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Glossary

• VR: Virtual Reality - «A “virtual reality” is defined as a real or simulated environment in which a perceiver
experiences telepresence.» – Steuer 1992

• ET: Eye-Tracking - A process of measuring where and how long a person looks (gaze) at various points in a
visual environment.

• EEG: Electroencephalogram - A method used to record electrical activity of the brain.

• IMU: Inertial Measurement Unit - A sensor that measures and reports on a body’s specific force, angular
rate, and sometimes the magnetic field surrounding the body, used to track motion.

• Input - As in "user input", when used when talking about an action in an application, it means the interaction
of the user with the application itself. Example: pressing a button, moving a joystick, clicking (and so on) are
(user) inputs. User input, outside the scope of application interaction, is more synonymous to "user feedback".

• TAR: Theta-Alpha Ratio - A measure of cognitive load based on the study of the Theta and Alpha bandwave
present in the brain.

• Cognitive Load: The amount of mental effort being used in the working memory.

• BPM: Beats Per Minute - A measure of heart rate, often used as an indicator of stress or physical exertion.

• VA: Virtual Annotation - Virtual marks or notes added within a VR environment, used to guide or inform users
during tasks.

• Teleoperation: The remote control of machinery or robots from a distance, commonly used in fields such as
earthwork robotics.

• Digital Twin: A virtual model designed to accurately reflect a physical object, often used in simulations and
training.

• Midas Touch: A challenge in eye-tracking where every gaze is interpreted as an intentional selection, leading
to false interactions.

• Peripheral Vision: The part of vision that occurs outside the very center of gaze, crucial in immersive envi-
ronments like VR.

• Cybersickness: A form of motion sickness that occurs in virtual environments, often associated with VR use.
Motion sickness induced by cyber-environments’ interactions.

• Bio-sensors: Biometric sensors recording data derived from measurements of the body, such as heart rate,
brain activity, and movement patterns.

• HMD: Head-Mounted Display - A device worn on the head that has a small display optic in front of one
(monocular HMD) or each eye (binocular HMD).
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French Summary

Introduction

La réalité virtuelle (RV) a connu une évolution significative depuis ses origines au XIXe siècle avec la création du
stéréoscope. Cependant, la version moderne de la RV telle que nous la connaissons aujourd’hui a été concep-
tualisée dans les années 1960. Ce domaine en pleine expansion touche désormais divers secteurs, y compris
l’industrie 4.0, les thérapies médicales, le jeu vidéo, et le métavers. La RV a révolutionné divers aspects de la
société moderne, s’imposant comme une technologie clé dans de nombreux secteurs. Dans l’industrie 4.0, la RV
est utilisée pour simuler des environnements de production, former les employés, et optimiser les processus de
fabrication. Cette immersion virtuelle permet une visualisation précise des chaînes de production et une simulation
des opérations avant leur mise en œuvre réelle, réduisant ainsi les risques et améliorant l’efficacité des opérations.
En thérapie, la RV offre des solutions innovantes pour traiter divers troubles, allant des phobies aux troubles de
l’anxiété et à la réhabilitation physique et motrice. Les environnements virtuels ainsi développés permettent des
interventions adaptées dans un cadre contrôlé, facilitant ainsi la progression thérapeutique. Dans le domaine du jeu
vidéo, la RV a transformé l’expérience de jeu, permettant aux joueurs de plonger dans des mondes interactifs avec
un niveau d’immersion sans précédent. Les expériences immersives offrent une nouvelle dimension d’interaction
et d’engagement, modifiant profondément les dynamiques du divertissement interactif. Par ailleurs, la RV trouve
des applications dans des domaines émergents comme le métavers, où elle sert de plateforme pour la création de
nouveaux espaces sociaux et économiques, intégrant des aspects de la vie quotidienne dans des environnements
virtuels partagés. Ces diverses utilisations démontrent la polyvalence de la réalité virtuelle et son potentiel pour
transformer non seulement le divertissement et la formation, mais aussi la manière dont nous abordons des défis
complexes dans des contextes variés. L’essor de la RV dans ces domaines a entraîné une demande accrue pour
des expériences immersives de haute qualité, ce qui a mis en lumière la nécessité d’optimiser la conception de ces
expériences.

Historiquement, les méthodes de conception en RV reposent largement sur des questionnaires et des retours
subjectifs venant des utilisateurs. Bien que ces méthodes fournissent des aperçus précieux sur l’expérience util-
isateur, elles présentent des limites notables, notamment le biais subjectif et la difficulté à quantifier des aspects
complexes de l’interaction en RV. Pour surmonter ces limitations, des approches basées sur des données objec-
tives, telles que les mesures opérationnelles et physiologiques, ont émergé. Ces méthodes promettent de fournir
une analyse plus complète et quantitative des interactions et de l’état des utilisateurs en RV, allant au-delà des
évaluations subjectives. Dans ce contexte, cette thèse propose une méthodologie hybride appelée VR-SOLUS -
Méthode de synthèse des données sensorielles, opérationnelles et de l’utilisateur pour la conception de la RV (en
anglais Sensory, OperationaL and User data Synthesis methodology for Virtual Reality) - qui intègre des mesures
opérationnelles, des mesures physiologiques et des retours utilisateurs pour optimiser la conception et l’optimisation
des environnements RV. Cette approche vise à combiner les avantages des méthodes traditionnelles et des nou-
velles approches basées sur les données pour fournir une vue plus complète des expériences en RV.

Travaux Similaires

Méthodes Traditionelles

Les méthodes de conception traditionnelles reposent principalement sur des retours subjectifs des utilisateurs.
Ces méthodes incluent des enquêtes, des questionnaires, et des interviews pour évaluer l’expérience utilisateur
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en RV. Bien que ces méthodes puissent fournir des informations précieuses sur les préférences et les niveaux de
satisfaction des utilisateurs, elles présentent plusieurs limitations :

• Biais Subjectif : les réponses des utilisateurs peuvent être influencées par des biais personnels et des
perceptions individuelles, ce qui peut affecter l’objectivité des données collectées. Les questionnaires et inter-
view ayant souvent lieu après les phases de test, il est aussi possible d’observer un biais de mémorisation :
l’utilisateur peut ne pas se souvenir de certains éléments, ou d’en confondre certains entre eux;

• Difficulté de Quantification : certaines expériences et interactions en RV sont difficiles à quantifier de
manière précise en utilisant uniquement des méthodes subjectives, dû à la difficulté inhérente à quantifier
la perception humaine;

• Variabilité des Réponses : les retours des utilisateurs peuvent varier considérablement même au sein d’un
même groupe (i.e. même profils) de participants, rendant difficile l’identification de tendances générales ou
de problèmes spécifiques.

Méthodes Basées sur les Données

Les méthodes basées sur les données, quant à elles, se concentrent sur la collecte et l’analyse de données objec-
tives pour évaluer les expériences en RV. Ces méthodes incluent:

• Mesures Opérationnelles : elles évaluent des indicateurs tels que le temps de complétion des tâches, les
erreurs commises par l’utilisateur, et les interactions avec l’environnement RV de celui-ci. Ces mesures four-
nissent des données quantitatives sur la performance des utilisateurs;

• Mesures Physiologiques : les capteurs physiologiques, tels que le suivi du regard, l’électroencéphalogramme
(EEG), les capteurs de charge physique (IMU), et les moniteurs de fréquence cardiaque, mesurent les réponses
physiologiques des utilisateurs, telles que l’attention, la charge cognitive et le niveau de fatigue. Ces mesures
offrent des informations sur l’état cognitif et physique des utilisateurs.

• Analyse des Données : l’analyse des données collectées ainsi que de leurs corrélations peut révéler des
tendances et des modèles dans les interactions des utilisateurs, offrant une perspective plus objective sur
l’expérience en RV.

Utilisation de Bio-capteurs

L’intégration de bio-capteurs dans la conception d’environnements de RV représente une avancée significative dans
l’amélioration de l’expérience utilisateur et dans l’optimisation des interfaces homme-machine. Les bio-capteurs per-
mettent de recueillir des données physiologiques en temps réel, offrant ainsi une compréhension plus approfondie
des états cognitifs et émotionnels des utilisateurs lors de leur immersion dans des environnements virtuels. Les
méthodologies de conception RV présentent des travaux récents d’exploration de divers bio-capteurs dans la con-
ception RV.

Électroencéphalogramme (EEG)

L’EEG est l’un des bio-capteurs les plus couramment utilisés dans la recherche sur la VR. Il permet de mesurer
l’activité électrique du cerveau et d’en déduire des indicateurs de charge cognitive, d’attention et d’engagement
émotionnel. Plusieurs études ont démontré l’efficacité de l’EEG pour adapter dynamiquement les environnements
virtuels en fonction de l’état mental de l’utilisateur. Ce capteur peut être utilisé pour extraire de nombreuses
mesures : charge cognitive, concentration, stress, cinématose (ou motion sickness en anglais, mal au coeur lié
à la désynchronisation entre la perception visuelle et physique des mouvements en RV), etc. Cependant, l’EEG
présente des défis significatifs en termes de bruit et d’interférences des signaux, particulièrement dans des con-
textes immersifs où les utilisateurs se déplacent et interagissent avec leur environnement.
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Suivi Occulaire

Le suivi oculaire est un autre bio-capteur crucial dans l’étude de l’interaction en RV. Il permet de capturer les
mouvements des yeux, offrant des informations précieuses sur les points d’intérêt et les zones de focalisation de
l’utilisateur. Cette technologie a été largement utilisée pour évaluer l’efficacité des interfaces RV et pour détecter
des problèmes potentiels dans la conception des interfaces, tels que des éléments trop distrayants ou mal placés.
Le suivi occulaire peut permettre d’évaluer l’attention de l’utilisateur, les zones d’intérêt visuel (et inversement les
zones inutiles ou inutilisées) d’un environnement virtuel, le stress, la concentration, etc. Étudier les mouvements
occulaires d’un utilisateur permet de créer des applications plus fluides, et qui répondent directement à l’attention
de l’utilisateur.

Mesure de la Fréquence Cardiaque et de la Réponse Galvanique de la Peau (GSR)

Les capteurs de fréquence cardiaque et de réponse galvanique de la peau sont souvent utilisés pour évaluer le
niveau de stress ou d’excitation de l’utilisateur. Ces mesures sont particulièrement utiles dans les applications RV
où la gestion des émotions est cruciale, comme dans les simulations de formation ou les thérapies immersives.
Dans cette thèse, nous nous concentrons surtout sur la fréquence cardiaque et les mouvement généraux du corps,
qui peuvent indiquer le niveau de charge physique de l’utilisateur, la reconnaissance de geste ou l’évaluation de la
douleur et du comfort.

Défis et Limites

Malgré les avantages évidents de l’intégration des bio-capteurs dans la conception VR, plusieurs défis persistent.
L’un des principaux défis est la synchronisation des données provenant de multiples capteurs, chacun ayant ses
propres caractéristiques, fréquence d’échantillonnage et latence. De plus, l’intégration physique des capteurs dans
le matériel VR existant, tel que les casques ou les manettes, peut poser des problèmes en termes de confort et
de mobilité des utilisateurs. Les artefacts de mouvement et le bruit électronique dans les signaux enregistrés, par-
ticulièrement présents dans les mesures EEG, constituent également des obstacles importants à surmonter pour
obtenir des données fiables et exploitables.

Les travaux récents se sont concentrés sur l’amélioration de la fiabilité et de l’intégration des bio-capteurs dans
les environnements RV. Par exemple, l’émergence de casques VR équipés de capteurs intégrés, tels que des élec-
trodes EEG directement intégrées dans le bandeau du casque, ouvre de nouvelles possibilités pour des expériences
encore plus immersives et personnalisées. De plus, le développement de techniques avancées de traitement du
signal, telles que les filtres adaptatifs et l’apprentissage automatique, permet une analyse plus fine et en temps réel
des données physiologiques.

Méthode Proposée

La méthodologie VR-SOLUS propose une approche hybride en combinant des mesures opérationnelles, physi-
ologiques, et des retours utilisateurs pour optimiser les environnements RV. Cette approche vise à surmonter les
limitations des méthodes traditionnelles en fournissant une analyse plus complète et nuancée des expériences en
RV. La méthodologie inclut des mesures opérationnelles qui forment des indicateurs de performances. Elles inclu-
ent le temps de complétion, les erreurs, la facilité de contrôle ainsi que des mesures spécifiques aux cas d’usage
étudiés. VR-SOLUS inclut également des mesures physiologiques, commme l’attention (par suivi du regard), la
charge cognitive (par étude EEG) ou la charge physique (grâce à des accéléromètre et la mesure du rythme car-
diaque). Le suivi des réponses physiologiques sert à évaluer le statut d’un participant à un moment donné. Enfin,
VR-SOLUS n’abandonne pas les retours Utilisateurs, mais en fait une de ses forces. En collectant des évaluations
subjectives pour obtenir des informations sur la satisfaction et le confort des utilisateurs, VR-SOLUS peut ainsi
évaluer la perception des utilisateurs, et apporter une dimension subjective à l’évaluation de l’expérience utilisateur.
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Matériel et Conception

Matériel

Cette thèse s’inscrit dans le cadre de l’optimisation des interactions homme-machine en RV à travers le développe-
ment de la méthodologie VR-SOLUS. Pour ce faire, deux champs d’application principaux ont été choisis : les
travaux de terrassement et la thérapie, chacun représentant des défis uniques en termes de conception d’interfaces
et d’optimisation des performances utilisateur.

Dans le cadre de nos travaux, nous avons utilisé une combinaison d’équipements de RV et de dispositifs spécial-
isés. Les études ont principalement été réalisées avec le casque de réalité virtuelle HTC Vive Pro Eye, qui intègre
un suivi oculaire pour la capture des mouvements des yeux des utilisateurs. Ce casque permet une immersion
complète des participants dans les environnements virtuels. Pour les mesures physiologiques, un système EEG
g.tec Unicorn Hybrid Black a été utilisé afin de capter l’activité cérébrale des participants. Cet appareil, équipé de 8
électrodes, permet de suivre en temps réel les signaux neuronaux, bien que sa résolution spatiale et sa sensibilité
puissent être limitées par rapport à des systèmes EEG plus complexes (e.g. avec plus d’éléectrodes). Le suivi de la
charge physique a été effectué à l’aide du capteur de fréquence cardiaque Polar OH1+, couplé à un accéléromètre
pour enregistrer les mouvements du corps.

Les expériences ont été pilotées par des logiciels dédiés au contrôle des dispositifs RV et à l’analyse des don-
nées recueillies. Unity a été le moteur central pour la création et la gestion des environnements virtuels, facilitant
l’intégration des différents capteurs et l’interaction avec l’utilisateur. Pour l’analyse des données EEG, nous avons
utilisé la suite logicielle Unicorn Suite, complétée par OpenVibe, un outil open-source spécialisé dans le traitement et
la visualisation des signaux EEG. Les mesures oculaires ont été traitées via le SDK SRanipal de HTC, qui s’intègre
directement dans Unity pour fournir des données en temps réel sur les fixations et les saccades des utilisateurs.
Pour le suivi des données de charge physique, l’application Polar Sensor Logger a été employée, permettant de
synchroniser les données de fréquence cardiaque et les mouvements du corps avec le reste des mesures recueil-
lies.

Conception des Études

Les études menées dans cette thèse sont structurées autour de deux grandes applications : l’entraînement et la
téléopération dans le domaine des travaux de terrassement, et le développement d’une thérapie innovante et im-
mersive pour les personnes atteintes de dyslexie.

Dans les études de terrassement, les participants étaient immergés dans un environnement de simulation RV
où ils devaient accomplir diverses tâches, telles que l’excavation et la navigation d’engin de chantier. Ces tâches
étaient conçues pour reproduire les conditions réelles de travail, tout en permettant la mesure continue de leurs
performances opérationnelles (temps d’exécution, erreurs de manipulation), de leurs réponses physiologiques (ac-
tivité cérébrale, rythme cardiaque), et de leurs retours subjectifs (questionnaires).

Pour la thérapie de la dyslexie, des exercices visuels spécifiques ont été développés, simulant les traitements
classiques tout en explorant de nouvelles approches grâce à la RV. L’idée principale était d’exploiter les mesures
physiologiques et opérationnelles pour ajuster dynamiquement les exercices en fonction des besoins individuels
des patients.

Collecte et Analyse des Données

Les données collectées au cours des études étaient de nature variée, incluant des mesures physiologiques, opéra-
tionnelles et subjectives. Les mesures opérationnelles, comme le temps de tâche et les erreurs commises, ont
été analysées pour évaluer l’efficacité et la performance des interfaces proposées. Les données physiologiques,
notamment le suivi occulaire, et l’activité EEG, ont été synchronisées grâce au Lab Streaming Layer, traitées via le
logiciel OpenVibe pour extraire des marqueurs cognitifs (charge mentale, attention) et analysées avec Python. Ces
analyses ont impliqué l’utilisation de techniques avancées de filtrage et de synchronisation des signaux, en raison
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des différentes fréquences d’échantillonnage et de la complexité des signaux enregistrés. Les questionnaires post-
tâches ont permis de recueillir des retours qualitatifs sur l’expérience utilisateur, apportant un complément indis-
pensable aux mesures objectives. La combinaison de ces trois types de données a été au cœur de la méthodologie
VR-SOLUS, visant à proposer une approche hybride et complète pour l’optimisation des environnements VR.

Résultats

Les résultats des études réalisées dans le cadre de cette thèse ont confirmé l’efficacité de la méthodologie VR-
SOLUS en fournissant des informations détaillés sur les expériences en RV. Cette section résume les principales
découvertes et contributions apportées par nos diverses études. Toutes les expériences ont été menées dans le
strict respect des normes éthiques et des politiques de confidentialité des données de notre institution.

Étude de Validation de l’Interface RV

Cette étude a comparé l’utilisation d’une interface RV pour le contrôle d’une pelleteuse réelle (fournie par Heracles
Robotics, une entreprise de terassement autonome, partenaire de cette thèse) avec une pelleteuse simulée en RV.
Les résultats ont montré que l’interface RV offrait des performances comparables à celles de la machine réelle,
tant pour les professionnels que pour les novices. Cette validation a confirmé que l’interface RV est une alterna-
tive viable pour les applications de téléopération, offrant une solution efficace pour des environnements industriels
simulés.

Pour la méthodologie VR-SOLUS, cette étude a permis une première mise à l’épreuve des données opéra-
tionelles que sont le temps de complétion, les erreurs de manipulation et l’aisance de contrôle du système. Grâce
à cette étude ont également pu être extraite et validée des mesures spécifiques au cas d’usage, sous la forme de
fluidité et maladresse des contrôles. Cela a pu démontrer l’importance de contextualiser la méthode de conception
d’une application RV à ses utilisateurs mais également à ses cas d’usage.

Étude de Sélection de Matériel

L’étude a comparé l’efficacité de trois types de contrôleurs : les contrôleurs de jeu (mannette), les contrôleurs RV
hybrides (fournis avec le casque), et les joysticks professionnels. Les résultats ont révélé que les joysticks offraient
les meilleures performances globales en termes de précision et de contrôle pour les tâches de formation en RV.
Cette découverte a confirmé que les normes professionnelles surpassent la familiarité avec les contrôleurs pour les
tâches d’excavation et de formation en RV.

Dans le cadre de la contribution à notre méthodologie, cette étude a validé les mesures opérationnelles évo-
quées précédemment, et a permis l’étude de leurs corrélations. Un premier essai de mise en place de capteurs
physiologiques a également été effectuée pendant cette étude, présentant des résultats encourageant une intégra-
tion plus complète mais nécessitant une analyse de données plus approfondie.

Étude d’Optimisation de Logiciel

Cette étude a évalué différentes configurations d’annotations virtuelles (AVs) et leurs modalités d’affichage. Les
résultats ont montré que l’approche hybride, combinant les données objectives et les retours utilisateurs, offrait les
meilleurs résultats en termes de satisfaction et d’efficacité, comparativement à des méthodes purement objectives
ou purement subjectives. Les méthodologies purement objectives ou subjectives n’ont pas capturé toutes les nu-
ances de l’expérience utilisateur, tandis que la méthodologie hybride VR-SOLUS a fourni une vue plus complète
des annotations virtuelles et aboutissant à de meilleures performances utilisateurs.
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Étude Thérapeutique

Un prototype de thérapie dyslexique en RV a été développé et validé avec des orthoptistes et une neurologue.
Bien que l’étude clinique n’ait pas été réalisée, les résultats préliminaires montrent un potentiel prometteur pour
l’application de la méthodologie VR-SOLUS et les technologie de RV dans la thérapie de la dyslexie. L’intégration
de mesures opérationnelles, physiologiques, et des évaluations médicales suggère que cette approche pourrait
offrir une méthode efficace pour la thérapie de la dyslexie, bien que des études cliniques supplémentaires soient
nécessaires pour valider pleinement cette approche.

En terme de méthodologie, cette étude offre une perspective sur l’utilisation à long-terme de VR-SOLUS. Non
seulement cette méthodologie peut s’utiliser dans la phase de conception, au début du cycle de vie de l’application.
Mais de par cette étude, une possibilité d’utilisation continue est envisageable, pour une mise à jour continue de
l’application afin qu’elle réponde aux besoins de l’utilisateur. Dans ce contexte thérapeutique, cela signifie une
potentielle personnalisation de la thérapie pour la rendre d’autant plus efficace et améliorer les soins prodigués en
RV.

Limitations

Les études réalisées ont rencontré plusieurs limitations significatives qui doivent être prises en compte dans l’analyse
de notre méthdologie, ainsi que dans ses futurs développement :

• Configuration Expérimentale : les études réalisées pendant cette thèse l’ont été dans un environnement
qui ne correspondait pas aux conditions idéales d’un laboratoire EEG sans interférences. Cette limitation a pu
affecter la qualité des signaux EEG, malgré les efforts pour réduire le bruit lors du filtrage et de l’analyse des
signaux. De plus, l’absence de cadre clinique pour l’étude de thérapie de la dyslexie a limité la validation de
cette étude en usage réel, malgré l’approbation des spécialistes médicaux;

• Nombre Limité de Participants : le nombre limité de participants a restreint la puissance statistique des
analyses, réduisant la robustesse et la généralisabilité des conclusions. Les tests ANOVA effectués ont fourni
des résultats acceptables, mais la force et la signification des résultats n’étaient pas optimales en raison du
nombre insuffisant de participants;

• Synchronisation des Données : la synchronisation des données a été réalisée par logiciel plutôt que par
matériel (qui est la technique traditionnellement employée), ce qui a pu affecter la précision des signaux
enregistrés, notamment pour les données provenant de différentes modalités avec des timings précis et des
fréquences différentes;

• Limites des Capteurs : les capteurs utilisés, en particulier pour l’EEG, ont nécessité un filtrage et une
analyse poussés. Les capteurs actuels, avec seulement huit électrodes, sont limités en termes de précision et
de confort. L’intégration de capteurs plus avancés ou de capteurs EEG intégrés directement dans le casque
de RV pourrait améliorer la qualité des signaux et réduire les problèmes de synchronisation.

Futures Recherches

Pour améliorer la méthodologie VR-SOLUS et surmonter les limitations identifiées, plusieurs pistes de développe-
ment sont envisagées :

• Augmentation du Nombre de Participants : il est crucial d’augmenter le nombre de participants pour obtenir
des résultats plus généralisables et plus robustes. Des études supplémentaires dans différents contextes
d’application permettraient de tester la généralisabilité des résultats. Une étude clinique complète pour la
thérapie de la dyslexie pourraient confirmer (ou infirmer) en usage réel l’utilité et l’efficacité de la RV pour le
traitement médical;

• Intégration de Nouveaux Bio-capteurs : l’intégration de nouveaux capteurs, tels que des capteurs éléec-
tromyogrammes (EM)G et des capteurs EEG intégrés au casque de RV et possédant plus d’électrodes, pour-
rait améliorer la synchronisation des données, réduire le bruit et augmenter le confort des utilisateurs. Cette
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intégration permettrait de recueillir plus de données, de manière plus précise, afin de mieux comprendre les
interactions en RV;

• Analyse Avancée des Données : l’exploration de techniques d’analyse et de filtrage plus avancées pour
l’EEG et autres données physiologiques est nécessaire pour affiner les mesures obtenues et améliorer la
précision des résultats. L’intégration et l’analyse conjointe de nouvelles mesures objectives et subjectives
pourrait révéler de nouvelles informations sur l’expérience en RV;

• Études à Long Terme : la réalisation d’études à long terme utilisant la méthodologie VR-SOLUS dans divers
contextes d’application permettrait de mieux comprendre l’efficacité et les implications de cette approche.
Ces études pourraient offrir des perspectives supplémentaires sur l’optimisation des expériences en RV en
continu.

Conclusion

Dans cette thèse, nous avons démontré que la méthodologie VR-SOLUS, en combinant des mesures opéra-
tionnelles, physiologiques et des retours utilisateurs, offre une approche plus complète pour la conception et
l’optimisation des environnements RV. Les résultats des différentes études, allant de la validation d’interfaces de
téléopération à l’optimisation des annotations virtuelles et à la thérapie dyslexique, ont confirmé que cette ap-
proche hybride est plus efficace que les méthodes purement objectives ou purement subjectives. En répondant aux
questions fondamentales 1) quelles sont les mesures opérationnelles utiles, 2) quelle est l’efficacité des capteurs
physiologiques et 3) quelles sont les méthodologies pour améliorer la conception de la RV, cette recherche ouvre la
voie à de futures avancées dans le domaine.

La méthodologie VR-SOLUS propose une vision hybride de la conception RV qui dépasse les limites des méth-
odes traditionnelles et basées sur les données, offrant une analyse plus complète et précise des expériences
en RV. Les contributions de cette recherche, en termes de validation des interfaces, de sélection du matériel,
d’optimisation du logiciel et d’application thérapeutique, fournissent une base solide pour de futures explorations et
développements dans le domaine de la réalité virtuelle. La poursuite du développement de nouveaux capteurs et
de techniques d’analyse plus avancées permettra de perfectionner encore davantage les expériences en RV, offrant
des solutions plus précises et adaptées aux besoins des utilisateurs.
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Chapter 1

Introduction

We can trace the origins of virtual reality (VR) head-mounted displays back to the creation of the stereoscope in
the 1830s, with the version we recognise today taking shape in the 1960s [1]. Two hundred years later, the global
head-mounted displays market - including VR - is projected to reach more than $370 billion by 2034 [2], due to its
expanding use in industries such as healthcare, education and entertainment. The VR market has rapidly evolved
from a niche technology to a mainstream tool with applications across various sectors (see Fig. 1.1). Initially as-
sociated with gaming and entertainment, VR has expanded its reach into fields as diverse as industry, healthcare,
education, and social interaction, reshaping how we engage with both digital and physical environments. The ex-
pansion of VR technologies is not stopping, reaching further and further, into more complex fields and into a wider
range of users.

Coates defined Virtual Reality in 1992 as "electronic simulations of environments experienced via head-mounted
eye goggles and wired clothing enabling the end user to interact in realistic three-dimensional situations" [3]. That
same year, Greenbaum described it as "an alternate world filled with computer-generated images that respond to
human movements. These simulated environments are usually visited with the aid of an expensive data suit which
features stereophonic video goggles and fiber-optic data gloves" [4]. While these technology-centric definitions
remain relevant today, this thesis adopts a user-centric perspective, as expressed by Steuer: "A ’virtual reality’ is
defined as a real or simulated environment in which a perceiver experiences telepresence" [5]. Throughout our
studies, we place the user at the center of the system, designing and optimising VR to enhance user experience.

Figure 1.1: Virtual Reality Timeline
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In the context of Industry 4.0, VR plays a crucial role in simulating and optimising complex manufacturing pro-
cesses. It allows for the creation of digital twins - virtual replicas of physical systems - enabling real-time monitoring,
testing, training, remote operating and optimisation without the risks and costs associated with physical trials [6].
This integration of VR with advanced manufacturing techniques is driving significant efficiencies, from product de-
sign to maintenance and worker training. The healthcare sector has also embraced VR, particularly in therapy and
rehabilitation. VR is being used as part of digital therapeutics, to treat conditions such as phobias, Post-Traumatic
Stress Disorder, and chronic pain, offering immersive environments where patients can confront and manage their
symptoms in controlled settings [7]. This technology is also revolutionising surgical training, providing surgeons with
highly realistic simulations to practice complex procedures, improving outcomes, and reducing the risk of errors. In
the gaming industry, VR continues to push the boundaries of immersive entertainment. With the development of
more sophisticated hardware and software, players are experiencing games in more engaging and lifelike ways than
ever before. The gaming industry’s investment in VR is not just about enhancing gameplay but also about creating
social spaces where players can interact within the virtual world, blending the lines between reality and fiction [8].
The recent rise of the metaverse represents another significant leap for VR. As companies invest heavily in building
interconnected virtual worlds, VR is becoming central to social interaction, commerce, and even work. The meta-
verse aims to be a fully immersive digital universe where people can meet, collaborate, and create, fundamentally
altering how we perceive and engage with the online world.

Through those fields, and the many others making use of VR nowadays, we see VR applications becoming
more widespread and accessible to a broader range of consumers, see Fig. 1.21. Their use-cases and specific
needs is also broadening, creating a demand for optimised, complex application with a user-centred design more
prominently than ever. With such diverse and complex applications, from industrial simulations to healthcare treat-
ments and immersive entertainment, the need to refine and perfect VR experiences is capital. One does not simply
design a therapeutic tool the same way one designs a game or an industrial monitoring system. Effective VR design
requires not only technological innovation, but also a deep understanding of user interaction, psychology, and er-
gonomics in the context of VR application development. As the user base for VR expands, so too does the need for
sophisticated, well-designed systems that can answer to a wide array of needs, ensuring that VR experiences are
not only immersive and effective, but also intuitive and accessible to all, despite the complexity of their use-cases.
To produce that, design methodologies exist to help researcher and developers create VR applications that answer
to their needs, but more importantly to their users’ needs.

Figure 1.2: Extended Reality (XR) Software Market 2025 Fields and Revenue (according to Statist)

As VR continues to advance, so too do the methodologies used to design and optimise VR experiences [9]. Tra-
ditional design approaches have often relied on iterative development, where user feedback plays a crucial role. This

1Statista 2025 XR Market Prediction https://www.statista.com/chart/4602/virtual-and-augmented-reality-software-revenue/
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feedback, typically collected through surveys, interviews, and observational studies, provides valuable insights into
user preferences and pain points. However, these methods are inherently subjective and rely heavily on user self-
reported experiences, which can introduce bias and limit the depth of analysis [10]. In response to these limitations,
there has been a significant shift towards data-driven design methodologies. These approaches use objective data
collected from user interactions within the VR environment, providing a more nuanced and accurate understanding
of user behaviour [11]. By analysing metrics such as task completion times, error rates, and interaction patterns,
designers can make informed decisions to enhance user experience and optimise system performance. This shift
towards data-driven methods marks a new era in VR development, where decisions are grounded in objective mea-
sures rather than solely on subjective user perceptions. The emergence of biosensors has further revolutionised the
design and optimisation process in VR. Biosensors, such as eye-tracking devices, electroencephalograms (EEG),
and heart rate monitors, allow the collection of physiological data that reflects users’ cognitive, physical and emo-
tional states in real time [12]. These sensors provide insights into how users respond mentally and physically to
the VR environment, revealing aspects of the experience that traditional methods might overlook. For example,
eye-tracking can show where a user’s attention is focused, while EEG data can indicate levels of cognitive load or
emotional engagement.

In this thesis, we study VR design and optimisation methodologies and evaluate their metrics to create our own
hybrid methodology: VR-SOLUS, the Sensory, OperationaL and User data Synthesis method for Virtual Reality.
By integrating biosensor data with operational metrics and user feedback, designers using VR-SOLUS can achieve
an extensive understanding of user experience, combining objective measures of performance with physiological
indicators of user state, as well as user perception. This synergy between data-driven methodologies, biosensors,
and traditional feedback paves the way for creating more adaptive, customised, and effective VR systems, capable
of responding to user needs in real time and improving overall usability and effectiveness across many fields.

1.1 Designing Virtual Reality - Challenges and Gaps

The evolution of Virtual Reality (VR) design and development has seen significant advancements, but several chal-
lenges remain. Addressing these challenges is essential for enhancing the effectiveness and user experience of VR
applications.

Traditional VR design methodologies often rely heavily on subjective measures, including user surveys and
feedback. These approaches, while invaluable, are not without limitations. Surveys and subjective feedback provide
critical insight into user experiences and preferences, but they are inherently limited by their reliance on personal
opinions and perceptions. This subjectivity can introduce biases and variability that may not always accurately reflect
the true effectiveness or usability of the VR experience. Furthermore, traditional methods can be labour-intensive
and time-consuming, making it challenging to gather comprehensive and actionable data. In response to these
limitations, the field has increasingly adopted data-driven design methodologies. These approaches use objective
data to inform VR design, using metrics such as user performance, physiological responses, and interaction logs.
Although data-driven methods offer a more quantifiable and objective means of evaluating VR experiences, they
also come with their own set of challenges. Objective data can sometimes overlook the nuanced aspects of user
experience that are captured through subjective feedback. In addition, data-driven methods often require sophisti-
cated technology and extensive data analysis, which can be complex and resource-intensive.

Our thesis aims to bridge the gaps between traditional subjective methods and data-driven approaches by intro-
ducing a hybrid methodology that integrates operational, physiological, and user feedback data. This comprehensive
approach seeks to address the limitations of both traditional and data-driven design techniques:

• Enhanced Accuracy and Reliability: by combining subjective feedback with objective operational and phys-
iological data, our methodology aims to provide a more extensive and accurate understanding of user experi-
ence. This integration helps mitigating the biases inherent in purely subjective assessments and the limitations
of data-driven approaches alone;

• Comprehensive User Insights: our approach addresses the gap in capturing both the qualitative and quan-
titative aspects of user experience. While traditional methods may miss certain nuances, and data-driven
methods may overlook user perception, our hybrid approach provides a richer and more complete picture of
how users interact with VR applications;
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• Improved Design Iteration: the hybrid methodology enables more informed and iterative design processes
by using diverse data sources. This allows for more effective adjustments and refinements to VR applications,
ultimately leading to better user experiences.

1.2 VR-SOLUS, Sensory, OperationaL and User data Synthesis for Virtual
Reality

1.2.1 Hypothesis

To address these gaps, our investigation focusses on the combined use of operational and physiological data along-
side traditional user feedback. This multimodal approach aims to provide a comprehensive understanding of user
interactions and experiences within VR applications, allowing developers and researchers to make informed deci-
sions in their VR design and optimisation. To achieve this goal, our methodology exploits the following:

• Operational Data: metrics such as task completion times, percentage of time using multiple inputs, and
number of input errors are collected to objectively measure user performance and efficiency;

• Physiological Data: using advanced sensors, we gather physiological markers that provide insights into the
user’s cognitive and physical state:

– Eye-Tracking: captures fixation points and gaze patterns to understand visual attention and identify areas
of interest;

– EEG (Electroencephalogram): measures cognitive load, allowing us to assess the mental effort required
to complete tasks in the VR environment;

– IMU (Inertial Measurement Unit) and BPM (Beats Per Minute) Trackers: monitor physical movements and
heart rate to evaluate physical load and stress levels during interactions.

• User Feedback: traditional surveys and interviews are conducted to gather users’ subjective experiences and
satisfaction levels. This feedback is essential to understand the perceived usability and enjoyment.

In the framework of our thesis, we combine these data inside the VR-SOLUS (Sensory, OperationaL and User
data Synthesis for Virtual Reality) methodology. This comprehensive approach not only highlights areas for im-
provement, but also helps in developing more intuitive and user-friendly VR applications. Our studies validate this
methodology through various use cases, including VR teleoperation interfaces, controller selection, virtual annota-
tion designs, and gaze-based therapy for dyslexia.

Through this thesis we answer three questions:

1. Which operational measures are valuable for VR development?

2. How to employ physiological sensors efficiently?

3. What kind of methodology can further improve VR design and optimisation?

1.2.2 Experimental Setup

Our research explores advancements in VR through studies in two distinct domains: earthwork teleoperation and
therapy. This section details the experimental setup, including the design of our studies, the hardware and software
used, and the measures and analysis techniques applied to develop the VR-SOLUS methodology. All experiments
were carried out in strict accordance with our institution’s ethical standards and data privacy policies.
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Earthwork Studies

The earthwork teleoperation studies aim to refine VR interfaces and controls for excavation tasks. These studies
were divided into three main investigations:

• Controller Selection Study: this investigation focused on identifying the optimal controller for VR-based
earthwork training. We compared three types of controllers — gamepads (gaming standard), VR-specific
controllers (hybrid), and joysticks (professional standard) — to determine their impact on training efficacy.
The study included 13 participants and evaluated controller performance based on task execution and user
feedback. This study helped us identifying and validating performance indicators;

• Interface Validation Study: this study compared a VR teleoperation interface with real-world machine control.
Using a digital twin of an excavation machine, we linked the VR environment to a real Cat323 excavator
through Unity, using an emulated digital-twin to control the real machine. The study involved 10 participants
and assessed performance metrics such as task completion time and accuracy to validate the effectiveness
of the VR interface. It is also through this study that we tested and validated use-case specific metrics as
efficient operational measures, and where we first integrated bio-sensors into our framework;

• Software Optimisation Study: this study explored the impact of different virtual annotations (VAs) modalities
on user performance in VR. Two phases were involved: the design phase, where the VA sets were empirically
defined and tested, and the evaluation phase, which compared three VA sets — one based on user feedback,
one on objective measures, and a hybrid approach. The study, involving 30 participants, aimed to refine VR
training tools by assessing the effectiveness of the various VA modalities. Not only did this study assess the
neurological part of our data analysis, it also provided a testing ground where we confronted purely subjective,
purely objective, and hybrid methodologies. The hybrid methodology, VR-SOLUS, was shown to be superior
and validated through this experiment.

Therapeutics Study

The therapy study aimed to develop and validate a VR prototype for dyslexia therapy. This study integrated oper-
ational measures, physiological metrics, user feedback, and clinical evaluation to create an adaptive VR tool. The
prototype was validated with input from three orthoptists and one neurologist, focusing on visual exercises tailored
to support dyslexia therapy.

1.2.3 Materials

Through this thesis, we employed diverse hardware and software, aimed for VR simulation, physiological data
recording, and data analysis.

Hardware

• VR Headset: HTC Vive Pro Eye, a VR headset with a 1440 x 1600 pixels per eye resolution (2880 x 1600
pixels combined), with a field of view of 110° and a frequency of 90Hz. This headset provides quality VR
simulation, hence its use for our studies;

• Eye-Tracking: the HTC Vive Pro Eye is equipped with an integrated Tobii eye-tracker with a 120Hz frequency,
used for assessing gaze patterns and visual focus;

• Electroencephalogram (EEG): the g.tec Unicorn Hybrid Black is an EEG cap with eight electrodes, used to
monitor cognitive load and brain activity with a 200Hz frequency. It is also equipped with IMU (gyroscopes and
accelerometers);

• Inertial Measurement Units (IMUs) and Heart Rate Monitor: the Polar OH1+ armband was used for tracking
physical load and physiological responses during VR tasks through its accelerometer and heart rate monitor.
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Software

• Unity: the primary platform for developing and simulating VR environments and recording operational data.
This game engine provided us all the tools needed for our VR applications, as well as calibration phases and
data recording;

• SRanipal: package used in Unity for processing eye-tracking data from the HTC Vive Pro Eye;

• Unicorn Suite: software suite used for analysing EEG and IMUs data from the g.tec Unicorn Hybrid Black;

• Polar Sensor Logger: Android API used for logging physical data from the Polar OH1+ IMUs and heart rate
monitors;

• Lab Streaming Layer: used for synchronising our multimodal streams of data;

• OpenVibe: physiological signal processing and analysis tool, used for EEG filtering and processing;

• Python: code used for post-processing filtering and analysis of our diverse data.

1.2.4 Summary of Findings

Our VR-SOLUS framework Fig. 1.3 yields the strengths of both subjective and objective data to provide an extensive
methodology for designing and optimising VR applications. It explores 1) operational measures as performance
indicators. Multiple measures are presented and evaluated in Chapter 3. It also incorporates 2) diverse physio-
logical sensors and extracts their different measures, as presented in Chapter 4. Finally, through 3) a combination
of objective and subjective measures, VR-SOLUS proposes a hybrid method for VR design. This hybrid approach
is extensively tested, and its correlation of measures is studied in Chapter 5. The VR-SOLUS approach addresses
existing gaps in current design methodologies, ultimately aiming to enhance user experience and performance in
VR environments.

In the following sections, we present the findings from our various studies that validate the VR-SOLUS approach.
These studies, which span domains such as earthwork teleoperation and therapy, examine the integration of opera-
tional metrics, physiological signals, and user feedback to improve the design of VR applications. Fours studies are
presented in this thesis:

• Interface Validation: earthwork teleoperation study where users controlled a real excavator. The goal of
this study was to validate VR as a potential teleoperation interface. Once validated, the follow-up earthwork
studies aimed to improve said interface for training future teleoperators, using a simulated VR environment;

• Controller Selection: earthwork training study, aiming for the selection of a suitable controller for our VR
interface. This study was done entirely in simulation and its goal was to optimise the hardware part of our VR
interface;

• Virtual Annotations: earthwork training study, also done in simulation, serving both as a software optimisation
of our VR interface and a validation of our optimisation methodology;

• Dyslexia Therapy: visual immersive therapy prototype for dyslexia rehabilitation, applying our methodology
to another use-case than earthwork.

In the following chapters, our analysis focuses on task performance, user experience, and the role of physiologi-
cal signals in measuring cognitive load and physical exertion in the above-mentioned studies.

One key aspect of our work is the exploration of correlations between operational data, physiological signals, and
subjective user feedback, presented in Chapter 5. Our findings highlight how these diverse types of data interact,
revealing valuable patterns. These correlations are critical to understanding the full user experience and reveal that
mismatches between objective performance data and subjective feedback can offer unique insights into usability
challenges [13].

This summary sets the stage for the detailed exploration of these findings throughout the manuscript, showing
how the hybrid integration of multimodal data through VR-SOLUS holds the potential to significantly advance VR
application design and optimisation across multiple fields.
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Figure 1.3: The VR-SOLUS Framework
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Chapter 2

Related Work - Designing Virtual Reality
Applications and Experiments

Virtual Reality (VR) applications have significantly transformed various sectors by offering immersive experiences
that seamlessly integrate virtual environments with real-world applications. Industry 4.0, healthcare, education, en-
tertainment, marketing, and so on make full use of VR technologies. To design these applications, developers rely
on a variety of methodologies aimed at optimising performance and user experience.

Traditional approaches to VR design often involve gathering user feedback through methods such as surveys, in-
terviews, and usability testing. This user-centric approach ensures that designers gain insight into user preferences,
challenges, and interaction patterns. By incorporating this feedback iteratively throughout the design process, VR
applications can evolve to better meet the needs and expectations of their users. For example, in therapeutic
settings, understanding how patients interact with virtual environments can lead to improvements that enhance
treatment efficiency and user engagement throughout therapy.

In addition to traditional methods, data-driven design methodologies are increasingly important in the develop-
ment of VR applications. These methodologies combine real-time analytics derived from operational metrics (such
as user interaction data and task completion rates) and physiological metrics (including cognitive load and emotional
responses measured through biometric sensors or, in short, biosensors). Analysing these data enables designers
to make informed decisions that aim to optimise user interfaces, refine virtual environments, and ultimately improve
the overall user experience. If we keep the healthcare example, VR applications use physiological data to create
simulations that allow medical professionals to practice and refine complex procedures in a controlled virtual envi-
ronment.

By integrating these diverse design methodologies, VR developers ensure that applications are not only tech-
nically robust but also user-friendly and able to address specific use-case needs. As VR technology continues to
advance, these methodologies will play a crucial role in shaping immersive experiences that push the boundaries of
innovation across sectors.

In this thesis, we propose a methodology that uses both a traditional and a data-driven approach, combining
standard surveys with operational and physiological data to improve VR design and optimisation.

2.1 Designing Virtual Reality

Whether designed for games, training tools, therapeutic devices, or any other application, virtual reality (VR) applica-
tions do have basic design guidelines. VR applications are meticulously crafted to optimise immersion, interaction,
and mitigate issues such as cybersickness, to provide the best performance and user experience. These general
guidelines presented in Jerald’s VR book [14] are centred around two cores: the user first and foremost, and the
use-case of the application.
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Whichever use-case is chosen, VR design must encompass several critical aspects that collectively shape the
user experience:

• Creating immersion: VR design focuses on creating a sense of presence within virtual environments. This
is achieved through high-resolution graphics, realistic spatial audio, and accurate tracking of user movements
[15]. Immersion leads to engagement, engagement leads to learning and improvement of the user [16]. For
some applications, this requires highly-detailed digital-twins to have an environment as close to reality as
possible [17]. But it is mainly having a coherent environment that keeps the user from breaking immersion and
engagement [18], both in terms of visual and auditory identity;

• Providing interaction: interaction design in VR centres on intuitive controls and natural virtual movements
that mirror real-world actions. Users traditionally interact with virtual environments using motion controllers,
but also hand gestures [19], or gaze-based interfaces [20]. Designers aim to make interactions seamless and
responsive, enabling users to manipulate objects, navigate spaces, and engage with virtual content effort-
lessly;

• Mitigate cybersickness: cybersickness is a form of motion sickness experienced in virtual reality environ-
ments typically caused by the offset between visual and the body inputs received by the brain [21]. Charac-
terised by symptoms such as nausea, dizziness, and disorientation, it can be triggered for any user at any
time and force them to completely stop their VR experience. As such, it is crucial to address cybersickness
and mitigate it as much as possible. Techniques include offering multiple locomotion options (e.g., telepor-
tation, smooth movement [22]), reducing acceleration speeds, and maintaining stable frame rates to prevent
motion-induced nausea or disorientation [23];

• Ensure user comfort: in addition to reducing cybersickness, user comfort also involves optimising visual
fidelity, reducing latency, and implementing ergonomic design principles. VR applications prioritise smooth
rendering, minimal latency, and comfortable viewing angles to prevent eye strain and fatigue during extended
use [24]. Designers also consider ergonomic factors in controller design and headset ergonomics to improve
overall comfort [25];

• Use adaptive design: some VR applications incorporate adaptive design elements to respond to diverse
user needs and preferences. This includes custom settings for movement sensitivity, comfort modes, and
accessibility features [26]. Adaptive design allows users to adjust VR experiences according to their comfort
levels, physical abilities, or specific preferences without compromising usability or immersion.

To effectively implement and analyse these key aspects of VR design, researchers and developers employ a
range of methodologies, ranging from traditional approaches that use user feedback to data-driven methods using
quantified data.

2.2 Design Methodologies

Design methodologies in VR are systematic approaches used to create, evaluate, and refine virtual experiences.
These methods serve to ensure that VR applications are effective, engaging, and user-friendly. They typically in-
volve a cycle of planning, prototyping, testing, and iterating.

Traditional methodologies often rely on qualitative feedback from users, gathered mostly through surveys. These
provide valuable insights into user preferences and experiences. More recently, data-driven methodologies have
gained popularity among virtual reality (VR) designers and developers. These approaches employ quantitative data
collected from various sources, including user interactions within the VR environment, physiological responses,
and performance metrics. By combining both traditional and data-driven methods, designers can gain a more
comprehensive understanding of user needs and behaviours in virtual spaces, from both subjective and objective
points of view.

2.2.1 Traditional Virtual Reality Design

VR design has long relied on conventional user-centred approaches adapted from human-computer interaction
fields. These traditional methods rely on subjective means, primarily surveys and interviews. They form a cor-
nerstone of VR design processes [27] and focus on gathering qualitative insights directly from users, emphasising
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perceptions, opinions, and self-reported experiences to comprehend and optimise user-experience (UX), from the
user’s own inputs.

User surveys and questionnaires are fundamental tools in traditional VR design. These instruments collect struc-
tured feedback on various aspects of the VR experience, including usability, comfort, presence, and immersion [28].
Designers often employ standardised scales, such as the NASA Task-Load-Index (NASA-TLX) [29], the System Us-
ability Scale (SUS) [30], the Kennedy Simulator Sickness Questionnaire (SSQ) [31] or the Presence Questionnaire
[32], to allow comparisons across different VR applications. These subjective methods offer several advantages.
They provide rich, contextual data about user experiences, preferences, and perception. This qualitative information
is crucial to understanding the patterns behind user behaviours and identifying potential areas for improvement that
might not be apparent from quantitative data alone [33].

However, self-reported data in VR design, while valuable, have inherent limitations. Users often struggle to
accurately articulate their experiences, which can lead to incomplete or biased feedback [34]. Post-experience
surveys and interviews can introduce recall bias, where recent events or emotions can influence user recollections
[35]. The administration of surveys within the VR environment can partially mitigate recall bias [36]. However, this
approach does not fully address the subjective nature of user feedback or the inherent biases in survey methodolo-
gies. Another challenge is the potential offset between users’ reported experiences and their actual behaviour in
VR environments. What users say they prefer or experience may not always align with their actions or physiological
responses during VR use [37].

Despite these limitations, traditional survey-based and subjective methods remain valuable in VR design. They
offer a human-centred perspective that helps ensuring that VR applications meet user needs and expectations.
However, the field increasingly recognises the need to complement these approaches with more objective data-
driven methodologies to create a more comprehensive understanding of VR user experiences [38].

Pros and Cons of Traditional Methodologies

Traditional methods have many advantages but also have limitations, summarised in Table 2.1:

Advantages Limitations

Easy to use Recall bias
Insight into user perception Offset between perception and reality

Cheap No extrinsic measures

Table 2.1: Advantages and Limitations of Traditional Design Methods

2.2.2 Data-driven Virtual Reality Design

Data-driven methodologies represent a paradigm shift in design and research practices, emphasising the use of
quantitative data to enrich decision-making processes. These approaches rely on the collection, analysis, and inter-
pretation of objective measurements, using statistical techniques to guide design and development [39]. In recent
years, data-driven methods have spread across various fields, including software development, user experience
design, and scientific research, offering a more empirical approach to problem solving and innovation [40].

In the realm of VR, data-driven methodologies have emerged as a powerful complement to traditional subjec-
tive design approaches. VR environments present unique challenges and opportunities for data collection, given
their immersive and interactive nature. These methods employ a wide array of metrics to assess user experience,
performance, and physiological responses within virtual environments [41]. By providing quantifiable and objective
data about user interactions, data-driven approaches can reveal patterns, preferences, and issues that might not
be apparent through subjective feedback alone. This objectivity is particularly valuable in VR design, where users
may struggle to express their experiences fully or where subtle aspects of the virtual environment can significantly
impact the overall experience [42].
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Operational Measures

Operational measures in VR focus on quantifiable aspects of user performance and interaction within the virtual
environment. They are extrinsic measures that provide concrete data on how users interact with the VR environ-
ment. Key operational measures include task completion times, which can indicate the efficiency of user interactions
[43]; error rates [44], highlighting areas where users struggle; navigation patterns [45], revealing how users explore
and move through virtual spaces; and input accuracy [46], assessing the precision of user actions within the VR
environment [47]. By analysing these metrics, designers can identify areas of difficulty in the VR interface, optimise
spatial layouts, and improve overall usability. For instance, tracking user movements within a virtual space might
reveal that certain areas are underused or difficult to navigate, prompting redesigns to enhance user motion fluidity
[48]. Similarly, analysing task completion times across different interface designs can provide empirical evidence for
the most effective layout [49].

These operational measures offer a detailed view of user behaviour from an external and objective point of view,
allowing designers to make data-informed decisions about everything from button placement to environmental de-
sign. However, interpreting this data requires careful consideration of the context and goals of the VR application
[50]. Moreover these operational measures remain external to the user, giving insights but only from an external
point of view. To obtain more objective data, the internal point of view must also be factored in the design of VR
applications. To do so requires physiological measures of the users.

Physiological Measures

Physiological measures capture users’ bodily responses during VR experiences, offering a window into the subcon-
scious and involuntary reactions to virtual stimuli [51]. These intrinsic measures can provide insights into users’
cognitive load, emotional states, and levels of engagement or stress, often revealing aspects of the user experience
that may not be consciously perceived or easily articulated [52].

Common physiological metrics in VR studies include heart rate and heart rate variability, which can indicate
changes in stress or emotional arousal [53]; eye movements and pupil dilation, which can reveal patterns of atten-
tion and cognitive processing [54]; and brain activity measured via electroencephalography (EEG), offering insights
into cognitive states and emotional responses [55]. Other examples include, but are not limited to, changes in heart
rate that might indicate heightened anxiety in certain virtual scenarios, allowing designers to identify and modify
potentially stressful elements [56]. Eye-tracking data could reveal which elements of a virtual environment attract
the most attention, informing decisions about information placement or environmental design [57]. EEG data might
provide insights into cognitive load during complex tasks, helping to optimize the difficulty curve of VR applications
[58].

The integration of these physiological measures into VR design processes offers unprecedented insights into
the user experience, from an internal point of view. However, it also presents challenges in data collection, analysis,
and interpretation, requiring specialised equipment and expertise [59].

Pros and Cons of Data-driven Methodologies

Like traditional methods, data-driven methodologies also possess multiple advantages and limitations, summarised
in Table 2.2:

Advantages Limitations

Intrinsic and extrinsic measures Does not take into account user experience
Numerous metrics to choose from Advanced analysis required

Quantifiable data Expensive and complex setup

Table 2.2: Advantages and Limitations of Data-driven Design Methods
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2.3 Proposed Methodology

The proposed methodology is founded on the hypothesis that integrating operational and physiological data with
traditional user feedback can significantly enhance the design and optimisation of VR applications. Plano Clark
[60] advocates combining different data sources to fully understand the research problem, which we aim for by
combining subjective and objective data. On one hand, traditional methodologies rely primarily on subjective user
feedback, which, while valuable, can be limited by individual perception and bias. This creates a gap where the
ground truth, or the objective reality of user interactions and experiences, may differ from the perceived truth re-
ported by users (Table 2.1). On the other hand, data-driven methodologies may rely on objective data, but said data
present challenges when it comes to their collection, analysis, and interpretation. Moreover, the use of physiologi-
cal data requires specialised hardware, which implies more complex and expensive experimental setups (Table 2.2).

The proposed methodology also considers a strong complementarity between subjective feedback and objective
data, bringing the benefits of both approaches while mitigating their drawbacks. User feedback provides insights
into user satisfaction and perceived usability, while operational data (e.g. task completion times, input errors) and
physiological data (e.g., cognitive load from EEG, eye-tracking fixations, physical load from IMU and BPM trackers)
offer precise, measurable indicators of user performance and experience. This combination allows for a more holis-
tic understanding of user interactions in VR environments, as seen in Table 2.3. A limitation of our methodology is
its potential complexity and cost, which depend largely on the specific sensors chosen for use. Integrating multiple
high-end sensors can provide valuable and detailed datasets, but may also significantly increase both the expense
and technical demands of the system. Professional grade biometric equipment, while offering precise data, can be
costly to acquire and maintain. Additionally, the volume of data generated by these sensors requires advanced sig-
nal processing and analysis techniques, which can further complicate the implementation. However, it is important
to note that the level of complexity and cost is directly linked to the number and type of sensors used, meaning that
a more tailored selection of sensors can mitigate these challenges while still benefiting from the methodology.

Advantages Limitations

Intrinsic and extrinsic measures Can be expensive and complex to use
Insight into user perception

Numerous metrics to choose from
Quantifiable data

Possibility to compare subjective and objective data

Table 2.3: Advantages and Limitations of the Proposed Method
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Chapter 3

Operational Measures

The field of virtual reality (VR) design has increasingly embraced data-driven approaches to enhance user expe-
riences and optimise application performance. This shift towards quantitative methodologies reflects a growing
recognition of the limitations inherent in relying solely on subjective user feedback [61]. Although qualitative insights
remain valuable, the integration of objective and measurable data provides designers and researchers with a more
comprehensive understanding of user interactions within virtual environments.

Data-driven design in VR capitalises on quantitative metrics to improve decision making processes, allowing for
more precise and targeted improvements [62]. This approach is particularly crucial in VR, where the immersive
nature of virtual environments can make it challenging for users to fully articulate their experiences. Operational
measures, which quantify user actions and system performance, offer an objective lens through which to view and
analyse VR interactions. The effectiveness of data-driven design in VR depends on the careful selection and im-
plementation of appropriate metrics. This process requires a thorough understanding of both the specific use-case
and the target audience for each VR application [14]. Different applications, whether for entertainment, education,
healthcare, or professional training, may require distinct sets of operational measures to accurately capture relevant
user behaviours and system performance indicators.

Our VR-SOLUS methodology (Sensory, OperationaL and User data Synthesis for Virtual Reality) recognises the
critical role of operational data in VR design and optimisation. By systematically collecting and analysing operational
measures, VR-SOLUS aims to provide designers with more quantitative insights. This approach enables a more nu-
anced understanding of user interactions, facilitating targeted improvements, and improving VR experiences through
the use of extrinsic measures. The following sections will detail the specific operational measures employed in our
methodology, their implementation, and their interpretation in the context of various VR applications. By examining
these quantitative metrics, we aim to illustrate how data-driven approaches, especially the use of operational data,
can significantly contribute to the advancement of VR design.

3.1 General Performance Indicators

Operational metrics provide a ground truth that complements subjective user feedback, allowing designers and
researchers to track concrete improvements and identify specific areas for optimisation [63]. The reliability and ob-
jectivity of these metrics make them invaluable tools for evaluating performance, ease of use, and user progression
in VR applications, thus their integration in the VR-SOLUS framework (Fig. 3.1). Unlike subjective measures, which
can be influenced by user bias or inconsistent reporting, operational metrics offer consistent, reproducible data that
can be analysed across multiple users and sessions.

In our VR-SOLUS methodology, we focus on three generic operational metrics:

• Time: the duration users take to complete specific tasks or actions within the VR environment;

• Errors: mistakes or unintended input actions (interactions of the user with the system, e.g. pressing a button)
made by the user during their interaction with the VR environment;
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• Multi-input: the complexity and coordination of user input actions.

Each of these metrics provides unique insights into user interaction and system performance. To illustrate their
application, we used a virtual reality training system for earthwork teleoperation. In this scenario, different controller
configurations are being evaluated for their effectiveness in training operators in virtual environments to use remote-
controlled excavation equipment.

Figure 3.1: Operational Metrics Framework Highlighted into the Global Analysis Approach Proposed by VR-SOLUS

3.1.1 Time

Time is a common and versatile metric in VR performance evaluation. It presents a quantifiable measure of user
efficiency and system responsiveness. As a key component of human-computer interaction evaluation [64], time
measurements have been extensively studied and applied across various domains, VR not excluded. In the field
of VR research, time metrics are typically used as total task completion time and/or sub-task duration measures.
These measures have been widely used to evaluate interface designs, assess learning curves, and compare differ-
ent interaction techniques. Recent studies have also explored more granular time metrics, such as decision-making
time and reaction time, to gain deeper insights into user cognitive processes in virtual environments [65].

In our VR-SOLUS methodology, we employ two primary time measures: full-time completion and task comple-
tion time. Full-time completion captures the total duration from the start to the end of a defined experiment, providing
a global view of user performance. This metric is particularly useful for comparing overall efficiency across different
system configurations or user groups, as seen in the example in Fig. 3.2. Task completion time, on the other hand,
focuses on the duration of specific exercises within the VR environment, allowing for detailed analysis of user per-
formance at different stages of interaction and at executing different actions. It also helps to identify particular areas
that may require optimisation. From these raw time data, we can derive several meaningful measures. The average
completion time indicates general task difficulty or system efficiency, while the time variability reflects consistency of
performance across users or sessions. By plotting these measures over multiple sessions, we can visualise learning
curves and assess improvement rates.

Time metrics provide a reliable ground truth for performance assessment, as long as it is correctly implemented.
The validity of these measures depends on the careful design of the experiment and the interpretation of the data.
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To ensure the integrity of time data, it is important to clearly define the start and end points for each measured task
or exercise, control for external factors that might influence timing, use consistent measurement methods across all
test conditions and participants, and consider the context of the task when interpreting results. If the experiment
design allows for it, inter-participant time can be compared as is. But more often than not, intra-participant normali-
sation is needed before comparing results, in order to ensure the validity of time data.

Figure 3.2: Example of Completion Time Metric*

*Box plots (also called a box-and-whisker plots) visualise the distribution of a dataset. For all the box plots
presented in this thesis, here is a breakdown of their elements:

• Box: represents the middle 50% of the data, known as the interquartile range (IQR). The lower edge is the
first quartile (Q1), and the upper edge is the third quartile (Q3);

• Whiskers: extend from the box to the minimum and maximum data points within 1.5 times the IQR from Q1
and Q3, representing the range of most of the data;

• Median (line inside the box): a line inside the box that shows the median (50th percentile) of the data;

• Cross/Marker: marks the mean (average) value;

• Outliers: data points outside the whiskers, shown as dots or small markers, representing unusually high or
low values.

3.1.2 Errors

In VR and human-computer interaction (HCI) in a more general way, error measures are central for the evaluation
of the effectiveness and usability of the system. These measures enable researchers to quantify user performance
and compare different interfaces or interaction techniques. Recent studies have expanded our understanding of
various error types in VR environments.

In our VR-SOLUS methodology, we focus on input errors, which can be particularly relevant depending on the
application. These errors relate to the accuracy and precision of user inputs - interactions - in the virtual environ-
ment, as seen in the example Fig. 3.3. Scientific studies highlight the importance of considering input errors -
incorrect interaction compared to the expected one - in the context of the overall user experience, rather than as
isolated metrics [66]. Errors can also be used as performance measures, ergonomic measures, and evolution mea-
sures studied over time. Performance measures evaluate task efficiency, while ergonomic measures reflect physical
and cognitive load during VR interactions, and are essential to provide satisfying user experience [67]. Input errors
validity as a metric also depends on careful implementation, recording, and interpretation. They must be correctly
and precisely defined to avoid variability between participants. As they are often recorded manually, what is an in-
put error and what is not must not fluctuate during experiments (inter and intra participants) to ensure metric integrity.
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Figure 3.3: Example of Input Errors Metric

3.1.3 Multi-tasking

The multi-tasking measure evaluate the capacity and performance of a user performing multiple interactions/tasks
at a time. These actions can be multimodal (e.g. motion and cognitive actions) or with the same modality (e.g. two
different motion tasks). This measure is essential for understanding how users interact with complex VR systems
that allow simultaneous manipulation of various inputs, require the use of multiple body parts, or evaluate brain-
body coordination. By capturing the frequency and duration of multi-tasking data, it can provide insights into user
engagement, performance, ergonomics, cognitive load, and interaction efficiency within the VR application.

Research in multi-tasking performance typically focuses on the ability to manage multiple tasks simultaneously,
often measured through time-on-task, error rates, and subjective workload assessments. Traditional metrics include
the Dual-Task Performance Paradigm, where participants perform two tasks simultaneously, and their performance
is compared to when tasks are done individually [68]. Another common measure is the Multi-Attribute Task Battery
(MATB), which assesses the ability to handle several simultaneous tasks by recording response times, accuracy,
and overall task management [69].

In our VR-SOLUS approach, we focus on the multi-inputs measure. This metric is centered on the simultaneous
use of multiple input devices within a VR setting. This measure records the simultaneous activation of different
controls, providing insight on how users manage complex interactions. By analysing these patterns, we can infer
the user’s cognitive strategies and their ability to effectively integrate multiple streams of input data. The multi-inputs
measure captures the duration of simultaneous inputs, the frequency of multi-input episodes, and the context in
which multi-inputs occur, correlating with specific tasks in the VR environment.

To ensure the validity of the multi-inputs measure, we mostly depend on metrics correlation and experimental
setting. As the recording is done directly by the software registering the user inputs, we need to define precisely
the start and end of the range of interest. The duration of multi-inputs usage is an exploitable measure as is, but it
can also be exploited as a multiple input rate during a task, i.e. extract the percentage of time a user spends using
multiple inputs during a task (normalise the multi-input value) before inter-participant comparison, as illustrated in
the example Fig. 3.4. To ensure that the multi-input metrics is valid, it must be correlated with other metrics such as
time and inputs errors: a strong (inverted) correlation with time is expected (the more inputs combination, the less
time it takes to finish a task); while a poor or non-significant correlation with inputs errors is necessary to ensure the
multiple inputs use is a result of conscious decision and not an unconscious error.
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Figure 3.4: Example of Multi-input Metric, Percentage of Time spent Using more than One Input

3.1.4 Implementation of Common Performance Indicators

In this section, we present the implementation of operational data within our proposed methodology, highlighting
their practical applications and effectiveness. Specifically, we focus on the use-case of controller selection process
for an earthwork teleoperation and training tool in virtual reality. This use-case aims to identify the most suitable
controller for the VR application from a diverse range of user-grade controllers, encompassing gamer, hybrid, and
professional options, see Fig. 3.5. By examining these controllers through the scope of operational data, we seek
to enhance the operational efficiency and user experience of the VR tool, ultimately contributing to the optimisation
of VR application design and functionality.

Figure 3.5: Controller Selection Spectrum

Earthwork Training

Teleoperation and training within the field of robotics has seen significant advancements in the latest years, particu-
larly in earthwork robotics. Training in this domain focuses on providing operators with the skills necessary to handle
complex machinery efficiently and safely. The integration of digital twin technology and simulation has changed the
training landscape, offering numerous advantages over traditional methods.

Simulations play a crucial role in the training of earthwork robotics by creating immersive and realistic scenarios
that operators may encounter on actual job sites. These simulations enable trainees to experience a wide range
of situations, from routine tasks to emergency responses, thus preparing them for the challenges of real-world
operations. The effectiveness of simulation-based training has been demonstrated in various studies, highlight-
ing improvements in both operator performance and confidence [70]. To reinforce these simulations, digital twins,
which are virtual replicas of physical systems, allow for real-time monitoring and analysis of robotic operations [71].
This technology provides a dynamic, realistic and interactive training environment where operators can practice and
hone their skills without the risks associated with real-world scenarios. The use of digital twins in training not only
enhances learning outcomes but also reduces operational costs and downtime.
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Another enhancement of training simulation comes from the medium itself: the use of VR environments. VR has
emerged as a powerful tool in the realm of robotic training, reinforcing immersiveness and providing engaging learn-
ing experiences. VR applications provide a safe and controlled environment where trainees can naturally interact
with virtual models of industrial equipment, practice operational procedures, and receive instant feedback on their
performance. They safely and cost-effectively learn the correct gestures and patterns needed for their future opera-
tions. The advantages of VR-based training include enhanced spatial awareness, improved hand-eye coordination,
and the ability to conduct repetitive practice without wear and tear on actual machinery [72]. Existing applications
of VR in robotic training span various sectors, including construction, mining, earthwork or medical robotics. These
applications use the immersive nature of VR to their advantage to replicate real-world conditions and provide hands-
on experience. For instance, VR training modules for excavator operators have been developed to simulate digging,
loading, and maneuvering tasks, enabling operators to gain practical skills in a virtual setting [73].

Controller Selection

The selection of an appropriate controller is crucial in the context of VR earthwork training due to its direct impact on
user performance, learning efficiency, and overall experience [74]. Controllers are the first direct interface between
the user and the virtual environment, making their design and functionality essential. An intuitive and responsive
controller enhances task performance by allowing users to operate machinery with greater precision and speed,
thereby reducing the likelihood of errors and improving operational efficiency [75]. This is especially important in
training applications where the goal is to provide realistic and practical experience that closely mimics real-world
teleoperations, to be later used in real-life use-cases. A well-designed controller can bridge the gap between virtual
training and actual fieldwork, ensuring that skills learned in the virtual environment transfer effectively to real-world
teleoperation work done by the trainee.

To test the efficiency of operational measures in VR design, we propose a study that evaluates the performance
and user experience of three different controllers: gamepad, VR controllers, and professional simulator joysticks,
within a VR excavator teleoperation training setup. While other studies already examined controllers for earthwork
teleoperation and training [76], they often use either the default VR controllers provided with the VR headset [77] or
extensive custom hardware [78]. While both approaches have their advantages - respectively cost-efficiency and
precision - they also have their drawbacks - namely the need for custom interactions development and expensive
hardware. Our study bridges two gaps: can user-grade, plug-and-play controllers provide the necessary precision
and interaction for complex machinery control ? And are operational metrics enough in their selection method ?

Study

The study involved 13 participants aged between 22 and 41 years, with an average age of 28.1 years, 12 males, 1
non disclosed. These participants had diverse backgrounds, with varying levels of experience in both VR technology
and earthwork operations, as well as different degrees of familiarity with the controllers being tested: gamepad, VR
controllers, and professional simulator joysticks [79]. They were tested on a VR application designed to train the
future excavation teleoperators, in complete immersive simulation.

The VR headset used in the study is the HTC Vive Pro Eye (Fig. 3.6). The three types of controllers evaluated
in the study were a standard XBox One gamepad, the HTC Vive Wands (the default VR controllers associated with
the HTC Vive Pro Eye), and simulator Thrustmaster T.16000M Duo joysticks mapped to match the actual heavy
machinery real-life joysticks (Fig. 3.7). The experimental setup included an advanced VR environment, developed
with Unity and the Open Construction Simulator package for realistic terrain simulation1. It includes a 1:1 digital twin
of a Cat323 excavator (see Appendix A.1 for the excavator schematics), with emulated control, as seen from the
user point of view Fig. 3.8.

1Open Construction Simulator https://github.com/Field-Robotics-Japan/OpenConstructionSimulator
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Figure 3.6: HTC Vive Pro Eye

Figure 3.7: Controller Selection Hardware

Figure 3.8: User Interface for the Controller Selection Experiment with Interchangeable Controller Mapping
Scheme Display (Here the Joysticks Mappings)

The operational performance metrics were recorded through Unity, namely task completion time, input errors,
and multiple inputs usage. All participants began the experiment with a general explanation of the process, signing
a consent form for data collection and completing a user profile questionnaire. They then went through three cycles
of testing, one for each controller. Each cycle consisted of four exercises, done entirely in a virtual simulation,
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designed to test our three controllers and their mappings (as seen in Fig. 3.9):

• Exercise 1 - Tutorial: the participant learns how to use each articulation of the machine, one at a time.
Mappings are always displayed on the side;

• Exercise 2 - Dig: a simple digging exercise, where the user had to dig in front of them, unload on the side,
dig again on the side, and unload at the front. No navigation (vehicle travel) was needed for this exercise;

• Exercise 3 - Navigation: a pure navigation exercise, where the user had to go to multiple positions, learning
how to travel using independent tracks control;

• Exercise 4 - Complete Training: a compound exercise encompassing everything learned before. The user
had to navigate to a digging spot, dig, navigate to an unload spot, unload, repeat this process twice, and finally
reposition the excavator in its original location.

At the end of all three cycles, the user had to rank the controllers in their preferred order. To avoid a learning
bias, the order of the controller cycles was varied for each participant.

Figure 3.9: Gaming, Hybrid and Professional Mappings
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Results

Over the cycles of exercises for each controller we evaluated three common operational metrics: completion time,
inputs errors and multi-inputs usage. All three serve as performance metrics, and each one brings supplementary
information on the user experience.

Completion Time

Each exercise in the sequence of tasks needed to be completed and validated by the software and/or the super-
visor. Because of this step-by-step validation, we consider exercise completion time as the "ground truth" of user
performance. As seen in Fig. 3.10, evaluating time not only shows actual performance (Fig. 3.10a) but also pro-
gression between exercises (Fig. 3.10b): EX1 - tutorial, requiring the longest duration; EX2 - digging exercise, short;
EX3 - navigation exercise, longer because it involves unusual independent track control; EX4 - the comprehensive
exercise involving all previous tasks. Each exercise is defined by the controller used, with the gamepad in light blue,
the VR controllers in medium blue, and the joysticks in dark blue. Not only do the joysticks take on average less
time, but there is also a larger gap between the tutorial and the other exercises compared to the VR controllers or
the gamepad.

(a) Total Completion Time (b) Completion Time per Exercise

Figure 3.10: Completion Time Metric

Time is obtained directly through software recording, namely Unity. The completion time metric - both total time
and per exercise time - provides not only a performance assessment but also progression information. By dividing
completion time in task/exercises, comparing the user evolution becomes possible, inferring their progression across
different type of actions, or in this use-case, different type of controllers.

Input Errors

Input errors, in this study, describe either moving the wrong articulation or moving the right articulation the wrong
way. Results, shown in Fig. 3.11, once again put the joysticks on top with the fewest errors across all controllers.

Input errors are evaluated through video recording and supervisor judgement in a two-times evaluation (during
the experiment and after the experiment using video recording). Studying input errors provides a measure of perfor-
mance, but also a learning and an ergonomics measure. In this particular study, the joysticks were the less familiar
controller of the three for the participants, and yet still produced fewer errors. Therefore, this metric shows that
not only the user learned the controls faster with this specific controller, but also that the controller itself was better
adapted to the application, the more ergonomic option out of the ones tested.
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Figure 3.11: Input Errors per Controller

Multi-inputs

The multi-inputs metric corresponds to the percentage of time spent using more than one input at a time. In our use-
case, this means moving multiple articulations of the virtual machine. As an excavator requires using both tracks at
the same time to navigate, it would automatically increase the percentage of time spent using multiple inputs and
potentially bias the measures. However, as the exercises are identical and involve the same amount of navigation
for all controllers, this potential bias is taken into account. The tutorial exercise requires moving only one articulation
at a time and thus is excluded from the data analysis. According to the results, it should be noted that the joysticks
not only involve the most usage of multiple inputs at a time, showing the ease of use of the controller, but also show
faster acclimatization and better progression across the exercises, as shown in Fig. 3.12.

Figure 3.12: Multi-inputs Percentage across Exercises

The multi-input metric is recorded through software, directly in Unity. This metric once again reports performance,
but also ease-of-use and user progression, provided it is valid, which needs to be checked by comparing multi-inputs
data with time and errors data. Multi-inputs can be a great source of information as long as it does reflect a voluntary
action from the user, instead of an involuntary action attributed to the user or to controller encoding. The validation of
the multi-input metric is investigated by means of Pearson correlation [80], computed with respect to time and errors,
as reported in Table 3.1. We found that the percentage of multi-inputs (MI%) is significantly negatively correlated
with time (our ground truth), meaning the more inputs combination leads to less time to finish the task, which fits
our expectation. Interestingly, the joysticks which are the best performers among all controllers show high but
non-significant correlation between MI% and time. One possible explanation could be that being the less familiar
controller, the use of joysticks is more sequential (less MI%) but still with a faster and more accurate outcome.
Now for the question of voluntary or involuntary usage of multiple inputs, we see that errors and multi-inputs do not
correlate significantly, and tend to be rather negatively correlated, showing that multi-inputs do not result from errors,
rather the opposite. In conclusion, this analysis validates the multi-input metric as a strong operational measure.
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Data correlation analysis Correlation p-values

MI% vs Time (Gamepad) -0.77 0.002
MI% vs Time (VR) -0.75 0.003

MI% vs Time (Joysticks) -0.42 0.16
MI% vs Time (Average) -0.65 0.05

MI% vs Errors (Gamepad) -0.26 0.4
MI% vs Errors (VR) -0.52 0.06

MI% vs Errors (Joysticks) -0.34 0.2
MI% vs Errors (Average) -0.37 0.22

Table 3.1: Validation of the Multi-input (MI%) Metric (Pearson correlation)

3.2 Use-case Specific Measures

While common operational metrics such as completion time, input errors, and multi-input usage provide a funda-
mental understanding of user performance and interaction efficiency, it is essential to consider the unique demands
and characteristics of each specific use case. In the presented study, we see that time, inputs errors and multi-inputs
percentage already give an answer as to "which controller should be used for an excavator training application ?".
These operational metrics established a baseline for performance evaluation across our scenario, but other metrics,
very specific to this use-case could have provided further insights on different aspects of the application. To gain a
comprehensive and nuanced insight into the effectiveness of VR applications, we must also incorporate use-case
specific metrics tailored to the particular requirements and objectives of each context.

In this section, we will delve into these specialised metrics, which are tailored to address the unique aspects
and challenges of different use cases. Earthwork applications, while seemingly reliant on operational measures,
and therapeutic applications, which often prioritise physiological measures, both benefit from being studied with a
comprehensive hybrid methodology and an open-minded approach. This perspective allows us to uncover insights
that may not emerge from a single type of measure alone. Additionally, the specific demands and constraints of
these fields necessitate professionally defined metrics to ensure accurate and meaningful evaluation. By integrating
these specialised metrics with common operational measures, our approach becomes both targeted and context-
sensitive, providing a robust framework for assessing and optimising VR applications across diverse domains.

Using use-case specific data is already a practice in place in various fields, where those specific metrics have
been identified and applied to different VR scenarii, such as medical research, industrial applications and more. For
example, using metrics such as precision of movements, adherence to procedural steps, and time spent on critical
tasks in medical training can be used to gauge effectiveness and skill acquisition [81]. In VR-based rehabilitation,
specific metrics might include range of motion, exercise repetition counts, and patient engagement levels [82]. For
VR applications in architectural design and urban planning, user interaction with design elements, navigation pat-
terns, and spatial understanding are key metrics [83].

By integrating these specialised metrics, we can better address the distinct requirements and challenges of each
VR application, leading to a more accurate and relevant assessment. In the following sections, we will explore two
specific use-cases and their associated metrics: the validation of a VR interface for earthwork teleoperation and
a prototype of visual rehabilitation for dyslexia. Both studies demonstrate how tailored metrics can contribute to a
deeper understanding and more effective optimisation of a VR system.

3.2.1 Implementation through Study - Earthwork Teleoperation

Teleoperation in robotics, and within the domain of earthwork, has significantly advanced with the development of
various interface technologies, as well as its combination with robotic automation. These interfaces facilitate remote
control of machinery, enhancing operators’ safety, control precision, and cost-efficiency. The integration of VR into
teleoperation offers immersive and intuitive controlled environments that traditional interfaces may not provide.
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Traditional teleoperation interfaces typically include physical controls such as joysticks, levers, and touchscreens.
These methods, while effective, often come with limitations in terms of user engagement and spatial awareness.
Operators must rely heavily on visual feedback from 2D monitors, which can hinder depth perception and situational
awareness [84]. In contrast, VR interfaces for teleoperation provide a three-dimensional, immersive environment
that can enhance the operator’s spatial awareness and control precision. By combining head-mounted displays
(HMDs) and motion-tracking systems, VR interfaces allow operators to experience a more natural and intuitive
interaction with the remote environment. For example, operators can perform complex maneuvers with greater con-
fidence and accuracy, as the VR system provides a more realistic representation of the remote site [85]. The use
of VR in earthwork teleoperation has been explored in several studies. One approach involves digital-twin, i.e. the
use of VR to simulate the operator’s cabin, replicating the controls and providing a virtual view of the worksite. This
method allows operators to practice and execute tasks in a controlled virtual environment before performing them
in the real world, thereby reducing the risk of errors and accidents [86]. Moreover, VR interfaces can incorporate
additional data layers, such as real-time sensor feeds and augmented reality (AR) overlays, to provide comprehen-
sive situational awareness. This integration enables operators to access vital information, such as machine status,
environmental conditions, and potential hazards, directly within the VR environment [87].

Despite these advancements, challenges remain in the widespread adoption of VR for teleoperation. Issues
such as cybersickness, high equipment costs, and the need for robust and low-latency communication links are
significant barriers [88]. Furthermore, the effectiveness of VR interfaces is highly dependent on the fidelity of the
virtual environment and the accuracy of the motion-tracking systems. Thus the need for extensive design and
optimisation. To this end, we propose using operational data such as completion time, inputs errors and multiple
inputs usage, but recognise that for such a specific and complex use-case, those general metrics might not reflect
all the necessary aspect for VR design. Consequently, we propose additional specific measures for evaluation.

Study

Through the lens of operational measures, we studied the usability of a VR interface for excavator teleoperation.
This study was done in partnership with HERACLES Robotics, a French company focused on earthwork machinery
automation. It was actually performed before the controller selection study presented previously, and it is through
this study that user feedback advocated to perform a controller selection study. The use of autonomous and semi-
autonomous earthwork machines has significantly increased in recent years due to their benefits, including reduced
labor costs, increased productivity, and improved safety [89]. However, while these machines provide significant
improvements, they are not immune to unforeseen events and technical failures, which can lead to potential safety
risks, delays, and additional costs. Their deployment can also be delayed in certain country due to legislative rea-
sons.

To provide a bridge between traditional machine control and autonomous vehicle, we focused on a middle-ground
solution: teleoperation. Our primary objective was to provide a fail-safe solution in situations where unforeseen
events occur during automated operations. We aimed to create a universal and user-friendly interface for remote
earthwork that minimises the need for extensive training and complex skill requirements. VR training for teleopera-
tion has already proven its efficiency, as well as for direct control. By enabling operators to assume direct control of
the machines from a remote location, we eliminate the need for constant on-site presence, while paving the way for
semi-autonomous and autonomous machinery. In this study we let 10 participants - professional excavator opera-
tors and non-professional - evaluate a VR interface compared to the real machine itself, Fig. 3.13.

Our primary investigation focused on comparing the performance of operators using our VR interface and direct
control of the real machine, with operators having varying levels of experience. The preliminary results indicated
that the VR interface delivered equivalent and satisfactory performance for experts while enhancing the efficiency
of non-experts. Therefore, not only does everyone performed well in the virtual environment, but the training time
could also be significantly reduced, as non-experts can achieve similar performance under the same conditions.
The complete study was published in Electronics [90].
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Figure 3.13: Comparing VR Interface and Real Machine, a HERACLES Robotics Partnered Study

Results

In our experiment, both professional and non-professional excavator operators were tasked with evaluating two
interfaces: a VR teleoperation interface and a real CAT323 machine. The participants performed the same set of
exercises on both interfaces to ensure a fair comparison:

• Tutorial: participants first completed a tutorial designed to teach them the basic controls of each interface
(Fig. 3.14);

• Target Practice: in this exercise, participants had to reach designated ground targets with the machine’s
bucket (Fig. 3.15).

• Digging/Unloading Exercise: participants performed a typical operator task involving digging and unloading
(Fig. 3.16).

Figure 3.14: Tutorial Exercise - Learning Basic Controls

Figure 3.15: Target Practice - Learning Precise Control
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Figure 3.16: Digging/Unload Exercise - Learning Teleoperation Main Skill

The VR interface was used to directly control the real CAT323 machine through Unity (see Appendix A.2): the
user could visualise and give commands to the virtual machine and the Robot Operating System (ROS) actualised
the real machine articulations with the Unity commands and sent back the real machine’s proprioception and terrain
perception - as illustrated in Fig. 3.17.

Figure 3.17: Unity-ROS Excavator Control Architecture

In this specific use-case, by using a real machine, its associated software (ROS) and sensors (e.g. LiDAR,
cameras, etc.) we can extract brand new specialised data: machine proprioception, machine consumption, terrain
perception, and so on. In this study, we were able to extract a specialised operational measure: the control smooth-
ness.

Novice operators tend to be clumsy, slow, or brutal with the machine, wearing it down quickly. This concern is
major in the conception of the teleoperation controls, as both improving future operators skills and preserving the
machinery is paramount. To assess control smoothness, we measure both the clumsiness and the dexterity of the
participants:

• Clumsiness: the clumsiness of a participant p with an articulation a, noted Clumsiness(p, a) is monitored
through the acceleration of the articulation, data provided by the real machine (through ROS). Clumsiness
correspond to rare and extreme events (e.g. brutally stopping an articulation when hitting the ground or
a mechanical stop) and is defined as the standard deviation of the acceleration of an articulation over all
exercises, noted StdAcceleration(p, a). For one articulation, it is calculated as:

ClumsinessRaw(p, a) = StdAcceleration(p, a) (3.1)
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In order to aggregate the total clumsiness of a participant for each articulation, we normalise their amplitudes
with respect to the average value over all participants:

Clumsiness(p, a) =
ClumsinessRaw(p, a)

Averagep(ClumsinessRaw(p, a))
(3.2)

We can measure a meaningful feature of the participant by averaging his clumsiness for all articulations (in
this experiment, the boom, the stick and the bucket, see Appendix A.1), as normalised clumsiness values of a
given participant for each articulation are strongly correlated:

Clumsiness(p) = (Clumsiness(p,Boom) + Clumsiness(p, Stick) + Clumsines(p,Bucket))/3 (3.3)

We finally normalise the clumsiness metric:

NormalisedClumsiness(p) =
Clumsiness(p)−minp(Clumsiness(p))

maxp(Clumsiness(p))−minp(Clumsiness(p))
(3.4)

• Dexterity: we define the dexterity of a participant, Dexterity(p), as the opposite of his clumsiness:

Dexterity(p) = 1−NormalisedClumsiness(p) (3.5)

Through clumsiness and dexterity, we can evaluate the control smoothness metric. The best excavator operators
are not only the fastest (in terms of completion time) - completing a lot of work quickly - but also the smoothest (in
dexterity) - preserving the machine in the long run. The idea of smoothness is deeply embedded in the design and
implementation of the remote control system, and by analysing this smoothness metric Fig. 3.18, we showed in
this study that our interface allows even the most novice operators to operate the excavator in complete safety with
regards to the machine.

Figure 3.18: Control Smoothness compared with Completion Time in the Real Machine interface (RM) and the
Virtual Reality Interface (VR)

The ideal control behaviour, which optimises both speed and smoothness, is situated at the upper-right corner
of the graph. As depicted in the graph, users operating the real machine at higher speeds tend to exhibit lower
smoothness in their movements. While this allows for excellent performance in terms of completing tasks quickly,
it poses a risk of damaging the machine over time. In contrast, the VR interface, on average, operates at a slightly
slower pace but maintains a consistently high level of smoothness.
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Only by studying specialised metric can we answer this specific challenge of our use-case, namely combining
user performance and machine safety. Through this analysis, we saw that tasks performed in VR show longer-
lasting benefits for the machine’s condition, as well as enhanced precision, albeit with a minor trade-off in execution
speed compared to the real-machine. This validates the design of the VR interface and gives insight into its future
axes of optimisation for earthwork teleoperation.

3.2.2 Implementation through Study - Dyslexia Therapy

Dyslexia, derived from the Greek words "Dys" (meaning difficult) and "Lexia" (meaning words), is a reading disor-
der affecting approximately 8 to 12% of the global population. It is characterised by difficulties in reading that can
impact spelling, reading speed, word comprehension, and pronunciation [91]. Dyslexia poses significant learning
challenges from a young age, that can persist throughout an individual’s academic career and beyond, as the symp-
toms tend to affect individuals for life. Early diagnosis of dyslexia often occurs in school, typically around the age
of six, and involves a series of assessments that include vision, memory, spelling, and reading exercises. Although
dyslexia therapies can alleviate some symptoms and reduce their impact on daily life, they do not eliminate the
disorder entirely. The origins of dyslexia are still debated: is it a neurological disorder present at birth showing
symptoms when learning to read and write; or is it developed in the brain when children learn to read and write?
While this question will sadly not be answered in this thesis, dyslexia rehabilitation will nonetheless be elaborated.

Traditional rehabilitation methods often involve repetitive pencil-and-paper exercises [92]. These methods can be
tedious and demotivating, which can affect therapy adherence and overall efficacy. Typically conducted in medical
offices under the supervision of specialists, these exercises may also be performed at home with parental oversight
when possible. The monotonous nature of these tasks frequently leads to a lack of engagement and, consequently,
reduced therapeutic benefits as patients tend to give up before completion. New rehabilitation methods such as
digital therapeutics (DT) use digital applications to enhance or provide treatment for various conditions [93]. These
technologies offer innovative solutions without chemical side effects, and include features such as data collection,
monitoring, and engaging, game-like elements that can be particularly motivating for children [94]. In recent years,
the integration of DT with VR has emerged as a promising approach. Unlike traditional methods, VR provides a mo-
bile, immersive experience that can be used at home, reducing the need for frequent medical visits. The immersive
nature of VR has demonstrated effectiveness in various therapeutic contexts [95].

Study

Although the debate on the origins of dyslexia is still open (nature or nurture), it is undeniable that both the brain and
the eyes are at the heart of this pathology. In partnership with medical specialists, we developed Dys & Dragons, a
prototype digital therapy focused on visual rehabilitation through gamified virtual reality [96]. This prototype’s goals
were multiple:

• Provide engaging therapy: using new technologies and gamification to provide an engaging rehabilitation
interface for patients;

• Assess the contribution of 3D: while current visual dyslexia therapies are based mostly on 2D exercises,
using VR provides an environment where 3D exercises can be developed and analysed;

• Extend traditional therapy: transposing and extending current therapeutics exercises to VR, while also cre-
ating new ones.

Due to the medical nature of this use-case, other operational data are needed to evaluate patients performance
during the exercises, and more importantly their progression during the therapy.

Following the advice of medical professionals - neurologists and orthoptists, three types of exercises were first
developed in this prototype (Fig. 3.19):

• Visual exercises: only based on eye movements, these exercises include smooth pursuit (following a con-
tinuously moving object), saccadic pursuit (following a teleporting object) and focused gaze (focusing on an
stationary object while the environment is filled with distractors) (Fig. 3.19a). Their aim is to train directly the
eye movements which are impacted during reading by dyslexia;
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• Ecological exercises: in the orthoptist terminology, those exercises concern environmental tasks, such as
finding an object in a scene (Fig. 3.19b). These exercises work on memory, visual perception, and by using
3D virtual environments, spatial awareness and perception;

• Reading exercises: the most traditional exercises in dyslexia therapy (Fig. 3.19c). It is used as a session
evaluation rather than a repetitive exercise (like the previous one) to assess the current patient’s progress.

(a) Visual Exercise (b) Ecological Exercise (c) Reading Exercise

Figure 3.19: Dys & Dragons Exercises

Results

Currently, no clinical trial results are available for this study. However, in collaboration with medical specialists, we
have extracted operational metrics that offer valuable insights into the effectiveness and requirements of such inter-
ventions.

In the context of rehabilitation, specifically dyslexia, integrating specialised operational data is essential. This
includes physiological sensors and supervision by medical professionals. Our application serves a dual purpose: it
acts as both a "therapeutic game" for patients and a "therapeutic supervision tool" for practitioners. In addition, the
focus of this rehabilitation tool is visual training, making eye-tracking a key component. Eye-tracking provides the
following benefits:

• Smooth Pursuit Quality Assessment: measures how well the patient can follow a smoothly moving object
during visual exercises;

• Saccadic Motion Analysis: evaluates saccadic eye movements as the patient tracks a teleporting object in
the virtual environment;

• Focus: assesses the patient’s ability to maintain attention on an object in the presence of environmental
distractions;

• Spatial Search: reveals 3D spatial visual search patterns during ecological exercises;

• Visual Attention: provides an overview of the patient’s visual attention linked to spatial search during ecolog-
ical exercises;

• Reading Patterns: analyses reading patterns to assess dyslexia progression through specific reading exer-
cises.

Another key set of metrics in this use-case are neurological metrics. By using sensors such as electroencephalo-
grams (EEG), it is possible to monitor the patient’s state throughout different stages of the therapy. This includes
tracking cognitive load, stress levels, engagement, and other factors that allow supervising doctors to tailor the ther-
apy to the specific needs of the patient. For example, if precise eye-tracking analysis (e.g., micro-saccadic motions
during pursuit) reveals that the patient performs better with smooth pursuit exercises but struggles with saccadic
movements, the practitioner can increase the focus on saccadic pursuit exercises. Similarly, if the cognitive load is
higher during dynamic ecological exercises compared to stationary ones, the practitioners can adjust the difficulty
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accordingly. To enable this optimisation, a setup such as the one proposed in Fig. 3.20 could be implemented.

This study could not be led to its end during this thesis due to the disengagement of our partner who contracted
the collaboration with the medical staff. However, despite the lack of clinical results, this study shows a transition
to incorporating physiological data, such as eye-tracking and cognitive data inside operational data. It underscores
the importance of capturing not only external behavioural metrics, but also intrinsic data. Intrinsic data refers to the
underlying physiological responses that can offer deeper insights into a user’s interaction with the VR environment.

Figure 3.20: Immersive Visual Rehabilitation for Neurological Troubles, a Proposed Framework
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3.3 Evaluation of Extrinsic Operational Measures

In this chapter, we have detailed our contributions to the analysis of operational data for VR design and optimisation.
Our research focused on several key metrics: completion time, error rates, and the use of multiple input methods.
These metrics provided insights on user experience in the form of performance, progression, ergonomics, and ease-
of-use. We also showed that specific use-cases call for specific metrics, such as machinery data when working on
teleoperation, or medical data when designing therapeutics applications.

Our findings indicate that, while the operational data collected is valuable, it might not be sufficient on its own.
Each experiment presented in this chapter also had a user feedback phase. When confronted to user feedback,
we observed that the operational measures provided similar answers to the fundamental design questions of each
study:

• Which controller for earthwork excavation training? All our operational metrics showed that the joysticks
performed better and provided better ergonomics, showing for this study the superiority of professional design
over controller familiarity (users were more familiar with the other controllers but performed better with the
joysticks). It matches with the user’s perception who preferred the joysticks to the other controller, found them
more efficient while requiring less effort and generating less frustration;

• Can a VR interface be used for excavation teleoperation? According to our generic metrics, while the
performance of the real machine are slightly better in terms of time, VR performs admirably, and even shows
better control smoothness, optimising both the user performance and the machine safety. When asked, the
users would also guarantee that the VR interface was viable for teleoperation;

• Is VR an efficient support for dyslexia therapy? While there was no user study, in-laboratory testing showed
that it was possible to apply metrics such as completion time or errors. It also showed that physiological data
were the most suited for medical applications. According to the medical specialists working on this project, the
Dys & Dragons application correctly replicated the existing current exercises and could provide insight into the
use of 3D in rehabilitation.

These insights slightly enhanced our understanding of user performance and experience, but overall the results
from both methods largely coincided. This suggests that while operational data add some value, they might not be
enough when used alone.

Although they are easy to use, obtain, and analyse, our operational measures have one major flaw: they are
completely external to the user. Even when setting aside user perception and other subjective metrics and keeping
to objective metrics, operational measures are extrinsic and judge the user experience from an external point of view
only. This does give the advantage of judging not only the user but also the external parameters (e.g. excavator
consumption when teleoperating compared to direct control). However, in return they do not provide internal insight
into the user, which underscores a limitation in relying solely on external evaluations of user performance. We saw
that in the case of medical application, physiological - intrinsic - data are needed. We also believe that medical
applications would not be the only ones benefitting from such data.

To address this gap, we propose the integration into our VR-SOLUS framework of intrinsic data obtained through
physiological sensors. By incorporating physiological metrics, such as those captured by eye-tracking technology,
electroencephalogram, motion sensors, and so on, we can gain deeper insights into the user’s internal states
and responses. This approach promises to improve the accuracy of our evaluations, providing a more extensive
understanding of user interactions within VR environments.
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Chapter 4

Physiological Measures

Incorporating physiological measures into the evaluation and design of virtual reality (VR) applications is a significant
advancement over traditional operational metrics such as task completion time or error rates. Although operational
metrics provide valuable information on the effectiveness and efficiency of VR systems, they do so only from an
external point of view. Physiological measures, on the other hand, offer a more comprehensive understanding of
user interactions by providing objective and intrinsic data on users’ physical and cognitive states.

Traditional operational metrics, though useful, can sometimes overlook critical aspects of user experience and
engagement due to their extrinsic nature. For instance, a user may complete a task efficiently but experience high
levels of cognitive load or discomfort, which can negatively impact their overall experience and long-term usability of
the system. Physiological measures can capture these internal dimensions by recording real-time data on various
physiological responses, such as heart rate, brain activity, and eye movements. This data helps to understand the
user’s emotional and cognitive states, providing a deeper insight into their interactions with the VR system [97].
Physiological measures contribute to VR design and optimisation in several key ways:

• Enhanced User Experience: by monitoring physiological responses, designers can identify and mitigate
sources of discomfort, stress, or fatigue, thus enhancing overall user experience. This is particularly important
in VR environments, where prolonged exposure can lead to issues such as motion sickness or eye strain [98];

• Objective Cognitive Load Assessment: cognitive load, which reflects the mental effort required to perform a
task, can be objectively assessed through measures like electroencephalography (EEG) [99]. Understanding
cognitive load from an internal and objective point of view helps in designing VR applications that are not only
engaging but also cognitively appropriate for users, preventing overload and improving task performance;

• Real-Time Feedback: physiological measures provide real-time feedback, providing data not only for the
initial design phase, but also for dynamic adjustments to the VR environment based on the user’s current state
[100];

• Personalised Experiences: by using the real-time feedback provided by physiological data, VR systems
can be tailored to individual users, offering personalised experiences that cater to their specific needs (e.g.
adaptive medical therapy or difficulty level in professional training) and preferences [101]. This enhances
engagement and effectiveness, making VR applications more user-centric;

• Validation or Substitution of Subjective Reports: user feedback collected through surveys or interviews
can be biased or incomplete. Physiological data serves as an objective complement to these subjective
reports, helping to validate and refine user feedback [102]. Physiological measures are sometimes used to
substitute surveys, but a dual approach could ensure a more accurate and comprehensive understanding of
user experiences.

Physiological measures provide a complementary layer of data to our VR-SOLUS framework that enhances
the design and optimisation of VR applications. By capturing the subtle and often overlooked intrinsic aspects of
user experience, these measures ensure that VR systems are not only operationally efficient, but also user-friendly
and cognitively appropriate. The integration of physiological data with traditional operational metrics represents the
second step in our VR-SOLUS method, to develop sophisticated, responsive, and immersive VR environments.
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4.1 Physiological Sensors Integration

The integration of physiological sensors into VR applications represents a significant advancement in the field of
human-computer interaction. They capture a wide range of physiological markers, providing a deeper understand-
ing of user experiences and interactions. In this thesis, we focus mainly on eye trackers, electroencephalograms
(EEGs), inertial measurement units (IMUs), and heart rate monitors, each offering unique insights into different
aspects of user behavior and state:

• Eye-tracking: eye-tracking technology involves the measurement of eye positions and movements, which can
reveal where a user is focusing their attention, their processing of visual information, and what elements in the
VR environment are most engaging. Eye-tracking data are important for understanding user interaction with
the virtual world and can help optimise the placement of virtual objects and interfaces [103]. For instance,
eye-tracking can identify areas that are frequently overlooked or cause visual discomfort, guiding adjustments
to improve user experience;

• Electroencephalography (EEG): EEG sensors measure electrical activity in the brain, providing real-time
data on cognitive processes such as attention, workload, and emotional states. In VR, EEG can be used to
assess how users mentally interact with the virtual environment, identifying periods of high cognitive load or
stress [104]. This information is valuable for designing VR applications that are not only engaging, but also
cognitively efficient for users. EEG data can also be used to personalise VR experiences by adapting the
complexity of tasks based on the user’s current cognitive state;

• Inertial Measurement Units (IMU): IMUs are sensors that measure acceleration, rotation, and other aspects
of body movement. In VR, IMUs, including accelerometers and gyroscopes, provide detailed data on user
physical interactions with the virtual environment, such as gestures, posture changes, and locomotion [105].
These sensors are even essential for the VR headset to work, as they allow user movements inside of the VR
environment. As external sensors, they are useful for creating more natural and intuitive VR experiences, as it
allows the system to respond accurately to user movements;

• Heart Rate Monitors: heart rate monitors measure the user’s cardiovascular activity, providing indicators of
physiological arousal, stress, and overall physical state. In the context of VR, heart rate data can be used to
measure the user’s emotional and physical responses to different scenarii [106]. Heart rate data can also be
used to adapt VR environments in real-time, such as by reducing the intensity of stimuli during periods of high
stress.

As shown above, physiological sensors already have roots in VR research. However, most of the existing studies
typically employ only a single type of sensor and/or measure one specific metric, and they seldom incorporate these
sensors during the application’s design phase. A non-exhaustive list of recent studies that use the same sensors as
our VR-SOLUS method is available in Table 4.1.

Sensor Description Methodology

Eye-tracking
Monitors eye movements

to determine where the user
is looking and for how long

Attention [107], [108], [109]
Cognitive Load and Fatigue [110], [111], [112]
Performance and Learning [113],[114], [115]

Stress [116], [117], [118]

Electroencephalogram
(EEG)

Measures electrical activity
of the brain through sensors

placed on the scalp

Cognitive load [119], [120], [121]
Cyber-sickness [122], [123], [124]

Attention [125], [126], [109]
Stress [127], [128], [129]

Inertial Measurement Unit
(IMU)

& Heart Rate

Measures acceleration, rotation,
orientation & cardiac rhythm

Physical Load [130], [131], [132]
Behaviour and Gesture Analysis [133], [134], [135]

Pain [136], [137], [138]

Table 4.1: Existing Sensor-based Methodologies
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In our VR-SOLUS method, we focus on eye-tracking, EEG and IMUs (see the framework Fig. 4.1) to extract new
intrinsic measures, contributing further to our VR design and optimisation.

Figure 4.1: Physiological Metrics Framework Highlighted into the Global Analysis Approach Proposed by
VR-SOLUS

4.2 Eye-tracking

Eye-tracking technologies measure and record eye movements to determine where and for how long a person is
looking at a specific point. This technology uses sensors and cameras to track the position and movement of the
eyes, providing information on visual attention and cognitive processes. Eye tracking is widely used in various fields
such as psychology, neuroscience, marketing, and human-computer interaction, helping researchers understand
how individuals interact with visual stimuli. When comparing regular eye-tracking with VR eye-tracking, the primary
difference lies in the context and setup. Regular eye-tracking typically involves a stationary setup in which partici-
pants view stimuli on a monitor, and their eye movements are tracked using cameras placed around the screen. This
setup restricts head movement and limits the interaction to a two-dimensional space. In contrast, VR eye-tracking is
integrated into virtual reality headsets, allowing eye movements to be tracked within immersive, three-dimensional
environments. This integration enables the capture of more dynamic and interactive visual behaviours, as users can
move their heads and interact with the virtual world naturally, providing a more comprehensive analysis of visual
attention in real-time scenarii, see Fig. 4.2.

Figure 4.2: Traditional vs VR Eye-tracking Setups
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In VR, eye-tracking has several common applications. It is used in usability testing to assess how users inter-
act with VR interfaces and identify areas for improvement [139]. In gaming, it enhances the gameplay experience
by adapting the game environment based on the location where players are looking, making interactions more in-
tuitive and immersive [140]. In training and education, eye-tracking analyses the attention and the focus of the
trainees, helping to optimise training programs and educational content [141]. Psychological research benefits from
eye-tracking in VR by studying visual attention, cognitive load, and emotional responses in controlled virtual envi-
ronments. Additionally, medical applications use eye-tracking for diagnosing and treating visual and neurological
disorders by analysing eye movement patterns within simulated scenarii [142].

To answer those various use-cases, eye-tracking provides a range of metrics that can be used to analyse visual
attention and cognitive processes in VR. Among them, we can mention:

• Fixation: refers to the periods when the gaze is held steady on a particular object or area, indicating the level
of interest or importance of that object;

• Saccades: rapid movements of the eyes between fixations, reflecting the scanning patterns and visual search
behavior of the user;

• Pursuit: a tracking measure evaluating the smooth following of moving objects, providing insights into the
user’s ability to track motions;

• Zones of interest (ZOIs): specific areas within the virtual environment that are predefined for detailed analy-
sis, such as areas where critical interactions occur. The duration and frequency of fixations within these zones
can reveal user engagement and the effectiveness of the VR design.

In our study, we primarily focus on fixation metrics to evaluate on one hand the user attention and engagement,
and on the other, the zones of interest (and improvement) of our VR applications. We use the HTC Vive Pro Eye
headset, which integrates a 120Hz Tobii eye-tracker (see Fig. 4.3), allowing for precise measurement of where and
for how long users focus within the virtual environment. The software used to capture eye-tracking data is Unity,
with the integration of the SRanipal SDK1, which provides comprehensive eye-tracking.

Integrating eye-tracking in our VR-SOLUS framework enables us to capture detailed and accurate eye movement
data, providing valuable intrinsic measures into user visual behavior and interactions in VR.

Figure 4.3: HTC Vive Pro Eye with Integrated Tobii 120Hz Eye-tracker

1SRanipal SDK for HTC Vive Eye-tracking https://developer.vive.com/resources/vive-sense/eye-and-facial-tracking-sdk/
tutorials/sranipal-getting-started-steps/?site=kr
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4.3 Electroencephalogram

Electroencephalography (EEG) is a non-invasive method used to record electrical activity of the brain. This tech-
nique involves placing electrodes on the scalp to detect and measure the electrical signals produced by neural ac-
tivity. EEG is widely used in clinical and research settings to study brain function, diagnose neurological disorders,
and monitor cognitive states. The recorded data provide insights into brain activities such as attention, perception,
motor control and cognitive load. Integrating EEG with Virtual Reality (VR) allows for exploration of brain-behaviour
relationship in immersive multimodal environments. Traditional EEG setups, just like traditional eye-tracking setups,
often require subjects to remain relatively stationary. Combining VR and EEG allows for the study of brain activity
during dynamic and interactive experiences, reinforced with hardware integration of EEG directly into VR headsets.
This combination enables researchers to investigate how the brain responds to complex, realistic stimuli and how
cognitive processes unfold in real-time within virtual environments. A major drawback comes from the added motion
artefacts that need to be removed with signal processing. This setback does not stop EEG to be used in various
VR applications such as neurofeedback training [143], cognitive and motor rehabilitation [144], and user experience
enhancement in gaming and simulations [145].

EEG provides numerous data that can be analysed to extract diverse markers indicative of different cognitive
and physiological states. Some key markers are often distributed in three study categories:

• Brainwave Study: electric signals in the brain range in certain frequency bands [146]. Some of these bands
have been associated with different cognitive states, see Fig. 4.4. By studying the power of such bands, users’
cognitive status can be precisely evaluated. Among them, the most commonly studied are:

– Gamma Waves (30-100 Hz): the fastest of the brainwave frequencies and associated with higher mental
activity, including perception, problem-solving, and consciousness;

– Beta Waves (12-30 Hz): linked to active thinking, problem-solving, and concentration. Increased beta
activity can signal heightened alertness and cognitive engagement;

– Alpha Waves (8-12 Hz): often associated with relaxed, wakeful states and decreased cognitive load.
Changes in alpha wave activity can indicate levels of relaxation and attention;

– Theta Waves (4-8 Hz): associated with drowsiness, meditation, and light sleep. Theta activity can provide
insights into cognitive workload and memory processes;

– Delta Waves (0.5-4 Hz): predominantly observed during deep sleep but also can indicate high cognitive
load when awake.

Figure 4.4: Brainwave Spectrum and their Associated Cognitive States
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• Event-Related Potentials (ERPs) Study: examine the brain’s electrical response to specific sensory, cogni-
tive, or motor events [147]. ERPs are time-locked to these events (e.g., the P-300 ERP, appearing 300ms after
an event), providing a detailed look at how the brain processes information in real-time (Fig. 4.5). By analysing
the latency and amplitude of ERP components, researchers can investigate various cognitive processes such
as attention, perception, and memory. This technique helps in understanding the temporal dynamics of brain
activity and is widely used in cognitive neuroscience and clinical research;

Figure 4.5: Common ERP Responses

• Spatial Study: focuses on identifying which regions of the brain are active during spatial tasks and the intensity
of this activity [148]. Key areas involved include the parietal lobes, particularly the posterior parietal cortex,
which is critical for spatial awareness and navigation. The hippocampus also plays a vital role in spatial
memory and the encoding of spatial environments (Fig. 4.6). Functional neuroimaging techniques like fMRI
can be used in addition to EEG to measure brain activity and power during spatial tasks, revealing patterns of
neural activation and connectivity.

Figure 4.6: Cerebral Cortex and its Associated Functions by Lobe
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In this thesis, we focus mostly on brainwave study to extract a cognitive load metrics through the integration of
a EEG device inside of the VR-SOLUS framework. We use the g.tec Unicorn Hybrid Black EEG headset, an EEG
cap designed for research and practical applications. This headset features 8 electrodes, recording at 250Hz, in
a 10-20 system (Fz, Cz, Pz, Oz, C3, C4, PO7, PO8) positions, compatible with our VR headset, see Fig. 4.7. In
terms of software, we employ a combination of Unity, the Unicorn Suite provided with the EEG cap, and OpenVibe2

to record and process our brain data.

Figure 4.7: g.tec Unicorn Hybrid Black and its Electrodes Mapping

By adding EEG device to our VR-SOLUS framework, we can capture and analyse neurophysiological data
effectively within the VR context, providing greater internal insight into user cognitive states, and enhancing the
overall user experience.

4.4 Physical Load Sensors

Physical load sensors are essential tools for measuring the physiological load and stress experienced by individuals
during various activities. These sensors provide critical data for understanding exertion levels, optimising perfor-
mance, and preventing injuries. Common physical load sensors include inertial measurement units (IMUs) [149],
heart rate monitors [150] and electromyography (EMG) sensors. These devices provide valuable data on movement
patterns, muscle activity, and cardiovascular response.

In this thesis, we used IMUs as well as heart rate monitors. These monitors are particularly valuable in the
context of physical load measurement due to their precision and applicability across different fields. IMUs consist
of accelerometers and gyroscopes (and sometimes magnetometers) capturing data on linear acceleration, angular
velocity, and orientation. These information helps analysing movement patterns, which in our case is used for
evaluating physical load, but can also be used to identify abnormal motion - an important knowledge when working
on physical rehabilitation [151]. Heart rate monitors, on the other hand, measure the number of heartbeats per
minute, providing insights into cardiovascular exertion and fitness levels. These monitors are widely used in athletic
training, health monitoring, and research to assess physical stress and endurance [152].

The data obtained from physical load sensors can be analysed to extract various markers indicative of physical
performance and stress:

• From IMUs: key markers include acceleration and deceleration, which indicate movement intensity and sud-
den changes in motion; angular velocity, which measures the rate of rotation and is useful for analyzing joint
movements and balance; and orientation angles, which provide information about body posture and alignment;

• From heart rate monitors: important markers include heart rate (HR), indicating cardiovascular load, and
heart rate variability (HRV), reflecting autonomic nervous system activity and recovery status.

2OpenVibe software https://openvibe.inria.fr/
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For our thesis, we focus on physical load extraction through acceleration values obtained from head and arm
movements, as well as heart rate. To this end, we use the Polar OH1+ optical fitness tracker - integrating a heart
rate monitor and an IMU setup - placed on the user’s arm, as well as the integrated IMU inside of our Unicorn Hybrid
Black EEG cap. The data collected by the Polar OH1+ is logged using the Polar Sensor Logger APK3. For the head
IMUs, the accelerometers and gyroscopes values are captured alongside the EEG values inside the Unicorn Suite,
as seen in the setup Fig. 4.8.

Figure 4.8: Physical Load Capture Setup

By integrating IMUs and heart rate monitors, our VR-SOLUS methodology achieves an assessment of physical
load in VR environments. Not only does this provide observations into user performance and well-being, it also
gives insight into medium and long-term physical usability of the VR applications and setups we design.

4.5 Implementation of Physiological Measures

In this section, we present our implementation of physiological data for VR design. We showcase their use through
two earthwork training studies: a hardware selection study (introduced in Section 3.1.4 for operational data im-
plementation) and its follow-up software optimisation study. Both studies make use of our intrinsic physiological
metrics: visual interest (through eye-tracking), cognitive load (through EEG) and physical load (through IMUs and
heart rate monitor).

4.5.1 Hardware Selection

Study

Presented through the scope of operational metrics in section 3.1.4, we now analyse it through the scope of
physiological measures [153]. The controller selection study focused on evaluating three different types of con-
trollers—gamepad (gaming), VR (hybrid), and joysticks (professional)—within an excavation training application.
The objective was to determine the most effective hardware for this specific VR application. Thirteen participants
(on average 28.1 years old, 12 males, 1 non disclosed) were involved in the study, each undergoing three rounds
of experiments, corresponding to the three different controllers. During each round, participants completed four

3Polar Sensor Logger APK for the Polar OH1+ Fitness Tracker https://play.google.com/store/apps/details?id=com.j_ware.
polarsensorlogger&hl=fr
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exercises: a tutorial to familiarise themselves with the controller, a simple digging exercise, a navigation exercise,
and a compound exercise (combining tasks from all the previous exercises). These exercises were designed to
comprehensively assess the performance and usability of each controller type.

The results indicated that joysticks provided the best performance based on operational metrics, including com-
pletion time, input errors, and the ability to manage multiple inputs simultaneously. This suggests that professional-
grade joysticks, despite being more complex and less commonly used outside of professional settings, offer superior
control and precision for tasks requiring intricate manipulation and coordination.

This study also integrated physiological sensors, namely eye-tracking and EEG. Physical load evaluation was
not integrated at that time, although head accelerometer values were used for EEG signal filtering. Users were
equipped with the HTC Vive Pro Eye, recording their gaze data, and the Unicorn Hybrid Black EEG cap, recording
their physical load. The VR simulation and eye-tracking capture was done through Unity. The brain activity was
recorded through the Unicorn Suite. Both sets of data was synchronised through the Lab Streaming Layer4, then
filtered and analysed through the OpenVibe software, as presented in Fig. 4.9.

Figure 4.9: Physiological Data Pipeline v1

4Lab Streaming Layer for Data Synchronisation https://labstreaminglayer.org/#/
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Physiological Results

In this study, we extracted intrinsic metrics from the eye-tracker and the EEG sensors.

Eye-tracking

From the eye-tracking, we extracted the time spent looking at interest zones. In particular, the time spent looking
at the mappings of the different controllers, which is considered as both a learning metric and an ergonomics one.
This is done in Unity by sending rays (aka "raycasting") from the original position of the user’s eyes in the virtual
environment in the direction of their gaze (given by the eye-tracker). When those rays enter in collision with one of
the mappings display (when they hit the "collider" component of the mapping sprites), a collision alert is registered
("collision hit") which gives the object of the collision and allows to register its duration, as represented Fig. 4.10.
Then we divide the time spent "colliding" with the mappings to obtain a percentage of time spent looking at controls,
normalised inter-participants.

Figure 4.10: Eye-tracking Raycasting in Unity

We observe that despite being the most familiar controller among the three, the gamepad is the one that required
the most visual reminders according to Fig. 4.11.

Figure 4.11: Percentage of time Looking at Mappings required by Control Usage Reminder
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Electroencephalogram

We used the EEG sensor to evaluate the cognitive load based on the Theta Alpha Ratio (TAR) method. The human
brain produces signals with different frequency bands, called brainwaves, each attributed to their own function. In
particular, the Alpha band (8-12Hz) and the Theta band (4-8Hz) are both linked to relaxation and focus. In 1999,
Klismech observed that cognitive load could be evaluated by the variation of those bands’ spectral power in the
Frontal and Parietal region of the brain [154]. Respectively, mental load augments when the Theta power increases
in the Frontal Fz position while Alpha power diminishes in the Parietal Pz position (Fig. 4.12). By studying the ratio
of those spectral bands, one can evaluate the cognitive load of a person. This TAR technique is still to this day
one of the prominent cognitive load evaluation method, and we based our evaluation on it, inspired by the work of
Cabañero et al. [155].

Figure 4.12: Visual Representation of the Theta-Alpha Ratio

To obtain the TAR, EEG signals requires filtering, as EEG devices record all the electrical potential at the surface
of the scalp [156]. They not only detect brain activity, but also head muscles activity. Head movements, neck move-
ments, facial movements such as talking or blinking, and so on, create motion artefacts in the EEG signals recorded
that need to be removed. Movements are usually restricted in traditional EEG experiments, but VR studies rarely
limit the users motions, and neither are we, hence the need for motion calibration and in-depth filtering. Both motion
and cognitive load are calibrated. Motions are assessed in a head and face movement exercise, while recording
cognitive load. Accelerometer values are then used for motion filtering. Pure cognitive load is assessed through two
calibration exercises, a hard 2-back test (based on the standard n-back test, a stationary sequential memory test
[157]) and a resting exercise (1 minute of relaxing in silence with eyes closed).

For out signal processing, we first used pass-bands filters to isolate our Alpha (8-12Hz) and Theta (4-8Hz) bands.
Doing so allowed us to reject the 50Hz line noise as well as the bulk of the motion artefacts, usually situated in the
Delta band (0-4Hz) [158]. We then segmented the signal in 1 second windows with an overlap of 0.5 second. In
post-processing, accelerometer data was used to identify and reject windows contaminated by too much motion
artefacts. Then, to account for variability between participants, TAR values were normalised using three min-max
techniques:

• Regular Normalisation: taking the minimum min(TARex) and maximum max(TARex) TAR values of the exer-
cises to normalise each average TAR value from the time windows, noted X, as seen in equation (4.1).

• Motion-Hard Normalisation: using the regular formula, but changing the inferior boundary to the maximum
obtained value in the head motion calibration max(TARmotion), and the superior boundary to the maximum
value obtained in the hard cognitive calibration max(TARhard), as seen in equation (4.2). This allows us to
take into account both motions values and pure cognitive values (theoretically with no motion pollution) into
our normalisation, removing the motion pollution even more from the data;

• Rest-Hard Normalisation: using the regular formula with the inferior boundary being the lowest recorded
cognitive load value during the resting calibration min(TARrest), and the superior boundary being the max-
imum recorded cognitive load value during the high level cognitive load calibration max(TARhard), as seen
in equation (4.3). This method only takes into account the lowest and highest mental load values of each
individual, to scale their values based on pure cognitive data.
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RegularNormalisation(X) =
X −min(TARex)

max(TARex)−min(TARex)
(4.1)

MotionHard(X) =
X −max(TARmotion)

max(TARhard)−max(TARmotion)
(4.2)

RestHard(X) =
X −min(TARrest)

max(TARhard)−min(TARrest)
(4.3)

While regular normalisation shows more variance (Fig. 4.13), it does not take into account motion or cognition
range of each individual. The other normalisation techniques (Fig. 4.14 and Fig. 4.15) do consider them, but tend
to squash data, while also providing better outliers identification. Interestingly, even if shown as the most efficient
and easiest-to-use by the operational metrics, the joysticks appear to physiologically trigger slightly more cognitive
load on average (the cross mark on each plot).

Figure 4.13: Cognitive Load with Regular Normalisation

Figure 4.14: Cognitive Load with Motion-Hard Normalisation
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Figure 4.15: Cognitive Load with Rest-hard Normalisation

4.5.2 Software Optimisation

Study

Design and optimisation in VR can be done on two aspects: hardware and software. We presented previously
our work on hardware selection, and how professional mapped joystick would match our use-case the best. In our
continuing exploration of earthwork teleoperation and training applications, we now focus on software optimization.
In this new study, we aimed to design and evaluate different virtual annotations (VAs) to determine their effective-
ness in enhancing user experience and performance within a virtual reality environment. Virtual annotations, which
include visual and audio cues, are integral to guiding and informing users during complex tasks in VR settings.
The concept of virtual annotations has been extensively studied in various fields, particularly in augmented reality
and VR, where they are used to provide contextual information, enhance situational awareness, and improve task
performance [159]. In the context of earthwork teleoperation, effective VAs can significantly reduce cognitive load,
minimize errors, and enhance the overall efficiency of operations [160].

Our study tested multiple VAs, as well as multiple display modalities, including always visible/audible annota-
tions, those accessible via a menu, and event-based annotations triggered by specific actions or conditions. This
comprehensive approach allowed us to explore how different presentation methods affect user interaction and task
performance. All our VAs and their modalities are presented in Table 4.2.
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Virtual annotation Description Display Modalities Investigated

Mappings Eye-tracked / in a menu / always visible

Tutorial Always in a menu

Reticle,
ground projection

of the bucket position
Eye-tracked / in a menu / always visible

Cabin Instructions Eye-tracked / in a menu / always visible

World Instructions
Eye-tracked / in a menu /

special (icon instead of text) /
always visible

Arrow to Objective Eye-tracked / in a menu / always visible

Rear View Camera In a menu / special (only when going backward) /
always visible

Tracks Directions,
ground projection of the tracks

position and direction

In a menu /
special (only when going moving) /

always visible

Engine Sound In a menu / always audible

Backing Sound In a menu / special (when going backward)

Table 4.2: Virtual Annotations and their Display Modalities Tested in our Study
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A total of 17 participants (on average 34.1 years old, 12 males, 5 females) were involved in the study. After
completing a tutorial exercise to familiarise themselves with the VR environment (as seen in Fig. 4.16) and the
joysticks control, they proceeded through three sets of exercises.

Figure 4.16: Virtual Environment Example for the VA Study

Each set involved the same tasks but featured a different configuration of VAs, summarised in Table 4.3:

• Set A: the first set primarily relies on visual annotations displayed at head level, providing constant feedback
and guidance directly in the user’s line of sight;

• Set B: the second set incorporated more world-integrated VAs, blending visual cues into the environment to
enhance immersion and contextual relevance;

• Set C: the third set combined both visual and audio VAs, aiming to evaluate the impact of multi-modal feedback
on user performance and perception.

Those three sets were designed empirically to fulfill two objectives: first, allow the users to test all the modalities for
each VA across the sets. Second, obtain some insight on global display method - head-level visual display (Set A),
world integrated display (Set B), and multimodal (visual and audio) display (Set C). The order of the sets tested was
changed between each participant to avoid a learning bias.

Virtual Annotations Set A Set B Set C

Mappings Always visible Eye-tracked Deleted
Tutorial In a menu In a menu In a menu
Reticle In a menu In a menu In a menu

Cabin Instructions Always visible Deleted Eye-tracked
World Instructions In a menu In a menu In a menu
Arrow to Objective Eye-tracked In a menu Always visible

Rear View Always visible In a menu Special (only when backing up)
Tracks Directions Special (only when moving) Always visible In a menu

Engine Sound In a menu Deleted Always audible
Backing Sound In a menu Special Special (only when backing up)

Table 4.3: Virtual Annotations Sets
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Participants were evaluated using a range of physiological measures to gain insights into their cognitive and
physical responses to the different VA configurations. Eye-tracking data (from the HTC Vive Pro Eye) was used to
assess fixation on visual annotations, providing a direct measure of attention and engagement. EEG data (from
the Unicorn Hybrid Black) was collected to monitor cognitive load, offering insights into how different VA modalities
affected mental effort. Physical load measurement was added to this study and assessed using a combination of
IMU data (from the head with the Unicorn Hybrid Black and the arm with the Polar OH1+) and heart rate monitoring
(also from the Polar OH1+ armband), providing a global view of the participants’ physical exertion during the tasks.

A key objective of this study was to investigate whether a methodology based solely on bio-signals (i.e. eye-
tracking, EEG, and physical load sensors) could be effectively employed for VR design and optimisation.

Results

In this study, we extracted intrinsic metrics from eye-tracking, EEG and physical sensors (IMUs and heart rate mon-
itors).

Eye-tracking

The eye-tracking data were used to evaluate fixations on the diverse (visual) VAs. As gaze does not equate intent
(e.g. looking at something while thinking about something else), eye-tracking filtering is needed to remove involun-
tary fixations. According to Trevathen’s theory [161], there is a duration threshold (50-150ms) under which fixations
can be classified as "ambient" (i.e. no intent), and one (300-500ms) over which they can be classified as "focal"
(i.e. possible intent and/or understanding). To remove all certified "unintended" fixation, we got rid of all fixations
under the 300ms. While this does not guarantee that the remaining fixation are all intentional (and more importantly
translate the understanding of the looked-at VA), it does remove parasitic data due to eye movements alone, giving
us an exploitable metric through gaze assessment.

We obtain our attention metric by diving the duration of the (filtered) fixations on a VA by the completion time of
the exercise. Then we look at the distribution of the fixation to estimate which visual VAs are the most useful (looked
at) and thus should be kept visible at all time, while the less useful (less looked at) are hidden in a menu or even
deleted. We considered the modality selection as follows:

• Q0 (0%) -> DELETE: if the percentage of fixation is minimal, the VA can be deleted as it is not useful;

• Q0 (0%) - Q1 (2%) -> MENU: if the percentage of fixation is in the first quartile (in our study, between 0% and
2% of fixation time), they are not very useful, but should still be kept in the application. Therefore we put them
in a menu where the user can choose to enable or disable them at will;

• Q1 (2%) - Q2 (3%) -> EYE-TRACKED OR EVENT-BASED: if the percentage of fixation is in-between the first
quartile (2% of fixation time) and the median (3% of fixation time), the VA is deemed useful enough to be
displayed "when needed" - either when the user is looking directly at them (they stay semi-transparent when
not looked at and become opaque when looked at) or when an event justify their use (e.g. displaying the
rearview camera when moving backward only);

• > Q2 -> ALWAYS VISIBLE: if the fixation time of the VA is above the median time (3% of fixation time), then it
is deemed useful enough to be displayed at all time.

The tutorial VA was the only exception, placed in its own menu and displayed when pressing a button. On the
aforementioned VAs, the results are as follow in Table 4.4.
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Virtual Annotations Fixation Time Percentage Distribution Selected Modality

Mappings 9.7% > Q2 ALWAYS VISIBLE
Reticle 2.4% Q1-Q2 EYE-TRACKED

Cabin Instructions 1.5% Q0-Q1 MENU
World Instructions 0.0% Q0 DELETED
Arrow to Objective 1.6% Q0-Q1 MENU

Rear View 5.2% > Q2 ALWAYS VISIBLE
Tracks Directions 3.9% > Q2 ALWAYS VISIBLE

Table 4.4: Virtual Annotation Eye-tracking Selection

Electroencephalogram

We employ the same methodology for EEG treatment as seen in Section 4.5.1. We once again extract a cognitive
load measure from the EEG data. First we filter the raw EEG data to isolate our Alpha (8-12Hz) and Theta (4-8Hz)
bands, then we remove motion polluted data thanks to head accelerometers and gyroscopes data. Then, we calcu-
late the theta-alpha ratio (TAR) for each participant. As cognitive load is not generalisable inter-participants [162],
we normalise the TAR values, using a regular min-max formula (see Equation 4.1).

To assess our different regularisation techniques, we used one-Way ANOVA analysis [163] to determine whether
there are statistically significant differences in the means of our data. As a result of this statistical analysis performed
on the hardware selections and software optimisation studies, we decided to keep only the regular normalisation
technique, and not the motion-hard or rest-hard regularisation, which performed poorly. Finally we average the
normalised TAR values and compare them for each VA sets. The results are shown in Fig. 4.17.

Figure 4.17: TAR Evaluation for each Set of Virtual Annotation

These results seem to indicate that head-level visual annotations (Set A) require less mental demand, probably
because the users do not need to search for the information as everything is directly displayed in their immediate
field of view. Another observation is that multimodal annotations (namely adding sound as in the sets B and C)
generates more cognitive load. This is to be expected, but another less expected finding is that it is better to have
all sounds (constant engine sound and backward beeping sound) as in Set C than some punctual sounds (just the
backing sound) as in Set B, as the average cognitive load is on average lower in Set C than Set B. This might reflect
the effect of better audio immersion on lessening the cognitive load of the user [164]. Through the cognitive load
metric, we confirm the eye-tracking measure on always displaying some annotations or not, especially those at head
level. Another design choice extracted from this measure is to keep both audio elements (constant engine sound
and punctual backing sound) for better immersion and lesser mental load.
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Physical Load Sensors

We use two types of sensors for evaluating physical load: IMUs (placed on the head and arm) and heart rate moni-
tors.

From IMUs, we extract mainly the acceleration values from head and arm movements, from all three 3D axes (X,
Y, Z), in absolute values, to obtain a compound "motion value", in milli-gravity (mG), in 0.5 seconds windows (t).

MotionV alue(t) = |Xacceleration(t)|+ |Y acceleration(t)|+ |Zacceleration(t)| (4.4)

We then get the average values for head and arms for the whole set and compare them inter-participants, see Fig.
4.18.

Figure 4.18: Head and Arm Motions (in mG)

As the experiment is spent seated, arms resting on a table, the differences between each set are quite small.
Logically, head motions are slightly lesser in Set A, were annotations are displayed at head level (requiring less
head movement to find the information). In return, arms motions are slightly higher in Set A, most annotations are
displayed at eye-level, eliminating the need to search for them (less head movements), but the in-world objectives
are not indicated, requiring users to move the vehicle more frequently (more arm movements) to see and reach them.

From the heart rate monitor (the Polar OH1+ armband), we extract the average heart rate per set, in beats per
minute (BPM), as seen in Fig. 4.19.

Figure 4.19: Average Heart Rate per Set (in BPM)

Once again, due to the low physical intensity of the experiment, there is little divergence in heart rate between
sets, especially when looking at the average heart rate. Heart rate can also be a stress indicator [165], but the low
divergence does not yield significant results on that front either.
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While physical load is an important factor in VR design, especially in medium and long-term usage, our exper-
imental setting did not permit an in-depth evaluation of this metric. However, we do think that it is worthy to keep
in our VR-SOLUS framework, as we want a generic methodology that can be applied to various use-cases, includ-
ing the more physically demanding ones. As we can see, the use-case/experimental setup can be a limitation to
physiological measure. Another challenge that appeared for every biosensors is the importance of advanced signal
processing in the analysis of each set of data.

4.6 Challenges of Signal Processing

The processing of physiological signals in virtual reality (VR) environments presents several challenges due to the
multimodal nature of the sensors involved. Each type of sensor — whether it is eye-tracking, electroencephalogram
(EEG), or inertial measurement units (IMU) — captures data at different frequencies and in distinct modalities, re-
quiring a specific approach to signal treatment for each sensor.

Before delving into the signal treatment necessity for each sensor, multimodal physiological data approaches
face a first major challenge: the need for precise data synchronisation. Given that each sensor operates at its own
sampling rate, integrating the data streams into a cohesive analysis framework requires meticulous alignment [166].
This is traditionally done through hardware, but can also be done through software management, which is the solu-
tion we chose. In our VR-SOLUS pipeline, we integrate eye-tracking data with a 120Hz frequency, EEG data with a
250Hz rate and IMUs recording at 250Hz (for the head) and 100Hz (for the arm). Without proper synchronisation,
any analysis that combines these data sources would suffer from temporal misalignment, leading to inaccurate or
misleading interpretations (e.g. a cognitive reaction to a wrong visual cue if the data timing is not aligned).

To make sure our VR-SOLUS pipeline is synchronised, we make use of different software for recording, filtering
and processing for our different sensors:

• Eye-tracking: recorded in Unity through the SRanipal SDK5. While Unity exploits the eye-tracking 120Hz rate,
it registers only the punctual fixations events happening when the users look at predefined zones of interest
(ZOI). Only those punctual events are sent to the rest of the pipeline and synchronised with the other signals;

• EEG: recorded through the Unicorn Suite. They provide a continuous flow of data which is considered the
main data stream, while the others are discrete event streams;

• IMU - head: the head motions are recorded through the same hardware (EEG cap) and software (Unicorn
Suite) as the EEG, and therefore are integrated into the main data stream;

• IMU - arm and Heart Rate Monitor: recorded separately on Android through the Polar Sensor Logger. Due
to the separate recording hardware, the data are synchronised after all the other signals through timestamp
alignment in Python. In our studies, due to the rarity and low intensity of the physical events, we rather use an
averaged, independent physical load measure than a synchronised one.

To summarise, our data is divided into two streams: the main data stream (continuous flow of EEG and hand
IMU data) and the event data stream (discrete timestamps marking important events of eye-tracking and simulation
events such as beginning and end of certain tasks). These flows are synchronised through the Lab Streaming
Layer6, then treated through OpenVibe7 and analysed through Python, as shown in Fig. 4.20.

To achieve data synchronisation and coherent analysis, independent signal treatment is also needed for each
sensor.

5SRanipal SDK for HTC Vive Eye-tracking https://developer.vive.com/resources/vive-sense/eye-and-facial-tracking-sdk/
tutorials/sranipal-getting-started-steps/?site=kr

6Lab Streaming Layer for Data Synchronisation https://labstreaminglayer.org/#/
7OpenVibe software https://openvibe.inria.fr/
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Figure 4.20: VR-SOLUS - Physiological Data Pipeline v2

4.6.1 Eye-tracking and Intent-tracking

Challenges

Eye-tracking technology in VR offers profound insights into user behavior, interaction patterns, and cognitive pro-
cesses. However, it also presents a set of unique challenges that must be carefully managed to ensure accurate
and meaningful data collection. The first and more prominent one is the "Midas Touch" problem [167]. When it
comes to gaze, what you see is what you get, and eye-trackers get everything. Every movement is recorded, either
voluntary, involuntary, with intent or not, real or fake fixation, understanding of what is seen or not and so on. In VR
environments, this problem is even more notable, as the user’s gaze is often used as an input method to interact
with virtual objects or interfaces [168]. As the eyes naturally move constantly, even without the user’s intention to
interact with the environment, this can lead to unintended selections or actions, as the system might interpret a ca-
sual glance as an intentional command. In our study, as we try to detect the fixations of the users’ gaze on specific
object, the Midas Touch effect can lead to wrong detection, as illustrated in Fig. 4.21.

Proposed Solution

In this thesis, the main eye-tracking metric is fixation. Due to the Midas Touch effect, another challenge is differenti-
ating between voluntary and involuntary fixation. According to Trevathen’s theory [161], fixations can be divided into
"ambient" and "focal" fixations, as evoked earlier. Ambient fixation occurs when the user is broadly scanning their
environment without focusing on any specific object - lasting between 50ms and 150ms, while focal fixation involves
concentrated attention on a particular item - lasting at least between 300ms and 500ms. In VR, both types of fixa-
tion are common, but they carry different implications for user intent and engagement. For example, focal fixations
can indicate interest or cognitive load, while ambient fixations may suggest exploration or searching behavior. To
accurately distinguish between these types of fixations is crucial for our VR-SOLUS method, as we want to extract
relevant fixations on our ZOI. Which is why we filter and remove any fixation below 300ms: we make sure to remove
all ambient (involuntary) fixations, and keep only those that can translate intent and understanding.

Another element that needs to be taken into account when using eye-tracking is peripheral vision. It also plays
a significant role in how users experience VR, but it is often challenging to account for in eye-tracking studies.
Eye-trackers typically focus on where the central point of vision is directed, potentially overlooking important stimuli
detected in the periphery. If one were to enlarge this central point zone of detection, more peripheral information
could be detected, but with a price of elevated number of false-positives. Understanding and incorporating the role
of peripheral vision into the design and analysis of VR experiences is essential but technically challenging. We do
not explore it in this thesis but encourage its inclusion in further research.
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Figure 4.21: An Example of the Midas Touch Effect Issue in VR

4.6.2 Electroencephalogram and Artefacts

Challenges

EEG is a powerful tool for measuring brain activity and understanding cognitive and emotional states. However, even
in traditional experimental settings, EEG data can be challenging to work with due to its sensitivity to various forms
of noise and interference, forming polluting artefacts in the recorded signal. When applied in a VR environment,
these challenges are exacerbated, and new obstacles emerge that complicate further data collection and analysis.

In conventional EEG experiments, participants are typically seated in a controlled environment, where move-
ments are minimised to reduce the introduction of noise into the EEG signals. As EEG records all electrical signals
at the surface of the scalp, head and face motions are also recorded. Therefore participants are often instructed
to avoid talking, moving, or even blinking excessively, as these actions can generate artefacts that obscure the
true brain activity being measured. Additionally, EEG experiments are usually conducted in specialised laboratories
designed to minimize electromagnetic interference from surrounding electronic devices. Despite these precautions,
traditional EEG recordings still face challenges such as:

• Muscle Artefacts: movements of the head, neck, and face muscles can produce electrical signals that con-
taminate the EEG data [169]. Even slight movements, such as swallowing or clenching the jaw, can generate
significant noise;

• Eye Movements: blinks and saccades (rapid eye movements) create electrical potentials that can overshadow
the brain signals of interest, requiring careful filtering and artifact correction techniques [170];

• Environmental Interference: electromagnetic noise from electronic devices, lights, or other equipment in the
lab can introduce unwanted signals into the EEG data [171], necessitating the use of shielding or specialized
equipment to mitigate these effects.

When EEG is combined with VR, the challenges inherent in traditional EEG experiments are amplified, and new
ones arise due to the dynamic and immersive nature of VR, such as:

• Motion Artefacts: in VR, participants are encouraged to move their heads and bodies as they interact with the
virtual environment. These movements introduce substantial motion artefacts into the EEG data, complicating
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the identification of genuine brain activity [172]. Headset motion, especially rapid or jerky movements, can
produce significant noise in the EEG recordings;

• Headset Friction and Pressure: the physical interaction between the EEG cap and the VR headset can
create friction and pressure on the scalp, leading to signal disturbances [173]. The weight and fit of the VR
headset can also shift the electrodes, causing inconsistent contact with the scalp and resulting in intermittent
signal quality, as well as discomfort for the user;

• Electronic Interference: VR systems involve multiple electronic components, including displays, sensors, and
wireless communication devices, which can generate electromagnetic interference [174]. This interference
can manifest as high-frequency noise or low-frequency drifts in the EEG data, obscuring the underlying brain
signals.

To manage these challenges, researchers have developed and implemented various strategies. A lot of them rely
on extensive advanced signal processing. To remove artefacts, algorithm using independent component analysis
(ICA) [175] or wavelet transformation [176] can help identifying and removing noise generated by muscle move-
ments, eye blinks, and other sources. Specific motion artefacts algorithms are also often employed [177] to differen-
tiate between brain signals and artifacts caused by head and body movements. These algorithms often incorporate
data from additional sensors, such as accelerometers and gyroscopes, to help filter out movement-related noise.
It is rather common actually to combine multiple physiological measures with EEG for signal treatment: IMUs for
motion artefacts [178], eye-tracking for eye movements (e.g. blinking or saccadic movements) artefacts [179], as
well as other sensors and brain imagery like functional magnetic resonance imaging (fMRI) [180]. Another approach
to improve EEG data quality is through hardware itself. To mitigate electromagnetic interference, shielding material
can be used around the EEG electrodes [181]. To avoid headset friction, some manufacturers now directly integrate
EEG inside of their headset, which improve not only the EEG signal itself, but also the VR user experience by inte-
grating neurofeedback.

Proposed Solution

In our studies, we extract a cognitive load metric from our EEG cap. We do this using non integrated electrodes (on
the hardware) and follow the theta/alpha ratio (TAR) technique for analysis (on the software side). We set up our
EEG pipeline based mainly on the work of Cabañero et al. [155], because of their similar work on ambulatory EEG
analysis. We focused our signal treatment on motion artefacts which were the more prominent ones in our signal.
We faced many of the challenges above in our research, and chose to mitigate them through the following steps:

1. Signal Capture: first of all, the EEG are recorded through our 8 channel EEG cap (Unicorn Hybrid Black),
with a 10-20 mapping. This cap is also equipped with IMU (namely gyroscopes and accelerometers) which
values we also record at the same 250Hz frequency. To mitigate friction with the headset and improve user
comfort, we used padding between the EEG cap and the VR headset;

2. Synchronisation: the EEG (and IMU) data stream is synchronised through the Lab Streaming Layer with the
VR simulation markers stream, containing timestamps of the different events (e.g. tasks, exercise, eye-tracking
events) of the experiment;

3. Brainwave Isolation: in OpenVibe, we record the signals coming from our two streams. From the data
stream, we isolate our frontal (Fz) and parietal (Pz) channels, where we respectively study the theta and alpha
bands. We apply pass-band filters to keep only the theta (4-7Hz) and alpha (8-12Hz) bands. By doing so, we
also remove the bulk of motion noise, usually present in the 0-4Hz delta band [158] and the 50Hz line noise;

4. Signal Segmentation: the filtered values are segmented in 1 second windows, with an overlap of 0.5 second,
creating a series of exploitable dataframes;

5. Theta/Alpha Ration (TAR) Calculation: for each dataframe, we divide the obtained theta power by the alpha
power to obtain our TAR values;

6. Artefacts removal: done with internal IMU exploitation. We segmented our accelerometer values the same
way we did the EEG. Thanks to motion calibration exercises done in the VR experiment, we extracted for
each participant a motion threshold above which we considered the EEG data "too polluted" by motions to be
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exploitable - a technique based on the amplitude approach [182] - and removed those data from our analysis.
This method makes use of individual motion data for each participant;

7. Normalisation: TAR values cannot directly be compared inter-participants are they are not generalisable
[162]. Therefore we normalise those data beforehand by using a min-max scale per exercise. We also eval-
uated other regularisation techniques using calibrated values of low and high cognitive load and motions (to
take them into account in the analysis), but their statistical significance was lesser than regular normalisation;

8. Evaluation: for each task/exercise/phase we want to compare between participants, we extract an average
TAR value thanks to our events timestamps, obtained from the event stream from the VR application. We then
confront those values inter-participants for our different setups (controllers, virtual annotations, etc.) to study
the cognitive load impact on each participant.

This EEG pipeline, integrated into our VR-SOLUS framework, is represented in Fig. 4.22.

4.6.3 Accelerometers and Heart Rate

Physical sensors, such as IMUs and heart rate monitors, are commonly used in VR environments to capture data
related to a user’s physical state and movements. These sensors provide valuable insights that can be used to filter
and enhance other physiological data, such as EEG and eye-tracking, by accounting for physical artifacts. However,
when it comes to assessing physical exertion or load in VR, the application of these sensors for physical load eval-
uation can be limited by the experimental use-cases.

In many VR studies, physical sensors are employed mainly to support the interpretation of other physiological
data. For example, IMUs can detect head or body movements that might introduce noise into EEG signals, allowing
researchers to filter out these artifacts more effectively [178]. Similarly, heart rate monitors can help distinguish
between changes in heart rate due to emotional stress versus physical activity [165].

Given the relatively sedentary nature of most VR experiences, including ours, the data from physical sensors
serves a supplementary role rather than being the primary focus. The controlled, virtual nature of the tasks in many
VR studies means that physical exertion is minimal, and the data from these sensors is not as critical for evaluating
user performance or experience as it might be in more physically demanding contexts. In our proposed VR-SOLUS
framework, we want to keep physical load metric, and for this use both head and arm motion sensors, as well as
heart rate monitor. While the physical load extracted in our studies had little variations due to the nature of our
research, we encourage the use of such sensors, for both physical load and stress evaluation. We also suggest the
use of EMG for more in-depth and direct muscle activity measures.
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Figure 4.22: EEG Pipeline - From Capture to Analysis Software Pipeline using Unity, Unicorn Suite, LSL,
OpenVibe and Python
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4.7 Evaluation of Intrinsic Physiological Measures

In this chapter, we showed the contribution of physiological measures integration into VR design and optimisation.
Physiological measures provide intrinsic insights that are highly valuable and serve as a crucial complement to op-
erational metrics in the study of VR systems and user experience. While operational data can offer a clear picture of
user performance, physiological measures reveal the underlying state of the user, such as cognitive load, attention,
and physical engagement. This focus on the user’s internal experience introduces a layer of analysis that is other-
wise inaccessible through purely operational metrics, highlighting the complementary nature of these two types of
data.

Physiological measures have distinct advantages. They provide objective, quantitative data that can reflect the
user’s state in a detailed and nuanced manner. This data can be particularly valuable for optimising VR experiences
to better match user needs and capabilities, on the short, medium and long term. However, these benefits come with
certain drawbacks. The analysis of physiological data often requires advanced techniques and careful interpretation.
Additionally, the effectiveness of different sensors can vary depending on the specific use-case (e.g. IMU or heart
rate monitors for physical load for seated, low movement experiments), with some sensors performing better or
worse depending on the environment, task, or user. By integrating physiological data to our VR-SOLUS framework,
we obtained relevant intrinsic data, that complement well with our other objective metrics, the operational measures.
Interestingly, when confronted to user feedback (also present in each experiment of this chapter), besides the fact
that both showcase intrinsic measure, objective and subjective results are not always the same. When answering
the fundamental questions of each study, the results, while pointing to the same direction, showed more nuances,
and even sometimes contradictions, than when using operational data only:

• Which controller for earthwork excavation training ? Operational data and user feedback placed joysticks
on top of the competition with a large margin. While eye-tracking showed similar results - the joysticks needed
less visual reminder of their mappings, making them more intuitive, cognitive load evaluation showed that
despite being the preferred controllers, the joysticks were the more mentally demanding. Not only the bio-
sensors brought more depth to the controllers evaluation, they even showed a contradiction between the
perceived mental load (rated the lowest by the users) and the measured mental load (being on average the
highest), linking physiological measures with initial users’ skill level rather than perception;

• What is the best VR interface for earthwork teleoperation ? When it comes to rating virtual annotations
(VAs) and their modalities, operational data could only provide performance metrics for a whole set of VAs, and
not the individual ones. The results in terms of time, errors and multiple inputs were quite divided between sets
and did not reveal much on individual VAs. On the other hand, physiological data were much more targeted:
eye-tracking allowed for precise evaluation of the visual VAs, cognitive load allowed the assessment of audio
VAs and physical load sensors showed that naturally, head-level display requires less head movement and
thus less physical exertion. Users also assessed the VAs on their usefulness ("is this VA useful?") and their
Affinity ("do you like this VA?") and interestingly, while some results matched the physiological measures, some
VAs were deemed "not very useful" while also being "used a lot" (e.g. looked at for visual VAs), according to
the bio-sensors. Another singular observation was how sounds were deemed "not useful" by the users, but
most of them "liked them", saying it helps with immersion, a perception that is translated with a matching lower
cognitive load.

These findings raise the question of correlation of data. Physiological and operational data are both objective but
stem from different perspectives — one being rooted in the user’s internal state (intrinsic) and the other in observ-
able performance (extrinsic). On the other hand, while both physiological data and user feedback are intrinsic data,
they differ in their respective objectivity and subjectivity. Understanding the interconnections between these three
sources of data — physiological, operational, and user feedback — and how to exploit them, forms the basis of our
VR-SOLUS method, as well as the layout of our next chapter, where we delve into the correlations and synergies
between them.

To conclude on physiological measures, while they bring a new depth to the understanding of VR experiences,
they also demand careful analysis and thoughtful integration with other types of data. Their intrinsic value lies in their
ability to offer insights into the users’ state, making them an essential tool in the broader toolkit of the VR-SOLUS
method for VR design and optimisation.
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Chapter 5

Hybrid Approach and Correlations
Analysis

So far we have presented our use of objective measures - namely the operational and physiological metrics, their
advantage and associated challenges (Fig. 5.1). But our pipeline would not be complete without its third metric, the
subjective but no less informative user feedback.

Figure 5.1: Objective Metrics Framework Highlighted into the Global Analysis Approach Proposed by VR-SOLUS

In the following sections, we explore the integration of user subjective data through survey and feedback, their
synergy and complementarity with objective data, as well as their correlation, which makes the strength of the
proposed VR-SOLUS method.
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5.1 VR-SOLUS Hybrid Pipeline

Our attempt to understand user interactions within VR environments consisted until now to integrate both opera-
tional and physiological metrics, providing a comprehensive framework for evaluating VR interfaces.

Operational measures are extrinsic metrics, derived directly from the user’s interactions within the VR system.
These metrics include in our work:

• Completion Time: this measures how long it takes a user to finish a specific task within the VR environment.
As a direct performance indicator, completion time provides insights into the efficiency and ease of use of the
interface;

• Input Errors: this metric tracks inaccuracies in user inputs, such as incorrect button use or misaligned move-
ments. Input errors serve as a measure of the interface’s intuitiveness and the user’s mastery over the control
mechanisms;

• Multi-Input Usage Percentage: this examines the extent to which users employ multiple inputs simultane-
ously, which can reflect their comfort level and familiarity with the VR system. A higher percentage may indicate
more advanced control and effective interaction;

• Use-case Specific Metrics: specific use-cases require specific metrics that measure the adequacy between
the user and the task at hand.

On the other hand, physiological measures, our intrinsic metrics offer a window into the user’s internal states,
capturing data that reflects cognitive and physical responses during VR tasks. We included:

• Eye-Tracking Fixation: eye-tracking technology records where users focus their gaze and for how long. This
information can highlight areas of interest or difficulty within the VR environment, providing valuable feedback
on the design’s effectiveness and usability;

• Electroencephalogram (EEG) Cognitive Load: using EEG data, the cognitive load is evaluated through the
assessment of the Theta Alpha Ratio (TAR). This metric helps gauge the mental effort required to complete
tasks, offering insights into the user’s cognitive state and how demanding they find the VR experience;

• Inertial Measurement Units (IMUs) and Heart Rate Monitors for Physical Load: IMUs and heart rate
monitors track physical activity and exertion. These metrics assess the physical demands placed on the user,
helping to understand how the VR experience affects the body and whether it aligns with the intended physical
load.

The integration of both extrinsic (operational) and intrinsic (physiological) metrics offers a dual perspective on
user interaction. Operational measures provide clear, objective measures of task performance, helping to assess
the efficiency, accuracy, and intuitiveness of the VR interface, making them reliable performance indicators. Physio-
logical metrics offer deeper insights into the user’s cognitive and physical states, revealing how the VR environment
affects their mental load, attention, and physical effort. This data can identify areas where the user may be strug-
gling or excelling, which might not be evident from performance metrics alone. By synthesising both, the VR-SOLUS
method allows for broader understanding of user experience and thus better guidelines for VR design and optimi-
sation. This is not without challenges, such as the synchronisation of multimodal data and the advanced signal
treatment and analysis.

However, a key question arises: can the VR-SOLUS method be used with only its objective measures? Can
objective metrics fully replace user feedback, or is there still a crucial role for traditional subjective input in the de-
sign and optimisation of VR experiences? While objective data provides quantifiable insights into performance and
user state, user feedback offers personal perspectives that can capture nuances and subjective experiences that
objective metrics alone may miss. In the following section, we interrogate this aspect via a test implemented in
a software design study. The results of this study, detailed in the following sections, suggest that both objective
and subjective data are necessary for optimal results, and that the VR-SOLUS framework would not be complete
without user feedback. While operational and physiological metrics can objectively guide design choices and reveal
underlying issues, user feedback remains invaluable for understanding personal experiences, preferences, and sat-
isfaction, which are essential for creating truly immersive and user-friendly VR environments.
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5.2 User Feedback vs Data-driven Method

In the field of VR design and optimisation, two main approaches are often employed: traditional user feedback
methods and novel data-driven techniques. Each has its own set of advantages and drawbacks. Traditional user
feedback, typically gathered through surveys and interviews, provides direct insights into user preferences and ex-
periences, but can be subjective and limited in scope. On the other hand, data-driven methods, which use software
metrics and physiological measurements, offer objective and quantifiable data but may lack the context provided by
user perspectives.

This raises several key questions: Is one approach inherently superior to the other? Can these methods be used
independently, or is a hybrid approach more effective? To address these questions, we conducted a study using
our proposed methodology, integrating both traditional and data-driven techniques. We explore how these methods
compare and whether combining them leads to better outcomes.

5.2.1 Testing Methodologies - Implementation

To investigate the cross benefits of objective and subjective measures, we designed a software optimisation study
where three methodologies were evaluated: a pure user feedback one, a pure data-driven (operational and physio-
logical measure) one, and a hybrid one. This study is the follow-up of the one presented in section 4.5.2.

Experimental Protocol

In this study, 30 participants from 20 to 61 years old (average 33.4 years old) participated in a VR excavator training
experiment. In this experiment, participants first completed the calibration of physiological sensors; followed by a
tutorial on operating the virtual excavator with joysticks (see mappings Appendix A.3); and then performed three
similar excavation exercises, each featuring a different set of virtual annotations (VA) with identical tasks to perform
(see Table 4.2 for the list of all VAs). The participants were separated in two groups:

• The Design group: this group tested three different sets of VA empirically designed to encompass all possible
display modalities (see Section 4.5.2). Participants in this group evaluated all VAs using NASA-Task Load
Index (NASA-TLX) surveys [29] (template available Appendix B.1), System Usability Scale (SUS) inspired
surveys [30] (template available Appendix B.2, Appendix B.3, Appendix B.4), open feedback, and physiological
measures from eye-tracking, EEG, fitness tracker, and accelerometer data. This part of the study is presented
in section 4.5.2, through the scope of physiological analysis;

• The Evaluation group: this group tested three new sets of VAs based on the results from the Design group.
One set was designed solely based on user feedback (the User Set), another set was based exclusively on
objective data (the Data-driven Set), and the third set was developed using a hybrid approach that combined
both objective and subjective data (the Hybrid Set), corresponding to the VR-SOLUS methodology).

The Design group consisted of 17 participants, while the Evaluation group included 16 participants, comprising 13
new participants and 3 from the Design group. Including some individuals from the first group aimed to assess user
evolution with the different methodologies.

During this study, the participants used the HTC Vive Pro Eye VR headset, as their main head mounted device
and as our eye-tracking provider. They also used the Unicorn Hybrid Black, a 8 channels EEG cap providing both
brain signals and head acceleration values. Finally, they were equipped with the Polar OH1+ armband, providing
arm acceleration values and heart rate. The virtual environment was designed in Unity, and controlled by the users
with Thrustmaster 16000M Duo joysticks. Operational and eye-tracking data were recorded in Unity, EEG and head
movement data were recorded through the Unicorn suite, arm movement and heart rate were recorded with the
Polar Sensor Logger application. Data were synchronised through Lab Streaming Layer (LSL), filtered in OpenVibe
and analysed in Python. User feedback were done on paper and anonymised when registered on computer. This
setup is shown in Fig. 5.2.
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Figure 5.2: Operational + Physiological + User Feedback Pipeline

5.2.2 Design Phase

In the first stage of this study, the Design phase, we defined three sets of VAs: visual VAs at head level, VAs
integrated in the world (and not just in the vehicle cabin), and more immersive VAs with sound and event-based
activation (the "special" modalities for the VAs). The design of those sets allowed the participants to experience all
modalities of the VAs.

During the experiments, users data were recorded and the VA sets evaluated using multiple modalities:

• Operational Measures: completion time, inputs errors and multi-inputs percentage, those measures provided
performance indicators for each set of VAs;

• Eye-tracking: fixations on visual VAs were recorded and used as one of the main metrics for usefulness of
visual VAs;

• EEG: cognitive load was evaluated for each set and revealed that head level information produced less mental
demand (less visual search required), and also that it was better to have immersive sound (continuous and
intermittent) than just intermittent sound;

• IMUs and Heart Rate: the experiment had very little physical demand, and thus those measures did not give
significant information, other than confirming that the head physical demand is lessened when information is
displayed at head-level (but produces more arm movement, to align the virtual vehicle with its environment);

• User Feedback: a NASA-TLX survey was conducted after each set; a SUS-inspired survey was conducted at
the end of the experiment regarding the perceived usefulness and appreciation of each VA, as well as which
modality should be kept for display according to users (always visible/audible, eye-tracked, event-based, in a
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menu, deleted); and finally users had to rate their preferred set in order. Open feedback on the experiment
was also recorded.

Some evaluation modalities (operational data, physical data, EEG, NASA-TLX) evaluated whole sets, giving
global (but still exploitable) information on the user experience. Other modalities (eye-tracking, SUS) allowed more
targeted analysis on specific VAs. The physiological results and their analysis is available in section 4.5.2.

Operational Results

Operational results evaluate the whole sets. They are performance indicators that tend to show that head-displayed
information produce better completion time and more multi-input percentage, but also produce more errors. On the
other hand, integrating information in the world requires more completion time (more information search needed)
and less multi-input percentage (more focus on the information than the control) but less errors (slow and steady
control). Multimodal feedback finally combines both previous sets advantage and drawbacks, showing middle time,
middle errors and middle multi-input percentage, as shown in Fig. 5.3.

Figure 5.3: Design Phase Operational Results

User Feedback Results

The user-centric results are derived from two surveys and open feedback. The first survey is the classic NASA-
TLX questionnaire, which evaluates (on a 20 points scale) mental demand, physical demand, temporal demand,
performance, effort, and frustration based on user insights. The second survey is inspired by the SUS. While the
NASA-TLX provides insights into various aspects of the VA sets, the SUS focuses specifically on the VAs, assigning
each a usability score (out of 10), an affinity score (out of 10), and a modality.

The NASA-TLX results are fairly consistent across all three sets (see Table 5.1). However, Set C (integrated/immersive
set) shows slightly better performance results. Additionally Set A (purely visual at head-level) exhibits slightly higher
frustration levels.

Parameter Set A Set B Set C

Mental demand 8.8 8.3 8.3
Physical demand 2.6 2.6 2.5
Temporal demand 3.6 3.7 3.5

Performance 13.1 13.6 14.2
Effort 8.9 8.3 8.4

Frustration 5.6 4.9 4.6

Table 5.1: Design Phase NASA-TLX Results

The SUS provided a precise score (on a 10 points scale) for each VA in terms of affinity and usefulness, along
with a modality score. This modality score, weighted by the affinity and usefulness ratings, served as the primary
parameter for modality selection in the Evaluation round, see Table 5.2.
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VA Usefulness Affinity Modality

Mappings 8.6 6.9 In a menu
Tutorial 5.8 7.3 In a menu
Reticle 8.4 8.5 Always visible

Cabin Instructions 7.9 5.6 Always visible
World Instructions 7.4 6.3 Eye-tracked
Arrow to Objective 8.4 8.3 Always visible

Rear View 8.7 8.6 Special
Tracks Directions 6.9 6.4 Special

Engine Sound 4.1 5.3 In a menu
Backing Sound 6.9 7.6 Special

Table 5.2: Design Phase SUS Results

5.2.3 Evaluation Phase

After testing our different VAs in the Design phase, we extracted three new VAs sets for our evaluation phase, based
on three methodologies:

• The User Set: based only on user feedback, NASA-LTX survey, SUS-inspired questionnaire and open feed-
back;

• The Data-driven Set: based only on operational and physiological metrics, from the eye-tracker, the EEG,
accelerometers and inputs study;

• The Hybrid Set: created by combining both methodology. Each modality is chosen following the rule: if both
the User Set and the Data-driven Set VA modality matches, we keep it as is; if both modalities do not match,
we balance our choice by performance and load (metrics obtained in both methodology) and try to establish a
middle ground modality.

The final sets to be evaluated in the Evaluation phase are described in Table 5.3 and a visual example of the
interfaces is available Appendix A.4. In the case of the World Instructions VA, the "special" display modality refers to
an in-world icon above the objective, while the "eye-tracked" modality refers to a in-world text with instruction above
the objective with its opacity depending on the gaze.

Annotations User Set Data-driven Set Hybrid Set

Mappings In a menu Always visible Eye-tracked
Tutorial In a menu In a menu In a menu
Reticle Always visible Eye-tracked Always visible

Cabin Instructions Always visible Always visible Always visible
World Instructions Eye-tracked Deleted Special (icon)
Arrow to Objective Always visible In a menu Eye-tracked

Rear View Special Always visible Always visible

Tracks Directions Special
(only when moving) Always visible Always visible

Engine Sound In a menu Always audible Always audible

Backing Sound In a menu Special
(only when backing up)

Special
(only when backing up)

Table 5.3: Virtual Annotations Sets in the Evaluation Phase

A new set of participants (and a few from the Design phase) formed the Evaluation group and assessed these
new sets with the same experiment as before, and with the same sensors and modalities.
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Results on the Evaluation Phase

We used three types of measures to evaluate our methodologies: operational measures, physiological measures
and user feedback.

Operational Results

We evaluated the three sets of VAs - User Set, Data-driven Set and Hybrid Set - with performance indicators, in the
form of completion time, input errors and multi-input percentage.

Completion Time

Participants spent on average less time on the Hybrid set exercises (30.9%) compared to the User set (32.5%) and
the Data-driven Set (36.6%) as shown in Fig. 5.4.

Figure 5.4: Completion Time for each Methodology Set

Input Errors

Participants made on average fewer errors in the User Set (average of 5.25) than in the Hybrid Set (5.69) and the
Data-driven Set (7.31), as seen in Fig. 5.5.

Figure 5.5: Input Errors for each Methodology Set
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Multi-input Percentage

Participants demonstrated on average better multi-input usage in the Hybrid Set (74.3%) than in the User Set
(74.2%) and the Data-driven Set (68.3%), see Fig. 5.6.

Figure 5.6: Multi-input Percentage for each Methodology Set

Operational Results Conclusion

In terms of pure operational measures, the Hybrid Set and the User Set show very close performance. The Hybrid
Set is slightly better in terms of completion time and multi-input usage, showing a slightly better performance and
ease-of-use overall, while the User Set produces slightly less errors, showing a faster integration of the controls.
While there is no clear better methodology based on operational measures alone, the Data-driven Set, based only
on objective measures, has already shown lesser performance than the other two.

Physiological Results

Our three methodological sets of VAs were also evaluated through bio-sensors. Namely, we used eye-tracking
fixations (for visual VAs), EEG cognitive load, as well as physical load sensors (head and arm IMUs and heart rate
monitor).

Eye-tracking Results

For the eye-tracking, we analyse the fixations on the different visual VAs. We then study the distribution and choose
modalities based on it: if the percentage of fixation is equal to the minimum (Q0), the annotation is deleted; between
Q0 and Q1 (25% quartile), the annotations is put in a menu; between Q1 and Q2 (25% quartile and the median)
the annotation is event-based (either eye-tracked or special condition); and above Q2 (median), the annotation is
always visible. The tutorial is an exception, we keep it in its specific menu. Based on the gaze fixations observation
we obtain the results shown in Table 5.4.

The choices of display modalities of the visual annotations for the Data-driven Set relied heavily on the fixations
analysis done in the Design phase. As thus, it was expected to observe in the Evaluation Phase a close match be-
tween the gaze analysis results from the Design Phase (5 out of 7 modalities corresponding). The observation that
really stands out is the divergence between user-selected modalities and their actual visual use. Users were asked
which modality they thought was the best for each VA in the Design phase, along with a "usefulness" and "affinity"
score. Even though they "use" (look at) the VAs, the users do not deem them as useful or likeable as they appear
through physiological analysis. Finally, the Hybrid Set showed medium matches (3 out of 7). This was expected, as
the Hybrid Set was created as a middle ground between the Data-driven Set modalities (based on Design phase
eye-tracking) and the users’ choices.
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Annotations Eye-tracking Results User Set Data-driven Set Hybrid Set

Mappings Always visible X
Reticle Always visible X X

Cabin Instructions Special or Eye-tracked
World Instructions Deleted X
Arrow to Objective Menu X

Rear View Always visible X X
Tracks Directions Always visible X X

Matches 1 5 3

Table 5.4: Eye-tracking Analysis: Modalities Matches between the Design and the Evaluation Phase Results (a
cross marks when both the Design Phase and the Evaluation Phase modalities match)

Electroencephalogram Results

We used the Theta-Alpha Ratio (TAR) metric as our cognitive load measure. The signal was filtered with pass-band
to isolate the Theta (4-8Hz) and Alpha (8-12Hz) bands, as well as eliminate the bulk of noise created (e.g. motion
noise (0-4Hz), 50Hz line noise, etc.). The data was then segmented and filtered with the head motion data to remove
all the motion polluted segments. Finally, each participant TAR values were normalised using regular normalisation
(as seen in Equation 4.1) before comparison. The results are shown in Fig. 5.7.

Figure 5.7: Cognitive Load Evaluation for each VA Set

Participants experienced on average lower cognitive load with the Hybrid Set (average TAR value of 0.1250)
compared to the Data-driven Set (0.1423) and the User set (0.1475). Those results are quite paradoxical: the Data-
driven Set, while based (among others) on the cognitive load measured in the Design Phase, is not the most optimal
in the Evaluation Phase. This can be explained by the fact that cognitive load are applied to whole sets and not
specific VAs, therefore not accounting for every specificities of each initial sets. Likewise, the User set once again
shows the most discrepancy between users perception and the actual physiological results. The VAs’ modalities
chosen during the Design phase were those deemed the less mentally demanding according to feedback, but turned
out to be the most mentally demanding according to the physiological sensors measures. A notable point is that
while being a bridge between user perception and physiological measures, the Hybrid set does not show a middle
ground between the User set and the Data-driven set results, but rather the best results out of the three sets instead.

Physical Load Results

Due to the stationary nature of the tasks, motion measures were very similar across sets. Head motions (Fig.
5.8a) were slightly higher for the Data-driven Set (1.255mG) than the User Set (1.233mG) and the Hybrid Set

80



5 - Hybrid Approach and Correlations Analysis

(1.230mG). Arm motions (Fig. 5.8b) followed a similar pattern, with the User set requiring slightly more arm move-
ments (25.165mG) than the Hybrid Set (24.410mG) and the Data-driven Set (24.345mG). Heart rates (Fig. 5.8c)
were also very close for each set (71.6BPM for the User Set, 70.9BPM for the Hybrid Set, and 70.8BPM for the
Data-driven Set). We can outline a slightly better performance tendency coming from the Hybrid Set across all
physical load measures, although not statistically significant.

(a) Head Motions (b) Arm Motions

(c) Heart Rate

Figure 5.8: Physical Load Measures

User Feedback Results

User feedback was collected through NASA-TLX survey after testing each set (evaluating the whole set), through
a SUS-inpired survey at the end of the whole experiment (evaluating each VA separately) and finally through open
feedback, notably the prefered ranking of the different sets.

NASA-TLX Results

The Evaluation group used the same surveys as the Design group to assess the new VA sets. As shown in Ta-
ble 5.5, mental load and performance significantly improved across all methodology-selected sets compared to the
empirically chosen ones from the Design round (Table 5.1), indicating an efficient optimisation effect on those main
points. Additionally, the results are similar across all three techniques, demonstrating comparable capability.

Perceived cognitive load and EEG-measured cognitive load (referred as "mental demand" in the NASA-TLX test)
between the Design phase and the Evaluation phase did not seem to match, according to the EEG results of the
Evaluation phase (the chosen VA modalities were not the most optimal), when comparing Table 5.1 and Fig. 4.17.
However, inside of the Evaluation phase, we see that perceived (Table 5.5) and measured cognitive load (Fig. 5.7)
completely match. The Data-driven Set, albeit partially based on cognitive load measures, is notably once again
shown as the more mentally demanding.
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Parameter User Set Data-driven Set Hybrid Set

Mental demand 5.9 6.4 5.3
Physical demand 4.3 4.3 4.4
Temporal demand 5.7 5.6 5.8

Performance 14.4 14.3 14.8
Effort 7.8 7.9 7.2

Frustration 5.0 4.9 5.3

Table 5.5: Evaluation Phase NASA-TLX Results

SUS Results

The SUS results, which assess user affinity and the perceived usefulness of each VA, reveal an unexpected
evolution from the Design Phase. Despite the fact that the User Set VA modalities were designed almost entirely
based on the SUS results from the Design Phase, the Evaluation Phase (Table 5.6) shows that the User Set is not
the one with the most alignment with the previous results. Instead, the Hybrid Set features the display modalities
most preferred by users. This highlights that different groups of users exhibit varying preferences, and basing a
design methodology solely on user feedback may only suit the group tested, rather than others. Interestingly, three
participants from the Design Phase also took part in the Evaluation Phase. Their scores for usefulness and affinity
not only shifted but, on average, they suggested changing 1.3 out of the 10 display modalities compared to their
previous choices. This suggests that user feedback evolves over time and with repeated exposure, emphasising
the need for continuous testing and potentially ongoing adjustments in VR design to accommodate the changing
preferences of users.

Annotations Usefulness Affinity SUS Results User Set Data-driven Set Hybrid Set

Mappings 7.2 7 Menu X
Reticle 8.4 8.4 Always visible X X

Cabin Instructions 6.7 6.9 Eye-tracked
World Instructions 6.7 6.9 Special (Icon) X
Arrow to Objective 6.9 6.9 Always visible X

Rear View 8.2 8.4 Always visible X X
Tracks Directions 7.6 7.2 Always visible X X

Engine Sound 5.9 6.7 Menu X

Backing Sound 7 8 Special
(when backing up) X X

Matches 4 3 5

Table 5.6: SUS Analysis, Affinity, Usefulness, Modalities Matches in the Evaluation Phase Results (a cross marks
when both the SUS Results and the Evaluation Phase modalities match)

Open Feedback Results

Open feedback, as the name implies, let the users give any feedback they could think of, whether on VAs, sets, or
even hardware setup and software simulation. On the subject of VAs and VAs set, two remarks were recurrent:

• Sounds create immersion: having both engine sound and backing sound was preferred because it created
immersion. However, when we look at the SUS-inspired answers (Table 5.6), we see that the users chose
not to keep them present at all time. This suggests that users favored usefulness over affinity (without being
prompted to) when choosing the VAs’ modalities;

• A picture is worth a thousand words: users preferred when the World Instructions texts were replaced
with just an icon with an arrow to show where they should do their task (see Fig. 5.9). Having both Cabin
Instructions and World Instructions in the form of text was redundant, while having only Cabin Instructions
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and no World Instructions required more visual search for the objective position (using the Arrow to Objective
or not). Having a big, visible, in-world icon allowed to find the objective fast, without having to think about it,
producing less mental load.

Figure 5.9: World Instructions VA - Text vs Icon

A final question was asked to all participants: "How would you rank the VAs Sets?". Users had to rank first,
second and third the three sets. First place gives two points, second place one point and last place zero. Through
this system we obtained the following results Fig. 5.10: the User Set obtained 18 points with 8 first places, the
Data-driven Set obtained 12 points with 2 first places and the Hybrid Set obtained 18 points with 6 first places.
The User Set got the most first places, which is to be expected: ranking the sets is a pure subjective question
on user appreciation. It is thus likely that a set designed by users for users would provide the most appreciated
result. But the Hybrid Set has overall the same amount of points, making it a more "averagely liked" set (6 sec-
ond places, 4 third places), while the User Set is more a "either loved or hated" Set (2 second places, 6 third
places). This illustrate the subjectivity of user feedback, showing that a group can love a feature while another can
hate it at the same time. These results also show how a hybrid methodology can bridge this gap in user preferences.

Figure 5.10: Users Ranking of the VAs Sets, with the Number of First Places Attributed to each Set
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Results Conclusion

While there is no clear winner between the User Set and the Hybrid Set based on users’ preferences, there is clearly
a loser: the Data-driven Set. This is a clear answer to our previous question "Can the VR-SOLUS method be used
with only its objective measures?" and this answer is NO. In terms of pure users’ choice, a pure objective data-
driven method does not provide the best user experience. And thus the answer to our second question "Is there
still a necessary role for traditional subjective input in the design and optimisation of VR experiences?" is YES, user
feedback is still crucial in VR design, as our study showed.

Overall, when looking at all our metrics, we see that a fully data-driven methodology is not optimal, while tra-
ditional user feedback methodology performs largely better. That leaves the question of the hybrid methodology:
is there really a need for all these additional data, or is the traditional methodology sufficient? If we look at all our
measures:

• Operational Measures: the difference is small, but the Hybrid Set is on top when it comes to operational
metrics. It is slightly better in terms of completion time (overall performance) and multi-inputs (ease-of-use
and learning), and slightly below the User Set in terms of errors (understanding);

• Physiological Measures: eye-tracking shows that the Hybrid Set aligns with the users gaze behaviour and
preferences. It has the most matches between preferred modalities and actual physiological results. In terms
of cognitive load, the EEG analysis showed that the Hybrid Set required less mental demand to use than
the user set. In terms of physical demand, the difference is too small to be significant, but leans towards
the Hybrid set being less physically demanding, an observation to confirm with more participant and more
long-term experiments;

• User Feedback: user feedback is also divided. The NASA-TLX survey shows similar results as the bio-
sensors and operational data (small differences between the Hybrid and User sets). The SUS survey however,
while being the key component of the User Set design, shows that the Hybrid Set is more fit to the users tastes.
Finally, users’ ranking and open feedback show both the User Set and the Hybrid Set on top, one important
observation is how the User Set is either first or last in rankings but rarely second (keep it or leave it), while
the Hybrid Set is more globally appreciated (first and second choices but more rarely last).

In this study, the hybrid method proved to be superior to both the data-driven and user feedback-based ap-
proaches. While operational data alone did not indicate a clear preference for any specific method, the combination
of physiological and user data clearly favored the hybrid approach. Physiological results demonstrated that the
hybrid method outperformed even a purely physiological-based method, indicating better cognitive load manage-
ment and user engagement. Similarly, when evaluating user feedback, the hybrid method also surpassed the user
feedback-based approach, showing higher user satisfaction and perceived usability. These findings suggest that
the hybrid approach effectively balances objective and subjective measures.

We included participants in this Evaluation phase that were also in the Design phase. While globally consis-
tent in their feedback, we observed changes, while their performance and status measures where coherent (similar
between phases, with a learning effect naturally taking place). Those observations do not make user feedback
unreliable, but just what it is: subjective. Users can change opinion from one session to another, one person’s
tastes might not match another person’s. On the other hand, objective metrics are reliable and do evolve with time
in a consistent pattern, making them easier for researcher and developer to use in the long term. But the results
provided by those objective measures do not always appeal to the users.

We advocated this whole thesis that a hybrid methodology brings the best of both objective and subjective
methodology, and proved it through this study. Of course, the results are not set in stone: we lack a pool of partici-
pants large enough to have higher margin between methodologies and the necessary hindsight of long term studies.
However, we still have results worth saying: a hybrid method is profitable for VR design and optimisation.
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5.2.4 The Hybrid Method

By using a hybrid methodology combining operational measures, physiological measures as well as user feedback
we combine the best of both objective and subjective data. This hybrid approach allows the proposed VR-SOLUS
methodology access to various aspects of user experience.

Operational Performance

Operational metrics provide performance indicators, extrinsic measures such as:

• Completion Time: basic of performance metrics, can be divided by task, exercise, experiment. Also useful to
employ during repetitive tasks to observe user progress;

• Input Errors: give insight into ease-of-use, user understanding and learning;

• Multi-input Percentage: time spent using more than one input, it gives essential data on ease-of-use, er-
gonomics and user progression;

• Use-case Specific Measures: gaming, industry, training, therapy, and so on, each use-case has its own de-
sign problematics and associated metrics. Integrating those measures is paramount for an efficient specialised
design methodology.

Physiological User State

Physiological measures, done through biosensors, form intrinsic measures providing information on the user state.
Among them:

• Eye-tracking: attention, focus, zones of interest, all are important when using a VR headset to know what the
user actually sees and looks at during their experience;

• Electroencephalogram: neurological data becomes essential today when VR applications are more compli-
cated and specialised than ever. Knowing the user cognitive state, in particular their mental load, ensure not
only better user experience but also more healthy usage of VR;

• Physical Load Sensors: such as IMUs or heart monitor, they allow the assessment of the physical state of
the user, their physical engagement, an assessment necessary for long-time use of VR application.

Surveyed Perception

User feedback, the traditional approach to VR design and optimisation, gives insight into user perception. This
subjective intrinsic measure provide information of perceived user experience. While it is not ground truth, as it is
dependent on the user, in the end, a VR application is addressed to users. Besides surveys like the NASA-TLX or
the SUS that give quantitative perception (through scoring systems), there is also open feedback. Users tend to
give useful information out of the scope of surveys (e.g. improvement of the software simulation, changes to the
hardware setup, etc.) when they can answer freely. And with each user profile comes a new point of view, with new
insights that sensors, user score or software metrics might not capture.

VR-SOLUS

Our VR-SOLUS methodology synthesises performance indicators provided by operational measures, user status
through physiological analysis, as well as user perception thanks to user feedback (Fig. 5.11).

To be a complete hybrid methodology, correlation analysis is a critical factor in the validation and reliability of
our VR-SOLUS method, as it ensures that the various metrics we collect — operational, physiological, and user
feedback — are not only individually meaningful but also consistently related to each other. Establishing strong
correlations among these diverse data demonstrates that the physiological responses captured by sensors, such
as EEG or eye-tracking, align with both the operational performance and user perceptions. This interconnection is
needed to reinforce the methodology’s ability to provide a comprehensive and accurate assessment of VR applica-
tions, and to ultimately enhance the confidence in our findings and the validity of our approach.
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Figure 5.11: Combining Performance, User Status and Perception through VR-SOLUS

5.3 Correlation Study

In the analysis of VR design, understanding the various types of data and their relationship is essential for drawing
meaningful conclusions. One key area of focus is the correlation of operational measures (which assess user per-
formance) between themselves and with physiological measures (which reveal the user’s internal state). Exploring
how these two objective data streams interact can provide valuable insights into how performance and user expe-
rience are linked. Furthermore, the correlation between these objective measures (operational and physiological)
and subjective data (user feedback) is also needed. This correlation helps bridging the gap between measurable
performance metrics and the user’s perceived experience, offering an extensive view of the VR environment’s effec-
tiveness and its impact on the user. These interconnections between operational, physiological, and subjective data
form not only the validation of our methodology’s metrics, but also the foundation for a more nuanced and accurate
evaluation of VR applications.

5.3.1 Operational Correlation

To validate our operational data and thus consolidate their utility in the VR-SOLUS methodology, they need to be
correlated together. To assert that our performance indicators do indeed indicate performance and not some other
unrelated element, a correlation must be established between completion time (the ground truth of performance,
should the experimental setup allow it), input errors and multi-input percentage. This issue was quickly evoked in
Section 3.1.4, to confirm that multi-input percentage was indeed a performance indicator, and not a result of invol-
untary actions.
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If we take a look at our methodologies study Section 5.2.3, we can investigate the correlation between our
different metrics using the Pearson correlation (Table 5.7). We observe:

• Error and Time: a strong significant positive correlation between input errors and completion time. The more
errors made, the more time it takes to complete the tasks, which is an expected result that validates input
errors as a solid performance indicator;

• Multi-input and Time: a strong significant negative correlation between multi-input percentage (MI%) and
completion time. The more compound movements used (higher MI%), the less time it takes to complete the
tasks. This is also a logical results, that confirms MI% as a suitable performance and ease-of-use indicator,
as well as a progression one when studied after periods of time;

• Multi-input and Error: a strong significant negative correlation between MI% and input errors. The more
compound movements used, the less errors made. Not only this means that compound movements are not
a result of involuntary actions (errors), but also that users employing compound movements are less likely to
make errors.

These results show that our operational metrics are solid and reliable performance indicators. This stays true
across all three methodologies - user-driven, data-driven and hybrid methodologies - showing the robustness of
such metrics to evaluate user performance, whichever design choices were made prior.

Data Correlation Analysis Correlation p-value

Error vs Time (User Set) 0.68 0.004
Error vs Time (Data-driven Set) 0.91 8.3E-7
Error vs Time (Hybrid Set) 0.67 0.005

Error vs Time (Average) 0.75 0.003

MI% vs Time (User Set) -0.65 0.007
MI% vs Time (Data-driven Set) -0.84 4E-5
MI% vs Time (Hybrid Set) -0.57 0.021

MI% vs Time (Average) -0.69 0.007

MI% vs Error (User Set) -0.62 0.01
MI% vs Error (Data-driven Set) -0.85 2.7E-5
MI% vs Error (Hybrid Set) -0.55 0.028

MI% vs Error (Average) -67.3 0.013

Table 5.7: Data Correlation for Operational Metrics (Pearson correlation)

5.3.2 Operational - Physiological Correlation

Despite evaluating another aspect of the user experience - the user status, some correlations can be observed
between physiological and operational measures, Table 5.8 (we excluded physical load metrics due to their low
variance between users):

• Gaze Attention and Time: a significant rather strong positive correlation. The more time spent looking at
virtual annotation (LookAt), the more time spent doing the tasks. This to be expected, as people rarely do two
things at the same time, especially when they need to read/understand visual cue while controlling a virtual
machine;

• Gaze Attention and Error: a significant rather strong positive correlation. The more users make errors, the
more they need to look at the mappings to remind themselves of the correct control schemes. This explains
why neophytes users tend to prefer having visual reminders displayed at all time, while experienced users tend
to prefer having them less visually prominent, as they do not need them as much/anymore;
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• Cognitive Load and Time: a non-significant and almost neutral correlation. There is little to no correlation
between cognitive load (TAR) and time completion. There are too many elements to take into account during
an experiment to directly correlate time and cognitive load. During an exercise, a user controls a machine,
look at and listen to VAs, learn and progress. It is thus difficult to correlate one time value with one cognitive
load average value;

• Cognitive Load and Error: a non-significant and almost neutral correlation. Inputs (and by extension vehicle
control) is only one of the many elements to take into account in the cognitive load, therefore finding a direct
correlation between cognitive load and error is rather hard;

• Cognitive Load and Gaze Attention: a non-significant small positive correlation. The more annotations, the
more focus needed to understand them and include them into ones behaviour, thus the suggested augmented
cognitive load.

We observe that performance indicators and user states have poor correlation. Gaze attention shows that adding
a lot of annotations augments the time spent doing the task, which was already observed in literature [159]. How-
ever, one would expect that with more annotations - including inputs mappings - one would perform better. However
the gaze-error correlation seems to suggest the opposite. This can be explained by the lack of classification of the
gaze fixations: we do not know if there is understanding behind the attention, or even true intent. There is a small
(but not significant) positive correlation with cognitive load, suggesting that indeed more virtual annotations take
more mental resources to process, explaining the lesser performances. Cognitive load on its own does not show
correlation with the performance metrics. This measure is not significantly linked to neither time of completion, nor
to errors. This suggests that our cognitive load metrics cannot be a measure of performance from the user, or must
be evaluated from another angle. One such angle is comparing neurological data to user-data.

Data Correlation Analysis Correlation p-value

LookAt vs Time (User Set) 0.49 0.052
LookAt vs Time (Data-driven Set) 0.68 0.003
LookAt vs Time (Hybrid Set) 0.77 4.5E-4

LookAt vs Time (Average) 0.65 0.018

LookAt vs Error (User Set) 0.47 0.062
LookAt vs Error (Data-driven Set) 0.61 0.012
LookAt vs Error (Hybrid Set) 0.63 0.009

LookAt vs Error (Average) 0.57 0.028

TAR vs Time (User Set) -0.29 0.33
TAR vs Time (Data-driven Set) -0.26 0.39
TAR vs Time (Hybrid Set) 0.17 0.57

TAR vs Time (Average) -0.03 0.43

TAR vs Error (User Set) -0.08 0.79
TAR vs Error (Data-driven Set) -0.3 0.32
TAR vs Error (Hybrid Set) 0.41 0.163

TAR vs Error (Average) 0.01 0.42

TAR vs LookAt (User Set) 0.24 0.436
TAR vs LookAt (Data-driven Set) 0.006 0.985
TAR vs LookAt (Hybrid Set) 0.12 0.686

TAR vs LookAt (Average) 0.12 0.70

Table 5.8: Data Correlation for Physiological Metrics (Pearson correlation) - LookAt represents the User Attention
and TAR the Cognitive Load

88



5 - Hybrid Approach and Correlations Analysis

5.3.3 Objective - Subjective Correlation

In our study, we showed that associating user perception (user feedback), performance indicators (operational mea-
sures) and observed user states (physiological measures) brought better results. However, on paper, there is some
redundancy between metrics (e.g. mental load or performance are evaluated by both user feedback and objective
measures). Thus the question of true correlation (repetition of metrics) between perceived measures and observed
measures is raised.

Perception and Observation

Through the NASA-TLX and the SUS-inspired surveys, we obtained quantified user feedback through parameter
scores (respectively out of 20 and out of 10). The NASA-TLX offers insights on mental demand, physical demand,
temporal demand, performance, effort and frustration. The SUS-inspired survey displays scores for usefulness and
affinity. Among those, we can observe some redundancy with our operational and physiological measures, with
interesting correlation results (Table 5.9):

• Perceived Performance vs Performance Indicators: when it comes to performance, users seem to evaluate
quite accurately and objectively, as all the performance indicators have (almost) significant moderate correla-
tion with the user performance scores. It seems that this user performance evaluation leans more heavily on
errors and multi-input usage. This can be explained by the fact that those are measures "easy to register" as
a user (e.g. participants can count how many errors they did, or at least approximate their number, they can
feel how much they use different inputs, etc.), as opposed to completion time (which has the worst p-value)
which is more difficult to grasp, as there is no displayed timer;

• Perceived Mental Load vs TAR Values: there is a tremendous gap between perceived mental load and
evaluated TAR cognitive values. Not only the correlation is weak (and not significant due to the lack of partici-
pants), it even tends to be negative, suggesting an opposition between perceived mental demand and actual
brain activity. This might come from the fact that it is quite complicated to rate one’s own mental demand
during a task (e.g. For a user, what points of comparison can they use? What can they consider the minimum
and maximum cognitive load they ever experienced?);

• Perceived Usefulness and Affinity vs Gaze-tracked Attention: when it comes to users’ rating of their
affinity and their perceived usefulness of VAs, there is little to no correlation with participants’ gaze behaviour.
This suggests that affinity and usefulness assessment might be anchored in the domain of taste (subjective
opinions) rather than actual behaviour, although usefulness is slightly more correlated with attention (albeit not
significantly).

Data correlation analysis Correlation p-value

NASA-TLX Performance Score vs Time -0.49 0.21
NASA-TLX Performance Score vs Errors -0.46 0.075
NASA-TLX Performance Score vs MI% 0.56 0.038

NASA-TLX Mental Load Score vs TAR -0.15 0.68
NASA-TLX Effort Score vs TAR -0.16 0.47

SUS Usefulness Score vs Eye-tracked Attention 0.1 0.62
SUS Affinity Score vs Eye-tracked Attention 0.01 0.59

Table 5.9: Correlation between User Feedback and Measured Data (Pearson correlation)

While there seem to be redundancies in the data, there are actually few of them. Even performance, where
the correlation between perception and observation is the strongest, does have nuances between what the user
perceives and what was observed during the experiment. Which is why, even when similar questions are answered
by different metrics, we advocate in favour of keeping all of them, as they add refinement to the design analysis and
optimisation. Some metrics are also non-correlated (despite answering the same question) or inversely correlated:
this is another argument in favour of a hybrid methodology, which provides both objective and subjective points of
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view of the user experience, allowing developers and researchers to choose according to their need (e.g. a market-
ing application might want to follow user perception to appeal to its audience, while a therapeutic application meant
to be used in the long term might want to lean on physiological measures).

Cognitive Load and User Profile

We have seen that not all objective metrics have strong correlation together. In particular, cognitive load does not
seem to strongly correlate with our performance indicators (operational metrics). This does not make our TAR cog-
nitive load metrics irrelevant, as it might stem from another element: subjective measures, and more precisely, user
profiles. Users were asked to rate their level (on a scale of 1 to 10) of practical knowledge with VR technologies,
excavation operations and joystick control. If we compare those with the cognitive load evaluations, we see Table
5.10 that on average, there is an appreciable negative correlation, although the low number of participants impacts
the significance of this observation.

Data correlation analysis Correlation p-value

TAR vs VR Level -0.20 0.326
TAR vs Excavation Level -0.41 0.27
TAR vs Joystick Level -0.54 0.06

Table 5.10: Correlation between User Profile and Physiologically Measured Cognitive Load (Pearson Correlation)

According to Sweller’s Cognitive Load Theory (CLT) [183], when someone is learning something new, they create
mental schemes, "problem solving templates" that they reuse later in similar situations. To learn something, mental
load is actually divided in three categories (Fig. 5.12):

• Intrinsic Cognitive Load: induced by the complexity of the task/information someone is trying to learn (in our
case, earthwork tasks);

• Extraneous Cognitive Load: induced by the medium used to learn (in our case VR and the different annota-
tions) and the external parameters surrounding the task;

• Germane Cognitive Load: induced by the complexity for the brain to put in place a new schema or reinforce
an existing one.

In our study, while time performance did not correlate with cognitive load, user profile seems to have a more
tangible impact on cognitive behaviour. We can thus hypothesise that the cognitive load evaluated during the ex-
periment is actually mostly the Germane Load. With training (i.e. user experience in the technical expertise), the
cognitive load decreases and matches the user feeling because the cognitive schemes are already in place and
need only be reinforced, not created from scratch.
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Figure 5.12: Sweller’s Cognitive Load Theory (CLT)

5.3.4 Evaluation of Hybrid Measures and Correlation

The hybridisation of methodologies in our VR research offers a comprehensive and multifaceted approach to un-
derstanding and optimising user experience. By combining operational measures, physiological data, and user
feedback, the hybrid method addresses limitations inherent in relying on a single type of data. Operational met-
rics capture task performance, physiological signals reveal user states, and feedback provides subjective insight,
together offering a complete evaluation framework. As demonstrated in our study, traditional user feedback meth-
ods remain valuable, often reflecting strong preferences. However, they also exhibit polarisation, with users either
strongly favouring or disliking specific approaches based on personal taste. In contrast, the hybrid methodology
tends to yield moderate but consistent approval, balancing user satisfaction and performance optimisation.

Regarding correlations, our findings reveal key insights. Operational data correlated well across different mea-
sures, supporting their reliability in evaluating task performance. Eye-tracking metrics, particularly gaze data, ex-
hibited relationships with operational data, indicating the potential of visual behaviour to infer task performance.
However, no significant correlations were observed between operational data and brain activity (through EEG), sug-
gesting distinct and independent contributions of cognitive and task-performance measures. Clear differences were
also observed between perceived and measured performance, highlighting the divergence between subjective per-
ception and objective measures. These findings reveal the necessity of hybridising data sources to gain a balanced
understanding of user experience.

Cognitive load, as assessed through EEG, did not correlate strongly with other metrics but displayed a non-
significant tendency to align with user profiles, hinting at its potential use as a learning or adaptability metric. This
observation warrants further investigation to clarify its implications and possible applications in assessing user ex-
pertise and system learning curves. A reflection on the reliability and precision of physiological data in VR contexts
is essential to assess whether or not those observations are correct. While the insights they offer are invaluable, the
challenges of signal quality and interpretation demand careful attention, and their integration into hybrid methodolo-
gies must be both rigorous and adaptive.
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Chapter 6

Discussion - Towards Further Virtual
Reality Design

In this thesis, we presented the VR-SOLUS - Sensory, OperationaL and User data Synthesis for Virtual Reality
- methodology, a comprehensive approach designed to enhance the process of developing and optimising virtual
reality (VR) applications. Our work combined operational, physiological, and user feedback data to create a robust
framework for VR design. By integrating diverse measures such as eye-tracking, EEG, and physical sensors with
user perception, we developed a data-driven methodology that addresses both the objective and subjective aspects
of VR experiences. Through a series of studies, we demonstrated the practical application of this methodology
and our different metrics in various use-cases, focusing on both hardware and software optimisation. Our approach
contributes to a deeper understanding of how to effectively design and optimise VR systems, ensuring that they
meet the needs of users while maintaining high levels of performance and immersion.

6.1 Contributions

6.1.1 VR-SOLUS

The VR-SOLUS method represents a novel approach to designing and optimising VR applications by integrating
multiple dimensions of data—operational metrics, physiological responses, and user feedback. It offers a com-
bination of traditional, user-based, methodologies with the novelty of data-driven approaches. The core of this
methodology lies in its hybrid nature, blending objective data with subjective insights to create a more comprehen-
sive understanding of the VR experience.

The VR-SOLUS method is based on the collection and analysis of multimodal data:

• Operational Metrics: these include performance-based measures such as task completion time, input errors,
and multiple inputs usage rates. They also integrate use-case specific measures to answer the needs of
distinct applications. These metrics provide quantitative extrinsic insights into how effectively a user interacts
with the VR environment, highlighting areas where the system may need usability or efficiency enhancement;

• Physiological Data: using biometric sensors, such as eye-tracking, EEG, and IMUs, the method captures the
user’s physiological responses during interaction. This data reveals the cognitive and emotional states of the
user, offering intrinsic insights into attention, cognitive load and physical engagement;

• User Feedback: subjective data is collected through surveys and other forms of user feedback to capture the
user’s perceptions, preferences, and overall satisfaction with the VR experience. These data adds a qualitative
layer, which is essential for understanding the user’s subjective experience.

These three streams of data are synchronised and analysed together, allowing for a multimodal evaluation of
the VR application. The integration of these diverse data sources ensures that the VR-SOLUS method can identify
correlations and disparities between how a user feels and how they perform, providing a comprehensive view of the
VR experience (Fig. 6.1).
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Figure 6.1: VR-SOLUS - Designing and Optimising Virtual Reality through a Hybrid Approach

The VR-SOLUS method offers several key advantages:

Comprehensive Analysis
By combining operational metrics with physiological data and user feedback, VR-SOLUS provides a

well-rounded analysis that captures performance, user status and user perception. This enables devel-
opers to identify not only functional issues but also areas where the user experience may be enhanced;

Objective and Subjective Integration
The method bridges the gap between objective measures (like task performance and physiological re-

sponses) and subjective perceptions (such as user satisfaction). This integration is crucial for creating VR
environments that are not only efficient but also engaging and comfortable for the user;

Data-Driven Decision Making
VR-SOLUS facilitates informed decision-making during the design and optimisation phases of VR develop-
ment. By relying on concrete data from multiple sources, developers can prioritise changes and improve-

ments that are backed by evidence rather than intuition alone;

Enhanced User Experience
Through its focus on physiological data, VR-SOLUS can uncover hidden factors that impact user experience,
such as cognitive overload or discomfort, physical exertion or attention troubles, which might not be immedi-

ately apparent from performance metrics or user feedback alone;
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Flexibility and Applicability
The methodology is versatile and can be adapted to a wide range of VR applications, from training simu-
lations to gaming environments. It allows for the tailored analysis of different user groups and use-cases,

ensuring that the VR application meets specific needs and contexts. Thanks to the multimodality of the used
data, time projection is made possible, leading to an adaptive design along the life cycle of the VR applica-

tion.

The VR-SOLUS method, therefore, represents a significant advancement in VR design and optimisa-
tion, providing a powerful toolkit for creating VR experiences that are both effective and user-friendly.

Through this thesis, we presented the VR-SOLUS method, its metrics and their use through multiple studies.
Those studies belonged to two main use-cases: earthwork teleoperation and training, and dyslexia therapy. In the
following section, we present the individual contributions of each study and their use in the final methodology.

6.1.2 Earthwork Use-case

The earthwork use-case section delves into a series of studies conducted in collaboration with HERACLES Robotics
(Fig. 6.2, an innovative earthwork machinery automation company. This partnership has focused on exploring
the potential of VR environments to enhance teleoperation and training within the earthwork sector. Through this
collaboration, we have undertaken three distinct studies: an interface validation study, a controller selection study,
and a software optimisation study centred on virtual annotations (VAs). These studies aimed to evaluate and
optimise the tools and interfaces used in VR to ensure they meet the demands of both teleoperation and training in
this specialised field. We made use of those studies for integrating, testing and improving the VR-SOLUS framework
measures.

Figure 6.2: HERACLES Robotics, French Earthwork Machinery Automation

Interface validation

The interface validation study aimed to assess the effectiveness of a VR teleoperation interface by comparing it to
the control of an actual excavator, courtesy of Heracles Robotics and their Cat323 excavator. The VR interface was
developed using a digital twin of the excavator, which was designed and operated within the Unity game engine. This
digital twin was seamlessly integrated with a SEMIL-1700 (Simulation Environment for Machine Interface Learning)
system, which in turn communicated with the real machine via ROS (Robot Operating System).

The study included 10 participants, with an average age of 29.2 years, comprising both professional operators
and non-professional users to ensure a comprehensive evaluation. Throughout the study, participants were tasked
with executing a series of excavation actions in both the real and virtual environments (Fig. 6.3). The findings
revealed that the VR interface produced performance that closely mirrored that of the actual machine, and closed
the gap between professional (current operators) and non-professional users (future teleoperators). This outcome
was consistent across both professional and non-professional users, thus confirming the viability of the VR interface
for future applications in teleoperation development. The success of this validation highlights the potential of VR as
a tool for not only training but also for practical teleoperation tasks in earthwork robotics.
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Figure 6.3: Interface Comparison Setup Example - Real Machine (Left) versus VR Interface Remote Control (Right)

Study Contributions

First Integration of Operational Metrics
Testing completion time, inputs errors and multi-inputs percentage in an experimental setting for the

first time. Validation of the metrics, leading to their definitive integration into the VR-SOLUS framework;

Testing of Use-case Specific Measures
Metrics specific to excavation operation were tested in both the real and virtual environments, with positive

results, leading to the integration, when possible, of use-case specific measures into the VR-SOLUS method;

User Feedback on Hardware
A major flaw in our interface reported by the users was the VR controller and their mappings used during the

experiment. This sparked the creation of a new study: the hardware selection study;

Validation of the VR Interface
Confirmation that our VR interface was operational on the use case of excavation teleoperation, providing a

stable environment for future studies.

Associated Publications

SAUNIER, Léa, HOFFMANN, Nicolas, PREDA, Marius, et al. Virtual Reality Interface Evaluation for Earthwork
Teleoperation. Electronics, 2023, vol. 12, no 19, p. 4151.

HOFFMANN, Nicolas, SAUNIER, Léa, PROUTEN, Samuel, et al. Industrial use-case: Digital twin for autonomous
earthwork in virtual-reality. In : Proceedings of the 27th International Conference on 3D Web Technology. 2022. p.

1-4.
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Hardware Selection

The hardware selection study aimed to identify the most effective control interface for earthwork training within a
simulated virtual environment. The study evaluated three consumer-grade controllers positioned along a spectrum
from gamer to professional. The study involved a standard gamepad representing common gaming controllers,
an improved version of our VR controller offering enhanced interaction capabilities, and simulation joysticks with a
mapping nearly identical to the real machine (Fig. 6.4).

A total of 13 participants with an average age of 28.1 years were involved in the study. Each participant per-
formed a series of standardised earthwork tasks using all three controllers, allowing for a comprehensive comparison
of performance and user experience across the different interfaces. The tasks were designed to mimic real-world
excavation and earth-moving activities, providing relevant and practical insights into each controller’s effectiveness.

The results demonstrated that the professional-grade joysticks outperformed both the gamepad and the improved
VR controller across various performance metrics and physiological measures. Participants achieved greater pre-
cision, efficiency, and control when using the joysticks, despite lower levels of prior familiarity with such equipment.
This finding underscores the importance of using industry-standard abiding hardware in training simulations to bet-
ter prepare users for actual operational scenarios. It also highlights that the benefits of professional design can
outweigh the comfort and familiarity associated with more common controllers.

Figure 6.4: Hardware Selection Study Setup

Study Contributions

First Integration of Physiological Metrics
This study not only featured the previous operational measures, but also the integration of bio-senors: eye-
tracker and electroencephalogram (EEG). This enhancement of the VR-SOLUS framework showed promis-
ing results, as well as new axes for development (e.g. improved eye-tracking and EEG filtering, no current

measure of physical load to be remedied);

Metrics Correlation
More metrics lead to more analysis and the question of correlation for synergy study and validation. This
study has already shown the strong correlation between operational measures, and the lack of correla-

tion between cognitive load and performance indicators. However the correlation between user feedback and
mental load measures was already manifesting;
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Hardware Selection
Joysticks were the winner of this hardware competition across multiple measures, and thus kept for the fol-

lowing study on software optimisation.

Associated Publications

SAUNIER, Léa, PREDA, Marius, et FETITA, Catalin. Controller Evaluation for Earthwork Teleoperation and Training
in Virtual Reality. In : 2024 16th International Conference on Human System Interaction (HSI). IEEE, 2024. p. 1-6.

SAUNIER, Léa, PREDA, Marius, et FETITA, Catalin. Hybrid Methodology Using Electroencephalogram and
Eye-tracking for Virtual Reality Design and Optimization. In : 2024 23rd IEEE International Symposium on Mixed

and Augmented Reality (ISMAR)

Software Design

The software optimisation study focused on the selection and refinement of virtual annotations (VAs) and their
display modalities within a VR earthwork training simulation (Fig. 6.5). The research was divided into two distinct
phases:

• Design Phase: the VAs were empirically defined, with users participating in tests to provide comprehen-
sive data. During this phase, operational metrics, physiological signals, and user feedback were collected to
evaluate the effectiveness of the various VAs;

• Evaluation Phase: the second part of the study took this process further by assessing three different VA
sets, each developed using a unique methodological approach. One set was based entirely on user feed-
back, another set was derived solely from objective measures, and the final set employed a hybrid approach,
combining both objective and subjective data to create a more balanced and potentially effective solution.

The study involved 30 participants, with an average age of 33.4 years, who engaged in earthwork training using
joysticks within the VR simulation. The results revealed significant insights: methodologies relying exclusively on
objective measures were insufficient in capturing the full extent of user experience, often missing subtle but impor-
tant aspects of user interaction and satisfaction. On the other hand, relying solely on user feedback proved to be
too subjective, leading to difficulties in generalisation. The hybrid methodology demonstrated moderate but consis-
tent improvements across all measures. This balanced approach ultimately validated the VR-SOLUS methodology,
confirming its potential for enhancing VR training applications by providing a more comprehensive understanding of
user experience.

Figure 6.5: Example of Interface used for the Software Optimisation Study

97



6 - Discussion

Study Contributions

First Integration of Physical Load Metrics
Through the Polar OH1+ armband, physical activity was recorded for arm movement, as well as heart rate

monitoring. Associated to head motions, this allowed for the first integration of physical load assessment into
the VR-SOLUS framework;

Advanced Data Analysis
Better filtering of EEG and eye-tracking data, addition of physical data, more user feedback surveys, more

data to correlate, this study allowed for the advanced analysis present in the VR-SOLUS methodology;

Software Interface
Selection of VAs and their modalities improved greatly the earthwork training and teleoperation interface de-

veloped during this thesis;

Hybrid Methodology Validation
Confronting traditional user feedback methodology with objective data only method and hybrid methodol-

ogy confirmed the superiority of a hybrid methodology on many aspects, ultimately validating our VR-SOLUS
methodology.

6.1.3 Therapeutic Use-case

The dyslexia therapy study focused on developing a prototype aimed at enhancing therapeutic interventions through
an integrated approach. Although no formal clinical trials were conducted, the prototype - named Dys&Dragons -
was developed and validated by three orthoptists and one neurologist. The therapy itself was centred around visual
exercises (e.g. eye movements, visual search, reading) (Fig. 6.6) designed to aid individuals with dyslexia, targeting
the specific challenges they face in processing visual information, making use of VR environment to assess 3D
perception.

The core idea of this prototype was the study of the VR-SOLUS methodology combined with expert evaluations
from medical professionals in adaptive design (i.e continuously evolving design). By incorporating these diverse
data sources, the system was intended to dynamically adjust the therapy to meet the individual needs of each
patient in real-time, ensuring a more personalised and effective treatment process. This approach was aimed at
creating a therapeutic environment that not only responded to the user’s immediate performance but also adapted
over time, providing an increasingly tailored and effective therapy experience.

Figure 6.6: Dys&Dragons Interface Example
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Study Contributions

Study of a Different Use-case
This study being placed in the therapeutic field, a completely distinct use-case from the earthwork field,
allows us to gain insight on the generalisation of our methodology to very different fields, with very dif-
ferent needs. This study, although only in the prototype phase, was partnered with medical specialists,
who provided very useful feedback. This showed that user feedback can come from multiple actors of

VR applications, whether they are using the application themselves (patients) or monitoring it (doctors);

Impact of 3D on Dyslexia Therapy
Dys&Dragons first step was the "translation" of current traditional visual exercises used by doctors in a 2D
setting into a new virtual 3D environment, done in the presented prototype. Once the value of 3D technolo-
gies has been proven, the idea was to develop brand new exercises with medical professionals to open a

new page in dyslexia therapy;

Long-term Adaptive Design
Therapy is a long process. This study was meant to evaluate our VR-SOLUS methodology on the long term,
seeing if it was as efficient in the design phase of a VR application as during its life cycle. Through this ex-

periment, VR-SOLUS method could be used as a continuously adaptive design method.

Associated Publication

SAUNIER, Lea, PANOUILLERES, Muriel, FETITA, Catalin, et al. Visual Rehabilitation for Learning Disorders in
Virtual Reality: Visual Rehabilitation for Learning Disorder in VR. In : Proceedings of the 27th International

Conference on 3D Web Technology. 2022. p. 1-4.

6.2 Limitations

In this section, we will discuss the limitations encountered throughout the study, focusing on areas that may have im-
pacted the outcomes or the general applicability of the findings. These limitations are manifold, and can be grouped
around three axes: the experimental setup, the software used, and the hardware employed in the research. Each of
these axes presents unique challenges that need to be considered when interpreting the results and understanding
the scope of the conclusions drawn from this work. By examining these aspects, we aim to provide a balanced view
of the study’s constraints, offering insights into the potential areas for future improvement and refinement.

6.2.1 Experimental Setup

One of the primary limitations of this study lies within the constraints of the experimental setup, particularly in two
significant areas: the environment in which the experiments were conducted and the characteristics of the participant
pool.

Experimental Environment

Firstly, the laboratory environment in which we conducted our experiments was not a dedicated, interference-free
EEG lab. This setting inevitably introduced noise and external interference that could have impacted the quality
and reliability of our EEG signals. Although we implemented various denoising techniques to mitigate these effects,
the lack of a controlled EEG environment may have influenced the results. The integrated eye-tracker inside of the
VR headset not only presents filtering challenges, but also lacks peripheral vision analysis. Also, all our studies
required very low physical engagement, making physical load hard to measures. Changing the setup to allow more
movement, including whole body movements, would greatly help with physical demand assessment. Additionally,
for the dyslexia therapy study, we did not have access to a clinical setting, which would have provided a robust
environment for evaluating the therapy’s effectiveness in a real-world context.
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Participants

The statistical one-way ANOVA tests conducted in our studies (see Table C.1 for the full ANOVA values) yielded
non-significant results across most measures, which can primarily be attributed to the relatively small sample size
of participants. With only 10 to 16 individuals involved, the statistical power of the tests was inherently limited,
making it challenging to detect subtle differences between the experimental conditions. Despite this limitation, the
studies still provides valuable insights, particularly in the context of eye-tracking data, where significant results were
observed in the virtual annotation study. This suggests that while the sample size may have constrained the overall
effectiveness of the ANOVA, the methodology and experimental design are robust, and the findings remain relevant.
In addition, operational measures demonstrated strong correlations with time, as evidenced by Pearson correlation
coefficients shown in Section 5.3. The cognitive load evaluation with the Theta Alpha Ratio (TAR), which lacked
statistical significance, exhibited a low correlation with time and a moderate one with user level. These findings
underscore the need for caution in interpreting the statistical significance of our physiological measures and the
need for larger scale evaluation before generalising our methodology. Therefore, our results should be viewed more
as initial explorations or proof-of-concept rather than definitive conclusions. Increasing the participant pool in future
studies will be crucial to enhancing the validity and generalisability of our findings.

6.2.2 Software Improvement

Another limitation concerns the software part of this thesis on two aspects: the VR simulation and the data analysis.

Simulation

Our VR simulation exhibits certain limitations that warrant further development and refinement. While the physics
engine behind the simulation effectively replicates many aspects of the earthwork tasks, there is room for significant
improvement. The physics could be more precise, especially in handling complex interactions between the machin-
ery and the terrain. Furthermore, a more detailed and accurate digital twin would enhance the realism and reliability
of the training and teleoperation tasks. One of the critical gaps in our current earthwork simulation is the lack of
real-time environmental data during teleoperation tasks. At present, the simulation relies heavily on the propriocep-
tion of the machine and a basic model of terrain deformation (courtesy of Open Construction Simulator). However,
in real-world applications, teleoperation would benefit from integrating data from LiDAR [184], cameras [185], and
other sensors mounted on the machinery. These sensors could provide a real-time (or near real-time) rendering of
the terrain, offering the operator a more accurate and dynamic view of the working environment. This enhancement
is crucial for transitioning from simulated tasks to actual teleoperation scenarii safely.

In the therapeutic study focused on dyslexia, our VR simulation was limited by its reliance on translating existing
exercises into a 3D virtual format. While this approach allowed us to test the viability of VR for therapy, it constrained
our ability to innovate and develop exercises specifically tailored to the VR environment. To overcome this limitation,
we would need more extensive involvement from medical experts, particularly in the design phase, to create new
types of exercises that leverage the unique capabilities of VR. Additionally, conducting a clinical study would be
necessary to validate these exercises and ensure their effectiveness in a therapeutic context.

Data Analysis

Our data analysis, while robust, faces several limitations that impact the precision and reliability of our findings.
Each of our sensors — ranging from eye-tracking and IMU devices to heart rate monitors and EEG — could benefit
from more advanced filtering and analysis techniques. Improved filtering would help isolate relevant signals from
noise, while more sophisticated analysis could yield deeper insights into the data. Advanced correlation study could
also benefit our method. One of the primary challenges in our data analysis process is the synchronisation of data
from different sensors. In traditional setups, synchronisation is often managed with dedicated hardware, ensuring
precise alignment of data streams from different modalities. However, in our study, synchronisation was handled
through software, which, while functional, introduces potential variations, especially when dealing with data that
requires very precise timing. These disparities could lead to slight but significant misalignment in the data, affecting
the accuracy of our analysis.
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The sensor that poses the greatest challenge in terms of filtering and analysis is the EEG. Our EEG system,
which uses only 8 electrodes, is particularly susceptible to noise (e.g. motion, friction with the VR headset, exper-
imental setup, etc.). This noise complicates the extraction of clear signals and requires extensive processing to
achieve usable data. Our filtering methodology revolved around frequency band isolation (and thus unwanted band
removal) [155] as well as amplitude threshold technique [182] combined with IMU data to remove motion noise.
Plenty other analysis technique exist and could be applied to our study to improve our EEG signal, such as (not
limited to):

• Independent Component Analysis (ICA): ICA is a statistical method that separates EEG signals into inde-
pendent sources, which can help isolate brain activity from artifacts such as eye movements or muscle activity
[175];

• Wavelet Transform: this technique decomposes the EEG signal into different frequency components, which
can then be analysed or filtered separately [176]. It is particularly useful for detecting short-term events and
removing noise;

• Artifact Subspace Reconstruction (ASR): ASR is a method for removing brief artifacts from EEG data by
reconstructing the clean signal from a lower-dimensional subspace, effectively filtering out noise [186];

• Common Average Referencing (CAR): CAR is a spatial filtering technique that re-references the EEG signals
to the average of all electrodes, reducing the influence of common noise sources across the scalp [187].

6.2.3 Hardware Improvement

Our study’s hardware limitations have a significant impact on both the quality of data collected and the effectiveness
of the software solutions we employ. The current setup, while functional, highlights several areas where improve-
ments in hardware could substantially enhance our research outcomes. One of the primary limitations is the EEG
system, which is equipped with only 8 electrodes. This limited number of electrodes constrains our ability to capture
detailed and comprehensive brain activity data. More electrodes would provide finer spatial resolution and a more
accurate representation of the neural signals, leading to more precise insights into cognitive states, but at a higher
financial cost. Additionally, the current EEG setup does not integrate seamlessly with the VR headset, resulting in
discomfort and potential signal noise due to friction and motion. An EEG system that is better designed to fit with
the VR headset, or ideally, one that is fully integrated into the headset, would mitigate these issues, enhancing both
the quality of the data and the participant experience.

Beyond EEG, the overall sensor setup could benefit from enhancements to improve data capture and synchroni-
sation. While our software manages the synchronisation of various data streams, hardware-based synchronisation
would offer greater precision, especially when dealing with the fine temporal resolution required for analysis. This
would reduce potential offsetting in the data, improving the reliability of the results. This would also allow to record
the different data on different device, lessening the load on the unique computer used in this thesis, that had to
run the VR simulation and record all the multimodal data at the same time, impacting the performance. Moreover,
more sophisticated sensors, with better motion compatibility and integrated synchronisation, would allow for more
complex and accurate analyses. The need for better-integrated hardware is also evident in the potential for using
advanced sensors that can be directly integrated into the VR hardware, enabling more real-time and accurate data
collection.

The reliability and precision of biosensors in VR are widely debated in the research community, with several
issues limiting their effectiveness for research [188]. Key challenges include signal quality variability, noise suscep-
tibility, and difficulties in ensuring synchronisation across multiple data streams. These factors affect the usability of
biosensors like EEG and eye-tracking systems in real-world VR applications. Research has shown that EEG signals,
for instance, are prone to motion artifacts, making their use in highly interactive VR settings challenging. Efforts to
improve artifact rejection and enhance signal clarity have been explored but remain insufficient for all applications
[189]. Eye-tracking systems, while generally robust for measuring attention and gaze patterns, can face calibration
inconsistencies and inter-individual variability that undermine their precision [190]. Multimodal setups often require
advanced synchronisation protocols to ensure that signals from various biosensors align temporally and contex-
tually, adding complexity to experimental designs. These challenges point to the necessity for more standardised
analysis and enhanced data processing algorithms to improve the reliability of biosensor data in VR research.
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6.3 Further Developments

As we look to advance our research and resolve our method’s limitations, several key areas for further development
have been identified that will enhance both the robustness and generalisability of our findings. First, the primary
focus for future work is the expansion of our participant pool. Increasing the number of participants across different
use-cases will allow us to obtain more reliable data, leading to results that are not only statistically significant but
also generalisable to a broader range of applications. This expansion could also include testing additional measures
to provide a more comprehensive understanding of the various factors at play in our studies.

Another promising path for future research lies in studies involving long-term monitoring, particularly in adaptive
design applications such as was the idea of our therapeutic proposition. Long-term monitoring would enable us to
track changes over time, providing insights into the sustained impact of different interventions and the potential for
real-time adjustments based on user feedback and physiological data (Fig. 6.7). This is particularly important for
application with a transformative goal, notably therapy and training.

Figure 6.7: VR-SOLUS and Adaptive Design

In terms of data analysis, our biggest identified limitation has been the current handling of EEG data. Future
work should explore alternative EEG cognitive load assessment techniques such as (not limited to):

• Event-Related Potentials (ERPs): ERPs involve analyzing the brain’s response to specific sensory, cogni-
tive, or motor events. The technique identifies changes in EEG signals that are time-locked to these events,
providing insights into cognitive processing;

• Power Spectral Density (PSD) Analysis: this technique examines the distribution of power across various
frequency bands (e.g., alpha, beta, gamma) to assess cognitive load. Different tasks and cognitive states are
associated with shifts in power across these bands. While we focused only on the Alpha and Theta band, the
exploration of other bands could provide a more in-depth cognitive load evaluation;
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• Task-Evoked EEG: this method focuses on changes in EEG signals evoked by specific tasks, such as those
requiring attention or working memory. It is often used to assess cognitive load during complex tasks. It could
synchronise well with our other sensors data (e.g. eye-tracking, IMUs, heart rate monitor).

Our EEG setup could also benefit from more advanced EEG filtering methods, as stated in the Section 6.2.
Testing and comparing these new techniques could provide the next step for the improvement of the accuracy of
our cognitive load measurements and the reduction of the noise inherent to our current setup. This could include
experimenting with more sophisticated algorithms or making use of machine learning techniques to better isolate
meaningful signals from noise.

Another significant area for development is the hardware we use, particularly in relation to EEG and other
physiological sensors. Integrating more sensors into the VR-SOLUS, could provide more exploitable data: for
instance, adding electromyogram (EMG) into the framework could provide a more refined physical load evaluation.
Integrating those sensors directly into the VR headset, especially the EEG sensors, would also greatly enhance
data quality. Such integration would reduce issues related to synchronisation and signal noise, as well as improve
user comfort by minimizing the bulk and complexity of the equipment. This approach could lead to more accurate
data collection, less interference from external factors, and ultimately, a better overall experience for the user. This
perspective on the future of VR headset is already a reality, with more and more manufacturers integrating diverse
bio-sensors in their headset, such as the Galea headset 1with integrated eye-tracking, EEG and EMG (Fig. 6.8).

Figure 6.8: Galea VR Headset, the Next Generation of Bio-sensors Integration VR Hardware

To conclude, further development in these areas will not only address the limitations of our current research
but also pave the way for more sophisticated and generalisable studies in the future. By expanding our participant
base, refining our analytical techniques, and improving our hardware, VR-SOLUS will be well-positioned to push the
boundaries of what is possible in VR-based physiological studies.

1Galea Next-gen VR Headset https://galea.co/
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Chapter 7

Conclusion

The design and optimisation of user experience and human-machine interaction in virtual reality (VR) represents a
rapidly evolving field, driven by the need to create immersive, intuitive, and effective virtual environments, adapted
to multiple use-cases. Traditional design methodologies in this domain rely on user feedback, obtaining subjective
measures primarily through surveys, to gauge the efficiency of VR applications. While user feedback is invaluable
for capturing personal experiences and preferences, it can lack the objectivity needed to provide comprehensive
insights into the usability and performance of VR applications. In contrast, newer data-driven methodologies em-
phasise on objective measures such as operational metrics and physiological data, offering a more quantifiable
approach to understanding user interactions within VR. However, these methodologies can overlook the nuanced
and personal aspects of user experience that are crucial for refining VR systems.

In response to these challenges, this thesis presented the Sensory, OperationaL and User data Synthesis
methodology for Virtual Reality, VR-SOLUS (Fig. 7.1). This novel hybrid approach integrates operational data -
completion time, inputs errors, multiple inputs usage rate, as well as use-case-specific data, physiological measures
- eye-tracking for attention, electroencephalogram (EEG) for cognitive load, Inertial Measurement Units (IMUs) and
heart rate monitor for physical load, and user feedback. These measures provide performance indicators, user sta-
tus insights and user perception assessments to create a more extensive framework for VR design and optimisation.
This methodology aims to combine the strengths of both traditional and data-driven approaches, offering a broader
spectrum of analysis that can capture both the quantitative and qualitative aspects of user interaction in VR.

The studies conducted within this research, particularly in the context of earthwork teleoperation and training
and dyslexia therapy, demonstrate the effectiveness of the VR-SOLUS hybrid methodology. Our results indicate
that a hybrid approach outperforms purely objective or purely subjective methodologies. Data correlation shows
that even if objective and subjective data answer the same question (e.g. how mentally demanding is a task?), they
show nuanced results, sometimes similar (e.g. low according to user feedback and EEG), sometimes opposite (e.g.
low according to user feedback and high according to EEG), but always complementary. By integrating operational
metrics, physiological data, and user feedback, the VR-SOLUS methodology offers researchers and developers a
more refined analysis of user experience. This broader perspective leads to VR systems that are not only more
efficient and effective but also more attuned to the needs and preferences of users.

To further showcase the contributions of this thesis, we revisit our three fundamental questions:

Which operational measures are valuable for VR development?
Our studies have shown that operational measures, such as task completion time, input errors, input
usage and specific use-case measures are essential for evaluating the performance and efficiency of
VR systems. These metrics provide performance indicators and concrete data on how users interact
with VR environments, offering extrinsic insights into usability and identifying areas for improvement.

How to employ physiological sensors efficiently?
Physiological sensors, such as eye-tracking, EEG, IMUs and heart rate monitors, have been shown to

offer valuable insights into the user’s attention, cognitive state and physical state during VR interactions.
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However, their effective use requires careful consideration of sensor placement, signal processing, and
data interpretation. Our research emphasises the importance of integrating intrinsic physiological data
with operational metrics and user feedback to gain a more complete understanding of user experience.

What kind of methodology can further improve VR design and optimisation?
The VR-SOLUS hybrid methodology represents a significant advancement in VR design and optimisa-

tion. By combining objective and subjective measures, this approach provides a more nuanced and
comprehensive analysis of user interaction in VR. Far from invalidating traditional user feedback meth-
ods or data-driven method, this thesis identifies their strong points, and synergise them in a new hybrid

methodology. The VR-SOLUS method has been validated across various studies, providing use-cases from
different fields, demonstrating its potential to enhance the development and optimisation of VR systems.

Looking forward, there are several paths for future research that can build upon the findings of this thesis. One
promising direction is the integration of new bio-sensors, such as EMG and headset-integrated EEG systems, which
could offer more detailed and reliable physiological data while reducing issues related to sensor synchronisation and
user discomfort. Additionally, further advancements in data analysis techniques, particularly in EEG signal process-
ing, could lead to new insights into cognitive load and user experience in VR. Another potential area of exploration
is the synergy between different data types — operational, physiological, and subjective — which could reveal new
patterns and correlations that are currently not fully understood. Once those new measures and their analysis are in
place in the VR-SOLUS framework, it could be used in a long-term manner, to serve as an adaptive design method
for the whole application life-cycle, endlessly improving VR design and optimisation.

In conclusion, this thesis contributes to the field of VR design and optimisation by proposing and validating
a hybrid methodology that applies the strengths of both traditional and data-driven approaches. The VR-SOLUS
methodology has been shown to provide a more comprehensive and effective framework for understanding and
enhancing user experience in VR, paving the way for future advancements in this dynamic and rapidly growing field.

Figure 7.1: Sensory, OperationaL and User data Synthesis methodology for Virtual Reality - VR-SOLUS
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Appendix A

Miscellaneous Figures

Figure A.1: Excavator Schematics
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Appendix A - Miscellaneous Figures

Figure A.2: Real (HERACLES Robotics’) and Virtual (VR-SOLUS’) Excavator
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Appendix A - Miscellaneous Figures

Figure A.3: Final Joysticks Mapping

Figure A.4: Virtual Annotations Study Interface
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Appendix B

Experimental Surveys

This appendix contains the surveys templates (NASA Task-Load-Index and System-Usability-Scale-inspired) used
to gather quantified user feedback.
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Appendix B - Experimental Surveys

Figure B.1: NASA-Task Load Index Survey Template
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Appendix B - Experimental Surveys

Figure B.2: System Usability Scale Inspired Survey Template (1st page)
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Appendix B - Experimental Surveys

Figure B.3: System Usability Scale Inspired Survey Template (2nd page)
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Appendix B - Experimental Surveys

Figure B.4: System Usability Scale Inspired Survey Template (3rd page)
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Appendix C

Supplementary Data Analysis

A one-way ANOVA (Analysis of Variance) is a statistical test used to determine whether there are significant differ-
ences between the means of three or more independent groups. It compares the variability within each group to
the variability between the groups, helping to assess whether any observed differences in group means are due to
chance or a specific factor. This test is useful when comparing different conditions or treatments to see if they affect
the outcome in a meaningful way.

Below is the complete statistical analysis (one-way ANOVA) of our VR-SOLUS methodology’s measures across
our different studies. Measures evaluated:

• Time: completion time of tasks/exercises;

• Errors: number of inputs errors;

• MI%: percentage of multiple inputs simultaneous usage;

• Eye-tracking: tracked gaze fixations;

• TAR: Theta-Alpha Ratio, cognitive load measure;

• IMU: Inertial Measurement Unit, accelerometers and gyroscopes, physical load measure.

ANOVA statistics analysed:

• Degrees of Freedom (df): number of independent values that can vary;

• Sum of Squares (SoS): total variation;

• Mean Square (MS): sum of squares divided by the respective degrees of freedom;

• F-Statistic (F): ratio of the Mean Square Between Groups to the Mean Square Within Groups. Used to
determine the p-value and assess the statistical significance of the differences between group means;

• P-Value: probability that the observed differences among group means occurred by chance;

• Effect Size (η²): provides information on the proportion of variance explained by the independent variable.
Useful for understanding the practical significance of the results.

Overall, the statistical power of each study is relatively weak, indicating that a larger participant group is needed
to generalise the findings of this thesis. Nevertheless, despite this limitation, clear trends emerge that can be used
to formulate hypotheses and demonstrate the value of the various metrics discussed. The Interface Comparison
study was excluded from the following table because it involves only two groups: the virtual reality group and the
real machine group.
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Appendix C - Supplementary Data Analysis

Study Statistics Measures

Time Errors MI% Eye-tracking TAR IMU

Mappings
Evaluation

3 Controllers Comparison

df
SoS
MS
F

p-value
η²

2
11054.7
5527.3

0.29
0.75

0.016

2
274.7
137.3
2.76
0.07
0.13

2
2050.9
1025.5

0.62
0.54

0.033

-
-
-
-
-
-

2
0.03
0.01
1.86
0.16
0.094

-
-
-
-
-
-

Virtual Annotations
Design Phase

3 Empirical VA Sets
Comparison

df
SoS
MS
F

p-value
η²

2
4787.3
2393.6

0.28
0.75

0.012

2
5.4
2.7

0.32
0.73
0.014

2
33.9
16.9

0.007
0.99

0.00032

7
93880.7
13411.5

3.44
0.002
0.17

2
0.005
0.002
0.42
0.66
0.018

2
8.6
4.3

0.06
0.94

0.0026

Virtual Annotations
Evaluation Phase

3 Methodical VA Sets
Comparison

df
SoS
MS
F

p-value
η²

2
22318.3
11159.1

1.17
0.32

0.049

2
37.8
18.9
0.48
0.62
0.021

2
1553.6
776.8
0.34
0.71

0.015

7
121372.1
17338.9

10.5
3E-10
0.38

2
0.006
0.003
0.41
0.66
0.018

2
6.6
3.3

0.04
0.96

0.0016

Table C.1: Statistical Analysis of the VR-SOLUS Measures Across the Different Studies (One-way ANOVA)
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Titre : Conception pilotée par les données en réalité virtuelle : Combiner la perception de l’utilisateur avec
des mesures opérationnelles et physiologiques

Mots clés : réalité virtuelle, interfaces homme-machine, interactions homme-machine, conception, capteurs
physiologiques

Résumé : Cette thèse explore l’intégration des
méthodologies hybrides pour l’optimisation de
l’expérience utilisateur et des interactions homme-
machine en réalité virtuelle (RV). Alors que les
méthodes traditionnelles de conception reposent
largement sur les retours des utilisateurs, ces ap-
proches, bien que précieuses, présentent des li-
mites en raison de leur subjectivité. En parallèle, les
méthodes basées sur les données, qui utilisent des
mesures opérationnelles et physiologiques, offrent
une perspective plus objective mais demeurent im-
parfaites, souvent insuffisantes pour capturer la com-
plexité de l’expérience utilisateur en RV.
Pour surmonter ces limitations, nous avons développé
et testé la méthodologie VR-SOLUS (Méthode de
synergie des données sensorielles, opérationnelles
et de l’utilisateur pour la conception de la RV),
qui combine des mesures opérationnelles (perfor-
mances, efficacité), physiologiques (suivi oculaire,
électroencéphalogramme, fréquence cardiaque) et
les retours des utilisateurs. Cette approche a été
appliquée à deux études de cas distinctes : la
téléopération de machines de terrassement et la

thérapie pour la dyslexie. À travers une série
d’expériences impliquant la validation d’interfaces,
la sélection de contrôleurs et l’optimisation d’anno-
tations virtuelles, nos résultats démontrent que la
méthodologie hybride offre une analyse plus complète
et nuancée que les approches purement subjectives
ou objectives.
Les résultats révèlent également les défis tech-
niques et méthodologiques liés à l’intégration des bio-
capteurs dans les environnements VR, notamment en
termes de synchronisation des données, de filtrage
des signaux EEG et de la fidélité des simulations phy-
siques. Malgré ces défis, cette thèse propose des
pistes pour améliorer l’analyse des données en VR,
notamment par l’intégration de nouveaux capteurs et
l’utilisation de techniques avancées de traitement du
signal.
En conclusion, cette recherche contribue à l’avance-
ment des méthodologies de conception en RV, en
démontrant l’efficacité de l’approche hybride pour op-
timiser l’expérience utilisateur et en offrant des pers-
pectives pour de futures recherches dans ce domaine
en pleine évolution.

Title : Data-driven Design in Virtual Reality: Combining User Perception with Operational and Physiological
Measures

Keywords : virtual reality, human-machine interfaces, human-machine interactions, design, bio-sensors

Abstract : This thesis explores the integration of
hybrid methodologies for optimising user experience
and human-machine interactions in virtual reality
(VR). Traditional design methods rely heavily on user
feedback, which, while valuable, are limited by their
subjectivity. In parallel, data-driven methods, which
use operational and physiological measures, offer a
more objective perspective but often fall short in cap-
turing the full complexity of the VR user experience.
To address these limitations, we developed and tested
the VR-SOLUS methodology ( Sensory, OperationaL
and User data Synthesis for Virtual Reality), which
combines operational measures (performance, effi-
ciency), physiological data (eye-tracking, electroen-
cephalogram, heart rate), and user feedback. This
approach was applied to two distinct case studies:
earthwork machinery teleoperation and dyslexia the-
rapy. Through a series of experiments involving inter-

face validation, controller selection, and virtual anno-
tation optimisation, our results demonstrate that the
hybrid methodology provides a more comprehensive
and nuanced analysis than purely subjective or objec-
tive approaches.
The results also highlight the technical and methodo-
logical challenges associated with integrating biosen-
sors into VR environments, particularly regarding data
synchronization, EEG signal filtering, and the fidelity
of physical simulations. Despite these challenges, this
thesis proposes ways to enhance data analysis in VR,
including the integration of new sensors and the use
of advanced signal processing techniques.
In conclusion, this research contributes to the advan-
cement of VR design methodologies by demonstra-
ting the effectiveness of the hybrid approach in optimi-
sing user experience and providing insights for future
research in this rapidly evolving field.
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