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Abstract

Air quality is a critical global issue, with air pollution posing serious environmental and public
health risks, especially in urban areas where fine Particulate Matters (PMs) especially (PM2.5) is
among the most harmful pollutants. Despite significant advancements in air quality monitoring
and modeling, challenges such as data variability, computational demands, scalability, resolution
constraints, and privacy concerns continue to limit the accuracy and effectiveness of current
forecasting systems. This dissertation presents a novel approach to air pollution prediction in
urban areas by integrating Artificial Intelligence (AI), spatiotemporal modeling, and privacy-
preserving data collection techniques.

The first major contribution of this research is the development of PMFORECAST, a temporal
prediction model specifically designed to forecast PM2.5 levels. By utilizing advanced machine
learning techniques and temporal attention mechanisms, PMFORECAST effectively captures
temporal dependencies in pollutant concentrations, leading to highly accurate predictions for
both short-term and long-term forecasting. Additionally, the model demonstrates significant
multi-tasking capabilities. It achieves a notable prediction accuracy of 99.7% for 1-hour forecasts
and 73.5% for 12-hour forecasts, representing substantial improvements over existing models in
terms of precision and computational efficiency.

Spatial and temporal data from underground sensor networks to predict PM2.5 concentrations
across different geographic regions. The Graph Temporal LSTM (GT-LSTM) model employs
Graph Convolutional Networks (GCNs) to capture the complex interactions between pollution
sources and atmospheric conditions at ground level, while utilizing Long Short-Term Memorys
(LSTMs), as described in the previous contribution, to model temporal dependencies. This
approach provides a more refined understanding of pollutant dispersion over time and space.
By operating with fixed zone resolutions corresponding to available data resources, the model
ensures accurate and localized predictions.

The third contribution is the design of a federated learning architecture called FEDAIRNET,
aimed at enhancing air quality prediction using mobile sensor data while safeguarding user
privacy. Traditional air quality monitoring stations are often constrained by limited spatial
coverage and high costs, whereas mobile sensors offer a more flexible and granular data source.
However, the collection of mobile sensor data introduces privacy concerns. FEDAIRNET

addresses these challenges by distributing the learning process across multiple devices, ensuring
that sensitive data remains on local devices while still contributing to global model updates.
This decentralized approach not only improves prediction accuracy but also mitigates risks
associated with centralized data collection, such as point-of-interest (PoI) attacks.

The models presented in this thesis have been rigorously tested in real-world environments,
demonstrating their potential to transform air pollution monitoring systems. The PMFORECAST

model provides robust predictions of PM2.5 concentrations, making it valuable for public health
interventions and environmental policies. The Spatiotemporal Model adds a critical layer of
understanding by analyzing how pollutants behave across spatial and temporal dimensions,
while the FEDAIRNET architecture ensures that privacy is protected as the use of mobile sensors
becomes more prevalent.
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This research represents significant advancements in air pollution prediction by integrating
AI-driven insights with privacy-preserving data collection techniques. Future work should focus
on incorporating additional data sources, and refining hybrid models that combine temporal,
spatial, and mobile sensing data. These innovations will contribute to more accurate, timely,
and secure air pollution forecasting systems, ultimately helping to mitigate the harmful effects
of air pollution on human health and the environment.

Keywords: Air Quality, PM2.5 Forecasting, Spatiotemporal Analysis, Federated Learning, Data

Privacy-Preserving, high-resolution
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Résumé

La qualité de l’air est un problème mondial, la pollution de l’air posant de sérieux risques
environnementaux et pour la santé publique, surtout dans les zones urbaines où les particules
fines (PM), notamment le Particulate Matter (PM)2.5, sont parmi les polluants les plus nocifs.
Malgré des avancées dans la surveillance de la qualité de l’air, des défis comme la variabilité
des données, les exigences computationnelles, la scalabilité, et les préoccupations en matière de
confidentialité limitent l’efficacité des systèmes de prévision actuels.

Cette thèse présente une approche novatrice pour prédire la pollution de l’air dans les
zones urbaines en intégrant IA, modélisation spatiotemporelle, et techniques de collecte de
données préservant la vie privée. La première contribution majeure est le développement de
PMFORECAST, un modèle de prédiction temporelle conçu pour prévoir les niveaux de PM2.5.
En utilisant des techniques avancées d’apprentissage automatique et des mécanismes d’attention
temporelle, PMFORECAST capture efficacement les dépendances temporelles des polluants,
conduisant à des prévisions précises pour le court et le long terme. De plus, le modèle démontre
des capacités multitâches, atteignant une précision de 99.7% pour les prévisions à 1 heure et de
73.5% pour celles à 12 heures, représentant des améliorations par rapport aux modèles existants.

Le modèle spatiotemporel intègre des données de réseaux de capteurs souterrains pour
prédire les concentrations de PM2.5 à travers différentes régions. Le modèle Graph Temporal
LSTM (GT-LSTM) utilise des réseaux de GCN pour capturer les interactions entre les sources
de pollution et les conditions atmosphériques, tout en utilisant des LSTMs pour modéliser les
dépendances temporelles. Cette approche permet une compréhension approfondie de la disper-
sion des polluants dans le temps et l’espace. En utilisant des résolutions fixes correspondant aux
ressources de données, le modèle assure des prévisions précises et localisées.

La troisième contribution est la conception d’une architecture d’apprentissage fédéré appelée
FEDAIRNET, visant à améliorer la prédiction de la qualité de l’air avec des données de capteurs
mobiles tout en préservant la vie privée. Les stations de surveillance traditionnelles, limitées
par une couverture spatiale et des coûts élevés, voient en revanche les capteurs mobiles une
source de données flexible. Cependant, la collecte de données de capteurs mobiles soulève
des préoccupations de confidentialité. FEDAIRNET distribue le processus d’apprentissage sur
plusieurs appareils, garantissant que les données sensibles restent locales tout en contribuant
aux mises à jour du modèle global. Cette approche décentralisée améliore non seulement la
précision des prévisions, mais atténue aussi les risques liés à la collecte centralisée.

Les modèles présentés dans cette thèse ont été testés dans des environnements réels, mon-
trant leur potentiel à transformer les systèmes de surveillance de la pollution. Le modèle
PMFORECAST fournit des prévisions robustes de PM2.5, essentielles pour les interventions
en santé publique. Le modèle spatiotemporel enrichit notre compréhension en analysant le
comportement des polluants, tandis que l’architecture FEDAIRNET protège la vie privée à
mesure que l’utilisation de capteurs mobiles se généralise. Cette recherche représente une
avancée significative dans la prédiction de la pollution de l’air en intégrant des perspectives
basées sur l’IA avec des techniques de collecte de données préservant la vie privée. Les travaux
futurs devraient se concentrer sur l’incorporation de sources de données supplémentaires et
l’affinement de modèles hybrides combinant données temporelles, spatiales et de détection
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mobile, contribuant à des systèmes de prévision plus précis, opportuns et sécurisés, afin de
réduire les effets nocifs de la pollution sur la santé humaine et l’environnement.

Mots-clés : Qualité de l’Air, Prévision des PM2.5, Analyse Spatiotemporelle, Apprentissage

Fédéré, Préservation de la Confidentialité des Données, haute résolution



Table of Contents

List of figures XI

List of tables XVI
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XVII

1 Introduction 1
1.1 Air Pollution: A Silent Threat . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Aims and Motivations: Tackling Air Pollution with AI-Driven and

Mobile Sensing Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 PMForecast: A Temporal Prediction Model for Air Pollutants . . . . . 5
1.3.2 Spatiotemporal Modeling: Integrating Underground Sensor Networks . 6
1.3.3 Federated Learning Architecture: Enhancing Prediction with Mobile

Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Scientific publications and Vulgarization . . . . . . . . . . . . . . . . . . . . . 6
1.5 Developed Frameworks, Code, and Data . . . . . . . . . . . . . . . . . . . . . 7
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 BACKGROUND & CONTEXT 9
2.1 Evolution of Air Quality Modeling . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Physical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Chemical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Integration of Physical and Chemical Processes . . . . . . . . . . . . . 12

2.2 The Need for Advanced Techniques . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Data Collection: The Backbone of AI and ML in Air Quality Modeling 13
2.2.2 Air Quality Modeling: Bridging the Gap Between Data and Prediction . 15

2.3 Centralized vs. Distributed Air Quality Modeling . . . . . . . . . . . . . . . . 18
2.3.1 Privacy in Federated Learning . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Collaborative Learning in Human Mobility Analytics . . . . . . . . . . 21

2.4 Key Federated Learning Frameworks . . . . . . . . . . . . . . . . . . . . . . . 23

3 PMForecast 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 LSTM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Temporal Dynamics Modeling . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Model Hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . . 32



TABLE OF CONTENTS IX

3.2.4 Dynamic Datasets & Online Model Calibration . . . . . . . . . . . . . 33
3.3 Sensor Deployment and Data Acquisition . . . . . . . . . . . . . . . . . . . . 34

3.3.1 The QAMELEO Network . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Precision of Air Pollution Forecasting . . . . . . . . . . . . . . . . . . 37
3.4.2 Extended Time-frame Prediction . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Method Comparison Study . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.4 Multi-Tasks Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.5 Time Overhead for Model Training & Inferences . . . . . . . . . . . . 43
3.4.6 Long-Term forecasting Using 20 Years of Satellite Data . . . . . . . . 44

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Graph Temporal LSTM 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Graph Temporal LSTM (GT-LSTM) . . . . . . . . . . . . . . . . . . . 52
4.2.2 Spatial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Temporal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Model Performance Evaluation and Analysis . . . . . . . . . . . . . . . . . . 57

4.4.1 Evaluating the Model’s Ability to Capture Spatiotemporal Patterns . . . 58
4.4.2 Model Capability for Long-Term Forecasting . . . . . . . . . . . . . . 59
4.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 FedAirNet 64
5.1 Background and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Federated Learning Model Training . . . . . . . . . . . . . . . . . . . 67
5.2.2 Privacy Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Data Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Data Integration and Enrichment for Air Quality Simulation . . . . . . 77

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.1 Privacy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.2 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.1 Privacy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.2 Model Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 93

6 Conclusion 97
6.1 Temporal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Spatio-Temporal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Federated Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 99



TABLE OF CONTENTS X

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Bibliography 103

A Appendices VIII
A.1 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII
A.2 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII
A.3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII



List of figures

2.1 Overview of Federated Learning (FL) approaches and technologies: This figure
categorizes various FL methods based on different contexts, highlighting their
classifications and applications [MPP+21] . . . . . . . . . . . . . . . . . . . . 20

3.1 The comprehensive framework of PMFORECAST designed for air pollution
prediction is outlined, comprising four key steps: data pre-processing, temporal
attention to mitigate gradient disappearance, a flexible prediction horizon for
dynamic future forecasting, and layers employing Long Short-Term Memory
(Long Short-Term Memory (LSTM))—the trainable component. Further details
are provided in Section 2.1. The term ’Environmental data’ pertains to data
previously collected and utilized by the model for training purposes. . . . . . . 29

3.2 Locations of Air Pollution Monitoring Micro-Stations in Dijon. The blue
circles in the black box correspond to the four QAMELEO stations used in this
study [MNS+23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Hourly temporal prediction of PM2.5 levels over time for Canal site. The
dotted lines correspond to the observed values and are representative of the true
values during the training (blue) and prediction (golden) periods. The solid
lines correspond to the PM2.5 predicted during the training (salmon) and the
prediction (green) periods. The dashed vertical green line indicates the division
between the training and test datasets. . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Hourly temporal prediction of PM2.5 levels over time over the Canal site,
forecasting 2-day predictions for July 24th (Saturday) and July 25th (Sunday),
2021. The golden solid line represents the predicted values and the dotted green
line represents the truth values for the test set. . . . . . . . . . . . . . . . . . . 38



LIST OF FIGURES XII

3.5 Performance Evaluation of Long-Term PM2.5 Forecasting Across Multiple
Sites: (a) Accuracy Assessed by R2 % metrics, and (b) Root Mean Squared
Error RMSEµg/m3. The solid lines with stars denote the performance on the
training sets, while the dashed lines represent the performance on the test sets.
Each of the four stations is distinguished by a unique color: Canal (red), Hoche
(blue), Carnot (green), and Janin (grey). . . . . . . . . . . . . . . . . . . . . . 41

3.6 Performance assessment through Gaussian distribution for multi-tasking at the
Canal Site with varied meteorological data. (a) Examination of the correlation
between observed and predicted values for the training set. (b) Investigation of
the correlation between observed and predicted values for the test set. The truth
and predicted values are illustrated with dotted and solid lines, featuring "T"
and "P" in the labels, respectively. The colors represent the five measurements
in our data: PM1 (purple), PM2.5 (red), PM10 (green), temperature (orange), and
humidity (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Hourly temporal prediction of PM2.5 levels over time for 20 years (2001 to
2021).The solid lines correspond to the PM2.5 predicted during the training
(salmon) and the prediction (teal) periods. The dashed vertical green line
indicates the division between the training and test datasets. The dotted lines
correspond to the PM2.5 truth values during the training (blue) and the prediction
(golden) periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Loss Convergence for 24-Hour Forecast: Training vs. Testing Phases . . . . . . 46

4.1 Overview of GT-LSTM comprising Spatial and Temporal Models. GCN and
T-LSTM, respectively, are shown as the main components . . . . . . . . . . . . 51

4.2 Proposed spatiotemporal model. The model incorporates Graph Convolutional
Network (GCN) blocks for capturing spatial features, LSTM blocks for capturing
temporal features, temporal dynamic updating blocks, input data, a dependency
matrix representing spatial relationships, and the predicted outputs. . . . . . . . 53

4.3 A Cell of GT-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Examination of the correlation between observed and predicted values for the
test sets, assessed through Gaussian distribution analysis. The observed values
are illustrated with dotted lines, while the predicted values are shown with solid
lines. Different colors represent the four monitoring sites: Canal (red), Hoche
(green), Carnot (orange), and Janin (purple). The distribution of the forecasting
values is closely aligned with the actual data, providing insight into the model’s
reliability across different spatial contexts. . . . . . . . . . . . . . . . . . . . . 57

4.5 (a) Geographical coordinates of all sites. (b) Observed and predicted values for
the Hoche and Carnot sites over two days. Dotted lines represent the true values,
while solid lines indicate the predicted values. The Hoche data is shown in blue,
and the Carnot data is depicted in red. . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Illustrating Model Robustness: predictions for all locations. The dashed lines
represent the collected data, reflecting the actual values during both the training
(blue) and prediction (golden) phases. The solid lines depict the PM2.5 predic-
tions made during the training (salmon) and prediction (green) phases. The
vertical green dashed line marks the boundary between the training and testing
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



LIST OF FIGURES XIII

4.7 Assessing Model Robustness: Two testing scenarios are considered. (i) Without
Real Measurements (Using Zero Values): The dashed orange line represents
zero values as input, while the solid green line shows the predicted values for
this scenario. (ii) With Real Ground-Truth Measurements: The dotted blue
line represents the actual ground-truth values, and the solid red line depicts the
PM2.5 predictions made using the real measurements for this scenario. . . . . . 60

4.8 Performance Evaluation of Long-Term PM2.5 Forecasting with GT-LSTM: The
barcharts illustrates the Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) errors for both the training and test sets, showing an increase in
error over time. Blue and green bars represent the training set metrics, while
orange and red bars correspond to the test set metrics. . . . . . . . . . . . . . . 61

4.9 Performance Evaluation of Long-Term PM2.5 Forecasting with GT-LSTM
presents the Coefficient of determination (R2) and Weighted Mean of Abso-
lute Percentage Error (WMAPE) metrics, showing a decrease in accuracy over
time. Blue and green bars represent the training set metrics, while orange and
red bars correspond to the test set metrics. Accuracy is assessed using both R2

and WMAPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Assumed a Grid Map of Dijon: Data Collection by Citizens Using Mobile Sensors 67

5.2 Overview of the proposed federated learning framework for secure, decentral-
ized air quality prediction with localized model training on distributed nodes . . 68

5.3 Architecture of the proposed transfer learning model for local training on nodes
and edge devices within the federated learning framework . . . . . . . . . . . . 69

5.4 Visualization of the four node topology levels within the city scale: (a) Zone,
(b) Sub-Zone, (c) Grid Street, and (d) Pinpoint Location. . . . . . . . . . . . . 72

5.5 Map showing simulated user movements using the Apolline application. The
simulation illustrates the user’s travel paths and locations over time. . . . . . . 75

5.6 Map showing simulated user movements using the Apolline application. The
simulation illustrates the user’s travel paths and locations over time. . . . . . . 78

5.7 Data distribution of a random user’s movements across a network configuration
with 9 nodes, where each color represents spatial data corresponding to a specific
node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 Distribution of average point-of-interest (PoI) counts across a single-node and
a four-node configuration. In the single-node setup, all PoI data is centralized,
resulting in a 100% concentration in one node. When the data is distributed
across four nodes, the PoI counts are more evenly spread. The red dashed line
indicates the average PoI percentage per node. . . . . . . . . . . . . . . . . . . 80

5.9 Distribution of average PoI counts between a single-node and a nine-node
configuration. In the single-node setup, all PoI data is centralized, leading to
a 100% concentration within one node. In the nine-node configuration, the
PoI counts are more evenly distributed across the nodes. The red dashed line
represents the average PoI percentage per node. . . . . . . . . . . . . . . . . . 81



LIST OF FIGURES XIV

5.10 displays two subgraphs illustrating the relationship between the number of
nodes, the average percentage of glspoi counts, and the area per node. The left
subgraph shows how the average percentage of glspoi counts varies with the
number of nodes. The right subgraph illustrates the area covered by each node
under different segmentation schemes, ranging from approximately 111 km² to
around 7 km². . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.11 Impact of Node Count on PoI Distribution and Spatial Coverage. The left
heatmap visualizes the average percentage of PoI contributions per node in
a 2x3 grid configuration. The right heatmap depicts the spatial coverage per
node in a 3x2 grid configuration, highlighting variations across different node
configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.12 Training and validation loss (measured by MAE) and error (represented by
RMSE) across 50 epochs for four federated learning nodes using hourly datasets.
The left panel illustrates the convergence of training loss over time, while the
right panel highlights the variability in validation performance among the four
node configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.13 Comparison of loss (measured by MAE) and error (represented by RMSE) for
local models across four nodes, trained with quarterly datasets. The left panel
depicts the consistent reduction in loss over time during training, while the right
panel emphasizes the variability in validation performance among the four nodes. 86

5.14 Comparison of loss (measured by MAE) and error (represented by RMSE) for
local models across four nodes, trained with minute-level datasets. The left
panel illustrates the consistent reduction in loss over time during training, while
the right panel highlights the variability in validation performance across the
nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.15 Loss (MAE) of the global model measured over 10 rounds of evaluation, with
full and half contributions from all six nodes, using a pre-trained model. The
updated global model, sent back by the server to the local models at each round,
is used to test the performance of the local models on their respective local test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.16 Loss (MAE) of the global model measured over 10 rounds of evaluation, with
full and half contributions from all six nodes and with a trainable model. The
updated global model, sent back by the server to the local models at each round,
is used to test the performance of the local models on their respective local test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.17 Comparison of actual versus predicted values for a four-node segmentation over
a one-month period. The blue solid line represents the actual hourly data, while
the orange dotted line indicates the model’s predictions. . . . . . . . . . . . . . 91

5.18 Evaluation metrics for four-node configuration to forecast long term values . . 92

5.19 Evaluation of our model’s performance with four metrics: RMSE, MAE, R2,
and WMAPE on an unseen dataset across different node configurations. . . . . 94

5.20 Distribution of User Data Across Different Node Configurations and the Average
Percentage of Completed Time Series Data per Node Configuration. . . . . . . 96



LIST OF FIGURES XV

A.1 Training and validation loss (measured by MAE) and error (represented by
RMSE) across 50 epochs for 12 federated learning nodes using hourly datasets.
The left panel illustrates the convergence of training loss over time, while the
right panel highlights the variability in validation performance among the four
node configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X

A.2 Comparison of loss (measured by MAE) and error (represented by RMSE) for
local models across 12 nodes, trained with quarterly datasets. The left panel
depicts the consistent reduction in loss over time during training, while the right
panel emphasizes the variability in validation performance among the four nodes. XI

A.3 Comparison of loss (measured by MAE) and error (represented by RMSE) for
local models across 12 nodes, trained with minute-level datasets. The left panel
illustrates the consistent reduction in loss over time during training, while the
right panel highlights the variability in validation performance across the nodes. XI

A.4 Scatter plot illustrating the correlation between true values and forecasted values
for the 4-node configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . XII



List of tables

2.1 Overview of Federated Learning Frameworks . . . . . . . . . . . . . . . . . . 24

3.1 Evaluation metrics (RMSE, MAE, MSE, R2, WMAPE) for prediction results
during the training period for the 4 QAMELEO stations (Canal, Hoche, Carnot,
Janin) focusing on 1-hour predictions with a history of 3 hours. Bold values
indicate the best performance across all sites. . . . . . . . . . . . . . . . . . . 38

3.2 Evaluation metrics (RMSE, MAE,MSE,R2, WMAPE) for prediction results
during the testing period for the 4 QAMELEO stations (Canal, Hoche, Carnot,
Janin) focusing on 1-hour predictions with a history of 3 hours. Bold values
indicate the best performance across all sites. . . . . . . . . . . . . . . . . . . 39

3.3 Assessing our Model’s Predictive Performance at the Carnot Site Using Diverse
Machine Learning Algorithms on the Test Dataset. Bold values indicate the
best performance across all methods. . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Time latencies for each step of the procedure in PMFORECAST. . . . . . . . . . 44
3.5 Metrics Evaluation for 1 to 48 Hours Forecasting in 20-year dataset . . . . . . 45

4.1 Summary of dataset variables and their corresponding units. The table includes
pollutant concentrations, meteorological measurements, and date-time informa-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Performance comparison of the GT-LSTM model against baseline models
(LSTM and GCN) using RMSE, MAE, R2, and WMAPE. Lower values of
RMSE, MAE, and WMAPE indicate better performance, while higher R2 values
are desirable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Evaluation of Forecasting Metrics for Varying Numbers of Nodes in 1-Hour
Forecasting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



ACRONYMS

R2 Coefficient of determination. 31–33, 38–40, 47, 50, 57, 62, 63, 90, 94, 95, XIII, XIV, XVI

AI Artificial Intelligence. 3, 4, 13, 63, IV

ANN Artificial Neural Networks. 15, 16, 65

AQI air quality index. 27, 64, 65

CNN Convolutional Neural Network. 15, 17, 27, 52

DNN Deep Neural Networks. 65

FL Federated Learning. 8, 18–24, 64, 65, 84, 86, 88, 93, 99, XI

GCN Graph Convolutional Network. 17, 50, 52–54, 58, 61, 98, IV, XII, XVI

GT-LSTM Graph Temporal LSTM. 7, 51, 52, 54, 55, 58, 61–63, 98–101, IV, VI, XII, XIII,
XVI

LSTM Long Short-Term Memory. 6, 15–17, 26–30, 32, 40, 42, 44, 47, 50, 53, 54, 58, 62, 65,
70, 73, 95, 97, 98, IV, XI, XII, XVI

MAE Mean Absolute Error. 38, 39, 47, 50, 57, 61, 63, 84–90, 93–95, 100, VIII, X, XI,
XIII–XV

ML Machine Learning. 13, 15, 30, 35, 37, 40, 70

MSE Mean Square Error. 32, 38, 39, 62, 90

PM Particulate Matter. 1, 3, 5–8, 10, 12, 13, 15–18, 29–31, 34, 35, 37–44, 46, 47, 49–52, 56,
58, 60–64, 70, 76, 97, 98, 100, IV–VII, XI–XIII

PoI point-of-interest . 66, 76, 80–84, 93, 100, IV, XIII



ACRONYMS XVIII

RMSE Root Mean Square Error. 31–33, 38–40, 47, 50, 57, 59, 61, 63, 84–87, 90, 93–95, 100,
101, VIII, X, XI, XIII–XV

RNN Recurrent Neural Networks. 15–17, 26, 30, 49, 50

WMAPE Weighted Mean of Absolute Percentage Error. 38, 39, 57, 62, 94, 95, XIII, XIV



Chapter 1

INTRODUCTION

1.1 Air Pollution: A Silent Threat

The air we breathe is a critical yet often overlooked component of our environment, while

essential for sustaining life on Earth. However, this invisible layer surrounding our planet is

increasingly compromised by air pollution [Org21].

Scientifically, air pollution refers to excessive or harmful substances in the air that adversely

affect human health and the environment [Bri23]. These pollutants include gases, like ozone(O3)

and nitrogen dioxide (NO2), which can be considered ’invisible invaders’ pose significant

threats [MM04]. Another significant contributor is PM, consisting of microscopic solid or liquid

particles suspended in the air [Age20]. PM, classified by size, The finer fraction of PMs (PM2.5

and especially PM1), can penetrate deep into the lungs, posing serious health risks [RSB+11].

Moreover, PM2.5, observed in urban areas [GHW24], is enriched in hazardous metals and

organic compounds [ZWL20], potentially inducing additional oxidative stress [TSC+10].

Pollutants, particularly (PMs), originate from both natural and anthropogenic sources [KBD+15].

Natural pollutants include emissions from wildfires, volcanic eruptions, dust storms, and sea

spray, which contribute to atmospheric particulate matter and can significantly affect air quality,

especially during environmental events, such as wildfires [LPG+16]. In contrast, anthropogenic

pollutants primarily arise from human activities, such as vehicle emissions, industrial processes,

agricultural practices, and residential heating [USS+24]. These emissions are often concentrated

in urban areas, leading to elevated pollution levels compared to rural settings. Burning fossil

fuels for energy and transportation significantly contributes to fine particulate matter, posing

serious risks to public health and urban ecosystems [HLL+21].

While natural and anthropogenic sources impact air quality, anthropogenic emissions are

typically more manageable through regulations and technological progress. The interplay

between these sources complicates the air quality landscape, as natural events can exacerbate
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the effects of human-made pollution. Concentrations of anthropogenic pollutants in urban areas

not only threaten immediate health by increasing respiratory and cardiovascular issues, but also

jeopardize the long-term sustainability of urban living environments [LZB+24, ZXL+23].

The Industrial Revolution marked a dramatic shift, with industrialization and coal-fired

power plants significantly worsening air pollution in cities. This led to the first documented

public health concerns [DSSY24, OA]. The devastating Great Smog of London in 1952 [TVC23]

served as a wake-up call, highlighting the urgent need for stricter regulations. Thousands

perished due to the lethal combination of fog and pollution [Mar, Kel17].

Efforts to combat air pollution began with understanding its presence and extent. Early

methods in the late 19th and early 20th centuries were relatively simple. For instance, Ringelmann

charts offered a basic assessment of smoke density using a visual scale [QLY+23], while

rudimentary deposit gauges collected soot and dust particles to estimate air quality [Val14].

Technological progress in the mid-20th century introduced more sophisticated air pollution

measurement techniques. The 1940s saw the development of the first reliable ozone monitors,

crucial for quantifying smog levels [BL79]. These early devices employed ultraviolet photome-

try, a technique that became cornerstone to accurately measure ozone concentrations.

The need for continuous air quality data led to the establishment of automated monitoring

stations in the 1950s, providing real-time data crucial for air quality management [BS06].

Modern air pollution monitoring stations are equipped with advanced instruments capable of

quantifying a wide spectrum of pollutants.

Air quality monitoring has since evolved beyond ground-based stations. Satellite obser-

vations now offer a broader view, enabling the tracking of air pollution plumes across vast

distances [Boa]. Additionally, sophisticated atmospheric modeling tools help predict air quality

trends and assess the impact of emission control strategies [Dun14].

Technological advancements have also played a critical role in improving air quality man-

agement [Zha16]. Air quality monitoring networks enable real-time tracking of pollutants,

which informs policy decisions and public awareness campaigns [Pet14]. Public awareness

campaigns have become vital in mobilizing support for stricter control measures, particularly as

scientific evidence on the health impacts of air pollution has grown [RRBPZ19].

Invisible yet vital, the air we breathe can become a silent threat when harmful substances

pollute the atmosphere [KKB+15]. Pollutants wreak havoc on our health, triggering respiratory

illnesses, such as asthma, chronic obstructive pulmonary disease (COPD), and even lung

cancer [LEF+15]. The World Health Organization estimates that over seven million premature

deaths annually worldwide are attributed to air pollution [Org23]. Children, pregnant women,
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and the elderly are especially vulnerable to these health dangers [LAK12]. Additionally, air

pollution adversely affects both terrestrial and aquatic ecosystems, leading to environmental

degradation and loss of biodiversity. This highlights the importance of addressing air pollution

to mitigate environmental issues effectively [MSSB20].

Monitoring air quality involves measuring the concentration of various pollutants in the

atmosphere [CZZ+21]. Government agencies and environmental organizations deploy air

quality monitoring stations equipped with instruments that sense and quantify specific pollutants.

These stations measure parameters such as PMs, ozone, and nitrogen dioxide [MWC17]. The

data collected are used to calculate an Air Quality Index (AQI), which provides a standardized

score reflecting the health risks associated with current air quality levels [FBB+20].

Today, a sophisticated network of air quality monitoring stations stands guard globally.

These stations, equipped with cutting-edge technology, are far more advanced than the rudi-

mentary methods of the past [Tur70]. The evolution of air pollution modeling has seen a

shift from simple dispersion models to sophisticated computational models [ANF+17]. Early

models provided basic estimates of pollutant concentrations based on emission sources and

meteorological conditions but were limited in their ability to account for complex atmospheric

processes [XZL21].

Advancements in computing power and atmospheric science have led to the development

of chemical transport models (CTMs), which simulate the transport and transformation of

pollutants in the atmosphere [Sto97]. These models incorporate detailed chemical reactions and

physical processes, offering more accurate predictions of air quality [CCHC21].

Air pollution remains a critical global challenge with profound implications for public health

and the environment [Hay21]. While significant progress has been made in understanding and

addressing this issue, continuous innovation is essential. The integration of Artificial Intelligence

(AI) has revolutionized air quality monitoring and prediction. By processing vast datasets from

diverse sources, AI algorithms can identify intricate patterns and trends, leading to more accurate

air quality models and timely interventions during pollution spikes [YWC+24, USSJ23]. These

advances offer the potential to reduce computational demands and improve prediction efficiency.

To further enhance air quality management, this research investigates the integration of

diverse stationary data collection methods, including cost-effective, stable stations and citizen-

generated data from portable sensors. While this approach offers significant potential, it

also introduces critical privacy and data security concerns [Che24]. Leveraging emerging

technologies, like Federated Learning (FL), can address these challenges while maximizing

the value of citizen participation [YDL+24a]. By combining multiscale spatial-temporal data

processing with AI-driven insights, this study aims to develop innovative solutions for the

prediction and monitoring of localized air pollutants, such as PM2.5, in urban areas.
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1.2 Research Aims and Motivations: Tackling Air Pollution with AI-
Driven and Mobile Sensing Insights

Predicting air pollution is vital to safeguarding public health and the environment. Despite

advances in monitoring technology and modeling approaches, significant challenges persist

that hinder accurate forecasting and effective mitigation, highlighting the need for innovative

research and solutions.

• Complexity of Atmospheric Processes: Predicting air pollution is challenging due to

the complex interplay of atmospheric processes. Factors like meteorological conditions,

chemical reactions, and topography significantly impact the dispersion and transforma-

tion of pollutants. Traditional models often rely on simplifications that can result in

discrepancies between predicted and actual pollution levels, thereby hindering effective

mitigation strategies. Our research focuses on identifying the most suitable AI algorithms

to accurately analyze the specific characteristics of air pollutant data.

• Computational Demands of Advanced Models: Advanced air pollution models are

increasingly complex and demand substantial computational resources. Balancing model

sophistication with available computing power is essential for practical application. This

project aims to develop efficient computational techniques and validation methods to

enhance model performance and feasibility, ensuring more reliable forecasts for effective

air quality management.

• Variability and Sparsity of Data: Air quality data often face significant challenges

due to variability and sparsity. Despite the global expansion of monitoring networks,

gaps in both spatial and temporal coverage persist, particularly in urban areas where

limited infrastructure may rely on a single monitoring station to represent an entire region.

Furthermore, constraints in sampling frequency and sensor accuracy can reduce the

reliability of forecasts and hinder the effectiveness of targeted interventions.

• Integration of Artificial Intelligence: AI presents promising solutions by analyzing

large and complex datasets to uncover patterns that traditional methods may overlook.

Machine learning models can improve prediction accuracy by learning from historical

data and identifying nonlinear relationships. The success of AI-driven forecasting hinges

on the quality of training data and the robustness of the algorithms employed.

• Technological and Infrastructure Limitations: While monitoring technology has ad-

vanced, limitations in sensor accuracy and infrastructure can affect the overall effective-

ness of air quality monitoring. Traditional air quality stations are costly and limited in

spatial coverage. Mobile sensors offer a flexible, cost-effective alternative, providing
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enhanced granularity and coverage. Our project explores the integration of mobile sensor

data with existing networks to improve monitoring systems.

• Preserving Users’ Privacy: Mobile sensor data collection raises privacy concerns,

making it essential to ensure data confidentiality and integrity. Technologies like federated

learning, which process data locally on devices, offer a way to address these concerns

while still enabling valuable insights.

• Real-Time Prediction and Updating with Streaming Data: Rapid processing and

analysis of large volumes of data are crucial for issuing timely warnings and implementing

effective mitigation strategies. Our approach emphasizes the development of resource-

optimized models capable of continuously learning and adapting based on incoming data,

enabling accurate short-term and long-term pollution forecasting.

Addressing these multifaceted challenges requires innovative approaches to air quality

management. By integrating mobile sensors with an existing inexpensive monitoring infrastruc-

ture and leveraging advanced data analysis techniques, this research aims to contribute to the

development of novel and effective air pollution forecasting models. The insights gained from

this study will enhance our understanding of the complex dynamics of air pollution, ultimately

leading to improved policy decisions to reduce pollutant emissions and therefore improved

public health, as well as environmental protection.

1.3 Contributions

Our research makes significant contributions to the field of air pollution prediction by

developing and evaluating models that address the complexity of atmospheric processes and

the challenges of data variability and privacy. The contributions are structured into three main

areas: a temporal prediction model, a spatiotemporal model, and a Federated Learning (FL)

architecture.

1.3.1 PMForecast: A Temporal Prediction Model for Air Pollutants

The first contribution is the development of PMFORECAST, a temporal prediction model

specifically designed to forecast air pollutants, like PM2.5. This model leverages historical

data to understand patterns and trends over time, enabling more accurate short-term and long-

term predictions. PMFORECAST integrates advanced machine learning techniques to capture

temporal dependencies in air quality data, providing insights that can inform public health

interventions and environmental policies.
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1.3.2 Spatiotemporal Modeling: Integrating Underground Sensor Networks

The second contribution addresses the spatial and temporal dynamics of air pollution by

developing a spatiotemporal model. This model considers the complex interactions between

pollutant sources and the environment across different locations and times. By integrating data

from an underground sensor network, the model constructs a spatial-temporal grid that forecasts

pollution levels for various geographical areas. This approach allows for a more comprehensive

understanding of pollution dispersion, offering valuable information for regional air quality

management and mitigation strategies.

1.3.3 Federated Learning Architecture: Enhancing Prediction with Mobile Sen-
sors

The third contribution proposes a novel Federated Learning (FL) Architecture (FEDAIRNET)

that leverages data from mobile sensors to enhance air pollution predictions while preserving

user privacy. This FL architecture addresses the limitations of traditional centralized models by

distributing the learning process across multiple devices, ensuring that sensitive data remains

local. The FL approach not only improves prediction accuracy by incorporating diverse data

sources but also enhances the model’s resolution and stability. By enabling real-time updates

and reducing the risk of data breaches, this architecture offers a practical solution for integrating

mobile sensor networks into air quality monitoring systems.

These contributions collectively advance the state of the art in air pollution forecasting,

providing robust models that can be applied in diverse urban environments while addressing key

challenges such as data variability, computational demands, and privacy concerns.

1.4 Scientific publications and Vulgarization

• Maryam Rahmani, Suzanne Crumeyrolle, Nadège Allegri-Martiny, Amir Taherkordi,and

Romain Rouvoy. PmForecast: leveraging temporal LSTM to deliver in situ air quality

predictions. Environmental Science and Pollution Research, 2024 [RCAM+24].

• Maryam Rahmani, Suzanne Crumeyrolle, Nadège Allegri-Martiny, and Romain Rouvoy.

Forecasting Urban Air Quality: Integrating High-Resolution PM.5 Data with GT-LSTM

Modeling. Under submission

• Presented "Advanced Air Quality Forecasting Using Temporal LSTM (TLSTM) Model"

at the 13th Asian Aerosol Conference, November 3-7 2024.

• Participating on GDR RSD Summer School on Distributed Learning, September 19th

2023 and 20th, Lyon, France.
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• Presented GT-LSTM in the Air Quality Data Analysis Workshop, University of Burgundy,

February 9–10, 2023.

• Completed a one-month internship in Oslo, Norway, collaborating with Amir Taherkordi

and his group Networks and Distributed Systems, Department of Informatics, University

of Oslo, November 2022.

• Presented FEDAIRNET at the Fed-Malin (Federated Machine Learning over the Internet)

workshop, Paris, June 16, 2022.

1.5 Developed Frameworks, Code, and Data

In this project, all the developed code and data are available in the following GitHub

repositories:

1. Temporal Model (PMForecast),

2. Graph Temporal Model (GT-LSTM),

3. Simulated Data and PoI Attack Tool,

4. Federated Framework (FedAirNet).

1

1.6 Outline

This dissertation is organized into several key chapters, beginning with a literature review

and background in chapter 2. This chapter provides insights into the state-of-the-art and existing

models related to air pollution prediction, covering research from past to present across various

scales and data sources. This foundation leads to three principal chapters, each focusing on a

distinct aspect of air pollution prediction and monitoring.

Chapter 3 explores the development and application of a self-adaptive temporal model for

predicting PM2.5 levels under real atmospheric conditions. The chapter includes a brief intro-

duction and review of related works in section 3.1, followed by a comprehensive methodology

in section 3.2. It details the data acquisition, instruments used, and preprocessing steps in sec-

tion 3.3, and describes the model architecture, training, and evaluation processes in section 3.4.

The chapter concludes with a discussion of the results and achievements.

1All repositories are accessible via GitHub: https://github.com/Maryamr92.

https://github.com/Maryamr92/PMForecast
https://github.com/Maryamr92/GT-LSTM
https://github.com/Maryamr92/AirQuality-Data
https://github.com/Maryamr92/FedAirNet_flower
https://github.com/Maryamr92


CHAPTER 1. INTRODUCTION 8

Chapter 4 extends the temporal modeling approach by incorporating spatial dependencies

through a graph neural network. This chapter investigates the integration of spatial and temporal

patterns to enhance PM2.5 concentration forecasting. It starts with an introduction and review

of related work in section 4.1, followed by a description of the methodology in section 4.2.

Details about the dataset used for experimentation are provided in section 4.3, while section 4.4

presents the experimental results. The chapter concludes with section 4.5, which discusses the

implications of the findings and outlines potential directions for future research.

Chapter 5 introduces a FL framework aimed at optimizing local-scale air pollution monitor-

ing and prediction while addressing privacy concerns. This chapter examines the potential of

mobile sensor data and explores the trade-offs between data privacy and model performance.

It begins with a review of the state of the art in section 5.1, followed by a detailed description

of the methodology and dataset used for experimentation in section 5.2. The data, including

its sources, characteristics, and preprocessing steps, are examined in section 5.3. section 5.4

presents the experimental results, highlighting performance metrics and key findings. Finally,

section 5.5 interprets the results, discussing their implications and significance in the context of

FL for air quality monitoring.

In conclusion, chapter 6 synthesizes the results from all chapters, emphasizing the benefits

of the employed methods and suggesting potential avenues for future research. This chapter

provides a comprehensive summary of the research contributions and their implications for air

quality management and public health.



Chapter 2

BACKGROUND & CONTEXT

Air quality monitoring and modeling are crucial for understanding and mitigating the effects

of pollution on human health and the environment. This chapter provides a comprehensive

overview of various aspects of air quality monitoring, from traditional chemical and physical

modeling to modern machine learning techniques, spatial and temporal analysis, and the use

of crowdsourced data with mobile sensors. Additionally, it discusses distributed learning

techniques such as federated learning, highlighting the importance of privacy and data security

in this context.

2.1 Evolution of Air Quality Modeling

Climate change, though often regarded as a contemporary issue, has been a subject of

scientific inquiry for over a century [Arr96]. In the early 19th century, scientists began to

recognize that human activities, particularly those associated with the Industrial Revolution

were inducing gradual shifts in the climate of the Earth [Rud03]. By the mid-20th century,

with the advent of more sophisticated computer technologies and an enhanced understanding

of climate science, researchers were better equipped to model and predict the consequences

of anthropogenic actions on global climate [Mac04]. Despite these early efforts, public and

governmental recognition of the link between industrial activities and environmental degradation

remained limited for many years. The intricate relationship between air pollution and climate

change requires the application of advanced modeling techniques. Traditionally, the development

of air pollution modeling has been approached through primary methodologies: physical

modeling, which examines the transport and dispersion of pollutants in the atmosphere and

chemical modeling, which focuses on the composition and reactions of pollutants [SP16]. Both

approaches have been developed simultaneously and utilize numerical simulation methods.

Physical and chemical models are complementing each other in understanding air pollution

dynamics.
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2.1.1 Physical Modeling

Physical modeling simulates the transport and dispersion of pollutants within the atmosphere

considering factors, like wind patterns, temperature, and topography. These models have evolved

significantly over time in terms of complexity and computational demands.

Early models, such as Gaussian plume models developed in the mid-20th century [Zan90],

offered a simplified representation of pollutant movement based on meteorological condi-

tions. These models assume that pollutants disperse in a Gaussian distribution, making them

computationally light, with typical run times in the range of seconds to minutes on modern

machines. While these models provided foundational insights, their limitations in capturing

complex atmospheric processes became evident. For example, Bruscaa et al. [BFL+16] in a

study conducted, at the University of Catania, an experimental campaign using a wind tunnel

testing the dispersion of PM10 particles. The researchers developed a Gaussian plume model to

simulate the experiment’s conditions, comparing the model’s predictions with empirical data to

assess its accuracy and limitations in small-scale systems. This study highlighted how Gaussian

models, despite their simplicity, are often inadequate for real-world, small-scale systems where

turbulence and variable terrain are critical factors.

To overcome the limitations of Gaussian models, more sophisticated approaches, such as

Eulerian grid models were developed [KWSR19]. These models divide the atmosphere into

grid cells, allowing them to simulate more detailed spatial and temporal variations in pollutant

concentrations. Eulerian models incorporate differential equations to represent both the physical

transport of pollutants and chemical transformations they may undergo, adding complexity.

The resolution of these models can vary, but typical runs use grids ranging from 1 km to 50

km with vertical stratification, depending on the study area and available computational power.

For instance, Egmond et al. [vK83] developed an Eulerian grid model to simulate air pollution

transport across the Netherlands using a 32× 32 grid with a 15 km resolution. While this

model incorporated vertical stratification and produced valuable insights, its ability to capture

fine spatial variations (e.g., at street level) was limited, likely due to uncertainties in emission

data or unaccounted atmospheric processes such as localized turbulence or secondary pollutant

formation.

The computational demands of Eulerian models are significant compared to Gaussian

models [DC08]. A typical Eulerian simulation for a regional study can take from several hours

to days, depending on the grid resolution, domain size, and model complexity. High-resolution

simulations, particularly in urban settings, can be computationally prohibitive without access to

high-performance computing (HPC) resources. As a result, physical models often rely on input

data, such as emission inventories and meteorological reanalysis, that are averaged over space

and time to manage this complexity and computational load. This averaging can reduce the
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precision of predictions, particularly in heterogeneous and complex environments, like cities,

where pollution sources and atmospheric conditions can vary dramatically over short distances.

In addition to Gaussian and Eulerian models, Lagrangian models, which track individual

particles or air parcels through the atmosphere, offer another approach to physical model-

ing [AKH+24]. These models, while highly detailed, can be computationally expensive for

large-scale studies, due to the need to track thousands or millions of particles over time. La-

grangian simulations can take several days or even weeks to run, depending on the number of

particles and the spatial extent of the study. They are often used for specific applications, like

tracking pollutant plumes over long distances, such as volcanic ash or wildfire smoke, where a

detailed understanding of transport pathways is crucial [RGL+20].

In general, the computing time and complexity of physical models depend on factors,

like grid resolution, domain size, and whether they account for both physical transport and

chemical processes. While these models are invaluable for understanding pollutant dispersion

and interactions in the atmosphere, they are often constrained by computational limits, requiring

trade-offs in model resolution and input data quality. Consequently, even the most advanced

physical models may struggle to accurately capture the full complexity of air pollution in densely

populated or rapidly changing environments.

2.1.2 Chemical Modeling

Chemical modeling focuses on the transformation of pollutants within the atmosphere

through complex chemical reactions. These models simulate the formation and removal of

pollutants, like ozone, nitrogen oxides, and particulate matter using intricate reaction mech-

anisms [MAD89]. However, it is impossible to know and model all the chemical processes

accurately, as they depend on a wide range of factors, including the specific compounds present

in the atmosphere, as well as environmental conditions such as relative humidity, temperature,

and pressure. For example, ozone formation alone can involve 40–60 different reactions depend-

ing on the local atmospheric conditions and the compounds available.

While early models were primarily laboratory-based and focused on specific, isolated re-

actions, advancements in computational power have enabled the development of large-scale

atmospheric chemistry models capable of simulating regional and global air pollution pat-

terns [LLM+23]. These models must include a wide array of reaction mechanisms to account

for the different pathways pollutants can take in the atmosphere. For instance, ozone formation

depends on the interaction of nitrogen oxides (NOx), volatile organic compounds (VOCs), and

sunlight, with each compound undergoing multiple reactions, which add layers of complexity to

the models.
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Unlike physical models, which emphasize pollutant transport and dispersion, chemical

models delve into the underlying chemical processes. Accurate chemical modeling depends not

only on detailed understanding of reaction mechanisms but also on the availability of reliable

kinetic data. Yet, even with the most comprehensive reaction schemes, uncertainties remain due

to the sheer complexity of atmospheric chemistry, the interactions between multiple pollutants,

and variable environmental conditions.

Furthermore, the representation of atmospheric conditions, including temperature, humidity,

and sunlight, is vital for simulating complex chemical processes accurately. For instance, U.

Nopmongcol et al. [NKT+12] published a study in 2012 employing the CAMx photochemical

grid model to simulate ozone (O3) and PM concentrations across Europe in 2006. The study

revealed underestimations for most pollutants, particularly PM10, and identified key factors

influencing model outcomes, such as emission inventories, meteorological conditions, and

model parameterizations. These results underscore the complexities of air quality modeling and

the ongoing need for model refinement.

Notable examples of chemical air quality models include the Regional Acid Deposition

Model (RADM) [MCB+93], the Community Multiscale Air Quality (CMAQ) model [LC12],

and the Comprehensive Air Quality Model with Extensions (CAMx) [NKT+12], all of which

remain highly relevant today for simulating atmospheric processes. These models range in

complexity, from 0D models that focus on chemical processes at a single point over time, to 1D

models that incorporate altitude profiles, and 2D models that track changes across latitude or

longitude in addition to altitude and time. The most advanced are 3D models, which account

for latitude, longitude, altitude, and time, offering a comprehensive understanding of pollutant

behavior across multiple dimensions.

2.1.3 Integration of Physical and Chemical Processes

The limitations of using physical and chemical models in isolation highlighted the need for an

integrated approach, leading to the development of chemistry-transport models (CTMs) [VMC21].

CTMs combine meteorological conditions with chemical reactions to provide a more accurate

and comprehensive representation of air pollution processes. By integrating both physical

transport and chemical transformation components, CTMs offer a holistic view of air pollution.

Chemistry-transport models address the limitations of isolated models by coupling physical

and chemical processes. These models simulate the transport, dispersion, and chemical reac-

tions of pollutants, offering valuable insights into the formation and evolution of air pollution.

Incorporating detailed chemical mechanisms and meteorological conditions, CTMs are up to

now essential for air quality management and policy development.
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The advancement brought by CTMs is significant, as they enhance the accuracy and realism

of air pollution simulations by combining physical dispersion with chemical reactions. For

example, a study by M. Schaap et al. [SCH+15] investigated the impact of model resolution

on air pollution simulations using the CAMx model across Europe. The study found that

increasing model resolution from 50 km to 10–20 km improved the representation of spatial

pollution gradients, especially in urban areas. However, the overall model performance—as

measured against monitoring data—reported on limited improvement, suggesting that while

higher resolution is beneficial, other factors, like emission inventory accuracy, also play a critical

role in model outcomes.

This foundational work in integrating physical and chemical modeling is crucial for ad-

vancing air quality prediction and management. It also provides a critical basis for applying

advanced techniques, such as machine learning, to enhance our ability to predict pollutant levels,

identify sources, and understand dispersion patterns.

2.2 The Need for Advanced Techniques

While traditional physical and chemical models have provided valuable insights into air

pollution, their limitations in accurately capturing the complexity of atmospheric processes and

predicting future trends have become increasingly apparent [SP16].

To address these challenges, the integration of AI and Machine Learning (ML) techniques

has emerged as a promising approach to advance air quality modeling [ZRY+22]. ML tech-

niques, often employing a variety of statistical methods including both linear and nonlinear

algorithms, have been extensively applied in this field as an alternative to traditional numerical

modeling approaches.

Statistical predictive methods, which often leverage time series analysis, are based on

modeling approaches that predict upcoming air quality by relying on historical data [Wil16,

SS17]. In contrast to computationally intensive numerical methods that simulate intricate

mechanisms of pollutant emission, diffusion, aging, and deposition, statistical approaches offer

a more efficient alternative [Wil19].

2.2.1 Data Collection: The Backbone of AI and ML in Air Quality Modeling

Before exploring the complexities of air pollution modeling, it is essential to establish a

robust data collection framework. Accurate and comprehensive air quality data are critical for

effective modeling and prediction. Traditionally, ground-based monitoring stations equipped

with sensors measure pollutants, such as particulate matter (PMs), ozone (O3), nitrogen dioxide

(NO2), and sulfur dioxide (SO2). These monitoring stations serve as vital sources of air quality
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data, providing important information about local air conditions [AISW24]. However, they have

limitations, as they cannot capture the full extent of air quality across larger areas.

Satellite remote sensing provides a comprehensive view of our planet. From their high orbits,

satellites scan the Earth’s surface, offering valuable insights into air pollution patterns [ZZX+23].

While they provide a broad perspective, there are limitations; clouds can obstruct the view, and

distinguishing between different pollutants remains a complex challenge.

To address these gaps, sensor networks have emerged as a promising solution. These

networks of low-cost sensors are distributed throughout a city, providing detailed information

on air quality variations [KRA10]. They help identify pollution hotspots and temporal patterns

with significant precision. However, managing the vast amounts of data generated by these

networks presents a considerable challenge.

In recent years, mobile sensors have emerged as a transformative tool in data collection.

These devices, integrated into everyday items such as cars, buses, trucks, drones, and bicycles,

turn ordinary citizens or mobile devices into pollution detectors, creating a vast, distributed

network capable of capturing air quality data on an unprecedented scale. This crowdsourced

approach offers a significant opportunity to enhance data collection efforts across diverse

geographical areas [SBW+22]. However, ensuring the accuracy and consistency of these

measurements from such a widespread sensor network poses complex challenges. Additionally,

concerns surrounding the sensitive nature of personal data collected by these sensors must be

carefully addressed to protect individual privacy.

This intricate data tapestry forms the foundation upon which air quality models are built.

By understanding the strengths and limitations of each data source [PFH24], scientists can

develop more robust and reliable models to predict and manage air pollution. To overcome

the challenges posed by the limitations of individual data sources, it is proposed to integrate

these disparate data streams to create a truly comprehensive picture of air quality. For instance,

Yee Leung et al. [LZL+19] addresses the challenge of insufficient air pollution data from

traditional monitoring stations. To improve data coverage, the authors propose combining

data from both stationary and mobile sensors. This integrated dataset is then used to estimate

air pollutant concentrations at specific locations and times. The study not only enhances air

pollution monitoring but also lays the groundwork for future research in spatiotemporal data

analysis.
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2.2.2 Air Quality Modeling: Bridging the Gap Between Data and Prediction

Temporal Predictions: Capturing Air Quality Trends

Temporal analysis examines how air quality changes over time. Techniques, such as time

series analysis and seasonality detection, are employed to identify trends, periodic patterns, and

temporal anomalies in pollutant levels. A diverse range of statistical methods, including ML

techniques, encompassing both linear and nonlinear algorithms, have been widely applied in

this domain.

Common approaches include the utilization of ML algorithms, such as Support Vector

Regression (SVR) [ZH19] and Autoregressive Integrated Moving Average (ARIMA) [CLAL23],

both known for their linear characteristics. For instance, Bassirou Ngom et al. [NDS+21]

present a novel integration of system observations from various stations with a multi-agent

simulation, providing a model for assimilating PM10 pollution data through real-time simulation

based on the autoregressive ARIMA method.

Additionally, non-linear models, like Gaussian Process Regression (GPR) [HLC+23], Gra-

dient Boosting (XGBoost) [LAL+22], Artificial Neural Networks (ANN) [GHW23], and deep

learning algorithms, such as Recurrent Neural Networkss (RNNs) [TW22a] offer effective

solutions. These methods leverage the power of non-linearity to capture complex relationships

in diverse datasets. For example, studies such as [GHL+20] show that combining correlation

analysis with ANNs and wavelet-enhanced ANNs (WANNs) effectively reveals both linear and

non-linear relationships between air pollution indices (API) and meteorological variables.

Among these techniques, RNN methods have garnered significant attention from researchers

due to their ability to model temporal dependencies in time-series data effectively. Unlike

traditional machine learning models, which often treat each data point independently, RNNs are

specifically designed to handle sequential data, where past data points influence future outcomes.

This makes them particularly suited for air quality forecasting, where pollutant levels at a given

time are influenced by historical data due to factors such as meteorological conditions and

emission sources [TW22b].

Their capacity to maintain a memory of past data allows RNN-based models to capture

long-term dependencies within PM2.5 input data, providing more accurate and context-aware

predictions. This feature is especially relevant to the research community, as it allows for better

forecasting of air pollution trends. Notable research efforts have been directed towards air quality

forecasting using models, such as Gated Recurrent Unit (GRU) [ZZZ+22, PT23] and particularly

LSTM [AQ19, GSMP23, ZH18, BLC18]. Zhang Qi et al. [ZHLL22] have made significant

strides by integrating domain-specific features with a hybrid Convolutional Neural Network

(CNN)-LSTM structure, achieving superior accuracy in fine-grained air pollution estimation
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and prediction compared to similar baselines. Verma Ishan et al. [VAMD18] introduce a

bidirectional LSTM model to predict PM2.5 severity levels, significantly improving prediction

accuracy by leveraging a set of three bidirectional LSTMs and incorporating weather data from

multiple locations in New Delhi.

Additionally,Yi-Ting Tsai et al. [TZC18] demonstrated the effectiveness of combining

RNNs with LSTMs in predicting hourly PM2.5 concentrations at 66 monitoring stations in

Taiwan using Environmental Protection Agency (EPA) data. Yuan et al. [EG23] proposed a

novel hybrid self-attention LSTM model for accurately predicting long-term PM2.5 levels in

classrooms, surpassing existing methods in terms of both accuracy and computational efficiency.

Moreover, researchers have explored the benefits of combining LSTM with other techniques

to enhance predictive performance. For instance, Abimannan et al. [ACL20] integrated LSTM

with Multivariate Variate Regression (MVR) to improve PM2.5 prediction accuracy, particularly

over a multi-years observation period when seasonal variations are observed. Their comparative

analysis highlighted the superior performance of the LSTM/MVR model in predicting hourly

PM2.5 concentrations compared to traditional LSTM approaches.

Temporal statistical models, such as regression and time series analysis, have been used

to predict air pollution levels. However, these methods often struggle to capture the complex,

non-linear relationships inherent in air quality data [SKR24]. To overcome these limitations,

machine learning techniques, including Support Vector Machines (SVMs), ANNs, and RNNs,

have been explored [MV23, ABA+20, BAEO20, JBG19]. While these models show promise in

capturing temporal patterns, they may overlook spatial dependencies. They may inherently face

limitations in capturing the complex spatial variations of pollutants, often necessitating the use

of additional modeling techniques.

Modeling Air Pollution in Space and Time

Air pollution levels can vary drastically across short distances due to factors such as traffic,

industrial emissions, and meteorological conditions. While temporal models capture changes

over time, they often struggle to account for these spatial differences. To address this, spatial

analysis techniques, including Geographic Information Systems (GIS) and spatial statistics, are

employed to map and analyze pollutant distributions.

Belavadi et al. [BRRM20] developed a scalable architecture combining wireless sensor

networks and government data for real-time air quality monitoring and forecasting. While

demonstrating the potential of such systems, the study highlighted the challenges of temporal

variations across regions. This underscores the need for adaptive models tailored to specific urban

environments. Several studies, including those by Ghufran [DAB22] and Tien-Cuong [BLC18],

have employed LSTM models to capture temporal dynamics while emphasizing the importance

of meteorological factors.
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Recognizing the limitations of purely temporal models, researchers have increasingly

focused on spatiotemporal modeling. These models aim to capture complex interactions

between air quality measurements across different locations and time points. Combining

(CNNs) with LSTMs has emerged as a promising approach for modeling these relation-

ships [HK18, QYZ+19]. Gilik et al.[GOO22] proposed a CNN-LSTM model to predict pollutant

concentrations in urban areas, leveraging spatiotemporal dependencies for improved accuracy.

Similarly, Unjin Pak et al. [PMR+20] applied this method to forecast PM2.5 concentrations

across 384 monitoring stations, covering the entirety of China with Beijing as the central fo-

cus, over a 3-year period (January 1st, 2015 to December 31st, 2017). However, the model’s

complexity and substantial data requirements present challenges to its broader applicability and

generalizability.

Zhang Qi et al. [ZHLL22] introduced Deep-AIR, a hybrid CNN-LSTM model that integrates

domain-specific features, like street canyon effects, to improve air pollution estimation and

forecasting. The model uses 1x1 convolutional layers to capture complex spatial interactions

between pollutants and urban dynamics, offering a more detailed view of city-wide air quality.

However, its data granularity is limited by sensor distribution, which typically covers larger areas,

like neighborhoods or cities. Although street canyon effects enhance large-scale predictions,

they may not fully capture pollution variations at smaller scales, such as individual streets, where

building configurations and micro-climates play a key role. To model these finer details, more

sensors and higher-resolution urban data, such as street-level wind patterns, would be necessary.

Graph networks, such as GCNs, have proven to be powerful tools for modeling spatial

dependencies in air pollution prediction. By representing monitoring stations as nodes on a

graph and defining edges based on geographical proximity or air quality similarity, GCNs

effectively capture spatial relationships [HBL15, DBV16]. Building on this approach, Hofman

et al. [HDQ+22] demonstrate the advantages of combining GCNs with RNNs to enhance fore-

casting accuracy by addressing both spatial and temporal patterns. Their research highlights the

potential of using mobile sensor data to create high-resolution air quality maps. By integrating

data from various mobile sources (for example, the one of the datasets consisted of 323,691

NO2 measurements), Hofman et al. develop a data-driven model that surpasses traditional

interpolation methods in real-time air quality monitoring. Despite these advancements, the

accuracy of such models remains dependent on the quality and coverage of the data, and their

scalability across different geographic regions and pollutant types.

Ge Liang et al. [GWZ+21] introduce the Multi-scale Spatio-Temporal Graph Convolution

Network (MST-GCN), an advanced deep learning model for air quality prediction. MST-GCN

excels at capturing both spatial correlations and long-term temporal dependencies within air

quality data. The authors demonstrate its superiority over baseline models, highlighting its

potential for tackling other multi-source data challenges. The sophisticated spatio-temporal
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attention mechanisms of MST-GCN enhance its applicability to data challenges of multiple

sources, although its complexity can be computationally intensive.

By capturing both spatial and temporal dependencies, these models aim to enhance the

accuracy and reliability of air pollution forecasts. Emphasizing computational efficiency,

scalability, and high-resolution predictions within urban areas, these approaches often leverage

inexpensive underground sensors for PM and other environmental data. While seeking to

improve prediction resolution without relying on multiscale data, these centralized models may

encounter limitations in terms of data volume, computational resources, and privacy concerns.

2.3 Centralized vs. Distributed Air Quality Modeling

Traditional air quality modeling primarily relies on centralized approaches, where data

is collected, processed, and analyzed at a single, central location. While effective in certain

scenarios, these methods have significant limitations, particularly concerning data privacy, com-

putational efficiency, and scalability [Air, DGL+13]. To overcome these challenges, distributed

learning has emerged as a promising alternative [VBT16]. By distributing data and model

training across multiple devices or servers, this approach enhances computational efficiency and

scalability [MMPJY22].

Most distributed learning efforts leverage IoT devices for data collection, processing, and

transmission to a central server. For instance, in [NFZM19], the authors review existing IoT

architectures and propose a comprehensive system incorporating both static and mobile sensors

for air quality monitoring. These sensors perform basic data processing (edge computing)

and validate data through redundancy. Gateways act as intermediaries, conducting additional

processing (fog computing) and transmitting data to a cloud-based load balancer. The cloud

facilitates extensive data processing, including the application of machine learning and deep

learning techniques, while storing raw data in NoSQL databases and collecting data in a data

warehouse. While this approach enhances computational efficiency and system stability, it falls

short in addressing data sensitivity and privacy concerns.

FL, a prominent distributed learning technique, has gained significant traction in recent

years [LSTS19, MMRyA16]. Pioneered by Google in 2017, FL enables collaborative model

training without sharing raw data. Instead, devices compute local model updates based on their

data and transmit these updates to a central server for aggregation. This process iteratively

improves the global model while preserving data privacy.

A study by Nguyen Do-Van et al.[NZ21] investigates a FL approach for predicting air

pollution in smart cities, with a focus on improving the efficiency of predictive model training

using environmental IoT data. Traditional centralized data processing methods often face latency

issues, but this research proposes distributing the training process across multiple regions. Local
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Convolutional Recurrent Neural Networks (CRNNs) are used to predict air quality at each

location, with these local models sharing distilled knowledge through a global model. This

approach enhances overall accuracy while reducing the need for extensive data transmission.

The study shows that CRNN models effectively capture local spatio-temporal data and benefit

significantly from knowledge sharing across cities via federated learning. Additionally, this

method allows new regions to quickly develop optimized local models using the global model,

even without prior data contributions. However, the study also identifies limitations in the

current model aggregation process, noting that it does not account for spatial relationships

between regions, and the model’s reliance on complex data remains a challenge.

The proliferation of interconnected devices, including smartphones, IoT sensors, and wear-

able devices, has led to an explosion of data generation. These data, often characterized by

their geospatial nature, have immense potential for applications in urban planning, traffic man-

agement, and environmental monitoring. However, collecting and processing such data raises

significant privacy concerns due to the potential exposure of sensitive user information.

2.3.1 Privacy in Federated Learning

Traditional centralized models require the collection and storage of raw data, which can

expose sensitive information and raise concerns about data breaches and misuse. FL miti-

gates these risks by keeping data localized on devices and only sharing model parameters,

significantly reducing the potential for privacy violations. For instance, in healthcare, FL can

enable the development of personalized treatment plans through decentralized analysis of patient

data [HNA24, SSS+24].

Despite these advantages, FL still encounters privacy challenges, including potential vul-

nerabilities that could lead to the unintended exposure of sensitive information through model

updates. Thus, ongoing research aims to enhance FL’s privacy-preserving capabilities through

the development of robust aggregation methods.

A comprehensive analysis of FL’s security and privacy is provided in the paper "A Survey on

Security and Privacy of Federated Learning" [MPP+21]. The paper covers the core principles

of FL, emphasizing its advantages in preserving user privacy and its suitability for managing

sensitive data. It also addresses key security threats, such as communication bottlenecks,

poisoning attacks, and backdoor attacks, along with privacy risks, such as inference attacks.

Notably, the authors offer a detailed classification of FL techniques and explore various strategies

to mitigate these risks. Figure 2.1 illustrates the classification of approaches and techniques

concerning privacy within existing studies. This figure illustrates the key components and

frameworks of FL, highlighting aspects such as data availability, network topology, and the

various architectural frameworks utilized. It emphasizes the interplay between these elements in

facilitating effective FL implementations.
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Figure 2.1: Overview of FL approaches and technologies: This figure categorizes various FL
methods based on different contexts, highlighting their classifications and

applications [MPP+21]
.
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The paper conceptualizes the technique, the associated issues, and the appropriate ap-

proaches for addressing them. Additionally, the authors emphasize the need for continued

research to tackle the identified challenges and improve the security and privacy of FL systems

to facilitate their wider adoption.

2.3.2 Collaborative Learning in Human Mobility Analytics

One of the most promising applications of FL is in the domain of human mobility analytics,

where privacy concerns are paramount. The use of geospatial data in analyzing human movement

patterns, traffic flows, and location-based services requires robust privacy measures.

A recent comprehensive survey, "Survey of Federated Learning Models for Spatio-Temporal

Mobility Applications," provides a detailed analysis of existing FLs models applied to this

domain [BMH+24]. The survey examines 38 studies in 2024, offering valuable insights into the

strengths and limitations of current approaches and serving as a foundation for further research.

The reviewed approaches in the document are categorized into the following main groups:

• Trajectory Predictive Approaches: These approaches focus on predicting the next point

in a user’s trajectory while addressing challenges such as non-independent and identically

distributed (non-IID) data, which refers to data that is heterogeneous and does not follow

a uniform distribution across samples. Additionally, privacy concerns are also taken into

account.

For example, the Deep Federated Reconstruction (DFR) model is designed to predict

the next point in a user’s trajectory while ensuring that individual mobility traces remain

on local devices, preserving privacy. The DFR model tackles the challenge of non-IID

data by using a shared global model, periodically updated with local model updates from

various clients [PCK+23].

• Traffic Flow Prediction Approaches: These methods predict traffic patterns, crucial for

real-time applications like traffic management and pollution control. They often require

real-time data processing and adaptation. The FedGRU model, for instance, utilizes Gated

Recurrent Units (GRUs) in a federated learning framework to predict traffic flow across

different regions. This approach processes large datasets locally, reducing the need for

centralized data storage, which is essential for real-time traffic flow prediction [LYK+20].

• Clustering-Based Approaches: Clustering techniques in FL aim to group similar data

points, such as locations or users, to identify patterns or communities within spatio-

temporal data. These methods often focus on organizing devices into clusters for efficient

model sharing. For instance, hierarchical clustering using Convolutional Neural Networks

(CNNs) improves FL performance in non-IID data settings [BFA20]. Another approach,
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dynamic GAN-based clustering, enhances time series forecasting, like predicting cell

tower handovers, by adapting to evolving clusters [KHH+20]. An example in spatio-

temporal FL is the Federated-Deep embedded clustering(F-DEC) method, which clusters

urban communities by analyzing heatmap images of mobility trajectories, thus uncovering

movement patterns in cities while ensuring data privacy [MSM21].

• Top-N Location-Based Recommendation Approaches: Location-based recommen-

dations aim to identify the top-N Points of Interest (POIs) for a user based on their

historical data. Unlike trajectory prediction, this task often requires fewer real-time

updates. Although online learning might not seem essential, evolving user preferences

suggest it could be beneficial. Privacy solutions in existing models, which avoid sharing

all parameters, may still be inadequate. Additionally, there is a lack of exploration into

robustness against attacks, such as shilling attacks or fake profiles. The focus remains

on evaluating the main works in this domain, using metrics similar to those in trajectory

prediction. For instance, in Federated Pair-wise Learning (FPL) method by Vito Walter

Anelli et al. [ADN+21], the authors adapt the Bayesian Pairwise Ranking (BPR) algo-

rithm to federated learning. It allows users to locally train sensitive embeddings and share

them selectively, while less sensitive parameters are federated. This flexible framework

helps maintain model convergence and is evaluated using the Foursquare dataset, showing

improved performance over federated movie recommendations.

• Privacy and Attacks in Spatio-Temporal FLs Models: FL aims to protect privacy by

sharing model parameters instead of data, but this can still leak sensitive information. To

improve privacy, three main approaches have been proposed: (i) sharing less data [AAT22,

GLC+21], (ii) using Differential Privacy (DP) to add noise [FRS+20], and (iii) employing

Secure Multi-Party Computation (SMPC) [PDSE23]. Each method has limitations, such

as potential exposure through embeddings or vulnerabilities to malicious users. A more

robust solution uses Local DP and peer-to-peer secret sharing for sensitive data, offering

better privacy while maintaining performance. Additionally, new protocols are being

developed to assess and mitigate re-identification risks without requiring a trusted curator.

A more privacy-oriented solution was proposed by Chaochao Chen et al. [CWF+20]. They

aggregated less sensitive embeddings using SMPC and categorized sensitive embeddings

into two parts: those related to POIs and those related to users. They used Local DP to

add noise at the user level to the POI-related embeddings before sharing them with the

server.

The diverse applications of FL in spatio-temporal mobility analytics underscore its effec-

tiveness in addressing privacy, scalability, and real-time processing challenges. FL excels in

predicting trajectories, managing traffic flow, and clustering data for community detection, all
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while safeguarding sensitive geospatial information. Integrating mobility aspects with crowd-

sensing and other techniques makes these approaches highly applicable in real-world scenarios.

For example, FedSense [YDL+24b] addresses the challenge of protecting location privacy in

machine learning-based crowdsensing applications, where existing privacy-preserving methods

often fall short. FedSense combines reinforcement learning (RL) with FL to optimize task

allocation without exposing raw data, allowing participants to complete tasks efficiently while

safeguarding their location data and minimizing the computational burden on their devices. The

global model in FedSense aggregates parameters from local models to avoid task collisions

and ensure high task completion rates. Theoretical analysis and simulations demonstrate that

FedSense provides strong privacy protection with minimal performance loss compared to

centralized systems that compromise location privacy.

Building on these insights, our focus now shifts to applying FL to air quality monitoring by

integrating it with crowdsourced mobile sensors—a pioneering effort in this field. Air quality

monitoring involves collecting data from numerous mobile sensors while ensuring privacy.

FL’s decentralized approach is ideally suited for this task, enabling local model training on

sensor data collected by citizens and aggregating insights without exposing individual data,

thereby addressing privacy and security concerns in spatio-temporal FL models. While several

studies have explored the use of FL with fixed stationary data, this approach marks a significant

advancement by leveraging mobile data sources.

2.4 Key Federated Learning Frameworks

A diverse ecosystem of federated learning frameworks has emerged to support researchers

and developers in building and deploying decentralized machine learning models, each offering

different levels of abstraction, scalability, and privacy features. Notable frameworks in this space

include TensorFlow Federated, PySyft, Flower, FedLab, PaddleFL, FederatedScope, LEAF, and

FedML. Each of these frameworks brings unique strengths to address specific challenges and

cater to various use cases.

Among these, Flower stands out as a particularly attractive option due to its flexibility,

scalability, and user-friendly features [BTM+22]. It offers high customization, enabling re-

searchers to tailor the federated learning process to their specific needs. Designed to handle

large-scale systems, Flower is well-suited for real-world applications. Its ease of use is sup-

ported by comprehensive documentation, making it accessible to researchers and developers

at all levels. Additionally, Flower’s interoperability with various machine learning libraries

ensures seamless integration with existing tools and workflows. The framework benefits from

an active community of developers and researchers, contributing to its continuous development

and providing valuable support.
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Table 2.1 provides a summary of existing federated learning frameworks with brief descrip-

tions.

Table 2.1: Overview of Federated Learning Frameworks

Framework Description

TensorFlow Federated (TFF) Developed by Google, TFF is a Python framework for federated
learning algorithms, providing tools for data management, com-
munication, and model aggregation.
Reference: TensorFlow Federated Documentation

PySyft A Python library built on PyTorch that enables secure and private
machine learning with cryptographic primitives and federated
learning functionalities.
Reference: PySyft GitHub Repository

Flower A flexible and scalable federated learning framework that supports
various federated learning strategies and can be customized for
different use cases.
Reference: Flower GitHub Repository

FedLab A PyTorch-based framework designed for efficient federated learn-
ing research, offering modularity and extensibility.
Reference: FedLab GitHub Repository

PaddleFL Part of the PaddlePaddle ecosystem, PaddleFL supports federated
learning across various applications and scales.
Reference: PaddleFL Documentation

FederatedScope A flexible framework for federated learning research and deploy-
ment, supporting a range of algorithms and integration options.
Reference: FederatedScope GitHub Repository

LEAF A benchmarking suite for federated learning algorithms, providing
standardized datasets and metrics for evaluation.
Reference: LEAF GitHub Repository

FedML A comprehensive federated learning library supporting various
machine learning frameworks, offering tools for model implemen-
tation and management.
Reference: FedML GitHub Repository

FedScaleFATE Integrates with the FATE platform to provide scalable and secure
federated learning solutions.
Reference: FedScaleFATE GitHub Repository

This research aims to bridge the gap in air quality monitoring by applying federated learning

(FL) to integrate data from both fixed stationary and mobile sensors for the first time. By

leveraging federated learning with crowdsourced data from mobile sensors provided by citizens,

we seek to enhance environmental monitoring systems. Our goal is to improve these systems’

https://www.tensorflow.org/federated
https://github.com/OpenMined/PySyft
https://github.com/adap/flower
https://github.com/FedLab/FedLab
https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api/FL/overview.html
https://github.com/FederatedAI/FederatedScope
https://github.com/TsinghuaAI/LEAF
https://github.com/FedML-AI/FedML
https://github.com/FederatedAI/FATE
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responsiveness, accuracy, and scalability while ensuring the privacy of the individuals carrying

the sensors.



Chapter 3

PMFORECAST

3.1 Introduction
Several machine learning algorithms have been explored for air quality monitoring and

prediction, as described in the previous chapter. Among these, LSTM networks stand out due to

their superior flexibility and adaptability compared to traditional models like standard RNNs

or autoregressive models. LSTMs are particularly well-suited for dynamic and complex air

quality datasets because they can handle a wide range of input features and output formats.

Their key advantage lies in their ability to capture complex temporal dependencies, such as the

relationships between historical air quality measurements, meteorological factors, and other

relevant variables. This long-term memory capability is essential for accurate forecasting of Air

Quality values, identifying trends, detecting anomalies, and pinpointing potential sources of

pollution.

LSTMs are highly effective in a range of air quality applications, including predicting future

AQI levels, uncovering patterns in pollution data, detecting unusual events, and aiding in source

identification. These strengths make LSTMs an invaluable tool for developing predictive models

that support public health policies and environmental management strategies. By harnessing the

unique capabilities of LSTM networks, researchers can build accurate, reliable, and actionable

air quality prediction models that address the complexities inherent in real-world environmental

data.

3.1.1 Related Works

LSTM networks have become a cornerstone in air quality prediction due to their ability

to capture temporal dependencies in sequential data. However, the basic LSTM model often

encounters limitations, such as high computational costs, slow convergence, and difficulties in

handling complex data patterns. To address these challenges, recent studies have increasingly

focused on developing hybrid models that combine LSTM with other algorithms. These hybrid
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approaches have demonstrated enhanced predictive capabilities, making them particularly

effective in the context of air quality forecasting.

For example, Wu Yang et al. [WQH24] developed the DVMD-Informer-CNN-LSTMs

model, which tackles nonlinear and unstable patterns and characteristics of air quality index

(AQI) data. Their approach optimizes Variational Mode Decomposition (VMD) parameters using

the Dung Beetle Algorithm and incorporates advanced deep learning methods like CNN and

Informer architectures. This integration significantly enhances prediction accuracy compared to

conventional models, demonstrating the model’s effectiveness in managing complex, real-world

air quality data. However, the model’s high computational complexity and focus on data from

specific regions highlight areas for future improvements, such as optimizing computational

efficiency and broadening data applicability.

Another innovative approach by researchers proposed an enhanced Vanilla LSTM model [FZL23],

named IVLSTM-MCMR, designed with multichannel input and multiroute output mechanisms.

This improved LSTM structure reduces parameter count, accelerates convergence, and stabilizes

the training process. The multichannel input module employs a linear similarity dynamic time

warping algorithm to select optimal data inputs, while the multiroute output model efficiently

combines results from various target stations. Tested on air quality data observed over Beijing,

the model demonstrated superior performance over traditional and state-of-the-art algorithms.

Despite its success, the complexity of the model and its reliance on selected data sources suggest

further refinement, such as developing more efficient internal structures and including a broader

range of pollution sources, to enhance predictive accuracy.

In another study, S. Gunasekar and his colleagues [SG22] introduced the HALR hybrid

model for air quality prediction, combining ARIMA, LSTM, and Red Deer Optimization (RDO).

This hybrid approach addresses both linear and nonlinear patterns in air quality data, improving

performance metrics, like accuracy, precision, and recall over conventional methods, such as

KNN, SVM, and standard ARIMA models. The RDO algorithm fine-tunes the LSTM’s weights

and biases, boosting the model’s predictive capabilities. Comparative analyses revealed that

HALR outperforms other models with lower error rates and more robust performance metrics.

Future research is set to explore hybrid optimization techniques to further minimize local minima

issues and improve scalability for larger datasets.

While advanced LSTM-based models significantly enhance air quality prediction, several

common limitations persist. These include high computational demands, sensitivity to parameter

tuning, and challenges in managing the diverse and dynamic nature of environmental data.

Therefore, future efforts must focus on optimizing these models, reducing their complexity, and

enhancing their adaptability across different regions and data sources.
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3.1.2 Motivations

Despite the notable progress in air quality predictions using LSTM-based models, the field

faces persistent challenges and limitations [SKD23]. In particular, the accuracy of predictions

hinges heavily on the quality and representativeness of sequential data, with incomplete or biased

datasets, potentially compromising model performance. Additionally, while LSTM models

excel in capturing temporal dependencies, they may encounter difficulties with abrupt data

changes or outliers, necessitating further refinement for robust predictions. Finally, deploying

such models at scale requires careful considerations for computational efficiency and online

processing, especially in urban areas where a significant volume of data could be generated and

collected.

In response to the challenges outlined above, we introduce our Temporal LSTM forecasting

model (PMFORECAST), specifically designed to address the complexities of urban air quality

prediction. Building on the strengths of standard LSTM architecture, PMFORECAST not only

captures temporal dependencies effectively, but also integrates mechanisms to mitigate data

quality issues, thereby enhancing prediction accuracy.

Our model’s embedded temporal mechanisms contribute to robust and sustainable long-term

predictions. A key feature of PMFORECAST is its use of locally available, cost-effective sensors

from existing devices. This approach not only increases the model’s adaptability but also

enhances its accessibility.

By meticulously optimizing the PMFORECAST model, we aim to surpass traditional sim-

ulation methods, offering a resource-efficient alternative that reduces both time and energy

consumption. This ultimately establishes a local real-time framework for air quality monitoring.
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Figure 3.1: The comprehensive framework of PMFORECAST designed for air pollution
prediction is outlined, comprising four key steps: data pre-processing, temporal attention to

mitigate gradient disappearance, a flexible prediction horizon for dynamic future forecasting,
and layers employing Long Short-Term Memory (LSTM)—the trainable component. Further
details are provided in Section 2.1. The term ’Environmental data’ pertains to data previously

collected and utilized by the model for training purposes.

3.2 Methodology

As we embark on the pivotal task of predicting PM2.5 concentrations for both immediate

and future time frames in urban environments, the foundation of our approach is rooted in the

strategic choice of a neural network architecture. Our conviction in the relevance of the LSTM

model stems from its exceptional ability to discern and interpret temporal patterns, a crucial

aspect in unraveling the intricate dynamics of air quality. By leveraging the strengths of the

LSTM architecture, our model, PMFORECAST, delivers reliable predictions with a strong focus

on accuracy.

Figure 3.1 depicts an overview of the PMFORECAST framework developed in this study. The

proposed model consists of four primary phases: preprocessing, temporal attention, prediction

horizon, and LSTM layers. The network is fueled by historical observations, and the outputs

encompass the temporal dynamics of the predicted values. Observations are recorded by the

sensor every 15 minutes. To focus on more predictable, regional pollution trends, we resample

the data to one point per hour. While variations can occur within a 60-minute window due

to localized events, such as nearby activity or short-term emissions, these are less relevant to

our goal of forecasting broader air quality patterns. This approach allows us to concentrate

on significant, region-wide pollution events rather than transient, unpredictable fluctuations.

Additionally, the model can operate online by evaluating and retraining at specified intervals,

contingent upon available data.



CHAPTER 3. PMFORECAST 30

3.2.1 LSTM Model

Our goal centers on optimizing ML algorithms for superior performance, with a specific

focus on deep learning techniques, particularly RNNs, which have demonstrated effectiveness in

processing sequential data. However, traditional RNNs face challenges in long-term prediction

tasks, prominently contending with issues such as gradient disappearance [Noh21]. This phe-

nomenon occurs during the RNNs training process, when the loss function gradients concerning

network parameters diminish significantly as they are back-propagated through time.

To address the challenge of long-term dependencies in time-series data, advanced models,

like LSTMs incorporate mechanisms, such as gating, to improve the accuracy of long-term

predictions—a critical component in our work on air quality forecasting. In an LSTM cell,

three gates—input, forget, and output—regulate the flow of information, allowing the model to

selectively retain or discard information, which helps mitigate issues like gradient disappearance

during training [LZ16]. These gates are key to enabling the LSTM to capture both short- and

long-term dependencies within the data.

An LSTM cell processes a sequence of data step by step. The forget gate decides what

information should be discarded from the cell state, the input gate determines which new

information should be stored in the cell state, and the output gate controls the value that will be

passed on to the next time step. This architecture allows LSTMs to excel in sequential tasks, such

as air quality forecasting, by capturing temporal patterns effectively [HS97]. By leveraging the

LSTM model as our foundational approach, we aim to achieve optimal performance compared

to other machine learning algorithms, including Gated Recurrent Unit (GRU), Gaussian Process

Regression (GPR), eXtreme Gradient Boosting (XGBoost), and AutoRegressive Integrated

Moving Average (ARIMA).

3.2.2 Temporal Dynamics Modeling

Afterward, the network structure needs to be optimized in terms of time, cost, and per-

formance. To achieve this, we aim to leverage Time-Focused Insight Generation. Inherently

considering temporal correlations of historical air pollutant data helps to improve performance.

Temporal Attention We proficiently capture the essential characteristics from historical envi-

ronmental data through temporal windows whose duration is dynamically adjusted depending

on how far ahead the prediction is being made.

Subsequently, we utilize the LSTM layer to extract temporal information from these mapped

features. In time series, incorporating time-variant features is pivotal for capturing effective

temporal dynamics. We systematically extract supplementary time-related features due to their

strong influence on PM predictions, such as (i) weekdays versus weekends related to traffic and
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industrial emissions and (ii) hours of a day related to hourly emission strength modification and

the rise of the boundary layer height (i.e. the lower part of the atmosphere influenced by the

Earth’s surface) influencing the dilution of particles in the atmosphere over the course of the

day.

Recognizing the significance of these temporal factors, we seamlessly integrate them as es-

sential features in our model’s input by merging them with the measurements. When optimizing

temporal history for prediction, one question arises: How much of the historical environmental

data should be considered?

An extensive sensitivity analysis in which different lag times were tested on a real-world

dataset reveals that the lag time should be dynamically adjusted based on the prediction’s time

horizon to obtain the most accurate PM predictions. Our experimental results indicate that

setting alagconstant at 3 hours consistently produces optimal outcomes for one-hour-ahead fore-

casting. This choice was derived through extensive experimentation, where we tested various

lag times, training our model with different historical data windows [1,3,6,9,12] hours, and

evaluating their prediction accuracy using metrics like R2 and RMSE. The 3-hour window

consistently produced the lowest prediction errors, indicating optimal performance for capturing

relevant temporal patterns. Further validation confirmed that adding more historical data did not

significantly improve accuracy, and shorter windows led to higher errors, establishing the 3-hour

window as the best balance for accurate predictions. The same experiments were conducted

for extended prediction horizons. As the prediction time extends, the lag time incrementally

increases, following the empirical relationship we derived, encapsulated in Formula 3.1. Specifi-

cally, for every 6-hour extension in the prediction horizon, the increment in the lagt results in

the incorporation of additional past observations, enhancing performance.

lagt = lagconstant + round
(

pret

lagrate

)
(3.1)

Equation 3.1 is derived from our experimental findings, which suggest a dynamic relationship

between the prediction horizon and the optimal lag time. It is crucial to highlight that, in our

experiments, pret denotes the prediction period and the constant lagrate is set at 6, representing

increments based on predictions made every 6 hours.

Prediction Horizon Strategies We formulate a strategy tailored to meet long-term prediction

demands. Subsequently, our framework excels at forecasting air pollution intervals based on

user preferences, specifically for the next few days with a time stamp interval of 1 hour. The

mechanism dynamically updates the ground truth data, lag time observations, and the output

unit according to the user’s preferences. This process is visually represented as the Prediction

Horizon in Figure 3.1. When the user modifies preferences, online updates reconfigure the
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pre-processing and dynamics of the temporal attention mechanism to align with the new purpose.

Then, the model is retrained.

3.2.3 Model Hyper-parameters

In our pursuit of creating an optimal configuration for the LSTM model, the fundamental

aspect of our goal is to minimize hardware requirements and employ a lightweight model while

maximizing performance. The number of hidden units and layers within a neural network

are crucial hyper-parameters that significantly impact the model’s capacity and complexity.

We strongly emphasize achieving a delicate balance between the model’s capacity and the

potential risks of over-fitting or under-fitting. In this endeavor, we carefully considered the

unique characteristics of the problem and dataset, ensuring that our model is not only efficient

but also tailored to the specific challenges posed by the given context. Our investigation

comprehensively assesses how varying numbers of hidden layers and units impact the model’s

performance. Conducting an exhaustive analysis, we explored multiple unit configurations

within the range of [32,64,128,256], along with variations in the number of layers ranging from

1 to 5. Model evaluation was performed using R2 and RMSE metrics for four sites in both

train and test datasets. Ultimately, we determined that the optimal architecture for our LSTM

model comprises 2 hidden layers with 128 units each, utilizing the Relu activation function. The

model was trained using the mean squared error Mean Square Error (MSE) for the loss function,

chosen for its effectiveness in regression tasks.

During the training phase, it is crucial to specify hyper-parameters that significantly influence

the performance of deep learning models. Firstly, the learning rate, a parameter that determines

the size of the steps taken during the model optimization process, was set at 10−3, after evaluating

values within the range [10−1,10−2,10−3,10−4]. Next is the batch size, representing the number

of data samples processed in one iteration during model training. A carefully chosen batch size

of 48 was implemented, indicating that the model processed 48 (equivalent to 2× 24 hours)

training examples per iteration. Lastly, the epoch parameter, denoting the number of complete

passes through the entire dataset during model training, was set to an extensive value of 200.

This choice allowed the model to iterate through the entire training datasets 200 times, capturing

intricate patterns and enhancing overall performance.

To avoid overfitting and promote model generalization, the Early Stop technique was used.

This involved monitoring the model’s performance on a validation set during the training

process and interrupting training once the performance ceased to improve or started to degrade,

effectively preventing unnecessary further training.
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3.2.4 Dynamic Datasets & Online Model Calibration

Our model is designed for monthly updates, as we typically observe minimal changes

within a one-month timeframe. Embracing a dynamic approach, the model undergoes regular

fine-tuning of its hyper-parameters based on processed information. It continuously assesses

performance metrics, such as accuracy (R2) and root mean square error (RMSE), selectively

incorporating updates when improvements are detected. This iterative process ensures efficient

training over the specified timeframe, maintaining the model’s currency, and optimizing the

latest data trends.

Furthermore, any changes in user preferences can be applied online, allowing the model to

be quickly recalibrated to better suit user needs. The adaptability of this approach allows our

model to respond effectively to evolving patterns and progressively improve its performance

over time.
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3.3 Sensor Deployment and Data Acquisition

This section provides detailed information on the observations utilized to feed our model,

specifically focusing on (QAMELEO network in Dijon). It covers the data acquisition process,

detailing the various sources and methods used to collect air quality data, and the subsequent

pre-processing steps required to prepare the data for model input. These observations form the

foundation of our analysis, ensuring that the model is equipped with accurate and reliable data

to enhance its predictive capabilities.

3.3.1 The QAMELEO Network

QAMELEO is a low-cost air quality micro-station developed by two research teams in the

University of Burgundy and Institut de Recherches pour le Développement (IRD) [MNS+23].

QAMELEO microstations measure the mass concentrations within PM1, PM2.5, PM10 fractions

along with meteorological variables, such as temperature and relative humidity. The measure-

ments are consistently available every 15 minutes, aligning with the time-step of the stations of

the official air quality monitoring association (AASQA : Association agréée de surveillance de

la qualité de l’air) and operated by regional governments in the Dijon Metropolis.

QAMELEO micro-stations have supported tests in the laboratory and outdoors, in the frame

of a national evaluation exercise leaded by the LCSQA (Central Laboratory of Air Quality

Surveillance) in July 2018. This proficiency testing of micro-sensors systems, referred to as

the EAµC field campaign, enabled to compare the QameleO micro-station to 15 other micro-

sensors and to the BAM1020 reference analyser, measuring the PM2.5 fraction, for 2 entire

weeks and at the same location/station. These tests established that the QAMELEO micro-station

can satisfactorily reproduce the temporal dynamics of the PM mass concentrations [CRS18,

RCH+18].

In particular, for PM2.5, the correlation coefficient between the micro-station and a referenced

station is +0.73, which is a significant score at a 99% level according to the Bravais-Pearson

statistical test, and a mean bias of −2.71µg/m3.

In Dijon Metropolis, the POPSU (Plateforme d’Observation et de Stratégies Urbaines) pro-

gram has been a real opportunity to deploy the QAMELEO network in a real urban environment

(cf. Figure 3.2). The QAMELEO microstations were implemented like meteorological stations,

all under the same conditions: at 3 meters high, with a similar Sun Exposition. There are 12

QAMELEO micro-stations implemented in Dijon Metropolis. Of the 12 micro-stations, four of

them cover a complete year (from November 2020 to October 2021) of measurements as the

network has been deployed in progressive phases. These four specific stations are located within

the city in Port du Canal, Hoche, Carnot, and Janin, representative of diversified urban condi-
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Figure 3.2: Locations of Air Pollution Monitoring Micro-Stations in Dijon. The blue circles in
the black box correspond to the four QAMELEO stations used in this study [MNS+23]

tions (traffic: Carnot and Hoche, urban background: Port du Canal and Janin). PMFORECAST

was used on each station independently to test its efficiency.

3.3.2 Data Preprocessing

The data preprocessing stage is crucial in improving the quality and suitability of the data

set for comprehensive analysis. It involves a meticulous process of cleaning, transformation,

and organization to ensure data accuracy and consistency while eliminating errors. QAMELEO

dataset is validated and corrected for the concentrations of the PM mass according to the

Isolation Forest (IF) method developed by the University of Burgundy. The Isolation Forest

algorithm is an unsupervised machine learning technique specifically designed for anomaly

detection. It works by isolating observations through a random selection of features and split

values, efficiently identifying anomalies due to their distinct nature. [MNS+23] employed this

method to identify and correct anomalous concentration values of the mass of PM, ensuring the

precision and reliability of the data set that we used in our study. Addressing missing values is a

crucial step before diving into data analysis. Despite the QAMELEO microstations offering a

relatively consistent dataset for air quality assessment, with an average of approximately %5

missing values over a year time series, ML methods require a dataset without gaps. To meet this

criterion, we applied a 12-hour moving average.

In the final stage, where a few minor missing values persisted around 0.8% to 0.9% percent,

we opted for forward filling, replacing each missing value with the most recent observed value

in the dataset. Achieving uniformity in the dimension values is crucial for meaningful analysis.

To ensure this, we employed Min-Max Normalization, a technique that scales the dimension
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values to a range between 0 and 1. This normalization process contributes to equitable data

representation, a fundamental aspect of robust analysis. The final versions of the datasets are

prepared for four sites: Station 1 (Canal), Station 2 (Hoche), Station 3 (Carnot), and Station 4

(Janin). We include measurements spanning 9.5 months in the training sets and 2.5 months in

the testing sets for all stations.
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Figure 3.3: Hourly temporal prediction of PM2.5 levels over time for Canal site. The dotted
lines correspond to the observed values and are representative of the true values during the

training (blue) and prediction (golden) periods. The solid lines correspond to the PM2.5
predicted during the training (salmon) and the prediction (green) periods. The dashed vertical

green line indicates the division between the training and test datasets.

3.4 Results

A thorough series of assessments were conducted to comprehensively present our results.

Beginning with an evaluation of hourly prediction precision for the Canal site, we then delve

into an in-depth analysis of extending time-frame predictions across all sites. Following this,

we undertake a comparative study involving various popular ML algorithms for time-series

forecasting. Additionally, we assess the feasibility of multi-task prediction. Finally, we examine

the time-consuming aspects across each phase of our framework.

3.4.1 Precision of Air Pollution Forecasting

One of the main objectives of this research is to achieve high precision in the prediction

of air pollution, and in particularly PM2.5. The experimental results displayed in Figure 3.3

provide a visual representation of PM2.5 readings over time for the Canal site, illustrating both

predicted and ground truth values from the train dataset and test dataset. To ensure the model’s

robustness, we conducted training evaluations to confirm that the model performs well not only

on the train dataset but also on the test dataset. In a specific time-frame, Figure 3.4 showcases

the ground truth and predicted values for the test set on 24th and 25th July 2021.
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Figure 3.4: Hourly temporal prediction of PM2.5 levels over time over the Canal site,
forecasting 2-day predictions for July 24th (Saturday) and July 25th (Sunday), 2021. The

golden solid line represents the predicted values and the dotted green line represents the truth
values for the test set.

Table 3.1: Evaluation metrics (RMSE, MAE, MSE, R2, WMAPE) for prediction results during
the training period for the 4 QAMELEO stations (Canal, Hoche, Carnot, Janin) focusing on

1-hour predictions with a history of 3 hours. Bold values indicate the best performance across
all sites.

Train-set RMSE MAE MSE R2 WMAPE
(µg/m3) (µg/m3) (µg/m3) (%) (%)

Canal 0.566 0.352 0.320 99.5 0.043
Hoche 0.768 0.428 0.590 98.6 0.078
Carnot 0.438 0.262 0.192 99.3 0.054
Janin 0.626 0.414 0.392 99.4 0.047

Following the assessment of model performance presented in Tables 3.1 and 3.2, it is

essential to delve into the specific evaluation metrics employed. The assessment includes

not only RMSE and R2, but also incorporates other key performance metrics, such as MSE,

MAE, and WMAPE. RMSE quantifies the average magnitude of prediction errors, providing a

comprehensive measure of model accuracy. MSE offers a similar insight without considering the

square root, emphasizing larger errors. MAE represents the average absolute difference between

predicted and actual values, offering a robust measure of model precision. R2 gauges the share

of correctly predicted instances, providing a holistic view of model effectiveness. WMAPE,

calculated as the weighted average of absolute percentage errors, offers a nuanced perspective

by considering the significance of errors across different prediction scenarios. These metrics

underscore the model’s robust performance across diverse evaluation criteria for training and

test datasets.
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Table 3.2: Evaluation metrics (RMSE, MAE,MSE,R2, WMAPE) for prediction results during
the testing period for the 4 QAMELEO stations (Canal, Hoche, Carnot, Janin) focusing on

1-hour predictions with a history of 3 hours. Bold values indicate the best performance across
all sites.

Test-set RMSE MAE MSE R2 WMAPE
(µg/m3) (µg/m3) (µg/m3) (%) (%)

Canal 0.353 0.238 0.125 99.4 0.049
Hoche 0.393 0.241 0.154 98.2 0.106
Carnot 0.357 0.200 0.164 98.9 0.071
Janin 0.444 0.179 0.197 97.4 0.061

The predictions show remarkable precision, achieving an impressive R2 of approximately

100% and substantial RMSE ranging from 0.36 to 0.77 µg/m3 in the train and test sets at

all stations, respectively. This signifies a robust correlation between predicted and measured

PM2.5, highlighting the model’s exceptional predictive capabilities for the subsequent hour. The

combination of high R2 and low RMSE underscores the reliability and precision of the model

in capturing and forecasting target values. Specifically, we note metrics with values less than

0.43µg/m3, 0.6µg/m3, and 11% for MAE, MSE, and WMAPE, respectively. In the context of

our study, it is essential to acknowledge that our experimental setup involves small test datasets

and a model of relative simplicity. In light of these considerations, it is observed that RMSE

exhibits a lower value in the test dataset in comparison to the training dataset, which is a general

trend observed in machine learning experiments.

While all results demonstrate significance, the notable prominence of the Canal station in

the test set and the Carnot station in the train set as the most favorable matches suggesting the

best alignment between observed and predicted values at these specific locations (Tables 3.1

and 3.2). Bold values in these tables highlight the highest performance across all sites. Despite

local attributes such as unique environment leading to different emission sources as well as

their diurnal variations, geographical, or meteorological conditions inherent to each station, the

model is surprisingly performing well across all sites. This robust adaptability underscores the

model’s effectiveness across diverse environmental conditions within this city. More metropoles

need to be tested to confirm this behavior with probably more contrasted typology (rural vs

urban).

3.4.2 Extended Time-frame Prediction

In Figure 3.5, we assess the accuracy of PM2.5 predictions in the train and test sets across

datasets from the four stations, ranging from 1 to 72 hours into the future. Figure 3.5a depicts

the computed score, representing the average over the prediction period. Leveraging hourly

predictions with adaptable horizons for the near future, we conducted an examination to evaluate

performance across various timeframes—specifically [1,6,12,24,48,72] hours for all stations.
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This resulted in [1,6,12,24,48,72] hours of prediction values for each time horizon. To provide

an example, when forecasting PM2.5 levels for the next 12 hours, the model generates a predicted

value for each hour within this period, amounting to 12 values for this configuration. The R2

score for the entire 12-hour prediction horizon is subsequently calculated by averaging these 12

R2 values.

As the prediction period extends, a noticeable decrease in accuracy for each individual hour

is observed, as depicted in Figure 3.5. Another noteworthy phenomenon emerges with the

extension of the time horizon, where the performance decreases for a specific time compared

to a shorter future prediction. For instance, with a 24-hour forecasting horizon, the accuracy

for the first hour drops to approximately 91.5%, while a 1-hour forecasting horizon achieves a

higher accuracy of approximately 99%. In particular, for the 48-hour horizon, R2 drops to 0.4

for all sites in both the train and test periods, indicating a limitation in the model’s ability to

predict PM levels beyond 36 hours.

This observed behavior aligns with the common phenomena noted in both physical and

numerical models [ZLSS23]. While the results showcase the model’s ability to generalize

and provide reliable forecasts for the near future, challenges arise when forecasting for more

extended timeframes.

3.4.3 Method Comparison Study

Our study considered a diverse set of widely-recognized time series data forecasting algo-

rithms, including Gaussian Process Regression (GPR), Gated Recurrent Units (GRU), XGBoost,

ARIMA, and Standard LSTM. We evaluate these ML algorithms to forecast PM2.5 levels over

1- and 12-hour periods, carefully examining their performance over time across four different

sites. The consistent findings across these sites lead to a comprehensive analysis presented in

Table 3.3, showcasing the effectiveness of each algorithm in meeting our forecasting objec-

tives. GRU demonstrates performance very close to PMFORECAST, attributed to their similar

architectures and shared algorithms in RNN models. However, PMFORECAST consistently

outperforms GRU, displaying superior results. ARIMA excels in the short term, providing

accurate predictions, but its computational demands increase for longer forecasting horizons,

leading to less efficient performance. XGBoost, despite its stability and rapid training times,

falls short compared to RNN-based algorithms. GPR achieves high rankings on training data

but delivers less favorable outcomes on the test set. While the Standard LSTM demonstrates

good performance, PMFORECAST consistently outperforms it, with distinctions becoming more

pronounced for extended forecasting horizons beyond 12 hours. Following comprehensive

experimentation and evaluation, the PMFORECAST model emerges as the most effective choice.

PMFORECAST exhibits better performance achieving shallow RMSE values of 0.357 for 1-hour

and 1.635 for 12-hour forecasts on the Carnot site test dataset. The temporal mechanism



CHAPTER 3. PMFORECAST 41

(a)

(b)

Figure 3.5: Performance Evaluation of Long-Term PM2.5 Forecasting Across Multiple Sites: (a)
Accuracy Assessed by R2 % metrics, and (b) Root Mean Squared Error RMSEµg/m3. The

solid lines with stars denote the performance on the training sets, while the dashed lines
represent the performance on the test sets. Each of the four stations is distinguished by a unique

color: Canal (red), Hoche (blue), Carnot (green), and Janin (grey).
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embedded in our PMFORECAST framework endows PMFORECAST with superior predictive

capabilities among the evaluated algorithms, establishing it as a pivotal asset in our quest for

precise PM predictions.

Table 3.3: Assessing our Model’s Predictive Performance at the Carnot Site Using Diverse
Machine Learning Algorithms on the Test Dataset. Bold values indicate the best performance

across all methods.

Forecasting 1-Hour 12-Hours
Methods RMSE MAE R2 RMSE MAE R2

(µg/m3) (µg/m3) (%) (µg/m3) (µg/m3) (%)
GRU 0.424 0.240 98.2 1.648 1.022 70.0
GPR 0.615 0.351 96.2 3.182 1.495 11.0

XGBoost 0.437 0.237 98.1 1.874 1.083 65.1
ARIMA (VARMAX) 0.587 0.483 96.5 2.425 1.675 41.5

LSTM 0.422 0.256 98.2 1.731 1.019 70.2
PMFORECAST 0.357 0.164 98.9 1.635 0.954 73.7

3.4.4 Multi-Tasks Model

Multi-task prediction offers efficiency, optimal resource utilization, and enhanced decision

support, establishing itself as a valuable approach to air pollution prediction. Our research

involved a comprehensive multi-task forecasting strategy, concurrently addressing the prediction

of 3 major pollutants—PM1, PM2.5, and PM10—as well as temperature and humidity simultane-

ously. Figure 3.6 visually presents these correlations, illustrating the strong alignment between

measured and predicted values for the next hour across the three PM fractions at the Canal
station. While the single-task prediction model slightly outperformed the multi-task approach

with a correlation of about 99% for PM2.5 in one-hour prediction, it is important to highlight that

the multi-task strategy using the PMFORECAST approach demonstrated remarkable efficiency in

capturing the essence of the PM fraction’s behavior with an evaluation metric for R2 around 98%

for all fractions. Equally impressive correlations were noted for other features, closely aligning

with this value. Moreover, this robust performance was not limited to a specific dataset. Indeed,

the correlation results remained consistent across the three additional sites further affirming the

effectiveness of our multi-task forecasting methodology.

The overall efficiency and comprehensive insights provided by the multi-task approach,

particularly with the PMFORECAST method, underscore its value and efficacy in capturing the

complex behaviors of various PM fractions. This intriguing finding emphasizes the potential

of the multi-task strategy as an effective alternative, providing comparable predictive accuracy

while incorporating multiple parameters in the forecasting process.
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(a) (b)

Figure 3.6: Performance assessment through Gaussian distribution for multi-tasking at the
Canal Site with varied meteorological data. (a) Examination of the correlation between

observed and predicted values for the training set. (b) Investigation of the correlation between
observed and predicted values for the test set. The truth and predicted values are illustrated with
dotted and solid lines, featuring "T" and "P" in the labels, respectively. The colors represent the
five measurements in our data: PM1 (purple), PM2.5 (red), PM10 (green), temperature (orange),

and humidity (blue).

3.4.5 Time Overhead for Model Training & Inferences

The PMFORECAST model displays variable time consumption across its key steps, as

detailed in Table 3.4, utilizing an Apple M1 chip with 16GB of memory. The data pre-processing

stage, involving one sample consisting of 5 measurements and 2 temporal features (day of the

week and hour of the day), exhibits swift efficiency. Tasks include converting the timestamp from

15 seconds to hourly datasets and handling missing values using a moving average algorithm,

achieving a latency of 61 seconds for the entire dataset in one station.

In contrast, the temporal mechanism, which operates on the entire dataset, introduces a

favorable latency of less than 1 second, reflecting the simplicity associated with handling

temporal aspects. The training phase for one epoch requires 5.0 milliseconds, emphasizing the

computational demands involved in optimizing the model parameters. The complete model

training process, from raw data to a trained model, takes 250 seconds, with a configuration of

200 epochs and an early stopping mechanism set for a patience of 30 epochs.

Recalibration configuration times vary depending on the horizon time. For instance, for

12-hour prediction points, the latency of a fully trained model is 283 seconds. Subsequently,

predicting air pollution levels for a one-hour horizon demonstrates remarkable efficiency, with a

latency of 375 milliseconds for 2400 samples. For the same number of samples but a longer

horizon, such as 12 hours, the latency increases to 481 milliseconds.
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Table 3.4: Time latencies for each step of the procedure in PMFORECAST.

Step Latency (s)
Data pre-processing (8810 samples) 61

Temporal Mechanism (total data) 0.075
Training (1 epoch) 0.005

Train Full Model (full model from scratch to 1 point prediction for 1 station) 212
Online Model Recalibration (from 1 to 12 time points) 253

Prediction (1 time point for 2400 samples) 0.375
Inference Duration per Horizon (12 time points for 2400 samples) 0.481

These temporal benchmarks offer insights into the computational performance of the PM-

FORECAST model, essential to assess its feasibility in online applications.

3.4.6 Long-Term forecasting Using 20 Years of Satellite Data

We tested the robustness and reliability of our model by utilizing a 20-year dataset of air

quality measurements generated using the Copernicus Atmosphere Monitoring Service (CAMS)

reanalysis model for the Dijon region. The CAMS model offers global atmospheric composition

data with a spatial resolution of 0.75° x 0.75°, where each grid cell corresponds to approximately

83 km x 83 km, thus providing comprehensive data for simulating air quality conditions.

Spanning from October 1, 2001, to March 31, 2021, this dataset served as a solid foundation for

evaluating the model’s long-term forecasting capabilities, enabling hourly predictions.

Following the approach used in PMForecast, we selected three particulate matter (PM)

levels—PM1, PM2.5, and PM10 —along with humidity and temperature as the primary input

features for our model. After preprocessing and addressing missing values, the data was split

into 80% for training and 20% for testing, ensuring that our model was rigorously assessed on

unseen data while learning from a substantial portion of the available information. The models

were trained for 50 epochs, with a batch size of 48, a learning rate of 0.0001, and mean absolute

error (MAE) as the loss function.

We utilized our pre-trained PMFORECAST model architecture, unfreezing only the final

dense layer. We hypothesize that this lightweight approach will perform well even with large

datasets. Table 3.5 presents the results of the long-term prediction metrics, highlighting the

model’s performance across various time horizons:

These metrics demonstrate the model’s robustness in predicting long-term air quality trends

based on historical satellite data, with strong performance in LSTM models and low error metrics

across both training and testing datasets. Although the testing set shows slightly higher error

rates, which is expected in long-term predictions, the model still generalizes well beyond the

training data. Performance naturally decreases over time, but there remains a good correlation

https://atmosphere.copernicus.eu/
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Table 3.5: Metrics Evaluation for 1 to 48 Hours Forecasting in 20-year dataset

Hour(s) Train RMSE Train MAE Train MSE Train WMAPE (%) Train R2

1 Hour 1.547 0.932 2.39 10.5 0.921
6 Hours 2.955 1.934 8.265 21.8 0.753
12 Hours 3.674 2.464 13.503 27.8 0.627
24 Hours 4.265 2.940 18.191 33.2 0.497
48 Hours 5.648 3.981 31.910 45.0 0.231
Hour(s) Test RMSE Test MAE Test MSE Test WMAPE (%) Test R2

1 Hour 1.592 0.961 2.536 10.7 0.920
6 Hours 3.088 1.991 9.540 22.3 0.747
12 Hours 3.812 2.539 14.532 28.5 0.603
24 Hours 4.433 3.011 19.652 33.8 0.452
48 Hours 5.776 4.089 33.364 45.9 0.202

between predicted and actual values. Figure 3.7 illustrates the predictions on both the training

and test sets for upcoming data points.

Figure 3.8 demonstrates near-perfect convergence for a 24-hour prediction horizon, pro-

viding further evidence of the stability and robustness of the model we designed. This result

supports the claim that our model can be effectively deployed on any device for training with

pollution data, ensuring reliable performance across various environments.
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Figure 3.7: Hourly temporal prediction of PM2.5 levels over time for 20 years (2001 to
2021).The solid lines correspond to the PM2.5 predicted during the training (salmon) and the
prediction (teal) periods. The dashed vertical green line indicates the division between the
training and test datasets. The dotted lines correspond to the PM2.5 truth values during the

training (blue) and the prediction (golden) periods.

Figure 3.8: Loss Convergence for 24-Hour Forecast: Training vs. Testing Phases
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3.5 Discussion

This chapter focuses on developing an accurate air pollution prediction model, with a primary

emphasis on PM2.5. We evaluated a broad range of forecasting algorithms, including GPR,

GRU, XGBoost, ARIMA, and Standard LSTM. Among these, the PMFORECAST model—an

advanced iteration of LSTM—emerged as the top performer, achieving remarkable R2 rates

of 98.9% for 1-hour forecasts and 73.7% for 12-hour forecasts. Evaluations conducted across

various sites and forecasting horizons consistently demonstrated PMFORECAST ’s superior

predictive capabilities. Extensive testing and validation further confirmed PMFORECAST ’s

high accuracy in long-term forecasting, surpassing existing models and advancing the field of

sustainable and precise air quality prediction.

In the realm of multi-task prediction, which includes forecasting PM1, PM2.5, PM10, temper-

ature, and humidity, the single-task model slightly outperformed in PM2.5 prediction. However,

the PMFORECAST multi-task approach stands out for its remarkable efficiency, achieving high

correlations of over 98% for all PM fractions. This efficiency is particularly advantageous for

dynamic applications, as evidenced by the varying time consumption metrics. PMFORECAST

excels in computational efficiency during data pre-processing and provides low-latency predic-

tions, reinforcing its potential for time-sensitive scenarios.

To further evaluate the robustness of our proposed model, we tested our lightweight pre-

trained model on a separate dataset comprising 20 years of hourly data. The model demonstrated

strong performance, affirming its adaptability and effectiveness across different datasets. It

achieved 92% accuracy in both test and training sets for upcoming data points, with superior

low error rates—RMSE of 5.776 and MAE of 4.089—in 48-hour horizon predictions.

In conclusion, the PMFORECAST model excels as a robust and versatile solution for accurate

particulate matter prediction and offers significant efficiency gains. Its implications for online

monitoring and decision-making are highlighted by its superior performance and computational

efficiency with low latency, enhancing temporal attention. This makes it a valuable tool for air

pollution forecasting applications.

Looking ahead, we plan to incorporate spatial characteristics of air pollution data into the

model and implement regular in situ retraining strategies to ensure the model remains updated

with the latest data, maintaining its relevance. Additionally, our focus will be on developing an

integrated spatio-temporal model that considers the interplay of diverse datasets, aiming for a

more comprehensive understanding of air quality patterns.
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GRAPH TEMPORAL LSTM

4.1 Introduction

As previously discussed, understanding air quality prediction requires more than just a

focus on temporal factors; spatial considerations are equally crucial. Air pollution is not

merely a matter of when concentrations peak but also where and how they spread. The spatial

distribution of pollutants and their interdependencies across different regions significantly

impact air quality patterns. To address these complexities, researchers explore a variety of data

sources, including satellite imagery, ground-based sensors, and meteorological data. Each of

these sources contributes unique insights: satellite imagery offers broad, real-time observations,

ground-based sensors provide detailed, localized measurements, and meteorological data helps

explain how factors like wind and humidity influence pollutant dispersion.

Incorporating spatial and temporal considerations into air quality prediction models enhances

their accuracy and effectiveness. By integrating diverse data types and employing various spatial

representation techniques, researchers can develop more comprehensive systems that better

reflect the complex dynamics of air pollution.

Spatial representation in air quality models can be approached in several ways. Grid maps

divide the area of interest into a network of cells, each representing a uniform spatial unit. This

method facilitates detailed spatial analysis by enabling the modeling of pollutant concentrations

within each cell. Grid maps are particularly useful for numerical simulations, providing a

structured approach to monitoring and predicting air quality across a defined area. However,

this method can be limited by its rigid structure, which may not fully capture the irregularities

of real-world spatial interactions.

In contrast, graph maps offer a more flexible representation by modeling the area as a

network of nodes and edges. In this approach, nodes represent specific locations, such as

monitoring stations or key urban areas, while edges denote the connections or interactions
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between these locations. Graph maps are well-suited to capturing complex spatial relationships,

such as the movement of pollutants between different regions. They are particularly effective

for modeling dynamic systems with irregular spatial structures, reflecting the ways in which

pollutants travel along roads, through neighborhoods, and across natural barriers.

4.1.1 Literature Review

Numerous studies have explored both grid map and graph map strategies for air quality

forecasting. For instance, recent research by [PRGDS+24] introduces the Spatio-Temporal

Air Quality Forecaster (ST-AQF), an advanced AI framework employing Convolutional Long

Short-Term Memory (ConvLSTM) networks. This model enhances the forecasting of pollutant

concentrations over multiple time horizons by integrating data from diverse sources and adapting

to sensor failures. The ST-AQF framework demonstrates significant improvements in prediction

accuracy compared to traditional and state-of-the-art models, particularly in handling multiple

pollutants simultaneously. Despite its strengths, the model requires further sensitivity analysis,

parameter tuning, and exploration of alternative architectures and imputation methods. Future

research aims to increase scalability, integrate additional data sources, and apply the framework

to broader environmental monitoring efforts.

Another recent study by Jiaxuan Zhang et al. presents a CNN-LSTM model designed

to boost air quality prediction accuracy by combining CNN’s feature extraction capabilities

with LSTM’s sequential learning. Applied to Beijing’s Air Quality Index (AQI), this model

outperforms traditional approaches, like ARMA, SARIMA, RNN, and GRU, significantly

reducing prediction errors and enhancing accuracy. The CNN-LSTM model effectively captures

both spatial and temporal features, addressing the nonlinearity in AQI data. However, it faces

challenges in adapting to sudden changes in AQI trends, necessitating further refinements for

improved real-time responsiveness [ZL22].

On the graph map side, Hongye Zhou et al. [ZZDL21] propose the Dynamic Directed Spatio-

Temporal Graph Convolution Network (DD-STGCN), which integrates domain knowledge of

dynamic wind fields to improve PM2.5 concentration forecasting. The DD-STGCN combines

a directed graph time-series with wind-field diffusion distances, effectively capturing spatial

and temporal dependencies between monitoring stations. Experimental results indicate that DD-

STGCN outperforms traditional models such as LSTM, GC-LSTM, and STGCN in prediction

accuracy and spatial interpretability, particularly under high-wind conditions. Nevertheless,

the model could benefit from incorporating trends and periodicities in PM2.5 concentrations to

enhance long-term forecasting.

Another notable study introduces the Spatially Attentive Cluster-based Graph Neural Net-

work (SA-GNN) for short-term PM2.5 concentration forecasting, focusing on Delhi, India.

The SA-GNN model utilizes graph neural networks to explore spatial relationships between
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monitoring stations and integrates meteorological variables like wind speed and direction. By

employing a clustering-based method and a graph attention network (GAT), the SA-GNN model

demonstrates significant improvements over baseline models, achieving an R2 value of 0.75 and

reducing RMSE and MAE to 25.13 and 21.28 µg/m3, respectively. While effective in forecasting

high pollution episodes, the model’s static graph clustering approach could be further enhanced

by exploring dynamic clustering methods for better adaptability and accuracy [MT23].

The latest advancement in this field is the Spatiotemporal Graph Convolutional Recurrent

Neural Network (Spatiotemporal GCRNN)[Le23]. This model integrates GCNs with RNNs to

improve the handling of spatial relationships and temporal learning. Despite being significantly

smaller than the ConvLSTM model[LBC20], the Spatiotemporal GCRNN offers superior

performance in both short-term and medium to long-term forecasts. However, it remains highly

reliant on diverse data sources for optimal performance.

4.1.2 Motivations

Previous researches in air pollution prediction has made significant strides, yet there are

notable limitations in current approaches. Temporal methods, such as LSTM networks, are

effective at capturing sequential patterns but often struggle with the complexity of integrating

spatial dependencies. These methods can miss fine-grained spatial variations in pollutant

concentrations, which are crucial for accurate local predictions.

On the other hand, spatio-temporal models, while advanced, can be complex and compu-

tationally intensive. Techniques that combine spatial and temporal processing often require

multiscale processing and intricate algorithms to manage the dynamic interactions between

spatial and temporal factors. This complexity can limit their scalability and practical application

in real-time forecasting.

To address these challenges, this research proposes a novel hybrid model that integrates

GCNs and LSTMs networks. This model aims to leverage the spatial strength of GCNs and the

temporal capabilities of LSTMs to enhance both spatial and temporal prediction accuracy. By

focusing on computational efficiency and scalability, the model utilizes cost-effective on-ground

sensors for measuring PMs and other environmental variables.

We apply a graph map technique to forecast pollutant levels across urban zones, with a

specific focus on Dijon, France. The proposed hybrid model combines GCNs and LSTMs within

a temporal attention framework, building on the previous chapter in LSTM-based temporal

modeling [RCAM+24]. This approach is designed to improve the localization and accuracy of

PM2.5 predictions, addressing both spatial and temporal limitations effectively.
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Figure 4.1: Overview of GT-LSTM comprising Spatial and Temporal Models. GCN and
T-LSTM, respectively, are shown as the main components

4.2 Methodology

The primary objective of this research is to forecast air pollution levels within a specific

time frame by using historical environmental data from various areas within a city. Specifically,

our focus is on predicting PM2.5 pollutant levels for different areas by analyzing characteristics

of spatio-temporal datasets in urban regions.

The problem statement is defined using a weighted graph G = (N,E) to represent the

topological structure of the city. Each measurement station is treated as a node, where N

represents the set of station nodes N = [N1,N2, ...,Nn], n is the total number of nodes. The

edge set, denoted as E, defines connections between nodes, illustrating how one node is linked

to another. We represent this set of edges with a special adjacency matrix. The adjacency

matrix A, denoted as A ∈ Rn×n, visually represents the connections between nodes based on the

correlation coefficients obtained from the topology of the city. Pearson’s algorithm [KR24] is

employed to compute the standard correlation coefficient for each measurement between node

pairs, constructing the adjacency matrix A. Equation 3.1 demonstrates Pearson’s algorithm,

where X and Y represent the measurements of the nodes, Cov signifies the covariance between

the measurements, and σ represents the standard deviation of each node.

PX ,Y =
Cov(X ,Y )

σX .σY
(4.1)

A feature matrix, denoted as X, represents air pollution information within the network.

This matrix has dimensions N×F× t, where N is the number of nodes (monitoring stations), F

is the number of features (e.g., pollutant concentrations, meteorological data), and t is the time
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step. By structuring the data in this way, we can effectively analyze and model the relationships

between air pollution levels, node attributes, and temporal patterns within the network.

Spatiotemporal air pollution forecasting involves learning a mapping function f that predicts

future air pollution levels given a stationary network topology G and a feature matrix X. The

goal is to predict air pollution levels for the next T time steps. The output, denoted as XN×M
t+T ,

represents the predicted air pollution levels for all N nodes over the next T time steps. In this

study, we focus on predicting PM2.5 concentrations, setting M = 1. However, the proposed

framework can be extended to multiple pollutants, treating M as the number of output variables,

thereby enabling a multi-task learning approach.

The relationship depicted in our work is formalized by Equation 4.1:

XN×1
t+1 , ...,XN×1

t+T = f (G,XN×F
t−n , ...,XN×F

t−1 ,XN×F
t ) (4.2)

Figure 4.1 illustrates the implementation details of our framework, incorporating the pa-

rameters described earlier. The figure showcases the architecture and modules of our model,

demonstrating how the various elements interact to forecast air pollutant levels for the future.

Each component will be elaborated upon in the following sections.

4.2.1 Graph Temporal LSTM (GT-LSTM)

To effectively capture both spatial and temporal dependencies among monitoring stations, we

propose a novel spatiotemporal model termed GT-LSTM. Our study focuses on four monitoring

stations within the air pollution network of Dijon, France: Canal, Hoche, Carnot, and Janin,

designated as node 1 to node 4, respectively. Figure 3.2 provides a visual representation of the

spatial distribution of the sensors deployed in this city. Data from four blue sites in the black

box are included in this study.

4.2.2 Spatial Model

When it comes to predicting air pollution in an urban area, efficient topological resolution is

essential. Relying on a single measurement in a city is often insufficient, particularly in larger

cities. Therefore, to ensure accurate and comprehensive prediction, it is crucial to consider

multiple measurements distributed throughout the urban area, motivating this study to have

sub-zones for monitoring. To extract spatial data from a graph using a neural network, we

employ GCN, which is an extension of CNN specifically designed to handle diverse graph-

structured data [GDCM23]. In GCN, the process involves multiplying the input neurons by

a set of weights, known as filters or kernels. These filters act as a sliding window across the

entire data, allowing GCN to learn the characteristics of neighboring nodes within the graph. As
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Figure 4.2: Proposed spatiotemporal model. The model incorporates GCN blocks for capturing
spatial features, LSTM blocks for capturing temporal features, temporal dynamic updating
blocks, input data, a dependency matrix representing spatial relationships, and the predicted

outputs.

described earlier, we effectively capture and learn spatial information from the graph structure.

A GCN operates on:

• An input feature matrix X of size N×F , where N represents the number of nodes and F

denotes the number of input features for each node.

• A matrix representation of the graph structure A of size N×N, such as the adjacency

matrix of the graph G.

Figure 4.2 visually represents the spatial distribution of the four monitoring stations and the

proposed model architecture. The figure highlights how data from these stations are utilized

to predict air quality at four different locations within the network topology and illustrates the

model’s capability to capture temporal dynamics. The model is lightweight, featuring one GCN

layer with 128 units and two LSTM layers with 128 units each.

4.2.3 Temporal Model

To capture temporal dependencies, we employ an optimized temporal LSTM model, as

detailed in our previous work [RCAM+24]. This lightweight and compact model has proven

effective for various nodes. The comprehensive framework of PMFORECAST designed for

air pollution prediction is outlined, comprising four key steps: data pre-processing, temporal

attention to mitigate gradient disappearance, a flexible prediction horizon for dynamic future

forecasting, and layers employing Long Short-Term Memory (LSTM)—the trainable component.

The temporal attention prediction horizon mechanisms are encapsulated in the block Temporal

Dynamic Updating in Figure 4.2. This block is responsible for using temporal features such as
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the day of the week and also adjusting the prediction horizon for longer future forecasts. The

LSTM model captures the temporal variations in the data, while the GCN model takes into

account the topological structure and dependencies of the nodes.

Figure 4.3: A Cell of GT-LSTM

x̂t = f (A,x) (4.3)

ft = σ(Wf · [ht−1, x̂t ]+b f ) (4.4)

it = σ(Wi · [ht−1, x̂t ]+bi) (4.5)

c̃t = tanh(Wc · [ht−1, x̂t ]+bc) (4.6)

ct = ft ⊙ ct−1 + it ⊙ c̃t (4.7)

ot = σ(Wo · [ht−1, x̂t ]+bo) (4.8)

ht = ot ⊙ tanh(ct) (4.9)
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Figure 4.3 illustrates the architecture of a single GT-LSTM cell. The computational process

within this cell is outlined by Equations 4.3 to 4.9. The GCN component, represented by

Equation 4.3, processes input features x through the adjacency matrix A to generate spatial

embeddings x̂t . The LSTM component, defined by Equations 4.4 to 4.9, captures temporal

dependencies through the calculation of different gates:

• ft (forget gate): Decides whether the information can pass through different layers of the

network. It takes input from the previous hidden state ht−1 and the current input x̂t .

• it (input gate): Determines the importance of the information by updating the cell state. It

measures the integrity and importance of the information for developing predictions. The

information passes through the sigmoid and tanh functions; the tanh eliminates the bias

of the network, and the sigmoid determines the weight of the information.

• c̃t (cell state candidate): Represents the new candidate values that could be added to the

cell state.

• ct (cell state): The cell state is updated by combining the forget gate and input gate

outputs.

• ot (output gate): The correct information passes through the cell state. Once here, the

output of the input gate and forget gate is multiplied by each other. The output gate

determines the next hidden state of the network.

• ht (hidden state): The output gate decides the next hidden state. The updated cell state ct

goes through the tanh function and is multiplied by the sigmoid function of the output

state.

The weighted parameters W in these equations are learned during the training process. The

final output, ht , represents the predicted air pollution level for the current time step at a specific

node where the time step corresponds to the measurement interval of the station.
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4.3 Data

The datasets used in this study are the same as those detailed in section 3.3, collected using

Qameleo, an affordable advanced air quality micro-station. These datasets underwent several

preprocessing steps to prepare them for analysis. The preprocessing included converting the

data from quarterly to hourly intervals, addressing missing values, introducing time-related

features such as the day of the week and hour of the day, and standardizing the measurements

through normalization.

After converting the datasets from quarterly to hourly intervals, a moving average method-

ology was employed to address missing data and enhance the overall quality of the data. A

sliding window technique with a 12-hour interval was applied to each data point to smooth the

series and manage gaps effectively. Additionally, time-related features were integrated into the

datasets, and the values were normalized to a range between zero and one to ensure consistency

and comparability. A concise summary of these input features can be found in Table 4.1.

Variables Unit
Pollutants

PM1 ug/m3

PM2.5 ug/m3

PM10 ug/m3

Meteorology
Humidity %

Temperature ◦C
Date Time

Day of Week 0 to 6
Hour 0 to 23

Table 4.1: Summary of dataset variables and their corresponding units. The table includes
pollutant concentrations, meteorological measurements, and date-time information.
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Figure 4.4: Examination of the correlation between observed and predicted values for the test
sets, assessed through Gaussian distribution analysis. The observed values are illustrated with
dotted lines, while the predicted values are shown with solid lines. Different colors represent

the four monitoring sites: Canal (red), Hoche (green), Carnot (orange), and Janin (purple). The
distribution of the forecasting values is closely aligned with the actual data, providing insight

into the model’s reliability across different spatial contexts.

4.4 Model Performance Evaluation and Analysis

To evaluate the model’s performance, we employed a combination of visual and quantitative

analysis.

Firstly, we visualized the relationship between observed and predicted values using Gaussian

distribution plots (Figure 4.4). The Gaussian graph (cf. Figure 4.4) vividly illustrates the model’s

correlation and remarkable precision across all sites represented by the different colors for test

sets. The close alignment of predicted values with the actual measurements across all nodes

demonstrates the model’s accuracy and reliability. The Gaussian distribution curve further

emphasizes the model’s accuracy, with its peak closely aligned with the bell shape of the graphs.

Secondly, we quantitatively assessed the model’s performance using established metrics:

RMSE, MAE, WMAPE, and R2. The results, presented in Table 4.2, indicate strong performance,

particularly evident in the high R2 values for both training and test sets. The evaluation metrics

outlined in Table 4.2 underscore the robust performance of the model, particularly evident

in the coefficient of determination (R2) across both train and test datasets. A high accuracy

(ACC) value (0.96) for the training set signifies a strong correlation between predicted and

actual measurements, while a value of (0.88) for the test set highlights the model’s exceptional
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Table 4.2: Performance comparison of the GT-LSTM model against baseline models (LSTM
and GCN) using RMSE, MAE, R2, and WMAPE. Lower values of RMSE, MAE, and WMAPE

indicate better performance, while higher R2 values are desirable.

Methods Datasets RMSE MAE R2 WMAPE

LSTM
Train-set 0.805 0.511 0.988 0.074
Test-set 0.935 0.534 0.934 0.155

GCN
Train-set 1.706 1.058 0.909 0.157
Test-set 1.599 1.011 0.782 0.306

GT-LSTM
Train-set 1.301 0.697 0.966 0.102
Test-set 1.139 0.650 0.882 0.211

predictive accuracy. To benchmark our model, we compared our results with those obtained

from running the base models independently using identical hyper-parameters for LSTM and

GCN, as illustrated in Table 4.2.

Although the results show slightly better performance when using only the LSTM model,

the primary objective of utilizing a unified model is to achieve enhanced resolution. Despite

the temporal model’s superior performance on its respective dataset at each site, the strength of

this approach lies in its capacity to achieve high resolution with a single model across diverse

databases. The proposed GT-LSTM model improves spatial resolution within the city’s topology

while reducing processing costs, offering a distinct advantage over employing multiple models

for individual nodes, particularly when managing multiple stations within a city.

To further investigate the model’s ability to capture spatial dependencies, we conducted

a detailed analysis focusing on two closely located sites: Hoche and Canal. As shown in

Figure 4.5, these sites are approximately 2 kilometers apart. The model effectively captures

the similar behavior of air pollution levels at these sites, as evidenced by the closely aligned

predicted values in Figure 4.5(b). Figure 4.5(c) provides a visual representation of the site

locations using OpenStreetMap for reference.

4.4.1 Evaluating the Model’s Ability to Capture Spatiotemporal Patterns

One of the primary objectives of this study is to generate predicted values for various

nodes by feeding the model with different datasets, with a specific emphasis on the PM2.5

pollutant. We provide compelling evidence that spatiotemporal modeling, which accounts for

inter-node dependencies, significantly enhances the accuracy of pollution level forecasts. This

is demonstrated through results from four monitoring sites, notably at Node 4 at the Janin site,

where no actual values were available in the test set for a certain period. Remarkably, our model

was able to predict values for this site despite the absence of actual measurements. Figure 4.6

illustrates the test-set data across all nodes, with the Janin site highlighted in the lower right

section of the graph. This achievement highlights the model’s capability to effectively capture
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Figure 4.5: (a) Geographical coordinates of all sites. (b) Observed and predicted values for the
Hoche and Carnot sites over two days. Dotted lines represent the true values, while solid lines
indicate the predicted values. The Hoche data is shown in blue, and the Carnot data is depicted

in red.

spatiotemporal relationships and provide robust forecasts, even in the presence of missing data,

by leveraging both spatial and temporal correlations.

We conducted another test to assess the stability of the model by using zero values as the

input for the Carnot site test set and predicting the values for all four nodes. For the three other

sites, there was a slight increase in error. However, for Carnot, the predictions still captured

the ground truth data patterns well. Figure 4.7 illustrates two scenarios for the x-test set at the

Carnot site: with and without real measurements. The graph shows that in the scenario without

real measurements, the predictions, although accurate, had a narrower range of variation in the

box bar graph on the right. This indicates the model’s limitation in distinguishing outliers when

no actual input is provided, which is expected since the model lacks the historical data to predict

values accurately.

4.4.2 Model Capability for Long-Term Forecasting

Our forecasting model demonstrates strong efficacy in predicting air pollution levels over

extended time spans. Figure 4.8 and Figure 4.9 presents error and correlation metrics for both

the training and test datasets across various time intervals, ranging from 1 hour to 36 hours into

the future. These values represent the average of predictions across all nodes, aggregated for

each specific forecast horizon.

In Figure 4.8, the model shows notable error reduction within the training dataset, achieving

an average RMSE value of 2.195 for the first 12 hours in the test set. This indicates a significant
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Figure 4.6: Illustrating Model Robustness: predictions for all locations. The dashed lines
represent the collected data, reflecting the actual values during both the training (blue) and
prediction (golden) phases. The solid lines depict the PM2.5 predictions made during the
training (salmon) and prediction (green) phases. The vertical green dashed line marks the

boundary between the training and testing datasets.

Figure 4.7: Assessing Model Robustness: Two testing scenarios are considered. (i) Without
Real Measurements (Using Zero Values): The dashed orange line represents zero values as
input, while the solid green line shows the predicted values for this scenario. (ii) With Real

Ground-Truth Measurements: The dotted blue line represents the actual ground-truth values,
and the solid red line depicts the PM2.5 predictions made using the real measurements for this

scenario.
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correlation between predicted and actual values. The model also exhibits robust performance

on the independent test dataset, with an average MAE value of 1.351, demonstrating its ability

to generalize effectively and provide reliable predictions even for unforeseen data beyond the

12-hour mark. It is observed that RMSE and MAE values in the training set are higher compared

to the test sets. This discrepancy is due to the wider range of measurement values in the seasonal

and time series data of the training sets, resulting in larger values compared to the test sets.

Figure 4.9 evaluates the model’s accuracy over longer forecast horizons. After 24 hours,

the accuracy of predictions decreases by more than 50 percent. Despite this, the model’s

performance indicates that extending forecasts beyond this period presents challenges. To

improve long-term prediction quality, especially with large datasets, it is recommended to

consider daily average predictions after the 24-hour mark.

Figure 4.8: Performance Evaluation of Long-Term PM2.5 Forecasting with GT-LSTM: The
barcharts illustrates the RMSE and MAE errors for both the training and test sets, showing an
increase in error over time. Blue and green bars represent the training set metrics, while orange

and red bars correspond to the test set metrics.

4.4.3 Experimental Setup

hyper-parameters are crucial in determining the performance of deep learning models,

affecting aspects such as learning rate, batch size, training epochs, and the number of hidden

units.

For the GCN layer, we systematically explored various configurations to optimize perfor-

mance. We tested unit counts of [32,64,128,256] with 128 units showing the most promising

results. Further analysis indicated that a single layer provided the best performance, proving to
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Figure 4.9: Performance Evaluation of Long-Term PM2.5 Forecasting with GT-LSTM presents
the R2 and WMAPE metrics, showing a decrease in accuracy over time. Blue and green bars
represent the training set metrics, while orange and red bars correspond to the test set metrics.

Accuracy is assessed using both R2 and WMAPE.

be the most effective configuration. The model utilized the Sigmoid activation function, which

helped capture complex spatial relationships and dependencies in the data.

In the temporal model, we adopted the same structure as in our previous work, as it

demonstrated the best performance. Specifically, we employed two layers of LSTM, each with

128 units and using the ReLU activation function as detailed in 3. This configuration achieved

optimal performance while keeping the model structure efficient. The model was trained using

the mean squared error MSE for the loss function, chosen for its effectiveness in regression

tasks. Throughout our research, careful attention was given to the selection of hyper-parameters.

We set the learning rate to 0.001 to regulate the step size for adjusting the model’s parameters

during training. Additionally, we conducted 200 training epochs with an early stopping criterion

to prevent over-fitting, ensuring thorough training and reliable results.
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4.5 Discussion

This chapter presents a novel spatiotemporal model for accurately predicting PM2.5 con-

centrations in suburban environments. By leveraging low-cost sensors, advanced modeling

techniques, and AI, the model effectively captures the spatial and temporal dynamics of air

pollution. It consistently demonstrates superior prediction accuracy and robustness, as indicated

by high R2 and low error rates, even when faced with limited data. Importantly, the model

provides reliable forecasts without the need for complex multi-scale dependencies or models.

In addition, this approach offers valuable insights for long-term air quality planning and

pollutant prediction across various regions with sparse observational data. The model supports

real-time monitoring, making it a useful tool for policymakers and the general public, contribut-

ing to improved air quality management and public health outcomes.

The model’s performance across diverse temporal and spatial contexts further highlights its

robustness and adaptability. Notably, the GT-LSTM model effectively generalizes and maintains

high R2 even when applied to diverse datasets, including those with missing data. This is evident

from its success in predicting values at the Janin site, where the model accurately interpolated

data despite the absence of actual measurements. This demonstrates the model’s ability to exploit

spatiotemporal dependencies, ensuring high-quality predictions under challenging conditions.

While the model excels within the first 12 hours of forecasting, with relatively low RMSE

and MAE, there is a noticeable decline in accuracy for predictions extending beyond 24 hours.

This suggests limitations in capturing long-term temporal patterns, likely due to increasing

uncertainty over extended forecast horizons. To address this, future work could explore ensemble

learning or hybrid approaches, combining GT-LSTM with other predictive techniques to enhance

long-term forecasting accuracy.

In conclusion, the GT-LSTM model represents a powerful tool for spatiotemporal forecasting

in urban air quality monitoring. However, its resolution is heavily dependent on the number of

nodes and dataset characteristics, indicating that scalability is tied to the predefined sub-zones

within the model’s architecture.

To improve the spatiotemporal resolution of air pollution monitoring, we propose integrating

mobile sensor networks and leveraging crowdsensing resources. Deploying mobile sensors in

urban areas will enable more fine-grained air quality data collection, leading to more accurate

and localized predictions while reducing the cost of data collection and processing.



Chapter 5

FEDAIRNET

5.1 Background and Context

Introduction

We discussed the importance of capturing both the temporal and spatial characteristics of air

pollution data. Traditional centralized systems for monitoring air quality are often costly and

provide limited spatial coverage. Establishing numerous sites to collect, analyze, and transmit

data to a central server further increases expenses and delays. FL offers a promising alternative

by enabling decentralized model training across a network of devices. Through FL, we can

leverage a wide array of mobile sensors distributed across various locations to collect real-time

environmental data, such as PM levels and meteorological conditions, without the need to

centralize sensitive information. This decentralized approach not only improves the granularity

and coverage of air quality assessments but also preserves user privacy by keeping data locally

in the devices.

State of the Art

The quest for effective air quality monitoring has been revolutionized by the advent of

FL, a technology that addresses the pressing challenges of privacy and data management.

One innovative approach employs federated learning through a mobile Android application,

which enhances air quality monitoring while safeguarding user privacy. By leveraging on-

device training, this method avoids data transmission, preserving sensitive information. The

system utilizes federated averaging to aggregate updates from multiple devices, resulting in an

accurate prediction of the AQI based on image features and weather data. Despite its promising

capabilities, this method faces limitations, particularly in low-light or indoor conditions, and

requires broader data diversity for improved accuracy and utility [CR21].

In a different realm of air quality monitoring, mobile devices have been employed to

apply federated learning for real-time AQI prediction and hazardous zone detection. This
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approach focuses on decentralized data collection via mobile devices, allowing for extensive

monitoring of large areas while ensuring privacy by keeping raw data on the devices. The

use of LSTM networks enables precise AQI predictions, with each mobile device contributing

to a global model through federated averaging. While effective in urban environments, this

approach faces challenges related to the computational limitations of edge devices and the

coordination of multiple mobile devices, which can lead to latency and increased network

traffic [CTK+21, LNL+20, LNL+21].

A comprehensive review of federated learning applications in air quality forecasting reveals

a significant evolution from traditional machine learning methods. Before 2020, AQI forecasting

relied heavily on single-machine learning techniques such as Deep Neural Networkss (DNNs)

and ANNs, which struggled with local optima. The introduction of federated learning has

brought about centralized, decentralized, and hierarchical architectures, with centralized FL

being the most common. Multi-model FL approaches, combining various models to leverage

their strengths, have shown potential in improving prediction accuracy. The review suggests

that future research should focus on refining algorithms and integrating DNNs to better manage

partial and temporal data [DKD+22].

Further advancing this field, research on Federated Compressed Learning (FCL) integrates

data compression with federated learning and edge computing to address challenges such as data

sparsity and high computational costs. This framework reduces data volume, maintains privacy

through local model training, and enables real-time analysis on resource-constrained devices.

While FCL successfully minimizes data usage and enhances privacy, the reliance on low-cost

sensors introduces limitations, including accuracy issues and sensitivity to environmental factors

like humidity and temperature, which can affect data reliability, especially in areas with sparse

sensor coverage [DP22, PCP+21].

Integrating FL (Federated Learning) with mobile sensors for air quality monitoring addresses

several limitations inherent in centralized systems. Centralized approaches often grapple with

issues such as data privacy concerns, high operational costs, and limited scalability. Mobile

sensors complement this FL approach by offering a broad distribution of data sources, which

enhances the accuracy and timeliness of air quality assessments. This integration aims to create

a monitoring system that is efficient, scalable, and responsive to dynamic environmental changes.

Federated learning represents a significant advancement in air quality monitoring, combining

innovative technology with practical solutions to foster more effective and privacy-conscious

environmental management.

Our objective is to design a FL system that adapts seamlessly to urban topologies by

harnessing the potential of crowdsourced data. Additionally, we need tools to simulate mobility

tracking and privacy-preserving techniques. The ACCIO framework [PMB+18], which provides
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tools for simulating such techniques, will be utilized to extract potential PoI attacks in our

federated learning models.
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5.2 Methodology

Our approach focuses on monitoring and forecasting air quality using geospatial data

collected from mobile sensors. We aim to achieve high-resolution air quality monitoring in

urban areas by distributing data processing and model training across multiple devices. This

approach leverages the mobility and density of sensor-equipped devices to gather fine-grained

environmental data, offering a superior spatial resolution compared to traditional stationary air

quality monitoring stations.

The core idea is inspired by the concept of crowdsensing, which involves collecting real-time

and abundant measurements throughout urban areas. In our framework, the city is divided into

distinct regions, with each region responsible for locally predicting and monitoring air pollution.

Figure 5.1 illustrates the city of Dijon, which is the focus of our research. The city is represented

by a grid map where each cell functions as a node equipped with an edge computing device. As

shown in the figure, citizens collect measurements as they move through the city.

Figure 5.1: Assumed a Grid Map of Dijon: Data Collection by Citizens Using Mobile Sensors

5.2.1 Federated Learning Model Training

This research proposes a federated learning framework utilizing mobile sensors and a

decentralized approach. We suppose that the framework enhances prediction accuracy while

safeguarding privacy.

The framework relies on federated learning, leveraging data from mobile sensors and

cross-device techniques to overcome the limitations of centralized systems. Multiple nodes

are distributed across different regions, each functioning independently to train a local model

with its collected data. These regional models are then aggregated into a global model, which
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benefits from diverse data sources while preserving individual user privacy. The number of

regions can be adjusted based on the city’s topology and structural complexity. This approach

aims to improve model performance and minimize the risk of raw data exposure by keeping

data localized within each node.

Figure 5.2: Overview of the proposed federated learning framework for secure, decentralized
air quality prediction with localized model training on distributed nodes

System Architecture

The system architecture is essential for enabling the decentralized data processing inherent

in federated learning. Figure 5.2 represents the proposed framework includes a central server

and numerous nodes distributed throughout the city. Each node collects and processes data from

mobile sensors in its designated geographic area. The central server aggregates updates from all

nodes to refine the global model, thus reducing data transmission across the network.

Local Training: Each node, representing a cluster of user devices within a specific geo-

graphic area, collects data from nearby mobile sensor devices. The predictive models are then

trained on these edge devices at each node. This local training approach ensures that raw data

remains on the edge devices, thereby preserving user privacy.

Model Aggregation: A crucial component of the federated learning framework is the

aggregation algorithm, which merges local model updates from various nodes to form a global

model. We utilized FedAvg, a widely adopted algorithm developed by Google [MMRyA16],
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for this aggregation task. The training process continues until either a predefined number of

rounds is completed or a convergence criterion is satisfied, thus ensuring effective global model

training while minimizing unnecessary computational overhead.

The nodes can be either active or silent during the aggregation process of the global model.

This setup helps mitigate the impact of malicious or faulty nodes contributing subpar data through

a control mechanism that filters out those consistently producing measurements with significant

deviations from expected norms. By excluding these outlier nodes from the aggregation process,

we enhance the overall quality and reliability of the global model, ensuring that only trustworthy

data is used.

Our methodology is designed to forecast regional air quality values rather than focusing on

specific point measurements. This approach allows us to account for variations in air quality

across broader areas, thereby reducing the influence of anomalies caused by localized pollution

sources, such as smoking or vehicular emissions.

Global Model Distribution: The updated global model, enriched with insights from various

local models, is then distributed back to the individual nodes. This enhanced model empowers

each node to conduct real-time air quality monitoring and forecasting with greater accuracy.

The high-resolution data collected by mobile sensors within each node’s jurisdiction enables

detailed and localized assessments of air quality.

Figure 5.3: Architecture of the proposed transfer learning model for local training on nodes and
edge devices within the federated learning framework
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Federated Transfer Learning adapts the traditional machine learning technique of transfer

learning, wherein a new model is trained using a pre-trained model that has been fine-tuned on

a similar dataset to address a related or different problem. Leveraging a pre-trained model in

machine learning often results in significantly better performance compared to training a model

from scratch.

As discussed in references [CWY+19, YHZC21, LCY18], federated learning can be effec-

tively combined with transfer learning. Given that our dataset consists of limited time-series

samples (one month) and requires frequent updates, the available data per node or edge device

may be insufficient. To address this challenge, we utilize larger datasets and pre-trained ML

models to enhance and accelerate the training process.

For our specific use case, we employed a lightweight, well-trained Temporal LSTM model to

forecast PM2.5 levels in urban areas, as shown in chapter 3. Figure 5 illustrates the architecture

of this model, where the LSTM layers are kept frozen, and only the final dense layer is fine-tuned

to adapt to new data. The horizon prediction, as discussed in chapter 3, determines the number

of output neurons.

Mathematical Formulation of Federated Transfer Learning

We formalize the federated transfer learning process with the following mathematical

definitions:

• φ represents the pre-trained feature extractor, which remains frozen during local training.

• ψ represents the final dense layer, which is fine-tuned.

• w(t)
ψ,i denotes the parameters of the dense layer ψ at node i after t local training steps.

• w(t)
ψ denotes the global parameters of the dense layer after t rounds of aggregation.

• L (w(t)
ψ,i;Di) represents the loss function at node i for the dense layer, where Di is the

local dataset collected throughout the designated geographic area.

The local update at each node is given by:

w(t+1)
ψ,i = w(t)

ψ,i−η∇L (w(t)
ψ,i;Di) (5.1)

where:

• η is the learning rate.
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• ∇L (w(t)
ψ,i;Di) is the gradient of the loss function with respect to the dense layer parameters

at node i at training step t.

The global aggregation process is defined as:

w(t+1)
ψ =

N

∑
i=1

|Di|
∑

N
j=1 |D j|

w(t+1)
ψ,i (5.2)

where:

• w(t+1)
ψ is the updated global parameter for the dense layer.

• The aggregation is weighted by the size of the dataset at each node.

After aggregation, the global parameters are redistributed to the nodes:

w(t+1)
ψ,i ← w(t+1)

ψ (5.3)

The overall federated transfer learning process can be summarized as follows:

1. Initialization: The server initializes the global dense layer parameters w(0)
ψ and distributes

them to all nodes, along with the frozen feature extractor φ .

2. Local Update: Each node i performs local training on its dataset Di, updating only the

dense layer parameters w(t)
ψ,i while keeping φ unchanged.

3. Model Aggregation: The server aggregates the updated dense layer parameters from all

nodes to form a new global dense layer w(t+1)
ψ .

4. Global Distribution: The updated global dense layer parameters w(t+1)
ψ are distributed

back to each node.

5. Repeat: Steps 2-4 are repeated until convergence or a stopping criterion is met.

5.2.2 Privacy Preservation

This research proposes a federated learning framework for air quality monitoring that

prioritizes user privacy. The core idea involves decentralized data collection and processing,

where individual users collect local measurements and share limited data with nearby nodes.

While federated learning offers significant privacy benefits, there remains a risk of data inference.

Previous studies have demonstrated that user check-ins can be inferred from PoI embeddings.

PoIs are specific locations of interest, such as restaurants, shops, or landmarks, that users
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frequently visit. To address this, our research employs simulated data to safeguard privacy while

accurately monitoring air quality along user routes.

We integrated the ACCIO framework to extract PoIs from user trajectories [PMB+18]. By

analyzing these PoIs, we can assess the effectiveness of our privacy measures and identify

potential vulnerabilities. For instance, if a curious node can accurately determine a user’s

frequent PoIs, it may be able to infer sensitive information about that user’s habits or lifestyle.

By varying the number of nodes, we can evaluate the trade-off between data granularity and

privacy protection.

To further enhance privacy, we proposed various levels of node granularity by exploring

different topologies tailored to varying privacy requirements. These configurations range from

coarse-grained to fine-grained setups for each node. Figure 5.4 visualizes the four levels of node

topology, (a) Zone, (b) Sub-Zone, (c) Grid Street, and (d) Pinpoint Location as detailed below.

Figure 5.4: Visualization of the four node topology levels within the city scale: (a) Zone, (b)
Sub-Zone, (c) Grid Street, and (d) Pinpoint Location.

• Zone: Represents the entire geographic area covered by a node. In this configuration,

user devices first identify the relevant node and then remove precise geolocation data

from their dataset before transmitting it to the corresponding edge device. This method

offers the highest level of privacy by generalizing the location information to a broad area.

Each node is depicted as a cell in Figure 5.1 and Figure 5.4 (a).

• Sub-Zone: To balance data granularity and privacy, we propose dividing each node into

smaller sub-zones. This approach enables more localized data collection while limiting

shared location data to the sub-zone level, thus maintaining user privacy. Implementing

sub-zones requires additional resources to manage the increased computational load. To

ensure scalability and efficiency, sub-servers can be deployed within each sub-zone, or
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one sub-zone can be designated as the server. This reduces communication overhead and

improves system responsiveness. Figure 5.4 (b) illustrates the sub-zones within a node,

divided into six sub-nodes.

• Street Grid: This approach focuses on specific streets or sets of streets within a node’s

zone, enabling detailed monitoring along designated routes while protecting broader

location privacy. An algorithm within each node identifies the street name and obfuscates

the precise location by removing the last digits of latitude and longitude, retaining street-

level accuracy. The anonymized data is then transmitted to the corresponding node for

processing, ensuring privacy while facilitating localized analysis. Figure 5.4 (c) illustrates

the Street Grid concept.

Algorithm 1 Street-Level Location Masking and Data Transmission

1: Input: Location data (lat, lon) for a user within a node.
2: Output: Masked location data sent to the corresponding node.
3: Determine the street corresponding to the user’s (lat, lon).
4: Remove the last digits of lat, lon to anonymize the location while keeping it within the

same street.
5: Send the masked location data to the corresponding node for processing.

• Pinpoint Location: This is the most fine-grained level, representing an exact point within

the node, such as a specific GPS coordinate. While it offers the highest precision in data

collection, it also presents significant privacy risks. In the event of a malicious node, there

is a potential for user re-identification through attacks, such as PoI attacks. Figure 5.4 (d)

illustrates the concept of Pinpoint Location, where a partial trajectory of a user is shared.

By varying the level of granularity, we can strike a balance between data aggregation and

privacy protection. Finer-grained levels allow for more localized analysis, but may increase the

risk of data inference. Conversely, coarser-grained levels reduce the risk of inference but may

sacrifice data granularity.

5.2.3 Implementation

Our implementation involved developing algorithms to optimize city segmentation into

nodes, using Dijon as a case study. We designed an algorithm to determine the optimal number

and configuration of nodes across the city map, dividing it into manageable sections for efficient

data processing. The simulated data, detailed in the next section, guided our process. We

varied scenarios such as the number of epochs, evaluation rounds, nodes per round, time

intervals, and prediction horizons, while keeping certain hyperparameters—like activation

functions for LSTMs, model architecture, batch size, learning rate and loss function—constant

to control for variables. Early stopping was applied after 15 epochs. We used the Flower

framework [BTM+22] with a TensorFlow backend, customizing its modules and initializing the
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global model with temporal weights and parameters from chapter 3. Various scenarios were

simulated to evaluate local and global model performance, and the Hydra package facilitated

real-time evaluation and result tracking.
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5.3 Data Simulation

5.3.1 Data Collection

The cornerstone of our project in this chapter is the use of mobile sensors embedded in user

devices to collect real-time air quality data. The Appoline project (Air Pollution and Individual

Exposure) [HKV+19] established a robust infrastructure for air quality research and education,

leveraging chemical and physical sensor units. These low-cost instruments are capable of

measuring key pollutants without disrupting occupants. The devices continuously transmit raw

measurements via Ethernet or wireless technologies to a cloud platform, enabling real-time

offsite visualization and analysis. Since its deployment in July 2018 across University of Lille

buildings, this network has provided valuable insights into both pollution levels and occupancy

patterns [CH20].

However, in Dijon, this approach faced several challenges. The main issue was the insuffi-

cient participation of volunteers, which limited the quantity and variety of the collected data.

Furthermore, managing the mobile sensor network remotely from Lille presented additional

difficulties, as it was challenging to coordinate sensor distribution, to oversee data collection,

and to maintain smooth operation across different locations. To continue the project, we chose

to simulate the data using the same Appoline sensors, maintaining the format and characteristics

of the real-world deployment.

Figure 5.5: Map showing simulated user movements using the Apolline application. The
simulation illustrates the user’s travel paths and locations over time.
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Figure 5.5 illustrates the simulated measurement data collected at various points, represented

by blue circles on the map. In our project, the Apolline sensor focuses on monitoring particulate

matter (PM1, PM2.5, PM10) in addition to meteorological variables such as temperature and

humidity. Furthermore, the sensor captures user movement data, recording latitude and longitude

every second. This approach facilitates the collection of diverse environmental data across

multiple urban locations, enhancing both the spatial and temporal resolution of our air quality

monitoring system.

To tackle the challenge of limited active users for continuous time-series data collection,

we utilized an open service map to simulate various user trajectories. Various scenarios were

developed, involving up to 100 user paths with random geometric topology and popular PoI, in

order to cover as much of the urban area as possible. Each user is modeled to commute to work

during weekdays and participate in recreational activities on weekends, with varying amounts of

time spent at different PoIs. As noted earlier, PoIs include locations such as homes, workplaces,

and recreational venues like gyms and libraries.

We utilized GPX files to simulate user movements and data collection, leveraging the

open service map1 for spatial data visualization. Each user was assigned a set of 7 GPX files,

representing a week of travel data from 07:00 to 21:00, which captured typical daily routines,

including work hours and weekend activities. The time of departure and arrival home varied

individually, with lunch breaks consistently spent at the workplace during weekdays. A custom

script was developed to convert these GPX files into CSV format, with columns for date-time,

latitude, and longitude. Timestamps were generated at 15-second intervals, utilizing an average

walking speed range of 5 to 6 km/h based on estimates from Google Maps. This approach

covered the period from 07:00 to 21:00 each day. To unify the datasets while preserving raw

data privacy, records before 07:00 and after 21:00 were excluded from the simulated data. The

timing for departure, arrival, and duration spent at PoIs varied for each user, resulting in different

scenarios for each individual. The time spent at each destination was considered before resuming

travel to the next location or returning home. This approach, detailed in Algorithm 2, established

a foundational method for simulating user movements and collecting spatiotemporal data.

Haversine Formula for Calculating Distance

1https://map.project-osrm.org

https://map.project-osrm.org/
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Radius of the Earth (in kilometers): R = 6371.0 (5.4)

Convert latitude and longitude from degrees to radians: (5.5)

φ1 = radians(lat1) (5.6)

λ1 = radians(lon1) (5.7)

φ2 = radians(lat2) (5.8)

λ2 = radians(lon2) (5.9)

Difference in coordinates: (5.10)

∆φ = φ2−φ1 (5.11)

∆λ = λ2−λ1 (5.12)

Haversine formula: (5.13)

a = sin2
(

∆φ

2

)
+ cos(φ1) · cos(φ2) · sin2

(
∆λ

2

)
(5.14)

c = 2 · atan2
(√

a,
√

1−a
)

(5.15)

Distance (in kilometers): d = R · c (5.16)

5.3.2 Data Integration and Enrichment for Air Quality Simulation

To simulate a dataset with real-world environmental measurements, we first generated

geodata for users’ paths. Each user’s data was processed by comparing their latitude, longitude

coordinates, and time steps against reference points from the Observation Qameleo Network

(section 3.3). These reference points correspond to measurements taken from four Qameleo

stations located throughout Dijon. The integration process involved identifying the nearest

Qameleo station for each coordinate pair and merging the corresponding air quality as well as

environmental measurements from the Qameleo datasets for each user. The distance between

two points on the Earth’s surface was calculated using the Haversine formula, as detailed in

Equation 5.4 to Equation 5.16. The spatial and temporal data collection and integration process

is illustrated in Figure 5.6. Consequently, the generated values represent mobile Qameleo values,

derived from the real measurements collected at the mobile coordinates corresponding to user

movements.

Each user’s dataset is uniquely crafted, featuring a single date-time column that simplifies

temporal analysis, along with detailed measurements of various air quality indicators. This

comprehensive structure, as detailed in Algorithm 3, facilitates seamless integration with

analytical tools and models.
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Figure 5.6: Map showing simulated user movements using the Apolline application. The
simulation illustrates the user’s travel paths and locations over time.

Then, we maintained the same spatial trajectories for users weekly and we replicated the

latitude and longitude data for 100 users over the course of an entire month. Similar processes

were applied to other temporal features. To protect user privacy, data collection was halted

after 21:00 for all users. However, this approach is not a comprehensive solution and may not

uniformly prevent reidentification in all cases.

The one-month dataset for 100 users was divided into 80% for training (80 users) and 20%

for testing (20 users). The data was distributed across nodes based on geographical regions

defined by the network topology, where each node received a subset corresponding to users

who passed through its specific region, determined by latitude and longitude. For example,

Figure 5.7 illustrates the allocation of a random user’s data in a network with 9 nodes, with each

color representing spatial data linked to a particular node. The temporal features span from

April 1, 2021, to April 30, 2021. To generate a distinct dataset for each node, partial datasets

were merged using overlapping and averaging techniques, ensuring a seamless combination of

user data. During nighttime hours, from 21:00 to 07:00 the following day, we used Qameleo

stationary sensors nearby to obtain the necessary values. Additionally, to accommodate varying

temporal resolutions—minutely, quarterly, and hourly—the data was averaged over intervals of

one minute, 15 minutes, or one hour, respectively.

Our goal was to consolidate data from multiple users into a comprehensive dataset for

each node. Following this, based on the network topology configuration, the training data

was distributed across the nodes. Each node’s dataset was then divided into a training set

(80%) and a validation set (20%). This thorough preprocessing ensured that the data was

well-structured and properly distributed, enabling robust training and evaluation of both global
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Figure 5.7: Data distribution of a random user’s movements across a network configuration with
9 nodes, where each color represents spatial data corresponding to a specific node.

and local models within a federated learning environment. While we recognize that the analysis

relied on simulated data—which simplifies real-world complexities—the insights gained can

still inform practical applications.
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5.4 Results

In this section, we explore how various characteristics of our proposed model, such as grid

segmentation, user data distribution, the number of nodes, and the number of rounds, affect both

model performance and user privacy. We evaluated our model from two primary perspectives:

privacy and performance.

5.4.1 Privacy Analysis

To assess user privacy, we conducted experiments using a PoI attack, which aims to reveal

sensitive information by identifying each user’s most frequently visited locations and daily

patterns. We analyzed the impact of different node segmentation scenarios on privacy, focusing

on configurations with 1, 4, 9, and 16 nodes. First, we extracted the PoIs for each of the 100

users based on the node configuration using the ACCIO method [PMB+18]. Then, we computed

the distribution rate of PoIs per node for each configuration. This analysis provides insights into

how malicious nodes or attacks could potentially compromise user data by simulating scenarios

where an attacker gains insights from data within a compromised node.

Figure 5.8: Distribution of average PoI counts across a single-node and a four-node
configuration. In the single-node setup, all PoI data is centralized, resulting in a 100%

concentration in one node. When the data is distributed across four nodes, the PoI counts are
more evenly spread. The red dashed line indicates the average PoI percentage per node.

The bar charts in Figure 5.8 and Figure 5.9 depict the distribution of PoI across various

node configurations—specifically, one node, four nodes, and nine nodes. For the single-node

configuration, all PoI data is centralized in that single node, resulting in a 100% PoI count for

that node. This concentration of data, while straightforward, introduces significant privacy risks

as all user activity is aggregated in one easily targetable location.
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Figure 5.9: Distribution of average PoI counts between a single-node and a nine-node
configuration. In the single-node setup, all PoI data is centralized, leading to a 100%

concentration within one node. In the nine-node configuration, the PoI counts are more evenly
distributed across the nodes. The red dashed line represents the average PoI percentage per

node.

As the number of nodes increases to four, the distribution of PoI data among these nodes

results in significant variability in the amount of data captured by each one. Some nodes gather

a substantially larger proportion of PoIs than others, leading to an uneven distribution. The red

dashed line indicates the average PoI count of 25% across the four nodes, emphasizing this

disparity, as some nodes surpass the average while others fall short. This imbalance implies

that certain nodes may still harbor considerable amounts of sensitive information, making them

potential targets for attacks. While this analysis is based on simulated data, it offers valuable

insights into potential real-world scenarios.

In the nine-node configuration, the distribution of PoI data results in each node capturing a

smaller share of the total PoI count. The average PoI percentage per node is approximately 15%

lower than in the four-node setup, with most nodes’ percentages clustering around this average,

indicating a more even distribution of users data. This improved distribution enhances privacy

by minimizing the amount of data held by any single node, thereby reducing the risks associated

with potential data breaches or attacks. However, some nodes still capture slightly more PoIs

than others, demonstrating that increasing the number of nodes effectively lowers the risk of PoI

attacks.

These charts highlight the trade-offs between privacy and the complexity of node configura-

tions in a federated learning system. While increasing the number of nodes generally results in

a more balanced and privacy-preserving data distribution, it also necessitates more sophisticated
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strategies for data aggregation and management. Additionally, the costs associated with edge

devices and network communications must be considered.

Figure 5.10: displays two subgraphs illustrating the relationship between the number of nodes,
the average percentage of glspoi counts, and the area per node. The left subgraph shows how
the average percentage of glspoi counts varies with the number of nodes. The right subgraph
illustrates the area covered by each node under different segmentation schemes, ranging from

approximately 111 km² to around 7 km².

Impact of Node Count on PoI Distribution and Spatial Coverage: Figure 5.10 illustrates

the relationship between the number of nodes, the average percentage of PoI counts, and the

area covered per node. The figure is divided into two subgraphs: the left subgraph displays

the average percentage of PoI counts relative to the number of nodes, while the right subgraph

shows the area per node across different segmentation schemes.

The left subgraph indicates that the average percentage of PoI counts is directly proportional

to the number of nodes. This means that as the number of nodes increases, each node tends to

handle a smaller proportion of the total PoI data, leading to a more distributed data load.

In the right subgraph, the area per node is depicted across various segmentation configu-

rations, ranging from approximately 111 km² to around 7 km². This variation demonstrates

how different segmentation schemes impact the spatial area assigned to each node. As the

number of nodes increases, the area covered by each node decreases, enhancing the granularity

of data distribution and improving localized insights. However, this reduction in area per node

can also decrease the number of volunteers contributing data, potentially impacting privacy by

increasing the risk of individual re-identification. While our analysis primarily focuses on PoI

attacks, having fewer users per node may heighten privacy risks, underscoring the importance

of considering a wider range of privacy threats in future research.
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These visualizations underscore how increasing the number of nodes affects both the

distribution of PoI counts and the spatial coverage per node. As the node count grows, each

node captures a smaller share of PoI data and covers a smaller area, which can lead to a more

balanced and detailed distribution of data across the network.

horizontal and vertical segmentation:

Figure 5.11: Impact of Node Count on PoI Distribution and Spatial Coverage. The left heatmap
visualizes the average percentage of PoI contributions per node in a 2x3 grid configuration. The
right heatmap depicts the spatial coverage per node in a 3x2 grid configuration, highlighting

variations across different node configurations.

We investigated the effects of horizontal and vertical segmentation on data distribution using

six nodes arranged in two different grid configurations: 2 rows by 3 columns and 3 rows by 2

columns. By analyzing datasets from 30 randomly selected users with varying geometric paths,

we examined how PoIs are distributed across these nodes in different grid dimensions, while

maintaining the same total number of nodes. The goal was to understand how different grid

structures impact data handling and distribution.

Given that cities are inherently non-homogeneous, with some areas experiencing more

concentrated activity than others, this segmentation revealed uneven distributions of PoIs across

the nodes. Figure 5.11 illustrate the PoI distribution across the 6 nodes in both configurations,

showing higher concentrations in central urban areas, which align with the presence of shops,

libraries, parks, and other activity centers.

A heatmap could visualize PoI intensity and frequency across different grid areas, high-

lighting regions with high concentrations and providing a clearer view of PoI distribution.

Additionally, using non-symmetric node segmentation to analyze high-density areas, such as

downtown, could reveal detailed patterns and imbalances not apparent with uniform segmenta-

tion.
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Integrating real data and asymmetric segmentation could improve this analysis, offering a

detailed view of the PoI distribution and addressing data privacy and distribution issues. We

discussed various topology for examining different levels of user privacy in section 5.2. The

following segmentation levels were considered:

• Zone: Analyzing PoI counts under various conditions suggests that if a malicious actor

gains access to a node, they could obtain a fraction of user information. To mitigate this,

a mechanism can be implemented to remove geodata when users enter a zone, sending

only raw data to edge devices.

• Sub-Zone: This approach is useful for high-density and complex urban areas and requires

more resources and communication. Privacy levels are determined by the number of

sub-zones on average. Strategies for removing location data can also be applied.

• Street Grid: This topology is particularly suited for high-density urban areas with

complex building layouts. It involves truncating the last digits of latitude and longitude

coordinates to ensure that users are aligned within defined streets. For example, precision

levels can vary significantly, ranging from ±10 centimeters (6 digits) to ±1 kilometer (2

digits). Due to constraints in accessing a free service map containing street names and

mapping information, we were unable to provide statistics for the extracted PoIs.

• Pinpoint Location: This approach involves users sharing their exact time and location

with the corresponding nodes, providing the finest level of detail but with the least privacy.

As each node covers a larger area, a malicious actor or attacker could potentially access a

greater portion of user trajectories, increasing the risk of privacy breaches.

5.4.2 Model Evaluation

In evaluating model performance, we considered local models, the global model, the stability

of different node configuration on the performance, and long-term forecasting. We kept certain

hyper-parameters constant: the learning rate was set to 0.0001, the batch size was 48, and the

temporal mechanism was implemented as described in section 3.2.

Local Models Assessment: In this study, firstly, we evaluated the performance of our neural

network model across different node configurations within a federated learning (FL) setup. We

analyzed the model’s training and validation performance using standard metrics across three

distinct datasets: minute-level, quarterly, and hourly data. The focus was on MAE and RMSE

over 50 epochs to determine how effectively the local models, trained independently on their

respective datasets, could generalize to unseen validation data before aggregation. We selected a

configuration of 4 nodes to align with the previous chapters, while additional plots representing

a finer scale with 12 nodes are provided in the appendices for further analysis.
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Figure 5.12: Training and validation loss (measured by MAE) and error (represented by RMSE)
across 50 epochs for four federated learning nodes using hourly datasets. The left panel
illustrates the convergence of training loss over time, while the right panel highlights the

variability in validation performance among the four node configurations.

Figure 5.12, Figure 5.13, and Figure 5.14 show the comparison of loss (MAE) and error

(RMSE) for local models across hourly, quarterly, and minutely datasets. Initially, a rapid

decline in MAE and RMSE is observed, indicating effective early learning, followed by a

convergence phase where loss values stabilize, suggesting that the models have captured most

data patterns.

Some nodes consistently outperformed others, exhibiting lower final loss values and more

stable validation metrics. This suggests a better understanding of local data distribution and

generalization within the federated learning (FL) framework. However, certain nodes displayed

greater variability in validation loss, reflecting differences in the spatial or temporal charac-

teristics of the data. For example, a node capturing data from an industrial area with higher

pollution variability may show higher error rates, while a node in a stable residential area might

demonstrate lower errors. The maximum error across all nodes was 1 µg/m3 for hourly datasets

and 0.5 µg/m3 for quarterly and minutely datasets, both in loss and validation loss values. This

variability also underscores the challenges in capturing finer temporal patterns, particularly in

granular datasets like the minutely dataset.

It’s crucial to consider the number of samples per node: for the hourly and quarterly datasets,

each node nearly contains the complete datasets, with [717,717,702,717] samples for hourly

and [2750,2877,2877,2877] for quarterly (out of 2877 samples). In contrast, the minutely

datasets have fewer complete samples per node, with [39845, 43185, 43170, 42557] out of

43200 samples for the month.
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Figure 5.13: Comparison of loss (measured by MAE) and error (represented by RMSE) for
local models across four nodes, trained with quarterly datasets. The left panel depicts the

consistent reduction in loss over time during training, while the right panel emphasizes the
variability in validation performance among the four nodes.

The node with missing data may experience slight overfitting on the smaller, simplified

dataset, leading to deceptively lower error rates during training and validation. In contrast, nodes

with complete datasets encounter a more diverse range of examples, resulting in slightly higher

errors but improved generalization to unseen data. For instance, Node 1 in the minutely dataset

(see Figure 5.14) exhibits the lowest error; however, it lacks the variation necessary to capture

the data’s complexity fully. In our analysis, a data limitation—around 30% or more—can lead to

significant errors, as demonstrated by Node 1 with 515 samples in the hourly dataset (depicted

in Figure A.1) or Node 2 with 1,942 samples in the quarterly dataset (shown in Figure A.2) and

in the appendices.

The performance differences between nodes underscore the inherent challenges in FL, where

local data heterogeneity can significantly affect the overall effectiveness of the model. These

findings highlight the need for improved aggregation strategies or local model training processes

to ensure effective contributions to the global model, particularly for datasets with finer temporal

resolutions. Notably, minutely data exhibited more fluctuations in convergence, especially in

validation data, though the variation range is approximately half that observed in hourly datasets.

We trained the models for 50 epochs with full participation of nodes for both training and

evaluation. We evaluated convergence by examining the training process in a single round of

FL.
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Figure 5.14: Comparison of loss (measured by MAE) and error (represented by RMSE) for
local models across four nodes, trained with minute-level datasets. The left panel illustrates the

consistent reduction in loss over time during training, while the right panel highlights the
variability in validation performance across the nodes.

Global Model Assessment: Evaluating the global model’s performance after training local

models is crucial for understanding its effectiveness. Several factors can influence the global

model’s performance, including the number of distributed models, the number of contributing

nodes, the number of evaluation rounds, and the choice of hyper-parameters. In our study, we

controlled several parameters while focusing on key variables central to our project. Specifically,

we investigated the impact of the number of evaluation rounds and the number of local models

(nodes).

For evaluating the global model, we utilized a greater number of nodes to more effectively

assess the impact of participating nodes on the global model. We examined two scenarios

based on six nodes: one scenario utilized a pre-trained model (see Figure 5.15), while the other

employed a trainable model (refer to Figure 5.16). Both scenarios were evaluated over 10 rounds

of global model evaluation.

Figure 5.15 shows the performance with full and half contributions of the total nodes. Each

round consists of training local models, aggregating them, updating the global model, and

redistributing the updates. An additional round is included to initialize the network weights. The

pre-trained model parameters lead to a significant reduction in error in the second round, with

local models quickly achieving very error low values. In the full node contribution scenario,

the error metrics stabilize with minimal fluctuations after the initial drop, indicating effective

learning and convergence to lower error values, particularly after four rounds. In contrast, the

half-node contribution scenario, where only half of the nodes contribute randomly, shows similar
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Figure 5.15: Loss (MAE) of the global model measured over 10 rounds of evaluation, with full
and half contributions from all six nodes, using a pre-trained model. The updated global model,
sent back by the server to the local models at each round, is used to test the performance of the

local models on their respective local test sets.

trends but with slightly higher and more variable error metrics. This variability suggests reduced

data diversity from fewer contributing nodes, affecting the global model’s ability to generalize

effectively. Both scenarios display a sharp decline in error during the first round, demonstrating

that the global model quickly adapts to aggregated data after initialization with the pre-trained

model.

In Figure 5.16, we conducted a similar examination with a trainable model. The results

show a notable trend where the global model also quickly adapts to aggregated data, though

with variations for two rounds. With full contributions from all six nodes, the model exhibits

more stability after 10 rounds, while the half-node contribution scenario displays considerable

error variability and fluctuation, indicating that reduced data diversity from fewer nodes impacts

generalization.

Overall, the pre-trained model with half-node participation performs similarly to the trainable

model with full-node participation, providing a cost-effective solution for resource management

in federated learning (FL). However, the slightly fluctuations in the half-node scenario indicate

that missing data from some nodes impacts model robustness. These findings suggest that

a reduced number of contributing nodes can result in less effective learning and increased

generalization error, which is a critical consideration in the design of FL systems. Additionally,

the total error across all nodes is lower in the pre-trained model, even with only half of the nodes

participating.

We trained the models for 50 epochs using hourly datasets. Convergence was evaluated by

examining the training process with a learning rate of 0.0001 and a batch size of 48.
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Figure 5.16: Loss (MAE) of the global model measured over 10 rounds of evaluation, with full
and half contributions from all six nodes and with a trainable model. The updated global model,
sent back by the server to the local models at each round, is used to test the performance of the

local models on their respective local test sets.

Scalability Assessment:

Achieving an optimal balance between node count and data distribution is crucial for both

model effectiveness and user privacy protection. In this study, while the total number of users

remains fixed at 100 (with 80% for training and 20% for testing), we assessed the model’s

scalability by distributing the data across varying numbers of nodes. This approach ensures

stable performance as the network topology changes and data is segmented differently. Even

with a constant number of users, adjusting the number of participating nodes allowed us to

examine how data distribution impacts model accuracy and privacy.

Table 5.1: Evaluation of Forecasting Metrics for Varying Numbers of Nodes in 1-Hour
Forecasting)

Nodes MAE MSE RMSE WMAPE (%) R2 Score
2 Nodes 1.398 5.145 2.264 20.724 0.903
4 Nodes 0.878 2.180 1.453 21.975 0.870
6 Nodes 0.910 2.792 1.630 22.784 0.854
8 Nodes 0.998 3.263 1.784 25.004 0.810
10 Nodes 1.068 3.710 1.854 27.400 0.778
12 Nodes 1.056 3.829 1.907 26.348 0.777
14 Nodes 1.112 4.312 1.990 29.739 0.721
16 Nodes 1.564 8.978 2.578 34.058 0.562

Table 5.1 presents an evaluation of forecasting metrics across varying node counts for 1-hour

air pollution forecasting. A clear trend emerges as the number of nodes increases, the model’s

performance improves up to 4 or 6 nodes, after which the accuracy declines.
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With 4 nodes, the model achieves its best performance, with the lowest MAE (0.878), MSE

(2.180), and RMSE (1.453), along with a strong R2 score of 0.870. This indicates that the model

can explain 87% of the variance in the data, providing accurate predictions with minimal error.

As the number of nodes increases to 6, performance remains competitive, with a slight increase

in error, reflected by an MAE of 0.910 and an RMSE of 1.630, but with a comparable R2 score

of 0.854.

However, after 6 nodes, the performance starts to degrade. At 8 nodes and beyond, the MAE,

RMSE, and MSE steadily increase, indicating that the model struggles to maintain accuracy as

the data becomes more fragmented. For example, at 16 nodes, the MAE increases to 1.564, and

the RMSE reaches 2.578, while the R2 score drops significantly to 0.562. This suggests that the

distribution of data across more nodes introduces greater complexity and error, reducing the

model’s effectiveness.

In summary, the optimal balance appears to be between 4 and 6 nodes, where the model

performs efficiently. Beyond that, increasing the number of nodes leads to diminishing returns

in terms of accuracy, likely due to over-segmentation of the data.

We prepared hourly datasets from 80 users for training over one month. The local models

were trained for 50 epochs using the hourly datasets and pre-trained weights. Convergence was

assessed by monitoring the training process, employing a learning rate of 0.0001 and a batch

size of 48. The global model was evaluated across all node test sets, comprising data from 20

users, through three rounds of evaluation, with full participation from all nodes. We structured

the nodes to form as close to a square shape as possible. When this wasn’t feasible, horizontal

splitting was prioritized over vertical segmentation.

Figure 5.17 visualizes the predicted versus actual values for the test sets across a four-node

segmentation. The blue solid line represents the actual values, while the orange dotted line

illustrates the predicted values for one month. The close alignment of the lines demonstrates the

model’s accuracy in capturing temporal trends across different nodes.

Long-Term Predictions

We performed an analysis of long-term forecasting using the same performance metrics

across four different node configurations. This segmentation was designed to ensure each node

had a sufficient amount of data for robust testing. The datasets were derived from 20 out of

100 users, creating four-node datasets based on user contributions. All nodes had complete

datasets, except for one node, which had less than 3% missing values; this was handled using the

fillna() method. The models were trained for 50 epochs, with convergence monitored through

the training process, utilizing a learning rate of 0.0001 and a batch size of 48. All local models

participated actively in both the training and evaluation phases, providing a comprehensive
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Figure 5.17: Comparison of actual versus predicted values for a four-node segmentation over a
one-month period. The blue solid line represents the actual hourly data, while the orange dotted

line indicates the model’s predictions.

assessment of model performance across the various nodes, each predicting locally with its

distinct dataset.

The analysis of forecasting performance across different nodes provides valuable insights

into the model’s generalizability and accuracy over varying prediction horizons. By examining

multiple metrics, we gain a clearer understanding of how the model’s effectiveness changes as

the forecast duration extends from 1 hour to 24 hours. Figure 5.18 illustrates this experiment,

highlighting the variation in error and accuracy metrics across all nodes over time.

The results underscore the challenge of maintaining consistent performance across nodes

and forecast horizons. While the model performs well for short-term forecasts, errors increase

notably for longer-term predictions, particularly at specific nodes. This suggests that node-

specific factors, such as localized environmental conditions, may influence prediction accuracy

over extended periods.

These findings show that while the model is effective in some scenarios, its scalability across

different nodes and forecast durations is limited. For practical applications—especially where

nodes exhibit higher error rates—further model refinements may be needed, including enhanced

data pre-processing, feature engineering, or alternative modeling techniques.
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Figure 5.18: Evaluation metrics for four-node configuration to forecast long term values

In summary, the analysis demonstrates that the model is particularly effective for short-term

forecasts, with error rates rising as the forecast horizon lengthens. This trend highlights the

close link between prediction accuracy and forecast duration, with shorter forecasts producing

more reliable results. Given that only a one-month simulated dataset was used, it is crucial to

consider forecast duration when evaluating the model’s overall performance.
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5.5 Discussion

5.5.1 Privacy Analysis

In this section, we analyze the impact of various model characteristics—such as grid

segmentation and users data distribution on user’s privacy and model performance.

Specifically, we assess user privacy through PoI attacks, focusing on how different node

configurations (1, 4, 9, and 16 nodes) affect privacy. In a single-node configuration, all PoI data

is concentrated in one node, which presents significant privacy risks due to the aggregation of all

user activities in a single location. As the number of nodes increases, such as in four-node and

nine-node configurations, the distribution of PoI data becomes more balanced. However, certain

nodes may still capture a disproportionate amount of PoIs, leaving residual privacy concerns. In

general, increasing the number of nodes tends to distribute PoI data more evenly, enhancing

privacy by reducing the sensitive information stored on any individual node. This shift highlights

a trade-off between data distribution and privacy, emphasizing the need for sophisticated data

management strategies as the number of nodes grows.

Our analysis further shows that as the number of nodes increases, the PoI distribution

becomes more uniform, with each node covering a smaller geographic area.

This leads to reduced spatial coverage per node, which could affect the resolution of the

data analysis. We also explored the effects of different grid configurations, such as 2x3 and

3x2 grids, on PoI distribution. Integrating asymmetric grid segmentation help address privacy

concerns more effectively while providing deeper insights into PoI distribution, particularly in

densely populated nodes.

5.5.2 Model Performance Evaluation

We evaluated the performance of our model by examining both local and global aspects

across various node configurations and data segmentation schemes. Our analysis focused on

four key areas: local model assessment, global model performance, scalability, and long-term

predictions.

Local Model Assessment: Training on different datasets (hourly, quarterly, and minutely)

consistently showed a reduction in MAE and RMSE during the early epochs, reflecting effective

learning in the local models. Models trained on finer temporal intervals, such as minute-level

data, converged more quickly and resulted in lower final errors after 50 epochs compared to

those trained on coarser intervals, like hourly data. Despite this, validation performance varied

significantly, especially with minute-level data. This variability underscores the challenges

posed by diverse local data distributions in FL. Inconsistencies in error values across nodes,

particularly with minute-level data, highlight the need for better aggregation strategies to manage
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local data heterogeneity. Furthermore, the superior performance of certain nodes emphasizes the

importance of optimizing data distribution and refining global aggregation methods to enhance

overall model accuracy.

Global Model Assessment: The global model was evaluated over 10 rounds, comparing

pre-trained and trainable models. The pre-trained model exhibited faster convergence and greater

stability in error metrics, whereas the trainable model showed more variability, particularly

when fewer nodes participated in evaluation rounds. These results indicate that pre-training

enhances initial model stability and convergence. Although, limited node participation reduces

data diversity, which impacts the model’s generalization ability. This emphasizes the importance

of ensuring adequate node contributions in global aggregation to maintain model robustness.

Scalability Assessment: We analysis of prediction metrics across distinct test sets for

varying node counts (ranging from 2 to 16 nodes) using the global models that distribute to the

local models. The results revealed that model accuracy improves up to 6 nodes, based on the

specific dataset of 100 users (80 for training and validation and the rest 20 users for testing)

used in this study. It’s important to highlight that this relationship between node count and

performance is closely linked to the number of users. For a larger or smaller user base, the

optimal number of nodes may vary, potentially resulting in different performance outcomes and

trends.
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Figure 5.19: Evaluation of our model’s performance with four metrics: RMSE, MAE, R2, and
WMAPE on an unseen dataset across different node configurations.

We demonstrated that privacy improves as the number of nodes increases. By plotting

model performance metrics, we expect that a greater number of nodes generally enhances the

model’s accuracy. While the optimal number of nodes primarily depends on the user count and
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spatial distribution, it also significantly affects prediction accuracy. These insights can guide

the selection of node configurations to achieve an optimal trade-off between performance and

complexity in forecasting tasks. Figure 5.19 visually represents the performance of different

node configurations and their evaluation metrics.

The results illustrate how various performance metrics (RMSE, MAE, R2 score, and

WMAPE) behave as the number of nodes increases from 2 to 16. Overall, all metrics show

an acceptable trend in the error range. Both the RMSE and MAE metrics decline from 2 to 6

nodes, indicating significant improvements in prediction accuracy with the initial increase in

nodes. However, beyond 6 nodes, these metrics begin to rise, suggesting diminishing returns in

performance gains. This finding indicates that configurations with 4 to 6 nodes may optimize

the minimization of prediction errors in our case.

Conversely, the R2 score steadily decreases as the number of nodes increases, implying

that while errors are initially reduced, the model’s ability to explain the variance in the data

diminishes. This decline could be due to over-fitting in some nodes or imbalances in data

distribution. The WMAPE graph further supports this observation, peaking at 4 nodes before

showing only marginal improvements with additional nodes. Therefore, increasing the number

of nodes beyond 6 adds complexity without significant performance gains and may reduce

the model’s generalization capability in our study. Figure A.4 in the appendices illustrates the

correlation between the true and forecasted values for the 4-node configurations.

Long-Term Predictions: Long-Term Predictions: As discussed in the previous chapter,

while the model performed well for short-term forecasts, it struggled with longer prediction

horizons. This was anticipated, particularly given the challenges associated with LSTM models.

As the forecast duration increased, performance declined, indicating a strong correlation between

model accuracy and prediction length. This finding underscores the necessity for improved

data pre-processing and modeling techniques to effectively manage complex or less predictable

data. Our analysis of long-term predictions across various node configurations suggests that

meticulous calibration and strategic data distribution are essential for sustaining performance

during extended forecasting periods.

Data Distribution and Node Configuration: The performance of the model is significantly

influenced by the distribution of data across various node configurations. As the number of

nodes increases, the percentage of complete datasets per node decreases, leading to performance

degradation when fewer complete time series are available. Figure 5.20 illustrates the distribution

of data across different node structures; the blue bars represent the percentage of completed

datasets over one month, while the green bars indicate the percentage of datasets with more than

95% completion across all nodes for each configuration. This relationship between data quality

and model performance confirms that reduced data quality is associated with lower predictive
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Figure 5.20: Distribution of User Data Across Different Node Configurations and the Average
Percentage of Completed Time Series Data per Node Configuration.

accuracy. With a training dataset of 80 users, our study identifies the configuration of 4 to 6

nodes as the most optimal setup for local models in Dijon.

Overall, our evaluations highlight the trade-offs between model accuracy, data distribution,

and user privacy. Effective performance management requires balancing node count, prediction

horizon, data quality, and availability to achieve optimal results. Future improvements should

focus on enhancing data distribution, optimizing node contributions, and exploring advanced

modeling techniques to improve both short-term and long-term forecasting accuracy while

minimizing privacy risks.

This research acknowledges several drawbacks associated with data collection, particularly

in remote or less populated areas, as well as during nighttime. Gathering data in such locations

can be challenging due to limited user participation and environmental factors that may affect

sensor readings. Additionally, requiring users to carry sensors daily may lead to inconsistencies

in data collection, as not all users might be willing or able to participate consistently.

Another critical concern is the potential risk of re-identification of users who regularly

collect data. This risk underscores the importance of implementing robust privacy measures to

safeguard personal information while ensuring the reliability of the data collected. Therefore,

while the research provides valuable insights, it is essential to address these limitations to

enhance the overall effectiveness and security of future data collection efforts.



Chapter 6

CONCLUSION

The motivation for this project arises from the growing health concerns linked to fine PM2.5,

particularly in urban areas where pollution levels are elevated due to dense human activity. PM2.5

poses severe health risks because it can penetrate deep into the lungs and enter the bloodstream,

causing chronic respiratory and cardiovascular issues. Given the pressing need to monitor and

manage air quality effectively in urban settings, this research was initiated to develop a robust

model capable of accurately forecasting PM2.5 concentrations.

Urban air pollution is not only a public health risk but also a complex environmental

challenge that demands precise, real-time data for effective management. While existing

air quality monitoring systems provide valuable insights, they often fall short in spatial and

temporal resolution, which limits their ability to capture localized pollution spikes or short-term

fluctuations. Traditional monitoring stations, though effective, are expensive and offer limited

coverage, underscoring the need for more scalable and cost-effective solutions. This project aims

to address these gaps by leveraging advanced machine learning techniques and spatiotemporal

modeling to create a more accurate and comprehensive air pollution forecasting system.

This thesis presents a detailed exploration of advanced models for air pollution prediction,

focusing on spatiotemporal forecasting and data privacy considerations. The findings across the

three chapters offer significant theoretical contributions and practical applications for improving

environmental monitoring systems and ensuring the privacy of collected data.

6.1 Temporal Model

We initially focused on capturing the temporal characteristics of air pollutants and designed

an appropriate machine learning model. The PMFORECAST model represents a significant

advancement in air quality forecasting, particularly in predicting PM2.5 concentrations. By

leveraging a self-adaptive LSTM architecture enriched with temporal attention mechanisms,

PMFORECAST effectively captures temporal dependencies, improving both short-term and
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long-term prediction accuracy. The model’s design—encompassing pre-processing, temporal at-

tention, prediction horizon adjustment, and LSTM layers—ensures robust performance, making

it a highly adaptable and dynamic solution for real-time air quality monitoring.

Empirical evaluations using data from the QAMELEO network in Dijon, France, demon-

strated PMFORECAST’s superior predictive accuracy, achieving 99.7% accuracy for 1-hour

forecasts and 73.5% for 12-hour forecasts. Compared to other forecasting methods, including

GPR, GRU, XGBoost, ARIMA, and standard LSTM models, PMFORECAST consistently out-

performs them in precision, scalability, and computational efficiency. The model’s ability to

reconfigure efficiently for different forecast horizons further enhances its adaptability.

In addition to excelling in single-task predictions, PMFORECAST also performs exceptionally

well in multi-task forecasting, predicting not only PM2.5, but also PM1, PM10, temperature, and

humidity, with correlations exceeding 98%. While the single-task model achieves marginally

higher accuracy for PM2.5 prediction, the multi-task approach proves invaluable for real-world

applications requiring comprehensive air quality monitoring. Furthermore, PMFORECAST ’s

computational efficiency—particularly in pre-processing and its ability to provide low-latency

predictions—makes it suitable for time-sensitive scenarios.

Ultimately, PMFORECAST stands out as a robust, versatile, and efficient solution for par-

ticulate matter prediction. With its scalable architecture and superior forecasting performance,

PMFORECAST has significant potential for deployment in large-scale air quality monitoring

systems, contributing to more informed and timely responses to air pollution challenges. How-

ever, the current model is limited to its own data and one region, without accounting for the

spatial characteristics of pollutants. This limitation underscores the need to further explore

spatiotemporal data to improve the model’s predictive power across different regions.

6.2 Spatio-Temporal Model

We were motivated to develop a spatiotemporal model in response to the limitations observed

in our first contribution. Specifically, our study introduces a model designed to accurately

forecast PM2.5 concentrations across urban regions by leveraging advanced machine learning

algorithms. By integrating GCN to capture spatial dependencies and LSTM networks to model

temporal patterns, the resulting GT-LSTM model offers precise predictions of air pollution

levels. This dual focus on spatial and temporal patterns provides a comprehensive understanding

of both temporal and spatial dependency across multiple regions of urban areas.

In chapter 4, the novel GT-LSTM model was presented for predicting PM2.5 concentra-

tions in suburban environments using fixed low-cost sensors and AI techniques. The model

demonstrated its utility for real-time monitoring and long-term air quality planning by relying
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on correlations between datasets across regions, utilizing Pearson’s algorithm, instead of more

complex multi-scale dependencies.

Our analysis highlights the competitive predictive capabilities of the GT-LSTM model,

with high accuracy scores and a strong correlation between forecasting and observed values.

By factoring in local pollution sources, neighboring influences, and historical data, the model

enables proactive responses to pollution trends. The inclusion of spatiotemporal dependencies

ensures not only accuracy but also relevance, capturing the dynamics of pollutant dispersion in

various urban contexts.

A key strength of the GT-LSTM model is its ability to predict values even when faced

with sparse observational data or in instances where actual measurements are unavailable. This

capability allows the model to generate acceptable predictions without relying on multi-scale

data, making it particularly valuable for regions with limited monitoring infrastructure. This

flexibility highlights the model’s potential for scalable deployment across diverse urban settings,

enhancing both the scope and efficiency of air pollution monitoring systems.

The GT-LSTM model addresses the complexities of air pollution forecasting by capturing

both spatial and temporal dependencies, ensuring high accuracy even in data-scarce environ-

ments. The chapter also highlights limitations in far long-term predictions, suggesting that

future research could explore hybrid approaches to improve forecasting accuracy. Additionally,

the number of monitored regions is constrained by the fixed sensor stations. To enhance data

granularity, accuracy, and spatial coverage, integrating mobile sensor networks and crowdsourc-

ing resources is recommended, which would provide more detailed insights and better resolution

for air quality monitoring and forecasting.

6.3 Federated Learning Framework

In this chapter, we proposed a FL framework called FEDAIRNET that integrates mobile

sensors with fixed air quality stations to achieve flexible resolution in urban areas while safe-

guarding user privacy. Although fixed stations offer reliable data, their dependence on the

number and availability of sites can interrupt the system or affect its performance. While mobile

sensors provide greater flexibility, they also raise privacy concerns for users collecting data. FL

addresses this challenge by enabling model training across decentralized devices without the

need to transfer raw data to a central server. This approach preserves user privacy while facili-

tating real-time, high-resolution air quality forecasting in urban environments. Mobile sensors

deployed throughout a city can capture localized pollution data on a finer scale, contributing

to a global model that delivers accurate air quality forecasts, all while mitigating the risks of

re-identification and exposure of personal data within the FL system.
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Due to the lack of volunteers in the Apolline project, we simulated data from 100 users

over one month, creating different trajectory-based scenarios at three granular levels: hourly,

quarterly, and minutely. We employed the same neural network architecture used in , utilizing

a pre-trained version of the PMFORECAST model to forecast PM2.5 concentrations. The city

was divided into regions, referred to as nodes, with each node receiving a portion of user data

based on the users’ geographic paths. This approach enabled us to simulate the distribution of

pollution data across various regions and evaluate the model’s performance under diverse user

mobility patterns.

We evaluated the impact of various model characteristics, such as grid segmentation and data

distribution, on both privacy and model performance. Our analysis of point-of-interest (POI)

attacks using the ACCIO algorithm across different node configurations revealed significant

privacy implications. Aggregating user activities in a single-node configuration posed substantial

privacy risks. However, increasing the number of nodes helped distribute the POI data more

diffused throughout the nodes, thereby enhancing privacy. Despite this improvement, we can

face certain configurations still exhibited disproportionate PoIs capture. This is highlighting

the need for advanced data management strategies. Potential approaches include using non-

symmetric nodes, implementing street grid mapping, or modifying geo-data by removing the

last digits to obscure the precise location of users at the scale of the nodes.

Our evaluation demonstrated effective learning across datasets with varying temporal granu-

larity. Models trained on finer intervals, such as minute-level data, achieved lower errors but

exhibited greater variability in validation performance. The RMSE and MAE metrics reached

maximum values of approximately 1.1, 1.5, and 2 for local models trained on minutely, quarterly,

and hourly data, respectively, indicating that finer temporal models tend to work better in this

context. These results are comparable to the performance of the GT-LSTM model from fixed

sites using one year of data.

The global model assessment indicated that pre-training significantly enhanced stability

and convergence, requiring fewer aggregation rounds. In comparison, the trainable model

performed effectively over 10 aggregation rounds, demonstrating slightly longer stability than

the pre-trained model. We examined the impact of half the nodes being silent during the

aggregation process. Node participation is critical for maintaining data diversity and model

generalization; thus, reducing the number of participating nodes led to variability and fluctuations

in convergence and performance gains in our case. However, our framework still operates

effectively with random half participation in each round. This highlights the importance of

active node involvement in ensuring consistent and reliable model performance.

Our scalability assessment indicated that configurations with 4 to 6 nodes were optimal

for enhancing model efficiency with the available user data in our study, which included 80
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users for training and 20 users for testing, along with 4 fixed stations in Dijon. We found that

model functionality is closely tied to the number of users, and local models in nodes with more

than 30% missing values were less productive. Therefore, controlling the sample size before

aggregation is recommended.

The long-term prediction evaluation demonstrated the system’s capability to forecast over

extended periods, leveraging the temporal attention mechanism in PMFORECAST. However,

a significant decline in model performance was observed after 12 hours, which aligns with

common challenges in time-series forecasting. Techniques such as hyper-parameter optimization

and increasing the training dataset could help models better capture the complexities inherent in

time series data, resulting in more reliable long-term predictions.

When comparing the performance of GT-LSTM and FEDAIRNET in a 4-node configuration

for long-term predictions, we found that the accuracy metrics for a 24-hour forecast horizon

were fairly similar. However, the RMSE for GT-LSTM was in a lower range of error. It is

important to note that the GT-LSTM model was trained on a much larger dataset, utilizing 80%

of a year (approximately 9.5 months), whereas the FEDAIRNET model was trained on only 80%

of one month (about 24 days).

Finally, the Flower framework enabled us to simulate different scenarios and node configu-

rations in real-time on a host computer. This allowed us to monitor and analyze results, offering

flexibility for future research and real-time monitoring solutions in urban environments.

This research paves the way for future studies on next-generation air pollution forecasting

by analyzing spatiotemporal data and integrating low-cost mobile sensors (Apolline) with

affordable on-ground fixed stations (Qameleo). The framework is highly adaptable, facilitating

the easy incorporation of new regions and nodes. It operates in real-time and can dynamically

adjust to the demographic and geographic characteristics of urban areas. Furthermore, the

system is capable of transitioning between different topologies and managing updates, even

when some nodes lack data or are compromised by malicious activity. Overall, our framework

demonstrated effective performance across both local and global models with various node

configurations, utilizing a lightweight machine learning model that is cost-effective and easily

deployable on the nodes.

6.4 Future Work

Overall, the need for accurate air quality predictions in both temporal and spatial dimensions

highlights the significance of this research area. Mobile sensors provide a cost-effective solution

to address data scarcity issues associated with fixed stationary monitoring stations, especially

in remote areas where user participation may be low. The integration of advanced techniques
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such as federated learning is essential to protect user privacy. Balancing model accuracy, data

distribution, and privacy considerations is crucial for effective air pollution forecasting.

The findings from this thesis contribute to a deeper understanding of how to optimize

predictive models for environmental monitoring and data privacy. Future research should focus

on refining these models by integrating spatial and temporal characteristics, leveraging mobile

sensor networks, and exploring hybrid approaches to tackle accuracy and privacy challenges.

This approach would be particularly valuable in large-scale cities with dense populations,

such as Paris, where precise, real-time air quality forecasting is crucial for public health

and environmental policy. The insights gained pave the way for more effective air quality

management and enhanced user privacy in data-driven applications.

However, the limitations in data availability have significantly impacted model performance.

While mobile sensors provide flexibility, their deployment necessitates considerable effort and

the involvement of participants. Additionally, data collection may be limited during nighttime

hours when users are typically asleep, resulting in collected indoor measurements or data being

cut off after 21:00 due to privacy concerns. To address this issue, we recommend utilizing

multi-source data, such as nighttime public transport services or taxis operating at night, to

gather data across various nodes.

Conversely, increasing the number of nodes enhanced privacy protection. However, the

optimal number of nodes depends not only on privacy considerations but also on the model’s

performance in our study. Additionally, several factors must be taken into account, including

the cost of deploying edge devices per node, communication protocols, the logistics of carrying

mobile sensors, calibrating those sensors, and maintaining the entire system. Furthermore, the

reliability of mobile sensors may vary due to environmental conditions and calibration issues,

which could impact the overall effectiveness of the air quality prediction system.
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APPENDICES

A.1 Appendix

This appendix provides the algorithms used to simulate user data based on individual

trajectories.

A.2 Appendix

This section contains the training and validation loss, MAE, and errors measured by RMSE

across 50 epochs for 12 federated learning nodes, using datasets at hourly, quarterly, and

minute-level granularity.

A.3 Appendix

The final appendix includes scatter plots comparing the true values and forecasted values for the

4-node configurations.
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Algorithm 2 User Movement and Data Simulation
1: function PARSEGPX(file_path)
2: Open and parse GPX file, extract coordinates
3: return List of coordinates
4: end function
5: function GENERATETIMESTAMPS(coordinates, start_time, interval, end_time)
6: Initialize empty list timestamps
7: for each coordinate in coordinates do
8: if start_time ≥ end_time then
9: break

10: end if
11: Append (start_time, coordinate) to timestamps
12: start_time += interval
13: end for
14: return timestamps, start_time
15: end function
16: function CREATEDAYDATA(morning_gpx, evening_gpx, stay_hours, date, last_coord,

start_hour)
17: interval← 15 seconds
18: start_hour← start_hour or 7:00
19: start_time← date + start_hour
20: end_time← date + 21:00
21: Initialize empty list timestamps
22: if last_coord then
23: while start_time < start_hour do
24: Append (start_time, last_coord) to timestamps
25: start_time += interval
26: end while
27: end if
28: for each route, time in [(morning_gpx, start_time), (evening_gpx, end_time)] do
29: route_coords← PARSEGPX(route)
30: timestamps, end_time ← GENERATETIMESTAMPS(route_coords, time,

interval, end_time)
31: Append timestamps to timestamps
32: end for
33: return timestamps as DataFrame, evening_gpx[-1]
34: end function
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Algorithm 3 Creating Comprehensive User Datasets

1: function PROCESSUSERDATA(user_file, reference_points, ground_truth_map, output_file)
2: Read user data into DataFrame
3: Initialize list for combined data
4: for each row in user data do
5: Extract latitude, longitude, and timestamp
6: Use Haversine functions to find the closest reference point
7: Read and find closest values from ground truth
8: Append combined data
9: end for

10: Create DataFrame from combined data
11: Create CSV file from the DataFrame
12: end function
13: Define reference points
14: Load ground truth file
15: Process user data and generate output file
16: Check for missing values in output file

Figure A.1: Training and validation loss (measured by MAE) and error (represented by RMSE)
across 50 epochs for 12 federated learning nodes using hourly datasets. The left panel illustrates

the convergence of training loss over time, while the right panel highlights the variability in
validation performance among the four node configurations.
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Figure A.2: Comparison of loss (measured by MAE) and error (represented by RMSE) for local
models across 12 nodes, trained with quarterly datasets. The left panel depicts the consistent
reduction in loss over time during training, while the right panel emphasizes the variability in

validation performance among the four nodes.

Figure A.3: Comparison of loss (measured by MAE) and error (represented by RMSE) for local
models across 12 nodes, trained with minute-level datasets. The left panel illustrates the
consistent reduction in loss over time during training, while the right panel highlights the

variability in validation performance across the nodes.
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Figure A.4: Scatter plot illustrating the correlation between true values and forecasted values
for the 4-node configurations.
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