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Titre : Réseaux neuronaux évolutifs et autonomes en photonique
Mots clés : calcul neuromorphique, photonique intégrée, optique non linéaire, systèmes dy-namiques, laser
Résumé : Un réseau neuronal est une ap-proche de l’informatique inspirée du cerveaupermettant de résoudre des problèmes dif-ficilement abordables avec les méthodes al-gorithmiques traditionnelles. En conséquence,les réseaux neuronaux ont trouvé leur placedans nombreuses applications. Certaines deces tâches nécessitent non seulement d’unegrande puissance de calcul, mais aussi exigentune latence faible, ce qui a inspiré la recherchesur les réseaux neuronaux dans le domaine op-tique.Ce travail porte sur un reservoir computerconstitué de micro résonateurs optiques cou-plés de manière évanescente. On montre quecette architecture est prometteuse dans cer-taines applications, par exemple le traitementen temps réel de signaux optiques cohérentsà grande vitesse. Dans cette architecture, con-trairement à la plupart des études de la lit-

térature, les lignes à retard optiques sontsupprimées, ce qui réduit considérablementl’encombrement de la puce. Le reservoir estétudié d’une manière générale, qui s’appliqueà une large gamme de semi-conducteurs etde résonateurs. Un cadre mathématique estétabli pour sa simulation et l’évaluation deses propriétés intrinsèques. Sa capacité de cal-cul est démontrée par la prédiction d’un sys-tème physique et la récupération de donnéesà partir d’une fibre optique à une vitesse deplusieurs dizaines de gigahertz. Une piste pourle développement de réseaux photoniques in-tégrés à grande échelle est ainsi proposée.Ce travail étudie également la possibilitéd’utiliser les nanolasers excitables, récemmentdémontrés, en « neurones » ultrarapides dansdes réseaux probabilistes, capables de traiterdes millions d’échantillons par seconde.

Title: Large scale autonomous all-analogue photonic neural networks
Keywords:neuromorphic computing, integrated photonics, nonlinear optics, dynamical systems,laser
Abstract: A neural network is a brain-inspiredapproach to computing that allows us to solveproblems that are difficult for traditional algo-rithmic methods. As a result, neural networkshave found their place in many applications.Proposals for new tasks call for neural net-works with high computational power, highspeed and low latency, which has inspired re-search into neural networks in the optical do-main.This work considers a reservoir computermade by evanescently coupled optical mi-croresonators. This architecture allows com-plex online processing of high-speed coherentoptical signals and, in contrast to most stud-ies in the literature, optical delay lines are sup-pressed, significantly reducing the chip foot-

print. The reservoir is assessed in a generalsense by establishing a mathematical frame-work for its simulation and the evaluation of in-trinsic properties, which applies to awide rangeof semiconductors and types of resonators. Itscomputing capability is demonstrated by pre-dicting a physical system and data recoveryfrom an optical fiber at a speed of tens of gi-gahertz. In this way, a direction for the devel-opment of large-scale integrated photonic net-works is proposed.This work also investigates the possibility ofharnessing the recently demonstrated spikingnanolasers for the development of high-speedstochastic neural networks capable of samplingat hundreds of millions of samples per second.
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Nomenclature

αloss Fiber attenuation
β Propagation constant
βse Spontaneous emission factor
βTPA Two-photon absorption coefficient
β2 Dispersion coefficient
γ Fiber nonlinear parameter
γκ Optical loss to waveguide
γc Free-electron recombination rate
γo Intrinsic optical loss rate
γS Average supermode bandwidth, Eq. (3.25)
γTPA Two-photon absorption rate, Eq. (3.9)
Ĵ Linearized Jacobian, Eq. (3.32)
M̂κ Waveguide-mediated coupling matrix
M̂µ Evanescent coupling matrix
Ŵ out Output weight matrix
κ Waveguide-cavity coupling strength
κin/out Input/output waveguide-cavity coupling

strength
µ Evanescent coupling strength
µ0 Permeability of free space
ω Resonant frequency of a cavity
σ(x) Sigmoid function, Eq. (2.2)
σt/n Standard deviation over time/index
ε0 Permittivity of free space

x Reservoir state vector
K in Input waveguide-cavity coupling coeffi-

cients
Kout Output waveguide coupling coefficients
U(r) Normal mode
a(t) Complex envelope of a mode
c Speed of light
f(x) Activation function
FΓ Normalized average supermode spacing,

Eq. (3.29)
Lp Power penalty
n Refractive index
n2 Kerr coefficient
N∥/⊥ Reservoir grid size parallel/perpendicular

to input waveguide, see Figure 3.6
q Elementary charge
r Regularization parameter for ridge regres-

sion
u Input signal
V Resonator volume
V c Free carrier diffusion volume
V Kerr Effective Kerr volume
V TPA Effective two-photon absorption volume,

Eq. (3.10)
ytgt Target output signal
dω/dN Free-carrier dispersion coefficient
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List of acronyms and abbreviations

A

ACSN Abstract continuous spiking neuron
ADC Analog-to-digital converter
AI Artificial intelligence
ANN Artificial neural network
AWG Arbitrary waveform generator
B

BM Boltzmann machine
BP Backpropagation
BPTT Backpropagation through time
BW Bandwidth
C

CMOS Complementary metal-oxide-semiconduc-
tor

CMT Coupled mode theory
CNN Convolutional neural network
CPU Central processing unit
D

DAC Digital-to-analog Converter
DBP Digital backpropagation
DFA Direct feedback alignment
DFB Distributed-feedback (laser)
DMD Digital micromirror device
DNN Deep neural network
E

EM Electromagnetic
ESN Echo state network
ESP Echo state property
F

FA Feedback alignment
FCD Free-carrier dispersion

FDTD Finite-difference time-domain
FLOPS Floating point operation per second
FNN Feed-forward neural network
FORCE First-order reduced and corrected error
FPGA Field-programmable gate array
FSR Free spectral range
FWHM Full width at half maximum
G

GPU Graphics processing unit
I

ISI Interspike interval
L

LIF Leaky integrate-and-fire (neuron)
LSM Liquid state machine
LSTM Long short-term memory
M

MACMultiply-accumulate (operation)
MCMemory capacity
MEMSMicro-electro-mechanical systems
MLPMultilayer perceptron
MLSEMaximum likelihood sequence estimation
MMIMultimode interferometer
MRRMicroring resonator
MVMMatrix-vector multiplication
MVPMatrix-vector product
MZIMach-Zehnder interferometer
N

NARMA Nonlinear autoregressive-moving-aver-
age

NN Neural network
NRMSE Normalized root mean square error
O
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OEO Optical-electrical-optical (conversion)
OOK On-off keying
P

PCA Principal component analysis
PCM Phase-change material
PhC Photonic crystal
PSN Photonic spiking neuron
PSP Postsynaptic potential
Q

QAM Quadrature amplitude modulation
R

RBM Restricted Boltzmann machine
RBW Reservoir bandwidth Eq. (3.27)
RC Reservoir computing(-er)
RF Radio frequency
RMS Root mean square
RNN Recurrent neural network
RRCF Root-raised cosine filter
S

SER Symbol error rate
SNN Spiking neural network
SNR Signal-to-noise ratio
SOA Semiconductor optical amplifier
SOI Silicon on insulator
SSMF Standard single-mode fiber
T

TIA Transimpedance amplifier
TPA Two-photon absorption
TPU Tensor processing unit
V

VCSEL Vertical-cavity surface-emitting laser
W

WDMWavelength division multiplexing
X

XOR Exclusive OR operation
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1 - General introduction

1.1 . Artificial neural networks

Since the birth of computer science as a field,many tasks have been solved
using algorithms implemented on electronic computers. However, there was
a large portion of problems that were notoriously difficult to tackle. A good
example is image recognition: to recognise a dog, we might need to handle
different breeds and pictures taken fromdifferent angles. Is a dog sitting, lying
down, or running? What about animals that look similar to a dog? There are
many sides to this problem; solving them by a deterministic feature extrac-
tion is a daunting challenge. Other examples of such tasks include keeping
balance while walking on rough terrain, driving an automobile and perform-
ing medical analysis. Yet, we can solve such problems, given enough training
(and, possibly, aptitude for a task).

Just as it happened with a sonar [1] and the simulated annealing opti-
mization algorithm [2], by drawing inspiration from functional solutions given
by nature, we can try to imitate them and harness millenia of evolution to
our benefit. Thus, Artificial Intelligence and its subset Machine Learning ap-
peared. They have been wildly successful in numerous applications, ranging
from highly specific, such as distinguishing music and speech in the Opusmu-
sic coding format [3], to everyday tasks, such as internet search suggestions.

Machine Learning is a general term that includes a wide range of compu-
tation approaches inspired by several sciences. For example, Boltzmann Ma-
chines (BM) take roots in statistical physics and are used to reconstruct infor-
mation based on incomplete inputs, the Principal Component Analysis (PCA)
is used to extract themost important components from the input. Another ap-
proach is probably the most widely known – artificial neural networks (ANN)
inspired by neuroscience, which tries to like brains do – neuromorphic com-
puting. Artificial neural networks beganwith the proposal of a perceptron and
a subsequentmultilayer perceptron (MLP) that was capable of solving nontriv-
ial classification tasks and, eventually, Deep Neural Network (DNN), that laid
the foundation for Deep Learning.
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1.2 . Deep Learning Era and beyond

In the early 2000s, Deep Learning started overtaking other ANN types in
performance. The further growth of Deep Learning accelerated for several
reasons:

• a widespread use of the internet and social media has led to the avail-
ability of massive amounts of labeled data necessary for training neural
networks,

• improvements of graphics- and tensor processing units (GPUs and
TPUs) that can emulate large neural networks more efficiently than
central processing units (CPUs),

• the development of widely accessible open-source libraries for training
and using neural networks such as TensorFlow [4],

• increased use in a commercial setting.
All that led to a circle where more demand for Deep Learning attracted more
people to the field, which led tomoreworkforce for the development of better
and more accessible tools, which simplified its adoption by more companies,
creating more demand.

As the complexity of the tasks grew, they required more complex ANNs
that necessitated more computing power to run and, especially, train. Un-
til the 2000s, the computational complexity of neural networks doubled ap-
proximately every 22 months (see Figure 1.1). Interestingly, it coincides with
Moore’s law, which initially is a prediction and, subsequently, an empirically
confirmed observation that the number of transistors on a chip doubles every
two years [5] (see Figure 1.2), meaning that electronics and neural networks
grew at the same rate. However, with the advent of Deep Learning, the com-
plexity started doubling every sevenmonths, quickly outpacing electronics. By
splitting the computing load between several GPUs and TPUs, large networks
could still be trained in a reasonable time. Eventually, the complexity grew to
the point where the training process moved to centralized compute clusters
(in the ‘cloud’), marking the beginning of the Large Scale Era.

1.3 . Challenges of electronic computing

A human brain has approximately 1011 neurons, and a neuron is, on aver-
age, connected to 104 neurons [8]. The Human Brain Project has estimated
that to simulate so many components, one would need to perform on the or-
der of 1018 floating point operations per second (FLOPS) [9], which seems like
a huge number, but this much compute has been achieved by the supercom-
puter Frontier [10]. The difference is that a brain consumes just 25 W of power
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Figure 1.1: Training compute requirements of milestone machine learning sys-tems over time. Adapted from [6].
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and takes 10-3 m3 of space, whereas Frontier – 21 MW and 103 m3, six orders of
magnitude on both fronts.

The problem is that electronic computers are created to handle different
tasks than our brains do and are, therefore, intrinsically ill-suited. Conven-
tional computers are very good at handling sequential data processing given a
specific algorithm. A CPU picks up pieces of data from amemory unit through
a bus, performs necessary operations and pushes the result back to themem-
ory unit (see Figure 1.3). Not only does the frequent exchange of data over a
bus take time – the ‘von Neumann bottleneck’ – this is not how brains oper-
ate. If we were to perform brain-like computing on a conventional computer,
a severe overhead takes place. In order to avoid such an outcome, we should
discard preconceived notions of what computing is, consider more biologi-
cally plausible approaches, and design new hardware platforms with that in
mind.

Memory Unit

InputDevice
OutputDevice

Central Processing Unit
Control Unit

Arithmetic/Logic Unit

Figure 1.3: Von Neumann architecture, the core of an overwhelming majorityof modern digital computers. Separation of compute andmemorymodules isthe source of the ‘von Neumann bottleneck’ limiting computing performance.Adapted from [11].
Electronic hardware has other, more technological difficulties. First, it is

hard to increase the clock speed any further (see Figure 1.2). The CPU compo-
nents have capacitance; they need to be dis-/recharged to change their state.
This process can be carried out faster with a smaller feature size (and there-
fore lower capacitance), which is what CPU manufacturers strive to achieve.
However, it is becoming more and more challenging with every iteration. An
alternative is to supply more electrical current to the chip, generating more
heat. To remove that heat from a chip in a cost-effective manner, it should
not exceed 200 W [12], and indeed, notice how the power consumption has
plateaued around this value in Figure 1.2.

Interconnects are also a significant issue. The number of bits per second
an electronic connection can transfer is limited by B ∼ BoA/l

2, where Bo =

1016 for small on-chip lines due to bulk resistive losses and losses induced
4



by the skin effect, A is the wire cross-section area, and l is the connection
length. An interesting point here is that A/l2 is dimensionless, which means
that even when wiring takes up the entire chip space, the overall bit rate will
not increase with a simple change of the device size – the entire approach
to signal transmission has to be changed [13]. Interconnects are also costly in
terms of power, taking up to 80%of the total power consumption of a CPU [14].
Latency also becomes an issue at a smaller feature size, as a smaller cross-
section increases the resistance of wires, increasing the time required to re-
/discharge them (see Figure 1.4).

Figure 1.4: Latency in terms of technology node for two different interconnectlengths [15]. Here CNT – carbon nanotube, l0 – mean free path, i.e. distancetravelled by electrons between scattering.

1.4 . High-speed neural networks

Many applications of neural networks do not require high speed and ef-
ficiency. ChatGPT generating a response in a couple of seconds is tolerable,
and a couple of minutes is fine for Stable Diffusion to generate an image. Re-
quiring a few hundred watts in the process is also acceptable. However, new
applications for NNs are not as lenient.
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1.4.1 . Optical channel equalization
In order to optically transmit information, it is encoded on an optical car-

rier by modulating its amplitude and, possibly, phase, and such modulated
signal is subsequently passed through an optical fiber to reach the receiver
(Section 4.2.1 explains in more detail). During propagation along the optical
fiber, the signal is subject to chromatic dispersion and the Kerr effect, which
distort the signal, so its postprocessing is required on the receiving end to re-
move these deteriorations – a common problem in the telecommunications
field.

The chromatic dispersion by itself is not very complicated to compensate
since it is a linear effect and so can be performed with a linear filter. However,
when the optical signal in a fiber becomes strong enough, e.g., to mitigate op-
tical losses during long-haul communication, the Kerr effect induces a nonlin-
ear response, and the compensation becomes challenging. Current solutions
include

• maximum likelihood sequence estimation (MLSE),
• Volterra-series-based equalizers, which is a nonlinear version of a finite
response filter,

• digital back-propagation (DBP) that relies on solving the optical signal
propagation equation in the backward direction.

These methods are computationally intensive, and processing signals at tens
of GBaudwith low delay and power use is challenging.While DBP is somewhat
easier computing-wise than others, it relies on coherent detection, which is
costly on a large scale. Neural networks are often proposed as a promising
alternative [16]. Figure 1.5 gives an example of a neural network undoing long-
haul link distortions.

Figure 1.5: Nonlinear distortion compensation after 2800 km of fiber usinga neural network. Here optical signal is modulated into 16 combinations ofphase and amplitude that lay on a square grid. Figures shows samples of op-tical signal after recovery without (left) and with (right) a NN with 12 neurons.In the perfect case samples end up perfectly in corresponding dots. Along-side the signal samples, additional information about the link was passed asinputs. Adapted from [17].
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A field-programmable gate array (FPGA) is the best option, when high-
speed electronic computing is required. There, arrays of programmable logic
blocks are wired together by configurable interconnects. This device offers a
high parallelization capability with low latency and a typical power use of 10-
20 W. Nevertheless, it is still not fast enough for online treatment of the signal
with an ANN.

A research team in Bell Labs used a DNN to recover distortion of an on-off
keying-encoded optical signal at 50 Gbps after 30 km of standard single-mode
fiber (SSMF) – a scenario typical for Passive Optical Networks. Such DNN had
11 inputs and 47 neurons, enough to outperform a 6-tap MLSE. The capacity
of an FPGA allowed four copies of such DNN in parallel. The study concluded
that during offline computing, an FPGA could only handle a data stream at a
2.6 Gbps bitrate, and an FPGA needs to be 20 times faster for online comput-
ing [18].

Another point is that the task is solved in another domain. The optical sig-
nal has to be detected, discretized and then finally can be processed. Suppose
the output also has to be optical (for example, for signal regeneration). In that
case a discrete electronic signal must be converted back to analog and then
to the optical domain. These extra steps induce latency [19] and energy costs.

1.4.2 . Radio-frequency fingerprinting
Due to fabrication tolerances, every radio transmitter is not exactly the

same. Minor variations of its parameters induce a slight variation in the trans-
mitted signal. Since parameters are random, such distortion is unique for ev-
ery transmitter, which can be used for identification. Solving this task is par-
ticularly interesting for edge computing and the Internet of Things, where the
device identification can be performed on a physical layer, avoiding the over-
head of sending extra data to a server for it to determine the sender [20]. This
task can also be applied to enhance wireless transmission security since such
parameter variation is hard to spoof [21]. Like optical channel equalization,
this task must be solved quickly and efficiently as information can arrive from
numerous devices at a gigahertz frequency. However, the computational com-
plexity of an appropriate convolutional neural network (CNN) renders its use
impractical [22].

There are other tasks, such as the recognition of modulation formats (and
other parameters) for elastic optical networks that adapt to suit demand and
optical channel conditions [23] and header recognition for all-optical rout-
ing [24].
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1.5 . All-optical analog neuromorphic computing

Computing tasks outlined in the previous section share the same trait: ei-
ther the information is carried by light or will soon be carried by light, which
is unsurprising, as light is being used to transfer data more and more com-
monly.

Optical signals have a considerably higher carrier frequency of around
200 THz, which not only supports modulation with faster signals but also us-
age of wavelength division multiplexing (WDM), where several optical carriers
(i.e. monochromatic optical signals) with different wavelengths can be modu-
lated independently, increasing the amount of information that can be trans-
ferred. Such multiplexing is possible due to a lack of interference between
different wavelengths. Another very advantageous feature is the immunity to
electromagnetic interference: it is common advice to avoid routing Ethernet
cables next to power cables, but for optical fiber, it is not an issue. As a result,
the information transfer across more than tens of meters is exclusively han-
dled with light. Current research aims towards optical interconnects between
chips across a fewmillimeters with a bandwidth of several terabits per second
(see Figure 1.6).
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Figure 1.6: Evolution of optical communications. Adapted from [25].
Then why don’t we compute directly in the optical domain? This idea is

not novel: decades ago, a free-space optical network was used for face recog-
nition [26], and a significant research effort is currently aimed towards all-
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optical switching on integrated photonic chips to allow changing trajectories
of signals without the involvement of electronic devices [27] which can be con-
sidered as a kind of computing, or at least a building block. Finally, the recent
growth of AI has led to the rise of all-optical neuromorphic computing [28].

Several works have demonstrated that optical NNs have the potential for
optical channel equalization [29, 30] and header recognition [24, 31] entirely
in the optical domain. They can be used in conjunction with electronic devices
as well. A good example is RF fingerprinting assisted by a photonic recurrent
neural network (RNN) shown in Figure 1.7. By preprocessing optical inputs
in the optical domain, helpful features can be accentuated and unnecessary
data discarded, making further processing easier. In this example, a photonic
RNN allowed a 50 times smaller electronic CNN [22].

ResidualDataProcessingBlock Pho
ton

icR
NN

Nyquist sampledresidual data inputRaw RFwaveform
SimplifiedCNN classifier

2 Layer Conv1D+Max-Pool

Flatten

Figure 1.7: Radio-frequency fingerprinting facilitated by a photonic RNN. Here,residual data is a difference between the received raw data and the groundtruth data, the signal regenerated after decoding the transmission. Redrawnbased on [22].
How is that possible? From a simplified perspective, a neuron accumu-

lates signals from other neurons and applies a nonlinear function, the result
of which is then picked up by other neurons. Summation is a linear opera-
tion and is relatively easy to implement. Besides, there is no need for high
accuracy [32], and a highly accurate digital summation can be replaced with
an analog counterpart, which is important since physical systems are smooth
and continuous as long as the quantum limit can be ignored. We should not
impose ’unnatural’ restrictions when possible to get the most out of a new
computing platform.

Nonlinearity is more challenging as the response of most materials used
for optics is linear under practical conditions. Nevertheless, a few approaches
to harnessing the nonlinear response have been proposed, either optoelec-
tronic or all-optical; see [28] for an overview. Oneway is by exploiting photonic
integrated circuits.

Integration reduces the size of components, allowing for a strong confine-
ment of photons in a small volume, leading to a high intensity of light. In that
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case, nonlinearity becomes considerable even when the optical power is in
the milliwatt range, as has been demonstrated numerous times [27]. Inte-
grated photonic devices also consume less power than their free-space coun-
terparts and can be mass-produced, reducing costs, as was hinted early by
S. Miller [33]. Their mechanical stability is also convenient, allowing for easier
handling of coherent signals where phase is important. Finally, compatibility
with complementarymetal-oxide-semiconductor CMOS technology allows for
co-integration with electronic components [34], allowing for easier control, as
neuromorphic devices require many parameters, and dedicating an electrical
port to each quickly becomes problematic with larger networks [28].

Another significant complication of small device size is its scalability po-
tential, which directly impacts the capabilities of a device. Modern CPUs have
reached current performance levels while drawing a reasonable amount of
power mainly because of a smaller and smaller feature size, which allows
packing trillions of transistors in one CPU. These are very big shoes to fill!
Such density is impossible to achieve in photonics as optical wavelengths are
much larger than the length of de Broglie waves of free electrons in a semi-
conductor. However, we pursue different goals. The goal of CPUs is general
computing (with some application-specific accelerator submodules), whereas
our ends are much more specific, which allows us to keep system complex-
ity at manageable levels. Nevertheless, some tasks can be difficult enough
to warrant more compute to tackle successfully: recovery of signals from
longer fibers, recognizing more and more complicated modulation patterns
and longer headers.

Thus, the motivation for this thesis formed. We aim for
Large Scale to be able to increase the number of ‘photonic neurons’
in the network, boosting its computing capabilities and solving more
challenging problems,
Autonomous to avoid direct involvement of electronic computers and
reap the benefits of photonics in full,
All Analogue to employ physical systems for computing as they are –
analogue,
Photonic to take advantage of the broad bandwidth of photonics and
seamlessly integrate into existing communication systems,
Neural Networks to solve tasks that are difficult to undertake with al-
gorithms.
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1.6 . Objectives

This work pursues two goals.
First, we propose and evaluate numerically and analytically a novel ap-

proach towards scalable all-optical neuromorphic computing by implement-
ing a reservoir computer using the evanescent coupling of nonlinear res-
onators. In contrast to implementations found in literature, this approach
combines a much higher neuron density and a nonlinear operation, allow-
ing for a complex treatment of optical signals without the direct involvement
of electronics. We also provide an insight into the details of such a system,
showing its limitations and potential improvements. We then fabricated the
proposed system, a characterization of which is planned for future work.

The second goal is to show that a recently demonstrated spiking neuron
based on a photonic crystal cavity can be used to create a spiking neural
network that can sample from a BM at nanosecond timescale, performing
stochastic inference.

1.7 . Thesis outline

Chapter 2 discusses ANNs in more detail and gives an overview of their
hardware implementations in the literature. We introduce the Reservoir Com-
puting (RC) paradigm and benefits for integrated photonic neuromorphic
computing.

Chapter 3 proposes a new scalable approach to integrated optical RC and
discusses its behaviour.

Chapter 4 demonstrates how the proposed RC handles two tasks: predic-
tion of physical models with an example of the Mackey-Glass equation and
nonlinear channel equalization.

Chapter 5 is dedicated to spiking neural networks, where the recent result
on a spiking neuron based on a photonic crystal cavity is used to perform
stochastic computation.
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2 - Integrated neuromorphic computing

The previous chapter focused on the ’why’, and explained the general in-
terest in ANNs and their all-optical implementation. This chapter, however,
focuses on the ’how’. It briefly explains how ANNs are structured, how they
solve tasks, and how to make them do this. We also discuss different kinds of
ANNs and how they could be implemented in the optical domain.

2.1 . Artificial neural networks

Humans and animals compute using a brain – a massive network of inter-
connected neurons, basic building blocks, that communicate using electrical
spikes. Each neuron is composed of dendrites, through which a neuron re-
ceives inputs, a soma accumulates them, and, if conditions are right, sends
a spike that propagates to other neurons via an axon. While the structure

Soma
Axon

Dendrites Axon terminals

Figure 2.1: Biological neuron. Adapted from [35].
of such a network is incredibly complex (there are many other components,
such as astrocytes) to faithfully replicate, perhaps there is no need for a pre-
cise replica.

In 1943, W. McCulloch and W. Pitts introduced a perceptron that was a
much-simplified biological neuron model [36]. Consider a set of weights w

and a bias b as perceptron parameters and a vector of inputs x. A perceptron
performs amultiply-and-accumulate (MAC) operationw·x+b, and if the result
is non-negative, it outputs one and, otherwise, zero; in other words, it applies
the Heaviside step function

H(y) =

{
0, y < 0

1, y ≥ 0
. (2.1)

Such perceptron was used for classification tasks – weights and bias are op-
timized or ‘trained’ such that the output is 1 for particular inputs. However, a
perceptron can only classify linearly separable inputs, so a large portion of
tasks would not be solvable, for example, an XOR operation [37].
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Figure 2.2: Perceptron. Redrawn based on Figure 2.3.

This problemhas been solvedwith the introduction of amultilayer percep-
tron (MLP) by F. Rosenblatt in 1958 [38]. There, the output of a perceptron can
be an input to other perceptrons. Specifically, an MLP had three layers in that
work: an input, hidden and output layer. Only connections to the output layer
were trained, while others were random (see Figure 2.3). Later, such a network
would be called an extreme learning machine. Analog output was another ad-
dition. A ‘classic’ perceptron applied a Heaviside function on y = wx+ b, but
now smooth functions such as the sigmoid were used

σ(y) =
1

1 + exp(−y)
. (2.2)

Because of such properties, an MLP could perform complex nonlinear trans-
formations of inputs, allowing for better classification performance. An MLP
is one example of many feed-forward neural networks (FNNs).

Figure 2.3: Multilayer perceptron. Adapted from [39].
More layers can be added to improve performance further, and all connec-

tions can be trained, which results in a deep neural network (DNN), a speci-
men of the deep learning architecture.

The tasks mentioned in Section 1.4 require the processing of time-depen-
dent inputs. While this is still possible to carry out with a stateless ANN such
as DNN by supplying delayed copies of a signal as inputs, a recurrent neural
network (RNN) is better suited for such purposes. In contrast to FNNs with
neuron connections oriented only to a subsequent layer, an RNN can have
looped-back neuron connections. They make an RNN a dynamical system, al-
lowing a network to preserve some input history, leading to a much more
powerful computing capability. Theoretically speaking, RNNs with an infinite
precision are proven to be Turing-complete [40], i.e. are capable of solving any
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Figure 2.4: Deep neural network. Redrawn based on Figure 2.3.
computational task. The downside is a very challenging training procedure (on
that later).

2.2 . Reservoir Computing

In order to harness the capabilities of RNNs without excessive training
complications, H. Jaeger introduced the Echo-State Network (ESN) [41], shown
in Figure 2.5. An ESN is comprised of three parts:

• input units that are equivalent to those of a typical ANN,
• internal units, typical neurons interconnected in an arbitrary fashion
that receive signals from input units,

• output units (also called a ‘readout’) are linear neurons unidirectionally
connected to internal units.

Only these unidirectional connections to output units are optimized, and this
immensely simplifies the training of ESNs compared to typical RNNs. In some
cases, the output may be fed back into ESN as an input, but this is rarely
needed and is not recommended. It has been shown that despite such severe
simplifications, ESNs found success in a wide array of tasks such as recogni-
tion of spoken Japanese vowels [42], wireless communication channel equal-
ization [43], financial forecasting [44] and seizure detection [45].

Figure 2.5: Echo State Network [46].
The main ESN equation is often written as [47]

x(n+ 1) = (1− α)x(n) + αf(Ŵxn + Ŵinun+1), (2.3)
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where x(n) is a vector of internal units state at time n, α is leak rate, f(x) is an
element-wise nonlinear function, commonly called the activation function, Ŵ
and Ŵin are connectivity matrices between internal units’ and between input
and internal units, respectively, and u(n) is a vector-valued input signal. The
output is given by

y(n) = Ŵ out[1;x(n)]⊤. (2.4)
Later, ESN and other similar approaches were put under a single term –

reservoir computing (RC1) [48]. Besides ESNs, RC includes the following archi-
tectures.
Liquid statemachine (LSM) was proposed byW.Maass at the same time
as ESNs and was aimed towards networks of spiking neurons with more bio-
logically plausible parameter assignment [49]. An LSM consists of a dynamical
network of spiking neurons (or ‘liquid’) and a linear readout. It was proven that
in order to compute with an LSM, it has to have three properties:

• fadingmemory, i.e. themost significant bits of the current (t = 0) output
value depends just on the most significant bits of the values of input
function in some finite time interval [−T ; 0] [50],

• separation property, i.e. different inputs result in different trajectories
of the network’s dynamical variables,

• approximation property, i.e. readout canmap the liquid state into a tar-
get function with a negligible or acceptably small error.

While successfully used in speech recognition [51] and other tasks, LSMs got
little traction due to the complicated treatment of spiking signals. As a result,
most of the RCs are, in fact, ESNs.
Evolino is an ESN with long short-term memory (LSTM) units composed of
an input, an output and a ‘forget’ gates (see Figure 2.6). This unit remembers
its state for an arbitrary amount of time until the ‘forget’ gate erases it. This
way, a longer memory is attained. Training is performed with evolutionary
methods [52].

1‘RC’ may also mean ‘reservoir computer’ depending on the context
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Figure 2.6: Long short-term memory unit. Adapted from [53].

Backpropagation-decorrelation is an online training method for an
ESN with output feedback. This algorithm is claimed to be insensitive to the
choice of internal weights. It also converges quickly but is heavily biased to
more recent data [54].

The introduced approaches share the same idea: transform an input sig-
nal into a high-dimensional space in which we perform a linear separation.
Such generality implies that an RC does not have to be a neural network at
all – it is enough to be able to read the state of an arbitrary dynamical system,
which could range fromquantumoscillators [55] andmagnetic skyrmions [56]
to a water tank, quite literally, reservoir computing [57].

2.3 . Training neural networks

Until this point, the training of neural networkswasmentionedonly briefly,
described with vague terms like ‘easy’ and ‘hard’. This section discusses the
training methods of various neural networks and the importance of the RC
concept.

2.3.1 . Overview
Training algorithms can be classified into three groups:
• Unsupervised learning, where an ANN is supplied with input data, but
each input data point is not assigned to a particular output. The network
then tries to find patterns in the given data.

• Reinforcement learning, where the training feedback informs an ANN
how good the sequence of outputs is. Then, an ANN learns by itself, only
knowing how good it is doing compared to before, which is useful when
the ‘goodness’ of the result is easy to estimate but not the way towards
it. Games such as chess and Go are good examples – it is easy to tell
whowon, but if we knew the bestmoves for all possible situations, there
would be no need for ANNs in the first place.
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• Supervised learning, where the target output is given alongside input.
It typically is the fastest and results in the most accurate solution, but
knowing the target is not always possible. A semi-supervised approach
can be used if only a part of the inputs has a corresponding target.

This work targets supervised methods since targets are known for tasks we
aim to solve with photonic ANNs. To demonstrate how such methods work,
we come back to perceptrons.

Assume a dataset D = {(x1, y1), (x2, y2), . . . , (xN , yN )}, where xi ∈ RK

is an input and yi ∈ {0, 1} is its corresponding class. The goal of a perceptron
is to separate classes, meaning that

∀i = 1 . . . N H(wxi + b) = yi, (2.5)
where w and b are the perceptron’s weights and bias. For that, one needs to
find, i.e. optimize w and b. For simplicity, we append unity to the state x̃i =

[1;xi] and the bias to the weights w̃ = [b;w], then wxi + b = w̃x̃i. Then,starting from an arbitrary w̃0, the following update rule is used
w̃k+1 = w̃k + δw̃k, (2.6)

where
δw̃k = r

N∑
i=1

[yi − σ(w̃kx̃i)]x̃i (2.7)
and r is the learning rate. This rule can be derived in a few ways. For example,
a quick and not very rigorous would be to use gradient descent with a loss
function

L =
N∑
i=1

Li =
N∑
i=1

−[yi − σ(w̃x̃i)]w̃xi. (2.8)
Then, whenever a perceptron correctly classifies class i,Li = 0, we do nothing.
But if w̃x̃i < 0 and yi = 1 then Li > 0. Same if w̃x̃i > 0 and yi = 0. Therefore,
the loss increases whenever the perceptron makes a mistake, and the loss
is higher when w̃x̃i is further from a correct class. Then, according to the
gradient descent algorithm

∆w̃ = −r∇w̃L = r
N∑
i=1

[yi − σ(w̃x̃i)]x̃i, (2.9)
where a term with a derivative of σ was omitted since it is nil everywhere ex-
cept zero, but the probability of getting a data point there would be infinitely
small. Graphically, this algorithm is shown in Figure 2.7. This algorithm is guar-
anteed to converge if the solution exists, i.e. data points are linearly separa-
ble [58].
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Size

DomesticationDomesticationDomestication Domestication
Figure 2.7: Training perceptron to classify animals based on size and domes-tication. As more data points are added, the decision boundary encoded byperceptron weights and bias is updated. Adapted from [59].

This algorithm would also work with minor corrections for a ‘classic’ MLP
where only output weights are trained. Here, at the first hidden layer, an input
vector x̃i is multiplied by a random matrix, and a sigmoid is applied element-
wise. The result is processed similarly at the second hidden layer but with
a different matrix until the output layer is reached. This chain of operations
could be described by a vector-valued nonlinear function F . Then, we could
consider this MLP as a perceptron with inputs preprocessed by F . Then, in
the equations above, the input x̃i is replaced by F (x̃i), and the gradient of
the loss function∇w̃L would also depend on the sigmoid derivative.

Training complicates if all layers are to be optimized. Then, the derivative
of the loss function can be computed using the chain rule, and gradient de-
scent can be used. The backpropagation (BP) algorithm does so efficiently for
all network parameters. Due to the popularity of this method, numerous ar-
ticles with its derivation can be found (for example, see [60, 61]); therefore,
it is omitted here. The main idea is to start with some set of parameters, do
a forward step to compute neuron activations and loss, and then compute
updates of parameters by backpropagating the error vector starting from the
last layer to the first – the backward step [62]:

δŵi = −[(ŵ⊤
i+1δai+1)⊙ σ′(ai)]σ(a

⊤
i−1), (2.10)

where σ(x) = [σ(x1), σ(x2), . . . , σ(xn)]
⊤, ai = ŵiσ(ai−1), δai = ∂L/∂ai, σ′ =

dσ/dx and ⊙ is the Hadamard product. For biases, the equation is similar.
While very successful for digital ANNs, this algorithm suffers from several

issues
1. biological implausibility due to the weight transport problem, as during
the backward step, synaptic weights, which are supposed to be ‘local’,
have to be transmitted to other parts of the network; also, synaptic sym-
metry is enforced [63],

2. difficult on-chip realization as BP requires a lot of information on the
ANN state, including a derivative of the activation function.
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An algorithm for on-chip BP of an integrated photonic accelerator using a net-
work of MZIs using the adjoint variable method has been proposed [64] and
implemented [65]. The nonlinearity, however, was implemented on a digital
computer. Another recent work implements backpropagation of weights in
an optical NN with a saturable absorber as nonlinearity, and the role of elec-
tronics was reduced to the preparation of inputs, detection and assignment
of weights [66]. However, to the best of my knowledge, there have been no
autonomous implementations of BP on an integrated chip.

Alternative training methods have been proposed to resolve the weight
transport problem. One of them is feedback alignment (FA), where a per-layer
random matrix is used instead of a transposed ANN weight matrix [67] (see
Figure 2.8). Here, ‘alignment’ means that ANN weights align with these ran-
dom feedback matrices at the beginning of training and, later, they change
the direction tominimize the error. Direct feedback alignment (DFA) is an even
simpler FA where, instead of backpropagating the error vector layer by layer,
it is propagated to all layers simultaneously, allowing for better paralleliza-
tion [68]. They have been shown to work with some limitations, e.g., they
do not apply to CNNs [69]. It has also been recently shown that DFA strug-
gles to reach the same performance as BP [70]. Besides FA and DFA, other
algorithms are proposed. One is equilibrium propagation, which is a physics-
inspired method that optimizes the network by minimizing its free energy as
defined through the loss function [71].

Figure 2.8: Comparison of Feedback Alignment (FA) and Direct Feedback Align-ment (DFA) to backpropagation (BP). Adapted from [72].
Training RNNs is considerably more difficult than FNNs. Backpropagation

through time (BPTT) uses the fact that an RNN can be unfolded in a series of
FNNs (see Figure 2.9). Currently, BPTT appears to be the best method of train-
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ing RNNs. Other options are generic nonlinear optimization algorithms such
as BFGS (Broyden, Fletcher, Goldfarb and Shanno) and Levenberg-Marquardt
or evolutionary algorithms. Just like FNNs can be trapped in a local minima,
so can RNNs, but more easily [73].
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Figure 2.9: Unfolding a recurrent neural network (top) into a series of feed-forward neural networks (bottom). Here xk, uk and yk are the network’s state,input and output at time k, f and g are activation functions in the recurrentand feed-forward layers.
Training methods of RCs can be classified into two groups:
• Offline methods, where information on RC dynamics is recorded, and
the training is carried out in one go. Thismight not be an option in some
cases, for example, if there is output feedback. In our cases, such train-
ing will be applicable and therefore used. Ridge regression is an exam-
ple of such training and is explained in the next paragraph.

• Online methods, where the reservoir improves incrementally as more
data arrives. One example is the First-Order Reduced and Corrected
Error (FORCE) learning rule [74].
2.3.2 . Offline reservoir training: ridge regression

Offline training of RCs is trivial compared to RNNs. In a typical RC, only the
output layer is trained, and there is no output feedback. Therefore, a change
in training parameters does not change the behaviour of the internal units.
The training is then carried out by ridge regression as follows:

• choose a training input u(n) and target output ytgt(n)

• run the RC using u(n) as input, recording RC states x(n)
• stack RC states vertically tomake a designmatrix X̂ , similarly make Ŷ tgt

out of ytgt(n)

• since the RC output is then Ŷ = Ŵ outX̂ , the goal is Ŷ tgt ≈ Ŵ outX̂ ,
which is a linear problem that can be solved with ridge regression [47]

Ŵ out = Ŷ tgtX̂⊤(X̂X̂⊤ + rÎ)−1, (2.11)
where r is a regularization parameter and Î is an identity matrix.

21



This way an RC can reach the best possible performance in one step and with-
out the need to know the derivatives of activation functions.

2.3.3 . Regularization
When an ANN is trained on a given dataset, it might learn to replicate

minute details of a dataset instead of looking for general patterns – overfit-
ting shown in Figure 2.10, which can be an outcome of an excessive number
of parameters in a model or an incorrectly prepared training dataset.

For example, assume an ANN is trained to compute a product of two num-
bers. However, wewere careless in preparing the training dataset, and there is
only a number ‘2’ on the second input neuron. A training procedure is carried
out, and wemight see an accuracy improvement. However, it is likely that the
ANN only doubles the number on the first input neuron. It would be quickly
discovered if the value on the second input neuron is changed. This is howwe
check if an ANN is overfitting: using a separate test dataset alongside the train-
ing dataset. This dataset is not involved in optimizing of network parameters,
and the performance of an ANN on both of them is checked during training.
One can find that the error reduces on both the training and test datasets, but
testing error starts increasing at some point – a sign of overfitting (see inset
in Figure 2.10).

Test

TrainingErr
or

Training duration

Figure 2.10: Overfitting example. A model is trained to separate two classes ofpoints. An overfittedmodel (green line) also separates irregularities that arise,e.g., due to a noisy measurement. A properly generalizing model is shown asthe black line. Inset shows a typical error landscape of an overfitting model:at some point, more training reduces error on the training dataset but in-creases on the testing one due to a loss of generalization capability. Adaptedfrom [75].
Overfitting also happens for RCs, so the regularization coefficient is used.

It punishes large output weights, which are indicate unstable training result,
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i.e. the output will drastically change when the input changes slightly, which is
another symptom of overfitting. Another option is to add noise to the training
dataset, though it might complicate reproducibility [47].

2.4 . Reservoir performance tips and tricks

The simplicity of RC training comes from the assumption that the internal
states of an RC are ‘rich’ enough by themselves without the need to tune them,
such that a simple linear readout would suffice. A good question is how to
make an RC a good one. The answer is discouraging, best expressed by a
quote from the author of ESNs, H. Jaeger [76, p.vi]:

. . . the closer one becomes involved with RC, the more difficult it gets,
and if the one to embrace it in full contact, it gets almost impossibly
difficult. . . . A full theory of reservoir dynamics would be a full theory
of everything that evolves in time. . . . After two decades of RC research,
we only have the faintest inklings of how tomatch reservoir dynamics
with task dynamics.

All in all, there are a few good ideas that usually work but still do not guarantee
a good RC.

Since the internal state of an RC is a complex nonlinear dynamical system,
it is recommended to look at RC’s global parameters, metaparameters and
properties instead:

• Echo state property (ESP), i.e. if the current state of an RC is defined only
by the fading history of inputs [41]. That alsomeans an RC forgets about
inputs further in time than a certain threshold.

• The spectral radius of the internal connection matrix Ŵ , i.e. the maxi-
mum absolute value of its eigenvalues. It is noted that an RC typically
has the ESP if the spectral radius of Ŵ is less than unity. While this is
true in many cases [47], it is neither a necessary nor a sufficient con-
dition for good performance, and some tasks are better solved with a
spectral radius of much more than unity [77].

• Sparsity of the internal connectionmatrix Ŵ . Sparse connections some-
times lead to better computing performance, but notmuch [47]. Rather,
it allows linear scaling of non-zero elements in Ŵ and, therefore, faster
matrix-vector multiplication (MVM) for large RCs.

• Leaking rate, i.e. how quickly neurons attenuate, controlled by α in
Eq. (2.3).

• Memory capacity, i.e. RC’s ability to remember previous inputs, a com-
monly used computational capacity metric. It is measured by provid-
ing an RC with random input un and then training the RC to output
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yn ≈ un−τ for each delay τ > 0. The MC is then found by [46]
MC =

∑
τ>0

cor(un−τ , yn) (2.12)
where cor(x, y) is the Pearson correlation coefficient [78], or [79]

MC =
∑
τ>0

[1−NRMSE(un−τ , yn)] , (2.13)
where [47]

NRMSE (x,y) =
1

σn[yn]

√√√√ 1

T

T∑
n=1

|xn − yn|2. (2.14)
is theNormalized RootMean Square Error (NRMSE) and σn(xn) is a stan-dard deviation of xn. Nonlinearity degrades the memory capacity [80].
In that case, an RC trades this linear MC for a nonlinear one, and the
total capacity stays almost identical [79].

• Input scaling, i.e. how strongly inputs impact RC dynamics.
• Dimensionality, i.e. the number of neurons that operate differently [81].
• Consistency, a measure of reproducibility of RC’s behaviour.

Dimensionality and consistency will be extensively used in this work and are
explained in more detail in the following sections.

2.4.1 . Dimensionality
Since an RC expands the input to a high-dimensional space, it would be

beneficial to expand to a more high-dimensional space and increase the
chances of a successful linear separation (see Figure 2.11). It has been noted
that a higher dimensionality often leads to better computing performance [81].

To measure dimensionality, an input signal is passed to an RC, and acti-
vations of its neurons are recorded in a matrix X̂ . This matrix carries infor-
mation about trajectories each neuron is making in the RC’s phase space, i.e.
a space in which all possible states of a dynamical system are represented
(see Figure 2.12 for an example). Then, the PCA of X̂ is performed, producing
orthogonal principal components that show the main directions along which
data varies the most and give amplitudes of the corresponding variations. If
some columns of X̂ are linearly dependent, i.e. some neurons behave simi-
larly, they will be mapped to principal components with a smaller amplitude.
After that, one needs to decide how much variance is significant. In our case,
we discard principal components whose length is less than 1% of the maxi-
mum length of all components – the default behaviour of the library used,
MultivariateStats.jl 2.

2https://github.com/JuliaStats/MultivariateStats.jl
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Figure 2.11: Some tasks cannot be solved with a linear regression. Left figureshows two classes of points on a plane. They can be separated with a circle,which is a nonlinear classifier. Instead, inputs can be mapped to a higher-dimensional space where a linear separation might be possible. Adaptedfrom [82].
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Figure 2.12: Example of the Principal Component Analysis. A dataset is shownas dots, and arrows show two principal components with the arrow lengthproportional to the variance of data along its direction.
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Suppose an RC is noisy, or the dimensionality computation is performed
on an experimental setup. In that case, noise can significantly increase the am-
plitude of otherwise weak principal components, even though variance along
them does not contribute to computing capacity. In that case, assuming the
noise is Gaussian, such components can be systematically removed [81].

The kind of input provided for the dimensionality analysis depends on
the objectives. A reasonable choice is to use white noise, which would test all
possible excitations an RC could encounter, and the total expansion capability
of an RC would be tested. Another option is to provide an input of a task to be
solved, and then only the expansion for this particular task is tested. In this
work, a random excitation is used when an RC is analysed from the general
point of view, whereas for task benchmarking the task’s input signal is used.

2.4.2 . Consistency
A claim that an RC operates better at the edge of chaos, i.e. close to being

chaotic, is commonly found in literature. To detect the chaoticity of an RC, the
Lyapunov exponent can be used [83, 84].

Assume two identical dynamical systems starting from very close initial
conditions with a distance of |δ(0)| (see Figure 2.13). Tracking the evolution of
these systems, one may find that the distance between current states may
follow

|δ(t)| ≈ exp(λt)|δ(0)|. (2.15)
In that case, λ is the Lyapunov exponent. Strictly speaking, a system with n

variables has n Lyapunov exponents [85], but we are mainly interested only
in the largest exponent. Positive λ makes infinitesimally close trajectories di-
verge exponentially over time, which is a signature of chaos [85]. The bound-
ary between λ = 0 and λ > 0 is called the edge of chaos [86].

|δ(0)|

|δ(t)| ≈ exp(λt)|δ(0)|

x(t)

x(t) + δ(t)

Figure 2.13: Graphical explanation of the Lyapunov exponent. Exponential di-vergence of evolution trajectoriesx(t) andx(t)+δ(t) starting from close initialconditions x(0) and x(0) + δ(0) is a marker of chaoticity.
However, a claim that operating at the edge of chaos is optimal is not ex-

actly correct. First, chaos is not strictly defined for input-driven systems [76].
Second, it is valid only for a subset of tasks [87]. Rather, an RC should be at the
edge of ESP instead, which does not necessarily mean proximity to chaos [76].
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This has been recently addressed by Yamaguchi T. et al. in an RC made
of spin-torque oscillators [86]. They introduce the ‘synchronization index’, a
long-time average of the distance between two trajectories of a neuron that
only differ in their initial state. Suppose an autonomous system eventually
converges to a fixed point, the index is zero then. However, if the system is self-
oscillating, the distance would not change, and the index would be positive.
Authors argue that even though the synchronization index and the Lyapunov
exponent appear functionally similar, there are differences, demonstrated in
Figure 2.14.
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Figure 2.14: An increase of memory capacity near the synchronization indexborder, but not of the Lyapunov coefficient. Adapted from [86]. Figures sharevertical axes.
A similar metric, consistency, had also been introduced. Consistency is

a property describing the reproducibility of a dynamical system’s (here, the
reservoir’s) responses under an injection of slightly different input signals [88].
It is conceptually close to chaoticity: if a second copy of a dynamical system
received a slightly different input, its state would be slighly displaced from
the state of the first copy. If trajectories start to diverge after that, it indicates
chaotic behaviour. As far as RC’s training is concerned, it should not be chaotic.
Indeed, if responses change every time, training would be impossible, and it
is typically desirable that the consistency is high [89].

In this work, consistency is used to determine the chaoticity of an RC. The
analysis could be done by providing an RC with slightly different input sig-
nals, recording neuron trajectories for all inputs, and computing their cross-
correlation matrix [81]. If a neuron is chaotic, its responses will differ, and a
corresponding correlation will reduce. A root mean square (RMS) of diagonal
elements is the consistency of the entire RC.
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2.5 . Integrated photonics for neuromorphic computing

It is not surprising that photonics is often considered for fast neural net-
works. The advantages outlined in Section 1.5 motivated research into neural
networks in integrated photonic alongside the boom of deep learning in the
early 2010s (see Figure 2.15).
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Figure 2.15: Timeline of publications concerning neural networks on the inte-grated photonic platform. Here MPLC is multi-plane light conversion, MZI is aMach-Zehnder interferometer. Adapted from [90].
Efforts towards integrated photonic neuromorphic computing can be sep-

arated in two directions: accelerators and actual neural networks. Accelera-
tors (or co-processors) aim to offload themost intensiveMAC ormatrix-vector
product (MVP) operation to optics. The advantages of accelerators are:

• optics is typically linear, and so is the MAC operation,
• more straightforward implementation since an accelerator only serves
a particular role,

• better marketability due to the similarity to how GPUs are used.
There are disadvantages as well:

28



• reliance on an electronic computer since an accelerator only imple-
ments neuron connectivity (possibly with an activation function), and
providing the next batch of inputs is up to a computer,

• the use of many high-speed (and therefore costly) electric components
for OEO conversion to handle inputs and outputs,

• they require quite high accuracy, as usually training is not done on the
substrate, and hence their configuration needs to match the model sys-
tem closely.

The neural network approach is the complete opposite: its implementation is
more challenging, but everything is handled in hardware; it promises a faster
and more efficient operation with fewer OEO conversions.

2.5.1 . Photonic accelerators
A commonly cited integrated optical accelerator is shown in Figure 2.16.

There, a network of MZIs is used to implement the multiplication of a vector
of coherent optical inputs by a unitary matrix [91]. Then, an array of MZIs is
used to multiply each output by a separate complex number. Such a system
is only limited by the detection speed (100 GHz) but can suffer from

• finite precision of phase-shifter control,
• photodetection noise,
• thermal crosstalk between phase shifters; however, it can be eliminated
by using phase-change materials instead of the thermo-optic effect.

Such an accelerator was trained by forward propagation and the finite differ-
ence method:

∆Wij =
E(Wij + δij)− E(Wij)

δij
, (2.16)

which would be inefficient on an electronic computer since computing E(Ŵ )

is expensive. However, it takes almost constant time on a chip w.r.t. chip size.
Ultimately, this chip was successfully used on the vowel recognition task in
simulation and experiment [91].

This was an example of an MVP accelerator with coherent inputs and out-
puts. Therefore, only a small portion of the available bandwidth is used. In-
stead, one could consider an incoherent accelerator; one example is shown
in Figure 2.17. There, each input corresponds to a particular wavelength, and
input signals are encoded bymodulating the amplitude of each channel. Then,
multiplexed inputs are split into several rows of microring resonators (MRR),
comprising a photonic weight bank. Each MRR picks up a particular channel,
and then the transmission through the MRR can be controlled by controlling
its resonance frequency. After that, the through anddrop channels are passed
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Figure 2.16: Coherent matrix-vector product accelerator on the silicon-on-insulator platform based on 56Mach-Zehnder interferometers and 213 phaseshifters [91].

to a balanced photodetector to incoherently sum channels. Here, using a bal-
anced photodetector allowed for positive and negative channel weights. Af-
terward, a nonlinear transformation is applied by a transimpedance ampli-
fier (TIA), converted into a digital signal, and received by a computer. Such an
approach better utilizes available optical bandwidth but does not handle in-
formation encoded in phase, followed by an analog-to-digital conversion and
communication with a computer.

Another approach is to use a crossbar array demonstrated experimentally
in [93]. Each tooth of a frequency comb is modulated and passed through a
dedicated waveguide on one side of a crossbar array (see Figure 2.18). Then,
signals from each waveguide are coupled into perpendicular waveguides via
couplers at every crossing, acting as matrix weights. The coupling strength
is tuned by depositing on top of a coupling waveguide some phase-change
material (PCM). Some examples of PCMs are Ge2Sb2Te5 (commonly referred
to as GST) and Sb2Se3. The refractive index of a PCM in crystalline and amor-
phous states is different, and depending on a material, its crystallization can
be partial, which allows the refractive index of a coupling waveguide to accept
values within some interval [94]. The signals from perpendicular waveguides
are the output read by an array of photodiodes. Such a device was applied for
handwritten digit recognition.

Another interesting example is based on the photorefractive effect [95]
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Figure 2.17: Incoherentmatrix-vector product accelerator, details in text. Here,ADC is an analog-to-digital converter. Adapted from [92].
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shown in Figure 2.19. In a thin sheet of GaAs, two beams are sent, and their in-
terference causes electron excitation in particular parts of thematerial, which
leads to local changes of refractive index, and this way, a matrix can be en-
coded. Afterwards, a single beam encoding a vector can be sent to perform
an MVM. By providing input through a different side, the chip will perform
the MVM with a transposed matrix, which is essential for backpropagation
discussed in Section 2.3.
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Figure 2.19: Matrix multiplication accelerator based on the photorefractive ef-fect. Adapted from [96].

2.5.2 . Photonic neural networks
Implementing a complete neural network on a chip is a more challenging

problem, with few implementations in the literature. Two recent examples
of a coherent DNN on a chip are shown in Figure 2.20. The first implementa-
tion had six inputs encoded by on-chip modulators, one hidden layer with six
neurons and an output layer with six output neurons. Networks of MZIs im-
plement the MVP, while an optoelectronic nonlinearity – the activation func-
tion. Implementation-wise, the second example is similar but accepts a 5×6
image formed by 30 incoherent signals that are then shrunk to 4 signals by a
convolutional layer. Then, these signals are processed by hidden and output
layers [97]. Weighting was performed with attenuators.

Implementing RNNs on-chip is even more challenging, as already difficult
training is even harder on-chip. There has been a proposal with a partial imple-
mentation (see Figure 2.21). To the best of my knowledge, a complete ‘classic’3
RNN on a photonic chip has not been implemented. Simplified RNNs – RCs –
however, have been.

3i.e. all connections are trainable
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m

Figure 2.20: Deep neural networks on chip. Left: one hidden and output lay-ers [98]. Right: input layer (red), convolutional layer with four neurons (or-ange), one hidden layer with three neurons (purple) and output layer withtwo neurons (yellow). Adapted from [97].

Figure 2.21: Proposal of a recurrent neural network on the integrated photonicplatform. The output of a photonicweight bank is loopedback as an inputwitha delay. Here, the delay is large enough (1 ns) to avoid time-delayed dynamics.Adapted from [99].

33



2.5.3 . Reservoir computers
The generality of RC allows for much freedom. Current implementations

of RC can be classified into three groups:
• time-multiplexed,
• frequency-multiplexed,
• space-multiplexed,

but they can overlap. In this section we explain these groups and give their
notable examples.
Time-multiplexed reservoir computing

This approach utilizes a single nonlinear node and a feedback loop [100] (see
Figure 2.22). While a rigorous system description involves a spatio-temporal
analogy and is nontrivial [101], an intuitive explanation is provided here

When a signal is circulating in the feedback loop, it eventually enters
the node, where it is nonlinearly transformed (f in Eq. (2.3)). Sometimes,
the node’s bandwidth is designed to be lower than the signal bandwidth.
Then, the node’s impulse response function will effectively compute a linear
transform of a recently passed signal, coupling the portions of the signal (Ŵ
in Eq. (2.3)) in a ring architecture. This is how the RC state is evolving.

In order to perform computing, inputs need to beprovided. For that, amul-
tiplicative temporal mask is applied on an input, and the result is then passed
to the node, which will add it to a circulating signal. Using a mask is critical as
it breaks the otherwise perfect symmetry of the ring network implemented
by the delay system. Therefore, it ensures high-dimensional responses in the
non-chaotic regime. The length of a mask can differ for more complex cou-
pling architecture. For example, a small difference can overcome the lack of
mixing in the node if its bandwidth is instantaneous [102]. Eachmask step cor-
responds to a single RC neuron, and amplitudes of mask elements encode
the Ŵin matrix. In order to implement the readout, signals corresponding to
each neuron are recorded from the feedback loop and weighted.

The simplicity of this approach secured its popularity in experimental real-
izations. The first time-multiplexed RC with an optoelectronic feedback were
proposed almost at the same time [102, 104] shown in Figure 2.23. A mask is
applied electronically to produce an RF input, which is then combined with an
existing RF signal in the loop, and the result is used to modulate an optical
carrier using an MZI, which acts as nonlinearity since the output optical sig-
nal is proportional to the cosine of an electric signal. The optical signal then
passes through a spool of fiber and gets converted back into an RF signal by a

4https://arxiv.org/abs/2111.03332
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Figure 2.22: Time-multiplexed reservoir computing scheme. Adapted from thearXiv source4 of [103] due to higher quality.

photodiode, which is then looped back to the RF combiner. A readout was
implemented electronically. Such reservoirs were used for speech recogni-
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Figure 2.23: Time-multiplexed photonic reservoir computer implementationbased on optoelectronic feedback. Adapted from [104].
tion [104, 102], waveform recognition, the prediction of a 10th-order nonlinear
autoregressive-moving average (NARMA10) of a random signal and nonlinear
channel equalization [102]. Later, a semiconductor laser with optical feedback
was used for spoken digit recognition and chaotic series prediction [105].

There is also an effort towards the integration of time-multiplexed RCs.
However, to obtain a sufficient number of virtual neurons in an RC, a feed-
back delay has to be long, which is challenging in integrated waveguides and
why so many opt for an optical fiber instead. Nevertheless, there have been
efforts towards the integration of delays as well. For example, a delay was im-
plemented as an external cavity of a distributed feedback (DFB) laser [106] (see
Figure 2.24, left). Such a reservoir was used for nonlinear channel equalization
and chaotic time series prediction. A later work of this group tried another ap-
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proach: reducing the feedback length, sacrificing the number of virtual neu-
rons, and compensating with multiple independent feedback loops [107] (see
Figure 2.24, right). This is one example of both time- and space-multiplexed
RC, and it was used for the same tasks as a previous work. Another promis-
ing option is the silicon nitride platform that allows for less than 1 dB/m loss
and would be able to accommodate long delay lines, although at the cost of
a considerable bend radius on the order of 1 mm [108].

Figure 2.24: Left: integrated photonic time-multiplexed reservoir computerbased on a distributed feedback laser [106]. Right: improvement of the de-sign by using multiple delay lines [107].
Such an architecture has a significant drawback regarding high-speed

computing: masking. In order to process a signal with a bandwidth of f GHz
signal by an RC with N neurons, one would require a modulator with a band-
width of Nf GHz to apply a mask, which requires high-speed electronics. It
means that with this architecture, one has to trade computing power for
speed, at least at this time. Since the tasks to be solved are nontrivial and
require high speed, we chose not to use time-multiplexing in this work.
Frequency-multiplexed reservoir computing

This newly-emerged approach separates neurons by frequency [109]. In this
theoretical work, an optical fiber was looped to create a cavity, which holds a
signal composed of several on-resonance spectral lines. Then, a phase mod-
ulator is used to mix them. For readout, this signal is demultiplexed and de-
tected by photodiodes. This RC was used on a nonlinear channel equalization
task, with the integration on the InP platform envisioned, where 2.5 GHz input
signals can be processed.

A later work of this group demonstrates an implementation of such a
setup [110]. The fiber is 15 m long, corresponding to a 49.5 ns round-trip
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time and free spectral range (FSR) of about 20.2 MHz (see Figure 2.25). The
timescale of the input signal matched the round-trip time, i.e. the processing
speed is also 20.2 MHz. The readout is implemented by picking up each line
by a pass-band filter, detecting by a photodiode, and then applying weights
electronically. Alternatively, a programmable spectral filter can be used to at-
tenuate all lines simultaneously and a balanced photodetector would allow
for negative weights. This reservoir had 25 neurons and was used for nonlin-
ear channel equalization and chaotic time series prediction. A recent follow-
up work improved on this setup and used a deep RC architecture, where an
output of the first RC is an input to the second RC [111].

Figure 2.25: Left: scheme of a frequency-multiplexed reservoir computer.Right: spectrum of a signal in optical fiber. Adapted from [110].
This approach utilizes the main advantage of optics – a large bandwidth

containing many spectral lines, and with the development of on-chip fre-
quency comb sources, this method has integration potential. However, as
of now, it relies on high-speed electronics for phase modulation and remains
limited in the number of neurons.
Space-multiplexed reservoir computing

This method separates neurons in space, which makes for a more intuitive
translation of ANN to a physical substrate. Therefore, contrary to time- and
frequency multiplexing, physical implementations with such an approach
started appearing much earlier [57].
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Semiconductor Optical Amplifier-based reservoir One of the first
proposals for an integrated photonic RC used a 5×5 network of semiconduc-
tor optical amplifiers connectedwithwaveguides [112]. In this theoretical work,
SOAs are used as neurons: they perform coherent summation of optical sig-
nals arriving through the waveguides and apply a nonlinear transformation
due to gain saturation. The steady-state characteristic of SOAs is similar to
hyperbolic tangent commonly used as an activation function (see Figure 2.26).
They also provide gain, so no separate devices were needed to counteract
losses, and their broadband operation is favorable for a prototype. Waveg-
uides are arranged in a swirl topology such that optical signals loop back on
themselves, allowing for complex self-mixing, assisted by the SOA nonlinear-
ity (see Figure 2.26). The optical field was coherent, but the readout weights
were real-valued since an electronic readout was planned at that point. This
reservoir was used for

• pattern recognition, where the amplitude of an optical carrier is modu-
lated with various waveforms, and the reservoir has to classify them,

• prediction of the NARMA [113], but its results were planned to be pub-
lished later.

External Input

Figure 2.26: Left: swirl topology, only 4×4 is shown, but the actual size is5×5 [112] or, later, 9×9 [114]. Right: semiconductor optical amplifier (SOA)nonlinearity steady-state characteristic compared to a hyperbolic tangent.Adapted from [114].
In a later version of thiswork [114], a larger version of this RCwas applied to

a speech recognition taskwhere recordings of digit pronunciations are passed
as input, and the reservoir’s task is to classify digits. Recordings were acceler-
ated to match optical timescales. Additionally, recordings were preprocessed
according to the earmodel [115], which outputs 77 channels that were fed into
the reservoir as inputs with power below 1 mW. The length of the connecting
waveguides was optimized for the best performance. It was found that the
reservoir performs best if the propagation of light between two neurons takes
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190 ps, which roughly corresponds to half of the recording length. According
to the authors, it was easy to achieve almost perfect classification, so a babble
noise at 3 dB signal-to-noise ratio (SNR) was added, then the classification er-
ror was 7.7%. The downside of such a setup is that SOAs require considerable
power [116].
Passive reservoir This group’s later work revolved around a similar net-
work of splitters [116]. This time, it was theoretical and experimental work with
a fabricated chip on the SOI platform (see Figure 2.27, left). Similar to SOAs,
splitters receive signals frommultiple waveguides and output their sum, how-
ever, without a nonlinear transformation. Nonlinearity came from the readout
instead: since a photodiode was used to extract signals from each splitter, a
|x|2 nonlinear functionwas applied to every signal. Because of that, a reservoir
was capable of solving nontrivial tasks:

• binary operations, including XOR, where an amplitude of an optical car-
rier wasmodulatedwith a randomsignal with two levels, corresponding
to ‘true’ and ‘false’ and the RC has to compute a binary operation of last
two bits,

• header recognition, where a signal is the same as in the previous task,
but the reservoir has to classify patterns of a certain number of bits,
which is applicable for all-optical routing,

• speech recognition described in the previous section.
It has been demonstrated that a linear reservoir cannot compute XOR, which
is a nonlinear function, but both |x| and |x|2 nonlinearities before the readout
make it possible.

A recent experimental work by this group aimed at improving connec-
tivity [30]. In a swirl configuration, neurons at the edges and corners have
only one input, which as suggested to be a performance limiting factor, so
a new four-port architecture was proposed, where all neurons receive two
inputs (see Figure 2.27, right). This reservoir was used for an optical data re-
covery task where a 32 Gbps signal encoded with on-off-keying (OOK, see Sec-
tion 4.2.1) was recovered after distortion by a 25 km single mode fiber.
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Figure 2.27: Integrated reservoir computerwithwhirl (left) and four-port (right)topology on the silicon-on-insulator platform. Adapted from [116, 30].

Nonlinear photonic crystal-based reservoir Another work consid-
ered a rectangular grid of 25 nonlinear (the Kerr effect) PhCs as neurons [117]
in simulation. The task was to autonomously generate a specific output signal
with arbitrary waveform generation inmind. For that, the output was fed back
as an input, which made ridge regression inapplicable. Instead, the FORCE al-
gorithm was used. The target signal was a sum of two sines with different
frequencies:

s(t) = sin(ω1t) + sin(ω2t) (2.17)
where ω1 ≈ 2π× 216 GHz and ω2 = 0.311ω2/0.2, the choice was based on thecavity photon lifetime – 1.39 ps.

Contrary to previous works, the delay between the cavities was removed,
though splitters and waveguides were still used for coupling. That, however,
required randomness of thewaveguide coupling phase and stronger coupling
between the cavities. It was explained that otherwise, cavities enter a harmful
collective self-pulsing.
Nonlinear microring resonator-based reservoir This group’s later
work returns to the whirl architecture and improves it by incorporating non-
linear Si MRR cavities in a 4×4 grid [118]. This reservoir could solve the delayed
XOR task at 20 GHz while requiring a few milliwatts of optical power. Pho-
todiodes were used in the readout, and even though an improvement with
higher input power was reported, it is not clear if intrinsic nonlinearity has
contributed significantly since the same task in similar conditions has been
solved by a linear reservoir with photodiodes in the readout [116]. A similar
theoretical article has considered random delays betweenMRRs [24] in a rain-
fall topology and demonstrated 8-bit header recognition at 160 Gbps.
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Figure 2.28: Microring resonator-based reservoir computer in swirl [118] (left)and rainfall [24] (right) topologies.

Passive photonic crystal-based reservoir A different approach us-
ing a large quarter-stadium-shaped PhC was also demonstrated in a simula-
tion [31]. Interacting with a cavity was possible via wall defects: 1 for input and
5 for outputs. Such a linear reservoir equipped with photodiode nonlinearity
could solve tasks at a wide range of bitrates: binary operations including XOR
up to 67 Gbps and up to 6-bit header recognition up to 100 Gbps.

Figure 2.29: Integrated photonic reservoir based on a photonic crystal cavity.Adapted from [31].

Free-space setupwith large-area laser In a recent article, a large-area
VCSEL was combined the advantage of free-space optics – a high number of
neurons (here 350) – with a nonlinearity of integrated photonics [119] and is
shown in Figure 2.30. A digital micromirror device (DMD) encodes an input
image sent through amultimode fiber, performing input weighting. Then, the
weighted image is directed into a large VCSEL, where spots of high-intensity
light increase the local density of charge carriers that cause the nonlinear re-
sponse. The drift of charge carriers spreads the nonlinear response to neigh-
bouring regions, creating a Gaussian-like local coupling between neurons. Fi-
nally, the result is sent to a second DMD that performs output weighting. This
RC was used for the header recognition task, and it was noted that this task
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could not be solved without a VCSEL, which also increased the dimensionality
of the RC.
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Figure 2.30: Reservoir computer based on a large area vertical cavity surfaceemitting laser. Here, DMD is a digital micromirror device, MMF is amultimodefiber, and DET is a photodetector. Adapted from [119].

Spatio-temporal reservoir The experimental work of Nakajima M. et al.
merged space- and time-multiplexed approaches to improve RC scaling [76]
(see Figure 2.31). There, modulated pulses are split into N parts subject to var-
ious delays. Then, they are linearly mixed into L signals that are then injected
into an array of cavities that act as delays for time-multiplexing. The array of
photodiodes reads neurons from these cavities, and the readout is performed
on a computer. However, cavities are linear, and nonlinearity comes from the
optical modulator at the input stage and from photodiodes in the readout.
This RC was applied for chaotic time series prediction and handwritten digit
classification.

Figure 2.31: Spatio-temporal reservoir computer based on an array of coher-ent cavities. Here, VOA is a variable optical attenuator, PS is a phase shifterand PD is a photodetector. Adapted from [76].
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2.6 . Scalability of integrated photonic neural networks

To solve more challenging tasks, an ANN with more neurons is required.
However, chip space is always limited and so the goal is to get as much com-
puting power as possible out of available space.

This, however, is a recurring problem with integrated photonics – one
could have noticed that most designs above implement modest ANNs with
just a few tens of neurons. Of course, those are research prototypes, but a
strategy for scaling up conventional ANNs on-chip is yet to be determined.

For comparison, ANNs in free-space setups often use spatial light mod-
ulators to implement internal weights and are then limited by their resolu-
tion. For example, the setup shown in Figure 2.32 (left) used 2025 neurons
for chaotic series prediction with, 90,000 being possible [120] and another –
16,384 neurons for human action recognition. A theoretical limit was 262,144,
though not all of them could be in the focus of a camera [121]. Diffractive units
promise even higher numbers. One work proposed to train a large DNN on
a computer and, based on its parameters, fabricate diffractive layers using a
3D printer (see Figure 2.32, right). In the experiment, 450,000 neurons were
demonstrated, and tens of millions of neurons were claimed to be possible,
though the parameters of layers cannot be changed after fabrication [122].

Mir
ror

Figure 2.32: Left: recurring neural network in free-space optics based on aspatial light modulator (SLM) and digital micromirror device (DMD) that imple-ment internal and readout weights. Here, DET is a detector, SLM is a spatiallight modulator, (P)BS is a (polarizing) beam splitter, MO is a microscope ob-jective, DOE is a diffractive optical element, Right: deep neural network basedon layers of diffractive planes. Each point on a layer is a neuron with complex-valued transmission, and interference of the diffracted light creates coupling.Adapted from [120, 122].
Here, we estimate the efficiency of designs found in literature in two ways:

with a neuron density and a synapse density. The former is the same as MAC
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per area, which is directly linked to the computing power. However, synapses
can also occupy space; their number can scale quadratically with the number
of neurons. The synapse density, however, will not and is, therefore, a more
general measure.

We start with the MZI-based MVP accelerator [91] in Figure 2.16, which
can perform a 4×4 matrix multiplication while taking, judging by the photo,
2.6 mm×2.0 mm or 5.2 mm2 of chip area. Considering that an MVP imitates
MAC operations of 4 neurons, a neuron density is around 0.7 neurons/mm2
and 3 synapses/mm2.

The incoherent MVP accelerator [92] in Figure 2.17 was not fabricated as
a whole, but based on the photos of prototype MRRs to be used, a rough
estimate could still bemade. EachMRR takes roughly 0.06 ×0.03mm2 of space,
considerably less than a MZI. For the same four neurons, we would need four
MRRs formodulation and 16MRRs for a weight bank. Assuming themaximally
efficient design, we would need 0.036 mm2 of space. Of course, since weights
are set thermally, the spacing between devices would need to be increased
to reduce the thermal crosstalk, but we would still get a result on the order of
100 neurons/mm2 and 450 synapses/mm2. Much better!

The work on a crossbar array [93] shown in Figure 2.18 implemented a
16×16 MVP accelerator on a roughly 8×9 mm2 chip, corresponding to around
0.2 neurons/mm2 and 3.3 synapses/mm2.

The integrated DNN [98] shown in Figure 2.20 has six inputs, three 6×6
layers, two layers of nonlinearity and six outputs. Excluding test structures,
the chip area is roughly 30 mm2, corresponding to the neuron density of
0.8 neurons/mm2 or 3.6 synapses/mm2. It is not surprising that it matches the
MZI-based accelerator since matrices here are also implemented with MZIs,
which take up most of the chip space.

As for RCs, the passive version [116] shown in Figure 2.27 (left) occupies
16 mm2 of chip space while having 16 neurons and 24 synapses, which gives
1 neuron/mm2 or 1.5 synapses/mm2. There, most of the space was taken by
spirals to slow down the system. Moreover, to reduce losses, waveguides
were shallow-etched and, therefore, had a larger bend radius of 40 µm (SOI
platform).

The footprint of the MRR-enhanced version [118] in Figure 2.28 had not
been estimated, but since delay loops were still there, the results would be
similar to the RC above.

For the RC with the four-port architecture [30] in Figure 2.27 (right), the
chip footprint was also not specified, but the chip was fabricated on the bipo-
lar CMOS SiGe platform. Assuming that shallow-etched waveguides were
used again, the chip footprint is estimated by the waveguide bend radius
– about 16 mm2, which with 32 nodes (including non-observable ones) and 64
synapses gives 2 neurons/mm2 and 4 synapses/mm2.
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It is unclear how to estimate the neuron density of the RC based on a large
PhC [31] in Figure 2.29. The size of the structure is 30×60 µm2 with six outputs.
However, looking at the complexity of field propagation inside the crystal, in-
tuitively, more signals could have been extracted. However, even with six out-
puts, there are 300 neurons/mm2. This demonstrates an important point of
RC – if no particular structure is imposed and only internal complexity is required,
there is a potential for a large neuron density.
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Figure 2.33: Overview of integrated neuromorphic setups. Details are given inTable 2.1. The work of Khoram E. et al. [126] is a photonic scatterer used forinference.
The complete scalability comparison is given in Figure 2.33. It is true that

such a comparison is not particularly fair due to differences between systems.
For one, accelerators and complete neural networks pursue different goals.
Accelerators can perform almost arbitrary MVMs but rely heavily on electron-
ics. Complete ANNs perform more operations internally and do rely as much.
Moreover, in a DNN, there are fully tunable MVM and nonlinearity layers, and
the readout was on-chip. In RCs shown here, MVM is not controlled, and of-
ten, the nonlinearity often came from an external photodetector, and readout
was implemented electronically. In any case, the goal was to have a rough es-
timate of compute density, which dramatically increased, when WDM or the
RC paradigm was used.

Nevertheless, integrated structures are two-dimensional, which limits the
scalability of the number of I/O channels of interconnects [129], and there
is an effort towards their three-dimensional implementation. For example,
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Table 2.1: Details for Figure 2.33. For linear setups for which the processingspeed was not discussed, a detection limit of 100 GHz is assumed accordingto [91].
Ref. Notes[123] linear waveguides[124] chip size is estimated by stud holes, neuron size is interactionlength (200 µm), linear operation after weight writing[92] speed is DAC-limited[125] speed limit not discussed, 10 GS/s AWG was used[97] 30 GHz is a lower limit of available technology[126] scatterers can be nonlinear still assuming detection-limitedspeed

using two-photon polymerization, J. Moughames et al. demonstrated three-
dimensional splitters up to 1×16 [130] and a coupler structure with 225 inputs
and 529 outputs in the 0.46×0.46 mm2 area [129]. This way, the number of I/O
channels of interconnects scales linearly with the chip area.

2.6.1 . A question of readout
In many implementations of space-multiplexed RCs, photodiodes in the

readout add nonlinearity. In the experiments, a single photodiode is used to
extract all signals from the RC: an input signal is passed to an RC, and a sig-
nal is extracted from a single neuron. Then, the fiber is moved to a second
neuron, the same input is injected into the network again, and the process is
repeated until all neurons have been read. High-speed real-time computing,
however, will warrant the addition of a photodiode for each neuron. For ex-
ample, the imec foundry proposes Ge photodetectors, which, judging by given
microscope images in the datasheet5, take about 0.15×0.02 mm2 of space, not
considering RF pads. Then, in the best-case scenario, such an incoherent read-
out would limit the neuron density to 300 neurons/mm2, and a coherent ver-
sion would take evenmore space, not to mentionmore complicated handling
of electric RF signals.

For that reason, an integrated readout has been proposed [131], which al-
lows the weighting and summation of RC signals on-chip (see Figure 2.34). Not
only does this allow the use of a single photodiode, but also an optical output.
However, the nonlinearity of a single photodiode might be insufficient. For
that reason, the use of intrinsic nonlinearity would be advantageous. Out of
the aforementioned space-multiplexed integrated RCs [114, 117, 24, 118] have
utilized it, whereas [116, 31, 30, 127] opted for the photodiode-based nonlinear-
ity.

One might argue that weighting with MZIs is not as compact as one could
5https://www.imeciclink.com/en/asic-fabrication/si
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Figure 2.34: Swirl reservoir connected to a fully optical readout. Here, opticalmodulators (OM) perform weighting and the combiner structure – summa-tion. Adapted from [131].

hope – the state-of-the-art footprint is 0.10×0.02mm2 [132], not taking thermal
crosstalk into account. Luckily, phase change materials (PCMs) are in active
development.

Crystal and amorphous phases of a PCM can have a different refractive
index, which can be used for phase shifting and might become a viable alter-
native to conventional thermo-optic effect-based phase shifters [133]. Crys-
tallization of a PCM can be partial, and then its effective refractive index
attains some intermediate value. For example, Ge2Sb2Te5 or GST has been
demonstrated to be capable of switching up to 34 levels [134], while Sb2Se3 –only a few [135]. A good review of PCMs is given in [133]. It has been demon-
strated that even with a limited-resolution readout, a proper training proce-
dure correction, having eight levels of precision is manageable, and 16 levels
is not much different from the full precision [136]. Apart from compactness,
non-volatility is another interesting property. A thermo-optic phase shifter
requires a constant supply of current to operate, but a PCM can stay for pro-
longed periods of time in the same state [133]. Although not as compact, mi-
croelectromechanical systems (MEMS) also have their benefits, such as higher
energy efficiency and absence of thermal crosstalk – a good review is given
in [132].
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2.7 . Conclusion

There is a push towards the implementation of ANNs on a photonic chip.
While complete RNNs have not been implemented yet, their simplified ver-
sion, RCs, have been due to easier implementation and training procedures.
Current implementations have been successful but were limited by large chip
footprint to slow down the propagation of light or underutilized intrinsic non-
linearity, which would require high-speed photodetectors on each neuron to
solve nonlinear tasks. In the next chapter, a new approach to integrated pho-
tonic RC is proposed that aims to overcome both these issues.
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3 - Integrated reservoir computer based on
evanescent coupling

3.1 . Introduction

Pioneering research by K. Vandoorne et al. demonstrated how optical sig-
nal can bemixed with its delayed copies in a complex fashion to perform com-
puting, how mixing can be improved by using intrinsic physical properties of
SOAs [114], and that a nonlinear transform at the readout can compensate for
linear RC internals [116]. F. Laporte et al. took the RC paradigm very close to
heart, used unstructured but complicated media as a large PhC resonator,
and drastically reduced the chip footprint [31]. M. A. A. Fiers et al. demon-
strated that an intrinsic nonlinearity can generate a nontrivial waveform that
is impossible with a linear RC [117].

However, a few questions remained. What is the exact role of chosen pa-
rameters besides a benchmark performance? Is there a profoundmeaning in
delayed connections between neurons? Can an all-optical RC be slowed down
such that interfacing with other (electronic) devices is possible without high
footprint cost? Do different nonlinearities provide the same benefit? The final
and the biggest question: is it possible to simultaneously achieve scalability
and all-optical computation with intrinsic nonlinearity?

Guided by these questions, this chapter, considers an integrated RC based
on evanescently coupled nonlinear microresonators and discusses how its
parameters impact general performance metrics: dimensionality and consis-
tency.

3.2 . Microresonator as a neuron

The linearity of light has its up- and downsides. On the one hand, light
is predominantly used in data transfer, and here, nonlinearity leads to dis-
tortion and crosstalk between channels. On the other hand, our goal is all-
optical neuromorphic computing, where neurons are supposed to perform
local nonlinear transformations, i.e. without the involvement of photodetec-
tors and the conversion of the signal into the electric domain. For that end,
light has to reach a high enough intensity, which is made practical inside opti-
cal microresonators. Here we will consider dielectric and semiconductor res-
onators, where internal loss may be very low.
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3.2.1 . Microresonator model
An dielectric or semiconductor microresonator (or cavity) is an object ca-

pable of localizing light by exploiting the laws of refraction. Depending on the
type of cavity, refraction will differ. For example, in Fabry-Perot resonators,
a light wave impinges perpendicularly on the mirror, which could be, for ex-
ample, a cleaved crystal facet (see Figure 3.1). In microdisk or microring res-
onators, light is guided along a curved path so that the total internal reflection
is satisfied.

After propagating through a resonator multiple times, the light waves in-
terfere, and if the interference is constructive, the wave intensity increases.
Interference only happens for a particular set of frequencies, corresponding
to the eigenmodes of the homogenous (i.e. no-source) Maxwell equations for
the electromagnetic (EM) field. An analytical approach to finding them is of-
ten untractable, and numerical approaches are used instead, such as the Fi-
niteDifference TimeDomain (FDTD)method. Since the computer implementa-
tions of these methods are readily available, mode frequencies are assumed
to be known. Integration of Maxwell equations is a computationally intensive

Figure 3.1: Fabry-Perot (left), microdisk (center) and photonic crystal (right) res-onators seen from the top. Red arrows represent the direction of electroopti-cal wave propagation.
process, and a simulation of even one cavity might take considerable time;
therefore, to simulate a network of cavities, simplifications must be put in
place.

Assume that our resonators we use are capable of conserving resonant
modes for a long enough time, or, in other words, their Q-factor is large i.e.

Q = τoω ≫ 1, (3.1)
where τ0 is the lifetime of the EM energy stored in that mode of the resonator,
i.e. a duration of time during which it reduces e times, and ω is the resonance
frequency of a resonator. Similarly, we also assume that the timescale of other
effects, such as interactions of this cavity with waveguides and other cavities,
aremuch longer than 1/ω. In this case, fast spatiotemporal changes of the EM
field are averaged over time, and the Coupled Mode Theory (CMT) becomes
applicable [137]. Then, the electric field in the cavity can be factorized into the
complex envelope a(t) and the normal mode U(r) [138]:

E(r, t) = a(t)U(r), (3.2)
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units of which are chosen such that
1

2

∫
ε0εr|U(r)|2dr = 1, (3.3)

and, consequently, EM energy in the cavity is |a(t)|2. For a single lossless res-
onator, its complex envelope is described as

da

dt
= iωa. (3.4)

In this case, a ∼ exp(iωt) and |a(t)|2 is therefore constant, meaning that the
resonator does not lose the stored energy, which never happens in reality
due to, for example, imperfections of cavity surfaces, which scatter the light.
These losses are linear and are described by adding an intrinsic loss term:

da

dt
=

(
iω − γo

2

)
a, (3.5)

where γo = 1/τo describes how quickly a resonator loses the stored energy.
Here, γo is divided by two to correspond to the energy loss rate:

d

dt
|a|2 = da

dt
a∗ + a

da∗

dt
= −γo|a|2 (3.6)

where a∗ stands for a complex conjugate of a.
3.2.2 . Nonlinear effects

We account for nonlinear effects by adding another term to the cavity
equation:

da

dt
=

(
iω − γo

2

)
a+ fNL(a). (3.7)

We consider three nonlinear effects present in integrated photonic microres-
onators: two-photon absorption (TPA), free carrier dispersion (FCD) and the
Kerr effect.

Assume a photon travelling through a semiconductor. If its energy is larger
than the band gap, it can be absorbed to excite an electron in the valence
band andmove it to the conductance band (see Figure 3.2). Otherwise, it does
not happen due to the energy conservation law. However, if there are two
photons, each with energy below the band gap, but together, their energy
exceeds it, they can be absorbed at effectively the same time and still excite
that electron. This process is called TPA, included in Eq. (3.7) as [139]

fNL(a) = −1

2
γTPA(a)a, (3.8)

where
γTPA(a) =

βTPAc2

n2V TPA
|a|2, (3.9)
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βTPA is the TPA coefficient defined as ∂|a|2/∂z = −βTPA|a|2 [138], c is the
speed of light, n is the cavity refractive index and V TPA is the effective TPA
volume [139]

V TPA =
βTPA

n2

(∫
n(r)2|U(r)|2dr

)2∫
n(r)2βTPA(r)|U(r)|4dr

, (3.10)
whereU(r) is found by solving theMaxwell equations. Typical values for PhC
cavities are given in [138], and for anMRR, it is approximately equal to its phys-
ical volume V . The effect of carrier diffusion is not negligible in PhCs [140], and
an accurate model is given in [138]. However, since here we do not consider
a specific resonator geometry, and an accurate estimation of TPA is not the
goal of this work, a simple model outlined above is used.

Conduction band

Valence band
k

ℏω

ℏω Eg

0 k

EE

2
ℏω

0

Surfacestates

Figure 3.2: Linear absorption and two-photon absorption on a semiconductorband diagram. Left: photon energy ℏω is higher than bandgap Eg. A photon(red) is absorbed by an electron (blue) in the valence band, moving it to theconduction band. Excess energy is dissipated due to collisions with the crys-tal lattice and other electrons. An electron can return to the valence band invarious ways, but in nanostructures, surface recombination is dominant andshown in figure. The surface is a lattice defect, which creates states inside theband gap. An electron can fall into one of these, emitting a phonon. After a fewsurface states, the electron returns to the valence band. Right: ℏω < Eg ≤ 2ℏω,a single photon is not enough to excite an electron, but two can be absorbedsimultaneously.
The presence of free charge carriers induces a change in refractive index

according to the Drude model [139]. As a result, a resonance shifts by ∆ω

proportionally to the free electron density N [141, 142] with dω/dN as a pro-
portionality coefficient. This process is FCD, included in Eq. (3.7) as:

fNL(a) = i
dω

dN
Na. (3.11)

Such free electrons could be generated via a linear photon absorption or the
TPA. The former is possible in direct-bandgap semiconductors but causes high
optical loss independent of the input power, unlike with TPA, where it linearly
increases with the optical energy stored in a cavity. Considerable losses in sys-
tems without gain make large networks unrealistic. We therefore exclude the
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linear photon absorption as a sustainable effect producing nonlinearity and
only consider TPA for free electron generation. That said, hybrid photonic in-
tegration allows to combine various materials, such as III-V and silicon. Thus,
the former can be used for a localized strong nonlinearity related to direct
absorption and the latter for confinement and low-loss propagation. An ex-
ample is based on III-V and Si PhC for all-optical signal processing [27].

The density of TPA-generated electrons is computed by [139]
dN

dt
= −γcN +

γTPA(a)

2ℏωV c
|a|2, (3.12)

where γc is a free electron recombination rate andV c is a volumeacrosswhich
electrons spread through a diffusion, which, for simplicity, is assumed to be
equal to a cavity volume [138].

A strong electric field can deform electron orbits of atoms or molecules,
which leads to a change in refractive index; this is the Kerr effect, which, sim-
ilarly to FCD, causes a resonance frequency shift in response to a stronger
electric field inside a cavity [143]

fNL(a) = i∆ωNLa = −i
ω

n
∆na = −i

ω

n2

n2c

V Kerr
|a|2a, (3.13)

where n2 is the Kerr coefficient and V Kerr is the effective Kerr volume equal
to V TPA [139]. Usually, FCD dominates in semiconductors over the Kerr effect
unless the charge carrier lifetime is very short.

Nonradiative recombination of charge carriers, among other effects, leads
to an increase in the temperature of a resonator, which changes its resonance
frequency due to the thermo-optic effect, which can be significant. However,
we omit them for the following reasons:

• spatial proximity of resonators due to the evanescent coupling will lead
to strong thermal crosstalk; therefore, all resonances are expected to
shift almost equally,

• the timescale of thermal effects is on the order of a microsecond, much
larger than that of the input; the input itself is not expected to change on
average significantly; therefore, the frequency shift due to the thermal
effects would appear almost constant,

• the thermal effects analysis is complicated and depends on the res-
onator geometry and the material, whereas we aim for a general anal-
ysis.
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3.3 . Dynamical model of coupled nonlinear resonators

As demonstrated in perceptron’s case, a single neuron cannot perform
complex computing alone. This section discusses how cavities interact with
waveguides and other cavities to make a network.

3.3.1 . Cavity-waveguide coupling
In order to inject or extract the light into the cavity, a waveguide is posi-

tioned next to it. Due to an overlap of waveguide and cavity modes, mode
coupling occurs. With the derivation given in Section A, the equation for a(t)
becomes

da

dt
=

(
iω − γo

2
− γκ

2

)
a+ κs(t), (3.14)

where κ is the coupling strength, s(t) is an electric field travelling along the
waveguide towards the cavity and γκ is the rate at which the energy stored in
a cavity escapes into the waveguide. It can be helpful to assume that s(t) is a
complex amplitude with a carrier with a frequency ωin and write s(t) exp(iωint)instead. This becomes relevant later in Section 3.5.1.

Here, γκ is proportional to |κ|2 with the proportionality factor depending
on the cavity type. For example, an MRR localizes travelling modes that cir-
culate in one direction, and each direction is an independent mode. Then,
γκ = |κ|2/2 since light can escape only in one waveguide direction. On the
other hand, a PhC localizes standing wave modes, which can be described
as a superposition of waves travelling in opposite directions. Then light can
escape in both directions, giving γκ = |κ|2.

Figure 3.3: Coupling of microring (left) and photonic crystal (right) resonatormodes to a waveguide. Mode directions are shown as colors. The photoniccrystal mode is the standing-wave type and is a superposition of back andforward-propagating modes.
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3.3.2 . Evanescent intercavity coupling
Two cavities can be placed close to each other to induce an interaction.

Since a typical resonator does not localizemodes inside it perfectly, themodes
of two cavities can overlap, which induces evanescent coupling. If two lossless
cavities with aligned resonances are evanescently coupled, their dynamics are
described by [137, Section 7.5]:{

ȧ1 = µa2

ȧ2 = −µ∗a1
(3.15)

where µ is the evanescent coupling strength. The extrapolation to the case of
multiple cavities is straightforward.

ResonatorMode

Figure 3.4: Cavity mode overlap induces an interaction between modes.
The coupling strength |µ| can be obtained via a numerical solution of

Maxwell equations or an experimental measurement. One could derive from
Eq. (3.15) that if two uncoupled cavities had resonances at ω, after being
evanescently coupled, they become ω ± |µ|. Then, |µ| is found via splitting
of resonant frequencies.

3.3.3 . Waveguide-mediated intercavity coupling
Light can change after passing through a waveguide next to a cavity (see

Section A). If another cavity is on the way, it can also couple into it. As a result,
the first cavity influences the dynamics of the second, which is coupling. In
Section B, it is shown that, in a simplifiedmanner and assuming proper mode
direction matching: {

ȧ1 = −γκa1/2 + |κ|2 exp(iφ1)a2

ȧ2 = −γκa2/2 + |κ|2 exp(iφ2)a1
. (3.16)

55



3.3.4 . Comparingwaveguide-mediated couplingwith evanescent
Both coupling methods are described with similar equations, but impor-

tant differences exist.
Let us look at Eq. (3.15) and Eq. (3.16) from the eigenvalue perspective. For

the evanescent coupling, the equation matrix is:[
0 µ

−µ∗ 0

]
(3.17)

whose eigenvalues are λ = ±iµ. Therefore, such coupling always splits reso-
nances and induces no losses. For the waveguide coupling:[

−γκ/2 |κ|2 exp(iφ1)
|κ|2 exp(iφ2) −γκ/2

]
. (3.18)

Then its eigenvalues are λ = −γκ/2±|κ|2 exp(iφ), whereφ includes all phases.
Therefore, depending on effectively random φ, the eigenvalues’ imaginary
parts might become smaller than real parts, and coupling is closer to the
evanescent coupling or more real, with almost no interaction (see Figure 3.5).

In otherwords, the schemewithwaveguide-mediated coupling introduces
a critical dependence on the phase, which is difficult to control. While it could
be possible to optimize phases and perhaps improve RC’s performance, it
would require active control and related stabilization electronics, not to men-
tion an increased chip footprint. Evanescent coupling, however, is resistant to
the disorder of coupling strength (see Section 3.9). Therefore, the evanescent
coupling is chosen as the primary source of neuron interaction.
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Figure 3.5: Complex mode envelopes of two photonic crystal cavities (blue,orange) coupled evanescently (left) and by a waveguide (center, right). Solidand dashed show real and imaginary parts. Center and right demonstratea ‘good’ and a ‘bad’ phase conditions. Time is normalized by 2π/µ (left) and
2π/κ2 (center, right).
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3.4 . Reservoir computer master equation

The backbone of our photonic RC is an N∥ × N⊥ square grid of evanes-
cently coupled nonlinear cavities (see Figure 3.6(a)). One side of the grid is
coupled to the input waveguide according to cavity-waveguide coupling co-
efficient κ. Through this waveguide, an optical input u(t) is injected. Assum-
ing that intra-cavity and cavity-waveguide coupling rates are much smaller
than the angular frequency, the coupled-mode theory can be applied [144].
For a purely linear case, the electric field of microcavity modes a(t) can be
described with

da

dt
=

(
iω − Γo + Γκ

2

)
⊙ a+ (M̂µ + M̂κ)a+K ins(t), (3.19)

where ω are the frequencies of the normal modes (for simplicity, we assume
one mode per cavity), Γo is intrinsic optical loss, Γκ is optical loss to waveg-
uide, ⊙ is the Hadamard product, M̂µ, M̂κ are evanescently and waveguide-
mediated intercavity couplingmatrices, K in is an input waveguide-cavity cou-
pling matrix (see Section B).

Here M̂µ
km = −(M̂µ

mk)
∗ [137, Section 7.5] if the k-th and m-th cavities are

evanscently coupled.
For simplicity, assume
• |M̂µ

km| = µ if k-th andm-th cavities are coupled,
• |K in

k | = κin if a k-th cavity is coupled to the waveguide,
• Γo

k = γo.
While this is a good approximation, they can vary to some degree, e.g. due to
fabrication tolerances. The phase components of these vectors are defined by
a chip geometry and are considered independent and identically distributed
(i.i.d.).

In order to extract signals from cavities, they are coupled to independent
waveguides, outputs of which are

z(t) = Kout ⊙ a(t), (3.20)
where Kout is a vector of output waveguide coupling coefficients, for which
uniformity is assumed according toKout

k = κout. These waveguides introduce
an additional optical loss, which has to be included in Γκ.

In the end, a system receives an optical signal s(t) as an input and pro-
vides a set of optical signals z(t). Therefore, it can be treated as an RC. In
the integrated photonic hardware, readout weights could be realized based
on tunable attenuators with transmission wk, phase-shifters according to φk
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Figure 3.6: Geometry of the proposed integrated photonic reservoir com-puter.

and a combiner tree to implement a linear combination of zk(t) that createsthe output optical signal y(t):
y(t) =

∑
k

wk exp(iφk)zk(t) = Ŵ outz(t). (3.21)
This way, the conversion of optical input s(t) to optical output y(t) is done fully
optically, as electronics only control attenuators and phase shifters; both are
constant during a computation.

Such a reservoir has many parameters, but how do we choose them? The
next sections analyse RC’s generic performance metrics to answer this ques-
tion.

3.5 . Numerical simulation

Since RCs are nonlinear dynamical systems with very complex behaviour,
their numerical integration and subsequent analysis of the results is the only
tractable approach.
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3.5.1 . Rotating wave approximation
If |da/dt| ≪ ω|a|, then the amplitude a obeys the rotating wave approx-

imation. Then, one can formally introduce ã = a exp(iωREFt) and Eq. (3.19)
becomes

dã

dt
=

(
i∆ω − Γo + Γκ

2

)
⊙ ã+ (M̂µ + M̂κ)ã+K ins(t), (3.22)

where∆ωi = ωi − ωREF and ωREF can be chosen such thatmaxi|∆ωi| is mini-
mized. For example, the carrier frequency ωin of the input signal s(t) is a goodoption.

Considering that a typical ω is on the order of 2π · 200 THz, whereas
ω − ωREF is comparable to a hundred gigahertz, the numerical integration
timestep can be significantly reduced.

Such substitution does not change the nonlinear equations since they are
proportional to |a|, which is identical to |ã|. For that reason, for simplicity, the
rotating wave approximation is isolated to numerical integration; the formal-
ism in Eq. (3.19) is used otherwise.

3.5.2 . Implementation
The differential equations are integrated using the DifferentialEquations.jl

library [145] of the Julia programming language [146]. Default model parame-
ters are given in Table 3.1.
Table 3.1: Default parameters of a linear reservoir with Eq. (3.12). Others areomitted as they only impact the input power.

Parameter Value Units CommentsGeometry 8×3 grid GaAs MRRs
µ 25 GHz defines RBW
γc 28.5 GHz [147]Q-factor 3×105 near-optimal γS/2π ≈ RBW/N ≈

0.9 GHz
κ2in 4π GHz every other cavity next to input waveg-uide is coupled
κ2out π GHz provides sufficiently strong zk(t)

For integration, the 3-step Adams-Bashforth explicit method was used
(AB3 in DifferentialEquations.jl) with a typical timestep 0.15τ where τ is the RC
timescale, i.e. the minimum of inverse eigenfrequencies, inverse eigenlosses
and electron lifetime. Integration convergence verification is provided in Fig-
ure 3.7.
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Figure 3.7: Integration convergence validation of a reservoir with default pa-rameters (see Table 3.1). Left: integration step normalized by the reservoirtimescale. A set of identical reservoirs with identical random input is inte-grated with various time steps. The result with the smallest step is assumedto be accurate and serves as the baseline. Integration error is computed fora trajectory of each cavity w.r.t. the corresponding cavity of the baseline, andthe error is normalized by its mean amplitude over the integration period.Each box represents the largest error across all cavities at each integrationstep. Right: each step shows an average error across all cavities during thisstep. The integration step is the largest present in the left figure. Time is nor-malized by the inverse reservoir bandwidth. The error does not increase evenafter a long computation.
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3.6 . Dimensionality in the linear regime

First, consider the case when the input signal is not strong enough to in-
duce a nonlinear response by the microcavities. An important value for the
following discussion is the input signal’s bandwidth BW, which is defined as
the span between its spectral half-power positions (see Figure 3.8).
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Figure 3.8: Visual representation of signal bandwidth BW.
As will be shown, the computational properties of such photonic reser-

voirs depend primarily on the microcavities’ spectral characteristics. In that
regard, an important consequence when evanescently coupling microcavities
is the formation of supermodes with split resonances (see Figure 3.10).

3.6.1 . Methodology
To determine the dimensionality, a random sequence is generated

s̃0(tn) =
√
I0(tn) exp(iφ0(tn)), (3.23)

where √
I0(tn) and φ0(tn) are randomly sampled according to a white noise

distribution. Then, an 8th-order Butterworth low-pass filter with a given band-
width BW is applied on s̃0(tn) to obtain s0(tn), which is then linearly interpo-lated to s0(t). This signal is used to modulate an optical carrier that is injected
into the reservoir as an input. The photonic reservoir’s dimensionality is then
determined by using the PCA (see Section 2.4.1) on signals from cavities zndefined in Eq. (3.20). Importantly, for the PCA electric field is split into a real
and an imaginary part, which implies that the maximum dimensionality our
reservoir can have is 2N . Therefore, it is convenient to introduce a normalized
dimensionality D̃ = D/2N .

As mentioned in the PCA description, we use the principal component cut-
off of 1%. While a higher/lower value would decrease/increase the apparent
dimensionality, to the best of my knowledge, there is no universal rule to its
choice. Still, the goal is that the dimensionality represents the dynamics of
the reservoir. In our case, they could be altered either by noise or numerical
integration errors. However, the former is not present in the model, and the
latter is smaller than 1% (see Section 3.5.2). Here, any reasonable cut-off sat-
isfying these constraints would be valid (see Figure 3.9), but it is important to
be consistent with the choice.
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Figure 3.9: Amplitudes of principal components reservoir designed accordingto the following sections. Here, the drop-off is rather smooth and a changeof the amplitude cut-off would not change the resulting dimensionality dras-tically.

3.6.2 . Spectral line spread of coupled resonators
Consider the linear part of Eq. (3.19):

diag

(
iω − Γo + Γκ

2

)
+ M̂µ + M̂κ, (3.24)

eigenvalues of which are λE
k . Then, the average supermode bandwidth is
γS =

〈
−2Re

(
λE
k

)〉
k
. (3.25)

Importantly, the coupling-induced supermode splitting increases the reser-
voir’s response bandwidth beyond the bandwidth of a single resonator. The
reservoir bandwidth RBW is defined as the maximum distance between the
network’s supermodes measured at half intensity. For example, without the
input waveguide, two identical independent cavities with resonance frequen-
cies at ω0 and coupled with rate µ become split ω0 ± |µ|, leading to RBW ≈
(2|µ|+ γS)/2π. For multiple identical cavities in a chain, Eq. (3.24) is a tridiago-
nal Toeplitz matrix, the eigenvalues of which are given by [148]

λE
k =

(
iω0 +

γo

2

)
+ 2

√
−|µ|2 cos

(
kπ

N + 1

)
, k = 1 . . . N, (3.26)

meaning thatRBW ≈ (4|µ|+γS)/2π. For nontrivial connectivity architectures,
an analytical derivation ofRBW is challenging. However, in numerical simula-
tions, it was found that supermode resonances stay within a ω0 ± π|µ| inter-
val (see Figure 3.10). Therefore, it is assumed that

RBW ≈ (2π|µ|+ γS)/2π (3.27)
for such an evanescently coupled microcavity system. Furthermore, as will be
shown later, in the cases we are interested in γS ≪ |µ|, and henceRBW ≈ |µ|.

At this stage, it is beneficial to consider the supermode concept in more
detail. A supermode is an independent, i.e. an orthogonal oscillation of the
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Figure 3.10: Supermodes of evanescently coupled microcavities for variousgrid geometries. Bottomfigure shows a histogramof supermode frequencies.

coupled system’s electric fields. Each supermode can be considered a vir-
tual microcavity that performs a pass-band filtering at its resonant frequency
and bandwidth. Crucially, the coupling-induced splitting of supermode reso-
nances makes their frequencies vary and, as we will see later, promising high
dimensionality of an RC.

Considering the linear part of the system, ‘supermodes’ stand for diagonal-
ization of the operator, with no particular implication. Yet supermodes, which
extend over many resonators and are mutually overlapped, are coupled by
the local nonlinear interaction considered here. In other words, the reservoir
can be considered a system of nonlinearly coupled oscillators.

3.6.3 . Bandwidth matching
A supermode needs to receive input. For that, consider the impact of the

injection BW on the reservoir’s dimensionality. In Figure 3.11 one can see
that, when BW ≪ RBW, the dimensionality is low. In this case, many super-
modes are off-resonance relative to the injected field and cannot be excited.
With an increasing BW, more and more supermodes can interact with the
injected information. Consequently, the reservoir’s dimensionality increases
until BW = RBW, when all supermodes become excited. Accordingly, the
physics of supermodes in coupled arrays result in a necessary bandwidth
matching condition for maximizing the system’s dimensionality:

BW ≥ RBW. (3.28)
Importantly, here, the network was driven with white noise, i.e. by a signal
with a flat spectrum. However, in realistic and application-relevant situations,
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such a signal is unlikely. Certain supermodes will be excited less than others
and will contribute less to the network’s dimensionality.
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Figure 3.11: Dimensionality of linear photonic reservoir w.r.t. input signal band-width. Reservoir parameters are given in Table 3.1 but µ is increased to 80 GHzto increase the upper limit of dimensionality.

3.6.4 . Spectral line separation
The microcavity network’s dimensionality relies upon individual super-

modes being driven by different aspects of an input signal, which requires
supermodes to be sufficiently separated. Therefore, to quantify this metric,
consider an average supermode spacingRBW/N , normalized by the average
supermode bandwidth

FΓ =
RBW/N

γS/2π
, (3.29)

which can be considered a measure of spectral span available for individual
supermodes. In Figure 3.12, one can see that the dimensionality is low for
FΓ ≪ 1, and for FΓ > 1, dimensionality is maximized. This threshold may
change depending on system parameters; however, it was found that it is typ-
ically comparable to unity. Therefore, a second requirement for a high dimen-
sionality is FΓ ⪆ 1. Again, this is not a sufficient condition since it does not
ensure that all supermodes are separated.

3.6.5 . Effect of input waveguide coupling
Spacing between supermodes is typically inhomogeneous, and super-

modes can potentially overlap, even if FΓ is large. This effect can bemitigated
through a stronger coupling to the input waveguide κin, which can shift reso-nances or increase the bandwidth of some supermodes, as can be seen in Fig-
ure 3.10 for a 4×3 reservoir with and without the input waveguide. Figure 3.13
shows that this approach can be effective when N⊥ is low, i.e. when overall
coupling to the input waveguide is relatively strong for the supermode split-
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Figure 3.12: Dimensionality of linear photonic reservoir w.r.t. average super-mode spacing. Reservoir parameters are given in Table 3.1 and BW > RBW.Each point corresponds to specific µ and γo.

ting. That said, the waveguide-induced coupling may interfere when phase
conditions are unfavourable (see Section 3.3.4).
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Figure 3.13: Left: impact of κ2in/γo to dimensionality. Reservoir parameters aregiven in Table 3.1 andBW > RBW, legend showsN∥×N⊥, reservoir geometry.Right: N∥ ×N⊥ reservoir geometry.

3.6.6 . Scalability of dimensionality
From FΓ a scaling behaviour of dimensionality can be determined. Since

FΓ ∝ N−1, a larger number of cavities leads to a lower FΓ, which leads to
a lower D̃. This, however, can be compensated by lowering optical losses, as
FΓ ∝ (γS)−1. Indeed, in Figure 3.14(a), one can see that with a high µ/γo (which
is analogous toFΓ), the dimensionality can reach the theoretical limit. Further-
more, depending on their geometric arrangement, dimensionality varies for
a given number of cavities. A minor fluctuation of dimensionality is due to
the intricate nature of supermode formation – supermode frequencies of a
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24×1 grid are different from a 12×2 grid. However, there are also outliers with
a considerably lower dimensionality. In these cases, N⊥ is high, which allows
supermodes to localize spatially further from the input waveguide. As a result,
these supermodes become too weakly coupled to the input and, as a conse-
quence, contribute less to the system’s dimensionality (see Figure 3.14(b)). In
addition, a lowerN⊥ allows for a higher dimensionality even at a low FΓ, likelydue to the impact of the input waveguide discussed above.

101

100

102

100

101

102

Figure 3.14: (a) Scalability of linear reservoir dimensionality w.r.t. optical losses.Dimensionalities of all possible combinations of N∥ and N⊥ for given N areshown as histograms. Reservoir parameters are shown in Table 3.1, with µ =
80 GHz, reduced κout and BW > RBW. (b) Impact of FΓ and grid geometryon dimensionality. Both figures use the same dataset.

3.7 . Nonlinear regime

Now the RC is analysed at higher input power when a nonlinear response
appears. Nonlinearity can result in a reservoir operating in a chaotic regime,
which, for most purposes, is harmful to computation. Chaos corresponds to
the situation where a network’s state is sensitive to infinitesimal changes in
the input. Hence, the unavoidable presence of noise in hardware would ren-
der computations not reproducible for even perfectly identical inputs. In or-
der to characterise this effect, consistency analysis is carried out alongside
the dimensionality test [81].
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3.7.1 . Methodology
A set of inputs in the form sn(t) = s0(t) + ∆sn(t) is generated, where

s0(t) and∆sn(t) are values sampled from a complex-valued white noise distri-
bution, which filtered with a Butterworth eighth-order pass-band filter. Here,
s0(t) is the ‘true input’ and is the same for all n, while∆sn(t) emulates an im-
pact of noise in an experiment and is different for each n. A signal-to-noise
ratio

SNR =

∫
|s0(t)|2dt∫
|∆sn(t)|2dt

(3.30)
of 20 dB is attained by scaling ∆sn(t) amplitude. Here, the choice of 20 dB is
semi-arbitrary: it is important that this noise is much weaker than s0(t) butstrong enough to push a RC away from the response to s0(t). To the best
of my knowledge, there were no claims for the optimal deviation strength in
the literature. Each sn(t) is injected into a separate identical reservoir. The
absolute value of correlation between trajectories of a k-th cavity of i-th and
j-th reservoirs zik(t) and zjk(t) is then computed [149]

γijk =

∣∣∣∣∣∣∣∣
E
[
zik(z

j
k)

∗
]
− E

[
zik

]
E
[
(zjk)

∗
]

√
E
[
|zik|2

]√
E
[
|zjk|2

]
∣∣∣∣∣∣∣∣ , (3.31)

where E[A] is the expected value of A. The consistency for this pair of reser-
voirs is an RMS across all their cavities γij =

√
⟨(γijk )2⟩k and, equally, the

consistency of system γ is the RMS of γij of all combinations of i and j.
Even though this section started with the mention of chaotic reservoirs, it

is important to note that a low consistency does not necessarily imply chaos.
That said, it can lead to a reservoir being in unexpected states outside of a
training dataset, invalidating currently trained weights and harming comput-
ing.

3.7.2 . Nonlinear response strength
How do we distinguish when a nonlinearity is ‘weak’ or ‘strong’? In order

to draw conclusions, the nonlinear response strength needs to be related to
other parameters.

Nonlinearity strength increaseswith stronger optical power inside a cavity,
which, in turn, increases with stronger input. We definePNL as an input powerat which a nonlinear effect equals a related linear effect. Two-photon absorp-
tion increases losses inside the cavities according to γTPA, which would be
natural to compare to linear optical loss. FCD and the Kerr effect cause reso-
nance shift∆ω, which, in turn, is natural to be compared to a cavity bandwidth,
which is also defined by the linear optical loss.Therefore, an optical loss rate
is the normalization factor determining the cavity array’s nonlinearity power
threshold for all considered nonlinear effects.
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Single cavity

For a single cavity injected with a monochromatic wave, one can determine
PNL analytically (see supplementary material). The result is shown in Fig-
ure 3.15 for various integrated platforms for MRR and PhC cavities based
on data obtained from the literature (see Table 3.2), and the horizontal axis
shows an operating frequency that is BW/2.

How is there a bandwidth when amonochromatic signal is considered for
analytical computation? It is assumed that when a non-monochromatic signal
is passed to the cavity, it is coupled into the cavity almost entirely. Assume
a cavity with a bandwidth γS and an electron relaxation rate γc. This cavity
can receive most of the optical power of an injected signal if BW ≤ γS/2π.
However, a low γS corresponds to a higher loaded Q-factor and allowing for a
stronger nonlinearity and, consequently, a lower PNL. It is therefore assumed
that BW ≈ γS/2π.

Additionally, the scale ofBW relative to γc is also important. WhenBW ≪
γc, the generated free electrons recombine too fast, and FCD becomes negligi-
ble, whereas TPA becomes the dominant nonlinearity. Then, PNL is computed
w.r.t. γTPA, see the dashed line in Figure 3.15.

When BW is comparable to γc, FCD becomes stronger than TPA. Then,
PNL is computed w.r.t.∆ω, and this case is shown as a solid line in Figure 3.15.
Finally, when BW ≫ γc, the electron density cannot react to the changes to
the input signal in time, and FCD becomes irrelevant, see the dotted line in
Figure 3.15.

Compared to MRRs, PhC cavities require less power and allow a faster
operation on the same material, as a smaller mode volume corresponds to a
stronger light confinement and a stronger nonlinearity, and a higher surface
area enhances γc [150].
Network of coupled cavities

For a network comprised of a large number of cavities, such analytical treat-
ment is not immediately tractable. A numerical approach is therefore used
instead.

Consider a reservoir with TPA as a nonlinearity. Since its supermodes are
split due to the evanescent coupling and, as was found in the previous section,
ΓS ≪ RBW, a monochromatic excitation of this nonlinearity is not suitable,
as for a proper test all supermodes need to be excited, which is done with
a signal with a finite bandwidth. Therefore, the input changes in time and
modulates γTPA

k on a potentially individual resonator level. In order to then
compare it to the scalar average supermode bandwidth γS (see Eq. (3.25)), its
standard deviation is considered across many input samples σt[γTPA

k ] so that
we consider its fluctuations in time.
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Figure 3.15: Comparison of material platforms w.r.t. PNL and an operatingfrequency of a single MRR or PhC cavity. Solid and dashed lines show freecarrier dispersion- (FCD) and two-photon absorption-dominated regimes, re-spectively. The dotted line continues the FCD line beyond the achieved elec-tron recombination rate, details in text. Here, ALD is atomic layer deposition.For references, see Table 3.2.

Table 3.2: References used in Figure 3.15.

Key Cavity Reference
GaAsIbrahim2002 MRR [151]Combrie2008 L5 PhC [152]Husko2009 H0 PhC [153]Moille2015 2×H0 PhC + ALD [154]
SiliconXu2005 MRR [155]Tanabe2005 L3 and L4 PhC [150]
Implanted siliconWaldow2008 MRR [156]Tanabe2007 H1 PhC [157]
InPIbrahim2003 MRR [147]Heuck2013 H0 PhC [158]
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Why standard deviation when an average is a natural choice? Assume that
a special signal is passed such that, depending on nonlinearity, ΓTPA or∆ω of
each cavity changes in time, but that change ismuch smaller than the average
value. One such example is given in Figure 3.16. In this case, the average of a
nonlinear term could be included in the linear terms since it does not change
in time, while the remainder is negligible. If an average is used to quantify the
nonlinearity level, this case would be considered nonlinear when, in terms of
the impact on the dynamics, it is not. A standard deviation has no such flaw.
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Figure 3.16: A case when nonlinearity is considerable, but its variation overtime is not. Top: input signal, a sumof a constant signal with a weaker randomcomponent. Bottom: two-photon absorption rate of two coupled cavities nor-malized by average supermode bandwidth.
Then ⟨σt[γTPA

k ]⟩k is computed to obtain a scalar TPA rate for a given in-
put power P . Repeating this process for a range of P , a largely monotonic
curve P (⟨σt[γTPA

k ]⟩k) is obtained, through which the input power necessary
to induce a particular level of TPA-induced nonlinearity can be determined. In
that case, PNL = P (γS). For FCD and the Kerr effect, obtaining a scalar char-
acteristic capturing the network’s relevant response is identical, except that
∆ωk is used instead of γTPA

k . Figure 3.17 shows that PNL scales linearly with
the number of cavities, provided N⊥ is limited. Indeed, for large N⊥, some
supermodes can localize far from the input waveguide and couple to input
much weaker than those near it. This creates a nonlinearity imbalance in the
reservoir, and more optical power is needed to reach ⟨σt[γTPA

k ]⟩k = γS.
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Figure 3.17: Scaling of power necessary to induce a nonlinear response in areservoir w.r.t. the number of cavities. Reservoir parameters are given in Ta-ble 3.1. Signal bandwidth matches reservoir bandwidth.

3.7.3 . Results

Figure 3.18 shows the consistency and dimensionality of reservoirs with
different nonlinearities as a function of input power. Noteworthy, it was found
that a stronger TPA reduces the dimensionality while the consistency remains
constant and close to unity. The drop in dimensionality results from reduced
normalized supermode spacingFΓ, as increasing TPA-induced losses increasethe average supermode bandwidth (see Figure 3.19). A high consistency could
be explained by the negative feedback nature of TPA, where the system’s re-
sponse to a stronger input is an increased damping that often stabilizes the
system.

According to the data in Figure 3.18, FCD and the Kerr effect increase the
dimensionality, but eventually, the system loses consistency for too high in-
put power. Generally, consistency decreased when a nonlinearity reaches a
related linear effect, in other words, when input power surpasses PNL. The di-mensionality increase is due to the nonlinear shift of individual supermodes,
which otherwise might overlap in the linear regime. It was found that, gen-
erally, other system parameters have a relatively small impact compared to
PNL.

Interestingly, the nonlinear shift of supermode frequencies also compen-
sates to some degree the negative impact on dimensionality caused by a mis-
match between BW and RBW (see Figure 3.20). This could be explained by
the fact that a cavity might belong to multiple supermodes. When a cavity
resonance shifts, it causes multiple supermodes to shift as well, even those
that are not excited in a linear regime. If the shift is strong enough, these
supermodes can end up inside the input bandwidth and receive input (see
Figure 3.21). Moreover, as BW reduces, a stronger nonlinearity is needed to
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Figure 3.18: Effect of (a) two-photon absorption (b) same with free-carrier dis-persion (c) the Kerr effect on reservoir dimensionality and consistency. Reser-voir parameters are given in Table 3.1.
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Figure 3.19: Dimensionality reduction caused by two-photon absorption.Spans show the immediate bandwidth of all supermodes, i.e. real part of thelinearized Jacobian matrix, of a reservoir computer with three cavities aroundcorresponding eigenfrequency. The reservoir is excited with a random inputwith a high enough bandwidth and increasingly higher power. Two-photonabsorption causes supermodes to broaden, erasing their differences. For thefirst nanosecond, the Principal Component Analysis returns 5, but during thelast nanosecond – 4.
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move resonances into the input bandwidth, and at some point, the concept
of supermodes stops being applicable.

Figure 3.20: Effect of nonlinearities (shown in legend) on reservoir dimension-ality at various input bandwidths. Each point corresponds to an input powerat which consistency is 0.98.
To conclude, nonlinearity has a nontrivial effect on a reservoir. Impor-

tantly, this sensitively depends on the particular nonlinear effect that is lever-
aged.

• TPA: reduces dimensionality, keeps consistency,
• FCD: increases dimensionality , eventually reduces consistency,
• the Kerr effect: same as FCD.

However, in the case of FCD and Kerr nonlinearities, the dimensionality in-
crease comes before the consistency loss. Hence, an interval of optimal input
power allows for a better dimensionality with a high consistency.

3.8 . Discussion

So far, we have considered a system of coupled nonlinear cavities as an
RC and discussed how its parameters determine its behaviour. However, our
design differs from traditional ESNs in a few aspects and also makes a few
bold assumptions. Can this RC and a readout be implemented in practice?
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Figure 3.21: Dimensionality improvement caused by a resonance-shifting non-linearity. Left: time traces of linearized Jacobian matrix eigenfrequencies oflinear (dashed) and nonlinear (solid) otherwise identical reservoirs with threecavities. Inputs are identical for both reservoirs – a random signal with a spec-trum shown in the right figure. In the linear case, only blue and orange super-modes are excited, and the Principal Component Analysis returns a dimen-sionality of 4. With frequency shift, the green supermode can also accept in-put, and the dimensionality becomes 6, the maximum.

3.8.1 . Differences with Echo State Machines
One striking difference is that ESNs are discrete, whereas our RC is contin-

uous. The discrete update equation can be mapped onto a continuous one
by assuming an infinitely small timestep [117]. Then, an ESN is simply a result
of the integration of a continuous RC with the Euler integration scheme.

Another difference is that an ESN connection matrix is typically random
and sparse [47], and two neurons are unlikely to have a connection equally
strong in both directions. In the photonic case, if two cavities are evanescently
coupled, the connection is reciprocal, and coupling coefficients are negative
complex conjugate of each other (see Figure 3.22). However, it appears that

(a) (b)

Figure 3.22: Neuron connectivity graph of (a) a typical Echo-State Network and(b) a photonic reservoir computer with a grid of cavities. Connection strengthis represented by arrow thickness.
there is no optimal connection structure at all. Simple topologies with sparse
connectivity behave similarly to more complex topologies, and only very lim-
ited topologies, such as ring topology, show limited performance in terms of
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separation property, generalization property and memory capacity [159]. In
the proposed RC, each cavity is coupled to 2-4 other cavities, which is sparse
and corresponds to common guidelines [47].

In ESNs, a nonlinear function encompasses the input and the neuron con-
nection terms (see Eq. (2.3)). In our reservoir, however, a nonlinearity depends
only on the current reservoir state (see Eq. (3.19)). Nonlinearities themselves
are different aswell. Typically, in ESNs, a sigmoid or hyperbolic tangent is used,
which adds a saturation of neuron activation, effectively, increasing loss. Dur-
ing a typical computation, ESN’s linearized Jacobian eigenvalues largely move
towards the z-plane origin (corresponding to an increase of loss) and go back
with, perhaps, slight frequency deviations (see Figure 3.23, left). In the pho-
tonic case, the linearized Jacobian Ĵ is found by

Jkm = diag

(
iω − Γo + Γe

2

)
km

+ M̂µ
km + M̂κ

km+

+

[
−1

2

βTPAc2

n2V TPA
|ak|2 + i

dω

dN
Nk − i

ωn2c

n2V Kerr
|ak|2

]
δkm,

(3.32)

where the last three terms correspond to TPA, FCD and the Kerr effect, with
δkm as the Dirac delta. With TPA as the only nonlinearity, the behaviour is
similar to an ESN, but with FCD and the Kerr effect, the trajectories of eigen-
values change considerably (see Figure 3.23, right). There, the two figures can
be reconciled by considering the integration of a continuous RC with the Euler
method. Then, the evolution of a supermode ãwith an eigenvalueλ ismapped
to a discrete case like so

ã(t) = ã(0) exp(λt) ⇒ ã(t+∆t) ≈ exp(λ∆t)ã(t). (3.33)
On the complex plane the exponent operator converts iIm(λ)z to a unit circle
exp(iIm(λ)∆tz) and a higher loss (here, negative Re(λ∆t)) reduces its radius,
which is seen on the left side of Figure 3.23.

3.8.2 . Integrated platforms and neuron density
The proposed system can be implemented in an integrated photonic plat-

form, for instance silicon on insulator. The advantage would be a very com-
pact geometry and relatively large nonlinearity, where three nonlinearities
considered (TPA, Kerr and free carrier-related) will contribute. On this plat-
form, MRR with a radius of 5 µm could be implemented [161], allowing for
a neuron density of 104 neurons/mm2. Alternatively, silicon nitride could be
used, offering much lower losses but requiring a larger footprint [108]. The
nonlinear response will be pure Kerr and strong enough if the supermode
lifetimes are adjusted to large values through coupling to input and outputs.
Both platforms offer thermo-electric control for the readout, while integrated
detectors are available with a silicon platform. Other technologies could be
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Figure 3.23: Left: linearized Jacobian eigenvalues of an Echo StateNetwork dur-ing a typical computation, adapted from [160]. Right: same for the proposedreservoir computer with various nonlinearities (see Section 4.1 for details).

considered, particularly those based on the hybrid integration of materials
such as III-V on silicon [27].

3.8.3 . Timescales
Section 3.6 proposed a relation between cavity parameters and their ef-

fect on reservoir dimensionality. Whether these requirements could be met
with the available technology needs to be discussed. First, consider that γo <
γS, FΓ ≈ 1 and RBW ≤ BW

N
γo

2π
≤ N

γS

2π
≈ NFΓ

γS

2π
= RBW ≤ BW ⇒ γo ⪅

2π

N
BW. (3.34)

Another requirement demands the reservoir to remember previous in-
puts: an optical timescale should be larger than an input signal timescale, i.e.

1

BW
<

2

γS
<

2

γo
⇒ γo < 2BW, (3.35)

which is already satisfied by Eq. (3.34). For example, consider a reservoir with
20 cavities. To process a signal with BW = 20 GHz, an approximate lower
bound for γo would be 2π GHz, which would correspond to an intrinsic Q-
factor of ω0/γ

o ≈ 0.2 ·106, which is rather high but not impossible. An intrinsic
Q-factor of 0.7 · 106 was demonstrated in passive GaAs PhCs, with 106 consid-
ered achievable [152]. In an AlGaAs MRR, a Q-factor of 1.5 · 106 was demon-
strated [162], and in a silicon PhC a Q-factor of more than 11 · 106 [163]. The
low-loss silicon nitride allowed for an even higher Q-factor of 37 · 106 in an
MRR [164], but one should consider the difference in nonlinearity strength
of different materials. Following the same logic, one could estimate the maxi-
mumnumber of cavities one could use in anRC, knowing the possibleQ-factor
of cavities.
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Next, consider a nonlinearity timescale. TPA and the Kerr effect respond
almost instantaneously to a change of electric field, similar to an ESN. How-
ever, FCD is also affected by the free electron recombination rate (see Fig-
ure 3.15), which should be comparable to the rate at which the optical signal
in a cavity changes, i.e. half of its bandwidth. In our case, each cavity belongs
tomultiple supermodes, and thus, its bandwidth approaches theRBW, which
is close toBW. The electron recombination rate of siliconMRRs was shown to
be approximately 2 GHz [165], i.e. BW ⪅ 4 GHz would be supported. The re-
combination can be accelerated to almost 20 GHz with a reverse-biased p-i-n
junction embedded in a cavity [165]. Due to a higher surface area, in PhCs, the
recombination can reach 10 GHz for silicon [166] and 100 GHz for GaAs [152].

3.8.4 . Readout
In a fully integrated system, cavities would be coupled to readout waveg-

uides. This, however, can be challenging to realize for cavities inside the grid
since the compact cavity arrangement leaves no space for such waveguides.
One could consider using N∥ × 1 or 2 × N⊥ grids, where all cavities are ac-
cessible. An alternative could be using multiple photonic layers [167] or three-
dimensional waveguides [130].

Apart from the internal layer of an RC, the readout’s scalability also re-
quires consideration. A common strategy for coherent signals is the use of
Mach-Zehnder interferometers with two phase shifters, typically based on the
thermo-optic effect. Such phase shifter requires a constant supply of electrical
current, and its state-of-the-art chip footprint is 109×21 µm2 [132]. If we were
to estimate the neuron density of an RC with a readout, it would be limited
to 200 neurons/mm2. There are a few alternatives; for example, MEMS phase
shifters require less power by three orders of magnitude, although their foot-
print is larger – 100×45 µm2 [132]. Phase shifters based on plasmonic nonlinear
polymers are even more compact, with the device length being 29 µm [168].
The footprint of phase change materials is just a few square microns [169],
which, combined with non-volatility, makes them an attractive option for a
readout implementation, even with the limited switching resolution [136].

3.8.5 . Resonance disorder
Until this point, it was assumed that cavities’ resonances are aligned ∀k =

1..N ωk = ω0. However, this might not be the case due to fabrication toler-
ances. For evanescently coupled cavities to interact, resonances should be
sufficiently close. A weak intercavity interaction leads to two issues.

The first issue is the dimensionality reduction when some cavities are not
coupled to the input waveguide directly (e.g. for N⊥ > 1). Since such cavi-
ties can only receive signals through other cavities, they stop receiving signals
without interaction and hence cannot contribute to dimensionality, as demon-
strated in Figure 3.24 for 8×3 and 24×1 linear MRR reservoirs. As a resonance
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Figure 3.24: Impact of cavity resonance frequency disorder on dimensional-ity. Resonance disorder (in regular frequency units) is normalized to evanes-cent coupling strength Here, std. is the standard deviation. Reservoir param-eters given in Table 3.1. Input signal bandwidth is higher than reservoir band-width. Each dot corresponds to aN∥ ×N⊥ (shown in legend) linear microringresonator-based reservoir with resonances ωk ∈ N (ω0, σω) with various σω.Insets represent supermode intensity distribution over cavities Λ̂.

disorder is increased, at first D̃ increases as the supermode overlap is alle-
viated but decreases afterwards. The 24×1 reservoir is affected less than the
8×3 one since in the former, 12 cavities are coupled to the waveguide (due to
MRR mode direction matching, see Figure 3.6(b)), but only 4 in the latter. If
MRR mode direction was not considered and both MRR modes were excited,
all cavities of a 24×1 MRR reservoir are coupled to a waveguide. In that case,
a further increase of resonance disorder increases FΓ, and D̃ will eventually
reach unity. A similar outcome is expected for a PhC reservoir.

The second issue is a weakening of supermode mixing, i.e. delocalization.
When cavities interact well, supermodes span multiple cavities; otherwise,
they isolate in individual cavities. Because of that, a nonlinearity of an indi-
vidual cavity can only affect a single supermode. As will be shown later in Fig-
ure 4.5, nonlinearity cannot contribute to computing performance asmuch in
this case. Here,N⊥ > 1 cases could be affected to a lesser degree thanN⊥ = 1

since for N⊥ > 1, each cavity has 2-4 neighbouring cavities, while only 1-2 for
N⊥ = 1, and the probability of resonance mismatch with all neighbours is
lower with more neighbours. The weakening of supermode mixing is shown
in the inset of Figure 3.24. Each heatmap represents a matrix Λ̂ where Λkm is
the intensity of an m-th supermode in the k-th cavity. For clarity, each m-th
column of Λ̂ is normalized to unity. One could see that when σk[ωk/2π] < 0.5µ,
supermodes span multiple cavities but only a few otherwise. The resonance
disorder can be mitigated with the thermo-optic effect, but for more cavities,
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it becomes challenging. In addition to that, a close proximity of cavities results
in a strong thermal crosstalk. However, the resonance disorder can be less
severe when cavities are spatially close [170].

3.9 . Evanescent coupling strength disorder

Throughout this chapter, we assumed that evanescent coupling strength
is the same for each pair of coupled resonators. As in the previous section, this
might not be the case due to fabrication tolerances. In Figure 3.25, we consider
the case of normally distributed coupling strength. As a result, supermode
frequencies can slightly shift around their mean value, but that is not very
harmful as we have never assumed their exact position, and there was no
qualitative change in the reservoir spectrum.
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Figure 3.25: Histogram of reservoir supermode frequencies with evanescentcoupling strength normally distributed around µ with the standard deviationof 0.2µ.

3.10 . Prototype

A prototype template has been designed and fabricated at imec on the SOI
platform. The available chip is 5×2.5 mm2 in size.

Optical I/O is performed with edge couplers that allows for a lower inser-
tion loss compared to grating couplers. After an optical signal is injected, it
is routed to a reservoir composed of an 8×3 grid of cavities. A chip was com-
prised of two RCs, one with MRRs in the reservoir and the other with PhCs.
Complex-valued weighting is performed with an amplitude controller made
of an MRR and a phase shifter based on the thermo-optic effect. Each MRR
in the amplitude controller was strongly coupled to its waveguides; its super-
mode bandwidth would be much larger than the expected RBW, and the fil-
tering effect is expected to be negligible. A more robust solution would be an
MZI, but we opted for a more compact, although risky, approach. Afterwards,
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weighted signals were passed through a combiner tree composed of multi-
mode interferometers (MMIs) to perform summation. The summation result
is finally passed to a router, which allows to send signals to one of two optical
outputs or two RF photodiodes.

The geometry of cavities was chosen to have their resonances in the C-
band (1550 nm) based on the solution of theMaxwell equations with the FDTD
method.

The simulation of MRRs was performed with an in-house FDTD solver by
a fellow Ph.D. student, Luca Aimone Giggio. The finally selected microring ge-
ometry had a width of 200 nm and an outer radius of 5 µm. The fabrication
process determined the height; its expected value is 225 nm. The coupling be-
tween cavities was targeted to be about 40 GHz, corresponding to 330 nm of
separation betweenMRRs. The coupling to an input waveguidewas optimized
by tuning its width (400 nm) and distance to anMRR (230 nm) (see Figure 3.26).

The simulation of the PhC was performed by the supervisor, Alfredo de
Rossi. The PhC is based on a distributed Bragg reflector formed by alternat-
ing silicon and silicon oxide sections as proposed in [171] and is shown in Fig-
ure 3.27. Here, the width of sections is tapered while the period is kept con-
stant. Due to geometry, evanescent coupling was only possible along the lon-
gitudinal PhC axis. Coupling between rows of PhC was implemented with a
waveguide with a mirror on one side and a taper on the other to avoid reso-
nantmode formation (see Figure 3.29). Cavity parameters were chosen based
on FDTD simulation results shown in Figure 3.28.

The chip layout was prepared in Synopsys OptoDesigner.
Due to the compactness of the RC design, the main limitation was elec-

trical I/O rather than chip space (see Figure 3.32). The accessible technology
only allows the placement of contact pads at the edge of the chip. Then, elec-
trical probes can supply current to contact pads. Alternatively, the chip can be
packaged and wired to a printed circuit board (PCB) for more convenient I/O.
Electrical I/O was used for:

• controlling readout, each signal requires an amplitude controller and a
phase shifter, i.e. two contact pads excluding ground,

• controlling splitter at the end – three contact pads,
• tuning resonance of RC cavities by using tungsten heaters on the top of
each cavity, i.e. one contact pad per cavity by default,

• (optional) extracting output signal with a photodiode that requires a
pair of RF pads.

We therefore had to be careful about the I/O allocation.
First, we have limited the number of cavities in the readout for optical and

electrical motivations. The optical motivation is that since we use 2×1 MMIs
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Figure 3.26: Finite-difference time-domain (FDTD) simulation results of a mi-croring resonator (MRR). Top-left: evanescent coupling strength as a functionof their distance. Exponential fit is used due to an exponential reduction ofmode amplitude outside a resonator. Top-right: waveguide (WG) couplingstrength as a function of its width; here distance to the waveguide is 200 nm,and a resonant behaviour can be seen. Bottom: same, w.r.t. its distance to aresonator. Here, the waveguide width is 550 nm and ‘loss to WG’ correspondsto κ2/2.

Figure 3.27: Design of used one-dimensional photonic crystal coupled to awaveguide. Gray areas show silicon region, white is silicon oxide and redshows the resonator mode’s electromagnetic field distribution. Here, onlynine sections of silicon are drawn for simplicity; the actual structure includesa few tens.
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Figure 3.28: Simulation results of a photonic crystal resonator. Left: Q-factoras a function of the number of waveguide segments in a cavity. Right: loadedQ-factor as a function of the distance between the longitudinal resonator axisand the axis of the coupled waveguide, assuming its width is 450 µm.

Figure 3.29: Layout of a microring (left) and a photonic crystal (right) res-onators. Etch region is shown in black, blue and violet are two metalliza-tion layers; their interconnects are shown in green. Orange shows tungstenheaters (connected to the violet layer).

Figure 3.30: Layout of the reservoir computer based on microrings (left) andphotonic crystal (right) resonators. Etch regions are shown in black. Themicroring-based reservoir has a staggered design (see Figure 3.31).
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Figure 3.31: Staggered reservoir design with every second cavity in the firstrow coupled to the waveguide (blue, the arrow shows input signal direction)to excite only one of the counter-propagating modes, their direction shownas arrows.While using bothmodes can double the dimensionality, twowaveg-uides per readout microring would be required to harness it, which was chal-lenging under given constraints. Therefore, we opted for such a design so asnot to waste input power to excite unused modes.

Figure 3.32: Complete reservoir computer layout; the spiral at the bottom ispart of an unrelated design. Black shows etch regions, blue shows metalliza-tion layers and pink shows foundry-proposed phase shifters, MMIs and cou-plers. Most of the chip edge was taken by contact (square) pads.
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for a combiner tree, a power of 2 readout signals would be convenient for a
readout design – we, therefore, chose eight cavities. That leaves us with 16
electrical contact pads for readout.

Second, controlling each heater would require N⊥ × N∥ = 24 contact
pads. Moreover, thermal crosstalk is expected due to the proximity of cavities.
Therefore, such a fine-grained control would be wasteful as the longer-range
temperature gradients would most likely wash it out. Instead, we opted for a
wiring scheme where only columns and rows were independently controlled,
which requires N⊥ +N∥ + 1 contact pads instead (see Figure 3.33).

Figure 3.33: Heater wiring scheme of a microring resonator-based reservoir.Etch region is shown in black, blue and violet are two metallization layerswith green showing their interconnects, orange shows tungsten heaters (con-nected to the violet layer).
Due to how optical I/O is implemented, we can only observe a single opti-

cal signal at a time. However, to utilize the ridge regression training algorithm,
we must record the time traces of all resonators. Consider amplitude weights
as |w|. First, we set |w|k = δk1, where δij is the Kronecker delta. Then, the firstneuron signal is the only one that enters the rest of the readout circuit and
passes through it unchanged. We then pass a training input signal and record
the response of that neuron at the optical port. Then we repeat the process,
but |w|k = δk2 and the same training input signal. Repeating the procedure
for all neurons connected to the readout circuit, we can record the entire ob-
servable reservoir state and train the reservoir with ridge regression.

The first batch of chips has been received, and their characterization is
ongoing.
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Figure 3.34: Top-left: entire chip photo. Top-right: ring resonator as an am-plitude controller. Photos of microring (center) and photonic crystal (bottom)resonator-based reservoir computers on a chip.
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3.11 . Conclusions and outlook

A highly compact integrated photonic RC was proposed, and its operation
was explained. Dimensionality in the case of an exclusively linear photonic
system is strongly tied to supermodes – if two supermodes overlap, only one
will contribute to dimensionality. Since passive cavities have an upperQ-factor
limit, the practical size of an RC is limited. Dimensionality can be increased by
frequency-shifting nonlinearities: FCD and the Kerr effect, while TPA does the
opposite. However, one should take care of the loss of consistency, which is
detrimental to computing performance andwhich starts appearing when FCD
and the Kerr effect are strong enough. These conclusions are general since no
specific resonator type or material has been assumed and will prove helpful
for future implementations.

LimitedQ-factors and the associated dimensionality limitations canbemit-
igated with a delay line. It is possible that having two copies of RC that receive
an input and its delayed version would effectively double the dimensionality
and increase the memory depth.

A layout of an RC was developed and subsequently fabricated in imec on
SOI technology. Future work will be aimed at developing circuit controls, per-
forming extensive chip characterization, and computing itself.
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4 - Solving tasks with an integrated all-optical
reservoir

4.1 . Mackey-Glass prediction

In the most general sense, an RC is a dynamical system, like almost every-
thing surrounding us. Since RCs are practically and realistically trainable today,
the question arises if we can make them behave like a particular system we
want. If so, that would unlock a variety of applications.

Simulation of systems is one example. Some models require consider-
able computational effort to integrate, and an ANN can be trained to behave
like a model in question while requiring just a fraction of compute. A recent
work used an ANN to accelerate a simulation of spintronic devices. A conven-
tional approach is splitting a device into nanometer-sized cells and solving
numerous Landau-Lifshitz-Gilbert equations, including local and nonlocal in-
teractions. Some simulations may take up to a few weeks, but it was shown
that usingmachine learning for simulation can reduce the wait more than 200
times1 [172]. Also, systems could be too complex to be rigorously described by
equations, for example, in meteorological predictions, but ANNs can also be
helpful there [173]. Some systems may operate at gigahertz frequencies, and
we may need to predict those in real-time, for example, for laser stabilization.
This is where our all-optical RC can prove useful.

4.1.1 . Task description
In this section, we attempt the prediction of theMackey-Glass equation so-

lution. This equation describes the dynamics of mature white blood cell con-
centration and comprises the generation and loss terms [174]. While the loss
term is straightforward, the generation term is not. There is a delay between
the initiation of cellular production in the bone marrow and the release of
mature cells into the blood; therefore the generation term depends on a con-
centration from some time ago, and so this equation is the delay-differential
kind:

dξ

dt
=

αξ(t− τ)

1 + ξ(t− τ)g
− γξ(t). (4.1)

Systems with delays are notorious for being prone to chaoticity [175]. In this
case, with τ = 17, α = 0.2, g = 10 and γ = 0.1 ξ(t) exhibits a moderately
chaotic behaviour [174], and because of that, an inference of a future value is
a task far from trivial.

1The cited paper does not mention the training time. However, 150 neurons wereused there, and their training is not a challenge for modern computers.
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The goal of an RC is to receive ξ(t) as input and generate ξ(t + ∆t) as
output, where∆t > 0. This problem is commonly used for benchmarking RCs
as

• generating the datasets requires only solving Eq. (4.1),
• the difficulty of prediction requires both memory capacity and nonlin-
ear transformation; this way, many facets of an RC can be tested.

Since ESNs are much more commonly used in literature, a discrete version of
this task is used, where ξ(t) and ξ(t+∆t) are sampled. In order to compare
our RC with the others, a discrete dataset is also considered and adopted for
our system.

The dataset is generated in the samemanner as [176]. Integrating Eq. (4.1)
with the Euler method:

ξ(tn+1) = ξ(tn) + h
dξ

dt

(
ξ(tn), ξ(tn − τ), t

) (4.2)
where tn+1 = tn+h and h = 0.17. The result is then downsampled with a ratio
of 3/0.17 to obtain a discrete series ξ(tn) shown in Figure 4.1. The task then is
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Time
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Figure 4.1: Solution of the Mackey-Glass equation Eq. (4.1) with parameters intext.
to predict ytgtn = ξ(tn+δ)with ξ(tn) as an input and a given δ > 0. For use in our
RC, ξ(tn) is converted into a continuous signal by the zero-hold interpolation:

s(t) =
∑
n

ξ(tn)rect

(
t− tn

tn+1 − tn

)
(4.3)

where rect(A) is a rectangular function

rect(x) =


0, |x| > 0.5

0.5, |x| = 0.5

1, |x| < 0.5

. (4.4)

This signal is then used tomodulate the amplitude of the optical carrier that is
injected into the reservoir as an input. In the same way, the target output sig-
nal is prepared. Consequently, the phase of the target signal is locked to zero,
which implies we treat the task as coherent even though only the amplitude
is modulated.
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4.1.2 . Performance metrics
The prediction accuracy is measured with the NRMSE given in Eq. (2.14).

For that, the RC output is sampled at tn.The output signal power also becomes a concern in noisy systems. Even
though noise will not be present in simulations, a power penalty is also con-
sidered an additional performance metric:

Lp = 10 log

(
⟨|y(t)|2⟩t
⟨|s(t)|2⟩t

)
, (4.5)

where ⟨. . . ⟩t is an average over time.
There is a tradeoff between NRMSE and power penalty, the balance of

which is controlled by the training regularization parameter. The conjecture
is that sometimes two neurons can behave similarly, with a slight difference,
but that difference would be important for solution accuracy. In order to ex-
tract such a difference, ridge regressionmay try to increase the absolute value
of readout weights, which can lead to an overly input-sensitive output [47]. In
our case, a passive readout is considered; therefore, all readout weights are
normalized such that the largest absolute value is unity. Thatmeans that previ-
ously obtained large weights normalize to unity, while others effectively go to
zero, which harms the output power. The regularization parameter punishes
large weights, so NRMSE can be sacrificed to improve the output power.

In this task, the regularization parameter is tuned so that the power
penalty never goes below -25 dB. The threshold is chosen somewhat arbi-
trarily – the input power is expected to be on the order of 10..50 mW, whereas
detecting output weaker than 100 µWbecomes tricky. The difference between
the two is -25..-20 dB.

4.1.3 . Results and discussion
Spectral characteristics

Due to the nature of ξ(tn), the Fourier spectrumof optical input is uneven (see
Figure 4.2). As a result, the excitation of supermodes is not uniform, with a
nontrivial impact on the reservoir.

A commonly suggested ESN optimization procedure is the addition of bias
alongside the input signal and tuning its strength [47]. It was found that in our
RC, such advice is not only ineffective but also harmful. An addition of bias
would increase spectra amplitude at the carrier’s frequency, further damaging
the supermode excitation balance.

In order to visualize the impact of nonlinearities, a linearized Jacobian of
the reservoir (see Eq. (3.32)) is considered. Figure 3.23 (right) shows the tra-
jectories of its eigenvalues while the input is injected. The inequality of non-
linearity strength is evident. A supermode near a Fourier peak with a strong
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Figure 4.2: The normalized Fourier transform of the input signal (blue) withreservoir resonances overlaid (orange). Frequency is normalized by the reser-voir bandwidth. Here, the reservoir bandwidth is larger than the input band-width, which goes against the conclusions of Section 3.6. High peaks in theinput spectra correspond to a dominating harmonic (ξ(t) largely oscillates –see Figure 4.1); however, for a close prediction, it is important to capture high-frequency irregularities despite their weak amplitude.

connection to an input waveguide is subject to several times stronger nonlin-
earity than others. This poses a challenge when FCD and the Kerr effect are
used as nonlinearity, as few supermodes would reach chaos before nonlin-
earity in other supermodes becomes strong enough.

Impact of nonlinearities

TheMackey-Glass equation is a nonlinear differential equation; therefore, pre-
dicting it with a linear system is unlikely to be satisfactory.

In Figure 4.3, a considerable improvement with all three nonlinearities is
seen. However, with frequency-shifting nonlinearities, the performance is lost
after the normalized average input power approaches unity. This is consistent
with Section 3.7, as the training becomes ineffective with a loss of consistency.
However, before the consistency is lost, the output power is higher compared
to TPA, which is likely due to an increase of dimensionality (see Figure 3.18).

GaAs microring reservoir performance

For an 8×3 reservoir with TPA and FCD, the NRMSE of 0.15 was achieved (see
Figure 4.4) and 0.08 for TPA, considering the power penalty restriction. For
comparison, the performance baseline is NRMSE(un, un+3) ≈ 1.1, an all-
optical time-multiplexed reservoir with 330 virtual neurons based on a semi-
conductor laser experimentally achievedNRMSE of 0.23 [176], and a simulated
time-multiplexed reservoir based on a nonlinear MRR with 25 virtual nodes
had NRMSE of 7.2·10-2 [177]. However, an ESN with 400 neurons outperforms
them by a large margin, predicting approximately 20 steps ahead with an
NRMSE of 1.2·10-4 [41]. Nevertheless, the proposed reservoir performs such
computation fully-optically in real-time.
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Figure 4.3: Impact of nonlinearities on (a) prediction error and (b) powerpenalty on a 3-step Mackey-Glass prediction. For all cases, GaAs microringparameters are used (see Table 3.1), but for the TPA-only regime, dω/dN isset to zero, while for the Kerr effect βTPA = 0 and dω/dI < 0 is chosen ar-bitrarily. The regularization constant was increased until the power penaltyreached -25 dB.
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Figure 4.4: 3-step Mackey-Glass prediction by an 8×3 GaAs microring res-onator at an optimal input power. Here, the NRMSE is 0.15 and Lp ≈ −22 dB.

91



If we require only the amplitude of the output signal to be correct, for the
same reservoir with TPA and FCD, the NRMSE reduces to 0.06. However, the
original training problem Ŵ outx(t) = ytgt(t) becomes |Ŵ outx(t)| = |ytgt(t)|,
and ridge regression stops being applicable.
Performance scalability

Simulations have shown that prediction performance improves with the num-
ber of cavities (see Figure 4.5) forN⊥ = 1, 3, and all three nonlinearities. With
FCD and the Kerr effect, N⊥ = 1 and N⊥ = 3 reservoirs have shown similar
performance, while for TPA N⊥ = 3 was better than N⊥ = 1. The lowest er-
ror with an NRMSE of 3.7·10-2 and Lp of -25 dB is achieved for 48 cavities with
N⊥ = 3. The importance of the evanescent coupling is also noted by compar-
ing our systemwith a set of independent cavities, a linear regime of whichwas
considered by [178]. For a fair comparison, resonances of cavities were set to
resonances of supermodes of a corresponding N × 1 reservoir. Coupled cav-
ities provided considerably better performance with all nonlinearities, likely
due to a nonlinearity-induced supermode mixing.
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Figure 4.5: Scalability of 3-step prediction performance with various geome-tries and (a) TPA, (b) TPA with FCD and (c) the Kerr effect. The regularizationconstant was increased for each point until the power penalty reached -25 dB.Here, minimum NRMSE (a) 0.037 (b) 0.070 (c) 0.087.

4.1.4 . Conclusions
The proposed integrated all-optical RC can imitate the nontrivial dynamics

of the Mackey-Glass equation. The importance of evanescent coupling and
scalability of prediction performance with the number of cavities are noted. It
was found that all TPA, FCD and the Kerr effect contributed to the prediction
performance, with TPA giving a somewhat better result at the cost of a lower
output power. No difference in the performance of an RC with 1 or 3 rows
of cavities was found. In the previous section it was shown that having many
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rows would reduce dimensionality due to supermodes that are not excited,
which is expected to harm performance. However, in this case, 3 rows is not
enough to significantly uncouple supermodes.

Prediction accuracy is comparable to physical RC found in the literature;
however, an ESN showed better performance [41], which, apart from a larger
neuron count (400 compared to a few tens in our case), can likely be attributed
to:

• an unrestricted neuron leak rate, which could improve dimensionality,
• a more complex neuron connectivity structure, as the connection ma-
trix was generated randomly,

• a more homogenous input injection, which is shown to be important
in [179],

• an unrestricted power penalty.
In addition to that, our RC has not been optimized for this task, and its parame-
ters have been chosen according to general conclusionsmade in the previous
section; therefore, an improvement of the prediction accuracy is possible.

4.2 . Optical fiber data recovery

Regarding information transmission, an optical fiber is usually the best
option. However, it still introduces distortions into the transmitted signal, a
notorious problem limiting transmission performance [180]. This section aims
to apply the proposed RC to recovery from such distortions.

The distortion of the signal propagating in optical fiber communication
channels can be separated into linear and nonlinear contributions. Linear
distortions include filter effects, chromatic dispersion (CD) and polarization
mode dispersion, among others. Nonlinear distortions include self-phase
modulation (SPM), relevant for single-channel communication, cross-phase
modulation (XPM) and four-wave mixing (FWM), relevant at multi-channel
communication (e.g. DWDM), and other effects [181].

Dispersion could be countered optically with dispersion-compensated
and dispersion-shifted fibers or, after detection, feed-forward and decision
feedback equalizers. Countering nonlinearities is considerably more challeng-
ing. In Section 1.4.1, a few approaches are given; however, all of them are
computationally expensive, and the algorithm complexity has to be reduced
for the online processing of fast signals, which limits how much nonlinearity
can be undone. It was also shown that ANNs could be an efficient alternative,
but running complex enough ANNs even on the fastest electronic devices
available off-the-shelf is a challenge.

For low-latency networks, keeping the signal in the same domain as long
as possible is important. Each OEO conversion takes up to 100 µs, depending
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on howmuch electronic processing is required [182]. Reamplification, reshap-
ing and retiming (full ‘3R’) regeneration should also be avoided when possi-
ble [19].

Therefore, there is an interest in replacing the electronic treatment of op-
tical distortion or at least its partial offload to the optical domain. This section
discusses how the proposed RC can handle this problem.

4.2.1 . Signal transmission
In order to transmit information over an optical fiber, it has to be mapped

to an optical signal – an optical carrier’s amplitude and, possibly, phase ismod-
ulated, and the result is designated as s0(t). Each unique pair of amplitude
and phase would form an ‘optical alphabet’, to which the original datastream
is translated in the binary form (i.e. a stream of ‘0’s and ‘1’s). The way binary
data is mapped onto an optical field is called the modulation format.

The rate at which we switch between the ‘letters’ is called baud. Baud and
bandwidth are related but different, as the former describes the rate at which
information is transmitted, whereas the latter corresponds to how broad the
optical signal’s spectrum is. If the modulation speed doubles, baud and band-
width double, all else being equal. If the ‘alphabet’ capacity increases two
times, baud doubles, while bandwidth does not. Therefore, increasing the ‘al-
phabet’ improves the data transmission rate.

There are various modulation formats in use. The simplest one is on-off
keying (OOK), where the amplitude can have two values: zero and non-zero.
Here, we have only two ‘letters’ in the ‘alphabet’; therefore, the translation is
simple: each 0 is mapped to the zero amplitude and each 1 to the non-zero
amplitude (see Figure 4.6). Simply switching between the letterswould be non-
return-to-zero on-off-keying (NRZ-OOK). There is also a variation called return-
to-zero on-off-keying (RZ-OOK), where the amplitude is set to zero between
each symbol. In this case, periodic zero-out acts as a clock, which helps syn-
chronize a receiver and a transmitter. The price is that the bandwidth of the
signal almost doubles with the same baud.

1 1 1 1 1 10 0 0 0 0
NRZ-OOK
RZ-OOK

Figure 4.6: Non- and return-to-zero on-off keying modulation. Adaptedfrom [183].
The amplitude can be modulated to more than just two levels. For exam-

ple, modulating to four levels would result in the Pulse Amplitude Modula-
tion format with four levels (PAM-4). The ‘alphabet’ capacity is then increased
log2(4) = 2 times since N binary digits correspond to one of 2N different
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states optical field. What if the number of levels is not a power of 2? Then, a
bit sequence can be transmitted over a sequence of symbols. Theoretically,
each PAM-3 symbol carries log2(3) ≈ 1.58 bits. For example, PAM-3 is used in
USB4 Gen4 to transmit 11 bits over seven symbols [184, p. 128] – this way, each
symbol carries 11/7 ≈ 1.57 bits, which utilizes approximately 99% of the total
capacity.

However, using only the amplitude is wasteful – a second dimension,
phase, can also carry information. Then, such a modulation format would
be coherent. One format utilizing phase is quadrature amplitude modulation
(QAM), shown in Figure 4.7. For example, each symbol of 64-QAMwould carry
log2(64) = 6 bits.

64-QAM 32-QAM 16-QAM 4-QAM
+7
+5
+3
+1
-1
-3
-5
-7

-7 -3-5 -1 +7+5+3+1

Re

Im

Figure 4.7: Constellations of various quadrature amplitude modulation for-mats on a complex plane. Adapted from [185].
An increase in ‘alphabet’ size does come at a cost:
• The distance in the complex plane between symbols reduces, and the
link becomes more sensitive to noise.

• Demapping becomes more computationally intensive.
• The use of a coherent modulation format requires the use of coherent
receivers, which are costly compared to incoherent ones [186].
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4.2.2 . Task description
Omitting negligibly weaker effects like the Raman scattering, an electric

field E(z, t) in a fiber can be described with a nonlinear Schrödinger equa-
tion [187]:

i
∂E

∂z
+ i

αloss

2
E − β2

2

∂2E

∂t2
+ γ|E|2E = 0, (4.6)

where αloss is attenuation, β2 is dispersion coefficient, and γ is a fiber nonlin-
ear parameter. At the boundaries, E(0, t) = s0(t) and E(L, t) = s(t) is the
received signal. Here, γ is related to n2 via [187, eq. 2.3.29]

γ =
n2ω

cAeff
, (4.7)

where Aeff is an effective fiber mode area

Aeff =

[∫∫
xy |E(x, y)|2dxdy

]2∫∫
xy |E(x, y)|4dxdy

, (4.8)
though experimentally determined values of γ are usually available for com-
monly used fibers.

Table 4.1: Parameters of the SMF-28 optical fiber [188].
Parameter Designation ValueAttenuation αloss 0.2 dB/kmDispersion coefficient β2 21.7 ps2/kmKerr coefficient γ 1.3 W-1/km

The training target depends on the use case. If after an RC, no further pro-
cessing is done, i.e. just detection, then it can be trained to recover samples:
y(tn) ≈ s0(tn). Otherwise, extra info may be required, for example, when
a raised cosine filter (see Figure 4.8) is used for pulse shaping – a common
strategy for reducing intersymbol interference. In this case, more than one
sample per bit is needed, and recovering those is almost equivalent to recov-
ering the waveform: y(t) ≈ s0(t) due to the Nyquist-Shannon sampling the-
orem. In practice, a raised cosine filter is split into two matched root-raised
cosine filters (RRCF) at the transceiver and the receiver sides. Since filtering
is performed electronically, it is natural to use an RC before the final filtering
step (see Figure 4.9). In this case, s0(t) is a signal filtered by an RRCF before
propagation and s(t) is its propagation result.

For RC training, ytgt(t) = s0(t−τ) is chosenwhere τ is an output delay and
sample s0(t), s(t) and zk(t) once per bit in their middle. The presence of an
output delay is motivated by group velocity dispersion that causes different
input signal frequencies to arrive at a receiver at different times. By delaying
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Figure 4.8: Impulse response function of a raised- (top) and a root raised-cosine filters (bottom). The legend shows the roll-off factor; a lower value cor-responds to a narrower bandwidth. Raised cosine passes through zero everybit length, i.e. samples are unchanged.

DAC + RRC
RRCI/Q modLaser CoherentdetectorRC

Randomsymbols
Fiber

Amp

Figure 4.9: Scheme of an optical fiber link. Electrical and optical componentsare shown in black and red. Here, RC is the reservoir computer, and RRCF isthe root-raised cosine filter.
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ytgt(t), the reservoir can accumulatemore information about the current sym-
bol before producing an output. It will be shown later that the output delay
leads to a better separation of output samples at a given power penalty. For
RC testing, y(t) and ytgt(t) are similarly sampled to produce yn and ytgtn ; an
appropriate classifier C is used for demapping.

Performance is measured with the Symbol Error Rate (SER):
SER(y, ytgt) =

∑
n

1
[
C(yn) ̸= C(ytgtn )

]
/Nt, (4.9)

where 1[x] is 1 when x is true and 0 otherwise and Nt is the number of trans-
mitted symbols in the testing dataset.

Since a simulation or an experiment counting the number of errors in
the stream cannot be infinitely long, the minimummeasurable SER is limited.
In [189], 1/Nt was used as a lower limit, but here, we choose such that it can-
not be lower than an inverse of a count of the least common symbol in the
stream

1/min
S

{∑
n

1[C(ytgtn ) = S]

}
, (4.10)

which is a similar but more pessimistic limit. Previously introduced power
penalty Eq. (4.5) is also used.

4.2.3 . Results and discussion
Metro link

An optical signal carrying a random sequence of symbols s0(tn) is generatedaccording to the parameters given in Table 4.2. Before propagating through a
fiber, a signal was passed through a low-pass filter (see Figure 4.10).
Table 4.2: Parameters for simulation of propagation through a metro opticallink.

Parameter ValueRandom number generator Mersenne TwisterModulation format OOKBaud 25 GHzLaunch power 10 dBmOptical fiber 50. . . 300 km SMF-28Pulse shaping Low-pass filter,0.6×25 GHz cutoffSamples per bit 8Integration algorithm ode45 in OctaveRelative error tolerance 10-3
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Then, Eq. (4.6) is solved numerically in Octave using an in-house solver to
obtain distorted signal samples s(tn), which are linearly interpolated to s(t)

and injected into the reservoir.

0.0 0.1 0.2 0.3 0.4 0.5
Time, ns

0

1
Sign

al
0 km150 km

Back-to-back 25 km 50 km 150 km

Figure 4.10: Top: timetraces of a real part of the original signal (dashed line)and the distorted signal after 150 km of optical fiber (solid line). Black dotsshow a bit middle points and act as the training target; blue and orangeare only for visualization and show distorted signal samples with color cor-responding to each symbol. Bottom: constellations of the distorted opticalsignal samples after propagating through a length of optical fiber given aboveeach plot. Parameters are given in Table 4.2.
The reservoir parameters are the same as in the Mackey-Glass task (see

Table 3.1) except for µ = 40 GHz, chosen according to the s(t) spectrum (see
Figure 4.11) and nonlinear effects disabled, as at these fiber parameters and
launch power, the impact of nonlinearity is relatively weak and can be handled
by a classifier. As in the previous section, µ is increased for N∥ × 1 reservoir
versions to equalize reservoir bandwidth.

As was mentioned before, a pulse in the input signal gets spread out in
time due to dispersion. By delaying the output signal we allow the RC to accu-
mulatemore data, allowing for better equalization. For used fiber parameters,
a delay of 4 bits is adequate and is used in this section (see Figure 4.12).

A larger reservoir can handle a distortion from a longer fiber (see Fig-
ure 4.13). The performance of an N∥ × 1 grid of cavities was comparable to
an N∥ × 3 grid and outperformed independent cavities.
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Figure 4.11: Normalized Fourier spectrum of the distorted signal after 150 kmof fiber (blue) with 8×3 reservoir resonances overlaid (orange). Frequency isnormalized by the reservoir bandwidth.
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Figure 4.12: (a) Effect of output delay (shown in legend) on output symbolseparability measured with NRMSE at a given power penalty, controlled withregularization parameter. Here, fiber length is 150 km, and the signal is pro-cessed with an 8×3 linear reservoir. (b)(c) Constellations of output symbols atpower penalty of approximately -20 dB with 0- and 4-bit delay, respectively.Figure 4.10 (bottom) shows the constellation of input signal samples.

100 200 30010-4
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SER N=12N=18N=24
100 200 300Fiber length, km 100 200 300
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Figure 4.13: Performance scaling of optical signal recovery w.r.t. reservoir size.The reservoir is (a) N independent, (b) N∥ × 1 grid and (c) N∥ × 3 grid of lin-ear microring resonators. The regularization parameter is increased for eachcomputation until the power penalty is no less than -25 dB. Here, SER is thesymbol error rate.
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High-speed short-reach link

In all previous tasks, the output was incoherent2. In this section, the recovery
of coherent signal samples is considered, where both amplitude and phase
recovery are required, which is one of the strong points of an all-optical co-
herent RC.

The preparations are similar to the previous section, with the parameters
given in the left column of Table 4.3, where we consider a 16-QAMmodulation
format at a commonly used launch power. The same linear reservoir is used
as in the previous section, and µ is scaled to match the signal bandwidth.

In the previous section, Octave was used to solve Eq. (4.6). Since then, we
have reimplemented a solver in the Julia programming language [146] in order
to utilize a wider toolset and modernize the codebase. However, since results
for a metro link have already been submitted to a journal, they have not been
recreated. In this section, we use a new solver (see Section C for details) with
parameters in Table 4.3.
Table 4.3: Parameters for simulation of propagation through a short-reachoptical link in default and highly nonlinear cases. Fiber parameters are givenin Table 4.1.

Parameter Value (default) Value (nonlin.)Random number generator Xoshiro256++ [190]Modulation format 16-QAMBaud 25 GHzLaunch power 5 dBm 14 dBmOptical fiber 80 km SMF-28 30 km SMF-28Pulse shaping RRCF, 0.1 roll-off factorSamples per bit 8Integration algorithm Vern9 in DifferentialEquations.jlRelative error tolerance ·10-3
Signal distortion and recovery results are shown in Figure 4.14 and Fig-

ure 4.15. A linear reservoir performed well here since such launch power does
not cause a strong nonlinear response.

2although the RC was trained as if it was, the phase was simply locked to zero
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Back-to-back 5 km 10 km 80 km

Figure 4.14: Constellations of optical signal samples after propagating througha length of optical fiber given above each plot. Parameters are given in the leftcolumn of Table 4.3. In the left figure constellation are simply dots enhancedfor visibility.

Highly nonlinear high-speed short-reach link

Consider a more challenging case, where RC’s intrinsic nonlinearity will have
to be used. With the parameters given in the right column of Table 4.3, a dra-
matic increase in launch powerwill elicit a strong nonlinear response in a fiber.
In Figure 4.16, a ‘smearing’ of samples can be seen,which reduces the SER even
after 5 km. Combined with a coherent modulation format, this poses a much
harder challenge for an RC.

Figure 4.15: Constellation (left) and histogram (right) of signal samples after80 km of optical fiber recovered with a linear reservoir. The power penalty is-12 dB. Figure 4.14 shows the distorted signal.
In order to handle such a task, the reservoir size is increased to 36 GaAs

MRRs arranged in three rows. In this task, the photon lifetimewas significantly
reduced since a long linear memory is unnecessary (and even harmful) after
just 30 km of fiber. To that end, the Q-factor was reduced 3·105 → 1·105, and
κ2out increased π → 8π GHz, which reduced photon lifetime to about two bit
periods.

One can see that a linear reservoir fails to separate the symbols (see Fig-
ure 4.17). Symbols at the edge of the constellation correspond to a higher am-
plitude and are themost affected. However, an intrinsic nonlinearity provides
a noticeable improvement. Even though a perfect recovery was not achieved
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Back-to-back 5 km 10 km 30 km

Figure 4.16: Constellations of optical signal samples in highly nonlinear caseafter propagating through a length of optical fiber given above each plot. Pa-rameters are given in the right column of Table 4.3. In the left figure constel-lation are simply dots enhanced for visibility.

(for that reason, there is no SER estimate), the difficulty of further process-
ing is expected to reduce considerably. Moreover, this is an exaggerated case,
and such strong launch power is not used.

Linear reservoir Nonlinear reservoir

Figure 4.17: Recovery of strongly nonlinearly distorted signal after 30 km ofoptical fiber with linear and nonlinear otherwise identical reservoirs. Eachpair shows a constellation and a histogram of samples. The power penaltyis around -20 dB in both cases. Figure 4.16 shows the distorted signal.

4.2.4 . Conclusions
This section demonstrates that the proposed RC is capable of a highly rel-

evant task – recovering data from an optical fiber. This RC has been applied
to recovering data frommetro and short-range links. Even though our simula-
tion of distortions is rather simplistic as several technical details were omitted,
like optical carrier noise, detection noise and filtering effect, the main objec-
tive was an inversion of distortion even in a highly nonlinear case, which has
been demonstrated.

Further work may include recovery of WDM channels and recovery of dis-
tortion of long haul optical links, hence dealing with interchannel interfer-
ence.
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5 - Spiking neural network in integrated pho-
tonics

Previous chapters discuss a few implementations of neural networks.
Even though neuromorphic computing is biologically inspired, such networks
employ drastically simplifiedmodels of neurons and synapses, and the entire
approach to computing differs from a real brain.

• Digital implementations are almost universally discrete, and neurons in
such emulations exchange signals in a ‘synchronized’, i.e. clocked fash-
ion. This approach is used when digital electronics are heavily involved
in the computing process

• In continuous implementations, neurons exchange non-discretized and
smooth signals in real time. Since most physical systems are smooth
and, therefore, suit well, several implementations outlined in Section 2
have been demonstrated.

Real neurons exchange spikes asynchronously, with some works speculat-
ing that their operation has inherent stochasticity [191], which previously
discussed models mostly discard. Nonlinearity is also different. Biological
dendrites, for example, are nonlinear. In typical ANNs, all neurons have time-
invariant nonlinearities, whereas the real neurons are excitable, see Figure 5.1.
According to A. L. Hodgkin, excitable neurons can be classified into three

Figure 5.1: Excitability of a giant squid neuron, vertical axis shows neuron volt-age [192]. Weak inputs induce a linear response, but stronger responses elicita spike due to ionic currents inside the cell membrane. Here, the excitationstrength only impacts the spike delay.
classes [193]:
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class 1: neurons that emit spike trains in a wide range of frequencies,
depending on the excitation strength,
class 2: neurons that emit spike trains in a narrow range of frequencies,
largely insensitive to the excitation strength,
class 3: neurons that emit only one spike in a certain period of time,
irrespective of the excitation strength,

and each class would be suitable for a particular way of transmitting informa-
tion.

Suppose a neuron is a class 1 or 2. In that case, information can, for ex-
ample, be encoded in how frequently spikes are emitted, which is so-called
rate-based coding, somewhat similar to continuous neural networks. For
some time, rate-coding was assumed to be the way information is coded
in a brain [194]. However, in the 1990s, an experiment on macaque monkeys
demonstrated a fault in such an assumption. The macaque’s cortical area can
spike at 100 Hz, whereas visual pattern recognition was carried out as fast as
30 ms [195], which is hardly enough for a faithful rate coding. Another way
is temporal coding, where the time a spike has arrived is important. This ap-
proach is particularly interesting for event-based computing, where a compu-
tation process needs to run only at a particular moment. For example, run an
object-recognition algorithm only when something moves in a frame, which
reduces power consumption [196].

There is an interest in spiking neural networks (SNNs) as they are closer
to the source of ANN inspiration – a brain that demonstrates what is possible
– an exceptionally complex computing device using just 20 W of power. There
are also claims about the practical advantages of SNNs, such as

• more computing power per neuron compared to regular ones [197],
• in principle, more energy efficient operation, as a neuron is in the emis-
sion state only a fraction of time [198],

• better resistance to noisy environments, as sharp spikes are easier to
spot in the sea of noise [194],

that, however, are still under debate.
Several neuron models approximate biological neurons [199], leaky integ-

rate-and-fire (LIF) being one of the simplest and widely used. This model is
very old [200] and only received its name half a century later [201]. In this
model, a neuron is represented as a capacitor with potential u and capaci-
tance C , which can be charged by external currents I that can be a weighted
sum of signals from other neurons, and this charge dissipates over time with
a time constant C/g:

C
du

dt
= −gu+ I. (5.1)
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If the charge exceeds a certain threshold at a time tspike, a spike is emitted,
and u is forced to a ‘reset’ potential ρ for a duration called ‘refractory period’
τref , i.e.

u(tspike ≤ t < tspike + τref) = ρ. (5.2)
Spiking networks have been implemented in digital and analog electronics.

In 2014, IBM created the 4.3 cm2 electronic chip ‘TrueNorth’ with 4096 cores
capable of simulating 1 million neurons with 256 million synapses with pro-
cessing speed limited to a few hundred hertz [202]. In 2018, Intel presented the
0.6 cm2 ‘Loihi’ chipwith 128 cores, each implementing 1024 neurons, i.e. 131,072
total, capable of faster computing of a few megahertz [203]. To compare with
Figure 2.33, Loihi’s neuron density is about 2200 neurons/mm2. In 2021, its
successor, ‘Loihi 2’, was announced, with almost the same number of neu-
rons and synapses but improved interfaces and programmability [204]. Other
implementations have been compared in a review [205]. These chips have
put computing modules and memory next to each other, avoiding the ‘von
Neumann bottleneck’. Similar to the case of conventional high-performance
computing, photonic interconnects may be considered to overcome the bot-
tleneck. In a long-term perspective, all-optical SNNs may be attractive.

Spiking in passive MRRs [206] and PhCs [207] has been demonstrated,
though they relied on slow thermal effects, which limited the operation fre-
quency up to 1 MHz. Injection-locking can produce spikes at a faster timescale
– a perturbation of an injection beam can induce the excitable behaviour
of a VCSEL with a response of a few hundred picoseconds [208] (see Fig-
ure 5.2). However, injection locking requires a laser per neuron, which lim-
its scalability. A more scalable alternative is a two-section VCSEL with a sat-
urable absorber [209]. However, VCSELs are hard to couple on a single chip
due to the vertical mode orientation. In-plane resonators resolve this issue,
and they have been considered in very recent works in the form of Fabry-
Perot [210] and photonic crystal cavities [211], each with the threshold energy
of a few femtojoules and gigahertz timescale. An optoelectronic DFB laser-
based setup was also demonstrated [212]. This chapter targets integrated PhC
lasers shown in Figure 5.3 as they are very compact and require low power
to operate [213]; recent work has achieved spiking behavior by incorporating
a two-section design with a saturable absorber [214].

A reasonable question one might ask is how to make anything useful out
of spiking neurons. One answer lies in the Boltzmann Machines, which we
discuss in the next section.
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Figure 5.2: Examples of spiking photonic systems. Top left: injection-lockingsetup [208]. Top right: distributed-feedback laser, adapted from [212]. Bot-tom left: photonic crystal with saturable absorber [214]. Bottom right: vertical-cavity surface-emitting laser with saturable absorber [209].
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Figure 5.3: Photo (left) and schematic (center, right) of a hybrid one-dimensional photonic crystal InP nanolaser heterogeneously integrated ontop of a silicon-on-insulator waveguide. Here BCB is benzocyclobutene.Adapted from [213].
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5.1 . Boltzmann Machine

A Boltzmann Machine (BM) is a stochastic Ising model, where binary neu-
rons (i.e. that can be in two states) interact with each other according to a
given connection weight matrix. This matrix also dictates the system’s energy,
which impacts a BM’s evolution. This section introduces BMs in a very simple
manner; for a rigorous approach, I refer to [215].

First, assume a network of perceptrons with a threshold function

f(x) =

{
+1, x ≥ 0

−1, x < 0
. (5.3)

Each pair of neurons is connected symmetrically, i.e. connection matrix Ŵ

is symmetric, i.e. Wij = Wji, but Wii = 0. Then, for each neuron, we can
compute the sum of ‘forces’ acting upon it:

ui(n+ 1) =
∑
j

Wijzj(n) + bi, (5.4)

where zj(n) = ±1 shows if a j-th neuron is active (+1) or not (−1) at time n and
bi is a constant bias. This sum will define the new state of a neuron according
to

zi(n+ 1) = f [ui(n+ 1)]. (5.5)
For a state of the network z, we can define an energy function

E(z) = −1

2
z⊤Ŵz − z⊤b. (5.6)

If a connection between two neurons is positive, zi = zj would correspond toa lower energy than zi = −zj , and the opposite is true for negative weights.
If we were to compute −∂E/∂zk formally, we would obtain Eq. (5.4), i.e. an
update of each neuron would reduce the total network energy1. This way, a
Hopfield network is defined [216].

How is it useful? Each z can correspond to some dataset, e.g. the bright-
ness of pixels of an image. We can set Ŵ and b such that E(z) has local
minima at specific points, e.g. when corresponding pixels form an image of
a handwritten number. Each time we write a number on paper, it turns out
differently. So, a new image to be processedwill correspond to z′, which is not
at the minimum. Now we force the initial state of the network to the data we
have, i.e. z(0) = z′. During the update procedure, the network will slide down
the energy slope towards a minimum, hopefully, corresponding to a ‘true’ z.
This way, we infer from partial, distorted or noisy data.

1the order at which neurons are updated is typically not important [215]
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What if the energy surface is complex and there are unwanted local min-
ima? Hopfield networks are deterministic, so if the energy gradient drives to-
wards such aminimum, the network will end up and stay there, and inference
will fail. This problem can be solved by allowing the network to ‘makemistakes’
by making it stochastic. For that, we change the update procedure.

Instead of a deterministic thresholding Eq. (5.3) we will use the sigmoid
that would give a probability that a neuron would follow where the ‘forces’
lead:

p(zi = 1) = σ

∑
j

Wijzj + bi

 , (5.7)
where p(zi = 1) means a probability of a neuron turning on in this network
state. In the end, the network randomly walks through its phase space, pre-
ferring to go towards lower energy states. Here, the network follows some
probability distribution, and the states it steps in are referred to as ‘samples’,
and the process of randomly walking is called ‘sampling’. One can show that
after walking for a long enough time, the probability that the network would
be in state z would be described by the Boltzmann distribution

p(z) = Z−1 exp (−E(z)) , (5.8)
where the temperature term is unity kT = 1 and

Z =
∑
z

exp (−E(z)) (5.9)
is a partition function that ensures the probability normalization∑

z

p(z) = 1. (5.10)
Hence the name: the Boltzmann Machine. Then, to use a BM as we did a Hop-
field Network, we need to find the most visited state during the walk.

We have seemingly eliminated the need for sampling – why bother when
we can compute p(z) analytically? The answer is in the computational com-
plexity: if a BM has N neurons, computing Z requires a summation of 2N
terms, quickly becoming untractable for higher N . For the same reason, a
computation of marginal and conditional distributions is easier since a part
of the sampled state can be simply dropped.

The tradeoff of sampling, however, is that it does not provide a perfectly
accurate result, but the accuracy will increase with more samples collected2.
Here, photonic systems would be advantageous – due to the fast timescale,

2Sometimes, it can be beneficial to stop sampling prematurely and make a deci-sion now, potentially correcting later – anytime computing [217].
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many samples can be accumulated quickly. The problem is how tomake such
systems sample from a Boltzmann distribution of our choice.

The sampling process described above is discrete, but many physical sys-
tems, ours included, are continuous. Luckily, it has been proven that an intu-
itive transfer of this procedure to the continuous domain would still provide
correct samples [218]. The system is the following:

• each neuron has a membrane potential ui(t) such that in the resting
state, the probability density of a spike emission is

pspike(ui) = τ−1
ref exp(ui), (5.11)

• if a neuron has spiked at time t, it cannot spike until t + τref , i.e. it is inthe refractory regime,
• neuron connectivity is similar to the discrete case

ui(t) = bi +
∑

Wijzj(t), (5.12)
where zj(t) = 1 if a j-th neuron is in the refractory regime and 0 other-
wise.

Later, we will refer to these neurons as abstract continuous spiking neurons
(ACSNs). The conversion process from continuous zi(t) to discrete is shown
in Figure 5.5.

Figure 5.4: Statistical properties of an abstract continuous spiking neu-ron [218].
To determine the accuracy of sampling, the Kullback-Leibler divergence is

used [220]
DKL(P ∥ Q) =

∑
x∈X

P (x) log

(
Q(x)

P (x)

)
, (5.13)
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Figure 5.5: Sampling of four continuous spiking neurons. Black bars show spik-ing events and gray rectangles – neuron activation interval (i.e. when zi = 1).Reproduced based on [219].

which is a measure of how a probability distribution P (x) is different from a
reference probability distribution Q(x) defined on a sample spaceX . To give
an example, Figure 5.6 provides a visual comparison between sampled and
target distributions and correspondingDKL values.

Figure 5.6: Sampling from a Boltzmann Machine with a network of leakyintegrate-and-fire neurons. (a) Spike pattern of 5 such neurons during sam-pling. (b) Comparison of sampled distribution (blue) and target distribution(red). (c) Increase of sampling accuracy withmore samples collected, ten trials.(d) Sampling accuracy for a set of random Boltzmann Machines with 106 msof sampling time. Figure is taken from [219].
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5.1.1 . Stochastic inference
Consider a two-dimensional pixelated image on which a digit is drawn.

Each pixel is associated with a neuron of a BM (black pixel – neuron is active
and vice-versa). The connections are trained such that the BM has minima in
three states corresponding to three digits: 0, 3 and 4. If no input is imposed
and the BM is updated, it randomly jumps between three states correspond-
ing to these digits (see Figure 5.7, left). During exposure to a partial input –
some pixels are forced to be in a particular state, which will impact the trajec-
tory of the BM. The more pixels corresponding to a digit are forced, the more
likely the more likely the BM stays in a corresponding state. However, if the
input is ambiguous, i.e. two digits have share some pixels, a BM will not know
for sure what digit we have meant, and it will jump between the correspond-
ing states. For example, 3 and 4 have black pixels in the middle, while 0 does
not (see Figure 5.7, right). The BM then jumps between 3 and 4, but not 0.

Figure 5.7: Stochastic inference of three digits from an image with leakyintegrate-and-fire neurons. Left: when no input is imposed, the BoltzmannMachine infers three digits with equal probability. Right: when the it is ex-posed to an ambiguous input. Adapted from [219].

5.1.2 . Sampling from arbitrary distributions
Consider a BM that corresponds to a probability distribution p(z). How-

ever, its marginal distribution, w.r.t. to some z components, can be arbitrary.
Therefore, a system that samples from a BM can sample from all distributions.

In practice, it is carried out by separating BM neurons into two groups, vis-
ible v and hiddenh; intra-group connections are removed. This is a Restricted
BM (RBM). Then, p(v,h) is in accord with the Boltzmann distribution, but

p(v) =
∑
h

p(v,h) (5.14)

might not. Then p(v,h) can be trained such that p(v) is close to the target
distribution (which might not even have a closed form and be in the form of
a dataset), for example, using the ‘wake-sleep’ algorithm [221]:
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1. wake: force visible neurons to a state from the target distribution, run
the BM and compute ⟨vihj⟩wake

2. sleep: all neurons are free, run the BM and compute ⟨vihj⟩sleep

3. update weights according to wij ∼ ⟨vihj⟩wake − ⟨vihj⟩sleep.
To conclude, sampling from a BM allows for solving several tasks. A net-

work of ACSNs can sample accurately from a BM [218]. The sampling preci-
sion depends on the number of collected samples, which is dictated by the
network’s timescale. Therefore, we aim to approximate the ACSN with our
spiking photonic network.

5.2 . Single laser model

The spiking behaviour of nanolasers with saturable absorbers has been
demonstrated several times. The Yamada model [222] is often used to de-
scribe their behaviour. However, in the system we are interested in, noise
plays an integral role, and, therefore, the stochastic model from [223] is used
as a basis with recent corrections [224, 225]. The model including noise is dis-
cussed in a Ph.D. thesis of M. Delmulle [214]; here, only the general ideas are
given.

Consider a laser composed of a gain and a saturable absorber sections,
parameters of which are marked with ‘g’ and ‘sa’ respectively (later, this laser
is referred to as a photonic spiking nanolaser or PSN). Together, they compose
a single cavity, where a resonatormode is born. Themode is split between the
two sections (see Figure 5.8), characterized by the field overlap factor:

Pi =

∫
i
|E|2dx

/∫
|E|2dx (5.15)

where i ∈ {g, sa} represents the integration region.
The gain G is added by quantum wells [226]:

GQW(N) = G′Ntr log
N

Ntr
, (5.16)

where G′ = dGQW/dN is the differential gain at transparency, N is the elec-
tron density and Ntr is the electron density at transparency (see Figure 5.9).
The differential gain of sections will differ due to the different overlap factors
and the fact that only the gain region is pumped:

G′
g = PgG

′,

G′
sa = PsaG

′χg.
(5.17)

Since we assume an incoherent PSNmodel, it can be described with three
variables: a number of photons in the cavity S and a density of charge carriers
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Figure 5.8: Resonator mode over gain and saturable absorption sections. TheGaussian mode shape in the middle of a cavity with a given mode size is as-sumed. Here, FWHM is full width at half maximum. Adapted from [214].

Figure 5.9: Quantum well gain curve, the differential gain slowly reduces asmore charge carriers are added to a cavity [214].
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in gain and absorber sections Ng and Nsa, respectively. They are normalized
as follows:

• time to photon lifetime t → tγ,
• number of photons S w.r.t. the number of photons saturating the gain
Ssat = NtrVg, where Vg is the gain section volume,

• carrier densities w.r.t. the carrier densities at transparency:
Ng → D = Ng/Ntr − 1 and Nsa → Q = Nsa/Ntr − 1,

then:
dP

dt
= (ηgD + ηsaQ− 1)P +

ηg
2Ssat

(D + 1) +
ηsa
2Ssat

(Q+ 1) + FS,g + FS,sa,

dD

dt
= I − γg(D + 1)− ηgDP + FN,g,

dQ

dt
= −γsa(Q+ 1)− ηsaχQP + FN,sa,

(5.18)
where ηg = ΓgG

′Ntr/γ and ηsa = (1− Γg)G
′Ntr/γ are the normalized gain in

gain and absorber regions,
I =

I

qNtrVgγ
(5.19)

and I are the normalized and the regular injection currents, q is the elemen-
tary charge, γi = (γnr,i+0.5G′/Va)/γ are the total electron recombination rate
where i ∈ {g, sa},

γnr,i =
1

τnr,i
+

1

2Va
G′

i

(
1

βse
− 1

)
(5.20)

is the electron recombination rate not associated with the cavity mode and
βse is the spontaneous emission factor. The total gain is designated as

G = ηgD + ηsaQ− 1. (5.21)
Pump saturation adds a multiplier to its term:

I → I
(
1− D + 1

χg + 1

)
. (5.22)

where χg is a ratio of differential gain between gain and absorption regions
(see Figure 5.9).

The Langevin forces are formulated with a finite time step ∆t and are in-
tegrated at a bandwidth 1/∆t, then

FS,i =

√
2DSS,i

∆t
ζS,i

FN,i = −
√

2DSS,i

∆t
ζS,i +

√
2γnr,iNi

∆t
ζN,i

(5.23)
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where i ∈ {g, sa}, ζj,i(t) are independent Gaussian processes with zero mean
and unitary variance and

DSS,g =
ηg

2Ssat
P (D + 1),

DSS,sa =
ηsa
2Ssat

P (Q+ 1).
(5.24)

It was pointed out that the Langevin model here has issues [227], such as
the problem of granularity of light highlighted by [228]. The discrete nature
of the process explains the jitter in the pulse timing in a nanolaser and may
not be captured by the continuous variable equations [229]. Future work will
utilize an advanced discrete model, which accounts for the discrete nature of
light.

5.3 . Spiking nanolaser as abstract spiking neuron

First, consider a single PSN. The goal is to make it behave like a ACSN, i.e.
we should

• figure out if PSNs can be refractory like ACSNs and, if so, determine τon,
• define a membrane potential that behaves identically to one of ACSN.

5.3.1 . Spiking demonstration
Eq. (5.18) is integrated with the SROCK2 algorithm available in DifferentialE-

quations.jl library [145]. This is a weak second-order and strong first-order
fixed step stabilizedmethod for stiff Ito problems that can handle one-dimen-
sional, diagonal and non-diagonal noise. Cavity parameters are chosen close
to those of a recently fabricated structure presented in [214]; see Table 5.1.

First, pumping I is increased until the PSN starts self-pulsing. Figure 5.10
shows the maximum number of photons w.r.t. I. There is a sharp increase
after a certain threshold – a sign of spiking. Figure 5.11 shows the dynamics
of gain and photon number above the threshold visible in Figure 5.10. One
could see that the emission of a short spike causes a drop in gain that takes
a considerably long time to recover; after recovery, gain performs a random
walk due to noise.

Figure 5.12 shows the stochastic properties of a PSN in more detail. When
the PSN is not spiking, it was found that the gain autocorrelation is similar
to the one of the Ornstein-Uhlenbeck process, i.e. gain is primarily a result
of first-order low-pass filtering of a white gaussian noise, which means that
PSN dynamics are largely dominated by noise. Above the self-spiking thresh-
old, this autocorrelation is deformed. Looking at the gain histogram, one can
see that the gain distribution below the threshold is symmetric. This matches
the behaviour of ACSN’s membrane potential (see Figure 5.4, A). Above the
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Table 5.1: Simulation parameters for a single cavity [214]. See Figure 5.8 forcavity and mode size definitions.
Param. Value DescriptionFWHM 5 µm FWHM of spatial mode profile

Lg 8.9 µm Length of gain region
La 16 µm Total cavity length (incl. carrier diffusion)
hwg 0.6 µm Cavity thickness
wwg 0.65 µm Cavity width
G′ 4.6·10-13 m3/s Differential gain
Ntr 1.85·1018 cm-3 Electron density at transparency
χg 3 Differential gain ratio

τnr,g 4 ns Nonrad. electron lifetime in gain region
τnr,sa 0.5 ns Nonrad. electron lifetime in absorber
βse 0.1 Spontaneous emission factor
γ 200 GHz Optical loss rate

6.5 7.0 7.5 8.0
Injection current (norm.), I
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Pea
k#
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Figure 5.10: Bifurcation diagramof a photonic spiking neuronw.r.t. to injectionpower.
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Figure 5.11: Spiking at I = 7.5, dashed line shows Gtgt. (a) Interplay of gainand normalized number of photons during a spike emission. The number ofphotons corresponds to P . (b) Gain recovery after a large drop caused by aspike emission. (c) Random walk of gain between spikes. Note y-axis scaling.

threshold, the target gain is increased, and the gain spends some time in ‘re-
covery regions’. The interspike interval (ISI) distribution is roughly similar to
theGammadistribution, whichmatches the ACSN case (see Figure 5.4, B). This
also proves that self-pulsing is not a periodic process, and noise plays a ma-
jor role in the emission of spikes. Similarities between the ACSN’s membrane
potential and PSN’s gain hint that they might be closely related.

In the case of ACSNs, spiking is defined as an intrinsically stochastic pro-
cess, whereas for PSNs, the stochasticity is introduced through the gain. The
gain cannot be used as a ‘membrane potential’ directly, as a real membrane
potential is affected purely by bias, inputs and other neurons, whereas the
gain is also affected by noise. Therefore, a proper substitute for the mem-
brane potentialmust be found tomake the analogy between ACSNs and PSNs.

The gain makes a random walk around an average value, estimated with
the ‘target gain’

Gtgt = ηgD0 + ηsaQ0 − 1, (5.25)
where D0 and Q0 are steady-state solutions of Eq. (5.18) without noise terms,
which, unfortunately, can only be found numerically. The target gain is shown
in Figure 5.11 and Figure 5.12, and one can find that it estimates the peak of
the distribution, at least, as long as the gain still does the random walk.
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Figure 5.12: Stochastic properties of a photonic spiking neuron. (a) Autocorre-lation of gain time traces below and above the self-spiking threshold (I = 7.2and 7.5) and of the Ornstein-Uhlenbeck (OU) process. (b) Histograms of gainvalues, dashed line showsGtgt. (c) Histogram of interspike interval at I = 7.5.
The target gain is proposed to be used as PSN’s membrane potential:

uG = α(Gtgt −Gtgt,0), (5.26)
whereGtgt,0 is target gain at which uG = 0, where a PSN spends half the time
in the refractory state, and α is a proportionality coefficient.

In order to check the validity of our choice of uG we need to verify that the
activation curve resembles the sigmoid

p(z = 1) ≈ σ(uG) = σ(α(Gtgt −Gtgt,0)), (5.27)
which is true for ACSNs p(z = 1) = σ(u) [218].

5.3.2 . Activation curve of photonic spiking neurons
We need to verify if Eq. (5.27) holds. First, the pumping rate is swept, and

Gtgt is computed. Then, the minimum ISI encountered is chosen as the provi-
sional τon, and an estimate of a p(z = 1)(uG) curve is computed, which is then
fit with a sigmoid according to Eq. (5.27). Figure 5.13 shows that although data
points resemble a sigmoid, the fit quality is poor. To better understand why,
let us consider gain time traces at high Gtgt shown in Figure 5.13 (right). Onecan find that most of the time, the PSN emits spike trains, and its gain rarely
does a random walk. Therefore, noise has little impact on PSN spiking, which
reduces its stochasticity. Therefore, Gtgt ≥ −0.07 should be avoided.

A new set of data points is generated, and the following steps are per-
formed:
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Figure 5.13: Left: sigmoid fit of a provisional PSN activation curve. A dottedline shows Gtgt,0. Poor fit quality suggests that a more careful approach isrequired. Right: gain time trace with Gtgt ≈ −0.07 shown as a dashed line.

• Again, limit data points to fit. Points with too small Gtgt lead to rare
spiking, and a long simulation is required to obtain a good sample size.
For points with too high Gtgt, we may still have a stochasticity problem.
Luckily, they can be omitted since there is no need for a wide range of
Gtgt, as we will sample from BMs with bk ∈ [−0.6, 0.6] [219]. However,
due to coupling to other neurons, uG may leave the [−0.6, 0.6] interval,
so we anticipate bk ∈ [−1.2, 1.2] shown in Figure 5.14.

• Optimize the duration a PSN is considered active (τon) instead of choos-ing the minimum ISI (see Figure 5.12). A higher value (820 → 1000, i.e.
5 ns) was found to improve fitting.

These steps lead to a much better fit shown in Figure 5.14.
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Figure 5.14: Sigmoid fit of an improved photonic spiking neuron activationcurve inside the shaded region. A dotted line shows Gtgt,0. Here BM is Boltz-mann machine.
To conclude, a target gain is well-suited to be a ‘membrane potential’ of a

PSN. Therefore, a PSN can be used for sampling of BMs.
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5.3.3 . Refractory mechanism
As shown in Figure 5.11, after a spike is emitted, gain significantly drops,

and a PSN is therefore unlikely to emit again if exposed to a new excitation
soon after. In Figure 5.15 (left), we reduced pumping below the self-spiking
threshold and then injected a single strong enough excitation pulse into the
PSN such that it is guaranteed to induce a spike in a steady state. Then, the
same excitation is sent again after some delay. Indeed, no spike was emitted
again within a certain window of delay between the first and the second exci-
tation pulses. There are two problems with this result:
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Figure 5.15: Probability of second spike emission w.r.t. delay between the firstand the second excitations. The legend shows the power of the second excita-tion relative to the strength of the first. Right: examples of refractory functionsof absolute and relative refractorymechanisms. Generally speaking, the curveof a relative mechanism can have an arbitrary shape.

• there is an interval of time when a second spike can be emitted with
some probability,

• if the second excitation is stronger, a second spike can be emitted ear-
lier.

The first problem is a case of the relative refractory mechanism as op-
posed to the absolute refractory mechanism used by ACSNs. This mechanism
can be described by a refractory function g(t) such that pspike(t) → g(t)pspike(t)and 0 ≤ g(t) ≤ 1 [218], an example of which is shown in Figure 5.15 (right).

Theoretically, correct BM sampling with ACSNs was rigorously proven for
the absolute refractorymechanism [218] but, to the best ofmy knowledge, not
the relative. Luckily, simulations show that, when handled properly, the rela-
tive refractory mechanism only slightly reduces the sampling accuracy [218]
(see Figure 5.17).

The second problem is solved togetherwith the first one the followingway.
As handling of the relative refractory mechanism is rather complicated [218],
we will try to treat a PSN as if it had the absolute refractory mechanism. We
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assume that the level of excitation is small enough not tomodify the dynamics
of gain recovery and, therefore, the probability of emitting a spike. This way,
the refractory period will be primarily defined by static PSN parameters and
bias. In the next section we find it together with Gtgt,0 and α.

5.4 . Network of spiking nanolasers

In order to couple PSNs, we assume incoherent coupling via a balanced
photodetector as was proposed in [212]. A spike is split in two by a controlled
splitter and then sent to a pair of photodiodes, as was shown in Figure 5.2 (top-
right). This way, by tuning the splitting ratio, the optical spike is converted into
signed electrical current∼ wP , wherew is a weight due to a controlled splitter.
Then, this current is passed to the second PSN, which increases or decreases
its charge carrier density.

5.4.1 . Postsynaptic potential
The shape of the D(t) curve after receiving a spike is the postsynaptic

potential (PSP). In ACSNs, the PSP is zk(t); by definition, it has a rectangularshape, whereas in PSNs, it does not.
Photodiodes have a finite bandwidth, and the sharp spike can be fil-

tered to become a smooth electrical current3. The induced electrical current
changes the charge carrier density inside a PSN, which then attenuates ac-
cording to γg and related nonlinearities, resulting in further filtering.Biological neurons also have a non-rectangular PSP. A release of neu-
rotransmitters and their diffusion towards postsynaptic terminals happens
quickly, but their removal from postsynaptic terminals may happen on a wide
range of timescales [215]. A good kernel for such processes is a difference-of-
exponentials

PSP ∼ H(t)

[
exp

(
− t

τrise

)
− exp

(
− t

τfall

)]
, (5.28)

its simplified version that assumes equality of both timescales – the alpha-
kernel

PSP ∼ H(t)t exp

(
− t

τsyn

)
. (5.29)

If neurotransmitters diffuse much faster, one can consider a simple exponen-
tial kernel

PSP ∼ H(t) exp

(
− t

τsyn

)
. (5.30)

All three are shown in Figure 5.16, left.
3Although the photodiode bandwidth is assumed to be high enough
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A non-rectangular PSP negatively impacts the accuracy of BM sampling
(see Figure 5.17). Moreover, there is no definite rule for choosing their time-
scale. The general recommendation is that it is comparable to τon, thoughother times could still lead to a good result [218]. In order to control a PSN’s
PSP timescale, we add a variable U with a timescale τU . In that case, Eq. (5.18)needs to be updated:

dD

dt
=

U
τU

− γg(D + 1)− ηgDP + FN,g,

dU
dt

= − U
τU

+ I +
dI
dP

∑
i∈other PSNs

wiPi,
(5.31)

where dI/dP is similar to a photodiode responsitivity that incorporates pho-
todiode parameters, the photon energy, among others and wi is a tunable
connection strength to an i-th PSN. As a result, upon a reception of a spike, a
linear increase (or decrease) of gain is seen, followed by an exponential return
to normal (Figure 5.16, right) reminiscent of the alpha-kernel.
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Figure 5.16: Left: various postsynaptic potential models used in literature nor-malized by the area under the curve. Right: photonic spiking neuron gain uponreceiving a spike from another such neuron. Here, for clarity, the second neu-ron has I = 7.1, which is relatively far below the self-spiking threshold so thatit can endure stronger excitations without emitting a spike. The spike’s impacton gain is weaker in actual computations.

5.4.2 . Weight translation rule
The PSP timescale τU and translation rule between BM and PSN weights

must be defined to determine PSN coupling.
Following [219], a linear mapping between BM and PSN weights is as-

sumed. However, we need to clarify whether that leads to proper statistics.
Consider a BM with five neurons with random biases b and weights Ŵ . We
will scale its weights by a multiplier ξBM, which changes ⟨zBM

i ⟩, i.e. the proba-
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bility of each BM neuron being active. By sweeping ξBM, each neuron gets a
⟨zBM

i ⟩(ξBM) curve as a result.
The same is done for a network of 5 PSNs. Biases b are translated into

target gain according to the previous section; weights are chosen as ξPSNŴ ,
and ξPSN is swept. This results in ⟨zPSNi ⟩(ξPSN) curves for each i-th PSN.

If BM neurons and PSNs are stochastically similar, for every i-th neuron
⟨zBM

i ⟩(ξBM) and ⟨zPSNi ⟩(ξPSN) should have a similar shape.
As for the PSP timescale τU , as mentioned before, there is no general rule

to determine its precise value. We then proceed to sweep τU and check the
statistics of PSNs according to the previous paragraph. The result is shown in
Figure 5.18. It was found that there is little difference past τU > 0.2τon except atstrong weights. We chose τU = 0.4τon as it behaves well even in those regions.
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Figure 5.18: Behaviour of photonic spiking neurons (dots) and Boltzmann Ma-chine neurons (lines) w.r.t. global scaling of their connection weights for vari-ous τU/τon, from left to right: 0.2, 0.4, 0.8 and 1.6. Corresponding neurons fromeach system are shown with a unique color.
Now, we can find a weight proportionality coefficient. Consider only two

BM neurons connected unidirectionally. The first neuron has a bias of 1 and
acts as an excitation for the second neuron. The connection strength is swept
in the [−1.2, 1.2] interval, and the average activation of the second neuron is
tracked. Such sweep interval is chosen following [219] we sampling from BMs
withWij ∈ [−1.2, 1.2]was performed. As a result, two curves, ⟨zBM

i ⟩(ξBM) and
⟨zPSNi ⟩(ξPSN), are obtained. Finally, we introduce a proportionality coefficient
ζ such that

∀i ⟨zBM
i ⟩(ξBM) ≈ ⟨zPSNi ⟩(ζξPSN), (5.32)

which is then used as a weight transfer coefficient. The fitting result is shown
in Figure 5.19.
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Figure 5.19: Comparing a Boltzmann Machine (BM) neuron and photonic spik-ing neuron (PSN) behaviour w.r.t. weight scaling. Here, PSNweights are scaledto BM weights according to Eq. (5.32).

5.5 . Photonic sampling

In this section, we perform sampling fromaBMusing our network of PSNs.
We generate two random BMs with five neurons with moderate weights

Wij ∼ 1.2(B(0.5, 0.5)− 0.5) (5.33)
and large weights

Wij ∼ 2.4(B(0.5, 0.5)− 0.5). (5.34)
where B(α, β) is the Beta distribution shown in Figure 5.20. In both cases, bi-
ases are chosen according to

bi ∼ 1.2(B(0.5, 0.5)− 0.5). (5.35)
Then, these weights and biases are transferred into PSN parameters accord-
ing to the previously established rules. After integrating the nonlinear equa-
tions of PSNs – Eq. (5.18) with corrections by Eq. (5.31) – their spikes are sam-
pled according to Figure 5.5, and the sampled distribution is computed by

p(zk) = N(zk)/
∑
z

N(z), (5.36)
whereN(z) is the number of collected samples corresponding to z. The com-
parison between true and sampled distributions is given in Figure 5.21. A
Kullback-Leibler divergence of 2·10-3 for moderate and 5·10-3 for large weights
is achieved, which is in line with Figure 5.17 and Figure 5.6. Here, 15·103 sam-
ples were collected, which took 15·106 in normalized time or 75 µs in physical
device units, which corresponds to 200million samples per second or 0.2 GHz,
although after 3·103 samples, the accuracy did not improve much.
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Figure 5.20: Probability density function of the Beta-distribution B(0.5, 0.5).
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Figure 5.21: Sampling of a Boltzmann Machine with 5 neurons with a networkof 5 photonic spiking neurons. Here bi ∼ 1.2[(0.5, 0.5) − 0.5]. Left column:
Wij ∼ 1.2[(0.5, 0.5)− 0.5]. Right column:Wij ∼ 2.4[(0.5, 0.5)− 0.5]. Top: visualcomparison between sampled and true probability distributions. Here circlecolumns represent z: black dots correspond to zk = 1 and white otherwise.Bottom: sampling accuracy improvement with more samples collected.
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5.6 . Conclusion

In this chapter, we have implemented a network of newly developed cou-
pled spiking nanolasers and demonstrated that it is capable of approximating
a Boltzmann machine. In order to achieve such a result, several conditions
must be met. First, the activation function of a PSN needs to closely approx-
imate a sigmoid, which requires a correct choice of an allowed injection cur-
rent interval and an optimization of the time a PSN is considered active af-
ter having emitted a spike (τon). Second, the relative refractory mechanism
must be considered by limiting injection current and PSN coupling strength.
Then, weights of a BMcanbe linearlymapped to connection strength between
PSNs and their bias to target gain, which, in turn, is almost linearly mapped
to injection current. Finally, a network of PSNs can sample from a BM at high
speed, provided the BM’s parameters are limited within a specific interval sim-
ilar to [219].

Such a device would be suited for power- and time-critical applications,
for example, in ‘edge computing’ [230]. We also conjecture that such a system
could be used to recover data in optical communication channels due to the
properties outlined in Section 5.1 and header recognition.
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Conclusions and perspectives

Neural networks have found their place in numerous fields. The newly pro-
posed applications, such as those proposed in Section 1, call for larger and
faster neural networks, and digital electronics struggle to meet the demand
due to intrinsic limitations of their architecture and the digital platform. As
a result, all-optical neural networks are being pursued to utilize wide optical
bandwidth and improve interconnectivity. In particular, the integrated pho-
tonic platform is attractive for such neural networks due to its compact device
size and accessible nonlinearities. A large number of such implementations
have been proposed; their overview is given in Section 2. However, there is
yet to be a clear way to scale up neural networks on the integrated photonic
platform.

This thesis proposes two ways towards large-scale integrated photonic
neural networks by demonstrating that the evanescent coupling is a viable
method of coupling nonlinear cavities to perform RC and that spiking nanola-
sers based on a two-section design with a saturable absorber could be used
to make stochastic neural networks.

In Section 3, we propose a new approach to all-optical integrated RC us-
ing nonlinear resonators through evanescent coupling, which opens an op-
portunity for very dense neuron positioning. This concept raises their surface
density, depending on technology, up to thousands of neurons per square
millimeter. We developed a model based on the coupled mode theory and
implemented it in the Julia programming language. We analyse the RC in a
general manner, employing dimensionality and consistency as performance
metrics. We found that the spectral properties of an RC are a major deciding
factor in dimensionality, and we linked it to basic RC parameters.

We considered three nonlinearities common in the integrated photonic
platform: TPA, FCD and the Kerr effect. To analyse their impact, we use consis-
tency as ametric alongside dimensionality. We found that TPA reduces dimen-
sionality while retaining consistency, whereas FCD and the Kerr effect have
the opposite effect. Therefore, for those two the common RC advice applies –
that the input power should be optimized, whereas for TPA, such fine-tuning
is not required.

We investigated our RC’s scalability and found that as long as the RC does
not extend too far from the input waveguide, the power necessary to induce
a nonlinear response in the system scales almost linearly with the number of
cavities. Overall, it has been demonstrated this system could be configured
to optimize its general computational properties: dimensionality and consis-
tency.

In Section 4.1, we use the proposed RC to predict the solution of the
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Mackey-Glass equation, which we use as a model of a generic physical sys-
tem. We demonstrated that the evanescent coupling and nonlinearities by
themselves are not sufficient to solve this task. However, together, they boost
prediction accuracy comparable to hardware implementations found in the
literature, even though the performance of an abstract RC, echo state net-
work, shows better results.

In Section 4.2, we tackle data recovery from a nonlinear fiber. This is a
very interesting application for such a system since the advantages of the in-
tegrated photonic platform, our goals and requirements of this task align per-
fectly. We demonstrated that such RC could recover an OOK-encoded signal
travelling through a 150 km metro link and a 16-QAM signal through a high-
speed short link. Then, we artificially increased nonlinear distortion in a fiber
and noted a visible constellation improvement after being processed by our
RC in a nonlinear regime, again demonstrating that intrinsic nonlinearities of
a semiconductor platform are sufficient to solve a task and nonlinearity of
detectors is not required. In this sense, the studied system is all-optical and
autonomous.

Section 5 takes a direction towards stochastic computing in photonics. We
considered a photonic spiking neuron (PSN) composed of a two-section PhC
nanolaser capable of emitting sharp optical spikes under strong enough injec-
tion. Such a system is interesting for a few reasons

• spiking is achieved autonomously,
• lasers can be easily coupled to a waveguide, which allows for network-
ing, and integrated in a fairly large number on a photonic chip,

• in a suitable range of injection strength, ISI is random due to the pres-
ence of noise, and PSNs are therefore stochastic,

• a typical interspike interval is a few nanoseconds, which allows for con-
siderably faster sampling compared to digital hardware.

All these properties have not yet been demonstrated at the same time [214].
We found that such a laser can be applied for sampling from BMs. We pro-
posed a framework that maps BM parameters to PSN ones for high-speed
sampling.

Future work on a proposed RC could overcome some of its limitations.
For example, dimensionality limited by resonator losses could be overcome
by using multiple coupled RCs that receive delayed versions of an input. Al-
ternatively, several RCs could be cascaded to create a deep RC [231] or a sim-
ilar architecture. Another approach could be to consider embedding active
structures inside the RC to reduce losses. In this work, we assumed only a sin-
gle mode per resonator, but using multiple resonator modes could improve
the compute density. We recently received fabricated chips with the RC de-
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sign outlined in Section 3.10. We plan their characterization and application
for computing.

Futurework on PSNsmay include amore accurate discretemodel of noise.
Moreover, a successful sampling from a BM could be expanded upon by im-
plementing stochastic inference and sampling from arbitrary probability dis-
tributions.
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Résumé en français

Un réseau neuronal est une approche de l’informatique inspirée par le cer-
veau permettant de résoudre des problèmes difficilement abordables avec
les méthodes algorithmiques traditionnelles. En conséquence, les réseaux
neuronaux ont trouvé leur place dans de nombreuses applications. Certaines
de ces tâches nécessitent non seulement une grande puissance de calcul,
mais exigent aussi une latence faible, ce qui a inspiré la recherche sur les
réseaux neuronaux dans le domaine optique.

Ce travail porte sur un « reservoir computer » constitué de micro résona-
teurs optiques couplés demanière évanescente. Un « reservoir computer » ne
requiert pas le contrôle de la force des connexions entre les « neurones » ;
cela rend possible l’utilisation d’un arrangement extrêmement compact d’ élé-
ments optiques intégrés, sans que les tolérances de fabrication posent de pro-
blème. Nousmontrons que cette architecture est prometteuse dans certaines
applications, par exemple le traitement en temps réel de signaux optiques co-
hérents à grande vitesse.

Dans cette architecture, contrairement à la plupart des études de la litté-
rature, les lignes à retard optiques sont supprimées, ce qui réduit considéra-
blement l’encombrement de la puce. Un cadre mathématique est établi pour
sa simulation et l’évaluation de ses propriétés intrinsèques.

Le reservoir est étudié d’une manière générale autant que possible. Pour
ce faire, on utilise la « dimensionnalité » et la « cohérence » en tant que me-
sure de la performance indépendante du type de tâche de calcul. Nous avons
montré que la dimensionnalité est fortement liée aux états propres d’un « re-
servoir », c’est à dire des resonances collectives de l’ensemble des cavités
aussi appelés « supermodes ». Cela permet de mettre en relation directe les
paramètres les plus importants, à savoir la force de couplage évanescent et
le facteur de qualité (Q) des résonateurs. La cohérence devient importante
quand les effets non linéaires cessent d’être négligeables. Nous avons étu-
dié plusieurs effets courants sur la photonique intégrée : absorption à deux
photons, dispersion d’électrons libre et l’effet Kerr. Nous avons constaté que
même si les trois peuvent contribuer positivement aux performances infor-
matiques, le premier réduit la dimensionnalité mais maintient la cohérence
du réservoir tandis que deux autres ont un effet opposé. Cette analyse n’as-
sume aucune géométrie de résonateur, ni matériel, par suite elle est appli-
cable dans de nombreux cas. Enfin, nous avons introduit une procédure pour
définir demanière quantitative le niveau de puissance du signal optique à par-
tir duquel les effets non linéaires entrent en jeu. Afin de donner davantage de
généralité à nos conclusions, la réponse du réservoir est systématiquement
référencée à ce niveau de puissance.
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Sa capacité de calcul est démontrée par la prédiction d’un système phy-
sique en forme de tâche de prédiction Mackey-Glass, une référence de réser-
voir commun, et la récupération de données à partir d’une fibre optique à une
vitesse de plusieurs dizaines de gigahertz, une tâche très pertinente pour les
télécommunications. Dans les deux cas, nous avons explicitement démontré
l’impact positif de la non-linéarité intrinsèque sur la performance de calcul.

En outre, nous démontrons un prototype fabriqué sur une plate-forme
de silicium sur isolant avec des micro-anneaux et des cristaux photoniques
comme résonateurs. Des travaux expérimentaux sur ce prototype sont pré-
vus dans l’avenir proche. Une piste pour le développement de réseaux photo-
niques intégrés à grande échelle est ainsi proposée.

Ce travail étudie également la possibilité d’utiliser les nanolasers exci-
tables en tant que « neurones ». Par rapport au modèle très abstrait de « per-
ceptron », à la base des réseaux de neurones, ce type de réseaux est un peu
plus proche du cerveau, car l’« information » échangée est représentée par
des signaux dépendant du temps, plus précisément par des impulsions. De
ce fait, ces « neurones » sont aussi plus difficiles à utiliser que les réseaux de
neurones « conventionnels ». D’autre part, ce type de neurone semble plus
idoine à des tâches du type « event-driven computing », c’est-à-dire le calcul
initié par un stimulus externe ; dans le scenario du traitement local des si-
gnaux générés par les capteurs, cette approche serait en principe beaucoup
plus efficace du point de vue de l’utilisation de l’énergie.

Nous avons pris en considération un réseau de « neurones » constitué de
nanolasers excitables. Ces dispositifs ont été démontrés récemment [214] en
exploitant les propriétés des cristaux photoniques. Ces lasers sont compacts
et permettent un couplage plus facile à d’autres lasers grâce à sonmode réso-
nateur latéral. En conséquence, ces lasers ont un potentiel d’évolutivité. Nous
étudions numériquement ses propriétés stochastiques et l’effet du couplage
entre les neurones. Nous avons trouvé qu’un tel réseau peut imiter avec une
haute précision une machine de Boltzmann. Parmi les applications possibles
de ce type de « machine », on peut citer l’inférence stochastique et l’échan-
tillonnage de distributions de probabilités arbitraires.

L’échelle de temps caractéristique d’un tel réseau est fixée par la durée
de vie des électrons, de l’ordre d’une nanoseconde dans le cas de la tech-
nologie utilisée ici. De ce fait, un réseau de ces « neurones » serait capable
de traiter des millions d’échantillons par seconde en temps réel, d’après nos
simulations. En conclusion, un réseau neuronal à base de nanolasers exci-
tables serait intéressant pour les applications où la latence et la consomma-
tion d’énergie seraient critiques.
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A - Side-coupling cavity and waveguide

If a cavity is weakly coupled to a waveguide (see Figure A.1), the CMT as-
sumes a linear coupling:

da

dt
=

(
iω − γe

2

)
a+ κ1s1+ + κ2s2+. (A.1)

This section aims to find γe and κ1,2 from the first principles. We assume that
1. the system is in a quasi-steady state, i.e. changes are slow compared to

1/ω,
2. the EM wave in the waveguide is close to a plane wave,
3. the EM wave is monochromatic and is at resonance with the resonator,

i.e. Ω = ω.
Consider an infinite waveguide in an infinite homogenous media. Inside it

a monochromatic wave with an amplitude of unity propagates from z = −∞
to z = +∞:

E0 = e+(x, y) exp(−iβz + iΩt)

H0 = h+(x, y) exp(−iβz + iΩt)
(A.2)

where e+ and e+ are wave profiles and β is a propagation constant.
Now we add a resonator with an unperturbed mode er(x, y, z) (see Fig-ure A.1). The permittivity changes ε(r) → ε(r)+∆ε(r), where∆ε(r) = εr(r)−

ε(r) in a resonator. If this perturbation is weak, the EM field inside the waveg-
uide changes linearly:

E =
[
b+(z)e+(x, y) + b−(z)e−(x, y) + aer(x, y, z)

]
exp(iΩt)

H =
[
b+(z)h+(x, y) + b−(z)h−(x, y) + ahr(x, y, z)

]
exp(iΩt)

(A.3)

where e− and h− represent wave profile of a wave propagating in the oppo-
site direction from z = +∞ to z = −∞ due to reflection induced by the res-
onator and b+, b− and a are EM field amplitudes in the waveguide and the res-
onator. For brevity, coordinates of modes and amplitudes are omitted later.
A mode amplitude reduces exponentially outside a resonator; therefore, we
can assume that each cavity-waveguide interaction happens in a restricted re-
gion between two reference planes separated by d (dashed lines in Figure A.1,
left) [144].
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Figure A.1:Waveguide-resonator side-coupling from twoperspectives. Verticaldotted lines in left figure show reference planes containing the waveguide-cavity interaction region.

A.1 . Change of amplitude in space

Consider the Maxwell equations for the EM wave guided by the waveg-
uide:

∇×E0 = −µ0
∂H0

∂t
= −iωµ0H0,

∇×H0 = ε0ε
∂E0

∂t
= iωε0εE0,

∇×E = −iωµ0H,

∇×H = iωε0(ε+∆ε)E,

(A.4)

where ε0 and µ0 are the permittivity and the permeability of free space. Since
the system is in a steady state, the derivative of a is negligibly small. Now
consider an expression:

∇(H ×E∗
0 +H∗

0 ×E) =

= ∇
[
(b+h+ + b−h− + ahr)× e∗+ exp(iβz)

]
+

+∇
[
h∗
+ exp(iβz)× (b+e+ + b−e− + aer)

]
,

(A.5)

which can also be rewritten differently:
∇(H ×E∗

0 +H∗
0 ×E) =

= (∇×H)E∗
0 +H(∇×E∗

0) + (∇×H∗
0)E +H∗

0(∇×E) =

= iω [ε0(ε+∆ε)EE∗
0 + µ0H

∗
0H − ε0εE

∗
0E − µ0HH∗

0] =

= iωε0 exp(iβz)∆εEE∗
0 =

= iωε0 exp(iβz)∆ε
[
b+e+ + b−e− + aer

]
e∗+ =

= iωε0 exp(iβz)∆ε
(
b+|e+|2 + b−e−e∗+ + aere

∗
+

)
(A.6)
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We integrate both sides over the XY plane. For the left-hand side:∫∫
XY

∇(H ×E∗
0 +H∗

0 ×E)dxdy =

=

∫∫
XY

∇xy(H ×E∗
0 +H∗

0 ×E)dxdy+

+

∫∫
XY

∂

∂z
(H ×E∗

0 +H∗
0 ×E)ẑdxdy (A.7)

Here ∇xy = ∂xx̂ + ∂yŷ and x̂, ŷ, ẑ are unit vectors along x-, y- and z-axes.
Because of the Gauss-Ostrogradsky theorem:∫∫

XY
∇xy(H ×E∗

0 +H∗
0 ×E)dxdy =

∮
(H ×E∗

0 +H∗
0 ×E)dl, (A.8)

as the integration contour length scales (x2 + y2)1/2, whereas the EM field
exponentially decays outside the waveguide and the resonator. Therefore, at
infinity, the contour integral is zero. We expand the second term of Eq. (A.7)
to get

=
∂

∂z
exp(iβz)

∫∫
XY

[
b+(h+ × e∗+ + h∗

+ × e+)+

+ b−(h− × e∗+ + h∗
+ × e−) + a(hr × e∗+ + h∗

+ × er)
]
ẑdxdy. (A.9)

Here, the second and third terms are zero because of waveguide and res-
onator mode orthogonality [137, p.190]

(βi − βj)

∫∫
XY

(ei × h∗
j + e∗j × hi)ẑdxdy = 0. (A.10)

Then Eq. (A.9) is simply
=

∂

∂z
b+ exp(iβz)

∫∫
XY

(h+ × e∗+ + h∗
+ × e+)ẑdxdy. (A.11)

If waveguide mode profiles are normalized to unit power
1

4

∫∫
XY

(e+ × h∗
+ + e∗+ × h+)dxdy = 1, (A.12)

then Eq. (A.11) gives us
= 4

∂b+
∂z

exp(iβz) + 4iβb+ exp(iβz), (A.13)
which, combined with the right-hand side of Eq. (A.6), becomes

= 4
∂b+
∂z

exp(iβz) + 4iβb+ exp(iβz) =

= iωε0 exp(iβz)

∫∫
XY

∆ε(b+|e+|2 + b−e−e∗+ + aere
∗
+)dxdy.

(A.14)
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Splitting the integral, we get
∂

∂z
b+ = −iβb+ + i

ωε0
4

[
b+

∫∫
XY

∆ε|e+|2dxdy+

+ b−

∫∫
XY

∆εe−e∗+dxdy + a

∫∫
XY

∆εere
∗
+dxdy

]
.

(A.15)

Here, three integrals correspond to a change in the propagation constant, a
coupling between waveguide modes and the waveguide-cavity coupling. We
are interested in the last one.

A.2 . Forward-propagating mode

According to the CMT assumption, wave amplitude changes linearly ac-
cording to

∂

∂z
b+ = −iβb+ + κ+a (A.16)

we get
κ+ = i

ωε0
4

∫∫
XY

∆εere
∗
+dxdy. (A.17)

If we change the direction of the unperturbed wave and follow the same pro-
cedure, we get

κ− = −i
ωε0
4

∫∫
XY

∆εere
∗
−dxdy. (A.18)

FollowingManolatu’s approach, we integrate Eq. (A.16) between the reference
planes at z1 and z2. First, we make b+ into a plane wave:

∂

∂z
b+ = −iβb+ + κ+a ⇔ ∂

∂z
b+ exp(iβz) = κ+a exp(iβz). (A.19)

Then, we start the integration:
z2∫

z1

∂

∂z
b+ exp(iβz)dz = i

ωε0
4

a

z2∫
z1

exp(iβz)dz

∫∫
XY

∆εere
∗
+dxdy. (A.20)

The left-hand side is easily integrated
b+(z2) exp(iβz2)− b+(z1) exp(iβz1) =

= i
ωε0
4

a

z2∫
z1

exp(iβz)dz

∫∫
XY

∆εere
∗
+dxdy. (A.21)
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We factor out b+(z2) to derive the transfer function:
b+(z2) = b+(z1) exp[−iβ(z2 − z1)]+

+ i
ωε0
4

a

z2∫
z1

exp[iβ(z − z2)]dz

∫∫
XY

∆εere
∗
+dxdy (A.22)

Since waveguide mode profiles are normalized to unit power, b+(z1) = s1+and b+(z2) = s2−, then:
s2− = exp[−iβ(z2 − z1)]×

×
[
s1+ + i

ωε0
4

a

z2∫
z1

exp[iβ(z − z1)]dz

∫∫
XY

∆εere
∗
+dxdy

]
. (A.23)

Here, the terms in red differ from the ones in [144], but we continue nonethe-
less. We define

I+ = i
ωε0
4

z2∫
z1

exp[iβ(z − z1)]dz

∫∫
XY

∆εere
∗
+dxdy, (A.24)

which describes the coupling strength of the waveguide to the resonator.
Then

s2− = exp[−iβ(z2 − z1)]
[
s1+ + aI+

]
. (A.25)

A.3 . Backward-propagating mode

We do the same for the backpropagating wave:
∂

∂z
b− exp(−iβz) = κ−a exp(−iβz), (A.26)

z2∫
z1

∂

∂z
b− exp(−iβz)dz =

= −i
ωε0
4

a

z2∫
z1

exp(−iβz)dz

∫∫
XY

∆εere
∗
−dxdy, (A.27)

b−(z2) exp(−iβz2)− b−(z1) exp(−iβz1)

= −i
ωε0
4

a

z2∫
z1

exp(−iβz)dz

∫∫
XY

∆εere
∗
−dxdy, (A.28)
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b−(z1) = b−(z2) exp[−iβ(z2 − z1)]

+ i
ωε0
4

a

z2∫
z1

exp[−iβ(z − z1)]dz

∫∫
XY

∆εere
∗
−dxdy. (A.29)

Considering that b−(z1) = s1− and b−(z2) = s2+:
s1− = exp[−iβ(z2 − z1)]×

×
[
s2+ + i

ωε0
4

a

z2∫
z1

exp[−iβ(z − z2)]dz

∫∫
XY

∆εere
∗
−dxdy

]
. (A.30)

Again, the terms in red differ from [144]. Similarly, we define

I− = i
ωε0
4

a

z2∫
z1

exp[−iβ(z − z2)]dz

∫∫
XY

∆εere
∗
−dxdy. (A.31)

Finally, we arrive at a similar result
s1− = exp[−iβ(z2 − z1)]

[
s2+ + aI−

]
. (A.32)

A.4 . Energy conservation

We found how the EM field in the waveguide changes due to a resonator.
We can find the resonator mode behaviour by using the energy conservation
law.

The flow of energy for a lossless cavity coupled to a waveguide:
d|a|2

dt
= |s1+|2 + |s2+|2 − |s1−|2 − |s2−|2. (A.33)

From Eq. (A.25) and Eq. (A.32) we can write
s∗2− = exp[iβ(z2 − z1)]

[
s∗1+ + a∗I∗+

]
,

s∗1− = exp[iβ(z2 − z1)]
[
s∗2+ + a∗I∗−

]
,

(A.34)

which leads to
|s2−|2 = |s1+|2 + |aI+|2 + s1+a

∗I∗+ + s∗1+aI+,

|s1−|2 = |s2+|2 + |aI−|2 + s2+a
∗I∗− + s∗2+aI−.

(A.35)
Then Eq. (A.33) transforms into
d|a|2

dt
= −(|I+|2 + |I−|2)|a|2 − s1+a

∗I∗+ − s∗1+aI+ − s2+a
∗I∗− − s∗2+aI−. (A.36)
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On the other hand, the CMT assumes a linear coupling to incoming EM
fields:

da

dt
=

(
iω − γe

2

)
a+ κ1s1+ + κ2s2+, (A.37)

where γe is loss into both directions of the waveguide. Then, the energy in the
cavity follows the following equation

d|a|2

dt
= −γe|a|2 + κ1s1+a

∗ + κ∗1s
∗
1+a+ κ2s2+a

∗ + κ∗2s
∗
2+a. (A.38)

Both Eq. (A.36) and Eq. (A.38) must hold; therefore
γe = |I+|2 + |I−|2 = |κ1|2 + |κ2|2, (A.39)

κ1 = −I∗+ = i
ωε0
4

z2∫
z1

exp[−iβ(z − z1)]dz

∫∫
XY

∆εe∗re+dxdy, (A.40)

κ2 = −I∗− = i
ωε0
4

z2∫
z1

exp[iβ(z − z2)]dz

∫∫
XY

∆εe∗re−dxdy, (A.41)
With that, we can write:

s2− = exp[−iβ(z2 − z1)]
[
s1+ − κ∗1a

]
= exp(−iβd)

[
s1+ − κ∗1a

]
,

s1− = exp[−iβ(z2 − z1)]
[
s2+ − κ∗2a

]
= exp(−iβd)

[
s2+ − κ∗2a

]
,

(A.42)

Despite the differences in previous sections, these results match [144] –
the paper probably has a typo.

Losses in the n-th direction of the waveguide can be defined as γen such
that γen = |κn|2 or formally

κn =
√
γen exp(iθn). (A.43)

Then, for both directions
γe = γe1 + γe2 (A.44)

Assuming the symmetry of the waveguide-resonator system, coupling in both
directions is equal.
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B - Waveguide coupling matrices

In Section A, we found how to describe waveguide-resonator interaction.
What happens whenwe addmore resonators alongside the first one, as in Fig-
ure B.1)? Assume that cavities are separated enough so that there is a distance
L between areas defined by reference planes.

s1− s2+ s3− d s4+

s1+ an
s2− s3+

a
s4−

L

Figure B.1: Scheme of waveguide-cavity interaction. A rectangle with an repre-sents a row of n cavities coupled to the waveguide.
For a single cavity coupled to a waveguide [144]:

da

dt
= −

(
|κ1|2

2
+

|κ2|2

2

)
a+ κ1s1+ + κ2s2+, (B.1)

{
s1− = exp(−iβd)(s2+ − κ∗2a)

s2− = exp(−iβd)(s1+ − κ∗1a)
. (B.2)

Omitting waveguide-induced loss and generalizing for a row of n cavities cou-
pled to one waveguide

dan

dt
= M̂nan +Rn

1 s1+ +Rn
2 s2+, (B.3)

s1−

s2−

 =

 0 Tn
1

Tn
2 0

s1+

s2+

+

Qn
1

Qn
2

an, (B.4)

where M̂n,Rn
1 andRn

2 are assumed to be known. Adding a new cavity to the
row

da

dt
= κ1s3+ + κ2s4+, (B.5)

s3− = exp(−iβd)(s4+ − κ∗2a)

s4− = exp(−iβd)(s3+ − κ∗1a)

s3+ = exp(−iβL)s2−

s2+ = exp(−iβL)s3−

. (B.6)
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The goal is to find the matrix representation of a system with n + 1 cavities
based on a system with n cavities. We first eliminate the flux between the
cavities {

s2+ = exp(−iβL) exp(−iβd)(s4+ − κ∗2a)

s3+ = exp(−iβL)
(
Tn
2 s1+ +Qn

2an

) . (B.7)
Then, cavity dynamics can be rewritten using only new inputs s1+ and s4+:

dan

dt
=M̂nan +Rn

1 s1+ + exp(−iβL) exp(−iβd)Rn
2 s4+−

− exp(−iβL) exp(−iβd)Rn
2κ

∗
2a,

da

dt
=exp(−iβL)Tn

2 κ1s1+ + exp(−iβL)Qn
2κ1an + κ2s4+,

(B.8)

Consequently, the new output on the first port is
s1− = Tn

1 s2+ +Qn
1an =

= Tn
1 exp(−iβL) [exp(−iβd)(s4+ − κ∗2a)] +Qn

1an (B.9)
or, expanded
s1− = Tn

1 exp(−iβL) exp(−iβd)s4+ +Qn
1an−

− Tn
1 exp(−iβL) exp(−iβd)κ∗2a, (B.10)

while on the fourth
s4− = exp(−iβd)(exp(−iβL)s2− − κ∗1a) =

= exp(−iβd)
[
exp(−iβL)

(
Tn
2 s1+ +Qn

2an

)
− κ∗1a

]
, (B.11)

which, again, expands to
s4− = exp(−iβd) exp(−iβL)Tn

2 s1++

+ exp(−iβd) exp(−iβL)Qn
2an − exp(−iβd)κ∗1a. (B.12)

Therefore, the differential equation and the output matrices can be built in-
crementally:

d

dt

(
an

a

)
=

 M̂n − exp[−iβ(L+ d)]Rn
2κ

∗
2

exp(−iβL)Qn
2κ1 0

(
an

a

)
+

+

 Rn
1 exp[−iβ(L+ d)]Rn

2

exp(−iβL)Tn
2 κ1 κ2

s1+

s4+

 ,

(B.13)

146



s1−

s4−

 =

 0 exp[−iβ(L+ d)]Tn
1

exp[−iβ(L+ d)]Tn
2 0

s1+

s4+

+

+

 Qn
1 − exp[−iβ(L+ d)]Tn

1 κ
∗
2

exp[−iβ(L+ d)]Qn
2 − exp(−iβd)κ∗1

an

a

 ,

(B.14)

while matrices for a single cavity can be built from Section A.
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C - Simulation of optical signal propagation in
an optical fiber

C.1 . Split-step method

The split-step method is an approach to the numerical integration of par-
tial differential equations. The main idea is to split an equation into a lin-
ear and nonlinear parts and treat the former in the Fourier domain and the
latter in the time domain. We have a single first-order partial derivative in
space Eq. (4.6), so we can discretize the time domain and perform integration
steps in the space domain.

The motivation is that the linear part consists of derivatives that are com-
putationally unstable operations. However, in the Fourier domain, they be-
come an element-wise product of two vectors. Moreover, moving between
time- and Fourier domains is fast with the help of the Fast Fourier Transform
(FFT) algorithm, which has O(n log(n)) complexity in the worst-case scenario,
where n is the number of points on the time grid.

C.2 . Solver validation

In order to test solver correctness, we use it to replicate pulse propagation
from a paper by J.M Dudley et al. [232] shown in Figure C.2. High-power short-
length pulse dynamics are sensitive to a variety of effects, like high-order dis-
persion and other nonlinearities besides the Kerr effect; therefore, replication
of such result is a suitable validation method.

C.2.1 . Recomputing dispersion coefficients
There are several ways to describe dispersion. One way is through Taylor

coefficients of the group velocity dispersion (GVD) as was done in [232] (see
Figure C.1). Another way is to provide a dispersion parameter curveD(λ) [188],
which can be expanded into Taylor series. In this section, we connect these
approaches.

The equation for electric field time-domain envelope, omitting linear ab-
sorption and nonlinearity, is [232]

∂A

∂z
=

∑
k≥2

ik+1

k!
βk

∂kA

∂tk
(C.1)

We then apply an inverse Fourier transform over time
Ã(ω, z) = ifft[A(t, z)]. (C.2)
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Figure C.1: Group velocity dispersion parameters for two photonic crystalfibers and SMF-28 [232].
where ifft(x) is the inverse FFT. Due to how A(t, z) is defined, Ã(ω, z) is cen-
tered around the carrier frequency ω0. Therefore, ω here is, effectively, ∆ω.
Then

∂kA/∂tk → (−i∆ω)kÃ. (C.3)
and

∂Ã

∂z
=

∑
k≥2

ik+1

k!
βk(−i∆ω)kÃ = i

∑
k≥2

βk
k!

(∆ω)kÃ. (C.4)
So, the summation here is a part of a Taylor series for β(ω):

β(ω)− β0 − β1∆ω =
∑
k≥2

βk
k!

(∆ω)k. (C.5)
How do we find βk?Fiber manufacturers can provide the dispersion parameter

D(λ) = −2πcβ2(λ)/λ
2 (C.6)

for a range of wavelengths. Therefore, the dispersion of the group velocity
dispersion is

β2(λ) = −D(λ)λ2/2πc, (C.7)
where β2(λ) is a function, whereas β2 is a Fourier expansion term of β(ω)
around ω0 i.e. a constant – to prevent confusion for β2(...) we always write
parentheses. We could use it in Eq. (C.1); alternatively, we can also consider a
Taylor series of β2:

β(ω)− β0 − β1∆ω =
β2(ω)

2!
(∆ω)2 =

1

2!

∑
k=0

β
(k)
2

k!
(∆ω)k+2, (C.8)
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where β(k)
2 /k! coefficients can be found by using a numerical library for a func-

tion (
−D(λ)λ2/2πc

)
◦ λ(∆ω).

Here β(k)
2 are terms for β2(ω). Sometimes, in literature, βk coefficients are

given instead. They are related via
∑
k=2

βk
k!

(∆ω)k =
1

2!

∑
k=2

β
(k−2)
2

(k − 2)!
(∆ω)k ⇒ β2+k =

(2 + k)!

2(k)!
βk
2 . (C.9)

C.2.2 . Results
In Figure C.2, we reproduce [232, Figure 3], where a high-power pulse prop-

agates through a photonic crystal fiber. Our solver closely resembles these
results, which affirms the validity of our solver implementation.
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Figure C.2: Spectral and temporal evolution of a sech2 pulse at 10 kW peakpower and 50 fs FWHM during propagation through a photonic crystal fiber.The top row shows results in [232] and the bottom row shows our reproduc-tion.
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