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Résumé: La détection de petits objets dans les
images infrarouges (IR) est une tâche complexe
mais cruciale en défense, surtout lorsqu’il s’agit
de distinguer ces cibles d’un fond texturé. Les
méthodes de détection d’objets classiques peinent
à trouver un équilibre entre un taux de détec-
tion élevé et un faible taux de fausses alarmes.
Bien que certaines approches aient amélioré les
réponses des cartes de caractéristiques pour les
petits objets, elles restent tout de même sensi-
bles aux fausses alarmes induites par les éléments
du fond. Pour résoudre ce problème, la première
partie de cette thèse introduit un critère de déci-
sion a contrario dans l’entraînement des réseaux de
neurones. Cette méthode statistique améliore les
réponses des cartes de caractéristiques tout en con-
trôlant le nombre de fausses alarmes (NFA) et peut
être intégrée dans n’importe quel réseau de seg-
mentation sémantique. Le module NFA améliore
la détection des petits objets et renforce la ro-
bustesse dans des contextes d’apprentissage frugal

en données. Cependant, les réseaux de segmen-
tation peuvent entraîner une fragmentation des
objets, causant ainsi des fausses alarmes et faus-
sant les métriques de comptage. Pour atténuer
cela, le critère a contrario a été intégré dans la
tête de détection d’un YOLO. La deuxième partie
de la thèse aborde les défis posés par le manque
de données annotées grâce à l’apprentissage auto-
supervisé (SSL). Nous avons réalisé une étude des
catégories de SSL existantes, en mettant l’accent
sur les méthodes adaptées à la détection de petits
objets. Nous avons ensuite évalué plusieurs straté-
gies SSL sur différents jeux de données, y compris
les datasets de détection de petites cibles en IR.
Cette étude nous permet de proposer une feuille
de route pour aider à la sélection d’une stratégie
de SSL adéquate selon plusieurs paramètres. En-
fin, la combinaison du SSL et du paradigme a con-
trario a donné des résultats impressionnants sur la
détection de petites cibles en IR.

Title: Small target detection using deep learning
Keywords: a contrario paradigm, self-supervised learning, YOLO, semantic segmentation

Abstract: Detecting small objects in infrared im-
ages is a challenging yet critical task in defense,
especially when it comes to differentiating these
targets from a noisy or textured background. Con-
ventional object detection methods have difficul-
ties in finding the balance between high detection
rate and low false alarm rate. While some existing
approaches have improved feature map responses
for small objects, they frequently fail to manage
false alarms caused by background elements. To
address this, we introduce an a contrario decision
criterion into neural network training. This sta-
tistical test enhances feature map responses while
controlling the number of false alarms (NFA) and
can be integrated into any semantic segmentation
network. The NFA module improves infrared small
target detection (IRSTD) and increases robustness
in few-shot settings. However, segmentation net-

works can lead to object fragmentation, causing
false alarms and distorting counting metrics. To
mitigate this, the a contrario criterion has been in-
tegrated into the YOLO detection head. The sec-
ond part of the thesis focuses on overcoming the
challenges of limited annotated samples through
self-supervised learning (SSL). To this end, we con-
duct a survey on SSL strategies for image rep-
resentation learning, with an emphasis on meth-
ods adapted for small object detection. We then
benchmark several SSL strategies across different
datasets, including IRSTD datasets. This study al-
lows us to provide a roadmap to guide future prac-
titioners in selecting an appropriate SSL strategy
based on various parameters. Finally, combining
both a contrario and SSL paradigms has led to
impressive performance for IRSTD.
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Synthèse de la thèse

La détection de petits objets dans les images infrarouges (IR) est essentielle pour
diverses applications de défense, notamment dans le renseignement militaire, la
surveillance maritime et l’interception de missiles. Cette détection constitue la
première étape des approches DRI (Détection-Reconnaissance-Identification), et il
est crucial de minimiser les erreurs et les détections manquées. Pour de nombreuses
applications militaires, il est également vital de détecter la cible dès que possible.
Cependant, si la cible est située à plusieurs kilomètres de l’observateur, elle peut
n’occuper qu’une infime portion de l’image. De plus, la réfraction atmosphérique
et d’autres bruits peuvent masquer la cible dans des fonds complexes et texturés.
Les cibles n’ont donc pas de structure spécifique (basse résolution) et présentent
un faible contraste par rapport au fond. Ces conditions font de la détection de
petites cibles dans des images infrarouges un défi majeur en vision par ordinateur.

Au cours des dernières décennies, de nombreuses méthodes ont été proposées
pou répondre à cette problématique. L’avènement des méthodes d’apprentissage
profond a récemment conduit à des avancées impressionnantes en matière de dé-
tection d’objets, grâce à leur capacité à extraire des caractéristiques non linéaires
à partir de grandes quantités de données annotées. L’émergence récente de jeux de
données de petites cibles en IR a permis le développement de détecteurs de petites
cibles infrarouges basés sur l’apprentissage profond, qui ont surpassé les méthodes
traditionnelles. Ce sont en particuliers les réseaux de segmentation sémantique qui
sont à l’état de l’art pour la détection de petites cibles en IR.

Dans cette thèse, notre objectif est de proposer des méthodes innovantes et effi-
caces pour la détection de petites cibles qui se généralisent bien à des applications
légèrement différentes, toutes dans le domaine de la détection de petits objets.
Nous souhaitons développer des détecteurs capables de bien se généraliser à tout
type de données (par exemple, RGB, IR, mono ou multispectral, etc.) sans consid-
érer explicitement les propriétés physiques du domaine. De plus, notre approche
doit fonctionner efficacement dans un environnement frugal, ce qui constitue une
contrainte importante de l’application. Étant donné que les petites cibles sont de
très basse résolution et que la plupart des jeux de données publics sont monospec-
traux, notre objectif est uniquement de détecter les cibles sans caractériser les
objets.

Dans la littérature, nous avons identifié plusieurs faiblesses. Tout d’abord, les
fonds fortement texturés peuvent entraîner de nombreux faux positifs. Ensuite, les
étapes de sous-échantillonnage successives dans les architectures d’apprentissage
profond conventionnelles entraînent une perte d’informations sur les très petits
objets, ce qui se traduit par de nombreuses détections manquées. Un autre prob-
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lème majeur est l’asymétrie de l’apprentissage induit par le choix de la fonction de
coût du réseau, où les pixels cibles et les pixels de fond sont pénalisés (presque) de
manière égale. Cela signifie qu’en raison du nombre limité d’exemples de cibles,
le processus d’apprentissage est principalement guidé par les erreurs commises sur
les pixels de fond. Des techniques telles que la pondération de la fonction de coût
selon la classe du pixel ou la super-résolution ont été proposées pour résoudre le
problème. Cependant, ces méthodes ne tirent pas parti du caractère « inattendu
» des petits objets par rapport au fond, comme on pourrait le faire dans une
approche de détection d’anomalies.

Dans la première partie de la thèse, nous proposons un nouveau paradigme
d’apprentissage profond pour la détection de petits objets en tenant compte de
leur caractère inattendu. Il repose sur un raisonnement a contrario et permet
de dériver automatiquement un critère de décision en modélisant le fond à l’aide
d’un modèle naïf et en détectant des structures ou des objets trop structurés pour
apparaître « par chance » sous le modèle naïf. Le paradigme a contrario s’inspire
des théories de la perception, en particulier de la théorie de la Gestalt. Cette
dernière est basée sur le principe de Helmholtz, qui stipule qu’une grande dévia-
tion par rapport à un modèle aléatoire est probablement due à la présence d’une
structure. Notre motivation pour utiliser de telles méthodes est qu’elles modélisent
le fond, pour lequel nous disposons de nombreux échantillons, plutôt que les ob-
jets à détecter. Cela contourne ainsi le problème du déséquilibre des classes en
se concentrant sur la classe « fond » et en effectuant la détection par rejet de
son hypothèse naïve. Cette modélisation semble d’autant plus appropriée que les
petits objets contiennent souvent très peu de structures géométriques, contraire-
ment aux objets plus grands pour lesquels la littérature est très abondante. De
plus, la formulation a contrario vise à minimiser le Nombre de Fausses Alarmes
(NFA), permettant ainsi un meilleur contrôle de la précision. Nous proposons
donc de guider l’apprentissage des réseaux de neurones en intégrant le critère a
contrario dans la boucle d’apprentissage par le biais d’un module NFA spécifique.
Ce dernier guide le réseau à extraire des caractéristiques de manière à ce que les
caractéristiques de l’objet soient susceptibles de contredire l’hypothèse naïve du
fond. Cela induit des propriétés intéressantes : 1) les résultats sont plus inter-
prétables ; 2) le choix du seuil permet un contrôle plus intuitif du NFA. Le module
NFA que nous développons dans cette thèse peut être intégré dans n’importe quel
réseau de segmentation. Cependant, s’appuyer sur des réseaux de segmentation
pour la détection d’objets peut entraîner une fragmentation des objets lors du
réglage du seuil de binarisation de la carte de segmentation. Cela peut provo-
quer de nombreuses fausses alarmes et fausser les métriques de comptage d’objets.
Les algorithmes de détection d’objets tels que Faster-RCNN ou YOLO réduisent ce
risque en localisant explicitement les objets par la régression de boîtes englobantes,
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bien qu’ils aient souvent du mal avec les petits objets. Peu d’études ont adapté ces
détecteurs pour la détection de petites cibles, et aucune comparaison rigoureuse
avec les méthodes de segmentation à l’état de l’art pour la détection de petites
cibles n’a été réalisée. Nous proposons donc d’intégrer les critères de décision a
contrario dans la tête de détection YOLO. Plus précisément, nous explorons deux
formulations a contrario différentes et démontrons leurs avantages par rapport à
une version classique de YOLO. L’intégration de notre critère a contrario dans
un YOLO a permis de réduire significativement l’écart de performance observé
entre les réseaux de type YOLO et ceux de segmentation à l’état de l’art pour la
détection de petites cibles.

Dans la deuxième partie de ce manuscrit, nous nous concentrons davantage sur
les conditions d’apprentissage difficiles dues à la rareté des données annotées. En
effet, ces conditions conduisent généralement à une représentation médiocre des
données dans l’espace latent, car les réseaux de neurones nécessitent des milliers
d’échantillons pour apprendre à extraire des caractéristiques pertinentes. Notre ob-
jectif est donc de compenser la frugalité des données en tirant parti de meilleures
représentations ou de connaissances préalables. La pratique courante consiste à
initialiser les modèles avec des poids pré-entraînés sur des jeux de données clas-
siques et de grande taille, comme ImageNet. Bien que l’utilisation de poids pré-
entraînés sur le dataset ImageNet de manière supervisée soit une approche stan-
dard, cela peut être une stratégie sous-optimale, en particulier lorsqu’on considère
un grand écart entre les domaines spectraux (par exemple, visible et infrarouge
thermique). Par conséquent, les méthodes de pré-entraînement non supervisé, no-
tamment basées sur de l’apprentissage auto-supervisé (SSL), deviennent de plus
en plus populaires. Le SSL constitue un domaine de recherche particulièrement
actif. Il repose sur une tâche prétexte capable de générer sa propre vérité ter-
rain, ce qui permet au réseau d’apprendre des invariances ou des caractéristiques
pertinentes pour la tâche finale. Plusieurs stratégies pour sélectionner des tâches
prétextes ont été proposées dans la littérature, initialement conçues pour des tâches
de classification et adaptées au fur et à mesures aux tâches de prédiction dense
ou locale (par exemple, segmentation, détection d’objets) et aux architectures de
réseaux récentes comme les Vision Transformers. Ces méthodes ont montré des
performances impressionnantes, par exemple dans la segmentation d’objets non
supervisée. Cependant, leur efficacité a principalement été démontrée pour la dé-
tection de grands objets. Cela soulève la question suivante : ces méthodes à l’état
de l’art sont-elles réellement adaptées à la détection de petits objets ? Dans ce
manuscrit, nous commençons par passer en revue les principales méthodes his-
toriquement orientées vers la classification et présentons leurs caractéristiques.
Ensuite, nous nous concentrons sur la détection d’objets, en présentant des méth-
odes spécifiquement adaptées à ces tâches et en réalisant plusieurs benchmarks.
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Nous commençons par évaluer la performance de différentes stratégies SSL sur le
dataset COCO, en portant une attention particulière aux métriques obtenues sur
les petits objets (bien qu’ils soient encore sensiblement plus grands que les petites
cibles). Ensuite, nous considérons la détection de véhicules à partir d’images aéri-
ennes, ce qui implique de gérer des objets de plus petite taille. Ce jeu de données
inclut à la fois des images RGB et IR, permettant d’amener le sujet du transfert de
connaissance inter-domaine, comme par exemple du domaine RG vers l’IR. Nous
examinons ensuite quelles méthodes sont les mieux adaptées pour l’entraînement
sur un grand jeu de données intra-domaine (données IR dans notre cas) qui n’a
peut-être pas été nettoyé (par exemple, redondance d’images, hétérogénéité sé-
mantique). Enfin, nous évaluons ces différentes méthodes de pré-entraînement sur
notre tâche d’intérêt, à savoir la détection de petites cibles en IR. Dans cette deux-
ième partie de la thèse, notre approche est observationnelle : nous analysons le
comportement des méthodes existantes, notons les différences dans les résultats
et tentons d’identifier les composantes responsables de ces différences. Cette ap-
proche d’analyse structurée fournit des perspectives pour de futures recherches.
Enfin, la combinaison des paradigmes a contrario et auto-supervisé conduit à des
résultats impressionnants pour la détection de petites cibles en IR.
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Chapter 1

Introduction

1.1 Challenges behind Infrared Small Target De-
tection

Accurate detection of small objects in InfraRed (IR) images is essential in various
defense applications, including military intelligence, maritime surveillance, and
missile interception. It also finds applications in civilian fields such as medical
diagnosis, early fire detection, and video surveillance. This detection is the first
step in Detection-Recognition-Identification (DRI) approaches, making it a critical
stage where errors and missed detections must be minimised.

Many civilian and military applications use the principle of infrared radiation
to identify objects in an optical scene. Indeed, all objects reflect and emit infrared
radiations that are characteristic of their physico-chemical properties and temper-
ature. When an object has a temperature that is significantly different from its
surroundings (e.g., an aircraft in flight), it can thus be observed in an infrared im-
age. Additionally, IR imaging has benefits over active radar systems, such as good
portability and low sensitivity to strong electromagnetic interference and stealth,
as it is passive.

The infrared domain includes wavelengths from 750 nm to 1 mm, divided into
five categories:

• Near InfraRed (NIR): 750 nm to 1.4µm, used in low light conditions
(e.g., night vision goggles). It provides an image that is close to a visible
one.

• Short-Wavelength InfraRed (SWIR): 1.4 to 3µm, captures light re-
flected or absorbed by objects. Known as reflected IR, this domain is less
affected by fog or pollution, offering a significant advantage over visible cam-
eras.

23
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• Mid-Wavelength InfraRed (MWIR): 3 to 8µm, detects thermal emis-
sion of objects but struggles with fog or pollution. It consists of both reflected
and thermal infrared, and it is ideal for detecting aircrafts.

• Long-Wavelength InfraRed (LWIR): 8 to 15µm, preferred for outdoor
surveillance and military missions as it is less sensitive to the thermal noise
caused by the surrounding environment. It is known as thermal infrared.

• Far InfraRed (FIR): 15µm to 1 mm, used in astronomy applications
(black-body radiations).

Infrared target detectors are primarily applied to SWIR, MWIR, or LWIR
images, and most public datasets are composed of monospectral images. However,
for target recognition and identification, infrared multispectral or hyperspectral
images should be considered, as the variety of IR bands can enable discrimination
between detected targets.

For many military applications and systems (e.g., anti-collision systems), de-
tecting the target as soon as possible is essential. However, if the target is kilo-
meters away from the observer, it may occupy a very small portion of the image.
Furthermore, atmospheric refraction and other noises tend to drown the target
in complex backgrounds, thus greatly reducing its signal-to-noise ratio (SNR).
Targets thus have no specific structure (low-resolution) and present low contrast
with respect to the background. These conditions make InfraRed Small Target
Detection (IRSTD) a significant challenge in computer vision. We can illustrate
these difficulties with Figure 1.1. It shows three real infrared scenes containing
targets, as well as their corresponding 3D surface representation. The position of
the targets is indicated by red rectangles. Figure 1.1a) represents a simple case,
where the target is not drown into noise and has a high intensity value compared
to the neighbourhood. Figure 1.1b) illustrates an intermediate case. Indeed, the
target has a lower intensity and a lower contrast compared to the surrounding
background. The intensity peak is already more difficult to detect. Finally, Fig-
ure 1.1c) represents a complicated case: the target is particularly small and has
a low intensity value. Furthermore, as the background is complex and highly
textured, the target is drown into clutter noise, represented by relatively high in-
tensity peaks. This makes the background subtraction difficult, and can also lead
to many false alarms. The design of an infrared small target detector that is robust
towards false positives and has a high generalisation ability is thus all the more
important. Another important constraint of our application is the scarcity of both
samples and annotated data. Due to the rarity of targets, we only have access
to a limited number of pixel samples belonging to the target class. Furthermore,
since we often work with specialised sensors (e.g., thermal infrared, hyperspectral
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a) Easy case

b) Intermediate difficulty

c) Difficult case

Figure 1.1: 3D representation of some infrared images. The targets are framed in
red.
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data) and given the high cost of annotation, the number of annotated samples is
also limited.

1.2 IRSTD methods still need to be improved

Over the past decades, many IRSTD methods have been proposed. Among them,
Detect Before Track (DBT) and Track Before Detect (TBD) methods have been
designed for IRSTD on video sequences. On the one hand, DBT methods first rely
on single-frame detection [16], where candidate targets are selected in each frame,
and then temporal information confirms the final targets based on trajectory esti-
mation. On the other hand, TBD methods directly exploit temporal information
for detecting the targets [17]. However, they are more computationally expensive
than DBT methods, and require large storage capacity. Moreover, there are cases
where short-term temporal information is inefficient for target detection. For ex-
ample, when a target approaches the sensor head-on, it initially appears as a very
small dot, making it challenging to quantify its size evolution at the beginning
of the sequence. This scenario highlights the importance of single-frame IRSTD.
This, coupled with the rise of very efficient deep learning-based detectors, encour-
ages research into DBT detection, and in particular single-frame infrared detection
of small targets.

Before the advent of deep learning and the publication of large-scale IRSTD
datasets, many model-driven methods were proposed. These include, for example,
spatial [18, 19] and frequency domain [20] filtering for background removal, as
well as local contrast estimation [21, 22, 23] (which assumes that the target and
its surrounding environment present abrupt changes in terms of pixel intensity).
Since model-driven methods are beyond the scope of this thesis, we refer the reader
to surveys [24, 25] for further details. An obvious drawback of these methods is that
they rely on heavy parameter tuning, and thus present a very weak generalisation
ability to other sensor images or to different backgrounds.

The rise of Deep Learning (DL) methods has recently led to impressive ad-
vances in object detection, thanks to their ability to learn to extract non-linear
features from large amounts of annotated data. The recent emergence of IRSTD
datasets, such as the pioneering work by Wang et al. [9] in 2019, has led to the de-
velopment of DL-based infrared small target detectors, which have outperformed
traditional methods. In contrast to model-driven approaches, these methods show
great generalisation ability, require little parameter tuning, and achieve better
performance. They also have short inference times, making real-time detection
possible. Semantic segmentation neural networks (NN) are the most widely used
networks for IRSTD and lead to State-Of-The-Art (SOTA) performance on sev-
eral IRSTD benchmarks. These include ACM [6], LSPM [26] and one of the recent
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SOTA methods, namely DNANet [8], which consists of several nested UNets and a
multiscale fusion module that helps the segmentation of small objects with various
sizes. Most of DL-based methods are designed to be independent of the physical
properties of materials, allowing them to work with different types of data such as
IR, RGB, and multi/hyperspectral data.

In this doctoral thesis, our objective is to propose innovative and efficient meth-
ods for small target detection that generalise well to slightly different applications,
all within the domain of small object detection. As with the other DL-based meth-
ods for IRSTD, we aim to develop detectors that can generalise well to any type
of data (e.g., RGB, IR, mono or multispectral, etc.) without explicitly considering
the physical properties of the domain. Additionally, our approach must operate
effectively in a frugal setting, which is a significant constraint of the application.
Since the small targets are of very low-resolution and that most public datasets are
monospectral, our focus is solely on detecting the targets without characterising
the objects.

In the literature, we have identified several weaknesses. First, highly textured
backgrounds can lead to many false positives. Second, the successive downsam-
pling steps in conventional deep learning architectures lead to a loss of information
about very small objects, resulting in many missed detections. Another major is-
sue is the symmetric learning approach, where target pixels and background pixels
are penalised (almost) equally. This means that, because of the limited number
of target examples, the training process is primarily driven by the errors made
on the background pixels. Techniques such as loss weighting (e.g., focal loss [27])
or super-resolution [28] have been proposed to address the issue. However, these
methods do not take advantage of the unexpectedness of small objects with re-
spect to the background, as one could do in an anomaly detection approach with,
for example, one-class classifiers [29] that discriminate small objects as unexpected
patterns with respect to the background. Such a criterion can efficiently reduce
the number of false alarms induced by the background, thus allowing for a better
balance between precision and detection rate.

1.3 Organisation of the manuscript

In the first part of the thesis, we propose a new deep learning paradigm for de-
tecting tiny objects by considering their unexpectedness. It relies on a contrario
reasoning, introduced by [30]. These methods allow us to automatically derive a
decision criterion by modelling the background using a naive model and detect-
ing structures or objects as too structured to appear ‘by chance’ under the naive
model. They draw inspiration from theories of perception, in particular the Gestalt
theory [12]. The latter is based on the Helmholtz principle, which states that a
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large deviation from a random pattern is likely due to the presence of a struc-
ture. Our motivation for using such methods is that they model the background,
for which we have a lot of samples, rather than the objects to be detected. It
thus circumvents the problem of class imbalance by focusing on the background
class and performing detection by rejection of its distribution hypothesis. Such a
modelling appears even more appropriate as tiny objects often contain very few
geometric features, unlike larger objects for which the literature is very extensive.
Moreover, the a contrario formulation aims at minimising the Number of False
Alarms (NFA), defined in Chapter 3, thus allowing for a better control of the
precision.

In the literature, the a contrario decision is applied either directly on natural
images or after extracting features from the image by traditional image processing
methods. This filtering step can be replaced by Neural Networks (NN). Indeed,
when looking at the feature maps of a NN trained for detecting objects, the objects
to be detected stand out against a background made of noise. [31] applied, as a
post-processing step, a contrario detection on some feature maps obtained by a
NN. We follow the same approach and apply an a contrario test on the feature maps
extracted by conventional segmentation networks trained on IRSTD datasets. This
first stage, presented in the second part of Chapter 3, is intended as a proof of
concept of the use of the a contrario criterion in the detection of small targets.

However, it is clear that applying the a contrario testing on the feature maps
extracted by a neural network while being agnostic to the future detection cri-
terion appears suboptimal. Indeed, the feature map statistical distribution may
not match the naive assumption made on the background when applying a con-
trario decision. We therefore propose to guide the NN training by including the
a contrario criterion in the training loop through a specific NFA module. The
latter guides the network to extract features in such a way that the object features
will be likely to contradict the naive hypothesis made on the background. This
induces interesting properties: 1) the results are more interpretable; 2) the thresh-
old choice allows for a more intuitive control of the NFA. The NFA module that
we develop in this thesis can be integrated into any segmentation NN, and can
even take advantage of multi-scale information if the backbone allows for it. The
methodology as well as the results obtained for different use cases are presented
in Chapter 4.

However, relying on segmentation NN for object detection can lead to object
fragmentation when tuning the threshold for binarising the segmentation map.
This can cause many false alarms and distort object counting metrics. Object de-
tection algorithms such as Faster-RCNN [3] or You Only Look Once (YOLO) [4]
reduce this risk by localizing objects through bounding box regression, although
they often struggle with small objects. Few studies have adapted such detectors
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for IRSTD [32], and no rigorous comparison with SOTA IRSTD methods has
been made. We therefore propose to integrate a contrario decision criteria into
the YOLO detection head. Specifically, we explore two different a contrario for-
mulations (one at pixel-level, and the other at the object-level) and demonstrate
their advantages over a robust YOLO baseline in Chapter 5. This confirms the
relevance of the a contrario paradigm for the detection of small targets, even if the
integration of the pixel-level a contrario criterion introduced in Chapters 3 and 4
remains the new SOTA approach.

In the second part of this manuscript, we address challenging training condi-
tions caused by the scarcity of samples and annotated data. Indeed, such con-
ditions generally lead to poor data representation in the latent space, as neural
networks require thousands of samples to learn to extract meaningful features.
Our objective is thus to compensate for data frugality by leveraging better rep-
resentations or prior knowledge. Common practice involves initialising models
with weights pre-trained on classic and large computer vision datasets like Ima-
geNet [33]. While using weights pre-trained on ImageNet dataset in a supervised
way is a standard approach, this may be a sub-optimal strategy especially when
considering a large gap between the spectral domains (e.g., visible and thermal-
IR). Therefore, unsupervised pre-training is becoming more and more popular. An
advantage of such pre-training is that it does not rely on annotated data, allowing
pre-training on large amounts of data across different domains. In this way, the
massive amount of unlabelled data provided by the large number of sensors can be
exploited. It also opens up new possibilities for applications where the amount of
annotated data is too small, and where deep learning methods are not yet viable.

Self-Supervised Learning (SSL) is a SOTA approach for performing unsuper-
vised pre-training on large unlabelled datasets, and is a particularly active area of
research. It relies on a pretext training task able to generate its own ground truth
(e.g., pseudo-labels), and such a strategy helps the network to learn invariances
and latent patterns in the data. Several strategies for selecting pretext tasks have
been proposed in the literature, initially designed for classification tasks and now
increasingly adapted to dense or local prediction tasks (e.g., segmentation, ob-
ject detection) and recent network architectures like Vision Transformer (ViT) [1].
These methods have shown impressive performance, for example in unsupervised
object segmentation (e.g., Leopart [34]). However, their effectiveness has primarily
been demonstrated on large objects. This raises the following question: are these
SOTA methods actually suitable for small object detection?

In this manuscript, firstly, we review the main methods historically oriented
towards classification and their characteristics in Chapter 6. Then, we shift our
focus to object detection in Chapter 7, presenting methods specifically adapted
to these tasks and conducting several benchmarks. We start by evaluating the
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performance of different SSL strategies on the classic COCO dataset [35], paying
a particular attention to small objects (although they are still significantly larger
than small targets). Next, we consider vehicle detection from aerial images, which
involves handling smaller objects and different camera perspectives. This dataset
includes both RGB and IR images, facilitating a smooth transition to out-domain
transfer learning. We then investigate which methods are best suited for training
on large in-domain dataset (IR data in our case) that may not have been cleaned
(e.g., image redundancy, semantic heterogeneity). Finally, we evaluate these dif-
ferent pre-training methods on our task of interest, namely infrared small target
detection. In this second part of the thesis, our approach is observational: we
analyse the behaviour of existing methods, note the differences in results, and at-
tempt to identify the components responsible for these differences. This structured
analysis approach provides valuable insights and perspectives for future research.
Last but not least, combining both a contrario and self-supervised paradigms lead
to new state-of-the-art results for infrared small target detection.



Chapter 2

Related works

In this chapter, we provide foundational material essential for understanding the
concepts discussed later in the manuscript. We begin with an introduction to
object segmentation and detection methods, followed by a presentation of key
state-of-the-art approaches for infrared small target detection. Lastly, we introduce
the datasets that will be used to train and evaluate our methods.

2.1 Object segmentation and detection methods

Object detection and segmentation are essential tasks in the field of computer
vision, with a wide range of applications, including medical imaging, scene anal-
ysis (e.g., for autonomous driving), or video surveillance. These tasks consist of
identifying objects within an image or video and delineating their boundaries,
which is a first step in understanding visual scenes. In recent years, the advent
of Convolutional Neural Networks (CNN) and other deep learning paradigms has
enabled the development of complex models capable of real-time object detection
with impressive performance. In the following, we will introduce how feature ex-
traction is performed by CNN and more recent deep learning paradigms such as
ViT. Then, we will present object detectors and common segmentation networks.
Finally, we will introduce the main metrics used for evaluating object detectors.

2.1.1 Deep learning-based feature extraction

Object detection and segmentation networks consist of two key elements: the en-
coder, which allows for feature extraction (i.e., extracting relevant patterns in the
image), and a detection or segmentation head. Before the advent of deep learning,
feature extraction in computer vision was performed using a variety of hand-crafted
techniques. These methods aimed to detect and describe important characteris-
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Figure 2.1: Illustration of a convolution of a 4× 4 image with a 2× 2 kernel, with
a stride of 1 and no padding (p = 0).

tics in images, such as edges, textures or shapes, which could then be used for
tasks such as classification, or object recognition. However, they required careful
tuning and were often limited by their inability to generalise across different tasks
and datasets. The advent of deep learning has revolutionised feature extraction
by allowing models to learn features directly from data, resulting in more robust
and general representations. In this section, we will introduce the basics of deep
learning-based feature extraction. We start with a classic and fundamental net-
work in deep learning, namely CNN, and then go on with a recent and promising
architecture, namely ViT.

Convolutional neural networks – Convolutional Neural Networks are a class
of deep neural networks commonly used for image feature extraction, and are com-
posed of several convolution layers. The latter are based on convolution operations,
which consist in performing a dot product between two matrices: one matrix is a
set of learnable parameters called a kernel or a filter, and the other one is a small
patch (called the neuron’s receptive field ) from the original image or feature map,
with the same spatial dimension as the kernel. Common sizes k× k for the kernel
are 3× 3, 5× 5, or 7× 7. As illustrated on Figure 2.1, the kernel is slid over the
input image/feature map of spatial size H×W . The sliding gap is called the stride
s, and it is common to use a stride equal to 1 or 2 (e.g., to downsample the input
feature map by a factor of 2). Note that the input image can be padded (usually
with 0 at the borders, with a margin of p) in order to control the spatial dimensions
of the output feature map. The convolution outputs a feature map of spatial size
⌊H+2∗p−k−2

s
+ 1⌋ × ⌊W+2∗p−k−2

s
+ 1⌋ and with the same depth as the kernel depth.

A bias term is also usually added. In the case of an input with multiple channels
(e.g., RGB channels), the convolution is performed separately for each channel,
and the results are summed over the channels. After the convolution operation,
an activation function (e.g., ReLU) is applied in order to introduce nonlinearity
and to help the network learn complex patterns.
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Figure 2.2: Illustration of a) a convolution block, and b) a ResNet bottleneck with
residual connection.

Abstract features can thus be extracted from images by stacking multiple
convolutional layers, resulting in a CNN. One of the first introduced CNNs is
AlexNet [36], which has demonstrated high performance over traditional methods
on the ImageNet dataset [33], a large-scale classification dataset. The hierarchical
structure is obtained by using several downsampling steps, which can be performed
either by using a stride of size 2 in the convolution, or by using pooling layers. The
latter reduce the dimension of the feature map by combining the values included
within a small window that is slid over the whole feature map with a stride s.
Typically, a window of size 2 × 2 is considered to reduce the feature map by a
factor of 4. Max pooling operation is often used: it returns the maximum value
within a given window.

Building on the success of AlexNet, researchers have developed a series of
increasingly sophisticated CNNs for feature extraction. Among them are Residual
Network (ResNet) [37]. The latter address some optimisation difficulties (e.g.,
vanishing gradients) observed when training very deep networks by introducing
residual connections. More specifically, a ResNet is mainly composed of residual
blocks, which consist of a set of convolutional layers where the input is directly
added to the output of the layer stack, forming a shortcut connection, as illustrated
on Figure 2.2b). Then, the result of the addition is passed through an activation
function (e.g., ReLU).

Among all the ResNet variants (which differ in the number of convolutions), the
ResNet-50 is the one that is most commonly used. It consists of 50 convolutional
layers distributed over 16 residual blocks. Table 2.1 gives details of its architecture.

After the last convolutional block of AlexNet or any ResNet, it is possible to
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layer name ResNet-50

conv1 7×7, 64, stride 2
3×3 max pool, stride 2

conv2_x

 1×1, 64
3×3, 64
1×1, 256

×3

conv3_x

 1×1, 128
3×3, 128
1×1, 512

×4

conv4_x

 1×1, 256
3×3, 256
1×1, 1024

×6

conv5_x

 1×1, 512
3×3, 512
1×1, 2048

×3

Table 2.1: Architecture of a ResNet-50. Each bracket represents a building block,
illustrated in Figure 2.2a). The downsampling is performed by conv3_1, conv4_1,
and conv5_1 with a stride of 2.
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Figure 2.3: ViT architecture. Figure taken from [1] (Fig. 1).

add a fully-connected layer (MLP) along with a specific activation function (e.g.,
Softmax) to perform classification. These components form the classification head.
However, in the context of object segmentation or detection, we drop the classi-
fication head and refer to the resulting network as the encoder or the backbone.
A detection or segmentation head can then be added at the end of the encoder to
perform object detection or segmentation. While AlexNet and ResNets are fun-
damental encoders in the field of CNNs, concurrent works such as DenseNet [38]
or EfficientNet [39] have introduced significant innovations and have increased the
performance for several tasks. Even more recently, ConvNeXts [40] have been
introduced and outperform any previous CNN-based encoder. Their design is in-
spired by the components used in Vision Transformers, which we will present in
the next section.

Vision Transformers – Recently, attention mechanisms have emerged as pow-
erful mechanisms for analysing a scene. Inspired by human perception, they allow
for a dynamic weighting of features according to their relevance to a given task.
One innovative architecture that has revolutionised image understanding is the
ViT [1], inspired by the success of Transformers in natural language processing.
By dividing images into smaller patches and using self-attention mechanisms, a
ViT explicitly captures long-range dependencies within images, achieving impres-
sive performance in various computer vision tasks. Let us briefly introduce the
main components of ViT encoder, whose architecture is presented in Figure 2.3:

• Patch and position embeddings – First, as illustrated in the left part of
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Figure 2.3, the input image is divided into fixed-size patches (e.g., 16 × 16
pixels). Each patch is then flattened and transformed using a learnable linear
projector (e.g., a convolution). The obtained embedding is called a “token”.
Position embeddings are added to the patch embeddings at the input stage
to preserve the spatial position of a given patch.

• Multi-head self-attention – Then, the embeddings are passed through
the transformer encoder, illustrated on the right side of Figure 2.3. A self-
attention layer computes the attention scores between all pairs of patches in
order to model their relationships. For a given query patch Q, the attention
scores are computed based on the similarity between this patch and all the
other patches in the image, called the key K. Then, the self-attention consists
of a weighted sum of all patch embeddings V , where the weights are defined
by the previously computed attention scores. The mathematical formulation
of this operation is the following:

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V, (2.1)

where dk is the dimension of the keys. We refer the reader to the fundamental
papers [41, 1] for more details. Note that the self-attention block is preceded
by a normalisation layer (e.g., Layer Norm), and has residual connections.
Several self-attention layers are computed in parallel, leading to the so-called
“multi-head” self-attention.

• Feedforward neural network – The output of the self-attention layer is
then passed through a feedforward layer in order to introduce non-linearity
and to learn contextual representations of image patches. It consists of a
fully-connected layer followed by an activation function. As for the self-
attention block, it is preceded by a normalisation layer and has residual
connections.

There are several key differences between ViTs and CNNs. First, while CNNs
process individual pixel values directly, ViTs divide the image into patches and
transform them into tokens. Second, ViTs explicitly capture some global relation-
ships through self-attention layers. In contrast, CNNs are better at extracting local
features, although they can also somehow model large-scale relationships through
multi-scale feature maps obtained from the downsampling steps. Finally, unlike the
original ViTs, CNNs have a hierarchical architecture with multiple scales, which
benefits the detection of objects at different scales.

A notable ViT variant that introduces hierarchical feature maps is the Swin-
Transformer [2]. This hierarchical architecture is achieved through the patch merg-
ing process, as illustrated in Figure 2.4: the input image of size H ×W is first
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Figure 2.4: a) Patch merging process introduced in Swin Transformers, and com-
parison with b) a ViT architecture. Figure taken from [2] (Fig. 1). Copyright
©2021, IEEE.

divided into H
4
× H

4
non-overlapping windows. These windows are further divided

into patches, and a classical ViT module is applied on each window. Then, the
features from each non-overlapping group of 2× 2 neighbouring windows are con-
catenated and linearly transformed, reducing the resolution by a factor of 2 in each
spatial dimension (i.e., resulting in H

8
× W

8
patches). This process is repeated twice

in order to obtain output resolutions H
16
× W

16
and H

32
× W

32
. Note that the number

of patches per window is constant for each resolution scale, allowing self-attention
to be computed on smaller patches while maintaining computational complexity.
Another key component of Swin-Transformers is the shifted window partitioning,
which computes self-attention on two partitioning configurations (as detailed in
Fig. 2 of [2]), introducing cross-window connections and improving performance
on several dense prediction task benchmarks.

Another way to obtain ViT-based hierarchical architectures is to combine ViTs
and CNNs, as done in the TransUnet [42] encoder. In the latter, a CNN produces
feature maps at the scales 1

2
, 1

4
and 1

8
. Then, ViT layers are added to produce a

feature map at scale 1
16

. The authors of TransUnet [42] have found that such a
design works better than using a pure non-hierarchical ViT encoder, especially for
capturing smaller details.

Now that we have briefly presented the most emblematic CNN and ViT-based
encoders, we will introduce some conventional object detection and segmentation
architectures.
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a) Faster R-CNN framework b) Region Proposal Network (RPN)

Figure 2.5: Illustration of a) the Faster R-CNN framework and b) the Region
Proposal Network (RPN). Figures taken from [3] (Fig. 2 and Fig. 3).

2.1.2 Object detection networks

Object detection is the task of detecting objects of interest within an image and
identifying their locations with bounding boxes, which consists of rectangular boxes
defined by the spatial coordinates (x, y) of a specific point of the box (e.g., the
top-left corner or the centre of the box) and the box size (width, height). It also
provides a classification label for each detected object. Several types of deep
learning approaches have been proposed for such a task, which we can group into
two categories: two-stages and single-stage object detectors.

Two-stage architectures – One of the fundamental two-stage object detec-
tors is R-CNN [43]. Introduced in 2014, it consists of 1) a region proposal step
that relies on selective search [44], and 2) a feature extraction performed on each
Region Of Interest (ROI) by a CNN such as AlexNet [36]. A linear Support Vector
Machine (SVM) is then applied to provide classification scores, and the bounding
box location is refined using a bounding-box regressor. Note that the extraction
of features for each ROI (step 2) is computationally expensive and not optimal.
Indeed, the feature extractor is applied several thousands of times for a single
image. This is why Fast R-CNN [45] has been introduced: in this new version of
R-CNN, the coordinates of the ROIs computed in the first step are projected on
the feature maps extracted by the CNN (i.e., there is only one feature extraction
per image) in order to obtain a feature vector for each ROI. However one prob-
lem remains: the selective search algorithm relies on traditional image processing
methods and has slow execution times. Faster R-CNN [3] thus substitutes the
selective search algorithm by a Region Proposal Network (RPN). As shown on
Figure 2.5a, the latter generates region proposals directly from the convolutional
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Figure 2.6: Illustration of the YOLO (first version) architecture. Figure taken
from [4] (Fig. 3). Copyright ©2016, IEEE.

feature maps, which speeds up the detection process. RPN relies on the use of
anchors (Figure 2.5b), which are pre-defined anchor boxes placed at different po-
sitions in the image and with different sizes and aspect ratios, allowing for the
detection of objects of different shapes and sizes. For each anchor (which location
is defined by a sliding window on the input image), the RPN makes k bounding-
box proposals. Each bounding-box proposal consists of four refined coordinates
(relative to a given anchor), and a classification score that indicates the presence
of an object (also known as objectness score). Note that this multiple prediction
process leads to redundant predictions. A post-processing technique called Non-
Maximum Suppression (NMS) is thus applied. It consists of selecting the boxes
having the highest objectness score, and suppressing the other boxes that have a
high Intersection over Union (IoU) (introduced in Section 2.1.4) with it. Faster
R-CNN has been further improved, for example by using other encoders such as
ResNets and ViTs, or introducing multi-scale features through the use of Feature
Pyramid Networks (FPN) [46].

Single stage architectures – Single stage architectures consist of using a sin-
gle neural network to predict together bounding box coordinates, objectness and
classification scores. YOLO [4] is the first single-stage object detector introduced
in the literature, and is illustrated in Figure 2.6. Concretely, it divides the image
into a grid and predicts the probability (denoted as the objectness score) for any
given grid cell to contain an object. It also predicts the refined bounding box
coordinates as well as the classification score of the object if it exists. Although its
execution time was very fast, the first version of YOLO performed worse than the
two-stage detectors, especially for small objects. Indeed, if the object to detect is
too small, it may occupy only a small portion of a grid cell, making it difficult for
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YOLO to detect it accurately. Concurrently, Single Shot MultiBox Detector [47]
(SSD) was proposed. Unlike the first version of YOLO, SSD predicts the objects
using multiple anchor boxes on multi-scale feature maps. Although it is slower, it
performs better at detecting small objects thanks to the multi-scale feature maps.

Other versions of YOLO have been proposed to address these issues. For
example, YOLOv3 [48] adds a FPN in the architecture and performs the detec-
tion at each scale in order to improve the detection of objects with various size.
Furthermore, it relies on a more robust backbone, namely Darknet-53. Anchor
boxes and batch normalisation have also been introduced since YOLOv2. Some
of the latest versions of YOLO, such as YOLOv7 [49], YOLOv8 [50] or the recent
YOLOv9 [51], lead to competitive detection performance on several famous com-
puter vision benchmarks, while also improving the execution speed. Note that tiny
versions of YOLO with fewer convolutional layers have also been proposed. So far,
YOLO framework is one of the most widely used object detectors as it leads to
great performance in various applications, with low execution time.

With the advent of Vision Transformers, new object detectors have been pro-
posed, such as DETR [52]. The latter combines a CNN and a transformer-based
encoder-decoder architecture. It also simplifies the detection pipeline by remov-
ing the need for NMS or spatial anchors through the use of a bipartite matching
loss. Despite these advantages, DETR suffers from low training convergence and
high computational cost. A recent version, namely RT-DETR [53], addresses the
above issues and allows for real-time computing. It also leads to SOTA perfor-
mance and outperforms YOLOv8 on the COCO dataset. Nevertheless, YOLOv9
performs slightly better than RT-DETR, while being trained from scratch (unlike
RT-DETR, which is pre-trained on a large object detection dataset).

Common losses – Finally, object detection boils down into: 1) a classification
task, with the prediction of the objectness scores and the class labels, and 2) a
regression task, with the prediction of the bounding box coordinate offsets. The
training thus relies on the use of two types of losses. A commonly used classification
loss is the cross-entropy, defined as:

LCE = −
n∑

i=1

ti log(pi), (2.2)

with n the total number of classes, ti is the ith element of the ground-truth vector
t and pi the Softmax score (obtained by applying the Softmax activation function
on the output digits) for the ith class.

For the regression task, object detectors often employ the Smooth L1 loss,
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which is a combination of L1 and L2 loss:

LSmoothL1(x, y) =

{
0.5(x− y)2/β, if |x− y| < β,
|x− y| − 0.5× β, otherwise,

where x is the predicted value, y the target value, and β a parameter indicating
where to switch from L1 to L2 loss. Compared to L2 loss, L1 smooth loss is less
sensitive to outliers.

2.1.3 Segmentation networks

Segmentation differs from object detection in that it provides a pixel-level classi-
fication. It is generally not used directly for object detection, although in some
cases, object-level predictions can be extracted from segmentation maps by using
operators (e.g., connected component labelling, possibly along with mathematical
morphological filters such as openings and closings) to group pixels into objects.
There are two main categories of segmentation: 1) semantic segmentation, which
assigns a class label to each pixel in the image, but does not distinguish between
different instances of the same class, and 2) instance segmentation, which distin-
guishes between individual instances of each object class.

Common architectures – Semantic segmentation networks are based on
encoder-decoder architectures and reconstruct a segmentation map with the same
resolution as the input. Fully Connected Networks (FCN) [54] is a pioneering work
in the use of deep learning for semantic segmentation. It consists of replacing the
fully connected layers in classification networks (such as AlexNet) by a transposed
convolution, which allows for the reconstruction of a full-resolution segmentation
map.

At the same time, [5] proposed U-Net, an encoder-decoder architecture with
symmetric skip connections, illustrated on Figure 2.7. Unlike FCN, U-Net de-
coder consists of several upsampling layers. It also introduces skip connections by
concatenating features from the encoder branch with the corresponding features
(in terms of resolution) in the decoder branch. U-Net has proven to be highly
effective for medical and other fine-grained segmentation tasks, and serves as the
foundation for many state-of-the-art methods. Variants of U-Net mainly mod-
ify the encoder architecture (e.g., using a ResNet backbone), or introduce some
attention mechanisms (e.g., MA-Net [55]). Another well-known architecture is
DeepLab [56], which improves the segmentation boundaries by introducing atrous
convolutions and fully connected Conditional Random Fields.

Finally, instance segmentation can be achieved by combining object detectors
and a segmentation head. For example, Mask R-CNN [57] extends Faster R-CNN
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Figure 2.7: Illustration of the U-Net architecture. Figure taken from [5] (Fig. 1).
Copyright ©2015 Springer International Publishing Switzerland

bounding-box regression branch with a parallel branch specifically designed for
predicting object masks.

Common segmentation losses – Since segmentation boils down to a pixel-
level classification task, some segmentation losses are derived from common clas-
sification losses. Indeed, the cross-entropy loss can be used as a segmentation loss.
However, in contrast to image-level classification, the pixel-level loss is summed
over all image pixels, which can be problematic in the case of class imbalance.
Indeed, the minority class will be less penalised in case of errors. Therefore, the
weighted cross-entropy (WCE) loss was introduced to address this issue. It incor-
porates a weighting parameter αi for each class into the cross entropy loss. The
lower the number of examples for a class i, the higher the associated αi value must
be set to re-balance the weight of the minority class(es) in the loss. Eq. (2.2) can
be reformulated as follows:

LWCE = −
n∑

i=1

αiti log(pi),

An improved version of the WCE loss has been introduced, namely the focal
loss [27]. Specifically, the focal loss adds a γ parameter to the loss that helps to
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focus on hard cases:

LFocal = −
n∑

i=1

αi(i− pi)
γ log(pi),

where n is the total number of classes, and pi the predicted score for class i.
Other segmentation losses have been proposed to directly optimise some seg-

mentation metrics. This is the case of the soft-IoU loss [58]. The latter implements
an approximation of the IoU (defined in Section 2.1.4) as follows:

LSoft-IoU =
1

C

C∑
c=1

(
1−

∑n
i=1 pi,cti,c∑n

i=1(pi,c + ti,c − pi,cti,c)

)
,

where C is the total number of classes, pi,c is the predicted value for pixel i for
class c, ti,c the ground-truth value (0 or 1) for pixel i and class c. The computation
of the IoU is here approximate because the predictions are made in a continuous
space (while the IoU is usually computed on binary segmentation maps).

Another widely-used loss is the Dice loss, which is an approximation (still
in the sense that it can be applied on non boolean values) of the F1 score. Its
computation is similar to the IoU loss, except for the denominator which computes
the sum of ground-truth and predicted areas instead of their union:

LDice =
1

C

C∑
c=1

(
1− 2

∑n
i=1 pi,cti,c∑n

i=1(pi,c + ti,c)

)
.

Both Soft-IoU and Dice losses suffer from the following issue: they are equal
to zero if the intersection is empty, no matter how far away from each other the
ground truth and the predicted detection are spatially. To address this issue, the
generalised IoU loss was introduced [59].

2.1.4 Evaluation metrics

Several evaluation metrics are introduced in order to quantitatively evaluate the
predictions of an object detector.

Precision, recall and F1-score – The precision and the recall are fundamental
and intuitive metrics. Indeed, they respectively indicate how precise the detector
is (i.e., does the detector produce a large number of false alarms?) and how many
good detections are retrieved by the detector. More specifically, they are defined
as follows:

Precision =
TP

TP + FP
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Recall =
TP

TP + FN
,

where TP stands for True Positive, FP for false positive (i.e., a false alarm) and
FN for false negative (i.e., a missed detection). TP, FP and FN can be computed
at object or pixel (for segmentation) levels, and a detector is said to be of higher
quality when it achieves both a high level of precision and recall. These metrics
are complementary, and a summary of the model performance can be obtained
through the computation of the F1-score:

F1-score =
2× Precision× Recall

Precision + Recall

IoU – For segmentation networks, a commonly used metric is the Intersection
over Union (IoU), which is the Jaccard index. It is defined as follows:

IoU =
Ainter

Aunion

,

where Ainter and Aunion represent the intersection and the union (in numbers of
pixels) between the predicted regions and the ground-truth one, respectively. This
metric is also important in object detection: indeed, it is used to determine whether
an object-level prediction is a true or a false positive. A low IoU will indicate an
object-level False Positive.

Average Precision – Object detectors are generally evaluated in terms of mean
Average Precision (mAP). mAP computes the area under the precision-recall curve
(Average Precision (AP)), averaged over all the object classes. mAP can also be
averaged over multiple IoU thresholds to evaluate the network robustness towards
localisation errors.

2.2 State-of-the-art methods for infrared small tar-
get detection

Small target detection is a real-world application that relies on object detection or
segmentation methods to be solved. The specificity of this application lies in the
fact that the objects are particularly small: indeed, the Society of Photo-Optical
Instrumentation (SPIE) describes a small target as having a spatial area lower
than 0.15% of the image, with a low contrast ratio (below 15%) [60]. The methods
discussed in the previous section were primarily designed and evaluated on datasets
containing medium to large objects, making them suboptimal for detecting small
targets.
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In the literature, researchers have addressed several challenges inherent to small
target detection, such as the information loss occurring during successive down-
samplings, the difficulty of distinguishing targets from complex backgrounds, and
the imbalance between true detections and false alarms. Proposed solutions in-
clude better integration of multi-scale information, or incorporating priors about
small targets into the training process.

Given the large number of deep learning-based methods proposed for IRSTD,
this section will highlight only the most emblematic approaches. For a com-
prehensive review of existing methods, readers are referred to the following sur-
veys: [15, 61].

MDvsFA-cGAN – MDvsFA-cGAN [9] is one of the first deep learning-based
methods proposed for IRSTD. This framework addresses the tasks of reducing
missed detections (MD) and false alarms (FA) by separating them into two dis-
tinct subtasks, achieving balance through adversarial training of these models.
Specifically, it employs a conditional generative adversarial network (cGAN), which
consists of two generators and a discriminator. The generators are used for the
generation of a segmentation map, and each of them has a specific role: genera-
tor G1 focuses on reducing missed detections, while generator G2 aims to reduce
false alarm rate. The discriminator network is then used in adversarial training to
balance these tasks. During inference, the segmentation result is obtained by aver-
aging the outputs of the two generators. Although it has demonstrated efficiency,
especially when compared to traditional small target detectors, it is computation-
ally expensive and has been surpassed by other deep learning methods.

ACM – In order to better capture finer details such as targets, Asymmetric
Contextual Modulation (ACM) has been proposed [6]. Specifically, it modifies the
feature fusion in the decoder branch by introducing a top-down channel attention
and a bottom-up pixel-level spatial attention mechanisms in an asymmetric way,
as illustrated on Figure 2.8. This helps the network to better extract high-level
semantics and low-level details. The asymmetric (i.e., spatial attention for one
branch, channel attention for the other) as well as the bi-directionnal (both top-
down and bottom-up) modulations have been shown to significantly improve small
target detection performance. Such a strategy has been applied to both FPN and
U-Net architectures.

LSPM – To limit confusion between targets and background noise, [26] intro-
duces Local Similarity Pyramid Modules (LSPMs) in the decoder branch. These
modules quantify the degree of similarity between a pixel (or region) and other pix-
els (or regions, respectively) in the feature map. Pixel-wise similarity is calculated
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Figure 2.8: Illustration of the asymmetric contextual modulation (ACM). X rep-
resents the features extracted by the encoder that serve for the skip connections in
U-shaped networks, and Y represents the up-sampled feature maps in the decoder
branch. Figure taken from [6] (Fig. 5). Copyright © 2021, IEEE.

through matrix multiplication between the feature map and its transposed version,
similarily to the self-attention mechanism discussed in Section 2.1.1. Region-wise
similarity scores are obtained by dividing the feature map into a grid. These sim-
ilarity scores are added to the initial feature map and used as global guidance in
the decoder via a channel attention-based feature aggregation module.

ISNet – In order to accurately delineate the shape of IR small targets, [7] intro-
duced IR shape network (ISNet), illustrated on Figure 2.9. The latter has a U-Net
structure, and is trained with two objective functions, namely a segmentation loss
(e.g., Dice loss), and a specific edge loss. To obtain the edge supervision, the input
is passed through a Sobel filter, and then through several Taylor fine difference
(TFD) blocks that enhance the edge information and improve the contrast between
the target and the background by aggregating edge details from different levels.
[7] also introduces two orientation attention aggregation (TOAA) blocks in the
decoder. These aim to better capture target shapes and suppress high-frequency
noise, by computing attention maps along one direction (row or column) using
deformable convolutions.
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Figure 2.9: Illustration of the ISNet network. Figure taken from [7] (Fig. 1).
Copyright ©2022, IEEE.

Figure 2.10: Illustration of the DNANet architecture. Specifically, DNANet is
composed of a dense-nested U-shaped backbone (DNIM), and a Feature Pyramid
Fusion Module (FPFM). Figure taken from [8] (Fig. 3). Copyright ©2022, IEEE.



48 CHAPTER 2. RELATED WORKS

DNANet – DNANet [8] proposes to limit the information loss on small targets
due to pooling layers by introducing 1) a dense-nested U-shaped backbone (DNIM),
and 2) a pyramid fusion module (FPFM). Specifically, the DNIM backbone consists
of several U-shaped subnetworks with channel and spatial attention modules that
are stacked together and densely connected, as illustrated on Figure 2.10. Such
a process has been shown to benefit the representation of small targets in deeper
layers, and has been used in other works (e.g., [62]). In order to better aggregate
the multi-scale feature maps, the FPFM block takes as input the last feature
map of each scale, upsamples them to the full-resolution, concatenates them and
applies a 1 × 1 convolution to obtain the final segmentation map. DNANet has
shown impressive performance on widely used small target detection datasets and
is considered as one of the SOTA methods for IRSTD. An extension of DNANet
using a Swin Transformer backbone has also been proposed in [63] (IDNANet),
which further improves the performance on several IRSTD benchmarks. This
encourages the future development of IRSTD methods based on ViT encoders.

AGPCNet – Concurrently, AGPCNet [64] proposes to integrate attention mech-
anisms in the deep layers and an asymmetric fusion module (AFM, slightly dif-
ferent from the one proposed in ACM) to increase both the receptive field and
the feature representation capability of the network. More specifically, AGPCNet
divides the deep feature maps into a grid and computes 1) local attention scores
for each patch, which indicate the probability that each pixel is a target within
the given patch, and 2) global attention scores (i.e., patch-level attention), which
indicate for each patch the probability of containing a target. In terms of the
feature attention module, AFM differs from ACM in that it multiplies the sum of
deep and low-level feature maps by both channel and pixel attention maps. This
strategy has been shown to improve overall performance compared to ACM.

MTU-Net – MTU-Net [65] proposes a multi-level TransUNet [42] and a new
loss, namely the FocalIoU loss. Specifically, the network architecture consists
in computing long-range dependencies through a ViT module for each features
output by the different levels of the encoder. These features are then merged
together (concatenation and convolution) and passed through a conventional U-
shaped decoder with skip connections. Regarding the loss, FocalIoU combines
both Focal and Soft-IoU losses as follows:

LFocalIoU = 2(1− LSoft-IoU)L
1+LSoft-IoU

2
Focal .

MTU-Net has lead to impressive performance on the challenging ship detection
task compared to SOTA infrared small target detectors such as DNANet.
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Method F1
MDvsFA-cGAN 69.8
ACM (U-Net) 77.6

LSPM 76.2
DNANet 85.9
AGPCNet 84.5

Table 2.2: Performance obtained by some SOTA methods on SIRST dataset. The
pixel-level F1 scores are provided by [15]. The best result is given in bold, and the
second best result is underlined.

The survey paper [15] proposes to train and evaluate several SOTA methods
for IRSTD on different datasets. The methods evaluated include MDvsFA-cGAN,
ACM (U-Net version), LSPM, DNANet and AGPCNet. Table 2.2 shows the pixel-
level F1 scores achieved by these methods on the SIRST dataset (presented in
section 2.3.2). The results are taken from [15] (Tab. 6). It can be seen that
DNANet performs best, closely followed by AGPCNet. MDvsFA-cGAN gives poor
results compared to the other methods. Therefore, we will consider DNANet,
AGPCNet, LSPM and MTU-Net (which is a newer architecture) as our SOTA
baselines in the remainder of the manuscript.

2.3 Small target detection datasets

Let us present some single-frame datasets for small target detection, which will
later be used to train and evaluate several deep learning methods for small target
detection. We will consider five datasets. First, we consider MFIRST [9], SIRST [6]
and IRSTD-1k [7], which all tackle infrared small target detection. Note that since
the objects contained in these datasets are particularly small and of low resolution,
they are all grouped under one class category, namely the “target” class. We also
consider two other datasets that will allow us to evaluate the generalisation ability
of our methods to other applications, namely VEDAI [10] (vehicle detection from
remote sensing imagery) and S2SHIPS [11] (ship detection from remote sensing
data). The main characteristics of each dataset are presented in Table 2.3, and we
specify them in the following paragraphs.

2.3.1 MFIRST

The first large-scale IRSTD dataset proposed in the literature is MFIRST [9],
which consists of 10100 real or simulated IR images of various targets evolving on
complex backgrounds. This dataset has enabled the development of deep learning
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Dataset name Sensor Image size #img. Description
MFIRST [9] IR from 173×98

to 407× 305
10k Infrared small targets evolving on

different backgrounds, including
clouds, buildings, and vegetation.
Most targets are simulated using
crops of real targets or a two-
dimensional Gaussian function.
Real targets include cars, drones,
birds, cats, planes, etc.

SIRST [6] IR (NIR,
SWIR,
MWIR)

from 135×96
to 456× 278

427 Infrared small targets evolving on
different backgrounds, including
textured clouds, buildings, and
vegetation. Targets mainly include
vehicles and aircrafts.

IRDST-1k [7] IR 512× 512 1000 Infrared small targets evolving on
different backgrounds, including the
sea surface, fields, mountain areas,
urban areas or clouds. Targets in-
clude drones, creatures, vessels and
vehicles.

VEDAI [10] RGB and
IR (NIR)

1024× 1024 1200 Small vehicle detection from remote
sensing data. The dataset contains
nine classes of vehicles, including
plane, boat, car, etc. The objects
evolve on different backgrounds such
as fields, grass, mountains or urban
areas.

S2SHIPS [11] Multispectral
(443nm –
2.19µm)

1783× 938 16 Small ship segmentation from mul-
tispectral satellite imagery (Sen-
tinel 2 sensor). The images
present challenging conditions, such
as coastlines, cloud cover or rough
sea.

Table 2.3: Datasets considered for small target detection and their characteristics.
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a) Real targets

b) Simulated targets

Figure 2.11: Example of images taken from MFIRST dataset [9]. Both a) real and
b) simulated targets are displayed. Targets are enlarged in the top left corner.
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methods for detecting, for example, drones or vehicles in urban or wild areas.
Some examples are shown in Figure 2.11, with a distinction between a) real and
b) simulated targets. MFIRST is composed of 100 real IR images that are extracted
from 11 IR sequences, and is augmented with 10000 simulated images. For this
purpose, background images are collected from the Internet, and then small targets
are overlaid. These targets are either extracted from real IR images (e.g., the last
image in Figure 2.11b)), or simulated by a two dimensional Gaussian function
(e.g., the first two images in Figure 2.11b)). The original paper proposes to train
on simulated data and to keep real data for evaluation only. Although this dataset
contains a large number of examples and can be used to develop deep learning
methods, the fact that it is mostly composed of simulated images (i.e., with IR
signatures that are far from the reality) makes it difficult to consider its use as a
benchmark dataset. For this reason, there will be very limited mention of it in the
remainder of the manuscript.

2.3.2 SIRST

Figure 2.12: Some examples of images from SIRST dataset [6]. There are six small
targets hidden in these images, can you spot them all?

SIRST [6] dataset, also referred to as NUAA-SIRST, is one of the first pub-
licly released real-image infrared small target datasets, and it is widely used in
the literature as a reference dataset for IRSTD. This dataset contains 427 real
monospectral infrared images (in NIR, SWIR or MWIR domains), with resolution
ranging from 135 × 96 to 456 × 278. Some examples are shown in Figure 2.12.
90% of the images contain a single target, and most targets follow the definition
of a small target proposed by the SPIE, i.e. objects having a total spatial extent
of less than 80 pixels (9× 9) [60]. More specifically, 55% of the targets occupy less
than 0.02% of the image area.

2.3.3 IRSTD-1k

In this thesis, we also consider a recently published dataset for small target de-
tection, namely IRSTD-1k [7]. This dataset is larger than SIRST (1000 images)
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Figure 2.13: Examples of images extracted from the IRSTD-1k dataset [7]. Areas
containing targets are framed by a green rectangle.

and contains more challenging scenes, with different kinds of small objects (e.g.,
aircrafts, animals), as illustrated in Figure 2.13. It also contains some relatively
large objects, as shown in the last image of Figure 2.13. Since our work focuses on
developing and evaluating methods for small target detection, we decide to remove
the images that contain targets having a spatial extent larger than 90 pixels (this
represents 15% of the dataset), and refer to the filtered dataset as “IRSTD-850”.

2.3.4 VEDAI

Figure 2.14: Example of IR images taken from the VEDAI dataset [10]. Vehicles
are framed in green.

In order to assess the generalisation capabilities of the developed methods to
other applications that are slightly different from IRSTD, we propose to consider
the VEDAI dataset [10]. The latter is used for benchmarking vehicle detection in
aerial images, and is composed of 1200 RGB images and their associated infrared
images, both of size 1024× 1024. It contains nine different classes of vehicles (in-
cluding, for example, plane, boat, car or truck), and the objects evolve on various
backgrounds such as fields, mountains or urban areas. In contrast to MFIRST,
SIRST or IRSTD-1k, VEDAI contains objects of medium size that have better
spatial resolution (so the objects have more texture) and are more numerous in an
image. Indeed, there is an average of 5.5 vehicles per image, and they represent
about 0.7% of the image area. Some examples are shown in Figure 2.14 (IR im-
age only). One great challenge of this dataset is that there are many background
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elements, such as buildings or other infrastructures, that can lead to false alarms.

2.3.5 S2SHIPS

Figure 2.15: Examples of image patches extracted from S2SHIPS dataset [11].

Another challenging small object detection dataset we considered is the S2SHIPS [11]
dataset, which tackles the segmentation of small ships from remote sensing data.
S2SHIPS dataset is composed of 16 multispectral images taken by the Sentinel2
satellite sensor, each of size 1783 × 938 pixels. The images include RGB, NIR
and SWIR bands. Some examples are shown in Figure 2.15 (RGB reconstruction).
Note that this task is particularly challenging for several reasons: i) there are
a large number of tiny ships (e.g., pleasure boats, see the second image in Fig-
ure 2.15), ii) the moored or tiny ships are very difficult to distinguish from decks
or water wings, iii) the low resolution of satellite data requires the use of subpixel
information, and iv) the cloud cover (e.g., as in the first picture of Figure 2.15)
makes it very difficult to detect ships, and can even lead to many false alarms.

2.4 Discussion and conclusion
In this chapter, we have first presented the key concepts of deep learning-based ob-
ject detection. We have introduced feature extraction and the two main networks
allowing for this step, namely convolutional networks and Vision Transformers.
We have also introduced some famous object detectors and segmentation net-
works. Although they have led to impressive performance on challenging datasets
(e.g., the COCO dataset [35]), SOTA methods lead to weak performance when
detecting small/tiny objects. As explained in [66], this is mainly due to the loss of
small object information (induced by successive downsamplings), the noisy feature
representation (because of the background) or the low tolerance for bounding box
localisation errors.

In the literature for IRSTD, several methods have been proposed to address
some of the above issues. For example, dense nested U-shaped architectures and
specific multi-scale fusion modules have been introduced, which effectively limit
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the information loss on small targets and lead to good performance on several
IRSTD benchmarks. Some methods also include local and large-scale attention
mechanisms in order to limit the confusion between targets and background el-
ements. It can be noticed that SOTA IRSTD methods all rely on segmentation
networks. Indeed, object detectors are particularly weak when it comes to small
object detection. Very few studies have focused on adapting such detectors for
IRSTD [32, 67, 68], and no rigorous comparison was made with SOTA IRSTD
methods. Indeed, SOTA methods rely primarily on pixel-level metrics, such as the
F1 score, the IoU, the probability of detection (also known as the recall), or the
probability of false alarms (which corresponds to the number of pixel false alarms
divided by the total number of pixels). However, this means that any good detec-
tions or missed detections at the object level cannot be counted. It is possible to
extract object-level metrics (such as object-level F1 score or mAP) from segmen-
tation maps by relying on morphological operators, as done in [8]. In this case,
another issue occurs. In order to mark an object-level prediction as a true positive,
it is common to compute the IoU between the prediction and the ground-truth,
and if the IoU is above a certain threshold (often 50%), then the prediction is la-
belled as a true positive. However, [66] explains that small objects have a very low
tolerance to bounding box localisation errors, since a small deviation in the number
of pixels induces a significant drop in the IoU with the ground-truth. One solution
that has been proposed by several papers taken from the literature of small object
detection is to model predicted bounding boxes as 2D Gaussian distributions and
evaluate the distance between these distributions (e.g., normalised Wasserstein
distance) rather than the IoU between the predicted boxes. [68] effectively relies
on this strategy to assess infrared small target predictions.

Another issue that has not been fully addressed in the literature for IRSTD
is the severe class imbalance induced by the scarcity of data and of small tar-
get samples. Indeed, segmentation networks particularly struggle in learning from
class-imbalanced datasets. It is possible to overcome this issue by using an appro-
priate loss function (e.g., weighted cross-entropy or focal loss), or by artificially
increasing the number of target samples (e.g., using super-resolution). However,
these strategies do not take advantage of the unexpectedness of small objects with
respect to the background, as one could do in an anomaly detection approach with,
for example, one-class classifiers [29], that discriminate small objects as unexpected
patterns with respect to the background. Such a criterion can efficiently reduce
the number of false alarms induced by the background and thus can allow for a
better balance between precision and detection rate.

In the following, we will propose several approaches to improve the detection
of small targets, which we will divide into two parts. In the first part, we will
introduce a new learning paradigm specifically dedicated to small target detection.



56 CHAPTER 2. RELATED WORKS

The latter is based on the a contrario theory, and is inspired by anomaly detection
methods. This allows us to introduce an a priori on small targets (in fact, small
targets are unexpected) and to control the number of false alarms. In the second
part, we will look at unsupervised learning methods, in particular self-supervised
learning methods, to help and induce more robustness in the feature extraction
of small objects. More specifically, we will ask to what extent and under what
conditions these methods can be beneficial for IRSTD.



Part I

A contrario paradigm for infrared
small target detection
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Chapter 3

A contrario formulation and small
object detection

This chapter is the first in the part entitled "A contrario paradigm for infrared
small target detection", which constitutes the first part of this manuscript. This
part is divided into 3 chapters. The aim of this first chapter is twofold: firstly
to introduce the a contrario theory and the key concepts on which it is based,
and secondly to propose a "proof of concept", demonstrating the benefits of using
this theory to detect small targets. This will justify the contributions proposed in
the next two chapters, namely the integration of an a contrario criterion into the
training loop of a segmentation network, then its integration within a detection
network.

In this chapter, we will first present our intuition for the proposition of using
the a contrario theory for IRSTD. After that, we will briefly present the theories
of perception, which are at the foundation of the a contrario methods, and then
introduce the a contrario formulation in a general framework. Finally, we will
conclude with an experimental section in which we will propose two a contrario
post-processing steps to filter final segmentation maps, and highlight their benefits
for our application.

3.1 Intuition

In order to identify potential reasons or mechanisms giving rise to false alarms
or missed detections, we first study qualitatively how the feature maps of a small
target detection network are learned. As presented in the previous chapter, seg-
mentation neural networks are at the state-of-the-art for small target detection
based on deep learning. We therefore analyse the training behaviour of conven-
tional segmentation baselines, especially in the case of frugal training. Indeed, a
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drawback of segmentation networks is that they are strongly affected by class im-
balance, and unfortunately, in the case of small target detection, the datasets are
particularly imbalanced (in terms of number of targets as well as number of pixels
per target). Looking at the feature maps under such challenging conditions allows
us to identify the underlying mechanisms of deep learning-based small target de-
tection, as well as the strengths and weaknesses of conventional detectors. To do
so, we select the conventional ResUnet architecture with a ResNet-18 encoder. We
consider the MFIRST dataset, with images resized to a resolution of 256 × 256,
and design two settings: 1) train in a data-sufficient regime (2500 images), 2) train
in a frugal setting with only 100 images, which constitutes an important constraint
of our application.

Figure 3.1 shows that the score maps extracted by the neural networks are
different depending on whether we consider the U-Net trained on sufficient data
(Figure 3.1b) or on little data (Figure 3.1a). Indeed, frugal training results in
noisier maps. The more robustly the network is trained, the less noisy the feature
maps will be. To eliminate this noise, it is common to apply a fixed threshold on
the feature maps. By doing so, we assume that the value of the noise observed
on background pixels is lower than the pixel intensity of the potential targets.
However, we can see on Figure 3.1 the limits of such hypothesis since several false
alarms are raised. One solution would be to increase the value of the threshold, but
this can also lead to missed detections. The threshold choice seems to be crucial
and yet challenging, and the gray level value itself may not be the only criterion
to take into account. A more specific way of thresholding should be designed for
taking into account, for example, the density or the shape of the hot spots, or
the unexpectedness of the target features in contradiction with the background
features. These criteria can be formalized by taking into account the perception
patterns that are specific to small target detection. In the following, we introduce
a theory that models the perception laws in a very general way, namely the a
contrario paradigm.

3.2 Perception theory

3.2.1 Vision science and optical illusion

To understand the laws and theories of perception introduced in the next para-
graphs, let us first recall some important historical stages in the science of vision.
The first studies were aimed at explaining how vision works from a biological and
physical point of view. They focused mainly on the anatomy of the eye (e.g., the
principle of peripheral and foveal vision introduced by da Vinci) and the path of
light rays. These studies include the theories of emission supported by Plato or
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(a) Detector trained with 100 images. (b) Detector trained with 2500 images.

Figure 3.1: Examples of detector predictions on 3 images. From left to right:
original image with ground truth framed in green, score map at network output
(ground truth in green), prediction after thresholding with fixed threshold where
good detections are framed in green. All the white areas on the prediction maps
that are not framed in green are false alarms.

Aristotle, who believe that visual perception is produced by light rays emitted by
the eyes. At the same time, the theory of intromission is emerging, stating that
visual perception is produced by the reflected "image" of objects. This theory was
supported by Democrite and Epicurius among others, and Alhazen validated it ex-
perimentally, proving the laws of reflection and refraction. The latest theory was
later modernized and refined, with Newton’s corpuscular theory and wave theory
among others.

Nevertheless, the brain plays an important role in the perception of the world.
Helmholtz [69] was one of the first to propose a modern study of visual perception
and to introduce the unconscious inference. This term describes an involuntary
and unconscious mechanism that allows us to form visual impressions in our brain.
Visual aberrations or illusions are evidence of the fact that our brain plays a major
role in the perception of our environment.

Let us take the example of geometric–optical illusions. These are visual illu-
sions in which the geometric properties of what is seen differ from those of the
corresponding objects. Helmholtz illustrates this phenomenon with Müller-Lyer
illusion, presented in Figure 3.2. It consists of drawing three lines with different
endings. Depending on the endings (which constitutes the distorting element), we
may think that one line is longer than the others, but in reality, they are all of
the same length. The lines are said to be the distorted elements. The fact that
we can see something that is not really there, or that we can deform objects, is an
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Figure 3.2: Müller-Lyer illusion. Copyrights Fibonacci, CC BY-SA 3.0 via Wiki-
media Commons.

indication that our perception is more than an exact copy of reality. When only
part of an image, such as when one object hides another object, is presented to the
brain, our visual perception constructs a complete impression of the scene. This
constructive human perception allows us to have a comprehensive understanding of
our environment, even when information is limited, and it also allows us to create
meaningful context. This is possible because of some assumptions we make about
our world, based on our past experiences. Some examples of such assumptions are
that light comes from above, faces are upright, objects tend to have convex bor-
ders, etc. Few theories have attempted to explain this phenomenon theoretically.
In the following, we present one of them, namely the Gestalt psychology.

3.2.2 Gestalt theory

One question about visual perception is how do we go from an innumerable set of
isolated singular elements to the formation of objects. The Gestalt theory attemps
to provide an answer by identifying how we can perceive a structure. This theory
was founded by three German psychologists, namely Kurt Koffka [70], Wolfgang
Kohler, and Max Wertheimer [71], in the early 20th century. Koffka suggested
that “the whole is more than the sum of its parts”, and, more specifically, that
“the whole-part relationship is meaningful”. He explained that our brain has an
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innate ability to analyse a scene and perceive a unification of elements rather than
individual objects. The Gestalt psychology tries to model this phenomenon by in-
troducing several grouping laws. Indeed, some dots may have some characteristics
in common, and thus they can be joined together to form a larger visual object,
namely a gestalt. Figure 3.3 illustrates some of the laws that determine how the
visual system automatically groups elements into patterns:

• Colour constancy: Regions with similar colour can be grouped together. For
example, in Figure 3.3a, we see the black spot as a whole, rather than several
black dots.

• Vicinity: close elements (compared to the surrounding elements) can be
unified (Figure 3.3b).

• Similarity: Similar groups of objects (patterns) are grouped together. They
therefore form a higher level object (Figure 3.3c).

• Closure: a closed curve can define an object (inside the curve) and a back-
ground (outside the curve) (Figure 3.3d).

• Constant width: Two parallel curves can describe an object (Figure 3.3e).

• Good continuation: an alignment of dots or objects can define a contour
(Figure 3.3f).

• Symmetry: we can group objects together if they form a symmetry (Fig-
ure 3.3g).

• Amodal completion: a T-junction (i.e., when a curve stops another curve)
can suggest that an object is occluded by another. However, this suggestion,
which is based on the good continuation law, can lead to several different
interpretations, as shown on Figure 3.3h.

Additionally, it should be noted that all grouping gestalt laws are recursively
applicable. They can be applied initially to atomic inputs before being applied
again in the same way to partial gestalts that have already been constituted.

3.2.3 Helmholtz principle

The gestalt laws are stated as independent grouping laws that start from the same
building elements. Thus, conflicts between grouping laws can occur, which can
lead to conflicts between different interpretations. These different interpretations
may lead to the perception of different and sometimes incompatible patterns in a
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a) Colour  constancy b) Vicinity c) Similarity

d) Closure e) Contant width

g) Symmetry

h) Amodal completion

f) Good continuation

Figure 3.3: Some fundamental Gestalt laws. Sub-figures are taken from [12].
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given figure. This is, for example, the case with Figure 3.4: depending on which
part you look at first, you may see a rabbit, while others may see a duck. However,
it is impossible to see both animals at the same time.

There are several types of conflicts, but we will focus on the masking by texture
as it is the one we encounter the most often in our work. Masking occurs when
partial gestalts are hidden by other partial gestalts. This can be illustrated with
Figure 3.5. On Figure (b) we can perceive an alignment of four segments, while
this is not the case in Figure 3.5a (which nevertheless contains the four segments
from Figure 3.5b).

Figure 3.4: The famous duck-rabbit optical illusion.

The multiplicity of segments in Figure 3.5 induces a masking by texture, so that
we cannot perceive the alignment of some of them. This suggests that a grouping
law can only be active in an image if its application would not create a huge
number of partial gestalts. This principle of non-accidentalness is referred to the
Helmholtz principle which states that a structure is perceived when a significant
deviation from randomness occurs. As a result, we can divide image objects or
relationships between objects into two categories: those that occur by chance and
those that are the result of a meaningful structure. Such a theory is the basis of
the a contrario paradigm, which we describe in the next section.
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(a) (b)

Figure 3.5: Illustration of the Helmholtz principle. The figures are taken from [12].

3.3 A contrario formulation

The a contrario paradigm is a statistical approach for detecting geometric struc-
tures in an image that is inspired by the Helmholtz principle. It consists in esti-
mating the significance of a possible structure in contradiction to a random model.
This model, called the null hypothesis H0, will be referred to here as the “naive”
model, and will represent the idea of what is “normal” background, i.e. without
any structure or object. One of the benefits of such an approach is that it does not
rely on any prior knowledge about the image structures: it only assumes the naive
model representing the background noise. Even further, the assumptions made on
the background can be very approximate. Indeed, in a contrario reasoning, the
"naive" hypothesis made on the background distribution only needs to be con-
tradicted in the presence of any structure of object of interest. It means that the
background distribution modelling can be only approximate, as long as the objects
of interest fall outside this distribution. Moreover, conversely to the targets, for
the background, we have a great amount of information at our disposal. The a
contrario paradigm has been applied on several use cases such as the detection of
meaningful segments or stripes [12], or breast cancer detection [72]. The following
introduces the mathematical formulation of the a contrario paradigm.

Multiple testing - The a contrario formulation derives from statistical testing,
more specifically multiple hypothesis testing formulated as follows. Let us consider
n geometric objects O1, ..., On within an image. Let X = (X1, ..., Xn) be a set of
random variables where, for i ∈ [[1, n]], Xi describes the features of object Oi.
These features can be for example the colour of the object, an angle, etc. We
define our assumption H0 as follows: X1, ..., Xn are independent and identically
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distributed (iid) random variables following the naive model. Let A = [[1, n]],
P (A) the powerset of A, and G ∈ P (A), a subset of indices representing a subset
of objects. For example, if the objects Oi are the pixels of an image, as in the
basic case, we may want to test 2D boxes or clusters of spatially close pixels, i.e.
the tested groups G are chosen to be interpretable with respect to the application.
The question we want to answer is: are the features {Xk}k∈G unexpected enough
under the assumption H0 to group {Ok}k∈G together? In other words, does the
group {Ok}k∈G represent a structure?

To answer this question, we can perform a statistical test in order to reject
(or not) H0. Rejecting H0 proves, a contrario, that a structure (gestalt) exists.
Let ηtest∈ N∗ be the total number of tested groups. This number can represent,
for example, the total number of pixels within an image if the pixels are tested
independently (one group per pixel), or the number of stripes (defined by a point
and an angle for example) if we look for point alignments, that we plan to test.
Let θ ∈ R∗ be the rejection threshold, F the testing function and Gl be the tested
group for each l ∈ [[1, ηtest]]. For the tested group Gl ∈ P (A), H0 is rejected if
F ({Xk}k∈Gl

) < θ. In our case, the multiplicity of the statistical test comes from
the fact that we are testing different groups Gl. In a more general context, one can
also consider several test functions Fl, with their respective rejection thresholds θl.

Let α ∈ R∗ be the maximum value we set for type I error, i.e. the probability
of falsely rejecting H0. In the literature, it is common to control the family-wise
error rate (FWER), i.e. the probability of having at least one false alarm. The
FWER with a confidence α is defined as follows:

PH0(∃l ∈ [1, ηtest], F ({Xk}k∈Gl
) < θ) < α (3.1)

When the number of statistical tests that are carried out independently in-
creases, the overall risk of type I error increases. Indeed, repeating the risk of
obtaining a significant result by chance on at least one test increases the overall
risk of wrongly rejecting H0. Basically, if each individual test is performed with
a risk α, the overall risk after ηtest tests is 1 − (1 − α)ηtest . To address this issue,
we can apply the correction of Bonferroni. It consists in testing each individual
group Gl at a significance level of αl =

α
ηtest

. This corrected αl value comes from
the Taylor series approximation (1 − α)ηtest ≈ 1 − ηtestα for α close to 0, so that
1− (1− α)ηtest ≈ ηtestα. Thus, imposing for each test a lower risk α

ηtest
allows one

to satisfy Eq. (3.1).
However, such a constraint is highly conservative: the probability of detecting

an event is particularly low, which means that the control of the type I error,
i.e. false alarm in a detection problem, is at the expense of an increase of the
type II error, i.e. missed detection in a detection problem. Several procedures
that verify Eq. (3.1) and that are less conservative were proposed in the litera-
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ture. They focus on having a set of significant tests, and do not constraint each
test independently. We can cite for example the iterative algorithms step-down
and step-up [73, 74]. However, these methods are more complex, which is not
recommendable for integration into deep learning frameworks.

Finally, we emphasize that statistical control (i.e., constraining a probability)
may not be sufficient, especially in defense applications where the risk must be
tightly controlled in number of false alarm, e.g. zero false alarm (when it comes
to lethal consequences). In such cases, it seems highly preferable to handle the
Number of False Alarms directly. Besides, as shown by [30, 12] and as we will see
in the next paragraphs, it allows for a nice computational framework.

Number of False Alarms Let us now introduce the NFA in a more formal
way, as well as some useful properties.

Definition 3.3.1 (Number of False Alarms). With previous notations, F defines
a NFA provided that, ∀ϵ > 0, and for Xi ∼ H0, it is ϵ-meaningful, i.e. the following
condition is verified:

E[#{l, F ({Xk}k∈Gl
) ≤ ϵ}] ≤ ϵ, (3.2)

where the symbol E[.] stands for the mathematical expectation and #{.} for the
cardinality of a set.

This property guarantees that, on average, raising a detection every time F is
lower than ϵ leads to at most ϵ false alarms allowing thus for the control of the
number of false alarms. Then, an observation {xk}k∈Gl

is said to be “ϵ-meaningful”
if F ({xk}k∈Gl

) ≤ ϵ, where ϵ is the predefined maximum value for the expected
number of false alarms. Thus, the lower F ({xk}k∈Gl

) is, the more meaningful the
detected structure is.

Let us introduce µ a measure. Given an observation xk, the NFA (i.e., the
function Fl in Eq. (3.1)) is often defined as:

NFA({xk}k∈Gl
) = ηtest × PH0(µ({Xk}k∈Gl

) ≥ µ({xk}k∈Gl
)), (3.3)

Grosjean and Moisan [72] proved that such function satisfies Definition 3.3.1.
More generally, they proved the following property:

Property 3.3.1 (Condition on the number of tests). With previous notations,
F ({xk}k∈Gl

) = ηl × PH0(µ({Xk}k∈Gl
) ≥ µ({xk}k∈Gl

)), with (ηl)1≤l≤ηtest a set of
positive real numbers, is a NFA provided that

∑ηtest
l=1

1
ηl
≤ 1.

In practice, we fix ηl = ηtest, which satisfies the Property.

In summary, the NFA formulation can be seen as a generalisation of the Bon-
ferroni strategy. However, it is more intuitive: the constant ϵ corresponds to the
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maximum expected number of false detections that one is ready to accept. It
allows us to think in terms of number of false alarms (i.e., an absolute decision cri-
terion that already takes into account the number of tests) rather than in terms of
probability of false alarm (i.e., a statistical criterion). For example, consider NFA
set with ϵ = 10. If 1000 events are detected, then about 10 are false detections
while the 990 remaining events are meaningful. This means that, if we were to
increase the number of tested events, the number of errors would not increase and
would remain limited to ϵ = 10. This is not the case if we would have constrained
the probability of false alarms instead.

The choice of ϵ depends on the task being handled. In the literature, the a
contrario approach has been applied on several tasks such as point alignment or line
segment detection. In these cases, the scene contains multiple objects, which means
that many detections can be made in one image. Therefore, accepting a few false
detections is not critical. As a simple convention, Desolneux et al. [30] suggest that
using ϵ = 1 is often sufficient. There are some contexts (e.g., medical or defense-
related applications) where no false alarms can be accepted. For these cases, ϵ
needs to be set extremely low, often less than 10−100. In order to increase the
readability of those values and to avoid rounding to zero problems, some authors
(e.g., [75]) have rather considered the significance S({xk}k∈Gl

), defined using a
logarithmic scaling:

S({xk}k∈Gl
) = − ln (NFA({xk}k∈Gl

)) . (3.4)
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Figure 3.6: NFA and significance values for a centered and unit variance Gaussian
variable. For simplicity, ηtest is taken equal to 1.

The NFA values and their corresponding significance for a naive model following
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a Gaussian distribution (defined in Section 3.4.1) are shown on Figure 3.6. The
significance values range from − ln(ηtest) to +∞, with large values corresponding
to significantly unexpected objects.

Fusion of NFA maps In practice, in order to better detect objects of interest,
we may be interested in applying the a contrario test to several versions of the
same image (for example, with different preprocessing filters). In this way, we
obtain several detection maps that need to be merged together in order to obtain
a single map for each tested image. In this manuscript, we will consider the union
of detections, whose definition is justified by the following property.

Property 3.3.2 (Weighted minimum of NFA). Let X be a set of random variables
following distribution H0 and G ∈ P (A).

If NFA1,NFA2, ...,NFAN are NFA functions from X×P (A) to R+, for N ∈ N∗,
and a1, ..., aN are positive real numbers satisfying

∑
i a

−1
j ≤ 1, then min(a1NFA1, ..., aNNFAN)

is also a NFA on (X,P (A)).

Proof. Let a1, ..., aN be positive real numbers such that
∑

j a
−1
j ≤ 1, and

F = min(a1NFA1, ..., aNNFAN). For x ∈ X and ϵ > 0, we have:

{G ∈ P (A), F ({xk}k∈Gl
) ≤ ϵ} =

N⋃
j=1

{G ∈ P (A), ajNFAj({xk}k∈Gl
) ≤ ϵ}.

By applying the cardinality function #{.}, we have the following inequality:

#{{G ∈ P (A), F ({xk}k∈Gl
) ≤ ϵ}} ≤

N∑
j=1

#{{G ∈ P (A), ajNFAj({xk}k∈Gl
) ≤ ϵ}}.

The previous inequality can be rewritten as follows:

#{{G ∈ P (A), F ({xk}k∈Gl
) ≤ ϵ}} ≤

N∑
j=1

#{{G ∈ P (A),NFAj({xk}k∈Gl
) ≤ ϵ

aj
}}.

Then, applying the expectation operator E[.] to previous equation, and using
NFA property (3.2) on NFAj functions,

E[#{{G ∈ P (A), F ({xk}k∈Gl
) ≤ ϵ}}] ≤

N∑
l=1

ϵ

aj
≤ ϵ.

□

Finally, if NFA1,NFA2, ...,NFAN provide N detection maps, we can obtain all
the detected structures from F = N × min

j∈J1,NK
NFAj.
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Multi-scale fusion of NFA maps - What if NFA1,NFA2, ...,NFAN have
different spatial resolutions? This can be the case when considering the fusion
of NFA maps that are computed at different spatial scales. In order to compute
the minimum among all the NFA maps, it is necessary to resize the NFA maps so
that they have the same spatial resolution. In the manuscript, we resize all the
NFA maps to the highest spatial resolution. However, in this case, low resolution
NFA maps may not have the same weight as high resolution NFA maps. Let
ηtest,1, ηtest,2, ..., ηtest,N be the number of tests associated to NFA1,NFA2, ...,NFAN ,
respectively. We assume that NFA1 has the highest spatial resolution, NFAN the
lowest, and we introduce r ≤ 1 the spatial downsampling ratio between NFAi and
NFAi+1. In the case where ηtest,i is the number of pixels composing NFAi, we
have ηtest,i+1 = r2 × ηtest,i ≤ ηtest,i. This may introduce an undesired bias towards
low resolution maps since they may have a higher NFA and thus lead to less
detections. To avoid a tricky discussion about how to weight the different spatial
scales, as a basic approach, we set η∗test = ηtest,1

∑N−1
k=0 r2k. We can easily verify

that η∗test satisfies the Property 3.3.1. Indeed, with the notations of Property 3.3.1,
we have ηl = η∗test, which boils down to verifying that, for all i, η∗test ≥ ηtest,i.
Since η∗test = ηtest,1

∑N−1
k=0,k ̸=i r

2k + ηtest,1r
2i, and ηtest,1r

2i = ηtest,i, we effectively
have η∗test ≥ ηtest,i. Then, in the next chapters, we will propose a strategy in order
to automatically tune a weighting coefficient for each scale in practice.

To conclude this section, let us summarise the main stages of the a contrario
detection process:

• First, we set the ϵ value, the random variable(s) associated to the tested
objects (attributes) and a measure function µ.

• Second, we choose a naive model that allows us to define our NFA test.
This model often depends on the nature of the data (e.g., whether it is a
binary image or a greyscale image). In the literature, the normal or binomial
distributions are commonly used. Two practical examples will be given in
Section 3.4.

• Third, we define the number of tests, which is the total number of objects
tested.

• Finally, we test each object (after applying the measure function µ) using
the NFA formula defined in Eq. (3.3). If we consider several NFA functions,
they are merged using property 3.3.2. If the merged NFA value of the tested
object is lower than ϵ, the background hypothesis is rejected and the tested
object is labelled as detection.

In the next section, we give two concrete examples of a contrario detectors
used as a post-processing step for infrared small target detection.
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3.4 A contrario post-processing for small target
detection

In this paragraph, we take the feature maps obtained in Section 3.1 and apply an
a contrario thresholding to detect the targets. Our goal is to show the benefits
of such thresholding over conventional thresholding. The following approaches
were inspired by [31]. Their work consists of reducing any anomaly detection
problem to a problem of detecting structures in noise, and then applying an a
contrario criterion for detecting objects. The first stage of their approach computes
the residual image by subtracting the background (self-similar elements) from the
original image. The residual image is very similar to the feature maps extracted
by the neural network, so, in our case, we directly apply the NFA test without
having to extract a residual image. We propose to test two different a contrario
criteria, which differ in the choice of the naive model. In the following, we present
two a contrario formulations, one based on the normal distribution, the other on
the uniform distribution.

3.4.1 Normal distribution as a naive hypothesis

The first naive model is the most straightforward for greyscale images (e.g., the
feature maps we consider). Indeed, pixels that have high grey levels are consid-
ered likely to belong to a target. We thus make the naive assumption H0 that
the background noise follows gaussian distribution. The model does not need to
be exact, the aim being to show significantly anomalous target values under the
assumed model. Following Eq. (3.3), we define the NFA for any observation x as:

NFAN (x) = ηtest ×
1

s
√
2π

∫ +∞

x

exp

(
(t−m)2

2s2

)
dt, (3.5)

where m represents the mean and s the variance of the observed process.
In this paragraph, the a contrario testing is applied as a post-processing, after

having extracted meaningful features from the image, i.e. features where the sta-
tistical testing will be rejected only for targets. In the literature, it is common to
use conventional image processing methods such as filtering, as in [31]. In our case,
the filtering step is replaced by a deep neural network. However, since a target
is usually a few pixels wide, it may be interesting to gather neighbourhood infor-
mation before statistical test. We thus apply Nconv = 2 additional convolutions
with disks of different radii (1 and 2) as suggested in the article [31]. Note that by
property, the background is still a white noise after convolution. In addition, the
object detection problem we tackle is naturally multi-scale, since we wish to detect
targets of different sizes. To do this, in addition to the different scales induced by
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convolution with disks of different radii, we sub-sample the image by convolving
with Gaussian kernels. We finally obtain Nchannels = 4 scales, which gives us the
following number of tests ηtest:

ηtest = Nchannels ×Nconv ×
Nscales∑
i=1

Npixels, (3.6)

with Npixels being the number of pixels composing the tested image, which has a
resolution of 265× 256 pixels. This leads to:

ηtest = 4× 2× 2562 × (1 +
1

4
+

1

16
+

1

64
) (3.7)

By applying this criterion to each scale, we end up with several NFA maps of
different sizes. To carry out the detection, we oversample all the maps to obtain
maps of size 256× 256, then we take the minimum NFA value obtained on all the
maps. The final score map is still a NFA according to property 3.3.2, which allows
us to directly apply the threshold ϵ in order to perform the detection.

3.4.2 Uniform distribution as a naive hypothesis

One of the problems with the naive model presented in Section 3.4.1 is that spatial
information (e.g., point density) is only modelled via the convolutions preceding
the a contrario test. This information is not explicitly taken into account in the
computation of NFA, which is performed at pixel level. However, point density
is one of the essential perceptual criteria for discriminating targets from noisy
background. Therefore, we propose to introduce an NFA criterion that estimates
local point densities. A widely used naive model for this purpose considering
binary maps is the uniform spatial distribution of the points, or “true” pixels, in
the image lattice, leading to binomial distribution for the number of “true” pixels
falling within any given parametric shape [30, 75]. In our case, as we deal with
grey-level feature maps and not binary maps, we need to adapt the statistical
testing, as well as the feature maps.

For the NFA criterion, we took inspiration from [76]. The main idea is to simul-
taneously consider grey level characteristics and spatial features (point density).
We consider that a set of pixels likely to represent a target is all the more signifi-
cant as it contains many points spatially close and of high value on the score map.
We assume that the points are uniformly distributed within a bounded 3D space.
The naive model is then the binomial distribution of parameter p representing the
the pixels in a discrete and bounded 3D space, E ⊂ R3, with axes representing the
spatial coordinates and the transformed score values (third axis) (cf. next para-
graph). The probability of observing at least κ pixels in a pavement of volume ν
is then the Binomial distribution of parameter p and the NFA is written:
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Algorithm 1 Detection of targets of maximum size M pixels on the score map
Is; input: Is, M , minimal significance Smin; output: list of targets C.
1: for for each pixel j in Is do
2: Is(j) = f(Is(j))
3: end for
4: P ← 3D point cloud derived from pixels j/Is(j) < +∞
5: p← |P|

3D volume of P
6: Initialise an array Tab of dimension M to +∞
7: Initialise an array Idx of dimension M to −1
8: for each 3D cuboid C, of 2D projection (x,y) with an area smaller than M do
9: κ← number of pixels in C; ν ← volume of C

10: if Tab[κ] > ν then
11: Tab[κ]← ν; Idx[κ]← index of C
12: end if
13: end for
14: for κ ∈ J1, T K do
15: ν ← Tab[κ]; pC = κ

ν

16: if ν < +∞ et pC > p then
17: compute S(C) from Eq. (3.9)
18: end if
19: end for
20: I ← list of index of cuboids sorted by S(C)
21: Smax ← significance of the first element in I
22: C← ∅
23: for each index i in I do
24: Ci ← ith cuboid according to I
25: if S(Ci) > Smin et S(Ci) > 0.8× Smax then
26: C← C ∪ {Ci}
27: end if
28: end for
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NFAU (κ, ν, p) = ηtest

ν∑
i=κ

(
ν

i

)
pi (1− p)ν−i , (3.8)

where ηtest is the number of tests, here taken to be equal to the number of 3D blocks
of the same size as the one considered in E . In terms of practical implementation,
three elements need to be specified.

Firstly, the score values are transformed so that low values are spread over a
high dynamic range and high scores are concentrated over a low dynamic range.
For this purpose, we used the inverse function: ∀x > τ, f(x) = 1

x−τ
;∀x ≤ τ, f(x) =

+∞. In practice, the τ parameter makes it possible not to consider scores that
are too low, thus reducing the algorithmic complexity.

Secondly, rather than computing the NFA of Eq. 3.8 which is numerically
expensive, we use the significance defined by SU (κ, ν, p) = − ln(NFAU(κ, ν, p))
and the Hoeffding approximation: if κ

ν
> p,

SU (κ, ν, p) ≈ ν

[
κ

ν
ln

( κ
ν

p

)
+
(
1− κ

ν

)
ln

(
1− κ

ν

1− p

)]
− ln ηtest. (3.9)

Thirdly, to compute the number of points in each E block, we use the integral
histogram as in [75]. Finally, Algorithm 1 summarises the main steps for computing
the NFA with a trick that consists in computing the significance only for the most
significant blocks a priori (those of minimal volume with a given number of points
included).

3.4.3 Results obtained with a U-Net

Experimental set-up We consider the feature maps extracted by a U-Net,
which is a usual segmentation network. The detector was trained on a part of
MFIRST dataset, in the two different settings introduced in Section 3.1: 1) fru-
gal setting, with only 100 training samples; 2) data-sufficient setting, with 2500
training images. We trained the U-Net in a frugal setting because its performance
is particularly weak in this context. Indeed, the extracted feature maps are par-
ticularly noisy, and it can be interesting to see the benefits of the a contrario
thresholding in such challenging conditions. More specifically, we compare three
thresholding methods: 1) thresholding with a conventional fixed threshold of 0.5
(denoted “S” in the results), 2) a contrario thresholding, with the version based
on the normal distribution (“NFAN ”), 3) thresholding with the second NFA test
(uniform distribution, “NFAU ”). For the NFA tests, ϵ is chosen on a validation
set so that it maximises the F1 score. We evaluate the detector and the differ-
ent thresholding approaches on the MFIRST test set (100 images) in terms of
precision, recall and F1 score calculated at object level.
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Nb. training images Threshold Precision (%) Recall (%) F1 (%)

100 S 17.8 64.0 27.9
NFAN 56.5 53.2 54.8
NFAU 64.1 48.6 55.3

2500 S 65.9 80.6 72.5
NFAN 81.2 77.7 79.4
NFAU 95.4 73.6 83.1

Table 3.1: Performance of the U-Net trained on 100 or 2500 images. Predictions
are given either by fixed thresholding (S), or after NFA testing (“NFAN ” for the
version based on Gaussian distribution, and “NFAU ” for the one based on uniform
distribution). Metrics are computed at object level. The a contrario test signifi-
cantly improves the performance over fixed-value thresholding.

Results Table 3.1 shows the metrics obtained when evaluating the trained U-Net
on a sufficient number of images (2500 training samples) and also in a frugal context
(100 images). There is a noticeable difference in performance when comparing the
U-Net with fixed thresholding to the one where we applied an NFA criterion. In
particular, there has been a significant reduction in the number of false alarms,
leading to an increase in precision values. However, this improvement comes at
the expense of some good detections (reduced recall), but overall the NFA filtering
remains beneficial, as shown by the F1 score. Its benefits are even greater in a
frugal context: the F1 score is twice the baseline value. Now, comparing the two
versions of NFA, the difference in performance between the two remains minimal
compared to the results obtained with the fixed threshold, although the NFAU
version (naive model based on the binomial distribution) still seems to perform
better. Although this version is more complex to compute, it seems that explicitly
taking spatial information into account in the NFA formulation is beneficial for
target detection.

Figure 3.7 shows some results that illustrate the benefits of an a contrario
approach. The first column shows the original image, the second one the score
map extracted by the U-Net, the third one the prediction obtained by applying
a fixed threshold and the last one by applying an NFA criterion (NFAU version).
The predictions obtained by U-Net with a fixed threshold show numerous false
positives induced by the background noise present in the score map (rows 2 and
3), although they are less perceptually relevant than the targets to be detected.
These false positives are absent from the detections obtained after NFA test. We
can also observe in the first row that some targets that are less visible in the
score map are well detected with the a contrario approach, in contrast to the fixed
threshold approach.
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Figure 3.7: Examples of detector predictions on 3 images (rows). From left to right:
original image with ground-truth circled, score map at network output, prediction
after thresholding with a fixed threshold, prediction after applying NFAU filtering.

Method Precision Recall F1

U-Net S 65.9 80.6 72.5
NFAU 95.4 73.6 83.1

TransUnet S 89.5 86.7 88.0
NFAU 93.4 78.3 85.1

Table 3.2: Performance of the U-Net and TransUnet trained on 2500 images. Pre-
dictions are given either by fixed thresholding (S), or after NFAU testing. Metrics
are computed at object level. For TransUnet with NFAU thresholding, the loss in
good detections is not balanced by the increase in precision. Thus, applying an
NFA test as a post-processing step has some limitations.

3.4.4 Discussion and conclusion

We have seen that for a detector that outputs very noisy score maps, the NFA
thresholding is beneficial, especially with the version whose naive model is based
on the binomial distribution. However, is the NFA thresholding still interesting
when considering more accurate score maps? For this purpose, we consider a
more efficient neural network, namely the TransUnet [42]. Compared to the UNet,
this one has a ViT block in the extractor, which allows for a better feature ex-
traction. We consider a TransUnet trained on 2500 images and compare fixed
thresholding (S) and NFAU thresholding. Based on Table 3.2, we can notice that
TransUnet performs significantly better than UNet when a fixed threshold is ap-
plied to both networks. Applying a contrario test to a UNet allows us to get close
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to the performance obtained with TransUnet. However, applying the NFA test
to the TransUnet itself degrades performance: although the precision is slightly
improved (i.e., the number of false alarms is reduced), the gain is not enough to
compensate for the loss in good detection, leading to a decrease in the F1 score.
The contribution of the NFA as a post-processing is therefore limited. Although
the NFA can improve the detector’s performance when the optimal parameters are
chosen (threshold ϵ), this improvement will always be limited by the score map
extracted by the network. This is especially true for networks trained on sufficient
data, where the targets are not drowned in noise and false detections are due to
a weak feature extraction process. Ultimately, the H0 background model is not
suitable for these cases. We need to be able to control the score map obtained by
the detector so that the background follows a Gaussian or binomial distribution,
where the target stands out from the noise, and where the NFA criterion would
work better. To this end, in the next chapter, we propose to integrate a trainable
NFA layer in the network in order to replace the fixed-value thresholding.



Chapter 4

Integrating a contrario decision
criterion into segmentation networks

In this chapter, we propose to integrate an a contrario decision criterion into
the training loop of a segmentation network. Although segmentation networks
are not optimal for object detection compared to object detectors (indeed, a post-
processing step is necessary to perform the detection of objects, unlike with YOLO
or Faster-RCNN), we decide to consider segmentation networks because they are
SOTA for infrared small target detection. This can be explained by the fact that
they reconstruct the features at a higher spatial resolution, which benefits the
detection of small objects.

Figure 4.1: Example of tiny objects. The first line shows small targets on a sky
background. Note the challenging conditions: very small targets, low contrast,
cloud-induced textures. The second line shows road cracks, which have different
thicknesses, and are sometimes blended with the textured roads or shadows.

However, these NN still struggle with small object detection. This is firstly due
to the nature of the objects: their surface area is made of only few pixels, and they

79



80 CHAPTER 4. A CONTRARIO CRITERION AND SEGMENTATION NN

do not present a specific structure. Secondly, tiny objects are often partially hidden
in complex and highly textured backgrounds, leading to many false alarms. Some
examples are shown on Figure 4.1. Thirdly, dealing with small object detection
results in learning from highly class-imbalanced datasets. Indeed, as there are very
few target pixels compared to the background pixels, errors made on the targets
have less impact on the training than the ones made on the background. Therefore,
tiny object features cannot be learned easily. As detailed in Chapter 2 Section 2.4,
some methods attempt to artificially balance the dataset, either by using data
augmentation or by introducing weights into the training loss depending on the
class of the object (e.g., focal loss [27]).

We propose to go further and to take advantage of the unexpectedness of small
objects with respect to the background, as one could do in an anomaly detec-
tion approach with, for example, one-class classifiers [29], that discriminate small
objects as unexpected patterns with respect to the background. These methods
are typically trained on anomaly-free samples to model the background distribu-
tion, with objects deviating from this distribution during inference classified as
anomalies. Training is conducted in a "weakly" supervised manner, as it relies
exclusively on "normal" samples. However, in our case, we opt for conventional
supervised training since our datasets include target samples, and excluding them
from the training process would be a missed opportunity. To leverage this, we
propose incorporating an anomaly a priori specific to small targets into the su-
pervised training process by utilizing a contrario reasoning. For this purpose, we
introduce the a contrario criterion presented in Section 3.4.1. In the latter, we
have seen that using this criterion as a post-processing appears suboptimal since
the feature map statistical distribution may not match the naive assumption made
on the background when applying a contrario decision. We therefore propose to
guide the NN training by including the a contrario criterion in the training loop
through our NFA module. The latter guides the network to extract features in a
way that the object features will be likely to contradict the naive hypothesis made
on the background. We specifically choose the NFAN formulation proposed in
Section 3.4.1 since it is simple to compute and it provides a significance score at a
pixel-level, which is relevant for semantic segmentation. We propose to integrate it
as a block with a specific activation function, which can replace the segmentation
head of any one-class segmentation NN. Its integration within a U-shaped NN is
presented in Figure 4.2. In the following, we first provide theoretical details about
our NFAN formulation and the associated components so that it can be integrated
into the network and trained in an end-to-end manner. Then, we evaluate the ben-
efits of our method for small target detection and show that it leads to competitive
performance for IRSTD while being more interpretable. Finally, we extend the use
of our method on two other challenging tasks, namely ship detection from remote
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sensing data and road crack detection.

4.1 Methodology

4.1.1 Multi-channel formulation

Let us first provide more details about the NFAN formulation. As we deal with
multi-channel feature maps, we need to adapt the NFAN formulation introduced
in Section 3.4.1 since it is designed for single-channel images. In [31], the authors
adapted the single channel formulation to multi-channel input by considering each
channel independently. The obtained NFA maps are then merged together by
taking the union of detections. In the following, we rather reformulate the previous
approach in terms of a multivariate normal distribution, as suggested by [77]. By
considering a centred input Xi with K channels, we can rewrite Eq. (3.3) using
the Gamma and upper incomplete Gamma functions (denoted Γ(.) and Γ(., .)
respectively):

NFAN (xi, ηtest, K,Σ) =
ηtest

Γ(K/2)
Γ

(
K

2
,
1

2
||Σ−1/2xi||22

)
, (4.1)

where Σ represents the covariance matrix of the centred variable Xi. Note that
Eq. (4.1) is a multi-channel generalisation of Eq. (3.5), and therefore we keep the
same notation. In the remainder of the manuscript, NFAN will refer to Eq. (4.1).

Three assumptions about the feature noise can then be considered: 1) Elliptical
distribution with dependent channels: in this case, Σ is a dense positive-definite
matrix; 2) Elliptical distribution with independent channels, which leads to Σ =
λ∆ where ∆ is a diagonal positive matrix with |∆| = 1 and λ ∈R+∗; 3) Spherical
distribution, leading to Σ = λId where Id is the identity matrix. In this particular
case, no direction or channel is privileged in the decision process. The impact of
these different hypotheses on the training is assessed in Section 4.2.3.

Then, the significance associated to Eq. (4.1) is:

SN (xi, ηtest, K,Σ) = − ln

(
ηtest

Γ(K/2)
Γ

(
K

2
,
1

2
||Σ−1/2xi||22

))
. (4.2)

NFA values and their corresponding significance are represented on Figure 3.6.
Note that due to rounding problems to 0, we use the approximation of the Γ(a, x)
function for x→ +∞ (in practice, for x > 40) given in [78]:

Γ(a, x) ≈ xa−1e−x

(
1 +

a− 1

x
+

(a− 1)(a− 2)

x2

)
. (4.3)
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4.1.2 Deep-learning based NFA block

After adapting our NFA formulation to multi-channel feature maps, we now focus
on the practical integration of this criterion within a deep learning framework.
There are several challenges, including implementing a derivable version of the
NFA criterion in order to perform the backpropagation to train the network, and
also designing a specific activation function allowing for the use of any conventional
cost function. Indeed, the significance scores provided by our NFA statistical test
differ from conventional NN outputs. We propose a basic version of our NFA
block, as well as a version that includes spatial attention mechanisms, which are
useful for detecting small objects with various shapes. We also propose a NFA
fusion block that enables deep supervision as in [79] (i.e., guiding intermediate
NFA layers during the training).

Basic NFA
block

Basic NFA
block

Up-sampling
+

Concatenation

ECA
block

NFA fusion
block

Spatial
NFA block

Spatial
NFA block

NFA moduleU-shaped segmentation NN

X
block

Downsampling
Convolution 3x3
Upsampling
Skip connection
Optional block

Legend:

Input

Prediction

m-2
scales

feature
maps

Figure 4.2: Diagram showing the integration of our NFA module into a U-shaped
segmentation NN. Optional blocks are drawn in dotted lines. Details for ECA
block can be found in the original paper [13].
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(b) Spatial NFA block
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Figure 4.3: Diagram of (a) the basic NFA block and (b) the spatial NFA block.
The details of the stand-alone self-attention (SASA) block can be found in [14].
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We propose a basic NFA block that transforms multi-channel feature maps into
a one-channel score map representing the significance defined by Eq. (4.2). This
block is described by Figure 4.3a. Two convolution blocks (i.e., 2D convolution
with kernel 3×3 followed by batch normalisation and ReLU activation) are applied
on the input features in order to extract some relevant features for computing the
NFA. The significance scores are then computed using Eq. (4.2), where ηtest is
equal to the total number of tested pixels for a given image (i.e., the size of the
image). This equation is derivable, allowing for the backpropagation step in the
NN.

Our NFA block can replace the segmentation head of any one-class segmenta-
tion NN. Its integration on a U-shaped NN is presented in Figure 4.2. Introducing
the a contrario criterion into the supervised training loop will guide the network
to extract features in a way that object features will be likely to contradict the
naive hypothesis (here Gaussian distribution) made on the background.

Add attention mechanisms

The basic NFA block defined previously is designed to improve the detection of
tiny objects that do not present a specific geometric structure (e.g., point-shaped
objects). However, for objects that are small only in one dimensionality and large
in other dimension(s) (e.g., cracks), spatial information is a discriminating feature.
Indeed, in the case of crack detection, several pixels forming a continuous line are
more likely to belong to a crack than a few isolated pixels. It is therefore necessary
to extend the NN receptive field in order to better take into account the information
from more distant pixels.

To improve performance on such objects, we design a second version of our NFA
block that includes spatial attention mechanisms. Spatial attention is intended to
indicate the regions of the image where most attention is needed. This is achieved
by modelling long-range dependencies between the different regions of an input.
Such attention can be useful for detecting objects that are tiny in one dimension
and medium to large in the other (e.g., cracks). Several strategies have been
proposed, including training a subnetwork to identify the important regions [80], or
increasing the receptive field of CNNs. The methods based on the latest strategy
use self-attention mechanisms, which were introduced in computer vision tasks
by [81]. They lead to impressive results compared to the performance achieved
so far using CNNs, especially when it comes to the use of ViT for various visual
tasks [41]. However, this process is highly computationally expensive, and it also
requires a lot of training data. In addition, it is interesting to note that the spatial
dependencies are mainly local for small object detection. In this work, we rather
consider the use of local self-attention layers, and more specifically the stand-alone
self-attention layers proposed by [14].
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Figure 4.3b shows this block, where the second convolution layer is replaced by
a stand-alone self-attention (SASA) layer [14]. As shown in Figure 4.2, if we add
a spatial NFA block, it is done in addition to a basic NFA block.

Multi-scale fusion of significance maps

Many popular segmentation networks rely on encoder-decoder models introduced
in [82, 5]. The advantage of using U-shaped NN is that we can easily extract
low-level semantic feature maps and use the large-scale spatial information they
contain for detecting objects of different sizes. Although the highest-level feature
maps are the most relevant for segmenting tiny objects, we will see that the feature
maps from deeper scales are also useful. These contain rich spatial information and
enable the NN to detect targets of different sizes (and therefore not be specific to a
single target size). They also allow us to better discriminate targets from potential
background false alarms. To do so, we integrate our basic NFA block at each
intermediate scale of any U-shaped NN, as illustrated in Figure 4.2. Considering
a NN with m scales, we perform the detection at each scale and thus obtain m
significance score maps. Based on the discussion about multi-scale fusion of NFA
maps in Section 3.3 of Chapter 3, we introduce ηtest = h×w×(1+ 1

22
+ ...+ 1

22(m−1) ),
where h × w is the number of pixels composing the image. In order to merge
the detections performed at all scales, the low-level significance score maps are
upsampled to match the NN input size h × w using bilinear interpolation. All
significance maps S1, ..., Sm are then merged together through the NFA fusion
block by taking the union of all detections. This leads to the final significance
score map Sfinal , defined for each pixel i as follows:

Sfinal(i) = max{S1(i), ..., Sm(i)}. (4.4)

However, with such a multi-scaling strategy, the detections from the lower and
higher resolution scales have the same weight in the final significance score map,
which may increase the false alarm rate for applications where coarse scales are
less relevant. We thus propose to dynamically weight the impact of the different
scales by learning weighting coefficients using a channel attention module.

Channel-based attention allows us to select the relevant channels in a set of
feature maps. This concept was firstly presented in [83], where the authors in-
troduce a squeeze-and-excitation block made of two steps. The first one, called
the squeeze step, consists in a reduction in dimensionality while keeping global
spatial information. Then, an excitation module allows for learning channel-wise
relationships, which gives rise to an attention vector that indicates the weights to
apply to the different channels. Several variants have been proposed to overcome
SE block shortcomings. For example, [13] propose the Efficient Channel Attention
(ECA) block, where they reduce the complexity of the fully-connected layers used
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in the excitation step by replacing them with a 1D convolution. In the following,
we focus on this solution. The integration of an ECA block [13] before merging
the significance maps is illustrated on Figure 4.2.

NFA-friendly activation function
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Figure 4.4: Variations of Sigmα function defined in Eq. (4.5), with different values
of α. For simplicity, we choose ηtest = 1.

The NFA block output is a significance score map whose distribution of scores
is not only asymmetric between positive and negative values, but also has a much
wider dynamic than conventional NN output. Indeed, as explained in Section 3.3
(and illustrated by Figure 3.6), the background values are expected to be pushed
towards − ln(ηtest) ≤ 0, while the object values are expected to be spread over the
interval (− ln(ηtest),+∞). Consequently, the conventional symmetric activation
functions, such as the sigmoid function, are not suitable. This has been confirmed
by the experiments presented in Section 4.2.3. Therefore we rather design the
following activation function:

Sigmα(x, ηtest) =
2

1 + e−α(x+ln(ηtest))
− 1, (4.5)

where α ∈ R+∗ is a parameter that allows us to control the slope of the sigmoid.
We represent the variations of Sigmα function on Figure 4.4 for different values
of α. This activation function strongly penalises the background values while
compressing progressively the object values, thus respecting the dynamics induced
by the computation of the significance. Note that the higher the value of the
parameter α, the more the dynamic of the significance scores will be non linearly
compressed. The sensitivity of the NN training to this parameter is studied in
Section 4.2.3. This activation function is applied after having combined all the
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significance maps obtained from the NFA blocks computed at different scales, as
shown on Figure 4.2. The final output scores, therefore, range between 0 and
1, which allows the user to apply any cost function that is suitable for one-class
segmentation tasks.

Nevertheless, substituting the conventional segmentation head in a segmenta-
tion NN by the NFA module makes the threshold usually used to binarise the
segmentation map (namely, 0.5) no longer suitable, as background values are con-
strained to 0 after applying the function Sigmα and even low output values can
be significant. Thus we have to derive the new detection threshold. One argument
often given in favour of a contrario approaches is the interpretation of the NFA
and thus the more or less direct choice of the threshold (nevertheless application
dependent). In our case, the segmentation threshold t is linked to the ϵ threshold
defined in Eq. (3.2) through Eq. (4.5):

t = Sigmα(− ln(ϵ), ηtest), (4.6)

where ϵ represents the average number of false alarms on background images, at
pixel level, that we can tolerate for our application. In the literature, ϵ is chosen in
the interval [10−200, 1], leading to a thin threshold interval for the value t, namely
[10−3, 0.12]. We will discuss a more refined choice of this theoretical threshold for
each considered application, depending on our tolerance for false alarms.

In the following section, we consider different backbones and evaluate the ben-
efits of our NFA module on three applications, namely small target detection, road
crack detection and ship detection. Note, however, that the former has been stud-
ied more extensively, and the latter two have been considered mainly to test the
possible generalisation of the NFA module to other applications (and backbones).

4.2 Application to small target detection
We first evaluate the contribution of our NFA module in the case of infrared small
target detection. This application constitutes an ideal framework for the detection
of tiny objects: the targets have a surface area of only a few pixels, are not very
contrasted compared to the background and do not present a specific structure.
Most proposed methods to tackle this problem use semantic segmentation NN [15]
rather than off-the-shelf detection NN [4]. SOTA NN for small target detection
rely on U-shaped architectures and include spatial attention mechanisms [8, 7, 84].

4.2.1 Assessed methods

We propose to integrate our NFA module into one of the U-shaped SOTA back-
bones. We select the recent DNANet [8], which has shown impressive performance
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on widely used small target detection datasets. DNANet is composed of two
parts: a dense-nested U-shaped backbone (DNIM), which allows for the feature
extraction step, and a feature pyramid fusion module (FPFM), which allows for
a multi-scale fusion of intermediate outputs from the backbone. We substitute
the FPFM block with our NFA module, which becomes DNIM + NFAN , and
we evaluate its contribution with respect to the backbone DNIM (ResNet-18 ver-
sion) and DNANet. We also extend our experiments to the use of a classical
backbone, namely ResUNet [85], to show the generalisation of our NFA block
to another backbone that is not specifically designed for small target detection.
Results from other infrared small target detection baselines, including ACM [6],
LSPM [26], AGPCNet [64] and MTU-Net [65], are provided in order to assess
our methods. For the first three methods, we used the implementation given
by kourenke/Review-Infrared-small-target-segmentation-networks. For MTU-Net,
we used the original GitHub repository TianhaoWu16/Multi-level-TransUNet-for-
Space-based-Infrared-Tiny-ship-Detection. These methods are trained from scratch
using the parameters provided by the original papers, except for AGPCNet for
which the Adam optimiser with a learning rate of 0.001 works best.

For our NFA module, we set the α parameter in Eq. (4.5) to 0.0005, as it
has shown to lead to the best results in Section 4.2.3. To guide the selection of
the binarisation threshold, let us remind that the considered application handles
detections at object level (the first parameter of interest is the number of detected
targets and then their localisation, speed etc.). Thus, the impact of one-pixel false
alarm is completely different whether it is isolated or connected to a detection,
since it will or not affect the number of detected targets. The strong constraint to
absolutely avoid such errors implies a very low tolerance for false alarms at pixel
level. In the literature, a low NFA in the case of the a contrario approach lies
around ϵ ≈ 10−200, leading to a binarisation threshold t ≈ 0.1. This value has been
confirmed on a validation set and we kept it unchanged for every experiment of this
application. For the baselines, the detection threshold is set to 0.5 as suggested in
the original paper. DNIM, DNANet, and DNIM + NFAN are trained from scratch1

on Nvidia RTX6000 GPU for 1000 epochs using the Soft-IoU loss function [58].
The latter is optimised by Adagrad optimiser with the Cosine Annealing scheduler,
using the same parameters as in [8]. The learning rate is set to 0.05 for DNIM and
DNANet as suggested in the original paper. For DNIM + NFAN , we found that
decreasing the learning rate allows for better convergence; we thus set it to 0.03.

1We used the official implementation of DNANet https://github.com/YeRen123455/Infrared-
Small-Target-Detection

https://github.com/kourenke/Review-Infrared-small-target-segmentation-networks
https://github.com/TianhaoWu16/Multi-level-TransUNet-for-Space-based-Infrared-Tiny-ship-Detection
https://github.com/TianhaoWu16/Multi-level-TransUNet-for-Space-based-Infrared-Tiny-ship-Detection
https://github.com/YeRen123455/Infrared-Small-Target-Detection
https://github.com/YeRen123455/Infrared-Small-Target-Detection
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4.2.2 Dataset and evaluation metrics

We conduct our experiments on two datasets. We first consider NUAA-SIRST
dataset [6], which is one of the few infrared small target datasets publicly re-
leased and widely used in the literature. This dataset is described in Section 2.3.2.
We also consider a recently published dataset for small target detection, namely
IRSTD-1k [7]. As described in Section 2.3.3, this dataset is larger (1000 images)
and contains more challenging scenes, with different kinds of small objects (e.g.,
aircrafts, animals). It also contains some very large objects, which fall outside
the scope of our method (designed for tiny object detection, cf. Section 4.4). We
therefore consider the “IRSTD-850” version of this dataset (where large targets are
removed, as explained in Section 2.3.3). We discuss the behaviour of our method
on larger objects in Section 4.4. Both datasets are split into training, validation
and test sets using a ratio of 60 : 20 : 20. We use the same pre-processing steps as
those proposed in [8]. We also resize all images to the resolution 256× 256.

For the evaluation, we mainly focus on the object-level metrics as suggested
by [8]. From the predicted binary segmentation map, targets are individually
labelled using a 8-connectivity connected component module. A detected object
is counted as a true positive (TP) if it has an Intersection over Union (IoU) of
at least 5% with the ground truth. This low-constrained condition is due to the
fact that a small shift in the number of predicted pixels leads to a large deviation
in the IoU, as illustrated in [66] (Fig.1). We then compute the Precision (Prec.),
Recall (Rec.) and F1 score (F1) at object-scale. We also consider the area under
the object-level Precision-Recall curve, namely the AP, which allows us to free
from the detection threshold, and the number of False Alarm (FA) (still at the
object-level) per image (FA/image).

In the tables, the presented results have been averaged over five distinct training
sessions for DNIM, DNANet and DNIM + NFAN , and they are given in the form
m ± s, where m is the mean and s the standard deviation, calculated over the
different training sessions.

4.2.3 Results

a) NFA module improves the precision In this paragraph, we compare the
performance of our method against SOTA networks for infrared small target detec-
tion. We also provide the results obtained when using a conventional segmentation
network as a backbone.

Results obtained with SOTA backbones - Table 4.1 shows the per-
formance for the compared methods on NUAA-SIRST and IRSTD-850 datasets.
First, we can see that DNIM+NFAN outperforms most of the IRSTD baselines (in-
cluding ACM, LSPM, AGPCNEt and MTU-Net) by a wide margin, and is on a par
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Method F1 AP Prec. Rec. FA/image
NUAA-SIRST dataset

ACM [6] 95.4 95.2 95.1 95.8 -
LSPM [26] 92.9 90.2 90.3 95.9 -

AGPCNet [64] 93.8 92.2 93.8 95.1 0.07
MTU-Net [65] 93.8 97.2 92.9 94.8 0.08

DNIM 95.8±1.3 96.2±1.3 94.6 97.1 0.06±0.03

DNIM + FPFM (DNANet) 97.1±0.4 98.4±0.9 96.9 97.3 0.04±0.02

DNIM + NFAN 97.6±0.3 98.4±0.6 97.9 97.4 0.02±0.00

IRSTD-850 dataset
ACM 62.1 48.4 62.4 61.9 0.55
LSPM 54.9 51.5 64.9 47.6 0.38

AGPCNet 88.1 92.3 91.1 85.3 0.12
MTU-Net 86.8 89.0 88.8 84.9 0.16

DNIM 89.0±1.4 89.9±1.6 87.6 90.5 0.20±0.05

DNIM + FPFM (DNANet) 91.4±1.4 92.4±1.9 91.8 91.1 0.13±0.04

DNIM + NFAN 91.3±0.7 94.2±0.2 92.1 90.6 0.12±0.00

Table 4.1: Object-level F1 (%), AP (%), Prec. (%), Rec. (%), and FA/image
achieved by the compared methods on NUAA-SIRST and IRSTD-850. For each
dataset, best results are in bold and second best results are underlined.

with the SOTA method DNANet. The performance gap between LSPM, MTU-Net
and the other IRSTD baselines can be explained by the fact that: i) most methods
are designed to achieve good pixel-level segmentation, which does not necessarily
translate into good object-level performance, and ii) the SIRST dataset contains
very little data, and MTU-Net may be suboptimal in a frugal setting because it
contains ViT blocks in its encoder (which are known to require a large training
dataset).

Second, it can be noticed that DNIM+NFAN leads to a significant improve-
ment of the baseline DNIM in both AP and F1, on both datasets. For example, the
F1 score is increased by 1.8% on NUAA-SIRST dataset and by 2.3% on IRSTD-
850. More specifically, since the NFA layer controls the number of false alarms,
the precision appears significantly improved, while keeping the number of correctly
detected targets (recall criterion) at the same level. This improvement in preci-
sion is all the more impressive on the challenging IRSTD-850 dataset (+4.3% in
AP). Note that the addition of the NFA module in DNIM greatly improves the
stability of the training, as evidenced by the decrease in the standard deviation of
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Figure 4.5: Qualitative results obtained with different detection methods (columns
(b) to (d)) on NUAA-SIRST dataset. Good detections, false positives and missed
detections are circled in green, red and dotted yellow lines respectively.

the results. DNIM+NFAN is also very competitive with SOTA method DNANet.
Indeed, on NUAA-SIRST dataset, the F1 score is better in average (+0.5%), and
it can be noticed that the number of false alarms per image has been divided
by 2, while having a better recall. The standard deviation is also reduced. On
IRSTD-850 dataset, although the F1 scores are equivalent for both methods, the
AP is significantly improved by DNIM+NFAN (+1.8%). This confirms the ben-
efit of our NFA module, especially on the control of the false alarm rate even in
scenes with complex backgrounds. Furthermore, as far as computation costs are
concerned, the NFA layer adds less than 0.1 million training parameters to the
initial model, which is negligible with respect to the benefits deriving therefrom.

Figure 4.5 illustrates some predictions (output score maps before threshold) on
challenging scenes, where the contribution of the NFA module can clearly be seen.
For example, the target of the third column is particularly small and blurred in
the background, which does not affect the performance of the NFA module, unlike
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Method
NUAA-SIRST IRSTD-850
F1 AP F1 AP

ResUNet 93.2±0.9 90.3±2.4 85.3±1.2 87.4±1.2

ResUNet + NFAN 95.4±1.3 96.1±1.9 87.7±2.7 96.0±0.8

Table 4.2: Comparison of ResUNet and ResUNet + NFA on small target detection.
Metrics are computed at object-level and averaged over three runs.

the other methods. Moreover, the baseline methods mistakenly detect the aircraft
contrail (fourth column). The NFA module not only allows for better detection of
small and tiny objects in particularly difficult scenes, but also provides robustness
with respect to challenging environments.

Generalisation to conventional backbones - We extend the experiments
conducted previously to another conventional NN, namely ResUNet. We evalu-
ate the benefits of our NFA module for a NN that is not specifically designed for
small target detection. Results are presented in Table 4.2, and it can be seen that
the NFA module greatly improves global performance. Indeed, on NUAA-SIRST
dataset, the F1 score is improved by 2%, and the AP by 6%, which is mainly ex-
plained by an increase in average precision as observed for DNIM+NFAN . This im-
provement in precision is even more striking when considering IRSTD-850 dataset
(+8.6% in AP). This confirms that adding an NFA module on a segmentation
network (being SOTA or not) improves the precision and thus the performance.
Furthermore, the results obtained when adding the NFA module on a conven-
tional segmentation NN are only few percents lower than what can be obtained by
a SOTA backbone specifically designed for small target detection. For example,
the difference in F1 score between ResUNet+NFAN and DNIM is only of 0.4% on
NUAA-SIRST. This shows that although the careful design of the feature extrac-
tor is essential to improve performance, the choice of decision criterion is also very
important, especially in the case of small/tiny object detection.

b) Overconfidence, did you say? Most recent neural networks tend to be
overconfident as outlined in [86]. The pixel-level histogram of output scores shown
on Figure 4.6a illustrates this phenomenon for DNIM network, where all pixel
values on the final score map are either very close to 0 or to 1. The impact of
NFA layer can clearly be seen on the corresponding histogram in Figure 4.6b:
TP are uniformly spread all over the confidence scores and the number of false
positives (FP) decreases monotonically as the score level increases. Figures 4.7
illustrate the relationships between accuracy and output scores (interpreted as
confidence values). When comparing Figure 4.7a and Figure 4.7b, we see that the
achieved scores are more informative since the accuracy versus score function is
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Figure 4.6: Output scores histograms for (a) DNIM and (b) DNIM+NFAN .

Figure 4.7: Variations in accuracy as a function of output scores for (a) DNIM,
(b) DNIM+NFAN with α = 0.0005, and for (c) DNIM+NFAN after calibration
using α = 0.003.

globally increasing. Besides, we notice that the NFA module prevents the network
from being overconfident. To better calibrate the DNIM+NFAN outputs, we
can fit a posteriori the parameter α from Eq. (4.5). The value of α to get a
calibrated network can be found by solving Sigmα(10

−200, ηtest) = 0.5 (since for
a calibrated output optimal segmentation threshold should be equal to 0.5), so
that α = 0.003. Figure 4.7c illustrates the results after calibration using α =
0.003: adding the NFA module to a segmentation NN allows us to obtain a nearly
calibrated network without the need of complex methods. The output scores are
much more relevant than with the baseline, which is a step towards Artificial
Intelligence (AI) interpretability.
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Method
15-shots 25-shots

F1 AP F1 AP
DNIM 72.8±23.7 68.0±31.3 87.0±2.5 82.6±2.7

DNIM + NFAN 87.7±2.9 86.3±3.9 90.9±2.7 93.1±2.0

Table 4.3: Results achieved in 15 and 25-shot settings on NUAA-SIRST. Best
results are in bold.

Method F1 AP
DNIM 83.4 83.6

DNIM + NFAN 84.9 91.2

Table 4.4: Transfer learning from SIRST to IRSTD-850.

c) Robustness analysis In this subsection, we assess the robustness of our
method compared to the baseline DNIM in two scenarios: weak training conditions
and generalisation to new or noisy data.

Few-shot learning - In many real world applications, data collection and
annotation requires expertise, which is very expensive and time consuming. Having
a method that leads to good performance even with little training data is essential
in such real world applications. In the subsection, we evaluate the robustness
of our method in few-shot settings, by training the NN on 15 and 25 images
from NUAA-SIRST dataset (representing respectively about 5% and 10% of the
training set used in Section 4.2.3). DNIM and DNIM+NFAN are trained on three
different non-overlapping sets of data in both 15-shot and 25-shot settings, and the
averaged results are given in Table 4.3. It can be seen that our method performs
significantly better in a frugal setting than the baseline. Indeed, both AP and F1
metrics are increased by more than 15% when adding the NFA module to DNIM in
a 15-shot training. Moreover, the AP is decreased by only 5.3% for DNIM+NFAN
(compared to 13.6% for the baseline) when dividing by 10 the number of training
samples. The robustness of the NFA module towards frugal setting is explained
by the a contrario paradigm introduced in the training loop: we force the NN to
model the background elements (rather than the targets themselves), for which we
have sufficient samples even in a few-shot setting.

Generalisation to noisy and new data - One essential property of strong
detectors is their ability to correctly generalize to unseen data. To this end, we first
evaluate the robustness of DNIM+NFAN towards noisy data during the inference.
We consider two types of noise: additive and multiplicative Gaussian noises, with
different variances (namely 0.01, 0.05 and 0.10). For the additive Gaussian noise
the mean is set to 0 while for the multiplicative one it is set to 1. As we can see
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Figure 4.8: Sensitivity of DNIM and DNIM+NFAN towards noisy images from
NUAA-SIRST during inference.

from Figure 4.8, although F1 score and AP decrease with the increase in variance
for both methods, DNIM+NFAN still achieves the best performance by a large
margin, for both considered types of noise. It is also significantly robust towards
false alarms (AP criterion) compared to DNIM, especially in the case of additive
Gaussian noise (Figure 4.8a).

We finally evaluate the methods on new scenes by transferring the knowledge
learned on NUAA-SIRST dataset to IRSTD-850 dataset, without fine-tuning. The
results in Table 4.4 confirm the generalisation ability of our method on new chal-
lenging scenes. Compared to the baseline, the F1 score is increased by 1.5%, and
the AP by 7.6%. This robustness to new or noisy data is explained by the use of
a naive model, which can only be approximate (provided that it contradicts the
detections).

Σ (Eq.(4.1)) MS ECA Smooth F1 AP
Σ = λId ✓ 96.0±0.9 97.6±0.9

Dense Σ ✓ 95.1±1.3 96.3±1.0

Σ = λ∆ ✓ 96.9±0.5 98.6±1.0

Σ = λ∆ ✓ 97.2±0.6 95.6±2.3

Σ = λ∆ ✓ ✓ 97.2±0.6 97.9±0.9

Σ = λ∆ ✓ ✓ ✓ 97.6±0.3 98.4±0.6

Table 4.5: Ablation study performed on NUAA-SIRST. We evaluated (object-level
metrics) the different forms of the covariance matrix Σ and compared the benefits
of multi-scaling (MS), adding a smoothing term (Smooth) and using channel at-
tention (ECA) in our NFA module.
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d) Ablation study Tables 4.5, 4.6 and 4.7 present the ablation and sensitiv-
ity studies performed on small target detection on NUAA-SIRST dataset. The
conclusions are summarised in the five following points.

i) Assumptions made on the covariance distribution - In Section 4.1.1,
we present three different forms for the covariance distribution Σ in Eq. (4.1),
corresponding to three different assumptions about feature noise: spherical distri-
bution, elliptical distribution with independent channels or components, elliptical
distribution with dependent channels. The first two lines of Table 4.5 show that
assuming a spherical distribution assumption leads to worse results, as does the
channel-dependence assumption. To explain this, one has to remind that in deep
learning, in order to disentangle causal factors, a series of filters are applied to
extract the relevant characteristics. Each filter extracts a particular feature repre-
sented by a channel in the next feature maps. Depending on the downstream task,
some features will be more or less relevant. The relevant information is therefore
not equally distributed over all the channels of the feature maps. Besides, estimat-
ing the full covariance matrix in high dimensionality may be numerically unstable,
while the correlation between extracted features remains low. As a result, the
independent elliptical distribution appears as the more relevant hypothesis.

ii) Adding a smoothing term prevents from object fragmentation -
According to Table 4.5, adding a spatial smoothing term, which is defined as the
L2 norm of the gradient of the image in both vertical and horizontal directions,
improves AP criterion. Indeed, it allows us to force low value difference between
neighbouring pixels, and thus to avoid object fragmentation when increasing the
segmentation threshold. The achieved results are then more robust to this thresh-
old, which increases the AP.

iii) Importance of multiscaling - Adding information from low-level fea-
tures helps the network in detecting objects of various size. This is the case for the
baseline DNIM, whose multiscale version is DNANet, and it has been confirmed
when adding NFA layers to the five scales of DNIM and considering the F1 cri-
terion in Table 4.5. However, F1 increase is at the cost of a decrease of the AP
criterion since introducing low-scale features may bring out more false positives
for lower thresholds. We also performed an ablation study on the number of scales
used in the NFA fusion block. We varied the parameter m in Eq. (4.4) from 2
to 5, 5 being the maximum number of scales in DNIM. The results presented in
Table 4.6 show the importance of considering all the five scales, even for detecting
small targets. Indeed, the F1 score increases gradually from 96.0% to 97.6% as
more scales are added, and the AP reaches its maximum when considering five
scales. The standard deviation also decreases when adding more scales, meaning
that the NN gains in stability.

iv) Channel attention highlights the importance of high-level scales
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for small target detection - To tackle previous issue, we introduced a channel
attention layer before merging the different scales, that is, ECA block. Table 4.5
clearly shows the superiority of the NFA module when adding this step. It notice-
ably improves the average precision as well as the F1 score, by reducing the object
false alarm rate. Looking at the multiplying factors computed by this channel at-
tention layer, we observe that, for small target detection, the high-level features are
of primary importance: their weight is about 0.99 when the weight of lower-level
feature maps is about 20 times less, though they still contribute to the decision.

m (Eq.(4.4)) F1 AP
2 96.0±0.8 96.7±2.0

3 96.5±0.8 98.3±0.7

4 97.6±0.3 97.8±1.0

5 97.6±0.3 98.4±0.6

Table 4.6: Ablation study on the number of scales m in Eq.(4.4).

Activation function F1 AP
Sigmoid 90.5±6.3 93.5±1.2

Sigmα=0.0001 96.4±1.4 95.1±0.1

Sigmα=0.0005 97.2±0.6 97.9±0.9

Sigmα=0.001 96.7±0.2 94.8±1.0

Table 4.7: Sensitivity study made on the activation function. Metrics are given at
object-level.

v) Appropriate activation function - To confirm that conventional sym-
metric activation functions such as the sigmoid function are not suitable for the
significance values, Table 4.7 shows the result obtained considering the sigmoid
activation function, which indeed severely degrades the F1 score and AP of our
method. The results are also less stable across different weight initialisations, as
shown by the large standard deviation values (more than 6% in F1 score).

Now, for the proposed activation Sigmα, as discussed in Section 4.1.2, the
choice of α has an impact on the range of optimal thresholds for score map binari-
sation. We tested three values of α, which moves the upper bound for thresholds
from 0.02 to 0.3. According to Table 4.7, α = 0.0005 leads to the best performance,
and we recommend to use this value.
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4.3 Extension to other applications

We have shown in previous section that the NFA module can improve the per-
formance of a segmentation NN specifically designed for small target detection.
This allowed us to obtain state-of-the-art results on an application that represents
an ideal framework for small object detection. Now, we propose to expand the
boundaries of previous framework. For this purpose, we integrate our method in
a classical semantic segmentation backbone and we apply it to two other applica-
tions, namely road crack detection and ship detection from remote sensing data.
Both applications deal with small object detection in a frugal setting, and they
are challenging for several reasons. In the case of road crack detection, the dif-
ficulty lies in the fact that i) the cracks are very thin and their pixels are very
few with respect to the background class, and ii) the textured background and
road artefacts can lead to numerous false alarms. Some generic deep learning ap-
proaches have been tested on this application, and are mainly based on classical
segmentation NN [87, 88, 89]. Ship detection from low resolution satellite imagery
is even more challenging because of i) the large number of boats in the same area
and their varying sizes (e.g., pleasure boats, cargo ships), ii) the moored or tiny
ships that are very hard to distinguish from decks or water wings, and iii) the
low resolution of satellite data, which requires to use subpixel information. Most
efficient methods for ship detection rely on data fusion (e.g., using SAR data, or
the information provided by Automatic Identification Systems (AIS) [90]). Few
deep learning methods for detecting ships from optical data have been proposed,
and these detectors mainly rely on classical segmentation NN [11].

4.3.1 Assessed methods

We take as a baseline classical segmentation backbone, namely a UNet with a
ResNet encoder (ResUNet, [85]). Note that, for crack detection, geometric infor-
mation is crucial since the cracks exhibit a specific shape. Therefore, we take the
opportunity given by crack detection to evaluate the contribution of the spatial
NFA block in the NFA module. Based on the ablation study conducted in Sec-
tion 4.2.3, we use the multi-scale NFA module with Σ = λ∆ (Eq. (4.1)) and set
the parameter α in Eq. (4.5) to 0.0005. For both crack and ship detection, the
theoretical threshold can be defined as follows. In the case of an image without
cracks, one false alarm at a pixel level will not be significant for the application:
indeed, a crack is defined by several hundred pixels. The same reasoning can
be applied for boat detection as in the considered dataset there are many ships,
including cargo ships that have a spatial extent of several hundred pixels. It is
therefore reasonable to tolerate one pixel false alarm per image, which makes the
false alarm expectation ϵ = 1, leading to a binarization threshold t ≈ 0.001. For
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Method
CrackTree S2SHIPS

F1 AP F1 AP
ResUNet 85.6±0.4 85.2±0.2 23.7±2.0 52.3±6.4

ResUNet + NFAN 87.2±0.0 96.7±0.2 35.3±1.5 62.3±7.9

Table 4.8: Comparison of ResUNet and ResUNet+NFAN on crack and ship detec-
tion. Metrics are computed at pixel-level for crack detection, and at object-level
for ship detection.

a fair comparison with the baseline, whose optimal threshold no longer seems to
be 0.5, we choose the threshold for the baseline based on the validation dataset.
Both methods are trained for 700 epochs using the same loss and optimizer as in
Section 4.2.2. ResUNet is trained with a learning rate of 0.01, and we lower the
learning rate for ResUNet+NFAN to 0.005.

4.3.2 Datasets and evaluation metrics

Crack detection - We train and evaluate all methods on CrackTree dataset
from [91]. It is composed of 206 real pavement images, and it includes various
types of cracks. Because very few data is available, the algorithms are trained
using 120 images only. This frugal setting adds some challenge to the application.
Finally, 36 images are used for the validation step, and 50 for testing. All methods
are evaluated using pixel-level metrics, namely F1 score and average precision.
However, as stated in [91], the annotations do not accurately report crack thickness.
Therefore, like in the original paper, we adopt a tolerance margin of two pixels in
crack localisation.

Ship detection - We consider the dataset S2SHIPS [11], which is composed
of 16 multispectral images from Sentinel2 satellite sensor, of size 1783×938 pixels.
Four images are kept for test, and the others are used for the train and validation
datasets. From each image we extract 18 patches of size 256 × 256, which makes
a total amount of 216 patches for the training and validation sets. We use the
following six spectral channels as in [11]: B2 (B), B3 (G), B4 (R), B8 (NIR), B11
and B12 (SWIR). Note that in this application, training conditions are particularly
difficult: there is very little training data, much of which does not include ships.
The assessed methods are evaluated using F1 score and average precision computed
at object-level.
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(a) Input (b) Ground-truth (d) ResUNet+NFA(c) ResUNet

Figure 4.9: Qualitative results obtained with different detection methods on Crack-
Tree dataset. False positives are circled in red, and reconstruction improvements
are circled in green.
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Figure 4.10: Qualitative results obtained with ResUNet and ResUNet+NFAN on
S2SHIPS dataset. True positives, false positives and missed detections are circled
in green, red and dotted yellow lines, respectively.
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4.3.3 Results

The NFA module leads to better performance

Table 4.8 shows the performance of the evaluated methods on CrackTree and
S2SHIPS datasets. It is clear that the NFA module contributes in improving the
baseline. Indeed, in the case of crack detection, the F1 score is increased by 1.4%
when including the NFA module in the baseline. More precisely, we observe a very
significant improvement in the average precision (more than 10%), which confirms
the ability of the NFA module to control the number of false alarms at a pixel
level. We notice that the recall is also improved. Figure 4.9 shows some results
obtained by the different methods on four different crack examples. The NFA
module appears more robust to the presence of shadows or textures on the road,
since less false alarms are observed.

The same conclusions can be drawn for ship detection: both F1 score and
AP are increased by at least 10%. However, despite a significant improvement
of the baseline thanks to the NFA module, the performance remains weak: this
is explained by the challenging conditions described in Section 4.3.2 and illus-
trated on the first row of Figure 4.10. Indeed, the presence of decks, coastlines,
or even ship wakes leads to several false alarms. Nonetheless, even though both
algorithms struggle to detect the most tiny ships, ResUNet+NFAN considerably
increases their detection as it can be seen on the first image. These experiments on
two different applications confirm once more the robustness towards challenging
conditions brought by our NFA module.

Contribution of attention mechanisms

We have evaluated the contribution of the different attention mechanisms, spatial
attention and channel one separately, on crack detection. The results are detailed
in Table 4.9 and our conclusions are summarised in the following points.

ECA SASA F1 AP
86.4±0.1 95.8±0.2

✓ 87.0±0.3 96.4±0.1

✓ 87.0±0.3 96.8 ±0.2

✓ ✓ 87.2±0.0 96.7±0.2

Table 4.9: Ablation study performed on Crack Tree dataset (pixel-level metrics).

i) All scales are equally important for crack detection - In crack
detection application, unlike in small target one where the decision process mainly
relies on the high-level feature map (cf. Section 4.2.3), the deeper level feature
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maps almost equally contribute to the prediction (multiplying factors all around
0.6). Indeed, the low resolution feature maps contain some useful information to
describe large objects, while the high-level feature maps are meant for capturing
the smaller details as outlined in [46].

ii) Spatial attention has a very significant impact on performance - As
expected, the spatial attention block (SASA block) helps detecting precisely large
objects. Indeed, thanks to spatial attention, the average precision is considerably
improved: the shape of the cracks is estimated in an accurate way while eliminating
some false positives.

Finally, combining both spatial and channel attention leads to even better and
more stable results.

4.4 Conclusion

a) Input b) Segmentation map

Figure 4.11: Behavior of DNIM+NFAN on large objects.

Sections 4.2 and 4.3 show experimentally the benefits of our NFA module for
tiny object detection. It significantly improves the performance of a conventional
segmentation backbone such as ResUNet in three challenging applications, namely
small target detection in infrared images, road crack detection in usual RGB im-
ages, and detection of ships from multispectral satellite images. Furthermore, we
have shown that, when our NFA module is added on top of a backbone specifically
designed for small target detection, such as DNIM, it is very competitive with the
SOTA NN for small target detection DNANet, while being more interpretable.
This improvement is due to the introduction of the a contrario paradigm in the
training loop. The NN is forced to learn an approximate background model rather
than the objects to be detected, by computing a number of false alarms (NFA).
This gives new properties to the NN that includes such a contrario criterion: i) the
control of the number of false alarms, which translates into a clear improvement
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of the AP criterion, and ii) the ability to learn from few samples of the object
to be detected. The latter property increases the robustness of the NN to frugal
learning and helps to better generalise to unseen data, as shown experimentally in
Section 4.2.3.

The use of our method can be extended to other small object detection tasks
such as the early medical diagnosis, early forest fire detection, or the detection of
buildings in rural areas. Nevertheless, our method was specifically designed for
the detection of very small objects (with respect to the number of image pixels),
and we cannot expect good performance on large object detection. Indeed, as the
proportion of the objects in the image increases, not only does the NN struggle to
separate the distributions of the background from those of the objects, but also the
unexpectedness feature of the targets becomes less pregnant. One consequence will
be a fragmented detection of large objects, as illustrated in Figure 4.11. Only the
‘hottest’ points of the aircraft will show up on the segmentation map. Therefore,
there will be three detections for a single object, which will artificially increase the
number of false alarms. In the next chapter, we propose to integrate an a contrario
criterion into object detection method in order to bypass this issue.





Chapter 5

Integration within object detection
methods

In the previous chapter, we have presented the integration of a NFA (through a
NFA module that computes NFAN ) into segmentation networks, which are known
to be SOTA for IRSTD. Such a module improves the performance of several seg-
mentation networks, and for several applications. However, segmentation networks
are not optimal for object detection, since an additional post-processing step is
needed in order to perform object-level detection; indeed, without this step, they
are also prone to object fragmentation. One possible solution is to use of object
detection methods, such as Faster R-CNN or YOLO algorithms. The latter are
widely used in object detection tasks, having proved to be highly effective in a
variety of applications. However, YOLO networks lead to particularly weak per-
formance when it comes to detecting small targets. Indeed, if the object to detect
is too small, it may occupy only a small portion of a grid cell, making it difficult
for YOLO to detect it accurately. To address this issue, YOLOv3 [48] introduced
a feature pyramid network (FPN) that combines the features detected at multiple
scales. This helps in enhancing small object features, and YOLO versions from
YOLOv3 onwards lead to SOTA results on several object detection benchmarks.
However, the performance remains beyond SOTA segmentation methods for small
target detection. We try to go further by introducing an a contrario criterion into
the training loop of an object detection network. More specifically, we propose
to adapt two NFA formulations (based on two different naive models) for YOLO
backbones. The NFA test will be used to re-estimate the objectness scores pre-
dicted by a YOLO network. In the following, we first introduce the different NFA
detection heads as well as their integration within the YOLO framework. Then, we
evaluate the different NFA heads on IRSTD. More specifically, we provide the re-
sults obtained on SIRST an IRSTD-850 datasets, then we evaluate the robustness
of our methods towards frugal training, and finally we extend their application to
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vehicle detection from remote sensing data.

5.1 Methodology

In this section, we present three NFA detection heads adapted for YOLO architec-
tures: one pixel-level formulation based on NFAN introduced in Chapter 4, and
two object-level versions that exploit the spatial context given by the bounding
boxes predicted by YOLO network to compute the significance score. For the
latter two, our first motivation is to explicitly take into account both the spatial
context and its grey level characteristics for the tested grid-cell (related to the
objectness score) in the computation of the NFA. The second motivation is that
an object-level approach seems more relevant for a detector based on box proposal
such as YOLO. Indeed, the pixel-level formulation computes the significance score
by considering exclusively one grey-level value of the objectness score (represent-
ing the center of a potential detected object), and thus does not take advantage of
the spatial extent of the tested object provided by the bounding box proposals of
YOLO. Furthermore, assessing two different NFA formulations (object-level and
pixel-level) will give a more complete insight on the strengths and limitations of
the a contrario paradigm for detecting small targets. Note that all the proposed
NFA detection heads can be used to replace the detection head of any YOLO
network.

5.1.1 Pixel-level NFAN for object detection

significance 

objectness0.72

22.4

Backbone Neck Bounding box predic�on detec�on head

YOLO framework

conv

Significance layer 

Input

Unexpected  high intensity
           High significance

Figure 5.1: Integration of our pixel-level criterion into a YOLO framework, through
the NFAN detection head. This module can be added on top of any YOLO.
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We first propose to integrate, within YOLO framework, the version of the NFA
designed for segmentation networks in Section 4.1.2. As a reminder, the NFAN is
defined at pixel-level as follows:

NFAN (xi, Ntest, K,Σ) =
Ntest

Γ(K/2)
Γ

(
K

2
,
1

2
||Σ−1/2xi||22

)
,

where Γ(.) and Γ(., .) are the Gamma and upper incomplete Gamma functions
respectively, and where Σ represents the covariance matrix of the centred variable
Xi. Based on the results obtained in Chapter 4, Σ is defined as λ∆ where ∆ is a
diagonal matrix with |∆| = 1 and λ ∈R∗+.

The integration of the NFAN criterion, and more specifically the computa-
tion of the significance (cf Eq. (4.2)), is illustrated on Figure 5.1. To do so, we
first modify the YOLO detection head by separately predicting the bounding box
coordinates, the classification scores and the objectness scores. We then replace
the original convolution step for predicting the objectness score by the basic NFA
block (which computes Eq. (4.1), cf. Figure 4.3a). Finally, we apply the Sigmα ac-
tivation function to obtain an objectness score that ranges between 0 and 1. Note
that since the YOLO version we consider is multi-scale, we obtain several signif-
icance maps. As specified in Section 4.1.2 of Chapter 4, each scale has the same
weight in the decision, since we define a constant value for ηtest. This strategy may
be suboptimal in some cases, where many large objects need to be detected. For
this purpose, we introduce some weighting coefficients, which are obtained using
an attention layer as in Section 4.1.2. The integration of an ECA layer is omit-
ted in Figure 5.1 for simplicity, but is similar to its integration into segmentation
networks (cf. Figure 4.2).

We train the YOLO+NFAN in an end-to-end manner using the Mean Squared
Error loss as it has shown to lead to better performance in our experiments.

5.1.2 Object-level NFA: first version

One drawback of the previous formulation is that it provides an objectness score
for each grid-cell (which represents the centre of the object, and has a limited
spatial extent) and does not take into account the size of the predicted bounding
box. We propose to explore and adapt an object-level formulation of the NFA to
a YOLO architecture, in order to explicitly take into account the spatial extent of
the predicted bounding box.

NFA formulation – Let us first describe our object-level NFA formulation for
a single-channel feature map. It is similar to the formulation we introduced in Sec-
tion 3.4.2, where we simultaneously consider grey level characteristics and spatial
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structuring (point density). As a reminder, we consider that a set of pixels likely
to represent a target is all the more significant as it contains many points that
are spatially close and of high value on the score map. In contrast, we assume in
our first object-level NFA version that the points are uniformly distributed within
a bounded 2D space rather than a 3D space. Therefore, the naive model is the
Bernoulli distribution of parameter p representing the presence of a pixel at a given
position in a discrete and bounded 2D space E ⊂ R2, with the axes representing the
spatial coordinates. The probability of observing at least κ pixels in a rectangle
of area ν is then the Binomial distribution of parameter p. Therefore,

NFAU1 (κ, ν, p) = ηtest

ν∑
i=κ

(
ν

i

)
pi (1− p)ν−i , (5.1)

where ηtest is the number of tests, i.e. the number of tested 2D tiles (or cuboids
for the second version of object-level NFA, cf. Section 5.1.3).

The previous formulation can only be applied to single-channel feature maps.
We adapt this formulation to multi-channel feature maps by considering a 3D
space instead of a 2D space, where the third axis represents the channels of the
feature map. More specifically, we compute the number of points κ in the volume
ν, and compare it to the 3D density p of the feature map using Eq. (5.1).

ROI Align

significance 

objectness0.72

22.4

Backbone Neck Bounding box predic�on  detec�on head

YOLO framework
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Significance layer - Eq.(2)

Input

Unexpected  high density
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+ BBox

Figure 5.2: Integration of our object-level criterion into a YOLO framework,
through the NFAU1 detection head. This module can be added on top of any
YOLO.

Integration within YOLO – The overall architecture of our approach is illus-
trated in Figure 5.2. The infrared input images first go through a YOLO backbone
that extracts the feature maps at different scales. Then, the three lower-level fea-
tures are combined together through the neck, which gives us the final feature
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maps {Fi}i∈J1,...,3K used to perform the detection at three levels. To achieve the
detection, the bounding box coordinates are first predicted through a dense layer.
We then introduce our NFAU1 module to re-estimate the objectness score for each
bounding box using the NFA criterion. To do so, we extract ηtest ROI, denoted
as froi, using ROI Align from Faster R-CNN [45], and we compute a significance
score SU1 (κ, ν, p) = − ln(NFAU1(κ, ν, p)) for each ROI through the significance
layer. Finally, since the significance values range from [− ln(ηtest),+∞), where
large values correspond to possible targets, to obtain objectness scores that range
in [0, 1], we apply the Sigmα activation function with α = 0.5. This allows us to
apply the Binary Cross Entropy loss used in YOLO. As in Section 5.1.1, we weight
each spatial scale by applying a channel-attention layer.

Our significance layer in Figure 5.2 integrates the a contrario criterion given
in Eq. (5.1). However, since this equation is (i) designed for binary images rather
than greyscale feature maps, and (ii) not differentiable, several approximations
were made in order to allow its integration into the YOLO training loop. The
first difficulty raised by Eq. (5.1) is to count the number of “true” pixels κ in
froi ∈ R2. Thresholding froi to binarise it would break the back-propagation
loop. Thus, we propose instead to consider real number membership coefficients
(in the spirit of fuzzy clustering or classification), which boils down to handling,
for each pixel, a coefficient indicating the degree to which it belongs to the set
containing pixels with a value of 1 in the binary case. For this purpose, we apply
the sigmoid function σ on the pixel values, which allows us to approximate the
number of pixels contained in froi for estimating the local density, by the sum of
these fuzzy belonging coefficients. The same approximation is made to compute
the total number of points in Fi for estimating the parameter p (representing the
global density of Fi) of the binomial law in Eq. (5.1). The second issue is that the
NFAU1 function is discontinuous, non differentiable and, as we deal with objects
having a small area ν, it only takes very few distinct values. These elements make
it difficult to integrate Eq. (5.1) “as is” into the training loop, with a working
back-propagation. We therefore use the Hoeffding approximation when κ

ν
> p for

computing the significance, leading to

SU1 (κ, ν, p) ≈ ν

[
κ

ν
ln

( κ
ν

p

)
+
(
1− κ

ν

)
ln

(
1− κ

ν

1− p

)]
− ln ηtest. (5.2)

This allows us to expand the codomain of the function SU1 (κ, ν, p) to R, and
to output more intermediate values. In the case of κ

ν
≤ p, we simply assign

SU1(κ, ν, p) = − ln(ηtest) using ReLU activation function, as it corresponds to ob-
vious background values.
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Figure 5.3: Illustration of the NFAU2 formulation. Sub-figure (a) represents the
feature map Fi, and a third axis representing the transformed values g(x, Fi) is
introduced in sub-figure (b).

5.1.3 Object-level NFA: second version

Note that, with the object-level NFAU1 formulation described in Section 5.1.2,
applying the sigmoid function σ to approximate the number of pixels contained in
froi reduces the dynamics of the feature maps, resulting in a loss of information.
To counter this, we propose a 3D version of the previous object-level NFAU1 for-
mulation, where the third axis represents the transformed score values instead of
the channels of the feature map. This second object-level formulation is coined as
NFAU2 .

To achieve this, the score values are transformed so that the low score values
lead to a high volume (and thus a less significant region), while high score val-
ues define a dense region (i.e., a cuboid with a low volume). More precisely, for
computing ν in a 3D space where the spatial area is defined by froi, we estimate
the height of the cuboid by computing the distance between the average value of
froi and the maximum value of the feature maps. The same approach is used for
computing p in the 3D space defined by Fi. For this purpose, the following de-
creasing function is introduced: g(x, Fi) = max(1,max(Fi)−mean(x)), where x is
a region in the feature map Fi, max(·) is the function that provides the maximum
value of an element and mean(·) its average value. The function g(x, Fi) ensures
that its minimum height is 1, allowing to compute a proper volume. By using the
functions g(froi, Fi) and g(Fi, Fi) for computing the volume ν defined by froi and
the density p defined by Fi respectively, a tested box with high greyscale values
will result in a high density box (i.e., many points close to 1 contained in a little
volume), meaning that this box is significant with respect to the NFAU2 criterion.
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An illustration of the NFAU2 formulation is given in Figure 5.3. In practice, to in-
crease the robustness of the training process, we estimate max(Fi) globally across
all training batches using exponential moving average.

The multi-channel version of the NFAU2 formulation is slightly different since
we cannot consider, at the same time, both the channels and the greyscale level
as the third axis of the cuboid. Therefore, to take into account the multi-channel
characteristic of the feature maps, we first compute the significance associated to
NFAU2 for each channel independently, and then we merge the obtained signifi-
cance maps by taking the union of detections, as described in Section 4.1.2.

5.2 Experiments

Notation Description
NFAN Pixel-level NFA head based on Eq. (4.1).
NFAU1 First version of the object-level NFA head introduced in Section 5.1.2.

It is based on the 3D version of Eq. (5.1) where the third axis represents
the channel-wise dimension of the feature maps.

NFAU2 Second version of the object-level NFA head introduced in Section 5.1.3.
It is also based on Eq. (5.1) but in this case the third axis represents a
transformation of the feature map scores. The multi-channel aspect is
taken into account by merging the NFA maps obtained independently
for each channel (by taking the union of detections).

Table 5.1: Notations and description of the different NFA detection heads.

In this section, we evaluate the benefits of our different NFA heads for YOLO-
based small object detection. More precisely, we evaluate three NFA formulations:
the pixel-level NFAN , and the two-object-level versions NFAU1 and NFAU2 . Ta-
ble 5.1 recalls briefly the characteristics of each NFA formulation. We first add our
NFA detection heads on the YOLOv7-tiny baseline, and compare our results to
several baselines: 1) generic YOLO baselines1 such as YOLOv3 [48], YOLOR [92],
YOLOv7 and YOLOv7-tiny [49] and 2) SOTA segmentation networks introduced
in Section 4. We also evaluate our methods in different scenarios. We first eval-
uate them on infrared small target detection tasks by considering NUAA-SIRST
and IRSTD-850 datasets, with the train/val/test splits described in Section 4.2.2.
As YOLO networks are designed to take large image inputs, we upsample all
images to the size 640 × 640 using bicubic interpolation. Second, we study the

1For YOLO baselines, we used the official PyTorch implementation of
YOLOWongKinYiu/yolov7.

https://github.com/WongKinYiu/yolov7
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robustness of our methods towards few-shot training and knowledge transfer from
SIRST dataset to IRSTD-850 dataset. Then, we discuss incorporating our NFA
head into small object friendly YOLO architectures, and finally, we propose to
extend the application of our methods to the detection of slightly larger objects
(but still considered as small objects) with the dataset VEDAI. All networks are
trained from scratch on Nvidia RTX6000 GPU for 600 epochs, with Adam opti-
miser [93], a batch size equal to 16 and a learning rate equal to 0.001. We use the
same data-augmentation functions as those proposed by default in YOLOv7-tiny
implementation.

5.2.1 A contrario reasoning benefits YOLO-based IRSTD

Method F1 AP Prec. Rec. #params
SOTA segmentation networks for IRSTD

DNANet [8] 96.9±0.5 98.1±1.2 96.6 97.2 4.7 M
DNIM [8] + NFAN 97.6±0.3 98.4±0.6 97.9 97.4 4.8 M

Object detection methods
YOLOv3 [48] 96.1±0.3 97.5±0.1 96.9 95.4 61.5 M
YOLOR [92] 95.7±2.2 96.7±1.1 96.5 94.9 52.5 M
YOLOv7 [49] 96.5±1.2 97.6±0.7 97.2 95.9 36.9 M
YOLOv7-tiny 96.5±0.6 97.8±0.4 96.9 96.2 6.0 M

YOLOv7-tiny + NFAN 97.6±0.3 98.3±0.1 97.6 97.6 6.5 M
YOLOv7-tiny + NFAU1 96.8±1.6 98.1±0.3 99.6 94.2 6.4 M
YOLOv7-tiny + NFAU2 97.0±0.3 98.3±0.3 98.6 95.5 6.4 M

Table 5.2: Object-level metrics (F1, AP, Prec., Rec.) achieved by the compared
methods on NUAA-SIRST. Best results are in bold and second best results are
underlined. The number of training parameters (#params) is also given.

Tables 5.2 and 5.3 provide the performance achieved by each of the compared
methods on NUAA-SIRST and IRSTD-850 respectively. More specifically, the
contribution of our three NFA head versions is compared to some YOLO base-
lines, as well as to SOTA segmentation networks for IRSTD, namely DNANet and
DNIM+NFAN (cf. Chapter 4).

Let us first analyse the results obtained on NUAA-SIRST, which is our refer-
ence dataset. From Table 5.2 we can see that substituting the conventional YOLO
detection head with one of our NFA heads (NFAN , NFAU1 or NFAU2) benefits
the detection of small targets of YOLOv7-tiny backbone. Indeed, the object-level
NFA heads NFAU1 and NFAU2 increase the F1 value of the YOLOv7-tiny baseline
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Method F1 AP Prec. Rec.
SOTA segmentation networks for IRSTD

DNANet [8] 91.4±1.4 92.4±1.9 91.8 91.1

DNIM [8] + NFAN [94] 91.3±0.7 94.2±0.2 92.1 90.6

Object detection methods
YOLOv7-tiny 84.0±3.9 88.8±3.3 85.1 82.3

YOLOv7-tiny + NFAN 90.1±1.1 94.1±0.5 91.8 90.7

YOLOv7-tiny + NFAU1 86.0±2.3 90.4±0.9 88.2 84.3

YOLOv7-tiny + NFAU2 86.8±1.5 89.2±2.2 85.8 87.9

Table 5.3: Object-level metrics (F1, AP, Prec., Rec.) achieved by the compared
methods on IRSTD-850. Best results are in bold and second best results are
underlined.

by at least 0.3%. The precision criterion is significantly improved, which shows
that object-level NFA heads efficiently control the false alarm rate. Note that the
NFAU2 version seems to be more efficient and robust than the NFAU1 version: the
compression of the grayscale dynamics in the NFAU1 version may be the reason
for this observation.

However, our pixel-level NFAN head performs significantly better than the
other versions. Indeed, it increases the baseline F1 score by 1.1% and the AP
criterion by 0.5%. It not only improves the precision but also the recall criterion,
which is one of the main weakness of YOLO backbones. Indeed, the YOLO back-
bones struggle to detect the small objects, as explained in Section 5.1. Adding an
a contrario criterion, more specifically the pixel-level version, helps in enhancing
small object features and thus discriminating them from complex backgrounds.
Our pixel-level NFAN head not only improves YOLO for tiny object detection,
but also bridges the performance gap observed between SOTA IRSTD segmenta-
tion NN and conventional object detection NN. Specifically, our method performs
better in terms of F1 and AP criteria than DNANet (+0.7%), and is on par with
the method we proposed in Chapter 4, namely DNIM+NFAN . In terms of compu-
tational complexity, our NFA heads add very few training parameters (less than 0.5
million), which allows us to consider real-time detection with YOLO backbones.
Figure 5.4 shows some predictions of the baseline YOLOv7-tiny and our method.
We can see that the baseline leads to several false alarms for inputs shown in
columns 3 and 4, while our method provides correct detections without any false
alarm.

Table 5.3 provides the results obtained on IRSTD-850 dataset. We can first
notice that YOLO baseline performs significantly worse than SOTA segmentation
networks. Indeed, YOLOv7-tiny achieves a F1 value of 84.0%, which is 6.4%
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Figure 5.4: Qualitative results obtained with YOLOv7-tiny and our method (NFA
head) on NUAA-SIRST dataset. Good detections and false positives are framed
in green and red, respectively.

lower than DNANet. The recall rate is particularly low, which means that several
targets are not detected. Unlike NUAA-SIRST dataset, IRSTD-850 contains more
tiny targets, and it is a well-known fact that YOLO backbones struggle with tiny
object detection. Adding the pixel-level NFAN head significantly improves the
performance, although it does not reach the F1 score of DNANet. Nonetheless,
our NFAN detection head bridges the performance gap between YOLO baselines
and SOTA segmentation networks for IRSTD. Figure 5.6 show some predictions.

From Table 5.3, we can also notice that object-level NFA heads tend to per-
form worse than the pixel-level NFA head. A deeper analysis of the results allows
us to hypothesise that this decrease in performance is mostly due to a box local-
isation error. Indeed, if we decrease the IoU constraint for evaluating whether a
predicted box is a true positive or a false alarm, we can observe that the perfor-
mance increases only for object-level NFA heads, not for the baseline or for the
NFAN head. More specifically, by fixing the IoU to 1% instead of 5%, YOLOv7-
tiny+NFAU1 leads to an F1 score of 87.8% and YOLOv7-tiny+NFAU2 reaches a
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a) Ground-truth

Figure 5.5: Illustration of the bounding box localisation error for NFAU2 detection
head.

F1 score of 87.2%. As explained in Section 4.2.2, the evaluation of tiny object
detection is particularly sensitive to the choice of the IoU, and a small error in the
box localisation can have a large impact on the IoU with the ground-truth.

Figure 5.5 provides another argument in favour of our hypothesis: we can notice
that the bounding boxes predicted by our object-level NFA heads are smaller than
both the ground-truth and those predicted by the baseline. This could be a bias
induced by the NFA formulation, which considers very dense boxes to be more
significant. For a same object, the box inside the object is likely to be more
dense in terms of the number of points with value 1 than the box surrounding the
object. This may explain the box localisation error and thus the poor performance
in detecting very tiny objects. Further experiments or strategies to overcome the
problem are left for future work. In the next sections, we will consider only the
pixel-level NFAN and object-level NFAU2 formulations for our experiments as they
have shown to be more efficient than NFAU1 version.

To conclude this subsection, we have seen that adding the a contrario paradigm
into the training loop of a YOLO network improves the performance, especially
when considering the pixel-level NFAN head. More specifically, it both controls the
number of false alarms and improves the recall rate, which is one major weakness
of YOLO backbones when it comes to small object detection. An attempt of
qualitative explanation for the control of the number of false alarm can be provided
by Figure 5.7, which shows the objectness score map given by the highest-level
scale for YOLOv7-tiny, YOLOv7-tiny+NFAU1 and YOLOv7-tiny+NFAN . The
objectness map obtained by YOLOv7-tiny is particularly noisy, although the target
stands out against the noise. We can clearly see the contribution of the NFA layer,
which efficiently removes the noise. This leads to a clean segmentation map and
makes it easier to choose a threshold on the objectness score while guaranteeing a
high precision value.
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a) Input b) YOLOv7-tiny

Figure 5.6: Qualitative results obtained with YOLOv7-tiny and YOLOv7-tiny +
NFAN on IRSTD-850 dataset. Good detections and false positives are framed in
green and red, respectively.
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Figure 5.7: Objectness score feature maps. From left to right: original image
and objectness score maps obtained by YOLOv7-tiny, YOLOv7-tiny + NFAU1 ,
YOLOv7-tiny + NFAN .

5.2.2 Robustness analysis

Method
25-shots 35-shots 45-shots

F1 AP F1 AP F1 AP
YOLOv7-tiny 21.8±13.6 15.0±13.4 53.1±21.4 52.8±26.9 56.6±7.7 60.3±9.9

+ NFAN 93.6±1.2 95.0±0.2 94.8±0.9 96.9±1.1 95.5±0.3 97.7±0.2

+ NFAU2 75.0±6.9 79.3±7.4 87.8±1.0 92.8±0.6 91.6±1.9 94.3±1.4

Table 5.4: Results achieved in 25, 35 and 45-shot settings on NUAA-SIRST. Best
results are in bold.

Method F1 AP
DNIM 83.4 83.6

DNIM + NFAN 84.9 91.2
YOLOv7-tiny 74.4 77.4

YOLOv7-tiny + NFAN 79.8 82.5

YOLOv7-tiny + NFAU2 75.4 78.4

Table 5.5: Knowledge transfer from NUAA-SIRST to IRSTD-850.

One important motivation for integrating a contrario reasoning into a NN is
that the network learns to discriminate small targets by learning a representation
of the background elements rather than the targets themselves. As seen previously,
this leads to cleaner objectness score maps, which illustrates the effective control of
the false alarms. It should thus provide robustness to the NN against weak training
conditions. To confirm our intuition, we quantitatively evaluate the benefit of the
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proposed approach in two weak conditions: a few-shot setting on NUAA-SIRST
dataset, and knowledge transfer from NUAA-SIRST to IRSTD-850.

Few-shot training - For this purpose, we trained the networks on 25, 35 and
45 images. We did not consider 15-shot setting as the baseline does not converge
under this setting. For each few-shot setting, we train the detectors on three
distinct folds, with no overlap between them. The results obtained on the test set
defined in Section 5.2 are averaged over these three folds and the computed means
are given in Table 5.4. It can be seen that in such a frugal setting, our method
performs significantly better than the baseline. Indeed, the baseline struggles to
achieve decent performance in few-shot settings, reaching only 56.6% of F1 score in
the 45-shot setting. Both NFAN and NFAU2 formulations outperform the baseline
by a large margin. For example, NFAU2 improves the baseline by 53.2% in the
25-shot setting, and by 35% in the 45-shot setting. The performance achieved
by NFAN is even more impressive: it already achieves a F1 score of 93.6% when
trained with only 25 images. The F1 score decreases by only 4% when dividing
by more than 10 the number of training samples. We thus conclude that adding
a NFA head to the baseline significantly improves its robustness towards frugal
setting. As explained for the segmentation in Section 4.2.3, such performance in
few-shot setting is achieved thanks to the a priori on the unexpectedness of the
small targets in comparison with the background induced by the a contrario test.

Knowledge transfer - We propose to evaluate the generalisation ability of
weights trained on NUAA-SIRST to a more difficult dataset, namely IRSTD-850.
Table 5.5 provides the results of the knowledge transfer without any fine-tuning
step. It is clear that including a NFA criterion, especially the pixel-level one
NFAN , brings robustness to the network. Indeed, YOLOv7-tiny+NFAN achieves
a F1 score that is about 5% higher than the baseline YOLOv7-tiny. The object-
level NFA head also brings robustness, though the margin is smaller. However,
the SOTA segmentation networks still perform significantly better for transferring
the knowledge from NUAA-SIRST to IRSTD-850.

These experiments suggest a good robustness and generalisation capacity of
the NN that includes our pixel-level NFAN criterion in the detection head. This
is particularly interesting when dealing with data that slightly differs from the
distribution of the training data: changing brightness, background, noise, etc.

5.2.3 Small object friendly YOLO baselines

In the IRSTD literature, very few methods rely on YOLO-type networks, even
though several baselines have been adapted for small object detection. These
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baselines aim to address two major shortcomings of YOLO pipelines:

• The generic YOLO architectures are not well-suited for small ob-
jects – Since detection is performed on low-resolution feature maps, target
information gets lost, negatively impacting recall. One potential solution
is to perform detection on higher-resolution feature maps, as proposed in
YOLO-fine [95].

• IoU-based metrics, which are used both to evaluate models and
train them, are not well-adapted for small objects – This is mainly
because IoU is highly sensitive to slight deviations for small objects, and
when the IoU is zero, the cost function provides no indication of the distance
or error between the prediction and ground truth. An increasingly popular
solution in the literature involves modelling bounding boxes as 2D Gaus-
sians and estimating the distances between boxes by directly calculating the
distance between their distributions [96, 97].

Note that these methods have been minimally explored for IRSTD [68]. Al-
though we have demonstrated the effectiveness of NFA on generic YOLO networks,
it is reasonable to question whether our module also improves YOLO baselines that
are better suited for small object detection. To achieve this, we will consider two
variants of YOLO adapted for small object detection:

1. YOLOv7-tiny-1scale – We remove the two low-level detection scales and
retain only the high-level detection branch.

2. YOLOv7-tiny + NWD – As in [96], we introduce a Gaussian prior by
modelling the bounding boxes as 2D Gaussian distributions and use the
normalised Wasserstein distance (NWD) to evaluate the discrepancy between
the predicted boxes and the ground truth.

Table 5.6 provides the obtained results. We can observe that small object-
adapted baselines YOLOv7-tiny-1scale and YOLOv7-tiny + NWD significantly
improve performance, with an increase of over 5% in F1 score compared to YOLOv7-
tiny. The literature on small object detection thus appears highly beneficial for
the detection of small targets. Even more impressive, by adding our NFA module
to these improved baselines, we achieve even better performance, particularly on
the IRSTD-850 dataset. Finally, by combining all these approaches, YOLOv7-
tiny-1 scale+NWD+NFAN surpasses the SOTA segmentation method DNANet
on IRSTD-850 dataset by more than 1% in F1 score and almost 3% in AP. This is
a first for a detection network, highlighting the importance of network design and
the contribution of the NFA module, even on an already strong baseline.



120CHAPTER 5. INTEGRATION WITHIN OBJECT DETECTION METHODS

Backbone init.
SIRST IRSTD-850

F1 AP F1 AP
SOTA IRSTD baselines
DNANet 96.9 98.1 91.4 92.4

YOLO baselines
YOLOv7-tiny 96.5 97.8 84.0 90.1
+NFAN 97.6(+0.7) 98.3(+0.2) 90.1(−1.3) 94.1(+1.7)

YOLO 1 scale
YOLOv7-tiny-1scale 96.6 97.9 90.5 93.6
+NFAN 98.1(+0.5) 98.5(+0.1) 91.3(−0.1) 95.4(+3.0)

YOLO + Gaussian prior (NWD)
YOLOv7-tiny + NWD 97.4 98.0 89.9 94.2
+NFAN 97.9(+0.8) 99.0(+0.6) 90.8(−0.6) 95.2(+2.8)

Best ++
YOLOv7-tiny-1 scale+NWD+NFAN 97.5(+0.4) 98.4(+0.0) 92.5(+1.1) 95.3(+2.9)

Table 5.6: Object-level metrics (F1, AP) achieved by methods adapted for small
object detection on SIRST and IRSTD-850 datasets. Best results are in bold and
second best results are underlined.

5.2.4 Generalisation to vehicle detection

Method F1 AP Prec. Rec.
YOLOv7-tiny 68.4±2.3 72.5±3.0 74.6 63.2

+ NFAN 76.3±0.4 81.9±0.5 75.9 76.9

+ NFAU2 71.0±0.9 75.9±0.7 74.4 68.1

Table 5.7: Object-level metrics (F1, AP, Prec., Rec.) achieved by the compared
methods on VEDAI. Best results are in bold and second best results are underlined.

The NFA heads were specifically designed for very small objects that do not
present a specific structure, and they have proved in previous paragraphs to bring
robustness and even outperform the baseline in this case. We want to challenge our
methods and apply them to a different scenario where the targets are larger (but
still occupy a small percentage of our image) and present a geometric structure
that is easily identifiable to the naked eye. To do this, we consider the publicly
available VEDAI dataset [10], which is used for benchmarking vehicle detection in
aerial images. It is composed of 1200 RGB images and their associated infrared



5.2. EXPERIMENTS 121

images, both of size 512×512. We split the VEDAI dataset into training, validation
and test sets using a ratio of 60 : 20 : 20.

Table 5.7 presents the results obtained on the VEDAI dataset, and we can
see that both the pixel-level and object-level NFA improve the baseline YOLOv7-
tiny. Indeed, YOLOv7-tiny+NFAU2 increases the F1 score and the AP by about
3% while also reducing the standard deviation, meaning that the network is more
robust to the weight initialisation. The pixel-level NFAN further improves the
results, by increasing both criteria by at least 8%.

a) Input b) YOLOv7-tiny

Figure 5.8: Qualitative results obtained with YOLOv7-tiny, YOLOv7-tiny+NFAN
and YOLOv7-tiny + NFAU2 on the VEDAI dataset. Good detections, missed
detections and false positives are framed in green, yellow and red, respectively.

Figure 5.8 shows some predictions on the VEDAI dataset. We can notice that
the baseline leads to more detections, but also to many more false alarms than the
methods including the NFA criteria. This is especially true for the images that
tackle multiple object detection, as evidenced by the second line. From Figure 5.8
we can also notice that YOLOv7-tiny+NFAN struggles to detect multiple large
objects. For example, if we look at the third line, we can see that YOLOv7-tiny
and YOLOv7-tiny+NFAU2 can detect several planes, while YOLOv7-tiny+NFAN
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Figure 5.9: F1 score dynamics depending on the objectness scores, averaged over
SIRST, IRSTD-850 and VEDAI datasets, for a) NFAN , b) NFAU2 , and c) the
baseline.

only detects the small vehicle next to the planes, but not the planes themselves.
The fact that the NFAN detection head leads to particularly poor performance for
large object detection is consistent with its formulation: the a contrario paradigm
improves the detection of unexpected events and thus assumes that the objects
to be detected are anomalies. Since large objects (or multiple small objects) can
represent a significant portion of the image, they are no longer considered as un-
expected events by our NFAN detection head.

The NFAU2 formulation is more robust than NFAN version for large object
detection since at equal densities, a larger object is more significant than a smaller
one. This phenomenon can be seen on Figure 5.9, which represents the F1 score
dynamics depending on the objectness score for each method for several datasets.
We can notice that for the NFAN detection head, the larger the objects are in the
datasets (e.g., the VEDAI dataset), the lower the objectness scores will be. We
observe the opposite trend for the NFAU2 formulation, where higher objectness
scores can be achieved on the VEDAI dataset. The baseline does not seem to
be sensitive to this criterion. This suggests that when dealing with medium-sized
objects only (the VEDAI dataset still has a high proportion of very small cars),
the NFAU2 formulation may be more efficient.

5.2.5 Ablation study

Table 5.8 presents the ablation study made on some components of our different
NFA modules. More specifically, we study the benefits of using a MC formulation
and also of using channel attention (ECA) for weighting the maps obtained at
different scales. This study is performed for the three versions of our NFA modules,
namely using the NFAN , the NFAU1 and the NFAU2 formulations. We also provide
the results achieved by the NFAU1 head with a single channel as input (NFA SC
column), which confirms the benefit of giving a multi-channel feature map as an
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NFA NFA SC MC ECA F1 AP
NFAN ✓ 97.6±0.8 98.3±0.1

NFAN ✓ ✓ 97.6±0.3 98.3±0.1

NFAU1 ✓ 96.0±0.8 97.5±0.5

NFAU1 ✓ 96.4±0.6 98.0±0.2

NFAU1 ✓ ✓ 96.3±1.1 98.0±0.2

NFAU1 ✓ ✓ 96.8±1.6 98.1±0.3

NFAU2 96.5±1.4 98.1±0.2

NFAU2 ✓ ✓ 97.0±0.3 97.8±0.3

Table 5.8: Ablation study performed on NUAA-SIRST. We evaluate (using object-
level metrics) the different formulations of NFA (NFAN , NFAU1 , and NFAU2)
and compared the benefits of MC and using channel attention (ECA) in our NFA
modules. We also provide the results of NFAU1 head when a single-channel feature
map (NFA SC) is provided as an input of this module.

input for our NFAU1 head. We provide results averaged over three runs on NUAA-
SIRST dataset.

The NFAN formulation is already multi-channel, so we are only analysing the
contribution of attention per channel. As a reminder, by choosing a constant
number of tests ηtest as discussed in Section 3.3 of Chapter 3, each spatial scale
has the same impact on the decision: the NN detects both small objects (fine
resolution scale) and larger objects (low resolution scale), without any preference.
However, depending on the image or application, we might want to favour the
detection of objects of larger or smaller size. This is why we have proposed the
use of a channel-based attention module to give each spatial scale a weighting
that favours (or not) the detection of objects of a given size. From Table 5.8
we can notice that using ECA layer does not improve the performance for the
NFAN , however it seems to bring robustness in the results, since we observe a
small decrease in the standard deviation.

For the NFAU1 version, ECA layer significantly improves the performance.
Moreover, introducing a multi-channel version of this NFA formulation also im-
proves the performance, with an F1 score increased by 0.4%. The combination of
both MC and ECA leads to best performance for the NFAU1 formulation.

Since we have empirically demonstrated the contribution of MC and ECA
independently on the NFAU1 formulation, we present only the results of MC and
ECA combined for the NFAU2 version. The last line of Table 5.8 confirms the
contribution of these two elements to the robustness of the training. The F1 score
is also improved by 0.5%.

Overall, multi-channel formulations and the use of channel-attention to auto-
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matically weight the different spatial scales improve and stabilise the performance
of each NFA version. These conclusions are consistent with those observed in the
Chapter 4.

5.3 Conclusion

In this chapter, we proposed to integrate different a contrario criteria into the
detection head of a YOLO network, in order to re-estimate the objectness scores
provided by YOLO. Specifically, we have designed three detection heads based
on three different NFA formulations: the NFAN , whose naive model is a normal
distribution, and two versions based on a uniform naive model, namely NFAU1

and NFAU2 . The latter two versions are used to compute a NFA at the object
level (i.e., on the predicted bounding box) and allow for better modelling of the
relationships between the predicted bounding boxes and their associated objectness
scores. Evaluations on SIRST, IRSTD-850 and VEDAI datasets have confirmed
the benefits of the a contrario paradigm for detecting small objects using a YOLO
backbone. This is even more true under challenging conditions, such as in a frugal
context or when transferring knowledge from SIRST to IRSTD-850. Although
the object-level versions of the NFA, in particular NFAU2 , improve the YOLO
baseline in most cases, it is the NFAN version, introduced in Chapter 4, that
is more robust and performs best on all benchmarks. Furthermore, YOLOv7-
tiny + NFAN bridges the performance gap with SOTA segmentation methods for
detecting small targets. Even more impressive, adding our NFA module on top of
a YOLO baseline adapted for small object detection leads to new SOTA results.
We will retain this NFA formulation as the most efficient for IRSTD, and in the
following any reference to a NFA will refer directly to NFAN .

This chapter concludes Part I, in which the benefits of the a contrario paradigm
for small target detection were demonstrated through a large number of experi-
ments. By integrating the NFA test, in particular NFAN , into the training loop of
a segmentation network and then into a detection network, we have not only im-
proved the respective baselines, but also obtained results that are very competitive
with the SOTA networks for infrared small target detection. The following 5.9
and 5.10 tables provide an overview of the performance achieved by the methods
we developed in Part I on two IRSTD datasets, namely SIRST and IRSTD-850.
Table 5.9 shows that both DNIM + NFAN and YOLOv7-tiny + NFAN outper-
form the SOTA network DNANet on the SIRST dataset. Regarding the results
obtained on the IRSTD-850 dataset, DNANet and DNIM + NFAN perform on
par, while generic YOLO-based methods yield poorer results on this challenging
dataset. Nevertheless, integrating the a contrario criterion into YOLOv7-tiny al-
lows us to improve the baseline by a large margin and to reduce the performance



5.3. CONCLUSION 125

Method
NUAA-SIRST IRSTD-850

F1 AP F1 AP
DNANet 96.9 98.1 91.4 92.4

DNIM + NFAN 97.6(+0.7) 98.4(+0.3) 91.3(−0.1) 94.2(+1.8)

YOLOv7-tiny 96.5 97.8 84.0 90.1
YOLOv7-tiny+NFAN 97.6(+0.7) 98.3(+0.2) 90.1(−1.3) 94.1(+1.7)

YOLOv7-tiny-1 scale+NWD+NFAN 97.5(+0.6) 98.4(+0.3) 92.5(+1.1) 95.3(+2.9)

Table 5.9: Results obtained on SIRST and IRSTD-850 datasets. The best results
are in bold, the second best results are underlined and the improvement over the
baselines is indicated in the superscript.

gap with SOTA segmentation methods. Furthermore, adding our NFA module on
top of a specific and strong YOLO baseline (namely YOLOv7-tiny-1 scale+NWD)
leads to a very efficient method that outperforms the SOTA segmentation baseline
for IRSTD. Last but not least, YOLOv7-tiny + NFAN outperforms both baselines
and DNIM + NFAN in a frugal setting, as shown by Table 5.10. This confirms the
relevance of using an a contrario criterion to improve the performance of baselines
under very difficult training conditions, such as a frugal context.

Method
25-shots

F1 AP
DNIM 87.0 82.6

DNIM + NFAN 90.9(+3.9) 93.1(+10.4)

YOLOv7-tiny 21.8 15.0

YOLOv7-tiny + NFAN 93.6(+71.8) 95.0(+80.0)

Table 5.10: Results achieved in a 25-shot setting on SIRST dataset. Best results
are in bold, second best results underlined and the improvement over the baselines
is indicated in the superscript.

In the light of the results and conclusions drawn in this first part, we can
identify two main short-term perspectives:

• Improving small target detection without impairing the detection
of larger or more numerous objects – Indeed, we have seen that NFAN
detection and segmentation heads struggle with the detection of larger ob-
jects. More specifically, when the objects to be detected occupy a fairly large
portion of the image, the significance scores output by our NFAN module
drop sharply, which can lead to many missed detections. Several strategies
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can be explored to overcome these limitations. For example, the background
statistic can be estimated more robustly from a larger number of samples,
rather than from a single image. Another solution is to rely on ensemble
methods to merge the predictions of two (or more) detectors: one specialised
in detecting large objects (e.g., the common object detection baselines), the
other specialised in detecting small objects (e.g., using a NFA detection
head).

• Adapting the YOLO backbone for small object detection – As ob-
served on IRSTD-850 dataset, generic YOLO backbone is not as efficient as
SOTA segmentation baselines, even when using the NFAN detection head.
The use of strong YOLO baselines that are specific to small object detection
have proven to significantly improve the results, leading to SOTA results
when using our NFA detection head. This shows the importance of the en-
coder design, although the use of our NFA module with a generic YOLO
backbone already leads to good performance. Another idea could be to
boost the network training by using appropriate pre-trained weights for the
encoder. This is what we propose to do in the following section with the use
of weights pre-trained in a self-supervised manner.
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Chapter 6

A survey on self-supervised learning
for image representation learning
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Figure 6.1: SSL methods for image representation learning.

This chapter is the first in Part II, where we investigate the usefulness and
the potential benefits of SSL for small target detection. Specifically, SSL consists
in an unsupervised training of deep learning networks (often only the encoder)
using a well-designed pretext task. The aim of this pre-training task is to help the
network learning features or invariances that are relevant for the final task (also
called the downstream task). One of the motivations comes from the fact that
SSL methods have been shown in the literature to improve SOTA performance
for many use cases. More specifically, SSL allows the network to learn general
features from large unlabelled datasets which, when transferred to a final task, will
improve performance despite difficult fine-tuning conditions (e.g., little annotated
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data or few computational resources). However, the use cases considered in the
literature mainly concern classification or the detection of objects of medium to
large size. The following question arises: do these conclusions transpose to the
detection of small targets too? And under what conditions? In this first chapter
of Part II, we propose a survey of the different SSL methods that exist for image
representation learning in general. This survey is not specific to object detection
(and in fact, these methods are often designed for classification), but it provides
an introduction to most of the paradigms and issues that arise in SSL. Several
recent surveys on SSL for image representation learning have been proposed in the
literature [98, 99, 100, 101]. We present the SSL from another point of view, with
a particular focus on masked Image Modelling (IM) methods compared to existing
surveys. The general taxonomy we propose in Figure 6.1 is closer to the one
proposed in [100, 101]. Indeed, we claim that the SSL pretext tasks can be divided
into two main categories: instance discrimination methods, and image modelling.
We will present these two approaches in detail in the following sections.

Then, in Chapter 7, we extend this survey (and thus complete what is proposed
in the literature) by proposing a survey specific to SSL methods for object detec-
tion. We also propose to benchmark different SSL methods on several datasets,
with a focus on small object detection.

6.1 Instance discrimination

Instance discrimination methods aim at modelling the decision borders between
sub-sets of data represented in the latent space. Fundamental methods consid-
ered images as instances, and perform inter-image discrimination, as illustrated on
Figure 6.2. Concretely, the optimisation objective consists in minimising, in the
latent space, the distance between features of instances that share similar semantic
properties. Given two transformed images, if these images are augmented views
(called positive samples or pairs) of the same anchor image, we consider that they
share the same semantic property and thus we force their features to be repre-
sented similarly in the latent space. Teaching a network to identify whether two
images come from the same anchor image forces the encoder to learn general and
representative features of a given image while being invariant to the augmentations
used to create the augmented views.

The choice of the augmentation transforms is therefore crucial: it must not
be too simple (i.e., close to the identity function), without completely distorting
the two images, in order to preserve their semantic similarity. Common data-
augmentations include crop and resize, random rotation, color jittering, gaussian
noise and gaussian blur. Some of them are represented on Figure 6.3. More sophis-
ticated data-augmentations include CutOut [102], CutMix [103] and MixUp [104].
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Figure 6.2: Instance discrimination methods. “BP” stands for backpropagation,
and t, t1 and t2 are different data-augmentation transforms.
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a) Original image b) Crop + resize c) Rotation d) Color jittering e) Gaussian noise

Figure 6.3: Common data-augmentations for SSL.

One criterion for choosing good augmentations can be based on the perceptual
invariances that are needed to solve the final task. The types of invariance include
invariance to color, illumination, occlusion, viewpoint, etc., and they are not all
useful for a given final task. For example, if we want to discriminate red apples
from green ones, colour jittering should be used carefully to create augmented
views of the anchor image as it is a discriminant feature.

One challenge when dealing with such methods is to avoid the trivial solu-
tion where all images are represented by a constant representation (in such case,
the network is said to have collapsed). Although the trivial solution satisfies the
training objective (i.e., the features extracted from augmented views are indeed
similar since they are equal), no general representative information about the im-
ages has been learned by the neural network. Four solutions have been proposed to
prevent from such phenomena: i) considering negative pairs with contrastive learn-
ing, ii) using asymmetric siamese networks with self-distillation, iii) analysing the
correlation between latent variables, and iv) introducing constrained clustering.
Figure 6.2 presents their respective architecture, and we present the the details of
each method in the next sections.

6.1.1 Contrastive learning

Contrastive learning is among the most popular self-supervised learning methods
for instance discrimination. It comes from deep-metric learning, whose goal is to
bring similar data points close together and dissimilar data points far apart in the
latent space. As illustrated on Figure 6.2a, it relies on the use of a symmetric
siamese network. Like for any instance discrimination method, the embeddings
extracted from the positive pairs of samples are made similar through the objective
loss. Contrastive learning also introduces some negative samples that are explicitly
made dissimilar to the positive samples. This prevents the network from collapsing:
indeed, the representation of any negative sample is forced to be different from the
positive sample representations, thus preventing the trivial solution. In general,
the positive samples are augmented views of a given image while the negative
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images are randomly/arbitrarily sampled from the rest of the dataset, as shown
on the left illustration of Figure 6.1.

Common architectures – MoCo [105] and SimCLR [106] are two emblem-
atic contrastive self-supervised learning methods which form the basis of several
SOTA SSL methods. SimCLR consists of a symmetric siamese network. Image
representations of two augmented batches of images are computed by an encoder
(encoders share the same weights between the two branches) and a projector, and
then are fed to the contrastive loss. Although being very simple and effective,
SimCLR requires very large batches as inputs (often more than several thousands)
to achieve good performance. The use of a memory bank (dictionary of features of
all samples) as in PIRL [107] is a good solution to accumulate negative samples,
however image representations are often outdated. This issue has been solved
by MoCo, which encodes and updates on-the-fly a queue (dynamic dictionary)
of negative samples (not all samples) using a momentum encoder. This ensures
representation consistency across all negative samples as the representations are
updated smoothly at each step.

Other contrastive frameworks mainly rely on MoCo or SimCLR, and they ei-
ther add some regularisation terms or consider specific data-augmentations. For
example, PIRL uses jigsaw puzzle as a positive view. The network is thus forced
to be invariant to patch permutation, and the authors argue that such invariance
allows them to maintain semantic information in the representation. RELIC [108]
adds a regularisation term that ensures the predictions to be invariant across dif-
ferent augmentations. RELICv2 [109] introduces some background invariance by
masking background elements (foreground elements are estimated using salience
maps). Some frameworks are also specifically designed for anomaly or out-of-the-
distribution detection. CSI [110] considers distribution shifting transformations
like CutOut, rotations or patch permutation as negative augmentations. Spot-
the-Difference [111] adds a regularisation term to MoCo or SimCLR that max-
imises the distance between a sample and an augmented version with an anomaly
incrustation.

Data-augmentation matters – Like with any instance discrimination method,
a major challenge lies in the choice of the augmentations for creating the positive
and negative pairs. [106] shows that, for classification on ImageNet, composing
random cropping and random colour distortion significantly improves the quality
of the representation. It also prevents the network from exploiting some short-
cuts, and thus encourages the learning of generalisable features. However, it is
worth noting that the definition of a positive or negative sample is dependent of
the nature of the final task: for example, [110] shows that considering shifting
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transformation (e.g., CutOut or rotations) to create negative samples while using
very weak augmentations for positive pairs is beneficial for out-of-the-distribution
task. In other cases, these transformations can be used to create positive pairs,
in particular when we want to introduce invariances to rotations or occlusions.
The definition of a negative or positive pair is therefore highly dependent on the
invariances we want to teach the network. It is also possible to select appropriate
augmentation policies by using an automatic augmentation selection algorithm
such as AutoAugment [112] or SelfAugment [113].

Contrastive loss and SSL – The contrastive loss [114] was first introduced in
the context of deep metric learning. Concretely, it takes a pair of input embeddings
zi and zj and predicts whether or not they belong to the same (pseudo-)class. It
can be written as follows:

Lcontrastive(zi, zj) = 1{yi=yj}||zi − zj||22 + 1{yi ̸=yj}max(0,m− ||zi − zj||2)2,

where yi and yj are the labels of zi and zj respectively, and m > 0 is a margin
parameter. A similar loss, called the Triplet loss [115], was also introduced. Unlike
the contrastive loss, it compares three samples at the same time: a query, a positive
sample and a negative sample. Although hard negative mining can help, one
problem with such losses is their slow convergence.

In order to take into account multiple negative samples, [116] extends the
triplet loss to a N-pair loss, which boils down into a multi-class classification loss.
Adding a temperature scaling parameter τ that controls the penalty applied to
hard negative samples in the N-pair loss leads to the InfoNCE loss [117]. The
latter is widely used in SSL frameworks, and can be formulated as follows:

LInfoNCE(q) = − log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

, (6.1)

where q is the query embedding, {k0, k1, ..., kK} a given batch of samples containing
K negative samples with respect to q and one positive sample, also denoted k+.

Computational resources – A drawback of contrastive methods is that they
are computationally expensive. They require an important number of negative
samples, leading to very large training batches. To understand the reasons behind
these requirements, we need to go back to the fundamental challenges of deep
metric learning.

In common deep metric learning methods, the negative samples are meticu-
lously chosen. Indeed, in order to help the network to extract more representative
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information, the hard negative sampling has been thoroughly studied in deep met-
ric learning. Good hard negatives are negative samples that are considered as be-
ing difficult to discriminate from the positive samples. However, depending on the
dataset and other biases, using only hard negatives as negative samples can make
it difficult for the network to converge. Some strategies, such as semi-hard nega-
tive sampling [118], were thus introduced. Contrastive learning circumvents this
issue by relying on large batches of uniformly sampled negatives, which implicitly
ensures that at least some hard negatives are computed in the loss. Nonetheless,
such strategy requires large datasets, and also important computational resources
(GPU memory). As explained earlier, some methods alleviate this issue by using a
memory bank (e.g., PIRL), or momentum encoder (e.g., MoCo). MoCHi proposes
to reduce the number of training epochs by relying on synthetic hard negative min-
ing. More specifically, they mix hard negative features together in order to create
synthetic hard negatives. Such a strategy also increases the downstream task per-
formance. However, low-resource SSL pre-training remains a major challenge for
contrastive learning.

Uniformity-tolerance dilemma – Contrastive learning brings several advan-
tages: the architecture is quite simple, and allows for the use of any type of
network as an encoder (e.g., ConvNet or ViT). Moreover, the choice of the data-
augmentations for generating positive pairs is intuitive and can be designed specif-
ically for different downstream tasks. However, its learning objective induces some
noticeable drawbacks. [119] points out a uniformity-tolerance dilemma in the for-
mulation of the contrastive learning objective, which may impair the fine-tuning
performance. Indeed, the training objective of contrastive learning leads to a uni-
form distribution of the embeddings in the latent space in order to learn separable
features. However, as positive pairs are built upon data-augmentations of one an-
chor sample only and negative pairs are randomly sampled, giving a high penalty
to hard negatives implies that the network will ignore the underlying semantic con-
sistency between hard negatives and positive samples. Here is an example: let us
say that we have a Golden Retriever (dog) as our anchor sample, and a Labrador
(dog) and an apple as negative samples. In the latent space, the Labrador and
the apple will both be pushed far away from the augmented views of the Golden
Retriever, though we expect the Labrador to have a feature representation simi-
lar to the one of the Golden Retriever since they both belong to the same class
(dog). With such training objective, the network may learn less representative
features. [119] argues that a careful choice of the temperature τ in the InfoNCE
loss can relax such dilemma: using a higher τ reduces the penalty applied to hard
negatives (such as the Golden Retriever). Indeed, as described in the Figure 2
of [119], a small temperature τ leads to a more uniform distribution among the
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embeddings in the latent space, and thus induces less tolerance towards hard neg-
atives. [120] further analyses this phenomenon and proposes to introduce a dual
temperature that penalises differently hard negatives. Besides, this strategy al-
lows us to remove the dictionary used in MoCo (method coined as SimMoCo) and
its momentum encoder (method coined as SimCo), without impairing the perfor-
mance. Another efficient solution to the uniformity-tolerance dilemma would be to
introduce multi-instance positives. This can be easily achieved when using video
sequences, which allows one to have different viewpoints of a same object [121]
and thus induces viewpoint invariance. However, videos are not always available
for the pretext task pre-training. To circumvent this issue, NNCLR [122] proposes
to create multi-instance positive pairs by picking a positive view of an anchor in a
memory bank. The positive sample is chosen as being the sample with the closest
features to the anchor image using the l2 distance. Negatives are stored in the
mini-batch as in SimCLR. Finally, [123] introduced a debiased contrastive objec-
tive, which limits the effects of the sampling bias (i.e., false negative samples) on
the SSL training in an unsupervised way.

6.1.2 Self-distillation

Another way to circumvent the uniformity-tolerance dilemma is to remove the
negative pairs and to consider positive pairs only, although some tricks need to be
introduced in order to prevent the network from collapsing.

One of the first strategies to train such networks is introduced in [124] with
BYOL. As illustrated in Figure 6.2b, it consists in distilling the knowledge from
a teacher branch to a student one (i.e., training the student network to predict
the representations learned by the teacher). To prevent the network from col-
lapsing, the teacher’s weights are not shared with the student branch (i.e., there
is no backpropagation): instead, the teacher’s weights are progressively updated
through an Exponential Moving Average (EMA) of the student’s weights. The
training asymmetry induced by such update is the key to avoid trivial solution.
More specifically, SimSiam [125] shows that the stop-gradient operation (i.e., no
backpropagation in the teacher branch) coupled with a predictor in the student
branch is enough to prevent from collapsing. However, the use of EMA to update
teacher’s weights still leads to better performance.

SOTA frameworks based on self-distillation are built upon BYOL and Sim-
Siam. For example, DINO [126] improves BYOL by smoothly discretising the
representations. The authors also show that multi-crop augmentations are essen-
tial for improving the fine-tuning performance, and that ViT backbones trained
within an SSL framework implicitly learn local information about the scene such
as object boundaries (it can be seen by looking at attention maps). iBOT [127]
and DINOv2 [128] further improve DINO by integrating masked image modelling
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task (described in Section 6.2). Note that for self-distillation frameworks, the use
of a contrastive loss is not adapted since we do not have negative samples; losses
like the mean-squared error (MSE), the cosine similarity or the cross-entropy are
used instead.

6.1.3 Cross-correlation analysis

Methods described in this paragraph rely on cross-correlation analysis, and they
neither require the use of negative pairs nor an asymmetric siamese network. In-
stead, they are based on a symmetric siamese network that maximises the mutual
information (invariance term) of decorrelated latent representations of positive
pairs, as illustrated by Figure 6.2c). To prevent from collapsing, such methods
propose to integrate the following properties into the loss: i) decorrelate the pairs
of positive embeddings (covariance term), and ii) ensure a non-zero variance across
the batch (variance term). Barlow Twins [129] achieves this by computing the
cross-correlation matrix of normalised positive embeddings (normalisation per-
formed across the batch dimension), and by making it close to the identity matrix.
W-MSE [130] ensures the variance and covariance properties by whitening (i.e.,
decorrelate data and force them to have a unit variance, which is equivalent to
enforce spherical distribution) the batch before ensuring the invariance property
(i.e., making the embeddings similar). VicReg [131] improves Barlow Twins by
explicitly optimising the variance, invariance and covariance with separate terms
in the loss. Although such methods consist in simple architectures, the complex
nature of the introduced losses can lead to sub-optimal or difficult optimisations.

6.1.4 Clustering

Clustering data points in a latent space is the most straightforward method to per-
form instance discrimination, i.e. to model the decision boundaries between groups
of images sharing similar features. Unlike common similarity based methods (ex-
cept for NNCLR), clustering enables to perform multi-instance discrimination, i.e.
images originating from different anchor points can be clustered together in the
objective function. In a self-supervised learning framework, clustering can be used
to estimate the clusters of data and assign pseudo-labels for each group, as shown
in Figure 6.2d. One of the pioneering work to perform this is Deep Cluster [132]:
after encoding a batch of images, a clustering assignment is performed using simple
clustering methods such as K-means, which allows us to assign a pseudo-label for
each image. Then, a classification loss is optimised. Several issues arise from this
formulation: i) clusters derived from features extracted from randomly initialised
weights seem to be meaningless (i.e., no prior about the semantic consistency is en-
sured, as it would be the case for similarity-based methods with the use of positive
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pairs), ii) the number of clusters needs to be chosen beforehand, and iii) collapsed
solutions where all data points collapse to a single cluster can occur. For the first
issue, [132] argues that NN trained with DeepCluster can converge although start-
ing from random initialisation since randomly initialised weights already provide
a strong prior on the input signal. Indeed, some simple low-level features can be
discriminated by random weights. Concerning the number of clusters, DeepCluster
empirically show that a 10k clusters help in achieving best performance. For the
third issue, authors of [132] avoid trivial solution by reassigning empty clusters
(perturbed centroid of non-empty cluster becomes new centroid for empty cluster).
They also balance the size of clusters by sampling images uniformly among the
estimated pseudo-labels. SeLa [133] improves Deep Cluster by i) constraining the
clusters to be equally-sized in order to tackle the third issue, and ii) interpreting
the final objective as an optimal transport problem and solving it efficiently using
the Sinkhorn-Knopp algorithm.

Some more methods based on offline clustering were proposed (such as SCAN [134]),
however these methods find difficulties in scaling to huge amounts of data. More-
over, some hyperparameters such as the number of clusters need to be tuned care-
fully to achieve great performance. To circumvent these drawbacks, SwAV [135]
has been proposed, which takes advantage of both clustering and similarity-based
methods. To do so, the symmetric siamese architecture of SwAV takes as input
two augmented batches of images (i.e., positive pairs), assign a prototype vector to
each image and make them similar for positive pairs. So far, SwAV is considered
as being one of the most stable clustering method, and as it combines the best
from both clustering and similarity-based approach, it leads to SOTA results. A
similar method called MSN [136] combines self-distillation, online clustering (with
prototype vectors) and masked augmentations, which also leads to SOTA results.

6.2 Image modelling

Conversely to instance discrimination methods whose goal is to estimate decision
borders between image representations, the objective of IM methods is to recover
corrupted images. The underlying hypothesis is that if a network is able to guess
or even reconstruct severely corrupted information, then it “understands” the se-
mantics in the image. One strong invariance learned by such methods is occlusion
invariance, which has been shown to benefit instance discrimination methods [137].

The pioneering methods that deal with image modelling firstly aimed at pre-
dicting the reconstruction parameters. For example, the pretext task proposed in
Context Prediction [138] consists in predicting the relative position between two
patches. To solve this task, the network needs to recognise the objects and how
their parts are related to each other. The same requirements are needed for solv-
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ing a jigsaw puzzle [139] (i.e., predicting the applied permutation). RotNet [140]
pretext task consists in applying a random rotation (0, 90, 180 or 270 degrees)
to an image and to predict it. This supposes that the network learns about the
semantics and the “natural” relationships between the elements composing an im-
age/a scene. For example, it should learn that, usually, the head of an animal is
placed above the body, not below it.

The methods outlined above do not reconstruct the corrupted image, which
means that they are less computationally expensive. However, their design is very
dependent of the dataset biases and they are prone to shortcuts. For example, [139]
showed that a common shortcut for solving jigsaw puzzles is the use of chromatic
aberration. A careful design of the pretext task is crucial to ensure that relevant
features are learned by the network. With the fast development and progress of
deep learning frameworks, the task of corruption prediction became too simple
to solve and these methods were quickly surpassed by methods that explicitly re-
construct the corrupted information. Their success is justified by the fact that a
strong feature extractor should be robust to partial corruption of the data. Indeed,
we are able to recognise a dog even if the picture is blurred or if a part of the dog is
occluded. Moreover, by reconstructing the corrupted data, image modelling meth-
ods better exploit local features [141], compared with simple corruption perdition
pretext task.

In the following, we present several "modern" IM methods. The key differ-
ences between IM methods lie in the corruption that is considered, as well as the
reconstruction objectives. In the following paragraphs, we propose to classify the
emblematic IM methods according to the chosen corruption and the reconstruction
target objectives.

6.2.1 Corruption types

a) Original image b) Noise c) Decolorization d) Masking

Figure 6.4: Common types of corruption for image modeling.

The main corruption types are represented on Figure 6.4. One of the first
considered corruptions is adding noise to the input, which was then denoised using
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a denoising auto-encoder (DAE) [142]. Concretely, DAE adds a gaussian noise at
each scale of the auto-encoder and attempts to reconstruct the original features
and image. [143] points out that such a strategy is very localised and learns
low-level features, and thus no semantic knowledge seems to be required to solve
such a task. [143] proposes to mask a part of an image with white pixels and
to perform inpainting. Another corruption-based pretext task that has led to
better performance than previous methods is image colourisation [144, 145]. The
relationships between the objects and their colours are learned by the encoder, and
colour thus becomes a discriminative feature for analysing image semantics. This
means that this pretext task may not be adapted to 1) final tasks that need to be
colour invariant, and 2) non-RGB images (e.g. infrared images). It is also necessary
to ensure that the pre-training dataset is diverse enough, as this method is much
more prone to colour biases in the dataset (e.g., only red apples are presented in
the dataset, while green or yellow apples also exist).

Early image modelling methods yielded poor results compared to supervised
training. The recent advent of ViT has turned the tables, and now Masked Im-
age Modelling (MIM) methods are at the SOTA for image representation learning.
MIM consists in masking a relatively high proportion of an image and reconstruct-
ing it (or its features). This brings occlusion invariance to the encoder, as well as
locality inductive bias [141]. Well-known SSL SOTA pipelines such as BEiT [146],
Masked Auto-Encoder (MAE) [147], iBOT [127] or I-JEPA [148] rely on this prin-
ciple. However the fine-tuning performance is highly dependent on the masking
strategy. We propose to group the masking strategies by answering the following
questions:

a) Original image b) Random c) Square d) Block e) Grid

Figure 6.5: Common masking strategies for masked image modelling.

• What shape for the mask?

Authors from MAE [147] and SimMIM [149] evaluate different mask sam-
pling strategies that were previously proposed in the literature, including
random, square [143], block-wise [146] and grid masking strategies. The dif-
ferent masking strategies are represented on Figure 6.5. Both works conclude
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that the simple random masking strategy is the most efficient, under the con-
dition of considering a high masking ratio. Indeed, such a strategy preserves
more hints about the object, especially when considering an object-centric
dataset, as opposed to the square and blockwise strategies. Compared to
the regular grid masking strategy, random masking brings more difficulties
to the network since the object parts are unevenly occluded. Therefore,
a semantic understanding of non-occluded patches is necessary to recon-
struct some heavily occluded parts. A commonly chosen size for the masked
patches is 32 when considering pre-training on images of size 224×224, which
has shown to be efficient for many famous computer vision datasets (Ima-
geNet [33], COCO [35], etc.). Note that such patch masking strategies (in
terms of size and shape) may not be suitable for some real-world application
and data, like in remote sensing or medical domains. [150] proposes masks
with irregular shapes, which are beneficial for anomaly detection in remote
sensing images because the authors simulate the spatial morphology of the
anomalies. However, the effectiveness of this masking strategy compared to
conventional strategies has yet to be proven in this type of application.

• At which ratio?

Masking a high ratio of patches is also important to make the pretext task
difficult enough for the network to extract meaningful features. MAE and
SimMIM found that a ratio of 50% is optimal for random masking. SimMIM
further proposes a metric called Average Distance (AvgDist) that evaluates
the reconstruction difficulty of a given mask sampling strategy. It consists
in computing the averaged Euclidean distance between masked pixels and
the nearest visible ones. They conclude that masking strategies with an
AvgDist metric between 10 and 20 have more chance to perform well for fine-
tuning. Note that this study has been performed on object-centric datasets
(ImageNet, iNaturalist-2018 [151]), as well as on visual scenes (COCO and
ADE20K [152]).

• Which values for the masked areas?

First transformer-based MIM methods propose to replace the masked patches
by learnable embeddings [146, 149]. However, MAE showed that encoding
masked patches leads to worse results: in addition to severely affecting the
convergence time, it also brings a gap between pre-training and fine-tuning.
Indeed, in the fine-tuning task, there is no such corrupted patches. Therefore,
authors from MAE paper propose to encode unmasked patches only, and
design a specific decoder that takes as input the masked patches as learnable
embeddings. For ConvNets, basic masking values like white [143], zero or
mean RGB [153] values are not optimal. Indeed, [154] explains that since
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CNNs operate on regular grids with an overlapped sliding window, zero-
outing masked pixels inevitably leads to i) data distribution shift, and ii)
mask pattern vanishing issue. Therefore, the authors propose to rely on
sparse convolutions, also called partial convolutions. [155] and [156] use a
similar strategy. More specifically, [156] efficiently encodes two images as
a single image by replacing the masked patches of the first image (image
1) with the unmasked ones of the second image (image 2). To adapt this
strategy to ConvNets, they introduce unmixed convolutions, which consists
in unmixing the image into image 1 and image 2, and then applying partial
convolution.

Another strategy consists in replacing the masked patches by plausible patches.
CIM [157] replaces the masking strategy by a more subtle corruption cre-
ated using a generative network. Such masking strategy seems particularly
appropriate for anomaly detection tasks, although the generation of subtle
corruptions and their encrustation raise many questions.

• Where?

Some papers observe that masking patches at random locations can impair
the performance of the network [158]. Indeed, if the pre-training dataset
contains small objects, they may be totally occluded. The objective of the
network will therefore no longer be to reconstruct information but to hal-
lucinate small objects, which poses a problem in terms of learning quality.
To avoid this problem, several papers thus focus on optimising the mask-
ing strategy. [158] propose a conservative data transform to maintain clues
about foreground objects. MST [159], AttMask [160] and AMT [161] rely
on self-distillation and use attention maps derived from the teacher network
to choose the regions to mask. MST chooses to mask non-essential regions
only, with a low masking ratio (1/8), while AttMask shows that masking
important features at a moderate ratio (10− 50%) improves the fine-tuning
performance. AMT also relies on attention-driven masking, however they use
feature maps derived from MAE or SimMIM last layer attention head (thus
they do not rely on siamese architecture for training) after a warm-up phase
(40 epochs). Like in [160], AMT makes the most informative parts more
likely to be masked although there is still a probability that they remain
visible. The authors also show that not using middle attention patches in-
creases the performance, while also reducing the training cost. MILAN [162]
also proposes a semantic aware sampling by using attention maps derived
from CLIP weights [163] (joint text-image SSL pre-training). However, in
contrast to AttMask and AMT, a high probability of remaining unmasked
is given to highly informative parts. This is motivated by two elements: i)
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masking all representative parts of an image leads to very long pre-training,
and ii) due to the specific design of their decoder (MAE-like decoder but
with frozen representations of the unmasked patches, discussed later), the
features extracted by the network need to be informative enough. Indeed,
the network should not learn to “hallucinate” objects.

The methods presented so far allow for the decomposition of an image into
informative and less informative parts (often foreground/background), and
the relationships between those parts (being intra or inter relationships) are
learned by the network. What if we further decompose the image by intro-
ducing more semantic parts? SemMAE [164] proposes semantic-aware adap-
tative masking strategy by using segmentation maps. These segmentation
maps are learned in a SSL way by solving a reconstruction task where the tar-
gets are patches extracted by a pre-trained ViT (e.g., iBOT), and by adding
a diversity constraint on the attention maps. The attention maps obtained
are then used for segmenting the image into several semantic parts. The
semantic-guided masking of SemMAE then consists of progressively mask-
ing 75% of each part (intra-part or local feature learning) at the beginning
of the training, to masking 75% of the parts (inter-part relationships) at the
end of the training process.

Based on all the masking strategies presented so far, the authors seem to agree
on the following conclusions: i) a high masking ratio is recommended to ensure
meaningful representation learning, and ii) a carefully designed masking strategy
(using either attention or semantic maps) further improves the performance. How-
ever, it is not clear which parts should be masked. DPPMask [165] may provide
an answer that gets everyone on the same page: keep as much representative
and diverse information in unmasked patches, while masking at a high ratio (e.g.,
75%). Representative and diverse patches are selected using Determinantal Point
Processes (DPP), which aims at reducing the semantic change of an image after
masking (miss-alignment problem). It consists in computing the distance (using a
Gaussian kernel, which depends on the Euclidean distance between the intensity
values of the patch pairs) between each patch and selecting those that are dissim-
ilar from a selected subset. Due to the computational complexity resulting from
the exact DPP formulation (matrix decomposition), DPPMask proposes a greedy
approximation of DPP. DPPMask shows significant improvements over AttMask
and SemMAE masking strategies for both MAE and iBOT.

6.2.2 Reconstruction targets

Although masking strategy is very important to improve the performance, there are
also many discussions about the choice of the reconstruction targets. First MIM
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methods [142, 147, 149] attempt to reconstruct raw pixels, and apply the MSE
loss as the reconstruction objective. MAE also considered Principal Component
Analysis (PCA) or features extracted from a discrete VAE trained for text-to-
image generation [166] as reconstruction targets, however it did not improve the
performance. An important limitation with the reconstruction objective is that all
reconstructed pixels have the same weight in the loss, although some reconstruction
errors may be irrelevant for meaningful feature extraction.

Therefore, some methods propose to adapt the reconstruction target to the
downstream objectives. For example, to force the network to focus on shapes rather
than texture and rich details, PixMIM [158] filters the high frequencies in the tar-
get objective (and thus the network focuses on low frequencies). Ge2-AE [167] and
A2MIM [153] apply the reconstruction loss in both spatial and frequency domains
to learn global features. In the same spirit, MaskFeat [168] uses the Histogram of
Oriented Gradients (HOG) as a reconstruction target, and justify this choice by
the fact that HOG provides local shapes and appearances while being invariant
to photometric changes. In the same line, SSM [169] applies different reconstruc-
tion losses which introduce some global criteria that do not suppose independence
between neighbouring pixels, such as Gradient Magnitude Similarity (GMS) and
Structured Similarity Index Measure (SSIM). They also combine corruption pre-
diction and target reconstruction objectives by reconstructing the mask initially
applied to the input image.

However, all these methods rely on computationally expensive architectures
(compared to instance discrimination) in order to reconstruct the full-resolution (or
almost) image, with a decoder that will not be used for fine-tuning. To address this
issue, some authors propose to reconstruct some features instead of full-resolution
images. In this case, the challenge consists in defining relevant target features.
Two solutions have been considered:

• Features from a pre-trained network – Several methods like BEiT [146],
MaskDistill [170], MILAN [162] and MaskAlign [171], rely on distillation
(or self-distillation but using an already pre-trained teacher) from strong
unsupervised pre-trained encoders, such as CLIP. However, such a strategy
may not be optimal on datasets that present a domain gap (e.g., satellite
data) with, for example, CLIP pre-training data.

• Features obtained via self-distillation – Another way to obtain target
features is by relying on asymmetric siamese networks as with self-distillation
methods presented in Section 6.1.1. Such a strategy is adopted by SOTA
methods like SplitMask [172], iBOT and I-JEPA [148]. I-JEPA differs from
iBOT by the fact that it asks the network to reconstruct various parts only
(not the full masked areas) of the masked image given a context. It also
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does not optimise a global instance discrimination objective. Nonetheless,
the target features obtained using pre-trained weights seem to lead to better
representation learning. [173] claims that it is not necessary to carefully
choose the target (HOG, MaskFeat or features obtained with MAE/SimMIM
etc.) as long as a multi-stage distillation pipeline is used, which leads to
dBOT method. However, even with dBOT framework, CLIP pre-trained
teacher still leads to better performance than a randomly initialised teacher.

In the literature, many questions have been raised about the design of the
decoder in the SSL pre-training phase. Some researchers argue that it is better
to use a simple decoder to maximise transfer learning performance [149], while
others have observed that a deep and narrow decoder works best [147]. This
is one of the open questions in the field of image reconstruction. Indeed, how
can we ensure that it is the encoder and not the decoder that learns to extract
highly representative information from an image and to disentangle causal factors?
MILAN [162] proposes to circumvent this issue by designing a specific decoder
that clearly separates the functional roles of the encoder and the decoder. For this
purpose, the authors introduce a prompting decoder that takes as input frozen
representations of encoded unmasked patches. The latter are therefore used as
fixed prompts. However, the ablation study shows that the SOTA performance
obtained with MILAN is mainly due to the use of CLIP targets and not to the
design of the prompting decoder.

6.3 Conclusion
In this chapter, we have discussed different SSL methods in details. We have
grouped them into two categories. The first category involves instance discrim-
ination methods, and includes the following sub-categories: contrastive learning,
self-distillation, cross-correlation analysis and clustering-based methods. The sec-
ond category deals with image modelling methods whose objective is to reconstruct
partially corrupted data. This category is further divided according to the types
of corruption applied to the input data, as well as the reconstruction objectives
considered. We summarise the methods and the categories to which they belong
in the Table 6.1.

In the literature, MIM methods are in vogue: when combined with recent Vision
Transformers, they can achieve SOTA performance on multiple datasets, outper-
forming instance discrimination methods, as shown in [147]. The combination of
these two SSL categories also looks very promising (e.g., CMAE [174]).

However, most evaluations are carried out on conventional classification or
object detection datasets that contain natural images close to those used in the
pre-training dataset (e.g., ImageNet). Furthermore, the final task datasets used
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Instance
discrimination

Contrastive SimCLR, MoCO, PIRL, RELIC,
RELICv2, CSI, Spot-the-
Difference, SimMoCo, NNCLR

Self-distillation BYOL, SimSiam, DINO, DI-
NOv2, iBOT

Cross-correlation analysis Barlow Twins, W-MSE, VicReg
Clustering DeepCluster, SeLa, SCAN,

SwAV, MSN

Image
modelling

Corruption
type

Noise DAE
Decolorization Image colourisation
Masking BEiT, MAE, SimMIM, iBOT,

I-JEPA, CIM, MST, AttMask,
AMT, MILAN, SemMAE, DPP-
Mask ...

Target
objective

Raw pixels MAE, SimMIM
Image descriptors PixMIM, Ge²-AE, A²MIM,

MaskFeat, SSM
Deep features BEiT, MaskDistill, MILAN,

MaskAlign, SplitMask, iBOT,
I-JEPA, dBOT

Table 6.1: General overview of SSL methods for image representation learning.

to evaluate SSL methods contain a lot of annotated data. This raises several
questions. What if we consider applications from other domains, with different
image modalities or objects to be detected, such as the detection of small infrared
targets? Is the winning ViT+MIM combo still the most effective in this case?
What about pre-training on an in-domain dataset that is not necessarily clean
(i.e., presenting temporal redundancy, non object-centric images, or little diversity
in the images)? These are open questions in the literature, to which almost no
answers have been given. In the next chapter, we will provide some answers by
proposing a large number of experiments on several benchmarking datasets, with
a focus on small object detection.



Chapter 7

Self-supervised learning methods for
small object detection

The methods presented in Chapter 6 were primarily designed for classification
tasks, and most of them are benchmarked on classification datasets only. There-
fore, their good properties for object detection have only been marginally studied.
Although some methods provide promising results on famous object detection
datasets like COCO [35] or ADE20K [152], they were not specifically designed for
object detection and may thus may appear sub-optimal for this task, and even
worse for small object detection. This is especially true for instance discrimi-
nation methods that mostly involve inter-image comparisons. Some object-level
instance discrimination methods have been proposed in the literature to overcome
this problem. Unlike instance discrimination, masked image modelling methods
naturally deal with modelling local relationships: neighbour pixels are all the more
important to reconstruct masked patches.

In this chapter, we first present some object-level instance discrimination meth-
ods that were introduced to improve object detection. We then benchmark several
SSL pre-training strategies, originating from different SSL categories, on various
benchmarks. We first consider the famous COCO dataset, with a focus on the
performance obtained on small objects. We then consider two real-world applica-
tions that deal with small object detection, namely vehicle detection from remote
sensing data and infrared small target detection.

7.1 Towards object-level representation learning

Some authors propose variants of instance discrimination methods that are well
suited for object detection tasks. In the following, we present some improvements
of the methods introduced in Section 6 that specifically address dense and local
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prediction tasks (e.g., segmentation and object detection, respectively). We will
also discuss the pros and cons of the different SSL paradigms with respect to object
detection in real-world cases.

7.1.1 Object-level instance discrimination

The instance discrimination methods presented in Section 6.1 assume that the
images are semantically consistent. Indeed, the methods are trained on object-
centric datasets such as ImageNet, and only inter-image comparisons are per-
formed. However, this hypothesis does not necessarily hold when dealing with
dense prediction tasks such as object detection or segmentation. To overcome this
issue, two approaches have been investigated: designing data-augmentations at
the object or region-level, or applying instance discrimination loss at a local-level
(e.g., per pixel). Table 7.1 summaries the different categories and the associated
methods. We will discuss both strategies in the following paragraphs.

Region-level augmentations SCRL, ReSim, MaskCo, SoCo,
CAST, ContrastiveCrop, InsLoc,
CP², ORL, Leopart, InsCon

Dense loss
Geometric alignment VaDeR, PixContrast, PixPro,

DUPR, InsCon, Leopart, LC-Loss,
CLOVE

Feature matching DenseCL, Self-EMD, VicRegL
Semantic alignment DetCon, Odin, SetSim

Table 7.1: Taxonomy of object-level instance discrimination methods. The meth-
ods we will consider in our experiments are shown in bold.

Region-level augmentations

The first idea for improving SSL for dense or local prediction tasks is to apply
instance discrimination loss to local patches in order to perform intra-image in-
stance discrimination, as illustrated on Figure 7.1b). Several strategies have been
proposed to ensure semantic consistency between images that form a positive pair.

Spatially Consistent Representation Learning (SCRL) [175] first proposes to
randomly select boxes within the intersecting area of the two positive samples and
to minimise the similarity between the features predicted by the pooled boxes.
Concurrently, [176] proposed a similar approach called ReSim. As shown in Fig-
ure 7.2, a sliding window extracts, in each branch, local features within the overlap-
ping area between the two augmented views of the anchor sample (dashed green
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Figure 7.1: Inter and intra-image instance discrimination.

area). This creates local positive pairs that represent exactly the same spatial
region in the original image (we say that the patches are geometrically aligned).
The similarity between the pairs of local patches is thus enforced. Both contrastive
(i.e., using negative samples) or similarity (e.g., cosine similarity, positive samples
only) losses can be applied to train ReSim. Unlike SCRL, the loss is applied at
three different scales in the network, which benefits the detection of objects of dif-
ferent sizes. ReSim also performs inter-image instance discrimination between the
two global features (representing the entire positive sample) extracted by the net-
work in order to maintain good performance in classification tasks. MaskCo [177]
further introduces the Contrastive Mask Prediction task. It consists in masking
one of the local patches (query patch, taken from the first branch), and predicting
which augmented view (key views from the second branch) suits the best to fill
the masked query patch. Negative key views are introduced by randomly sampling
patches from the rest of the dataset, and the contrastive loss is applied to perform
the Contrastive Mask Prediction task.

However, SCRL, ReSim and MaskCo assume that all overlapping areas are
semantically consistent, which may not be the case on dense visual scenes (e.g., if
the size of the overlapping area is too large). To avoid this issue, SoCo [178] relies
on the selective search algorithm used in Faster R-CNN to extract semantically
consistent sub-regions of an image. Furthermore, CAST [179] introduces saliency
random cropping. Saliency maps are learned with Grad-CAM supervision, and
their goal is to identify foreground objects (and thus semantically consistent re-
gions) within an anchor image. ContrastiveCrop [180] goes further and proposes
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Figure 7.2: Example of object-level instance discrimination pipeline. Here, we
represented the ReSim framework, which consists in maximising the similarity
between a sliding window in the first branch and its equivalent in the second
branch, within an overlapping area.

not only a semantic-aware crop based on the heatmap analysis during the con-
trastive training, but also a centre-suppressed sampling (i.e., by limiting centre
crops and thus avoiding large overlap in the positive pairs) that increases the vari-
ance in the crops. Indeed, one issue with random crops is that they may introduce
too easy positive pairs, i.e. the positive samples that are very similar. Then,
InsLoc [181] and CP2 [182] introduce background invariance into their crops by
copying-pasting foreground images (e.g., crops from ImageNet dataset) on differ-
ent background images. In their loss, they ensure that the features extracted for
the pasted foreground object are similar, regardless of the background.

However, all the methods presented so far rely on intra-image positive pairs,
which limits the diversity of information contained in positive pairs. In addition to
ContrastiveCrop [180] and their center-suppressed sampling, the method Object-
level Representation Learning (ORL) [183] proposed a solution that consists of
a three-stage pipeline. First, an instance discrimination method (e.g., BYOL) is
trained on an object-centric dataset (e.g., ImageNet) to learn to extract global
features. Second, the pre-trained encoder is used to generate local positive pairs.
For this purpose, global features are extracted on the target dataset using the
pre-trained backbone, and similar images are clustered together using a K-Nearest
Neighbours (KNN) algorithm. A selective search algorithm is then used to ex-
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tract local regions within the similar images, and positive pairs of local patches
are matched using the encoder pre-trained in the first step jointly with a KNN
clustering. Third, another instance discrimination method is trained using the
newly generated local positive pairs. An alternative is to combine an instance dis-
crimination method based on clustering, such as SwAV, and local augmentations.
Leopart [34] builds upon this solution. More specifically, it consists in providing
two crops of a foreground object (identified by leveraging ViT attention maps) to
an instance discrimination network (e.g., DINO), and then producing patch-level
cluster assignments, which are forced to be similar following the online optimisation
objective of SwAV [135]. Finally, to improve multi-object detection, InsCon [184]
ensures multi-instance consistency by taking as a query sample a multi-instance
view containing four images, and as positive samples augmentations of each indi-
vidual image contained in the query sample.

Dense loss

dense
projector

dense
projector

Dense instance
discrimination loss

Last feature map

Positive
voxel

matching

Figure 7.3: Dense instance discrimination loss.

The second idea for improving SSL for dense prediction tasks is to apply an
instance discrimination loss at “pixel” level (i.e., each voxel of the last feature
map), as illustrated on Figure 7.3. Such a strategy boils down to dividing the
image into a grid and taking all (or most) the patches in the grid into account
when computing the instance discrimination loss. VaDeR [185] is one of the first
frameworks that use such a strategy. To do so, the authors reconstruct the feature
map at scale 1/4, and they match the local features extracted from the two positive
samples by relying on their geometric correspondence (obtained from the known
data-augmentation process). The key to this type of method lies in how the
positive voxel are matched, i.e. how the features of different views are aligned. In
the literature, several alignment strategies have been proposed:
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• Geometric alignment – VaDeR [185], PixContrast [186], PixPro [186],
DUPR [187], InsCon [184], Leopart [34], LC-Loss [188] and CLOVE [189] as-
sume that the geometric transforms between the positive images are known,
and use them to perform spatial alignment. Leopart [34] additionally re-
lies on the attention maps provided by the ViT encoder to focus only on
foreground objects in the loss. PixPro further ensures spatial smoothness
by propagating the features from similar pixels. CLOVE proposes a similar
approach but instead relies on self-attention maps to propagate features.

• Learned feature matching – It is not always possible to access geomet-
ric correspondences, as for example in the case of temporal positive pairs.
Therefore, DenseCL [190], Self-EMD [191] and VicRegL [192] align feature
voxels that have a minimal distance between their values. An obvious issue
with relying solely on feature alignment is that it assumes that the feature
extraction is semantically meaningful, which is not the case at the begin-
ning of the training. On the one hand, DenseCL proposes a warm-up before
applying this strategy, although they show that random matching (i.e., not
semantically consistent matching) also leads to good performance. On the
other hand, VicRegL combines learned feature matching with spatial match-
ing.

• Semantic alignment – To ensure semantic consistency between posi-
tive pairs of voxels, DetCon [193] estimates pixel categories (pseudo-labels)
through unsupervised segmentation masking (using Felzenszwalb-Huttenlocher
algorithm [194]). The authors show empirically that more accurate seg-
mentation masks lead to better fine-tuning performance. In the same line,
Odin [195] trains an object discovery network together with an instance dis-
crimination pipeline. More specifically, the object discovery network relies
on K-means clustering to cluster the features in the latent space, assuming
that each cluster is more likely to represent an object as the training process
progresses. Concurrently, SetSim [196] uses attention maps to estimate both
positive pixels location and similar sets of pixels, and then computes the
similarity between the sets of pixels.

7.1.2 Which SSL paradigm for detecting objects in real-
world scenarios?

We have introduced in Chapter 6 some of the most important SSL paradigms as
well as some corresponding illustrative methods. In Section 7.1.1, we have provided
some examples of how instance discrimination methods can be adapted for object
detection, while MIM methods are naturally well-suited for dense prediction tasks.
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Although object-level instance discrimination and MIM methods have shown to
benefit several dense prediction tasks, it is not clear which paradigm is better suited
for object detection. Few studies have attempted to compare the two paradigms:

• [197] benchmarks several object detectors based on ViT encoders, initialised
with various pre-trained encoders. They evaluate the fine-tuning perfor-
mance achieved by supervised pre-training (on ImageNet), MoCov3 [198],
BEiT [146] and MAE [147] on the famous COCO dataset. They have found
that MAE and BEiT lead to the best results.

• [199] compares contrastive learning and MIM pre-training. The authors ob-
serve that contrastive learning models relationships at a global scale (i.e., it
learns shapes), whereas MIM is more local (i.e., it has a bias towards tex-
tures). This means that later layers (i.e., high-level information) are impor-
tant for contrastive learning, while early layers (i.e., low-level information)
are more important for MIM methods. The authors believe that this is the
reason why contrastive learning works best in linear probing on object detec-
tion tasks, as it learns to better separate images in the latent space. However,
they found that it reduces the diversity of representation, which may impair
the performance on dense prediction tasks. Finally, the authors conclude
that contrastive learning and MIM methods are complementary, and show
that even a basic combination of the two paradigms allows one to benefit
from the advantages of both. In the literature, some methods that combine
both paradigms are proposed: MSN [136], CMAE [174], Siamese image mod-
elling [200], or CMID [201], which is specifically designed for remote sensing
tasks.

• [141] agrees with most of the conclusions drawn by [199]. In their study,
the authors compare MIM methods with supervised pre-trained models and
MoCov3. They observe that MIM shows a local inductive bias at all layers
while supervised pre-trained weights and MoCov3 tend to focus on local
details in lower layers and on global details in higher layers. They also
show that MIM pre-training brings sufficient diversity to the attention heads,
unlike the supervised or contrastive pre-training strategies whose capacity
may thus be limited. The authors conclude that coupling MIM methods
with ViT encoders should lead to SOTA performance. Indeed, ViT have a
very large receptive field, and forcing the ViT to focus on local details helps
to optimise it. Regarding the object detection task, they observe that MIM
methods help object localisation loss converge faster, while supervised or
contrastive pre-trained models benefit object classification more.

• [202] observes the behaviour of several SSL strategies and their fine-tuning
performance on different downstream tasks. The authors conclude that al-
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though MIM methods often outperform contrastive learning methods on
large downstream datasets (e.g., ImageNet), they struggle with data-insufficient
datasets. They provide the following explanation: unlike MIM methods,
contrastive learning learns more abstract semantics, which helps for unsu-
pervised object recognition. They also conclude that when there is enough
data in the final task dataset, low-level features matter the most for achieving
good performance on the final task.

Note that the benchmarks are all performed using ViT encoders; the conclu-
sions have not been confirmed on CNN-based backbones such as ResNets. CNN-
based encoders are still widely used in many real-world applications and have some
advantages, such as faster inference times on small inputs, and a hierarchical archi-
tecture that benefits object detection. However, they seem to be less efficient than
ViT encoders especially when combined with MIM methods. This may be due
to their poor ability to estimate large-scale relationships between image patches.
Also, unlike ViT architectures that analyse each patch independently, CNN-based
encoders perform convolutions by sliding a window, and thus the receptive field of
the convolution can overlap with both masked and unmasked areas. This leads to
several issues such as masked pattern vanishing or the disturbance of the distribu-
tion of pixel values, as explained in [154]. A2MIM [153] attempts to solve this issue
by replacing the 0-padding with a padding the mean value of the unmasked pixels.
ConvMAE [155], MixMAE [156] and SparK [154] introduce the use of partial or
sparse convolutions. Specifically, the authors of the SparK [154] paper show that
MAE pre-training with a CNN-based encoder can outperform ViT-based MAE
pre-training when using sparse convolution and a modern CNN-based encoder,
namely ConvX-B [40].

A drawback of these studies is that, in their benchmark, they do not con-
sider the methods based on object-level contrastive learning, which are specifically
designed for object detection tasks. Moreover, the benchmarks are primarily per-
formed on the COCO dataset, which is not representative of many real case object
detection scenarios. Indeed, in real-world applications, the objects may be very dif-
ferent (e.g., very small objects) and hidden in complex backgrounds. Furthermore,
different sensors may be used, for example hyperspectral sensors, so that using the
weights of models pre-trained on RGB images is no longer an option. In this case,
it is necessary to train the SSL methods on a dataset that shares similar spectral
characteristics with the target dataset. The quality of the SSL pre-training (i.e.,
a pre-training that leads to high fine-tuning performance), as well as the choice of
the SSL method, will then heavily depend on the characteristics of the pre-training
dataset:

• Dataset size – Several papers, including [203], claim that large datasets
improve the fine-tuning performance. To tackle the difficulty arising from
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small datasets, SimCORE [204] proposes to increase the number of images
in the pre-training dataset by automatically selecting open-set images (e.g.,
images from ImageNet) that are close to the target dataset. However, this
strategy cannot be applied to non-natural (i.e., RGB) images. One therefore
needs to know if this is a necessary condition for all SSL paradigms in order
to achieve high performance on the downstream task. [172] explains that,
unlike instance discrimination methods, image modelling does not require
large training datasets to achieve great fine-tuning performance, especially
when pre-training is performed on the target dataset.

• Diversity and variability – The authors of the DINOv2 [128] paper have
shown that using diverse and curated data from different sources improves
the fine-tuning performance for instance discrimination methods. However,
it may be difficult to collect enough diverse data in real-world scenarios,
especially when the images are extracted from video sequences. Although
DINOv2 proposes a pipeline to clean the pre-training dataset from redundant
data and increase its diversity, this may lead to a very small pre-training
dataset in some cases.

• Object distribution – SSL methods are typically pre-trained on object-
centric or class-balanced datasets such as ImageNet. Unfortunately, custom
pre-training datasets may not share these ideal characteristics: they may
suffer from high class imbalance, or they may contain very tiny objects.
In this case, which SSL paradigm performs best? Should we adapt the
SSL methods (e.g., masking strategy, or local feature matching) accordingly?
[150] proposes a random masking strategy that is specifically designed for
anomaly detection in remote sensing images. The introduced masks have
irregular shapes and sizes that simulate the shapes of anomalies.

• Semantically consistent scenes – Two levels of semantic coherence can be
discussed: intra-image coherence, and inter-dataset (pre-training and down-
stream datasets) coherence. The former has been discussed in Section 7.1.1,
and obviously MIM methods (using an appropriate masking strategy) and
region-level instance discrimination methods are better suited for this case.
For the latter, very few studies have been performed, and it is necessary to
understand the learning mechanisms of the different SSL methods in order
to be able to provide some answers. [203] discusses the semantic coherence
requirement for good transfer learning performance when using instance dis-
crimination methods as a pre-training. The authors observe that mid and
low-level representations are the most important for achieving good transfer
learning performance, and that the semantics (i.e., high-level information) is



156 CHAPTER 7. SSL METHODS FOR SMALL OBJECT DETECTION

not that necessary. Therefore, it may not be necessary to train on seman-
tically similar datasets, but it is important to learn on datasets that have
similar low-level statistics. Note that the study was conducted using CNN-
based encoders, which naturally present a local-inductive bias. They did not
consider ViT encoders or image modelling methods, for which the conclusion
may be different.

The choice of the SSL strategy will also depend on the downstream task dataset.
There has been very little discussion about the choice of SSL methods according
to the final task, and many questions remain without clear answers: are SSL pre-
trained weights helpful in the case of frugal training? Do they generalise well
to unseen objects or noisy data? In the remainder of the manuscript, we will
try to provide some answers with a focus on small object detection in infrared
images. For this purpose, we benchmark masked image modeling methods, as well
as global and region-level instance discrimination methods on several datasets:
i) first, we consider the famous COCO dataset with a focus on the small objects,
ii) second, we consider the VEDAI dataset, which tackles the detection of small
vehicles in remote sensing images (RGB and infrared), and iii) finally we consider
our application of interest, namely infrared small target detection. This will allow
us to evaluate all methods on different real-case scenarios, with images captured by
different sensors. We will also compare the fine-tuning performance of MIM and
object-level instance discrimination on infrared object detection when pre-trained
on a custom infrared dataset that has not been curated.

7.2 Benchmark on the COCO dataset

First, we propose to benchmark some self-supervised learning methods in an ideal
object detection framework using a classic and widely used dataset from the litera-
ture, namely the COCO dataset [35]. It is a large-scale dataset designed for object
detection, segmentation, and captioning. The COCO dataset contains more than
200, 000 labelled images covering 80 object categories, including everyday objects
such as people, animals, vehicles, food, etc. The scenes are realistic, not object-
centred, and the objects are represented in their natural contexts. Various sizes of
objects are covered: 41% of small objects (i.e., objects having an area lower than
322 pixels), 34% of medium-sized objects (area between 322 and 962 pixels), and
24% of large objects (area greater than 962 pixels). Although what is considered
to be “small objects” in the COCO dataset is far from our definition of small tar-
gets (i.e., area lower than 92 pixels), this dataset remains relevant for assessing the
strengths and weaknesses of different self-supervised training strategies on different
object sizes.
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Method SSL category Backbone #params
DINO [126] Inst. Discr. (global) R50 23M

ViT/S-16 21M
ViT/B-16 83M

PixPro [186] Inst. Discr. (local) R50 23M
ReSim [176] Inst. Discr. (local) R50 23M
DetCon [193] Inst. Discr. (local) R50 23M
Leopart [34] Inst. Discr. (local) ViT/S-16 21M
SparK [154] MIM R50 23M

R200 65M
MAE [147] MIM ViT/S-16 21M

ViT/B-16 83M

Table 7.2: Compared pre-training methods, along with their SSL category, con-
sidered backbones and number of parameters in the backbone. R50 stands for
ResNet-50 backbone, R200 for ResNet-200, ViT/S-16 for Vision Transformer (ViT)
Small version with a patch size of 16, and ViT/B-16 for ViT Base version with a
patch size of 16. “Inst. Discr.” stands for instance discrimination methods and
“MIM” for masked image modeling.

In the literature, although a large number of SSL papers evaluate their methods
on the COCO dataset, the fine-tuning set-ups or the evaluation conditions may
differ from one paper to another. To ensure a fair comparison, we propose to fine-
tune the studied SSL methods ourselves, using training parameters from recent
papers that have proven their efficiency. We will benchmark several pre-training
strategies belonging to different SSL categories, trained on different backbones
(ViTs or ResNets) of different size. We summarise the compared methods with
their characteristics in Table 7.2. We divide them into two categories, namely
instance discrimination methods (“Inst. Discr.” with the local (Section 7.1.1) and
global (Section 6.1) distinction, and masked image modelling (“MIM”, Section 6.2).
In this benchmark we will focus on small object performance, as a prelude to the
small object and infrared target detection study that follows in the next section.

Experimental set-up – We consider Mask R-CNN [205] with ResNet-50 (R50),
ResNet-200 (R200), ViT-B/16 or ViT-S/16 encoders as our detectors. For the
encoder, the pre-trained weights of each SSL method are taken from the Github
repository published by the authors of the original papers. The fine-tuning param-
eters for the ResNet-based encoders (namely R50 and R200) are chosen following
SparK’s paper [154] recommendations. More specifically, we train the detector



158 CHAPTER 7. SSL METHODS FOR SMALL OBJECT DETECTION

using AdamW optimiser [206] and the 3× schedule (i.e., we trained the network
for 3× 12 epochs). For the learning rate, since we can only load 36 images on our
GPUs, we use the linear scaling rule introduced in [207] to choose an appropriate
learning rate. We consider the “Step LR” scheduler, and multiply the learning
rate by 0.2 at epochs 3 × 9 and 3 × 11. For ViT-based fine-tuning, we follow the
training set-up proposed in [208] and scale the learning rate according to our GPU
resources based on the linear scaling rule. We fine-tune the neural networks for 50
epochs using AdamW optimiser and CosineLR scheduler.

We evaluate all methods on the “COCO 2017 val” subset, which is a widely used
subset of the COCO dataset for evaluating object detectors. We evaluate the box
location accuracy of each method using the conventional mean average precision
metric mAPbox

@0.5:0.95 (i.e., the area under the precision-recall curve, averaged over
all the object classes and over 10 IoU threshold from 0.5 to 0.95), and do the
same for the predicted segmentation mask (mAPseg

@0.5:0.95). In order to focus on the
detection performance, we will also provide the metrics for box location regardless
of the errors made on the classification (APbox

@0.5:0.95). We will also focus on small
object detection performance by providing this metric for objects that have a
spatial extent less than 32 × 32 pixels (APbox,S

@0.5:0.95, APbox,S
@0.3 ). As explained in

Chapter 4.2.2, since a small deviation in the box localisation for small objects
drastically reduces the IoU between the predicted box and the ground-truth, we
introduce more tolerance regarding the localisation errors by lowering the IoU
threshold to 30% (APbox

@0.3, APbox,S
@0.3 ).

Reproducibility of the results presented in the original papers – Ta-
ble 7.3 shows the results obtained on COCO val 2017 dataset by the assessed
methods. First of all, we would like to make a few comments about the repro-
ducibility of the results presented in the original papers. The results presented in
Table 7.3 are obtained after our own fine-tuning, so there may be a difference in
performance since we have slightly different fine-tuning conditions. For the meth-
ods trained with a ResNet-50 encoder, the results are slightly better than those
presented in the original papers. For example, for ReSim, we achieve 44.3% of
mAPbox

@0.5:0.95 with a 3× schedule while the original paper reports a mAPbox
@0.5:0.95

of 41.9% with a 2× schedule (only 24 epochs for fine-tuning). This difference is
probably explained by the choice of a longer schedule, and of a different optimiser:
indeed, we considered AdamW optimiser instead of the classical SGD optimiser
since it leads to better performance. We have chosen to present the results with
more optimal learning parameters and a longer training schedule in order to get
closer to the performance obtained with ViT encoders.

For ViT-based fine-tuning, the results are much worse than those reported
in the original papers. For example, [147] achieves a mAPbox

@0.5:0.95 of 50.3% on



7.2. BENCHMARK ON THE COCO DATASET 159

Backbone arch. mAPbox
@0.5:0.95 mAPseg

@0.5:0.95

Small networks (21-23 M #params.)
Instance discrimination methods

DINO R50 42.8 38.7
PixPro R50 43.9 39.5
ReSim R50 44.3 40.1
DetCon R50 43.6 39.4
DINO ViT/S-16 46.3 41.1

Leopart ViT/S-16 46.5 41.5
MIM methods

SparK R50 44.1 39.8
Large networks (>65 M #params.)
Instance discrimination methods

DINO ViT/B-16 47.3 42.0
MIM methods

SparK R200 46.7 41.8
MAE ViT/B-16 47.8 42.6

Table 7.3: Benchmark on the COCO dataset. For each network size (small or
large), best results are in bold and second best results are underlined.

the COCO dataset using MAE pre-trained weight, while we can only achieve a
mAPbox

@0.5:0.95 of 47.8% (−2.5%). This is partly explained by the fact that we
considered a shorter fine-tuning schedule (only 50 epochs instead of 100 epochs
as in [147]). Moreover, since we did not have access to the same amount of GPU
resources as the papers that fine-tuned Mask-RCNN with ViT encoders, we were
forced to drastically reduce the size of our batches. Despite adapting the learning
rate accordingly, it is likely that the linear scaling rule [207] used for ResNet-based
encoders does not directly apply to ViTs. Therefore, it is likely that our training
parameters are not optimal. Due to the excessive computation time, the search for
optimal training parameters has been set aside, and it must therefore be assumed
that there is a slight difference in the results, of about 2% or 3%.

Results – Table 7.3 presents the results (detection and classification) obtained
on COCOval 2017 dataset, and Table 7.4 presents the detection results only (i.e.,
we ignore the error made on the classification). Our observations are twofold:

• The encoder architecture matters more than the SSL strategy –
From Table 7.3, we notice that large networks, especially those based on
ViT/B-16 backbone, lead to the best results. For example, the mAPbox

@0.5:0.95
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Backbone arch. APbox
@0.5:0.95 APbox,S

@0.5:0.95 APbox
@0.3 APbox,S

@0.3

Small networks (21-23 M #params.)
Instance discrimination methods

DINO R50 46.9 31.9 77.0 64.0
PixPro R50 48.2 32.9 77.9 64.0
ReSim R50 48.6 33.3 78.4 65.7
DetCon R50 47.4 32.1 77.3 64.0
DINO ViT/S-16 48.8 32.2 79.9 66.9

Leopart ViT/S-16 49.0 32.4 80.1 67.1
MIM methods

SparK R50 48.6 33.3 78.0 64.9
Large networks (>65 M #params.)
Instance discrimination methods

DINO ViT/B-16 49.1 32.7 80.2 68.1
MIM methods

SparK R200 50.5 35.2 79.4 67.5
MAE ViT/B-16 50.3 33.4 80.7 67.6

Table 7.4: Benchmark on the COCO dataset without classification labels (detec-
tion only). For each network size (small or large), the best results are in bold and
the second best results are underlined.

is increased by 2.6% when considering a ResNet-200 encoder instead of a
ResNet-50 encoder for SparK, and increased by 1% when considering a
ViT/B encoder instead of a ViT/S for DINO. Note that the performance
gap is narrower for ViT encoders. Moreover, ViT backbones perform sig-
nificantly better than ResNet backbones. However, the performance gap is
reduced if classification errors are ignored, especially when it comes to small
objects. Indeed, Table 7.4 shows that SparK initialisation on a ResNet-200
encoder leads to an APbox,S

@0.5:0.95 that is 1.8% better than MAE initialisation
on a ViT/B-16. This means that ResNet encoders are likely to be more
prone to classification errors than ViT encoders. Let us now introduce more
tolerance towards localisation errors by lowering the IoU threshold to 30%.
The results are presented in the last two columns of Table 7.4, and we can
notice that ViT encoders outperform ResNet encoders, especially for smaller
networks (e.g., +1.4% in APbox,S

@0.3 when comparing Leopart and ReSim).

• Introducing locality in the SSL pre-training is important for ResNet-
based encoders – Let us now take a closer look at the performance ob-
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tained by each SSL strategy in Table 7.3. Concerning ResNet-50 backbone,
it is clear that ReSim outperforms the other pre-training strategies, includ-
ing the global instance discrimination methods (DINO) or the other local
instance discrimination methods such as PixPro or DetCon. SparK (MIM
method) leads to competitive performance, while DINO seems to be the
worst SSL training strategy for this task. The results seem to be consistent
with our intuition: in contrast to global instance discrimination, both local
instance discrimination and MIM methods force the networks to model lo-
cal interactions within the image, which may benefit object detection. For
ViT/S-16 and ViT/B-16 backbones, the trends are similar, although the gap
in performance is smaller. When looking at the detection performance only
on Table 7.4, we can notice that, for ResNet-50 backbones, ReSim and SparK
lead to very close results even on small objects, although ReSim is slightly
better than SparK when lowering the IoU threshold. The performance gap
with DINO remains very large especially for small objects, which suggests
that this network will be less suited to our task of small target detection.
However, we should note that the difference in performance between the SSL
strategies based on ViT encoders is very thin: although local methods (MIM
or local instance discrimination methods) seem to perform slightly better in
terms of APbox

@0.5:0.95, introducing more tolerance towards localisation errors
shows that DINO with ViT/S-16 or ViT/B-16 encoder is very competitive on
small object detection. Furthermore, DINO with ViT/B-16 encoder leads to
the best APbox,S

@0.3 score. This suggests that ViT backbones are less sensitive
to the pre-training strategy compared to ResNet encoders.

To conclude, this benchmark performed on the COCO dataset suggests that:
1) for ResNet encoders, local instance discrimination and MIM methods are more
suited for object detection, especially for small object, 2) ViTs are more relevant for
object detection, although they lead to larger localisation errors on small objects,
and 3) the fine-tuning performance of Mask R-CNN with a ViT encoder is less
sensitive to the SSL pre-training strategy. Note that these conclusions are drawn
from a dataset containing fairly large objects, in their everyday life context, and
in a sense close to the SSL pre-training data (ImageNet). In the following section,
we will investigate whether these conclusions are still valid for datasets that differ
from ImageNet or COCO (e.g., in terms of different angles of view, or different
spectral bands) and that contain very small objects drowned in different contexts.



162 CHAPTER 7. SSL METHODS FOR SMALL OBJECT DETECTION

7.3 Small vehicle detection from remote sensing
imagery

In this section, we challenge some of the previously studied SSL pre-training strate-
gies in several real-world scenarios. We will first evaluate DINO, ReSim, Leopart,
SparK and MAE pre-training strategies on the RGB version of the VEDAI dataset
(small vehicle detection from remote sensing data, described in Section 2.3.4). We
will then study the cross-domain transfer ability of these pre-training strategies
to infrared images domain using the infrared version of VEDAI. We will also try
to answer the following questions: 1) is it better to perform SSL pre-training on
a dataset whose statistics are close to those of the target data? (e.g., infrared
dataset, remote sensing data), and 2) which SSL strategy is best for pre-training
on an uncleaned dataset (i.e., with high temporal redundancy, low diversity, etc.)?
Finally, we will perform a comprehensive analysis of the behaviour of several SSL
strategies for the task of infrared small target detection.

7.3.1 Small vehicle detection in RGB images

In this section, we fine-tune a Faster R-CNN on the RGB version of the VEDAI
dataset with various encoders initialised with different pre-training strategies (SSL
or supervised on ImageNet). The training parameters are those used in Section 7.2,
except that we considered a CosineLR scheduler for ResNet-based architectures
since it leads to better performance. We considered the same train, validation and
test subsets as in Section 5.2.4, as well as the same metrics (object-level F1 score
and AP). Since ViT-S/16 weights pre-trained using MAE strategy are not available
in the literature, we decided to perform MAE pre-training on ImageNet dataset
ourselves. We used the same training parameters as in the original paper but
trained the encoder for only 400 epochs (instead of 800) due to time constraints.
Note that we tested these pre-trained weights on the COCO dataset, but we did
not achieve correct fine-tuning performance on the COCO dataset (conversely to
what we will observe on the VEDAI dataset). Therefore, the performance of MAE
pre-training on ImageNet with ViT-S/16 is only considered in this section (see
Tables 7.5 and 7.6).

Table 7.5 shows the results obtained on VEDAI RGB dataset. First, there
is a large gap between the performance obtained using a ResNet-50 and a ViT
encoder. In particular, the use of large ViT encoders leads to impressive per-
formance on this dataset. For example, a ViTB/16 encoder can achieve an AP
of almost 95% , while ResNet encoders merely reach an AP of 87.7%. Let us
now dive into the performance achieved by the different SSL strategies. For the
ResNet-50 backbones, ReSim pre-training performs significantly better than DINO
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Backbone arch. APbox
@0.05 F1

Small networks (21-23 M #params.)
Scratch R50 61.8 62.5
Scratch ViT/S-16 79.4 72.8
Sup. IN R50 86.4 82.0
Sup. IN ViT/S-16 92.5 86.2

Instance discrimination methods
DINO R50 86.1 82.0
ReSim R50 87.7 84.4
DINO ViT/S-16 89.7 81.8

Leopart ViT/S-16 91.0 84.5
MIM methods

SparK R50 86.4 83.2
MAE ViT/S-16 91.8 86.1

Large networks (>65 M #params.)
Scratch ViT/B-16 66.7 63.2
Sup. IN ViT/B-16 94.9 90.0

Instance discrimination methods
DINO ViT/B-16 94.9 89.6

MIM methods
MAE ViT/B-16 94.1 88.5

Table 7.5: Benchmark of different pre-training methods on the VEDAI dataset
(RGB images). For each network size (small or large), the best results are in bold
and the second best results are underlined.

and SparK pre-training strategies. For ViT backbones, it is difficult to draw con-
clusions: MAE seems to benefit the most for small encoder pre-training, while
DINO performs slightly better than MAE with a larger encoder. It seems that,
for ViT encoders, the fine-tuning performance on the final task is less dependent
on the ViT initialisation, which is in line with what was observed on the COCO
dataset. Note that the contribution of SSL paradigm for pre-training encoders
over supervised ImageNet pre-trained weights is not obvious, since it performs
on par with ImageNet supervised pre-training. [202] observed the same trend on
data-insufficient downstream tasks.

In the end, it seems that the choice of a good encoder, especially those based
on ViT blocks, is more important for the performance of the downstream task
than the choice of a good pre-training strategy: indeed, the ImageNet supervised
pre-training seems to perform as well as the best SSL pre-training, at least on this
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Backbone arch. APbox
@0.05 F1

Small networks (21-23 M #params.)
Scratch R50 61.3 60.9
Scratch ViT/S-16 74.8 71.3
Sup. IN R50 84.3 80.1
Sup. IN ViT/S-16 89.7 83.0

Instance discrimination methods
DINO R50 84.0 79.0
ReSim R50 85.1 81.6
DINO ViT/S-16 84.4 78.1

Leopart ViT/S-16 84.3 78.0
MIM methods

SparK R50 81.1 78.4
MAE ViT/S-16 88.4 83.7

Large networks (>65 M #params.)
Sup. IN ViT/B-16 91.7 85.9

Instance discrimination methods
DINO ViT/B-16 90.7 85.6

MIM methods
MAE ViT/B-16 92.1 86.0

Table 7.6: Benchmark performed on the infrared images of the VEDAI dataset.

dataset. But what if we consider a downstream task dataset whose image statistics
are very different from those of ImageNet? This is what we will investigate in the
following section using the infrared version of the VEDAI dataset.

7.3.2 Cross-domain transfer ability

Transferring the knowledge learned on RGB data to IR domain – We
now evaluate the ability of the different pre-training strategies to transfer to other
spectral domains using infrared imagery as a target example. For this purpose, we
consider the infrared images of VEDAI dataset and coined this subset of data as
VEDAI IR. We fine-tune a Faster R-CNN with different pre-trained encoders in
the same way as in the previous sections. Note that these encoders have been pre-
trained on RGB images (ImageNet dataset) with different pre-training strategies
(supervised or self-supervised). Table 7.6 shows the results obtained on VEDAI
IR dataset. We can first notice that there is a large drop in performance for
ViT-based instance discrimination pre-training strategies, and they perform even
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worse than the ResNet-based pre-trainings (for equivalent network size). Indeed,
DINO and Leopart pre-training strategies with ViT/S-16 perform about 5% worse
in APbox

@0.05 when applied to the infrared version of VEDAI, while MAE leads to
a decrease of only 2%. The performance gap is less pronounced when it comes to
larger networks, and MAE leads to the best performance. For ResNet backbones,
ReSim seems to be significantly more robust than any other pre-training strategy,
while SparK suffers from a large drop in performance. From these observations we
can see that the fine-tuning performance of SSL pre-trained weights varies greatly
depending on the encoder architecture considered: MIM methods combined with
ViT encoders seem to generalise better to datasets different from the ImageNet
dataset, whereas in the case of ResNets, it is the instance discrimination methods
that perform best. This may be explained by the fact that MIM methods are
very sensitive to image statistics, due to their strong bias towards local details
(e.g., textures), and may therefore show a decrease in performance when applied
to a different dataset. However, since ViT encoders are better at modelling large-
scale dependencies (i.e., they have a bias towards shapes), the combination of ViT
encoders and MIM methods compensates for the weakness observed for the latter.
Thus the following question arises: can we improve the performance by pre-training
on a dataset that has close characteristics to the downstream task dataset? To
answer this question, we propose in the next paragraph to perform some SSL pre-
training on an infrared dataset, that however is uncleaned (i.e., without removal of
redundant images). This will also allow us to assess the degree of generalisability
of SSL pre-training to other pre-training databases.

Pre-training on an uncleaned infrared dataset – For this purpose, we
collected a large number of infrared images from several publicly available infrared
datasets. Table 7.7 summarises the different infrared dataset sources that we
merged together in order to obtain a large infrared dataset for SSL pre-training,
and we coined the final dataset as SSL-IR dataset. The datasets we used to
obtain SSL-IR have very different characteristics: they contain different scenes
(urban, sky, forest...) captured from various camera viewpoints (drone, car), and
with different infrared sensors (thermal infrared, near infrared, etc.). Most of the
images are extracted from video sequences, and thus the obtained dataset suffers
from low image diversity. We obtain a total of approximately 720k infrared images,
which represents about 60% of ImageNet-1k dataset.

We pre-trained ReSim (R50), SparK (R50), Leopart (ViT/S-16) and MAE
(ViT/S-16) on the SSL-IR dataset using the pre-training parameters suggested for
each method in the original papers. We then fine-tuned a Faster R-CNN on VEDAI
IR under the same conditions as before. The results are shown in Table 7.8. ReSim
suffers from a huge drop in performance (more than 8% in both AP and F1 score),



166 CHAPTER 7. SSL METHODS FOR SMALL OBJECT DETECTION

Source dataset Type of data Nature of
data

# images

LSOTB-TIR [209] drone, car, fixed cameras, urban sky
natural scenes, thermal infrared ob-
ject tracking

video 524k

IRDST [210] real and simulated data, drone, sky
and urban scene, target detection

video 143k

FLIR [211] car, urban scenes, autonomous driv-
ing

video 35k

MFIRST [9] drone, sky and urban scenes, simu-
lated and real small target detection

single-frame
images

10k

ASL-TID [212] drone, urban scenes, pedestrian de-
tection

video 4k

HIT-UAV [213] drone, urban scenes, pedestrian de-
tection

video 3k

IRSTD-1k [7] drone, sky, natural and urban
scenes, small target detection

single-frame
images

1k

SSL-IR 720k

Table 7.7: SSL-IR dataset: data sources and specifications.

while the decrease in performance is limited for SparK and Leopart. Moreover,
MAE is particularly robust to training on SSL-IR dataset, since the performance
is almost equivalent to the pre-training on ImageNet. Overall, for both ResNet
and ViT encoders, MIM-based SSL pre-training is more robust to pre-training on
a smaller and less clean dataset than its instance discrimination counterparts.

7.3.3 Conclusion

To conclude this section, let us summarise the main observations:

• Although the different SSL pre-training strategies with ViT-B encoders lead
to equivalent performance on the VEDAI RGB dataset (as well as on the
COCO dataset), this is no longer the case on the VEDAI IR dataset: MAE
combined with ViT-B encoder exhibits a better generalisation ability to sta-
tistically different datasets.

• The conclusions are different for ResNet-based SSL pre-trainings: indeed,
SparK (MIM method) leads to very weak performance on VEDAI IR dataset.
This is explained by the fact that both MIM methods and convolutional
networks in general (as opposed to ViT) present a strong bias towards local
details.
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Backbone arch. APbox
@0.05 F1

Scratch R50 61.3 60.9
Instance discrimination methods
ReSim-IR R50 76.6(−8.5) 72.9(−8.7)

Leopart-IR ViT/S-16 81.6(−2.7) 76.7(−1.3)

MIM methods
SparK-IR R50 77.4(−3.7) 75.0(−3.4)

MAE-IR ViT/S-16 88.5(−0.1) 82.8(−0.9)

Table 7.8: Benchmark on VEDAI IR with SSL methods pre-trained on SSL-IR
dataset. Best results are in bold, and the performance gaps with the respective
SSL strategies pre-trained on ImageNet are indicated in the superscript.

• Overall, the SSL pre-training leads to merely better fine-tuning performance
than the supervised ImageNet weights, even when considering an important
domain gap (RGB versus thermal IR images). The performance of some SSL
pre-training strategies are even worse when considering a ViT-S encoder.
This could mean that none of the SSL strategies studied in this section is
really suited to the downstream task, which has particular characteristics:
few fine-tuning data, remote sensing images, etc.

• Pre-training on in-domain data does not improve the performance. This
conclusion may not hold if the domain gap is even larger (e.g., medical or as-
trophysical domains). If an SSL pre-training on a in-domain custom dataset
is necessary (e.g., no pre-trained weights are already available), it is prefer-
able to consider MIM-based methods as the SSL strategy.

7.4 SSL and infrared small target detection

We now investigate the benefits of SSL pre-training for our application of interest,
namely infrared small target detection. For this purpose, we evaluate different SSL
pre-training strategies on the NUAA-SIRST and IRSTD-850 datasets. We then
combine them with the method developed in the first part of the thesis, namely the
NFA detection head, and evaluate their contribution in a frugal context. Finally,
we will try to understand why the performance is degraded when fine-tuning a
backbone with SSL initialisation instead of freezing it.
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Backbone init.
NUAA-SIRST IRSTD-850

F1 APbox
@0.05 F1 APbox

@0.05

Scratch 97.5 98.1 85.3 91.3
Sup. IN 96.5 97.1 87.9 92.7

+ Freeze 94.9(−1.6) 97.7(+0.6) 89.1(+1.2) 94.1(+1.4)

Instance discrimination methods
DINO 97.4 97.6 89.4 94.2

+ Freeze 97.3(−0.1) 98.2(+0.6) 87.8(−1.6) 93.9(−0.9)

ReSim 94.7 97.0 87.9 92.8
+ Freeze 96.3(+1.6) 98.1(+1.1) 86.3(−1.6) 92.3(−0.5)

ReSim-IR 95.4 97.4 86.0 92.0
+ Freeze 95.2(−0.2) 97.0(−0.4) 86.5(+0.5) 90.7(−1.3)

MIM methods
SparK 96.5 98.1 86.6 91.6

+ Freeze 94.7(−1.8) 97.6(−0.5) 88.4(+1.8) 93.1(+1.5)

SparK-IR 95.4 97.4 88.1 93.6
+ Freeze 95.8(+0.4) 97.3(−0.1) 89.1(+1.0) 93.3(−0.3)

Table 7.9: Results obtained on SIRST and IRSTD-850 datasets using a YOLO-
R50 with different backbone initialisations. For each pre-training strategy, we also
show the results when freezing the backbone (“+ Freeze” row), and the performance
gap is indicated in the superscript. The best results are in bold, and the second
best results are underlined.

7.4.1 Contribution of the SSL in a data-sufficient regime

We first evaluate the benefits of several ResNet pre-training strategies on NUAA-
SIRST and IRSTD-850 datasets. More specifically, we evaluate the benefits of
ImageNet pre-training (Sup. IN), some contrastive methods (DINO, ReSim pre-
trained on ImageNet as well as on SSL-IR), and SparK pre-trained on ImageNet
and SSL-IR. In our experiments, we have found that Faster RCNN leads to par-
ticularly poor performance on NUAA-SIRST dataset. Thus, we rather consider
YOLO architectures. We can easily substitute the YOLOv7-tiny backbone with
a ResNet-50, and coin this new version of YOLO as YOLO-R50. Since no imple-
mentation of YOLO with ViT backbone was available in the literature, we only
assess ResNet-based SSL pre-training in the following. The training set-up is the
same as in Section 5.2. In the tables, the presented results have been averaged
over three distinct training sessions.

Table 7.9 presents the results obtained when fine-tuning the entire YOLO-R50
network (no freeze) on NUAA-SIRST and IRSTD-850 with different backbone
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initialisations. First of all, we can notice that all pre-training strategies downgrade
the performance on SIRST. This may be explained by the fact that 1) NUAA-
SIRST dataset contains enough samples and is quite easy for the task of infrared
small target detection (since training from scratch reaches 97.5% of F1 score), and
2) that the fine-tuning strategy may not be adequate (this will be addressed in the
next paragraph). Given these results, it is not reasonable to draw any conclusions
about the contribution of the SSL pre-training strategies for infrared small target
detection. Let us now take a look at the performance achieved on IRSTD-850
dataset. We can note that, in this case, the SSL pre-training benefits the fine-
tuning performance, probably because the dataset presents more challenging scenes
compared to SIRST dataset. More specifically, instance discrimination methods
like DINO perform well, while MIM methods seem to need a fine-tuning on an in-
domain dataset: indeed, SparK-IR outperforms outperforms SparK by 1.5% in F1
score. As expected, pre-training an instance discrimination method like ReSim on
an in-domain dataset leads to a decrease in performance as the hypothesis made on
the semantic consistency between two positive images does not hold on our custom
SSL-IR dataset. Thus, the features extracted by ReSim-IR are less informative.

In the literature, encoders pre-trained with SSL methods are evaluated on the
downstream tasks after fine-tuning the entire classification, detection or segmen-
tation network. However, as explained in [214] and observed in Table 7.9, such a
fine-tuning strategy may not be suitable for dense prediction tasks. This can be
explained by the fact that a complex, randomly initialised detection or segmenta-
tion head has to be added on top of the encoder, and the backpropagation of these
random weights can “break” the knowledge learned during the SSL pre-training
of the encoder. To further improve the transfer learning performance on IRSTD
and to investigate the benefits of each SSL method without the confounding ef-
fects of fine-tuning, we propose to freeze the backbone layers (i.e., the ResNet
layers in YOLO-R50) and to fine-tune only the rest of the neural network (i.e.,
the YOLOv7-tiny detection head), as in [214]. The results are presented in the “+
Freeze” rows of Table 7.9, and we make the following two observations:

• Global instance discrimination methods generalise well to IRSTD
tasks – Indeed, in both settings, DINO initialisation leads to high final per-
formance on both datasets. MIM methods seem more adequate for IRSTD-
850 dataset, especially when the pre-training is performed on an in-domain
dataset. However, it can be noticed that ImageNet pre-training performs
on par with SSL pre-trainings. This suggests that the pre-training strategy
does not really matter in a data-sufficient context, although pre-training on
an in-domain dataset may be helpful.

• An appropriate fine-tuning strategy should be considered – Let us
now compare the performance of fine-tuning with and without freezing the
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Backbone init.
NUAA-SIRST IRSTD-850

F1 APbox
@0.05 F1 APbox

@0.05

Scratch 96.9(−0.6) 98.3(+0.2) 91.1(+5.8) 93.9(+2.6)

Sup. IN + Freeze 98.1(+3.2) 98.6(+0.9) 89.7(+2.8) 95.3(+3.1)

Instance discrimination methods
DINO + Freeze 97.5(+0.2) 98.6(+0.4) 90.8(+3.0) 94.9(+1.6)

ReSim + Freeze 99.1(+2.8) 98.6(+0.5) 89.8(+3.5) 95.3(+3.0)

ReSim-IR + Freeze 98.1(+2.9) 98.5(+1.5) 88.6(+2.1) 93.0(+2.3)

MIM methods
SparK + Freeze 97.8(+3.1) 98.5(+0.9) 91.1(+2.7) 94.8(+1.8)

SparK-IR + Freeze 97.4(+1.6) 97.6(+0.3) 91.3(+2.2) 94.9(+1.6)

Table 7.10: Results obtained on SIRST and IRSTD-850 datasets using a YOLO-
R50+NFA with different backbone initialisations. We only provide the results of
training strategies where the backbone is frozen, as this gave the best results. For
each pre-training strategy, the performance gap with the YOLO-R50 architecture
(i.e., without the NFA detection head) and its respective frozen backbone initiali-
sation is indicated in the superscript. The best results are in bold, and the second
best results are underlined.

backbone. In some cases, freezing the backbone improves the final perfor-
mance, sometimes by a large margin: for example, on IRSTD-850 dataset,
the F1 score is increased by 1.8% when freezing the backbone initialised
with SparK-IR weights. This phenomenon has been observed and analysed
by [214]. Specifically, they have found that a long-training schedule (i.e.,
complete training with a large number of epochs) moves the backbone repre-
sentation away from the initial one. They have shown that a simple backbone
freezing allows one to preserve the knowledge brought by a good backbone
initialisation and improves the final performance, not only in short but also
in long-training schedules. This improvement is even greater when using an
advanced detection head (as it is the case with YOLOv7 detection head).
Although freezing the backbone entirely may not be an optimal strategy, it
suggests that designing a good fine-tuning strategy is essential to reap the
full benefits of SSL pre-training in a data-sufficient context.

7.4.2 Combining SSL and NFA detection head

In this section, we evaluate the benefits of combining our NFA detection head
with the different SSL initialisation studied earlier. The training set-up is the
same as before, and the results presented in the tables have been averaged over
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three distinct training sessions. Table 7.10 presents the performance achieved by
the assessed methods on NUAA-SIRST and IRSTD-850 datasets, along with the
performance gap with the YOLO-R50 architecture in the superscript. Note that
we only consider the transfer learning strategy where the backbone is frozen, as this
gave the best results. The conclusions on SIRST dataset are quite different from
those of Section 7.4.1. Indeed, although DINO backbone initialisation leads to very
competitive results on both SIRST and IRSTD-850 datasets, the best performance
is achieved by ReSim on the SIRST dataset and by MIM methods on IRSTD-850.
More specifically, ReSim achieves more than 99% of F1 score, outperforming all
other methods evaluated so far (including YOLO-R50, or SOTA segmentation
networks) with a wide margin. ReSim-IR and supervised ImageNet pre-training
weights also lead to very competitive performance. As observed for YOLO-R50, it
is the instance discrimination methods that seem to benefit the detection perfor-
mance on SIRST dataset the most. Regarding IRSTD-850 dataset, pre-training
SparK on SSL-IR dataset leads to impressive results, outperforming DINO initial-
isation, and leading to competitive performance compared to DNANet. The trend
remains similar to what was observed in Section 7.4.1: local instance discrimina-
tion methods are less efficient on IRSTD-850 dataset.

7.4.3 SSL and frugal setting

Let us now evaluate the SSL pre-training under more challenging conditions,
namely 25-shot and 35-shot training on SIRST. The results for the YOLO-R50
baseline and YOLO-R50+NFA are presented on Table 7.11, and they have been
averaged over three distinct training sessions. Note that here we fine-tune the
entire network (including the backbone) since we deal with very challenging train-
ing conditions (and freezing the backbone did not improve the performance). Our
observations are threefold:

• The NFA detection head contributes the most to good performance
in frugal setting – Considering 25-shots, YOLO-R50+NFA achieves a F1
score of 91.9% with only 10% of SIRST dataset, while YOLO-R50 with the
best backbone initialisation leads to a F1 score of only 51.6%. Furthermore,
combining YOLO-R50+NFA with DINO initialisation allows us to reach a
F1 score of 97.1%, which is very close to the performance achieved when
training on the entire dataset. YOLO-R50+NFA also outperforms YOLO-
R50 no matter the considered backbone initialisation in the 35-shot setting.

• MIM methods perform poorly in a few-shot setting – From Ta-
ble 7.11, it is clear that all SSL initialisations benefit the final task perfor-
mance. For example, the F1 score is multiplied by a factor of 2 when using
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Backbone init. NFA 25-shots 35-shots
Scratch 26.1 38.4
Scratch ✓ 91.9 94.8

Instance discrimination methods
DINO 51.6 92.7
ReSim 43.6 90.4

ReSim-IR 36.4 76.4
DINO ✓ 97.1 96.6
ReSim ✓ 95.4 97.2

ReSim-IR ✓ 93.0 95.9
MIM methods

SparK 16.3 56.0
SparK-IR 13.7 44.5

SparK ✓ 93.5 95.1
SparK-IR ✓ 93.0 94.8

Table 7.11: F1 score achieved by YOLO-R50 with different backbone initialisations
in 25 and 35-shot settings on NUAA-SIRST. The contribution of the NFA detection
head is also presented. The best results are in bold and the second best results
are underlined.

an instance discrimination method as the backbone initialisation of YOLO-
R50 in the 35-shot setting. DINO and ReSim both benefit greatly few-shot
training, no matter the detector (YOLO-R50 or YOLO-R50+NFA). This is
not the case for MIM methods, which perform no better than random initial-
isation. Once more, this is consistent with the conclusions drawn by [202]:
MIM methods tend to perform poorly in data-insufficient setting compared
to instance discrimination methods.

• Instance discrimination methods are better suited in a frugal con-
text – Although ReSim-IR performs worse than ReSim, it still contributes
to better performance compared to random weights or MIM methods in a
frugal setting. Therefore, it is preferable to consider instance discrimination
methods when dealing with very little data in the final task, even when a
custom SSL pre-training on in-domain data is needed.
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Backbone init.
NUAA-SIRST

F1 APbox
@0.05

Scratch 97.5 98.1
+ NFA 96.9 98.3

Sup. IN 96.5(−1.0) 97.1(−1.0)

+ NFA 97.5(+0.6) 98.4(+0.1)

Instance discrimination methods
DINO 97.4(−0.1) 97.6(−0.5)

+ NFA 97.0(+0.1) 98.4(+0.1)

ReSim 94.7(−2.8) 97.0(−1.1)

+ NFA 96.8(−0.1) 98.2(−0.1)

ReSim-IR 95.4(−2.1) 97.4(−0.7)

+ NFA 95.9(−1.0) 98.0(−0.3)

MIM methods
SparK 96.5(−1.0) 98.1(+0.0)

+ NFA 97.3(+0.4) 98.3(+0.0)

SparK-IR 95.4(−1.1) 97.4(−0.7)

+ NFA 97.8(+0.9) 98.5(+0.2)

Table 7.12: Results obtained on SIRST dataset when fine-tuning the entire YOLO-
R50 and YOLO-R50+NFA architectures with different backbone initialisations.
For each method, we indicate the performance gap with the training from scratch
(for each architecture respectively). The best results are in bold, and the second
best results are underlined.

7.4.4 What happens when fine-tuning with a long-training
schedule?

In the previous subsections, we have noticed that fine-tuning the backbone can im-
pair the final performance when using pre-trained weights for the baseline YOLO-
R50. Table 7.12 adds the results obtained when fine-tuning the entire YOLO-
R50+NFA with the different backbone initialisation. Unlike with YOLO-R50, we
can see that the performance of YOLO-R50+NFA is less affected by the fine-tuning
step. To investigate this, let us analyse the feature representation learned by each
backbone, depending on its initialisation and the architecture that was considered
(with or without the NFA detection head). For this purpose, we compute the
layer-wise representation self-similarity for each fine-tuned backbone, depending
on its initialisation. The CKA metric, described in Appendix A, is used to com-
pute the similarity between two feature maps, and we consider the last layers of
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Figure 7.4: CKA maps computed for several fine-tuned networks, depending on
the architecture (YOLO-R50 or YOLO-R50+NFA).

each convolution block of a ResNet backbone in our study (which makes a total
of 18 layers). The layers are ranked from 0 to 18, and ordered from the lowest
level (close to the input) to the highest level (more abstract layers). Figure 7.4
presents the CKA maps computed for each fine-tuned backbone (i.e., we compute
the self-similarity for each model) over SIRST test set. Note that the higher the
similarity between the representations provided by two layers is, the higher the
CKA score will be. Since we compute the self-similarity within the same network,
the diagonal terms are equal to 1. From Figure 7.4, we can notice that, except for
the weights trained from scratch, the layers of the YOLO-R50 are very self-similar.
Indeed, we distinguish very large blocks: this means that the layers that lead to
these large blocks extract the same information. According to [215], this could be
a consequence of an over-parametrisation of the network for this task. In other
words, removing layers from this block would merely affect the final performance.
Furthermore, we can observe that adding the NFA criterion into the detection
head leads to the emergence of smaller blocks, meaning that there is a higher
representation diversity. This is especially the case for SparK-IR weights, which
indeed lead to the best performance on SIRST dataset. Having a CKA maps with
smaller blocks could thus go hand in hand with better performance.

Although YOLO-R50+NFA leads to more diverse representations in the latent
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a) all dataset b) 35-shot

Figure 7.5: CKA maps for ReSim + NFA in a) data-sufficient and b) frugal (35-
shot) settings.

space compared to the baseline, the representations learned with instance discrim-
ination initialisation still lack diversity, and they lead to weak performance in
Table 7.12. Furthermore, if we look closely at the performance obtained in the 35-
shot setting (Table 7.11), we can see that ReSim with YOLO-R50+NFA performs
better in this setting than in the data-sufficient context (as shown in Table 7.9).
To investigate this, we compute the CKA map of ReSim backbone (self-similarity)
trained in the 35-shot setting. Figure 7.5 compares the self-similarity of ReSim
in a data-sufficient context (Figure 7.5a) and in the 35-shot setting (Figure 7.5a).
It is clear that we can see the emergence of smaller blocks in the frugal setting,
meaning that there is a higher diversity in the learned representations. It seems
that a long-training schedule, or training in a data-sufficient setting, leads to a
representation collapse in the network. In this case, a correct fine-tuning strategy
should be designed in order to avoid such phenomenon.

7.5 Conclusion

In this chapter, we have evaluated different SSL pre-training strategies on several
datasets. In particular, we have considered global and local instance discrimina-
tion methods, as well as MIM methods. We first evaluated them on the COCO
dataset, which is statistically close to the pre-training dataset (namely ImageNet
dataset), and we focus on the performance obtained on small object detection.
We then considered the VEDAI dataset and two small target detection datasets
to test the limits of these methods. The conclusions for the COCO and VEDAI
datasets are fairly similar: the MIM and ViT combo gives the best performance,
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which is consistent with what is announced in the literature. For convolutional
networks, ReSim (local discrimination instance) seems to be the most robust. On
the other hand, MIM methods (whether combined with ViT or ResNet encoder)
are to be preferred when pre-training on a custom in-domain (with respect to the
downstream task) and uncleaned dataset.

For small target datasets, the conclusions are less firm. The SSL paradigm
seems to contribute only when the dataset is difficult, or under complicated learn-
ing conditions (e.g., few shot setting). On the SIRST dataset, the SSL degrades
performance if the fine-tuning strategy is not appropriate. Freezing the back-
bone weights helps to limit this drop in performance. The fine-tuning strategy
must therefore be chosen meticulously in the future. Overall, global instance dis-
crimination methods (e.g., DINO) seem to be appropriate in most cases when
considering convolutional encoders. For local SSL pre-training strategies such as
SparK or ReSim, the conclusions are different: ReSim seems to be better suited
for SIRST dataset, especially when combined with the NFA detection head, while
SparK trained on an SSL-IR dataset gives excellent performance on IRSTD-850.
Furthermore, in contrast to the VEDAI dataset, we have seen here the benefits of
training on a custom IR dataset: SparK-IR performs much better than SparK on
IRSTD-850. This is not the case with ReSim. This confirms that MIM methods
are more appropriate for pre-training on an uncleaned, in-domain datasets.

It should be noted that all these conclusions have been drawn from detection
networks based on convolutional encoders only. Since Faster R-CNN with ViT
encoder performed too poorly on SIRST datasets in our experiments, we were un-
able to evaluate the contribution of ViT. The conclusions may have been different,
especially for MIM methods, when considering a ViT encoder. A hierarchical ViT-
based architecture (e.g., Swin Transformers) that limits the information loss on
small objects should be considered in the future in order to complete this bench-
mark on small targets. We will discuss this option in the general conclusion of the
manuscript.

Finally, in Section 7.4.2, we have combined the contributions of the both Parts I
and II by initialising the encoder of our best detector, namely YOLO + NFA,
with SSL pre-trained weights. Mixing both NFA and SSL paradigms effectively
improves previous results, leading to new SOTA performance for infrared small
target detection.



Chapter 8

Conclusion and perspectives

8.1 Conclusion
In this thesis, we have explored two approaches to enhance infrared small target
detection. First, we aimed to improve the detector performance by integrating
an a contrario decision criterion into the training process of both segmentation
and detection networks. Second, we examined the advantages of self-supervised
pre-training for IRSTD. To this end, we conducted a survey on SSL methods
for image representation learning, with an emphasis on some methods adapted
for small object detection. We then benchmarked several SSL strategies across
different datasets, including IRSTD datasets. Our findings are summarised in the
following two sections.

8.1.1 New SOTA results for IRSTD

Both the a contrario and self-supervised paradigms have led to impressive re-
sults for IRSTD. In Table 8.1, we present the results obtained on the SIRST and
IRSTD-850 datasets, with the performance of the best SOTA baseline, DNANet,
highlighted in italics. The table includes only the top-performing methods devel-
oped in Chapters 4, 5 and 7, and the performance gap with DNANet is indicated
in the superscript. The a contrario paradigm clearly benefits both segmentation
(with the DNIM backbone) and object detectors (using YOLOv7-tiny and YOLO-
R50) for IRSTD. Additionally, applying the NFA test on the top of DNIM back-
bone or YOLO detectors sets new SOTA results on the SIRST dataset. Combining
SSL with the a contrario approach further boosts performance on SIRST dataset:
YOLO-R50 + NFAN initialised with ReSim weights outperforms DNANet with a
large margin (+2%), achieving more than 99% of F1 score. Initialising YOLO-R50
+ NFAN with SparK weights pre-trained on SSL-IR dataset also leads to SOTA
performance on the IRSTD-850 dataset. This highlights the potential of lever-
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Backbone init.
NUAA-SIRST IRSTD-850

F1 AP F1 AP
SOTA IRSTD baselines
ACM 95.4 95.2 62.1 48.4
LSPM 92.9 90.2 54.9 51.5
AGPCNet 93.8 92.2 88.1 92.3
MTU-Net 93.8 97.2 86.8 89.0
DNANet 97.1 98.4 91.4 92.4
DNIM and YOLO baselines
DNIM 95.8 96.2 89.0 89.9
YOLOv7-tiny 96.5 97.8 82.2 85.0
YOLO-R50 97.5 98.1 82.3 84.3
Our methods
DNIM+NFAN (Ch. 4) 97.6(+0.5) 98.4(+0.0) 91.3(−0.1) 94.2(+1.8)

YOLOv7-tiny+NFAN (Ch. 5) 97.6(+0.5) 98.3(−0.1) 90.1(−1.3) 94.1(+1.7)

YOLO-R50+NFAN+ReSim (Ch. 7) 99.1(+2.0) 98.6(+0.2) 89.8(−1.6) 95.3(+2.9)

YOLO-R50+NFAN+SparK-IR (Ch. 7) 97.4(+0.3) 97.6(−0.8) 91.3(−0.1) 94.9(+2.5)

YOLOv7-tiny-1 scale+NWD+NFAN 97.5(+0.4) 98.4(+0.0) 92.5(+1.1) 95.3(+2.9)

Table 8.1: Overview of the performance obtained by SOTA IRSTD methods,
DNIM and YOLO baselines as well as our methods on SIRST and IRSTD-850
datasets. The best performance are given in bold. The results of the SOTA
IRSTD method, DNANet, are indicated in italics, and the performance gaps be-
tween our methods and DNANet are provided in the superscript.

aging large unlabelled in-domain datasets for SSL pre-training of the encoder to
improve downstream task performance. Last but not least, considering a YOLO
baseline that is specifically tailored for small object detection (e.g., by removing
low resolution scales or by introducing a Gaussian prior) further improves the per-
formance, surpassing DNANet with a large margin on IRSTD-850 dataset (+1.1%
in F1 score and +2.9% in AP compared to DNANet).

Nevertheless, the most impressive asset of the methods we developed is their
significant robustness under challenging training conditions, such as few-shot train-
ing. Table 8.2 compares the results obtained by the baselines and our methods in a
25-shot setting on the SIRST dataset. The contribution of the NFA head is particu-
larly impressive on YOLO baselines, with our best method, namely YOLO+NFA
initialised with ReSim weights, improving the baseline by approximately 70%.
Moreover, all of our methods outperform DNANet by a wide margin. Notably,
integrating our NFA detection head into the YOLO backbone allows us to achieve
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Method
25-shots
F1 AP

SOTA IRSTD baselines
DNANet 73.1 63.7
DNIM and YOLO baselines
DNIM 83.4 83.6
YOLOv7-tiny 21.8 15.0
YOLO-R50 26.1 23.1
Our methods
DNIM+NFAN (Ch. 4) 90.9 93.1
YOLOv7-tiny+NFAN (Ch. 5) 93.6 95.0
YOLO-R50+NFAN+ReSim (Ch. 7) 95.4 96.6
YOLO-R50+NFAN+SparK-IR (Ch. 7) 93.5 95.1

Table 8.2: Results achieved in a 25-shot setting on NUAA-SIRST. Best results are
in bold.

a F1 score that is nearly as high as that obtained with the full SIRST dataset, even
when using only 10% of the training data. This highlights the robustness of our
methods in difficult training scenarios. Additionally, we have shown in Chapter 4
(Section 4.2.3) that the a contrario paradigm is beneficial for domain adaptation
(i.e., training on one dataset and transferring knowledge without fine-tuning to a
different dataset) and for making inferences on noisy data.

8.1.2 Roadmap for selecting SSL methods for IRSTD

In the second part of this manuscript, we evaluated several SSL methods across
different benchmarks. Specifically, we compared global and local instance discrim-
ination techniques, as well as masked image modelling methods, and drew key
conclusions on which method is better suited for IRSTD tasks and under what
conditions. In this paragraph, in the light of the insights presented in Chapter 7,
we aim to provide a roadmap to guide the future practitioners in selecting an ap-
propriate SSL strategy based on various parameters or conditions. The roadmap
is illustrated on Figure 8.1.

The first question to consider is whether SSL pre-training is necessary. Indeed,
we have observed that pre-training on an IR dataset improves the detection perfor-
mance on IRSTD-850, while it does not necessarily lead to better performance on
SIRST dataset compared to using SSL weights pre-trained on RGB datasets like
ImageNet. This suggests that SSL pre-training on custom in-domain dataset is all
the more important when there is a significant domain gap between the available
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Figure 8.1: Roadmap for selecting SSL strategies.

SSL pre-trained weights (such as those pre-trained on RGB images) and the down-
stream task (like segmentation specific images such as medical or remote sensing
ones).

• In the case where custom pre-training is not needed, the choice of suitable
SSL pre-trained weights will depend on the amount of training data avail-
able for the downstream task. As observed in Section 7.4.3, MIM methods
perform poorly in few-shot settings. Therefore, we will prefer instance dis-
crimination methods over MIM methods when dealing with a frugal down-
stream task dataset. Furthermore, if the final task involves dense or local
prediction, local methods (local instance discrimination, or MIM methods if
enough training data is available) may be preferred over global ones.

• If SSL pre-training is necessary but the pre-training dataset is limited or un-
cleaned, instance discrimination methods should be avoided. MIM methods
are better suited for small, low diverse and unclean pre-training datasets.
However, since they tend to underperform in frugal settings, a combination
of MIM and instance discrimination strategies, as done in [127, 201], should
be considered when dealing with frugal downstream task datasets.

A factor that is not fully addressed in this roadmap is the use of a ViT back-
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bone. Combining MIM with a ViT encoder appears to be a winning strategy, as
demonstrated in the benchmarks conducted on the COCO and VEDAI datasets.
However, we were unable to confirm whether this conclusion applies to small target
detection. If it does, the conclusions regarding MIM methods in frugal contexts
would need to be re-evaluated.

The research work conducted during this thesis has resulted in several publica-
tions, listed in Appendix B. Due to the thesis timing, the papers already published
focus mainly on the first part of the manuscript. We first introduced a proof of con-
cept demonstrating the benefits of the NFA test as a post-processing step in [216]
(corresponding to Chapter 3). Following this, we published an article detailing
the integration of an a contrario criterion into the training loop of a segmentation
network in [94] (corresponding to Chapter 4). Lastly, we presented our work at
the ICASSP conference, where we discussed the integration of an object-level a
contrario criterion into a YOLO detection head [217] (Chapter 5). For Part II, two
articles are currently in preparation: one is a survey on SSL for image represen-
tation learning, with an emphasis on methods adapted for small object detection,
and the other investigates the integration of the a contrario paradigm and SSL
within a YOLO framework, which has achieved excellent performance for frugal
settings for IRSTD.

8.2 Perspectives

Based on the literature on deep learning for small target detection and the research
conducted during this thesis, we have identified several future directions. We
propose to divide these into two categories: first, recommendations for further
enhancing the small target detector, and second, perspectives related to defense
application needs.

8.2.1 Improving the small object detector...

... using attention mechanisms – To reduce false alarms in challenging
environments such as in IRSTD-850 dataset, a comprehensive understanding of
the scene is crucial. In the literature, attention mechanisms have been proposed
to address this issue. For instance, AGPCNet computes global attention scores at
the patch level to highlight the regions that are more likely to contain a target.
Considering that ViTs are known for efficiently modelling long-range dependencies,
it raises the following question: could the use of a pure ViT encoder be beneficial
in this scenario?
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Backbone init.
NUAA-SIRST IRSTD-850
F1 AP F1 AP

YOLO baselines
YOLOv7-tiny 96.5 97.8 82.2 85.0
YOLO-R50 97.5 98.1 82.3 84.3
Integrating a Swin Transformer into YOLO
YOLO-Swin 91.4 94.8 81.6 83.0
YOLO-Swin + SSL (ReSim) 94.3 96.0 84.8 87.5
YOLO-Swin+NFAN 97.3 98.0 86.6 88.5

Table 8.3: Performance of YOLO-Swin on SIRST dataset.

To explore this idea, we conducted some tests by replacing the YOLOv7-tiny
backbone with the tiny version of the Swin Transformer, leading to a new network
that we named YOLO-Swin. The results are shown in Table 8.3. We can see
that YOLO-Swin performs significantly worse on the SIRST dataset compared to
other YOLO baselines. On the IRSTD-850 dataset, the performance gap between
YOLO-Swin and the other YOLO baselines is smaller. The use of SSL pre-trained
weights or the NFA detection head notably improves performance, bringing the
results closer to the best YOLO baselines (i.e., YOLO + NFA).

This suggests that using a Transformer-based backbone “as is” may not be op-
timal for IRSTD. It is likely that the architecture needs adaptation, especially to
minimise information loss for small targets. One possible approach is to combine
convolutional layers and ViT, using convolutions to extract fine-scale local infor-
mation and ViT to model long-range dependencies at a coarser scale. MTU-Net,
for example, adopts this strategy, but as shown in Table 8.1, it performs poorly on
the SIRST dataset. Several factors may contribute to these results. First, MTU-
Net was originally designed for large input images (1024 × 1024), and we scaled
it down to 256 × 256 without adjusting the patch size in the ViT blocks. It is
possible that using smaller patch sizes could enhance performance. Second, MTU-
Net relies on max pooling for each downsampling step, unlike other architectures
(e.g., ResNet encoder in DNANet) that use a convolutional layer with a stride of
2 instead. This reliance on max pooling is likely to result in information loss for
small objects. Therefore, there is potential for improvement in leveraging ViT for
infrared small target detection.

... by relying on knowledge transfer – In Part II of the manuscript, we have
shown that using SSL pre-trained weights for the encoder improves performance.
However, the pretext tasks and fine-tuning strategies currently in use may be sub-
optimal. To better suit our needs for detecting rare and small objects in infrared
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images, the pretext tasks should be adapted accordingly. For instance, to make
the SSL method more robust to frugal setting and to pre-training on a custom
in-domain dataset, we should consider combining several SSL approaches, such as
MIM methods with local or global instance discrimination methods. Additionally,
a pretext task focused on anomaly detection and background estimation, as sug-
gested in [218], could be beneficial for our task. Moreover, if transformer-based
detectors prove to be effective for IRSTD, it would be valuable to analyse the
attention maps and perform MIM pre-training with a carefully designed masking
strategy.

Another important consideration is which part of the detector should be pre-
trained. Typically, in the literature, it is common to train the encoder only, with
the aim of having a versatile encoder suitable for various tasks, including classifi-
cation. However, it may be interesting to also pre-train part of the decoder, either
by incorporating part of the reconstruction head for MIM methods or by designing
a pretext task that involves both an encoder and a decoder. This is, for example,
what is proposed in DETReg [219], where the entire detection network (DETR) is
trained using the SSL paradigm. In this case, the pretext task involves proposing
regions of interest (i.e., areas that are likely to contain an object), with the ground
truth generated by unsupervised methods such as selective search.

Furthermore, we have seen that the fine-tuning strategy is very important
in order to correctly transfer the knowledge. One straightforward yet effective
approach is to freeze the weights of the pre-trained encoder during fine-tuning on
the downstream task. However, this strategy is only efficient if the rest of the
network (e.g., the decoder or detection head) has sufficient layers, and it may not
be the most optimal approach. This raises questions about which layers should
be fine-tuned, at what point in the training process, and whether the fine-tuning
strategy should be adjusted according to the pre-training method. Some strategies
suggested in the literature include multi-step fine-tuning, using different learning
rates for each network component (as done in [220]), or regularising the pre-trained
weights during fine-tuning.

Finally, an interesting research area consists in leveraging the knowledge from
foundation models, such as GPT-3 [221] or Segment Anything Model (SAM [222]).
These models have been trained on vast textual or image datasets, often using self-
supervised learning techniques. Some initial attempts have been made to apply
SAM to infrared small target segmentation [223, 224], revealing several challenges
associated with using such models. For example, how can an appropriate tuning
prompt be selected? Additionally, how can the knowledge from a large foundation
model be effectively distilled into a smaller model without causing overfitting to
the IRSTD task? Nevertheless, the results presented in [223, 224] are promising
and suggest potential for leveraging foundation models to enhance small object
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detection.

8.2.2 Perspectives linked to defense application requirements

Multi-spectral or temporal detection – In defense applications, the avail-
ability of time series and hyperspectral images offers a rich amount of information
that can significantly enhance small target detection capabilities. These data types
provide advantages such as increased spectral information and the ability to ob-
serve targets over multiple frames, which can help temporal filtering of false alarms.
To fully exploit this potential, it would be interesting to adapt our detection mod-
els to better utilise these data. A straightforward approach is to stack the time
series or spectral channels depth-wise, then modify the first layers of the encoder to
process this information in-depth rather than spatially. This can be accomplished
with 1D convolutions over the temporal or spectral dimensions [225, 226]. At-
tention mechanisms can also be integrated in order to capture dependencies more
efficiently, as done with SpectralFormer [227] backbone. This strategy allows the
rest of the detector to remain unchanged.

In the case where the temporal filtering is applied after performing single-frame
detection, it may be prudent to avoid using the NFA detection head to perform
the single-frame detection. Indeed, the aim should be to maximise detections,
accepting an increase in false alarms, which will be subsequently reduced through
temporal filtering. The NFA approach, which prioritises precision at the cost of
potential missed detection, may not be optimal in such scenarios.

Furthermore, the integration of temporal and spectral information also opens
up new opportunities for designing pretext tasks that leverage these rich data
sources. For instance, pretext tasks could involve predicting the next frame in
a sequence or ensuring invariance to the dropping or permutation of spectral
bands [228]. This promising research direction will be further explored by Am-
broise Bouru−−Gazeau in his thesis.

Towards a versatile target detector – While it is crucial to detect targets
as early as possible, this does not mean we should overlook detecting closer, and
a fortiori large targets. One issue with our NFA-based detector is that it excels
at detecting very small targets but becomes less effective when the targets occupy
a large portion of the image. To address this limitation, it would be valuable to
combine multiple detectors, each optimised for different target sizes. For instance,
we could use a baseline detector (e.g., YOLOv7-tiny) that performs well on large
objects alongside our YOLOv7-tiny + NFA detector, which specialises in small
object detection.

One approach could be to explore ensemble methods to merge the detections
from these different detectors. However, given that the detectors have distinct
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roles, traditional ensemble strategies such as majority voting or weighted voting
might not be appropriate. Instead, a more tailored approach, such as confidence-
based combination of elementary detections, could be developed to balance the
strengths of each detector. Another possibility is to cascade the detectors (as done
with Cascade R-CNN [229]), where one detector processes the image first and
passes on the remaining task to the next detector based on certain criteria, such
as target size.

Combining multiple detectors not only improves detection accuracy across vari-
ous target sizes but also provides additional information that can be used to explain
the detection process. This is an important step towards improving explainabil-
ity and uncertainty measurement, which are critical aspects for our application,
particularly in defense settings where understanding and justifying detections are
as important as the detections themselves. Additionally, this approach could fa-
cilitate more robust performance in complex and diverse environments, where the
range of target sizes and conditions can vary widely.
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Appendix A

CKA maps

In the literature, the Centered Kernel Alignment (CKA) is a metric that is com-
monly used in order to analyse the layer-wise similarity between the features ex-
tracted by two models. Our approach is based on [202]: to compute the similarity
between features across several batches (since the computation across an entire
dataset is too computationally expensive) we use an unbiased estimator of the
Hilbert-Schmidt Independence Criterion (HSIC [230]) provided by [231]. Given a
mini-batch j of n samples, the HSIC between two flattened features Xj and Yj

(each with dimension (n,C × H × W ), with C the number of channels, H the
height and W the width) is computed as follows:

HSICj(Kj,Lj) =
1

n(n− 3)

(
tr(K̃jL̃j) +

1TK̃j11TL̃j1
(n− 1)(n− 2)

− 2

n− 2
1TK̃jL̃j1

)
,

where Kj = XXT and Lj = YjYj
T , 1 is the identity matrix, tr(·) is the trace

of a matrix, and where K̃j and L̃j are the respective matrices Kj and Lj with the
diagonal numbers replaced by 0. An HSIC close to 0 indicates the independence of
the observations. This similarity is independent of the permutation of vectors in
the representations, which is important when considering feature maps with several
channels. The normalised similarity CKA averaged over all the mini-batches (k
mini-batches, [215]) is therefore defined as:

CKA =
1
k

∑k
j=1HSICj(Kj,Lj)√

1
k

∑k
j=1HSICj(Kj,Kj)

√
1
k

∑k
j=1 HSICj(Lj,Lj)

In practice, we take the last layer of each convolution block of the ResNet-50
backbone, giving a total of 18 layers. In our experiments, we visualise the layer-wise
similarity between two models using heatmaps. We refer to "self-similarity" when
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computing the similarity between feature maps extracted by the same network.
The diagonal of the CKA map is then necessarily equal to 1. The layers are ranked
from 0 to 18, and ordered from the lowest level (close to the input) to the highest
level (more abstract layers).



Appendix B

Publications

Papers

PR-2024 Alina Ciocarlan, Sylvie Le Hegarat-Mascle, Sidonie Lefebvre, and Arnaud
Woiselle. Deep-NFA: A deep a contrario framework for tiny object detection.
Pattern Recognition, 150:110312, 2024

under review Alina Ciocarlan, Sylvie Le Hegarat-Mascle, Sidonie Lefebvre, and Arnaud
Woiselle. Robust infrared small target detection using self-supervised and a
contrario paradigms

under review Alina Ciocarlan, Sidonie Lefebvre, Sylvie Le Hegarat-Mascle, and Arnaud
Woiselle. Self-Supervised Learning for Real-World Object Detection: a Sur-
vey.

Conferences

GRETSI-2022 Alina Ciocarlan, Sylvie Le Hégarat-Mascle, Sidonie Lefebvre, and Clara Bar-
banson. Détection de petites cibles par apprentissage profond et critère a
contrario. In GRETSI 2022, 2022

ICASSP-2024 Alina Ciocarlan, Sylvie Le Hegarat-Mascle, Sidonie Lefebvre, Arnaud Woiselle,
and Clara Barbanson. A contrario paradigm for yolo-based infrared small
target detection. In ICASSP 2024 - IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 5630–5634. IEEE, 2024

Best PhD student paper award - OPTRO 2024

OPTRO-2024 Alina Ciocarlan, Sylvie Le Hegarat-Mascle, Sidonie Lefebvre, Arnaud Woiselle,
and Clara Barbanson. A contrario paradigm for infrared small target detec-
tion. In OPTRO 2024, 2024
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