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GENERAL INTRODUCTION

Context

Hospitals are under pressure from an increase in demand for inpatient care and high-
quality patient care. However, it is challenging to meet patients’ needs under limited
hospital resources [1]. Among the healthcare services, hospital admission is generally the
first step in receiving treatment, as emergency and surgical care is highly dependent on
bed availability [2]. One key issue is to optimize the use of bed resources as much as
possible, given that beds are a critical and limited resource in a hospital [3]. Following
admission, surgical procedures are the main way to treat patients with various diseases.
Efficient operating room (OR) scheduling is essential in a hospital since OR is the most
resource-intensive cost and productive unit generating more than 40% of total revenues
and expenses [4, 5]. Therefore, it is crucial to develop scheduling approaches that simul-
taneously improve OR efficiency and patient satisfaction. In this thesis, we focus on two
critical problems in healthcare management, including the patient admission scheduling
problem and the surgical case scheduling problem.

The patient admission scheduling (PAS) problem [6] consists of assigning patients to
beds in specific departments on each day of their hospitalization while satisfying a number
of hard constraints and as many soft constraints as possible. Over the past few years, this
problem has received increasing attention in the literature. The PAS problem studied in
the literature can be divided into static or dynamic versions. In the static PAS problem,
only elective patients are considered, and all patient admission and discharge requirements
are deterministic [7, 8, 9, 10, 11]. The dynamic PAS problem, also known as PASU (U for
uncertainty), extends the static PAS problem by considering several real-world features,
such as the presence of urgent and emergency patients whose arrival dates are uncertain,
the possibility of delayed admissions and the uncertainty of length of stay (LOS) [12].

The surgical case scheduling (SCS) problem [13], which involves assigning surgeries to
dates and ORs in a given time horizon, and determining the start time of each surgery,
while taking into account various constraints, such as stochastic surgery duration, resource
capacity, and other relevant factors. The SCS problem considers two types of surgeries:
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General Introduction

elective surgeries, which are planned in advance and can be scheduled in a flexible manner,
and emergency surgeries, which are unpredictable and need to be performed immediately.
The stochastic surgery duration and the requirement of having ORs immediately for the
treatment of unpredictable emergency surgeries, which are the main focus in the literature
as noted in [13, 14], make the SCS problem a real challenge. Moreover, the critical issue in
addressing the SCS problem is how to balance allocating OR resources between emergency
surgeries and elective surgeries.

Objectives

This thesis focuses on building mathematical optimization models and proposing so-
lution methods for the PAS problem and the SCS problem. The main objectives of this
thesis are as follows.

— Reducing the size of the classical integer programming models of the standard PAS
problem to improve the computational efficiency.

— Providing methodologies to help hospitals make better patient admissions and cope
with uncertainty in length of stay.

— Balancing allocating OR resources between emergency and elective surgeries by
integrated proactive and reactive strategies.

— Evaluating the performance of the proposed models and solution methods on bench-
mark instances in comparison with the state-of-the-art methods.

— Analyzing the ingredients of the proposed methods to get useful insights for elective
patient scheduling problems.

Contributions

The main contributions of this thesis are summarized as follows.

— For the standard PAS problem, we present a two-stage optimization approach to
solve the problem. Specifically, in the first stage, we propose two aggregated gender
policy constraints and one aggregated patient transfer constraint to reduce the size
of the classical integer programming model. Experimental results on the 13 bench-
mark instances in the literature indicate that our method can obtain new improved

10



General Introduction

solutions (new upper bounds) for 6 instances, including one proven optimal solution.
This work has been published in European Journal of Operational Research [7].

— We propose a new stochastic PAS (SPAS) problem and build two-stage stochastic
programming models, including a scenario-based model SPASSB and its equivalent
state-variable model SPASSV . Compared to the former, the latter model is signif-
icantly reduced and has a pseudo-polynomial number of variables and constraints.
To solve the state-variable model efficiently, we propose a hybrid sample average
approximation and state-variable (SAA-SV) approach. The SAA-SV method is ca-
pable of finding solutions with an average optimality gap of 1.73% for large instances
reaching 500 patients and 3.3 × 10150 scenarios in 1 hour. This work has been sub-
mitted to European Journal of Operational Research.

— We study a surgical case scheduling problem in flexible operating rooms under uncer-
tainty (SSFU). To solve the problem, we apply the proactive/reactive strategy, which
decomposes the problem into two sub-problems: a proactive SSFU problem and a
reactive SSFU problem. We build a two-stage stochastic programming model and
a mixed integer programming model. Moreover, we implement three mechanisms

— reserving capacity, Break-In-Moment, and buffer — to improve the robustness
of the plan. Extensive experiments show the effectiveness of the proposed proac-
tive/reactive strategy. This work has been submitted to Production and Operations
Management.

— We propose an innovative three-phase simulation-optimization (TPSO) approach
to solve the proactive SSFU problem to obtain a high-quality solution, where the
result of dynamic rescheduling in the planning horizon is considered. Specifically,
the problem is further decomposed into a surgery assignment problem and multiple
surgery sequencing problems. Moreover, a discrete-event simulation algorithm is
proposed to evaluate the quality of the solution. We also propose a set of feedback
constraints to guide the search process. Extensive experiments show the effectiveness
of the proposed TPSO approach. One of the related works has been submitted to
Production and Operations Management, and one has been accepted to Journal of
Systems Engineering.

Organization

The thesis is organized in the following way.

11



General Introduction

— In the first chapter, we introduce the healthcare scheduling problems first. Then we
present the related works on the patient scheduling problem, including the static
variants and the dynamic variants. Furthermore, we review the literature based on
the proactive/reactive/integrated proactive and reactive strategies adopted to solve
the surgical case scheduling problem. Finally, the related approaches are introduced.

— In the second chapter, we present a study on the standard PAS problem. The two-
stage optimization approach, integer programming models, and aggregation con-
straints are presented in detail. Extensive experiments on well-known benchmark
instances show that the method competes favorably with the state-of-the-art meth-
ods in terms of solution quality.

— In the third chapter, we present a study on the SPAS problem. The scenario-based
model SPASSB and the state-variable model SPASSV are introduced in detail.
Then, the general SAA-SV approach is presented to solve the state-variable model.
Extensive experiments indicate the effectiveness of the proposed models and SAA-
SV approach.

— In the fourth chapter, we present a study on the SSFU problem. We present the
proactive SSFU model and the reactive SSFU model, which are built based on
the proactive/reactive strategy. Extensive experiments show the effectiveness of the
proposed proactive/reactive strategy.

— In the fifth chapter, we present the TPSO approach to solve the proactive SSFU
problem. Extensive experiments show the effectiveness of the proposed TPSO ap-
proach.

— In the last chapter, we summarize the contributions of this thesis and provide some
perspectives for future research.

During my PhD, apart from the works mentioned above, I also worked on a multi-
day task assignment problem, which introduced several features of practical relevance
to the widely-studied generalized assignment problem. To solve this problem, an innova-
tive three-phase matheuristic algorithm was proposed, which first employs a construction
phase to quickly produce a reasonable quality solution and then alternates between an
intensification phase to reach local optima and a diversification phase to drive the search
into new regions. For the above phases, a new decomposition-based construction heuris-
tic and solver-based heuristic strategies are developed. This work has been published in
Computers & Operations Research [15].
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Chapter 1

INTRODUCTION

In this chapter, we present a brief overview of the healthcare scheduling problems. We
present the related works on the patient admission scheduling (PAS) problem, including
the static variants and the dynamic variants. In addition, the related heuristic and exact
algorithms for the PAS problem are summarized. Moreover, we review the surgical case
scheduling problem, including the proactive and reactive strategies, and the integrated
proactive and reactive strategies. Finally, we discuss the related approaches used in this
thesis, including constraint aggregation techniques, modeling decision problems under
uncertainty, and simulation optimization approaches.
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Partie I, Chapter 1 – Introduction

1.1 Healthcare scheduling problems

A healthcare system is a structured setup that provides preventive measures, medi-
cal services, and treatment to patients [16]. The demand for high-quality health services
continues to increase year after year, while hospitals encounter more and more difficul-
ties in terms of limited medical resources [17]. As per the World Health Statistics for
2023, the rise in life expectancy is contributing to a growing elderly population. The
limited resources and high cost have captured the attention of many researchers. Health-
care scheduling is a complex and challenging task due to the significant constraints, the
preference constraints of staffs and patients, the dynamic and unpredictable nature of
the healthcare system. Efficient healthcare scheduling ensures the timely allocation of
resources and treatment, leading to improved resource utilization and patient satisfac-
tion [16]. Therefore, the advancement of patient scheduling techniques plays a vital role
in the improvement of healthcare services.

In the literature, many healthcare scheduling problems have been studied, specifically
emphasizing on patient admission scheduling [6], surgical case scheduling [13], and nurse
rostering [18]. The patient admission scheduling (PAS) problem, first introduced by [6],
consists of assigning patients to beds in specific departments on each day of their hos-
pitalization while satisfying a number of hard constraints and as many soft constraints
as possible. The surgical case scheduling (SCS) problem [13], also known as the surgery
scheduling problem and the operating room scheduling problem, consists of assigning
surgeries to dates and ORs in a given time horizon, and determining the start time of
each surgery, while taking into account various constraints, such as stochastic surgery
duration, resource capacity, and so forth. The nurse rostering problem (NRP) [19] is a
type of staff scheduling problem that is set through the allocation of a group of different
skilled nurses to various types of shifts over a predefined scheduling time. Apart from the
above problems, there are many problems receiving less attention from researchers, such as
scheduling physicians [20], home healthcare scheduling [21], telemedicine scheduling [22].
For more details on healthcare scheduling problems, readers are referred to the survey
by Abdalkareem et al. [23]. Most of these problems have been proven to be NP-hard,
which means that they are computationally challenging. The importance and growth in
using optimization methods revealed very effective results when applied to these problems.
However, it is still possible to improve the outcomes generated by present studies.
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1.2. Patient admission scheduling problem

1.2 Patient admission scheduling problem

The PAS problem has undergone multiple extensions over the years and can be classi-
fied into static and dynamic variants. The PAS problem is known to be NP-hard [24]. As
a result, solving the problem is computationally challenging. In the following sections, we
provide a comprehensive review of the solution approaches proposed in the literature for
both the static and dynamic PAS problems, including heuristic and exact methods.

1.2.1 Static patient admission scheduling problem

In the static variants, only elective patients are considered, and all patient admis-
sion and discharge requirements are assumed to be deterministic. Additionally, patient
admissions in these static variants are scheduled in advance. The primary difference in
studies that focus on static variants lies in their treatment of soft constraints that can be
violated at the cost of incurring a penalty. These constraints include gender policy, age
policy, mandatory equipment, single-room requirements, and patient transfer. In the orig-
inal PAS problem, only the patient transfer constraint was described as a soft constraint,
while the first 4 constraints were described as hard constraints, which are not allowed to
be violated. However, Demmeester et al. [25] also consider these 4 hard constraints as
soft. As a result, only Range et al. [10], Hammouri & Alweshah [26], and Guido et al. [9]
treated the first 4 constraints or part of them as hard constraints, while others considered
them as soft constraints or ignored some of them. Moreover, except for Ceschia & Schaerf
[27], Range et al. [10], Turhan & Bilgen [28], and Bastos et al. [8], most studies treated
the patient transfer constraint as a hard constraint. Considering patient transfer as a hard
constraint can simplify the problem by narrowing the search space, but it may also result
in only finding sub-optimal solutions for those variants that consider patient transfer as
a soft constraint.

Heuristic algorithms for solving the PAS problem aim to find good enough solutions
in a reasonable time. Existing heuristic algorithms are based either on single-trajectory
search or population-based search. Among the single-trajectory search, Demmeester et al.
[25] proposed an IP model to assign patients to rooms while allowing violations of some soft
constraints. They applied a Hybrid Tabu Search (H-TS) algorithm blended with a token-
ring and a variable neighborhood descent procedure. They generated and made publicly
available a set of 13 realistic benchmark instances for the PAS problem, which were largely
adopted in the literature. Ceschia & Schaerf [27] proposed an IP model which considers
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Partie I, Chapter 1 – Introduction

all soft constraints to compute various lower bounds. Moreover, a simulated annealing
(SA) algorithm was developed, which significantly improved the previous upper bounds.

Bilgin et al. [29] proposed a hyper-heuristic (H-H) involving multiple heuristic selec-
tion and move acceptance criteria. Range et al. [10] proposed a column generation-based
(CG) heuristic, which decomposes the PAS problem into a set-partitioning problem as the
master problem and a set of room scheduling problems as the pricing problem. Kifah &
Abdullah [30] proposed an adaptive non-linear great deluge (ANLGD) algorithm, which
accepts worse solutions of satisfying a given threshold. Turhan & Bilgen [28] utilized the IP
model developed by Ceschia & Schaerf [27] and proposed two mixed integer programming-
based heuristics, namely Fix-and-Relax (F&R) and Fix-and-Optimize (F&O), to obtain
solutions with optimality gaps of 5-15% in less than three minutes. Bolaji et al. [31] intro-
duced a late acceptance hill climbing (LAHC) algorithm, which first generates an initial
feasible solution and then iteratively improves the solution by applying a local search
procedure. Guido et al. [9] developed three IP models and proposed a matheuristic FiNe-
Math, combining the F&O heuristic, neighborhood search, and IP solvers. Their method
produced good results for all benchmark instances presented in [25].

For population-based methods, Hammouri & Alrifal [32] first reported the biogeog-
raphy based optimization (BBO) algorithm for the static PAS problem, which failed to
improve the state-of-the-art. Later on, to improve the performance of the algorithm, the
authors proposed a BBO algorithm with guided bed selection mechanism (BBO-GBS) [26],
and a modified BBO algorithm with guided bed selection mechanism (MBBO-GBS) [33].
Moreover, several researchers have attempted to improve the performance of population-
based algorithms for tackling the static PAS problem, including Harmony search (HS) al-
gorithm [34], artificial bee colony (ABC) algorithm [35], discrete flower pollination (DFP)
algorithm [36]. However, these algorithms could not produce competitive results on the
benchmark instances.

In addition to the heuristic algorithms reviewed previously, Bastos et al. [8] studied
an exact method to solve the static PAS problem. To the best of our knowledge, this is
the only existing exact algorithm for the static PAS problem. The method was based on
a new mathematical model, which incorporated all restrictions from the original model
of Demeester et al. [25], and applied a warm start (WS) approach to solve it with the
maximum running time set to 24 hours. They reported new best upper bounds for 9
out of the 13 benchmark instances introduced in [25]. Note that while Range et al. [10],
Turhan & Bilgen [28], and Guido et al. [9] incorporated MIP formulations into heuristic
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1.2. Patient admission scheduling problem

methods, these methods only improved the bounds of the optimal solution and failed to
find optimal solutions.

1.2.2 Dynamic patient admission scheduling problem

The dynamic variants (DPAS), also known as the PASU (U for uncertainty), extend
the static PAS problem by considering several real-world features, such as the presence
of urgent and emergency patients whose arrival dates are uncertain, uncertainty in the
length of stay, and the possibility of delayed admissions [37, 38, 39]. The above uncertainty
information is gradually revealed on a day-to-day basis. Thus, the DPAS problem is solved
through the use of daily rescheduling. Similar to the static variants, the main difference
among the dynamic variants is that some soft constraints (e.g., age policy, mandatory
equipment, department specialism) are considered as hard constraints. Moreover, in order
to make the problem suitable for practical applications, some studies considered more
realistic constraints, such as constraints related to operating room scheduling [37, 38].

Only a few studies addressed the dynamic PAS problem. Ceschia & Schaerf [27] first
introduced a dynamic case of the PAS problem in which admission and discharge dates
are uncertain. They adapted their SA algorithm to solve this problem. Later, Ceschia
& Schaerf [40] formally introduced the dynamic PAS problem to account for uncertain
length of stay, admission delays, and non-elective patients. This variant was solved using
the SA algorithm and subsequently extended to incorporate operating room resources [37].
Lusby et al. [41] developed an adaptive large neighborhood search (ALNS) procedure
combined with the SA framework. Their method showed superior results compared to
the method suggested by Ceschia & Schaerf [40] in most cases. Recently, Guido et al.
[39] proposed an optimization model that plans patient admissions and patient stays
considering fluctuations and does not allow overcrowded rooms, as typically required in
real-world cases. They proposed a matheurisitic FiNeMath-PASU, which is based on the
FiNeMath [9].

For the exact methods, Vancroonenburge et al. [42] developed two IP models and
considered the impact of emergency patients and patient length of stay estimates. Zhu et
al. [38] studied the compatibility of short-term and long-term objectives in the dynamic
PAS problem and developed multiple MIP formulations, which were solved by MIP solver.
Their approach was shown to be significantly better than the available results for 26 out of
30 benchmark instances introduced in [37]. Table 1.1 provides a summary of the existing
research on the PAS problem along with the problem type, problem constraints, and
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solution approach. We indicate both types of PAS problems—static or dynamic— and
specify which constraints are considered hard or soft in each study. The symbols “✓” and
“-” are used to respectively indicate the problem type and absence of the optimization
model.

Table 1.1 – Summary of the PAS research

Reviewed Literature
Problem type Problem constraints Solution approach

Static Dynamic Hard Soft
Optimization

model Algorithm

Heuristic methods
Demeester et al. (2010) [25] ✓ 1-8 (5-8)∗, 9-13 IP H-TS
Ceschia & Schaerf (2011) [27] ✓ ✓ 1-4, 14 5-13 IP SA
Ceschia & Schaerf (2012) [40] ✓ 1, 2-3, 6-7,

10, 14
5, 9, 12-14 IP SA

Bilgin et al. (2012) [29] ✓ 1-4, 13∗∗ 5, 7-9, 11-12 MINLP H-H
Hammouri & Alrifal (2014) [32] ✓ 1-4, 13∗∗ 5-12 - BBO
Range et al. (2014) [10] ✓ 1-7 9-13 IP CG
Kifah & Abdullah (2015) [30] ✓ 1-4, 13∗∗ 5-12 MINLP ANLGD
Ceschia & Schaerf (2016) [37] ✓ 1, 3-4, 14 5-7, 9-14 - SA
Lusby et al. (2016) [41] ✓ 1, 3-4, 6-7,

10, 14
5, 9, 12-14 MIP ALNS

Hammouri & Alweshah (2017) [26] ✓ 1-5, 13∗∗ 7-12 - BBO-GBS
Turhan & Bilgen (2017) [28] ✓ 1-4 5-13 IP F&R, F&O
Abu Doush et al. (2018) [34] ✓ 1-4, 13 5-7, 9-12 MINLP HS
Guido et al. (2018) [9] ✓ 1-7, 13 5(partly soft),

6-7, 9-12
MIP FiNeMath

Bolaji et al. (2018) [31] ✓ 1-4, 13∗∗ 5, 7-12 MINLP LAHC
Bolaji et al. (2022) [35] ✓ 1-4, 13∗∗ 5, 7-12 MINLP ABC
Hammouri (2022) [33] ✓ 1-4, 13 5-7, 9-10, 12 MINLP MBBO-GBS
Abdalkareem et al. (2022) [36] ✓ 1-4, 13∗∗ 5-7, 9-10, 12 MINLP DFP
Guido (2023) [39] ✓ 1, 3-4, 6-7,

14
5, 9-10, 12-14 MIP FiNeMath-

PASU
Exact methods
Vancroonenburg et al. (2016) [42] ✓ 1, 2-3, 6-7,

10, 14
5, 9, 12-14 IP MIP solver

Bastos et al. (2019) [8] ✓ 1-4 5-13 MIP WS
Zhu et al. (2019) [38] ✓ 1, 3-4, 14 5-7, 9-14 MIP MIP solver
This study ✓ 1-4 5-13 IP WS, CA

Problem constraints: 1 - complete assignment; 2 - unchangeable date; 3 - continuous schedule; 4 - non-overlapping allo-
cation; 5 - gender policy; 6 - age policy; 7 - mandatory equipment; 8 - single room requirement; 9 - room type preference;
10 - departmental specialism; 11 - room specialism priority; 12 - perferred room properties; 13 - patient transfer; 14 - others
* The constraints 5-8 are also incorporated into the objective function as penalties in their H-TS algorithm.
** Although the author described the patient transfer constraint as ’soft’, however, they do not provide mechanisms for

transferring patients in their method. Thus, the patient transfer constraint would never be violated in their method.

1.3 surgical case scheduling problem

We briefly review studies that address the SCS problem considering the emergency
surgeries and adopt flexible policy, which are most related to our work. These studies
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can be classified into two main categories based on their ideas of addressing uncertainty:
proactive strategy and reactive strategy [43, 44]. Both strategies for advance scheduling
and allocation scheduling are related to our work. Thus, we will review these related
studies based on the strategies they adopt in the following section. For a complete review
of the SCS problem, readers are referred to [45, 46, 13, 47, 48, 49].

1.3.1 Proactive scheduling problem

The proactive strategy aims at proactively making some ex-ante preparations (i.e.,
reserving capacity, BIMs, buffers) in initial schedules to tackle the challenges posed by
stochastic surgery durations and emergency arrivals. Reserving capacity is a common
mechanism used to tackle the uncertainty of emergency arrival in advance scheduling
problems. Thus, the uncertainties of elective surgery durations and emergency demands
are the two primary factors of uncertainty in advance scheduling problems. The majority
of studies develop stochastic or robust programming models, representing the uncertainty
of elective surgery durations and emergency demands as stochastic variables, and propose
different methods to solve them. Lamiri et al. [50] assumed that the elective surgery
durations are deterministic, and the distribution of emergency demands is known. They
developed a stochastic programming model and used the sample average approximation
(SAA) method to solve it. Molina-Pariente et al. [51] considered that both the elective
surgery durations and emergency demands are stochastic and assumed their distributions
are known. To solve this problem, they developed a stochastic programming model and
proposed a monte carlo optimization method, which combines the iterative greedy local
search method with SAA. Also, Tang and Wang [52] assumed that only the lower and
upper bound of elective surgery durations and emergency demands are known. They built
a robust optimization model and proposed an implementer-adversary algorithm to solve
it. Recently, Miao and Wang [53] addressed the need for distributed surgical scheduling
across multiple hospitals and multiple days. They only considered the advance scheduling
and stochastic surgery durations and emergency demands. They formulated the problem
as a two-stage stochastic programming model and proposed an integer decomposition
algorithm.

In the allocation scheduling problem, a fundamental principle is that it is typically not
possible to interrupt an ongoing surgery to accommodate an emergency surgery. Thus,
researchers proposed BIM and buffer mechanisms by optimizing the surgeries and the
slack time distribution in one day to reduce waiting time for randomly arrived emergency
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surgical insertions. Figure 1.1 presents the three combinations of BIM and buffer proposed
in the literature, including BIMs only, BIMs + extra OR, and BIMs + buffers. The
example shows seven elective surgeries scheduled in three ORs. Points or time intervals,
when emergency surgeries can enter an OR, are marked with a red arrow. As the figure
shows, the difference between the three combinations is the distribution of slack time.
Firstly, BIMs only is the one [54, 55, 56, 57, 58] aim at. They schedule all elective surgeries
without any buffer between but in all ORs such that the slack time is distributed over
all ORs at the end of the day/block. Emergency surgeries can enter the schedule at the
end of any elective surgery. Secondly, BIMs + extra OR is the one proposed in [59]. All
surgeries are scheduled in the first two ORs such that the break-in-intervals (BIIs), i.e.,
the time between two consecutive BIMs, are minimal, and no buffer is included. The slack
time is distributed over the third OR. Actually, this type is a special case of hybrid policy,
where one OR is reserved for emergency surgeries, and the other ORs are available for
both elective and emergency surgeries. Thirdly, BIMs + buffers is the one [59, 60, 43,
61] aim at. They not only introduced BIMs at the end of any scheduled job, which can
be used by emergency surgeries to access resource capacity, but further considered the
scheduling of buffers as a possible time interval for emergencies that seek to enter the
schedule. In addition, Xiao and Yoogalingam [62, 63], Aissaoui et al. [44] only considered
the scheduling of buffers without BIMs to handle the uncertainty of surgery durations. In
order to select the best combination, we developed a novel programming model that can
realize all the above types of combinations by setting the suitable weights of the objective
function.

Despite the above studies, only some studies investigate the integration of advance
scheduling and allocation scheduling problems, simultaneously. Tsai et al. [64] investi-
gated the integration of advance scheduling and allocation scheduling problem considering
a single OR. They applied the reserving capacity mechanism to tackle the uncertainty of
emergency demands, developed a two-stage mixed integer model, and proposed a simu-
lated optimization algorithm to solve it.

1.3.2 Reactive scheduling problem

The reactive strategy involves adjusting schedules in real-time based on actual surgery
durations and emergency arrivals. Possible decisions include delaying, canceling, or reschedul-
ing elective surgeries while inserting emergency surgeries into the schedule. Erdem et
al. [65] proposed a genetic algorithm to reschedule elective and emergency surgeries with
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Figure 1.1 – Three combinations of BIMs and buffers (slack)

an option where an emergency surgery can be turned away. They developed dynamic
reactive scheduling methods to reschedule elective and arrived emergency surgeries, con-
sidering the future impact of decisions. Bargetto et al. [66] divided a day into multiple
decision stages and proposed a dynamic model to determine whether to insert a remain-
ing elective surgery or an arrived emergency surgery at each decision stage. Later, Silva
and De Souza [67] considered more resource constraints and proposed an approximate
algorithm to dynamically reschedule elective and emergency surgeries at each decision
stage. Recently, Wang et al. [68] considered that such decisions in the reactive strategy
can significantly reduce the satisfaction of scheduled patients. They studied the surgery
rescheduling problem considering the preferences of three involved participants. They built
a multi-objective optimization model and proposed a hybrid particle swarm optimization
(HPSO) algorithm to solve it.

1.3.3 Integrated proactive and reactive scheduling problem

In recent years, integrated approaches of proactive and reactive strategy are proposed
for coping with surgical case scheduling problem with uncertainty. Jung et al. [61] studied
both advance scheduling and allocation scheduling problems while not considering the
uncertainty of surgery durations and emergency demands. They adopt the BIMs+buffers
mechanism, propose a mixed integer programming (MIP) model, and develop two heuris-
tics to generate initial schedules. Moreover, they proposed a heuristic to reschedule elective
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and emergency surgeries in real time. Different from Jung et al. [61], Miao and Wang [53]
only studied the allocation scheduling problem under emergency demands and arrival un-
certainty. For reactive strategy, they also proposed a MIP model to update the schedule
on surgery day. Later, Wang et al. [60] considered more resource constraints, but did not
consider the uncertainty of surgery duration and emergency demand. Eshghali et al. [69]
also considered more downstream resources and the uncertainty of surgery durations and
emergency demands. They developed hierarchical weekly, daily, and rescheduling models.
They used the machine learning method to predict the surgery durations and emergency
arrivals, and proposed genetic algorithm and particle swarm optimization to solve the
models. Moreover, Duma and Aringhieri [54] investigated both advance scheduling and
allocation scheduling problems while did not consider the surgery duration uncertainty.
In Table 1.2, we summarize the main characteristics of the related papers, i.e., resources,
uncertainty, scheduling, mechanisms, objective, and methodology. We detail if there is
a solved advance scheduling or allocation scheduling in the scheduling column. We also
detail if there is used reserving capacity, BIMs, or buffers in the mechanisms column. The
symbols “✓” are used to respectively indicate the scheduling type and mechanisms.

1.4 Related approaches

In this section, we briefly review the related approaches that we use in this thesis, in-
cluding constraint aggregation techniques, modeling decision problems under uncertainty,
and simulation-based approaches.

1.4.1 Constraint aggregation

Using constraint aggregation (CA) can reduce the number of constraints of the opti-
mization model, thereby simplifying its formulation and reducing its computational com-
plexity. Specifically, CA involves replacing original constraints with a set of aggregated
constraints, which are linear combinations of the original constraints by multipliers [72].
Note that the aggregated constraints are a relaxation of the original constraints, which
means that the solution space of the original constraints is a subset of the solution space
of the aggregated constraints. Choices of the multipliers directly affect the strength of
the aggregated constraints. In addition, CA can suffer from poor performance when the
aggregated constraints have very large coefficients, either in scale [73] or in numerical
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Table 1.2 – A summary of papers related to the SCS problem.

Reviewed literature Resources Uncertainty
Scheduling Mechanisms

Objective MethodologyAdvance Allocation Reserving
capacity

BIMs Buffers

Proactive strategy
Lamiri et al. (2008) [50] 1 2 ✓ ✓ 2,6 1,4
Tang and Wang (2015) [52] 1 2 ✓ ✓ 6,11 1
Molina-Pariente et al. (2018) [51] 1,2 1,2 ✓ ✓ 2,11 1,3,4
van Essen et al. (2012) [58] 1 3 ✓ ✓ 9 1,2,3
Wang et al. (2014) [70] 1 2 ✓ ✓ 1,2 1,2
Freeman et al. (2016) [71] 1 1,3 ✓ ✓ 2,6,7 1,2
Latorre-Núñez et al. (2016) [57] 1,4 3 ✓ ✓ 4 1,3
Vandenberghe et al. (2019) [56] 1 1,3 ✓ ✓ 7 1,2
Xiao and Yoogalingam (2021) [63] 1 3 ✓ ✓ ✓ 2,3,7 1,4
Tsai et al. (2021) [64] 1 1,2,3 ✓ ✓ ✓ 2,6,7 1,4
Xiao and Yoogalingam (2022) [62] 1 3 ✓ ✓ 2,3,7 1,2,4
Schulz and Fliedner (2023) [59] 1 3 ✓ ✓ ✓ 3,9,11 1,2
Miao and Wang (2023) [53] 1 1,2 ✓ ✓ 1,6 1,4
Reactive strategy
Erdem et al. (2012) [65] 1,2,4 ✓ 2,6,11 1,3
Bargetto et al. (2019) [66] 1 1,2,3 ✓ 2,11 1,2
Silva and De Souza (2020) [67] 1,2 1,2,3 ✓ 6,8 1,2
Wang et al. (2021) [68] 1,2,4,6,8,9 ✓ 11 1,3
Integrated proactive and reactive strategies
Miao and Wang (2023) [53] 1 2 ✓ ✓ ✓ 2,6,7 1,2,4
Jung et al. (2019) [61] 1 3 ✓ ✓ ✓ ✓ 1,2,3 1,2
Duma and Aringhieri (2019) [54] 1 3 ✓ ✓ ✓ ✓ 9 2
Wang et al. (2023) [60] 1,6 3 ✓ ✓ ✓ ✓ 2,3,6 1,3
Eshghali et al. (2024) [69] 1,3,4,10,11 2,3 ✓ ✓ ✓ 2,6 1,3
This study 1 1,2,3 ✓ ✓ ✓ ✓ ✓ 2,3,6,7,8 1,2,4

Resources: 1-ORs; 2-surgerons; 3-beds; 4-PACU; 5-Equipments; 6-anaesthesia; 7-surgery day; 8-nurses;9-PHU;10-ICU;11-CCU
Uncertainty: 1-elective surgery duration; 2-emergency surgery duration (demand); 3-arrival time of emergency; 4-Length of stay in ward;

5-recovery durations
Objective: OR-related: 1-fixed OR cost; 2-overtime cost; 3-idle time cost; 4-makespan;5-others;

Patient-related: 6-cost of performing or postponing; 7-waiting time; 8-cancellation; 9-the intervals between BIMs;
10-rescheduling impact on elective surgeries;11-others

Methodology: 1-mathematical programming; 2-heuristics; 3-metaheuristics; 4-simulation

values [74]. Thus, a crucial question of CA is how to determine the multipliers of the
aggregated constraints to produce the strongest possible constraints. In this regard, re-
searchers have proposed multiple methods such as aggregation of diophantine equations,
irrational multipliers method, maximum entropy method, P-norm method, etc [75].

It is worth noting that the above CA technique, also known as static constraint ag-
gregation (SCA) [76, 77, 78, 72], aggregates constraints before the optimization process.
In contrast to SCA, dynamic constraint aggregation (DCA) [79, 10, 80, 81], in which
aggregated constraints contain a subset of solutions to the original constraints, dynami-
cally aggregates constraints during the solution process to obtain the optimal solutions.
Moreover, DCA is always implemented within a column generation algorithm to solve
a large set partitioning problem. CA has been applied with success to a variety of opti-
mization problems, including multicommodity transportation [82], wing aero-structural
optimization [83], integrated airline crew scheduling [84], and set partitioning [85, 81]. For
a comprehensive survey of CA in optimization, see [75, 86, 78].
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1.4.2 Modeling decision problems under uncertainty

For handling problems under uncertainty, stochastic programming (SP) [87, 88, 89, 90],
and distributionally robust optimization (DRO) [91, 92, 93], are representative modeling
approaches. Scenario-based stochastic programming uses a set of scenarios to character-
ize the LOS, and each scenario represents a possible realization. For this approach, the
number of scenarios increases exponentially with the number of patients, given that the
length of stay (LOS) of all patients is mutually independent. It is quite difficult to solve
such a scenario-based model, given that each scenario corresponds to specific variables
and constraints. Sample average approximation (SAA) [94, 95, 96, 97] is a widely-used
approach for dealing with a large number of scenarios, which uses a subset of scenarios to
avoid creating a large number of variables and constraints. However, SAA cannot guar-
antee the optimality of the obtained solution because it uses only a limited number of
samples rather than all the scenarios. Therefore, how to deal with an exponential number
of scenarios to obtain the optimal solution is quite challenging when solving the stochastic
programming problem.

Recently, Doulabi et al. [98] proposed a state-variable modeling approach for a class of
two-stage stochastic programming problems, which is capable of modeling problems with
an exponential number of scenarios without any need for sampling. They verified the state-
variable modeling approach on project scheduling and operating room allocation problems.
Subsequently, different from assigning surgeries to operating rooms available on a single
day, Hashemi Doulabi and Khalilpourazari [99] assigned surgeries to operating rooms over
a week and considered the deadlines of surgeries. They proposed a state-variable model
and enhanced it by reducing the number of variables and constraints. The above studies
demonstrated the effectiveness of the state-variable modeling approach.

1.4.3 Simulation optimization

Simulation optimization (SO) refers to the optimization of an objective function sub-
ject to constraints, both of which can be evaluated through a stochastic simulation [100].
As opposed to mathematical programming, SO does not assume that a closed form ex-
pression is available, and one needs to repeatedly estimate the objective function via
simulation. Simulation optimization, like stochastic programming, also attempts to opti-
mize under uncertainty. However, stochastic programming differs in that it makes heavy
use of the model structure itself [101]. From the method-driven perspective of simulation
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optimization, there are five modes of the integration approach: (1) simulation-supported
optimization, (2) simulation-supported optimization, (3) simulation optimization itera-
tion, (4) simulation-based optimization, and (5) optimization-embedded simulation. The
detailed description of these five modes can be found in the work of Zhou et al. [102]. In
this thesis, we focus on the simulation optimization iteration, where the simulation and
optimization from a loop and are executed iteratively to update the parameters of each
other.

It is worth noting that the simulation is often implemented by the discrete-event sim-
ulation (DES), which can be used to model many real-world systems, such as queues,
operations, and networks. Using DES to simulate a system usually involves switching or
jumping from one state to another at discrete points in time as events occur. Moreover,
the occurrence of events is modeled using probability distributions to model the ran-
domness involved. Several applications of SO have been addressed in the literature, such
as the nurse scheduling [103], healthcare [104], breast cancer epidemiology [105], power
system [106]. For more details about simulation optimization, see [100, 102]

1.5 Chapter conclusion

In this chapter, we presented a brief overview of the healthcare scheduling problems.
The static and dynamic versions of the PAS problem are considered, and the related heuris-
tic and exact algorithms are summarized. We also reviewed the SCS problem, including
the proactive and reactive strategies, and the integrated proactive and reactive strate-
gies. Finally, the approaches used in this thesis were also discussed, including constraint
aggregation techniques, modeling decision problems under uncertainty, and simulation
optimization approaches.
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Chapter 2

SOLVING THE PATIENT ADMISSION

SCHEDULING PROBLEM USING

CONSTRAINT AGGREGATION

In this chapter, we consider the widely studied variant of the PAS problem that has
the maximum number of soft constraints, and focus on how to reduce the size of IP
formulations of the PAS problem to improve the solving efficiency. We employ a two-
stage optimization method where the first stage builds reduced models by constraint
aggregation to improve the typical formulation of the PAS problem. Experimental results
on the 13 benchmark instances in the literature indicate that our method can obtain new
improved solutions (new upper bounds) for 6 instances, including one proven optimal
solution. For the 5 other instances whose optimal solutions are known, our approach
can reach these known optimal solutions in a shorter computation time compared to the
existing methods. In addition, we apply our method to the original PAS problem, which
has the maximum number of hard constraints, and perform computational experiments
on the same 13 benchmark instances. Our method yields 5 new best solutions and proves
optimality for 6 instances. The content of this chapter is based on an article published in
European Journal of Operational Research.
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2.1 Introduction

Various optimization approaches, both heuristic and exact methods, have been pro-
posed to address the PAS problem. The best results on most benchmark instances have
been achieved using exact mathematical programming techniques, as reported in [8]. Nev-
ertheless, the MIP model proposed in [8] becomes too large to be solved to optimality
in a reasonable time for large instances. The integer programming (IP) model of [27] is
more compact, but it is still too large to be solved to optimality on most large bench-
mark instances. A promising way to improve the efficiency of the solution process is to
reduce the size of this model. Constraint aggregation (CA) can help reduce the number of
constraints of the optimization model, which is a widely used technique in mathematical
programming [76, 80]. Based on this idea, we focus on how better formulations – in this
case, through reducing the IP model of [27] by aggregating constraints – can help further
improve the efficiency in solving the IP model of the PAS problem. The contribution of
this work is as follows:

(1) We propose two aggregated gender policy constraints and one aggregated patient trans-
fer constraint to reduce the size of the IP model of [27], and evaluate the effectiveness
of the proposed aggregated constraints through computational experiments.

(2) We apply a two-stage optimization approach using the reduced IP models to obtain
optimal solutions. Specifically, for the standard PAS problem, we generate new best
solutions for 6 out of the 13 benchmark instances commonly used in the literature,
including one with proven optimality. Moreover, we prove the optimality of the solu-
tions for the remaining 5 instances in a short time. Additionally, for the original PAS
problem, using the same 13 benchmark instances, we obtain 5 new best solutions, 6
new best lower bounds, and proven optimality of solutions for 6 instances.

Next section presents the definition of the standard PAS problem and the mathemati-
cal model. Section 2.3 describes our solution method. Section 2.4 presents computational
results of our IP formulations and comparisons with state-of-the-art results. In addition,
section 2.4 also describes our solution method for the original PAS problem and reports
the computational results. Section 2.5 draws conclusions.
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2.2 Problem description and mathematical model

In this section, we provide a detailed description of the standard static PAS problem
and its mathematical model.

2.2.1 Problem description

The PAS problem [25] aims to assign patients to a set of beds during patients’ hos-
pitalizations within a given planning horizon, where the preference and the requirement
of each patient are assumed to be known in advance. Specifically, each patient p has an
admission date ADp when a room is assigned to this patient and a discharge date DDp

when this patient is released from the medical treatment. The Length of Stay (LOS) of
each patient is the duration between the admission and the discharge dates, which is ex-
pressed in nights. Patients who stay at least one night, termed elective patient, are eligible
to be scheduled. Patients pursue medical treatments during their hospitalization, termed
specialisms. Most of the patients need one single specialism for their entire treatment.
Only a small number of patients need more than one specialism, termed multi-spec. Each
patient is assigned to a bed and each bed belongs to a room. One of the most important
features of the room is the gender policy. Rooms that require patients to be of the same
gender enforce policy M (only Male) or policy F (only Female). In contrast, rooms where
both genders are allowed enforce policy N (mixed gender) or policy D (on any given night,
only patients of the same gender are allowed, and the gender is defined by the first patient
to be scheduled in that room). There are three types of room capacity: single (one bed),
twin (two beds) and ward (four beds), and each patient has a preference for a certain
type of room, termed room preference. Each room has a different available equipment,
such as oxygen and telemetry, termed room properties. Patients may require or prefer to
be allocated to a room with the specific equipment depending on their treatment. Each
room belongs to a department and each department is correlated with the specialisms
they offer. Moreover, each department and room has its own priority degree for those
specialisms. Patients must be treated at the departments where the specialism they need
is offered. Each department has an age policy which imposes a maximum or minimum
age limit for acceptance. Patients can change rooms during their hospitalization, termed
transfers.

Based on the above problem definition, a solution is feasible if all patients are assigned
to a bed such that no hard constraint of types HC1 - HC4, given below, is violated.
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HC1: During the planning period, each patient must be assigned to a room.

HC2: Admission and discharge days for each patient can not be adjusted.

HC3: Patient LOS is continuous, and a patient is scheduled until his/her discharge date.

HC4: Beds allocated to patients should not overlap on any given night.

The quality of a feasible solution depends on the satisfaction of 9 types of soft con-
straints. If a soft constraint is violated by a solution, a penalty (a positive integer) is
induced. These soft constraints SC1 - SC9 are defined as follows.

SC1: Gender policy is satisfied for each room.

SC2: Age policy is satisfied for each room.

SC3: A patient is assigned to a room with the required room properties for his/her
treatment.

SC4: Some patients is allocated to a single room due to clinical reasons.

SC5: The room type preference for each patient is met.

SC6: A patient is allocated to a department that attends to his/her specialism.

SC7: A patient is allocated to a room that attends to his/her specialism in the first degree
of priority.

SC8: A patient is assigned to a room with his/her preferred room properties.

SC9: Transfers should not be allowed.

The optimization objective of the PAS problem is to find a feasible assignment satis-
fying constraints HC1 - HC4 while minimizing a weighted sum of all the penalties of the
unsatisfied soft constraints SC1 - SC9 (see Table 3.3). Formally, let Ω be the set of all
feasible solutions (patient-to-bed assignments). For each x ∈ Ω, its cost is defined by:

Z(x) =
9∑

i=1
Wi · Vi(x) (2.1)

where Vi(x) represents the number of times the i-th soft constraint is violated in solution
x, and Wi is the penalty weight corresponding to that soft constraint. The value of Wi

are given in Table 2.1. Thus, the goal of the PAS problem is to find a feasible solution x∗

such that for all x ∈ Ω, Z(x∗) ≤ Z(x).
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Table 2.1 – Weights of the constraints.

Constraint SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9
Weight 5 10 5 10 0.8 1 1 2 11

2.2.2 Mathematical model

In this section, we first compare the differences of optimization models among those
proposed in the literature for the static PAS problem. Taking into account the fact that
beds in the same room have indistinguishable features and constraints, researchers gen-
erally formulate the PAS problem as a patient-room assignment (PRA) problem, which
involves assigning each patient to a specific room. The main differences of the proposed
MIP/IP models in the literature are the hard and soft constraints in the models with
respect to the original problem statement. As mentioned in Section 1.2, Demeester et
al. [25] first proposed a IP model considering the soft constraint SC1, SC2, SC3, SC4 as
hard constraints and not allowing their violations. In contrast, Guido et al. [9] proposed
two IP models where HMP BA does not allow the soft constraint SC1, SC2, SC3, SC4,
SC9 to be violated, and SMP BA relaxes the restrictions of SC1 (gender policy N,D), SC2,
SC3, SC9 (patient transfer are restricted to at most one for those who have two stays).
Both Ceschia & Schaerf [27] and Bastos et al. [8] proposed IP/MIP models which allowed
all soft constraints SC1 - SC9 to be violated. However, the former is more simplified than
the latter, as it merges penalties associated with the patient-room assignment, including
SC1 (gender policy M, F, N), SC2, SC3, SC4, SC5, SC6, SC7, and SC8, into a single
penalty Cpr and avoids the generation of too many constraints and variables. Moreover, it
is evident that the optimal solutions, in some instances, obtained by solving the IP/MIP
models of [27] and [8] outperform those of [25] and [9], since the latter two models only
allowed a subset of soft constraints. Based on the comparative analysis of the existing lit-
erature, it can be concluded that the IP model proposed by [27] is more flexible compared
to the other models since it allows all soft constraints to be violated.

Since our work is based on the IP model proposed by [27], we summarize their re-
formulation below while the used notation is shown in Table 2.2. The objective function,
denoted by (2.2), aims to minimize the total penalties associated with assigning patients
to rooms for the duration of their hospitalization period. The first part of the objective
function corresponds to the cost of assigning patients to rooms, which is determined by
the combined penalty of soft constraints SC1 (gender policy M, F, N), SC2, SC3, SC4,
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SC5, SC6, SC7, and SC8. The second part of the objective function incorporates the cost
of violating the room gender policy, while the last part of the function captures the cost
associated with patient transfer.

Table 2.2 – Notation used for the PRA model.

Symbol Description

Sets
P Set of patients (p = 1, · · · , |P|)
D Set of days (d = 1, · · · , |D|)
R Set of rooms (r = 1, · · · , |R|)
Dp ⊂ D Set of days of patient p stay in hospital (Dp = {ADp, · · · , DDp − 1})
PM ⊂ P Set of male patients
PF ⊂ P Set of female patients
RD ⊂ R Set of dependent rooms
Parameters
Qr Number of beds in room r
LOSp Length of stay of patient p (LOSp = DDp − ADp)
Cpr the penalty of assigning patient p to room r. All the room penalties are

incorporated into the value except SC1 (gender policy D) and SC9
WRG Weight of gender policy constraint
WT r Weight of transfers constraint
Variables
xprd 1 if patient p is assigned to room r in day d, 0 otherwise
frd 1 if there is at least one female patient in room r in day d, 0 otherwise
mrd 1 if there is at least one male patient in room r in day d, 0 otherwise
brd 1 if there are both male and female patients in room r in day d, 0 otherwise
tprd 1 if patient p is transferred from room r in day d, 0 otherwise

PRA: Min
∑

p∈P,r∈R,d∈Dp

Cpr · xprd +
∑

r∈RD,d∈D
WRG · brd +

∑
p∈P,r∈R,d∈D

WT r · tprd (2.2)

s.t.
∑
r∈R

xprd = 1, ∀p ∈ P , d ∈ Dp (2.3)
∑

p∈P|d∈Dp

xprd ≤ Qr, ∀d ∈ D, r ∈ R (2.4)

frd ≥ xprd, ∀p ∈ PF , d ∈ D, r ∈ R (2.5)

mrd ≥ xprd, ∀p ∈ PM , d ∈ D, r ∈ R (2.6)
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brd ≥ mrd + frd − 1, ∀d ∈ D, r ∈ R (2.7)

tprd ≥ xprd − xpr,d+1, ∀p ∈ P , d ∈ D, r ∈ R (2.8)

xprd ∈ {0, 1} ∀p ∈ P , d ∈ Dp, r ∈ R (2.9)

brd ∈ {0, 1} ∀d ∈ D, r ∈ R (2.10)

frd ∈ {0, 1} ∀d ∈ D, r ∈ R (2.11)

mrd ∈ {0, 1} ∀d ∈ D, r ∈ R (2.12)

tprd ∈ {0, 1} ∀p ∈ P , d ∈ Dp, r ∈ R (2.13)

Constraint (2.3) refers to complete assignment constraint which enforces every patient
to be assigned to a room between admission and discharge dates. Constraint (2.4) refers
to capacity constraint which ensures number of patients assigned to a room for a specific
day cannot exceed the capacity of the room. Constraints (2.5)-(2.7) refer to gender pol-
icy constraints (GC0). Variable brd, mrd, frd and tprd are all dependent on the different
circumstances of the xprd variables, which define the actual search space. If there is a
female in a room, Constraint (2.5) forces the auxiliary variable frd to be equal to 1 to
reflect the female existence in that room. A similar approach is taken for constraint (2.6)
to reflect that there is a male in a room. If both genders exist in a room, Constraint (2.7)
ensures that brd becomes 1 and gender penalty in the objective value is reflected accord-
ingly. Finally, constraint (2.8) refers to patient transfer constraint (TC), which ensures
the auxiliary variable tprd becomes 1 if a patient changes room on two consecutive days.
Constraints (2.9) - (2.13) define the domain of the variables.

2.3 Solution approach

To solve the PAS problem, we employ a two-stage optimization approach, which de-
composes the given problem into two separate subproblems: a patient-room assignment
(PRA) subproblem and a patient-bed assignment (PBA) subproblem. Fig. 2.1 illustrates
the general framework of our proposed solution approach. As demonstrated by [27], the
optimal solutions derived from these two subproblems can be integrated to achieve the
optimal solution for the original problem. Our approach first generates a partial solu-
tion by solving an advanced PRA (APRA) model, which is based on the IP model of
[27]. However, it is challenging to solve the APRA model directly because of the huge
search space resulting from patient-room-day assignment variables. Thus, we employ a
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warm start approach in which we solve the APRA model without transfers constraint
(APRAWT) to generate a high-quality feasible solution and then use the obtained solution
as an initial solution to the APRA model. It is worth noting that using the above warm
start approach can yield better results for the tested benchmark instances than directly
solving the APRA model, as demonstrated in [8]. Secondly, our approach solves the PBA
subproblem to allocate patients to beds of specific rooms according to the PRA solution,
which is validated by an application made available online 1 by [25].

Begin

Optimize PBA model

End

Validate solution

Optimize APRAWT model

Optimize APRA model

Stage 1:

Solve PRA subproblem

Stage 2:

Solve PBA subproblem

Figure 2.1 – Framework of two-stage optimization approach for the PAS problem.

2.3.1 Advanced patient-room assignment model

Large IP models are incapable of finding a high-quality solution within an acceptable
time due to their large sizes. Let the parameter Gr represent the gender policy of room r,
with the values 0, 1, 2, and 3 corresponding to the policies D, M, F, and N, respectively.
The variables and constraints of the IP model of [27] can be decreased by considering the
following rules:

1. Variables xprd can be omitted from the model when LOSp = 0.
2. Variables frd, mrd and brd can be omitted from the model when Qr = 1 or Gr =

1, 2, 3.

1. https://people.cs.kuleuven.be/~wim.vancroonenburg/pas/
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3. Variables tprd can be omitted from the model when LOSp < 2 and d = DDp − 1.

4. Constraints (2.3) and (2.9) can be omitted from the model when LOSp = 0.

5. Constraints (2.5), (2.6) and (2.7) can be omitted from the model when LOSp = 0 ,
or when either Qr = 1 or Gr = 1, 2, 3.

6. Constraint (2.8) can be omitted from the model when Qr = 1 or Gr = 1, 2, 3.

In order to better apply the above rules, we introduce some notations presented in
Table 2.3. It should be noted that a patient may have multiple specialisms in some in-
stances, which means that during a patient’s stay, the patient is assigned in the first part
of his/her stay to a specialism, and the second part of his/her stay to another specialism.
Also, the use of the parameter Cpr may lead to incorrect results when patients have mul-
tiple specialisms during their hospital stay. We therefore introduce a new parameter Cprd

which is defined as the penalty of assigning patient p to room r on day d.

Table 2.3 – Notation used for the APRA model.

Symbol Description

Sets
PE ⊂ P Set of elective patients with LOSp ≥ 1
M⊂ PE Set of male elective patients
F ⊂ PE Set of female elective patients
RM

D ⊂ R Set of dependent rooms with more than one bed
Parameter
Cprd Penalty of assigning patient p to room r on day d. All the room

penalties are incorporated into the parameter except SC1 (gender
policy D) and SC9

To avoid confusion, we refer to the APRA model under the gender policy constraint
GC0 and the transfer constraint TC as APRAGC0&T C , which can be formulated as follows:

APRAGC0&TC : Min S =
∑

p∈PE ,r∈R,d∈Dp

Cprd · xprd

∑
r∈RM

D

, d ∈ DWRG · brd+

∑
p∈PE |LOSp≥2,r∈R,d∈Dp\{DDp−1}

WT r · tprd (2.14)

s.t.
∑
r∈R

xprd = 1, ∀p ∈ PE, d ∈ Dp (2.15)
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p∈PE |d∈Dp

xprd ≤ Qr, ∀d ∈ D, r ∈ R (2.16)

frd ≥ xprd, ∀p ∈ F , d ∈ Dp, r ∈ RM
D (2.17)

mrd ≥ xprd, ∀p ∈M, d ∈ Dp, r ∈ RM
D (2.18)

brd ≥ frd + mrd − 1, ∀d ∈ D, r ∈ RM
D (2.19)

tprd ≥ xprd − xpr,d+1, ∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1}, r ∈ R (2.20)

xprd ∈ {0, 1} ∀p ∈ PE, d ∈ Dp, r ∈ R (2.21)

brd ∈ {0, 1} ∀d ∈ D, r ∈ RM
D (2.22)

frd ∈ {0, 1} ∀d ∈ D, r ∈ RM
D (2.23)

mrd ∈ {0, 1} ∀d ∈ D, r ∈ RM
D (2.24)

tprd ∈ {0, 1} ∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1}, r ∈ R (2.25)

Regarding gender policy constraints, we can modify the formulas presented in [8] to
obtain alternative formulations (GC1). We define a new binary variable urd, which has
the value 1 if room r is reserved for females on day d, and 0 otherwise. The constraints
GC1 can be written as follows:

(GC1) xprd ≤ urd + brd ∀p ∈ F , d ∈ Dp, r ∈ RM
D (2.26)

xprd ≤ (1− urd) + brd ∀p ∈M, d ∈ Dp, r ∈ RM
D (2.27)

urd ∈ {0, 1} ∀d ∈ D, r ∈ RM
D (2.28)

Constraint (2.26) enforces female patient restrictions and (2.27) enforces male patient
restrictions. Both constraints seek to avoid the assignment of two distinct genders to the
same room, penalizing allocations in which different genders share a room. Thus, we refer
the APRA model under constraints GC1 and TC as APRAGC1&T C .

2.3.2 Advanced patient-room assignment model without trans-
fer constraints

It is quite challenging to solve the above two APRA models directly due to the large
search space defined by the patient-room-day assignment variables. By prohibiting patient
transfer during their stay, we limit the scope of the search space defined by patient-room
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assignment variables, resulting in a special case of the APRA model, as used in [8, 9, 27].
In our APRAWT model, transfers are not allowed so that a patient must stay in the same
room during his/her entire length of stay. The solution of APRAWT model will always be
feasible to the APRA model since the solution space of the former is contained in that of
the latter. Moreover, since transfers are associated with the highest penalty weight, it is
reasonable to expect that the solution of APRAWT models would be close to the optimal
solution of APRA models. Hence, we first solve an APRAWT model to obtain a feasible
solution, which is used as the initial solution of the APRA model for further improvement.

Our APRAWT models are inherited from the APRA models by removing variable tprd

and replacing variable xprd by xpr, a binary variable taking the value of 1 if patient p is
allocated to room r, and 0 otherwise. Moreover, parameter Cprd is replaced by parameter
C ′

pr = ∑
d∈Dp

Cprd. Thus, the model APRAW T
GC0 is formulated as follows:

APRAWT
GC0 : Min S =

∑
p∈PE

∑
r∈R

C ′
prxpr +

∑
d∈D

∑
r∈RM

D

WRGbrd (2.29)

s.t. constraints (2.19), (2.22), (2.23)∑
r∈R

xpr = 1 ∀p ∈ PE (2.30)
∑

p∈PE |d∈Dp

xpr ≤ Qr ∀d ∈ D, r ∈ R (2.31)

frd ≥ xpr ∀p ∈ F , d ∈ Dp, r ∈ RM
D (2.32)

mrd ≥ xpr ∀p ∈M, d ∈ Dp, r ∈ RM
D (2.33)

xpr ∈ {0, 1} ∀p ∈ PE, r ∈ R (2.34)

Like the APRA model, constraint (2.30) refers to complete assignment constraint,
constraint (2.31) refers to capacity constraint and constraints (2.19),(2.32)-(2.33) refer
to gender policy constraints (GC0). Furthermore, model APRAW T

GC1 can be obtained by
replacing GC0 with GC1 (2.28), (2.35)-(2.36) in model APRAW T

GC0 .

(GC1) Constraint (2.28)

xpr ≤ urd + brd ∀p ∈ F , d ∈ Dp, r ∈ RM
D (2.35)

xpr ≤ (1− urd) + brd ∀p ∈M, d ∈ Dp, r ∈ RM
D (2.36)
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2.3.3 Constraint aggregation

Despite using the rules we proposed in Section 2.3.1 to reduce the model size, the
APRA and APRAWT models are still large and hard to solve. To further accelerate the
solution process, we propose constraint aggregation to reduce the number of gender pol-
icy constraints GC0, GC1 and patient transfer constraint TC considering that these con-
straints account for more than 95% of the total number of constraints in the APRA
and APRAWT models (see Section 2.4.2). Since the APRAWT models are inherited from
the APRA models, we take the APRA models as example to illustrate our aggregation
method.

Aggregated gender policy constraint

For gender policy constraints GC1, we propose aggregated gender policy constraints
AGC1 (2.28), (2.37)-(2.38) by aggregating the constraints (2.26)-(2.27) of different pa-
tients with the same gender for the same day and room.

(AGC1) Constraint (2.28)∑
p∈F|d∈Dp

xprd ≤ λF
rd(urd + brd) ∀r ∈ RM

D , d ∈ D (2.37)

∑
p∈M|d∈Dp

xprd ≤ λM
rd(1− urd + brd) ∀r ∈ RM

D , d ∈ D (2.38)

where λF
rd = min{Qr, |Fd|} and λM

rd = min{Qr, |Md|} are coefficients, |Fd| and |Md|
are the number of female/male elective patients in day d. Thus, the aggregated model
APRAAGC1&T C can be obtained by replacing GC1 with AGC1 in model APRAGC1&T C .

The APRAGC1&T C is equivalent to the APRAAGC1&T C (see the proof A.1 of Theorem
1) under the following two conditions: (i) if (x, u, b, t) is a feasible solution to the
APRAGC1&T C , then it must be feasible to the APRAAGC1&T C ; (ii) if (x, u, b, t) is a
feasible solution to the APRAAGC1&T C , then it must be feasible to the APRAGC1&T C .

Theorem 1 The aggregated model APRAAGC1&T C is equivalent to the original model
APRAGC1&T C.

The gender policy constraints GC0 (2.17)-(2.19) can be reformulated by AGC0 (2.19),
(2.39)-(2.40) as follows:
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(AGC0) Constraint (2.19)

λF
rdfrd ≥

∑
p∈F|d∈Dp

xprd ∀d ∈ D, r ∈ RM
D (2.39)

λM
rdmrd ≥

∑
p∈M|d∈Dp

xprd ∀d ∈ D, r ∈ RM
D (2.40)

Thus, the aggregated model APRAAGC0&T C can be obtained by replacing GC0 with
AGC0 in model APRAGC0&T C . With reference to the proof of Theorem 1, it is easy
to see that the aggregated model APRAAGC0&T C is equivalent to the original model
APRAGC0&T C .

To obtain the aggregated gender policy constraints used in the APRAWT models,
we can replace the variable xprd,∀p ∈ PE, d ∈ Dp, r ∈ R with xpr, ∀p ∈ PE, r ∈ R.
This allows us to create two APRAWT models, denoted as APRAW T

AGC0 and APRAW T
AGC1 .

Additionally, the aggregated models APRAW T
AGC0 and APRAW T

AGC1 are equivalent to the
original models APRAW T

GC0 and APRAW T
GC1 , respectively.

Aggregated patient transfer constraint

To aggregate patient transfer constraint, variable tprd,∀p ∈ PE, d ∈ Dp, r ∈ R is
replaced by aggregated variable zpd,∀p ∈ PE, d ∈ Dp, a binary variable taking the value
of 1 if patient p is transferred to a new room in day d, and 0 otherwise. With this new
aggregated variable, the objective function (2.3.1) need to be modified by (2.41).

Min S =
∑

p∈PE ,r∈R,d∈Dp

Cprd · xprd +
∑

r∈RM
D

, d ∈ DWRG · brd+

∑
p∈PE |LOSp≥2,d∈Dp\{DDp−1}

WT r · zpd

(2.41)

Aggregate patient transfer constraint can be achieved by comparing the room number
RNr of two consecutive days to determine whether the patient is transferred. Therefore,
aggregated patient transfer constraint ATC (2.42) - (2.44) can be reformulated as follows:

(ATC) |R|zpd ≥
∑
r∈R

RNrxprd −
∑
r∈R

RNrxpr,d+1

∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1} (2.42)
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|R|zpd ≥
∑
r∈R

RNrxpr,d+1 −
∑
r∈R

RNrxprd

∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1} (2.43)

zpd ∈ {0, 1} ∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1} (2.44)

Four APRA models can be generated by combining the objective function (2.41), the
complete assignment constraint, the capacity constraint, along with different formula-
tions of the (aggregated) gender policy constraint and the aggregated patient transfer
constraint, namely APRAGC0&AT C , APRAGC1&AT C , APRAAGC0&AT C , APRAAGC1&AT C .
Furthermore, each of these aggregated APRA models is equivalent to its corresponding
APRA model under the constraint TC. For instance, APRAGC0&AT C is equivalent to
APRAGC0&T C , APRAGC1&AT C is equivalent to APRAGC1&T C , APRAAGC0&AT C is equiv-
alent to APRAAGC0&T C , APRAAGC1&AT C is equivalent to APRAAGC1&T C . See the proof
A.2 of Theorem 2 for details.

Theorem 2 The APRA model under the aggregated constraint ATC is equivalent to its
corresponding APRA model under the constraint TC.

An illustrative example

To illustrate our proposed aggregation method, consider an illustrative example of the
PRA subproblem with 3 elective patients, 3 rooms, and 2 nights, as shown in Figure 2.2.
Room 1, with 2 beds, follows policy D. Rooms 2 and 3 are both 1-bed rooms and follow
policy M and F, respectively. The table on the top left lists the input data related to
the patients, where the meaning of the symbols corresponds to the definition in Tables
2.2 and 2.3. The lower part of the table lists the constraints related to gender policy and
patient transfer. The gender policy constraint GC0 consists of 6 inequalities, whereas its
aggregated counterpart AGC0 contains 5 inequalities. Similarly, GC1 involves 4 inequali-
ties, while AGC1 contains 3. For patient transfer, TC has 3 inequalities, while ATC has 2
inequalities. All 8 APRA models can be obtained by combining different formulations of
the (aggregated) gender policy constraint and the (aggregated)patient transfer constraint,
as well as the objective function, the complete assignment constraint, and the capacity
constraint (here, the objective function, the complete assignment constraint, and the ca-
pacity constraint are omitted for brevity). All these APRA models have the same optimal
solution, which is shown in the figure on the top right. The optimal objective function
value is S = 13.6.
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Instance

x1,1,2 ≤ u1,2 + b1,2

x3,1,1 ≤ 1− u1,1 + b1,1

x1,1,1 ≤ u1,1 + b1,1

x2,1,1 ≤ u1,1 + b1,1

x1,1,2 ≤ u1,2 + b1,2

x3,1,1 ≤ 1− u1,1 + b1,1

AGC1

GC1

t1,1,1 ≥ x1,1,1 − x1,1,2

t1,2,1 ≥ x1,2,1 − x1,2,2

t1,3,1 ≥ x1,3,1 − x1,3,2

TC

ATC

f1,1 ≥ x1,1,1

f1,2 ≥ x1,1,2

f1,1 ≥ x2,1,1

m1,1 ≥ x3,1,1

b1,1 ≥ f1,1 +m1,1 − 1

b1,2 ≥ f1,2 +m1,2 − 1

f1,2 ≥ x1,1,2

m1,1 ≥ x3,1,1

b1,1 ≥ f1,1 +m1,1 − 1

b1,2 ≥ f1,2 +m1,2 − 1

GC0

AGC0

Original

Aggregation

Optimal Solution:S = 13.6

(Aggregated) gender policy constraints and (aggregated) patient transfer constraints

x1,1,1 + x2,1,1 ≤ 2(u1,1 + b1,1)2f1,1 ≥ x1,1,1 + x2,1,1

Night 1

Night 2

Room 1 Room 2 Room 3

patient1

patient1

patient2 patient3

3z1,1 ≥x1,1,1 + 2x1,2,1 + 3x1,3,1−

x1,1,2 − 2x1,2,2 − 3x1,3,2

3z1,1 ≥x1,1,2 + 2x1,2,2 + 3x1,3,2−

x1,1,1 − 2x1,2,1 − 3x1,3,1

The sets and parameters related to patients

Patient Gender Dp LOSp

Cprd

r = 1 r = 2 r = 3

1
2

3

F
F

M
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Figure 2.2 – An illustrative example of PRA subproblem

It is worth noting that using the above aggregated constraint AGC0, AGC1 and ATC

can reduce the number of constraints of APRA models, but it may also bring some
disadvantages when solving the aggregated models using the Branch-and-Bound (B&B)
approach. The B&B approach uses a lower bounding strategy based on linear program
(LP) relaxation. However, aggregation enlarges the set of feasible solutions of the LP
relaxation, thereby leading to weaker lower bounds. The weakened lower bounds may
reduce the effectiveness of the B&B approach. The related detailed discussion can be found
in [74], where the authors studied the effects of aggregation on the computational ease of
the model. Therefore, to verify the effectiveness of the proposed aggregated constraints,
we will compare the computational results of the models with and without aggregated
constraints in Section 2.4.2.

2.3.4 Patient-bed assignment model

The PBA subproblem is created based on the outputs of the PRA subproblem to
generate the patient-bed assignments. To build the PBA model, the hospital stay segment
is introduced to indicate the patient transfer. If the room assigned to patient p in day
d is the same as the room in consecutive hospitalization days, these days belong to the
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same hospital stay segment s. The sets of hospital stay segments for all patients can be
easily calculated according to the results of the PRA subproblem. The PBA is a feasibility
problem, which is solved with a constant objective function set to zero, as shown in (2.45).
The notation for the PBA is provided in Table 2.4, and its formulation is as follows:

Table 2.4 – PBA Notation

Symbol Description

Sets
B Set of beds (b = 1, · · · , |B|)
Sp Set of hospital stay segements of patient p (s = 1, · · · , |Sp|)
Br ⊂ B Set of beds in room r
Prd ⊂ P Set of patients assigned to room r in day d
Dps ⊂ D Set of days in hospital stay segement s of patient p
Parameters
Gps Room assigned to patient p in his/her hospital stay segment s
Variables
ypbs 1 if patient p is assigned to bed b in hospital stay segment s, 0 otherwise

Min 0 (2.45)

s.t.
∑

b∈BGps

ypbs = 1 ∀p ∈ P , s ∈ Sp (2.46)

∑
p∈Prd

∑
s∈Sp|d∈Dps,r=Gps

ypbs ≤ 1 ∀r ∈ R, b ∈ Br, d ∈ D (2.47)

ypbs ∈ {0, 1} p ∈ P , s ∈ Sp, b ∈ BGps (2.48)

Constraint (2.46) ensures every patient to be assigned to a bed for each segment.
Constraint (2.47) limits assignments to the capacity of each bed for each night. Constraint
(2.48) define the domain of the decision variable.

2.4 Experimental results and comparisons

In this section, we present computational results of our proposed solution method on
the 13 instances provided by [6], and comparisons with existing state-of-the-art methods
for PAS problem.
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2.4.1 Experimental setting

Table 2.5 shows the details of these 13 instances in terms of the number of rooms (|R|),
dependent rooms with more than one bed (|RM

D |), total patient (|P|), elective patient
(|PE|), room properties (Prop.), beds (|B|), specialisms (S), the length of the planning
horizon (|D|), and departments (K). In addition, only three room sizes are considered in
this benchmark, i.e. 1, 2 and 4 beds.

The first six instances benefit from better patient-room compatibility compared with
instances 7-13. In addition, the planning horizon is 14 days for instances 1-7, which is
smaller than instances 8-13, where the planning horizon is between 21 days to 91 days.
Therefore, instances 8-13 are more complex. It is worth mentioning that the total number
of patients includes elective patients as well as patients whose LOS is zero, and patients
whose discharge date lies beyond the planning horizon are scheduled until the last planning
day. Moreover, only instance 13 has multi-spec patients. Specifically, all the 202 multi-spec
patients require two specialisms, and no patient requires more than two specialisms in this
benchmark dataset.

Table 2.5 – Characteristics of the problem instances.

Instance |R| |RM
D | |P| |PE | Prop. |B| S |D| K

1 98 82 693 652 2 286 4 14 4
2 151 132 778 755 2 465 6 14 6
3 131 114 757 708 2 395 5 14 5
4 155 136 782 746 2 471 6 14 6
5 102 93 631 587 2 325 4 14 4
6 104 93 726 685 2 313 4 14 4
7 162 32 770 519 4 472 6 14 6
8 148 34 895 895 4 441 6 21 6
9 105 18 1400 1400 4 310 4 28 4
10 104 20 1575 1575 4 308 4 56 4
11 107 21 2514 2514 4 318 4 91 4
12 105 28 2750 2750 4 310 4 84 4
13 125 30 907 907 4 368 5 28 5

Our model was implemented and solved using Gurobi Optimizer 9.0.3 with its default
parameter settings. Branch-and-cut (B&C) is the default algorithm of Gurobi to solve the
MIP models. Experiments are run on a cluster with each node running Linux with Inter(R)
Xeon(R) Gold 6226R 2.90GHz CPU and 256Gb RAM. The number of CPU cores used
was set to be 10. Experiments revealed that the average time to generate patient-room
penalty matrix takes no more than 10 seconds, and solving the PBA model takes no more
than 1 second. Thus, given a total time limit, we set 50 % of the run time to solve the
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APRAWT model and set the remaining time to solve the PRA model, which is the same
as [8].

2.4.2 Evaluating the performance of different models for PRA
subproblem

We generate 8 APRA models as well as 4 APRAWT models, aiming to answer two
critical questions: (i) do different models perform differently? (ii) if yes, which model
performs the best for solving the PRA subproblem and why? In the following, we assess
which model best suits the PRA subproblem using the benchmark sets. As described in
Section 2.3, we use a warm start approach to solve the PRA subproblem, in which an
APRAWT model is solved in the initial step and then an APRA model is solved in the
subsequent step. Specifically, the type of formula used for the gender policy constraint
remains consistent between the APRAWT model and the APRA model. As a result, this
yields 8 different warm start procedures.

Model size can be used to roughly infer the performance of the solution. In general,
a smaller model (with less constraints and variables) would be easier to handle. Thus,
we first compare the average number of constraints and variables of all APRAWT/APRA
models we proposed as well as MIP models of [8], which generated most of the best known
solutions and lower bounds, for 13 benchmark instances, as shown in Table 2.6. Notice
that [8] also used the warm start approach to solve the PRA subproblem, and refereed to
the model used in the initial step as the simplified model (SM) and the model used in the
subsequent step as complete model (CM). Additionally, the SM is a special case of the
CM forbidding patient transfer.

From Table 2.6, firstly, we can observe that our proposed models are significantly
smaller than the MIP models of [8] in both initial and subsequent steps. Secondly, the
model sizes of our proposed models are also significantly different. Specifically, in the
initial step, the average number of variables and constraints of APRAW T

GC1/ APRAW T
AGC1

decreases by 103 compared to APRAW T
GC0/ APRAW T

AGC0 . It is also clear that using the
aggregated gender policy constraints can significantly decrease the model size. Compared
to APRAW T

GC0/ APRAW T
GC1 , the average number of constraints of APRAW T

AGC0/ APRAW T
AGC1

decreases by 97% after aggregating the gender policy constraints. Additionally, in the
subsequent step, we can observe that the average number of constraints decreases by 33%
after using AGC0(AGC1) and the average number of constraints decreases by 65% after
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using ATC in APRA. If both aggregated constraints AGC0(AGC1) and ATC are used,
the average number of constraints decreases by 97%. Moreover, the average number of
variables decreases 44% after using ATC in APRA.

Table 2.6 – Comparison of different models used in warm start procedures over all bench-
mark instances

Warm
start

Initial step Subsequent step
Model Var. Con. Model Var. Con.

Bastos et al. [8]
WS0 SM 5.20×106 6.60×106 CM 5.70×106 7.00×106

This work
WS1

APRAW T
GC0 1.41×105 2.65×105

APRAGC0&T C 1.27×106 7.87×105

WS2 APRAGC0&AT C 6.58×105 2.78×105

WS3
APRAW T

AGC0 1.41×105 8.65×103
APRAAGC0&T C 1.27×106 5.30×105

WS4 APRAAGC0&AT C 6.58×105 2.19×104

WS5
APRAW T

GC1 1.40×105 2.64×105
APRAGC1&T C 1.17×106 7.85×105

WS6 APRAGC1&AT C 6.57×105 2.77×105

WS7
APRAW T

AGC1 1.40×105 7.35×103
APRAAGC1&T C 1.17×106 5.29×105

WS8 APRAAGC1&AT C 6.57×105 2.06×104

Next, we present a comparative results by using the above warm start procedures
to solve the PRA subproblem. Due to the challenge of the PAS problem, we are more
concerned with the solution-quality than proven-optimality. In order to assess the per-
formance of the above warm start procedures under different solution time limits, two
sets of results for each constraint combination were generated. The first was obtained
with a short run time limit of 700 seconds. The second was obtained with a long run time
limit of 3600 seconds (or until an optimal solution is found). For each warm start proce-
dure, we summarize the average percentage gap AveObjGap(%) = ∑

i∈N
Obji−BKSi

BKSi∗N
∗ 100

of the best objective values Obj obtained by our approach from the best known objec-
tive values BKS reported in [8, 9] over the N benchmark instances (N = 13 in our
case) and illustrate the results in Figure 2.3(a). Similarly, the average percentage gap
AveLBGap(%) = ∑

i∈N
BLBi−LBi

BLBi∗N
∗ 100 of the best lower bounds LB from the best known

lower bounds BLB [8] are summarized in Figure 2.3(b). To make the results more read-
able, we properly scaled the vertical axis of the figures. From Figure 2.3(a), we observe
that under the short and long run times, the model under the aggregated gender policy
constraint AGC0 and AGC1 (WS3, WS4, WS7, WS8) can significantly improve the so-
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(a) Solution quality (b) Lower bound (LB) quality

Figure 2.3 – Performance of different models in solving the PRA subproblem

lution quality, while using the aggregated patient transfer constraint ATC (WS2, WS6)
fails to improve the solution quality. Furthermore, the models under constraint GC0 (WS1,
WS2) perform similarly to the models under constraint GC1 (WS5, WS6), whereas the
models under constraints AGC1 always perform better than the models under AGC0.

From Fig. 2.3(b), we observe that the more aggregation constraints are used, the better
LBs are generated in a short run time. On the contrary, the more aggregation constraints
are used, the worse LBs are generated in a long run time. Specifically, the LB quality
generated by warm start procedures in a long run time are as follows: WS1 (0.35%) <

WS5 (0.38%) < WS3 (0.60%) = WS7 (0.60%) < WS2 (6.93%) < WS6 (7.03%) < WS4

(7.09%) < WS8 (7.14%). Moreover, the LBs generated by solving the models under the
constraint ATC (WS2, WS4, WS6, WS8) are difficult to improve for a longer run time,
while LBs generated by solving the models under the constraint TC (WS1, WS3, WS5,
WS7) are easy to improve in comparison.

These results indicate that the impact of using the aggregated constraints is two-fold.
First, using constraint aggregation can significantly reduce the model size and using appro-
priate aggregated method can make the model easier to solve. Second, solving the model
under aggregated constraints may quickly generate a lower bound for the minimization
problem, but the quality of the lower bound is difficult to improve in a long run time.
The reason for this phenomenon can be explained as Section 2.3.3. In summary, this
experiment demonstrates that 1) appropriate formulas of gender policy constraints are
essential for solving the APRAWT model, and 2) the APRA model as the core component
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of the first stage of our two-stage optimization method and APRAAGC1&T C (WS7) using
constraints AGC1 and TC perform the best among all the models we examined.

2.4.3 Comparison with state-of-the-art results

In order to compare our best results with those obtained in previous works, we perform
additional experiments by running warm start procedure WS7 for a time limit of 24 hours
as the previous works [27, 8]. Due to the differences in computers and Gurobi versions
between our work and previous studies, we implement the MIP models of [8] with warm
start WS0 to solve the PRA subproblem and use Gurobi Optimizer 9.0.3 with its default
settings to solve the model.

To compare our results with previous studies, we adjusted the reported run times to
account for CPU performance. We followed the approach used in [8], which is based on the
approach proposed in [107]. The performance ratings of different CPUs have been obtained
online 1 and are shown in the table 2.7. In our study, we used 10 of 16 available cores (20
of 32 threads) on the Intel Xeon Gold 6226R 2.90 gigahertz processor. To the best of our
knowledge, no public performance data exists for this specific configuration. Given that
CPU performance does not scale linearly with the number of cores, we first calculated
the ratio of the performance degradation as follows: Average CPU mark

Total threads×Single thread rating = 26240
2294×32

≈ 0.357. Then, we calculate the estimated CPU mark for 10 cores by 20 threads × single
thread rating × ratio of the performance degradation, i.e., 20 × 2294 × 0.357 ≈ 16379.
The above approach was used to adjust the run times reported in [8] and [9].

Table 2.8 contrasts the best known results in the literature with our best results.
Under the header “Literature Results”, we present the best known objective values BKS

and best known lower bounds BLB for each of the 13 benchmark instances. Moreover,
the reference papers and computational times (adjusted following the procedure detailed
previously) associated with these values have been reported. We show the results generated
by the two-stage approach with the literature’s MIP model under the header “Warm start
WS0 (MIP models of [8])”, and report our results generated by the two-stage approach
using the best model we proposed under the header “Warm start WS7”. For each approach,
we record the best objective (Obj), the total computation time to find the best solution,
the total computation time when Gurobi either proves the optimality or reaches the time
limit (24 hours), the best lower bound (LB) and the number of branch-and-bound nodes

1. https://www.passmark.com/
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visited after the root node in SM, CM, APRAWT and APRA models. We compute the
percentage gaps GAP (%) = Obj−LB∗

LB∗ × 100 of the best objective value found by each
approach from the best lower bound LB∗, which is the maximum value among the lower
bounds reported in the literature as well as those obtained in our study. Furthermore, we
present the objective values, total computation time and the lower bounds as reported by
[8], which were obtained using the warm start approach.

Table 2.7 – Optimization solvers and performance evaluation of CPU

Reference Solver Processor Single thread
rating

Average CPU
mark

Used cores/
Total cores

Used threads/
Total threads

[9] Cplex 15.5.1 Intel Xeon E5-1620 3.60 gigahertz
32 gigabytes RAM 1774 5863 4*/4 8*/8

[8] Gurobi 7.5 Intel i7-3960 × 3.3 gigahertz
64 gigabytes RAM 1793 8390 6*/6 12*/12

This study Gurobi 9.0.3 Intel Xeon Gold 6226R 2.90 gigahertz
256 gigabytes RAM 2294 26240

(16379**) 10/16 20/32

* The authors did not set the specific number of cores. By default, Gurobi and Cplex generally use all of the cores and threads of
the machine.

** Estimated CPU mark for 10 cores.

We first compare the solution generated by our reproduced MIP models with the
solution presented in [8]. From the perspective of the solution quality (best objective
value), the results of 5 instances (9,10,11,12,13) are worse than those in the literature, 6
instances (1,3,4,5,6,7) are the same as in the literature and 2 instances (2,8) are better
than those in the literature. From the perspective of the quality of the lower bounds, the
LB of instance 4 are worse than it in the literature, 4 instances (1,3,5,6) are same to
literature and 8 instances (2,7,8,9,10,11,12,13) are better than those in the literature. The
reasons of above results are due to the used Gurobi version and the performance difference
of the computing machines.

Second, we note that our approach generated new best solutions for 6 out of the
13 tested benchmark instances (2,4,8,9,10,13, note that solutions obtained for instances
1,3,5,6 and 7 are the same as the best known solutions reported in the literature; never-
theless, they were proven to be optimal by our APRAAGC1&T C model within an hour).
Furthermore, our approach improved the best lower bound for 6 out of the 13 instances
(2,3,4,7,8,13). It is worth noting that the optimality of the solution was also proven for
instance 2. Although we have not proven the optimality of instances 4 and 8, the gaps are
very low (< 1%). In particular, although our approach fails to improve the best known
solutions for instances 11 and 12 within a running time limit of 24 hours, it outperformed
the method proposed in [8]. The failure of our approach to improve upon the best known
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solutions for instances 11 and 12 can be attributed to the significantly larger number of
patients and planning periods in these instances. Specifically, these instances have approx-
imately 2-5 times more patients and 2-6 times more planning periods compared to the
others. We also note that our approach is outperformed by the method proposed in [8] in
terms of the lower bounds for instances 9, 10, 11 and 12. This can be attributed to the
fact, as mentiond in Section 4.3.3., that the quality of the linear program (LP) relaxation
bound for aggregated model after constraint aggregation is usally poor compared to the
LP relaxation of the original model.

Third, we analyze the performance of various models in terms of the number of branch-
and-bound nodes visited after the root node. Specifically, we focus on the APRAW T

AGC1 and
APRAAGC1&T C models from our WS7, and the SM and CM models from WS0. On the
one hand, we can observe that for the instances that are solved to optimality by WS7, the
number of nodes in the B&C procedure for WS7 is generally less than WS0. Specifically,
for the instances 1,5,6,7 which are also solved to optimality by WS0, WS0 generated on
average 27395 nodes in SM and 31727 nodes in CM , while WS7 generated on average
2790 nodes in APRAWT and 3529 nodes in APRA. For instances 2 and 3 which can not
be solved to optimality by the WS0, WS0 generated on average 327014 nodes in SM

and 44423 nodes in CM , while WS7 generated on average 16790 nodes in APRAWT and
36808 nodes in APRA. On the other hand, for the instances 4,8,9,10,11,12,13 which can
not be solved to optimality by both WS0 and WS7, the number of nodes in the B&C
procedure for WS7 is generally more than WS0. In particular, WS0 generated on average
71348 nodes in SM and 68 nodes in CM , while WS7 generated on average 117003 nodes
in APRAWT and 46772 nodes in APRA. These results are explained by the fact that
the B&C procedure for APRAW T

AGC1 and APRAAGC1&T C leads to considerably smaller
branch-and-bound trees.

The above comparisons demonstrate that our proposed two-stage optimization ap-
proach, featuring the APRAWT and APRA models, is able to significantly reduce the
computation time compared to the MIP model proposed by [8]. The APRAWT and APRA
models, refined from the IP model proposed by [27] by our proposed 6 rules and con-
straint aggregation, have fewer variables and constraints than those of [8]. In particular,
APRAW T

AGC1 and APRAAGC1&T C , the best version of our proposed models, achieve re-
ductions by 97.29% and 79.47% for variables, and 99.89% and 92.44% for constraints,
respectively. This substantial simplification aligns with the general principle that smaller
models are typically easier to solve than their larger counterparts. Consequently, the num-
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ber of nodes in the B&C procedure is less than that of [8], which leads to a significant
reduction in the computation time.

Finally, we present a breakdown of the cost of our best solutions into different objective
components in Table 2.9. It reports for each instance, the total penalty (Cost), the penalty
associated with gender policy violations (Gen.), the penalty associated with age policy
violations (Age), the penalty not attending to the needed treatment properties (Ned.
prop.), the penalty related to single policy violations (Sng.), the penalty for failing to
assign a patient to a room with his/her preferred capacity (Room pref.), the penalty
incurred by not assigning a patient to the appropriate department (Dept.), the penalty
incurred by not accounting for the prioritized specialism (Spec.), the penalty not attending
to the preferred treatment properties (Pref. prop.), and the penalty related to transfers
policy violations (Trs.).

Table 2.9 – Breakdown of the cost components for the best solutions.

Instance Cost Gen. Age Ned.
pref. Sng. Room

pref. Dept. Spec. Pref.
prop. Trs.

1 651.2 0.0 0.0 0.0 0.0 651.2 0.0 0.0 0.0 0.0
2 1125.6 0.0 0.0 0.0 0.0 1113.6 0.0 12.0 0.0 0.0
3 761.6 0.0 0.0 0.0 0.0 753.6 0.0 8.0 0.0 0.0
4 1151.0 0.0 0.0 0.0 0.0 1040.0 0.0 75.0 36.0 0.0
5 624.0 0.0 0.0 0.0 0.0 624.0 0.0 0.0 0.0 0.0
6 792.6 0.0 0.0 0.0 0.0 789.6 0.0 3.0 0.0 0.0
7 1176.4 0.0 0.0 0.0 0.0 730.4 20.0 158.0 268.0 0.0
8 4058.6 0.0 0.0 0.0 0.0 1433.6 212.0 869.0 1522.0 22.0
9 20677.4 340.0 4500.0 1010.0 0.0 2702.4 282.0 1124.0 10554.0 165.0
10 7799.8 15.0 0.0 0.0 0.0 2964.8 2.0 486.0 4332.0 0.0
11 11630.2 10.0 0.0 5.0 0.0 4327.2 9.0 959.0 6320.0 0.0
12 23234.2 585.0 0.0 195.0 0.0 4823.2 280.0 1751.0 15600.0 0.0
13 9102.2 25.0 30.0 35.0 0.0 2091.2 655.0 1730.0 4470.0 66.0

Most penalties in instances 1-6 are caused by not being able to satisfy room capacity
preferences, and specialisms and room properties preferences also contribute in the same
cases, as reported by [10, 8]. In addition to the above penalties, department violations
appeared for instance 7. For instances 8-13, preferred treatment properties violations
account for most of the cost, and department, Specialism, and preferred room capacity
violations have been consistently detected. Moreover, age policy violations appeared for
instance 9 and 13, and gender violations appear for instances 9, 10, 11, 12 and 13. Finally,
we note that the transfer violations were reported in instances 8, 9 and 13.
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We also used our two-stage optimization approach to solve the original PAS problem,
and the results are given in Appendix C.

2.5 Chapter conclusion

In this chapter, we presented a two-stage exact method for solving the patient admis-
sion scheduling (PAS) problem, which decomposes the PAS problem into two separate
problems, including the patient-room assignment (PRA) subproblem and the patient-bed
assignment (PBA) subproblem. To solve the PRA subproblem, we applied a warm start
approach in which we solve the APRAWT model to generate a high-quality feasible solu-
tion and then use the obtained solution as a warm start to the APRA model.

Our approach generated new best solutions for 6 out of the 13 benchmark instances
from a publicly available repository, and proved the optimality of the solution for one of
these 6 instances. Moreover, for 5 other instances, we obtained the known optimal solutions
in a short time compared to the methods in the literature. Finally, we also applied our
approach to the original PAS problem and performed computational experiments on the
same 13 benchmark instances. We obtained 5 new best solutions, 6 new best lower bounds,
and proved optimality for 6 instances.
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Chapter 3

STOCHASTIC PATIENT ADMISSION

SCHEDULING WITH AN EXPONENTIAL

NUMBER OF SCENARIOS

In this chapter, we present a study on a stochastic variant of the patient admission
scheduling problem, which aims to assign patients to rooms during hospitalization under
the consideration of overstay risk. We build two-stage stochastic programming models to
formulate the problem, where the first stage assigns patients to rooms on the planned
hospitalization days, and the second stage evaluates the expected costs resulting from pa-
tient overstay. Compared to the typical scenario-based model, the proposed state-variable
model is significantly reduced by having a pseudo-polynomial number of variables and
constraints. To solve the state-variable model efficiently, we introduce the sample average
approximation (SAA) method as the first attempt to provide a high-quality initial feasi-
ble solution for the Gurobi solver. Extensive computational experiments were conducted
to evaluate the performance of the proposed models and SAA-SV method. Experimental
results show that our SAA-SV method outperforms the methods of directly solving the
scenario-based model and the state-variable model in terms of solution quality and com-
putational time. In particular, the SAA-SV method can provide high-quality solutions
with an average optimality gap of 1.73% for instance sizes reaching 500 patients and 3.3
× 10150 scenarios within 1 hour. Additional analysis has also been carried out to verify
the advantage of our proposed method over the typical deterministic approach and the
SAA method. The content of this chapter is based on an article submitted to INFORMS
Journal on Computing.
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3.1 Introduction

Previous studies on the PASU problem assume deterministic overstay lengths of pa-
tients, so the deterministic version of the PASU problem is actually tackled. In practice,
inpatient LOS is related with infections, delayed treatments, and postoperative compli-
cations [108]. It is thus quite important to consider the stochastic nature of the overstay
length when making patient admission plan. Otherwise, prolonged stays and cancellations
could be encountered during the execution of the admission plan [8, 12, 109]. Hence, we
investigate the first offline PASU problem under the uncertain overstay lengths of patients
and call it as the stochastic PAS (SPAS) problem. Note that the consideration of the un-
certain LOS has been mostly studied in the surgical case scheduling problem [88, 87, 110,
111, 112, 113, 114, 90, 115]. Our research is dedicated to proposing a novel state-variable
model and an efficient solution method for the SPAS problem. The main contributions of
our work are summarized as follows.

(1) We propose a new stochastic patient admission scheduling (SPAS) problem by con-
sidering the uncertainty of the patient overstay. We treat the SPAS problem as a
two-stage stochastic programming problem, where the first stage assigns patients to
rooms on the deterministic hospitalization days, and the second stage evaluates the
expected cost resulting from patient overstay.

(2) We propose a scenario-based model SPASSB, which evaluates the expected cost by
enumerating all possible scenarios. To deal with the exponential number of scenarios,
we propose its equivalent state-variable model SPASSV to reformulate the second
stage by introducing a set of state variables, state transition constraints and link-
ing constraints. To solve the SPASSV model efficiently, we propose a new SAA-SV

method by additionally using a sample average approximation (SAA) method to gen-
erate an initial feasible solution for the Gurobi solver. To the best of our knowledge,
this work is the first attempt to hybridize SAA method with state-variable modeling
approach for handling stochastic programming problems.

(3) Extensive computational experiments demonstrate that our proposed SAA-SV method
significantly outperforms the methods of directly solving the SPASSB model and
SPASSV model. In particular, the SAA-SV method is capable of finding solutions
with an average optimality gap of 1.73% for large instances reaching 500 patients and
3.3 × 10150 scenarios in 1 hour. In addition, we verify the advantage of the SAA-SV

method over the typical deterministic approach and the SAA method.
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Next section presents the definition of the SPAS problem along with the SPASSB

formulation. Section 3.3 presents the SPASSV formulation and the solution method. Sec-
tion 3.4 presents the computational results and experimental analysis of the proposed
formulations and solution method. Section 3.5 draws the conclusions.

3.2 Problem description and scenario-based stochas-
tic programming model

In this section, we provide the problem definition and terminology of the SPAS problem
and its scenario-based stochastic programming model.

3.2.1 Problem description

The terminology of the SPAS problem is similar to that of the standard PAS problem
which is presetned in Chapter 2. The difference is as follows: In the SPAS problem, each
patient has a planned admission date, while the actual admission may be delayed, but no
more than a given number of days. Moreover, each patient may have a risk of extending
his/her LOS, termed overstay, which introduces the possibility that the patient may
need to spend more nights in the hospital. Note that Ceschia & Schaerf [12] assumes that
patients may spend one extra night in the hospital. We consider that patients may spend
more than one extra nights in the hospital, following [116], which is more realistic.

In the SPAS problem, a solution is feasible if each patient is assigned with a bed such
that no hard constraint of types HC1 - HC7, given below, is violated.

HC1: Patient admission - Each patient is admitted during a specified range of days.
HC2: Consecutive nights - Patient’s LOS is continuous. Each patient must stay in the

hospital for the planned LOS.
HC3: Department specialism - Patients must be treated at the departments where the

specialisms they need are offered.
HC4: Mandatory equipment - A patient is assigned to a room with the required room

properties for his/her treatment.
HC5: Age policy - Age policy must be satisfied for all rooms.
HC6: Room capacity - Beds allocated to patients should not overlap on any given night.
HC7: No transfers - Patients cannot be transferred during the overstay period.
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The quality of a feasible solution depends on the satisfaction of 7 types of soft con-
straints. If a soft constraint is violated by a solution, a penalty (a positive integer) is
induced. These soft constraints SC1 - SC7 are defined as follows.

SC1: Delayed admission - Patient’s admission can be delayed, but the sooner the patient
is admitted, the better.

SC2: Gender policy - Gender policy is satisfied for each room.

SC3: Levels of expertise - A patient is assigned to a department with the highest priority
degree for his/her specialism.

SC4: Preferred room capacity - The room type preference for each patient is met.

SC5: Preferred equipment - A patient is assigned to a room with his/her preferred room
properties.

SC6: Transfers - A patient can be transferred from one room to another room over the
planned dates of stay. But the fewer transfers, the better.

SC7: Overcrowd risk - Overcrowded rooms are allowed only if they are used by overstay
patients and the maximum overcapacity cannot exceed a given threshold.

The optimization objective of the SPAS problem is to find a feasible assignment satis-
fying constraints HC1 - HC7, while minimizing a weighted sum of all the penalties of the
unsatisfied soft constraints SC1 - SC7. Formally, let X be the set of all feasible solutions.
For each x ∈ X, its cost is defined by:

Z(x) =
6∑

i=1
WiV

P L
i (x) + Eω

 7∑
i=2|i ̸=6

WiV
OP

iω (x)

 (3.1)

where V P L
i (x) represents the number of times the i-th soft constraint is violated in solution

x during the planned LOS of each patient. V OP
iω (x) denotes the number of times the i-th

soft constraint is violated in solution x for the overstay period under scenario ω, where
each scenario represents a possible realization of the overstay length for each patient. Eω[·]
means the expected total penalty for solution x during the overstay period, with respect
to the probability distribution of the overstay length of each patient. Wi is the penalty
weight of the i-th soft constraint. Thus, the objective of the SPAS problem is to find a
feasible solution x∗ such that for all x ∈ X, Z(x∗) ≤ Z(x).
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3.2.2 Scenario-based stochastic programming model

To formulate the SPAS problem, we consider it as a two-stage stochastic programming
problem as follows: the first stage decides the admission date of each patient from the
allowing dates and assigns suitable rooms on their planned hospitalization days; the second
stage estimates the expected costs, including penalties for assigning patients to rooms
within the overstay period, penalties for overcrowding and violation of gender policy in
each room on each day. Therefore, we propose a scenario-based stochastic optimization
SPASSB model, where scenarios are used to represent the probability distributions of the
overstay length of each patient. The notation used in SPASSB is shown in Table 3.1, and
the model is formulated as follows:

SPASSB : Min
∑
p∈P

∑
i∈DA

p

W De(i−DA0
p )αpi +

∑
p∈P

∑
r∈Rp

∑
i∈DA

p

∑
d∈DL

pi

Cprxprid (3.2)

+
∑

p∈P|Lp≥2

∑
d∈Dp

W T rtpd +
∑
ω∈Ω

Pr(ω)Q1(x, ω)

s.t.
∑

i∈DA
p

αpi = 1 ∀p ∈ P (3.3)

∑
r∈Rp

xprid = αpi ∀p ∈ P , i ∈ DA
p , d ∈ DL

pi (3.4)

∑
p∈P|r∈Rp

∑
i∈DA

p |d∈DL
pi

xprid ≤ Br ∀r ∈ R, d ∈ D (3.5)

tpd ≥
∑

i∈DA
p |d∈DL

pi

xprid −
∑

i∈DA
p |d−1∈DL

pi

xpri,d−1 − 1(d ∈ DA
p )αpd (3.6)

∀p ∈ P|Lp ≥ 2, r ∈ Rp, d = DA0
p + 1, ..., DA1

p + Lp − 1

αpi ∈ {0, 1} ∀p ∈ P , i ∈ DA
p (3.7)

xprid ∈ {0, 1} ∀p ∈ P , r ∈ Rp, i ∈ DA
p , d ∈ DL

pi (3.8)

tpd ∈ {0, 1} ∀p ∈ P|Lp ≥ 2, r ∈ Rp, d = DA0
p + 1, ..., DA1

p + Lp − 1 (3.9)

where

Q1(x, ω) = Min
∑
p∈P

∑
r∈Rp

∑
i∈DA

p

∑
d∈D̃piω

Cprxpri,i+Lp−1 +
∑

r∈RD

∑
d∈D

W RGbrdω (3.10)

+
∑
r∈R

∑
d∈D

W OP zrdω
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Table 3.1 – Notation used for the SPASSB model.

Symbol Description
Sets
P Set of patients (p = 1, · · · , |P|)
D Set of days (i, d = 1, · · · , |D|)
R Set of rooms (r = 1, · · · , |R|)
Ω Set of scenarios (ω = 1, ..., |Ω|)
PM ⊂ P Set of male patients
PF ⊂ P Set of female patients
RD ⊂ R Set of dependent rooms
Rp ⊂ R Set of rooms can be assigned to patient p without violating the hard

constraints HC3, HC4 and HC5
DA

p ⊂ D Set of admission dates of patient p (d = DA0
p , ..., DA1

p )
DL

pi ⊂ D Set of hospitalization dates of patient p who is admitted on day i
(d = i, ..., i + Lp − 1)

D̃piω ⊂ D Set of overstay dates of patient p who is admitted on day i
(d = i + Lp, ..., i + Lp + L̃pω − 1)

Parameters
Gp Gender of patient p (M or F )
Br Number of beds in room r
Lp Length of stay of patient p

L̃pω Length of overstay of patient p under scenario ω
Cpr The penalty of assigning patient p to room r. The room penalties of

SC2 (gender policy M, F, N), SC3 - SC5 are incorporated into the value
W RG Weight of gender policy constraint
W T r Weight of transfers constraint
W OP Weight of overcrowding constraint
Pr(ω) Probability of scenario ω
Or Maximum allowable number of overstay patients who exceed the

capacity of room r
λF

rd, λM
rd Positive numbers

First-stage decision variables
αpi 1 if patient p is admitted on day i, 0 otherwise
xprid 1 if patient p is admitted on day i and assigned to room r on

hospitalization day d, 0 otherwise
tpd 1 if patient p is transferred on day d, 0 otherwise
Second-stage decision variables
urdω 1 if there is at least one female patient in room r on day d under

scenario ω, 0 otherwise
brdω 1 if there are both male and female patients in room r on day d under

scenario ω, 0 otherwise
zrdω Number of patients exceeding the capacity of room r on day d under

scenario ω
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s.t. zrdω ≥
∑
p∈P|
r∈Rp

∑
i∈DA

p

[
1(d ∈ DL

pi)xprid + 1(d ∈ D̃piω)xpri,i+Lp−1
]
−Br (3.11)

∀r ∈ R, d ∈ D, ω ∈ Ω

λF
rd(urdω + brdω) ≥

∑
p∈PF |
r∈Rp

∑
i∈DA

p

[
1(d ∈ DL

pi)xprid + 1(d ∈ D̃piω)xpri,i+Lp−1
]

(3.12)

∀r ∈ RD, d ∈ D, ω ∈ Ω

λM
rd(1− urdω + brdω) ≥

∑
p∈PM |
r∈Rp

∑
i∈DA

p

[
1(d ∈ DL

pi)xprid + 1(d ∈ D̃piω)xpri,i+Lp−1
]

(3.13)

∀r ∈ RD, d ∈ D, ω ∈ Ω

brdω ∈ {0, 1} ∀d ∈ D, r ∈ RD, ω ∈ Ω (3.14)

urdω ∈ {0, 1} ∀d ∈ D, r ∈ RD, ω ∈ Ω (3.15)

zrdω ∈ [0, Or] ∀d ∈ D, r ∈ R, ω ∈ Ω (3.16)

In the first stage, the objective function (3.2) minimizes violations of the soft con-
straints. Each soft constraint has an associated penalty cost that is incurred if it is violated.
The first part calculates the delayed admissions with respect to the earliest admission date,
related to soft constraint SC1. The second part computes the cost of assigning patients
to rooms, which is determined by the combined penalty of soft constraints SC2 (gender
policy M, F, N), SC3, SC4 and SC5. The third part captures the cost associated with
patient transfer related to soft constraint SC6. The last part of the function Q1(x, ω)
is the second-stage recourse function. Constraint (3.3) ensures that each patient is ad-
mitted only once and within the range of admission dates. Constraint (3.4) ensures that
each patient is assigned to a room for every day of their hospitalization based on the
assigned admission date. Constraint (3.5) ensures that the number of patients assigned to
each room does not exceed the room capacity. Constraint (3.6) ensures that the auxiliary
variable tpd becomes 1 if a patient changes room on two consecutive days. Constraints
(3.7)-(3.9) define the domains of the first-stage variables.

In the second stage, the objective function (3.10) minimizes the expected costs, in-
cluding penalties for assigning patients to rooms within the overstay period, penalties for
overcrowding and for violation of gender policy. Constraint (3.11) refers to overcrowding
constraint, which calculates the number of patients exceeding the capacity of each room
for every day under each scenario. In this constraint, 1(·) is an indicator function that is
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equal to 1 if condition (·) is satisfied, and 0 otherwise. Constraints (3.12) and (3.13) refer to
gender policy constraints, where λF

rd = min{Or +Br, |PF
rd|} and λM

rd = min{Or +Br, |PM
rd |},

|PF
rd| and |PM

rd | are the number of female/male patients who can be assigned to room r

on day d without violating hard constraints HC3, HC4 and HC5. These constraints are
formulated based on the work of [7]. Specifically, constraint (3.12) enforces female patient
restrictions, and constraint (3.13) enforces male patient restrictions. Both constraints seek
to avoid the assignment of two distinct genders to the same room, penalizing allocations
where different genders share a room. Constraints (3.14)-(3.16) define the domains of the
second-stage variables.

Suppose that there are N patients who need to be assigned in the given planning
horizon, and each patient may need to spend a maximum number of M extra nights in
the hospital. Then, the number of scenarios is (M + 1)N , where 1 represents that patients
leave the hospital on the day of their planned discharge. If the number of patients is large,
the number of scenarios will increase exponentially. Therefore, the SPASSB model will
become difficult to solve as it contains a large number of second-stage constraints and
variables for these scenarios.

3.3 State-variable modeling and solution method

In this section, we propose a state-variable model SPASSV to reformulate the second-
stage SPAS problem by introducing a set of state variables, state transition constraints
and linking constraints. To better introduce the SPASSV model, we first reconsider the
second-stage SPAS problem from the perspective of Markov Decision Process (MDP).
Then, we present the SPASSV model based on the definition of the given MDP. Finally,
we propose a solution method to solve the SPASSV model efficiently.

3.3.1 MDP perspective on the second-stage SPAS problem

As mentioned in Section 3.2.2, the second-stage SPAS problem is to accurately esti-
mate the expected costs when the patient-room-admissionDay-hospitalizationDay assign-
ment is given. The penalties for assigning patients to rooms within the overstay period
can be observed individually for each patient. The penalties for overcrowding and viola-
tion of gender policy can be observed collectively for each room and each day. Since the
overstay length of each patient is uncertain, it is difficult to directly observe the above
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expected cost. To address this issue, we consider the second-stage SPAS problem from
the viewpoint of MDP by defining the state and action of a specific (d, r) pair as follows.

Given a set of patients who may stay in room r on day d, we need to sequentially
decide whether to reserve a bed for each patient. Note that all decisions that have been
made at an earlier time are irrevocable, we can only observe the result at the end of the
horizon. By doing so, we can frame the second-stage SPAS problem as a finite-horizon
discrete-time MDP. In the following, we provide the basic elements of the MDP for the
second-stage SPAS problem for room r on day d, including decision epochs, states, actions,
transition, and costs.

Decision epochs

Let P̂dr = {p|r ∈ Rp, i ∈ DA
p , d ∈ DL

pi ∪ D̂pi} be the set of patients who may stay in
room r on day d, where D̂pi = {d|d = i + Lp, ..., i + Lp + maxω∈Ω L̃pω − 1} is the set of
days when patient p may overstay after he/she is admitted on day i. In the MDP, we
make the decisions sequentially for patient p ∈ P̂dr, following the ascending order of their
indices. Let Tdr = {0, 1, ..., |P̂dr|} be a set of discrete time steps and at each time step
τ ∈ Tdr \ {|P̂dr|} we need to make a decision. Note that the final time step τ = |P̂dr| does
not require any decision but signifies the system’s transition into the terminal state.

States

We define the state at time step τ , denoted as

sτ =

(pτ , nτ , gτ ), r ∈ RD

(pτ , nτ ), r /∈ RD
(3.17)

where pτ is the patient whose decision has been made in the last time step, nτ is the
number of occupied beds, and gτ is the class of mixed-gender occupancy. The state space,
S, is therefore

S =

{(pτ , nτ , gτ )|τ ∈ T , pτ ∈ P̂0
dr, nτ ∈ Nτdr, gτ ∈ Gτdr}, r ∈ RD

{(pτ , nτ )|τ ∈ T , pτ ∈ P̂0
dr, nτ ∈ Nτdr}, r /∈ RD

(3.18)

where P̂0
dr = P̂dr ∪ {0}, the index 0 introduces a dummy patient, meaning an initial state

with no patients assigned to room r on day d. For time step τ = 0, the dummy patient 0
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is systematically assigned to each room on each day. Nτdr = {0, 1, ..., min(τ, Br + Or)} is
the set of all possible values for the number of occupied beds used by any patient 0 to pτ

who has a bed reserved in room r on day d. Gτdr = {None, ⋃τ
j=1 Gpj

} is set of all possible
room gender state for a dependent room r after assigning any subset of patients 0 to pτ

to that room on day d. The expression ⋃τ
j=1 Gpj

can result in states including OnlyM ,
OnlyF , Mixed, corresponding to rooms occupied by male patients only, female patients
only, or by both genders, respectively.

Actions

We use aτ to define action to make the state transition process clear. At each time step
τ ∈ Tdr \ {|P̂dr|}, the decision requires to determine whether to reserve a bed for patient
pτ+1 in room r on day d. We consider that the first-stage variables xpτ+1rid,∀i ∈ DA

pτ+1

represent that action, i.e., aτ = {xpτ+1rid|i ∈ DA
pτ+1}. Since constraints (3.3) and (3.4) hold,

we have ∑
i∈DA

pτ+1
xpτ+1rid = 0 or 1. Specifically, ∑

i∈DA
pτ+1

xpτ+1rid = 0 means that no bed is
reserved for patient pτ+1 in room r on day d, while ∑

i∈DA
pτ+1

xpτ+1rid = 1 means to reserve
a bed for patient pτ+1 in room r on day d.

Transition

Once the action aτ and state sτ are given, the only stochastic element in the transition
to the next state sτ+1 is that whether patient pτ+1 stays in the hospital or not. We assume
that the overstay length of each patient is stochastic with a known probability distribution.
Let Pr(p, l) be the probability that patient p needs to stay at the hospital on l-th day after
admission. Due to the state sτ = (pτ , nτ ) is a special case of the state sτ = (pτ , nτ , gτ ),
we will present the state transition process for the latter. Consider that the system is
currently in state sτ = (pτ , nτ , gτ ). Due to the fact that nτ and gτ are independent of
each other, we can consider them separately. The state transition process for nτ → nτ+1

follows Eq. (3.19). We can see that there are three possible transitions for nτ → nτ+1: 1)
not reserving a bed for patient pτ+1 in room r on the day d, then nτ+1 = nτ ; 2) reserving
a bed for patient pτ+1 in room r on day d, and he/she still stays in the hospital, then
nτ+1 = nτ + 1; 3) reserving a bed for patient pτ+1 in room r on day d, but he/she has
been discharged, then nτ+1 = nτ .
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nτ+1 =



nτ ,
∑

i∈DA
pτ+1

xpτ+1rid = 0

nτ + 1 with probability Pr(pτ+1, d− i + 1), xpτ+1rid = 1

nτ with probability 1− Pr(pτ+1, d− i + 1),

(3.19)

The state transition process for gτ → gτ+1 follows Eq. (3.20), which is similar to the
state transition process for nτ → nτ+1.

gτ+1 =



gτ ,
∑

i∈DA
pτ+1

xpτ+1rid = 0

Gpτ+1 ∪ gτ with probability Pr(pτ+1, d− i + 1), xpτ+1rid = 1

gτ with probability 1− Pr(pτ+1, d− i + 1),

(3.20)

Cost

The cost associated with a given state-action pair (sτ , aτ ) includes the penalties for
overcrowding and violating gender policy when reserving a bed for patient pτ+1 in room
r on day d. It is easy to know that these penalties are zero if ∑

i∈DA
pτ+1

xpτ+1rid = 0. Thus,
we only need to consider xpt+1rid = 1. Let W EOP

drτni be the expected overcrowding penalty
for reserving a bed for patient pτ+1 admitted on day i in room r on day d with n occupied
beds. Its value can be computed as Eq. (3.21).

W EOP
drτni =

W OP Pr(pτ+1, d− i + 1), nτ ≥ Br

0, nτ ≤ Br − 1
(3.21)

Let W ERG
drτgi be the expected cost of violating the gender policy for reserving a bed for

patient pτ+1 admitted on day i in dependent room r on day d if mixed-gender occupancy
is g. Its value can be computed as Eq. (3.22).

W ERG
drτgi =


W RG Pr(pτ+1, d− i + 1), (gτ = OnlyM ∧Gpτ+1 = F )

∨ (gτ = OnlyF ∧Gpτ+1 = M)

0, otherwise

(3.22)

67



Partie II, Chapter 3 – Stochastic patient admission scheduling problem with an exponential
number of scenarios

3.3.2 State-variable model

Based on the above definition, our state-variable model SPASSV computes the second-
stage objective by observing the state following the first-stage decisions over a number of
time steps. In addition to the notations mentioned above, the following two sets are also
used.

GA
g : set of all possible predecessor states immediately prior to state g in the state transition

process, i.e., GA
None = {None}, GA

OnlyM = {None, OnlyM}, GA
OnlyF = {None, OnlyF},

GA
Mixed = {OnlyF , OnlyM , Mixed}.

N ′
τdr: set of all possible values for the number of occupied beds by any patients 0 to pτ

who has a bed reserved in room r, assuming that there is a bed available for patient
pτ+1 on day d (n = 0, 1, ..., min(τ, Br + Or − 1)). Note that the difference between
Nτdr and N ′

τdr lies that we ignore adding the future patient pτ+1 in Nτdr. On the
contrary, we consider adding patient pτ+1 in N ′

τdr to make sure that there will be a
bed available for patient pτ+1 in room r on day d.

We introduce the following variables to denote the probability distribution of each
state-action pair. We refer to these variables as state variables and index each variable by
the corresponding state and action. Due to the fact that the state elements nτ and gτ are
independent of each other, we consider them separately. According to Section 3.3.1, the
state transition depends on the admission date of the next patient when reserving a bed
for that patient. Thus, the state variables are accordingly indexed by the admission date.

y1
drτni: The probability of the number of occupied beds being equal to n on day d in room

r at time step τ , and we also reserve a bed in the same room for patient pτ+1 who
is admitted on day i (i.e., xpτ+1,rid = 1).

y0
drτn: The probability of the number of occupied beds being equal to n on day d in room

r at time step τ , and we do not reserve a bed in the same room for patient pτ+1 (i.e.,∑
i∈DA

pτ+1
xpτ+1,rid = 0).

q1
drτgi: The probability of mixed-gender occupancy being g on day d in room r at time

step τ , and we also reserve a bed in the same room for patient pτ+1 who is admitted
on day i (i.e., xpτ+1,rid = 1).

q0
drτg: The probability of mixed-gender occupancy being g on day d in room r at time step τ ,

and we do not reserve a bed in the same room for patient pτ+1 (i.e., ∑
i∈DA

pτ+1
xpτ+1,rid =

0).
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To better understand the state variables y1
drτni and y0

drτn, Figure 3.1 provides an illustra-
tion of state transition (3.19) using these state variables for room r on day d. Specifically,
each node in the figure represents a state, and each arrow line represents a state variable.
The initial state is (0-0), and the final state is (End). Multiple arrow lines connect node
(pτ -nτ ) to node (pτ+1-nτ +1), where each arrow line represents a state variable y1

drτni. The
total number of arrow lines between the nodes (pτ -nτ ) and (pτ+1-nτ + 1) is equal to the
number of days in the set DA

pτ+1 . In addition, there are two types of arrow lines connecting
the node (pτ -nτ ) to the node (pτ+1-nτ ) including the arrow lines representing the state
variable y1

drτni and the arrow lines representing the state variable y0
drτn. Thus, the total

number of arrow lines between the nodes (pτ -nτ ) and (pτ+1-nτ ) is equal to |DA
pτ+1| + 1.

Due to that no patient needs to be decided at time step τ = |P̂dr|, only one arrow line
connects the node (p|P̂dr|-n) and the node (End) representing the state variable y0

dr|P̂dr|n.

which possibility is                                   .

0-0

…

End

… …

…
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Take decision          .

Take decision and patient          is in hospital,  

Take decision but patient          has

already left, which possibility is

.

y
1

drτni
pτ+1

Pr(pτ+1, d− i+ 1)

y
1

drτni
pτ+1

1− Pr(pτ+1, d− i+ 1)

y
0

drτn

pτ - n

p|P̂dr|

p|P̂dr|

p|P̂dr|

p|P̂dr|

State: After deciding whether to reserve a bed for patient        

          in room r on day d, the room has n patients on that day.  

pτ

Figure 3.1 – An illustration of state transition (3.19) using state variables y1
drτni and y0

drτn.

It is clear that, for any state of the figure except the states (0-0) and (End), the sum of
probabilities of all outgoing arrow lines is equal to the sum of probabilities of all incoming
arrow lines. Therefore, we can write a state transition constraint that links the state
variables of state (pτ , nτ ) to the state variables of previous states (pτ−1, nτ−1) for room r

on day d, as constraint (3.23). Both sides of the constraint (3.23) independently represent
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the probability that the number of occupied beds at time step τ is equal to n in room r on
day d. The left-hand side properly calculates this probability value by condition probability
relations based on the probabilities y1

dr,τ−1,ni, y1
dr,τ−1,n−1,i and y0

dr,τ−1,n. Moreover, the right-
hand side calculates this probability value by using the probabilities y1

drτni and y0
drτn.

According to the transition process (3.19), it is clear that the left-hand side of constraint
(3.23) computes this probability correctly. Considering the actions that can be taken in
the state (pτ , nτ ), it is clear that the right-hand side of it also computes this probability
correctly.

∑
i∈DA

pτ

{
1

(
n− 1 ∈ N ′

τ−1,dr

)
y1

dr,τ−1,n−1,i Pr(pτ , d− i + 1)

+1
(
n ∈ N ′

τ−1,dr

)
y1

dr,τ−1,ni [1− Pr(pτ , d− i + 1)]
}

+1 (n ∈ Nτ−1,dr) y0
dr,τ−1,n = 1

(
τ ̸= |P̂dr| ∧ n ∈ N ′

τdr

) ∑
i∈DA

pτ+1

y1
drτni + y0

drτn

∀d ∈ D, r ∈ R, τ ∈ Tdr \ {0}, n ∈ Nτdr (3.23)

Figure 3.2 provides an example to illustrate the state transition (3.20) using the state
variables q1

drτgi and q0
drτg for room r on day d. Note that this state transition diagram

depends on the gender of each patient. For simplicity, we give an example where only
patient p1 is male (Gp1 = M), and all others are female (Gpτ = F , τ = 2, ..., |P̂dr|). Like
Figure 3.1, each node in this figure represents a state, and each arrow line represents
a state variable. The initial state is (0-None) and the final state is (End). The total
number of arrow lines between the nodes (pτ -gτ ) and (pτ+1-Gpτ+1 ∪ gτ ) depends on the
state Gpτ+1 ∪ gτ . For example, the number is equal to 2|DA

pτ+1|+ 1 if Gpτ+1 ∪ gτ = gτ . The
number of arrow lines connecting the node (p|P̂dr|-g|P̂dr|) and the node (End) is 1, which
represents the state variable q0

dr|P̂dr|g.

Constraint (3.24) is the state transition constraint that links the state variables of
state (pτ , gτ ) to the state variables of previous states (pτ−1, gτ−1) for room r on day d.
Both sides of constraint (3.24) independently represent the probability that mixed-gender
occupancy at time step τ is g in room r on day d. The left-hand side properly calculates
this probability value by condition probability relations based on the probabilities q1

dr,τ−1,gi,
q1

dr,τ−1,g′,i and q0
dr,τ−1,g. Moreover, the right-hand side calculates this probability value by

using the probabilities q0
drτg and q1

drτgi. Considering the transition process (3.20) for state
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           is g on that day.  

pτ
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Figure 3.2 – An illustrative example of state transition constraint (3.20) using state vari-
ables q1

drτgi and q0
drτg.

element g, it is clear that the left-hand side of constraint (3.24) computes this probability
correctly. Considering those actions that can be taken in the state (pτ , nτ ), it is clear that
the right-hand side of it also computes this probability correctly.

∑
i∈DA

pτ


∑

g′∈GA
g |g′∈Gτ−1,dr

q1
dr,τ−1,g′i Pr(pτ , d− i + 1)

+1 (g ∈ Gτ−1,dr) q1
dr,τ−1,gi [1− Pr(pτ , d− i + 1)]

}
+1 (g ∈ Gτ−1,dr) q0

dr,τ−1,s = 1
(
τ ̸= |P̂dr|

) ∑
i∈DA

pτ+1

q1
drτgi + q0

drτg

∀d ∈ D, r ∈ RD, τ ∈ Tdr \ {0}, g ∈ Gτdr (3.24)

Based on the above definition of the state variables and the state transition constraints,
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we formulate the SPASSV model as follows:

SPASSV : Min
∑
p∈P

∑
i∈DA

p

W De(i−DA0
p )αpi +

∑
p∈P

∑
r∈Rp

∑
i∈DA

p

∑
d∈DL

pi

Cprxprid (3.25)

+
∑

p∈P|Lp≥2

∑
d∈Dp

W T rtpd + Q2(x)

s.t. Constraints (3.3)− (3.9)

where

Q2(x) = Min
∑
p∈P

∑
r∈Rp

∑
i∈DA

p

∑
d∈D̂pi

Pr(p, d− i + 1)Cprxpri,i+Lp−1 (3.26)

+
∑
d∈D

∑
r∈R

∑
τ∈Tdr\{|P̂dr|}

∑
n∈N ′

τdr

∑
i∈DA

pτ+1

W EOP
drτniy

1
drτni

+
∑
d∈D

∑
r∈RD

∑
τ∈Tdr\{|P̂dr|}

∑
g∈Gτdr

∑
i∈DA

pτ+1

W ERG
drτgi q

1
drτgi

s.t. Constraints (3.23) and (3.24)∑
n∈N ′

τdr

y1
drτni = 1

(
d ∈ DL

pτ+1i

)
xpτ+1rid + 1

(
d ∈ D̂pτ+1i

)
xpτ+1ri,i+Lp−1 (3.27)

∀d ∈ D, r ∈ R, τ ∈ Tdr \ {|P̂dr|}, i ∈ DA
pτ+1∑

n∈Nτdr

y0
drτn = 1−

∑
i∈DA

pτ+1

[
1

(
d ∈ DL

pτ+1i

)
xpτ+1rid + 1

(
d ∈ D̂pτ+1i

)
xpτ+1ri,i+Lp−1

]
(3.28)

∀d ∈ D, r ∈ R, τ ∈ Tdr \ {|P̂dr|}∑
g∈Gτdr

q1
drτgi = 1

(
d ∈ DL

pτ+1i

)
xpτ+1rid + 1

(
d ∈ D̂pτ+1i

)
xpτ+1ri,i+Lp−1 (3.29)

∀d ∈ D, r ∈ RD, τ ∈ Tdr \ {|P̂dr|}, i ∈ DA
pτ+1∑

g∈Gτdr

q0
drτg = 1−

∑
i∈DA

pτ+1

[
1

(
d ∈ DL

pτ+1i

)
xpτ+1rid + 1

(
d ∈ D̂pτ+1i

)
xpτ+1ri,i+Lp−1

]
(3.30)

∀d ∈ D, r ∈ RD, τ ∈ Tdr \ {|P̂dr|}

y0
drτn ∈ [0, 1] ∀d ∈ D, r ∈ R, τ ∈ Tdr, n ∈ Nτdr (3.31)

y1
drτni ∈ [0, 1] ∀d ∈ D, r ∈ R, τ ∈ Tdr \ {|P̂0

dr|}, i ∈ DA
pτ+1 , n ∈ N ′

τdr (3.32)

q0
drτg ∈ [0, 1] ∀d ∈ D, r ∈ RD, τ ∈ Tdr, g ∈ Gτdr (3.33)

q1
drτgi ∈ [0, 1] ∀d ∈ D, r ∈ RD, τ ∈ Tdr \ {|P̂0

dr|}, i ∈ DA
pτ+1 , g ∈ Gτdr (3.34)
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The first stage of the SPASSV model and the SPASSB model is the same. In the
second stage, the objective function (3.26) minimizes the expected cost of reserving beds
for patients within the overstay period, as well as the penalties for overcrowding and
for violation of gender policy. Constraints (3.27) and (3.28) are the linking constraints
between first-stage variables xτ+1,rid and the state-variables y1

drτni and y0
drτn. Constraint

(3.27) implies that if xτ+1,rid is equal to 1 (or 0), then the sum of left-hand side state
variables y1

drτni must be equal to 1 (or 0). Constraint (3.28) enforces the sum of left-hand
side state variables y0

drτn must be equal to 1 (or 0) if the sum of xτ+1,rid is equal to 0 (or
1). Similarly, constraints (3.29) and (3.30) are the linking constraints between first-stage
variables xτ+1,rid and the state-variables q1

drτgi and q0
drτg. Constraint (3.29) implies that if

xτ+1,rid is equal to 1 (or 0), then the sum of left-hand side state variables q1
drτg must be

equal to 1 (or 0). Constraint (3.30) enforces the sum of left-hand side state variables q0
drτg

must be equal to 1 (or 0) if the sum of xτ+1,rid is equal to 0 (or 1). Constraints (3.31) to
(3.34) define the domains of the state variables.

3.3.3 Solution method for state-variable model

Although the SPASSV model doesn’t need to create variables for all possible scenar-
ios, it is still difficult to solve the model directly due to a large number of variables and
constraints. Considering that the SAA method can obtain a good approximate solution
with relatively small sample scenarios [90], it is natural to apply the warm-starting strat-
egy [117] which uses SAA to obtain an approximate solution as the initial solution of
the SPASSV model. Therefore, our solution method SAA-SV first solves the SPASSAA

model to obtain an approximate solution and then solves the SPASSV model using the
obtained solution as the initial solution.

General scheme

Algorithm 1 presents the general scheme of our proposed SAA-SV method. After
initializing the necessary parameters, it generates a set of scenarios ΩR. Then, it solves
the SPASSAA model within a time limit TLSAA to obtain an approximate solution (x,
t). To evaluate the objective value Obj of the solution (x, t) under the exponential
number of scenarios, it fixes the values of the first-stage variables based on the solution
(x, t) in the SPASSV model and solves it. Once a better solution is found, the best
solution (xSAA, tSAA) of the SAA procedure along with its objective value ObjSAA are
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updated. Since the optimal solution of the SPASSAA model could be obtained before the
time limit TLSAA is reached, we utilize the remaining time TLSAA - elapsed_time to
search for new solutions using a different set of scenarios ΩR and launch a new round
SAA procedure. Given that it is hard to improve the solution quality significantly in the
subsequent iterations, we set a maximum number of iterations MaxIter for the SAA
procedure. The above SAA iterative procedure is repeated until either the time limit
TLSAA or the maximum number of iterations MaxIter is reached. Note that for Iter > 0,
we use the best solution (xSAA, tSAA) as the initial solution of the new SPASSAA model
to accelerate the solution procedure. This is inspired from the iterative local search [118,
119, 120, 121]. Therefore, our proposed SAA process may differ from the traditional
SAA procedure, referred to [122, 123, 124, 90]. After the SAA iterative procedure is
completed, the SPASSV model is solved using (xSAA, tSAA) as the initial solution within
the remaining time. The above-mentioned SAA-SV algorithm can be considered as a new
solution framework for solving two-stage stochastic programming problems, featured by
first producing a high-quality initial solution in a relatively short time and using it as a
good lower bound (i.e. maximum problem) for pruning the search tree [125].

Algorithm 1: Outline of the SAA-SV method for the SPAS problem
Input : A given problem instance NP , the time limit TLSAA and TTL, the

maximum number MaxIter, the number of scenarios |ΩR|.
Output : The best solution (α∗, x∗, t∗) with objective value Obj∗ found so far.

1 Initialize the best objective value in SAA process ObjSAA ← +∞, set the iteration
counter iter ← 0, and the time limit for the current iteration TL(iter) ← TLSAA;

2 while iter < MaxIter and the elapsed time does not reach TLSAA do
3 ΩR ← ScenarioGeneration(NP, |ΩR|);
4 if iter = 0 then
5 (x, t) ← SolveModel(SPASSAA, NP , ΩR, TL(iter));
6 else
7 (x, t) ← SolveModel(SPASSAA, NP , ΩR, xSAA, tSAA, TL(iter));
8 Obj ← Fix-and-Solve(SPASSV , NP , x, t);
9 if Obj < ObjSAA then

10 (xSAA, tSAA) ← (x, t), ObjSAA ← Obj;
11 iter ← iter + 1, TL(iter) ← TLSAA − elapsed_time;
12 (α∗, x∗, t∗,Obj∗) ← SolveModel(SPASSV , NP , xSAA, tSAA,

TTL− elapsed time);
13 return (α∗, x∗, t∗,Obj∗);
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Scenario generation

The performance of the SAA procedure is dependent on the number of samples avail-
able [94]. Generally, more samples lead to a better approximation of the objective function,
but also increase the computational efforts. Thus, scenario selection is crucial for obtain-
ing a high-quality solution of the SPASSAA model. We are inspired from the approach
of [71] to use a relatively small number of scenarios to provide information regarding the
overstay distributions. In detail, we generate a certain number of scenarios |ΩR|, where the
first scenario uses the expected overstay for each patient. Let Pr(p, l) be the probability of
patient p needing to stay at the hospital on l-th day after admission. Then, the expected
overstay days of patient p is L̃p = arg min{l − Lp − 1 : Pr(p, l) < 0.5}. The remaining
scenarios are constructed by random sampling to capture the overstay distribution.

SPASSAA model

The SPASSAA model can be derived by replacing all scenarios with sampled scenarios
ΩR and substituting Pr(ω) in the objective function (3.2) with the sampling probabil-
ity. However, the search space of the SPASSAA model is large due to the patient-room-
admissionDay-hospitalizationDay assignment variables. By prohibiting patient transfer
during their stay, we limit the search space by considering the patient-room-admissionDay
assignment variables, resulting in a special case of the SPASSAA model. Thus, to accel-
erate the solution procedure, we solve the SPASSAA model without transfers constraint,
which is similar to the work of [7, 8, 9].

Our SPASSAA model is inherited from the SPASSB model by removing the variables
αpi and tpd and replacing xprid by xpri, a binary variable taking the value of 1 if patient p is
admitted on day i and allocated to room r, and 0 otherwise. The corresponding objective
function and constraints are also adjusted accordingly. Thus, the SPASSAA model is
formulated as follows:

SPASSAA :Min
∑
p∈P

∑
r∈Rp

∑
i∈DA

p

(
W De(i−DA0

p ) + LpCpr

)
xpri + 1

|ΩR|
∑

ω∈ΩR

Q′
1(x, ω) (3.35)

s.t.
∑

r∈Rp

∑
i∈DA

p

xpri = 1 ∀p ∈ P (3.36)

∑
p∈P|r∈Rp

∑
i∈DA

p |d∈DL
pi

xpri ≤ Br ∀r ∈ R, d ∈ D (3.37)

xpri ∈ {0, 1} ∀p ∈ P , r ∈ Rp, i ∈ DA
p (3.38)
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where

Q′
1(x, ω) =

∑
p∈P

∑
r∈Rp

∑
i∈DA

p

L̃pωCprxpri +
∑

r∈RD

∑
d∈D

W RGbrdω +
∑
r∈R

∑
d∈D

W OP zrdω (3.39)

s.t. Constraints (3.14)− (3.16), where ΩR is used instead of Ω

zrdω ≥
∑

p∈P|r∈Rp

∑
i∈DA

p |d∈DL
pi∪D̃piω

xpri −Br ∀r ∈ R, d ∈ D, ω ∈ ΩR (3.40)

λF
rd(urdω + brdω) ≥

∑
p∈PF |r∈Rp

∑
i∈DA

p |d∈DL
pi∪D̃piω

xpri ∀r ∈ RD, d ∈ D, ω ∈ ΩR (3.41)

λM
rd(1− urdω + brdω) ≥

∑
p∈PM |r∈Rp

∑
i∈DA

p |d∈DL
pi∪D̃piω

xpri ∀r ∈ RD, d ∈ D, ω ∈ ΩR (3.42)

3.4 Computational experiments

In this section, we present computational results to demonstrate the effectiveness of
the proposed SPASSB and SPASSV models as well as the SAA-SV method.

3.4.1 Instances design and experimental protocol

We carried out computational experiments on a total of 40 benchmark instances using
the instance generator of [12]. The generator receives the number of departments, rooms,
features, patients, and days as input parameters. It creates a random instance based on
their predefined distributions concerning various features such as the length of stay, the
room capacity, the number of specialisms, etc. Note that Ceschia & Schaerf [12] consider
that the patients might need to spend one extra night in the hospital, which is a special
case of our study. Thus, we moderately adjusted their code (https://bitbucket.org/
satt/PASU/) to create instances that allow patients to overstay for more than one nights.

Table 3.2 shows the main characteristics of the benchmark instances. The instances are
divided into 5 families, each of which is characterized by a different number of departments,
rooms, equipment, patients, specialities and days. For each family, we generate 8 instances
with different Demand-to-Supply Ratios (DSR) and different overstay lengths. The DSR
is defined as the ratio of the total bed demand from all patients, excluding overstays,
to the total number of beds available for all hospitalization days, which we set to be
40%, 50%, 60% and 70%. The overstay length is defined as the maximum number of
days that a patient may overstay. We set the overstay length to be 1 and 2. Thus, we
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have 40 instances in total. All the instances and the code are publicly available (https:
//github.com/NWPU-ORMS/SPAS).

Table 3.2 – Main characteristics of the benchmark instances.

Family of instances Departments Rooms Equipment Patients Specialites Days

Small short (S-S) 4 8 4 50 3 14
Small mid (S-M) 4 8 4 100 3 28
Small long (S-L) 4 8 4 200 3 56
Med short (M-S) 6 40 5 250 10 14
Med mid (M-M) 6 40 5 500 10 28

Table 3.3 lists the cost setting used to penalize soft constraint violations, which is the
same as [12, 41, 108]. Moreover, the maximum allowable number of overstay patients who
exceed the capacity of room r is set to be Br. The value of Br is provided by the instance
generator, with values being 1, 2, 4, or 6 for each room.

Table 3.3 – Weights of the soft constraints.

Constraint SC1 SC2 SC3 SC4 SC5 SC6 SC7
Weight 2 50 20 10 20 100 1

Our models were implemented and solved using Gurobi Optimizer 11.0.0 with its
default parameter settings. Branch-and-cut (B&C) is the default algorithm of Gurobi to
solve the MIP models. Experiments were run on a cluster with each node running Linux
with Inter(R) Xeon(R) Gold 6226R 2.90GHz CPU and 256Gb RAM. The number of CPU
cores used was set to be 1. All experiments were performed for a time limit of 3600 seconds.
For SAA-SV method, we set the number of scenarios |ΩR| to 10 by referring to [71]. The
maximum number of iterations MaxIter is set to 3 and the maximum running time to
solve the SPASSAA model is set to half of the total time limit.

3.4.2 Computational Results

As mentioned in Section 3.2.2, the number of scenarios increases exponentially with
the number of patients, making the SPASSB model difficult to solve. In our experiments,
we found that all instances are intractable for the SPASSB model due to insufficient
memory errors. Thus, we do not report the computational results of the SPASSB model.
To simplify the expression, we refer to solving the SPASSV model directly as the SV
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method in the following. Moreover, we directly solved a relaxed SPASSV model within a
maximum computation time of 24 hours to obtain lower bounds, which we refer to as the
RSV method.

Tables 3.4 and 3.5 report computational results obtained by RSV , SV and SAA-SV

methods on instances with 1 day and 2 days overstay, respectively. Under the header “Ω”,
we give the approximate number of scenarios for each instance. Under the header “V ar.”
and “Con.”, we present the number of variables and constraints in the SPASSV model.
For the RSV method, we record the optimal objective value which also serves as the best
lower bound. For the SV and SAA-SV methods, we record the best objective value (Obj),
the total computation time to find the best solution, the total computation time when
Gurobi either proves the optimality or reaches the time limit, the best lower bound (LB).
We compute the percentage gaps Gap(%) = (Obj−LB∗)/LB∗×100 of the best objective
value found by each method from the best lower bound LB∗ among these three methods.
The symbol “-” indicates that no feasible solution or no lower bound is found within the
time limit.

Table 3.4 – Computational comparisons among RSV, SV and SAA-SV for instances with
1 day overstay (best solutions and best lower bounds in bold, proven optimal solutions
in star*).

Instance Ω V ar. Con. RSV

SV SAA-SV

Obj
Time

to
Best

Time
to

End
LB

Gap
(%) Obj

Time
to

Best

Time
to

End
LB

Gap
(%)

S-S-40

1.1×1015

32,984 21,389 6,078.5 6,180.3* 335.3 335.7 6,180.3 0.00 6,180.3* 0.2 166.8 6,180.3 0.00
S-S-50 49,848 30,288 6,365.4 6,596.0* 619.5 664.6 6,596.0 0.00 6,596.0* 429.4 575.1 6,596.0 0.00
S-S-60 34,552 22,885 6,607.3 6,616.7* 73.7 74.0 6,616.7 0.00 6,616.7* 48.2 48.8 6,616.7 0.00
S-S-70 35,022 24,057 10,665.3 10,828.5* 636.9 642.3 10,828.5 0.00 10,828.5* 4.4 233.5 10,828.5 0.00
S-M-40

1.3×1030

108,329 56,211 11,108.2 11,125.1* 369.7 371.1 11,125.1 0.00 11,125.1* 0.6 156.3 11,125.1 0.00
S-M-50 118,719 66,127 17,299.4 17,376.9* 1,150.7 1,152.6 17,376.9 0.00 17,376.9* 10.3 269.6 17,376.9 0.00
S-M-60 96,803 55,695 16,249.6 16,455.6 1,839.4 3,600.0 16,382.8 0.44 16,455.6 1,332.7 3,600.0 16,359.1 0.44
S-M-70 108,678 65,247 22,515.5 23,193.4 699.2 3,600.0 22,700.9 2.17 22,984.3 617.9 3,600.0 22,698.1 1.25
S-L-40

1.6×1060

635,815 251,268 43,046.9 43,116.6 3,515.5 3,600.0 43,083.4 0.05 43,095.5* 1,337.5 1,338.6 43,095.5 0.00
S-L-50 623,616 276,242 44,575.8 52,802.6 3,070.4 3,600.0 44,726.9 18.03 45,093.8 468.4 3,600.0 44,737.4 0.80
S-L-60 406,517 194,530 64,509.9 68,485.0 3,599.5 3,600.0 64,879.7 5.56 66,330.0 1,800.4 3,600.0 64,816.9 2.24
S-L-70 570,769 256,261 39,686.5 43,137.5 2,937.7 3,600.0 39,871.2 8.19 40,350.4 1,272.9 3,600.0 1,070.3 1.20
M-S-40

1.8×1075

620,306 386,973 28,687.3 - - 3,600.0 - - 29,050.1 185.2 3,600.0 28,792.7 0.89
M-S-50 620,306 386,973 43,411.5 107,637.7 26.2 3,600.0 - 147.95 44,029.0 1,800.7 3,600.0 - 1.42
M-S-60 577,077 356,233 52,500.7 - - 3,600.0 - - 53,131.0 595.3 3,600.0 - 1.20
M-S-70 755,658 462,863 44,714.4 - - 3,600.0 - - 45,899.4 1,760.6 3,600.0 - 2.65
M-M-40

3.3×10150

3,144,281 1,486,832 82,670.9 218,393.8 151.6 3,600.0 - 164.17 83,351.7 1,820.4 3,600.0 - 0.82
M-M-50 2,474,668 1,260,412 105,120.4 - - 3,600.0 - - 106,411.2 1,816.1 3,600.0 - 1.23
M-M-60 2,919,879 1,441,813 99,437.1 - - 3,600.0 - - 102,299.9 1,200.3 3,600.0 - 2.88
M-M-70 3,229,928 1,656,556 88,747.3 - - 3,600.0 - - 90,514.3 1,477.3 3,600.0 - 1.99

In terms of lower bounds, we find that the SAA-SV method and the SV method find
the same best lower bounds for 12 instances. For other instances, the SAA-SV , SV and
RSV methods finds best lower bounds for 5 instances, 10 instances, and 13 instances,
respectively. In addition, the SV and SAA-SV methods fail to find lower bounds for 14
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Table 3.5 – Computational comparisons among RSV, SV and SAA-SV for instances with
2 days overstay (best solutions and best lower bounds in bold, proven optimal solutions
in star*).

Instance Ω V ar. Con. RSV

SV SAA-SV

Obj
Time

to
Best

Time
to

End
LB

Gap
(%) Obj

Time
to

Best

Time
to

End
LB

Gap
(%)

S-S-40

7.2×1023

38,265 23,770 6,260.1 6,385.9* 16.9 20.2 6,385.9 0.00 6,385.9* 203.9 204.5 6,385.5 0.00
S-S-50 56,765 33,612 6,503.4 6,770.9* 1,599.8 1,600.1 6,770.9 0.00 6,770.9* 1,561.1 1,561.4 6,770.9 0.00
S-S-60 40,640 25,866 6,894.5 6,920.6* 98.5 98.9 6,920.6 0.00 6,920.6* 4.6 83.2 6,920.6 0.00
S-S-70 40,367 27,083 10,990.4 11,155.4* 329.1 399.0 11,155.4 0.00 11,155.4* 345.7 370.1 11,155.4 0.00
S-M-40

5.2×1047

127,104 63,189 11,521.4 11,609.6* 414.0 547.1 11,609.6 0.00 11,609.6* 371.2 372.3 11,609.6 0.00
S-M-50 137,506 74,289 18,109.1 18,220.3* 497.0 498.2 18,220.3 0.00 18,220.3* 397.3 398.0 18,220.3 0.00
S-M-60 112,564 62,504 17,095.5 17,327.6 3,503.4 3,600.0 17,232.1 0.55 17,313.9 611.2 3,600.0 17,226.9 0.47
S-M-70 126,577 73,235 23,588.0 24,816.0 3,601.0 3,600.0 23,784.6 4.25 24,165.0 2,063.6 3,600.0 23,804.6 1.51
S-L-40

2.7×1095

739,778 275,602 45,174.7 45,250.6 3,138.9 3,600.0 45,218.0 0.04 45,233.2* 2,225.4 2,297.1 45,233.2 0.00
S-L-50 722,985 306,415 46,326.7 55,144.8 2,886.0 3,600.0 46,529.9 18.51 47,046.1 1,797.1 3,600.0 - 1.11
S-L-60 467,628 215,592 67,428.9 73,062.5 3,231.3 3,600.0 67,863.0 7.66 69,601.9 3,287.9 3,600.0 67,699.5 2.56
S-L-70 654,485 282,130 41,165.2 - - 3,600.0 - - 41,911.0 767.0 3,600.0 1,081.2 1.81
M-S-40

1.9×10119

834,050 459,281 29,554.0 37,777.2 3,464.5 3,600.0 29,663.5 27.35 30,064.2 309.2 3,600.0 - 1.35
M-S-50 703,440 427,317 44,430.3 109,754.9 30.5 3,600.0 - 147.03 45,130.7 1,757.0 3,600.0 - 1.58
M-S-60 659,295 397,177 54,156.4 60,482.6 3,088.2 3,600.0 54,407.1 11.17 55,081.4 1,117.3 3,600.0 54,311.2 1.24
M-S-70 849,857 508,277 46,105.2 56,722.3 2,734.8 3,600.0 46,229.7 22.70 47,509.3 1,565.0 3,600.0 - 2.77
M-M-40

3.6×10238

3,631,575 1,657,379 85,576.5 229,843.6 243.7 3,600.0 - 168.58 86,698.4 1,220.5 3,600.0 - 1.31
M-M-50 2,839,908 1,403,393 108,832.2 - - 3,600.0 - - 110,687.5 863.2 3,600.0 - 1.70
M-M-60 3,347,442 1,603,485 99,516.8 - - 3,600.0 - - 108,930.2 1,826.0 3,600.0 - 9.46
M-M-70 3,698,436 1,848,135 91,763.7 - - 3,600.0 - - 95,413.3 1,828.3 3,600.0 - 3.98

and 15 instances, respectively. Hence, it is useful to solve the relaxed SPASSV model for
discovering better lower bounds.

In terms of best objective values, the SAA-SV method dominates the SV method.
Specifically, SAA-SV succeeds in finding feasible solutions for all 40 instances, while the
SV method fails for 10 instances. These two methods find the same best solutions for
13 instances, of which 12 optimal solutions are attained. For the remaining 27 instances,
SAA-SV finds better solutions with 2 proven optimal solutions. Moreover, as the size
of the instances increases, the obtained gaps range from 0.00% to 168.58% for SV and
from 0.00% to 9.46% for SAA-SV . It is worth noting that in Table 3.4, SAA-SV finds
high-quality feasible solutions with an average optimality gap of 1.73% for instances with
500 patients and 3.3 ×10150 scenarios.

To conclude, these results demonstrate that our proposed SAA-SV method is quite
effective in terms of both solution quality and computational time.

3.4.3 Effect of stochasticity

We use the Value of Stochastic Solution (VSS) to measure the value gained by con-
sidering uncertain information when solving the problem with known distributions of
random parameters. To compute the VSS, we first need to define the Expected Value
Problem (EVP). Specifically, we replace the random overstay lengths with the expected
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values to create the scenario for the EVP. Moreover, as we mentioned in Section 3.2.1, the
SPAS problem aims to minimize a weighted sum of all the penalties of the unsatisfied soft
constraints SC1-SC7. However, the weight W OP of the overcrowding constraint (SC7) is
only set to 1, which makes the overcrowding constraint less important than the other soft
constraints. Thus, we also consider the weight of the W OP to be 1, 10, 100 and 1000 to
measure the effect of stochasticity.

Tables 3.6 and 3.7 present the objective values of EV P and SAA-SV . To compute
ObjEV P , we solve the EVP and use the obtained solution (x, t) in the SPASSV model
to obtain the objective value under the exponential number of scenarios. Moreover, the
ObjSAA-SV is the best objective value of the SAA-SV method. Moreover, the VSS value
is computed as V SS = (ObjEV P − ObjSAA-SV )/ObjEV P × 100. The symbol “-” indicates
that the solution (x, t) obtained by solving the EV P model is infeasible in the SPASSV

model.

Table 3.6 – Computational results of EVP and SAA-SV on instances with 1 day overstay
with different W OP .

Instance

W OP = 1 W OP = 10 W OP = 100 W OP = 1000

EV P SAA-SV
V SS
(%) EV P SAA-SV

V SS
(%) EV P SAA-SV

V SS
(%) EV P SAA-SV

V SS
(%)

S-S-40 6,180.7 6,180.3 0.01 6,281.4 6,278.3 0.05 6,878.8 6,861.8 0.25 8,683.6 7,117.5 22.00
S-S-50 6,596.0 6,596.0 0.00 6,683.0 6,683.0 0.00 7,006.9 6,945.8 0.88 7,922.0 7,101.7 11.55
S-S-60 6,619.9 6,616.7 0.05 6,667.6 6,658.0 0.14 6,911.6 6,775.5 2.01 8,423.4 6,870.6 22.60
S-S-70 10,836.9 10,828.5 0.08 10,924.2 10,914.6 0.09 11,606.5 11,506.0 0.87 12,693.7 11,907.0 6.61
S-M-40 11,125.1 11,125.1 0.00 11,329.8 11,305.7 0.21 12,220.0 12,015.3 1.70 16,954.0 12,538.0 35.22
S-M-50 17,439.4 17,376.9 0.36 17,577.0 17,488.7 0.50 18,283.1 18,031.7 1.39 22,973.3 18,231.8 26.01
S-M-60 16,461.4 16,455.6 0.03 16,615.1 16,597.8 0.10 17,368.5 17,148.8 1.28 21,823.4 17,459.6 24.99
S-M-70 23,076.1 22,984.3 0.40 23,248.0 23,213.2 0.15 24,508.3 24,283.5 0.93 30,069.7 26,343.9 14.14
S-L-40 43,095.9 43,095.5 0.00 43,282.8 43,258.9 0.06 43,917.2 43,575.6 0.78 48,795.0 43,629.6 11.84
S-L-50 45,683.8 45,093.8 1.31 45,840.8 45,399.8 0.97 47,627.3 46,900.8 1.55 55,335.6 47,491.1 16.52
S-L-60 66,444.1 66,330.0 0.17 67,083.6 66,358.6 1.09 69,559.4 68,231.2 1.95 79,019.0 69,081.1 14.39
S-L-70 40,943.0 40,350.4 1.47 41,269.9 40,794.4 1.17 44,247.0 43,789.0 1.05 56,930.2 46,951.8 21.25
M-S-40 29,106.1 29,050.1 0.19 29,645.5 29,622.4 0.08 32,208.0 31,796.7 1.29 43,437.3 33,451.6 29.85
M-S-50 44,424.5 44,029.0 0.90 44,836.6 44,451.9 0.87 48,064.6 47,169.2 1.90 60,791.4 48,411.2 25.57
M-S-60 53,580.7 53,131.0 0.85 53,982.9 53,594.8 0.72 56,807.4 56,114.0 1.24 69,263.8 59,132.4 17.13
M-S-70 46,377.4 45,899.4 1.04 46,795.8 46,251.6 1.18 50,597.3 48,764.9 3.76 61,260.7 55,459.0 10.46
M-M-40 83,834.4 83,351.7 0.58 84,778.1 84,539.9 0.28 91,710.0 88,770.5 3.31 119,850.1 100,320.9 19.47
M-M-50 107,441.9 106,411.2 0.97 108,391.9 107,758.8 0.59 116,431.9 113,936.1 2.19 145,139.8 117,336.9 23.69
M-M-60 104,817.1 102,299.9 2.46 106,928.5 103,379.6 3.43 115,609.8 109,727.8 5.36 145,133.0 114,370.2 26.90
M-M-70 92,426.5 90,514.3 2.11 93,449.2 92,166.0 1.39 101,864.7 100,043.8 1.82 130,695.8 105,326.3 24.09

Average 0.65 0.65 1.78 20.21

From Table 3.6, we observe that as the weight W OP increases, the VSS values also
increase. Specifically, the average VSS value is 0.65%, 0.65%, 1.78% and 20.21% when
the weight of the W OP is 1, 10, 100 and 1000, respectively. From Table 3.7, we observe
that the EV P leads to feasible solutions for 39 instances, while the SAA-SV method
can find feasible solutions for all instances. The reason for the solutions obtained by the
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Table 3.7 – Computational results of EVP and SAA-SV on instances with 2 days overstay
with different W OP .

Instance

W OP = 1 W OP = 10 W OP = 100 W OP = 1000

EV P SAA-SV
V SS
(%) EV P SAA-SV

V SS
(%) EV P SAA-SV

V SS
(%) EV P SAA-SV

V SS
(%)

S-S-40 - 6,385.9 - 6,546.9 6,523.3 0.36 - 7,487.2 - 11,482.2 9,681.7 18.60
S-S-50 - 6,770.9 - 6,939.6 6,891.5 0.70 7,682.5 7,510.0 2.30 12,085.2 8,325.0 45.17
S-S-60 6,948.4 6,920.6 0.40 7,026.1 6,998.7 0.39 7,588.7 7,225.7 5.02 10,874.8 7,486.6 45.26
S-S-70 11,155.4 11,155.4 0.00 11,283.2 11,283.2 0.00 12,334.9 12,202.8 1.08 15,404.6 14,324.5 7.54
S-M-40 - 11,609.6 - - 11,875.5 - 13,510.6 13,155.6 2.70 24,836.2 14,380.5 72.71
S-M-50 18,272.5 18,220.3 0.29 18,475.9 18,395.6 0.44 19,799.8 19,294.4 2.62 28,826.2 20,126.2 43.23
S-M-60 17,371.7 17,313.9 0.33 17,644.9 17,577.8 0.38 19,195.2 18,790.4 2.15 28,783.2 20,969.3 37.26
S-M-70 - 24,165.0 - - 24,484.0 - 26,960.9 26,439.8 1.97 40,599.4 35,067.9 15.77
S-L-40 45,248.0 45,233.2 0.03 45,534.1 45,496.5 0.08 46,870.5 46,062.6 1.75 57,955.8 46,443.0 24.79
S-L-50 47,177.2 47,046.1 0.28 48,230.9 47,657.9 1.20 51,547.0 50,494.7 2.08 71,457.3 53,077.7 34.63
S-L-60 - 69,601.9 - - 69,955.2 - - 73,316.3 - - 76,404.7 -
S-L-70 42,547.8 41,911.0 1.52 - 42,771.1 - - 47,660.3 - 75,981.1 57,473.6 32.20
M-S-40 - 30,064.2 - - 30,861.1 - 35,041.9 34,375.4 1.94 59,874.0 36,862.9 62.42
M-S-50 - 45,130.7 - - 45,873.8 - 51,250.1 50,052.3 2.39 73,422.7 53,089.4 38.30
M-S-60 - 55,081.4 - - 55,808.8 - - 60,221.1 - - 71,426.2 -
M-S-70 - 47,509.3 - - 48,038.0 - - 52,368.1 - - 73,149.7 -
M-M-40 - 86,698.4 - - 88,188.5 - - 95,950.3 - - 103,331.6 -
M-M-50 - 110,687.5 - - 112,442.2 - - 124,258.5 - - 138,442.3 -
M-M-60 - 108,930.2 - - 110,389.6 - - 124,397.1 - - 137,565.7 -
M-M-70 - 95,413.3 - - 97,662.6 - 116,990.7 110,044.9 6.31 182,760.7 135,298.1 35.08

Average 0.41 0.44 2.69 36.64

EV P being infeasible in SPASSV can be attributed to the fact that the EV P model
only considers one scenario thus fails to provide enough information regarding all possible
overstay days for each patient and leads to exceeding the capacity threshold in some
scenarios. Moreover, the average VSS value for the instances where feasible solutions can
be found with the EV P is 0.41%, 0.44%, 2.69% and 36.64% when the weight W OP is 1,
10, 100 and 1000, respectively. This implies that the SAA-SV method yields solutions
that are significantly better than those obtained by the EV P method, especially when a
large penalty is applied to the overcrowding risk.

3.4.4 Contribution of two models in the SAA-SV method

In order to confirm the contribution of the SPASSAA and SPASSV models in the SAA-
SV method, we further identify the objective values and computational times obtained by
each model. Tables 3.8 and 3.9 present the best objective Obj and the total computation
time Time to find the best solution of each model. Specifically, column SAA gives the
results obtained by solving the SPASSAA model, while column SAA-SV gives the results
obtained by additionally adding the SPASSV model. For a fair comparison, the Obj

reported under column SPASSAA are the objective values evaluated by the SPASSV
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model. The row labeled “#Better” indicates the number of instances for which better
solutions are obtained by incorporating the SPASSAA and SPASSV models.

Table 3.8 – Contribution of two models in SAA-SV on instances with 1 day overstay with
different W OP .

Instance
W OP = 1 W OP = 10 W OP = 100 W OP = 1000

SAA SAA-SV SAA SAA-SV SAA SAA-SV SAA SAA-SV
Obj T ime Obj T ime Obj T ime Obj T ime Obj T ime Obj T ime Obj T ime Obj T ime

S-S-40 6,180.3 0.2 6,180.3 0.2 6,278.3 0.2 6,278.3 0.2 6,861.8 1.7 6,861.8 1.7 7,382.8 0.2 7,117.5 95.0
S-S-50 6,644.7 14.3 6,596.0 429.4 6,712.8 5.8 6,683.0 774.0 6,955.3 1.4 6,945.8 83.8 7,101.7 8.8 7,101.7 8.8
S-S-60 6,617.6 0.3 6,616.7 48.2 6,658.0 0.2 6,658.0 0.2 6,779.0 3.2 6,775.5 292.9 7,335.6 0.3 6,870.6 1,655.5
S-S-70 10,828.5 4.4 10,828.5 4.4 10,914.6 16.9 10,914.6 16.9 11,539.1 15.4 11,506.0 488.6 11,975.0 22.9 11,907.0 155.4
S-M-40 11,125.1 0.6 11,125.1 0.6 11,306.6 0.4 11,305.7 139.7 12,015.3 5.4 12,015.3 5.4 13,199.8 6.6 12,538.0 3,130.2
S-M-50 17,376.9 10.3 17,376.9 10.3 17,491.1 0.7 17,488.7 279.7 18,046.5 0.8 18,031.7 2,319.5 18,314.4 5.0 18,231.8 3,600.6
S-M-60 16,461.8 24.3 16,455.6 1,332.7 16,605.7 17.6 16,597.8 1,742.5 17,153.4 24.7 17,148.8 3,366.5 17,576.1 25.3 17,459.6 3,006.4
S-M-70 22,984.3 617.9 22,984.3 617.9 23,213.2 874.8 23,213.2 874.8 24,283.5 745.2 24,283.5 745.2 28,180.6 982.6 26,343.9 2,338.0
S-L-40 43,095.6 3.5 43,095.5 1,337.5 43,262.8 3.1 43,258.9 1,876.9 43,600.6 18.7 43,575.6 1,276.9 43,629.6 10.7 43,629.6 10.7
S-L-50 45,093.8 468.4 45,093.8 468.4 45,399.8 1,224.1 45,399.8 1,224.1 46,900.8 1,089.3 46,900.8 1,089.3 47,527.6 976.5 47,491.1 3,536.7
S-L-60 66,330.0 1,800.4 66,330.0 1,800.4 66,362.2 1,473.3 66,358.6 1,804.0 68,231.2 1,576.4 68,231.2 1,576.4 69,096.1 740.1 69,081.1 3,078.1
S-L-70 40,350.4 1,272.9 40,350.4 1,272.9 40,794.4 518.2 40,794.4 518.2 43,789.0 1,792.0 43,789.0 1,792.0 46,999.4 1,735.1 46,951.8 3,419.0
M-S-40 29,050.1 185.2 29,050.1 185.2 29,622.4 180.2 29,622.4 180.2 31,796.7 279.6 31,796.7 279.6 33,451.8 246.0 33,451.6 273.2
M-S-50 44,029.0 1,800.7 44,029.0 1,800.7 44,454.8 1,104.2 44,451.9 1,133.3 47,169.2 778.8 47,169.2 778.8 48,411.2 1,466.2 48,411.2 1,466.2
M-S-60 53,131.0 595.3 53,131.0 595.3 53,594.8 1,743.1 53,594.8 1,743.1 56,114.0 1,792.2 56,114.0 1,792.2 59,132.4 1,621.4 59,132.4 1,621.4
M-S-70 45,899.4 1,760.6 45,899.4 1,760.6 46,251.6 1,144.9 46,251.6 1,144.9 48,764.9 1,450.6 48,764.9 1,450.6 55,459.0 1,117.1 55,459.0 1,117.1
M-M-40 83,352.0 1,800.2 83,351.7 1,820.4 84,539.9 958.8 84,539.9 958.8 88,770.5 1,142.7 88,770.5 1,142.7 100,320.9 1,531.6 100,320.9 1,531.6
M-M-50 106,411.6 1,723.2 106,411.2 1,816.1 107,758.8 1,117.5 107,758.8 1,117.5 113,936.1 1,267.5 113,936.1 1,267.5 117,336.9 1,750.8 117,336.9 1,750.8
M-M-60 102,299.9 1,200.3 102,299.9 1,200.3 103,380.3 1,800.6 103,379.6 1,831.4 109,727.8 1,574.5 109,727.8 1,574.5 114,370.2 1,092.5 114,370.2 1,092.5
M-M-70 90,514.3 1,477.3 90,514.3 1,477.3 92,166.0 1,808.4 92,166.0 1,808.4 100,043.8 1,808.3 100,043.8 1,808.3 105,326.3 1,804.4 105,326.3 1,804.4

#Better 6 8 6 11

Table 3.9 – Contribution of two models in SAA-SV on instances with 2 days overstay
with different W OP .

Instance
W OP = 1 W OP = 10 W OP = 100 W OP = 1000

SAA SAA-SV SAA SAA-SV SAA SAA-SV SAA SAA-SV
Obj T ime Obj T ime Obj T ime Obj T ime Obj T ime Obj T ime Obj T ime Obj T ime

S-S-40 6,403.5 3.2 6,385.9 203.9 6,523.9 0.2 6,523.3 68.7 7,531.9 0.2 7,487.2 704.1 11,514.0 0.2 9,681.7 3,493.9
S-S-50 6,798.3 17.1 6,770.9 1,561.1 6,926.0 8.6 6,891.5 811.9 7,510.0 7.3 7,510.0 7.3 8,736.6 19.1 8,325.0 3,349.7
S-S-60 6,920.6 4.6 6,920.6 4.6 7,006.0 3.8 6,998.7 141.8 7,247.7 0.3 7,225.7 1,998.4 7,753.7 0.3 7,486.6 2,944.4
S-S-70 11,183.5 8.6 11,155.4 345.7 11,309.0 9.3 11,283.2 333.3 12,230.9 21.3 12,202.8 2,136.6 14,414.5 12.7 14,324.5 1,835.0
S-M-40 11,611.0 0.9 11,609.6 371.2 11,875.5 1.0 11,875.5 1.0 13,223.0 1.1 13,155.6 3,600.5 15,262.9 20.4 14,380.5 3,605.8
S-M-50 18,230.1 5.7 18,220.3 397.3 18,447.2 0.4 18,395.6 400.5 19,325.3 7.6 19,294.4 2,484.2 20,683.5 0.7 20,126.2 3,604.8
S-M-60 17,316.4 38.7 17,313.9 611.2 17,585.3 22.3 17,577.8 3,377.9 18,943.5 46.6 18,790.4 1,994.5 22,127.3 12.5 20,969.3 3,601.8
S-M-70 24,165.4 1,801.1 24,165.0 2,063.6 24,489.6 1,474.2 24,484.0 2,267.4 26,464.3 1,299.8 26,439.8 2,744.5 35,526.9 276.0 35,067.9 2,786.8
S-L-40 45,233.4 20.6 45,233.2 2,225.4 45,501.0 4.7 45,496.5 3,582.9 46,108.8 21.8 46,062.6 2,536.7 46,449.0 41.1 46,443.0 3,093.1
S-L-50 47,046.1 1,797.1 47,046.1 1,797.1 47,657.9 1,375.1 47,657.9 1,375.1 50,494.7 1,088.8 50,494.7 1,088.8 53,077.7 781.0 53,077.7 781.0
S-L-60 69,620.7 1,592.9 69,601.9 3,287.9 69,955.2 1,700.6 69,955.2 1,700.6 73,316.3 1,210.0 73,316.3 1,210.0 76,475.7 1,552.4 76,404.7 3,384.2
S-L-70 41,911.0 767.0 41,911.0 767.0 42,771.1 822.6 42,771.1 822.6 47,660.3 960.6 47,660.3 960.6 57,473.6 1,602.6 57,473.6 1,602.6
M-S-40 30,064.2 309.2 30,064.2 309.2 30,861.1 118.9 30,861.1 118.9 34,375.4 373.9 34,375.4 373.9 36,862.9 1,488.9 36,862.9 1,488.9
M-S-50 45,130.4 1,757.0 45,130.7 1,757.0 45,873.8 1,062.6 45,873.8 1,062.6 50,052.3 1,313.8 50,052.3 1,313.8 53,089.4 1,564.6 53,089.4 1,564.6
M-S-60 55,081.4 1,117.3 55,081.4 1,117.3 55,812.7 1,800.2 55,808.8 1,811.2 60,222.4 1,054.2 60,221.1 1,825.0 71,426.2 782.8 71,426.2 782.8
M-S-70 47,509.3 1,565.0 47,509.3 1,565.0 48,038.0 1,800.9 48,038.0 1,800.9 52,368.1 1,800.1 52,368.1 1,800.1 73,149.7 1,801.5 73,149.7 1,801.5
M-M-40 86,698.4 1,220.5 86,698.4 1,220.5 88,424.9 882.9 88,188.5 1,079.7 95,950.3 1,676.5 95,950.3 1,676.5 103,331.6 1,802.3 103,331.6 1,802.3
M-M-50 110,687.5 863.2 110,687.5 863.2 112,442.2 1,803.9 112,442.2 1,803.9 124,258.5 1,721.9 124,258.5 1,721.9 138,442.3 1,803.3 138,442.3 1,803.3
M-M-60 108,930.6 1,442.0 108,930.2 1,826.0 110,389.6 1,646.2 110,389.6 1,646.2 124,397.1 394.5 124,397.1 394.5 137,565.7 594.8 137,565.7 594.8
M-M-70 95,925.0 1,805.1 95,413.3 1,828.3 97,662.6 1,808.0 97,662.6 1,808.0 110,044.9 1,540.7 110,044.9 1,540.7 135,298.1 1,816.4 135,298.1 1,816.4

#Better 10 9 9 10

From Table 3.8, we observe that as the W OP increases, the number of better solutions
found by incorporated SPASSAA and SPASSV models also increases. Specifically, if the
SPASSV model is incorporated, it finds better solutions for 6 instances with W OP = 1, 8
instances with W OP = 10, 6 instances with W OP = 100, 11 instances with W OP = 1000.
From Table 3.9, incorporating the SPASSAA and SPASSV models can find better solu-
tions for 10 instances with W OP = 1 or 1000, and 9 instances with W OP = 10 or 100. It
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is worth noting that solving the SPASSAA model can obtain optimal solutions in some
instances, such as S-S-40, S-S-70, S-M-40, S-M-50 in Table 3.8, and S-S-60 in Table 3.9.
The reason can be concluded as follows: 1) The impact of the overstay risk is insignificant,
which means the penalty for the overstay risk is not high enough to affect the solution
quality. 2) The scenarios we sampled, which followed the approach of [71], are representa-
tive of capturing the uncertainty of patient overstays. Furthermore, with larger numbers
of scenarios, the objective value of the SAA model tends to be a more accurate estimate
of the true objective value [126]. Thus, although solving the SPASSAA model can obtain
high-quality solutions through sampling a small number of scenarios, the calculation of
their objective function is inaccurate. Incorporating the SPASSV model, which utilizes
an exponential number of scenarios, can improve the accuracy of their objective values.
In addition, as the size of the instances increases, the number of better solutions found
by incorporating SPASSAA and SPASSV models decreases. This is because solving the
SPASSV model becomes difficult as the size of the instances increases, which is consistent
with the results in Section 3.4.2. For these large-scale instances, the SPASSAA model can
provide a high-quality solution. Thus, it is useful to solve the SPASSAA model first. In
summary, the above results indicate that the proposed SAA-SV method can effectively
combine the advantages of the SPASSAA and SPASSV models to improve the solution
quality and computational efficiency.

3.5 Chapter conclusion

In this chapter, we studied a stochastic variant of the patient admission scheduling
problem (SPAS), which aims to assign patients to rooms during their planned hospital-
ization periods while considering the uncertainty of the overstay days. We considered the
SPAS problem to be a two-stage stochastic programming problem where the first stage
assigns patients to rooms on their planned hospitalization days, and the second stage
evaluates the expected costs resulting from patient overstay. To solve the SPAS problem,
we first proposed a scenario-based model SPASSB, which evaluates the expected cost by
enumerating all possible scenarios. However, it is difficult to produce a solution as the
model size grows exponentially with the number of scenarios. To address this difficulty,
we proposed its equivalent state-variable model SPASSV , which is derived by reformulat-
ing the second stage of the SPASSB model by introducing a set of state variables, state
transition constraints and linking constraints. To solve the SPASSV model efficiently, we
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elaborated a solution method SAA-SV where we solve the SPASSAA model to generate
a high-quality feasible solution and then use it as an initial solution to solve the SPASSV

model.
We conducted extensive computational experiments to evaluate the performance of the

proposed models. First, we compared directly solving the SPASSB model, the SPASSV

model, and using the SAA-SV method. To ensure the solution quality, we also solved
the relaxed SPASSV model to find better lower bounds. The results show that the SAA-
SV method effectively improves the solution quality and computational time. Second, we
measured the effect of stochasticity on the SPAS problem by comparing the solutions
obtained by solving the EVP and the SAA-SV method. The results demonstrate that,
especially when a large penalty is applied to the overcrowding risk, the implementation of
the SAA-SV method yields solutions that are significantly better than those obtained by
the EV P method. Third, we confirmed the contribution of the SPASSAA and SPASSV

models in the SAA-SV method.
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Chapter 4

INTEGRATED PROACTIVE AND REACTIVE

SURGICAL CASE SCHEDULING IN

FLEXIBLE OPERATING ROOMS UNDER

UNCERTAINTY

In this chapter, we present a study on the surgical case scheduling problem in flexible
operating rooms (ORs) under uncertainty (SSFU), which consists of operational decisions
of assignment (assign patients to OR blocks in a given time horizon) and sequencing
(determine the start time of the assigned surgeries in each OR block) while considering
the uncertainties associated with the durations of elective surgeries, the arrivals of emer-
gency surgeries, and their durations. The challenge of handling the SSFU problem lies in
the uncertainty of emergency surgery arrival and the trade-off between elective surgeries
and emergency surgeries. To solve this problem, we adopt an integrated proactive and
reactive strategy, where a proactive SSFU model is first solved to generate an initial elec-
tive surgery plan, and then a reactive SSFU model is solved to dynamically adjust the
plan based on actual surgery durations and emergency arrivals. Moreover, we implement
three mechanisms — reserving capacity, Break-In-Moment, and buffer — to improve the
robustness of the plan. Extensive computational experiments were conducted to evaluate
the performance of the proposed models and mechanisms. The content of this chapter is
based on an article submitted to Production and Operations Management.
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4.1 Introduction

To handle the trade-off between elective surgeries and emergency surgeries, three types
of OR policy can be adopted: dedicated, flexible, and hybrid [14]. The dedicated policy
consists of reserving one or more ORs each day to perform emergency surgeries. Con-
versely, the flexible policy allows elective and emergency surgeries to be performed in all
ORs. Moreover, the hybrid policy is a combination of the dedicated and flexible policies.
A few papers [54, 127, 128] provided a (partial) comparison between different policies.
Generally speaking, the flexible policy can provide a better trade-off between the perfor-
mance of elective and emergency surgeries. However, when adopting the flexible policy,
inserting emergency surgeries can create disruptions to the elective surgeries, implying
longer elective waiting times, OR overtime, cancellations, and rescheduling.

To mitigate the negative impact of inserting emergency surgeries, multiple policies
can be considered in both advance scheduling and allocation scheduling. In the former, a
possible policy is reserving capacity for emergency surgeries [50]. In the latter, two policies
can be considered: distributing the completion times of elective surgeries in a multi-OR
setting (referred to as Break-In-Moments, or BIMs) as evenly as possible [58], and leaving
open slots or larger intervals between scheduled surgeries (referred as buffers, or breaks)
[59]. Moreover, the buffers protect against unforeseen emergency surgeries, but can also
protect against duration uncertainty [14]. It is worth noting that the buffers and reserving
capacity are distinct policies since the buffers are spread out over the ORs and over time
and can be variable in size, whereas the reserved capacity is a continuous number of
OR slices. Therefore, reserving capacity and buffers should be considered simultaneously
when solving the integration of advance scheduling and allocation scheduling problem.
Despite their potential, there is a noticeable research gap, as no study has combined
these mechanisms to solve the integration of advance scheduling and allocation scheduling
problem under duration uncertainty and arrival uncertainty while adopting the flexible
policy. This motivates our work to coordinate the use of these three mechanisms to improve
the efficiency of ORs and increase patient satisfaction. Here, we refer to this problem as
the surgical case scheduling problem in flexible ORs under uncertainty (SSFU).

The main contributions of our work are summarized as follows:

(1) We study the SSFU problem by adopting the integrated proactive and reactive strate-
gies, where a proactive SSFU problem is first solved to generate an initial elective
surgery plan, and then a reactive SSFU problem is solved to dynamically adjust the
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plan based on actual surgery durations and emergency arrivals. To deal with the un-
certainty of surgery durations and emergency arrivals in the proactive SSFU problem,
we implement three policies — reserving capacity, BIM, and buffer — to improve the
robustness of the plan.

(2) We formulate the proactive SSFU problem as a two-stage stochastic programming
problem, where the first stage assigns elective surgeries to OR blocks and determines
the start time of each surgery, and the second stage evaluates the quality of the
obtained plan under different durations of elective/emergency surgeries. We propose a
scenario-based model SSFUP S with the objective of minimizing the longest possible
waiting time of emergency surgeries by inserting buffers, which is different from the
traditional surgical case scheduling problem. We also propose a MIP model SSFURS

to formulate the proactive SSFU problem.
(3) We carried out extensive experimental analysis using challenging test instants with

different characteristics. Extensive computational experiments demonstrate that our
proposed models significantly outperform the traditional deterministic approach under
different block layout strategies. Moreover, we discuss the impact of the buffer mech-
anism on the performance of the surgery plan, and analyze the parameter sensitivity
of the buffer mechanism.

The next section describes the definition of the SSFU problem. Section 4.3 describes
the solution method in detail. Section 4.4 presents the computational results of our pro-
posed models. Section 4.5 draws the conclusions.

4.2 Problem description

SSFU concerns the OR planning and scheduling over a planning horizon of D days.
Specifically, the OR capacity is divided into surgery blocks B over the planning horizon,
which are assigned in advance. Each surgery block b ∈ B is dedicated to only one type of
surgical specialty, and multiple blocks may be assigned to the same specialty. Moreover,
each surgery block b has a pre-allocated time duration L, and allowed maximum overtime
O. Note that for each surgery block, overtime and idle time will be penalized.

The OR capacity is shared between elective surgeries and random emergency surgeries.
The waiting list of elective surgeries, denoted as I, is given at the beginning of the planning
horizon. Each elective surgery i ∈ I has a surgery type and can be assigned to any of
the blocks dedicated to the corresponding surgery type during the planning horizon. The
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surgery duration Di of elective surgery i includes not only the surgery time but also set-up
time, cleaning, etc., which is random and depends on the surgery type. Associated with
each elective surgery, there is a cost for performing and postponing it. For each elective
surgery i ∈ I, we define a set of costs Cib(b = 1, 2, . . . , |B|) and CP

i to represent the cost
of performing elective surgery i in surgery block b and postponing it to the next planning
horizon, respectively. We assume that CP

i > Cib,∀b ∈ B. At the start of the planning
horizon, an initial surgery plan for elective surgeries is established. This plan comprises
a set of elective surgeries to be scheduled within each surgery block, along with their
corresponding start times.

Emergency surgeries arrive randomly, and their durations are also unknown. In ad-
dition, emergency surgeries can be performed in any open operating room. When an
emergency surgery arrives, one must immediately reschedule the surgeries that have not
yet been performed to accommodate it. Possible decisions include canceling or postponing
one or more pre-scheduled elective surgeries. The waiting time of emergency surgeries (the
time from the arrival to the start of the surgery), along with the tardiness (the time from
the scheduled start time to the actual start time) and cancellation of elective surgeries,
will be penalized as they directly impact patient satisfaction and OR efficiency.

The objective of SSFU is to find a plan while maximizing OR efficiency and patient
satisfaction. In detail, we define two classes of objectives as a function of costs related to
performing or postponing elective surgeries, costs related to OR overtime and total idle
time, costs related to tardiness and cancellation of elective surgeries, and costs related to
emergency waiting times. Note that the costs related to performing or postponing elective
surgeries can be determined once the initial surgery plan is established. The rest of the
costs are uncertain and can only be observed after the surgery plan has been executed.

4.3 Solution method

We adopt an integrated proactive and reactive strategy to solve the SSFU problem.
Figure 4.1 illustrates the framework of our solution method. Specifically, it starts with
a scenario generation procedure to generate the scenarios S. Then, a proactive SSFU
problem is solved to generate an initial elective surgery plan. Finally, reactive SSFU
problems are solved to dynamically adjust the plan based on actual surgery durations
and emergency arrivals. To deal with the uncertainty of surgery durations and emergency
arrivals in the proactive SSFU problem, we implement three mechanisms — reserving
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Figure 4.1 – Framework of solution method for the SSFU problem.

capacity, BIM, and buffer — to improve the robustness of the plan.

4.3.1 Proactive SSFU model

Proactive SSFU problem aggregates advance scheduling and allocation scheduling,
which generates an elective surgery plan that assigns elective surgeries to OR blocks and
determines the start time of each surgery while taking into account the stochastic surgery
duration and unpredictable arrivals of emergency surgeries. An elective surgery plan must
be determined before the exact number of emergencies and their arrival time are known.
Consequently, a two-stage modeling framework is appropriate for the optimization model.
Specifically, the first stage decisions are selecting elective surgeries from the waiting list,
assigning them to the surgery blocks, and determining the start time of each selected
surgery, while the second stage decisions focus on scheduling the emergency surgeries
and canceling elective surgeries if necessary. The uncertainties in the optimization model
are the capacity demand of emergency surgeries and the durations of elective surgeries.
These two uncertainties are represented by scenarios, with each scenario being a complete
realization of both aspects.

Considering that the emergency surgeries can arrive at any time during the day, and

89



Partie II, Chapter 4 – Integrated proactive and reactive surgical case scheduling in flexible
operating rooms under uncertainty

must be performed immediately, the elective surgeries should be scheduled in a way that
allows for the potential arrival of emergency surgeries. Thus, we propose to minimize the
maximum possible waiting time of emergency surgeries, which is the worst-case waiting
time of all emergency surgeries. To define the available moments for inserting emergency
surgeries, we adopt the concept of break-in-moments (BIMs) [129]. Figure 4.2 illustrates
the waiting time of emergency surgeries for a given surgery schedule, which involves seven
elective surgeries scheduled in three ORs. Specifically, these moments include the start
and end time of the occupied interval, as well as all finish times of surgeries within the
occupied interval. The interval between two subsequent BIMs is a break-in-interval (BII).
The interval between the end time of one surgery and the start time of the next is a buffer,
represented by the shadowed block. The interval between the end time of the last surgery
and the end time of the OR’s operating time is considered as a slack time, represented by
the gray block. Collectively, the BIMs, buffers, and slack constitute potential times when
emergency surgeries can break into the surgery schedule. It is evident that the longest
possible waiting time of emergency surgeries is the maximum length of BIIs. Therefore,
minimizing the maximum length of BIIs is equivalent to minimizing the longest possible
waiting time of emergency surgeries.

i2

BIM1 BIM2 BIM3 BIM4

i4

BIM5

i1 i3

i6 i7

Occupied IntervalOccupied Interval

BII1 BII2 BII3

i5

time

Surgery

Buffer

Slack

b = 1

b = 2

b = 3

Figure 4.2 – Waiting time diagram for emergency surgeries in a specific surgery schedule.

To reduce the length of BIIs using an optimization model, a fundamental problem is
how to calculate the length of each BII for a given surgery schedule. From Figure 4.2,
we observe that if all ORs are occupied at the beginning of surgery i, a BII must exist,
with its start time equal to the start time of surgery i. All BIIs can be calculated by the
following Theorem 3.
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Theorem 3 (The BII existence theorem) Let fi′ be the completion time of the surgery
i′, and zi be the start time of surgery i. A BII exists whose length is equal to fi′ − zi if the
following two conditions are satisfied:

— The ORs are fully occupied when surgery i starts, meaning that all ORs are either
in use or beginning surgeries at time zi.

— fi′ is the closest completion time strictly later than zi among all surgeries, i.e.,
argmini′∈I|fi′ >zi

fi′ − zi, including the case where i′ = i.

The proof of Theorem 3 is given in the Appendix A.3.
Note that using Theorem 3, we can calculate the length of one BII multiple times, if

the start time of other surgeries is equal to the start time of surgery i which satisfies the
conditions of Theorem 3. For example, in Figure 4.2, the length of BII1 can be calculated
by f4 − z1, f4 − z2, and f4 − z3. Based on Theorem 3, to identify whether all ORs are
occupied at the beginning of elective surgery i, we define two types of binary variables
gii′d and ϕii′d. The first, gii′d = 1 if the start time of surgery i is no less than the start
time of surgery i′ in day d, and gii′d = 0 otherwise. The second, ϕii′d = 1 if the completion
time of surgery i′ is strictly greater than the start time of surgery i in day d, and ϕii′d = 0
otherwise. Figure 4.3 shows different possible cases of time overlap between surgeries i and
i′ and the corresponding values of gii′d and ϕii′d. We can observe that both gii′d and ϕii′d

are equal to 1 in cases b), c), and d), where these two ORs are occupied at the beginning
of surgery i. In addition, we define variable wii′d = 1 if there exists a BII whose start time
is equal to the start time of surgery i and finishes at the completion time of surgery i′ on
day d, and wii′d = 0 otherwise.

The notation used in SSFUP S is shown in Table 4.1, and the model is formulated as
follows:

SSFU PS : min
∑
b∈B

∑
i∈Ib

Cibxib +
∑
i∈I

CP
i

1−
∑

b∈B|i∈Ib

xib

 +
∑
b∈B

COoI
b +

∑
d∈D

CI ld

+
∑
d∈D

CW qMAX
d +

∑
s∈S

P (s)Q(x, s) (4.1)

s.t.
∑

b∈B|i∈Ib

xib ≤ 1 ∀i ∈ I (4.2)

fi ≥
∑

b∈B|i∈Ib

D̄ixib ∀i ∈ I (4.3)
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Table 4.1 – Notation used for the SSFUP S model.

Symbol Description

Sets
I Set of elective surgeries (i = 1, · · · , |I|)
B Set of blocks (b = 1, · · · , |B|)
D Set of days (d = 1, · · · , |D|)
S Set of scenarios (s = 1, · · · , |S|)
Eds Set of emergency surgeries arrived in day d under scenario s (i = 1, · · · , |Eds|)
Ib ⊆ I Set of elective surgeries who can be assigned to block b
Id ⊆ I Set of elective surgeries who can be assigned to day d
Bd ⊆ B Set of blocks in day d
Parameters
Dis Surgery duration of elective surgery i under scenario s

D̄i Average surgery duration of elective surgery i

D̄E
s Average surgery duration of emergency surgery under scenario s

L Regular time of each block
O Maximum allowable amount of overtime
Cib Cost of performing surgery i in block b
CP

i Cost of postponing surgery i

CQ
i Cost of cancelling elective surgery i

CO Unit overtime cost for each block
CI

b Unit idle cost for each block b
CW

i Unit cost of waiting time for possible emergency surgery i
ϵ A very small positive number
P (s) Probability of scenario s
M A very large positive number
First-stage Variables
xib 1 if elective surgery i is assigned to block b, 0 otherwise
γii′b 1 if surgery i and i′ are operated in surgery block b while surgery i is operated after

surgery i′ , 0 otherwise
gii′d 1 if the start time of i is no less than the start time of i′ in day d, 0 otherwise
ϕii′d 1 if the finish time of i is no less than the start time of i′ in day d, 0 otherwise
wii′d 1 if there exists a BII whose start time is equal to the start time of surgery i and

finishes at the completion time of surgery i′ on day d, 0 otherwise
zi Start time of surgery i
fi Finish time of surgery i
oI

b The overtime of surgery block b
ld Total idle time in day d
vb End time of surgery block b
qMAX

d The maximum length of all BIIs in day d
Scecond-stage Variables
uibs 1 if surgery i is cancelled in block b under scenario s, 0 otherwise
ybs Number of emergency surgeries are assigned to block b under scenario s
oII

bs Continuous variable for additional overtime of block b under scenario s
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Figure 4.3 – Different possible overlap cases of surgery i with other surgeries i′ which
assigned to same day d.

fi ≤M
∑

b∈B|i∈Ib

xib ∀i ∈ I (4.4)

fi ≥ fi′ + D̄i −M(3− xib − xi′b − γii′b) ∀b ∈ B; i, i′ ∈ Ib|i < i′ (4.5)

fi′ ≥ fi + D̄i′ −M(2− xib − xi′b + γii′b) ∀b ∈ B; i, i′ ∈ Ib|i < i′ (4.6)

zi = fi −
∑

b∈B|i∈Ib

D̄ixib ∀i ∈ I (4.7)

vb ≥ fi −M(1− xib) ∀d ∈ D; b ∈ Bd; i ∈ Id (4.8)

ld ≥
∑

b∈Bd

vb −
∑
i∈Id

D̄bxib

 ∀d ∈ D (4.9)

oI
b ≥ vb − L ∀b ∈ B (4.10)

zi − zi′ ≤M

2−
∑

b∈Bd|i∈Ib

xib −
∑

b∈Bd|i′∈Ib

xi′b + gii′d

 ∀d ∈ D; i, i′ ∈ Id|i ̸= i′ (4.11)

zi′ − zi − ϵ ≤M

3−
∑

b∈Bd|i∈Ib

xib −
∑

b∈Bd|i′∈Ib

xi′b − gii′d

 ∀d ∈ D; i, i′ ∈ Id|i ̸= i′ (4.12)

fi′ − zi ≤M

2−
∑

b∈Bd|i∈Ib

xib −
∑

b∈Bd|i′∈Ib

xi′b + ϕii′d

 ∀d ∈ D; i, i′ ∈ Id|i ̸= i′ (4.13)

zi − fi′ + ϵ ≤M

3−
∑

b∈Bd|i∈Ib

xib −
∑

b∈Bd|i′∈Ib

xi′b − ϕii′d

 ∀d ∈ D; i, i′ ∈ Id|i ̸= i′ (4.14)

2gii′d ≤
∑

b∈Bd|i∈Ib

xib +
∑

b∈Bd|i′∈Ib

xi′b ∀d ∈ D; i, i′ ∈ Id|i ̸= i′ (4.15)
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2ϕii′d ≤
∑

b∈Bd|i∈Ib

xib +
∑

b∈Bd|i′∈Ib

xi′b ∀d ∈ D; i, i′ ∈ Id|i ̸= i′ (4.16)

∑
i′∈Id

wii′d ≥
∑

i′∈Id|i ̸=i′

gii′d + ϕii′d −
∑

b∈Bd|i′∈Ib

xi′b

− |Bd|+ 2 ∀d ∈ D; i ∈ Id (4.17)

∑
i′∈Id

wii′d ≤
∑

b∈Bd|i∈Ib

xib ∀d ∈ D; i ∈ Id (4.18)

2wii′d ≤ gii′d + ϕii′d ∀d ∈ D; i, i′ ∈ Id|i ̸= i′ (4.19)

qMAX
d ≥ fi′ − zi −M(1− wii′d) ∀d ∈ D; i, i′ ∈ Id (4.20)

xib ∈ {0, 1} ∀b ∈ B; i ∈ Ib (4.21)

gii′d, ϕii′d ∈ {0, 1} ∀d ∈ D; i, i′ ∈ Id|i ̸= i′ (4.22)

wii′d ∈ {0, 1} ∀d ∈ D; i, i′ ∈ Id (4.23)

zi ∈
[
0, L + O − D̄b

]
∀i ∈ I (4.24)

fi ∈ [0, L + O] ∀i ∈ I (4.25)

oI
b ∈ [0, O] ∀b ∈ B (4.26)

ld ∈ [0, (O + L)|Bd|] ∀d ∈ D (4.27)

vb ∈ [0, L + O] ∀b ∈ B (4.28)

qMAX
d ≥ 0 ∀d ∈ D (4.29)

Second-stage model:

Q(x, s) = min
∑
i∈I

∑
b∈B

CQ
i uibs +

∑
b∈B

COoII
bs (4.30)

s.t.
∑

b∈Bd

ybs = |Eds| ∀s ∈ S; d ∈ D (4.31)

oII
bs − oI

b ≥
∑
i∈Ib

Dis(xib − uibs) + D̄E
s ybs − L ∀b ∈ Bd; s ∈ S (4.32)

uibs ≤ xib ∀b ∈ B, i ∈ Ib, s ∈ S (4.33)

ybs ∈ [0, |Eds|] b ∈ Bd; s ∈ S (4.34)

uibs ∈ {0, 1} ∀b ∈ B; i ∈ Ib; s ∈ S (4.35)

oII
b ∈ [0, O] ∀b ∈ B (4.36)

The first-stage objective function (4.1) minimizes the cost of performing and post-
poning surgeries, and the total cost related to OR overtime, idle time, surgeries waiting
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times, and cancellation of scheduled surgeries, where Q(x, s) is the second-stage recourse
function. Constraint (4.2) states that each elective surgery is performed at most in one
block. Constraint (4.3) computes the completion time of each surgery. Constraint (4.4)
ensures that a surgery is scheduled if and only if the surgery is assigned. Constraints (4.5)
and (4.6) are either-or constraints, which determine the precedence among surgeries in
the same block. Constraint (4.7) computes the start time of each surgery. Constraint (4.8)
computes the completion time of each block. Constraint (4.9) computes the total idle time
of each day. Constraint (4.10) computes the overtime of each block.

Constraints (4.11)-(4.20) are the BIMs constraints, which calculate the length of the
BIIs. Constraints (4.11) and (4.12) ensure that if the start time of surgery i is no less than
the start time of surgery i′ on day d, then the variable gii′d is set to 1. Constraints (4.13)
and (4.14) ensure that if the completion time of surgery i is no less than the start time of
surgery i′ on day d, then the variable ϕii′d is set to 1. Constraints (4.15) and (4.16) ensure
that the variables gii′d and ϕii′d can measure the overlap between two surgeries if and only
if these two surgeries are operated. Constraint (4.17) ensures that there must exist a BII
whose start time equals the start time of surgery i if all ORs are occupied at the beginning
of the surgery i. The proof of the validity of the constraint (4.17) is given in Appendix A.6.
Constraint (4.18) ensures that there is at most one BII whose start time equals the start
time of each surgery i. Constraint (4.19) states that for surgery i, if surgery i′ overlaps
with it and satisfies the overlaping cases b), c) and d) in Figure 4.3, then the variable
wii′d can be set to 1. Constraint (4.20) computes the largest length of BII. Note that by
using constraints (4.11)-(4.20), we do not ensure that the completion time of surgery i′

is the closest one to the start time of surgery i when wii′d = 1 for each feasible solution,
but ensure that this objective is satisfied for the optimal solution. This method is used to
avoid the numerical issue and accelerate the solving process. Parameter ϵ is used to avoid
the numerical issue when the completion time of surgery i is equal to the start time of
surgery i′. Finally, constraints (4.21)-(4.29) define the domain of the first-stage variables.

The second-stage objective function (4.30) minimizes the cost of canceling surgeries
and OR overtime costs caused by emergency surgeries. Constraints (4.31) ensure that all
emergency surgeries each day are assigned to the corresponding blocks. Constraint (4.32)
computes the additional overtime of each block caused by emergency surgeries. Constraint
(4.33) states that an elective surgery can be canceled if and only if the surgery is assigned.
Constraints (4.34)-(4.36) define the domain of the second-stage variables.

Note that the SSFUP S model is developed by considering the trade-off between com-
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plexity and accuracy. However, the model has the following limitations: (1) It does not
consider the impact of the stochastic duration when determining the start time of surgeries.
This omission may result in scheduled surgeries finishing earlier or later than planned; (2)
It does not consider the impact of rescheduling surgeries to other surgery blocks when
the emergency surgeries arrive. Therefore, the objective value of the SSFUP S model is an
approximation of the actual cost, and the solution may be suboptimal. To address these
limitations, we propose a simulation-optimization approach in the next section.

4.3.2 Reactive SSFU model

Elective surgeries are performed according to an initial plan on surgery day. Due to
the uncertainty of the duration of elective surgeries, the arrival of emergency surgery, and
its duration, five types of events can occur during the surgical process:

(1) Surgery start: surgery i starts at a certain time Ẑi.
(2) Finish on time: surgery i is finished at a certain time F̂i. This event conforms to the

condition 0 ≤ Fi − F̂i ≤ MAD, where Fi is the planned finish time and MAD is the
maximum allowable deviation.

(3) Early finish: surgery i is finished earlier than the planned time Fi, adhering to the
condition Fi − F̂i > MAD.

(4) Late finish: surgery i is still operating in the planned finish time Fi, adhering to the
condition F̂i > Fi.

(5) Emergency arrive: an emergency surgery i arrives at a certain time Ai, and need to
be schedule immediately.

The former two events are consistent with the surgery plan, while the last three events
will deviate from the initial plan. Especially, the given surgery plan will be infeasible if
the last two events occur. Thus, it is necessary to reschedule the surgeries that have not
yet started when the last two events occur.

Once one of the above two events occurs at a certain time t in surgery day d, the
rescheduling procedure is triggered. At time t, each surgery can be in one of three states:
finished, ongoing, or not yet started. To reschedule the surgeries that have not yet started,
we introduce the reactive SSFU model SSFURS, which can be derived from the SSFUP S

model with some modifications made to the objective function and constraints. Compared
to the SSFUP S model, we do not use the reserving capacity mechanism but only retain the
BIM and buffer mechanisms in the SSFURS model. Moreover, the SSFURS model allows
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for the rescheduling of elective surgeries to surgery blocks that are exclusively dedicated
to the corresponding surgical types.

The SSFURS model is formulated as a mixed-integer linear programming model,
whose notation is given in Table 4.2.

Table 4.2 – Notation used for the SSFURS model.

Symbol Description
Sets
I(t) Set of surgeries need to be scheduled at time t
Io(t) ⊆ I(t) Set of surgeries that are operating at time t
In(t) ⊆ I(t) Set of elective surgeries that are not started at time t
E(t) ⊆ I(t) Set of emergency surgeries that are waiting to start at time t
Ib(t) ⊆ I(t) Set of unstarted surgeries which can be assigned to surgery block b at

time t
Parameters
Zi The planning start time of elective surgery i
Fi The planning finish time of elective surgery i
Bi The surgery block assigned to elective surgery i
Ai The arrival time of emergency surgery i

D̃i The possible duration of surgery i (Remaining duration for ongoing
surgeries, total duration for not yet started surgeries)

Cd
i Unit delay cost for surgery i

Decision Variables
xR

ib 1 if surgery i is assigned to surgery block b, 0 otherwise
zR

i The rescheduling start time of surgery i
fR

i The rescheduling finish time of surgery i
Auxiliary Variables
ob The overtime of surgery block b
l Total idle time
vb End time of surgery block b
πii′b 1 if surgery i and i′ are operated in surgery block b while surgery i is

operated after surgery i′ , 0 otherwise
gii′ 1 if the start time of i is no less than the start time of i′, 0 otherwise
ϕii′ 1 if the finish time of i is no less than the start time of i′, 0 otherwise
wii′ 1 if the finish time of surgery i′ is the closest one and strictly later than

the start time of surgery i, 0 otherwise
qMAX The maximum length of all BIIs
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SSFU RS : min
∑

i∈I(t)

∑
b∈Bd|i∈Ib(t)

Cibxib +
∑

i∈I(t)
CQ

i

1−
∑

b∈Bd|i∈Ib(t)
xib

 +
∑

b∈Bd

COob

+C ll + CW qMAX +
∑

i∈In(t)
Cd

i |zi − Zi|+
∑

i∈E(t)
CW (zi − Ai) (4.37)

s.t.
∑

b∈Bd

xib = 1 ∀i ∈ E(t) (4.38)

∑
b∈Bd|i∈Ib(t)

xib ≤ 1 ∀i ∈ In(t) (4.39)

xib = 1 ∀i ∈ Io(t); b = Bi (4.40)∑
b∈Bd|b ̸=Bi

xib = 0 ∀i ∈ Io(t) (4.41)

fi ≥
∑

b∈Bd|i∈Ib(t)
D̃ixib + t ∀i ∈ I(t) (4.42)

fi ≤
∑

b∈Bd|i∈Ib(t)
Mxib + t ∀i ∈ I(t) (4.43)

fi ≥ fi′ + D̃i −M(3−
∑

b∈Bd|i∈Ib(t)
xib −

∑
b∈Bd|i′∈Ib(t)

xi′b − γii′b) ∀b ∈ Bd; i, i′ ∈ Ib(t)|i′ < i

(4.44)

fi′ ≥ fi + D̃i′ −M(2−
∑

b∈Bd|i∈Ib(t)
xib −

∑
b∈Bd|i′∈Ib(t)

xi′b + γii′b) ∀b ∈ Bd; i, i′ ∈ Ib(t)|i′ < i

(4.45)

zi = fi −
∑

b∈Bd|i∈Ib(t)
D̃ixib ∀i ∈ I(t) (4.46)

zi = t ∀i ∈ Io(t) (4.47)

vb ≥ fi −M (1− xib) ∀b ∈ Bd; i ∈ Ib(t) (4.48)

l ≥
∑

b∈Bd

vb − t−
∑

i∈In(t)∪E(t)|b∈Bd

D̃pxib −
∑

i∈Io(t)|b=Bi

(fi − t)

 (4.49)

ob ≥ fi − L−M (1− xib) ∀b ∈ Bd; i ∈ Ib(t) (4.50)

zR
i − zR

i′ ≤M

2−
∑

b,b′∈Bd|b ̸=b′

(xib + xi′b′) + gii′

 ∀i ∈ Ib(t), i′ ∈ Ib′(t)|b ̸= b′ (4.51)

zR
i′ − zR

i − ϵ ≤M

3−
∑

b,b′∈Bd|b̸=b′

(xib + xi′b′)− gii′

 ∀i ∈ Ib(t), i′ ∈ Ib′(t)|b ̸= b′ (4.52)

fR
i′ − zR

i ≤M

2−
∑

b,b′∈Bd|b̸=b′

(xib + xi′b′) + ϕii′

 ∀i ∈ Ib(t), i′ ∈ Ib′(t)|b ̸= b′ (4.53)
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zR
i − fR

i′ + ϵ ≤M

2−
∑

b,b′∈Bd|b̸=b′

(xib + xi′b′) + ϕii′

 ∀i ∈ Ib(t), i′ ∈ Ib′(t)|b ̸= b′ (4.54)

2gii′ ≤
∑

b,b′∈Bd|b ̸=b′

(xib + xi′b′) ∀i ∈ Ib(t), i′ ∈ Ib′(t)|b ̸= b′ (4.55)

2ϕii′ ≤
∑

b,b′∈Bd|b̸=b′

(xib + xi′b′) ∀i ∈ Ib(t), i′ ∈ Ib′(t)|b ̸= b′ (4.56)

∑
i′∈I(t)

wii′ ≤
∑

b∈Bd|i∈Ib(t)
xib, ∀i ∈ I(t) (4.57)

∑
i′∈I(t)

wii′ ≥
∑

i′∈I(t)|i ̸=i′

(gii′ + ϕii′ −
∑

b∈Bd|i′∈Ib(t)
xi′b)− |Bd|+ 2, ∀i ∈ I(t) (4.58)

2wii′ ≤ gii′ + ϕii′ ∀i, i′ ∈ I(t)|i ̸= i′ (4.59)

qMAX ≥ fR
i′ − zR

i −M(1− wii′), ∀i, i′ ∈ I(t) (4.60)

xib ∈ {0, 1}, ∀b ∈ Bd, i ∈ Ib(t) (4.61)

zi ∈ [t, L + O − D̃i], ∀i ∈ I(t) (4.62)

fi ≥ t, ∀i ∈ I(t) (4.63)

vb ≥ 0, ∀b ∈ Bd (4.64)

ob ∈ [0, O], ∀b ∈ Bd (4.65)

l ∈ [0, (O + L)ů|Bd|] (4.66)

πii′ ∈ {0, 1}, ∀b ∈ Bd, i, i′ ∈ Ib(t)|i < i′ (4.67)

gii′ , ϕii′ ∈ {0, 1}, ∀i, i′ ∈ I(t)|i ̸= i′ (4.68)

wii′ ∈ {0, 1}, ∀i, i′ ∈ I(t) (4.69)

The objective function (4.37) minimizes the cost of performing and cancellation surg-
eries, and the expected total cost related to OR overtime, idle time, the waiting time for
future and arrived emergencies, and tardiness of scheduled surgeries. Constraints (4.38)
and (4.39) are the reassignment constraints. Constraint (4.38) ensures that emergency
surgeries must be assigned in a surgery block. Constraint (4.39) states that each un-
started elective surgery can only be assigned to one surgery block. Constraints (4.40) and
(4.41) ensure that the ongoing surgeries are operated exclusively within their assigned sur-
gical blocks. Constraints (4.42)-(4.46) computes the start and finish time of each surgery,
which are similar to constraints (5.7)-(5.10). Constraint (4.47) ensures that the ongoing
surgeries are in progress at time t. Constraints (4.48)-(4.50) computes the idle time and
overtime, which are similar to constraints (5.11)-(5.13). Constraints (4.51)-(4.60) are the
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BIMs constraints. Finally, constraints (4.61)-(4.69) define the domain of the variables.

4.3.3 Discussion on the BIMs for surgical case scheduling

The most important part of the SSFUP S model is the BIMs constraints. As mentioned
in Section 1.3.1, researchers have proposed several MIP models for modeling the BIM
and buffer mechanisms. In this section, we underline the main differences between our
proposed SSFUP S model and those proposed in the literature. Table 4.3 compares the
BIM modeling approaches in surgical case scheduling. For each model, we provide the MIP
formulation regarding the BIM, achievable strategies, advantages, and disadvantages. For
the MIP formulation, we present the decision variables, constraints, and objective function.
In the literature, MIP formulations for scheduling problems are often classified based on
the choice of the decision variables [130]. After reviewing the literature, we find that
three types of decision variables are commonly used, including completion time variables,
assignment position variables, and time index variables. The first two types are used to
model the continuous duration of surgery, while the last type is used to model the discrete
duration of surgery. A detailed explanation of these variables can be found in [130].

To the best of our knowledge, Van Essen et al. [58] was the first to propose a MIP
model for BIMs by using the concept of global sequence, where surgeries are programmed
without dead times in between. Figure 4.4(a) shows an example of 7 surgeries assigned to
2 blocks, with 7 BIMs and 6 BIIs. Apart from the BII1, all other BIIs can be given by the
difference of the completion times of two consecutive surgeries in the global sequence, i.e.,
BII2 = f5 − f1, BII3 = f2 − f5, BII4 = f6 − f2, BII5 = f3 − f6, BII6 = f7 − f3. Thus,
they only minimize the maximum BII among BII2, BII3, · · · , BII6. Later, Vandenberghe
et al. [56] also employed the concept of global sequence to model the BIMs considering
uncertain surgery durations. However, these two studies do not insert buffers. This results
in a certain lower limit for BII (> 0), thus leading to a lack of flexibility.

Recently, some researchers have proposed MIP models for BIMs with insertion buffers.
However, the calculation of the BII length may be inaccurate in some situations. To illus-
trate this, we first provide an example of a surgery schedule with buffers in Figure 4.4(b).
In this example, 7 surgeries were in 3 blocks, with 6 BIMs, 3 BIIs, and 3 buffers. The
global sequence is 1, 2, 3, 4, 5, 6, 7, and each length of BII can only be calculated by the
difference of the completion time and start time of two overlapping surgeries which satisfy
the conditions given in Theorem 3, i.e., BII1 = f1 − z3, BII2 = f2 − z4, BII3 = f5 − z7.
In the literature, Schulz and Fliedner [59] studied the BIMs mechanism in surgical case
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Table 4.3 – Comparison of BIM modeling approaches in surgical case scheduling

Research
MIP formulation for BIM

Advantages Disadvantages
Variables Constraints Objective

[58, 56] Completion time
variables

The BII is given by the dif-
ference of the completion
times of two consecutive
surgeries in the global se-
quence.

min max BII Scheduling with irregular
surgical times, the
resources can be utilized
efficiently.

Without allowing
insertion buffers, this
results in a certain lower
limit for BII (> 0), thus
leading to a lack of
flexibility.

[57] Completion time
variables

The BII is given by the dif-
ference of the completion
time and the start time of
two overlapping surgeries.
Restrict the BIM to be
present within the given
time duration.

- Scheduling with irregular
surgical times, the
resources can be utilized
efficiently.

The overlapping cases are
not fully considered when
the buffers are inserted. As
a result, the model may be
inaccurate in some situa-
tions.

[59] Completion time
variables

The BII is given by the dif-
ference of the completion
times of two consecutive
surgeries in the global se-
quence.

min(max BII−
min BII)

Scheduling with irregular
surgical times, the
resources can be utilized
efficiently.

The calculation of BII may
be inaccurate when adopt-
ing the concept of global se-
quence with allowing inser-
tion buffers.

[61, 60] Time index
variables

The surgery day is divided
into several time periods,
and restrict the BIM to ex-
ist in the given periods

- Divide the surgery day into
several equally time peri-
ods, simplify the modeling
and solve the problem eas-
ily.

The length of the time
period greatly affects the
performance of the model.
If the time period is too
short, it may lead to a
large number of variables
and constraints.

[71] Assignment
position variables

Ours Completion time
variables

The BII is given by the dif-
ference of the completion
time and the start time of
two overlapping surgeries,
which satisfy conditions as
provided in Theorem 3.

min max BII Scheduling with irregular
surgical times, the
resources can be utilized
efficiently. All overlapping
cases are well considered,
ensuring the accuracy of
the model.

The model is complex and
requires a large number of
variables and constraints.

BIM1 BIM2 BIM3 BIM4 BIM5

i1 i3

Occupied Interval

BII1 BII2 BII3

i5

time

b = 1

b = 2

i2 i4

i6 i7

BIM6 BIM7

BII4 BII5 BII6

Global sequence (1,5,2,6,3,7,4)

(a) Surgery schedule without buffer

BIM1 BIM2 BIM3 BIM4 BIM5

i1

i3

time

b = 1

b = 2 i2

i4

BIM6

Global sequence (1,2,3,4,5,6,7)

b = 3

i5

i6

i7

BII1 BII2 BII3Buffer Buffer Buffer

(b) Surgery schedule with buffers

Figure 4.4 – Demonstration of surgery schedule.
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scheduling, where idle time is allowed between surgeries. They adopted the concept of
global sequence and calculated the length of BII by the difference of the completion times
of two consecutive surgeries in the global sequence. However, it is easy to know that the
above BIIs, in Figure 4.4(b), cannot be accurately calculated by their method. Moreover,
Latorre-Nunez et al. [57] calculated the BII by the difference between the completion time
and the start time of two overlapping surgeries. However, when the buffers are inserted,
the overlapping cases are not fully accounted for. As a result, the model may be inaccurate
in some situations. Appendix B provides a detailed discussion on the calculation of BII
for the two models above.

Unlike the above models, Jung et al. [61] and Wang et al. [60] used the time index
variable formulation, where the surgery day is discretized into several periods, and the
surgery duration is also discretized. Similarly, Freeman et al. [71] used assignment position
variables formulation, where the surgery day is discretized into several periods, but the
surgery duration is continuous. All three models restricted the BIM from existing in given
periods. The above method simplifies the modeling of the BIMs and buffer mechanism,
which makes the problem easier to solve. However, the length of the period greatly affects
the performance of the model. If the period is too long, the medical resource utilization
may be inefficient, and the length of BII will be large. If the time period is too short, it
may lead to a large number of variables and constraints, which will increase the complexity
of the model.

4.4 Computational experiments

4.4.1 Instances design and experimental protocol

Our computational study is based on anonymized real-world surgery data presented
by [131] and [132]. This data set is collected from a hospital in Oslo, Norway, and in-
volves daily surgery data from 2006 to 2008, including 10,390 surgeries. These surgeries
belong to six different surgical specialties, namely General Cardiology (CARD), Gastroen-
terology (GASTRO), Gynecology (GYN), Medicine (MED), Orthopedics (ORTH), and
Urology (URO). Durations of these surgeries follow a Lognormal distribution, in which
mean and standard deviation are based on the surgery type, as presented in Table 4.4.
The percentage of each surgery type is also presented in the Table.

The problem instances consist of 70, 100, 140, and 200 surgeries of different sizes,
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Table 4.4 – Distribution of surgery duration (in minutes) for different surgery types.

Surgery type Mean (minute) Standard deviation (minute) Percent (%)

CARD 99 53 14.01
GASTRO 132 76 17.79
GYN 78 52 27.81
MED 75 72 4.41
ORTH 142 58 17.81
URO 72 38 17.98

16, 25, and 32 surgery blocks with 3 different block layouts, resulting in 36 instances. In
detail, the number of ORs of these 3 surgery blocks is 5, 8, and 10, respectively. The block
layouts are generated according to three policies: (1) Random allocation policy (RAP),
assigning the surgery block to the planning horizon randomly; (2) Uniform allocation
policy (UAP), assigning each type of surgery block to different days as uniformly as
possible; (3) Concentrated allocation policy (CAP), assigning the same type of surgery
block to the same day as much as possible. Figure 4.5 shows the block layout of these
three policies in the amount of 32 surgery blocks. In addition, for emergency surgeries,
we assume that the arrival rate follows a Poisson distribution, and the duration follows a
uniform distribution according to [133, 61]. Specifically, the surgery arrival rate λ = |Ed|/L

is related to the number of emergency surgeries |Ed|, and the range of the duration of
emergency surgeries is in [60, 180].

OR Mon Tue Wed Thu Fri

OR1 URO CARD URO URO ORTH
OR2 ORTH GYN GYN GASTRO
OR3 CARD GYN
OR4 GYN CARD GYN
OR5 GYN ORTH GASTRO
OR6 GASTRO GASTRO
OR7 GYN GYN GASTRO
OR8 CARD GASTRO ORTH URO
OR9 CARD URO URO
OR10 ORTH MED ORTH

(a) RAP

OR Mon Tue Wed Thu Fri

OR1 GYN CARD URO ORTH GASTRO
OR2 CARD GYN URO
OR3 URO GASTRO
OR4 GASTRO GYN CARD URO
OR5 URO ORTH URO ORTH
OR6 GASTRO MED CARD
OR7 GYN ORTH GYN
OR8 GYN GASTRO CARD
OR9 ORTH ORTH
OR10 GASTRO GYN GYN

(b) UAP

OR Mon Tue Wed Thu Fri

OR1 GYN MED
OR2 GYN GASTRO ORTH URO CARD
OR3 GYN GASTRO ORTH URO CARD
OR4 GASTRO ORTH URO CARD
OR5 GASTRO ORTH
OR6 GYN CARD
OR7 GYN GASTRO ORTH URO CARD
OR8 GYN ORTH URO
OR9 GYN GASTRO
OR10 GYN URO

(c) CAP

Figure 4.5 – Three block layout policies for 32 surgery blocks.

We consider the following cost structure for the objective function. First, the cost of
overtime is set to CO = $26/min, and the cost of idle time is CI = 26/1.5 ≈ $17/min,
which same as the previous studies [134, 45]. Second, the cost of performing surgery is
set to Cib = 0.75 ∗ CO ∗ D̄i ∗ α ≈ $20/min ∗D̄i ∗ α. Where α is a coefficient set up to
differentiate individual surgeries, randomly selected within the range [0.8,1.2]. Third, the
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cost of postponing surgery and canceling surgery is set to be the same, CP
i = CQ

i = 1.5∗Cib.
Finally, the cost of tardiness of elective surgery is set to CT = CO/2 = $13/min, and the
cost of waiting time of emergency surgery is set to CW = 2 ∗ CT = $26/min.

Our approach was coded in Python and the Gurobi Optimizer 9.0.3 was called to
solve the model. Experiments are run on a 6 nodes computing cluster where each node
is equipped with double Inter(R) Xeon(R) Gold 6226R (16 cores) 2.90GHz CPUs and
256Gb RAM. The time limits are set to 1h, 5h, 10h, and 10h for the instances with 70,
100, 140, and 200 surgeries, respectively. The performance of the solution approach is
dependent on the number of samples available. More samples lead to a better approx-
imation of the objective function, but also increase the computational efforts. We are
inspired by the approach of [71] to use a relatively small number of scenarios to provide
information regarding the surgery duration and the arrival of emergency surgeries. In de-
tail, we generate a certain number of scenarios |S|, where the first scenario is constructed
using the expected values of all random parameters to represent the central tendencies
of the associated distributions, capturing the overall average behavior. Subsequently, the
remaining scenarios are generated by randomly sampling from the specified distributions
of the random parameters, allowing us to capture the variations and dispersion of the
random parameters. There is a trade-off between computational time and solution qual-
ity when choosing the number of scenarios in our solution approach. To achieve the best
performance, we consider a set of scenarios |S| = {5, 10, 15, 20, 30, 40, 50}. In preliminary
experiments, we found that the number of scenarios is related to the surgical demand
and the supply of surgery blocks, which can be represented by the supply-demand ratio
SDR = ((O +L)×|B|)/ ∑

i∈I D̄i. In detail, the SDR values of each instance are presented
in Table 4.5, where the instances are divided into three groups: low SDR, medium SDR,
and high SDR. High SDR values suggest that the availability of surgery blocks exceeds
the demand for surgical procedures, whereas low SDR values indicate that the demand
for surgical procedures surpasses the availability of surgery blocks. In our preliminary
experiments, we found that the best number of scenarios decreases from 50 to 5 as the
SDR increases from 0.48 to 1.37, while the best number of scenarios increases from 5 to
50 as the SDR increases from 1.37 to 2.70. For different SDR values, the optimal number
of scenarios is as follows: 50 for SDR = 0.19 and 0.32, 40 for SDR = 0.75 and 0.96, 15 for
SDR = 1.06, 5 for SDR = 1.34, 10 for SDR = 1.49, 40 for SDR = 1.92, 50 for SDR =
2.13 and 2.70.
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Table 4.5 – Supply-demand ratio (SDR) of all instances

Group Low SDR Medium SDR High SDR

Instance 100-16 140-16 200-16 200-25 200-32 70-16 100-25 140-25 140-32 70-25 70-32 100-32

SDR value 0.96 0.68 0.48 0.75 0.96 1.37 1.49 1.06 1.37 2.13 2.70 1.92

4.4.2 Experimental results

To assess the performance of our proposed models, we use a discrete-event simulation
(DES) approach to evaluate the surgery plan generated by solving the SSFUP S model.
To quickly reschedule unstarted surgeries, we adopt simple rescheduling rules rather than
solving the SSFURS model. Thus, we refer to this approach as the sample average approx-
imation (SAA) approach. We use the value of the stochastic solution (VSS) to measure
the quality gained by considering the uncertain information when solving the SSFU prob-
lem with known distributions of random parameters. To compute the VSS, we first define
the expected value problem (EVP). Specifically, we replace the random parameters of the
SSFUP S model with the expected values to create the scenario for the EVP. Table 4.6
shows the VSS values of the SAA and EVP approaches for the 36 instances. The VSS
value is computed as V SS(%) = (ObjEV P − ObjSAA)/ObjEV P × 100, where ObjEV P and
ObjSAA are the objective values of the EVP and SAA approaches evaluated by the DES
under the same 500 scenarios, respectively.

Table 4.6 – Computational results of EVP and SAA approaches.

Elective
surgeries Blocks

CAP RAP UAP

ObjSAA ObjEV P VSS (%) ObjSAA ObjEV P VSS (%) ObjSAA ObjEV P VSS (%)

70 16 215,751.81 215,195.67 -0.26 213,912.03 212,923.74 -0.46 211,463.54 210,811.49 -0.31
100 16 303,227.58 300,930.64 -0.76 294,692.89 297,763.74 1.03 298,443.49 299,885.05 0.48
140 16 418,047.32 423,368.08 1.26 411,027.26 419,996.71 2.14 421,940.52 423,481.13 0.36
200 16 594,298.57 597,424.88 0.52 596,761.63 596,947.85 0.03 601,744.70 601,764.49 0.00
70 25 196,101.30 196,184.00 0.04 196,149.66 199,560.53 1.71 195,406.24 204,291.12 4.35
100 25 287,608.20 296,109.06 2.87 266,267.04 292,673.96 9.02 281,549.32 300,679.83 6.36
140 25 410,631.40 408,653.07 -0.48 397,949.04 409,181.15 2.75 408,809.67 429,861.92 4.90
200 25 596,961.09 595,002.35 -0.33 587,478.59 609,583.10 3.63 591,621.29 615,773.72 3.92
70 32 197,235.03 196,727.59 -0.26 194,564.66 199,096.62 2.28 194,541.47 200,216.32 2.83
100 32 281,060.78 289,974.14 3.07 255,222.25 281,610.18 9.37 263,153.17 286,097.79 8.02
140 32 398,143.34 401,993.95 0.96 384,627.21 415,723.10 7.48 372,220.76 398,703.81 6.64
200 32 588,268.34 589,237.53 0.16 579,675.90 610,642.77 5.07 575,083.94 603,768.52 4.75

Table 4.6 shows that the majority of VSS values exhibit an upward trend as the num-
ber of ORs increases for a specific block layout and a given number of elective surgeries.
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For instance, the VSS values increase from 2.14% to 7.48% as the number of ORs rises
from 16 to 32 for the RAP block layout with 140 elective surgeries. It can be observed
that the majority of the VSS values exhibit an initial increase as the number of elective
surgeries increases from 70 to 100, followed by a subsequent decline as the number of
elective surgeries increases from 100 to 140 for a specific block layout and a given number
of operating rooms (ORs). In particular, the VSS values increased from 2.28% to 9.37%
as the number of elective surgeries increased from 70 to 100, and then decreased from
9.37% to 5.07% as the number of elective surgeries increased from 100 to 200 for the RAP
block layout with 32 ORs. The reason for the former is that as the value of SDR decreases,
the uncertainty of the SSFU problem increases, and the SAA outperforms the EVP, re-
sulting in a higher VSS value. The reason for the latter is that as the number of elective
surgeries continues to increase, the complexity of the problem increases significantly, and
the performance of the SAA approach deteriorates, which leads to a lower VSS value.
Furthermore, it can be observed that the VSS values are significantly influenced by the
block layout. In particular, the VSS values are less than 1% for nine instances with CAP
block layout, three instances are between 1% and 3.5%. This is because the same type of
surgery block is assigned on the same day under the CAP, which allows elective surgeries
to be rescheduled to other blocks rather than being canceled when uncertain events occur.
In conclusion, the results demonstrate that our proposed method can effectively address
the uncertainty in the SSFU problem.

4.4.3 Impact of the buffer mechanism

To reveal the impact of the buffer mechanism on the surgical scheduling plan, we
perform experiments with different values of CW , which significantly affect the size and
number of buffers. We set CW as {0,26,50,100,200,400} and perform experiments on the
above 36 instances. Figure 4.6 shows the daily average idle time (minute) for all ORs as
the value of CW increases. There is a clear trend that larger values of CW result in longer
idle times in the ORs to accommodate the buffers for emergency surgeries.

From Figure 4.6, we can observe that with a fixed CW , as the SDR increases, the
idle time in the operating room decreases. The scarcer the surgical resources, the shorter
the idle time in the operating room. Specifically, the idle times are 484.1 minutes for
high SDR, 367.2 minutes for medium SDR, and 303.7 minutes for low SDR when CW =0.
With the increase of the CW , the average daily idle time in the operating room increases.
Especially, the idle time reaches the longest opening time of a whole operating room, 600
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Figure 4.6 – The daily average idle time (minute) in different values of CW

minutes, when CW ≥ 200. This indicates that the size of the buffer can be controlled by
adjusting the value of CW , but the effective value of CW is limited to 200.

To gain a more intuitive understanding of the surgical plan obtained by our solution
approach under different CW settings, we display initial surgical plans for instance 140-32-
UAP for Monday under CW =0, 50, 100, 200 as shown in Figure 4.7. In each subfigure, the
x-axis represents the time horizon, and the y-axis represents the surgery block number.
In addition, the bottom of each subfigure shows the BIM and BII, where the former is
represented by vertical lines and the latter is represented by the shaded boxes. From this
figure, we can observe that when CW =0, the maximal BII is 72 minutes, with virtually
no buffer between surgeries in the resulting schedule, which can be seen as the "BIMs
only" strategy. As the CW increases from 0 to 100, there exist buffers in block 5 and block
7, and the maximal BII is decreased to 33 minutes. When CW =100, there are also two
buffers in block 5, which are located before surgery 135 and between surgery 121 and
125, respectively, and the maximal BII is decreased to 30 minutes. When CW =200, OR is
entirely freed up, and no buffer is added for other blocks. In addition, the maximal BII is
decreased to 0 minutes, which can be seen as the "BIMs + extra OR" strategy. Therefore,
this experiment demonstrates how the maximal BII is reduced by adding buffers controlled
by adjusting the value of CW . Moreover, the results also show that our proposed modeling
approach for the BII bridges the "BIMs only" strategy, the "BIMs + extra OR" strategy,
and the "BIMs + buffers" strategy. Our approach allows for balancing the trade-off between
these three strategies within the same mathematical programming model.

As the size of the buffer directly impacts the waiting time for elective and emergency
surgeries, we have collected the average waiting times for elective and emergency surgeries
across 10 groups of instances with different supply-demand ratios under varying CW

settings, as displayed in Figure 4.8. From this figure, we can see that as the SDR increases,
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(a) CW = 0
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(b) CW = 50

08:00 16:00 18:00

B
lo

c
k

Max BII =30 min
BIM
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(c) CW = 100
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B7

(d) CW = 200

Figure 4.7 – Surgery plans (Monday) for instance 140-32-UAP under different CW

the waiting times for both elective and emergency surgeries decrease under all three
CW settings, indicating that the scarcer the surgical resources, the longer the patient
waiting times. Moreover, we can see that as CW increases, the average waiting times for
both elective and emergency surgeries decrease, especially for emergency surgeries, whose
waiting times decrease significantly. The reason for reducing the delay time of elective
surgeries is that buffers can be inserted a few minutes before the surgery to ensure that
the surgery can be performed on time. Especially when CW =200, the waiting time for
emergency surgeries can be decreased to one minute. These results demonstrate that the
strategy of setting buffers considering BIM can reduce patient waiting times, especially
effectively reducing the waiting time for emergency surgeries.

4.5 Chapter conclusion

In this chapter, we studied a surgical case scheduling problem in flexible ORs under
uncertainty (SSFU), which consists of operational decisions of assignment (assign patients
to OR blocks in a given time horizon) and sequencing (determine the start time of the
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Figure 4.8 – The tardiness of elective surgery and waiting time of emergency surgery with
different values of CW

assigned surgeries in each OR block) while taking into account the uncertainty of elective
surgery duration, emergency surgeries arrival, and their duration. We adopt the inte-
grated proactive and reactive strategies, where a proactive SSFU problem is first solved
to generate an initial elective surgery plan, and then a reactive SSFU problem is solved
to dynamically adjust the plan based on actual surgery durations and emergency arrivals.
To deal with the uncertainty of surgery durations and emergency arrivals in the proactive
SSFU problem, we implemented three mechanisms — reserving capacity, BIM, and buffer

— to improve the robustness of the plan.
We formulated the proactive SSFU problem as a two-stage stochastic programming

problem, where the first stage assigns elective surgeries to OR blocks and determines the
start time of each surgery, and the second stage evaluates the quality of the obtained
plan under different durations of elective/emergency surgeries. We proposed a scenario-
based model SSFUP S, where minimizing the longest possible waiting time of emergency
surgeries by inserting buffers is different from the traditional surgical case scheduling
problem. We also proposed a MIP model SSFURS to formulate the proactive SSFU
problem.

We conducted extensive computational experiments to evaluate the performance of the
proposed models. Extensive computational experiments demonstrated that our proposed
models significantly outperform the traditional deterministic approach under different
block layout strategies. Moreover, we discussed the impact of the buffer mechanism on
the performance of the surgery plan, and analyzed the parameter sensitivity of the buffer
mechanism.
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Chapter 5

A THREE-PHASE

SIMULATION-OPTIMIZATION APPROACH

FOR SURGICAL CASE SCHEDULING IN

FLEXIBLE OPERATING ROOMS UNDER

UNCERTAINTY

In this chapter, we present a hybrid simulation and optimization approach for the
surgical case scheduling problem in flexible operating rooms (ORs) under uncertainty
(SSFU). An initial surgery plan obtained by solving the SSFUP S model may not be
good enough since it does not consider the possible impact of dynamic rescheduling. To
obtain a high-quality initial elective surgery plan, we propose an innovative three-phase
simulation-optimization (TPSO) approach where the result of dynamic rescheduling in the
planning horizon is considered. To decrease the complexity of the proactive SSFU problem,
we decompose it into an elective surgery assignment subproblem considering emergency
demand (ESAPREC), and multiple elective surgery sequencing subproblems with BIMs
& buffers (ESSPB&B). We apply a discrete-event simulation algorithm to evaluate the
plan quality. To effectively feedback the evaluation results to ESAPREC and ESSPB&B

models, we develop a set of novel constraints, including sequence feedback and assignment
feedback. Especially, for the assignment feedback, we propose local best assignment (LBA)
feedback constraints to reduce the search space. We conducted extensive computational
experiments to evaluate the performance of the proposed TPSO approach. The content of
this chapter is based on an article submitted to Production and Operations Management
and Journal of Systems Engineering.
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5.1 Introduction

As demonstrated in Section 4.2, the elective surgery plan is initially generated by
solving the proactive SSFU model, which is dynamically modified when unexpected events
occur during the surgery day. Thus, a high-quality initial elective surgery plan is essential
to improve the efficiency of the surgical case scheduling process. However, after multiple
dynamic rescheduling for a given initial plan, the actual OR overtime, idle time, waiting
time for emergency surgeries and cancellation of scheduled surgeries may be higher or
lower than expected, which may lead to a suboptimal plan. In this chapter, we present a
three-phase simulation-optimization (TPSO) approach, which further considers the result
of dynamic rescheduling for the given plan. The distinctive features of our proposed TPSO
approach are summarized as follows:

(1) To decrease the complexity of the proactive SSFU problem, we decompose it into an
elective surgery assignment subproblem considering emergency demand (ESAPREC),
and multiple elective surgery sequencing subproblems with BIMs & buffers (ESSPB&B).
By sequentially solving these two subproblems, an initial surgery plan can be obtained.

(2) We apply a discrete-event simulation algorithm to evaluate the plan quality. To acceler-
ate the simulation process, we propose simple rescheduling rules to quickly reschedule
the unstarted surgeries rather than solving the SSFURS model.

(3) To effectively feedback the evaluation results to ESAPREC and ESSPB&B models, we
develop a set of novel constraints. One of them is the local best feedback constraints,
which only retain one solution from the given assignment and remove all other solutions
to reduce the search space.

Moreover, we carry out extensive experimental analysis using challenging test instances
with different characteristics. Extensive computational experiments demonstrate that our
proposed TPSO approach significantly outperforms the sample average approximation
approach, and the typical deterministic approach. In addition, experimental analysis is
carried out to identify the impact of feedback mechanisms of the proposed TPSO approach,
and the effect of the buffer mechanism.

Section 5.2 describes the proposed TPSO approach in detail. Section 5.3 presents
the computational results and analyzes the critical components of the TPSO approach.
Section 5.4 draws the conclusions.
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5.2 Three-phase simulation-optimization approach

5.2.1 General scheme

Given the complexity of the proactive SSFU problem, our proposed TPSO approach
decomposes it into two subproblems: the elective surgery assignment subproblem with
reserving emergency capacity, denoted as ESAPREC , and the elective surgery sequencing
subproblem with BIMs and buffers, denoted as ESSPB&B. The ESAPREC generates a
new elective surgery assignment by selecting surgeries from the waiting list, allocating
them to the surgery blocks, and reserving capacity for emergencies. Since the surgery
assignment decision is made without considering the sequence of surgeries, ESSPB&B

re-optimizes the given day’s surgery assignment to obtain an improved assignment and
determines the start times of surgeries to generate an updated plan. Thus, the main idea
of the TPSO approach is to iteratively optimize these two subproblems and evaluate the
obtained elective surgery plan in each iteration. In addition, the evaluation result is also
used to guide the search for an improved plan.

Algorithm 2 presents the general scheme of our proposed TPSO approach. It starts
with a scenario generation procedure to generate the scenarios S applied in both optimiza-
tion and simulation procedures. Note that the scenario generation method is the same as
the one used in Section 4.4. Then, it creates the ESAPREC model by using the scenarios
S as the input data, and initializes the necessary parameters. In the following, it itera-
tively solves ESAPREC and ESSPB&B models to generate an elective surgery plan, and
evaluates the obtained plan to generate feedback. The ESAP

(k)
REC model is solved within a

time limit TL1 (see Section 5.2.2). According to the new obtained surgery assignment I(k)
b ,

a total of |D| ESSP
(k,j)
B&Bs are generated (see Section 5.2.3). After solving these models,

the obtained plan is subsequently evaluated by simulation, employing the discrete-event
simulation (DES) method to simulate the rescheduling process under scenarios S. Conse-
quently, record relevant measures, such as OR overtime and idle time, emergency surgery
waiting time, tardiness, and cancellation of elective surgeries (see Section 5.2.4). The se-
quencing feedback is generated based on the evaluated values of the measures, and then
feedback to ESSP

(k,j+1)
B&B model to assist in finding a higher quality plan (see Section 5.2.5).

Optimizing ESSP
(k,j)
B&B model, DES simulation, and result feedback to ESSP

(k,j+1)
B&B are

repeated for a given number of iterations MaxIter. The assignment feedback is generated
and passed back to ESAP

(k+1)
REC to find a higher quality assignment (see Section 5.2.5). The

TPSO algorithm terminates when the elapsed time reaches the given time limit. The above
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Algorithm 2: Outline of the TPSO algorithm
Input : A given problem instance NP , the time limit TL1 and TTL, the

maximum number of iterations MaxIter, the number of scenarios |S|.
Output : The best elective surgery plan (I∗

b , f ∗) with the corresponding objective
value Obj∗ found during the optimization process.

1 S ← ScenarioGeneration(NP , |S|);
2 Create ESAP

(0)
REC model according to S, the best objective value Obj∗ ← +∞,

the iteration count k ← 0;
3 while the elapsed time does not reach TTL do
4 I(k)

b ← SolveModel(ESAP
(k)
REC , TL1);

5 ESSP
(k,0)
B&B = {ESSP

(k,0)
B&B,d|d ∈ D} ← Create ESSP

(k,0)
B&B models according to

I(k)
b ;

6 Set the iteration count j ← 0, the local best solution Obj(k) ← +∞;
7 while j < MaxIter do
8 (Ī(k,j)

b , f ) ← SolveModel(ESSP
(k,j)
B&B);

9 (Obj, η) ← DESEvaluatePlan(Ī(k,j)
b , f , S);

10 if Obj < Obj(k) then
11 İ(k)

b ← Ī(k,j)
b , f (k) ← f , Obj(k) ← Obj, η(k) ← η;

12 if Obj < Obj∗ then
13 I∗

b ← Ī
(k,j)
b , f ∗ ← f , Obj∗ ← Obj;

14 ESSP
(k,j+1)
B&B ← AddSequenceFeedback(ESSP

(k,j)
B&B, Ī(k,j)

b , f , η);
15 j ← j + 1;

16 ESAP
(k+1)
REC ← AddAssignmentFeedback(ESAP

(k)
REC , η(k), I(k)′′

b , I(k)
b );

17 k ← k + 1;
18 return (I∗

b , f ∗, Obj∗);

mentioned procedure is illustrated in Figure 5.1. In the following sections, we present the
main components of our TPSO approach.

5.2.2 ESAP REC model

The ESAPREC is used to generate an elective surgery assignment and reserve capac-
ity for emergencies. The ESAPREC model can be derived by extracting the assignment
decisions and constraints from the first-stage SSFUP S model. In addition, we introduce
a new auxiliary variable ηA

d to represent the expected total cost of the given assignment,
including the costs of idle time, overtime, tardiness, cancellation of elective surgeries, and
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Figure 5.1 – Schematic of the TPSO approach.

waiting times of emergency surgery. Thus, the formulation of ESAPREC in iteration k is
as follows:

ESAP(k)
REC : min

∑
b∈B

∑
i∈Ib

Cibxib +
∑
i∈I

CP
i

1−
∑

b∈B|i∈Ib

xib

 +
∑
d∈D

ηA
d (5.1)

s.t. Constraints (4.2), (4.21), (4.31)− (4.36)

ηA
d ≥

∑
s∈S

P (s)

∑
i∈I

∑
b∈Bd|i∈Ib

CQ
i uibs +

∑
b∈Bd

COoI
bs

 d ∈ D (5.2)

ηA
d ≥ 0 d ∈ D (5.3)

The objective function (5.1) minimizes the cost of performing and postponing surg-
eries, and the estimation of costs related to idle time, overtime, cancellation of elective
surgeries, and emergency surgery waiting times. Constraint (5.2) estimates the expected
total cost of canceling elective surgeries and overtime. Although constraint (5.2) just pro-
vides an estimation of the cost of canceling surgeries and overtime, it is beneficial to the
optimization process by providing a guideline for the assignment decisions. Moreover, the
expected total cost of the assignment is evaluated by the latter simulation procedure in
the third phase, and will be feedback to the ESAPREC model. Constraint (5.3) defines
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the domain of the variables ηA
d .

The ESAP
(k)
REC solution is denoted as x(k). The sets of surgeries that ESAP

(k)
REC assigns

to surgery block b and day d are denoted as I(k)
b and I(k)

d , respectively. Two stopping
criteria are used for the ESAP

(k)
REC : (1) a specific optimality gap and (2) maximum time

per iteration, which is 90% of the total remaining CPU time. These two above criteria
are similar to [135].

5.2.3 ESSP B&B model

The ESSPB&B model is created based on the ESAPREC model outputs to optimize
daily surgical case scheduling while minimizing the waiting time of emergency surgeries.
The scheduling is bound by the surgery assignment of ESAPREC , which was made without
consideration of sequencing decisions. Note that allowing the modification of the previous
assignments in scheduling may lead to better solutions, as demonstrated in [136, 135, 137].
The trade-off here is between the quality of the solution, which improves with more reas-
signments, and the complexity of the problem, which also increases correspondingly. The
main features of the ESSPB&B model include employing the BIMs and buffers mecha-
nisms, whose performance highly depends on the reserving capacity of surgery assignment.
To leverage the performance of the BIMs and buffers without introducing excessive reas-
signment variables, the ESSPB&B model only allows postponing some assigned surgeries
to the next planning horizon, thus enhancing the reserving capacity.

Elective surgeries are assigned to surgery blocks with the same surgical specialty as the
elective surgery itself, and these surgeries have the same distribution of surgery duration,
which is the same as [131, 134]. This indicates that the only difference between surgeries
within the same block is the cost of performing and postponing. Therefore, there is a sym-
metry issue in ESSPB&B, which is assigning multiple surgeries to a single surgery block
can lead to numerous alternative optimal solutions generated by simply renumbering the
surgeries. To break this symmetry and accelerate the solving process, we can determine the
sequence for each surgery block before optimizing according to a deterministic sequence
rule SR: the sequence for each surgery block can be obtained by sorting the surgeries in
descending order based on the postponing cost CP

i . If the postponing costs of two surgeries
are equal, the one with the lower performing cost Cib is operated first. Moreover, in any
surgery block, surgery with a lower ranking will be postponed first if necessary.

The idea of symmetry-breaking in sequence rule SR is inspired by [138]. The optimal
sequence of any surgery block can be obtained according to the sequence rule SR (see the
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proof A.4).

Theorem 4 The optimal sequence for each surgery block can be obtained according to the
sequence rule SR.

Given the surgery assignment of day d, the sequence of surgeries in each surgery block
can be determined according to Theorem 1. Specifically, we use (n,b) to represent the n-th
surgery in block b. Given k-th assignment, the notation of ESSP

(k,j)
B&B model in iteration

j is given in Table 5.1, which is formulated as follows:

Table 5.1 – Notation used for the ESSPB&B model.

Symbol Description

Sets
N (k)

b Set of patients assigned to block b in iteration k (n = 1, ..., |N (k)
b |)

Parameters
Cnb The cost of performing the n-th surgery assigned to block b
CP

nb The cost of postponing the n-th surgery assigned to block b
Variables
xnb 1 if the n-th surgery in block b is operated, 0 otherwise
znb Start time of the n-th surgery in block b
fnb Finish time of the n-th surgery in block b
wnbn′b′ 1 if the finish time of the n′-th surgery in block b′ is the closest one and strictly later

than the start time of the n-th surgery in block b, 0 otherwise
l Continuous variable for idle time
gnbn′b′ 1 if the start time of the n-th surgery in block b is no less than the start time of the

n′-th surgery in block b′, 0 otherwise
ϕnbn′b′ 1 if the finish time of the n-th surgery in block b is strictly greater than the start time

of the n′-th surgery in block b′, 0 otherwise
qMAX The maximum length of all BIIs
η Estimation of costs related to idle time, overtime, tardiness and cancellation of elective

surgeries, and emergency surgery waiting times

ESSP(k, j)
B&B: min

∑
b∈Bd

∑
n∈N (k)

b

Cnbxnb +
∑

b∈Bd

∑
n∈N (k)

b

CP
nb(1− xnb) + η (5.4)

s.t. η ≥
∑

b∈Bd

COob + CI l + CW qMAX (5.5)

xnb ≥ xn+1,b ∀b ∈ Bd; n ∈ N (k)
b \ {|N (k)

b | − 1} (5.6)
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f1,b ≥ D̄bx1,b ∀b ∈ Bd (5.7)

fn+1,b ≥ fnb + D̄b − (O + L)(2− xn+1,b − xnb) ∀b ∈ Bd; n ∈ N (k)
b \ {|N (k)

b | − 1} (5.8)

fnb ≤ (O + L)xnb ∀b ∈ Bd; n ∈ N (k)
b (5.9)

znb = fnb − D̄bxnb ∀b ∈ Bd; n ∈ N (k)
b (5.10)

vb ≥ fnb ∀b ∈ Bd; n ∈ N (k)
b (5.11)

l ≥
∑

b∈Bd

(vb −
∑

n∈N (k)
b

D̄bxnb) (5.12)

ob ≥ vb − L ∀b ∈ Bd (5.13)

znb − zn′b′ ≤M(2 + gnbn′b′ − xnb − xn′b′) ∀b, b′ ∈ Bd|b ̸= b′; n ∈ N (k)
b ; n′ ∈ N (k)

b′ (5.14)

zn′b′ − znb − ϵ ≤M(3− gnbn′b′ − xnb − xn′b′)∀b, b′ ∈ Bd|b ̸= b′; n ∈ N (k)
b ; n′ ∈ N (k)

b′ (5.15)

fn′b′ − znb ≤M(2 + ϕnbn′b′ − xnb − xn′b′) ∀b, b′ ∈ Bd|b ̸= b′; n ∈ N (k)
b ; n′ ∈ N (k)

b′ (5.16)

znb − fn′b′ + ϵ ≤M(3− ϕnbn′b′ − xnb − xn′b′)∀b, b′ ∈ Bd|b ̸= b′; n ∈ N (k)
b ; n′ ∈ N (k)

b′ (5.17)

2gnbn′b′ ≤ xnb + xn′b′ ∀b, b′ ∈ Bd|b ̸= b′; n ∈ N (k)
b ; n′ ∈ N (k)

b′ (5.18)

2ϕnbn′b′ ≤ xnb + xn′b′ ∀b, b′ ∈ Bd|b ̸= b′; n ∈ N (k)
b ; n′ ∈ N (k)

b′ (5.19)∑
b′∈Bd

∑
n′∈N (k)

b′

wnbn′b′ ≤ xnb ∀b ∈ Bd; n ∈ N (k)
b (5.20)

∑
b′∈Bd

∑
n′∈N (k)

b′

wnbn′b′ ≥
∑

b′∈Bd|b̸=b′

∑
n′∈N (k)

b′

(gnbn′b′ + ϕnbn′b′ − xn′b′)− |Bd|+ 2 ∀b ∈ Bd; n ∈ N (k)
b

(5.21)

2wnbn′b′ ≤ gnbn′b′ + ϕnbn′b′ ∀b, b′ ∈ Bd; n ∈ N (k)
b ; n′ ∈ N (k)

b′ (5.22)

qMAX ≥ fn′b′ − znb −M(1− wnbn′b′) ∀b, b′ ∈ Bd; n ∈ N (k)
b ; n′ ∈ N (k)

b′ (5.23)

wnbn′b = 0 ∀b ∈ Bd; n, n′ ∈ N (k)
b |n ̸= n′ (5.24)

xnb ∈ {0, 1} ∀b ∈ Bd; n ∈ N (k)
b (5.25)

gnbn′b′ , ϕnbn′b′ ∈ {0, 1} ∀b, b′ ∈ Bd|b ̸= b′; n ∈ N (k)
b ; n′ ∈ N (k)

b′ (5.26)

wnbn′b′ ∈ {0, 1} ∀b, b′ ∈ Bd; n ∈ N (k)
b ; n′ ∈ N (k)

b′ (5.27)

znb ∈ [0, L + O − D̄b] ∀b ∈ Bd; n ∈ N (k)
b (5.28)

fnb ∈ [0, L + O] ∀b ∈ Bd; n ∈ N (k)
b (5.29)

ob ∈ [0, O] ∀b ∈ Bd (5.30)

l ∈ [0, (O + L) · |Bd|] (5.31)

vb ∈ [0, L + O] ∀b ∈ Bd (5.32)

η, qMAX ≥ 0 (5.33)
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The objective function (5.4) minimizes the cost of performing and postponing surgeries,
and the expected total cost related to OR overtime, idle time, surgery waiting times, and
cancellation of scheduled surgeries. Constraint (5.5) defines an estimation of the cost of
performing surgeries, including the cost of idle time, overtime, and the waiting time of
emergency surgeries. Constraint (5.6) is the symmetry-breaking constraint, which ensures
that the surgery with a lower ranking will be postponed first. Constraints (5.7) and
(5.8) compute the finish time of each surgery. Constraint (5.9) ensures that a surgery
is scheduled if and only if the surgery is assigned. Constraint (5.10) computes the start
time of each surgery. Constraint (5.11) computes the finish time of each block. Constraint
(5.12) computes the total idle time. Constraint (5.13) computes the overtime for each
block. Constraints (5.14) - (5.23) are related to the BIM. Constraint (5.14) ensures that
if the start time of surgery (n, b) is no less than the start time of (n′, b′) then the variable
gnbn′b′ is set to 1. Constraint (5.16) ensures that if the finish time of surgery (n′, b′) is no
less than the start time of surgery (n′, b′), then the variable ϕnbn′b′ is set to 1. Constraints
(5.18) and (5.19) ensure that the variables gnbn′b′ and ϕnbn′b′ can measure the overlap
between two surgeries if and only if these two surgeries are operated. Constraint (5.20)
states that there is only one surgery (n′, b′) whose finish time is the closest to the start
time of surgery (n, b) if and only if the surgeries (n, b) is performed. Constraint (5.21)
ensures that there is a BII whose start time equals the start time of surgery (n, b) if all
ORs are occupied at the beginning of the surgery (n, b). Constraint (5.22) ensures that
for surgery (n′, b′), which finish time is the closest to the start time of surgery (n, b), its
finish time must be strictly later than the start time of surgery (n, b). Constraint (5.23)
computes the largest BII. Moreover, constraint (5.24) sets wnbn′b′ to 0 when two distinct
surgeries operated in the same block. This is because the surgery (n′, b), whose finish time
is the closest one and strictly later than the start time of surgery (n, b) in the same block
b, corresponds to surgery (n, b) itself. Finally, constraints (5.25)-(5.33) define the domain
of the variables. Parameter ϵ is used to avoid the numerical issue when the finish time of
surgery (n, b) is equal to the start time of surgery (n′, b′).

Given k-th assignment, the ESSP
(k,j)
B&B solution in iteration j is denoted as (x(k,j),

f (k,j)). The set of surgeries that ESSP
(k,j)
B&B assigns to surgery block b are denoted as

N̄
(k,j)
b . Stopping criteria for the ESSP

(k,j)
B&B are same to the ESAP

(k)
REC . The difference is

that the maximum time per iteration is set to be 20% of the total remaining CPU time.

119



Partie II, Chapter 5 – A three-phase simulation-optimization approach for surgical case
scheduling in flexible operating rooms under uncertainty

5.2.4 Discrete-event simulation algorithm for surgery reschedul-
ing

As we mentioned in Section 4.3.2, five types of events may occur during the surgery
process, and it is necessary to reschedule the surgeries when the Late finish and Emergency
arrive events occur. Thus, to evaluate the performance of the initial surgery plan, we use a
discrete-event simulation (DES) algorithm to simulate the dynamic surgery rescheduling
process.

Algorithm 3 presents the framework of the DES algorithm to evaluate a given initial
surgery plan Ld = {(i, Bi, Zi, Fi)|i ∈ I(k,j)

d } for the surgery day d in a given scenario s.
After initializing the necessary parameters, it creates a future event list FEL according to
the initial surgery plan Ld, arrival time of emergency surgeries Ais and surgery duration
Dis. The core of the DES is to maintain this FEL, which consists of a sequence of
event notices ordered by nondecreasing simulation time. The event notices here are the
descriptions of future events, and each of them includes the surgery ID, surgery block ID,
event type, and the time at which it will occur, denoted as (i, B, ET , T ). Noting that any
elective surgery i, with planned finish time Fi > O + L, will be canceled in the surgery
plan L(n)

d and the corresponding event notices will not be generated in the FEL. After
initialization, the DES starts to handle the event notices in the FEL one by one in order.
To handle an event notice, the adopted operation depends on the event type ET , which
can described as follows. If the event type is Surgery start, the corresponding surgery i

will be added to the set Îds and its actual start time Ẑi will be recorded. If the event type
is Finish on time or Early finish, the actual finish time F̂i of the corresponding surgery
i will be recorded. If the event type is Late finish or Emergency arrive, the rescheduling
procedure will be triggered to generate a new surgery plan L(n+1)

d , and based on which a
new FEL will be created. Moreover, the handled event notices will be removed from the
FEL. The above procedures are terminated when all events in the future event list are
processed (FEL = ∅). The last step of the DES is to calculate the value of Ôds and L̂ds

according to the Ẑis and F̂is, for i ∈ Îds.

It is worth noting that the DES algorithm is the most frequently called component
within the TPSO algorithm, and each invocation instigates the rescheduling procedure
multiple times. Thus, the computing efficiency of rescheduling surgeries is critical to the
overall efficiency of the proposed TPSO algorithm. We adopt simple rescheduling rules to
quickly reschedule the unstarted surgeries. The rescheduling rule is as follows:
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Algorithm 3: Outline of the DES algorithm
Input : A given problem instance NP , a scenario s, a surgery day d, an initial

surgery plan Ld, arrive time Ais for each emergency surgery i, surgery
duration Dis for each surgery i.

Output : Set of actual performed elective surgeries Îds, actual overtime Ôds and
idle time L̂ds, actual start time Ẑis and finish time F̂is for each surgery
i.

1 Initialize the set of the performed surgeries Îds ← ∅, the current elective surgery
plan L(0)

d ← Ld, set the iteration counter n← 0;
2 FEL = {(i1, B1, ET1, T1), ..., (in, Bn, ETn, Tn)} ←CreateFutureEventList(L(n)

d ,
Dis, Ais);

3 while FEL ̸= ∅ do
4 Select the first event notice (i1, B1, ET1, T1) from FEL;
5 if ET1 = Surgery start then
6 Îds ← Îds ∪ {i1};
7 Ẑis = T1;
8 else if ET1 ∈ {Finish on time, Early finish} then
9 F̂is = T1;

10 if ET1 ∈ {Late finish, Emergency arrive} then
11 L(n+1)

d ← Rescheduling(NP,L(n)
d , Dis, Ais);

12 FEL←CreateFutureEventList(L(n+1)
d , Dis, Ais);

13 n← n + 1;
14 FEL← FEL \ {(i1, B1, ET1, T1)};
15 Calculate Ôds and L̂ds according to Ẑis and F̂is, ∀i ∈ Îds;

Rule 1 For emergency surgeries, they will wait and be inserted into the surgery block with
the earliest available BIM , when the Emergency arrive event occurs. Note that
the emergency surgeries will not be canceled even if the operating time exceeds
the maximum allowable time of the surgery block.

Rule 2 For elective surgeries, they will be postponed if their planned start time is later
than the actual end time of the preceding surgeries. Furthermore, any surgery
whose planned finish time is beyond the maximum allowable time of the surgery
block will be canceled.

After evaluating the given initial surgery plan L(k,j)
d in all scenarios, the expected total

costs related to idle time, overtime, tardiness, and cancellation of elective surgeries, and
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waiting times of emergency surgery of this plan can be calculated as follows:

η̂
(k,j)
d = 1

|S|
∑
s∈S

 ∑
i∈I(k,j)

d
\Îds

CQ
i + COÔ

(k,j)
ds + CLL̂

(k,j)
ds +

∑
i∈Îd

CT
i |Ẑ

(k,j)
is − Z

(k,j)
i | (5.34)

+
∑

i∈Eds

CW (Ẑ(k,j)
is − Ais)



5.2.5 Feedback mechanism

In order to accurately estimate the objective value of the obtained solutions in the
subsequent iterations, two types of feedback are developed, including sequence feedback
for ESSPB&B and assignment feedback for ESAPREC .

Sequence feedback

Given the j-th iteration, the ESSP
(k,j)
B&B assigns a certain number of surgeries to surgery

block b, denoted as Ṅ (k,j)
b , with a simulated cost value of η̂

(k,j)
d . To formulate the sequence

feedback constraints, we introduce binary variables and constraints. For variable, θj, has
value 1 if the new assignment is the same as the previous assignment j, and 0 otherwise.
Big M parameters are introduced to ensure the constraints are satisfied. Therefore, the
sequence feedback constraints can be formulated as follows:

η ≥
∑

b∈Bd

COob + CI l + CW qMAX −
J∑

j=1
Mθj (5.35)

η ≥ η̂
(k,j)
d −M(1− θj) j = 1, 2, ..., J (5.36)

θj ≥ 1−

 ∑
b∈Bd

∑
n∈Ṅ (k,j)

b

(1− xnb) +
∑

b∈Bd

∑
n=N (k,j)

b
\Ṅ (k,j)

b

xnb

 j = 1, 2, ..., J (5.37)

M(1− θj) ≥
∑

b∈Bd

∑
n∈Ṅ (k,j)

b

(1− xnb) +
∑

b∈Bd

∑
n=N (k,j)

b
\Ṅ (k,j)

b

xnb j = 1, 2, ..., J (5.38)

θj ∈ {0, 1} j = 1, 2, ..., J (5.39)

Constraints (5.35) and (5.36) are either-or constraints, which estimate the cost of the
assignment. Note that constraint (5.5) is replaced by constraint (5.35). Constraints (5.37)
and (5.38) ensure that the binary variable θj is set to 1 if the assignment is the same as
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the previous, and 0 otherwise. Constraint (5.39) defines the variable domain.

Assignment feedback

The goals of assignment feedback are reducing the search space and improving the
accuracy of the objective value of the obtained solution. Since the ESSPB&B allows post-
poning some assigned surgeries of the ESAPREC to the next planning horizon, we con-
sider the best reassignment I(k)′

b obtained by the ESSPB&B after multiple iterations as
the best subset of the given assignment I(k)

b . Thus, we propose feedback constraints (5.40)
and (5.41) to only retain the best subset İ(k)

b , and remove all other subsets of the given
assignment Ĩ(k)

b , Ĩ(k)
b ⊂ I(k)

b ∧ Ĩ(k)
b ̸= I(k)′

b to reduce the search space. Considering the
ability of constraints (5.40) and (5.41), we refer to them as the local best assignment
(LBA) feedback constraints.

∑
(i,b)∈H(k)

d
\Ḣ(k)

d

xib −
∑

(i,b)∈Ḣ(k)
d

(∣∣∣H(k)
d \ Ḣ

(k)
d

∣∣∣ + 1
)

(1− xib) ≤
∑

(i,b)∈Hd\H(k)
d

|Hd|2 xib (5.40)

∀d ∈ D; k = 1, 2, ..., K∑
(i,b)∈H(k)

d
\Ḣ(k)

d

xib −
∑

(i,b)∈Ḣ(k)
d

(∣∣∣H(k)
d \ Ḣ

(k)
d

∣∣∣ + 1
)

(1− xib) ≥ −
∑

(i,b)∈Hd\H(k)
d

|Hd|2 xib (5.41)

∀d ∈ D; k = 1, 2, ..., K

where Hd = {(i, b)|b ∈ Bd, i ∈ Ib}, H(k)
d = {(i, b)|b ∈ Bd, i ∈ I(k)

b } and Ḣ(k)
d = {(i, b)|b ∈

Bd, i ∈ İ(k)
b }. İ

(k)
b ⊆ I(k)

b is the best subset of the assigned surgeries of the ESAPREC in
the k-th iteration. The validation of the LBA feedback constraints is shown in Theorem
5 (see the proof A.5).

Theorem 5 The LBA feedback constraints (5.40) and (5.41) are valid.

Similar to the sequence feedback, given the k-th assignment, we define new binary
variables and constraints to correct the cost estimation η̂

(k)
d = minJ

j=0 η̂
(k,j)
d related to the

surgery assignment Ḣ(k)
d which has been simulated in the previous iteration. The definition

of variables θkd are similar to θj, and constraints (5.42)-(5.46) are similar to constraints
(5.35)-(5.39). Note that constraint (5.2) is replaced by constraint (5.42).
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ηd ≥
∑
s∈S

P (s)

∑
i∈I

∑
b∈Bd|i∈Ib

CQ
i uibs +

∑
b∈Bd

COobs

− K∑
k=1

Mθkd ∀d ∈ D (5.42)

ηd ≥ η̂
(k)
d −M (1− θkd) ∀d ∈ D; k = 1, 2, ..., K (5.43)

θkd ≥ 1−

 ∑
(i,b)∈Ḣ(k)

d

(1− xib) +
∑

(i,b)∈Hd\Ḣ(k)
d

xib

 ∀d ∈ D; k = 1, 2, ..., K (5.44)

M(1− θkd) ≥
∑

(i,b)∈Ḣ(k)
d

(1− xib) +
∑

(i,b)∈Hd\Ḣ(k)
d

xib ∀d ∈ D; k = 1, 2, ..., K (5.45)

θkd ∈ {0, 1} ∀d ∈ D; k = 1, 2, ..., K (5.46)

5.3 Computational experiments

In this section, we use instances same as Section 4.4.1 for our experiments and com-
pare the performance of three approaches, including our TPSO approach and the SAA
approach proposed in Section 4. Our TPSO approach was coded in Python, and the
Gurobi Optimizer 9.0.3 was called to solve the model. The maximal number of iterations
MaxIter is set to 10. The time limits for our TPSO approach are set to be the same as
the SAA approach, which are 1h, 5h, 10h and 10h for the instances with 70, 100, 140 and
200 surgeries, respectively. Moreover, the number of scenarios is also set to be the same
as the SAA approach, which are 50 for SDR = 0.19 and 0.32, 40 for SDR = 0.75 and 0.96,
15 for SDR = 1.06, 5 for SDR = 1.34, 10 for SDR = 1.49, 40 for SDR = 1.92, 50 for SDR
= 2.13 and 2.70.

5.3.1 Experimental results and comparisons

To assess the performance of our TPSO approach, we carried out computational ex-
periments on the 36 instances, comparing it with the SAA approach. The SAA approach
is implemented by solving the SSFUSB model using the Gurobi Optimizer 9.0.3 with the
same number of scenarios and the same time limit as the TPSO approach. To fairly com-
pare the two approaches, the obtained solutions are evaluated by simulating the surgery
schedule in 500 scenarios. The simulation process is the same as the DES algorithm in
Section 5.2.4.

Figure 5.2 displays box plots and median values for the gap between the best objective
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value obtained by the TPSO and SAA approaches for different SDRs. In detail, the gap is
calculated as Gap = (ObjM −Obj∗)/Obj∗ × 100% where Obj∗ is the best objective value
obtained by the TPSO and SAA approaches, and ObjM is either the best objective value
obtained by the TPSO or SAA approach. The results highlight the sensitivity of the SAA
approaches to different SDRs, while the TPSO approach is more robust. In particular,
the majority of solutions found by the TPSO approach yield values within 0.30% of the
best solution for low SDR, 0.40% for medium SDR, and 0.00% for high SDR. In contrast,
the SAA approach yields values within 2.60% of the best solution for low SDR, 7.40%
for medium SDR, and 3.80% for high SDR. Moreover, the median gaps of the TPSO
approach are significantly lower than that of the SAA approach for all SDRs, such as
0.00% vs. 0.36% for low SDR, 0.00% vs. 1.97% for medium SDR, and 0.00% vs. 3.29%
for high SDR. Lastly, for the medium SDR, the worst-case gap of 13.42% for the SAA
approach is significantly higher than that of 0.77% for the TPSO approach. In conclusion,
the surgical plans obtained by our proposed TPSO approach can perform a larger number
of surgeries at a lower cost, which is superior to the traditional SAA approach.
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Figure 5.2 – Computational results of TPSO and SAA.

5.3.2 Analysis of decomposition and feedback mechanisms

The consistent performance of the TPSO approach as the SDR value increases is
somehow due to the decomposition of the SSFU problem into ESAPREC and ESSPB&B

subproblems. In general, a smaller model (with fewer variables and constraints) would be
easier to solve. Thus, we first compare the size of the models before and after decomposi-
tion. Figure 5.3 plots the average number of variables and constraints solved by the TPSO
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and SAA approaches, along with the percentage of the reduction, as the problem size in-
creases. The significant reduction in variables and constraints reduces the computational
complexity of solving the proactive SSFU problem.
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Figure 5.3 – Model size reduction via decomposition.

Apart from the decomposition of the proactive SSFU problem, the feedback mecha-
nism in the TPSO approach plays a crucial role in enhancing the quality of the solution.
To confirm this, we additionally perform experiments to compare the proposed TPSO
approach, denoted as V0, with the following two variants: Variant 1, denoted as V1, with-
out feedback mechanism, which solves SSFU problem in three subproblems; Variant 2,
denoted as V2, which replaces the constraints (5.40) and (5.41) with the classical no-good
cut [139]. Figure 5.4 shows the box plots for the gap between the best objective value
obtained by the TPSO and its variants, as well as the SAA approach for different SDRs.
In general, we observe that the average gap of V0 is the smallest, which indicates that
the feedback constraints (5.40) and (5.41) are effective. Moreover, the average gap of V1
is slightly smaller than that of V2 in the instances with low and medium SDR. This is
because, in these cases, the demand is less than the supply, and the cost estimation in
ESAPREC and ESSPB&B is relatively accurate. The information provided by the classical
no good cut is insufficient to improve the solution quality. However, in the instances with
high SDR, the demand exceeds the supply, and the cost estimation is inaccurate. Thus,
the no-good cut can provide information to improve the quality of the solution.
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Figure 5.4 – Comparison of different variants of TPSO and SAA.

5.4 Chapter conclusion

In this chapter, we proposed an innovative three-phase simulation-optimization (TPSO)
approach to obtain a high-quality initial elective surgery plan, where the result of dynamic
rescheduling in the planning horizon is considered. To decrease the complexity of the
proactive SSFU problem, we decomposed it into an elective surgery assignment subprob-
lem considering emergency demand (ESAPREC) and multiple elective surgery sequencing
subproblems with BIMs & buffers (ESSPB&B). We applied a discrete-event simulation
(DES) algorithm to evaluate the plan quality. To effectively feedback the evaluation results
to ESAPREC and ESSPB&B models, we developed a set of novel constraints, including
sequence feedback and assignment feedback. Especially, for the assignment feedback, we
proposed local best assignment (LBA) feedback constraints to reduce the search space,
which has been proven to validate.

We conducted extensive computational experiments to evaluate the performance of
the proposed TPSO approach. We compared our TPSO approach with the SAA approach
proposed in Chapter 4. The results show that our proposed TPSO approach can perform
a larger number of surgeries at a lower cost. Moreover, we analyzed the effectiveness of
the decomposition and feedback mechanism.
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CONCLUSIONS

This thesis investigates the static and stochastic variants of the well-known patient
admission scheduling (PAS) problem and the surgical case scheduling problem in flexible
operating rooms under uncertainty (SSFU). As the literature review shown in Chapter 1,
for these two NP-hard problems, and many methods have been proposed to solve them.
In this thesis, we proposed several advanced mathematical optimization models and so-
lution methods to solve these problems efficiently. Extensive experiments on benchmark
instances show the effectiveness of the proposed methods.

In Chapter 2, we focused on how to improve the efficiency of solving the IP model of
the static PAS problem using better model formulations. We employed a two-stage exact
method that decomposes the PAS problem into two subproblems, including the patient-
room assignment (PRA) subproblem and the patient-bed assignment (PBA) subproblem.
To solve the PRA subproblem, we applied a warm start approach in which we solve the
APRAWT model to generate a high-quality feasible solution and then use the obtained
solution as a warm start to the APRA model. We proposed two aggregated gender policy
constraints AGC0, AGC1, and aggregated patient transfer constraint ATC, and generated
4 APRAWT models and 8 APRA models. Experimental results on the 13 benchmark
instances in the literature indicate that our method can obtain new improved solutions
(new upper bounds) for 6 instances, including one proven optimal solution. In addition, we
apply our method to the original PAS problem, which has the maximum number of hard
constraints, and perform computational experiments on the same 13 benchmark instances.
Our method yields 5 new best solutions and proves optimality for 6 instances.

In Chapter 3, we proposed a new stochastic PAS (SPAS) problem that aims to as-
sign patients to rooms during their planned hospitalization periods while considering the
uncertainty of the overstay days. We considered the SPAS problem as a two-stage stochas-
tic programming problem, and built a scenario-based model SPASSB and its equivalent
state-variable model SPASSV . To solve the SPASSV model efficiently, we elaborated a
solution method SAA-SV in which we solve the SPASSAA model to generate a high-
quality feasible solution and then use it as an initial solution to solve the SPASSV model.
The results show that the SAA-SV method effectively improves the solution quality and
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computational time. Especially, the SAA-SV method is capable of finding solutions with
an average optimality gap of 1.73% for large instances reaching 500 patients and 3.3 ×
10150 scenarios in 1 hour.

In Chapter 4, we presented a study on SSFU, which consists of operational decisions
of assignment (assign patients to OR blocks in a given time horizon) and sequencing
(determine the start time of the assigned surgeries in each OR block), while considering the
uncertainties associated with the durations of elective surgeries, the arrivals of emergency
surgeries, and their durations. To solve this problem, we adopt an integrated proactive
and reactive strategy, where a proactive SSFU model is first solved to generate an initial
elective surgery plan, and then a reactive SSFU model is solved to dynamically adjust the
plan based on actual surgery durations and emergency arrivals. Moreover, we implemented
three mechanisms — reserving capacity, Break-In-Moment, and buffer — to improve the
robustness of the plan. Extensive computational experiments were conducted to evaluate
the performance of the proposed models and mechanisms.

In Chapter 5, we proposed an innovative three-phase simulation-optimization (TPSO)
approach to solve the proactive SSFU problem to obtain a high-quality solution, where
the result of dynamic rescheduling in the planning horizon is considered. To decrease
the complexity of the proactive SSFU problem, we decomposed it into an elective surgery
assignment subproblem considering emergency demand (ESAPREC) and multiple elective
surgery sequencing subproblems with BIMs & buffers (ESSPB&B). We applied a discrete-
event simulation (DES) algorithm to evaluate the plan quality. To effectively feedback
the evaluation results to ESAPREC and ESSPB&B models, we developed a set of novel
constraints, including sequence feedback and assignment feedback. Especially, for the
assignment feedback, we proposed local best assignment (LBA) feedback constraints to
reduce the search space, which have been proven to validate. Extensive experiments show
the effectiveness of the proposed TPSO approach.

Perspectives

For future research, several directions could be explored.
For the static PAS problem, we can investigate the following directions: (1) Design ded-

icated branch-and-bound algorithms to improve solving performance while guaranteeing
optimality. (2) Design matheuristic algorithms that exploit mathematical programming
techniques in a metaheuristic framework. (3) Investigate the dynamic PAS problem by
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appropriately adjusting the proposed models to solve real-world situations.
Considering that our proposed SAA-SV method is a general solution framework for

two-stage stochastic programming problems, we can investigate its effectiveness in solv-
ing the project scheduling problem and the operating room scheduling problem, among
others. However, despite its broad applicability, the challenge arises when we solve the
state-variable models using general-purpose solvers like CPLEX or Gurobi, especially as
the size of the instances increases. To address this issue, designing dedicated Benders
decomposition algorithms based on the structure of the state-variable model could be a
promising direction.

Moreover, for the SSFU problem, according to the BII existence theorem, we can
calculate the length of one BII multiple times, which is inefficient. Therefore, avoiding the
repeated calculation of the length of the BII is a potential research direction. Moreover,
our modeling approach for the BIMs and buffer mechanism can be extended to other
problems, such as the job shop scheduling problem. In addition, the performance of the
TPSO approach is significantly dependent on the number of scenarios. To improve the
solution performance, we can formulate the scenario-based stochastic programming model
ESAPREC to its equivalent state-variable model [98], whose size may be significantly
reduced with a pseudo-polynomial number of variables and constraints.
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APPENDIX

A Proof

A.1 Proof of Theorem 1

Proof. The difference between the models APRAAGC1&T C and APRAGC1&T C is the con-
straints (2.26)-(2.27) and (2.37)-(2.38). Thus, the other constraints are omitted in the
following proof. Note that since the variables of (2.26) and (2.27) are consistent, and the
structure of these two constraints is similar, the method used to prove the equivalence be-
tween (2.26) and (2.37) can be applied to prove the equivalence between (2.27) and (2.38).
Consequently, we will only present the proof of the equivalence of constraints (2.26) and
(2.37).

Proof of condition (i): By summing up the inequalities indexed by p in constraint
(2.26), we get inequality (A.1).

|Fd|(brd + urd) ≥
∑

p∈F|d∈Dp

xprd ∀r ∈ RM
D , d ∈ D (A.1)

According to the domains of the variables brd, urd, xprd, we consider the following two
cases for the inequality (A.1):
Case 1: If brd + urd = 0, then ∑

p∈F|d∈Dp
xprd = 0, which implies that constraint (2.37) is

satisfied.
Case 2: If brd + urd > 0, then we can rewrite (A.1) as:

∑
p∈F|d∈Dp

xprd

brd + urd

≤ |Fd| ∀r ∈ RM
D , d ∈ D (A.2)

Since the number of female elective patients assgined to room r on day d is no more
than the capacity of room r, and the number of female elective patients on day d, i.e.,∑

p∈F|d∈Dp
xprd ≤ min{Qr, |Fd|} = λF

rd,∀r ∈ RM
D , d ∈ D, it follows that the left-hand side

of (A.2) is no more than λF
rd. As a result, constraint (2.37) is also satisfied in this case.

Thus, condition (i) is proved.
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Proof of condition (ii): By rewriting the constraint (2.37), we have:

brd + urd ≥
∑

p∈F|d∈Dp
xprd

λF
rd

≥ xprd ∀p ∈ F , d ∈ Dp, r ∈ RM
D (A.3)

Obviously, the constraint (2.26) is satisfied. Thus, we have proved condition (ii). Therefore,
we have proved the equivalence of the two models. ■

A.2 Proof of Theorem 2

Proof. Given two APRA models, i.e. APRAGC1&T C and APRAGC1&AT C . In order to
prove the equivalence of the two models, we need to prove the following two condi-
tions: (i) if (x, u, b, t) is a feasible solution to the APRAGC1&T C , then, there exists
a vector z such that (x, u, b, z) is feasible to the APRAGC1&AT C with objective value
SAP RAGC1&AT C

(x, u, b, z) = SAP RAGC1&T C
(x, u, b, t). (ii) if (x, u, b, z) is a feasible solution

to the APRAGC1&AT C , then, there exists a vector t such that (x, u, b, t) is feasible to the
APRAGC1&T C with objective value SAP RAGC1&T C

(x, u, b, t) = SAP RAGC1&AT C
(x, u, b, z).

The difference between the two models is the objective function and the constraints
TC and ATC. Thus, the other constraints are omitted in the following proof. For ∀p ∈
PE|LOSp ≥ 2, d ∈ D, let a(p, d) be the room index r where xprd = 1.

Proof of condition (i): Since complete assignment constraint (2.15) holds, the right-
hand side of (2.42) gives RNa(p,d) − RNa(p,d+1) ∈ [1 − |R|, |R| − 1] and the right-hand
side of (2.43) gives RNa(p,d+1) −RNa(p,d) ∈ [1− |R|, |R| − 1]. If a(p, d) ̸= a(p, d + 1), then
zpd = 1. If a(p, d) = a(p, d + 1), then both zpd = 0 and zpd = 1 can satisfy (2.42) and
(2.43). Hence, z can be determined. SAP RAGC0&AT C

(x, u, b, z) = SAP RAGC1&T C
(x, u, b, t)

is proved by observing that each patient can only change room on two consecutive days
once. Thus, ∑

r∈R tprd = zpd, ∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1}. Therefore, the
objectives of the two models are the same. This proves the condition (i).

Proof of condition (ii): We discuss the proof of condition (ii) by considering two cases.
Case 1: a(p, d) = a(p, d + 1). In this case, based on the domain of the variable xprd,
the right-hand side of (2.20) gives 0. Therefore, both tprd = 0 and tprd = 1 can satisfy
the constraint (2.20). Case 2: a(p, d) ̸= a(p, d + 1). In this case, tp,a(p,d),d = 1, and for
∀r ∈ R\{a(p, d)}, both tprd = 0 and tprd = 1 can satisfy the constraint (2.20). Hence, t
can be determined. Similar to the proof of condition (i), the two models have the same
objectives. Thus, we have proved condition (ii).

Therefore, we have proved the equivalence of the two models. ■
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A.3 Proof of Theorem 3

Proof. We use proof by contradiction, assuming that no BII exists when the given two
conditions are satisfied, and show that this assumption leads to a contradiction, thus
proving the theorem. Suppose that surgery i starts at time zi, surgery i′ ends at time fi′ ,
which is the closest completion time to the start time of surgery i, i.e., argmini′∈I|fi′ >zi

fi′−
zi. Moreover, all ORs are fully occupied at the start time zi of surgery i. If no BII exists,
this means one of the following three conditions must be satisfied: (1) the OR is not fully
occupied at the time zi′ ; (2) the OR is fully occupied at the time zi, but fi′ ≤ zi′ ; (3)
the OR is fully occupied at the time zi, but there exists a surgery i′′ which completion
time fi′′ is closer to the time zi than fi′ , i.e., zi < fi′′ < fi′ . However, all these three
conditions contradict the assumption. Since the assumption that no BII exists leads to a
contradiction, we conclude that a BII must exist when the given conditions are satisfied.
Therefore, we have proved the theorem 3. ■

A.4 Proof of Theorem 4

Proof. Let’s assume there are two surgeries, i and i′, with postponing costs CP
i and CP

i′ ,
and performing costs Cib and Ci′b, respectively. Without loss of generality, we can assume
CP

i > CP
i′ . Consider the two possible sequences: i− i′ and i′− i. The total costs are given

by Cib + CP
i′ and Ci′b + CP

i , respectively. To show that the first sequence is optimal, we
must prove that Cib +CP

i′ ≤ CP
i +Ci′b. Rearranging the terms, we get Cib−CP

i ≤ Ci′b−CP
i′ .

Since CP
i > CP

i′ , we can rewrite the inequality as CP
i − Cib ≥ CP

i′ − Ci′b.
As the postponing cost is always greater than the performing cost for each surgery, this

inequality holds true. Therefore, scheduling i before i′ minimizes the total cost, proving
that sorting the surgeries in descending order based on the postponing cost is indeed
optimal. Moreover, according to the above proof, one can easily prove that if two surgeries
have the same postponing cost, the one with the lower performing cost should be scheduled
first. ■

A.5 Proof of Theorem 5

Proof. Let’s assume that after the K-th iteration, constraints (5.40)-(5.41) are added
to the ESAPREC concerning the sets Ḣ(k)

d and H(k)
d , k = 1, 2, ..., K. During the n-th

iteration (n > K) of solving ESAPREC , let’s consider the index set of the variables
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xib = 1, (i, b) ∈ H̃d and H̃d ̸= ∅. Consequently, all possible relations among H̃d, Ḣ(k)
d and

H(k)
d are as depicted in Figure A.1.
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Ḣ
(k)
d

! H
(k)
d

Ḣ
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Figure A.1 – All possible relationships among Ḣ(k)
d , H̃d and H(k)

d

The figure illustrates that under the condition Ḣ(k)
d ⫋ H(k)

d , columns 2-6 respectively
illustrate conditions where H̃d equals, contains, is encompassed by, intersects with, or is
disjoint from Ḣ(k)

d . Column 7 represents the condition where Ḣ(k)
d = H(k)

d . Each row respec-
tively illustrates the conditions where H̃d is equal to, includes, is included in, intersects
with, or is disjoint from H(k)

d . This results in a total of 30 possible relationships.
Nonetheless, given that Ḣ(k)

d ⊆ H
(k)
d , the relationships 1-1, 1-3, 1-4, 1-5, 3-1, 3-3, 3-4,

3-5, 4-1, 4-3, 5-1, 5-2, 5-3, and 5-4 are not feasible, accounting for 14 non-existing scenar-
ios. Owing to the proof provided by ESSPB&B, which establishes that θ1

d

(
x

(
Ḣ(k)

d

))
≤

θ1
d

(
x

(
H̃d

))
while H̃d ⊆ H(k)

d , the task of proving the validation of the constraints (5.40)-
(5.41) becomes equivalent to showing that these constraints are capable of excluding rela-
tionships 1-2, 2-2, 2-3, 2-4, 2-5, 2-6, but unable to exclude the relationships 1-6, 2-1, 3-2,
3-6, 4-2, 4-4, 4-5, 4-6, 5-5, and 5-6.
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For each of the potential relationships outlined in Figure A.1, let the variables in
the constraints (5.40)-(5.41) be xib = 1, xi′b′ = 0 where (i, b) ∈ H̃d and (i′, b′) /∈ H̃d. By
calculating the values of these two constraints under these relationships, one can determine
whether a particular relationship is excluded. Specifically, if the calculated value does
not satisfy the inequality relationship, then the relationship is excluded. Conversely, if
the calculated value does satisfy the inequality relationship, the relationship cannot be
excluded.

To facilitate discussion, let us divide constraint (5.40) into three parts, as shown in
constraints (A.4).

∣∣∣∣∣∣∣∣
A︷ ︸︸ ︷∑

(i,b)∈H(k)
d

\Ḣ(k)
d

xib−

B︷ ︸︸ ︷∑
(i,b)∈Ḣ(k)

d

(∣∣∣H(k)
d \ Ḣ

(k)
d

∣∣∣ + 1
)

(1− xib)

∣∣∣∣∣∣∣∣ ≤
C︷ ︸︸ ︷∑

(i,b)∈Hd\H(k)
d

|Hd|2 xib (A.4)

∀d ∈ D; k = 1, 2, ..., K

Table A.1 presents the values of the two constraints under each relationship. According
to this Table, relationships 1-2 and 2-2 do not satisfy A − B ≤ C, and relationships 2-
3, 2-4, 2-5, and 2-6 do not satisfy A − B ≥ −C. That is, the constraints (5.40) can
exclude 2 relationships, and the constraints (5.41) can exclude 4 relationships. Therefore,
these two constraints can exclude these 6 relationships. The remaining 10 relationships all
satisfy these two constraints, implying that these two constraints will not exclude these
relationships.

In summary, LBA feedback constraints (5.40) and (5.41) are valid. ■

A.6 Proof of validity of the constraint (4.17)

Proof. Given day d and surgery i, the validity of constraint (4.17) can be divided into
two cases for discussion, including ∑

b∈Bd
xib = 0 and ∑

b∈Bd
xib = 1.

Case 1: ∑
b∈Bd

xib = 0, which means surgery i is not operated on day d.
Since constraints (4.15) and (4.16) hold, we have gii′d = ϕii′d = 0. In this case, if∑

b∈Bd|b ̸=b′ xi′b = 1, we have gii′d + ϕii′d −
∑

b∈Bd|b ̸=b′ xi′b = −1. Thus, max ∑
b′∈Bd|b ̸=b′(gii′d +

ϕii′d − xi′b)− |Bd|+ 2 ≤ 1− |Bd| ≤ 0, which means there is no BII when surgery i is not
operated on day d. Therefore, in this case, the expression of the formula is consistent with
the meaning of the constraint.
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Table A.1 – Values of the constraints (5.40)-(5.41) under different relationships

Relationship A B C A−B ≤ C A−B ≥ −C
1-2 α 0 0 × ✓
1-6 0 0 0 ✓ ✓
2-1 0 0 0 ✓ ✓
2-2 [1, α− 1] 0 0 × ✓
2-3 0 [α + 1, (α + 1)(|Ḣ(k)

d | − 1)] 0 ✓ ×
2-4 [1, α] [α + 1, (α + 1)(|Ḣ(k)

d | − 1)] 0 ✓ ×
2-5 [1, α] (α + 1)|Ḣ(k)

d | 0 ✓ ×
2-6 0 [1, (|Ḣ(k)

d | − 1)] 0 ✓ ×
3-2 α 0 [|Hd|2, β|Hd|2] ✓ ✓
3-6 0 0 [|Hd|2, β|Hd|2] ✓ ✓
4-2 [0, α− 1] 0 [|Hd|2, β|Hd|2] ✓ ✓
4-4 [0, α] [α + 1, (α + 1)(|Ḣ(k)

d | − 1)] [|Hd|2, β|Hd|2] ✓ ✓
4-5 [1, α] (α + 1)|Ḣ(k)

d | [|Hd|2, β|Hd|2] ✓ ✓
4-6 0 [1, (|Ḣ(k)

d | − 1)] [|Hd|2, β|Hd|2] ✓ ✓
5-5 0 (α + 1)|Ḣ(k)

d | [|Hd|2, β|Hd|2] ✓ ✓
5-6 0 |Ḣ(k)

d | [|Hd|2, β|Hd|2] ✓ ✓

*α =
∣∣∣H(k)

d \ Ḣ
(k)
d

∣∣∣ , β =
∣∣∣Hd \ H(k)

d

∣∣∣

Case 2: ∑
b∈Bd

xib = 1, which means surgery i is operated on day d.

Since constraints (4.15) and (4.16) hold, if ∑
b∈Bd|b ̸=b′ xi′b = 0, we have gii′d = ϕii′d = 0,

gii′d + ϕii′d −
∑

b∈Bd|b ̸=b′ xi′b = 0. In contrast, if ∑
b∈Bd|b ̸=b′ xi′b = 1, there are two possible

situations: gii′d + ϕii′d −
∑

b∈Bd|b̸=b′ xi′b = 0 or gii′d + ϕii′d −
∑

b∈Bd|b ̸=b′ xi′b = 1. The former
indicates that surgery i′ is not operated when surgery i starts, while the latter indicates
that surgery i′ is being operated when surgery i starts. Furthermore, since there are at
most |Bd|−1 surgeries being operated when surgery i starts, we have max ∑

b′∈Bd|b̸=b′(gii′d+
ϕii′d − xi′b) ≤ |Bd| − 1. Therefore, max ∑

b′∈Bd|b ̸=b′(gii′d + ϕii′d − xi′b)− |Bd|+ 2 ≤ 1, which
means there is at most one BII when surgery i is operated on day d, and the BII exists if
and only if ORs are fully occupied when surgery i′ starts. Thus, in this case, the expression
of the formula is consistent with the meaning of the constraint.

In summary, the constraint (4.17) is valid for both cases. ■

160



B Discussion on constraints system of computing the
BII in the literature

In order to better explain the problem of computing the length of the BII in the
literature, we extract the related constraints from the existing literature and analyze
them in detail. Specifically, Schulz and Fliedner [59] proposed the following constraints to
compute the BII:

si + pi − (sj + pj) ≤ bj +

xij · (|I|+ 1) +

 ∑
k∈I:k ̸=i,j

xki − xkj

− 1

 ·M ∀i, j ∈ I : i ̸= j

(B.5)

si + pi − (sj + pj) ≥ bj −

xij · (|I|+ 1) +

 ∑
k∈I:k ̸=i,j

xki − xkj

− 1

 ·M ∀i, j ∈ I : i ̸= j

(B.6)

where I is the set of surgeries, i, j are indices of surgeries in I. si and pi are the start time
and duration of surgery i, respectively. bj is the duration of the BII that follows surgery
j. xij is a binary variable that equals 1 if surgery i is starts before j and 0 otherwise. M

is a large positive number. Constraints (B.5) and (B.6) fix the BII, i.e., the time between
the ending time of surgery j and the ending time of surgery i which starts next bj, for
all jobs which have a successor. As we showed in Figure 4.4(b), the BII length in the
surgery schedule with buffer can only calculated by the difference of the completion time
and start time of two overlapping surgeries, which satisfy the conditions as provided in
Theorem 3. Thus, the constraints (B.5) and (B.6) fail to compute the BII in the surgical
case scheduling with buffer.

Moreover, Latorre-Núñez et al. [57] calculated the BII by the difference between the
completion time and the start time of two overlapping surgeries, which are shown as
follows:

C1
i + Li ≤ C1

j + Lj + G · (1− z2
ij) ∀i, j ∈ J |i ̸= j (B.7)

z2
ij + z2

ji = 1 i, j ∈ J |i ̸= j (B.8)

Emax ≥ (C1
j + Lj)− (C1

i − P 1
i − Si)− z1

ji ·G ∀i, j ∈ J |i ̸= j : P 1
j + Sj + Lj > Emax

(B.9)
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z2
ij + z1

ij ≤ z3
ij + 1 ∀i, j ∈ J |i ̸= j (B.10)∑

j∈J |j ̸=i

z3
ij ≤ m1 − 2 i ∈ J : P 1

i + Si + Li > Emax (B.11)

where J is the set of surgeries, i, j are the indices of surgeries in J . Parameters C1
i , Li, P 1

i ,
Si are the completion time, the clean time, the duration, and the setup time of surgery
i, respectively. m1 is the number of ORs. G is a large positive number. Parameter Emax

is the maximum allowable length of BII. z1
ij, z2

ij, z3
ij are binary variables. Specifically, z1

ij

equals 1 if the gap between the start of surgery i and the end of surgery j is greater than
Emax, and 0 otherwise. z2

ij equals 1 if the completion of cleaning of surgery i precedes
the completion of the cleaning of surgery j, and 0 otherwise. z3

ij equals 1 if the parallel
performing time of surgery i and j is greater than Emax, 0 otherwise. Constraint (B.7)
determines the precedence between the completion of the cleaning activities after the
surgeries. For each combination of surgeries, constraint (B.8) states that there is only one
predecessor. Constraint (B.9) requires that the difference between the end of surgery j

and the start of surgery i to be less than or equal to Emax. Constraint (B.10) determines
whether the time of the surgeries scheduled in parallel is greater than Emax. The author
proposed constraint (B.11) to ensure that Emax is met. However, this constraint may
not be correct. For example, if there are 2 ORs and 10 surgeries, the right side of the
constraint (B.11) is zero, which means that the time to perform surgery i and any other
surgery j is less than Emax. This is incorrect if Emax is a very small number, such as 1
minute. Therefore, Latorre-Núñez et al. [57] did not carefully consider overlapping cases,
which may lead to incorrect results.

C Application to the original patient admission schedul-
ing problem

As mentioned in Section 1.2, various static PAS problems have been studied in the lit-
erature. The differences are the treatment of SC1-SC4 and SC9 constraints. Our proposed
method can solve these static variants by decreasing the number of soft constraints and
adjusting the domain of the patient-room assignment variables according to the specific
problem definition. Different from the standard PAS problem we solved, in the original
PAS problem proposed by [25], the former four constraints are hard constraints, which
are not allowed to be violated. In order to solve the original PAS problem, we use our pro-
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posed two-stage optimization approach and modify the APRAWT and APRA models by
limiting the set of rooms that can be assigned to each patient. Specifically, we use Rp ∈ R,
which is defined as the set of rooms that can be assigned to patient p without violating
the constraints SC1-SC4. The modified APRAW T and APRA models are formulated as
follows:

Modified APRAWT: Min S =
∑

p∈PE

∑
r∈Rp

C ′
prxpr (C.12)

s.t. Constraints (2.30), (2.34), where Rp is used instead of R

Constraints (2.23)∑
p∈P|d∈Dp,r∈Rp

xpr ≤ Qr, ∀d ∈ D, r ∈ R (C.13)

λF
rdfrd ≥

∑
p∈F|d∈Dp,r∈Rp

xpr ∀d ∈ D, r ∈ RM
D (C.14)

λM
rd(1− frd) ≥

∑
p∈M|d∈Dp,r∈Rp

xpr ∀d ∈ D, r ∈ RM
D (C.15)

Modified APRA : Min S =
∑

p∈PE ,r∈Rp,d∈Dp

Cprd · xprd +

∑
p∈PE |LOSp≥2,r∈Rp,d∈Dp\{DDp−1}

WT r · tprd (C.16)

s.t. Constraints (2.15), (2.20), (2.21), (2.25), where Rp is used instead of R

Constraints (C.13), (C.14), (C.15), where xprd is used instead of xpr

Constraints (2.23)

The computational results are summarized in Table C.2. Since SC1-SC4 are considered
to be hard constraints, the corresponding penalties (Gen., Age, Sng. and Ned. Pref.)
are equal to zero and are not reported. Note that most studies treat SC1-SC4 as soft
constraints, and therefore, the corresponding problems are relaxations of the original PAS
problem. Consequently, the best lower bounds in those studies can be used as the best
known lower bounds BLB of the original PAS problem. The best known solutions BKS

are similarly derived from the results in the literature without incurring penalties of SC1-
SC4. The symbol “-” is used to indicate that the instance is infeasible for the original PAS
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problem or the result is not available in the literature.

Table C.2 Results on the benchmark instances for the original PAS problem (new best
solutions and new best lower bounds in bold, proven optimal solutions in star *).

Instance

Literature results Two-stage optimization approach

BKS
(Time to end∗∗)

BLB
(Time to end∗∗) Obj

Time
to

best

Time
to

end
LB

GAP
(%)

Node
of

APRAWT

Node
of

APRA

Breakdown of the Obj components

Room
pref. Dept. Spec. Pref.

prop. Trs.

1 651.20 (21,226[8]) 651.20 (21,226[8]) 651.20* 272 5,370 651.20 0.00 5,872 6,732 651.2 0.0 0.0 0.0 0.0

2 1,128.00 (44,258[8],
2,577[9]) 1,115.80 (44,258[8]) 1,125.60* 7,638 24,372 1,125.60 0.00 10,447 8,356 1,113.6 0.0 12.0 0.0 0.0

3 761.60 (44,258[8],
2,577[9]) 758.60 (44,258[8]) 761.60* 2,021 12,864 761.60 0.00 46,752 62,533 753.6 0.0 8.0 0.0 0.0

4 1,151.60 (44,258[8]) 1,143.20 (44,258[8]) 1,151.00 35,818 86,400 1,150.00 0.09 144,679 553,384 1040.0 0.0 75.0 36.0 0.0

5 624.00 ( 4,227[8],
62[9]) 624.00 ( 4,227[8]) 624.00* 199 752 624.00 0.00 670 5,603 624.0 0.0 0.0 0.0 0.0

6 792.60 (10,082[8],
2,577[9]) 792.60 (10,082[8]) 792.60* 462 1,019 792.60 0.00 45 1 789.6 0.0 3.0 0.0 0.0

7 1,176.40 ( 6,209[8],
2,577[9]) 1,176.40 ( 4,209[8]) 1,176.40* 36 486 1,176.40 0.00 321 5,206 730.4 20.0 158.0 268.0 0.0

8 4,063.00 (44,258[8]) 4,024.41 (44,258[8]) 4,058.60 9,655 86,400 4,039.60 0.47 9,137 3,020 1,433.6 214.0 871.0 1,518.0 22.0
9 - - - - - - - - - - - - - -
10 7,804.60 ( 2,577[9]) 7,687.33 (44,258[8]) 7,793.80 43,200 86,400 7,719.60 0.96 1,298 1 2,948.8 4.0 481.0 4,360.0 0.0
11 11,536.20 ( 654[9]) 10,987.72 (44,258[8]) 11,836.60 43,200 86,400 10727.05 7.73 268 0 4,361.6 16.0 963.0 6,496.0 0.0
12 - - - - - - - - - - - - - -
13 - 8,842.80 (44,258[8]) 9,093.60 67,866 86,400 8,912.40 2.03 66,457 441 2,061.6 627.0 1,695.0 4,556.0 154.0
** Total computation time reported by the corresponding reference, adjusted following the procedure from [107]

From Table C.2, we observe that our approach computed 5 out of 13 new best solutions
on the tested benchmark instances (2, 4, 8, 10, 13, solutions obtained for instances 10, 13
are better than our new found solutions in Table 2.8). Our approach proved the optimality
of 6 out of 13 solutions (1, 2, 3, 5, 6, 7). Moreover, our approach improved the best lower
bound for 6 out of the instances (2, 3, 4, 8, 10, 13, lower bounds obtained for instances
8, 10, 13 are better than our new found lower bounds in Table 2.8). Note that instances
9 and 12 are infeasible in the original PAS problem. The reason is that the number of
elective patients exceeds the capacity of the rooms allowed for them.
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Résumé : La planification efficace des patients
est essentielle pour améliorer l’efficacité des res-
sources médicales et la satisfaction des patients
dans le système de santé. Cette thèse présente
des modèles mathématiques et des approches
de solution pour le problème de planification des
admissions de patients statiques/stochastiques et
le problème de planification des cas chirurgicaux
dans des salles d’opération flexibles sous incer-
titude. En raison de la complexité de ces pro-
blèmes, qui impliquent de multiples contraintes
et incertitudes, des méthodes de résolution inno-
vantes telles que l’optimisation en deux phases,
l’approximation hybride de la moyenne des échan-
tillons avec variable d’état (SAA-SV), la planifica-

tion intégrée proactive et réactive, et l’optimisation
de simulation en trois phases sont proposées. De
plus, des approches de modélisation avancées
comme l’agrégation de contraintes, la modélisa-
tion aléatoire basée sur des scénarios, et la mo-
délisation à variable d’état sont développées pour
créer des modèles de taille réduite afin d’amélio-
rer l’efficacité de leur résolution. Des études com-
putationnelles réalisées sur un ensemble d’ins-
tances de référence démontrent l’efficacité des
méthodes proposées en comparaison avec les
méthodes de l’état de l’art. Des expériences sup-
plémentaires sont menées pour évaluer le rôle
des composants clés des méthodes proposées.
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Abstract: Efficient patient scheduling plays a
crucial role in improving the efficiency of med-
ical resources and patient satisfaction in the
healthcare system. This thesis presents math-
ematical modeling and solution approaches for
the static/stochastic patient admission schedul-
ing problem and the surgical case scheduling
problem in flexible operating rooms under un-
certainty. Given the complexity of these prob-
lems with multi-constraint and uncertainty, inno-
vative solution approaches — two-stage optimiza-
tion, hybrid sample average approximation and
state-variable (SAA-SV), integrated proactive and

reactive scheduling, and three-phase simulation-
optimization — are proposed to solve the prob-
lems efficiently. Especially, advanced modeling
approaches — constraint aggregation, scenario-
based modeling, and state-variable modeling —
are used to build reduced models to improve
the solution efficiency. Computational studies per-
formed on a set of benchmark instances show the
effectiveness of the proposed methods in compar-
ison with the state-of-the-art methods. Additional
experiments are conducted to evaluate the roles
of the key ingredients of the proposed methods.
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