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Topics in String Theory and Phenomenology:
Dark Sectors, Moduli Stabilisation, Inflation

Présentée par:

Anthony GUILLEN

Présentée et soutenue publiquement à Paris
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Résumé

Cette thèse couvre plusieurs sujets à l’interface entre la théorie des cordes et la cosmolo-
gie. Elle est organisée en quatre parties. La première partie porte sur l’énergie sombre,
plus précisément sur l’analyse, par des techniques de systèmes dynamiques, d’un modèle de
quintessence dans la formulation dite de Palatini de la Relativité Générale. Ces techniques
sont auparavant passées en revue, au même titre que les bases de la cosmologie moderne. La
deuxième partie s’ouvre sur une introduction à la supergravité N = 1 à quatre dimensions,
dans le formalisme superconforme, puis se poursuit par le calcul des amplitudes de diffusion
des gravitinos massifs. Ce calcul permet d’exhiber un mécanisme de restauration d’unitarité
perturbative, qui a son analogue dans le secteur électrofaible du Modèle Standard. Nous
analysons ensuite l’effet sur ce mécanisme des nouveaux termes de Fayet-Iliopoulos. Dans la
troisième partie, nous commençons par introduire la théorie des cordes. Cette introduction
part des bases de la théorie bosonique, puis présente brièvement la construction de la théorie
des supercordes, avant de se concentrer sur la compactification et la stabilisation des modules
dans la théorie de type IIB. Le chapitre suivant porte plus spécifiquement sur la stabilisation,
par des flux, des modules de structure complexe et du dilaton dans la théorie de type IIB
compactifiée sur des orbifolds toroidaux. Dans ce cadre, nous obtenons une relation entre
la constante de couplage des cordes et le nombre de flux. Combinée avec la contrainte de
tadpole, cette relation empêche la constante de couplage d’être paramétriquement petite. Ce
résultat peut être vu comme une conséquence de la finitude du nombre de vides dans ce
secteur de la théorie, que nous observons également dans notre analyse. Enfin, la quatrième
et dernière partie de cette thèse concerne la Dark Dimension, une dimension supplémentaire
prédite à l’échelle du micromètre. Nous commencons par introduire le programme Swamp-
land de la théorie des cordes et les arguments soutenant cette prédiction, avant de nous
tourner vers le calcul des spectres des fluctuation primordiales dans un modèle d’inflation à
cinq dimensions qui permet d’expliquer l’échelle micrométrique de la Dark Dimension. Ces
spectres présentent un changement de comportement à grande échelle, ce qui permet en
principe de les distinguer de leurs analogues dans des modèles à quatre dimensions.
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Abstract

This thesis covers several topics, at the interface between string theory and cosmology. It
is organized in four parts. The first part is about dark energy. More precisely, it deals with
the analysis, using dynamical systems techniques, of a quintessence model in the so-called
Palatini formulation of General Relativity. These techniques are reviewed first, along with
the basics of modern cosmology. The second part opens with an introduction to N = 1
supergravity in four dimensions, in the superconformal formalism. It is followed by a calcu-
lation of massive gravitino scattering amplitudes within this theory. This calculation reveals
a perturbative unitarity restoration mechanism, which has its analogue in the electroweak
sector of the Standard Model. We then analyze the effect of the new Fayet-Iliopoulos terms
on this mechanism. In the third part, we begin by introducing string theory. This introduc-
tion starts from the basics of the bosonic theory, then briefly presents the construction of the
superstring, before focusing on compactification and moduli stabilisation in the type IIB the-
ory. The next chapter focuses more specifically on the stabilisation, by fluxes, of the complex
structure moduli and dilaton in the type IIB theory compactified on toroidal orbifolds. In this
framework, we obtain a relation between the string coupling constant and the flux number.
Combined with the tadpole constraint, it prevents the coupling from being parametrically
small. This result can be seen as a consequence of the finiteness of the number of flux vacua,
which we also observe in our analysis. Finally, the fourth and last part of this thesis con-
cerns the Dark Dimension, an additional dimension predicted at the micrometer scale. We
begin by introducing the Swampland program of string theory and the arguments support-
ing this prediction, before turning to the calculation of the spectra of primordial fluctuation,
in a five-dimensional inflation model that helps explain the scale of the Dark Dimension.
These spectra change their behaviour at large-scale, which in principle allows them to be
distinguished from their analogues in four-dimensional models.
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Chapter 1

Introduction

Over the past century, theoretical physics has developed at an amazing rate, and has often
been able to make predictions, for instance about the existence of particles before they were
observed. Among the examples, we can cite the prediction of the positron by Dirac in 1931,
before its discovery by Anderson the year after. Similarly, the W± and Z0 bosons, the charm
and top quarks, and the Higgs boson were all predicted years or even decades before their
discovery, on the basis of theoretical arguments. This century of discoveries is now embodied
by the Standard Models of Particle Physics and Cosmology, also known as the ΛCDM model.

However, these models are not complete. Dark Energy and Dark Matter, which are the
main ingredients of the ΛCDM model (giving it its name) are not understood within the Stan-
dard Model of Particle Physics; nor is inflation, which plays a major role in understanding the
structure of our universe. On the other hand, the Standard Model of Particle Physics is rather
mysterious in itself. In the framework of Quantum Field Theory, in which it is formulated,
its main characteristics (the gauge group, the spectrum of particles, the Higgs potential and
the Yukawa couplings) can be thought of as parameters, subject to a few constraints, such
as the cancellation of anomalies. But as such, nothing explains the values that are observed
experimentally. More so, these values display some puzzling features; for instance: why is
the spectrum replicated into three increasingly massive generations ? Or why are neutrino
masses so small ? Theoretical physics has played such a key role in establishing our current
understanding, one can be confident it will continue to be central in answering these ques-
tions. Especially when experimental investigations are becoming increasingly difficult, with
the need to probe more and more subtle phenomena.

From a theoretical point-of-view, a great way to advance our knowledge would be to unify
both Particle Physics and Cosmology into a single, consistent framework; so that experimen-
tal observations on one side can be used to shed light the other side, and vice versa. Part of
the difficulty comes from the fact that Cosmology relies heavily on General Relativity, which
cannot be embedded into Quantum Field Theory without running into problems. So far, the
main framework which is able to describe aspects of both sides is given by String Theory.

The field that studies the applications of String Theory to Particle Physics and Cosmology
is called String Phenomenology. While being able to reproduce some aspects of both sides,
at least qualitatively, it has not yet been able to produce a ”Standard Model of Everything”.
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Actually, a crucial aspect that such a model should incorporate, namely Dark Energy, is still
poorly understood by itself in this context. In String Theory, the choices that go into defining
a model are related to the presence of extra dimensions. The fact that extra-dimensions have
not been observed yet can be explained if we assume that the higher-dimensional spacetime
is factorised into the four-dimensional one in which we live × a compact space, an idea
known as compactification. In this framework, what we observe in our four-dimensional uni-
verse become tied to geometrical features of the compact space, along with the configuration
of additional objects, known as fluxes and D-branes, whose existence is implied by the theory.

A String Theory Model is thus mostly defined by the choice of a compactification man-
ifold, fluxes, and brane configuration, wich are all subject to constraints. A first difficulty
arises from the vast number of possibilities for these choices, which is poetically referred to
as the Landscape. Once the choice is made, one has to understand, as precisely as one can,
the behaviour of strings in this background, in order to make the connexion to observables,
at an energy scale that is far below the string fundamental scale. At low energies, String
Theory can conveniently be described by a supergravity theory, the parameters of which are
computed from the higher-dimensional data. Another difficulty comes from the fact that this
computation can mostly be done up to approximations, and one has to make sure that these
approximations are consistent. In particular, the Supersymmetry of the theory, that is helpful
to protect certain quantities against higher-order corrections, has to be broken at some point
to make the connection with our observable world.

The goal of String Phenomenology, or more precisely String Model Building, is thus to
find models in the Landscape able to reduce to the Standard Model of Particle Physics at low
energies, while providing suitable Dark Matter candidates and reproducing the expansion
history of the universe, including in particular Dark Energy. Moreover, one has to do so in a
way that all approximations are justified, in a regime where the corrections are small.

One of the important requirements for a String Theory Model to be realistic is that its mod-
uli are stabilized. Moduli are parameters controlling deformations of the compact manifold.
From our four-dimensional perspective, they would be seen as neutral and gravitationally
interacting scalar fields. As such, they could play a big role in Cosmology, especially if their
masses are small, since they would then mediate long-range fifth-forces. So they have to be
massive, that is, they have to be stabilised in a potential. This requirement is not trivial; in
particular, it requires an understanding of the aforementioned corrections to the supergravity
description of the theory, because the potential generally has unstable directions at tree-level.
Another difficulty in this regard is that the corrections are controlled by the position in field
space at which moduli end up, so the consistency of the approximations is hard to impose
and must be checked in the end. For example, a universal modulus is the dilaton, whose
vacuum expectation value is the string coupling, controlling string-loop corrections.

Looking for a ”Standard Model of Everything” into the String Landscape is quite an ambi-
tious program. Instead of this, it might be instructive to understand if there are any common
features shared by the low-energy theories descending from String Theory, in terms of gauge
group, spectrum, or scalar potential, for example. If so, asking for a Quantum Field Theory to
be compatible with String Theory would yield constraints. And if these constraints are strong
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enough, they could explain some characteristics of our universe, without having to explicitly
build a model. This is the question addressed by the Swampland program. Its scope is in fact
broader, since it investigates the constraints imposed on Quantum Field Theory when asking
it to be compatible with Quantum Gravity, and not specifically String Theory, even though
this latter provides the most fertile testing ground.

For example, in all String Theory examples known so far, whenever the vacuum expecta-
tion value of a canonically normalised scalar field takes large values compared to the Planck
scale, or in other words when we approach the boundaries of the moduli space, an exponen-
tially light tower of states emerges in the spectrum. Since scalar fields generically control
the parameters of the low-energy theory, we can rephrase the previous sentence and say that
whenever a parameter of a Quantum Field Theory takes extreme values in Planck units, it
must contain a tower of states. In our universe, there is indeed a parameter that has an
extremely low value: the cosmological constant. Based on this, one can speculate on the
existence of an unobserved tower of states. In String Theory again, all known towers are
either towers of string states or Kaluza Klein towers. To fit with the value of the cosmological
constant, our tower can only be a Kaluza Klein tower, linked to the existence of a single, large
extra dimension, called the Dark Dimension, with a scale of the order of some micrometers.
This Dark Dimension has a wide range of phenomenological implications.

This thesis is about four of the aforementioned topics; namely Dark Energy, supersymme-
try Breaking, Moduli Stabilisation and the Dark Dimension, and based on [1–6].

In chapter 2, we investigate the effect of the quadratic scalar curvature correction αR2

and non-minimal scalar curvature coupling ξϕR on the simplest quintessence model with an
exponential potential, in the Palatini formulation of gravity [1]. This defines a class of Dark
Energy models, in which the late-time acceleration of our universe is driven by a scalar field.
Dynamical system techniques are particularly suitable for studying quintessence models, as
they allow to understand the general behaviour of the system without solving the equations
of motion, and to quickly discard models that cannot describe the homogeneous universe.
In the context of cosmological scalar fields, the quadratic correction αR2 and non-minimal
coupling ξϕR are the most simple modifications one can make to minimal models, and they
have interesting consequences on inflation. This was the main motivation for us to study
their effect on quintessence. We found that the quadratic correction cannot play a role in
the late time dynamics. However, there are viable evolutions with the dynamics driven by
the non-minimal coupling ξ. In [2], we also investigated the effect of both terms on Higgs
inflation in the Palatini formulation, but we will not expand on these results in this thesis.

Chapter 3 is an introduction to N = 1 supersymmetry and supergravity, in the supercon-
formal formalism. It contains all the necesary ingredients to understand the construction of
the N = 1 supergravity action in D = 4, which is used in following chapters.

In chapter 4, we compute the 2 → 2 gravitino scattering amplitudes at tree-level in spon-
taneously broken N = 1 supergravity theories with one chiral and one vector multiplet, in a
Minkowski background [3, 4]. In the unitary gauge, the gravitino becomes massive, of mass
m3/2, by absorbing the Goldstino. The scattering amplitudes of its ”longitudinal” polarisa-
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tions, of spin ±1/2, naively grow with energy as κ2E4/m2
3/2, signaling a potential breakdown

of unitarity at a scale Λ ∼ (m3/2/κ)1/2 ∼ MSUSY. We find that this leading term is in fact pro-
portional to the value of the scalar potential; it thus vanishes in the Minkowski background
that we consider, restoring perturbative unitarity up to the Planck scale. This situation is anal-
ogous to what happens in the electroweak sector of the Standard Model. There, the scattering
amplitude of longitudinal massive gauge bosons exhibits a divergence as E2/MW , which is
cancelled by the channels involving the Higgs boson exchange. In our case, the role of the
Higgs boson is played by the scalar partner of the Goldstino. In this context, we also study
the inclusion of the so-called new Fayet-Iliopoulos terms. These are non-linear terms that can
be added to the N = 1 supergravity action, with the property that they reduce to standard
Fayet-Iliopoulos terms in the unitary gauge, without requiring a gauged R-symmetry. These
terms generically modify the scalar potential without contributing to the 2 → 2 gravitino
scattering amplitudes at tree level. As such, they affect the aforementioned cancellation and
lead to the perturbative cutoff Λ ∼ (m3/2/κ)1/2 ∼ MSUSY, except for fine-tuned cases.

Chapter 5 is an introduction to string theory and moduli stabilisation. It starts from the
formulation of bosonic string theory, and covers various topics used in the following chapters,
up to the description of the KKLT construction of de Sitter vacua in type IIB superstring theory.

Chapter 6 focuses on moduli stabilisation [6], in type IIB string theory compactified with
3-form fluxes on toroidal orientifolds T 6/Γ. In this framework, the fluxes have to satisfy the
tadpole constraint, of the form 1/2Nflux + ND3 = 1/4NO3, where ND3 is the net number of
D3-branes and NO3 the number of orientifold O3-planes. If we do not consider the addition
of anti-D3-branes, which can introduce instabilities, we have ND3 ≥ 0. On the other hand,
NO3 ≥ 0 but orientifold planes are geometric in nature and cannot be introduced at will. So
overall, the tadpole constraint sets an upper limit to the value of Nflux. We study the impli-
cations of this limit on the value of the string coupling, when complex structure moduli and
the dilaton are all stabilised by the flux superpotential. For orientifolds with zero and one
complex structure moduli, we exhibit a relation gs,min ∼ 1/Nflux. For T 6/Z2 × Z2, which has
three complex structure moduli at the orbifold point, we exhibit a relation gs,min ∼ 16/N2

flux.
For vacua satisfying the tadpole constraint, this leads to gs ≥ 0.669, which is arguably too
large to ignore string loop corrections. In addition, we show how the finiteness of flux vacua
manifests itself in all cases, and elaborate on the lack of parametric control.

Finally, in chapter 7, we compute the power spectra of primordial fluctuations emerging
from a 5-dimensional slow-roll inflation model, which has been proposed as an explanation
for the micrometric scale of the Dark Dimension [5]. In this model, all five dimensions
expand homogeneously during inflation. After inflation though, matter extends into our
four dimensions, while it is localised in the fifth one, which is compact, no longer expands.
Remarkably, its size ends up naturally in the micrometer range in the Einstein frame when our
observable universe acquires the right size after inflation. In this model, the five-dimensional
metric perturbations that are generated during inflation are seen as a tower of perturbations
that must be summed over from the four-dimensional perspective. The resulting spectra
deviate from scale invariance at a large scale, when the perturbations start to feel the presence
of the extra-dimension. This is a smoking gun signature of this scenario. This change of
behaviour happens for angles greater than about 10 degrees in our sky.
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Chapter 2

Late time acceleration in Palatini gravity

We start this chapter with an introduction to homogeneous Cosmology in section 2.1 (cos-
mological perturbations and inflation will be addressed in chapter 7). We will also introduce
the main aspects of dynamical system analysis, closely following [7]. In section 2.2, we re-
view the Palatini formulation in the context of modified gravity, and some of its applications.
Finally, in section 2.3, we apply the dynamical system analysis to the study of a quintessence
model, with an exponential potential V (ϕ) = M4e−λϕ, a quadratic correction αR2 and a non-
minimal coupling ξϕR, in the Palatini formulation [1]. We find that, for reasonable values
of α, the quadratic correction αR2 plays virtually no role in the late-time dynamics of the
universe. However, the non-minimal coupling ξϕR modifies the effective scalar potential in a
non-trivial way, creating a new local minimum where the scalar field can act as a cosmological
constant. In addition, in the presence of the non-minimal coupling, the initial condition for
the quintessence field could naturally be set by inflation, in a way that links the duration of
the radiation and matter-domination era with the energy scales of inflation and quintessence.

2.1 Cosmology and dynamical systems

Modern Cosmology rests on two pillars: the Cosmological Principle and General Relativity.
The Cosmological Principle asserts that the properties of the universe are the same for any
observer. It implies that the universe is spatially homogeneous and isotropic at large scales,
which in turns implies the existence of coordinates in which the metric takes the FLRW form

ds2 = −dt2 + a(t)2
(

dr2

1 − kr2 + r2dΩ2
)
. (2.1)

Note that in all of this work we use the mostly-plus convention for the signature of the metric.
This metric has only one discrete parameter k = 0,±1, describing the spatial curvature. If
k = 1, the universe is said to be spatially close; if k = −1, it is open; if k = 0, it is flat. So far,
experimental observations are in fact compatible with a flat universe, so we can set k = 0.
In addition to this parameter, the metric involves the scale factor a(t), depending only on
the time variable t. The scale factor is a dynamical quantity, whose evolution is governed by
Einstein’s field equations (written here in natural units κ = 8πG/c4 = 1)

Rµν − 1
2Rgµν = Tµν . (2.2)
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On the right-hand side, the energy-momentum tensor Tµν encodes everything that is present
in the universe. On cosmological scales, homogeneity and isotropy allow us to use a perfect
fluid description

Tµν = pgµν + (ρ+ p)uµuν , (2.3)

where (ρ, p) are respectively the energy density and isotropic pressure of the fluid, and uµ is
the four-velocity of an observer comoving with the fluid. In comoving coordinates (2.1), we
have uµ = (−1, 0, 0, 0). In addition, the energy density and pressure are linked together by
the equation of state p = f(ρ), which depends on the fluid. The most relevant examples are a
non-relativistic matter fluid, which has p = 0, a relativistic radiation fluid, which has p = ρ/3
and a cosmological constant, which has p = −ρ. In general, we write p = wρ. Combining
(2.1) and (2.3) in Einstein’s equations (2.2) leads to the two equations

H2 + k

a2 = ρ

3 and 2Ḣ + 3H2 + k

a2 = −p, (2.4)

where H = ȧ/a is the Hubble rate and dots stand for time derivatives. These two equations
fully determine the time-dependence of the scale factor once the matter-energy content of
the universe is specified. Note that the Friedmann equations can be combined into

ä

a
= −1

6(ρ+ 3p),

so in a universe filled by a single fluid with equation of state p = wρ, accelerated expansion,
defined by ä > 0, is equivalent to w < −1/3. The Friedmann equations can also be combined
into the energy conservation equation, which can equivalently be obtained from ∇µT

µν = 0

ρ̇+ 3H(ρ+ p) = 0. (2.5)

In a flat universe, with k = 0 and constant w, it can be combined with (2.4) to give

ρ ∼ a−3(1+w). (2.6)

2.1.1 The ΛCDM model

At early times, our universe was much denser and hotter than it is today, and the matter
it was filled with was relativistic matter, behaving as a radiation fluid. As it expanded, it
became cooler and less dense, and non-relativistic matter came to dominate. The ordinary,
or baryonic matter, that we are able to observe in the form of galaxies or other objects, is
only a part of the matter present in the universe. The remaining part is Dark Matter, it is
observed only indirectly by its gravitational influence, and its precise nature is still unknown.
In addition to radiation and matter, we need to add a third, even more mysterious compo-
nent to explain the observation that the universe has recently entered an era of accelerated
expansion [8, 9]. This third component is called Dark Energy, and it can simply be modeled
by a positive cosmological constant Λ added to the Einstein’s field equation (2.2)

Rµν − 1
2Rgµν + Λgµν = Tµν .
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In fact, the cosmological constant has been considered in modern cosmology before the
discovery of the accelerated expansion of the universe [10], in order to reconcile the obser-
vations that Ωm,0 = 0.3 and that the universe is spatially flat, imposing Ωtot = 1.

For multiple components in the universe, the first Friedmann equation can be written
using dimensionless variables, in a way highlighting that it is actually a constraint

3H2 = ρr + ρm + ρΛ → Ωr + Ωm + ΩΛ = 1 with Ωi = ρi
3H2 .

The values of (Ωm,0,ΩΛ,0) at our current time are around (0.3, 0.7) in the latest Planck mea-
surements [11] . In addition, the conservation equation (2.5) can be written for each com-
ponent, with eventual terms on the right-hand side taking into account interactions between
them. Neglecting these interactions, radiation is negligible today, because its energy density
ρr ∼ a−4 decreases faster than the energy density of matter ρm ∼ a−3, from equation (2.6).
As its name indicates, a cosmological constant has ρΛ ∼ const, and it came to dominate over
matter recently in the history of the universe. This model describing a universe filled with
Cold (i.e. non-relativistic) Dark Matter with a cosmological constant is called ΛCDM.

Once the content of the universe is specified, one can solve the Friedmann equations to
know everything about the homogeneous, or background evolution of the universe. This can
be hard to do analytically, especially once we consider additional components, such as cos-
mological scalar fields. But it is not actually necessary to solve the equations to understand
the overall behavior of the system. Rather, one can use a dynamical system approach.

Let us introduce this approach by applying it to the ΛCDM model. First, it is convenient to
rename (Ωm,Ωr,ΩΛ) = (x, y, z), so that the first Friedmann equation reads x+y+z = 1. It can
be used to express z = 1 − (x + y). In addition, since (x, y, z) ≥ 0, it constrains (x, y, z) ≤ 1.
Then, introducing the number of e-folds N = ln a, we compute

dx

dN
= dx

Hdt
= ρ̇m

3H3 − 2ρm
3H2

Ḣ

H
.

Using equation (2.5) for ρm neglecting its interaction with ρr, and the Friedmann equations
(2.4) then yields

dx

dN
= x(3x+ 4y − 3), (2.7)

and doing the same for y
dy

dN
= y(3x+ 4y − 4). (2.8)

This is an autonomous system on (x, y). It possesses three fixed points P = (x∗, y∗), where
dx/dN = dy/dN = 0. For example, there is the origin O with x∗ = y∗ = 0 and z∗ = 1, so
ρm = ρr = 0, this point corresponds to a universe dominated by the cosmological constant.
The evolution of the system around fixed points is then related to their stability, which can
be assessed using linear analysis. For example, around the point O, the system (2.7)-(2.8) is
expanded to first order as (

x′

y′

)
≃
(

−3 0
0 −4

)(
x
y

)
.
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The matrix that is involved in this expression is called the stability matrix. Since both its
eigenvalues are real and negative, the fixed point O is stable and is a future attractor of the
system, in the sense that starting from generic initial conditions (x0, y0), trajectories evolve
towards this point in the future. A fixed point with positive (real part of the) eigenvalues is
unstable, and is called a past attractor. A fixed point with both positive and negative eigen-
values is a saddle point, having trajectories approaching such points for a long period of time
requires some tuning of the initial conditions. For vanishing eigenvalues, linear analysis is
not able to assess the stability of the fixed point and other methods must be used. In table
2.1, we summarise the fixed point structure of the ΛCDM system (2.7)-(2.8).

point x∗ y∗ eigenvalues stability what dominates
O 0 0 {−4,−3} attractive cosmo. constant
R 0 1 {1, 4} repulsive radiation
M 1 0 {−1, 3} saddle matter

Table 2.1: fixed points of the system (2.7)-(2.8) with their properties.

Since z = 1 − (x+ y), the system is effectively two-dimensional, and we can conveniently
plot its phase space in figure 2.1. This gives a clear representation of the fixed point structure
of table 2.1 and allows to understand the overall behaviour system in the blink of an eye: the
universe was dominated by radiation at early-time, and ends up dominated by Dark Energy.

R

MO

Figure 2.1: Phase space of the system (2.7)-(2.8). The shaded area is excluded by the Fried-
mann constraint x+ y + z = 1, with (x, y, z) ≥ 0. The fixed point of table 2.1 are shown.

We can observe that, since the point M , corresponding to matter domination, is a saddle
point, generic trajectories do not really approach it. As a consequence, having a long period
of matter domination, as in our universe, requires special initial conditions if we naively stick
to the system (2.7)-(2.8). But remember that this system it is derived using (2.5) for (ρm, ρr)
with the assumption that these two fluid components do not interact with each other. In
reality, in the early universe’s thermal bath, the different particle constituents are converted
from the radiation fluid to the matter fluid one after the other, when the temperature drops
under their rest mass. Therefore, we cannot really neglect the interactions between the two
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fluids. Since our analysis of the ΛCDM system using the dynamic system approach is only
illustrative, we will not dwell on a more precise description of this transition.

Another point to note is that the transition between matter domination (with ΩΛ = 0) and
Dark Energy domination (with ΩΛ = 1) happens rather quickly on cosmological timescales,
as illustrated by figure 2.2. Since the value measured at our current time is ΩΛ,0 = 0.7, this
would mean that we live precisely during the transition, which is an intriguing coincidence.

Figure 2.2: Evolution of (Ωm,ΩΛ, weff = −ΩΛ) for the ΛCDM system (2.7)-(2.8), with initial
conditions tuned for illustrative purposes. The red dot represents the current time ΩΛ,0 = 0.7.

There are several problems associated with the cosmological constant. In the first place,
its value must be extremely low to be compatible with the observations

Λ ∼ 10−47 GeV4 ∼ 10−122 in Planck units. (2.9)

There is thus a rather extreme hierarchy between the energy scale associated with the cosmo-
logical constant EΛ ∼ 10−12 GeV and, for instance, the Electro-Weak scale EEW ∼ 102 GeV.
This hierarchy only becomes more pronounced when considering higher scales such as the
Grand Unification or the Planck scales, and it is hard to explain from the point-of-view of
Quantum Field Theory without resorting to fine-tuning. This fact has quickly been identified
as a major theoretical problem [12], and several solutions have been proposed. Interestingly,
the cosmological constant could not be much larger without altering the conditions that led
to the development of intelligent life, leading to an anthropic bound on its value [13].

In chapter 7, we will explain how the very smallness of the cosmological constant has
been combined with insight from String Theory, to predict the existence of an additional spa-
tial dimension, the Dark Dimension, which is compact and lies at the micrometer scale. This
prediction should be taken with a grain of salt, however, because so far there is no consensus
on the possibility of obtaining a positive cosmological constant from String Theory, as we will
review in chapter 5.
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2.1.2 Quintessence models

Another puzzle, that we mentioned above figure 2.2, is the cosmic coincidence problem: why
is the transition between a matter dominated universe and a Dark Energy dominated uni-
verse happening, at a time when we are here to observe it ? Maybe it is just a coincidence
indeed, but it is still interesting to explore other explanations, that may come with modifi-
cations of the ΛCDM model. The simplest extension is to replace the cosmological constant
with a canonical scalar field in a potential. This possibility also has been considered before
the discovery of late-time accelerated expansion [14–16]. Models for which a scalar field
accounts for Dark Energy are now called quintessence models. The simplest action is

Sϕ =
∫
d4x

√
−g

(
−1

2g
µν∂µϕ∂νϕ− V (ϕ)

)
. (2.10)

Being coupled to gravity, the scalar field acts as a source for Einstein’s field equations (2.2),
with an energy-momentum tensor given by

Tµν = − 2√
−g

δSϕ
δgµν

= ∂µϕ∂νϕ− 1
2gµν(∂ϕ)2 − gµνV (ϕ). (2.11)

At the homogeneous level, the background value of the scalar field depends only on the
cosmic time t. In the FLRW background (2.1), the energy-momentum tensor (2.11) then
takes the perfect fluid form (2.3) with

ρϕ = 1
2 ϕ̇

2 + V, pϕ = 1
2 ϕ̇

2 − V, wϕ = 1/2ϕ̇2 − V

1/2ϕ̇2 + V
.

We can see that wϕ ∈ [−1, 1], so the scalar field can mimick all the other components of the
universe, depending on its dynamics. In particular, if ϕ̇ ≃ 0, the scalar field has wϕ ≃ −1
and produces the same effect as the cosmological constant. Note that in addition to the two
Friedmann equations (2.4), we must consider the equation of motion of the scalar field for
the system to be complete

ϕ̈+ 3Hϕ̇+ V,ϕ = 0. (2.12)

Let us apply again the dynamical system approach to the study of this system. The first
step is to define appropriate dynamical variables. The Friedmann constraint is a good guide
for this. In the case at hand, in the presence of an additional fluid component with an
arbitrary, constant equation of state parameter w, it reads

ϕ̇2

6H2 + V

3H2 + Ωm = 1,

Which led [17] to define, in the case of a positive potential

x = ϕ̇√
6H

and y =
√
V√

3H
, (2.13)

so that the equation Ωϕ + Ωm = x2 + y2 + Ωm = 1 constrains (x, y) to lie in the unit disk
x2 + y2 ≤ 1, because Ωm > 0. Defining the third variable

λ = −V,ϕ
V
, (2.14)
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we can use the second Friedmann equation (2.4) and the equation of motion of the scalar
field (2.12) to obtain the following system

dx

dN
= −3

2
(
2x+ (w − 1)x3 + x(w + 1)(y2 − 1) −

√
2
3λy

2
)
,

dy

dN
= −3

2y
(
(w − 1)x2 + (w + 1)(y2 − 1) +

√
2
3λx

)
,

dλ

dN
= −

√
6
(V V,ϕϕ
V 2
,ϕ

− 1
)
λ2x. (2.15)

At first sight, it seems that this system is not autonomous, i.e. it does not only involve the
dynamical variables (x, y, λ), since ϕ appears in the last equation through V and derivatives.
However, from its definition (2.14) we can think of λ as a function of ϕ. If we can invert this
relation to obtain ϕ(λ), we can replace ϕ where it appears in (2.15) and close the system. If
we cannot invert the relation λ(ϕ), we shall define other variables.

The dynamics of the system is now dependent on the choice of scalar potential. The
most simple choice is to consider an exponential potential V (ϕ) = M4e−λϕ, corresponding
to a constant λ. Not only is this choice simple, but it is also theoretically motivated, since
exponential potentials arise naturally in supergravity and string theory, although with a slope
λ that is often too large for accelerated expansion to happen, as we will see in following
chapters. Note that the system (2.15) is always invariant under y → −y. In the case of a
contant λ it is also invariant under (x, λ) → −(x, λ), so we can restrict to positive y and λ.
Before we show the fixed point structure of this system, as we did for the ΛCDM model, let
us introduce an additional quantity, the effective equation of state parameter

weff = w(1 − Ωϕ) + wϕΩϕ = w(1 − x2 − y2) + x2 − y2, (2.16)

whose value at any time determines if the universe’s expansion is accelerating (weff < −1/3)
or deccelerating (weff > −1/3). In table 2.2, we summarise the fixed point structure of the
quintessence model with an exponential potential V (ϕ) = V0e

−λϕ, in the presence of an addi-
tional fluid component with equation of state parameter w, and no interactions.

With this analysis, we can immediatly determine the qualitative behaviour of the system.
The only point that does not depend on λ is O, corresponding to a universe where the scalar
field is completely subdominant. It is always a saddle point. For positive λ the point A− is
always unstable, and A+ is also unstable if λ2 < 6. In this case they are both past attractors,
and they correspond to a universe dominated by the kinetic energy of the scalar field and
weff = 1, thus undergoing a so-called kination era.

If λ2 < 3(1+w), the future attractor is point C, and it corresponds to a universe dominated
by the scalar field. Under the additional condition λ2 < 2, it undergoes accelerated expansion.

If 3(1 + w) < λ2 < 6, point C becomes a saddle point and the future attractor is point
B. It corresponds to a universe where the scalar field and the other fluid component both
share the energy of the universe, but the scalar field mimics the behaviour of the fluid compo-
nent, so that weff = w. Such a solution is called a scaling solution, and was studied in detail
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point x∗ y∗ eigenvalues stability and existence Ωϕ weff

O 0 0
{

3
2(w ± 1)

}
saddle 0 w

A± ±1 0
{
3(1 − w), 3 ∓

√
3
2λ
} unstable if λ ≥ ±

√
6 1 1

saddle if λ < ±
√

6

B
√

3
2

1+w
λ

√
3(1−w2)

2λ2

{
3

4λ((w − 1)λ± ∆)
} exists if λ2 ≥ 3(1 + w) 3(1+w)

λ2 w
stable

C λ√
6

√
1 − λ2

6

{
λ2

2 − 3, λ2 − 3(w + 1)
} exists if λ2 < 6

1 λ2

3 − 1stable if λ2 < 3(1 + w)
saddle if 3(1 + w) ≤ λ2

Table 2.2: fixed points of the system (2.15) with their properties, in the case of a constant λ.
In this table, ∆2 = (w − 1)((7 + 9w)λ2 − 24(w + 1)2)).

in [18,19]. It is interesting, because it provides a natural mechanism to hide the effect of the
scalar field on cosmological scales, at the background level. If λ2 > 6, the future attractor is
still point B but point C stops existing.

Again, the system is effectively two-dimensional, so we can conveniently plot its phase
space in figure 2.3, for values of λ that illustrate the three different regimes explained above.

To correctly describe our universe, a quintessence model should have several features.
First: the scalar field has to be subdominant during the radiation dominated era, in partic-
ular, it should not perturb Big Bang Nucleosynthesis, which predicts the abundance of light
elements with a good accuracy. During the matter dominated era, the scalar field should
either be subdominant or evolve along a scaling solution so as not to perturb structure for-
mation. Finally, after N ∼ 10 e-folds of matter domination, the scalar field must come to
dominate and induce the current accelerated expansion of the universe.

In the case of the exponential potential, accelerated expansion only occurs at point C in
the phase space when λ2 < 2. In this case, point C is the future attractor and the scalar
field dominates with Ωϕ = 1. Therefore, the only realistic trajectory of this model are the
ones with λ2 < 2 and initial conditions tuned to obtain a period of matter domination, at
the saddle point O. So this model alone does not solve the coincidence problem. In order to
do so, one either needs to find a mechanism to explain the tuning of the initial conditions,
or modify the model. In this sense, the point B is interesting, because it corresponds to a
scaling solution where the energy of the universe is shared between the scalar field and the
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C

A+OA-

CB

A+OA-

Figure 2.3: Phase space of the system (2.15) in the case of a constant λ and w = 0, for
different values of λ. We restricted to y > 0 by symmetry. The shaded area is excluded by the
Friedmann constraint x+ y + Ωm = 1, with Ωm ≥ 0. The fixed point of table 2.1 are shown.

other component, with Ωϕ = 3(1 + w)/λ2, so it naturally leads to Ωϕ ≃ 0.7 with λ ≃ 2.1,
but without accelerated expansion. A natural way to solve the coincidence problem would
be to have a fixed point, either a saddle or a future attractor, such that Ωϕ ≃ 0.7 and wϕ ≃ −1.

This simple model can be modified in many ways. Among others, one can consider dif-
ferent scalar potentials, scalar fields with non-canonical kinetic terms, interactions between
the scalar field and matter, or modifications in the gravity sector. A large sample of possibil-
ities are reviewed and systematically analysed using dynamical system methods in [7], see
also [20]. In the following, we will for instance study a simple quintessence model in the
Palatini formulation of gravity. But before that, let us tell a few words about the observa-
tional status of evolving Dark Energy.

In order to study the evolution of Dark Energy in a model independent way, one can
parameterise its equation of state as a function of the scale factor as

wϕ(a) = w0 + wa(1 − a) (2.17)

Using this parametisation, the Planck collaboration reported in 2018 [11] that w0 = −0.957±
0.080 and wa = −0.29+0.32

−0.26, when combining their observations with Baryon Accoustic Oscil-
lation (BAO) and Type Ia supernovae (SNe) data, which is compatible with a cosmological
constant. However, in 2024, the DESI collaboration refined the measurements of BAO and re-
ported in [21] that, although the ΛCDM model is still consistent with observations, allowing
Dark Energy to vary according to (2.17) yields w0 = −0.827±0.063 and wa = −0.75+0.29

−0.25 when
combined with CMB data from the Planck and SNe data from the PantheonPlus collaboration.
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2.2 Palatini and modified gravity

It is well-known that the action of General Relativity, giving Einstein’s field equations (2.2)
from the principle of least action, is the Einstein-Hilbert action

SEH = 1
2

∫
d4x

√
−gR,

where g is the determinant of the metric, and R = gµνRµν the Ricci scalar. In turn, the Ricci
tensor Rµν is obtained from the Riemann tensor Rµν = Rµ

σ
νσ, which is itself obtained from

the affine connection

Rρ
µνσ = ∂µΓρνσ − ∂νΓρµσ + ΓρµτΓτνσ − ΓρντΓτµσ.

Then, under the assumptions of metricity and symmetry

∇µgνρ = ∂µgνρ − Γσµνgσρ − Γσµρgνσ = 0 and Γρµν − Γρνµ = 0,

the affine connection is completely determined from the metric

Γρµν(g) = 1/2gρσ(∂µgσν + ∂νgµσ − ∂σgµν).

But it turns out that there are other possibilities. One of them is to let the affine connection
be an independent variable, with its own equation of motion. This possibility is called the
first-order, or Palatini formulation of General Relativity [22], because the equations of mo-
tion of the metric and of the connection are first order in derivatives. On the other hand, the
formulation where Γρµν = Γρµν(g) is imposed is called the second-order, or metric formulation.

In the pure Einstein-Hilbert case, the equation of motion of the affine connection is alge-
braic and sets Γρµν = Γρµν(g), so both formulations are in fact equivalent. It stops being the
case when considering modifications of the Einstein-Hilbert action [23], for instance in the
presence of a coupling between the Ricci scalar and a scalar field, with an action

SJ =
∫
d4x

√
−g

(1
2Ω2(ϕ)R − 1

2g
µν∂µϕ∂νϕ− V (ϕ)

)
. (2.18)

In this case, we have Γρµν = Γρµν(g) − Kµν
ρ where Kµν

ρ is the so-called contortion tensor
that we could compute explicitly by solving the equations of motion of the affine connection.
But there is in fact a simpler way to deal with a non-minimal coupling, which consists in
performing a Weyl rescaling to go in a frame where it is absent, called the Einstein frame. In
contrast, the initial frame where the non-minimal coupling is present in (2.18) is called the
Jordan frame. At this point, the first and second order formulations start to diverge: in the
first-order formulation, R = gµνRµν(Γ) and only gµν is affected by the Weyl rescaling, while
in the second-order formulation, R = gµνRµν(Γ(g)) so Rµν is also affected. This leads to

gµν → Ω−2gµν , gµν → Ω2gµν ,
√

−g → Ω−4√−g, R → Ω2R − 3/2Ω−2(∂Ω2)2, (2.19)

where the underlined term is present only in the second-order formulation and (∂·)2 is a short
hand notation for gµν∂µ · ∂ν ·. Applying this transformation to (2.18) gives

SE =
∫
d4x

√
−g

(
1
2R − 3

4
(∂Ω2)2

Ω4 − (∂ϕ)2

2Ω2 − V

Ω4

)
. (2.20)
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The only place where the affine connection appears is in R, so if we are working with the first-
order formulation, writing and solving its equation of motion from the action (2.20) yields
Γρµν = Γρµν(g). In conclusion, the underlined term in (2.20), present in the second-order for-
mulation, is the only difference between the two in the Einstein frame. Alternatively, it is
possible to write and solve the equation of motion of the affine connection directly from the
Jordan frame action (2.18), and the result is of course equivalent to (2.20). This is shown
explicitly in [2], where we computed scattering amplitudes in Higgs inflation models in both
the metric and Palatini formulations, in order to study the unitarity of these models, as we do
in chapter 4 in a different context. Higgs inflation [24] is a well-studied model of inflation in
which the Higgs boson of the Standard Model plays the role of the inflaton, and where the
non-minimal coupling of the form (2.18) plays a central role.

Apart from non-minimal couplings, another well-studied class of modifications of the
Einstein-Hilbert action are f(R) theories, where the Ricci scalar R is replaced by a function
f(R). A simple possibility is to include a quadratic correction

S = 1
2

∫
d4x

√
−g

(
R + α

2R
2
)
. (2.21)

This R2 term can be incorporated in an auxiliary scalar field as follows

S = 1
2

∫
d4x

√
−g

(
(1 + αχ)R − α

2χ
2
)
, (2.22)

because it is clear that solving the algebraic equation of the motion of χ gives χ = R,
which gives back (2.21) after substitution. The action (2.22) is of the form (2.18), with
Ω2(χ) = 1+αχ, and we can rewrite it in the Einstein frame using (2.20). There, we can notice
a significant difference between the first and second-order formulations. In the second-order
formulation, the underlined term is present, and it is a kinetic term for the scalar χ. There-
fore, this field is not auxiliary in the Einstein frame, and propagates a degree of freedom.
This degree of freedom is of course also present in the initial action (2.21), but there it is
carried by an additional polarisation of the graviton and not as clearly visible. The scalar
field χ can successfully play the role of the inflaton. This is the essence of the Starobinsky
model of inflation [25], although it was not initially proposed as such, but as a way to resolve
the initial singularity of the universe.

On the other hand, in the first-order formulation, the scalar field χ remains auxiliary in
the Einstein frame, so it can be integrated out. This process leaves an imprint on the rest of
the action, especially on the scalar potential, but it does not bring any additional degree of
freedom with respect to the pure Einstein-Hilbert case. For this reason, models of inflation
with this R2 term in the Palatini formulation have been considered in [26, 27], where it was
found that it can effectively flatten the potential and reconcile models with observations.

A nice review of f(R) theories of gravity, including in the first-order formulation of grav-
ity, is conducted in [28]. Note that non-minimal couplings and higher-order corrections to
the Einstein-Hilbert action are generally expected to arise from quantum corrections [29].
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2.3 Application to a quintessence model

In this section, we investigate the effect of the quadratic correction and non-minimal coupling
on a simple quintessence model with an exponential potential, in the Palatini formulation of
General Relativity [1]. We use the dynamical system techniques that we reviewed in 2.1 to
analyze the attractor structure of the model and uncover its possible trajectories. We find that
the quadratic correction αR2 does not play any role in the late-time dynamics of the system,
unless the dimensionless parameter α is given an extreme value. However, the non-minimal
coupling ξϕ2R can drive the evolution of the system from the vicinity of an early-time matter
dominated phase towards a late-time attractor corresponding to accelerated expansion. To
be precise, it induces a new local minimum of the potential, and we find that, for a realistic
evolution of the universe, the only viable trajectories are the ones where the canonical field
ends up in this new minimum and acts as a cosmological constant.

2.3.1 Description of the model

The action we consider is the following, with a scalar field ϕ in a potential V (ϕ), a non-
minimal coupling ξϕ2R, and a quadratic correction αR2, in the Palatini formulation of gravity

SJ =
∫
d4x

√
−g

(1
2(1 + ξϕ2)R + α

4R
2 − 1

2(∂ϕ)2 − V (ϕ)
)
. (2.23)

Our goal is to understand the influence of these additional terms on the late-time accelerated
expansion of the universe. The scalar field is a generic one, that would start evolving from
a nonzero vacuum expectation value after inflation and reheating. Replacing the R2 term by
an auxiliary scalar, like in (2.22) and going to the Einstein frame using (2.20), we get

SE =
∫
d4x

√
−g

(
1
2R − 1

2
(∂ϕ)2

(1 + ξϕ2 + αχ) − V (ϕ) + α/4χ2

(1 + ξϕ2 + αχ)2

)
, (2.24)

solving for χ yields

χ = 4V (ϕ) + (1 + ξϕ2)(∂ϕ)2

1 + ξϕ2 − α(∂ϕ)2 ,

and substituting in (2.24) we obtain

Sϕ =
∫
d4x

√
−g

(
− 1

(1 + ξϕ2)2 + 4αV (ϕ)

(1
2(1 + ξϕ2)(∂ϕ)2 + V (ϕ) − α

4 (∂ϕ)4
))

. (2.25)

In order to describe our universe, we would have to include the action of the Standard
Model Sm. Assuming there is no coupling between the scalar field ϕ and the Standard Model
in the Jordan frame, it will appear in the Einstein frame as a result of the Weyl transfor-
mation (2.19). Such a coupling can potentially be problematic, because the quintessence
field is generically very light, with a mass of order mϕ ∼ H0 ∼ 10−33 eV, where H0 is the
present value of the Hubble rate. It would thus easily mediate a fifth force, which is tightly
constrained experimentally. In order to avoid this, one can invoke something to suppress the
coupling between the scalar field ϕ and the Standard Model [30]. In [31,32], it was also pro-
posed that the mass of the quintessence field may depend on the local matter density, making
it heavier and more difficult to detect on earth, where experiments are conducted. Such a
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field has been called a chameleon field, because of its ability to adapt to its environment.

At the Cosmological level, matter and radiation are described effectively as perfect fluids,
with the energy-momentum tensor (2.3). Therefore, the coupling between the scalar field
and the Standard Model would have to be described at the level of the energy-momentum
tensor as well. A coupling of the form ∂µTµν,(ϕ) = CT(m)∂νϕ and ∂µTµν,(m) = −CT(m)∂νϕ has
been considered in [33]. The value of C is then constrained by observations as |C| < 0.1,
but this bound can be relaxed to |C| < 5 if the quintessence field is assumed to only couple
to dark matter [34], or if C is time-dependent [33]. In the present work, for simplicity, this
coupling has not been considered, leaving it for future investigations. The energy density and
pressure of the scalar field ϕ resulting from the action (2.25) are

ρϕ = 1/2(1 + ξϕ2)ϕ̇2 + V + 3/4αϕ̇4

(1 + ξϕ2)2 + 4αV , pϕ = 1/2(1 + ξϕ2)ϕ̇2 − V + 1/4αϕ̇4

(1 + ξϕ2)2 + 4αV , (2.26)

they enter in the Friedmann equations (2.4), that we recall here

H2 + k

a2 = ρm + ρϕ
3 and 2Ḣ + 3H2 + k

a2 = −(pm + pϕ) = −wρm − pϕ,

notice that we consider the presence of an additional perfect fluid component, sometimes
called the background fluid, with an arbitrary constant equation of state parameter w. The
equation of motion of the scalar field is

ϕ̈(1 + ξϕ2 + 3αϕ̇2) + 3Hϕ̇(1 + ξϕ2 + αϕ̇2) + V ′ + ξϕϕ̇

−ξϕ(1 + ξϕ2) + αV ′

(1 + ξϕ2)2 + 4αV
(
2(1 + ξϕ2)ϕ̇2 + 4V + 3αϕ̇4

)
= 0. (2.27)

As we explained in section 2.2, the system would be much different in the metric formula-
tion, because in that case the quadratic correction αR2 introduces a second scalar degree of
freedom, resulting in a two-fields dynamics. Nevertheless, the non-minimal coupling ξϕ2R
has been considered in this formulation, see for instance [35,36].

In the rest of this chapter, we study the system (2.26)-(2.27) with an exponential potential
V (ϕ) = M4 exp(−λϕ). More precisely study whether the system possesses realistic solutions
that realize the sequence radiation domination → matter domination → accelerated expansion
with the correct duration and the scalar field staying subdominant during the two first eras.
We start by considering the quadratic correction αR2 alone.
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2.3.2 Quadratic correction

We start by considering the case where the only non-standard term in (2.25) is the quadratic
correction αR2. In this case, the action of the scalar field is

Sϕ =
∫
d4x

√
−g

(
− 1

1 + 4αV (ϕ)

(1
2(∂ϕ)2 + V (ϕ) − α

4 (∂ϕ)4
))

. (2.28)

It can be thought of as the action of a scalar field with a non-canonical kinetic term in the
effective potential U(ϕ) = V (ϕ)/(1 + 4αV (ϕ)). As soon as 4αV (ϕ) ≫ 1, this new potential
exhibits a plateau U(ϕ) ≃ 1/(4α). This observation is at the origin of the mechanism pro-
posed by [26,27] which makes it possible to flatten inflationary potentials and reconcile them
with observations. In the case of an exponential potential V (ϕ) = M4 exp(−λϕ), the effective
potential U(ϕ) has this plateau for ϕ → −∞, and an exponential tail for ϕ → +∞.

10 5 0 5 10
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Figure 2.4: Shape of U(ϕ) = V (ϕ)/(1 + 4αV (ϕ)) with V (ϕ) = M4 exp(−λϕ).

with respect to the standard exponential potential model that we have exposed in 2.1.2,
the only new regimes visible on the action (2.28) are when 4αV ≫ 1, corresponding to the
plateau, and/or α/2ϕ̇2 ≫ 1. So in order to diverge from the previous analysis, the field
must enter one of these regimes. If it starts on the plateau, it will roll down and end up
in the exponential tail, where accelerated expansion takes place as a future attractor if and
only if λ2 < 2. If it starts with α/2ϕ̇2 ≫ 1, i.e. with a large kinetic energy, it will quickly
be slowed down by the Hubble friction term of its equations of motion. From this, we can
have the intuition that the quadratic correction does not modify the future attractors, with
respect to the analysis of 2.1.2, but only affects past attractors and saddle points. We can also
guess that, if we want the αR2 term to play a role in the late-time dynamics, we need the
dimensionless parameter α to take an extreme value. For instance, if the transition between
matter domination and accelerated expansion happens when 4αV ∼ 1, estimating that at this
time V ∼ Λ ∼ 10−122, see (2.9), sets α ∼ 10120. For more reasonable values of α, the αR2

is not expected to play any role in the late time evolution. Nevertheless, it is interesting, at
least academically, to study how dynamical systems methods apply to this case. When ξ = 0,
the equations (2.26)-(2.27) become

H2 = 2ϕ̇2 + 3αϕ̇4 + 4V
12(1 + 4αV ) + ρm

3 and Ḣ = − ϕ̇2(1 + αϕ̇2)
2(1 + 4αV ) − 1

2(1 + w)ρm. (2.29)

and

ϕ̈(1 + 3αϕ̇2) + 3Hϕ̇(1 + αϕ̇2) + V ′

1 + 4αV (1 − 2αϕ̇2 − 3α2ϕ̇4) = 0, (2.30)

28



As in (2.13), the starting point is to choose dynamical variables in order to rewrite (2.29)
and (2.30) as an autonomous system. In the case of a positive potential, this is achieved with

x = ϕ̇

2
√
V
, y = ϕ̇

2H , λ = −V ′

V
and ν = 4αV. (2.31)

As we said earlier, we restrict our analysis to an exponential potential, for which λ is constant.
These are not the only variables that can be chosen to analyze the system, but they are
convenient in the ν ≫ 1 regime as we will soon see. They obey the following system

dx

dN
= λy − 6(1 + ν)x2(1 + νx2) + λx2y(2 + 3ν(2 + ν)x2)

2(1 + ν)x(1 + 3νx2) , (2.32)

and

dy

dN
= − y

2(1 + ν)x2(1 + 3νx2)
×
(
y((1 + w)y − λ) − 3(1 − 3w)ν2x6y2

− νx4(3 + 3ν − 3λνy + 7y2 + 9w(1 + ν − y2))
+ x2((1 − w)(3 − 2y2) + ν(2λy + 3(1 + y2) + 3w(y2 − 1)))

)
, (2.33)

and finally
dν

dN
= −2λνy. (2.34)

For non exponential potentials, there would also be an equation for λ as in (2.15). The system
is invariant under x → −x, so we can restrict ourselves to x > 0 and obtain trajectories with
x < 0 by reflection. It is also invariant under (y, λ) → −(y, λ), so we can restrict ourselves
to λ > 0. Furthermore, x > 0 implies ϕ̇ > 0. Then, we would have y < 0, if and only if
H < 0, see (2.31). Therefore, restricting ourselves to expanding cosmologies implies that
y > 0. Since dy/dN = 0 when y = 0, the system cannot dynamically cross y = 0 and y
remains positive during the entire evolution. Assuming α > 0 also implies ν > 0. So in the
end, all variables can be taken positive. Note that the scalar field energy density parameter
Ωϕ = ρϕ/H

2 and the equation of state parameter wϕ = pϕ/ρϕ can be expressed as follows

Ωϕ = y2(1 + 2x2 + 3νx4)
3x2(1 + ν) and wϕ = − 1 − 2x2 − νx4

1 + 2x2 + 3νx4 . (2.35)

The values taken by the (x, y, ν) are constrained by Ωϕ < 1, in order to avoid a negative
energy ρm < 0. We will also make use of the effective equation of state parameter, already
defined in (2.16)

weff = w(1 − Ωϕ) + wϕΩϕ.

As before, we are interested in the fixed points of the system, which contain its qualitative
dynamics. Let us start by considering equation (2.34). Since the variable ν can take any
positive value, it is convenient to define variable ν̃ = ν/(1+ν), that take value in the compact
interval ν̃ ∈ [0, 1]. In terms of this variable, (2.34) becomes

dν̃

dN
= 2λ ν̃(ν̃ − 1)y, (2.36)
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so the fixed points satisfying dν̃/dN = 0 have either ν̃ = 0 or ν̃ = 1, corresponding respec-
tively to ν = 0 and ν → +∞, or y = 0. Note that since (y, ν) > 0, equation (2.34) implies
that ν decreases with N . So ν → +∞ (resp. ν = 0) corresponds to the past (resp. the
future). In fact, the point ν = 0 corresponds to the standard exponential model exposed in
2.1.2. Thus, as we guessed earlier, the only modifications to the previous analysis take place
at early times, when ν → +∞. In this limit, the system (2.32)-(2.33) becomes

dx

dN
≃ x

2 (λy − 2) and
dy

dN
≃ y

2
(
(1 − 3w)x2y2 − λy + (1 + 3w)

)
, (2.37)

while the cosmological parameters (2.35) are

Ωϕ ≃ x2y2 and wϕ ≃ 1
3 . (2.38)

Therefore, the equation Ωϕ ≤ 1 does not constrain the variables (x, y) to lie in a compact
region of the plane. Just like we did for ν, we will define new variables to study the behaviour
of x and y around infinity. But before that, notice that in the case where the of a background
fluid of radiation (w = 1/3), the system (2.37) can be simplified and solved explicitly

x(N) = x0(2 + λy0(eN − 1))
2eN and y(N) = 2y0e

N

2 + λy0(eN − 1) . (2.39)

In particular, the scalar field energy density (2.38) is constant; namely, Ωϕ ≃ x2y2 = x2
0y

2
0. So

if the scalar field is subdominant initially, enough to satisfy, for example, the nucleosynthesis
constraint, it will remain subdominant throughout the radiation dominated era. The tran-
sition to matter domination then proceeds as usual without being affected by its presence.
In the case of a background fluid of non-relativistic matter (w = 0), the fixed points of the
system not at infinity are summarised in table 2.3 with their properties:

point x∗ y∗ eigenvalues stability Ωϕ weff

O 0 0 {−1, 1/2} saddle 0 0
A λ/2 2/λ {−1, 1} saddle 1 1/3
B 0 1/λ {−1/2,−1/2} attractive 0 0

Table 2.3: fixed points of the system (2.37) that are not at infinity, with their properties.

One can see that B is the only stable point and is thus the future attractor of the system,
as long as ν ≫ 1. It corresponds to a matter dominated universe, where the scalar field is
subdominant, in accordance with our expectations. In that respects, we might be concerned
that the system could get too close to the scalar dominated saddle point A in the course of its
evolution. But from (2.37) and (2.38) we can show that that dΩϕ/dN = Ωϕ(Ωϕ − 1) < 0, so
Ωϕ only decreases. Once again, if the scalar field is subdominant initially, it remains subdom-
inant throughout the matter dominated era, or at least as long as ν ≫ 1.

In order to study the behaviour of (x, y) at infinity, we can make a change of variable
analogous to the one we made in (2.36); namely, x̃ = x/(1 + x) and ỹ = y/(1 + y), so that
(x̃, ỹ) ∈ [0, 1]. The system on (x̃, ỹ) obtained this way has divergences, for example

dx̃

dN
= − x̃(x̃− 1)(2 − (2 + λ)ỹ)

2(ỹ − 1) , (2.40)
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and similarly for dỹ/dN , but the formula is long and not more informative. These divergences
can be handled knowing that for any dynamical system dP /dN = f(P ), the system dP /dN =
ξ(P )f(P ) for positive defined ξ(P ) > 0 has the same fixed points with the same properties.
For instance, we can remove the pole in (2.40) by multiplying the entire system by (ỹ − 1).
Applying this result to our case, we obtain two additional fixed points at infinity:

Point x̃∗ ỹ∗ eigenvalues stability Ωϕ weff

Px 1 0 {0, 0} repulsive 1 1/3
Py 0 1 {λ, λ} repulsive 1 1/3

We cannot conclude about the stability of Px using its eigenvalues, but numerical com-
putations show that it is repulsive, see figure 2.5. For both Px and Py, the energy density
Ωϕ = x̃2ỹ2/((1 − x̃)2(1 − ỹ)2) is undetermined but can also be found numerically to be Ωϕ = 1.
Therefore, from (2.38) we have weff = 1/3 at these points. These two points constitute the
past attractors of the complete system (2.32)-(2.34).

The previous analysis applies to ν → +∞, but in reality ν is finite. In particular, in this
strict limit, we found that the future attractor of the system is B, and that it has x∗ = 0, see
table 2.3. So as the system evolves towards B, we have νx4 ≪ 1 at some point, even though ν
is large, and we need to study the system (2.32)-(2.33) in another limit. Namely, we consider
the limit ν ≫ 1 and x ≪ 1 such that νx2 ∼ 1. In that case, the system becomes

dx

dN
≃ x

2 (λy − 2) + 1
νx

(
λy

6νx2 − 1
)
,

dy

dN
≃ y

2

(
1 − λy + y(λ− y)

νx2 − 4(1 + λy)
(1 + 3νx2)

)
, (2.41)

where we considered w = 0 for simplicity. The cosmological parameters (2.38) become

Ωϕ ≃ y2

3νx2 and wϕ ≃ −1. (2.42)

The system (2.41) has one real fixed point, with an expression that is is too complicated to
be useful. We can simplify it further by neglecting the first term x/2(λy − 2) in (2.41), using
x ≪ 1. This is not strictly correct, because the system would then be attracted to a fixed point
that cancels the second term only. But when the second term vanishes, the first one is not
negligible anymore. If we do it anyway, we get a simple approximation of the fixed point

xT∗ ≃
√
λyT∗
6ν , and yT∗ ≃ 12λ

12 + 3λ2 +
√

3(48 + 72λ2 + 11λ4)
, (2.43)

and it can be shown to be stable. This fixed point, called T , is the one to which the system
is attracted, after it got so close to B that νx2 ∼ 1. It depends on ν, which is decreasing
according to (2.34), so it is not really a fixed point, but a point that is tracked by the system.
Since the system lags behind this point as it moves, the expressions (2.43) do not describe
its behaviour very precisely. In particular, using (2.43) with (2.42) gives Ωϕ ≃ 2yT∗ /λ but we
will observe numerically that Ωϕ ≃ 1 when the system is tracking point T .
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In Figure 2.5, we plot the phase space of the system (2.32)-(2.33) for ν ≫ 1 and λ = 1.
In the case w = 1/3, the trajectories are lines of constant Ωϕ = x2y2 which all converge to the
fixed line y = 2/λ, as found in (2.39). The origin O is a saddle point. In the case w = 0, we
can observe the presence of the fixed points listed in table 2.3, with the right properties. The
behavior at infinity also corresponds to that discussed earlier. Since ν is finite in this plot, B
is not the true future attractor. When x becomes small, so that νx2 ∼ 1, the system is actually
attracted to the point T located approximately at coordinates (2.43). As ν decreases, this
point moves to higher values of x, until the approximation ν ≫ 1 is no longer valid.

T

Figure 2.5: Phase space of the system (2.32)-(2.33) with ν = 1010 and λ = 1. We have
w = 1/3 on the top row and w = 0 on the bottom row. The bottom right panel is a zoom for
small values of x. Fixed points are labeled as in table 2.3, and point T is given in (2.43). The
shaded region is the one excluded by the positive energy constraint Ωϕ < 1.

At late times, we have ν → 0, so the αR2 correction is negligible and the behaviour of the
system is as described in 2.1.2. Let us recall the main features. If λ2 < 3(1 + w), the future
attractor corresponds to a universe dominated by the scalar field, with wϕ = λ2/3−1, so there
is accelerated expansion if λ2 < 2. More precisely, [11] gives the experimental constraint
wϕ < −0.94 which implies λ < 0.42. If 3(1 + w) < λ2, the future attractor corresponds to a
scaling solution where the scalar field and the background fluid both share the energy of the
universe, with Ωϕ = 3(1 + w)/λ2, and the scalar field mimics the background fluid, weff = w.
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The evolution of the scalar field parameters (2.35) dictated by the system (2.32)-(2.34), is
shown in figure 2.6 for different values of λ. In all cases, we observe evolutions that confirm
the previous analysis. We consider ν ≫ 1 initially, so that (2.38) applies and wϕ ≃ 1/3. The
system is attracted towards point B = (0, 1/λ) of table 2.3 and quickly reaches Ωϕ ≃ 0. Then,
as x → 0, we enter the regime where (2.42) applies and wϕ ≃ −1. The system tracks the
point T , and in doing so Ωϕ ≃ 1. Finally, as ν keeps on decreasing, following (2.34), we end
up with ν ≃ 0 where we recover the standard exponential quintessence behaviour.

Figure 2.6: Evolution of the scalar field parameters (2.35) dictated by (2.32)-(2.34), for
w = 0 and different values of λ. The initial condition νi = 1010 has been chosen to obtain
between 8 and 10 e-folds of matter domination and (xi, yi) to have Ωϕ < 0.2 initially.

An interesting feature of this evolution is the presence of an accelerated expansion era,
with wϕ ≃ −1, between matter-scalar equality and the standard quintessence era. It corre-
sponds to when the system is tracking the point T of figure 2.5. This era only gets shorter as
λ increases, effectively disappearing beyond λ ≃ 3. Its presence alleviates the bound λ < 0.42
that ensured wϕ < −0.95 for the standard quintessence in an exponential potential.

So, we have shown that, as long as λ < 3, the system (2.32)-(2.34) can lead to a realistic
background evolution of the universe, where the duration of the matter domination era is
set by the initial value of ν, and weff ∼ −1 for some time afterwards. Now let us discuss the
value of α that achieves this result. From the defition of the dynamical variables (2.31), at
matter-scalar equality

α =
νeqx

2
eq

4y2
eq

1
(κHeq)2 ≃

νeqx
2
eq

4y2
eq

× 10121,
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where we reintroduced κ = 1.1 × 10−19 GeV−1 and used the fact that matter-scalar equality
happens now, so Heq ∼ H0 ∼ 1.46 × 10−42 GeV. As we can see, the value of H0 gives
a huge factor 10120 in this equation, that implies a huge value for the parameter α unless
νeqx

2
eq/(4y2

eq) ≪ 1. But matter-scalar equality happens when the system starts tracking the
point T , and even if the formula (2.42) that gives Ωϕ at this time is approximate, we can use
it to obtain

Ωϕ,eq ≃
y2

eq

3νeqx2
eq

∼ 0.5 − 0.7 →
νeqx

2
eq

4y2
eq

∼ 0.1,

which is not much smaller than 1. So there is no way to lower the value of α ∼ 10120, with
the current Hubble rate being what it is. This value, that we already guessed in the introduc-
tion to this section, comes from the attempt to make the αR2 term play a major role in the
dynamic. Reversing this conclusion, it is safe to say that for reasonable values of α, the αR2

term never plays a role in the late time evolution, at least in the Palatini formulation.

2.3.3 Non-minimal coupling

Let us now consider the case where the only non-standard term in (2.25) is the the non-
minimal coupling ξϕ2R. In this case, the action of the scalar field is

Sϕ =
∫
d4x

√
−g

(
− 1

(1 + ξϕ2)2

(1
2(1 + ξϕ2)(∂ϕ)2 + V (ϕ)

))
,

and we could rewrite equations (2.26)-(2.27). In particular, the Hubble constraint becomes

H2 = ϕ̇2

6(1 + ξϕ2) + V

3(1 + ξϕ2)2 + ρm
3 ,

so we could think of introducing the following dynamical variables

X2 = ϕ̇2

6H2(1 + ξϕ2) , Y 2 = V

3H2(1 + ξϕ2)2 , Z2 = ϕ2 and λ = −V ′

V
,

before proceeding to the analysis as in the previous sections. In this case, we would have
Ωϕ = X2 + Y 2, constraining (X, Y ) to lie in the unit disk. However, it is more convenient to
introduce a canonical scalar field as follows

Φ(ϕ) =
∫ dϕ√

1 + ξϕ2 = 1√
ξ

sinh−1
(√

ξϕ
)

→ ϕ(Φ) = 1√
ξ

sinh
(√

ξΦ
)
. (2.44)

In terms of this new scalar, the action (2.25) becomes

SΦ =
∫
d4x

√
−g

(
− 1

1 + 4αU(Φ)

(1
2(∂Φ)2 + U(Φ) − α

4 (∂Φ)4
))

, (2.45)

where, in the case of an exponential potential V (ϕ) = M4 exp(−λϕ)

U(Φ) = V (ϕ(Φ))
(1 + ξϕ(Φ)2)2 = M4 exp(−λ/

√
ξ sinh(

√
ξΦ))

cosh4(
√
ξΦ)

, (2.46)
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Thus, when α = 0, the action (2.45) boils down to a canonical scalar field Φ in the
potential U(Φ), which contains all the ξ-dependence. We can then understand most of the
dynamics of the system simply by studying the variations of U(Φ). When Φ → −∞, it goes
to +∞, while when Φ → +∞, it goes to 0, faster than exponentially in both cases. As we
saw in section 2.1.2, for a canonical scalar field in a simple exponential potential exp(−λϕ),
accelerated expansion requires it to be not too steep, with λ2 < 2. Therefore, accelerated
expansion should not be expected to occur at the tail of the potential U(Φ), which is steeper
than any exponential. If 4ξ > λ2, the potential U(Φ) has two local extrema, located at (in
terms of non canonical ϕ)

ϕmin/max = − 2
λ

(
1 ±

√
1 − λ2

4ξ

)
,

corresponding to

Umin/max = λ4M4

64ξ2

exp
(
2 ± 2

√
1 − λ2/(4ξ)

)
(
1 ±

√
1 − λ2/(4ξ)

)2 , (2.47)

or, when 4ξ ≫ λ2

Umin ≃ exp(4)λ4M4

256ξ2 and Umax ≃ M4. (2.48)

In figure 2.7, we give an example of the potential U(Φ) for some values of λ and ξ.

Figure 2.7: Potential U(ϕ) of (2.46), for λ = 2 and ξ = 3.

We will show that the system has two future attractors: one where the field ends up
in the local minimum of the potential U(Φ), and another where it rolls down its tail. The
choice between the two depends essentially on whether the field starts on one side or the
other of the local maximum. The local minimum is the only attractor that corresponds to
accelerated expansion. There the field acts as a cosmological constant Λeff ∼ Umin, in which
the parameters λ, ξ play a role, see in (2.48). To reproduce the current value of H0, we need

λ2M2

ξ
∼ 10−23 GeV2 . (2.49)

Note that in the region
√
ξ|Φ| ≪ 1, the potential U(Φ) in (2.46) is approximated by a simple

exponential potential U(Φ) ≃ M4 exp(−λΦ). The behavior in this usual exponential discussed
in section 2.1.2 can thus be recovered transiently when the field is in this region.
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The action (2.45) with α = 0, is actually the same as in equation (2.10), so it can be
studied using the same variables (2.13)

x = ϕ̇√
6H

, y = 1
H

√
V

3 , and Λ = −U ′

U
, (2.50)

in terms of which Ωϕ = x2 + y2 and wϕ = (x2 − y2)/(x2 + y2), and they follow the system

dx

dN
= −3

2

2x+ (w − 1)x3 + x(w + 1)(y2 − 1) −
√

2
3Λy2

 ,
dy

dN
= −3

2y
(w − 1)x2 + (w + 1)(y2 − 1) +

√
2
3Λx

 ,
dΛ
dN

= −
√

6(Γ − 1)Λ2x, where Γ = UU ′′

U ′2 (2.51)

If Λ(Φ) is invertible, we can express Γ as a function of Λ to close the system. In our case

Λ(Φ) = λ cosh(
√
ξΦ) + 4

√
ξ tanh(

√
ξΦ),

is not invertible. Therefore, we split the analysis into three regions, the region of large
negative

√
ξΦ, the region of small

√
ξΦ, and the region of large positive

√
ξΦ. In the region

of small
√
ξ|Φ|, the potential U(Φ) in (2.46) is approximated by a simple exponential and the

system transiently behaves as discussed in section 2.1.2.

The region of large negative
√
ξΦ.

In the region
√
ξ|Φ| ≫ 1 with Φ < 0

Λ(Φ) ≃ λ

2

(
−
√
ξΦ
)

− 4
√
ξ and Γ − 1 ≃ 4ξ + Λ

√
ξ

Λ2 . (2.52)

In particular, this limit corresponds to Λ ≫ −4
√
ξ, so we exit this region when Λ ∼ −4

√
ξ.

With this expression of Γ, the system (2.51) has only two fixed points listed in table 2.4.

point x∗ y∗ Λ∗ eigenvalues stability Ωϕ weff

O 0 0 −
{
0, 3

2(w ± 1)
}

saddle 0 w

C 0 1 0
{
−3(1 + w),−3

2 ± 1
2

√
3(3 − 16ξ)

}
stable 1 −1

Table 2.4: Fixed points of the system (2.51) in the region
√
ξ|Φ| ≫ 1 with Φ < 0. In the

column Λ∗, we put a − when Λ is unconstrained by the fixed point equation.
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The only stable point is C, which is thus the future attractor of the system in the region
of large negative

√
ξΦ. Since Λ∗ = 0 at this point, the limit Λ ≫ −4

√
ξ that defines the

region is satisfied, and point C is a future attractor of the whole system. It corresponds to
the scalar field Φ standing still in the local minimum of the potential U(Φ), see figure 2.7,
because Λ∗ = 0 ↔ U ′ = 0 from the definition (2.50). At this point, the scalar field dominates
and acts as a cosmological constant, so the universe undergoes accelerated expansion.

Since we consider the region Λ ≫ −4
√
ξ, we have Γ − 1 ≪ 1, see (2.52), and as a

consequence Λ is slowly varying due to equation (2.51). Therefore, we automatically have
dΛ/dN ≃ 0 and the points where only dx/dN = dy/dN = 0, with Λ variable, act as would-be
fixed points, that are moving but closely tracked by the system. These points are actually the
same as in table 2.2, replacing λ by Λ. We recall them in table 2.5 for convenience

point x∗ y∗ eigenvalues stability and existence Ωϕ weff

A±,Λ ±1 0
{
3(1 − w), 3 ∓

√
3
2Λ
} unstable if Λ ≥ ±

√
6 1 1

saddle if Λ < ±
√

6

BΛ
√

3
2

1+w
Λ

√
3(1−w2)

2Λ2

{
3

4Λ((w − 1)Λ ± ∆)
} exists if Λ2 ≥ 3(1 + w) 3(1+w)

Λ2 w
stable

CΛ
Λ√
6

√
1 − Λ2

6

{
Λ2

2 − 3,Λ2 − 3(w + 1)
} exists if Λ2 < 6

1 Λ2

3 − 1stable if Λ2 < 3(1 + w)
saddle if 3(1 + w) ≤ Λ2

Table 2.5: Would-be fixed points of the system (2.51), solving only for dx/dN = dy/dN = 0.

Starting from Λ ≫ 1, the system is attracted to BΛ, which is the only future attractor. At
this point, Ωϕ = 3(1 + w)/Λ2 ≪ 1, so it corresponds to a matter dominated universe. At this
point, Λ decreases due to equation (2.51), because Γ − 1 > 0 in the Λ ≫ −4

√
ξ region. After

some time, the stability condition Λ2 > 3(1+w) breaks and the system is attracted to CΛ. The
point CΛ then remains stable forever, as Λ continues to decrease, and it converges to point C
of table 2.4, which is the future attractor of the system in the region of large negative

√
ξΦ.

This point corresponds to a scalar dominated universe undergoing accelerated expansion, as
the field is trapped in the local minimum of the potential and acts as a cosmological constant.

The region of large positive
√
ξΦ.

In the region
√
ξ|Φ| ≫ 1 with Φ > 0, only some signs change with respect to (2.52)

Λ(Φ) ≃ λ

2 exp(
√
ξΦ) + 4

√
ξ and Γ − 1 ≃ 4ξ − Λ

√
ξ

Λ2 ,
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and the analysis is mostly the same. The only difference is that Γ − 1 < 0, so now Λ increases
due to equation (2.51). Therefore, starting from Λ2 > 3(1 + w), the system is attracted to
BΛ, and remains so forever, because the stability condition Λ2 > 3(1 + w) never breaks. This
point corresponds to a matter dominated universe, where the field is rolling down the steep
tail of the potential of figure 2.7.

Initial positions of the scalar field.

From this analysis, we know that the only trajectories leading to a realistic background evolu-
tion, with a matter domination followed by accelerated expansion, are with the field starting
around the local minimum of the effective potential U(Φ), which is present when 4ξ > λ2.
In this case, the period of matter domination corresponds to the point CΛ in table 2.5. We
can use this information to approximate the initial position of the field leading to a given
number N of e-folds of matter domination before accelerated expansion. There are two such
positions: ΦL

i (left) and ΦR
i (right), on each side of the minimum.

To compute ΦL
i , we assume that Λ is large initially to approximate Γ−1 ≃

√
ξ/Λ in (2.52).

With this and the value of x∗ corresponding to CΛ in table 2.5, we obtain from (2.51):

dΛ
dN

≃ −3(1 + w)
√
ξ → Λ ≃ −3(1 + w)

√
ξN + Λi .

Since the local minimum corresponds to Λ = 0, we reach it after Nf e-folds if initially

ΦL
i ≃ − 1√

ξ
log

(
6(1 + w)

√
ξ

λ
Nf

)
. (2.53)

For ΦR
0 , we can approximate Λ ≃ −4

√
ξ and write Λ = −4

√
ξ + Λ′, with small Λ′, to get

dΛ′

dN
≃ 3

4(1 + w)Λ′ → Λ ≃ −4
√
ξ +

(
Λi + 4

√
ξ
)

exp
(3

4(w + 1)N
)
.

Once again, we reach the minimum Λ = 0 after Nf e-folds provided that initially

ΦR
i ≃ − 1√

ξ

(
ln
(

8
√
ξ

λ

)
− 3

4(1 + w)Nf

)
. (2.54)

Some numerical results.

In Figure 2.8, we show the evolution of the system dictated by (2.51), for w = 0, different
values of (λ, ξ), and initial Φi = ΦR

i given by (2.54), with N = 10. These numerical results
confirm the previous analysis. At first, the system is attracted to the point BΛ of table 2.5,
where Ωϕ = 3/Λ2. If the evolution starts with the field at ΦR

i , as is the case in figure 2.8, we
have Λ ≃ −4

√
ξ and Ωϕ ≃ 3/(16ξ) during this era. If ξ is not large enough, we can thus have

a significant Ωϕ. For instance, ξ = 1 in two of the examples of figure 2.8 leads to Ωϕ ≃ 0.19.
If the evolution starts with the field at ΦL

i , we have Λ ≫ 1 during the matter dominated era
and Ωϕ ≫ 1, regardless of the value of ξ. In any case, the system ends up attracted to point
C of Table 2.4 corresponding to accelerated expansion, after the desired number of e-folds.
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Figure 2.8: Evolution of the system dictated by (2.51), for w = 0 and different values of
(λ, ξ), initial Φi = ΦR

i , given by (2.54) with N = 10, and initial Ωϕ,i ≃ 0.1.

In table 2.6, we give the values of the parameters associated with figure 2.8, which fur-
ther validate our analysis. In particular, the values ΦL,R

i , tuned numerically to have N ≃ 10
e-folds of matter domination, correspond to those computed with (2.53) and (2.54), and do
not depend on the initial scalar energy density, as long as this latter is small enough for the
field to be subdominant initially. Therefore, for each value of λ, ξ, the initial value of the field
is entirely determined by the duration requirement of the matter-dominated era.

Note that in the last line of table 2.6, there is no value for ΦR
i . This is because, at this

stage, there is not enough distance between the local minimum and the local maximum of
the potential U (2.47) for the field to roll during enough e-folds of matter domination. So
above λ ∼ 103, the field can only start with initial value ΦL

i to obtain the desired evolution.
Note also that the displacement of the scalar field remains subplanckian as long as ξ ≳ 10.

Finally, in table 2.6, we added a column for Φ̇2
max, in order to discuss the importance of

the α(∂Φ)4 in the action (2.45). We see that Φ̇2 never gets larger than 10−38 GeV4, which
is around 10−114 in Planck units. In consequence, for reasonable values of α, we can be
confident that this term is completely negligible. The quadratic correction αR2 could also
play a role if αU ∼ 1. This does not happen around the local minimum of the potential U(Φ)
at least for reasonable values of α, but perhaps in the region of large negative Φ where the
potential diverges rapidly. However, this region is not involved in late dynamics, and we have
not further investigated the implications of the quadratic correction on this model.
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λ ξ M (GeV) Ω1/2
ϕ,i ΦL

i ΦR
i Φ̇2

max (GeV4)

10−7 100 4 × 10−5 10−1 −20.4 −11 10−38

10−3 −20 −14 10−43

103 1 × 10−3 10−1 −0.75 −0.46 10−39

10−3 −0.74 −0.53 10−45

107 1 × 10−1 10−3 −0.0089 −0.007 10−47

10−3 100 1 × 10−8 10−1 −11.2 −2 10−38

10−3 −10.9 −4 10−42

103 3 × 10−7 10−1 −0.46 −0.2 10−40

10−3 −0.45 −0.24 10−47

107 3 × 10−5 10−3 −0.006 −0.004 10−47

100 103 3 × 10−10 10−3 −0.23 −0.0004 10−45

107 3 × 10−8 10−3 −0.0038 −0.0017 10−47

103 107 3 × 10−11 10−3 −0.0016 − 10−47

Table 2.6: Values of the parameters associated with some numerical evolutions of figure
2.8. The value of M is tuned to obtain the current value of the Hubble rate at matter-scalar
equality. The initial scalar energy density Ωϕ,i is varied between. The values ΦL,R

i are the
two possible initial positions of the field tuned to obtain between 8 and 10 e-folds of matter
domination. The value Φ̇2

max is the maximum value that Φ̇2 attains during the evolution.

Initial conditions and inflation.

In equation (2.53) and (2.54), we gave expressions for the initial position of the field giving a
desired number of e-folds of matter domination before accelerated expansion. In the presence
of a non-minimal coupling, it turns out that this initial position can be linked to inflation. To
see this, let us go back to the Jordan frame action (2.23), and assume that, during inflation,
R ≃ 12H2

inf is a constant, determined by the inflationary dynamics and independent of ϕ.
In this case, the non-minimal coupling ξϕ2R enters as an additional term in the effective
potential of ϕ

Ṽ (ϕ) = V (ϕ) − 6ξH2
infϕ

2,

and, during inflation, ϕ will roll down to the minimum of this potential. As a result, the
minimum of Ṽ is a natural initial condition from which the field ϕ can start to roll after
inflation, at the beginning of the radiation-dominated era. With an exponential potential
V (ϕ) = M4 exp(−λϕ), this minimum is located at

ϕmin = 1
λ
W−1

(
−λ2κ2M4

12ξH2
inf

)
, (2.55)
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whereW−1 is the lower branch of the Lambert function. Now, recall that λ2M2/ξ ∼ 10−23 GeV2

to reproduce the current value of H0 at the local minimum of the effective potential U(Φ),
see equation (2.49). Thus, we can substitute in (2.55) and get

ϕmin = 1
λ
W−1

(
−
(
M

Hinf

)2
× 10−60

)
. (2.56)

For the values of M obtained in table 2.6 and reasonable values Hinf ∼ 104 − 1013 GeV, the
argument of W−1 is small in (2.56), so we can approximate W−1(−x) ≃ log(x). In order
to compare with the initial positions computed in (2.53), we shall convert (2.56) to the
canonical field Φ, which is given as a function of ϕ in (2.44). Using this definition and the
approximation sinh−1(x) ≃ − log(−2x) for large negative x, we get

Φmin ≃ − 1√
ξ

log
(

2
√
ξ

λ
log

((
Hinf

M

)2
× 1060

))
. (2.57)

Note that this initial inflation-induced position for Φ has the same (λ, ξ)-dependence as one
obtained from the dynamical system analysis in (2.53). In the case where the field rolls during
Nr e-folds during the radiation dominated era and Nm e-folds during the matter dominated
era, we can replace (1 + w)Nf by 4/3Nr +Nm in (2.53), leading to

ΦL
i ≃ − 1√

ξ
log

(
2
√
ξ

λ
(4Nr + 3Nm)

)
.

Therefore, if the field starts in the initial inflation-induced position (2.57) at the beginning of
the radiation dominated era, we will have the following link between Nr, Nm and Hinf ,M

4Nr + 3Nm = 138 + 2 log
(
Hinf

M

)
.

If we take Hinf ∼ 104 − 1013 GeV and M ∼ 10−11 − 10−1 GeV, and insist that Nm ∼ 8 − 10, this
exprsesion givesNr ≃ 33−56. If we fixHinf to 1013 GeV instead, we obtainNr ≃ 43−56. These
are reasonable values for the number of e-folds of radiation domination. It is interesting to
obtain such a link between the duration of the radiation and matter-domination era on one
hand, and the energy scales of inflation and quintessence on the other hand. Whether this
link can be obtained in other quintessence models and help solve the coincidence problem
remains an open question.
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Chapter 3

Introduction to N = 1, D = 4 supergravity

This chapter is an introduction to supersymmetry and supergravity in the superconformal
formalism, along the lines of [37]. Our goal is to introduce the ingredients leading to the
matter-coupled N = 1 action in D = 4, which is used in chapters 4 and 6, in a synthetic
and self-contained way. The reader who is familiar with or not interested by the details of
this construction can safely skip this chapter. In section 3.1, we recall basic facts on internal
and spacetime symmetries, mostly to introduce notations. In section 3.2, we introduce global
supersymmetry, multiplet calculus and the construction of general supersymmetric actions.
Finally, in section 3.3, we turn to supergravity. Starting from the pure N = 1 supergravity,
we introduce the conformal formalism on simple examples before explaining how it is used
to build the general action of matter-coupled N = 1 supergravity.

3.1 Internal and spacetime symmetries

Modern Particle Physics is based on the concept of gauge symmetry. A symmetry can be de-
fined in a broad sense as a transformation acting on the constituents of the theory leaving
their equations of motion invariant. In our context, these constituents are fields propagating
in spacetime. Naively, there are two classes of symmetry: internal and spacetime symmetries.

Internal symmetries are symmetries that do not act on the coordinates. A simple example
is to consider a set of free massive scalar fields ϕi(x), with the following action

S = 1
2

∫
dDx(ηµν∂µϕi∂νϕi +m2ϕiϕi), (3.1)

with a sum over the repeated index i. This action, and the resulting equations of motion, is
manifestly invariant under a transformation ϕi(x) → ϕ′i(x) = Ri

jϕ
j(x), with RTR = I and

detR = 1. Thus, the system (3.1) has an internal symmetry under the Lie group SO(n),
with the field ϕ transforming under the fundamental representation. It is also instructive to
consider the Lie algebra of this group, i.e. to consider infinitesimal transformations of the
form Ri

j = δij + θrij, with a small parameter θ. The rij are called the generators of the Lie
algebra, and their commutation relations encode the local structure of the Lie group SO(n).
More generally, we can consider an algebra with generators tA and commutation relations

[tA, tB] = fAB
CtC ,
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where the fABC are numerical factors, called the structure constants of the Lie algebra. With
this notation, a set of scalar fields ϕi(x) in the fundamental representation transforms as

ϕi(x) → ϕi(x) − θA(tA)ijϕj(x), (3.2)

An internal symmetry is said to be gauged when constant transformation parameters θ are
promoted to functions of spacetime θ → θ(x). The presence of kinetic terms in (3.1) implies
the appearance of derivatives of θ(x) when the transformation (3.2) is performed. In order
to restore the invariance of the action, we introduce gauge fields, one for each generator,
transforming as

AAµ → AAµ + ∂µθ
A + θCABµ fBC

A, (3.3)

and replace the spacetime derivatives ∂µ by covariant derivatives Dµ

Dµϕ
i = ∂µϕ

i(x) + AAµ (tA)ijϕj(x). (3.4)

These simple steps are enough to ensure gauge invariance of the action.

On the other hand, spacetime symmetries are symmetries that also involve a motion in
spacetime. The simplest example is symmetry under translations ϕi(x) → ϕ′i(x) = ϕi(x + a),
where aµ is a vector parameter. This symmetry is present in the action (3.1), as can be
seen by a simple change of variable. This action is also invariant under Lorentz symmetry,
which includes spacetime rotations and boosts. Together with the translations, they form the
Poincaré group. As for internal symmetries, we can consider its Lie algebra. In D dimen-
sions, there are D generators Pµ for translations and D(D− 1)/2 generators M[µν] for Lorentz
transformations, which are antisymmetric. Their commutation relations are

[Pµ, Pν ] = 0, [Pµ,Mρσ] = ηµρPσ − ηµσPρ

[Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ − ηνσMµρ + ηµσMνρ. (3.5)

The gauge theory associated with the Poincaré group is actually General Relativity, since local
translations can be seen as general coordinate transformations.

3.2 Supersymmetry

It is natural to wonder whether internal and spacetime symmetries exhaust all the possible
symmetries that can be realized in an interacting relativistic Quantum Field Theory. Accord-
ing to the Coleman-Mandula theorem [38], this is indeed the case up to the addition of
the conformal symmetry. But this theorem only considers bosonic symmetries, and there is
actually a more general possibility, if we introduce the notion of superalgebra. In a superal-
gebra, one makes a distinction between two classes of elements: the bosonic elements and
the fermionic elements. The structure of the superalgebra is then specified by the commuta-
tor of pairs of bosonic elements, the anticommutator of pairs of fermionic elements and the
commutator of bosonic-fermionic pairs, or schematically

[B,B] = B, [B,F ] = F, {F, F} = B,

Introducing superalgebras allows to extend the Poincaré algebra (3.5) by adding new gener-
ators: the supercharges Qi

α, that are fermionic. Here, we consider them as four-component
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spinors, and the index α is a spacetime spinor index (just as Pµ is a four-component vector,
with a spacetime vector index µ). The other index i = 1, . . . ,N labels distinct supercharges.
In the following, we consider only N = 1 and drop the index i. With only one supercharge,
the resulting super-Poincaré algebra reads, in addition to the commutation relations (3.5)

[Pµ,Qα] = 0, [M[µν],Qα] = −1
2(γµν)αβQβ, {Qα, Q̄β} = −1

2(γµ)αβP µ, (3.6)

where the γµ are the γ-matrices, that satisfy {γµ, γν} = 2ηµν , and γµν = 1/2[γµ, γν ]. Within the
hypotheses of the Haag-Lopuszanski-Sohnius theorem [39], this is the only possible extension
of the Poincaré algebra. The supercharges Qα generate new kind of transformations, called
supersymmetry (SUSY) transformations. Since these supercharges are fermionic, SUSY trans-
formations turn bosons into fermions, and vice versa. The fields of a supersymmetric theory
can be arranged into multiplets, such that fields inside a same multiplet transform into each
other. Since [Pµ,Qα] = 0, fields that belong to the same multiplet have the same mass.

3.2.1 Multiplet calculus and supersymmetric actions

The simplest massless multiplets of N = 1 supersymmetry are the chiral multiplet, which
can be described by a complex scalar field Z and a Majorana spinor field χ, and the vector,
or gauge multiplet, described by a vector gauge field Aµ and a Majorana spinor field λ, the
gaugino. In addition, it is convenient to introduce auxiliary fields in these multiplets. These
fields have algebraic equations of motion and do not propagate degrees of freedom, but they
allow to realise supersymmetry off-shell. Otherwise, the SUSY algebra (3.6) would only close
after applying the equations of motion. Auxiliary fields also allow multiplets to contain the
same number of bosonic and fermionic degrees of freedom off-shell.

For instance, in a chiral multiplet, we introduce a complex scalar field F , such that the
SUSY transformations of the fields are

δZ = 1√
2
ϵ̄PLχ, δPLχ = 1√

2
PL(/∂Z + F )ϵ, δF = 1√

2
ϵ̄/∂PLχ, (3.7)

here, /∂ = γµ∂µ and PL = (1 + γ∗)/2 is the left-handed chiral projector, where γ∗ = iγ0γ1γ2γ3,
which is sometimes called γ5. In addition, the transformation parameter ϵ is a Majorana
spinor, and the bar over any spinor ψ denotes the ’Majorana conjugate’ ψ̄ = ψTC, where C is
the charge conjugation matrix, see [37] for more details. Similarly, in a gauge multiplet, we
introduce a real scalar field D, and the SUSY transformations are

δAµ = −1
2 ϵ̄γµλ, δλ =

(1
4γ

µνFµν + 1
2iγ∗D

)
ϵ, δD = 1

2iϵ̄γ∗γ
µ∂µλ, (3.8)

where Fµν = ∂µAν−∂νAµ. Let us mention the existence of another N = 1 multiplet: the grav-
ity multiplet, containing a spin-2 graviton and a spin-3/2 field. This spin-3/2 field is related
with gauging the supersymmetry transformations, as we will soon see. When this is done,
translations are to be gauged as well due to their intimate relation in (3.6). Therefore, the
theory of the N = 1 gravity multiplet is an extension of General Relativity, called supergravity.
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More generally, a multiplet can be constructed as follows. First, we choose its lowest
component. For the chiral multiplet, it is a complex scalar field Z; For the gauge multiplet, it
is a gauge vector field Aµ. We can also choose a real scalar field C. We then perform a SUSY
transformation of this first component, which necessarily introduces a second component.
For instance, δC ∝ ϵ̄ζ, where ζ is a Majorana fermion for C to be real. We then make a
general ansatz for the SUSY transformation of this new component

δζ = (A+ γµAµ + γµνAµν)ϵ, (3.9)

where the (A,Aµ, Aµν) are bosonic fields. The key step is then to implement the anticommu-
tation relation (3.6) to obtain constraints on this ansatz, in terms of fields already present in
the multiplet. Indeed, this anticommutation relation implies that

[δ(ϵ1), δ(ϵ2)]C = −1
2 ϵ̄1γ

µϵ2∂µC, (3.10)

and similarly, replacing C with any field. The parts of the ansatz (3.9) that remain uncon-
strained by (3.10) must be added as new components of the multiplet, and the procedure
continues until we find do not find any new fields. Starting from a complex scalar field Z
transforming as δZ = 1/

√
2ϵ̄PLχ, this procedure quickly yields the transformation rules (3.7).

Starting from a real scalar field C, it is a little bit longer. The final multiplet contains

(C, ζ,H, Aµ, λ,D),

with transformation rules

δC = 1
2iϵ̄γ∗ζ, δPLζ = 1

2PL(iH − /A− i/∂C)ϵ,

δH = −iϵ̄PR(λ+ /∂ζ), δAµ = −1
2 ϵ̄(γµλ+ ∂µζ) (3.11)

δλ = 1
2(γρσ∂ρAσ + iγ∗D)ϵ, δD = 1

2iϵ̄γ∗γ
µ∂µλ.

The SUSY transformations of (Aµ, λ,D) shown here are remarkably similar to those in (3.8)
for the gauge multiplet. In fact, there is a generalisation of a gauge transformation acting the
real multiplet, under which C → C+ImZ, with Z being the lowest component of a chiral mul-
tiplet parameterising the transformation. The transformation of the other components can
be deduced as we just explained. This transformation can be used to go to the Wess-Zumino
gauge, where (C, ζ,H) = 0, and recover exactly the field content and transformation rules of
a gauge multiplet. The field content and transformation rules (3.7), (3.8) and (3.11) of the
multiplets can also be obtained in a somewhat simpler way using the superspace formalism,
as described for instance in [40], but this formalism is harder to extend to supergravity.

General supersymmetric actions

Multiplet calculus, which we have just introduced, is an important ingredient in the compu-
tation of general N = 1 supersymmetric actions. The other ingredient is the observation that
the SUSY transformation of F and D in (3.7), (3.8) and (3.11) are total derivatives, implying
that F -term and D-term actions of the form

SF =
∫
d4xF and SD =

∫
d4xD, (3.12)
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are invariant under supersymmetry. Starting from a set of n chiral multiplets (Zα, χα, Fα),
we can for instance consider a composite chiral multiplet whose lowest component is an
arbitrary holomorphic function W (Zα) of the scalar components. We can then compute the
other components of this multiplet

χ(W ) = Wαχ
α and F (W ) = WαF

α − 1
2Wαβχ̄

αPLχ
β,

where Wα = ∂W/∂Zα and Wαβ = ∂2W/∂Zα∂Zβ, and conclude that the F -term action

SW =
∫
d4x

(
WαF

α − 1
2Wαβχ̄

αPLχ
β + h.c.

)
, (3.13)

is invariant under supersymmetry. From the same set of n chiral multiplets, we can also build
a composite real multiplet whose lowest component is an arbitrary real function 1/2K(Zα, Z̄ ᾱ),
leading to the D-term action

SK =
∫
d4x

(
Kαβ̄

(
−∂µZα∂µZ̄

β̄ − 1
2 χ̄

αPL/∂χ
β̄ − 1

2 χ̄
β̄PR/∂χ

α + FαF̄ β̄
)

+1
2
(
Kαβγ̄(−χ̄αPLχβF̄ γ̄ + χ̄αPL(/∂Zβ)χγ̄) + h.c.

)
+1

4Kαβγ̄δ̄χ̄
αPLχ

βχ̄γ̄PRχ
δ̄
)
,

here again, indices (α, β̄, . . . ) denote derivatives with respect to Zα and Z̄ β̄, for instance
Kαβ̄ = ∂K/∂Zα∂Z̄ β̄. This action contains general kinetic terms for the fields (Zα, χα) in
the first line, with a target space metric gαβ = Kαβ, suggesting to interpret K as a Kahler
potential, see [37] for an introduction to Kahler geometry. In fact, this action can be rewritten
in a way that makes the connection to Kahler geometry a little more explicit

SK =
∫
d4x

(
gαβ̄

(
−∂µZα∂µZ̄

β̄ − 1
2 χ̄

αPL /∇χβ̄ − 1
2 χ̄

β̄PR /∇χα

+
(
Fα − 1

2Γαγβχ̄γPLχβ
)(
F̄ β̄ − 1

2Γβ̄γ̄ᾱχ̄γ̄PRχᾱ
))

(3.14)

+1
4Rαγ̄βδ̄χ̄

αPLχ
βχ̄γ̄PRχ

δ̄
)
,

where ∇µ is a Kahler-covariant derivative, Γαβγ is the affine connection built from gαβ̄ and
Rαβ̄γδ̄ is the curvature tensor. The formulae involved in this rearrangement are

PL∇µχ
α = PL(∂µχα + Γαβγχγ∂µZβ), Γαβγ = gαδ̄∂βgγδ,

Rαβ̄γδ̄ = ∂γ∂δ̄gαβ̄ − gηϵ̄∂γgαϵ̄∂δ̄gηβ̄.

The kinetic terms in (3.14) are accompanied by interactions between the different fields
of the multiplet, which is a general consequence of supersymmetry: different parts of the
action (here kinetic terms and interactions) are related to each other. Notice also that no
spacetime derivative act on the auxiliary field F .

It is also possible to build a composite multiplet out of different kinds of multiplets. For
instance, we can consider a set of N abelian gauge multiplets (AAµ , λA, DA) in addition to the
set of chiral multiplets (Zα, χα, Fα), and build a chiral multiplet whose lowest component is

Z(f) = −1
4fAB(Zα)λ̄APLλB,
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where the fAB(Zα) are N × N holomorphic functions of the Zα. This choice is motivated by
the fact that the corresponding F -term action contains general kinetic terms for the λA

Sf =
∫
d4x

(1
4fAB

(
−λ̄APL/∂λB − F µν−AF−B

µν +DADB
)

1
2
√

2
fABαχ̄

α
(
−1

2γ
µνF−A

µν + iDA
)
PLλ

B (3.15)

−1
4fABαF

αλ̄APLλ
B + 1

8fABαβχ̄
αPLχ

βλ̄αPLλ
β + h.c.

)
,

here FA
µν = ∂µA

A
ν − ∂νA

A
µ is the abelian field strength of the vector field AAµ and F−A

µν =
1/2(FA

µν − F̃A
µν) is an anti self-dual tensor made from it, where F̃ µνA = −1/2iεµνρσFρσ and

εµνρσ is the antisymmetric Levi-Civita tensor, with ε0123 = −1.

3.2.2 Gauged internal symmetry

The action S = SW + SK + Sf is already a quite general supersymmetric action, but still lacks
an essential ingredient of Particle Physics: gauged internal symmetries. In order to gauge
global symmetries of chiral multiplets, we must first identify them. Internal symmetries are
associated with holomorphic Killing vectors kαA(Z) of the target space, and act infinitesimally
on the scalar component as

δ(θ)Zα = θAkαA(Z). (3.16)

From this, we can compute the following action on the other components

δ(θ)PLχα = θA
∂kαA(Z)
∂Zβ

PLχ
β (3.17)

δ(θ)Fα = θA
∂kαA(Z)
∂Zβ

F β − 1
2θ

A∂
2kαA(Z)
∂Zβ∂Zγ

χ̄βPLχ
γ

Killing vectors generate a Lie algebra, with structure constants involved in the Lie brackets

kβA∂βk
α
B − kβB∂βk

α
A = fAB

CkαC .

In the simplest example of a flat target space metric gαβ̄ = δαβ̄, we recover the same transfor-
mation as in equation (3.2)

δ(θ)Zα = −θA(tA)αβZβ,

where the tA are the matrix generators of the Lie algebra. In that case we can thus easily
identify the Killing vectors kαA = −(tA)αβZβ. Under the global transformation (3.16)-(3.17),
the action SW is invariant provided that W (Z) is invariant

δ(θ)W = θAkαAWα = 0.

On the other hand, the action SK is invariant, even if K(Z, Z̄) is not. Indeed, Killing vectors
are defined by the fact that corresponding transformations preserve the metric, but since the
metric is obtained from derivatives of the the Kahler potential gαβ̄ = ∂α∂β̄K, the latter is only
determined up to

K(Z, Z̄) → K(Z, Z̄) + f(Z) + f̄(Z̄), (3.18)
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with f(Z) an arbitrary holomorphic function. This transformation is called a Kahler trans-
formation. As a result, the Kahler potential does not need to be invariant under a gauge
transformation, it can undergo a Kahler transformation

δ(θ)K = θA(kαA∂α + kᾱA∂ᾱ)K(Z, Z̄) = θA(rA(Z) + r̄A(Z̄)), (3.19)

where the rA(Z) are holomorphic. Since SK only depends on K through at least two deriva-
tives of the form Kαβ̄···, see (3.14), it is clearly invariant.

Using the properties of Kahler geometry, the information contained in Killing vectors can
be rewritten into so-called moment maps, which are real functions PA(Z, Z̄) such that

kαA(Z) = −igαβ̄∂β̄PA(Z, Z̄). (3.20)

This relation can be inverted to obtain the moment maps as

PA(Z, Z̄) = i(kα∂αK(Z, Z̄) − r(Z)). (3.21)

In order to gauge internal symmetries, we start in the same way as in (3.3)-(3.4). For
each Killing vector, we introduce a gauge multiplet (AAµ , λA, DA) transforming as

δ(θ)AAµ = ∂µθ
A + θCABµ fBC

A, δ(θ)λA = θCλBfBC
A, δ(θ)DA = θCDBfBC

A,

and replace spacetime derivatives ∂µ by gauge covariant derivatives Dµ acting as

DµZ
α = ∂µZ

α − AAµk
α
A(Z), Dµλ

A = ∂µλ
A + λCABµ fBC

A

DµPLχ
α = ∂µPLχ

α − AAµ
∂kαA(Z)
∂Zβ

PLχ
β.

Replacing spacetime derivatives by gauge covariant derivatives has a major effect on the
construction of multiplets, as it replaces the supersymmetry algebra relation (3.10), which
was the central element of this construction, by a covariant version

[δ(ϵ1), δ(ϵ2)] = −1
2 ϵ̄1γ

µϵ2Dµ (3.22)

For instance, the SUSY transformation of chiral multiplets becomes

δZα = 1√
2
ϵ̄PLχ

α, δPLχ
α = 1√

2
PL( /DZα + Fα)ϵ, δFα = 1√

2
ϵ̄ /DPLχ

α + ϵ̄PRλ
AkαA(Z),

not only spacetime derivatives are replaced by covariant derivatives, but gauginos λA also
enter in the transformation of Fα, due to the presence of AAµ in the covariant derivative in the
SUSY transformation of PLχα. In principle, the same effect affects the composite multiplets
of lowest components W (Z) and K(Z, Z̄), from which the SUSY invariant actions (3.13) and
(3.14) are built. In fact, SW remains unchanged, because of the gauge invariance of W (Z),
but SK gathers additional terms that depend on the gauginos λA and D-fields DA

SK =
∫
d4x

(
· · · −DAPA −

√
2gαβ̄λ̄A(PLχαkβ̄A + PRχ

β̄kαA) + h.c.
)
, (3.23)
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where the · · · symbolise the terms already present in (3.14). On the other hand, Sf is only
updated by replacing field strength with their non-abelian version

FA
µν = ∂µA

A
ν − ∂νA

A
µ + fBC

AABµA
c
ν ,

and spacetime derivatives by covariant derivatives. In addition, gauge invariance requires
fAB(Z) to transform in the direct product of adjoint representations

δ(θ)fAB(Z) = θCkαCfABα = 2θCfC(A
DfB)D(Z),

here, the parenthesis between indices denotes a symmetrisation, M(AB) = 1/2(MAB +MBA).

The Fayet-Iliopoulos terms

Note that the rA(Z) are only determined up to an arbitrary imaginary constant in (3.19).
Equivalently, the moment maps (3.21) are defined up to an arbitrary real constant. For non-
abelian symmetries, these constants are fixed by imposing the moment maps to transform in
the adjoint representation, which is actually required by supersymmetry, see [37], but the
moment maps of abelian U(1) factors remain ambiguous.

In parallel, if the gauge group contains abelian factors, the D-components of the cor-
responding multiplets (AÃµ , λÃ, DÃ) transform as total derivatives, see equation (3.8). As a
consequence, the term

SFI = −
∫
d4xξÃD

Ã,

is invariant under supersymmetry and can be added to the total action. Comparing with
(3.23), we see that the possibility of adding such terms, called Fayet-Iliopoulos terms [41],
corresponds exactly to the arbitrary real constant that can be added in the moment maps.

3.2.3 Auxiliary fields, scalar potential, SUSY breaking

Following these steps, we obtain a fairly general N = 1 supersymmetric gauge theory of n
chiral multiplets and N gauge multiplets, with the action S = SK + SW + Sf . All that remains
is to eliminate the auxiliary fields. Writing and solving their equations of motion, one obtains

F̄ β̄ = gαβ̄
(
−Wα + 1

2Γβ̄γ̄ᾱχ̄γ̄PRχᾱ + 1
4fABαλ̄

APLλ
B
)
, (3.24)

and
Re(fAB)DB = PA − 1

2
√

2
ifABαχ̄

αPLλ
B + 1

2
√

2
if̄ABᾱχ̄

ᾱPRλ
B. (3.25)

They can then be substituted to obtain the physical action. An interesting element of this
physical action is the scalar potential, which takes a very particular form

V = gαβ̄WαW β̄ + 1
2(Ref)−1ABPAPB. (3.26)

Given the potential (3.26), the system will classically evolve towards a configuration that
minimise it locally

∂αV (Z∗, Z̄∗) = ∂ᾱV (Z∗, Z̄∗) = 0.
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Since gαβ̄ and Ref act as metrics in the general kinetic terms of (3.14) and (3.15), they
are both positive definite, and as a result V (Z∗, Z̄∗) ≥ 0. It can also be shown from the
supersymmetry algebra (3.6) that unbroken supersymmetry requires the vacuum energy to
vanish. Therefore, when the system lies in its vacuum state, at the minimum of the potential

supersymmetry is unbroken ↔ V (Z∗, Z̄∗) = 0
supersymmetry is broken ↔ V (Z∗, Z̄∗) > 0.

Now, V (Z∗, Z̄∗) > 0 is equivalent to either one of theWα(Z∗) ̸= 0 or one of the PA(Z∗, Z̄∗) ̸= 0,
which are in turn respectively equivalent to either one of the Fα ̸= 0 or one of the DA ̸= 0
in a Lorentz invariant vacuum where the fermions vanish anyways, see equations (3.24)-
(3.25). So there are essentially two ways to spontaneously break supersymmetry: F -term
and D-term breaking. Fayet-Iliopoulos terms play a prominent role in D-term breaking, as
they appear as constant shifts in the moment maps.

Breaking supersymmetry is crucial if we want to relate it to the observable world, because
it implies that fields of different spin are embedded into multiplets, fields belonging to the
same multiplets having the same mass. But this is not what we see in the spectrum of the
Standard Model. If supersymmetry is broken, fields in the same multiplets no longer nec-
essarily have the same mass. Supersymmetric partners of the Standard Model can thus be
much heavier and effectively inaccessible to current experiments.

When an internal symmetry is spontaneously broken, the theory necessarily contains
massless bosons, called Goldstone bosons. There is one for each broken generator. Similarly,
when supersymmetry is spontaneously broken, the theory necessarily contains a massless
fermion, called the Goldstino. This fermion is a linear combination of the chiral fermions χα

and of the gauginos λA

PLv = − 1√
2
PL
(
Wαχ

α + 1√
2
iPAλ

A
)
, (3.27)

where Wα(Z∗) and PA(Z∗, Z̄∗) are evaluated at the minimum of the potential.

3.3 Supergravity

The concept of gauged internal symmetry is a very fruitful concept, which is at the heart of the
construction of the Standard Model of Particle Physics. After having introduced supersymme-
try, one can ask about the possibility of gauging it as well, i.e. consider SUSY transformations
with a spacetime dependent parameter ϵ → ϵ(x). Just as with internal symmetries, it neces-
sitates the introduction of a gauge field, which is not only a vector, but also a (Majorana)
spinor, due to the fermionic nature of supersymmetry generators. It is thus a vector-spinor of
spin 3/2, called the gravitino, sharing a multiplet with the spin-2 graviton. What we call the
graviton here is the field hµν(x) describing a weak gravitational perturbation around a fixed
classical background, e.g. around Minkowski

gµν(x) = ηµν + 2hµν(x).
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The free-field action of the gravitino ψµ is Rarita-Schwinger

SRS = −1
2

∫
d4xψ̄µγ

µνρ∂νψρ, (3.28)

where multi-indices gamma matrices are defined as γµ1···µr = γ[µ1 · · · γµr], the brackets denot-
ing total antisymmetrisation with a total weight 1, for instance γµν = 1/2(γµγν −γνγµ). A key
property of this free field action is that it is invariant under a fermionic gauge transformation

ψµ(x) → ψµ(x) + ∂µϵ(x). (3.29)

On the other hand, the action of gravity is the Einstein-Hilbert action, introduced in 2.2

SEH = 1
2

∫
d4x

√
−gR.

Expanding the Einstein-Hilbert action to a certain order, we can obtain the kinetic term and
interactions of the graviton and calculate its scattering cross-sections as for any other field.

Frame field and γ-matrices

In order to write spinor actions in curved space, it is necessary to introduce the so-called
frame field, defined by

gµν(x) = eaµ(x)ηabebν(x),
where ηab is the Minkowski metric. In what follows, the greek indices µ, ν, . . . are called
coordinate or curved indices, while the latin indices a, b, . . . are called frame or flat indices.
At each point, frame field form an orthonormal basis of the local tangent space of the mani-
fold. We can expand any tensor on this basis, for instance V µ(x) = V a(x)eµa(x). From there,
indices behave in a straightforward way in computations involving the frame field. For in-
stance, eµa(x) is the inverse of eaµ(x), such that eaµe

µ
b = δab .

The necessity of introducing frame fields when discussing spinors comes from the γ-
matrices, which are defined in local frames, as elements of the Clifford algebra {γa, γb} =
2ηab. As such, the flat indices γa matrices are constant numeral matrices, while the curved
indices γµ depend on spacetime through the frame field

γµ(x) = eµa(x)γa.
In addition to the frame field, we can introduce the spin connection ωµab, containing the same
information as the affine connection Γρµν introduced in section 2.2 and expressed as

ωµ
ab = ωµ

ab(e) +Kµ[νρ] with ωµ
ab(e) = 2eν[a∂[µeν]

b] − eν[aeb]
σ

eµc∂νeσ
c, (3.30)

where Kµ[νρ] is the contortion tensor that we already mentioned in section 2.2. In terms of
the frame field and spin connection, the Einstein-Hilbert action reads

SEH = 1
2

∫
d4xeeaµebνRµνab, (3.31)

here e stands for the determinant of eaµ and Rµνab is the Riemann tensor

Rµνab = ∂µωνab − ∂νωµab + ωµacων
c
b − ωνacωµ

c
b. (3.32)

In what follows, we are working in the second order formulation of gravity, where ωµab =
ωµ

ab(e) is imposed as a constraint, so the spin connection and Riemann tensor must be seen
as functions of the frame field.
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3.3.1 Pure N = 1 supergravity.

In order to obtain the action of pure N = 1, D = 4 supergravity, a possible strategy is to start
from the free-field actions of the gravitino and graviton (3.28) and (3.31) , and construct
interactions order by order to ensure invariance under local SUSY transformations.

S =
∫
d4xe

(1
2R(ω(e)) − 1

2 ψ̄µγ
µνρDνψρ + · · ·

)
, (3.33)

where Dνψρ is the covariant derivative of the gravitino in curved space

Dνψρ = ∂νψρ + 1
4ωνabγ

abψρ.

The supersymmetry transformation rules can be shown to be

δeaµ = 1
2 ϵ̄γ

aψµ and δψµ = Dµϵ = ∂µϵ+ 1
4ωµabγ

abϵ. (3.34)

The transformation of the frame field is in fact the simplest form compatible with the indices,
and the one of the gravitino is the curved-space generalisation of (3.29). With these rules,
one can show that the action (3.33) is invariant up to linear order in the gravitino. But
performing a transformation also generates terms that are cubic in the gravitino. In order to
cancel them, one introduces the following four-fermions terms

L4f = − 1
32(ψ̄µγρψν)(ψ̄µγρψν) − 1

16(ψ̄ργµψν)(ψ̄ργνψµ) + 1
8(ψ̄ργµψµ)(ψ̄ργνψν), (3.35)

whose form is inspired by the solution of the equation of motion of the spin connection if
we were working in the first-order formulation of gravity, which is not equivalent to the
second-order formulation in the presence of fermions. We emphasize that we are actually
working in second-order formulation, but the four-fermion terms that are guessed this way
are exactly what is needed to complete the action (3.33) and make it invariant under the
local transformation (3.34). In the end, the action of pure N = 1 supergravity is thus

SSG =
∫
d4xe

(1
2R(ω(e)) − 1

2 ψ̄µγ
µνρDνψρ + L4f

)
, (3.36)

3.3.2 Conformal construction of General Relativity

The action of pure N = 1, D = 4 supergravity was not so hard to build. The action of matter-
coupled supergravity, i.e. in the presence of chiral and gauge multiplets, is considerably more
complicated, it cannot just be guessed from the globally supersymmetric action of section
3.2. A systematic method for constructing this action uses conformal symmetry. Let us first
illustrate this method by using it to recover the standard General Relativity in any dimension.

Conformal symmetry can be defined as the transformations of Minkowski spacetime that
preserve the angle between any two vectors. These transformations extend the Poincaré
group, since translations and rotations, with generators Pµ and Mµν , obviously preserve the
angles. In addition to them, the conformal group contains the dilatation transformation,

53



with generator D, and special conformal transformations, with generators Kµ. With these
new generators, the Poincaré algebra (3.5) is extended to

[Pµ,Mρσ] = 2ηµ[ρPσ], [Mµν ,Mρσ] = 4η[µ[ρMσ]ν], [D,Pµ] = Pµ

[D,Kµ] = −Kµ, [Pµ, Kν ] = 2(ηµνD +Mµν), [Kµ,Mρσ] = 2ηµ[ρKσ]. (3.37)

Our first step in the conformal construction is to gauge the conformal symmetry. This requires
the introduction of a gauge field for each generator. The gauge fields associated with trans-
lations Pa and Lorentz transformations Mab are in fact the frame field eaµ and spin connection
ωµ

ab, while the gauge fields associated with dilatations and special conformal transformations
are new fields denoted bµ and fµa respectively. Their transformations follow the same rule as
for standard gauged internal symmetries (3.3)

δ(θ)AAµ = ∂µθ
A + θCABµ fBC

A,

where the structure constants fABC can be read in the algebra (3.37). With transformation
parameters (ξa, λab, λD, λak) respectively associated with (Pa,Mab, D,Ka), we have

δeaµ = −λabeµb − λDe
a
µ, δωµ

ab = ∂µλ
ab + 2ωµc[aλb]c − 4λ[a

Ke
b]
µ (3.38)

δbµ = ∂µλD + 2λaKeµa, δfµ
a = ∂µλ

a
K − bµλ

a
K + ωµ

abλKb − λabfµb + λDfµ
a.

The gauge parameter ξa has been omitted here, because it corresponds to a general coordi-
nate transformation, which are a bit more subtle [37]. In particular, they need to be upgraded
to covariant general coordinate transformations. For instance, the naive general coordinate
transformation of a scalar field δ(ξ)ϕ = ξµ∂µϕ becomes the covariant δ(ξ)ϕ = ξµDµϕ, where
Dµ is a covariant derivative containing all the gauge fields under which the scalar is charged.

In order to get back to standard General Relativity in the end, we do not want the addi-
tional gauge fields bµ and fµa to describe new physical degrees of freedom. For this, we have
two tools at our disposal: imposing constraints and gauge fixing. The former is already what
we do with the spin connection ωµab when, in the second-order formulation, we impose that
ωµ

ab = ωµ
ab(e), with ωµ

ab(e) given in equation (3.30). From a more algebraic point-of-view,
in standard General Relativity, this constraint is equivalent to the vanishing of the translation
curvature Rµν(P a) = 0, where the curvature of a generator, also called field strength in the
context of Yang-Mills theories, can be computed from the algebra (3.37)

Rµν
A = 2∂[µAν]

A + ACν A
B
µ fBC

A.

In the conformal framework that we are dealing with, we still impose Rµν(P a) = 0, along
with eνbRµν(Mab) = 0. These two curvatures are given by

Rµν(P a) = 2(∂[µ + b[µ)eaν] + 2ω[µ
abeν]b and Rµν(Mab) = Rµν

ab + 8f[µ
[aeν]

b],

where Rµν
ab is the Riemann tensor (3.32). The associated constraints give ωµab and fµa

ωµ
ab(e, b) = ωµ

ab(e) + 2e[a
µ e

b]νbν and 2(D − 2)fµa = −Rµ
a + 1

2(D − 1)e
a
µR, (3.39)

here, Rµν = Rρµ
abeρaeνb is the Ricci tensor, R = Rµ

µ the Ricci scalar and ωµ
ab(e) is in (3.30).

The curvature constraints thus implies that the two fields ωµab and fµa are composite, and as
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such they do not describe physical degrees of freedom. The remaining unwanted gauge field
bµ, can be fixed by choosing a gauge for the special conformal transformation, under which
it is shifted δ(λK)bµ = 2λKµ. As a result, we can simply choose a gauge where bµ = 0. In
addition, in this gauge, special conformal transformations are no longer independent trans-
formations, bringing us one step closer to the strictly Poincaré invariant General Relativity.

The next step towards this goal is to do the same with the dilatation symmetry. For this,
we introduce a scalar field ϕ, called the compensator. First, we need to understand how it
transforms under the conformal symmetry. Under dilatations, it is scaled by a constant w,
that we call its Weyl weight

δ(λD)ϕ = λDwϕ.

According to the algebra (3.37), a special conformal transformation decreases the Weyl
weight by one unit. But in the presence of only one scalar, there is nothing with the right Weyl
weight for the scalar field to transform into. Therefore, the special conformal transformation
of the scalar field vanishes

δ(λK)ϕ = 0.
In order to obtain the conformal invariant action of the compensating scalar, we can consider
the conformal d’Alembertian □Cϕ = ηabDaDbϕ. Since the scalar field ϕ only transforms under
dilatations, with weight w, we have Daϕ = eµa(∂µ −wbµ)ϕ, and using the transformation rules
(3.38) we can show that

□Cϕ = eaµ(∂µDaϕ− (w + 1)bµDaϕ+ ωµabDbϕ+ 2wfµaϕ). (3.40)

Using again the transformation rules (3.38), we can obtain

δ□Cϕ = (w + 2)λD□Cϕ+ (2D − 4w − 4)λaKDaϕ.

Consequently, if we choose w = 1/2D − 1, the conformal d’Alembertian □Cϕ is invariant
under special conformal transformations. In addition, its Weyl weight is w + 2. Since the
Weyl weight of the frame field determinant e is −D, the combination eϕ□Cϕ has a Weyl
weight −D+w+(w+2) = 0. In other words, it is invariant under local dilatations as well. In
addition, it is a Lorentz scalar. This combination is therefore the conformal invariant action
we are looking for

S = −1
2

∫
dDxeϕ□Cϕ.

Inserting the expressions of the gauge fields (3.39) and in the K-gauge bµ = 0

S =
∫
dDxe

(1
2(∂ϕ)2 + D − 2

8(D − 1)Rϕ
2
)
. (3.41)

As a last step, we can choose a gauge for the dilatations. Since the scalar field transforms as
a shift as well δ(λD)ϕ = λDwϕ, we can choose a gauge where ϕ2 = 4(D − 1)/(D − 2) is fixed,
and end up with the Einstein-Hilbert action

SEH = 1
2

∫
dDxeR, (3.42)

where only the Poincaré transformations remain as independent gauge transformations. Note
that in the process, the kinetic term of the scalar field ϕ has the wrong sign in (3.41). But
that is not a problem, because this compensating scalar field is not physical in the final action.
The Einstein-Hilbert term, on the other hand, has the right sign.
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3.3.3 Superconformal construction of supergravity

The advantage of the conformal method is that it can be extended to obtain the action of
matter-coupled supergravity. In the case of supergravity, one starts from the superconformal
algebra, which contains several new generators in addition to (Pa,Mab, D,Ka). First, it con-
tains the usual supercharge Qα that was already present in the super-Poincaré algebra (3.6),
but it also contains another supercharge Sα, and a new bosonic generator T that only acts on
the supercharges. The commutators involving these new generators are

[D,Q] = 1
2Q, [D,S] = −1

2S, [T,Q] = −3
2iγ∗Q, [T,S] = 3

2iγ∗S,

[Mab,Q] = −1
2γabQ, [Mab,S] = −1

2γabS, [Ka,Q] = γaS, [Pa,S] = γaQ, (3.43)

and the anti-commutators are

{Qα,Qβ} = −1
2(γa)αβPa, {Sα,Sβ} = −1

2(γa)αβKa

{Qα,Sβ} = −1
2δα

βD − 1
4(γab)αβMab + 1

2i(γ∗)αβT. (3.44)

To each of these generators, we associate a gauge field and a transformation parameter,
according to the following table

generator Pa Mab D Ka T Q S
gauge field eaµ ωµ

ab bµ fµ
a Aµ ψµ ϕµ

parameter ξa λab λD λaK λT ϵ η

From the algebra (3.37),(3.43),(3.44) we can deduce the structure constants and use them
to compute the transformation rules of the gauge fields and the curvatures, following the two
formulae already used

δ(θ)AAµ = ∂µθ
A + θCABµ fBC

A and Rµν
A = 2∂[µAν]

A + ACν A
B
µ fBC

A.

We will not reproduce all of them here, but only the ones that are useful in the present
discussion, and in particular the curvature that are subject to constraints, which are

Rµν(P a) = 2(∂[µ + b[µ)eaν] + 2ω[µ
abeν]b − 1

2 ψ̄µγ
aψν

Rµν(Mab) = Rµν
ab + 8f[µ

[aeν]
b] − ψ̄[µγ

abϕν],

Rµν(Q) = 2
(
∂[µ + 1

2b[µ − 3
2iA[µγ∗ + 1

4ω[µ
abγab

)
ψν] − 2γ[µϕν].

The first constraint is still Rµν(P a) = 0, and yields the composite spin connection ωµab

ωµ
ab(e, b, ψ) = ωµ

ab(e, b) + 1
2ψµγ

[aψb] + 1
4 ψ̄

aγµψ
b, (3.45)

with ωµ
ab(e, b) given in (3.39). The second constraint we impose is eνb R̂µν(Mab) = 0, where

R̂µν(Mab) is a modification ofRµν(Mab) making the constraint invariant under Q-SUSY, which
is not necessary but convenient [37]. The modified curvature reads

R̂µν(Mab) = Rµν(Mab) + ψ̄[µγ
[aRν]

b](Q) + 1
2 ψ̄[µγν]R

ab(Q) = R̂µν
ab + 8f[µ

[aeν]
b],
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where R̂µν
ab is a modified Riemann tensor whose expression can easily be deduced from the

previous equation. With this notation, the solution of the constraint eνb R̂µν(Mab) = 0 is the
same as in (3.39), in D = 4

fµ
a = −1

4R̂µ
a + 1

24eµ
aR̂, (3.46)

here, R̂µν and R̂ are the modified Ricci tensor and scalar built from R̂µν
ab. The last constraint

is γµRµν(Q) = 0, which can be solved to give

ϕµ = −1
2γ

νR′
µν(Q) + 1

12γµγ
abR′

ab(Q) (3.47)

where R′
µν(Q) = Rµν(Q) with the ϕµ term omitted, i.e. R′

µν(Q) = Rµν(Q) + 2γ[µϕν].

At this stage of the construction, we still have two unwanted gauge fields bµ and Aµ.
In addition, dilatation, special conformal tranformations, T -symmetry and S-supersymmetry
must be gauge-fixed to recover the strictly super-Poincaré invariant pure N = 1 supergrav-
ity. The gauge field bµ still transforms as a shift under special conformal transformations
δ(λK)bµ = 2λKµ, so we can simply fix the latter by choosing bµ = 0. On the other hand, the
gauge field Aµ cannot be eliminated and remains as an auxiliary field.

In order to fix dilatations, T -symmetry and S-supersymmetry, we can as in section 3.3.2
introduce a compensating chiral multiplet (Z, χ, F ), and the first step is to understand how
it transforms under superconformal transformations. Under dilatations, the Weyl weights of
the multiplet are (w,w + 1/2, w + 1), because of the commutator [D,Q] = 1/2Q, see (3.43).
Under T -symmetry, component Z is also scaled by a constant c called its chiral weight

δ(λT )Z = icλTZ.

One can show from algebraic considerations that c = w in any chiral multiplet. The trans-
formations under the other symmetries can also be deduced that way. For instance, the S-
supersymmetry transformation of Z has a Weyl weight w−1/2 because of [D,S] = −1/2S. But
since there is no field of this weight in the multiplet, the transformation vanishes δ(η)Z = 0.
Omitting the details, which can be found in [37], we obtain the following transformations

δZ = (wλD + iwλT )Z + 1√
2
ϵ̄PLχ (3.48)

δPLχ =
((
w + 1

2
)
λD +

(
w − 3

2
)
iλT

)
PLχ+ 1√

2
PL( /DZ + F )ϵ+

√
2wZPLη

δF = ((w + 1)λD + (w − 3)iλT )F + 1√
2
ϵ̄ /DPLχ+

√
2(1 − w)η̄PLχ.

Since the frame field determinant e has a Weyl weight −4 and chiral weight 0 in D = 4, the
combination eF has a Weyl weight −4+(w+1) and chiral weight (w−3). Therefore, starting
from a chiral multiplet of weight w = 3, the combination eF is invariant under dilatations and
T -transformations. But it is not invariant under Q and S-supersymmetries. To compensate
for this, we can consider the action

SF =
∫
d4xeRe

(
F + 1√

2
ψ̄µγ

µPLχ+ 1
2Zψ̄µγ

µνPRψν
)
, (3.49)
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which is indeed superconformally invariant. It is the locally supersymmetric action of a chiral
multiplet of weight w = 3, that replaces the globally supersymmetric version (3.12).

In section 3.3.2, the compensating scalar ϕ had a Weyl weight w = 1 in dimension D = 4.
The compensating multiplet (Z, χ, F ) that we consider here also has a Weyl weight w = 1,
and in order to use the action (3.49) we should build a multiplet of weight w = 3 from it.
First, one can show that (F̄ , /DPRχ,□CZ̄) is also a chiral multiplet, with Weyl weight w = 2.
As a result, the chiral multiplet of lowest component ZF̄ has a Weyl weight w = 3 and is a
perfect candidate for the construction. Its other components are

PLχ(ZF̄ ) = PLχF̄ + Z /DPRχ and F (ZF̄ ) = FF̄ + Z□CZ̄ − χ̄PL /Dχ, (3.50)

where □C is the superconformal covariant d’Alembertian that generalises (3.40)

□CZ = eaµ
(
∂µDaZ − 2bµDaZ + ωµabDbZ + 2fµaZ − iAµDaZ − 1√

2
ψ̄µPLDaχ+ 1

2 ϕ̄µγaPLχ
)
.

The action (3.49) for the multiplet (3.50) of lowest component ZF̄ reads

S =
∫
d4xeRe

(
FF̄ + Z□CZ̄ − χ̄PL /Dχ+ 1√

2
ψ̄µγ

µ(PLχF̄ + Z /DPRχ) + 1
2ZF̄ ψ̄µγ

µνPRψν
)
.

At this point, we can set bµ = 0 to fix the special conformal transformations and insert the
expressions of the composite fields (ωµab, fµa, ϕµ) found in (3.45),(3.46),(3.47) and resulting
from the curvature constraints. And finally, we can fix dilatations and T -symmetry by choos-
ing Z =

√
3, in order to obtain the Einstein-Hilbert term with the right normalisation, as in

(3.42), and S-supersymmetry by choosing χ = 0, see (3.48). The result is

SSG =
∫
d4xe

(1
2R(ω(e, ψ)) − 1

2 ψ̄µγ
µνρ
(
∂ν + 1

4ων
ab(e, ψ)γab

)
ψρ + 3AaAa − FF̄

)
, (3.51)

which the action of pure N = 1 supergravity found in (3.36). The ψ-dependent terms can be
extracted from ω(e, ψ) using (3.45) and recombine into the four-fermions term (3.35).

Note that the transformation parameters of gauge-fixed transformations are related to
the parameters of the remaining super-Poincaré transformations. For instance, the S-gauge
condition χ = 0 is not invariant under a Q-SUSY transformation of parameter ϵ, unless it is
accompanied by a S-SUSY transformation of parameter

PLη = 1
2iPL

/Aϵ− 1
2
√

3
FPLϵ. (3.52)

Such a relation is called a decomposition law. Other ones can be found in the same way,
by requiring invariance of the gauge-fixing conditions. They play a role in determining the
transformation of the different fields under super-Poincaré transformations at the end of the
process. For example, the transformation of the gravitino is

δPLψµ = PL
(
∂µ + 1

4ωµ
abγab − 3

2iAµ + 1
2iγµ

/A+ 1
2
√

3
γµF̄

)
ϵ.
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3.3.4 The matter-coupled supergravity

We are now ready to discuss the construction of the matter-coupled N = 1 supergravity. For
this, an ingredient that we have not introduced yet is the superconformally invariant action
of a real multiplet (C, ζ,H, Aµ, λ,D), to replace the globally supersymmetric version (3.12).
If the first component C has a Weyl weight w, the D-component has a weight w + 2, so the
combination eD has a Weyl weight −4 + (w + 2) and is invariant under dilatations if w = 2.
Since D is real, it automatically has a vanishing chiral weight. For w = 2, one can in fact
notice that the multiplet of lowest component −H̄ is chiral with Weyl weight w = 3. As a
consequence, one can apply (3.49) for this multiplet and, after some work, obtain

SD =
∫
d4xe

(
D − 1

2 ψ̄ · γiγ∗λ− 1
3CR(ω) + 1

6(Cψ̄µγµρσ − iζ̄γρσγ∗)R′
ρσ(Q)

+1
4ε

abcdψ̄aγbψc
(
Ad − 1

2 ψ̄dζ
))
. (3.53)

As in section 3.2, our goal is to obtain a general, action of n chiral multiplets (zα, χα, Fα) and
N gauge multiplets (AAµ , λA, DA), with gauged supersymmetry and internal symmetry. Recall
that in the presence of gauged internal symmetries, the multiplets are constructed according
to the prescription explained in 3.2.2, with the covariant version of the SUSY algebra (3.22).

General superconformal action

For this construction, we actually start with n + 1 chiral multiplets (XI ,ΩI , F I), keeping
in mind that one combination of them is a compensating multiplet as introduced in sec-
tions 3.3.2 and 3.3.3. In section 3.2.1, a general supersymmetric action was built by apply-
ing (3.12) to the composite multiplets of lowest components 1/2K(Zα, Z̄ ᾱ) and W (Zα) and
−1/4fAB(Zα)λ̄APLλB. We will start from the same idea and consider the action

S =
∫
d4x

(
[N(X, X̄)]D + [W(X)]F + [fAB(X)λ̄APLλB]F

)
, (3.54)

where [N(X, X̄)]D denotes the action obtained by applying (3.53) to the composite real mul-
tiplet of components N(X, X̄), and [W(X)]F and [fAB(X)λ̄APLλB]F denote the actions ob-
tained by applying (3.49) to the composite chiral multiplets of respective lowest components.
Here, N(X, X̄) is a real function, while W(X) and fAB(X) are holomorphic. Like in the glob-
ally supersymmetric case, the way N appears in the action suggests to interpret it as a Kahler
potential, associated to the target space metric GIJ̄ = NIJ̄ , the subscript I, J̄ indicating a
derivation with respect to XI , X̄ J̄ .

In order for the action (3.54) to be superconformally invariant, [· · · ]D and [· · · ]F must be
applied to multiplet of Weyl weight w = 2 and w = 3 respectively. By field redefinition, we
can consider that the chiral multiplets (XI ,ΩI , F I) all have weight w = 1. On the other hand,
it can be shown, starting from a real multiplet and going in the Wess-Zumino gauge, that the
weights of a gauge multiplet are (0, 3/2, 2). The functions entering in (3.54) must therefore
obey the following constraints

XIWI = 3W(X), N(λX, λ̄X̄) = (λλ̄)N(X, X̄), XIfABI = 0. (3.55)
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Auxiliary fields and constraints

The complete expansion of the action (3.54) can be found in [37]. From there, one can write
and solve the equations of motion of the auxiliary fields Fα and DA and obtain in fact the
same expressions as in the globally supersymmetric case (3.24) and (3.25)

F̄ J̄ = N IJ̄(−WI + 1
2NIJ̄K̄Ω̄J̄ΩK̄ + 1

4fABI λ̄
APLλ

B),

and
Re(fAB)DB = PA − 1

2
√

2
ifABIΩ̄IλB + 1

2
√

2
ifABĪΩ̄ĪλB,

where the PA are the moment maps, associated to gauged internal symmetries, as explained
in section 3.2.2. As in section 3.3.3, the gauge field Aµ of the T -symmetry (not to be confused
with the fields AAµ of gauge multiplets) is also auxiliary and given on-shell by Aµ = Aµ +AFµ ,
with

Aµ = i

2N (NĪ∂µX̄
Ī −NI∂µX

I) + 1
N
AAµPA, (3.56)

and
AFµ = i

4N
(√

2ψ̄µ(NIΩI −NĪΩĪ) +NIJ̄Ω̄IγµΩJ̄ + 3
2Re(fAB)λ̄Aγµγ∗λ

B
)
.

Once auxiliary fields have been eliminated, the next steps are the same as before. First, we
impose curvature constraints to eliminate the gauge fields (ωµab, fµa, ϕµ) from the physical
degrees of freedom. These constraints are the same as in 3.3.3 and yield (3.45),(3.46),(3.47).

Projective parameterisation, gauge fixing and decomposition laws

Next, we must gauge-fix dilatations, special conformal transformations, T -symmetry and S-
supersymmetry transformations. Special conformal transformations can as always be fixed
by the choice bµ = 0. Then, dilatations can be fixed by choosing N = −3, in order to obtain
the Einstein-Hilbert term with the right normalisation, as in (3.51), and S-supersymmetry
by choosing NIΩI = 0, in order to cancel a mixing with the gravitino. Before fixing the T -
symmetry, it should be noted that the homogeneity property of N in (3.55) actually indicates
that it is the Kahler potential of a projective Kahler manifold, see [37] for more details. This
fact suggests to introduce the following parameterisation of the scalars XI

XI = yZI(z), (3.57)

where y is the compensating scalar and the zα are the n physical ones. The functions ZI(z)
are not uniquely defined in this parameterisation, a simple choice is Z0 = 1 and Zα = zα. In
this parameterisation, the scalar y carries the Weyl and chiral weights, while the zα remains
invariant under dilatations and T -transformations

δ(λD, λT )y = (λD + iλT )y and δ(λD, λT )zα = 0.

It can be shown that target space parameterised by the physical scalars zα has the following
Kahler potential

K(z, z̄) = −3 ln
(
−1/3ZI(z)GIJ̄ Z̄

J̄(z̄)
)
. (3.58)
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where GIJ̄ = NIJ̄ . In the context of projective Kahler manifolds, the invariance of this Kahler
potential under Kahler transformations (3.18) simply comes from the freedom to redefine y
and ZI in (3.57)

y → yef(z)/3 and ZI → ZIe−f(z)/3 gives K(Z, Z̄) → K(Z, Z̄) + f(Z) + f̄(Z̄). (3.59)

Note that the homogeneity property of N in (3.55) forbids its Kahler transformations. On
the other hand, inserting the parameterisation (3.57) in the superpotential W and using its
homogeneity property in (3.55) gives the following relation with the physical superpotential

W(X) = y3W (z) (3.60)

The decomposition (3.57) between compensating and physical fields can be extended to
the fermionic partners as {ΩI} = {χ0, χα}, in such a way that the S-gauge conditionNIΩI = 0
translates into χ0 = 0 and the zα transform under supersymmetry as δzα = 1/

√
2ϵ̄χα. One

can compute this decomposition explicitly

χ0 = −1
3NIΩI and χα = ȳΩIGIJ̄g

αβ̄∇̄β̄Z̄
J̄ , (3.61)

where ∇αZ
I = ∂αZ

I + 1/3(∂αK)ZI is the Kahler-covariant derivative of ZI .

With the parameterisation (3.57), we can actually fix the T -symmetry by the choice y = ȳ.
Combined with N = −3 and (3.58), this completely fix the compensating scalar to y = eK/6.
Let us summarise the different gauge fixing conditions reducing the superconformal algebra
to its super-Poincaré subalgebra

special conformal transformations: bµ = 0, (3.62)

S-supersymmetry: NIΩI = 0 or χ0 = 0,
dilatations and T -symmetry: (N = −3 and y = ȳ) or y = eK/6.

Each of these conditions leads to a decomposition law, as explained around equation (3.52),
fixing the parameters of the gauge-fixed symmetries as functions of the remaining ones to
ensure gauge invariance of the gauge fixing conditions under super-Poincaré transformations.
The decomposition laws of special conformal transformations and dilatations are actually
quite simple

2λKµ = −1
2 ϵ̄ϕµ + 1

2 η̄ψµ, λD = 0, (3.63)

the one of T -symmetry is slightly more involved, because the condition y = ȳ is not invariant
under gauge transformations, Q-supersymmetry and Kahler transformations

λT = 1
6iθA(rA(z) − r̄A(z̄)) + 1

6
√

2
iϵ̄(χα∂αK − χᾱ∂ᾱK) + i

6(f(z) − f̄(z̄)), (3.64)

where the rA(z) have been defined in (3.19) from the gauge transformation of the Kahler
potential. The decomposition law of S-supersymmetry can be found in [37].

Notice that the decomposition law of the T -symmetry contains a Kahler transformation
with parameter f(z). This means that after gauge fixing, the fermions that used to transform
under T -transformations, now transform under Kahler transformations. It is possible to re-
define the fermions in such a way that they are invariant under Kahler transformations. In
doing so, the final action depends on the Kahler potential K and superpotential W through
the Kahler-invariant combination G = K + log(WW ), as the one presented in [42].
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Finally, the action

Following all the steps that we just discussed, i.e. starting from the superconformally in-
variant action (3.54) where the composite multiplets are built using the covariant SUSY al-
gebra (3.22), solving for the auxiliary fields (F I , DA, Aµ), applying curvature constraints to
eliminate the gauge fields (ωµab, fµa, ϕµ), introducing the parameterisation (3.57), rewriting
everything in terms of the physical scalars zα, with the Kahler potential K(z, z̄) of (3.58) and
superpotentialW (z) of (3.60), and in terms of the physical fermions χα of (3.61), and, finally,
applying the gauge fixing conditions (3.62), we can obtain the following action

S =
∫
d4xe

(1
2R(ω(e)) − 1

2 ψ̄µγ
µνρ
(
∂ν + 1

4ων
ab(e)γab − 3

2iAνγ∗
)
ψρ

−gαβ̄
(
∂̂µzα∂̂µz̄

β̄ + 1
2 χ̄

α /D
(0)
χβ̄ + 1

2 χ̄
β̄ /D

(0)
χα
)

− V

+Re(fAB)
(
−1

4F
A
µνF

µνB − 1
2 λ̄

A /D
(0)
λB
)

+ i

4
(
Im(fAB)FA

µνF̃
µνB − ∂̂µIm(fAB)λ̄Aγ∗γ

µλB
)

(3.65)

1
8Re(fAB)ψ̄µγab

(
FA
ab + F̂A

ab

)
γµλB +

( 1√
2
gαβ̄ψ̄µ /̂∂z̄

β̄γµχα + h.c.
)

( 1
4
√

2
fABαλ̄

AγabF̂B
abχ

α + h.c.
)

+ Lm + Lmix + L4f ,

which is invariant under local super-Poincaré transformations, where the transformation rule
of each field is obtained starting from its superconformal transformation, see e.g. (3.48), in-
serting the values of the auxiliary fields (F I , DA, Aµ) and composite gauge fields (ωµab, fµa, ϕµ),
introducing the physical fields (3.57) and (3.61), and finally applying the gauge fixing con-
ditions (3.62) and decomposition laws like (3.63) and (3.64).

Let us make some terms of this action more explicit. First Aµ is the bosonic part of
the auxiliary field Aµ given in (3.56), sometimes called the Kahler connection. In terms of
physical fields

Aµ = i

6(∂µzα∂αK − ∂µz̄
ᾱ∂ᾱK) − 1

3AµPA.

We also define ∂̂µzα = ∂µz
α − AAµk

α
A, where kαA is the Killing vector associated to the gauge

field AAµ , and the D(0) acting on fermions are covariant derivatives from which the fermionic
terms have been extracted, to be collected in L4f with the four-gravitino term (3.35). The
lagrangian Lm contains the mass terms of the fermions, and in particular the mass term of
the gravitino

Lm ⊃ 1
2m3/2ψ̄µPRγ

µνψν + h.c. with m3/2 = eK/2W, (3.66)

and Lmix is a mixing term between the gravitino and the other fermions

Lmix = ψ̄ · γ
( i

2PLλ
APA + 1√

2
χαeK/2∇αW

)
+ h.c., (3.67)

where ∇αW = ∂αW + (∂αK)W is the Kahler-covariant derivative of the superpotential.
More details on the action (3.65), including the expressions of fermion masses and the four-
fermions term L4f , can be found in [37]. We discuss the scalar potential V next.
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3.3.5 Scalar potential, SUSY breaking, FI term

The scalar potential of N = 1 supergravity takes the following form

V = eK(gαβ̄∇αW∇β̄W − 3WW ) + 1
2(Ref)−1ABPAPB,

which is reminiscent of the globally supersymmetric case (3.26), it is the sum of an F -term
and a D-term. However, one consequent novelty is that the F -term is not positive definite, it
can take negative values. The scalar potential can therefore take any sign, or vanish, and the
condition for preserving supersymmetry is no longer V (z∗, z̄∗) = 0 as in global supersymmetry.
Supersymmetry is preserved in the vacuum if the SUSY transformation of the fermions vanish,
which is equivalent to ∇αW (z∗) = 0 and PA(z∗) = 0. As a consequence

supersymmetry is unbroken ↔ V+(z∗, z̄∗) = 0 and V (z∗, z̄∗) ≤ 0,
supersymmetry is broken ↔ V+(z∗, z̄∗) > 0, (3.68)

where V+ is the positive part of the potential

V+ = eKgαβ̄∇αW∇β̄W + 1
2(Ref)−1ABPAPB.

So V (z∗, z̄∗) > 0 implies that supersymmetry is broken, but the converse is not true. When su-
pergravity is spontaneously broken, a supersymmetric version of the Higgs mechanism takes
place, where the massless Goldstino is eaten by the gravitino that becomes massive. The
Goldstino is a combination of the chiral fermions χα and of the gauginos λA, and its expres-
sion can actually be found by inspection of the mixing term (3.67), updating the globally
supersymmetric (3.27)

Lmix = −ψ̄ · PLv with PLv = − 1√
2
χαeK/2∇αW − i

2PLλ
APA.

The SUSY transformation of the Goldstino contains a term δPLv ⊃ 1/2V+PLϵ. Since V+ > 0
when supersymmetry is broken, we can choose a gauge for supersymmetry where the Gold-
stino vanishes, the so-called

unitary gauge: v = 0. (3.69)

Fayet-Iliopoulos term, R-symmetry, Kahler transformations

As we explained in section 3.2.2, the Kahler potential K(z, z̄) is not necessarily invariant un-
der a gauge transformation, but can undergo a Kahler transformation δ(θ)K = θA(rA(z) +
r̄A(z̄)). For abelian U(1) factors of the gauge group, the rA(z) are only defined up to arbitrary
imaginary constants, or equivalently the moment map PA are defined up to real constants.

This arbitrariness corresponds to the freedom of adding a Fayet-Iliopoulos term to the
action for any abelian U(1) factor of the gauge group. Starting from Im(r(z)) = 0, adding
this constant for a given U(1) has for consequence that it becomes an R-symmetry, under
which the gravitino is charged [43]. It can be seen for instance in its gauge transformation,
which contains a term proportional to rA(z) − r̄A(z̄) coming from (3.64)

δ(θ)ψµ = 1
4(rA(z) − r̄A(z̄))ψµθA.
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In addition, r(z) is also involved in the gauge transformation of the superpotential

δ(θ)W (z) = kαA(z)∂Wα(z)θA = −rA(z)W (z)θA, (3.70)

which constrains the form of the superpotential and the charges of the scalars. For in-
stance, with only one scalar and r(z) = iξs, the superpotential must transform as W (z) →
exp(−iξsθ)W (z) and the only possibility is W (z) = zb with a constraint on the charge of the
scalar qb = ξs. A R-symmetry can thus be seen as a symmetry under which W transforms.

In [44], it has been shown that adding Fayet-Iliopoulos terms in supergravity requires the
presence of a global symmetry, which are considered forbidden in quantum gravity, as we
will explain in the beginning of chapter 7. In [45], a new way of including Fayet-Iliopoulos
terms in supergravity has been introduced, which circumvents this problem. These have been
called new Fayet-Iliopoulos terms, and we will introduce them in more details in chapter 4.
The connection of these new Fayet-Iliopoulos terms to the effective action of space-filling
anti-D3-brane has been explored in [46]. On the other hand, [47] has recently investigated
ways of breaking the global symmetry associated with standard Fayet-Ilipoulos terms, while
preserving supersymmetry and gauge invariance.

Note that the rA(z) are not invariant under Kähler transformations. Let us consider only
one scalar field. Under a Kahler transformation K(z, z̄) → K(z, z̄) + J(z) + J̄(z̄) so we obtain

r(z) → r(z) + k(z)∂J(z), (3.71)

implying that it is possible to choose ∂J(z) = −r(z)/k(z) such that r(z) → 0 and the U(1)
becomes an ordinary, non R-symmetry. From (3.70), we see that −r(z)/k(z) = ∂ logW (z),
so choosing J(z) = logW (z) + constant makes r(z) → 0, and the associated Kähler transfor-
mation of the superpotential W (z) → e−JW (z) turns it into a constant. In particular it does
not transform under any gauge symmetry. In short, R-symmetry is not a Kähler independent
concept, since we can always go to a Kähler frame where the superpotential is constant and
the gauge symmetry is not an R-symmetry. Note however that the moment map P(z, z̄) is
invariant under Kähler transformations; so if the Fayet-Iliopoulos constant is added in some
Kahler frame it is present in any other Kähler frame, even in the one where the U(1) is not a
R-symmetry. For instance, in some frames it can get incorporated into the Kähler potential.
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Chapter 4

Massive gravitino amplitudes and the
new FI terms

In this chapter, we study the 2 → 2 gravitino scattering amplitudes at tree-level in sponta-
neously broken N = 1 supergravity with one chiral and one vector multiplet [3,4]. The goal
of this computation is to exhibit an analogy with a mechanism taking place in the electroweak
sector of the Standard Model, that is recalled in section 4.1. When supersymmetry is sponta-
neously broken, the gravitino becomes massive, of mass m3/2, by absorbing a Goldstino, and
the scattering amplitude naively scales like M ∼ κ2E4/m3/2, where E is the energy of the
process and κ the reduced Planck mass. In section 4.2, we show that this scaling is reduced to
M ∼ κ2E2 due to cancellations between different sectors. Amplitudes growing with energy
generally signal a loss of unitarity of the perturbative description when M ∼ 1, so the above
cancellation raises the perturbative cutoff of the theory from Λ ∼ (m3/2/κ)1/2 ∼ MSUSY up
to the Planck scale, where MSUSY is the supersymmetry breaking scale. In section 4.3, we
consider the so-called new Fayet-Iliopoulos terms, that have recently been introduced [45]
and provide a way to extend the standard Fayet-Iliopoulos terms of global supersymmetry,
without the subtelties associated with gauging the R-symmetry. Since these terms generically
modify the scalar potential without contributing to the 2 → 2 gravitino scattering amplitudes
at tree-level, they affect the aforementioned cancellation and lead to the perturbative cutoff
Λ ∼ (m3/2/κ)1/2 ∼ MSUSY, except for particularly fine-tuned cases.

4.1 Unitarity and the Higgs mechanism

The notations and results of this section are based on [48]. Unitarity is an important property
that must be satisfied by a consistent theory. If this were not the case, it could mean that some
processes occur with a probability greater than one, which is hardly acceptable. Enforcing the
unitarity of the S-matrix leads to what is known as the optical theorem, implying in particular
that scattering amplitudes cannot be arbitrarily large. At first approximation, we can apply
the following bound to the tree-level amplitudes

ImM ≤ |M|2 → |M| < 1. (4.1)

Beyond this limit, unitarity is not necessarily violated. It may also signal that new states
should be included in the theory, or a breakdown of its perturbative description. In any case,
it’s a threshold where something should be done.
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In the Standard Model, it turns out that the Higgs boson plays a crucial role in maintain-
ing perturbative unitarity after electroweak symmetry breaking. Let us briefly review this
phenomenon. When electroweak symmetry is broken by the vacuum expectation value v of
the Higgs field, the W± and Z bosons become massive and can propagate with a longitudi-
nal polarisation. But longitudinally polarised external vectors scale like E/v in amplitudes,
where E is the energy of the process. Considering for instance the W+Z → W+Z scattering,
and ignoring the Higgs boson, there are three graphs contributing: two of them with a W
exchange in the s and u-channels, and one coming from the quartic interaction between the
gauge bosons. The three-bosons vertex comes with a factor of E, the W propagator with a
factor of 1/E2, and the four-bosons vertex has no E dependence. Therefore, the amplitude
with four longitudinal polarisations naively scales like E4/v4 and breaks (4.1) when E ∼ v.
Computing these three graphs more precisely yields the following amplitude

Mgauge(WLZL → WLZL) = t

v2 + O(1), (4.2)

where t = (p1 − p3)2 ∼ E2 is a Mandelstam variable. Instead of E4/v4, this amplitude scales
like E2/v2. In fact, its three contributions do separately have terms scaling like E4/v4, but
they cancel each other. This can be explained using the Goldstone theorem, since the corre-
sponding Goldstone amplitude scales at most like E2/v2 at tree level. A second cancellation
occurs when we take into account the Higgs boson, which can be exchanged in the t-channel,
adding a contribution to the amplitude that cancels the first term of (4.2)

Mh(WLZL → WLZL) = − t

v2 + O(1).

As a result, perturbative unitarity is maintained after electroweak symmetry breaking. This is
reasonable, because in the unbroken phase of the theory, gauge bosons are massless and their
amplitudes behave well. So there is no reason to expect a difference in the broken phase,
which is described by the same underlying theory.

4.2 Massive gravitino scattering

In this section, we compute the massive gravitino scattering amplitudes ψψ → ψψ in matter-
coupled N = 1 supergravity, with external helicities ±1/2, and compare their behaviour with
the case of longitudinal massive gauge boson amplitudes that we just reviewed. We start with
the gravitational sector in section 4.2.1, before turning to the matter sector in 4.2.2.

4.2.1 Gravitational sector

Our starting point is the pure N = 1 supergravity action that we presented in (3.36)

SSG =
∫
d4xe

(1
2R(ω(e)) − 1

2 ψ̄µγ
µνρ
(
∂ν + 1

4ων
ab(e)γab

)
ψρ + 1

2m3/2ψ̄µγ
µνψν + L4f

)
, (4.3)

where

L4f = − 1
32(ψ̄µγρψν)(ψ̄µγρψν) − 1

16(ψ̄ργµψν)(ψ̄ργνψµ) + 1
8(ψ̄ργµψµ)(ψ̄ργνψν), (4.4)
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and ωµ
ab(e) is given in (3.30) and R((ω(e)) = eµae

ν
bRµνab, with Rµνab given in (3.32). Recall

that the greek letters µ, ν, . . . are used for curved coordinate indices, while latin letters a, b, . . .
are used for local frame indices. The gravitino mass term 1/2m3/2ψ̄µγ

µνψν has been added
by hand in (4.3), and it breaks supersymmetry explicitly. In section 4.2.2, we will consider
models where this term is generated by spontaneous supersymmetry breaking in the presence
of chiral and gauge multiplets. In all this chapter, we work in a Minkowski background.

Since the gravitino ψµ is a Majorana fermion, there are four graphs contributing to the
ψψ → ψψ scattering amplitudes at tree level: one for each of the s, t, u channels, with the
exchange of a graviton hµν , and one coming from the quartic interaction (4.4). Three in-
gredients are required to compute the s, t, u graphs with fixed external helicities ±1/2: the
propagator of the graviton, the hψ2 vertex, and the external polarisation of the gravitinos.

Propagator, vertex, polarisations

The graviton is the field hµν describing a gravitational fluctuation around the background

gµν = ηµν + 2hµν ,

where the factor 2 allows the kinetic term of the graviton to be canonically normalised. This
kinetic term is found from expanding the Einstein-Hilbert action to second order in hµν . In
order to get the graviton propagator from there, we must supplement the action with a gauge
fixing term. Making the choice Lg.f. = −(∂µhµν − 1/2∂νh)2 gives

Pαβ
γδ (k) = − i

2k2 (δαγ δ
β
δ + δβγ δ

α
δ − ηαβηγδ). (4.5)

The hψ2 vertex is obtained from expanding the action (4.3) to first order in hµν . The frame
field expands as

eaµ = δaµ + haµ and eµa = δµa − hµa ,

and after this expansion is made, there is no distinction between flat and curved indices,
because we work around a flat background. Before expanding (4.3), it is convenient to write

−1
2eψ̄µγ

µνρDνψρ = i

2ε
µνρσψ̄µγ∗γσDνψρ,

where εµνρσ is the antisymmetric Levi-Civita tensor and recall that γ∗ = iγ0γ1γ2γ3. This is
convenient, because there are four factors of the frame field on the left-hand side eγµνρ =
eeµae

ν
be
ρ
cγ

abc, but only one in the right-hand side γσ = eaσγa, because the Levi-Civita tensor does
not depend on it. The frame field also appears in ωabµ (e), giving at first order

ωabµ (e) = −∂[ahb]µ.

Combining all this information, the hψ2 terms of the Lagrangian (4.3) read

Lhψ2 = i

2ε
µνρσhaσψ̄µγ∗γa∂νψρ − i

4ε
µνρσ∂ahbνψ̄µγ∗γσγabψρ

+1
2m3/2hψ̄µγ

µνψν −m3/2h
µ
ρ ψ̄µγ

ρνψν , (4.6)
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which can be simplified using gamma-matrix manipulations. One can show that

εµνρσγ∗γa = 4iγ[µνρδσ]
a and εµνρσγ∗γσγab = 6iγ[µν

[bδ
ρ]
a] + 6iγ[µδν [bδ

ρ]
a],

leading to

i

2ε
µνρσhaσψ̄µγ∗γa∂νψρ = −1

2hαβψ̄µ(ηαβγµρν − ηαµγβρν + ηαργβµν − ηανγβµρ)∂ρψν , (4.7)

and

− i

4ε
µνρσ∂ahbνψ̄µγ∗γσγabψρ = −1

2∂
ρhαβψ̄µ(δµρηαβγν − δαρ η

βµγν − δµρη
ανγβ)ψν . (4.8)

In (4.6), (4.7), (4.8), we took care to assign the indices as hαβψ̄µ · · ·ψν . In order to write
the vertex, we consider all the momenta incoming and label them according to h(k)ψ̄(p)ψ(q);
we also denote t = p − q. In principle, it has to be symmetrised with respect to (αβ), but
since it is always contracted with the graviton propagator in what follows, which is also (αβ)-
symmetric, we can keep only one side of the symmetry in the vertex. We also have to take
into account that the two gravitinos are Majorana and can be swapped, with a − sign if there
are 1 or 2 matrices γ inserted beteween them, or with a + sign if there are 0 or 3, see [37] for
details on the properties of spinors and γ-matrices. Finally, there is a factor of −i associated
with each derivative, along with a global factor of i. At the end of the day, the vertex is

V µ,ν,αβ
hψ2 (t, k) = 1/2(ηαβγµkν + ηαµγνkβ − ηαµγβkν + ηαβγµρνtρ + ηαµγβνρtρ

− ηαβγνkµ − ηανγµkβ + ηανγβkµ + γαµνtβ − ηανγβµρtρ) (4.9)

+ im3/2(ηαβγµν − ηαµγβν + ηανγβµ).

Since in our computation the gravitinos are external and on-shell, we can simplify this vertex
using the equations of motion of the free gravitinos. For instance using γ · ψ = 0 gives

V µ,ν,αβ
hψ2 (t, k) ∼ 1/2(−ηαµγβkν + ηαβηµν/t − ηαµγβtν + ηαµηνβ/t

ηανγβkµ − ηµνγαtβ + ηανγβtµ − ηανηµβ/t)
+ im3/2(ηαµηβν + ηανηβµ − ηαβηµν). (4.10)

The other equations of motions of free gravitinos are p · ψ = 0 and (i/p − m3/2)ψµ = 0, but
they do not simplify the vertex much more. Note that our vertex differs from that reported
in [49], so we believe there is an error there.

Now that we have the graviton propagator and the hψ2 vertex, the last ingredient we
need to compute scattering amplitudes are the external polarisations of the gravitinos. These
polarizations are classical solutions of the free Rarita-Schwinger equation, which can be re-
formulated into three equations as we have just mentioned [50]

γ · ψλ(p) = 0, p · ψλ(p) = 0 and (i/p−m3/2)ψλµ(p) = 0. (4.11)

A basis of solutions of this system can be written using the Clebsch-Gordon decomposition

ψ++
µ = ε+

µu
+, ψ+

µ =
√

2/3ε0
µu

+ +
√

1/3ε+
µu

−

ψ−−
µ = ε−

µu
−, ψ−

µ =
√

2/3ε0
µu

− +
√

1/3ε−
µu

+, (4.12)
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where the ε±,0
µ are standard transverse and mutually orthogonal polarisation vectors, while

the spinors u± are solution of the free Dirac equation. The Dirac equation has two more
solutions, usually called v±, which can replace u± in the previous equation. The choice
between the two for a given external leg is done in the same way as for spin-1/2 fermions

· u for an ingoing “gravitino”, v̄ for an ingoing “anti-gravitino”

· ū for an outgoing “gravitino”, v for an outgoing “anti-gravitino”.

Note that the bar above (u, v) represents the Dirac conjugate λ̄D = λ†γ0, whereas it repre-
sented the Majorana conjugate λ̄M = λTC above the gravitino ψµ in the previous equations.
Since u and v spinors are charge conjugate to one another v± = (u±)c, the Dirac conjugate of
a v-spinor is the Majorana conjugate of the corresponding u-spinor.

Since gravitinos are Majorana, we have to clarify what we mean by “gravitino” and “anti-
gravitino”. We simply use “gravitino” when the fermionic current attached to the leg is ori-
ented towards the right of the graph, and “anti-gravitino” when it is oriented towards the
left. For Majorana fermions, the direction of this current on each fermionic line is in fact
arbitrary, as long as spinor bilinear can be formed consistently. The symmetry properties of
the hψ2 vertex (4.9) with respect to the exchange of the two gravitinos echo this arbitrariness.

For completeness, let us give the expressions of the ε±,0 and the u±, v±. For a momentum
parameterised as

pµ = (p0, |p| sin θ cosφ, |p| sin θ sinφ, |p| cos θ),
the ε±,0 are given by, up to a sign that can be adjusted for ψ±

µ to satisfy (4.11)

εµ± = 1/
√

2(0, cos θ cosφ∓ i sinφ, cos θ sinφ± i cosφ,− sin θ),

and
εµ0 = 1/m3/2(|p|, p0p/|p|). (4.13)

To give an expression for u±, we need to choose an explicit representation of the γ matrices.
For example, in the Weyl representation

γµ =
(

0 σµ

σ̄µ 0

)
where σµ = (1, σi), σ̄µ = (−1, σi),

and the σi are the Pauli matrices. In the following, when computing the amplitude, we take
it as a convention that all gravitinos are incoming. By conservation of energy, some of them
will then have p0 > 0 and others p0 < 0, and the expressions of u± differ in these two cases

u±(p) =
( √

−σ · p ξ±

i
√

σ̄ · p ξ±

)
if p0 > 0,

u±(p) =
( √

σ · p ξ∓

−i
√

−σ̄ · p ξ∓

)
if p0 < 0, (4.14)

where

ξ+ =
(

cos(θ/2)
sin(θ/2)

)
and ξ− =

(
− sin(θ/2)

cos(θ/2)

)
.

As mentioned above, the v± spinors are obtained as the charge conjugates of the u±.
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Computation of the amplitudes

We now have all the necessary ingredients to calculate the contributions of the s, t, u-channel
to ψψ → ψψ amplitudes: the propagator (4.5), the vertex (4.10) and the polarisations (4.12).
There only question we still need to answer is: what are the relative signs between them ? To
answer this, let us start by giving our conventions fermionic current orientation in figure 4.1

Figure 4.1: Conventions for the orientation of the fermionic lines in the s, t, u channels.

Without loss of generality, we assume that the s-channel graph contributes positively.
From the s-channel, the u-channel is obtained by exchanging the gravitinos 1 and 3, so it
comes with a relative − sign. To obtain the t-channel from the s-channel, we reverse the
fermionic current around the left vertex before exchanging 1 and 4. Since the reversal of the
fermionic current corresponds to the exchange of gravitinos 1 and 2, obtaining the t-channel
from the s-channel requires two fermions exchanges, therefore it comes with a relative + sign.

These relative signs ensure that the total amplitude gets a minus sign under the exchange
of any pair of gravitinos. This can be verified using the symmetries of the propagator (4.5)
and vertex (4.10), but it is easier to see in the contribution of the quartic interaction (4.4). We
write this contribution using the same symmetrisation principle as for the vertex (4.10) and
with the same relative signs as for the s, t, u channels, making the four gravitinos equivalent

M4f = − 1
16(ηαβηµρηνσ + 2ηασηβνηµρ − 4ηανηβσηµρ − (µ ↔ ν) − (ρ ↔ σ))

×((ψ̄1
µγαψ

2
ν)(ψ̄3

ργβψ
4
σ) − (ψ̄3

µγαψ
2
ν)(ψ̄1

ργβψ
4
σ) + (ψ̄2

µγαψ
4
ν)(ψ̄3

ργβψ
1
σ). (4.15)

Here, (µ ↔ ν) and (ρ ↔ σ) stands for a repetition of the first terms with indices exchanged.
If we swap for instance the gravitinos 1 and 2 in (4.15), we obtain

(ψ̄1
µγαψ

2
ν)(ψ̄3

ργβψ
4
σ) →

1↔2
(ψ̄2

µγαψ
1
ν)(ψ̄3

ργβψ
4
σ) ∼ −(ψ̄1

µγαψ
2
ν)(ψ̄3

ργβψ
4
σ)

(ψ̄3
µγαψ

2
ν)(ψ̄1

ργβψ
4
σ) →

1↔2
(ψ̄3

µγαψ
1
ν)(ψ̄2

ργβψ
4
σ) ∼ (ψ̄2

µγαψ
4
ν)(ψ̄3

ργβψ
1
σ) (4.16)

(ψ̄2
µγαψ

4
ν)(ψ̄3

ργβψ
1
σ) →

1↔2
(ψ̄1

µγαψ
4
ν)(ψ̄3

ργβψ
2
σ) ∼ (ψ̄3

µγαψ
2
ν)(ψ̄1

ργβψ
4
σ),

where the ∼ means up to the symmetry with respect to µ ↔ ρ and (ασ) ↔ (βν) and anti-
symmetry with respect to µ ↔ ν that is provided by the first line of (4.15). Note that in the
first line of (4.16) we use the Majorana flip ψ̄2

µγαψ
1
ν = ψ̄1

νγαψ
2
µ, where the − sign mentioned

before (4.9) is absent because the external polarisations are commuting spinors. Indeed, in
the plane wave expansion of a spinor, its anticommutative nature is carried by the coefficients
that multiply the polarisations, and not by the polarisations themselves.
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Equation (4.16) shows that M4f gets a minus sign under the exchange 1 ↔ 2. One can
show that this is true for the exchange of any pair, as well as for the total amplitude including
the s, t, u channels, provided we sum them with the right relative signs

Mgrav = Ms − Mt + Mu + M4f .

Now that the question of relative signs has been settled, we really have everything we
need to compute amplitudes. With four choices for the helicity of each external leg, there
are 256 possible helicity assignments. This number is halved to 128 by CPT symmetry. In this
work, we are interested in the amplitudes with external helicities ±1/2, which are expected
to diverge the most with E due to E/m3/2 factors in longitudinal polarisation vectors (4.13),
where 2E is the center of mass energy. This still gives 8 possibilities after taking into account
CPT symmetry. We will report only three of them, since the others behave in a similar way.

The amplitudes with external helicities ±1/2 scale at most like κ2E6/m4
3/2, with one factor

1/E2 coming from the propagator (4.5), two factors κE coming from the vertex (4.10),
four factors E/m3/2 coming from the longitudinal polarisations (4.13) and four factors E1/2

coming from the external (u, v) spinors (4.14). For instance, the subamplitudes contributing
to Mgrav with helicities (+,+,−,−) have the following leading behaviour

M+,+,−,−
t = 2κ2E6

9m4
3/2

(7 + 4 cos(θ) − 3 cos(2θ)) + O
(
κ2E4

m2
3/2

)
,

M+,+,−,−
u = 2κ2E6

9m4
3/2

(7 − 4 cos(θ) − 3 cos(2θ)) + O
(
κ2E4

m2
3/2

)
,

and

M+,+,−,−
4f = 4κ2E6

9m4
3/2

(−7 + 3 cos(2θ)) + O
(
κ2E4

m2
3/2

)
,

where E is the energy of the gravitinos 1 and 2 and θ is the angle between them in their
center of mass frame. It follows that these three contributions cancel in the total amplitude,
leaving the next order

M+,+,−,−
grav = 16κ2E4

3m2
3/2

+ O(κ2E2). (4.17)

This cancellation of the most divergent term also happens for other amplitudes, for instance

M+,+,+,−
grav =

�
�
��κ2E5

m3
3/2

− 4κ2E3

3m3/2
sin(2θ) + O(κ2m3/2E), (4.18)

and

M+,+,+,+
grav =

�
�
��κ2E4

m2
3/2

+ 16κ2E2

3 sin2(θ) + O(κ2m2
3/2). (4.19)

These cancellations are reminiscent of the ones we mentioned in the 4.1 section, which lead
to scaling Mgauge ∼ E2/v2 in (4.2), instead of the naive E4/v4. They can thus also be un-
derstood using the Goldstino equivalence theorem, saying that the high energy behaviour of
helicity ±1/2 gravitino amplitudes is captured by the corresponding Goldstino amplitudes,
which scales at most like κ2E4/m2

3/2 since their vertex with the graviton scales like κE2/m3/2.
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The different scalings for the different helicity assignments in (4.17)-(4.19) can also be
understood. Indeed, in the next section, we will see that the next-to-leading terms of (4.17)-
(4.19) also cancel with contributions from the matter sector, leaving only the O(· · · ). After
this cancellation, the amplitudes (+,+,+,−) and (+,+,+,+) vanish in the massless limit
m3/2 → 0, because of chirality conservation at the hψ2 vertex. The power of m3/2 in the
O(· · · ) of (4.18)-(4.19) reflects the number of potential chirality violations when m3/2 → 0.

4.2.2 Matter sector

In this section, we consider the addition of a matter sector, with one chiral multiplet (z, χ, F )
and one gauge multiplet (Aµ, λ,D). We consider an arbitrary Kähler potential K(z, z̄), super-
potential W (z), and gauge kinetic function f(z). We assume supersymmetry is spontaneously
broken by a combination of F and D-terms, so the Goldstino is a combination of χ and λ. We
place ourselves in the unitary gauge, where this Goldstino is eaten by the massive gravitino.

These multiplets open new channels contributing to the ψψ → ψψ scattering amplitudes,
with the exchange of a scalar z and a gauge vector Aµ. To compute these new contributions,
the relevant terms in the N = 1 supergravity Lagrangian are the following

e−1L ⊃ − 1
2 ψ̄µγ

µνρ
(
∂ν − 3

2iAνγ∗
)
ψρ − ∂∂̄K∂̂µz∂̂µz̄ − 1

4Re(f)F µνFµν

+ 1
2(eK/2Wψ̄µPRγ

µνψν + h.c.). (4.20)

Here, partial derivatives without index ∂ and ∂̄ stand for differentiation with respect to the
scalar field z and z̄, and Fµν is the abelian field strength of Aµ. Recall that PR = 1/2(1 − γ∗).
The covariant derivative of the scalar is given by ∂̂µz = ∂µz − Aµk where k(z) is the Killing
vector involved in the transformation of the scalar z under the gauge factor associated to Aµ.
With only one vector multiplet, the gauge group is U(1) and k(z) = −iqz, with q the charge.
Finally, Aµ is the Kähler connection given by

Aµ = i

6(∂µz∂K − ∂µz̄∂̄K) − 1
3AµP = i

6(∂̂µz∂K − ∂̂µz̄∂̄K + Aµ(r − r̄)).

The moment map P(z, z̄) appearing there was defined in (3.20). In the case of a single
chiral multiplet it satisfies ∂̄P(z, z̄) = ik(z)∂∂̄K. In addition, r(z) was defined in (3.19) from
the gauge transformation of the Kahler potential (k(z)∂ + k̄(z̄)∂̄)K(z, z̄) = r(z) + r̄(z̄). The
moment map can then be written as in (3.21)

P(z, z̄) = i(k(z)∂K(z, z̄) − r(z)), (4.21)

and it is gauge invariant. In order to compute the amplitudes, we assume that the scalar field
z picks a nonvanishing vacuum expectation value |z0| = v at the minimum of its potential,
and parameterise it as

z(x) = (v + η(x))eiϕ(x), where ∂V (z0, z̄0) = ∂̄V (z0, z̄0) = 0 and ⟨η(x)⟩ = 0.

Since z is charged, this vacuum expectation value breaks the U(1) symmetry carried by Aµ,
and in the corresponding unitary gauge, the phase ϕ(x) is eaten by the field Aµ that becomes
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massive. In this gauge, we simply have z(x) = v + η(x), with η(x) real. The mass of Aµ is
obtained from ∂∂̄K∂̂µz∂̂µz̄, it reads

M2
A = 2(qv)2 ∂∂̄K0

Re(f0)
= ∂∂̄K0W0W̄0

∇W0∇̄W̄0

2P2
0

Re(f0)
,

where ∇ is the Kähler covariant derivative ∇W = ∂W + (∂K)W and the subscript 0 means
evaluated at the minimum (z0, z̄0). In this expression, we redefined the gauge potential to
be canonically normalised, which at lowest order amounts to Aµ → Aµ/(Re(f0))1/2 and gives
the factor Re(f0). In the second equality, we used the definition of P in (4.21), along with
k0 = −iqz0 = −iqv, and the identity −r/k = ∂ logW coming from the gauge transformation
of the superpotential in (3.70). In the unitary gauge, the propagator of Aµ is

Pαβ
A (k) = −i(ηαβ + kαkβ/M2

A)
k2 +M2

A

.

In order to obtain the ηψ2 vertex, we expand the Lagrangian (4.20) to to first order in η. Like
we just did for Aµ, we also canonically normalise η by the redefinition η → η/(2∂∂̄K0)1/2. We
get the following contributions

L(1)
ηψψ = − 1

8
√

2
∂K0 − ∂̄K0√

∂∂̄K0
(∂ρη)ψ̄µγµρσγ∗ψσ,

and

L(2)
ηψψ = + eK0/2

8
√

2
(∂K0 + ∂̄K0)(W0 + W̄0) + 2(W0 + W̄0)√

∂∂̄K0

ηψ̄µγ
µνψν

− eK0/2

8
√

2
(∂K0 + ∂̄K0)(W0 − W̄0) + 2(W0 − W̄0)√

∂∂̄K0

ηψ̄µγ
µνγ∗ψν .

We also read the Aψ2 interaction

LAψψ = − i

4
P0√

Re(f0)
Aρψ̄µγ

µρσγ∗ψσ.

Note that even if the gravitino is not charged under the U(1), it can interact with the gauge
field Aµ through P0 when the scalar field z has a vacuum expectation value. These interac-
tions can be turned into vertices using the same prescriptions as in (4.10), and we can then
use the vertices to compute the new contributions to the ψψ → ψψ scattering amplitudes. Let
us for instance give the new contributions to the (+ + −−) amplitude

M+,+,−,−
scalar = − 8κ2E4

9|m3/2|2
∇W0∇̄W̄0

W0W̄0∂∂̄K0
+ O(κ2E2),

and

M+,+,−,−
vector = − 8κ2E4

9|m3/2|2

(
2
M2

A

+ 1
|m3/2|2

)
P2

0
Re(f0)

+ O(κ2E2),
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where the gravitino mass is given by m3/2 = eK0/2W0, see (4.20). Combining these with the
pure gravitational contribution that was computed in (4.17), we obtain the total amplitude

M+,+,−,−
total = − 16κ2E4

9|m3/2|4
(
eK0

(∇W0∇̄W̄0

∂∂̄K0
− 3W0W̄0

)
+ P2

0
2Re(f0)

)
+ O(κ2E2). (4.22)

Between the parentheses, we observe that the different contributions to the amplitude com-
bined to form the scalar potential V (z0, z̄0), evaluated at its minimum (z0, z̄0)

V (z, z̄) = VF + VD = eK
(∇W ∇̄W̄

∂∂̄K
− 3WW̄

)
+ P2

2Re(f) . (4.23)

As a result, the leading term in O(κ2E4/|m3/2|2) cancels when the potential vanishes at the
minimum. This is actually required for the consistency of our computation, since we com-
puted the amplitudes in a Minkowski background. This result holds for all helicity assign-
ments. In the case where z has a vanishing vacuum expectation value v = 0, the U(1) is not
broken, so the computation involves the complex scalar and a massless gauge vector, but the
result is the same.

Therefore, the perturbative unitarity cutoff that was naively sitting at Λ ∼ (m3/2/κ)1/2 ∼
MSUSY is pushed up to the Planck scale Λ ∼ 1/κ ∼ MPl, in perfect analogy with the elec-
troweak phenomenon that we discussed in 4.1. This result can certainly be extended with
more than one chiral and vector multiplets, resulting in more general gauge groups, but it
remains an interesting challenge to extend it beyond a Minkowski backgrounds.

4.3 Supergravity breaking and new FI terms

As we explained in 3.3.5, Fayet-Iliopoulos terms are problematic in N = 1 supergravity, be-
cause they are linked with gauged R-symmetry and imply the presence of a global symmetry,
which is considered incompatible with quantum gravity. However, in [45], a new way has
been found to effectively introduce Fayet-Iliopoulos terms without gauged R-symmetry.

4.3.1 Definition of new FI terms

This new Fayet-Iliopoulos term is built from a single gauge multiplet V = (Aµ, λ,D). Let us
denote by y = (y, PLχ0, F 0) the chiral compensating multiplet of weights (1, 1). Using the
superconformal formalism introduced in chapter 3, and in particular (3.53), the new FI term
takes the form

LFI,I = −ξn
[
yȳ

W2W2

T (W2)T (W2)
(V )D

]
D

, (4.24)

where ξn is a constant of mass dimension two, (V )D is the real multiplet of lowest component
D, and W is the chiral field strength multiplet of the gauge multiplet V . More precisely

(V )D = (D, /Dλ, 0,DbF̂ab,− /D /Dλ,−2CD) and W2 = λ̄PLλ

y2

74



As we mentioned before equation (3.55), the Weyl weights of the gauge multiplet (Aµ, λ,D)
are (0, 3/2, 2), and the chiral weight of PLλ is 3/2 as well, so the chiral multiplet of lowest
component λ̄PLλ has weights (3, 3). Its higher components are the following

(
λ̄PLλ,

√
2PL

(
−1

2γ · F̂ + iD
)
λ, 2λ̄PL /Dλ+ F̂− · F̂− −D2

)
,

with the covariant field strength F̂ab and the self-dual/anti self-dual F̂±
ab given by

F̂ab = eµae
ν
b (2∂[µAν] + ψ̄[µγν]λ) and F̂±

ab = 1
2(F̂ab ± ˜̂

Fab) where ˜̂
Fab = − i

2ϵabcdF̂
cd

and
Dµλ =

(
∂µ − 3

2bµ + 1
4ω

ab
µ γab − 3

2iγ∗Aµ

)
λ−

(1
4γ

abF̂ab + 1
2iγ∗D

)
ψµ,

where bµ is the gauge field associated to dilatations, set to bµ = 0 in the gauge (3.62), and Aµ

is the bosonic part of the auxiliary gauge field associated to the T -symmetry. Finally, the T in
(4.24) is the chiral projection operator. Acting on an anti-chiral multiplet X̄ = (X̄, PRΩ, F̄ )
of weights (1,−1), it gives a chiral multiplet of weights (2, 2) defined as

T (X̄) = (F̄ , /DPRΩ,2CX̄),

Applied on W̄2 it yields T (W2) = (CT , PLΩT , FT ), where in the gauge (3.62) with χ0 = 0

CT = ȳ−2
(
2λ̄PR /Dλ+ F̂+ · F̂+ −D2

)
− 2ȳ−3F̄ 0λ̄PRλ, (4.25)

PLΩT = −
√

2 /D
(
ȳ−2PR

(1
2γ · F̂ + iD

)
λ
)

and FT = □C
(
ȳ−2λ̄PRλ

)
,

It is important to note that if D has a vanishing vacuum expectation value, then CT vanishes
as well in the vacuum. Since CT appears in the denominator of (4.24), this makes the new
FI term singular and non-local in the limit of unbroken supersymmetry. Note also that the
argument of [· · · ]D in (4.24) has the correct Weyl weight w = 2 to use the formula (3.53).

The action of N = 1 supergravity with n chiral multiplets (zα, χα, Fα) and a single abelian
gauge multiplet associated to the new FI term can be written as in (3.54), where we already
introduce the decomposition (3.57)

S =
∫
d4x

(
−3[yȳe−K(z,z̄)/3]D + [y3W (z)]F − 1

4[λ̄PLλ]F + LFI,I
)
. (4.26)

Expanding into components, and using the gauge y = ȳ = eK/6 as in (3.62), we get

−1
4[λ̄PLλ]F + LFI,I = −1

4F
µνFµν + 1

2D
2 − ξne

K/3D + i

2ξne
K/3ψ̄ · γλ+ O(λ2) (4.27)

Here, O(λ2) denotes terms containing at least two gauginos λ. We can see that couplings
between the new FI term and the chiral multiplets are introduced by the choice y = eK/6.
These couplings are not invariant under Kahler transformations [46, 51]. This can be seen
directly in (4.24), if we remember that Kahler transformations act on the compensating scalar
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y as y → yef(z)/3, as we explained in (3.59). In order to avoid this issue, a modification of the
new FI term making it Kahler-invariant has been proposed in [52]

LFI,II = −ξn
[
(yȳe−K/3)−3 (λ̄PLλ)(λ̄PRλ)

T̄ (W ′2)T (W̄ ′2)
(V )D

]
D

, where W ′2 = λ̄PLλ

(yȳe−K/3)2 . (4.28)

In absence of chiral multiplets, the two versions of the new FI term (4.24) and (4.28) are
equivalent. The construction of Kahler-invariant new FI terms has been generalised in [53].

As in (4.27), we can expand (4.28) into components and get

e−1LFI,II = −ξnD + i

2ξnψ̄ · γλ+ O(λ2). (4.29)

To first order in λ, we see that the two new FI terms only differ by a factor eK/3. In what
follows, we thus introduce the notation ∆ = eK/3 for the original new FI term (4.24) and
∆ = 1 for the Kähler invariant new FI term (4.28) in order to write both cases at once.

Both new FI terms in (4.27) and (4.29) lead to the equation of motion D = ξn∆ for D, so
they contribute as follows to the D-term potential of (4.23)

VD,FI = (P + ξn∆)2

2Re(f) . (4.30)

The new FI terms also contribute to the Goldstino, because λ mixes with the gravitino in
(4.27) and (4.29)

PLυ = − 1√
2
eK/2∇Wχ− i

2PPLλ− i

2ξn∆PLλ,

where from now we consider a single chiral multiplet. The supersymmetry variation of this
Goldstino contains

δυL = 1
2
(
eK ∇W ∇̄W̄

∂∂̄K
+ P(P + ξn∆)

2Re(f)
)
PLϵ+ · · · . (4.31)

In the case ξn = 0 where the new FI term is absent, the term between parenthesis is always
positive in a SUSY broken phase, so we can make a transformation such that vL → 0, which
defines the unitary gauge (3.69). When ξn ̸= 0, this is no longer the case and we need to
check that this parenthesis does not vanish when evaluated at the minimum of the potential.

Assuming that we can use the unitary gauge, we can see in (4.27) and (4.29) that the new
FI terms do not contain gravitino-gravitino-vector nor gravitino-gravitino-scalar interactions,
since all the terms in O(λ2) contain at least two gauginos. As a result, they do not contribute
to the 2 → 2 gravitino scattering amplitudes computed in section 4.2.

Even though the addition of the new FI terms does not require gauged R-symmetry, we
can consider its combination with the standard FI term discussed in section 3.3.5. With the
standard FI term, the U(1) associated to the multiplet (Aµ, λ,D) is an R-symmetry, under
which the compensating scalar y transforms, and the original new FI term LFI,I of (4.24)
is not gauge invariant for the same reason it is not Kahler invariant. That is, except in the
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particular Kähler frame where the U(1) is not an R-symmetry, and where the superpotential
is constant, as discussed after (3.71). In short, if we want to add both the standard and
original new FI term LFI,I at the same time, we should start in the Kähler frame where the
superpotential is constant. From there, nothing forbids us to perform Kähler transformations,
but we shall keep in mind that different Kähler frames are not equivalent.

4.3.2 Perturbative cutoff

Let us now study the high energy behaviour of the supergravity theory defined by (4.26). In
particular we would like to obtain its cutoff from the perturbative unitarity criterion (4.1). To
this purpose, we will first take a look at scaling of the fermionic interaction terms contained
in LFI,I , extending an analysis made in [54, 55]. This will show that the cutoff is not lower
than the supersymmetry breaking scale. We will then use the results of section 4.2 to show
that the cutoff is indeed at MSUSY.

Dimensional analysis

The original new FI term Lagrangian (4.24) is the D-term density (3.53) of a real multiplet
built from the three chiral multiplets y and W ≡ λ̄PLλ and T ≡ T (W2), their anti-chiral
counterparts, and the real multiplet (V )D. Its lowest component is −ξnDf , where f is

f(y, ȳ,W, W̄ , T, T̄ ) ≡ (yȳ)−1 (λ̄PLλ)(λ̄PRλ)
CTCT̄

,

with CT given in (4.25). One can expand the D-term density in (4.24) following the rules
of multiplet calculus explained in chapter 3. Apart from the terms presented in (4.27) this
yields a collection of non-renormalisable fermionic interactions of the form

LFI,I ⊃ −cκ2ξnD
p(∂my

y ∂mW
W ∂mT

T f)O(δ)
F , (4.32)

where c is a dimensionless constant and p = 0 or 1. The (my,mW ,mT ) are integers represent-
ing the number of derivatives of f taken with respect to (y,W, T ) to get to the Lagrangian.
Such derivatives can also be taken with respect to (ȳ, W̄ , T̄ ), but in the context of this dimen-
sional analysis we can identify y ∼ ȳ and similarly for W and T . With this in mind, we can
simply write f ∼ y−2W 2T−2. Finally, O(δ)

F is a fermionic operator of mass dimension δ fixed
by homogeneity. Applying the derivatives on f ∼ y−2W 2T−2 gives

LFI,I ⊃ −cξnκ2Dpy−2−myW 2−mWT−2−mT O(δ)
F

⊃ −cξnκmy−2mTD−4−2mT +pO(10+my+2mT −2p)
F . (4.33)

In the second line, we used the gauge condition y ∼ κ−1 and T ∼ κ2D2 from (4.25); we also
absorbed W 2−mW into O(δ)

F , because W is fermionic, and fixed the mass dimension δ for LFI,I
to have mass dimension 4. Recall that that D and ξn have mass dimension 2.

At this point, there are still factors of κ in OF coming from the gauge fixing y ∼ κ−1. In
order to conclude about the cutoff of these higher-dimensional operators, we should extract
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this κ dependence. For this, we need to notice that each derivative with respect to T in (4.32)
is contracted with either CT or PLΩT or FT when expanding (4.24). Then from (4.25), we
see that they all come with a factor ȳ−2 ∼ κ2. Similarly, each derivative with respect to y
brings either y or PLχ0 or F 0, all contributing with a factor κ−1. There is no factor of κ when
taking derivatives with respect to W . So in the end, we obtain

O(δ)
F = κ−my+2mT O

′(δ−my+2mT )
F ,

where O′
F is an operator containing only fields and derivatives, without factors of κ. Inserting

this into (4.33) yields
LFI ⊃ −cξD−4−2mT +pO

′(10+4mT −2p)
F ,

which we can put into the form O(4+n)/Λn, with Λ of mass dimension 1. In our case

Λ6+4mT −2p = ξ−1
n D4+2mT −p = D3+2mT −p → ΛFI,I

cutoff ≳
√
D = MSUSY,

where we used D ∼ ξn in the second equality, and interpreted the scale Λ as the cutoff of the
corresponding operator. It turns out that all the fermionic interactions contained in the new
FI term have the same cutoff, which is the supersymmetry breaking scale. When considering
all these fermionic interactions together, however, the actual cutoff of the theory could be
higher than MSUSY because of Fierz identities or potential cancellations in the amplitudes.
But we can confirm that it sits indeed at MSUSY by using the results of section 4.2. Here, we
have performed the analysis for the original LFI,I, but the same can be done with LFI,II.

Gravitino scattering

As we mentioned after (4.31), in the unitary gauge, the new FI terms do not contribute to the
2 → 2 gravitino scattering amplitudes computed in section 4.2, but they modify the D-term
scalar potential as (4.30). For this reason, they generically disrupt the cancellation that was
taking place in (4.22) and lead to a perturbative cut-off at the supersymmetry breaking scale.
More precisely, the condition for cancellation of the leading term in (4.22) is

VF (z0, z̄0) + VD(z0, z̄0) = 0, (4.34)

where VF and VD are defined in (4.23), and (z0, z̄0) is an extremum of the scalar potential

∂(VF (z0, z̄0) + VD,FI(z0, z̄0)) = ∂̄(VF (z0, z̄0) + VD,FI(z0, z̄0)) = 0, (4.35)

where VD,FI is defined in (4.30). In addition, the condition for vanishing cosmological con-
stant at the minimum, as assumed in our amplitude computation, is

VF (z0, z̄0) + VD,FI(z0, z̄0) = 0. (4.36)

The conditions (4.34) and (4.36) imply 2P(z0, z̄0) + ξn∆(z0, z̄0) = 0, in other words they re-
quire that the new FI term does not contribute to the potential at the minimum.

We can easily find concrete examples where (4.34), (4.35), (4.36) are simultaneously sat-
isfied. For instance, let us consider the case of a Kähler potential K(z, z̄) = zz̄, superpotential
W (z) = zb, gauge kinetic function f(z) = 1, a standard FI term ξs, and either the original
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(4.24) or the Kähler invariant (4.28) new FI term with parameter ξn. The presence of the
standard FI term implies that the U(1) associated to the multiplet (Aµ, λ,D) is an R-symmetry
under which the superpotential transforms with a charge ξs, so the charge of the scalar must
satisfy qb = ξs. As mentioned after (4.31), the original new FI term should be written in the
Kähler frame where the superpotential is constant. In this frame K̃(z, z̄) = zz̄ + b log(zz̄).
Taking all of this into account, we can find that for 0 < b < 0.75, there is one value of (ξs, ξn)
for which all conditions are satisfied. For b < 0, there are two such values.

For instance, for the original new FI term LFI,I

· b = 0.5, ξs = 0.69211, ξn = −2.93863, r0 = 0.96407,

· b = −1, ξs = 6.43856, ξn = −5.04518, r0 = 0.62367,

· b = −1, ξs = 2.09581, ξn = 4.76335, r0 = 1.81251,

where r0 = |z0|.

For the Kähler invariant new FI term LFI,II, we find similarly

· b = 0.5, ξs = 0.50204, ξn = −3.92696, r0 = 1.20644,

· b = −1, ξs = 5.54153, ξn = −7.43073, r0 = 0.57406,

· b = −1, ξs = 1.43121, ξn = 8.83171, r0 = 2.02123.

In figure 4.2, we plot the corresponding potentials for concreteness. In all cases, we checked
that the parenthesis in (4.31) does not vanish, allowing us to use the unitary gauge.

The values of the parameters for which (4.34), (4.35), (4.36) are simultaneously satisfied
are rather fine tuned. In general, we should expect that the new FI terms lead to a perturba-
tive cutoff at the SUSY breaking scale. Note that even with fine tuning, the new FI terms do
contribute to the potential away from the minimum, and they also contain fermionic terms,
for instance they contribute to the mass of the physical fermion.
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Figure 4.2: Scalar potential for the model with Kähler potential K(z, z̄) = zz̄, superpotential
W (z) = zb, a standard FI term ξs, and either the original (left) or the Kähler invariant (right)
new FI terms, with parameters chosen such that (4.34), (4.35), (4.36) are satisfied.
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Chapter 5

Introduction to superstring theory and
moduli stabilisation

This chapter is an introduction to string theory, mostly based on [56, 57], with an emphasis
on type IIB compactification and moduli stabilisation, which will be the subject of chapter 6.
We start with the basics of bosonic string theory in section 5.1, allowing us to cover some
important ideas, as extra dimensions, the massless spectrum of the theory, the role of the
dilaton and moduli stabilisation. In 5.2, we turn to superstring theory. We explain how it
departs from the bosonic theory and introduce additional notions, such as the presence of
spacetime spinors, the GSO projection, the spectrum of type II theories, and the effective
action of type IIB theory. Finally, in section 5.3, we introduce the basics of compactification
and moduli stabilisation in type IIB string theory. We then discuss Calabi-Yau orientifolds, the
use of fluxes to stabilise their complex structure moduli, and conclude with an overview of
frameworks that enable complete stabilisation, such as the KKLT and Large Volume Scenario.

5.1 Bosonic string theory

Let us start by introducing the simplest version of string theory: the bosonic string theory.
Although unrealistic, as we will see, it illustrates several aspects of the more interesting
superstring theory. As its name indicates, string theory postulates that the most fundamental
constituents of nature are elementary one-dimensional strings, replacing the conventional
zero-dimensional point particles. A massive bosonic point particle has no internal degrees of
freedom, so its evolution is entirely characterised by its trajectory in spacetime, also called its
worldline. This evolution can be determined by applying the variational principle to

S = −m
∫
ds, (5.1)

where m is the mass of the particle and ds is the line element ds2 = −gµν(x)dxµdxν along
the worldline. Here we assume that the particle propagates in a background spacetime of
dimension D, with a metric gµν . If we parameterise the worldline with a real parameter τ ,
such that xµ(τ) describes the successive positions of the particle in spacetime, the action (5.1)
takes the form

S = −m
∫ √

−gµν(x)ẋµẋνdτ,
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a dot representing a derivative with respect to τ . Applying the variational principle to this
action gives the geodesic equation. We can use the same idea to write the following action
for a one-dimensional string, called the Nambu-Goto action

SNG = −T
∫
dµ where dµ =

√
− det(gµν(x)∂αxµ∂βxν)dτdσ, (5.2)

where T is the tension of the string. This action is proportional to the area of the two-
dimensional surface in spacetime that the string sweeps as it evolves, called its worldsheet.
This worldsheet is parameterised by two coordinates (τ, σ), respectively timelike and space-
like. The Nambu-Goto action (5.2) has the bad taste of containing a square root, which makes
it hard to use. For this reason, it is customary to introduce the Polyakov action

SP = −T

2

∫
dτdσ

√
−hhαβgµν(x)∂αxµ∂βxν , (5.3)

where hαβ is an auxiliary worldsheet metric. Writing and solving the equation of motion
of the auxiliary metric and putting the result back into (5.3) gives (5.2), so the two actions
are indeed classically equivalent. In what follows we consider a flat background gµν(x) = ηµν .

The Polyakov action (5.3) is invariant under reparameterisations σα → fα(σ) = σ′α,
where σα collectively denotes (τ, σ). Under this reparameterisation, the worldsheet metric
changes as hαβ(σα) = ∂αf

γ∂βf
δhγδ(σ′α). In addition, it is invariant under local scale trans-

formations hαβ → eϕ(τ,σ)hαβ. With a combination of these two transformations, and in the
absence of topological obstructions, it is possible to choose a gauge where the worldsheet
metric is flat hαβ = ηαβ and the Polyakov action becomes

SP = T

2

∫
d2σ(ẋ2 − x′2),

the prime representing a derivative with respect to σ. In this case, the equation of motion of
the xµ(τ, σ), which represents the position of the string in spacetime, is a wave equation

( ∂2

∂σ2 − ∂2

∂τ 2

)
xµ = 0, (5.4)

which can easily be solved after specifying the boundary conditions of the string. But before,
let us note that this equation can be simplified by introducing the light-cone coordinates

σ± = τ ± σ → ∂+∂−x
µ = 0 → xµ(τ, σ) = xµR(τ − σ) + xµL(τ + σ),

showing that the general solution is a sum of left-moving and right-moving modes.

When choosing the flat gauge hαβ = ηαβ, it should not be forgotten that the auxiliary
metric hαβ has an equation of motion implying the vanishing of the energy-momentum tensor

Tαβ = − 2
T

1√
−h

δSP

δhαβ
= ∂αx

µ∂βxµ − 1
2hαβh

γδ∂γx
µ∂δxµ = 0, (5.5)

so after choosing the flat gauge, Tαβ = 0 has to be imposed as an additional constraint. In
the σ± coordinates, the non trivial components are T++ = ∂+x

µ∂+xµ and T−− = ∂−x
µ∂−xµ.
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Boundary conditions, mode expansion, canonical quantisation

Boundary conditions fall into two categories: either the string is closed, or it is open. If it is
closed, the boundary condition is periodic xµ(τ, σ) = xµ(τ, σ + π), with the coordinate range
0 ≤ σ ≤ π; if it is open, there are still two possibilities, either ∂σxµ = 0 or xµ = xµ∗ at σ = 0
and π, respectively called Neumann and Dirichlet boundary conditions, where xµ∗ is a fixed
position. Considering a closed string, the general solution of the wave equation (5.4) is

xµR(τ − σ) = 1
2x

µ
cm + 1

2 l
2
sp
µ
cm(τ − σ) + i

2 ls
∑
n̸=0

1
n
αµne

−2in(τ−σ)

xµL(τ + σ) = 1
2x

µ
cm + 1

2 l
2
sp
µ
cm(τ + σ) + i

2 ls
∑
n̸=0

1
n
α̃µne

−2in(τ+σ), (5.6)

where xµcm is the center-of-mass position of the string, pµcm its total momentum, and the sum
represents all its vibration modes. The parameter ls introduced here is the string length scale,
it is linked to its tension T and to another parameter called α′ by T = 1/(2πα′) and l2s = 2α′.
Note that the reality of xµR implies that αµ−n = (αµn)∗, and the same for xµL.

We can then apply the canonical quantisation procedure. First, we define the canonical
momentum conjugate to xµ, which is pµ = δSP/δẋµ = T ẋµ. Next, we impose the canonical
commutation relation on xµ and pµ, which implies a commutation relation for the modes

[xµ(τ, σ), pν(τ, σ′)] = iηµνδ(σ − σ′) → [αµm, ανn] = [α̃µm, α̃νn] = mηµνδm+n,0.

If we redefine the mode operators, we can make this commutation relation more simple

aµm = 1√
m
αµm and aµ†

m = 1√
m
αµ−m → [aµm, aνn] = ηµνδm,n, (5.7)

and similarly for the α̃µn. The commutation relation (5.7) looks like the algebra of raising and
lowering operators from the quantum harmonic oscillator, so in a similar way we can define
the vacuum |0⟩ as a state that is annihilated by all lowering operators aµm |0⟩ = 0, and create
states on top of this vacuum by application of raising operators, for instance |ϕµ⟩ = αµ†

m |0⟩.

Energy-momentum tensor, physical states, critical dimension

The energy-momentum tensor can also be expanded in modes, by inserting (5.6) into T++ =
∂+x · ∂+x and T−− = ∂−x · ∂−x. We obtain

T++ = 2l2s
+∞∑

m=−∞
Lme

−2im(τ−σ) where Lm = 1
2

+∞∑
n=−∞

: αm−n · αn : ,

T−− = 2l2s
+∞∑

m=−∞
L̃me

−2im(τ−σ) where L̃m = 1
2

+∞∑
n=−∞

: α̃m−n · α̃n : ,

where the colons : : stands for the normal ordering prescription, according to which raising
operators, with n ≤ 0 appear to the left of lowering operators, with n ≥ 0. For example

L0 = 1
2α

2
0 +

∞∑
n=1

α−n · αn,
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and L0 is actually the only operator Lm for which normal ordering matters. Here 1/2α2
0 = α′p2

from inspection of (5.6). As we mentioned after equation (5.5), the condition T++ = T−− = 0
has to be imposed as a physical constraint. For a state |ϕ⟩, this implies that

(L0 − a) |ϕ⟩ = 0 and Lm |ϕ⟩ = 0 for all m > 0, (5.8)

where the a is a constant that parameterise the arbitrariness of the normal ordering prescrip-
tion for L0. It is not necessary to impose L−m |ϕ⟩ = 0, because Lm |ϕ⟩ = 0 already implies
⟨ϕ|L†

m = ⟨ϕ|L−m = 0. For the closed string, all formulae are duplicated with tilded operators,
but we will not always write them explicitely.

The physical state condition (L0 −a) |ϕ⟩ = 0 has some direct consequences. It can be used
to determine the mass of a string state

α′M2 = −p2
cm = 4(N − a) where N =

∞∑
n=1

α−n · αn, (5.9)

where N is the number operator, counting the number of string excitations. So the mass of a
state grows linearly with the number of excitations, with a factor 1/α′ = 2/l2s . In addition

(L0 − a) |ϕ⟩ = (L̃0 − a) |ϕ⟩ = 0 → (L0 − L̃0) |ϕ⟩ = 0 → N = Ñ .

This level-matching condition is the only link between the left and right-moving sectors.

An important requirement for the theory to make sense is the absence of negative-norm
states. This is not guaranteed a priori, because the commutation relation (5.7) implies that
commutators in the timelike direction have a negative sign [a0

m, a
0†
m ] = −1. It can be shown

that the absence of negative-norm states puts a constraint on the spacetime dimension D
and the constant a introduced in (5.8). In bosonic string theory, this is a ≤ 1 and D ≤ 26.
Therefore, the theory with a = 1 and D = 26 is called critical, and we focus on this case

D = 26 and a = 1 (5.10)

Such a large number of dimensions can seem problematic, given that we have only observed
four of them so far, but we will see that it is possible to effectively hide extra dimensions, for
instance with a method called compactification.

Note that with a = 1, the mass of the ground state is tachyonic. Indeed, following (5.9)
with N = 0, we have M2 = −4/α′ < 0. This tachyonic state signals a classical instability,
which is a problem of the bosonic string.

Light-cone gauge and massless spectrum

The choice of flat-gauge hαβ = ηαβ does not completely fix the reparameterisation and rescal-
ing symmetry of the worldsheet, since there are reparameterisations that leave ηαβ invariant
up to a constant factor. Such a transformation is called conformal. An infinitesimal parameter
for a conformal transformation thus satisfies

∂αξβ + ∂βξα = Ληαβ.
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After a conformal transformation, the factor Λ can be reabsorbed by a rescaling. In order to
fix this residual symmetry, one can introduce light-cone coordinates for spacetime

x± = 1√
2

(x0 ± xD−1),

and choose a gauge where all the modes in the + direction vanish α+
n = 0, leading to

x+(τ, σ) = x+
cm + ls2p+

cmτ. (5.11)

The great advantage of this choice of gauge is that the physical condition T++ = T−− = 0 can
be solved explicitly and completely fixes the α−

n in terms of the αin, where i = (1, . . . , D − 2).
Therefore, only the αin remain as the independent modes used to construct physical states.

For instance, in the case of the closed string, after the tachyonic state at N = 0, there are
242 = 576 physical states at the massless level N = 1, of the form |ϕij⟩ = αi−1α̃

j
−1 |0⟩. These

states fall into three representations of SO(24): the symmetric-traceless, the antisymmetric,
and the scalar representations. In other words, the massless spectrum of the closed bosonic
string contains one spin-two particle, the graviton, one 2-form, and one scalar, the dilaton

M2 = 0 → gµν (graviton), Bµν (B-field), ϕ (dilaton).

Background fields, string coupling constant, effective action

In (5.3), we started from the Polyakov action of a string in a background metric gµν , but have
just learned that the massless spectrum of the closed string also contains the B-field Bµν and
the dilaton ϕ, on an equal footing with gµν . As a result, it is natural to consider adding them
to the worldsheet action. One can show that the right way to do so is as follows

S = 1
4πα′

∫
dτdσ

(
−

√
−hhαβgµν(x)∂αxµ∂βxν + εαβBµν(x)∂αxµ∂βxν

+α′√−hR(h)ϕ(x)
)
, (5.12)

where εαβ is the Levi-Civita tensor, with ε01 = 1, and R(h) is the Ricci scalar of the metric h.

At this point, we need to pause and think. In order to introduce the notion of string at the
beginning, we made an analogy with the point particle. We then realized that the string has
several modes of vibration, each corresponding to a distinct type of particle. At the massless
level for a closed string, we found a spin-two particle, a 2-form and a scalar. What we are
doing now is postulating the existence of fields, of which these particles are quanta. But the
precise relation between these fields and strings is rather vague. If we have in mind that
an electromagnetic field can be seen as a coherent superposition of photons, the (gµν , Bµν , ϕ)
fields can also be seen as coherent superpositions of strings in the corresponding modes. This
would mean that spacetime itself is a coherent superposition of strings.

The position of the dilaton in the action (5.12) is interesting. If we assume that it is a
constant ϕ0, it goes out of the integral and this part of the action becomes proportional to the
Euler characteristic χ(Σ) of the worldsheet Σ, which is a topological invariant

Sϕ = 1
4π

∫
Σ
dτdσ

√
−hR(h)ϕ0 = ϕ0χ(Σ).
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If we then consider the partition function of the theory, formulated as a path integral over
the worldsheet fields hαβ and xµ, the path integral over hαβ can be reduced to a sum over all
worldsheet topologies, characterised by their Euler characteristic χ

Z ∼
∑

topologies

∫
[Dxµ] exp(−S[xµ]) =

∑
topologies

e−ϕ0χ
∫

[Dxµ] exp(−Sg,B[xµ]),

and we realise that different topologies are weighed by a factor e−ϕ0χ. In the case of closed
strings, the different topologies contributing to the path integral are Riemann surfaces with-
out boundaries, and their Euler characteristic is simply χ = 2 − nh, the number of holes.
Defining gs = eϕ0, the different topologies are weighed by g2nh−2

s . If gs < 1, the sum over
worldsheet topologies is thus a perturbative expansion in the string coupling

gs = eϕ0 . (5.13)

At energies that are far below the string energy scale Ms ∼ 1/ls ∼ 1/
√
α′, we can ignore

the infinite tower of massive string states and focus on describing its massless sector. To do
this, one can derive the following effective action for the fields (gµν , Bµν , ϕ)

S = 1
2

∫
d26x

√
−ge−2ϕ

(
R − 1

12H
µνρHµνρ + 4∂µϕ∂νϕ

)
, (5.14)

where Hµνρ = ∂[µBνρ] is the 3-form field strength of the 2-form Bµν . This action contains the
Einstein-Hilbert term for gµν , and kinetic terms for (Bµν , ϕ). As such, it is formulated in the
string frame, where the fields correspond to those of equation (5.12), but as in section 2.2 it
is possible to go to the Einstein frame to remove the non-minimal coupling of the dilaton.

It is interesting to see the Einstein-Hilbert term appearing in the effective action (5.14).
In fact, this action is only the leading terms of a series in α′, with corrections coming from the
massive string states. So in string theory, the Einstein-Hilbert term is naturally supplemented
by higher order terms of the type considered in chapter 2. However, the calculation of these
higher-order terms depends on the choices made in compactification.

It is also important to note that the dilaton field has a kinetic term, but no potential. Con-
sequently, nothing determines its vacuum expectation value ⟨ϕ⟩ = ϕ0, which plays the role of
the string coupling (5.13). More problematic still, this value can change at will at no energy
cost, which would undoubtedly have dramatic phenomenological consequences.

Such a scalar field without potential is called a modulus, and in string theory, or in general
in theories with compactified extra-dimensions, there are many of them, as we will see. As for
the dilaton, the vacuum expectation value of other moduli is linked to physical parameters
of the lower-dimensional theory, such as as masses or gauge couplings. It is therefore crucial
to understand the mechanisms that give a potential to the moduli, in order to stabilise them
to a fixed value and avoid uncontrolled variations of the corresponding parameters. We will
introduce these mechanisms in section 5.3, in the context of superstring theories.
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5.2 Superstring theories

There are two problems with bosonic string theory: its spectrum contains a tachyonic state
and no fermionic states. Fermions do exist in nature, so they must be incorporated in a real-
istic theory. In string theory, a natural way to introduce them is to start from the worldsheet
and extend the Polyakov action (5.3) as

S = − 1
π

∫
dτdσ(∂αxµ∂αxµ + ψ̄µρα∂αψµ), (5.15)

in the flat gauge hαβ = ηαβ, and in units where T = 1/π. The new fields ψµ are world-
sheet spinors, and the ρα are two-dimensional Dirac matrices satisfying {ρα, ρβ} = 2ηαβ. The
xµ(τ, σ) represent the position of the string in spacetime, but the ψµ(τ, σ) are more abstract.
The worldsheet spinors ψµ have two components, that we can denote ψµ− and ψµ+, and we can
choose a representation for the ρα matrices such that their equation of motions are

∂+ψ− = 0 and ∂−ψ+ = 0 → ψ−(τ − σ) and ψ+(τ + σ),

The worldsheet action (5.15) is invariant under a global supersymmetry

δxµ = ϵ̄ψµ and δψµ = ρα∂αx
µϵ, (5.16)

associated to a supercurrent

Jα = −1
2ρ

βραψµ∂βx
µ. (5.17)

On the other hand, the energy-momentum tensor (5.5) becomes

Tαβ = ∂αx
µ∂βxµ + 1

4 ψ̄
µρα∂βψµ

1
4 ψ̄

µρβ∂αψµ − (trace). (5.18)

After equation (5.5), we mentioned that after choosing the flat gauge hαβ = ηαβ, the vanish-
ing of the energy-momentum tensor, coming from the equation of motion of hαβ, has to be
imposed as a constraint in the construction of physical states. Here, we started from (5.15)
directly in the flat gauge, but it is possible to start from a worldsheet action where the repa-
rameterisation and rescaling invariances are still present. In that action, the supersymmetry
(5.16) is local, and associated with a worldsheet gravitino, whose equation of motion implies
the vanishing of the supercurrent. After choosing the simple gauge (5.15), the vanishing of
the supercurrent also has to be imposed as a constraint in the construction of physical states.

Boundary conditions, mode expansion, canonical quantisation

With regards to boundary conditions, worldsheet fermions offer a new possibility. Again in
the example of a closed string, these conditions can be periodic or antiperiodic

ψµ±(τ, σ) = ±ψµ±(τ, σ + π),

and similarly for open strings. The periodic choice is called the Ramond (R) boundary con-
dition, while the anti-periodic choice is called the Neveu-Schwarz (NS) boundary condition.
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The corresponding mode expansions, are

ψµ−(σ − τ) =
∑
n∈Z

dµne
−2in(τ−σ) or ψµ−(σ − τ) =

∑
r∈Z+1/2

bµr e
−2ir(τ−σ),

ψµ+(σ + τ) =
∑
n∈Z

d̃µne
−2in(τ+σ) or ψµ+(σ + τ) =

∑
r∈Z+1/2

b̃µr e
−2ir(τ+σ).

Canonical quantisation then imposes the following anticommutation relations

{dµm, dνn} = ηµνδm+n,0 and {bµr , bνs} = ηµνδr+s,0.

So in superstring theory there are several sectors, and we define a vacuum for each. The
Ramond vacuum |0⟩R is annihilated by the lowering operators αµm and dµm with m > 0, while
the Neveu-Schwarz vacuum |0⟩NS is annihilated by the operators αµm and bµr with (m, r) > 0.

The important novelty is that the Ramond vacuum is degenerate, because the operators dµ0
commute with the number operator N counting the number of string excitations. Moreover,
these operators satisfy the Clifford algebra {dµ0 , dν0} = ηµν . The degenerate Ramond vacuum
thus furnishes a representation of this algebra, and behaves as a spacetime spinor.

As for the bosonic closed string, the left-moving and right-moving fermionic modes of
the closed superstring are largely independent, and boundary conditions can be imposed
separately on the two sectors. The closed superstring therefore comprises four independent
sectors: (NS-NS, R-R, NS-R, R-NS).

Energy-momentum tensor, supercurrent, physical states, critical dimension

As for the bosonic string, we can compute the modes of the energy-momentum tensor (5.18)
and of the supercurrent (5.17), in terms of the operators (αµm, bµr , dµm). These expansions
depend on the sector under consideration

Lm = 1
2

+∞∑
n=−∞

: αm−n · αn : + 1
2

∑
r∈Z+1/2

(
r + m

2
)

: b−r · bm+r : (NS sector)

+ 1
2
∑
n∈Z

(
n+ m

2
)

: d−n · dm+n : (R sector)

and
Gr =

∑
n∈Z

α−n · br+n and Fm =
∑
n∈Z

α−n · dm+n.

In the case of a closed string we have another collection of the same operators with tildes.

Superstring states are constructed in the same way as bosonic string states: by acting with
raising operators (αµm, bµr , dµm) with (m, r) < 0, on the Neveu-Schwarz and Ramond vacua. In
addition, they are subject to the physical state conditions, as explained after (5.18)

Lm |ϕ⟩NS = 0, (L0 − aNS) |ϕ⟩NS = 0, Gr |ϕ⟩NS = 0 for m > 0 and r > 0,
Lm |ϕ⟩R = 0, (L0 − aR) |ϕ⟩R = 0, Fn |ϕ⟩R = 0 for m > 0 and n ≥ 0,
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where aNS and aR are constants that parameterise the arbitrariness of the normal ordering
prescription for L0. In the light-cone gauge (5.11), which is complemented with ψ+(τ, σ) in
the superstring theory, only the transverse operators (αim, bir, dim) are used to construct states,
and the physical state conditions are automatically satisfied. In this gauge, the masses of
states are

α′M2 =
∞∑
n=1

αi−nα
i
n +

∞∑
r=1/2

rbi−rb
i
r − aNS (NS sector)

α′M2 =
∞∑
n=1

αi−nα
i
n +

∞∑
n=1

ndi−nd
i
n − aR (R sector) (5.19)

As for the bosonic string, there is a critical dimension D and values of aNS and aR for
which there are no negative-norm states in the spectrum. These values turn out to be

D = 10, aNS = 1
2 and aR = 0. (5.20)

Modular invariance and GSO projection

So far, superstring theory does not seem much more attractive than bosonic string theory.
Admittedly, superstring theory does contain fermionic states in the R sector, which is an im-
provement. But since aNS = 1/2, the NS ground state is still tachyonic, see (5.19). This issue
is resolved by the so-called GSO projection, which is actually required by modular invariance.

Modular invariance appears in the closed string sector, when considering the one-loop
vacuum amplitude, corresponding to a closed string propagating and closing onto itself, so
that its worldsheet has the topology of a 2-torus. When computing this amplitude, one should
sum over all possible inequivalent worldsheet geometries with this topology.

A 2-torus can be defined as R2/Λ, where Λ is a 2-dimensional lattice. In other words,
points are identified as xi ∼ xi + λi, where λ ∈ Λ. In the case of the worldsheet, denoting
z = σ+ iτ and l the length of the string, the 2-torus can be defined by z ∼ z+ l and z ∼ z+τ l,
where τ is a parameter called the complex structure. This parameter characterises different
worldsheet geometries, but there are different values of τ leading to the same torus, for
instance making τ → τ + 1 or τ → −1/τ does not affect the torus geometry. These two
elements can be shown to generate the following set of transformations

τ → aτ + b

cτ + d
with (a, b, c, d) ∈ Z and ad− bc = 1, (5.21)

which form the group SL(2,Z), which is thus called the modular group of the 2-torus. Using
such a transformation, every τ in the upper half complex plane can be brought into

F = {−1/2 < |Re(τ)| ≤ 1/2 and |τ | ≥ 1}, (5.22)

called the fundamental domain.

In order to be well-defined, any closed string theory should have its one-loop vacuum
amplitude written as the integral over the fundamental domain F of a modular invariant
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function Z(τ), so that every worldsheet geometry contributes once, and only once.

This requirement is automatically met for the bosonic string, but not for the superstring.
In both cases, Z(τ) factorises between the left and right-moving sectors, and in superstring
theory both sectors get contributions from the NS and R sectors. Omitting the details, these
contributions are respectively proportional to

1
η4ϑ

[
0
0

]4

and
1
η4ϑ

[
1/2
0

]4

,

where η(τ) and ϑ[a, b](τ) are special functions whose definition can be found in [57]. What is
important is their transformation properties under the modular transformations (5.21). For
example, the contribution from the NS sector transforms as

1
η4ϑ

[
0
0

]4

→
τ→τ+1

− 1
η4ϑ

[
0

1/2

]4

→
τ→−1/τ

− 1
η4ϑ

[
1/2
0

]4

,

under the fundamental transformations τ → τ + 1 and τ → −1/τ . It is already interesting to
observe that the contributions of the NS and R sectors are linked by a modular transformation,
so they both have to be included in Z(τ), for it to be modular invariant, in addition to two
other contributions, one of them coming with an arbitrary sign

Z± = 1
2η4

(
ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4

− ϑ

[
1/2
0

]4

± ϑ

[
1/2
1/2

]4)
. (5.23)

These two additional contributions may seem rather mysterious at first glance. In fact, they
can be interpreted as the consequence of a projection imposed on the physical spectrum,
called the GSO projection. In the NS sector, this projection keeps only states with an odd
number of bir oscillators, and in the R sector it keeps states with an even number of dim oscil-
lators and given chirality, either positive or negative, reflecting the two signs in (5.23).

Since the choice of chirality in the GSO projection can be made independently in the
left and right-moving sectors, there are two different closed superstring theories, called the
type IIA and type IIB theories. In the type IIA theory, the left and right moving sectors have
opposite chirality, while in the type IIB theory, they have the same.

Type II massless spectra

As a consequence of the GSO projection, the tachyonic NS ground state is projected out of
the spectrum, since it contains zero bir oscillators, which is an even number. The states at the
next level are massless. In the type IIA superstring theory, they take the form

b̃i−1/2 |−⟩NS ⊗ bj−1/2 |+⟩NS , |−⟩R ⊗ |+⟩R , b̃i−1/2 |−⟩NS ⊗ |+⟩R , |−⟩R ⊗ bi−1/2 |+⟩NS .

Recall that the Ramond ground state is a spacetime spinor. As a result, states in the NS-R and
R-NS sectors are fermionic. On the other hand, states in the R-R sector are bosonic, since they
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belong to the tensor product of two spinor representations. In the end, the massless spectrum
of type IIA string theory can be decomposed into the following irreducible representations

NS-NS sector: gµν (graviton), Bµν (B-field), ϕ (dilaton),
R-R sector: Cµ (1-form), Cµνρ (3-form),

NS-R sector: ψ1
µ (gravitino), λ1 (dilatino), (5.24)

R-NS sector: ψ2
µ (gravitino), λ2 (dilatino).

The name given to the states in the NS-R and R-NS sectors suggests the presence of local
spacetime supersymmetry, in addition to the worldsheet supersymmetry (5.16). This is in-
deed the case that the effective action of type II superstring theories is N = 2 supersymmetric.
The 2 comes from the number of gravitini and gives these theories their name.

In type IIB superstring theory the massless spectrum is very similar to (5.24). The only
differences concern the chirality of the gravitini/dilatini and the content of the R-R sector

R-R sector: a (0-form or axion), Cµν (2-form), Cµνρσ (4-form). (5.25)

As for the bosonic theory, the string states in these massless spectra can be reinterpreted as
the quanta of fields, for which one can derive effective actions, similar to (5.14).

In addition to type II, there exists other string theories. There is the type I theory, which
involves both open and closed string and can be seen as a projection of the type IIB theory
combined with the addition of an open string sector; and there are the heterotic theories,
where the left-moving sector is treated as a bosonic string theory, while the right-moving
sector is treated as a superstring. Furthermore, it has been proposed that all these theories
are related to a single eleven-dimensional theory, called M-theory. In the following, we will
largely focus on type IIB string theory.

Effective action of type IIB string theory

From now, let us focus on type IIB string theory and give its effective low-energy bosonic
action. For this, we first define the field strengths associated to the various form-fields

H3 = dB2, F1 = dC0, F3 = dC2, F5 = dC4,

in other words, Hµνρ = ∂[µBνρ] and similarly for the others. We also define

F̃3 = F3 + C0H3 and F̃5 = F5 − 1
2C2 ∧H3 + 1

2B2 ∧ F3, (5.26)

with these definitions, we have the action

SIIB = 1
2

∫
d10x

√
−g
(
e−2ϕ

(
R + 4∂µϕ∂νϕ− 1

2 |H3|2
)

− 1
2 |F1|2 − 1

2 |F̃3|2 − 1
4 |F̃5|2

)
− 1

2

∫
C4 ∧H3 ∧ F3. (5.27)

Moreover, self-duality of F̃5 must be imposed, namely F̃5 = ⋆F̃5 where ⋆ is the Hodge-star
operator. It is an equation of motion that cannot be embedded into the action. The action
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of the NS-NS sector in (5.27) is actually the same as (5.14). In addition, it contains kinetic
terms for the form-fields, and a Chern-Simons term. The fermionic part of the action can be
deduced from (5.27) by supersymmetry.

An important feature of the type IIB effective theory is that it is invariant under SL(2,R)
transformations (

B2
C2

)
→
(
d −c

−b a

)(
B2
C2

)
and S → aS + b

cS + d
, (5.28)

where ad− bc = 1 and S = C0 + ie−ϕ is the axio-dilaton. This invariance is called S-duality.

5.3 Compactification and moduli stabilisation

In (5.10) and (5.20), we saw that string theory requires the presence of extra dimensions, in
addition to the four we know. In superstring theory, there are six such dimensions. One of
the main ideas for hiding these extra dimensions is compactification. In compactification of
type II superstring theories down to four dimensions, one assumes that the ten dimensional
spacetime is factorised as M10 = M4×M6. With this assumption, one can make the following
metric ansatz

ds2
10 = ds2

4 + ds2
6 = gµν(x)dxµdxν + g̃mn(y)dymdyn, (5.29)

where from now the greek indices µ, ν, . . . are reserved to the four-dimensional spacetime,
while lower case latin indices m,n, . . . are used for the six-dimensional internal space. Upper
case latin indices M,N, . . . will be used to denote all ten dimensions collectively.

5.3.1 The basics of compactification

Let us illustrate important aspects of extra-dimensional theories with simple examples in-
spired by [58]. First, we consider the five-dimensional theory of a free scalar field compacti-
fied on a circle

S5 = −1
2

∫
d5x∂Mϕ∂Mϕ. (5.30)

If we assume that the fifth dimension, associated to the coordinate y, is circular, with period-
icity y ∼ y + 2πR, we can expand the scalar field into Fourier modes

ϕ(xµ, y) = ϕ(xµ, y + 2πR) → ϕ(xµ, y) =
∑
k∈Z

ϕk(xµ)eiky/R.

Substituting into (5.30) and integrating over y, we obtain a four-dimensional action

S4 = −(2πR)
∫
d4x

(
∂µϕ0∂µϕ0 +

∞∑
k=1

(
∂µϕk∂µϕ−k +m2

kϕkϕ−k
))

with m2
k = k2

R2 ,

where the five-dimensional scalar field is represented as an infinite tower of increasingly
massive four-dimensional modes, called the Kaluza-Klein (KK) modes. The mass scale of the
tower goes as 1/R, so if the compactification radius is small relative to the scale of interest,
we can ignore the KK tower and describe the scalar field with its massless zero-mode ϕ0(xµ).
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In string theory compactified on a circle, there is tower in addition to the KK tower. If
we take the example of bosonic string theory, we have to take into account in their boundary
condition that closed strings can be wound around the circular dimension

x25(τ, σ + π) = x25(τ, σ) + 2πRw with w ∈ Z

which modifies the mode expansion (5.6), and ultimately the mass formula (5.9) becomes

α′M2 = α′
( k2

R2 + w2R2

α′2

)
+ 4(N − 1), (5.31)

where we recognise that the KK tower is accompanied by a tower of winding modes, whose
mass scale goes as R/α′. Therefore, if we want to ignore this tower as well, we need
a large compactification radius, more precisely, a large R/α′. Since α′ is involved and
α′ ∼ 1/M2

s ≪ 1/E2 at the energies we are interested in, this condition is not incompati-
ble with the small radius condition to ignore the KK tower.

It is also instructive to consider the compactification of the Einstein-Hilbert action

S5 = M3
5

2

∫
d5s

√
−GR5(G), (5.32)

keeping only the zero-modes, the five dimensional metric can be parameterised as

G0
MN(xµ) = eσ/3

(
gµν + e−σAµAν e−σAµ

e−σAµ e−σ

)
. (5.33)

In this parameterisation, σ is a scalar field whose expectation value is linked to the radius R
of the compact dimension, as we can see if we consider a constant σ0 and periodicity y ∼ y+1

2πR =
∫ 1

0
G44dy = e−2σ0/3.

Substituting the parameterisation (5.33) in (5.32) leads to the four-dimensional action

S4 = M2
4

2

∫
d4x

√
−g
(
R4(g) − 1

6∂
µσ∂µσ − 1

4eσF
µνFµν

)
where M2

4 = (2πR)M3
5 . (5.34)

Here, we see that the four-dimensional Planck mass M4 is related to the five-dimensional
Planck mass M5 with a factor corresponding to the volume of the compact dimension. It is
an idea that is generally true. Consequently, a large internal volume could explain the weak-
ness of gravity in our four-dimensional perspective. In the limit of infinite volume, gravity is
decoupled in four dimensions. This is why we consider compact internal spaces.

The vacuum expectation value of the scalar field σ is involved in both the four-dimensional
Planck mass and in the kinetic term of the vector field Aµ defined in (5.33). This scalar field
has a kinetic term, but no potential: it is a modulus, just like the dilaton in (5.14) and (5.27).
Without a potential, its vacuum expectation value can evolve freely, and the strength of our
gravitational interactions would vary over time, something we have not observed. We will
soon introduce moduli stabilisation mechanisms in type IIB superstring theory.
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Supersymmetry, Calabi-Yau, orientifolds

As we have seen in (5.24), the spectrum of type II string theories contains two gravitini,
and they are described at low energy by N = 2 supergravity theories in 10 dimensions. In
D = 10, a minimal spinor has 16 components, and N = 2 supergravity has 32 supercharge
components. After dimensional reduction, these supercharges must be accommodated in
lower-dimensional spinors, which have fewer components. In D = 4, a minimal spinor has
4 components, so 8 of them are needed for the 32 supercharge components. In conclusion
N = 2 supergravity in D = 10 reduces to at most N = 8 supergravity in D = 4.

We say at most, because the 10-dimensional supercharges components are not all trans-
ferred to 4-dimensional ones. In fact, the supersymmetries of the 4-dimensional theory cor-
respond to supercharges that are globally defined on M6, which is related to the existence of
a covariantly constant spinor η, as is nicely explained in [59]. This condition is itself related
to the holonomy group of M6. The holonomy group of a manifold describes how vectors
are rotated upon parallel transport around a closed curve. For a Riemannian manifold of
dimension n, the holonomy group is in general SO(n). In the example of a torus, vectors are
not rotated when parallel transported around a closed curve, so the holonomy is trivial.

It can be shown that the existence of a covariantly constant spinor on the internal man-
ifold requires that it has SU(3) holonomy. If this is the case, each of the 10-dimensional
supercharge yields a 4-dimensional supercharge. In other words, a 10-dimensional N = 2 su-
pergravity reduced on a space of SU(3) holonomy yields a 4-dimensional N = 2 theory. If the
holonomy of M6 is a subgroup of SU(3), the 4-dimensional theory has more supersymmetry.

Compact manifolds of SU(3) holonomy are not trivial to construct. There is a theorem,
conjectured by Calabi and proven by Yau, stating that anyN -dimensional complex and Kahler
manifold with vanishing first Chern class admits a metric with SU(N) holonomy, although no
non-trivial metric satisfying this property is known. A manifold satisfying these conditions is
called a Calabi-Yau manifold. A N -dimensional complex manifold has 2N real dimensions.

For N = 1, there is only one Calabi-Yau manifold, which is the two-torus T 2, although
tori can be considered trivial cases. For N = 2, there are two Calabi-Yau manifolds, which
are T 4 and a more interesting manifold called K3. For N = 3, the case of interest for type II
compactifications, it is not known whether the number of Calabi-Yau manifolds is finite. The
simplest example is defined as a quintic hypersurface in the projective space CP4

z5
1 + z5

2 + z5
3 + z5

4 + z5
5 = 0.

A vast number of Calabi-Yau manifolds have been constructed this way, or using more ad-
vanced tools of algebraic geometry and the Kreuzer-Skarke database of reflexive polyhe-
dra [60] . In chapter 6, we will define and consider toroidal orbifolds, which can be seen as
singular limits of Calabi-Yau manifolds.

For phenomenological applications, N = 2 in four dimensions is too much, because there
are no chiral multiplets with this amount of supersymmetry, and the spectrum of the Stan-
dard Model is chiral. Fortunately, there is a way to reduce the N = 2 supersymmetry of type
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II theories compactified on Calabi-Yau manifolds, down to N = 1, called orientifolding. As
we saw in chapter 3, there are chiral multiplets in N = 1 indeed. At the end of the day, this
residual N = 1 supersymmetry must also be broken if the Standard Model is to be recovered.
But maintaining a certain degree of supersymmetry at the level of the compactification pro-
tects against certain corrections and greatly simplifies the analysis, as we shall see later.

The orientifold is a quotient of the theory by ΩR, where Ω is essentially the worldsheet
parity operator, while R is a geometric Z2-involution of the compact space M6, for which we
have several choices. In type IIB theory, for example, one possibility is to set R = 1 and just
quotient by Ω, which in fact defines the type I superstring theory that we mentioned earlier.
Part of the spectrum of the theory is projected by the orientifold quotient, in particular one
gravitino is removed, leading to N = 1.

We can interpret the fixed loci of R in M6 as the positions of stringy geometrical objects,
called orientifold planes, which also fills the four-dimensional M4. With R = 1, the orien-
tifold planes fill M6 and are called O9-planes. If we call (z1, z2, z3) the complex coordinates
of M6 and Ri the involution acting as zi → −zi, we can also consider

R = Ri → O7-planes, R = RiRj → O5-planes, (5.35)
R = RiRjRk → O3-planes.

In general, it is possible that different kind of Op-planes coexist, but in type IIB only O3/O7
and O5/O9 combinations do preserve N = 1 supersymmetry.

Moduli of Calabi-Yau manifolds

In the beginning of this section 5.3.1, we showed in a simple case how compactified extra-
dimensions lead to the appearance of moduli in the lower-dimensional effective theory. We
then explained that an interesting class of compactifications is on orientifolds of Calabi-Yau
threefolds, in order to preserve N = 1 supersymmetry in four dimensions. It is now natural
to study the moduli of Calabi-Yau threefolds [61].

It can be shown that Calabi-Yau threefolds, defined as a complex and Kahler manifolds
admitting a metric with SU(3) holonomy, are also Ricci-flat, in the sense that Rmn(g) = 0.
Knowing this, moduli can be defined as deformations of this metric that preserve the Ricci-
flatness condition, leading to the Lichnerowicz equation

Rmn(g + δg) = 0 → ∇k∇kδgmn + 2Rm
p
n
qδgpq = 0. (5.36)

Using properties of Kahler geometry and introducing complex coordinates, in the same way
as throughout chapter 3, the equations for the mixed and pure components δgαβ̄ and δgαβ de-
couple. These deformations can then be put in one-to-one correspondence with the following
(1, 1) and (2, 1)-forms

δgαβ̄dz
α ∧ d̄z̄β̄ and Ωαβγg

γδ̄δgδ̄ϵ̄dz
α ∧ dzβ ∧ dz̄ ϵ̄, (5.37)

where Ω is a nowhere vanishing (3, 0)-form, whose existence and unicity is implied by the
Calabi-Yau conditions. The equation (5.36) implies that the (p, q) forms (5.37) are harmonic,
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and thus counted by topological numbers hp,q, called Hodge numbers.

The h2,1 moduli associated to (2, 1)-forms are called complex structure moduli, because
they paramaterise deformations of the complex structure, the piece of information making
the link between real and complex coordinates on a complex manifold. Explicit examples
in the case of toroidal orbifolds will be given in chapter 6. Complex structure moduli are
naturally complex scalars.

The h1,1 moduli associated to (1, 1)-forms are called Kahler moduli, because they param-
eterise deformations of the Kahler form J ∼ gαβ̄dz

α ∧ z̄β̄. This form can be used to compute
the volumes of even-dimensional cycles, for example the volume of the entire manifold∫

M6
J ∧ J ∧ J = Vol(M6).

Kahler moduli thus have a clear geometrical meaning, they control the volumes of 2n-cycles.
As such, they are constrained by the fact that the volumes should not be negative, and they
are real scalar fields. But as we saw multiple times already, the metric gµν is not alone in
the spectrum of string theories (5.24). It is always accompanied by p-forms, and in particu-
lar by the 2-form B. These forms also give rise to moduli after compactification. Thanks to
supersymmetry, these additional moduli are naturally combined with metric moduli to form
multiplets. For instance, the R-R 2-form C2 naturally combines with the Kahler form to give
the complexified Kahler form J = C2 + iJ , so that the Kahler moduli become complex scalars
by being combined with the h1,1 internal components Cαβ̄.

Before orientifolding, the effective four-dimensional theory is N = 2 supersymmetric, and
it can be shown that in type IIB, complex structure moduli go into vector multiplets, while
Kahler moduli go into hypermultiplets. The dilaton is also combined with the 0-form C0, to
give the axio-dilaton S = C0 + ie−ϕ encountered in (5.28) and goes into a hypermultiplet.

After orientifolding, the supersymmetry of the effective theory is reduced to N = 1. The
complexified Kahler moduli and the axio-dilaton go into h1,1 + 1 chiral multiplets, while
complex structure moduli are split into h2,1

+ vector multiplets and h2,1
− chiral multiplets, where

h2,1
± are the numbers of (2, 1)-forms that are even of odd under the geometric involution R.

In what follows, we always consider h2,1
+ = 0, so all the moduli belong to chiral multiplets.

Open strings, branes, tadpole conditions

So far, we did not talk about open strings. We only mentioned that they correspond to the
boundary conditions ∂σxµ = 0 or xµ = xµ∗ at σ = 0 and π, respectively called Neumann and
Dirichlet, where xµ∗ is fixed. Dirichlet boundary conditions break Poincaré invariance, but this
is not problematic if we interpret the xµ∗ as the positions of physical objects, called D-branes,
to which the open string is attached.

Like orientifold planes, there are D-branes of different dimensions. A Dp-brane spans p
dimensions of space, and has a (p+1)-dimensional worldvolume. In the directions transverse
to its worldvolume, it is localised. For example, considering 10-dimensional superstring the-
ory compactified on a 6-dimensional space, a D3-brane can fill M4 and be localised in M6.
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In this way, Poincaré invariance is preserved on M4. Open strings ending on this D3-brane
have Neumann boundary conditions in M4 and Dirichlet boundary conditions in M6.

Open strings and branes play an important phenomenological role in string theory, be-
cause they can be used to engineer non-abelian gauge theories. Indeed, the spectrum of open
string theories contains a spin-one particle Aµ that can be interpreted as the quantum of a
gauge field. In the presence of stacks of N coincident branes, a label should be introduced to
keep track of which brane the open strings are attached to, and in the simplest case it can be
shown that the corresponding dynamics is that of a U(N) gauge theory on the worldvolume
of the brane stack. Other gauge groups can be obtained with more involved setups.

The existence of branes is also suggested by the massless spectrum of string theories. In
the worldline description of a bosonic charged particle, its coupling to the gauge field Aµ,
seen as a 1-form, can be described by a topological term of the form

S =
∫
A,

the integral being along the worldline. Similarly, the higher forms that are present in the spec-
tra of string theories, see (5.24) and (5.25), are naturally coupled to the higher-dimensional
worldvolumes of Dp-branes. A p-form couples to a p-dimensional worldvolume and suggests
the existence of (p − 1)-branes. In the type IIB theory, for example, the massless spectrum
contains a 2-form and a 4-form, which are respectively coupled to D1 and D3-branes. Follow-
ing this logic, the spectrum also contains a 0-form, which is formally coupled to a (−1)-brane,
an object localised in both space and time, called an instanton.

From a p-form potential Cp, one can also build a (p + 1)-form field strength Fp+1 = dCp,
which can be Hodge-dualised into a (D − p − 1)-form F̃D−p−1 = ⋆Fp+1 corresponding to a
(D − p − 2)-form potential C̃D−p−2. This new potential can be coupled to the (D − p − 2)-
dimensional worldvolume of a (D − p − 3)-brane. By analogy with electromagnetism, this
coupling of a p-form to a (D − p − 3)-brane through Hodge dualisation is called magnetic,
while the direct coupling to a (p− 1)-brane discussed above is called electric.

In the type IIB theory, the (0, 2, 4)-forms of the massless spectrum (5.25) are thus mag-
netically coupled to (D7, D5, D3)-branes, respectively. The 4-form C4 is both electrically and
magnetically coupled to D3-branes, because its 5-form field strength F5 is self-dual ⋆F5 = F5.

The fact that branes are charged under p-form fields has important consequences. Because
of this, branes act as sources in the equations of motion and Bianchi identities of these fields.
For example, in type IIB, the Bianchi identity of F̃5 in (5.26), which is also its equation of
motion due to self-duality, is

dF̃5 = H3 ∧ F3 + 2µ3ρ3, (5.38)

where µ3 is the D3-brane charge, which is given in terms of α′ by 1/µp = gs(2π)p(α′)(p+1)/2,
and ρ3 is the D3-brane density. If the theory is compactified on a 6-dimensional space, the
D3-branes are localised in M6, and ρ3 is a sum of delta functions. In this case, (5.38) can be
integrated over M6

1
2µ3

∫
M6

H3 ∧ F3 +Q3 = 0, (5.39)
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where Q3 is the total number of D3-brane on the compact space M6. If we interpret the first
term of (5.39) as a contribution to the D3-brane charge induced by (H3, F3), we realise that
(5.39) is nothing more than the condition that the net D3-brane charge on M6 vanishes.

Something less intuitive is the fact that orientifold planes also carry a D3-brane charge,
which is negative. This charge can be computed by considering the exchange of a closed
string between a D-brane and an O-plane, using tools that we do not introduce here. The
result is that µOp/µDp = −2p−5, so Q3 in (5.39) can be written as

Q3 = ND3 − 1
4NO3. (5.40)

Later, we will see that in a simple class of solutions, the contribution from O3-planes is the
only negative term in (5.40). Therefore, without them, this equation only has trivial solu-
tions with terms vanishing individually. One might well consider anti-D3-branes, which also
contribute negatively, but adding them breaks N = 1 supersymmetry. In fact, O7-planes and
D7-branes also contribute negatively in (5.40) as we will see in a moment.

The relation (5.38) is called a tadpole cancellation condition, because it is also linked to
the cancellation of tadpole diagrams. Similar relations do exist for all types of brane charges
and put fairly strong constraints on string theory model building, as we will see in chapter 6.

Kahler potential and prepotential

We saw in chapter 3 that a N = 1 supergravity theory in four dimensions is determined by
a Kahler potential K(z, z̄), a superpotential W (z) and a gauge kinetic function fAB(z), which
are functions of the scalars in chiral multiplets. When type IIB string theory is compactified
on a Calabi-Yau orientifold M6, these functions are determined by its geometry.

Let us denote by T i the h1,1 the complexified Kahler moduli of M6, by U i its h2,1
− complex

structure moduli, and by S the axio-dilaton. The Kahler potential obtained from dimensional
reduction of the action (5.27) is the following

K = −2 log V − log
(
i
∫

M6
Ω ∧ Ω̄

)
− log(−i(S − S̄)), (5.41)

where V is the volume M6, controlled by the Kahler moduli, Ω is the nowhere vanishing
(3, 0)-form already introduced in (5.37), which depends on the complex structure moduli,
and bars stand for complex conjugation. Thanks to the N = 2 supersymmetry present before
the orientifold, the Kahler potential of complex structure moduli can be put into a more
structured form [62]

Kc.s. = − log
(
−i(XI ḠI − X̄IGI)

)
, (5.42)

here the XI are h2,1 + 1 projective coordinates of the complex structure moduli space, which
can be set to (X0, X i) = (1,U i) after expanding (5.42) to recover (5.41), and G(X) is an
holomorphic function of the XI called the prepotential, GI being its derivative. The Kahler
potential of Kahler moduli can also be put in a similar form, with its own prepotential F(Y ).
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Equivalently, we can introduce a so-called symplectic basis of 3-forms (αI , βI) satisfying∫
M6

αI ∧ βJ = δJI , where I = 0, . . . , h2,1. (5.43)

In such a basis, the 3-form Ω expands as

Ω = XIαI − GIβI ,

to give back equation (5.42). An explicit example will be given in chapter 6.

5.3.2 Moduli stabilisation in type IIB

At this stage, at tree-level, moduli have a Kahler potential, but no superpotential W , so their
scalar potential vanishes identically and they are not stabilised. For convenience, let us recall
the form of the scalar potential in four-dimensional N = 1 supergravity theories containing
only chiral multiplets

V = eK(gab̄∇aW∇b̄W − 3WW ), (5.44)

where gab̄ is the inverse of the moduli space metric gab̄ = ∂a∂b̄K and ∇aW = ∂aW + (∂aK)W
is the Kahler-covariant derivative of the superpotential. The index a and b̄ run over all moduli.

The easiest way to introduce a superpotential that partially stabilises the moduli is to
consider 3-form fluxes on M6, as we shall now see.

Flux superpotential and no-scale structure

Considering a slightly more general compactification ansatz than (5.29), namely a warped
metric ansatz

ds2
10 = e2A(y)gµνdx

µdxν + e−2A(y)g̃mn(y)dymdyn, (5.45)

there exists solutions of the type IIB equations of motion, resulting from the action (5.27),
with non vanishing background fluxes (H3, F3, F̃5). The most simple solution has

F̃5 = (1 + ⋆10)dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3,

where α(y) is a function of the internal coordinates, related to the warp factor by e4A = α. In
addition, the complexified 3-form flux, defined as G3 = F3 + SH3 is imaginary self-dual

⋆6G3 = iG3, (5.46)

and the sources are D3/D7-branes and O3/O7-planes. This is the GKP solution [63]. The
condition (5.46) on G3 implies that the contribution of the 3-form fluxes to the D3-brane
charge is positive

Nflux =
∫

M6
H3 ∧ F3 ≥ 0. (5.47)

As a result, the tadpole cancellation condition (5.38) has non-trivial solutions only in the
presence of O3-planes if anti-D3-branes are discarded. The imaginary self-duality condition
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implies that G3 is a harmonic ((2, 1) + (0, 3))-form, which is embodied by the GVW superpo-
tential [64], which can also be obtained from a dimensional reduction of (5.27)

W =
∫

M6
Ω ∧G3, where G3 = F3 + SH3. (5.48)

This superpotential only depends on the complex structure moduli U i and the dilaton S. As
we explained in chapter 3, the condition for supersymmetry to be preserved at the minimum
of the scalar potential (5.44) is that ∇aW = 0 , where a runs over all the moduli (T i,U i,S).
Since W does not depend on the Kahler moduli T i, we can see that supersymmetry is unbro-
ken iif W = 0, which is equivalent to G3 being a (2, 1)-form. So with this superpotential, we
can only have a supersymmetric Minkowski vacuum or broken supersymmetry.

The 3-form fluxes (H3, F3) can be expanded on the symplectic basis (αI , βI) defined in (5.43)

H3 = mH
I α

I + nHI β
I and F3 = mF

I α
I + nFI β

I ,

so that the superpotential (5.48) reads

W = nIX
I +mIGI , where mI = mF

I + SmH
I and nI = nFI + SnHI ,

and the flux number (5.47) becomes

Nflux = mH · nF −mF · nH , (5.49)

where the · stands for a summation over I. When the 3-form fluxes are expanded this way,
there is an important condition, called the Dirac quantisation condition, which requires the
coefficients (mH

I ,m
F
I , n

H
I , n

F
I ) to be integers.

For a given compactification manifold M6, it seems that there are many possible choices of
3-form fluxes satisfying the tadpole constraint. Since the early work of [65–67], this number
has been expected to be finite but estimated to be large, on the order of 10500 for an average
Calabi-Yau. Such a large number of possibilities is an obstacle to the predictivity of the theory.

The fact that (5.48) does not depend on the Kahler moduli T i has an interesting conse-
quence. For simplicity, let us consider the case of a single Kahler modulus T controlling the
volume of a 4-cycle, so that V ∼ T 3/2. The Kahler potential (5.41) becomes

KT = −3 log (−i(T − T̄ )) → gT T̄ ∇T W∇T̄ W = 3WW,

so a cancellation occurs in the scalar potential (5.44), leaving only the first term

Vn.s. = eKgij̄∇iW∇j̄W, (5.50)

where the indices i and j̄ only run over the complex structure moduli and the axio-dilaton.
This property is called the no-scale property. It was introduced in [68] before appearing
naturally in string theory. In what remains of the scalar potential, Kahler moduli only appear
in the overall factor of eK and correspond to runaway and unstable directions.
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Brane moduli, magnetised D7, F-theory

In (5.40), we considered only O3-planes and D3-branes, but as we mentioned after (5.35),
in type IIB orientifolds it is possible that O3 and O7-planes are present simultaneously while
preserving N = 1-supersymmetry. When O7-planes are present, D7-branes must also be
there to cancel the D7-brane charge on M6. Since they are located at fixed loci of the ori-
entifold involution, Op-planes cannot move. However, Dp-branes can move in M6, and their
positions correspond to additional moduli that must be stabilised.

Let us introduce an additional ingredient in order to stabilise the D7-brane moduli. Recall
that Dp-branes are associated to the extremities of open strings, whose spectrum contains a
spin-one particle. This particle can be interpreted as the quantum of a gauge field Aµ, defined
on the worldvolume of the brane and associated to a 2-form field strength F = dA.

This 2-form field strength can be used as G3 to stabilise the D7-brane moduli. A D7-brane
wraps a 4-dimensional submanifold S4 of M6, and F can be turned-on in this submanifold.
In order to preserve supersymmetry, it must satisfy a condition similar to (5.46)

F = − ⋆4 F.

Such a 2-form F turned-on on the internal worldvolume of a D7-brane is called a worldvol-
ume or magnetic flux, and the corresponding D7-brane is said to be magnetised. It turns out
that magnetic fluxes also contribute to the tadpole cancellation condition (5.39)

1
2

∫
M6

H3 ∧ F3 − 1
2

∫
S4

(Tr(F ∧ F) − TrF ∧ TrF) +Q3 = 0. (5.51)

In addition, O7-planes and D7-branes appear in the D3-brane charge (5.40)

Q3 = ND3 − 1
4NO3 − 1

24(2χ(O7) + χ(D7)), (5.52)

where χ(O7/D7) are the Euler numbers of the submanifolds of M6 wrapped by the O7/D7.
Note that the O7-planes and D7-branes are not necessarily coincident, the only requirement
being that the D7-brane charge vanishes globally on M6. Note also that both of them con-
tribute negatively to Q3.

Within the framework of F-theory [69], it is possible to simultaneously address the sta-
bilisation of complex structure and D7-branes moduli. Very schematically, we can think of
F-theory as a 12-dimensional theory that reduces to type IIB string theory when compactified
on a torus. The axio-dilaton S is then interpreted as the complex structure modulus of this
torus, and the S-duality (5.28) of the theory comes from modular invariance, as in (5.21).

Type IIB string theory compactified on a Calabi-Yau threefold M6 is thus described by
F-theory compactified on an elliptically fibered Calabi-Yau fourfold M8. The advantage of
this description is that the O7 planes and D7 branes are encoded in the geometry of M8,
for instance the D7-branes correspond to singularities of the fibration. Consequently, the h2,1

complex structure moduli of M6, the axio-dilaton and the D7-brane moduli are all described
by the h3,1 complex structure moduli of M8.
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In F-theory, the complexified 3-form flux G3 and 2-form flux F are all described by a single
self-dual 4-form flux G4, inducing a superpotential that is very similar to (5.48) for the h3,1

complex structure moduli of the fourfold [70,71]

⋆8G4 = G4 → W =
∫

M8
Ω ∧G4.

Finally, the tadpole cancellation condition (5.51) can be rewritten in a simple way

1
2

∫
M8

G4 ∧G4 +ND3 − χ(M8)
24 = 0, (5.53)

where χ(M8) is the Euler characteristic of M8 and contains the contribution of O7-planes
and D7-branes in (5.52).

The tadpole conjecture

So, we have just seen that it is possible to write a superpotential depending on the complex
structure moduli and the dilaton using 3-form fluxes. The question remains whether this su-
perpotential stabilises all the complex structure moduli and the dilaton, while satisfying the
tadpole condition. The analysis of several examples in F-theory and type IIB string theory
led [72] to conjecture that this indeed is not possible to stabilise a large number of complex
structure moduli at a generic point in the moduli space.

More precisely, the conjecture for F-theory is that the stabilisation of the h3,1 complex
structure moduli of M8 using 4-form fluxes requires a flux contribution to the tadpole con-
straint (5.53) as

Nflux > αh3,1 where α >
1
3 .

On the other hand, the only negative contribution to (5.53) comes from the Euler character-
istic χ(M8), which is related to the number of moduli by χ(M8) = 6(8 + h1,1 + h3,1 − h2,1).
So in the limit where h3,1 is large relative to the other numbers

χ(M8)
24 ∼ h3,1

4 .

As a result, the positive flux contribution required to stabilise all moduli grows more rapidly
with h3,1 than the negative contribution, and it becomes impossible to stabilise all moduli
while satisfying the tadpole condition when h3,1 is too large. The same conjecture can be
formulated for type IIB string theory, where the h3,1 complex structure moduli of M8 become
the h2,1 complex structure moduli of M6 and n7 brane moduli

Nflux > αh2,1 + βn7.

Since its inception, the tadpole conjecture has been investigated in a variety of contexts.
In [73] and [74], investigations have been carried out for F-theory on K3 × K3 and on
a Calabi-Yau fourfold with a weak Fano base, respectively. In [75, 76], further examples
have been considered in the large complex structure limit in type IIB string theory. Using
tools from asymptotic Hodge theory [77,78] gave more arguments in favor of the conjecture
in asymptotic regimes, including, but not limited to, the large complex structure limit. A
counter example has been proposed in [79], but was refuted by [80]. The conjecture has
also been studied in the interior of moduli space, using simplifications occuring at symmetric
points [81,82], and in the context of non-geometric compactifications in [83].
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Finiteness of flux vacua

As we mentioned above, the number of flux vacua for a given Calabi-Yau manifold has long
been expected to be finite. However, early studies and estimates of the number of vacua did
not properly take into account the quantisation of the flux numbers introduced after (5.49).
This problem has recently been solved, first in [84] for a single complex structure modulus,
then in [85] where finiteness of flux vacua was proven in the general multi-variable case by
using advances in the field of tame geometry, see also [86]. This new framework calls for a
new estimate of the number of flux vacua, about which conjectures are formulated in [87].

Kahler moduli stabilisation, KKLT, LVS

To stabilise Kahler moduli, other ingredients are needed on top of the flux superpotential. In
fact, the Kahler potential (5.41) and superpotential (5.48) we have considered so far arise
at tree-level, from the description of type IIB string theory by its effective action (5.27), with
branes and orientifold planes as sources. But this description is only a leading term, which is
subject to corrections from several potential sources.

On the one hand, there are perturbative corrections. This includes string-loop corrections,
controlled by the string coupling gs = eϕ = 1/Im(S), and α′ corrections, coming from the
extended nature of the string. As long as N = 1 supersymmetry is preserved, there is a
non-renormalization theorem that prevents the superpotential W from receiving perturbative
corrections, but nothing protects the Kahler potential K. For example, there is a well-known
correction, resulting from the dimensional reduction of a R4 term coming at order (α′)3 in
the 10-dimensional action (5.27)

Kpert. = −2 log
(
V + ξ

2
(S − S̄

2i
)3/2)

where ξ = −ζ(3)χ(M6)
2(2π)3 , (5.54)

where ζ is the Riemann zeta function and χ(M6) is the Euler number of M6.

On the other hand, there are non-perturbative corrections. In the type IIB theory, the most
widely studied sources of such corrections areD3-brane instantons and gaugino condensation
on stacks of D7-branes. In both cases, these corrections involve a 4-cycle wrapped by the
instanton or by the stack of branes. These corrections contribute to the superpotential with
terms of the form

Wn.p. = A(U i) exp(iaT ), (5.55)

where T is the Kahler modulus controlling the volume of the aforementioned 4-cycle, a is a
constant and A(U i) is a holomorphic function of the complex structure moduli.

As we saw in chapter 2 the accelerated expansion of our universe requires the presence
of an as yet unknown ingredient, which could be a positive cosmological constant or a scalar
field rolling in a flat enough potential. In the end of chapter 3, more precisely in (3.68),
we explained that in the framework of supergravity, a positive cosmological constant requires
supersymmetry to be broken. But as we mentioned just above N = 1 supersymmetry protects
the superpotential W from perturbative corrections. So supersymmetry must be broken with
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care if these corrections are to be kept under control.

We should also bear in mind that the parameters controlling various corrections are linked
to the vacuum expectation value of moduli, such as the string coupling gs = eϕ or the radii R
of the internal space M6 that enter into α′/R corrections as we mentioned after (5.31). When
using a given set of correction terms to stabilise a set of moduli, one should subsequently ver-
ify that the other corrections that these moduli control are negligible. If there were only one
modulus controlling one series of corrections, this would actually be problematic, because
to be stabilised, this modulus would have to be in a region where the corrections it controls
are important, but then the whole series of corrections would become important. This is
called the Dine-Seiberg problem [88]. In type IIB string theory, it can be alleviated thanks
to fluxes or by considering multiple sources of corrections, as explained for instance in [89].
Nevertheless, keeping control over the corrections that are not taken into account is one of
the main challenges of moduli stabilisation.

The main framework for constructing metastable de Sitter vacua with all moduli stabilised
is called KKLT, after the authors of [90]. It is based on the GKP solution presented above,
and consists of three steps. In the first step, all the complex structure moduli of the internal
Calabi-Yau orientifold, as well as the axio-dilaton, are stabilised by 3-form fluxes. This should
be done in such a way that the string coupling gs is small to neglect loop corrections. In
addition, the vacuum expectation value W0 of the flux superpotential (5.48) must not vanish.

In a second step, we assume that the complex structure moduli and axio-dilaton are frozen
and treat W0 as a constant. We also assume that non-perturbative corrections such as (5.55)
are generated for each Kahler modulus. In the case of a single modulus, the total superpo-
tential thus takes the following form

W = W0 + A exp(iaT ).

From there, we can find the vacuum expectation value of T by asking supersymmetry to be
preserved ∇T W = 0. To simplify the discussion, let us consider that T = iσ is imaginary. We
then obtain

∇T W = 0 → W0 = −A
(
1 + 2a

3 σ
)

exp(−aσ), (5.56)

leading to a N = 1 supersymmetric AdS vacuum with negative potential

Vmin = −a2A2

6σ exp(−2aσ). (5.57)

Since N = 1 supersymmetry is preserved at this stage, the superpotential W receives no per-
turbative correction. In order to neglect α′/R corrections to the Kahler potential (5.41), we
need to ensure that the internal manifold is large, which amounts to σ being large. As we see
in (5.56), this requires W0 to be exponentially small after the first step. Another consequence
is that the negative potential (5.57) is small.

To obtain a Sitter vacuum, we must now introduce a positive contribution to the potential.
In [90], this is done with anti-D3 branes, which add terms of the form

δV = 2A(y0)T3

g4
s

1
Im(T )3 ,
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where A(y0) is the value of the warp factor, defined in (5.45), at the position of the brane.
If we want to reproduce the observed value of the cosmological constant, this contribution
should be small and fine tuned to almost exactly balance the negative part (5.57). In any case,
the anti-D3 branes must be located in a region of M6 where the warp factor is exponentially
small for the de Sitter minimum to exist, as can be seen by analysing the potential. Such
regions are called Klebanov-Strassler throats [91], and indeed yield an exponentially small
warp factor as a function of two flux integers K and M

eAmin ∼ exp
(
− 2πK

3gsM
)
.

As we can see, the KKLT construction is quite complex and requires a large number of
different ingredients. Since it was first proposed, its validity has been thoroughly examined.
And while no reason has been found to rule out this scenario, neither has it been realised in
a totally explicit and controlled manner.

Stabilising the complex structure moduli and axio-dilaton in such a way that gs and W0
are small is already hard. As we saw above, the tadpole conjecture suggests that it is not
possible to stabilise too many moduli using 3-form fluxes that satisfy the tadpole condition.
Moreover, the finiteness of flux vacua prevents any parametric control over gs and W0 that
result from the stabilisation. By parametric control, we mean tuning the flux integers such
that an integer n or a combination of them does not contribute to Nflux in (5.49) and can be
sent to infinity, and finding a solution where gs ∼ 1/n or W0 ∼ 1/n. Solutions with such a
property would constitute an infinite tail of vacua, which contradicts finiteness theorems. In
chapter 6, we exhibit this finiteness in the simple case of toroidal orbifolds and show how it
constrains the minimal value of the string coupling.

Note that there are other frameworks for constructing de Sitter vacua that do not require
an exponentially small W0, such as the Large Volume Scenario [92] in which the perturbative
correction (5.54) plays a central role. More recently, a fully perturbative framework was
proposed in [93–96], which is based on logarithmic corrections to the Kahler potential. But
they do not evade the tadpole conjecture, and still require that gs is small after stabilisation
by fluxes. These frameworks are not free from control issues either, see [97,98].
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Chapter 6

Minimal string coupling and finiteness in
IIB compactification

This chapter focuses on the stabilisation of complex structure moduli in type IIB string theory
compactified on toroidal orientifolds [6], a simple setup that allows for very explicit compu-
tations. In section 6.1, we introduce toroidal orbifolds. We explain the computation of their
complex structure, their flux superpotential, the tadpole constraint, and twisted moduli. In
section 6.2, we study the orbifolds with zero and one complex structure moduli and exhibit
a relation of the form gs,min ∼ 1/Nflux between the minimal value of the string coupling gs,min
and the flux number Nflux that appears in the tadpole constraint. We also show how the
finiteness of flux vacua manifests itself in these cases. Finally, in section 6.3, we tackle the
case of T 6/Z2 × Z2, which has three complex structure moduli at the orbifold point. We
exhibit a relation of the form gs,min ∼ 16/N2

flux, which leads to gs ≥ 0.669 for the subset of
flux vacua satisfying the tadpole constraint. This value of the string coupling is too large for
this orientifold to be used without considering string loop corrections, or without introducing
other ingredients, as magnetised D7-branes. We also show how the finiteness of flux vacua
and the absence of parametric control manifest themselves in this case.

6.1 Constructing toroidal orbifolds

The notations and definitions of this section are mostly based on [99–102]. To construct a
toroidal orbifold, we start from a 6-torus, defined as T 6 = R6/Λ, where Λ is a 6 dimensional
lattice. In other words, points are identified as xi ∼ xi+li where l ∈ Λ. Once we have specified
this lattice, we can choose one of its automorphisms Γ as the orbifold group, or point group,
to quotient by. Imposing that the resulting orbifold has SU(3)-holonomy, in order to preserve
N = 1 supersymmetry as explained in 5.3.1, restricts Γ to be a subgroup of SU(3). If we
further restrict to abelian orbifold groups, and require that Γ acts crystallographically on the
torus lattice, we end up with the following list of groups

Γ = ZN with N = 3, 4, 6, 7, 8, 12
Γ = ZN × ZM with M = kN and N = 2, 3, 4, 6
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The action of the group on the torus takes a simple form in complex coordinates (z1, z2, z3).
Indeed, for each group element θN = (n1, n2, n3) ∈ Γ, this action is written as

θN : (z1, z2, z3) → (e2iπn1/Nz1, e2iπn2/Nz2, e2iπn3/Nz3). (6.1)

The groups ZN are generated by one element θN while the groups ZN × ZM are generated
by two elements θN and θM . There are two inequivalent possibilities for (Z6,Z8,Z12). For
instance, for Z6 we can choose θ6,I = (1, 1,−2) or θ6,II = (1, 2,−3), acting as

θ6,I : (z1, z2, z3) → (e2iπ/6z1, e2iπ/6z2, e−4iπ/6z3)
θ6,II : (z1, z2, z3) → (e2iπ/6z1, e4iπ/6z2, e−6iπ/6z3).

In real coordinates xi, the action of the orbifold is represented by a 6 × 6 matrix Q acting as

Q : xi → Qi
jx
j (6.2)

This matrix can be taken as the Coxeter element of the torus lattice Λ, but there are other
possibilities. The orbifold actions in real and complex coordinates are compatible if the eigen-
values of Q are equal to those of θN . This selects one or a few possible lattices for each group.

In table 6.1, we give the list of toroidal orbifolds considered in [99], along with the corre-
sponding torus lattices and group actions (θN , θM). In this table, we also give the number of
untwisted Kahler and complex structure moduli, respectively h1,1 and h2,1. These number are
obtained by counting the number of (1, 1)-forms dzi ∧ dz̄j (resp. the number of (2, 1)-forms
dzi ∧ dzj ∧ dz̄k) left invariant by the action of the group. We also give the number of twisted
moduli h̃1,1 and h̃2,1; on which we will expand in section 6.1.3.

In what follows, we study the stabilisation, by fluxes, of the complex structure moduli.
Looking at table 6.1, we see that h2,1 ∈ {0, 1, 3} for all the orbifolds we consider. We will
ignore the twisted complex structure moduli, which are expected to have vanishing vacuum
expectation values as long as fluxes are not turned-on on their corresponding twisted 3-cycles.
We will show this in section 6.1.3 for the orbifold T 6/Z2 × Z2 with discrete torsion.

The first step is to compute the superpotential generated by the 3-form fluxes (F3, H3), as
a function of the flux integers. In the solution that we described in 5.3.2, this superpotential
is given by (5.48)

W =
∫

Ω ∧G3, where G3 = F3 + SH3. (6.3)

where S = C0 + ie−ϕ = C0 + i/gs is the axio-dilaton and Ω = dz1 ∧ dz2 ∧ dz3 is the nowhere-
vanishing (3, 0) form of the orbifold. We can expand G3 on a complex cohomology basis

G3 = AiωAi
+BiωBi

, (6.4)

where i = 0, . . . , 3 and

ωA0 = dz1 ∧ dz2 ∧ dz3, ωA1 = dz̄1 ∧ dz2 ∧ dz3, ωA2 = dz1 ∧ dz̄2 ∧ dz3, · · ·
ωB0 = dz̄1 ∧ dz̄2 ∧ dz̄3, ωB1 = dz1 ∧ dz̄2 ∧ dz̄3, ωB2 = dz̄1 ∧ dz2 ∧ dz̄3, · · ·
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orbifold torus lattice Λ θN θM h1,1 h2,1 h̃1,1 h̃2,1

Z3 SU(3)3 (1, 1,−2) 9 0 27 0
Z4,a SU(4)2 (1, 1,−2) 5 1 20 0
Z4,b SU(2) × SU(4) × SO(5) (1, 1,−2) 5 1 22 2
Z4,c SU(2)2 × SO(5)2 (1, 1,−2) 5 1 26 6
Z6,Ia G2 × SU(3)2 (∗) (1, 1,−2) 5 0 20 1
Z6,Ib G2

2 × SU(3) (1, 1,−2) 5 0 24 5
Z6,IIa SU(2) × SU(6) (1, 2,−3) 3 1 22 0
Z6,IIb SU(3) × SO(8) (1, 2,−3) 3 1 26 4
Z6,IIc SU(2)2 × SU(3)2 (∗) (1, 2,−3) 3 1 28 6
Z6,IId G2 × SU(2)2 × SU(3) (1, 2,−3) 3 1 32 10
Z7 SU(7) (1, 2,−3) 3 0 21 0
Z8,Ia SU(4) × SU(4) (∗) (1, 2,−3) 3 0 21 0
Z8,Ib SO(5) × SO(9) (1, 2,−3) 3 0 24 3
Z8,IIa SU(2) × SO(10) (1, 3,−4) 3 1 24 2
Z8,IIb SO(4) × SO(9) (1, 3,−4) 3 1 28 6
Z12,Ia E6 (1, 4,−5) 3 0 22 1
Z12,Ib SU(3) × F4 (1, 4,−5) 3 0 26 5
Z12,II SO(4) × F4 (1, 5,−6) 3 1 28 6

Z2 × Z2 SU(2)6 (1, 0,−1) (0, 1,−1) 3 3 48 0
Z2 × Z4 SU(2)2 × SO(5)2 (1, 0,−1) (0, 1,−1) 3 1 58 0
Z2 × Z6,I G2 × SU(2)2 × SU(3) (1, 0,−1) (0, 1,−1) 3 1 48 2
Z2 × Z6,II G2

2 × SU(3) (1, 0,−1) (1, 1,−2) 3 0 33 0
Z3 × Z3 SU(3)3 (1, 0,−1) (0, 1,−1) 3 0 81 0
Z3 × Z6 G2

2 × SU(3) (1, 0,−1) (0, 1,−1) 3 0 70 1
Z4 × Z4 SO(5)3 (1, 0,−1) (0, 1,−1) 3 0 87 0
Z6 × Z6 G3

2 (1, 0,−1) (0, 1,−1) 3 0 81 0

Table 6.1: List of toroidal orbifolds considered in [99], along with the corresponding torus
lattices, group actions (θN , θM) and number of untwisted and twisted Kahler and complex
structure moduli, respectively (h1,1, h2,1) and (h̃1,1, h̃2,1). The matrix Q of (6.2) is the Coxeter
element of the torus lattice, except for the three entries marked by a (∗), see [99].

In principle, this basis also contains elements of the form dz1 ∧ dz̄1 ∧ dz2, but they are pro-
jected out in all the orbifolds we consider. In the complex basis, we have Ω = ωA0 and the
superpotential (6.3) is simply

W = B0
∫
ωA0 ∧ ωB0 . (6.5)

On the other hand, we can also expand G3 on a real cohomology basis

G3 = miαi + niβ
i + pjγj + qjδj where mi = mF

i + SmH
i etc, (6.6)

where i = 0, . . . , 3 and j = 1, . . . 6. Let us introduce the notation (i1 · · · ik) = dxi1 ∧ · · · dxik
and use the convention that (123456) = −1 after integration. The real basis can be chosen as
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α0 = (135), β0 = (246) γ1 = (123), δ1 = −(456) γ4 = (345), δ4 = −(126)
α1 = (235), β1 = −(146) γ2 = (125), δ2 = −(346) γ5 = (156), δ5 = −(234)
α2 = (145), β2 = −(236) γ3 = (134), δ3 = −(256) γ6 = (356), δ6 = −(124)
α3 = (136), β3 = −(245)

The elements of this real basis satisfy αi∧βj = δji and γi∧δj = δji after integration. Because of
the Dirac quantisation condition, the coordinates (mF

i ,m
H
i , n

F
i , n

H
i , p

F
j , p

H
j , q

F
j , q

H
j ) of (H3, F3)

on the real basis are integers, that we call flux integers. By extension, we also sometimes call
the complexified mi = mF

i + SmH
i flux integers, even though they are not really integers.

6.1.1 Complex structures and flux superpotential

The expression (6.5) of the superpotential on the complex basis is not very informative, as it
can be written without knowing anything about the orbifold. It is thus much more interesting
to express the superpotential as a function of the flux integers. For this, we have to match
the two expressions of G in (6.4) and (6.6). More precisely, we have to expand (6.4) on the
real basis, and identify relations between the (Ai, Bi) and the flux integers.

But before we can do this, we must determine the relation between the complex coordi-
nates zi and the real ones xi. In other words, we need to compute the complex structures.
This is done by writing the complex coordinates as linear functions of the real ones

zi = Aijx
j,

and applying the orbifold action (6.1) and (6.2) on both sides

θN(zi) = AijQ(xj) → e2iπni/NAijx
j = AijQ

j
kx

k. (6.7)

Identifying the coefficients of the xi on both sides of (6.7) gives a system of 3 × 6 equations
and allows to determine the 3 × 6 coefficients Aij of the complex structure. Note that these
coefficients are not entirely determined by the system, and are either complex structure mod-
uli or coefficients that can be chosen arbitrarily. For instance, it is clear in equation (6.7) that
the coefficients Aij can be rescaled simultaneously without affecting the system.

This procedure gives the complex structures listed in appendix 6.4, a sample of which we
give in table 6.2. When the orbifold group acts symetrically on the zi, we expect this to be
visible on the complex structure. For instance, Z3 acts the same on the three zi and we see
this in table 6.2. On the other hand, Z4 acts the same on z1 and z2, which is manifest for Z4,a
but not for Z4,b. For Z4,b, the z1 ↔ z2 symmetry is present in the solution of the system (6.7)

z1 = A1
1(x1 + (e3iπ/4/

√
2)x2) + A1

3(x3 + ix4 − x5)
z2 = A2

1(x1 + (e3iπ/4/
√

2)x2) + A2
3(x3 + ix4 − x5),

but since we require that z1 is not proportional to z2, this symmetry must be broken by the
choice of the remaining Aij, which is otherwise arbitrary. Another example is Z3 × Z3, which
acts the same on z1 and z2, but not on z3, and this is again clear in table 6.2.
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orbifold
coefficients of the complex structure
x1 x2 x3 x4 x5 x6

z1 1 e2iπ/3 0 0 0 0
Z3 z2 0 0 1 e2iπ/3 0 0

z3 0 0 0 0 1 e2iπ/3

z1 1 e3iπ/4/
√

2 0 0 0 0
Z4,b z2 0 0 1 i −1 0

z3 0 0 1 −1 1 U
z1 1 e2iπ/3 0 0 0 0

Z3 × Z3 z2 0 0 1 e2iπ/3 0 0
z3 0 0 0 0 1 −eiπ/3

Table 6.2: Complex structures of some orbifolds, where U is a complex structure modulus.

Knowing the complex structures of the orbifolds, we can obtain the superpotential as a
function of the flux integers. Matching the two expressions of G in (6.4) and (6.6) indeed
yields the expression of the Ai and Bi as a function of the flux integers, and in particular the
expression of B0 that appears in (6.5). It also gives multiple constraints between the flux
integers (mi, ni, pj, qj). To solve these constraints, we must choose a set of basis integers,
of which the others will be functions. In the process, we must make sure that the integers
remain integers. For instance if one of the constraint is of the form m = 2n, then we can
choose n as a basis integer, but it would be impractical to choose m, because we would have
to remember that it is a multiple of 2 for n to be integer.

In addition to the superpotential, an important piece of information is the number Nflux
that enters in the tadpole constraint. We gave its expression in (5.47). Expanding (H3, F3) in
the real basis of equation (6.6), we get

Nflux =
∫
H3 ∧ F3 = (mH · nF −mF · nH) + (pH · qF − pF · qH), (6.8)

the · denotes a sum over i = 0, . . . , 3 in the first parenthesis or j = 1, . . . , 6 in the second.

Let us take the orbifold T 6/Z3 as an example. If we choose m0 and m1 as basis integers,
we obtain the following superpotential

W = −3e2iπ/3(m0 + eiπ/3m1) where mi = mF
i + SmH

i ,

and the other integers are given by m1 = m2 = m3 and n0 = m0 and n1 = n2 = n3 = m0 +m1
and pj = qj = 0. Replacing in (6.8) then yields Nflux = −3(mH

0 m
F
1 −mF

0 m
H
1 ). Note that it is a

multiple of 3 only because of the orbifold’s geometry.

For orbifolds with h2,1 = 0, we can parameterise the flux superpotential (6.3) as

W = K(a+ γb) where a = aF + SaH and b = bF + SbH , (6.9)

where a, b are flux integers. It also turns out that we can write Nflux as

Nflux = k(aHbF − aF bH), (6.10)
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with k an integer that depends only on the orbifold. In particular, Nflux is a multiple of k.

For orbifolds with h2,1 = 1, we can parameterise similarly

W = UA+B, (6.11)

where A and B are simple combination of basis flux integers, and again A = AF + SAH etc.
With this notation

Nflux = k(Re(AHB̄F ) − Re(AF B̄H)), (6.12)

where k is again a factor that depends only on the orbifold. For these orbifolds, Nflux is not a
multiple of k, but of an other integer that we call l. For instance, for the orbifold T 6/Z4,a

Nflux = 4(mH
0 n

F
0 −mF

0 n
H
0 +mH

1 n
F
0 −mF

1 n
H
0 +mH

0 m
F
2 −mF

0 m
H
2 + 2(mH

1 m
F
2 −mF

1 m
H
2 )),

so l = 4 for this orbifold.

In tables 6.3 and 6.4, we give the superpotential and Nflux for the orbifolds of table 6.1 with
h2,1 = 0 and h2,1 = 1 respectively, using the parameterisations (6.9) and (6.11).

orbifold a b K γ k

Z3 m0 m1 −3e2iπ/3 eiπ/3 −3
Z6,Ia m0 m1 2

√
3e5iπ/6 √

3eiπ/6 3
Z6,Ib n0 n1 −

√
3eiπ/6 e5iπ/6/

√
3 3

Z7 m0 m1 7/2(7 + i
√

7) (1 + i
√

7)/4 7
Z8,Ia m0 m1 16i

√
2

√
2eiπ/4 8

Z8,Ib n0 n1 −4i
√

2 e3iπ/4/
√

2 4
Z12,Ia m0 m1 12eiπ/6 eiπ/3 3
Z12,Ib m0 m1 −3e5iπ/6 eiπ/3 3

Z2 × Z6,II n0 n1 −
√

3eiπ/6 e5iπ/6/
√

3 3
Z3 × Z3 m0 m1 3e2iπ/3 eiπ/3 3
Z3 × Z6 n0 n1 −1 e2iπ/3 3
Z4 × Z4 n0 n1 −2 e3iπ/4/

√
2 4

Z6 × Z6 n0 n1 −1 e5iπ/6/
√

3 3

Table 6.3: Superpotential and Nflux for orbifolds with h2,1 = 0, in the parameterisation (6.9).
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orbifold basis integers A B k l

Z4,a m0,m1,m2, n0 4
√

2e3iπ/4m0 − 8m1 4
√

2e3iπ/4n0 − 8m2 1/8 4
Z4,b m1,m3, n0, n3 2m1 − 2

√
2eiπ/4n3 −2

√
2e3iπ/4m3 − 4in0 1/2 2

Z4,c m1, n0, n1, n3 m1 −
√

2eiπ/4n3 −
√

2eiπ/4n0 + n1 2 2
Z6,IIa m1,m3, n2, p1 −6m1 + 12e2iπ/3p1 −6i

√
3m3 − 18n2 1/18 6

Z6,IIb m0,m1,m2,m3 A6,IIb B6,IIb −2/9 3
Z6,IIc m0,m3, p2, q2 −6m0 − 2i

√
3p2 6m3 − 2i

√
3q2 1/6 2

Z6,IId m0,m1, n0, n1 −eiπ/3m0 − i
√

3m1 −
√

3eiπ/6n0 + n1 2 1
Z8,IIa m0,m1, n0, n2 4im0 − 4

√
2m1 −8in0 + 4(2i+

√
2)n2 −1/8 4

Z8,IIb m1,m2, n0, n2 2(2i−
√

2)m1 − 4im2 4in0 − 2(2i+
√

2)n2 1/4 2
Z12,II m0,m3, p4, q2 −

√
3m0 +

√
6eiπ/4p4

√
3m3 +

√
6eiπ/4q2 2/3 2

Z2 × Z4 m2, n0, n1, n2 im2 −
√

2eiπ/4n1
√

2e3iπ/4n0 − in2 −2 2
Z2 × Z6,I m0,m2, n0, n2 −eiπ/3m0 − i

√
3m2 −

√
3eiπ/6n0 + n2 2 1

Table 6.4: Superpotential and Nflux for orbifolds with h2,1 = 1, in the parameterisation (6.11).
We introduced the notations, A6,IIb = −3eiπ/3m0 +3i

√
3m1 +3e2iπ/3m2 −3i

√
3m3 and B6,IIb =

3m0 + 3i
√

3m1 + 3e2iπ/3m2 for the table not to be too wide. Here, l is a factor of quantization
of Nflux (i.e. Nflux ∈ lN), that comes solely from the geometry of the orbifold.

6.1.2 The tadpole constraint

In addition to being integers, the (m,n) and (p, q) have to satisfy the tadpole constraint,
translating the fact that the total D3-brane charge on the compact manifold vanishes. This
constraint was given in (5.38)

1
2Ñflux +ND3 = 1

4NO3, (6.13)

where Ñflux will be defined shortly and (ND3, NO3) are the net numbers of D3-branes and
O3-planes. As explained after (5.40), we do not consider anti-D3-branes, so ND3 ≥ 0. Since
Nflux ≥ 0 because of the imaginary self-dual condition (5.46), it cannot be arbitrarily large.

To talk about O3 planes, we assumed that we have performed an orientifold quotient. As
explained in section 5.3.1, this is a quotient of the theory by a geometric involution combined
with a reversal of worldsheet orientation. This introduces the contribution in the right hand
side of (6.13), without which Nflux = ND3 = 0. The geometric involution we consider here is
simply xi → −xi, which corresponds to R = RiRjRk in the notations of (5.35).

At this stage, we shall introduce an additional fact about the quantisation of the flux in-
tegers. Namely, to avoid subtleties associated with additional 3-cycles that are not present
in the covering T 6, we must take integers to be multiples of 2|Γ| when working with T 6/Γ,
where |Γ| is the order of Γ, so |ZN | = N and |ZN ×ZM | = NM . The factor |Γ| come from the
orbifold action, and the factor of 2 comes from the Z2 involution of the orientifold.

This can be understood from the fact that in (6.6), we defined the flux integers by ex-
panding F3 and H3 on the cohomology basis of the torus. Reciprocally, we have

mH
i =

∫
Ai
H,
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where Ai is the 3-cycle that is Poincaré dual to the 3-form αi in the real cohomology basis. If
we quotient the torus by Γ, this cycle becomes Ãi, which is |Γ| times smaller. More precisely,
the 3-cycles generically have |Γ| homologically equivalent images under the orbifold group
from the torus point-of-view, which are all identified to only one 3-cycle on the orbifold. The
integral over this cycle is also |Γ| times smaller, and defines other flux integers m̃H

i , that we
call orientifold flux integers, while the original mH

i can be called torus flux integers

m̃H
i =

∫
Ãi
H = 1

|Γ|

∫
Ai
H → mH

i = |Γ|m̃H
i .

The Dirac quantisation, applies to the m̃H
i and implies that the mH

i are multiples of |Γ|. This
applies for all the integers (m,n) and (p, q), as well as with the Z2 involution of the orientifold.

In the same way, the flux number Ñflux that appears in the tadpole constraint (6.13) has
to be computed on the orientifold rather and not on the torus. This Ñflux differs by a factor
of 1/(2|Γ|) from the untilded Nflux defined in (6.8)

Ñflux =
∫

ori.
H3 ∧ F3 = 1

2|Γ|

∫
T 6
H3 ∧ F3 = 1

2|Γ|
Nflux, (6.14)

Therefore, if we keep using the torus flux integers, we need to bear in mind that they are
multiples of 2|Γ|, and that it is Ñflux that appears in the tadpole constraint (6.13). Note that
as a result of these considerations, Ñflux is a multiple of 2|Γ|, while Nflux is a multiple of 4|Γ|2.

As we explained in section 5.3.1, the O3-planes are located at fixed point of R, so their
number NO3 that appears in (6.13) is obtained by counting the fixed points of this involution.
From the point-of-view of the torus, there are 26 = 64 fixed points, located at (ι1, . . . , ι6) in
the basis of the torus lattice vectors, where ιi = 0 or 1/2. But some points are identified by
the orbifold action, which is represented by the matrix Q in real coordinates (6.2). Taking
this into account, we obtain the numbers of O3-planes reported in table 6.5.

orientifold NO3 orientifold NO3 orientifold NO3

Z3 22 Z7 10 Z2 × Z2 64
Z4,a 22 Z8,Ia 12 Z2 × Z4 40
Z4,b 28 Z8,Ib 22 Z2 × Z6,I 24
Z4,c 40 Z8,IIa 16 Z2 × Z6,II 22
Z6,Ia 14 Z8,IIb 24 Z3 × Z3 10
Z6,Ib 22 Z12,Ia 8 Z3 × Z6 17
Z6,IIa 16 Z12,Ib 14 Z4 × Z4 28
Z6,IIb 24 Z12,II 16 Z6 × Z6 17
Z6,IIc 16
Z6,IId 24

Table 6.5: numbers of O3-planes in the orientifolds listed in table 6.1

In a general Calabi-Yau compactifications, the O7-planes and D7-branes, wrapped around
a 4-dimensional submanifold of the internal space, also contribute to the D3-brane charge.
This contribution is proportional to the Euler number of the wrapped submanifold. In the case
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of toroidal orbifold, these submanifolds have vanishing Euler number, so this contribution
vanishes. However we could consider the presence of magnetic fluxes on the worldvolume
of D7-branes, which also contribute to the D3-brane charge. We come back to this in 6.3.4.

6.1.3 Words on twisted moduli and discrete torsion

We mentioned earlier the existence of twisted Kahler and complex structure moduli. They
are additional degrees of freedom corresponding to strings that are closed up to the action of
the orbifold group on the covering space of the orbifold. They have to be taken into account
for the theory to be well-defined on the singular geometry of the orbifold, in particular to
ensure modular invariance of the one-loop vacuum amplitude, as explained in section 5.2.
Geometrically, they correspond to deformation parameters that can be used to resolve the
singularities located at fixed loci of the orbifold action. In the effective theory, they corre-
spond to additional moduli counted by the twisted Hodge numbers (h̃1,1, h̃2,1).

In the orbifolds T 6/ZN ×ZM , there is an additional possibility, called discrete torsion. This
is a discrete phase that can be introduced between different twisted sectors of the one-loop
vacuum amplitude, without altering the modular invariance of the theory. Discrete torsion
has a non-trivial effect on the geometrical interpretation of the twisted moduli, and it affects
the numbers of twisted moduli (h̃1,1, h̃2,1), as we see in table 6.6, taken from [103]

(h1,1 + h̃1,1, h2,1 + h̃2,1)
orbifold without vs with discrete torsion
Z2 × Z2 (51, 3) (3, 51)
Z2 × Z4 (61, 3) (21, 9)
Z2 × Z6,I (51, 3) (19, 19)
Z2 × Z6,II (36, 0) (15, 15)
Z3 × Z3 (84, 0) (3, 27)
Z3 × Z6 (73, 1) (13, 13)
Z4 × Z4 (90, 0) (42, 0) (6, 12)
Z6 × Z6 (84, 0) (51, 3) (27, 3) (9, 9)

Table 6.6: Twisted Hodge numbers (h̃1,1, h̃2,1) in T 6/ZN × ZM orbifolds with discrete torsion.

In the case of T 6/Z2 ×Z2, discrete torsion exchanges h1,1 with h2,1. This is a particular case
where the orbifolds with and without discrete torsion are related by mirror symmetry. But it
does not happen for the other orbifolds. Still in the case of T 6/Z2 × Z2, discrete torsion has
been used in some phenomenological works, to reduce the number of Kahler moduli, from
3 + 48 to only the 3 untwisted ones, because the stabilisation of that many Kahler moduli is
hard to study. In this case, 3 + 48 is the number of complex structure moduli.

But as long as fluxes are not turned-on on the twisted 3-cycles corresponding to the twisted
moduli, they are expected to be stabilised at the orbifold point, i.e. with vanishing vevs. Let
us consider the example of T 6/Z2×Z2 with discrete torsion. It has h2,1 = 3 untwisted complex
structure moduli U i, with i = 1, 2, 3 and h̃2,1 = 48 twisted ones Di

αβ, with (α, β) = 1, . . . , 4.
More precisely, in this case, the T 6 is factorised as T 2 × T 2 × T 2, as shown by its complex
structure in section 6.4. Each of the three U i is inherited from a T 2. The group Z2 × Z2
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contains three elements that each leave one T 2 invariant and have 4 × 4 fixed points on the
remaining two T 2. Each of these fixed points corresponds to one of the Di

αβ.

The Kahler potential of T 6/Z2 × Z2 can be expanded as follows around the orbifold point

K ≃ − log
(
−i(U1 − Ū1)(U2 − Ū2)(U3 − Ū3) − i

2(U1 − Ū1)(D1
αβ − D̄1

αβ)2 (6.15)

− i

2(U2 − Ū2)(D2
αβ − D̄2

αβ)2 − i

2(U3 − Ū3)(D3
αβ − D̄3

αβ)2 + O(D4)
)
,

Where the twisted moduli appear in pair because they are acted upon by a Z2 symmetry of
the orbifold group, and they do not mix among themselves, which is reminiscent of the fact
that the exceptional divisors of a T 4/Z2 do not intersect one another. Using equation (5.42),
this Kahler potential can be traced back to the following prepotential

G = X1X2X3

X0 + 1
2
X i(X i

αβ)2

X0 + O((X i
αβ)4) = U1U2U3 + 1

2U i(Di
αβ)2 + O(D4),

here we introduced projective coordinates (X0, X i, X i
αβ) in the first equality, which are set

to (X0, X i, X i
αβ) = (1,U i,Di

αβ) after expanding (5.42) to recover the Kahler potential (6.15).
This prepotential can then be used to compute the flux superpotential by using the formula

W = nIX
I +mIGI ,

which gives

W = n0 + n1U1 + n2U2 + n3U3 +m1U2U3 +m2U1U3 +m3U1U2 −m0U1U2U3

+ (ni,αβ +mi,αβU i)Di
αβ + (mi −m0U i)(Di

αβ)2 + O(D4) (6.16)

Using all of this information, we can expand the no-scale scalar potential (5.50) to first
order in the Di

αβ. That this first order vanishes is then a sufficient condition for all of the
twisted moduli to be stabilised at Di

αβ = 0, and we can show that this is the case when
mi,αβ = ni,αβ = 0, i.e. when fluxed are not turn-on on the corresponding twisted 3-cycles.

6.2 Relation between gs,min and Nflux

In this section, we study the stabilisation of the untwisted complex structure moduli and
axio-dilaton for the orbifolds of table 6.1, except T 6/Z2 × Z2 that is treated in 6.3. For this,
we use the superpotentials computed and parameterised in section 6.1.1. We will restrict
ourselves to the vacua satisfying the supersymmetry condition ∇iW = ∂iW + (∂iK)W = 0,
where the index i runs over the complex structure moduli and the axio-dilaton and ∇ is the
Kahler-covariant derivative. The Kahler potential is in (5.41).

For the vacua with all complex structure moduli and the axio-dilaton stabilised, we ex-
hibit evidence for a relation between the minimal string coupling gs = exp(ϕ) and Nflux. In
orbifolds with h2,1 = 0 or h2,1 = 1, this relation takes the form

gs,min ∼ 1
Nflux

when Nflux ≫ 1. (6.17)
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More precise relations will be given in the next subsections. Since Nflux is bounded due to
the tadpole constraint (6.13), this relation implies a lower bound on the string coupling,
depending only on the orbifold. We also show how the finiteness of flux vacua manifests
itself and give their numbers in some concrete examples. Similar results on toroidal orbifolds
have already been presented in [104], and more recently in [105,106].

6.2.1 Orbifolds with h2,1 = 0
In toroidal orbifolds with no complex structure moduli, the relation (6.17) is simple to obtain.
In such orbifolds, we have parameterised the flux superpotential as (6.9)

W = K(a+ γb) where a = aF + SaH and b = bF + SbH ,

where the values of K and γ can be found in table 6.3. We also have Nflux = k(aHbF − aF bH),
see (6.10). Solving ∇SW = 0 with this superpotential yields

S̄ = − aF + γbF

aH + γbH
, (6.18)

since S = C0 + i/gs, we can take the imaginary part of (6.18) and obtain

1
gs

= Im(γ)(aHbF − aF bH)
(aH + bHRe(γ))2 + (bHIm(γ))2 = Im(γ)Nflux/k

(aH + bHRe(γ))2 + (bHIm(γ))2 . (6.19)

The denominator in the right-hand side of (6.19) cannot be made arbitrarily small when
varying the integers (aH , bH), so we end up with the relation advertised in (6.17)

gs,min = 1
CNflux

, (6.20)

where the value of C depends on γ and k for each orbifold and are given in table 6.7. Note
that the sign of C is the sign of Im(γ)/k, and we can see from table 6.3 that C < 0 for T 6/Z3.
Since gs > 0, it implies Nflux < 0 for this orbifolds, but Nflux is also supposed to be positive.
The logical conclusion is that there are no physical vacua with ∇SW = 0 for T 6/Z3, so this
orbifold is not included in table 6.7.

orbifold 1/C orbifold 1/C
Z6,Ia 2

√
3 Z2 × Z6,II 2

√
3

Z6,Ib 2
√

3 Z3 × Z3 2
√

3
Z7 2

√
7 Z3 × Z6 2

√
3

Z8,Ia 8 Z4 × Z4 4
Z8,Ib 4 Z6 × Z6 2

√
3

Z12,Ia 2
√

3
Z12,Ib 2

√
3

Table 6.7: Values of C in the relation (6.20) for toroidal orbifold with h2,1 = 0.
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Tadpole constraint

Let us consider the tadpole constraint for the orbifolds with h2,1 = 0 listed in table 6.7. Ac-
cording to the discussion around equation (6.14), the flux number Ñflux entering in (6.13) is
a multiple of 2|Γ| because of the quantisation of the orientifold flux integers. But as we saw
in equation (6.10), the untilded Nflux is also a multiple of k as a consequence of the geometry.
As a result, Ñflux is a multiple of 2k|Γ|, and this turns out to be very restrictive.

For example, in the orientifold T 6/Z6,Ia, we have k = 3 and |Γ| = 6, so Ñflux is a multiple
of 2 × 3 × 6 = 36. In table 6.5, we see that this orientifold has NO3 = 14. The tadpole
constraint (6.13) imposes that Ñflux ≤ NO3/2 = 7, which is impossible with Ñflux ∈ 36N∗. The
same conclusion is reached, in fact, for all of the orientifolds with h2,1 = 0.

In other words, the tadpole constraint forbids to turn-on fluxes on these orientifolds, and
the classical flux superpotential cannot be used to stabilise the dilaton. Consequently, if
we want to use these orientifolds for phenomenological purposes, we need to invoke other
mechanisms to stabilise the dilaton or introduce negative D3-brane charge.

Number of flux vacua

On the other hand, it seems that every choice of fluxes gives a different solution (6.18).
However, this is only the case if we forget about the S-duality of the type IIB string theory,
introduced in (5.28) (

H3
F3

)
→
(
d −c

−b a

)(
H3
F3

)
and S → aS + b

cS + d
, (6.21)

with (a, b, c, d) integers such that ad − bc = 1. As we explained around (5.21), these tansfor-
mations form the group SL(2,Z), and are all generated by two elementary transformations

S → S + 1 and (H3, F3) → (H3, F3 −H3)
S → −1/S and (H3, F3) → (F3,−H3)

In particular, S-duality leave Nflux invariant

Nflux = mH · nF −mF · nH → (ad− bc)Nflux = Nflux. (6.22)

As in (5.22), a S-duality transformations can be used to bring the dilaton S into its funda-
mental domain

F = {−1/2 < |Re(S)| ≤ 1/2 and |S| ≥ 1}, (6.23)

this transformation also affects the integers.

It is interesting to verify if different choices of integers (aH , bH , aF , bF ) really lead to dif-
ferent vacua, after mapping S to its fundamental domain by means of S-duality. To illustrate,
let us set γ = 1 + i, even if it does not correspond to a particular orbifold in table 6.3. If we
restrict ourselves to Nflux = 1 and integers |a|, |b| ≤ 1, we can obtain 20 combinations that
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lead to S stabilised with Im(S) ̸= 0. Among these 20 combinations, some do not give a value
of S in the fundamental domain, for instance

(aH , bH , aF , bF ) = (1, 1, 0, 1) → S = −3
5 + i

5 ,

but by a S-duality transformation with parameters (a, b, c, d) = (2, 1, 1, 1), we can map this S
to its representative in F , which turns out to be i. This S-duality transformation brings the
flux integers to (aH , bH , aF , bF ) = (1, 0,−1, 1).

We find that all of the 20 combinations with Nflux = 1 and integers |a|, |b| ≤ 1 have the
same representative S ∼ i in the fundamental domain. In fact, even with |a|, |b| > 1 and as
far as we checked, all integer combinations with Nflux = 1 lead to S ∼ i. So after taking
S-duality into account, there seems to be only one class of vacua with Nflux = 1. By class of
vacua we mean a set of vacua where the vevs of S can be mapped to each other by S-duality.
The class of vacua with Nflux = 1 is degenerate in the sense that there is an infinity of non
S-dual combination of integers leading to it.

Nflux 1 2 3 4 5 6 7 8 9 10
# of vacua 1 2 2 4 3 6 4 8 7 8

Table 6.8: Number of classes of vacua for the toy orbifold with h2,1 = 0 and γ = 1 + i

For Nflux ≥ 1, we obtain new classes of vacua, but they still come in finite number for each
value of Nflux. In table 6.8, we give the number of classes of vacua found for the first values
of Nflux for the toy orbifold under consideration, with γ = 1 + i. In figure 6.1, for illustration,
we also plot the location of the vacua in the S-plane for Nflux = 8.
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Figure 6.1: Location of the vacua in the S plane for Nflux = 8. Each blue dot corresponds to
a different combination of integers. The corresponding values of S are all mapped to one of
the eight orange dot in the fundamental domain (shaded region) under S-duality. Note that
all of the eight inequivalent vacua are found within the range |a|, |b| ≤ 4
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6.2.2 Orbifolds with h2,1 = 1
In toroidal orbifolds with one complex structure modulus, we have parameterised the flux
superpotential as (6.11)

W = UA+B where A = AF + SAH and B = BF + SBH , (6.24)

and the (A,B) as a function of the flux integers can be found in table 6.4. We also have
Nflux = k(Re(AHB̄F ) − Re(AF B̄H)), see (6.12). Solving ∇UW = 0 with this W yields

Ū = −SBH +BF

SAH + AF
, (6.25)

reinjecting this solution in ∇SW = 0, we get S as the solution of a second order equation

(AHB̄H − ĀHBH)S2 + (AF B̄H − ĀFBH +AHB̄F − ĀHBF )S + (AF B̄F − ĀFBF ) = 0. (6.26)

Due to the fact that z1z̄2 −z2z̄1 = 2iIm(z1z̄2), the coefficients of the equation are all imaginary,
and we directly obtain the imaginary part of S

1
gs

=

√
4Im(AHB̄H)Im(AF B̄F ) − (Im(AHB̄F ) + Im(AF B̄H))2

2Im(AHB̄H)
, (6.27)

if the argument of the square root is positive; otherwise, the imaginary part of S vanishes.
Contrary to the case of orbifolds with h2,1 = 0, it is rather hard to identify Nflux in (6.27).

Number of flux vacua

Let us verify whether the apparently infinite number of flux integer choices leads to an infi-
nite number of classes of vacua, with dualities taken into account. Again, by class of vacua,
we mean a set of vacua where the vevs of (S,U) can be mapped to each other by dualities.
These dualities still include the S-duality (6.21), under which Nflux and U are invariant, as
can be checked explicitely by transforming its expression in (6.25).

In addition, the superpotential (6.24) is invariant under S ↔ U and AF ↔ BH , which
translates into an invariance under the following U -duality transformation(

A
B

)
→
(
d −c

−b a

)(
A
B

)
and U → aU + b

cU + d
(6.28)

Just as Nflux and U are invariant under S-duality, we can check using the previous expressions
that Nflux and S are invariant under this U -duality.

We can thus bring S and U into the fundamental domain with duality transformations.
As before, we find a finite number of classes of vacua for each value of Nflux. We proceed
in the following way. For each value of Nflux, we fix the range k of the integers and build
all the combinations leading to the value Nflux within this range. For each combination of
integers, we compute (S,U) given by (6.25) and (6.26). We then bring these values to the
fundamental domain (6.23) using S and U -duality transformations (6.21) and (6.28), and
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finally count the number of distinct pairs (S,U) obtained in this way, i.e. the number of
classes of vacua. By increasing the value of the range k, we observe that this number stops
increasing after a given value, which we interpret as a sign that we have found all the classes
of vacua for this value of Nflux. We will show this more explicitely in table 6.12 for T 6/Z2×Z2.

In table 6.9, we give the number of classes of vacua found in this way for T 6/Z4,a. The
factor 1/4 that appears next to Nflux in this table is the parameter l in the table 6.4, coming
only from the geometry of the orbifold, and not from the additional quantisation of the flux
integers discussed around (6.14).

Nflux/4 1 2 3 4 5 6 7 8 9 10
# of vacua 0 1 3 9 20 37 66 104 159 226

1/g2
s,min − 0.75 2 3.75 6 8.75 12 15.75 20 24.75

Table 6.9: number of classes of vacua and 1/g2
s,min as a function of Nflux/4 for T 6/Z4,a

Hence, the boundedness of gs announced in (6.17), is a byproduct of the finite number of
classes of vacua. In table 6.9, we also gave the values of 1/g2

s,min as a function of Nflux. From
there, we can guess that

gs,min =
√

64
N2

flux − 16 , (6.29)

realising the relation (6.17) for the orbifold T 6/Z4,a. The result is in fact stronger than
announced, because the relation (6.29) is exact and holds for every value of Nflux, at least as
far as we checked. Similar finiteness results and relations can be obtained for other orbifolds.
It turns out that we can always parameterise gs,min as follows

gs,min =
(N2

flux
c2

− 1
c0

)−1/2
. (6.30)

The values of the parameters ci, for the orbifolds that we considered are given in table 6.10.
Note the absence of the orbifolds T 6/Z6,IIb and T 6/Z8,IIa and T 6/Z2 × Z4 from this table. A
glance at table 6.4 shows us that they are the ones with k < 0, where k is defined in (6.12).
These orbifolds suffer from the same issue as the orbifold T 6/Z3 explained after (6.20), we
found that they do not admit solutions of ∇iW = 0 with Nflux > 0.

Tadpole constraint

Let us now consider the tadpole constraint. As we already discussed, the Ñflux in (6.13) is a
multiple of 2l|Γ|. For instance, in the orientifold T 6/Z4,a, we have l = 4 and |Γ| = 4, so Ñflux
is a multiple of 2 × 4 × 4 = 32. In table 6.5, we see that this orientifold has NO3 = 22. So the
tadpole constraint (6.13) imposes Ñflux ≤ NO3/2 = 11, which is impossible with Ñflux ∈ 32N∗.
The tadpole constraint cannot be satisfied for this orientifold without negative contributions.

The same goes for all the orientifolds of table 6.10, except for T 6/Z4,c and T 6/Z6,IId. By
the same reasoning, the former has Ñflux multiple of 16 and ≤ 20, while the latter has Ñflux
multiple of 12 and ≤ 12. However, we still do not find vacua with Ñflux below this bound,
because there are generically no vacua for the first values of Nflux, as we see in table 6.9.
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orbifold l c2 c0

Z4,a 4 64 4

Z4,b 2 16 1 for Nflux/l even
2 for Nflux/l odd

Z4,c 2 16 4

Z6,IIa 6 48 4 for Nflux/l even
4/3 for Nflux/l odd

Z6,IIc 2 48

4 for Nflux/l ∼= 0 mod 6
12 for Nflux/l ∼= 1 or 5 mod 6
3 for Nflux/l ∼= 2 or 4 mod 6

4/3 for Nflux/l ∼= 3 mod 6

Z6,IId 1 12 1 for Nflux/l ∼= 0 mod 3
3 for Nflux/l ∼= 1 or 2 mod 3

Z8,IIb 2 32
4 for Nflux/l ∼= 0 mod 4
8 for Nflux/l ∼= 1 or 3 mod 4
2 for Nflux/l ∼= 2 mod 4

Z12,II 2 16 4

Z2 × Z6,I 1 12 1 for Nflux/l ∼= 0 mod 3
3 for Nflux/l ∼= 1 or 2 mod 3

Table 6.10: values of the parameters (c2, c0) in the relation (6.30) between gs,min and Nflux for
the toroidal orbifolds with one complex structure modulus of table 6.4.

6.3 T 6/Z2 × Z2, with three complex structure moduli

We now treat the case of T 6/Z2 × Z2, which has three untwisted complex structure moduli.
This orbifold also has 3 untwisted Kahler moduli and 48 twisted moduli, which are either
Kahler or complex structure, depending on whether discrete torsion is absent or present, re-
spectively, as we explained in section 6.1.3. In the case with discrete torsion, we have also
shown that the 48 twisted complex structure moduli Di

αβ are stabilised at the orbifold point
Di
αβ = 0 when fluxes are not turned-on on the twisted 3-cycles to which they correspond.

We are thus left with the stabilisation of the three untwisted complex structure moduli U i,
with i = 1, 2, 3 and the axio-dilaton S, with the flux superpotential (6.16)

W = n0 + n1U1 + n2U2 + n3U3 +m1U2U3 +m2U1U3 +m3U1U2 −m0U1U2U3, (6.31)

where the dependence on the dilaton is contained in the (ma, na) through ma = mF
a + SmH

a .
In addition, Nflux is

Nflux = mH · nF −mF · nH , (6.32)

the dot representing a summation over a = 0, . . . 3. In what follows, we start by presenting
an analytic solution of the system ∇iW = 0 and ∇SW = 0, before showing evidence that the
number of classes of vacua is finite for any given value of Nflux and realise the relation

gs,min ∼ 16
N2

flux
. (6.33)

Combined with the tadpole constraint on Nflux, this leads to gs ≥ 0.669 for this orientifold.
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6.3.1 Solutions of ∇aW = 0
With the flux superpotential (6.31), the system ∇UiW = 0 and ∇SW = 0 reads

n̄0 + n̄1U1 + n̄2Ū2 + n̄3Ū3 + m̄1Ū2Ū3 + m̄2U1Ū3 + m̄3U1Ū2 − m̄0U1Ū2Ū3 = 0,
n0 + n1U1 + n2Ū2 + n3U3 +m1Ū2U3 +m2U1U3 +m3U1Ū2 −m0U1Ū2U3 = 0,
n0 + n1U1 + n2U2 + n3Ū3 +m1U2Ū3 +m2U1Ū3 +m3U1U2 −m0U1U2Ū3 = 0, (6.34)
n̄0 + n̄1U1 + n̄2U2 + n̄3U3 + m̄1U2U3 + m̄2U1U3 + m̄3U1U2 − m̄0U1U2U3 = 0.

In what follows, we look for solutions of this system where the complex structure and axio-
dilaton are fully stabilised, and satisfy, in the conventions that we are using

Im(U i) < 0 and Im(S) > 0. (6.35)

The condition on S simply comes from its definition as S = C0 + ie−ϕ, and the condition on
the U i arises from asking that their kinetic term is positive definite. These conditions are also
consistent with the Kahler potentials (5.41) and (6.15), namely

K = −2 log(−i(U1 − Ū1)(U2 − Ū2)(U3 − Ū3)) − log(−i(S − S̄)),
because they guarantee that the arguments of logarithms are positive.

The high degree of symmetry of the system (6.34) makes it solvable with simple steps.
The first step is to notice that all four equations are linear on e.g. U1, so they can be written
in a matrix form

Lk ×
(

1
U1

)
= 0, (6.36)

where Lk is a matrix of size 1 × 2 that depends on (U2,U3). For instance,

L1 = (n̄0 + n̄2Ū2 + n̄3Ū3 + m̄1Ū2Ū3, n̄1 + m̄2Ū3 + m̄3Ū2 − m̄0Ū2Ū3).

With any pair of Lk, we can form a 2 × 2 matrix. By virtue of (6.36), this matrix has 0 as an
eigenvalue with eigenvector (1,U1), so its determinant vanishes. One combination of such
determinants turns out to be particularly useful

det
(
L̄1
L̄4

)
− det

(
L2
L3

)
= 0,

because the U2 dependence of this combination completely factorises as (U2 − Ū2), which is
nonzero thanks to (6.35), so that we obtain a second order equation on U3 only

n1n2 −m3n0 + (m0n0 +m1n1 +m2n2 −m3n3)ReU3 + (m0n3 +m1m2)|U3|2 = 0

The same equation can be obtained for U1 and U2 by symmetry of the system (6.34); we thus
parameterise them as

ai + biReU i + ci|U i|2 = 0, U i = ρie
iθi , (6.37)

with, for instance

a1 = n2n3 −m1n0, b1 = m0n0 −m1n1 +m2n2 +m3n3, c1 = m0n1 +m2m3, (6.38)
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and similarly for (a2, b2, c2) and (a3, b3, c3). This equation can be solved and we get

xi = ρi cos θi = −Im(āici)
Im(b̄ici)

, ρ2
i = Im(āibi)

Im(b̄ici)
. (6.39)

Note that U i is uniquely determined, because ImU i < 0 uniquely determines θi. Moreover,
for this solution to make sense, we must ensure that ρ2

i > 0 and ρ2
i ≥ x2

i a posteriori.

So far, we have obtained the U i as a function of S, which contained in the (ma, na). From
there, we could obtain an equation on S by inserting this solution in any of equations of
(6.34), but there is a more convient way of proceeding using the symmetry of the system.
The idea is to rewrite the system (6.34), making the dependence in S explicit and hiding the
dependence in e.g. U1. In other words, we rewrite the superpotential (6.31) as

W = q0 + q1S + q2U2 + q3U3 + p1U2U3 + p2SU3 + p3SU2 − p0SU2U3, (6.40)

with

p0 = −mH
1 +mH

0 U1, p1 = mF
1 −mF

0 U1, p2 = nH3 +mH
2 U1, p3 = nH2 +mH

3 U1,

q0 = nF0 + nF1 U1, q1 = nH0 + nH1 U1, q2 = nF2 +mF
3 U1, q3 = nF3 +mF

2 U1. (6.41)

The system we obtain from this superpotential has exactly the same form as the previous one,
with U1 ↔ S and (ma, na) ↔ (pa, qa). We can therefore solve it in the same way to obtain S
as a function of U1. More precisely, we can define variables (as, bs, cs) as in (6.38)

as = q2q3 − p1q0, bs = p0q0 − p1q1 + p2q2 + p3q3, cs = p0q1 + p2p3,

and use these variables to write the same solution as (6.39)

xs = ρs cos θs = −Im(āscs)
Im(b̄scs)

, ρ2
s = Im(āsbs)

Im(b̄scs)
, where S = ρse

iθs . (6.42)

At this stage, equations (6.38)-(6.39) provide U1 as a function of S and (6.41)-(6.42) give
S as a function of U1. Combining the two, we can get an equation on S. But for that, we have
to make the S-dependence of U1 more explicit, and vice versa. Upon inspection, we find that
the terms appearing in the solutions (6.39) and (6.42) all take the following form

Im(ā1b1) = ys(N0
ab +N1

abxs +N2
abρ

2
s), Im(āsbs) = y1(N0

ab + 2N0
acx1 +N0

bcρ
2
1),

Im(ā1c1) = ys(N0
ac +N1

acxs +N2
acρ

2
s), Im(āscs) = 1

2y1(N1
ab + 2N1

acx1 +N1
bcρ

2
1), (6.43)

Im(b̄1c1) = ys(N0
bc +N1

bcxs +N2
bcρ

2
s), Im(b̄scs) = y1(N2

ab + 2N2
acx1 +N2

bcρ
2
1),

where (xs,i, ys,i, ρs,i) are the real, imaginary parts and moduli of S and U i, respectively, and
the N are integers expressed as combinations of the integers (mH

a , n
H
a ) and (mF

a , n
F
a )

N0
ab = aFF1 bHF1 − aHF1 bFF1 , N1

ab = 2(aFF1 bHH1 − aHH1 bFF1 ), N2
ab = aHF1 bHH1 − aHH1 bHF1 ,

and similarly for the Nac and Nbc. Here, we used the following notation

aFF1 = nF2 n
F
3 −mF

1 n
F
0 , aHH1 = nH2 n

H
3 −mH

1 n
H
0 , aHF1 = nH2 n

F
3 + nF2 n

H
3 −mH

1 n
F
0 −mF

1 n
H
0 ,
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and similarly for the bi and ci. Combining (6.39), (6.42) and (6.43), we finally obtain

xs = −A0 + A1xs + A2ρ
2
s

B0 +B1xs +B2ρ2
s

, ρ2
s = C0 + C1xs + C2ρ

2
s

B0 +B1xs +B2ρ2
s

, (6.44)

here, Ai = A · Ni, Bi = B · Ni, Ci = C · Ni, with

A = 1
2(N1

ab,−2N1
ac, N

1
bc), B = (N2

ab,−2N2
ac, N

2
bc), C = (N0

ab,−2N0ac,N0
bc),

and
Ni = (N i

bc, N
i
ac, N

i
ac).

The coefficients (Ai, Bi, Ci) appearing in (6.44) are integers expressed as combinations of the
(mH

a , n
H
a ) and (mF

a , n
F
a ). They can be obtained by combining all the previous formulae, but

their expressions are extremely long.

The system (6.44) can be solved by using one of the equation to express ρ2
s as a function

of xs, and inserting the result into the other equation. This yields a polynomial equation on
xs of degree at most three. We can solve this polynomial to obtain xs, feed the result back
into the system (6.44) to obtain ρ2

s, and finally obtain the U i via (6.39). This yields a solution
of the system (6.34) if the conditions ρ2

s > x2
s and ρ2

i > x2
i are satisfied.

However, we have found that this method of solving the system (6.44) is too naive and
misses solutions. To be more accurate, let us rewrite this system as

B1x
2
s +B2xsρ

2
s + (A1 +B0)xs + A2ρ

2
s + A0 = 0

B2ρ
4
s +B1xsρ

2
s − C1xs + (B0 − C2)ρ2

s − C0 = 0.

Under this form, we can see that the system amounts to finding the real intersections of
two conic sections, which is a classical geometry problem. There can be at most four such
intersections, except in the case where the two conics are degenerate and share a line. This
case corresponds physically to vacua with a flat direction, which we are not interested in.
As explained in [6], we implemented an algorithm to solve this problem, following [107],
allowing us to find the isolated solutions of the system (6.44), when they exist.

Comments

Let us make a few comments on the solution we have just obtained. First, the denominators
in (6.39) and (6.42) must not vanish for the solution to be well-defined. In cases where a
denominator vanishes, the solution breaks down, and special treatment is needed. We found
that this happens when a modulus is unstabilised. For instance, if b1 = 0, the denominator of
(6.39) vanishes, but ReU1 also vanishes from the equation (6.37) and ReU1 is not stabilised.

Second, the system (6.44) generically has multiple solutions, so it seems that some choices
of fluxes can lead to multiple vacua. However, after imposing the consistency conditions
ρ2
s > x2

s and ρ2
i > x2

i , we did not find any choice of fluxes leading to multiple vacua.
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Dualities

In the next section, we will use dualities to see that the infinite number of flux integer choices
lead to a finite number of classes of vacua. These dualities include the S-duality (6.21)(

H3
F3

)
→
(
d −c

−b a

)(
H3
F3

)
and S → aS + b

cS + d
, (6.45)

under which Nflux is unmodified, see (6.22). We can also check that the U i given by (6.39)
are invariant. This is of course expected, since the equations (6.34) are themselves invariant,
but this is a non-trivial consistency check.

Now recall that for orbifolds with one complex structure modulus, in section 6.2.2, the
superpotential was invariant under S ↔ U and AF ↔ BH , leading to invariance under the U -
duality transformation (6.28) acting on U . In the present case of T 6/Z2 ×Z2, we exhibited an
invariance of the superpotential under U1 ↔ S and (ma, na) ↔ (pa, qa), see (6.40). This leads
to invariance under a U1-duality acting on U1 as in (6.28) and leaving (S,U2,U3) invariant.
Similarly, there are U2 and U3-dualities acting only on U2 and U3 respectively. Using these
dualities, we can bring S and all of the U i to their fundamental domain independently

F = {−1/2 < |Re(A)| ≤ 1/2 and |A| ≥ 1} with A = S or U i, (6.46)

6.3.2 Finite number of vacua

The superpotential (6.31) of T 6/Z2 × Z2 depends on 16 flux integers (mH
a , n

H
a ) and (mF

a , n
F
a ).

Consequently the number of combinations for given Nflux grows rapidly with the range k of
the integers. The number of independent integers and of combinations can be reduced if we
impose symmetries among the three tori of T 6 = T 2 × T 2 × T 2, as shown in table 6.11.

number of flux integer combinations, with
|m|, |n| ≤ k three eq. tori two eq. tori no symmetry

1 416 21492 975968
2 18276 14325076 8726828016
3 99428 386921556 1099101964400
4 622732 5566156388 · · ·
5 1999388 37625301028
6 4905948 213491079460
7 11893404 · · ·

Table 6.11: number of combinations giving Nflux = 4, as a function of the range k.

The numbers in table 6.11 can be further reduced by taking into account symmetries of
the system. For instance, (6.34) is invariant if we reverse the sign of all the integers at once.
In any case, these numbers show that exhaustive algorithmic explorations are challenging.
Nevertheless, we will show evidence that the number of classes of vacua for fixed Nflux is
finite, and that they realise the relation (6.33).
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Let us start with the symmetric case where the three tori are equivalent. In this case, it is
possible to compute the solution presented in section 6.3.1 for every combination of integers,
with given Nflux and range k, for values of k up to k ∼ 30. We then bring the values of both S
and U i given by this solution in the fundamental domain (6.46) using the S and U i-dualities
introduced above. Finally, we count the number of distinct pairs (S,U i) obtained in this way,
which we take to be the number of classes of vacua. We report these numbers in table 6.12.

Nflux (in the case with three equivalent tori)
|m|, |n| ≤ k 1 2 3 4 5 6 7 8 9 10

1 0 0 0 5 7 1 5 1 0 0
2 0 0 1 6 13 28 56 82 101 114
3 0 0 1 6 13 30 65 102 168 234
4 0 0 1 6 13 30 65 102 171 252
5 0 0 1 6 13 30 65 102 171 252
6 0 0 1 6 13 30 65 102 171 252

Table 6.12: number of classes of vacua for T 6/Z2 × Z2, as a function of Nflux and the range k
of the integers. In red are the values of k from which now new vacua are found.

In table 6.12, we observe the behaviour mentioned in section 6.2.2. For fixed Nflux, if we
gradually increase the range k of the integers, there is a value beyond which no new vacua
are found. The table stops at k = 6, but we checked beyond, up to k = 30 for Nflux = 4.
This observation is the basis of our claim that we have found all the vacua for these Nflux.
Note that all the vacua are often found with small ranges of integers. Note also that the
duality transformations used to bring the S and U i in the fundamental domain also affect the
integers and can modify their range. In our definition, k is the range of the integers we start
with, not the one obtained after the duality transformations.

Hence, the boundedness of gs annouced in (6.33), is a byproduct of the finiteness of the
number of classes vacua. In table 6.13, we give the values of 1/gs,min as a function of (Nflux, k).

Nflux (in the case with three equivalent tori)
|m|, |n| ≤ k 3 4 5 6 7 8 9 10

1 none 1.148 1.263 1.520 1.990 1.000 none none
2 0.866 1.495 2.076 2.632 3.056 4.000 2.760 3.331
3 0.866 1.495 2.076 2.632 3.175 4.000 5.061 6.249
4 0.866 1.495 2.076 2.632 3.175 4.000 5.061 6.249
5 0.866 1.495 2.076 2.632 3.175 4.000 5.061 6.249

Table 6.13: values of 1/gs,min for T 6/Z2 × Z2 as a function of Nflux and the range k of the
integers, for three equivalent tori. In red are the values of k from which the gs,min are found.

For Nflux ∈ 4N and Nflux ≥ 8, the relation (6.33) holds exactly, as we verified up to Nflux = 28

gs,min = 16
N2

flux
for Nflux ∈ 4N and Nflux ≥ 8 (6.47)

For other values of Nflux, this formula does not hold exactly, but still gives a good overall fit,
except for the very first values of Nflux, as we can see in figure 6.2.
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Figure 6.2: the blue points are the gs,min as a function of Nflux, found as explained in the text.
The orange curve is the relation gs,min = 16/N2

flux. The green shaded points are the gs,min with
lower ranges of integers. Increasing the range, the points converge towards the orange curve.

So far, we discussed the case where the three tori are equivalent. Let us now relax this
assumption and consider the case where only two tori are equivalent. In this case, we still
expect to find a finite number of classes of vacua for fixed Nflux, but this number should be
higher, since less symmetry allows more freedom. We report these numbers in table 6.14.

Nflux (in the case with only two equivalent tori)
|m|, |n| ≤ k 1 2 3 4 5 6 7 8 9 10

1 0 0 1 9 66 16 17 1 0 0
2 0 0 1 11 94 408 1182 2730 4891 6899
3 0 0 1 11 94 412 1249 3051 6881 13388

Table 6.14: number of classes of vacua for T 6/Z2 × Z2, as a function of Nflux and the range k
of the integers. In red are the values of k from which no new vacua are found.

In principle, the values of gs,min can also differ from the more symmetric case. As we can
see in table 6.15, this is the case for some values of k, but as far as we explored the absolute
gs,min as a function of Nflux remain the same as in the symmetric case in table 6.13.

Nflux (in the case with only two equivalent tori)
|m|, |n| ≤ k 3 4 5 6 7 8 9 10

1 0.866 1.148 1.654 1.925 1.990 1.000 none none
2 0.866 1.495 2.076 2.632 3.056 4.000 5.032 5.396
3 0.866 1.495 2.076 2.632 3.175 4.000 5.061 6.249

Table 6.15: values of 1/gs,min for T 6/Z2 × Z2 as a function of Nflux and the range k of the
integers, for two equivalent tori. In red are the values of k from which the gs,min are found.
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From there, it is easy to believe that the relation between gs,min and Nflux remains un-
changed even when there is no symmetry among the three tori, even if the number of com-
binations of integers is way too large to verify this in the same way.

Tadpole constraint

Let us now consider the tadpole constraint (6.13). As we discussed there, Ñflux is a multiple of
2|Γ| = 8, and the orientifold T 6/Z2 ×Z2 has NO3 = 64, see table 6.5. So the tadpole constraint
imposes Ñflux ≤ NO3/2 = 32 and the Nflux computed by (6.32) and used throughout this
section verifies

Nflux ≤ 4 → gs ≥ 1
51/4 ≃ 0.669, (6.48)

where 51/4 ≃ 1.495 is the exact value found in tables 6.13 and 6.15 for Nflux = 4. This lower
bound on the string coupling does not allow us to neglect string loop corrections. We will see
in section 6.3.4 how this conclusion can be mitigated by considering negative contribution to
(6.13) induced by magnetised D7-branes.

Value of W0

As we saw in the end of chapter 5, the vacuum expectation value W0 of the flux superpo-
tential resulting from the stabilisation of the complex structure moduli and axio-dilaton is an
important parameter in the KKLT and other scenarios. So let us show the values we found
with our procedure. In fact, we are not going to show the values of W0, but the values of

W̃0 = eK̃/2W0, (6.49)

where K̃ is the Kahler potential (5.41) of the complex structure moduli and axio-dilaton

K̃ = − log(−i(U1 − Ū1)(U2 − Ū2)(U3 − Ū3)) − log(−i(S − S̄)).

The reason is simply that (6.49) is invariant under the Kahler transformations introduced in
chapter 3, see (3.59). It is related to the mass parameter m3/2 of the gravitino, see (3.66).
It is also invariant under the S and U -dualities described above, see (6.45), as can be checked.

In figure 6.3, we show the distributions of W̃0 for our vacuum solutions with three equiva-
lent tori and Nflux ≤ 9. In this plot we did not bring the moduli to their fundamental domains.
We see that the values of W̃0 are organised in the complex plane into circles of constant |W̃0|,
corresponding to different orbits of these dualities. The values of |W̃0| are discrete, which
is again a consequence of the finiteness of flux vacua. In particular, there is no parametric
control over the value of W̃0, and it is not possible to make it exponentially small, as required
in the KKLT scenario, without taking additional ingredients into account.

The number of circles approximatively matches the number of vacua found in table 6.12.
There is, however, a slight discrepancy, as some distinct classes of vacua give the same value
of |W̃0|. In other words, some of the circles correspond to superposed duality orbits.

Finally, note that for three equivalent tori, we obtain solutions with a vanishing W̃0 = 0
only for Nflux multiple of 3. These are the solutions studied in detail in [105].
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Figure 6.3: Distributions of W̃0 in T 6/Z2 × Z2 with three equivalent tori, for Nflux = 4, . . . , 9.

6.3.3 Parametric control attempts

The value gs ≃ 0.669 is the minimal string coupling allowed for the orientifold T 6/Z2 × Z2, if
moduli are stabilised only by fluxes at tree level and in absence of negative D3-brane charge.
This is a consequence of the finiteness of the number of flux vacua that we introduced in
chapter 5 and explored in section 6.3.2. More generally, finiteness forbids parametric con-
trol. By parametric control, we mean tuning the flux integers such that an integer n or a
combination of them does not contribute to Nflux in (6.32) and can be sent to infinity, and
finding a physical solution where gs ∼ 1/n. If such a solution exists, we should be able to
solve the system order by order in n, and it would provide an infinite family of flux vacua.

In this section, we present some unsuccessful attempts for parametric control and show
different ways in which obstructions appear at the level of the SUSY equations ∇aW = 0.
Expanded into real and imaginary parts, these equations are equivalent to

nF1 x1 + nF2 x2 + nF3 x3 +mF
1 x2x3 +mF

2 x1x3 +mF
3 x1x2

+xs(nH1 x1 + nH2 x2 + nH3 x3 +mH
1 x2x3 +mH

2 x1x3 +mH
3 x1x2) (6.50)

+nF0 + nH0 xs −mF
0 x1x2x3 −mH

0 x1x2x3xs +mH
0 y1y2y3ys = 0,

nH1 x1ys + nH2 x2ys + nH3 x3ys +mH
1 x2x3ys +mH

2 x1x3ys

+mH
3 x1x2ys + nH0 ys −mF

0 y1y2y3 −mH
0 xsy1y2y3 −mH

0 x1x2x3ys = 0, (6.51)
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mF
1 y2y3 +mH

1 xsy2y3 −mH
2 x3y1ys −mH

3 x2y1ys − nH1 y1ys

−mF
0 x1y2y3 −mH

0 x1xsy2y3 +mH
0 x2x3y1ys = 0, (6.52)

nF1 y1 +mF
2 x3y1 +mF

3 x2y1 + nH1 xsy1 +mH
1 y2y3ys +mH

2 x3xsy1

+mH
3 x2xsy1 −mF

0 x2x3y1 −mH
0 x2x3xsy1 −mH

0 x1y2y3ys = 0. (6.53)

and cyclic permutations of these two last equations.

With ys → +∞ and one large integer

The simplest possibility we can consider are limits where only one integer m or n goes to
infinity, with ys ∼ m or n and xs, xi, yi ∼ O(1). For instance nF0 → +∞. In this case (6.50)
becomes, at leading order, nF0 + mH

0 y1y2y3ys = 0. But we must also impose mH
0 = 0 for Nflux

to remain finite, so we end up with nF0 = 0, which is contradiction with nF0 → ∞.

Another example is mF
0 → +∞, with nH0 = 0. In this case the system (6.50)-(6.51)-

(6.52)-(6.53) at leading order gives ys = (mF
0 x1x2x3)/(mH

0 y1y2y3) and x2
i + y2

i = (mH
i /m

H
0 )xi,

along with the constraints mH
0 n

H
1 +mH

2 m
H
3 = 0, with cyclic permutations, and mH

1 m
H
2 m

H
3 = 0.

Hence, one of the mH
i needs to be zero, but then for the corresponding i we have x2

i + y2
i = 0,

leading to a vanishing untwisted complex structure modulus, which is not physical.

With ys → +∞ and two large integers

A more elaborate possibility is to consider two large integers, for instance nF0 ,m
F
0 → +∞,

with mH
0 = nH0 = 0 for Nflux to remain finite. We can further simplify by assuming that the

three tori are equivalent (1 = 2 = 3 = i). In this case, the system (6.50)-(6.51)-(6.52)-(6.53)
becomes, at leading order

nF0 −mF
0 x

3
i = 0, −mF

0 y
3
i + 3mH

i x
2
i ys + 3nHi xiys = 0,

mF
0 xiy

2
i + 2mH

i xiyiys + nHi yiys = 0, mF
0 x

2
i yi −mH

i y
2
i ys = 0.

The first, third and last equations give directly

x3
i = nF0

mF
0
, y3

s = mF
0 (nF0 )2

(mH
i )3y3

i

and y2
i = − (nF0 )1/3nHi

(mF
0 )1/3mH

i

− 2(nF0 )2/3

(mF
0 )2/3 ,

and the second equation becomes a constraint on the integers that can be written

((mF
0 )1/3nHi + (nF0 )1/3mH

i )2 − (mF
0 )1/3(nF0 )1/3mH

i n
H
i = 0.

This equation is of the form (x+ y)2 = xy, and it has no solutions with real x and y.

With xs, ys → +∞ and two large integers

Finally, we can consider an even more elaborate possibility where both xs and ys go to infinity
with two large integers, while xi, yi ∼ O(1). Let us still take nF0 ,m

F
0 → +∞ andmH

0 = nH0 = 0.
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In this case, the system (6.50)-(6.51)-(6.52)-(6.53) becomes, at leading order

3nHi xixs + 3mH
i x

2
ixs + nF0 −mF

0 x
3
i = 0,

3nHi xiys + 3mH
i x

3
i ys −mF

0 y
3
i = 0,

mH
i xsy

2
i − 2mH

i xiyiys − nHi yiys −mF
0 xiy

2
i = 0, (6.54)

nHi xsyi +mH
i y

2
i ys + 2mH

i xixsyi −mF
0 x

2
i yi = 0.

The first two equations immediatly give

xs = mF
0 x

3
i − nF0

3xi(mH
i xi + nHi ) and ys = mF

0 y
3
i

3xi(mH
i xi + nHi ) ,

and the third one

y2
i = −2mF

0 m
H
i x

3
i + 3mF

0 n
H
i x

2
i + nF0 m

H
i

2mF
0 m

H
i xi +mF

0 n
H
i

, (6.55)

finally, the last equation becomes a cubic equation on xi

(4mF
0 n

F
0 (mH

i )3 + 2(mF
0 )2(nHi )3)x3

i + 6mF
0 n

F
0 (mH

i )2nHi x
2
i (6.56)

+6mF
0 n

F
0 m

H
i (nHi )2xi − (nF0 )2(mH

i )3 +mF
0 n

F
0 (nHi )3 = 0,

which can be used to reexpress the y2
i given by (6.55) as

y2
i = − 3(nF0 (mH

i )2 −mF
0 (nHi )2xi)2

mF
0 (mF

0 (nHi )3 + 2nF0 (mH
i )3)(2mH

i xi + nHi ) , (6.57)

where the numerator is manifestly positive. Consequently, if we want y2
i to be positive, we

need the denominator to be negative when xi solves (6.56). As illustrated by figure 6.4,
numerical investigations for all combinations of integers up to |m|, |n| = 10 suggest that this
is never the case. So it seems that there are no physical solutions to the system (6.54).

-7.5 -5.0 -2.5 0 2.5 5.0 7.5

-80

-60

-40

-20

0

Figure 6.4: y2
i , given by (6.57), as a function of xi when xi is a solution of (6.56)
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Conclusion

We considered other limits in addition to the ones presented here, and they all fail to be con-
sistent for similar reasons. For instance they lead to the vanishing of the imaginary part of a
complex structure modulus, a constraint on the integers that cannot be satisfied. There are of
course too many possible limits to be exhaustive, and some of them are hard to analyse, but
all hints towards the absence of solutions with parametric control over the string coupling.

This conclusion is not surprising, because it is a consequence of the finiteness of flux
vacua, which has been proven in [85] as a mathematical theorem. A family of solutions with
parametric control would be infinite and contradict this theorem.

6.3.4 Magnetised D7-branes

Let us come back to the possibility of evading the conclusion (6.48) that gs ≥ 0.669 in the
Z2×Z2 orbifold, with negativeD3-brane charges carried by magnetisedD7-branes [108,109].
Note that negative D3-brane charges are related to supersymmetry-breaking objects. As we
discuss below, D7-branes are naturally present in most toroidal orientifolds. Magnetised D7-
branes also play a key role in the fully perturbative Kahler moduli stabilisation mechanism
using logarithmic loop corrections [93,96].

Including magnetisedD7-branes does not change the relation (6.47) between the minimal
string coupling gs,min and the flux number Nflux, since this relation stems directly from com-
plex structure moduli and axio-dilaton stabilisation by quantised background 3-form fluxes.
Magnetised D7-branes contributing negatively to the tadpole constraint only allow larger
values of Nflux to be used, thus reducing the value of gs,min.

Worldvolume fluxes and RR charges

In the T 6/Z2 ×Z2 orbifold, the T 6 is factorised as T 2 ×T 2 ×T 2, and a D7-brane wraps two tori
and is localised in the third one. Let us label with an index a the different stacks of branes.
Each stack carries magnetic fields Fa associated with U(1) gauge groups. Like 3-form fluxes,
the internal magnetic fluxes are subject to the Dirac quantisation condition

mi
a

∫
T 2

i

F i
a = 2πnia, (6.58)

where the index i labels the two tori wrapped by the brane stack. The wrapping numbers
mi
a and flux quanta nia are coprime integers. Moreover, due to the Z2 orientifold quotient,

the nia can take half-integer values. Through the Chern-Simons couplings that are ubiquitous
in string theroetic actions, as in (5.27), magnetised D7-branes induce D3-brane charge in
addition to their D7-brane charge, see (5.51). Note that magnetised D7-branes can them-
selves be seen as magnetised D9-branes with vanishing wrapping number on the third torus,
where they are localised [108]. We can thus assign vanishing wrapping numbers mk

a = 0 and
unit fluxes nka = 1 on the torus where D7-branes are localised. For example, a stack a of Na
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D7-branes localised in the first torus T 2
1 has magnetic numbers

T 2
1 T 2

2 T 2
3

Na → D7a (1, 0) (n2
a,m

2
a) (n3

a,m
3
a) (6.59)

In terms of these magnetic numbers, the RR charges of a stack a of D7-branes read [108]

Qa
D3 = Nan

1
an

2
an

3
a and (i)Qa

D7 = −Nan
i
am

j
am

k
a with i ̸= j ̸= k ̸= i, (6.60)

where Na is the number of branes in the stack. The stack a only has non-vanishing D7-
brane charge on the torus where it is localised. For instance, for the stack (6.59), we have
(1)Qa

D7 ̸= 0 and (2)Qa
D7 =(2) Qa

D7 = 0.

From (6.60), we see that magnetised D7-branes can induce negative D3-brane charge,
with one flux quanta nia of opposite sign to the other two. For example, a single D7a brane as
in (6.59) with opposite fluxes n2

a = −n3
a = 1, induces a negative unit charge Qa

D3 = −1.

Tadpole conditions with magnetised D7-branes

The induced charges Qa
D3 are additional contributions to the tadpole condition (6.13)

1
2Ñflux +

∑
a

Qa
D3 +ND3 = 1

4NO3.

Thus, magnetised D7-branes inducing negative D3-brane charge can relax the conclusion
(6.48) that gs ≥ 0.669, which was a consequence of the tadpole constraintNflux < 4. However,
consistency of the orientifold construction also requires the cancellation of the RR tadpoles
related to D7-brane charges. This additional tadpole condition links the charges (6.60) to the
negative charges of O7-planes present in the construction. As a result, for a fixed orientifold
geometry, the D7 magnetic fluxes nai and wrapping numbers ma

i are not arbitrary.

In the T 6/Z2 × Z2 orientifold constructed with the geometric involution xi → −xi, which
corresponds to R = RiRjRk in the notations of (5.35), there are 3 × 4 O7-planes. Each of
them wraps two tori and is localised in the third one at one of the four fixed points of the
orbifold action. For instance, four O71-planes are localised in the first torus at (ι1, ι2, 0, 0, 0, 0)
in the basis of the lattice vectors, where ιi = 0 or 1/2, a notation introduced before table 6.5.

The RR tadpole cancellation thus requires the magnetised D7a charges (6.60) to satisfy [108]

1
2Ñflux +

∑
a

Nan
1
an

2
an

3
a +ND3 = 1

4NO3 = 16, (6.61)

and ∑
a

(1)Qa
D7 = −

∑
a

Nan
1
am

2
am

3
a = 4NO71 = 16,∑

a

(2)Qa
D7 = −

∑
a

Nam
1
an

2
am

3
a = 4NO72 = 16, (6.62)∑

a

(3)Qa
D7 = −

∑
a

Nam
1
am

2
an

3
a = 4NO73 = 16.

These four tadpole conditions are the same as in the T -dual model of [110, 111] with D6-
branes at angles [112,113].
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Solutions relaxing the constraint on Nflux

According to (6.61), stacks a with an odd number of negative magnetic fluxes nia contribute
negatively to the D3-brane charge and relax the constraint on Ñflux. In the convention (6.59),
the flux number on to the torus where the stack is localised is nka = 1, so to have negative
contributions we need one positive and one negative flux numbers on the two other tori.
Moreover, as explained under (6.60), a stack a only has non-vanishing D7-brane charge on
the torus where it is localised. For this D7-brane charge to be positive and fullfill the tadpole
constraint (6.62), we need one positive and one negative wrapping number.

Let us consider a simple configuration with three D7-branes stacks and magnetic numbers

T 2
1 T 2

2 T 2
3

N1 → D71 (1, 0) (n2
1,−1) (−n3

1, 1)
N2 → D72 (−n1

2, 1) (1, 0) (n3
2,−1) (6.63)

N3 → D73 (n1
3,−1) (−n2

3, 1) (1, 0)

with nia > 0. This configuration satisfies the D7-brane tadpole constraints (6.62) for Na = 16.
We have chosen to take unit wrapping numbers mi

a = ±1. Configurations satisfying the D7-
brane tadpole condition (6.62) with larger wrapping numbers mi

a require lower values of Na

and lead to a smaller value of Qa
D3. The total D3-brane charge of the configuration (6.63) is

3∑
a=1

Qa
D3 =

3∑
a=1

Nan
1
an

2
an

3
a = −16(n2

1n
3
1 + n1

2n
3
2 + n1

3n
2
3). (6.64)

For a stack a to preserve supersymmetry, its flux numbers must satisfy a constraint which, in
our context, reads

3∑
i=1

ζ(i)
a ≡

∑
i

1
π

Arctan(2πα′F i
a) =

∑
i

1
π

Arctan
(mi

aα
′

niaAi

)
= 0. (6.65)

The ζ(i)
a correspond to oscillator shifts of open string modes caused by the modification of

boundary conditions by magnetic fields [114, 115]. The second equality used the explicit
magnetic flux quantisation condition (6.58) for wrapped tori T 2

i of area 4π2Ai.

We see that in the configuration (6.63), all D7-brane stacks break supersymmetry. Super-
symmetry breaking configurations generically induce tachyons, originating from open strings
ending on the same or different stacks, called doubly charged or mixed states. The masses of
both states were explicitly computed in e.g. [96]. Doubly charged tachyons can be eliminated
by introducing separations between branes and their orientifold images [96]. This allows to
increase the squared mass of these states to positive values. On the other hand, the following
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conditions on ζ(i)
a allow to cancel the masses of all mixed tachyonic states [96]

(A−1) ζ
(3)
1 = ζ

(1)
2 = ζ

(2)
3 , ζ

(2)
1 = ζ

(3)
2 = ζ

(1)
3 ,

2) ζ
(3)
1 = ζ

(1)
2 = −ζ(2)

3 , ζ
(2)
1 = ζ

(3)
2 = −ζ(1)

3 ,

3) ζ
(3)
1 = −ζ(1)

2 = ζ
(2)
3 , ζ

(2)
1 = −ζ(3)

2 = ζ
(1)
3 ,

4) ζ
(3)
1 = −ζ(1)

2 = −ζ(2)
3 , ζ

(2)
1 = −ζ(3)

2 = −ζ(1)
3 ,

(B−1) ζ
(2)
1 = ζ

(3)
1 , ζ

(1)
2 = ζ

(3)
2 , ζ

(1)
3 = ζ

(2)
3 ,

2) ζ
(2)
1 = −ζ(3)

1 , ζ
(1)
2 = −ζ(3)

2 , ζ
(1)
3 = −ζ(2)

3 .

In particular, solution (B − 2) satisfies (6.65) and thus preserves supersymmetry, with all
lowest states remaining massless. In the solutions (A− i), all the doubly charged D7a −D7a
states have identical tachyonic masses α′m2 = −2

∣∣∣ζ(2)
1 + ζ

(3)
1

∣∣∣, while for solution (B − 1) they
can have different masses. The configuration (6.63) satisfies either (A − 1) or (B − 1). In
each case, the induced D3-brane charge (6.64) reads

(A− 1)
3∑

a=1
Qa
D3 = −48n2

1n
3
1,

(B − 1)
3∑

a=1
Qa
D3 = −16((n2

1)2 + (n1
2)2 + (n1

3)2).

We see that in both cases, the induced D3-brane charge can be made arbitrary large and
negative by choosing large values of nia, relaxing the conclusion (6.48) that gs ≥ 0.669. For
instance, with nia = 1, the induced D3-brane charge is −48 in both cases (A − 1) or (B − 1),
so the tadpole condition (6.61) imposes Ñflux ≤ 128, leading to Nflux ≤ 16. According to the
relation (6.47), the minimal value of the string coupling thus becomes

gs ≥ gs,min = 16
N2

flux
= 1

16 = 0.0625.

As explained below (6.65), the D7-brane configuration (6.63) breaks supersymmetry. Ac-
cording to (6.65), supersymmetry is recovered in the limit of large volumes Ai → +∞, which
corresponds to diluted magnetic fluxes. This supersymmetry breaking configuration induces
Fayet-Iliopoulos terms in the four-dimensional effective theory, which depend on the Kahler
moduli related to the areas Ai [96, 116, 117]. When these Fayet-Iliopoulos terms are associ-
ated with logarithmic loop corrections to the Kahler potential, the full potential can develop
a metastable de Sitter vacuum [93, 95]. In other words, these ingredients could lead to a
toroidal orbifold model with all moduli stabilised explicitly in a de Sitter vacuum.
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6.4 Complex structures of the orbifolds

In this Appendix, we give the complex structure of all the orbifolds listed in table 6.1. Details
about how they are computed are in section 6.1.

orbifold
coefficients of the complex structure

x1 x2 x3 x4 x5 x6

z1 1 e2iπ/3 0 0 0 0
Z3 z2 0 0 1 e2iπ/3 0 0

z3 0 0 0 0 1 e2iπ/3

z1 1 i −1 0 0 0
Z4,a z2 0 0 0 1 i −1

z3 1 −1 1 U −U U
z1 1 e3iπ/4/

√
2 0 0 0 0

Z4,b z2 0 0 1 i −1 0
z3 0 0 1 −1 1 U
z1 1 e3iπ/4/

√
2 0 0 0 0

Z4,c z2 0 0 1 e3iπ/4/
√

2 0 0
z3 0 0 0 0 1 U
z1 1 e5iπ/6/

√
3 0 0 0 0

Z6,Ia z2 0 0 1 e2iπ/3 −1 eiπ/3

z3 0 0 1 e2iπ/3 1 −eiπ/3

z1 1 e5iπ/6/
√

3 0 0 0 0
Z6,Ib z2 0 0 1 e5iπ/6/

√
3 0 0

z3 0 0 0 0 1 −eiπ/3

z1 1 eiπ/3 e2iπ/3 −1 −eiπ/3 0
Z6,IIa z2 1 e2iπ/3 −eiπ/3 1 e2iπ/3 0

z3 1 −1 1 −1 1 U
z1 1 eiπ/3 −1 −1 0 0

Z6,IIb z2 0 0 0 0 1 e2iπ/3

z3 1 −1 U 1 − U 0 0
z1 1 −e2iπ/3 −eiπ/3 −e2iπ/3 0 0

Z6,IIc z2 1 eiπ/3 −e2iπ/3 −eiπ/3 0 0
z3 0 0 0 0 1 U
z1 1 e5iπ/6/

√
3 0 0 0 0

Z6,IId z2 0 0 1 e2iπ/3 0 0
z3 0 0 0 0 1 U

Table 6.16: complex structure of the orbifolds listed in table 6.1 (part. 1 of 3). Here, U is
a complex structure modulus. For instance, for the orbifold T 6/Z3, the complex coordinates
are given by z1 = x1 + e2iπ/3x2, z2 = x3 + e2iπ/3x4, z3 = x5 + e2iπ/3x6, etc.
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orbifold
coefficients of the complex structure

x1 x2 x3 x4 x5 x6

z1 1 e2iπ/7 e4iπ/7 e6iπ/7 −eiπ/7 −e3iπ/7

Z7 z2 1 e4iπ/7 −eiπ/7 −e5iπ/7 e2iπ/7 e6iπ/7

z3 1 −eiπ/7 e2iπ/7 −e3iπ/7 e4iπ/7 −e5iπ/7

z1 1 i −1 −eiπ/4 e3iπ/4 eiπ/4

Z8,Ia z2 1 −1 1 i −i i
z3 1 i −1 eiπ/4 −e3iπ/4 −eiπ/4

z1 1 eiπ/4 i −(1 +
√

2 + i)/2 0 0
Z8,Ib z2 0 0 0 0 i e3iπ/4/

√
2

z3 1 −eiπ/4 i −(1 −
√

2 + i)/2 0 0
z1 1 eiπ/4 i −(1 +

√
2 + i)/2 −(1 +

√
2 + i)/2 0

Z8,IIa z2 1 e3iπ/4 −i −(1 −
√

2 − i)/2 −(1 −
√

2 − i)/2 0
z3 0 0 0 1 −1 U
z1 1 eiπ/4 i −(1 +

√
2 + i)/2 0 0

Z8,IIb z2 1 e3iπ/4 −i −(1 −
√

2 − i)/2 0 0
z3 0 0 0 0 1 U
z1 1 eiπ/6 eiπ/3 −1 −eiπ/6 −

√
2eiπ/12

Z12,Ia z2 1 e2iπ/3 −eiπ/3 1 e2iπ/3 0
z3 1 −eiπ/6 eiπ/3 −1 eiπ/6 −

√
2e7iπ/12

z1 1 eiπ/6 e11iπ/12/
√

2 −eiπ/12/
√

2 0 0
Z12,Ib z2 0 0 0 0 1 e2iπ/3

z3 1 −eiπ/6 e5iπ/12/
√

2 −e7iπ/12/
√

2 0 0
z1 1 eiπ/6 e11iπ/12/

√
2 −eiπ/12/

√
2 0 0

Z12,II z2 1 e5iπ/6 −e7iπ/12/
√

2 e5iπ/12/
√

2 0 0
z3 0 0 0 0 1 U

Table 6.17: complex structure of the orbifolds listed in table 6.1 (part. 2 of 3). Here, U is
a complex structure modulus. For instance, for the orbifold T 6/Z7, the complex coordinates
are given by z1 = x1 + e2iπ/7x2 + e4iπ/7x3 + e6iπ/7x4 − eiπ/7x5 − e3iπ/7x6, etc.
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orbifold
coefficients of the complex structure

x1 x2 x3 x4 x5 x6

z1 1 U1 0 0 0 0
Z2 × Z2 z2 0 0 1 U2 0 0

z3 0 0 0 0 1 U3

z1 1 U 0 0 0 0
Z2 × Z4 z2 0 0 1 e3iπ/4/

√
2 0 0

z3 0 0 0 0 1 −eiπ/4/
√

2
z1 1 U 0 0 0 0

Z2 × Z6,I z2 0 0 1 e5iπ/6/
√

3 0 0
z3 0 0 0 0 1 e2iπ/3

z1 1 e5iπ/6/
√

3 0 0 0 0
Z2 × Z6,II z2 0 0 1 −eiπ/3 0 0

z3 0 0 0 0 1 e5iπ/6/
√

3
z1 1 e2iπ/3 0 0 0 0

Z3 × Z3 z2 0 0 1 e2iπ/3 0 0
z3 0 0 0 0 1 −eiπ/3

z1 1 e2iπ/3 0 0 0 0
Z3 × Z6 z2 0 0 1 e5iπ/6/

√
3 0 0

z3 0 0 0 0 1 −eiπ/6/
√

3
z1 1 e3iπ/4/

√
2 0 0 0 0

Z4 × Z4 z2 0 0 1 e3iπ/4/
√

2 0 0
z3 0 0 0 0 1 −eiπ/4/

√
2

z1 1 e5iπ/6/
√

3 0 0 0 0
Z6 × Z6 z2 0 0 1 e5iπ/6/

√
3 0 0

z3 0 0 0 0 1 −eiπ/6/
√

3

Table 6.18: complex structure of the orbifolds listed in table 6.1 (part. 3 of 3). Here, the
U are a complex structure moduli. For instance, for the orbifold T 6/Z2 × Z2, the complex
coordinates are given by z1 = x1 + U1x2, z2 = x3 + U2x4, z3 = x5 + U3x6.
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Chapter 7

Cosmological perturbations from
five-dimensional inflation

This chapter opens with an introduction to the swampland program in section 7.1, covering
the main ideas leading to the prediction of the dark dimension, which is an extra dimension
at the micrometer scale. In section 7.2, we then introduce the traditional four-dimensional
inflation and the computation of cosmological perturbations. Finally, in 7.3, we repeat this
calculation in a five-dimensional model [5], following the recent proposal proposal that five-
dimensional inflation could be a way of explaining the large size of the dark dimension [118].
We find that the power spectra of all primordial fluctuations from five-dimensional inflation
exhibit a change of behaviour at large angles leading to more power compared to the four-
dimensional case, with a nearly vanishing spectral index. This prediction can in principle be
confronted in future CMB observations if the precision at low multipole moments increases.

7.1 The Swampland and the Dark Dimension

As we explained in chapter 5, string theory is a self-consistent theory that manages to unifify
aspects of both particle physics and cosmology. In particular, it is a theory of quantum gravity.
It is, however, a supersymmetric higher-dimensional theory, so relating it to our observable
world requires a lot of work and involves many choices. In the KKLT framework we intro-
duced in section 5.3.2 for type IIB compactification, we must indeed choose a compactifi-
cation manifold, an orientifold projection, internal fluxes and the configuration of branes.
Moreover, KKLT is not the only possibility, nor is type IIB string theory.

This vast number of possibilities has poetically been called the landscape of string the-
ory, and it represents a challenge for phenomenology. Ultimately, the question is whether
the landscape contains a model that can describe both our particle physics and cosmology.
Whether we would be able to use this model to precisely compute low energy observables,
such as the mass of the electron, or make new predictions, is another question. A problem
would arise, however, if the landscape were so vast that any low-energy effective theory could
be derived from string theory. If this were the case, string theory would still be useful as a
consistent framework for quantum gravity, but it would not be able to provide new predic-
tions for particle physics or cosmology.
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Fortunately, the landscape is not that vast, and there are effective theories that have
been proven not to come from string theory. Such theories are said to be in the swamp-
land [119, 120]. In fact, we can be more general and extend the notion of swampland to
effective theories that cannot be extracted from a theory of quantum gravity, without refer-
ring to string theory.

If the condition of not belonging to the swampland is strong enough, it can be used to
put constraints on the low-energy effective theories we use to describe our universe. If we
are optimistic, these constraints can then be used to make testable predictions. In any case,
understanding the boundary between the landscape and the swampland is an excellent way
to connect the high-energy theory of quantum gravity to our observable world at low energy.

This section is an introduction to some ideas of the swampland program, mainly based on
[121,122]. Our goal is to introduce the ingredients leading to the dark dimension proposal,
according to which there should be one large extra dimension at the micrometer scale.

7.1.1 Introduction to the Swampland

Since we do not know everything about quantum gravity, it not really possible to prove with
certainty any statement about the effective theories that can be extracted from it. For this
reason, we refer to these statements as swampland conjectures.

One of the most established swampland conjectures, that we already mentioned in chap-
ters 3 and 4, is that a theory of quantum gravity cannot have exact global symmetries [123].
There is in fact a simple argument in favor of this conjecture, which appeals to the semi-
classical properties of black holes. Let us consider a Schwarzschild black hole

ds2 = −f(r)dt2 + f(r)−1dr2 + d2dΩ2 where f(r) = 1 − 2M
r
. (7.1)

According to the no-hair theorem [124], this metric is unique if the black hole is neutral and
stationary. If the black hole absorbs matter that is charged under an exact global symmetry of
the theory, this charge becomes invisible to an outside observer. So there is an infinity of black
holes labeled by their global charge but described by the unique metric (7.1). As a result, the
entropy of the black hole (7.1) is infinite, which contradicts the Beckenstein-Hawking for-
mula, telling that its entropy of the black hole is proportional to its area. Another motivation
comes from perturbative string theory, where symmetries of the worldsheet are gauged in the
target space [125]. To date, there is no counter-example to this conjecture.

Another well-established swampland conjecture is the weak-gravity conjecture [126]. It
says that in any theory of quantum gravity with a U(1) gauge symmetry associated to a gauge
coupling g, there must be a state with mass m and charge q for which gravity is the weakest
force, in the sense that

m ≤
√

2gqMp. (7.2)

This conjecture too can be motivated by the semi-classical properties of black holes. Let us
consider a Reissner–Nordström black hole, with charge Q under the U(1) gauge symmetry

ds2 = −f(r)dt2 + f(r)−1dr2 + d2dΩ2 where f(r) = 1 − 2M
r

+ 2g2Q2

r2 .
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If the following is satisfied
M ≥

√
2gQMp, (7.3)

the black hole has two horizons. Otherwise, it has none, and the central singularity is naked.
A black hole saturating the inequality (7.3) is called extremal. In its form (7.2), the weak
gravity conjecture allows the decay of extremal black holes by Hawking radiation. Indeed, if
there is no state satisfying (7.2) in the theory, an extremal black hole cannot decay, because
any quantum it emits would make it super extremal and reveal a naked singularity. Again,
there are other arguments in favor of this conjecture, see [121], and so far it is supported by
all examples in string theory.

Distance and Emergent String Conjectures

We have seen in chapter 5 that a characteristic property of string theory is the presence of
extra-dimensions. These extra-dimensions are associated to moduli, which are scalar fields
whose vacuum expectation value is related to physical parameters of the lower-dimensional
effective theory, such as masses and gauge couplings. In particular, asymptotic limits in the
moduli space correspond to particular values of these parameters. For instance, there may be
a limit corresponding to a vanishing gauge coupling. However, a vanishing gauge coupling
corresponds to the restoration of a global symmetry, which is thought to be forbidden. So
something should happen when we approach this limit of the moduli space.

According to the Swampland Distance Conjecture [120], what happens when we ap-
proach any boundary in moduli space is that a tower of states becomes exponentially light.
More precisely, the conjecture says that for two points (P,Q) in the moduli space M, the
characteristic mass M of the tower satisfies

M(Q) ∼ M(P )e−αd(P,Q), (7.4)

where α is a positive constant and d(P,Q) is the geodesic distance between P and Q, mea-
sured by the moduli space metric gij, which appears in the effective action in the kinetic term
of the scalars gij(ϕ)∂µϕi∂µϕj. According to a refined conjecture proposed in [127], this be-
haviour sets in when d(P,Q) ≳ 1 in Planck units and also holds in the presence of a potential.

Let us illustrate this conjecture with the example of bosonic string theory compactified on
a circle. According to the dimensional reduction performed in (5.34), the radius R of the
circle is linked to a canonically normalised scalar field σ ∼ logR. The vev of this canonical
scalar field has two asymptotic limits σ → ±∞, associated to R → +∞ and R → 0. Recalling
the mass formula (5.31)

α′M2 = α′
( k2

R2 + w2R2

α′2

)
+ osc., (7.5)

we indeed see that the two asymptotic limits correspond to a tower of states becoming light.
In the limit R → +∞, this is the Kaluza-Klein tower, indexed by k, and in the limit R → 0 this
is the tower of winding modes, indexed by w. Note that this latter is intimately related to the
extended nature of the string. Moreover, the two limits R → +∞ and R → 0 are related by
so-called T-duality, under which R ↔ α′/R and k ↔ w. For this reason, the distance conjec-
ture is closely related to the duality conjecture, predicting the existence of dualities relating
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infinite distance limits with each other.

The appearance of towers of states implies that the description of the theory must change
as we approach the asymptotic limits of the moduli space. Otherwise, it would have to in-
clude the infinite tower of states, which is hardly consistent with gravity [128, 129]. In the
above example, the limit R → +∞ corresponds to a decompactification limit, in which the
theory can no longer be described as effectively lower-dimensional. In the R → 0 limit, the
extended nature of the string plays a central role and the theory can no longer be described
by a field theory. By T-duality, this limit is related to another decompactification limit.

According to the Emergent String Conjecture [130], any infinite distance limit is either a
decompactification limit or a limit where a string becomes weakly coupled. This conjecture
can be illustrated by considering the dilaton ϕ in type IIA string theory. Its vev has two
asymptotic limits ϕ → ±∞, associated to gs → 0 and gs → +∞, with gs = eϕ, see (5.13). The
limit gs → 0 corresponds to the fundamental string becoming weakly coupled. In this case,
the tower of state becoming light is the tower of string excitations, with a mass scale

Ms ∼ Mpg
1/4
s ∼ Mp exp

(
−

√
2

4 ∆ϕ
)
, (7.6)

where the factors g1/4
s comes from converting (7.5) from string frame to Einstein frame. On

the other hand, the limit gs → +∞ can be seen as a decompactification limit to M-theory,
which is 11-dimensional. In this case, the tower of states becoming light can be shown to be
a tower of D0-branes

mD0 ∼ Ms

gs
∼ Mp exp

(
−3

√
2

4 ∆ϕ
)

(7.7)

In type IIB, the limit gs → +∞ is related by S-duality (5.28) to another weakly coupled limit.

Contrary to the no global symmetry and weak gravity conjectures, there are few argu-
ments for the distance and emergent string conjectures apart from the fact that they are
satisfied by all examples from string and M-theory. In particular, the coefficient α in (7.4) is
not universal, it depends on the theory and limit considered, as we can see in (7.6) and (7.7).

AdS/dS Distance Conjectures

In [131], a generalisation of the distance conjecture was proposed, according to which an
infinite tower of states also becomes light in the flat-space limit Λ → 0 of any AdS vacuum

m ∼ |Λ|α, (7.8)

where α is a constant. A stronger form of the conjecture implies that α = 1/2 if the AdS
vacuum is supersymmetric, and α ≥ 1/2 if it is not. It is believed that this conjecture also
applies to dS vacua, with a positive cosmological constant Λ, even though there is no explicit
example of such a vacua in string theory, as we reviewed in chapter 5. In dS space, the
Higuchi bound [132] implies that α ≤ 1/2, and it has been argued in [133–135] that α >
1/D, where D is the dimension of spacetime. So we have

1
D

≤ α ≤ 1
2 . (7.9)

This conjecture lies at the heart of the dark dimension proposal, which we will now address.

144



7.1.2 The Dark Dimension proposal

The prediction of the dark dimension [135] is based on the observation that our cosmological
constant has a very small value

Λ ∼ 10−122,

Assuming that the dS distance conjecture (7.8) is true, this implies the existence of a light
tower of states of characteristic mass m ∼ |Λ|α. According to the Emergent String Conjecture,
this is either a tower of string states or a tower of Kaluza-Klein states. In our universe, the
tower cannot be a tower of string states, because the associated string scale would be of the
same order as the neutrino scale, and field theory still works well beyond that scale.

So the only possibility is the presence of a Kaluza-Klein tower associated to one or more
extra-dimensions. According to the experimental bound of [136,137], the 1/r2 gravitational
force law holds down to 30 µm, so the extra-dimensions should be smaller. This pushes
the value of the exponent α in (7.8) to the upper limit α = 1/4 in (7.9). In other words,
Λ1/4 ≃ λm where λ is a O(1) parameter. In [135], it is argued that 10−4 < λ < 1, so that
λ ∼ 10−1 − 10−3, leading to the following estimate for the scale of the dark dimension

m ∼ 0.1 − 10 meV, l ∼ 0.1 − 10 µm. (7.10)

All that remains is to determine the number of extra-dimensions associated to the KK tower,
which can be done using astrophysical data, because the emission of Kaluza-Klein modes can
cause neutron stars to cool too quickly if the tower is too light. This puts upper constraints
on the size of large extra-dimensions. According to [138], for the case of a single extra-
dimension we have l < 44 µm and for the case of two we have l < 1.6 · 10−4 µm. The more
extra-dimensions there are, the stricter the constraint. Already with two extra-dimensions,
the astrophysical constraint is not compatible with the scale (7.10) from the dS distance con-
jecture. As a result, [135] predicted the existence of a single large dark dimension.

If it exists, this dark dimension would have far-reaching phenomenological consequences.
For example, [139–141] explored the idea that the Kaluza-Klein tower of gravitons could be
a candidate for dark matter. On the other hand, [142–144] studied the possibility that dark
matter is composed of five-dimensional primordial black holes, decaying more slowly than
their four-dimensional counterparts. This and other phenomenological applications of the
dark dimension proposal are reviewed in [145,146].

According to [118], the scale of the dark dimension can be explained by inflation. In this
article, the authors assume that the dark dimension was also expanding exponentially during
inflation, so that the universe was described by a five-dimensional quasi de Sitter solution.
After inflation, the size R of the dark dimension is assumed to be stabilised, and the four and
five-dimensional Planck scales, Mp and M∗ respectively, are related by M2

p = M3
∗R.

As a result, of going to the Einstein frame, inflation is not perceived as uniform from our
four-dimensional point-of-view, and it can be shown that if the dark dimension expands N e-
folds, the three non-compact spatial dimensions expand 3N/2 e-folds. If the latter expanded
by about 60 e-folds to solve the horizon problem, the dark dimension expanded by about 40
e-folds, which is exactly what is needed to bring it from the fundamental length M−1

∗ to the
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micron size, if M∗ ∼ 109 GeV.

Inflation is not only useful for solving the horizon problem of the big bang model, it is
also known to predict an approximate scale invariant power spectrum of primordial density
fluctuations [147,148] that act as sources for structure formation in our universe and are con-
sistent with observations of the Cosmological Microwave Background [149]. It is therefore
important to assess the impact of five-dimensional inflation on the power spectra of primor-
dial fluctuations, to know if this proposition is compatible with observations.

The computation of these power spectra is the subject of the following sections. We start
by reviewing this computation in four-dimensional slow-roll inflation in section 7.2, before
extending to the five-dimensional case in section 7.3. These sections are based on [5].

7.2 Perturbations in four dimensions

In this section, we review the computation of the primordial scalar and tensor perturbations
generated by slow-roll inflation, following [150–152]. Let us first recall a few formulae from
chapter 2. The background metric during inflation takes the following form

ds2 = −dt2 + a(t)2δijdx
idxj, (7.11)

where the scale factor a(t) is subject to the Friedmann equations

H2 = ρ

3 and 2Ḣ + 3H2 = −p, (7.12)

where H = ȧ/a and (ρ, p) are the energy density and isotropic pressure of the perfect fluid
filling the universe. In the case of a canonical scalar field with a potential V , we have

T µν = gµρ∂νϕ∂ρϕ− δµν
(1

2(∂ϕ)2 + V
)

→ ρϕ = 1
2 ϕ̇

2 + V, pϕ = 1
2 ϕ̇

2 − V,

so (7.12) becomes

3H2 = 1
2 ϕ̇

2 + V and Ḣ = −1
2 ϕ̇

2. (7.13)

The starting point of the computation is to perturb the metric around (7.11) and the
inflaton ϕ around a time-dependent background ϕ̄(t), which is a solution of (7.13)

ds2 = −(1 + 2Φ)dt2 + 2a(t)Bidx
idt+ a2(t)((1 − 2Ψ)δij + Eij)dxidxj, (7.14)

and
ϕ(t, x) = ϕ̄(t) + δϕ(t, x).

We can further decompose Bi and Eij into scalar, vector and tensor modes

Bi = ∂iB + Ci and Eij = 2∂i∂jE + 2∂(iEj) + hij. (7.15)

So in the end, we have five scalar perturbations (δϕ,Φ,Ψ, B,E), two vector perturbations
(Ci, Ei), and one tensor perturbation hij. They transform under the diffeomorphisms

t → t+ ξt and xi → xi + δij∂jξ
x, (7.16)
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as

δϕ → δϕ− ϕ̇ξt, Φ → Φ− ξ̇t, Ψ → Ψ+Hξt, B → B+a−1ξt−aξ̇x, E → E−ξx, (7.17)

and similarly for the vectors and tensors perturbations. The perturbation δϕ of the inflaton
also induce perturbations of the energy-momentum tensor T µν , written as

δT 0
0 = −δρ, δT 0

i = a∂iδq, T ij = δijδp+ Σi
j,

but the anisotropic stress tensor Σi
j vanishes with a single field. The perturbations (δρ, δq, δp)

of the energy-momentum tensor also transform under (7.16). They can be combined with
perturbations of the metric into gauge invariant quantities, as the comoving curvature

R = Ψ − H

ρ̄+ p̄
δq. (7.18)

This is the variable that we are interested in.

7.2.1 Scalar perturbations

Using a transformation with ξt, we can put ourselves in the gauge δϕ = 0, see (7.17). In this
gauge, δq = 0 as well, and R = Ψ, see (7.18). We can also choose either B = 0 or E = 0
since they transform with ξx. Even if δϕ = 0, the energy and pressure density perturbations
(δρ, δp) are not vanishing at first order, they are

δρ = −1
2g

00ϕ̇2 ≃ −ϕ̇2Φ and δp ≃ −ϕ̇2Φ,

where form now we omit the bar over the time-dependent background of the scalar field ϕ(t).
The other components of the energy momentum tensor remain unperturbed. From there, we
can write the Einstein equations with the metric (7.14) in the gauge δϕ = E = 0. In Fourier
space, they read

3H(−Ṙ +HΦ) − k2

a2 (R + aHB) = 1
2 ϕ̇

2Φ, − Ṙ +HΦ = 0, (7.19)

−R̈ − 3HṘ +HΦ̇ + (3H2 + 2Ḣ)Φ = −1
2 ϕ̇

2Φ, (∂t + 3H)B
a

+ R + Φ
a2 = 0.

the first one is the 00 component, the second is the 0i component, and the last two come from
the ij components. The first two equations can be combined to obtain

Φ = Ṙ
H

and B = −2k2HR + a2Ṙϕ̇2

2ak2H2 ,

so we see that Φ and B are not dynamical fields, their equations of motion are algebraic.
Plugging these expressions into the two remaining equations of (7.19) yields

Ṙ(2Ḣ + ϕ̇2) = 0, (7.20)

and

a3Hϕ̇2R̈ + a3ϕ̇(3H2ϕ̇− 2Ḣϕ̇+ 2Hϕ̈)Ṙ − 2k2H(2ȧH − 2aH2 + aḢ)R = 0. (7.21)
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We see that (7.20) is reduced to an equation on the background which is satisfied, see (7.13).
The other one, (7.21), can be rewritten as

a3ϕ̇2

H2 R̈ + d

dt

(a3ϕ̇2

H2

)
Ṙ + aϕ̇2

H2 k
2R = 0, (7.22)

which can be obtained from applying the variational principle to the following action

S = 1
2

∫
d4x

a3ϕ̇2

H2 ((Ṙ)2 − a−2(∂iR)2). (7.23)

Defining z = aϕ̇H−1 and v = zR, and conformal time adτ = dt, this action becomes

S = 1
2

∫
dτd3x

(
(v′)2 + (∂iv)2 + z′′

z
v2
)
, (7.24)

where a prime denotes a derivation with respect to conformal time.

In Fourier space, the action (7.24) leads to the Mukhanov-Chibisov equation [153]

v′′
k +

(
k2 − z′′

z

)
vk = 0, (7.25)

which can be solved numerically or analytically once the background evolution is specified.
Let us introduce the slow-roll parameters, along with the conformal Hubble rate H = a′/a

ε = − Ḣ

H2 = 1 − H′

H2 and δ = − ϕ̈

Hϕ̇
= 1 − ϕ′′

Hϕ′ . (7.26)

The slow-roll limit is defined by ε ≪ 1 and δ ≪ 1, and in this limit the equation (7.25)
can be solved explicitly. We could also introduce the second Hubble slow-roll parameter
ε2 = ε̇/(εH) = −2δ + 2ε as in [154], but we will use δ here. We also define the potential
slow-roll parameters

εV = 1
2
(Vϕ
V

)2
and ηV = Vϕϕ

V
,

where the ϕ index denotes a derivative with respect to ϕ. In the slow-roll limit, we can show
that (εV , ηV ) ≪ 1 as well and (ε, δ) ≃ (εV , ηV − εV ). From the definition of ε, we can also get
H ≃ −(1 + ε)/τ . Noticing that z = aϕ′H−1, we can then obtain z′/z = H(1 + ε+ δ) and

z′′

z
≃ H2(2 + 2ε− 3δ) ≃ 2 + 6ε− 3δ

τ 2 , (7.27)

at first order in the slow-roll parameters. In the de Sitter limit z′′/z ≃ 2/τ 2, the solution of
equation (7.25) is

vk = c1

(
1 − i

kτ

)
e−ikτ
√

2k
+ c2

(
1 + i

kτ

)
eikτ√

2k
.

Then, Bunch-Davies boundary condition (7.29) fixes c1 = 1, c2 = 0, and we get the following
power spectrum for R

PR = k3

2π2
H2

a2ϕ̇2
|vk|2 = 1

2ε

(
H

2π

)2
,
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where we used a(τ) = −1/(Hτ) and considered the super horizon limit kτ ≪ 1. If we don’t
neglect the slow-roll parameters, the general solution of (7.25) is

vk = c1τ
1/2Jν(kτ) + c2τ

1/2Yν(kτ) where ν =
(9

4 + 6ε− 3δ
)1/2

≃ 3
2 + 2ε− δ (7.28)

The ci are fixed again by the Bunch-Davies condition

lim
τ→−∞

vk = exp(−ikτ)√
2k

, (7.29)

giving

c1 = 1 − i

2

√
π

2 exp
(

−1
2iπν

)
and c2 = −1 + i

2

√
π

2 exp
(

−1
2iπν

)
, (7.30)

and in the super horizon limit kτ ≪ 1, we have

PR = 1
2ε

(
H

2π

)2 ( k

aH

)3−2ν

, (7.31)

where we can read the spectral tilt

nR − 1 = 3 − 2ν = 2δ − 4ε = 2ηV − 6εV

7.2.2 Tensor perturbations

To compute the power spectrum of tensor perturbations, we can follow a similar procedure.
The second order action for the tensor perturbation hij can be obtained from the Einstein-
Hilbert action

Sh = 1
8

∫
d4xa2((h′

ij)2 − (∂lhij)2) (7.32)

Going in Fourier space, where the two polarisations of hij are described by two modes hsk,
and defining 2vsk = ahsk, the equation of motion takes the same form as (7.25)

(vsk)′′ +
(
k2 − a′′

a

)
vsk = 0. (7.33)

At first order in slow-roll parameters, we have a′′/a ≃ (2 + 3ε)/τ 2, and the solution is the
same as (7.28) with ν = (9/4 + 3ε)1/2 ≃ 3/2 + ε. The resulting tensor power spectrum is

Ph = 2H2

π2

(
k

aH

)−2ε

, (7.34)

where a factor 2 comes from the fact that there are two polarisations, and a factor of 4 comes
from the normalisation in 2vsk = ahsk. The biggest difference with the scalar spectrum (7.31)
is the absence of the factor of 1/ε that previously came from the factor of z in v = zR, see
before (7.24). This makes the tensor-to-scalar ratio r ≃ 16ε small in the slow-roll limit.
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7.3 Perturbations in five dimensions

Let us now reproduce this computation with an additional compact dimension. In this section,
we will follow the notations of [118], where five-dimensional inflation was proposed as a
mechanism explaining the micrometric size of the dark dimension. In what follows, the five-
dimensional quantities will be denoted with a hat. This distinction will be important in the
discussion above Figure 7.1. The five-dimensional background metric is

ds2 = −dt̂2 + â2(t̂)δijdxidxj +R2(t̂)dy2,

with periodicity y ∼ y + 2π, so that R(t̂) is the radius of the compact circular dimension. In
the de Sitter limit, both â(t̂) and R(t̂) are expanding exponentially

â(t̂) = eHt̂ and R(t̂) = R0e
Ht̂.

Introducing the conformal time τ = −H−1 exp(−Ht̂), the metric becomes

ds2 = â2(τ)(−dτ 2 + δijdx
idxj +R2

0dy
2), (7.35)

and
â(τ) = − 1

Hτ
and R(τ) = − R0

Hτ
.

The extra dimension is compactified on an interval S1/Z2 with Z2 acting as y → −y, lead-
ing at two fixed points, where branes with our observable universe can be localised. In the
string theory context, the D-branes are described by open strings ending on them, with the
matching conditions automatically satisfied due to the requirement of tadpole cancellation in
the presence of orientifolds. The overall time dependence arises from the bulk cosmological
constant and amounts to considering a slice of five-dimensional de Sitter spacetime along
the compact direction. This should be contrasted to the more general warped cosmological
solutions in the braneworld context studied in the past with less isometries [155–158], or in
an anti-de Sitter bulk [159,160].

During inflation, as in four dimensions, the background is not exactly de Sitter, but quasi
de Sitter, sourced by a canonically normalised and minimally coupled scalar field slowly
rolling in a flat potential, following the equation of motion

ϕ′′ + 3Hϕ′ + â2(τ)dV
dϕ

= 0, (7.36)

where, from now on, we stick to conformal time and denote by H = â′/â the conformal
Hubble rate. The five-dimensional Friedmann equations generalising (7.13) read

6H2 = â2ρ and 3(H′ + H2) = −â2p, (7.37)

with
ρ = 1

2â2 (ϕ′)2 + V and p = 1
2â2 (ϕ′)2 − V.

These equations imply in particular

3(H′ − H2) + (ϕ′)2 = 0, (7.38)
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In the following, we still use the slow-roll parameters ε and δ defined in (7.26). But the
definition of εV and ηV has to be adapted, because the Friedmann equations are not exactly
the same in five dimensions. In order to keep ε ≃ εV and δ ≃ ηV − εV in the slow-roll limit,
we take

εV = 3
4
(Vϕ
V

)2
and ηV = 3

2
Vϕϕ
V
.

7.3.1 The scalar perturbations

The formalism for studying cosmological perturbations in higher-dimensional braneworld
theories has been developed in the past, see for example [161]. The framework we consider
here is a direct generalization of the four-dimensional case discussed in the previous section.
We begin by perturbing the metric around (7.35) as we did in (7.14)

ds2 = â2(τ)( − (1 + 2Φ)dτ 2 + 2Bidx
idτ + 2Cdydτ

+ ((1 − 2Ψ)δij + Eij)dxidxj + 2Fidxidy + (R2
0 − 2Ξ)dy2), (7.39)

where as in (7.15) we can further decompose (Bi, Eij, Fi) into scalar, vector and tensor modes

Bi = ∂iB + Ci, Eij = 2∂i∂jE + 2∂(iEj) + hij, Fi = ∂iF +Gi.

This gives us eight scalar perturbations (δϕ,Φ,Ψ,Ξ, B, C,E, F ), three vector perturbations
(Ci, Ei, Gi) and one tensor perturbation hij. Under a five-dimensional diffeomorphism with
parameter ξµ = (ξt, ∂iξx + ξ̃i, ξy), these perturbations transform according to

δgµν → δgµν − 2∇(µξν)

giving

Φ → Φ − Hξt − (ξt)′, Ψ → Ψ + Hξt, Ξ → Ξ +R2
0Hξt +R2

0∂yξ
y,

B → B + ξt − (ξx)′, C → C + ∂yξ
t −R2

0(ξy)′, E → E − ξx,

F → F −R2
0ξ
y − ∂yξ

x, Ci → Ci − (ξ̃i)′, Ei → Ei − ξ̃i, Gi → Gi − ∂y ξ̃
i.

When computing these transformations, we must take into account a(τ) factors that appear
when we lower the indices from ξµ to ξµ. In addition to the metric, the inflaton perturbation
δϕ transforms as before

δϕ → δϕ− ϕ′ξt.

In what follows, we will use this freedom to put ourselves in a gauge where δϕ = E = F = 0.

Einstein equations

Let us now write the five-dimensional Einstein equations generalising (7.19) for the scalar
perturbations of the metric (7.39), in the gauge δϕ = E = F = 0. The 00 component is

R2
0(3H(3Ψ′ + 4HΦ) − ∆(2Ψ − 3HB))

−∆Ξ − 3∂2
yΨ + 3H∂yC + 3HΞ′ = R2

0(ϕ′)2Φ, (7.40)
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the 0i and 0y components are

R2
0(4Ψ′ + 6HΦ) − ∂2

yB + ∂yC + 2Ξ′ = 0, (7.41)

∆(C − ∂yB) − 6∂yΨ′ − 6H∂yΦ = 0, (7.42)

the ii component gives

R2
0(2Ψ′′ + 6HΨ′ + 3HΦ′ + 6(H′ + H2)Φ)

+3H∂yC + 3HΞ′ + (∂yC ′ + Ξ′′) + ∂2
y(Φ − 2Ψ)

+2/3∆(R2
0(B′ + 3HB + Φ − Ψ) − Ξ) = −R2

0(ϕ′)2Φ, (7.43)

the ij and iy components give

R2
0(B′ + 3HB + Φ − Ψ) − Ξ = 0, (7.44)

3H(∂yB + C) + ∂y(B′ + 2Φ − 4Ψ) + C ′ = 0, (7.45)

and finally, the yy component is

6(H′ + H2)Φ + 3H(∆B + Φ′ + 3Ψ′) + ∆B′ + ∆Φ − 2∆Ψ + 3Ψ′′ = −(ϕ′)2Φ. (7.46)

In these equations, ∆ is the three dimensional Laplacian. Note that in (7.40), (7.41), (7.43),
(7.44), the terms with R2

0 factorised are very similar to their four dimensional equivalents,
see (7.19), up to numerical factors. Note also that the last line of the left hand side of (7.43),
with a ∆ factorised, vanishes due to (7.44).

Let us now move to Fourier space. Taking into account the compactness of the y coordi-
nate, we expand all five dimensional fields A = (Φ,Ψ,Ξ, B, C) as

A(τ, x, y) =
∫
d3k

∑
n

An(k, τ)eikxeiny, (7.47)

This amounts to replacing all ∆ by −k2 and the ∂y by in in the previous equations, along with
adding n indices to all fields, which we will omit to avoid cluttering the equations.

In the four dimensional case, we started with five scalar perturbations. Two of these were
set to zero by a gauge choice. We then had four Einstein equations. Two of them were al-
gebraic constraint eliminating two perturbations, one of them reduced to an equation on the
background, and only one dynamical equation remained. In the five-dimensional case, we
expect similar results. Starting with eight scalar perturbations, we set three of them to zero
by a gauge choice, and we have seven Einstein equations. We will indeed see that three of
them are algebraic constraint eliminating two perturbations, another two reduce to equations
on the background, and only two remain as genuine dynamical equations.

As a first step, we can use (7.40), (7.41) and (7.42) to express (Φ, B, C) in terms of the
other perturbations. To do this, we note that (7.41) and (7.42) span a close, linear system on
the variables Φ and C − ∂yB, which gives

Φ = −(3n2 + 2R2
0k

2)Ψ′ + k2Ξ′

3H(n2 +R2
0k

2) and C − inB = −2in(R2
0Ψ′ − Ξ′)

n2 +R2
0k

2 . (7.48)
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We can then use (7.40) to obtain C andB separately, but their expressions are not useful here.

By inserting the expressions for (Φ, B, C) into the remaining equations (7.43)-(7.46),
we find that two of these equations boil down to equations on the background which are
therefore automatically satisfied. To be more precise, we find that

2i× (7.43) + n× (7.45) → 2iR2
0(3(H′ − H2) + (ϕ′)2))Φ = 0

k2 × (7.43) − n2 × (7.46) → −(n2 −R2
0k

2)(3(H′ − H2) + (ϕ′)2))Φ = 0

so that these two combinations vanish due to the background equation (7.38). In other
words, (7.45) and (7.46) are not independent, and we are left with two equations on (Ψ,Ξ).

We now introduce a new variable Θ ≡ Ψ − Ξ/R2
0, for which we find that

R2
0 × (7.43) + n2 × (7.44) → −R4

0/H(3(H′ − H2) + (ϕ′)2))Ψ′

+ (terms that depend only on Θ) = 0.

Using (7.38) again, the first line disappears and we get the following equation on Θ

Θ′′ + 3HΘ′ +
(
k2 + n2

R2
0

)
Θ = 0, (7.49)

which is the equation of motion of a five-dimensional minimally coupled scalar field of square
mass (k2 + n2/R2

0)/â2 in a time-dependent background, see (7.36).

Finally, from (7.43), we can obtain another equation on Ψ. Let us introduce another variable

Ω = (3n2 + 2R2
0k

2)Ψ + k2Ξ
3(n2 +R2

0k
2) ,

note that Ω′ = −HΦ, with Φ given by (7.48). We can combine the previous equations to
obtain the following on Ω

Ω′′ +
(
3H + 2(H′)2 − HH′′

H3 − HH′

)
Ω′ +

(
k2 + n2

R2
0

)
Ω = 0.

This equation can be put in a more suggestive form, reminiscent of (7.22) in the four-
dimensional case

â3(ϕ′)2

H2 Ω′′ + d

dτ

( â3(ϕ′)2

H2

)
Ω′ + â3(ϕ′)2

H2

(
k2 + n2

R2
0

)
Ω = 0. (7.50)

So in the end, both (7.49) and (7.50) can be obtained from applying the variational principle
to the action

S = 1
2

∫
dτd3k

∑
n

{
â3
(
(Θ′)2 −

(
k2 + n2

R2
0

)
Θ2
)

+ â
3(ϕ′)2

H2

(
(Ω′)2 −

(
k2 + n2

R2
0

)
Ω2
)}
. (7.51)

Note that the only difference between Θ and Ω is the factor of (ϕ′)2/H2 = 3ε in front of Ω,
where ε = −Ḣ/H2 = 1 − H′/H2 is the Hubble slow-roll parameter, see (7.26) and (7.38).
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Power spectrum

The action (7.51) has a form similar to (7.23), so let us treat it in a similar way. If we define

y = â3/2, z = â3/2ϕ′

H
, θ = yΘ, ω = zΩ, m2

k,n = k2 + n2

R2
0
, (7.52)

we obtain two copies of the Mukhanov-Chibisov equation as in (7.25) and (7.33)

θ′′
k,n +

(
m2
k,n − y′′

y

)
θk,n = 0 and ω′′

k,n +
(
m2
k,n − z′′

z

)
ωk,n = 0,

where we have restored the indices k, n for greater clarity. At linear order in slow-roll, recall
from the discussion between (7.26) and (7.27) that H ≃ −(1 + ε)/τ and â(τ) ≃ −1/(Hτ 1+ε),
so we can obtain directly y′′/y. We can also compute z′′/z as in (7.27)

y′′

y
≃ 15/4 + 6ε

τ 2 and
z′′

z
≃ 15/4 + 10ε− 4δ

τ 2 .

Thus, as in (7.28), we end up with the following solutions for θk,n and ωk,n, in terms of the
Bessel functions (Jν , Yν)

fk,n = cf1τ
1/2Jνf

(mk,nτ) + cf2τ
1/2Yνf

(mk,nτ), where f = θ or ω, (7.53)

where we have defined
νθ = 2 + 3ε

2 and νω = 2 + 5ε
2 − δ. (7.54)

Finally, the Bunch-Davies boundary conditions (7.29) give the same expressions for the con-
stants (cf1 , cf2) in terms of νf , as in (7.30).

We have thus obtained the solutions for θk,n and ωk,n, from which we can write the fol-
lowing expression for the adiabatic curvature perturbation R = Ψ

Rk,n = Ωk,n + k2

3m2
k,n

Θk,n = 1√
3εâ3/2

(
ωk,n +

√
ε

3
k2

m2
k,n

θk,n
)
. (7.55)

As in the four dimensional case, after obtaining the modes, we will take the super horizon
limit kτ ≪ 1 to compute the power spectrum (7.31). This corresponds to perturbations with
wavelengths exiting the Hubble radius, which is constant during inflation, in cosmic time t̂.
These modes then remain constant until they re-enter the horizon, which grows in subse-
quent eras after the end of inflation.

In our five dimensional case, the analogue limit is mk,nτ ≪ 1. Again, this corresponds to
five dimensional modes exiting the Hubble radius, which is constant during inflation, when
all spatial dimensions expand homogeneously. After inflation, only the three spatial dimen-
sions are still expanding, while the fifth dark dimension is assumed to be stabilised [118].

In the super-horizon limit mk,nτ ≪ 1, (7.53) behaves as

fk,n ≃ (1 + i)
√

2τ
π

1
(mk,nτ)νf

. (7.56)
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Let us now consider a mode of given 3D momentum k. In (7.39), we denoted by â(t̂) ∼ eHt̂

the scale factor of the 5D universe. Following [118], we also denote by a(t) ∼ tα the scale
factor of the 4D universe in the Einstein frame. Here, t̂ and t are the 5D and 4D cosmic times.

After inflation, the dark dimension is stabilised and the universe follows its standard four-
dimensional evolution, with H = 1/(2t) and physical momenta q = k/a ∼ k/t1/2, so that
modes of physical scales that exited the Hubble radius during inflation eventually re-enter.
Note that after inflation, we consider H = ȧ(t)/a(t), without the hats.

During inflation, the universe is effectively five-dimensional, so the physical wavelengths
to compare with the Hubble radius are 1/q̂, with q̂ = k̂/â and k̂ = mk,n in our notation. The
limit mk,nτ ≪ 1 is equivalent to k̂/â ≪ H, corresponding to physical scales that exit the
Hubble radius well before the end of inflation. Since k̂/â ∼ k̂/eHt̂ during inflation while H is
constant, a large band of scales do exit the horizon.

Now, a given 3D momentum k corresponds to a tower of 4D momenta k̂, according to
k2 = k̂2 − n2/R2

0. So as n increases with k fixed, k̂ increases. As a consequence, the high
modes of the tower fail to satisfy k̂/â ≪ H and do not exit the horizon during inflation.
However, since 5D inflation last for about 40 e-folds there are a large number of Kaluza-Klein
modes that exit the horizon for a sufficiently large region of 3D momenta, which justifies the
limit mk,nτ ≪ 1 in (7.56). Corrections from the expansion of the Bessel functions in (7.53)
are expected to be irrelevant. This discussion is summarised in figure 7.1.

Figure 7.1: Right panel shows evolution of physical scales and Hubble radius after inflation.
Since H ∼ 1/t while q = k/a ∼ k/t1/2, scales that exited the Hubble radius during inflation
eventually re-enter. Left panel shows evolution of physical scales and Hubble radius during
inflation. Since H ∼ const while q̂ = k̂/â ∼ k̂/eHt̂, a large band of scales exit the Hubble
radius during inflation. A given 3D momentum k corresponds to a tower of 4D momenta k̂,
represented by the black band.

We can only observe perturbations in our four-dimensional universe which is localised
on a 3-brane in the dark dimension. From a four-dimensional perspective, a perturbation
measured at a given spatial momentum k corresponds to any momentum component along
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the extra dimension. So in order to evaluate the four-dimensional power spectrum of R, we
have to sum over all modes

PR = k3

2π2

∑
n

|Rk,n|2, (7.57)

where from (7.55)

k3

2π2 |Rk,n|2 ≃ 2H3k3τ 4

3π3ε

( 1
(mk,nτ)2νω

+ ε

3
k4

m4
k,n

1
(mk,nτ)2νθ

)
. (7.58)

The cross term that comes naively by squaring |Rk,n|2 is absent, because the perturbations
ωk,n and θk,n must be considered as Gaussian random variables. Evaluating the sum (7.57)
requires computing ∑

n

1
(R0mk,n)2α =

∑
n

1
((R0k)2 + n2)α , (7.59)

where α is close to 4. If α is an integer greater than 1, it is rather direct to establish that

Sα(x) =
∑
n

1
(x+ n2)α = (−1)α−1π

Γ(α)
( ∂
∂x

)(α−1)(coth(π
√
x)√

x

)
. (7.60)

In general

Sα(x) = x⌊α⌋−α∑
n

1
(x+ n2)⌊α⌋

( x

x+ n2

)α−⌊α⌋
,

where ⌊α⌋ denotes the integer part of α. We can then bound Sα(x) as

x⌊α⌋−α+1S⌊α⌋+1(x) < Sα(x) ⩽ x⌊α⌋−αS⌊α⌋(x). (7.61)

In our case α − ⌊α⌋ is proportional to the slow-roll parameters and is small, see (7.54). As a
consequence, the upper bound given in (7.61) is a good approximation

∑
n

1
((R0k)2 + n2)α ≃ (R0k)2(⌊α⌋−α)∑

n

1
((R0k)2 + n2)⌊α⌋ .

This formula works quite well for all x > 0. The error is proportional to |⌊α⌋ − α|, and it is
less than 1% when |⌊α⌋ − α| < 0.06. Using this formula in (7.57) yields

PR ≃ 2R0H
3(R0k)3

3π3ε

(( k

âH

)4−2νω

S2((R0k)2) + ε

3
( k

âH

)4−2νθ(R0k)4S4((R0k)2)
)

where S2, S4 can be expressed using (7.60), and in the limits R0k ≪ 1 and R0k ≫ 1

S⌊α⌋((R0k)2) ≃
R0k≪1

1
(R0k)2α , S⌊α⌋((R0k)2) ≃

R0k≫1

√
πΓ(α− 1/2)

Γ(α)
1

(R0k)2α−1 . (7.62)

As a result, the power spectrum in these two limits is

PR ≃
R0k≪1

2H3

3π3εk

(( k

âH

)2δ−5ε
+ ε

3
( k

âH

)−3ε)
, (7.63)

and

PR ≃
R0k≫1

R0H
3

3π2ε

(( k

âH

)2δ−5ε
+ 5ε

24
( k

âH

)−3ε)
. (7.64)
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Short discussion

In the end, we recover the result of [118], up to the normalisation factor 1/(3ε) which deter-
mines the amplitude, and we obtained the spectral tilt in the region R0k ≫ 1

nR − 1 = 2δ − 5ε = 2ηV − 7εV . (7.65)

In the opposite limit R0k ≪ 1, the spectral tilt becomes nR − 1 = 2ηV − 7εV − 1, and the
spectrum is not scale invariant.

The contribution of Ω to R in (7.55) comes with a factor of 1/
√
ε that becomes 1/ε in the

power spectrum. By analogy with the four-dimensional case (7.31), we can say that Ω is the
contribution of the inflaton to the adiabatic curvature perturbation. Conversely, the contribu-
tion of Θ to R does not come with this factor, and gives the second term in (7.58). In analogy
with the tensor perturbations in (7.34), we can say that this is a gravitational contribution
to the curvature perturbation coming from the radion which is a second scalar field from the
four-dimensional point-of-view. However, in (7.63), (7.64), we can see that this contribution
is proportional to ε and thus subleading in the power spectrum.

At the end of the five-dimensional inflation, the radion acquires a runaway potential of
quintessence type and a stabilization mechanism of the fifth dimension is most likely re-
quired. This is discussed in [118], where some possible contributions to the scalar potential
are presented. In general, in addition to that from the five dimensional vacuum energy at the
minimum of the inflaton potential, there are three additional contributions, corresponding to
3-brane tensions, kinetic gradients of bulk fields and their Casimir energy. It is worth men-
tioning that the brane tension does not modify the bulk equations of motion, while bulk fields
have vanishing expectation values during inflation, which occurs around a flat region of the
inflaton potential away from its minimum. Finally, the Casimir energy falls off exponentially
for bulk masses larger than the compactification scale and with a power much faster than the
five-dimensional cosmological constant when they are light, thus remaining negligible during
inflation. Consequently, all these contributions, together with the five-dimensional cosmolog-
ical constant, can stabilize the fifth dimension without affecting the five-dimensional inflation
period discussed in our paper.

7.3.2 Isocurvature perturbations

When only one scalar degree of freedom is involved in inflation, perturbations are adiabatic.
This implies that after inflation, the relative density of different matter components is con-
stant; only the total density is perturbed. The underlying intuition is that if there is only the
inflaton, it decays in the same way everywhere to produce the thermal bath.

When more scalar fields are involved, this is no longer true, as there may be perturbations
leaving the total density unperturbed, called isocurvature or entropy perturbations. If such
a perturbation occurs between two fields, one of them decaying into a component that, for
instance, does not thermalise with the rest of the bath, like dark matter after decoupling,
it leaves an imprint in the relative density of different components, such as matter (m) and
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radiation (γ)
Sm = δρm

ρm
− 3

4
δργ
ργ

̸= 0.

Such fluctuations would have an effect on the CMB. So far, this effect has not been observed.
Isocurvature perturbations can be characterised by their relative amplitude βiso to the curva-
ture perturbations

βiso = PS

PR + PS
< 0.038, (7.66)

where the upper limit is set by Planck observations [149].

In our setup, the radion, coming from the four-dimensional decomposition of the metric
acts as an extra scalar from the four-dimensional point-of-view, in addition to the inflaton. So
we have to worry about isocurvature perturbations. Such perturbations are hard to compute,
as they depend on details about reheating and how the various fields decay after inflation. To
give a rough estimate of their magnitude, let us compute the total entropy perturbation [162]

S = H
(δp
p′ − δρ

ρ′

)
.

Using δp = δρ = −(ϕ′)2Φ/â2 and equations (7.37), (7.38)

S =
(−6H3 + 4H′H + H′′

4(2H3 − H′′)
)
Φ. (7.67)

Recalling that ε = 1 − H′/H2, we also have ε′ = 2Hε(ε− δ), and

H2 − H′ ≃ H2ε and 2H3 − H′′ ≃ 4H3ε− 2H3εδ.

Thus, at leading slow-roll order and using the definitions (7.52) we get

S ≃ −Φ
2 ≃ Ω′

2H
≃ Ω

2H
(ω′

ω
− z′

z

)
.

Using now the expression of ω in the super horizon limit (7.56), we can see that ω′/ω ≃
(1/2 − νω)/τ , and z′/z ≃ H(3/2 + ε− δ), leading to the following result

S ≃ 3ε
4 Ω → PS ≃ 9ε2

16 PR → βiso ≃ 9ε2

16 .

Thus, we obtain that βiso is second order in the slow-roll parameter ε, which easily satisfies
the constraint (7.66). But again, the total entropy perturbation is at best a rough estimate
of the isocurvature perturbations. Further analysis would be required to compute them more
precisely, but that is beyond the scope of this chapter.

Note that S being proportional to Φ in (7.67) is a consequence of our gauge choice δϕ = 0.
In “genuine” four-dimensional multifield inflation with two fundamental scalar fields ϕ1 and
ϕ2, it is not possible to set both δϕ1 = 0 and δϕ2 = 0 with a gauge choice. This leads to
an additional contribution in (7.67), from the entropy field, defined as δs in [162], which is
a linear combination of δϕ1 and δϕ2. In our case, this contribution is absent, and the total
entropy perturbation ends up being suppressed by ε2.
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7.3.3 Tensor and vector perturbations

For the tensor perturbation hij of the metric (7.39), since hii = 0 and ∂ihij = 0 by definition,
the only non trivial components of the Einstein equation are the ij ones, which read

h′′
ij + 3Hh′

ij +
(
k2 + n2

R2
0

)
hij = 0. (7.68)

Therefore the two independent helicities of hij satisfy the same equation as Θ in (7.49), and
can be studied in the same way. In the end, the power spectrum of tensor perturbations is the
same as (7.63), up to a factor of 2 × 4 × 3ε. The factor of 2 comes from the two polarisations,
the factor of 4 comes from the normalisation of h, see (7.32) and discussion after (7.34), and
the factor of 3ε comes from the factor of ϕ′/H in (7.51) which is absent here. In addition, the
tensor spectral tilt is 4 − 2νθ, see (7.54). In the end we thus have

PT ≃
R0k≪1

16H3

π3k

( k

âH

)−3ε
and PT ≃

R0k≫1

8R0H
3

π2

( k

âH

)−3ε
. (7.69)

It follows that the tensor-to-scalar ratio r and the tensor spectral tilt nT are

r = 24ε = 24εV ,

and
nT = −3εV for R0k ≫ 1, and nT = −3εV − 1 for R0k ≪ 1

The experimental constraint r < 0.06 reported by [149] then sets a limit εV < 0.003. On the
other hand, using the experimental value of the scalar spectral index nR − 1 ≃ −0.04 and the
result (7.65), one finds that ηV should be in the range [−0.02,−0.01].

Vector perturbations

In ordinary four-dimensional inflation, vector perturbations are not sourced at linear or-
der and are therefore irrelevant. However, the four-dimensional decomposition of the five-
dimensional metric contains vector fields from the four-dimensional point-of-view. In (7.39),
there are three vector perturbations (Ci, Ei, Gi), and we can choose a gauge where Ei = 0.
Then the only non-trivial components of the Einstein equations are the 0i, ij and iy ones

R2
0∆Ci + ∂2

yCi − ∂yG
′
i = 0, R2

0(3HCi + C ′
i) − ∂yGi = 0,

and
3H(G′

i − ∂yCi) − ∆Gi − ∂yC
′
i +G′′

i = 0.
In Fourier space (7.47), we can use the first equation to obtain

Ci = − inG′
i

n2 +R2
0k

2 .

Then, the two other equations turn out to be equivalent to

G′′
i + 3HG′

i +
(
k2 + n2

R2
0

)
Gi = 0 ,
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which is the same as (7.68) and (7.49).

Thus, the power spectrum of primordial vector perturbations is the same as for tensor
perturbations, and twice the contribution of the radion Θ to the scalar perturbations, as
expected from the fact that all of them emerge from the five-dimentional metric. Usually, in
brane-world constructions, the extra-dimension is orbifolded into an interval S1/Z2, so that
the vector zero mode as well as half of the massive modes are projected out by the Z2 action.
Projecting out the zero-mode boils down to extract 1/(R0k)2α from the sum in (7.59). This
affects only the result in the limit R0k ≪ 1 in (7.62), that becomes

Sα((R0k)2) − 1
(R0k)2α ≃

R0k≪1
ζ(2α).

Therefore

PV ≃
R0k≪1

4πR0H
3

45 (R0k)3
(
k

âH

)−3ε

and PV ≃
R0k≫1

4R0H
3

π2

(
k

âH

)−3ε

. (7.70)

And the power spectrum of vector perturbations has a reduced amplitude at large distances,
in contrast with all other perturbations which are more important due to an approximate 1/k
behaviour. On the other hand, vector perturbations could also lead to B-mode polarization
of the CMB which should be added to PT found previously in (7.69), but this goes beyond
our scope. Note that the Z2 action also truncates the sum (7.57) over the modes to n > 0,
effectively adding a factor of 1/2 everywhere this sum appears. This factor was not included
in the previous power spectra (7.63), (7.64), (7.69), but is taken into account in (7.70).
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[73] I. Bena, J. Blåbäck, M. Graña and S. Lüst, Algorithmically Solving the Tadpole Problem,
Adv. Appl. Clifford Algebras 32 (2022) 7 [2103.03250].

[74] I. Bena, C. Brodie and M. Graña, D7 moduli stabilization: the tadpole menace, JHEP
01 (2022) 138 [2112.00013].

[75] E. Plauschinn, The tadpole conjecture at large complex-structure, JHEP 02 (2022) 206
[2109.00029].

[76] K. Tsagkaris and E. Plauschinn, Moduli stabilization in type IIB orientifolds at h2,1 =
50, JHEP 03 (2023) 049 [2207.13721].

[77] T.W. Grimm, E. Plauschinn and D. van de Heisteeg, Moduli stabilization in asymptotic
flux compactifications, JHEP 03 (2022) 117 [2110.05511].

[78] M. Graña, T.W. Grimm, D. van de Heisteeg, A. Herraez and E. Plauschinn, The tadpole
conjecture in asymptotic limits, JHEP 08 (2022) 237 [2204.05331].

[79] F. Marchesano, D. Prieto and M. Wiesner, F-theory flux vacua at large complex
structure, JHEP 08 (2021) 077 [2105.09326].
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