie de ≪Binary
Classification Monte Carlo sampling≫. Dans cette approche, nous remplaçons le
ratio de densité de probabilité dans les algorithmes d’échantillonnage usuels tels
que l’acceptation-rejet, l’échantillonnage d’importance et le Metropolis-Hastings
indépendant, par une approximation basée sur un classificateur. Cela transforme
un problème d’échantillonnage à partir d’une distribution cible en un problème de
classification, et conduit à des approches d’échantillonnage sans paramètres et sans
densité, permettant ainsi l’utilisation de distributions instrumentales implicites.
Cette approche peut facilement être appliquée à la technique d’approximation
postérieure du rapport vraisemblance-sur-évidence (LTER).

“... mais la question de la quantification d’incertitude dans cette modélisation
reste ouverte.”

En raison de sa construction non normalisée, le LTER n’est pas facilement com-
patible avec la tâche de quantification de l’incertitude (UQ) via des méthodes
bayésiennes. Ce problème pourrait faire l’objet de travaux futurs.

• “La construction générative est également un modèle non-normalisée
mais elle est effectivement compatible avec la quantification d’incertitude
à partir de l’échantillonnage de la distribution prédictive postérieure
(PPD) ...”
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Dans le chapitre 3, nous avons considéré l’approche de modélisation générative.
Celle-ci consiste à modéliser la PDF du modèle d’observation inconnu à l’aide
d’une loi paramétrique conditionnelle, fournissant ainsi également un modèle non-
normalisé de la postérieure. Néanmoins, il s’avère que cette construction spécifique
est bel et bien compatible avec la tâche de quantification de l’incertitude en utilisa-
tion la PPD, qui peut être réalisée grâce à un schéma d’échantillonnage spécifique
que nous avons proposé dans ce chapitre.

“... et peut donc être comparée à la modélisation discriminante.”

Les modèles discriminatifs se distinguent des modèles génératifs en ce sens que les
premiers approximent directement la distribution d’intérêt, à savoir l’a posteriori,
tandis que les seconds le font indirectement en approximant la fonction de vraisem-
blance. Cependant, les deux exploitent un modèle de distribution conditionnelle,
et nous avons donc comparé les deux approches dans le cadre de l’apprentissage
bayésien tenant compte de l’incertitude, via la distribution prédictive postérieure
(PPD).

• “Dans les deux approches, la quantification épistémique de l’incertitude
via la PPD repose sur un modèle conditionnel avec une fonction de den-
sité de probabilité calculable, ...”

Une hypothèse cruciale permettant d’utiliser la PPD dans les approches génératives
et discriminatives est l’utilisation d’un modèle avec une PDF facilement calculable.
Cette hypothèse garantit en effet que nous pouvons évaluer la PDF jointe sur les
labels et les paramètres (ou éventuellement ses conditionnelles), étant donné les
observations labelisées et/non non-labelisées. Cela permet ainsi l’échantillonnage
à partir de la distribution conjointe (possiblement via un échantillonnage séquentiel
des conditionnelles dans le cadre d’un schéma de Gibbs), aboutissant à des échantillons
tirés de la PPD.

“... qui peut être construit avec un Discretely Indexed Flow (DIF).”

Nous avons proposé la construction DIF qui est une extension des modèles de
mélange dans laquelle la pondération des composantes ne se fait pas en utilisant
des poids scalaires mais une fonction définie par le biais d’un classifeur. L’avantage
principal de ce modèle paramétrique est qu’il dispose d’une PDF facilement calcu-
lable grâce à une construction de variables latentes spécifique, tout en bénéficiant
d’une flexibilité accrue par rapport aux modèles de mélanges en utilisant des
fonctions de réseaux de neurones. Ses autres propriétés pratiques sont (i) un
schéma d’échantillonnage simple, (ii) une reparamétrisation des gradients dans
les problèmes variationnels, et (iii) la possibilité de le transformer facilement en
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un modèle conditionnel. Les DIF peuvent également être considérés comme une
extension des Normalizing Flows, où le mapping déterministe entre un aléatoire
latent et la variable observée est remplacé par un transport stochastique de na-
ture discrète. En tant que tel, il peut facilement être combiné avec des couches
inversibles, aboutissant à un modèle mixte qui n’est plus limité par les contraintes
topologiques des NFs.
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Conclusion

In today’s rapidly advancing technological landscape, machine learning and statisti-
cal learning play pivotal roles in transforming industries and services, and for reshaping
everyday experiences. These methods use sophisticated models and enable to learn
from recorded data and make predictions. Facilitated by improvements in computa-
tional power and mathematical models, machine learning is driving innovations across
various sectors, from healthcare and finance to marketing and entertainment. In the era
of big data and novel computational capacity, machine learning algorithms can uncover
insights and trends that traditional statistical methods might overlook. This ability
to process vast amounts of data efficiently paves the way for a revolution in fields like
personalized medicine, recommendation systems, and autonomous vehicles.

Moreover, machine learning techniques such as deep learning have significantly en-
hanced the performance of tasks like image and speech recognition, natural language
processing, and even game playing. These advancements underscore the potential of
machine learning in creating smarter systems capable of adapting and improving over
time. As we navigate this era of transformation, understanding the principles and appli-
cations of machine learning and statistical learning becomes increasingly crucial. These
technologies not only drive innovation and efficiency but also raise important ethical
and societal questions regarding privacy, bias, and transparency. Therefore, a balanced
approach to their development and deployment is essential for leveraging their full po-
tential while addressing such potential challenges.

Probabilistic machine learning methods, as an extension of Bayesian principles, offer
a powerful paradigm for developing models that are not only predictive but also inher-
ently interpretable. By embracing the probabilistic perspective, these models provide
insights into the underlying data-generating processes and enable us to capture the nu-
ances of real-world phenomena in classification and regression tasks. The synthesis of
probabilistic models with machine learning algorithms has led to the development of
innovative techniques that push the boundaries of what is possible in data-driven re-
search. Unlike traditional approaches that provide deterministic outputs, probabilistic
methods assign probabilities to outcomes, offering a richer understanding of uncertainty
and variability in data. As such, it enables more nuanced decision-making, robust han-
dling of incomplete data, and the ability to quantify and manage risks effectively, making
them particularly valuable in applications where making informed decisions is critical.
It comes, however, with its own challenges, such as scalability, model selection, and, of
course, the computational cost.

Bayesian inference, with its robust framework for updating beliefs in light of new evi-
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dence, has proven to be a cornerstone for probabilistic reasoning. By employing Bayesian
methods, one can confront real-world observations to relevant scientific models, incorpo-
rate prior knowledge, quantify aleatoric uncertainty, and make informed decisions even
in the face of complex and uncertain environments. The practical implementations of
Bayesian inference in various domains, from natural language processing to biomedical
engineering, underscore its versatility and efficacy. In fields such as genetics, environ-
mental science, and medicine, Bayesian methods enable researchers to make informed
decisions under uncertainty, and predict future outcomes with greater confidence. In
decision-making contexts, from finance to public policy, Bayesian inference supports
robust risk assessment and strategic planning by continuously refining predictions as
new information becomes available. Despite its computational challenges, particularly
in high-dimensional spaces, advancements in algorithms and computing power, such as
Markov Chain Monte Carlo methods and Variational Inference, have made Bayesian
inference more tractable and efficient. As a result, Bayesian methods continue to drive
innovations, underscoring their enduring significance and potential for future break-
throughs in both scientific discovery and practical decision-making.

The principles of Bayesian posterior inference therefore can be used to study, inter-
pret, analyze, and model unknown real-world phenomena from nature but from which
we dispose of observations. This can be done by selecting an appropriate explanatory
variable, obtaining prior information about that quantity, and choosing an observation
model. However, when considering elaborate scientific models, we are often faced with
an intractable Bayesian posterior inference problem. This happens when the relationship
between the observed and explanatory variable is described via an observation model
where the underlying distribution does not benefit from a tractable probability density
function (PDF) (referred to as a likelihood-free setting), such as when it is designed via
an implicit simulation model, making the posterior PDF also unavailable for evaluation.
It is possible, however, that we dispose of recorded observations from the observation
model, in which case we can resort to approximate posterior inference using statistical
learning methods.

The scope of this thesis is to bring together machine learning and Bayesian inference
to perform such a Bayesian inference based on an approximate model of a posterior
distribution of interest. Our aim is to learn a statistical model for an unknown poste-
rior distribution from recorded observations generated by the corresponding observation
model with unavailable likelihood. This finds direct application in the likelihood-free
inference setting, but this also provides with a probabilistic formulation of usual classi-
fication and regression statistical learning tasks.

As explained in chapter 1 of this thesis, this general problem raises several subsidiary
questions, such as comparing different modeling techniques, sampling from posterior
approximations, quantifying epistemic uncertainty, generative modeling, and density
estimation. In the following three chapters, we provided three contributions, which
answer some of these points. Each contribution can be considered independently of the
others, and we provided details concerning their respective contexts and related work.
However, in each chapter, we also aimed to relate each contribution to each other to
the general topic of this thesis. So indeed, when considered together, they constitute a
narrative which was described in the introductory section of this document.
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In order to briefly summarize the findings of this thesis and to complement the
conclusions of the individual chapters, we now refer back to this introductory narrative
thread and provide its concluding counterpart.

• “The likelihood-to-evidence ratio (LTER) can be sampled from using
the usual ratio-based sampling algorithms; ...”

In chapter 2 of this thesis, we proposed the “Binary classification Monte Carlo sam-
pling” methodology. This approach replaces the PDF ratio in the usual sampling
algorithms of accept-reject, importance sampling, and independent Metropolis-
Hastings, with a classifier-based approximation. This turns a problem of sampling
from a target distribution into a problem of sampling classification and results
in parameter-free and density-free sampling approaches, thus enabling the use of
implicit instrumental distributions. This approach can easily be applied to the
LTER posterior approximation technique.

“... however it remains unclear how to apply this model in a Bayesian
uncertainty-aware inference.”

Due to its unnormalized construction, the LTER is not easily compatible with
the task of uncertainty quantification (UQ) using Bayesian methods. This prob-
lem can be the topic of future work.

• “The unnormalized generative construction is indeed compatible with
sampling from the posterior predictive distribution (PPD) ...”

In chapter 3, we considered the generative modeling approach. It consists in
modeling the PDF of the unknown observation model and thus also provides an
unnormalized model of the posterior. Nonetheless, it turns out that this specific
construction is indeed compatible with the task of epistemic UQ via the PPD,
which can be conducted via a specific sampling scheme which we proposed in this
chapter.

“... and can thus be compared to discriminative models.”

Discriminative models differ from the generative ones in the sense that the former
approximates the PDF of interest, the a posteriori, directly, while the latter does
so indirectly by approximating the likelihood function. However, both leverage a
conditional distribution model, and we thus compared the two approaches under
the scope of Bayesian uncertainty-aware learning via the PPD.

• “In both approaches, epistemic UQ via the PPD relies on a model with
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tractable PDF, ...”

A crucial assumption which enables us to use the PPD in both generative and
discriminative approaches is that of using a model with a tractable PDF. This
assumption indeed ensures that we can evaluate the joint PDF over label and
parameters (or possibly its conditionals), given the observations and the dataset,
and thus enables the sampling from the joint distribution (possibly via sequen-
tially sampling from the conditionals in a Gibbs sampling scheme), resulting in
samples drawn from the PPD.

“... which can be constructed using Discretely Indexed Flows (DIF).”

We proposed the novel construction of DIF. The main advantage of this para-
metric model is that it disposes of a tractable PDF using a discrete latent vari-
able construction, while benefiting from increased flexibility as compared to mix-
ture models with leveraging neural functions. Its other convenient properties are
straightforward (i) sampling scheme and (ii) reparameterization of gradients, and
(iii) that it can easily be turned into a conditional model. DIF can also be seen
as an extension of normalizing flows (NFs) where the deterministic mapping be-
tween latent noise and observed variable is replaced by a stochastic transport of
discrete nature. As such, it can easily be combined (cascaded) with invertible
layers, resulting in a mixed model which is no longer restricted by the topological
limitations of NFs.
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A.1 Acronyms

ANF: Augmented Normalizing Flows
AR: Accept Reject
CDF: Cumulative Distribution Function
CIF: Continuously Indexed Flows
DE: Density Estimation
DIF: Discretely Indexed Flows
EBM: Energy Based Model
ELBO: Evidence Lower Bound
EM: Expectation-Maximization
GA: Gradient Ascent
GD: Gradient Descent
GMM: Gaussian Mixture Model
iid: Independent and Identically Distributed
IMH: Independent Metropolis Hastings
IS: Importance Sampling
LTER: Likelihood-to-evidence ratio
LVM: Latent Variable Model
MC: Monte Carlo
MCMC: Markov Chain Monte Carlo
MH: Metropolis-Hastings
MM: Majorize-Minorize
NF: Normalizing Flows
NN: Neural-Network
PDF: Probability Density Function
PPD: Posterior Predictive Distribution
RB: Rao-Blackwell
RV: Random Variable
SIR: Sampling Importance Resampling
SMC: Sequential Monte Carlo
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TMC: Transport Monte Carlo
UQ: Uncertainty Quantification
VI: Variational Inference

A.2 Main notations

X: unobserved continuous or categorical random variable of interest, also refered to as
label ;
Y : observed random variable;
θ: model parameters;
Pr: probability;
pθ: PDF associated with parametric model for given value of θ in the context of gener-
ative and discriminative modeling and DIF;
Q, q: instrumental distribution and corresponding PDF;
∼ : ”a random variable is distributed according to” or ”a value is drawn at random
from”;
D: dataset;
Y : unlabeled observations {ỹj}j=1,...,|Y| in semi-supervised learning;
Π , π : prior distribution and corresponding PDF;
DKL: Kullback-Leibler divergence.

Differences throughout the chapters

In chapters 1 and 2, the prior distribution over label X is denoted PX and its
PDF is pX(x), while in chapter 3, prior distributions are refered to as π is a prior
PDF (usually over RV X or θ) associated with a probability distribution Π . In the
fourth chapter, when discussing mixture models and its extension to DIF πk denotes
the mixtures weights which indeed become πk(x) a function of x and the conditions on
πk(x) to result in a valid PDF are discussed. In the paper “Discretely Indexed Flows”

(section 4.3), we use the notations
←−
Πθ and ←−πθ (resp.

−→
Πθ and −→πθ) to describe the discrete

probability distribution and its mass function of observed X (resp. latent Z) given
latent Z (resp. observed X).

A.3 Classifier based posterior sampling algorithms
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Algorithm 5 Classifer based Importance Sampling expectation estimation

Require: observed y, function f , N , prior PX , classifier rθ

Draw samples x1, ..., xN
iid∼ Px

Compute and normalize importance weights w(i) =
rθ(xi,y)

1−rθ(xi,y)∑N
j=1

rθ(xj,y)

1−rθ(xj,y)

Compute estimate
∑M

i=1w
(i)f(xi)

Algorithm 6 Classifer based Sampling - Importance Resampling from the posterior

Require: observed y, N , prior PX , classifier rθ

Draw samples x1, ..., xN
iid∼ Px

Compute and normalize importance weights w(i) =
rθ(xi,y)

1−rθ(xi,y)∑N
j=1

rθ(xj,y)

1−rθ(xj,y)

while number of samples is not reached do
Sample index k ∼ Categorical(w(1), ..., w(N))
Select xk as a sample

end while

Algorithm 7 Classifer based Independent Metropolis-Hastings MCMC

Require: observed y, T , prior PX , classifier rθ
Draw x0 ∼ Px
for each Markov transition step t up to T do

propose a candidate x∗ ∼ PX
if u ∼ U[0,1] ≤ min(1, rθ(x

∗,y)
1−rθ(x∗,y)

1−rθ(xt−1,y)
rθ(xt−1,y)

) then
set xt = x∗

else
set xt = xt−1

end if
end for

Algorithm 8 Classifer based Independent Barker MCMC

Require: observed y, T , prior PX , classifier rθ
Draw x0 ∼ Px
for each Markov transition step t up to T do

propose a candidate x∗ ∼ PX
if u ∼ U[0,1] ≤ rθ(x

∗,y)(1−rθ(xt−1,y))
rθ(x∗,y)(1−rθ(xt−1,y))+rθ(xt−1,y)(1−rθ(xt−1,y))

then
set xt = x∗

else
set xt = xt−1

end if
end for
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A.4 DIF reverse kernel and marginal distribution

We first check that the function

←−
Π :Rd × B(Rd)→ [0,∞[

z, A→
←−
Π(z, A) =

K∑
k=1

wk(z)1(T−1k (z) ∈ A)

is a valid transition kernel: for fixed z ∈ Rd,
←−
Π(z, .) is a probability measure; while for

fixed A ∈ B(Rd),
←−
Π(., A) is a measurable function. On the other hand, Rd is a Polish

space endowed with its Borel σ-field, so the reverse transition Kernel
−→
Π exists. Since for

a given x, only the values
(
T1(x), ..., TK(x)

)
may have produced x, the reverse transition

kernel indeed takes the form:

−→
Π :Rd × B(Rd)→ [0,∞[

x,B →
−→
Π(x,B) =

K∑
k=1

vk(x)1
(
Tk(x) ∈ B

)
,

in which vk(x) = Pr(Z = T−1k (X̃)|X̃ = x). Next, for any A,B ∈ B(Rd), we have

Pr(X̃ ∈ A,Z ∈ B) =

∫
B

←−
Π(z, A)q(z)dz

=

∫
B

(∫
A

K∑
k=1

wk(z)δT−1
k (z)(x)dx

)
q(z)dz

=
K∑
k=1

∫
B∩Tk(A)

wk(z)q(z)dz

=
K∑
k=1

∫
T−1
k (B)∩A

wk
(
Tk(x)

)
q
(
Tk(x)

)∣∣det JTk(x)
∣∣dx. (A.1)

Two cases are of particular interest:

• Set B = R
d. Since T−1k (B) = R

d, (A.1) becomes

Pr(X̃ ∈ A) =
K∑
k=1

∫
A

wk
(
Tk(x)

)
q
(
Tk(x)

)∣∣det JTk(x)
∣∣dx

=

∫
A

K∑
k=1

wk
(
Tk(x)

)
q
(
Tk(x)

)∣∣det JTk(x)
∣∣

︸ ︷︷ ︸
ψ(x)

dx,

so X̃ admits pdf ψ wrt Lebesgue measure.
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• Set A = R
d. Equation (A.1) becomes

Pr(Z ∈ B) =
K∑
k=1

∫
T−1
k (B)

wk
(
Tk(x)

)
q
(
Tk(x)

)∣∣det JTk(x)
∣∣dx

=
K∑
k=1

∫
T−1
k (B)

wk
(
Tk(x)

)
q
(
Tk(x)

)∣∣det JTk(x)
∣∣

ψ(x)
ψ(x)dx

=
K∑
k=1

∫
Rd

wk
(
Tk(x)

)
q
(
Tk(x)

)∣∣det JTk(x)
∣∣

ψ(x)
1T−1

k (B)(x)ψ(x)dx

=

∫
Rd

K∑
k=1

wk
(
Tk(x)

)
q
(
Tk(x)

)∣∣det JTk(x)
∣∣

ψ(x)
1T−1

k (B)(x)︸ ︷︷ ︸
−→
Π(x,B)

ψ(x)dx,

so
−→
Π(x,B) =

∑K
k=1 vk(x)1

(
Tk(x) ∈ B

)
where vk(x) is given by:

vk(x) =
wk
(
Tk(x)

)
q
(
Tk(x)

)∣∣det JTk(x)
∣∣∑K

j=1wj
(
Tj(x)

)
q
(
Tj(x)

)∣∣∣det JTj(x)
∣∣∣ . (A.2)

A.5 Derivation of GEM objective

In this section we will explicit model parameters at step t using superscript as in
ψ(θt)(x). First, for purpose of conciseness, let us define a subsidiary function which

describes the joint pdf of (X̃, U) for model parameters θ:

h
(θ)
k (x) = w

(θ)
k

(
T

(θ)
k (x)

)
q
(
T

(θ)
k (x)

)
| det J

T
(θ)
k

(x)|,∀x ∈ Rd and k = 1, ..., K.

Since log
(
ψ(θ)(x)

)
= Eρ

[
log
(
ψ(θ)(x)

)]
, where the expectation is taken with respect to

discrete categorical rv U with a probability measure ρ such that U ∼ Categorical
(
ρ(1), ..., ρ(K)

)
,

we can write:

log
(
ψ(θ)(x)

)
= Eρ

[
log
(
h
(θ)
U (x)

)
− log

(
Pr(θ)

(
U |x
))]

= Eρ

[
log
(
h
(θ)
U (x)

)
− log

(
ρ(U)

)]
+Eρ

[
log
(
ρ(U)

)
− log

(
Pr(θ)

(
U |x
))]

.

The last term is DKL

(
ρ(U)||Pr(θ)

(
U |x
))
≥ 0, hence we have:

log
(
ψ(θ)(x)

)
≥ Eρ

[
log
(
h
(θ)
U (x)

)
− log

(
ρ(U)

)]
, (A.3)
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where equality holds if and only if

ρ(k) = Pr(θ)
(
U = k|x

)
for all values k = 1, ..., K. (A.4)

Let us finally turn to an iterative optimization scheme. Let θt be the current pa-

rameter. Let us set ρ(k) = Pr(θt)
(
U = k|x

)
= Pr(θt)

(
z = Tk(x)|x

) (A.2)
= v

(θt)
k (x) for all

k = 1, ..., K, and let us sum for x = x1, ..., xM . The rhs of (A.3) yields a function gθt(θ)
which reads:

gθt(θ) =
M∑
i=1

K∑
k=1

v
(θt)
k (xi) log

(
h
(θ)
k (xi)

v
(θt)
k (xi)

)
,

and satisfies

gθt(θ)
(A.3)

≤
M∑
i=1

log
(
ψ(θ)(x)

)
for all θ ∈ Θ, (A.5)

gθt(θt)
(A.4)
=

M∑
i=1

log
(
ψ(θt)(xi)

)
. (A.6)

Therefore, if we compute θt+1 via a GA step, (or, more generally, any method which
ensures that gθt

(
θt+1

)
≥ gθt(θt)) , then by construction, we increase the log-likelihood of

data
{
x1, ..., xM

}
under ψ since:

M∑
i=1

log
(
ψ(θt+1)(xi)

) (A.5)

≥ gθt
(
θt+1

) GA
≥ gθt(θt)

(A.6)
=

M∑
i=1

log
(
ψ(θt)(xi)

)
.

Finally in our case, we can indeed check that the gradient of the surrogate function
coincides with that of the target distribution:

∇θgθt(θ)|θ=θt =
M∑
i=1

K∑
k=1

v
(θt)
k (xi)∇θ log

(
h
(θ)
k (xi)

)
|θ=θt

=
M∑
i=1

K∑
k=1

v
(θt)
k (xi)

∇θh
(θ)
k (xi)

h
(θ)
k (xi)

|θ=θt =
M∑
i=1

K∑
k=1

v
(θt)
k (xi)

∇θh
(θ)
k (xi)|θ=θt
h
(θt)
k (xi)

=
M∑
i=1

1

ψ(θt)(xi)

K∑
k=1

∇θh
(θ)
k (xi)|θ=θt =

M∑
i=1

1

ψ(θt)(xi)
∇θ

K∑
k=1

h
(θ)
k (xi)|θ=θt

=
M∑
i=1

∇θψ
(θ)(xi)|θ=θt
ψ(θt)(xi)

=
M∑
i=1

∇θ log
(
ψ(θ)(xi)

)
|θ=θt = ∇θ

M∑
i=1

log
(
ψ(θ)(xi)

)
|θ=θt ,

which validates our construction of functions
{
gθt
}
t=1,2,...

A.6 Cascading DIF in practice

We now see that the cascaded models discussed in section 4.3.10 can be implemented
efficiently for both the VI and VDE problems. We explicit here the according objectives
to be optimized for a cascade of two DIF; but with using recursion, this construction
can of course be extended to more that two DIF.
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VI

First, we can obtain samples X̃ from Ψ by sequentially applying Z1 ∼
←−
Π [1](Z) and

then X̃ ∼
←−
Π [1](Z1) to original samples Z ∼ Q. This corresponds to the following

sampling scheme:

X̃ = T
[0]
U0

−1(
T

[1]
U1

−1
(Z)
)

where Z ∼ Q,U1 ∼ Categorical
{
w

[1]
k1

(Z)
}
k1=1,...,K1

and U0 ∼ Categorical

{
w

[0]
k0

(
T

[1]
U1

−1
(Z)
)}

k0=1,...,K0 .

We can use RB in a sequential manner in order to build a differentiable MC approxi-
mation of the reverse DKL:

DKL

(
Ψ||P

)
≈ 1

M

M∑
i=1
zi∼Q

K1∑
k1=1

w
[1]
k1

(zi)

K0∑
k0=1

w
[0]
k0

(T
[1]
k1

−1
(zi)) log

ψ(T
[0]
k0

−1
(T

[1]
k1

−1
(zi)))

p(T
[0]
k0

−1
(T

[1]
k1

−1
(zi)))


︸ ︷︷ ︸

E[J |Z=zi,U1]︸ ︷︷ ︸
E[J |Z=zi]

(A.7)
which, as explained in section 4.3.6, corresponds to an RB approximation where we
successively marginalized out the Categorical latent variables U0 and U1.

VDE

Next, the pdf induced by this cascade model can be easily computed via the following
recursion:

ψ = F
(
F
(
q;
←−
Π[1]

)
;
←−
Π[0]

)
,

hence, as explained in section 4.3.7, one can use this model for VDE by maximizing the
log-likelihood. Alternately, one can maximize a GEM surrogate, which reads

gθt(θ) =
M∑
i=1
xi∼P

K0∑
k0=1

v
[0]
k0

(θt)
(xi)

K1∑
k1=1

v
[1]
k1

(θt)
(T

[0]
k0

(θt)
(xi)) log

 h
(θ)
k0,k1

(xi)

v
[0]
k0

(θt)
(xi)v

[1]
k1

(θt)
(T

[0]
k0

(θt)
(xi))


where

hk0,k1(xi) = w
[0]
k0

(T
[0]
k0

(xi))w
[1]
k1

(T
[1]
k1

(T
[0]
k0

(xi)))

× q
(
T

[1]
k1

(
T

[0]
k0

(xi)
))
| det J

T
[0]
k0

(xi)|.| det J
T

[1]
k1

(
T

[0]
k0

(xi)
)
|.
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Titre : Contributions à l’apprentissage statistique de lois a posteriori pour l’inférence bayésienne sans vrai-
semblance

Mots clés : Apprentissage Automatique, Inférence Bayésienne, Likelihood-free, Echantillonnage et estimation
Monte Carlo, Quantification d’incertitude

Résumé : L’inférence bayésienne a posteriori est uti-
lisée dans de nombreuses applications scientifiques
et constitue une méthodologie répandue pour la prise
de décision en situation d’incertitude. Elle permet aux
praticiens de confronter les observations du monde
réel à des modèles d’observation pertinents, et, en
retour, d’inférer la distribution d’une variable explica-
tive. Dans de nombreux domaines et applications pra-
tiques, nous considérons des modèles d’observation
de plus en plus complexes pour leur pertinence scien-
tifique, mais au prix de densités de probabilité incal-
culables. En conséquence, à la fois la vraisemblance
et la distribution a posteriori sont indisponibles, ren-
dant l’inférence a posteriori à l’aide des méthodes de
Monte Carlo habituelles irréalisable.
Dans ce travail nous supposons que le modèle d’ob-
servation nous génère un jeu de données, et le
contexte de cette thèse est de coupler l’inférence
Bayésienne à l’apprentissage statistique afin de pal-
lier cette limitation et permettre l’inférence a poste-
riori dans le cadre likelihood-free. Ce problème, for-
mulé comme l’apprentissage d’une distribution a pos-
teriori, inclut les tâches habituelles de classification
et de régression, mais il peut également être une al-
ternative aux méthodes “Approximate Bayesian Com-
putation” dans le contexte de l’inférence basée sur la
simulation, où le modèle d’observation est plutôt un
modèle de simulation avec une densité implicite.
L’objectif de cette thèse est de proposer des contribu-
tions méthodologiques pour l’apprentissage bayésien
a posteriori. Plus précisément, notre objectif principal
est de comparer différentes méthodes d’apprentis-
sage dans le cadre de l’échantillonnage Monte Carlo
et de la quantification d’incertitude.
Nous considérons d’abord l’approximation a poste-
riori basée sur le “likelihood-to-evidence-ratio”, qui
a l’avantage principal de transformer un problème
d’apprentissage de densité conditionnelle en un
problème de classification binaire. Dans le contexte
de l’échantillonnage Monte Carlo, nous proposons
une méthodologie pour échantillonner suivant la dis-

tribution résultante d’une telle approximation a pos-
teriori. Pour résumer notre contribution : nous tirons
parti de la structure sous-jacente du modèle, com-
patible avec les algorithmes d’échantillonnage usuels
basés sur un quotient de densités, pour obtenir des
procédures d’échantillonnage simples, sans hyperpa-
ramètre et ne nécessitant d’évaluer aucune fonction
de densité.
Nous nous tournons ensuite vers le problème de la
quantification de l’incertitude épistémique. D’une part,
les modèles normalisés, tels que la construction dis-
criminante, sont faciles à appliquer dans le contexte
de la quantification de l’incertitude bayésienne.
D’autre part, bien que les modèles non normalisés,
comme le likelihood-to-evidence-ratio, ne soient pas
facilement applicables dans les problèmes de quantifi-
cation d’incertitude épistémique, une construction non
normalisée spécifique, que nous appelons générative,
est effectivement compatible avec la quantification de
l’incertitude bayésienne via la distribution prédictive a
posteriori. Dans ce contexte, nous expliquons com-
ment réaliser cette quantification de l’incertitude dans
les deux techniques de modélisation, générative et
discriminante, puis nous proposons une comparaison
des deux constructions dans le cadre de l’apprentis-
sage bayésien.
Enfin nous abordons le problème de la modélisation
paramétrique avec densité tractable, qui est effec-
tivement une exigence pour la quantification de
l’incertitude épistémique dans les méthodes de
modélisations générative et discriminante. Nous pro-
posons une nouvelle construction d’un modèle pa-
ramétrique, qui est une double extension des modèles
de mélange et des flots normalisants. Ce modèle peut
être appliqué à de nombreux types de problèmes
statistiques, tels que l’inférence variationnelle, l’esti-
mation de densité et de densité conditionnelle, car
il bénéficie d’une évaluation rapide et exacte de la
fonction de densité, d’un schéma d’échantillonnage
simple, et d’une approche de reparamétrisation des
gradients.
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Abstract : Bayesian posterior inference is used in
many scientific applications and is a prevalent me-
thodology for decision-making under uncertainty. It
enables practitioners to confront real-world observa-
tions with relevant observation models, and in turn,
infer the distribution over an explanatory variable. In
many fields and practical applications, we consider
ever more intricate observation models for their other-
wise scientific relevance, but at the cost of intractable
probability density functions. As a result, both the like-
lihood and the posterior are unavailable, making pos-
terior inference using the usual Monte Carlo methods
unfeasible.
In this thesis, we suppose that the observation model
provides a recorded dataset, and our aim is to bring
together Bayesian inference and statistical learning
methods to perform posterior inference in a likelihood-
free setting. This problem, formulated as learning an
approximation of a posterior distribution, includes the
usual statistical learning tasks of regression and clas-
sification modeling, but it can also be an alternative
to Approximate Bayesian Computation methods in the
context of simulation-based inference, where the ob-
servation model is instead a simulation model with im-
plicit density.
The aim of this thesis is to propose methodological
contributions for Bayesian posterior learning. More
precisely, our main goal is to compare different lear-
ning methods under the scope of Monte Carlo sam-
pling and uncertainty quantification. We first consider
the posterior approximation based on the likelihood-
to-evidence ratio, which has the main advantage that
it turns a problem of conditional density learning
into a problem of binary classification. In the context

of Monte Carlo sampling, we propose a methodo-
logy for sampling from such a posterior approxima-
tion. We leverage the structure of the underlying mo-
del, which is conveniently compatible with the usual
ratio-based sampling algorithms, to obtain straightfor-
ward, parameter-free, and density-free sampling pro-
cedures.
We then turn to the problem of uncertainty quantifi-
cation. On the one hand, normalized models such as
the discriminative construction are easy to apply in the
context of Bayesian uncertainty quantification. On the
other hand, while unnormalized models, such as the
likelihood-to-evidence-ratio, are not easily applied in
uncertainty-aware learning tasks, a specific unnorma-
lized construction, which we refer to as generative, is
indeed compatible with Bayesian uncertainty quanti-
fication via the posterior predictive distribution. In this
context, we explain how to carry out uncertainty quan-
tification in both modeling techniques, and we then
propose a comparison of the two constructions under
the scope of Bayesian learning.
We finally turn to the problem of parametric mode-
ling with tractable density, which is indeed a require-
ment for epistemic uncertainty quantification in gene-
rative and discriminative modeling methods. We pro-
pose a new construction of a parametric model, which
is an extension of both mixture models and normali-
zing flows. This model can be applied to many dif-
ferent types of statistical problems, such as variational
inference, density estimation, and conditional density
estimation, as it benefits from rapid and exact density
evaluation, a straightforward sampling scheme, and a
gradient reparameterization approach.
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