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Modélisation et simulation numérique appliquées à la prédiction de
l’effet des médicaments sur le système cardiovasculaire

Résumé: Cette thèse est consacrée à la modélisation mathématique et à la simulation
numérique de l’impact des médicaments sur les tissus cardiovasculaires dans un contexte de
pharmacologie de sécurité. Les composés chimiques peuvent influencer la rigidité artérielle
en affectant à la fois les composantes actives et passives de la paroi des vaisseaux.

Dans la première partie, nous développons et validons un modèle mathématique à partir
des résultats expérimentaux obtenus dans l’installation expérimentale ROTSAC (Leloup
et al., 2019), qui permet d’étudier l’influence de vasoconstricteurs et vasodilatateurs sur la
rigidité artérielle dans des études pharmacologiques. Dans cette expérience, des segments
aortiques sont montés sur deux crochets métalliques parallèles et soumis à une charge
dynamique imposée. Nous développons un modèle de coque 3D avec des fibres actives
décrivant le comportement du tissu. Les paramètres intervenant dans les lois constitutives
du modèle sont identifiés par une méthode d’optimisation à partir de données réelles.
Le modèle obtenu est capable de reproduire les données expérimentales et de prédire le
comportement du système dans des scénarios autres que ceux utilisés pour l’estimation des
paramètres. Cela permet d’évaluer différents scénarios représentant l’impact des molécules
sur les contributions actives ou passives de la paroi artérielle.

Dans la deuxième partie, nous présentons un modèle mathématique plus complet pour
simuler l’installation ex vivo mentionnée précédemment. Ce modèle inclut la mécanique du
contact pour prendre en compte les interactions entre le tissu et les composants rigides. Les
principales contributions de cette partie concernent l’utilisation d’un modèle de coque 3D
et la comparaison de trois méthodes numériques différentes (lagrangien augmenté, Nitsche
et pénalisation) appliquées à la mécanique du contact. À notre connaissance, c’est la
première fois que la méthode de Nitsche est utilisée dans le cadre des coques 3D.

Enfin, nous présentons une analyse comparative entre différentes approches (réseaux
neuronaux artificiels, méthodes statistiques et modélisation mathématique) qui ont été
employées dans des études in vivo afin d’examiner les effets du vieillissement sur le système
cardiovasculaire des chiens. En particulier, la rigidité artérielle est l’un des principaux
facteurs liés à l’état de santé cardiovasculaire. Dans cette partie, un modèle 0D en boucle
fermée pour la circulation globale est développé. Les paramètres relatifs à la rigidité
artérielle et à la résistance de la circulation périphérique sont identifiés à partir de données
réelles de télémétrie. Le modèle calibré est capable de prédire le comportement du système
vasculaire du chien en fournissant des résultats comparables à ceux obtenus avec des
méthodes d’apprentissage automatique ou statistiques.

Mots-clés: Modélisation mathématique du tissu artériel, Modèles de coque 3D, Mécanique
du contact, Validation par rapport aux données expérimentales, Pharmacologie de sécurité





Modeling and numerical simulation applied to the prediction of the
effect of drugs in the cardiovascular system

Abstract: The present thesis is devoted to the mathematical modeling and the numerical
simulation of the impact of drugs on cardiovascular tissue in the context of safety pharma-
cology. Chemical compounds can influence arterial stiffness by affecting both the active
and passive components of the vessels’ wall.

In the first part, we develop and validate a mathematical model against experimental
results obtained in the ROTSAC experimental setup (Leloup et al., 2019), which investigates
how arterial stiffness is influenced by vasoconstrictors and vasodilators in pharmacological
studies. In this experiment, aortic segments are mounted on two parallel metal hooks and
stretched with an imposed dynamic load. We develop a 3D-shell model with active fibers
describing the behavior of the tissue. The model parameters involved in the constitutive
laws are identified using real data by means of an optimization method. The resulting
model is able to reproduce the experimental data and predict the system’s behavior in
different settings beyond those used for parameter estimation. This enables the assessment
of different scenarios concerning the impact of the molecules on the active or passive
contributions of the arterial wall.

In the second part, we present a more complete mathematical model for simulating
the aforementioned ex vivo setup. It includes a contact mechanics model to account for
the interactions between the tissue and rigid components. The main contribution of this
part is the use of a 3D-shell model and a comparison of three different numerical methods
(augmented Lagrangian, Nitsche and penalty) applied to contact mechanics. To the best
of our knowledge, this is the first time that Nitsche’s method has been used in the context
of 3D-shells.

Lastly, we present a comparative analysis of artificial neural networks, statistical, and
mathematical modeling methods employed in in vivo studies to examine the aging effects
on dogs’ cardiovascular system. In particular, arterial stiffness is one of the main factors
related to the cardiovascular health status. In this part, a closed-loop 0D model for the
global circulation is developed. The parameters related to the arterial stiffness and the
peripheral circulation resistance are identified using real telemetry data. The calibrated
model is able to assess changes in the vascular system of dogs and deliver results comparable
to those obtained with machine learning or statistical methods.

Keywords: Mathematical modeling of arterial tissue, 3D-shell models, Contact mechanics,
Validation against experimental data, Safety pharmacology
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Thesis general context

Professor Gerhard Zbinden noted in the 1970s that traditional preclinical toxicity studies
were inadequate for identifying adverse pharmacodynamic effects on vital physiological
functions (Williams, 1990; Bass et al., 2004, 2015). These limitations highlighted a
significant gap in predicting human health effects or consequences experienced by individuals
as a result of a treatment, particularly regarding the impact of drugs on organ systems
such as the cardiovascular, respiratory, and central nervous systems. This realization led to
the development of safety pharmacology, a specialized field aimed at evaluating functional
adverse effects of therapeutics before human exposure. The field was officially recognized
with guidelines such as the International Conference on Harmonization (ICH) S7A (Anon,
2001), which underscored its importance in the comprehensive safety assessment of new
drugs.

Safety pharmacology complements preclinical toxicology studies by focusing on the
potential toxic effects that drugs might have on both their intended targets and other
unintended physiological systems (Anon, 2001; Bass et al., 2015). This approach is now
an important component of non-clinical safety profiling, essential for ensuring that new
therapeutics are both safe and effective (Morimoto et al., 2015). It also plays a vital role
in reducing the attrition rates1 of drugs during preclinical, clinical, and post-marketing
phases (Bowes et al., 2012; Trame et al., 2016).

One of the most significant challenges in drug development is cardiovascular safety,
which has emerged as a leading cause of drug attrition from preclinical stages to post-
approval (Laverty et al., 2011; Ferri et al., 2013). Cardiovascular-related issues can account
for up to 45% of all drug failures (Redfern et al., 2010; Valentin et al., 2010). These
complications often involve subtle yet high-risk cardiovascular effects that may not be
detected during early testing phases but become apparent when drugs are used on a larger
scale or over longer periods (Redfern et al., 2010). Such issues can lead to temporary or
permanent discontinuation of treatment to manage the associated cardiovascular risks.
These complications, linked to both cardiovascular and non-cardiovascular drugs, can
manifest as changes in blood pressure, cardiac function, and vascular health (Laverty et al.,
2011; Versmissen et al., 2019; Belcik et al., 2012).

In recent years, mathematical modeling has emerged as a valuable tool in safety
pharmacology, offering the ability to simulate and predict the cardiovascular impact of
drugs before they reach clinical trials (Musuamba et al., 2021; Passini et al., 2017; Gintant
et al., 2016). These computational approaches can replicate complex physiological processes,
allowing researchers to explore various scenarios and identify potential risks helping to
reduce the need for extensive animal testing. In addition to their applications in safety

1Drug attrition refers to the high rate of failure that drug candidates experience during clinical
development, often due to safety concerns, lack of efficacy, or unacceptable toxicity.
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pharmacology, mathematical models have broader implications in medical research and
device development. These models enable detailed studies of the cardiovascular system’s
dynamics, offering insights that are often difficult to obtain through traditional experimental
methods. Mathematical modeling and numerical simulations enhance our understanding of
biomechanics by facilitating early detection of abnormalities and personalized treatments,
while also being significant for the design, testing, and evaluation of medical devices for
performance and safety prior to clinical use (Cain, 2011; LaDisa et al., 2003; Kabil et al.,
2016).

Position of the thesis

The primary objective of this work is to explore mathematical modeling and numerical
simulations in combination with experimental data with the purpose of describing the
impact of drugs in the cardiovascular tissue.

Among all the topics of interest in safety pharmacology, we focus on arterial stiffness,
that is the predominant cause of increased pulse pressure, a recognized marker of vascular
health in the general population cardiovascular events. Arterial stiffness is a cardiovascular
parameter that cannot be measured directly and is typically quantified through indirect
measurements. This makes mathematical modeling essential, as it can help to estimate
quantities that can not be experimentally measured and to give us information of parameters
that have a link with the stiffness.

Thesis outline and main contributions

This section offers a detailed review of the contributions across each chapter. A summary
and description are also provided at the start of every chapter for clarity and completeness.

• Chapter 1. This is an introductory chapter. We begin by presenting the general
background in safety pharmacology, discussing the interest in arterial stiffness, and
reviewing different methods for experimentally assessing it, including an ex vivo setup
called ROTSAC (Leloup et al., 2016), which will serve as the motivation for Chapters
2 and 3; then we discuss the problem which consists of assessing if an animal is aging
given telemetric experimental data.

• In Chapter 2 we consider a simplified mathematical model of the ROTSAC exper-
iment described in the previous chapter. We model the arterial wall as a passive
hyperelastic material using a 3D-shell model with a layer of active fibers. Model
parameters are identified by means of an optimization procedure. Different scenarios
to evaluate the impact of the active contribution of smooth muscle cells (SMCs)
on arterial stiffness are explored. The model has been validated against ex vivo
measurements and the numerical results are presented.

• Chapter 3 provides a more comprehensive mathematical model for the simulation
of the ROTSAC setup. No geometrical simplications are made and a model for
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contact mechanics is considered to incorporate contact between the elastic and rigid
elements. The main contribution of this chapter is a comparison of different numerical
approaches (augmented Lagrangian, Nitsche and penalty methods) when a 3D-shell
model is used.

• Chapter 4 provides a preliminary study with the purpose of comparing different
methodologies used for assessing the effects of aging, motivated by applications
in safety pharmacology and, in particular, the stiffening of the arteries with age.
Specifically, the chapter evaluates and contrasts statistical, machine learning, and
mathematical modeling approaches.
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Chapter 1

Introduction

This chapter provides the underlying context for the work presented in the subsequent
chapters. An overview of safety pharmacology is given, emphasizing the importance of
understanding drug-induced effects on arterial stiffness. We provide a comprehensive review
of the current methods for assessing arterial stiffness and discuss how age-related changes
in the cardiovascular system can influence drug effects, underscoring the importance of
considering the age of laboratory animals in safety pharmacology studies. The chapter
concludes by presenting the objectives of the thesis.

Contents
1.1 Safety Pharmacology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Evaluation of arterial stiffness . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Arterial stiffness and its cellular contributions . . . . . . . . . . . . 9
1.2.2 Assessment of arterial stiffness based on in vivo and ex vivo methods 11

1.3 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Safety Pharmacology

Ensuring the safety of medicines is of critical importance. The drug development process
consists of several stages (Deore et al., 2019), each fundamental for guaranteeing the
safety and efficacy of new therapeutic agents. The process begins with the discovery and
preclinical phases, where potential drug candidates are identified and initially tested in
vitro1 and in vivo2 in animal models to assess their safety and biological activity. This is
followed by the clinical development phase, which includes Phase I (safety and dosage),
Phase II (efficacy and side effects), Phase III (confirmation and comparison with standard
treatments), and finally, Phase IV (post-marketing surveillance) to monitor long-term
effects.

Safety concerns identified during drug development can often lead to substantial project
delays and late-stage drug attrition, as evidenced in the literature Cook et al. (2014);
Harrison (2016); Laverty et al. (2011); Morgan et al. (2018); Valentin and Redfern (2017).
The current preclinical testing paradigm, established more than 30 years ago by the
Organisation for Economic Co-operation and Development (2020) and the International
Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human

1In vitro studies are those performed outside a living organism in a controlled environment.
2In vivo experiments are conducted within a living organism.
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Use (2015), provides guidelines for toxicity testing of pharmaceutical substances using
toxicology species. These guidelines have significantly contributed to ensuring human drug
safety by standardizing the evaluation processes and ensuring that all potential adverse
effects are systematically investigated before clinical trials.

However, despite these established protocols, the elimination of risk is not entirely
possible. The predictive value and detection of organ-specific toxicities are highly depen-
dent on the target organ and the drug entity under investigation (Atienzar et al., 2016;
Hornberg et al., 2014). Each drug candidate can interact with biological systems in unique
ways, making it difficult to generalize findings from one drug to another. Additionally,
species-specific differences in drug metabolism and target organ sensitivities can lead to
discrepancies between preclinical and clinical outcomes. Over the past few decades, the
pharmaceutical industry has made considerable efforts towards the development, evalua-
tion, and implementation of bioanalytical, mathematical modeling, and in vitro models.
These advancements enabled improvements in the hazard identification and risk assess-
ment of preclinical drug candidates (Goh et al., 2015; van de Waterbeemd, 2009). The
integration of omics technologies (Chen and Snyder, 2013), such as genomics, proteomics,
and metabolomics, holds promise for identifying biomarkers that can more accurately
predict adverse reactions and individual susceptibilities. Innovations such as machine
learning and artificial intelligence are also being integrated into drug safety assessments to
analyze complex data sets and identify patterns that may predict adverse outcomes, thus
improving the predictive accuracy of preclinical models (Bass et al., 2015). Other examples
of possible breakthrough technologies include hiPSC-based humanized in vitro assays,
organ-on-chip (Ingber, 2022) platforms or molecular and functional imaging capabilities
(i.e. Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI) and
ultrasound imaging).

The need to reduce drug attrition places greater emphasis on identifying compound-
related safety liabilities early in drug development, ideally prior to candidate selection.
Early identification of potential toxicities can prevent costly late-stage failures and improve
the overall efficiency of the drug development process (Greene and Naven, 2009). These
factors, coupled with increased diversification of biological and non-biological modalities,
necessitate the adoption of approaches that address existing gaps in safety assessment with
fully integrated, fit-for-purpose test systems and safety biomarkers.

In the 1970s, Professor Gerhard Zbinden identified that the existing standards for
preclinical toxicity testing were inadequate for detecting acute pharmacodynamic side
effects that could pose risks to participants in clinical trials (Bass et al., 2015). This insight
led to the development of the field of safety pharmacology, which was officially defined
by the ICH S7A guidelines (Anon, 2001) as “those studies that investigate the potential
undesirable pharmacodynamic effects of a substance on physiological functions in relation
to exposure in the therapeutic range and above”. ICH S7A emphasizes the importance of
in vivo telemetry studies in non-rodent species to assess drug-induced hemodynamic effects,
while ICH S7B focuses on detecting risks of Torsades de Pointes arrhythmias through a
combination of in vitro and in vivo assays. While hemodynamic effects observed in in vivo
telemetry studies show acceptable translation to humans (Bhatt et al., 2019) they provide
limited mechanistic insight, making it sometimes difficult to develop an integrated clinical
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risk assessment and associated mitigation and management plan. Additionally, innovative
mathematical approaches may help to extract hidden information from hemodynamic data
sets. For instance, the attractor analysis enables quantification of temporal changes in
pressure waveform morphology (Aston, 2018). Further, integrating experimentally obtained
parameters in a mathematical model of vascular biomechanics and hemodynamic regulation
may help to understand hemodynamic changes during drug toxicity studies.

Safety pharmacology is currently undergoing a transformative phase, characterized
by the integration of cutting-edge technologies and methodologies aimed at enhancing
drug safety evaluations while reducing reliance on traditional animal testing. This shift
reflects an evolving landscape where new approaches continuously address the limitations
of conventional safety testing methods. Central to this evolution is the application of the
principles of the 3Rs (i.e.refinement, reduction, and replacement of in vivo animal studies)
(Russell and Burch, 1959). These principles guide the development of new methods and
technologies that aim to minimize animal use and enhance animal welfare in research. For
instance, innovations such as organ-on-a-chip platforms and sophisticated mathematical
models allow for more accurate prediction of human drug responses without the need
for extensive animal testing. Refinement is achieved through the use of non-invasive
techniques like telemetry and advanced imaging (e.g., ultrasound and MRI), which reduce
animal suffering by minimizing discomfort and stress. Reduction is further supported by
high-throughput screening methods that lower the number of animals needed by providing
extensive data from fewer experiments. Additionally, adopting social group housing for
laboratory animals helps improve their welfare by reducing stress and promoting natural
behaviors. Collectively, these advancements embody the ethical commitment to the 3Rs,
fostering more humane and scientifically robust approaches to drug safety evaluation.

The application of mathematical models plays thus a key role in safety pharmacology.
These models, enable the computer simulation of various aspects of cardiac function from
genes to whole organ systems, provide insights into potential cardiac risks before any
physical testing. In parallel, in vitro methodologies have advanced significantly. Human
induced pluripotent stem cell hiPSC-derived cardiomyocytes, which mimic the properties of
mature ventricular cells, are increasingly used to evaluate drug effects on cardiac function
and structure. These cells offer a valuable tool for assessing potential cardiotoxicity in a
controlled environment, bridging computational predictions and practical laboratory tests.
The Comprehensive in vitro Proarrhythmia Assay initiative exemplifies the integration
of hiPSC-derived cardiomyocytes with mathematical modeling, offering more accurate
predictions of proarrhythmic risks. For instance, advanced in vitro models using human
cells and tissues, as well as sophisticated mathematical modeling techniques, have been
developed to better predict human responses (Chang et al., 2022; Owens, 2023).

The cardiovascular system is especially susceptible to adverse drug effects, making its
assessment a cornerstone of safety pharmacology (Guns et al., 2020; Bass et al., 2015).
Standard methods for evaluating cardiovascular safety include electrocardiogram (ECG)
assessments in conscious animals and in vitro assays, such as the human Ether-à-go-go-
Related Gene (hERG) channel assay (Weaver and Valentin, 2019). Additionally, the
assessment of arterial wall integrity and arterial stiffness is critical, as these are significant
predictors of cardiovascular morbidity and mortality (Shirwany and Zou, 2010; Vlachopoulos,
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2010). Novel techniques such as cardiac imaging and biomarkers, along with advanced
computational models of cardiac electrophysiology, are being used to enhance the predictive
value of preclinical cardiovascular safety assessments (for review see Easter et al. (2009);
Hasselgren et al. (2013); Myatt et al. (2018)). Furthermore, integrating patient-specific
data through personalized medicine approaches can help predict individual cardiovascular
risks more accurately, thereby improving the safety profiles of new drugs.

However, introducing novel methodologies in safety pharmacology is a major challenge,
since through validation of the technology, robust confidence in the biology of the test
system and its predictive value for human biology is required. As such, the threshold
for introducing new technologies and associated read-out in safety pharmacology is high.
Consequently, many promising technologies may never translate into useful applications,
unless a coordinated and collaborative approach is adopted. Moreover, exploring, validating
and eventually implementing novel technologies comes at a significant economic cost,
requires time and represents an uncertain return on investment. Collaborative efforts
among academia, industry, and regulatory bodies are crucial to developing standardized
protocols and best practices for these advanced safety assessments.

In this thesis, we explore the integration of mathematical modeling and numerical
simulation with experimental data to address some questions in drug safety assessment
and disease research. Using both ex vivo3 and in vivo experimental data, we apply a
mathematical modeling approach to investigate some biological questions related to arterial
stiffness. Our main focus is to develop a mathematical model adapted to drug toxicity
studies, providing insights into specific safety pharmacology concerns. Additionally, we
perform a comparative analysis of artificial neural networks, statistical methods, and
mathematical modeling techniques to examine the impact of aging on cardiovascular
systems in dogs.

1.2 Evaluation of arterial stiffness

Arterial stiffness is a complex, dynamic parameter influenced by the arterial wall’s compo-
sition and the actions of SMCs. Due to the limitations of noninvasive and invasive methods
in humans, animal studies are essential for understanding the changes in arterial stiffness
due to disease or lifestyle modifications.

The remainder of this chapter is structured as follows. In Section 1.2, we discuss the
arterial stiffness, a predictor of cardiovascular disease risk, and an overview of techniques
for its evaluation. We also address the motivation behind Chapters 2 and 3, which
involves simulating an ex vivo setup (ROTSAC) designed to study arterial stiffness. Lastly,
in Section 1.3 we present the main objectives of the thesis: firstly, the exploration of a
mathematical model of arterial wall mechanics capable of simulating the active contribution
of SMCs to arterial stiffness and its validation against experimental data of the ROTSAC
setup with a simplified geometry; secondly, a mathematical model for contact mechanics
that enables the simulation of the ROTSAC setup with its real geometry; finally, the

3Ex vivo refers to experiments conducted on tissues, organs, or cells outside a living organism, typically
in a controlled laboratory environment.
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comparison of different techniques on in vivo data to deepen our understanding of age-
related physiological changes, giving some light on the strengths and limitations of each
method.

1.2.1 Arterial stiffness and its cellular contributions

Arterial stiffness is a significant indicator of cardiovascular health and a predictor of
various cardiovascular diseases, with its value more than doubling with age (McEniery
et al., 2005). This increase in stiffness is associated with changes such as elastin degradation,
collagen cross-linking, and dysfunction in endothelial cells (ECs) and SMCs (O’Rourke and
Hashimoto, 2007). Although the underlying mechanisms are not yet fully understood, they
are linked to adverse cardiovascular outcomes like myocardial infarction, stroke, cognitive
decline, and dementia (Li et al., 2017).

To understand arterial stiffness, it’s important to first examine the structure of the
arterial wall (see Figure 1.1) and its components. The arterial wall consists of three
layers (Gonzalez-Clemente et al., 2021): the intima, media, and adventitia. The intima,
the innermost layer, is made up of a single layer of ECs. These cells are essential in
regulating vascular tone, permeability, and responses to mechanical forces such as shear
stress (Gimbrone and García-Cardeña, 2016).

Figure 1.1: Representation of the structure of the arterial wall. Image from Bardin (2022).

The media, the middle and most substantial layer, is composed of SMCs embedded
in an extracellular matrix (ECM) containing collagen, elastin, and proteoglycans. This
layer is vital for the artery’s contractile function, allowing it to adapt to variations in
blood pressure and flow. The interplay between collagen, which imparts tensile strength,
and elastin, which provides elastic recoil, is fundamental for maintaining arterial elasticity
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and compliance4 (Lacolley et al., 2017). The adventitia, the outermost layer, includes
connective tissue, fibroblasts, and small blood vessels that support the artery structurally
and anchor it to surrounding tissues.

SMCs in the media contribute to arterial stiffness through both their contractile activity
and their role in ECM remodeling. When stimulated by factors such as mechanical stretch,
vasoactive substances (e.g., angiotensin II, endothelin-1), or changes in blood pressure,
SMCs contract, reducing arterial diameter and increasing wall tension. This process directly
increases arterial stiffness (Lacolley et al., 2017). On the other hand, relaxation of SMCs,
triggered by vasodilators like nitric oxide (NO) and prostacyclin, allows the artery to
expand and accommodate blood flow, thus reducing stiffness.

Moreover, SMCs influence arterial stiffness by modifying the ECM. In conditions such
as aging and hypertension, there is increased collagen production and cross-linking coupled
with decreased elastin synthesis, leading to a stiffer arterial wall (Sehgel et al., 2013). SMCs
can also switch from a contractile to a synthetic phenotype in response to pathological
stimuli, a change that involves increased proliferation, migration, and ECM production,
which further stiffens the arteries (Lacolley et al., 2017).

ECs play a significant role in regulating arterial stiffness through their release of vasoac-
tive substances. NO, produced by endothelial nitric oxide synthase in response to shear
stress, is one of the key substances. NO diffuses to SMCs, stimulating guanylate cyclase
and increasing cyclic guanosine monophosphate levels, which leads to SMC relaxation.
This mechanism helps to decrease arterial stiffness by increasing arterial diameter and
reducing wall tension (Bellien et al., 2010). Additionally, ECs produce other vasoactive
agents like endothelin-1, prostacyclin, and angiotensin II, which affect SMC contractility
and ECM composition. The balance of these factors is crucial for normal arterial stiffness,
and imbalances can contribute to conditions like hypertension and atherosclerosis (Leloup
et al., 2019).

Understanding both the roles of SMCs and ECs in arterial stiffness is crucial for
developing methods to measure it. Clinically, the detailed study of arterial stiffness and
its underlying mechanisms remains challenging. While invasive measurements can be
conducted in people undergoing catheterization as part of routine clinical treatment, these
studies are limited to individuals with cardiovascular diseases, making comparisons to a
healthy cohort difficult (Butlin et al., 2020). Moreover, the long timescale over which
arterial stiffening occurs in humans complicates longitudinal studies, making animal models
essential for understanding the fundamental mechanisms of arterial stiffness.

In what follows, we provide an overview of the in vivo and ex vivo techniques available to
quantify and investigate arterial stiffness in animals. These techniques allow quantification
of the pressure dependency of arterial stiffness and assessment of active (smooth muscle
and vascular endothelium) and passive (elastin and collagen) contributions to arterial
stiffness.

4Arterial compliance is the ability of an artery to expand and contract in response to pressure changes.
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1.2.2 Assessment of arterial stiffness based on in vivo and ex vivo
methods

The evaluation of arterial stiffness has traditionally relied on in vivo techniques, with Pulse
Wave Velocity (PWV) being the most commonly used parameter. PWV is calculated as
the speed at which the pressure wave generated by cardiac contraction travels through the
arterial tree (Ghosh et al., 2019; Wang et al., 2016). Faster PWV values indicate stiffer
arteries and are associated with an increased risk of cardiovascular events (Vlachopoulos,
2010; Laurent et al., 2001). The measurement of PWV can be performed globally, assessing
the stiffness of the entire arterial system, or locally, focusing on specific arterial segments
such as the carotid or femoral arteries. There are several possibilities to measure the PWV.

• Applanation tonometry . It is a widely used technique for measuring PWV globally.
This method (Doupis et al., 2016) involves the placement of pressure sensors at two
arterial sites (e.g., carotid and femoral arteries) to record the pressure waveforms
and calculate the time delay between them. The distance between the two sites is
then used to calculate PWV. While this method is non-invasive and relatively easy
to perform, it has several limitations, including the potential for errors in distance
measurement and the influence of factors such as blood pressure and heart rate.

• Ultrasound imaging . Ultrasound imaging (Sahani et al., 2016) uses high-frequency
sound waves to create images of the body’s internal structures and provides a non-
invasive method for assessing PWV locally by measuring the velocity of the pressure
wave within a specific arterial segment, such as the carotid artery. Traditional
ultrasound was too slow to capture the propagation of arterial pulses, but newer
techniques using unfocused plane waves allow for measurements with high temporal
resolution (several thousand frames per second) (Luo et al., 2012). This fast imaging
can track the pulse wave as it moves through an artery, visualizing the displacement
or velocity of the arterial wall. PWV is then calculated from the slope of this
wavefront. However, since these methods capture PWV at specific time points, they
may not fully account for changes in stiffness that occur as the artery stretches under
pressure, which can lead to discrepancies with other stiffness measures. This technique
offers greater spatial resolution compared to applanation tonometry, allowing for
the assessment of stiffness in specific regions of interest. However, it requires more
expensive ultrasound equipment and ultrafast imaging. On top, it is not yet on
(all) commercial systems and still in research phase, the validation is pending and is
applicable to superficial arteries only (Segers et al., 2020a).

• Magnetic resonance imaging (MRI) is another advanced technique (Grotenhuis et al.,
2009) used for measuring PWV, particularly in large arteries like the aorta. The
computation of PWV with MRI was first discussed in 1989 (Mohiaddin and Longmore,
1989). Growing interest in faster and more reliable MR imaging techniques has led
to a noticeable rise in studies using MRI to measure PWV (Wentland et al., 2014).
The simplest way to calculate PWV from MR data is by determining the time delay
between two flow waveforms (Boese et al., 2000; Mohiaddin, 1992; van der Meer et al.,
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2007). This can be done by taking two 2D phase contrast slices and getting the flow
waveforms from each (Laffon et al., 2005; Leeson et al., 2006; van der Meer et al.,
2007), or more easily by capturing one 2D slice in the thoracic aorta that covers both
the ascending and descending parts, giving you two waveforms (Shan et al., 2012).
4D Flow MRI is an advanced imaging technique that captures the movement of blood
in three dimensions over time, making it a four-dimensional (4D) representation of
blood flow, and it has also been used to compute PWV (Gu et al., 2005; Markl et al.,
2003). Information on the flow field can be extracted for every location within the
image volume. A 4D flow MRI approach provides the opportunity to derive other
hemodynamic parameters of interest from the same scan, including wall shear stress,
pressure gradients across stenoses, and other parameters which can be valuable in
understanding the mechanisms underlying arterial stiffness (Hope et al., 2013). A
major limitation to the widespread use of MR-based PWV measurements is the lack
of availability of commercial software (Wentland et al., 2014).

However, the in vivo techniques come with some limitations to evaluate arterial
stiffness. While PWV is a valuable predictor of cardiovascular health, in vivo methods
do not effectively separate the contribution of the cellular (endothelial function, smooth
muscle function) and noncellular (elastin fragmentation, collagen cross-linking, vascular
wall remodeling) components to arterial stiffness (Butlin et al., 2020). Traditionally,
arterial stiffness was attributed solely to the passive biomechanical properties of the aorta
(Leloup et al., 2016, 2019), but recent research (Kerage et al., 2014; Sehgel et al., 2013) has
highlighted the active roles of SMCs and ECs in modulating stiffness through the regulation
of vascular tone. To overcome these limitations, ex vivo setups have been developed to
isolate and analyze both passive and active aspects of arterial stiffness independently of in
vivo factors such as heart rate or blood pressure (De Moudt et al., 2022a; Leloup et al.,
2016, 2019).

Ex vivo characterization of arterial stiffness is a valuable approach for understanding the
mechanical properties of blood vessels outside the physiological environment and generally
provides more information on the mechanisms behind stiffness changes (Butlin et al., 2020).
Various techniques, including tensile testing, myography, scanning acoustic microscopy,
nanoindentation, and atomic force microscopy, have been employed to assess both the
active (vascular tone, regulated by vascular SMCs and ECs) and passive (that encompasses
ECM structural proteins) contributions to vessel stiffness (Butlin et al., 2020). These
methods allow for a detailed examination of the mechanical properties of the arterial wall
and its individual components at different scales, providing insights that are often not
achievable through in vivo measurements. We discuss below the main ex vivo techniques
used to measure different aspects of arterial stiffness in animal studies.

Pressure myography (PM) is a widely used technique to assess the mechanical properties
of vessels under physiological conditions (Butlin et al., 2020). Unlike PWV, PM is performed
ex vivo, requiring small blood vessel samples obtained through biopsy (Akhtar et al., 2011).
This method involves mounting an isolated vessel segment on cannulas and perfusing it
with controlled pressure, enabling measurement of changes in vessel diameter in response
to varying pressures. The sample is placed inside a calcium-free medium to maintain
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a naturally relaxed state for measuring its biomechanical responses of contraction and
dilation (Akhtar et al., 2011). This technique is particularly useful for studying the active
contribution of SMCs to arterial stiffness by observing the vessel’s response to vasoactive
stimuli such as angiotensin II or norepinephrine (Mulvany and Halpern, 1977).

One of the key advantages of PM is its ability to preserve the natural passive behaviors
of arteries by maintaining the integrity of their circumferential layers of elastin, collagen,
and SMCs (Navindaran et al., 2023). This method reduces external factors during the
experiment and also enables the analysis of arteries outside the physiological pressure
range, a challenge for in vivo approaches (van der Bruggen et al., 2021). However, a
significant drawback is the high expenses associated with commercial PM systems, due to
the limited number of suppliers (Lawton et al., 2019). Additionally, the technique assumes
that the vessel has uniform mechanical properties along its length and cannot detect any
heterogeneity (Navindaran et al., 2023). Furthermore, it is limited to very small blood
vessel samples, which complicates the study of larger arteries (Akhtar et al., 2011).

Wire myography (WM) is another technique used to assess arterial stiffness (Mulvany
and Halpern, 1977). Contrary to PM, in WM it is needed to mount a vessel segment on
two thin wires and stretching it under isometric conditions to measure the force generated
by the vessel in response to various stimuli. This technique allows for precise measurement
of vascular tone and the effects of pharmacological agents on vascular smooth muscle
contractility (Angus et al., 2000). However, WM primarily captures isometric tension,
which may not fully represent the in vivo mechanics of the vessel (Butlin et al., 2020).

More advanced techniques such as scanning acoustic microscopy, nanoindentation, and
atomic force microscopy offer the ability to assess the mechanical properties of individual
layers and components within the vessel wall.

Scanning Acoustic Microscopy (SAM) uses high-frequency sound waves to generate
detailed images of the vessel structure and to measure the stiffness of different layers
within the arterial wall (Akhtar et al., 2016). The image contrast in a SAM derives from
differences in the propagation speed of acoustic waves through a material; the wave speed
is related to the elastic properties of the material, in particular Young’s modulus (Liang
and Blomley, 2003). This method allows resolving distinct features such as collagen fibers
(Akhtar et al., 2016). Gathering both histological and mechanical data could be valuable
for arterial stiffening studies (Akhtar et al., 2011), considering the structural changes in
collagen and elastin, which are the primary load-bearing elements in large arteries (Graham
et al., 2011). One of the key advantages of SAM is its ability to produce images of the
mechanical properties of the vessel wall without physically altering the sample (Yu, 2020).
This non-destructive testing is ideal for assessing the heterogeneity of mechanical properties
across different layers of the artery, which is not possible with traditional methods such as
pressure or wire myography (Lopez-Andres et al., 2012). While SAM provides valuable
insights into the mechanical properties of blood vessels, its high cost and complexity
(Yazdan Mehr et al., 2015) may limit its widespread use in routine assessments of arterial
stiffness.

Nanoindentation technology with high spatial resolution and force sensitivity is widely
used to measure the mechanical properties of hard biomaterials and tissues (Wu et al., 2020).
Nanoindentation involves pressing an indenter into the tissue to measure its resistance to
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deformation (Qian and Zhao, 2018). This technique can precisely measure the stiffness
of specific regions of the arterial wall, enabling the study of spatial variations within the
vessel wall. Because of its small probe size, nanoindentation can be used to measure local
material properties in small, thin, and heterogeneous samples. Nanoindentation is also
useful for measuring mechanical properties of microstructural features within bulk samples,
characterizing the properties of individual constituents within composite or heterogeneous
samples, or mapping mechanical properties across a sample surface (Ebenstein and Pruitt,
2006). However, nanoindentation requires careful sample preparation and calibration
(Barone et al., 2010) to ensure accurate and reproducible results.

Atomic Force Microscopy (AFM) provides high resolution measurements, often at
the cellular or subcellular level (Radmacher, 1997). AFM involves scanning a sharp tip
across the surface of the tissue to generate a detailed topographical map and to measure
the mechanical properties of individual components (Navindaran et al., 2023). AFM’s
main advantage is its ability to detect very small changes in mechanical properties at
the nanoscale, even in physiologically relevant environments like hydrated conditions or
dynamic settings (Navindaran et al., 2023; Bae et al., 2016). Despite these benefits, AFM
has limitations. It generally assesses samples in an unloaded state, which can result in
stiffness measurements that are lower than those observed under physiological loading
conditions (Bae et al., 2016). Additionally, interpreting AFM data requires complex
mathematical models to understand mechanical properties from force-displacement curves,
which rely on various assumptions and can be prone to errors (Stylianou et al., 2019). Tip
blunting, where the geometry of the AFM tip changes due to the sample’s stiffness, can
also impact the accuracy of measurements (Navindaran et al., 2023).

An ex vivo setup to study arterial stiffness: ROTSAC

More recently, alternative methods have been proposed to assess the vascular stiffness
response in a more physiologically relevant manner. Customized organ bath setups have
been developed to apply strain or force oscillations at magnitudes and frequencies that
mirror those experienced by blood vessels in the body (Butlin et al., 2020; Langewouters
et al., 1985b,a). These setups are designed to generate pressure-diameter loops, which are
graphical representations of how the diameter of a blood vessel changes in response to
varying pressures. By analyzing these loops, researchers can quantify both the stiffness
and the viscoelasticity of the vessels (Leloup et al., 2019). The viscoelastic properties,
which describe how the vessel’s material properties change with time and deformation, are
relevant for understanding the blood vessel’s ability to accommodate pulsatile blood flow.
These methods provide a view of the mechanical behavior of blood vessels under conditions
that closely replicate the actual physiological environment.

The Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC) setup
was developed to address the limitations of traditional in vivo and in vitro methods by
providing an ex vivo environment in which arterial segments can be studied in isolation
under controlled conditions (De Moudt et al., 2022b). The ROTSAC was mainly developed
to study elastic behavior of aortic segments while stretched at physiological frequencies and
amplitudes. This setup allows for an assessment of the system’s consistency, verification of



1.2. Evaluation of arterial stiffness 15

the ex vivo impact of heightened distension pressure and SMC tone on stiffness metrics,
evaluation of aortic stiffness in isolated segments from two genetic mouse models with
known aortic stiffness issues, and testing of the morphological and mechanical preservation
of aortic segments when subjected to high-frequency oscillation (Leloup et al., 2016).

The experiments performed with the ROTSAC setup (see Figure 1.2), begin with the
dissection of aortic segments from euthanized mice, typically focusing on the thoracic aorta.
These segments are then mounted on a system of two parallel metal hooks in an 8 ml organ
bath, which is filled with a physiological saline solution (Krebs-Ringer) to maintain the
tissue in a controlled environment. The organ bath is equipped with a heating system that
ensures the temperature is kept at 37°C, simulating the thermal conditions found within
the living organism. The two hooks secure the segment within the setup and allow it to be
subjected to controlled mechanical forces. The aortic segment is connected to a force-length
transducer, that measures both the force and displacement of the upper hook. The upper
hook was connected to the aluminum lever of the force-length transducer and this lever
was connected to a coil suspended in a strong field of a permanent magnet. The system
was controlled by a current source. When current was passed through this coil, a force was
developed. The displacement of the lever was measured by means of a photo-electric system.
The transducer is connected to a data acquisition system (Powerlab 8/30 and LabChart
7, ADInstruments, Oxford, UK) that records the force and displacement data at a high
sampling rate of 1 kHz. From these measurements, various biomechanical parameters such
as arterial compliance and the Peterson modulus, a measure of arterial stiffness, can be
derived. These parameters provide valuable insights into how the mechanical properties of
arteries change under different physiological and pathological conditions.

To simulate the physiological conditions, the setup is designed to subject the aortic
segments to cyclic stretching, typically at a frequency of 10 Hz, corresponding to the
heart rate of a mouse (approximately 600 beats per minute). This cyclic stretching is
implemented through the force-length transducer, which dynamically adjusts the length of
the aortic segment in a controlled manner, thereby simulating the pulsatile nature of blood
flow. The relationship between the force exerted by the vessel and its diameter is used to
calculate the internal pressure within the segment, P , employing the Laplace equation:

P =
F

l D
,

with F the force, l the length and D the diameter of the vessel segment. Force was
measured directly by the transducer. The diameter of the vessel segment at a given preload
was derived from the displacement of the upper hook, being directly proportional to the
inner circumference:

D =
2 w

π
,

with w the outer distance between the hooks (to approximate the inner circumference of the
vessel segment). This allows for the generation of pressure-diameter loops for analyzing the
mechanical properties of the arterial wall. The pressure-stiffness relationship was evaluated
under physiological conditions (using Krebs-Ringer solution), in a maximally-contracted
state (induced by 2 µM phenylephrine (PE), serotonin (5HT) or potassium (50K) reflecting
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Figure 1.2: Schematic diagram of the ROTSAC. Image from Leloup et al. (2016).

active components), and in the absence of active stiffness (utilizing 2 µM of DEANO, a
NO donor to negate any contribution of SMC contraction).

As previously mentioned, recent insights emphasize the significant role of active factors,
particularly vascular SMC tone, in modulating arterial stiffness. The ROTSAC setup
demonstrated that inducing SMC contraction using PE resulted in a significant increase
in isobaric stiffness. Further, when NO production was inhibited in PE-stimulated aortic
segments, isobaric stiffness increased by 80% compared to baseline measurements. This
substantial increase underscores the importance of NO in regulating arterial stiffness,
particularly in elastic arteries like the aorta, which produce high levels of basal NO. This
finding aligns with previous in vivo studies in rodents and humans that have highlighted
the direct relationship between basal NO production and arterial stiffness.

To validate the sensitivity of the ROTSAC setup, the study utilized two genetic mouse
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models. The ROTSAC setup proved effective for investigating the biomechanical properties
of isolated aortic segments. It allows for the independent manipulation of pulse pressure,
stretch frequency, and the composition of the extracellular fluid, facilitating a detailed
examination of SMC tone and mechanical stimuli on arterial compliance. This ex vivo
approach is advantageous for studying these factors separately, which is not always possible
in vivo due to the complexity of physiological conditions.

However, the ROTSAC setup has some limitations. Unlike perfusion-based setups, it
does not measure luminal pressure directly and instead relies on indirect calculations using
the Laplace relationship. This method assumes a thin, isotropic, and homogeneous vessel
wall, which may not fully apply to the mouse aorta, potentially affecting the interpretation
of absolute pressure values. Additionally, the lack of perfusion means that endothelial cells
are not exposed to shear stress, which can stimulate NO production. Finally, isolation of
the aorta removes neurogenic and hormonal stimuli that also influence arterial mechanics,
which can lead to discrepancies between ex vivo and in vivo measurements.

Despite these drawbacks, the ROTSAC setup is valuable for providing rapid and detailed
assessments of aortic biomechanics with minimal tissue requirements. It complements other
methodologies by offering insights into the effects of SMC tone, mechanical stimuli, and
NO production on arterial stiffness. This approach is relevant for understanding arterial
aging, hypertension, and developing targeted therapies for cardiovascular health.

1.3 Objectives of the thesis

In drug discovery and development, while significant advancements have been made in in
vitro and in silico5 methodologies, these approaches have not yet fully replaced the need
for live animal testing in assessing the comprehensive effects of test compounds within
a living system (Committee, 1985; Service, 1993). Despite their growing sophistication
and potential, in vitro and in silico models still face limitations in replicating the complex
interactions and systemic responses observed in whole organisms. Consequently, researchers
and Institutional Animal Care and Use Committees (IACUCs) continue to navigate the
challenges of implementing the 3Rs in animal research.

In this thesis, we explore the capabilities of various mathematical models in combination
with ex vivo and in vivo experimental data to answer questions of safety pharmacology.
There are mainly three parts: in the first one, we investigate a mathematical model to repro-
duce ex vivo experimental data of arterial compliance under the action of vasoconstrictors
and vasodilators related to pharmacological studies. Model parameters are identified by
means of an optimization procedure. The objective is to provide insights on the mechanical
behavior of arterial segments and the role of SMCs in arterial stiffness, which cannot be
measured directly through experimentation. For symmetry reasons, a simplified geometry
of the ROTSAC setup has been considered in this first part; in the second part, we provide
a more complete model of the ROTSAC setup using the real geometry. In order to do so,
contact between the elastic and the tissue needs to be considered since the simulations could
not have been performed otherwise. The main contribution of this part is a comparison

5Using computer simulations to predict biological behavior.
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between three different numerical approaches for contact mechanics; finally, in the last
part of the thesis we aim at comparing different classes of methods for assessing the impact
of aging in the context of safety pharmacology by analyzing in vivo cardiovascular data
collected from laboratory dogs.

As previously stated, the goal of the first part of this thesis is to provide a mathematical
model of vasoconstriction/vasodilation that can reproduce the ROTSAC experiment and
conditions without recalibrating the parameters. This research is relevant for gaining a
deeper understanding of the mechanical behavior of the aorta under different pressure
conditions. The structure and function of the arterial wall are complex and many multi-
component models of the arterial wall have been developed in recent years (Valentin et al.,
2009; Weisbecker et al., 2015; Bellini et al., 2014; Stålhand et al., 2016) to understand the
dynamic nature of the biological system and to answer questions that experiments alone
have not yet addressed. These models, which focus on the elastic behavior of the vascular
wall, are based on experiments studying the mechanical properties of vascular tissue under
different stress-strain conditions (Stergiopulos et al., 1998; Holzapfel et al., 2000; Zulliger
et al., 2004; Holzapfel et al., 2005; Sommer and Holzapfel, 2012). Many structure-based
passive mechanical models of blood vessels have been extensively studied (Lanir, 1983;
Wuyts et al., 1995; Dahl et al., 2008; Lokshin and Lanir, 2009; Hollander et al., 2011;
Rachev and Shazly, 2019), but there remains still a notable gap in the development of the
models addressing active properties. Over the past decade, various methods have been
proposed to simulate smooth muscle contractility (Rachev and Hayashi, 1999; Stålhand
et al., 2008; Murtada et al., 2010; Schmitz and Böl, 2011; Murtada et al., 2012). However,
despite significant progress, the active component of vascular contractility has not been
systematically included in these models (Coccarelli et al., 2018).

The majority of models concerning SMCs rely on either 0D ordinary differential
equations or 1D formulations (Rachev and Shazly, 2019; Fay and Delise, 1973; Lee and
Schmid-Schönbein, 1996; Yang et al., 2003a,b; Bursztyn et al., 2007; Murtada et al., 2010;
Jin et al., 2020). Based on their 1D model (see Stålhand et al. (2008)), Stålhand et al.
(2011) developed a mechanochemical 3D continuum model for SMC contraction. For
instance, in Coccarelli et al. (2018), a 3D hyperelastic structural model coupled with blood
flow is presented. The proposed computational framework, that takes into account the
passive and the active behavior of SMCs, accounts for vascular responses to mechanical
and pharmacological stimuli.

By evaluating and integrating different methods, this research aims to enhance our
understanding of cardiovascular dynamics and contribute to safer, more effective pharmaco-
logical assessment. In Chapter 2 of this thesis, we propose a mathematical framework that
combines passive hyperelasticity (Holzapfel et al., 2000; Gasser et al., 2006) with active
fibers to simulate the active behavior of SMCs. Using 3D-shell elements (Chapelle et al.,
2004a; Chapelle and Bathe, 2010) and incorporating the Ogden hyperelastic law (Geymonat
and Ciarlet, 1982) for the passive component, the model captures nonlinear strain-stress
relationships, enabling realistic simulations of arterial behavior under varying dynamical
conditions. The model integrates an affine stress-strain constitutive law for SMC fibers
(Aletti et al., 2015), enabling the simulation of vasoconstriction and vasodilation. Due
to the symmetry of the ROTSAC setup, a simplified geometrical configuration has been
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considered in the mathematical model as we will see in Chapter 2. The objective of Chapter
2 is twofold: firstly, to show the predictive capabilities of the model. Secondly, we aim to
explore whether vasoconstriction or vasodilation driven by vasoactive substances impact
solely the SMCs (scenario I ) or if the compounds introduce additional intrinsic stiffness
(reflected by the Young modulus E) (scenario II ). The model has a set of parameters
that are unknown and are identified through an optimization process. The results of the
parameter estimation procedure enable to understand which is the most plausible scenario
between the two previously stated. Through validation against experimental data, the
model provides valuable insights into the mechanical dynamics of SMC contraction, offering
a promising approach for understanding vascular function and exploring the simulation of
in vivo data.

In Chapter 3, we aim at providing a more comprehensive mathematical model of the
ROTSAC setup presented in Chapter 2 with the purpose of assessing the limitation of the
model of Chapter 2. Specifically, Chapter 3 does not use any geometrical assumption, and
it became clear that it was necessary to incorporate the interaction between the tissue
and the hooks in order to simulate the experiment with its real geometry. The main
contribution of this part of the thesis is the investigation of various numerical methods for
handling contact, including augmented Lagrangian, Nitsche and penalty. In particular, to
the best of our knowledge, this is the first time that Nitsche’s method is used with 3D-shell
models (Fabre et al., 2021).

In Section 1.2, we highlighted arterial stiffness as a key indicator of cardiovascular
health, discussing its relevance in both clinical assessments and drug development with
special focus on ex vivo studies. To study arterial stiffness, is also important to consider
the influence of age, especially in preclinical in vivo studies, that are performed to evaluate
how drugs affect living organisms. Age-related changes in the cardiovascular system can
alter the effects of drugs, making it essential to consider the age of laboratory animals
when interpreting results in safety pharmacology studies. Aging significantly affects arterial
stiffness, as the arterial walls undergo structural changes that reduce their elasticity. Over
time, the degradation of elastin and the accumulation of collagen and calcium deposits make
the arteries more rigid. In this section, we introduce the impact of age on the cardiovascular
function of laboratory animals and its implications for drug safety assessments.

Age-related changes in the cardiovascular system can substantially alter how drugs
are processed and responded to in in vivo studies. These physiological changes, such as
increased arterial stiffness, reduced arterial compliance, and altered blood flow dynamics
(Meurs et al., 1996; Paul-Emile Roy and George Rona, 1976; Templeton et al., 1979), affect
the pharmacokinetics and pharmacodynamics of drugs (Polaka et al., 2022). This means
that as animals age, the way a drug is absorbed, distributed, metabolized, and excreted
can differ significantly from that in younger animals. Consequently, understanding and
accounting for the age of laboratory animals is essential to ensure that preclinical studies
accurately reflect a drug’s safety and efficacy (Strasser et al., 1993; Jackson et al., 2017).

For example, older animals might present cardiovascular conditions inherent to aging,
which could confound the assessment of a drug’s effects. This underscores the need to
distinguish between age-related changes and drug-induced effects. Failing to account
for these variables could lead to misleading conclusions about a drug’s safety profile,
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particularly if the drug behaves differently in older versus younger animals.
Additionally, in safety pharmacology studies, it is vital to determine an appropriate

wash-out period between treatments, especially in cross-over designs where animals are
exposed to multiple drugs (Chris Delaney and Suissa, 2009). This ensures that residual
effects from a prior treatment do not skew the results of subsequent experiments. Before
an animal is re-enrolled in a study, it must undergo thorough clinical and physiological
evaluations to confirm that it is healthy and that its cardiovascular system is functioning
normally (Kovalcsik et al., 2006). These steps are crucial to maintaining the reliability of
study results and the well-being of the animals involved.

The last part of this thesis focuses on exploring and evaluating different approaches
to analyze in vivo hemodynamic data obtained from animal studies. These data, which
capture cardiovascular activity over several weeks, are collected from animals that undergo
multiple cycles of testing and recovery. A key question emerges: at any point in time, is an
animal sufficiently recovered to participate in a new experiment? This can be rephrased as:
given its baseline data and assuming its initial condition met the experimental criteria,
how much has the animal’s state changed over time? (Q1) Additionally, can we identify
the individual animal based on its data from a previous time point? (Q2)

This issue can be approached as a semi-supervised learning problem. Initially, we know
that the animal is in a suitable state for experimentation, so we can label its data as
suitable. As the animal’s condition changes, we can then determine the point at which
it may no longer be fit for further testing. A related challenge involves monitoring the
animal during an experiment that significantly alters its cardiovascular function, labeling
this state as altered. In this scenario, we have examples of both altered and unaltered
states, allowing for a more conventional supervised learning approach.

Various methods can be applied to address questions Q1 and Q2. In Chapter 4 we
aim to determine which methods are most effective. The methods under consideration
come from fields such as statistics, machine learning, and mathematical modeling. Among
these methods, there are statistical approaches, that consist on techniques (see Hodge
and Austin (2004) for a survey) for detecting outliers and performing statistical tests
like Rousseeuw and Hubert (2018) are adapted to our specific needs, helping to identify
deviations from the expected state. Given the semi-supervised nature of the problem, deep
learning methods (Chalapathy and Chawla, 2019) such as an architecture called replicator
(see Dau et al. (2014); Hawkins et al. (2002)) can be explored and adapted to suit this
context. Finally, simple parametric models, such as 0D models of hemodynamics (Segers
et al., 1997; Mirramezani and Shadden, 2020; Liang and Liu, 2005) and electrophysiology,
can be developed to simulate the data. These models are then calibrated to match
individual animal data, using Bayesian filtering to define and detect altered states. Our
goal is to describe the main observable hemodynamics quantities and their evolution
in time. In the present case, since we have the ECG data, we have considered a 0D
lumped parameter model of the left ventricle (see Moulton et al. (2017)), coupled with a
model of the global circulation. The model includes parameters such as compliance and
resistance, which are influenced by aging. As arteries stiffen with age, compliance typically
decreases, while resistance, reflecting opposition to blood flow, tends to increase due to
factors like arteriosclerosis and heightened systemic vascular resistance. Estimating these
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parameters, which cannot be directly measured experimentally, at various stages of the
dogs’ life will help determine whether they change with age. A comparison between the
three fore-mentioned approaches is explored in Chapter 4 of the thesis in order to answer
the questions previously stated.





Chapter 2

Validation of a mathematical model of
arterial wall mechanics with drug induced

vasoconstriction against ex vivo
measurements

In this chapter we investigate a mathematical model in order to reproduce experimental
data of arterial compliance under the action of vasoconstrictors and vasodilators related
to pharmacological studies. The considered model is a 3D-shell with active fibers. Model
parameters are identified by means of an optimization procedure. The resulting model was
able to reproduce the experimental data and predict the system behavior in scenarios other
than those used for the parameter estimation. The results suggest that smooth muscle cells
contraction modulates stiffness through direct fiber-induced regulation of vascular tone, while
parameters related to the passive arterial wall component remain relatively stable across
different vasoactive scenarios.

The results of this chapter have been reported in:

• S. Costa Faya, C. Wesley, M. Vidrascu, M.A. Fernández, P.-J. Guns, D. Lombardi.
Validation of a mathematical model of arterial wall mechanics with drug induced
vasoconstriction against ex vivo measurements, hal-04597238, 2024.
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2.1 Introduction

Arterial compliance, the capacity of the aorta to extend and recoil, is crucial for regulating
cardiac output and maintaining blood flow in the systemic circulation (Thomas and
Sumam, 2016). Conversely, arterial stiffness, the inverse of compliance, is a predictor of
cardiovascular health (Shirwany and Zou, 2010; Vlachopoulos, 2010). Pulse wave velocity
(PWV) serves as a non-invasive method to evaluate arterial stiffness in both human and
animal subjects, indicating the speed of propagation of blood pressure waves (Ghosh et al.,
2019; Wang et al., 2016). PWV measurement can provide a comprehensive assessment of
arterial stiffness either globally, using applanation tonometry (Sahani et al., 2016; Zhang
et al., 2014), or locally, via ultrasound imaging (Vlachopoulos, 2010; Sharif et al., 2019).
For additional techniques beyond applanation tonometry and ultrasound imaging, readers
are encouraged to consult Segers et al. (2020b). During aging, PWV increases due to
arterial remodeling in response to prolonged hemodynamic stress, reflecting changes in
the extracellular matrix such as the elastin: collagen ratio, which affects structural wall
stiffness (Shirwany and Zou, 2010; De Moudt et al., 2022b).

Traditionally, arterial stiffness was attributed solely to the passive biomechanical
properties of the aorta (Leloup et al., 2016). However, recent investigations have underscored
the dynamic involvement of vascular smooth muscle cells (SMCs) and endothelial cells
(ECs) in regulating arterial stiffness through modulation of vascular tone (Zulliger et al.,
2004; Kerage et al., 2014; Sehgel et al., 2013). This active stiffness modulation, facilitated
by adjustments in vascular tone, enables adaptation to acute hemodynamic stress through
vasoconstriction by SMCs and release of vasoactive molecules by ECs (Lacolley et al.,
2017). While PWV is an independent predictor of cardiovascular health, it lacks the
ability to provide detailed insights into passive or active modifications of arterial stiffness
(Leloup et al., 2016, 2019). To address this, arterial stiffness can be studied in dedicated
ex vivo setups, offering the advantage of isolating passive stiffness and evaluating active
modulation independent of in vivo factors, such as heart rate or blood pressure (De Moudt
et al., 2022b; Leloup et al., 2016, 2019). Previously, our Rodent Oscillatory Tension Setup
for measuring Arterial Compliance (ROTSAC) effectively distinguished between active
and passive contributions to arterial stiffness (Leloup et al., 2016, 2019). Interestingly, we
previously demonstrated that vasoconstrictors increased active stiffness at lower pressures
while simultaneously reducing overall stiffness at higher pressures (Leloup et al., 2019;
De Moudt et al., 2022a).

The present work is aimed to develop a mathematical model that most accurately reca-
pitulates the pressure-diameter relationship of the elastic modulus1 Ep, which is adjusted for
diameter dependency. This investigation is essential for understanding mechanical behavior
of the aorta under varying pressure conditions. We aimed to establish a model capable
of simulating the active contribution of SMCs to arterial stiffness. The objective of this
work is twofold: firstly, our model has been designed with the purpose of reproducing the
available experimental data of the setup proposed in Leloup et al. (2016). Secondly, we aim
to get insight whether SMCs contraction modulates stiffness through a direct fiber-induced

1Ep is the Peterson modulus of elasticity and is defined in the next section.
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regulation of vascular tone (scenario I ) and, additionally, also through indirect adjustment
of intrinsic stiffness (reflected by the Young modulus E) (scenario II ), and to what extent
changes in geometry (i.e., diameter) are modulating biomechanical assessment. A specific
question was whether the in silico model could reflect the collagen unloading phenomena
at elevated pressures that we previously reported (Leloup et al., 2019; De Moudt et al.,
2022a).

The chapter is organized as follows: Section 2.2 provides details on the experimental
setup and discusses the available data for the simulations. It also presents the mathematical
model used to simulate the arterial wall with active behavior. Section 2.3 showcases some
numerical results. Section 2.4 presents the conclusions and future work of this study.

2.2 Methods

In this section, the experimental methods and the collected data that have been employed
for the numerical simulations are presented. It also provides an overview of the structural
model that has been used to reproduce the experimental data and to give some insight of
the fore-mentioned scenarios. Finally, this section introduces the methodology employed
for parameter estimation and model validation.

2.2.1 Experimental data

Evaluation of vascular reactivity

For the evaluation of vascular reactivity, aortic segments were set at a preload of 20 mN
to achieve a loading equivalent to blood pressure of 100 mmHg. SMC contraction was
assessed by incremental concentrations of phenylephrine (PE; ranging from 3 nM to 3
µM), an α1-adrenergic receptor agonist. Subsequently, endothelium-dependent relaxations
were evaluated by cumulative concentrations of acetylcholine (ACh; ranging from 3 nM
to 10 µM), a muscarinic receptor agonist. To mitigate the influence of nitric oxide (NO),
L-Nitro arginine methyl ester (L-NAME; 300 µM), a non-selective NO synthase inhibitor,
was administered. Furthermore, exogenous nitric oxide donor, 2-(N,N-diethylamino)-
diazenolate-2-oxide sodium salt hydrate (DEANO; ranging from 0.03 nM to 10 µM) was
administered to investigate endothelium-independent SMC relaxation.

For the evaluation of vascular reactivity, we have used isometric data from 9 aortic
segments.

Ex vivo stiffness

The ex vivo stiffness of aortic segments was assessed using the ROTSAC, as detailed by
Leloup et al. (2016) (see Figure 2.1). Briefly, 2 mm aortic segments were placed between two
parallel hooks within 10 mL organ baths. These segments were submerged in Krebs-Ringer
(KR) solution maintained at 37 ◦C, with a gas mixture of 95% O2 and 5% CO2, and
pH adjusted to 7.4. The composition of the Krebs-Ringer solution comprised NaCl 118
mM, KCl 4.7 mM, CaCl2 2.5 mM, KH2PO4 1.2 mM, MgSO4 1.2 mM, NaHCO3 25 mM,
CaEDTA 0.025 mM, and glucose 11.1 mM. Force and displacement of the upper hook were
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controlled and recorded using a force length transducer. Aortic segments underwent cyclic
stretching between alternating preloads, mimicking “diastolic” and “systolic” transmural
pressures at a frequency of 10 Hz, corresponding to the physiological heart rate in mice (600
beats per minute). Transmural pressure was determined using the Laplace relationship.
Aortic extension was calibrated through optical camera imaging, capturing pictures at
different stretches to calibrate the upper hook and allowing calculation of vessel diameters
during systole and diastole. Subsequently, the Peterson modulus of elasticity, Ep, was
computed at various pressure levels. Ep was calculated using the formula:

Ep = D0
∆P

∆D
,

where ∆P represents the difference in pressure (maintained constant at 40 mmHg), D0

denotes the “diastolic” diameter, and ∆D indicates the change in diameter between “diastolic”
and “systolic” pressure. The protocol encompassed the assessment of arterial stiffness
(Ep) at different pressures, ranging from 60 – 100 mmHg up to 120 - 160 mmHg, with
incremental intervals of 20 mmHg. The pressure-stiffness relationship was evaluated under
physiological conditions (using Krebs-Ringer solution), in a maximally-contracted state
(induced by 2 µM PE, serotonin (5HT) or potassium (50K) reflecting active components),
and in the absence of active stiffness (utilizing 2 µM of DEANO, a nitric oxide donor to
negate any contribution of SMC contraction).

Figure 2.1: ROTSAC experimental setup (left) and augmented view of the aortic segment
mounted on the hooks (right).

Regarding the ROTSAC experiments, we have used data from other 15 segments
divided in four sets of five, two, two and six segments, respectively. The ROTSAC data
are presented in Table 2.1.
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Pressures (mmHg) Sets KR PE 5HT 50K DEANO
60 - 100 Set 4: 6 segments ✓ ✓ ✓

80 - 120

Set 1: 5 segments ✓ ✓
Set 2: 2 segments ✓ ✓
Set 3: 2 segments ✓ ✓
Set 4: 6 segments ✓ ✓ ✓

100 - 140 Set 4: 6 segments ✓ ✓ ✓

120 - 160 Set 4: 6 segments ✓ ✓ ✓

Table 2.1: ROTSAC data of 15 aortic segments where KR stands for Krebs-Ringer; PE,
5HT, and 50K are the vasoconstrictors; DEANO is the vasodilator.

2.2.2 Mathematical modeling

Arteries form an anisotropic structure composed of three primary layers (for more details,
please refer to Bit et al. (2020)): the adventitia, situated on the outermost part, contains
collagen fibers and acts as a protective covering for the artery; below the adventitia lies
the media layer, housing SMCs that are responsible for vascular tone regulation; and the
innermost intima, lined with ECs, serves as a protective barrier between the bloodstream
and arterial wall.

In the present work, the arterial wall is modeled as a passive hyperelastic material using
a 3D-shell model. Shell models are particularly useful in cardiovascular simulations when
the thickness-to-size ratio of the solid structure is small, as is the case for the arterial wall.
Specifically, 3D-shell models employ a quadratic kinematic assumption on displacements,
making them well-suited for capturing the large deformations of the arterial wall during
experiments. These models provide notable advantages, such as enabling the application
of general 3D constitutive relations within the shell context and accurately capturing
through-thickness stress variations. For a comprehensive overview of shell models, please
refer to Chapelle and Bathe (2010); Bischoff and Ramm (1997).

Additionally, a layer of fibers is included to describe the SMCs induced vasoconstriction
and vasodilation phenomena. Since the focus is primarily on the media layer, the fibers
are aligned with the circumferential direction (Coccarelli et al., 2018; Liu, 1998; O’Connell
et al., 2008; Murtada and Holzapfel, 2014). The anisotropic behavior of the passive matrix
due to collagen fibers is neglected.

Owing to the symmetry of the ROTSAC setup (Figure 2.2(left)), a simplified geometrical
configuration has been considered in the mathematical model. It consists of one of the
lateral sides of the tissue mounted on the hooks, as presented in Figure 2.2(right), which is
here assumed to be flat in the stress-free configuration.
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Figure 2.2: Schematics of the ROTSAC setup (left) and simplified geometry considered in
the mathematical model (right).

2.2.2.1 Geometric definition of a shell

The objective of this section is to provide the necessary concepts of differential geometry
needed to present the 3D-shell model. For a more detailed overview, please refer to Chapelle
and Bathe (2010).

Along this work, we consider that the solid reference configuration Ω is defined by its
mid-surface S (see Figure 2.3). We consider a smooth enough mapping

ϕ : ω ⊂ R2 −→ R3,

parametrizing the solid mid-surface, i.e., S = ϕ(ω), where ω denotes a reference domain
in R2. Let (ξ1, ξ2) denote the coordinates used in R2 (hence in ω), and assume that ϕ is
such that, at each point of the mid-surface, the vectors

am(ξ1, ξ2) :=
∂ϕ

∂ξm
(ξ1, ξ2), m = 1, 2, ∀(ξ1, ξ2) ∈ ω,

are linearly independent. These vectors form a basis for the tangential plane to the
mid-surface, which is referred to as the covariant basis. The unit vector normal to the
tangential plane is defined as

a3 :=
a1 × a2

||a1 × a2||
.

We also introduce the contravariant basis of the tangential plane (a1,a2), such that

am · an = δnm, m, n = 1, 2,

where δ represents the Kronecker symbol.
The metric tensor is given by

amn := am · an,
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Figure 2.3: Geometric description of a shell.

or in contravariant components
amn := am · an.

Finally, we consider the mapping

Φ : ω × (−1, 1) −→ R3, Φ(ξ1, ξ2, ξ3) := ϕ(ξ1, ξ2) + ξ3
t(ξ1, ξ2)

2
a3(ξ

1, ξ2), (2.1)

where ξ3 is the curvilinear coordinate perpendicular to the mid-surface and t(ξ1, ξ2)

represents the local thickness of the arterial wall. Therefore, the reference configuration Ω

is assumed to be parametrized by Φ, i.e., Ω = Φ (ω × (−1, 1)) . The mapping Φ is
We now introduce the 3D covariant base vectors

gi(ξ
1, ξ2, ξ3) :=

∂Φ

∂ξi
(ξ1, ξ2, ξ3), i = 1, 2, 3, ∀(ξ1, ξ2, ξ3) ∈ ω(−1, 1),

and the contravariant base vectors, such that

gi · gj = δji , i, j = 1, 2, 3.

The 3D metric tensor of the entire body, is expressed in its covariant-covariant compo-
nents as

gij := gi · gj , i, j = 1, 2, 3,

and the components of the twice-contravariant metric tensor are

gij := gi · gj , i, j = 1, 2, 3.

2.2.2.2 3D-shell model

Let Ω ⊂ R3 denote the reference (stress-free) configuration of the tissue segment. The
boundary of ∂Ω is partitioned into three subsets: ΓN , which corresponds to the upper
boundary of the domain where the force is applied to stretch the tissue; ΓD, representing
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the part of the aortic segment attached to the lower hook, which is clamped during the
whole experiment; and ΓL, that are the lateral boundaries of the aortic segment. We
denote by n the outward unit normal on the boundary ΓN . The reference configuration
Ω is characterized by l0, w0 and h0, that are the stress-free length, width and thickness,
respectively, as shown in Figures 2.2(right) and 2.4.

Figure 2.4: Geometric configuration of the solid. On the left the reference configuration
and on the right the deformed one.

The deformation of the continuum medium is given as the map φ : Ω× [0, T ] 7−→ R3.
The deformation gradient F, is expressed as F(x, t) = ∇xφ(x, t), and its determinant J ,
as J(x, t) = det(F(x, t)). The displacement field d is defined as d(x, t) = φ(x, t)− x.

The equilibrium of the system is given by the following nonlinear elastodynamics
boundary value problem:





ρ∂ttd− div(F(d)ΣΣΣ(d)) = 0, in Ω,

F(d)ΣΣΣ(d)n = fs, on ΓN ,

d = 0, on ΓD,

(2.2)

where ρ stands for the density of the tissue, fs represents the time-dependent pulling force
and

Σ(d) = JF−1(d)σ(d)F−T (d), (2.3)

is the second Piola-Kirchhoff stress tensor of the tissue, being σ(d) the Cauchy stress
tensor.

The active SMC fibers are assumed to be perfectly attached to the solid so that to
model the active behavior of the artery wall, an active-stress formalism (Ambrosi and
Pezzuto, 2012) is chosen, which consists in adding an active component to the passive
stress tensor (Decoene et al., 2023), viz.,

Σ(d) = Σp(d) +Σa(d),

with Σa(d) and Σp(d) respectively denoting the active and passive components of the
stress.

The simplest hyperelastic material model is the Saint-Venant Kirchhoff model, which
is just an extension of the geometrically linear elastic material model to the geometrically
nonlinear regime.

The strain energy density function for the Saint-Venant Kirchhoff model is

W (E) =
λ

2
(tr(E))2 + µ tr(E2), (2.4)
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where
E(d) :=

1

2
(C− I), (2.5)

is the Green-Lagrange strain tensor and C := FT · F stands for the right Cauchy-Green
deformation tensor. Equation (2.4) can be written in terms of the invariants of C as

W =

(
λ

8
+

µ

4

)
I21 −

µ

2
I2 −

(
3λ

4
+

µ

2

)
I1 +

9λ

8
+

3µ

4
,

where λ is the first Lamé parameter and µ is the shear modulus or the second Lamé
parameter, given by

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

being E the Young modulus and ν the Poisson’s ratio.
The Saint-Venant Kirchhoff constitutive law is well-suited for materials with small

deformations and linear stress-strain behavior. However, in scenarios involving large
deformations and nonlinear stress-strain responses, such as those often encountered in
biological tissues, this model may not offer accurate representations.

An Ogden hyperelastic constitutive law is chosen to describe the homogeneous and
isotropic passive component, since it accommodates large deformations and nonlinear
material responses, providing a more accurate representation for the behavior of complex
materials like biological tissue (Lohr et al., 2022; Nedrelow et al., 2023). We hence have

Σp = 2
∂W

∂C
,

where the strain energy density function W is given by the relation (Geymonat and Ciarlet,
1982):

W = c1(I1 − 3) + c2(I2 − 3) + a(I3 − 1)− (c1 + 2c2 + a)ln(I3), (2.6)

in terms of the invariants of C, namely, I1 = tr(C), I2 = 1
2(I

2
1 −C : C), and I3 = det(C) =

J2.
In (2.6), the constants c1, c2 and a stand for the material parameters. Interest lies in

establishing a relation between the Ogden parameters and the Lamé parameters so that
c1, c2 and a can be expressed as a function of the Young modulus, E, and the Poisson ratio,
ν. The asymptotic behavior of the Ogden law is examined as |E| −→ 0, aiming to identify
it with the Saint-Venant Kirchhoff law (2.4). Upon conducting a limit development up to
second order in E, it can be demonstrated (refer to the detailed computation in Trabelsi
(2004); Ciarlet (1988)) that





2c1 + 2c2 = µ,

c2 + a =
λ

4
,

λ+ 2µ = 2b,

b = 2c1 + 4c2 + 2a.
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Usually c2 can be chosen such that c2 = c1/κ, with κ ∈ [2, 100]. After doing some
algebra, it is possible to write





c1 =
E

4(1 + ν)(1 + 1
κ)

,

c2 =
c1
κ
,

a =
νE

4(1 + ν)(1− 2ν)
− c1

κ
.

The elastodynamics equations (2.2) can be reformulated in weak variational form as
follows 




Find d ∈ V such that∫

Ω
ρ∂ttd · v +

∫

Ω
Σ(d) : δdE(d)v =

∫

ΓN

fs · v, ∀v ∈ V, (2.7)

where V is the space of admissible displacements, E is the Green-Lagrange strain tensor,
given by equation (2.5), and δdE(d)v stands for the differential of E in the direction v. In
curvilinear coordinates, the Green-Lagrange strain tensor writes

Eij(d) :=
1

2
(gi · d,j + gj · d,i + d,i · d,j), (2.8)

and the first order infinitesimal variation is given by

δdEij :=
1

2
(gi · δdd,j + gj · δdd,i + d,i · δdd,j + d,j · δdd,i).

A fundamental drawback of the full 3D model (2.7) is that, due to the thin-walled
nature of Ω, 3D finite element approximations of (2.7) suffer from artificial stiffening
phenomena, known as numerical locking (see, e.g., Chapelle and Bathe (2010)), which often
requires highly refined meshes across the thickness and can hence become computationally
expensive in practice. These issues are traditionally avoided by considering reduced models
based on shell theory in combination with an appropriate treatment of numerical locking at
the discrete level (see, e.g., Chapelle and Bathe (2010); Bischoff and Ramm (1997)). In this
work, we consider a 3D-shell modeling approach based on a quadratic kinematic behavior
along the transverse coordinate (see Chapelle et al. (2004b)), without any plane stress
assumption. This enables the use of general constitutive laws. The basic idea consists in
replacing, in (2.7), the original full 3D space V by the following reduced space:

Vsh :=
{
v ∈ V : v = v0 + v1ξ

3 + v2(ξ
3)2, vi ∈

[
H1(S)

]3
, i = 0, 1, 2

}
, (2.9)

where ξ3 corresponds to the local transverse coordinate of Ω and S to the mid-surface of Ω
(see Figure 2.3). The resulting 3D-shell model hence reads as follows:





Find d ∈ Vsh such that∫

Ω
ρ∂ttd · v +

∫

Ω
Σ(d) : δdE(d)v =

∫

ΓN

fs · v, ∀v ∈ Vsh. (2.10)



2.2. Methods 33

The numerical approximation of (2.10) is performed via the finite element method, in
which the space Vsh is replaced by the discrete space Vsh

h spaned by quadratic displace-
ments across the thickness and affine on each section (Chapelle et al., 2004b; Libai and
Simmonds, 2005; Chapelle and Bathe, 2010). This yields a P1 ⊗ P2 prismatic element with
9 nodes (see Figure 2.5). Numerical locking is avoided using a MITC (Mixed Interpolated
Tensorial Components) approach which guarantees robustness with respect to the thickness
parameter.

Figure 2.5: P1 ⊗ P2 3D-shell element.

In order to be able to apply MITC techniques, it is necessary to compute the first and
second derivatives of the stored energy with respect to the Green-Lagrange tensor. The
second order infinitesimal variation is given by

dδdEij :=
1

2
(dd,i · δdd,j + dd,j · δdd,i),

The Green-Lagrange tensor is a nonlinear function of the displacement d and Newton’s
algorithm is selected for this purpose. At each time of the backward Euler time discretization,
a nonlinear problem has to be solved. The bilinear form appearing in this algorithm is the
following:

A = AL +ANL,

with

AL :=

∫

Ω

∂2W

∂Eij∂Ekl
dEklδdEijdΩ,

ANL :=

∫

Ω

∂W

∂Eij
dδdEijdΩ,

and the corresponding nonlinear right-hand side

FNL :=

∫

Ω

∂W

∂Eij
δdEijdΩ.

All the simulations presented in this work have been performed using FELiScE2.

2https://gitlab.inria.fr/felisce

https://gitlab.inria.fr/felisce
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2.2.2.3 Active fiber model

The main hypotheses regarding the fibers are the following:

• The fibers are part of the shell and are distributed through the thickness in the
circumferential direction;

• There is no sliding between the fibers and the shell;

• The fibers are characterized by an affine stress-strain constitutive law.

Here, we consider the active fibers model proposed in Aletti et al. (2015), so that

Σa := (k0 + k1eff )f ⊗ f , (2.11)

where k0 denotes the pre-stress of the fiber, k1 is the elastic modulus, eff is the fiber
deformation and f is the unitary tangent vector to the fiber direction. The deformation
along the fiber directions is given by the relation eff = fTEf , where E is the Green-Lagrange
strain tensor.

2.2.3 Parameter estimation and model validation

The mathematical model (2.7), together with the hyperelastic law (2.6) and the fibers
constitutive law (2.11), contains a set of parameters (Young modulus, E; active pre-stress,
k0, and elastic modulus, k1, of the fibers; κ, that stems from the Ogden’s law; initial
length, l0, width, w0, and thickness, h0, of the aortic segment3 ) that are unknown and
are determined through a parameter estimation procedure. After spatial and temporal
discretization, the model (2.7), with (2.6) and (2.11), yield the nonlinear system

F
(
fs,θ;Y

)
= 0, (2.12)

where fs is the given force, that can be measured, θ = (E, k0, k1, κ; l0, w0, h0) are the
model parameters and Y is the model output, that corresponds to the displacement degrees
of freedom. The inputs of the model are θ and fs.

The purpose of the parameter estimation is evaluating some unknown inputs of the
model such that the outputs match the experimental measurements. The parameter
estimation problem can be formulated as follows: given the force fs, the discrete model
(2.12) and the experimental data, find the parameters θ that minimize the discrepancy
between the simulated model predictions and measurements. Mathematically, this problem
can be formulated as the optimization problem

min
θ∈W

F
(
fs,θ,Y

)
=0

J
(
Y
)
, (2.13)

where J : Rn → R is given cost function (viz., discrepancy between simulation and
measurements) and W ⊂ Rn stands for the set of admissible parameters. In this chapter,
problem (2.13) is solved via a Control Random Search (CRS) optimization algorithm.

3All the segments have an approximated length of 2 mm and width of 1 mm. However, there might be
slight differences between them and the initial configuration needs thus to be estimated.
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Initially, the estimation is done for each aortic segment under Krebs-Ringer solution.
Subsequently, estimations are conducted following the administration of a vasoactive drug,
either a vasoconstrictor or vasodilator. The results of the parameter estimation provides
hence insight on whether the compound solely impacts SMCs (scenario I) or additionally
introduces additional intrinsic stiffness (scenario II). Specifically, if only the fiber parameters
from the active contribution, such as k0 and k1, are affected, it suggests that the first
scenario is the most plausible one. However, if the Young’s modulus also needs modification,
then the compound is likely to introduce stiffness (scenario II). To establish a range for
the active pre-stress parameter, data from isometric experiments have been used.

To solve the optimization problem (2.13), a CRS2 with local mutation optimization
algorithm (Kaelo and Ali, 2006) that is implemented in the NLopt (nonlinear optimization)
package by Johnson (2014) has been employed.

2.2.3.1 Optimization algorithm

To obtain the parameters for each aortic segment, a CRS algorithm is used for optimization
(Price, 1978). The optimization problem is formulated it (2.13). A point θopt is considered
a global minimizer of J if Jopt = J(θopt) ≤ J(θ) for all θ ∈W .

CRS algorithms are better in high-dimensional problems compared to DIRECT al-
gorithms. Unlike gradient-based methods, CRS algorithms do not use properties of the
function being optimized. The only requirements are that J(θ) can be computed for any
θ ∈W , and the explicit expression of the function being optimized must be known.

In each step of the algorithm, n+ 1 points are randomly chosen to create a simplex
in n-dimensional space. One of these points becomes the pole, and the next trial point
is determined by reflecting this pole relative to the centroid of the remaining points.
This process generates primary trial points for exploration and secondary trial points for
convergence, with the choice between them depending on the algorithm’s success rate. If
the success rate is below 50%, and a primary trial fails, a secondary point is selected for the
next trial, maintaining a balanced approach between exploration and convergence during
optimization.

In summary, the CRS algorithm is a heuristic, direct search method that begins by
populating a set S with a large sample (N >> n) distributed uniformly over the search
space W . This sample is gradually contracted by replacing the worst point in S with a
better trial point, forming a simplex with n + 1 randomly chosen points from S. This
process continues until a specified stopping condition is met.

The main issues with CRS are its lack of robustness in locating the global minimum
and its decreased efficiency in convergence, particularly after reaching the region of the
global minimum. To enhance the robustness and efficiency of CRS, Kaelo and Ali proposed
variants such as CRS2, suggesting modifications to the trial point generation schemes
(Price, 1983). Specifically, a CRS algorithm with local mutation for optimization is chosen
(Kaelo and Ali, 2006).

In the original algorithm, if a trial point fails to improve upon the current worst point
in the sample S, it is discarded, and a new simplex is formed using a new set of n + 1

points from S.
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In CRS with local mutation, the unsuccessful trial point is not discarded but used to
obtain a second trial point. The point generation scheme is modified by introducing a local
mutation technique. Whenever a trial point generated in CRS fails to replace the current
worst point in S, local mutation generates a second trial point exploring the region around
the current best point in S by reflecting the trial point through the current best point.
This modification is utilized whenever a trial point fails to yield a function value that can
replace the current worst point in S.

The introduction of local mutation has enhanced these algorithms’ robustness in finding
the global minimum and efficiency in reducing the number of function evaluations and
CPU time. Additionally, the local mutation technique expedites convergence as soon as
the region of the global minimizer is reached.

2.2.3.2 Parameter estimation in baseline conditions

During the ROTSAC static calibration, the experimental measurements are the length
(lm) and the width (wm) of the aortic segments for some given forces fs while when the
segments are dynamically stretched, the measured data is the width (w̃m). In this case,
the cost function of the parameter estimation problem (2.13) has the following form

J1(Y ) =

√√√√1

k

k∑

i=1

∣∣∣l(i)(Y )− l
(i)
m

∣∣∣
2
+

∣∣∣w(i)(Y )− w
(i)
m

∣∣∣
2
+

√√√√ 1

n

n∑

i=1

∣∣∣w̃(i)(Y )− w̃
(i)
m

∣∣∣
2
. (2.14)

Here, l(i)m and w
(i)
m represent the measured length and width, respectively, during static

experimental calibration, with i = 1, ..., k denoting the number of measurements. w̃
(i)
m

denotes the measured width during oscillation, with i = 1, ..., n indicating the number of
measurements. l(i)(Y ) and w(i)(Y ) represent the predicted values of length and width,
respectively, during static experimental calibration, while w̃(i)(Y ) denotes the predicted
value of width during the oscillation.

2.2.3.3 Parameter estimation in the presence of vasoactive substances

Determination of the range of the pre-stress

The isometric experiments provide data that show the force exerted by the vessel in
response to a specific vasoconstrictor (or vasodilator) dosage within a static setup. The
relevance of these experiments, is that they can provide an estimation of the range of the
value of the active pre-stress at each drug concentration C, with C being either CPE, the
PE concentration, or CDEANO, the DEANO concentration. In particular, the ROTSAC
measurements were taken at C = 2 µM and the isometric data allow the estimation of the
range of the value of k0 at the specified C.

We consider that the total measured force is

Fm = β + F1, (2.15)

where β is the force at zero concentration and F1 is the isometric force felt by the upper
hook in the presence of a vasoactive substance. Assume that the relation between F1 and
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the active pre-stress, k0, is linear and can be expressed as F1 = α k0. The mathematical
model (2.7)–(2.11), has been used applying homogeneous Dirichlet boundary conditions on
the upper and on the lower boundary of the domain Ω to estimate α. Substituting the
expression for F1 in (2.15), Fm = β + αk0.

Using the following tension-dose relationship (Yosibash and Priel, 2012), the active
pre-stress results

k0(C;m,EC50) = SPE
max

[CPE]m

[CPE]m + ECm
50

− SDEANO
max

[CDEANO]m

[CDEANO]m + ECm
50

, (2.16)

where SPE
max is the maximal tension for PE (saturation level), SDEANO

max is the maximal
tension for DEANO, m is the slope parameter and EC50 the concentration at which 50%
of maximal force is obtained.

Finally, the expression of the total measured force is

Fm = β + α

(
SPE

max
[CPE]m

[CPE]m + ECm
50

− SDEANO
max

[CDEANO]m

[CDEANO]m + ECm
50

)
. (2.17)

During the isometric experiments, the aortic segments have been preloaded with a force
β = 20 mN in the absence of drugs (CPE = CDEANO = 0) and also SPE

max and SDEANO
max are

known. By employing the previous Fm - dose relation, a fitting of the measured forces to
equation (2.17) to estimate the values of m and EC50 was performed. After fitting the
measured force for several concentrations in the set of aortic segments, it is possible to
determine the range of k0 for a vasodilator or for a vasoconstrictor.

From equation (2.16), it can be remarked that when there is only PE in the organ bath,
CDEANO = 0 and the second term vanishes. After DEANO has been added on the bath,
CPE is equal to the concentration at saturation, so CPE = 3 µM.

Dynamic oscillation

In the context of ROTSAC dynamic oscillation with vasoconstrictors/vasodilators, two
scenarios are tested. In the first one, only the active fiber parameters k0 and k1 are subject
to estimation, while E, l0, w0, and h0 remain fixed based on the corresponding segment in
Krebs-Ringer solution. Conversely, in the second scenario, parameters E, k0, k1, and h0
are open to estimation, with l0 and w0 held constant. The key distinction lies in allowing E

to vary during estimation for the second scenario, whereas only the active fiber parameters
are adjusted in the first one. Here the parameter estimation is done when a vasoconstrictor
(PE, 5HT, or 50K) or a vasodilator (DEANO) are added to the Krebs-Ringer solution to
assess the effects. The available experimental measurements are the values of width (w̃m)
of the aortic segment dynamically stretched at 80-120 mmHg. Under the effect of a drug,
the cost function of the minimization problem (2.13) is

J2(Y ) =

√√√√ 1

n

n∑

i=1

∣∣∣w̃(i)(Y )− w̃
(i)
m

∣∣∣
2
, (2.18)

where w̃
(i)
m is the measured experimental value of the width and w̃(i)(Y ) is the predicted

value of the width at each point i = 1, ..., n during the oscillation. Since there are no static
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experimental calibration data with drugs, there is no information of the length in the case
of a vasoactive substance on the organ bath. The changes in the fiber parameters k0, k1
and in E, h0, will help to assess the fore-mentioned scenarios.

2.3 Numerical results

First, the results that arise from the parameter estimation of the model are presented. Next,
numerical simulation (in baseline conditions and in the presence of vasoactive compounds) is
performed. While various vasoconstrictors have been employed, the outcomes are primarily
focused on PE due to its resemblance to the others. Finally, the behavior of the aortic
segments under varying pressure conditions is explored.

2.3.1 Static experimental calibration

The static experimental calibration measurements of the length and width at different
preloads (10, 20, 30, 40 and 50) were considered for estimating the parameters θ of each
aortic segment in the baseline case (Krebs-Ringer solution), together with the dynamic
data at 80 - 120 mmHg (using the cost function (2.14) with k = 5 and n = 80). The static
part of results for the set of fifteen aortic segments considered in this studio are shown in
Figure 2.6.

Figure 2.6: Comparison between experimental and simulated static experimental calibra-
tions.

2.3.2 Simulation in the presence of vasoactive substances

Estimation of the range of the pre-stress from the isometric data

First, throughout the isometric tests, where a second set of nine aortic segments was
considered, the average Relative Mean Squared Error (RMSE) between the experimental
and simulated data across all fittings of the isometric force (2.17) in the presence of PE
(2 µM) is 0.56% ± 0.38%, while 1.86% ± 0.63% for DEANO, (2 µM) (see the fittings in
Figure 2.7).
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Figure 8: k0 - F1 fitting with intercept

After doing a linear regression, we find that ↵ = 753.883 cm�2 and b = �1.5091 · 106 dynes/cm2.

We have experimental data of the force measured on the upper hook for some given concentrations
of PE (vasoconstrictor) and DEANO (vasodilator) for several aortic segments. From that data, we have
done a PCHIP interpolation (”Piecewise Cubic Hermite Interpolating Polynomial”). Using the previous
Fm - dose relation, we can do a fit of the interpolated measured forces to equation (8). The result is
shown in Figure (9).

Figure 9: Fitting of Fm to equation (8) for PE (left) and for DEANO (right) in semilog scale

If we plot k0 = f(C; m, EC50) versus the concentration C, we can see the range of k0 for PE and
DEANO at C = 2 µM, that is the concentration at which the dynamic measurements are taken

16

Figure 2.7: Fitting of Fm to equation (2.17) for PE (left) and for DEANO (right) in semilog
scale.

The results at C = 2 µM for PE or DEANO – the concentration at which dynamic
measurements were taken – are shown in Figure 2.8 (left).

Figure 2.8: Isometric force Fm at C = 2 µM (left); pre-stress at C = 2 µM (right).

Upon examination of the values of the pre-stress, k0, for the available set of aortic
segments at a concentration of C = 2 µM, the range of k0 for PE and DEANO can be
identified (see Figure 2.8 (right)). The observed range of k0 was [0.023, 0.067] MPa for PE
and [-0.00014, 0.0043] MPa for DEANO. The fitting for all the concentrations is presented
in Figure 2.9.

Simulation of ROTSAC dynamic oscillation data

Next, parameters were estimated and numerical simulations of experimental data were
conducted across 15 segments using a Krebs-Ringer solution (using the cost function
(2.14)). From the set of all segments, Table 2.2 details the estimated parameters for
one aortic segment (seg #1) under baseline, contracted, and dilated conditions, with
corresponding experimental and simulated datasets shown in Figures 2.10A and 2.10B.
Figure 2.10 illustrates the impact of vasoconstrictors and vasodilators on arterial behavior
(with the parameter estimation performed using the cost function (2.18) with n = 80).
Particularly, Figure 2.10C displays the Peterson modulus derived from experimental and
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Figure 10: k0 for PE (left) and for DEANO (right) in semilog scale

The range considered for k0 at 2µM is k0 2 [2.3·105, 6.7·105] dynes/cm2 for PE and k0 2 [�1350, 36600]
dynes/cm2 for DEANO.

The relative mean squared error (RMSE) of the fittings (8) is computed as follows

RMSE (%) = 100 ⇤

q
1
n

Pn
i=1(yi � ŷi)2

ȳ
, (12)

• yi represents the actual values.

• ŷi represents the predicted values.

• n is the number of data points.

• ȳ is the mean of the actual values.

and the results are displayed in the following table

RMSE (%) (PE) RMSE (%) (DEANO)
0.5171 2.0331
0.5318 2.4890
0.5565 1.0366
0.4029 1.7190
0.5139 1.6473
0.3811 3.1581
0.4702 2.1681
0.1855 0.5635
1.3343 1.8091

Table 2: Relative mean squared errors of the force fittings

For the parameter estimation of our model, we will look at slightly bigger ranges for k0 than the ones
found in Figure 10, considering the variations between the segments.

7.2 Static and dynamic data

For our study, the parameters were estimated, and numerical simulations of experimental data were
conducted across 15 segments using a Krebs-Ringer solution. The two hypotheses were examined for
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Figure 2.9: k0 for PE (left) and for DEANO (right) on a semilog scale.

simulated data under KR, PE, and DEANO conditions, while aortic segments underwent
oscillations within the pressure range of 80 - 120 mmHg. This graphical representation
highlights differences in stiffness across these conditions, with PE exhibiting heightened
stiffness relative to baseline, and DEANO resulting in comparable stiffness to baseline.
Such observations underscore the model’s adeptness in capturing the vascular system’s
mechanical responses to various vasoactive agents.

Parameter KR PE DEANO

E (MPa) 0.13248 0.13248 0.12717
k0 (MPa) 6.4 · 10−6 0.01 -1.348 · 10−4

k1 (MPa) 0.191 0.457 0.188
l0 (mm) = 1.97 w0 (mm) = 0.13 h0 (µm) = 53

Table 2.2: Parameters and stress-free configuration for KR, PE, and DEANO for seg #1
in scenario II for PE and DEANO.

Correlation plots (Figures 2.10D, 2.10E, 2.10F) were generated to measure the concor-
dance between simulated and experimental data across different conditions. A statistical
covariance matrix Q ∈ R2×N was computed to quantify variability and correlation, with
N ∈ N representing the number of points. From Q, a matrix C = 1

N−1QQT ∈ R2×2 was
derived to reveal the shape and orientation of ellipses. The eigenvectors of C represent
the principal axes of the ellipse and the square root of its eigenvalues will determine the
ellipse’s width and height, with one of them reflecting the average difference between
simulated and experimental data (RMSE) and another one giving an idea of the standard
deviation of the fits. Overall, the correlation plots demonstrate a consistent match between
the simulated and experimental data, indicating the model’s capability in capturing the
SMCs behavior under KR, PE, and DEANO.
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Figure 2.10: Analysis of the impact of PE and DEANO when the segments are dynamically
stretched at 80 - 120 mmHg. Time evolution of the experimental and simulated diameters
of seg #1 (A, B); Peterson modulus (C); Correlation between experimental and simulated
diameters (D, E, F). The ellipse intersects the unity line, which depicts where the simulated
and experimental data would coincide perfectly, being the center of the ellipse the average
position of the points.

Assessing the role of SMCs

Finally, comparisons between the changes of fiber parameters (k0 and k1) in the presence of
a vasoconstrictor or vasodilator with E and h0 constant (scenario I) or with re-estimation of
E and h0 (scenario II) were investigated. The analysis depicted in Table 2.3 illustrates the
effectiveness of integrating k0 and k1 under constant E and h0 conditions to fit dynamical
experimental data within the pressure range of 80 - 120 mmHg.

KR (%) Scn1 PE (%) Scn2 PE (%) Scn1 DEANO (%) Scn2 DEANO (%)

0.60 1.60 0.44 0.63 0.58

Table 2.3: Average of the RMSE of the dynamic fittings for Krebs-Ringer and in both
scenarios (Scn1 or Scn2) at 80 - 120 mmHg.

The mean RMSE values for the dynamic fittings are all below 2%, indicating that both
scenarios provide accurate representations of the compound’s effects on SMCs. Although
the second scenario may yield a slightly better fit, the error in the first scenario is sufficiently
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low with just fiber parameter adjustments, suggesting that modifying the Young’s modulus
is generally unnecessary. However, in cases where the error is larger, it may indicate that
the compound also affects the intrinsic stiffness of the vessel, necessitating adjustments
to parameters such as the Young modulus or thickness. Overall, the results suggest that
the change of k0 and k1 in the presence of a vasoconstrictor or vasodilator with E and h0
constant, is generally sufficient, but there might be cases where improvements can be made
by re-estimating E and h0.

The active fiber parameters were changed in the presence of a vasoconstrictor with
respect to the baseline (Figures 2.11A and 2.11B). The pre-stress is also seen to increase
with the introduction of a vasoconstrictor (Figure 2.11A, p < 0.01). The active elastic
modulus experienced an increase (Figure 2.11B, p < 0.01), indicating an augmentation in
vessel stiffness. No differences were reported in the change in Young modulus following
constriction with PE (Figure 2.11C). Overall, the majority of segments underwent a Young
modulus change within the range of [-1, 1] %. While some cases exhibited a slightly larger
deviation, on the whole, the scenario in which the change of fiber parameters (k0 and k1)
in the presence of a vasoconstrictor or vasodilator with E and h0 constant appears to be
a plausible one. No changes in aortic thickness were reported following PE stimulation
(Figure 2.11D).

For simplicity, the results for DEANO were excluded from the graphs as they closely
resemble those of KR. However, the response to DEANO is more complex to interpret, where
the pre-stress may either rise or fall relative to the baseline. It’s important to acknowledge
that DEANO was administered alongside the vasoconstrictor in the organ bath, making it
challenging to isolate its specific effect. Among vasodilators, changes in pre-stress exhibit
diverse patterns—sometimes increasing, other times decreasing. Vasodilators typically lower
blood pressure and wall tension by dilating vessels and enhancing compliance, resulting
in an overall reduction in pre-stress. However, the complex interaction of compensatory
mechanisms and individual variations can influence the effect on pre-stress. On the other
hand, with the other parameters (k1, E and h0) the obtained results are very close to the
ones of KR.

Figure 2.11: Vessel parameters under different conditions. Change of the pre-stress (A),
fibers elastic modulus (B), Young modulus (C) and thickness (D) for PE with respect to
the baseline. The values for a vasodilator (DEANO) are omitted since they are very similar
to the ones of KR.
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Evaluating the model in different pressure ranges

After presenting the estimated parameters for each scenario, additional model validation
was conducted by examining the predictability across different pressure ranges. The
outcomes corresponding to the segment with parameters outlined in Table 2.2 (seg #1)
are illustrated in Figure 2.12. The oscillations were represented only for KR and PE since
the ones for DEANO are very similar to the ones of KR.

When aortic segments were stretched in Krebs-Ringer solution, the original estimated
parameters were able to reproduce the data both in the ranges of 60 - 100 mmHg to 100 -
140 mmHg. However, there was an underestimation at higher pressures (120 - 160 mmHg).
One possible explanation could be because the segments exhibited plasticity and did not
recover the reference configuration (l0, w0 and h0) instantaneously. Consequently, it was
necessary to take into account that the reference configuration had changed after large
forces were applied. Then, a re-estimation of l0, w0 and h0 was needed for the pressure
range 120 - 160 mmHg, while the rest of the parameters (E, k0 and k1) were kept constant.
After PE was added to the Krebs-Ringer solution, the change of the reference configuration
was observed in all the pressure ranges so, again, the re-estimation of the initial length,
width, and thickness was necessary. Finally, once DEANO was added to the organ bath,
a similar behavior was observed, so the re-estimation was only needed for the highest
pressure range.

From a biological perspective, the underestimation at higher pressures can be attributed
to the properties of the arterial wall. When subjected to elevated forces, such as those
experienced at higher pressure ranges, arterial segments may encounter layers of collagen
within their structure. This discrepancy is particularly pronounced in KR solution, where
the arterial segments experience greater pressure-induced deformation. Conversely, when
PE is added, the effects are mitigated to some extent. This is because PE-induced
constriction leads to smaller diameter arteries, reducing the likelihood of encountering
collagen layers and thus minimizing the bouncing effect.

From a mathematical point of view, the underestimation arises from a different per-
spective. Rather than adjusting the stiffness of the model, which remains constant, the
observed phenomenon can be explained by changes in the reference configuration of the
arterial segments. When subjected to higher pressures, the segments exhibit plasticity
and fail to immediately return to their original reference configuration (l0, w0, and h0).
This deviation from the reference configuration needs a (re)estimation of these parameters
to capture the behavior of the arterial segments under the new pressure conditions. In
summary, while from a biological perspective the focus is on altering stiffness to explain
the observed phenomena, from a mathematical one, the adjustment of the configuration
parameters to account for the changes in arterial behavior is done.

The active pressure-stiffness curve (Figure 2.13B) demonstrates elevated arterial stiffness
levels at lower mean pressures (80, 100 mmHg) in contrast to those observed under KR
(Figure 2.13A) and DEANO (Figure 2.13C) conditions. This distinction is further evident
in the corresponding diameter measurements, where exposure to PE (Figure 2.13E) yielded
smaller diameters relative to those observed under KR (Figure 2.13D) and DEANO
(Figure 2.13F) conditions. Consequently, this phenomenon leads to an augmented arterial
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Figure 2.12: Pressure steps under Krebs-Ringer and PE of one aortic segment

stiffness, indicative of an enhanced buffering capacity and concomitant elevation in vascular
tone. However, as mean pressures increase, the recruitment of collagen emerges as the
predominant load-bearing component within the aortic wall. The absence of stiffer collagen
fibers within our current model results in an underestimation of stiffness values at highest
pressure (Figure 2.13A, 2.13B, 2.13C).

Figure 2.13: Diastolic diameter and Peterson modulus for KR, PE and DEANO under
different pressure steps.

2.4 Discussion

In this chapter, we introduced a mathematical framework with a limited and manageable
set of parameters, capable of capturing both vasoconstriction and vasodilation. This
framework facilitates the understanding of the mechanical behavior of arterial segments
and the role of SMCs in arterial stiffness, while also reproducing the experimental data.
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The proposed mathematical model combines in parallel an hyperelastic 3D-shell with
an active fiber description of the SMCs. An Ogden hyperelastic law is used for the passive
component while the active component is based on an affine stress-strain relationship.

This model was calibrated using isometric data to simulate the action of molecules
on SMCs. Importantly, we not only established the model but also validated it against
experimental data and explored two distinct scenarios to evaluate the impact of the active
contribution of SMCs on arterial mechanics. Furthermore, the model was tested with
different pressure conditions beyond those used for parameter estimation, demonstrating its
capacity of representing the pressure-diameter relationship except some deviations observed
at higher pressures.

Although structure-based passive mechanical models of blood vessels have been studied
extensively (Lanir, 1983; Wuyts et al., 1995; Dahl et al., 2008; Lokshin and Lanir, 2009;
Hollander et al., 2011; Rachev and Shazly, 2019), there remains a notable gap in the
development of models addressing active properties. Mechanical studies of active vessels
have predominantly relied on phenomenological models, primarily due to the complex
micro-environment of SMCs and the coupled mechanical and chemical kinetics (Gestrelius
and Borgström, 1986; Yang et al., 2003a; Stålhand et al., 2011). The majority of the
active blood vessel constitutive models suggest uniaxial length-tension relationships in the
circumferential direction as motivated by the circumferential arrangement of SMCs (Clark
and Glagov, 1985; Wolinsky and Glagov, 1967; Hansen et al., 1980; O’Connell et al., 2008).

The choice between 0D, 1D, 2D, or 3D models is influenced by the level of spatial detail
required and the complexity of the phenomena under investigation. 1D models are usually
validated against in vitro data (Westerhof et al., 1971) and present a higher computational
efficiency in comparison to 3D models. However, with low-dimensional models it is not
possible to account for the detailed structural features of the wall, such as nonlinearity,
anisotropy, and residual stresses while 3D structural models become essential when detailed
spatial information is necessary to capture complex vessel geometries and interactions. The
majority of models concerning SMCs rely on either 0D ordinary differential equations or 1D
formulations (Rachev and Hayashi, 1999; Fay and Delise, 1973; Lee and Schmid-Schönbein,
1996; Yang et al., 2003a,b; Bursztyn et al., 2007; Murtada et al., 2010; Jin et al., 2020).
For instance, Jin et al. (2020) used a 1D model to simulate arterial blood pressure, blood
flow, wall shear stress, and luminal diameter during flow-mediated dilation tests, employing
principles of mass and momentum conservation alongside an elastic tube law for pressure
changes. Coccarelli et al. (2021) and Liu (2014) focused on characterizing the biomechanical
features of SMC contractility, whilst Chen et al. (2013) introduced a structural passive
model alongside a 2D active vascular smooth muscle model capable of predicting axial
vasoactivity. Furthermore, Murtada et al. (2012) implemented Hill’s three-element model
coupled with the four-state latch model by Hai and Murphy to capture electromechanical
activation in the pig carotid media, successfully predicting isometric contraction, sudden
extensions, and length-tension relationships.

In general, there is a lack of studies modeling SMC activation within the continuum
mechanics framework. For example, Stålhand and co-authors developed in Stålhand
et al. (2011) a mechanochemical 3D continuum model for SMC contraction based on their
one-dimensional model (see Stålhand et al. (2008)). However, although the model has
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been developed in a 3D continuum framework, uniaxial examples have been shown, only.
Coccarelli et al. (2018) introduces a 3D-derived, fiber-reinforced, hyperelastic structural
model, coupled with an axisymmetric, reduced-order model for blood flow. This model
incorporates the relationship between vessel transmural pressure and lumen area via
a Holzapfel–Ogden type law, while also considering residual stresses along the vessel’s
thickness and length. Despite the increased complexity and parameter count compared to
standard pressure-area tube laws, the advantages of employing such a model are numerous.
Firstly, it can account for various conditions and pharmacological agent effects, such as
axial loading, fiber dispersion, residual stress, and potentially active contractility. Secondly,
the structural model developed by Holzapfel and colleagues that is used in Coccarelli et al.
(2018) captures the nonlinear behavior of vascular tissue, especially under blood pressure
loads significantly above the physiological range.

In our study, the 3D structural model proposed shares some similarities from the
other 3D models proposed but also brings new contributions. Our model integrates a
3D hyperelastic law for the passive component, strengthened by active fibers. Unlike
the approach in Coccarelli et al. (2018) or Stålhand et al. (2011), we have not included
the chemical driving mechanism. However, we have employed 3D-shell finite elements
to avoid numerical locking and manage large displacements, as evidenced in dynamic
simulations. In contrast to Coccarelli et al. (2018), which performs the model validation
through isometric tests, our model is validated as well through uniaxial static tests with
biaxial deformation measurements and uniaxial dynamical ones. In general, with this type
of models we could incorporate them in in vivo more complex geometries and be able to
describe a full hemodynamic model.

One of the interests of the present study was to determine whether the contraction of
SMCs directly affects vascular tone by regulating stiffness through the fibers or whether
this regulation indirectly adjusts intrinsic stiffness, as indicated by changes in the Young
modulus. Additionally, the investigation explored the extent of alterations in geometry, such
as changes in diameter, influence biomechanical assessments. Taking a look at how the pre-
stress and elastic modulus of the fibers change compared to the baseline conditions gives us
more understanding about the regulation of vascular tone. For vasoconstrictors, we observed
an increase in pre-stress, reflecting increased arterial tension and reduced compliance.
Conversely, the response to DEANO exhibited a more subtle variation, with pre-stress
showing variable changes, influenced by the complex interplay of vasodilation and previously
vasoconstriction compensatory mechanisms. Similarly, the elastic modulus exhibited
distinct trends: vasoconstrictors tended to increase vessel stiffness, while vasodilators
often leaded to a decrease or maintenance of elasticity, highlighting the dynamic nature
of vascular responses to vasoactive compounds. In addition to the observed changes in
pre-stress and elastic modulus of the active fibers, it is remarkable that the parameters
associated with the passive component of the arterial wall, such as Young’s modulus and
thickness, exhibited minimal variation across conditions. The fact that there was no
notable change, suggests that alterations in arterial mechanics primarily stem from the
active component governed by SMC activity rather than intrinsic vessel properties. The
Young’s modulus staying comparatively stable indicates that the intrinsic stiffness of the
vessel, represented by the passive component, remains largely unchanged. Instead, the
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variations in the fiber parameters point towards the crucial role of SMCs in mediating
vasoconstriction and dilation, with minimal contribution from changes in intrinsic stiffness.

The simulated arterial stiffness values demonstrated a consistent decrement at higher
pressures across all examined conditions in comparison to experimental values, necessitating
a re-estimation. This observed discrepancy may potentially stem from the inherent
limitations of the current model, which does not account for the recruitment of stiffer
collagen fibers situated in the adventitial layer. These fibers are known to be recruited
in a pressure-dependent manner within the aorta. Consequently, the model’s omission of
collagen loading contributes to an underestimation of stiffness values at highest pressures.

Overall, our work introduces a mathematical model to explore arterial mechanics,
shedding light on the roles of SMCs. Moving forward, future research could focus on
refining and validating the model to better capture the complex dynamics of arterial
mechanics. A more sophisticated model with a realistic geometry that also accounts
for the contact between the aortic segment and the hooks is, in fact, presented in the
next chapter. Future work could address limitations such as the lack of consideration for
collagen loading, which may influence parameter estimation accuracy, particularly at higher
pressures. Moreover, the application of the model to in vivo data holds promising prospects
for advancing our understanding of vascular physiology and guiding the development of
further experiments. By integrating experimental findings and clinical data, the model
can contribute to more accurate predictions of vascular behavior under physiological and
pathological conditions.





Chapter 3

Full mathematical model with different
contact methods

The aim of this chapter is to provide a more comprehensive mathematical model of the
ROTSAC setup. In particular, no geometrical assumptions are made and contact between
the tissue and the hooks is considered. We present a comparison between different numerical
approaches for contact, including augmented Lagrangian, Nitsche and penalty methods with
the 3D-shell modeling of the vascular wall of Chapter 2.
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3.1 Motivation

This chapter transitions from the mathematical model presented in Chapter 2 to a more
detailed and realistic representation of the ROTSAC setup, previously described in Sec-
tion 1.2.2 and presented in Figure 2.1 (left). We recall that, 2 mm aortic segments are
mounted between two parallel hooks in 10 mL organ baths. Segments are immersed in
Krebs-Ringer solution. A close view of an aortic segment mounted in the hooks can be
found in Figure 2.1 (right). Force and displacement of the upper hook are controlled and
assessed using a force length transducer. The lower hook is static. During the experi-
mental calibration, measurements of the length and the width of the aortic segments at
different preloads (10, 20, 30, 40 and 50 mN) are recorded. Moreover, segments were



50

subjected to cyclic stretching, between alternating preloads, emulating “diastolic” and
“systolic” transmural pressures at 10 Hz frequency mimicking the physiological heart rate
in mice. The pressure-stiffness relationship was determined under a physiological condition,
a maximally-contracted state (with vasoconstrictors), as well as in the absence of active
stiffness (with vasodilators). One must notice that the applied tensions are quite high
given the size of the aortic segments, that undergo extreme deformations.

Γ

Γ

Ω

f

Figure 3.1: Schematic diagram of the ROTSAC.

In Chapter 2, we assumed a simplified geometrical configuration for the simulation of
the ROTSAC experimental setup, which consisted on one lateral side of the tissue mounted
on the hooks. This was based on the approximation that the aortic segment is flat in its
stress-free state (see Figure 2.2). In this chapter, we consider the geometry displayed in
Figure 2.1 (right), that can be represented by the schematic diagram of Figure 3.1. For
this purpose, we need to incorporate in the mathematical model the contact between the
elastic body and the hooks, that are treated as rigid bodies. The lower hook (static hook)
is clamped, while a force, f , is applied to the upper moving hook. The moving hook is
considered a rigid body with a single degree of freedom, which is vertical translation. The
dynamics of the moving hook are given by Newton’s second law, balancing the applied
force with the contact force experienced by the hook.

Since the late 1970s, with the introduction of the Finite Element Method (FEM), contact
mechanics has been a fundamental area of applied mathematics. Notable contributions in
the literature include works Timoshenko and Goodier (1970); Francavilla and Zienkiewicz
(1975); Hughes et al. (1976); Belytschko et al. (2000); Chouly et al. (2023). Given the
extreme tensions experienced by the aortic segments, robust numerical methods are required
to simulate the ROTSAC experiment accurately. In the present chapter, we explore and
compare different numerical methods (augmented Lagrangian, Nitsche and penalty) for
the discrete treatment of contact.

Augmented Lagrangian formulations are a type of mixed methods in which the inequal-
ity constraints on the multipliers are removed by introducing non-smooth terms in the
variational formulation. A semi-smooth Newton algorithm can be used to deal with the
nonlinear terms. The reader is referred to Simo and Laursen (1992); Laborde and Renard
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(2008); Poulios and Renard (2015) for contact treated via augmented Lagrangian.
An extension of Nitsche’s method to contact problems has been reported in (Chouly

and Hild, 2013; Chouly et al., 2015; Mlika et al., 2017; Chouly et al., 2017). A salient
feature of this approach is that it enforces the contact conditions in a strongly consistent
fashion without the need of introducing additional unknowns (Lagrange multipliers). The
application of Nitsche’s method to contact problems involving thin-walled structures raises
a fundamental difficulty. Indeed, for traditional reduced models based on the plane stress
assumption, it yields the penalty method. To the best of our knowledge, Nitsche’s method
has been proposed for 3D plates in Fabre et al. (2021) (see also Gustafsson et al. (2019)
for an alternative approach) but its application to 3D-shells has not yet been explored. In
this chapter, we extend its use to 3D-shells. A challenge in applying Nitsche’s method to
3D-shells arises from the inclusion of stresses in the contact terms. This complexity stems
from the need to compute the stresses and its derivatives to construct the Jacobian for the
numerical resolution.

The penalty method (Kikuchi and Song, 1981; Kikuchi and Oden, 1988; Chouly and
Hild, 2012) can be viewed as a simplification of Nitsche’s method in which the normal stress
is neglected in the contact term, which basically amounts to penalize the contact condition.
In contrast to Nitsche’s method, the penalty method is not strongly consistent. From the
computer implementation point of view, this method is one the simplest. However, the
penalty parameter must be carefully chosen to balance numerical stability and convergence.
The penalty parameter needs to be as small as possible to mimic the nonpenetration
condition, but not too small in order to ensure the convergence of any iterative solver for
the nonlinear problem.

This chapter is organized as follows: Section 3.2 provides the governing equations for
contact mechanics in large strain scenarios and, in particular, the mathematical model
for the ROTSAC setup including contact. Section 3.3 presents the formulations for each
contact method. Section 3.4 compares the numerical results of these three methods across
different numerical examples. Finally, Section 3.5 presents the conclusions and future
perspectives of this chapter.

3.2 Contact in large displacements and deformations

We present in this section some notations for the setting of contact problems. Since the
tissue experiences large deformations during the experiment, the contact model is developed
within the framework of large deformations. Contact can be classified into two types:
bilateral and unilateral. Bilateral contact involves two or more deformable bodies, whereas
unilateral contact occurs between a deformable solid and a rigid solid. In this thesis, we
focus on unilateral contact.

We begin by establishing notations for large strain tensors and algebraic operators,
addressing various scenarios where a deformable body governed by hyperelasticity (Ciarlet
(1988); Bonet and Wood (2008)) comes into contact with one or two rigid bodies. The
reference domain of the elastic solid is denoted by Ω ⊂ R3, and its boundary is denoted as
∂Ω. The deformation of the continuum medium is given as the bijective map φ from the
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Figure 3.2: Notation for large deformation contact problem in the reference and deformed
configurations for unilateral contact.

reference configuration Ω to the current configuration Ωt(t):

φ : Ω× [0, T ] −→ R3

(x, t) 7−→ xt = φ(x, t).

We denote by d the displacement field:

d(x, t) = φ(x, t)− x.

The boundary of the elastic body is assumed to be partitioned in three non-overlapping
parts ΓD (the Dirichlet boundary), ΓN (the Neumann boundary) and ΓC (the potential
contact boundary), deformed to ΓD,t, ΓN,t and ΓC,t, respectively. Each body could be, as
well, subjected to volume forces. In the reference configuration, the unit outward normal
vector to ΓC at x is denoted by nx, while in the deformed configuration, the unit outward
normal vector to ΓC,t at xt, is represented by nφ (see Figure 3.2).

As it is usual in the contact mechanics literature, we adopt a biased, or master–slave
paradigm (see for instance Laursen (2002), Wriggers (2006), Hallquist et al. (1985), or
Benson and Hallquist (1990)), which consists in enforcing the unilateral contact conditions
solely on one of the two (potential) contact boundaries. Following a master-slave strategy,
we consider part of ∂Ω as a slave surface (or contactor) and some other part as master
(or target) surface. In what follows, we consider the elastic body Ω as the slave and the
rigid one, denoted by ΩR, as the master. The contact boundary of the master surface will
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be denoted as ΓR
C in the reference configuration, with the unit outward normal vector at

any point y on the master surface, given by ny. In the deformed configuration, ΓR
C ⊂ ∂ΩR

transforms to ΓC,t. Remark that slave and master surfaces have to be defined in such a
way that the corresponding surfaces ΓC,t and ΓR

C,t are likely to form a contact pair. For
unilateral contact with a rigid static body ΓR

C,t = ΓR
C and ΩR = ΩR

t .
The map which associates potential contacts from the slave surface on the master

surface is:
π : ΓC,t −→ ΓR

C,t

xt 7−→ yt = π(xt).

Unlike in the small deformation framework, this mapping is not a given datum, but depends
on the displacement d. There are mainly two possibilities to build this mapping: projection
and ray-tracing. The most classic strategy is projection (see Laursen (2002)), and it
consists on defining a point yt, as the closest point projection of xt onto the deformed
master surface. In ray-tracing, the idea is to define yt as the closest intersection of the
master surface with the line passing through point xt and having direction vector nφ (see
Poulios and Renard (2015)).

In the present chapter, ray-tracing is used for defining the mapping between the slave and
master surfaces and the corresponding gap function. Since we have a simple parametrization
of the master surface, the ray-tracing projections can be evaluated analytically, as explained
in Section A.1, Appendix A. The main motivation for using ray-tracing instead of the
classical projection is for achieving a simpler expression for the tangent problem, due to
the fact that nφ has a simpler derivative than the unit normal vector to the deformed
master surface, nπ.

The gap function for ray-tracing, is given by

g = nφ · (π(φ(x, t))−φ(x, t)) on ΓC . (3.1)

The nonpenetration condition then reads

g(d) ≥ 0 on ΓC , (3.2)

and there always holds
π(φ(x, t)) = φ(x, t) + g(d)nφ. (3.3)

The contact conditions in large deformations are written in terms of the first Piola-
Kirchhoff stress tensor, Π(d), given by

Π(d) = Jσ(d)F−T (d), (3.4)

where J is the determinant of the deformation gradient and σ(d) is the Cauchy stress
tensor. When contact occurs (Π(d)nx < 0), the normals nφ and nπ are opposite. The
quantity Π(d)nx represents the surface force at a point x in the reference configuration,
and it should be negative or zero. As a result, contact conditions (see, e.g., (Chouly et al.,
2023, Chapter 11)) can be written as:

g(d) ≥ 0, on ΓC ,

Π(d)nx · nφ ≤ 0, on ΓC ,

Π(d)nx · nφ g(d) = 0, on ΓC .

(3.5)
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These conditions are commonly referred to as Karush-Kuhn-Tucker (KKT) or Hertz-
Signorini-Moreau conditions. The condition g(d) ≥ 0 prevents the elastic body from
penetrating the rigid solid. The second condition, Π(d)nx · nφ ≤ 0, ensures that contact
forces are repulsive. The third one, Π(d)nx · nφ g(d) = 0, known as complementarity
condition, can be interpreted as follows: when the contact force is non zero (contact), then
necessarily the elastic body must stick to the rigid solid and if, at any point, the elastic
body is detached from the rigid solid, then the contact force must be zero (no contact).

Full mathematical model of the ROTSAC setup

In what follows, we present the mathematical model for the ROTSAC setup including
contact. The geometric configuration is shown in Figure 3.3.

f

ΓC2 ΓR
C2

Ω

ΓC1
ΓR
C1

Γ0

Γ0

Γ0
f

Figure 3.3: Geometric reference configuration of the ROTSAC.

The elastic body can be in contact with the lower hook (static hook) and, with the
upper moving hook, both of them treated as rigid bodies. The displacement of the upper
hook is given by s := s(t)ey, where ey is the unit vector on the vertical direction and
s(t) ∈ R. The map which associates each point of the elastic body to a potential contact
point on the moving hook is given by

π2 : ΓC2,t −→ ΓR
C2,t

xt 7−→ yt = π2(xt),

and, similarly, for the static hook

π1 : ΓC1,t −→ ΓR
C1,t

xt 7−→ yt = π1(xt),
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where the subscripts 1 and 2 refer to the static and moving hook, respectively. Then, the
gap function introduced in (3.1) for the moving hook reads

g2(d, s) := nφ · (π2(φ(x, t))−φ(x, t)) on ΓC2 ,

and, the one for the static hook

g1(d) := nφ · (π1(φ(x, t))−φ(x, t)) on ΓC1 .

We can introduce a Lagrange multiplier λ as a new unknown for the contact force:

λ := Π(d)nx · nφ, (3.6)

which, owing to (3.5), must be nonpositive. Then, the solid equilibrium for frictionless con-
tact for the ROTSAC setup in large deformations with the nonpenetration conditions (3.5)
and the equation of the moving hook, reads as follows: find the elastic solid displacement
d : Ω×R+ → R3, the vertical displacement of the upper hook s : R+ → R and the contact
Lagrange multipliers λi : ΓCi × R+ → R, i = 1, 2 such that





ρ∂ttd− div(Π(d)) = 0, in Ω,

Π(d)nx · nφ = λ2, on ΓC2 ,

Π(d)nx · nφ = λ1, on ΓC1 ,

Π(d)nx · τ = 0, on ΓC2 ,

Π(d)nx · τ = 0, on ΓC1 ,

g2(d, s) ≥ 0, λ2 ≤ 0, λ2g2(d, s) = 0, on ΓC2 ,

g1(d) ≥ 0, λ1 ≤ 0, λ1g1(d) = 0, on ΓC1 ,

ms̈− f +

∫

ΓC2

λ2 nφ · ey = 0,

(3.7)

where ρ stands for the density of the elastic solid, m the mass of the moving hook and f

the force applied on it.

3.3 Numerical methods for contact

In this section we discuss three numerical methods for the approximation of the contact
problem (3.7): the augmented Lagrangian method, the Nitsche’s method, and the penalty
method.

The fundamental ingredient in the derivation of these methods (notably augmented
Lagrangian and Nitsche’s method), is the formulation of the inequality constraints as
nonlinear identities. Considering the positive part operator [·]+:

[x]+ := max{0, x},

for an arbitrary positive function γ on the slave contact boundary ΓC , the contact conditions
(3.5) can be rewritten alternatively as (see Alart and Curnier (1988) or (Chouly et al.,
2023, Proposition 6.1, Chapter 6)):

Π(d)nx · nφ = − [−Π(d)nx · nφ − γg(d)]+ . (3.8)
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Alternatively, considering the negative part operator [·]−:

[x]− := max{−x, 0},

conditions (3.5) can be expressed as

Π(d)nx · nφ = − [Π(d)nx · nφ + γg(d)]− . (3.9)

A salient feature of the relations (3.8) and (3.9) is that they transform KKT type conditions,
involving inequality constraints, into a single nonlinear equality, which can then be used to
derive consistent numerical approximations.

3.3.1 Augmented Lagrangian method

Augmented Lagrangian formulations are mixed approaches in which inequality constraints
are replaced by the following nonlinear identities from (3.6), (3.8) and (3.9):

λ = − [λ+ γg(d)]− , or λ = − [−λ− γg(d)]+ . (3.10)

Let us recall that for hyperelastic bodies, the energy potential W (Ciarlet, 1988)
depends on the deformation through the tensor e. Also, the expression of the second
Piola-Kirchhoff stress tensor, Σ = F−1Π, with F = ∇φ the deformation gradient tensor,
is obtained thanks to

Σ =
∂W

∂E
.

We introduce the energy functional of the whole system, J (ḋ,d, ṡ, s), defined as

J (ḋ,d, ṡ, s) := 1

2

∫

Ω
ρ|∂td|2 −

∫

Ω
W (E) +

1

2
m|ṡ|2 + f s, (3.11)

where the first two terms are the kinetic and the potential energy of the elastic body,
respectively. The third term is the kinetic energy of the moving hook and, finally, f s

represents the work done by the external forces acting on the moving hook. Force equilibrium
of the considered elastic body and the hooks, can be represented by the saddle point of
the following Lagrangian

L(ḋ,d, ṡ, s, λ2, λ1) := J (ḋ,d, ṡ, s) +
∫

ΓC2

λ2g2(d, s) +

∫

ΓC1

λ1g1(d),

under the constraints λ2 ≤ 0 and λ1 ≤ 0. Using (3.10), the augmented Lagrangian function,
that avoids the need for an additional constraint on λ2 or λ1, writes (see (Chouly et al.,
2023, Lemma 7.2, Chapter 7)):

Lγ(ḋ,d, ṡ, s, λ2, λ1) := J (ḋ,d, ṡ, s)+
1

2γ

∫

ΓC2

[λ2 + γg2]
2
−−λ2

2+
1

2γ

∫

ΓC1

[λ1 + γg1]
2
−−λ2

1,

(3.12)
where γ := γ0 E/h is the augmentation parameter, with γ0 > 0, E being the Young’s
modulus and h the mesh size. For augmented Lagrangian formulations, it is generally
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preferred to use the negative part operator to write the contact conditions (3.10), notably
because of the chosen convention for the gap (g(d) ≥ 0) (Chouly et al., 2023).

The optimality system of Lγ is the following





d

dt
DḋJ [δḋ]−DdJ [δd]−

∫

ΓC2

[λ2 + γg2]−Ddg2[δd]

−
∫

ΓC1

[λ1 + γg1]−Ddg1[δd] = 0 ∀δd,

−1

γ

∫

ΓC2

(λ2 + [λ2 + γg2]−) δλ2 = 0 ∀δλ2,

−1

γ

∫

ΓC1

(λ1 + [λ1 + γg1]−) δλ1 = 0 ∀δλ1,

d

dt
DṡJ [δṡ]−DsJ [δs]−

∫

ΓC2

[λ2 + γg2]−Dsg2[δs] = 0 ,

(3.13)

where the derivative of the gap g2 (analogue for g1) in direction δd (obtained in (A.6),
Appendix A) writes

Ddg2[δd] =
−nπ

nπ · nφ
(δd(x) + g2(d, s)Ddnφ[δd]) . (3.14)

It should be noted that, at any point of the slave surface, either contact occurs, in which
case nπ = −nφ, or contact does not occur, resulting in [λ2 + γg2]− = 0. This means that
the term nπ/(nπ ·nφ) that would appear in the optimality system due to Ddg2[δd] can be
simply replaced by −nφ. The derivative of the gap in direction δs, denoted as Dsg2[δs], is
given by equation (A.13). We can apply the same logic as we did with Ddg2[δd] to conclude
that Dsg2[δs] can be replaced by nφ. Remarking additionally that nφ ·Ddnφ[δd] = 0, the
substitution of (3.14) in (3.13) leads to





d

dt
DḋJ [δḋ]−DdJ [δd] +

∫

ΓC2

[λ2 + γg2]−v · nφ

+

∫

ΓC1

[λ1 + γg1]−v · nφ = 0 ∀v ∈ Vsh,

−1

γ

∫

ΓC2

(λ2 + [λ2 + γg2]−) δλ2 = 0 ∀µ ∈ Λ2,

−1

γ

∫

ΓC1

(λ1 + [λ1 + γg1]−) δλ1 = 0 ∀µ ∈ Λ1,

d

dt
DṡJ [δṡ]−DsJ [δs]−

∫

ΓC2

[λ2 + γg2(d, s)]− ey · nφ = 0 .

(3.15)

where Vsh is given by (2.9), Λ2 := L2(ΓC2) and Λ1 := L2(ΓC1). Using the expression for
the derivatives for the energy terms, we obtain the variational formulation of (3.7) for the
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augmented Lagrangian method. It reads





For t > 0 find d(t) ∈ Vsh, λ1(t) ∈ Λ1, λ2(t) ∈ Λ2 and s(t) ∈ R such that:∫

Ω
ρ∂ttd · v +

∫

Ω
Π(d) : ∇v +

∫

ΓC2

[λ2 + γg2(d, s)]− v · nφ

+

∫

ΓC1

[λ1 + γg1(d)]− v · nφ = 0, ∀v ∈ Vsh,

− 1

γ

∫

ΓC2

(λ2 + [λ2 + γg2(d, s)]−)µ = 0, ∀µ ∈ Λ2,

− 1

γ

∫

ΓC1

(λ1 + [λ1 + γg1(d)]−)µ = 0, ∀µ ∈ Λ1,

ms̈ = f +

∫

ΓC2

[λ2 + γg2(d, s)]− ey · nφ.

(3.16)

For the spatial discretization of the system defined by (3.16), we adopt a finite element
approximation. Let {Th}0<h<1 be a family of triangulations of Ω, fitted to ∂Ω. Every
triangulation Th is composed of a single layer of prismatic elements (see Figure 2.5). Every
prism K ∈ Th can be decomposed in a tensorial way such that K = T ⊗ S, where T

represents a triangle in ∂Ω and S represents a segment. Let us define the following finite
element spaces:

Vsh
h :=

{
v ∈ Vsh : v|K ∈ [P1(T )⊗ P2(S)]

3, K = T ⊗ S, ∀K ∈ Th
}
, (3.17)

Λi,h := {µ ∈ Λi : µ|K ∈ P1(K), ∀K ∈ ΓCi ∩ Th} for i ∈ {1, 2}. (3.18)

Then the formulation of (3.16) in the discrete setting reads:





For t > 0 find dh(t) ∈ Vsh
h , λ1,h(t) ∈ Λ1,h, λ2,h(t) ∈ Λ2,h

and s(t) ∈ R such that:∫

Ω
ρ∂ttdh · vh + ah(dh;vh) +

∫

ΓC2

[λ2,h + γg2(dh, s)]− vh · nφ

+

∫

ΓC1

[λ1,h + γg1(dh)]− vh · nφ = 0, ∀vh ∈ Vsh
h ,

− 1

γ

∫

ΓC2

(λ2,h + [λ2,h + γg2(dh, s)]−)µh = 0, ∀µh ∈ Λ2,h,

− 1

γ

∫

ΓC1

(λ1,h + [λ1,h + γg1(dh)]−)µh = 0, ∀µh ∈ Λ1,h,

ms̈ = f +

∫

ΓC2

[λ2,h + γg2(dh, s)]− ey · nφ,

(3.19)

where ah(dh;vh) denotes the discrete stiffness term in the 3D-shell in which a reinterpolation
procedure of the strain components (MITC tying) is used to mitigate numerical locking
phenomena, notably for small thickness values (see, e.g., Chapelle and Bathe (2010)).
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Considering an implicit Euler scheme, the fully discrete version of (3.16) reads as





For t > 0 find dn
h(t) ∈ Vsh

h , λn
1,h(t) ∈ Λ1,h, λ

n
2,h(t) ∈ Λ2,h

and sn(t) ∈ R such that:
∫

Ω
ρ
dn
h − 2dn−1

h + dn−2
h

(∆t)2
· vh + ah(d

n
h;vh)

+

∫

ΓC2

[
λn
2,h + γg2(d

n
h, s

n)
]
− vh · nφ

+

∫

ΓC1

[
λn
1,h + γg1(d

n
h)
]
− vh · nφ = 0, ∀vh ∈ Vsh

h ,

− 1

γ

∫

ΓC2

(
λn
2,h + [λn

2,h + γg2(d
n
h, s

n)]−
)
µh = 0, ∀µh ∈ Λ2,h,

− 1

γ

∫

ΓC1

(
λn
1,h + [λn

1,h + γg1(d
n
h)]−

)
µh = 0, ∀µh ∈ Λ1,h,

m
sn − 2sn−1 + sn−2

(∆t)2
= f +

∫

ΓC2

[λn
2,h + γg2(d

n
h, s

n)]− ey · nφ.

. (3.20)

with ∆t > 0 the time-discretization parameter and tn := n∆t, where n ∈ N. At each time
step of the backward Euler time-discretization, a nonlinear problem has to be solved and
a Newton’s algorithm has been selected, whose implementation details are presented in
Section A.4.1, Appendix A.

3.3.2 Nitsche’s method

Nitsche’s method provides a single primal formulation without the need of a Lagrange
multiplier. The basic idea consists in using the relation (3.8) on the weak formulation or
to eliminate the Lagrange multiplier in the augmented Lagrangian formulation (3.19) via
the identity (3.6). By using the Green formula in the solid momentum equation, we get

∫

Ω
ρ∂ttd · v +

∫

Ω
Π(d) : ∇v −

∫

ΓC2

Π(d)nx · nφv · nφ

−
∫

ΓC1

Π(d)nx · nφv · nφ = 0, ∀v ∈ Vsh,

where Vsh is given by (2.9) and assuming that the displacement is smooth enough. Using
the contact condition (3.8), we get that:

∫

Ω
ρ∂ttd · v +

∫

Ω
Π(d) : ∇v +

∫

ΓC2

[−γg2(d, s)−Π(d)nx · nφ]+v · nφ

+

∫

ΓC1

[−γg1(d)−Π(d)nx · nφ]+v · nφ = 0, ∀v ∈ Vsh,
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which motivates the following spatial semi-discrete approximation of (3.7)




For t > 0, find dh(t) ∈ Vsh
h and s(t) ∈ R such that:∫

Ω
ρ∂ttdh · vh + ah(dh;vh) +

∫

ΓC2

[−γg2(dh, s)−Π(dh)nx · nφ]+vh · nφ

+

∫

ΓC1

[−γg1(dh)−Π(dh)nx · nφ]+vh · nφ = 0, ∀vh ∈ Vsh
h ,

ms̈ = f +

∫

ΓC2

[−γg2(dh, s)−Π(dh)nx · nφ]+ ey · nφ,

(3.21)

where Vsh
h is the 3D-shell finite element space (3.17); the term ah(dh;vh) denotes the

discrete stiffness term in the 3D-shell, where a reinterpolation technique for the strain
components (MITC tying) is used to reduce numerical locking; and γ := γ0 E/h where
γ0 > 0 is the Nitsche’s parameter, that must be chosen sufficiently large to ensure well-
posedness. Formulation (3.21) corresponds to the nonsymmetric variant of the Nitsche’s
method proposed in (Chouly and Hild, 2013, Chapter 6).

For the ROTSAC setup, the fully-discrete numerical approximation of (3.7) using an
implicit Euler scheme reads





For t > 0, find dn
h(t) ∈ Vsh

h and sn(t) ∈ R such that:
∫

Ω
ρ
dn
h − 2dn−1

h + dn−2
h

(∆t)2
· vh + ah(dh;vh)

+

∫

ΓC2

[−γg2(dn
h, s

n)−Π(dn
h)nx · nφ]+ vh · nφ

+

∫

ΓC1

[−γg1(dn
h)−Π(dn

h)nx · nφ]+ vh · nφ = 0, ∀vh ∈ Vsh
h ,

m
sn − 2sn−1 + sn−2

(∆t)2
= f +

∫

ΓC2

[−γg2(dn
h, s

n)−Π(dn
h)nx · nφ]+ ey · nφ.

(3.22)

A notable aspect of this method is that it consistently enforces the contact conditions
without adding additional unknowns (Lagrange multipliers). The implementation details
of the Newton iterations associated to the numerical resolution of (3.22), are provided in
Section A.4.2, Appendix A.

3.3.3 Penalty method

One of the most popular numerical approaches for contact is the so-called penalty method.
This method can for instance be derived from relation (3.8) by noting that for large values
of γ, that expression motivates the approximation

Π(d)nx · nφ ≃ − [−γg(d)]+ = −1

ε
[−g(d)]+ , (3.23)

where ϵ > 0 denotes the corresponding small penalty parameter

1

ε
:= γ = γ0

E

h
, (3.24)
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with γ0 > 0, E the Young’s modulus and h the characteristic element size. Note that the
approximation (3.23) is not strongly consistent, so that a certain amount of penetration
between the two bodies can be expected at the discrete level, unless ε is sufficiently small.

By combining (3.23) with the argument used in the previous section, the spatial
semi-discrete penalty method is given by





For t > 0, find dh(t) ∈ Vsh
h and s(t) ∈ R such that:∫

Ω
ρ∂ttdh · vh + ah(dh;vh) +

1

ε

∫

ΓC2

[−g2(dh, s)]+ vh · nφ

+
1

ε

∫

ΓC1

[−g1(dh)]+ vh · nφ = 0, ∀vh ∈ Vsh
h ,

ms̈ = f +
1

ε

∫

ΓC2

[−g2(dh, s)]+ ey · nφ.

(3.25)

which after time-discretization yields the fully discrete scheme




For t > 0 find dn
h(t) ∈ Vsh

h and sn(t) ∈ R such that:
∫

Ω
ρ
dn
h − 2dn−1

h + dn−2
h

(∆t)2
· vh + ah(dh;vh) +

1

ε

∫

ΓC2

[−g2(dn
h, s

n)]+ vh · nφ

+
1

ε

∫

ΓC1

[−g1(dn
h)]+ vh · nφ = 0, ∀vh ∈ Vsh

h ,

m
sn − 2sn−1 + sn−2

(∆t)2
= f +

1

ε

∫

ΓC2

[−g2(dn
h, s

n)]+ ey · nφ,

(3.26)

where Vsh
h is the 3D-shell finite element space (3.17) and, again, ah(dh;vh) represents the

discrete stiffness term in the 3D-shell. The implementation details of the Newton iterations
on the resolution of (3.26) are presented in Section A.4.3, Appendix A.

3.4 Numerical results

In this section we investigate the performance of the three numerical approaches described
in the previous section (augmented Lagrangian, Nitsche and penalty) in three different 3D
numerical examples motivated by the simulation of the ROTSAC setup. All the numerical
computations have been performed with the FELiScE1 C++ finite element library.

Since we need to reach extreme force values, it is advantageous not to use a constant
time step. Instead, we employ a dynamic time-stepping approach that adjusts based on
the convergence behavior of the solution, improving the efficiency of the simulations. The
time adaptivity algorithm used in the simulations is presented in Section A.2, Appendix A.

Unlike in Chapter 2, the fiber model described by (2.11) is not used in the numerical
results of this chapter, as we are not dealing with vasoactive substances.

Throughout the following sections, all the units are expressed in the centimeter-gram-
second (CGS) unit system, unless specified otherwise.

1https://gitlab.inria.fr/felisce

https://gitlab.inria.fr/felisce
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3.4.1 Numerical example 1: Contact between a 3D flat elastic body and
a rigid cylinder

The first example investigates frictionless contact in a simple geometry. In particular,
in this test we study the behavior of a 3D elastic shell falling against a rigid cylinder.
This is a preliminary test to validate the different numerical approaches for contact. The
mathematical model is the same as the one presented in (3.7), but just considering the
contact with the static hook. In other words, all the terms on ΓC2 are omitted, as well as
the equation of the moving hook. The considered geometry is shown in Figure 3.4. The
elastic solid domain is Ω = [0, 0.2] ×[0, 0.2] ×[0, 0.015]. The rigid cylinder has a radius
equal to rh = 0.02.

Γ0

Γ0

Γ0

Γ0

Γ0

ΓC1 ⊆ ΓN

Ω

Figure 3.4: Geometric configuration of numerical example 1.

The elastic solid material parameters corresponding to equation (2.6) are2 E = 5 · 105,
ν = 0.47 and ρ = 1.2 . The parameter κ of the Ogden’s law has been set to κ = 100.
Concerning the boundary conditions, a uniform distributed load is applied on the lower
surface of the solid, ΓN : fs(t) = 500 ·t. In the boundary Γ0, we enforce do nothing boundary
conditions. The solid is initially at rest and the cylinder cannot move.

The solid mesh is made of 7, 200 prisms (see Figure 3.5). The local size is h ≈ 0.0047.
The considered parameters for the time adaptivity are Icoarse = 5 and Ifix = 5. The
maximum allowed value for the time step is ∆tmax = 0.001 and the final time is set at
T = 0.1.

We evaluate the time iterations, the sum of the Newton iterations and the penetration for
the three methods for different choices of the parameter γ = γ0 E/h, with γ0 = {0.1, 1, 10}.

With the applied Neumann condition, the elastic solid starts to fall until it reaches
the rigid cylinder, where it does a small rebounding before reaching a steady state. For
illustration purposes, Figure 3.6 provides snapshots of the solid deformation with penalty
method at different time instants. An analogue displacement is observed with augmented

2Recall that c1, c2 and a can be obtained from the E, ν and κ as illustrated in Section 2.2.2.2, Chapter
2.
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Figure 3.5: Solid mesh for the first numerical example.

Lagrangian or Nitsche.
Tables 3.1-3.3 present the number of time iterations required to reach the final time

T = 0.1, along with the total sum of Newton iterations. Additionally, the tables show the
average gap at the quadrature points in contact, as well as the relative average gap with
respect to the mesh thickness.

Key metrics Penalty Augmented Lagrangian Nitsche
# time it 100 100 104

# Newton it 241 250 236
Average gap (cm) −1.55 · 10−4 1.07 · 10−5 4.64 · 10−4

Average gap / thickness −1.0 · 10−2 7.1 · 10−4 3.1 · 10−2

Table 3.1: Comparison between penalty, augmented Lagrangian and Nitsche at T = 0.1

with γ0 = 0.1.

Key metrics Penalty Augmented Lagrangian Nitsche
# time it 100 104 105

# Newton it 236 238 262
Average gap (cm) −3.26 · 10−5 1.06 · 10−5 4.64 · 10−4

Average gap / thickness −2.2 · 10−3 7.1 · 10−4 3.1 · 10−2

Table 3.2: Comparison between penalty, augmented Lagrangian and Nitsche at T = 0.1

with γ0 = 1.

The parameter γ0 plays a similar role in all three methods: it acts as a penalty parameter
in the penalty method, an augmentation parameter in the augmented Lagrangian approach,
and the Nitsche’s parameter in Nitsche’s method. The Nitsche’s method requires a
minimum value of γ to guarantee stability. In contrast, for the penalty method, a balance
must be found between choosing a large γ0 (see equation (3.24)), which ensures accurate
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(a) t = 0 (b) t = 0.028

(c) t = 0.06 (d) t = 0.1

Figure 3.6: Displacement of the solid obtained with penalty method with γ0 = 10.

Key metrics Penalty Augmented Lagrangian Nitsche
# time it 100 109 109

# Newton it 247 280 280
Average gap (cm) −5.04 · 10−6 1.05 · 10−5 4.65 · 10−4

Average gap / thickness −3.4 · 10−4 7.1 · 10−4 3.1 · 10−2

Table 3.3: Comparison between penalty, augmented Lagrangian and Nitsche at T = 0.1

with γ0 = 10.

enforcement of contact conditions, and a moderate value that does not affect Newton’s
method convergence.
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A first observation is that there is not a significant difference in the total number of time
iterations. As the parameter γ0 increases, we observe in general an increase in the number
of Newton iterations. Regarding the penetration, we observe that Nitsche and augmented
Lagrangian perform better than penalty. It is also worth noting that penetration in penalty
is much more sensitive to the γ0 than for the other two methods. The results presented
show similar dynamics with the three methods.

3.4.2 Numerical example 2: Contact between a 3D half hollow elastic
cylinder and a rigid cylinder

The second numerical example corresponds to an intermediate step before performing
the simulation of the ROTSAC setup. The mathematical model is the same as the one
presented in (3.7), but just considering the contact with the static hook, that means
omitting all the terms computed in ΓC2 and the equation of the moving hook. In this
example, we use the geometry shown in Figure 3.7. Due to the symmetry of the ROTSAC,
we can take the half of a hollow 3D cylinder in a longitudinal cut and model the contact
with the static hook (rigid cylinder), while a pulling force is applied on the edges. The
radius of the half cylinder is R = 0.05, the length L = 0.2 and the thickness ε = 0.0055.
The radius of the hook is rh = 0.008009.

Ω

Γ0

ΓC1

ΓN

ΓN Γ0

Γ0

Figure 3.7: Geometric configuration of numerical example 2.

The physical parameters used for the solid in this test are E = 5 · 106, ν = 0.47

and ρ = 1.2. The parameter of the Ogden’s law has been set to κ = 100. Regarding
the boundary conditions, a uniform distributed load is applied on the edges of the half
cylinder (quadrilateral elements), ΓN , in terms of the following time-dependent expression:
fs(t) = 200 000 · t. In the boundary Γ0, we enforce do nothing boundary conditions.

The objective is to reach the forces that have been applied during the experimental
calibration of the ROTSAC (10, 20, 30, 40 and 50 mN). As in the previous example, we
evaluate three different choices of the parameter γ = γ0 E/h, with γ0 = {1, 10, 100}. Here
the parameters have been chosen larger than in the previous numerical example to be able
to illustrate the convergence for the three methods. Since the forces are higher, we needed
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to increase the values of the parameters because otherwise with penalty the simulations
could not be performed.

The solid mesh is composed of 10, 780 prisms. In the area around the cylinder in
contact, the considered space discretization parameter is h ≈ 0.0038 while in the rest
h ≈ 0.0044. The mesh is shown in Figure 3.8.

Figure 3.8: Solid mesh and fixed hook.

As in the previous numerical example, we use the time adaptivity Algorithm 1. The
maximum allowed value of ∆tmax is ∆tmax = 0.001. The considered parameters for the
time adaptivity are Icoarse = 5 and Ifix = 5. The final time is set at T = 5.685. The body
is considered initially at rest.

Figure 3.9 shows snapshots of the solid deformation at different forces obtained with
the augmented Lagrangian method. An analogue displacement is observed with Nitsche or
penalty. The contact force on the solid for the augmented Lagrangian method is shown in
Figure 3.10. Similar results are observed for the other methods.
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(a) f = 0 mN (b) f = 10 mN

(c) f = 20 mN (d) f = 30 mN

(e) f = 40 mN (f) f = 50 mN

Figure 3.9: Deformed configuration and displacement magnitude obtained with augmented
Lagrangian with γ0 = 1.
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(a) f = 0 mN (b) f = 10 mN

(c) f = 20 mN (d) f = 30 mN

(e) f = 40 mN (f) f = 50 mN

Figure 3.10: Deformed configuration and contact force obtained with augmented Lagrangian
with γ0 = 1.
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In Tables 3.4-3.6, we provide indicators for each method, including the number of time
steps, the sum of Newton iterations, and the penetration for different values of the external
force. Additionally, the average gap is computed for all the contact methods, along with
the relative gap with respect to the mesh thickness.

Force (mN) Key metrics Penal. Aug. Lag. Nitsche.

10

# time it 1140 1140 1140
# Newton it 3543 4552 3711

Average gap (cm) −1.1 · 10−4 9.2 · 10−7 1.3 · 10−6

Average gap / thickness −2.00 · 10−2 1.67 · 10−4 2.36 · 10−4

20

# time it 2275 2275 2275
# Newton it 6948 9092 8251

Average gap (cm) −2.1 · 10−4 5.2 · 10−7 1.1 · 10−6

Average gap / thickness −3.82 · 10−2 9.45 · 10−5 2.00 · 10−4

30

# time it 3420 3420 3420
# Newton it 10383 13672 15872

Average gap (cm) −3.3 · 10−4 3.1 · 10−7 1.0 · 10−5

Average gap / thickness −6.00 · 10−2 5.64 · 10−5 1.82 · 10−3

40

# time it 4550 4450 10111
# Newton it 13773 17888 48463

Average gap (cm) −4.6 · 10−4 1.9 · 10−8 9.2 · 10−5

Average gap / thickness −8.36 · 10−2 3.45 · 10−6 1.67 · 10−2

50

# time it 5685 5685 21808
# Newton it 17178 21731 83562

Average gap (cm) −6.1 · 10−4 1.2 · 10−6 8.9 · 10−5

Average gap / thickness −1.11 · 10−1 2.18 · 10−4 1.62 · 10−2

Table 3.4: Comparison of the three methods for different traction forces and γ0 = 1.

From Tables 3.4-3.6, it can be observed that in general the number of Newton iterations
in the cases of augmented Lagrangian and Nitsche is bigger with respect to penalty. In
general, if the penalty coefficient is well-chosen, the penalty method can be very robust.
For Nitsche, we have observed that a smaller time step is needed at higher forces when the
deformation is very large, so the total number of iterations is considerably increased. On
the other hand, the results show that in the case of penalty there is always penetration,
which increases when γ0 is smaller. However, that is not the case for augmented Lagrangian
or Nitsche’s method, that generally provide a more accurate physical representation of
contact problems.
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Force (mN) Key metrics Penal. Aug. Lag. Nitsche.

10

# time it 1140 1470 1140
# Newton it 3550 8045 3703

Average gap (cm) −1.2 · 10−5 1.5 · 10−7 1.1 · 10−6

Average gap / thickness −2.18 · 10−3 2.73 · 10−5 2.00 · 10−4

20

# time it 2275 2605 2275
# Newton it 6955 13590 8243

Average gap (cm) −2.3 · 10−5 1.1 · 10−7 8.3 · 10−6

Average gap / thickness −4.18 · 10−3 2.00 · 10−5 1.51 · 10−3

30

# time it 3420 3750 3420
# Newton it 10390 18178 16166

Average gap (cm) −3.5 · 10−5 1.1 · 10−7 7.7 · 10−5

Average gap / thickness −6.36 · 10−3 2.00 · 10−5 1.40 · 10−2

40

# time it 4550 4880 10586
# Newton it 13780 22698 47059

Average gap (cm) −4.9 · 10−5 6.4 · 10−7 7.8 · 10−5

Average gap / thickness −8.91 · 10−3 1.16 · 10−4 1.42 · 10−2

50

# time it 5685 6015 21426
# Newton it 17185 27238 79579

Average gap (cm) −6.5 · 10−5 7.8 · 10−6 7.9 · 10−5

Average gap / thickness −1.18 · 10−2 1.42 · 10−3 1.44 · 10−2

Table 3.5: Comparison of the three methods for different traction forces and γ0 = 10.

Force (mN) Key metrics Penal. Aug. Lag. Nitsche.

10

# time it 1140 2685 1140
# Newton it 3631 15519 3732

Average gap (cm) −1.9 · 10−6 3.2 · 10−6 4.5 · 10−6

Average gap / thickness −3.5 · 10−4 5.8 · 10−4 8.1 · 10−4

20

# time it 2275 3820 2275
# Newton it 7041 21793 8244

Average gap (cm) −2.4 · 10−6 3.2 · 10−6 9.7 · 10−6

Average gap / thickness −4.4 · 10−4 5.8 · 10−4 1.8 · 10−3

30

# time it 3420 4965 4701
# Newton it 10476 27227 33083

Average gap (cm) −3.7 · 10−6 3.8 · 10−6 6.4 · 10−5

Average gap / thickness −6.3 · 10−4 7.0 · 10−4 1.2 · 10−2

40

# time it 4550 6095 13615
# Newton it 13866 31796 59825

Average gap (cm) −5.1 · 10−6 3.8 · 10−6 8.8 · 10−5

Average gap / thickness −9.3 · 10−4 6.9 · 10−4 1.7 · 10−2

50

# time it 5685 7230 21726
# Newton it 16997 36342 84168

Average gap (cm) −6.8 · 10−6 4.5 · 10−6 9.85 · 10−5

Average gap / thickness −1.3 · 10−3 8.2 · 10−4 1.8 · 10−2

Table 3.6: Comparison of the three methods for different traction forces and γ0 = 100.
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3.4.3 Numerical example 3: ROTSAC setup

The last example, is the simulation of the experimental ROTSAC setup with a realistic
geometry taking into account the contact of the tissue (whose geometry is considered to
be a hollow 3D cylinder) between the static and the moving hook (both rigid cylinders).
The geometric configuration is shown in Figure 3.11.

f

ΓC2

Ω

ΓC1

Γ0

Γ0

Γ0
f

Figure 3.11: Geometric configuration of the ROTSAC setup.

The solid domain is given by the 3D cylinder of radius R = 0.04, length L = 0.2 and
thickness ε = 0.0052. The solid is considered to be initially at rest. The radius of each
hook is rh = 0.008009. The physical parameters used for the elastic solid are E = 5 · 106,
ν = 0.47 and ρ = 1.2. The parameter of the Ogden’s law has been set to κ = 100. A force
is applied on the moving hook (that is the upper one), in terms of the following expression:
f = 10000 · t.

We compare the time-step, Newton iterations and penetration on the three methods
for three different choices of the parameter γ0 = {1, 10, 100}.

The solid mesh has 19, 800 prisms. In the area around the hooks, the space discretization
parameter is h ≈ 0.0037 while in the rest is h ≈ 0.0043. Figure 3.12 shows the considered
mesh for the solid.

The time adaptivity Algorithm 1 is employed to implement different levels of refinement
for the time step, with a maximum allowed value of ∆tmax = 0.0005. The final time is
set at T = 0.5. The considered parameters for the time adaptivity are Icoarse = 5 and
Ifix = 5. Time adaptivity is necessary in our numerical examples to better align with the
requirements of the Newton algorithm for convergence.
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Figure 3.12: Arterial segment mesh for the ROTSAC.

Figure 3.13 presents the simulated solid deformation at the different experimental
forces for the Nitsche’s method. Similar results are obtained with augmented Lagrangian
or penalty, which are omitted here for the sake of conciseness. For comparison purposes,
in Figures 3.14 and 3.16 we show some pictures of the deformation of the tissue during
the ROTSAC experiment. We can clearly see that the numerical simulation reproduces
the experimentally observed length reduction as the force applied in the upper hook
increases. We can also note that for the considered physical parameters, the numerical
simulations tend in general to overestimate a bit the deformation. This discrepancy could
be circumvented by performing parameter estimation, as in Chapter 2. The contact force
for Nitsche’s method is shown in Figure 3.15.

In Tables 3.7-3.9, we summarize the results from the three methods and different loading
steps. To quantify the accuracy properties, we compared the number of time iterations of
each method, the sum of Newton iterations and the average gap at the quadrature points
in contact with the mesh. In particular, we compare the number of iterations at forces
equal to 10, 20, 30, 40 and 50 mN, that are achieved at times t = (0.1, 0.2, 0.3, 0.4, 0.5). In
general, the penalty method involves less iterations. However, there is always penetration
in the case of penalty but not for augmented Lagrangian or Nitsche.

Tables 3.7-3.9 follow the trend of the results obtained in the previous numerical example
in Section 3.4.2. In the simulation with penalty method corresponding to γ0 = 1 presented
in Table 3.7, we observed that the penetration is too high so that is not possible to apply
forces much beyond 40 mN and to reach 50 mN, whereas the other methods allow for
higher force levels.
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(a) f = 0 mN (b) f = 10 mN

(c) f = 20 mN (d) f = 30 mN

(e) f = 40 mN (f) f = 50 mN

Figure 3.13: Deformed configuration and displacement magnitude with Nitsche’s method
with γ0 = 100.
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(a) f = 10 mN

(b) f = 20 mN (c) f = 30 mN

(d) f = 40 mN (e) f = 50 mN

Figure 3.14: Experimental displacement of the segment (front view). Images from De Moudt
et al. (2021).
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(a) f = 0 mN (b) f = 10 mN

(c) f = 20 mN (d) f = 30 mN

(e) f = 40 mN (f) f = 50 mN

Figure 3.15: Deformed configuration and contact force with Nitsche’s method with γ0 = 100.
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(a) f = 10 mN

(b) f = 20 mN (c) f = 30 mN

(d) f = 40 mN (e) f = 50 mN

Figure 3.16: Experimental displacement of the segment (side view).
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Force (mN) Key metrics Penal. Aug. Lag. Nitsche.

10

# time it 200 231 204
# Newton it 629 891 692

Average gap (cm) −2.67 · 10−4 4.76 · 10−7 3.40 · 10−6

Average gap / thickness −5.14 · 10−2 9.14 · 10−5 6.54 · 10−4

20

# time it 400 431 736
# Newton it 1229 1522 2813

Average gap (cm) −5.62 · 10−4 5.46 · 10−8 8.40 · 10−6

Average gap / thickness −1.08 · 10−1 1.05 · 10−5 1.61 · 10−3

30

# time it 600 631 2674
# Newton it 1829 2146 8685

Average gap (cm) −9.98 · 10−4 5.07 · 10−7 7.43 · 10−5

Average gap / thickness −1.92 · 10−1 9.75 · 10−5 1.43 · 10−2

40

# time it 800 831 5814
# Newton it 2663 2768 19545

Average gap (cm) −1.62 · 10−3 2.40 · 10−6 9.12 · 10−5

Average gap / thickness −3.12 · 10−1 4.62 · 10−4 1.75 · 10−2

50

# time it - 1117 11656
# Newton it - 4022 37261

Average gap (cm) - 2.83 · 10−6 9.84 · 10−5

Average gap / thickness - 5.45 · 10−4 1.89 · 10−2

Table 3.7: Comparison of the three methods for different traction forces and γ0 = 1.
Penalty fails to reach 50 mN.

Force (mN) Key metrics Penal. Aug. Lag. Nitsche.

10

# time it 200 209 200
# Newton it 665 938 728

Average gap (cm) −2.86 · 10−5 4.12 · 10−7 2.72 · 10−6

Average gap / thickness −5.51 · 10−3 7.93 · 10−5 5.23 · 10−4

20

# time it 400 409 772
# Newton it 1265 1747 3051

Average gap (cm) −5.96 · 10−5 5.66 · 10−8 8.81 · 10−6

Average gap / thickness −1.15 · 10−2 1.09 · 10−5 1.69 · 10−3

30

# time it 600 609 2689
# Newton it 1865 2552 8766

Average gap (cm) −1.03 · 10−4 5.02 · 10−7 7.24 · 10−5

Average gap / thickness −1.98 · 10−2 9.65 · 10−5 1.39 · 10−2

40

# time it 800 809 5800
# Newton it 2465 3362 20147

Average gap (cm) −1.59 · 10−4 2.39 · 10−6 9.30 · 10−5

Average gap / thickness −3.06 · 10−2 4.60 · 10−4 1.79 · 10−2

50

# time it 1070 1095 11728
# Newton it 3535 4713 39687

Average gap (cm) −2.30 · 10−4 2.83 · 10−6 9.87 · 10−5

Average gap / thickness −4.42 · 10−2 5.44 · 10−4 1.90 · 10−2

Table 3.8: Comparison of the three methods for different traction forces and γ0 = 10.
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Force (mN) Key metrics Penal. Aug. Lag. Nitsche.

10

# time it 200 200 200
# Newton it 744 1531 792

Average gap (cm) −3.02 · 10−6 3.29 · 10−7 1.33 · 10−6

Average gap / thickness −5.80 · 10−4 6.33 · 10−5 2.56 · 10−4

20

# time it 400 400 889
# Newton it 1344 3154 3331

Average gap (cm) −6.18 · 10−6 4.46 · 10−8 6.82 · 10−6

Average gap / thickness −1.19 · 10−3 8.58 · 10−6 1.31 · 10−3

30

# time it 600 600 2849
# Newton it 1946 4701 9376

Average gap (cm) −1.06 · 10−5 4.94 · 10−7 7.02 · 10−5

Average gap / thickness −2.04 · 10−3 9.50 · 10−5 1.35 · 10−2

40

# time it 804 800 5876
# Newton it 2598 6101 21897

Average gap (cm) −1.64 · 10−5 2.37 · 10−6 9.28 · 10−5

Average gap / thickness −3.16 · 10−3 4.57 · 10−4 1.79 · 10−2

50

# time it 1042 1139 11797
# Newton it 3467 8161 41788

Average gap (cm) −2.36 · 10−5 2.88 · 10−6 9.91 · 10−5

Average gap / thickness −4.54 · 10−3 5.54 · 10−4 1.91 · 10−2

Table 3.9: Comparison of the three methods for different traction forces and γ0 = 100.
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3.5 Conclusion and discussion

In this chapter, we introduced a mathematical model for contact mechanics to simulate the
ROTSAC experiment using a realistic geometry. In order to treat contact at the discrete
level, three numerical methods have been investigated. To the best of our knowledge, this
is the first time Nitsche’s method has been applied to 3D-shell models.

Comparing CPU time per Newton iteration in the same conditions and using the same
machine, we have observed that penalty is the fastest, followed by Nitsche (7% slower)
and augmented Lagrangian (10% slower). However, when considering the total CPU time
needed to reach the final force of 50 mN (for instance when the parameter is chosen with
γ0 = 10) in the third numerical example (ROTSAC), we observe the following results: the
penalty method is the fastest, Nitsche requires 12 times and augmented Lagrangian 1.5
times the total simulation time of penalty. This indicates that although the per-iteration
cost is relatively similar across methods, the total computational cost is significantly higher
for augmented Lagrangian and specially for Nitsche.

Nitsche’s method is computationally more expensive in terms of the assembly. This
increased cost arises from the terms involving the first Piola-Kirchhoff stress tensor and
its derivatives in the Jacobian. Additionally, the stress tensor calculations make Nitsche’s
method more difficult to implement compared to the other approaches and the contact
formulation also depends on the chosen hyperelastic law. We also observed that Nitsche
necessitates smaller time steps under high forces, significantly increasing computational
time. In contrast, penalty and augmented Lagrangian avoid this complexity, leading to
simpler and faster assembly of the residual and Jacobian. However, when it comes to solving
the linear system within the Newton iterations, penalty and Nitsche may offer advantages
over the augmented Lagrangian method, which introduces an additional unknown—the
Lagrange multiplier—thereby increasing the system’s size and potentially making the
resolution of the linear system more computationally expensive.

In terms of accuracy, augmented Lagrangian and Nitsche’s methods perform better in
preventing penetration. Both methods offer a more physically realistic solution compared to
the penalty method, where significant penetration is observed at higher forces. Additionally,
the penalty method fails on handling forces beyond 50 mN due to the excessive penetration,
whereas augmented Lagrangian and Nitsche’s methods allow the simulations beyond 50
mN.

In conclusion, penalty offers the advantage of lower computational cost but shows
penetration and limitations at higher forces. Augmented Lagrangian provides more ac-
curate results without penetration and can handle higher forces, although it introduces
an additional unknown, increasing the computational cost for solving the Newton’s sys-
tem. Nitsche’s method, while accurate and capable of handling high forces, is the most
computationally expensive.





Chapter 4

Comparison of Statistical, Machine
Learning, and Mathematical modeling

Methods to Investigate the Effect of Aging
on Dog’s Cardiovascular System

The aim of this chapter is to provide a preliminary comparison of different classes of
methods to automatically detect the effect of aging from in vivo data. The application which
motivated this work is related to safety pharmacology, whose major goal is to determine, in
a pre-clinical phase, whether a drug is potentially dangerous for the health (Guns, 2020). In
particular, we compare statistical, machine learning and mathematical modeling methods.

This work arose in the context of the CEMRACS 2021 summer school, and it is a
collaboration with Elham Ataei Alizadeh (Boehringer Ingelheim Pharma GmbH & Co
KG, Biberach an der Riss, Germany), Haibo Liu (Sorbonne Université, COMMEDIA
team (Inria) and NOTOCORD, Paris, France), Damiano Lombardi (Sorbonne Université
and COMMEDIA team (Inria), Paris, France) Sylvain Bernasconi (NOTOCORD, Paris,
France), Pieter-Jan Guns (Laboratory of Physiopharmacology, University of Antwerp,
Antwerp, Belgium) and Michael Markert (Boehringer Ingelheim Pharma GmbH & Co KG,
Biberach an der Riss, Germany). The results presented in this chapter have been reported
in:

• E. Ataei Alizadeh, S. Costa Faya, H. Liu, D. Lombardi, S. Bernasconi, P.-J. Guns,
M. Markert. Comparison of statistical, machine learning, and mathematical modelling
methods to investigate the effect of ageing on dog’s cardiovascular system. ESAIM:
ProcS, 73: 2–27, 2023. hal-03933957.
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4.1 Introduction

This work has been motivated by some questions arising in safety pharmacology. Safety
pharmacology studies are designed to identify and assess the potential clinical risk of
undesirable drug properties before they enter clinical trials, as described in Redfern et al.
(2002).

Many drug development processes must proceed through several stages to be sure for a
product to be safe, efficacious, and has passed all regulatory requirements. The preclinical
stage encompasses the use of in vitro and in vivo studies to develop a drug that can safely
and effectively be administered for clinical trials. In vivo studies performed in animals
are essential to drug development because they have the ability to evaluate the effects a
drug has on a living organism. A particular care is taken in assessing adverse effects and
drug-drug interactions that cannot be observed in vitro (Brake et al., 2017).

When an animal participates in an experiment in safety pharmacology studies, one can
anticipate that the compound tested might have an effect on the organism. It is therefore
essential to know when the animal can participate again in an experiment after a sufficient
wash-out period. This is of particular importance in cross-over design studies (for details,
the reader can refer to Chris Delaney and Suissa (2009)). Before an animal will be used in
a study, it has to undergo clinical evaluation as well as physiological tests to monitor the
condition its cardiovascular system. When these initial tests are successfully performed the
particular animal can be labelled as “healthy” and participate in the experiment. Age is one
of the factors that has an impact on the function of the cardiovascular system. The effect
of age on cardiovascular function in laboratory dogs can be related to decreased blood
flow, blood velocity, arterial compliance and distensibility, as well as increased ventricular
systolic and diastolic stiffness as a result of prolonged duration of myocardial contraction
phase (see Meurs et al. (1996), Paul-Emile Roy and George Rona (1976), and Templeton
et al. (1979)). In this study, we test the capabilities of several methods to detect the
effect of age using some cardiovascular data collected from laboratory dogs. In addition to
detecting aging, we are interested in determining whether we can find unique individual
fingerprints in the cardiovascular data of the dogs. Roughly speaking, this could provide
some insight on whether aging might impact the interindividual variability.
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Among all the questions that pharmacologists and physiologists have, we have tried to
answer a pair of questions:

(Q1) Can we assess if an animal is getting old? This question can be reformulated as follows:
given its data at an initial time and assuming that its initial state is conforming to
the experimental protocol how far its cardiovascular system is, at subsequent times,
from this initial state?

(Q2) Is it possible to identify an animal by its hemodynamic data by a computer algorithm?

Data about the cardiovascular activity of animals are available over several weeks taken
by telemetry. For instance, each hour of recording can be a few gigabytes for each dog.
Plus, there are variabilities across several weeks of recording. Therefore, it is necessary to
use mathematical methods that can automatically analyze large data sets collected from
those initial tests since it is not possible to analyze them manually.

This is a preliminary work to test different methods to answer these questions using
a large data set from 4 dogs. Then, the methods can be verified and improved in future
work.

4.1.1 Methods

Different viewpoints might be used to address these questions. In this work, we have
compared statistical, machine learning, and mathematical modeling methods to analyze
some in vivo cardiovascular data of 4 dogs. One of the main goals of the project is to
assess which methods perform better on these kinds of tasks. In particular, we compare:

1. Statistical methods: Physiologists and pharmacologists typically use statistical
methods. This technique involves extracting a set of features from the signals and
analyzing them statistically. As a first step, we compute the empirical estimators
mean, median, and other statistical criteria to determine if there is any significant
difference between the cardiovascular function of young and old animals. Two-tailed
Wilcoxon (Mann-Whitney) test is presented to assess the effect of age on the individual
features. The final step in the analysis is the K-Means clustering (which could be
interpreted as an unsupervised learning approach).

2. Machine learning: Given a database of signals and the outcome of the questions,
we can build a map to learn a relationship between the data and the outcome. We
use artificial neural networks, which are typical machine learning algorithms. They
were used for instance in ECG analysis (Hosseini et al., 2006), cardiac arrhythmia
prediction (Adams and Choi, 2012; Silipo and Marchesi, 1998), and drug safety
studies (Basile et al., 2019; Shameer et al., 2018).

3. Mathematical modeling: By exploiting a priori information about the system, we
build a set of equations to simulate the phenomenon under investigation. These
equations provide a way to link observable quantities to the outcome. We use a
parametric 0D model to simulate the global circulation (in the spirit of Liang and Liu
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(2005); Mirramezani and Shadden (2020); Moulton et al. (2017); Segers et al. (1997);
Gul et al. (2016); Gul and Bernhard (2017); Yu et al. (1998)). The parameters of
the model, once calibrated, will make it possible to investigate the changes in the
animals’ cardiovascular system with age.

More precisely, we would like to analyze the advantages and disadvantages of each approach
in terms of accuracy and computational cost.

4.1.2 Structure

In section 4.2 we have presented the experimental data set we have used. In section 4.3 we
have described methods for analyzing the statistics. In section 4.4 we have explained the
Multilayer Perceptron (MLP) method that was implemented to detect the aging of the
dogs and distinguish the dogs. In section 4.5 we have presented the model for the left part
of the heart coupled with a model of the global circulation and the obtained results after
calibration. Finally, some conclusions are given in section 4.6.

4.2 Experimental Data

In this project, we have used cardiovascular data gathered from 4 dogs: two Beagles (Hexe
and Happy) and two Labrador-mix mongrel dogs (Simba and Roxy), involved in safety
pharmacology studies for several years. During the study, dogs are in pairs in a group
housing system. The dogs are calm and in resting mode during the study. A placebo
injection was given to the dogs one hour after the study began. In order to avoid the
effects of animal excitability during this period, the data during administration time have
been excluded. Water is available to them ad libitum, and meals are provided after the
study period ends. While avoiding all disturbances on the conscious animals is not possible
due to the natural environment, the laboratory team managed to minimize cardiovascular
disruption during data collection by creating a calm and regular environment and avoiding
any intrusion or potential impact.

The data are acquired by telemetry from awake and non-anesthetized animals for many
hours (for more details, the reader can refer to Markert et al. (2018)). This data set includes
values of the ECG, Arterial Pressure (AP), and Left Ventricular Pressure (LVP) signals,
recorded every 2 milliseconds. For each dog, we had data corresponding to two different
periods of the dogs’ life: the first one when the dog was 6-7 years old (Historical data), the
second one when it was 8-9 years old (New data). We used the cardiovascular data recorded
when the animal was in a younger and “healthy” state (referred to as "Historical" data)
to compare with the recently recorded data, helping to determine whether this particular
animal is “healthy”. Each data file includes a seven-hour continuous recording of a placebo
cardiovascular safety pharmacology study (pharmacologically inactive substances (Flaten
et al., 1999)).

Concerning the measurement of the arterial pressure, according to Fetics et al. (1999),
the signal was sampled either by a catheter in the abdominal aorta or in the femoral artery.
The LVP is measured by inserting a catheter connected to a fluid-filled transducer into
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the left ventricle (Le et al., 2012). From each complete cardiac beat (which in dogs at
rest is around 0.8 s), we have extracted 9 quantities (those choices of 9 quantities have
been decided by the data provider). All these features have been done by Notocord-Hem™
software. Human supervision and some manual corrections were needed to ensure the
features are correctly extracted (especially for ECG). From the ECG we compute (see
figure 4.1):

1 QT interval in ms.

2 QRS interval in ms.

3 RR interval in ms.

4 PR interval in ms.

From the LVP signal we extract the following parameters:

5 Left ventricle systolic pressure, LVP systolic, measured in mmHg.

6 Left ventricle diastolic pressure, LVP diastolic, measured in mmHg.

7 Maximum of the left ventricular pressure, LVP dpdt(max), measured in mmHg s−1.

From the AP signal we extract:

8 Systolic AP, measured in mmHg.

9 Diastolic AP, measured in mmHg.

Figure 4.1: Cardiac parameter calculation from the raw ECG signal. See Branch (2014).

4.3 Statistical Analysis

In this section, we present the statistical analysis of the data. This has been performed
by using solely the 9 features extracted from the telemetry data. In the next section, we
present the methods that have been used and their results.
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4.3.1 Methodology

The data set consists of 9 cardiovascular features for every cardiac beat for a total amount of
10887 beats for the young and old animals. We had, henceforth, roughly Ns = 104 samples.
The first analysis consists of computing the mean, first quartile, median, third quartile,
and standard deviation for each feature individually by using empirical estimators. Due to
the distribution-free nature of the data, a Mann-Whitney U test with a significance level
of 0.05 was performed to confirm the results and interpretation provided by the statistical
moments estimated (in the spirit of Singh et al. (2015)). The goal was to understand
whether age is influencing the features, individually. In Mann-Whitney test, the U1 and
U2 values were computed as

U1 = n1n2 + n1(n1 + 1)/2−R1,

U2 = n1n2 + n2(n2 + 1)/2−R2.

In these formulas, n1 and n2 represent the sample sizes for the "Historical" sample and
the "New" sample, and R1 and R2 represent the sum of the ranks for the "Historical" and
the "New" cardiovascular sample, respectively.

As a second method, K-Means clustering has been used in order to determine whether
cardiovascular functionality is unique and how age can affect this function (the reader
is referred to Jain et al. (1999); MacKay (2003)). This algorithm was used to identify
homogeneous subgroups within the data, such that the data points within each cluster are
as similar as possible based on euclidean-based distance. Prior to applying the method,
we have normalized the feature values and mapped them into the unit hypercube [0, 1]d.
As a similarity metric, we have used the standard ℓ2,d norm (the Euclidean distance
in renormalized space). The d value for this study is equal to 9 because we have nine
cardiovascular features. The way to assign data points to clusters is to compute the squared
distance between them and the cluster centroid (arithmetic mean of all the data points in
a cluster) at a minimum.

To perform several tests with different purposes using the K-Means algorithm, we
specify a different number of clusters that is estimated in all cases using the clustering gap
method, based on Tibshirani et al. (2001). Let k ∈ N be the number of clusters, we denote
the Euclidean distance between two points Dr, the sum of all pairwise distances would be:
Wk =

∑k
r=1

1
2nr

Dr. The gap statistic is defined as:

Gapn(k) = E∗
n{log(Wk)} − log(Wk),

where E∗
n is the expectation under a sample of size n from the reference distribution. Gap

statistic is computed to estimate the most optimized K for clustering. The number of K is
selected based on the overall behavior of uniformly drawn samples, where the greatest jump
in within cluster distance occurred. For each number of clusters k, the algorithm compares
log(W (k)) with E∗

n{log(Wk)} where the latter is defined via bootstrapping (Davidson and
Satyanarayana, 2003). To eliminate the sampling noise from the data, the optimal K value
will only be determined if the change is larger than the others. Figure 4.3 illustrates how
K-Means clustering can estimate that we have two different data sets for the first data
union of "Historical" and "New" data of one dog as an example.
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As a first step, we have considered, as a data set, the union of the "Historical" and
"New" data for each dog. As the second data union, we have shuffled all the cardiovascular
data of the dogs in both "Historical" and "New" data. Wk has been used to measure the
pertinence of the results derived from K-Means on this database.

In order to determine whether age dominates variability within an individual dog to
a greater or lesser extent, we divided the first data union into two and the second data
union into four groups.

4.3.2 Results from Statistical Analysis

For each cardiovascular feature, we have made box-plot charts to compare the changes over
time between "Historical" and "New" data for each dog in order to dynamically analyze
the effect of aging on each cardiovascular characteristic. Figure 4.2 shows the box-plot
charts1 of the overall QT interval comparison between dogs as an example of the statistical
calculation based on ECG features.

Figure 4.2: QT interval overview of all the dogs at two different ages.

4.3.2.1 Results answering Q1

It has been found that the Mann-Whitney analysis has confirmed that aging has a significant
effect, which has a large and detectable impact on each cardiovascular feature as they
relate to aging. These results are presented in Table 4.1.

To answer Q1, we have provided Table 4.2 that shows the impact of aging on each of
our dogs on a case-by-case basis. In order to gain a clearer understanding of the extent
to which each dog has been affected by aging over time, it is necessary to average out
the changes between "Historical" and "New" data. It has been observed that Simba’s
cardiovascular data has remained relatively stable over time. The cardiovascular feature

1All the charts have been drawn by TIBCO Spotfire® platform.
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Cardiovascular Features Happy Simba Roxy Hexe
U value p-value U value p-value U value p-value U value p-value

LVP Systolic 6.19 · 107 2.2 · 10−16 2.83 · 107 5 · 10−3 4.44 · 107 2.2 · 10−16 4.64 · 107 2.2 · 10−16

LVP Diastolic 1.89 · 107 2.2 · 10−16 1.78 · 107 2.2 · 10−16 4.82 · 106 2.2 · 10−16 1.56 · 107 2.2 · 10−16

LVP dpdt(max) 7.47 · 107 2.2 · 10−16 2.95 · 107 18 · 10−15 3.29 · 107 1.4 · 10−4 1.08 · 108 1.4 · 10−4

QT duration 7.51 · 107 2.2 · 10−16 3.04 · 107 2.2 · 10−16 3.27 · 107 1.4 · 10−3 9.39 · 107 2.6 · 10−2

PR duration 4.42 · 107 1 · 10−4 3.17 · 107 2.2 · 10−16 2.11 · 107 2.2 · 10−16 5.66 · 107 2.2 · 10−16

RR duration 5.65 · 107 2.2 · 10−16 2.82 · 107 1.1 · 10−2 2.39 · 107 2.2 · 10−16 6.29 · 107 2.2 · 10−16

QRS duration 3.39 · 107 2.2 · 10−16 2.53 · 107 2.2 · 10−16 4.97 · 106 2.2 · 10−16 6.78 · 107 2.2 · 10−16

AP Systolic 8.25 · 107 2.2 · 10−16 3.96 · 107 2.2 · 10−16 5.39 · 106 2.2 · 10−16 4.98 · 107 2.2 · 10−16

AP Diastolic 1.93 · 107 2.2 · 10−16 4.01 · 107 2.2 · 10−16 6.02 · 107 2.2 · 10−16 4.36 · 107 2.2 · 10−16

Table 4.1: Two-tailed Mann-Whitney U test to determine the effects of aging on each dog
cardiovascular features.

values of Roxy are opposite to the ones of Happy and Hexe (we should also note that
Happy and Hexe are Beagles, while Simba and Roxy are Mongrels).

LVP Duration AP
Name Data

Systolic Diastolic dpdt(max) QT PR RR QRS Systolic Diastolic
Average

Historical 130.73 -4.63 3173.83 232 126 708 40 136.52 90.79
New 125.61 -1.83 2746.58 218 126 572 42 123.62 104.47Happy

New-Historical -5.12 2.8 -427.25 -14 0 -136 2 -12.9 13.68 -64.0877
Historical 114.86 0.48 2075.2 270 114 1256 40 131.99 86.23

New 115.72 2.19 2075.2 268 112 1258 40 122.53 76.64Simba
New-Historical 0.86 1.71 0 -2 -2 2 0 -9.46 -9.59 -2.0533

Historical 98.75 -3.66 1434.33 262 120 1010 46 104.93 81.22
New 90.69 1.7 1403.81 260 128 1228 60 92.03 62.83Roxy

New-Historical -8.06 5.36 -30.52 -2 8 218 14 -12.9 -18.39 19.2766
Historical 117.55 -4.63 3021.24 262 122 978 44 128.62 84.32

New 120.48 1.586 2136.23 246 120 832 42 130.21 89.66Hexe
New-Historical 2.93 6.216 -885.01 -16 -2 -146 -2 1.59 5.34 -114.9926

Table 4.2: Total median of "Historical" and "New" cardiovascular data parameter for per
each animal and their comparison.

In the next step, K-Means clustering was performed on the merged "Historical" and
"New" data sets for each dog (independently) in order to determine whether aging can
comprehensively change the cardiovascular characteristics of individual animals. To avoid
over-fitting, data points were grouped into chunks, and for each cardiovascular feature the
median of 100 data points was computed.

As a positive outcome of the K-Means clustering test, the data were roughly clustered
according to age. The number of samples that fall into the wrong cluster was computed by
assuming "Historical" data are labeled cluster 1 and "New" data are labeled cluster 2. The
evaluation of the results of this clustering has been shown in Table 4.3. This table shows
the rates of wrong labeled K-Means clustering for each animal in each cluster of "Historical"
and "New". Regarding this table, the accuracy of K-Means clustering for distinguishing
"Historical" and "New" data of Happy, Simba, Roxy, and Hexe are, respectively, 77%, 52%,
87%, and 94%.
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Wrong labeled / Cluster
"Historical" data "New" data Total data

Happy 45/106 = 0.42 0/86 = 0 45/192 = 0.23
Simba 52/84 = 0.61 20/66 = 0.30 72/150 = 0.48
Roxy 7/78 = 0.09 15/82 = 0.18 22/160 = 0.13
Hexe 0/105 = 0 14/103 = 0.13 14/208 = 0.06

Table 4.3: K-Means cardiovascular clustering of one animal in different ages.

4.3.2.2 Results answering Q2

To check if it is possible to identify an animal by its hemodynamic data and answering
Q2, we have considered a data set containing data from two dogs. The purpose of this
test is to examine inter- and intra-dog variability in order to determine if age is more
relevant than individual cardiovascular characteristics. The input data was the union
of 4 data sets, two dogs in two different ages. As soon as the data set is divided into
two clusters by the K-Means algorithm, it is automatically divided by two individual
animals’ cardiovascular data. This result illustrates that each individual animal has unique
cardiovascular characteristics. As shown in Table 4.4, K-Means clusters the cardiovascular
data of each individual dog. The average number of total incorrect classifications was
16 percent, which indicates an 84 percent success rate for distinguishing cardiovascular
data between two individual dogs. The K-Means clustering method is thus capable of
recognizing differences in age, individual animals, and individual files (each animal in
each age group) with acceptable accuracy. Let us point out that if the number of clusters
increases, or if the age, gender, and strain of animals are similar, then the accuracy of the
K-Means clustering is reduced.

Figure 4.3: K-Means clustering indicates the optimal number of clusters using gap for
"Historical" and "New" data combination file for one dog. Gap is within cluster distance,
and number of cluster is considering possible cluster number.
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Wrong labeled / Cluster
Happy Simba Total

Happy-Simba
22/192 = 0.11 20/150 = 0.13 42/342 = 0.12

Happy Roxy Total
Happy-Roxy

0/192 = 0 16/160 = 0.1 16/352 = 0.04
Happy Hexe Total

Happy-Hexe
53/192 = 0.27 38/208 = 0.18 91/400 = 0.22

Simba Roxy Total
Simba-Roxy

0/150 = 0 46/160 = 0.28 46/310 = 0.14
Simba Hexe Total

Simba-Hexe
45/150 = 0.3 75/208 = 0.36 120/358 = 0.33

Roxy Hexe Total
Roxy-Hexe

46/160 = 0.28 0/208 = 0 46/368 = 0.12

Table 4.4: K-Means cardiovascular clustering of two animals in different ages.

4.4 Machine Learning Analysis

Considering the answer to Q1, we would like to detect if the dogs are still healthy by
comparing the "Historical" with the "New" data. We can see this problem either as a
binary classification or a semi-supervised learning problem. Firstly, we have considered a
binary classification. For each dog, the input consists of the set of cardiovascular features
introduced in section 4.2. Given these features, we would like to determine if they were
recorded at the younger age (class 0) or at the older age (class 1) for each dog separately.
If we get a high classification score, we would conclude that their health conditions have
changed. Otherwise, we would consider that they have a similar health condition as when
they were young. We have used an MLP to perform this classification.

Secondly, if we consider the aging assessment as a semi-supervised learning problem,
we could use a Replicator Neural Networks (RNN) method on the cardiovascular signals.
RNN is usually set up to perform anomaly detection in Hawkins et al. (2002): the RNN
takes the raw signals as input and tries to reconstruct the input itself, as usually done
in autoencoders Karpinski et al. (2018). In the present context, this would translate as
follows: we train an RNN model on the "Historical" signals (normal case). Then we can
use trained RNN to reconstruct test samples from "Historical" and "New" signals. By
comparing the errors in the reconstructions, we would like to be able to classify whether
the signal is coming from a young or old animal. Due to the small changes in the signals
and the variabilities between signals, the RNN method is not very successful in performing
the detection of dogs’ age effects and for sake of brevity, we will not discuss any further
the results in this chapter.

Moreover, we would also like to see if we can distinguish 4 dogs by using their cardio-
vascular features (answering Q2). We can view this question as a multi-class classification
problem (see Bisong (2019)). We have tried to classify each dog to see if they are accurately
classified in their class2.

2All the Machine Learning models were implemented in Python using TensorF low™.
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4.4.1 MLP Method used to Analysis In vivo Data

In this section, we tested MLP to answer Q1 and Q2. According to Yan et al. (2006),
MLP is one of the most commonly used artificial neural networks in medical decision
support, aiding in the analysis of cardiovascular data. MLP consists of multiple layers
which include the input layer to receive the features, several hidden layers which are the
true computational engines of the MLP, and an output layer that produces a decision or
prediction results. MLP is often applied to supervised learning problems especially binary
classification.

We can train a set of hidden parameters of MLP that are able to learn the relationships
between input-output. Then, the trained parameters can be optimized by Back-propagation
which computes the gradient of the loss/error with respect to the weights in the network.

We have trained an MLP to discriminate between the "Historical" and "New" state
of 4 dogs to answer the first question. "Historical" and "New" data correspond the two
classes in the binary classification task. "Historical" and "New" data are mixed in the
model training phase. We have used the data set consisting of around 10000 samples of
cardiovascular features for each state of each dog to train the MLP model.

Those features are normalized using MinMaxScaler, explained in Raju et al. (2020).
We have used 80% of the samples to train and validate (with cross validation), and 20%
of samples to test the MLP model. Our MLP model consists of 3 fully connected hidden
layers, which have 9, 6, and, 3 hidden units. The first hidden layer receives 9 cardiovascular
features (LVP Systolic, LVP Diastolic, LVP dpdt(max), RR interval, PR duration, QT
interval, QRS duration, AP Systolic, AP Diastolic). The outputs from each hidden layer
are transformed by a ReLU function and the results in the output layer will be transformed
to a decision boundary by a sigmoid function.

4.4.2 Results from MLP Method Answering Q1

To evaluate the performance of the MLP method, we have computed the success rate which
is defined as the number of correctly predicted samples divided by the total number of
samples of the dogs as in Table 4.5. We have high success rates, 98.24%, 87.40%, 97.81%,
and 98.33% to discriminate between the "Historical" and "New" state of our 4 dogs. As
Simba has the lowest success rate than other dogs, maybe Simba has fewer changes in its
cardiovascular performance compared to the other 3 dogs.

Happy Simba Roxy Hexe
Success Rate 98.24% 87.40% 97.81% 98.33%

Table 4.5: Results from MLP model to discriminate "Historical" and "New" state of the
dogs.

4.4.3 Results from MLP Method Answering Q2

We also would like to check if we can identify a dog by using an MLP, to perform a multi-
class classification. According to de Carvalho and Freitas (2009), multiclass classification
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makes the assumption that each sample is assigned to one and only one label. We have
labelled 4 classes Happy, Simba, Roxy, and Hexe. If there are significant differences in
their cardiovascular features for each dog, we expect the model will have a high score to
label them correctly, which means we can identify a specific dog among the 4. In the
multi-class classification, we have used the same cardiovascular features as input. The
difference between MLP used for binary classification and multi-class classification is in
the output layer, the number of outputs being equal to the number of classes and the
results will be transformed by a softmax function. In the training and testing phase, only
"Historical" data of 4 dogs were used to train and test the multi-class classification model.
From the results reported in figure 4.4, we can conclude that over 93% of the time, we can
identify one dog among 4 dogs and 7% of the time, we miss identifying the dog.

Figure 4.4: Classification results for identifying dogs using MLP method.

4.5 Mathematical Modeling Analysis

In this part of the project, we have considered a 0D model (concerning 0D models the
reader is referred to Liang and Liu (2005); Mirramezani and Shadden (2020); Moulton
et al. (2017); Segers et al. (1997); Gul et al. (2016); Gul and Bernhard (2017); Yu et al.
(1998)) for the left part of the heart coupled to systemic circulation which makes it possible
to describe the main observable hemodynamics quantities and their evolution in time.
Once the data are reproduced, we can calibrate the model by estimating the values of the
parameters. The calibration is performed for the "Historical" state and for the "New"
state of the animal and the values for the parameters in each situation will help to assess
if the dog has changed significantly with age.
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4.5.1 Analog Circuit Model for the Left Ventricle

The heart beat (concerning the physiology the reader is referred to Thiriet and Parker
(2009)) is a two stage pumping action over a period of about one second subdivided in
2 stages: systole and diastole. During systole, the pressure in the left ventricle increases,
exceeding the left atrium pressure. Then the mitral valve closes, the aortic valve opens,
and the blood flows into the aorta and out to the rest of the body. In diastole, the rate
of contraction of the myocardium begins to slow and the aortic valve closes. When the
ventricle relaxes, the pressure in the left ventricle falls and when it decreases below the
pressure in the left atrium, the mitral valve opens and this lets blood flow from the left
atrium to the ventricle.

The goal is to build a 0D model of the left part of the heart coupled to system circulation
by an electrical analogy (Lafta and Hassanain, 2008). The 0D electric circuit model (see
Yu et al. (1998)) for the left ventricle is shown in figure 4.5.

Figure 4.5: Electric circuit model.

The valves are represented by diodes in series with a resistor: Rmv and Dmv for the
mitral valve and Rav and Dav for the aortic valve and Rs is the resistance of systemic
circulation. The coil L represents the inertia of blood in the aorta. The compliance of the
left atrium and systemic circulation are represented by Cla and Cs, respectively. We have
used a time-varying left ventricular compliance Clv(t) to represent the action of the heart
muscle. The elastance E(t) is the reciprocal of the compliance (E(t) = 1/Clv(t)) and it
represents the contractile state of the left ventricle. It relates to the ventricle’s pressure
and volume (detailed in Suga and Sagawa (1974)) according to the expression:

E(t) =
Plv(t)

Vlv(t)− V0
,

where Plv(t) is the left ventricular pressure, Vlv(t) is the left ventricular volume and V0 is
a reference volume. The time variations in this model are due to the cyclical nature of the
ventricle elastance which changes as a function of time within one cardiac cycle. In our
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case, we are using the ECG to model the activation of the ventricle and, more precisely, the
peaks of the QRS complex. The QRS complex (see figure 4.1) corresponds to the electrical
forces generated by ventricular depolarization and represents the pumping action of the
ventricles. From the ECG, we save the times at which the R peaks of the QRS complex
occur and this is what we call the activation times of the ECG.

We approximated E(t) by the following expression:

E(t) =

m∑

k=1

a · [tanh [b · (t− wk)]− tanh [b · (t− wk − d)]] + h,

where m ∈ N∗, a, b, d and h are constants, t ∈ R is the time and w ∈ Rm are the activation
times of the ECG.

In order to get the equations for the circuit, three different cases have been considered:

• Case 1: Filling. The mitral valve is opened and the aortic valve is closed, so the
left ventricle is being filled.

• Case 2: Ejection. The mitral valve is closed and the aortic valve is opened, so
blood is being ejected from the left ventricle.

• Case 3: Isovolumic phase. Both valves are closed and the capacitor has either
just being filled (isovolumic contraction) or emptied (isovolumic relaxation).

Each phase of the left ventricle’s operation can be modeled by a system of linear
ordinary differential equations (ODEs). However, the entire system is nonlinear because
each diode has two states, leading to three different cases: the first diode is on and the
second is off, the first diode is off and the second is on, or both diodes are off. Each case
is modeled by a different equivalent circuit since, when a diode is off, it acts as an open
circuit, and when it is on, it behaves as a short circuit.

The system of ODEs has been derived by applying Kirchhoff’s Current Law and Ohm’s
Law (the reader is referred to Dorf and A. Svoboda (2006) for an overview on the topic) to
the analog circuit model as follows:

CASE 1: If Pla(t) > Plv(t) and Plv(t) < Ps(t)

For the first node, with left atrial pressure (LAP) Pla(t), we have that

Cla
dPla

dt
=

Plv − Pla

Rmv
− Pla

Rs
.

For the one in the middle with value Plv(t)

Clv
dPlv

dt
+ Plv

dClv

dt
− P0

dClv

dt
=

Pla − Plv

Rmv
,

and since Elv(t) = 1/Clv(t), we can rewrite the previous expression as

dPlv

dt
= E

(
Pla − Plv

Rmv

)
+

Plv

E

dE

dt
− P0

E

dE

dt
,
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where P0 ∈ R is just a reference value. Then, for the node on the right, with arterial
pressure Ps(t),

Cs
dPs

dt
=

Pla − Ps

Rs
,

and, for the aortic flow qs(t)

dqs
dt

= 0.

The system of equations for the filling phase is then





Cla
dPla

dt
=

Plv − Pla

Rmv
− Pla

Rs
,

dPlv

dt
= E

(
Pla − Plv

Rmv

)
+

Plv

E

dE

dt
− P0

E

dE

dt
,

Cs
dPs

dt
=

Pla − Ps

Rs
,

dqs
dt

= 0.

CASE 2: If Plv(t) > Pla(t) and Plv(t) > Ps(t)

Proceeding in an analogue way, we get the following system of ODEs





Cla
dPla

dt
=

Ps − Pla

Rs
,

dPlv

dt
=

Plv

E

dE

dt
− Eqs −

P0

E

dE

dt
,

Cs
dPs

dt
=

Pla − Ps

Rs
+ qs,

dqs
dt

=
Plv − Ps

L
− qs

L
Rav.

CASE 3: If Plv(t) > Pla(t) and Plv(t) < Ps(t)

In this case, both valves are closed (both diodes are off) and there is no current flow.
Then the equations are





Cla
dPla

dt
=

Ps − Pla

Rs
,

dPlv

dt
=

Plv

E

dE

dt
− P0

E

dE

dt
,

Cs
dPs

dt
=

Pla − Ps

Rs
,

dqs
dt

= 0.
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4.5.2 Results from Mathematical Modeling

To solve the equations in each case according to time we have used a backward differentiation
formula (BDF) solver that is implemented in the Python built-in solver odeint (see Virtanen
et al. (2020) and Hindmarsh and Petzold (2005) for more details). In order to solve the
model, we need to give as input the parameters (Rs, Rmv, Rav, Ca, Cs, L, P0, a, h) and the
peaks of the ECG. Then we get as output the LVP, the AP, the LAP and the aortic flow.

To obtain the optimized parameters for each dog we have used the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) optimization algorithm that is implemented in
Python in the pycma module (Hansen, 2016). We need to provide an initial estimation
of the parameters and the experimental data for the AP, LVP and ECG as input. The
initial standard deviation was set to σ0 = 0.4, and we have used a population size 1000
times larger than the default value. The objective function needs also to be specified. We
have chosen the following function to be minimized

J =

√√√√
n∑

i=1

∣∣∣P (i)
lv − P̂lv

(i)
∣∣∣
2
+
∣∣∣P (i)

s − P̂s
(i)
∣∣∣
2
,

where P
(i)
lv is the experimental value of the left ventricle pressure at each time, P̂lv

(i) is the
predicted value of the left ventricle pressure at each time, P (i)

s is the experimental value of
the arterial pressure at each time, P̂s

(i) is the predicted value of the arterial pressure at
each time and n ∈ N∗.

The output of the CMA-ES algorithm are the optimized parameters of the model.

4.5.2.1 Results answering Q1

For each dog, we have estimated the parameters for the "Historical" and "New" state.
Table 4.6 shows the optimized model parameters for each dog at both times. The solution
of the model for its corresponding parameters for each dog is plotted in figures 4.6, 4.7, 4.8
and 4.9. Although the heart pace can look irregular in figures 4.6-4.9, the signal cannot
be considered arrhythmia since dogs have a pronounced vagal tone which leads to this
“normal” abnormal rhythm and this has no clinical relevance.

We computed the difference between the values predicted by our model and the values
observed. For that purpose, we identified the local maxima of the LVP and computed the
difference between the real signal and the simulated one at each peak (local maxima) for
the LVP. The relative error is

ξ(Plv) =

√
1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1(yi)

2
,

where y is the value of the pressure at each peak in the true signal, ŷ is the value in the
predicted signal and n ∈ N∗. For the AP we have taken into account not only the difference
between maxima, but also the one between minima

ξ(Ps) =

√
1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1(yi)

2
+

√
1
n

∑n
i=1(wi − ŵi)2

1
n

∑n
i=1(wi)2

,
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where w is the value of the pressure at each minimum peak in the true signal, ŵ is the
value of the pressure at each minimum peak in the predicted signal and n ∈ N∗.

Parameters Happy "H" Happy "N" Simba "H" Simba "N" Roxy "H" Roxy "N" Hexe "H" Hexe "N"
Rs [mmHg · s/cm3] 1.62 · 10−3 1.20 · 10−1 8.06 · 10−2 2.67 · 10−1 8.78 3.87 1.45 · 10−3 6.26 · 10−2

Rmv [mmHg · s/cm3] 2.06 · 10−6 1.75 · 10−2 5.12 · 10−5 1.47 · 10−4 1.26 · 10−1 1.12 · 10−2 7.02 · 10−7 7.38 · 10−3

Rav [mmHg · s/cm3] 1.85 · 10−5 1.18 · 10−3 6.33 · 10−4 2.45 · 10−3 3.57 · 10−4 8.18 · 10−4 3.55 · 10−6 2.95 · 10−4

Ca [cm3/mmHg] 3.65 · 104 7.01 1.36 · 102 5.18 · 101 2.61 · 10−1 1.72 4.59 · 104 1.0808 · 101
Cs [cm3/mmHg] 1.21 · 103 9.39 2.99 · 101 9.27 3.26 · 10−1 9.67 · 10−1 1.71 · 103 1.63 · 101

L [mmHg · s2/cm3] 1.68 · 10−7 9.18 · 10−6 1.11 · 10−5 5.26 · 10−5 1.98 · 10−4 1.60 · 10−4 6.30 · 109 3.41 · 10−6

P0 [mmHg] 1.66 · 104 6.41 · 101 3.05 · 103 7.71 · 102 1.63 · 10−1 9.52 · 10−1 2.25 · 103 3.16 · 101
a [mmHg/cm3] 9.08 · 10−3 6.90 · 10−1 9.27 · 10−2 1.95 · 10−1 1.07 · 101 2.39 5.36 · 10−3 2.87 · 10−1

h [mmHg/cm3] 1.12 · 10−2 0.00 6.92 · 10−2 6.07 · 10−2 3.36 · 10−3 3.87 · 10−3 1.23 · 10−3 1.40 · 10−6

Relative errors
ξ(Ps) 10.83 % 10.56 % 6.39 % 9.39 % 5.22 % 8.53 % 10.13 % 9.51 %
ξ(Plv) 8.38 % 4.11 % 8.94 % 3.99 % 3.51 % 7.68 % 6.17 % 4.17 %

Table 4.6: Model parameters (from left to right) for Happy "Historical" (2015), Happy
"New" (2018), Simba "Historical" (2018), Simba "New" (2021), Roxy "Historical" (2018),
Roxy "New" (2021), Hexe "Historical" (2018) and Hexe "New" (2020). The relative error
for the LVP and for the AP is also shown for each dog in both states ("Historical" and
"New").

(a) AP and LVP for Simba 2018 ("Historical") (b) AP and LVP for Simba 2021 ("New")

Figure 4.6: Experimental data compared with the model prediction for Simba.

We want to address if the animals are getting old or not by the change in the parameters
in the electrical model. To check that, we have made the following steps:

1. We have computed the optimized parameters of the model for each dog in the
"Historical" state and also in the "New" state (they are shown in Table 4.6).

2. Afterwards, we have run the parameter optimization in the 0D model for each dog
in the "New" state considering as initial guess the optimized parameters for the
"Historical" state. The purpose of doing this is to see if having as initial test the
parameters of the "Historical" state, the optimizer could find good values for the
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(a) AP and LVP for Happy 2015 ("Historical") (b) AP and LVP for Happy 2018 ("New")

Figure 4.7: Experimental data compared with the model prediction for Happy.

(a) AP and LVP for Hexe 2018 ("Historical") (b) AP and LVP for Hexe 2020 ("New")

Figure 4.8: Experimental data compared with the model prediction for Hexe.

"New" state. The model prediction after the optimization is shown in green in figure
4.10. The initial guess is shown in orange in the same figure.

3. We have also directly solved the model in the "New" state, with the parameters
of the "Historical" state. The purpose is to see if we can match the real data in
the "New" state with the optimized parameters of the "Historical" state (without
running the optimization). This is plotted in figure 4.10 in orange.

After repeating the simulations for several chunks of beats, we have observed that
Simba barely changes. With the optimized parameters in the "Historical" state we can
reproduce the data in the "New" state. However, we have observed significant changes
for Happy, Roxy and Hexe. In Happy and Hexe we have observed that as the dogs are
getting older the resistance increase and the capacitance decrease as a general tendency.
The capacitance gives us the ability of the vessels to get elastic and since the capacitance
decrease, the vessels become less elastic with the years. On the contrary, we have observed
in Roxy a different tendency. Roxy has experienced a decrease in the resistance and an
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(a) AP and LVP for Roxy 2018 ("Historical") (b) AP and LVP for Roxy 2021 ("New")

Figure 4.9: Experimental data compared with the model prediction for Roxy.

increase in the capacitance which is the opposite behavior to that of in Hexe and Happy
and may be interpreted that her condition has improved with age.

To answer properly Q1, we need to set a threshold of the error that determines that
the animal is changing with age. In other words, at which relative error do we claim that
the "Historical" parameters do not fit the "New" state because the dog has changed? To
establish that threshold, we have solved the model for each dog for several chunks with the
parameters of Table 4.6. The maximum of the error that we got for each animal, is going
to be our threshold to claim whether the dog experienced changes with age or not. The
thresholds to determine if the model is fitting the data are 14% (Happy), 15% (Simba),
16% (Roxy) and 13% (Hexe).

To study the accuracy of the mathematical modeling method answering Q1, we have
solved the model for each dog with our calibrated parameters in other chunks of beats than
the ones used for setting the threshold. First, we have considered chunks in the "Historical"
state and we have used the "Historical" parameters to solve the model (same applies for
the "New" state). If we get a relative error that is less than the threshold, then it means
that the model has worked. But if we get a relative error that is bigger than the threshold,
it means that the model suggests that the dog changed but it is a mistake since we are just
using the calibrated "Historical" parameters but for a different chunk. We have repeated
this computation for a certain number of chunks and we have computed the success rate
(number of correctly predicted chunks divided by the total number of tested chunks), that
was always higher than 95%.

Therefore, we can conclude that we are able to identify from the parameters if a dog is
changing with age or not.

4.5.2.2 Results answering Q2

The second question that we wanted to answer is if we can discriminate between dogs. If
we look at the optimized parameters of the model that are shown in Table 4.6, we can
see that they substantially change between different dogs. We have solved the model at a
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(a) AP and LVP for Happy 2018 starting with
parameters of Happy 2015

(b) AP and LVP for Hexe 2020 starting with
parameters of Hexe 2018

(c) AP and LVP for Simba 2021 starting with
parameters of Simba 2018

Figure 4.10: Experimental data compared with the model prediction when we start the optimization
from the optimized "Historical" parameters as initial guess.

given state ("New" or "Historical") with the data of a given dog but using the optimized
parameters for the same state but for another dog. The result of doing that for every dog,
was that the relative error in the left ventricular pressure (ξ(Plv)) was sometimes below
the values of the thresholds but the value for the relative error in the arterial pressure
(ξ(Ps)) was always above 32 % (higher than the thresholds).

Although it would be necessary to do the study with a larger number of chunks in order
to withdraw a strong conclusion, it is already possible to spot some differences between the
dogs since the calibrated parameters for one dog can never reproduce the data of a different
one. Therefore, we can claim that it is possible to identify an animal by its hemodynamic
data after doing the calibration of the model since with the optimized parameters of a dog,
it is not possible to reproduce the data of another one.
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4.6 Discussion

In this chapter, we have tried to analyze some in vivo experiments data for addressing the
effect of aging in an animal by using statistical, machine learning and mathematical modeling
methods. On the whole, we are able to identify some changes in dogs’ cardiovascular data
in the "New" state compared to the "Historical" state. Moreover, we can discriminate not
only between "New" and "Historical" state of the dog, but also distinguish one dog among
the others.

In terms of accuracy, cost, and robustness, we have compared the advantages and
disadvantages of each method. Although the way how we answer the questions is very
different in mathematical modeling and in statistical and machine learning approaches, we
can set a link on how to compare the accuracy of the methods. With respect to the answer
to question Q1 in the statistical method, changes between the "New" and "Historical"
state of cardiovascular data for each dog in a positive or negative direction are always
measurable, as shown in the statistical results. However, the K-Means clustering method
could recognize and cluster these changes for Happy, Simba, Roxy, and Hexe with an
accuracy of 77%, 52%, 87%, and 94%, respectively. Machine learning method can correctly
(above 97% for Happy, Roxy, and Hexe) distinguish between the "New" and "Historical"
state of the dog. When "New" and "Historical" states are more similar for Simba, the
error of the machine learning method would be higher (12.60%). Regarding mathematical
modeling, we can see that the relative error between the values predicted by our model
with the optimized parameters and the values observed, is typically below the thresholds.
The accuracy of this approach was above 95%.

According to question Q2, K-Means clustering accurately identified 84% of dogs among
four cardiovascular data of two dogs of different ages. Machine learning method can
identify one dog among 4 dogs with more than 93% accuracy. To test the accuracy of the
identifiability of the dogs with the mathematical modeling approach, we had the same logic
as the one with aging but we have tried the calibrated parameters of one dog on another
dog and see if they could fit. It was never the case so the accuracy in this case is around
100%.

Regarding the cost and robustness, K-Means and MLP use the extracted cardiovascular
features as input and they would require computational cost in the feature extraction
process. Considering that the number of samples and the size of the input is not large,
K-Means only takes very small computational cost. We could also train an MLP with high
accuracy (above 93%) and very little training cost (less than 20 minutes). In particular,
MLP is robust to beat-to-beat variability and provides a promising result for the above
biological questions. Regarding the computational cost for mathematical modeling, it
requires a light pre-processing of the data. Before running the optimization, the only thing
we need to do is to extract the activation times of the ECG and this is almost instantaneous.
However, the optimization process to obtain the parameters of the model takes on average
7 hours, although it depends a lot on the initial guess that we consider. Once we have the
parameters, model integration in time is cheap from a computational point of view (few
seconds). Regarding the robustness of the parameter estimation procedure in mathematical
modeling, we have tried so far to run the model with the same parameters for other intervals
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to see if we are able to reproduce other windows of time with the parameters fitted from
one chunk. Usually, we are able to fit other time intervals if we do not go very far from the
original one. It is also important to take into account that if the activity of the dog changes
(if it is playing, eating, making digestion...) the parameters could change. In the future,
we would like to get the model parameters for a larger number of chunks and analyze
their variability of them in the "New" and "Historical" states in order to give a reliable
interval for the parameters in each state and to have a better notion of the accuracy of
this approach. The same applies for the identifiability of each dog in order to know what
is the interval in which the parameters move in each dog. In fact, the parameters may
significantly change between different dogs because it is possible that there are several
combinations of parameters that fit the data. As stated before, it would be necessary to
do a study with a larger set of chunks in order to analyze in detail the variability of the
parameters. This will be the object of a further investigation. However, we could already
spot differences between the animals based on the parameters (the parameters of a dog do
not reproduce the data of another one). Regarding the aging process, it is also possible to
assess if the dog is getting old (excluding Simba, we have shown that with the parameters
of the "New" state we were not able to fit the data in the "Historical" state).

4.6.1 Limitations and perspectives

The limitation of the statistical algorithms is that when the number of animals is high or
strains and genders of dogs are similar, the accuracy may decrease. Statistical methods are
modelled using extracted features which require computational resources and the number
and choices of features may have an impact on the analysis of the results (missing some
information from the raw signals).

Similarly, MLP needs extracted features as input which other types of neural networks
like Convolutional Neural Network (CNN) in Jun et al. (2018) do not. CNN can process and
learn the important parameters from the signals directly to perform a binary classification.
By using CNN, we can avoid the feature extraction process step. However, as the dimension
of the signal data is usually high, the CNN method would need more training costs. We
can also consider the autoencoder method calibrated by some cardiovascular features to
do anomaly detection like in Dau et al. (2014) to perform a semi-supervised learning. In
general, the neural network method has a "black box" nature. This method can’t help us
to understand the mechanism of dogs’ cardiovascular system. So we won’t be able to use
it to answer some questions like how much and which element of cardiovascular function
has changed. However, in a mathematical modeling approach, the parameters have a link
with age which can give us some information related to how age changes cardiovascular
functionality (that is to say if the dog gets older or younger). Moreover, if the number of
dogs increases in the future, which means the number of classes also increases, the accuracy
of correctly identifying the dogs decreases for machine learning and statistical methods.
To test the neural network method and statistical method for a larger number of dogs,
we need to find a training strategy that can include enough dogs and acceptable model
accuracy. For the mathematical modeling method, it is necessary to do the optimization of
the parameters for each dog in each state ("Historical" and "New") and this process takes
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a lot of time. Consequently, if the number of dogs is high, it will be computationally very
demanding in terms of time to answer the fore-mentioned questions.

From the future perspective, we would like to take into account the data of more dogs
to test our methods. It is also very important from the mathematical modeling point of
view to do the study with more chunks to be able to perform classification tasks on the
parameters. We would also like to work on more experiments with different species and
strains to gather more information about the effect of aging on cardiovascular performance.
Discovering the impact factors on cardiovascular functionality helps us to understand the
reason why some animals have more changes in their cardiovascular data by comparing
with others.





Conclusions and perspectives

In this thesis, we have considered the modeling and numerical simulation of the effects of
drugs on cardiovascular tissue, integrating experimental data within the context of safety
pharmacology.

In Chapter 2, we introduced a mathematical model designed to capture both vaso-
constriction and vasodilation, providing insight on the mechanical behavior of arterial
segments and the role of smooth muscle cells (SMCs) in arterial stiffness. This model
combines passive hyperelasticity with active SMC contributions to simulate vascular dy-
namics. Initially, we considered a 2D-shell model, but found that it was insufficient to
fit the experimental data, as it did not account for variations across tissue thickness and
did not allow the use of general hyperelastic laws. To circumvent these shortcomings,
a 3D-shell model has been considered, using general 3D hyperelastic laws, particularly
the Ogden model, to handle high forces and nonlinear strain-stress relationships. The
motivation behind the mathematical model proposed in Chapters 2 and 3, is the simulation
of an ex vivo setup called ROTSAC (Leloup et al., 2016), designed to study arterial stiff-
ness. The ROTSAC experiment was mainly developed to study elastic behavior of aortic
segments while stretched at physiological frequencies and amplitudes. We first considered
a simplified geometry of the ROTSAC setup, based on its symmetry, that involved a single
lateral side of the tissue mounted on the two parallel hooks, assumed to be flat in the
stress-free configuration. We estimated model parameters using an optimization algorithm
and explored two distinct scenarios to study the impact of active SMC contributions to
arterial stiffness. Our results indicated that alterations in arterial mechanics are primarily
driven by SMC activity rather than intrinsic tissue properties. Additionally, the model was
validated against experimental data and tested under pressure conditions beyond those
used for parameter estimation, which is an indicator of its predictive capabilities.

In Chapter 3, we introduced a comprehensive model of the ROTSAC setup, including
a realistic geometry of the experiment and the contact phenomena between the tissue and
the supporting rigid hooks. To this purpose, three different numerical methods for contact
were explored: augmented Lagrangian, Nitsche and penalty methods. A salient feature
of the proposed numerical study is that it includes a combination of Nitsche’s method
with a 3D-shell model, which is rather unusual in the literature. The penalty method
is the easiest to implement among the three, but it suffers from accuracy issues due to
the lack of strong consistency. Moreover, it is too sensitive to the choice of the penalty
parameter: if it is too small, it causes difficulties with Newton’s method convergence; if too
high, it results in excessive penetration. The augmented Lagrangian method is strongly
consistent but introduces an additional unknown. Nitsche’s method is also consistent and
avoids additional unknowns, but it is more challenging to implement. Our findings showed
that both the augmented Lagrangian and Nitsche’s methods exhibited robustness with
respect to the magnitude of the applied forces compared to the penalty method. However,
the penalty method, despite allowing penetration and facing limitations at higher forces,
offered the advantage of lower computational costs.
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In Chapter 4, we analyzed real in vivo experimental data provided by Boehringer
Ingelheim Pharma GmbH & Co. KG to assess the effects of aging on dogs, using statistical
methods that are currently employed at the company, along with machine learning and
mathematical modeling approaches. In this chapter, we proposed a simple parametric
0D model for the left part of the heart coupled to systemic circulation, effectively linking
observable cardiovascular quantities to aging, which is associated with increased arterial
stiffness. This model allowed us to estimate parameters for both the new and historical
states of the animals, revealing changes in their cardiovascular systems.

There are several possible directions for extending this work. Among them we can
highlight the following:

• The mathematical models introduced in Chapters 2 and 3 could be further refined
by incorporating plasticity effects in the case of extreme loads, which may improve
the accuracy of parameter estimation, particularly at higher pressure ranges.

• A fundamental limitation of the proposed models is that they assume a monolayer
structure in the vessel wall. More realistic multilayer models of the aortic wall could
be explored.

• The parameter estimation and validation procedures from Chapter 2 could be per-
formed with the contact mechanics model from Chapter 3 to assess whether this
leads to improved experimental data reproduction.

• While we have focused on unilateral contact between a 3D-shell and a rigid solid,
it would be worthy to explore bilateral contact scenarios involving two 3D-shells.
Comparing in some known benchmarks, augmented Lagrangian, Nitsche and penalty
methods would be a valuable numerical study that we plan to carry out shortly.

• The study of aging effects on the cardiovascular system, as presented in Chapter
4, could be expanded by including data from a larger cohort of dogs and exploring
different breeds to further validate the methods developed in this work.

• The parameter estimation performed on the 0D model of the left heart in Chapter 4,
could be extended by analyzing additional chunks of data, potentially enabling the
use of parameter-based classification techniques.



Appendix A

Computer implementation details
(Chapter 3)

A.1 Analytical ray-tracing

Since we have a simple parametrization of the master surfaces ΓR
C1,t

and ΓR
C2,t

of the hooks,
which are rigid bodies, the ray-tracing projections π1 and π2 can be evaluated analytically.

Let us consider yt = xt+anφ, with a ∈ R+, as the parametric equation of the half-line
with direction nφ and origin xt = φ(x), where xt ∈ ΓC1,t and x ∈ ΓC1 . Due to the
intrinsic symmetry of the configuration, we consider a section of the rigid body obtained
by cutting the lateral surface with a plane parallel to the base of the cylinder, resulting
in a circumference. The equation of the circumference with radius rh and center at rc
can be expressed as (yt − rc) · (yt − rc) = r2h. The intersection between the line and the
circumference occurs at (φ(x)− rc + anφ) · (φ(x)− rc + anφ) = r2h, from which we can
define

∆ = ((φ(x)− rc) · nφ)
2 − ∥nφ∥2(∥φ(x)− rc∥2 − r2h),

and solve for a obtaining:

a(x) = −(φ(x)− rc) · nφ ±
√
∆.

The possible scenarios are:

• ∆ > 0: There are two distinct real solutions, and we consider the smaller one.

• ∆ = 0: The quadratic equation has a single solution.

• ∆ < 0: There are no real solutions; hence, there is no contact.

For cases where ∆ ≥ 0, the points of intersection on the hook are given by y(x) =

φ(x) + a(x)nφ.
Considering yt = xt + a nφ, with xt = φ(x), where xt ∈ ΓC2,t and x ∈ ΓC2 , i.e.

belonging to the moving hook, the detection follows similarly, with the equation of the
circumference given by (yt − (rc + s)) · (yt − (rc + s)) = r2h, with s = sey the vertical
displacement, so that we have:

∆ = ((φ(x)− rc − s) · nφ)
2 − ∥nφ∥2(∥φ(x)− rc − s∥2 − r2h),

and
a(x) = −(φ(x)− rc − s) · nφ ±

√
∆.



108

A.2 Time adaptivity

A time adaptivity algorithm, (see, e.g., Kamensky et al. (2018)), dynamically adjusts the
time step based on the convergence behavior of the solution. Specifically, it reduces the
time step when need to ensure accuracy, and increases it during phases of rapid convergence
to expedite computation.

Throughout this discussion, the number of iterations required by Newton’s method is
denoted by it. We define the following parameters to control the time adaptivity procedure:

• ∆tmax: the maximum allowable time step;

• Icoarse: the threshold number of Newton iterations indicating rapid convergence,
suggesting that the time step is unnecessarily small;

• Ifix: the number of iterations during which the time step remains fixed after being
coarsened;

• its: the number of consecutive time steps taken with the same time step size.

The proposed time adaptivity algorithm is outlined in Algorithm 1.

Algorithm 1: Time Adaptivity Algorithm
Parameters : ∆tmax, Icoarse, Ifix

Initialize ∆t← ∆tmax and its ← 0;
while t < T do

Solve the nonlinear system at time t ;
if Newton converged in it iterations then

if it < Icoarse and its > Ifix then
∆t← min(2∆t,∆tmax);
its ← 0;

end
else

its ← its + 1;
end

end
else

t← t−∆t;
∆t← ∆t/2;
t← t+∆t;
its ← 0;

end
end
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A.3 Directional derivatives of the gap function

The optimality system (3.13) involves the directional derivatives of the gap functions g1(d)
and g2(d, s) with respect to the displacement d in the virtual direction δd, and for g2,
with respect to the translation s in the virtual direction δs. Moreover, to compute the
contribution of the contact terms to the tangent problem in Newton’s method, not only
the directional derivative of a gap function is required, but also the directional derivatives
of other quantities such as xt = φ(x) and nφ.

In order to obtain an explicit relation for the directional derivative of the gap function,
we start by considering the directional derivative of yt = π(xt), taking into account its
dependence on both the deformation φ and the coordinate y, with y itself being a function
of φ and possessing its own directional derivatives.

A point yt in the deformed configuration, corresponding to the point y in the reference
configuration, can be expressed via the transformation φ as:

yt = y(d) + d (y) , where y = φ−1(yt). (A.1)

The directional derivative of yt with respect to the displacement d in direction δd, denoted
as Ddyt(d)[δd], is given by:

Ddyt[δd] = lim
ε→0

yt(d+ εδd)− yt(d)

ε
, (A.2)

when the limit exists. By replacing (A.1) in (A.2), the directional derivative (A.2) can be
written as:

Ddyt[δd] = lim
ε→0

y (d+ εδd)− y (d) + d (y (d+ εδd))− d (y (d)) + εδd(y)

ε

= Ddy[δd] +∇d ·Ddy[δd] + δd (y)

= δd (y) + (I +∇d) ·Ddy[δd], (A.3)

where I is the identity.
The point yt can alternatively be expressed, using the projection operator π, as:

yt = π(φ(x)) = x+ d(x) + g(d)nφ,

and therefore, its directional derivative with respect to the displacement d in the direction
δd is given by:

Ddyt[δd] = δd(x) +Ddg[δd]nφ +Ddnφ[δd]g. (A.4)

Finally, combining (A.3) and (A.4) we have:

δd(y) + (I +∇d) ·Ddy[δd] = δd(x) +Ddg[δd]nφ +Ddnφ[δd]g. (A.5)

Since Ddy[δd] is tangent to ΓR
C , then (I +∇d)Ddy[δd] is tangent to ΓR

C,t and, therefore,
orthogonal to nπ. Multiplying (A.5) by nπ, we obtain:

Ddg[δd] =
−nπ

nπ · nφ
(δd(x) + gDdnφ[δd]) . (A.6)
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It remains to evaluate Ddnφ[δd]. Let us define, for α ∈ {1, 2}, the vectors d∗,α =

[d1,α,d2,α,d3,α] ∈ R3, where di,α = ∂di
∂aα

. The normal nφ can be written as:

nφ =
a3,t

∥a3,t∥
=

a1,t × a2,t

∥a1,t × a2,t∥
=

(a1 + d∗,1)× (a2 + d∗,2)

∥(a1 + d∗,1)× (a2 + d∗,2)∥
.

Consequently, the directional derivative of nφ in direction δd is given by:

Ddnφ[δd] =
1

∥a3,t∥
Dda3,t[δd] + a3,tDd

1

∥a3,t∥
[δd]. (A.7)

Moreover, treating the two terms in (A.7) separately, we have:

Dda3,t[δd] = δd∗,1 × a2,t + a1,t × δd∗,2, (A.8)

and
Dd

1

∥a3,t∥
[δd] = Dd

1
√
a3,t · a3,t

[δd] = − 1

∥a3,t∥3
a3,t ·Dd(a3,t)[δd]. (A.9)

Hence, using (A.7)-(A.9) and the relations a3,t ·b = ∥a3,t∥ (nφ ·b) and nφ ·b = (nφ⊗nφ)b,
for every b ∈ R3, we get:

Ddnφ[δd] =
1

∥a3,t∥
(I − nφ ⊗ nφ)(δd∗,1 × a2,t + a1,t × δd∗,2). (A.10)

In order to obtain the expression for the directional derivatives of the gap function with
respect to the translation s := sey, where ey is the unit vector in the vertical direction
and s(t) ∈ R. We consider a generic point yt in the deformed configuration that lies
on the potential contact boundary. Similarly to the previous case, the point yt can be
obtained from a point in the reference configuration y through the transformation φ and
the translation s as follows:

yt(d, s) = y(d, s) + s.

The directional derivative of yt with respect to s reads as:

Dsyt(d, s)[δs] = lim
ε→0

y(d, s+ εδs)− y(d, s) + (s+ εδs)− s

ε

= Dsy(d, s)[δs] + δs. (A.11)

On the other hand, yt can be expressed, using the projection operator π, as:

yt(d, s) = x+ d(x) + g(d, s)nφ,

and therefore, its directional derivative with respect to the translation s in the direction
δs is given by:

Dsyt(d, s)[δs] = Dsg(d, s)[δs]nφ. (A.12)

Combining and (A.11) and (A.12), we obtain:

Dsg(d, s)[δs]nφ = Dsy(d, s)[δs] + δs.

Multiplying the previous expression by nπ, taking into account that since Dsy[δs] is
tangent to ΓR

C , we have nπ ·Dsy[δs] = 0, we get:

Dsg(d, s)[δs] =
nπ

nπ · nφ
δs. (A.13)
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A.4 Tangent problem derivation

In order to address the numerical resolution of the highly nonlinear contact problems
(3.20), (3.22), and (3.26), Newton’s method is employed. At each time step t (omitted to
simplify the notation), this method requires the iterative solution of a tangent problem,
which is formulated as:

〈
Dd,λ2,λ1,sR(dn

h, λ
n
2,h, λ

n
1,h, s

n)[δd, δλ2, δλ1, δs],vh, µ2,h, µ1,h

〉
=

−
〈
R(dn

h, λ
n
2,h, λ

n
1,h, s

n),vh, µ2,h, µ1,h

〉
,

where R(dn
h, λ

n
2,h, λ

n
1,h, s

n) denotes the residual of the system and
Dd,λ2,λ1,sR(dn

h, λ
n
2,h, λ

n
1,h, s

n) represents the Jacobian matrix. In this context, n

refers to the current iteration of the Newton method. The solution to this equation
provides the necessary update for the unknowns (dn

h, λ
n
2,h, λ

n
1,h, s

n), ensuring convergence
toward an equilibrium state at each time step. The complete Newton method is presented
in Algorithm 2.

In the following sections, we will focus on deriving the expressions for the Jacobian
and residual contributions specifically related to the contact terms for each method. This
involves computing the derivatives of quantities that include the positive and negative part
operators.

To begin, recall the definition of the negative part operator:

[x]− := max{−x, 0},

which can alternatively be written as:

[x]− = −x · (1−H(x)),

where H(x) denotes the Heaviside step function. For any x ∈ R, the Heaviside function is
defined as:

H(x) :=
{
1 if x > 0,

0 if x ≤ 0.

To compute the derivative of the negative part operator [x]−, we apply the chain rule to
the expression above. The derivative is given by:

D[x]−[δx] = (−1 +H(x))δx.

This indicates that for x > 0, the derivative vanishes (D[x]−[δx] = 0), while for x ≤ 0, the
derivative is −δx.
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Algorithm 2: Newton’s method for nonlinear equations
Initialization: Choose an initial guess dn

h = dn−1
h ;

while convergence not achieved do
Evaluate the nonlinear residual: Compute R(dn

h);
Solve the tangent problem: Solve ⟨DdR(dn

h)[δd],v⟩ = −⟨R(dn
h),v⟩;

Update solution: dn+1
h = dn

h + δd;
end

A.4.1 Augmented Lagrangian method

The algebraic form of the tangent problem (3.20) can be written as follows:

[
Jn(dn

h, λ
n
2,h, λ

n
1,h, s

n)
]



δd

δλ2

δλ1

δs


 =

[
−Rn(dn

h, λ
n
2,h, λ

n
1,h, s

n)
]
,

with

[Jn(dn
h, λ

n
2,h, λ

n
1,h, s

n)] =

DdR1(d

n
h, λ

n
2,h, λ

n
1,h, s

n) Dλ2R1(d
n
h, λ

n
2,h, λ

n
1,h, s

n) Dλ1R1(d
n
h, λ

n
2,h, λ

n
1,h, s

n) DsR1(d
n
h, λ

n
2,h, λ

n
1,h, s

n)

DdR2(d
n
h, λ

n
2,h, s

n) Dλ2R2(d
n
h, λ

n
2,h, s

n) 0 DsR2(d
n
h, λ

n
2,h, s

n)

DdR3(d
n
h, λ

n
1,h) 0 Dλ1R3(d

n
h, λ

n
1,h) 0

DdR4(d
n
h, λ

n
2,h, s

n) Dλ2R4(d
n
h, λ

n
2,h, s

n) 0 DsR4(d
n
h, λ

n
2,h, s

n)


 ,

(A.14)

and

[
Rn(dn

h, λ
n
2,h, λ

n
1,h, s

n)
]
=


R1(d

n
h, λ

n
2,h, λ

n
1,h, s

n)

R2(d
n
h, λ

n
2,h, s

n)

R3(d
n
h, λ

n
1,h)

R4(d
n
h, λ

n
2,h, s

n)

 . (A.15)
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The terms of the residuals in (A.15) read:

⟨R1(d
n
h, λ

n
2,h, λ

n
1,h, s

n),vh⟩ =
∫

Ω
ρ
dn
h − 2dn−1 + dn−2

(∆t)2
· vh + ah(d

n
h;vh)

︸ ︷︷ ︸
⟨R1,Shell(d

n
h),vh⟩

+

∫

ΓC2

[
λn
2,h + γg2(d

n
h, s

n)
]
− vh · nφ

︸ ︷︷ ︸
⟨R1,Moving(d

n
h ,λ

n
2,h,s

n),vh⟩

+

∫

ΓC1

[
λn
1,h + γg1(d

n
h)
]
− vh · nφ

︸ ︷︷ ︸
⟨R1,Static(d

n
h ,λ

n
1,h),vh⟩

, ∀vh ∈ Vsh
h ,

⟨R2(d
n
h, λ

n
2,h, s

n), µh⟩ =−
1

γ

∫

ΓC2

(
λn
2,h +

[
λn
2,h + γg2(d

n
h, s

n)
]
−

)
µh, ∀µh ∈ Λ2,h,

⟨R3(d
n
h, λ

n
1,h), µh⟩ =−

1

γ

∫

ΓC1

(
λn
1,h +

[
λn
1,h + γg1(d

n
h)
]
−

)
µh, ∀µh ∈ Λ1,h,

R4(d
n
h, λ

n
2,h, s

n) =m
sn − 2sn−1 + sn−2

(∆t)2
− f

−
∫

ΓC2

[
λn
2,h + γg2(d

n
h, s

n)
]
− ey · nφ.

In the following, we obtain the expressions for each term of the Jacobian matrix
(A.14), computing the derivatives of the different residuals with respect to the variables
(d, λ2, λ1, s) in the directions (δd, δλ2, δλ1, δs).

We start by computing the directional derivatives of the residual coming from the
momentum conservation. The derivative can be split into three terms: shell, moving hook,
and static hook contributions.

⟨DdR1(d
n
h, λ

n
2,h, λ

n
1,h, s

n)[δd],vh⟩ =⟨DdR1,Shell(d
n
h)[δd],vh⟩

+ ⟨DdR1,Moving(d
n
h, λ

n
2,h, s

n)[δd],vh⟩
+ ⟨DdR1,Static(d

n
h, λ

n
1,h)[δd],vh⟩.

We do not present the derivation corresponding to the term ⟨DdR1,Shell(d
n
h)[δd],vh⟩ as

it has been analyzed in Chapter 2 (see Section 2.2.2.2).

Now we derive the directional derivative of the residual term coming from the mo-
mentum conservation associated with the moving and static hooks. The derivative of
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⟨R1,Moving(d
n
h, λ

n
2,h, s

n),vh⟩ in the direction δd reads:

⟨DdR1,Moving (dn
h, λ

n
2,h, s

n)[δd],vh
〉

=

∫

ΓC2

Dd

[
λn
2,h + γg2(d

n
h, s

n)
]
− [δd]vh · nφ

=

∫

ΓC2

γ
[
−1 +H

(
λn
2,h + γg2(d

n
h, s

n)
)]

Ddg2(d
n
h, s

n)[δd] vh · nφ

+

∫

ΓC2

[
λn
2,h + γg2(d

n
h, s

n)
]
− vh ·Ddnφ[δd], ∀vh ∈ Vsh

h ,

(A.16)

where Ddg2(d
n
h, s

n)[δd] and Ddnφ[δd] can be found in equations (A.6) and (A.10), respec-
tively. An analogue expression applies for ⟨DdR1,Static(d

n
h, λ

n
1 )[δd],vh⟩.

The directional derivative of ⟨R1(d
n
h, λ

n
2,h, λ

n
1,h, s

n),vh⟩ in direction δλ2, reads:

⟨Dλ2R1 (dn
h, λ

n
2,h, λ

n
1,h, s

n)[δλ2],vh
〉

= ⟨Dλ2R1,Moving(d
n
h, λ

n
2,h, s

n)[δλ2],vh⟩

=

∫

ΓC2

Dλ2

[
λn
2,h + γg2(d

n
h, s

n)
]
− [δλ2]vh · nφ

=

∫

ΓC2

[
−1 +H

(
λn
2,h + γg2(d

n
h, s

n)
)]

δλ2vh · nφ, ∀vh ∈ Vsh
h .

(A.17)

The term ⟨Dλ1R1,Static(d
n
h, λ

n
1,h)[δλ1],vh⟩ can be obtained similarly. Finally, for the term

corresponding to the directional derivative of ⟨R1(d
n
h, λ

n
2,h, λ

n
1,h, s

n),vh⟩ in direction δs, we
get:

⟨DsR1 (dn
h, λ

n
2,h, λ

n
1,h, s

n)[δs],vh
〉

=

∫

ΓC2

Ds

[
λn
2,h + γg2(d

n
h, s

n)
]
− [δs]vh · nφ

=

∫

ΓC2

γ
[
−1 +H

(
λn
2,h + γg2(d

n
h, s

n)
)]

Dsg2(d
n
h, s

n)[δs]vh · nφ, ∀vh ∈ Vsh
h ,

where Dsg2(d
n
h, s

n)[δs] is given by (A.6).

Now we compute the directional derivative of the residual term related to the equa-
tion of the Lagrange multiplier associated with the moving hook. The derivative of
⟨R2(d

n
h, λ

n
2,h, s

n), µh⟩ in the direction δd reads:

⟨DdR2 (dn
h, λ

n
2,h, s

n)[δd], µh

〉

= −1

γ

∫

ΓC2

Dd

(
λn
2,h +

[
λn
2,h + γg2(d

n
h, s

n)
]
−

)
[δd]µh

= −
∫

ΓC2

[
−1 +H

(
λn
2,h + γg2(d

n
h, s

n)
)]

Ddg2[δd]µh, ∀µh ∈ Λ2,h,

(A.18)
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where Ddg2(d
n
h, s

n)[δd] is given by (A.6). The derivative of ⟨R2(d
n
h, λ

n
2,h, s

n), µh⟩ in the
direction of δλ2 reads:

〈
Dλ2R2(d

n
h, λ

n
2,h, s

n) [δλ2], µh⟩

= −1

γ

∫

ΓC2

Dλ2

(
λn
2,h +

[
λn
2,h + γg2(d

n
h, s

n)
]
−

)
[δλ2]µh

= −1

γ

∫

ΓC2

H
(
λn
2,h + γg2(d

n
h, s

n)
)
δλ2 µh, ∀µh ∈ Λ2,h.

(A.19)

The derivative of ⟨R2(d
n
h, λ

n
2,h, s

n), µh⟩ in the direction of δs reads:

⟨DsR2(d
n
h, λ

n
2,h, s

n)[δs], µh⟩ = −
1

γ

∫

ΓC2

Ds

(
λn
2,h +

[
λn
2,h + γg2(d

n
h, s

n)
]
−

)
[δs]µh

= −
∫

ΓC2

[
−1 +H

(
λn
2,h + γg2(d

n
h, s

n)
)]

Dsg2[δs]µh, ∀µh ∈ Λ2,h,

where Dsg2(d
n
h, s

n)[δs] is given by (A.6).

The terms ⟨DdR3(d
n
h, λ

n
1,h)[δd], µh⟩ and ⟨Dλ1R3(d

n
h, λ

n
1,h)[δλ1], µh⟩ can be obtained in

an analogous way as (A.18) and (A.19), respectively.

Finally, it remains to derive the terms corresponding to the residual associated with
the hook motion. The derivative of R4(d

n
h, λ

n
2,h, s

n) in direction δd reads:

DdR4(d
n
h, λ

n
2,h, s

n)[δd] =−
∫

ΓC2

Dd

[
λn
2,h + γg2(d

n
h, s

n)
]
− [δd]nφ · ey

−
∫

ΓC2

[
λn
2,h + γg2(d

n
h, s

n)
]
−Ddnφ[δd] · ey

=−
∫

ΓC2

γ
[
−1 +H

(
λn
2,h + γg2(d

n, sn)
)]

Ddg2[δd]nφ · ey

−
∫

ΓC2

[
λn
2,h + γg2(d

n
h, s

n)
]
−Ddnφ[δd]ey,

where Ddg2(d
n
h, s

n)[δd] and Ddnφ[δd] can be found in equations (A.6) and (A.10), respec-
tively. The derivative of R4(d

n
h, λ

n
2,h, s

n) in direction δλ2 reads:

Dλ2R4(d
n
h, λ

n
2,h, s

n)[δλ2] = −
∫

ΓC2

Dλ2

[
λn
2,h + γg2(d

n
h, s

n)
]
− [δλ2]nφ · ey

= −
∫

ΓC2

γ
[
−1 +H

(
λn
2,h + γg2(d

n
h, s

n)
)]

δλ2 nφ · ey.
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The derivative of R4(d
n
h, λ

n
2,h, s

n) in direction δs reads:

DsR4(d
n
h, λ

n
2,h, s

n)[δs]

=mDs

(
sn − 2sn−1 + sn−2

(∆t)2

)
[δs]−

∫

ΓC2

Ds

[
λn
2,h + γg2(d

n
h, s

n)
]
− [δs]ey · nφ

=m
δs

(∆t)2
−
∫

ΓC2

[
−1 +H

(
λn
2,h + γg2(d

n
h, s

n)
)] nπ

nπ · nφ
δs ey · nφ.

A.4.2 Nitsche’s method

The residuals of (3.22) are:

⟨R1(d
n
h, s

n),vh⟩ = ⟨R1,Shell(d
n
h),vh⟩+ ⟨R1,Moving(d

n
h, s

n),vh⟩+ ⟨R1,Static(d
n
h),vh⟩

=

∫

Ω
ρ
dn
h − 2dn−1 + dn−2

(∆t)2
· vh + ah(d

n
h;vh)

︸ ︷︷ ︸
⟨R1,Shell(d

n
h),vh⟩

+

∫

ΓC2

[−γg2(dn
h, s

n)−Π(dn
h)nx · nφ)]+vh · nφ

︸ ︷︷ ︸
⟨R1,Moving(d

n
h ,s

n),vh⟩

+

∫

ΓC1

[−γg1(dn
h)−Π(dn

h)nx · nφ]+vh · nφ

︸ ︷︷ ︸
⟨R1,Static(d

n
h),vh⟩

,

where the first contribution is the residual of the 3D-shell and the last two are the contact
contributions of the moving hook and of the static one, respectively, and

R2(d
n
h, s

n) = m
sn − 2sn−1 + sn−2

(∆t)2
− f −

∫

ΓC2

[−g2(dn
h, s

n)]+ ey · nφ.

To solve numerically the previous nonlinear system, we apply a Newton based algorithm
approach (see Algorithm 2) that requires the solution of a tangent problem with the following
block structure:

[
DdR1(d

n
h, s

n) DsR1(d
n
h, s

n)

DdR2(d
n
h, s

n) DsR2(d
n
h, s

n)

]

︸ ︷︷ ︸
Jn(dn

h ,s
n)

[
δd

δs

]
=

[−R1(d
n
h, s

n)

−R2(d
n
h, s

n)

]
.

To compute the Jacobian, we need the directional derivative of the first Piola-Kirchhoff
stress tensor in direction δd, that involves obtaining the directional derivatives of the
deformation gradient tensor and of the second Piola-Kirchhoff stress tensor. The directional
derivatives of F (d) and Σ(d) in direction δd are:

DdF (d)[δd] = ∇x(δd), (A.20)

DdΣ(d)[δd] = Dd

(
∂W

∂E

)
[δd] =

∂2W

∂E2
(d) : DdE(d)[δd],
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where we have considered that for an hyperelastic law it holds that Σ = ∂W
∂E . Applying the

chain rule, and recalling that Π(d) = F (d)Σ(d), it follows that:

DdΠ(d)[δd] = DdF (d)[δd]Σ(d) + F (d)DdΣ(d)[δd].

As before, we can split the directional derivative of R1(d
n
h, s

n) in three terms:

⟨DdR1(d
n
h, s

n)[δd],vh⟩ = ⟨DdR1,Shell(d
n
h)[δd],vh⟩

+ ⟨DdR1,Moving(d
n
h, s

n)[δd],vh⟩
+ ⟨DdR1,Static(d

n
h)[δd],vh⟩,

and

⟨DsR1(d
n
h, s

n)[δs],vh⟩ = ⟨DsR1,Moving(d
n
h, s

n)[δs],vh⟩.

The part that corresponds to the shell, is explained in Section 2.2.2.2, Chapter 2. Then,
the Jacobian for the contact part for the moving hook is:

⟨DdR1,Moving (dn
h, s

n)[δd],vh⟩

=

∫

ΓC2

Dd[−γg2(dn
h, s

n)−Π(dn
h)nx · nφ]+[δd]vh · nφ

+

∫

ΓC2

[−γg2(dn
h, s

n)−Π(dn
h)nx · nφ]+vh ·Ddnφ[δd]

= −
∫

ΓC2

H (−γg2(dn
h, s

n)−Π(dn
h)nx · nφ) γDdg2(d

n
h, s

n)[δd]vh · nφ

−
∫

ΓC2

H (−γg2(dn
h, s

n)−Π(dn
h)nx · nφ)DdF [δd]

∂W

∂E
nx · nφvh · nφ

−
∫

ΓC2

H (−γg2(dn
h, s

n)−Π(dn
h)nx · nφ)F

∂2W

∂E2
: DdE[δd]nx · nφvh · nφ

−
∫

ΓC2

H (−γg2(dn
h, s

n)−Π(dn
h)nx · nφ)Π(dn

h)nx ·Ddnφ[δd]vh · nφ

+

∫

ΓC2

[−γg2(dn
h, s

n)−Π(dn
h)nx · nφ]+vh ·Ddnφ[δd], ∀vh ∈ Vsh

h ,

with Ddg2(d
n
h, s

n)[δd] and Ddnφ[δd] given by equations (A.6) and (A.10), respectively.
The directional derivative of F (d) is given by equation (A.20). Similar applies for the term
of the static hook.

The derivative of the residual on momentum conservation in direction δs can be obtained
similarly as in penalty with the term given by equation (A.22).
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The derivative of the hook motion residual, R2(d
n
h, s

n), in direction δd, is given by:

DdR2(d
n
h, s

n)[δd]

= −
∫

ΓC2

Dd[−γg2(dn
h, s

n)−Π(dn
h)nx · nφ]+[δd]ey · nφ

−
∫

ΓC2

[−γg2(dn
h, s

n)−Π(dn
h)nx · nφ]+ey ·Ddnφ[δd]

=

∫

ΓC2

H (−γg2(dn
h, s

n)−Π(dn
h)nx · nφ) γDdg2(d

n
h, s

n)[δd]ey · nφ

+

∫

ΓC2

H (−γg2(dn
h, s

n)−Π(dn
h)nx · nφ)DdF [δd]

∂W

∂E
nx · nφey · nφ

+

∫

ΓC2

H (−γg2(dn
h, s

n)−Π(dn
h)nx · nφ)F

∂2W

∂E2
: DdE[δd]nx · nφey · nφ

+

∫

ΓC2

H (−γg2(dn
h, s

n)−Π(dn
h)nx · nφ)Π(dn

h)nx ·Ddnφ[δd]ey · nφ

−
∫

ΓC2

[−γg2(dn
h, s

n)−Π(dn
h)nx · nφ]+ey ·Ddnφ[δd],

with Ddg2(d
n
h, s

n)[δd] and Ddnφ[δd] given by equations (A.6) and (A.10), respectively.
The directional derivative of F (d) is given by equation (A.20). Finally, DsR2(d

n
h, s

n)[δs]

is given by:

DsR2(d
n
h, s

n)[δs] =mDs

(
sn − 2sn−1 + sn−2

(∆t)2

)
[δs]

−
∫

ΓC2

Ds [−γg2(dn
h, s

n)−Π(dn
h)nx · nφ)]+ [δs]ey · nφ

=m
δs

(∆t)2
+

∫

ΓC2

H (−γg2(dn
h, s

n)−Π(dn
h)nx · nφ)) γ

nπ

nπ · nφ
δs ey · nφ.

A.4.3 Penalty method

The residuals of (3.26) are:

⟨R1(d
n
h, s

n),vh⟩ = ⟨R1,Shell(d
n
h),vh⟩+ ⟨R1,Moving(d

n
h, s

n),vh⟩+ ⟨R1,Static(d
n
h),vh⟩

=

∫

Ω
ρ
dn
h − 2dn−1

h + dn−2
h

(∆t)2
· vh + ah(d

n
h;vh)

︸ ︷︷ ︸
⟨R1,Shell(d

n
h),vh⟩

+
1

ε

∫

ΓC2

[−g2(dn
h, s

n)]+vh · nφ

︸ ︷︷ ︸
⟨R1,Moving(d

n
h ,s

n),vh⟩

+
1

ε

∫

ΓC1

[−g1(dn
h)]+vh · nφ

︸ ︷︷ ︸
⟨R1,Static(d

n
h),vh⟩

,
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where the first contribution is the residual of the 3D-shell and last two are the contact
contributions of the moving hook and of the static one, respectively, and

R2(d
n
h, s

n) = m
sn − 2sn−1 + sn−2

(∆t)2
− f − 1

ε

∫

ΓC2

[−g2(dn
h, s

n)]+ ey · nφ.

To solve numerically the previous nonlinear system, we apply a Newton based algorithm
approach (see Algorithm 2) that requires the solution of a tangent problem with the following
block structure:

[
DdR1(d

n
h, s

n) DsR1(d
n
h, s

n)

DdR2(d
n
h, s

n) DsR2(d
n
h, s

n)

]

︸ ︷︷ ︸
Jn(dn

h ,s
n)

[
δd

δs

]
=

[−R1(d
n
h, s

n)

−R2(d
n
h, s

n)

]
.

We can split the directional derivative of the residual on momentum conservation,
⟨R1(d

n
h, s

n),vh⟩, in direction δd in three terms:

⟨DdR1(d
n
h, s

n)[δd],vh⟩ = ⟨DdR1,Shell(d
n
h)[δd],vh⟩+ ⟨DdR1,Moving(d

n
h, s

n)[δd],vh⟩
+ ⟨DdR1,Static(d

n
h)[δd],vh⟩.

The derivation of the term related with the derivative of the shell will be omit-
ted since it has already been explained in Section 2.2.2.2, Chapter 2. The term
⟨DdR1,Moving(d

n
h, s

n)[δd],vh⟩ is obtained as follows:

⟨DdR1,Moving(d
n
h, s

n)[δd],vh⟩ = −
1

ε

∫

ΓC2

H (−g2(dn
h, s

n))Ddg2(d
n
h, s

n)[δd]vh · nφ

+
1

ε

∫

ΓC2

[−g2(dn
h, s

n)]+ vh ·Ddnφ[δd], ∀vh ∈ Vsh
h ,

(A.21)
where Ddg2(d

n
h, s

n)[δd] is given by (A.6) and Ddnφ[δd] by (A.10). The derivation of
⟨DdR1,Static(d

n
h)[δd],vh⟩ is analogue to the one of equation (A.21). Finally, for the term

whose derivative is in direction δs:

⟨DsR1(d
n
h, s

n)[δs],vh⟩ = ⟨DsR1,Moving(d
n
h, s

n)[δs],vh⟩,

⟨DsR1(d
n, sn)[δs],v⟩ = 1

ε

∫

ΓC2

Ds [−g2(dn, sn)]+ [δs] v · nφ

= −1

ε

∫

ΓC2

H (−g2(dn, sn))Dsg2(d
n, sn)[δs] v · nφ, ∀vh ∈ Vsh

h ,

(A.22)

where Dsg2(d
n, sn)[δs] is given by (A.6).
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For the directional derivative of the residual on the hook motion, R2(d
n
h, s

n), in direction
δd, it follows that:

DdR2(d
n
h, s

n)[δd] = −1

ε

∫

ΓC2

Dd [−g2(dn
h, s

n)]+ [δd]ey · nφ

− 1

ε

∫

ΓC2

[−g2(dn
h, s

n)]+ ey ·Ddnφ[δd]

=
1

ε

∫

ΓC2

H (−g2(dn
h, s

n))Ddg2(d
n
h, s

n)[δd]ey · nφ

− 1

ε

∫

ΓC2

[−g2(dn
h, s

n)]+ ey ·Ddnφ[δd],

with Ddg2(d
n
h, s

n)[δd] and Ddnφ[δd] given by equations (A.6) and (A.10), respectively.
Finally, DsR2(d

n
h, s

n)[δs] can be obtained as:

DsR2(d
n
h, s

n)[δs]

= mDs

(
sn − 2sn−1 + sn−2

(∆t)2

)
[δs]− 1

ε

∫

ΓC2

Ds [−g2(dn
h, s

n)]+ [δs]ey · nφ

= m
δs

(∆t)2
+

1

ε

∫

ΓC2

H (−g2(dn
h, s

n))
nπ

nπ · nφ
δs ey · nφ.
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